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If you think education is expensive, try ignorance.

Robert Orben
(currently the leading candidate for crafter of this maxim)1

1https://quoteinvestigator.com/2016/05/03/expense/
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General Introduction

THIS document presents my teaching and research activities since September 2011, when I was hired
as an associate professor at Université de Bretagne-Sud, to teach at IUT de Lorient and conduct

my research in Lab-STICC laboratory, until August 2022. The document is organized in four main parts.
The first part contains my curriculum vitae, and a synthesis of my teaching and research activities. The
second part is the core of the document, presenting in more details my scientific contributions structured
in three main research areas. The third part of the document opens up on research perspectives. Finally,
the document ends with the bibliography and some selected publications. Each part is independent of
each other.

This document is written in French for the first part (but some sections are likely to be understandable
for a reader familiar with English). The second and third part of the document are written in English.
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1. Curriculum Vitae

1.1 État civil

Nom M A R T I N

Prénoms Kevin John Michel

Né à removed for public version

Nationalité removed for public version

personal situation removed for public version

1.2 Situation Professionnelle

Poste Maître de conférences

Établissement d’affectation Université de Bretagne-Sud

Enseignement IUT Lorient - Département Génie Industriel et Maintenance

Recherche Lab-STICC - équipe ARCAD

Date de recrutement 01/09/2011

Grade MCF classe normale

email kevin.martin@univ-ubs.fr

site web http://www-labsticc.univ-ubs.fr/~kmartin/

https://orcid.org/0000-0002-8122-1192

téléphone +33 2 97 87 46 36

A D R E S S E P RO F E S S I O N N E L L E

Laboratoire Lab-STICC, UMR CNRS 6285
Centre de recherche, BP 92116 - 56321 LORIENT Cedex
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6 Chapitre 1. Curriculum Vitae

1.3 Parcours

Septembre 2021 – Août 2022 Délégation CNRS. Laboratoire Lab-STICC, équipe ARCAD
(hardware architectures and computer-aided design tools)

Septembre 2011 – Août 2021 Maître de conférences à l’Université de Bretagne Sud, IUT Lo-
rient
Laboratoire Lab-STICC, équipe ARCAD depuis 2020, précédem-
ment MOCS (Méthodes, Outils, Circuits, Systèmes) 2011-2019

Septembre 2010 – Août 2011 ATER à Université Rennes 1, Irisa, équipe CAIRN

Avril 2007 – Septembre 2010 Doctorat en informatique de l’Université de Rennes 1

Avril 2005 – Avril 2007 Formation en ingénierie logicielle par voie d’apprentissage à
l’ETGL (École des Techniques du Génie Logiciel), CFA AFTI,
Saclay
Contrat d’apprentissage en alternance (2 périodes de 6 mois) en
tant qu’ingénieur logiciel, à l’Irisa, INRIA Rennes

2003-2004 DEA STIR (Signal, Télécoms, Image, Radar), Université de
Rennes 1

1.3.1 Synthèse de la carrière
Après l’obtention d’un DEA en Signal, Télécoms, Image, Radar, option Image de l’université de Rennes 1
en 2004, j’ai suivi une formation en ingénierie logicielle par voie d’apprentissage à partir d’avril 2005.
Cette formation était en alternance entre le CFA AFTI (Association pour la Formation aux Techniques
Industrielles)1 à Saclay, et l’INRIA Rennes. À l’INRIA, j’étais intégré dans l’équipe R2D2 (qui est
devenu CAIRN puis TARAN en 2021). L’alternance consistait en des périodes de 6 mois. Mon parcours
académique m’a donné un bagage électronique quand la formation m’a apporté des connaissances en
informatique et m’a initié au développement logiciel. C’est ce double parcours qui me permet aujourd’hui
de me situer à l’interface entre le monde matériel et le monde logiciel.

À l’issue de la formation en avril 2007, j’ai directement poursuivi en thèse dans l’équipe CAIRN,
thèse dirigée par Christophe Wolinski que j’ai soutenue en septembre 2010. J’ai ensuite effectué une
année d’ATER à l’université de Rennes 1 entre septembre 2010 et août 2011. Depuis septembre 2011, je
suis maître de conférences à l’université de Bretagne Sud, et affecté à l’IUT de Lorient au département
Génie Industriel et Maintenance (GIM) pour l’enseignement. Mes travaux de recherche s’effectuent au
laboratoire Lab-STICC, Laboratoire des Sciences et Techniques de l’Information, de la Communication
et de la Connaissance. Le laboratoire est présent sur les villes de Brest, Quimper, Lorient et Vannes.
Le Lab-STICC est une unité de recherche inter-établissements (CNRS, IMT Atlantique, ENIB, ENSTA
Bretagne, UBO, UBS) comprenant plus de 600 personnes. Mon établissement est l’UBS, et je me trouve
physiquement à Lorient.

À mon arrivée à Lorient, j’ai été intégré aux activités de l’équipe Méthodes et Outils pour les Circuits et
Systèmes (MOCS) du Lab-STICC, et j’ai eu la chance d’être directement impliqué dans le projet ANR
COMPA et l’encadrement de deux thèses (dont une liée au projet). J’ai progressivement développé trois
axes de recherches: 1) Architectures de calcul spécialisées, 2) Déploiement de tâches sur architectures
parallèles, 3) Synchronisation de tâches sur architectures parallèles.

La thèse qui m’a été proposée de co-encadrer dès mon arrivée est une thèse financée par le CEA à
Saclay. Le doctorant a effectué de cours séjours dans notre laboratoire mais est resté majoritairement à
Saclay. L’encadrement se présentait donc sous la forme de quelques déplacements à Saclay (6 au total) et

1ce CFA n’existe plus aujourd’hui



1.3 Parcours 7

de réunions par visio-conférences (3 par mois en moyenne). Cette thèse est devenue la première soutenue
en tant qu’encadrant. Elle a débouchée sur deux publications en conférences internationales avec actes et
comité de lecture (ASAP, GLS-VLSI) et deux dépôts de brevets. Cette thèse a surtout lancé l’activité
autour des CGRAs, le premier des axes de recherche développé dans ce document au chapitre 4, p. 49.

Le projet COMPA est un projet ANR qui a débuté le 1er octobre 2011 et s’est terminé au 30 juin 2015. Le
consortium initial incluait 3 partenaires académiques, l’IETR, l’Irisa (l’équipe dans laquelle j’ai effectué
ma thèse), le Lab-STICC, et 3 partenaires industriels, Texas Instrument, CAPS Entreprise, et Modaë. Ce
consortium a malheureusement beaucoup évolué car les trois partenaires industriels ont dû successivement
se retirer du projet. Dans le cadre du projet, j’ai participé activement à la rédaction des différents livrables.
Ce projet a permis de financer une thèse que j’ai co-encadrée. Elle a été soutenue le 19 juin 2015, et
donnée lieu à une publication en conférence internationale avec comité de lecture (DASIP), et à un article
dans une revue internationale (JSPS). Cette thèse s’est intéressée à la problématique du déploiement
d’acteurs flot-de-données sur une architecture multi-processeurs hétérogène. C’est le deuxième axe de
recherche qui sera développé dans ce document au chapitre 5, p. 75.

Lors de nos recherches pendant le projet COMPA, nous avons été exposé à la problématique de la
synchronisation de tâches sur les architectures multi-processeurs. Dans le cas particulier des acteurs
flot-de-données, nous pouvons tout simplement nous appuyer sur des techniques existantes, mais celles-ci
s’avèrent peu efficaces alors qu’il est possible de s’appuyer sur les caractéristiques des applications flot-de-
données pour améliorer la synchronisation entre les acteurs, en particulier par une meilleure gestion des
accès mémoire. L’idée est de monitorer l’activité mémoire et déclencher des calculs en fonction de cette
activité. Cette idée repose directement sur le patron de conception « Observer », bien connu dans le monde
de l’ingénierie logiciel. Ma formation en génie logiciel et les nombreuses mises en œvre que j’ai faite de
ce patron de conception ont été particulièrement utiles. Un premier prototype virtuel de l’application de ce
patron de conception en matériel a été réalisé et fait l’objet d’une publication en conférence internationale
(DAC2016). Les très bons résultats obtenus sur une seule application (un décodeur H264) méritaient des
investigations plus poussées, c’est pourquoi j’ai déposé un projet ANR JCJC en automne 2016. Ce projet
a été accepté et s’est étalé sur la période janvier 2018 - juin 2022. Cette activité de recherche sur les
mécanismes de synchronisation de manière générale, et en particulier sur l’idée originale de la capacité
de la mémoire à déclencher des calculs, que j’ai nommé « Notifying memories », fait l’objet du troisième
axe de recherche développé dans ce document au chapitre 6, p. 99.

Depuis quelques années maintenant je m’intéresse particulièrement à la problématique mémoire et au
lien entre architectures de calcul et mémoire, pour l’exploitation du parallélisme au niveau instructions
ou de données avec les CGRAs, ou le parallélisme de tâche sur architectures multi-processeurs. Cette
interaction calcul/mémoire est complexe, nécessite du temps, et couvre un large spectre de thématique.
Pour pouvoir y consacrer plus de temps et développer ma propre activité sur ce sujet, j’ai sollicité une
délégation CNRS d’un an à temps plein, que j’ai obtenue pour l’année universitaire 2021-2022. Cette
délégation s’est effectué dans mon équipe de recherche.

Élément de contexte
Un élément de contexte important est la restructuration du Lab-STICC sur la période 2019-2020 au niveau
de l’organisation des équipes de recherche, ce qui a conduit à scinder l’ancienne équipe MOCS (plus de
80 personnes), dans laquelle j’étais depuis 2011, en trois nouvelles équipes, dont ARCAD, mon équipe de
recherche actuelle, pour une mise en place officielle à l’occasion de l’évaluation HCERES début 2021,
en même temps que la mise en place de la nouvelle équipe de direction. À cette occasion, ma mission
d’organisateur de séminaires de l’équipe MOCS a pris fin pour être reprise par les chefs d’équipe.





2. Synthèse des activités

d’enseignement

Ce chapitre décrit les enseignements réalisés sur la période 2011-2021. Dans un premier temps, les
thématiques enseignées sont décrites. Dans un deuxième temps, une présentation synthétique chiffrée sur
les volumes est réalisée. Ensuite, les responsabilités liées à l’enseignement sont présentées. Enfin, une
réflexion sur le métier d’enseignant est proposée.

2.1 Description des thématiques enseignées depuis 2011
2.1.1 Automatisme et Informatique Industrielle

Niveau : 1ère année de DUT GIM, IUT Lorient, UBS

La thématique « automatisme et informatique industrielle » est organisée autour de trois modules dont
l’objectif est de connaître le fonctionnement et la structures des systèmes numériques, en particulier
les systèmes automatisés. Je suis en charge de l’enseignement de la partie numération, système binaire,
algèbre de Boole, logique combinatoire et logique séquentielle. Cette partie est sanctionnée d’un examen
de 2 heures dont je suis responsable de l’élaboration du sujet et de la correction. Au deuxième semestre,
j’enseigne la partie acquisition de données, du capteur à l’ordinateur, incluant les capteurs, conditionneurs
de signaux, numérisation, filtrage, conversion analogique-numérique et numérique-analogique. Cette
partie est sanctionnée d’un examen de 1 heure dont je suis responsable de l’élaboration du sujet et de la
correction. J’encadre les séries de TP couvrant l’ensemble du spectre de l’automatisme, avec également la
partie automate, programmation ladder et graphcet. J’ai développé sept manipulations de quatre heures
pour cette thématique. Le volume d’enseignement associé à cette thématique est d’environ 90 heures eq.
TD.

2.1.2 Électronique analogique

Niveau : 1ère année de DUT GIM, IUT Lorient, UBS

Le module d’électronique analogique consiste fournir les bases aux étudiants de premières années
autour des notions de filtrage analogique, passif ou actif, d’amplificateur opérationnel, systèmes asservis.
Lors des travaux pratiques, il s’agit d’abord de familiariser les étudiants avec les instruments d’observation
et de mesures (multimètre, oscilloscopes), et le matériel électronique d’alimentation, GBF, etc. J’aide à

9



10 Chapitre 2. Synthèse des activités d’enseignement

l’encadrement de TP mis en place par mon collègue responsable du module. Le volume d’enseignement
associé à cette thématique est d’environ 48 heures eq. TD.

2.1.3 Informatique

Niveau : 2ème année de DUT GIM, IUT Lorient, UBS

L’objectif du module intitulé « INFO2 » dans la spécialité GIM est d’utiliser les outils informatiques
nécessaires au traitement de données générales et professionnelles. Les compétences visées incluent
l’analyse et la création d’algorithmes, ainsi que la traduction d’un algorithme simple en langage de
programmation en respectant une syntaxe imposée. L’outil choisi pour l’analyse et la création d’algorithme
est Algobox. Le langage de programmation enseigné est le langage C. J’ai mis en place 6 manipulations
de quatre heures pour ce module. Le volume d’enseignement associé est d’environ 30 heures eq. TD.

2.1.4 Acquisition et sécurisation de données

Niveau : Licence professionnelle, IUT Lorient, UBS

Ce module reprend la partie enseignée au niveau DUT 1ère année autour de l’acquisition de données, du
capteur à l’ordinateur, incluant les capteurs, conditionneurs de signaux, numérisation, filtrage, conversion
analogique-numérique et numérique-analogique. Le module est agrémenté d’une partie sur la vision
industrielle, incluant les capteurs (imageurs), l’éclairage, et l’ensemble du système d’acquisition, traite-
ment, analyse, interprétation et communication. La notion de cybersécurité des systèmes industriels est
également abordée. J’ai aidé au développement de quatre manipulations de quatre heures pour ce module,
dont je suis aujourd’hui responsable. Le volume d’enseignement associé à cette thématique est d’environ
30 heures eq. TD.

2.1.5 Microsystème

Niveau : 3ème année d’école d’ingénieur, filière mécatronique, ENSIBS, UBS

L’objectif du module de microsystème est d’être capable de concevoir un système sur-mesure, avec
des composants matériels spécifiques, et d’identifier la relation matérielle-logicielle à travers la couche
d’abstraction du matériel. Ces compétences sont développées lors de la conception d’un système numérique
composé d’un processeur et de plusieurs périphériques, afin de piloter un base robotique. Les travaux
pratiques pour ce module s’articulent autour d’un projet de seize heures, découpé en plusieurs parties avec
une complexité graduelle. La plateforme utilisée est une carte DE0-nano, avec la suite d’outils Intel/Altera
associée. Le volume d’enseignement associé est d’environ 30 heures eq. TD.

2.1.6 Programmation parallèle

Niveau : Master 2, filières Systèmes Embarqués Systèmes Intégrés, et Cyber-Sécurité des Systèmes
Embarqués, UBS

L’objectif du module est de découvrir la programmation parallèle à travers l’approche OpenMP. Les
compétences visées sont la capacité d’analyser un code existant et d’y extraire le parallélisme, en utilisant
les directives simples d’OpenMP. J’ai mis en place deux manipulations de quatre heures pour ce module.
Le volume d’enseignement total est d’environ 18 heures eq. TD. Cette activité, en lien étroit avec mes
activités de recherche, me permet d’identifier les étudiants présentant une appétence particulière pour ce
sujet.

2.1.7 Mémoires sur puce

Niveau : Master 2, filières Systèmes Embarqués Systèmes Intégrés, et Cyber-Sécurité des Systèmes
Embarqués, UBS



2.1 Description des thématiques enseignées depuis 2011 11

L’aspect « mémoires sur puce » est une intervention spécifique dans le module « Système sur puce ».
Cette intervention de quatre heures (6 heures eq. TD) permet d’identifier les problématiques de la mémoire
sur puces, d’étudier les différentes technologies et organisations existantes, et comprendre la hiérarchie
mémoire et son fonctionnement. Cette intervention est directement en lien avec mes activités de recherche.

2.1.8 Algorithmes pour le VLSI

Niveau : Master 2, filières Systèmes Embarqués Systèmes Intégrés, UBS

Le module d’algorithmes pour le VLSI est un module dont j’ai assuré l’enseignement sur la période 2011-
2016. L’objectif du module est dans un premier temps de faire connaître les différentes façons de concevoir
des circuits, en se basant sur des cellules full-custom, semi-custom, Gate Array, ou FPGA. Le cycle de
conception est présenté en identifiant les problèmes spécifiques rencontrées à chaque étape : synthèse,
partitionnement, floorplanning, placement, routage, assignation des broches, compaction. Un focus est
ensuite mis sur la notion de synthèse logique, avec l’utilisation des BDD (Binary Decision Diagram).
Les algorithmes de partitionnement sont également regardés en détail, notamment l’incontournable
Kernighan-Lin, et l’algorithme de Fiduccia et Mattheyses.

2.1.9 Description des encadrements d’étudiants
Projets tutorés
Sur la période 2012-2021, j’ai encadré les projets tutorés de première année de DUT. Cela représente
quatre à six binômes tous les ans. Les sujets sont proposés par mes soins. Les étudiants peuvent aussi
proposer leur sujet. Chaque binôme travaille sur un sujet différent. L’encadrement inclut un suivi régulier
tout du long du deuxième semestre, une aide à la rédaction du rapport et l’élaboration de la soutenance,
ainsi que la participation en tant que candide à autant de soutenances de projet (8 à 12 soutenances par an).

• Sujets donnés : Logiciels de simulation de circuits numériques, Matrice de LED sous Ar-
duino, Système de déverrouillage d’un coffre par code (ou par badge), l’industrie à l’ère du
numérique, . . .

• Sujets proposés : arc électrique musical, cloche de protection mobile pour graveuse laser,
ampli guitare à lampe, indicateurs lumineux pour motards, . . .

La figure 2.1 montre le prototypage réalisé dans le cadre de la cloche de protection pour graveuse
laser.

Exemples de sujets

41 binômes encadrés, 75 soutenances
Projets GIM Période 2012-2021

Depuis 2017, j’encadre les projets tutorés de la licence professionnelle IMSA (Ingénierie et Maintenance
des Systèmes Automatisés). Je propose un sujet tous les ans. J’encadre un seul binôme sur ce sujet.
L’encadrement inclut un suivi régulier pendant la période de projet, une aide à la rédaction du rapport et
l’élaboration de la soutenance, ainsi que la participation en tant que candide à une autre soutenance de
projet.

Maquette de monitoring, vision industrielle.
La figure 2.2 montre la maquette de monitoring réalisé dans le cadre des projets. L’ensemble

matériel et logiciel a nécessité plusieurs binômes.

Exemples de sujets donnés
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FIGURE 2.1 – Projet tutoré GIM1 - Réalisation
d’une cloche de protection pour graveuse laser

FIGURE 2.2 – Projet tutoré IMSA - Maquette de
monitoring

4 binômes encadrés, 8 soutenances
Projets LP IMSA Période 2017-2021

Encadrement de stages
L’encadrement des stages est équitablement réparti dans l’équipe pédagogique, ce qui représente trois
à quatre stagiaires à encadrer tous les ans. L’encadrement inclut une visite en entreprise, une aide à la
rédaction du rapport et l’élaboration de la soutenance, ainsi que la participation en tant que candide à
autant de soutenances de stage (donc 6 à 8 soutenances par an). Il est à noter que la promotion 2020 était
en pleine période de stage lors du confinement de mars 2020. Tous les stagiaires que j’encadrais ont eu la
chance de pouvoir continuer leur stage, soit en présentiel (domaine de l’eau, activité essentielle), soit en
distanciel. Seule la visite sur site n’a pas pu avoir lieu. Les soutenances ont eu lieu en distanciel.

31 stagiaires encadrés, 62 soutenances
Stages GIM2 Période 2011-2021

Encadrement d’alternants
Je participe à l’encadrement de deux types d’alternants : les apprentis du DUT GIM, ainsi que des contrats
de professionnalisation de la licence pro IMSA. Bien que les niveaux soient différents, l’encadrement se
concrétise par les mêmes actions : une à deux visites sur site par an, interactions avec le tuteur entreprise,
point d’activité après chaque période en entreprise, aide à la rédaction du rapport et l’élaboration de la
soutenance, participation en tant que candide à autant de soutenances que d’étudiants encadrés. Cela
représente deux soutenances (une en tant que tuteur, une en tant que candide). Un étudiant en contrat de
professionnalisation est amené à présenter deux fois : une fois début avril, et une autre fois fin août. Cela
représente donc 4 soutenances par an. Lors du confinement de mars 2020, l’alternant GIM a continué son
activité sur site (domaine agroalimentaire, activité essentielle). L’alternant IMSA a connu une période
d’arrêt d’activité, sans possibilité de travailler à distance. L’encadrement a consisté également à rassurer
l’étudiant sur la non remise en cause du diplôme.



2.2 Présentation synthétique des enseignements 13

FIGURE 2.3 – Photo de l’armoire contenant une partie du matériel pour l’enseignement de la cybersécurité
dans le département GIM.

• 4 alternants GIM (4×2 ans), 32 soutenances
• 9 alternants IMSA (9×1 an), 36 soutenances

Alternants Période 2011-2021

2.1.10 Montée en compétence « cybersécurité des systèmes industriels »
Côté enseignement, le fait notoire des trois dernières années est une volonté de montée en compétence
sur l’aspect « cybersécurité des systèmes industriels », insufflée à la fois par une décision politique de
l’établissement, mais surtout par une préoccupation de nos partenaires industriels. Cette montée en com-
pétence s’est traduite par le suivi de formations et l’intégration de la notion de cybersécurité des systèmes
industriels pour la licence professionnelle IMSA (Ingénierie et Maintenance des Systèmes Automatisés)
dans le cadre du module « acquisition et sécurisation de données ». L’IUT a investi récemment dans du
matériel pour la mise en place de manipulations spécifiques sur cette thématique. Cet investissement
important a permis au département GIM de s’équiper de plusieurs automates certifiés, d’un firewall, et de
plusieurs switches ethernet industriels administrables et non administrables. Ce matériel était nécessaire
pour la mise en place de nouvelles manipulations relatives à l’enseignement de la cybersécurité. Six
maquettes sont en cours d’élaboration pour une série des six nouveaux TP. La figure 2.3 montre l’armoire
qui accueille les automates, les switches administrables, et le firewall.

Par ailleurs, l’IUT de Lorient m’a nommé « référant cybersécurité ». Mes contacts quotidiens avec mes
collègues de recherche de l’équipe ARCAD, dont certains sont spécialistes de cybersécurité, me confèrent
une connaissance globale de cette problématique.

2.2 Présentation synthétique des enseignements

Le tableau 2.1 présente l’enseignement effectué sur la période septembre 2011 - août 2021. Il est à noter
que la somme des volumes de chaque enseignement n’est pas égale au service réalisé (heures payées),
pour cause de proratisation des heures TP au delà du service dû, sauf pour la formation continue. Le
volume pour chaque enseignement est donné en heure équivalent TD, avec 1h TP = 1h TD, et 1h CM =
1,5h TD.

Le tableau 2.2 présente les modules enseignés sur la période 2011-2021, le niveau, le type de formation
(initiale, continue), la nature (cours, TD, TP, encadrement), les effectifs moyens des promotions concernées,
ainsi que le volume cumulé sur la période. La figure 2.4 propose une autre vue de ces enseignements et
montre clairement que la partie automatisme et l’informatique industrielle est la plus importante.
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TABLE 2.1 – Synthèse du volume d’enseignement réalisé sur la période septembre 2011 - août 2021

Année universitaire Volume (service réalisé)

2011 - 2012 229
2012 - 2013 247
2013 - 2014 338
2014 - 2015 282
2015 - 2016 337
2016 - 2017 340
2017 - 2018 301
2018 - 2019 288
2019 - 2020 279
2020 - 2021 292

Total 2 933

TABLE 2.2 – Synthèse des modules enseignés sur la période septembre 2011 - août 2021

Enseignement Niveau Type de formation Nature Effectif Volume
moyen cumulé

Automatisme et informatique industrielle DUT1 Initiale et continue CM/TD/TP 80 1 081
Électronique analogique DUT1 Initiale et continue TD/TP 81 360
Informatique DUT2 Initiale et continue CM/TP 53 279
Acquisition et sécurisation de données LP Continue TD/TP 25 154
Microsystème M2 Initiale CM/TD/TP 35 248
Programmation parallèle M2 Initiale CM/TD/TP 20 136
Mémoires sur puce M2 Initiale CM 20 12
Algorithmes pour le VLSI M2 Initiale CM 20 36
Projets tutorés DUT1, LP Initiale et continue Encadrement 12 108
Encadrement de stages DUT2 Initiale Encadrement 3 152
Encadrement d’alternants DUT1, DUT2, LP Continue Encadrement 2 264

La figure 2.5 montre la répartition des enseignements effectués par niveau. Étant affecté à l’IUT de
Lorient, il est logique qu’une écrasante majorité de mes enseignements concerne les niveaux L1 (DUT1),
L2 (DUT2), et L3 (LP), qui représentent près de 85% du volume. L’enseignement au niveau M2 (UFR,
ENSIBS) occupe les 15% restants. On remarque que je n’ai effectué aucun enseignement au niveau M1
(BAC+4).

La figure 2.6 montre la répartition de mes enseignements par type. L’enseignement à l’IUT étant
principalement axé sur l’apprentissage par la pratique, la majorité de mon activité (plus de 50%) concerne
les travaux pratiques et l’encadrement de projets. L’encadrement lors de période en entreprise lors des
alternances à l’occasion des stages représente 15%. Finalement, seulement 35% de mon activité se fait
sous la forme de cours magistraux ou de travaux dirigés (et encore, les heures sont données en equivalent
TD, les heures de cours en présentiel sont donc artificiellement gonflées de moitié).

2.3 Responsabilités et autres activités liées à l’enseignement

2.3.1 Programme pédagogique national
Le programme pédagogique enseigné à l’IUT est défini nationalement. J’ai participé à la mise en jour en
2015 du programme pédagogique qui concerne la partie automatisme et informatique industrielle. J’ai
participé à la rédaction du nouveau programme lors du passage au BUT, notamment les modules (appelés
« ressources ») informatique et certains liés à l’automatisme.

2.3.2 Commission pédagogique
J’ai été membre de la commission pédagogique de l’IUT de Lorient sur la période 2017-2021. L’objectif
principal de cette commission est d’organiser des « cafés pédagogiques », événements rassemblant
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Automatisme et Informatique Industrielle
Électronique analogique
Informatique
Acquisition et sécurisation de données
Microsystème
Programmation parallèle
Mémoires sur puce
Algo VLSI

FIGURE 2.4 – Répartition des modules enseignés

56 %

17 %

12 %

15 %

L1
L2
L3
M2

FIGURE 2.5 – Répartition des enseignements effec-
tués par niveau (en heure eq. TD)

14 %

19 %

48 %

4 %

15 %

CM
TD
TP
Encadrement projets
Stages et alternants

FIGURE 2.6 – Répartition des enseignements effec-
tués par type (en heure eq. TD)

l’ensemble des enseignants de l’IUT de Lorient sur les thèmes des pratiques pédagogiques innovantes.
Nous avons organisé des événements dédiés sur les sujets suivants : les quiz, les capsules vidéo, classe
inversée, cours en ligne. Il faut noter que l’action « cours en ligne » s’est déroulée avant le confinement et
s’est révélée très utile à cette occasion.

2.3.3 Référant cybersécurité
Depuis 2019, je suis référant cybersécurité de l’IUT de Lorient, rôle qui consiste à :

• Être le référent de l’IUT de Lorient pour tout ce qui concerne la cybersécurité, et en particulier sur
la cybersécurité des systèmes industriels.

• Être force de proposition pour introduire ou développer la cybersécurité au sein des formations de
l’IUT de Lorient, et en particulier dans la licence « IMSA ».

• Conseiller la direction de l’IUT sur le thème de la cybersécurité et permettre à l’IUT de développer
des compétences et donc des offres de formation en cyber (particulièrement dans le cadre de la
cybersécurité des systèmes industriels) aussi bien en formation initiale qu’en formation continue.

• Représenter l’IUT de Lorient au bureau de l’institut cyber de l’UBS
• Suivre des formations pour monter en compétence dans le domaine de la cybersécurité et partager

en retour avec les collègues des formations concernées.
• Assister aux différentes conférences organisées autour de la cybersécurité au sein de l’UBS

2.4 Synthèse et réflexions sur le métier d’enseignant

Après 10 ans d’expérience en enseignement, je me pose encore les mêmes questions : comment transmettre
la connaissance de manière efficace? Comment améliorer mes enseignements?

L’enjeu n’est pas le même selon le niveau enseigné. La maîtrise du contenu au niveau DUT n’est pas
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une difficulté. Il s’agit d’enseigner les bases des différentes disciplines, qui par définition n’évoluent pas
ou très peu. Le défi est au niveau pédagogique. Comment faire comprendre ces notions de base à des
générations d’étudiants en constante évolution? Les générations successives arrivent avec des bagages
différents alors que le programme pédagogique reste le même. Dans le domaine technologique que
j’enseigne, ces différences sont de manière intéressante liées à un certain contexte sociétal d’utilisation
des outils numériques. Par exemple, il était quasiment acquis il y a quelques années que les étudiants
connaissent une arborescence de fichiers dans un ordinateur. Avec l’utilisation massive des smartphones
et la gestion transparente du stockage de l’information notamment dans le cloud, la notion d’arborescence
de fichiers n’est plus acquise, et doit être revue.

L’enseignement au niveau master ou école d’ingénieur présente un autre défi. La maîtrise du contenu
doit être consolidée, même au delà du périmètre défini dans le cadre du cours, pour mieux positionner le
module dans un contexte plus général, et être capable de répondre aux éventuelles questions qui sortent
du cadre.1

Du niveau BAC+1 à BAC+5, j’ai expérimenté différentes techniques, pour les CM, les TD, ou les TP,
souvent après discussions et échanges avec les collègues. Pour les cours magistraux, au niveau DUT1
et DUT2, j’ai proposé des mini quiz, d’une dizaine de minutes, en fin de cours. Cela permet d’avoir un
retour instantanée des notions comprises ou non en sortant du cours (mémoire court terme). J’ai même
donné exactement le même quiz deux semaines après le premier (et après les TD sur ces notions, en
prévenant les étudiants) pour évaluer la mémoire à long terme. Les résultats sur quelques promotions
montrent que la moyenne du deuxième quiz est moins bonne que la moyenne du premier. Pour le niveau
BAC+5, il m’arrive de proposer des cours très interactifs (lorsque le nombre d’étudiants le permet). Il
s’agit d’échanger avec les étudiants, pour s’appuyer sur les bases déjà acquises pour faire connaître les
nouvelles notions. Cette méthode marche généralement bien pour le premier cours d’un module.

Pour les TD, j’ai également utilisé la technique très classique d’envoyer une étudiante ou un étudiant au
tableau, soit pour une correction interactive, soit pour écrire simplement la correction pour tout le monde
pendant que j’explique individuellement. J’ai également essayé de faire travailler en petit groupe de 4/5
étudiants. Il n’y a finalement (sans surprise) pas de recette miracle. En fonction du contenu à transmettre,
de l’autonomie des étudiants, et des acquis du cours magistral qui a précédé, le travail en groupe TD doit
s’adapter.

Pour les TP, nous2 avons proposé de constituer des binômes tournants. La constitution des binômes
d’étudiants pour les séances de travaux pratiques est souvent laissée à la discrétion des étudiants eux-
mêmes. Par ailleurs, le binôme formé lors de la première séance est inchangé pour le reste de la série de
TP. Ce schéma fonctionne généralement dans le cadre de TP parallèle, chaque binôme effectuant le même
sujet de TP. Pour des raisons d’encombrement et de budget, les TP dans les ateliers mécaniques, ou les TP
que j’encadre en automatisme, sont des TP « tournants », chaque binôme se trouvant sur une machine
différente. Par ailleurs, pour des raisons pédagogiques, il est préférable que des binômes différents soient
constitués à chaque séance. On pourrait même pousser la réflexion jusqu’à affirmer que ceci est une bonne
reconstitution d’un contexte professionnel, puisqu’on ne choisit pas forcément les collègues avec lesquels
on travaille. Différentes contraintes doivent être respectées, avec des possibilités de variation de taille de
groupes, d’ordre à respecter pour certains TP, etc. Bien évidement, un étudiant ne doit pas faire le même
TP plusieurs fois, et si possible, un binôme déjà créé ne doit pas être reformé, un monôme doit être unique
pour la série de TP, etc. Il peut exister des cas où (et c’est généralement le cas), en cours de série de TP,
la planification est changée (par l’enseignant). Ceci arrive typiquement lorsque plusieurs étudiants sont
absents. Il est alors préférable de voir un même binôme reconstitué plusieurs fois que deux monômes
(bien que cette affirmation ait fait l’objet de plusieurs débats : vaut-il mieux apprendre seul qu’à deux?
Qu’en est-il de la qualité de l’encadrement lorsqu’il y a trop de monômes?). Lorsque les classes sont
grandes, l’affectation des binômes et des TP devient très vite un vrai casse-tête.

1ceci dit, cela m’est arrivé plusieurs fois de dire simplement « je ne sais pas », et de revenir au cours suivant avec la réponse à
la question.

2sur l’idée originale de mon collègue Philippe Corfa
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Le problème d’affectation de binômes s’apparente à un problème de planification d’événements sportifs,
les élèves étant alors les équipes, et les manipulations les terrains de sport. Le problème de planification
d’événements sportifs (SSP pour sport scheduling problem) est un problème classique de la littérature.
Il est intéressant de noter qu’au delà de la modélisation classique d’événements sportifs, le problème
d’affectation de binômes requiert des contraintes particulières. J’ai mis à profit mes compétences en
programmation par contraintes pour résoudre de manière automatique le problème d’affectation de
binômes. Cette méthode a même fait l’objet d’une publication en conférence (ROADEF).

On parle aujourd’hui beaucoup de pédagogie innovante, avec des approches comme la pédagogie
inversée, la pédagogie innovante collaborative, l’approche par projet, les CTF (Catch The Flag), les
serious games, le travail de groupe. Les sciences de l’éducation évoluent aussi, et abondent régulièrement
de nouvelles théories d’apprentissage. Personnellement, je les accueille avec beaucoup d’intérêt et de
curiosité. On peut se questionner sur l’organisation classique CM/TD/TP, et notamment sur l’efficacité
du cours magistral. Dans son article, Philippe Meirieu se pose même la question de le supprimer, sans
préconiser de supprimer toute forme de magistralité [3]. En effet, le cours magistral s’est imposé dans un
temps où l’accès à la connaissance n’était possible qu’à travers les livres, et l’explication n’était possible
qu’en présentiel et de manière synchronisée. Aujourd’hui, la connaissance est disponible n’importe quand
sur Internet, et les différentes plateformes de diffusion foisonnent d’explications sous forme de vidéos. Il
est donc possible d’accéder à la connaissance à la demande depuis chez soi, en suivant son propre rythme
d’apprentissage. Cela peut-il sonner le glas du métier d’enseignant? Au contraire. Je pense que cela
renforce son utilité et sa responsabilité. En effet, Internet, c’est aussi « l’illusion de la connaissance » [1].
Internet, c’est l’information et la désinformation, la connaissance et la méconnaissance à la fois. Le rôle
de l’enseignant dans ce contexte est non seulement d’alimenter le contenu (ce que beaucoup de collègues
font déjà très bien par ailleurs), mais aussi, et surtout, d’être capable de diriger les étudiants vers les
bonnes ressources, de trier l’information, et de maintenir l’intégrité du socle de connaissances pour les
transmettre aux générations futures.

Pour améliorer la qualité de son enseignement, on peut demander un retour des étudiants. L’évaluation
des enseignements est un sujet qui revient régulièrement sur la table et suscite souvent un débat dans
notre communauté. Il est intéressant de regarder son impact dans les pays qui la pratique depuis plusieurs
années. Ainsi, cette évaluation peut s’accompagner d’effets indésirables, comme en témoigne la mise en
garde proposée dans [2]. Le risque est de se concentrer sur la satisfaction des étudiants, qui peut passer
par de l’indulgence voire du laxisme vis à vis des efforts à fournir, au détriment de la transmission de la
connaissance.
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3. Synthèse des activités de

recherche

Ce chapitre présente une synthèse de mes activités de recherche réalisées sur la période septembre 2011 à
juin 2022. La première section présente de manière synthétique trois axes de recherche qui seront ensuite
développé en partie II. La suite du chapitre énumère l’ensemble de mes activités liées à la recherche :
encadrement doctoral et scientifique, diffusion et rayonnement, outils logiciels, et responsabilités. Le
chapitre se termine par une une réflexion sur le métier de chercheur et la liste de mes publications.

3.1 Présentation synthétique des thématiques de recherche
Mes différentes activités et contributions en recherche peuvent se réunir sous une bannière « Méthodes,
outils et supports matériels pour le déploiement d’applications parallèles sur architectures parallèles ».
Trois grands axes de recherche peuvent ensuite se dégager et sont présentés de manière synthétique ici.
Les trois axes de recherche sont :

1. Architectures de calcul spécialisées
2. Déploiement de tâches sur architectures parallèles
3. Synchronisation de tâches sur architectures parallèles

Ces trois axes de recherche sont ensuite présentés en détails dans trois chapitres différents qui constituent
le cœur de ce document.

3.1.1 Architectures de calcul spécialisées
Les architectures de calcul spécialisées que j’étudie exploitent le parallélisme au niveau instructions et au
niveau données, et s’inscrivent dans la catégorie des architectures reconfigurables à gros grain (CGRA pour
Coarse Grained Reconfigurable Architecture). Dans le spectre des architectures de calcul, ces solutions
proposent un compromis intéressant entre flexibilité et performance. Dans nos travaux, nous proposons des
architectures très faible consommation qui respectent des budgets énergétiques très serrés de l’ordre de 3
mW, pour des systèmes embarqués ou des nœuds IoT. La figure 3.1 montre une vue schématique du CGRA
que nous avons développé, appelé IPA pour Integrated Programmable Array. La flexibilité est apportée par
le côté programmable de ces architectures. Elles doivent donc être accompagnées de méthodes et outils de
projection d’application (compilation), incluant les structures de contrôle, conditionnelles et itératives, ce
qui fait principalement l’objet de mes travaux. La question de la projection d’application peut se formuler
ainsi : comment ordonnancer dans le temps et placer dans l’espace les opérations de l’application sur les
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opérateurs de l’architecture, tout en respectant les dépendances de données et de contrôle, dans un temps
raisonnable, de sorte que l’application soit la plus performante possible (temps d’exécution, efficacité
énergétique)? Trouver la réponse consiste à résoudre plusieurs problèmes NP-complets, ce qui rend le
sujet assez unique dans le domaine des architectures numériques de calcul.

Nos principales contributions se situent autour de notre outil logiciel de projection d’application et de
l’architecture du CGRA (conception des éléments de calcul, interconnexion, etc.). Un exemple de flot de
compilation est donné figue 3.2, qui prend en entrée l’application spécifiée en langage C et un modèle
de l’architecture CGRA cible. L’application est ensuite représentée sur forme de CDFG (Control Data
Flow Graph), une représentation interne sous forme de graphe permettant de regrouper le flot de contrôle
et le flot de données de l’application. La compilation sur CGRA consiste à « projeter » le CDFG sur un
modèle du CGRA, également représenté sous forme de graphe. Il s’agit ensuite de résoudre un problème
de placement et d’ordonnancement, que nous avons choisi de résoudre conjointement. Si ce problème
n’a pas de solution, il est possible de transformer le graphe de l’application à la volée (par un jeu de
mouvement ou de recalcul) pour tenter à nouveau de résoudre le problème [37].

FIGURE 3.1 – IPA, Integrated Programmable Ar-
ray, le CGRA que nous avons proposé
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FIGURE 3.2 – Flot de projection d’une application
spécifiée en langage C sur une architecture type
CGRA

Une difficulté majeure est la prise en compte du flot de contrôle lors de la projection de l’application.
Initialement étudié pour exécuter seulement le flot de données d’une application, aucun CGRA de l’état de
l’art ne permettait de supporter le flot de contrôle (incluant le contrôle de boucles). Le support actuel du flot
de contrôle (en plus du flot de données) permet d’obtenir une projection efficace. Nous avons proposé une
solution pour le support de tout type de flot de contrôle (structures conditionnelles, alternatives, itératives)
permettant de réduire les accès mémoire entre le CGRA et la mémoire partagée avec un processeur [25].
Nos résultats montrent un facteur d’accélération de 4 par rapport à un processeur généraliste pour un
surcoût de 1.6 en surface, et un facteur de 1.8 par rapport aux techniques de l’état de l’art, sur les
performances en nombre de cycles [7]. Cette projection efficace couplée à une faible consommation de
l’architecture permettent un gain énergétique d’environ un ordre de grandeur par rapport à un processeur
généraliste.

Dans notre approche, une projection complète est construite itérativement à partir de solutions partielles.
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Mais toutes les solutions partielles n’aboutissent pas forcément à une solution complète. La principale
difficulté lors du processus de projection est alors la maîtrise du nombre de solutions partielles permettant
d’aboutir à une solution complète. Pour être sûr de trouver une solution, il faudrait conserver toutes les
solutions partielles, ce qui en pratique n’est pas possible. En effet, il s’agit de résoudre conjointement un
problème d’ordonnancement et un problème de placement qui sont tout deux des problèmes NP-complets.
Le nombre de solutions partielles explose de manière exponentielle, et ce nombre devient très vite
ingérable même pour de petites instances. Nous avons développé une technique de sélection intelligente
pour conserver le bon nombre de solutions partielles [1, 28]. Ce nombre doit être suffisamment grand pour
conserver une chance d’aboutir à une solution complète à partir d’une solution partielle, mais également
suffisamment petit pour garder la maîtrise sur le nombre. Il s’agit également de s’assurer de conserver une
certaine diversité dans les solutions partielles conservées. Notre technique permet de trouver des solutions
pour des instances que d’autres approches de l’état de l’art ne permettent tout simplement pas d’obtenir.

Nous avons en complément proposé une approche permettant de répartir le plus uniformément possible
les différents calculs sur les différentes tuiles, afin de diminuer la taille de la mémoire de configuration
de chaque tuile [19]. Nous avons également proposé d’inclure les opérateurs permettant d’effectuer du
calcul en virgule flottante [6], et des opérateurs pour la transprécision [18]. L’idée de la transprécision est
de s’autoriser une perte de précision dans les calculs tout en gardant la dynamique des nombres, afin de
réduire la consommation énergétique et d’établir un compromis précision/qualité du résultat. Nos résultats
montrent un gain d’un ordre de grandeur en consommation énergétique pour un dégradation au pire de 9%
de la qualité de résultats. Cet axe sera présenté dans le chapitre 4, p. 49.

Cette activité de recherche sur les CGRA et leur flot de compilation associé représente en tout :
• 3 thèses soutenues, 2 en cours
• 1 post-doc
• 4 articles de revue [1, 4, 6, 7]
• 2 brevets [10, 11]
• 10 publications en conférences [13, 16, 17, 18, 21, 25, 26, 28, 36, 37]
• plusieurs communications orales [48, 52, 27, 35]

Architectures de calcul spécialisées Période 2011-2022

3.1.2 Déploiement de tâches sur architectures multi-processeurs
Le parallélisme niveau tâches est exploité par des architectures multi ou many-core. Nous nous intéressons
aux architectures présentant quelques cœurs à plusieurs dizaines, et plus particulièrement à l’organisation
du sous-système mémoire accompagnant ces architectures. Une exploitation efficace du parallélisme
inhérent aux architectures multi-processeurs peut être particulièrement laborieuse d’un point de vu
logiciel, surtout lorsque les particularités de la machine sont visibles du code applicatif. Une approche
alors généralement adoptée consiste à considérer une seule mémoire partagée et cohérente, agrémentée de
mécanismes de synchronisation adéquats, pour limiter l’adhérence du code applicatif à la machine cible.
La mémoire est alors organisée autour d’une hiérarchie mémoire, constituée de la mémoire principale et
de plusieurs niveaux de caches. Un ensemble de mécanismes matériels et logiciels complexes garantissent
la consistance et la cohérence des données. Nous cherchons à répondre à une première question autour de
ces architectures : comment déployer une application type flot-de-données?

Le modèle de calcul flot-de-données possède des propriétés spécifiques qu’il est intéressant d’exploiter
dans le cadre du parallélisme. Une application dite flot-de-données permet d’exprimer de manière explicite
plusieurs niveaux de parallélisme : parallélisme de tâches, parallélisme de données, parallélisme temporel
et parallélisme spatial. Un exemple de spécification d’une application sous cette forme est présenté
figure 3.3. Si le déploiement d’applications flot-de-données sur une architecture multi-processeurs paraît
alors évident, il n’en est pas de même pour le déploiement des données en mémoire. En réalité, de
nombreuses complications viennent contre-carrer le déploiement, et en particulier, l’hétérogénéité du
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FIGURE 3.3 – Exemple d’application flot-de-
données constituée de 7 tâches
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FIGURE 3.4 – Exemple d’architecture multi-
processeurs hétérogène. SM : Shared Memory.
LM : Local Memory. I$ : Instruction Cache

temps d’exécution des tâches et des temps d’accès à la mémoire, surtout dans le cadre d’applications
flot-de-données dynamiques, et l’utilisation de buffers de données suivant un accès de type FIFO (First In
First Out) qui n’exploitent pas favorablement les caractéristiques des caches présents aujourd’hui dans les
machines. Le déploiement de tâches flot-de-données sur architectures multi-processeurs peut se modéliser
sous la forme d’un problème de partitionnement de graphe. Ce problème peut ensuite être résolu à l’aide
des méthodes bien connues du domaine, comme l’algorithme de Kernighan-Lin. Nous avons proposé un
algorithme, basé sur l’algorithme de Fiduccia-Mattheyses, pour le déploiement à la volée d’applications
flot-de-données dynamiques [8]. Le côté dynamique des applications étudiées impose de modifier à la
volée le déploiement afin de répartir équitablement la charge de travail sur les processeurs à disposition.
L’approche proposée, étudiée dans le cadre d’une application de décodage vidéo, permet de maintenir la
qualité de service malgré les fortes variations dans l’application. L’idée défendue dans nos travaux est
que le changement d’affectation s’accompagne d’un surcoût causé par les mouvements de données et
d’instructions en mémoire. Nous avons montré qu’il n’est pas toujours rentable de changer complètement
le placement, comme cela est proposé dans la littérature, dans un article accepté récemment [3], et fourni
dans ce document en annexe B.

Cette activité de recherche sur le déploiement d’applications flot-de-données sur architecture
multi-processeurs représente en tout :

• 1 thèse
• 1 post-doc
• 1 projet ANR PRCI (COMPA)
• 1 projet Jeunes Chercheurs du GdR ISIS (MORDRED)
• 2 articles de revue [3, 8]
• 4 publications en conférences [23, 30, 33, 34]
• plusieurs communications orales ou demos [55, 56, 57, 58, 59]

Déploiement de tâches sur architectures parallèles Période 2011-2022

3.1.3 Synchronisation de tâches sur architectures multiprocesseurs
Nous cherchons ici à répondre à une deuxième question autour des architectures multiprocesseurs :
comment garantir la synchronisation?

Deux verrous principaux sont identifiés aujourd’hui dans le déploiement des applications parallèles :
1) l’accès aux données, 2) la synchronisation entre les tâches. La figure 3.5 montre un exemple de
déploiement du graphe de la figure 3.3 sur une architecture constituée de trois processeurs, selon un
algorithme d’affectation élémentaire de type First-fit. Les traits noirs représentent les dépendances de
données, telles qu’elles sont imposées par la structure du graphe. Le temps étant représenté en ordonné
vers le bas, il paraît évident que les tâches 0 (T0) et 1 (T1) ne peuvent en réalité pas être ordonnancées
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en même temps, T1 ayant une dépendance de données sur T0. Même si dans le cadre d’une application
flot-de-données, le parallélisme serait possible entre la deuxième itération de T0 et la première de T1
(parallélisme temporel), nous considérons pour plus de simplicité une unique itération du graphe. La
synchronisation entre T0 et T1 est alors explicite, T1 doit attendre que T0 ait terminé (produit les données)
pour pouvoir s’exécuter. L’autre type de synchronisation à observer est la synchronisation entre T0 et T3,
qui sont affectés au même processeur. Même si T0 a terminé, T3 ne peut être exécutée qu’à condition que
la tâche 2 (T2) ait terminée. Il faut donc ajouter de manière explicite dans le code applicatif un mécanisme
de synchronisation. Dans cet exemple, finalement seul la dépendance entre T1 et T4 (symbolisée en vert)
ne nécessite de synchronisation particulière. Dans tous les autres cas, une vérification préalable par un
mécanisme de synchronisation est requise.

FIGURE 3.5 – Exemple d’ordonnancement des
tâches de la figure 3.3 sur une architecture à 3
processeurs

FIGURE 3.6 – Exemple de plateforme constituée
de quatre processeurs avec une intégration des no-
tifying memories

Nous proposons des supports matériels pour les mécanismes de synchronisation, en dehors du processeur,
permettant de répondre aux problèmes d’accès aux données et de synchronisation. Premièrement, une
solution logicielle/matérielle a été proposée pour distribuer les mécanismes de synchronisation dans le
réseau sur puce, tout en restant compatible avec le code source originel [20]. Cette solution est composée
d’un matériel spécialisé dans l’accélération des opérations de synchronisation, une mémoire privée, un
pilote de système d’exploitation et une bibliothèque personnalisée. Nous ciblons la bibliothèque POSIX
Threads (PThreads), largement utilisée comme bibliothèque de synchronisation native et en interne par
d’autres bibliothèques telles que OpenMP ou TBB. Nous fournissons aussi des extensions destinées à
accélérer encore davantage les applications dans deux cas: (i) plusieurs applications dans un contexte
d’exécution fortement disputé; et (ii) sérialisation d’accès pour les variables condition dans Pthreads. Les
résultats expérimentaux sur quatre applications du benchmark PARSEC fonctionnant sur un MPSoC à 64
cœurs montrent une accélération moyenne des applications de 1,57 par rapport à des solutions purement
logicielles. Une accélération de 5% en plus est obtenue en utilisant notre politique d’ordonnancement
Critical Section-aware comparée à un ordonnanceur Round-Robin de base.

Deuxièmement, un concept complètement nouveau baptisé « notifying memories », a été proposé pour
améliorer spécifiquement la synchronisation de tâche flot-de-données [29]. L’idée s’inspire du patron
de conception Observer, dans lequel un observateur monitore une activité et informe le sujet de tout
changement. Ce patron de conception est largement connu et utilisé dans la communauté du génie logiciel.
Mes compétences doubles en architecture et génie logiciel m’ont permis d’en proposer une mise en
œuvre matérielle. Cette approche permet de supprimer les accès inutiles à la mémoire. En effet, il existe
deux principales approches pour la synchronisation : 1) les interruptions, 2) le polling (une scrutation
continuelle). Les interruptions ne sont pas applicables dans notre cas car une caractéristique formelle
du modèle flot-de-données impose la non préemption, c’est-à-dire qu’une tâche ne peut (ne doit) pas



24 Chapitre 3. Synthèse des activités de recherche

être interrompue (pour exécuter une autre tâche de l’application). L’approche utilisée classiquement
est donc basée sur une scrutation continuelle des valeurs en mémoire pour savoir si certaines données
ont changé. J’ai mené une campagne expérimentale pour déterminer le coût en accès mémoire de ces
scrutations et les résultats montrent que jusqu’à 45% des accès mémoires sont inutiles. L’utilisation de
notre approche permet de supprimer ces accès inutiles pour garder la mémoire disponible pour des accès
« utiles », c’est-à-dire ceux qui sont nécessaires pour effectuer un calcul. Nous avons mené une première
étude en guise de preuve de concept pour une architecture à mémoires distribuées dénuées de cache. Les
gains étaient attendus sur le débit ou le temps d’exécution de l’application mais les meilleurs résultats
sont apparus au niveau de la consommation énergétique. En effet, un premier prototype matériel pire cas
(en surface) du composant a été proposé et les résultats préliminaires affichent un gain en consommation
énergétique de 50%.

Dans la foulée de ces bons résultats, nous avons étudié, dans le cadre du projet ANR JCJC Nooman dont
je suis porteur, l’intérêt d’une telle approche pour des architectures à mémoire partagée centralisée avec une
hiérarchie de caches, telle que présentée par la figure 3.6. Ce genre d’architecture supporte classiquement
la cohérence de cache, et les mécanismes de synchronisation peuvent en tirer deux bénéfices : 1) le
processus de scrutation continuelle s’opère localement au niveau du cache et ne requiert pas d’accès
global à la mémoire, 2) la localité temporelle habituellement observée qui veut qu’un processeur ayant
accédé au mécanisme de synchronisation récemment est amené à le ré-utiliser dans un futur proche, ce qui
réduit grandement le coût d’accès à la prochaine tentative. Il n’en reste pas moins que ces accès continuels
occupent inutilement des lignes du cache, et ramènent parfois des données « inutiles » dans le cache au
détriment d’autres données « utiles ». La figure 3.6 montre également l’intégration des composants pour
l’implémentation des Notifying memories : le Notifier (N) côté mémoire, et le Listener (L) côté processeur.

Les différents résultats obtenus me confortent dans ma direction scientifique : il existe une large place
pour l’optimisation des transferts mémoire.

Cette activité de recherche sur la synchronisation de tâches représente en tout :
• 2 thèses
• 2 post-doc
• 1 projet ANR JCJC
• 2 articles de revue [2, 5]
• 4 publications en conférences [15, 20, 24, 29]
• plusieurs communications orales [50, 53, 54]

Synchronisation de tâches sur architectures parallèles Période 2011-2022

3.2 Encadrement doctoral et scientifique
3.2.1 Thèses soutenues entre 2011 et 2022

Nom PEYRET Thomas
Dates 01/11/2011 - 2/12/2014
Titre Architecture matérielle et flot de programmation associé pour la concep-

tion de systèmes numériques tolérants aux fautes
Financement bourse CEA
Situation actuelle System Architect at Alkalee
Mon encadrement 30%
Autres encadrants Coussy (20%), Thevenin (30%) Corre (20%)
Publications
• 2 brevets [10, 11]
• 2 conférences internationales avec actes et comité de lecture [36, 37]
• 1 conférence nationale avec comité de lecture et actes [35]
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Résumé
Que ce soit dans l’automobile avec des contraintes thermiques ou dans l’aérospatial et le nucléaire

soumis à des rayonnements ionisants, l’environnement entraîne l’apparition de fautes dans les systèmes
électroniques. Ces fautes peuvent être transitoires ou permanentes et vont induire des résultats erronés
inacceptables dans certains contextes applicatifs. L’utilisation de composants dits « rad-hard » est parfois
compromise par leurs coûts élevés ou les difficultés d’approvisionnement liés aux règles d’exportation.
Cette thèse propose une approche conjointe matérielle et logicielle indépendante de la technologie d’in-
tégration permettant d’utiliser des composants numériques programmables dans des environnements
susceptibles de générer des fautes. Notre proposition comporte la définition d’une Architecture Reconfigu-
rable à Gros Grains (CGRA) capable d’exécuter des codes applicatifs complets mais aussi l’ensemble des
mécanismes matériels et logiciels permettant de rendre cette architecture tolérante aux fautes. Ce résultat
est obtenu par l’association de redondance et de reconfiguration dynamique du CGRA en s’appuyant sur
une banque de configurations générée par une chaîne de programmation complète. Cette chaîne outillée
repose sur un flot permettant de porter un code sous forme de Control and Data Flow Graph (CDFG)
sur l’architecture en obtenant un grand nombre de configurations différentes et qui permet d’exploiter
au mieux le potentiel de l’architecture. Les travaux, qui ont été validés aux travers d’expériences sur
des applications du domaine du traitement du signal et de l’image, ont fait l’objet de publications en
conférences internationales et de dépôts de brevets.

Abstract
Whether in automotive with heat stress or in aerospace and nuclear field subjected to cosmic, neutron

and gamma radiation, the environment can lead to the development of faults in electronic systems.
These faults, which can be transient or permanent, will lead to erroneous results that are unacceptable
in some application contexts. The use of so-called rad-hard components is sometimes compromised
due to their high costs and supply problems associated with export rules. This thesis proposes a joint
hardware and software approach independent of integration technology for using digital programmable
devices in environments that generate faults. Our approach includes the definition of a Coarse Grained
Reconfigurable Architecture (CGRA) able to execute entire application code but also all the hardware
and software mechanisms to make it tolerant to transient and permanent faults. This is achieved by the
combination of redundancy and dynamic reconfiguration of the CGRA based on a library of configurations
generated by a complete conception flow. This implemented flow relies on a flow to map a code represented
as a Control and Data Flow Graph (CDFG) on the CGRA architecture by obtaining directly a large number
of different configurations and allows to exploit the full potential of architecture. This work, which has
been validated through experiments with applications in the field of signal and image processing, has been
the subject of two publications in international conferences and of two patents.

Nom NGO Thanh Dinh
Dates 01/02/2012 - 19/06/2015
Titre Runtime mapping of dynamic dataflow applications on heterogeneous

multiprocessor platforms
Financement projet ANR COMPA
Situation actuelle Assistant Professor at Danang University, Vietnam
Mon encadrement 60%
Autres encadrants Diguet (40%)
Publications
• 1 article de revue d’audience internationale indexée JCR [8]
• 1 conférence internationale avec actes et comité de lecture [34]
• 1 communication par affiche [58]

Résumé
La complexité et le nombre toujours plus grandissant des applications, notamment les standards vidéo,

nécessitent d’étudier des méthodes et outils pour leur déploiement sur des architectures elles aussi toujours
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plus complexes. En effet, afin d’atteindre les performances requises en matière de temps d’exécution ou
consommation énergétique, les architectures modernes proposent des éléments de calculs hétérogènes, où
chacun est spécialisé pour une fonction précise. Cette thèse s’appuie sur le modèle flot de données pour la
spécification de l’application. Ce modèle permet d’exposer explicitement le parallélisme spatial et temporel
de l’application à travers un réseau d’acteurs interconnectés par des canaux de type FIFO. Les acteurs, en
charge du calcul, peuvent exhiber un comportement statique ou dynamique. Les derniers standards vidéo
contraignent à s’appuyer sur les modèles dynamiques pour obtenir une spécification fonctionnelle. Les
besoins de calcul sont alors dépendants des données à traiter. Le déploiement d’une application dynamique
ne peut donc se faire à l’aide des approches statiques existantes dans la littérature. L’objectif de cette thèse
est de proposer des algorithmes efficaces permettant de déployer à la volée une application flot de données
dynamique sur une architecture multiprocesseurs hétérogène. La première contribution est un algorithme
qui permet de trouver rapidement une solution de déploiement de l’application. La deuxième contribution
est un algorithme basé sur les mouvements pour adapter en cours d’exécution le déploiement, en réponse
aux aspects dynamiques de l l’application.

Abstract
Modern multimedia applications are subject to an increasing complexity with widespread standards.

This has led to the interest in dataflow approach that offers a powerful perspective on parallel computations
at high level. In the meantime, the emergence of massively parallel architectures has revealed the trend
towards heterogeneous Multi-Processor System-on-Chips (MPSoCs) to offer a better performance and
energy tradeoff than their homogeneous counterparts. However, this also imposes challenges to the
mapping of multimedia applications on such complex architectures. This thesis presents an adaptive
methodology for mapping dataflow applications on heterogeneous MPSoCs. This thesis focuses on video
decoders specified in RVC-CAL language, a dedicated dataflow language for video applications. Existing
static approaches cannot capture all behaviors in dynamic dataflow applications. Thus, this requires to
adapt the mapping according to the input data. The algorithm offers some adaptive parameters combined
with our analytical communication model to improve a performance while considering load balancing.
We evaluate our algorithms on a set of randomly generated benchmarks and real video decoders like
MPEG4-SP and HEVC. Experimental results reveal that our mapping methodology is fast enough (in
milliseconds) and the runtime remapping significantly improves the initial mapping. In the remapping
process, we take the migration cost into account because the reconfiguration time also contributes to the
overall performance.

Nom VALLEJO Paola
Dates 01/10/2012 - 15/12/2015
Titre Réutilisation de composants logiciels pour l’outillage de DSML dans le

contexte des MPSoC
Financement CDE UBO (Université Bretagne Occidentale)
Situation actuelle Assistant Professor at Universidad EAFIT, Colombie
Mon encadrement 33%
Autres encadrants Babau (33%), Kerboeuf (33%)
Publications
• 1 conférence internationale avec actes et comité de lecture [31]

Résumé
La conception d’un langage de modélisation spécifique à un domaine (DSML) implique la conception

d’un outillage dédié qui met en œuvre des fonctionnalités de traitement et d’analyse pour ce langage. Dans
bien des cas, les fonctionnalités à mettre en œuvre existent déjà, mais elles s’appliquent à des portions
ou à des variantes du DSML que le concepteur manipule. Réutiliser ces fonctionnalités existantes est
un moyen de simplifier la production de l’outillage d’un nouveau DSML. La réutilisation implique que
les données du DSML soient adaptées afin de les rendre valides du point de vue de la fonctionnalité à
réutiliser. Si l’adaptation est faite et les données sont placées dans le contexte de la fonctionnalité, elle
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peut être réutilisée. Le résultat produit par l’outil reste dans le contexte de l’outil et il doit être adapté afin
de le placer dans le contexte du DSML (migration inverse). Dans ce cadre, la réutilisation n’a de sens
que si les deux adaptations de données sont peu coûteuses. L’objectif de cette thèse est de proposer un
mécanisme qui intègre la migration, la réutilisation et la migration inverse. La principale contribution est
une approche qui facilite la réutilisation de fonctionnalités existantes via des migrations de modèles. Cette
approche facilite la production de l’outillage d’un DSML. Elle permet de faire des migrations réversibles
entre deux DSMLs sémantiquement proches. L’utilisateur est guidé lors du processus de réutilisation pour
fournir rapidement l’outillage complet et efficace d’un DSML. L’approche a été formalisée et appliquée à
un DSML (ORCC) dans le contexte des compilateurs pour les systèmes multiprocesseur intégrés sur puce
(MPSoC).

Abstract
Designers of domain specific modeling languages (DSML) must provide all the tooling of these

languages. In many cases, the features to be developed already exist, but it applies to portions or variants
of the DSML. One way to simplify the implementation of these features is by reusing the existing
functionalities. Reuse means that DSML data must be adapted to be valid according to the functionality
to be reused. If the adaptation is done and the data are placed in the context of the functionality, it can
be reused. The result produced by the tool remains in the context of the tool and it must be adapted to
be placed in the context of the DSML (reverse migration). In this context, reuse makes sense only if the
migration and the reverse migration are not very expensive. The main objective of this thesis is to provide
a mechanism to integrate the migration, the reuse and the reverse migration and apply them efficiently.
The main contribution is an approach that facilitates the reuse of existing functionalities by means of
model migrations. This approach facilitates the production of the tooling for a DSML. It allows reversible
migration between two DSMLs semantically close. The user is guided during the reuse process to quickly
provide the tooling of his DSML. The approach has been formalized et applied to a DSML (ORCC) in the
context of the the compilers for multiprocessor System-on-Chip (MPSoC).

Nom DAS Satyajit
Dates 01/10/2014 - 4/06/2018
Titre Architecture and Programming Model Support For Reconfigurable Acce-

lerators in Multi-Core Embedded Systems
Financement thèse en co-tutelle, 50% CDE Univ. Bretagne-Sud, 50% Univ. Bologne

(Italie)
Situation actuelle Assistant Professor at IIT Palakkad, Inde
Mon encadrement 25%
Autres encadrants Coussy (25%), Rossi (25%), Benini (25%)
Publications
• 1 article de revue d’audience internationale indexée JCR [7]
• 5 conférences internationales avec actes et comité de lecture [21, 25, 26, 28]
• 1 conférence nationale avec comité de lecture sans actes [27]

Résumé
La complexité des systèmes embarqués et des applications impose des besoins croissants en puis-

sance de calcul et de consommation énergétique. Couplé au rendement en baisse de la technologie, le
monde académique et industriel est toujours en quête d’accélérateurs matériels efficaces en énergie.
L’inconvénient d’un accélérateur matériel est qu’il est non programmable, le rendant ainsi dédié à une
fonction particulière. La multiplication des accélérateurs dédiés dans les systèmes sur puce conduit à
une faible efficacité en surface et pose des problèmes de passage à l’échelle et d’interconnexion. Les
accélérateurs programmables fournissent le bon compromis efficacité et flexibilité. Les architectures
reconfigurables à gros grains (CGRA) sont composées d’éléments de calcul au niveau mot et constituent
un choix prometteur d’accélérateurs programmables. Cette thèse propose d’exploiter le potentiel des
architectures reconfigurables à gros grains et de pousser le matériel aux limites énergétiques dans un
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flot de conception complet. Les contributions de cette thèse sont une architecture de type CGRA, appelé
IPA pour Integrated Programmable Array, sa mise en œuvre et son intégration dans un système sur
puce, avec le flot de compilation associé qui permet d’exploiter les caractéristiques uniques du nouveau
composant, notamment sa capacité à supporter du flot de contrôle. L’efficacité de l’approche est éprouvée
à travers le déploiement de plusieurs applications de traitement intensif. L’accélérateur proposé est enfin
intégré à PULP, a Parallel Ultra-Low-Power Processing-Platform, pour explorer le bénéfice de ce genre de
plate-forme hétérogène ultra basse consommation.

Abstract
Emerging trends in embedded systems and applications need high throughput and low power consump-

tion. Due to the increasing demand for low power computing and diminishing returns from technology
scaling, industry and academia are turning with renewed interest toward energy efficient hardware accele-
rators. The main drawback of hardware accelerators is that they are not programmable. Therefore, their
utilization can be low as they perform one specific function and increasing the number of the accelerators
in a system on chip (SoC) causes scalability issues. Programmable accelerators provide flexibility and
solve the scalability issues. Coarse-Grained Reconfigurable Array (CGRA) architecture consisting of se-
veral processing elements with word level granularity is a promising choice for programmable accelerator.
Inspired by the promising characteristics of programmable accelerators, potentials of CGRAs in near
threshold computing platforms are studied and an end-to-end CGRA research framework is developed in
this thesis. The major contributions of this framework are: CGRA design, implementation, integration in a
computing system, and compilation for CGRA. First, the design and implementation of a CGRA named
Integrated Programmable Array (IPA) is presented. Next, the problem of mapping applications with
control and data flow onto CGRA is formulated. From this formulation, several efficient algorithms are
developed using internal resources of a CGRA, with a vision for low power acceleration. The algorithms
are integrated into an automated compilation flow. Finally, the IPA accelerator is augmented in PULP - a
Parallel Ultra-Low-Power Processing-Platform to explore heterogeneous computing.

Nom CATALDO Rodrigo Cadore
Dates 01/10/2016 - 16/12/2019
Titre SUBUTAI: Distributed synchronization primitives for legacy and novel

parallel applications
Financement thèse en co-tutelle, 50% CDE Univ. Bretagne-Sud, 50% PUCRS (Brésil)
Situation actuelle Ingénieur chez Huawei, Paris
Mon encadrement 33%
Autres encadrants Diguet (33%), Marcon (33%)
Publications
• 1 article de revue d’audience internationale indexée JCR [5]
• 2 conférences internationales avec actes et comité de lecture [20, 24]
• 1 communication sans actes [54]

Résumé
Les applications parallèles sont essentielles pour utiliser efficacement la puissance de calcul des

systèmes multi-processeurs (MPSoC). Cependant, ces applications ne s’adaptent pas sans effort au
nombre de cœurs à cause des opérations de synchronisation qui limitent les gains de parallélisation.
Les solutions existantes soit se restreignent à un sous-ensemble de primitives de synchronisation, soit
nécessitent de modifier le code source de l’application, ou les deux. Nous présentons Subutai, une solution
logiciel/matériel conçue pour distribuer les mécanismes de synchronisation sur le réseau sur puce, tout
en restant compatible avec le code source originel. Subutai est composé d’un matériel spécialisé dans
l’accélération des opérations de synchronisation, une mémoire privée, un pilote de système d’exploitation
et une bibliothèque personnalisée. Nous ciblons la bibliothèque POSIX Threads (PThreads), largement
utilisée comme bibliothèque de synchronisation native et en interne par d’autres bibliothèques telles que
OpenMP ou TBB. Nous fournissons aussi des extensions à Subutai destinées à accélérer encore davantage
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les applications dans deux cas: (i) plusieurs applications dans un contexte d’exécution fortement disputé; et
(ii) sérialisation d’accès pour les variables condition dans PThreads. Les résultats expérimentaux sur quatre
applications du benchmark PARSEC fonctionnant sur un MPSoC à 64 cœurs montrent une accélération
moyenne des applications de 1,57× par rapport à des solutions purement logicielles. Une accélération de
5% en plus est obtenue en utilisant notre politique d’ordonnancement Critical Section-aware comparée à
un ordonnanceur Round-Robin de base.

Abstract
Parallel applications are essential for efficiently using the computational power of a MultiProcessor

System- on-Chip (MPSoC). Unfortunately, these applications do not scale effortlessly with the number of
cores because of synchronization operations that take away valuable computational time and restrict the
parallelization gains. The existing solutions either restrict the application to a subset of synchronization
primitives, require refactoring the source code of it, or both. We introduce Subutai, a hardware/software
architecture designed to distribute the synchronization mechanisms over the Network-on-Chip. Subutai
is comprised of novel hardware specialized in accelerating synchronization operations, a small private
memory for recording events, an operating system driver, and a user space custom library that supports
legacy and novel parallel applications. We target the POSIX Threads (PThreads) library as it is widely used
as a synchronization library, and internally by other libraries such as OpenMP and Threading Building
Blocks. We also provide extensions to Subutai intended to further accelerate parallel applications in two
scenarios: (i) multiple applications running in a highly-contended scheduling scenario; (ii) remove the
access serialization to condition variables in PThreads. Experimental results with four applications from
the PARSEC benchmark running on a 64-core MPSoC show an average application speedup of 1.57×
compared with the legacy software solutions. The same applications are further sped up to 5% using
our proposed Critical Section-aware scheduling policy compared to a baseline Round-Robin scheduler
without any changes in the application source code.

Nom PRASAD Rohit
Dates 15/11/2017 - 20/01/2022
Titre Integrated Programmable-Array accelerators to design heterogeneous

ultra-low power manycore architectures
Financement thèse en co-tutelle, 50% CDE Univ. Bretagne-Sud, 50% Univ. Bologne

(Italie)
Situation actuelle Ingénieur au CEA, Paris Saclay
Mon encadrement 25%
Autres encadrants Coussy (25%), Rossi (25%), Benini (25%)
Publications
• 1 article de revue d’audience internationale indexée JCR [6]
• 2 conférences internationales avec actes et comité de lecture [17, 18]

Résumé
La demande sans cesse croissante d’efficacité énergétique (EE) dans les nœuds de l’Internet des objets

pousse les chercheurs et les ingénieurs à développer des solutions architecturales qui offrent à la fois
une flexibilité de programmation et des performances en temps d’exécution. L’une de ces solutions est
une architecture reconfigurable à gros grains (CGRA). Au cours des dernières décennies, les CGRA ont
évolué et rivalisent pour devenir des accélérateurs matériels grand public, en particulier pour accélérer les
applications de traitement du signal numérique. Dans le cadre de ces travaux de recherche, l’accent est mis
sur l’intégration de calculs sur nombres flottants (FP) dans les CGRA. Le calcul utilisant la représentation
FP nécessite de nombreux encodages et conduit à des circuits complexes pour les opérateurs FP, diminuant
l’EE de l’ensemble du système. Cette thèse présente la conception d’un CGRA ultra-basse consommation
avec un support natif pour le calcul FP en tirant parti d’un paradigme émergent de calcul approximatif
appelé calcul de transprécision. Nous présentons également les contributions dans la chaîne d’outils
de compilation et l’intégration du CGRA dans un système sur puce, pour envisager le CGRA proposé
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comme un accélérateur matériel. Enfin, une campagne d’expérimentations utilisant des algorithmes du
monde réel employés dans des applications de traitement proches capteurs sont effectués, et les résultats
sont comparés avec des architectures existantes. Il est démontré empiriquement que le CGRA que nous
proposons fournit de meilleurs résultats par rapport aux solutions existantes en termes de consommation,
de performances et de surface.

Abstract
There is an ever-increasing demand for energy efficiency (EE) in rapidly evolving Internet-of-Things end

nodes. This pushes researchers and engineers to develop solutions that provide both Application-Specific
Integrated Circuit-like EE and Field-Programmable Gate Array-like flexibility. One such solution is Coarse
Grain Reconfigurable Array (CGRA). Over the past decades, CGRAs have evolved and are competing to
become mainstream hardware accelerators, especially for accelerating Digital Signal Processing (DSP)
applications. Due to the over-specialization of computing architectures, the focus is shifting towards
fitting an extensive data representation range into fewer bits, e.g., a 32-bit space can represent a more
extensive data range with floating-point (FP) representation than an integer representation. Computation
using FP representation requires numerous encodings and leads to complex circuits for the FP operators,
decreasing the EE of the entire system. This thesis presents the design of an EE ultra-low-power CGRA
with native support for FP computation by leveraging an emerging paradigm of approximate computing
called transprecision computing. We also present the contributions in the compilation toolchain and
system-level integration of CGRA in a System-on-Chip, to envision the proposed CGRA as an EE
hardware accelerator. Finally, an extensive set of experiments using real-world algorithms employed
in near-sensor processing applications are performed, and results are compared with state-of-the-art
(SoA) architectures. It is empirically shown that our proposed CGRA provides better results w.r.t. SoA
architectures in terms of power, performance, and area.

Nom GHASEMI Alemeh
Dates 01/10/2018 - 18/05/2022
Titre Notifying Memories for Dataflow Applications on Shared-Memory Parallel

Computer
Financement projet ANR NOOMAN
Situation actuelle Ingénieure chez SMARTNVY, Grenoble
Mon encadrement 50%
Autres encadrants Diguet (50%)
Publications
• 1 article de revue d’audience internationale indexée JCR [2]
• 1 conférence internationale avec actes et comité de lecture [15]
• 1 communication par affiche [50]

Résumé
Les machines parallèles à mémoire partagée (SMP) constituent une solution pratique pour mettre

en œuvre des architectures multiprocesseurs puisqu’elles proposent une vue unifiée de la mémoire
aux programmeurs ce qui facilite le développement des applications, au prix d’un mécanisme coûteux
de cohérence de cache. Par ailleurs, les modèles de calcul flux-de-données offrent aux développeurs
l’expressivité pour spécifier des applications complexes, en explicitant le parallélisme, permettant ainsi
d’exploiter les ressources disponibles. Cependant, une implémentation d’une application flux-de-données
sur SMP nécessite de nombreuses synchronisations qui impliquent la cohérence de cache et pénalisent les
performances. Cette thèse s’intéresse à la compréhension des sources d’inefficacité dans l’exécution de
ces applications et propose des techniques qui s’appuient sur la synchronisation exprimée dans le modèle
pour en améliorer les performances. Tout d’abord, nous avons extrait les caractéristiques des applications
selon plusieurs métriques, puis nous avons évalué deux techniques de gestion mémoire, Copy-on-Write
et Non-Temporal Memory, pour soulager la pression sur la mémoire. Enfin, en contribution principale,
nous proposons une unité matérielle spécialisée, proche de la mémoire, appelée NM4SMP (Notifying
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Memory for SMP) permettant d’accélérer les applications flux-de-données en y intégrant les règles de
déclenchement des calculs. L’approche est validée sur des applications dites statiques et reconfigurables.
Les résultats montrent une accélération de 1,23 et une économie d’énergie de 15% pour une plateforme
basée sur des processeurs Intel et plusieurs applications réelles.

Abstract

Symmetric Shared-memory multiprocessor (SMP) is the most widely used implementation of high-
performance multi-core processors. It offers a uniform shared memory view that eases the development of
parallel applications, but it requires cache-coherency management among the cores. Besides, dataflow
Model of Computation helps the developers to specify complex applications with explicit parallelism
to efficiently exploit the parallel resources of SMP. However, a dataflow application running on SMP
requires high synchronization for data communication that stresses the cache memory and penalizes
performance. Existing techniques for synchronization are not suited to dataflow as they are not aware of
the model of computation. This thesis aims to deeply study dataflow applications’ behavior on SMP and
proposes novel techniques to speed them up. First, we evaluate dataflow application behavior based on
several statistics. Second, we evaluate two memory techniques called Copy-on-Write and Non-Temporal
Memory Transfer, to alleviate the memory footprint of dataflow applications on caches. Third, as our main
contribution, we introduce an optimized hardware logic implemented near memory, Notifying Memory for
SMP (NM4SMP) designed to speed up dataflow applications. Our solution improves synchronization of
shared data by considering dataflow firing rules within the logic. A HW-SW co-design platform integrating
NM4SMP is presented to support static and reconfigurable dataflow applications. Overall results show an
average speedup of 1.23× and an average energy saving about 15%, assuming Intel SMP baseline system
and real dataflow applications.

3.2.2 Thèses en cours au 01/07/2022

Nom SUNNY Chilankamol
Date de début 30/12/2019
Titre Energy Efficient Loop Acceleration on CGRAs
Financement thèse en co-tutelle, 100% MHRD Govt of India PHD Scholarship
Mon encadrement 33%
Autres encadrants Coussy (33%), Das (33%)
Publications
• 1 article de revue d’audience internationale indexée JCR [4]
• 1 conférence internationale avec actes et comité de lecture [16]

Nom SAJAN Christie
Date de début 22/02/2022
Titre Energy Efficient Multi-core Programmable Accelerator for ULP massive

edge computing
Financement thèse en co-tutelle, 50% ARED (Région Bretagne), 50% IIT Palakkad

(Inde)
Mon encadrement 33%
Autres encadrants Coussy (33%), Das (33%)
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3.2.3 Encadrement de post-docs

Nom RIZK Mostafa
Dates Novembre 2014 - Juin 2016
Titre Projection et exécution d’applications flot-de-données sur architectures

multi-processeurs basés sur des réseaux sur puce
Financement mixte région Bretagne/projet ANR COMPA
Situation actuelle Post-doc at IMT Atlantique, Brest
Publications
• 1 article de revue d’audience internationale indexée JCR [3]
• 1 conférence internationale avec actes et comité de lecture [29]

Nom VIDAL Jorgiano
Dates Octobre 2015 - Septembre 2016
Titre Optimisation de code pour la conception d’accélérateurs matériels
Financement projet FUI SPICA
Situation actuelle Professor at Instituto Federal de Educação, Ciência e Tecnologia do Rio

Grande do Norte, Brésil

Nom DAS Satyajit
Dates Avril 2018 - Avril 2019
Titre Near-Sensor Ultra-Low Power Secured Processing in IoT devices
Financement mixte région Bretagne/projet ANR NOOMAN
Situation actuelle Assistant Professor at IIT Palakkad, India
Publications
• 1 article de revue d’audience internationale indexée JCR [1]
• 1 conférence internationale avec actes et comité de lecture [19]

Nom CATALDO Rodrigo Cadore
Dates Février 2020 - Novembre 2020
Titre Efficient memory strategies
Financement projet ANR NOOMAN
Situation actuelle Ingénieur
Publications
• 1 article de revue d’audience internationale indexée JCR [2]
• 1 conférence internationale avec actes et comité de lecture [15]

Nom CHATTERJEE Navonil
Dates Décembre 2020 - Juin 2022
Titre Broadcast and multicast in Wireless NoC
Financement projet ANR RAKES
Situation actuelle Ingénieur
Publications
• 1 article de revue d’audience internationale indexée JCR, en révision majeure
• 1 conférence internationale avec actes et comité de lecture [12]
• 1 communication par affiche [49]
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Nom RUARO Marcelo
Dates Janvier 2021 - Février 2022
Titre Communication, Memory, and Energy Profiling on Many-core architec-

tures
Financement projet ANR NOOMAN
Situation actuelle Ingénieur
Publications
• 1 article de revue d’audience internationale indexée JCR [2]
• 1 conférence internationale avec actes et comité de lecture [14]
• 1 communication par affiche [51]

3.2.4 Encadrement d’ingénieurs

Nom EUSTACHE Yvan
Dates mars 2015 - juin 2015
Titre Développement du démonstrateur du projet COMPA
Financement projet ANR NOOMAN
Situation actuelle ingénieur chez RTsys

Nom LEBRETON Ghizlane
Dates janvier 2015 - janvier 2017
Titre GAUT : Outil de synthèse de haut-niveau
Financement projet ANR SPICA
Situation actuelle Software and Embedded System Engineer chez Marport

Nom CHAPOUL Jérôme
Dates novembre 2018 – octobre 2019
Titre Support à l’utilisation d’outils de simulation
Financement projet ANR NOOMAN
Situation actuelle Ingénieur

3.2.5 Encadrements de stage de niveau M2

• Khadimou Kassoul Diop, 2021, Development of Parallel Applications with Reconfigurable Dataflow
Graph on a Manycore Architecture, encadrement 50%

• Hugo Miomandre, 2017, Portage de gestionnaire d’exécution pour graphe flux-de-donnée reconfi-
gurable sur architecture massivement parallèle Kalray MPPA, encadrement 50%, actuellement en
thèse à l’IETR INSA Rennes.

• Majed Aiaida, 2017, Génération de configurations d’exécution d’applications sur CGRA tolérante
aux fautes, encadrement 60% (Coussy 40%)

• Merhej Christina, 2015, Design of smart memory on multiprocessor architectures for data-flow
applications, encadrement 50% (Diguet 50%)

• Goupille-Lescar Baptiste, 2015, Design and programmation of reconfigurable accelerators in
shared-memory many-cores, encadrement 50% (Coussy 50%)

• Sureshbabu Ramesh, 2014, Génération des configurations d’exécution d’applications sur CGRA
tolérante aux fautes, encadrement 60% (Coussy 40%)

• El Rhomri Hajar, 2014, Conception et simulation d’accélérateurs matériels pour décodeur vidéo
MPEG4, encadrement 100%

• Bao Chengcong, 2013, Implementation of GPU on FPGA, encadrement 100%
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3.3 Diffusion et rayonnement

Expertise ANR - (3)
• Projet JCJC AAPG2020
• Projet PRCI AAPG2021
• Projet PRCI AAPG2022

CSI - Comité de Suivi Individuel - (4)
• Université de Rennes 1, Irisa/INRIA, équipe CAIRN (2017-2020)
• INSA de Rennes, IETR, équipe SYSCOM (2019-2022)
• Université de Rennes 1, Irisa/INRIA, équipe CAIRN (2020-2023)
• Université Grenoble-Alpes, TIMA, équipe SLS (2020-2023)

Comité de sélection MCF - (7)
• Université de Nantes, IUT St-Nazaire (2013, 2014)
• INSA Rennes, 2015, 2018
• Université de Nantes, 2018
• Université de Rennes 1, 2022
• ENSEIRB-MATMECA Bordeaux, 2022

Participation jurys de thèse (hors établissement) - (2)
• Rapporteur de la thèse de Arthur Stoutchinin sous la direction du PR. Luca Benini, Université de

Bologne, Italie, décembre 2018. L’habilitation à dirigé des recherches n’est pas requise pour être
rapporteur en Italie.

• Examinateur de la thèse de Thomas Baumela, sous la direction de Frédéric Pétrot et Olivier Gruber,
Université de Grenoble Alpes, laboratoires TIMA et LIG, soutenue le 24/02/2021

Cours lors d’écoles thématiques - (2)
• ARCHI2019 : « Mémoires sur puce : architecture et organisation »
• AMLE2022 : « On-chip memories at the edge: the edge of memories »

Comités de programme de conférences nationales
• Compas (conférence francophone en parallélisme, architecture et système) : 2014, 2016, 2018, 2019

Comités de programme de conférences internationales
• IEEE DASIP (Design and Architectures for Signal and Image Processing) : 2016, 2018, 2019, 2021,

2022
• BEC (Baltic Electronics Conference) : 2016, 2018
• SBCCI (Symposium on Integrated Circuits and System Design) : 2018, 2020, 2021, 2022
• SAMOS (International Conference on Embedded Computer Systems: Architectures, Modeling and

Simulation) : 2019, 2020, 2021, 2022
• IEEE SiPS (Workshop on Signal Processing Systems) : 2022
• RISC-V week : 2019, 2021, 2022

Relecteur de conférences internationales
• IEEE DASIP (2012, 2015, 2016, 2018, 2019, 2021, 2022), IEEE SiPS (2012, 2013, 2015, 2016,

2021, 2022), IEEE DATE (2013, 2014, 2018, 2019, 2020, 2021, 2022), ACM/IEEE DAC (2021,
2022), IEEE VLSI-SOC (2018), ACM GLSVLSI (2013, 2014, 2015), IEEE ICASSP (2016, 2019,
2020, 2021), ISVLSI (2013), FPT (2013), IEEE FCCM (2014), IEEE ASAP (2015, 2016), FPL
(2015, 2016, 2017, 2018, 2021, 2022), SBCCI (2018, 2020, 2021), SAMOS (2020, 2021)

Relecteur de journaux internationaux
• ACM Transactions on Reconfigurable Technology and Systems (TRETS)
• ACM Transactions on Embedded Computing System (ACM TECS)
• Journal of Computers (JCP)
• Elsevier Microprocessors and Microsystems
• Springer Journal of Signal Processing and Systems (JSPS)
• Elsevier Journal of System Architecture (JSA)
• IEEE MICRO
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• IEEE Transactions on Computers (TC)
• IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
• Elsevier Future Generation Computer Systems (FGCS)
• Springer International Journal of Parallel Programming (IJPP)

Modération dans des conférences internationales
• IEEE DASIP 2014
• IEEE ISCAS 2018

3.3.1 Responsabilités et activités au sein des sociétés savantes

Responsabilités et activités au sein du GdR SOC2 [depuis 2017]
• Co-responsable de l’axe « Méthodes et outils de conception, simulation, évaluation et vérification

des systèmes et systèmes de systèmes » du GdR SOC2
. invitation des orateurs lors des colloques
. supervision de l’organisation de journées thématiques
. rédaction des rapports d’activité
. co-rédaction des rapports de conjoncture
. co-rédaction des rapports de prospective
. relecture des posters soumis pour les colloques (20-25 posters à relire par an)
. co-rédaction du dossier de renouvellement du GdR SOC2 2023-2027

• Co-animateur de l’axe « Méthodes et outils de conception, simulation, évaluation et vérification des
systèmes et systèmes de systèmes » du GdR SOC2. Organisation ou co-organisation de six journées
thématiques
. Journée LLVM pour les nuls, 01/04/2022, en ligne
. Outils pour la Synthèse de Haut Niveau, 08/04/2021, en ligne
. Outils de prototypage virtuel de plates-formes multi/many-core, 15/05/2019, Paris
. Journée Thématique Commune 2019 des GDR SOC et RO, 28/11/2019, Paris
. Journée Thématique Commune 2018 des GDR SOC et RO, 10/10/2018, Paris
. Conception basée Modèles des Systèmes de Traitement du Signal et de l’Information, 08/06/2018,

Rennes
• Co-animateur du « thème de l’année » du GdR SOC2 sur le « Near-sensor computing ». Co-

organisation de deux journées thématiques
. Near Sensor Computing, 08/11/2017, Paris
. Near Image Sensor Computing, 09/11/2018, Paris, en collaboration avec le GdR ISIS

• Point de contact avec d’autres GdR en interaction avec SOC2 : groupe OSI (Optimisation des
Systèmes Intégrés) du GdR RO, groupe compilation (puis CLAP) du GdR GPL

Responsabilités et activités au sein du GdR GPL [depuis 2017]
• Co-responsable du groupe compilation du GdR GPL : supervision de l’organisation des « journées

de la compilation » 2019, invitation des orateurs pour le colloque 2019, rédaction du rapport
d’activité 2016-2019

• Co-porteur de nouveau groupe de travail CLAP (Compilation, Langages, Analyses, Parallélisme) :
rédaction du projet de GT, cartographie des équipes liées au groupe de travail.

• Co-organisateur de séminaires en ligne
. Compilation et vérification, 23/09/2021
. Compiling pattern matching and reactive programming langages, 21/10/2021
. Machine learning compiler and MLIR, 18/11/21
. Recherche par types et Coq SydPaCC, 16/12/21

3.3.2 Organisation de colloques, conférences

Comités de pilotage de conférences nationales
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• Compas (conférence francophone en parallélisme, architecture et système) depuis 2018, en tant que
représentant du GdR SOC2

• Comité RISC-V depuis début 2019
Comités d’organisation de conférences nationales

• Compas (conférence francophone en parallélisme, architecture et système) 2016 : responsable du
site web

• RISC-V week 2019
Comités d’organisation de conférences internationales

• DASIP 2016 : Demo Night Co-Chair
• SiPS 2017 : responsable du site web
• RISC-V week 2022 : poster chair

Organisation d’écoles thématiques - (1)
• AMLE2022 : Adaptive Maching Learning at the network Edge, du 13 au 16 juin 2022, Lorient, dans

le cadre de la chair Cominlabs Design Methodologies and Tools for Adaptive Machine Learning at
the Network Edge de Shuvra S. Bhattacharyya

Organisation de sessions spéciales dans des conférences internationales
• IEEE ISCAS 2018 « Near-sensor computing »

3.3.3 Collaborations internationales
• Université de Bologne, Italie
. Thèse en co-tutelle, Satyajit Das, co-direction du PR. Luca Benini, soutenue le 4 juin 2018.
? Luca Benini a reçu un Honoris Causa en 2015 de l’Université de Bretagne Sud dans le

cadre de cette collaboration
. Thèse en co-tutelle, Rohit Prasad, co-direction du PR. Luca Benini, soutenue le 16 janvier

2022.
• PUCRS, Brésil
. Thèse en co-tutelle,Rodrigo Cadore Cataldo, co-direction du PR. Cesar Marcon, soutenue le

16 décembre 2019.
• University of Manchester, Royaume-Uni
. Soumission d’un projet de mobilité H2020 MSCA-IF avec le Dr. Antoniu Pop.

• Lebanese International University, Liban
. Accueil en tant que cherche invité de Mostafa Rizk, début décembre 2019.

• IIT Palakkad, Inde
. Thèses en co-tutelle de Chilankamol Sunny sous la co-direction de S. Das
. Thèses en co-tutelle de Christie Sajan sous la co-direction de S. Das

3.4 Outils logiciels

Participation active (actuelle ou passée) au développement des outils logiciels suivants :
• CGRA compiler : A tool for automatic mapping of applications onto a Coarse Grain Reconfigurable

Architecture
. Java, Model-driven engineering, design patterns, Eclipse Modeling Framework
. Encadrement technique

• GAUT High Level Synthesis tool
. Java, Model-driven engineering, design patterns, Eclipse Modeling Framework
. Encadrement technique

• Gecos : Generic Compiler Suite
. Java, Model-driven engineering, design patterns, Eclipse Modeling Framework
. Dans le cadre de ma thèse, implication dans le développement de l’infrastructure, développe-

ment du plug-in pour ASIP (compilation, génération de code)
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• PolyGraphy : Model-to-model software tools for graphs (intermediate representation of applications)
. Java, C to Java binding
. Développement d’une librairie dynamique d’interfaçage entre deux outils logiciels

3.5 Responsabilités scientifiques

Responsabilités au sein du laboratoire Lab-STICC
• Co-organisateur des séminaires d’équipe MOCS (Méthodes et Outils pour les Circuits et Systèmes),

2013-2020
. 4 à 8 séminaires par an
. L’équipe MOCS était composée d’environ 80 membres dont une quarantaine de permanents,

répartie sur 3 sites (UBS Lorient, UBO Brest, ENSTA Brest)
. Organisateur des « séminaires posters » de l’équipe, 1 fois par an, 3 éditions (2018, 2019, 2020)
? collecte des propositions de posters (15 à 20 posters par édition), relecture

. Mise à jour de la page web des séminaires
• Organisateur des séminaires ponctuels de chercheurs invités

Contrats de recherche publics
• ANR PRC RAKES : responsable du partenaire, 635 kC (213 kC pour le Lab-STICC), 3 partenaires,

2020-2024
• ANR JCJC Nooman : porteur, 272 kC, 2018-2022
• Projet « Jeunes Chercheurs » du GdR ISIS, MORDRED, responsable du partenaire, 6 kC, 2

partenaires, 2016-2018
• Projet ANR PRCI HPeC : membre, 715 kC (196 kC pour le Lab-STICC), 6 partenaires, 2015-2019
• Projet « BoostEurope », région Bretagne, 1 000 C, mise en place de la collaboration avec Antoniu

Pop, 2018, projet de mobilité H2020 MSCA-IF (non retenu).
• Projet ANR PRCI COMPA : membre, 800 kC (178 kC pour le Lab-STICC), initialement 6

partenaires, 2011-2015

3.6 Synthèse et réflexions sur le métier de chercheur

Tout part d’une idée. Une idée plus ou moins originale. Une idée plus ou moins disruptive. Une idée
basée sur des hypothèses, elles-mêmes fondées sur des phénomènes ou observations connus, issus de
travaux précédents. Chercher, c’est chercher à valider cette idée. Valider ou invalider cette idée, c’est
toujours produire de la connaissance, et repousser les limites de la connaissance. Trouver, c’est aboutir à
une conclusion. Un chercheur ne s’en contente pas. Il s’en sert pour aller plus loin. Alors oui un chercheur
trouve1, mais il n’arrête pas de chercher.

Le chercheur a souvent besoin de moyens pour développer son idée : des moyens matériels, des moyens
humains. Il faut donc trouver des moyens, soit par nécessité, soit par devoir. Par nécessité pour l’achat de
matériel. Par devoir car un chercheur forme par et pour la recherche, cela fait partie du métier. Une fois
les moyens humains trouvés, il faut alors expliquer l’idée aux étudiantes et étudiants qui vont concrétiser
les choses, et diriger les travaux pour une mise en œuvre effective. La compréhension de l’idée et son
appropriation par les étudiants deviennent alors prépondérantes dans le degré d’avancement des travaux. Il
en résulte des conclusions parfois tout autre que celles initialement prévues, donnant naissance à d’autres
idées. C’est sans fin. À chaque découverte, des nouvelles connaissances amènent à de nouvelles questions.
Inlassablement, de nouveaux moyens sont nécessaires pour chercher. Il faut donc continuellement déposer
des projets, demander des financements de thèse, etc. Les demandes n’étant pas toujours fructueuses, il
faut redoubler d’effort, et resoumettre des versions retravaillées des projets, dans l’espoir d’un financement.
Ce mode de financement n’aide pas à la continuité des travaux.

1en réponse à la question qui m’est régulièrement posée
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Le recrutement des bonnes personnes pour développer le projet de recherche devient la clé de la réussite.
Le contexte actuel fait qu’il est difficile de recruter. Trouver les moyens financiers pour développer un
projet n’est qu’un première étape. La seconde est de trouver les forces vives qui vont pouvoir travailler à
plein temps sur le projet et le concrétiser. On se pose alors la question de la formation. Il nous faut former
les personnes avec le profil qui correspond aux besoins de recherche.

Depuis 2011, j’exerce ce métier de chercheur à mi-temps2. C’est un travail de veille scientifique et
technique, de formation, de recherche de financement, d’encadrements de travaux, d’évaluation, de
rédaction, de relecture, d’organisation d’événements scientifiques, de vulgarisation, . . .Lors de l’année
universitaire 2021-2022, j’ai été en délégation CNRS. C’était une délégation complète sur l’année,
que j’ai effectuée dans mon laboratoire. J’ai donc pu découvrir le métier de chercheur à temps plein.
Cette délégation a d’abord été l’occasion de finaliser et concrétiser plusieurs actions entamées avant la
délégation, démarrer de nouvelles activités, mais aussi l’occasion de saisir des opportunités. Par exemple,
j’ai pu soumettre en tant que porteur un projet Cominlabs qui a été retenu, j’ai organisé une école d’été à
l’attention des jeunes chercheurs et jeunes chercheuses, . . .

Il y a finalement une part d’opportunisme dans le métier de chercheur. Il faut savoir saisir une occasion
quand elle se présente, tout en gardant une ligne directrice sur le long terme.

3.7 Liste des publications
Cette section fournit la liste exhaustive de toutes les publications dont je suis co-auteur jusqu’à la date du
31 août 2022, y compris les publications avant ma prise de fonction à l’Université de Bretagne-Sud. La
liste contient également ma thèse.

La liste exhaustive et actualisée de mes publications est disponible en ligne sur HAL avec l’idHal
suivant : kevin-martin.
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Introduction

HOW to design efficient yet flexible computing devices? This question is fuelling the hardware
architecture community for decades. Few years after the first computers, made of bulky thermionic

valves, the invention of the transistor revolutionised the design of computers. More efficient, smaller
and affordable computers could be made, bringing more money to invest in the next technology node:
Moore’s law was born. During a prosperous period, the hardware architecture community, especially
the processor micro-architects, designed still ever more performant circuits by increasing the frequency.
But Moore’s law is not a mathematical or physical law, it is an economical law, a self-made prophecy, a
planning elaborated from the initial outcomes of the first products. The semi-conductor industry has been
caught up by Dennard’s scaling, which is a truly physical law and states that as the density of transistors
increases, the consumption per transistor decreases, and the consumption per mm2 of silicon remains
constant. At constant area, computing capacities increase, improving energy efficiency. Around 2005, this
nice property stopped, and power and thermal issues came into play. Dissipating the heat produced by the
chip as the frequency increases became too complex. The industry thus moved to multicore processors to
increase the raw performance [178].

For the last 70 years, the technology is the driving force for the hardware community, and major
architectural advances went along with still ever smaller and more efficient transistors. Several architectural
advances made use of parallelism. There are two main physical dimensions in parallelism: temporal
parallelism and spatial parallelism. Besides, there are four types of parallelism: Bit-Level Parallelism,
Instruction-Level Parallelism (ILP), Data-Level Parallelism (DLP), Task-Level Parallelism (TLP). Several
architectural concepts have been proposed to make use of these types of parallelism in both dimensions,
and table 1 gathers the most famous ones. At bit-level for instance, the data-path of a processor which
usually corresponds to the size of the arithmetic operators has continuously spatially grown, from 4-bit
to the mainstream 64-bit today. During the frequency race, designing faster processors with higher
frequencies made them exploiting ILP through pipelining. In simple words, processors are made of several
stages, each stage is dedicated to a simple job, the instruction goes through each stage, like in a production
line. The faster the stages, the higher the throughput. This technique is thus the meeting point between
temporal parallelism and ILP. It appears that there are conditional, alternative, or iterative instructions
that insert hasards in the pipeline, and several architectural countermeasures were introduced to maintain
efficiency, like data forwarding or branch prediction to name just a few.
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Table 1 – Hardware techniques to make use of the different types of parallelism

Bit-level
Instruction-Level
Parallelism

Data-Level Paral-
lelism

Task-Level Paral-
lelism

(ILP) (DLP) (TLP)

Temporal parallelism Pipeline MISD
Simultaneous
Multi-Threading
(SMT)

Spatial parallelism
Word-wise
operators

VLIW, Out-of-
Order (OoO),
Superscalar

SIMD, SIMT, Vec-
tor processing

MIMD

Figure 1 – Computing devices supporting several types of parallelism

The other dimension of instruction level parallelism is by spatially multiplying the issues inside a
processor. This is done by VLIW (Very Long Instruction Word) processors. This technique is exploiting
spatial parallelism. Superscalar processors and out-of-order techniques are other examples of spatial
parallelism and ILP, where several instructions can be effectively executed at the same time.

The third type of parallelism is Data-Level Parallelism (DLP). An application may need to repeat
the same sequence of instructions on a data set. This type of parallelism can be exploited by vector
processing, or Single Instruction Multiple Data (SIMD) techniques. The widest datapath can go up to
1024 bits in leading-edge processors [12]. Graphics Processing Units (GPUs) are a good example of an
architecture that intensively make use of DLP. The execution model goes beyond SIMD with the Single
Instruction Multiple Threads (SIMT) style, where several instances (threads) of the same programme are
run synchronously on several cores (with one thread per core), which works perfectly when the threads
evolve at the same pace, but hits the limits of imbalanced branches in control-flow programmes. Pipelined
SIMD operators could be the meeting point between temporal parallelism and DLP.

The higher level of parallelism is Task-Level Parallelism (TLP), which can conveniently also stand for
Thread-Level Parallelism. Multicore processors, providing spatially several cores, are today the widest
solution to propose spatial parallelism at task level. Simultaneous MultiThreading (SMT), with the
Hyperthreading technique from Intel, can be considered as a temporal parallelism technique for TLP.

Figure 1 shows how existing computing devices make use of the different types of parallelism. The
figure also highlights in dark colors the area which we have focused on during our work. The figure shows
that our contributions mainly focus on spacial parallelism for two kinds of architectures:

1. Coarse-Grained Reconfigurable Architectures (CGRAs)
2. Multicore processors

As their names suggest, CGRAs are reconfigurable architectures at a “coarse-grained” level, meaning
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that they are built upon word-wise arithmetic operators as opposed to FPGAs which are reconfigurable
at bit-level. A CGRA is usually composed of several processing units (which contain the operators),
tightly interconnected so that they can share a register or a register file to communicate data. A systolic
array can be seen as an instance of a CGRA. CGRAs can offer a high level of spatial parallelism with
their high number of elementary processing units, as evidenced by the other names found in the literature
like “Reconfigurable Dataflow Accelerator” or “Reconfigurable Dataflow Architecture”. CGRAs initially
emerged as hardware accelerators, and had limited capabilities compared to a general purpose processor.
For instance, the CGRA is not meant to run an operating system, and does not support convenient software
features like dynamic memory allocation or function calls.

CGRAs can exploit ILP and DLP, and our contributions in this domain are
presented in chapter 4.

Multicore processors can exploit parallelism at all level: bit-level by their word-wise arithmetic
operators, ILP by pipelining and superscalar techniques, DLP by vector processing or SIMD units, and
TLP by SMT or spatially distributed threads. In our work, we focused on how to spatially distribute
threads or tasks on the parallel cores.

Our contributions in the domain of mapping parallel applications, especially
specified through the dataflow model of computation, are presented in

chapter 5.

Whatever the parallelism offered by the hardware, a theoretical limit is given by the intrinsic property
of the application. As early as 1967, a formula known as Amdahl’s law (named after Gene Amdahl) was
proposed to determine the theoretical speedup of an application given its sequential portion. This law
highlights the great impact of the sequential portion of the programme on the whole execution time. This
sequential portion includes the costs of communication between the cores and coordination, and the gains
obtained on these parts are expected to have a great impact on the raw performance [23]. The question is
then how to express parallelism and coordination through a programming language, and how to parallelise
(automatically) an application. As a complement to the mapping contributions presented in chapter 5,
we studied the scalability of dataflow application and proposed synchronisation solutions to mitigate the
sequential part of the programme and accelerate the execution time of parallel applications on multicore
processors.

Our contributions in synchronisation solutions for multicore processors are
presented in chapter 6.

Organisation of Part II
The part II of this document focuses on my scientific contributions in three main areas. It is organized in
three chapters:

1. Chapter 4 presents how to exploit ILP and DLP with CGRAs.
2. Chapter 5 presents how to exploit DLP and TLP of dataflow applications on multicore processors.
3. Chapter 6 presents how to improve scalability and synchronisation in multicore processors.

A conclusion recaps the main scientific contributions presented.





4. Exploiting ILP and DLP with

CGRAs

Coarse-Grained Reconfigurable Architectures (CGRAs) emerged about 30 years ago. The
very first CGRAs were programmed manually. Fortunately, some compilation approaches
appeared rapidly to automate the mapping process. Numerous surveys on these architectures
exist. Other surveys also gather the tools and methods, and only few of them focuses on the
mapping process only. This chapter presents briefly both architectures and compilation tools
for CGRA. This chapter then presents our work on a fault-tolerant CGRA with its compilation
tool, and an ultra-low power version for embedded systems. The third part describs how to
integrate floating-point capabilities and tune the precision.

4.1 A warm-up on CGRAs

Despite three decades of constant study, Coarse Grained Reconfigurable Architectures (CGRAs) are still
in 2022 the ever promising solution that did not yet meet the expected commercial success. Computer
architecture is entering a new golden age [56] and CGRAs might eventually go beyond promise. CGRAs
are seen as good compromise between the necessary flexibility and computing power needed by next-
generation applications and the energy-efficiency required by all systems, not only the embedded ones.
CGRAs gather together a huge set of possible architectures, ranging from simple organisations to complex
ones [61, 208]. One may even consider also GPGPUs as part of this big family [82]. Indeed, the design
space is huge and includes several architectural dimensions: processing elements and their homogeneity,
interconnection network, context frame, partial reconfiguration, orchestration mechanism, design of
memory hierarchy, and host-CGRA coupling just to name a few. The number of proposed architectures is
simply tremendous and undoubtedly, CGRAs still keep a wide unexplored area. From its reconfigurable
features, CGRAs are a key member of the reconfigurable computing family. Figure 4.1 shows the ideal
trade-off between flexibility, performance, and energy efficiency that CGRAs offer compaired with other
architectures.

Making an inventory of existing CGRAs is a complex and time consuming task that has been successfully
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Figure 4.1 – Architecture comparison proposed in [61]

done in the past [45, 61, 105, 161, 190, 208]. Fortunately, the newcomer in the domain can restrict to
reading only few papers to acquire a good overview. The Hartenstein’s paper surveys the first decade
of reconfigurable computing [208]. In 2010, De Sutter et al. published a book chapter detailing the
architecture features of a CGRA [171]. Wijtvliet et al. review 25 years of CGRAs in 2016 [105]. The
most recent surveys are provided by Liu et al. [61] and Podebas et al. [45]. Liu et al. [61] suggest another
classification, complementary to the ones proposed in the previous surveys. Podebas et al. interestingly
gather the published CGRAs from a performance perspective [45], and highlights by figures what is
commonly accepted: CGRAs are serious competitors to GPGPUs1. These two last surveys point out the
severe limitations that CGRAs meet like the inadequate programming model.

The abovementioned papers focus on the architectures. In order to make use of the abondant number
of processing elements available, a CGRA must come along with a compiler. The very early CGRAs
were programmed manually, i.e. at assembly level [201]. These first steps were important to understand
how to program such an architecture and describe a systematic method that can then be automated. The
automated process of programming a CGRA from a high level language falls in the compilation category.
The backend part, responsible for defining the use of the hardware resources is called application mapping.

An inventory of existing mapping techniques and their associated CAD tools has also been done
in the past [161, 169, 190]. Theodoridis et al. present the CAD tools along with the CGRAs up to
2007 [190]. In 2011, Choi [161] wrote a survey that combines both architecture and application mapping.
These papers present first the architecture, and their associated mapping flow individually. In [169], a
survey on compiling for reconfigurable computing architectures covers the broad range of reconfigurable
computing, including FPGAs, up to 2010. The common features in the compiler are described, and then
some dedicated compilers are presented. I have identified a lack in the literature on papers focusing on
automated methods for mapping on CGRAs only, and including the last decade (2010-2020) of research on
that topic. This is why I wrote the paper “Twenty Years of Automated Methods for Mapping Applications
on CGRA” [11], which content is largely used in the beginning of this chapter. From the early first
papers [202, 207, 212] to the latest publications on the topic [22, 24, 27], the paper paints a picture of
two decades of CGRA mapping techniques, and proposes a classification. It also proposes a terminology
to clearly state the problem, and extracts a general problem formulation. The paper concludes with the
research challenges to be taken up.

4.1.1 Architectures

Figure 4.2, taken from [45], presents a simple CGRA which contains the minimal components of a basic
CGRA. A CGRA is a set of processing elements (PEs), also called reconfigurable cells (RCs), or tile, or

1provided that we do not consider GPGPUs as part of the big CGRA family
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Figure 4.2 – Illustration of a simple CGRA taken from [45], showing the mesh topology (a), the internal
architecture of the reconfigurable Cell, RC (b), and an example of the configuration register (c)

functional unit (FU). The term cell might be more generic, as in some CGRAs, the cells are heterogeneous,
composed of computation unit, or memory units. This set of cells is usually placed as a two dimensions
array, where the cells are interconnected through point to point connections, or more complex topologies.
The interested reader is invited to read the dedicated papers for more details [16, 45, 61, 190]. The key
element to highlight is that a CGRA exposes both spatial and temporal parallelism.

In the literature, the ‘A’ of CGRA sometimes stands for “Array”, sometimes for “Architecture”. Both
cases make sense. A CGRA is typically organized around an array of cells, but the word architecture
encompasses all kind of organisations, not only array-based.

Array or Architecture?

A CGRA is a reconfigurable architecture. As such, it relies on configurations. The term context or
control are also commonly found in the literature to mean a configuration. Some authors may even use the
term instruction. A newcomer might wonder what is the difference between a configuration, a context, and
an instruction of a CGRA. The difference lies in the hardware that allows to reconfigure the architecture.
A configuration must store in a memory all the values of a set of signals that select the correct input of a
multiplexer. A context is such a structure that contains all the raw values. An instruction can be seen as a
condensed representation of a context. An instruction needs to go through a decoder whose outputs drive
the multiplexers. Deducing that a processor is a reconfigurable architecture is a precocious conclusion that
we cannot draw though. But whether it be a context or an instruction, the importance from the compilation
point of view is to know what to produce as the format defines the contract between the hardware and the
software to reach a valid execution.

Coupling a CGRA with a host CPU

The way a CGRA is coupled with a CPU can follow different schemes. A CGRA can be a fully standalone
computing device, or tightly or loosely coupled with a host CPU. When tightly coupled, the CGRA and
the CPU share a register file, like in ADRES [187]. When loosely coupled, the CGRA and the CPU have
communication means. The on-chip memory, cache or scratch-pad memory, can be shared between the
CGRA and the CPU. A CGRA can also have access to the off-chip memory through a controller. The
degree of coupling has a direct impact on the reconfigurability (how often a reconfiguration takes place),
the expected performance, and the compiler.
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Figure 4.3 – Classical compilation flow for CGRAs

Address Generation Units
In traditional signal processing applications, the data are arranged and accessed through arrays. A
given element of the array is pointed to with an address. Usually accessed through the index of a
loop, the address of a given element in the array is obtained after a set of additions/subtractions and/or
multiplications/divisions. In [66], the authors observed that a substantial percentage of the cells (and
computation time) is dedicated to compute the address, from 20% to 80%. An Address Generation Unit
(AGU) is a component embedded in the cell of the CGRA dedicated to generating the address and acts as
a hardware accelerator. In [66, 176], the authors propose to embed such an component in the tiles of the
CGRA, reaching a 3× speed-up.

Like any other hardware resources available in the CGRA, a compiler is needed to automatically make
use of the AGU.

4.1.2 Compilers
Compilation is an automated process that takes an input source code and transforms it into an equivalent
binary code, executable by a given architecture. Figure 4.3 shows a typical compilation flow for CGRAs.
A compiler is conceptually composed of three main steps: (1) the front-end, in charge of parsing the
source code and producing an equivalent intermediate representation (IR), (2) the middle-end, where
some optimization passes may occur on the IR2, and (3) the back-end, responsible for producing the
binary code from the IR. Thus the back-end must know the target architecture. The specific features of the
early CGRAs were hardcoded in their own compiler, some techniques being specific to a very particular
hardware and hardly reusable. This is why the previous surveys present individually the compilers [161,
169, 190], as they are all tailored to a specific target. Designing a retargetable compiler for CGRAs is still
an open issue today.

The internal (or intermediate) representation (IR) of a compiler is usually in the form of a graph. A
Data Flow Graph (DFG) is a graph whose nodes represent operations and whose edges are the data
dependencies between the operations. A DFG is embedded in a basic block, such that a basic block has a
single entry and single exit. Figure 4.3 shows an example of a DFG inside a basic block (BB3). A Control

2in real life there are multiple IRs according to the optimisation to perform
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Flow Graph (CFG) is a graph whose nodes are basic blocks and whose edges are the control dependencies
between the basic blocks. The combination of the two forms a CDFG (Control Data Flow Graph). An
application specified in a given language can thus be represented in the form of a graph, where the nodes
are the operations, and the edges are the dependencies (control or data).

The mapping is the main step in the back-end. The word mapping can designate both the process and the
output of the process. For a spatial CGRA, the mapping process amounts to solving the binding problem.
For temporal CGRA, the mapping process must solve both binding and scheduling problems. When
the problem is solved, the output of the process is a valid mapping, i.e. a binding (and scheduling) of
operations of the application on the hardware resources while guaranteeing the dependencies. Figure 4.3
shows a spatial mapping and a temporal mapping of a simple dot-product input source code. Spatial
mapping is also sometimes referred to as straight forward mapping.

Historically, CGRA mapping is the meeting point between VLIW compilation, and FPGA place-
and-route. The difference with VLIW compilation is the direct communication possibilities offered by
the CGRAs between the different cells. VLIW processors share data through a register file only. The
difference with FPGA place-and-route is the granularity of the processing elements and a usually less
flexible interconnect.

The word binding holds the idea of “tying” things together (e.g. an operation to a computation cell),
whereas placing let think a little freedom about the spatial location. Both terms are equally used in
the literature for the same meaning.

Binding or placing?

Software pipelining is a general technique for overlapping loop iterations, and allows for exposing
spacial parallelism available at loop level. Modulo scheduling is the most commonly used technique for
software pipelining, especially in the CGRA domain. In [185], the authors define clearly the goal: “The
objective of modulo-scheduling is to engineer a schedule for one iteration of a loop such that this same
schedule can be initiated at regular, as short as possible, intervals, taking into account data dependencies
and resource constraints. This interval in terms of cycles is termed initiation interval (II)”. Since the II
directly defines the performance, the quest of the minimum II became the main motivation of many works.
Figure 4.3 shows an example of modulo scheduling for the dot-product. The II in the example is one (the
best reachable II), and the figure clearly shows that two different iterations of the loop are being processed
at the same time. Most of the existing mapping approaches focused only on modulo scheduling and did
not consider the whole application, including its control flow.

The mapping problem
The mapping problem can be modeled in several ways. It can be seen as the “multi-processor scheduling
problem” which is NP-complete [220, SS13], or through graph representation by solving yet again
NP-complete problems like subgraph isomorphism [220, GT48] or largest common subgraph [220,
GT49].

The mapping problem combines thus several NP-complete problems: scheduling and binding, and
potentially also the register allocation problem. This raises CGRA compilation as a unique scientific
problem and main challenge, because mapping might fail [73, 100, 181], which is of course inconceivable
from the user point of view. To this end, for instance, HiMap [34] is an iterative algorithm that terminates
when a valid mapping is found. A single formalisation of the mapping problem is not possible, as it is
specific to the architecture model and the execution model considered. The interested reader can refer to
other papers where the authors clearly formalized their problem [116, 181].

A nice definition is given in [61]: “the mapping of a CGRA is actually equivalent to identifying the
spatial and temporal coordinates of every node and arc in the control/data flow graph (CDFG). Compilers
are responsible for making this arrangement.” We may add that the temporal coordinate system is often
called the time extended CGRA (TEC) [152], or the time-space graph [184]. The challenge is reminded by
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Table 4.1 – A review of binding and scheduling techniques for automated spatial and temporal mapping
of applications on CGRAs.

Approximate methods Exact methods
Heuristics Meta-heuristics ILP/B&B CSP

Population-based Local search

Spatial mapping [26, 181, 189] GA [43] SA [21, 50] ILP [69, 140, 181]

Temporal mapping [18, 24, 34, 51, 72,
74, 186, 212]

GA [148] SA [206] ILP [192]
B&B [76]

CP [173] SAT [27]
SMT [55]

Binding [100, 115, 126, 137,
152, 202]

QEA [164] SA [130, 179, 189] ILP [22, 164]

Scheduling [37, 51, 100, 130,
137, 152, 164, 199]

ILP [22, 28]

Chen et al. [116]: to provide high quality solution with fast compilation time. The mapping problem can
be summarized as follows:

Bind in place and schedule in time operations of the application on the CGRA while guaranteeing
the dependencies and in a short time, such that the application executes as fast as possible.

Mapping problem definition

Compilation techniques
This section presents a round-trip of proposed methods to solving the CGRA mapping problem. As the
application is composed of data-flow parts, and control-flow parts, some methods have been devised
specifically for each part. The section ends with an overview of the scientific production of the last two
decades.

Data-flow mapping
All the papers about CGRA mapping include a technique to map the data-flow part of the application.
Some methods follow a place-and-route similar to what is done in FPGAs. Some other methods formalized
the problem to delegate to a solver. Since the mapping problem is an NP-complete problem, researchers
naturally looked after techniques provided by the operational research or graph theory domains. These
have been extensively used to solve the data-flow mapping problem.

Table 4.1 gathers all the techniques used to solve the mapping problem, for spatial or temporal
architectures. The different techniques used are presented in four main columns: (1) heuristics, (2) meta-
heuristics, (3) ILP or Branch and Bound (B&B) methods, (4) Constraint Satisfaction Problems (CSP). The
heuristics encompass all the techniques specifically designed for the given problem. The meta-heuristics
form a family of optimisation algorithms, and the table further divides it into two families: population-
based techniques like Genetic Algorithms (GA) or quantum-inspired evolutionary algorithm (QEA),
and local search techniques like Simulated Annealing (SA). The exact methods include Integer Linear
Programming (ILP) and branch and bound on one side, and techniques that model the mapping problem
as a constraint satisfaction problem. This problem is then solved through constraint programming (CP),
SAT (Boolean satisfiability), or SMT (Satisfiability Modulo Theories). Please note that all the papers cited
do not appear in the table, as some of them rely on already referenced papers. For instance, the approach
presented by De Sutter et al. [185] relies on DRESC compiler [206], which already appears in the table.

The table shows that the topic has been widely covered by the researchers, with higher efforts in
heuristics.

Control-flow mapping
Mapping the control-flow graph raises another difficulty. A solution adopted in many cases is to let the
control flow managed by a host processor. But this reduces greatly the possibilities to use the CGRA and
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Table 4.2 – Summary of existing approaches to manage control flow in CGRAs

Techniques Conditionals Loops
Balanced Imbalanced Single Nested

Partial predication [183]
√ √ × ×

State based full predication [153]
√ √ × ×

Dual issue single execution [172]
√ × × ×

TLIA [102]
√ √ √ ×

Software pipelining [206] × × √ ×
Our work: Register allocation [86]

√ √ √ √

increases the communication overhead, loosing sometimes the benefit of the acceleration provided by the
CGRA. Another approach is to provide the CGRA with extra hardware features to support the control
flow. Two structures are distinguished: 1) Conditional & alternative structures, and 2) iterative structures.

1) Conditional & alternative structures
Conditional & alternative structures are if-then-else (ITE) constructs. As clearly presented in [35], there
are four basic methods to map applications with ITE onto CGRAs: (1) Full predication [204], (2) Partial
predication [183], (3) Dual-issue single execution [35, 59, 119, 172], (4) Direct CDFG mapping [86],
our work originally named register allocation approach, and presented in section 4.3.2. In [181], if-
statements are transformed into predicate statements. Supporting ITE constructs efficiently is still a hot
topic, as witnessed by recent publications [35, 59], motivated by imbalanced branches that further raise
the efficiency challenge. In [59], the mutual exclusive dataflows can be mapped on the same hardware
resources. Then, at runtime, the correct datapath is selected according to the branch outcome. When the
branches are unbalanced, Yuan et al. [35] propose a dynamic scheme to execute directly the correct branch
and not wait.

Note that in a CGRA, branch prediction is usually not needed. Branch prediction is needed because of
pipelining and knowing the result of the taken branch is several cycles behind the current fetch or decode
steps. In the case of a single-cycle elementary processing unit like in classical CGRAs, the result is known
in one cycle, enabling fetching the right configuration or instruction directly.

2) Iterative structures
Iterative structures are defined by an initialisation phase, an iteration condition, and an iteration step. Most
of the works focus on for loops. Loops have been the primary care since the early days of CGRAs [212].
Since loops concentrate the most important computing part of the application, researches naturally focused
on this specific case, and the topic has been intensively studied during the last two decades. Most of the
works consider the loop body, letting the control flow managed by a host processor. When the loop body
contains conditional or alternative structures, the techniques presented in 4.1.2 can be used. Mapping
loops on CGRA is so intensively studied that it would certainly deserve a survey on its own.

Modulo scheduling. Modulo scheduling is the most widely used technique to map loops on the
CGRA [37, 184, 189, 203]. It can rely on a modulo routing resource graph (MRRG) [59, 203]. It can also
be solved through graph-based approaches [72, 186].

Hardware loops. Hardware loops consist of extra logic inside the CGRA to manage the iterations of
the loop in order to reduce the overhead of loop control by the processor [32, 68, 98].

Table 4.2 summarizes the different techniques to manage control flow in CGRAs. The table shows that
our work contributes in managing nested loops.

Graph transformations
A DFG can be reshaped to exhibit a better mapping with the CGRA. Figure 4.4 shows a simple DFG with
four possible transformations:

• “Operation Splitting” duplicates an operation node by keeping its same inputs and distributing output
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Figure 4.4 – Graph transformations: (a) Operation Splitting, (b) Simple Routing, (c) Memorization
Splitting, (d) Routing and Splitting, figure taken from [100]

edges to reduce the number of successors of the original operation node as shown in figure 4.4(a).
“Operation Splitting” is also called “recomputing” in the literature [152]. When a node has several
successors, it leads to high contraints in the routing. Operation splitting is thus useful to relax such
constraints.

• “Simple Routing” adds a memorization node and its associated data node to delay one operation
and to keep data dependencies as shown in figure 4.4(b). This is typically interesting to add an
explicit move operation, to move a data from one tile to another one further than the immediate
neighbour.

• “Memorization Splitting” shown in figure 4.4(c) is equivalent to “Operation Splitting” but applied
to memorization nodes. It adds another memorization node with the same parents at the current
cycle and distributes edges to reduce the number of successors of the original node.

• “Routing and Splitting” is the combination of “Simple Routing” and “Memorization Splitting” as
shown in figure 4.4(d). It delays the schedule of an operation and reduces the number of successors
of the generated memorization node.

These transformations help the mapping step in finding a solution. In the literature, these transformations
are usually applied a priori, before the mapping process [37, 152]. Some transformations can be applied
a priori, e.g. when the number of fanout nodes is greater than the number of neighbors, but in the
general case, it is hard to know statically what transformation is interesting to apply before the mapping
process. In our work, we consider these transformations during the mapping process. We call this
“dynamic” transformations because they are applied at the same time as the mapping solution is built. The
transformation to apply is relevantly chosen when no solution is found. Our approach is discussed in more
details in section 4.3.2.

Data mapping

The interaction between the CGRA and the memory is also of utmost importance as it defines the efficiency
of the whole execution of the application. Various parameters of the memory can be considered for an
efficient mapping: number of banks, communication bandwidth, and memory size [25, 83, 99, 130, 162].

The internal memory resources of the CGRA should also be used efficiently. Register allocation is
presented in [137, 184], for a rotating register file [184], or for a unified register file [73].

Timeline

Figure 4.5 presents the evolution of scientific production around CGRA mapping the last two decades.
The number of publications per year is not accurate, as it considers the papers focusing on CGRA mapping
only, and a subset of selected papers, but still it shows that the community has intensified the efforts
in the last decade, with a clear increase in 2021. The figure also shows that modulo scheduling was
considered since the beginning of the studies, that supporting branches started in the early 2000s, and that
memory-aware methods gained interest around 2010.
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Figure 4.5 – Number of publications related to CGRA mapping from 2000 to 2021. Note that this timeline
does not include papers about CGRA architectures, and is not comprehensive.

4.1.3 Execution model
A CGRA may follow different execution models, according to the way the configurations are first loaded
and then run in the CGRA. The order which the configurations are loaded in can be statically defined
at compile time, or dynamically decided. A second level defines whether the operations are scheduled
and executed following an order defined by the compiler, or following a dataflow scheme, as soon as the
operands are ready. In [61], the authors suggest four main categories as the combination of the possibilities:
(1) static-scheduling sequential execution (SSE), (2) static-scheduling static-dataflow (SSD) execution,
(3) dynamic-scheduling static-dataflow (DSD) execution, and (4) dynamic-scheduling dynamic-dataflow
(DDD) execution.

In our work, we focus on the first category: static-scheduling sequential execution (SSE), meaning that
the order of the configurations can be decided at compile time (most of the applications considered fit in
the CGRA though), and the scheduling of the operations is statically defined by the compiler.

Spatial computation vs. temporal computation.
One of the crucial hardware feature that the compiler must know is if the CGRA supports spatial
computations or temporal computations [61]. Spatial computation is very similar to FPGAs. Along with
spatial computations that all CGRAs support, temporal computations allow to share in time the hardware
resources leading to more flexibility, but are often criticized to reduce the energy efficiency [43].

4.2 Contribution 1: From a fault-tolerant reconfigurable standalone architecture...

The abundant number of (homogeneous) resources in a CGRA has made it an interesting architecture to
study from the fault-tolerance point of view. Indeed, if one cell is out of order, it can be substituted by a
cell nearby.

This was studied by Thomas Peyret during his PhD thesis [125]. The goal was to provide a fault-tolerant
and flexible standalone digital signal processing architecture, able to respect throughput and latency
constraints. With the constraint of technological independency to not fall under the International Traffic in
Arms Regulation (ITAR), the fault tolerance shall be integrated at architectural level. A new architecture
along with its compilation tools have been proposed. The flow allowed to program the fault-tolerant
architecture from a high level language. The proposed system was fully autonomous as to not depend on
the reliability of any other component like a host processor for the execution of the application.

4.2.1 Architectural fault-tolerant techniques
Faults can be merely classified in two categories: transient faults, and permanent faults.

Transient faults
For the computing ressources, the basic hardware technique to recover from a transient fault is by using
Triple Modular Redundancy (TMR) [91]. The idea is to perform three times the same computation by
three different ressources, and then apply a majority function to get the correct result. For the memory
ressources, the basic technique is to use simple parity check or more complex error code correctors (ECC).
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Figure 4.6 – The “Ping pong” system [125], showing the CGRA 1 with three faulty tiles, and the CGRA 2
with two faulty tiles. État des ressources: status of the ressources, Gestionnaire de reconfiguration:
Reconfiguration engine, Listes des mappings: list of mappings.

We did not address these memory aspects in our work, so they are no further developed in this document.
Note that using ECC for the memories (e.g. caches) is now mainstream in today’s consumer electronics.

Permanent faults
When a permanent fault occurs, the tile of the CGRA becomes faulty, and cannot be used anymore. The
issue is to be able to detect when the tile is permanently affected. One strategy is to rely on built-in
self-test techniques like proposed by Rakossy et al. [142], which present the drawbacks of extra hardware
overhead, the limited reactivity and unavailability during the tests. The other approach, that we follow, is
to rely on the existing transient faults correction mechanisms inside the tile to detect permanent faults.
The basic idea is to count over a sliding window the number of times a ressource provides a wrong result.

The “Ping pong” system
One part of the work done was to pave the way to a fault-tolerant CGRA-based system. Figure 4.6 shows
a picture of such a system, composed of two CGRAs, working intermittently. Each CGRA is composed
of tiles able to support transient faults, and detect faulty tiles. The reconfiguration engine comes in action
to find a new configuration that do not use the faulty tiles. During reconfiguration, the second CGRA
takes over to guarantee the operating continuity. The assumption made is that the reconfiguration engine
(typically a simple and lightweight CPU) is itself radiation-hardened, and can run the reconfiguration
steps.

The execution model considered follows one configuration loaded for the full application. When the
CGRA is configured, it can run continuously the application until a fault appears. The CGRA is assumed
to be large enough to hold the full program. The application targeted is a streaming application in a signal
processing chain, with latency and throughput constraints. This “Ping pong system” has been the subject
of the patent described in [110].

4.2.2 Limitations identified
If fault-tolerant mechanisms were already existing at architectural levels, one of the biggest lack in the
literature was a method to compile a complete application, not only the kernel, on a CGRA. Indeed,
the very first CGRAs were meant to act as co-processors to speed up the execution time. Most of the
proposed approaches focused, rightly from the performance point of view, on kernels of applications,
offloaded by the host processor on the CGRA; the host processor executing the rest of the application,
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Table 4.3 – Summary of operations of an application executed on a host CPU or the CGRA

References [187][165]
[175][188]
[197][215]
[211]

[139] [210][198]
[209][150]

Our work

Memory operations CPU CGRA CPU CGRA
Innermost loop CGRA CGRA CGRA CGRA
Outer loop CPU CPU CGRA CGRA
Reconfiguration CPU CPU CPU CPU
Overhead

including the loop control. The basic techniques available in the literature, back in 2011, were modulo
scheduling of dataflow only loop bodies. But compiling an application needs to take into account all
control structures: conditional and alternatives structures (if-then-else), and iterative structures (loops).
The classical predication techniques for conditionals were early used: full predication [204], partial
predication [183]. After 2011, a more elaborated technique called dual-issue single execution was
proposed [35, 59, 119]. But methods supporting the loop control along with the data flow of an application
were lacking.

Table 4.3 shows a summary of the operations of an application, including the memory operations and
the loop control, executed either on a host CPU, or the CGRA.

The table clearly shows a lack in existing solutions to execute a full
application on a CGRA.

How to map a complete application, including its control flow (i.e. loop control), on a
CGRA?

Mapping control flow on CGRAs

The work of Thomas Peyret thus focused first on how to make a CGRA standalone, able to compute
both control and data flow parts of an application, including the loop control. This challenge has been
taken up by a two-fold action: (1) adding some hardware features to the CGRA, (2) developing a new
mapping technique.

4.2.3 Hardware support and compilation tool for a standalone CGRA
Hardware features for a standalone CGRA
One of the key element to design first is a tile (a cell) that a standalone CGRA can be built on. Such
a tile should be able to support control flow, meaning comparison and jump instructions, and a global
synchronisation mechanism so that all tiles run the instructions in a synchronized way.

Figure 4.7 shows the proposed tile. As a reminder, a basic cell is composed of the ALU, the register
file (RF), the output register, and sometimes the Load-Store Unit (LSU). The main component added
to support the control flow is the control unit, and compare and jump instructions in the instruction set
architecture. The hardware components added to support the global synchronisation scheme are: the
status register, the blocking load, the timestamps associated to the instructions.

Blocking load
When accessing a data in the memory, the response time varies for reasons linked to the location of the
data in the memory, memory conflicts, or the refresh time in the case of DRAM memories. When a tile
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Figure 4.7 – A tile with internal configuration memory, control support, and memory blocking fea-
tures [125]. BB: Basic Block, TS: Time Stamp, Op: Operation, RF: Register File. Gestion Sauts Global:
Global jump management, Unité de contrôle: Control Unit, Registre d’état: Status Register, Accusés
lecture: Read acknowledgment, MAJ (Mise à jour) Flags: Flags update, Mémoire centrale: Main memory,
Voisins: Neighbors, Load bloquant: Blocking load.

is blocked while waiting for the data to be available, a safe strategy to guarantee the correctness of the
execution is to force the other (concurrent) tiles to also wait, maintaining thus a global evolution of the
program for each tile, each synchronized with a timestamp. The timestamp evolves similarly for each tile.
This execution model corresponds to the “sequential execution” as described in section 4.1.3. When a
tile is blocked, a “freeze” signal is then triggered to freeze all the tiles of the CGRA. The freeze signal is
released when the data is available.

• Adding minimal architectural support: a comparator for comparison instructions
• Adding a jump instruction with a label
• Adding a global hardware synchronisation mechanism

Mapping control flow on CGRAs

The full application support mechanism in the CGRA has been the subject
of the patent described in [111].

A compilation approach for a standalone CGRA
We identified three features to support a CDFG compared to a simple DFG:

1. ability to go from one basic block to another through jumps,
2. possibility to have shared variables between the basic blocks,
3. possibility to have a specific node (a PHI node), that selects the good value according to a condition.

These three key features should be considered while solving the mapping problem. Jump operations are
explicitly available in the intermediate representation. Unconditional and conditional jumps are possible.
Conditional jumps are specifically interesting to control the iterations of a loop. An instruction is needed
to compare the current index of the loop with the condition. The result of the comparison tells which basic
block the CGRA shall jump into.
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The systematic load-store approach
In a CDFG, a single basic block is executing at a time. The first and straightforward strategy is to load all
the data needed to execute a basic block, and store back all the data when the basic block is finished. This
leads to an overhead for the shared variables. From a fault-tolerant point of view, it eases the ping-pong
mechanism, or checkpointing techniques. At worst, only the current basic block needs to be re-run in case
of failure, the data being systematically stored back in the main memory.

For the shared variables, i.e. the ones that could be kept inside the registers of the CGRA, the
compiler automatically transforms their accesses to an explicit load and store node in the DFG, with the
corresponding data dependency. During the mapping process, these nodes are simply mapped like other
load/store nodes. This technique is called the “systematic load-store approach”.

Diversification of mappings
The goal of the reliable system is to run as long as possible. Given an initial database with all the possible
reconfigurations, the idea is to fill the database with mappings as diverse as possible. The mappings
should not be different just by one or two tiles, but also by different shapes in their footprint. When no
constraint is given, the mapping tool uses all possible tiles, in all possible directions. In order to force
diversification, some constraints are imposed, in the number of tiles used and the maximum number
of neighbors, mimicking some faulty tiles. Following this strategy, the mapping process ends up with
several solutions, all similar from the latency point of view, but with different caracteristics and different
footprints on the grid.

Figure 4.8 shows the average number of different mappings obtained on different kernels from the
signal processing domain. The proposed approach is compared with three other methods:

• “Method 1” that solves the scheduling and the binding problem separately as proposed in [164].
Graphs are transformed during scheduling by applying “Simple Route” transformation only. A
forward list-based scheduling algorithm and the original Levi’s binding algorithm are used.

• “Method 2” that traverses the graph forwardly, schedules nodes by applying a priori transformations
and tries to find a mapping by using the original Levi’s algorithm as proposed in [152].

• “Method 3” that backward traverses the graph, schedules and binds nodes simultaneously with
dynamic transformations as proposed in this paper and removes redundant partial mappings to
prune the solution space.

“Method 3” is actually one approach that we also proposed, but suffers from scalability issues, which are
discussed later in section 4.3.2.

The results show that our approach can better explore the solution space
and thus find solutions with high diversity. This approach offered a solid

baseline for further studies.

4.3 Contribution 2: ... to an ultra-low power programmable array
One of the main outcome of the PhD thesis of Thomas Peyret was a new standalone CGRA, able to
execute a full application, along with its mapping tool. The results obtained were also interesting from the
execution time point of view, although not the primary goal. The question then arose how this kind of
CGRA would behave in an embedded system context, with a stringent power budget.

Could a standalone CGRA offer a good energy efficiency compared to the traditional
CPU+CGRA coupling scheme?

Energy efficient embedded systems
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Figure 4.8 – Average number of different mappings.

This question was the main underlying motivation of the PhD thesis of Satyajit Das [70], a joint
collaboration between université de Bretagne-Sud and university of Bologna. In order to answer the
question, some actions were needed both on the hardware side and the software side.

4.3.1 Architecure
The first action was performed on the architecture of the CGRA. Two main features are detailed here: 1) a
minimalist instruction-set, 2) clock gating technique.

A minimalist instruction-set
The fault-tolerant CGRA proposed by Thomas Peyret was based on a 44-bit instruction-set, including
specific redundancies and instructions (e.g. voting) for fault-tolerant reasons. The first action was to
rethink the instruction-set to a minimalist version, to minimize the memory needed to store the instructions,
the size of the instruction decoder, and finally reach the smallest energy footprint. This work led to a
20-bit instruction-set.

Clock gating
The second feature relies on the well-known clock gating technique. Clock gating consists of adding an
AND gate to the clock signal, to avoid the clock signal to propagate throughout a component. Indeed,
most of the energy spent in a circuit is based on the switching activity. When this activity is not needed,
simply shutting down the clock signal brings interesting energy savings. In the context of a CGRA, all the
cells of the grid are not all used every clock cycle. The idea is to clock-gate the cells that are not in use at
a given time.

IPA: Integrated Programmable Array
The design step ended in a CGRA that we called Integrated Programmable Array (IPA). The architecture
comprises a PE array, a global context memory, a DMA controller (DMAC), a tightly coupled data
memory (TCDM) with multiple banks and a logarithmic interconnect. Figure 4.9 shows the organization
of the IPA.

PE Array: The array consists of a parametric number of PEs, connected with mesh torus network.
Figure 4.10 describes the components of a PE. Two input muxes select two operands (OpA and OpB).
The sources are the neighboring PEs or the register file. A 32-bits ALU and a 16-bit x 16-bit = 32-bit
multiplier are employed in this block. The Load Store Unit (LSU) is optional for the PEs (the optimal
number of LSU is a parameter that we studied). The Control unit is responsible for fetching the instruction
from the corresponding address of the instruction memory and managing program flow. The Regular
Register File (RRF) and Output Register (OR) store the temporary variables, while constants are stored in
Constant Register File (CRF). The Condition Register (CR) contains 0 for all the normal operations and
true conditions, and 1 for false conditions. The boolean OR of all the control bits from all PEs gives the



4.3 Contribution 2: ... to an ultra-low power programmable array 63

Figure 4.9 – IPA computing system [87]. TCDM:
Tightly Coupled Data Memory, PE: Processing El-
ement
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Figure 4.10 – Components of the PE (Processing
Element) of IPA [87]. PMU: Power Management
Unit, RRF: Regular Register file, CRF: Constant
Register File, CM: Context Memory, OPR: Output
Register

indication that one PE has executed false condition in the previous cycles. So next, the offset address of
the false path must be fetched. The Jump Register (JR) contains the address to be jumped at.

Global Context Memory (GCM): The Global Context Memory stores configuration data (instruction
and constants) for each PE in the PE Array.

DMA controller (DMAC): The DMA controller identifies configuration data for the corresponding PE
and transfers it in the load context stage. It also initiates the execution phase after loading all the contexts.

TCDM and logarithmic interconnect: The TCDM (Tightly Coupled Data Memory) has a number of
ports equal to the number of memory banks providing concurrent access to different memory locations.
Load store operations in the PEs are based on a high bandwidth low-latency interconnect, implementing a
word-level interleaving scheme to reduce access contention.

The organisation of the global context memory and the mechanism to load the context (instructions) in
the grid are described in [87].

Integration in the PULP platform
The Parallel Ultra Low Power (PULP) Platform started as a joint effort between the Integrated Systems
Laboratory (IIS) of ETH Zürich and Energy-efficient Embedded Systems (EEES) group of the University
of Bologna in 2013 to explore new and efficient architectures for ultra-low-power processing [6], at the
instigation of Prof Luca Benini.

The thesis of Satyajit Das was a joint collaboration between université de Bretagne-Sud and university
of Bologna. Satyajit, during his stay in Bologna, benefited from the ideal conditions to integrate the IPA
into a PULP cluster.

The PULP Cluster
The PULP cluster features 8 32-bit RISC-V cores based on a four pipeline stages micro-architecture
optimized for energy-efficient operations [88] sharing a 64KB multi-banked scratchpad memory through
a low-latency interconnect [166]. The ISA of the cores is extended with instructions targeting energy
efficient digital signal processing such as hardware loops, load/store with pre/post increment, SIMD
operations. The cores share a 4KB private instruction cache to boost performance and energy efficiency
for tightly coupled clusters of processors typically relying on data parallel computational models [92].
Off-cluster data transfers are managed by a lightweight multi-channel DMA optimized for energy-efficient
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Figure 4.11 – PULP cluster augmented with IPA subsystem

operation [128]. Both the instruction cache and DMA are connected to an AXI4 cluster bus. A peripheral
interconnect is used to communicate with on-cluster peripherals such as a timer, a hardware synchronizer
and other memory mapped peripherals such as application-specific accelerators. To operate at the best
operating point for a given workload the cluster can be integrated in an independent voltage and frequency
domain, featuring dual-clock FIFOs and level shifters at its boundary.

Heterogeneous PULP-IPA Cluster
We extended the PULP cluster with the IPA, as shown in figure 4.11. As opposed to many CGRA
architectures, the IPA can access a multi-banked shared memory through 8 master ports connected to the
low-latency interconnect. This eases data sharing with the other processors of the cluster, following the
computational model described in [133]. The optimal number of port has been chosen to optimize the
trade-off between the size of the interconnect and the bandwidth requirements of the IPA. Following the
analysis we conducted in [86], which shows that the IPA can operate 2× faster than the processors, we
have extended the architecture of the cluster in a way that the IPA can work at twice the frequency of rest
of the cluster. The integration is detailed in [71].

4.3.2 Compilation
The second action was performed on the compiler, specifically on the mapping approach. This section
actually presents the outcome of the work initiated by Thomas Peyret and extended by Satyajit Das.

Architecture and application models
The compiler takes two inputs. The first is the model of the CGRA, and the second is the ANSI-C code of
the application.

The IPA is modelled by a bipartite directed graph with two types of nodes: operators and registers.
Timing is implicitly represented by connections between registers and operators, which is referred to as
the time extended model of the PEA [152]. Two types of operator nodes are defined for the PEs. The first
type is the computing operator that represents the physical implementation of an arithmetic and logical
operation (+, ×, -, OR, AND) and/or memory access (e.g. load/store). The second type of operator is
the memorization operator, which is associated with the output register and represents the operation of
keeping a value in a local register explicitly.

The application is modelled as a control and data flow graph (CDFG). A CDFG is depicted as G = (V,E)
where V is the set of basic blocks and E ⊆V ×V is the set of directed edges representing control flow. A
Basic Block (BB) is represented as a data flow graph (DFG) or BB = (D,O,A) where D is the set of data
nodes, O is the set of operation nodes and A is the set of arcs representing dependencies. The control flow
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Figure 4.12 – Our proposed compilation flow to
find a mapping for a CDFG on the IPA, presented
in [54]

X1 = 10;
X2 = 20;
X3 = 500;
X4 = 30;
X5 = 50
for(i = 0; i < q; i++)
{
 a = m[i] * X1;
 b = n[i] * X2;
 c = b + a;
 if(c < X3)

p[i] = c + X4;
 else

p[i] = c - X5;
}
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 else
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}
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Figure 4.13 – Sample program and corresponding
CDFG

from one basic block to another is supported with jump (jmp) and conditional jump (cjmp) instructions.
Figure 4.13 shows an example of a kernel with its corresponding CDFG. The basic blocks in the CDFG
are composed of data nodes, operation nodes, and data dependencies.

Homomorphism
Three equivalences between the basic block DFGs and nodes of the model of the IPA are defined: (1) data
and registers; (2) computation and computing operators; (3) data dependencies and connections between
the time extended PE components. As the two models are homomorphic, the mapping of a DFG onto the
PEA is therefore a problem equivalent to finding a DFG in the IPA graph.

The compilation flow step by step
Figure 4.12 shows the steps followed by our compilation flow for mapping CDFGs onto the IPA. A CDFG
mapping is a set of DFG mappings that are compatible with each other. To be compatible, the DFGs must
access the data that remain in the PEs in the same location, which is ensured by the register allocation
approach described later in 4.3.2.

The full compilation flow is composed of six interdependent stages: basic block selection, backtracking,
update constraints, scheduling and placement, graph transformation and stochastic pruning, which are
now described.

Scheduling and placement
A full DFG mapping is built up cycle by cycle. At each cycle, there are several nodes to be mapped, which
number might be greater than the number of available resources at the current cycle. First, priority is
given to nodes with a high fanout, assuming that they are more difficult to place, then the mobility is
considered [221].

The proposed approach uses a backward traversal list scheduling algorithm, originally presented by
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Thomas Peyret in [127], to schedule the DFG of each basic block. It relies on a heuristic in which the
schedulable operations are listed by priority order. In backward traversal, a node is schedulable if and only
if all its children are already scheduled. It is possible to process memorization nodes and conventional
nodes differently. As soon as the highest priority node has been defined, the compiler tries to find a
placement in the CGRA model. If a placement solution exists, the node is scheduled else the graph is
transformed.

The proposed placement uses an incremental version of Levi’s algorithm [226]. The proposed algorithm
adds the newly scheduled operation node and its associated data node to the sub-graph composed of
already scheduled and placed nodes. If no solution is found, there is absolutely no possibility to bind this
couple in all the previous partial solutions because Levi’s algorithm provides a complete exploration of
the solution space. In that case, graph transformation is required.

Graph transformation
The graph transformations that we used are the ones described in section 4.1.2, p. 54.

Stochastic pruning
The comprehensive nature of the placement step usually leads to a high number of partial mappings
(depending on the data dependencies and architectural constraints). This prevents to use complex DFGs
or CGRAs with large number of tiles or register files. To reduce the number of partial mappings generated
by the placement step, we introduce a stochastic pruning step. For each partial mapping, the selection step
generates a random number between 0 and 1 which is compared to a threshold. If the generated number is
less than or equal to the threshold value, the partial mapping is kept otherwise the solution is discarded.
Since the number of partial mappings depends on the current step, and grows exponentially, choosing a
fixed threshold value is not an option. Typically, there are only few partial mappings after the first cycle,
so we must keep most of them, but there are quickly thousands of them after few cycles, and many can be
discarded. So, the threshold must adapt to the current number of partial mappings. The ultimate goal of
defining the threshold is to have control over the number of partial mappings selected or passed. This
number should be low enough to scale up and high enough to allow finding at least one valid solution as
very few of the selected partial mappings result in a valid mapping. In other words, success rate highly
depends on the choice of the threshold function.

The threshold function should be a decreasing function. We studied different functions, like an
exponential function which is widely applied in simulated annealing based algorithms, hyperbolic, or
inverse functions. Our experiments show that the inverse function works better than the other one studied.
The full explanations with the experiments are available in [8].

Finding a valid mapping solution depends on the number of partial mappings. Although the inverse
threshold helps to control memory footprint by reducing the number of partial mappings, some heuristics
is necessary to ensure a good number of partial mappings is maintained throughout the mapping process.
We propose to introduce bounds as control mechanisms: LB (Lower Bound) and UB (Upper Bound).
While randomly selecting the partial mappings from a set, it might so happen that the pruning function
did not not select any one of the partial solutions failing to find any valid solution. Hence, it is absolutely
necessary to set a minimum number (lower bound) which the pruning function must select from the
solution space. This gives an opportunity to find a valid mapping in the end. If the selected partial solutions
does not reach to the lower bound, the pruning function will iterate through the solution space until the
number is reached. In this iterative selection process, the function might select huge number of solutions
which will increase the compilation time. To get the compilation time scalable and success rate high, we
introduce both upper and lower bound. However, the upper bound may impact the quality of mapping by
over-constraining the selection process. We investigated the impacts of the different bound-based pruning
approaches for the best trade-off between quality of mapping and compilation time:

• RED (Redundant deletion) [127] removes redundant partial mappings to prune the solution space
in the baseline approach

• SNoB (Stochastic selection with No Bounds) uses stochastic method without any bounds to prune
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the solution space.
• SLUB (Stochastic selection with Lower and Upper Bounds (LB&UB)) uses stochastic method

with upper and lower bounds for pruning the solution space
• SLoB (Stochastic selection with Lower only Bound (LB)) uses stochastic method with only lower

bound to prune the solution space

Basic block selection
Once all the nodes of the basic block have been scheduled and bound, the compiler selects one mapping
among the several mappings generated, and selects the next basic block to be mapped. Data integrity
must be maintained over several basic block mappings for the shared variables. This is guaranteed by the
register allocation approach explained later.

Backtracking
For a basic block to be mapped (except the first one), this stage selects the first mapping out of several
mappings generated for the last basic block mapped. If the compiler is unable to find a mapping solution
compatible with the current mapping, the next one in the list is selected. The process continues up to the
first basic block mapped until a valid mapping is found for the current basic block.

Register allocation
The idea of the register allocation approach is to use the internal registers of the PEs to hold scalar
variables that could be alive accross different basic blocks.

The register allocation approach is the centerpiece of our CDFG mapping
approach, which ensures to obtain a set of consistent and compatible DFG
mappings, able to share variables kept inside the registers of the PEs of the

CGRA.

The approach relies on two kinds of constraints: the Reserved Location Constraints (RLC), and the
Target Location Constraints (TLC).

The RLC are used to prevent the usage of a register that holds an alive variable. In that case, the register
cannot be used and is called “reserved”. The RLCs keep track of all the registers that cannot be used to
find a valid mapping.

The TLCs are used to force the usage of a given register. When a scalar variable is used in different
basic blocks (for instance, typically the variable i, the index of the loop), this variable is stored in a
register and the mappings should use this same location when accessing the value. It is called a “target
location”.

The full explanations are available in appendix A.

Context-memory aware mapping
The area and energy efficiency of our standalone CGRA are bottlenecked by the configuration/context
memory. The size of these context memories is of prime importance due to their high area and impact on
the power consumption. For instance, a 64-word context memory typically represents 40% of a processing
element area. Our first mapping approach did not take the size of the context memory into account, and
the standalone CGRA became oversized which strongly degrades its performance and interest. This is
why we propose a context memory aware mapping. The size of the context memory inside the (PE) needs
to be managed for ultra low power acceleration. In [53], we describe the mapping approach which tries to
find at least one mapping solution for a given set of constraints defined by the size of the context memories
of the PEs. These constraints force to better share the operations over the PEs of the CGRA. Experiments
show that our proposed solution achieves an average of 2.3× energy gain (with a maximum of 3.1× and a
minimum of 1.4×) compared to the mapping approach without the memory constraints, while using 2×
less context memory. When compared to the CPU, the proposed mapping achieves an average of 14×
(with a maximum of 23× and minimum of 5×) energy gain.
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Table 4.4 – Synthesized area information for the PULP heterogeneous cluster

Components Area (µm2) % of
cluster area

CORES (x8) 160,352 18
ICACHE (4 kB) 190,089 22
DMA_CORE 41,406 5

IPA

PE ARRAY 154,515

18
IPAC 861
GCM_INTCNCT 359
OTHERS 588
Total 156,323

DMA_IPA 32,636 4
GCM 18,704 2
TCDM (16x4 kB) 149,638 17
CLUSTER_INTCNCT 63,126 7
CLUSTER_PERIPHERALS 21,610 2
OTHERS 37,932 4

Total 871,816 100

4.3.3 Results
This section recaps a few results obtained.

Experimental setup
Several versions of the IPA have been designed. The results presented here are obtained for a design
synthesized with Synopsys design compiler 2014.09-SP4 using STMicroelectronics 28nm UTBB FD-SOI
technology libraries. Synopsys PrimePower 2013.12-SP3 was used for timing and power analysis at the
supply of 0.6V, 25◦C temperature, in typical process conditions. The cycle information was achieved
by simulating the RTL with Mentor Questa Sim-64 10.5c. The IPA is built upon a 4×4 array with 16
PEs, each one including 20×32-bit instruction register file, a 32×8-bit regular register file and 32×16-bit
constant register file.

The PULP cluster consists of 8 cores featuring 4 kB of shared instruction cache. The TCDM is
composed of 16 banks of 4 kB each, leading to an overall TCDM size of 64 kB. Table 4.4 presents the
area information of the components in the cluster. Although, the total area of the IPA with 16 PEs is
almost similar to the area of the 8 cores combined, the area occupied by the GCM is much less than the
total cache memory, which in turn provides better area efficiency while running applications in IPA.

The IPA competes with an 8-core PULP cluster
Table 4.5 reports the execution time in nano seconds for different benchmarks running on a single-core,
on 8 cores and on the IPA. The IPA execution time includes the time taken for loading the context into
the PEs. Comparing to the performance of execution in single-core, the accelerator achieves a maximum
of 8× (with a minimum of 2.49× and an average of 5.4×) speed-up. The control intensive kernel like
GCD does not exhibit parallelism, hence parallel software execution does improve performance of the
homogeneous cluster. On the other hand, the execution on the IPA improves the performance by almost
5×, exploiting also instruction-level parallelism rather than data-level parallelism only. The performance
gain in the accelerator for the compute intensive kernels like matrix multiplication, convolution, FIR
and separable filters is limited if compared to the performance of parallel-cores. However, the relatively
similar performance from the purely execution time point of view is compensated by the gain in energy
consumption (Table 4.6) due to the simpler nature of the compute units of the IPA with respect to full
processors, to the smaller number of power-hungry load/store operations, and to the fine-grained power
management architecture that applies clock gating on the inactive PEs during execution.

Table 4.6 shows the evaluation of the energy consumption for each configuration of the heterogeneous
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Table 4.5 – Performance evaluation in execution time (ns) for different configurations in the heterogeneous
platform

Kernels Single-core
(ns)

Multi-core
(ns)

Speed-up in
multi-core IPA (ns) Speed-up in

IPA

MatMul 3,358,740 435,180 7.72x 432,630 7.76x
Conv 9,733,380 1,520,840 6.40x 1,494,860 6.51x
FFT 767,640 142,720 5.38x 94,510 8.12x
FIR 182,500 33,460 5.45x 33,410 5.46x
Sep Filter 39,870,420 6,404,160 6.23x 6,334,700 6.29x
Sobel Filter 117,024,880 40,894,260 2.86x 28,865,890 4.05x
GCD 2,951,160 2,951,160 1.00x 61,1300 4.83x
Cordic 9,000 7,000 1.29x 3,610 2.49x
Manh Dist 244,640 164,640 1.49x 70,300 3.48x

Table 4.6 – Energy consumption evaluation in µJ for different configurations in the heterogeneous platform

Kernels Single-core Multi-core IPA

Energy % of Active PEs/cycle

MatMul 1.247 0.313 0.208 58.5
Convolution 2.876 1.095 0.658 59.2
FFT 0.292 0.087 0.042 59.7
FIR 0.08 0.026 0.026 46.1
Separable filter 16.663 4.611 4.28 55.5
Sobel Filter 51.491 29.444 12.701 51.2
GCD 1.151 1.151 0.257 6.25
Cordic 0.004 0.003 0.001 50
ManhDistance 0.1 0.095 0.03 48.5

cluster. The table also shows the average usage of the PEs per cycle.

The results show that the IPA consumes much less energy than the
multi-core version.

The stochasticity helps in better exploring the solution space
Figure 4.14 presents the results for ten runs of the DCT benchmark on different CGRA configurations
with three different methods, RED, SLoB and SLoBS. Each point in the figure corresponds to one run by a
method on the corresponding CGRA configuration. The x axis of the graph represents latency normalized
to ASAP length and the y axis represents the number of transformed nodes normalized to the number of
operation nodes in the original graph. So, each point in the graph is basically the outcome latency and
number of transformed nodes of each run by a certain method. The points corresponding to the method
RED and SLoB (Stochastic selection with Lower only Bound) show that they found similar latencies
with almost similar number of transformations. The wide varieties of latencies and wide varieties of
transformations of method SLoBS (SLoB with Stochastic Scheduling) prove that this method can better
explore the solution space. The nodes with similar priority are scheduled in different order for each run in
the case of SLoBS.

Stochasticity in placement in scheduling helps in exploring different
possibilities in the mapping latency and DFG transformations.

Hence, the method SLoBS found the best latency with least number of transformations.
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Figure 4.14 – Architectural coverage between methods for ten runs of the DCT benchmark on different
CGRA configurations

4.4 Contribution 3: Adding floating-point capabilities

All the kernels considered up to that point were on integer numbers only. But many applications need
some floating point numbers. Adding some floating-point capabilities to the standalone CGRA was the
main goal of the PhD thesis of Rohit Prasad [13].

4.4.1 Adding FPU

Due to the area overhead induced by floating point capability, typical CGRAs become less attractive
if all the PEs contain floating point computational units (which is confirmed by our results). Similarly,
the operators on floating-point numbers are much more complex than their integer counterparts. In
order to not degrade the performances on integer numbers, floating-point operations are performed in
several cycles. Besides, the heterogeneity in the PEs often fails to transport data synchronously to the
PEs containing floating point units, disturbing parallel float computations resulting in a performance
bottleneck. Transporting data synchronously to the processing elements can be guaranteed by decoupling
address generation of the data structures from the computation flow.

Adding floating point capabilities to CGRAs raises new challenges:
• Multi-cycle operations
• Address generation unit
• Heterogeneous set of computing cells
• New instructions in the ISA

Adding floating point capabilities to CGRAs

Hardware

The first contribution was to extend the IPA with IEEE 754 compliant floating point operations units with
the associated compilation flow to efficiently exploit parallelism between the floating point operations at
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Figure 4.15 – The IPA extended with the FAGU (Flexible Address Generation Unit) and FPU (Floating-
Point Unit). One PE embeds a hardware divider and square root unit.

Table 4.7 – Performance comparison with RISC-V 1-core. PC: Principle Component

Kernels Execution time in cycles Energy consumption in µJoule
CGRA
without
FAGU

CGRA
with

FAGU
RISC-V

Gain in
CGRA

with FAGU

CGRA
with

FAGU
RISC-V

Gain in
CGRA

with FAGU

mean covariance 734,934 300,050 732,377 2.44x 3.24 5.71 1.8x
accumulate 94,018 48,877 66,334 1.36x 0.38 0.52 1.4x
householder 211,113 125,375 132,870 1.06x 1.02 1.04 1x
diagonalize 257,488 84,186 175,092 2.08x 0.8 1.4 1.8x
PC 268,809 105,993 488,252 4.61x 1.14 3.8 3.3x

instruction level. The PEs of the IPA are also extended with a Flexible Address Generation Unit (FAGU)
which decouples addresses generation from the computation flow.

Figure 4.15 shows a diagram of the new CGRA with floating point capabilities. The main differences
with the original IPA are:

• 8 PEs only instead of 16
• 4 PEs are augmented with both FPU and FAGU
• 1 PE embeds a floating-point hardware divider and square root unit
• an instruction synchronizer (IS) that manages multi-cycle operations

The new CGRA system ends up with an area of 204,067 µm2, which is nearly twice the size of a PULP
cluster with a single core.

Compilation

From the compilation point of view, taking into account floating-point operations needs new features.
First, the compilation flow identifies multi-cycle operations (floating point computations) in the whole
CDFG. The operation nodes are then transformed by adding dummy nodes equal to the number of the
total cycles needed to perform the operation. The dummy nodes are of course placed on the same node,
using thus the resource during the whole computation. Second, the consecutive multi-cycle operations
should be mapped onto the same PE, to not further increase the latency with extra move operations. This
is encouraged by a new priority given to the schedulable nodes during the mapping process.

Results

Table 4.7 shows the performance comparison between the CGRA with FPU and a PULP cluster with a
single RISC-V core [88], both on execution time in cycles and energy consumption in µJoule, for executing
the kernels computing PCA (Principle Component Analysis) in the EEG (electroencephalogramme)
analysis. The table shows also the results obtained without the FAGU. The results clearly show that
without the FAGU, the CGRA performs similarly with the RISC-V core.
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With the FAGU, a maximum speed-up of 4.61x is obtained, and an average
of 1.86x gain in energy consumption.

The complete set of results, with comparison with 2, 4, and 8 RISC-V cores is available in [47].

4.4.2 Transprecision

An emerging approach to reduce the power consumption of floating-point operations while preserving the
dynamic required by applications without manual adjustments is transprecision computing [81]. This
paradigm aims at designing systems which deliver the required precision for intermediate computations
given an accuracy bound specified by the user, and leverages automated tools to associate reduced-
precision types to program variables [81]. An attempt towards transprecision computing was made
by introducing two new custom FP data-types (binary16alt and binary8) and a hardware unit called
smallFloat Unit (SFU) [77], which employs IEEE-754 binary32, binary16, and two new data-types,
namely binary16alt (featuring a higher dynamic range vs. binary16) and binary8. Exploiting these data
types leads to significant improvement in terms of performance and energy efficiency [77].

TRANSPIRE

The second contribution of Rohit Prasad’s PhD thesis was to combine the principles of transprecision
computing with the flexibility of CGRA in exploiting multi-datapath for high Instruction Level Parallelism
(ILP) and Data Parallelism (DP), to propose a high energy efficiency low power FP-CGRA architecture
called TRANSprecision floating-point Programmable archItectuRE (TRANSPIRE). TRANSPIRE gains
10.06× performance and consumes 12.91× less energy over a RISC-V CPU extended with SIMD-style
vectorization and executing same kernels using same FP data-types as of the proposed CGRA. On this
part, the efforts were concentrated on the hardware architecture, by integration the SFU inside the PE of
the CGRA, and on the application to tune it for the CGRA.

The SFU (SmallFloat Unit) is a dedicated units for the so-called “small floats”, float numbers on a
reduced number of bits. It is designed following slices, 1x32 bits, 2x16 bits, and 4x8bits, shared between
several cores. For the integration in the CGRA, Rohit Prasad designed the mSFU (mini-SFU), which
includes 2 slices of binary16alt units and 4 slices of binary8 units. The datapath is 32-bits wide, which
enables TRANSPIRE to perform SIMD operations for custom FP data types. The operators in the mSFU
are non-blocking and non-pipelined. Float-absolute and float-less-than operators support the IEEE-754
binary32 format and are shared among these slices in mSFU.

Results

The TRANSPIRE architecture has been compared with RI5CY_SFU, a 4-stage RISC-V CPU with
an enhanced ISA supporting SIMD-style vectorization that includes SFU [77]. Table 4.8 summarizes
the results obtained for three applications. CONV implements a 5× 5 convolution kernel, used for
image and audio processing applications. DWT computes the Discrete Wavelet Transform, used for
Electrocardiography (ECG) analysis applications. SVM is the prediction stage of a Support Vector
Machine.

The results show that TRANSPIRE can bring an interesting 10x
improvement on execution time, and up to 12x in energy.

Table 4.8 shows the results for binary8 datatypes only. Other results on other datatypes are available
in [47].



4.5 Summary 73

Kernel
Average
deviation

(%)
Data-type

TRANSPIRE
binary8
(cycles)

RI5CY_SFU
binary8
(cycles)

Gain
TRANSPIRE

binary8
(µJ)

RI5CY_SFU
binary8

(µJ)
Gain

CONV 2.32 binary8 268,179 1 455,097 5.43× 3.036 21.506 7.08×
DWT 6.98 binary8 11,140 16,912 1.52× 0.124 0.256 2.07×
SVM 7.11 binary8 11,408 114,747 10.06× 0.123 1.588 12.91×

Table 4.8 – Accuracy performance of TRANSPIRE, with cycles and energy consumption

4.5 Summary

This chapter presented how to exploit ILP and DLP with CGRAs. The chapter starts by reminding the
research done the last two decades, particularly on the compilation side, with the CGRA mapping problem.
The review of existing methods highlighted that CGRAs have been mainly studied as co-processors
in charge of accelerating the dataflow parts of an application, the main limitation identified being that
CGRAs were not able to also handle the loop control.

How to map a complete application, including its control-flow, on a CGRA?
Mapping control flow on CGRAs

Back in 2012, there was no such existing method, that can support the control flow of an application
including the loop control and not only if-then-else constructs.

• Adding minimal architectural support
• Propose a new mapping method

Mapping control flow on CGRAs

The first step is to consider a hardware support for control flow. The hardware proposal stands upon
a global synchronisation scheme to guarantee the correct execution of the application in all cells of the
CGRA.

We proposed two techniques to map the control flow of an application
• the systematic load-store with architectural support
• a register allocation based approach, renamed direct CDFG mapping in the literature

Mapping control flow on CGRAs

We proposed a CGRA named IPA for Integrated Programmable Array, integrated into a PULP cluster,
to act as a standalone programmable hardware accelerator. We also proposed a version able to support
floating-point operations, and a transprecision version, that allows to tune between accuracy and energy
efficiency.

The compilation method proposed relies on several key original features:
• backward traversal of the nodes of the DFG
• a cycle by cycle mapping construction with simultaneous scheduling and placement
• graph transformations during the mapping construction
• stochastic pruning with adaptive threshold that allows to empirically always find a solution
• support for multi-cycle operations and address generation unit
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The results show that a CGRA can effectively make use of ILP and DLP of an application, and can
bring up to 10× in performance gain on execution time or energy efficiency, compared to a RISC-V based
CPU.

The contributions presented in this chapter open up new research directions. On hardware organisation
side, a cluster (or island) based standalone CGRA can be studied. On compiler side, compilation
techniques that mix modulo scheduling with our control-flow approach are needed. Runtime compilation
techniques can also be studied to share the ressources of the CGRA between several applications. The
perspectives, particularly with artificial intelligence applications, are discussed in chapter 7.



5. Exploiting DLP and TLP with

multicore processors

A single processor can make use of ILP and DLP. Parallel processors can furthermore
exploit Task Level Parallelism (TLP). The still ever increasing density of transistors in a
single chip make it possible to have a multicore processor on a single die, sometimes referred
to as Chip Multi-Processors (CMP). At the programming level, languages and models are
needed to specify an application that takes the advantage of the available parallelism exposed
by parallel machines. This chapter presents our contributions on mapping an application
specified through the dataflow model of computation onto a multicore processor.

5.1 A warm-up on multicore processors and dataflow model of computation

5.1.1 Multicore processors
Parallel processor is a general term that includes all kinds of machines that can process data at the same
time in the context of a single application. Parallel processors were historically built on several chips, each
chip containing one central processing unit (CPU), like the one in figure 5.1. Since 2005, it is common to
have several processors inside the same chip, as illustrated in figure 5.2, leading to the term core to be
used for processor, and the term multicore processor, to name a processor composed of several processing
units (or processing elements). In this context, the term CPU started to become outdated [154]. Since
then, several terms emerged in the literature to designate basically the same thing: several processing
cores inside the same chip. The word “Chip Multi-Processors” (CMP) explicitly holds the idea. The
term “Multi-Processor System on Chip” (MPSoC), which includes heterogeneous architectures, is also
very common. Finally, the word “many-core” appeared to designate architectures composed of several
tens or hundreds of (implicitly homogeneous) cores. Today’s parallel processors are still built on several
chips, each chip containing now several cores. We did not target in our work such architectures. We
focused on hardware architecture and organisation inside a single chip. In the rest of this chapter, and
without loosing generality, we use the term “multicore processors” to designate several processing cores
(no matter the number) inside the same chip. This section does not present a comprehensive view of
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Figure 5.1 – Connection between only one proces-
sor with the memory

Figure 5.2 – How to connect the memory with a
multicore processor?

existing multicore processors but presents the ones we used in the context of our work, and emphasizes on
the key architectural features that are unavoidable when mapping a dataflow application. The interested
reader is invited to read reference books [154, 196] or surveys on the topic [178].

Memory system
One of the biggest impact of moving from a single CPU (uniprocessor) design to a multicore processor is
the interaction with the memory. Figure 5.1 shows a very simple connection between a single processor
and the memory that contains both instructions and data, known as Von Neumann architecture. As the
processor and the memory are on two different chips, and the communication bandwidth is low, some
cache memories are added on processor side to improve the performances. If this same memory is now
shared between several processors (or cores), some questions arise. How to interconnect them physically?
What is the memory consistency model? Where to place the cache memories? What is the cache coherence
support? These questions are symbolised in figure 5.2. Lots of multicore processor designs have been
proposed differing from the way these questions are answered, which in turns, impact the programmability
and the overall performances. This section briefly covers only two dimensions: the on-chip interconnect
and memory consistency model.

On-chip interconnect
On-chip interconnect is in charge of the physical connections which allow communications between the
processing elements and the memory. Many solutions have been proposed, such as bus, crossbar, ring, or
Network-On-Chip (NoC), each having advantages and drawbacks. In our work, we considered multicore
processors offering two widely used interconnects which are bus and NoC. The bus presents the advantage
of simplicity, but is rapidly limited in bandwidth as the number of connected elements increases. In order
to scale up to tens of connected element, the NoC is the right option, but comes at the price of design
complexity, higher latencies, along with area and energy overhead.

Memory consistency
In the case of an uniprocessor interacting with the memory, the order in which the accesses to the memory
are made is sequential. In the case of multicore processors interacting with a shared memory, memory
accesses can be parallel (i.e. at the same time), and in different orders. The main issue is to find an order
that leads to the correct execution of the application. A memory consistency model (or a memory model
for short) defines how the memory operations may be reordered when code is executing [178]. Another
definition is given in [62]: the set of rules that defines the interaction between the processors to keep
consistency of the value of the data.

Two memory models are discussed here: the sequential model and the weak model. In a sequential
memory model, all reads and writes to all addresses appear in the same order. This is ensured by the
pair processing element-memory system (through atomic operations) which defines a global ordering of
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Figure 5.3 – Zynq-7000 Extensible Processing Platform (EPP) [2]

the accesses, usually involving also the interconnect. A sequential memory model makes programming
easier but offload the burden to the hardware making the memory system more complex (and slower) and
prevents from any potential performance improvements coming from another possible, yet consistent,
sequence.

In a weak consistency model, there is no specific hardware that prevents a processor from accessing
to the memory. It is the responsibility of the programmer to arrange the memory accesses such that no
memory conflicts or inconsistencies occur. The weak model pushes the complexity to the software, but
opens the door to optimized interleaved memory accesses that lead to better performances.

Homogeneous vs heterogeneous multicore processors

A multicore processor is composed of several cores or processing elements (PE), which can be all of
same type, building then a homogeneous platform, or of different types, building then a heterogeneous
platform. Heterogeneity can come from several features: the instruction-set architecure (ISA), custom
instructions in the cores, or dedicated hardware accelerators. Figure 5.4 shows such an example with
different co-processors based on another ISA than the ARM processor.

Examples of commercial platforms

A (multicore) processor needs to interact with the external world, additionnally to external memory,
through peripherals and IOs (Input/Output). A “platform” is a multicore processor with its surrounding
external connections.

Zynq platform
The Xilinx® ZynqTM-7000 Extensible Processing Platform (EPP) combines an industry-standard ARM
processor-based system with Xilinx 28nm programmable logic (FPGA) in a single device. The processor
boots first, prior to configuration of the programmable logic. This platforms offers the flexibility to system
and software architects and developers to design new solutions [2]. Figure 5.3 shows a schematic view
of the Zynq platform, with the hard-wired “Processing System” part, composed of the ARM processors,
peripherals, local buses, memory controllers, and the reconfigurable “Programmable Logic” part which is
essentially an FPGA. The FPGA can be configured to support custom hardware accelerators, or soft-core
processors. A soft-core is a processor that can be built from the reconfigurable resources of the FPGA.
They are usually configurable in several ways: hardware multiplier/divider, number of pipeline stages,
size of the cache, etc. A soft-core can also be extended by custom instructions. The Microblaze is the
proprietary soft-core from Xilinx. The NiosII is the proprietary soft-core for Intel FPGA (formerly Altera).
Since the thundering advent of RISC-V ISA, several open-source RISC-V based soft-cores are available
for an implementation on any FPGA device. The Zynq platform offers the ideal playground to prototype
some heterogeneous multicore processor platforms.
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such as the MPPA from Kalray

Kalray’s MPPA®

Multi-Purpose Processor Array (MPPA®) is an example of a homogeneous architecture, and implements
hierarchical computing resources featuring 18 NUMA nodes, 16 compute clusters and 2 IOs subsystems,
interconnected with a NoC. Each compute cluster consists of 16 VLIW cores and 2 MB of scratchpad-only
memory. The MPPA is a DMA-based manycore architecture. All computations are driven by DMA data
transfers over the NoC and the software runtime is in charge of configuring the DMA NoC interface.
Indeed the compute clusters can access the main memory (DDR) and the memory of other compute
clusters only through the NoC and explicitly by software, making the MPPA follow a weak memory
consistency model. Because of these features, programming efficiently the MPPA is challenging as
all communications have to be managed explicitly by the software, and thus written by the developer.
Figure 5.5 shows a schematic view of the MPPA.

This section briefly introduced multicore processors. In our contributions described later in this chapter,
we considered both heterogeneous and homogeneous platforms, bus-based and NoC-based architectures.

5.1.2 A warm-up on dataflow model of computation

From a general point of view, a model of computation (MoC) provides a theoretical and formalized
framework that defines how output data is produced from input data, including how data is processed,
stored, and communicated. Models of computation are very interesting and useful from a theoretical
point of view as they allow to formally proof some properties on a programme that respects the model,
independently of the implementation or the technology. Many models of computations exist, and
classifications have already been proposed [129]. The dataflow model of computation is such a class
where data flows through computational units. A usual way to represent a dataflow application is through
a graph, where nodes represent the computational units, called actors, and edges represent the connections
between the actors through unbounded (theoretically infinite) FIFO (First-In First-Out) buffers. Actors
exchange data samples, called tokens. When the required number of tokens is present as input, the actor
can execute, or fire, producing then some output tokens stored in the output buffer. The set of rules that
defines when an actor can fire is called firing rules. Note that in the formal model, only input tokens are
needed to fire an actor. On real devices, the buffers are bounded, and the space available in the output
buffer also becomes part of the firing rule in the implementation.

As a dataflow programme is usually in the form of a graph, a convenient way is to represent it graphically,
through a network of actors, like the example provided in figure 5.6. The figure shows a network of seven
actors, starting from actor 0 to actor 6, with a flow going from left to right. An actor may have any number
of input or output FIFOs. A dataflow application naturally expresses temporal and spatial parallelism of
an application, making this approach an ideal candidate for specifying parallel applications.

There exists many dataflow models of computation that can be classified into two main categories of
dataflow MoC: static and dynamic. This section puts the emphasize on three examples of MoC, that we
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Figure 5.6 – An example of a dataflow
application, presented through a network
of actors

Figure 5.7 – The DPN actor model

used for our experiments. The interested reader can refer to existing surveys for a comprehensive overview
of either static MoCs [136] or dynamic MoCs [85, 131].

Synchronous DataFlow (SDF)
The family of static dataflow MoCs can be characterized by the common feature of a constant rate in the
consumption and production of tokens, which offers interesting properties like determinism, decidability,
and compile-time optimizations. Synchronous DataFlow (SDF) [223] is certainly the most used and
studied static dataflow model. The Synchronous term relates to the fixed value of the rate of generation
and consumption of tokens, i.e., all the actors produce/consume a fixed number of tokens in the whole
graph. This model has significant advantages. First, high analyzability, which means it can be analysed at
compile time. Second, the determinism of the firing rules provides the opportunity to compute statically
the memory usage (size of the buffers), and optimally map and schedule the application [194]. However,
SDF, as a static model, cannot capture the dynamic behaviour of some applications, e.g. data-dependent
video coding and decoding.

Dataflow Process Network (DPN)
In contrast to static model, dynamic dataflow models are able to capture the behaviours of dynamic
applications. Lee et al. were pioneers in a theory of dataflow process network (DPN) [218]. DPN is
related to Kahn Process Networks (KPN) [225] but it can be used to model the most general form of
dataflow MoCs. In a KPN model, reading is a blocking operation. An absence of tokens forces the actor
to wait. The DPN model adds non-determinism to the KPN model, by allowing actors to test the presence
or absence of tokens in their input buffers. A DPN actor is thus never blocked. It fires, or not, an action
according to the number of tokens in its input buffers.

Figure 5.7 illustrates a network of actors that follows DPN semantics, and zooms inside an actor
showing that it can implement several actions, and can have an internal state. At runtime, according to
the number of tokens in the input FIFOs, the internal state, or even priorities between actions, one of the
actions is fired. With such a model, it is impossible to know the production and consumption rate of actors
at compile time since each actor may have a set of actions, each having its own set of firing rules, and can
be fired if one of them is satisfied.

Parameterized and Interfaced Synchronous Dataflow (PiSDF)
In our work, we also used the PiSDF MoC [134], a reconfigurable dataflow MoC whose semantics is
depicted in Figure 5.8. Reconfiguration in the PiSDF MoC is based on parameters, which are nodes of the
graph associated to rate configuration parameters. These production and consumption rates of actors can
be specified with expressions depending on these parameters. Following PiSDF execution rules [134],
an actor may trigger a reconfiguration of the graph topology and intrinsic parallelism by setting a new
parameter value at runtime.

Figure 5.8 depicts the graphical elements of the PiSDF semantics and gives an example of a graph
implementing a video filtering algorithm. At each iteration of the graph, which corresponds to the
processing of a new frame, the SetNbSlice actor triggers a reconfiguration of the data rates by assigning
a new value to parameter N. Reconfigurations enable a dynamic variation of the number of parallel
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executions of the Sobel, Dilation and Erosion actors.

Dataflow frameworks
A dataflow framework provides a full environnement to specify, program, compile, synthesis software
or hardware, and sometimes functionally simulate a dataflow application by gathering the set of tools,
compilers, editors and methodologies. There exists numerous frameworks that are not listed here. Only
the two frameworks used in the context of our work are presented.

Open RVC-CAL Compiler (ORCC)
The Moving Picture Experts Group (MPEG) has introduced the Reconfigurable Video Coding framework
(RVC) [158], which offers reconfiguration, reusability and platform independent dataflow models. An RVC
codec is described by using a domain-specific language, called CAL Actor Language (CAL) [200]. ORCC
is an open-source toolkit dedicated to develop RVC-CAL applications [5, 177]. ORCC is a complete
Eclipse based Integrated Development Environment, which aims at providing a compiler infrastructure
to allow software/hardware code to be generated from dataflow descriptions. The compiler is able to
translate RVC-CAL applications into an equivalent description not only in software but also in hardware
languages for various platforms (FPGA, DSP, GPP, etc). In consequence, there are numerous back-ends
in ORCC that target different languages (C, C++, LLVM, VHDL, Verilog, etc.). In our work, we mainly
used the C backend, which produces an application described in portable ANSI C (Windows, Linux, Mac)
like Pthreads with multi-core ability.

Parallel and Real-time Embedded Executives Scheduling Method (PREESM)
The Parallel and Real-time Embedded Executives Scheduling Method (Preesm) is a rapid prototyping
framework that provides methods to study the deployment of SDF, IBSDF, and PiSDF applications onto
multicore processors. Preesm is a set of open-source plugins for the Eclipse Integrated Development
Environment (IDE) [117, 124]. In Preesm, the code of the actors is directly written in C language. The
framework provides the graphical user interface to define the network of actors. Like ORCC, Preesm
provides several back-ends for different target architectures (x86, TI Keystone). The C backend produces
an application described in portable ANSI C (Windows, Linux, Mac) like Pthreads with multi-core ability.

SPIDER Runtime
SPIDER was originally introduced in [120] as a runtime manager for the execution of PiSDF graphs on
heterogeneous MPSoC. The internal structure is built on two types of processes, each responsible for
managing the cores which they are mapped on, and adopting a master/slaves model. The GRT (Global
RunTime) is the master of the system: it manages the PiSDF graph topology and takes mapping and
scheduling decisions. It is usually implemented over a general purpose core. The GRT can also process
actors. The LRT (Local RunTime) are lightweight slave processes that execute actors. LRT can be
implemented over heterogeneous types of PE: general purpose or specialized processors, accelerators.

SPIDER executes the following steps to run an actor. First, the GRT schedules an actor on a PE of the
architecture, and sends the execution order through the dedicated job queue of the LRT of this PE. A
job is a message that embeds all data required to execute one instance of an actor: a job ID, location of
actor data and code, and which are the preceding actors in graph execution. When an LRT starts an actor
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execution, it waits for data tokens to be available in the input FIFO specified in the job message, among
a pool of data FIFO. On actor completion, data tokens are written in output FIFO, and the LRT sends
new parameter values, if any, and execution traces back to the GRT for reconfiguration, monitoring and
debugging purposes. Each LRT is associated with a job counter that stores the integer job ID of the last
executed job. As the job IDs increase monotonically both with scheduling order and data dependencies
between jobs, these job counters can be used for synchronization purposes between LRT, to check whether
an LRT already executed a given job.

Open-source implementations of the SPIDER runtime have been proposed for general purpose x86
architectures, Texas Instruments’ Keystone digital signal processor architectures, and Xilinx’s Zynq
heterogeneous platforms [120].

This section briefly introduced the dataflow model of computation, which is used as the way to specify the
applications we consider in the rest of this chapter. We used three models of computation: SDF, PiSDF,
and DPN.

5.2 The mapping problem
Given a multicore processor and a dataflow application presented in previous sections, the main contribu-
tion presented in this chapter is about how to map the application on the target platform.

How to map a dataflow application on a multicore processor?
Mapping dataflow applications on a multicore processor

Basically, mapping a task-based parallel application on a multicore processor amounts to placing the
tasks on the processors, such that a given cost function is optimized. The mapping problem can be
formalized as a graph partitioning problem, where the partitions are the processors, and the tasks the
nodes to be placed, and as such is an NP-complete problem [220]. The edge-cut, the number of links
between two partitions, can model the communication between the processors. Existing methods on graph
partitioning from the literature can be used, such as the ones implemented in the graph partitioning tool
METIS [4].

METIS [4] is a well-known graph partitioning tool, developed at the University of Minnesota
and distributed open source. The algorithms implemented in METIS are based on the recursive-
bisection, multilevel k-way, and multi-constraint partitioning schemes [214]. This tool quickly
produces high quality partitions for a wide variety of irregular graphs [213]. Since METIS
supports multi-constraint partitioning and allows for target partition weights, it can be adapted to
compute partitions that balance the computations on heterogeneous architectures. Furthermore,
the partitioning objective in METIS is to minimize the edge-cut so the communications among
the processors are also minimized.

METIS - Graph partitioning tool

Some generalities about application mapping are given before a focus specifically on mapping dataflow
applications. A problem formulation is then given.

5.2.1 Generalities
The question of mapping parallel applications on multi or many-core architectures is a very wide problem,
with a large number of dimensions, including the programming model, the target architecture (homoge-
neous or heterogeneous, bus-based or NoC-based, etc.), and the optimization goal (throughput, execution
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Figure 5.9 – Illustration of the dataflow mapping problem

time, energy, etc.) [145]. The interested reader can refer to the paper gathering different mapping strategies
for NoC-based architectures [143]. Following the taxonomy proposed in [145], the mapping problem
can be solved based on two main strategies: design-time, and run-time. When solved at design-time, the
mapping is called static since it’s computed offline and does not change while the application runs. This
approach allows for exact methods to find an optimal solution [26, 57, 101], but suffers from a lack of
flexibility since it cannot capture the dynamic behaviour of some applications. Moreover, even in the
case of deterministic execution times of actors in a static context, the paper [30] interestingly shows the
difference between the optimal mapping obtained from a well-formalized problem and the real execution
trace, due to execution variabilities coming from the hardware.

The dynamic workload should be handled using run-time techniques. The run-time mapping strategies
can themselves be divided into two categories: on-the-fly mapping, or hybrid mapping. On-the-fly
mapping techniques are application- and platform-agnostic and solve the problem online. Very simple and
efficient heuristics should be used to shorten the response time. For NoC-based MPSoCs, various fast
heuristics targeting the reduction of communications under constraints have been already proposed [118,
170, 174]. These approaches consider one task per core. Allowing multiple tasks on one core is considered
in [107]. Heuristics are fast but can be far from optimal solutions, so hybrid approaches have been
introduced. They are based on pre-computed optimal solutions for a set of cases. The job is split into two
phases: (1) at design-time, a set of solutions is computed, and (2) one solution is selected at run-time. A
wide variety of approaches can then be cited: based on traces in [104], on priority in [168], on scenario
in [141], on previously identified design points in [146], or on WCET and scheduling in [97]. The
proposed real-time mapping reconfiguration method in [75] requires to suspend the currently running
application and the manager remaps the tasks at run-time according to scenarios previously defined at
design-time based on the evaluation of multiple mappings, optimizing for their resource requirements
and power consumption. Finally, a last approach can fall into the family of hybrid mappings, which
considers to recompute (partially) the mapping problem at run-time. This is called run-time remapping.
The work presented in this chapter presents two flavours of such an approach for dataflow applications.
Section 5.4.1 presents a runtime manager to map reconfigurable dataflow application (PiSDF) on the
MPPA. Section 5.4.2 presents a move-based algorithm to map a dynamic dataflow application (DPN) on a
NoC-based heterogeneous many-core platform.

5.2.2 Focus on the dataflow model of computation
Figure 5.9 illustrates the dataflow mapping problem, with a network of seven actors to be mapped on a
three-core processor with a shared memory. In the figure, Actor 0 is mapped on P0, and actor 2 is mapped
on P1. The question is where to place actor 3 (and the other actors)? In the figure, all FIFOs go in the
shared memory.

This section presents the existing methods for mapping dataflow applications. In [147], the mapping is
modeled as a graph partitioning problem, and the problem is solved at run-time by METIS tool, based on
profiling information obtained by a first run. Though the migration cost of the actors is not taken into
account, the results are promising and could be improved if the mapping does not change completely at
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Table 5.1 – Various approaches for mapping dataflow applications. IPC: Inter Processor Communication

Reference Year MoC Platform Communication Mapping

Stuijk et al. [195] 2006 SDF Fixed Homogeneous N/A Static
Singh et al. [146] 2013 SDF Generic Heterogeneous NoC Hybrid
Lin et al. [155] 2012 SDF Generic Heterogeneous IPC Hybrid
Lee et al. [138] 2013 SDF Generic Homogeneous NoC Hybrid+R
Schor et al. [156] 2012 KPN Fixed Homogeneous NoC Hybrid
Castrillon et al. [149] 2012 KPN Fixed Heterogeneous Yes N/A
Castrillon et al. [132] 2013 KPN Generic Heterogeneous Yes Hybrid
Quan et al. [112] 2015 KPN Generic Heterogeneous Constant Hybrid+R
Quan et al. [141] 2013 KPN Generic Homogeneous Constant Hybrid
Stuijk et al. [167] 2011 SADF Fixed Heterogeneous N/A N/A
Yviquel et al. [147] 2013 DPN Generic Homogeneous Constant Hybrid
Our work [93, 122] 2015 DPN Generic Heterogeneous Yes Hybrid+R
Our work [14] 2022 DPN Fixed Heterogeneous NoC Hybrid+R
Our work [78] 2018 PiSDF Fixed Homogeneous NoC On-the-fly

each iteration. Some work proposed to take into account the communication cost between actors. In [155],
additional actors, namely send and receive, are bound on the buses in addition to original computation
actors that are bound on processors. The approach relies on an ILP formulation. Our goal is to embed the
application to be typically executed by an embedded processor and the solving time is not compatible
with these constraints. In [146, 155], the delay for a token to be transmitted is constant.

In [112], the application is specified with KPN (Kahn Process Network) and the target architecture
is a shared-memory based MPSoC, with also a model of the communication channel (bus or NoC).
The approach proposes to rely on three main steps: the two usual design-time preparation and run-time
mapping steps plus a new customization step. The design time step computes a set of candidates and
fills a database. The run-time mapping initialization derives from the candidates a new initial mapping
for the given workload. Finally, the run-time customization step incorporates a Scenario-based run-time
Task Mapping (STM) algorithm that is applied to find new mapping of tasks when the system detects that
an objective is unsatisfied. It first detects the so-called critical task and then identifies why it misses its
objectives: either poor locality or load imbalance. In case of poor locality, an algorithm that considers the
communication between tasks is used to find a new mapping. In case of load imbalance, a load balancing
strategy based on computational demands of the tasks is used. This step produces a new mapping that
may move several tasks, which leads to a (re-)mapping overhead.

Table 5.1 lists the approaches reported in literature about the mapping of dataflow applications over
different kinds of platforms. The approaches consider either static models (SDF), KPN or scenario
aware dataflow (SADF) applications. The table reports the kind of platform. We call “fixed” platforms
when the algorithms embed some specific features of the platform and make them tailored to it. On
the contrary, a “generic” solution usually relies on an architectural model or an implicit simple model.
A homogeneous platform is composed of processing elements of exactly the same kind, meaning that
all actors run equally on each of the processing elements. A heterogeneous platform contains specific
hardware or custom extensions which accelerates the execution of some actors. The “communication”
column shows the approaches that consider communication cost into account. Some works assume an
NoC, others a constant communication time. The last column shows the mapping category: static, hybrid,
or hybrid with remapping (Hybrid+R).

How to map at runtime a dataflow application on a multicore processor?
Mapping dataflow applications on a multicore processor
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5.2.3 Problem formulation
Solving the problem of mapping dataflow actors on a multicore processor relies on two models: (1) the
application model, (2) the architecture model. Other constraints or parameters can complete the problem
formulation.

The application model
In the context of dataflow application, the application model is clearly formalized in the framework of the
model of computation. The dataflow application holds lots of interesting information like the number of
actors, the number of FIFOs, the size of the tokens, the number of tokens in the case of a static model,
etc., along with the explicit parallelism.

The architecture model
In its simplest form, an architecture model can be reduced to just a number of processors sharing a single
and shared memory. In PREESM, the system level architectural model (S-LAM) is made available to the
developers to specify their target architecture [180].

Complementary constraints or parameters
The complementary constraints and parameters that are useful when solving the mapping problem include
the execution time of the actors, the code size, the memory, profiling data, energy profile, etc. In PREESM,
the “scenario” model allows to specify the execution time for each actor, to force or forbid some bindings,
to add an energy profile.

Mapping problem definition

Given an application specified in known dataflow model of computation, and a multicore processor,
place the actors on computational resources and the FIFOs into memory resources, such that the

application executes as fast as possible or respects some quality of service (e.g. throughput).

Mapping problem definition

Two main contributions are now presented in this chapter. The first one concerns model-based designs
and mapping of dataflow applications. The second one concerns algorithms for runtime mapping of
dataflow applications.

5.3 Model-based design and mapping of dataflow applications

This section presents our contribution in methodologies and tools for mapping dataflow applications.
Methodologies and tools are needed in all steps of the application design and the mapping process.
Model-based approaches allows to raise the level of abstraction to the designer to ease the development
and improve the software productivity. We used model-driven engineering techniques to develop software
tools and frameworks. We also used architectural models to abstract some hardware features of our target
platforms. These two usages are now described.

5.3.1 Model-based design of dataflow applications
In our work, and for the experiments, we used several frameworks, all based on the Eclipse Modeling
Framework (EMF) (see section 5.1.2). For dynamic dataflow applications, we used the Open RVC-CAL
Compiler (ORCC) framework [5]. For static and reconfigurable dataflow applications, we used PREESM
framework [124]1. When languages, tools, or frameworks are designed following a model-based approach,
the question of evolution and reusability of software components arises. Designers of domain specific

1Note that the CGRA compiler presented in the previous chapter relies on GAUT HLS tool, also developed with EMF
technologies.
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modeling languages (DSML) must provide all the tooling of these languages. In many cases, the features
to be developed already exist, but it applies to portions or variants of the DSML. One way to simplify
the implementation of these features is by reusing the existing functionalities. Reuse means that DSML
data must be adapted to be valid according to the functionality to be reused. If the adaptation is done and
the data are placed in the context of the functionality, it can be reused. The result produced by the tool
remains in the context of the tool and it must be adapted to be placed in the context of the DSML (reverse
migration). The thesis of Paola Vallejo [114] stood in this context, when reuse makes sense only if the
migration and the reverse migration are not very expensive. The main objective of the thesis is to provide
a mechanism to integrate the migration, the reuse and the reverse migration and apply them efficiently.
The main contribution is an approach that facilitates the reuse of existing functionalities by means of
model migrations. This approach facilitates the production of the tooling for a DSML. It allows reversible
migration between two DSMLs semantically close. The user is guided during the reuse process to quickly
provide the tooling of his DSML. The approach has been formalized and applied to ORCC, the RVC-CAL
dataflow framework.

As the migration round-trip has been formally defined [106], it is possible to state and prove formal
properties about the correctness of reuse, through a set of tests. For instance, we noticed that the existing
specific ORCC flattener did not pass all the tests because of groundless remaining object, namely ports
related to composite structures. The details about the full methodology and tools are available in [113].

5.3.2 Model-based mapping algorithm

Back in 2012, early works on actor mapping focused on computational features, while systematically
ignoring the communication cost between two actors that are mapped on two different processors. We
believed that solving the mapping problem under these assumptions ignores most of the execution time
which is due to data movement and memory issues. Solving the mapping problem at runtime while
considering memory issues and migration costs for heterogeneous platforms was the main topic of the
thesis of Dinh Thanh Ngo [108].

Communication-model based run-time algorithm

In our approach, we consider that the communication delay between two actors mapped on two different
processors depends on the traffic on the interconnect. Indeed, the latency of the bus increases with the
number of processors connected to it [193], but we also estimate the delay for data to be transmitted. It is
likely that this delay increases with the traffic. This is typically observed in NoC [135], where the latency
increases with the injection rate.

In our approach, the communication model gives the relationship between use-rate and latency since the
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use-rate can be estimated at run-time according to mapping decisions or estimates. We propose a generic
and parametric communication model as shown in figure 5.10.

The aim is to have a unique model that can fit with different communication
standards, which are supported in the platform.

A model is based on two linear functions y1 and y2, the intersection between the two curves correspond
to the saturation threshold (UT ). These functions can express the communications of a NoC, i.e. the red
curve in Fig. 5.10, or a bus, i.e. the green line where y1 = y2. In practice the parameters of y1 and y2 can
be adapted online according to the monitored data as depicted in figure. 5.11.

Figure 5.11 presents an overview of our mapping methodology and flow. It relies on the information
from the application model, architecture model, and profiling data. The goal is to find in a (very) short
time a mapping solution, that can be refined while the application is running based on the updated profiling
data. The algorithm follows three main steps that are now described :

1. Initialization phase: a processor budget is first computed to coarsely bound the execution time
allocated to each processor (to avoid the solution where all the actors are mapped on the same
processor) for a theoretically balanced solution when communication cost is not considered.

2. Computation phase: with the aim to obtain a good balance between the processors, we introduce a
factor α (0 < α 6 1), which represents a ratio of the processor budget. The actors are sorted with
a fast sorting algorithm (a bubble sort in the current version) in a descending order based on the
value of their total computation cost. Then, for each actor from the list, the algorithm selects the
best processor according to the minimum execution time, until the processing use of all processors
is greater than the allowed budget defined by α .

3. Communication phase: this step of the algorithm deals with the remaining actors. These are
now sorted according to their amount of incoming and outgoing data. The idea is to take the
communication cost into account in this phase. Hence, the algorithm takes the first actor in the
second sorting list and considers all the connections with other actors in the network. If this actor
and its adjacent actors are mapped on the same processor, the communication time is zero. In order
to deal with unknown information when we estimate the use-rate of the bus (% usage of available
bandwidth), we introduce a factor β that represents the ratio of remaining data transfers associated
to unmapped actors that will use the communication media (e.g. bus). Then the latency is estimated
with the communication model (Fig. 5.10) and the algorithm makes a decision of mapping. This
procedure is applied to all the remaining actors.

Need for Speed: Payback
The algorithm was implemented for Xilinx Zynq-7000 and first simulated through the Cadence Virtual
System Platform (VSP) [7]. VSP allows to virtually design a functional platform. The algorithm has been
experimented for synthetic graphs, and for two real-life video decoding applications, MPEG4 Part 2 (or
MPEG4-SP Simple Profile), and HEVC (High Efficiency Video Coding). These applications, coming
from the ORCC application repository, are specified following the DPN model with the ORCC [5] tool as
in [147]. We used the C back-end for software synthesis. In order to evaluate our heuristic approach more
thoroughly, we make the comparison with METIS tool [4] both in terms of throughput and in terms of
solving time. Only the results on the video decoders for one video sequence each are presented here. The
full set of results is available in [122].

Table 5.2 describes the properties of MPEG-4 and HEVC, as well as the number of actors and FIFO
channels. Options in the tool can allow for generating additional code for intrusive profiling in order to
perform the design-time profiling step presented in figure 5.11. For the profiling, we specify the size of the
FIFO channels used for communication between 512 and 8192 bytes. We introduce some usual hardware
accelerators that can provide significant speed-up when associated with Microblaze (MB) softcore on
Xilinx FPGAs. Our objective is to test the flexibility and efficiency of our mapping algorithm for different
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Table 5.2 – Properties of different tested MPEG video decoders

Decoder Profile YUV #Actors #FIFOs

MPEG-4 Part 2 SP yes 41 104
HEVC/ H.265 Main no 27 185

Table 5.3 – Accelerators used in different platforms

Platform MB1 MB2 MB3 MB4 MB5 MB6 MB7

7.1 Merger IDCT Parser Inter IQ+IAP Add IDCT
7.2 IQ+IAP IDCT Parser Inter IDCT Merger IDCT

7.3 Parser xIT Intra Inter Merger DPB xIT
7.4 Merger xIT Intra Inter xIT Parser xIT

heterogeneous architectures corresponding to different possible terminals, so we consider in this example
four different platforms based on 1 ARM and 7 MB processors. By using S-LAM modelling, we specify
4 different heterogeneous platforms detailed in Table 5.3.

Table 5.4 shows the results obtained by our algorithm called GB4M2 compared with METIS partitioning
tool, on the average throughput obtained for the videos and the solving time needed by the mapping
algorithms.

The results show that our algorithm performs similarly or better regarding
the throughput, for a significantly better solving time, offering thus a better

trade-off between performance (throughput) of the application and the
solving time.

Need for Speed: Shift
The runtime mapping algorithm has also been tested on a hardware prototype. Figure 5.12 shows a
bus-based heterogeneous MPSoC that has been implemented in the Zynq platform [109, 123]. The
cluster with the ARM processor is a hard-core, while the co-processor clusters are based on Microblaze
soft-core. Some performance monitors (PMs) and timers are added to monitor the running application.
The microblaze processors have local memories (LM) to store the instructions and temporary data. The
clusters share an on-chip memory built on the memory resources of the FPGA. The ARM processor is
used as the Master PE, while two clusters of 8 Microblazes each are synthesized to play the role of slaves.
On the PS zone, a DDR memory is split into two sections. The first 512Mb are private to the ARM and
the last 512Mb are accessible to the Microblazes. On the FPGA, one Microblaze (MB0) is connected
to 512Kb of private memory through the Local Memory Bus (LMB). The other slaves are connected to
16Kb. In addition, 4Kb of BRAM are shared between each Microblaze and the ARM. Also, 128Kb of
BRAM are accessible to all the slaves. The accesses to shared memories are done via AXI Interconnect
elements which are probed by Performance Monitors (PM).

Table 5.4 – Results with MPEG4-SP and HEVC mapped on 8 processors in the heterogeneous platform

Video CODEC Input video Platform Throughput Solving time
GB4M2 METIS Speed-up GB4M2 METIS Speed-up

MPEG4 Hit
7.1 49.26 fps 46.70 fps 1.05x 4.25 ms 190 ms 44.66x
7.2 48.00 fps 46.52 fps 1.03x 3.63 ms 190 ms 52.34x

HEVC Kristen
7.3 10.38 fps 6.84 fps 1.52x 5.33 ms 130 ms 24.39x
7.4 9.71 fps 9.78 fps 0.99x 4.99 ms 120 ms 24.05x
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Figure 5.12 – A cluster-based architecture for the Zynq platform. MB: MicroBlaze, LM: Local Memory,
PM: Performance Monitor.

Runtime kernel
The runtime is responsible for operating the system. It provides routines to initialise the system’s
components (i.e. timer, performance monitors) and to establish the communications between the Master
and the Slaves. In our runtime, Master - Slaves communications are done using messages. Messages
travel through software FIFOs that are implemented into the 4Kb shared memories. The runtime defines
the messages that can be exchanged as well as the routines to interface with the control FIFOs (e.g. send a
message, send data, read data, etc). Other functionalities are specific to the role of the processor.

Results
Table 5.5 shows the hardware resources used when implementing the prototype on a Zynq ZC706, which
holds a XC7Z045 with 350 000 Logic Cells, 218 600 LUTs, 2 180 Ko of BRAM, and 900 DSP Blocks.
This Zynq target can support the 16 microblaze processors and there is still room for dedicated hardware
accelerators. The application tested was the MPEG4-SP decoder, with several video sequences. Two
strategies for the runtime profiling were tested. One with the average time over the full video sequence
(AT), and another one with a sliding window (SWT). Data is collected every ten frames. Figures 5.13
and 5.14 show the results for Foreman video sequence. The curves show the evolution in throughput
for the two profiling strategies, and when no remapping is applied, compared to our runtime mapping
algorithm.

We observe that remapping systematically improves the performances.

Considering the observation time, the results on Foreman tend to show that the sliding window strategy
offers an interesting options. This trend is not confirmed by the other videos tested (not shown in this
chapter) where the average time strategy performs slightly better.

We measured the execution time of the algorithm running on the ARM processor. The algorithm is run
every 10 frames. Table 5.6 gives the average execution time. Recall that the complexity of the algorithm
(thus the execution time) depends on the number of actors mapped on the processor to relief, and on
the number of processors. We wanted to know if the algorithm always completes in a reasonable time.
Table 5.6 also gives the variance of the execution time, showing that it is very low. The results show that
this kind of algorithm is suited for embedded systems with soft real-time constraints. More details and
results are available in [109, 123].

Need for runtime adaptivity
Based on the profiling information, we observed the variations of the workloads of each actor. The
workload of an actor is defined as the ratio of its computation time over a given time window. Table 5.7
and 5.8 show the variations (as a percentage) between two different input video sequences for MPEG-4
decoder and HEVC decoder respectively. These tables just pick up a few actors in the decoder, which



5.3 Model-based design and mapping of dataflow applications 89

Figure 5.13 – Comparison of throughout for different map-
ping strategies for decoding Foreman sequence with MPEG4-
SP

Figure 5.14 – Computation and commu-
nication time variations while decoding
Foreman video sequence

Table 5.5 – Resources used on the Zynq

Resource Utilisation %

Slices LUTs + Registers 316 618 90
BRAM 391 71
DSP 105 11
Cortex A9 1 100
DDR 1Go 1 100

Table 5.6 – Execution time of the mapping algo-
rithm and variance measured for different video
sequences.

Sequence Time (ms) Variance

Foreman 43,54 0,001
Stefan 54,06 0,004
Coastguard 54,01 0,004

present the highest variations of the workloads. The results reveal up to 50% of variations for the same
actor (though the IDCT actor is a purely static actor), showing that some actors are unequally requested
according to the video sequence.

Besides, we also compared the resulting mapping solutions for different video sequences, and for the
same target platform. The results show that the binding of some actors on the processors differs. This
is true both for MPEG-4 and HEVC decoders. For MPEG4-SP, about 10% of the actors are mapped
differently between Foreman and Hit videos. With HEVC decoder, the difference in actor mapping is
33.33% between Kristen and Sara and Four People videos, and 25.93% between Four People and Johnny
videos. This difference can be explained from the dynamicity of some actors both in MPEG4-SP and
HEVC decoders.

These results show that the same mapping shall not be used for all video
sequences of a given decoder on a given platform.

Runtime adaptivity is needed to find the good solution of a three involved members problem (application,
architecture, and profiling).

Table 5.7 – Example of variations in terms of
workload for two different MPEG4-SP video
sequences

Actor % difference

decoder_texture_U_idct2d 32.73
decoder_texture_V_IQ 25.29
decoder_texture_V_idct2d 57.94

Table 5.8 – Example of variations in terms of
workload for two different HEVC video se-
quences

Actor % difference

HevcDecoder_xIT 11.89
HevcDecoder_InterPred_Inter_y 16.48
HevcDecoder_SAOFilter_Sao_U 10.32
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5.4 Runtime mapping of dataflow applications on NoC-based multiprocessor archi-
tectures

This section now presents our contribution in runtime algorithms for mapping dataflow applications.
Specifically, in the two following works, we consider NoC-based many-core platforms, and two different
models of computation.

5.4.1 SPIDER on MPPA®

Recall that SPIDER was originally implemented on shared-memory based MPSoC [120]. The objective
of this work was to demonstrate the feasibility and show the potential and flexibility of implementing a
runtime for reconfigurable dataflow on a manycore architecture. This was the main task assigned to Hugo
Miomandre during his internship, done in the context of a young researcher project called MORDRED, in
collaboration with Karol Desnos from INSA Rennes.

Porting SPIDER on the MPPA®

Three main actions were needed to be performed in order to adapt the original code of SPIDER to run on
the MPPA®:

1. Software explicit NoC communications
2. Runtime scheduling for a large number of processing elements
3. Distributed scratchpad memory allocation

The three actions are synthesized here, and the full details are available in [78].

Software explicit NoC communications

SPIDER was originally designed for shared memory MPSoC. Shared memory models are easy to use
thanks to the global address space and the provided hardware synchronization mechanisms (atomics). As
this is not the case for MPPA®, a new synchronization scheme was needed. We opted for a distributed
synchronization scheme which limits the traffic overhead over the NoC. The proposed algorithm builds on
the observer design pattern, where the observers are the LRT waiting for completion of a preceding actor,
and the notifier is the GRT executing this actor.

Runtime scheduling for a large number of processing elements

The original scheduler implemented in SPIDER is a LIST scheduling heuristic. The issue with the LIST
scheduler is that its complexity becomes prohibitively large when targeting a processor with hundreds of
PE. Indeed, its complexity is given by O(A.log(A)+P.(A+E)), where A and E are the number of actors
and dependencies in the DAG, and P is the number of PE. Manycore architectures implement hundreds of
PE and require a lot of application parallelism. Therefore, the number of DAG actors to be scheduled
in parallel increases roughly linearly with the number of PE. Consequently, the complexity of the LIST
scheduling tends to increase quadratically with the number of PE, making it a bottleneck for runtime
scheduling. We replaced the original LIST scheduler with a less complex scheduling algorithm based on a
specialized round robin heuristic.

Distributed scratchpad memory allocation

On a scratchpad memory based clustered manycore architecture like MPPA®, the memory in the cluster
needs to be allocated by the software. We implemented a thread-safe scratchpad memory allocator
for managing the memory allocation in the scratchpad memory of a clustered manycore architecture.
This allocation procedure ensures that all job scheduled on an LRT running in a cluster will succeed in
allocating the required memory, as long as their required memory does not exceed the maximum capacity
of the cluster memory space. When all firing conditions of a mapped actor are fulfilled, the LRT attempts
to allocate memory using this algorithm.
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Figure 5.15 – Performance of the image filtering application for a 4K video on MPPA®

Results

Figure 5.15 shows the performance obtained when executing the image filtering PiSDF graph (Figure 5.8)
on the MPPA® for 4K images. Application performance, expressed as the number of processed fps
(frames per second), is plotted for a varying number of active clusters, and a varying number of active
PE per cluster. The sequential performance on a single PE is 0.13 fps. When using the 256 PE of the
compute clusters, a throughput of 2.81 fps is reached, which represents a speed-up of 22 compared to
the sequential execution. During the processing of each frame (0.36s), only 8% of this latency is due
exclusively to GRT computations. Hence, actor computations and NoC communications are responsible
for 92% of the latency. In [89], the authors evaluate the performance of a static version of the PiSDF
graph from Figure 5.8. In the static version, N is fixed and all mapping and scheduling are done at
compile time for VGA videos (640x480). The top performance obtained for the static execution is
217 fps. For an identical video resolution, the reconfigurable PiSDF graph executed with SPIDER peaks at
47 fps. In addition to the SPIDER runtime overhead, the difference between the performance of the static
and reconfigurable executions is mostly due to the lack of memory optimization in the reconfigurable
implementation. In the reconfigurable version, many memcpy calls are issued to create the image slices in
the Split actor and to merge processed slices into a contiguous buffer before Display. Thanks to compile
time optimizations, these memcpy calls are replaced with pointer operations in the static version reducing
the memory bandwidth drastically by a factor of 3. When using a standard thread-based implementation
of SPIDER on an Intel Xeon E5-1650 with 6 hyper-threaded x86 cores clocked at 3.60GHz, the processing
of a 4K video with the same PiSDF graph reaches 11.40 fps, using 95% of all CPU time. Although the
performance on the Xeon processor is almost 4 times better, this processor dissipates on average 10 times
more power than the MPPA®. Hence, the execution on the MPPA® is approximately 2.5 more energy
efficient than on the Xeon.

5.4.2 Move-based mapping

This work stands in the context of ANR project COMPA, and was realised by Mostafa Rizk during his
post-doc.

We observed in section 5.3.2 the variations between two video sequences for a given video decoder. In
this section, we study this variation inside one video sequence. Indeed, according to the scene (fixed plan,
moving background, object tracking, etc.), the needs from the decoder might change.

We thus proposed a remapping algorithm, an algorithm which starting point
is a currently mapped and running application, and goal is to seamlessly

refine the current mapping to improve the performances.
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Figure 5.16 – The structure of the used NoC-based architecture
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Figure 5.17 – Example on path declara-
tion in the NoC

We believe that moving from one mapping to another comes with a migration cost, such that the
overhead penalizes the expected gains. We proposed such an algorithm that takes into account the
migration cost and allows only one actor to move at a time. The move-based algorithm has been studied
with an analytical simulation and model for the interconnect [93]. This section presents a summary of our
work on our move-based algorithm on a NoC-based platform with accurate simulation at NoC level. The
full paper is available as appendix B.

• take into account the migration cost
• only one actor can move at a time

Runtime remapping of dataflow applications

NoC-based platform

The target architecture is a heterogeneous Multi-Processor System on Chip (HMPSoC) containing several
different PEs and distributed shared memories connected through a Network-on-Chip (NoC). Fig. 5.16
presents the structure of the adopted NoC-based architecture. The target architecture is a 4×4 mesh-based
NoC with 32-bit links composed of 15 memory modules, 12 PEs, and a processing element that acts as
a manager (MGR). The PEs and memory modules communicate through the network using a network
interface (NI). We consider a simple NoC model that employs the wormhole packet switching mode, the
deterministic XY routing algorithm, and a flow control policy without virtual channels. The implemented
routers have one buffer of 3 flits per input port and use distributed arbitration logic (one arbiter per port).
The back-end part of the NI is typical and includes a packet maker/un-maker, which are used to assemble
and disassemble the packets, and a priority manager to synchronize packet transmission and reception.

In this work, it is assumed that PE1 imports the incoming streamed data from an Input buffer and PE12
outputs the processed data, as illustrated in figure 5.16. It is assumed that any actor can be mapped on
any PE. The used PEs can all work in parallel according to dataflow firing rules. However, some PEs are
enhanced by hardware accelerators dedicated to certain functionalities in order to perform them more
efficiently, and the PEs run with different frequencies. Table 5.10 shows the list of accelerators adopted in
the simulation platform, and table 5.9 shows the frequencies for the PEs, relatively to the NoC operating
frequency f . The shared memories are distributed in memory blocks which have a unique NI. From an
NoC perspective, the novelty is the introduction of new command packets used as instructions to manage
FIFO accesses, broadcast mapping information, collect monitoring data, and the transfer of binary codes.
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Table 5.9 – Processing element operating
frequency

PE ID Operating Frequency

PE1, PE12, MGR f
PE2, PE6, PE10 2 f
PE3, PE7, PE11 3 f

PE4, PE8 4 f
PE5, PE9 5 f

Table 5.10 – hardware accelerators used in the simu-
lation platform

PE ID Accelerated Function Acceleration Ratio

PE3 & PE6 IDCT 1/0.3
PE4 IQ + IAP 1/0.75

PE10 Add 1/0.57
PE11 Interpolation 1/0.4

The manager is a PE dedicated to the following five tasks: (1) map initially the actors on the available
PEs, (2) parse the feedback collected data from all modules (memories and PEs), (3) apply the run-time
remapping algorithm and selects the actor to be moved (if any), (4) notify the corresponding PEs about
the updated mapping and (5) manage the transferring of the binary code corresponding to the moved actor
from the shared memory into the cache of the gainer processor. As the number of PEs is smaller than
the number of actors, each PE is considered to run more than one actor. Hence, an actor scheduler is
required to manage the order of execution of actors. In this work, the well-known round-robin scheduling
technique has been adopted in all PEs. The actors are given the attempt to be executed in a circular order
without priority. The PE checks the firing rules of an actor and keeps executing it while it can. When no
action can be fired, the PE checks the rules for the next actor.

The platform integrates three types of memory modules:
1. Binary code memory module (BCM) which contains the binary code of the application
2. Mapping/Monitoring information memory module (MIM), which stores the mapping information

(what actor to execute), and the monitoring information, collected by the PEs during the execution
of the actors

3. Multi-FIFO memory module (MFM) which stores all the FIFOs of the application

Execution model

The simulator follows six steps to run the application:
1. Initial mapping
2. Monitoring actor execution
3. Collecting monitoring information
4. Estimating NoC communication time delay
5. Applying RR algorithm
6. Moving the actor to the gainer processor

The initial mapping step can be a random strategy or the exact method presented in [57]. FIFOs are
mapped randomly and are approximately equally distributed on all memory blocks. The manager then
informs the PEs, by means of dedicated packets not detailed here, to retrieve the mapping information
and start the execution. While running, each PE monitors the actors, in particular computation time,
communication time, and total number of tokens received to each input port. When the number of the
processed frames meets the observed window, each PE node generates its own monitoring information
packet and sends it to the MIM module, which centralizes the monitoring data for the manager. The next
three steps are now more detailed.

Estimating NoC communication time delay

We believe that not only the communication time over the NoC is important, but also an accurate
estimation of this time is needed. In the context of an NoC, with different paths between the different
communicating elements (PEs, memories), and the XY routing algorithm assumed, the links between the
routers might have varying workloads. In this work, two novel methods have been proposed to estimate



94 Chapter 5. Exploiting DLP and TLP with multicore processors

the communication time delay for transferring one token in the NoC. The first method is called the
average-path token delay and it is based on finding the average delay for transferring one token depending
on the path delays between all routers of the NoC. The second is called the average-link token delay and
considers the time-delay of the token according to the used physical links connecting the NoC components
while transferring the token.

Average-path token delay (APTD)

In this approach, a path is considered to be formed from the set of the interconnections between two
specific nodes. As an example, Fig. 5.17 illustrates in red the path P[PE1,MFM6] between processing
element PE1 to memory module MFM6. As the deterministic XY routing is assumed, the packets always
use the same path between the source node and the destination node. Recall that following the XY routing
strategy, the packets transferred from a processing element p to a memory module m do not follow the
same path used in transferring packets from the memory module m to the processing element p. Fig. 5.17
illustrates in red the followed path to transfer packets from PE1 to MFM6 and in yellow the followed path
to transfer packets from MFM6 to PE1. The APTD strategy considers the same average time for all tokens
through both paths (red or yellow).

Average-link token delay (ALTD)

A link is defined as the interconnection between two consecutive components of the NoC. A path is a
set of links. Because the same physical link is shared, an average path delay might hide a heterogeneous
workloads in each link. The ALTD strategy goes down to the link level, the communication time on the
path being the sum of the communication time of each link constituting the path.

Move-based Runtime Remapping (RR) algorithm

The move-based algorithm is inspired from the Fiduccia and Mattheyses algorithm (FM) [224], well
known for solving the balanced circuit bipartitioning problem. In the original algorithm, the algorithm
starts with an existing partitioning (usually randomly obtained), and tries to refine it by evaluating the
gain (or loss) obtained for each node placed in a partition when it is moved to the other partition. The one
with the maximum gain is chosen to move to the other partition, and the algorithm iterates until the moves
offer no more gain. We adapted the actor moves and gain concept to apply to our context.

The cost of remapping tries to balance between migration cost and
performance improvement.

For each observation window (NF frames), the manager executes at run-time the algorithm, which
is divided into two main steps. The first step identifies the PE with the highest workload. All actors
mapped on this PE are possible candidates for a move. Then, for each actor, the manager estimates
the total gain achieved if the actor is moved to another PE, by estimating the new workload for each
PE, including the computation time of course, but also the communication time (based on ALTD or
APTD). The second step sets a tradeoff between the migration cost and the predicted improvement of
the performance. The migration cost of an actor is the required time to transfer its binary code into the
local memory of the new hosting processing element. It depends on the size of the binary programme
required to be transferred and the communication-time delay in the network. Finally, the expected gain
is estimated for all mapping combinations by finding the difference between the estimated performance
gain and the estimated migration cost of the actor. The move that leads to the maximum gain is selected,
and the corresponding actor is decided to move. When there is no gain, no move is made. The complete
formalization of the problem and the detailed structures of the packets are available in appendix B.



5.4 Runtime mapping of dataflow applications on NoC-based MPSoC 95

Results
Experimental setup
The algorithm has been experimented for MPEG4 Part 2 (or MPEG4-SP Simple Profile) video decoder,
implemented with ORCC [5]. The adopted NoC-based architecture is implemented in an in-house NoC
simulator described in SystemC TLM model [205]. In order to accurately model the adopted application,
all involved actions are functionally simulated to generate the real data exchanged by actors during video
decoding. The SystemC model adopted in the simulation platform is cycle accurate at the level of the
NoC and the network interfaces. The timing of all corresponding action executions on PE is compensated
in the simulation according to the profiling data extracted while running the application on a reference
computer. Profiling data provides, for each involved action, the mean value of the number of cycles
required to execute it. In this work, profiling data has been extracted using on a desktop computer
(i7-2620M CPU@2.7 GHz and 8GB memory). We consider that the NoC operating frequency f is 500
MHz. The clock cycle in each PE is determined according to Table 5.9.

Comparison of different mapping strategies
In order to determine the relevancy of the devised algorithm, it is compared to the STM method introduced
in [112]. To achieve fair comparison, the STM method has been modeled and implemented on our devised
NoC-based architecture. We have also implemented the exact method presented in [57] for the initial
mapping, with two differences: we have used constraint programming instead of ILP, and the objective
function is the maximum period as it is our optimization goal. The workload used for the computation
time of the actors is based on the profiling of Foreman video. Simulations have been conducted while
running the MPEG4 decoder to process real-life videos. The observation window considered is 10 frames.

Fig. 5.18 presents the achieved throughput in terms of frames per second (FPS) when decoding Foreman
video (CIF format) for seven different mapping strategies:

1. No Remapping: initial random mapping kept all along the video sequence
2. Remapping STM : the method presented in [112]
3. No Remapping Optimal : initial mapping obtained from [57] kept all along the video sequence
4. Remapping MB ALTD : our move-based algorithm using ALTD starting from a random initial

mapping
5. Remapping MB APTD : our move-based algorithm using APTD starting from a random initial

mapping
6. Remapping MB ALTD Optimal : our move-based algorithm using ALTD starting from the optimal

solution
7. Remapping MB APTD Optimal : our move-based algorithm using APTD starting from the optimal

solution
Note that the “optimal” mapping corresponds to the best mapping found based on the profiling of

Foreman video after a time out of one hour (like the original paper), and the optimality is not proven. The
letter “M” shown on the curves represents when an actor move occurs. The results show that the MB
algorithm, starting from a random mapping (without significant initial delay), performs better that the
optimal with no remapping for Foreman video sequence in CIF format. As the optimality is searched for
the Foreman profile, we used the optimal mapping as a starting point for the MB algorithm, and the results
show that it further improves the throughput. We used the optimal mapping obtained for Foreman to
decode other video sequence. The figures are not shown here but are available in appendix B. As expected,
the mapping obtained for Foreman does not perform good for the Ice video sequence in 4CIF format and
Grandma video sequence in QCIF format. But surprisingly, it performs good for the Bus video in QCIF
format and Bus video in CIF format.

The results show once more that one does not fit all and runtime adaptivity
is needed to find the good solution of a three involved members problem

(application, architecture, and profiling).
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Figure 5.18 – Throughput in terms of FPS when decoding Foreman video sequence [1] using MB and
STM remapping algorithms

Table 5.11 – Improvement in throughput (fps) for different remapping techniques

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD STM

Foreman CIF 11.4% 5% 4.1%
Bus CIF 5.4% 5.4% −17.7%
Ice 4CIF 26.1% 2% −13.04%
Bus QCIF 9% 8% −20%
Grandma QCIF 14.91% 14.11% NA

Our move-based algorithm, restricting to move only one actor at a time if it is worth, offers the
appropriate adaptivity.

Table 5.11 summarizes the comparison of average FPS achieved when processing multitude video
sequencing while adopting different remapping techniques. The table shows that the MB algorithm
achieves the maximum average performance enhancements of 26% and 14.11% when adopting ALTD
and APTD respectively compared to the achieved throughput of processing the frames without remapping
unlike remapping using STM algorithm which achieves a maximum average enhancement of 4% (and
performs worse than no remappin on average). Our results show firstly that, as assumed, migration cost
affects the performances, so the mapping cannot be fully changed at once (like considered in the STM
approach). Secondly, the ALTD strategy performs generally better than the APTD strategy, showing that a
fine-grained monitoring of the traffic on the NoC leads to system-level better mapping decisions.

5.5 Summary
This chapter presented how to exploit DLP and TLP from dataflow applications on multicore processors.
The chapter started by reminding the background in multicore processors and dataflow models of compu-
tation. Then, the specific problem of mapping dataflow applications on these architectures was presented.
The review of existing methods highlighted that: (1) the communication cost between the actors was not
considered, (2) static methods are not adapted to dynamic workloads, which are becoming prevalent in
leading-edge applications like video codecs.

• take into account communication cost
• take into account dynamic workloads

Locks in mapping dataflow applications on a multicore processor
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Our work focused first on means to consider the communication cost by modeling the interconnect
and estimating the delay based on the traffic. Then we proposed a greedy heuristic to find at runtime a
first mapping solution. To refine the mapping while the application is running, we proposed a runtime
remapping algorithm that seamlessly improves the performances. The runtime techniques works thanks to
monitoring information.

• An analytical model for the interconnect
• Runtime monitoring of the hardware platform
• A runtime remapping algorithm
• A move-based algorithm to limit the migration cost

mapping dataflow applications on a multicore processor

We evaluated our algorithms through different simulators: Cadence virtual system platform, in-house
analytical simulator, in-house SystemC-based cycle accurate simulator for the NoC. We also designed a
hardware prototype on the Zynq platform. The SPIDER runtime was directly evaluated on the MPPA®

platform.

We proposed:
• Two algorithms to map dataflow applications on a multicore processor
. A greedy algorithm that finds a first mapping in a very short time
. A move-based runtime remapping algorithm that relies on the monitoring of the

platform to adapt the mapping to the workload
• A runtime manager for PiSDF applications on MPPA
• A demonstrator based on the Zynq platform

Contributions in mapping dataflow applications on a multicore processor

The contributions presented in this chapter shows the importance of communications weight between
tasks (actors), and their placement and migration during execution. With the emergence of new intercon-
nect technologies, like wireless presented in chapter 7 or optical, these contributions can feed the more
general field of interconnect-aware mapping.





6. Exploiting DLP and TLP: scalabil-

ity and synchronisation issues

Two main issues are identified in multicore processing: data access and synchronisa-
tion [222]. This chapter starts by reminding the current issues with scalability and syn-
chronisation in multicore processors. The chapter then presents our scalability study on
dataflow applications, followed by our concept of notifying memories, a synchronisation
mechanism initiated by the memory. The chapter presents also Subutai, our solution for
Pthread synchronisation on NoC-based many-core processors.

6.1 A warm-up on scalability and synchronisation

This chapter starts with a short introduction on one of the most essential part of any modern multicore
processor: the memory hierarchy. It completes the section on the memory system initiated in section 5.1.1
on p. 76.

Memory is a vital part of any digital system. It is used to store the programs and the data on which
these programs operate. Recall that the speed at which a program runs depends directly on the speed
at which instructions and data can be transferred between a processor and memory. The memory must
therefore be (very) fast, but ideally also (very) large (to store all the programs and the flow of data in
today’s data science context), and inexpensive. The impossible meeting between these three requirements
has led to proposing solutions based on a memory hierarchy by relying on various memory technologies.
Figure 6.2 shows such a hierarchy, usually presented in the form of a pyramid. On top of the pyramid
are the registers, that are fully part of the datapath of the processor. At the bottom of the pyramid lies
the massive storage, like hard disk/flash drives. In between, the main memory and the cache memory.
Each layer of the pyramid is built on different technologies (DRAM for the main memory, SRAM for
the cache), which speed and cost per bit increase as moving up the levels, while the capacity decreases.
The different technologies also explain why there are different chips. Cache memory, based on SRAM
technology which is compatible with CMOS, embedded as close as possible to the processor on the same
chip, is a key element of this hierarchy, giving the programmer the illusion of both fast and large memory.

99
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6.1.1 Caches and cache coherence
The cache memory exploits the principle of locality, both spatial and temporal. Spatial locality dictates
that if a data is used at a given time, then it is highly likely that the data stored next to it will be used soon.
An example is the pixels of an image. Time locality dictates that if a data is used at a given instant, it is
very likely to be used again soon. Time locality is, for example, especially adapted for a set of instructions
in a loop body.

In the context of an uniprocessor system, the cache increased the pace which a processor could access
the data to, and compensated a relatively slow, low-bandwidth, off-chip memory. In the context of
multicore processors, the pressure on the memory system is even higher, and the number of cache levels
has been increasing as the number of cores also increases. The problem arises that a data in the main
memory can have multiple copies simultaneously alive in the different caches. When the value of the
data changes, all the copies must be updated. The cache coherence is the mechanism which ensures that
all copies (spatially distributed) of a data have the same value. Since all the copies of a data spread out
throughout the chip cannot be updated instantly, the cache coherence is tightly linked to the memory
consistency model. The memory consistency is the mechanism which ensures that all copies of a data
follow the same sequence of values.

Caches, from a hardware point of view, and cache coherence protocols have been intensively studied the
last decades. This section is not going to detail the cache coherence protocols, the cache organisation and
policies. The feature to highlight is that cache coherent protocols lead to a high number of transactions
on the interconnect, along with energy consumption. As the number of cache memories increases, the
traffic also grows up to saturating the interconnect, not to talk about the complexity of the protocols. The
key message is the ambivalent role of the cache in multicore processor design. It is both the unavoidable
component to increase the performances and a major obstacle in the scalability of multicore design and
synchronisation of parallel applications.

6.1.2 Scalability
The scalability of a multicore architecture is the property to provide (at least) linearly increasing perfor-
mances as the number of cores grows. However, as the number of cores grows, the centralized memory
access becomes a bottleneck. Connecting the cores on the same bus is not likely to scale over eight
cores [154]. Scalability shall be considered at system-level, including the memory system and I/O.

The classical shortcut is to oppose a non-scalable bus-based architecture and a scalable NoC-based
architecture. But lots of hybrid organisations lie in between. For instance, the MPPA presented in
figure 5.5 on p. 78 shows a cluster-based architecture, where eight cores are interconnected with a bus in
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the cluster, and the clusters are interconnected through an NoC. An L1 cache is usually private and as
close as possible to the core, but a shared cache (at L2 or L3 level) could be logically shared but physically
centralized or distributed.

6.1.3 Synchronisation
Synchronisation mechanisms
Synchronization primitives are means provided to developers to guarantee data integrity when developing
parallel applications. The problem of synchronisation dates back long before multicore processors, in
the context of concurrent programming, when several processes running on the same computer were
competing for shared resources. The mutual exclusion problem is certainly one of the most classical
problems.

The problem of making sure that only one thread at a time can execute a particular block of
code [23].

Mutual exclusion problem

The standard way to solve the mutual exclusion problem is by using a lock, a structure that protects the
block of code (or a section). A critical section is the block of code where the mutual exclusion property
must be guaranteed. Only one thread can hold the lock. A thread is said to acquire the lock when it holds
it. The thread releases the lock when done. The question to answer then is what to do when the thread
cannot acquire the lock? There are only two options: 1) trying continuously until the threads eventually
acquires the lock, 2) suspending the thread (meaning freeing the core to do something else) and letting
it try again later. The first option is called spinning, or busy-waiting. The second is called blocking.
Both options have advantages and drawbacks. Spinning uselessly occupies the processor, but avoids an
expensive context-switching. This strategy is interesting if the lock is expected to be released in a short
time. Blocking is interesting if the lock delay is expected to be long. The thread frees the processor, but at
the cost of a context switching. Both techniques are important, and should be relevantly used according to
the context. The mutual exclusion problem involves two threads, and the lock is usually named a mutex.

The lock is the most basic synchronisation mechanism. Other mechanisms exist, like the semaphore
which is the generalisation of the mutex to n different threads. A semaphore has a capacity c and lets up
to c threads at the same time in the critical section. Another one is the barrier which forces all threads
to wait for each others at a given point in the programme. There are also monitors, queues, conditions,
transactional memories, which are not detailed here, but can be found in [23].

The hardware fundation of any synchronisation mechanism is an atomic memory operation (AMO),
which ensures that consecutive read and write operations at a given address are performed in a raw, without
any possibility of interruption or other operation in between, as an indivisible step. This operation is
defined in the ISA. The ISA is the hardware/software contract: as soon as the hardware implementation
respects the atomicity of the memory operation, then the software stack can safely build on. Intel,
AMD and SPARC architectures provide the Compare-And-Swap (CAS) instruction. Another hardware
synchronisation primitive is the pair load-linked and store-conditional (LL/SC) which is used in several
architectures like IBM PowerPC, MIPS, ARM, or Alpha. The RISC-V provides the “A” standard extension
for atomic instructions [65], relying on the Load-Reserved Store-Conditional (LR/SC) instruction1.

Synchronisation and caches
The understanding of synchronisation and caches is certainly one of the most complicated feature of a
shared-memory multicore processor. It implies a thorough understanding of the microarchitecture of
the processor, of the memory system including complex cache coherence protocols, and knowledge in
low-level software programming. This section is not going to explain in details this complex mechanism,

1which is the same principle as LL/SC
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void Actor1(void * input0, void * output3){

     //Reads from Actor 0 the input0

     receive(0, 1);

     //Compute

     output3 = process(input0);

     //Writes to Actor 3 the output3

     send(1, 3);

}
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(a) Theoretical example of a dataflow-based 

application and the cost function of actor 1.
(b) Real example of the Reinforc. 

Learning dataflow application. 

Figure 6.3 – Code snippet of actor synchronisa-
tion for an SDF application following a blocking
scheme
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Figure 6.4 – Lock-free synchronisation based on
the indexes of the reader and writer for a DPN
application

which actually shall be mentionned as plural: mechanisms, since there are several of them, working
functionally similarly, but very differently effectively. The interested reader can refer to reference books
in the domain to learn more [23, 144, 151]. Basically, on a cache-based architecture, spinning is expected
to perform interestingly [95]. Indeed, at the very first tentative to acquire a lock, the processor encounters
a cache miss, which eventually loads the content in the cache. The processor then continuously reads
again the value in its cache (but without trying to acquire the lock with a write operation), and benefits
from the cache coherence protocol to know if the value has changed. When the value has changed, the
processor can have a try. Another advantage is to rely (again) on the property of locality. It is likely that
the processor tries to acquire again the lock in the near future. Even if evicted from cache L1, it certainly
still resides in cache L2.

Synchronisation in dataflow applications

Let’s focus now on how to synchronise dataflow applications. From an implementation point of view, a
dataflow application follows the well known and overstudied producer/consumer model [23]. A source
actor produces tokens that are consumed by a destination actor. The implementation of a dataflow
application, e.g. the software synthesis, can simply and safely rely on existing solutions.

This section only presents the two techniques used in the context of our work and does not pretend to
be exhaustive over all dataflow implementations.

Semaphores for SDF or PiSDF models
In PREESM, the C code generated from SDF applications relies on semaphores. A matrix of semaphores,
of the size of the number of cores to cover all possible communications between all the cores, is used to
synchronise between a sender and a receiver. The matrix is square, and there is one useless semaphore per
line (recall that all actors mapped on one core are wrapped together inside a single thread, with one thread
per core, so a given core does not need to synchronise with itself).

Figure 6.3(a) shows the example of a four-actor network, with an insight on the code for actor 1. Actor 1
consumes tokens from actor 0 in buffer input0, and produces tokens for actor 3 in buffer output3.
Since the buffers input0 and output3 are shared between the actors, synchronisation is required. The
default implementation in PREESM uses the matrix of semaphores. The function sem_post (through
send(senderID,receiverID)) is used to increment the value of the semaphore when writing in the output
buffer is done, and the function sem_wait (through receive(senderID,receiverID)) to decrement the value
of the semaphore. As such, the sem_wait function is a blocking read, the programme spin-locks on the
semaphore until it has been incremented by the producer. Figure 6.3(b) shows a snippet of the generated
code for the reinforcement learning application (see 6.3.3). It clearly shows the high number of send and
receive functions.

For an SDF application, a blocking synchronisation scheme is justified since there is no chance to fire
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the actor until the preceding actor has finished. The number of tokens is known and constant, recall that
the scheduling is static and solved at compile-time.

Lock-free synchronisation for DPN model
In the case of a DPN model of computation, where reading is non-blocking, and the number of tokens
needed to fire an action is not resolved at compile-time, a blocking synchronisation scheme is not adapted.
The following explanation takes as example the implementation proposed in ORCC. Figure 6.4 highlights
the FIFO shared between a writer and a reader. The management of the tokens is done through indexes.
At the beginning, both indexes are at the starting address (address 0). The index of the reader shall
never be ahead of the index of the writer. The index of the writer shall never catch up the index of the
reader (the FIFOs are circular buffers). Both writer and reader need to read the indexes of each other. But
it is important to recall explicitly that only the writer changes the index of the writer, and only the reader
changes the index of the reader, and that the indexes can never go back. This means that, in the case that
the actors are mapped on two different cores, each having in own cache, it may happen that the value of
the index is not the real one (we need to wait for the cache coherence protocol to proceed), which is not
an issue as the value will be updated soon. It can be called a conservative synchronisation scheme since
reading the not-updated value will not do any harm to the system.

The number of tokens in the FIFO is simply known by computing the difference between the index
of the writer and the index of the reader. Since the FIFOs are circular buffers, some modulo operations
are sometimes needed to compute this difference. However, as the modulo operations are costly, some
efficient software synthesis techniques to avoid them are proposed and detailed in [147, 177].

Synchronisation is thus non blocking. If the number of tokens available does not fire any action, the
actor continuously polls on the indexes waiting for an updated value. When several actors are mapped on
the same core (which happens usually), a local round-robin scheduler simply gives a chance to the next
actor. We can note here that this approach leads to lots of, sometimes useless, memory accesses. This
analysis motivated our work and is discussed more thoroughly in section 6.3.2.

6.1.4 Questions and challenges taken up
In light of the scalability and synchronisation issues studied in a general view, we contributed in a better
understanding in the context of dataflow applications. Beyond the hardware complexity of designing
scalable multicore processors, we wondered how dataflow applications, naturally presenting explicit
parallelism, scale with the number of cores.

Does the execution time of a dataflow application reduces linearly as the number of cores
increases?

How does a dataflow application scales with the increasing number of cores?

The synchronisation mechanisms are studied from a theoretical point of view, and from a practical point
of view, both in the general case: there is no possibility from the application to know when a specific event
is about to happen. In the context of dataflow applications, where the sequence of events is explicitly
available in the network of actors, we wondered if there would be yet another way to synchronise the
actors more efficiently.

Can we think of a more efficient hardware approach to synchronise dataflow applications on
a multicore processor?

Synchronizing dataflow applications on a multicore processor
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The two next sections explain our contribution in the scalability study of dataflow applications, and
a hardware based synchronisation mechanism. Section 6.4 presents a hardware/software proposal for
Pthread applications.

6.2 On scalability of dataflow applications
Given the explicit parallelism available in dataflow applications, by actors spatially and temporally placed
in parallel, it seems obvious that a dataflow application should scale well with the increasing number of
cores, bigger caches, higher number of levels of cache, and cache shared between several cores. But,
this is without considering communication time, memory and synchronisation issues. As mentionned
in [178]: Bigger caches are better for performance but show diminishing returns as caches sizes grow.
Large caches may also not be of use to applications where data is only used once, such as video decoding.
This feature is the very nature of the dataflow model of computation: the data is used only once.

If these trends are qualitatively known, there was surprisingly no study that quantitatively evaluates the
behaviour of dataflow applications as the cache memory grows, and number of cores increases.

We have thus carried out a set of experiments based on static dataflow
applications and SMP architectures. The results show that bigger is not

always better, and the foreseen future of more cores and bigger caches do
not guarantee software-free better performance for dataflow applications.

We used PREESM framework for dataflow applications, and we used the tool Sniper to simulate
the SMP architectures, including leading-edge hardware configurations available commercially, e.g. a
32-cores with 256 MiB L3 cache. The Sniper multi-core simulator [160] includes the description of the
Nehalem cores as well as cache, memory controller, and DRAM.

Sniper is a system simulator for multi-core architectures, used to evaluate application’s performance
including power and energy consumption [48, 90]. Sniper adopts an interval-based core model simulation,
which allows fast and accurate simulation. The Nehalem cores are by default provided within Sniper
distribution. Sniper core model and cache hierarchy are validated against actual Xeon processor using
Splash2 benchmarks. Sniper takes as input configuration files that allow the user to set parameters as
cache sizes, cache sharing, number of cores, core frequency, among many others. The following sections
extracts some results from our study. The full paper is available online [10].

6.2.1 Higher number of cores
Figure 6.5 shows the application iteration time (time for the application to complete the execution of one
loop), for Stabilization (a), Stereo (b), and SIFT (c). The x-axis groups the results for one configuration,
and each bar is the number of cores. For instance, the first configuration is a private L2 (x1) with no L3
cache. The last configuration is a shared L2 between two cores (x2), and a shared L3 between four cores
(x4).

The results show that only Stabilization scales reasonably, reducing its execution time on average by
46% from 4 to 8 cores, 43% from 8 to 16 cores, and 39% from 16 to 32 cores. However, the same does
not occur to Stereo and SIFT, which have a moderate or even worst improvement, with Stereo presenting
an execution time of -22%, -1.3%, +2.6%, for an increase in the number of cores of 4 to 8, 8 to 16, and 16
to 32, respectively.

6.2.2 Bigger L2 cache
Figure 6.6 shows the results for an L2 cache increasing in size (256KB, 512KB, and 1MB) on the x-axis.
The left y-axis represents the application iteration time, and the right y-axis represents the cache miss rate.
Each plot represents one application, with each one having 3 sets of results representing different L3 sizes.
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Figure 6.5 – Application iteration time over different number of cores for three applications: (a) Stabiliza-
tion, (b) Stereo, (c) SIFT.
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Figure 6.6 – Results for an increasing size of L2 cache (a) Stabilization, (b) Stereo, (c) SIFT.

The results show that increasing the L2 and L3 size has a low influence on the L2 and L3 miss rate for
all applications. The execution time has a small reduction according to higher L2 sizes. However, this
value is insignificant, representing an average reduction from the lower L2 size (256KB) to the higher L2
size (1MB), of -0,49% for Stereo, -1.76% for SIFT, and -4.62% for Stabilization.

6.2.3 Bigger L3 cache
The results for bigger L3 cache follow the same trend observed for L2. Figure 6.7 shows an example with
the L2 size fixed in 512KB (bigger L2 sizes present very similar behaviour). It is possible to see that
both L2 and L3 cache misses remain stable, and with an insignificant reduction in the execution time (not
better than -0.26% for all applications).

6.2.4 Summary and findings on the cache study
The study on the cache sizes and configurations for dataflow applications confirms empirically what was
commonly accepted: dataflow applications do not benefit effortlessly from higher number of cores and
bigger caches. One interesting finding is that private L2 and L3 shared by all cores was the configuration
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Figure 6.7 – Results for an increasing size of L3 cache with a private L2 of 512KB. (a) Stabilization, (b)
Stereo, (c) SIFT.



106 Chapter 6. Exploiting DLP and TLP: scalability and synchronisation issues

that presented the best results related to application speed-up and L2/L3 miss rate. While this conclusion
can sound similar as Intel had reached some years ago, justifying its current cache organization with L3
shared by all cores, it was not so obvious from our point of view. First, our focus was to evaluate the
impact specifically for dataflow applications, research that was not sufficiently addressed, with not enough
data supporting the claim. Secondly, our initial hypothesis was that when two actors – sharing the same
FIFO – are mapped on two cores sharing the same L2 cache, the performance would improve due to the
reduction in the coherence traffic and the L2 miss rate reduction. This behaviour is supported by our
results (figures not shown in this document). However, this leads to a higher miss rate for L3, which has
higher penalties than L2, and consequently, has a higher influence on the execution time.

As an answer to the bad cache utilisation for dataflow applications, we
proposed to use two dynamic memory management strategies:

Copy-on-Write (CoW) and Non-Temporal Memory (NTM) copying.

They are not novel in their principle, CoW is a well-known approach supported by Linux OS by the
mmap() syscall [191], and NTM is essentially a direct RAM-to-RAM copy, supported in some Intel
processors [42]. The novelty here is to exploit opportunities of using such techniques in the dataflow
context, and quantify their improvements in the applications execution time and system energy by saving
memory transfers.

The results, not shown here but available online in [10], show that the NTM technique can contribute
modestly in the improvement of the execution time. The CoW technique presents interesting results,
especially in the case of transfers bigger than the 400 KiB, achieving a reduction of 15% in the execution
time and 20% in energy consumption.

6.3 The notifying memories concept
Though identified already 30 years ago [216, 219], the memory is one of the most important issue in
today’s multicore processor designs to build faster systems. We thus studied new architectural concepts,
especially to improve synchronisation and communication between several cores, by reducing the data
movements in the cache hierarchy.

Our concept is called “Notifying memories” because it provides memories
with notification capabilities, meaning that they can initiate a transaction

with the processor, instead of simply replying to requests.

This concept is particularly adapted to dataflow applications and emerged during our work in COMPA
ANR project. Mostafa Rizk, during his post-doc, implemented the proof-of-concept. Then, during
Nooman ANR project, the concept was further studied during the PhD of Alemeh Ghasemi.

6.3.1 The observer design pattern
Our idea is inspired from the observer design pattern, widely used in software engineering. A brief
description of this software design pattern is now given.

The observer design pattern defines a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and updated automatically [217]. That
behaviour is exactly what we expect when the content of a FIFO changes: notify the concerned
processors that execute the actors connected to that FIFO. Figure 6.8 shows the UML class

The observer design pattern
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Observer
notify()

Subject
observerCollection : EEList [1]

registerObserver(observer : Observer)

unregisterObserver(observer : Observer)

notifyObservers()

ConcreteObserverA
notify()

ConcreteObserverB
notify()

notifyObservers()             
 for obs in observerCollection

   call obs.notify()

subjects[*]observers[*]

Figure 6.8 – UML Diagram of Observer Design Pattern for software implementation

diagram of the observer design pattern. The subject is the element to watch. The observer is
the element that should react whenever a change occurs from the subject. The subject notifies a
change to their observers by means of a method.

Porting the observer design pattern to our context, the memory is the subject and the processor is the
observer. Implementing such a pattern means breaking the conventional way of connecting a processor
to the memory. In a Von Neumann architecture, the memory replies only to the requests initiated by the
processor. For instance, when designing a bus-based multicore processor, the processors are connected
as master on the bus, meaning that they are allowed to initiate a transaction, whereas the memories
(memory controller or scratch pad memories) are connected as slave component on the bus, meaning that
they are allowed to reply to a request, but not to initiate a transaction. The notifying memories concept
implies that the memories can initiate a transaction, so connected as master on the interconnect. In a
NoC-based architecture, the network interface (NI) is the component between the routers and the processor
or the memory. An NI naturally has the possibility to initiate a transaction. We thus first implemented
the concept for an NoC-based architecture, so that the NI component changes only, and we can keep
unchanged the other components like the processor or memories. Everything happens in the NI. The next
section explains our proof-of-concept for a DPN dataflow model.

6.3.2 A case-study on Data-Flow Applications with NoC Interfaces Implementation
Motivational example
Recall the DPN the actor model presented on Figure 5.7 p. 79. An actor can contain several actions.
An action is executed (fired) when a set of conditions is satisfied. This so-called firing rule consists of
checking that the number of tokens in the input FIFO is greater than the number needed to compute, and
that the output FIFO is empty enough to store the produced tokens.

The main idea of notifying memories is to give the capabilities to the FIFO
to notify directly the processor about its content.

We use as a case study an MPEG-4 Simple Profile decoder (MPEG4-SP) specified in RVC-CAL [5].
This decoder is specified with heterogeneous MoC and contains up do 40% of dynamic actors [157].
The ORCC tool is used for compiling and software synthesis [5]. Our work relies on the C-backend that
generates C code for multi-core platforms. Since the number of actors (41) is greater than the number
of processing cores, several actors are mapped on the same core, and an actor scheduler is required.
Different policies have been proposed, one of the most efficient one remains the round-robin (the default
in ORCC). They all have the same major drawback related to dataflow principles, which is the inefficient
polling that leads to useless accesses to the memory when a scheduling attempt is not successful.

Figure 6.9 presents the structure of the software FIFO generated by ORCC [5]. It is composed of five
parts: i) size of the FIFO; ii) FIFO content, where memory allocation is done according to the FIFO size
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Figure 6.9 – Structure of a software FIFO generated
by ORCC

i f ( numTokens_FIFO_IN1 >= 64
&& numTokens_FIFO_IN2 >= 1){

i f ( SIZE_FIFO_OUT −
numTokensFIFO_OUT > 64){

/ / f i r e a c t i o n 1
}

}

Listing 6.1 – Example of a firing rule

and size of data type; iii) number of readers, since one actor can write in a FIFO but there might be several
readers; iv) index of readers, each reader has its own index; and v) index of writer. Synchronisation is
handled through indexes. The difference between the reader index and writer index determines the number
of tokens inside the FIFO. When multiple readers occur, the minimum index is used. It might happen
that one slow reader blocks the other readers. Many papers deal with FIFO sizing and FIFO handling
but it is orthogonal to this work. Given this FIFO structure, the processor that executes an actor has to
read the values of the different indexes in order to determine the number of tokens in the FIFO. This leads
to a set of memory requests for each FIFO. Taking the example of the firing rule given in Listing 6.1, to
compute numTokens_FIFO_IN1, the number of tokens in the first FIFO, the processor emits two requests,
one for the index of the writer, and one for the index of the reader (one for each reader actually). For the
second FIFO, the processor emits another set of requests. Then, in order to check for the output FIFO,
other requests are emitted on the NoC. In C language, if the first condition is not satisfied, the whole test
is stopped. The worst case occurs when the input conditions are satisfied but not the output condition,
which would lead to six transactions for no action firing. Of course, next scheduling attempt will test
again these conditions although the conditions on the input FIFO are satisfied. It has to be noticed that
true conditions cannot become false on the next trial. Our contribution also relies on this property.

We have carried out some experiments using the C backend of ORCC and executed the MPEG4-SP
decoder on a desktop computer. We have traced the number of firings of each actor during one scheduling
attempt. We have counted the number of zero firings, i.e. no action could be fired, out of the total number
of scheduling. Table 6.1 shows the percentage of unsuccessful scheduling for different video sequences
from [1]. There are two reasons why no action can be fired: 1) one of the input FIFO is empty (i.e. does
not contain enough tokens); or 2) one of the output FIFO is full (i.e. does not contain enough space).
Table 6.1 also shows the distribution between empty and full FIFO. These results show that at least 20% of
scheduling attempts are unsuccessful. Although the lack of tokens in the input FIFO seams to be the major
reason, the disparity among the different video sequences prevents from drawing any clear conclusion.

This observation motivates the integration of mechanisms able to monitor
the FIFO status and to emit notifications.

This mechanism can be integrated in the NI, close to the FIFO implementation.
The motivation is to find a solution to delete useless memory requests, independently of the processors,

memories, NoC parameters and scheduling policy2. The main issue is to stop the polling on the NoC that:
1) is useless when no action can be fired; and 2) consumes bandwidth that would be useful for effective
transactions. The current situation is that memories are subjected to processor requests. The idea is to
give new capabilities to memories, so that, they can inform the concerned processors that their (FIFO)
content has changed.

2although combining our approach with a new scheduling policy is relevant
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Table 6.1 – Unsuccessful scheduling by the MPEG4-SP decoder for different video sequences and formats

Video Useless Empty Full
Sequence Format attempt input FIFO output FIFO

Akiyo CIF 42.7% 63.7% 36.3%
Parkjoy 720p 21.3% 90.8% 9.2%
Foreman CIF 34.8% 90.7% 9.3%
Coastguard CIF 27.8% 98.4% 1.6%
Stefan CIF 25.9% 83.3% 16.7%
Bridge far QCIF 23.8% 38.4% 61.6%
Ice 4CIF 45.6% 70.4% 29.6%
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Figure 6.10 – The structure of the used NoC implementing the notifying memories concept

NoC Implementation

The implementation in the NoC was performed by Mostafa Rizk, during his post-doc [103]. There are
two elements to be added in the NoC platform: the notifier and the listener. In order to remain compliant
with any existing processor or memory and to be independent from NoC parameters such as topology,
router buffer depth and routing policy, we have decided to integrate these elements into the NI of the NoC.
Besides, we need a master component that can send packets through the network and a component that
can monitor requests, the NI is the ideal component to offer such features.

Figure 6.10 illustrates the structure of the NoC used to demonstrate the notifying memory concept.
The NoC is a 4×4 mesh-based network which interconnects 28 IP cores (13 processing and 15 memory
nodes). It is based on a wormhole packet switching mode, deterministic XY routing algorithm to avoid
deadlocks, and flow control policy without virtual channels. The routers have one arbiter per port and one
buffer per input port. Our approach is actually generic and can be applied to NoC with different features.
For instance, N-flit buffers can be used to improve performance at the cost of more memory, in that case
all transactions including notifications will take advantage of it. The back-end part of the NI includes a
packet maker and packet un-maker to assemble and disassemble the packets, a scheduler/priority manager
to synchronize packet transmission and reception. The modifications lie in the front-end of the network
interface by either implementing the notifier or the listener. The notifier is implemented in the NI of a
memory. The listener is added in the NI of a processor. The structures of the additional components are
detailed in the following subsections.

Notifier
The notifier is a hardware module that transmits the status of all FIFOs allocated in a node hosting memory.
For each FIFO, the notifier generates a notification signal that is passed to the FIFO’s writer whenever it
contains enough space to save new tokens, or to the FIFO’s readers whenever enough tokens are available.
The notifier functionality can be divided into three phases: the configuration phase, the checking phase,
and the notification phase.
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1. Configuration phase: it corresponds to the registerObserver method in the design pattern. The
memory is configured with the processors to notify.

2. Checking phase: it corresponds to a “monitoring” phase, where each new write operation to the
memory is scanned, and each update on an index is checked if it triggers a firing rule.

3. Notification phase: when a firing rule becomes valid, a notification is sent through a packet to the
concerned processor.

Listener

The listener stores the information included in the notification packets sent by notifiers. The coupled
listener to each processor specifies the validation statuses of all firing rules related to all actions of all actors
mapped to the processor. The processor accesses the validation status of all firing rules corresponding to
an action before it is fired. In addition to the status, the listener stores the value of the available tokens at
the input FIFO and the free space at the output FIFO for each input and output firing rules respectively.
The information is thus available locally to the processor and no memory requests through the NoC are
needed. The listener functionality is divided into two phases: the configuration phase and the execution
phase.

1. Configuration phase: a table storing the firing rules is initialized.
2. Execution phase: the notification packets are caught in the NI on processor side, and the information

about the firing rule is stored in a table. The processor reads in this table instead of polling on the
cache.

Results
Experimental Setup

In order to check the relevancy of the proposed approach, the adopted NoC implementing notifying
memories has been described in SystemC TLM model as a proof of concept. The devised model executes
an MPEG4-SP decoder with 41 actors and 70 FIFOs specified in RVC-CAL. The number of FIFOs are
approximately equally distributed on all nodes accommodating memories. The actors are then mapped
manually such that the number of hops is minimized between one actor and its FIFOs. The SystemC model
is cycle accurate at the NoC level and network interface; whereas actions are functionally simulated. We
strive to accurately reproduce the timing features of actions executions in addition to their functionalities.
The mean values of execution time of all actions are imported from profiling data on a desktop computer.
Multiple simulations have been conducted to decode ten frames for several video sequences from [1]. To
evaluate the efficiency of the notifying memories concept, the obtained results are compared with the ones
of ordinary memories. Both models use identical NoC features (e.g. 500 MHz frequency, switching mode,
routing algorithm), processing elements features, and mapping strategy.

Results and Comparison

Table 6.2 shows the results obtained after decoding 10 frames of ice video sequence in 4CIF format in
terms of throughput, latency3, injection rate, switch conflicts, total number of transported flits, and power
consumption. The comparison between the two cases, ordinary and notifying, shows significant reductions
in terms of latency, injection rate, switch conflicts, and number of transported flits and packets. Also the
throughput is improved such that it is compatible with the 25 frames per second standard without using
additional hardware accelerators or processing speedups.

The analysis of the results reveals an additional traffic overhead in case of ordinary memories which
increases significantly the injection rate and switch conflicts. To track its cause, packets are classified
according to their functionality into two categories: data and control packets. Packets holding tokens or
requests for reading tokens are data packets, while control packets category includes all other packets
that are used to transport mapping information, set FIFO indexes, request or retrieve FIFO indexes,
and notification signals produced by notifiers. This classification is also applied to flits. Figure 6.11

3the time between the first token consumed and the first token produced by the application
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Table 6.2 – Results after decoding 10 frames of ice video sequence in 4CIF format

Parameter Notifying Ordinary gainmemory memory

Latency (µs) 143.42 665.06 -78.44%
Throughput (frames/s) 27.53 23.29 +15.41%
Injection rate(flits/s) 60 167 732 121 635 294 -50.53%
Switch conflicts 71 182 509 288 574 519 -75.33%
Transported flits 109 264 000 261 123 000 -58.16%
Transported packets 15 376 400 107 050 000 -85.64%
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presents a comparison between notifying and ordinary memories in terms of control and data categories
for transported packets and flits for the ice-4CIF video.

The figure shows that ordinary memories induce 19 times more control
packets and 10 times more control flits than notifying memories.

The number of data packets and flits is approximately the same in the two cases. The simulation is
stopped after 10 fully decoded frames while the network contains partially decoded frames. This explains
the traffic overhead, due to the remaining control packets injected to the NoC. Investigating thoroughly
the types of transported control flits shows on one hand that more flits are needed for mapping information
when notifying memories is adopted since the manager has to send additional information for all notifiers.
Also, additional notification flits are transported from notifiers to the listeners. On the other hand, the
adoption of notifying memories eliminates the use of flits to request and retrieve FIFO indexes. Figure 6.12
shows in logarithmic scale the number of each type of control flits transported while decoding 10 frames of
ice video sequence in 4CIF format for the case of notification memories and ordinary memories. It shows
that the added flits for notification and extra mapping in the case of notification memories are negligible
(4.58%) compared to the required flits to request and retrieve FIFOs indexes in ordinary memories.

The comparisons for other video sequences are summarized in Table 6.3. These average results confirm
the efficiency of the notifying memories concept which leads to great reductions reaching 78% for latency,
60% for injection rate, 67% for transported flits, and 85% for switch conflicts. Also the throughput
enhancement is improved by up to 16%.

Preliminary synthesis results
We have implemented a worst-case design, where a single notifier, which is implemented in all memory
NIs, and a single listener, which is implemented in all processor NIs, can manage all firing rules of all
actors. The number of firing rules of in the MPEG4-SP application is 145. Hence, 145 registers are
required in all banks of the 12 listeners (one per processor) and 15 notifiers (one per memory). The area
and power results are obtained with the Cadence Encounter RTL Compiler RC12.24 tool. The synthesis
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Table 6.3 – Notification memory gain for decoding 10 frames of different video sequences

Video Throughput Latency Injection Switch Flits
Sequence Format rate conflicts number

Bridgefar QCIF +15.53% -73,96% -45,80% -71,38% -54,22%
bus CIF +2.84% -73,79% -53,40% -72,90% -54,73%
grandma QCIF +16.79% -68,96% -60,78% -85,50% -67,36%
foreman CIF +14.26% -78,41% -46,81% -72,86% -54,39%
ice 4CIF +15.41% -78,44% -50,53% -75,33% -58,16%

targets the 65nm process technology at 500 MHz operating frequency and 25◦C. Total power was obtained
by using the leakage and dynamic power of the NoC components relying on the switching activity traced
by the SystemC simulation of 10 decoded frames of the ice-4CIF video sequence.

The results show that the NoC adopting notifying memories saves up to
49.1% of power consumption compared to the reference NoC.

Besides, the power overhead of the interfaces of the proposed NoC presents a modest value of 16.3%.
Regarding the area, the proposed NoC presents an overhead of 12.4%, when compared to reference NoC.

The case study focusing on the NoC called for further investigations. First, the simulation was accurate
at the NoC level only. A system-level simulation is needed to know the impact on the full system.
Particularly, the processors, along with their caches, were not accurately simulated. The results are
obtained for a single application, and other dynamic applications may behave differently. The target
considered assumed distributed memory modules. More experiments are required on other types of
application and on other types of multicore processor architectures.

6.3.3 NM4SMP: Notifying Memories for Symmetric shared-Memory Processors
Given the identified limitations of the proof-of-concept of notifying memories, we wanted to perform
the study on centralized shared-memory architecture, also referred to as “Symmetric shared-memory
processors” (SMP). This work has been done by Alemeh Ghasemi during her PhD thesis [9]. The
implementation led to a proposal called NM4SMP, Notifying Memories for Symmetric shared-Memory
Processors.

Implementation
There are two main differences in the implementation between NM4SMP and the proof-of-concept. First,
the NM4SMP module gathers both the Notifier and Listener near the L1 cache. Secondly, the module was
designed for lock-based synchronisation technique as an alternative to semaphores, in the context of SDF
applications.

Figure 6.13 shows an example of the implementation of notifying memories in a 4-core SMP. Figure 6.14
shows a closer look to the integration of the notifier and listener.

The NM4SMP module monitors the activity between the core and the L1
data cache, and preempts the memory accesses for specific addresses.

The addresses to look at are stored in the BAR (Base Address Register). There are then two cases:
1. a write means a change in the value which should set a firing rule to true, and will trigger a

notification,
2. a read means a check for a firing rule and the listener holds the correct information
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The NM4SMP module has an access to the interconnect in order to send notifications to other NM4SMP
modules, and to catch the notifications coming from the other modules. A Scratch Pad Memory (SPM)
stores the firing rules for each actor. The considered implementation is provided for 255 actors, each
having the possibility to have up to 128 firing rules, leading to a 2KiB SPM. Though oversized compared
to the applications we tested, the preliminary hardware estimations for area and energy show insignificant
overhead.

The execution model follows the same steps as presented in section 6.3.2. For the notifier, there are
three phases: 1) the configuration phase, 2) the checking phase (monitoring), 3) the notification phase.
For the listener, there are two phases: 1) the configuration phase, 2) the execution phase.

Methodology

Figure 6.15 shows the methodology used for the experiments on NM4SMP. We used PREESM dataflow
framework and a set of applications available in the repository. We support two models of computation,
the SDF model and the PiSDF model. This section focuses on the SDF case. The details on the PiSDF
case are available in the thesis [9]. We take the C code generated by PREESM and adapt it to use the
NM4SMP library. The application is then compiled with a classical compilation toolchain. The binary
code is simulated with Sniper, which provides the performance results.

We evaluate four dataflow applications implemented as SDF graph:
• Reinforcement Learning application - Training phase (RLT)
• Reinforcement Learning application - Prediction phase (RLP)
• Stabilization, a filter to compensate the movements of a video recorded with a shaky camera
• Stereo, a computer vision application that processes a pair of images to produce a disparity map

corresponding to the depth of the captured scene

Results

We focus here on only three sets of results: the execution time, the impact on the cache and the scalability.

Execution time

First, we show the results on the execution time. Table 6.4 shows the performance of the four applications
considered on a Xeon SMP with 16 cores. The results show interesting speed-up for the RLT application.
However, there is no improvement for stabilization of stereo applications, meaning that these applications
are not bound by synchronisation.
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Table 6.4 – Performance and synchronization metrics for a 16-cores SMP

Applications RLT RLP Stabilization Stereo

Baseline

Execution time (ns) 3.15E+08 4.07E+08 3.49E+08 1.72E+09
Synchronization time (ns) 1.62E+08 8.02E+07 4.35E+07 2.15E+08

NM4SMP

Execution time (ns) 1.60E+08 3.26E+08 3.45E+08 1.72E+09
Synchronization time (ns) 2.52E+06 2.44E+06 3.35E+07 2.15E+08
Average synchronisation speedup 64.48× 32.93× 1.3× 1×
Application speedup 1.97× 1.25× 1.03× 1×
Executed instructions saved 17.85% 4.51% 0.02% 0.00%

Impact on the cache
Second, we show the impact on the cache. Figure 6.16 shows the reduction in the number of cache
accesses and the miss rates obtained for the Xeon and the Atom architectures. The results on the cache
help in understanding the results on the execution time. Figure 6.16 clearly shows that in the case of
RLT application, we can reduce around 20% of the number of L1 accesses, reducing further the miss rate,
which explains the speed-up obtained on the execution time. For stabilization and stereo, the impact is
insignificant, meaning that the cache is not polluted by the semaphores for these applications.

Scalability
Third, we show how the applications scale with or without NM4SMP. Figure 6.17 shows the results on the
execution time for a varying number of cores from 2 to 16. It is clear from the figures that stabilisation
scales pretty well with the number of cores, this is why there is no room for improvement from the
synchronisation point of view. Stereo shows an unexpected behaviour, with better execution time for 8
cores than 16 cores. The curves for RLT and RLP clearly show that these applications do not scale well
and that our NM4SMP solution helps in making these applications scale.

6.3.4 Notifying memories: the juice
We introduced a new concept called “Notifying Memories” as an alternative to synchronisation mechanism
for dataflow applications. We implemented it for two different cases: 1) lock-free synchronisation in a NoC-
based architecture adapted to a dynamic model of computation (DPN), 2) lock-based synchronisation in a
bus-based architecture adapted to a static model of computation (SDF). The experiments show interesting
results for the dynamic case. The results on the static case show that this solution helps in making scalable
a non scaling application. The concept is thus better adapted to dynamic models, and further studies should
go into that direction. The concept can also be combined with emerging approaches like near-memory
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Figure 6.16 – Cache access reduction using
NM4SMP for Xeon (a) and Atom (b) processors.
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Figure 6.17 – Scalability of the static applications

processing or computing in network presented as perspectives in chapter 7.

6.4 Subutai: synchronisation primitives spread throughout the NoC

The last section of this chapter deals with imperative parallel programming models, like Pthread with
C language, and synchronisation primitives. Recall that synchronization primitives are means provided
to developers to guarantee data integrity when developing parallel applications. While multiple novel
solutions have been proposed to speed up parallel applications through handling one type of data syn-
chronization primitive, exceptionally few works support multiple types of synchronization primitives and
legacy code. During his PhD thesis, Rodrigo Cataldo proposed Subutai [52], in a joint collaboration with
PUCRS, Porto Alegre, Brazil.

Subutai is a hardware/software co-design solution for accelerating multiple
synchronization primitives without modifying the application source code.

By providing a new user library, while retaining an existing synchronization API, legacy and novel
applications can benefit from our solution. Our experimental evaluation, which provides a POSIX Threads
implementation, demonstrates Subutai speeds up to 2.71× and 4.61× the execution of single- and multiple-
application executions, respectively. The paper “Subutai: Speeding Up Legacy Parallel Applications
Through Data Synchronization” is added as appendix C and is summarized here.

The main proposal is a novel synchronization solution that accelerates parallel applications without
modifying the application source code. The proposed hardware/software solution, called Subutai, tackles
the synchronization problem within a low-level Network-on-Chip (NoC) Interface (NI).

Fig. 6.18 depicts the Subutai solution with a general-purpose computing stack, highlighting the compo-
nents required for its operation. The figure shows the four major actions needed to implement Subutai:
1) a new implementation of the Pthread library respecting the API, 2) a device driver, 3) a new scheduling
policy, 4) a new hardware inside the NI of the NoC.
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6.4.1 Subutai overview

Software-wise (Subutai-SW), the POSIX Threads (PThreads) was implemented according to the IEEE
Std 1003.1 standard. Thus, any application employing the PThreads API (i.e., pthread.h) is compatible
with Subutai. The PThreads compatibility restricts a multitude of optimizations since we cannot inject
the source code with extra synchronization metadata or change the application communication model.
In addition to interfacing with the application, our software must work with new functionalities on the
hardware-side; hence, we provide an Operating System (OS) driver responsible for the latter activity.

Hardware-wise (Subutai-HW), we extended an existing on-chip NI to support, in a distributed way, the
following synchronization primitives: mutex, barrier, and condition. NI handles new types of packets and
requires access to a small (less or equal to 1KiB) memory to record synchronization events and metadata.
Figure 6.19 presents an internal view of the architecture considered and the added elements inside the NI
of the NoC.

The left-hand side of Fig. 6.19 shows that Subutai-HW employs double-linked queues to record events.
As an alternative to statically allocating for the worst case, the double-linked queues allow Subutai-HW to
employ a dynamic allocator for reducing memory consumption to the minimum, at the cost of additional
pointer arithmetic logic. Besides, condition variables are dealt more efficiently with such structure. The
queue manipulation is based on the futex implementation of the Linux kernel.

6.4.2 Experiments
Experimental setup

The performance of Subutai is evaluated through the widely used PARSEC benchmark, as it provides a
wide range of application domains, parallelization models and data sharing [182]. From the application
set, we employ Bodytrack, Streamcluster, and x264. We employ the Gem5 simulator [159] to produce
synchronization points of the applications; next, we feed this information into an in-house SystemC
simulator, which enables us to collect experimental results. We run applications with and without Subutai:
the former will henceforth be called Subutai, and the latter SW-only (i.e., Linux Kernel).
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Results
A full set of results is available in appendix C, including area, acceleration of a single application and
multiple applications, and synthetic benchmarks. This paragraph presents only two figures. Figure 6.20
shows the results obtained for Bodytrack application. We analyze the entire application execution but plot
the results for two threads for each application: the master thread (T0), responsible for global synchro-
nization, and a worker thread instance (T7). Besides, the results are divided into two: synchronization
operations and processing. The former aggregates all calls to PThreads (e.g., mutex lock), while the latter
collects the processing needed by the application. NoC communication and Subutai-HW latencies did
not contribute significantly to the execution time; thus, they are not visually perceivable on the figure,
although they are present. Nonetheless, the figure shows that our solution reduces the application total
time by handling synchronization faster.

Figure 6.21 displays the experimental results for a mix of multiple applications: a combination of 3, 2
and 3 instances of Bodytrack, x264, and Streamcluster, respectively. All applications have been set to
use 64 threads and cores without restriction regarding mapping threads to cores. The execution time has
been measured for three different scheduling strategies for executing this combination of applications.
The first one, starting from the bottom, is the One At a Time (OAT) strategy. Each application is simply
executed alone in a sequential manner. The figure show the results for SW-only (the original Linux), and
the Subutai solution. The second strategy is the Round Robin (RR) scheduling policy. The third strategy
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is the proposed policy, the Critical Section Aware (CSA) policy, which gives priority to threads that hold a
mutex. When several threads hold a mutex or no threads hold any mutex, the RR policy decides. The
results show that Subutai systematically improves the execution time.

The best configuration is Subutai with the CSA scheduling policy, reaching a
2.4× speed-up over the original Pthread implementation with CSA policy.

6.5 Summary
This chapter presented our contribution in the study of scalability of dataflow applications on SMP
architectures. It also presented our contributions on hardware-based solutions for synchronisation. The
concept of notifying memories is specifically introduced to improve the synchronisation of dataflow
applications. The chapter ends with Subutai, a solution for Pthread based applications.

Does the execution time of a dataflow application reduces linearly as the number of cores
grows?

How does a dataflow application scales with the increasing number of cores?

We performed an empirical study on the scalability of SDF applications on SMP architectures. The
results show that the foreseen future of still ever more cores and bigger caches does not guarantee
software-free better performances.

Is there any other more efficient hardware approach to synchronise dataflow applications on
a multicore processor?

Synchronizing dataflow applications on a multicore processor

We studied the two big families of synchronisation: lock-based and lock-free. We proposed a new
architectural approach that breaks the conventional Von Neumann architecture by giving the possibility to
the memory to initiate transactions on the communication medium.

• A new hardware module embedded in the network interface of the network-on-chip
• A new capacity given to the memory to notify a processor when a specific value is written

at a given address

Synchronizing parallel applications on a multicore processor

The experiments are performed through system-level simulators. The notifying memories reduce greatly
the number of useless memory accesses in the case of lock-free configuration. The new synchronisation
mechanisms proposed help in the scalability of the applications in the lock-based configuration.

We proposed:
• the notifying memories concept for dataflow applications
• Subutai for Pthread applications

Synchronizing parallel applications on a multicore processor
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Though providing good performance, the notifying memories or Subutai suffer from the same limitation
as all hardware synchronisation mechanisms: eventually it runs out of space [151]. The question of sizing
becomes thus a major concern. Rollback methods using software-based solution is the good option that
we did not explore in our work.

The results show that interesting speedups can be reached by enhancing the synchronisation of parallel
applications, without any dedicated hardware accelerators or bigger caches or wider interconnects, which
lead to reducing the data movements in the cache hierarchy.
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With the slowdown of Moore’s law and the end of Dennard’s scaling, the performance of application is
coming from parallelism [38]. Hardware architectures can make use of the different types of parallelism
in two dimensions, the temporal dimension and the spacial dimension. In our work, we focused on three
types of parallelism: ILP (Instruction Level Parallelism), DLP (Data Level Parallelism), and TLP (Task
Level Parallelism).

We first proposed a programmable hardware accelerator, falling in the category of Coarse Grained
Reconfigurable Architectures (CGRA), that can make use of ILP and DLP, presented in chapter 4. The
accelerator is a standalone component, able to execute a full application, including its control flow, and is
studied in the context of embedded systems. The energy efficiency is better than an embedded processor.

• Architectural support and mapping approach to execute full application (including control
flow and loop control) on a CGRA

• IPA (Integrated Programmable Array) for integer operations
. maximum of 8× speed-up, with a minimum of 2.49× and an average of 5.4×

• TRANSPIRE to support transprecision
. 10× improvement on execution time, and up to 12× in energy

Takeaway from exploiting ILP and DLP with CGRAs

The parallelism of an application should be expressed through languages that help in explicitly specify-
ing the types of parallelism. The dataflow model of computation offers an interesting and convenient way
to express spacial and temporal parallelism, which helps in the mapping of such applications on parallel
architectures. But the natural dynamic behaviour of some applications forces to adapt the mapping at
runtime to improve the performance.

We proposed two mapping algorithms. A first algorithm (runtime mapping) is proposed to find rapidly
a first solution. A second algorithm (runtime remapping) is proposed to adapt at runtime the mapping
while the application runs.
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• Runtime mapping algorithm for dataflow applications on a multicore processor
. A fast algorithm to find a first solution at runtime, taking into account communication

cost
. 50× faster solving time for similar quality of results

• Runtime remapping algorithm for dataflow applications on a multicore processor
. Adaptation at runtime to the dynamic behaviour of dataflow applications
. Move-based algorithm to not fully change the mapping at once
. up to 26% improvement in throughput compared to the baseline (no remapping)

Takeaway from exploiting ILP and DLP with multicore processors

One of the major issue in exploiting parallelism is synchronisation. When several tasks share the same
data, some mechanisms are needed to guarantee the correct results of the executed application.

We proposed an original mechanism to synchronise dataflow applications, but making use of the
intrinsic availability of their firing rules to improve the synchronisation between the actors. We also
proposed a Pthread compatible solution to improve the execution time of legacy parallel applications.

• Notifying memories
. Synchronizing dataflow applications on a multicore processor
. Lock-free synchronisation for DPN application
? Deletion of useless memory accesses (-78% latency, -60% injection rate)
? +15% in throughput for a video decoder

. Lock-based synchronisation for SF applications
? Making scalable a non scaling application
? 2× speedup for a synchronisation bound application on 16 cores

• Subutai: a hardware/software solution for synchronizing Pthread applications
. Management of synchronisation mechanisms inside the network interface of the network

on chip
. Pthread compatible
. 2.71× speedup over a single application
. 4.61× speedup over multiple applications

Takeaway from synchronisation
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7. Perspectives

This chapter presents three main perspectives identified in the continuity of the work presented in the core
of the document. Firstly, CGRAs are knowing a new momentum with the boom of artificial intelligence
(AI) applications, as they are the relevant (if not the only credible) solution to take up the energy-efficient
challenge raised by this application domain. The question about how AI can help in the design and
programming of CGRAs is also addressed.

The second perspective is related to emerging technology coming to the rescue (once again). Particularly,
the wireless communication capabilities are now foreseen inside a chip. This solution might be an
interesting way to solve the congestion problems in current wired interconnects. A project is currently
ongoing on the topic.

The third perspective proposed pushes the computing capabilities inside the network on chip. The
routers in current networks become not only simple forwarders of data. Augmented with simple computing
operators, routers can operate seamlessly on the data that goes through to perform simple operations.

7.1 CGRAs for AI, AI for CGRAs

The first wave of CGRA was fuelled by signal processing applications, especially mul-
timedia applications like image, audio, and video, for embedded systems, constrained by
stringent power and energy budget. The Samsung Reconfigurable Processor (SRP) [121], an
ADRES-like CGRA, integrated in the past in the Exynos SoC, is an example of a commercial
use of CGRAs. The choice of Samsung to discontinue the use of SRP in favour of more
conventional processors is the sign of a mitigated success [3].

What can CGRAs can do for AI? What AI can do for CGRAs?
CGRAs and AI
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7.1.1 Trends

CGRAs know a new momentum as they get carried away by artificial intelligence (AI) applications. The
massive need of high-performance computing, coupled with the slowdown of Moore’s law and end of
Dennard scaling, and the mismatch between AI workloads and conventional Von Neumann architectures,
drives the efforts towards a multitude of AI-accelerators, which fall in the category of CGRAs. The
diversity of names in the literature also shows that the domain is buzzing: Xilinx AI-engine [41],
Reconfigurable Dataflow Architecture [31], Reconfigurable Dataflow Accelerator [36]. These “modern”
CGRAs differ from the legacy ones in the number of cells that are available, which causes a serious
scalability issue that is discussed in the challenge section. Another difference is the coupling with a host
CPU. Modern CGRAs tend to be standalone, similarly to a GPU, and they require a full system integration.
CGRAs are the relevant (if not the only credible) solution to take up the challenge of energy-efficient AI
applications. The second wave of CGRAs might eventually be the one that meets an industrial success.

The mapping problem is complex, and needs sophisticated algorithms that are time consuming to
understand, and to formalize. The methods based on artificial intelligence and machine learning are clearly
interesting trails [60]. AI-based methods help in concentrating within a single model some functional but
also non functional contraints, that are hard to formalize through traditional methods. AI for electronic
design automation in general is at its early beginnings, and AI for CGRA specifically will be part of this
global trend.

From the architectural point of view, some evolutions will obviously impact the compilation. The
CGRA coupling can also be further explored: near the memory, or directly integrated within the memory
array in a processing-in-memory manner [61]. The emerging memory technologies will also be game
changers.

Finally, some open-source frameworks recently appeared [17, 33, 46, 50] to share the technical efforts
and provide a ready for use tool to democratize the CGRAs and make them widely adopted for energy-
efficient or high-performance computing. These frameworks are also part of a wider trend about open
source hardware.

7.1.2 Challenges and opportunities
Programming model

The inadequate programming model used up to now for CGRAs is the main limitation identified in two
recent surveys [45, 61]. Other programming models needs to be considered, more adapted to CGRAs,
able to specify the data-level parallelism, like OpenMP, SYCL, CUDA or OpenCL. The dataflow model
of computation could also be interesting to look at. This kind of streaming model can fit with CGRAs [26,
94].

Scalability

Scalability is clearly one of the biggest challenge to be taken up. Some techniques are already proposed do
deal with scalability. In [34], the repetitive patterns of loops are detected and are mapped in a hierarchical
way. In our work [100], the partial solutions are stochastically pruned to keep under control their number.
But while legacy CGRAs are composed of tens of cells, with a use rate quite low limited by the instruction
level parallelism available in the applications, the more recent and modern CGRAs, the most capable of
crunching AI workloads, contains hundreds to thousands of cells. The issue is to effectively make use
of the massive number of cells. The standalone feature of modern CGRAs is another game changer for
mapping methods. The mapping problem is intractable, scalability further raises the challenge, and the
number of cells involved takes it in yet another dimension. The application should be considered as a
whole, not with intensive kernels to be offload to the CGRA and letting the host processor interact with
the system. A holistic approach is thus needed to first analyse the input application, and then relevantly
partition it for finally an efficient complete mapping. SARA [36] is such a recent approach. It relies on
a hierarchical pipelining to extract spatial parallelism and temporal parallelism. For instance, at loop
level, two sibling loops might be executed in parallel. When there are data dependencies across the loops,
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the memory consistency is managed by the compiler, and the instructions are ordered to guarantee the
correct execution. The iterations of the loops are overlapped at all levels as an advanced implementation
of software pipelining (not only modulo scheduling). In other words, the new generation of compilers for
CGRAs must be able to make use of all levels of parallelism: instruction level, data level, and loop level.

7.2 Wireless Network-On-Chip

The wired communication inside a chip shows limitations, especially when it comes to
send multiple times the same packet (broadcast/multicast) which lead to an increase in latency
and energy consumption. Other physical communication means are studied like optical
communication or wireless communication. We focus here on wireless communication. It is
possible today to embed an antenna inside a chip, with CMOS compatible technology, and
benefit from the huge knowledge gathered on wireless communication to adapt it to intra-chip
communication. Wireless communication holds a natural broadcast capability and is foreseen
to be a solution to reduce the latency of communication.

Use radio-frequency techniques to communicate inside a chip.
Wireless Network-On-Chip

7.2.1 Trends
In a NoC, several types of communications are needed: one-to-one communication (unicast), one-to-many
communication (multicast), and one-to-all communication (broadcast). A straightforward solution to
implement multicast or broadcast in a wired NoC consists in making the sender send n times the same
packet. More efficient solutions can embed in hardware the multicast and broadcast capabilities [163].
But as the number of cores (or more generally communicating elements) increases, a wired NoC faces
serious communication bottlenecks. WiNoC (Wireless Network on Chip) has emerged as an alternative
for long range communication and a viable solution for the implementation of multicast and broadcast [67,
79] communications on large manycore.

Figures 7.1 and 7.2 show two illustrations of the integration of wireless technology inside a manycore
architecture. In [19], the authors proposed the illustration of figure 7.1, where each core has an antenna
and RF communication possibilities. In [20], the authors proposed the illustration of figure 7.2, a cluster-
based implementation where the communication in the cluster is based on wired communication and the
intercluster communication is based on wireless.

7.2.2 Challenges and opportunities
Several challenges come along with the WiNoC approach. First, a wireless interface is very costly in
terms of power consumption and area. In [19], the authors claim that the RF part occupies 0.4 mm2 at 65
nm technology. According to [64], at 22 nm, it is possible to expect a 0.14 mm2 footprint for the antenna.
In [15], a cluster is composed of 9 RISC-V processors, and occupies a surface of 1.48 mm2 at 22 nm
technology, leading to an average surface of 0.16 mm2 per core. The size of the antenna at 22 nm is thus
similar to the size of a single core. Solutions planning one antenna per core thus double the area of the
chip. One antenna per cluster at 22 nm would lead to a reasonable 10%area overhead.

Another difficulty is the passage from the digital world to the analog world for transmission, and vice-
versa for reception. For instance, in [20], an Orthogonal Frequency Division Multiplexing (OFDM)-based
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Figure 7.1 – Illustration of the WiNoC
adopted in [19]

Figure 7.2 – Illustration of the WiNoC adopted in [20]

transceiver is used for inter-cluster communication, which needs to go through an FFT (Fast Fourier
Transform) step. The time needed to go through the steps should be carefully compared with the time in
the wired domain. It is clear that for one-hop communications, the wireless path is less interesting. For
long distance communications, the wireless approach should be considered.

Wireless communications are studied for enhancing cache coherence in shared memory multicore pro-
cessors, for invalidation-based directory cache coherence protocol [19] or snooping based protocols [20].
Invalidate protocols are the option opted in today’s wired-based multicore processors. But thanks to its
natural broadcast capabilities, wireless communications could be the interesting means to implement
efficient write update protocols, weakly studied in the wired domain. Indeed, in a write update protocol,
all writes to a shared cache line must be broadcasted, consuming high bandwidth in the wired domain [95],
but naturally supported in wireless.

Lastly, application mapping is an important aspect of WiNoC based multi-core platform, especially in
the case of cluster-based architecture with mixed wired/wireless communications, when the two paths
are possible. The challenge is to fully make use of the available bandwidth. Applications have different
profiles and varying communication requirements regarding broadcast and unicast communications. The
communicating tasks in the application need to be mapped close to one another to reduce long distance
communication. Dynamic behaviours of applications further raise the challenge.

7.3 Computing in network

Finding the ideal meeting point between software models and hardware implementations
is a recurring issue since the early days of computer engineering. The software community
can provide nice abstractions and formalisms that are not suited for hardware implementation.
On the other side, the hardware community can provide very efficient and dedicated hardware
components that are difficult to efficiently program because of a shallow abstraction model.
The good-old combination between the processor and Von Neumann architecture with the
imperative programming model is smashing into pieces because of memory reasons and
energy efficiency drops, especially for machine learning applications. The perspective is
to tackle both problems and finally propose a new holistic software/hardware model by
integrating processing capabilities all along the path from the main memory to the processor.
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Compute the data on its way in the network on chip.
Computing in network

7.3.1 Trends
Assigning a processor to compute a low number of very simple and basic operations is extremely inefficient
from an energy point of view. Consider an example of a simple arithmetic operation like an addition. It
requires 2 read memory accesses (to load the two operands) and one write access (to store the result).
This represents 3 memory accesses for a single, simple arithmetic operation. In a current many-core
architecture interconnected through a network-on-chip (NoC), the data needs to take a long path from the
main memory to the cores: AXI Fabric, DMA (Direct Memory Access), NoC Router, L2 cache, L1 cache.

To avoid the incessant transfers of data, an idea, quite old but topical, is to perform the calculations
where the data is located: in the memory. In the example of a simple addition, it would certainly be more
relevant and less expensive to “bring the computation into memory”. There are two types of approach:
1) Near-Memory Computing (NMC), 2) In-Memory Computing (IMC). Near memory computing (NMC)
consists of adding computing capacities (typically processors) as close as possible to the main memory
of the computer, thus bypassing the hierarchy of caches, and limiting its numerous data transfers [63].
In-Memory Computing (IMC) goes even further by integrating computing capabilities directly into the
memory technology [84]. The two approaches, Near-memory Computing and In-Memory Computing, find
many obstacles for an effective implementation. From the technological aspects of physical integration
up to the application programming interface available to the programmer, all layers of the system are
impacted: memory technology (DRAM or NVM), interconnection architecture, programmability (virtual
addresses, languages, models), not to talk about the associated tool chains.

The idea of data-stream processing is to integrate very simple processing elements inside the routers of
the network on chip to compute on the data as long as it comes before transferring it to the next router [29,
49, 96]. In [96], the processing part embedded in the routers is actually limited to multiplication with pre-
loaded constants and addition, which is typically needed for filters in digital signal processing. The authors
focus on an FPGA implementation, and do not study the execution time of an application. In [49], the
authors designed a NoC with computing capabilities inside the routers. This very interesting architectural
idea allows for 6× speed-up for the considered linear algebra kernels. The main limitation of this approach
is a need for transforming (i.e. rewriting) the applications in order to express a producer-consumer data
model. We believe that the dataflow approach naturally follows this pattern, and this direction is also
explored in [29]. The authors use a KPN model of computation and claim a speed-up of 5× for a single
task. [49] and [29] are the only two works that are close to the idea of this project, and we believe there is a
wide unexplored area around this concept, including the model of computations, the model of architecture,
the memory model, and compilation and computer-aided design (CAD) tools. Moreover, none of these
papers discuss energy results whereas such a solution should have a major impact.

Several other approaches distort the routers to implement interesting functionalities [39, 40, 58]. In [39]
and [40], the authors use the buffers of the routers to keep the evicted data as much as possible inside the
many-core chip, avoiding thus the expensive off-chip transfers. The authors claim an average speed-up of
7% to 12% but do not discuss the impact on the energy. In [58], the authors use the routers to implement a
TLB (Translation Look-aside Buffer), the component involved in the translation of a virtual address to the
physical address. The authors are more interested in plugging processors that do not embed TLB rather
than the impact on the memory transfers or the energy.

Some processing capabilities have also been integrated into a DMA [80]. The reconfigurability is
actually limited as the component supports four operating modes, which is usually referred in the literature
as a multi-mode component. This approach is also questionable from an implementation point of view
since a DMA component manages data transfers but the data does not travel through the DMA, but rather
through the interconnection network. The DMA supervises the transfer between two existing components,
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deals with addresses of the data but not the values of the data. In this project, we intend to go further by
designing truly programmable components, driven by the needs of the application, inside the different
components involved in data transfer: DRAM controller, DMA, and routers.

7.3.2 Challenges and proposals
Architectural challenge

Figure 7.3 shows a typical many-core architecture based on a NoC and the long path that the data needs to
go through before being processed. The figure also shows the connection with the main memory, which is
typically designed based on another technology that the many-core architecture and lies in another chip.
The red links that connects the two chips are very high energy and time consuming. Reducing as much as
possible the transfers between the two chips lead to high energy gains, and caches inside the many-core
chip contribute to the gains.

The architectural proposition is to embed some computing capabilities all along the path between the
main memory and the processor. The challenge to be taken up in such an approach is to add the new
processing capabilities without degrading the performance of the original functionality of the routers. The
performance of the NoC is critical, and degrading its original performance is unacceptable. The area
overhead and frequency should be carefully monitored. A trade-off between the area footprint, power
consumption, and utilisation rate of the component is expected. A clock gating technique is foreseen to
manage the power, which is not considered in previous works [29, 49]. The design space to explore also
includes the programmability feature of the component. In [49], an ordered instruction buffer is used to
store the instruction of the operations to perform on the data. The instructions are provided by a Central
Packet Manager, a global controller of the platform. In [96], the instruction is directly embedded inside
the packet of the data, which limits the number of operations that can be executed.

Figure 7.4 shows the same figure as figure 7.3 with the proposed added processing capabilities. These
new capabilities will allow to pre-process or post-process some data while it’s travelling between the main
memory and the processor, possibly also through the caches of other tiles. The processing capabilities
shall be based on a very simple programmable or reconfigurable architecture such as a CGRA.

Programming challenge

The challenge is to seemlessly programme this kind of architecture. Figure 7.5 illustrates the architecture
supporting computing in network programmed from a dataflow application. The network of actors shown
is actually a very little subset of the Squeezenet application, a deep neural network for computer vision,
designed for small networks and lower number of parameters, while achieving the same level of accuracy
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than bigger networks.
A representative example in the figure is the Fork actor, which is usually responsible for (naively and

inefficiently) replicating data from a producer to several consumers, leading to numerous memory transfers
with no computations. Some dataflow models of computation like PAFG (passive-active flow graph) [44]
allows designers to express such a behaviour much more efficiently and opens the way to design tools and
methods for a consistent hardware/software model. Following a relevantly scheduled data stream, the
convolution layer can be efficiently mapped on the processor.

Another representative example is the maxPool actor, which keeps the maximum value over a set of
values. Finding the maximum value is a simple comparison from a computation point of view, and is
a typical case of lots of memory accesses for a very few computations. Furthermore, the if-condition
leads to branches that are poorly compatible with processor pipelines. This maxPool actor is also known
as a “reduction”, as the output produces only one value among N. But the tremendous amount of data
to manage makes this simple step a memory bottleneck. For instance, the first layer of maxPool can
reach an amount of several megabytes, far beyond the capacities of the L1 or L2 caches. But the reduced
data, after finding the maximum value drops down to hundreds of kilobytes, which can fit in the cache.
The challenge is to be able to seamlessly map these kinds of computation into the NoC router when the
processor commits the results of the convolution layers.





8. Closing chapter

This document presented eleven years of teaching and research activities since I was hired as associate
professor at Université de Bretagne-Sud. The first part of the document presented my CV, my teaching
activity, and a summary of my scientific contributions, along with contributions to the research operation.
The second part presented my research organised around three main areas. The research perspectives are
presented in the third part of the document.

The document continues with the acronyms used throughout the description of my activities, and the
references cited. Three appendixes are added at the end of the document, giving an emphasis on one
contribution per research area.
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Acronymes

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
BB Basic Block
CAD Computer-Aided Design
CAL CAL Actor Language
CDFG Control Data Flow Graph
CFG Control Flow Graph
CGRA Coarse Grained Reconfigurable Architecture
CMOS Complementary Metal Oxide Semiconductor
CMP Chip Multi-Processors
CP Constraint Programming
CPU Central Processing Unit
CSP Constraint Satisfaction Problem
DAG Directed Acyclic Graph
DDR Double Data Rate
DFT Data Flow Tree
DLP Data Level Parallelism
DMA Direct Memory Access
DPN Dataflow Process Network
DSP Digital Signal Processor
DRAM Dynamic Random Access Memory
DSL Domain Specific Language
DSML Domain Specific Modeling Language
FIFO First In First Out
FPGA Field Programmable Gate Array
FPS Frames Per Second
GA Genetic Algorithm
GPP General Purpose Processor
GPU Graphics Processing Unit
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136 Acronymes

GRT Global RunTime
HLS High Level Synthesis
ILP Integer Linear Programming
ILP Instruction Level Parallelism
IP Intellectual Property
IR Intermediate Representation
ISA Instruction Set Architecture
ITE If-Then-Else
KPN Kahn Process Network
LE Logic Element
LLVM Low Level Virtual Machine
LRT Local RunTime
LUT Look-Up Table
MIMD Multiple Instruction Multiple Data
MISD Multiple Instruction Single Data
MMU Memory Management Unit
MoC Model of Computation
MPPA Multi-Purpose Processor Array
MPSoC Multi-Processor System on Chip
NI Network Interface
NoC Network on Chip
NUMA Non Uniform Memory Access
ORCC Open RVC-CAL Compiler
PE Processing Element
PiSDF Parameterized and Interfaced Synchronous Dataflow
PREESM Parallel and Real-time Embedded Executives Scheduling Method
QEA Quantum-inspired Evolutionary Algorithm
RISC Reduced Instruction Set Processor
RTL Register Transfer Level
RVC Reconfigurable Video Coding
SA Simulated Annealing
SAT Boolean satisfiability
SDF Synchronous DataFlow
SHA Secure Hash Algorithm
SIMD Single Instruction Multiple Data
SISD Single Instruction Single Data
S-LAM System Level Architectural Model
SMP Symmetric MultiProcessor

Symmetric shared-Memory Processors
SMT Simultaneous MultiThreading
SMT Satisfiability Modulo Theories
SPM Scratch Pad Memory
SRAM Static Random Access Memory
TCDM Tightly Coupled Data Memory
TLM Transaction Level Modeling
TLP Task Level Parallelism
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VLIW Very Long Instruction Word
WiNoC Wireless Network on Chip
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Abstract—In this paper we give a fresh look to Coarse Grained
Reconfigurable Arrays (CGRAs) as ultra-low power accelera-
tors for near-sensor processing. We present a general-purpose
Integrated Programmable-Array accelerator (IPA) exploiting a
novel architecture, execution model, and compilation flow for
application mapping that can handle kernels containing complex
control flow, without the significant energy overhead incurred
by state of the art predication approaches. To optimize the per-
formance and energy efficiency, we explore the IPA architecture
with special focus on shared memory access, with the help of the
flexible compilation flow presented in this paper. We achieve a
maximum energy gain of 2×, and performance gain of 1.33× and
1.8× compared with state of the art partial and full predication
techniques, respectively. The proposed accelerator achieves an av-
erage energy efficiency of 1617 MOPS/mW operating at 100MHz,
0.6V in 28nm UTBB FD-SOI technology, over a wide range of
near-sensor processing kernels, leading to an improvement up
to 18×, with an average of 9.23× (as well as a speed-up up to
20.3×, with an average of 9.7×) compared to a core specialized
for ultra-low power near-sensor processing.

Index Terms—CGRA, compilation, control flow, CDFG, ultra-
low power accelerator, computer architecture

I. INTRODUCTION

DUE to the increasing complexity of near-sensor data
analytics algorithms, low power embedded applications

such as Wireless Sensor Networks (WSN), Internet of Things
(IoT), and wearable sensors combine the requirement of high
performance and extreme energy efficiency in a mW power
envelope [2]. While traditional ultra-low power sensor process-
ing circuits rely on hardwired Application Specific Integrated
Circuit (ASIC) architectures [12], near-threshold parallel com-
puting is emerging as a promising solution [47]. Even though
this approach provides maximum flexibility, a dominating
majority of the power consumed during processing is linked
to the typical overheads of instruction processors [16], such
as instruction fetching and decoding, control and data-path
pipeline overheads (up to 40%), load/store overhead (up to
30%). In this work, we make significant step forward in
parallel near-threshold computing toward the goal of achieving
the energy efficiency of application-specific data-paths, by
exploiting the Coarse Grain Reconfigurable Array (CGRA)

architectural template, and revisiting it to fit within an ultra-
low power (mW) power envelope.

CGRAs have been intensely investigated in the past for
applications with power consumption profiles ranging from
mobile (hundreds of mW) [11] to high performance (hun-
dreds of W) [34]. In this paper, we focus on a CGRA
architecture in the mW range (and below). Very few CGRA
architectures have been pushed in this ultra-low power mission
profile [36] [48] [13]. Our CGRA is designed to work as an
accelerator of an ultra-low power PULP processor cluster [47],
sharing L1 memory with the processors. Hence, another major
challenge in this context is achieving efficient L1 memory
sharing [47]. To reduce memory access contention, it is
necessary to have enough banks in the shared memory. On
the other hand, the number of ports into the multi-banked
shared-L1 memory logarithmic interconnect must be tightly
constrained to avoid significant area and power overheads [44].

To cope with the ultra-low power profile and memory
sharing challenges we build upon the Integrate Programmable-
Array accelerator (IPA) concept proposed in [10] involv-
ing a multi-bank Tightly Coupled Data Memory (TCDM)
coupled with a flexible and configurable memory hierarchy
for data storage. As shown in Fig. 1, from an architectural
viewpoint, point-to-point data communication between pro-
cessing elements (PEs) during kernel execution, represents a
key advantage over energy-hungry data sharing over shared
memory that is required when using a traditional processor-
cluster architecture for parallel processing. The IPA cluster
performs a lower number of memory operations on the sample
program presented in the Fig. 1(c), which in turn gives and
energy improvement of 1.3× over the clustered multi-core
architecture, which performs data sharing through the TCDM.
In this comparison, we even ignore the barrier synchronization
overheads in the many-core cluster for the sake of simplicity.

The IPA approach allows to significantly reduce the pressure
on L1 memory, and hence the complexity of the interconnect
between the PEs and the memory banks, since it requires a
smaller number of banks to achieve low contention [47]. On
the other hand, as opposed to clustered multi-core architec-
tures, where data-exchange among cores is managed through
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Figure 1: (a) Cluster of processors; (b) Cluster with IPA
accelerator (c) Sample program running in both clusters; (d)
Energy consumption comparison between the two clusters

shared data structures and OpenMP parallel constructs, in
CGRAs the compiler must take care of data-exchange among
PEs, exploiting as much as possible point-to-point connections
among PEs to minimize accesses to the shared memory.

Another major compiler challenge towards achieving high
energy efficiency in CGRAs is the management of loop-carried
data dependencies and control dependencies. State of the art
compilers [37] [19] [40] [6] for CGRAs deal only with the
straight-line code sequence (basic block) of the innermost loop
of a kernel. In case of conditional present in the innermost
loop, the compilers use predication [45] techniques to convert
the control flows into data flow structures. Indeed, these
compilers can only generate code to execute a single loop, as
a set of pipelined stages is repeatedly executed up to a certain
number (loop boundary / number of pipelined stages)
specified by the compiler. In case of nested loops, only the
innermost loop is accelerated using a CGRA, leaving the
outer loops for the host processor. However, this approach
requires several offloads by the host, which implies addi-
tional memory-mapped I/O operations for synchronization and
communication with the CGRA. Hence, it causes significant
overhead, especially when the innermost loop has a very small
number of iterations, which is a typical scenario for near-
sensor processing applications [50].

On the other hand, large CGRA architectures for high
performance computing have frequently resorted to predication
techniques to expose parallelism across control dependencies,
such as conditionals [45] [5]. Unfortunately, predication leads
to waste of resources and it is hard to justify in an extremely
power and area constrained scenario [52]. In this paper, we
address the above challenges by proposing a novel compilation
flow tailored for our ultra-low power IPA architecture. This
flow enables the execution of multiple loops and conditionals
starting from ANSI C code, relying on the energy efficient
register allocation approach presented in [8].

In a nutshell, this paper contributes to the two critical
aspects of energy-efficient application mapping onto CGRAs.
First, we carry out an architectural exploration, based on
the IPA proposed in [10], for optimizing performance and

energy efficiency. The IPA features full support for condi-
tional operations, exploits the internal registers of the PEs
for intermediate data exchange and relies on a multi-bank
TCDM only for accesses to input/output buffers, significantly
improving energy efficiency. Second, we describe a complete
compilation flow to map kernels with multiple loop nests
and conditionals onto the IPA. The flow helps releasing the
host processor from performing the computation of the outer
loops, significantly improving performance of the IPA. It also
achieves high energy efficiency by minimizing the number of
memory operations exploiting the features of the architecture.

To quantify the efficiency of IPA architecture and compila-
tion flow, we compare the performance and energy consump-
tion with the state of the art predication methods running on
the IPA. Experimental results on a benchmark set of control
intensive kernels show that the register allocation approach
achieves a maximum of 1.33× (with minimum of 1.04×
and average of 1.13×) and 1.8× (with minimum of 1.37×
and average of 1.59×) performance gain compared to partial
predication and full predication techniques. For what concerns
shared-L1 memory access optimization, our exploration shows
that a banking factor of 0.5 (i.e. 8 LSUs, 4 TCDM banks)
provides the optimal configuration in terms of performance
and energy for a IPA configuration with 4x4 PEs. Moreover,
the IPA features a very regular control and data-path structure,
which is suitable for fine-grained power management. We
exploit this architectural regularity to design a fine-grained
clock gating mechanism, which turns into an average 2×
energy efficiency boost with respect to the non-clock-gated
IPA. Results show that the IPA achieves a maximum speed
up of 20.3×, with an average of 9.7× compared to one or1k
processor [17]1, with an area ratio of just 1.6×. The average
energy efficiency achieved by the IPA operating at 0.6V is
1617 MOPS/mW, which is up to 18× and on average 9.23×
better than what is achieved by the processor.

The rest of this paper is organized as follows. In Section II,
the background and related work are discussed. In section III,
the target architecture, memory hierarchy and the execution
model are described. Section IV focuses on presenting the
full compilation flow, with the support of required definitions,
and models. Section V presents the implementation and exper-
imental results. Finally, the paper is concluded in Section VI.

II. BACKGROUND AND RELATED WORK

Much research has been done to evaluate the performance,
power, and cost of CGRAs [11]. In this paper, we focus on the
energy efficiency aspects of both architecture and compiler.

A. Architecture

While targeting low power execution, data and context
management is of utmost importance. Integration of CGRAs
as accelerators with the data and instruction memory has seen
several solutions over the past years [11].

In many low-power targeted CGRAs [3][39][48][23], mem-
ory operations are managed by the host processor. Among

1This processor is optimized for low power execution in the context of near
threshold near-sensor processing
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these architectures, Ultra-Low-Power Samsung Reconfigurable
Processor (ULP-SRP) and Cool Mega Array (CMA) operate
in ultra-low-power (up to 3 mW) range. In these architectures,
PEs can only access the data once prearranged in the shared
register file by the processor. For an energy efficient implemen-
tation, the main challenge for these designs is to balance the
performance of the data distribution managed by the CPU, and
the computation in the PE array. However, in several cases, the
computational performance of the PE array is compromised by
the CPU, due to large synchronization overheads. For example,
in ADRES [3] the power overhead of the VLIW processor used
to handle the data memory access is up to 20%. In CMA [39]
the host CPU feeds the data into the PEs through a shared fetch
register (FR) file. This is very inefficient in terms of flexibility.
The key feature of this architecture is the possibility to apply
independent DVFS [51] or body biasing [36] to balance array
and controlling processor parameters to adjust performance
and bandwidth requirements of the applications. The highest
reported energy efficiency for CMA is 743 MOPS/mW on 8-
bit kernels, not considering the overhead of the controlling
processor, which is not reported. With respect to this work,
which only deals with DFG described with a customized lan-
guage, we target 32-bit data and application kernels described
in C language, which are mapped onto the array using an end-
to-end C-to-CGRA compilation flow.

In architectures such as, MorphoSys [49], RSPA[24], Smart-
Cell [29], PipeRench [18], SIMD-CGRA [15], load-store
operations are managed explicitly by the PEs. Data elements
in these architectures are stored in a shared memory with one
memory port per PE row. The main disadvantages of such
data access architecture are: (a) lots of contention between
the PEs on the same row to access the memory banks, and
(b) expensive data exchange between rows through complex
interconnect networks within the array. With respect to these
architectures, our approach minimizes contention by exploiting
a multi-banked shared memory with word-level interleaving.
In this way data-exchange among tiles can be performed
either through the much simpler point-to-point communication
infrastructure or fully flexible shared TCDM.

NASA’s Reconfigurable Data-Path Processor (RDPP) [13],
and Field Programmable Processor Array (FPPA) [14] are
targeted for low-power stream data processing for spacecrafts.
These architectures rely on control switching [13] of data
streams, and synchronous data flow computational model
avoiding investment on memories and control. On the contrary,
the IPA is tailored to achieve energy-efficient near sensor
processing of data with workloads very different from the
stream data processing.

Table I summarizes an overview of the jobs managed
by CGRA and the host processor for different architectural
approaches. Acceleration of the kernels involves memory op-
erations, innermost loop computation, outer loop computation,
offload and synchronization with the CPU. As shown in
the table, IPA manages to execute both the innermost and
outer loops, and the memory operations of a kernel imposing
least communication and memory operation overhead while
synchronizing with the CPU execution.

With respect to these state of the art reconfigurable ar-

rays and array of processors, this paper introduces a highly
energy efficient, general-purpose IPA accelerator where PEs
have random access to the local memory, and execute full
control and data flow of kernels on the array starting from a
generic ANSI C representation of applications [8]. This paper
also focuses on the architectural exploration of the proposed
IPA accelerator [10], with the goal to determine the optimal
configuration of number of LSUs and number of banks for
the shared L1 memory. Moreover, we employ a fine-grained
power management architecture to eliminate dynamic power
consumption of idle tiles during kernels execution which
provides 2× improvement of energy efficiency, on average.
The globally synchronized execution model, low cost but full-
flexible programmability, tightly coupled data memory organi-
zation, and fine-grained power management architecture define
the suitability of the proposed architecture as an accelerator
for ultra-low power embedded computing platforms.

B. Compilation

To map the loops, state of the art compilers for CGRA
mostly rely on software pipelining [19] [37] [40]. This ap-
proach can manage to map the innermost loop body in a
pipelined manner. On the other hand, for the outer loops,
CPU must initiate each iteration in the CGRA, which causes
significant overhead in the synchronization between the CGRA
and CPU execution. Liu et al in [31] pinpointed this issue and
proposed to map maximum of two levels of loops using poly-
hedral transformation on the loops. However, this approach
is not generic as it cannot scale to an arbitrary number of
loops. Some approaches [30] [27] use loop unrolling for the
kernels. The basic assumption for these implementations is
that the innermost loops trip count is not large. Hence, the
solutions end up doing partial unroll of the innermost loops.
The outer loops remain to be executed by the host processor.
As most of the proposed compilers handle innermost loop of

Table I: Comparison between different architectural ap-
proaches

References [3][39][48]
[14][13]
[38][35]

[31] [49][24]
[18][7]

IPA
This
paper

Memory ops CPU CGRA CPU CGRA
Innermost loop CGRA CGRA CGRA CGRA
Outer loop CPU CPU CGRA CGRA
Offload + Sync CPU CPU CPU CPU
Overhead

Table II: Comparison between different approaches to manage
control flow in CGRA

Techniques Conditionals Loops
Balanced Imbalanced Single Nested

Partial
predication [5]

√ √ × ×
Full predication [1]

√ √ × ×
State based
full predication [21]

√ √ × ×
Dual issue
single execution [20]

√ × × ×
TLIA [32]

√ √ √ ×
Software
pipelining [37] × × √ ×
Loop unrolling [27] × × √

NA
Register allocation [8]

√ √ √ √
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the kernels, they mostly bank upon the partial predication [5]
and full predication [1] techniques to map the conditionals
inside the loop body.

Partial predication maps instructions of both if-part and else-
part on different PEs. If both the if-part and the else-part
update the same variable, the result is computed by selecting
the output from the path that must have been executed based
on the evaluation of the branch condition. This technique
increases the utilization of the PEs, at the cost of higher energy
consumption due to execution of both paths in a conditional.
Unlike partial predication, in full predication all instructions
are predicated. Instructions on each path of a control flow,
which are sequentially configured onto PEs, will be executed
if the predicate value of the instruction is similar with the flag
in the PEs. Hence, the instructions in the false path do not get
executed. The sequential arrangement of the paths degrades
the latency and energy efficiency of this technique.

Full predication is upgraded in state based full predica-
tion [21]. This scheme prevents the wasted instruction is-
sues from false conditional path by introducing sleep and
awake mechanisms, but fails to improve performance. Dual
issue scheme [20] targets energy efficiency by issuing two
instructions to a PE simultaneously, one from the if-path,
another from the else-path. In this mechanism, the latency
remains similar to that of the partial predication with improved
energy efficiency. However, this approach is too restrictive,
as far as imbalanced and nested conditionals are concerned.
To map nested, imbalanced conditionals and single loop onto
CGRA, the triggered long instruction set architecture (TLIA)
is presented in [32]. This approach merges all the conditionals
present in kernels into triggered instructions, and creates
instruction pool for each triggered instruction. As the depth
of the nested conditionals increases the performance of this
approach decreases. As far as the loop nests are concerned,
the TLIA approach reaches bottleneck to accommodate the
large set of triggered instructions into the limited set of PEs.

The compilation flow we propose, uses the register alloca-
tion approach [8] to map CDFGs onto the CGRA. This allows
to map both loops and conditionals of any depth. In our case,
the only limitation in the mapping of kernels onto the CGRA
is given by the size of instruction memory of the PEs, and not
by the structure of the application (i.e. number of loops, and
branches). Also, one can increase the size of code segment to
be executed in the CGRA as much as possible, minimizing the
control and synchronization overheads with the core, which
is not negligible in the other approaches. Table II presents
a comprehensive comparison between several techniques to
manage control flow in the kernels. Software pipelining and
loop unrolling are mostly used for the mapping of the inner-
most loop, while branches inside the loop are managed by one
of the described predication techniques. Hence, the existing
compilers use combined solutions for branches and innermost
loop mapping. This requires exhaustive exploration to find out
the most suitable combination for the target architecture and
application domain. On the contrary, our proposed compilation
flow can handle both conditionals and loops efficiently.
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Figure 2: Integrated Programmable-Array Accelerator

III. IPA ARCHITECTURE AND EXECUTION MODEL

In this section, we present the Integrated Programmable-
Array Accelerator (IPA) architecture, supporting standalone
execution of complete control and data flow applications.

A. Integrated Programmable-Array Accelerator (IPA)

IPA is the integration of a PE Array (PEA) and a tightly
coupled data memory (TCDM) through a low-latency loga-
rithmic interconnect. An IPA controller loads the context into
the PEs from a pre-loaded Global Context Memory (GCM).
Fig. 2 shows the organization of the IPA.

The PEA consists of a parametric number of PEs connected
with a 2-dimensional tours network. The PE Array follows the
multiple instruction, multiple data (MIMD) model of compu-
tation. All PEs operate on different set of instructions. A bus
based interconnect network is implemented to load instructions
and constants (i.e. context) from the GCM into the PEs,
whereas the torus network is used during execution phase for
low power data communication between the PEs. The details
of the load context protocol are discussed in [10]. Targeting
low power execution, the instruction set architecture [10] was
designed from scratch resulting 20-bit long instruction. We
took the advantage of the visibility of the micro-architecture to
the compiler and moved the immediate data to constant register
file in the PEs (discussed later) which eases the compression
of the instruction, imposing low pressure on the decoder.

Fig. 3 describes the components of a PE. The Load Store
Unit (LSU) is optional for the PEs (the optimal number of
LSU is a parameter studied in this paper). Two operands (IN0
and IN1) define the inputs of each PE. The input sources are
the neighbouring PEs and the register file. A 32-bit ALU and a
16-bit× 16-bit→ 32-bit multiplier are employed in this block.
The Constant Register File (CRF) stores the immediate values
of the instructions, while the Regular Register File (RRF)
and Output Register (OPR) store the temporary variables.
The Controller fetches the instructions from the Instruction
Register File (IRF). If the decoded instruction is a jump, the
target address of the jump is stored in the Jump Register (JR).
The cjump (conditional jump) instruction contains two target
addresses. The true path is evaluated in the JR by the Boolean
“OR” of the Condition Register (CR) bits of the PEs.
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Figure 3: Components of the PE

The TCDM acts as L1 memory for the IPA. Featuring
a number of ports equal to the number of memory banks,
the TCDM provides concurrent access to different memory
locations. The TCDM is interfaced with the LSUs of the PE
array through a low latency, logarithmic interconnect [44],
implementing a word level interleaving scheme to minimize
access contention.

B. Power Management Unit (PMU)

To reduce dynamic power consumption in idle mode, each
PE contains a tiny Power Management Unit (PMU) which
clock gates the PEs when idle. An idle condition for a PE
arises from three situations: (i) Unused PE: when a PE is
not used during mapping; (ii) Load Store stall: In case of
TCDM banking conflict the PMU generates a global stall,
which is broadcast to all the PEs. Until the global stall is
resolved, all the PEs are clock gated by their corresponding
PMUs. LSUs are placed in the global clock region (Fig. 3)
to avoid deadlocks; (iii) Multiple NOP operations: a NOP
instruction contains the number of successive NOPs. When
a NOP instruction is fetched, the decoder loads this number
into a counter within the PMU. The clockgate en remains low
until the count reaches zero. The counter gets halted when it
encounters a global stall and resumes the count after the stall
is resolved, synchronizing the execution flow among PEs.

Due to the fine-grained nature of the power management,
more aggressive power gating is not implemented, since it
imposes large area penalty without remarkable benefits. The
leakage power of each tile is so small that it does not change
notably the energy efficiency when rest of the system is active.

C. Overview of the execution model

After compiling a kernel (see section IV), the compiler
generates the assembly and the addresses for the input and
output data in the local shared memory. The assembler takes
the assembly and the Instruction Set Architecture (ISA) of the
IPA, to generate the context (i.e. the program to be stored into
the IRF) for each PE, which is pre-loaded in the GCM. The
context contains instructions and constants for each PE in the
array. Prior to the execution start, the context is loaded into the

int example(int  a[4], int b[4])

{

int i;

for(i=0; i<4; i++)

{

     b[i] = a[i] + i;

}

}

PE1 PE2 PE3 PE4PE1 PE2 PE3 PE4

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

Cycle 1

Cycle 2

Cycle 3

PE1: ld r2, 0

PE2: ld r2, 4

PE3: ld r2, 8

PE4: ld r2, 16

PE1: add r2, r2, 0

PE2: add r2, r2, 1

PE3: add r2, r2, 2

PE4: add r2, r2, 3
PE1: str r2, 20

PE2: str r2, 24

PE3: str r2, 28

PE4: str r2, 32

Cycle 1

Cycle 2

Cycle 3

(a) 

(b) 

(c)

(d) 

time

(e)

        ldr     r3, [r7, #12]

        add     r3, r3, #1

        str     r3, [r7, #12]

.L2: ldr     r3, [r7, #12]

        cmp     r3, #3

        ite     gt

        movgt   r3, #0

        movle   r3, #1

        uxtb    r3, r3

        cmp     r3, #0

        bne     .L3

example(int*, int*):

        push    {r7}

        sub     sp, sp, #20

        add     r7, sp, #0

        str     r0, [r7, #4]

        str     r1, [r7, #0]

        mov     r3, #0

        str     r3, [r7, #12]

        b       .L2
.L3: ldr     r3, [r7, #12]

        lsl     r3, r3, #2

        ldr     r2, [r7, #0]

        adds    r3, r2, r3

        ldr     r2, [r7, #12]

        lsl     r2, r2, #2

        ldr     r1, [r7, #4]

        adds    r2, r1, r2

        ldr     r1, [r2, #0]

        ldr     r2, [r7, #12]

        adds    r2, r1, r2

        str     r2, [r3, #0]

        ldr     r3, [r7, #12]

        add     r3, r3, #1

        str     r3, [r7, #12]

.L2: ldr     r3, [r7, #12]

        cmp     r3, #3

        ite     gt

        movgt   r3, #0

        movle   r3, #1

        uxtb    r3, r3

        cmp     r3, #0

        bne     .L3

example(int*, int*):

        push    {r7}

        sub     sp, sp, #20

        add     r7, sp, #0

        str     r0, [r7, #4]

        str     r1, [r7, #0]

        mov     r3, #0

        str     r3, [r7, #12]

        b       .L2
.L3: ldr     r3, [r7, #12]

        lsl     r3, r3, #2

        ldr     r2, [r7, #0]

        adds    r3, r2, r3

        ldr     r2, [r7, #12]

        lsl     r2, r2, #2

        ldr     r1, [r7, #4]

        adds    r2, r1, r2

        ldr     r1, [r2, #0]

        ldr     r2, [r7, #12]

        adds    r2, r1, r2

        str     r2, [r3, #0]

Initialization

Loop control

Compute and 

store

Figure 4: (a) Sample program (b) Execution in CPU (c)
Example PEA (d) Execution in IPA (e) Execution metrics in
CPU and IPA

corresponding IRF and CRF of the PEs. We assume that the
code fits in the local memory. Larger execution contexts can
be handled using the IPA controller and overlays. Details on
this process are omitted for the sake of conciseness2. In each
cycle, the PEs fetch 20-bit instruction from the local IRF. The
immediate data are shifted to constant register file which eases
the compression of the instruction. Hence, the pressure on the
decoder is quite low.

Fig. 4 shows the execution of a sample program in a
traditional CPU and the IPA. The total number of instructions
for the sample program in the CPU and the IPA are 31 and 12
respectively. Also, the IPA achieves 28× performance gain
compared to that of the CPU while executing the sample
program. The decrease in the number of instructions in the
IPA in this specific example is mainly due to the much lower
number of memory operations and the fact that the small loop
can be completely unrolled without code size blown-up.

IV. COMPILATION FLOW

The compilation generates a mapping of the program for the
corresponding PEA. This section presents the models adopted
for the architecture and the application and the full compilation
flow to map control and data flow onto the PEA. We also
discuss the register allocation approach to exploit the register
files of the PEs while preserving control-carried dependencies.

A. Architecture, application model and homomorphism

The compiler takes two inputs. The first is the PEA model,
and the second is the ANSI-C code of the application. The
PEA is modelled by a bipartite directed graph with two types
of nodes: operators and registers. Timing is implicitly repre-
sented by connections between registers and operators, which

2Note that the context loading and setup cost are accounted for in the
experimental results.
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is referred to as the time extended model of the PEA [19].
Two types of operator nodes are defined for the PEAs. The
first type is the computing operator (functional unit (FU) nodes
in Fig. 5(a)) that represents the physical implementation of an
arithmetic and logical operation (+, ×, -, OR, AND) and/or
memory access (e.g. load/store). The second type of operator
is the memorization operator (circular nodes in Fig. 5(b)). It is
associated with the output register and represents the operation
of keeping a value in a local register explicitly.

Fig. 5 (a) shows a sample PEA with two PEs connected
by a torus network. Each PE has 3 registers in the distributed
register file, and a single output register. Fig. 5 (b) represents
the time extended model of the PEA shown in Fig. 5 (a). In this
model, one can vary the interconnect network, the distribution
and size of the register file, and the type of the PE, to explore
different PEA architectures.

The application is modelled as a control and data flow
graph (CDFG). Supporting control flow gives the opportunity
to accelerate a kernel without any intervention of the host
processor. A CDFG is depicted as G = (V,E) where V is the
set of basic blocks and E ⊆ V ×V is the set of directed edges
representing control flow. A Basic Block (BB) is represented
as a data flow graph (DFG) or BB = (D,O,A) where D is
the set of data nodes, O is the set of operation nodes and A
is the set of arcs representing dependencies. The control flow
from one basic block to another is supported with jump (jmp)
and conditional jump (cjmp) instructions.

Fig. 6 presents a sample program and the corresponding
CDFG. In this figure, basic blocks are represented as blue
rectangles. The flow from one basic block to another basic
block is represented by black arrows and managed by simple
branch (jmp) operation. The true and false paths of a condi-
tional managed by cjmp, are shown by solid and dashed arrows
respectively. The execution flow of the CDFG is presented as:
BB 1→ BB 2→ (either BB 3 or BB 8) if BB3→ BB 4
→ (either BB 5 or BB 6) → BB 7 → BB 2 · · · . In order
to maintain the execution flow, it is necessary to synchronize
all the PEs in the array, to the execution of the same basic
block. When the execution flow jumps from one basic block
to another, all the PEs in the PEA must be synchronized
to the current basic block execution. This allows to use all
the PEs concurrently or sequentially, while executing a single
basic block. Dually, several basic blocks can use the same
PE. The synchronized execution allows the compiler to map
several operations and data onto the same PE. Next, we present
the homomorphism of the CDFG model with the application
model, to support different stages in the compilation flow.

The basic blocks in the CDFG, presented in Fig. 5(c), are
composed of data nodes, operation nodes, and data depen-
dencies. Three equivalences between the basic block DFGs
and PEA model nodes are defined: (1) data and registers; (2)
computation and computing operators; (3) data dependences
and connection between the time extended PE components.
As the two models are homomorphic, the mapping of a DFG
onto the PEA is therefore a problem equivalent to finding a
DFG in the PEA graph.

Fig. 5(b) represents a possible mapping of the sample CDFG
in Fig. 5(c) onto the PEA in Fig. 5(a) over 4 cycles. Following,

X5 b

MULMUL

X3 X4a

MULMUL

X5 c

ADDADD

X3 X4

From previous cycle
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X4
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c
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MUL
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X5
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ADD

c
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X4
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c X5

SUB

p[i]

N[i] X2 M[i] X1

X3

c

c

p[i]

STR

LD

LD LD

(e)(d) 

X5 b

MUL

X3 X4a

MUL

X5 c

ADD

X3 X4

X5 X3 X4

STR

From previous cycle

X4

X4

X4

X5

X5

X5

X5 c

LD

X3 X4X4 X5

X5 X3 X4

LT

X4 X5

MUL MUL

b a

ADD

c

LT

X4

ADD

c X5

SUB

p[i]

N[i] X2 M[i] X1

X3

c

c

p[i]

STR

LD

LD LD

X5 c

LD

X3 X4X4 X5

X5 X3 X4p[i]

ADD/SUB

X4 X5

(e)(d) 

MUL MUL

b a

ADD

c

LT

X4

ADD

c X5

SUB

p[i]

(b)

N[i] X2 M[i] X1

X3

c

c

p[i]

(c)

X5 b

MUL

X3a

MUL

X5 c c

ADD

X3

X5 c X3

LT

X5 p[i]

ADD/SUB

X3c

From previous cycle

X4

X4

X4

X4

(a)

FUFU FUFU
RFRF

PE1 PE2

FU FU
RFRF

PE1 PE2

Figure 5: (a) A 2×1 PEA with 3 registers in RF and one output
register (b) CDFG model (c) A possible mapping of (b) onto
the PEA over 4 cycles using register allocation based approach.
(d) The transformed CDFG of (b) for systematic load store
based approach (e) A possible mapping of (d) onto the PEA
over 7 cycles using systematic load store based approach

we discuss the full compilation flow for CDFG mapping.

B. The compilation flow step by step
Fig. 7 shows a schematic representation of the compilation

flow for mapping CDFGs onto the PEA. A CDFG mapping is
a set of DFG mappings that are compatible with each other. To
be compatible, the DFGs must access the data that remain in
the PEs (see symbol variables (see definition IV.1)) in the same
location. This is ensured by the register allocation approach.

To map the basic blocks, we rely on the highly scalable
and efficient mapping approach for DFGs described in [9].
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Figure 6: Sample program and corresponding CDFG

CGRA 

model

GCC plugin

CDFG

Scheduling & 

placement

Solutions?

Last Node?
Stochastic 

pruning

Changes?

Graph 

transformation

Update 

constraints

BB selection

Last DFG?

Assembly of 

the CDFG 

mapping

yes

Assembler
Context word 

(Instruction + 

constant)

yes

yes

no

no

yes

no

no

Backtracking 
Mappings

C 

Code

CGRA 

ISA

Figure 7: Compilation flow

The compilation flow proposed in this paper, extends the DFG
mapping to accommodate the register allocation approach to
map a full CDFG onto the PE array. As presented in Fig. 7, the
full compilation flow is composed of six interdependent stages:
BB selection, backtracking, update constraints, scheduling and
placement, graph transformation and a stochastic pruning.
These tasks are described in detail in the next sub-sections.

1) Scheduling and placement: The proposed approach uses
a backward traversal [43] list scheduling algorithm to schedule
the DFG of each basic block. It relies on a heuristic in which
the schedulable operations are listed by priority order. In
backward traversal, a node is schedulable if and only if all its
children are already scheduled. The priority of nodes depends
on their mobility [42]. It is possible to process memorization
nodes and conventional nodes differently. Also, when several
nodes have the same mobility, their respective number of

1

1

1'

2 3 4 2 3 4

1

2 3 4

1

1

MOV

2 3 4

Memorization 

node

Assignment 

node

(a) Sample DFG (b) Operation 

splitting

(c) Memorization 

routing

(d) Assignment 

Routing

Figure 8: Graph transformation

successors is used as a second priority criterion. The higher
is the number of successors, the higher the priority is. Indeed,
a node with a higher number of successors is more difficult
to map due to the routing constraint coming from the limited
amount of connections between tiles. Thus, scheduling these
nodes at first usually allows to decrease the application’s
latency [43]. As soon as the highest priority node has been
defined, the compiler tries to find a placement in the PE array
model. If a placement solution exists, the node is scheduled
else the graph is transformed.

The proposed placement uses an incremental version of
Levi’s algorithm [28]. The proposed algorithm adds the newly
scheduled operation node and its associated data node to the
sub-graph composed of already scheduled and placed nodes.
Only the previous set of solutions that have been kept, location
constraints (RLC (see definition IV.3) and TLC (see defini-
tion IV.2)) are used to find every possibility to add this couple
of nodes without considering the non-yet scheduled nodes. If
no solution is found, there is absolutely no possibility to bind
this couple in all the previous partial solutions because Levi’s
algorithm provides a complete exploration of the solution
space. In that case, graph transformation is required.

2) Graph transformation: DFG is transformed dynamically
when no binding solution is found. The three graph transfor-
mations are used in our compilation flow (Fig. 8).
• Operation splitting duplicates an operation node by keep-

ing its same inputs and distributing output edges to reduce
the number of successors of the original operation node.

• Memorization routing adds a memorization node and its
associated data node to delay one operation and to keep
data dependencies

• Assignment routing adds an assignment node (mov op-
eration node) to increase the physical distance between
the source and the sink of symbol variables by one. Due
to TLC or RLC, when the physical distance between
the source and sink of the symbol variable becomes
more than one, the compiler dynamically adds one mov
operation node to the DFG.

3) Stochastic pruning: The exactness of the placement
approach leads to very large number of partial mappings.
And it grows exponentially if not pruned. Hence, we use the
stochastic pruning approach described in [9].

4) Basic block selection: Once all the nodes of the basic
block have been scheduled and bound, the compiler selects one
mapping among the several mappings generated, and selects
the next basic block to be mapped. As discussed previously,
the data integrity must be maintained over several basic block
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mappings. The data mapping problem for CDFG mapping is
now described before detailing the basic block selection step.

4.a: Definition and problem formulation
Data in an application is separated into two categories. (i)

The standard input and output data (mostly the array inputs
and outputs) are mapped as memory operands. The inputs and
outputs are allotted by load-store operations. In our sample
program in Fig. 6, m, n are the input arrays and p is the
output array, which are managed by load and store operations.
(ii) The internal variables of a program are mapped onto
the registers of the processing elements, and managed by the
register allocation based approach [8]. Following, we introduce
several definitions concerning register allocation approach:

Definition IV.1. [Symbol Variables and location constraints]
In compilation, the recurring variables (repeatedly written
and read) are managed in local register files of the PEs to
avoid multiple access of local memory. The recurring variables
which have occurrences in multiple basic blocks need special
attention since the integrity of these variables must be kept
intact throughout the mapping process for different basic
blocks. These variables are defined as Symbol variables. The
register locations for the symbol variables are referred to as
location constraints. For instance, variable c in the CDFG
(Fig. 6) is written in BB 3, and read in BB 4, BB 5 and
BB 6. The register location for c must be same for all the
mappings of these basic blocks. Similarly, X1, X2, X3, X4,
X5, i, a and b must be location constrained. In the rest of
the paper, the locations for such symbol variables are denoted
with an overline, as variable name.

Depending on the order of the basic blocks mapped (i.e.
traversing the CDFG), some location constrains may be reused
in the mapping process or may be kept reserved for later use.
These two types of location constraints are now detailed.

Definition IV.2. [Target Location Constraints (TLC)] We
consider a scenario scenario 1, where BB 6 is mapped first,
BB 3 is mapped next and so on. While mapping BB 6,
variables c and X5 are placed at c̄ and X5. While mapping
BB 3, c and X5 which are already mapped in BB 6, must
be considered because c will be used to map c in BB 3. In
other words, the placement of the variables in the registers
must be respected. Also, a, b, X1 and X2 must not reuse
X5. Otherwise, X5 will have wrong value when executing
BB 6. Let’s consider scenario 2 with another order of basic
blocks mapped, like first BB 3 and then BB6 and so on.
In this order of mapping, it is necessary to pass c and X5
from BB 3 to BB 6 mapping. To keep c and X5 alive in
BB 6 both c and X5 must be used in mapping of BB 6.
The placement or binding information which are passed from
the mapping of one basic block to the mapping of the other
basic block is referred to as constraint (e.g. scenario 1: c and
X5 passed from BB 6 to BB 3). The location constraints
related to the data that are used within a basic block mapping
phase (e.g. scenario 1: c in BB 3 mapping) are referred to
as target location constraints (TLC).

Definition IV.3. [Reserved Location Constraints (RLC)] As
we have seen in the previous examples, some of the location
constraints must be reserved in the mapping of basic blocks for

the sake of data integrity. To keep the symbol variables alive, it
is necessary to exclude the memory elements from placement.
Accordingly, these resources will not override while mapping
the basic block (e.g. scenario 1: X5 in BB 3 mapping).
These are referred to as reserved location constraints (RLC).

4.b: Selection approach
If the number of RLC and TLC is high, mapping becomes

complex. As TLC will force to use resources, and RLC will
force to exclude resources from placement. Hence, the primary
goal for our compiler is to minimize the number of TLCs and
RLCs by choosing an efficient traversal of the CDFG.

The basic solution to deal with the symbol variables is to
introduce memory operations. The symbol variables are stored
in the memory where they are written and are loaded from the
memory when read. In the rest of the paper this basic solution
is referred to as systematic load-store based approach. This
method is presented in the Fig. 5(d). For the symbol variable
c in the CDFG shown in Fig. 5(c), it stores variable c in the
memory in BB 3, and loads in BB 4, BB 5 and BB 6.
Fig. 5 refers to the mapping of the transformed CDFG in this
approach. This basic solution reduces the complexity of the
mapping as there are no constraints to be dealt with while
mapping the basic block. However, it requires a huge memory
bandwidth, significantly reducing the energy efficiency of the
system. As the compilation is built on register allocation
approach, the symbol variables are stored in the register files
when they are produced, and retrieved from the registers when
used as operands. While doing so, the effects of the constraints
in mapping are unavoidable. RLC restrict the use of some
resources, and TLC force to reuse some resources. If there is
only a single TLC in a basic block mapping, it becomes easier
to start mapping from the known place. But several TLC and
RLC complicates the mapping. Forced and blocked placements
by these constraints induce extra routing effort (dynamically
transforming the graph in compilation).

As the selection of the basic blocks during the mapping
is important, we compare the number of TLC and RLC for
several CDFG traversal in this section. Table III presents the
comparison between the number of different constraints in
the forward and backward CDFG traversal for Breadth First
Search (BFS) and Depth First Search (DFS) strategies. As the
trend is similar for other kernels we present the results for
sobel and seperable 2D filter only. The numbers show that
DFS strategy generates a lower number of RLC than the BFS
in both forward and backward traversal. The number of RLC
for sobel filter is much higher in BFS due to several sequential
loops present in the kernel. The numbers of TLC are similar in
both the strategies for different traversal mechanisms. Also for
the different search strategies forward and backward traversal
perform similarly. The DFS strategy is thus used.

5) Backtracking: For a basic block to be mapped (except
the first one), this stage selects the first map out of several
mappings generated for the last basic block mapped. The
selected map updates the constraints for the current basic
block mapping. If the compiler is unable to find a mapping
solution for the basic block due to the constraints, this stage
selects the second map from previous basic block to update
the constraints and restart mapping of the new basic block.



9

Table III: Comparison of RLC and TLC numbers between different CDFG traversal

Kernels
Forward Traversal Backward Traversal

Breadth First Search DepthFirst Search Breadth First Search DepthFirst Search
# RLC # TLC # RLC # TLC # RLC # TLC # RLC # TLC

Seperable 2D Filter 22 35 17 35 22 35 17 35
sobel Filter 64 85 35 85 69 85 35 85

The process continues up to the first basic block mapped until
a valid mapping is found for the current basic block.

6) Update Constraints: In this stage, the compiler creates
and updates a constraint database. This database is used
in the placement algorithm, to place the data nodes and
corresponding operation nodes according to the TLC and
RLC. When mapping a current basic block, new variables
cannot be placed in RLCs, while TLCs are used to map
the symbol variables. If the symbol variables in the current
basic block mapping are not present in the constraint database,
then the variables are mapped using available resources, and
the respective placements are used to update the constraint
database prior to mapping of the next basic block. Once all the
basic blocks are mapped the compiler generates the assembly
containing a single map for the whole CDFG.

C. Assembler

Assembler holds the key to differentiate from the PEA
model used in the compiler and the actual hardware implemen-
tation. The assembler takes the ASCII text assembly generated
by the compiler and the instruction set architecture (ISA) and
produces machine code, which can then be used to configure
the PEs in the hardware. The ISA provides the added hardware
information to the PEA model used in the compiler. As an
example, the PEs in the IPA use an added constant register file
(CRF) for storing the constants. The introduction of the CRF in
the PEA model minimizes the instruction length by storing the
immediates of the instruction into the internal registers, giving
a low power solution. That is how the assembler separates the
model used in the compiler from the actual implementation of
the hardware. One can define their own PEA model and derive
an architecture from that for actual implementation. Thus, the
compiler can be used for a wide range of PEA variations.

V. EXPERIMENTAL RESULTS

This section analyses the implementation results, providing
performance, area, and energy consumption on several signal
processing kernels. We carry out experiments to show the
efficiency of the register allocation approach compared to
the state of the art predication techniques, considering a
wide range of control dominated kernels. An architectural
exploration is also performed to find the optimal configuration
in terms of number of load-store units and TCDM banks
for an IPA with 4x4 PE array. Performance, area and energy
efficiency are also compared with that of the or1k CPU [26].

A. Implementation Results

This section describes the implementation results for the
IPA accelerator, providing a comparison with the or1k CPU.
Both the designs were synthesized with Synopsys design
compiler 2014.09-SP4 using STMicroelectronics 28nm UTBB

FD-SOI technology libraries. Synopsys PrimePower 2013.12-
SP3 was used for timing and power analysis at the supply
of 0.6V, 25◦C temperature, in typical process conditions.
The cycle information was achieved simulating the RTL with
Mentor Questa Sim-64 10.5c. The code-sizes (instructions
and constants) of all the kernels used in the experiments
are presented in Table IV. In the following, the exploration
considers a 4×4 array with 16 PEs, each one including 20×32-
bit instruction register file, a 32×8-bit regular register file and
32×16-bit constant register file, as shown in Table V. For area
comparison, the CPU includes 32kB of data memory, 4kB of
instruction memory, and 1 kB of instruction cache, which is
equivalent to the design parameters of the IPA. The cost of
the IRF is considered both in size and power. Thanks to the
simpler architecture and tiny processing elements, at the target
operating voltage of 0.6V, the IPA runs at 100 MHz while or1k
can only reach 45MHz in the same operating point.

Fig. 9 shows the area of the whole array and memory with
different numbers of TCDM banks, where the total amount
of memory is kept constant at 32kB. As the area of LSUs is
negligible if compared to the overall system area, we show the
area results for the worst-case scenario with maximum number
of LSUs present in the PE array (i.e. 16). As shown in Fig. 9,
in the minimal configuration with 4 TCDM banks, the IPA area
is dominated by that of the array (60%) and by the local data
storage (35%), while the remaining 5% is consumed by the
interconnect. Increasing the number of TCDM banks imposes
a significant area overhead on the size of the interconnect.
Also, the area of the TCDM increases as well due to the higher
area/bit of small SRAM cuts necessary to implement 32kB
of memory with several banks. Hence, it is fundamental to
properly balance the number of LSUs and TCDM banks with
the bandwidth requirements of applications.

B. Comparison of the proposed compilation approach with
state of the art predication techniques

To evaluate the efficiency of the register allocation approach
to handle the control flow we compare the execution of six
control intensive kernels compared to the state of the art
partial and full predication techniques. The results, presented
in Table VI, show that the register based approach achieves
a maximum of 1.33× (with minimum of 1.04× and average
of 1.13×) and 1.8× (with minimum of 1.37× and average
of 1.59×) performance gain compared to partial predication
and full predication techniques. The maximum gain achieved
over existing methods are highlighted in bold in the table. The
smaller number of executed instructions allows the register al-
location approach to outperform the partial and full predication
techniques by an average of 1.54× (with min 1.35×, max 2×)
and 1.71× (with min 1.44×, max 2×) respectively in terms of
energy efficiency. The table also presents a comparison with
respect to or1k CPU and C64 DSP processor [22] from TI. The
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Table IV: Code size and the maximum depth of loop nests for the different kernels in the IPA

Kernels FIR MatM Conv Sep
Filter

Non Sep
Filter FFT DC

Filter cordic sobel gcd sad deblock manh-
dist

Code size (KB) 0.568 0.704 0.704 0.720 0.784 0.696 1.16 0.496 0.336 1.448 0.600 2.016 0.624
Max depth loop nests 2 3 3 3 4 2 2 1 1 1 2 3 2

Table V: Specifications of memories used in the IPA
Name Type Size
Global context memory SRAM 8KB
TCDM SRAM 32KB
Instruction Register File (IRF) Registers 0.08KB
Regular register file (RRF) Registers 0.032KB
Constant register fie(CRF) Registers 0.128KB
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Figure 9: Synthesized area of IPA for different number of
TCDM banks

register allocation approach achieves a maximum of 3.94×,
15.8× performance gain and 7.52×, 32.77× energy gain over
or1k and C64 processor, respectively. Due to the abundance of
branches in these kernels, the DSP processor performs worst.
Finally, we compare with the basic systematic load-store (SLS)
based approach for control mapping. It is depicted from the
Table VI that the register allocation approach performs an
average of 1.16× (with max of 1.46×, min of 1.05×) better
than the SLS based approach, while gaining an average of
1.31× energy efficiency with a maximum gain of 2× and
minimum gain of 1.07×.

C. Architectural Exploration

This section provides an extensive comparison with respect
to the CPU computational model and an evaluation of the
performance of the IPA while varying the number of LSUs
and TCDM banks, a critical parameter for data-hungry accel-
erators. To carry out the exploration, we selected 7 compute
intensive signal processing kernels featuring a high bandwidth
towards the TCDM.

1) Performance: Generally speaking, the IPA performs well
when significant parallelism can be extracted from a kernel.
This concept is well shown in Fig. 10, which compares the
performance of the IPA with that of the or1k processor on a
matrix multiplication when growing the size of the matrices
from 2×2 to 32×32. It is possible to note that the increase
of the kernel size increases the average utilization of the
PEs as well, which in turn helps to enhance performance. It
also demonstrates that the initial configuration time, which is
dominant for small kernel size is well amortized for larger
kernels, further contributing to improve performance.
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Figure 10: Performance of IPA executing matrix multiplication
of different size

Fig. 11 presents the total execution time (clock cycles)
of seven compute-intensive kernels. The execution time is
normalized with respect to that of or1k processor, where
the kernels are compiled with -O3 optimization flag. The
IPA outperforms the CPU by up to 20.3×, with an average
speed-up of 9.7×. A quantitative performance comparison
with respect to the CPU is presented in Table VII. The table
presents the configuration and execution cycles in the IPA
for different kernels. It also presents the average utilization
of PEs over the total execution period and total number of
instructions executed in the IPA. The instruction count includes
the instructions that are replicated on all the active PEs for
keeping the PE in synch across conditionals and jumps. It
also includes NOPs that are used when some PEs are stalled
due to manipulation of index variables. However, during NOP
execution PEs are clock gated and do not consume dynamic
power. The IPA achieves a maximum of 18× and an average
of 9.23× energy gain over the CPU.

To establish the impact of the memory bandwidth over
performance and energy efficiency, we vary the number of
LSUs in the PE array from 4 to 16 and the number of
TCDM banks from 4 to 32. The number of LSUs defines
the available bandwidth from the TCDM to the array, while
increasing the number of TCDM banks reduces the banking
conflict probability, improving performance. To perform the
exploration without any bias towards configurations, the in-
nermost loops of the kernels are unrolled to get a maximum
of 16 load-store operations in one cycle (as the highest number
of LSUs considered is 16, in the exploration). In Fig. 11, each
configuration is represented as a 2-dimensional number, where
the first one represents the number of LSUs, and the second
one represents the number of TCDM banks.

Results show that, as opposed to tightly coupled clusters of
processors which require a banking factor of 2 (i.e. number
of TCDM banks is twice the number of cores) [47], IPA
performance is almost insensitive to the number of TCDM
banks, and a configuration with a banking factor of 0.5 is
sufficient to minimize the impact of contention on the shared
memory banks for most applications. Indeed, while the typical
processor execution requires several load/store operations for
variables exceeding the size of the register file, direct CDFG
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Table VI: Performance comparison between the register allocation approach and the state of the art approaches

Kernels #
Loops

#
Condi
tionals

Performance (cycles) Energy (µJ)
reg

based
SLS based

[9][43]
partial

[5]
full
[1] CPU C64

DSP
reg

based
SLS based

[9][43]
partial

[5]
full
[1] CPU C64

DSP
cordic 1 2 328 408 396 542 513 286 0.001 0.002 0.002 0.002 0.004 0.002
sobel 4 11 179 617 262 282 188 253 245 583 454 028 669 794 0.736 1.102 1 1.058 3.531 5.656
gcd 1 1 55 312 58 596 73 747 92 852 67 545 92 184 0.227 0.246 0.392 0.4 0.525 0.778
sad 2 1 15 962 16 824 16 573 28 776 62 932 252 193 0.065 0.071 0.088 0.124 0.489 2.13
deblocking 5 7 472 258 495 081 518 722 727 243 834 683 1 310 220 1.936 2.079 2.754 3.134 6.492 11.064
manh-dist 1 1 6 288 6 826 6 738 9 522 15 394 55 317 0.026 0.029 0.036 0.041 0.12 0.467

max gain 1.46× 1.33× 1.8× 3.94× 15.8× 2× 2× 2× 7.52× 32.77×

Table VII: Overall instructions executed and energy consumption in IPA vs CPU
Kernels FIR MatM (16×16) Convolution SepFilter NonSepFilter FFT DC Filter

IPA

Configuration cycles 71 88 88 90 98 87 145
Execution cycles 6 071 11 940 56 241 827 685 1 852 382 8 076 4 748
Total number
of instructions executed 44 294 110 946 531 815 7 349 843 17 486 486 76 310 28 868

Active PEs/cycle (%) 46.1 58.5 59.2 55.5 59 59.7 39.5
Energy (µJ) 0.022 0.043 0.202 2.98 6.669 0.032 0.017
Energy (µJ) in
non-clock-gated IPA 0.047 0.077 0.479 7.152 11.704 0.063 0.045

CPU Execution cycles 37 677 96 256 616 805 5 982 730 9 084 101 164 480 50 085
Energy (µJ) 0.132 0.337 2.159 20.94 31.794 0.576 0.175
Speed-up 6.21x 8.06x 10.97x 7.23x 4.9x 20.3x 10.55x
Energy-gain 6x 7.84x 10.69x 7.03x 4.77x 18x 10.29x
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Figure 11: Latency performance in different configurations ([#LSUs][#TCDM Banks])

mapping on the IPA does not add extra memory operations
except primary inputs and outputs, since all the temporary
variables are stored in the register file of the PEs. Moreover,
flexible point-to-point connections within the array allow to
efficiently exchange data among PEs, further reducing the
pressure on the TCDM. This concept is well explained in
Fig. 4 and Fig. 1, which show the typical mapping of an
application on the IPA.

2) Energy Efficiency: Fig. 12 shows the average power con-
sumption breakdown for various configurations of the IPA. As
expected, the PE array is the most dominant power consumer
for all the configurations. The configurations with 4 TCDM
banks achieve the best power advantages in each group, as
increasing the number of banks increases the interconnect
complexity, causing timing pressure on the array, which in-
creases the sizing of the cells, hence power consumption.

Fig. 13 shows the average energy efficiency (MOPS/mW)
for different configurations. Million Operations Per Second
(MOPS) only considers the active PEs during execution, since
a PE may be idle due to TCDM bank access conflicts,
consecutive NOPs, or not mapped (not used in the application
execution). Executions with high number of active PEs/cycle
achieve large MOPS. As depicted in Fig. 13, for different
number of LSUs in the PE array, the configuration with
4 TCDM banks achieves the best energy efficiency, since
this is the least number of banks in each configuration, it
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Figure 12: Average power breakdown in different configura-
tions ([#LSUs][#TCDM Banks])

causes lowest power consumption. At the same time, the active
number of PEs/cycle does not get significantly impacted due
to the least memory access policy of the compilation. As a
result, the best efficiency is achieved at 2306 MOPS/mW for
matrix multiplication, in a configuration with 8 LSUs and 4
TCDM banks. The minimum energy efficiency is achieved at
1112 MOPS/mW for separable filter in a configuration with 4
LSUs and 16 TCDM banks.

To investigate the power gain in the fine-grained clock
gating we present the energy consumption of the clock gated
IPA and the non clock gated IPA in Table VII. The clock gated
design consumes an average of 2× less power compared to that
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Figure 13: Average energy efficiency for different configura-
tions ([#LSUs][#TCDM Banks])

of the non clock gated design. Due to the regular architecture
of the PE array, fine grained power management is much more
suitable to implement than a processor. Moreover, thanks to the
efficient execution of CDFG on the array, the smaller energy
required to execute an instruction in the IPA with respect to
a CPU (5.6E-07 µJ vs 3.49E-06 µJ), and the effectiveness of
the fine-grained power management the IPA outperforms the
or1k CPU’s energy efficiency by up to 18× (Table VII). The
energy per instruction execution in the IPA is much less than
that of the CPU due to its simple instruction set architecture.
Also, the lower number of memory operations executed in the
IPA helps reducing on the average energy consumption.

D. Comparison with low-power CGRA architectures

Table VIII shows a comparison with existing CGRAs. For
some papers, energy efficiency figures could not be extracted,
so ’NA’ is put in the corresponding cell. The energy efficiency
figures are provided both in the original manufacturing tech-
nology node and scaled to the 28nm technology, according to
the power scaling factor C∗V 2. C and V represent the effective
capacitance (approximated with the channel length of the
technology) and the supply voltage of the designs, normalized
to the nominal parameters of the 28nm technology node. It
should be noted that this simplified scaling factor penalizes
our design, since deep-submicron technologies such as 28nm,
where the load capacitance of gates is typically dominated by
wires require much more buffering than mature technology
nodes, which penalizes energy efficiency. Nevertheless, IPA
provides leading-edge energy efficiency, surpassing by more
than one order of magnitude other architectures featuring a
C based mapping flow. The driving factors for this gain are
(a) architectural simplicity with less complex interconnect net-
work, (b) low power instruction processing, (c) lowest possible
number of memory operations in application execution, (d)
fine grained power management architecture. Compared to
ultra-low power targets (that fit in a power envelope of 3mW),
the IPA presents a better energy efficiency than [33] and [36]
for which information could be extracted from the papers. One
distinguishing characteristic of the proposed accelerator is the
flexible execution model capable of implementing CDFG on
the array without the need of a host processor, coupled with
a fully automated mapping flow that starts from a plain ANSI
C description of the application. Moreover, the memory archi-
tecture, based on a shared multi-banked TCDM enables easy
integration within ultra-low-power tightly coupled clusters

of processors, while fine-grained power management allows
improving energy efficiency by up to 2×. The average power
consumption of the IPA is 0.49mW, which is compatible with
the ultra-low power target.

VI. CONCLUSION

This work presents an ultra-low power coarse grained
reconfigurable array accelerator for near-sensor processing.
The proposed Integrated Programmable-Array (IPA) is a 2-
D array of NxN processing elements (a 4x4 configuration
is used in this paper), and leverages a multi-banked tightly
coupled data memory for data storage, to ease the integration
in clustered multi-core architectures. We present a compilation
flow targeting the mapping of both control and data flow
portions of kernels onto the array of processing elements,
aimed at reducing the pressure on the shared data memory,
along with an architectural exploration of the memory ar-
chitecture parameters. The results of the exploration show
that a configuration of the IPA with 8 load-store units and 4
TCDM banks achieves the optimal performance/energy trade-
off featuring an average speed-up of 9.7× (max 20.3×, min
4.9×) compared to a general-purpose processor. With respect
to state of the art partial and full predication techniques, the
proposed compilation flow improves performance by 1.54×
on average (min 1.35×, max 2×) and energy efficiency by
1.71× on average (min 1.44×, max 2×). Thanks to the opti-
mized architecture and mapping flow, the proposed accelerator
achieves an average energy efficiency of 1617 MOPS/mW over
a wide range of sensor signal processing kernels, surpassing
other CGRA architectures featuring a C based mapping flow
by more than one order of magnitude.
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Abstract—Multiprocessor system-on-chip (MPSoC) platforms
have been emerging as the main solution to cope with pro-
cessor frequency ceiling and power density issues while still
improving performances. Then, network-on-chip (NoC) has been
adopted to provide the increasing number of processors with
the required communication bandwidth as well as with the
necessary flexibility. Video processing and streaming applications
are adopting dynamic dataflow model of computation as the need
for high performance parallel computing is growing. Dataflow
applications executed on modern MPSoC-based architectures are
becoming increasingly dynamic and more data-dependent. Dif-
ferent tasks execute concurrently with significant modifications
in their workloads and resource demanding over time depending
on the input data. Hence, adopting any static or offline dynamic
scheduling for mapping tasks will not cope with the computation
variations. This paper introduces an original run-time mapping
algorithm based on the Move Based (MB) method targeting
a dedicated heterogeneous NoC-based MPSoC architecture to
achieve workload balancing and optimized communication traf-
fic. The performance of the proposed algorithm is verified by
conducting cycle-accurate SystemC simulations of the adopted
NoC implementing a real MPEG4-SP decoder. The obtained
results reveal the effectiveness of our proposed algorithm. For
various real-life videos, the proposed algorithm systematically
succeeded to enhance significantly the performance.

Index Terms—NoC, Heterogeneous MPSoC, Run-time remap-
ping, Dataflow actor, Move-based algorithm.

I. INTRODUCTION

MULTIPROCESSOR system-on-chip (MPSoC) plat-
forms have been emerging as the main solution to cope

with processor frequency ceiling and power density issues
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while still improving performances. Then, networks-on-chip
(NoCs) have been adopted to provide the increasing number
of processors with the required communication bandwidth as
well as with the necessary flexibility. But legacy code for
instance, mainly designed for single or few core architectures,
does not scale well with manycore architectures and fails
to fully benefit from the available parallelism. However, as
discussed decades ago [1], dataflow programming can address
the limitations of conventional approaches regarding synchro-
nization and shared memory issues. With the rise of massively
parallel architectures, we can reconsider the use of dataflow
programming as a solution to efficiently exploit the resources
of parallel architectures for computing intensive application
domains such as video coding, computer vision, machine
learning and physics simulation for instance.

A dataflow application can be specified as a graph where
nodes, called actors, process data called token(s). The compu-
tational models are based on First-In First-Out (FIFO) buffers
and respect their formalized read and write rules. Each FIFO
holds a set of tokens. Fig. 1(a) illustrates a network of actors,
which exchange tokens through defined FIFO channels [2].
Fig. 1(b) presents an example of a structure of the software
FIFO generated with the tool ORCC [3]. A network of actors
holds specific features that make it different from a generic
task graph. First, an actor is non-preemptive. Once started, an
actor ends its execution. Second, the actor can start if and
only if there are enough tokens as input, and enough space
in the output FIFOs. The FIFOs are considered updated (i.e.
tokens consumed and produced) at the end of the execution of
the actor, establishing a conservative synchronization scheme,
and preventing from any data race.

When the number of actors is larger than the number of
processing elements (PEs), then the main design challenge is
the mapping of actors on the network of PEs. In the case
of static dataflow [4], where the number of tokens produced
and consumed by the actors is known, an optimal solution
can be computed offline [5]. However, an increasing number
of applications cannot be specified with a static graph since
the performance improvement of complex applications usually
lead to context and data-dependent optimizations. This evolu-
tion is, for instance, significant in the domain of video coding.
Dynamic models are then used to express data-dependent
behavior of some applications [6]. Dynamic dataflow is a
useful model of computation (MoC) for handling streaming
data and video processing applications.

As the workload of an actor may change according to the
input data set, adapting the mapping while the application
runs is required to optimize the use of the computing and
communication resources. The mapping problem is known
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as NP-complete. Heuristic methods, for a fast response time,
are thus required to address manycore architectures. Run-
time adaptation relies on system observation, decisions and
configurations. Several previous works have addressed the
problem of task mapping at run-time. In [7], the authors
have proposed a dynamic resource balance algorithm targeting
NoC-based Many-core homogenous platforms to enhance the
system performance by balancing the utilization of on-chip
computing resources and communication resources. In [8],
the authors have introduced a hybrid application mapping
that combines design-time analysis with run-time mapping
in the context of dynamic thermal and reliability-aware re-
source management. Most of the available methods focus
on determining the suitable mapping of tasks before starting
the execution of the application [9], [10], [11], [12], [13],
[14]. The mapping of actors is also an active topic for other
target platforms like Coarse-Grained Reconfigurable Arrays
(CGRA) [15] or Field Programmable Gate Array (FPGA) [16].

This research work addresses the problem of reconfiguring
at run-time and at the application level the mapping of dataflow
actors on heterogeneous processors. In this work, heteroge-
neous means that processors share the same instruction set
architecture (ISA) while having different coprocessors and
different clock domains. The proposed method, which is
called run-time remapping, relies on continuous monitoring
of exact performance metrics such as the computational time
and communication time during real-time execution of the
application. Accordingly, a new mapping of the involved actors
is determined at run-time targeting the enhancement of the
overall performance. This approach is sequentially repeated
while the application is running. The application is neither sus-
pended nor modified. The proposed remapping method meets
with the dynamic behavior of dataflow applications. Static or
offline mapping methods cannot capture the dynamic behavior
and thus may not lead to optimal solutions. Also, on-the-fly
and hybrid mapping methods suffer from a lack of means to
monitor the performance and remap the actors accordingly.
In order to apply the proposed method, the architecture of
NoCs must be augmented to efficiently provide new services
of monitoring performance metrics and remapping the actors,
which are not available in conventional networks.

Adopting the devised remapping method and NoC-based
architecture leads to balancing the workload. The obtained
results show that the adoption of the remapping method
reduces the standard deviations of the computational times
and communication times of involved processors by 38.58%
and 69% respectively. Thus, the variation of the use rate of
processors is reduced compared to running the application
without remapping. In addition, a reduction of 8.6% in the total
execution time has been achieved as well as a reduction of 21%
in the number of packets’ hops is recorded when comparing
to the execution without remapping.

In this paper we introduce three contributions:

• First, we optimize for a NoC-based architecture with het-
erogeneous processors, a new run-time remapping (RR)
algorithm based on the Move Based (MB) method [17],
which allows only one actor to move at a time from one
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(b) Structure of the software FIFO

Fig. 1. Actors and software FIFO Models [2]

processor to another. Our solution is then compared with
state of the art methods for dataflow architectures.

• Second, we present new NoC services that allow to
implement the observation and adaptation mechanisms.

• Finally, we demonstrate our solution with a full im-
plementation of MPEG4-SP, which is available as a
reference of a typical dynamic dataflow application. It is
also complex enough to exhibit data-dependent execution
and communication times. We consider a SystemC packet
cycle-accurate NoC simulator to fully decode reference
videos and demonstrate the effectiveness of the adaptation
mechanism with a real-life dataflow application.

The rest of the paper is organized as follows. Section II
presents the related work. Section III illustrates the adopted
architecture model. Section IV describes the processing flow.
Section V details the conducted experiments and presents the
obtained results. Finally, Section VI concludes the paper.

II. RELATED WORK

The question of mapping parallel applications on multi or
many-core architectures is a very wide problem, with a large
number of dimensions, including the programming model, the
target architecture (homogeneous or heterogeneous, bus-based
or NoC-based, etc.), and the optimization goal (throughput,
execution time, energy, etc.) [18]. The interested reader can
refer to the paper gathering different mapping strategies for
NoC-based architectures [19]. Following the taxonomy pro-
posed in [18], the mapping problem can be solved based on
two main strategies: design-time, and run-time. When solved
at design-time, the mapping is called static since it’s computed
offline and does not change while the application runs. This
approach allows for exact methods to find an optimal solu-
tion [20] [5] [15], but suffers from a lack of flexibility since
it cannot capture the dynamic behavior of some applications.
Moreover, even in the case of deterministic execution times of
actors in a static context, the paper [21] interestingly shows
the difference between the optimal mapping obtained from a
well-formalized problem and the real execution trace, due to
execution variabilities coming from the hardware.

The dynamic workload should be handled using run-time
techniques. The run-time mapping strategies can themselves
be divided into two categories: on-the-fly mapping, or hybrid
mapping. On-the-fly mapping techniques are application- and
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platform-agnostic and solve the problem online. Very simple
and efficient heuristics should be used to shorten the response
time. For NoC-based MPSoCs, various fast heuristics targeting
the reduction of communications under constraints have been
already proposed [22] [23] [24]. These approaches consider
one task per core. Allowing multiple tasks on one core is
considered in [10]. Heuristics are fast but can be far from
optimal solutions, so hybrid approaches have been introduced.
They are based on pre-computed optimal solutions for a set
of cases. The job is split into two phases: (1) at design-
time, a set of solutions is computed, and (2) one solution
is selected at run-time. A wide variety of approaches can
then be cited: based on traces in [25], on priority in [26],
on scenario in [27], on previously identified design points
in [28], or on WCET and scheduling in [29]. None of these
studies demonstrates its efficiency with real video applications
running reference sequences. The proposed real-time mapping
reconfiguration method in [8] requires to suspend the currently
running application and the manager remaps the tasks at run-
time according to scenarios previously defined at design-time
based on the evaluation of multiple mappings, optimizing for
their resource requirements and power consumption. Finally,
a last approach can fall into the family of hybrid mappings,
which considers to recompute partially the mapping problem
at run-time. This is called run-time remapping. The work
presented in this paper follows such an approach for dataflow
applications and leverages design-time analysis profiling re-
sults to find at run-time a first mapping. The application is
then monitored to update the profiling results and a run-time
remapping algorithm runs regularly to check if a new mapping
would be better than the current one.

Among the innumerable papers dealing with task mapping,
we consider run-time methods for dataflow tasks, and have
identified a limited number of solutions. In [30], the mapping
is modeled as a graph partitioning problem, and the problem is
solved at run-time by METIS tool, based on profiling informa-
tion obtained by a first run. Though the migration cost of the
actors is not taken into account, the results are promising and
could be improved if the mapping does not change completely
at each iteration. The approach in [17] allows to successively
refine the mapping according to the dynamic behavior of the
application, by allowing only one actor to move at a time from
one processor to the other. This approach assumes dynamic
dataflow application and the target architecture is composed
of several heterogeneous cores interconnected by a bus or a
NoC. The communication cost is computed based on a rough
analytical model of the interconnection network, with the loss
of accuracy that comes with it, whereas in our work, we
consider profiled values gathered automatically by the system,
with a finer grain down to the link. In [31], the application is
specified with KPN (Kahn Process Network) and the target
architecture is a shared-memory based MPSoC, with also
a model of the communication channel (bus or NoC). The
approach proposes to rely on three main steps: the two usual
design-time preparation and run-time mapping steps plus a
new customization step. The design time step computes a set
of candidates and populates a database. The run-time mapping
initialization derives from the candidates a new initial mapping

for the given workload. Finally, the run-time customization
step incorporates a Scenario-based run-time Task Mapping
(STM) algorithm that is applied to find new mapping of tasks
when the system detects that an objective is unsatisfied. It
first detects the so-called critical task and then identifies why
it misses its objectives: either poor locality or load imbalance.
In case of poor locality, an algorithm that considers the
communication between tasks is used to find a new mapping.
In case of load imbalance, a load balancing strategy based on
computational demands of the tasks is used. This step produces
a new mapping that may move several tasks, which leads to
a (re-)mapping overhead.

When focusing on the small subset of the existing work
around hybrid and run-time (re-)mapping of dataflow appli-
cations on NoC-based architectures, we consider the work
presented in [31] for comparison.

III. ARCHITECTURE MODEL

The target architecture is a heterogeneous Multi-Processor
System on Chip (HMPSoC) containing several different PEs
and shared memories connected with a Network-on-Chip
(NoC). Fig. 2 presents the structure of the adopted NoC-
based architecture. Our method is scalable and without loss
of generality we consider a specific model of architecture
which is required for a data-accurate functional simulation
with a packet-level time accuracy. The target architecture is a
4× 4 mesh-based NoC with 32-bit links that interconnects 28
intellectual property (IP) cores including 15 memory modules,
12 PEs and a processing element that acts as a manager
(MGR). The PEs and memory modules are technologically
independent of the structure of the NoC. They communicate
through the network using a network interface (NI). We
consider a simple NoC model that employs the wormhole
packet switching mode, the deterministic XY routing algo-
rithm, and a flow control policy without virtual channels. The
implemented routers have one buffer of 3 flits per input port
and use distributed arbitration logic (one arbiter per port).
The back-end part of the NI is typical and includes a packet
maker/un-maker, which are used to assemble and disassemble
the packets, and a priority manager to synchronize packet
transmission and reception.

In this work, it is assumed that PE1 imports the incoming
streamed data from an Input buffer and PE12 outputs the
processed data. Fig. 2 illustrates the buffers in order to com-
municate with external systems. Each PE has its local memory.
It is assumed that there are no restrictions to map any MPEG4-
SP application actor to any PE. The used PEs can all work in
parallel according to dataflow firing rules. However, some PEs
are enhanced by hardware accelerators dedicated to certain
functionalities in order to perform them more efficiently. The
shared memories are distributed in memory blocks which have
a unique NI. From an NoC perspective, the novelty is the
introduction of new command packets used as instructions
to manage FIFO accesses, broadcast mapping information,
collect monitoring data, and the transfer of binary codes. In
order to cope with the command packet and associated noti-
fication packet concepts, the NIs implement some additional
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logic modules. The command packets were already proposed
in [32] but only produced by the manager and for a specific
application.

A. Manager

The manager is a PE dedicated to the following five tasks:
(1) map initially the actors on the available PEs, (2) parse
the feedback collected data from all modules (memories and
PEs), (3) apply the run-time remapping algorithm and selects
the actor to be moved (if any), (4) notify the corresponding
PEs (looser, gainer, etc.) about the updated mapping and
(5) manage the transferring of the binary code corresponding
to the moved actor from the shared memory into the cache of
the gainer processor.

B. Processing Elements

The target platform includes twelve PEs. All PEs are
supposed to be able to execute any of the forty-one actors
involved in the MPEG4-SP application. As the number of PEs
is smaller than the number of actors, each PE is considered
to run more than one actor. Hence, an actor scheduler is
required to manage the order of execution of actors. Mainly,
in dataflow applications, all schedulers suffer from inefficient
polling which leads to useless memory accesses when a
scheduling attempt fails. In this work, the well-known round-
robin scheduling technique has been adopted in all PEs. The
actors are given the attempt to be executed in a circular order
without priority. The PE will execute the allocated actor if
there are enough input tokens and enough space in the output
FIFOs as specified in dataflow applications.

Furthermore, some PEs are augmented with hardware accel-
erators in order to perform special functions more efficiently.
In this work, we adopt one of the hardware accelerator specifi-
cation described in previous similar work [17]. Table I shows
the list of accelerators adopted in the simulation platform. In
addition, the PEs have been specified randomly to operate
on different frequencies. Table II shows the randomly chosen
operating frequency of all PEs in terms of the NoC operating
frequency f .

TABLE I
HARDWARE ACCELERATORS USED IN THE SIMULATION PLATFORM

PE ID Accelerated Function Acceleration Ratio
PE3 & PE6 IDCT 1/0.3

PE4 IQ + IAP 1/0.75
PE10 Add 1/0.57
PE11 Interpolation 1/0.4

TABLE II
PROCESSING ELEMENT OPERATING FREQUENCY

PE ID Operating Frequency
PE1, PE12, MGR f
PE2, PE6, PE10 2f
PE3, PE7, PE11 3f

PE4, PE8 4f
PE5, PE9 5f

C. Memory Modules

The tailored platform integrates three types of memory
modules. Each module includes a memory block that returns
the data allocated at its specified address. Since the PEs and
the manager do not recognize the local mapping of stored data
in each memory module and in order to remain compliant with
any available memory, the typical NI is extended to accommo-
date the services for managing the addressing and arranging
the retrieved output bits into flits. These new functionalities
are implemented as additional components in the front-end of
the NI corresponding to each memory module type in order
to be independent of NoC parameters. In the following the
functionalities of each memory type is described.

1) Binary code memory module (BCM): It contains the
binary codes of all actors. The manager sends a specific packet
request to BCM to forward the binary code of the moved actor
to a given PE according to the decision taken after executing
the RR algorithm. A simple module, so-called memory address
mapper (MAM), is integrated into the NI of the BCM in order
to find the correct memory address. For a specific actor, MAM
determines the starting address of the binary code and its
corresponding size based on the actor’s ID and by the means
of simple look-up-tables that include the starting addresses and
the size of the binary codes of all actors. Furthermore, MAM
manages the extraction of data from the memory and delivers
it to the packet maker unit.

2) Mapping/Monitoring information memory module
(MIM): This memory module accommodates twelve memory
blocks. Each block is dedicated to a specific PE and is
supposed to store two types of data. The first type is the
mapping information, which is generated by the manager
and indicates which actors are to be executed by each PE in
addition to their supplementary information about input and
output FIFOs and the reading orders for each input FIFO
(III-D1c). The second type is the monitoring information
(III-D1e), which is collected by the PEs during processing
a specified number of video frames. Storing the monitoring
information overwrites the mapping information, which is not
needed by the PEs anymore.

When a packet holding either mapping or monitoring in-
formation is received, the MIM module first identifies the
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TABLE III
ADDRESSES DETERMINED BY THE MFM-NI CONTROLLER

Packet Type Starting Address Offset
Request/Set writing index FIFOsize 0
Request/Set reading index FIFOsize+ 1 reading order
Reading Request packet Reading address incremented till

Data packet Writing address reaching data size

corresponding PE. Accordingly, it dissembles the packet and
stores the data found in the packet payload into the memory
block assigned to the identified PE.

Moreover, the MIM informs the manager about the avail-
ability of new monitoring information and the corresponding
PE about the availability of new mapping information. To do
so, the MIM sends notification packets (III-D1a) as per the
concept of notifying memory concept demonstrated in [2]. In
addition, the MIM responds to reading requests (III-D1b) sent
from the manager to acquire the stored monitoring information
from the PEs or to get the new mapping information.

3) Multi-FIFO memory module (MFM): This type of mem-
ory module is dedicated to store the data which is either
imported to the system or processed by the PEs. Each MFM
accommodates a specific number of FIFOs. Only one FIFO
is used at once. The inputs of all FIFOs are connected to
the module’s inputs using demultiplexers whereas the FIFOs’
output data ports are multiplexed. This signal is buffered from
the value of FIFO address which is specified in the payload
of the arriving packets (see Fig. 4). The multiplexer and
demultiplexers are added to the adapter in the NI.

Moreover, the MFMs receive the following types of packets:
(1) FIFO Index packet (III-D1f) that aims either to retrieve
or to set the writing and reading indexes, (2) Data Reading
Request packet (III-D1g) that demands to read data from a
specified FIFO and (3) Data packet (III-D2a) that is used to
write data in a specified FIFO.

A simple circuit is integrated into the adapter of the NI in
all MFM modules in order to manage the memory addressing
for all listed-above packet types. It is composed of a simple
controller and two 4-to-1 multiplexers and an adder in order
to generate the appropriate address values to be given to
the MFM FIFOs. After disassembling the arriving packet,
the packet un-maker delivers the packet type and the data
size to the controller. Accordingly, the controller generates
the control signals to configure the two multiplexers, which
are dedicated to select the values of starting address and the
offset as listed in Table III. These two values are then added
to compute the memory address. In addition, the controller
determines the number and type of the required memory
accesses. It incorporates a simple comparator and an address
counter which is incremented for each required access.

D. Packets’ structure

The developed NoC architecture considers two categories
of packets: (1) command packets and (2) data packets.

1) Command packets: Command packets are initiated by
the cores and processed by the NIs of destination nodes. Sev-
eral command packets, described hereafter, have been opted

Number of mapped Actors

Packet header

Information
about the 1st

mapped
Actor

origin / destination / type / time

…

Output0 FIFO ID

Outputm0
FIFO ID

…

Actor0  ID

Input0 ID

…

Inputn0
FIFO ID

Reading order from Input0

Reading order from Inputn0

Output0 FIFO ID

Outputmk
FIFO ID

…

Actork ID

Inputk ID

…
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FIFO ID

Reading order from Input0

Reading order from Inputn0

Information
about the kth
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NTtotal[Sn]
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…

Actor0  Comm Time
Monitoring 
Information
about the 1st
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…

Actor0 Inputn0
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Monitoring 
Information
about the 

arriving tokens

Tav[S1]

NTtotal[S2]

…

Tav[S2]

Fig. 3. Packets structure for mapping (left) and monitoring (right) information

in order to manage FIFO accesses, send mapping information,
collect monitoring data, and manage the transferring of binary
codes.

a) Notification packets (NP): The NPs aim to inform
the PEs that new information is ready to be requested. This
technique is inherited from the notifying memories (NM)
concept presented in [2]. When receiving a NP, the PE will
send a reading request to retrieve the available data at the
corresponding notifying memory. In this work, notification
packets are used either to inform an ordinary PE that new
mapping information is available or to notify the manager that
updated monitoring information has been generated and stored.
The NP has empty payload and aims to trigger the manager
and PEs to request data when it is ready rather than frequent
inefficient polling.

b) Monitoring/Mapping information reading request
packets (MRP): This type of packet is used to request the
information stored in the MIM module as a response to the
NP. It is either generated by the manager to acquire the new
monitoring information sent from a definite PE or by one
of the PEs to get the new mapping information provided by
manager. For both information types, monitoring or mapping
information, the request packet does not include any payload.

c) Mapping information packets (MpIP): The manager
uses a MpIP to inform all involved PEs after determining or
modifying the actor mapping strategy. Its payload includes the
following: (1) the number of actors which are mapped to the
PE, (2) the IDs of the mapped actors, (3) the IDs of the input
and output FIFOs, and (4) the actor reading order in each input
FIFO. Fig. 3 illustrates the structure of the packet holding the
mapping information.

d) Mapping Confirmation packets (MCP): A MCP aims
to inform the manager that the new mapping information is
well received by both the former and the new owner of the
actor. The MCP payload is also empty.

e) Monitoring information packets (MnIP): This type of
packet holds the feedback information needed by the manager
to perform the RR algorithm. Fig. 3 presents the structure of
the monitoring information packet.
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origin / destination / type / time

Reading OrderFIFO Address

Packet header

Packet payload

origin / destination / type / time

Reading OrderFIFO Address

Packet header

Packet payload
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FIFO Address Reading Order New Index Value

Packet header
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Fig. 4. Packet structures for holding reading (top) / writing (middle) index
requests and set index (bottom)

f) FIFO index packets (FIP): The FIPs are designed to
hold the writing indexes or reading indexes of FIFOs. As
mentioned before, DF applications rely on a large number
of requests to memories for firing rule checking. So, these
indexes are used to determine either the number of available
tokens corresponding to each reader actor or the free space in
a FIFO. If data is required to be read from input FIFOs, the
firing rule is satisfied by checking if the number of available
tokens in all input FIFOs is equal or greater than the required
number during computation. Whereas, if data has to be written
to output FIFOs, the firing rule is satisfied by checking if all
output FIFOs have sufficient empty room to accommodate the
produced tokens. Hence, before processing an action, a PE
has to request the reading and/or writing indexes of input and
output FIFOs. When the PE receives the value of demanded
reading/writing index, it will check the satisfaction of the
firing rule. After reading/writing data from/to a FIFO, the
reading/writing index has to be incremented by the size of
the transferred data. The PE, which consumes/produces data,
has to set the new reading/writing index in the targeted FIFO
after reading/writing operation is performed. Accordingly,
four types of packets are utilized: (1) Request read index,
(2) Request write index, (3) Setting read/write index, and
(4) Holding read/write index.

As the FIFO may have several reading indexes correspond-
ing to different reader actors, the PE has to determine the
reading order of the actor and sends it in the payload of the
packet. However, a FIFO has only one writer actor; hence, to
attain the value of its writer index the PE has to send the FIFO
address in the destination memory module. In both packets,
the packet type, given in the packet’s header, is used by the
NI at the destination memory module to decode the request
type. Fig. 4 depicts the structure of the FIP packets holding
the requests of a reading index and writing index.

On the other side, whenever a memory module receives a
request of reading/writing index it will retrieve its value from
the specified FIFO and sends it back to the PE. The NI in
the memory module will assemble a 1-flit payload packet as
shown in Fig. 4.

In order to set the reading/writing index after finalizing the
data transfer operations from/to a FIFO, the PE sends a control
packet that notifies the FIFO about its new reading/writing
index. It includes one flit that contains the FIFO address in the
destination memory module, the reading order of the actor, and
the new value of the reading index. Since the FIFOs have only
one writer actor, the writing packet payload simply includes
the address of the targeted FIFO in the destination memory

origin / destination / type / time 

FIFO Address Reading Address Data Size 

Packet header 

Packet payload 

Fig. 5. The structure of the packets holding the reading requests

origin / destination / type / time 

Gainer ID Actor ID Capacity 

Packet header 

Packet payload 

Fig. 6. Manager command requesting the transfer of the moved actor code

origin / destination / type / time

FIFO Address Writing Address

Data Flit1

Packet header

Packet payload

…

Data Flitn

Fig. 7. The structure of packets carrying processed data

module and the new value of the writing index.
g) Data reading request packets (DRP): Fig. 5 presents

the packet holding the reading request of data from PE to
memory module. Its payload consists of one flit that includes
the address of the FIFO in the destination memory module,
the starting address of reading, and the size of required data.

h) Code transferring packets (CTP): Actor binary codes
are stored in a shared memory. When updating the actor
mapping, the binary code referring to the moved actor should
be transferred from the shared memory to the cache of the
new PE. The manager sends a command of transferring the
binary code in the form of a reading request packet. The sent
request includes the actor ID, the address of the new PE, and
the size of transferred data per packet (see Fig. 6).

2) Data packets: The second category of packets refers to
the ordinary flow of data between PEs and memory modules.
These packets, described hereafter, carry data that is either
processed in a PE and written in a memory module or sent
from a memory module as a response to a PE reading request.

a) Dataflow packets (DFP): The DFPs encompass all
packets transferred between PEs and the FIFOs distributed in
the memory modules. They carry data that is either processed
in a PE and will be stored in a FIFO or sent from a FIFO as a
response to a PE reading request. Fig. 7 presents the structure
of packets carrying processed data in their payloads.

b) Binary code packets (BCP): The BCPs aim to transfer
the binary code from the shared memory to the cache memory
of the new PE. Note that the binary code is divided into sec-
tions of reasonable sizes which are transferred consequently.
The size of the transferred data (payload capacity) is specified
by the manager according to the monitored traffic in the
network and based on the required cache lines to be filled
before launching the actor on the new PE. For example, the
packet including in its payload 64 flits of 32-bitwidth transfers
256 bytes which form 4 lines of L1 cache.

IV. PROCESSING FLOW

A. Initial mapping

Initially, the actors are mapped randomly to the PEs, or can
be mapped using the exact method presented in [20]. FIFOs are
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TABLE IV
PARAMETERS AND VARIABLES USED FOR THE MAPPING ALGORITHM

Parameter Definition
DPN application graph (DPNapp)

|A| Number (Nb) of actors
|F| Nb of FIFO channels
|K| Nb of data packets
|Ic| Nb of input ports of actor Ac

Architecture graph (arch)

|P| Nb of processing elements
|M| Nb of memory modules

Profiling data (profile)

Ri Mean number of firings of actor i
W i Total computation cost of actor i
Csi Instruction code size of actor i

mapped randomly and are approximately equally distributed
on all memory blocks. The manager informs by means of
packets all involved PEs. For each PE in charge of executing
actors, the manager generates and sends its corresponding
mapping information in a separate packet (MpIP). Packets
holding the mapping information are stored in a predefined
location in MIM. Then, the involved PEs are notified to
retrieve their mapping information from the shared memory
using notifying packets. At this stage, the manager waits the
PEs, which are incorporated in processing a specific number of
video frames NF to send their monitoring information. Note
that NF is set originally to a default value and may be changed
dynamically by the manager.

Before receiving the notification packet about initial map-
ping of actors, all PEs are in idle state. Once it receives
the notification packet, the PE sends a request to retrieve
the mapping information which includes IDs of actors to be
executed, IDs of input and output FIFOs for each actor, and
the reading order of each input FIFO. The mapped actors are
scheduled according to the order sent from the manager and
the PE begins to execute them in round-robin manner.

B. Monitoring actor execution

The execution of actors continues until receiving a new
notification packet about changing the mapping information.
All involved PEs monitor their running actors during the
processing of NF video frames, which determine the ob-
servation window. Precisely, each PE node accumulates for
every mapped actor Ac its communication time Tcm[Ac],
computation time Tcp[Ac], and total number of tokens received
to each input port NTtotal[Ac[Ij ]

] where c ∈ {1, ..., |A|} and
j ∈ {1, ..., |Ic|}. In addition, the adapter, which is embedded in
the NI of each node n (processor or memory), extracts from
each received packet carrying processed data, the following
information for each source Si: (1) the total number of
transferred tokens from Si to n: NTn

total[Si, n] and (2) the
average time delay consumed per token to reach the node n
from source Si: Tav[Si, n].Table IV gathers the variables and
parameters used to formalize our mapping approach.

The total number of transferred tokens is simply determined.
First, input packets are classified according to their sources Si.

Then, their corresponding sizes sizePk
[Si], which reflect the

number of data-flits, are accumulated.

NTn
total[Si, n] =

K∑

k=1

sizePk
[Si, n] (1)

where i ∈ {1, ..., |P|+ |M|}.
The average time delay per token per each source Tav[Si, n]

is calculated by dividing the time delay of each token trans-
ferred from Si by NTtotal[Si, n].

Tav[Si, n] =

∑K
k=1 sizePk

[Si, n]×DPk
[Si, n]

NTn
total[Si, n]

(2)

where k ∈ {1, ..., |K|}.
DPk

[Si] is determined by embedding, at the source node,
for each packet Pk its sending time-stamp Ts[Pk] in its header
then subtracting it from the reception time Tr[Pk] at the
destination node. All tokens in a packet are considered to have
the same delay.

D[Pk] = Tr[Pk]− Ts[Pk] (3)

C. Collecting monitoring information

When the number of the processed frames meets the ob-
served window, each PE node generates its own monitoring
information packet. The packet is then sent to the MIM
module (presented in III-C). Directly, the accumulated values
are reset with the beginning of the new observation window.
Then, the PE continues executing the previously mapped actors
according to the adopted circular order. This guarantees that
the remapping does not impose any additional overhead in
terms of latency. The MIM module notifies in its turn the
manager when new monitoring data is available correspond-
ing to a specific processor throughout a notification packet
(III-D1a). Whenever a new notification packet is received by
the manager, the latter directly requests to retrieve the new
available monitoring data. Also, the manager requests using
command packets from all memory modules to send their
monitoring information. Note that memory modules respond
to the manager and send the requested data directly without
any notification process since the adopted MoC allows the
direct communication between a memory and a processor.
All received monitoring packets are disassembled and their
contents are parsed and saved in the manager local registers.

When the feedback data is collected from all modules
incorporated in processing the video frames, the manager
applies the run-time remapping algorithm. At this stage, the
manager owns locally the following data: (1) the commu-
nication time of each actor: Tcm[Ac], (2) the computation
time of each actor: Tcp[Ac], (3) the number of input tokens
corresponding to every input port of all actors: NT a

total[Ac[Ij ]
],

(4) the number of incoming tokens to each processor module
from each memory module m: NTn

total[Sm, p], (5) the average
communication delay of received tokens to each processor p
from each memory module m: Tav[Sm, p], (6) the number
of incoming tokens to each memory module m from each
processor module p: NTn

total[Sp,m], and (7) the average
communication delay of received tokens to each memory
module m from each processor module p: Tav[Sp,m] where
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Fig. 8. Example on path declaration in the NoC

c ∈ {1, ..., |A|}, j ∈ {1, ..., |Ic|}, m ∈ {1, ..., |M|} and
p ∈ {1, ..., |P|}.

D. Estimating NoC communication time delay

Communication time delay is a critical factor in HMPSoC
platforms using NoCs. The communication time of the moved
actor is affected by the location of the new hosting PE in
the network. NoC time-delay estimation impacts directly the
prediction process of the communication time of the moved
actor. Hence, the accuracy level in estimating the delay latency
changes the decision on the actor move in the RR algorithm. In
this work, two novel methods have been proposed to estimate
the communication time delay for transferring one token in the
NoC. The first method is called the average-path token delay
and it is based on finding the average delay for transferring
one token depending on the path delays between all nodes of
the NoC. The second is called the average-link token delay
and considers the time-delay of the token according to the
used physical links connecting the NoC components while
transferring the token. Both proposed methods make use of the
monitoring data, which is collected while processing NF video
frames in the previous observation window. The techniques
used in estimating the NoC communication time-delay are
described in the following subsections.

1) Average-path token delay (APTD): In this approach, a
path is considered to be formed from the set of the intercon-
nections between two specific nodes. As an example, Fig. 8
illustrates in red the path P[PE1,MFM6] between processing
element PE1 to memory module MFM6. As a deterministic
routing is applied in this work, the packets always use the same
path between the source node and the destination node. Since
the adopted MoC forbids the transfer of packets in between
memory modules and in between PEs, the active paths are
those connecting either memory modules to PEs or PEs to
memory modules. Note that the packets transferred from a
processing element p to a memory module m do not follow
the same path used in transferring packets from the memory
module m to the processing element p. Fig. 8 illustrates in red
the followed path to transfer packets from PE1 to MFM6 and
in yellow the followed path to transfer packets from MFM6

to PE1. In APTD, the manager calculates the average path
delay per token Tav in several steps as shown in Algo. 1. Tav
refers to the average time delay required to transfer one token
from the source node to the destination node, regardless of the
path between the source and destination nodes. As an example,
the average time delay of all tokens transferred through either
the path P[PE1,MFM6] or the path P[MFM6,PE1] (Fig. 8) is

Algorithm 1 Average-path token delay (APTD)
Step 1: Find the sum of the communication delays Dtotal

Step 2: Find the total number of all tokens NTtotal
Step 3: Calculate the average time delay per token Tav

considered equal regardless of the number of links constituting
each path and the corresponding traffic in each link and the
switch conflicts in the connecting routers. Tav is computed by
dividing the sum of the communication-time delays Dtotal by
the total number of transferred tokens in the network NTtotal:

Tav =
Dtotal

NTtotal
(4)

The manager benefits from the collected monitoring data.
It makes use of the number of input tokens NTn

total[Si, n]
transferred to each destination node n from each source node
Si to determine the total number of all transferred tokens in
the network (NTtotal) as presented in (5):

NTtotal =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

NTn
total[Si, n] (5)

Also, the communication-time delays for all tokens transferred
in the network are accumulated. The sum of the communica-
tion delays Dtotal is determined according to (6):

Dtotal =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

Tav[Si, n]×NTn
total[Si, n] (6)

where Tav[Si, n] is the collected average time delay required
to transfer one token from the source node Si to the destination
node n.

2) Average-link token delay (ALTD): A link is defined as
the interconnection between two consecutive components of
the NoC: Router, Memory and PE. As an example, Fig. 8
shows the links constituting the path P[PE1,MFM6]. In this
approach, the average communication time delay per token
is determined for each link as shown in Algo. 2. The total
communication-time delay in a path P[Si,n] connecting the
source node Si and the destination node n is determined from
the monitored data as shown in (7):

DPtotal[Si, n] = Tav[Si, n]×NTn
total[Si, n] (7)

Each path is segmented into a set of links LP[Si,n]
. The average

communication time delay per link DLav[Si, n] in the path
P[Si,n] is determined as follows:

DLav[Si, n] =
DPtotal[Si, n]

NL[Si, n]
(8)

where NL[Si, n] is the number of links constructing the path
P[Si,n]. Here, the links constructing a path are assumed to have
similar contribution in the total communication time delay
monitored in the path. As a link l is shared among different
paths, the total link communication-time delay Dtotal[l] is
the sum of all average communication-time delay per link
computed in all paths in which link l constitutes one of their
interconnections:

Dtotal[l] =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

DLav[Si, n] 3 l ∈ LP[Si,n]
(9)
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Algorithm 2 Average-link token delay (ALTD)
Step 1:
for each path P[Si,n] do

a- Find the total communication-time delay DPtotal[Si, n]

b- Calculate average communication time delay per link
DLav[Si, n]

end for
Step 2:
for each link l do

a- Find the total link communication-time delay Dtotal[l]

b- Find the total number of tokens NTtotal[l]
b- Calculate the average communication time delay per
token Tav[l]

end for

On the other hand, the tokens passing through a path are
definitely passing through all links constructing the path.
Hence, the total number of tokens NTtotal[l] passing through
a link l is the sum of all tokens passing through all paths,
which link l constitutes one of their interconnections:

NTtotal[l] =

|P|+|M|∑

n=1

|P|+|M|∑

i=1

NTtotal[Si, n] 3 l ∈ LP[Si,n]

(10)
The average communication-time delay per token Tav[l]
for each link l is determined by dividing the accumulated
communication-time delay Dtotal[l] by the number of tokens
NTtotal[l] passing through this link.

Tav[l] =
Dtotal[l]

NTtotal[l]
(11)

E. Applying RR algorithm
For each observation window (NF frames), the manager

executes at run-time the RR algorithm, which is divided into
two main steps. The first step is dedicated to find all possible
candidate actors which their moves would enhance the overall
throughput. The second step sets a tradeoff between the cost of
migration and the predicted improvement of the performance.

1) Specify the possible candidate actors: In this work, the
definitions of the terms period of each processor p (Periodp),
maximum period (Periodmax) and throughput (Th) have
been adopted as introduced in [17]. Periodp is the sum of
total computation time compTp and total communication time
commTp recorded during NF video frames:

Periodp = compTp + commTp ∀p ∈ P (12)
where compTp and commTp of processor p are the sums
of the computation times and of the communication times
respectively of all actors which are mapped on this processor:

compTp =
∑

k:P[k]=p

Tcp[Ak] ∀p ∈ P (13)

commTp =
∑

k:P[k]=p

Tcm[Ak] ∀p ∈ P (14)

The throughput is defined as the inverse of the maximum
period over all processors.

Hence, the first task is to find the PE with the maximum
period. The manager computes the periods of all PEs during
the current observation window of NF video frames. Later,
a simple comparison between all obtained period values is
performed in order to specify the processor with the maximum
period. The processor with the maximum period (Periodmax)
is nominated as looser processor. The algorithm used to
determine the looser processor is outlined in Algo. 3. The
set of candidate actors to be moved C includes the actors
that have been previously executed by the looser processor.
Fig. 9 demonstrates an example of Periodp and Periodmax.
The figure shows three PEs (PE1, PE2 and PE3) that run
six actors (A1, A2, A3, A4, A5 and A6). In this example,
PE1 has the largest period, thus it is selected as the looser
processor.

Algorithm 3 Finding processor with maximum period
Periodmax ← 0
looser ← φ
for p ∈ P do

if Periodmax < Periodp then
Periodmax ← Periodp
looser ← p

end if
end for

2) Decision of the actor move: The actor selected to be
moved should have a maximum total gain. According to the
collected monitoring values, the manager estimates the total
gain achieved for all combinations of mapping the actors
which belongs to the candidate list C onto all available
PEs. The estimated total gain Gainetotal[CAc,p] of a mapping
combination CAc,p, which corresponds to moving Ac to p,
is computed by finding the difference between the estimated
performance gain Gaineper[CAc,p] and the estimated migration
cost of the actor Costemig[CAc,p]. The mapping combination
that leads to the maximum estimated total gain is then selected.
The engaged processor and actor are specified and so-called
the gainer processor and moved-actor respectively.

a) Estimated performance gain: For each actor Ac in the
candidate list C, the manager considers it is moved virtually
to all PEs except the looser processor. For each virtual-move
combination, the manager estimates the achieved period of

𝑃𝑒𝑟𝑖𝑜𝑑𝑃1
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𝑃𝑒𝑟𝑖𝑜𝑑𝑃2
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Fig. 9. An example of Periodp and Periodmax
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each processing element Periodep[CAc,p]. The new period of
processor p is estimated by adding to the processor period
Periodp the estimated communication time T e

cm[CAc,p] and
the estimated computation time T e

cp[CAc,p] of the moved actor
Ac as shown in the following expression:
Periodep[CAc,p] = Periodp+T

e
cp[CAc,p]+T

e
cm[CAc,p] (15)

Note that the tokens, which are consumed by a certain reader
actor running on a processing element PER, are imported
from a FIFO f . These tokens are previously generated by
another actor running on another processing element PEW .
The generated tokens are first stored in a FIFO f and then
transferred once requested to the processing element PER

where the reader actor is executed. Hence, the tokens pass
through two paths. The first path P[PEW ,MFMf ] connects the
processing element PEW , which executes the writer actor,
and the memory module that accommodates the FIFO f .
On the other hand, the second path P[MFMf ,PER] connects
the memory module that accommodates the FIFO f and the
processing element PER which executes the reader actor. The
communication-time delays in both paths are considered when
estimating the communication time of the moved actor.

When adopting APTD method for determining the commu-
nication delay in the NoC, the estimated communication-time
delay per input j for each actor Ac is equal to the total number
of input tokens NTtotalS[Ac[Ij ]

] transferred to the actor at this
input multiplied by the double of the calculated average path
communication-time delay per token Tav (4). The average path
delay per token is doubled to compensate the time delay of
the two paths P[PEW ,MFMf ] and P[MFMf ,PER]. The total
estimated communication time is the sum of all estimated
communication-time delays of all inputs:

T e
cm[CAc,p] =

|Ic|∑

j=1

2× Tav ×NTtotal[Ac[Ij ]
] (16)

Note that the adopted model of computation forbids the trans-
fer of tokens in between actors (running on PEs) directly with-
out passing through a FIFO (allocated in a memory module
MFMf ). Hence, tokens produced by the writer actor (running
on PEW ) will pass through two paths (P[PEW ,MFMf ] and
P[MFMf ,PER]) before arriving to the reader actor (running on
PER). The exact number of tokens passes through both paths
while considering same average path delay per token Tav . So,
the average path delay per token is doubled in (16).

When adopting ALTD method, the estimated
communication-time per input j is equal to the total
number of input tokens NTtotal[Ac[Ij ]

] transferred to the
actor Ac through this input multiplied by the sum of all
average communication-time delay per token Tav[l] for each
link l constructing the paths which the input tokens use
to reach the processing element running the actor Ac. The
total estimated communication time will be the sum of all
estimated communication-time delays of all inputs:

T e
cm[Ac] =

|Ic|∑

j=1

(∑

i=1

Tav[li]

)
×NTtotal[Ac[Ij ]

]

3 li ∈
{
LP[PEW ,MFMf ]

∪ LP[MFMf ,PER]

} (17)

In addition, the estimated computation time T e
cp[CAc,p] of

the moved actor Ac is determined depending on the recorded
computation time of the moved actor Ac during the previ-
ous mapping Tcp[Ac] and the estimated total speed-up ratio
SUe

total[CAc,p], which is achieved when moving Ac to p:
T e
cp[CAc,p] = Tcp[Ac]× SUe

total[CAc,p] (18)
such that

SUe
total[CAc,p] =

AAc
[p]

AAc
[looser]

× f [looser]

f [p]
(19)

where f [p] is the operating frequency of processor p (Table II)
and AAc [p] is the acceleration enhancement ratio of the moved
actor Ac when running on processor p (Table I).

Note that for all mapping combinations, the period of the
looser processor is modified when an actor Ac is supposed
to be mapped to another processor p. Hence, it is updated by
subtracting the actual communication time Tcm[Ac] and the
actual computation time Tcp[Ac] of the moved actor Ac:
Periodelooser[CAc,p] = Periodmax−Tcm[Ac]−Tcp[Ac] (20)

For each mapping combination, the manager determines the
maximum estimated period Periodemax[CAc,p] which denotes
the maximum period among all processors when actor Ac is
mapped to processor p. Fig. 10 demonstrates an example of
finding Periodemax[CAc,p]. The figure considers the example
illustrated in Fig. 9. Three actors are mapped to the looser pro-
cessor PE1. The candidate list C includes three actors: A1, A2

and A3. Six mapping combinations are illustrated: CA1,PE2
,

CA1,PE3 , CA2,PE2 , CA2,PE3 , CA3,PE2 and CA3,PE3 . The
figure shows how to find the maximum estimated period
Periodemax[CAc,p] for each mapping combination. It is shown
in the figure that both the estimated communication time and
estimated computation time of the same actor differ when
mapped to different PEs.

These computed new periods are then used to find the
performance gain related to each mapping combination:

Gaineper[CAc,p] = Periodep[CAc,p]− Periodmax (21)

b) Estimated migration cost: The migration cost of an
actor is the required time to transfer its binary code into the
local memory of the new hosting processing element. It de-
pends on the size of the binary data required to be transferred
and the communication-time delay in the network. The sizes
of the binary codes of all actors are considered to be known
by the manager in terms of number of flits. Accordingly, the
migration cost of the moved actor is estimated by the manager
using the estimated NoC communication-time delay. When
adopting APTD method, the estimated migration cost related
to the moving of actor Ac to processor p is calculated as
expressed in (22):

Costemig[CAc,p] = sizebin[Ac]× Tav (22)
where sizebin[Ac] is the size of the binary code of actor Ac

and Tav is the average path communication-time delay per
token (4). When ALTD method is adopted, the migration cost
of the moved actor Ac is determined by (23):

Costemig[CAc,p] = sizebin[Ac]×
(∑

i=1

Tav[li]

)

3 li ∈ LP[BCM,p]

(23)
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Fig. 10. An example of finding the maximum periods for each mapping
combination

c) Estimated total gain: The manager computes the total
gain estimated to be achieved for all mapping combinations
by finding the difference between the estimated performance
gain Gaineper[CAc,p] and the estimated migration cost of the
actor Costemig[CAc,p].
Gainetotal[CAc,p] = Gaineper[CAc,p]− Costemig[CAc,p] (24)

The moving of an actor would lead to permanent performance
gain and the migration cost is paid once. However, the
estimated performance gain takes the cost of migration into
account in order to aggravate the probability of enhancing
the overall performance directly after applying the move (in
the next observation window). In fact, the variation of the
input data and its corresponding effects on executing the

involved actors incites to consider worst case (severe) decision
where the performance enhancement should be guaranteed
once moving the actor.

Then, the manager finds the maximum achieved total gain
among all mapping combinations and accordingly specifies the
actor to be moved and the gainer processing element.

F. Moving the actor to the gainer processor

The PE, after finishing the execution of the current running
actor, retrieves the new mapping information and sends di-
rectly a confirmation packet so that the manager processor
manages the transfer of the object code corresponding to
the new mapped actor. Before running the moved actor, the
PE checks the availability of the object file corresponding
to the actor in its cache memory. Note that for the initial
mapping, the manager generates and sends packets to all PEs
in charge of executing actors. Whereas, after executing the RR
algorithm, the manager informs only the gainer and looser
processors. This procedure reduces the traffic in the network
and maintain the processing performance since the PEs that are
not affected by remapping process are not disturbed. In fact,
the manager informs first the looser processor about the new
mapping information. Then, it waits until the looser processor
confirms the well reception. The looser processor sends a
confirmation packet to the manager whenever it finishes the
execution of the moved actor. When the manager receives the
confirmation packet, it sends the new mapping information to
the gainer processor. Later, the gainer sends a confirmation
packet to the manager that directly manages the transferring
of the object code of the mapped actor from the shared
memory into the cache memory of the gainer processor by
making use of BCPs described in subsection III-D2b. This
guarantees that the actor is executed by only one PE in the
whole platform and ensure better controlling of the traffic
while migrating the binary codes. In fact, the manager sends
a CTP (subsection III-D1h) which includes the ID of the
gainer processor, the ID of the moved actor and the size of
the BCPs (capacity) as described in subsection III-C1. After
receiving the CTP, the MAM module, which is integrated into
the NI of the BCM (subsection III-C1), manages retrieving
the binary code from the shared memory and dividing it into
sections according to the capacity specified by the manager.
The generated BCPs will be transferred to gainer processor.
In our work, we consider that the gainer processor can start
executing the actor once at least 256 bytes, which construct
8 lines of the L1-I cache, are received and stored to the
gainer processor local memory. The hierarchy of the PEs’
local memories includes L1 and L2 caches. L1 cache is broken
up into to halves, instruction (L1-I) and data (L1-D) each of
32KB. L2 cache size is of 256KB and is used for instructions
and data.

G. RR Algorithm Complexity

The devised algorithm consists of several steps summarized
in Algo. 4. The complexity of each step is illustrated to
determine the overall complexity. The complexity of Step1,
the step of finding the period of each processor, is O(|P|).
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Algorithm 4 Run-time Remapping (RR)
Step 1: Calculate the period of each PE
Step 2: Find PE with Max. period and assign it as looser
Step 3: Find the total gain (performance - migration cost)
for each move do

a- Find the performance gain
. find the period for each PE
. find the maximum period

b- Find the migration cost
c- Calculate the total gain

end for
Step4: Choose the move with Max. positive total gain

Then, Step2, the step of finding the processor with maximum
period has the complexity of O(|P|). The complexity of Step3,
estimating the total gains corresponding the move of the
candidate actors to all PEs rather than the looser processor,
is O((|P| − 1).|Ac ∈ C|). The complexity of Step4, choosing
the best move, is O(|Ac ∈ C|.(|P| − 1)). If we consider a
well balanced distribution of actors among the processors at
initiation (|Ac ∈ C| ≈ |A|

|P| ), the overall complexity becomes

O(|P|) + O(|A|) knowing that |P|−1|P| ≈ 1. Note that the
algorithm is computed when all monitoring data is collected,
so the maximum rate is once per execution of the whole
data flow, and in practice can be tuned to be slower. With
respect to the complexity and the execution rates of actors,
this complexity is extremely low.

V. EXPERIMENTS AND RESULTS

A. Application Model

In this work we target the multimedia application domain.
We adopt the well-known MPEG4 part 2 Simple Profile
video decoder (MPEG4-SP). This multimedia application is
typically used in de-compression of encoded video digital
data. Fig. 11 presents the structure of decoder as described
in Reconfigurable Video Coding framework (RVC) [3] [33].

MPEG4-SP is specified with heterogeneous dataflow MoCs
and includes up to 40% of dynamic actors [34]. It is composed
of 41 actors and 70 FIFOs specified in RVC-CAL language.
The ORCC tool is utilized for compiling and software synthe-
sis [3] and we make use of the generated C-code for multi-
core platforms. We also use the structure of the software FIFO
presented in Fig. 1-b), which is generated by ORCC.

A FIFO may have several reader actors but only one writer
actor. It opts an indexing mechanism such that a specific index
is assigned to each reader or writer actor. These indexes are
used to determine the number of available tokens correspond-
ing to each reader actor and the free space in a FIFO. The
number of available tokens (Tf [Ri]) in a FIFO (f ) is the
difference between the reader index (If [Ri]) and the writer
index (If [W ]). The free space in a FIFO is the number of
memory addresses that contain no more needed data from
all reader actors. In other words, it is the subtraction of the
maximum available tokens from the total FIFO size (Sizef ).

Each actor has its input and output ports and includes one
or several actions. An action describes a specific functionality

Fig. 11. MPEG4 part 2 SP decoder [33]

and is executed (fired) when a set of conditions, so-called
firing rules, are satisfied. As an example, a firing rule consists
of checking if the number of available tokens in the input
FIFO is greater than the required number for computation, and
that the output FIFO has sufficient empty room to store the
produced tokens. In MPEG4-SP, the number of reader actors
ranges from 1 (at least) to 6 (at most).

MPEG RVC defines RVC-CAL applications as dynamic
dataflow applications, where the uncertainty of computing due
to data-dependency prevents from any static scheduling. They
are based on dataflow process network (DPN) model [6].
In such model, the actor executes when at least one of its
firing rules is satisfied. For cases where several firing rules
are satisfied simultaneously, only one is selected according to
its priority. Consequently, its corresponding satisfied action is
fired. Each firing consumes input tokens and produces output
tokens. The number of the consumed or produced tokens may
be fixed or variable.

B. Experimental framework and setup

In order to assess the feasibility of our proposed run-
time remapping method, we developed a real-time simulator.
The simulator is described in SystemC TLM model [35].
The devised simulator models a MPSoC platform using NoC
concept for interconnecting embedded modules. The platform
incorporates heterogeneous processing elements (Table I),
memory blocks, and the manager. The simulator platform
has been designed with hierarchical modules that can work
concurrently and intercommunicate via ports using simple
or complex communication channels. SystemC features have
been exploited to mimic the accurate functionality of the
modules described in section III.

The adopted NoC-based architecture, presented in sec-
tion III, is implemented in the devised simulator platform. In
order to accurately model the adopted application, all involved
actions are functionally simulated to determine their execution-
timing features and generate the real data exchanged by actors
during video decoding. The SystemC model adopted in the
simulation platform is cycle accurate at the level of the NoC
and the network interfaces. The timing of all corresponding
action executions on PE is compensated in the simulation
according to the profiling data extracted while running the
application on a reference computer. Profiling data provides,
for each involved action, the mean value of the number of
cycles required to execute it. In this work, profiling data
has been extracted using on a desktop computer (i7-2620M



13

3
9

4
0

3
2

14

3
4

5
2

6
9

2
1

3
6

9
6

9
0

08
3

3
6

0
0

9
0

87
0

3
5

5
7

4
2

0

3
4

8
5

0
9

6

2
7

4
9

8
6

50

2
7

4
0

2
6

3
4

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

No
Remapping

MB
Remapping

No
Remapping

MB
Remapping

bus QCIF ForemanCIF

Total Control Packets
Total Data Packets

7
1

2
3

6
4

45

6
2

8
0

5
0

72

6
6

5
9

6
1

10
5

6
4

7
3

9
1

2
5

0

5
4

5
5

3
40

0

5
1

5
5

1
0

80

5
7

9
7

1
7

0
0

0

5
7

9
5

8
05

6
0

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

No
Remapping

MB
Remapping

No
Remapping

MB
Remapping

bus QCIF ForemanCIF

Total Control Fits
Total Data Flits

Fig. 12. Classification of transported packets and flits

CPU@2.7 GHz and 8GB memory). We consider that the
NoC operating frequency f is 500 MHz. The clock cycle in
each PE is determined according to Table II. During SystemC
simulations, for each fired action, its corresponding execution
time determined in profiling is mapped according to the
processor frequency and used as time delay to compensate
the real execution time. In addition, several benchmark video
sequences with different formats from [36] have been encoded.
The selected video sequences have different manner in changes
between successive frames. This guarantees to evaluate the
performance of the proposed algorithm for different data-
dependent behaviors. The resultant data has been used as
input to the decoder. These same encoded videos have been
decoded on a desktop computer and the FIFO contents have
been traced over the decoding period. To verify the proper
functionality of each actor, the contents stored in the FIFOs
in the simulator have been compared to the traced FIFO data.
Also, the output data of the simulator have been reconstructed
into visual video in order to verify the functionality of the
devised simulator. The video sequences have been decoded
without applying remapping targeting the same NoC-base
architecture and the obtained results have been compared to
that obtained when the video sequences are decoded adopting
the MB remapping algorithm applying ALTD and APTD for
estimating the communication time delay while considering
an observation window of Nf = 10.

C. Experimental Results

1) Transported data: The number of packets that travel
through the network during the decoding of the video se-
quences, and their corresponding flits are recorded in the case
of applying the MB remapping and the case of decoding
the video without remapping. Fig. 12 presents the number
of transported packets and flits in logarithmic scale during
decoding the Foreman video with CIF format and Bus video
with QCIF format for the case of adopting MB remapping
algorithm and the case of ordinary decoding. The packets and
flits are classified into control and data categories. The figure
shows that the flits of control packets form about 53% of all
transported flits in the two cases.

Furthermore, investigating thoroughly the types of trans-
ported control flits illustrates that 93% of control flits belong
to FIP. This refers to the MoC adopted in dataflow applications
which requires checking the firing rules (availability of input
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data and output buffer space). Fig. 13 shows in logarithmic
scale the number of each type of control flits transported while
decoding the Foreman video sequence in CIF format and Bus
video sequence in QCIF format for the case of MB remapping
and the case of ordinary decoding.

Also, Fig. 13 shows that additional flits are transported
in the network due to the remapping. In fact, applying
remapping induces additional control and data packets. In
order to evaluate the effect of applying the MB remapping
algorithm on the traffic in the network, the transported flits
are classified into two main categories. The first category
includes the flits which are used basically for dataflow. This
category encompasses the flits which occupy the payload of
all FIP, DRP and DFP. The second category includes the
induced flits by applying the remapping algorithm. Hence, the
second category compromises the flits listed in the payloads
of NP, MRP, MCP, MnIP, MpIP, CTP, and BCP. Note that both
categories include data and control packets. Fig. 14 illustrates
the comparison summary in terms of the number of transported
flits of both categories. In the figure, the number of transported
flits, which is obtained while processing the Foreman video
with CIF format and Bus video with QCIF format, is presented
in logarithmic scale for both cases (decoding while applying
remapping algorithm and ordinary decoding). The comparison
shows that the additional flits induced by applying the MB
algorithm forms less than 0.02% from total transported flits.
In addition, Table V shows the percentage of flits transporting
the binary code of migrated actors from the total number of
transported flits in the network while decoding several video
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TABLE V
PERCENTAGE OF FLITS TRANSPORTED IN BCP FROM TOTAL FLITS

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD
Foreman CIF 0.0044% 0.0067%

Bus CIF 0.0008% 0.0125%
Ice 4CIF 0.0027% 0.0019%
Bus QCIF 0.0348% 0.0272%
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Fig. 15. Sum of packet time-delays (top) and average packet time-delay
(bottom) while decoding Foreman video with CIF format [36]

sequences. The presented percentages illustrate that the impact
of actor migration on the traffic is negligible.

2) Packet time-delay: The packet time-delay is recorded
while decoding the video sequences, following the procedure
explained in subsection IV-B. Fig. 15 presents the variation
of the sum of packet time-delays throughout the observing
windows during the decoding of the Foreman video sequence
with CIF format when adopting the MB remapping technique.
It is noticed that applying the MB remapping algorithm affects
the time-delay of the packets. In addition, the figure shows
the comparison with the case of ordinary decoding. The
comparison illustrates that using MB remapping decreases
gradually the total packet time-delay. Note that the task moves
occur after processing 80, 100, 160, and 270 frames. Fig. 15
shows that the total packet delay decreases after the conducted
moves. This refers to the fact that task remapping contributes
in distributing the tasks on PEs that are nearer to the memory
modules accommodating the input and output FIFOs. Also,
Fig. 15 presents a comparison in terms of average time-delay
of packets transported during the decoding of the Foreman
video with CIF format when adopting the MB remapping
technique and when using ordinary decoding. The comparison
confirms that the use of MB remapping technique contributes
significantly in reducing the time-delay.

3) Timings: Fig. 16 presents the recorded total commu-
nication time and total computational time throughout the
observing windows during the decoding of the Foreman video
with CIF format when adopting the MB remapping technique
and when using ordinary decoding. It shows that the com-
munication time represents 90% of the total execution time
in both cases. Hence, the total execution time is affected
more by the variation of the total communication time. Also,

Fig. 16(a) shows that the total communication time is almost
not changing among observation windows in the case of ordi-
nary decoding. Whereas, when MB technique is applied, the
communication time varies significantly and tends to follow
a decreasing manner as shown in Fig. 16(b). This illustrates
that reducing the time-delay achieved by MB remapping has
a direct impact on the communication time.

The communication time of each processing element is
investigated through the decoding of all video frames. It is
noticed that when applying the MB remapping technique, the
variation between communication times of all involved PEs is
reduced. The communication time values of all PEs converges
gradually to a specific interval as shown in Fig. 17.

4) Performance results: Multiple simulations have been
conducted to decode several benchmark video sequences
from [36]. Fig. 18(a) presents the achieved throughput in
terms of frames per second (FPS) when decoding Foreman
video (CIF format) and using ALTD and APTD respectively
for estimating the NoC communication time delay. The fig-
ure also shows the achieved throughput when decoding the
Foreman video (CIF format) without remapping. The letter
“M” shown on the curves represents when an actor move
occurs. Fig. 18(a) shows that using MB results in significant
performance enhancement. In addition, the figure illustrates
that adopting ALTD for estimating the NoC communication
time delay, while decoding Foreman video sequence with
CIF format, increases the achieved enhancement ratio. Other
similar simulations have been conducted targeting other video
sequences with different formats (CIF, 4CIF and QCIF). The
selected videos are of diverse characteristics to ensure that
the proposed remapping algorithm is not related to specific
formats or video content. The obtained results confirm that
adopting MB algorithm ensures enhanced performance when
compared to decoding the video without remapping. Also, the
results demonstrate that adopting ALTD rather than APTD
leads to additional performance enhancement.

D. Discussion and Comparison

In order to determine the relevancy of the devised algorithm,
it is compared to the STM method introduced in [31]. To
achieve fair comparison, the STM method has been modeled
and implemented on our devised NoC-based architecture. We
have also implemented the exact method presented in [20] for
the initial mapping, with two differences: we have used con-
straint programming instead of ILP, and the objective function
is the maximum period, Eqn. 12, as it is our optimization goal.
The workload used for the computation time of the actors is
based on the profiling of Foreman video. Simulations have
been conducted while running the MPEG4 decoder to process
real-life videos.

1) Performance enhancement of MB remapping: The
results presented in Fig. 18 show that for Foreman video
sequence with CIF format (Fig. 18(a)), the use of MB remap-
ping algorithm when adopting ALTD leads to a maximum
performance enhancement of 38.2% (frame 280) and adopting
MB-APTD leads to a maximum performance enhancement of
14.8% (frame 210) when compared to the results of processing
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Fig. 16. Total communication and computational times recorded throughout the observing windows during the decoding of the Foreman video with CIF
format [36]; when adopting (a) ordinary decoding and (b) MB remapping
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Fig. 17. PE communication time in terms of FPS of decoding Foreman video with CIF format [36] using MB remapping algorithm

the video without remapping. For Ice video sequence with
4CIF format (Fig. 18(b)), maximum performance enhancement
of 56% (frame 450) and 16.5% (frame 250) are recorded
when applying the MB algorithm adopting ALTD and APTD
respectively. Furthermore, the use of MB algorithm adopting
ALTD and APTD leads to a maximum performance enhance-
ment of 10.92% (frame 120) and 7.6% (frame 50) for Bus
video sequence with QCIF format (Fig. 18(c)) and Bus video
with CIF format (Fig. 18(d)). For Grandma video with QCIF
format (Fig. 18(e)), maximum performance enhancement of
33.2% (frame 170) and 23.9% (frame 190) are recorded
when applying the MB algorithm adopting ALTD and APTD
respectively. The simulation results show that the link level
estimation of ALTD is more accurate and usually leads to
better performance compared to APTD. However, in some
cases APTD performs better such as for some observation
windows of Grandma video (Fig. 18(e)). This refers to the
fact that the heuristic is data-dependent and the link level
prediction depends on the monitoring information collected
during the previous data which may not match with the that
of the current processed data.

2) MB remapping in comparison to STM remapping:
Fig. 18 shows a comparison between our proposed remap-
ping and the STM algorithm in terms of throughput (FPS).
The results shows that the MB remapping outperforms STM
remapping technique when considering either APTD or ALTD
for estimating the NoC communication time delay.

Besides, the graphs in Fig. 18 show that in some cases

the STM method leads to deterioration in the performance.
In fact, the STM method selects critical task to be moved in
each observation window without estimating the resulting total
performance gain. Moving the task without determining its
effects on the whole system performance degrades the overall
performance. While in our proposed algorithm, the maximum
achieved total gain among all mapping combinations is first
determined as explained in subsection IV-E2c. Accordingly, a
task is specified to be moved if the estimated maximum total
gain is positive. It is noticed that in some observation windows
no tasks are moved when the proposed algorithm is applied. A
move is indicated by letter “M” in Fig. 18(a). In these cases,
the estimation shows that no performance enhancement will
be achieved for all mapping combinations.

3) MB remapping in comparison to optimal mapping:
Fig. 18 also shows the results obtained from the mapping
approach proposed in [20]. Note that the “optimal” mapping
corresponds to the best mapping found based on the profiling
of Foreman video after a time out of one hour (like the original
paper), and the optimality is not proven. The results show that
the MB algorithm, starting from a random mapping (without
significant initial delay), performs better that the optimal with
no remapping for Foreman video sequence in CIF format
(Fig. 18(a)). As the optimality is searched for the Foreman
profile, we used the optimal mapping as a starting point for
the MB algorithm, and the results show that it further improves
the throughput. As expected, the optimal mapping for Foreman
does not perform good for the Ice video sequence in 4CIF
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TABLE VI
ACHIEVED RESULTS ADOPTING DIFFERENT REMAPPING TECHNIQUES

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD STM
Foreman CIF 11.4% 5% 4.1%

Bus CIF 5.4% 5.4% −17.7%
Ice 4CIF 26.1% 2% −13.04%
Bus QCIF 9% 8% −20%

Grandma QCIF 14.91% 14.11% NA

format (Fig. 18(b)) and Grandma video sequence in QCIF
format (Fig. 18(e)). But surprisingly, it performs good for
the Bus video in QCIF format (Fig. 18(c)) and Bus video in
CIF format (Fig. 18(d)). The so-called optimal method cannot
be used for two reasons. First it introduces an unpractical
initialization delay without guaranty of optimality. Secondly, a
static solution is not appropriate to data-dependent applications
since a solution can be good for one data-stream and inefficient
for another one and more importantly the efficiency of a
mapping varies over time.

4) Comparison summary: Table VI summarizes the com-
parison of average FPS achieved when processing multitude
video sequencing while adopting different remapping tech-
niques. The table shows that the MB algorithm achieves
the maximum average performance enhancements of 26%
and 14.11% when adopting ALTD and APTD respectively
compared to the achieved throughput of processing the frames
without remapping. Whereas, remapping using STM algorithm
achieves a maximum average enhancement of 4%.

E. Scalability and generality

The scalability of our approach relies first on a negligible
extra payload in the context of actor-level dataflow models,
which intrinsically require a large amount of small control
packets. For example, when decoding the Foreman video se-
quence the extra flits imposed by remapping (including the flits
holding the binary codes of moved actors) constitute less than
0.02% of the flits used for dataflow. The proposed remapping
method enhances the performance by exploiting the NoC
structure and the characteristics of the available resources.

TABLE VII
REDUCTION OF PACKET HOPS WITH MB-ALTD AND MB-APTD

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD
Foreman CIF 20.94% 12.64%

Bus QCIF 3.24% 5.29%
Grandma QCIF 14.18% 8.33%

The results show that our method positively impacts the NoC
performance. Table VII illustrates the reduction percentages of
packet hops when decoding different video sequences adopting
the proposed MB remapping compared to ordinary decoding
without remapping. The comparison shows that the proposed
remapping method reduces the packet hops. The percentage of
reduction is more than 20%. Secondly, the method includes the
migration cost and so limits the number of moves.

Fig. 19 shows the results obtained for a 4 × 6 NoC, for
Foreman and Bus video sequences, starting from a random
mapping. The results show that our approach can also improve
the throughout for a larger NoC. On average, the throughout
is improved by 13.5% and 4% for Bus QCIF and Foreman
CIF videos respectively.

VI. CONCLUSION

This paper presents an original Move-based algorithm and
NoC-based architecture to map the tasks of dataflow applica-
tion during run-time. The method monitors the performance
and intercommunication, takes the proper mapping decision
and applies the required mapping configurations. The algo-
rithm and the devised architecture are thoroughly presented.
The best way to verify the effectiveness of a run-time mapping,
which is by definition data dependent, is to simultaneously
execute the target application. However such demonstrations
are complex, time consuming and so ignored in the literature.
In this paper we address this issue by conducting a SystemC
simulation of the MPEG4-SP decoder with several real-life
video sequences. The obtained results demonstrate that the
proposed algorithm significantly enhances the performance.
In addition, the proposed algorithm outperforms the available
run-time mapping technique. Future work will consider the
implementation of integrated module in the NIs and estimating
the overhead in terms of area and energy.
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Abstract—The decrease of the performance gain dictated by
Moore’s Law boosted the development of manycore architectures
to replace single-core architectures. These new architectures must
employ parallel applications and distribute its workload over a
multitude of cores to reach the desired performance. Parallel
applications are harder to develop than sequential ones since the
developer must guarantee data integrity using synchronization
primitives. While multiple novel solutions have been proposed
to speed up parallel applications through handling one type of
data synchronization primitive, exceptionally few works support
multiple types of synchronization primitives and legacy code.
This work proposes Subutai, a hardware/software co-design
solution for accelerating multiple synchronization primitives
without modifying the application source code. By providing
a new user library, while retaining an existing synchronization
API, legacy and novel applications can benefit from our solution.
Our experimental evaluation, which provides a POSIX Threads
implementation, demonstrates Subutai speeds up to 2.71× and
4.61× the execution of single- and multiple-application execu-
tions, respectively.

Index Terms—Legacy Parallel Applications, PThreads,
Network-on-Chip, Distributed Scheduler

I. INTRODUCTION

Since the end of the last century, a significant shift has
occurred in the industry, transitioning the processor chips from
a single- to a multicore design using a dozen cores. This
paradigm has evolved to incorporate hundreds and soon thou-
sands of simple cores, performing a manycore architecture, to
continue to deliver higher performance.

Unfortunately, only increasing the number of cores does not
imply increasing the performance, as the applications must be
parallel-compatible to exploit the hardware parallelism. Where
once a single sequential thread could do the execution, now the
developer has to partition the workload into multiple execution

threads and synchronize their execution [1], dealing with dead-
lock, livelock, race condition, and non-deterministic events [2].
Decisions regarding both partitioning and synchronization of
the workload are crucial to determine the achievable perfor-
mance of the application on manycore systems since even
small sequential portions of execution can have a significant
performance impact, as observed in Amdahl’s law. Because
of this impact, parallelization is primarily done manually,
allowing fine-grained performance optimizations.

Synchronization, namely the access and update of the appli-
cation data, is a vital concern in any parallel application. The
typical limitation to novel synchronization solutions is that de-
velopers have to refactor the source code. The redesign applies
even to already parallel-compatible code, as the Application
Programming Interface (API) of different solutions are not the
same. The refactoring of source code due to API changes has
substantial limitations; we highlight these three: (i) software
redevelopment cost, (ii) challenge of parallel code refactoring,
and (iii) lost legacy source code.

Software development cost already dominates new System-
on-Chip (SoC) designs, as the manycore architecture and its
counterpart, the parallel applications, are common elements
of such designs [3]. Besides, the Read-Copy-Update (RCU)
synchronization primitive used by the Linux kernel, for in-
stance, influences over 16 million Lines of Code (LoC) across
15 kernel subsystems [4]; thus, even experienced developers
do not easily achieve a refactoring of it.

Source code modification is always an error-prone task.
McConnell estimates that up to 100 bugs can be present per
thousand LoC [5]. Refactoring parallel code is even more
susceptible than sequential code because often the developers
are befuddled with the use of synchronization techniques. For
instance, while RCU shows impressive results, it demands a
thorough understanding of computer architecture design, pre-
senting the tradeoff of rising performance gains but increasing
code and maintainability complexity [2].

Finally, the essential requirement for refactoring a legacy
application is the source code availability. However, often the
legacy source code is lost, leaving only the binary code. Hence,
the developers need to rewrite the entire code, increasing
the software development cost. Moreover, given the amount
of legacy software, a complete rewrite of the entire code is
unlikely to happen [6].

Therefore, we propose a novel synchronization solution
that accelerates parallel applications without modifying the
application source code. Our solution speeds up even appli-
cations that do not or cannot share their codes; in this case, as
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Fig. 1. Subutai components are highlighted in red (1, 2, 3) in the computing
stack. Subutai only requires changes in the (1) PThreads implementation, (2)
OS NI driver, and (3) on-chip NI. Additionally, (4) a new scheduling policy
(in blue) is explored in this work as an optional optimization.

long as the binary is dynamically linked. Otherwise, static or
dynamic linked binaries are supported. Our hardware/software
solution, called Subutai, tackles the synchronization problem
within a low-level Network-on-Chip (NoC) Interface (NI).

Software-wise (Subutai-SW), we implemented the POSIX
Threads (PThreads) according to the IEEE Std 1003.1 stan-
dard [7]1. Thus, any application employing the PThreads API
(i.e., pthread.h) is compatible with Subutai. The PThreads
compatibility restricts a multitude of optimizations since we
cannot inject the source code with extra synchronization
metadata or change the application communication model. In
addition to interfacing with the application, our software must
work with new functionalities on the hardware-side; hence, we
provide an Operating System (OS) driver responsible for the
latter activity.

Hardware-wise (Subutai-HW), we extended an existing on-
chip NI to support, in a distributed way, the following synchro-
nization primitives: mutex, barrier, and condition. NI handles
new types of packets and requires access to a small (less
or equal to 1KiB) memory to record synchronization events
and metadata. Fig. 1 depicts the Subutai solution with a
general-purpose computing stack, highlighting the components
required for its operation.

We demonstrate that our solution speeds up single parallel
applications ranging from 1.05× up to 2.71× for 64-thread
executions. Moreover, in a competitive scheduling scenario,
Subutai speeds up multiple parallel applications ranging from
1.58× up to 4.61×. For these results, the hardware require-
ment for Subutai increases the area of the NI in, approximately,
46%; however, the overhead is insignificant compared to the

1Includes mutex, barrier, and conditions. Besides, we provide the
PThreads software implementation for supporting the options provided by
the attribute parameter.

total chip area (less than 1% for a 400mm2 chip). The key
contributions of this paper are listed next:

1) This work proposes a novel synchronization technique
that avoids modifying parallel applications while acceler-
ating their execution. The work supports both legacy and
novel applications designed using the PThreads API.

2) We designed all the components of Subutai and provided
a detailed analysis of its performance in accelerating stan-
dard synchronization primitives. Moreover, we evaluate it
with state-of-the-art related work.

3) We conducted experiments using parallel applications
provided by PARSEC, a well-known benchmark for this
domain. The experiments were analyzed for both single-
and multiple parallel executions. Besides, we evaluated
scheduling policies for executing parallel applications.
Such experiments are essential to evaluate the perfor-
mance of Subutai on several execution scenarios.

This paper extends a conference version [8] by (i) evaluating
Subutai with state-of-the-art related work, (ii) providing new
estimations of the Subutai-HW design including memory,
(iii) presenting details of the Subutai-SW implementation
(userspace library and OS driver), (iv) evaluating an addi-
tional application (x264), (v) evaluating a scheduler policy
proposal, (vi) evaluating concurrent application execution, and
(vii) presenting the synchronization model of the analyzed
applications.

II. RELATED WORK

A program can be comprised of many computational units
like threads, processes, coroutines, and interrupt handlers. We
employ the term thread as a generic word to encompass these
computational units. We organize the related work in software-
oriented and hardware-oriented/mixed solutions. Table I sum-
marizes the essential characteristics of these solutions and
compares our work to the state-of-the-art.

A. Software-oriented Solutions

PThreads, Open MultiProcessing (OpenMP), and Intel
Threading Blocks Building (TBB) are established solutions
that use software to synchronize parallel applications. These
solutions provide analogous implementations of a similar set
of synchronization primitives, but with different abstraction
levels. In contrast, PThreads provides a low-level interface
for developers, OpenMP and TBB offer abstract programming
models (fork-join and task-based models, respectively) [20].

DeLozier et al. [1] propose SOFRITAS, a software-only
robust memory consistency model that can detect and prevent
atomic violations on parallel applications at the cost of execu-
tion overhead (roughly 59%). Unfortunately, the applications
must be annotated with a novel API when using library calls.

Boehm [10] and France-Pillois et al. [11] provide optimiza-
tions on the implementations of the PThreads and OpenMP
libraries, respectively. The first work suggests relaxing the
reordering rules for load and store operations, while the last
work identifies an expansive function that was uselessly being
called during the barrier waking process.
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TABLE I
RELATED WORK SUMMARY.

Solution Orientation Requirements Legacy code
compatible* Uses PThreads Target data

synchronization Experimental results

PThreads Software Latency No Yes Barr., cond., mutex Real applications
OpenMP Software Latency, app. model No Yes (libgomp) Atomic, barr., mutex Real applications

TBB Software Latency, app. model No Yes (Linux) Atomic, cond., mutex Real applications
RCU [9] Software Latency No May use Mutex Linux kernel

Boehm [10] Software Latency Maybe Yes Mutex Synthetic
F.-P. et al. [11] Software Latency Yes Indirectlyb Barrier IS and synthetic
SOFRITAS [1] Software Code correctness Limited Yes Barr., cond., mutex PARSEC, . . .

Sivaram et al. [12] Mixed Fault-tolerance Noa No Barrier Synthetic
Abellán et al. [13] Mixed Latency and area Noa Indirectlyb Barrier Synthetic

Stoif et al. [14] Mixed Latency Noa No Barrier, mutex FPGA, synthetic
MCAS [15] Mixed Latency and area No No Atomic Synthetic

CASPAR [16] Hardware Latency Yes No Atomic FFT, IS, . . .
HTM [17] [18] Mixed Latency Maybe May use Mutex, spin lock Indirectlyc

Not. Mem. [19] Hardware Latency, app. model Yes May use Spin lock MPEG-4 decoder
Subutai Mixed Latency and area Yes Yes Barr., cond., mutex PARSEC

Barr. = Barrier; cond. = Condition; app. = Application; Not. = Notifying; Mem. = Memories; F.-P. = France-Pillois;
* This term is defined in Section II-C; a Not addressed in the work;
b The work employs OpenMP, and it employs PThreads internally; c HTM can be used on the PThreads implementation.

Attiya et al. [21] formally proved that deterministic struc-
tures, as employed by the previously discussed libraries, can-
not eliminate the use of expensive synchronization. Therefore,
non-deterministic solutions focusing on relaxing the con-
straints that force the use of such expansive synchronization
have been proposed to tackle this problem. Kirsch et al. [22]
propose k-FIFO, which is a lock-free queue that removes up
to k − 1 out-of-order elements from the queue. Desnoyers
et al. [9] describe a synchronization technique based on the
publish-subscribe mechanism called RCU. Parallel applica-
tions that rely on RCU have to deal with stale data. The
bottleneck of these solutions is that the application code
adaptation is passed on to the developer.

B. Hardware-oriented/Mixed Solutions

Sivaram et al. [12] propose a fault-tolerant hardware-based
barrier synchronization. Their design uses a tree structure to
sum intermediate values, decreasing the number of packets
injected into the network. Their work is complementary to our
solution. Abellán et al. [13] explore three HW barrier architec-
tures and integrate them on the OpenMP programming model.
Unfortunately, they evaluated only synthetic applications. Stoif
et al. [14] implement an arbiter on FPGA that guarantees
mutual exclusion to a portion of the shared memory area
and an HW-based synchronization barrier that speeds up the
application execution; however, their work does not implement
full barriers and conditions, and it is limited to simple test
cases instead of real applications.

CASPAR [16] improves the performance of CAS oper-
ations by breaking the serialization of multiple CAS calls
and executing them in parallel. Patel et al. [15] propose a
special HW instruction, called MCAS, to change multiple
memory positions atomically, optimizing the synchronization

process. Hardware Transactional Memory (HTM)2 provides
an abstraction for executing blocks of code atomically. HTM
guarantees correctness by aborting transactions that conflict
with others [17].

Finally, Martin et al. [19] propose the Notifying Memories
concept to reduce communication latencies introduced in the
NoC by pruning useless memory accesses. This concept uses
spinlocks and is applied to dataflow applications only. Our
work is also based on extending the NI architecture, but
targeting shared-memory systems.

C. Comparison with the state-of-the-art work

A direct comparison of works in the data synchronization
field is unfeasible as they do not employ a common test
scenario that standardizes the experimental evaluation. Espe-
cially hardware and mixed solutions employ a varied set of
target applications. Table I shows that there is no intersection
of applications in the experimental results. Consequently, we
limit the comparison of experimental results to published
results on Section VIII; here, we discuss the support for data
synchronization primitives and legacy code.

Three solutions are generic API specifications (PThreads,
OpenMP, TBB) for cross-platform use. All other works are
optimizations on existing APIs, except for RCU, as it creates
a read-write lock capable of reading and writing at the same
time. Boehm optimizes memory barriers for lock and unlock
PThreads procedures. The approaches proposed by France-
Pillois et al. and Abellán et al. share the same idea of
optimizing the use of barriers in OpenMP applications. The
former achieves this through a software-only approach, while
the latter uses a mixed solution. MCAS and CASPAR optimize
the use of CAS procedures on lock-free applications. The
Notifying Memories solution targets a specific programming

2HTM can be simulated in software, yet the overhead imposed by the
software layer can be prohibitive [23].
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model and synchronization scenario: data-flow and spinlocks,
respectively. HTM allows speculative execution of critical
sections guarded by mutexes or spinlocks. Finally, our solution
accelerates PThreads data synchronization primitives through
hardware execution while keeping legacy-code compatibility.

We define that a solution is legacy code compatible if a
given application can use the set (or a subset) of the solution,
either by (i) recompiling without source code changes, or (ii)
dynamically linking to a library provided by the solution.
Therefore, besides Subutai, the following solutions support
legacy code: Boehm [10], France-Pillois et al. [11], CAS-
PAR [16], Notifying Memories [19], and HTM [17].

The works of Boehm and France-Pillois et al. are entirely
done at the software level; they are not directly related to
our work, as the former does not support reordering I/O
operations (which we use for Subutai-HW communication),
and the latter is an optimization for OpenMP (which we only
support indirectly). CASPAR accelerates a different type of
application (lock-free applications) not supported directly by
PThreads or Subutai. Notifying Memories can benefit from
our work if the spinlocks usage is done through PThreads
(i.e., pthread_spin_lock), which is not the case of the
paper presented in [19]. Besides, Notifying Memories target
the data-flow application model only, while we support any
model that uses the shared-memory paradigm.

HTM has two operation modes, whereas the Hardware
Lock Elision (HLE) is the only mode with legacy support.
HLE extends the parallel library code (e.g., PThreads) to use
a hot/slow path approach. Firstly, the operation is executed
speculatively using HTM; if it fails, then the legacy code is
executed. HTM uses the same approach of Subutai, making
changes in the library synchronization routines only. Besides,
HTM is complementary to our solution, as both can be used
in unison to handle synchronization primitives.

To the best of the authors’ knowledge, Subutai is the
only solution that speeds up various types of synchronization
primitives while keeping unchanged the userspace interface
(i.e., API).

III. SOFTWARE-ONLY AND SUBUTAI SOLUTIONS

Solutions for data synchronization are implemented in
software-only (SW-only) or in a hardware/software compo-
sition. The solutions provide trade-offs according to the con-
straints on the target design (e.g., portability, performance).
This section aims to clarify the target architecture used for
achieving the experimental results, as well as to clarify the
control flows used to synchronize shared data, using an exam-
ple based on the Linux OS.

A. Target Architecture

Fig. 2 shows a schematic representation of the target archi-
tecture. Each core communicates with caches and a local NI.
An NoC with routers using a standard design that includes
buffers, a crossbar switch, and a switch allocator implements
the interprocessor communication.

Modern multiprocessors consist of double digits of process-
ing core units [24]. Thus, we target an NoC-based manycore

architecture composed of 64 processing cores. Each core has
access to instruction and data caches. The Level 1 cache is
private and is divided into instruction and data caches. The
Level 2 cache is shared among the cores, and banks are dis-
tributed on the system. Therefore, our target architecture uses
a Non-Uniform Cache Memory Access (NUCA) architecture
with faster L2 accesses for nearby banks. We explore syn-
chronization solutions for Symmetric Multiprocessing (SMP),
because it facilitates the development of parallel applications,
as developers do not need to concern themselves with data
placement [25]. Hence, cache coherence is required and used.

The SW-only uses a single instance of Linux, while Subutai
employs a decentralized approach, where each core has its
self-governing OS. The decentralized OS design enables the
scheduler to be decentralized as well. A decentralized sched-
uler provides a faster thread switching, which benefits parallel
applications. Additionally, for dozens or more cores, message
passing can be much faster than memory sharing [26].

B. Target Parallel Library

Subutai transforms software events (e.g., mutex lock, condi-
tion wait) in hardware events (e.g., NoC packets). As such, we
can target any number of available library interfaces. We chose
the PThreads interface because (i) it is widely employed as a
de facto standard to parallel application implementation, and
(ii) it is used internally as the base of multiple synchroniza-
tion solutions, as shown in Table I. Consequently, PThreads
provides Subutai a broad range of applicability.

We focused on three of the four main groups of the
PThreads standard operations: mutex, barrier, and condition
handling. Thread events (create, exit, join) are not on the
critical path, and so are left to be handled at the OS level.
An extensive description of PThreads operations is out of our
scope. We limit the discussion to the essentials of the three
focused groups.

The mutex group contains locking and unlocking functions.
Locking is a blocking function that exclusively locks a vari-
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able. If the variable is already locked, the calling thread is
blocked. Otherwise, this operation returns the variable locked
by the calling thread. Unlocking is a non-blocking function
that changes the variable state and wakes up blocked functions
if there are any waiting threads.

The barrier group contains a single blocking function,
called wait, which synchronizes participating threads at a
user-specified code point. A barrier has a fixed number of
threads decided at allocation time; participating threads are
only woken up when they all hit the barrier.

The condition group contains wait, signal and broadcast
functions. Wait is an unconditionally blocking function that
inserts threads on a waiting list for a condition event. The op-
eration of the wait function requires locking a mutex variable,
which is passed as a reference to the function; this mutex
is unlocked once the wait function concludes its work. The
signal and broadcast are non-blocking functions that wake up
one and all threads, respectively, waiting for a condition event.
In these cases, the mutex is optional.

For all groups, one or more queues are required to record
blocked threads. Condition functions need to handle two
queues due to the associated mutex. Barrier and mutex func-
tions deal with only one queue. Besides, the three groups have
non-blocking functions that allocate and deallocate variables.
This work replaces the handling of these operations from an
entire software solution to a hardware/software approach.

C. Software-only Solution
Fig. 3 exemplifies the synchronization flow for the SW-only

solution deployed on Linux. The example starts with the user
application requesting a synchronization operation through a
function call, such as a mutex lock. The function is associated
with a PThreads interface that acquires the requested lock for
the thread using a memory shared among application threads.

The SW-only implementation tries to acquire the mutex
atomically multiple times. The first moment occurs within
the PThread library, which, on success, immediately returns
to the application (delay marked with t1). Otherwise, the
PThread library calls the Linux Kernel (specifically the Futex
subsystem), which has another codepoint for obtaining the
mutex; the last codepoint is the most time-critical point, as
it implies that the current thread goes to the sleeping state,
waiting for a mutex unlock event originated by the owner
thread to be awakened for requesting the mutex again. t2 and
t3 reference the delays associated with these two accesses to
the shared memory, respectively. Additionally, if the thread
cannot acquire the mutex lock after being awakened (due to
another thread executing on t1), then the SW-only solution
implements a loop to re-execute its code. At each loop, the
basic delays referenced by t2 and t3 may be increased by
∆ta, or ∆ta + ∆tb, depending on where the mutex lock is
obtained [27].

Throughout the timing of the synchronization flow, extra
delays may occur due to access to the shared cache memory,
as well as possible cache misses in the shared data that would
imply a much more significant delay. Also, since Futex is
potentially distributed into the manycore caches, these two
last codepoints imply communication costs through the NoC.
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Fig. 3. Synchronization control flow employed on Linux-only based solution.

D. Subutai Solution

Subutai is a synchronization solution for legacy and novel
parallel applications comprised of a software/hardware co-
design to perform fast synchronization operations. This section
describes the high-level interaction of the Subutai’s compo-
nents, which are illustrated in Fig. 1, together with a general-
purpose computing stack.

Subutai encompasses a userspace library, a kernelspace
driver, a hardware module, and an optional scheduler policy
(discussed in Section VII). The userspace library mimics an
existing synchronization solution intended for parallel appli-
cations. Therefore, the Subutai library procedures provide the
same interfaces (i.e., API) with different implementations.
The ability to mimic existing synchronization libraries is an
essential feature of Subutai to speed up parallel applications.

Each core in the system has a Subutai-HW module that
extends the NI and is responsible for accelerating synchro-
nization operations. Subutai-HW is a Finite State Machine
(FSM) coupled with a small dedicated memory (details in
Section V). Once the user application calls a procedure, the
Subutai library employs kernel services through system calls,
providing the link between the hardware and software parts.
Thus, the userspace library abstracts the hardware protocol
(Subutai-SW - details in Section IV).

Fig. 4 depicts the Subutai communicating flow. A unique
identifier (ID) on the entire system addresses each synchro-
nization variable. An incremental counter determines the NI
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Fig. 4. Synchronization control flow employed on Subutai.

that hosts the synchronization primitive: NI0 hosts the first
primitive; NI1 hosts the second one, and so on, following a
fairness method. Other dynamic allocation strategies can be
further studied, but this is out of the scope of this work.

The communication flow of Subutai starts with the applica-
tion making a PThreads interface request through any function
described in this section; the Subutai library identifies the
unique ID for this primitive and passes it to the driver along
with the interface request. Then, the driver writes to either
registers or a memory that the NI has access to; this decision
is made at the driver level with the capabilities available in the
system. Next, the driver writes in a control register to inform
the command to the NI and waits for an interrupt to receive
the remote response.

In case the local Subutai-HW hosts the lock, the NI can
respond immediately, performing a prompt request from the
driver. Thus, the driver does not use the router, avoiding the
injection of packets in the NoC; the delay of this procedure
is marked with τ1. Therefore, situations where the local
Subutai-HW hosts the synchronization primitive implies a
quick response as the request does not propagate across the
NoC.

If the local Subutai does not host the lock, then the local
NI injects a packet into the NoC targeting the remote Subutai-
HW, which handles the request and responds to the local NI
with a new packet. The address of the remote Subutai-HW is
embedded into the ID packet field (discussed in Section V-A).
This procedure implies an additional delay of packet traffic on
the network, being noted by τ2.

E. Subutai vs SW-only Solutions

The comparison of Fig. 4 with Fig. 3 allows us to understand
the differences between Subutai and SW-only approaches.
Synchronous flows marked by t1 and τ1 exemplify situations
where the local processing manages the lock. Thus, regardless
of the approach used, the response latency is lower compared
to the latencies of the decentralized processing flows.

Subutai offers a more efficient hardware-level solution for
a decentralized decision; thus, the flows marked with t2 and
t3 have higher latencies than the one marked with τ2.

The reasons for the lower latency of Subutai are: (i) locking
for the mutex queue (marked with * in Fig. 3) is required only
in the SW-only approach, as Subutai-HW has access to private
memory area to handle the concurrent threads (Section V-A);
(ii) susceptibility to data conflicts in distributed shared caches,
which does not occur in Subutai that implements this function-
ality using dedicated queues in Subutai-HW (Section V-A);
(iii) the efficiency of a lock event when another thread is
using it. The Subutai implementation returns this information
to the local tile as soon as it is available, while the SW-only
implementation is delayed by the OS scaling (Fig. 4 – HW
events can occur concurrently to the execution of the thread);
(iv) the use of dedicated control packets allows to employ
Quality-of-Service (QoS) techniques, providing differentiated
priority for the traffic of control packets (Section V-A). The
consequence is that control packets are propagated with lower
average latency and that the variability between latencies is
also lower compared to data packet latencies.

As a conclusion, either because of cache conflicts or packet
latency variability in the NoC, Subutai ensures more pre-
dictability than the SW-only solution.

IV. SUBUTAI-SOFTWARE (SUBUTAI-SW)
Subutai provides a new PThreads library for parallel appli-

cations to use our solution. Every time the user application
requests an operation on a mutex, barrier, or condition, the
library passes on the request through a system call for the
OS driver (items (i) and (ii) from Fig. 4). The request is
changed in terms of structure, as the user application handles
these synchronization variables by variable names, which are
memory positions, while the hardware tracks these variables
with a unique ID unrelated to the memory and name of the
variable. The driver receives the unique ID for the variable,
which is known by the library (not known by the application)
and decodes the packet destination through reserved fields in
this ID (Section V-A) (item (iii) from Fig. 4). The request
is processed in hardware, and, eventually, the response is
received in the local NI. Then, the local NI interrupts the
software to notify it of a packet arrival event; the OS driver
reads it and is able to finish the user application request
(last four steps of Fig. 4). Finally, other types of PThreads
operations (i.e., thread management) are kept unchanged.

Because most operations of PThreads are offloaded to be
handled on the hardware, valuable cache space can be saved
(up to 91.7% compared to x86 64) for the respective structures
of the synchronization variables, as shown in Table II. All
synchronization primitives have the same size in Subutai since
they only contain the 4-byte unique ID (refer to Section V-A).
The on-chip NI driver implementation was based on an ex-
isting driver that performs basic procedures for sending and
receiving packets. We reuse these procedures for the requests
from the PThreads library. Additional logic is introduced in the
driver to understand the packets sent and received, as Subutai
makes the driver an active component to change thread states
on its own (e.g., wake up a thread when it owns a mutex).
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TABLE II
MEMORY SPACE REDUCTION OF SYNCHRONIZATION PRIMITIVES.

Primitive
(name)

GNU LibC x86 64
(bytes)

Subutai
(bytes)

Reduction
(Percentage)

mutex 40 4 90.0%
barrier 32 4 87.5%

condition 48 4 91.7%

V. SUBUTAI-HARDWARE (SUBUTAI-HW)

A. Architecture and Implementation Choices

Subutai-HW extends a standard NI architecture for handling
synchronization operations fastly. Fig. 5 shows the schematic
representation of Subutai-HW and its location on the target
architecture. The main components of Subutai-HW are (i) an
FSM, (ii) a set of registers; and (iii) a local ScratchPad Mem-
ory (SPM), which is entirely controlled in HW by the FSM,
except for memory initialization. Initialization is done through
the OS driver and requires the creation of a free double-
linked queue. We validated and implemented the Subutai-HW
architecture by Register-Transfer Level (RTL) simulation [28]
and synthesis [29]. Besides, we developed an analytical model
to demonstrate its operation latencies and scalability.

The left-hand side of Fig. 5 shows that Subutai-HW employs
double-linked queues to record events. As an alternative to
statically allocating for the worst case, the double-linked
queues allow Subutai-HW to employ a dynamic allocator
for reducing memory consumption to the minimum, at the
cost of additional pointer arithmetic logic. Besides, condition
variables are dealt more efficiently with such structure, as
it avoids the thundering herd problem [30]. We based the
queue manipulation on the futex implementation of the Linux
kernel [31].

Subutai-HW operates using two structures for recording
information. Fig. 6 shows the first one, which records the
metadata of the synchronization primitives. Software only
knows the first 32-bit field, which is employed as an ID of
this primitive. However, for Subutai-HW, the first bit “F” is
used to allocate/deallocate this structure. The next 7-bit field is
the unique ID for the NI on the system. Lastly, the furthest 24-
bit field is used as a pointer to itself; we employ this technique
to avoid the cost of searching for an element of the structure
every time a new request has arrived. The second 32-bit field
encompasses the head and tail of the double-linked queue. The
last 32-bit field records values used for some of the primitives.
The first 16-bit field is employed to (i) record the thread and
core that owns a mutex, and (ii) store the current number
of threads waiting on a barrier. The barrier primitive uses the
furthest 16-bit field to record the maximum number of threads
allowed in a barrier.

Fig. 7 shows the second structure – a double-linked queue
element composed of six fields. The first bit is employed to
allocate/deallocate the element. The “prev” and “next” fields
are pointers to the previous and next elements, respectively,
or nil if they do not exist. The 16th bit “R” is reserved and
used for memory alignment. The last 32-bit field identifies the
requesting thread. The “Core ID” field is padded with zeroes
because the NoC packet uses only 8-bit to identify the core.

TABLE III
LATENCIES FOR SUBUTAI-HW FSM STATES. c = CYCLE LATENCY, m =

MEMORY LATENCY, n = NUMBER OF SYNCHRONIZATION VARIABLES
HANDLED BY SUBUTAI-HW, ρ = NUMBER OF THREADS ON A BARRIER.

State Best response
time

Worst
response time Packet Injection

Allocation 4m+ c
(n×m) +
(3m+ c)

(n×m) + (m+ c)

Deallocation 3m 3m None
Mutex Lock 2m+ c 11m 2m+ c

Mutex Unlock 2m 10m+ c 2m+ c

Barrier Wait 7m
(m+ c) + ρ×
(11m+ 3c)

(m+ c) + (12m+
4c) + (23m+ 7c)...
= (m+ c) + ρ×

(11m+ 3c)

Condition Wait 5m+ c+
Mutex Unlock

10m+ c+
Mutex Unlock None

Condition
Broadcast m 18m+ c 11m+ c

Condition Signal m 29m+ 2c 11m+ c

The minimum memory requirement for the SPM is one
control element and 63 queue positions, regarding a target 64
core architecture. Since we have to record up to p− 1 cores,
the minimum SPM size is 1×96+63×64

8 = 516 bytes. Note
that Subutai-HW is incorporated into every NI; consequently,
we handle up to 64 primitive variables even with minimum
sizing. The target architecture employs an SPM of 1 KiB (4
control elements and 122 queue elements) that handles up to
256 primitive variables in hardware. A double-linked queue
allocates elements dynamically, allowing Subutai to consume
memory on demand. A static allocator, on the other hand,
cannot handle more than one control element with only 122
positions available (< 2×63) – since the worst-case scenario is
63 positions per element3, as explained earlier. Thus, a static
solution would be either too limited or a waste of memory
resources.

Although the number of primitives used in the experimental
results is far from the SPM memory limit, there are two
scenarios where the SPM cannot handle a request. In one
scenario, the system does not have more primitive space
available in any SPM; thus, Subutai rolls back to provide
the SW-only implementation of the primitive. In the other
scenario, there are no more queue elements available in a given
primitive; therefore, we respect the POSIX standard and set
errno to EAGAIN [7], hinting to the developer that it should
try again later.

B. Response Time

Table III shows the latencies of the states as dependent
on the Subutai-HW cycle c, the SPM write/read latency m,
the number of synchronization primitives handled n, and the
maximum number of threads on a barrier ρ. Each memory
operation can either be a write or read operation in a given
m cycle. The first column identifies the Subutai-HW state.
The second and third columns identify the fastest and slowest

3We assume for the sake of size estimation that the number of threads
does not exceed the number of cores. However, the queue is capable of
handling such a scenario.
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latencies for the state, respectively. Finally, the last column
shows when the packet is ready to be injected into the
NoC – as, for some states, packets can be injected before
finalizing the request processing. Additionally, some states
(e.g., Deallocation) do not need to generate packets at all.

To illustrate the best and worst response time of Ta-
ble III, we describe the Mutex Lock state, which models
the pthread_mutex_lock operation. The fastest scenario,
whose latency is 2m + c, happens when the mutex is un-
locked. It requires two memory operations: (i) fetch the
control structure (field “Value” from Fig. 6) to check the
owner of the mutex (latency = m); and (ii) rewrite this field
with the requesting thread (latency = m). Finally, the NI is
notified that a new packet can be injected (latency = c). The
injected packet is the same as the requesting packet except
for the header. The worst scenario takes more time (latency
= 11m) because the state deals with two queues entries. It
starts with the same memory operation that reads the control
structure for this primitive. Thus, the circuit realizes there is
already an owner, which demands to queue up the request.
First, Subutai-HW allocates a free queue entry and updates
its queue pointers (takes up to 4 memory operations); then,
it writes the requesting thread information into it and the
tail information in the primitive metadata (6 more memory
operations), performing 11 memory operations in total. The

0 1 7 8 15 16 31

F NI ID Self Pointer

Queue head Queue tail

Value
(Owner/Number of threads) Max Value

Fig. 6. Subutai-HW control structure.

0 1 15 16 17 31

F Prev R Next

Thread ID Core ID

Fig. 7. Subutai-HW queue structure.

TABLE IV
SUBUTAI-HW STATES LATENCY WITH c = 1ns, m = 2ns, n = 4, ρ = 63,

FSMentry = 4ns, FSMexit = 1ns.

State Best response time
(empty queue)

Worst response
time (queued)

Packet Injection
Best Worst

Allocation 14 ns 20 ns 10 ns 15 ns

Deallocation 11 ns 11 ns None
Mutex Lock 10 ns 27 ns None 10 ns

Mutex Unlock 9 ns 26 ns None 12 ns

Barrier Wait 19 ns 1583 ns None 7, 32, 57,
. . .ns

Condition Wait 20 ns 47 ns None
Condition Broadcast 7 ns 42 ns None 27 ns

Condition Signal 7 ns 65 ns None 27 ns

latency for the other states follows a similar procedure.
Table IV shows the latencies used in the experimental

results. We clocked Subutai-HW at the same frequency as the
NI (1 GHz). SPM employs the previously discussed 1 KiB
single-port SRAM-based implementation with uniform access
of 2 cycles, 4 control structures, and 122 queue entries. Besides
the Subutai-HW state latencies of Table III, Table IV includes
the values of the NI used in this work; let FSMentry and
FSMexit be the entry and exit latencies for Subutai-HW, then
FSMentry = 4 ns (3 cycles for 3 flits of 32 bits and 1 cycle
to decide the next state) and FSMexit = 1 ns (1 cycle to set
a flag) to reach any state. A detailed report of equations and
values described in Tables III and IV, and the pseudo-code
implementation of Subutai-HW can be found in [32].

The latency required to release threads on a barrier exceeds
one thousand nanoseconds due to the queue size of threads
waiting on the barrier – it does not represent the packet
injection latency. Thus, some threads execute much earlier than
the total value. As shown in the last column, the packets are
injected periodically at every 25 ns, except for the first packet,
which is injected in 7 ns. Thus, the total number of cycles
is 1583 ns, which is composed of the following parameters:
FSMentry + FSMexit+m+ c+ ρ× (11m+ 3c).

The Condition Broadcast and Condition Signal states show
interesting latency results. At first glance, it would seem more
plausible that releasing one thread (signal) would be faster than
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releasing all threads (broadcast). However, this conjecture is
not valid due to the following reasons. First, by releasing all
threads, the state has to deal with only one queue (mutex)
instead of two queues (mutex and condition). Second, due
to the way condition works, only a single thread is indeed
released since a mutex is associated with it. Consequently, the
broadcast state avoids the scenario previously described for the
barrier state – only the owner of the mutex will be released.

Subutai-HW also includes six 32-bit and three 1-bit reg-
isters; three are used for the packet fields (Fig. 8), and six
more to (i) handle the free queue; (ii) memory swapping
operations; and (iii) control flags to receive and send packets.
For receiving/sending packets, Subutai-HW reuses the already
available registers of the NI. The packet structure is combined
with the recorded information in the two control structures
(Figs. 6 and 7) to handle any request.

0 7 8 15 16 31

Synchronization ID

Request Type Core ID Thread ID

Value (integer or pointer to mutex synchronization ID)

Fig. 8. Subutai’s packet format.

VI. APPLICATION SYNCHRONIZATION MODEL

The performance of Subutai is evaluated through the widely
used PARSEC benchmark, as it provides a wide range of
application domains, parallelization models and data sharing.
From their application set, we employ Bodytrack, Streamclus-
ter, and x264; we limit our discussion to the synchronization
model used by these applications. An extensive overview of
these applications is outside the scope of this paper (more
information can be obtained in [33]).

Bodytrack is a computer-vision application that tracks a 3D
pose of a mark-less body. It uses mutexes for data sharing,
and conditions and barriers to make sure all threads are syn-
chronized and able to handle more requests. The workflow of
Bodytrack starts with a single ‘master’ thread (T0) responsible
for creating synchronization primitives, creating Tn - 1 threads,
and sending computation requests for them. Then, the threads
T1, . . . , Tn - 2 do the actual computation through the requests
from T0. Finally, the last thread (Tn - 1) performs asynchronous
I/O operations (e.g., loading images from disk to memory).

Fig. 9 depicts the workflow of Bodytrack. Initialization is
done exclusively by T0, where the synchronization variables
and threads are created. Then, T0 divides the computational
work among the worker threads and sends a condition broad-
cast for all worker threads. Meanwhile, each worker thread
checks if its work is available - if so, the thread skips the
condition and moves on to the next phase; otherwise, the
thread waits for the condition variable.

Each thread uses mutexes to access shared memory while
performing the computational work. Meanwhile, T0 uses a
barrier to wait for all worker threads to conclude their jobs.
The barrier guarantees that all worker threads are ready to
handle the next work request. As the worker threads finish
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Fig. 9. Bodytrack’s synchronization scheme. Tn - 1 is not shown as it does
not participate in the Bodytrack workflow.

their work, they join the barrier as well. Only when all threads
have joined the barrier, they are released to execute the next
phase, which loops back to the generation of more work to
the worker threads. This loop is executed until no more work
is available.

The workflow plotted in Fig. 9 simplifies three aspects of
the work of the Bodytrack application. Firstly, after the worker
threads have received a request through the condition, they
acknowledge it using another barrier (not shown in Fig. 9),
and the associated mutex of the condition. Secondly, Fig. 9
does not show the thread responsible for asynchronous I/O
(Tn - 1) because it communicates only with T0 and the number
of requests is at most 10 events, which is tiny compared to
the core workflow. Thirdly, Fig. 9 abstracts the application
process conclusion because this process does not use data
synchronization.

Streamcluster is a data-mining application that solves the
online clustering problem for a stream of input points; it
computes an approximation for the optimal clustering of them.
This application has a simpler communication model than
Bodytrack, using a single instance of mutex, barrier, and
condition. Nonetheless, Streamcluster shares the same barrier-
based synchronization scheme as Bodytrack.

x264 is a lossy video encoder for high-quality streams
that do not employ barrier synchronization primitives, and
all mutexes variables are associated with condition variables.
This application uses a sliding pipeline model, whose number
of pipeline stages equals the number of video frames, while
the sliding window is determined at runtime by the number
of thread requested. The total number of stages created is
1 + 2 × videoframes [34].

Table V displays the number of synchronization primitives
used by each PARSEC application. Additionally, Table VI
depicts the number of synchronization events for the same set
of applications. On the one hand, neither the number of threads
nor the input size affects the number of synchronization
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TABLE V
NUMBER OF SYNCHRONIZATION PRIMITIVES FOR PARSEC (SIMMEDIUM

INPUT).

Application Mutex Condition Barrier
Bodytrack 3 1 4

Streamcluster 1 1 1
x264 95 95 0

TABLE VI
NUMBER OF EVENTS OF SYNCHRONIZATION PRIMITIVES DURING THE

EXECUTION OF PARSEC APPLICATIONS (SIMMEDIUM INPUT).

Application Type Events per number of threads
16 32 64

Bodytrack
Barrier1 2101 4293 13416

Condition 447 750 1529
Mutex 9000 10472 8677

Streamcluster
Barrier1 208048 364480 728960

Condition 381 802 1274
Mutex 510 1054 2142

x264
Barrier 0 0 0

Condition 86 310 354
Mutex 4154 4340 4344

(1) Every packet is counted as an event. Thus, in a 64-thread barrier, for instance, 64
events are generated for waiting on a barrier, and other 64 events are generated for
releasing them, as the NoC does not support broadcast messages.

variables, except for x264, where the number of frames (i.e.,
input size) affects the number of primitives. On the other hand,
Table VI displays that both affect the number of calls of these
primitives.

VII. SCHEDULING

We employ multiple parallel applications that share comput-
ing resources to minimize the global idle time and maximize
the rate of application instances. This work proposes a new
scheduling policy to accelerate the critical sections of parallel
codes. Additionally, we evaluate its performance impact on
parallel applications against the Round-Robin (RR) scheduler,
which does not differentiate the sections of parallel applica-
tions. We do not propose a new scheduler, instead, a scheduler
policy that any scheduler can adopt in its decisions.

We target the scheduler rather than the application, as it does
not require modifying the application code. Thus, we intend to
further speed up applications by aggregating multiple parallel
applications with a critical section-aware policy. Running
multiple applications makes every application slower (i.e.,
increases the execution time), as they have to contend for
computational resources. However, the scheduling impact on
execution time can be mitigated by the policies employed on
the scheduler.

The fair scheduler employs equal-priority for all appli-
cations making them have the same slowdown to enforce
fairness. Eq. 1 shows the lower-is-better unfairness metric [35]
that can be used to evaluate the fairness of the scheduler.

Unfairness =
MAX(Slowdown1, . . . Slowdownn)

MIN(Slowdown1, . . . , Slowdownn)
(1)

Where n is the number of applications in the workload
and Slowdowni = ETschedi

ETalonei
, where ETschedi denotes the
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Fig. 10. Comparison of three application sets for the distribution of time
spent in critical section on a RR scheduler with a timeslot of 1ms.

execution time of application i under a given scheduler, and
ETalonei is the execution time of the application i when
executing alone.

The baseline scheduler employs the RR policy that avoids
starvation by running the application set in a deterministic
order and uses a fixed share of execution time (timeslot). These
features provide a fair distribution of execution runtime as all
applications have the same number of timeslots regardless of
the application type (i.e., low unfairness)4. The experimental
unfairness values obtained will be discussed in the experimen-
tal results section.

Parallel applications can be roughly divided into sequen-
tial and parallel execution modes. Every parallel application
contains at least a small sequential part for initialization,
such as thread creation and parsing of application parameters.
Mutual exclusion data access is another sequential execution
commonly used among parallel portions. By using a mutex,
either independently or associated with a condition, a thread
is exclusively executing a given portion of code (i.e., a
critical section) and potentially limiting all other threads.
Consequently, delaying the execution of critical section code
should be avoided to decrease the overall sequential time of
an application.

Fig. 10 compares the critical section latency for three sets
of the Bodytrack application: (i) standalone (×1), with four
(×4), and with eight instances of Bodytrack (×8). The Y-
axis is the percentage of overall critical section time on a
given time interval (X-axis). The X-axis comprises the last
value until the current value, except for the first case, where
it starts at zero and goes until 211 ns. For instance, the X
value equals to 212 comprises the time spent on a critical
section of [211, 212) ns. As discussed previously in Section VI,
all threads of Bodytrack, except the last one, participate in
the synchronization scheme; since this example employs 64
threads, up to 63 threads share the same critical section.

We compare the same application on these three scenarios;
consequently, the number of accesses into the critical section
is approximately the same. However, the time spent into a
critical section by a thread is not the same, as the scheduler

4Assuming the scheduler shares the same timeslot for all threads of a
given application.
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Fig. 11. Overall time spent in critical section for the sum of the work-related
mutexes of Bodytrack on RR and CSA-enabled schedulers.

can interrupt the application execution. Fig. 10 shows that as
the number of applications increases, the time each thread
spent into a critical section also tends to increase since the
scheduler does not differentiate execution on a sequential or
parallel mode. The figure shows two situations where the time
spent in critical sections spikes upward: from 211 to 212 ns
and 218 to 219 ns. The first spike results from the application
synchronization usage: this interval has the most number of
cases for Bodytrack, as shown by the standalone case. The
second spike happens only when multiple applications are
introduced (Bodytrack×4 and Bodytrack×8). As we use a
timeslot of 1 ms, the time spent in the critical section revolves
around half this value (i.e., 219). The threads do not necessarily
use the entire timeslot, as they can request to be scheduled
out to wait for an event, for instance. Bodytrack has shown
significant enough cases of such scenarios that the spike
happens around half of the total timeslot. Nonetheless, this
experiment shows that a scheduler based on the RR policy
affects the synchronization latency and execution time.

Fig. 11 (legend RR) shows the total time spent in the critical
section for the same set of applications. As expected, the
time spent increases as more applications content for core
usage. The behavior shown here by not taking note of the
critical sections of parallel applications motivates the proposal
of introducing the context of critical sections into the scheduler
decisions. Therefore, the gains of utilizing Subutai can be
maintained in a massive scheduler contention scenario. We call
this proposal the critical section-aware policy (CSA), whose
results are depicted in Fig. 11 (legend CSA). The critical
section execution time is kept as close as possible to the single
application execution by applying the CSA policy.

A. Critical Section-Aware Policy (CSA)

We introduce CSA into the scheduler policies for executing
critical section code as fast as possible. The policy works as
follows. Every time a given thread has CSA enabled and is
currently inside a critical section (i.e., holding a mutex), it
has priority over the execution of all other threads that are
not in the same scenario. In case another thread also has CSA
enabled and is inside another critical section, an RR policy
is applied to switch between them until either one finishes.

Finally, if there are no threads that meet those requirements, an
RR policy is applied to switch between the entire application
set. We use RR as the baseline scheduler policy, yet more
complex policies can also be applied.

Unfortunately, increasing the priority of a given thread over
all others without any limitations generates two issues: (i) the
scheduler deadlocks if the application also deadlocks; and (ii)
it affects negatively on the performance of all other threads
(i.e., high unfairness). Therefore, a time limit, defined in Eq. 2,
was implemented in the CSA to deal with both issues.

CSALimit = (ThrReady+ ThrRun− 1)× (2× TS) (2)

where ThrReady and ThrRun are the numbers of threads
currently in the ready and running states, respectively. For both
cases, the idle thread is ignored. TS is the chosen timeslot
for the RR policy, generally in milliseconds. For instance, for
a scheduler with a sum of 8 threads on the ThrReady and
ThrRun states and a TS of 1ms, when one of these threads
gains CSA priority, its time limit is 14ms.
CSALimit has a direct proportionality between a parallel

application execution time and the scheduler’s unfairness. In
other words, a high CSALimit value will produce a fast
parallel application execution for an unfair scheduler, and
the opposite is also true. As we aim to keep the scheduler’s
fairness, we chose a limit that accelerates parallel application
without increasing the scheduler’s unfairness. Eq. 2 is a
first empirical proposal, but a dynamic limit can be used to
rebalance the CSA policy according to the scheduler profile.
We chose the limits defined in Eq. 2 as it restricts the delay on
other threads at most three times compared to the RR policy.
When all threads are running on the RR policy, the maximum
delay is (ThrReady+ThrRun−1)×TS. Thus, the scheduler
changes to the RR policy to maintain a fair scheduling, if the
execution of the critical section reduces the priority of the
other threads. The time limit deals with deadlock situations;
however, to avoid livelocks, the scheduler requires a system-
specified limit on the use of CSA policy for a given timeframe.
Such methodology has been used effectively against other
types of scheduler livelocks [36].

The fairness restriction of CSALimit allows accelerating
only a subset of critical sections; this is the reason why
the critical section time is lower with Bodytrack ×8 than
with Bodytrack ×4 (Fig. 11 - legend CSA). Table VII shows
the impact of CSALimit on the Bodytrack application set.
The second, fourth, and fifth columns show the number of
scheduling requests made outside of any critical section, inside
a critical section with CSA enabled, and inside a critical
section where RR has been enabled due to CSALimit, re-
spectively. The third column shows that all scheduling requests
for a critical section are either using CSA or RR policy.
Approximately 10% and 8% of the total critical sections had
CSA disabled as their time surpassed the CSALimit time
on Bodytrack ×4 and ×8, respectively. Even though we are
analyzing the same Bodytrack, while running in a set of
4 and 8 applications, there are some discrepancies in the
total number of requests for scheduling due to the use of
synchronization primitives. Streamcluster and x264 presented
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TABLE VII
IMPACT OF CSALimit ON THE BODYTRACK APPLICATION SET

EMPLOYING A TIMESLOT OF 1ms. CS = CRITICAL SECTION.

Application set Schedule requests
(not CS)

Schedule
requests (CS)

CSA
(CS)

RR
(CS)

Bodytrack ×4 305517 CSA (CS) +
CSA (RR)

15267 1558
Bodytrack ×8 323379 15274 1274

TABLE VIII
NI, SUBUTAI-HW AND SPM SYNTHESIS WITH 28 NM SOI.

Components Area (µm2) Overhead
Basic NI 13539.23 –

Subutai FSM 2626.21 19 %

SPM 3702.00 27 %

Basic NI + Subutai-HW* 19867.44 46 %

*Subutai FSM + SPM

shorter critical sections on our experimental results, and they
never triggered the CSALimit.

VIII. EXPERIMENTAL RESULTS

We demonstrate our solution results using a two-fold ap-
proach. Firstly, the system area and scalability of our solution
are evaluated through an RTL implementation of Subutai-HW.
Secondly, the system performance and scheduler are evaluated
through architecture simulation and parallel applications from
the PARSEC benchmark. Like Butko et al. [37], we employ
the Gem5 simulator [38] to produce synchronization points
of the applications; next, we feed this information into an in-
house SystemC simulator [32], which enables us to collect
experimental results. We run applications with and without
Subutai: the former will henceforth be called Subutai, and the
latter SW-only (i.e., Linux Kernel).

A. Area

Subutai-HW comprises a register-based NI, an FSM for
synchronization control and linked pointer manipulation, and a
1 KiB SPM to store metadata and events. We use a very basic
NI with 32-bit links, packing and unpacking logic, no virtual
channel and 2 I/O buffers of 16 × 32 bits. It is worth noting
that using HW synchronization operations releases valuable
memory and cache space that would otherwise be required.
Besides, the memory requirement is negligible if compared to
a typical processor cache (less than 10%, if the cache size is
16 KiB). Table 8 summarizes the synthesis results showing
our solution increases by 46% the basic NI area, including
the local SPM; however, the overhead is amortized when the
entire chip area is considered. For instance, using the Patel
et al. [15] chip area of 400mm2, the percentage of total area
consumption of Subutai-HW is 64×0.00632821

400 = 0.101%, while
the enhanced NI is 64×0.01986744

400 = 0.317% for 64 cores. We
synthesized all hardware elements using Synopsis DC [29]
with 28 nm Silicon on Insulator (SOI) technology and 1 GHz
clock frequency. Additionally, the SPM was synthesized with
Cut Explorer [39].

B. State-of-the-Art Area Comparison

We compare our solution to those related work that provide
enough data about the absolute area consumption (i.e., not in
percentages) and technology used. Table IX depicts the area
consumption of five hardware-based solutions. For a fairer
analysis of the area consumption of each solution, we divided
the total area consumed by the estimated number of cores in
the system (i.e., area per core).

Subutai is second-to-last in terms of area consumed per core
in the system. Additionally, Subutai and HTM have an addi-
tional area requirement per core; i.e., HTM needs to change
the first cache level of the system for its functionality, and
Subutai needs an SPM memory for synchronization handling.
Even so, Subutai is third-to-last in terms of area consumption
when both areas are combined. The hardware of Abellán et
al. [13] has the overall smallest consumption as it is mainly
comprised of wires and controllers. The last line of Table IX
shows the estimation of area consumption for a 400mm2 chip
[15] for the same set of related work. Subutai only consumes
approximately 0.1% of the total chip. Once again, it is third-
to-last in overall area consumption.

C. Acceleration of Single Parallel Application

Fig. 12 shows the results obtained for the three PARSEC
applications analyzed in this work. We analyze the entire
application execution but plot the results for two threads for
each application: the master thread (T0), responsible for global
synchronization, and a worker thread instance (T7). Besides,
the results are divided into two: synchronization operations
and processing. The former aggregates all calls to PThreads
(e.g., mutex lock), while the latter collects the processing
needed by the application. NoC communication and Subutai-
HW latencies did not contribute significantly for the execution
time; thus, they are not visually perceivable on the figure,
although they are present. Nonetheless, the figure shows that
our solution reduces the application total time by handling
synchronization faster.

From the designer point-of-view, the master thread (T0)
shows the effective speedup, as it is responsible for initializing
and finalizing the application. Bodytrack achieved a speedup
of 1.78×, and 1.77× for 32 and 64 cores, respectively.
Streamcluster achieved a speedup of 2.71×, and 2.20× for the

TABLE IX
STATE-OF-THE-ART AREA CONSUMPTION.

HTM [18] MCAS [15] Abellán et
al. [13]

Notifying
Memories [19] Subutai

Area per core
(mm2) 0.32800 0.01824 0.00022 0.00534 0.00262

Additional area per
core (mm2) 0.01560 No No No 0.00370

Target Frequency
(GHz)

Not
addressed 3.40 0.62 0.50 1.00

Target System 8-core 32-core 64-core 12-core 64-core
Technology (nm) 65 14 (scaled) 45 65 28

Technique Estimation Synthesis Synthesis Synthesis Synthesis
Overhead for a

64-core 400mm2

chip
5.497 % 0.291 % 0.003 % 0.008 % 0.101 %
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Fig. 12. Experimental results showing acceleration for a single parallel
application. Values are in seconds of execution; the dotted red color is the
sum of synchronization operations; the flat blue color is processing time.

same core set. Finally, x264 achieved a speedup of 1.11× and
1.05× for the same core set. Therefore, our solution achieved a
speedup of 1.77×, on average. Table VI displays the number
of synchronization calls, explaining the speedup difference;
for instance, Streamcluster requires, roughly, 18, 23, and 31
times the equivalent of Bodytrack for 16, 32, and 64 cores,
respectively. Thus, we can better optimize worker threads,
as they are the ones using these primitives. The results also
show that Bodytrack and Streamcluster are not scalable to 64
cores. Southern et al. [40] have independently corroborated
this limitation as well. Our solution works the same regardless
of the application scaling – as will be shown with a producer-
consumer application on Section VIII-E.

The x264 application does not employ barriers because it
uses hundreds of synchronization variables instead of dozens
(Table V), and it does not have a logical dependency that
involves all threads; therefore, x264 has less contented syn-
chronization primitives. While Bodytrack and Streamcluster
utilize synchronization in all worker threads, some of the
worker threads of x264 have almost no synchronization; in
turn, the application is not penalized with significant syn-
chronization overhead. Another application like x264 from
PARSEC, named Facesim, is available in [32], and it shows
similar speed up results: 1.10× and 1.27× for 32 and 64 cores.

Our solution provides less direct benefit to x264 compared
to the other two applications since it is designed to accelerate
synchronization overhead. In other words, when synchroniza-
tion primitives are not used to control most threads, their
acceleration may not affect significantly the execution time
since the synchronization may not be in the critical path.

Since we aim for legacy code compatibility, no changes
have been made to any applications, either to increase the use
of PThreads or to insert metadata for Subutai. Therefore, we
target scenarios of running multiple applications to improve
the speedup of our solution further.

D. Accelerating Multiple Parallel Applications

Fig. 13 displays the experimental results organized into sets
of eight applications each: (a) eight instances of Bodytrack, (b)
eight instances of Streamcluster, (c) eight instances of x264,
and (d) a combination of 3, 2 and 3 instances of Bodytrack,
x264, and Streamcluster, respectively. All applications have
been set to use 64 threads and cores without restriction
regarding mapping threads to cores.

Figs. 13a to 13d illustrate the entire execution time in
seconds of an application set (i.e., from initialization to
termination of all applications), comparing RR, CSA, and
a One Application at a Time (OAT) scheduler. The latter
scheduler is used for representing a mono application system
(i.e., OAT can only execute one application). Lines a in
Figs. 13a through 13d show that Bodytracks, Streamclusters,
x264s, and mixed application sets have accelerations of 1.86×,
2.13×, 1.07×, and 1.91×, respectively, when running with
Subutai compared to SW-only implementations with an OAT
scheduler.

Additionally, lines b and c of Figs. 13a to 13d show
that placing these applications in a competitive scheduling
scenario increases the gains further because the idle time for
a given application can be used as working time for another
application; i.e., comparing CSA with OAT the speedups for
Bodytracks, Streamclusters, x264s, and mixed applications are
1.58×, 2.69×, 4.61×, and 2.09×, respectively. The SW-only
implementation has also presented gains, but the execution
time of it is always higher compared to Subutai for the set of
applications analyzed here. For the Streamcluster and mixed
applications (Fig. 13b and 13d), executing them on Subutai
with an OAT scheduler is faster than executing them on SW-
only with either scheduler policies used in this work.

Table VII shows the impact of a scheduling policy restricted
to critical sections is limited, as for an application such
as Bodytrack, this section is approximately 5.12% of the
total execution time. For Streamcluster and x264 application
sets, not shown in Table VII, the critical section scheduling
requests are 0.26% and 9.29% of the total number of requests,
respectively. The set of Streamclusters with the CSA-enabled
scheduler presented the highest speedup when compared to the
same set of applications with an RR scheduler. Bodytrack and
x264 presented a less significant speedup of less than 1.01×.

Table VI shows that Streamcluster has by far the most
significant number of synchronization events of the application
set. The number of synchronization events is a crucial factor
for both Subutai and CSA in terms of their capacity to ac-
celerate applications. For Subutai, these events are accelerated
through the HW/SW co-design proposed by our work. For
CSA, the same set of events are the only moments where it
can apply its policy. Additionally, CSA relies on the premise
that accelerating critical sections will decrease the overall
execution time. This premise works well on barrier-based
workloads, such as Streamcluster and Bodytrack, where the
application is always working on the worst-case scenario (i.e.,
all worker threads blocked waiting for the slowest thread to
join the barrier). However, pipeline applications, such as x264,
can start working on new data as soon as the first thread
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Fig. 13. Execution in seconds for multiple eight-application sets (lower is better) - (Exec = Execution).

TABLE X
UNFAIRNESS METRIC FOR CSA AND RR SCHEDULERS (LOWER IS

BETTER).

Application set
SW-only Subutai

RR CSA RR CSA
Bodytrack ×8 1.04 1.04 1.16 1.15

Streamcluster ×8 1.11 1.11 1.19 1.19
x264 ×8 1.27 1.24 1.12 1.20
mix ×8 2.00 1.71 1.88 1.83

has finished; therefore, CSA has a lesser impact on such
applications.

Table X presents the unfairness metric. For all cases, CSA
either maintains or decreases the unfairness of the scheduler
for the application set, except for x264. Nonetheless, Fig. 13c
shows that x264 has the same overall execution time in both
cases. Consequently, these results indicate that the use of the
CSA policy keeps the fairness of the baseline scheduler.

E. Synthetic Benchmark

The results presented in the previous sections provide a sys-
temic view of Subutai, but they do not convey the optimization
in the synchronization itself. The lack of a microcosm view
happens because the applications use at least thousands of syn-
chronization primitives during their execution. Consequently,
we employ a one producer many consumers synthetic appli-
cation encompassing a few calls to the three synchronization
primitives (mutex, barrier, and condition) using six threads.

Table XI shows the average absolute time of Subutai and SW-
only for these primitives.

Subutai speeds up significantly every synchronization prim-
itive compared to the SW-only implementation. The compar-
ison is made from the application perspective; for instance,
the condition broadcast and mutex unlock operations have
no response packet; consequently, Subutai can return to the
application immediately after the request packet is sent. Thus,
the processing is offloaded to the HW, and the primitive
is handled faster from the caller perspective. The SW-only
implementation depends on the following costs to handle
synchronization primitives (Fig. 3): (i) context switching; (ii)
synchronization for queue operations; and (iii) kernelspace
switching. Item (i) is reduced in Subutai by using a distributed
OS. As stated in Section III-A, we can use a faster context
switch with a distributed OS. The faster OS is useful for
functions that are blocking, and every group handled by
Subutai has these functions. Item (ii) is reduced by offloading

TABLE XI
RESULTS FOR PRODUCER-CONSUMER APPLICATION.

Primitive Type Avg. SW Avg. Subutai

Mutex
Lock empty 1537 ns 127 ns

Lock queued 64178 ns 916 ns

Unlock 4400 ns 60 ns

Barrier Wait (released) 102467 ns 1183 ns

Condition
Broadcast 25209 ns 60 ns

Queued 42844 ns 1022 ns
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all queue operations to hardware. Finally, item (iii) is not
present in our OS. Subutai adds the cost of I/O operations
to deal with Subutai-HW (Fig. 4), which is not present in the
SW-only solution. Nonetheless, these factors explain the gains
shown in Table XI.

IX. CONCLUSION

This paper presents Subutai, an HW/SW co-design solu-
tion for accelerating legacy and novel parallel applications
through data synchronization. Unlike other synchronization
solutions [1] [9] [15], our approach does not require any
user-level modification, such as source code changes. Subutai
overrides the shared library of PThreads while maintaining its
functionality and API. Ergo, any binary using PThreads for
data synchronization can benefit from the proposed solution.

Subutai relies on hardware-handled operations to accelerate
common synchronization techniques found on parallel appli-
cations. By doing so, the overall execution time speeds up
to 1.77×, on average. Besides, we show that our solution is
efficient in the general case of multiple applications sharing
computing resources as we propose the CSA scheduling policy
to accelerate applications further on a resource-contention
scenario by providing priority to threads that are currently
running in a critical section. We have implemented this policy
using an approach that improves the balance of the scheduler
(i.e., low unfairness), making the policy highly portable across
different scheduling techniques. Even with such limitations,
we achieved a speedup of up to 4.61× for shared-memory
parallel applications.
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Titre : Déploiement d’applications parallèles sur architectures parallèles
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Résumé : Avec le ralentissement de la loi de Moore,
et la fin de la course à la fréquence, l’amélioration des
performances vient du parallélisme. Plusieurs types
de parallélisme peuvent être exploités par les archi-
tectures de calcul. Nous nous concentrons sur le pa-
rallélisme au niveau instruction, parallélisme de don-
nées, et le parallélisme de tâche. La multiplication du
nombre de ressources de calcul permet de proposer
du parallélisme spatial. La question qui se pose est
le déploiement des applications sur les architectures
parallèles, pour exploiter au mieux les ressources dis-
ponibles.

Dans nos travaux, nous étudions tout d’abord
des architectures reconfigurables à gros grains, per-
mettant d’exploiter le parallélisme au niveau instruc-

tions et le parallélisme de données. Nous avons pro-
posé une architecture et une approche originale de
déploiement d’application incluant le flot de contrôle
et la gestion des boucles pour en faire un accélé-
rateur autonome embarqué à haute efficacité éner-
gétique. Nous avons aussi proposé des algorithmes
de déploiement d’applications, décrites selon le mo-
dèle de calcul dataflow, sur des architectures multi-
cœurs, permettant d’exploiter le parallélisme de don-
nées et le parallélisme de tâche. Enfin, la synchro-
nisation est un point clé des performances sur ar-
chitectures parallèles. Nous avons proposé des so-
lutions matérielles pour accélérer la synchronisation
des applications dataflow, et des applications suivant
la norme Pthread.

Title: Mapping parallel applications on parallel architectures

Keywords: Parallelism, CGRA, multicore processor, mapping, compilation

Abstract: With the slowdown of Moore’s law and the
end of the frequency race, the performance comes
from the parallelism. Several types of parallelism can
be exploited by computing devices. Our work focuses
on instruction-level parallelism, data-level parallelism,
and task-level parallelism. Multiplying the number of
computing resources exposes spatial parallelism. The
question is to find how to map the applications on par-
allel architectures, to fully make use of the available
computing resources.

In our work, we first study Coarse Grained Re-
configurable Architectures (CGRA) which can exploit
instruction- and data-level parallelism. We proposed

a new architecture and an original mapping approach
that can manage the control flow of an application, in-
cluding the loop control, to build an ultra-low power
and energy efficient programmable accelerator for
embedded systems. We also developed a runtime
mapping algorithm for mapping parallel applications
following the dataflow model of computation on multi-
core processors, making use of data- and task-level
parallelism. Finally, synchronisation is a key issue
for the performance of parallel architectures. We de-
signed hardware solutions for accelerating synchroni-
sation for dataflow applications, and for Pthread ap-
plications.
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