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Titre : Solution du problème de diffraction en champ proche à partir des développements sur bases mixtes, 

avec application aux contrôles non-destructifs électromagnétiques et thermiques. 

Mots clés : diffraction en champ proche, méthodes spectrales, contrôle non-destructif 

Résumé : L'inspection par courants de Foucault et la 

thermographie sont des méthodes bien établies pour 

le contrôle non destructif et l'évaluation de matériaux 

utilisés dans un grand nombre d'applications 

industrielles. 

Ces deux méthodes reposent sur des régimes 

physiques similaires (équation de diffusion), ce qui 

leur fait partager un certain nombre de 

caractéristiques communes, la plus importante 

d'entre elles étant le caractère local de la région de 

détection. Pour cette raison, les méthodes 

d'inspection par courants de Foucault (CF) et 

thermiques peuvent être condidérées comme des 

méthodes de « diffusion en champ proche ». 

Du point de vue de la modélisation, on peut tirer parti 

du caractère localisé de la solution, du fait que les 

détails compliqués de la géométrie loin de la sonde 

peuvent être négligés et on peut se concentrer sur 

les caractéristiques géométriques essentielles au 

voisinage de la source. 

 

Sur cette base, le travail présenté ici procède à une 

construction systématique de solutions rapides 

pour les problèmes de CF et de propagation de la 

chaleur appliqués à un certain nombre de 

configurations avec une importance pratique. 

La ligne directrice de tous ces développements est 

l'exploitation optimale des symétries de la pièce au 

voisinage de la sonde et le choix de la 

représentation la mieux adaptée à la configuration 

donnée. Les méthodes dites spectrales jouent ici un 

rôle central; la solution est développée à partir de 

la base propre associée à la géométrie considéré, 

cette base pouvant être complétée par des 

représentations mixtes spectrales/spatiales dans 

les cas les plus complexes. 

A la fin de ce document, un aperçu des tendances 

actuelles et des sujets qui, du point de vue de 

l’auteur, peuvent faire l’objet de futures recherches, 

est donné. 

 

 

 

Title : Near-Field Scattering Solutions using Mixed Bases with Application to Electromagnetic and 

Thermographic Inspection of Technical Materials 

Keywords : near-field scattering, spectral methods, non-destructive testing 

Abstract: Eddy-current and thermographic 

inspection are well-established tools for the non-

destructive testing and evaluation of technical 

materials involved in a great number of applications.  

Both methods are governed by similar physics 

(diffusion equation), which makes them share a 

number of common features, the most important one 

being the local character of the sensing region. For 

this reason, both eddy-current and thermal 

inspection methods can be grouped together under 

the common term: “near-field scattering” methods. 

From the modelling point of view, one can take 

advantage of the localised character of the solution, 

since complicated details of the geometry located far 

from the sensing probe can be safely ignored, and 

one can concentrate on the essential geometrical 

features in the vicinity of the source. 

 

Based upon this feature, this work proceeds to a 

systematic construction of fast solutions for the 

eddy-current and heat propagation problems, 

applied to a number of configurations with 

practical importance. The guiding line in all these 

developments is the optimal exploitation of the 

workpiece symmetries in the vicinity of the probe 

and the adoption of the best suited representation 

for the given configuration. A central role in this 

programe is played by the so-callled spectral 

methods, where the solution is developed in the 

proper eigenbase of the geometry at hand, 

complemented by mixed spectral/spatial 

representations for the more complicated cases.  

The work concludes with an overview of the 

present trends and an outlook of the topics, which, 

to the author’s point of view, can be the focus for 

future research. 
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Chapter 1

Preface

This text summarises the research work carried out at the Department of Imag-
ing and Simulation in Control (Département imagerie et simulation pour le
contrôle, DISC) of the French Atomic Energy Commission (Commissariat à
l’énergie atomique et aux énergies alternatives, CEA), part of the Paris-Saclay
University during my activity as permanent researcher.

This work comprises the development of several theoretical solutions and
simulation codes dedicated to the modelling and simulation of nondestructive
testing techniques (NDT) using electromagnetic (electromagnetic testing, ET)
and thermographic (infrared IR) methods1. Under the term NDT is under-
stood the measurement of certain characteristic physical variables (magnetic
field, magnetic flux density, temperature) on the surface or above an interro-
gated specimen, and the thereupon related processing and analysis of the ac-
quired data. The purpose of the measurement is the detection of anomalies with
respect to the expected specimen response indicating the existence of defects of
the material or the deduction of characteristic parameters of the piece, such as
its thickness, its electrical conductivity its magnetic permeability etc. In the
former case we are speaking of classical NDT procedures, whereas the latter cat-
egory is usually met in the literature or in the industrial praxis under the term
material characterisation. It is easily understood that the applied method de-
pends each time from the properties of the material at hand. Eddy-current tech-
niques are restricted to electrically conducting materials (in particular metals),
magnetostatic methods are specialised to ferromagnetic specimens (in the vast
majority of applications steels), whereas carbon fiber materials are inspected
using thermal methods. Other NDT methods such as ultrasonic testing (UT)
or radiographic testing/imaging using X-rays (RT) may be better adapted for
a specific specimen yet only the aforementioned ET/IR techniques will interest
us here.

The common point of the (low-frequency) electromagnetic and thermal meth-
ods is that they share very similar physics, i.e. both are described by a diffusion

1The adopted acronyms of the NDT methods follow the standards of the americal society
for nondestructive testing (ASNDT): www.asndt.org.

1
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2 Chapter 1. Preface

equation. This similarity permits the usage of nearly the same tools for the
modelling.

The guiding line for the organisation of the material was the problem geome-
try. Chapter 2 provides as a brief introduction of the basic governing equations
for the two physical domains of interest in this work, namely the low-frequency
electromagnetic and the heat propagation problem, which is meant to serve
exclusively the text self-containedness. In the same chapter, the potential for-
mulations for the electromagnetic problem and a couple of important principles,
which will extensively utilized in the further chapters, will be presented.

In chapter 3, we consider homogeneous pieces with non-crossing bound-
aries. Special effort is given in order to shed light to the common features of the
spectral solutions that can be developed with the aid of the second order vector
potential (SOVP) and the truncated region eigenfunction expansion (TREE),
the two main tools that will be used throughout this work. The development
of the spectral solutions is understood as projections of boundary potential
distributions to bases of eigenfunctions spanning the geometrical space of the
boundaries. Useful tools towards the construction of an abstract formulation
will be the introduction of the Darboux frame and the Dirac ket-bra notation.
In the context provided by this abstract language, concrete solutions to specific
problems of common interest in NDT applications will be derived.

The restriction of piecewise homogeneous domains will be relaxed in chap-
ter 4, where the considered pieces are allowed to dispose a number of internal
layers. For the sake of classification, this type of domains will be referred to as
pieces with crossing boundaries. The approach developed in chapter 3 will be
extended to tackle these geometries. It will be shown that the proposed solution
approach (which is essentially the mode-matching method) can be viewed as a
special type of homogenisation.

Local material variations (defects) as well as gradients of material properties
will be addressed in chapter 5, where two different approaches will be consid-
ered: the volume integral equation approach (best suited for small defects) and
the 3D spectral method, or equivalently the use of global functions (which is
more efficient for extended inhomogeneous zones). The calculation of a defect
signature as response to external excitation is the central problem in NDT tech-
niques, thus special attention will be given providing detailed comparisons with
experimental signals.

Time domain (TD) solutions are of interesting for broad-spectrum (pulsed
excited) eddy-current techniques as well as for thermographic methods. Both
problems are considered in chapter 6. Two different approaches exist here,
namely the solution of the problem in the Laplace domain and direct integra-
tion in time using time-stepping techniques. The optimal choice depends on
the problem, in particular whether we are interested in short/medium or long-
time response. The combination of the spectral method with time-stepping is
shown to be mathematically isomorphic with the scattering problem containing
volumetric (extended) sources, and hence the tools developed for this class of
problems are directly applicable here.

In chapter 7, the combination of a mesh-based method, namely the fi-



3

nite integration technique, introduced by T. Weiland in the late seventies and
been further developed in the two following decades, with spectral methods, is
examined. The purpose here is to extend the domain of applicability of the
latter, without the need to resort to the numerical complexity of the 3D spatial
discretisation.

The solution of the non-linear electromagnetic induction problem is the topic
of chapter 8. The calculation of the electromagnetic field in materials with non-
linear and hysteretic material law is the keystone for the development of sim-
ulation codes for material characterisation applications. When the fixed-point
approach is used for the problem linearisarion, the problem is translated to the
solution of Helmholtz equation with unknown equivalent volumetric sources. As
a consequence, the tools developed for the treatment of inhomogeneous pieces
are directly applicable. This is particularly interesting since the spectral ap-
proach can be also used here, with obvious benefits for the computational speed.

The text is ending with chapter 9, which gives an overview of the per-
spectives of the developments presented in the main part of the text, which are
positioned with respect to the state-of-the-art.

Since we are mainly dealing with problems of engineering interest the use of
the S.I. system of units has been judged as the most suitable choice, and hence
it will be consistently used throughout this text.
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Chapter 2

Governing equations

In this first chapter we shall proceed to a brief presentation of the underlying
physical equations for the two classes of diffusion problems that will be consid-
ered throughout this work: the eddy-current induction problem, with magneto-
statics being treated as an asymptotic case valid for vanishing frequency, and
the heat transfer problem.

Two important theorems that will be repeatedly used in the following chap-
ters, namely the equivalence principle and the reciprocity theorem will be pre-
sented for the electromagnetic problem. The former provides a very convenient
way of forming classes of equivalent problems that are more easy to treat, and
serves as basis for building hybrid approaches. The latter will arm us with a
very elegant and efficient way of calculating the inductor response upon its inter-
action with the surrounding medium, a physical variable of major interest since
it stands for the main experimental observable in electromagnetic inspection
applications.

2.1 Maxwell equations

Starting point for the analysis of the electromagnetic problem is the Maxwell
equations which in their full form read1 [1–4]

∇×E = −∂B
∂t

(2.1)

∇×H =
∂D

∂t
+ J (2.2)

∇ ·D = ρ (2.3)

∇ ·B = 0. (2.4)

where E, H are the electric and magnetic field strength, D, B the electric and
magnetic flux density, J stand for the total current density (eddy-currents and

1The SI unit system will be adopted throughout this text, and consequently the Maxwell
equations and all electromagnetic quantities will be expressed in this system.

5
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sources), and ρ is the free electric charge density.

From the conjugate field variables used in the Maxwell equations to express
the electric and magnetic field effect, only E and B are experimentally ob-
servable, with D and H being auxiliary mathematical quantities introduced to
account for the field interaction with the material. They are related with the
former via the constitutive laws of the medium, which in their most general
form read

D = ε0E−P(E) (2.5)

B = µ0H+ I(H) (2.6)

where ε0, µ0 are the electric permittivity and magnetic permeability of the free
space2 and P, I the electric and magnetic polarisation, respectively. The latter
stand for the volume density of elementary electric and magnetic dipoles in the
medium, and are defined via the relations

P :=
1

V

∑
i

pi (2.7)

and

I :=
µ0

V

∑
i

mi. (2.8)

Note that in the majority of the textbooks the preferred variable is the
the magnetisation M rather than the magnetic polarisation, the two variables
differing by the magnetic permeability constant3, i.e.

I = µ0M. (2.9)

The electric polarisation and magnetisation are functions of the electric and
magnetic field. The derivative of the electric polarisation and the magnetisation
with respect to the respective field is known as electric and magnetic suscepti-
bility, giving the degree that the medium is susceptible to polarisation under the
action of the respective field. In the case of linear anisotropic materials without
hysteresis these are field-independent second rank tensors, and they are given
by the relations

P = ε0χe ·E (2.10)

and

I = µ0χm ·H (2.11)

2In the SI system, the electric permittivity and magnetic permeability values are ε0 =
8.8541878128(13)× 10−12 F m−1 and 4π × 10−7 H m−1, respectively.

3The distinction is relevant for the SI units. In other unit systems like the cgs or the
Heaviside-Lorentz system, for example, both variables are identical. The reason for introduc-
ing the magnetic constitutive relation using I is purely aesthetic since with this variable the
two constitutive laws are more symmetric. In the rest of the text, both I and M will be used
interchangeably, the particular choice being dictated each time by the notational convenience.
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which implies for the corresponding flux densities

D(E) = ε0
(
I− χe

)
·E (2.12)

B(H) = µ0

(
I+ χm

)
·H. (2.13)

The terms in parenthesis are called the relative electric permittivity and mag-
netic permeability of the medium εr and µr defined as

εr = I− χe (2.14)

µr = I+ χm (2.15)

Things are more complicated in case of non-linear materials, where there are
different ways of defining the susceptibilities. For the magnetic field in partic-
ular, we distinguish between the usual proportionality relation, the differential
and the incremental susceptibility/permeability [5]. More details on this topic
will be given when considering the non-linear problem in chapter 8.

The last constitutive relation is concerned with the induced currents. The
current density term J in the Maxwell equations comprises three contributions:
the excitation (or source) current density Js, the conductivity current density
Jc, which is due to the conductivity of the medium, and the free-charges current
Jf density

J = Js + Jc + Jf . (2.16)

The conductivity current is produced in conductive media as the result of
the interaction of the charge carriers in the medium (free electrons in the case of
metals, electron and holes in the case of semiconductors) with the electric field,
which is determined by another constitutive relation. For the materials and
the field intensities we are here considering, it is a linear constitutive relation,
known as Ohm’s law. In the most general case of an anisotropic medium it is
expressed by the relation

Jc = σ ·E (2.17)

where σ stands for the tensor electric conductivity. In the special case that Jc

is caused by electromagnetic induction, we refer to it as eddy current. Note,
however, that the eddy currents are not the only electric currents that can exist
in the conductive medium. Any potential drop imposed by an external source
(e.g. a battery) will result in a current flow in the medium, which is not an
eddy current in the strict sense. Nevertheless, since this kind of currents will
not be of our concern in this text, all currents governed by Ohm’s law will be
considered to be eddy currents without distinction.

The last term of (2.16), namely the free-charge current Jf is of interest in
plasma physics problems, where the free-charge densities are non-negligible, and
it will not be considered any further in this text.

Although the above set of seven equations (the four Maxwell equations to-
gether with the three constitutive relations) account for all macroscopic elec-
tromagnetic phenomena, in many particular situations, only a subset of them
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needs to be addressed in many cases depending on the excitation frequency and
the material. Five different regimes can be distinguished by considering the
different possible combinations of the above two factors: electrostatics, mag-
netostatics, quasi-electrostatics, quasi-magnetostatics and full wave regime. In
the following, we shall consider only the magnetostatic and quasi-magnetostatic
formulations, since these formulations are useful for the most electromagnetic
inspection applications, which are the target of the herein developed modelling
techniques (acknowledging though the potential interest of electrostatic methods
in some special cases).

2.2 Boundary and interface conditions

The differential form of the Maxwell equations presented above is applicable in
all regions, where physical properties vary continuously. When material discon-
tinuities (or surface sources) are involved, the solution will be also discontinuous
across those interfaces.

E1,H1 en Je

ρe
ρm

Jm

E2,H2

ε1, µ1, σ1

ε2, µ2, σ2

Figure 2.1: Field and flux density discontinuity across boundaries with elec-
tric/magnetic current and charge distributions. en stands for the unit normal
vector.

Let an interface separating two adjacent domains as shown in Fig. 2.1. The
relations that the electromagnetic field must satisfy at that surface read

en × (H2 −H1) = Je (2.18)

en · (D2 −D1) = ρe (2.19)

where H1,D1 are the magnetic field and the electric flux density in the first
domain and H2,D2 the corresponding quantities in the second. Je, ρe stand
for the surface current density and the surface electric charge density at the
boundary as shown in Fig. 2.1. The proof of (2.18)-(2.21) can be found in any
classical electrodynamics text book such as [1–4], just to mention some, and will
not be reproduced here.

Invoking the symmetry of the Maxwell equations, we can also write an anal-
ogous pair of conditions for the electric field and the magnetic flux density,
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namely

en × (E2 −E1) = Jm (2.20)

en · (B2 −B1) = ρm (2.21)

where here E1,B1 are the electric field and the magnetic flux density in the first
domain and E2,B2 in the second. The corresponding sources Jm, ρm express
surface magnetic current and surface magnetic charge densities. To be compat-
ible with the Maxwell equations, these must be complemented in the following
way

∇×E = −∂B
∂t
− Jm (2.22)

∇ ·B = ρm. (2.23)

These sources are non-physical quantities that are normally zero at any
physical interface (which implies that the tangential electric field and the
normal magnetic induction components should be continuous across those in-
terfaces). As purely mathematical auxiliary quantities, Jm and ρm prove, how-
ever, to be very useful in defining classes of equivalent problems by introducing
fictitious interfaces to the problem. It can be easily shown that this notion
of fictitious currents and charges is equivalent to the Huygens principle. This
concept will be rigorously introduced in the following section, where is discussed
the equivalence principle, and excessively exploited in the following chapters.

2.3 Surface equivalence theorem and Huygens
principle

In the treatment of electromagnetic problems, it is often very convenient to re-
place the actual sources by equivalent ones, which have the same effect to the
solution. This replacement is allowed thanks to the surface equivalence theorem,
which is nothing more than a mathematical description of the Huygens princi-
ple. The term surface is used here to distinguish from the volume equivalence
theorem, which will be derived in chapter 5 where the electromagnetic problem
is studied for inhomogeneous materials.

The principle of the surface equivalent theorem is explained in Fig. 2.2. Let
as assume a closed boundary S dividing the computational domain into two
subdomains, V1 and V2. The surface S can be a real interface or a fictitious
boundary. We additionally assume an arbitrary electric and magnetic electric
current distribution, which is entirely contained in domain V1, as it is shown
in Fig. 2.2a. The problem is equivalent with the configuration described by
Fig. 2.2b, where the actual field source Je,Jm has been replaced by an equivalent
surface distribution Jeq

e ,J
eq
m on S defined as

Jeq
e = n× (H−H′) (2.24)

Jeq
m = −n× (E−E′) (2.25)
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where E,H stands for the solution of the original problem, E′,H′ is the solution
in V1 in the equivalent formulation and n is the unit normal on the boundary S.
We are free to choose the value of E′,H′, as long as we are not interested in the
solution in that part of the geometry. A useful option is to set both fields to zero,
i.e. E′ = H′ = 0. In this case, we eliminate the effects of the geometry in V1,
since a zero field does not interact with it, and hence replace the actual geometry
with a material of choice (free-space, perfect electric conductor (PEC), perfect
magnetic conductor (PMC), etc.), which results in a significant simplification
of the problem. The main difficulty here is that the equivalent current is not
known a priori but depends on the solution. For that reason the equivalent
problem is treated using an integral equation approach or iteratively [6, 7].

Je,Jm

n

J
(eq)
e

J
(eq)
m

E,H

E,H E,H

V2

S

V2

V1V1

S

E′,H′

(a) (b)

Figure 2.2: (a) Actual and (b) equivalent problem for a given pair of electric
and magnetic sources.

A second interesting option in case that V1 is free of any material is to decom-
pose the field in that subdomain into a primary and scattered field contribution
provided. The infinite space solution is defined here as primary (source) field
E(p),H(p), whereas the scattered field term E(s),H(s) is reserved for the per-
turbation due to the geometry in V2. The decomposition and the formulation
of the equivalent problem in this case is sketched in Fig. 2.3. The equivalent
sources defined for this decomposition read

Jeq
e = −n×H(p) (2.26)

Jeq
m = n×E(p) (2.27)

The latter formulation of the equivalence principle is mentioned in [3] as
the induction theorem. Its basic advantage with respect to the first formulation
is that the equivalent sources are given explicitly by Biot-Savart’s law (or an
equivalent calculation) and there is no need for iteration. This latter form of
the equivalence theorem will be used in several occasions in the remaining of
this work.
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Je,Jm

n

−n×H(p)

E,H

E,H E,H

V2

S

V2

V1V1

S

E(s),H(s)

n×E(p)

(a) (b)

Figure 2.3: (a) Actual and (b) equivalent problem for a given pair of electric
and magnetic sources.

2.4 Potential formulations: scalar decomposi-
tion of the field problem

2.4.1 Magnetostatics: the scalar magnetic potential for-
mulation

Setting d/dt = 0, the Maxwell equations split into two uncoupled sets of equa-
tions, one for the electric and one for the magnetic field. The two subsets stand
for the electrostatic and the magnetostatic formulation respectively. For the
particular case of a static magnetic field, the resulting state equations read

∇×H = Je (2.28)

∇ ·B = 0 (2.29)

with Je being an arbitrary, time invariant, solenoid current (∇ · Je = 0). The
zero-curl condition of the macroscopic currents is necessary in order to be con-
sistent with Ampère’s equation (2.28). We shall also assume that the consid-
ered domain is piecewise homogeneous and that each current source is entirely
contained in one of the homogeneous subdomains (no internal boundaries are
allowed).

The total magnetic field can be decomposed into two terms, i.e. H = Hs +
Hd, where Hs is an arbitrary solution to (2.28) and Hd a compensation curl-free
field

∇×Hd = 0 (2.30)

which enforces Gauss’ law (2.29).
Since we have the liberty of choice for the particular solution, we let Hs be

the magnetic field induced by source in the infinite medium; in other words we
choose for Hs the field given by the Biot-Savart law (recall that by hypothesis
the subdomain containing the considered source is homogeneous). Hd will be
result of the source field Hs interaction with the domain boundaries. By virtue
of (2.30), we can express Hd as the gradient of a scalar potential, exactly in
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direct analogy with the electrostatic potential [1]

Hd = −∇Φ (2.31)

where the minus sign is added solely to maintain the similarity with the elec-
trostatics. Using the magnetic constitutive relation (2.6) and substituting in
Gauss’ law (2.29), we obtain

∇ · (µ · ∇Φ) = −∇ · (µ ·Hs] (2.32)

where we have taken into account the solenoid character of the Biot-Savart field
∇ ·Hs = 0.

Our main concern for the class of applications considered in this work is
the calculation of the magnetic field inside and in the vicinity of conducting
and/or magnetic pieces. Since all independent current sources are located in
the air and at a certain distance (lift-off) from the pieces, we shall restrict our
analysis in source-free case, i.e. J = 0 in the region of interest. Following the
standard approach, the problem can be reformulated in these regions using a
scalar magnetic potential

B = −∇Φ (2.33)

which satisfies the Laplace equation

∇2Φ = 0. (2.34)

The boundary conditions introduced in section 2.2 for the tangential mag-
netic field and the normal magnetic induction reduce in magnetostatics to con-
tinuity relations for the potential and its normal derivative (for the source-free
case) across the domain boundaries, namely

Φi = Φi+1 (2.35)

and
µi∂nΦi = µi+1∂nΦi+1. (2.36)

2.4.2 Eddy-current diffusion problem: the vector mag-
netic potential (A,Φ) formulation

We wish to address now the case where the sources are no longer static but are
varying with the time. A basic assumption made throughout this text will be
that the time variation of the source is slow enough for the displacement currents
to be negligible. This is the so-called quasi-static approximation, and it is valid
for the applications considered in the context of non-destructive testing (NDT)
and materials evaluation.

Since in most of this work we shall be interested in harmonic excitations, we
shall restrict ourselves in harmonic currents for the development of the general
formulation, in this and the subsequent chapters. All physical variables admit
therefore a time variation of the form eiωt with ω being the angular frequency
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and i standing for the imaginary unit i =
√
−1. The transient case will be

considered in detail in chapter 6.
Using the above simplifications and assuming both electric and magnetic

currents (2.1)-(2.4) are written

∇×E = −iωB− Jm (2.37)

∇×H = σE+ Je (2.38)

∇ ·D = 0 (2.39)

∇ ·B = ρm. (2.40)

where we have integrated Ohm’s law to separate the eddy-current terms σE
from the independent current sources.

The usual practice in quasi-static problems it to reformulate the initial vector
formulation in terms of the magnetic vector potential A, which in absence of
magnetic sources (Jm, ρm) is defined via the relation

B = ∇×A (2.41)

which results for the electric field

E = −iωA−∇Φ. (2.42)

Φ is a scalar potential whose role it to account for the curl-free part of the
electric field according to the Helmholtz decomposition. Since the divergence
of A has not been fixed yet, we are free to choose any convenient value for it.
The standard choice in the low-frequency case (where no wave propagation is
present) is to set it equal to zero

∇ ·A = 0. (2.43)

This is the so-called Coulomb gauge. With the application of the Coulomb
gauge and in absence of free charges, (2.42) simply becomes

E = −iωA. (2.44)

Substitution of (2.41) and (2.44) to Ampère’s equation yields the so-called
curl-curl equation for the vector magnetic potential

∇×
(
µ−1∇×A

)
+ iωσA = J (2.45)

We are particularly interested in solutions for piecewise homogeneous me-
dia4, which implies that the permeability can be drawn out of the curl operator
inside each subdomain. In conjunction with the Coulomb gauge this results in
the inhomogeneous Helmholtz equation for the vector magnetic potential(

∇2 − k2
)
A = −µJ (2.46)

4This restriction will be relaxed in chapter 7 where hybrid numerical-modal schemes will
be developed.
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with the separation constant

k2 = iωµσ. (2.47)

The (A,Φ) formulation is not amenable to a scalar equation except for the
2D TM case, which involves 3-component solutions with the magnetic field lying
in the normal to the symmetry axis plane. Practically, this case is met in the
following cases

• Pieces with translational symmetry excited by an infinitely long current
filament (or current strip or rod) parallel to the symmetry axis, i.e. J =
Jec with ec being a unit vector parallel to the symmetry axis. In this
case, A can be written as one component vector in the direction of the
current A = Aec .

• Pieces with rotational symmetry, with a circular filament (or coil) concen-
tric with the symmetry axis, i.e. J = Jeϕ with eϕ being the azimuthal
unit vector in the cylindrical coordinate system defined by the symmetry.
For this class of problems, the A = Aeϕ ansatz is applied.

The scalarisation of (2.46) in the first case is straight forward. For the
rotational symmetry, however, the Laplacian of the eϕ gives rise to an additional
term resulting to the scalar equation(

∇2 − 1

ρ2
− k2

)
A = −µJ (2.48)

where ρ is the radial direction.

2.4.3 Second order potential (Wa,Wb) formulation

As analysed in the previous paragraph, the (A,Φ) formulation allows us to
reduce the original vector field problem to a scalar one if the entire configu-
ration (piece and sources) is translationally or rotationally symmetric. For 3D
problems, however, the scalarisation is not possible anymore with this approach.

This difficulty can be overcome either by introducing a dual to A vector
potential, i.e. F, and proceeding in a one-component ansatz for both A,F
(see for example [3]) or by introducing a higher-order potential. The potentials
of the second approach, which proves to be equivalent with the former one,
are known in the literature under different names, such as Hertz and Debye
potentials or second order vector potential (SOVP). A thorough overview of
the different definitions can be found in Tab. 1.2 of [8], which is reproduced in
Tab. 2.1 of this text for convenience. There is a great number of research papers
using those potentials’, hence the list does not claim completeness. The focus
remains (beside some very classical references) on the literature devoted to the
eddy-current problem.



2.4. Potential formulations: scalar decomposition of the field problem 15

Potential name Symbols Source

Hertz Γ,Π Jackson [1], Weaver [9], Burke [10]
Hertz Π∗,Π Stratton [2]
Hertz Π∗

m,Π
∗
e Wait

Debye πe, πm Chew [4], Wait and others
Debye Π1,Π2 Bouwkamp and Casimir [11], Debye [12]
Hertzian ψ′, ψ Bowler [13]
Second order Wa,Wb Smythe [14], Theodoulidis [8]
Higher order W1,W2 Weigelt [15], Bowler [16]
Higher order P1, P2 Hannakam [17,18]
Higher order PTE, PTM Nethe [19]

Table 2.1: Symbols and names of the vector potential used in the scalarisation of
the vector field. Classification following Theodoulidis and Kriezis [8] (updated
and complemented with further references).

For consistency with recent work on the semi-analytical formulation, in par-
ticular with the work of Theodoulidis, Bowler et al., where the potential of choice
is SOVP (Wa,Wb), and given the fact that this formulation has been used in
the published work this text is based upon, the SOVP potential conventions will
be adopted henceforth.

Recalling that the A is divergence-free (a property imposed by Coulomb’s
gauge), one can express A in terms of another vector potential W

A = ∇×W. (2.49)

The magnetic induction is written in terms of the SOVP as follows

B = ∇×∇×W (2.50)

which justifies the term second order. From (2.49) one easily obtains for the
electric field

E = −iω∇×W. (2.51)

Let us now express W in terms of two scalar potentialsWa andWb as follows

W =Wac+∇Wb × c (2.52)

where c is a pivoting vector. The definition of the pivoting vector and the
resulting scalarisation for these coordinates systems amenable to the separation
of the Helmholtz equation is summarised in Tab. 2.2.
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Coordinate system Pivoting vector

Cartesian ex, ey, ez
Cylindrical ez
Elliptical ez
Parabolic ez
Spherical r
Conic r

Table 2.2: SOVP scalarisation for the coordinate systems admitting separation
of the Helmholtz equation. By virtue of the cartesian system isotropy, the
pivoting vector can be aligned with any of the x, y, z directions. For all the
other systems this symmetry does not exist and the choice of c is unique. Table
reproduced from Tab. 1.2 in [8].

From (2.52) it is clear that theWa,Wb potentials correspond to the TEc and
TMc mode respectively. Written in matrix form (2.52) becomes

W = (c ∇× c) ·
(
Wa

Wb

)
(2.53)

whence

B = ∇×∇× (c ∇× c) ·
(
Wa

Wb

)
(2.54)

and

E = −iω∇× (c ∇× c) ·
(
Wa

Wb

)
(2.55)

The above equations for the electric and the magnetic field can be brought
together in a common matrix form as follows(

B
E

)
=

(
∇×∇× c ∇×∇×∇× c
−iω∇× c −iω∇×∇× c

)
·
(
Wa

Wb

)
(2.56)

Equation (2.56) is important because it establishes the link between the state
variables (the potentials Wa and Wb) with the physical observables, namely the
magnetic induction B and the electric field E. It can be seen as the analogue of
the corresponding magnetostatic expression (2.33), where the role of the scalar
magnetostatic potential is taken over from the potential doublet (Wa Wb)

T .
We can assert thus that the latter is the state vector of the eddy-current problem.
A simpler form can be obtained by applying the vector identity

∇×∇× = ∇∇ · −∇2 (2.57)

whence(
B

−E/iω

)
=

(
c∇∂c −∇2c −∇2 (∇× c)
∇× c c∇∂c −∇2c

)
·
(
Wa

Wb

)
(2.58)
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and taking into account that bothWa,b satisfy the Helmholtz operator as well as
that the Laplacian operator commutes with the pivoting vector5, the transition
operator can be simplified further(

B
−E/iω

)
=

(
c∇∂c − k2c k2c×∇
−c×∇ c∇∂c − k2c

)
·
(
Wa

Wb

)
. (2.59)

We now seek to establish the equation of state for the Wa,Wb potentials.
The procedure is similar with that followed for A, that is, we substitute (2.49)
and (2.50) in Ampère’s equation, yielding

∇×∇×∇×W + k2∇×W = µJ (2.60)

with k2 being given by (2.47).
Taking the curl of both sides and upon application of the vector identity

(2.57) we obtain

∇×∇×
(
∇2 − k2

)
W = −µ∇× J (2.61)

where we have tacitly assumed that the medium is piecewise homogeneous. In
a source-free medium (J = 0) the above relation implies(

∇2 − k2
)
Wa,b = 0. (2.62)

In other words, in a source-free, homogeneous medium, the state equation
for the SOVP potential reduces to two independent scalar Helmholtz equations.
It must however be underlined that the two resulting scalar problems (for Wa

and Wb) are not, in general, independent of each other, since there might be a
coupling via the boundaries. In order for the Wa and Wb solutions to be inde-
pendent, i.e. for a complete problem scalarisation there is another condition that
must be fulfilled, which imposes that the pivot vector is normal to the geometry
interfaces [4]. This condition is verified in stratified planar and spherical media
and cylindrical geometries with stratification along the z axis.

2.5 Reciprocity theorem

The impedance variation of the sensing coil is a basic observable in eddy-current
testing (ECT) applications. Therefore, its precise calculation is of central im-
portance. An accurate and elegant way of calculating this quantity is through
the application of the reciprocity theorem, which in its quintessence is based
upon the exchange of “source” and “measurement”. In the case of field calcu-
lations, the latter term is understood as the field value at a certain reference
(measurement) position. The analogy with the equivalence principle is obvi-
ous, since in both cases, the problem is transformed into an equivalent one by
introducing virtual sources.

5For the cartesian and the cylindrical system this is obvious. For the spherical one, it can
be shown that ∇2r = 0.
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Je1,Jm1

n

µ, σ

Je2,Jm2

V

∂V

n

Figure 2.4: Application of the reciprocity theorem in a domain enclosing a pair
of electric and magnetic sources Je1,Jm1 and Je1,Jm1.

Let E1, H1 and E2, H2 be any two solutions to Maxwell’s equations that
correspond to two pairs of electric and magnetic sources Je1,Jm1 and Je2,Jm2,
respectively. The examined configuration is illustrated in Fig. 2.4. We assume
also that all sources have a harmonic time dependence (the time-domain version
of the reciprocity theorem will be examined in the dedicated chapter).

In any homogeneous domain Vf , it can be proven that the two solutions
satisfy the following formula, known as the Lorentz reciprocity theorem [3]:

−∇ · (E1 ×H2 −E2 ×H1) = E1 · Je2 +H2 · Jm1 −E2 · Je1 −H1 · Jm2 (2.63)

Integrating in V and applying the Gauss’ theorem leads to the following equiv-
alent form of the reciprocity theorem∫

V

(E1 · Je2 +H2 · Jm1 −E2 · Je1 −H1 · Jm2) dV

=

∮
∂V

(E1 ×H2 −E2 ×H1) · ndS (2.64)

with ∂V standing for the domain boundary and n the inward pointing unit
vector.

In case that the exciting sources are induction coils, Jm1 = Jm2 = 0 and the
volume integral in (2.64) becomes∫

V

(E1 · Je2 −E2 · Je1) dV = I1I2 (Z21 − Z12) (2.65)

where I1Z12 is the voltage induced to the second coil (which is functioning in
pick-up mode) when the first coil (source) is fed with current I1, and Z12 stands
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for their mutual impedance. In the same fashion, I2Z21 yields the voltage in the
first coil due to the excitation current I2 in the second one. If we further assume
that E1, H1 is the solution in the free space (i.e. σ = 0, µr = 1), whereas E2,
H2 stand for the field solution in the presence of the medium, we can write for
the mutual impedances

Z12 = Z0 +∆Z12 (2.66)

Z21 = Z0 (2.67)

where Z0 is the mutual impedance in the air (it is the same for both coils due
to symmetry), and ∆Z11 is the impedance change due to the presence of the
material. Substitution in (2.65), taking into account (2.64) yields after some
trivial manipulations

∆Z12 =
1

I1I2

∮
∂V

(E1 ×∆H2 −∆E2 ×H1) · ndS (2.68)

where ∆E2, ∆H2 is the corresponding variation in the field solution due to
the presence of the conductor. Equation (2.68) has been first proposed by
Auld [20–22]. It provides a very convenient and accurate way of calculating
the impedance change since it is given directly in variational form and that the
integration is carried out on the boundary and not along the coil turns.

Another useful form of the reciprocity theorem is obtained by letting the ∂V
boundary extend to infinity, enclosing in this way the interrogated piece in the
integration domain. In this case the surface integral of (2.64) vanishes, whereas
the volume integral takes care of the piece contribution via the equivalent electric
and magnetic current sources that the latter introduces

∆Z12 = − 1

I1I2

∫
V

(E1 · Je2 −H1 · Jm2) dV (2.69)

This form of reciprocity theorem is particularly adapted for the calculation
of anomalies in the inspected piece and will be studied in detail in a dedicated
chapter later in this text, where the equivalent volumetric sources Je2,Jm2 will
be defined.

2.6 Heat equation

Heat propagation is also a diffusion problem, like the eddy-current induction
problem, with the main difference with the latter being its scalar nature. The
similar physics allows us to employ the same computational tools with those
used for the eddy-current problem. In this paragraph, we shall proceed to a
brief overview of the governing equations for the heat propagation problem in
the absence of conduction terms, identify the variables of interest, and we shall
provide the appropriate boundary conditions that allow to pose the problem,
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in order to prepare the discussion on the construction of solutions in the next
chapters.

The temperature distribution T(r) in a domain where the thermal equilib-
rium has not been established, is described by two equations, namely the energy
conservation and Fourier’s law. The energy conservation law in an arbitrary
medium reads

∇ · J = −ρcp
∂T

∂t
+ q̇ (2.70)

where ρ is the mass density of the medium, cp its specific heat capacity under
constant pressure6, q̇ stands for the heat production or absorption rate by ex-
ternal sources, and J gives the density of the thermal current, which expresses
the heat transfer across the medium.

Fourier’s law is a conduction relation connecting the thermal current density
with the temperature gradient, in analogy with Ohm’s law for the electric cur-
rents and Fick’s law for particle diffusion. In the general case of an anisotropic
medium, Fourier’s law takes the form of a tensor relation

J = −κ · ∇T (2.71)

where κ is the thermal conductivity tensor of the medium.
Combining (2.70) with (2.71) we obtain the heat equation

∇ · (κ · ∇T )− ρcp
∂T

∂t
= −q̇. (2.72)

In the case of isotropic and homogeneous media, the thermal conductiv-
ity becomes a scalar coefficient and (2.72) reduces to the more compact (and
familiar) form involving the Laplace operator

∇2T − α−1 ∂T

∂t
= −κ−1q̇. (2.73)

where α is the diffusivity of the medium defined as α = κ/ρcp. In heat prop-
agation problems, the mass density and the specific heat terms always appear
as a product, hence there is no need to consider them separately. Hence, it is
more convenient to use the volumetric heat capacity Cp instead, defined as

Cp =
Cp

V
= ρcp (2.74)

where Cp is the heat capacity and V the volume of the piece. Using this defini-
tion, the diffusivity becomes α = κC−1

p .
Let us now assume a piecewise homogeneous medium consisting of a number

of subdomains. The thermal coefficients κ, cp and ρ are constant throughout
the medium, yet their value may differ from domain to domain. We consider

6Since we are almost always under a constant (atmospheric) pressure experimental condi-
tion, we use the isobaric cp instead of the isochoric cv variant of the specific heat capacity,
the latter being measured at constant volume.
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the boundary between the ith and the (i+ 1)th domain. The temperature and
the normal to the surface heat flux should be continuous across the boundary,
that is

Ti = Ti+1 (2.75)

and
κi∂nTi = κi+1∂nTi+1 (2.76)

where n stands for the normal to the boundary direction.
No mention has been made so far about the temperature scale. The fact

that T appears in (2.73) preceded by differentiation operators (in both spatial
and time domains) implies that the heat equation is symmetric to any gauge
transformation. This in its turn means that we can work either using the K or
the ◦C scale interchangeably. Since the latter is more spread in the technical
world, we shall assume henceforth that all temperature variables are expressed
in the ◦C scale.

The state equation (2.73) together with the continuity relations expressed
by (2.75) and (2.76) consist the full statement of the heat propagation problem.
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Chapter 3

Geometries with
non-intersecting interfaces

In this chapter, we shall focus on geometries consisting of a number of non-
intersecting interfaces, which separate homogeneous domains. We shall assume
that all interfaces satisfy symmetry relations along their two principal axes. It
can be shown that in this case the problem solution can be expressed in suitable
spectral (Fourier) bases, and we shall try to introduce a general formalism in
order to treat the problems mixing interfaces of different symmetries in a unified
manner.

3.1 Description of the problem

Let us consider a geometry comprising a number of objects, whose interfaces
do not intersect each other. A sketch of such a geometry is shown in Fig. 3.1,
which depicts a layered medium embedding a number of voids. The material
inside each consisting object is assumed to be homogeneous and isotropic. The
entire structure is illuminated by an arbitrary closed current source represented
by the current loop in the same figure.

Now consider a solution domain composed by N homogeneous subregions,
separated by N − 1 non-crossing interfaces. For reasons that will become clear
in the following paragraphs, we will distinguish between two indexing systems
for the boundaries of the solution domain: one counting the boundaries as ge-
ometrical entities of the structure, i.e. α = 1, . . . , (N − 1), and one scanning
through all oriented side of the surfaces, that is i = 1, . . . , 2(N−1). For avoiding
confusion between the two indexing systems, we shall use greek letters for the
first and latin letters for the second. The indexing of the subdomains them-
selves presents no ambiguities so no special care will be taken to adopt notation
conventions for it.

23
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J⃗

2

3

N

1

Figure 3.1: Cross-section of a layered medium containing a number of voids
with non-intersecting interfaces, excited by an arbitrary current source.

3.2 Continuity relations: the trace operator

Before proceeding to the development of the method itself, the continuity rela-
tions for the three diffusion problems, i.e. the magnetostatic, eddy-current and
the heat conduction problem, introduced in chapter 2, will be reformulated us-
ing a more compact notation based on matrix operators. This more abstract
way of posing the continuity of the state variables will prove useful for the con-
struction of common generic expressions applicable for all different considered
problem classes.

Since the continuity relations are associated with the interfaces of the medium,
a usefull tool will be the Darboux reference frame that will be briefly introduced.
This generic frame will allow us to express the continuity relations in an inde-
pendent from the specific coordinate system form.

3.2.1 The Darboux reference frame and the principal cur-
vatures

Let S be an oriented surface in the three-dimensional Euclidean space R3, and
let a therein embedded curve parametrised by arc length γ(s) ∈ S. At each
point of the curve p, one may attach a unique unit normal vector n(p), whose
orientation is determined by the orientation of the surface. The Darboux frame
is defined at p via the following relations

et(s) = γ′(s) (3.1)

en(s) = en(s) (3.2)

eg(s) = en(s)× et(s) . (3.3)

The triplet (eg, et, en) defines a positively oriented orthonormal basis at-
tached to each point of the curve.

The Darboux frame is closely related with the Frenet-Serret frame, whose
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normal vectors are defined by the relations

eT(s) = γ′(s) (3.4)

eN(s) =
e′T(s)

|e′T(s)|
(3.5)

eB(s) = eT(s)× eN(s) . (3.6)

Since the tangent vectors are the same in both cases, there is a unique angle
α such that a rotation in the plane of N and B produces the pair g and n: et

eg
en

 =

 1 0 0
0 cosα sinα
0 − sinα cosα

 eT
eN
eB

 . (3.7)

The previous definition of the Darboux frame is quite general since it has not
been specified how γ(s) is chosen. A common choice for γ(s) and the thereupon
derived Darboux trihedron et, eg, en is based at the principal planes of the
surface.

As normal plane at p is defined one that contains the normal vector n,
and will therefore also contain a unique direction tangent to the surface. Its
intersection with the surface S is a plane curve, called normal section. It is
known from differential geometry that this curve will have in general different
curvatures for different normal planes at p. The principal curvatures at p,
denoted k1 and k2, are the maximum and minimum values of this curvature
[23,24]. If the two principal curvatures share the same value, then the principal
directions are undefined. It can be shown [24] that when defined, the principal
directions are always orthogonal to each other and normal to n. Setting thus
γ(s) as the curve defined by the section of one of the principal normal planes
with the surface S, the principal directions coincide with eg and et forming
together with n the Darboux trihedron. The directions of the three unit vectors
are illustrated in Fig. 3.2.

In order to be able to use the Darboux frame without ambiguities, we need
to adopt a number of conventions concerning the association of the Darboux
trihedron to the principal directions.

The basic hypothesis of this work is recalled here, i.e. all the considered
geometries dispose a symmetry axis (the excitation being excluded from any
symmetry assumptions). We discern the following cases:

• The principal directions are defined. We choose the bi-normal vector

• eg along the symmetry direction.

• The principal directions are undefined. This statement is equivalent
with saying that there is an infinity of equal curvatures, i.e. the geometry
possesses a second axis of symmetry. This is the case for planar and
spherical geometries, disposing a translational and rotational symmetry in
two mutually perpendicular axes, respectively. In this case, we arbitrarily
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et

en

eg

Figure 3.2: The Darboux reference frame defined with respect to the surface
principal directions.

choose eg = ey for the planar and (eg = eϕ) for the spherical case. The
particular choice has been made in order to conform (t, g, n) with the
(x, y, z) and (r, θ, ϕ) permutations of the native to the geometry cartesian
and spherical coordinate systems, respectively.

An overview of these conventions and the correspondence to the respective
native coordinate system for the most common workpiece geometries, is sum-
marised in Tab. 3.1.

Geometry
Coordinate Symmetry Associated Darboux
System axis frame (t, g, n)

Plate Rectangular y (x, y, z)
Plate Cylindrical ϕ (ρ, ϕ, z)

Tube/rod (coaxial) Cylindrical ϕ (z, ϕ,−ρ)
Tube/rod (eccentric) Cylindrical z (ϕ, z, ρ)

Sphere Spherical ϕ (θ, ϕ, ρ)

Table 3.1: Assignment of the Darboux axes in some particular piece geometries
with practical interest.

The same conventions can be applied to other coordinate systems like the
elliptical and the spheroidal (either prolate or oblate). Yet these systems are
not further considered in this work.
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3.2.2 Trace operator for the magnetostatic problem

Armed with the definition of the Darboux reference frame, we return to our
initial problem of the boundary conditions and examine how this definition
applies at an arbitrary interface separating the ith and the i+1th domains. For
simplicity, we shall consider that the interface does not contain surface sources
(either physical or equivalent). The generalisation to interfaces with sources is
straightforward.

Introducing the continuity (trace) operator Ĉ

Ĉ =

(
1̂
∂n

)
(3.8)

and the material operator in the ith subdomain µ̂i

µ̂i =

(
1 0
0 µi

)
(3.9)

(2.35) and (2.36) can be merged in a single expression involving matrix operators

µ̂iĈΦi = µ̂i+1ĈΦi+1 (3.10)

with Φi and Φi+1 being the potential solution in the two adjacent subdomains.

3.2.3 Trace operator for the heat conduction problem

Following the same considerations, the continuity relations for the heat con-
duction problem (2.75) and (2.76) can be transformed in matrix form resulting
in

κ̂iĈTi = κ̂i+1ĈTi+1 (3.11)

where Ti and Ti+1 is the temperature in the two domains, Ĉ is the same with
and the material operator κ̂i defined as

κ̂i =

(
1 0
0 κi

)
. (3.12)

3.2.4 Trace operator for the eddy-current problem

According to section 2.4.3, the state variable for the eddy-current problem is
not scalar anymore but the doublet of the scalar potentials Wa and Wb

1. Fur-
thermore, as already stated in the respective section, we distinguish between
two kinds of interfaces: (a) between air and conducting piece and (b) between
two conductors.

1We shall consider only the (Wa,Wb) representation here, the (A,Φ) being reserved for
the 2D problem, for which it reduces to a scalar formulation. The (A,Φ) representation will
be the subject of a later part of this work where mixed spatial/spectral bases will be used for
the treatment of pieces with arbitrary cross-sectional geometry.
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Let us consider the case of an air-conductor interface, separating the i and
i + 1 subdomains, and let us assign i to the non-conducting one. The state
variable in the air region is the corresponding magnetostatic potential, resulting
the following Darboux representation for the magnetic field components on the
considered interface  Bt

Bb

Bn


i

= −

 et · ∇
eg · ∇
en · ∇

Φi. (3.13)

In the conductor region, the magnetic induction is expressed in terms of the
state vector W = (Wa,Wb)

T
according to (2.59) Bt

Bb

Bn


i+1

=

 et · ∇∂c − k2 (et · c) −k2 (et × c) · ∇
eg · ∇∂c − k2 (eg · c) −k2 (eb × c) · ∇
en · ∇∂c − k2 (en · c) −k2 (en × c) · ∇

 · ( Wa

Wb

)
i+1

(3.14)

Introducing (3.13),(3.14) to the boundary conditions (2.18),(2.21) we obtain

ν̂iĈiΦi = ν̂i+1Ĉi+1Wi+1 (3.15)

with the trace operators

Ĉi = −

 ∇t

∇g

∇n

 (3.16)

Ĉi+1 =

 ∇t∂c − k2 (et · c) −k2 (et × c) · ∇
∇g∂c − k2 (eg · c) −k2 (eb × c) · ∇
∇n∂c − k2 (en · c) −k2 (en × c) · ∇

 (3.17)

and the material operator

ν̂i =

 νi 0 0
0 νi 0
0 0 1

 . (3.18)

where we have set ∇a = ea · ∇, (a = t, g, n) for brevity.
The corresponding formalism for the conductor-conductor interface is ob-

tained in the same fashion, recalling that the boundary condition has to ensure
the continuity of the tangential components for both the magnetic and electric
field, delivering the relation

ν̂iĈiWi = ν̂i+1Ĉi+1Wi+1 (3.19)

where

Ĉi =


∇t∂c − k2 (et · c) −k2 (et × c) · ∇
∇g∂c − k2 (eg · c) −k2 (eb × c) · ∇

(et × c) · ∇ ∇t∂c − k2 (et · c)
(eg × c) · ∇ ∇g∂c − k2 (eg · c)

 (3.20)



3.3. Solution description by means of analytic propagators 29

and

ν̂i =


νi 0 0 0
0 νi 0 0
0 0 1 0
0 0 0 1

 . (3.21)

with the corresponding definitions for the Ĉi+1 and ν̂i+1 following analogously.
Instead of using the magnetostatic potential in the air regions, we can address

the problem using the Wa potential by recalling that in air

B = c∇∂cWa (3.22)

where c is the pivoting vector, which means that the two potentials are related
via

Φ = c∂cWa. (3.23)

UsingWa instead of Φ can interesting since it leads to more uniform expressions
involving a single type of potential. The drawback is the higher derivative which
makes the expressions less elegant. Both formulations are equivalent and will
be used interchangeably throughout the text.

The explicit relations for the trace operators of the scalar and the vector
(eddy-current) problem for the Darboux surfaces summarised in Tab. 3.1 are
given in the appendix.

3.3 Solution description by means of analytic
propagators

In chapter 2, it has been demonstrated that the eddy-current problem can be
scalarised using either a single component magnetic potential Ac or using the
SOVP duplet (Wa,Wb). In both cases, A,Wa and Wb satisfy independently the
Helmholtz equation. Magnetostatics can be formally considered as the zero-
frequency limit (ω → 0) and/or zero-conductivity (σ → 0) limit of the eddy-
current problem, and it can be described by means of a scalar potential which
is linked with the Wa.

We may therefore pursue the analysis by considering a generic scalar poten-
tial (which can be Φ, A,Wa or Wb), to which we shall assign the generic symbol
Ψ, and which satisfies the Helmholtz equation (2.62), rewritten here in operator
form (

L̂− k2
)
Ψ = 0 (3.24)

where L̂ := ∇2 is the Laplace operator and k the separation constant defined
in (2.47). As mentioned above, the magnetostatic problem is the limiting case
with k = 0.

Let us now consider a bounded homogeneous domain V , and assume that
the potential Ψ is known along the domain boundary ∂V (cf. Fig. 3.3).
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V
∂V

Figure 3.3: Bounded homogeneous domain. We assume the potential distribu-
tion at the boundary ∂V being known

We know from the uniqueness theorem, that if the potential is given on the
boundary ∂V , then it is uniquely defined throughout the entire domain V . We
shall seek to formally express the solution at any interior point in V through
the potential value on the boundary. This mapping from the domain boundary
to its interior is achieved making use of Green’s second identity

Φ(x) =

∮
∂V

[Φ(x′)∇′g(x,x′)− g(x,x′)∇′Φ(x′)] · dS′

=

∮
∂V

[∂′ng(x,x
′)− g(x,x′) ∂′n] Φ(x

′) dS′, x ∈ V (3.25)

where g(x,x′) stands for Green’s function of free space, defined via(
∇2 − k2

)
g(x,x′) = δ(x− x′) (3.26)

with δ(•) the Dirac delta function, and n the outward pointing unit normal
vector. ∂′n denotes the directional derivative along the normal direction acting
on the primed coordinates.

The scalar Green’s function expression in the free space is known in closed
form, and is given by

g(x,x′) =
eik|x−x′|

4π |x− x′|
. (3.27)

We define a Darboux frame associated with the ∂V boundary surface ac-
cording to the conventions of 3.2.1, and we assume that the Helmholtz operator
is separable in the coordinate system associated with this frame (this is always
possible if the surface is a characteristic surface in one of the 11 separable co-
ordinate systems [25]). Then, there exists a complete orthogonal basis of L̂T

eigenfunctions (with the subscript T standing for the “tangential”, which spans
the (t, g) subspace

L̂T fα(xt, xg) = λα(xn) fα(xt, xg) (3.28)
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with the associated inner product

⟨fα, fβ⟩ =
∮
∂V

fα(x)
†
fβ(x) dS = δαβ , x ∈ ∂V (3.29)

δαβ being the Kronecker delta2. Notice that the eigenvalue λα is in the general
case a function of the normal coordinate (take for example the case of the
cylindrical of spherical coordinate system). Since the basis is complete, fα(x)
will also satisfy the completeness relation∑

α

fα(x)
†
fα(x

′) = δ(x− x′) , x ∈ T. (3.30)

Ψ can be expanded in the vicinity of ∂V in terms of the eigenfunction basis
as follows

Ψ(x) =
∑
α

cαfα(xt, xg) (3.31)

The development coefficients cα are determined by the potential value on the
boundary ∂V

cα =

∮
∂V

fα(x)
†
Ψ(x) dS. (3.32)

In the same fashion, we can develop the normal derivative of the potential
at ∂V in an eigenfunction series

∂nΨ(x) =
∑
α

dαfα(xt, xg) (3.33)

with

dα =

∮
∂V

fα(x)
†
∂nΨ(x) dS (3.34)

accordingly. Notice that cn and dn are not independent since the potential
and its normal derivative must satisfy the Helmholtz equation. Besides, the
independence of the potential and its derivative would contradict the uniqueness
theorem. Assume that they are related via a linear relation

dα = Rαcα. (3.35)

The coefficient Rα will be determined below, when the herein abstract formu-
lation will be specialised for the most common coordinate systems. For the
moment, we may underline the formal resemblance with Ohm’s law. Indeed,
this relation describes a Robin’s type condition, which is nothing less than an
impedance-like link between the two state variables.

2All bases will be henceforth tacitly implied being normalised unless otherwise stated.
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Introducing (3.31) and (3.33) into (3.25), we obtain

Ψ(x) =
∑
α

[cα⟨∂′ng, fα⟩+ dα⟨g, fα⟩]

=
∑
α

cα⟨∂′ng +Rαg, fα⟩ (3.36)

which can be written as

Φ(x) =
∑
α

cαP̂αfα
(
x′t, x

′
g

)
(3.37)

where P̂α is a “propagation” operator defined as

P̂αfα
(
x′t, x

′
g

)
:= ⟨∂′n

(
geRαx′

n

)
, fα⟩e−Rαx′

n . (3.38)

The explicit expression of P̂n for a given projection basis is obtained by sub-
stituting g(x,x′) from (3.27) and carrying out the integration. In the following,
we shall perform this evaluation for the three most common coordinate systems,
namely the rectangular, the cylindrical and the spherical ones in order to derive
the respective explicit expressions for the propagator in these systems.

3.3.1 Cartesian coordinates

We start the analysis with the rectangular system. For convenience, we shall
work directly in the cartesian coordinates system assuming that en = ez con-
verting the final result to the Darboux frame afterwards.

Let us consider the integration plane at z′ = const. and let us assume that
the observation point lies at z ≥ z′. Although it is possible to work directly
with the continuous eigenvalues spectrum of the infinite plate, it is preferable
for reasons of notational simplicity and consistence with the rest of the text to
discretise the spectrum by truncating the computational domain. Indeed, solu-
tions to the diffusion (or static) problem are characterised by a rapid decrease
as we are moving apart from the region of interest (following roughly an inverse
square law), hence we can assume that they practically vanish at a sufficient
distance. As a consequence, we may truncate the computational domain at that
distance using a convenient termination condition (Dirichlet, Neumann or peri-
odic), without significant impact to the solution. This is the major assumption
of the truncated region eigenfunctions expansion (TREE method, which allows
the conversion of a continuous to a discrete eigenvalues spectrum. It is the
same assumption made when solving the problem using a mesh-based method,
like the finite elements method (FEM) of the finite integration technique (FIT),
where a finite computational domain is achieved by applying an artificial trun-
cation using one of the above-mentioned conditions. Things are different when
wave propagation is the major mechanism, in which case a specially designed
absorbing truncation condition like the perfectly matched layer is necessary to
exclude numerical reflections back into the domain.



3.3. Solution description by means of analytic propagators 33

We apply a periodic boundary condition at x = ±L/2 and y = ±L/2, which
results in the following eigenfunction basis

fm,n(x, y) =
1

L
eiκmx+iλny (3.39)

with the eigenvalues

κm =
2πm

L
(3.40)

and similarly for λn.
To continue with the calculation of the inner products, we seek to express

the Green’s function into a more convenient form. This can be achieved by
recalling the Weyl identity [4]

e−kr

r
= − 1

2π

∞∫
−∞

∞∫
−∞

eikxx+ikyy−kz|z|

kz
dκxdκy (3.41)

where
r =

√
(x− x′)2 + (y − y′)2 + (z − z′)2 (3.42)

and v is the root of the dispersion relation

k2 = k2x + k2y − k2z (3.43)

which for the truncated medium considered herein results in the following ex-
pression for the Green’s function

g(x,x′) = − 1

2L2

∞∑
m=−∞

∞∑
n=−∞

eiκm(x−x′)+iλn(y−y′)−vmn|z−z′|

vmn
(3.44)

with vmn =
√
k2 + κ2m + λ2m. For the derivation of the last relation we have

taken into account the orthogonality of the exponential functions

L/2∫
−L/2

ei(κm−κl)xdx = Lδm,l. (3.45)

with δml the Kronecker delta. Substituting (3.44) in (3.36) and taking (3.39)
into account, we obtain

Ψ(x) =
1

2L

∞∑
m=−∞

∞∑
n=−∞

(
cmn +

dmn

vmn

)
eiκmx+iλnye−vmn(z−z′) (3.46)

and projecting onto fmn at z = z′

cmn = ⟨fm,n,Ψ⟩ =
1

2

(
cmn +

dmn

vmn

)
(3.47)
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To determine dn we differentiate (3.44) with respect to z and obtain

∂nΨ(x) =
1

2L

∞∑
m=−∞

∞∑
n=−∞

(−vmncmn + dmn) e
iκmx+iλnye−vmn(z−z′) (3.48)

whence we conclude

dn = ⟨fm,n, ∂nΨ⟩ =
1

2
(−vmncmn + dmn) (3.49)

The coefficients cmn and dmn must thus verify the system(
1 1/vmn

vmn 1

)(
cmn

dmn

)
=

(
0
0

)
(3.50)

which has a zero determinant. We thus verify that cmn and dmn are linearly
dependent with the Robin’s coefficient as defined in (3.35) equal to Rmn = vmn.

We have arrived thus at the point where we can determine the propagator
as

P̂mn|z′→z = e−vmn(z−z′). (3.51)

3.3.2 Cylindrical coordinates: propagation in z

Due to its anisotropy, the development basis and the propagation along the
normal direction are different for propagation in the ρ, ϕ and z axis. We shall
be interested for the first and the last case, since these are the usual situations
that will be encountered in the problems we wish to treat.

We shall first consider the case where the integration surface is a constant z
plane. We shall assume that the computational domain is bounded at ρ = ρL
using a Dirichlet type condition for the considered potential. In this case, the
development basis will be

fm,n(x, y) =
1√

πρLJm+1(κmnρL)
eimϕJm(κmnρ) (3.52)

where the eigenvalues κmn are determined by the zeros of the Bessel functions

Jm(κmnρL) = 0. (3.53)

The Green’s function in a cylindrical pot bounded at ρL can be shown having
the form [3]

g(x,x′) =

∞∑
m=−∞

∞∑
n=0

1

2πρ2LJ
2
m+1(κmnρ) vmn

Jm(κρ) Jm(κρ
′) eim(ϕ−ϕ′)e−v|z−z′|.

(3.54)



3.3. Solution description by means of analytic propagators 35

With substitution in the Green’s identity (3.36) and assuming z > z′ we obtain
the potential expression

Ψ(x) =
1

4π

∞∑
m=−∞

eimϕ
∞∑

n=0

(
cmn +

dmn

vmn

)
Jm(κmnρ) e

−vmnz. (3.55)

The rest of the proof is identical with the cartesian geometry, yielding the
same expression for the propagator

P̂mn|z′→z = e−vmn(z−z′). (3.56)

3.3.3 Cylindrical coordinates: propagation in ρ

We move now to the cylindrical coordinate system by considering an integration
surface of constant radius ρ′ with en = eρ, and we develop solutions in the
half-space ρ ≥ ρ′ (outward evanescent fields). In order to work with a discrete
spectrum, we shall truncate the domain at z = ±L/2, as we did for the cartesian
coordinate system. Note that the spectrum in the azimuthal direction is already
discrete since it must fulfill the periodicity condition at ϕ = 2π.

The eigenfunctions associated with the integration surface are given by the
relation

fm,n(x, y) =
1√
2πL

eimϕ+iκnz (3.57)

with the eigenvalues

κn =
2πn

L
(3.58)

The identity corresponding to the Sommerfeld integral for propagation along
z we shall use in this case (derived by the former) reads [4]

e−kr

r
=

1

π

m∑
m=−∞

eimϕ

∞∫
−∞

Im(kρρ
′)Km(kρρ) e

ikzzdκ (3.59)

where Im and Km are the modified Bessel functions of the first and second kind,
respectively [26], and the spectral variables kρ and kz satisfy the dispersion
relation

k2 = k2ρ − k2z (3.60)

Adapting (3.59) to the spectrum of the truncated domain, we obtain the Green’s
function

g(x,x′) =
1

2πL

m∑
m=−∞

eim(ϕ−ϕ′)
∞∑

n=−∞
Im(vnρ

′)Km(vnρ) e
iκn(z−z′) (3.61)

with vn =
√
k2 + κ2n. Substitution to (3.36) yields for the potential solution

Ψ(x) =
ρ′√
2πL

∞∑
m=−∞

eimϕ
∞∑

n=−∞
[cmnvnI

′
m(vnρ

′)− dmnIm(vnρ
′)]Km(vnρ) e

iκnz

(3.62)



36 Chapter 3. Geometries with non-intersecting interfaces

and projecting to the eigenfunction space we arrive at the relation for the series
coefficients (recall that we are observing at ρ = ρ′)

cmn = ρ′ [cmnvnI
′
m(vnρ

′)− dmnIm(vnρ
′)]Km(vnρ

′) (3.63)

The corresponding calculation for the normal potential derivative yields for
dmn

dmn = vnρ
′ [cmnvnI

′
m(vnρ

′)− dmnIm(vnρ
′)]K ′

m(vnρ
′) (3.64)

resulting in the linear system(
1− vnρ′I ′m(vnρ′)Km(vnρ

′) ρ′Im(vnρ
′)Km(vnρ

′)
−v2nρ′I ′m(vnρ′)K ′

m(vnρ
′) 1 + vnρ

′Im(vnρ
′)K ′

m(vnρ
′)

)(
cmn

dmn

)
=

(
0
0

)
(3.65)

The system determinant reads

D = 1− vnρ′ [I ′m(vnρ′)Km(vnρ
′)− Im(vnρ′)K ′

m(vnρ
′)] . (3.66)

The bracketed expression is recognised as the Wronskian of the Bessel function,
whose value is 1/vnρ

′, whence we conclude that the system’s determinant is
zero, verifying again the linear dependence of the cmn and dmn coefficients.
The Robin’s coefficient is easily determined as

Rmn = −1− vnρ′I ′m(vnρ′)Km(vnρ
′)

ρ′Im(vnρ′)Km(vnρ′)
(3.67)

resulting the following expression for the propagator

P̂mn|ρ′→ρ =
Km(vmnρ)

Km(vmnρ′)
. (3.68)

3.3.4 Spherical coordinates

The normalised eigenfunctions in the spherical system are the spherical har-
monics

Ymn(θ, ϕ) =

√
(n−m)!

(n+m)!

2n+ 1

4π
Pm
n (cos θ) eimϕ (3.69)

with n = 0, . . . ,∞, m = −n, . . . , n.
The Green’s function can be expanded in the spherical system by recognis-

ing the fact that the relation eikr/r is proportional to the zero order spherical
Bessel function i0(kr) and applying the addition theorem for the spherical Bessel
functions [4, 26], which results in the identity

eik|x−x′|

4π|x− x′|
=

2k

π

∞∑
n=0

n∑
m=−n

in(kr>) kn(kr<)Ymn(θ, ϕ)Y
∗
mn(θ, ϕ) (3.70)
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where r = |x|, and r≶ indicates the smaller/larger of the source/observation
point distance respectively. We shall assume observation points in the outer
region (r′ > r) as we did for the cylindrical system.

The analysis is similar as for the previous cases. We substitute (3.70) into
(3.36) and we perform the integrations, taking account the orthogonality of the
spherical harmonics

Ψ(x) =
2kr′2

π

∞∑
n=0

n∑
m=−n

[cmnki
′
n(kr

′)− dmnin(kr
′)] kn(kr)Ymn(θ, ϕ) (3.71)

which results for the cmn coefficients in

cmn =
2kr′2

π
[cmnki

′
n(kr

′)− dmnin(kr
′)] kn(kr) (3.72)

Derivating (3.71), we obtain the analogous relation for the dmn coefficients

dmn =
2kr′2

π
k [cmnki

′
n(kr

′)− dmnin(kr
′)] k′n(kr) (3.73)

Equations (3.72),(3.73) form the system of equations(
1− 2(kr′)2π−1i′n(kr

′) kn(kr
′) 2kr′2π−1in(kr

′) kn(kr
′)

−2k(kr′)2π−1i′n(kr
′) k′n(kr

′) 1 + 2(kr′)2π−1in(kr
′) k′n(kr

′)

)
×
(
cmn

dmn

)
=

(
0
0

)
(3.74)

with determinant

D = 1 +
2(kr′)2

π
[i′n(kr

′)Kn(kr
′)− in(kr

′)K ′
n(kr

′)] . (3.75)

The bracketed expression is the Wronskian of the spherical Bessel functions,
which equals −π/2(kr′)2, hence the derivative is zero.

Solution of (3.73) by replacement of the Wronskian yields for dmn

dmn = k
K ′

n(kr
′)

Kn(kr′)
cmn (3.76)

which results in the expression for the propagator

P̂mn|r′→r =
km(kr)

km(kr′)
. (3.77)

The corresponding expression for r < r′ (inwards evanascent solution) reads

P̂mn|r′→r =
im(kr)

im(kr′)
. (3.78)
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A special case of interest is when k → 0, which is met when treating solutions
in air. The form of the propagator can be obtained either by starting from
the Green’s function expression for the magnetostatic and repeating the above
procedure, or by using (3.77),(3.78) and applying the asymptotic form for the
spherical Bessel functions for small arguments, namely [26]

in(z) ∼ zn/(2n+ 1)!! (3.79)

kn(z) ∼ (2n+ 1)!!/zn+1 (3.80)

The double factorial denotes the product of all the integers from 1 up to n
that have the same parity (odd or even) as n. Taking (3.79),(3.80) into account,
we obtain for the outwards evanescent solutions

P̂mn|r′→r =
( r
r′

)−(n+1)

(3.81)

and for the inwards evanescent solutions

P̂mn|r′→r =
( r
r′

)n
. (3.82)

3.3.5 Concluding remarks

The uniqueness theorem assures that the knowledge of the state variable (one
of the above introduced potentials in our case) at the boundary of the domain
∂V determines the solution at any point in the interior of the domain x ∈ V .
Choosing thus a representation basis on this boundary we can map the surface
distribution to any other point of the domain, and this mapping is carried out
with the action of a propagation operator upon the representation bases (3.37).

If the basis is a Helmholtz eigenbasis in the Darboux frame of the bound-
ary, it can be shown that it is also an eigenbasis of the propagator, and hence
the mapping takes a particularly simple form, which in the cartesian and the
cylindrical system is given by (3.51) and (3.51) respectively.

3.3.6 Generalisation

If the domain’s boundary is non-simply connected, the Green’s theorem is still
valid. In fact, we can always choose a set of cuts for connecting the individual
surfaces of the boundary, as shown in Fig. 3.4.

Via the introduction of cuts, the boundary integral of (3.25) can be written
as the sum of surface integrals each one accounting for the scattering of one of
the contributing surfaces∮

So∪S1∪S2...∪SN

. . .ndS =

∫
So

. . .nodS +

N∑
i=1

∫
Si

. . .nidS (3.83)

where the So contribution is the source term.
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S1

SN
So

S2

Figure 3.4: Separation of a non-simply-connected boundary into individual
simply-connected-surfaces through the introduction of cuts.

Assigning one Darboux frame at each of the Si surfaces, we can express the
total field at any point of the domain as the superposition of the individual
surface distributions propagated at the observation point, i.e.

Ψ(x) = Ψs(x) +

N∑
i=1

∑
α

c(i)a P̂α|Si→xf
(i)
α (3.84)

where Ψs stands for the source term.

3.4 The Dirac ket-bra notation

3.4.1 Brief overview of the notational framework and con-
ventions

At this point, it is be useful to adopt a more abstract description, and the
vehicle to this attempt will be the Dirac notation originally introduced for the
description of quantum-mechanical states. The benefits from this abstraction
will be notational simplicity, and in particular, a very compact and elegant
way for expressing transitions between different representation bases. On a
more conceptual basis, the Dirac notation provides also a way of considering
physical states of the system without paying attention to the details of the
specific representation at hand.

An arbitrary state of the problem is represented via the ket vector |ϕ⟩. The
ket vector is an arbitrary way of representing the given state of the problem,
and it cannot be expressed explicitly in any coordinate system but only via its
projection to the elements of a given basis. To the ket vector we associate the



40 Chapter 3. Geometries with non-intersecting interfaces

adjoint bra vector defined via

⟨ϕ| := (|ϕ⟩)† . (3.85)

Based on the above definitions, the inner product of two state vectors |ϕ⟩
and |ψ⟩ can be written as follows

⟨ψ, ϕ⟩ := ⟨ψ|ϕ⟩ . (3.86)

Let |n⟩ stand for an orthonormal and complete basis. Following the standard
quantum-mechanical convention for the representation of the basis elements, we
shall refer each element by giving its index inside the ket/bra symbol. The
development of |ϕ⟩ in this basis reads

|ϕ⟩ =
∑
n

cn |n⟩ (3.87)

with cn being the development coefficients, which in the general case are complex
scalars, that is cn ∈ C. The mth coefficient is obtained by projecting the |ϕ⟩
vector to the mth element of the basis, namely

⟨m|ϕ⟩ =
∑
n

cn ⟨m|n⟩ = cm
∑
n

cnδmn = cm (3.88)

where δmn stands for the Kronecker’s delta. In the last relation the basis’
orthonormality was used.

Let us now examine the action of an operator Â on |ϕ⟩. The result of the

operation Â |ϕ⟩ is fully determined in a given representation basis by projecting
the result of the operator to every element of the basis, i.e.

⟨m| Â |ϕ⟩ =
∞∑

n=0

cn ⟨m| Â |n⟩ =
∞∑

n=0

Amncn. (3.89)

The quantity Amn is a matrix, which represents the action of the operator in
the given basis.

Interesting relations can be obtained by using the following identity

Î =
∑
n

|n⟩ ⟨n| (3.90)

where Î stands for the identity operator. The meaning of (3.90) is that |n⟩ forms
a complete basis and hence the application of (3.90) to any arbitrary vector will
leave the latter intact. Indeed, from the definition of the unit operator we obtain

|ϕ⟩ ≡ Î |ϕ⟩ =
∑
n

|n⟩ ⟨n|ϕ⟩ =
∑
n

cn |n⟩ . (3.91)

Identity (3.90) proves very useful for changing the representation basis. Take
for example the inner product of two state vectors |ϕ⟩ and |ψ⟩ and let |n⟩ stand
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for the basis vectors of a given basis. Inserting (3.90) in the inner product ⟨ψ|ϕ⟩,
we obtain

⟨ψ|ϕ⟩ = ⟨ψ|

(∑
n

|n⟩ ⟨n|

)
|ϕ⟩ =

∑
n

⟨ψ|n⟩ ⟨n|ϕ⟩ =
∑
n

d∗ncn (3.92)

where cn = ⟨n|ϕ⟩ and dn = ⟨n|ψ⟩ are the projections of the two vectors to the
elements of the basis. Equation (3.92) is the so-called Parseval’s theorem. Now
let |n′⟩ a new basis. Repeating the same operation for the inner products of |ϕ⟩,
we obtain

⟨ψ|ϕ⟩ =
∑
n

⟨ψ|n⟩ ⟨n|ϕ⟩ =
∑
n

⟨ψ|n⟩ ⟨n|

(∑
n′

|n′⟩ ⟨n′|

)
|ϕ⟩

=
∑
n

⟨ψ|n⟩

(∑
n′

⟨n|n′⟩ ⟨n′|ϕ⟩

)
=
∑
n

d∗n

(∑
n′

Rnn′cn′

)
(3.93)

and so on. In the last relation Rnn′ is the transformation matrix from one basis
to the other.

Since a change of basis is of central importance this work, it would be mean-
ingful to adopt the Einstein convention for spectral sums in an effort to
simplify the notation. According to this notation, the sum symbol is dropped
and the summation is implied for all repeated indices (also known as dummy
indices) spanning the value range that those indices admit. As a demonstration,
let us see how this rule works in the case of the basis change performed in the
last relation

⟨ψ|ϕ⟩ = ⟨ψ|n⟩ ⟨n|ϕ⟩ = ⟨ψ|n⟩ ⟨n|n′⟩ ⟨n′|ϕ⟩ = d∗nRnn′cn′ . (3.94)

It should be noted here that the Einstein convention is mostly used in the
field of tensor algebra and its application with spectral bases may be seen a little
unusual. Yet, its introduction can simplify the notation making the procedure
more transparent, bringing the main ideas of the analysis in the foreground.

The above concepts will become clearer if we shall apply them to a specific
example. Let |x⟩ be the common cartesian coordinates basis, which, as is always
the case for the Dirac notation, is defined via its projection to the state vector,
namely

ϕ(x) := ⟨x|ϕ⟩ . (3.95)

The meaning of the above expression is that the projection of the state vec-
tor onto the |x⟩ basis is identical to its functional expression in the cartessian
coordinates system ϕ(x), which is called in quantum-mechanics as position rep-
resentation.

We consider now two state vectors ϕ and ψ, and we form their inner product
⟨ψ|ϕ⟩. Using the above presented framework, we can write

⟨ψ|ϕ⟩ = ⟨ψ|x⟩ ⟨x|ϕ⟩ . (3.96)
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Taking (3.95) into account and recalling the Einstein convention, where this
time the “index” x runs through R3, the last product yields in the cartesian
coordinates system

⟨ψ|x⟩ ⟨x|ϕ⟩ =
∫
x

ψ∗(x)ϕ(x) dx. (3.97)

We introduce now a second basis |n⟩. The inner product in this basis is
given by (3.92). Now, let us specify the basis and explicitly compute the pro-
jection coefficients cn and dn (in contrast with (3.92) the indices here are vector
quantities since the basis spans the three dimensions of the space).

cn = ⟨n|ϕ⟩ = ⟨n|x⟩ ⟨x|ϕ⟩ = ⟨x|n⟩∗ ⟨x|ϕ⟩ (3.98)

which yields in the spatial representation

cn =

∫
x

n∗(x)ϕ(x) dx. (3.99)

3.4.2 Application to the scattering problem

Let us return now to (3.84), which will try to rewrite following the Dirac notation
and the above introduced conventions. We introduce the state vector |ψ⟩ for
the potential solution and |m⟩i stand for the eigensolution base associated to
the Darboux frame of the surface i, according to the previous discussion. The
potential solution as superposition of the surface-associated states is written as
follows

|ψ⟩ = |ψs⟩+
N∑
i=1

c(i)m P̂i |m⟩ . (3.100)

In order to obtain the solution value at a specific point, we need to observe
(project) the above representation to this point.

⟨x|ψ⟩ = ⟨x|ψs⟩+
N∑
i=1

c(i)m ⟨x| P̂i |m⟩ (3.101)

which is a different way of writing (3.84).
The solution must satisfy the continuity relations at all the boundaries of

the domain, and a compact way of expressing these relations is via the trace
operator defined in section 3.2. The continuity relations in the new notation
read

ν̂j+Ĉj+
∣∣ψj+

〉
− ν̂j−Ĉj−

∣∣ψj−
〉
= 0, ∀j. (3.102)

Here, j runs over all the physical interfaces of the geometry and the sign stands
for the positive or negative side of the interface according to the n orientation.
Substituting (3.100), we obtain

2N∑
i=1

cmi

(
ν̂j+Ĉj+P̂i→j+ − ν̂j−Ĉj−P̂i→j−

)
|mi⟩ = 0, ∀j. (3.103)
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In the last relation, the i index runs over the oriented and not the physical
surfaces, i.e. we assume a different development for each side of the surface.
This point must be explained a little further. We match the solutions valid in
each separate subdomain of the configuration (which can be a physical piece
or fictitious domain), which implies that the solution must be considered for
each side of every boundary surface independently (recall that the uniqueness
theorem applies to a closed domain). However, not all the combinations of i and
j± correspond to a physical solution; they must belong to the same domain.
Technically, this requirement can be embedded in the propagation operator,
which vanishes for every non-physical combination. With that said, one of the
P̂i→j+ , P̂i→j− must vanish depending on which side of j lies i.

To complete the formulation and construct a system of equations, which
will allow the calculation of the series coefficients, (3.103) is weighted at each
interface, with one of the series bases that correspond to that interface (for
example the basis at the positive side). Since we are considering pieces with
non-intersecting boundaries |mj+⟩ = |mj−⟩ = |mj⟩, i.e. the two bases are equal
and hence this is not relevant. Things will be different, however, in the next
chapter, where surface discontinuities will be tackled. Equation (3.103) then
yields

2N∑
i=1

[
⟨mj | ν̂j+Ĉj+P̂i→j+ − ν̂j−Ĉj−P̂i→j− |mi⟩

]
cmi

= 0, ∀j (3.104)

The calculation of the matrices can be carried our in a systematic way by
successive application of the identity (3.90). Inserting thus the identity operator

between ν̂, Ĉ and P̂ , (3.104) becomes

2N∑
i=1

[
⟨mj | ν̂j+ |nj⟩ ⟨nj | Ĉj+ |ℓj⟩ ⟨ℓj | P̂i→j+ |mi⟩

− ⟨mj | ν̂j− |nj⟩ ⟨nj | Ĉj− |ℓj⟩ ⟨ℓj | P̂i→j− |mi⟩
]
cmi

= 0, ∀j. (3.105)

The material operator ν̂ as well as the continuity operator Ĉ are observed in
the native frame of the boundary, and hence their projections will be given by
the relations of section 3.2. As long as the geometry interfaces have the same
Darboux frame, ⟨mj | P̂i |mi⟩ will be diagonal as shown above. The operator
diagonalisation is lost, when the piece comprises surfaces of different geometry.
In that case |mi⟩ and |mj⟩ does not belong to the same coordinate system

anymore and the matrix ⟨mj | P̂i |mi⟩ involves mode mixing.

The essence of the introduced formalism is to provide a systematic way to
produce these matrices and to compile the final system. This procedure will
become more clear by working with specific examples.
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3.5 Problem dimensionality: Domain and spec-
trum truncation

The development bases associated with the principal directions of the interfaces
are infinite. Depending on the reference frame at hand they can be continuous
(e.g. cartesian system) or discrete (e.g. azimuthal direction in the cylindrical
or spherical coordinate system)3. In order to be able to solve numerically the
system of equations of (3.104), we need to reduce the bases’ dimensions to a
finite number.

In the case of the parabolic problems considered here the continuous spec-
tra can be always reduced to discrete ones by taking advantage of the rapid
decrease of the solution as we are moving apart from the source (magnetostat-
ics is an elliptic problem but its solutions share the same behaviour with the
diffusive ones). The fact that the field becomes negligible at a relatively small
distance from the source allows us to truncate the domain there using a sim-
ple boundary condition such as Dirichlet or Neumann, since the condition will
not interact with the (practically zero) field there. The specific choice of the
boundary condition has no consequence to the solution itself and is dictated by
best mathematical convenience (symmetry conditions are however different in
the sense that the field is non-negligible, and hence their choice has a direct
impact to the final field distribution).

This technique is known in the literature as domain truncation and has en-
abled the treatment of a large number of problems using spectral techniques.
A practical question that arises here is the minimum distance of the truncation
boundary that can be safely used in order not to alter the results. Unfor-
tunately, there are no strict mathematical rules (recall that the same question
arises when defining the computational box for a calculation using the finite ele-
ment method, FEM). Rule-of-thumbs can be, however, used, which are based on
geometrical criteria [27–29]. Thus, truncation distances of 10 times the longest
coil dimension is generally considered safe. Of course, one must also take the
coil orientation and the material into account. A final judge is numerical exper-
imentation and comparison with reference data.

Once the spectrum has been discretised, one needs to truncate it in order to
reduce its (infinite) dimension to a numerically tractable finite number. Again,
no general rule exists for the optimum number of terms (modes) that need to
be taken into account. Experience suggests that a number of modes between
100 and 200 is sufficient for the majority of the problems treated with this
technique. It should be underlined that the discussion on the definition of the
computational spectrum is the analogous to the definition of the adequate grid
resolution in spatial methods like the FEM.

3A rigorous response to this question can be given in the context of the group theory by
considering the symmetries of the frame.
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σW2−

Φ2+

Ic

W1+

Φs +Φ1−

Figure 3.5: Piece with two interfaces and potentials associated to the interfaces.

3.6 Application to pieces with two interfaces

Having provided the general framework, we shall examine how this formalism
applies for the solution of a concrete problem: the calculation of the eddy-current
flow in a conducting piece with two interfaces. The shape of the interfaces is
intentionally left unspecified to keep the analysis general enough. The thereupon
constructed system of equations will be later specialised afterwards for two
specific geometries: an infinite tube with eccentric walls and a conducting half-
space containing a spherical inclusion.

For simplicity, we assume that the piece is not magnetic, which allows us
to ignore the reluctivity matrix. The field is excited by a coil source located
in the air region enclosed by the first interface. The bases associated with the
two surfaces will be names |m⟩ and |n⟩ respectively. The source term will be
expanded in its own reference frame (which will be specialised for each problem)
using the base |s⟩

The potentials associated with the geometry surfaces are named after the
usual convention, which is also shown in Fig. 3.5 for convenience. More precisely,
the expansions for the source term and the reflection from the first interface are
given in terms of the scalar potentials

|Φs⟩ = c(s)a |a⟩ (3.106)

|Φ1−⟩ = c(1
−)

m |m⟩ . (3.107)

Inside the piece we have the SOVP terms associated with the two internal
interfaces

|W1+⟩ = c(1
+)

m |m⟩ (3.108)

|W2−⟩ = c(2
−)

n |n⟩ . (3.109)

Finally, the solution in the third (external) region reads

|Φ2+⟩ = c(2
+)

n |n⟩ (3.110)

Application of the general expression (3.103) results in the following equa-
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tions system[
−⟨m| Ĉ1−P̂1−1− |m′⟩ ⟨m| Ĉ1+P̂1+1+ |m′⟩ ⟨m| Ĉ1+P̂2−1+ |n′⟩ 0

0 ⟨n| Ĉ2−P̂1+2− |m′⟩ ⟨n| Ĉ2−P̂2−2− |n′⟩ − ⟨n| Ĉ2+P̂2+2+ |n′⟩

]

×


c
(1)
m

c
(2)
m

c
(3)
n

c
(4)
n

 =


⟨m| Ĉ1−P̂a1− |a⟩ c

(s)
a

0
0
0

 (3.111)

In the last relation, we have abbreviated the propagator notation P̂i→j to P̂ij

for brevity. It is recalled that the mode indices m, n and a run through all set
of eigenvalues per direction according to our convention (extended Einstein’s
convention). All ⟨m| . . . |n⟩ are hence expected to represent matrices. The

source coefficients c
(s)
a are considered known, and they are obtained by direct

integration of the coil current (Biot-Savart law).

3.6.1 Eccentric tube

We shall apply now the above generic scheme to the specific problem of a coil
interacting with an infinite tube with eccentric walls. The exact geometry is
depicted in Fig. 3.6. The coil is air-cored and is free to move along the interior
of the tube. Although the approach is applicable for an arbitrary coil geometry,
position and orientation, we shall restrict the analysis to the case of a bobbin
coil, that is a cylindrical coil with its axis parallel to the tube axis. The centre of
the coil can be shifted with respect to the tube axis in order to take the wobble
effect as shown in Fig. 3.7. The domain is truncated at z = 0 and z = L using
a PEC and a PMC condition respectively. As it will be mentioned in this text
several times, this particular combination of BCs is convenient since it removes
the zero-order term.

The two interfaces of the structure are the cylindrical interfaces of the tube
with radii ρ1 and ρ2 respectively. The axes of the two cylindrical systems are
shifted by a distance d. To each of the two surfaces we assign a Darboux frame
with (t, g, n) = (z, ϕ,−ρ) (cf. conventions in Tab. 3.1). The development series
will be thus given in the spatial representation by

⟨x|m⟩ = ⟨x|n⟩ = 1√
πL

eim1ϕ cos(κm2z) (3.112)

m1 = n1 = −N1, . . . N1,

m2 = n2 = 1, . . . N2

with κm2
= (m2 − 1/2)π/L. The abbreviated mode indices m and n span the

duplet sets (m1,m2), (n1, n2), respectively.
The submatrices in (3.111) are projected separately to the series bases on

the left and the right according to (3.105). It is thus

⟨m| Ĉ1−P̂1−1− |m′⟩ = ⟨m| Ĉ1− |ℓ⟩ ⟨ℓ| P̂1−1− |m′⟩ (3.113)
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Figure 3.6: Tube with eccentric interfaces excited by a bobbin coil.

etc.
Taking (3.13),(3.14) into account, the projected continuity operators read

⟨m| Ĉ1− |ℓ⟩ =

 −κ2m2

im1κm2ρ
−1
1

−κ2m2

 δmℓ, (3.114)

⟨m| Ĉ1+ |ℓ⟩ =

 −κm2vm2 im1ρ
−1
1

im1κm2
ρ−1
1 −vm2

κ2m2
0

 δnℓ (3.115)

and

⟨n| Ĉ2− |ℓ⟩ =

 −κn2
vn2

in1ρ
−1
2

im1κn2ρ
−1
2 −vn2

κ2n2
0

 δnℓ, (3.116)

⟨n| Ĉ2+ |ℓ⟩ =

 κ2n2

in1κn2ρ
−1
2

κ2n2

 δnℓ. (3.117)

Note that each operator is calculated in its proper reference frame, whence the
diagonal form of the projected operators indicated by the Kronecker symbols
δmℓ and δnℓ.

The ⟨ℓ| P̂1−1− |m′⟩, ⟨ℓ| P̂1+1+ |m′⟩, ⟨ℓ| P̂2−2− |n′⟩ and ⟨ℓ| P̂2+2+ |n′⟩ operators
propagate the surface field solution to itself, therefore

⟨ℓ| P̂1−1− |m′⟩ = ⟨ℓ| P̂1+1+ |m′⟩ = ⟨ℓ| P̂2−2− |n′⟩ = ⟨ℓ| P̂2+2+ |n′⟩ = I (3.118)

where I is the unit matrix.
It remains to determine ⟨ℓ| P̂1+2− |m′⟩ as well as ⟨ℓ| P̂2−1+ |n′⟩ which yield

the propagation of the solution between the internal to the tube wall side of the
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structure interfaces. These matrices are responsible for the coupling between
the two bases. Their explicit form can be derived using the Graf’s addition
theorem for the Bessel functions passing from the spatial representation, i.e.4

⟨ℓ| P̂1+2− |m′⟩ = ⟨ℓ|x⟩ ⟨x| P̂1+2− |x′⟩ ⟨x′|m′⟩ (3.119)

where

⟨x| P̂1+2− |x′⟩ ⟨x′|m′⟩ = cos(κl2z
′)

N1∑
m′

1=−N1

(−1)(m
′
1−l1) Im′

1−l1

(
vm′

2
d
)
eim

′
1ϕ

′

(3.120)

which yields the final relation for the operator matrix

⟨ℓ| P̂1+2− |m′⟩ = (−1)(m
′
1−ℓ1) Im′

1−ℓ1

(
vm′

2
d
)

(3.121)

Note that the propagator has been normalised with Im′
1

(
vm′

2
ρ1
)
as proposed in

3.3.3 in order to keep the expressions short and to avoid overflows due to the
Bessel function’s exponential behaviour for increasing argument.

In the same fashion we obtain for the ⟨x| P̂2−1+ |x′⟩ ⟨x′|n′⟩ matrix

⟨x| P̂2−1+ |x′⟩ ⟨x′|n′⟩ = cos(κl2z
′)

N1∑
n′
1=−N1

In′
1−l1

(
vn′

2
d
)
ein

′
1ϕ

′
. (3.122)

whence

⟨ℓ| P̂−1+ |n′⟩ = In′
1−ℓ1

(
vn′

2
d
)
. (3.123)

Here the normalisation factor is Kn′
1

(
vn′

2
ρ2
)
.

The source term ⟨m′| P̂a1− |a⟩ can be obtained in a similar way by calculating
the coil field on the inner tube surface in the spatial domain and projecting onto
the test function space. For the specific case of the bobbin coil with wobble, we
follow the same recipe, namely we calculate the field in the coil proper frame
and use the addition theorem of the Bessel functions to translate the calculation
to the reference frame of the inner wall. We give directly the final result. The
details on the calculation are given in [30] as well as [31]

⟨m| Ĉ1−P̂a1− |a⟩ c(s)a = Dc(κm2) Im1(κm2ρ0)Km1(κm2ρ1) e
−im1ϕ0 . (3.124)

where again κa2 = (a2− 1/2)π/L. (ρ0, ϕ0) are the coordinates of the coil centre
with respect to the centre of the inner tube surface (cf. Fig. 3.7). The coefficients

4In deployed form ⟨n| Â |m⟩ =
∫
x

∫
x′ ⟨n|x⟩ ⟨x| Â |x′⟩ ⟨x′|m⟩ dxdx′, whence ⟨n| Â |m⟩ =∫

x ϕn(x) dx
∫
x′ A(x, x′)ϕm(x′) dx′. The inner integral gives the propagated basis function

ϕm(x′) on the observation surface of the test function ϕn(x).
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Figure 3.7: Coil shift with respect to the inner surface reference frame.

Dc(κ) stand for the series coefficients of the coil field in the air and they admit
a closed-form expression [8, 31]

Dc(κ) =
µ0

π

NcIc
(ρ2c − ρ1c) lc

1

κ3
sin

(
κlc
2

) κρ2c∫
κρ1c

xI1(x) dx (3.125)

where ρ1c, ρ2c the inner and outer coil radius, lc the coil length, Nc the number
of turns and Ic the feed current.

The field solution obtained via the inversion of (3.111) can be used to calcu-
late the coil impedance variation by applying the reciprocity theorem presented
in section 2.5. Application of (2.68) with I1 = I2 = Ic taking into account the
potential definition relation (2.33) yields

∆Z = − iω

µ0I2c

L∫
0

π∫
−π

(
Φ1−

∂Φs

∂ρ
− ∂Φ1−

∂ρ
Φs

)
ρ=ρ1

ρ1dφdz. (3.126)

Substitution of the potential expressions and use of the orthogonality results
in the expression

∆Z = − iω4π
2

µ0I2c

N1∑
m1=−N1

N2∑
m2=1

c(s)m1,m2
c
(1−)
−m1,m2

. (3.127)

The mode index m = (m1,m2) in the last relation has been deployed since m1

and m2 apply with different sign.
Some representative results have been produced for the case of a tube with

inner and outer radii of 10 mm and 12 mm, respectively, and varying eccen-
tricity. The considered tube is made of 304-type austenitic stainless steel (non-
magnetic) having a nominal conductivity of σ=1.45 MS/m. The coil inner and
outer radius are equal to ρc1=7 mm and ρc2=8 mm, its length is lc=2 mm and
its number of turns Nc=200. The coil inductance in the air can be calculated
from the relation

Z0 =
i2πωµ0N

2

(rc2 − rc1)2 l2c

∞∫
0

1

κ6

 kzb2∫
kzb1

xJ1(x) dx

2 (
lcκ+ e−κl − 1

)
dκ (3.128)
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Figure 3.8: Normalized coil impedance variation for increasing eccentricity at
four frequencies for zero coil offset. The zero eccentricity case corresponds to
the smallest value of normalized reactance in each of the curves. The solid
curves represent the solution obtained using the spectral approach, whereas the
markers show the reference numerical results obtained using FEM.

which upon replacement of the coil characteristics gives the value 943.6 µH.
The theoretical results obtained by the model of this section have been com-

pared with reference numerical results obtained using the FEM package COM-
SOL Multiphysics ® [32]. In Fig. 3.8 is shown the variation of the normalised
∆Z as function of the tube eccentricity for four different frequencies. The im-
pedance variation is plotted in the complex plane, which is the standard way of
representation for the NDT results. The coil is without offset.

The effect of the coil offset is visualised in Fig. 3.9, where the normalised
impedance variation is plotted as a function of the coil eccentricity for four
different coil offsets. The arrow shows the variation produced by the coil offset
in a concentric tube, an increase in the resistance and decrease in the total
reactance of the coil when it moves towards the inner tube wall and agrees with
a previous observation [31]. Finally, if we connected corresponding data points
at different coil position azimuthal angles we would get the impedance variation
produced by the azimuthal movement of the coil in an eccentric tube.

3.6.2 Planar half-space with a spherical inclusion

The problem we deal with here is the calculation of the eddy-current signature
of a close-to-the-surface hollow sphere embedded in a conducting half-space.
The problem configuration is illustrated in Fig. 3.10. We define a global cylin-
drical coordinate system, whose z axis is normal to the half-space interface and
passes from the centre of the sphere. The coordinate system origin is set to the



3.6. Application to pieces with two interfaces 51

x

y

x

y

x

y

x

y

No offset Offset at 0Offset at 90Offset at 180
OOO

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

∆R/X
0

∆X
/X

0

 

 

No offset

Offset at 180
o

Offset at 90
o

Offset at 0
o

Figure 3.9: Normalized coil impedance variation for increasing eccentricity at
26 kHz and a coil offset of 2 mm at three coil position azimuthal angles. For
comparison, the normalized coil impedance for zero coil offset is also appended.
The inner and outer radii of the tube are 10 mm and 12 mm respectively. The
solid curves represent the solution obtained using the spectral approach, whereas
the markers show the reference numerical results obtained using FEM.

intersection point of the z axis with the half-space interface. The computational
domain is truncated by a cylindrical PMC boundary at ρ = ρL.

The Darboux frame associated to the planar surface of the half-space coin-
cides with the global cylindrical system with (t, g, n) = (ρ, ϕ, z). The develop-
ment basis is defined in (3.52) and rewritten here using the conventions of this
section

⟨x|m⟩ = 1√
πL

eim1ϕJm1(κm1,m2ρ) , (3.129)

m1 = −N1, . . . N1,

m2 = 1, . . . N2.

the κ eigenvalues being determined by the roots of the Bessel functions

Jm1(κm1,m2ρL) = 0. (3.130)

To the spherical interface we assign a local spherical coordinate system,
which is related to the respective Darboux frame with (t, g, n) = (θ, ϕ,−r). To
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Figure 3.10: Planar half-space with spherical inclusion.

the spherical interface we associate a basis of spherical harmonics (3.69)

⟨x|n⟩ = Pn1
n2

(cos θ) ein1ϕ, (3.131)

n1 = −N1, . . . N1,

n2 = m1, . . . N2

where Pn1
n2

(cos θ) are the associated Legendre functions of the first kind. The
abbreviated modes indices m and n span the duplets sets (m1,m2), (n1, n2) as
in the previous example.

We consider first the terms which emanate from the half-space interface
and are observed at the same boundary, i.e. the terms ⟨m| Ĉ1−P̂1−1− |m′⟩ and
⟨m| Ĉ1+P̂1+1+ |m′⟩. An extra complexity with respect to the previous problem
is that the trace operator at the planar interface mixes the Bessel functions with
their derivatives, when we are calculating the projections. A simple trick can
be applied here recalling the Bessel functions property

±xJ ′
m(x) = xJm∓1(x)−mJm(x) (3.132)

We introduce thus a new mixing operator

M̂c =

 1 i 0
−i 1 0
0 0 1

 (3.133)

and we multiply the first row in (3.111) from the left with M̂c. The final relation
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for the projected trace operator will thus be

⟨m|M̂cĈ1− |ℓ⟩ =

 κm
κm
−κm

 δmℓ, (3.134)

⟨m|M̂cĈ1+ |ℓ⟩ =

κm1,m2
vm1,m2

−iκm1,m2

κm1,m2
vm1,m2

iκm1,m2

κ2m1,m2
0

 δnℓ. (3.135)

The similar trick will be used also for the continuity relations at the spherical
boundary since again the trace operators involve the derivatives of the associ-
ated Legendre functions. The orthogonality relation involving derivatives of
the associated Legendre functions is derived by writing the associated Legendre
equation in the Sturm-Liouville form

d

dx
(1− x2) df

dx
+

[
n(n+ 1)− m2

1− x2

]
f = 0 (3.136)

which weighted with the test function yields

⟨g, d
dx

(1− x2) df
dx
⟩+ n(n+ 1)⟨g, f⟩ −m2⟨g, 1

1− x2
f⟩ = 0. (3.137)

Using the hermiticity of the derivative operator and rearranging the terms, the
last relation can be also written as follows

⟨dg
dx
, (1− x2) df

dx
⟩ −m2⟨g, 1

1− x2
f⟩ = −n(n+ 1)⟨g, f⟩. (3.138)

With f, g being the associated Legendre functions, the right-hand side of the
relation is non-zero only for f = g and hence the same holds of the left-hand
side. Using spherical coordinates the sought relation becomes [2, 33]

π∫
0

[
dPm

ℓ (cos θ)

dθ

dPm
n (cos θ)

dθ
+

m2

sin2 θ
Pm
ℓ (cos θ)Pm

n (cos θ) sin θdθ

]

=
2ℓ(ℓ+ 1)

2ℓ+ 1

(ℓ+m)!

(ℓ−m)!
δℓn. (3.139)

Having this form in mind and regarding the form of the continuity operators
in the spherical system (cf. appendix A), it turns out that the second row in
(3.111) must be multiplied by left with an operator that mixes the θ and ϕ
continuity relations [34]

M̂s =

1 0 0
0 sin θ∂θ

1
sin θ

im
sin θ

0 im
sin θ sin θ∂θ

1
sin θ

 (3.140)
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resulting in the following expressions for the projected continuity operator

⟨n|M̂sĈ2− |ℓ⟩ =
1

kR

n2(n2 + 1)K̂n2
(kR) 0

K̂ ′
n2
(kR) 0

0 K̂n2(kR)

 δnℓ, (3.141)

⟨n|M̂sĈ2+ |ℓ⟩ =
1

kR

n211
0

 δnℓ. (3.142)

Îℓ(.) and K̂ℓ(.) stand for Schelkunoff’s Bessel functions of the first and second
kind, respectively. These are linked to the modified spherical Bessel function
via the relations Îℓ(x) = xIℓ(x) and K̂ℓ(x) = xKℓ(x).

The propagators for the considered terms project the solutions to themselves
and are hence unit matrices, in a strict analogy with the eccentric tube problem

⟨ℓ| P̂1−1− |m′⟩ = ⟨ℓ| P̂1+1+ |m′⟩ = ⟨ℓ| P̂2−2− |n′⟩ = ⟨ℓ| P̂2+2+ |n′⟩ = I. (3.143)

We now move to the transverse terms, which couple the two boundaries. The
extra complexity here comparing with the previous case of the eccentric cylinder
is that the pivoting vector for the potentials associated with the two surfaces is
not the same. The propagation operators are no longer scalar. A simple way to
bypass this difficulty is to resort to the conversion relations between the vector

wave functions in the cylindrical (N
(i)
m , M

(i)
m ) and spherical system (n

(o)
mℓ, m

(o)
mℓ)

as proposed in [34].
Both wave functions are derived by the corresponding potential terms. Thus

for the cylindrical wave functions we obtain

N = k−1∇×∇× (ezWa1+) (3.144)

M = ∇× (ezWb1+) . (3.145)

The corresponding definition for the spherical wave functions reads

n = k−1∇×∇× (rWa2−) (3.146)

m = ∇× (rWb2−) . (3.147)

Note that the cylindrical wave functions are denoted using uppercase, whereas
lowercase is used for the names of the spherical wave functions for better read-
ability.

The outwards propagating n
(o)
mℓ and m

(o)
mℓ spherical wave functions can be

expanded in terms of upwards evanescent cylindrical wave functions N
(i)
m and

M
(i)
m using the following expression [34,35]

n
(o)
mℓ(r) =

∞∫
0

[
amℓ(κ)N

(i)
m (x, κ)− bmℓ(κ)M

(i)
m (x, κ)

]
dκ. (3.148)
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and

m
(o)
mℓ(r) =

∞∫
0

[
amℓ(κ)M

(i)
m (x, κ) + bmℓ(κ)N

(i)
m (x, κ)

]
dκ. (3.149)

The series coefficients amℓ and bmℓ admit closed form relations

amℓ(κ) = (−i)m[sgn(z)]n−m+1π

2

κ

k2v

dP ℓ
m(cosα)

d(cosα)
(3.150)

bmℓ(κ) = −(−i)m[sgn(z)]n−mπ

2

im

κv
P ℓ
m(cosα) (3.151)

where α is the spectral angle cosα = v/k.
Equations (3.148),(3.149) can be grouped together in a matrix expression as

follows

[
n
(o)
mℓ(x)m

(o)
mℓ(x)

]
=

∞∫
0

[
N

(i)
m (x, κ)M

(i)
m (x, κ)

]
·
[
amℓ(κ) −bmℓ(κ)
bmℓ(κ) amℓ(κ)

]
dκ. (3.152)

Assuming a spherical wave expansion with coefficients (c
(a2−)
nℓ , c

(b2−)
nℓ ), we

can write for the truncated at ρ = ρL medium

N1∑
n1=−N1

N2∑
n2=1

[
n
(o)
n1,n2(x)m

(o)
n1,n2(x)

]
·

[
c
(a2−)
n1,n2

c
(b2−)
n1,n2

]

=

N1∑
n1=−N1

N2∑
n2=1

N2∑
ℓ=0

[
N

(i)
n1,ℓ

(x)M
(i)
n1,ℓ

(x)
]
·
[
an1,n2,ℓ −bn1,n2,ℓ

bn1,n2,ℓ an1,n2,ℓ

]
·

[
c
(a2−)
n1,n2

c
(b2−)
n1,n2

]
.

(3.153)

The expressions for the discrete conversion operators can be easily obtained
from (3.150),(3.151) by imposing the truncation condition, which results for
amℓn

amℓn =
2κnamℓ(κn)

[κnρLJm+1(κnρL)]
2 , (3.154)

with a similar relation being obtained for bmℓn.
The left hand side of (3.153) is the magnetic field, which evaluated at the

z = 0 interface performs the continuity operator task. Projection of (3.153)

onto the cylindrical function duplet
[
N

(i)
n1,ℓ

(x) ,M
(i)
n1,ℓ

(x)
]
provides us the sought

expression for the projected propagator-continuity matrix, which couples the
series coefficients at the two surfaces[

c
(a2−)
n1,n2

c
(b2−)
n1,n2

]
=

N2∑
ℓ=0

[
an1,n2,ℓ −bn1,n2,ℓ

bn1,n2,ℓ an1,n2,ℓ

]
·

[
c
(a2−)
n1,n2

c
(b2−)
n1,n2

]
. (3.155)
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The final relation for the projected continuity condition reads [34]

⟨m|M̂cĈ1−P̂2−1+ |ℓ⟩

=
κm1,m2

k
e−vm1,m2z0

 vm1,m2
am1ℓm2

vm1,m2
bm1ℓm2

−ikbm1ℓm2
ikam1ℓm2

vm1,m2am1ℓm2 vm1,m2bm1ℓm2 ikbm1ℓm2 −ikam1ℓm2

−vm1,m2am1ℓm2 −vm1,m2bm1ℓm2 0 0


(3.156)

The cross terms for the spherical boundary, ⟨ℓ| P̂1+2− |m′⟩ and ⟨ℓ| P̂2−1+ |n′⟩,
will be determined using the same approach. This time however we need the
conversion relations from downwards evanecent cylindrical wave functions to
inwards propagating spherical wave functions. The relations are given in [35]
and adapted in [34]

N(o)
m (r, κ) =

∞∑
ℓ=m

[
Amℓ(κ)n

(i)
mℓ(x)−Bmℓ(κ)m

(i)
mℓ(x)

]
, (3.157)

and

M(o)
m (r, κ) =

∞∑
ℓ=m

[
Amℓ(κ)m

(i)
mℓ(x) +Bmℓ(κ)n

(i)
mℓ(x)

]
(3.158)

which in matrix form reads[
N

(o)
m (x, κ)M

(o)
m (x, κ)

]
=

∞∑
ℓ=m

[
n
(i)
mℓ(x)m

(i)
mℓ(x)

]
·
[
Amℓ(κ) Bmℓ(κ)
−Bmℓ(κ) Amℓ(κ)

]
(3.159)

The expansion coefficients Amℓ and Bmℓ are given by the relations

Amℓ(λ) = −(−1)nim
(2ℓ+ 1)(ℓ−m)!

ℓ(ℓ+ 1)(ℓ+m)!
k sin2 α

dPm
ℓ (cosα)

d(cosα)
(3.160)

Bmℓ(λ) = (−1)nim (2ℓ+ 1)(ℓ−m)!

ℓ(ℓ+ 1)(ℓ+m)!
imkPm

ℓ (cosα) (3.161)

where the spectral angle α has been defined above. Multiplication with (c
(a1+)
mℓ , c

(b1+)
mℓ )

from the right and projection to the spherical surface basis yields the coupling
expression between the development coefficients[

c
(a1+)
n1,n2

c
(b1+)
n1,n2

]
=

N2∑
ℓ=0

[
Am1,m2,ℓ Bm1,m2,ℓ

−Bm1,m2,ℓ Am1,m2,ℓ

]
·

[
c
(a1+)
n1,n2

c
(b1+)
n1,n2

]
(3.162)

which finally yields the projected trace-propagation operator at the spherical
interface

⟨n|M̂sĈ2+P̂1+2− |ℓ⟩

=
1

kR

K̂ℓ(kR) 0 Îℓ(kR)An1,n2,ℓ Îℓ(kR)Bn1,n2,ℓ

K̂ ′
ℓ(kR) 0 Î ′ℓ(kR)An1,n2,ℓ Î ′ℓ(kR)Bn1,n2,ℓ

0 K̂ ′
ℓ(kR) Î

′
ℓ(kR)An1,n2,ℓ −Î ′ℓ(kR)Bn1,n2,ℓ

 . (3.163)
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The presented model has been applied to the inspection situation depicted in
Fig. 3.10, where a spherical inclusion with different radii and a highly conducting
half-space are considered. The half-space conductivity is σ=35.4 MS/m. The
coil inner and outer radius is 2 mm and 4 mm respectively, its length is 1 mm
and it is wound with 200 turns. The coil is moved at a constant lift-off equal to
0.2 mm from the half-space interface.

The results are compared against numerical simulations obtained using the
three-dimensional FEM package COMSOL Multiphysics ® in Fig. 3.11 for two
frequencies: 1 kHz and 5 kHz. The first inclusion has 5 mm radius and its
ligament from the half-space free surface is 0.5 mm. The second one is smaller
with 1 mm radius and a ligament of 0.1 mm.

As a figure of merit, the truncation zone for the TREE solution can be taken
equal to about 10 times the radial extend of the coil (provided that the inclusion
volume is entirely contained in the domain defined by this limit). Truncation
radii greater than the previous one have an almost negligible impact to the
accuracy of the results. From the computational point of view, larger ρL values
impose larger number of radial modes to be taken into account, which leads to
a cubic increase (due to the full system matrix) of the computational time.

It is interesting to proceed at this point to a comparison between the com-
putational times required for the two solutions. The calculation of a complete
scan comprising 60 points using the spectral approach with the above mentioned
truncation limit was at most 5 s for both inclusions and both frequencies. The
respective FEM calculation time instead is estimated to 1.5 min per scan point,
both times being measured using a standard workstation.

These computational times are justified by the rapid convergence of the
solution series, which allowed us to consider only a few modes resulting a system
with a limited number of degrees of freedom. More precisely, the number of
the cylindrical modes did not exceed 25 for m1 and 80 for mZ in all cases,
whereas the maximum number of spherical modes was at most 15. This is a
non-surprising remark, since the cylindrical and spherical functions bases used
for the solution expansion are partial solutions of the given geometry, and thus
they are already very close to the final solution.

3.7 Publications related with the chapter con-
tent

The herein developed theory is a formalisation effort of results published in a
number of journal articles and communicated in international conferences.

More precisely, the calculation of the coil interaction with a conducting tube
having eccentric walls is given in [30]. The problem of a conducting half-space
with a parallel to its interface hole is treated in [36]. The calculation of the coil
impedance for arbitrarily oriented coils in the exterior of tubes is given in [37].
ECT signatures from spherical inclusions in a half-space are calculated in [34].
The similar problem of the magnetostatic field response from an air void in a
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(a)

(b)

Figure 3.11: Semi-analytical (TREE) vs. FEM simulation results for spheres of
different radii at: (a) 1 kHz, and (b) 5 kHz. ∆R stands for the real (ohmic) part
of the coil impedance due to the presence of the conductor (the ohmic resistance
of the coil windings being ignored), whereas X is the coil reactance. The solid
line stand for semi-analytical results whereas the marker points for FEM.

ferromagnetic medium is studied in [38].



Chapter 4

Geometries with
intersecting boundaries

The next step towards a generalisation of the spectral approach developed in
chapter 3 consists in allowing the internal stratification of the subdomains de-
fined by simple non-intersecting surfaces, and which have been assumed so-far
homogeneous. In other words, we introduce a second layer of interfaces that
affect each domain separately. To distinguish this class of problems with re-
spect to the ones treated in chapter 3, we shall name this type of geometries as
geometries with intersecting boundaries.

The method that will be used to address these problems is not new: the
following developments are variations of the well-established mode-matching
technique [4]. The objective of this chapter is to reframe the method in the
context of low-frequency problems, where the domain truncation is the basic
tool, and try to integrate it in a systematic hierarchical framework, within
which the problems of chapter 3 form a special case.

From the point of view of practical applications, the hereafter developed
solutions will allow the treatment of important problems like the end-effect in
planar and cylindrical structures, the inspection of boreholes, and the NDT
of tubular configurations involving discontinuities such as support plates. The
interest of the spectral methods is not only justified from numerical perfor-
mance considerations. As we will see in the following, they provide a mean to
construct integral kernels (Green’s dyads), which combined with dedicated for-
malisms based on the integral equation approach allow the efficient treatment of
arbitrarily shaped flaws, a problem of central importance for NDT applications.

4.1 Problem geometry and conventions

The general structure of the problem is described in Fig. 4.1. We consider N
infinite interfaces which divide the computational domain in N +1 layers. This
set of interfaces will be referred to as primary interfaces or primary layering.

59
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In contrast to the previous chapters where we had a relative freedom in terms
of the interface geometry, the primary layers considered here will be only of
rectangular or cylindrical shape. This restriction is not a strict limitation of
the method, but rather a focus to a specific subclass of problems of particular
interest from the application point of view.

We assume then that the thus defined subdomains (or a subset of them) are
further divided via another set of coordinate surfaces, normal to one of the two
subdomain interfaces. To each subdomain a different material is associated.

J⃗

(N − 1, 1)

N

1

(N − 1, 2) (N − 1,m)...

...

...(2, 1) (2, 2) (N,n)

2

N − 1

Figure 4.1: Multilayer structure with internal interfaces in the layers. To each
layer subdivision a different material is associated. The medium is assumed to
be infinite in the normal to the drawing direction.

We use a double index system to label the interfaces. The primary inter-
faces are associated to an integer index starting from the one with the lowest
coordinate in the normal direction and advancing in the positive direction. The
internal interfaces are numbered (independently from each other) using a second
index following again the positive direction of the respective coordinate of their
normal.

Each layer is labelled using a pair of indices corresponding to the primary
and internal bounding interfaces. E.g. the layer labelled (2, 3) is upper bounded
by the 2nd primary and the 3rd internal interface. Practically, this rigorous
definition, indispensable for posing the problem in an unambiguous way for a
general medium with more internal stratifications, will not be really used in
the remaining of the chapter, where the study will be concentrated to couple of
characteristic problems comprising a single set of internal layers. Thus, no risc
of confusion exists.

4.2 Eigenvalues calculation for a planar multi-
layer medium

Let us consider a planar multilayer medium, whose interfaces are normal to the z
axis of a local cartesian coordinate system as shown in Fig. 4.2. The medium has
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a finite lateral dimension extending between x1 and x2. Each layer i is assigned
to a material with electrical conductivity σi and a magnetic permeability µi.
The domain is bounded at z = 0 using a PEC condition and at z = L with a
PMC condition. This particular combination of BCs eliminates the zero-order
term and thus establishes a usual choice for this kind of problems [34, 39, 40].
Different combinations can be of interest when dealing with solutions of specific
parities [39]. It must though be underlined that the choice of one or another
BC combination has no impact to the method itself; it solely influences the
eigenvalues and the form of the eigenfunctions.

1

N

2

...

x

z

x1 x2

z = 0

z = L

N − 1

Figure 4.2: Planar multilayer medium of finite thickness.

We are seeking solutions for the Wa and Wb potentials that satisfy the
Helmholtz equation in the stratified medium, and which will be used to con-
struct a development eigenbasis. There are two ways of addressing this problem:
either by considering it a separate multilayer problem consisting of homogeneous
media employing the methods of chapter 3, or by considering it as an inhomo-
geneous 1D problem and treating it numerically.

4.2.1 Treating each layer separately: the transcendental
equation approach

Following the methodology developed in the previous chapter, we assign a
Darboux frame at each of the x interfaces, i.e. we set (t, g, n) = (z, y,−x)
and solving the problem by propagating the potential solution of sub-plane
([0, z1], [z1, z2], . . .) at those interfaces along the x direction (direction of the
propagator). In the rest of this section we shall work directly in the cartesian
coordinate system since it is more convenient.

It can be proven (cf. [4]) that when the pivot vector is normal to the interface
the TE and TM modes are independent of each other. For the SOVP approach,
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this means that we can work out the Wa and Wb potentials separately.
We postulate that the propagator is the same in each layer. Despite

the liberty we have in our disposal when proposing sub-solution combinations,
this postulate may be seem at a first glance as arbitrary. Its choice will be
better understood at a later point, when the eigenvalue equation for an arbitrary
multilayer problem will be derived. The general formulation for theWa potential
reads

Wa(x, y, z) =

Nm∑
m=1

Nn∑
n=1

cmne
−vmn(x−x1) sin(λny) f

(i)
[
q(i)m z

]
(4.1)

with the z function given by

f
[
p(i)m z

]
=


a1 sin

[
q
(1)
m z

]
, z1 ≤ z ≤ z2, i = 1

ai sin
[
q
(i)
m z
]
+ bi cos

[
q
(i)
m z
]
, zi ≤ z ≤ zi+1, i = 2, . . . , N − 1

bN cos
[
q
(N)
m (L− z)

]
, z ≥ zN , i = N.

(4.2)

The eigenvalues p
(i)
m are related with λn and vmn via the dispersion relation[

q(i)m

]2
= v2mn − λ2n − k2i . (4.3)

The p
(i)
m values are determined by imposing f

[
p
(i)
m z
]
to satisfy the continuity

of the tangential magnetic field and the normal magnetic flux density across the
boundaries. This is translated to continuity relations for the potential value and
its normal derivative. Application of the continuity relations to the ensemble of
the internal interfaces delivers the system of equations

[
A B
C D

]
·



a1
...

aN−1

b2
...
bN


= 0 (4.4)

with

A =


sin
[
q
(1)
m z2

]
sin
[
q
(2)
m z2

]
. . . 0

...

0 0 . . . sin
[
q
(N)
m (L− zN )

]
 (4.5)

B =


cos
[
q
(2)
m z2

]
0 . . . 0

...

0 0 . . . cos
[
q
(N)
m (L− zN )

]
 (4.6)
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C =


ν1q

(1)
m cos

[
q
(1)
m z2

]
ν2q

(2)
m cos

[
q
(2)
m z2

]
. . . 0

...

0 0 . . . νN−1q
(N)
m cos

[
q
(N−1)
m (L− zN )

]


(4.7)

and

D =


−ν2q(2)m sin

[
q
(2)
m z2

]
0 . . . 0

...

0 0 . . . νNq
(N)
m sin

[
q
(N)
m (L− zN )

]
 (4.8)

Equation (4.4) has a non-trivial solution when

det

([
A B
C D

])
= 0 (4.9)

Recalling that q
(i)
m are all related with vmn via the dispersion relation (4.3),

(4.9) provides a non-linear relation for vmn whose roots will provide the sought
values.

As a representative example we consider the case of a two-layer medium
(half-space). The system becomes in this case sin

[
q
(1)
m z2

]
cos
[
q
(N)
m (L− z2)

]
ν1q

(1)
m cos

[
q
(1)
m z2

]
νNq

(N)
m sin

[
q
(N)
m (L− z2)

] · [a1
b2

]
=

[
0
0

]
(4.10)

which results

νNq
(N)
m tan

[
q(1)m z2

]
− ν1q(1)m cot

[
q(N)
m (L− z2)

]
= 0 (4.11)

Equation (4.11) is the transcendental equation for the two-layer medium,
which has been already studied in the literature for the solution of different
problems [29,39,41].

4.2.2 Complex root finding

The numerical calculation of the complex roots of the transcendental equation
is a challenging task for a number of reasons. The equation is highly non-linear
which makes many standard numerical tools developed for polynomials root-
finding, inappropriate. Furthermore, the algorithm must be able to distinguish
roots that lie very close to each other. This proximity is particularly severe
when highly magnetic media are involved.

An obvious choice is the application of the Newton-Raphson (NR) method.
The drawback of this approach is that it suffers from stability issues, hence
relaxation might be needed. The NR efficiency can be significantly improved



64 Chapter 4. Geometries with intersecting boundaries

and the convergence issues can be remediated to a great extend by providing
an initial guess that is close to the root.

A robust method for locating initial estimates of the roots is one based on
a procedure given by Delves and Lyness [42, 43]. The key step uses Cauchy’s
theorem to test whether a pole or several poles of a given function lie in a
prescribed region of the complex plane. By finding the poles of a function, one
implicitly locates the zeros of its reciprocal.

Let f(z) be a complex function of z, analytic inside and on a closed contour
C in the complex plane, and which does not pass through a zero of f(z). One
can show using Cauchy’s theorem that

sn =
1

2πi

∮
C

zn
f ′(z)

f(z)
dz =

N∑
i=1

ξni , n = 1, 2, . . . ,∞ (4.12)

where the summation is over the enclosed poles. ξi are the zeros of f(z). The
path integral, evaluated for n = 0 equals the number of zeros of f(z) enclosed
by contour C

s0 =
1

2πi

∮
C

f ′(z)

f(z)
dz =

N∑
i=1

ξ0i = N. (4.13)

The application of (4.12) for different values of n > 1 yields a non-linear
system of equations with respect to the enclosed poles.

The computational algorithm works as follows. Setting a number of poles
Nmax to be traced by iteration, we start exploring the complex plane by dividing
the domain of interest in a number of areas (e.g. rectangular) and evaluating
(4.13). If s0 = 0, which means that the current area does not contain any pole,
we move to the following domain. If instead s0 > Nmax, we subdivide the area
to two subdomains, and we repeat the procedure until s0 ≤ Nmax. Should that
be the case, we proceed to the evaluation of s1, . . . , sN max and we solve the
related system of equations to determine the f(z) zeros.

The Nmax value is a trade-off between number of iterations and computa-
tional complexity (number of integrations per area and order of the non-linear
system of equations). Usually Nmax should not exceed 3 for optimal perfor-
mance.

With the combination of the Lyness-Delves method (initial prediction) with
the Newton-Raphson method (refinement), a very satisfactory accuracy of the
eigenvalues calculation can be achieved even in the presence of ferromagnetic
media.

4.2.3 Eigenvalue equation for a vertically layered medium

The curl-curl equation for the electric field reads

∇× ν∇×E+ iωσE = 0. (4.14)
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Projecting (4.14) to the z axis and taking into account that the conductivity
is function only of the z coordinate, namely σ = σ(z), we obtain

∂

∂z

(
∂Ex

∂x
+
∂Ey

∂y

)
− ∂2Ez

∂x2
− ∂2Ez

∂y2
+ iωµσEz = 0 (4.15)

Using the continuity equation1

∇ · σE = 0 (4.16)

the first term can be written as follows

∂Ex

∂x
+
∂Ey

∂y
= −σ−1 ∂

∂z
σEz (4.17)

which upon substitution into (4.15) yields

∂2Ez

∂x2
+
∂2Ez

∂y2
+

∂

∂z
σ−1 ∂

∂x
σEz − iωµσEz = 0. (4.18)

Using the spatial expressions along the x and y direction, we arrive at the
eigenvalue equation for the TM term

∂

∂z
σ−1 ∂

∂x
σEz −

(
k2x + k2y + k2

)
Ez = 0. (4.19)

The Ez component is expressed in terms of theWb potential as follows (2.55)

Ez = −(∂2 − k2)Wb = (k2x + k2y)Wb (4.20)

whence conclude that (4.19) is also the eigenvalue equation for Wb(
∂

∂z
σ−1 ∂

∂z
σ − k2

)
Wb = −p2Wb. (4.21)

with p2 = −k2x − k2y. It is recalled that the Wb potential can be considered
a priori equal to zero in regions with zero conductivity. The reason is that in
these regions the quasi-static formulation reduces to the magnetostatic one, and
hence only one degree of freedom is needed to describe the solution (Wa). It
is therefore more practical instead of calculating the eigenvalues for the entire
domain to split the problem to a number of independent equations, one for each
subdomain bounded by air.

In a similar way, starting from the curl-curl equation for the magnetic field

∇× σ−1∇×H+ iωµH = 0 (4.22)

1In order to avoid divisions by zero in domains with air, we consider for consistency rea-
sons the effective conductivity complemented by the displacement currents: σ + iωε. This
elaboration proves useful for the derivation of the eigenvalue equation, in practice, however,
we overcome the problem a priori by imposing a zero solution in the air regions.
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and following the same procedure as before, we can derive the corresponding
equation for the Wa potential(

∂

∂z
µ−1 ∂

∂z
µ− k2

)
Wa = −p2Wa. (4.23)

An important special case are nonmagnetic materials. In these cases, µ(z) =
µ0 and (4.23) reduces to the simple Helmholtz equation(

∂2

∂z2
− k2

)
Wa = −p2Wa. (4.24)

Since the medium is invariant along the y direction, a standard spectral
development can be applied there, with the corresponding ky spectral variable
admitting a discrete number of values ky = λn, n = 1, 2, . . . ,∞. From the
dispersion equation it yields then

p2mn = −λ2n + v2mn (4.25)

where we have set k2x = −v2mn for consistency with the notation conventions
of the previous chapter. Equation (4.25) can be interpreted as the dispersion
equation in an equivalent homogeneous medium with complex eigenvalues along
x (t in the Darboux frame). In other words, the mode matching approach can
be interpreted as a kind of homogenisation procedure. The propagator function
in this medium will be e±vmnx, i.e. common for all layers, in accordance with
our postulate when we treated each layer separately.

4.2.4 Eigenvalue computation using the Galerkin approach

The numerical computation of the eigenvalues for (4.21) and (4.23) is straight-
forward using the Galerkin approach. Indeed, let us consider a development
basis fi(z) , i = 1, . . . ,∞. The potential function can be approximated by its
projection onto this basis, namely

Wa,b ≈
N∑
i=0

cifi(z) . (4.26)

Different choices of basis functions are possible provided that the basis ele-
ments are continuously differentiable functions (fi(z) ∈ C1). An obvious choice
is to use the same basis of trigonometrical (global) functions; which has been
used for pieces with no internal interfaces in the previous chapters. Assuming
a PEC BC at z = 0 the basis elements are sine functions with spatial frequen-
cies determined by the termination condition at z = L. For example, for a
PEC/PMC combination the basis functions admit the form

fi(z) = sin(κiz) (4.27)

with κi = (n−1/2)π/L. For a different BC combination the basis elements and
the κi must be adapted accordingly.
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Another usual choice of basis functions are triangular pulses (local functions),
which offer an enhanced versatility for treating media with very inhomogeneous
layering (or continuous media with strong gradients). Here, we divide the z
domain in a number of intervals [z0, z1], [z1, z2], . . . , [zN−1, zN ] (the sampling
points do not need to be equidistant). The basis functions take the form

fi(z) =

{
z−zi−1

zi−zi−1
, zi−1 ≤ z ≤ zi

zi+1−z
zi+1−zi

, zi ≤ z ≤ zi+1
(4.28)

with the boundary elements

f0(z) =
z − z0
z1 − z0

, z0 ≤ z ≤ zi (4.29)

and

fN(z) =
zN − z

zN − zN−1
, zN−1 ≤ z ≤ zN . (4.30)

Substituting (4.26) in (4.23) and weighting with the same set taking into
account the hermiticity of the operator, we obtain the system of equations

N∑
i=0

[
⟨f ′j , µ−1f ′iµ⟩ − ⟨fj , k2fi⟩

]
ci = q2

N∑
i=0

⟨fj , fi⟩ci. (4.31)

The sought eigenvalues q2n, n = 1, . . . , N are equal to the eigenvalues of the
system matrix ⟨f ′j , µ−1f ′iµ⟩ − ⟨fj , k2fi⟩, which are computed using standard
linear algebra tools. The same calculation applies also for the Wb eigenvalues.

4.3 Case study: planar medium with an infinite
slot

The previous theory will become more clear via a concrete example. The prob-
lem configuration is depicted in Fig. 4.3. An infinite half-space affected by an
infinitely long and deep slot is inspected by means of a long rectangular coil.
The depth of the slot is much larger than the skin depth, which allows us to
ignore the effect of its bottom and approximate it as infinitely deep. Similarly,
the coil is long enough to consider is as equivalent with two parallel wires. The
problem can be therefore considered with good accuracy as 2D. The computa-
tional domain is truncated in x = L.

Note that since the axis of interest is x in this case, we set ex as pivot vector
for the Wa potential and apply the above developed methodology by inter-
changing the z-axis with x. The slotted specimen is considered as an equivalent
homogenised piece with complex x-eigenvalues, which are calculated using the
Galerkin approach with a basis of sinusoidal functions. Since the geometry is
invariant along y, no development will be performed in this direction.

Fig. 4.4 shows the first 20 computed eigenvalues in the complex plane for a
wedge configuration with c1 = L/2, c2 = L = 100 mm and σ = 35.4 MS/m for
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z

x = L

σ

z1
z2

x2

2w

z = 0
x1

x = 0 x = c1 x = c2

Figure 4.3: Multilayer structure with internal interfaces in the layers. A different
material is associated to each layer subdivision.

two frequencies. This particular case simulates the plate end-effect. It is inter-
esting to note that for higher frequencies (smaller skin depths) the eigenvalues
tend to separate in two sets, the upper and the lower. It is also notable that
the number of eigenvalues in each of these sets depends on the ratio c1/L. This
is easily observed in Fig. 4.5 where the two eigenvalue sets are depicted for the
same L and σ but for different c1/L ratios.

Figure 4.4: Complex eigenvalue sets for a conductive wedge at two frequencies.

There are two limiting cases for the region z ≤ 0: when it is just air, that
is c1 = 0 and c2 = L, and when it is a conductive half-space with constant
conductivity, that is c1 = c2. In the first case, only the lower set of eigenvalues
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Figure 4.5: Complex eigenvalue sets for a conductive wedge with different c1/L
ratios at a frequency of 1 kHz.

survives, which are equal to the eigenvalues in a homogeneous piece

qn = nπ/L. (4.32)

In the second case, only the upper set of eigenvalues survives and these can be
computed from the expression

qmn =
√
(nπ/L)− k2 (4.33)

which describe a hyperbola locus in the complex plane.
We consider now a centered slot of opening c2 − c1 = 10 mm with L =

200 mm. The piece conductivity σ = 18.5 MS/m and the inspection frequency
f = 1 kHz. Fig. 4.6 shows the first 20 computed eigenvalues in the complex
plane. It is clear that as the opening is decreased the number of eigenvalues in
the lower set also decreases with a simultaneous increase in the upper set. For
very small openings, only the upper set survives.

These computed eigenvalues and eigenvectors are used to calculate the im-
pedance change of the coil as this is moved above the slot. Fig. 4.7 shows
numerical results for the normalized impedance change as the 2D coil is moved
above the slot. The number of terms is set to NS = 100. A further increase
of this number is not necessary as convergence is achieved. The normalization
factor is the inductive reactance of the coil in air X0 = ωL0, with the inductance
calculated after [8] to 9.633 mH. The coil dimensions are: x2 − x1 = 10.2 mm,
w = 4.1 mm, z1 = 1.3 mm, z2 = 10.8 mm and the number of windings N = 158.
Two peaks are observed in both the real and imaginary parts of the impedance
change. These peaks correspond to the two coil branches as the coil passes over
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Figure 4.6: Complex eigenvalue sets for a conductive half-space with a slot.

the opening and the branches interact in turn with it, through the induced eddy
currents.

4.4 Eigenvalues calculation for an axially lay-
ered cylindrical medium

We shift now to the cylindrical geometry, and we consider an axially layered
cylindrical shell with inner and outer radii ρ1 and ρ2, in analogy with the planar
slab depicted in Fig. 4.2.

Developing (4.23) in the cylindrical coordinates we arrive at(
∇2

ρz +
∂

∂z
µ−1 ∂

∂z
µ− k2

)
Wa = 0. (4.34)

Using the following ansatz for the potential expression

Wa(ρ, ϕ, z) =

Nm∑
m=1

Nn∑
n=1

cmn

{
Im(pmnρ)
Km(pmnρ)

}
eimϕf(qmz) (4.35)

(4.34) becomes (
∂

∂z
µ−1 ∂

∂z
µ− k2

)
Wa = −p2mnWa. (4.36)

which is identical with (4.23) for the cartesian case. This is not an unexpected
result, since the topology of the medium seen in the z-axis is the same for both
systems. In the same fashion, we can show that the corresponding eigenvalue
equation for Wb is (4.21).
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(a) (b)

Figure 4.7: Impedance due to a conductive halfspace with a slot (a) real and
(b) imaginary part.

A different situation occurs when the layering takes place along the radial
direction. In this case, and given that the pivot vector in the cylindrical system
is always in the z direction (recall that this is the only possibility to obtain a
separable form of the Helmholtz equation), the TE and TM solution cannot
be treated separately. Thus, the basic working assumption, namely that the
eigenvalues can be divided into two distinct sets, does not hold anymore. The
above workflow can be still applied for the 2D case, where the TM solution is
identically zero, yet this case is of limited interest (coil-ferrite configurations
being one of the potential geometries then can be tackled using an eigensolution
development in the radial direction).

With the previous discussion in mind, we conclude that the general strategy
one must follow when layering is involved in both axial and radial directions
consists in considering the medium as a compilation of cylindrical shells, each
one being treated as an equivalent homogenised medium, wherein the (4.35)
ansatz is applied with the spectrum determined by (4.23),(4.21).

4.5 Modelling of the sources

In chapter 3 the coil sources have been treated indirectly by the boundary
conditions in the embedding layers. For geometries involving layering in two
directions, the coil field may be shared by multiple domains which makes its
treatment more complicated. The situation can be better explained via an
example. Consider the case of a borehole inspection using a coil scanning the
piece parallel to its upper interface, as illustrated in Fig. 4.8. Since the primary
layering is always carried out along the radial direction for the reasons explained
above, there are scan positions where the coil will be intersected by the domains
boundaries, in particular the cylindrical surface defined by the hole.

A possible way out would be to split the coil into two pieces, with each part
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Figure 4.8: Borehole inspection using a cylindrical probe coil. The coil is located
above the half-space interface and is moving parallel to it.

being located in a single domain. This approach is, however, theoretically less
elegant and computationally cumbersome, especially when a complete scan has
to be calculated, which is translated to a number of different splits.

A much more elegant solution consists in tackling the problem in a two-level
approach as proposed in [29,39,44]. We first calculate the coil field in the entire
air region that is physically bounded by the piece: that is, the air-column inside
and above the hole and the air domain above the rest of the piece. Once this
field has been evaluated we treat the multilayer problem for each subdomain of
the principal layering ignoring any interaction between domains.

The decomposition scheme is schematically depicted in Fig. 4.9. W
(s)
a stands

for the potential associated with the source field, W
(r)
a , W

(t)
a , W

(t)
b are the

terms arising from the interaction of the source with the horizontal boundary

at z = c, and W
(0)
a , W

(1)
a , W

(1)
b are the terms produced by the interaction of

the sub-solutions in the two cylindrical domains of the primary layering with
the vertical interface at ρa. Note that the domain is truncated twice, at ρ = ρL
(for the treatment of the horizontal layering) and at z = L (for the solution
associated with the vertical layering).

The formal solution obtained with this approach for the source field and the
reflection and transmission terms ρ ≥ ρa reads

W (s)
a (ρ, ϕ, z) =

∞∑
m=−∞

eimϕ
∞∑

n=1

c(s)mnJm(κmnρ) e
κmn(z−c), (4.37)

W (r)
a (ρ, ϕ, z) =

∞∑
m=−∞

eimϕ
∞∑

n=1

c(r)mnJm(κmnρ) e
−κmn(z−c). (4.38)

and

W (t)
a (ρ, ϕ, z) =

∞∑
m=−∞

eimϕ
∞∑

n=1

c(t)mnJm(κmnρ) e
vmn(z−c), (4.39)
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Figure 4.9: Solution decomposition for the treatment of the borehole inspection
problem with a scanning probe.

with v2mn = κ2mn + k2. The Wb term is zero for the air-column region [8]. The
κmn eigenvalues are determined by imposing zero tangential field on the ρ = ρL
boundary, which yields

Jm(κmnρL) = 0. (4.40)

The modal expansions for the potentials terms associated to the perturbation
from the hole are given by the expressions

W (0)
a (ρ, ϕ, z) =

∞∑
m=−∞

eimφ
∞∑

n=1

c(0)mnIm(umρ) cos(umz) , (4.41)

W (1)
a (ρ, ϕ, z) =

∞∑
m=−∞

eimφ
∞∑

n=1

c(a1)mn Km(pnρ) fn(z) (4.42)

and

W
(1)
b (ρ, ϕ, z) =

∞∑
m=−∞

eimφ
∞∑

n=1

c(b1)mnKm(snρ) cos(rnz) (4.43)

where fn(z) and cos(rnz) are the solutions of (4.23) and (4.21) with respective
eigenvalues an and rn, with the corresponding spectral variables p2n = q2n + k2

and s2n = r2n + k2.
The un eigenvalues are directly determined by the PMC condition at the

z = h plane since the air column in the hole region does not dispose any internal
interface

cos(unh) = 0, (4.44)
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which implies un = (n− 1/2)π/h, n = 1, 2, . . . ,∞. The rn values also admit
a closed-form expression since Wb is confined in the z ≤ c domain (plate),
and (4.21) reduces to the simple Helmholtz equation with constant k2. Hence,
demanding a zero normal component of the eddy-current flow on the z = c
boundary we obtain for rn

cos(rnc) = 0 (4.45)

which results rn = (n− 1/2)π/c, n = 1, 2, . . . ,∞. The remaining eigenvalues
qn will be determined numerically following the approach of 4.2.3.

The partial solution represented by the W
(s)
a , W

(r)
a and W

(t)
a terms is dis-

continuous at the ρ = ρa. The thus introduced discontinuity is resolved by the

W
(0)
a ,W

(1)
a andW

(1)
a during the treatment of the radial layering. An alternative

interpretation of the adopted decomposition can be given in terms of the equiv-

alence theorem, namely the the discontinuity introduced by the W
(s)
a , W

(r)
a and

W
(t)
a solution is equivalent with a surface electric current and magnetic charge

distribution on the ρ = ρa interface. The explicit form of the latter can be
obtained using the spectral expressions (4.37)-(4.39), which yields

σm(z) =H(c− z)
∞∑

m=1

eimϕ
∞∑

n=1

κmnvmnc
(t)
mnJ

′
m(κmnρa) e

vmn(z−c)

−H(c− z)
∞∑

m=1

eimϕ
∞∑

n=1

κ2mnc
(s)
mnJ

′
m(κmnρa) e

κmn(z−c)

+H(z − c)
∞∑

m=1

eimϕ
∞∑

n=1

κ2mnc
(r)
mnJ

′
m(κmnρa) e

κmn(c−z) (4.46)

Jφ(z) = −H(c− z)
∞∑

m=1

eimϕ
∞∑

n=1

κ2mnc
(t)
mnJm(κmnρa) e

vmn(z−c)

+H(c− z)
∞∑

m=1

eimϕ
∞∑

n=1

κ2mnc
(s)
mnJm(κmnρa) e

κmn(z−c)

+H(z − c)
∞∑

m=1

eimϕ
∞∑

n=1

κ2mnc
(r)
mnJm(κmnρa) e

κmn(c−z) (4.47)

and

Jz(z) =H(c− z)
∞∑

m=1

im

ρa
eimϕ

∞∑
n=1

vmnc
(t)
mnJm(κnρa) e

vmn(z−c)

−H(c− z)
∞∑

m=1

im

ρa
eimϕ

∞∑
n=1

κmnc
(s)
mnJm(κnρa) e

κmn(z−c)

+H(z − c)
∞∑

m=1

im

ρa
eimϕ

∞∑
n=1

κmnc
(r)
mnJm(κnρa) e

κmn(c−z). (4.48)

H(z) stands for the Heaviside step function.
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4.6 Impedance variation

The application of the reciprocity theorem for the calculation of the coil im-
pedance (or the mutual impedance in case of driver-pick-up configurations) is
subjected to the same complications as the source field when the source crosses
one of the interfaces of the primary layering. The analysis of the impedance
calculation in these cases will be presented by considering the specific case of
the borehole inspection, as we did for the calculation of the source field.

The general form of the reciprocity theorem for the calculation of the impe-
dance variation owing to the conducting piece reads

∆Z =
1

µ0I20

∮
S

(Es ×Bec −Eec ×Bs) · dS, (4.49)

where Es,Bs are the electric and magnetic field in the absence of the conduc-
tor, and Eec,Bec the corresponding fields in the presence of the conductor. I0
stands for the excitation current. The integration surface encloses the surface
with its normal pointing outwards. We choose as integration surface the closed
boundary determined by the z = c plane and the truncation boundaries. Since
the magnetic field is assumed to be zero on the latter, the only contribution to
the closed integral that survives is the one of the z = c plane. Using the SOVP
approach (4.49) becomes

∆Z = − iω

µ0I20

ρL∫
0

2π∫
0

[
W (ec)

a

∂W
(s)
a

∂z
− ∂W

(ec)
a

∂z
W (s)

a

]
ρdρdϕ, (4.50)

whereWa(s) is the potential for the solution in air given by (4.37), whereasW
(ec)
a

stands for the solution in the presence of the conductor. With the application
of the decomposition adopted in section 4.5, (4.50) can be written as follows

∆Z = − iω2π
µ0I20

{ ∞∑
m=−∞

[
∆Z1

m +∆Z2
m +∆Z3

m

]
+∆Zg

}
. (4.51)

Instead of one integral, which was the case for pieces without internal lay-
ering, ∆Z involves three terms, the first stemming from the partial solution for
the horizontally layered medium and the remaining two from the contributions
of the vertical layers crossed by the integration surface. The fourth term ∆Zg

is added to ensure the potential continuity across the integration surface, and
will be explained in more detail below.

Since the bases used for the development of the three terms are not mutually
orthogonal, the resulting formulae for ∆Z1

m, ∆Z2
m and ∆Z3

m will involve double
sums per azimuthal mode (orthogonality is preserved along the ϕ direction).

Indeed, substituting (4.37),(4.38) and (4.41),(4.42) and using the orthogo-
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nality of the eimφ functions, the first integral yields after some manipulations

∆Z1 =

∞∑
ℓ=1

∞∑
n=1

c
(r)
mℓc

(s)
mnW

[
eκmn(z−c), eκmn(c−z)

] ρa∫
0

ρJm(κℓρ) Jm(κnρ) dρ (4.52)

where we have used the property c
(s)
−mn = (−1)mc(s)mn as well as the symmetry

of the Bessel functions J−m(.) = (−1)mJm(.). W(f, g) is the Wronskian of the
functions f and g, where it is understood that the evaluation takes place at
z = c.

In the same fashion, we obtain for the second integral

∆Z2 =

∞∑
ℓ=1

∞∑
n=1

c
(a0)
mℓ c

(s)
mnW

[
sin(rnz) , e

κmn(c−z)
] ρa∫

0

ρIm(uℓρ) Jm(κnρ) dρ (4.53)

and for the third one

∆Z3 =

∞∑
ℓ=1

∞∑
n=1

c
(a1)
mℓ c

(s)
mnW

[
fn(z) , e

κmn(c−z)
] ρL∫
ρa

ρKm(pℓρ) Jm(κnρ) dρ. (4.54)

The integrals involving Bessel functions in (4.53),(4.54) have closed form ex-
pressions [45], namely∫

ρIm(uℓρ) Jm(κnρ) dρ

=
ρ

κ2mn + u2ℓ
[uℓIm+1(uℓρ) Jm(κnρ) + κmnIm(uℓρ) Jm+1(κnρ)] , (4.55)

for the first one, and the analogous expression for the second (with opposite
sign).

We now arrive to the last term of (4.51), ∆Zg. It is recalled that the scalar
potential in air is defined up to an arbitrary constant term, whose precise value
does not have any impact to the field solution itself. Nonetheless, care should
be taken with the application of the reciprocity theorem (4.50) since not only
the potential gradient but also the potential values themselves are employed in
the integral. Given the fact that the potential in each subdomain is defined
separately, ambiguities may arise, which will alter in their turn the value of the
integral. To remove this ambiguity, one has to re-gauge the potentials in order
to impose the same value on the common interface points. This is achieved
by choosing a reference point on the common interface of the subdomains and
adding a constant gauge term Vg in the potential expression for ρ ≥ ρa in
order to assure the same value between this term and the one calculated by the
corresponding expression for ρ ≤ ρa at the same point. Let us choose (ρa, c) as
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reference point. The continuity of the potential yields thus for the gauge term

∆Zg =

∞∑
n=1

[
c
(a1)
0n K0(pnρa) sin [pn(h− c)] + c

(r)
0n J0(κmnρa)

− c
(a0)
0n I0(unρa) cos(qnc)

]
(4.56)

and the corresponding correction term to the impedance calculation becomes
(after substituting in (4.51) and carrying out the respective integration)

∆Zg = −jω2π
µ0I20

ρaVg

∞∑
n=1

c
(s)
0nJ1(κnρa) . (4.57)

Notice that only the m = 0 mode contributes to (4.57) since Vg is constant.
The choice of the reference point is arbitrary (except for the fact that it must
lie on the ρ = ρa interface), something which is verified by the invariance of the
impedance results for different point locations.

4.7 Results for borehole in a finite-thickness plate

The previous theory has been applied for the solution of the eddy-current prob-
lem in a finite-thickness plate comprising a cylindrical through-hole [39]. This
type of configurations are met in the inspection of riveted structures, a problem
of paramount interest for aerospatial applications, where rivet joints are very
common in different parts of the fuselage.

Two independent experimental data sets have been used for the validation of
the model. The measurements are obtaiend from independent benchmark cam-
paigns carried out in at CEA, LIST and the University of Western Macedonia,
Greece, using different mock-ups and probes.

The first configuration consists of a rectangular plate of 2017A (AU4G) alu-
minium alloy with (measured) conductivity 19.511 MS/m containing a number
of cylindrical holes (all sufficiently remote from each other and from the plate
edges to ensure no interaction). The plate width and the diameter of the in-
spected hole are 3.65 ± 0.1 mm and 6.25 ± 0.1 mm, respectively. The coil
inner and outer diameters are 2 mm and 5.3 mm, its length is 10 mm, and
it is wound with 336 turns (manufacturer values). The specimen was scanned
along a straight line crossing the hole centre and at a constant lift-off equal to
0.0934 mm (fitted value following [46]). Details on the measurement procedure,
carried out in CEA, LIST, can be found in [44].

Fig. 4.10 compares the theoretical results for the impedance change along a
probe scan at 10 kHz with the corresponding measured data as well as with FEM
simulation results. The latter have been obtained using the three dimensional
FEM package COMSOL Multiphysics ® [32]. The impedance change loci in the
complex plane, are plotted in Fig. 4.11 for three frequencies: 1, 10 and 100 kHz.
The skin-depth-to-plate-width ratio at these frequencies is approximately 1, 1/2
and 1/10, i.e. the considered cases represent different penetration regimes: full,
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Figure 4.10: Comparison of the model results (solid line) along a coil scan with
FEM numerical data (wide circles) and measurements (dots) at 10 kHz. ∆R
and ∆X stand for real and imaginary part of the coil impedance variation due
to the presence of the hole (with respect to the impedance value over an infinite
plate).

intermediate penetration and thin-skin regime, respectively. Excellent agree-
ment is observed in all cases. Note that the signals in Fig. 4.11 are normalised
with respect to their maximum amplitude, in order to be able to compare them
in the same plot. Such plots of the impedance locus as a function of a parameter
(the frequency in this case) is the common way of presenting results in ECT.

The second test configuration is taken from the 2013 benchmark prob-
lem of the World Federation for NDE Centers (WFNDEC) [47]. The speci-
men is a 2 mm thick aluminium plate with an electrical conductivity equal to
17.34 MS/m. A vertical borehole of 10 mm radius is located in the centre of the
plate. The probe coil used for the inspection has inner and outer radii of 7 mm
and 12 mm, respectively, 4 mm length and 1650 turns. The lift-off was fitted to
1.082 mm. As in the previous case, the coil impedance was measured during a
number of linear scans, passing through hole axis.

The real and imaginary parts of the impedance change at 1 kHz are shown in
Fig. 4.12. The impedance loci at 1 and 5 kHz are shown in Fig. 4.13. We observe
the same tendencies as in the previous case, i.e. the signals are symmetric with
respect to the hole axis, and the curves peaks are obtained when the coil is
located over the hole edges. Again, the agreement with the reference results is
excellent for both frequencies.

4.8 General formalism using the Dirac notation

The central idea explored in this chapter was that a medium comprising a two-
axis-layering (cf. Fig. 4.14a) can be replaced by a medium with a simple layering,
where the consisting pieces are obtained by a homogenisation procedure based
on the calculation of the 1D eigenfunctions along the direction of the internal
layering (cf. Fig. 4.14b). In a further generalisation, this approach can be
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Figure 4.11: Normalised impedance variation along a line scan in the complex
plane. The solid lines represent the model results, whereas the markers stand
for the measured data. The three curves correspond to the three considered
frequencies: 1 kHz (dots), 10 kHz (circles) and 100 kHz (triangles).

applied to layered media with 1D gradients, which can be seen as the continuum
limit of an internal layering. Sources that cross the interfaces of the principal
layering can be treated in an elegant way by means of equivalent distributions
at the layers interfaces as was shown in section 4.5.

With that said, the problem becomes formally equivalent with the situation
encountered in chapter 3. It would be thus attractive to adapt the therein
developed formalism in order to make it applicable also to this class of problems.

The general expression for the continuity relations at the jth (observation)
surface in a domain with non-intersecting interfaces is given in (3.26)

2N∑
i=1

(
ν̂j+Ĉj+P̂i→j+ − ν̂j−Ĉj−P̂i→j−

)
|mi⟩ cmi = 0, ∀j (3.103)

with the sum running over all the interfaces of the geometry. |mi⟩ are the basis

elements at the ith surface, P̂i→j± the propagator from the ith to the posi-

tive/negative side of the observation surface, and Ĉj± stands for the continuity
operator at this side of the observation surface. Finally ν̂j± is the material
operator, which corresponds to the medium lying at the considered side of the
observation surface. It is recalled that in case of the eddy-current problem,
the series coefficients cmi are duplets with each element corresponding to the
coefficient for the Wa/Wb potential.

The problem that arises if we try to apply (3.103) to the set of the primary
interfaces is that Wa and Wb cannot be described by the same basis, as it was
the case in the previous chapter, since they must verify different eigenvalue
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Figure 4.12: Comparison of the model results (solid line) along a coil scan with
measurements (dots) at 1 kHz (benchmark problem). ∆R and ∆X stand for
real and imaginary part of the coil impedance variation due to the presence of
the hole (with respect to the impedance value over an infinite plate).

equations, namely (4.23) and (4.21). As a consequence, |mi⟩ is different for the
Wa and Wb elements of the duplet.

The simplest way out is to introduce the selection operator ŝTE/TM which
can be defined in terms of the Pauli matrix σ3, that is

ŝTE/TM :=
1

2
(σ3 ± σ3) (4.58)

with

σ3 =

(
1 0
0 −1

)
(4.59)

Using the above definition, (3.103) becomes

2N∑
i=1

(
ν̂j+Ĉj+P̂i→j+ − ν̂j−Ĉj−P̂i→j−

)
|mi⟩ ŝmi

cmi
= 0, ∀j (4.60)

where now the set of the basis elements is understood as a juxtaposition of the
elements for each TE/TM solution separately, namely

|mi⟩ =
(
|1i⟩TE

, |2i⟩TE
, . . . , |Ni⟩TE

, |1i⟩TM
, |2i⟩TM

, . . . , |Mi⟩TM
)

(4.61)

whence it turns out for the selection operators

ŝmi =
1

2

{
σ3 + σ3 for 1 ≤ mi ≤ N
σ3 − σ3 for N + 1 ≤ mi ≤M

(4.62)

with N and M being the sizes of the TE/TM bases.
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Figure 4.13: Normalised impedance variation along a line scan in the complex
plane (benchmark problem). The theoretical results are drawn using solid lines,
and the measurements are represented by the markers. The two curves corre-
spond to the two frequencies of the benchmark: 1 kHz (dots) and 5 kHz (circles).

4.9 Publications related with the chapter con-
tent

The major results of this chapter are the outcome of the research work published
in several articles and conference communications.

In particular, the solution of the borehole inspection problem has been pre-
sented in [29,39,44]. This work has also served as the base for the development
of the corresponding integral equation formalism used for the calculation of the
flaws response in the proximity of the borehole. The latter developments were
carried out in the context of the doctoral research work of Dr. K. Pipis. The
applied methodology and the obtained results of that work will be presented in
detail in the next chapter.

The eigenvalue calculation in the slotted planar specimen using the Galerkin
approach, and the associated evaluation of the ECT signal was presented in [48].
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Figure 4.14: Two-level treatment of layered medium by homogenisation of the
vertical layers. Sources spanning multiple domains are replaced by equivalent
formulations at the primary boundaries.



Chapter 5

Inhomogeneous materials

All the pieces examined up to now were homogeneous, which allowed us to
focus the analysis on the interaction of the driving field with their interfaces.
Nonetheless, the presence of inhomogeneities, real or fictitious, inside a given
piece gives rise to diffraction terms emerging from the interaction with the entire
piece volume and require a different treatment.

Volume scattering can be triggered by a number of different mechanisms.
Some of the most relevant causes of volume scattering in NDT are:

• Presence of material defects.

• Presence of gradients in the material properties. There can be for example
variations of the material conductivity or permeability as function of the
depth linked to a specific metallurgical treatment (mechanical of thermal)
of the piece and the consequent altering of its microstructure.

• Non-linearity. This is the case when ferromagnetic materials are involved
under the action of intermediate or strong driving fields. The non-linear
magnetic constitutive law in this case is translated to a field-dependent
effective permeability. More precisely, the local value of the effective (lin-
earised) permeability depends on the operation point in the B(H) loop.

• Presence of residual stresses. In case of ferromagnetic materials, an uneven
distribution of mechanical stresses can lead to inhomogeneous magnetic
properties via the magneto-mechanical coupling effect.

The focus of this chapter will be the development of modelling tools in
order to calculate the piece response when one or more of the above-mentioned
mechanisms are present. The accent will be given to the mathematical tools
themselves, limiting the physical analysis to a minimum.

We shall consider two different approaches for addressing the two aforemen-
tioned classes of problems, namely the defect and the material response, mainly
as a consequence of the different geometrical features of each. Since material
defects, such as corrosion or cracking are small with respect to the host piece, it

83
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is more efficient to consider the problem as a perturbation problem and to work
using representations involving local bases. Such bases, defined in the spatial
domain will be introduced to solve the resulting integral equation problem using
the method of moments (MoM). As far as the second category is concerned, i.e.
the treatment of material gradients, the use of global (spectral) bases proves to
be a more judicious choice, since they provide a more efficient mean of resolving
extended inhomogeneities.

5.1 Linear media with defect

We consider a linear conducting and/or magnetic medium affected by a local
perturbation of its properties as shown in Fig. 5.1. The eddy-currents in the
piece are excited by a closed current source, which in the majority of the cases
is an induction coil, although different types of sources such as linear current
layers or electrodes can be considered (applied in specialised techniques like
the alternating current field measurement, ACFM, for instance). The problem
described by Fig. 5.1 is a case of great practical importance since it lies in the
kernel of the NDT application domain: the detection and characterisation of
structural defects. We begin the analysis by presenting the volume equivalence
theorem, which forms the basis of the integral equation approach used for the
calculation of the defect response.

δσ(r) , δµ(r)

I

Figure 5.1: Inspection of a defected specimen using a current source.

5.2 The volume equivalence theorem

Let us consider the Maxwell equations in a homogeneous, isotropic and linear
reference medium, characterised by the material constants µb, σb, the index “b”
standing for “base material”. For the reference problem, the first two Maxwell
equations read

∇×Ep = −iωµbHp (5.1)

∇×Hp = σbEp + J. (5.2)

The electric and magnetic field in the flawless medium, Ep and Hp, are referred
to as primary electric and magnetic field following the usual naming convention.

We consider now the electromagnetic problem involving the same set of
sources in a second medium, whose material distribution can be expressed as a
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variation of the ones for the reference medium, namely

µ = µb + δµ (5.3)

σ = σb + δσ. (5.4)

Let us denote E and H the electric and magnetic field solution in the second
medium. Writing the Maxwell equations for the second problem and subtracting
from the first set (5.1),(5.2) taking the relations (5.3),(5.4) into account, we can
write

∇× (E−Ep) = −iωµb (H−Hp)− iωδµH (5.5)

∇× (H−Hp) = σb (E−Ep) + δσE (5.6)

which are formally equivalent with the Maxwell equations for the perturbation
(scattering) fields δE = E − Ep and δH = H − Hp under the action of the
equivalent sources

Je = δσE (5.7)

Jm = iωδµH. (5.8)

This problem separation into a primary field in the unperturbed medium and
a perturbation term (scattered field) owing to the interaction with the material
inhomogeneities is schematically depicted in Fig. 5.2

I

Ep,Hp
Je,Jm

δE, δH

Figure 5.2: Separation of the volume scattering problem into a primary field
and a perturbation (scattered) field solution.

Notice that in the above analysis we have ignored the last two Maxwell equa-
tions for the flux densities. It is straight-forward to see that the corresponding
flux densities variation satisfy the homogeneous Gauss equations, namely

∇ · δD = 0 (5.9)

∇ · δB = 0. (5.10)

Equations (5.5)-(5.6) form the essence of the so-called volume equivalence
theorem [3]. The importance of the volume equivalence theorem is that it shifts
the effect of the material inhomogeneity from the constitutive relations to the
sources. Its name indicates the volumetric nature of the equivalent sources,
in distinction with the surface equivalent theorem. Based upon this particular
position of the scattering problem, we can now devise methods that solve for
the unknown source terms in piecewise-homogeneous media, in which the
Maxwell equations admit a simpler treatment.



86 Chapter 5. Inhomogeneous materials

5.3 The volume integral equation method for
volumetric defects

Having expressed the material inhomogeneities in terms of volumetric equivalent
sources Je and Jm embedded in the reference flawless medium, we can calculate
their effect to the total field by resorting again to the Green’s theorem. However,
in contrast with the previous sections, where the state variables were scalar
quantities (potentials), it is more convenient to work here directly with fields.
We will therefore make use of the vector form of the Green’s second identity.

Considering an infinite domain, it can be shown that the surface integral term
vanishes (the electromagnetic field is zero at infinite distance), and the only re-
maining terms are the volume integrals related to the equivalent currents [49].
Applying thus the vector Green’s theorem twice, with Green’s functions asso-

ciated to an electric
(
G

ee
,G

me
)
and a magnetic source

(
G

em
,G

mm
)
respec-

tively, we arrive at the following set of integral equations (the proof is given in
the appendix for completeness).

E(r) = Ep(x) +

∫
Vf

G
ee
(x,x′) · δσ(x′)E(x) dV ′

− iω
∫
Vf

G
me

(x,x′) · δµ(x′)H(x′) dV ′ (5.11)

H(x) = Hp(x) +

∫
Vf

G
em

(x,x′) · δσ(x′)E(x′) dV ′

− iω
∫
Vf

G
mm

(x,x′) · δµb(x
′)H(x′) dV ′. (5.12)

Since the involved Green’s functions express a vector-to-vector mapping, the cor-
responding integral kernels (the Green’s functions) admit tensor forms (dyads).

Equations (5.11),(5.12) are Fredholm integral equations of the second kind,
which means that the unknown function (in this case the electric and magnetic
field) appears in the same time both inside and outside the integral operator.
The interest of this approach stems from the fact that the integration is carried
out over the flaw support Vf , which in NDT simulations is a small fraction of
the piece at hand.

The G
ee

and G
me

dyads are defined as the electric and magnetic field re-
sponse with a unit Dirac electric current source satisfying the Helmholtz
equation [4, 49]

∇×∇×G
ee
(x,x′) + k2G

ee
(x,x′) = −iωµbIδ(x− x′) (5.13)

∇×∇×G
me

(x,x′) + k2G
me

(x,x′) = ∇×
[
Iδ(x− x′)

]
(5.14)

where δ(x− x′) is the delta function, and I stands for the unit tensor. k2 = iωµσ
is the separation constant defined above. From the previous relations it is
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evident that G
me

is the curl of G
ee

G
me

(x,x′) = ∇×G
ee
(x,x′) . (5.15)

G
mm

and G
em

are defined in a similar way, namely as the corresponding
magnetic and electric field response under magnetic current excitation. It
can be easily shown that they satisfy the same equations as their electric coun-
terparts (5.13) and (5.14).

Note that the two pairs are interrelated via the duality principle, i.e. they can
be interchanged in (5.13) and (5.14) using the following rule G

ee ↔ G
mm

and
G

me ↔ G
em

, which together with the substitutions E↔ H, σ ↔ −iωµ produce
the same set of equations. The duality transformation is hence a symmetry of
(5.13) and (5.14). The detailed derivation of the Green’s dyads in the planar
and cylindrical mediums will be given in a later section.

5.3.1 Conductive, non-magnetic medium with volumetric
flaws

Equations (5.11),(5.12) address the most general case of a flaw inside a conduct-
ing and magnetic medium. However, in practical applications, this general case
concerns ferritic steels since steel is the magnetic material used in the vast ma-
jority of structures with industrial interest. All other workpieces with technical
interest present a negligible magnetic behaviour, i.e. we can consider δµ = 0,
and (5.11),(5.11) specialise to the following relation for the state equation

E(x) = Ep(x) +

∫
Vf

G
ee
(x,x′) · δσ(x′)E(x′) dV ′. (5.16)

5.3.2 Magnetic medium with volumetric flaws

This case concerns magnetic pieces with a local variation of the permeability
the same time that its conductivity remains constant (i.e. δσ = 0, δµ ̸= 0. The
first integral of (5.12) thus vanishes reducing the problem to a single integral
equation with solely magnetic contributions

H(x) = Hp(x)− iω
∫
Vf

G
mm

(x,x′) · δµb(x
′)H(x′) dV ′. (5.17)

Since the magnetic permeability in low field depends on the material his-
tory, every magnetic material without bias magnetic field is characterised by
local permeability variations, which means that a magnetic signature may exist
even in the absence of defects. It is however extremely difficult to determine
this variation experimentally and hence this scenario presents only theoretical
interest.

A case with much more practical interest is the calculation of the magnetic
flux concentration in inductors with ferrite cores. Nonetheless, since σb is very



88 Chapter 5. Inhomogeneous materials

low in ferrites the integral term in (5.12) vanishes. Indeed, this equation is de-
rived by Ampère’s law and hence is not the adequate approach for the problem.
The integral formulation in this case should be derived by the magnetostatic
formulation as shown in [50].

An alternative approach for addressing the core problem over a given spec-
iment will be proposed in chapter 7, where a hybrid numerical-semi-analytical
formulation will be proposed.

5.4 The surface integral equation method for
thin cracks

In conductive, non-magnetic media, a further simplification is also possible when
the thickness of the defect is negligible with respect to the other dimensions
and with respect to the skin depth in the material. This is the case for thin
cracks, which is a very common category of material defects comprising the
stress-corrosion cracking (SCC) and the fatigue crack (FG) mechanisms. The
formalism has been introduced by Bowler et al. [13, 51–54] for the modelling
of cracks in infinite media and has been extended in the recent literature by
Theodoulidis and Miorelli [55–57]. Further developments have adressed the
cases of finite media accounting for the end-effect such as plate edges from
Theodoulidis and Bowler [58], boreholes from Pipis, Skarlatos and Theodoulidis
[39,40] and tube edges [59].

Let us consider the case of a crack whose thickness ∆ is very small with
respect to its two remaining dimensions and to the skin depth, as shown in
Fig. 5.3. A crack fulfilling these properties will be called thin crack. If in
addition this crack acts as a perfect current barrier (which is the case if the
filling material is an insulator, usually air, and no galvanic contact takes place
between its two sides), it will be referred to also ideal crack.

I

∆

Figure 5.3: Inspection of a defected specimen using a current source.

Using the fact that the normal current component at the surface of an ideal
crack must vanish, which in its turn is translated to vanishing normal electric
field, (5.16) reduces to

n ·Ep(x) = lim
∆→0

∫
Sf

n ·Gee
(x,x′) · n p(x′) dS′ (5.18)



5.5. Method of Monents 89

where ∆ stands for the crack opening, Sf its surface and p expresses the electric
dipole distribution over Sf , defined as

p(x) = lim
∆→0

δσ(x)n ·E(x)∆ (5.19)

n being the unit normal to the crack surface vector.
Notice the simplification achieved when moving from (5.16), which is a vector

Fredholm integral equation of the second kind, with (5.18), a first order scalar
Fredholm equation.

The question that arises here is to which extent the aforementioned assump-
tions hold for realistic cracks. The answer depends on the crack generation
mechanism. Hence, for fatigue cracks the galvanic separation between the crack
sides is well satisfied. This is not the case, however for SCC where due to
the crack creation mechanism and its very weak thickness there might be a
non-negligible normal current component. In this case the above presented for-
malism needs to be generalised by introducing conducting bonds between the
opposing surfaces of the crack, this generalisation is however out of the scope
of the present text.

5.5 Solution of the integral equation system us-
ing the method of moments

In order to solve the system of integral equations (5.11),(5.12) in case of VIM for-
mulation, or the equation (5.18) in case of the SIM formulation for thin cracks,
a dedicated formulation of Galerking type known as the method of moments
(MoM) is applied [3, 4]. According to this method, the unknown field distribu-
tion inside the defect is approximated via a set of functions with local support
(rectangular pulses, triangular pulses, etc.) which form a representation basis
in the spatial domain, and they are therefore referred to as basis functions1

E(x) =

N∑
i=1

Eiwi(x) (5.20)

H(x) =

N∑
i=1

Hiwi(x) (5.21)

where wi(x) stand for the basis functions. The basis functions considered in the
context of this work are three dimensional pulses of equal width. In cartesian
coordinates, the latter are expressed in terms of tensor products of 1D pulses,
namely

wi(x) = Πx(x− xi)Πy(y − yi)Πz(z − zi) ei (5.22)

1It must be underlined that the local support is not a prerequisite for the basis functions.
Indeed global basis functions can be also utilised, exceeding the support of the unknown
field (that is the integration domain). Since, however, local functions are more versatile for
describing domains of complex shape they are usually prefered. This text will not be an
exception at this point.
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with the pulse functions

Px(x− xi) = H(x− xi +∆x/2)−H(−x+ xi +∆x/2) (5.23)

where xi is the centre of the pulse, ∆x its width and H(x) stands for the
Heaviside step function. The definitions for Py and Pz are similar. ei is the
unit vector running through all possible orientations ex, ey and ez. It is obvious
that for a reduced-dimension space (like the crack surface in SIM formulation),
the expansion applies only on the corresponding surface.

In cylindrical coordinates, attention must be paid for the ρ coordinate in
order to satisfy flux conservation resulting in the following choice for the basis
functions in the radial direction [50]

wi(x) = ρΠρ(ρ− ρi)Πϕ(ϕ− ϕi)Πz(z − zi) eρ (5.24)

for all i corresponding to the radially oriented basis functions. The definition
for the remaining two directions follows the one for the cartesian system.

Introducing the expansion (5.20),(5.21) in (5.11),(5.12) and weighting with
the same set mi (the so-called test functions in the MoM jargon), according to
Galerkin approach, we obtain the linear system of algebraic equations[

Tσ − Ĝee iωĜme

−Ĝem Tµ + iωĜmm

]
·
[
Ĵe

Ĵm

]
=

[
Êp

Ĥp

]
(5.25)

where Ĝxy are the weighted Green’s dyads[
Ĝee

]
ji
=

∫
Vf

∫
Vf

wj(x) ·Gxy(x,x
′) ·wj(x

′) dV ′dV (5.26)

with xy = ee, em,me and mm, Tσ,Tµ are diagonal matrices occurring from
the weighted current terms within (5.11),(5.12)

Tσ;ji =

∫
Vf

1

δσ(x)
wj(x) ·wi(x) dV (5.27)

Tµ;ji =

∫
Vf

1

δµ(x)
wj(x) ·wi(x) dV (5.28)

and finally Êp, Ĥp are the weighted primary fields

Ep;i =

∫
Vf

wj(x) ·E(x) dV (5.29)

Hp;i =

∫
Vf

wj(x) ·H(x) dV. (5.30)
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The system matrix can be given a symmetric form as it can be easily shown
using the properties of the Green dyads[

Tσ − Ĝee Ĝme

Ĝem −Tµ/iω − Ĝmm

]
·
[

Ĵe

iωĴm

]
=

[
Êp

−Ĥp

]
. (5.31)

The symmetry of the system is a direct consequence of the Galerkin approach,
as it is well known; it will not occur if the collocation method is applied (use of
Dirac delta functions as test functions).

The numerical treatment of SIM is much simpler since it only involves the
electric field instead of electric and magnetic fields and thanks to its mathe-
matical structure (it is Fredholm integral equation of the first kind with the
unknown appearing only inside the integral as already mentioned). The final
system is given here for completeness

Ĝee · p̂ = Êp. (5.32)

It turns out that the collocation approach is sufficient for the SIM equation,
which presents some interest also from the implementation point of view since
it leads to simpler expressions [55–57].

5.6 Construction of the dyadic Green’s functions

The definition of the Green’s dyads has been given in (5.13),(5.14). To be
able to calculate the integrals of the volume integral equation (5.11),(5.12) and
the surface integral equation (5.18) formalism, however, we need to dispose of
explicit expressions for all dyads. Thanks to duality, only the calculation of
one of the two pairs, e.g. the first one (G

ee
,G

me
) is required the second being

obtained by interchanging σ with −iωµ.
By construction, the Green’s dyads domain span the entire computational

domain, which for the class of problems we are interested in is a multilayer
medium. This means that they consist of two parts corresponding to different
diffusion mechanisms that take place in a multilayer medium: direct diffusion
and scattering from the medium interfaces. We may comment that the inclusion
of the second mechanism in the Green’s dyad expression is the price one has
to pay for applying the Green’s theorem in the entire domain and consequently
getting rid of the surface integrals. An alternative approach would be to apply
the theorem layer-wise, which in that case would imply that surface integrals
terms are needed to accommodate the boundary conditions. This approach leads
to the well-known boundary element method (BEM). In this second approach,
the dyadic expressions are the ones of the free space (known in closed form) but
the addition of the surface integrals results in a computationally heavier scheme.
Summarising, one has two choices for tackling the boundary conditions: either
including them in the construction of the Green’s function or by treating them
numerically with the Green’s function of the free space.
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For the following developments we shall adopt the following notation for
the Green’s dyads: G

ee

mn,G
ee

mn where the subscripts m,n indicate the subdo-
main/layer index for the observation point x and the source x′, respectively2.

As mentioned above we can split the Green’s dyads into a direct and a
scattered part as follows

G
ee

mn(x,x
′) = G

ee

0 (x,x′) δmn + G̃
ee

mn(x,x
′) (5.33)

G
me

mn(x,x
′) = G

me

0 (x,x′) δmn + G̃
me

mn(x,x
′) (5.34)

where G
ee

0 ,G
me

0 are the free-space dyads, G̃
ee

mn, G̃
me

mn correspond to the scat-
tering terms and δmn is Kronecker’s delta. Its presence indicates that there is
no direct contribution between points in different layers but only transmission
terms.

The dyadic Green’s functions for the free-space are derived by the corre-
sponding scalar Green’s function according to the relations [4]

G
ee

0 (x,x′) = −iωµb

[
I+
∇∇
k2

]
g(x,x′) (5.35)

G
me

0 (x,x′) = ∇×
[
Ig(x,x′)

]
(5.36)

with g(x,x′) given by (3.26) and repeated here for convenience(
∇2 − k2

)
g(x,x′) = δ(x− x′) . (3.26)

Notice that both G
ee

0 and G
me

0 remain invariant upon the duality transfor-
mation σ ↔ −iωµ, which means that G

ee

0 = G
mm

0 and G
me

0 = G
em

0 . This is a
plausible result since its reflects the fact that the electric field produced by an
electric dipole in free-space is the same as for the magnetic field produced by a
magnetic dipole and the electric field produced by a magnetic dipole equals the
magnetic field produced by an electric dipole (assuming correct scaling relations
between the currents).

G
ee

mn(x,x
′) ,G

me

mn(x,x
′) will be calculated in the spectral domain using all

the tools presented in chapters 3 and 4. For this calculation, however, we need
first to project the field of the point source onto the appropriate spectral basis
associated with some surface. In the following, we will provide this calculation
for the cartesian and the cylindrical coordinate system.

Assuming a multilayer medium and a point source embedded in one of the
layers, the development (Huygens) surfaces for the source field are shown in
Fig. 5.4 for the two systems. The presence of the source gives rise to an up-
wards and a downwards diffused field front in the first case, whereas in the

2In (5.11),(5.12), (5.18) it has been tacitly assumed that the defect is contained in a single
layer, hence m = n and can be dropped for simplicity. In general case though a defect can
cross several layers, in which case all m and n combinations of the affected layers must be
taken into account. We shall provide here the guidelines for the construction of the Green’s
dyads for different layers but only single layers defects will be considered.
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Figure 5.4: Definition of the equivalent surface sources for the point-source field
in the (a) cartesian, (b) cylindrical coordinate system.

cylindrical system the diffusion takes place in form of an inwards and an out-
wards moving field front. The two fronts are associated, following the approach
developed in chapter 3, to an equal number of fictitious surfaces located at an
infinitesimal distance from the source. For convenience, the point source is lo-
cated at the zero of the tangential axes, that is at (0, 0, z′) and (ρ′, 0, 0), with
z′ and ρ′ indicating the source position in the normal direction at each case.
The respective expressions at any other point of the Huygens surfaces can be
trivially obtained using the properties of the Fourier transform.

5.6.1 Calculation in the cartesian system

We consider a dipole electric source of unit magnitude along the y direction.
Following the usual TREE approach, the domain is truncated at ±Lx/2 and
±Ly/2 in order to obtain a discrete spectrum. We are seeking expressions
for the Wa and Wb potentials, which, as already analysed, stand for the TEz

and TMz solutions, respectively (we consider ez as the pivot direction). These
expressions can be easily derived from the corresponding field components along
the z directions since the two solutions separate there. We observe thus G

ee

0 ·ey
and G

me

0 · ey along ez

ez ·G
ee

0 · ey = −iωµ∂z∂y
k2

g(x,x′) (5.37)

ez ·G
me

0 · ey = ez · ∇ × [g(x,x′) ey]

= ∇g(x,x′) · [ey × ez] = ∂xg(x,x
′) . (5.38)

where µ stands for the permeability of the layer.
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The Weyl identity (3.41) for the discrete spectrum reads

g(x,x′) =
1

2N2

∞∑
l=1

∞∑
p=1

cos(κx;lx) cos(κy;py)
e−vlp|z−z′|

vlp
(5.39)

with vlp =
√
κ2x;l + κ2y;p + k2 and N2 = LxLy/4 the normalisation constant.

The development in cosine series along the x and y directions reflects the even
parity of the Green’s function. Applying (5.39) in (5.37),(5.38) yields for the
observed components

ez ·G
ee

0 · ey = ∓ iωµ

2N2k2

∞∑
l=1

∞∑
p=1

κy;p cos(κx;lx) sin(κy;py) e
∓vlp(z−z′) (5.40)

ez ·G
me

0 · ey = − 1

2N2

∞∑
l=1

∞∑
p=1

κx;p
vlp

sin(κx;lx) cos(κy;py) e
∓vlp(z−z′). (5.41)

The corresponding development on the Huygens surfaces for the Wa and Wb

potentials reads

Wa(x, y, z) =
1

N

∞∑
l=1

∞∑
p=1

Ca;lp cos(κx;lx) sin(κy;py) e
∓vlp(z−z′) (5.42)

Wb(x, y, z) =
1

N

∞∑
l=1

∞∑
p=1

Cb;lp sin(κx;lx) cos(κy;py) e
∓vlp(z−z′). (5.43)

We now recall (2.56), which relates the electric and magnetic field with the
SOVP potentials (the state vector), and take its dot product with the ez(

Bz

−Ez/iω

)
=

(
∂2z −∇2 0

0 ∂2z −∇2

)
·
(
Wa

Wb

)
(5.44)

and by virtue of (2.62)(
Bz

−Ez/iω

)
=
(
∂2z − k2

)(Wa

Wb

)
. (5.45)

Comparison of (5.40),(5.41) with (5.42),(5.43) taking into account (5.45)
implies for Ca;lp and Cb;lp

Ca;lp = −2µ

N

κx;p

vlp
√
v2lp − k2

(5.46)

Cb;lp = ±2µ

N

κy;l

k2
√
v2lp − k2

. (5.47)

It is recalled here that G
me

stands for a magnetic field, which means that has
to be multiplied with the medium permeability in the B calculation.
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As a control of the previous calculation, and for demonstrating an alternative
way of calculating the source coefficients, we shall apply directly the continuity
relations across the source plane. From (2.18),(2.20) we have

H(1)
x −H(2)

x = δ(x) δ(y) (5.48)

H(1)
y −H(2)

y = 0 (5.49)

E(1)
x − E(2)

x = 0 (5.50)

E(1)
y − E(2)

y = 0 (5.51)

where the index 1 signifies the solution in the upper layer, and 2 the solution in
the lower layer. Substituting the field expressions from (2.56) and using the de-
velopments in (5.42),(5.43) forWa andWb and weighting with the corresponding
trigonometric functions yields

−κx;lvlp
[
C

(1)
a:lp + C

(2)
a:lp

]
+ k2κy,p

[
C

(1)
b:lp − C

(2)
b:lp

]
=

µ

N
(5.52)

κy;pvlp

[
C

(1)
a:lp + C

(2)
a:lp

]
+ k2κx,l

[
C

(1)
b:lp − C

(2)
b:lp

]
= 0 (5.53)

−κy;p
[
C

(1)
a:lp − C

(2)
a:lp

]
− κx,lvlp

[
C

(1)
b:lp + C

(2)
b:lp

]
= 0 (5.54)

−κx;l
[
C

(1)
a:lp − C

(2)
a:lp

]
+ κy,pvlp

[
C

(1)
b:lp + C

(2)
b:lp

]
= 0 (5.55)

where we have used the orthogonality of the sine and cosine functions. Solving

the system for C
(1)
a:lp, C

(1)
b:lp, C

(2)
a:lp, C

(2)
b:lp we obtain the same values with (5.46),(5.47).

The calculation for the two remaining orientations follows the same pattern
and will not be presented here.

5.6.2 Calculation in the cylindrical system

The dipole orientation is the azimuthal direction ϕ as shown in (5.4). Working
in an analogous way with the cartesian system, we truncate the geometry along
the z axis at ±Lz/2, and we develop the scalar Green’s function in cylindrical
coordinates using identity (3.59), which for the truncated region becomes

g(x,x′) =
1

2N2

∞∑
m=−∞

∞∑
n=1

{
Km(vnρ

′) Im(vnρ)
Im(vnρ

′)Km(vnρ)

}
eimϕ cos(κnz) (5.56)

where vn =
√
κ2n + k2, and N2 = πLz stands for the normalisation constant.

The bracketed colon summarises the expressions for the inward and outward
evanescent solution, respectively. The Ez and Hz components for this source
will be given by

ez ·G
ee

0 · eϕ = iωµ
1

ρ′
∂z∂ϕ
k2

g(x,x′) (5.57)

ez ·G
me

0 · eϕ = ez · ∇ × [g(x,x′) eϕ]

= ∇g(x,x′) · [eϕ × ez] = ∂ρg(x,x
′) . (5.58)
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which upon substitution of (5.56) yields

ez ·G
ee

0 · ey =
iωµ

2N2k2

m∑
m=−∞

∞∑
n=1

im

ρ′
κnIm(vnρ

′)Km(vnρ) e
imϕ sin(κnz)

(5.59)

ez ·G
me

0 · ey =
1

2N2

m∑
m=−∞

∞∑
n=1

vnIm(vnρ
′)K ′

m(vnρ) e
imϕ cos(κnz) (5.60)

for the outwards evanescent term, the corresponding expression for the inward
term being obtained after exchanging Im with Km.

The spectral representation for Wa and Wb in the cylindrical coordinate
system admits the form

Wa(x, y, z) =
1

N

m∑
m=−∞

∞∑
n=1

Ca;mn

{
Im(vnρ)
Km(vnρ)

}
eimϕ cos(κnz) (5.61)

Wb(x, y, z) =
1

N

m∑
m=−∞

∞∑
n=1

Cb;mn

{
Im(vnρ)
Km(vnρ)

}
eimϕ sin(κnz) . (5.62)

Taking again (5.45) and comparing the resulting expressions with (5.59),(5.60),
we finally obtain for the series coefficients Ca;l and Cb;l

Ca;mn = − µ

2N

vn
κ2n

{
K ′

m(vnρ)
I ′m(vnρ)

}
(5.63)

Cb;mn =
µ

2Nk2
im

κnρ′

{
Km(vnρ)
Im(vnρ)

}
. (5.64)

5.7 Calculation of the impedance variation: the
reciprocity theorem

The mutual impedance variation due to the flaw is calculated using the above
solution in an elegant way by application of the reciprocity theorem (2.69) after
substitution of the equivalent sources expressing the material anomaly

∆Z(rs) = −
1

ITxIRx

∫
Vf

[δσ(r′)ERx;p(r
′; rs) ·ETx(r

′)

− iωδµ(r′)HRx;p(r
′) ·HTx(r

′; rs)] dV
′ (5.65)

where ERx;p and HRx;p stand for the primary electric and magnetic field that
would be produced in the flawless medium if the receiver coil Rx would be
fed with current IRx. ETx,HTx is the field solution obtained by (5.13) and
(5.14) with the transmitting coil being active and fed with current ITx. Note
that the functional dependence of the latter to the probe position rs is implicit
stemming from the corresponding dependence of the transmitter field, and has



5.8. Case studies 97

not been given in (5.65) for simplicity. The functional dependence upon the
angular frequency of all variables is also implied.

In case of direct magnetic field observations, (5.65) should be replaced by a
calculation of the magnetic field at the probe position, namely the (5.14) with
the suitable expressions for the Green’s dyads G

em
and G

mm3.
The reciprocity relation is also simplified accordingly

∆Z
(d)
TR(rs) = −

1

ITxIRx

∫
Sf

n ·ERx;p(r
′; rs) pTx(r

′) dS′. (5.66)

The interpretation of the Tx, Rx indices remain the same with above.

5.8 Case studies

The application of the integral method approach for the calculation of the defect
response will be illustrated through two selected examples representative for the
two considered problem classes: detection of volumetric defects and thin cracks.

5.8.1 Volumetric flaws in ferromagnetic tubes

In the first example we are dealing with volumetric flaws (usually produced by
generalised corrosion or pitting) in ferromagnetic (steel) pipes. The early de-
tection of such defects is a crucial problem for pipe inspection and maintenance
since critical wall-thinning may lead to structure failure with obvious conse-
quences for the safety of the installation and non-negligible financial impact.
Typical applications include pipeline and casing inspection in the oil and gas
industry as well as NDT of heat-exchangers and condensers in power plants.

The main challenge with steel tubes stems for the weak penetration of the
eddy currents due to the very small skin depth in ferromagnetic materials, a
rough estimation of which is given by the approximate formula

δ =

√
2

ωσµ
. (5.67)

With a typical relative permeability value between 100 and 1000 for common
industrial steel grades, it is obvious that the achieved skin depth is of the order
of 10% compared with that obtained in non-magnetic metals. Given that the
inspection is usually carried out from the interior of the tube, for obvious prac-
tical reasons, the previous numbers signify an important difficulty in locating
external corrosion before it surpasses the alert limits.

An intuitive way out to this problem is to decrease the frequency, which
comes however at the expense of the probe sensitivity (recall that coil impedance

3For a multilayer medium, like the ones considered in this class of problems, the Green’s
dyads expressions are different when source r′ and r are located in different layers. This is
the case for the observation equation, where the source (defect) lies in the medium whereas
the observation is carried out in the air.
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Figure 5.5: Eddy-current inspection of a ferromagnetic tube using a REFC
probe. We distinguish three different zones: (a) near-field zone (zobs ≤ 1 ID),
(b) transition zone (1 ID < zobs < 2 ID), and (c) far-field zone (2 OD ≤ zobs).
Plot reproduced from [60]

is proportional to the frequency) and the resolution. A more intelligent way to
increase sensitivity to external defects is to design the probe in such way that the
ratio of the indirect transmitter-receiver coupling (coupling via the interaction
with the tube walls) to the direct coupling is maximised. This is the main idea
of the so-called remote field eddy-current (RFEC) testing technique [60–66].

The working principle is schematically explained in 5.5. The direct coupling
is linked to the field propagation inside the tube, along which the field is atten-
uated rapidly by the circumferential eddy currents induced in the tube’s wall.
This part is dominant up to a distance that roughly equals the inner diameter
(ID) of the tube, and is referred to as the direct field zone (zobs ≤ 1 ID). The
indirect coupling mechanism consists in field radial diffusion outwards through
the wall subjected to attenuation and phase-shift along the axial direction. Be-
ing diffused through the wall, it is easily understood that it carries information
about the tube wall. This term decreases less rapidly that the direct part,
and hence it becomes dominant at a distance greater than twice the tube ID
(zobs ≥ 2 ID). This latter is the so-called remote field zone, and is the zone where
we aim for placing the receiver coil. The intermediate zone (1 ID < zobs < 2 ID)
is called the transition zone. A detailed account of the method can be found
in [60,64].

For this study, we shall use reference data acquired in CEA Saclay using a
heat exchanger prototype of a fast neutron reactor. The specimen is a steel pipe
with inner and outer diameters of 14 mm and 18 mm, respectively. The con-
ductivity and relative permeability have been measured as 6.25 MS/m and 210,
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respectively, at 250 Hz operating frequency. The measured values correspond
to the planar skin depth of 0.88 mm, which is less than half of the tube wall.

Two kinds of defects have been considered, a series of 3 mm wide external
grooves, with depths of 20%, 40% and 70% of the tube thickness, and several
circular cylindrical through-holes (100% deep) with a diameter of 5 mm each.
The grooves have been realized by mechanical thinning, and the holes either by
mechanical drilling or by electrical discharge machine (EDM). All the defects
have been manufactured sufficiently afar to each other in order to avoid any
mutual interaction.

R2 R1T2 T1

35 mm 35 mm

5 mm

Figure 5.6: Double driving coil RFEC probe.

The layout of the RFEC probe used in the experiment is displayed in Fig. 5.6.
It consists of two driving coils (T1, T2) connected in additive mode (for achiev-
ing field amplification in the inspected regions) and of two receiving coils (R1,
R2) operating in differential mode. The receiving coils are placed in the remote
field region (their distance from the driving coils is larger than twice the inner
diameter of the tube). All the coils have the same dimensions. Their inner
and outer diameter are 6.8 mm and 12.8 mm respectively, and their length is
3 mm. The number of turns is not relevant since all results are calibrated for
comparison.

The probe is displaced in the axial direction past the defect positions, and
the voltage difference at the terminal of the receiver coils is recorded, which
represents a typical inspection scenario. The VIM has been employed for the
solution of the flaw response, and the output voltage has been calculated using
(5.65).

To achieve a convergent numerical solution, a number of 200 unknowns (per
field component) has been used for the grooves (axisymmetric defects) and 1089
for the holes (3D-bounded defects), 161 scanning positions of the probe along
the tube axis being chosen each time, with a scanning step of 1 mm.

The thus computed signals are compared against the measurements in Fig. 5.7.
The flaw signals are represented in the complex plane, that is the imaginary vs.
the real part for each point of the scan, which is the standard way of represent-
ing ECT signals. The down left boxes indicate two typical measures commonly
used for the defect characterisation: the distance between the two curve ex-
tremes (magnitude of the signal) and the angle of the peak-to-peak axis from
the abscissa (referred as phase). Both experimental and synthetic results have
been calibrated using the corresponding responses for a 40% deep groove.

A second comparison is provided in Fig. 5.8 for the hole signal. The agree-
ment here is clearly less satisfactory, yet the discrepancies remain acceptable
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Figure 5.7: Simulation vs. measured data for the receiver voltage variation in
the complex plane. Results for the (a) 20% deep outer groove (a) 70% deep
outer groove.

given the significant incertitude in the knowledge of the nominal permeability
value. It is well known that the magnetic permeability depends on a number of
factors. Notably the piece history (remanence, mechanical stresses, fabrication
process) is never known exactly. Besides, the same fabrication of the flaw in
the examined specimen can have an effect on its value, in the vicinity of the
affected area. As a demonstration to that, one has compared in Tab. 5.1 the
amplitude and phase of the measured signals obtained using two holes which
have been fabricated using a different technique, i.e., mechanical drill, EDM.
From the comparison of the signals, it is concluded that the fabrication tech-
nique appears to have an important impact on the results. In an explanation
attempt, one may assume that the presence of residual stresses, local warming,
or even change of the metallurgical properties (when EDM is applied) of the
tube in the vicinity of the defect result in a local uncharted change of the value
of the magnetic permeability in that area, whose exact value cannot be supplied
to the numerical model.
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Figure 5.8: Simulation vs. measured
data for the through-hole.

Ampl. (mV) Phase (◦)

EDM 5.0 0
Drilling 4.2 6
Simul. 4.5 15

Table 5.1: Simulation vs. measured
data for the through-hole.
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5.8.2 Crack response in the vicinity of a rivet hole

An important ECT application in the aerospace industry is the structural in-
tegrity assessment of riveted structures in the aircraft fuselage. Rivets serve
as fixation points attaching the aluminium multilayer structures of the fuselage
together. Due to mechanical stress concentration at these regions, the rivet
holes are prone to the appearance and propagation of fatigue cracks. The role
of NDT here is to provide an early indication of crack generation, which is a
challenging task given that the crack signature needs to be distinguished from
the fastener signal itself. The use of simulation becomes thus very important
for the processing and the interpretation of the acquisition signals.

(a) (b)

Figure 5.9: (a) Fastener affected by a double fatigue crack. (b) Fastener in-
spection using an air-cored coil. The scan is performed from above. A straight
narrow crack is assumed attached to the fastener hole.

An illustration of a real-world situation is provided in Fig. 5.9a, where an
aircraft fastener is affected by a double crack. There are in general two inspec-
tion modes for this kind of applications. The first consists in removing the bolt
from the rivet hole and performing the control from the interior of the hole using
a specially designed probe [67, 68, 68]. The second mode is less laborious since
it does not necessarily require the removal of the bolt and consists in passing
the probe above the piece [69–73], but it produces more complicated signals.

The second configuration, which is schematically depicted in Fig. 5.9b, will
be the object of this particular study. The inspection probe consists of a single
air-cored coil, which scans the surface at a constant lift-off. The host material
is non-magnetic. Although the model is valid for multilayer media, we shall
restrict ourselves in this study to a single-layer riveted aluminium plate with
a cylindrical hole. The hole will be considered without bolt, which again is a
simplification made for convenience and not due to model limitations. A linear
crack is initiated by the hole extending radially at a certain length.

The greatest challenge of this specific geometry stems from the presence of
the hole, whose effect can be taken into account using two alternative strategies.
The more straight-forward approach is to treat the hole as a volumetric defect
and solve a coupled VIM-SIM problem. This approach has been explored by
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Miorelli et al. in [57,74]. Its main drawback is that the relative large volume of
the hole (with respect to the crack) leads to a computationally demanding for-
mulation. The second strategy consists in accounting for the hole discontinuity
during the calculation of the primary field and Green’s operator; and proceed to
a simple SIM formulation limited to the crack surface. In the latter case, (5.18)
is used for the calculation of the equivalent dipole distribution throughout the
crack surface for each probe position, and the result is then substituted in (5.66)
to evaluate the probe signal. Although theoretically more elaborate, the second
approach offers much shorter computation times, as it will become clear by the
numerical comparisons below.

For the calculation of the primary field and the construction of Green’s
function the adopted solution strategy is the one presented in chapter 4, where
the problem is treated in two steps. In particular, the field is calculated first
in an infinite multilayer medium, and this solution is then propagated to the
cylindrical interface defined by the hole radius, where it is matched with the
field solution for the air-column of the hole. The schematic illustration of this
approach is provided in Fig. 5.10.

The calculations have been carried out for two geometries, whose parameters
are given in Tab. 5.2 and Tab. 5.4.

Coil Piece

Inner diameter 6 mm Conductivity 10 MS/m
Outer diameter 9.3 mm Thickness 2 mm

Length 4 mm Hole diameter 6.25 mm

Turns 336 Crack

Lift-off 0.5 mm Length 9.8 mm
Depth 2 mm

Opening 0.1 mm

Table 5.2: Configuration of the first problem.

The computational results for the first problem obtained using the SIM
approach with dedicated Green’s kernel are compared against the simulation
results of the VIM-SIM approach [74]. The comparison for the impedance
variation signal (real and imaginary part) throughout the scan line is given
in Fig. 5.11.

The computation time for the SIM method is reduced to 420 s compared
with the VIM-SIM method for which the simulation time reaches 660 s for a
computer with an Intel Core i7 at 2.93 GHz CPU and 8 Gb RAM. However,
the difference in terms of computation time between the two models depends on
several parameters. It is reminded that there is no need for SIM to discretize the
borehole as VIM-SIM does. Hence, the performance difference between the two
approaches increases with the size of the borehole. Similar effect have the size of
the coil and the operation frequency, whose impact upon the flaw discretisation
results in an unequal increase/decrease the computational burden for the two



5.8. Case studies 103

Bs +Br

Bt

Bt

B1 Bt +B2

Bt +B2

Bs +Br +B2

(a) (b)

Figure 5.10: Solution strategy for the construction of Green’s function in the
riveted hole. (a) Point source in an infinite layered medium. (b) Accounting for
the perturbation from the hole surface.

approaches [40].

(a) (b)

Figure 5.11: Impedance variation versus coil position along a scan line passing
above the borehole and the crack (configuration of Table I). The impedance
change is given with respect to the value above an infinite plate. The coil is
excited at 4 kHz. The total signal simulated with VIM-SIM (circles) and SIM
(solid line) and the hole signal as calculated with VIM-SIM (crosses) and SIM
(dashed line) are illustrated. (a) Real part. (b) Imaginary part.

The second configuration is the world federation of NDE centers (WFNDEC)
benchmark problem [47]. The problem parameters are given in Tab. 5.4.

The SIM simulation results have been compared with measured data for the
coil impedance and the comparison for the real and imaginary part is provided
in Fig. 5.12.

It is clear from both Fig. 5.11 and Fig. 5.12 that the total signal (due to
both crack and rivet hole) cannot be interpreted as a mere superposition of the
two signatures; the presence of the defect changes significantly the hole signal
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Coil Piece

Inner diameter 12 mm Conductivity 17.34 MS/m
Outer diameter 24 mm Thickness 2 mm

Length 4 mm Hole diameter 10 mm

Turns 1650 Crack

Lift-off 1.08 mm Length 9.8 mm
Depth 2 mm

Opening 0.234 mm

Table 5.3

Table 5.4: WFNDEC benchmark problem parameters.

(a) (b)

Figure 5.12: Theoretical and measured data for the impedance variation versus
coil position for the configuration of Tab. 5.4. The coil is operated at 1 kHz.
The total measured signal (circles) and the one simulated with SIM (solid line)
as well as the hole signal given by measurements (crosses) and by SIM (dashed
line) are shown. (a) Real part. (b) Imaginary part.

even at the antipodal side. Indeed, the presence of the two perturbation results
in a compound eddy-current path which is not easy to anticipate in an intuitive
manner. It is the role of simulation to shed light to the effect, and support in
this way the interpretation of the results.

5.9 Calculation of the defect response using global
bases

We now shift to the case where the material anomaly is not localised in a small
region but it is spread in a wide part of the piece. In this case, the integral
equation approach can fastly become inefficient, since the number of degrees
of freedom (DOF) increase rapidly with the defect volume. This increase in
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conjunction with the full-matrix feature of the integral equation approach can
lead to prohibitive computation times.

In these cases, a more efficient approach could be devised based on aug-
mented spectral bases, which are eigensolutions of the Helmholtz operator. The
use of such bases not only reduces the number of unknowns, but additionally
diagonalises the system of equations, making its inversion almost instantaneous.
To the downsides of the method, one should count the difficulties with the abrupt
discontinuities of the material constants (Gibbs effect), which is exactly the case
we encounter when dealing with cracks of localised corrosion defects (e.g. pit-
ting). The two approaches (the integral equation and the spectral method) can
thus be considered as complementary.

It has been demonstrated in 5.2 that the effect of the material anomaly can
be modelled via an equivalent electric Je and an equivalent magnetic Jm source
current density distribution as defined in (5.7),(5.8).

For the following derivations, we shall restrict the analysis to the 2D case
only. According to the discussion of chapter 2, our first concern is to scalarise
the problem with the use of an appropriate potential, and the most suitable
candidate in this case is the magnetic vector potential A. Nonetheless, the
presence of magnetic currents complicates the analysis. To clarify this point, let
us write the first two Maxwell equations with an electric and a magnetic current
density

∇×E = −iωB− Jm (5.68)

∇×H = σE− Je (5.69)

With the standard definition of A given by (2.41) it is not possible to estab-
lish a simple relation between E and A as we did in 2.4.2. Observing from (5.68)
that Jm must be necessarily divergence-free, we can modify the A definition as
follows

B = ∇×A− 1

iω
Jm (5.70)

which is in accordance with the Gauss equation ∇ · B = 0. Using the new
definition for A, it turns out that E = −iωA as in the source-free case, and
upon substitution to (5.68),(5.69) we arrive at the following state equation

∇× ν∇×A+ iωσA = Je +
1

iω
∇× νJm. (5.71)

To verify the compatibility of the above definition with the equivalent sources
definition, let us substitute the equivalent currents Je and Jm by their definition
relations for the perturbed medium (5.7),(5.8). We can thus write successively

∇× νb∇×A+ iωσbA = Js − iωδσA+
1

iω
∇× νb (iωδµH)

= Js − iωδσA+∇× νb
δµ

µ
∇×A (5.72)
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with Js the real current density of the coil, νb the reluctivity of the flawless
medium, µ the total permeability, and δσ, δµ the conductivity and permeability
variation owing to the anomaly. Notice that (5.72) assumes a medium without
magnetic sources since the equivalent sources have now been replaced by field
quantities, i.e. we have returned to the original problem, and hence B = ∇×A.
Bring all terms involving A to the left-hand side, we obtain

∇× νb
(
1− δµ

µ

)
∇×A+ iω (σb + δσ)A = Js (5.73)

and consequently

∇× 1

µ
∇×A+ iωσA = Js (5.74)

which is the relation we wanted to show.
Assuming now that the sources Je and Jm are known, we need to develop a

method for the calculation of the potential A. This solution will be useful not
only for addressing the problem of a piece with a flaw but also for the calcula-
tion of the transient response as well as the treatment of non-linear magnetic
materials. Both problems will be studied in the following chapters, where this
link will become more clear.

If the base material is piecewise homogeneous, (5.71) can be converted to
the inhomogeneous Helmholtz equation using standard manipulations(

∇2 − k2
)
A = −µbJe −

1

iω
∇× Jm. (5.75)

The problem now reduces to solving (5.75) with a non-zero right-hand side.
The solution of (5.75) using global (spectral) bases will be demonstrated via a
problem of great practical importance: the eddy-current inspection of a planar
specimen by a cylindrical coil.

5.10 Solution of the inhomogeneous Helmholtz
equation for the 2D planar problem

We are interested in solving (5.75) for situations like the one depicted in Fig. 5.13.
As long as the volumetric sources inside the plate do not break the rotational
symmetry of the configuration, the problem can be treated as a 2D axisymmet-
ric one. This is the case for defects like generalised corrosion or pitting with
crater-like shape. Further, this condition is also fulfilled when treating the tran-
sient problem and non-linear isotropic materials with axisymmetric excitation,
as will be discussed in the next chapters.

Introducing the standard ansatz for the magnetic vector potential A = Aeϕ
(cf. chapter 2) the inhomogeneous Helmholtz equation admits the following
scalar form(

∇2 − 1

ρ2
− k2

)
A(ρ, z) = −µbJe(ρ, z)−

1

iω
eϕ · ∇ × Jm(ρ, z) (5.76)
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Figure 5.13: Conducting plate inspected via a cylindrical coil on its top. The
plate contains an electric current source distribution, which satisfies the same
symmetry condition as the excitation field.

where we have assumed for the sources

eϕ × Je = 0

eϕ · Jm = 0.

For the solution of (5.76), we shall adopt the same strategy used in [75,
76]. The solution to the inhomogeneous equation is decomposed into a partial
solution, which eliminates the right-hand side term, and the solution of the
homogeneous equation, which takes care of the current excitation and assures
the fulfilment of the continuity relations across the geometry interfaces.

Following the TREE approach, the solution domain is truncated at an ade-
quate radial distance ρL, and a perfect electric conductor (PEC) condition (or
equivalently a Dirichlet condition for the A potential. The general expression
for the magnetic potential in the two air regions, above and beneath the plane,
reads4

A(1)(ρ, z) =

√
2

ρLJ0(κnρL)

∞∑
n=1

J1(κnρ)
[
C(1)

n eκnz +D(s)
n e−κnz

]
(5.77)

and

A(3)(ρ, z) =

√
2

ρLJ0(κnρL)

∞∑
n=1

C(3)
n J1(κnρ) e

κnvn(z−d) (5.78)

respectively. D
(s)
n stands for the development coefficients for the coil field in the

unbounded medium, and it is hence known. The κn eigenvalues are determined
by the zero tangential potential condition imposed by the PEC boundary at ρL,
and are obtained by the roots of the Bessel functions

J1(κnρL) = 0, n = 1, 2, . . . ,∞. (5.79)

Inside the plate, we must address the inhomogeneous Helmholtz equation.
The general solution can be expressed as the superposition of the homogeneous

4For this section as well as for the following derivations in the TD and the non-linear prob-
lem we shall prefer the explicit modal expressions to the more abstract propagator formalism
presented in the previous chapters to avoid unnecessarily charged notation.
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solution and a special solution, which satisfies the right-hand side term [39,76]

A(2)(ρ, z) = A(h)(ρ, z) +A(s)(ρ, z) (5.80)

The homogeneous solution can be developed in an eigenfunction basis of the
Laplace operator spanning the (ρ, ϕ) subspace, as it has been excessively dis-
cussed in the present text yielding

A(h)(ρ, z) =

√
2

ρLJ0(κnρL)

∞∑
n=1

J1(κnρ)
[
C(2)

n evnz +D(2)
n e−vn(z−d)

]
(5.81)

with v2n = κ2n+ k2 and the exponential functions standing for the propagator in
the z direction.

Since the modal basis used for the development of the homogeneous solution
belongs to the kernel of the Helmholtz operator (ker

[
∇2 − k2

]
), it must be

complemented with a z-dependent term to express the special solution, whose
image is orthogonal to the kernel subspace [76, 77]. A suitable eigenbasis for
this development is the two-dimension Fourier basis in the (ρ, ϕ) subspace

wnl(ρ, z) :=
2

ρLJ0(κnρL)
√
d
J1(κnρ) sin(qlz) (5.82)

with the ql eigenvalues being obtained by the zero field condition at the plate
interfaces, namely

ql =
lπ

d
, l = 1, 2, . . . ,∞. (5.83)

It can be easily verified that wnl is an eigenfunction of the Laplacian, namely

∇2wnl = −
(
κ2n + q2l

)
wnl (5.84)

to which we associate the inner product

⟨w(ρ, z) , f(ρ, z)⟩ :=
ρL∫
0

0∫
−d

ρJ1(κnρ) sin(qnz) f(ρ, z) dρdz. (5.85)

Since the solution does not satisfy any symmetry property along z, the full
Fourier basis must be used with period slightly larger than d (given that a
Fourier series describes a periodic function). Such choice, however, would suffer
from the Gibbs effect at the plate boundaries. Another possible choice would
be to replace the sine series in (5.82) with a sine-cosine series. This option,
however, would unnecessarily double the number of DOF whereas only two
additional DOF are needed.

The general idea here is to split the special solution into two terms: one
satisfying zero boundary conditions at the plate interfaces, and a second term
accounting for the, in general nonzero, field value at those interfaces. This
representation is schematically explained in Fig. 5.14.
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Figure 5.14: Representation of an arbitrary function as a sum of a sine series
and a residual term.

The wnl basis must be thus complemented by a set of terms allowing to

account for the nonzero value at the plate interfaces. Let w
(0)
nl be this term

w
(0)
nl (ρ, z) :=

2

ρLJ0(κnρL)
J1(κnρ) gn(z) (5.86)

We are free to choose the form of the gnl(z) with the condition that it
contains a sufficient number of DOF in order to account for the field values at
z = 0 and z = −d. These conditions are easily met by any polynomial of degree
greater than 0. Another possible choice is

gnl(z) =

{
cos(qlz) , n = 1, 2

0, n > 2
(5.87)

with ql being given by (5.83). The latter choice is adopted here since it leads to
slightly simpler equations.

By the way that it has been constructed, w
(0)
nl also satisfies (5.84) (a poly-

nomial term for the z direction would correspond to zero ql). Since it has been
introduced to account for the potential value at the boundary, it will be associ-
ated with an inner product at the surfaces z = 0,−d

⟨w(0)(ρ, z) , f(ρ, z)⟩S := cos(qnzS)

ρL∫
0

ρJ1(κnρ) f(ρ, zS) dρ. (5.88)

with zS the z coordinate of the surface. From (5.88) it turns out that w(0) are
orthogonal with respect to the given inner product. The special solution is thus
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developed as

A(s)(ρ, z) =

∞∑
n=1

∞∑
l=1

[
cnlwnl(ρ, z) + dnlw

(0)
nl (ρ, z)

]
. (5.89)

5.10.1 Application of the update equation: special solu-
tion calculation

Substituting (5.80) into (5.76), A(h) vanish by construction leaving

∞∑
n=1

∞∑
l=1

(
v2n + q2l

) [
cnlwnl(κnρ) + dnlw

(0)
nl (κnρ)

]
= µbJe(ρ, z) +

1

iω
eϕ · ∇ × Jm(ρ, z) . (5.90)

The dnl coefficients are easily obtained by observing (5.90) at the two plate
interfaces (thus the first term vanishes) and weighting the two sides of the

equation by w
(0)
nl taking the orthogonality property into account

dnl =
⟨w(0)

nl , fsrc⟩z=0 + (−1)l⟨w(0)
nl , fsrc⟩z=−d

2 (v2n + q2l )
,

{
n = 1, . . . ,∞
l = 1, 2

}
. (5.91)

fsrc(ρ, x) packs the two current terms together, i.e.

fsrc(ρ, x) = µbJe(ρ, z) +
1

iω
eϕ · ∇ × Jm(ρ, z) .

Having evaluated dnl, we can move this term to the right-hand side of (5.90)
and weight both terms with the Laplace operator’s eigenfunctions J1(κmρ) sin(qnz)
thus obtaining

cnl =
1

v2n + q2n

[
µb⟨wnl, Je⟩+

1

iω
⟨wnl, eϕ · ∇ × Jm⟩

]
, n = 1, . . . ,∞. (5.92)

Recalling that eϕ · ∇× is hermitian (wnl satisfies a Dirichlet BC at the plate
interfaces and the truncation boundary), the last relation can also be written

cnl =
µb

v2n + q2n

[
⟨(wnleϕ) ,Je⟩+

1

iωµb
⟨∇ × (wnleϕ) ,Jm⟩

]
=

µb

v2n + q2n

[
⟨E∗

nl,Je⟩+
1

iωµb
⟨B∗

nl,Jm⟩
]
. (5.93)

E∗
nl and B∗

nl can be seen as adjoint electric and magnetic fields associated to
the testing basis. This last form of (5.93) permits a physical interpretation
of the special solution as the mixing (cross-diagonal) terms occurred by the
perturbation of the medium properties. Indeed, recalling definitions (5.7) and
(5.8), (5.93) becomes

cnl =
µb

v2n + q2n
[⟨E∗

nl, δσE⟩+ ⟨H∗
nl, δµB⟩] (5.94)

with H∗
nl = νbB

∗
nl.
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5.10.2 Application of the continuity relations: homoge-
neous solution calculation

The development coefficients of the homogeneous solution C
(1)
n , C

(2)
n , D

(2)
n and

D
(3)
n are determined by the application of the continuity relations at the inter-

faces of the geometry. We have two conditions which the solution must satisfy:
the continuity of the magnetic potential and its normal derivative. Hence, at
the z = 0 interface we have

A(1)
∣∣∣
ρ1

= A(2)
∣∣∣
ρ1

(5.95)

∂A(1)

∂z

∣∣∣∣
ρ1

=
1

µr

∂A(2)

∂z

∣∣∣∣
ρ1

(5.96)

and similarly for z = −d.
Substituting the expressions (5.77)-(5.80) and weighting with J1(κnρ), we

obtain for z = 0

C(1)
n +D(s)

n = C(2)
n +D(2)

n +

2∑
l=1

dnl (5.97)

µrκn

[
C(1)

n −D(s)
n

]
= vn

[
C(2)

n −D(2)
n

]
+

∞∑
l=1

qlcnl. (5.98)

In the same fashion the continuity relations at z = −d yield

C(3)
n = C(2)

n +D(2)
n +

2∑
n=1

(−1)ldnl. (5.99)

µrκnC
(3)
n = vn

[
C(2)

n −D(2)
n

]
+

∞∑
l=1

(−1)lqlcnl. (5.100)

It is tempting to associate the homogeneous part of the solution described
by (5.77)-(5.80) to the reflection part of the (integrated) dyads in (5.33),(5.34)
etc. whereas the special solution calculated by (5.94) corresponds to the direct
part of the dyads.

The solution to the problem is obtained by solving (5.97)-(5.100) satisfying
in parallel the special solution coefficients relations (5.91) and (5.92). The two
sets of equations (for the homogeneous and the special solution) can be compiled
in a system of equations and solved simultaneously, or they can be computed
in an iterative scheme. This latter option will be explored in chapter 6 and
chapter 8.

5.10.3 Source field

In the previous development, the field of the source coil in the air, represented in

the modal solution via the coefficientsD
(s)
n has been considered as known. These
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coefficients are determined using the standard approach described in section 5.6
yielding

D(s)
n = − 2µ0N

(r2 − r1)h
sinh

(
κnh

2

)
χ(κnr1, κnr2)

κ5nρLJ1(κnρL)
e−κnzc (5.101)

ri and ro stand for the coil inner and outer radius, respectively, h its length and
Nc the number of turns. The coil lift-off is equal to lo, which implies for the
axial coordinate of its centre zc = lo+ h/2 (cf. Fig. 5.13).

5.11 Publications related with the chapter con-
tent

The development of the volume integral equation for the calculation of the flaw
response in a ferromagnetic tube has been the subject of two publications [49,78].
The VIM has been combined with the FEM for the treatment of defects in steam
generator tubes, where the influence of structural elements like support plates
is non-negligible (a problem of considerable importance for nuclear safety). The
results of the approach have been presented in [79,80]. This work was a result of
a common action with the French institute for radiological protection (institut
de radioprotection et de sûreté nucléaire, IRSN).

The development of the Green’s function in multilayered structures with
boreholes, and its application for the calculation of crack signatures in the
vicinity of the hole walls was the subject of the Ph.D. work of Dr. K. Pipis.
The results of this work have been communicated in a number of publica-
tions [40, 81, 82]. The developed formalism has also been applied for the simu-
lation of defects in finite tubes [59].

Finally, the spectral approach for the modelling of extended sources has
been motivated by the work originally oriented to the treatment of the non-
linear problem. The same ideas were also explored in the context of the time
integration of the spectral approach. The detailed presentation of these devel-
opment as well as the according research results production is thus postponed
to the next chapters.



Chapter 6

Transient solutions

In this chapter, we will be interested in constructing transient solutions for the
eddy-current and the heat propagation problem. Although the harmonic exci-
tation (mono as well as multi-frequency) remains the most commonly used kind
of excitation for eddy-current applications, pulsed eddy-current testing (PECT)
techniques have gained considerable interest recently. The reason lies in the
intrinsic broad-frequency character of the pulsed response, which means that,
at least theoretically, the information carried by a single signal is quite rich (de-
spite, admittedly, a certain controversy in the community about the practically
exploitable part of this information). The laboratory equipment for the excita-
tion of PECT is simpler than the one for multi-frequency inspection, and the
recent advances in the electronics with the development of high-resolution data
acquisition cards has facilitated a lot the recording and the processing part of
the acquisition chain.

Apart from the practical aspect, however, there remains a theoretical/math-
ematical interest per-se for the development of transient solutions motivated by
the alternative physical picture that they provide and alimented by the numeri-
cal challenges that need to be addressed. Last but not least, the construction of
time domain (TD) solutions may be seem as a building stone for the treatment
of the non-linear problem, whose detailed study will be the subject of a later
chapter.

When infrared testing (IR) comes to play, TD solutions are naturally im-
posed by the physics of the problem. Although harmonic excitation techniques,
known in the literature as lock-in thermography exist, the pulsed excitation is
by far the most usual operating mode for this technique. IR signals have also
the peculiarity that the most important information is contained either in the
very short time window of the signal (where lateral diffusion has not yet blurred
the thermographic image) or the late time, which delivers information from the
opposite to the excitation interface. Multi-resolution algorithms are hence re-
quired making the analysis in the Laplace domain the most suitable theoretical
tool.

In this chapter, two families of methods will be studied. Analysis in the

113
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Laplace domain and direct integration in the TD through time-stepping. Both
methods have their own advantages and drawbacks and can be seen as comple-
mentary.

6.1 The Laplace transform approach

6.1.1 The diffusion equation in the Laplace domain

The Laplace transform (LT) of an arbitrary time function f(0) with a zero initial
condition (f(0)) is defined as follows [26]

F(s) :=

∞∫
0

f(t) e−stdt (6.1)

with the corresponding inverse operator given by the integral

f(t) =
1

2πi

γ+i∞∫
γ−i∞

F(s) estds. (6.2)

The integration is performed along the Bromwich path (γ − i∞, γ + i∞) in the
complex s-plane, with γ chosen so that all singularities of f(s) are located on
the left half-plane.

Both state equation and solutions can be deduced by the corresponding ones
in the frequency domain by performing the variable change iω → s. The state
equation is thus given by the Helmholtz equation, which for the A potential
reads (

∇2 − k2
)
A = 0 (6.3)

with k2 = sµσ, and similarly for the SOVP potentials Wa,Wb or the tempera-
ture variable T .

6.1.2 Pole extraction

In contrast with the Fourier Transform (FT), there does not exist a really uni-
versal algorithm for the numerical inversion of the LT. Most general tools are
based in the numerical calculation of contour integrals in the complex plane,
but their disadvantage is that they lead to heavy computational schemata and
their robustness is not always guaranteed. Computationally efficient and robust
specialised methods have been proposed in the literature, which are based in
different principles with the specific approach chosen for the calculation of a
particular inverse Laplace transform (ILT) being problem dependent. An excel-
lent review on the different available methods for the numerical calculation of
the ILT can be found in [83].

A standard approach consists in approximating the Laplace transformed
expression as a rational function, which is then decomposed in simple poles,
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amenable to analytical inversion. The poles, which are the roots of the denom-
inator can be computed numerically. This approach is very well suited for the
semi-analytical methods considered herein and has been successfully applied to
address the PECT problem in layered media [84,85].

r1d

r2d

ld

r1p

r2p

ρ1 ρ2 ρ3 ρ4

lp

Figure 6.1: Nested tube inspection in driver-pickup mode.

The principle of the approach will be demonstrated for the calculation of
the electromotive force (EMF) of the pickup coil in a nested cylindrical tube.
The problem configuration is depicted in Fig. 6.1. The same ideas apply also
for the computation of field quantities. It can be shown that the EMF value
in the Laplace domain as it is calculated by the reciprocity theorem admits the
following general form [85,86]

∆V (s) =

∞∑
n=1

an
κ6n
Id(s)R(κn, s)Yd(κn)Yp(κn) (6.4)

where Yd, Yp are form functions for the driver and the pickup coil, which depend
on the coil geometry, an is a scaling coefficient, and R(κn, s) stands for the
reflection coefficient containing the information of the piece. Id is the feed
current. Following the standard TREE approach the domain is truncated at
z = 0 and z = L using a PEC and PMC condition respectively. The an, Yd and
Yp coefficients read

an(s) =
4πµ0

L
(6.5)

Y =
iN

(r2 − r1)l
[cos(κi(zc + l/2))− cos(κi(zc − l/2))]χ(κr1, κr2) (6.6)
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where r1, r2 are the inner and outer radii of the coil, l its length, N the number
of turns and zc the position of its center in the z axis (all parameters being
understood applying once for the transmitting and once for the receiving coil).
The function χ is given by the relation

χ(x1, x2) =

x2∫
x1

xI1(x) dx. (6.7)

It remains to determine R(κn, s) which contains the projected propagators
introduced in chapter 3. The procedure has been described in that chapter and
will not be repeated here. For a step current excitation, Id(t) = I0H(t) with
H(t) being the Heaviside function, Id(s) = I0/s. We define thus the transfer
function

Γn(s) := sR(κn, s) (6.8)

which is writen as rational function of the propagators, and we factorise it
using one of the available numerical techniques for zero-finding or using Padé
approximation.

The EMF can be thus brought in the form

∆V (s) =

∞∑
n=1

Ns∑
p=1

Anp

s− snp
(6.9)

whose ILT is known in closed-form

∆V (s) =

∞∑
n=1

Ns∑
p=1

Anpe
snpt. (6.10)

Once the step response of the system is known, one can easily obtain the
response to any arbitrary current waveform I(t) by applying the Duhamel’s
integral [84]

∆VI(t) =
d

dt

t∫
0

∆VH(τ) I(t− τ) dτ (6.11)

with the ∆VI and ∆VH denoting the signals for the arbitrary and step excitation,
respectively.

6.1.3 Numerical calculation of the ILT: the Zakian and
Gaver-Stehfest methods

A class of algorithms can be derived by computing samples in the time domain
(TD) and exploiting the properties of generalised functions. This class proposed
by Zakian [87] consists by computing a weighted sum of Laplace samples

f(t) ≈ 2

t

N∑
n=1

KnF(an/t) (6.12)
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where F(.) is the Laplace transform of the function. The Kn, an coefficients are
determined following Zakian via two different approoches [87]: through Padé
approximation of the delta function or least-square approximation. The numer-
ical values computed by either of these approaches can be tabulated and used
independently of the input signal. In Tab. 6.1 are provided the numerical values
determined via the first approach

Kn an

−36902 + 196990 i 12.8377 + 1.66606 i
61277− 95408.6 i 12.2261 + 5.01272 i

−28916.6 + 18169.2 i 10.9343 + 8.40967 i
4655.36− 1.90177 i 8.77643 + 11.9219 i
−118.741− 141.304 i 5.22545 + 15.7295 i

Table 6.1: Tabulated values for the Kn, an coefficients.

A variant of the Zakian method, which is commonly used for the calcula-
tion of impulse or step response is the so-called Gaver-Stehfest method, which
proposes the evaluation sum

f(t) ≈ ln 2

t

N∑
n=1

VnF

(
ln 2

t
n

)
(6.13)

where Vn are calculated by the formula

Vn = (−1)
N
2 +1

min(n,N/2)∑
k=n+1

2

kN/2(2k)!

(N/2− k)!k!(k − 1)!(n− k)!(2k − n)!
(6.14)

Both Zakian (6.12) and (6.13) are more or less equivalent from the compu-
tational point of view.

It should be noted here that the Zakian and the Gaver-Stehfest method apply
for monotonical input and are best suited for the computation of the short-time
response (whence their popularity in thermographic applications).

6.1.4 Comparison of the pole extraction method with the
numerical calculation of the ILT

The two approaches for the calculation of the ILT, namely the pole extraction
approach and the numerical inversion using the Gaver-Stefest method are com-
pared here for a specific realisation of the nested tube configuration of Fig. 6.1.
The tubes are assumed to be of the same material and are either carbon steel
(ferromagnetic) or stainless steel (non-ferromagnetic) with electrical conductiv-
ity σ = 3 MS/m in both cases and relative magnetic permeability µr equal
to 100 and 1 respectively. The inner radii of the two layers ρ1 = 40 mm and
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ρ3 = 60 mm and both have thickness equal to 10 mm. The dimensions of the
coils are summarised in Tab. 6.2. The axial distance of the driver from the
pickup coil is 10 mm.

Driver Pickup

r1 (mm) 20 20
r1 (mm) 30 30
l (mm) 40 10

N 1600 10000

Table 6.2: Coils and layers dimensions and materials.

(a) (b)

Figure 6.2: Long-time comparison of Stehfest and pole extraction methods to
NILT for (a) Carbon and (b) Stainless steel. Only the first pole is used for each
qn eigenvalue.

The transient responses are shown in Fig. 6.2 for the two inversion meth-
ods, and they are compared against direct numerical inversion of the Laplace
transform (NILT), which is taken as reference [88]. The logarithmic scale in
the voltage axis better depicts the long-time behaviour of the transient signal.
Adopting as reference the NILT method, we can easily observe that the pole ex-
traction behaves very well in the long-time domains while the Stehfest method
behaves well for the short-time domain and starts to deviate from a certain
point in time. It seems then that these two methods, Stehfest and pole extrac-
tion, are complementary and can be used in the short- and long-time domains,
respectively. The point of transition that we have established empirically, after
many simulations, for a system of tubes of the same material is the time defined
by tm = µ0µrσb

2, where b stands for the total thickness of the tubes. From
Fig. 6.2, it is evident that the logarithmic signal curve is steep in the case of
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the stainless steel due to its smaller relative magnetic permeability and hence to
the weaker eddy-currents induced in the tube wall. This is exactly the expected
behaviour [89–91].

(a) (b)

Figure 6.3: Long-time comparison of NILT to pole extraction method with
different number of poles for (a) Carbon and (b) Stainless steel.

In the summation of (6.9), we have used 50 terms, and for the Laplace inver-
sion, we have only used 1 pole per eigenvalue (hence 50 poles). The boundary of
the truncated domain is set to L = 100ρ4 for carbon and L = 20ρ4 for stainless
steel. The fact that we use only 1 pole for each eigenvalue is a crude compu-
tation that nevertheless gives good results for the long time. For the long-time
domain, the number of eigenvalues and thus the number of poles can be de-
creased further. We have run a parametric study regarding the number of poles
that can be used to reliably compute the induced voltage. Fig. 6.3 shows results
that compare pole extraction method (with decreasing number of poles) to the
exact NILT solution. It is clear that the limiting case of using just 1 pole can
also be used for a reliable representation in the long-time region.

6.2 Thermographic inspection of planar multi-
layer pieces with delamination defects

The thermal transient response of a material under impulse excitation is a typ-
ical scenario of thermographic inspection. As mentioned in the introduction
of the chapter, we are interested in both early and late time IR surface im-
ages, called in IR jargon as thermograms. The former carry spatial information
about the location and the size of material anomalies (it is understood that
at intermediate of late times, lateral diffusion will blur the image lowering the
resolution). The latter images deliver information about the depth of the discon-
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tinuities, via the diffusion time. In principle, we seek to solve the problem in a
logarithmic timescale, which may lead to prohibitive computational times when
classical temporal discretisation schemes are applied unless specially designed
algorithms involving highly inhomogeneous time sampling are employed. The
LT approach, on the other side, is very well adapted for this type of applications
since the solution can be evaluated at arbitrary time instances, which makes it
the preferred tool when calculating thermograms.

In this section, we will calculate the transient response of a multilayer plate
affected by delamination effects between the plate layers. Due to their particular
orientation, delaminations interact only weakly with eddy-currents. IR inspec-
tion, on the contrary, is very well adapted for the detection of this kind of defects
since they tend to hinder the heat propagation across the specimen. In addition,
thermal imaging methods can give direct information about the delamination
size and geometry [92, 93]. In composite materials, eddy-current inspection is
inapplicable due to the weak conductivity of the composite plies, which in the
majority of applications consist of carbon fibres embedded in epoxy matrices.
IR inspection is thus a well adapted tool for such materials. The modelling of
composites, however, has to cope with the inherent anisotropy of the plies due
to their structure, and hence we shall restrict the present discussion to isotropic
multilayer structures (primarily metallic).

z

x

z1
z2

zN

...

Lx

T (1)

T (0)

T (2)

T (N)

T (N+1)

IR Camera

Figure 6.4: Problem configuration: a planar multilayer medium affected by a
number of delamination flaws is thermally excited by an impinging photon flux.
The temperature distribution is then monitored by means of an infrared camera
located in the front of the rear side.

The heat can be deposited using different techniques, the flash-lamp and
induction heating (primarily reserved for metallic components) being the most
used ones. According to the first heat is transmitted in the material via an im-
pinging short-duration photon flux emitted from a dedicated high-intensity flash
lamp. The common experimental setup is schematically depicted in Fig. 6.4.
Two main inspection modes can be realised: at the excitation surface (referred
to as reflection thermography) or the rear side (in which case we are speaking
about transmission thermography).
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6.2.1 Calculation of the temperature distribution

Let us consider a planar piece composed of N stacked sheets perfectly joined
with another similar to the one depicted in Fig. 6.4. The medium above and
underneath the considered piece is air. The piece is thermally excited from its
upper interface by means of an impinging heat flux (flash lamp, laser source, air
flow). The exact form of the excitation is irrelevant for the hereafter developed
mathematical analysis. Solely its geometrical features, i.e. the shape and the
dimensions of the flux spot as well as its intensity, that is, the heat power per
unit of surface, are of interest here. We also assume that the considered medium
is affected by a delamination flaw located between the ith and the (i+1)th layer.
As such, it is understood a local loss of contact between the two layers, which
physically takes the form of a very thin cavity between the two layers, filled
with air as shown in Fig. 6.5.

T (i)

T (i+1)

d(x, y)
T (i)

κa

Figure 6.5: Delamination defect between two adjacent layers. κa is the thermal
conductivity of the air.

Each layer i is characterised by its mass density ρi, its heat capacity at
constant (atmospheric) pressure cpi and its thermal conductivity κi, which in
the context of this work is assumed to be isotropic.

We seek to calculate the temperature at every point of the medium through-
out an observation time window comprising the excitation and a relaxation time
interval after the source switch-off. In particular, we are interested in the tem-
perature distribution at the upper and lower piece-air interface corresponding
to the two aforementioned IR inspection modes. These two distributions can
be extracted by the solution of the associated heat propagation problem, as
developed below.

Following the formalism developed in chapter 3, the solution is represented
via the temperature distributions at the specimen interfaces, which are subjected
to the subsidiary conditions∑

i

cm;i

[
⟨mj | κ̂j+Ĉj+P̂i |mi⟩ − ⟨mj | κ̂j−Ĉj−P̂i |mi⟩

]
= 0, ∀j. (6.15)

with i, j running all interfaces of the medium. κ̂j is the trace operator at the j

interface, which in its local frame is described by the matrix of (3.12), and P̂i

stands for the associated propagator given by (3.51).
To evaluate (6.15) we need to determine a suitable representation for each

surface |mi⟩. To construct the representation, we truncate the domain at x =
0, Lx and y = 0, Ly by imposing a Dirichlet condition1 according to the TREE

1In this particular example we have assumed a source of finite support, which makes the
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approach

T (i)
∣∣∣
x=0

= T (i)
∣∣∣
x=Lx

= 0, (6.16)

T (i)
∣∣∣
y=0

= T (i)
∣∣∣
y=Ly

= 0. (6.17)

which implies for the eigenvalues of the modal representation in the x and y
directions

sin(κmLx) = 0, κm =
mπ

Lx
, m = 1 . . . ,∞, (6.18)

sin(λnLy) = 0, λn =
nπ

Ly
, n = 1 . . . ,∞ (6.19)

and the propagator admits the following form

⟨mj | P̂i |mi⟩ = e−v(ℓ)
mn|zj−zi| (6.20)

where ℓ = [j−1, j] stand for the layer index (cf. Fig. 6.4), and v
(ℓ)
mn is calculated

using the dispersion equation

η(ℓ)mn =

√
κ2m + λ2n +

s

aℓ
. (6.21)

αℓ = κℓ/cpℓ
ρℓ stands for the layer diffusivity.

Substitution to (6.15) for the interfaces without delamination, provides us
with the following explicit relations

D(j−1)
mn e−v(j−1)

mn dj−1 + C(j)
mn −D(j)

mn −D(j+1)
mn e−v(j)

mndj = 0 (6.22)

v(j−1)
mn κj−1

[
D(j−1)

mn e−v(j−1)
mn dj−1 − C(j)

mn

]
+ v(j)mnκj

[
D(j)

mn − C(j+1)
mn e−v(j)

mndj

]
= D(e)

mnδi,0, (6.23)

where di = zi−1 − zi, c
(e)
mn and δi,0 is the Kronecker delta. For convenience

with the term recognition, all the coefficients corresponding to upwards diffusing
terms are denoted with capital C and the downwards diffusing terms with capital

D. D
(e)
mn stands for the development coefficients of the source which for the flash-

lamp considered here are given by

D(e)
mn =

2√
LxLy

Lx∫
x=0

Ly∫
y=0

S(x, y) sin(κmx) sin(λny) dxdy. (6.24)

where S(x, y) is a shape function, and takes the value 1 ∀x, y falling inside the
source support and 0 outside it.

Dirichlet approximation at the truncation boundaries. For extended sources a Neumann type
(zero-flux) condition would be more reasonable.
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At the interface, where the delamination resides, the continuity relations,
must be locally modified to account for the conductivity change due to the
defect. Let D be the void domain and d(x, y) be its thickness as shown in
Fig. 6.5. In the general case, the latter is a function of the x, y position. By
applying Fourier’s law across the void volume, one has

Jz = −κa∇T (6.25)

which for relatively small values of d(x, z) can be approximated by a finite
difference quotient

Jz(x, y) ≈ −κa
T (i+)(x, y)− T (i−)(x, y)

d(x, y)
. (6.26)

By introducing the local thermal resistance as [94]

R(x, y) =
d(x, y)

κa
(6.27)

the previous relation can be written as follows

T (i−) − T (i+) = −R(x, y) Jz (6.28)

and integrating Fourier’s law for the thermal currents (2.71), we arrive at

T (i−) − T (i+) = −R(x, y) ∂zT (i−). (6.29)

A few words should be spoken on the physical interpretation of (6.29). In
contrast with the heat flux, which remains continuous across the interface (oth-
erwise we would have energy accumulation), there is a temperature discontinuity
which arises as the limiting case of the temperature gradient across the void,
when its thickness tends to zero. This difference is linear with the heat flux,
from which we have interpreted R as a kind of thermal resistance.

For the purposes of this analysis, it is sufficient to consider the defect as an
idealised slab of constant thickness d(x, y) = da, which implies that the thermal
resistance will also be constant throughout the flaw support.

With the introduction of (6.29) into (6.22), the temperature continuity
across the affected interface is modified to∑

m′

∑
n′

(
δnm,n′m′ +Rm′n′κj−1v

(j−1)
m′n′

)
D

(j−1)
m′n′ e

−v
(j−1)

m′n′ dj−1

+
∑
m′

∑
n′

(
δnm,n′m′ −Rm′n′κjv

(j)
m′n′

)
C

(j)
m′n′

−D(j)
mn − C(j+1)

mn e−v(j+1)
mn dj+1 = 0, (6.30)

where Rmn stands for the weighted thermal resistance function

Rmn =

Lx∫
0

Ly∫
0

R(x, y)w(x, y) dxdy. (6.31)
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6.2.2 Characteristic results

The above developed solution will be applied in the specific case of a two-
layer medium consisting of a steel and an aluminium plate in imperfect thermal
contact to each other. The thermal properties of the piece materials as well
as those of the air are summarised in Tab. 6.3. The two layers have the same
thickness equal to 2.5 mm. Their lateral dimensions are assumed to be large
enough for the edge effects to be safely ignored. They will be thus considered
for the purpose of the analysis as infinite.

Material
Thermal conductivity Heat capacity Density

k (W/mK) Cp (J/kgK) ρ (kg/m3)

Aluminium 237 897 2707
Steel 44.5 475 7850
Air 0.02454 1005 1.1843

Table 6.3: Thermophysical properties of materials.

Two different contact defects are considered: a single square shaped delam-
ination and a couple of two delamination defects, a square and a rectangular
one, located a few centimeters apart at a distance such that they can interact
to each other. The two configurations are depicted in Fig. 6.6

(a) (b)

Figure 6.6: Dimensions and locations of the delaminations: (a) single delami-
nation, (b) two interacting defects.

Fig. 6.7 shows the temperature transient for the geometry described in
Fig. 6.6a at a sampling point on the front and rear surface. The sampling
point corresponds to the centre of the defect. Two different temperature so-
lutions are compared: the solution obtained using the approach of 6.2.1 and a
FEM solver [32]. For the former, the transient signal has been evaluated by
applying the Gaver-Stehfest method described in 6.1.3 to the spectral (TREE)
expression obtained for the Laplace frequencies determined by (6.13), namely
sn = ln 2n/T, n = 1, . . . , 10. The FEM solution is evaluated via a classic im-
plicit time-stepping scheme. Attention must be given to the very short times of
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the front surface response, where the time-stepping scheme struggles to repro-
duce the sharp peak just after the switch off of the impinging flash beam. It is
the response at these time window which makes the use of the Laplace approach
interesting here.

(a) (b)

Figure 6.7: Temperature variation in time for the geometry of Fig. 6.6a cal-
culated by the spectral method and a reference commercial FEM code. (a)
Temperature at the top surface above the centre of the defect (reflection mode),
(b) Temperature at the rear surface below the centre of the defect (transmission
mode).

The temperature profiles occurred by the interaction of the heat front with
the defect are demonstrated in Fig. 6.8 and Fig. 6.9 for the front and the rear
surface, respectively. The three coloured curves show the temperature transient
above/below the centre of the tree defects with point 1 standing for the centre
of the lower-left defect alone (Fig. 6.7a), point 2 for the same location in the
presence of both defects (Fig. 6.7b) and point 3 giving the temperature transient
above/below the centre of the upper-right defect.

The interaction between the two flaws becomes evident by considering the
blue and the orange curves standing for the temperature variation at the same
point with one and two defects. The two curves begin to deviate after the
temperature change has reached its absolute maximum, i.e. as long as the direct
heat front from the source has dissipated permitting to the secondary front
stemming from the other defect to become visible.

6.3 Solution in the TD using spectral methods

An alternative to the ILT approach is the direct integration of the diffusion
equation in the time domain using one of the established time-stepping schemes
[95–98].

We shall consider hereafter the 2D problem by adopting the A − Φ formu-
lation according to the standard framework developed in the previous chapters.
The TD analogue of the extended magnetic vector potential definition of (5.70)
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(a) (b)

Figure 6.8: Temperature variation at the top surface of the piece above the
centre of the defects. (a) Absolute temperature change. (b) Temperature dif-
ference with respect to the flawless piece. The different curves correspond to
the recorded transients above the defect centre, as explained in the text.

reads

B = ∇×A+

t∫
0

Jm(τ) dτ (6.32)

with the corresponding relation for the electric field given by

E = −dA
dt
−∇Φ (6.33)

Upon substitution to the Maxwell equations and ignoring the scalar potential
Φ, as is common practice in eddy-current problems, one obtains the diffusion
equation for the magnetic potential

∇× ν∇×A+ σ
dA

dt
= Je +

t∫
0

∇× Jm(τ) dτ. (6.34)

We are especially interested in problems with rotational symmetry, like the
one depicted in Fig. 5.13, and it has already been analysed that a single-
component ansatz for the magnetic potentialA = Aeϕ is sufficient for producing
the corresponding three-elements field solution. The curl-curl equation reduces
in this case to the following scalar equation

(
∇2 − 1

ρ2
− µσ d

dt

)
A = −µJe − µ

t∫
0

eϕ · ∇ × Jm(τ) dτ (6.35)

where we have taken into account the azimuthal orientation of the magnetic
potential and the excitation current (J = Jeϕ).
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(a) (b)

Figure 6.9: Same curves Fig. 6.8 for the bottom surface.

Equation (6.35) describes an initial value problem, whose integration will
yield the magnetic potential in the TD, A(x, t). This integration is carried out
in the general case numerically by introducing a temporal discretisation for the
fields tj = j∆t, j = 1, 2, . . ., where ∆t is a constant time-step. Although the
use of inhomogeneous time discretisation with variable time-steps is straightfor-
ward but it will not be considered herein for the sake of simplicity and to keep
the discussion short. Nevertheless, variable time-step and temporal multi-grid
approaches can be of interest when short and long time responses are sought,
as already discussed.

With the temporal discretisation fixed, one has to discretise the temporal
derivatives using a suitable finite difference quotient according to the established
scheme. Keeping in mind that the eddy-current problem described by (6.35)
is a parabolic problem, the Courant-Friedrichs-Levy (CFL) stability criterion
imposes a very restrictive upper limit for the time-step (with respect to the
characteristic time-scale of the problem), when explicit schemata are to be used.
For such problems, unconditional stable backward differentiation schemata make
more judicious choice. Here, we shall restrict ourselves to the simple implicit
Euler scheme, which turns out to be sufficient for the type of applications we
are interested in. More elaborate schemata will be discussed in the next chapter
when dealing with the numerical solutions in TD using the finite integration
technique (FIT) method.

According to the Euler scheme, the temporal derivative at the jth time-step
is approximated by the quotient

∂A

∂t

∣∣∣∣
t=tj

≈ Aj −Aj−1

∆t
(6.36)

which upon substitution in (6.35) results the following update equation, where
the solution at tj is given by means of the solution at the previous time step
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tj−1(
∇2 − 1

ρ2
− µσ

∆t

)
Aj = −

µσ

∆t
Aj−1 − µJe;j − µ

tj∫
0

eϕ · ∇ × Jm(τ) dτ. (6.37)

Comparison with (5.76) reveals that (6.37) is isomorphic with the inhomo-
geneous Helmholtz equation with the effective (imaginary) angular frequency

ω = −
√
−1/∆t (6.38)

and right-hand side (excitation) fj equal to

fj = µ
( σ
∆t

Aj−1 + Je;j

)
+ µ∆t

j∑
ℓ=0

eϕ · ∇ × Jm;j . (6.39)

which states that the potential solution at the previous time step acts as an
equivalent electric current. Since the electric current source (for a medium
without defects) is entirely embedded in the air region (with σ = 0) and the
magnetic sources are zero, we can set Je;j = (σ/∆t)Aj−1 and apply the so-
lution developed for the defected medium in harmonic regime in section 5.10.
These expressions, however, should now be evaluated at every time step j, i.e.
the development coefficients will be functions of time. Note that the zero con-
ductivity in the air causes that the coefficient values given by (5.77),(5.78) and
(5.81) depend from the previous time steps only indirectly via the fulfilment of
the boundary conditions, which have to be verified at every time step after the
re-evaluation of the special solution.

The inner products (5.91) and (5.92) in case of a flawless medium take a
relatively simple form since there is no mixing between wnl elements owing to
the homogeneity of the medium. As a demonstration, we provide the explicit
relations derived for the geometry of Fig. 5.13 as far as the special solution
coefficients are concerned. More precisely, the zero order term coefficients dj;nl
are calculated by the relations

dj;nl =
k2

v2n + q2l

[
dj−1;nl +

1

2

(
1∓ e−vnd

)
C

(2)
j−1;n +

1

2

(
1∓ evnd

)
D

(2)
j−1;n

]
(6.40)

for l = 1, 2, and the corresponding expressions for the non-zero term coefficients
cj,nl read

cj,mn =
k2

v2n + q2l

[
cj−1;nl + C

(2)
j−1;nMnl +D

(2)
j−1;nNnl

]
, l = 1, . . . ,∞ (6.41)

with the integrals{
Mmn

Nmn

}
=

2

d

0∫
−d

sin(qnz) e
±vmzdz

= −2

d

qn
v2m + q2n

[
1− e∓vmd(−1)n

]
. (6.42)
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Cj−1;n, D
(2)
j−1;n and dj−1;nl are known since they have been calculated in the

previous step.

6.4 Reciprocity theorem in TD

The most important experimental observable in PECT inspection is the elec-
tromotive force (EMF) at the pick-up coil, which makes the analogue of the
mutual impedance of the classical ECT in the harmonic regime. We need thus
to derive efficient and accurate ways of calculating this quantity, as we did with
the impedance in the frequency domain (FD).

It has been shown in the previous chapters that the impedance variation
is calculated in an elegant way using Auld’s reciprocity theorem [20, 21]. For
transient measurements, this theorem can be readily extended using convolution
integrals. The TD case has been treated principally in the antennas’ community
for the calculation of receiver response to arbitrary signals [99–105]. Since,
however, this problem has been scarcely explored for low-frequency problems,
it will be considered herein in some detail.

The general form of the reciprocity theorem for the 2D problem with rota-
tional symmetry reads

∆V (t) ∗ I(t) = 1

µ0

∮
∂V

(
Aec ∗ ∇

dAs

dt
− dAs

dt
∗ ∇Aec

)
· dS (6.43)

where As stands for the magnetic potential solution of the coil (source) in the
free-space and Aec is the corresponding term in the presence of the piece. It
is obtained following the standard procedure found in almost all the classical
textbooks.

Interestingly, the convolution integral of right-hand-side in (6.43) can be
dropped by observing that the source field, being solution of the magnetostatic
problem, instantly follows the time variations of the input current. Note that
this is an approximation which holds only in the context of the low-frequency
quasi-static formulation, which the eddy-current problem satisfies. By virtue of
this property, the time derivatives of the source field will provide Dirac functions
in case that the current excitation is a Heaviside function H(t). Equation (6.43)
becomes

∆s(t) =
1

µ0

∮
∂V

[Aec(t)∇A∗
s −A∗

s∇Aec(t)] · dS (6.44)

where A∗
s is the source field for a unit constant current and ∆s is the EMF

integral

s(t) =

t∫
0

∆V (τ) dτ. (6.45)
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The EMF expression for an arbitrary current profile I(t) can be easily ob-
tained from the step response ∆s(t) by applying Duhamel’s integral (6.11).
Noting that ∆VH is the time derivative of s(t) and carrying out integration by
parts (6.11) becomes

∆VI(t) = −
d

dt

t∫
0

s(τ) İ(t− τ) dτ. (6.46)

For a discrete signal, the time integral reduces to a simple trapezoidal rule.
Furthermore, the derivative can be approximated by a finite difference scheme
yielding the following relation

∆VIj = −
j∑

k=0

sk İj−k +

j−1∑
k=0

sk İj−k−1

=

j−1∑
k=0

sk

(
İj−k−1 − İj−k

)
− sj İ0. (6.47)

A case of special interest consists in the excitation with a rectangular pulse
since this is the most usual excitation signal used in PECT applications. In this
case, the EMF calculation can be readily derived noting that

∆VI(t) =
d

dt
[s(t)− s(t− T )] (6.48)

where T stands for the pulse duration. Assuming that T = K∆t, the discrete
form of (6.48) admits the particularly simple expression

∆VIj = (sj − sj−1 − sj−K + sj−K−1) /∆t. (6.49)

We need now to calculate the surface integral in terms of the development

coefficients C
(1)
i;m and D

(s)
i;m. The analysis is strictly identical with the harmonic

case, and the result reads for the jth time-step

sj = −
2πρ2L
µ0

∞∑
m=0

κmJ1(κmρL)C
(1)
j;mD

(s)
m . (6.50)

where the time-step index j for the source coefficient D
(s)
m has been intentionally

suppressed since the source field is constant for t > 0.
The absolute signal at the pickup coil can be easily obtained by recalling

that for two coils in air

V0(t) = −M
dI

dt
(6.51)

where M is the mutual impedance between driver and pickup coil. The total
signal will be the superposition of ∆V and the signal in air, i.e. V (t) = ∆V (t)−
Mİ(t).
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6.5 Case of study: calculation of a coil EMF
above a planar specimen

The proposed approach has been applied for the calculation of the PECT re-
sponse in the inspection scenario described by Fig. 6.10.

z

z = −dσ, µ

z1dz2d

z1p z2pr1d
r2d

r1p
r2p

z = 0

Figure 6.10: Infinite conducting plate inspected via a pair of coaxial cylindrical
coils connected in driver(d) - pickup (p) mode.

The plate conductivity and relative magnetic permeability are σ = 5 MS/m
and µr = 150, respectively, which correspond more or less to the parameters
of a typical construction steel. The plate thickness is 1 mm. The inner and
outer radius of the driver coil is r1d = 1 mm and r2d = 2.65 mm, respectively,
its length is z2d − z1d = 2 mm and its number of turns is Nd = 336. The
corresponding dimensions for the pickup coil are r1p = 2 mm and r2d = 5 mm
and z2p − z1p = 2 mm, and it is wound with Np = 700 turns.

The first computation concerns the magnetic field calculation at a repre-
sentative point underneath the plate (ρo = r1d/2 mm, zo = −3d/2). Two
waveforms for the input current have been considered: a rectangular pulse and
a pulse with exponential relaxation. The latter case is representative for a real-
istic current signal provided by a square voltage generator. The pulse duration
is taken with 1 ms duration and a 40% duty cycle (dc) for both waveforms.
The pulse amplitude reaches 1 A. The time constant for the exponential pulse
is 0.05 ms. The signal waveform is depicted in Fig. 6.11

The field transients for both inputs are shown in Fig. 6.13. Numerical sim-
ulations obtained using the FIT method are taken as reference solution. The
FIT solution is also calculated in TD using a time-stepping scheme and the
difference with the herein presented approach consists in the discretisation of
the spatial part using a computational grid [77,95].

An illustration of the pulse repetition frequency effect to the solution is
demonstrated in Fig. 6.12, where the field transient is calculated for a rectan-
gular waveform at two repetition frequencies: 100 Hz and 1 kHz.

The field transients for the two considered exciting waveforms of Fig. 6.11
are shown in Fig. 6.13. Both solutions are compared against the FIT reference
results all showing an excellent agreement.
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Figure 6.11: Excitation signals used for the solution validation: 40% dc square
pulse and pulse with exponential relaxation (charge-discharge mode).

(a) (b)

Figure 6.12: Semi-analytical vs. numerical (FIT) solution at (a) 100 Hz and (b)
1 kHz pulse repetition frequency.

The induced EMF signals computed with the semi-analytical approach for
the two fed current waveforms of Fig. 6.11 are compared against the correspond-
ing FIT results in Fig. 6.14. Since the rectangular pulse is a highly idealised
situation, it is rather the exponential curve described by the second signal that
should be considered as the representative current profile when dealing with
measurements [106]. The exact current waveform is obtained by solving the
coupled field-circuit problem by considering an RL circuit fed by a standard
50 Ω signal generator. Such calculation is, however, out of the scope of the
present text. Note that the EMF response is calculated with FIT via direct
integration of the magnetic vector potential

V = −2πNp

Sp

d

dt

∫
pickup

A(r) dV (6.52)

where the integration is carried out on the cross-section of the pickup coil, with
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(a) (b)

Figure 6.13: Semi-analytical vs. numerical (FIT) solution for (a) Bρ and (b) Bz

field components as a function of time at the selected observation point under
the specimen. The transient signals are shown for both current excitations of
Fig. 6.11.

Sp = (z2p − z1p)(r2p − r1p) and Np/Sp standing for the windings’ density.
A final comparison is realised between the semi-analytical results for the

EMF at the pickup coil calculated using the time-stepping approach and the TD
reciprocity theorem and the corresponding results obtained using the Laplace
approach described in [85], where the Gaver-Stehfest algorithm is used for the
calculation of the inverse Laplace transform. The calculations have been carried
out for a step excitation since the Gaver-Stehfest algorithm does not work for
non-monotonous excitations. The comparison is shown in Fig. 6.15

6.6 Publications related with the chapter con-
tent

The developments in this chapter follow two lines. The solution of the ther-
mal problem for the simulation and processing of delamination thermograms
in multilayer medium was the subject of the Ph.D. research work of Dr. A.
Ratsakou. The main results concerning the simulation of the direct problem
have been published in [93, 107, 107]. Model based inversion techniques for the
retrieval of the delamination characteristics have been studied in [92]. A shape
reconstruction method of the defect indications in thermograms using the TSR
and the Canny approach has been proposed in [93].

The PECT problem has been treated using the pole extraction method and
the Laplace approach in [85]. A TD version of the spectral approach is proposed
in [108]. The PECT response has been studied for defect characterisation in
steam generator tubes near support plates (a problematic that has been also
studied using harmonic signals) using dimensionality reduction and non-iterative
inversion approaches. The results of the study have been presented in [109].
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Figure 6.14: EMF at the pick-up coil for the exponential pulse. The semi-
analytical results calculated via the TD reciprocity relation are compared
against the FIT results calculated by direct integration of the induced volt-
age (6.52).

Figure 6.15: Comparison of the semi-analytical calculation of the pickup EMF
using the TD and the Laplace domain approach (Stehfest) for a step excitation.



Chapter 7

Mixed spectral-spatial
representations

In chapter 3 we considered pieces whose interfaces are symmetric in two direc-
tions (more precisely along the direction of their principal axes). This property
has been relaxed in chapter 4, where a specific heterogeneity has been allowed in
one of the two principal axes (in form of a finite number of discontinuities, or at
the limit as a continuous material gradient), where the spectral representation
had to be mixed with an 1D spatial discretisation approach in order to construct
the suitable eigenspace. The piece geometry was canonical in both cases.

In the present chapter, we will take a further step towards generality by
removing the restriction of canonical geometries, yet maintaining the assump-
tion of invariance along a given direction. Therefore, all involved pieces will
share the same axis of symmetry with their cross-section being arbitrary. Even
not fully 3D, the considered class of problems proves to be general enough to
be of interest for the vast majority of practical inspection problems. In fact,
the parabolic nature of the field equations, which implies a rapid decrease of
the field intensity away from the illuminating source, makes this assumption a
very good approximation for many 3D pieces, provided that the source physical
dimensions are not large with respect to the piece irregularities. Under these
circumstances, the piece can be considered as approximately invariant at least
along one direction. Since no assumptions are made concerning the geometry
of the source, we shall refer to this class of problems conventionally as problems
of 2.5 dimension (2.5D).

The adopted strategy for tackling these geometries is to mix a fully numer-
ical scheme, in this case the finite integration technique (FIT), with a spectral
representation along the direction of invariance. It turns out that this approach
provides us with certain advantages in terms of computational efficiency and
numerical precision (mesh noise, small lift-off etc.) with respect to full 3D nu-
merical formulations. In addition, following the same line of reasoning with
chapter 5, once base solutions have been constructed for the flawless piece, 3D

135
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defects can be addressed by applying the perturbation approach.
The proposed strategy can be further extended in order to include geometries

comprising pieces with different symmetry axis. These configurations can be
seen as assemblies of coupled sub-problems, and the key tool for their treatment
is the surface equivalence theorem. The coupling being tackled, via an ensemble
of exchange surfaces by virtue of this theorem, the solution to the total problem
is obtained by means of an iterative, Born-type, procedure.

7.1 The Finite integration technique

7.1.1 Maxwell grid equations

In the classical FIT formulation, Maxwell’s equations are discretised using a
pair of mutually orthogonal, staggered grids, referred to as primary grid G and
dual grid G̃, respectively, leading to a system of matrix equations, which form
the state equations of the method.

⌢

hρ

⌢

hz

⌢

hϕ

ρ

z

⌢eϕ
⌢eρ

⌢ez

(b)

⌢

hy

⌢

hz

z

⌢ey

⌢ex

⌢ez
y

(a)

⌢

hx

x

Figure 7.1: FIT dual grid system for the two considered coordinate systems: (a)
cartesian and (b) cylindrical.

The FIT grids G, G̃ have to be structured, in contrast to the finite elements
method, which poses a serious restriction for the choice of possible grid candi-
dates. Practically, this set is limited for the vast majority of problems to grids
conformal with the cartesian and the cylindrical coordinate system, although
most sophisticated grid systems can be envisaged [110,111]. For illustration, in
Fig. 7.1 is shown a cell of the primary G grid for the cartesian and the cylindrical
reference frames and the corresponding allocation of the electric and magnetic
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fields at the grid primitives (edges and facets). It is recalled that according to
the standard FIT conventions, the field-associated state variables are the linear
integrals (potentials) of the electric and magnetic fields ⌢e,

⌢

h along the G and

G̃ edges, and flux-associated state variables are given by the surface integrals
of the corresponding variables

⌢⌢

d,
⌢⌢

b at the G and G̃ facets [112–114]. This is
an important characteristic of the FIT method, i.e. its state variables contain a
part of the grid metric information. In analogy with the field fluxes, the corre-
sponding electric and magnetic currents

⌢⌢

j e,
⌢⌢

jm are also integrated at allocated
at the primary and dual grid facets respectively. Finally, the electric and mag-
netic charge densities are integrated in the primary and dual grid cell volume
delivering the corresponding charge vectors qe and qm as the corresponding
state variables.

As mentioned in the beginning, the application of the above discretisation
scheme to the Maxwell equations, leads to a system of metric equations for the
FIT state variables, the so-called Maxwell grid equations. In their most general
form, the Maxwell grid equations read

C⌢e = − d

dt

⌢⌢

b −
⌢⌢

jm (7.1)

C̃
⌢

h =
d

dt

⌢⌢

d +
⌢⌢

j e (7.2)

S̃
⌢⌢

d = qe (7.3)

S
⌢⌢

b = qm. (7.4)

C, C̃ stand for the discrete topological curl operators applying to the entities
of the primary and the dual grid respectively. They are interrelated via the
duality property C̃ = CT . In the same fashion, S and S̃ matrices form the
corresponding discrete div operators acting upon the two grid-related variables,
and which retain the topological structure of their continuous counterparts,
namely

SC = 0. (7.5)

The analogous relation exists also for the dual-grid operators.

It proves useful to introduce also the discrete grad operatorG, which satisfies
the corresponding vector identity

CG = 0. (7.6)

Notice that S and G are related via G = −S̃T . The identity expressed by
(7.5) guaranties a divergence free electric and magnetic current,

⌢⌢

j e,
⌢⌢

jm in the
absence of free charges as it can be easily shown by direct application in (7.2) and
(7.1) respectively, which is nothing less that the electric and magnetic current
conservation statement.

The above described numerical scheme is completed by the constitutive ma-
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terial relations, which in case of linear materials read

⌢⌢

d = Mε
⌢e (7.7)

⌢⌢

b = Mµ
⌢

h (7.8)
⌢⌢

j ec = Mκ
⌢e (7.9)

where
⌢⌢

j ec gives for the eddy-current contribution to the total electric current
term

⌢⌢

j e, and the diagonal matrices Mε, Mµ
1 and Mκ stand for the electric

permittivity, magnetic permeability and electric conductivity matrices respec-
tively. For a detailed description of their structure and their construction the
reader is referred to [113,114].

The utility of the non-physical magnetic current
⌢⌢

jm and magnetic charge
qm sources has been discussed in the previous chapters. It is recalled that these
sources appear in the Maxwell equations when field discontinuities are intro-
duced in the solution as a result of the truncating the physical domain. They
are useful in the formulation of equivalent problem classes and the construction
of hybrid techniques.

7.1.2 The magnetostatic formulation

The magnetostatic formulation is deduced by eliminating the time derivatives
in the Maxwell grid equations (7.1)-(7.4). In analogy with the continuous case,
we assume a special solution to the inhomogeneous Ampère equation

C̃
⌢

h0 =
⌢⌢

j s (7.10)

where
⌢⌢

j s stands for the source current.
⌢

h0 can be any (physical or non-physical)
solution that satisfies (7.10). A convenient choice would be the magnetic field
solution in the air, as it occurs by application of the Biot-Savart law.

The total magnetic field can thus be written

⌢

h =
⌢

hd +
⌢

h0 (7.11)

with
⌢

hd satisfying a zero-curl condition. Taking advantage of (7.6), we are
allowed to introduce a scalar potential defined via

⌢

hd = −G̃ϕϕϕ (7.12)

which upon substitution to the Gauss equation (7.4) yields the FIT magneto-
static formulation

−SMµG̃ϕϕϕ = qm (7.13)

with the equivalent magnetic charge distribution

qm = −SMµ
⌢

h0. (7.14)
1The magnetic permeability matrix is obtained by the inverse of the reluctivity matrix

Mν = M−1
µ since in the classical FIT formulation the material averaging is carried out for

the reluctivity values.
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7.1.3 The magneto-quasistatic formulation

As mentioned in chapter 2, the magneto-quasistatic formulation is obtained by
assuming that the displacement current is negligible with respect to the ohmic
current, i.e. d

⌢⌢

d/dt ≪ Mκ
⌢e. Eliminating this term from the Maxwell grid

equations and after some manipulations, we obtain the eddy-current equation

C̃MνC
⌢e +Mκ

d

dt
⌢e = − d

dt

⌢⌢

j e − C̃Mν

⌢⌢

jm (7.15)

with the reluctivity matrix Mν = M−1
µ . Equation (7.15) is known as the curl-

curl equation for the magneto-quasistatic regime.

It is perhaps convenient to establish here the link between the electric field
solution described by (7.15) and the magnetic field potential A used in the
semi-analytical formulations discussed in the previous chapters. In case of a 6-
component solution, the magnetic potential formulation does not offer a specific
advantage with respect with the field formulation and hence the corresponding
formulation in the context of a full numerical solution presents merely theo-
retical interest. We shall investigate however this formulation for the sake of
completeness and to establish the analogy with the TREE solutions of the pre-
vious chapters.

Let us first assume the case with zero magnetic sources. The magnetic Gauss
equation reads

S
⌢⌢

b = 0. (7.16)

By virtue of the property (7.5), we can introduce the magnetic vector po-
tential defined via the relation

⌢⌢

b = C⌢a. (7.17)

Note that the potential quantity described by the above definition is integrated
along the primary grid edges as imposed by the appropriate metric considera-
tions.

Equation (7.17) in combination with (7.1) and (7.6) result in the relation

⌢e = − d

dt
⌢a −Gϕϕϕ. (7.18)

The absence of free space charges allows us to ignore the scalar potential
term, as we did for the continuous case, bringing us to write the electric field as
the negative time derivative of the magnetic potential.

In case that magnetic current sources are present, however, neither (7.17)
nor (7.18) are valid. To circumference the problem we follow the same recipe

proposed in section 5.9, i.e. integrate (7.1) in time and solve with respect to
⌢⌢

b

⌢⌢

b = C

− t∫
0

⌢e(τ) dτ

− t∫
0

⌢⌢

jm(τ) dτ. (7.19)
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Obviously (7.19) reduces to (7.17) for vanishing magnetic current. Hence
setting conventionally ⌢e = −d⌢a/dt (7.19) becomes

⌢⌢

b = C⌢a −
t∫

0

⌢⌢

jm(τ) dτ (7.20)

which can be seen as the generalisation of the magnetic potential definition
in the presence of magnetic current sources. Using the above definition the
eddy-current equation for the magnetic potential becomes

C̃MνC
⌢a +Mκ

d

dt
⌢a =

⌢⌢

j e + C̃Mν

t∫
0

⌢⌢

jm(τ) dτ. (7.21)

The harmonic formulation is deduced straightforwardly by setting f(t) =
eiωt and simplifying the time exponential term from both sides. The resulting
expression is given for completeness

C̃MνC
⌢a + iωMκ

⌢a =
⌢⌢

j e +
1

iω
C̃Mν

⌢⌢

jm. (7.22)

Equation (7.22) is the analogue of (5.71).

7.1.4 Coordinate conventions

As mentioned in the beginning of this chapter, we are interested in electromag-
netic inspection problems basically with configurations consisting of a transla-
tionally or rotationally symmetric work-piece and an arbitrary current distribu-
tion. The reason is that, owing to the short-range of the induction field, only
a very narrow fraction of the total piece around the exciting coil is affected.
Since the great majority of the pieces in practical situations are either symmet-
ric or at least possess a large curvature radius in one of their principal axes,
they can be approximated with good accuracy as either translationally or rota-
tionally symmetric. The two cases are conveniently addressed in the context of
the FIT discretisation scheme using a cartesian and a cylindrical grid system,
respectively.

Let y and ϕ be the axis of invariance for the translationally and rotationally
symmetric case, respectively. In order to better exploit the isomorphism of
the transversal plane for the two grid systems, namely the x − z plane for the
cartesian and ρ − z plane for the cylindrical one, a generic coordinate system
(u, v, w) is introduced, which is defined in the following way. Let w be the
symmetry axis in both cases. u and v are assigned to the remaining two axes
in a way that they satisfy the right hand rule, namely û × v̂ = ŵ (and the
thereupon cyclic permutations), where û, v̂, ŵ stand for the unit vectors in
u, v and w direction. Hence we obtain the transformation rule, (x, y, z) →
(u,−w, v) for the cartesian system and (ρ, ϕ, z)→ (u,−w, v) for the cylindrical
one. Using the thus defined coordinate system, the same relations will apply
hereafter indistinguishably for the two symmetries.
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7.2 Equivalent source formulations

According to our basic hypothesis, the current sources are arbitrary with the
only condition they must verify is that they must be solenoidal, namely

∇ · Js = 0 (7.23)

or equivalently in the FIT basis

S̃
⌢⌢

j s = 0 (7.24)

in order to be consistent with the magnetostatic or the magneto-quasistatic
approximation.

In reality, the current sources involved in the majority of practical eddy
current applications are coils of several shapes, which are allowed to change
position and orientation during a scan. The straight forward approach to han-
dle the excitation currents is to project them on the FIT grid system (or the
mixed spatial-spectral basis that will be presented in the following paragraphs).
Nevertheless, this approach has several drawbacks. The direct discretisation is
cumbersome for complicated coil shapes and arbitrary orientations, and the ac-
curacy of the current discretisation is dependent on the grid refinement, which
in addition needs to be adapted at every scan position. Furthermore, we have
to deal with the small coil lift-offs that are relevant in ECT applications.

An elegant way to bypass this problem is to formulate an equivalent problem,
where the current source is taken into account indirectly in a similar way with
what we have done for the construction of spectral solutions. In this way, the coil
field in the air is calculated either analytically by straight-forward evaluation
of Biot-Savart’s integral or via a modal approach as shown in [115], and this
field then is used as an equivalent source for the scattering problem. Beside
the obvious advantages of alleviating the requirements for an adequate grid
resolution, the fact that we are solving for the scattered, instead of the total
field, (in the air) allows us to reduce the size of the computational domain, and
hence the number of degrees of freedom (DOF).

There are two ways of formulating the equivalent problem. Either by using a
perturbation approach, as we did in chapter 5, or by introducing surface sources
according to the Huygens principle [3, 6].

7.2.1 Volume equivalent sources

Let us consider now the auxiliary problem of the coil source in the free-space.
We assume that the computational domain and the thereupon constructed grids
are identical with those of the original problem. The magnetic potential ⌢a0 will
satisfy (

C̃Mν0C+Ag

)
⌢a0(t) =

⌢⌢

j s(t) . (7.25)

where Mν0 stands for the reluctivity matrix of the free-space and Ag is a gauge
matrix whose role is to guarantee the system definitiveness. The gauging of the
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curl-curl equation will be discussed more in detail in a later section. Subtracting
⌢a0 from (7.21) and taking (7.25) into account, we can write(

C̃MνC+Ag +Mκ
d

dt

)
⌢as = −

[
C̃ (Mν −Mν0)C+Mκ

d

dt

]
⌢a0. (7.26)

with ⌢as =
⌢a − ⌢a0 the difference (scattering) field.

Noting that the quantities (Mν −Mν0)C
⌢a0 and Mκ ˙⌢a0 can be viewed as

equivalent magnetic and electric currents, consistent with the grid Maxwell
equations, (7.26) can be written as

(
C̃MνC+Ag +Mκ

d

dt

)
⌢as =

⌢⌢

j e + C̃Mν

t∫
0

⌢⌢

jm(τ) dτ (7.27)

with the electric and magnetic equivalent current

⌢⌢

j e = Mκ ˙⌢a0 (7.28)
⌢⌢

jm = (I−Mµr )
˙⌢⌢
b0 (7.29)

where the definition relation of the magnetic potential (7.17) has been used.
Mµr

:= MµMν0 is the relative magnetic permeability matrix. Equation (7.27)
has exactly the same form with (7.21). The material matrices in both (7.28),(7.29)
denote the difference of the corresponding material coefficient from the air.

In problems involving stationary sources, a further simplification is also pos-
sible if we recall that the magnetostatic formulation in the air implies that
the magnetic vector potential ⌢a0(t) follows instantaneously the current source
variations. Mathematically speaking, this is equivalent with stating that the
spatial and temporal part of the magnetic potential in the air are separable.
Hence, if f(t) denotes the temporal variation of the feed current, one can write

˙⌢a0 = ⌢a0f
′(t) and

˙⌢⌢
b0 =

⌢⌢

b0f
′(t), where ⌢a0,

⌢⌢

b0 stands for the magnetic vector
potential and the magnetic flux solutions for a constant current source and has
to be calculated only once, outside the time-stepping iteration loop.

In the frequency domain, the respective equation for the scattering field
follows the generic expression (7.22) with the equivalent currents

⌢⌢

j e = iωMκ
⌢a0 (7.30)

⌢⌢

jm = iω (I−Mµr )
⌢⌢

b0. (7.31)

7.2.2 Surface equivalent sources: the Huygens principle

An alternative approach for replacing the physical sources is based on the equiva-
lence principle, in particular, the formulation known as the induction equivalent
and has been discussed in section 2.3. The quintessence of the theorem consists
in the introduction of a fictitious closed boundary ∂V , which entirely encloses
the conducting piece, and the subsequent replacement of the initial volumetric
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Js

(a) (b)

n
Je Jm

∂V

(b)

n
Je Jm

∂V

Figure 7.2: Construction of the equivalent problem: (a) original configuration,
(b) equivalent problem with electric and magnetic surface currents. The bound-
ary surface is indicated by the dotted line, and is assumed to be closing in the
infinity.

electric current source by surface electric and a surface magnetic sources on ∂V .
The new problem is equivalent to the original one in the interior of the bound-
ary ∂V , which will be called henceforth as the Huygens surface for brevity. A
schematic representation of the equivalence principle is shown in Fig. 7.2.

Let E0 and H0 be, the electric and magnetic field induced by the current
source in the absence of the work-piece. The equivalent sources are then defined
via the relations

Je = n×H0 (7.32)

Jm = −n×E0 (7.33)

n being the outwards pointing unit normal to ∂V . For the sake of simplicity,
we shall consider only the first equation for a Huygens surface normal to the v
axis, at v = vs. The analysis for the u axis and the magnetic current density is
analogous. The equivalent electric current density obtained by the application
of the definition relation (7.32) reads Je,u(u, v)

Je,v(u, v)
Je,w(u, v)

 =

 Hw(u, vs)
0

−Hu(u, vs)

 δ(v − vS) . (7.34)

The delta function on the right-hand side of the equation stems from the
fact that the equivalent current distribution has by definition zero thickness.
In order to obtain from (7.34) the respective FIT state variables, one needs
to integrate both sides over the corresponding dual grid facets crossed by the
equivalent current 

⌢⌢

j e,u
⌢⌢

j e,v
⌢⌢

j e,w

 =

 ⌢

hw

0
−⌢

hu

 . (7.35)

It should be noticed that in the derivation of the above relation the delta func-
tion removes the integration along v, whereas the remaining integral along the
tangential direction yields the FIT magnetic voltage variables

⌢

h. Repeating the
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⌢⌢

j e

⌢⌢

jm

(a)

⌢e1

⌢⌢

jm

(b)

⌢⌢

j e

⌢e2
⌢e4

⌢e3 +
⌢e0

⌢

h2
⌢

h4

⌢

h1

⌢

h3 +
⌢

h0

Figure 7.3: Realisation of the equivalent sources formulation in the FIT grid: (a)
electric and magnetic current distributions on the surfaces associated with the
primary and dual grid respectively, (b) application of the Faraday and Ampère
laws in a primary and a dual grid cell intersected by the corresponding boundary
surfaces.

same procedure for the other components and for both different orientations of
the Huygens surface, (7.32),(7.33) can be written in a matrix form

⌢⌢

j e = N
⌢

h0 (7.36)
⌢⌢

jm = −N⌢e0, (7.37)

with the matrix operator N being defined as

N =

 0 0 sv
0 0 −su
−sv su 0

 (7.38)

with su = diag [sgn(ni · û)] and ni being the normal to the Huygens surface
vector at the ith grid point.

The above definition of the equivalent currents has been based on the clas-
sical theory of the induction equivalent for the continuous case [3]. The same
relation can be also derived by considering the Maxwell grid equations locally,
at a cell level. Let us consider for example the shaded primary cell in Fig. 7.3.
Application of Faraday’s law in this cell yields

⌢e1 +
⌢e2 − (⌢e3 +

⌢e0)− ⌢e4 = −
⌢⌢

jm (7.39)

where we have split the total electric field at the upper part of the cell to the
source field contribution in the free space ⌢e0 and the scattered field contribution
⌢e3. Bringing the source field term in the right-hand side and taking into account
the Huygens’ surface orientation sv = 1, we obtain

⌢e1 +
⌢e2 − ⌢e3 − ⌢e4 = −

⌢⌢

jm + sv
⌢e0. (7.40)

Repeating the same procedure for all the cells crossing the Huygens surface
and taking into account both possible orientations of the latter we arrive at the
following relation

C⌢e = −
⌢⌢

jm +N⌢e0. (7.41)
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In the same fashion we obtain for Ampère’s law

C̃
⌢

h =
⌢⌢

j e −N
⌢

h0. (7.42)

Comparison of (7.41),(7.42) with (7.1),(7.2) yields the equivalent currents defi-
nition of (7.36),(7.37).

7.3 Modal expansion in the direction of symme-
try

The expressions presented in the previous paragraphs apply to any 3D problem
without any particular assumptions in terms of neither the piece geometry nor
the shape of the current source (provided that they describe a closed circuit).
Nonetheless, as mentioned in the introduction of this chapter, the pieces in-
volved in a large number of practical inspection configurations are, or can be
approximated as, symmetric along one direction. This fact can be exploited
in a non-negligible extent in order to obtain efficient numerical solutions. The
adopted approach follows the same path with the solutions developed in the
previous chapters, that is, a modal projection basis is introduced along the axis
of invariance (which will be assumed being the w-axis henceforth), thus forming
a mixed spatial-spectral formulation.

Adopting again the TREE working assumption, i.e. considering the eddy-
current field negligible at sufficient distances from the source, we truncate the
computational domain at ±L in case of the cartesian system, using a perfectly
electric conductor (PEC) or perfectly magnetic conductor (PMC) condition.
The use of either PEC of PMC termination implies periodicity of the solution
along the truncation direction, which, given a sufficiently large L, does not
introduce significant aliasing in the region of interest, as indicated above.

Making use of the above periodicity and taking into account the invariance
of the geometry along w, we can expand all state variables in terms of an
exponential Fourier series along that direction as follows:

x(u, v, w) =
∞∑

n=−∞
xn(u, v) e

iκnw (7.43)

with κn = nπ/L for translational and κn = n for rotational symmetry, respec-
tively. Practically, the above sum is limited to a finite number of modes N ,
which depends upon the details of the configuration. In most cases, (7.43) con-
verges rapidly, thus a number of modes of a few tens delivers a very satisfactory
precision [29,34,36,39–41].

7.3.1 Discretisation on the transversal plane

For simplicity reasons, we shall focus on the harmonic case for the development
of the basic formulation. Transient solutions can then be constructed upon by
generalising the harmonic formulation.
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We apply the (7.43) expansion to the FIT state variables ⌢e,
⌢

h,
⌢⌢

b,
⌢⌢

j e and
⌢⌢

jm, and we derive the Maxwell grid equations on a FIT grid doublet {G, G̃}
consisting of a single cell along the w direction, centred at w = 0 (cf. Fig. 7.4).
Note here that the variation along the w direction is taken into account by
means of (7.43), the finite cell size ∆w along the w direction, is merely used for
mathematical convenience and numerical stability.

∆w/2

−∆w/2

⌢⌢

bw,l
⌢eu;l

⌢ev;l

⌢⌢

b v;l
⌢⌢

bu;l

⌢ew;l

u

w

v
⌢⌢

bu;l

⌢⌢

b v;l

⌢⌢

bw,l

⌢ew;l

⌢ev;l

∆w/2

−∆w/2⌢eu;l

Figure 7.4: Grid section on the u−w plane for the two coordinate systems. The
⌢eu,

⌢ev and
⌢⌢

bw elements are calculated at the ±∆w/2 positions whereas ⌢ew,
⌢⌢

bu

and
⌢⌢

bv need to be integrated in the [−∆w/2,∆w/2] interval. l stands for the
cell index.

Let us consider the calculation of the state variables at an arbitrary cell i,
whose u−w plane section is shown in Fig. 7.1. For the sake of brevity, we shall
restrict the analysis to the ⌢e,

⌢⌢

b variables only. The same calculations apply for
the remaining variables

⌢

h,
⌢⌢

j e and
⌢⌢

jm.

From the geometry of the grids and the FIT allocation system it is clear that
the ⌢eu,i,

⌢ev,i and
⌢⌢

bw,i elements need to be calculated at w = −∆w/2, which
yields for these variables

{
⌢eu,v;l(−∆w/2)
⌢⌢

bw;l(−∆w/2)

}
=

∞∑
n=−∞

{
⌢eu,v;ln
⌢⌢

bw;ln

}
exp(−iκn∆w/2) . (7.44)

The ew;l element is integrated along the [−∆w/2,∆w/2] integral, which signifies

⌢ew;l(0) =

∞∑
n=−∞

ew;ln

∆w/2∫
−∆w/2

eiκnwdw

=

∞∑
n=−∞

ew;ln∆w sinc(κnw) (7.45)
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In the same fashion we obtain for the
⌢⌢

bu;ln,
⌢⌢

b v;ln fluxes

{⌢⌢

bu;l(0)
⌢⌢

b v;l(0)

}
=

∞∑
n=−∞


∫

∆vl

bu;n(v) dv∫
∆vl

bv;n(u) du

∆w sinc(κnw) (7.46)

with ∆v;l∆w, ∆u;l∆w standing for the respective facets areas. Note that the
metric of the grid is implicitly taken into account via the integration along the
corresponding grid elements. Hence, in the case of a cylindrical grid, the u
integrals are carried out along the corresponding arcs ui∆w (recall that the w
coordinate in the cylindrical coordinate system is the azimuthal angle ϕ).

In order to comply with the ordinary FIT conventions, we define

⌢ew;ln := xw;ln∆w (7.47)

and

⌢⌢

b t;ln :=


∫

∆vl

bu;n(v) dv∫
∆vl

bv;n(u) du

∆w. (7.48)

Notice that the thus defined integrated state variables differ from their exact
values, which are obtained after multiplication with the sinc(κ∆w/2) term. The
reason for this definition (which has however no impact to the accuracy of the
method) is the elimination of the sinc(.) terms from the discrete equations. Once
the values of the integrated variables are known, we can obtain at any moment
the exact value by restoring the sinc(κ∆w/2) term.

Using the above conventions, the Maxwell grid equations take the following
form in the spatial-spectral domain

(Ct + iαnJ)
⌢e = −iω

⌢⌢

b −
⌢⌢

jm (7.49)(
C̃t + iαnJ

)
⌢

h =
⌢⌢

j e (7.50)(
S̃t + iαnE

)
⌢⌢

d = qe (7.51)

(St + iαnE)
⌢⌢

b = 0 (7.52)

with αn = κn∆w. Ct and St stand for the transversal curl and div primary gird
operators, given by

Ct =

 0 0 Pv

0 0 −Pu

−Pv Pu 0

 (7.53)

and

St =
(
Pu Pv 0

)
(7.54)

whereas J and E are unit matrices

J =

0 −I 0
I 0 0
0 0 0

 (7.55)
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and
E =

(
0 0 I

)
(7.56)

and Pu,v submatrices stand for the discrete differentiation operators along the
two coordinate axes of the u − v plane. Their detailed expressions are given
in [113]. The corresponding relations for the dual-grid matrices are obtained by
applying the duality principle given above. Since the spatial dependence along
the normal w axis has been absorbed by the modal expansion terms, there is no
need to refer to the initial single w-cell 3D grid, the planar grid system depicted
in Fig. 7.5 being more appropriate for the analysis.

⌢⌢

bu

⌢⌢

bv

⌢⌢

bw

u

v

⌢ew
⌢eu

⌢ev

Figure 7.5: Two dimensional grid on the u − v plane after application of the
modal expressions.

Eliminating
⌢

h,
⌢⌢

b from the Maxwell grid equations (7.49),(7.50) taking into
account the constitutive relations (7.8),(7.9) yields the following discrete curl-
curl equation for the mode n

(An + iωMκ)
⌢en = −iω

⌢⌢

j e,n −
(
C̃t + iαnJ

)
Mν

⌢⌢

jm,n. (7.57)

with

An = C̃tMνCt + iαn

(
C̃tMνJ+ JMνCt

)
− α2

nJMνJ. (7.58)

Recall that no matter which equivalent source definition we use (volume or
surface equivalent currents), their modal projection is algorithmically very easy
since no geometrical considerations due to the current support along the modal
axis w are needed (the projection integral is a simple integral that spans the
entire computational domain [−L,L] or [0, 2π]).

It is interesting to derive the explicit formulations of the different matrix
terms in the curl-curl equation (7.57) in order to get insight to the physical
interpretation of the different terms. Hence, one can show

C̃tMνCt =

 PT
v MwPv −PT

v MwPu 0
−PT

uMwPv PT
uMwPu 0

0 0 PT
v MuPv +PT

uMvPu

 (7.59)
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C̃tMνJ+ JMνCt =

 0 0 MvPu

0 0 MuPv

PT
uMv PT

v Mu 0

 (7.60)

and

JMuJ = −

Mv 0 0
0 Mu 0
0 0 0

 . (7.61)

whereMu,Mv andMw are the submatrices of the inverse magnetic permeability
(reluctivity) matrix along the u, v and w directions, respectively. The two non-
zero clusters lumped around the main matrix diagonal in (7.59) and (7.61)
stand for the TEw and TMw parts of the curl-curl operator. The TEw and
TMw solutions are coupled via the (7.60) matrix. Clearly for an = 0, the two
solutions are independent, which reproduces the theoretical result of the TEw

and TMw uncoupling in the 2D case.

7.3.2 Gauging

When applied to non-conducting regions, (7.57) leads to non-unique solutions
since any term of the form −Gψ, with ψ an arbitrary scalar potential, belongs
to the null-space of the curl-curl operator, as it can be easily verified using
the identity (7.6). This is a well-known issue in low-frequency electromagnetic
problems, and a number of different gauging strategies have been proposed in
the literature to address it, the tree-cotree formulation being a well established
techniques [116,117]. Yet, the matrix structure of the FIT discretisation scheme
offers a simple way of gauging, based on the subtraction of a rotational-free
operator, which offers the additional advantage of a direct physical interpreta-
tion [118]. A more elaborated scheme, better suited for the quasistatic regime,
has been proposed by Clemens et al. [119,120] for the FIT formulation, where a
similar approach with the one proposed by Bossavit for the FEM method [121]
is adopted. It is interesting to note the that in the air regions, the previous
approach reduces to a regularisation term similar to the one proposed by Biro
and Preis [122].

In this work, a simplified version of the regularisation matrix of [119,120] has
been used, in the sense that the gauging matrix is restricted in the air-regions
(which makes it also equivalent with that of [122]) and by the substitution of the
therein defined scaling matrix M2 by a scalar coefficient equal to its minimum
value, namely

g =
r

µ0ε20 maxDṼ

MεGS̃Mε (7.62)

with DṼ standing for the diagonal matrix of the dual cells volumes and r being
an optional relaxation factor (in this work we set r = 1). Note that the 1/µ0ε

2
0

factor scales the matrix values to the free-space reluctivity (in accordance with
[122] and [119, 120]), the Mε term on the left realises the mapping of electric
voltages to the electric flux density and hence assures the metric consistency,
and the Mε factor on the left restores the symmetry of the matrix. Finally,
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the cell volume factor balances the gauge term metric with that of the curl-curl
matrix.

Substituting (7.54) and taking into account the definition of G, the grad-

div operator GS̃ can be decomposed in three terms in the same fashion with
curl-curl operator

GS̃ = −S̃T
t S̃t − iαn

(
S̃T
t E+ET S̃t

)
− α2

nE
TE (7.63)

with the submatrices GtS̃t, GtE+ET S̃t and ETE given by

S̃T
t S̃t =

PuP
T
u PuP

T
v 0

PvP
T
u PvP

T
v 0

0 0 0

 (7.64)

S̃T
t E−ET S̃t =

 0 0 Pu

0 0 Pv

PT
u PT

v 0

 (7.65)

and

ETE =

0 0 0
0 0 0
0 0 −I

 . (7.66)

7.3.3 Parity decomposition

Up to now, the properties of the solution along the symmetry axis w were
not discussed. In fact, the geometry being invariant along this direction by
hypothesis, the solution profile can have (or does not have) a specific parity,
something that will be determined by the parity of the excitation itself.

The parity of a given state variable is determined upon application of the
space inversion operator P̂w, namely

P̂wx(e/o)(w) = ±x(e/o)(−w) . (7.67)

The parity operator should not be confused with the propagator operator de-
fined in chapter 3. Solutions with given parity (odd or even) are eigensolutions
of the parity operator, and the sign in (7.67) is the corresponding eigenvalue. It
is easily understood that the presence of parity is equivalent to a Dirichlet/Neu-
mann boundary condition at the w = 0 plane. In fact, this is the way that one
would produce solutions of a given parity if one worked directly in the spatial
domain.

It is well known that any arbitrary function can be written as the sum of
an even and an odd function, or more formally stated, decomposed in the two
parity states

x(w) =
1

2
[x(w) + x(−w)] + 1

2
[x(w)− x(−w)] . (7.68)
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This signifies that we can focus on the study of the two parity states, the results
being directly applicable to any arbitrary solution.

Since the parity is assigned to a given component (tangential and normal to
the w plane components admit opposite parities), the term is ambiguous unless
we adopt a clear convention for naming the parity of the solutions. Hence, we
associate the parity of a given solution to the one of the ⌢aw compo-
nent. For example, even parities solutions will dispose even ⌢aw and odd ⌢au,v

fields.

±I

I

±I

II

w = 0

Figure 7.6: Typical coil arrangements producing even/odd parity solutions. In-
phase currents produce even parity fields, whereas opposite currents are respon-
sible for odd parity solutions.

From the practical point of view, even parity solutions follow naturally by
symmetric coil configurations, such as the cylindrical coils, D-coils, etc. without
tilt around the u or w axis and equal and in-phase feed current, as depicted
in Fig. 7.6. Odd parity solutions are obtained by symmetric configurations
with 180◦ phase difference between the elements across the w-plane (differential
connection). Unbalanced current feeds or the presence of tilt produce in general
solutions without specific parity.

From the properties of Fourier series, it turns out that the parity transfor-
mation is equivalent to inverting the sign of n, namely

x(u, v,−w) =
∞∑

n=−∞
xn(u, v) e

−iκnw =

∞∑
n=−∞

x−n(u, v) e
iκ−nw. (7.69)

To examine the behaviour of the solutions to n inversion, we write the state
equation in the following form(

ATE − α2
nD iαnC

T

iαnC ATM + α2
ngI

)(
⌢aTE
n

⌢aTM
n

)
=

(
qTE
n

qTM
n

)
(7.70)

where

ATE =

(
PT

v MwPv − gPuP
T
u −PT

v MwPu − gPuP
T
v

−PT
uMwPv − gPvP

T
u PT

uMwPu − gPvP
T
v

)
+ iω [Mκ]uv (7.71)

ATM = PT
v MuPv +PT

uMvPu + iω [Mκ]w (7.72)

C =
(
PT

uMv − gPT
u PT

v Mu − gPT
v

)
(7.73)

D =

(
Mv 0
0 Mu

)
(7.74)
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and
qn = −iω

⌢⌢

j e,n −
(
C̃t + iαnJ

)
Mν

⌢⌢

jm,n (7.75)

with TE/TM signifying the first 2N and the last N elements of the vector.
Removing the iαn from the off-diagonal terms (7.70) can be also written(

ATE − α2
nD CT

C α−2
n ATM + gI

)(
⌢aTE
n

−iαn
⌢aTM
n

)
=

(
qTE
n

qTM
n /iαn

)
. (7.76)

The system matrix is invariant under the transformation αn → −αn (or
equivalently n→ −n), which implies that the system can be solved once. Now
assume an excitation of a given parity p = ±1

P̂

(
qTE
n

qTM
n /iαn

)
=

(
qTE
−n

−qTM
−n /iαn

)
=

(
pqTE

n

−(−p)qTM
n /iαn

)
= p

(
qTE
n

qTM
n /iαn

)
(7.77)

where we have used the fact that the tangential and the normal components
have opposite parities. Since the system matrix is invariant under the same
transformation, we can easily deduce that

P̂

(
⌢aTE
n

⌢aTM
n /iαn

)
= p

(
⌢aTE
n

⌢aTM
n /iαn

)
(7.78)

which means that we can spare the computation for negative n. Again, this
economy in computational effort corresponds the respective reduction of the
DOF achieved in spatial domain by truncating the domain at w = 0 and apply-
ing the suitable boundary condition.

Things are less evident in case of the absence of a specific parity. The solution
can still be expressed as the sum of an even and an odd parity solution, as stated
above, hence since the computation has to be carried out twice, this operation
seems to cancel the gain by dropping the negative n evaluations. Yet, one has
to recall here that due to the reduction of the problem (spatial) dimensions
(and correspondingly the spatial mesh) from 3 to 2, LU factorisation is in the
grasp of the computational resources of any average workstation. Combined
with the system invariance under parity transformations, this signifies that the
computational burden is less than solving the problem for 2n right-hand-sides.

7.4 Calculation of the impedance variation

The self and/or mutual impedance calculation is by far the most important
scalar observable in NDT applications, and as such one needs to address its
calculation as it was the case in the development of spectral solutions. Clearly,
being principally an integral of the electric field along the coil windings, it
admits a straight-forward deduction from the field solution. With the use of the
reciprocity theorem, one can derive a much more elegant and computationally
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efficient way of evaluation, also in the context of the mixed spatial-spectral
formulation developed herein.

In section 7.2 two alternative ways of accounting for the primary field (the
field of the driving coil in the air), based on the surface and volume equivalence
theorem, have been presented. As the reciprocity theorem involves integration of
the primary field, it is understood that one should switch between the surface-
integral-based version of the reciprocity theorem examined in chapter 3 and
chapter 4 and the volume-integral-based calculation presented in chapter 5.

We shall begin the analysis by considering the first case, that is by assuming
that the primary field is accounted via the introduction of equivalent sources on
a suitable exchange surface. We shall consider for simplicity a two coil probe in
driver-pickup configuration. The mutual impedance of the two coils is given by
(2.68)

∆Z(rs) =
1

ITxIRx

∮
Sexc

[ERx;p ×HTx −ETx ×HRx;p] · ndS (7.79)

where it is recalled that ERx;p and BRx;p stand for the primary electric and
magnetic field produced by the receiver coil Rx which is fed with current IRx

(ITx = 0) and ETx,BTx is the field solution obtained when the transmitting
coil is fed with current ITx (IRx = 0). The integration exceeds the exchange
(Huygens) surface Sexc illustrated in (7.3). The unit vector n stands for the
outward normal to the surface Sexc. In fact, in order to avoid numerical issues
it is safer to shift the integration surface one grid cell apart from the Huygens’
surface. Applying the circular shift rule of the scalar triple product, (7.79) can
be written as

∆Z(rs) =
1

ITxIRx

∮
Sexc

[(n×ERx;p) ·HTx + (n×HRx;p) ·ETx] dS, (7.80)

which taking into account the equivalent current definition relations (7.32),(7.33)
becomes

∆Z(rs) =
1

ITxIRx

∮
Sexc

(Jm ·HTx − Je ·ETx) dS. (7.81)

Application of (7.81) into FIT grid space and taking into account the decom-
position along the w direction (7.43) yields

∆Z(rs) =
1

ITxIRx

N∑
n=−N

(
⌢⌢

j
T

m,−n

⌢

hn −
⌢⌢

j
T

e,−n
⌢en

)
, (7.82)

where ⌢en,
⌢

hn are the electric and magnetic grid voltages obtained for the mode
n, respectively, and

⌢⌢

j e,−n,
⌢⌢

jm,−n stand for the equivalent electric and magnetic
currents at the Huygens surface for the mode −n. The above equation is nothing
more than Parserval’s theorem in the discrete FIT solution space.
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In case of volumetric equivalent sources, the integration over the Huygens
surface has to be replaced by the volume integral throughout the sources support
leading in the same relation with (5.65) in section 5.7

∆Z(rs) =
1

ITxIRx

∫
Vsrc

[Jm ·HTx − Je ·ETx] dV
′ (7.83)

which projected onto the FIT grid space will result in the same relation with the
Huygens sources approach (7.82), where

⌢⌢

jm,−,
⌢

hn are obtained by (7.28),(7.29).

7.5 Numerical results

7.5.1 Comparison with reference results and performance
studies

The numerical performance of the proposed formulation is tested by solving
the problem of the eddy current inspection of a conducting piece near a dis-
continuity. Two different configurations are considered, which correspond to
the two symmetries of interest: an infinitely long plate edge (with translational
symmetry) and a cylindrical borehole (rotationally symmetric).

The first inspection scenario is depicted in Fig. 7.7. The considered config-
uration is the same with the one examined in [41], whose results were taken as
a reference. The piece is considered infinite along the parallel to the edge direc-
tion, and its thickness is assumed several times greater than the skin depth at
the operating frequency such that the interaction of the induced currents with
the lower interface is negligible.

(a)

h

σ, µ0

ρi

ℓxc

ρo

y

O

(b)

Figure 7.7: Plate edge inspection with a cylindrical coil: (a) 3D view (b) cross-
section.

The piece has a conductivity equal to σ = 35.4 MS/m and is assumed to be
non-magnetic. The coil inner and outer radius is ρi = 5 mm and ρo = 10 mm,
respectively, its length is h = 5 mm and is wound with N = 2500 turns. The
coil is moving parallel to the piece’s surface at a constant lift-off equal to 2 mm.
The inspection is carried out at a frequency equal to f = 1 kHz, which upon
application of the relation (5.67) for the skin depth in a half-space yields a
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skin depth of the order of δ = 2.675 mm. The piece thickness is taken equal
to 10 mm, which makes approximately 4 times the skin depth value, hence it
satisfies the half-space approximation.

The results for the probe impedance variation ∆Z = Z−iX0, where Z is the
coil impedance and X0 stands for the free-space reactance, are compared with
the semi-analytical calculations presented in [41] and with 3D FEM simulations
carried out using the COMSOL platform [123]. The comparison for the real
and imaginary part of ∆Z as a function of the coil displacement xc are shown
in Fig. 7.8. For the sake of numerical convenience, both results have been
normalised with X0, which for the given coil geometry and inspection frequency
is equal to X0 = 500.51 Ω.

Figure 7.8: Real ∆R and imaginary part ∆X of the coil impedance variation as
a function of its xc position (scan displacement). The solid line stands for the
results obtained using the presented mixed spatial-spectral approach (referred to
as FIT 2.5D), whereas the dotted line represents the semi-analytical (reference)
solution. Both results are normalised with respect to the coil free space reactance
X0.

For the specific example, a discretisation with 178705 grid nodes and 10
modes along the symmetry axis has been applied. The total calculation for a
number of 30 scanning positions reached 351 s, which makes coarsely 12 s per
scan point in an average PC with an Intel(R) Core(TM) i7-8850H processor at
2.6 GHz and 32 GB of RAM. For comparison, the corresponding computation
time for the 3D FEM solution reached 3925 s in total, which yields 131 s per
position. The FEM mesh comprised 516353 DOF.

It should be noticed at this point that the reduced size of the FIT system
of (7.57), consequence of restricting the spatial discretisation in the transversal
u− v plane, allows us to apply the LU decomposition for the matrix inversion.
The benefit of using a direct solver is that one can treat more than one scan
point simultaneously. It is recalled here that each scan point requires the solu-
tion of a new numerical problem since the source term at the right-hand side
is different. This is a particularly important feature for applications involving
moving sources as is the case for eddy-current nondestructive simulations. A
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second advantage of this decomposition, in combination with the indirect mod-
elling approach of the sources via the application of the Huygens principle, is
that there is no need to re-mesh the problem for each coil position. The source
is always represented by the equivalent current distribution on the Huygens sur-
face, which itself does not move. Practically, there is an upper limit concerning
the number of scan points that can be treated simultaneously, which is dictated
by the available memory.

The second problem deals with the eddy-current testing of a cylindrical hole
in a conducting, non-magnetic half-space, as shown in Fig. 7.9. The geometry
of the piece is this time rotationally symmetric. The considered configuration
is the one proposed in [124]. The piece conductivity is taken equal to σ =
24.36 MS/m. The coil dimensions in this case are ρi = 6.95 mm, ρo = 9.35 mm
and h = 6.7 mm and its number of turns is N = 335. The coil scans the tube
at a constant radial position equal to ρc = 5.63 mm with its axis being normal
to the tube walls. The inspection frequency is f = 10 kHz, which implies a
skin depth equal to δ = 0.32 mm. As underlined in the previous example,
the thickness of the conducting part along the radial direction should be taken
several times greater than δ in order to satisfy the assumption of an infinitely
thick piece. For the present calculation, the piece thickness was taken equal to
80 mm, which largely satisfies the above constraint.

(a)

σ, µ0

ρi

z

ρo

h

ρc

zc

(b)

Figure 7.9: Plate edge inspection with a cylindrical coil: (a) 3D view (b) cross-
section.

The comparison of the calculated probe impedance variation ∆Z with the
experimental results provided in [124] is given in Fig. 7.10. Both results are nor-
malised with respect to the free space reactance, which for the given inspection
frequency reads X0 = 110.08 Ω.

The numerical results of Fig. 7.10 were obtained using the same computer
as for the previous example. The spatial mesh consisted of 2.8 105 nodes and 15
modes were considered for the spectral representation in the azimuthal direction.
The total calculation time for 15 scanning positions was 832 s.
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Figure 7.10: Calculated results for the real and imaginary part of the coil impe-
dance variation along the scan line vs. measurements. The solid line represents
the numerical results obtained with the spatial-spectral approach (FIT 2.5)
whereas then circular marks stand for the measurements.

7.5.2 Performance considerations

The overall computational burden of the solution (if we neglect the time needed
for the computation of the material matrices and the system assembly) is mainly
determined by the number of nodes in the discretisation u− v plane, 3Nd, the
number of modes along the symmetry axis, Nm, and the number of right-hand-
side vectors (i.e. the number of independent sources and/or the positions in the
case of a moving source), Ns.

Since the solution for each mode is independent from another, the computa-
tion time scales linearly with the number of considered modes, Nm, if the system
is inverted using a single-core machine. Passing the system to a CPU/GPU par-
allel architecture, a speed-up equal to the number of parallel processes, with a
theoretical maximum the number of modes, Nm, can be achieved.

The scaling with respect to the other two parameters, namely the nodes of
the 2D grid, Nd, and the number of sources, Ns, is determined by the corre-
sponding scaling factors for the LU decomposition for sparse systems, and it is
less trivial to determine theoretically since it depends on a number of factors,
among them on implementation details. We can use the known formulas for
a full systems in order to set an upper limit of the computation time of the
method and use this formula as a guideline for the derivation of a heuristic
approximation based on numerical experiments.

Assuming thus that the system was fully populated, the computational time
per mode would be given by the following formula

Tsim/Tf = 2/3N3
d + 2N2

dNs (7.84)

where the first term gives the number of operations for the system factorisation,
the second term is the respective number for the forward and backward substi-
tution and Tf stands for the CPU time per flop, which is machine dependent.
Based on this relation, we may anticipate that the real computational cost for
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the system at hand should admit an exponential dependence of the general form

Tsim/Tf = aNα
d + bNβ

dNs (7.85)

with a, b constants and α, β exponents that need to be determined, and which
we expect to lie in the intervals 1 ≤ α < 3 and 1 ≤ α < 2. In order to come to
an estimation of their specific values, the first problem of the previous section,
i.e. the scanning coil over the half-space edge, has been solved for a different
number of grid nodes and the computation time needed for the system inversion
has been measured (the CPU time needed for the construction of the system
and the post-processing is not taken into account here). The corresponding
plots for different grid sizes and different numbers of coil positions is shown in
Fig. 7.11. The computation time is a linear function of Ns, as expected. All
computations have been carried out for a constant number of modes Nm = 10.

Figure 7.11: Computation time as function of the number of scan positions
for a number of different grid resolutions. The computation time scales almost
linearly with the size of the problem as the linear fit results confirm (dashed
lines). The considered number of modes is Nm=10.

Calculating the best linear fit to the different datasets, and assuming the
dependence of (7.85), we can associate the constant term of the fitted polyno-

mials to aNα
d , whereas the linear term coefficients are associated to the bNβ

d .
The variation of the two coefficients versus Nd in logarithmic scale is shown in
Fig. 7.12.

The slope of the two lines in the logarithmic scale will yield the sought
approximation of the α and β exponents. We thus finally obtain for the com-
putational cost the following approximation

Tsim/Tf =
(
aN1.14

d + bN1.16
d Ns

)
Nm. (7.86)

It must be underlined that the above procedure has been entirely based on a
particular example, and it can by no means claim being a rigorous and general
method for the derivation of the scaling of the computational time with the
solution parameters. It can rather serve as an indicator of the true behaviour.
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Figure 7.12: Coefficients of the fitted polynomial for the curves of Fig. ?? as
function of the grid size Nd. The dotted line stands for the best polynomial fit
in the logarithmic space.

It should be however noticed that a similar trend has been observed for other
cases as well. The main conclusion of this study is that the dependence of the
computation time is almost linear to the size of the 2D meshNd and proportional
to Ns and Nm.

7.6 The time-domain formulation

The extension of the previous formalism in the time domain for the calculation
of the transient response is quite straight-forward. Starting point will be the
diffusion equation in its general form (7.21) with the electric and magnetic
sources defined by (7.28),(7.29) or (7.36),(7.37). Note that although the Laplace
transform (LT) approach is also applicable here, we shall continue with direct
time-integration using time-stepping schemes as in section 6.3, for the same
reasons presented there.

Following the established approach, we sample the time axis using a uniform
temporal grid tj = j∆t, j = 0, 1, . . . with ∆t being the discretisation step and
discretise the temporal derivatives using a suitable differentiation scheme. The
choice of uniform temporal discretisation is not solely driven by the sake of
simplicity considerations but also from performance consideration for reasons
that will be explained below. There exists a plethora of different methods (recall
that we are interested here solely in implicit schemata due to the parabolic
nature of the eddy-current problem) such as backward differentiation formulae
(BDF), implicit Runge-Kutta of various orders [77,95–98], but we shall restrict
ourselves hereafter with the BDF schemes of first and second order, referred
to as BDF1 and BDF2, respectively, since they are largely sufficient for our
purposes. The following discussion, however, can be easily extended to include
other schemes as well.

The discretisation of an ordinary differential equation of first oder given by
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the generic formula
y′ = f(t, y) (7.87)

using the BDF1 and BDF2 under a uniform temporal grid leads to the following
iterative schemata

yj − yj−1 = ∆t(tj , yj) (7.88)

and

yj −
4

3
yj−1 +

1

3
yj−2 = ∆t(tj , yj) (7.89)

respectively.
Application of (7.88) into the diffusion equation (7.27) yields for the BDF1

(
C̃MνC+

1

∆t
Mκ

)
⌢aj =

1

∆t
Mκ

⌢aj−1 +
⌢⌢

j e;j + C̃Mν

tj∫
0

⌢⌢

jm(τ) dτ. (7.90)

The corresponding expression for the BDF2 reads

(
C̃MνC+

3

2∆t
Mκ

)
⌢aj =

2

∆t
Mκ

⌢aj−1−
1

2∆t
Mκ

⌢aj−2+
⌢⌢

j e;j+C̃Mν

tj∫
0

⌢⌢

jm(τ) dτ.

(7.91)
Projection (7.90) onto the spectral basis in the symmetry direction w yields

(
An +

1

∆t
Mκ

)
⌢anj =

1

∆t
Mκ

⌢an(j−1) +
⌢⌢

j e;nj +
(
C̃t + iαnJ

)
Mν

tj∫
0

⌢⌢

jm(τ) dτ.

(7.92)
whereAn is the sum of the the projected curl-curl matrix given by (7.58) and the
gauge matrix (7.63). The expression for the BDF2 scheme follows respectively.

Equation (7.92) describes a double loop over the mode number in w and the
time-step. A closer look at the system matrix reveals that the system matrix
we have to invert is independent from the time step. Taking into account the
orthogonality of the w modes, we can interchange the order of the loops, namely,
we can integrate each mode separately, which gives us a huge advantage in terms
of computational efficiency. Indeed, as already mentioned for the FD case, the
projected matrices An are two-dimensional, which implies that their size for
standard grid resolutions allows to factorise them using an LU method, and use
this factorisation for the entire integration time.

The source terms
⌢⌢

j e,
⌢⌢

jm have been deliberately left unspecified up to now.
Since in general the source displacement is performed at speeds of several mm/s

in typical inspection scenarios,
⌢⌢

j e,
⌢⌢

jm can be considered as approximately sta-
tionary even for vary low-frequency excitations. Should this be the case, the
field solution in the air can be approximated by the tensor product of the mag-
netostatic field with the current waveform. Since the free-space solution serves
then as basis for the definition of the equivalent sources, this approximation
result in significant optimisation of the

⌢⌢

j e,
⌢⌢

jm evaluation.
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Let ⌢a0,
⌢⌢

b0 be the magnetostatic solution for the integrated magnetic vector
potential and the magnetic flux and I(t) the waveform of the feed current in
the excitation coil. Recalling the volume equivalent sources definition (the same
arguments apply also for the surface equivalence), one can write

⌢⌢

j e(t) = Mκ
⌢a0İ(t) =

⌢⌢

j eİ(t) (7.93)
⌢⌢

jm(t) = (I−Mµr
)

⌢⌢

b0İ(t) =
⌢⌢

jmİ(t) (7.94)

where under
⌢⌢

j e,
⌢⌢

jm is understood the spatial profile of the (stationary) currents.
Substituting (7.93),(7.94), (7.92) becomes

(
An +

1

∆t
Mκ

)
⌢anj =

1

∆t
Mκ

⌢an(j−1) +
⌢⌢

j e;n0İn +
(
C̃t + iαnJ

)
Mν

⌢⌢

jmIn.

(7.95)
For the derivation of the last relation a zero-initial-value for the field solution
has been assumed. Note that the current derivative sample İn can be calculated
analytically. This latter form of (7.92) is very convenient since it requires a single
solution of the magnetostatic problem of the field in the air (which in addition
can be carried out analytically by Biot-Savart integration) in the beginning of
the time loop, which is then multiplied by the time sample of the current signal
and its time derivative.

To calculate the EMF we need to evaluate the convolution integral (6.43).
This is translated to storing the field solution for every time step and every mode
and then proceed to the numerical integration, which is resource consuming. A
more elegant approach would be to calculate the solution for a step excitation
and retrieve the EMF for the required input waveform by evaluating Duhamel’s
integral as we did in section 6.4 for the spectral method.

The FIT analogue of (6.44) for the EMF variation reads

∆Vj =

N∑
n=−N

(
⌢⌢

j
T

m,−n

⌢

hnj −
⌢⌢

j
T

e,−n
⌢enj

)
. (7.96)

The integrated EMF value is obtained by evaluating the sum

sj =

j∑
k=0

∆Vj∆t. (7.97)

The sought EMF variation will be obtained by applying (7.97) into (6.47)
as we did for the spectral solution.

The overall solution algorithm is explained in form of a pseudo-code in Alg. 1.
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Algorithm 1 Time integration algorithm for the FIT 2.5D scheme

for n← 0 to Nn do ▷ Coil in air
Evaluate

⌢⌢

j e;n,
⌢⌢

jm;n

end for
for n← 0 to Nn do ▷ Field calculation

⌢an0 ← 0
An ← LU
for j ← 1 to Nj do

Solve Ux = ⌢an(j−1) +
⌢⌢

j e;nİj + C̃Mν

⌢⌢

jm;nIj
Solve V⌢anj = x

∆Vj ← ∆Vj +
⌢⌢

j
T

m,−n

⌢

hnj −
⌢⌢

j
T

e,−n
⌢enj

end for
end for
s0 ← 0
for j ← 1 to Nj do ▷ Convolution

sj ← sj−1 +∆Vj

∆Vj ←
j−1∑
k=0

sk

(
İj−k−1 − İj−k

)
− sj İ0

end for

7.7 The FIT formulation for the heat equation

7.7.1 Discrete heat equation

For the derivation of the discrete heat equation we consider first the energy
conservation law (2.70) integrated in an arbitrary volume V∫

V

ρcP
∂T

∂t
dV =

∫
V

∂Qs

∂t
dV −

∮
∂V

J · dS (7.98)

where ρ is the mass density of the material (in kgm−3), cP is the specific heat
capacity (in J kg−1K−1), T the absolute temperature (in K), Qs the volume
density of the heat source (in J kg−1), and J is heat flux density vector (in
W m−2). The latter is related to the temperature field by Fourier’s law

J = −κ · ∇T (2.71)

with κ being the thermal conductivity tensor of the material (in W m−1K−1).
For the sake of simplicity we shall restrict the analysis to materials with a diago-
nal tensor (otherwise stated, we assume that the principal axes of the anisotropy
ellipsoid coincide with the axes of the working reference frame (u, v, w), an hy-
pothesis that can be satisfied in a number of cases with a judicious choice of the
FIT frame).

Let us now apply a FIT dual grid system in the solution domain as shown
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⌢⌢

j x

⌢⌢

j z

⌢⌢

j y

θθθ,q

Figure 7.13: Allocation of the state variables on the FIT dual grid system.

in Fig. 7.13. Application of (7.98) in a cell volume of the dual grid yields

∂

∂t

∫
Ṽi

ρcPTdV =

∫
Ṽi

Q̇sdV −
∮

∂Ṽi

J · dS. (7.99)

Furthermore, we integrate (2.71) over the oriented flux tube connecting the i
with the j node (i < j)∫

Li

κ−1dl

∫
Ãi

J · dS =

∫
Ãi

T(x) dS −
∫
Ãj

T(x) dS. (7.100)

Li is the primary grid edge element binding the i with the j node, and Ãi is
the dual grid facet element, which contains the i node and points towards the
xj − xi direction (parallel to Li).

We develop T and J in Taylor series around the centre of the primary grid
cell xi

T(x) = T(xi) + ∇T |xi
·∆x+ O

(
∆x2

)
(7.101)

J(x) = J(xi) + ∇J|xi
·∆x+ O

(
∆x2

)
(7.102)

which upon substitution in (7.99),(7.100) and keeping only the leading term
yields

∂Ti
∂t

∫
Ṽi

ρcP dV ≈
∫
Ṽi

Q̇sdV −
∮

∂Ṽi

J · dS. (7.103)

∫
Ãi

Ji · ds
∫
Li

κ−1dl ≈ (Ti − Tj)∆Ãi (7.104)
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where Ti = T(ri) and Ji′ = J(ri′), and ∆Ai′ stands for the oriented surface
element. Note that in case that the material inside the dual cell and along
the edge is homogeneous, the order of the approximation is 2 (the first order
term vanishes after the integration since it is antisymmetric with respect to the
development point).

Let us now define the discrete state variables

θi := Ti (7.105)

⌢⌢

j i :=

∫
Ãi

J · dS (7.106)

qi :=

∫
Ṽi

Q · dV (7.107)

as well as the material matrices

MC := diag

∫
Ṽi

ρcP dV

 , i = 1, 2, . . . (7.108)

M−1
κ := diag

∆Ã−1
i

∫
Li

κ−1dl

 , i = 1, 2, . . . (7.109)

Applying (7.103),(7.104) at all dual cells and primary edges and making use of
the FIT topological matrices for the description of the grad and div discrete
operators, we arrive at the following set of grid equations

MCθ̇θθ = q̇− S̃
⌢⌢

j (7.110)

M−1
κ

⌢⌢

j = −Gθθθ. (7.111)

Elimination of the heat flux leads us to the discrete heat conduction equation

S̃MκGθθθ −MCθ̇θθ = −q̇. (7.112)

Equation (7.112) expresses the heat equation in a standard 3D FIT grid
system. Note the formal similarity with the magnetostatic equation (7.13) apart
from the temporal derivative term. The reformulation of the spatial 3D form
in the mixed 2.5D scheme is straight forward. Introducing the (7.43) expansion
for the temperature θθθ and the source variables q and taking into account the
expression (7.54) as well as the property G = −S̃T , (7.112) becomes[

S̃tM
T
κGt − α2

nM
N
κ −MC

d

dt

]
θθθn = −q̇n (7.113)

where MT
κ and MN

κ are the coplanar and and normal thermal conductivity com-

ponent submatrices and S̃t,Gt stand for the topological operators projection in
the discretisation plane defined in section 7.3.

The time integration of (7.113) follows the same pattern as for the eddy-
current problem given in section 7.6.
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7.7.2 Convection and radiation terms

In the derivation of the heat equation in (2.73) and (7.112), only the conduction
mechanism expressed by the Fourier law (2.71) has been taken into account.
The two remaining mechanisms of heat propagation, namely radiation and con-
vection have been ignored. Although the former is practically taken into account
a-posteriori for the translation of the IR image to the temperature of the emit-
ting surface (usually this translation is carried out via a suitable calibration),
it does not contribute to the heat evacuation from the piece during the solution
of the heat equation. The second mechanism, however, can be non-negligible at
the piece-air interface since air flow from the somewhat warmer piece surface is
responsible for a part of the piece cooling.

The precise modelling of the convection mechanism requires the simultane-
ous solution of the heat diffusion equation with the fluid dynamics equation for
the air flow, leading to a very complicated problem. Fortunately, for the inspec-
tion applications considered here, where the air column above the piece can be
considered as nearly stationary, the convection term can be approximated by
Newton’s law of cooling [125]

Jcv = hcv (Ts − Tf ) (7.114)

where Ts, Tf are the surface and fluid temperature (K), and hc is the convection
heat transfer coefficient (Wm−2K−1) Jcv is assumed as isotropic thermal flow
per solid angle integrated over the semi-sphere above the surface.

The radiation losses are calculated by the Stefan-Boltzmann law

Jrd = σεG
(
T 4
s − T 4

a

)
(7.115)

where σ is Stefan-Boltzmann’s constant (σ = 5.67 10−8 Wm−2K−4), ε stands for
the surface emissivity, and Ts, Ta are surface and air temperature, respectively.
G is a dimensionless geometric factor dependent of the shape and orientation of
the two bodies. For two large size parallel surfaces G = 1. Hence for a relative
lage plate-air interface we can approximate the two terms to a good extent using
the relation

Jtot ≈ hcv (Ts − Ta) + σε
(
T 4
s − T 4

a

)
. (7.116)

Jtot is non-linear with the temperature, which will lead to a non-linear heat
equation when integrated into the energy conservation law. Thankfully, a fur-
ther approximation can be made by recalling that in thermal inspection appli-
cations the piece temperature is very close to the ambient temperature of the
air, i.e. Ts ∼ Ta. Hence we can successively write

Jtot ≈
[
hcv + σε

(
T 3
s + T 2

s Ta + TsT
2
a + T 3

a

)]
(Ts − Ta)

≈
(
hcv + 4σεT 3

a

)
(Ts − Ta)

= heff (Ts − Ta) (7.117)

with the effective convection heat transfer coefficient heff = hcv + 4σεT 3
a . A

quantitative image of the approximation (7.117) is provided in Tab. 7.1, where
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the results of the radiated flow calculated with the approximate formula are
compared with the exact evaluation of the Stefan-Boltzmann law for different
values of piece temperature. The relative error for a temperature difference of
5 ◦C (which is an exaggerated value) remains below 3 %, which verifies the
validity of the approximation for IR inspection applications.

Ts (◦C) ∆T (◦C) Approximate Exact Error (%)

11.8 0.1 0.5242 0.5245 0.0526 %
12.7 1.0 5.2419 5.2696 0.5251 %
17.7 5.0 26.2097 26.9079 2.5948 %

Table 7.1: Comparison of the results obtained with the approximative form of
the Stefan-Boltzmann law with the exact evaluation for different piece temper-
atures. The temperature of the air is assumed to be 11.7 ◦C (283.85 K), which
is the annual mean temperature in Paris.

The energy conservation relation expressed by (7.98) must thus be comple-
mented at the piece-air interfaces by (7.117) to account for the convection and
radiation losses∫

V

ρcP
∂T

∂t
dV =

∫
V

∂Qs

∂t
dV −

∮
∂V

J · ds− δa
∫
Sa

heff (Ts − Ta) ds (7.118)

where Sa signifies the air-piece interface and δa is a selection coefficient, which
takes the value 1 when the Sa intersects the integration volume and 0 elsewhere.
Mathematically speaking, the convection and radiation losses act as an addi-
tional heat sink at the air-piece boundary. Notice that (7.117) is also invariant
to temperature gauge transformations, which means that we can return to the
◦C scale used in this text (Ta must however be expressed in K for the heff
calculation!).

Let us now return to the FIT grid equation for the energy conservation
(7.110). It easily follows

MCθ̇θθ = q̇− S̃
⌢⌢

j −Mh(θθθ − θθθa) (7.119)

where Mh stands for the effective convection coefficient matrix, defined as

Mh = diag

δi ∫
Ãi

heffdS

 , i = 1, 2, . . . (7.120)

δi has here the same meaning as the selection flag δa in the continuous coun-
terpart of the energy conservation relation. Substitution of the discrete Fourier
law yields the extended heat equation(

S̃MκG+Mh

)
θθθ −MCθ̇θθ = −q̇+Mhθθθ0. (7.121)
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7.7.3 An example of a multi-physics problem: induction
heating in a multilayer piece

The theoretical formulation for the thermal problem presented above will be
applied in the framework of a specific inspection problem, namely the induction
heating in a planar multilayer piece with a hole. For simplicity, we shall restrict
the study to the 2D case, which means that the induction coil is coaxial with the
hole. We do also not take the convection and radiation losses into account to
simplify the physics as much as possible. The problem configuration is depicted
in Fig. 7.14.

z z

ρρ

a) b)
R

R

e

h

Figure 7.14: Induction heating in a planar piece with a cylindrical hole. (a)
Piece without defect. (b) Defected piece.

The coil-induced eddy-currents in the conducting piece are responsible for
the local heating via the Joule mechanism. The thus introduced heat distribu-
tion is then diffused in the remaining part of the geometry piece until thermal
equilibrium is reached (the latter can be achieved at very long times with re-
spect of our observation time window and hence is is not always apparent in
the simulation results). Assuming that the electromagnetic problem has been
solved and the eddy-current density is known throughout the piece, the Joule
losses are calculated via the relation

q̇ =
1

σ
|Js|2 (7.122)

For the solution of the thermal equation it remains to discretise (7.122) and
solve (7.112) (recall we have neglected the convection and radiation terms) in
time using a BDF time-stepping scheme.

The coil inner and outer radius read Ri = 11 mm and Re = 84 mm, respec-
tively, its height is h = 41 mm, and its number of wire-turns is N = 408. The
coil lift-off is taken equal to e = 1 mm. Two different workpieces have been
considered: (i) a non-magnetic aluminum plate and (ii) a ferromagnetic steel
plate. Their respective physical parameters being given in Tab. 7.2. The plate
thickness in both cases is d = 10 mm.

The specimen heating is assumed to be carried out in a narrow time window
of 50 ms, using an harmonic excitation current of frequency f = 200 Hz, which
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µr σ (MS/m) κ (W/m/K) ρ (kg/m3) Cp (J/kg/K)

Aluminum 1 35 237 2707 897
Steel 700 3.21 44.5 7850 475

Table 7.2: Electromagnetic and thermal parameters of the materials.

makes an excitation of 10 cycles for the eddy-currents. Given the different
characteristic scales of the electromagnetic and the thermal problem, this type
of excitation acts as a pulsed heat source, with the Joule heating power described
by (7.122) being equally distributed during the pulse duration.

The heat distribution in the two plates (without defect) is illustrated at
different time instances in Fig. 7.15. The evolution of the heat distribution is
a combination of two effects: the different penetration of the heat from the
eddy-currents, which becomes striking in case of the ferromagnetic specimen,
and the different diffusion speed associated with the thermal conductivity of the
materials.

Figure 7.15: Temperature distribution images in the region of interest for dif-
ferent time in the flawless specimens. Top: Aluminum. Bottom: Steel. The
snapshots correspond the time instances t = t0, t = t0 + 50 ms, t = t0 + 5 s.

To study the effect of the defect to the temperature distribution, a cylindrical
hole is introduced at the bottom surface of the aluminium plate, as shown in
Fig. 7.14b, which emulates corrosion pitting. The hole radius is r = 50 mm and
its thickness is taken equal to dh = 0.5 mm. In order to make the geometry
more realistic in terms of practical occurrence, the plate thickness is reduced
to 1 mm (instead of the 10 mm plate considered for the flawless case). The
temperature profile at the top and bottom surfaces for a number of different
time instances is shown in Fig. 7.16. The observations have been sorted in
two groups: short time observation, where the details of the defect are clearly
visible, and long time observation (over a 1 s), where the detains of the defect
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discontinuity begin to smear out due to diffusion.

Figure 7.16: Comparison of the distribution of the temperature at the surfaces of
the plates with and without defect for different observation times. Top: Upper
surface, Bottom: Bottom surface. Observation time: Left: 10, 50, 70 ms Right:
1, 2, 3 s.

7.8 Multi-domain solutions. Hybridisation

All the problems considered so far shared the common property that the piece
geometry is characterised by a symmetry axis. This assumption concerns both
the pure spectral and the hybrid numerical-spectral approach developed in the
previous chapters. The integral equation formalism, either VIM or SIM, dis-
cussed in chapter 5 provides a way of treating deviations from the aforemen-
tioned symmetry, for practical reasons though, linked to the computational bur-
den, this approach is interesting for treating small anomalies, primarily material
defects.

The developed tools can be extended to tackle geometries combining pieces,
that verify some sort of symmetry themselves, but the ensemble is entirely
3D. This can be the case of a tilted cylindrical ferrite, for example, above a
planar piece, the combination of a cylindrical piece with a rectangular edge,
a case met practically during tube inspection near supporting bars, etc. The
surface equivalence theorem provides us here a powerful tool, which allows the
separation of the initial problem into a number of coupled subproblems, which
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are treated in their native coordinate system, and communicate to each other
via an exchange surface, also referred to as the Huygens surface [6, 7].

The main ideas of this coupling will be made clear by working on a specific
problem, which also presents practical interest: the response of a ferrite-cored
induction coil above a planar specimen as shown in Fig. 7.17.

x

...

Ferrite core

Specimen

z

y
σ1, µ1

σN , µN

Huygens surface

Figure 7.17: Tilted ferrite-cored coil above a ferromagnetic planar multilayer
piece.

7.8.1 Hybrid FIT-spectral formulation

We consider an arbitrary fictitious closed surface that entirely encloses the probe
ensemble. The problem can be decomposed in an interior subproblem compris-
ing the coil and the ferrite core and an external one, which includes the remain-
ing part of the geometry (the piece). Recall that due to the negligible electrical
conductivity of the ferrite core, the electromagnetic problem in both air and
ferrite domains can be formulated using a magnetostatic scalar potential ϕϕϕ.

As discussed in section 3.3 when developing the propagator theory, the solu-
tion of the interior problem is formally equivalent with the original one, provided
that the scalar potential and/or its normal derivative on the boundary is the
same for both formulations. Using the same arguments, we can set an equivalent
problem in the external to the surface domain, based on the (assumedly known)
magnetic potential/normal magnetic induction distribution on the boundary.
The choice of the distribution that we shall take into account depends on the
boundary condition we shall impose at the boundary, i.e. if it will be Dirichlet
or Neumann BC. The former will result in an imposed potential distribution,
whereas the latter is bound with an equivalent magnetic charge on the bound-
ary [3].

We start the analysis by treating first the interior problem. We define a cylin-
drical box embedding the coil-ferrite ensemble. The cylindrical box is coaxial
with the coil-ferrite ensemble. We require a non-homogeneous Neumann con-
dition for the magnetostatic potential there (cf. Fig. 7.17). The magnetostatic
formulation in the FIT basis is expressed by (7.13) with an additional source
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term accounting for the normal magnetic field at the domain boundary, which
acts as an equivalent magnetic charge source. The rotational symmetry of the
geometry entails the use of the cylindrical coordinate system. Notice that the

boundary term
⌢⌢

b
(b)

is subjected in general to no symmetry since it will be fixed
through the interaction with the rest of the geometry, and will be thus expressed
using a series of higher-order modes. Introducing the modal expansion of (7.43),
(7.13) can be written[
S̃tM

T
µGt − α2

nM
N
µ

]
ϕϕϕn = S̃tM

T
µ

⌢

hiδn,0+
⌢⌢

b
(b)

n , for n = −Nn . . . Nn, (7.123)

with αn = n∆φ, ∆φ being the angular opening of a FIT cell and δn,0 the Kro-
necker delta. MT

µ and MN
µ are permeability submatrices at the discretisation

plane (u, v) and the normal direction w, and S̃t,Gt stand for the tangential
topological div and grad operators.

Assume for the moment that
⌢⌢

b
(b)

is known. Solving (7.123) we obtain the
magnetostatic potential ϕϕϕn throughout the FIT box. For the treatment of the
exterior problem, the solution has to be propagated in the external region and
projected onto the representation basis of the outer problem following the ap-
proach of chapter 3.

For the solution in the external domain, we shall work in the local cylindrical
coordinate system defined by the planar piece with the z-axis being normal to
the piece interfaces. The origin z = 0 is set at the intersection point of the
axis with the uppermost interface of the piece as shown in Fig. 7.17. The
corresponding Darboux frame of the interface is (t, g, n) = (ρ, ϕ, z) (second row
in Tab. 3.1). Following the TREE practice, the domain is truncated at radial
distance equal to ρL using a PMC. The solution for the external domain in the
propagator language is expressed by (cf. section 3.4)∑

a

[
⟨m′ℓ′| ν̂b+Ĉb+P̂a→b+ − ν̂b−Ĉb−P̂a→b− |mℓ⟩

]
c
(a)
mℓ

= δb0 ⟨mℓ| ν̂b+Ĉb+ |mℓ⟩ c
(0+)
mℓ , ∀j (7.124)

where c
(0+)
mℓ are the development coefficients obtained by the projection of the

FIT solution propagation onto the piece upper surface (a = 0+).
Summing up, the total solution is expressed by the state variables ϕϕϕn and

c
(a)
mℓ, which have to satisfy (7.123) and (7.124), respectively. The two equations

are coupled via the variables
⌢⌢

b
(b)

n and c
(F )
m0 , which in their turn are the projections

of the external and internal problem field onto the FIT and TREE development

basis respectively. Thus the
⌢⌢

b
(b)

nl values are computed by the integrals

⌢⌢

b
(b)

nl =
∆w

2π
sinc(κnw)

2π∫
0

einw
′
dw′


∫

∆vl

Φ0+(x) dv
′∫

∆ul

Φ0+(x) du
′

= ⟨nl|Φ0+⟩ (7.125)
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depending if the facet element l lies on the side surface (ρ = ρmax) or the
top and bottom lids (z = zmin, zmax). Φ0+ stands for the outer solution for
the magnetic potential (0+ signifies upwards scattered field) calculated in the
FIT local coordinate frame. With the standard Bessel functions basis for the
ρL truncated domain it takes the explicit form (in the piece local coordinate
system)

Φ0+(ρ, ϕ, z) =
∑
m

c
(0+)
mℓ Jm(λmℓρ) e

imϕ−λmℓz (7.126)

where λmℓρL is the ℓth root of the Bessel function of m order

Jm(λmℓρL) = 0. (7.127)

c
(0−)
mℓ are evaluated by propagating the FIT solution ϕϕϕ to the z = 0 inter-

face. Vehicle again to this operation will be Green’s second identity (3.26).
The evaluation can be carried out in a straight-forward manner by numerical
computation of the integral in the spatial domain. Nevertheless, this approach
is confronted with two issues: the treatment of the singular kernel at points of
closest proximity (in ECT problems the minimisation of the probe lift-off is of
crucial importance) and the (expensive) evaluation of the four-fold integrals of
the coupling matrices. Both issues are avoided by addressing the problem (once
again) in the spectral domain.

There are two different expansions that can be applied, associated with the
different Darboux frames defined for ρ = const and z = const of the side surface
and the lids, each involving a branch change in different coordinate axes (ρ and z
respectively). It is thus more convenient to split the integral into the integration
surfaces depicted in Fig. 7.18, each one involving only one branch change (at
the intersection of the surface with the z = 0 interface).

x

z

y

St

Sb

Sc

Sp

Sc

Figure 7.18: Reference surfaces for the propagation of the inner and outer solu-
tion.

The sought Φ
(F )
0 potential term can thus be written as the sum of three
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separate contributions

Φ0+(u, v, w) = Φ
(c)
0+(u, v, w) + Φ

(t)
0+(u, v, w) + Φ

(b)
0+(u, v, w) (7.128)

where Φ
(s)
0− is the contribution from the side cylindrical surface given by (in FIT

reference frame)

Φ
(c)
0+(u, v, w) =

∑
n

einw
∑
l∈Sc

⌢⌢

b
(b)

nl e
iqℓv

{
In(qℓu)Kn(qℓuc) , u < wc

Kn(qℓu) In(qℓuc) , u > wc
(7.129)

Φ
(t)
0+ stands for the contribution of the top surface with

Φ
(t)
0+(u, v, w) =

∑
n

einw
∑
l∈St

⌢⌢

b
(b)

nl Jn(λnℓul) e
−λnl|v−vt| (7.130)

and Φ
(b)
0+ the respective term for the bottom lid. It is obtained using the same

relation with that for the top lid setting vb instead of vt. The eigenvalues used
for the above expansions are determined by choosing a set of suitable truncation
boundaries uL and vL for the two branches and imposing PMC and periodic
BC respectively, which results for λnl and qℓ

Jn(λnℓuL) = 0 (7.131)

and

qℓ =
ℓπ

vL
. (7.132)

Equations (7.123),(7.124) together with the coupling relations (7.125) and
(7.128)-(7.130) constitute a system of linear equations whose solution yield the
field in the entire domain. However, due to the high dimensionality of the
coupling integrals, their simultaneous treatment will encounter memory prob-
lems. It is more easy to treat the two state equations iteratively in a two-step
procedure [6]. The overall algorithm is described in Alg. 2.

7.8.2 Results

The proposed coupled approach is applied for the calculation of a cylindrical,
ferrite-cored coil interacting with a planar conducting and non-magnetic half-
space. The considered ferrite is rod-shaped and had negligible losses. The coil
and core characteristics are given in Tab. 7.3. The half-space conductivity is
taken 18 MS/m.

Fig. 7.19 illustrates the normal component of the induced magnetic flux
density on the half-space interface calculated using two coupled approaches (i.e.
the FIT-spectral one and similar coupling between a boundary elements method,
BEM, implementation and the spectral approach) versus the fully numerical
solution obtained by a commercial FEM package COMSOLMultiphysics ® [123]
at 1 kHz. The probe axis is tilted in respect to the normal of the plane by
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Algorithm 2 Hybrid FIT 2.5D - TREE solution

Initialise
⌢⌢

b
(b)
← 0, ϕϕϕi−1 ← 0, ϵ← 1020

while ϵ < tol do

Solve
[
S̃tM

T
µGt − α2

nM
N
µ

]
ϕϕϕin = S̃tM

T
µ

⌢

hiδn,0 +
⌢⌢

b
(b)

n

Evaluate Φ0−(ϕϕϕ): (7.128)-(7.130)

c
(0−)
ml ← ⟨mℓ|Φ0−⟩
Solve

∑
a
⟨m′ℓ′| . . . |mℓ⟩ c(a)mℓ = δb0 ⟨mℓ| . . . |mℓ⟩ c(0−)

mℓ

Evaluate Φ0+

(
c
(0+)
ml

)
: (7.126)

⌢⌢

b
(b)

nl ← ⟨nl|Φ0+⟩: (7.125)
ϵ← ||ϕϕϕi −ϕϕϕi−1||
i← i+ 1

end while

Table 7.3: Coil and core parameters

Coil parameters

Inner radius rin 3 mm
Outer radius rout 6 mm

Length l 2 mm
Number of turns N 2000

Core parameters

Radius r 2 mm
Length l 5 mm

Relative permeability 10

an angle of 20 degrees. The convergence of the iterative solution has been
reached after 5 iterations for the hybrid FIT and 3 iterations for the hybrid
BEM approach. The calculation time was ca. 5 min for both approaches on a
standard PC whereas FEM simulation time was 10 minutes on a 24 GB, Xeon
PC with 8 cores.

A second comparison between the results of the coupled approach and the full
numerical FEM simulation has been carried out for the calculation of the probe
impedance as a function of the tilt angle. The results are shown in Fig. 7.20

7.9 Publications related with the chapter con-
tent

The mixed spatial-spectral formulation using FIT discretisation scheme has been
presented in a couple of communications in NDT conferences [126, 127] with a
detailed study been published in [128]. A first presentation of the TD version
has been presented at [129]. A full article is in preparation.

The coupling between FIT and the spectral approach for the treatment of the
tilted ferrite has been the subject of the master thesis of Dr. Audrey Vigneron.
The results of her work have been presented in [130] and in [7]. In the last
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Figure 7.19: Bz field component on the half-space interface calculated using the
two coupled approaches versus FEM results obtained with COMSOL.

Figure 7.20: Real and imaginary part of the probe impedance variation as a
function of the tilt angle.

article, the coupled approach has been generalised in order to include also the
BEM approach.
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Chapter 8

The non-linear problem

In standard ECT applications, we are confronted to the detection and charac-
terisation of anomalies in a more or less known material, which is equivalent
with stating that we are seeking to retrieve changes in the piece geometry. The
problem thus belongs to the broad category of scattering problems with the
peculiarity that the sensing is carried out in the near-field region.

In the so-called material characterisation family of methods, the focus is
shifted from the geometry to the material itself. We are not interested in the
geometry of the particular specimen, which is considered as known or irrelevant,
but we are trying to characterise features of the material itself. It is well under-
stood that for a given inspection method the material is characterised via the
physical parameters to which the method is sensitive. As far as electromagnetic
methods are concerned these parameters are the electrical conductivity and the
magnetic properties expressed via the B(H) material curve.

The characterisation of the magnetic properties in ferromagnetic materials
present particular interest, which is explained by the strong dependence of the
magnetic behaviour from the material microstructure. This feature makes mag-
netic measurements an excellent probe for more fundamental properties of the
material, such as its grain structure, the density of impurities (precipitates),
lattice imperfections (dislocations) and so on. Since the microstructural param-
eters are also determinant of other material properties, as for example certain
mechanical properties, which in addition are not easy to be measured in a non-
destructive way, it becomes evident the importance of magnetic methods for the
assessment of the material state.

The rich information carried by the magnetic properties comes however at a
cost. The direct link of theB(H) curve and the thereupon derived variables such
as the differential or the incremental permeability is extremely complicated. In
addition, the solution of the macroscopic electromagnetic problem (the Maxwell
equations), which is an indispensable step when the sensor response needs to
be evaluated for a given material law, is by itself a difficult task due to the
non-linear and hysteretic nature of the B(H) constitutive relation.

The objective of this chapter will be this last task: the analysis and the
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development of efficient numerical tools for addressing the solution of the elec-
tromagnetic problem with a known non-linear and hysteretic B(H) material
law. It is understood that the ultimate goal for this kind of applications is the
development of multi-scale approaches permitting to cross the full path span-
ning from the metallurgical description of the piece to the sensor response. This
is however a huge task, which can be naturally viewed as a long-time perspec-
tive of this work. A roadmap towards contributions to multi-scale simulation of
material evaluation applications is given with the outlook of the present work
at the end of this text.

8.1 Description of the problem

We consider the case of a (flawless) ferromagnetic material excited by means
of an air-cored inductor (coil) or an inductor equipped with a magnetic circuit
(yoke) as shown in Fig. 8.1. In both cases the exciting coil is fed with a time-
varying current I(t). We are interested in planar sheet geometries for simplicity
reasons and also because this is the usual form of semi-finalised products used
in material evaluation applications (having in mind in particular hot and cold-
rolled strips in steel manufacturing).

B(H) B(H)

I(t)

I(t)

(a) (b)

Figure 8.1: Typical excitation set-ups for the electromagnetic characterisation
of ferromagnetic pieces: (a) via an induction coil, (b) using a magnetic circuit.

The field in the air above or/and beneath the inspected piece is sensed by
means of an induction coil (which can be the same with the exciting coil) and/or
magnetic sensors such as Hall-effect probes or giant magnetoresistance sensors
(GRM). The particular physics of the probe being irrelevant for our analysis,
all field sensors will be considered as ideal.

The material is characterised by its electrical conductivity σ and the mag-
netic constitutive relation B(H), which is non-linear and it may possess a multi-
branch hysteresis behaviour. We are interested in constructing solutions for the
field distribution inside the inspected piece and the probe signal for given ma-
terial parameters σ and B(H). The development of these solutions will be
carried out in two steps. We shall first consider single-branch non-linear laws,
which will be linearised using one of the established techniques and the elec-
tromagnetic problem will be solved via an iterative scheme. The complications
of multi-branch hysteresis will be tackled thereafter by addressing the branch-
switch during the signal evolution.
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8.2 Linearisation schemes

The general form of the magnetic constitutive equation accounting for anisotropic
non-linear materials was given in (2.6). It is rewritten here for convenience

B = µ0 [H+M(H)] (2.6)

where M the magnetisation of the medium, which is a function of the applied
magnetic field. In non-magnetic materials (diamagnetic and paramagnetic) M
is a linear function of the magnetic field, and the proportionality constant is
called the magnetic susceptibility χm of the medium. Since we are talking
for diamagnetic and paramagnetic materials, there is no preference direction,
and hence χm is a scalar.

In ferromagnetic materials1, however, M is a non-linear function of H, which
means that some kind of linearisation is required in order to be able to solve the
Maxwell equations. There are in general two established schemes for linearising
a material relation: the fixed-point method (also known as Picard-Banach or
polarisarion method) and the Newton-Raphson method.

8.2.1 The fixed-point iteration method

Substitution of (2.6) in the Maxwell equations will result in the following relation
for the magnetic vector potential

∇× ν0∇×A+ σ
dA

dt
= J+∇×M(A) (8.1)

which is recognised as the diffusion equation, studied in the previous chapters,
with the unknown magnetisation acting as an equivalent magnetic source. Since
the free-space reluctivity is constant, it can be brought to the right-hand-side
and upon application of the Coulomb gauge, (8.1) reduces to the following form(

∇2 − µ0σ
d

dt

)
A = −µ0J−∇× I(A) . (8.2)

Both expressions will be utilised depending on the numerical scheme that will
be applied for the inversion of the diffusion operator.

Since M (or I) is not apriori-known, it can be approximated by an ini-
tial guess, which will be successively improved by repeated solution of (8.1) or
(8.2). This can be perhaps better understood by restating the problem in op-
erator form (we shall consider the first expression (8.1) for the demonstration).

1We distinguish three different types of magnetic materials (i.e. materials which in atomic
scale present an exchange interaction): ferromagnetic, ferrimagnetic and antiferromagnetic.
Only the first category will be considered herein since it contains all materials of technical
importance in NDT applications, notably steels.
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Defining the operators

DPB := ∇× ν0 · ∇ ×+σ
∂

∂t
(8.3)

F := I(.) (8.4)

curl := ∇× (8.5)

(8.1) can be readily written

(DPB + curl ◦ ν0F ◦ curl)A = −µ0J (8.6)

which can be formally inverted as

A = −
(
I + D1

PB ◦ curl ◦ ν0F ◦ curl
)
D1

PBµ0J (8.7)

with I the unit operator. Developing the inverse operator in Neumann series
yields

A = A(0)+
(
D−1

PB ◦ curl ◦ ν0F ◦ curl
)
A(0)+

(
D−1

PB ◦ curl ◦ ν0F ◦ curl
)2

A(0)+. . .
(8.8)

with A(0) = −D1µ0J. This is equivalent with the iteration scheme

A(l+1) = A(l) +
(
D−1

PB ◦ curl ◦ ν0F ◦ curl
)
A(l), l = 0, 1, . . . (8.9)

Should the scheme be applied for the Laplacian form (8.2), (8.9) simplifies
a little yielding the iterative scheme

A(l+1) = A(l) +
(
D−1

PB ◦ curl ◦F ◦ curl
)
A(l), l = 0, 1, . . . (8.10)

with the according field operator

DPB := ∇2 − σ d
dt
. (8.11)

It must be underlined at this point that the above linearisation and the
corresponding material operator definition based on (2.6) is not the only option.
In fact, improved convergence behaviour can be achieved by using a virtual
“calculation” permeability/reluctivity, which can also be anisotropic

B = µ0 (H+M) = µH+ [µ0M+ (µ0 − µ)H] (8.12)

which implies a magnetic polarisation

I = µ0M+ (µ0 − µ)H (8.13)

and ν in (8.9) must be replaced by ν = µ−1. Later in this chapter criteria
for fixing the calculation permeability in order to achieve improvements in the
convergence speed will be given.

The iterative scheme described by (8.9),(8.10) is known as fixed-point
(FP), or Picard-Banach (PB), or polarisation method [131–140].
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8.2.2 The Newton-Raphson method

Let us assume again that the sought solution is described by the operation point
(H0,B0) on the material curve, all vectors being understood as function of the
position. For probing points in the vicinity of the solution we can develop the
material law B(H) in a Taylor series

B(H) ≈ B0 +
∂B

∂H

∣∣∣∣
H0

· (H−H0) + O
(
H2
)

(8.14)

and ignoring the higher order terms

∆B ≈ µd ·∆H (8.15)

with ∆B = B−B0, ∆H = H−H0 and µd the differential permeability tensor
defined as

µd :=
∂B

∂H

∣∣∣∣
H0

. (8.16)

Subtracting ∇×H0 from both sides of the Ampère equation and using (8.15)
yields

∇× νd ·∆B = σE+ J−∇×H0. (8.17)

where we have called µ−1
d = νd as the differential tensor reluctivity. With the

introduction of the magnetic vector potential and a slight term rearrangement,
the last relation becomes

∇× νd · ∇ ×A+ σ
∂A

∂t
= J+∇×M0. (8.18)

The resulting equation (8.18) has exactly the same form with (8.1), with
the only difference being the reluctivity entering the curl-curl operator. One
can thus expect same treatment with the fixed-point method via an iterative
procedure, i.e.

A(l+1) = A(l) +
(
D−1

NR ◦ curl ◦ νdF ◦ curl
)
A(l), l = 0, 1, . . . (8.19)

with the diffusion operator

DNR := ∇× νd · ∇ ×+σ
∂

∂t
(8.20)

and A(0) = D−1
NRJ.

The scheme described by (8.19) is known as the Newton-Raphson (NR)
method, and is the second established scheme for the solution of the non-linear
problem [137,138,141–147].
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Figure 8.2: Graphical representation of the convergence for the PB (red) and
NR (black) schemata. The points on the line segments stand for the solution of
the linearised diffusion operator, which are back-projected to the material curve
after each iteration for constant B. Following the local slope of the material
curve NR arrive to convergence in less steps.

8.2.3 Comparison

From a direct comparison of (8.1) with (8.18), it is evident that the main dif-
ference between the two methods resides in the definition of the reluctivity
(permeablility) for the linearised problem, which in the case of the fixed point
method is fixed, whereas for the NR method is derived by the differential perme-
ability of the material at the considered point, a fact that makes them formally
the same method. This fact has already been realised and thoroughly discussed
in the literature, and has been the base for constructing hybrid formulations
combining the two approaches [137]. A graphical representation of convergence
procedure for the two schemata is given in Fig. 8.2.

There are however important differences stemming from this different def-
inition of the “working” permeability. The first one is practical and is re-
lated with the position dependence of the differential permeability, which makes
the linearised material in case of the NR method highly inhomogeneous, and
hence only applicable in combination with mesh-based methods, like the FEM
[141, 142, 148, 149] or FIT [120, 137, 143, 144]. This issue does not arise with
the PB, where the constant permeability results in piece-wise homogeneous ge-
ometries, which consequently makes it well adapted for the spectral methods
presented in the previous chapters. The construction of such solutions will be
demonstrated in a latter section.

A second difference lies in the convergence speed, which in case of NR is
quadratic, whereas for the PB method is much slower (as one might guess by
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regarding the qualitative tendencies in Fig. 8.2), and depending on the selected
error threshold, can arrive at a long plateau. A clear demonstration of the
convergence behaviour of the two methods will be made in a later paragraph
via an example.

The significantly faster convergence of the NR method, comes, however at a
cost. The stability of the method is not guaranteed, and it is therefore manda-
tory to introduce some relaxation factor in order to assure a convergent scheme,
in contrast with the PB approach, which with a suitable choice of the permeabil-
ity/reluctivity value is strictly convergent. Note that the speed of convergence
of the iteration sequence can be increased by using a convergence acceleration
method such as Aitken’s delta-squared process. The application of Aitken’s
method to fixed-point iteration is known as Steffensen’s method, and it can
be shown that Steffensen’s method yields a rate of convergence that is at least
quadratic [150].

8.3 Solution using FIT

The general iterative schemata described by (8.1) and (8.18) need to be com-
bined with a suitable numerical scheme which evaluates the D−1 operator. The
standard choice is to apply one of the established a spatial/temporal discreti-
sation schemes based on the FEM or the FIT methods. Since in this work we
have already used the FIT method, the latter will be the numerical method
of choice in this context as well. As already stated, the additional benefit of
using the FIT formulation is the direct analogy of the discrete operators with
the continuous case, which enhances the readability of the expressions.

8.3.1 Time integration

The linearised curl-curl equation in the discrete FIT-grid basis reads

C̃MνC
⌢a +Mκ

d

dt
⌢a =

⌢⌢

j + C̃⌢m (8.21)

in close analogy with (8.1) and (8.18). Notice that
⌢⌢

j stands here for the physical
electric current density at the excitation coil. The definition of the reluctivity
matrix Mν depends on the linearisation scheme, and is based on the same rela-
tions used for the continuous case, namely ν = ν0 and (8.15) for the PB and the
NR scheme, respectively. With the reluctivity matrix given, the magnetisation
vector is obtained by simple application of the constitutive relation, namely

⌢m = Mν

⌢⌢

b − ⌢

h. (8.22)

Given the algorithmic equivalence of the two schemes, the exact definition will
be intentionally left unspecified to keep the discussion valid for both schemes.
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Introducing the BDF1 scheme (7.90) for the discretisation of the temporal
derivatives (8.21) becomes(

C̃MνC+
1

∆t
Mκ

)
⌢aj =

1

∆t
Mκ

⌢aj−1 +
⌢⌢

j j + C̃⌢mj . (8.23)

Equation (8.23) must be solved iteratively to determine ⌢aj ,
⌢mj and Mν

following one of the PB or the NR schemes, whence we arrive at the following
generic iteration scheme(

C̃M(l)
ν C+

1

∆t
Mκ

)
⌢a
(l)
j =

1

∆t
Mκ

⌢aj−1 +
⌢⌢

j j + C̃⌢m
(l−1)
j (8.24)

where l stands for iteration index of the non-linear solution scheme. Notice
that ⌢aj−1 does not depend on l since the solution at the previous time-steps is
assumed having converged.

8.3.2 Performance and characteristic results

It has been explained in section 8.2 that the PB and the NR linearisation
schemes can be utilised interchangeably in a generic iterative scheme like the
one described by (8.24). To get a better image of the numerical performance of
both schemes, (8.24) is applied for the solution of the prototypical problem of
the electromagnetic inspection of a ferromagnetic plate, using the first set-up
of Fig. 8.1. A more detailed image of the considered set-up is given in Fig. 8.3.
The specimen is excited at a very low frequency by a pair of air-cored cylindrical
coils, which are fed by opposite currents. The purpose of this particular type
of excitation is to create a strong magnetic field parallel to the plate surfaces
component in a similar way as we would do using a magnetic circuit such as in
Fig. 8.1b. Variations of this configuration are used in industrial probes such as
the HACOM and the IMPOC for in-line monitoring of the steel-strip properties
in steel production sites [151,152]. The air-cored coils are preferred here for this
type of applications in place of the yoke set-up in order to avoid the geometrical
complexity and the uncertainties of the yoke material as well as the very strong
sensitivity from the lift-off.

We consider the case of harmonic excitation at 60 Hz. A simple scalar
material law following the Fröhlich-Kennelly relation is assumed [5]

B(H) =
H

α+ β |H|
. (8.25)

This simple relation, derived by the high-field asymptote of the material hysteric
relation, provides a fairly good approximation of the anhysteretic curve. The
α, β parameters are obtained by identifying the curve with an experimental
anhysteretic curve of the material of interest. In this example we use the low-
carbon steel 1010 as model material, whose anhysteretic B(H) curve is shown
in Fig. 8.4. In the same figure is also drawn the curve obtained by Fröhlich-
Kennelly relation after identification of the parameters α, β. The parameters
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z

z = −d/2
σ,B(H)

z1
z2

r1

r2

z = d/2

I

−I

Figure 8.3: Inspection of a ferromagnetic plate using a set of 180 ◦ out of phase
cylindrical coils.

identification has been carried out by minimisation of the L2 distance yielding
the values α = 206.42, β = 0.59148. A very good description of the experimental
curve is achieved at the high-field region, as expected, whereas the model fail to
follow the real curve below the knee point. Overall, the level of approximation
is acceptable to consider the model curve as close to a realistic material law.

Figure 8.4: B(H) curve of the 1010 steel. Experimental data and identified
Fröhlich-Kennelly model.

Equation (8.24) has been solved for both PB and NR schemes, the latter
using an appropriate relaxation factor. The convergence of the two schemes
at a specific time step close to the maximum of the excitation is shown in
Fig. 8.5a. The convergence rate is expressed in terms of the energy residual
between iterations. Both schemes initiate with a comparable slope up to a
residual of 10−4, where PB enters at a long plateau with a relative flat slope. NR
iterations, on the contrary, converge with more-or-less constant speed reaching



186 Chapter 8. The non-linear problem

the stop-tolerance much faster. A third option, which combines the PB stability
with the NR convergence speed, is to switch from the PB to the NR scheme
at the beginning of the plateau, when the solution is already close to its exact
value, and there is little risk for the NR method to get trapped away from it.
This idea has been explored in different ways the literature. In [137] for example
the two solutions stemming from the application of the two schemes are linearly
combined through a minimisation procedure.

Interesting information is also obtained by considering the residual as func-
tion of the computational time. The fact that LU factorisation can be applied in
the context of the PB scheme, makes the iterations much cheaper from those of
the NR method, where the differential permeability matrix must be computed
and the system must be inverted at each iteration. This extra time per iteration
partly cancels out the advantage of the smaller iteration number. Again, the in-
terest of the combined (switching) scheme becomes evident, since the important
decrease of the NR iterations leads to reduced total computational times.

The objection that can rise here, deals with the generality of the approach
since the LU factorisation cannot be applied for the full 3D case (at least with
the contemporary computer resources). Besides the interest of the 2D problem
by itself for material evaluation applications, one can refer here to the mixed
spatial-spectral approach presented in chapter 7, where the problem treatment
per mode makes the system factorisation feasible.

Figure 8.5: Convergence of the non-linear iterations during a given time-step
for three different schemes: (i) pure PB, (ii) NR with relaxation (iii) combined
PB-NR scheme with switching. (a) Convergence as function of the iteration
index. (b) Convergence as function of solver time.

The field signals for the tangential and the normal component at different
excitation levels, namely I = 3 A and I = 10 A are given in Fig. 8.6 and Fig. 8.7,
respectively. The field signals are observed at three characteristic sample points
inside the specimen located at (r1/2, d/4) (point 1), ((r1 + r2)/2, d/4) (point
2) and (r1/2 + r2, d/4) (point 3). The numerical results obtained by the mixed
PB/NR scheme are compared against reference results obtained using a com-
mercial FEM code (COMSOL Multiphysics ® ), which implements a relaxed
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NR approach.

Figure 8.6: Transient signals for the Bx and Bz components at a number of
different sample points. The coil excitation is 3 A. The FIT results are compared
against reference results obtained using a commercial FEM code (COMSOL).

Figure 8.7: Transient signals for the Bx and Bz components at a number of
different sample points. The coil excitation is 3 A. The FIT results are compared
against reference results obtained using a comercial FEM code (COMSOL).

A closer look at (8.6) and (8.7) reveals the different deviation from the linear
behaviour depending on the field component (Bz being weaker in amplitude
remains closer to the harmonic waveform than than Bρ) and location. This
location-dependence underlines the need for a careful design of the non-linear
measurement in order to achieve the sought effect.

A more illustrative view of the non-linear behaviour can be readily obtained
by examining the Fourier spectrum of the signals. The latter is plotted in (8.8)
for the 10 A case. It is interesting to note the absence of even harmonics. This
is a well known effect, and it can be proven that this is a direct consequence of
the point symmetry of the B(H) law.

In praxis, a commonly used figure-of-merit for the non-linear behaviour of
a specific signal is its so-called harmonic distortion, defined as the ratio of the
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Figure 8.8: Signal spectrum for the Bx and Bz components at the considered
sample points for a 10 A excitation current. The frequency axis is normalised
with the excitation frequency f0 = 60 Hz (basic harmonic). Notice the absence
of even harmonics.

Bρ Bz

I = 3 A I = 10 A I = 3 A I = 10 A

Point 1 (r1/2, d/4) 0.025 0.087 0.056 0.0486
Point 2 ((r1 + r2)/2, d/4) 0.067 0.130 0.044 0.114
Point 3 (r1/2 + r2, d/4) 0.032 0.113 0.045 0.143

Table 8.1: Comparison of the harmonic distortion content for the Bρ and Bz

components under different excitation currents.

sum of the higher-harmonics to the basic one [153]

K =

√∑∞
p=1A

2
2p+1

A2
1

. (8.26)

Numerical evaluation (8.26) for the signals of (8.6) and (8.7) yields the values
of Tab. 8.1.

8.3.3 Concluding remarks

In this section we have examined the application of the two iterative schemes in
the context of the FIT method. It has been demonstrated that, although slow
in terms of the convergence rate, the PB approach presents some very useful
features for the construction of a fast scheme. More precisely, we can state:

• The homogeneous permeability profile obtained for the linearised problem
allows the system factorisation for the 2D problem making the system
inversion relatively cheap.



8.4. The fixed-point method revisited 189

• Spectral methods can be introduced for 2.5D configurations keeping thus
the mixed spatial-spectral scheme compatible with the LU factorisation.

• The PB method is always stable which makes it the base method in com-
bined PB-NR approaches.

The property of the homogeneous permeability can be exploited even further
for geometries like Fig. 8.1a, which can be treated using spectral methods, and
this idea will be our next task. Before endeavouring to this approach, however, it
is meaningful to have a closer look at the PB scheme given its central importance
in the developments of this work.

8.4 The fixed-point method revisited

The fixed-point method plays a central role in the developments of this work for
a number of reasons. The simple permeability profile that it involves makes it
directly applicable with spectral schemes as will be demonstrated below. Fur-
thermore, its excellent stability behaviour makes it the tool of choice when
hysteresis comes into play. In this section, we shall try to delve deeper in this
method by studying its convergence properties, which in its turn will allow us to
introduce quantitative criteria for the optimal choice of the linear permeability.
The content of this section is strongly inspired by the pioneering work of Hantila
et al. [132,133,154–156].

In the following, we shall focus on the (8.9) iterative scheme involving the
curl-curl induction equation, which is adapted for mesh-based numerical ap-
proaches, since the majority of the results presented in this chapter have been
produced using the FIT. However, the discussion is valid for (8.10) based on
the Helmholtz operator as well, with the only difference that the ⟨•, •⟩ν inner
products need to be replaced with the non-weighted ones ⟨•, •⟩.

According to (8.9), the total scheme is an interplay of two mappings: the
mapping of the magnetic induction to the magnetic polarisation B 7→ I, per-
formed by the material operator F and the calculation of the next magnetic
induction approximation using the current magnetic polarisation value, namely
I 7→ B, carried out via the field operator D (the index PB will be dropped hence-
forth since there is no risk of ambiguity). For a convergent scheme, F should
be a contraction and D should be non-expansive in order to assure the Lip-
schitzian behaviour of the combined iteration operator. Borrowing the control
theory terminology, one seeks to assure a non-expansive open-loop operator.

Our task in the next paragraphs will be thus to prove the above properties
and to establish some rule for estimating an optimal calculation permeability
(linearisation). First, we need to proceed to a couple of definitions.
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8.4.1 Definitions

We call a non-linear material isotropic when its constitutive relation admits
the form

M(H) =

{
M(H) H

H forH ̸= 0
Mr forH = 0

(8.27)

A non-linear anisotropic material admits a different material law per direc-
tion. In the most general case the magnetisation component is determined by
a vector law employing all the magnetic field components, i.e. there is interfer-
ence between components. In praxis however this case is rare. For this reason,
we shall restrict ourselves to the less general case where the vector magnetisa-
tion can be described by means of three independent laws along the principal
axes of the material reference frame. This kind of materials are referred to as
orthotropic, and their constitutive relation reads

M(H) =

3∑
i=1

Mi(Hi) ei (8.28)

where ei runs the principal axes of the material frame. In all cases that will be
examined henceforth, we shall assume that the latter are parallel to the axis of
a cartesian reference frame. Materials with cylindrical anisotropy can also be
of interest for the applications, though they will not be studied herein.

An important difference with the linear materials should be underlined at
this point. An identical material law per direction does not signifies isotropy as
is the case in linear materials. This can be easily demonstrated by considering
the directional cosines for M and H. For a linear material with the same
susceptibility per axis it is

αi,M =
Mi√
3∑

i=1

M2
i

=
χHi√
3∑

i=1

χ2H2
i

=
Hi√
3∑

i=1

H2
i

= αi,H . (8.29)

It is clear that the equality does not in general hold in case of a nonlinearM(H)
relation.

In many control scenarios, the exciting (or biasing field) is exerted in a
specific direction (using a directional set-up like a magnetic circuit or a solenoid)
and the measurements are carried out in a different direction, where however the
field is much weaker. This is for example the case of the incremental permeability
measurement, where the biasing field is applied via a yoke and the permeability
is measured in the normal direction using a small (active) pick-up coil, which is
fed with a much weaker current. In these cases, the magnetic problem is to a
good approximation linear to the measuring direction and hence only the non-
linear material law along the excitation axis needs to be taken into account. This
brings us to the situation of an orthotropic material with a constant permeability
in the normal to the excitation axis.
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8.4.2 Lipschitzian property of the material operator

Isotropic material

We shall consider first the case of the isotropic material as defined by (8.27).
Let B1,B2 be two solutions of the electromagnetic problem at a given point
of the computational domain x ∈ V , obtained at two different iterations, and
I1, I2 the corresponding magnetic polarisation vectors at the same points. To
demonstrate the Lipschitzian character of the material operator F : B 7→ I we
need to prove the inequality

|I(B2)− I(B1)| ≤ |B2 −B1|, ∀x ∈ V. (8.30)

For the rest of the proof, we shall assume that the material has zero re-
manence (Ir = 0). Note that a material law with non-zero Ir can be always
transformed to a zero-remanence law with a simple sift along the B-axis, i.e. by
making the transformation B→ B− Ir, I→ I− Ir. If the transformed material
operator is Lipschitzian, so will be the original operator as it can be readily
deduced from (8.30).

By hypothesis the pairs (B1, I1), (B2, I2) as well as the corresponding mag-
netic field valuesH1 andH2 are points of the material curve. The secant defined
by their amplitudes (c.f. (8.27)), has an upper and lower limit determined by
the corresponding limits of the differential permeability (slope) of the BH curve

µmin ≤
B2 −B1

H2 −H1
≤ µmax (8.31)

where B1, B2 . . . stand for amplitude values.
We consider now the ratio⟨∆I, ν∆I⟩/⟨∆B, ν∆B⟩ with ∆I = I2 − I1 and

∆B = B2 −B1.

⟨∆I, ν∆I⟩
⟨∆B, ν∆B⟩

=
∆I2

∆B2
=
|I2|2 + |I1|2 − 2χ|I1||I2|
|B2|2 + |B1|2 − 2χ|B1||B2|

(8.32)

where χ = cos(B1,B2) = cos(I1, I2). This expression has its extremes, as a
function of χ, at

E1,2 =

(
I2 ∓ I1
B2 ∓B1

)2

(8.33)

for χ = ±1 respectively. Taking into account (8.31) and denoting

µ∆ =
B2 −B1

H2 −H1
(8.34)

we obtain for E1

E1 =

(
1− µ

µ∆

)2

. (8.35)

The last expression is upper bounded at each point of the computational
domain x by (1− µ/µinf)

2 or (1− µ/µsup)
2, where µsup := supµ∆ ≤ µmax and



192 Chapter 8. The non-linear problem

µinf := inf µ∆ ≥ µmin as it turns out by (8.31). There exists k2 < 1 such as

1− µ

µsup
≤ k (8.36)

and

1− µ

µinf
≤ −k (8.37)

which implies

0 < µsup(1− k) ≤ µ ≤ µinf(1 + k) < 2µinf (8.38)

whence we infer for k

k ≥ µsup − µinf

µsup + µinf
. (8.39)

k is the contraction factor which takes its optimal value at its minimum, which
yields for the linearisation permeability

µopt =
2µsupµinf

µsup + µinf
. (8.40)

which can be also written

µopt =
µ̄2
g

µ̄a
(8.41)

i.e. the optimal permeability is the ratio of the squared geometrical to the arith-
metic mean of the material differential permeability.

We have to test now if the second extreme E2. We shall assume without loss
of generality that I1/B1 ≤ I2/B2. Recalling the identity

I1
B1
≤ I2 + I1
B2 +B1

≤ I2
B2

(8.42)

it turns out

sup

(
I2 + I1
B2 +B1

)2

≤ sup

(
I2
B2

)2

(8.43)

At this point we shall make use of the hypothesis that the material law has
zero remanence, which results

sup

(
I2
B2

)2

= sup

(
I2 − 0

B2 − 0

)2

= sup

(
1− µ

µ∆0

)2

≤ sup

(
1− µ

µ∆

)2

= supE1

(8.44)
where µ∆0 stands for the secant with the first point at zero, which is one of the
possible values in the secant range. We conclude thus that E2 has a least upper
bound than E1 and hence the above inequalities hold also for E2.
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Anisotropic material

We shift now to the case of the orthotropic material defined in (8.28). The
analysis is restricted to orthotropic materials with principle axes parallel to the
rectangular reference frame one.

We consider again the ⟨∆I, ν∆I⟩/⟨∆B, ν∆B⟩ ratio which for a diagonal
reluctivity tensor becomes

⟨∆I, ν∆I⟩
⟨∆B, ν∆B⟩

=
νxx (∆Ix)

2
+ νyy (∆Iy)

2
+ νzz (∆Iz)

2

νxx (∆Bx)
2
+ νyy (∆By)

2
+ νzz (∆Bz)

2 (8.45)

We recall that for an ordered set of fractions

α

a
≤ β

b
≤ γ

c
(8.46)

the following property holds

α

a
≤ α+ β + γ

a+ b+ c
≤ γ

b
(8.47)

Applying this property, we can write for the upper bound of (8.45)

⟨∆I, ν∆I⟩
⟨∆B, ν∆B⟩

≤ max

[
sup

(
(∆Ix)

2

(∆Bx)
2

)
, sup

(
(∆Iy)

2

(∆By)
2

)
, sup

(
(∆Iz)

2

(∆Bz)
2

)]
(8.48)

Each of the above partial ratios has a lower bound related by the permeability
bounds in the corresponding direction of the material frame i, namely (1 −
µ/µi,sup)

2 or (1 − µ/µi,inf)
2, there exists hence a k per direction that satisfies

the inequality

0 < µi,sup(1− ki) ≤ µ ≤ µi,inf(1 + ki) < 2µi,inf (8.49)

which take place if

ki ≥ ki,opt =
µi,sup − µi,inf

µi,sup + µi,inf
. (8.50)

which implies a global kopt = max(ki,opt) , i = 1, . . . , 3, with a corresponding
value for the permeability. As long as the magnetisation in principal axes does
not interfere with another (which is the case for the orthotropic materials exam-
ined here), a tensor-type linearisation can be used with the optimal permeability
value per axis as it is determined by (8.50), which signifies that no need exists
for tracing a global optimum permeability. In both cases (tensor or scalar lin-
earisation) the precontractive character of the material law is guaranteed when
respecting the above derived bounds.

8.4.3 Non-expansive character of the magnetostatic for-
mulation

Let two solutions of the magnetostatic problem (H1,B1) and (H2,B2), which
share the same excitation currents and have the same boundary conditions.
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Their difference ∆B = B2−B1 and ∆H = H2−H1 should verify the relations
[155]

∇×∆H = 0 (8.51)

∇×∆B = 0. (8.52)

We consider the integral

⟨∆B,∆H⟩ :=
∫
V

∆B ·∆HdV (8.53)

where the integration exceeds the problem domain V . By virtue of (8.51) we
can write

∆H = −∇Φ (8.54)

which upon replacement in (8.53) and using the Gauss identity yields

⟨∆B,∆H⟩ = −
∫
∂V

Φ∆B · dS+

∫
V

∇ ·∆BΦdV. (8.55)

The first integral vanishes since by hypothesis ∆B = 0 on the domain bound-
ary. The second integral is also equal to zero by the Gauss’ law for the magnetic
flux density. We hence conclude

⟨∆B,∆H⟩ = 0. (8.56)

Applying the constitutive relation, we can replace ∆H by ν(∆B − ∆I),
whence we conclude

⟨∆B, ν∆B⟩ = ⟨∆B, ν∆I⟩ (8.57)

or equivalently
∥∆B∥2ν = ⟨∆B,∆I⟩ν (8.58)

which using the Cauchy-Schwarz inequality becomes

∥∆B∥2ν ≤ ∥∆B∥ν ∥∆I∥ν (8.59)

which implies
∥B2 −B1∥ν ≤ ∥I2 − I1∥ν . (8.60)

The last relation completes the proof of the non-expansive character of the
magnetostatic formulation.

8.4.4 Non-expansive character of the eddy-current formu-
lation

We keep the same hypotheses as before but this time the field variations ∆B,
∆H and ∆E must verify the source-free Maxwell equations for the quasi-static
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[132].

∇×∆E = −d∆B

dt
(8.61)

∇×∆B = σ∆E. (8.62)

The norm which we consider now is defined as the spatio-temporal integral

⟨∆B, ν∆B⟩ :=
t∫

0

∫
V

∆B ·∆HdV dτ (8.63)

Using the standard vector potential definition for the magnetic induction
variation ∆B = ∇×A (8.63) becomes

⟨∆B,∆H⟩ = ⟨∇ ×A,∆H⟩
= ⟨A,∇×∆H⟩ (8.64)

where use was made of the hermiticity of the curl operator under Dirichlet
boundary conditions (∆H = 0|∂V ). Substitution of (8.62) yields

⟨∆B,∆H⟩ = ⟨A, σ∆E⟩

= ⟨A,−σdA
dt
⟩

= −∥A∥2σ ≤ 0 (8.65)

where ∥•∥ν stands for the spatial norm of the instantaneous potential value
at time t, namely A = A(t). For the derivation of the last relation, we have
assumed A(0) = 0.

Following the same line of reasoning as for the magnetostatics case and
making again use of the Cauchy-Schwarz inequality, we can write successively

⟨∆B, ν(∆B−∆I)⟩σ ≤ 0

∥∆B∥2νσ ≤ ⟨∆B,∆I)⟩νσ
∥∆B∥νσ ≤ ∥I∥νσ (8.66)

which implies

∥B2 −B1∥νσ ≤ ∥I2 − I1∥νσ . (8.67)

This last relation completes the proof of the non-expansiveness for the quasi-
static (eddy-currents) formulation. Note that no hypothesis was made for the
field initial conditions (A(0) = 0 is merely a gauge condition), which means that
the proof is valid independently of the initial field value.
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8.5 Spectral approach

We return now to the problem described in Fig. 8.3. The problem has been
treated in TD when FIT was used for the spatial descretisation since this is the
more straight-forward approach for treating the non-linear operator in iterative
schemes. When the excitation is harmonic, however, the expected spectrum
of the final field signals (in permanent regime) will be an enriched spectrum
including the basic frequency plus a small number of rapidly decaying higher
odd-harmonics as shown in Fig. 8.8. This property can be exploited in order
to significantly reduce the computation time since the time discretisation is
replaced by a sweep over a very small number of contributing harmonics. This
approach is known as harmonic balance and has been successfully used for the
solution of non-linear electromagnetic problems in the permanent regime [136,
139,140].

Converting (8.2) in FD and comparing it with (5.76) it turns out that the lin-
earised problem reduces to the solution of the inhomogeneous Helmholtz equa-
tion with an equivalent magnetic current density

Jm(x, t) ≡
1

iω
I(x, t) (8.68)

in other words, the time integral of the magnetic polarisation. At a given
iteration l and for the pth harmonic (8.2) can be thus written(

∇2 − 1

ρ2
− k2p

)
A(l)

p (ρ, z) = −δp1µ0Je(ρ, z)− eϕ · ∇ × I(l−1)
p (ρ, z) (8.69)

Je is the current density of the coil, and consequently is non-zero only for the ba-

sic harmonic ω1. I
(l−1)
p stands for the pth harmonic of the magnetic polarisation

computed by the Fourier integral

I(l−1)
p (ρ, z) =

1

T

T∫
0

I(l−1)(ρ, z, t) e−iωptdt (8.70)

where I(l−1)(ρ, z, t) is the magnetic polarisation obtained by application of the
material law to the magnetic induction calculated in the previous iteration

I(l−1)(ρ, z, t) = F
[
∇×A(l−1)(ρ, z, t)

]
. (8.71)

The solution of the linearised equation (8.69) follows the same lines with the
one described in section 5.10 with the only difference that the developing basis
must be suited for accounting the odd parity of the magnetic field distribution
with respect to the z = 0 plane. In fact, the problem can be reduced to an
equivalent problem in the upper half-space with a PEC boundary at z = 0. The
developments in (5.81),(8.73) thus become for the odd-parity problem

A(h)(ρ, z) =

√
2

ρLJ0(κnρL)

∞∑
n=1

J1(κnρ)
[
C(2)

n evn(z−d/2) +D(2)
n e−vn(z+d/2)

]
(8.72)
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Bρ Bz

I = 3 A I = 10 A I = 3 A I = 10 A

FIT 0.067 0.130 0.044 0.114
TREE 0.042 0.127 0.052 0.116

Table 8.2: Comparison of the harmonic distortion content for the Bρ and Bz

components at ((r1+r2)/2, d/4) obtained by the FIT and the spectral approach.

and

wnl(ρ, z) :=
2

ρLJ0(κnρL)
√
d
J1(κnρ) sin(qlz) (8.73)

respectively. The κn eigenvalues for the development in the radial direction
remain the same, whereas the ql eigenvalues become

ql =
2lπ

d
, l = 1, 2, . . . ,∞. (8.74)

Finally, the zero order axial term gnl must accommodate a non-zero tan-
gential field at z = d/2 remaining odd with respect to the z = 0 plane. These
conditions are satisfied by setting

gnl(z) =

{
z, n = 1
0, elsewhere

(8.75)

The field profile obtained for this coil arrangement at different observation
points is described by the same curves illustrated in 8.3.2 and will not be re-
peated here. For a quantitative comparison of the results obtained using the
two approaches we compute the harmonic distortion at the second observation
point ((r1 + r2)/2, d/4). The computed values with the two approaches are
summarised in Tab. 8.2.

8.6 Non-linear calculations for materials with
hysteresis

8.6.1 Overview of the basic hysteresis properties: Man-
delung’s rules

In the previous sections, we focused on the development of a solution methodol-
ogy for electromagnetic problems when non-linear materials are involved. Since
the objective was the treatment of non-linearities, simple, single-valued B(H)
curves have been considered entirely neglecting hysteresis effects. The pres-
ence of hysteresis is, however, the rule and not the exception for the majority
of technical materials. More than that, it is the very hysteretic properties of
the material that interest us in electromagnetic material evaluation applica-
tions as owing to their link with the material microstructure and consequently
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its mechanical properties (which are determined in their turn by the same mi-
crostructural features).

The essential feature of hysteresis is history dependence. Hysteretic consti-
tutive relations are thus multi-branch functions, which means that the value of
the material parameter depends not only on the current value of the excitation
but also its values at previous instances. In the special case of magnetic hys-
teresis, this dependence admits a somewhat simpler form, i.e. it is restricted to
the maxima of the exciting field H instead of the whole field record.

A further characteristic of magnetic hysteresis, which distinguishes it by
other hysteretic phenomena (e.g. during second order transitions between nor-
mal and superconducting state of type-II superconductors), is its non-scalar
nature: it maps a vector to a vector and hence can be seen as a rank-2 non-
linear tensor function. The definition of isotropy and anisotropy for magnetic
materials was given in 8.4.1, where material with no hysteresis were considered.
The same definitions will be adopted for hysteretic materials since the existence
of multiple branches does not affect the essence of the definitions.

In spite of the variety of characteristics among different magnetic materi-
als some general features are observed in their magnetization processes. These
features have been described already in 1905 [157,158] and are known as Man-
delung’s rules. Considering the hysteresis curves in Fig. 8.9, these experimen-
tally established rules can be stated as follows:

1. The path of any transition (reversal) curve is uniquely determined by the
coordinates of the reversal point, from which this curve emanates.

2. If any point 4 of the curve 3-4-1 becomes a new reversal point, then the
curve 4-5-3 originating at point 4 returns to the initial point 3 (return-
point-memory)

3. If the point 5 of the curve 4-5-3 becomes the newest reversal point and if
the transition curve 5-4 extends beyond the point 4, it will pass along the
part 4-1 of curve 3-4-1, as if the previous closed loop 4-5-4 did not exist
at all (wiping-out property)

A fourth property of the hysteresis curves, perhaps the most well-known,
which however does not belong to the Mandelung’s rules, is the point symmetry
of the major and the internal loops:

4. If B(H) is describing a transition curve of a hysteretic material then
−B(−H) will also be a transition curve of the same material.

The properties listed above imply a static hysteresis model, that is, dynam-
ical phenomena like dependence on the excitation frequency are ignored. This
is a simplification since real hysteresis observed in the experiments does in fact
demonstrate rate-dependence [159]. From the physical point of view, rate inde-
pendence implies a total scale separation between microscopic mechanisms and
the Maxwell equations, i.e. the response time of the irreversible changes in the
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Figure 8.9: Transition curves illustrating Mandelung’s rules.

material (wall movements) is order of magnitudes smaller than the character-
istic time of the (macroscopic) external field, a hypothesis that is not always
valid. Temperature effects do also exist though their influence is rather weak at
room temperatures for Fe, Ni and Co alloys.

In the following, the above-mentioned four rules will be axiomatically ac-
cepted with both the rate-dependence and temperature effects left aside.

8.6.2 Determination of the state in systems with hystere-
sis

In accordance with the first Mandelung rule, we shall accept that the coordinates
of the last reversal point (Hr,Mr) together with the current value of the external
magnetic field H provide a full description of the material state

M =M(H,Hr,Mr) . (8.76)

The physical interpretation of this experimentally derived rule, which is
adopted here as postulate, can be linked with the thermodynamic properties of
hysteresis. It is known that hysteresis characterises systems out of equilibrium,
and for these systems the configuration space in equilibrium must be comple-
mented by a number of internal variables [160]. Without entering in the very
complicated discussion of searching the appropriate set of internal variables,
which lies entirely outside the scope of the present text, we will be content with
a pure mathematical justification of this choice in the sense that they provide
the necessary additional dimensions of the augmented space in combination with
the experimental evidence.

A special case of significant interest concerns symmetrical excitations, i.e.
the maxima and the minima of the external field (or equivalently the excitation
current) have the same absolute value. This is the case for periodic excitations,
which are used in the majority of technical applications. Assuming that the
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system is at its demagnetised state (origin of theM(H) plane) in the beginning,
all reversal points are lying on the first magnetisation curve Min(H), which
means that the system state is characterised only by the Hr value. Formally,
we can write

M =M(H,Hr,Min(Hr)) =M(H,Hr) . (8.77)

To the same category belong pulsed excitations without crossover whose
minimum (maximum) value is zero. For the latter, only the first (third) quarter
of the M(H) plane is explored by the system meaning that only one reversal
point occurs.

Should the system initiate from the negative (or positive) saturation state,
and should the excitation accommodate a single or multiple but equal in am-
plitude reversal points, then M admits the same representation. Recalling the
definition of the first order reversal curves FORC’s [161]

ρ(H,Hr) = −
1

2

∂2M(H,Hr)

∂Hr∂H
(8.78)

it becomes evident that the M(H,Hr) representation described by (8.77) is
nothing more than the cumulative FORC distribution, namely

M(H,Hr) = −1 + 2

H∫
Hr

dβ

Hr∫
0

ρ(α, β) dα. (8.79)

The visualisation of the integration domain for the two cases, namely single
and symmetric FORC initiating from the virgin and the saturation state, is
shown in Fig. 8.10. This is equivalent to the integration domain of the Preisach
model. In the case of a system initiation by the virgin state, one must also
include the necessary integration domain for totally canceling out any remanent
magnetisation via a succession of demagnetisation cycles of decreasing amplitude
(light grey area in Fig. 8.10b). The triangular integration domain is therefore
an idealisation of a large number of demagnetisation cycles, indicated by their
step-formed shape of the upper triangular boundary. In each case the state
vector is formed by the coordinates of the upper-right corner of the integration
domain.

The entirety of the M states is contained in the triangular domain depicted
in Fig. 8.10, which means that an efficient way of evaluating M(H,Hr) is via
interpolation from a set of pre-evaluated samples (a kind of hysteresis meta-
model [162]). An additional advantage of this approach, besides algorithmic
convenience, is that the evaluation does not depend on how the samples have
been obtained, which can be a combination of models or a mixture of theoretical
calculations and experimental data. M(H,Hr) contains all the information we
need.

When coming to the interpolation, it is more convenient to work with a
rectangular domain instead of the triangular one of (8.10). Introducing the
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Hr

H

Hr

H

(a) (b)

Figure 8.10: Cumulative FORC representation of the magnetisation M for (a)
system initiating from the negative saturation state (b) system initiating from
the demagnetised state. With dark grey is denoted the integration domain of the
FORC distribution, and light grey in the second plot stands for the integration
area necessary for achieving the virgin state.

non-linear coordinate transformation

ξ =
H

Hs
(8.80)

η =
Hr

H
(8.81)

with Hs defined as
Hs := min(argmaxM) . (8.82)

The above definition assumes that the saturation stateM =Ms will be reached
somewhere andHs will be the lower bound of the magnetic field required to reach
this state. The ideal saturation is, however, a rather theoretical state, achieved
at very high fields for some materials and subjected to thermal fluctuations. It
is therefore more reasonable to define a thresholdMt of a “technical” saturation
and reformulate the definition relation (8.82) as follows

Hs := sup
M≤Mt

H(M) . (8.83)

In the following, the distinction between the ideal Ms and the technical
saturation Mt will be dropped, and every time we shall be referring to the
saturation value we will mean the technical saturation threshold.

With the change of variables (8.80),(8.81) we have a rectangular domain for
M , namely

M =M(ξ, η) , ξ, η ∈ [0, 1] (8.84)

and the magnetisation at each internal point of the domain can be easily ob-
tained by interpolation.
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(a) (b)

Figure 8.11: Laboratory realisation of the set-up described in 8.3.2. (a)
Schematic diagram. (b) Coils and specimen arrangement.

It has been shown above that the A formulation requires the evaluation of
the inverse magnetisation function H = H(B) = B−1(B) instead of the direct
function. It makes thus sense to change the working state variables for the
expression of the magnetisation state from (H,Hr) to (B,Br), and proceed to
the respective change of variables (we keep the same variable names to avoid
excessive symbol proliferation)

ξ =
B

Bs
(8.85)

η =
Br

B
. (8.86)

Now the evaluation of the inverse function H = H(ξ, η) becomes trivial
by interpolating in the ξ, η = [0, 1] rectangle, assuming that H has been pre-
calculated at a sufficient number of sampling points.

8.7 Comparison with experimental results

The solution of the electromagnetic problem involving the hysteretic constitutive
relation and the interpolation approach in the augmented (B,Br) space has been
compared to experimental results acquired using the set-up examined in 8.3.2.
The laboratory realisation of the set-up is illustrated in Fig. 8.11.

The two coils are connected in series but with opposite polarity to the voltage
source. The two field components (tangential Bρ and normal Bz) are measured
by means of a pair of Hall sensors. The two sensors are placed in a common
plastic housing, which holds them fixed, and which is free to move on the spec-
imen surface at a constant lift-off. The coils characteristics are summarised in
Tab. 8.3. The two coils are assumed to be identical within construction toler-
ances. The coils lift-off is estimated to be about 0.1 mm, though its precise
value is not expected to have a significant impact to the results.

The plate material is a typical structural steel (SS), a material with moderate
mechanical and magnetic hardness as its BH-loop curves indicate (cf. Fig. 8.12).
The first step of the experimental procedure was the characterisation of the plate
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Inner radius rin 9 mm
Outer radius rout 25 mm

Length l 67 mm
Number of turns N 545

Table 8.3: Parameters of the induction coils.

steel. For this purpose, a narrow strip has been cut away from one of its edges.
Since the particular type of steel can be considered with very good approxi-
mation as isotropic, the choice of the edge is of no importance. The electrical
conductivity has been then measured by applying the four-point method in the
strip sample. The same specimen has also been used for the measurement of
its magnetic characteristics, namely the BH loops. The experimental approach
used for the hysteresis measurement was the solenoid method.

The measured loops for a number of different excitation voltages at the
solenoid are plotted in Fig. 8.12a. The theoretical hysteresis model chosen for
the realisation of the numerical calculations is the Mel’gui model [163]. The
choice of this particular model was driven by the stability issues during the
evaluation of the inner loops. In fact the Mel’gui model turns to be more sta-
ble than the Jiles-Atherton model when coming to the calculation of the inner
loops. The model has been identified using the measurements for the maxi-
mum loop (the one obtained at the highest level of excitation). The comparison
of the identified model with the corresponding experimental curve is shown in
Fig. 8.12b. It turns out that the Mel’gui model reproduces very well the exper-
imental data for a number of steels, which in combination with its simplicity
makes it a handy model for numerical simulations involving symmetrical loops.

(a) (b)

Figure 8.12: (a) Measured BH loops of the plate material for various levels of
the solenoid voltage. (b) Identification of the Mel’gui model using the maximum
loop data.

Despite the enhanced stability of the Mel’gui model for the calculation of the
inner loops, still action must be taken for loops with relatively low-field reversal
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points (under 10% of the maximum reversal point), where negative slopes and
hence unphysical results may occur. For this reason, the Mel’gui model has
been combined with the Rayleigh model, which provides a good approximation
at weak fields. The Rayleigh model is parametrised by imposing the continuity
of the magnetisation and its first derivative (the magnetic susceptibility) at the
transition point of the first magnetisation curve.

The main experiment consists in exciting the coils with a sinusoidal current
at a given frequency and measuring the tangential and normal field component
using the field probe. The excitation frequency has been chosen 10 Hz and the
excitation voltage was set at 0.7, 1.4, 2.8 and 5.6 V. The coil current obtained for
the four voltage levels has been measured using a current clamp. The resulting
voltage-current are summarised in Tab. 8.4

Excitation voltage (V) Coil current (A)

0.7 1.886
1.4 3.639
2.8 6.880
5.6 13.0448

Table 8.4: Excitation voltage and the corresponding coil current used for the
realisation of the field measurements.

The first test consists in examining the influence of the hysteresis loop on the
measured signals. For this reason, we solve the non-linear problem by ignoring
hysteretic effects, i.e. we consider a single-valued material law described by the
virgin curve, such as it is determined by the Mel’gui model. The comparison
between simulation results and experimental signals measured by the field probe
with the observation point located beside the magnetising coil of the upper
part of the set-up (in touch with it) for the four excitation levels are shown in
Fig. 8.13.

Figure 8.13: Experimental signals vs. simulation results for the Bρ and Bz

components when only the virgin curve is used as material law.
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We can make the following observations. The tangential field signals presents
a notable deviation from the sinusoidal curve, with the deformation increasing
with the voltage, as expected. On the contrary, the normal component remains
practically linear for all excitations. This difference is justified by the conception
of the experiment, namely the different polarity of the coils results in a stronger
tangential component at the vicinity of the coils, whereas the normal component
is significantly weaker. This may seem being in contradiction with the signals
amplitude in Fig. 8.13 (Bz appears stronger than Bρ) yet it must be recalled
that these plots concern measurements in the air, and the continuity of the
normal induction imply a much weaker value inside the plate.

The second important observation is related to the failure of the non-hysteretic
material law to describe correctly the descending part of the curves. In fact, the
sigle-valued curve we considered for the numerical simulations yield a symmetric
signal (in terms of the ascending and descending part), which differs with what
is observed in reality.

Figure 8.14: Sampling of the BH loops and corresponding path in the Preisach
plane. One can distinguish the transition between the Rayleigh and the Mel’gui
models.

Let us now take the actual hysteretic law of the material as it is approxi-
mated by the hybrid Mel’gui-Rayleigh model. A characteristic sampling of the
magnetic loops and the corresponding points in the Preisach plane are shown in
Fig. 8.14. The simulation results for the same situation with the one examined
above are shown in Fig. 8.15.

There is a clear improvement in the accordance of the simulation results
with the experimental curves when the hysteresis is taken into account. It must
be also underlined at this point the versatility that the (B,Br) representation
contributes to the solution: we were able to combine the Mel’gui model with the
Rayleigh relation, thus enhancing the stability of the solver in a very straight-
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Figure 8.15: Experimental signals vs. simulation results for the Bρ and Bz

components when the full hysteretic model is taken into account.

forward way by just juxtaposing sample curves calculated with the two models.
In the same way, we could have proceeded to any other combination of models
or models and experimental curves.

8.8 Remanent measurements after quarter-cycle
excitation: the IMPOC device

An industrial realisation of the above examined set-up represents the IMPOC
system, used for the in-line quality evaluation of the steel properties during
mechanical and thermal treatment in the production line of strip steel products
[151,152,164]2.

The main characteristic of the IMPOC system is that it is based upon re-
manent field gradient measurements, which is carried out after the fading-out
of a pulsed excitation at the magnetisation coils. This type of measurements
presents certain advantages for the driving circuit since the absence of current
cross-over allows the coil loading via the discharge of large capacitors. In ad-
dition, the remanent field measurement proves to be very well correlated with
the tensile stress of the strip under testing. A qualitative explanation to this
correlation can be given with the aid of the Fig. 8.13 and Fig. 8.15, where it has
been shown that the descending part of the hysteresis loop has a major effect
on the field signal. It is well known on the other side that the coercive field,
whose strong correlation with the mechanical properties is well reported, is de-
terminant for the hysteresis curve. The indirect dependence of the measurement
with the coercive field and via that the mechanical properties of the specimen
can thus explain the sensitivity to the tensile stress and thereupon justify the

2The results presented in this section have been produced in the context of the research
project ‘Product Uniformity Control (PUC)” funded from the European Union’s Research
Fund for Coal and Steel (RFCS) research programme under grant agreement no. RFSR-CT-
2013-00031.
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interest of the measurement.

In terms of numerical simulation, we are speaking for a quarter-cycle opera-
tion, in the sense that only the part of the BH loop that lies in the first quarter
plane is explored. The excitation signal and the followed path on the BH plane
are shown in Fig. 8.16. It should be noted that the numerical solution of the
problem can be quite challenging since we are interested in the solution close to
the remanence, where the excitation field is weak and the magnetic field source
is dominated by the piece magnetisation, which is derived by the field solution
at the previous instances.

Figure 8.16: Excitation cycle and path the the BH plane. The time axis is
normalised with the duration of the excitation pulse Te.

The numerical simulation reproduces a number of important experimental
trends observed during in-line measurements using installed IMPOC systems in
production lines. Two of the most pronounced effects is the effect of the strip
speed and the strip thickness.

Recalling that IMPOC output is basically a transcription of the excitation
coils magnetic imprint on the measured specimen, it is well understood that
the strip velocity might have an important effect to the measurement owing to
the elongation of the magnetisation spot during movement. This is an annoy-
ing effect in steel production lines, where the produced product is sliding with
speeds that can exceed beyond 10 m/s. Simulation can be a significant aid here
by providing calibration curves. Fig. 8.17 demonstrates the effect using both
experimental as well simulation results for a number of different strip grades.
In both cases, the dependence of the IMPOC output from the strip speed is
linear with a slope that decreases for harder grades. This decrease is consis-
tent with the expectations since the harder the material is the more resilient
becomes against magnetisation. In addition, harder grades (dual-phase, DP)
demonstrate clearly lower remanences that the softer steels such as interstitial-
free (IF) steels. The slope in Fig. 8.17a is -4.44% per 100 m/min which lies
between the slopes obtained for the low-carbon (LC) and micro-alloyed (MA)
steel. Taking into account that the measurements have been obtained using
an LC steel with different characteristics than the one used for the simulation
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and given the fact that the experimental results have been produced with little
control to conditions such as the former piece state (no demagnetisation has

(a) (b)

Figure 8.17: IMPOC signal as function of the strip velocity. (a) Measurements
for a hot-rolled low-carbon steel of different thickness. (b) Simulation results for
different steel grades. The lines represent the best linear fit to the simulation
values (one line per steel grade). The considered grades are: interstitial-free
(IF), low-carbon (LC), micro-alloyed (MA) and dual-phase (DP). Measurements
courtesy of EMG.

been carried out), the agreement can be deemed quite satisfactory.

The influence of the strip thickness to the measurements is the second im-
portant effect that needs to be compensated. Again, the simulation results are
compared against measurements carried out using stacked tin strips of different
total thicknesses. The comparison of the experimental results vs. simulation for
IF and DP steels is provided in Fig. 8.18. The experimental results have been
kindly provided by ThyssenKrupp in the context of the PUC european project.

Layered specimens have been preferred for this measurement in order to
assure a better control upon the metallurgical properties: the lamination pro-
cedure having a direct influence to the material parameters makes it extremely
complicated to obtain specimens of different thicknesses with exactly the same
properties.

The comparison of the curves in Fig. 8.18 reveals that the thickness effect
is manifested in a different way depending on the hardness of the steel grade,
namely a more pronounced effect is observed for the (harder) DP steel than
the IF. This conclusion is also supported by the fair agreement between the
experimental curve of the (magnetically soft) tin specimen and the IF one.
Unfortunately, the details of the tin material used for the experiment were not
accessible, hence a direct comparison with the simulation results obtained with
the same material is not possible. Nonetheless, the observed agreement is quite
acceptable even using steels of similar but not the same properties.
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Figure 8.18: IMPOC signal as function of the strip thickness for an IF and DP
steel. The blue line represents experimental results obtained using stacked tin
strips. Measurements courtesy of ThyssenKrupp.

8.9 Publications related with the chapter con-
tent

The spectral approach for the solution of the 1D non-linear problem in planar
slabs and infinite rods has been proposed in [75]. The corresponding problem
of a ferromagnetic plate inspection has been treated using TREE in [76]. The
numerical studies presented in 8.2.3 and the numerical results using the double-
coil and the yoke configuration have been realised in the context of the post-
doctoral work of Dr. T. Svaton̆ [165,166].

The benchmark measurements used for the validation of the numerical re-
sults of the material with hysteresis in section 8.7 have been carried out in close
collaboration with Prof. N. Poulakis from the University of Western Macedonia
in Greece and are the subject of an article in preparation.

Many of the results presented in section 8.8 are the outcome of the Product
Uniformity Control (PUC) European project funded from the Research Fund
for Coal and Steel (RFCS) under the Grant Agreement Number RFSR-CT-
2013-00031 [151, 152, 167]. This research topic remains active in the succession
of the PUC project, the Online Microstructure Analytics (OMA) project also
funded by RFCS under the Grant Agreement Number 847296.
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Chapter 9

Perspectives, ongoing
developments and
projections

9.1 Towards faster and precise solutions for ap-
plication in problem inversion

The finite elements method (FEM) has become nowadays the standard tool
for the solution of partial differential applications, having benefited from a long
time of research and fine-tuning from a very broad community grouping different
domains in physics. As a result, very powerful and reliable implementations exist
nowadays in form of either mature commercial products or open source codes.

The most important weaknesses of the method remain the strong dependence
from the mesh resolution (which is more pronounced in specific critical regions
of the geometry such as the lift-off or inside ferromagnetic materials where
strong field gradients are produced) and the solution times. Both difficulties are
inherent of the method. Although special formulations (e.g. using line elements)
and various smart tricks have been elaborated for overcoming the precision
problems linked the gradients mentioned above, the choice of the optimal mesh
resolution is a point requiring always special care from the user. As far as
computational time is concerned, hardware evolution and parallel architectures
have made accessible problems intractable before, yet hardware acceleration is
not always a practical (or sometimes affordable) approach.

It has been argued several times in this text, that spectral or mixed spa-
tial/spatial solutions are particularly well adapted for NDT applications, since
they are insensitive to lift-off problems, and they are less sensitive on the field
resolution in particular regions (the values at interfaces being determinant for
the solution precision). In addition, combined with the integral equation ap-
proach, where they contribute in the construction of dedicated kernels, they

211
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offer very efficient computations of the impedance (of field) variations at the
observation points, which are our basic observables.

To the above arguments in favour of the further development of such ap-
proaches, one must also count the very interesting computation times. This
argument stems not from a simple seek for commodity but must be seen in the
light of chained or iterative calculations, such as the one needed for the solution
of an optimisation problem, the conductance of sensitivity studies and problem
inversion.

It is also one of the conclusions of this work that hybridisation of methods
is the most promising way of addressing complex geometries without compro-
mising neither the physics (through oversimplification) nor the computational
efficiency (by getting the maximum of the spectral approaches).

Current trends in research and industry allow to assume that the major
future challenges for computational methods for the modelling and simulation
of physical processes will mainly move in the following axes:

• Integration in fully-fledged multi-level simulation codes of complex proce-
dures (the so-called digital twin).

• Multi-physics and multiscale approaches addressing more complex prob-
lems.

As far as the first direction is concerned, speed and robustness become major
issues. The second direction, notable the multiscale approaches will be analysed
in more detail in the next paragraphs.

9.2 Material characterisation: interest in multi-
scale approaches

One large class of problems, whose certain aspects have been studied in chap-
ter 8, are the so-called material characterisation applications. Here, the principal
objective consists in retrieving information about the state of the material based
on macroscopic magnetic measurements, the most established among them be-
ing the harmonic analysis, hysteresis loops, permeability (either differential or
incremental) and magnetic Barkhausen noise (MBN). The interest in using the
magnetic methods lies in the thermodynamical nature of magnetism itself, which
establishes a very strong link between the state of the material (in particular
its metallurgical state characterised by the grain size, dislocations density, exis-
tence of different phases and texture, etc.), residual stresses (usually remnants
of thermal and mechanical treatments), and the previous history in terms of me-
chanical and magnetic external loading. All these factors can be interrelated,
with the final result to the material being sometimes extremely hard to predict.
The selection the most representative observables, which are sensitive to spe-
cific physical mechanisms, is therefore an important part of the experimental
protocol design.
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M(H)

V (t)

P(a, ρ, α1, α2, α3) , . . .

Figure 9.1: Schematic overview of the models hierarchy for the simulation of
material characterisation experiments.

The schematic overview of the modelling problem illustrating the hierarchy
of the different involved scales and the corresponding state variables/observables
is shown in Fig. 9.1. At the smallest scale, the material is characterised by its
microstructure, described via statistical distributions of the grain size a, the
dislocation density ρ, the Euler angles of the easy-axis (α1, α2, α3), etc. The
complex mechanisms related to the interplay between magnetic domains and the
details of the microstructure give rise to the macroscopic constitutive relation
M(H). Measurement of the magnetisation (or one of the thereupon dependent
variables like the MBN) can thus deliver information about the material state.
These variables, however, are measured indirectly via a number of magnetic
field probes (induction coils or semiconductor sensors), where the geometry
effect and the eventual material anisotropy come into play and interfere with
the measurement. It is again the model’s work to separate the intrinsic magnetic
material response from the field measurement (via the solution of the inverse
problem).

The specific challenges and perspectives for the different scales of the chain
will be discussed hereafter in a more concise manner, and a roadmap for future
research will be proposed based on the state-of-the-art.

9.2.1 Accounting for the grain and texture effects at meso-
scopic scale

Different approaches have been proposed for the calculation of the magnetic
properties in ferromagnetic materials, which address the problem at different
scales. Direct calculations of spin interactions form the base of the Ising model
(and its extensions for two and three axes, namely the XY and Heisenberg
models respectively) [168–176] or the Landau-Lifshitz-Gilbert (LLG) model
[160, 177]. Although these approaches have been proven extremely successful
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for the prediction of phase transitions and simulations of spin-orbit coupling
phenomena in 2D materials, they struggle to account for the details of the met-
allurgical microstructure due to the very small scale to which they apply.

An alternative approach (more pragmatical in case of industrial materials)
is to treat the problem in the scale of magnetic domains (and above) by con-
sidering the mechanics of the domain wall [178, 179]. This scale will be con-
ventionally referred to as mesoscopic scale, since it lies half-way between the
quasi-microscopic spin models and the macroscopic Maxwell equations. The in-
termediate resolution of this scale allows predictions of both thermodynamical
(such as the critical exponents, realm of statistical physics models [178–183])
and macroscopic laws such as hysteresis and permeability behaviour [184,185]).

In this second family of models, one can also classify in a broad sense the
so-called multiscale model, developed by L. Daniel, O. Hubert et al. for the
construction of constitutive relations in ferromagnetic materials under magnetic
and mechanical loading, which remains nowadays one of the most successful and
elaborate existing approaches [186–194]. Texture can be taken into account us-
ing grain orientation distribution information by electron backscatter diffraction
(EBSD) scans [187,188]. The demagnetisation effect due to grain boundaries is
taken into account using statistical averaging.

It is clear that for real materials, the grain information, in particular the
grain size and orientation distributions, can be determinant for their magnetic
behaviour. Nonetheless, this is usually the most challenging term to model
because of the long-range nature of this contribution (in contrast with the short-
range character of the other major mechanisms like the exchange interaction and
the crystal anisotropy). A detailed accounting of the magnetostatic energy term
for realistic microstructures would imply to involve numerical solutions of the
field problem for a given microstructure.

A characteristic example of the use of the mesoscopic approach for account-
ing the effect of the demagnetisation field in initial permeability predictions is
given by F. Zhou, C. Davis et al. in [195,196]. In their approach, a synthetic mi-
crostructure constructed for the case of a dual-phase (ferrite- martensite) steel
has been provided in a FEM solver, and the resulting field distribution has been
integrated to derive the initial permeability as function of the phase fraction.
A characteristic image of the field solution in the synthetic microstructure is
given in Fig. 9.2. A scanning electron microscope (SEM) of a real dual-phase
microstructure is provided in the same figure for reference. According to the
authors, the model is very successful in reproducing the experimental trends
for different ferrite fractions (detailed comparisons can be found in the cited
articles).

Other examples, where FEM simulations have been used for reproducing
Barkhausen noise data and hysteresis curves based on simple domain config-
urations are found in [185, 197]. In particular, it is shown in [197] that the
introduction of random distributions of pinning centres in the domain configu-
ration has allowed to control the basic statistical features the MBN events.

From the previous discussion, one may conclude that the introduction of
microstructural characteristics such as the grain configuration along with the
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Figure 9.2: The modelled effective permeability (Mur) results and flux distri-
bution in a DP800 steel microstructure. Left: SEM image showing phase dis-
tribution of ferrite (dark) and martensite (bright); middle: modelled magnetic
flux distribution when horizontal and, right, vertical magnetic fields are applied
(Image reproduced from [196]).

easy-axis orientation distribution and statistical moments of major pinning cen-
tres simulating lattice imperfections, can provide a way of establishing the link
with the basic features of the microstructure, and deepening in the same time
the understanding of the underlying physical mechanisms.

Further, one can understand that these simulations must be fast, since one
will have to deal with large domains and recursive calculations in optimisation
loops. In this context, spectral and hybrid techniques such as those presented
in chapter 5 and chapter 7 can contribute accelerate field solutions for given
domain, grain and second-phase combinations. In combination with already
established tools like the multiscale approach it may be thus hoped enlarging
the domain of applicability towards more complicated physics with accent to
non-reversible approaches like the MBN. It is noted here that the combination
of the multiscale approach with phenomenological models like the Jiles-Atherton
model has already produced interesting results concerning the MBN envelope
predictions without and under mechanical stress [198, 199]. A characteristic
example of a successful MBN envelope prediction using a coupled Jiles-Atherton-
multiscale model calculation is given in Fig. 9.3.

9.2.2 Geometry effect and inversion

As mentioned in a previous point, the intrinsic material properties are not always
directly accessible, at least unless specially-designed, partially destructive setups
are utilized. In the latter category, one can include the classical one-sheet tester
and Epstein experiments, where a narrow ribbon (or more of them in the case
of the Epstein frame) has to be cut away from the specimen, a destructive
procedure which may also alter the material properties through the introduction
of residual stresses for example. In non-destructive measurements, one has
to cope with the set-up geometry, whose effect needs to be resolved through
simulation and compensated via some kind of calibration (in the simplest case)
or inversion.
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Figure 9.3: Comparisons simulations/experimental results, B(H) and MBN
energy envelope for the FeCo including the simulation parameters. The RN
grade identifier stands for fully recrystallised FeCo after annealing. (Results
from [198]).

Geometry and other parasitic effects (such as eddy-current attenuation) are
somehow always present, no matter how careful the experiment has been de-
signed. The demagnetisation field is always present (yet at different extend
depending on the set-up and the specimen), when yoke measurements are in-
volved. A more annoying effect is the filtering through attenuation of high
frequency signals (MBN events or incremental permeability signals) when pass-
ing through the medium (cf. Fig. 9.4). The fact that measurements are always
carried out from the exterior of the material, makes it impossible to get rid of
the effect, and the only way to compensate is again through simulation.

σ,B(H)

Figure 9.4: Measurements of events from different depths are subjected to dif-
ferent attenuation and reflections from the interface.

When simple parametric material models like the Jiles-Atherton model are
used, the material information can be obtained by solving the inverse problem.
In order this inversion to be theoretically feasible and practically accessible, one
needs a robust, accurate and fast direct model. Although the solution of the
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inverse problem has gained remarkable maturity in some specific domains, very
little results have been presented in the context of material characterisation, due
to problem complexity and the excessive computational burden of non-linear so-
lution. Some first encouraging results based on synthetic results obtained using
a FIT-based direct solver combined with interpolation in the augmented (B,Br)
space have been presented in [200] and are partially reproduced in section 8.6.
The drawn points show relation between predicted and real values for the α, k
and Ms parameters of the Jiles-Atherton model. The considered set-up is an
IMPOC-like configuration presented in detail in section 8.8.

Figure 9.5: Prediction of the α, k and Ms parameters of the Jiles-Atherton
model for an IMPOC-like set-up using different regressors. Upper line: Gausian
process regressor. Bottom line: Kernel ridge regressor.
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Appendix A

Explicit expressions of the
continuity and translation
operators

In this appendix the expressions of the magnetic vector potential and magnetic
field will be derived in terms of the (Wa,Wb) potentials, and will be given the
explicit form of the trace operator in the cartesian and cylindrical coordinate
systems for the Darboux frame definitions summarised in Tab. 3.1.

A.1 Field components

A.1.1 Cartesian system

Due to the intrinsic isotropy of the cartesian system, the choice of the coordinate
axes is arbitrary since any possible piece orientation can be obtained by applying
the suitable rotation. The pivot element is taken parallel to the z axis by
convention.

The magnetic flux density components are given in terms of the Wa and Wb

potentials by the relations

Bx = ∂xzWa + k2∂yWb (A.1)

By = ∂yzWa − k2∂xWb (A.2)

Bz =
(
∂2z − k2

)
Wa. (A.3)

The magnetic vector potential components read

Ax = ∂yWa − ∂xzWb (A.4)

Ay = −∂xWa − ∂yzWb (A.5)

Az = −
(
∂2z − k2

)
Wb. (A.6)
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A.1.2 Cylindrical system

In the cylindrical coordinate system, the only choice for the pivot axis is to set
c = ec, which signifies for the magnetic induction and magnetic vector potential
components

Bρ = ∂ρzWa + k2ρ−1∂ϕWb (A.7)

Bϕ = ρ−1∂ϕzWa − k2∂ρWb (A.8)

Bz =
(
∂2z − k2

)
Wa (A.9)

and

Aρ = ρ−1∂ϕWa − ∂ρzWb (A.10)

Aϕ = −∂ρWa − ρ−1∂ϕzWb (A.11)

Az = −
(
∂2z − k2

)
Wb. (A.12)

A.1.3 Spherical system

In the spherical system, the pivot vector is equal to the position vector c = x.
B and A are given in terms of the (Wa,Wb) potentials via the relations

Br = r
(
∂2r + 2r∂r − k2

)
Wa (A.13)

Bθ =

(
∂r +

1

r

)
∂θWa +

k2

sin θ
∂ϕWb (A.14)

Bϕ =
1

sin θ

(
∂r +

1

r

)
∂ϕWa − k2∂θWb (A.15)

and

Ar =
1

r

(
1

sin θ
∂θ sin θ∂θ +

1

sin2 θ
∂2ϕ

)
Wb (A.16)

Aθ =
1

sin θ
∂ϕWa −

(
∂r +

1

r

)
∂θWb (A.17)

Aϕ = −∂θWa −
1

sin θ

(
∂r +

1

r

)
∂ϕWb. (A.18)

A.2 Continuity operator

A.2.1 Cartesian system

We assign by convention the symmetry axis (g coordinate of the Darboux frame)
parallel to the y axis, whereas the normal is taken parallel to z. The Darboux
frame is hence defined as (t, g, n) = (x, y, z). With these conventions, the con-
tinuity matrices read
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• Air-conductor interface, continuity matrix in the air region

C =

∂xz∂yz
∂2z

 (A.19)

• Air-conductor interface, continuity matrix in the conducting region

C =

 ∂xz k2∂y
∂yz −k2∂x

∂2z − k2 0

 (A.20)

• Conductor-conductor interface

C =


∂xz k2∂y
∂yz −k2∂x
−∂y ∂xz
∂x ∂yz

 . (A.21)

A.2.2 Cylindrical system with rotational symmetry

The symmetry axis is the azimuth, which following the conventions of sec-
tion 3.2.1 siginfies for the associated Darboux frame (t, g, n) = (z, ϕ,−ρ) (cf.
Tab. 3.1).

The explicit expressions of the continuity matrices read in this case

• Air-conductor interface, continuity matrix in the air region

C =

 ∂2z
ρ−1∂ϕ
−∂ρ

 (A.22)

• Air-conductor interface, continuity matrix in the conducting region

C =

∂2z − k2 0
ρ−1∂ϕz k2∂ρ
−∂ρz k2ρ−1∂ϕ

 (A.23)

• Conductor-conductor interface

C =


∂2z − k2 0
ρ−1∂ϕz k2∂ρ

0 ∂2z − k2
∂ρ ρ−1∂ϕz

 . (A.24)
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A.2.3 Cylindrical system with translational symmetry

The symmetry axis coincides with the axis of the coordinate system, hence
(t, g, n) = (ϕ, z, ρ). The continuity matrices are obtained by the suitable line
interchange from the previous case, and change of sign for the ρ direction.

• Air-conductor interface, continuity matrix in the air region

C =

ρ−1∂ϕ
∂2z
∂ρ

 (A.25)

• Air-conductor interface, continuity matrix in the conducting region

C =

 ρ−1∂ϕz k2∂ρ
∂2z − k2 0
∂ρz −k2ρ−1∂ϕ

 (A.26)

• Conductor-conductor interface

C =


ρ−1∂ϕz k2∂ρ
∂2z − k2 0
∂ρ ρ−1∂ϕz
0 ∂2z − k2

 . (A.27)



Appendix B

Derivation of the volume
integral formulation

We consider a closed domain V embedding a linear, isotropic and homogeneous
medium1. The domain comprises a number of electric and magnetic sources,
which are responsible for the creation of the electromagnetic field inside it.
Both sources are entirelly embedded in the domain sharing no common point
with the domain boundary ∂V . We assume that the excitation frequency is
sufficiently low such that the displacement currents can be ignored (quasi-static
approximation). Under these assumptions, the Maxwell equations in V read

∇×E(x) = −iωµH(x) + Jm(x) (B.1)

∇×H(x) = σE(x) + Je(x) . (B.2)

We define the electric current source associated Green’s dyads, as the field
response to an electric point dipole source

∇×G
ee
(x,x′) = −iωµGme

(x,x′) (B.3)

∇×G
me

(x,x′) = σG
ee
(x,x′) + Iδ(x− x′) . (B.4)

In an analogous way, we define the corresponding magnetic current source
associated Green’s dyads

∇×G
em

(x,x′) = −iωµGmm
(x,x′) + Iδ(x− x′) (B.5)

∇×G
mm

(x,x′) = σG
em

(x,x′) . (B.6)

1We provide here the proof in homogeneous media in order for the text to be self-contained.
The generalisation to piecewise homogeneous (stratified) media although straight-forward, is
more elaborate and lies beyond the scope of this appendix. For the detailed proof in stratified
media, the reader is referred to the literature
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We apply the vector form of the Green’s second identity in the domain V∫
V

[
P ·
(
∇×∇×Q

)
− (∇×∇×P) ·Q

]
dV ′

= −
∮
∂V

[
P×

(
∇×Q

)
− (∇×P)×Q

]
· ndS′ (B.7)

where n is the outward pointing normal to the boundary vector. Application of
(B.7) with P = E and Q = G

ee
yields∫

V

{
E(x′) ·

[
∇×∇×G

ee
(x,x′)

]
− [∇×∇×E(x′)] ·Gee

(x,x′)
}
dV ′

= −
∮
∂V

{
E(x′)×

[
∇×G

ee
(x,x′)

]
− [∇×E(x′)]×G

ee
(x,x′)

}
· ndS′ (B.8)

From (B.1),(B.2) we obtain the curl-curl equation for the electric field

∇×∇×E(x) + k2E(x′) = −iωµJe(x)−∇× Jm(x) (B.9)

with k2 = iωµσ. Similarly from the combination of (B.3),(B.4), we obtain the
curl-curl equation for the G

ee
dyad

∇×∇×G
ee
(x,x′) + k2G

ee
(x,x′) = −iωµIδ(x− x′) . (B.10)

Substitution of (B.9) and (B.10) in (B.8) taking into account (B.1) and
(B.3), yields

−
∫
V

{
E(x′) ·

[
k2G

ee
(x,x′) + iωµIδ(x− x′)

]
−
[
k2E(x′) + iωµJe(x

′) +∇× Jm(x
′)
]
·Gee

(x,x′)
}
dV ′

= iωµ

∮
∂V

[
E(x′)×G

me
(x,x′) +H(x′)×G

ee
(x,x′)

]
· ndS′. (B.11)

Carrying out the simplifications and solving for E we obtain

E(x) =

∫
V

G
ee
(x,x′) · Je(x

′) dV ′ +
1

iωµ

∫
V

G
ee
(x,x′) · ∇ × Jm(x

′) dV ′

−
∮
∂V

[
E(x′)×G

me
(x,x′) +H(x′)×G

ee
(x,x′)

]
· ndS′. (B.12)

Carrying out integration by parts, the second volume integral, we can be
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written successively∫
V

G
ee
(x,x′) · ∇ × Jm(x

′) dV ′ =

∮
V

∇ ·
[
Jm(x

′)×G
ee
(x,x′)

]
· ndS′

+

∫
V

∇×G
ee
(x,x′) · Jm(x

′) dV ′

= −iωµ
∫
V

G
me

(x,x′) · Jm(x
′) dV ′ (B.13)

where we have used Gauss’ theorem and the fact that the magnetic source is
zero on the boundary by hypothesis. Substituting (B.10) into (B.12) we arrive
at the following relation

E(x) =

∫
V

G
ee
(x,x′) · Je(x

′) dV ′ −
∫
V

G
me

(x,x′) · Jm(x
′) dV ′

−
∮
∂V

[
E(x′)×G

me
(x,x′) +H(x′)×G

ee
(x,x′)

]
· ndS′ (B.14)

which is (5.11) plus a surface integral term. This integral stands for the bound-
ary values of the electric and the magnetic field. In BEM these values are part
of the problem’s DOF and are calculated after imposing the field continuity re-
lations and solving the thus produced formulation. In the VIM method we are
interested in, the domain exceeds up to infinity making this contribution vanish.
This however implies that the Green dyads for the entire space are known, and
this is the price to be paid with this family of methods, as explained in detail
in chapter 5.

The derivation of the magnetic field integral equation follows the same pat-
tern starting from (B.7) with P = H and Q = G

mm

∫
V

{
H(x′) ·

[
∇×∇×G

mm
(x,x′)

]
− [∇×∇×H(x′)] ·Gmm

(x,x′)
}
dV ′

= −
∮
∂V

{
H(x′)×

[
∇×G

mm
(x,x′)

]
− [∇×H(x′)]×G

mm
(x,x′)

}
· ndS′

(B.15)

The corresponding curl-curl equations for the magnetic field and the G
mm

dyad read

∇×∇×H(x) + k2H(x′) = ∇× Je(x)− σJm(x) (B.16)

and

∇×∇×G
mm

(x,x′) + k2G
mm

(x,x′) = σIδ(x− x′) . (B.17)
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Substituting in (B.15) taking into account (B.2) and (B.5) we obtain

−
∫
V

{
H(x′) ·

[
k2G

mm
(x,x′) + σIδ(x− x′)

]
−
[
−k2H(x′) +∇× Je(x

′)− σJm(x
′)
]
·Gmm

(x,x′)
}
dV ′

= −σ
∮
∂V

[
H(x′)×G

em
(x,x′) +E(x′)×G

mm
(x,x′)

]
· ndS′. (B.18)

whence it turns out for the magnetic field

H(x) =
1

σ

∫
V

G
mm

(x,x′) · ∇ × Je(x
′) dV ′ −

∫
V

G
ee
(x,x′) · Jm(x

′) dV ′

+

∮
∂V

[
E(x′)×G

em
(x,x′) +H(x′)×G

mm
(x,x′)

]
· ndS′. (B.19)

Integration by parts and term rearrangement reduce the previous expression
to the relation

H(x) =

∫
V

G
em

(x,x′) · Je(x
′) dV ′ −

∫
V

G
mm

(x,x′) · Jm(x
′) dV ′

−
∮
∂V

[
E(x′)×G

em
(x,x′) +H(x′)×G

mm
(x,x′)

]
· ndS′ (B.20)

which is our final relation for the magnetic field. The resulting equation is equal
with (5.11) plus a surface integral term, which can be eliminated by extending
the integration volume up to the infinity.



Notation

Generic variables

i imaginary unit i =
√
−1

t time
f, ω frequency and angular frequency
s Laplace variable
x position vector
⟨•, •⟩ inner product
||•|| , ||•||w L2 norm and w-weighted L2 norm
|s⟩ , ⟨s| ket and bra representation of the state vector s

Â operator

⟨s| Â |s⟩ matrix representation of the operator Â
δ(x) Dirac delta function
H(x) Heaviside step function

Classical electrodynamics

E,H electric and magnetic field intensity
D,B electric and magnetic flux density
Je,Jm electric and magnetic current density
p,P electric dipole moment and electric polarisation
m,M magnetic dipole moment and magnetisation
I magnetic polarisation
ε, ε scalar and tensor permittivity
µ, µ scalar and tensor permeability
σ, σ scalar and tensor electrical conductivity
χe, χe scalar and tensor electric susceptibility
χm, χm scalar and tensor magnetic susceptibility

A,Φ magnetic vector and scalar potential
W second order vector potential
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Wa,Wb second order scalar potentials

Diffraction theory and ECT

Ep,Hp primary electric and magnetic field intensity
E,H total electric and magnetic field intensity
p electric dipole density in the thin-crack formulation
g scalar Green’s function

G
ee
,G

me
electric source associated electric and magnetic Green’s dyads

G
em
,G

mm
magnetic source associated electric and magnetic Green’s dyads

G
xy

0 free-space Green’s dyads (xy = EE,ME,EM,MM)

G
xy

mn, G̃
xy

mn total and reflected part of the xy dyad for observation and source
point at the mth and nth layer, respectively

Zij mutual impedance between ith and jth coil

Heat conduction

T temperature
J heat current density
κ, κ scalar and tensor thermal conductivity
cp,Cp specific and volumetric heat capacity (under constant pressure)
ρ mass density
α diffusivity

Finite integration technique

⌢e,
⌢

h electric and magnetic voltage vector
⌢⌢

d,
⌢⌢

b electric and magnetic flux vector
⌢⌢

j e,
⌢⌢

jm electric and magnetic current vector
qe,qm electric and magnetic charge vector
⌢m magnetisation-voltage vector
⌢⌢p,

⌢⌢

i electric and magnetic polarisation vector
θθθ temperature vector
Mε,Mκ electric permittivity and electric (and thermal) conductivity matrix
Mµ,Mν magnetic permeability and magnetic reluctivity matrix
MC ,Mρ heat capacity (at constant pressure) and mass density matrix

G, G̃ primary and dual grid

C, C̃ primary and dual grid-associated curl operator

S, S̃ primary and dual grid-associated div operator
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G grad operator (on the primary grid)

DS , D̃S primary and dual grid edge matrix

DA, D̃A primary and dual grid flux matrix
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Abbreviations

ACFM Alternating current field measurement
BC Boundary condition
BDF Backward differentiation formula
BEM Boundary elements method
DOF Degrees of freedom
ECT Eddy-current testing
EDM Electrical discharge machining
EMF Electromotive force
FD Frequency domain
FORC First order reversal curve
FP Fixed-point
FT Fourier transform
FEM Finite elements method
FIT Finite integration technique
ILT Inverse Laplace transform
LT Laplace transform
MBN Magnetic Barkhausen noise
NDT Nondestructive testing
NR Newton-Raphson
PB Picard-Banach
PEC Perfect electric conductor
PECT Pulsed eddy current testing
PMC Perfect magnetic conductor
SIM Surface integral method
SOVP Second order vector potential
TD Time domain
TREE Truncated region eigenfunction expansion
VIM Volume integral method
WFNDEC World federation of NDE centers

Steel grades acronyms

DP Dual-phase
IF Interstitial-free
LC Low-carbon
MA Micro-alloyed
SS Structural steel
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[154] F. I. Hǎnţilǎ, Mathematical models of the relation between b and h for
non-linear media, Rev. Roum. Sci. Tech.-Électrotechn. et Énerg. 19 (3)
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[156] I. F. Hǎnţilǎ, G. Grama, An overrelaxation method for the computa-
tion of the fixed point of a contractive mapping, Rev. Roum. Sci. Tech.-
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