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peine de venir assister à cette soutenance.
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If...

(. . . )
If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools
Or watch the things you gave your life to, broken,
And stoop and build’em up with worn-out tools;

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,
And lose, and start again at your beginnings
And never breathe a word about your loss;
If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you,
Except the Will which says to them:“Hold on!”

(. . . )
If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,
Yours is the Earth and everything that’s in it,
And – which is more – you’ll be a man, my son!

Rudyard Kipling1

1
Extrait de la plaque commémorative en l’honneur de Raymond Croland (17.05.1913-08.04.1945), agrégé préparateur de zoologie (1938-

1944), commandant des forces françaises combattantes, décoré à titre posthume, arrêté par la Gestapo au deuxième étage de l’École normale
supérieure de Physique, rue Lhomond, le 14 février 1944, déporté et mort en Allemagne.

5



6



Contents

List of publications 10

I An introductory tour 13

1 15

1.1 The universal Teichmüller space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Fingerprint map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 The restricted Siegel disc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 The period mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Isotropic polarizations and complex structures . . . . . . . . . . . . . . . . . . . . . . 21

1.6 The restricted groups GLres(H ), Ures(H ), and Spres(V ,Ω) . . . . . . . . . . . . . 23

1.7 Restricted Siegel disc and restricted Grassmannian . . . . . . . . . . . . . . . . . . . 24

1.8 Korteweg-de Vries equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.8.1 Korteweg-de Vries equation as geodesic equation . . . . . . . . . . . . . . . . 26

1.8.2 KdV hierarchies and infinite-dimensional Grassmannians . . . . . . . . . . . 26

1.9 Banach Poisson–Lie group structure on U(H ) . . . . . . . . . . . . . . . . . . . . . 28

1.9.1 Definition of Banach Poisson–Lie groups . . . . . . . . . . . . . . . . . . . . . 29

1.9.2 Some subspaces of u∗(H ) in duality with u(H ) . . . . . . . . . . . . . . . . 30

1.9.3 The unitary group U(H ) as a Banach Poisson–Lie group . . . . . . . . . . . 33

II Infinite-dimensional Geometry applied to Shape Analysis of Curves
and Surfaces 37

2 Shape Analysis of curves 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Unparameterized curves in a homogeneous space . . . . . . . . . . . . . . . . 40

2.1.2 Quotient space versus section of a fiber bundle . . . . . . . . . . . . . . . . . 40

2.2 The space of curves as an infinite-dimensional manifold . . . . . . . . . . . . . . . . 42

2.2.1 Rectifiable curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Manifolds of based parameterized curves . . . . . . . . . . . . . . . . . . . . . 43

2.3 Moving Frames and canonical parameterizations of curves . . . . . . . . . . . . . . . 48

2.3.1 Moving frame attached to a curve . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Interpolation of 2D-contours . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3 Different parameterizations of 2D-shapes . . . . . . . . . . . . . . . . . . . . . 51

2.3.4 Basic idea of interpolation using moving frames for curves in R3 . . . . . . . 57

2.4 Examples of Interpolations between 2D-Shapes . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 Interpolation between curves in specific parameterization . . . . . . . . . . . 60

2.4.2 Interpolation between curvature functions . . . . . . . . . . . . . . . . . . . . 61

2.5 Quotient elastic metrics on the manifold of arc-length parameterized plane curves . . 62

2.5.1 Quotient elastic metrics on arc-length parameterized plane curves . . . . . . 64

2.5.2 Quotient elastic metrics on arc-length parameterized piecewise linear curves . 71

2.5.3 Two-boundary problem and Energy landscape . . . . . . . . . . . . . . . . . 76

7



3 Shape Analysis of Surfaces 83
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Construction and alignment of spherical surfaces . . . . . . . . . . . . . . . . . . . . 85

3.2.1 Construction of surfaces using spherical harmonics . . . . . . . . . . . . . . . 85
3.2.2 Alignement of surfaces: removing rotation, translation and scale variability . 85
3.2.3 Implementation of Alignment of spherical shapes . . . . . . . . . . . . . . . . 89
3.2.4 Fiber bundle structure of pre-shape space . . . . . . . . . . . . . . . . . . . . 91
3.2.5 Characterization of a shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Gauge Invariant Framework for surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.1 Mathematical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.2 Gauge Invariance and Riemannian Metric . . . . . . . . . . . . . . . . . . . . 97
3.3.3 Geodesic Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4 Shape and Pose recognition of Human bodies . . . . . . . . . . . . . . . . . . . . . . 112
3.4.1 Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.2 Shape Space as Section of a Fiber Bundle . . . . . . . . . . . . . . . . . . . . 113
3.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4.4 Application to Pose and Shape Retrieval . . . . . . . . . . . . . . . . . . . . . 120

III Infinite-dimensional Poisson Geometry 123

4 Queer Poisson structures 125
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 Queer operational vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3 Queer Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 The restricted Grassmannian as a symplectic leave in a Poisson manifold 131
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 The Banach Lie-Poisson space associated to the universal central extension of ures . 133
5.3 Coadjoint orbits of the restricted unitary group . . . . . . . . . . . . . . . . . . . . . 138
5.4 Some smooth adjoint orbits of the restricted unitary group . . . . . . . . . . . . . . 141
5.5 The Banach Lie-Poisson space associated to the central extension of u2 . . . . . . . . 143
5.6 Some pathological properties of the restricted algebras . . . . . . . . . . . . . . . . . 147

5.6.1 Unbounded unitary groups in the restricted algebra . . . . . . . . . . . . . . 147
5.6.2 The predual of the restricted algebra is not spanned by its positive cone . . . 148
5.6.3 The Cartan subalgebras of ures are not Ures-conjugate . . . . . . . . . . . . . 149

6 Banach Poisson–Lie groups and related structures 153
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2 Manin triples in the infinite-dimensional setting . . . . . . . . . . . . . . . . . . . . . 155

6.2.1 Duality pairings of Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.2 Duals and injection of Banach spaces . . . . . . . . . . . . . . . . . . . . . . . 157
6.2.3 Definition of Banach Manin triples . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.4 Triangular truncations of operators . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2.5 Example of Iwasawa Manin triples . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3 From Manin triples to 1-cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.1 Adjoint and coadjoint actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.2 Coadjoint action on a subspace of the dual . . . . . . . . . . . . . . . . . . . 162
6.3.3 Adjoint action on the space of continuous multilinear maps . . . . . . . . . . 162
6.3.4 Subspaces of skew-symmetric bilinear maps . . . . . . . . . . . . . . . . . . . 163
6.3.5 Definition of 1-cocycless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.6 Manin triples and associated 1-cocycles . . . . . . . . . . . . . . . . . . . . . 163

6.4 Generalized Banach Poisson manifolds and related notions . . . . . . . . . . . . . . . 166
6.4.1 Definition of generalized Banach Poisson manifolds . . . . . . . . . . . . . . . 166
6.4.2 Banach Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4.3 Banach Lie–Poisson spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5 Banach Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8



6.5.1 Definition of Banach Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . 172
6.5.2 Banach Lie bialgebras versus Manin triples . . . . . . . . . . . . . . . . . . . 173

6.6 Banach Poisson–Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.6.1 Definition of Banach Poisson–Lie groups . . . . . . . . . . . . . . . . . . . . . 176
6.6.2 Jacobi tensor and local sections . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.6.3 Example of Banach Poisson–Lie groups Up(H ) and B±p (H ) for 1 < p ≤ 2 . . 180
6.6.4 The tangent Banach Lie bialgebra of a Banach Poisson–Lie group . . . . . . 181

7 Poisson–Lie groups and the restricted Grassmannian 183
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.1.1 Restricted Banach Lie algebra Lres(H ) and its predual L1,2(H ) . . . . . . . 183
7.1.2 Restricted general linear group GLres(H ) and its “predual” GL1,2(H ) . . . 184
7.1.3 Unitary Banach Lie algebras u(H ), ures(H ), u1,2(H ) . . . . . . . . . . . . . 184
7.1.4 Restricted unitary group Ures(H ) and its “predual” U1,2(H ) . . . . . . . . . 184
7.1.5 The restricted Grassmannian Grres(H ) . . . . . . . . . . . . . . . . . . . . . 185
7.1.6 Triangular Banach Lie subalgebras b±1,2(H ) and b±res(H ) . . . . . . . . . . . 185

7.1.7 Triangular Banach Lie groups B±1,2(H ), and B±res(H ) . . . . . . . . . . . . . 185
7.2 Example of Banach Lie bialgebras and Banach Poisson–Lie groups related to the

restricted Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2.1 Iwasawa Banach Lie bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2.2 Unbounded coadjoint actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2.3 The Banach Poisson–Lie groups B±res(H ) and Ures(H ) . . . . . . . . . . . . 191

7.3 The restricted Grassmannian as a Poisson manifold . . . . . . . . . . . . . . . . . . . 194
7.3.1 A Poisson–Lie subgroup of Ures(H ) . . . . . . . . . . . . . . . . . . . . . . . 194
7.3.2 The restricted Grassmannian as a quotient Poisson homogeneous space . . . 195

7.4 Poisson action of B+
res(H ) on Grres(H ) and Schubert cells . . . . . . . . . . . . . . 197

7.4.1 Poisson action of B±res(H ) on Grres(H ) . . . . . . . . . . . . . . . . . . . . . 197
7.4.2 Schubert cells as symplectic leaves of the restricted Grassmannian . . . . . . 198

7.5 Relation between the restricted Grassmannian and the KdV hierarchy . . . . . . . . 200

9



LIST OF PUBLICATIONS
OF ALICE BARBORA TUMPACH

In Peer-reviewed Journals

• A.B. Tumpach, Banach Poisson–Lie groups and Bruhat-Poisson structure of the restricted
Grassmannian, Commun. Math. Phys. 373, 795–858 (2020).
https://doi.org/10.1007/s00220-019-03674-3
http://math.univ-lille1.fr/∼tumpach/Site/research files/Bruhat Poisson.pdf

• D. Beltita, T. Golinski, A.B. Tumpach, Queer Poisson brackets, Journal of Geometry and
Physics 132, (2018), 358–362.
https://doi.org/10.1016/j.geomphys.2018.06.013

• A.B. Tumpach, S. C. Preston, Quotient Elastic Metrics on the manifold of arc-length param-
eterized plane curves, Journal of Geometric Mechanics 9, no2 (2017), 227–256.
https://doi.org/10.3934/jgm.2017010

• A.B. Tumpach, Gauge Invariance of degenerate Riemannian metrics, Notices of American
Mathematical Society, April 2016.
http://math.univ-lille1.fr/∼tumpach/Site/research files/Notices full.pdf

• A.B. Tumpach, H. Drira, M. Daoudi, A. Srivastava, Gauge Invariant Framework for Shape
Analysis of Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,
January 2016, Volume 38, Number 1.
https://doi.org/10.1109/TPAMI.2015.2430319

• A. B. Tumpach, On the classification of infinite-dimensional Hermitian-symmetric affine coad-
joint orbits, Forum Mathematicum 21 :3 (May 2009) 375–393.
http://math.univ-lille1.fr/∼tumpach/Site/research files/classification.pdf

• A. B. Tumpach, Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric
affine coadjoint orbits, Annales de l’Institut Fourier, Tome 59 (2009) – Fascicule 1, 167–197.
http://math.univ-lille1.fr/∼tumpach/Site/research files/paper3.pdf

• D. Beltita, T. Ratiu, A. B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson
spaces and coadjoint orbits, Journal of Functional Analysis, 247 (2007) 138–168.
http://math.univ-lille1.fr/∼tumpach/Site/research files/grassm final.pdf

• A. B. Tumpach, Hyperkähler structures and infinite-dimensional Grassmannians, Journal of
Functional Analysis, 243 (2007) 158–206.
https://doi.org/10.1016/j.jfa.2006.05.019

In Proceedings

• E. Pierson, M. Daoudi, A.B. Tumpach, A Riemannian Framework for Analysis of Human
Body Surface , Conference: Winter Conference on Applications of Computer Vision (WACV
2022), https://www.researchgate.net/publication/355545398

• A.B. Tumpach, An Example of Banach and Hilbert manifold : the Universal Teichmuller
space. Proceedings of XXXVI Workshop on Geometric Methods in Physics, 2-8 July 2017,
Bia lowieża, Poland.
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Chapter 1

Introduction

This introduction is mainly based on our publication [214], our paper with T. Goliński [209], and
work in progress with F. Gay-Balmaz and T.Ratiu. We explain the relation between the universal
Teichmüller space (Section 1.1) and the following infinite-dimensional coadjoint orbits:

• the coadjoint orbit Diff(S1)/PSU(1, 1) of the Virasoro group (i.e. of the central extension of
the group of diffeomorphisms of the circle)

• the Siegel disc and the restricted Siegel disc as coadjoint orbit of the infinite-dimensional
symplectic group and its restricted version;

• the restricted Grassmannian as a coadjoint orbit of the restricted unitary group.

The universal Teichmüller space is closely related to quasi-symmetric homeomorphisms of the circle
and their quasi-conformal extensions (see Section 1.1). It injects into the Siegel disc via the period
mapping (see Section 1.4), and its connected component (for its Hilbert manifold structure) injects
into the restricted Siegel disc, which itself injects holomorphically into the restricted Grassmannian
(see Section 1.7)

We will see that the theory of the universal Teichmüller space is linked to applications in pattern
recognition and shape analysis via the fingerprint map (see Section 1.2). Some other applications
of infinite-dimensional geometry to this field will be given in Part II for curves (see Chapter 2) and
surfaces in R3 (see Chapter 3).

The Korteweg-de Vries equation arises as the geodesic equation on the Virasoro group, but is
also linked to the restricted Grassmannian (Section 1.8). The Poisson geometry of the restricted
Grassmannian and its relation to the KdV equation will be explained in details in Chapter 7. A
foretaste of the problems arising in this context is given in Section 1.9 where we construct a Poisson
structure on the unitary group of an Hilbert space. Some pathologies of Poisson geometry in the
infinite-dimensional context are presented in chapters 4, 5 and 6.

1.1 The universal Teichmüller space

Hs-Diffeomorphisms groups of the circle. For s > 3/2, the group Diffs(S1) of Sobolev class
Hs diffeomorphisms of the circle is a C∞-manifold modeled on the space of Hs-section of the tangent
bundle TS1 ([68]), or equivalently on the space of real Hs-function on S1. It is a topological group in
the sense that the multiplication (f, g) 7→ f ◦ g is well-defined and continuous, the inverse f 7→ f−1

is continuous, the left translation Lγ by γ ∈ Diffs(S1) applying f to η◦f is continuous, and the right
translation Rγ by γ ∈ Diffs(S1) applying f to f ◦η is smooth. These results are consequences of the
Sobolev Lemma which states that for a compact manifold of dimension n, the space of Hs-sections
of a vector bundle E over M is contained, for s > k+n/2, in the space of C k-sections, and that the
injection Hs(E) ↪→ C k(E) is continuous. In particular, for s > 3/2, Diffs(S1) is the intersection of
the space of C 1-diffeomorphisms of the circle with the space Hs(S1, S1) of Hs maps from S1 into
itself. Hence Diffs(S1) is an open set of Hs(S1, S1).

For the same reasons, the subgroup of Diffs(S1) preserving three points in S1, say −1,−i and
1, is, for s > 3/2, a C∞ manifold and a topological group modeled on the space of Hs-vector fields
which vanish on −1,−i and 1.
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One may ask what happens for the critical value s = 3/2 and look for a group with some
regularity and a manifold structure such that the tangent space at the identity is isomorphic to the
space of H

3
2 -vector fields vanishing at −1,−i and 1 (or equivalently on any codimension 3 subspace

of H
3
2 ). The universal Teichmüller space T0(1) defined below will verify these conditions.

Diff+(S1) as a group of symplectomorphisms. Consider the Hilbert space V = H
1
2 (S1,R)/R

of real valued H
1
2 functions with mean-value zero. Each element u ∈ V can be written as

u(x) =
∑
n∈Z

une
inx with u0 = 0, u−n = un and

∑
n∈Z
|n||un|2 <∞.

Endow V with the symplectic form

Ω(u, v) =
1

2π

∫
S1

u(x)∂xv(x)dx = −i
∑
n∈Z

nunvn,

The group of orientation preserving C∞-diffeomorphisms of the circle acts on V by

ϕ · f = f ◦ ϕ− 1

2π

∫
S1

f ◦ ϕ,

preserving the symplectic form Ω. Note that the previous action is well-defined for any orientation
preserving homeomorphism of S1. Therefore one may ask what is the biggest subgroup of the orien-
tation preserving homeomorphisms of the circle which preserves V and Ω. The answer is the group
of quasisymmetric homeomorphisms of the circle defined below (Theorem 3.1 and Proposition 4.1
in [146]).

Teichmüller spaces of compact Riemann surfaces. Consider a compact Riemann surface Σ.
The Teichmüller space T (Σ) of Σ is defined as the space of complex structures on Σ modulo the
action by pull-back of the group of diffeomorphisms which are homotopic to the identity. It can
be endowed with a Riemannian metric, called the Weil-Petersson metric, which is not complete.
A point beyond which a geodesic can not be continued corresponds to the collapsing of a handle
of the Riemann surface ([220]), hence yields to a Riemann surface with lower genus. One can ask
for a Riemannian manifold in which all the Teichmüller spaces of compact Riemann surfaces with
arbitrary genus inject isometrically. The answer will be the universal Teichmüller space endowed
with a Hilbert manifold structure and its Weil-Petersson metric ([201]).

Quasiconformal and quasisymmetric mappings. Let us give some definitions and basic facts
on quasiconformal and quasisymmetric mappings.

Definition 1.1.1. An orientation preserving homeomorphism f of an open subset A in C is called
quasiconformal if the following conditions are satisfied.

• f admits distributional derivatives ∂zf , ∂z̄f ∈ L1
loc(A,C) ;

• there exists 0 ≤ k < 1 such that |∂z̄f(z)| ≤ k|∂zf(z)| for every z ∈ A.

Such an homeomorphism is said to be K-quasiconformal, where K = 1+k
1−k .

Example 1.1.2. For example, f(z) = αz + βz̄ with |β| < |α| is |α|+|β|α−|β| -quasiconformal.

Denote by L∞(A,C) the complex Banach space of bounded complex valued functions on an
open subset A ⊂ C.

Theorem 1.1.3 ([129]). An orientation preserving homeomorphism f defined on an open set A ⊂ C
is quasiconformal if and only if it admits distributional derivatives ∂zf , ∂z̄f ∈ L1

loc(A,C) which
satisfy

∂z̄f(z) = µ(z)∂zf(z), z ∈ A

for some µ ∈ L∞(A,C) with ‖µ‖∞ < 1.
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The function µ appearing in the previous theorem is called the Beltrami coefficient or the
complex dilatation of f . Let D denote the open unit disc in C.

Theorem 1.1.4 (Ahlfors-Bers). Given µ ∈ L∞(D,C) with ‖µ‖∞ < 1, there exists a unique qua-
siconformal mapping ωµ : D → D with Beltrami coefficient µ, extending continuously to D, and
fixing 1,−1, i.

Definition 1.1.5. An orientation preserving homeomorphism η of the circle S1 is called quasisym-
metric if there is a constant M > 0 such that for every x ∈ R and every |t| ≤ π

2

1

M
≤ η̃(x+ t)− η̃(x)

η̃(x)− η̃(x− t)
≤M,

where η̃ is the increasing homeomorphism on R uniquely determined by 0 ≤ η̃(0) < 1, η̃(x + 1) =
η̃(x) + 1, and the condition that it projects onto η.

Theorem 1.1.6 (Beurling-Ahlfors extension Theorem). Let η be an orientation preserving home-
omorphism of S1. Then η is quasisymmetric if and only if it extends to a quasiconformal homeo-
morphism of the open unit disc D into itself.

T (1) as a Banach manifold. One way to construct the universal Teichmüller space is the follow-
ing. Denote by L∞(D)1 the unit ball in L∞(D,C). By Ahlfors-Bers theorem, for any µ ∈ L∞(D)1,
one can consider the unique quasiconformal mapping wµ : D → D which fixes −1,−i and 1 and
satisfies the Beltrami equation on D

∂

∂z
ωµ = µ

∂

∂z
ωµ.

Therefore one can define the following equivalence relation on L∞(D)1. For µ, ν ∈ L∞(D)1, set
µ ∼ ν if wµ|S1 = wν |S1. The universal Teichmüller space is defined by the quotient space

T (1) = L∞(D)1/ ∼ .

Theorem 1.1.7 ([129]). The space T (1) has a unique structure of complex Banach manifold such
that the projection map Φ : L∞(D)1 → T (1) is a holomorphic submersion.

The differential of Φ at the origin D0Φ : L∞(D,C) → T[0]T (1) is a complex linear surjection
and induces a splitting of L∞(D,C) into ([201]) :

L∞(D,C) = KerD0Φ⊕ Ω∞(D),

where Ω∞(D) is the Banach space defined by

Ω∞(D) :=
{
µ ∈ L∞(D,C) | µ(z) = (1− |z|2)2φ(z), φ holomorphic on D

}
.

T (1) as a group. By the Beurling-Ahlfors extension theorem, a quasiconformal mapping on D
extends to a quasisymmetric homeomorphism on the unit circle. Therefore the following map is a
well-defined bijection

T (1) → QS(S1)/PSU(1, 1)
[µ] 7→

[
wµ|S1

]
.

The coset QS(S1)/PSU(1, 1) inherits from its identification with T (1) a Banach manifold struc-
ture. Moreover the coset QS(S1)/PSU(1, 1) can be identified with the subgroup of quasisymmetric
homeomorphisms fixing −1, i and 1. This identification allows to endow the universal Teichmüller
space with a group structure. Relative to this differential structure, the right translations in T (1)
are biholomorphic mappings, whereas the left translations are not even continuous in general. Con-
sequently T (1) is not a topological group.
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The WP-metric and the Hilbert manifold structure on T (1). The Banach manifold T (1)
carries a Weil-Petersson metric, which is defined only on a distribution of the tangent bundle ([147]).
In order to resolve this problem the idea in [201] is to change the differentiable structure of T (1).

Theorem 1.1.8 ([201]). The universal Teichmüller space T (1) admits a structure of Hilbert man-
ifold on which the Weil-Petersson metric is a right-invariant strong hermitian metric.

For this Hilbert manifold structure, the tangent space at [0] in T (1) is isomorphic to

Ω2(D) :=
{
µ(z) = (1− |z|2)2φ(z), φ holomorphic on D, ‖µ‖2 <∞

}
,

where ‖µ‖22 =
∫ ∫

D |µ|
2ρ(z)d2z is the L2-norm of µ with respect to the hyperbolic metric of the

Poincaré disc ρ(z)d2z = 4(1 − |z|2)−2d2z. The Weil-Petersson metric on T (1) is given at the
tangent space at [0] ∈ T (1) by

〈µ, ν〉WP :=

∫∫
D
µ ν ρ(z)d2z

With respect to this Hilbert manifold structure, T (1) admits uncountably many connected compo-
nents. For this Hilbert manifold structure, the identity component T0(1) of T (1) is a topological
group. Moreover the pull-back of the Weil-Petersson metric on the quotient space Diff+(S1)/PSU(1, 1)
is given at [Id] by

hWP ([Id])([u], [v]) = 2π

∞∑
n=2

n(n2 − 1)unvn.

Hence the identity component T0(1) of T (1) can be seen as the completion of Diff+(S1)/PSU(1, 1)
for the H3/2-norm. This metric make T (1) into a strong Kähler-Einstein Hilbert manifold, with
respect to the complex structure given at [Id] by the Hilbert transform (see below where the defini-
tion of the Hilbert transform is recalled). The tangent space at [Id] consists of Sobolev class H3/2

vector fields modulo psu(1, 1). The associated Riemannian metric is given by

gWP ([Id])([u], [v]) = π
∑

n6=−1,0,1

|n|(n2 − 1)unvn,

and the imaginary part of the Hermitian metric is the two-form

ωWP ([Id])([u], [v]) = −iπ
∑

n 6=−1,0,1

n(n2 − 1)unvn.

Note that ωWP coincides with the Kirillov-Kostant-Souriau symplectic form obtained on Diff+(S1)/PSU(1, 1)
when considered as a coadjoint orbit of the Bott-Virasoro group.

1.2 Fingerprint map

In this section, we make the link between Teichmüller theory presented above and shape analysis
presented in next chapter. The link is made through the fingerprint map introduced in [190].
Together with the Weil-Petersson metric, it was used in [190] to compare images in applications
to pattern recognition. See also [80] for the interplay with the Hilbert structure of the universal
Teichmüller space mentioned in Theorem 1.1.8 and more details on the geometry involved.

Consider a Jordan curve γ in the plane. Denote by O and O∗ the two connected components
of C \ γ. By the Riemann mapping theorem, there exists two conformal maps f : D → O and
g : D∗ → O∗ from the unit disc D and D∗ := {z ∈ C, |z| > 1} into O and O∗ respectively. Both
f and g extends to homeomorphisms between the closure of the domains and one can form the
conformal welding

h := g−1 ◦ f : S1 → S1.

There exists homeomorphisms of S1 that are not conformal weldings, but any quasi-symmetric
homeomorphism h is a conformal welding and the decomposition h = g−1 ◦f , where f : D→ O and
g : D∗ → O∗ are conformal, is unique. The Jordan curve γ := f(S1) = g(S1) is called the quasi-
circle associated to h. Reciprocally, the map that to a quasi-circle associates a quasi-symmetric
homeomorphism of S1 is called the fingerprint map of γ.
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Using the fingerprint map, we can pull-back the Weil-Petersson metric of QS(S1)/PSU(1, 1) =
T (1) to the set of quasi-circles modulo translations and scaling. The geodesics between quasi-
circles for the Weil-Petersson metric fournish interpolations between 2D-contours in the plane.
Other interpolation procedures will be presented in the next chapter.

1.3 The restricted Siegel disc

The Siegel disc. Let V = H
1
2 (S1,R)/R be the Hilbert space of real valued H

1
2 functions with

mean-value zero. The Hilbert inner product on V is given by

〈u, v〉V =
∑
n∈Z
|n|unvn.

Endow the real Hilbert space V with the following complex structure (called the Hilbert transform)

J

∑
n 6=0

une
inx

 = i
∑
n 6=0

sgn(n)une
inx.

Now 〈·, ·〉V and J are compatible in the sense that J is orthogonal with respect to 〈·, ·〉V . The
associated symplectic form is defined by

Ω(u, v) = 〈u, J(v)〉V =
1

2π

∫
S1

u(x)∂xv(x)dx = −i
∑
n∈Z

nunvn.

Let us consider the complexified Hilbert space H := H1/2(S1,C)/C and the complex linear
extensions of J and Ω still denoted by the same letters. Each element u ∈H can be written as

u(x) =
∑
n∈Z

une
inx with u0 = 0 and

∑
n∈Z
|n||un|2 <∞.

The eigenspaces H+ and H− of the operator J are the following subspaces

H+ =

{
u ∈H

∣∣∣∣∣u(x) =

∞∑
n=1

une
inx

}
and H− =

{
u ∈H

∣∣∣∣∣u(x) =

−1∑
n=−∞

une
inx

}
,

and one has the Hilbert decomposition H = H+⊕H− into the sum of closed orthogonal subspaces.
The Siegel disc associated with H is defined by

D(H ) := {Z ∈ L(H−,H+) | Ω(Zu, v) = Ω(Zv, u), ∀u, v ∈H− and I − ZZ̄ > 0},

where, for A ∈ L(H+,H+), the notation A > 0 means 〈A(u), u〉H > 0, for all u ∈H+, u 6= 0 and
where for B ∈ L(H−,H+), define

B(u) := B(ū), BT := (B̄)∗.

It follows easily that D(H ) can be written as

D(H ) := {Z ∈ L(H−,H+) | ZT = Z, and I − ZZ̄ > 0}.

The restricted Siegel disc associated with H is by definition

Dres(H ) := {Z ∈ D(H ) | Z ∈ L2(H−,H+)},

where L2(H−,H+) denotes the space of Hilbert-Schmidt operators from H− to H+.
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The restricted Siegel disc as a homogeneous space. Consider the symplectic group Sp(V ,Ω)
of bounded linear maps on V which preserve the symplectic form Ω

Sp(V ,Ω) = {a ∈ GL(V ) | Ω(au, av) = Ω(u, v), for all u, v ∈ V }.

The restricted symplectic group Spres(V ,Ω) is by definition the intersection of the symplectic group
with the restricted general linear group defined by

GLres(H ) =
{
g ∈ GL(H ) | [d, g] ∈ L2(H )

}
,

where d := i(p+−p−) and p± is the orthogonal projection onto H±. Using the block decomposition
with respect to the decomposition H = H+ ⊕H−, one gets

Spres(V ,Ω) :=

{(
g h
h̄ ḡ

)
∈ GL(H )

∣∣∣∣h ∈ L2(H−,H+), gg∗ − hh∗ = I, ghT = hgT
}
.

Proposition 1.3.1. The restricted symplectic group acts transitively on the restricted Siegel disc
by

Spres(V ,Ω)×Dres(H ) −→ Dres(H ),

((
g h
h̄ ḡ

)
, Z

)
7−→ (gZ + h)(h̄Z + ḡ)−1.

The isotropy group of 0 ∈ Dres(H ) is the unitary group U(H+) of H+, and the restricted Siegel
disc is diffeomorphic as Hilbert manifold to the homogeneous space Spres(V ,Ω)/U(H+).

On the space {A ∈ L2(H−, H+) | AT = A} consider the following Hermitian inner product

Tr(V ∗U) = Tr(V̄ U).

Since it is invariant under the isotropy group of 0 ∈ Dres(H ), it extends to an Spres(V ,Ω)-invariant
Hermitian metric hD.

Remark 1.3.2. In the construction above, replace V by R2 endowed with its natural symplectic
structure. The corresponding Siegel disc is nothing but the open unit disc D. The action of
Sp(2,R) = SL(2,R) is the standard action of SU(1, 1) on D given by

z ∈ D 7−→ az + b

b̄z + ā
∈ D, |a|2 − |b|2 = 1,

and the Hermitian metric obtained on D is given by the hyperbolic metric

hD(z)(u, v) =
1

(1− |z|2)2
uv̄.

Therefore, Dres(H ) can be seen as an infinite-dimensional generalization of the Poincaré disc.

1.4 The period mapping

The following theorems answer the second question adressed in the first Section.

Theorem 1.4.1 (Theorem 3.1 in [146]). For φ an orientation preserving homeomorphism and any
f ∈ V , set by Vφf = f ◦ ϕ− 1

2π

∫
S1 f ◦ ϕ. Then Vφ maps V into itself iff φ is quasisymmetric.

Theorem 1.4.2 (Proposition 4.1 in [146]). The group QS(S1) of quasisymmetric homeomorphisms
of the circle acts on the right by symplectomorphisms on H = H1/2(S1,C)/C by

Vφf = f ◦ ϕ− 1

2π

∫
S1

f ◦ ϕ,

ϕ ∈ QS(S1), f ∈H .

Consequently this action defines a map Π : QS(S1) → Sp(V ,Ω). Note that the operator Π(ϕ)
preserves the subspaces H+ and H− iff ϕ belongs to PSU(1, 1). The resulting map (Theorem 7.1
in [146]) is an injective equivariant holomorphic immersion

Π : T (1) = QS(S1)/PSU(1, 1)→ Sp(V ,Ω)/U(H+) ' D(H )

called the period mapping of T (1). The Hilbert version of the period mapping is given by the
following
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Theorem 1.4.3 ([201]). For [µ] ∈ T (1), Π([µ]) belongs to the restricted Siegel disc if and only if
[µ] ∈ T0(1). Moreover the pull-back of the natural Kähler metric on Dres(H ) coincides, up to a
constant factor, with the Weil-Petersson metric on T0(1).

1.5 Isotropic polarizations and complex structures

This Section is based on a work in progress with F. Gay-Balmaz and T. Ratiu. Let V be a real
Hilbert space and endow the complexified Hilbert space H := V ⊗ C with the induced Hermitian
product 〈 , 〉H := hH defined by

hH (u+ iv, x+ iy) : = 〈u, x〉V + 〈v, y〉V + i (〈v, x〉V − 〈u, y〉V )

= 〈u+ iv, x+ iy 〉V ,
(1.1)

where in the last line, the inner product 〈 , 〉V is extended by complex bilinearity to H . Suppose
that V is endowed with a strong symplectic form Ω. We will still denote by Ω the complex bilinear
extension of Ω to H .

A polarization of H is a complex and closed subspace W of H such that

H = W ⊕W,

where W = {w̄ ∈ H | w ∈ W}. We denote by pW and pW the projections associated to this
decomposition. Note that, since Ω is extended to H by complex bilinearity, we have

Ω(w, z) = Ω(w̄, z̄).

Therefore
iΩ(w, w̄) = −iΩ(w̄, w) = iΩ(w, w̄).

This proves that iΩ(w, w̄) ∈ R and allows us to define a positive polarization relative to Ω by
the condition

iΩ(w, w̄) > 0, for all w ∈W,w 6= 0.

If in addition W is isotropic, we say that the decomposition is an isotropic polarization. We
denote by Pol(H ,Ω) the set of all isotropic polarizations of H and by Pol+(H ,Ω) the set of all
positive and isotropic polarizations of (H ,Ω).

Remark 1.5.1. Let us show that in an isotropic polarization, both W and W are Lagrangian, that
is, W = W⊥Ω . Since Ω is extended to H by complex bilinearity, it follows that W ⊂W⊥Ω ⇒W ⊂
W
⊥Ω

, where W⊥Ω := {v ∈H | Ω(v, w) = 0, ∀ w ∈W}. Any u ∈W⊥Ω decomposes as u = u1 +u2,
u1 ∈ W , u2 ∈ W . Thus, for any w ∈ W , we have 0 = Ω(u,w) = Ω(u1, w) + Ω(u2, w) = Ω(u2, w)

since W ⊂W⊥Ω . Therefore, u2 ∈W ∩W⊥Ω ⊂W⊥Ω ∩W⊥Ω = (W +W )⊥Ω = H ⊥Ω = {0} because
Ω is nondegenerate.

Given a real Hilbert space (V ,Ω) endowed with a strong symplectic form, we denote by J (V ,Ω)
the set of all linear complex structures on V , compatible with Ω. Here a complex structure
K : V → V , K2 = −I is said to be compatible with Ω if

Ω(Kw,Kz) = Ω(w, z)

for all w, z in V . Given K ∈ J (V ,Ω) we can form the symmetric and strongly nondegenerate
bilinear form on V

gK(u, v) := Ω(Ku, v).

Note that we have
gK(Ku,Kv) = gK(u, v) and Ω(u, v) = gK(u,Kv).

Since gK(u, v) = 〈Au, v〉V , for a symmetric and isomorphism A : V → V , using Proposition 3.6 in
Appendix of [125], we have the equivalence:

gK(u, u) ≥ 0, for all u ∈ V ⇐⇒ gK(u, u) > 0, for all u ∈ V , u 6= 0.
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In this case we say that K is positive. We denote by J +(V ,Ω) the set of all compatible and
positive complex structures on V . Theorem 3.1.19 in [2] ensures that the set J +(V ,Ω) is non
empty.

The associated Hermitian bilinear form on H = V ⊗ C is defined by

hK(w, z) := gK(w, z̄),

where gK is extended by complex bilinearity to H . Note that hK is positive definite if and only if
gK is positive definite. If we extend Ω to H by complex linearity, we have

Ω(w, z) = hK(w,Kz) = hK(w,Kz̄). (1.2)

Theorem 1.5.2. Consider a real Hilbert space V endowed with a strong symplectic form Ω. Then
the map

Pol(H ,Ω)→J (V ,Ω), W 7→ KW := i(pW − pW )

is a bijection. The inverse is

J (V ,Ω)→Pol(H ,Ω), K 7→WK := Eigi(K).

Moreover, for all W ∈Pol(H ,Ω), we have

iΩ(v, w̄) = hK(v, w), for all v, w ∈W,

where K = KW . Thus the map W 7→ KW restricts to a bijection

Pol+(H ,Ω)→J +(V ,Ω).

Proof. We first show that KW ∈J (V ,Ω). For w ∈H we have

KW (KW (w)) = i(pW − pW )i(pW − pW )(w) = −(pW + pW )(w) = −w.

Since W are W are isotropic, for w, z ∈W (or w, z ∈W ) we have Ω(w, z) = 0 and

Ω(KW (w),KW (z)) = Ω(iw, iz) = −Ω(w, z) = 0.

For w ∈W and z ∈W we have

Ω(KW (w),KW (z)) = Ω(iw,−iz) = Ω(w, z).

This proves that Ω(KW (w),KW (z)) = Ω(w, z) for all w, z ∈H .
Given K ∈J (V ,Ω), we now prove that WK ∈Pol(H ,Ω). Clearly WK is isotropic, since for

all w, z ∈WK = Eigi(K) we have

Ω(w, z) = Ω(iw, iz) = −Ω(w, z).

Using that WK = Eigi(K) = Eig−i(K), we obtain WK ∩WK = {0} and H = WK ⊕WK . The
associate projections are

pWK
(w) =

w − iK(w)

2
and pWK

(w) =
w + iK(w)

2
.

One sees directly that Eigi(KW ) = W . This proves that K 7→WK is a left inverse of W 7→ KW ,
and therefore that W 7→ KW is injective. To prove that W 7→ KW is surjective it suffices to show
that K 7→ WK is the right inverse of W 7→ KW , that is, KWK

= K. Using the formulas for pWK

and pWK
, we have

KWK
= i(pWK

− pWK
) = K.

For all W ∈Pol(H ,Ω) and v, w ∈W , we have for K = KW

iΩ(v, w̄) = igK(v,Kw̄) = igK(v,−iw̄)

= gK(v, w̄) = hK(v, w). (1.3)

Since the decomposition H = W⊕W is orthogonal with respect to hK , we obtain that iΩ(w, w̄) > 0
for all w ∈W if an only if hK is positive definite. �
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1.6 The restricted groups GLres(H ), Ures(H ), and Spres(V ,Ω)

We now assume that we have a decomposition H = H+ ⊕H− into the sum of two closed infinite-
dimensional subspaces. The projection onto H± parallel to H∓ will be denoted by p±. We recall
from [172], [233] the following facts (see also [149]).

The restricted general linear group, relative to the polarization H = H+ ⊕H− is defined
by

GLres(H ) =
{
a ∈ GL(H ) | [d, a] ∈ L2(H )

}
,

where d := KH+
= i(p+ − p−) ∈ u(H ). Note that g ∈ GL(H ) can be written

a =

(
a+ a−+

a+− a−

)
,

where a+ ∈ L(H+,H+), a−+ ∈ L(H−,H+), a+− ∈ L(H+,H−) and a− ∈ L(H−,H−). Using this
notation, for any a ∈ GL(H ), we have

a ∈ GLres(H )⇔ [d, a] ∈ L2(H )

⇔ a−+ ∈ L2(H−,H+) and a+− ∈ L2(H+,H−).

Using that left and right composition of a bounded operator with a Hilbert-Schmidt operator is
Hilbert-Schmidt we have ab ∈ GLres(H ) for all a, b ∈ GLres(H ).

Since a ∈ GLres(H ) is invertible and a−1 ∈ GLres(H ), we obtain that a+ and a− are invertible
modulo compact operators, and therefore, that they are Fredholm operators, see Theorem VII.2 in
[163]. Moreover we have

Ind a+ = − Ind a−,

where IndA is the Fredholm index of the operator A, defined by

IndA := dim kerA− codim rangeA.

It can be shown that GLres(H ) is a Banach Lie group and an open subset of the Banach algebra

glres(H ) =
{
A ∈ gl(H ) | [d,A] ∈ L2(H )

}
endowed with the norm

‖A‖res := ‖A‖+ ‖[d,A]‖2 .
Unlike GL(H ), the restricted general linear group GLres(H ) has infinitely many connected compo-
nents. More precisely, a and b are in the same connected component if and only if Ind a+ = Ind b+.

Similary, the restricted unitary group and its Lie algebra are given by

Ures(H ) =
{
a ∈ U(H ) | [d, a] ∈ L2(H )

}
= U(H ) ∩GLres(H ), and

ures(H ) =
{
A ∈ u(H ) | [d,A] ∈ L2(H )

}
= u(H ) ∩ glres(H ).

The group Ures(H ) has also infinitely many connected components. As in the case of GLres(H ),
a, b ∈ Ures(H ) are in the same connected component if and only if Ind a+ = Ind b+.

Let (V ,Ω) be a real Hilbert space endowed with a strong symplectic form and suppose that the
associated operator J is a complex structure compatible with the inner product 〈 , 〉V . Recall that
when a ∈ Sp(V ,Ω) is seen as acting on H := V ⊗ C, it reads

a =

(
g h
h̄ ḡ

)
,

relative to the splitting H = H+ ⊕H−, H+ := Eigi(J) with conditions

gg∗ − hh∗ = I, ghT = hgT .

on g and h. The restricted symplectic group is

Spres(V ,Ω) : = Sp(V ,Ω) ∩GLres(H )

=

{(
g h
h̄ ḡ

)
∈ Sp(V ,Ω)

∣∣∣∣h ∈ L2(H−,H+)

}
,
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and its Lie algebra is given by

spres(V ,Ω) =

{(
A1 A2

Ā2 Ā1

)
∈ sp(V ,Ω)

∣∣∣∣A2 ∈ L2(H−,H+)

}
.

Using the identities g∗g = I + hT h̄ and gg∗ = I + hh∗ we obtain that g∗g and gg∗ are positive
definite and, therefore, injective. This proves that g and g∗ are injective. Since g is Fredholm, its
range is closed and equals (ker g∗)⊥ = H+. This proves that g is a bijection and has Fredholm
index zero. Thus, Spres(V ,Ω) sits in the connected component of the identity of GLres(H ).

1.7 Restricted Siegel disc and restricted Grassmannian

This Section is based on a work in progress with F. Gay-Balmaz and T. Ratiu. Assume that we
have a decomposition H = H+ ⊕H− into the orthogonal sum of two closed infinite-dimensional
subspaces.

The restricted Grassmannian Grres(H ) is the set of all closed subspaces W of H such that

(i) the orthogonal projection p+ : W →H+ is a Fredholm operator,

(ii) the orthogonal projection p− : W →H− is a Hilbert-Schmidt operator.

Remark 1.7.1. Equivalentely, W ∈ Grres(H ) if and only if W is the image of an operator w :
H+ →H such that p+ ◦w is Fredholm and p− ◦w is Hilbert-Schmidt. Note that if this is the case
for w, this will be the case for any operator w′ : H+ →H such that w′(H+) = W . Thus

W 7→ a(W ),

defines a left action of a ∈ GLres(H ,H+) on W ∈ Grres(H ).

The following theorem summaries the principal properties of Grres(H ), see [172], Corollary III.4
and Proposition III.5 of [233].

Theorem 1.7.2.

(i) The action of GLres(H ,H+) on Grres(H ) is transitive and the isotropy group of H+ is

P :=

{(
a+ a−+

0 a−

)
∈ GLres(H ,H+)

}
whose Lie algebra is

p =

{(
A+ A−+

0 A−

)
∈ glres(H ,H+)

}
.

The action of Ures(H ,H+) on Grres(H ) is transitive and the isotropy group of H+ is{(
a+ 0
0 a−

)
∈ Ures(H ,H+)

}
' U(H+)×U(H−).

(ii) Grres(H ) can be endowed with a complex Hilbert manifold structure, relative to which the
natural map

P \GLres(H ,H+)→ Grres(H )

is a diffeomorphism. The tangent map at [I]P reads[
A+ A−+

A+− A−

]
p

=

[
0 0
A+− 0

]
p

7−→ A+− ∈ L2(H+,H−). (1.4)

(iii) Let W be a closed subspace of H and pW the corresponding orthogonal projection. Then
W ∈ Grres(H ) if and only if the operator pW − p+ is Hilbert-Schmidt.
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Consider a real Hilbert space V endowed with a strong symplectic form Ω. Recall that we have
a bijection

Pol+(H ,Ω)→J +(V ,Ω).

Fix a complex structure J ∈ J +(V ,Ω), the corresponding polarization is H+ := WJ = Eigi(J).
Relative to this choice we define

Pol+res(H ,Ω) : = Pol+(H ,Ω) ∩Grres(H )

J +
res(V ,Ω) : = {K ∈J +(V ,Ω) | K − J ∈ L2(V )}.

Note that Pol+(H ,Ω) and J +(V ,Ω) do not depend on the choice of J , whereas Pol+res(H ,Ω)
and J +

res(V ,Ω) do. The following result shows that the previous definitions are compatible.

Lemma 1.7.3. The bijection

Pol+(H ,Ω)→J +(V ,Ω), W 7→ KW ,

of Theorem 1.5.2 restricts to a bijection

Pol+res(H ,Ω)→J +
res(V ,Ω), W 7→ KW .

Proof. LetW ∈Pol+(H ,Ω) and consider the corresponding complex structureK ∈J +(V ,Ω).
By Theorem 1.7.2 we know that W ∈Pol+res(H ,Ω) if and only if pW − p+ is Hilbert-Schmidt.

Recall that we have

pW (w) =
w − iKw

2
.

Therefore, we obtain

pW − p+ =
p− − p+ − iK

2
=
i

2
(i(p+ − p−)−K) =

i

2
(J −K).

This proves that W ∈Pol+res(H ,Ω) if and only if K ∈J +
res(V ,Ω). �

Theorem 1.7.4. The action of GLres(H ) on Grres(H ) restricts to a transitive action of Spres(V ,Ω)
on Pol+res(H ,Ω). The isotropy group of H+ is{(

g 0
0 ḡ

)
∈ Spres(V ,Ω)

}
' U(H+).

Proof. Let W ∈Pol+res(H ,Ω). For a ∈ Spres(V ,Ω), a(W ) is isotropic, a(W ) = a(W ) and

iΩ (aw, aw) = iΩ(aw, aw̄) = iΩ(w, w̄) > 0.

Since we already know that a(W ) ∈ Grres(H ), we obtain that a(W ) ∈Pol+res(H ,Ω).
We now show that the action is transitive. Let W ∈Pol+res(H ,Ω), and K := KW ∈J +

res(V ,Ω)
be the corresponding complex structure. Let us show that W is in the orbit of H+. For v, w ∈H+

and v′, w′ ∈W , we have

iΩ(v, w̄) = hK(v, w) and iΩ(v′, w̄′) = hK′(v
′, w′),

by (1.3). Consider orthonormal bases (ej) and (e′j) of H+ and W with respect to the Hermitian

product hJ and hK . Define fk := i ek and f ′k := i e′k, then (ej , fk) and (e′j , f
′
k) are symplectic bases

of H , that is,
Ω(ej , ek) = 0, Ω(ej , fk) = δjk and Ω(fj , fk) = 0.

Define a ∈ GL(H ) by aej := e′j and afk := f ′k, then a is symplectic and since aū = au, we
have a ∈ Sp(V ,Ω). Since a(H+) ∈ Grres(H ), the operator p− ◦ a|H+ is Hilbert-Schmidt hence
a ∈ Spres(V ,Ω) by Remark 1.7.1. The isotropy group of H+ is easily seen to be U(H+). �

Remark 1.7.5. The previous Theorem shows that Pol+res(H ,Ω) can be endowed with the complex
Hilbert manifold structure of U(H+)\ Spres(V ,Ω). However, it will be more convenient to choose
the conjugate complex manifold structure in order to have the following corollary which shows that
this manifold structure is compatible with the complex Hilbert manifold structure of the restricted
Grassmannian.
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Corollary 1.7.6. Consider a real Hilbert space V endowed with a strong symplectic form Ω. Fix
J ∈J +(V ,Ω) and consider the corresponding restricted sets Pol+res(H ,Ω) and J +

res(V ,Ω). Then
Pol+res(H ,Ω) is a complex Hilbert submanifold of Grres(H ), where H+ := Eigi(J), and

TH+
Pol+res(H ,Ω) ∼= {A ∈ L2(H+,H−) | AT = A}.

Proof. Recall that Grres(H ) is a complex Hilbert manifold complex diffeomorphic to the
quotient P \GLres(H ). On the other hand, Pol+res(H ,Ω) is endowed with the conjugate-complex
Hilbert manifold structure of the quotient U(H+)\Spres(V ,Ω), see Remark 1.7.5.

We begin by showing that U(H+)\ Spres(V ,Ω) is a real Banach submanifold of P \GLres(H ,H+).
Since Spres(V ,Ω) is a real Banach submanifold of GLres(H ,H+), and the inclusion is equivariant
relative to the actions of U(H+) on Spres(V ,Ω) and P on GLres(H ,H+), we obtain that the quo-
tient map is smooth, see Theorem 5.9.6 in [39]. Since Spres(V ,Ω)∩P = U(H+), it is also injective.
So it remains to show that this inclusion is an embedding. This follows by noting that the projection
maps are open.

The tangent map to the inclusion U(H+)\Spres(V ,Ω) ↪→ P \GLres(H ,H+) reads[
A B
B̄ Ā

]
u(H+)

=

[
0 B
B̄ 0

]
u(H+)

∈ u(H+)\spres(V ,Ω)

7−→
[
A B
B̄ Ā

]
p

=

[
0 0
B̄ 0

]
p

∈ p\glres(H ,H+)

and is conjugate-complex linear since the complex structure on the left hand side is given by the iden-
tification with Dres(H ). This proves that the inclusion is antiholomorphic. Since Pol+res(H ,Ω)
is endowed with the conjugate-complex Hilbert manifold of U(H+)\ Spres(V ,Ω), it follows that
Pol+res(H ,Ω) is a complex Hilbert submanifold of Grres(H ). Thus the tangent space to Pol+res(H ,Ω)
at H+ is the subspace of the tangent space to the Grassmannian at H+ given by the stated formula.
�

Remark 1.7.7. For the complex Hilbert manifold structure on J +
res(V ,Ω) induced by the bijection

given in Lemma 1.7.3, the tangent space at J is

TJJ +
res(V ,Ω) =

{(
0 Ā
A 0

)∣∣∣∣A ∈ L2(H+,H−), AT = A

}
,

where the complex structures in J +
res(V ,Ω) are seen as operators acting on H := V ⊗ C.

1.8 Korteweg-de Vries equation

1.8.1 Korteweg-de Vries equation as geodesic equation

The Korteweg-de Vries equation is the following shallow water equation:

ut + 3uxu+ auxxx = 0.

A curve in the Virasoro-Bott group is a geodesic for the right invariant L2-metric if and only if its
right logarithmic derivative is a solution of the Korteweg-de Vries equation (see [162] and [104]). It
was proved in [18] that the geodesic distance, induced by this metric, vanishes. This is a strictly
infinite-dimensional phenomenon first uncountered in [142]. Moreover, it was proved in [44] that the
corresponding energy functional, when restricted to paths with fixed endpoints, has no local minima.
In particular, solutions of KdV do not define locally length-minimizing paths. These pathologies
make this equation intriguing. Let me explain how it is related to the restricted Grassmannnian.

1.8.2 KdV hierarchies and infinite-dimensional Grassmannians

Definition of the n-th KdV hierarchy

The n-th KdV hierarchy is the hierarchy of equations indexed by k ∈ N given in the Lax form by:

∂L

∂tk
= [(Qk)+, L], k ∈ N, (1.5)
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where D = ∂
∂x , and L denotes a differential operator of order n of the form

L = Dn + un - 2D
n - 2 + un−3D

n−3 + · · ·+ u1D + u0, (1.6)

where Q is the pseudo-differential operator of the form

Q = D +

−∞∑
i=−1

qiD
i, (1.7)

which satisfies Qn = L, and where (Qk)+ denotes the projection of (Qk) on the set of differential
operators. In these expressions all coefficients belong to a certain class of functions of infinitely
many variables x, t2, t3, . . . . Each operator of the form (1.6) belongs to the conjugation class of the
operator Dn under the action of the group of pseudo-differential operators

G =

{
K = 1 +

−∞∑
i=−1

aiD
i

}
.

Since L is conjugate to Dn, Q is conjugate to D, i.e. there exists an operator K ∈ G such that
K−1QK = D, uniquely determined modulo right multiplication by a pseudo-differential operator
with constant coefficients of the form 1 +

∑−∞
i=−1 ciD

i.

From pseudo-differential operators to functions

The link with the restricted Grassmannian as explained in [185] is established via the pseudo-
differential module

M =

{
f = e(xz+t2z

2+t3z
3+... )

(
1 +

−∞∑
i=−1

fiz
i

)}
,

generated by e(xz+t2z
2+t3z

3+... ). The operator D acts on M by ∂
∂x , and D−1 by

D−1e(xz+t2z
2+t3z

3+... )

(
1 +

−∞∑
i=−1

fiz
i

)
:= e(xz+t2z

2+t3z
3+... )(D + z)−1

(
1 +

−∞∑
i=−1

fiz
i

)
,

where (D + z)−1 is the formal series z−1 −Dz−2 + · · · . In particular, one has:

De(xz+t2z
2+t3z

3+... ) = ze(xz+t2z
2+t3z

3+... ),

and
D−1e(xz+t2z

2+t3z
3+... ) = z−1e(xz+t2z

2+t3z
3+... ).

Every element f ∈M determines a operator K ∈ G by the application

φ : M → G

f = e(xz+t2z
2+t3z

3+... )
(

1 +
∑−∞
i=−1 fiz

i
)
7→ K = 1 +

∑−∞
i=−1 fiD

i.

The inverse mapping is given by

φ−1 : G → M

K 7→ K
(
e(xz+t2z

2+t3z
3+... )

)
.

From W ∈ Grres(H ) to solutions of the KP hierarchy

To each element W of the restricted Grassmannian of a Hilbert space H with decomposition H =
H+⊕H− is associated a function ΨW in M , called the Backer function of W , given by the preimage
under the orthogonal projection onto H+ of a given vector of H+ (the constant function equal to 1
when H is viewed as L2(S1,C), and H+ as the subspace of functions which extend to holomorphic
functions in the unit disc). This Backer function determines for each r ∈ N a unique differential
operator Pr of order r of the form (1.6) that satisfies:

∂ΨW

∂tr
= PrΨW , r ∈ N. (1.8)
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The operator K := φ(ΨW ) in G defines an operator Q of the form (1.7) by:

Q = KDK−1. (1.9)

The arguments below will show that Q is a solution of the following KP hierarchy:

∂Q

∂tr
= [(Qr)+, Q], r ∈ N. (1.10)

Indeed differentiating (1.9) with respect to the variable tr, one gets:

∂Q

∂tr
=
∂K

∂tr
DK−1 −KDK−1 ∂K

∂tr
K−1 = [

∂K

∂tr
K−1, Q]. (1.11)

Since K := φ(ΨW ), one has ΨW = K
(
e(xz+t2z

2+t3z
3+... )

)
, and

∂ΨW

∂tr
=

∂

∂tr

(
K
(
e(xz+t2z

2+t3z
3+... )

))
=
∂K

∂tr

(
e(xz+t2z

2+t3z
3+... )

)
+KDr

(
e(xz+t2z

2+t3z
3+... )

)
.

Thus equation (1.8) can be written as:

∂K

∂tr

(
e(xz+t2z

2+t3z
3+... )

)
+KDr

(
e(xz+t2z

2+t3z
3+... )

)
= PrK

(
e(xz+t2z

2+t3z
3+... )

)
,

which is equivalent to
∂K

∂tr
+KDr = PrK.

In particular, Pr = (KDrK−1)+ and:

∂K

∂tr
K−1 = Pr −KDrK−1 = (Qr)+ −Qr.

Since Q and Qr commute, equation (1.11) is therefore equivalent to equation (1.10).
When W belongs to the sub-Grassmannian Grres(H )(n) consisting of elements W ∈ Grres(H )

stable under the multiplication by zn, the above defined pseudo-differential operator Q has the
property that Qn is a differential operator of the form (1.6) which gives a solution of the n-th
KdV hierarchy. The link between the KdV hierarchy and the Poisson geometry of the restricted
Grassmannian will be established in the last chapter. In order to introduce some of the problems
arising from the infinite-dimensional setting, we present in the next Section the Poisson structure
of the unitary group of an (infinite-dimensional) Hilbert space.

1.9 Banach Poisson–Lie group structure on U(H )

This Section is based on a paper under review written in collaboration with T. Goliński. It explains
some of the ideas used in chapter6 and Chapter 7 on the example of the unitary group of an Hilbert
space. More precisely, we consider here the Banach Lie group of bounded unitary operators U(H )
on a complex separable Hilbert space H . We denote by L∞(H ) the Banach space of bounded
linear operators on H , and by L1(H ) the Banach algebra of trace class operators on H . The
Banach Lie algebra of U(H ) consisting of skew-hermitian bounded operators will be denoted by
u(H ) and the Banach Lie algebra of trace-class skew-hermitian operators by u1(H ).

In the whole Section for a Banach space b we will use the notation b∗ to denote the continuous
dual of b, i.e. the Banach space of continuous functionals on b, and b∗ for a predual of b, i.e. for a
Banach space such that (b∗)

∗ ∼= b.
The aim of this section is to define a structure of Banach Poisson–Lie group on U(H ) de-

fined on the pre-cotangent bundle T∗U(H ), with fibers modeled on the Banach quotient space
L1(H )/u1(H ). Notably L1(H )/u1(H ) inherits a Lie algebra structure from this construction.

The notion of Poisson manifold in the context of Banach manifolds was introduced in [156] and
generalized in various directions in [46, 166, 152, 32, 24, 29, 213]. The notion of Poisson–Lie group
in the finite-dimensional setting goes back to [66, 188, 113, 136]. The notion of Banach Poisson–
Lie group was introduced in [213] and examples related to the Korteweg–de Vries hierarchy and
restricted Grassmannian [27, 85] were investigated. Some other, more formal approaches to infinite
dimensional Poisson–Lie groups can be found e.g. in [88, 238, 106]. The geometry of the unitary
groups was studied e.g. in [89, 5, 28].
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1.9.1 Definition of Banach Poisson–Lie groups

We recall in this section the generalization of the definition of Banach Poisson manifolds adapted
to our considerations. The definition given below was introduced in [213] and called generalized
Banach Poisson manifolds. In order to be coherent with the terminology used in [46], we will
call this structure Banach sub-Poisson manifold. This notion is a generalization of the notion of
Banach Poisson manifolds given in [156] to the case where the Poisson tensor is only defined on
a subset of the cotangent bundle (Definition 6.4.5). This subset will be a bundle with possibly
different topology and large enough that it is in duality with the tangent bundle (Definition 1.9.1).
The definition of Banach Poisson–Lie groups in this context is given in Definition 1.9.8. In the
finite-dimensional case, all these definitions become the usual ones.

Definition 1.9.1. Let M be a Banach manifold. We will say that a Banach bundle F over M
is in duality with the tangent bundle to M if, for every p ∈ M , there is a duality pairing (i.e.
non-degenerate continuous bilinear map) between the fibers Fp and TpM , which depends smoothly
on p.

Remark 1.9.2. Any Banach bundle F over M in duality with TM injects continuously into T ∗M ,
hence we will identify it sometimes with a subset of T ∗M . Such a bundle F will play the role of
co-characteristic distribution in the sense of [29]. However in general it may not be a Banach
subbundle of T ∗M .

We will denote by Λ2F∗ the vector bundle over M whose fiber over p ∈M is the Banach space
of continuous skew-symmetric bilinear forms on the subspace Fp.

Definition 1.9.3. Let M be a Banach manifold and F a bundle in duality with TM . A smooth
section π of Λ2F∗ is called a Poisson tensor on M with respect to F if:

1. for any closed local sections α, β of F, the differential d (π(α, β)) is a local section of F;

2. (Jacobi) for any closed local sections α, β, γ of F,

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) = 0. (1.12)

The triple (M,F, π) will be called a Banach sub-Poisson manifold.

Remark 1.9.4. Given a Poisson tensor on a Banach manifold M , one can define a Poisson bracket
on the space of locally defined functions with differentials in F by

{f, g} = π(df, dg).

Condition 1 in Definition 6.4.5 ensures that the bracket of two such functions is again a function of
the same type, and condition 2 is equivalent to the usual Jacobi identity. Consequently, the space
of smooth functions on M with differentials in F forms a Poisson algebra. Note that the existence
of Hamiltonian vector fields is not generally assumed.

Remark 1.9.5. The notion of Banach sub-Poisson manifold is adapted to the infinite-dimensional
context where:

1. the tangent space of a Banach manifold may be in duality with many different Banach spaces.
All these Banach spaces can be identified with subspaces of the cotangent space ;

2. a Banach manifold M may not have partition of unity or bump functions, hence it may not
be possible to extend locally defined objects to global ones. This explains why we consider
local sections instead of smooth functions on M in order to define a Poisson structure on M .

Definition 1.9.6. Let (M1,F1, π1) and (M2,F2, π2) be Banach sub-Poisson manifolds and F :
M1 →M2 a smooth map. One says that F is a Poisson map at p ∈M1 if

1. the tangent map TpF : TpM1 → TF (p)M2 satisfies TpF
∗(F2)F (p) ⊂ (F1)p and TpF

∗ : F2 → F1

is continuous ;

2. (π1)p (TpF
∗(α), TpF

∗(β)) = (π2)F (p) (α, β) for any α, β ∈ (F2)F (p).
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One says that F is a Poisson map if it is a Poisson map at any p ∈M1.

Proposition 1.9.7. Let (M1,F1, π1) and (M2,F2, π2) be Banach sub-Poisson manifolds. Then the
product M1 ×M2 carries a natural Banach sub-Poisson manifold structure (M1 ×M2,F, π) where

1. M1×M2 carries the product Banach manifold structure, in particular T (M1×M2) ' TM1⊕
TM2 and T ∗(M1 ×M2) ' T ∗M1 ⊕ T ∗M2,

2. F is the subbundle of T ∗M1 ⊕ T ∗M2 defined as

F(p,q) = (F1)p ⊕ (F2)q,

3. π is defined on F by

π(α1 + α2, β1 + β2) = π1(α1, β1) + π2(α2, β2), α1, β1 ∈ F1, α2, β2 ∈ F2.

Definition 1.9.8. A Banach Poisson–Lie group is a Banach Lie group G equipped with a
Banach sub-Poisson manifold structure (G,F, π) such that the group multiplication m : G×G→ G
is a Poisson map, where G×G is endowed with the product sub-Poisson structure.

Remark 1.9.9. Let (G,F, π) be a Banach Poisson–Lie group with Banach Lie algebra g and unit
element e ∈ G. According to Proposition 5.6 in [213], the compatibility condition between the
Poisson tensor π and the multiplication in G implies that G acts continuously on the fiber Fe ⊂ g∗

by coadjoint action. By derivation, it follows that g acts also continuously on Fe by coadjoint action.

1.9.2 Some subspaces of u∗(H ) in duality with u(H )

In order to define a Banach Poisson–Lie group structure on the Banach Lie group U(H ), we
are looking for subspaces of the dual space u∗(H ) in duality with u(H ), on which U(H ) acts
continuously by coadjoint action (see Remark 1.9.9).

Endow the Hilbert space H with a Hilbert basis {|n〉}n∈Z ordered in decreasing order. We will
consider the following Banach Lie algebra of upper triangular trace-class operators:

b+
1 (H ) := {α ∈ L1(H ) : α|n〉 ∈ span{|m〉,m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

This Section is organized as follows. In Subsection 1.9.2, we show that there is a duality pairing
between b+

1 (H ) and u(H ) and prove that u(H ) does not act continuously on b+
1 (H ) by coad-

joint action, hence b+
1 (H ) cannot be used to define a Poisson–Lie group structure on U(H ). In

Subsection 1.9.2, we construct a subspace of u∗(H ) into which b+
1 (H ) injects as a dense subspace

and on which u(H ) acts continuously.

Duality pairing between u(H ) and b+
1 (H )

Proposition 1.9.10. The continuous bilinear map between u(H ) and b+
1 (H ) given by the imag-

inary part of the trace

u(H )× b+
1 (H ) → R

(A,B) 7→ =TrAB

is non-degenerate, hence it defines a duality pairing between u(H ) and b+
1 (H ).

Proof. It follows by direct calculation using e.g. operators Enm := |n〉〈m|.

For finite-dimensional H , this proposition implies that b+
1 (H ) can be identified with the dual

of u(H ). In the rest of the paper we will assume that H is infinite-dimensional. In this case
b+

1 (H ) can be identified with a proper subspace of u∗(H ) using the duality pairing defined in
Proposition 1.9.10.

Theorem 1.9.11. The coadjoint action of u(H ) is unbounded on the image of b+
1 (H ) in u∗(H ).
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Proof. Denote by T+ (resp. T++) the linear transformation truncating an operator to the upper
triangular part (resp. strictly upper triangular part) with respect to the Hilbert basis {|n〉}n∈Z:

〈m|T++(A)n〉 :=

{
〈m|An〉 if m > n

0 if m ≤ n (1.13)

〈m|T+(A)n〉 :=

{
〈m|An〉 if m ≥ n

0 if m < n
(1.14)

Recall that T+ is unbounded on L∞(H ), as well as on L1(H ) (see [121], [84], [57]), but they
are bounded on the space of Hilbert–Schmidt operators L2(H ) since they are just orthogonal
projections. Let us denote by T0 the diagonal truncation defined by T0 = T+ − T++, which is
bounded on L∞(H ) and L1(H ).

Let us consider the coadjoint action of u(H ) on the image of b+
1 (H ) in u∗(H ). An element

B ∈ b+
1 (H ) defines a functional C 7→ =TrCB, C ∈ u(H ), on which A ∈ u(H ) acts by coadjoint

action as:
C 7→ =Tr [A,C]B = −=TrC[A,B].

Since for any C ∈ u(H ) and D ∈ L1(H ),

=TrCD = =TrC
(
(T++ + 1

2T0)(D +D∗)
)
,

we have
ad∗AB = −(T++ + 1

2T0)([A,B] + [A,B]∗). (1.15)

We show that this coadjoint action is unbounded on b+
1 (H ). To this end let us decompose the

Hilbert space H into the sum of two orthogonal infinite-dimensional closed subspaces:

H = H+ ⊕H−,

where H+ is the Hilbert space generated by {|n〉}n∈N∪{0} and H− is the Hilbert space generated
by {|n〉}−n∈N\{0}. Let us define a unitary operator u : H− →H+ by u| − n〉 = |n− 1〉, n ∈ N.

From unboundedness of T+ it follows that there exists a sequence of Hermitian trace class
operators Kn on H− such that

1. ‖Kn‖1 ≤ 1,

2. lim
n→+∞

‖T+(Kn)‖1 = +∞.

The bounded linear operators whose expressions with respect to the decomposition H = H+⊕
H− read

Bn :=

(
0 uKn

0 0

)
belong to b+

1 (H ). The skew-hermitian operator A whose expression with respect to the decompo-
sition H = H+ ⊕H− reads

A :=

(
0 u
−u∗ 0

)
is bounded. Moreover

[A,Bn] =

[(
0 u
−u∗ 0

)
,

(
0 uKn

0 0

)]
=

(
uKnu

∗ 0
0 −Kn

)
.

Since Kn is Hermitian, from (1.15) we get

ad∗ABn = −(T++ + 1
2T0)([A,Bn]).

It follows that ‖ad∗ABn‖1 →∞ as n→∞ whereas ‖Bn‖1 = ‖Kn‖1 ≤ 1.

We conclude from Remark 1.9.9 the following corollary.

Corollary 1.9.12. There is no Banach Poisson–Lie group structure (U(H ),F, π) on U(H ) with
bundle F such that Fe = b+

1 (H ) ⊂ u(H )∗.
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A subspace of u∗(H ) on which u(H ) acts continuously by coajoint action

Consider the continuous linear map Φ : L1(H ) → u∗(H ) which maps an operator a ∈ L1(H ) to
the linear functional on u(H ) given by

b 7→ =Tr ab

where =Tr ab is the imaginary part of the trace of ab ∈ L1(H ).

Proposition 1.9.13. The kernel of Φ equals u1(H ), therefore L1(H )/u1(H ) injects into the dual
space u(H )∗ and can be identified with the predual space u(H )∗. It is closed and preserved by the
coadjoint action of U(H ). Moreover functionals given by elements of b+

1 (H ) form a proper dense
subspace.

Proof.

• It is clear that u1(H ) is contained in the kernel of Φ since the product of two skew-hermitian
operators has a real trace. Let a ∈ L1(H ) be such that =Tr ab = 0 for any b ∈ u(H ). One
has for any b ∈ u(H ) and a ∈ L1(H )

=Tr ab = 1
2i

(
Tr ab− Tr ab

)
= 1

2i (Tr ab+ Tr ba∗) = 1
2i (Tr (a+ a∗)b) .

Consequently,
a ∈ ker(Φ)⇒ Tr (a+ a∗)b = 0 ∀b ∈ u(H ).

By linearity of the trace, Tr (a + a∗)b = 0 ⇒ Tr (a + a∗)ib = 0. It follows that if a ∈ ker(Φ),
Tr (a + a∗)b̃ = 0 for any b̃ ∈ L∞(H ). Since the dual of L1(H ) viewed as complex Banach
space can be identified with L∞(H ) using the trace, one has

a ∈ ker(Φ)⇒ a+ a∗ = 0 ∈ L1(H ).

Hence the kernel of Φ equals u1(H ).

• From the previous point, we have an injection

L1(H )/u1(H ) ↪→ u(H )∗. (1.16)

From the Banach decomposition

L1(H ) = u1(H )⊕ iu1(H ) (1.17)

given by a 7→
(

1
2 (a− a∗) ; 1

2 (a+ a∗)
)
, it follows that

L1(H )/u1(H ) ' iu1(H ). (1.18)

It is known that
(iu1(H ))∗ ' u(H ),

see e.g. [156, Example 7.10]. Thus the injection (1.16) is in fact the natural injection of the
Banach space L1(H )/u1(H ) into its bidual

(L1(H )/u1(H ))
∗∗ ' u(H )∗.

Its image is therefore a closed subspace of u(H )∗.

• Let us show that the range of Φ is preserved by the coadjoint action of U(H ). For a ∈ L1(H )
and b ∈ u(H ), one has

Ad∗g(Φ(a))(b) = Φ(a)(Adgb) = =Tr agbg−1

= =Tr g−1agb = Φ(g−1ag)(b),

where g−1ag belongs to L1(H ). Note that for a ∈ u1(H ), g−1ag belongs to u1(H ) for any
g ∈ U(H ). Hence the coadjoint action of g ∈ U(H ) on L1(H )/u1(H ) reads

Ad∗g[a]u1
= [g−1ag]u1

, (1.19)

where [a]u1
denotes the class of a ∈ L1(H ) modulo u1(H ).
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• Since b+
1 (H ) ∩ u1(H ) = {0}, we have b+

1 (H ) ↪→ L1(H )/u1(H ) ' iu1(H ). Under this
identification an element b ∈ b+

1 (H ) is sent to 1
2 (b+ b∗). Hence b+

1 (H ) corresponds to those
elements in iu1(H ) that have a triangular truncation in L1(H ). Any functional a ∈ u(H) '
(L1(H )/u1(H ))∗ vanishing on b+

1 (H ) by Proposition 1.9.10 is zero. Hence b+
1 (H ) is dense

in L1(H )/u1(H ).

1.9.3 The unitary group U(H ) as a Banach Poisson–Lie group

In order to define a Banach Poisson–Lie group structure on U(H ) we need to introduce the Lie
algebra u2(H ) of Hilbert–Schmidt skew-hermitian operators, as well as the Lie algebra b+

2 (H ) of
Hilbert–Schmidt upper triangular operators with real coefficients on the diagonal. Note that we
have a direct sum decomposition of the space L2(H ) of Hilbert–Schmidt operators into

L2(H ) = u2(H )⊕ b+
2 (H ).

The corresponding projections pu2
and pb+

2
from L2(H ) onto u2(H ) and b+

2 (H ) respectively are

continuous. Since u2(H ) is invariant by conjugation by a unitary operator, but b+
2 (H ) is not, one

has for x ∈ L1(H ) and g ∈ U(H ),

pb+
2

(g−1x g) = pb+
2

(g−1pb+
2

(x) g), (1.20)

and
pu2

(g−1x g) = g−1pu2
(x) g + pu2

(g−1pb+
2

(x) g). (1.21)

Theorem 1.9.14. Consider the Banach Lie group U(H ) and define

• the precotangent bundle F = T∗U(H ) ⊂ T ∗U(H ) by right translations

Fg = R∗g−1

(
L1(H )/u1(H )

)
= R∗g−1u(H )∗,

• the map Πr : U(H )→ Λ2F∗e by

Πr(g)([x1]u1 , [x2]u1) = =Tr
(
g−1 pb+

2
(x1) g pu2(g−1 pb+

2
(x2) g)

)
, (1.22)

• the tensor π ∈ Λ2F∗ by π(g) = R∗∗g Πr(g).

Then (U(H ),F, π) is a Banach Poisson–Lie group. On the space of smooth functions with differ-
entials in F, the Poisson bracket reads:

{f, h}(g) = Πr(g)(R∗gdfg, R
∗
gdhg) = Πr(g)(dfg ◦Rg, dhg ◦Rg).

Proof. We need to check that π is compatible with the group multiplication and satisfies the Jacobi
identity.

1. Using Proposition 5.7 in [213], the compatibility with the group multiplication is equivalent
to the fact that Πr satisfies the following cocycle condition:

Πr(gu) = (Ad∗g)
∗Πr(u) + Πr(g), (1.23)

where (Ad∗g)
∗ denotes the natural action of g ∈ U(H ) on Λ2F∗e given explicitly by

(Ad∗g)
∗Πr(u) ([x1]u1

, [x2]u1
) = Πr(u)

(
Ad∗g[x1]u1

,Ad∗g[x2]u1

)
.

In order to check that condition, we use (1.19) and (1.22):

(Ad∗g)
∗Πr(u) ([x1]u1

, [x2]u1
) = Πr(u)

(
[g−1 x1 g]u1

, [g−1x2 g]u1

)
= =Tr

(
u−1pb+

2
(g−1x1 g)u pu2

(u−1pb+
2

(g−1x2 g)u)
)
.

Using (1.20), this expression can be further expressed as

=Tr
(
u−1pb+

2
(g−1pb+

2
(x1) g)u pu2(u−1pb+

2
(g−1pb+

2
(x2) g)u)

)
.
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Using the decomposition

pb+
2

(g−1pb+
2

(x1) g) = g−1pb+
2

(x1) g − pu2
(g−1pb+

2
(x1) g) (1.24)

and the fact that u2(H ) is isotropic for the imaginary part of the trace, one has

(Ad∗g)
∗Πr(u) ([x1]u1 , [x2]u1)

= =Tr
(
u−1g−1pb+

2
(x1) g u pu2

(u−1pb+
2

(g−1pb+
2

(x2) g)u)
)
.

Using equation (1.24) for x2, one finally gets

(Ad∗g)
∗Πr(u) ([x1]u1

, [x2]u1
)

= =Tr
(
u−1g−1pb+

2
(x1) g u pu2(u−1g−1pb+

2
(x2) gu)

)
−=Tr

(
u−1g−1pb+

2
(x1) g u pu2(u−1pu2(g−1pb+

2
(x2) g)u)

)
,

which, after simplification by u in the last term, gives identity (1.23).

2. Note that by construction the sharp map ] : F→ F∗, α 7→ π(α, ·) takes values in the tangent
space of U(H ). Therefore, in order to check that π satisfies the Jacobi identity, we can use
formula (5.5) from Lemma 5.8 in [213]. We will show that

TgΠr(Rgι[x3]u1
Πr(g))([x1]u1 , [x2]u1) = −=Tr pu2(C) [pb+

2
(A), pb+

2
(B)] (1.25)

〈x1, [ι[x3]Πr(g), ι[x2]Πr(g)]〉 = −=Tr pu2
(C)[pb+

2
(A), pu2

(B)], (1.26)

where A = g−1pb+
2

(x1)g, B = g−1 pb+
2

(x2) g and C = g−1 pb+
2

(x3) g). Jacobi identity will then

follow by adding the terms obtained by circular permutations of equations (1.25) and (1.26),
and remarking that

−=Tr pu2
(C) [pb+

2
(A), pb+

2
(B)]−=Tr pu2

(C)[pb+
2

(A), pu2
(B)]

−=Tr pu2(A) [pb+
2

(B), pb+
2

(C)]−=Tr pu2(A)[pb+
2

(B), pu2(C)]

−=Tr pu2(B) [pb+
2

(C), pb+
2

(A)]−=Tr pu2(B)[pb+
2

(C), pu2(A)]

= −=Tr pu2
(C) [A,B]−=Tr pb+

2
(C) [A,B]

= −=TrC [A,B] = −=Tr g−1 pb+
2

(x3) g [g−1pb+
2

(x1)g, g−1 pb+
2

(x2) g]

= −=Tr pb+
2

(x3)[pb+
2

(x1), pb+
2

(x2)] = 0,

where the last equality follows from the fact that b+
2 (H ) is an isotropic subalgebra. In order

to prove equations (1.25) and (1.26), one needs three ingredients:

(a) The differentiation of the cocycle identity (1.23) with respect to u leads to the following
identity

TgΠr(LgX)([x1]u1 , [x2]u1) = TeΠr(X)(Ad∗g[x1]u1 ,Ad∗g[x2]u1), (1.27)

where X ∈ u(H ) and g ∈ U(H ).

(b) The differentiation of equation (1.22) with respect to g ∈ U(H ) gives

TeΠr(Y )([x1]u1
, [x2]u1

) = =TrY [pb+
2

(x1), pb+
2

(x2)]. (1.28)

(c) By equation (1.22), the interior product of Πr(g) with [x3]u1
is

ι[x3]u1
Πr(g) = −g pu2

(g−1 pb+
2

(x3) g) g−1 ∈ u(H ). (1.29)

From equation (1.27), it follows that

TgΠr(RgX)([x1]u1 , [x2]u1) = TgΠr(LgAdg−1(X))([x1]u1 , [x2]u1)
= TeΠr(Adg−1(X))(Ad∗g[x1]u1 ,Ad∗g[x2]u1

)
= TeΠr(Adg−1(X))([g−1 x1 g]u1

, [g−1 x2 g]u1
)
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Using equation (1.28), this simplifies to

TgΠr(RgX)([x1]u1
, [x2]u1

) = =Tr g−1X g[pb+
2

(g−1 x1 g), pb+
2

(g−1 x2 g)]. (1.30)

Hence for X = ι[x3]u1
Πr(g), using equation (1.29) one gets

TgΠr(Rgι[x3]u1
Πr(g))([x1]u1 , [x2]u1)

= −=Tr pu2(g−1 pb+
2

(x3) g)[pb+
2

(g−1 x1 g), pb+
2

(g−1 x2 g)]
(1.31)

By equation (1.20) and by the isotropy of b+
2 , one gets

TgΠr(Rgι[x3]u1
Πr(g))([x1]u1

, [x2]u1
)

= −=Tr g−1 pb+
2

(x3) g [pb+
2

(g−1 pb+
2

(x1) g), pb+
2

(g−1 pb+
2

(x2) g)],

= −=Tr pu2(g−1 pb+
2

(x3) g) [pb+
2

(g−1 pb+
2

(x1) g), pb+
2

(g−1 pb+
2

(x2) g)],
(1.32)

which is equation (1.25). On the other hand, by equation (1.29) one gets

[ι[x3]Πr(g), ι[x2]Πr(g)] = [−g pu2
(g−1 pb+

2
(x3) g) g−1,−g pu2

(g−1 pb+
2

(x2) g) g−1]

= g[ pu2
(g−1 pb+

2
(x3) g), pu2

(g−1 pb+
2

(x2) g)] g−1.

Hence

〈x1, [ι[x3]Πr(g), ι[x2]Πr(g)]〉
= =Trx1g[ pu2

(g−1 pb+
2

(x3) g), pu2
(g−1 pb+

2
(x2) g)] g−1

= =Tr g−1pb+
2

(x1)g[pu2(g−1 pb+
2

(x3) g), pu2(g−1 pb+
2

(x2) g)]

= −=Tr pb+
2

(g−1pb+
2

(x1)g)[pu2(g−1 pb+
2

(x2) g), pu2(g−1 pb+
2

(x3) g)].

(1.33)

By the compatibility of the bracket of operators with the trace (TrA[B,C] = TrC[A,B]),
this can be rewritten as

〈x1, [ι[x3]Πr(g), ι[x2]Πr(g)]〉
= −=Tr pu2

(g−1 pb+
2

(x3) g)[pb+
2

(g−1pb+
2

(x1)g), pu2
(g−1 pb+

2
(x2) g)],

(1.34)

which proves equation (1.26).

Remark 1.9.15. The Lie bracket on L1(H )/u1(H ) = u∗(H ) that the Poisson–Lie group struc-
ture of U(H ) induces by Theorem (5.11) in [213] is given by

([x1]u1 , [x2]u1) 7→ [pb+
2

(x1), pb+
2

(x2)], (1.35)

which is well defined on L1(H )/u1(H ) since [pb+
2

(x1), pb+
2

(x2)] ∈ L1(H ) for any x1, x2 ∈ L1(H ).

Note that this bracket is continuous and extends the natural bracket of b+
1 (H ). To our knowledge

it is an open question whether this Banach Lie algebra structure integrates to a Banach Lie group.

In the last chapter, we construct in a similar way a Poisson structure on the restricted unitary
group which descent to a Poisson structure on the restricted Grassmannian, called Bruhat-Poisson
structure. The link with the KdV hierarchy is made via the dressing action of the shift and its
powers on the restricted Grassmannian.
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Part II

Infinite-dimensional Geometry
applied to Shape Analysis of

Curves and Surfaces
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Chapter 2

Shape Analysis of curves

2.1 Introduction

Curves in a homogeneous space appear in many applications: in shape recognition as outline of an
object, in radar detection as the signature of a signal, as trajectories of hurricans or movements of
the joints of a tennis player, etc... There are two main features of the curve: the route and the speed
profil. In this chapter, we are mainly interested in the route drawn by the curve and we will called it
the unparameterized curve. An unparameterized curve can be travelled with many different speed
profils, like a car can travel with different speeds (not necessarily constant) along a given road. The
choice of a speed profil is called a parameterization of the curve. It may be physically meaningful
or not. For instance, depending on applications, there may not be any relevant parameterization
of the contour of the statue of Liberty depicted in Figure 2.4. The set of parameterized curves,
called the preshape space, has a natural fiber bundle structure: one can group parameterized curves
together when they follow the same route. The set of unparameterized curves is called the shape
space. An application which, to any unparameterized curve associates a parameterization of it, is
called a section. Sections of fiber bundles are not linear spaces, but, in the case of the fiber bundle
of parameterized curves, there is a linear space associated to any given section: the linear space
of (generalized) curvature functions. It is a complete set of geometric invariants or descriptors of
the unparameterized curves. This means in particular that given a curvature function keeping in
mind a given section of the preshape space, one can construct uniquely a curve with this prescribed
curvature function and with the parameterization in the chosen section. In Section 2.3 we will use
this linear structure to interpolate easily between curves and to measure distances in shape space.
We are also able to provide optimal parameterizations or optimal sampling of curves with a fix
number of points.

This chapter is organized as follows: in Section 2.1.1, we give some mathematical definitions of
spaces of interest in this chapter. In Section 2.1.2, we stress the distinction between quotient space
and section of a fiber bundle. This distinction is analoguous to the distinction between a quotient
vector space and a complement, and will be crucial in most of our applications. In Section 2.2,
we recall the definition of arc-length parameterization, which is well-defined for rectifiable curves,
and we show that the spaces of curves we are interested in are Fréchet manifolds (the use of
Nash-Moser theorem is necessary in this context of manifolds modeled on Fréchet spaces). In
Section 2.3, we show how we can use the moving frames attached to curves in order to define
canonical parameterizations of curves and perform shape analysis. In Section 2.5, we consider
with more details the canonical parameterization of plane curves given by arc-length, and study
the pull-back of a family of Riemannian metrics called quotient elastic metrics on the manifold of
arc-length parameterized curves. In this Riemannian context, we give some experimental insights
of the energy landscape for the energy whose minimization leads to geodesics between curves. This
chapter is based on our collaboration [208], and some of our talks on shape analysis.
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2.1.1 Unparameterized curves in a homogeneous space

Roughly speaking, what we will call shape space consists in the set of curves in a homogeneous space.
Examples of homogeneous spaces are for instance Rn, any Lie group, the spheres, the set of positive
definite matrices, the Siegel discs, Grassmannians of p-plans in Rn and so on. The trajectory of a
point in a homogeneous space can describe the contour of an organ in medical imagery, the evolution
of a hurricane on the Earth, the joints of a tennis player, or the correlation matrix of a radar. There
are two principal characteristics of the movement: the velocity of movement and the route. The
corresponding mathematical objects are the following: a point-trajectory will be synonymous with
a parameterized curve f : [0, 1]→ G/H where G is a Lie group and H a closed Lie subgroup of G,
and the route used by the point f(t) will be synonymous with the shape [f ] of the curve f , which
is the equivalence class of f modulo the action of the reparameterization group Diff+([0, 1]). The
shape [f ] of the parameterized curve f will be also called the unparameterized curve corresponding
to f .

Let G be a Lie group, i.e. a smooth manifold which is also a group and such that the natural
group operations are smooth. For instance G could be Rn with group operation being the addition,
or G could be the space GL(n) of invertible n by n matrices with group operation the product of
matrices, or G could be SO(3) the set of all rotations in R3. Let H be a closed subgroup of G and
consider the quotient space G/H. An element of G/H is the orbit of g ∈ G by right multiplication
by elements of H. It is the set gH = {gh, h ∈ H}. For instance taking G = Rn and H = {0}, one
obtains G/H = Rn, or taking G = GL(n) and H = O(n), one obtains G/H equal to the set of
positive definite matrices, or taking G = SO(3) and H = SO(2) one has G/H being the 2-sphere.
Since H is supposed to be closed, the quotient space G/H is naturally endow with a manifold
structure.

The central object of the present chapter is the set F of smooth curves f from [0; 1] to G/H.
It has a natural (Fréchet) manifold structure (see Section 2.2), for which a tangent vector at f is a
vector field along the parameterized curve f in G/H. For instance when G/H is the 2-sphere, than
a tangent vector at f is a vector field along the parameterized curve f which is for each value of
the parameter tangent to the sphere. The regularity of the curves may depend on the applications.

There is an infinite dimensional group naturaly acting on F : the group of reparameterizations.
We will consider only reparameterizations preserving the orientation of the curve, i.e. preserving the
start and endpoint. We denote it by Diff+([0; 1]). An element of Diff+([0; 1]) is a strickly increasing
smooth function from [0; 1] to [0; 1]. The group operation in Diff+([0; 1]) is the composition of
applications. The action of ϕ ∈ Diff+([0; 1]) on F is given by f 7→ f ◦ ϕ, in particular it preserves
the shape of the curve (which is the image of the application f).

The set of shapes of parameterized curves f : [0; 1] → G/H is the object of interest in shape
analysis of curves. It is the quotient space S := F/Diff+([0; 1]). An element [f ] ∈ S is the orbit of
f : [0; 1]→ G/H under the action by reparameterization of Diff+([0; 1]). It is the set of all functions
from [0; 1] into G/H which can be written f ◦ ϕ with ϕ ∈ Diff+([0; 1]). Under mild conditions on
the parameterized curves considered, the set S admits a natural (Fréchet) manifold structure (see
Section 2.2). There is a natural projection

p : F → S = F/Diff+([0; 1]),

which consists in forgetting the parameterization of the curve f and considering only the route
drawn by f in G/H. The triple (F ,S , p) is called a principal fiber bundle. Note that since we
consider only reparameterizations that preserve the orientation, the elements in S come equipped
with a specified start and endpoint.

2.1.2 Quotient space versus section of a fiber bundle

The fiber bundle p : F → S is a particular example of a general mathematical object attached
to a smooth action of a group on a manifold. Another instance of this notion is when R2 acts by
translations on 2D-curves, or when R+ acts on shapes by scaling. If one is interested only in curves
modulo translations, i.e. irrespective of their position in space, than one can either consider the
quotient space of the manifold of curves modulo the action of R2 by translation, or consider only
centered curves (see Tabular 2.1). When we specify which procedure we follow to center the curves,
one is choosing a representant in each orbit under the action by translation. This preferred choice
is called a section of the corresponding fiber bundle. Analogously, for the action of R+ by scaling,
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a section of the manifold of simple closed curves could by the set of length-one curves or the set
of curves enclosing an area equal to one. We give in tabular 2.1 examples of group actions on 2D
simple closed curves and, for each case, two possible sections.

A global section of the fiber bundle p : F → S is a smooth application S : S → F , such
that p ◦ S([f ]) = [f ] for any [f ] ∈ S . There is one-to-one correspondance between the shape
space S and the range of S. Defining a global section of p : F → S is in fact defining a way
to choose a preferred element in the fiber p−1([f ]) over [f ]. It consists of singeling out a preferred
parameterization of each oriented shape.

Group G Some elements of one
orbit under the group
G

a preferred element in
the orbit

another choice of pre-
ferred element in the
orbit

R3 acting by
translation

centered curve :∫ 1

0

(
f1(s)
f2(s)

)
‖f ′(s)‖ds =

( 0
0 ) .

curve starting at ( 0
0 ).

SO(3) acting by
rotation

axes of
approximating
ellipse aligned

tangent vector
at starting point
horizontal

R+ acting by scaling

length = 1

enclosed area =1

Diff+([0; 1]) acting by
reparameterization

arc-length
parameterization

curvature
proportional
parameterization

Figure 2.1: Examples of group actions on 2D simple closed curves and different choices of sections of the corresponding
fiber bundle.

Let us give an example of a canonical section of the fiber bundle p : F → S . Suppose that the
homogeneous space G/H is endowed with a Riemannian structure. Then one can measure the norm
of the velocity vector of a given curve in G/H, as well as the length of the curve. In this case, the
parameterization proportional to arc-length with parameter s ∈ [0; 1] is a particularly natural global
section of p : F → S . It associates to the oriented shape [f ] the parameterization with constant
speed such that the curve is travelled for a time parameter ranging in [0; 1]. It can be built by hand
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by just measuring the distances in G/H travelled by the curve, but it can be also recovered using

any parameterization t 7→ f(t) by the change of parameter t 7→ s(t) = 1
L(f)

∫ t
0
‖f ′(t)‖dt, where

L(f) =
∫ 1

0
‖f ′(t)‖dt is the length of f . The statue of Liberty figuring in the middle of Fig. 2.4 is

an example of a curve reparameterized proportional to arc-length.

2.2 The space of curves as an infinite-dimensional manifold

2.2.1 Rectifiable curves

In this section we recall some basic facts about rectifiable curves and their approximations by
polygonal lines. We refer the reader to [193] for a detailed exposition. Let γ be a curve in the
plane parameterized by γ(t) = (x(t), y(t)), a ≤ t ≤ b, where x(t) and y(t) are continuous real-
valued functions on [a, b]. The curve γ is called rectifiable if there exists M <∞ such that, for any
partition a = t0 < t1 < · · · < tN = b of [a, b], one has

N∑
j=1

|γ(ti)− γ(ti−1)| ≤M. (2.1)

By definition, the length of a rectifiable curve is well-defined as the supremum over all partitions of
[a, b] of the left-hand side in (2.1):

L(γ) = sup
a=t0<t1<···<tN=b

N∑
j=1

|γ(ti)− γ(ti−1)|.

Note that the quantity |γ(ti) − γ(ti−1)| is the length of the straight line joining two points on the
curve in the plane. Therefore the quantity L(γ) is obtained by approximating the curve by polygonal
lines and taking the limit of the resulting Euclidian length as the interval [a, b] is partitioned more
finely. It is noteworthy that the property of being rectifiable is a property of the curve γ, and does
not depend on the parameterization used to define its length.

One says that a real-valued function u(t) on an interval [a, b] is of bounded variations if there
exist M <∞, such that

sup
a=t0<t1<···<tN=b

N∑
j=1

|u(ti)− u(ti−1)| ≤M,

where the supremun is taken over all partitions a = t0 < t1 < · · · < tN = b of [a, b]. It is not hard to
see that a curve γ parameterized by γ(t) = (x(t), y(t)) is rectifiable if and only if the functions x and
y are continuous and of bounded variations. Moreover, a function u(t) of bounded variations on an
interval [a, b] is differentiable almost everywhere (see e.g. Theorem 3.4 in [193]). It follows that for
any rectifiable curve γ parameterized by γ(t) = (x(t), y(t)), the following quantity is well-defined∫ b

a

(x′(t)2 + y′(t)2)
1
2 dt.

However this integral does not match the length of the curve γ in general. To have the equality

L(γ) =

∫ b

a

(x′(t)2 + y′(t)2)
1
2 dt,

we have to restrict ourselves to functions γ(t) = (x(t), y(t)) such that x(t) and y(t) are absolutely
continuous (see Theorem 4.1 in [193]). By definition, a real-valued function u(t) on an interval [a, b]
is absolutely continuous if for any δ > 0, there exists δ > 0 such that, for any disjoints intervals
(ak, bk) of [a, b], one has

N∑
i=1

(bk − ak) < δ ⇒
N∑
i=1

|u(bk)− u(ak)| < δ.
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One could think that the set of curves in the plane that can be parameterized by absolutely
continuous functions is smaller than the set of rectifiable curves (since there exists functions of
bounded variations which are not absolutely continuous). This is not true. In fact, any rectifiable
curve can be parameterized by absolutely continuous functions. But more is true. Any rectifiable
curve has a unique natural parameterization, the arc-length parameterization. The reason is that
the length function s(t) = L(γ|[a,t]) of the rectifiable curve γ parameterized by γ(t) = (x(t), y(t))
is a continuous increasing function which maps [a, b] to [0, L(γ)]. Therefore one can define the
arc-length parameterization of a rectifiable curve γ by γ̃(s) = γ(s(t)) for s ∈ [0, L(γ)]. Indeed, if
s ∈ [0, L(γ)] is such that s = s(t1) = s(t2) for t1 < t2, then in fact γ(t) is constant on [t1, t2] (since
the length of the curve does not vary from t1 to t2), therefore γ(s(t1)) = γ(s(t2)). We conclude by
recalling the following theorem:

Theorem 2.2.1 (Theorem 4.3 in [193]). Consider a rectifiable curve γ of length L parameterized
by its arc-length parameterization γ̃(t) = (x̃(t), ỹ(t)). Then x̃(t) and ỹ(t) are absolutely continuous

functions with ‖γ̃′(t)‖ = (x̃′(t)2 + ỹ′(t)2)
1
2 = 1 for almost every s ∈ [0, L(γ)] and

L(γ) =

∫ L

0

(x̃′(t)2 + ỹ′(t)2)
1
2 dt.

It follows that the set of rectifiable curves can be identified either with the set of arc-length
parameterized absolutely continuous curves, or with the quotient space AC([0, 1],R2)/ ∼ of the
space of absolutely continuous maps AC([0, 1],R2) under the equivalence relation where f ∼ g if
and only if f and g have the same constant speed parameterization (where the speed is equal to the
length of the curve). Let us denote by AC0([0, 1],R2) the space of absolutely continuous functions
γ such that γ(0) = 0. The quotient space AC0([0, 1],R2)/∼ has been considered in [126] and [43],
and, using the square root velocity transform introduced in [192], was endowed with the distance

induced by the elastic metric G
1
4 ,1 on AC0([0, 1],R2) (see Section 2.5.1 for the definition of the

elastic metrics Ga,b). In particular, by Lemma 5.6 in [43], AC0([0, 1],R2)/∼ is a complete metric

space for the distance induced by G
1
4 ,1. However it is not a manifold, and we will restrict our

attention to a smooth part of the quotient AC([0, 1],R2)/∼ called the manifold of singular curves
in [45] (see Section 2.2.2). Moreover, since we are interested in the shape of curves irrespective of
the scale, we will consider only curves of length one.

2.2.2 Manifolds of based parameterized curves

In this section, we define the manifold structure of the set of plane curves that we will consider in
this chapter. First some motivation. Roughly speaking, shape space consists of the set of curves in
the plane, i.e. one-dimensional manifolds in a two-dimensional vector space. (Sometimes different
shapes are identified if they are related to each other by a Euclidean motion). The difficulty is
that although this space should be an infinite-dimensional manifold, it does not have convenient
coordinate charts. The typical approach is to consider all parameterized curves γ : [0, 1]→ R2 (resp.
γ : S1 → R2 for closed curves), which is a linear space and hence a manifold, then consider the open
subset consisting of free immersions or embeddings, then mod out by the group of diffeomorphisms
of [0, 1] (resp. S1) which represent the reparameterizations of a given curve (all of which correspond
to the same shape). Here and in the rest of the paper S1 will denote the circle of length one given
by

S1 = R/Z.
The quotient space of free immersions (and analogously of embeddings) modulo reparameteriza-
tions admits a structure of smooth Fréchet manifold (see [140] and [49] for a detailed construction
of the coordinate charts in the smooth category), and the set of free immersions (and analoguously
embeddings) is a principal bundle over this quotient space with structure group the group of dif-
feomorphisms (see [13] for an overview of the theory). In this paper, we will identify this quotient
space with the space of arc-length parameterized curves, which is a nice submanifold of the space of
parameterized curves (see Theorem 2.2.4 and Theorem 2.2.9 below). See also Section 3.1. in [45],
where an analogous construction is carried out for loops in R3 and where the Kähler structure of
these loop spaces is explained. Let us stress some choices we made:

• We will work with based oriented curves (that is, with a specified start and endpoint) rather
than closed curves; the advantage of this is that we have a unique constant-speed parameter-
ization. It is also closer to the implementation, where a curve is replaced by a finite number
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of points, which are stored in a matrix and indexed from 1 to n. In our applications later the
curves will all happen to be closed, but the analysis will be independent of the choice of base
point (i.e., of the ordering of the points).

• We get a further simplification by restricting to those curves of total length one; then we get
a unit-speed parameterization, and we do not have to carry the length around as an extra
parameter.

• We will work with immersions rather than embeddings since the embedding constraint is
somewhat tricky to enforce.

• Finally since the Riemannian metrics of interest in this chapter (defined in the next Sections)
will depend only on the derivative γ′, we shall identify all curves up to translation, which
is of course equivalent with simply working with γ′ rather than γ, where γ′ has to satisfy∫ 1

0
γ′(s)ds = 0 for closed curves.

In this section, I = [0, 1] (for open curves) or I = S1 = R/Z (for closed curves).

Curves modulo translations Let k ∈ N, and define a norm on the vector space C k(I,R2) of
differentiable curves of order k, γ : I → R2, by

‖γ‖Ck :=

k∑
j=1

max
s∈I
|γ(j)(s)|, (2.2)

where, for z ∈ R2, |z| denotes the norm of z.The purpose of starting the first sum at j = 1 instead
of j = 0 is to reduce to the quotient space by translations C k(I,R2)/R2, so that only γ′ matters.
This corresponds to considering curves in R2 irrespective of their positions in comparison to the
origin of R2. The quotient vector space C k(I,R2)/R2 endowed with the norm induced by (2.2) is
a Banach space. We could identify it with any complement to the subspace of constant functions,
for instance with the subspace C k

c (I,R2) of centered curves (i.e., curves whose center of mass lies
at the origin of R2)

C k
c (I,R2) =

{
γ ∈ C k(I,R2),

∫ 1

0

γ(s)ds = 0

}
, (2.3)

or with the subspace C k
0 (I,R2) of curves starting at z = 0

C k
0 (I,R2) =

{
γ ∈ C k(I,R2), γ(0) = 0

}
, (2.4)

which are Banach spaces for the norm (2.2) (see Section 2.1.2 for the disctinction between quotient
space and section of a fiber bundle). Despite the fact that the identification of the quotient space
C k(I,R2)/R2 with a complement to R2 in C k(I,R2) may seem natural in theory, it introduces
unnecessary additional constraints as soon as numerics are involved: indeed restricting ourselves
to centered curves implies that the tangent space to a curve contains only centered vector fields,

i.e., vector fields Z along the curve which preserve condition (2.3), i.e., such that
∫ 1

0
Z(s)ds = 0,

and for curves starting at the origin we get the constraint Z(0) = 0. In the numerical applications
however it is easier to let the curves evolve in the whole space C k(I,R2), but considering only their
class modulo translations. Moreover, since the elastic metrics introduced in the Section 2.5 are
degenerate in the direction of translations, the distance between two curves γ1 and γ2 will match
the distances between γ1 + c1 and γ2 + c2 for any constants c1 and c2. This degeneracy property
implies that in the numerics, we can freely choose how to represent a curves modulo translation.
Depending on what we want to emphasize, one may prefer the centered curves or the curves starting
at the origin.

Smooth immersions Recall that γ : I → R2 is an immersion if and only if γ′(s) 6= 0 for all
s ∈ I. In the topology given by the norm (2.2), the set of all C k-immersions is an open subset of
the Banach space C k(I,R2)/R2, hence a Banach submanifold of C k(I,R2)/R2. It is denoted by
Ck(I):

Ck(I) =
{
γ ∈ C k(I,R2)/R2, γ′(s) 6= 0,∀s ∈ I

}
.
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The vector space C∞(I,R2)/R2 = ∩∞k=1C
k(I,R2)/R2 of smooth curves γ : I → R2 modulo transla-

tions endowed with the family of norms ‖·‖Ck is a graded Fréchet space (see Definition II.1.1.1 in
[92]). The space of smooth immersions

C(I) =

∞⋂
k=1

Ck(I) = {γ ∈ C∞(I,R2)/R2, γ′(s) 6= 0,∀s ∈ I}. (2.5)

is an open set of C∞(I,R2)/R2 for the topology induced by the family of norms ‖·‖Ck , hence a
Fréchet manifold.

Remark 2.2.2. In the space of smooth immersions C([0, 1]), we can consider the subset of curves

γ which are closed, i.e., such that γ(0) = γ(1), or equivalently such that
∫ 1

0
γ′(s)ds = 0. Let us

denote it by Cc([0, 1]). Then C(S1) ( Cc([0, 1]). Indeed a curve γ ∈ C(S1) has all its derivatives
matching at 0 and 1, whereas a curve in Cc([0, 1]) may have a failing in smoothness at 0. Note that
C∞(S1,R2) is a closed subset in C∞([0, 1],R2) which is not a direct summand (see Example 1.2.2 in
[92]). Moreover note that the derivative which maps γ to γ′ from C∞(I,R2)/R2 into C∞(I,R2) is

onto for open curves, but has range equal to the closed subspace {f ∈ C∞(S1,R2),
∫ 1

0
f(s) ds = 0}

for closed curves.

Length-one curves We denote the subset of length-one immersions modulo translations by

C1(I) = {γ ∈ C(I) :

∫ 1

0

|γ′(s)| ds = 1}. (2.6)

Recall that the implicit function theorem is invalid for general Fréchet manifolds, but is valid in
the category of Fréchet manifolds and tame smooth maps, and is known as the implicit function
theorem of Nash-Moser (Theorem III.2.3.1 of [92], page 196). Recall that a linear map A : F1 → F2

between graded Fréchet spaces is tame if there exists some r and b such that ‖Af‖n ≤ Cn‖f‖n+r

for each n ≥ b and some constants Cn (see Definition II.1.2.1 page 135 in [92]). A Fréchet space is
tame if it is a tame direct summand in a space Σ(B) of exponentially decreasing sequences in some
Banach space B. A nonlinear map P from an open set U of a graded Fréchet space F1 into another
graded Fréchet space F2 is tame if it is continuous and if there exists r and b such that

‖P (f)‖n ≤ Cn(1 + ‖f‖n+r)

for each n ≥ b and some constants Cn (see Definition II.2.1.1. page 140 in [92]). A tame Fréchet
manifold is a manifold modelled on a tame Fréchet space, such that all transition functions are
tame.

Proposition 2.2.3. The subset C1(I) of length-one immersions modulo translations defined by (2.6)
is a tame C∞-submanifold of the tame Fréchet manifold C(I) of immersions modulo translations
defined by (2.5) for the Fréchet manifold structure induced by the family of norms given in (2.2).

Proof. As an open set of C∞(I,R2)/R2, C(I) is a manifold with only one chart, hence a C∞-
manifold. Moreover, C(I) is a tame Fréchet manifold in the sense of Definition II.2.3 in [92]. To
see this, first note that by Theorem II.1.3.6 page 137 in [92], C∞(I,R) is tame since I is compact.
Moreover by Lemma II.1.3.4. page 136, the Cartesian product of two tame spaces is tame. It follows
that C∞(I,R2) is a tame Fréchet space. By Lemma II.1.3.3 in [92], the subspace C∞0 (I,R2) is also
tame because its complement is one-dimensional and any map from a tame Fréchet space into a
finite dimensional space is tame. Since the quotient C∞(I,R2)/R2 is isomorphic as a Fréchet space
to C∞0 (I,R2), it is also tame. Hence C(I) is modelled on a tame Fréchet space and since there is
only one transition function which is the identity hence tame, C(I) is a tame Fréchet manifold. Let
us endow it with the complete atlas consistent with this C∞ tame manifold structure. In particular,
the following coordinate charts, as used in [173], belong to the atlas: for each γ ∈ C we write

γ′(s) = eσ(s)
(

cos θ(s), sin θ(s)
)

= eσ(s)+iθ(s), (2.7)

where σ ∈ C∞(I,R) and θ ∈ C∞(I,R). We get a diffeomorphism from the open set

{(σ, θ) ∈ C∞(I,R)× C∞(I,R), θ(0) ∈]θ0 + 2πn, θ0 + 2π(n+ 1)[}
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of the Fréchet space C∞(I,R)× C∞(I,R) onto the open subset of C(I) consisting of those curves

such that γ′(0)
|γ′(0)| 6= eiθ0 . The coordinate transition functions are easily seen to be the identity

in the first component (since ρ is uniquely determined) and horizontal translations in the second
component, hence are clearly tame.

In (σ, θ)-coordinates the condition (2.6) is described by the condition L(σ) = 1, where

L(σ) =

∫ 1

0

eσ(s) ds.

Hence C1(I) is the inverse image of a real function that is obviously C∞. The derivative of L with
respect to (σ, θ)-coordinates may be expressed as

DL(σ,θ)(ρ, φ) =
∂

∂t

∣∣∣
t=0

L(σ + tρ, θ + tφ) =

∫ 1

0

ρ(s)eσ(s) ds;

the kernel of this map splits at any (σ, θ) ∈ L−1(1) since we can write

(ρ, φ) =
(
ρ− C, φ

)
+
(
C, 0

)
, C =

∫ 1

0

ρ(x)eσ(x) dx,

where
(
ρ − C, φ

)
belongs to the kernel of DL(σ,θ), which is closed, and

(
C, 0

)
belongs to a one-

dimensional subspace of C∞(I,R) × C∞(I,R), which is therefore also closed. Since the image of
(C, 0) is obviously C, so the derivative is also surjective.

By the implicit function theorem of Nash-Moser (Theorem III.2.3.1 of [92], page 196), C1(I) is
a smooth tame submanifold of C(I).

Arc-length parameterized curves Now we consider the space A1(I) of arc-length parameter-
ized curves from I to R2 modulo translations:

A1(I) = {γ ∈ C(I) : |γ′(s)| = 1, ∀s ∈ I}. (2.8)

Obviously A1(I) ⊂ C1(I).

Theorem 2.2.4. The space A1(I) of arc-length parameterized curves on I modulo translations
defined by (2.8) is a tame C∞-submanifold of C(I), and thus also of C1(I). Its tangent space at a
curve γ is

TγA1 = {w ∈ C∞(S1,R2), w′(s) · γ′(s) = 0, ∀s ∈ S1}.

Proof. The proof is very simple: the space A1(I) is closed and looks, in any (σ, θ)-coordinate chart,
like {(σ, θ) : σ ≡ 0}, which is just the definition of a submanifold. Since the (σ, θ)-coordinate charts
are tame, A1(I) is a tame submanifold of C(I). The fact that A1(I) is also a smooth Fréchet tame
submanifold of C1(I) follows from the universal mapping property of submanifolds. The expression
of the tangent space is straightforward.

Reparameterizations of curves Reparameterizations of open curves are given by smooth dif-
feomorphisms φ ∈ Diff+([0, 1]), the plus sign denoting that these diffeomorphisms preserve 0 and
1. For closed curves, we will denote by Diff+(S1) the group of diffeomorphisms of S1 preserving the
orientation. In the following we will denote by G (I) either the group Diff+([0, 1]) when considering
open curves (i.e., when I = [0, 1]), or Diff+(S1) for closed curves (i.e., when I = S1 = R/Z). By
Theorem II.2.3.5. page 148 in [92], G (I) is a tame Fréchet Lie group.

Proposition 2.2.5. The right action Γ: C(I) × G (I) → C(I), Γ(γ, ψ) = γ ◦ ψ of the group of
reparameterizations G (I) on the tame Fréchet manifold C(I) is smooth and tame, and preserves
C1(I).

Proof. Note that the action Γ of G (I) on C(I) is continuous for the Fréchet manifold structure on
C(I) since

‖γ1 ◦ φ− γ2 ◦ φ‖Ck =

k∑
j=1

max
s∈I

∣∣∣ dj
dsj

γ1(φ(s))− dj

dsj
γ2(φ(s))

∣∣∣
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can be bounded by the chain rule in terms of ‖γ1 − γ2‖Ck and ‖φ‖Ck . It follows that Γ is tame.
Moreover the action of G (I) on C(I) is differentiable: considering a family φ(t, s) ∈ G (I) and
γ(t, s) ∈ C(I) with φt(0, s) = ζ(s) in the Lie algebra Lie(G (I)) of G (I), and γt(0, s) = w(s) ∈
C∞(I,R2)/R2. The derivative of the action Γ := (γ, φ) 7→ γ ◦ φ is

(DΓ)(γ,φ)(w, ζ) =
∂

∂t

∣∣∣
t=0

γ
(
t, φ(t, s)

)
= γt(t, φ(t, s)) + γs(t, φ(t, s))φt(t, s)

∣∣∣
t=0

= w(φ(s)) + γ′(φ(s))ζ(s).
(2.9)

Since the map which assigns γ ∈ C(I) to γ′ ∈ C(I) satisfies ‖γ′‖n ≤ ‖γ‖n+1, it is a tame linear
map (with r = 1 and b = 1), continuous for the Fréchet manifold structure on C(I). Hence DΓ
is continuous as a map from a neighborhood of (γ, φ) in G (I) × C(I) times the Fréchet space
Lie(G (I))×C∞(I,R2)/R2 into C∞(I,R2)/R2, and tame. More generally, the kth derivative of the
action Γ will involve only a finite number of derivatives of the curve γ, hence will be continuous
and tame.

Quotient spaces Recall that an immersion γ : I → R2 is free if and only if the group of reparam-
eterizations G (I) acts freely on γ, i.e., the only diffeomorphism ψ satisfying γ ◦ψ = γ is the identity.
By Lemma 1.3 in [49], a diffeomorphism having a fixed point and stabilizing a given immersion is
necessarily equal to the identity map. Hence for open curves, every smooth immersion is free, since
any diffeomorphism in D+([0, 1]) fixes 0 and 1. For closed curves, the set of free immersions is an
open set in the space of immersions (see [49], Section 1). We will denote it by Cf (I). Note that
since I is compact, any f ∈ C(I) is proper. Recall the following theorem in [49]:

Theorem 2.2.6. (Theorem 1.5 in [49]) The quotient space Cf (I)/G (I) of free immersions by
the group of diffeomorphisms G (I) admits a Fréchet manifold structure such that the canonical
projection π : Cf (I)→ Cf (I)/G (I) defines a smooth principal bundle with structure group G (I).

Remark 2.2.7. Since G (I) stabilizes the submanifold C1(I) of length-one curves, the quotient

Cf1 (I)/G (I) inherites a Fréchet manifold structure such that Cf1 (I)/G (I) is a submanifold of Cf (I)/G (I).
See also [60] for a new slice theorem in the context of tame Fréchet group actions.

Orbits under the group of reparameterizations The orbit of γ ∈ C1(I) with respect to the
action by reparameterization will be denoted by

O = {γ ◦ φ |φ ∈ G (I)}.

The tangent space to the orbit O at γ ∈ C1(I) is the space of tangent vector fields along γ (preserving
the start and endpoints when the curve is open), i.e., the space of vector fields which are, for each

value of the parameter s ∈ I, collinear to the unit tangent vector v(s) = γ′(s)
|γ′(s)| . Such a vector field

can be written w(s) = m(s) v(s), where m is a real function corresponding to the magnitude of w
and such that:

• m ∈ C∞([0, 1],R) satisfies m(0) = 0 and m(1) = 0 for open curves,

• m ∈ C∞(S1,R) for closed curves, in particular m(0) = m(1) and m′(0) = m′(1).

Projection on the space of arc-length parameterized curves Any smooth curve in the
plane admits a unique reparameterization by its arc-length. This property singles out a preferred
parameterized curve in the orbit of a given parameterized curve under the group of reparameteri-
zations.

Theorem 2.2.8. Given a curve γ ∈ C1(I), let p(γ) ∈ A1(I) denote its arc-length-reparameterization,
so that p(γ) = γ ◦ ψ where

ψ′(s) =
1

|γ′
(
ψ(s)

)
|
, ψ(0) = 0. (2.10)

Then p is a smooth retraction of C1(I) onto A1(I).
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Proof. The definition of ψ comes from the requirement that |(γ ◦ ψ)′(s)| = 1, which translates into
|γ′(ψ(s))|ψ′(s) = 1. The additional requirement ψ(0) = 0 gives a unique solution. It is not obvious
from here that ψ(1) = 1, but this is easier to see if we let ξ be its inverse; then ξ′(t) = |γ′(t)|, and
since γ has length one and ξ(0) = 0 we know ξ(1) = 1; thus also ψ(1) = 1. The image of this map
is of course in A1(I). Smoothness follows from the fact that ψ depends smoothly on parameters
as the solution of an ordinary differential equation, together with smoothness of the right action
Γ(γ, ψ) = γ ◦ ψ. The fact that p is a retraction follows from the obvious fact that if |γ′(s)| ≡ 1,
then the unique solution of (2.10) is φ(s) = s, so that p|A1(I) is the identity.

Identification of the quotient space with the space of arc-length parameterized curves
The identification of the quotient space C1([0, 1])/G ([0, 1]) with the space A1([0, 1]) of arc-length
parameterized curves relies on the fact that given a parameterized curve there is a unique diffeo-
morphism fixing the start and endpoints which maps it to an arc-length parameterized curve.

Theorem 2.2.9. A1([0, 1]) is diffeomorphic to the quotient Fréchet manifold C1([0, 1])/G ([0, 1]).

Proof. Since p(γ ◦ ψ) = p(γ) for any reparameterization ψ ∈ G ([0, 1]), we get a smooth map

p̃ : C1([0, 1])/G ([0, 1])→ A1([0, 1]),

which is clearly a bijection, and its inverse is π ◦ ι where π is the quotient projection and ι is the
smooth inclusion of A1([0, 1]) into C1([0, 1]).

For closed curves, the subgroup S1 of G (S1) acts on a closed curve γ by translating the base
point along the curve: γ(s) 7→ γ(s + τ) for τ ∈ S1. One has the following commutative diagram,
where the vertical lines are the canonical projections on the quotients spaces.

p : C1(S1) −→ A1(S1)
↓ ↓

C1(S1)/G (S1) −→ A1(S1)/S1

2.3 Moving Frames and canonical parameterizations of curves

This section is based on the papers [215] and [219].

2.3.1 Moving frame attached to a curve

The general theory of moving frames is the following (see [74]). Suppose you have a curve f in a

homogeneous space G/H and that you found a procedure to attached to it a curve f̂ in G in a
natural way, called a lifting of f . Then using left translation in the group G, this G-valued curve
can be encoded by the curve A := f̂−1 d

ds f̂ with values in the Lie-algebra of G. There are two good
properties of this Lie-algebra valued curve:

• The first one is that it remains the same when one replace f by any g ·f with g ∈ G. Here the
notation g · f means the curve s 7→ g · f(s) for s in the parameter space (note that g do not
depend on s here), where g acts on f(s) by the natural left action of G on G/H. For instance,
when G = SO(3) and H = SO(2), the action of G on the unit sphere S2 ' SO(3)/SO(2) is by
rotation of the sphere, and the corresponding so(3)-valued curve will forget the orientation in
space of the S2-valued curve, leading to a rigid motion invariant framework.

• The second good property of the Lie-algebra valued curve is that from it one can recover
the initial curve f uniquely modulo the action of G. Hence the Lie-algebra valued curve
is characteristic of the orbit of f under G , and is a geometric invariant of the G/H-valued
curve. For instance, the so(3)-valued curve associated to the movement of the joint of a tennis
player is characterized by its curvature and torsion functions (see Section 2.3.4). Endowing
the space of so(3)-valued curves with its natural L2-scalar-product (opposite to the Killing
form on so(3)) gives a efficient way to distinguish different actions.

This Section is organized as follows: first we consider the general task of interpolation of 2D-contours
(Subsection 2.3.2), then we introduce different parameterizations of 2D-shapes (Subsection 2.3.3)
with application in medical imaging, and finally we explain the basic idea of interpolation using
moving frames for curves in R3 in more details in Subsection 2.3.4. Examples of interpolations are
given in Section 2.4.
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2.3.2 Interpolation of 2D-contours

When we want to interpolate between two 2D-contours like the two red contours of a ballerina
depicted in Figure 2.2, there are a couple of things to keep in mind.

First, one should not take two parameterizations of the contours at random and interpolate lin-
early between them. This gives usually very bad results, even when one starts the parameterization
at points that should correspond. In Figure 2.2, we start the parameterization at the top of the
head of the ballerina, travel the contour counterclockwise with a speed profil that is illustrated by
the sampling of the curves : on portions of the curve where points accumulate the speed is small,
whereas on portions of the curve where points are very far apart, the curve is travelled at high
speed (in order to travel between two successive points, the same amount of time is needed). The
resulting interpolation is depicted on the first line of Fig. 2.2. One sees that this interpolation
procedure does not give good results.

Figure 2.2: First line: linear interpolation between some parameterized ballerinas, second line: linear interpolation
between arc-length parameterized ballerinas, third line linear interpolation between two registered ballerinas, fourth line:
reference movement taken from [197].

49



Second, picking up a preferred parameterization of the curves, for instance the arc-length pa-
rameterization, and interpolating linearly between the parameterized curves may also lead to bad
results. In the second row of Figure 2.2, the two ballerinas are parameterized proportionally to
arc-length hence the resulting samplings are uniform. The linear interpolation between the two
contours parameterized proportional to arc-length is depicted at the second row in Figure 2.2. One
can see that the deformation shrinks the moving leg and therefor appears unnatural. However, in
some applications, where the routes to compare are very similar, like the routes of the body of a
caterpillar in Figure 2.3, the result may be satisfactory and no fancy shape analysis is needed.

Figure 2.3: First colomn : 3 positions of the caterpillar from The Fox and the Hound, Second colomn : 3 positions of
the caterpillar from The Fox and the Hound with extracted curves in red, Third colomn: linear interpolation between the 3
positions of the caterpillar using arc-length parameterization, Fourth colomn : linear interpolation between the 3 positions
of the caterpillar using curvature-length parameterization, Fifth colomn : linear interpolation between the 3 positions of the
caterpillar using curvarc-length parameterization, Sixth colomn : geodesic between the unparameterized curves using Qmap
(see [102] and [192]). and programs from http://ssamg.stat.fsu.edu/software.

One can distinguish two tasks in the comparison of curves :

1. the registration or correspondance, which consists in choosing parameterizations of two curves
so that features of the curves that should correspond are associated to the same value of the
parameter,

2. the measurement of the discrepancy between the two curves and the generation of a deforma-
tion of one curve into the other.

The recent use of differential geometry in shape analysis has allowed to take on these two tasks
in the same framework. A traditional strategy to generate deformations between unparameterized
curves is the following : the space of parameterized curves is endowed with a parameterization-
equivariant Riemannian metric which allows to compute preferred deformations between curves,
called geodesics, which are minimal for the corresponding variational problem. Then, given two un-
parameterized curves, one chooses the parameterization of one curve and, to each parameterization
of the second curve, one compute the geodesic (if it exists!) between the two parameterized curves.
At last, one has to solve an optimization problem consisting in singeling out the parameterization
of the second curve (if it exists!) that achieve the infimum of the cost function among all possible
parameterizations of the second curve. The geodesic between the two unparameterized curves is
then given by the geodesic between the first curve (with its arbitrarily choosen parameterization)
and the second curve with the parameterization minimizing the cost function. The discrepancy
between the two curves is measured as the length of this geodesic. This procedure endow the shape
space with a Riemannian structure called the quotient Riemannian metric. One can mention the
following problems encountered when one pursue this strategy :

• The choice of a Riemannian metric on the space of parameterized curves is usually not easy.
As was first highlighted in [142], a badly chosen Riemannian metric can lead to vanishing
geodesic distance, ruling out any effort to use geodesic distance to measure discrepancy be-
tween curves. For this reason, a large mathematical literature developped in order to propose
Riemannian metrics with good mathematical properties: mention Sobolev metrics in [14], cur-
vature weighted metrics in [16], almost local metrics in [15], metrics mesuring the deformations
of the interiors of shapes in [76].
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• The geodesic between two parameterized curves with respect to a given Riemannian metric are
usually hard to compute, and one has to use algorithms like the path-straightening method or
the shooting method to approximate them ([65]). These algorithms are time-consuming. To
overcome this difficulty and speed up the comparison of curves, some metrics have been pro-
posed where the geodesic on the space of parameterized curves are explicit, like in [236], [237],
or [102] and [192]. The framework of [192] has recently been adapted to general manifolds in
[127] and homogeneous spaces in [48].

• The optimization problem over all parameterizations of a given curve raise mathematical as
well as practical difficulties : first the set of all parameterizations of a given curve is an
orbit of an infinite-dimensional Fréchet Lie group, the group of diffeomorphisms, with a lot
of pathological properties. There is in general no guarantee that this mathematical problem
can be solved. Second, the algorithms used to approximate the solution of this optimization
problem are based on dynamical programming (see for instance [143]) with the drawback
that in practise only a finite number of reparameterizations distributed mainly around the
identity map are considered. For this reason, a gauge invariant framework has been proposed
in [205] (see also [212]) in the context of shape analysis of surfaces, where this optimization
step is avoided by the use of a Riemannian metric which degenerates along the orbit of the
reparameterization group. Another idea to avoid this minimization problem was proposed in
[208], where the quotient elastic metric introduced in [192] is expressed as a metric on the
section of arc-length parameterized curves. Nevertheless, since the geodesics on shape space
are not explicit in any of the previously mentionned works, shape comparison is not really
efficient.

• In [126], the optimization step is solved for piecewise linear curves (polygons) under the elastic
metric of [192]: the precise matching minimizing the geodesic distance is given between two
piecewise linear curves. The only lack in this work is that it relies on the Euclidean geometry
of Rn and may not be adapted to general manifolds or homogeneous spaces.

2.3.3 Different parameterizations of 2D-shapes

We proposed below diverse canonical parameterization of 2D-contours, which are expressed using
arc-length and curvature of curves. The curvature-length parameterization and the curvarc-length
parameterization are very natural examples, since they corresponds to a constant-speed moving
frame in SO(2) and SE(2). We present an application to the problem of point correspondance in
medical imaging consisting of labelling automatically keypoints along the contour of bones. We
recover an analoguous parameterization to the one proposed by Thodberg [203] at real-time speed.
Having a two-parameter family of parameterizations at our disposal, a fine-tuning can be applied
on top of our results in order to improve the point correspondance further.

Arc-length parameterization and signed curvature

By 2D-shape, we mean the shape drawn by a parameterized curve in the plane. It is the ordered
set of points visited by the curve. The shapes of two curves are identical if one can reparameterize
one curve into the other (using a continuous increasing function). Any rectifiable planar curve
admits a canonical parameterization, its arc-length parameterization, which draws the same shape,
but with constant unit speed. The set of 2D-shapes can be therefore identified with the set of
arc-length parameterized curves, which is not a vector subspace, but rather an infinite-dimensional
submanifold of the space of parameterized curves (see [208]).

It may be difficult to compute an explicit formula of the arc-length parameterization of a given
rectifiable curve. Fortunately, when working with a computer, one do not need it. One neither need
a concrete parameterization of the curve to depict it, a sample of points on the curve suffises. To
draw the statue of Liberty as in Figure 2.4, left, one just need a finite ordered set of points (the red
stars). The discrete version of an arc-length parameterized curve is a uniformly sampled curve, i.e.
an ordered set of equally distant points (for the euclidean metric). Resampling a curve uniformly
is immediate using some appropriate interpolation function like the matlab function spline (the
second picture in Figure 2.4 shows a uniform resampling of the statue of liberty).

Consider the set of 2D simple closed curves, such as the contour of Elie Cartan’s head in
Figure 2.5. After the choice of a starting point and a direction, there is a unique way to travel the
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Figure 2.4: The statue of Liberty (left), a uniform resampling using Matlab function spline (middle), a reconstruction of
the statue using its discrete curvature (right).

curve at unit speed. In Figure 2.5, we have drawn the velocity vector near the glasses of Elie Cartan,
as well as the unit normal vector which is obtained from the unit tangent vector by a rotation of
+π

2 . These two vectors form an orthonornal basis, i.e. an element (modulo the choice of a basis
of R2) of the Lie group SO(2), which is characterized by a rotation angle. The rate of variation of
this rotation angle is called the signed curvature of the curve. For instance, when moving along the
external outline of the glasses, this curvature equals the inverse of the radius of the glasses.

Figure 2.5: Elie Cartan and the moving frame associated to the contour of his head.
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There is a little difference in the construction of the moving frame for 2D curves in comparison
to the moving frame for 3D curves. Indeed in the 2D case, we don’t need the second and third
derivative of the curve to construct the frame. Just the first derivative is enough. In fact we are
using the knowledge that the curve stays in the plane to construct the normal at each point of the
curve. In other words, we are using additional geometric properties of the ambient space (in this
case the complex structure of the plane). The consequence of this is that the moving frame can be
defined even for 2D curves with flat pieces (zero curvature sections) like the statue of Liberty which
has a long flat piece at its base (see Figure 2.4). The corresponding curvature is therefore signed,
with positive sign when the moving frame is turning clockwise, negative sign when the moving frame
is turning counterclockwise, and zero along flat pieces. We have depicted the curvature function κ
of Elie Cartan’s head in Figure 2.6, first line, when the parameter s ∈ [0; 1] on the horizontal axis is
proportional to arc-length, and such that the entire contour of Elie Cartan’s head is travelled when
the parameter reaches 1. Its corresponds to a uniform sampling of the contour.
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Figure 2.6: Signed curvature of Elie Cartan’s head for the parameterization proportional to arc-length (first line),
proportional to the curvature-length (second line), and proportional to the curvarc length (third line).

A discrete version of an arc-length parameterized curve is an equilateral polygon. To draw an
equilateral polygon, one just need to know the length of the edges, the position of the first edge,
and the angles between two successive edges. The sequence of turning-angles is the discrete version
of the curvature and defines a equilateral polygon modulo scaling, rotation and translation. In
Figure 2.4, right, we have reconstructed the statue of Liberty using the discrete curvature function.

In order to interpolate between two parameterized curves, it is easier when the domains of the
parameter coincide. For this reason we will always consider curves parameterized with a parameter
in [0; 1]. A natural parameterization is then the parameterization proportional to arc-length. It
is obtain from the parameterization by arc-length by dividing the arc-length parameter by the
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length of the curve L. The corresponding curvature function is also defined on [0; 1] and is obtained
from the curvature function parameterized by arc-length by compressing the x-axis by a factor
L. To recover the initial curve from the curvature function associated to the parameter s ∈ [0; 1]
proportional to arc-length, one only need to know the length of the curve.

Parameterization proportional to curvature-length

In the same spirit as the scale space of T. Lindeberg ([132]), and the curvature scale space of
Mackworth and Farcin Mokhtarian ([144]), we now define another very natural parameterization
space of 2D curves. Its relies on the fact that the integral of the absolute value of the curvature κ
is an increasing function on the interval [0; 1], stricktly increasing when there are no flat pieces. In
that case the function

r(s) =

∫ s
0
|κ(s)|ds∫ 1

0
|κ(s)|ds

(2.11)

(where κ denotes the curvature of the curve) belongs to the group of orientation preserving diffeo-
morphisms of the parameter space [0; 1], denoted by Diff+([0; 1]). Note that its inverse s(r) can
be computed graphically using the fact that its graph is the symmetric of the graph of r(s) with
respect to y = x. The contour of Elie Cartan’s head can be reparameterized using the parameter
r ∈ [0; 1] instead of the parameter s ∈ [0; 1]. In Figure 2.7 upper left, we have depicted the graph of
the function s 7→ r(s). A uniform sampling with respect to the parameter r is obtain by uniformly
sampling the vertical-axis (this is materialized by the green equidistributed horizontal lines) and
resampling Elie Cartan’s head at the sequence of values of the s-parameter given by the abscissa of
the corresponding points on the graph of r (where a green line hits the graph of r a red vertical line
materializes the corresponding abscissa). One sees that this reparameterization naturally increases
the number of points where the 2D contour is the most curved, and decreases the number of points
on nearly flat pieces of the contour. For a given number of points, it gives an optimal way to store
the information contained in the contour. The quantity

C = L

∫ 1

0

|κ(s)|ds, (2.12)

where s ∈ [0; 1] is proportional to arc-length, is called the total curvature-length of the curve.
It is the length of the curve drawn in SO(2) by the moving frame associated with the arc-length
parameterized curve.For this reason we call this parameterization the parameterization proportional
to curvature-length. In the right picture of Figure 2.7, we show the corresponding resampling of the
contour of Elie Cartan’s head.

This resampling can naturally be adapted in the case of flat pieces resulting in a sampling where
there is no points between two points on the curve joint by a straight line. In the left picture of
Figure 2.8, we have depicted a sampling of the statue of Liberty proportional to curvature-length.
Note that there are no points on the base of the statue. The corresponding parameterization has
the advantage of concentrating on the pieces of the contour that are very complex, i.e. where there
is a lot of curvature, and not distributing points on the flat pieces which are easy to reconstruct
(connecting two points by a straight line is easy, but drawing the moustache of Elie Cartan is harder
and needs more information).

As illustrated in Section 2.4.2, it is possible to reconstruct a curve from its curvature function
parameterized proportionally to curvature-length, provided that we know the length of the curve
L and its total curvature-length C, and provided that there is no flat piece. Indeed, derivating

equation (2.11), one obtains dr = |κ(s)|
C Lds, where Lds is the arc-length measure of the curve.

The drawback of using the parameterization proportional to curvature-length is that one can
not reconstruct the flat pieces of a shape without knowing their lengths (remember that the param-
eterization proportional to curvature-length put no point at all on flat pieces). For this reason we
propose a parameterization intermediate between arc-length parameterization and curvature-length
parameterization. We call it curvarc-length parameterization.

Curvarc-length parameterization

In order to define the curvarc-length parameterization, we consider the triple (P (s), ~v(s), ~n(s)),
where P (s) is the point of the shape parameterized proportionally to arc-length with s ∈ [0; 1], ~v(s)
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Figure 2.7: First line : Integral of the (renormalized) absolute value of the curvature (left), and corresponding resampling
of Elie’s Cartan head (right). Second line : Integral of the (renormalized) curvarc length (left), and corresponding resampling
of Elie’s Cartan head (right).

and ~n(s) the corresponding unit tangent vector and unit normal vector respectively. It defines an
element of the group of rigid motions of R2, called the special Euclidean group and denoted by
SE(2) := R2 o SO(2). The point P (s) corresponds to the translation part of the rigid motion, it
is the vector of translation needed to move the origin to the point of the curve corresponding to
the parameter value s. The moving frame O(s) defined by ~v(s) and ~n(s) is the rotation part of the
rigid motion. One has the following equations :

dP

ds
= L~v(s) and O(s)−1 d

ds
O(s) =

(
0 −κ(s)

κ(s) 0

)
, (2.13)

where L is the length of the curve. Endow SE(2) := R2oSO(2) with the structure of a Riemannian
manifold, product of the plane and the Lie group SO(2) ' S1. Than the norm of the tangent vector
to the curve s 7→ (P (s), ~v(s), ~n(s)) is L+ |κ(s)|. Therefore the length of the SE(2)-valued curve is

L+
∫ 1

0
|κ(s)|ds = L+ C

L . We call it the total curvarc-length. It follows that the following function

u(s) =

∫ s
0

(L+ |κ(s)|)ds∫ 1

0
(L+ |κ(s)|)ds

defines a reparameterization of [0; 1]. The arc-length parameter of the initial shape is related to the
parameter u by

Lds =
L2 + C

L+ |κ(u)|
du.

Parameterization proportional to the integral of λ + curvature

With the same idea as before, one can reparameterize a curve using the integral of a constant λ
plus the curvature function. In Fig. 2.8, the statue of Liberty is resampled with (from left to right)
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λ = 0;λ = 0.3;λ = 1;λ = 2;λ = 100.
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Figure 2.8: Resampling of the statue of Liberty proportional to the intergral of λ + curvature, for (from left to right)
λ = 0;λ = 0.3;λ = 1;λ = 2;λ = 100.

Application to medical imaging : parameterization of bones

In the analysis of diseases like Rheumatoid Arthritis, one uses X-ray scans to evaluate how the
disease affectes the bones. One effect of Rheumatoid Arthritis is erosion of bones, another is joint
shrinking. In order to measure joint space, one has to solve a point correspondance problem. For
this, one uses landmarks along the contours of bones. These landmarks have to be placed at the
same anatomical positions for every patient. Below they are placed using a method by Hans Henrik
Thodberg ([203]), based on minimum description length which minimizes the description of a PCA
model capturing the variability of the landmark positions. For instance in Figure 2.9 left, the
landmark number 56 should always be in the middle of the head of the bone because it is used to
measure the width between two adjacent bones in order to detect rheumatoid arthritis.

Figure 2.9: Point correspondance on 3 different bones using the method of [203]

Although the method by Hans Henrik Thodberg gives good results, it is computationally ex-
pensive. In this paper we propose to recover similar results with an quicker algorithm. It is based
on the fact that any geometrically meaningful parameterization of a contour can be expressed using
the arc-length measure and the curvature of the contour, which are the only geometric invariants
of a 2D-curve (modulo translation and rotation). It follows that the parameterization calculated
by Thodberg’s algorithm should be recovered as a parameterization expressed using arc-length and
curvature. We investigate a 2 parameter family of parameterizations defined by

u(s) =

∫ s
0

(c ∗ L+ |κ(s)|λ)ds∫ 1

0
(c ∗ L+ |κ(s)|λ)ds

(2.14)
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where c and λ are positive parameters and where L is the length of the curve and κ its curvature
function. We recover an analoguous parameterization to the one given by Thodberg’s algorithm
with c = 1 and λ = 7 at real time speed.

Figure 2.10: 14 bones parameterized by Thodberg’s algorithm on one hand and the parameterization
defined by (7.6) with c = 1 and λ = 7 on the other hand (the two parameterizations are superposed).
The colored points corresponds to points labelled 1, 48, 56, 66. They overlap for the two methods.

2.3.4 Basic idea of interpolation using moving frames for curves in R3

The method of moving frames was first developped by Jean Frédéric Frenet and Joseph Alfred
Serret for curves in R3 and later generalized by Gaston Darboux and Elie Cartan for more general
submanifolds and spaces. For 3D curves, it consists in associating a natural frame to each point of
a curve, i.e. a set of three vectors which are “moving” with the point of the curve (see Figure 2.3.4
right). The three vectors are naturally defined using the arc-length-parametrization f0 of the curve
and its derivatives f ′0, f ′′0 and f ′′′0 . The first vector is the unit tangent vector of the curve

~v(s) = f ′0(s),

the second vector is the unit normal vector, which, using arc-length parametrization, is defined by

~n(s) =
f ′′0 (s)

‖f ′′0 (s)‖
,

and the third vector is the unit bi-normal to the curve, which reads

~b(s) = ~v(s) ∧ ~n(s).

It is important to understand that the frame {~v, ~n,~b} is a geometric feature of the unparameterized
curve, or equivalently of a class of parameterized curves modulo reparameterization. In the example
of an aircraft trajectory as in Figure 2.3.4 left, this means that the Frenet-Serret frame depends only
on the track of the airplane and not on the speed profile along the track. If we start with an arbitrary
parameterization f of the same curve, one has f(t) = f0(s(t)) where s(t) =

∫ t
0
‖f ′(t)‖dt, i.e. the

point f(t) of the curve is equal, as point in R3, to the point f0(s(t)) with arc-length parameter s(t).

As function of t, the frame {~v(s(t)), ~n(s(t)),~b(s(t))} attached to the point f(t) = f0(s(t)) on the
curve could be defined directly using f and its derivatives by the following formulas:

~v(s(t)) = f ′(t)
‖f ′(t)‖ ,

~b(s(t)) = f ′(t)∧f ′′(t)
‖f ′(t)∧f ′′(t)‖ ,

and

~n(s(t)) = ~b(t) ∧ ~v(t).
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Figure 2.11: Air Track of Red Bull Air Race World Championship (https://airrace.redbull.com/en/section/track) Aircraft
trajectory (Picture taken from https://www.fsd.lrg.tum.de/research/trajectory-optimization/) and Frenet-Serret frame of a
space curve (Picture taken from https://en.wikipedia.org/wiki/Moving-frame)

Using the arc-length derivative of a function h ∈ C∞([0; 1],R3) given by

Dsh(t) :=
h′(t)

‖f ′(t)‖
,

one has the following Frenet-Serret equations:
Ds~v = κ~n

Ds~n = −κ~v + τ~b

Ds
~b = −τ~n,

(2.15)

where κ and τ are called the curvature and the torsion of the curve respectively. In fact, it is
not necessary to specify a parameterization to compute the curvature and torsion of a curve at
a given point. One says that these are geometric features of the curve. They encode how much
the curve is turning and moving away from a plane curve. The important point is that these two
functions characterize the curve uniquely modulo translation and rotation. One says that they form
a complete set of geometric invariants of the R3-curve. In particular it is possible to reconstruct
the curve from its curvature and torsion (modulo translation and rotation).

Writting the vectors ~v, ~n and ~b in coordinates, one obtain an orthogonal matrix

O(s) =
(
~v(s) ~n(s) ~b(s)

)
depending on the arc-length parameter s, i.e. a curve on the Lie-group SO(3). The derivative
d
dsO(s) of this curve at O(s) is a tangent vector to SO(3) at O(s), which can be send to the Lie-
algebra so(3) of SO(3) by left-translation. The Frenet-Serret formulas (2.15) are equivalent to the
fact that the corresponding curve on the Lie-algebra as the following form:

O(s)−1 d

ds
O(s) =

(
0 −κ(s) 0

κ(s) 0 −τ(s)
0 τ(s) 0

)
∈ so(3), (2.16)

where the functions κ and τ are the curvature and torsion functions of the curve.
In this paper we propose different ways to interpolate between curves. One of these interpolation

procedures is the linear interpolation in the space of geometric invariants. In the case of curves in
R3, the geometric invariants are the curvature and torsion functions, or using the matrix notation
introduced in equation (2.16), curves with values in the Lie-algebra so(3) with vanishing coefficients
at the upper-right and lower-left corners. Since the Lie-algebra so(3) is a finite-dimensional linear
space naturally endowed with a scalar product (proportional to the Killing-form) given by:

〈A,B〉 = −1

2
Tr(AB), (2.17)
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where A,B ∈ so(3) and where Tr denotes the trace of a matrix, one can use this Euclidean structure
to measure the discrepancy between two curves and interpolate between them. It corresponds to
endowing the space C∞([0; 1], so(3)) with the L2 metric given by

〈〈A,B〉〉 = −1

2

∫ 1

0

Tr(A(s)B(s))ds.

Note that the parameterization proportional to arc-length is used here to interpolate the two
curves, hence it relies on the fact that an oriented curve has a unique parameterization proportional
to arc-length with parameter in [0; 1]. In particular we used the fact that the parameter space of
the two curves is the same. In other words, the space of (oriented) curves can be identified with the
space of parameterized curves proportionally to arc-length with parameter in [0; 1]. Mathematically,
the space of curves is the quotient space of the space of parameterized curves modulo the group
of diffeomorphisms of [0; 1], and the space of curves parameterized proportional to arc-length is a
global section of the corresponding fiber bundle. One could use another section of this fiber bundle
in order to interpolate in the space of curvatures and torsions.

Next we propose a very natural section which is the parameterization proportional to curvature-
length. It involves the fact that the Killing form on so(3) defines a natural Riemannian structure
on the Lie group SO(3), which is invariant by left and right translations. This means that there
is a natural way to measure the speed of a curve on SO(3). In particular, given a curve in R3

parameterized proportionally to arc-length, the speed of the corresponding moving frame s 7→ O(s)
with respect to the scalar product given in (2.17) is

√
κ(s)2 + τ(s)2 (apply formula (2.17) to the

matrix given in (2.16)). Now the parameterization of the 3D curve proportional to curvature-length
corresponds to parameterization proportional to arc-length of the corresponding moving frame. The
corresponding parameter is

r(s) =

∫ s
0

√
κ(s)2 + τ(s)2ds∫ 1

0

√
κ(s)2 + τ(s)2ds

.

Given two curves f1(r) and f2(r) parameterized proportional to the curvature-length with param-
eter r ∈ [0; 1], one can consider the straight line in the space of curvatures and torsions connecting
the curvature and torsion (κ1(r), τ1(r)) at f1(r) to the curvature and torsion (κ2(r), τ2(r)) at f2(r).
As we will explain in this paper, from the curvature and torsion (1−λ)(κ1(r), τ1(r))+λ(κ2(r), τ2(r))
one can reconstruct uniquely (modulo translation and rotation) a curve Fλ(r) parameterized pro-
portionally to curvature-length knowing its total length or its total curvature. The interpolation
λ 7→ Fλ between the curves f1 and f2 differs from the interpolation λ 7→ fλ constructed before,
but share with it the rapidity of computation. We call it the linear interpolation in the space of
geometric invariants with respect to the parameterization proportional to curvature-length. Mathe-
matically the only difference is in the choice of a global section of the fiber bundle of the space of
parameterized curves over the shape space.

One should note that any global section of the aforementionned fiber bundle gives theoretically
a way to interpolate rapidly between two shapes. The two sections we considered here, namely
the parameterization proportional to arc-length on one side and the parameterization proportional
to curvature-length on the other, are both very natural and lead to easy computations. But the
possibilities are infinite: any stricktly increasing function having a geometric meaning with respect
to what the shapes materialize will lead to a preferred parameterization of the shapes, and to a
distance on shape space that stress this geometric quantity.

Let us mentionned also that for many applications, the step consisting in reconstructing the
curve deformation from the curvature and torsion is unnecessary. Like in the case of the body of a
caterpillar in Figure 2.3, linear interpolation between pertinent parameterizations of the routes may
lead to very good results. In the fourth line of Figure 2.2, we have registered the second ballerina
in an optimal way, and depicted the linear interpolation between the first ballerina with arc-length
parameterization and the registered second ballerina. The result is the best that we have been able
to obtain so far, in particular the stretching of the pointes (so important in ballet!) is very well
depicted. For this reason, we will systematically compare the linear interpolation between curves
parameterized with respect to a given section with the reconstruction from the linear interpolation of
the geometric invariants. We will see for instance that linear interpolation between curvature-length
parameterizations behave in many applications very well.
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2.4 Examples of Interpolations between 2D-Shapes

2.4.1 Interpolation between curves in specific parameterization

Consider two 2D shapes S1 and S2 in a canonical parameterization (like arc-length, curvature-
length, curvarc-length, etc...). We can interpolate between them by drawing the 2D shapes Sλ
defined by Sλ = (1−λ)S1 +λS2, for λ ∈ [0; 1]. As mentionned before, this procedure may give very
bad results when the parameterization is not well-choosen, as in the case of the ballerinas given in
Figure 2.2. However in a lot of situations, linear interpolations between preferred parameterization
gives very good results for a very low computational cost. In Figure 2.3, we have depicted the
interpolation between three positions of the caterpillar from the movie The Fox and the Hound in
different parameterizations : arc-length, curvature-length and curvarc-length. As a comparaison,
we have also depicted the geodesics between the three positions of the caterpillar obtained using
a method known in the litterature as the Square Root Velocity Transform (SRVT) or Qmap (see
[102] and [192]). One can see that the last case is very similar to the arc-length interpolation. In
Fig. 2.14, we have depicted different linear interpolations between parameterized curves:

1. Linear interpolation using parameterization as graphs of functions,

2. Linear interpolation using arc-length parameterization,

3. Linear interpolation using curvature-length parameterization,

4. Linear interpolation using curvarc-length parameterization.

5. Using q-map on preshape space (see http://ssamg.stat.fsu.edu/software).

6. Using q-map on shape space (see http://ssamg.stat.fsu.edu/software).

For each specific parameterization, we depict

a) first parameterized curve,

b) second parameterized curve

c) Linear interpolation between the parameterized curves

d) Corresponding points trajectories

e) Resampling of each curve in the path with the specific parameterization

f) Diffeomorphism defining the parameterization of curve 1

g) Diffeomorphism defining the parameterization of curve 2

h) Evolution of the primitive of the curvature during interpolation

i) Evolution of the total curvature during interpolation

j) Evolution of the total length during interpolation

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.3

-0.2

-0.1

0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.3

-0.2
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0

Figure 2.12: First line: Geodesic between some parameterized ballerinas with 300 points using Qmap : execution time =
561.75 s. The algorithms used for generating these geodesics are part of [102], and [192], and are available for free download
at http://ssamg.stat.fsu.edu/software. The first and last shapes were taken from [197]. Second line: linear interpolation
between the first blue ballerina and the last blue ballerina after registration using Qmap : execution time = 561.49 s. Third
Line : Linear interpolation between the initial blue ballerina and the last one with a parameterization given by a function
of arclength and curvature : execution time : 0.15 s.
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2.4.2 Interpolation between curvature functions

2D-Shape intepolation using arc-length

Consider two 2D shapes S1 and S2 parameterized proportional to arc-length with length L1 and L2

respectively. One can compute the curvature functions κ1 and κ2 associated to their parameteri-
zation proportional to arc-length with parameter s ∈ [0; 1], and consider the linear interpolation of
these curvatures

λ 7→ κλ(s) := (1− λ)κ1(s) + λκ2(s), s ∈ [0; 1],

as well as the linear interpolation of their lengths

λ 7→ Lλ := (1− λ)L1 + λL2.

For each value of the interpolating parameter λ ∈ [0; 1], one can reconstruct the curve with length
Lλ and curvature function κλ.

Denoting by K the space of curvatures functions of 2D-curves

K = C 2([0, 1],R),

the previously mentionned interpolation of curves consists in using the representation f 7→ κ and
pulling-back the flat L2-metric on K to the shape-space S . The resulting scalar product at the
class of an arc-length-parametrized curve f0 reads:

〈h1, h2〉f0
=

∫ 1

0

(δκ1(s) · δκ2(s)) ds, (2.18)

where h1 and h2 are tangent vectors to the space of arc-length parameterized curves at f0 and
δκi the infinitesimal variations of the curvature function induced by hi, i = 1, 2. Recall that the
curvature of a curve f0 parametrized by arc-length satisfies

|κ(s)| = ‖f ′′0 (s)‖, (2.19)

hence the variation of the curvature induced by a tangent vector h reads

δκ(s) =
〈f ′′0 (s), h′′(s)〉
‖f ′′0 (s)‖

.

It follows that the Riemannian metric used to compare curves in this section reads

G(h, h) =
∫ 1

0
〈h′′(s), ~n(s)〉2ds, (2.20)

where h is tangent to the space of arc-length parameterized curves.

2D-Shape interpolation using curvature-length

The scheme for interpolating between two 2D shapes S1 and S2 using the curvature-length is
analogous to the one in Section 2.3.3 : given two 2D shapes S1 and S2 parameterized proportional
to curvature-length with total curvature-length C1 and C2 respectively, one compute the curvature
functions κ1 and κ2 associated to their parameterization proportional to curvature-length with
parameter r ∈ [0; 1], and consider the linear interpolation of these curvatures

λ 7→ κλ(r) := (1− λ)κ1(r) + λκ2(r), r ∈ [0; 1],

as well as the linear interpolation of their total curvature-length:

λ 7→ Cλ := (1− λ)C1 + λC2.

For each value of the interpolating parameter λ ∈ [0; 1], one can reconstruct the curve with total
curvature-length Cλ and curvature function κλ(r).

Visualization

In Fig.2.13, we have depicted the interpolation between a blue curve and a red curve obtain by
the linear interpolation of their curvatures functions when the curves are first parameterized by
arc-length, and second by curvature-length.
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Figure 2.13: 1a) Path of curves constructed from the linear interpolation of the curvature functions of the blue and
red curves parameterized by arc-length, 1b) Evolution of the integrale of the curvature functions parameterized by arc-
length, 1c) Points trajectories for the path of curves constructed from the linear interpolation of the curvature functions
parameterized by arc-length, 2a)Path of curves constructed from the linear interpolation of the curvature functions of the blue
and red curves parameterized by curvature-length, 2b)Evolution of the integrale of the curvature functions parameterized
by curvature-length, 2c)Points trajectories for the path of curves constructed from the linear interpolation of the curvature
functions parameterized by curvature-length

2.5 Quotient elastic metrics on the manifold of arc-length
parameterized plane curves

The authors of [143] introduced a 2-parameter family of Riemannian metrics Ga,b on the space of
plane curves that penalizes bending as well as stretching. The metrics within this family are now
called elastic metrics. In [192], it was shown that, for a certain relation between the parameters,
the resulting metric is flat on parameterized open curves, whereas the space of length-one curves
is the unit sphere in an Hilbert space, and the space of parameterized closed curves a codimension
2 submanifold of a flat space. A similar method for simplifying the analysis of plane curves was
introduced in [237]. These results have been generalized in [12], where the authors introduced
another family of metrics, including the elastic metrics as well as the metric of [237], and studied in
which cases these metrics can be described using the restrictions of flat metrics to submanifolds. In
particular they showed that, for arbitrary values of the parameters a and b, the elastic metrics Ga,b

are flat metrics on the space of parameterized open curves, and the space of parameterized closed
curves a codimension 2 submanifold of a flat space. These results have important consequences for
shape comparison and form recognition since the comparison of parameterized curves becomes a
trivial task and the comparison of unparameterized curves is greatly simplified. In this strategy,
the space of unparameterized curves, also called shape space, is presented as a quotient space of the
space of parameterized curves, where two parameterized curves are identified when they differ by a
reparameterization. The elastic metrics induce Riemannian metrics on shape space, called quotient
elastic metrics. The remaining difficult task in comparing two unparameterized curves under the
quotient elastic metrics is to find a matching between the two curves that minimizes the distance
between the corresponding reparameterization-orbits. Given this matching, computing a geodesic
between two shapes is again an easy task using the flatness of the metrics.

In [126], a mathematically rigorous development of the quotient elastic metric used in [192]
is given (i.e., with the parameters a = 1

4 and b = 1), including a careful analysis of the quotient
procedure by the reparameterization semi-group. The authors of [126] also showed that a minimizing
geodesic always exists between two curves, when at least one of them is piecewise linear. Moreover,
when both curves are piecewise linear, the minimizing geodesic can be represented by a straight
line between two piecewise linear curves in the corresponding orbits. In other words the space of
piecewise linear curves is a geodesically convex subset of the space of curves for the quotient elastic
metric G

1
4 ,1. Finally, in the same paper, a precise algorithm for the matching problem of piecewise

linear curves is implemented, giving a tool to compare shapes in an efficient as well as accurate
manner.

In [43], it was shown that, in the same context, a minimizing geodesic for the quotient elastic

metric G
1
4 ,1 always exists between two C 1-curves γ1 and γ2, meaning that there exists two elements

φ1 and φ2 in the reparameterization semi-group such that the straight line between γ1◦φ1 and γ2◦φ2

minimizes the geodesic distance between the orbits of γ1 and γ2. However, the reparameterizations
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Figure 2.14: Examples of interpolations between curves: 1. Linear interpolation using parameterization as graphs of
functions, 2. Linear interpolation using arc-length parameterization, 3. Linear interpolation using curvature-length pa-
rameterization, 4. Linear interpolation using curvarc-length parameterization. 5. Using q-map on preshape space (see
http://ssamg.stat.fsu.edu/software). 6. Using q-map on shape space (see http://ssamg.stat.fsu.edu/software). For each
specific parameterization: a) first parameterized curve, b) second parameterized curve c) Linear interpolation between the
parameterized curves d) Corresponding points trajectories e) Resampling of each curve in the path with the specific pa-
rameterization f) Diffeomorphism defining the parameterization of curve 1 g) Diffeomorphism defining the parameterization
of curve 2 h) Evolution of the primitive of the curvature during interpolation i) Evolution of the total curvature during
interpolation j) Evolution of the total length during interpolation
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φ1 and φ2 being a priori only absolutely continuous, it is not clear whether γ1 ◦ φ1 and γ2 ◦ φ2

can be chosen to be C 1. In other words, it is (to our knowledge) not known whether the subset of
C 1-curves is geodesically convex. In addition, two Lipschitz-curves in the plane are constructed in
[43] for which no optimal reparameterizations exist.

In the present Section, we want to present another strategy for understanding the quotient
elastic metrics on shape space. Indeed, instead of identifying the shape space of unparameterized
curves with a quotient space, we identify it with the space of arc-length parameterized curves.
Given a shape in the plane, this consists in endowing it with the preferred parameterization by its
arc-length, leading to a uniformly sampled curve. Note that any Riemannian metric on shape space
can be understood as a Riemannian metric on the space of arc-length parameterized curves. In this
section, we endow the space of arc-length parameterized curves with the quotient elastic metrics.
In [110], the manifold of arc-length parameterized curves was also studied, but the metrics used
there are not the elastic ones. The present Section is organized as follows. In Section 2.5.1, we
concentrate on the smooth case, and compute the gradient of the energy functional associated to
the quotient elastic metrics Ga,b. In Section 2.5.2, we consider a discretization of the smooth case.
This is an unavoidable step towards implementation, where each smooth curve is approximated by
polygonal lines, and each smooth parameterized curve is approximated by a piecewise linear curve.
Finally, in Subsection 2.5.3, an algorithm for the two-boundary problem is presented, and some
properties of the energy landscape depending on the parameters are studied.

2.5.1 Quotient elastic metrics on arc-length parameterized plane curves

Definition of the elastic metrics

For I = [0, 1] or I = S1 = R/Z, we will consider the following 2-parameter family of metrics on the
space C1(I) of plane curves:

Ga,b(w,w) =
∫ 1

0

(
a (Dsw · v)

2
+ b (Dsw,n)

2
)
|γ′(t)| dt, (2.21)

where a and b are positive constants, γ is any parameterized curve in C1(I), w is any element of the

tangent space TγC1(I), with Dsw = w′

|γ′| denoting the arc-length derivative of w, v = γ′/|γ′| and

n = v⊥. These metrics have been introduced in [143], and are now called elastic metrics. They have
been also studied in [12] with another convention for the coefficients (a in [143] equals b2 in [12],
and b in [143] equals a2 in [12]). For w1 and w2 two tangent vectors at γ ∈ C1(I), the corresponding
inner product reads:

Ga,b(w1, w2)=
∫ 1

0

(
a (Dsw1 · v)(Dsw2 · v)+b (Dsw1 · n)(Dsw2 · n)

)
|γ′(t)| dt. (2.22)

The metric Ga,b is invariant with respect to the action of the reparameterization group G (I) on

C1(I) and therefore it defines a metric on the quotient space Cf1 (I)/G (I), which we will refer to as
the quotient elastic metric.

Horizontal space for the elastic metrics

Let us now consider an initial curve γ located on the submanifold A1(I) of curves parameterized by
arc-length and of length 1. Recall that in this case, one has |γ′(s)| = 1 and Ds = d

ds . Any tangent
vector u ∈ TγO at γ ∈ A1(I) can be written as u(t) = m(t) v(t) where m ∈ C∞([0, 1],R) satisfies
m(0) = 0 and m(1) = 0 for open curves and m ∈ C∞(S1,R) for closed curves. The orthogonal
space to TγO for the elastic metric Ga,b on C1(I) is called the horizontal space at γ.

Proposition 2.5.1. The horizontal space Hor at γ ∈ A1(I) is

Horγ =
{
w ∈ TγC1(I), (w′ · v)

′
= b

aκ (w′ · n)
}
. (2.23)

Proof. Let u = m v ∈ TγO. One has:

u′ · v = m′(s), u′ · n = m(s)κ(s).
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The horizontal space at γ consists of vector fields w ∈ TγC1(I) such that for any function m ∈
C∞(I,R) (with m(0) = m(1) = 0 for open curves), the following quantity vanishes:

0 = Ga,b(w,m v) =
∫ 1

0
(am′(s) (w′(s) · v(s)) + bm(s)κ(s) (w′(s) · n(s))) ds.

After integrating the first term by parts, one obtains the following condition on w, which has to be
satisfied for any real function m ∈ C∞(I,R) (with m(0) = 0 and m(1) = 0 for open curves):

0 =
∫ 1

0
m
(
−a (w′ · v)

′
+ bκ (w′ · n)

)
ds.

Using the density of such functions m in L2(I,R), this implies that the equation defining the
horizontal space of the elastic metric at γ is

(w′ · v)
′

=
b

a
κ (w′ · n) . (2.24)

Quotient elastic metrics

Since the reparameterization group preserves the elastic metric Ga,b, it defines a quotient elastic

metric on the quotient space C1([0, 1])/G ([0, 1]), which we will denote by G
a,b

. By Theorem 2.2.9,
this quotient space is identified with the submanifold A1([0, 1]), and we can pull back the quotient

elastic metric G
a,b

on A1([0, 1]). We will denote the corresponding metric on A1([0, 1]) by G̃a,b.

The value of the metric G̃a,b on a tangent vector w ∈ TγA1([0, 1]) is the value of G
a,b

([w], [w]),
where [w] denotes the equivalence class of w in the quotient space TγC1([0, 1])/TγO. By definition
of the quotient metric,

G
a,b

([w], [w]) = inf
u∈TγO

Ga,b(w + u,w + u)

where u ranges over all tangent vectors in TγO. If TγC1([0, 1]) decomposes as TγC1([0, 1]) = TγO ⊕
Horγ , this minimum is achieved by the unique vector Ph(w) ∈ [w] belonging to the horizontal space
Horγ at γ. In this case:

G̃a,b(w,w) = Ga,b(Ph(w), Ph(w)), (2.25)

where Ph(w) ∈ TγC1([0, 1]) is the projection of w onto the horizontal space, i.e., is the unique
horizontal vector such that w = Ph(w) + u with u ∈ TγO.

Proposition 2.5.2. Let w be a tangent vector to the manifold A1([0, 1]) at γ and write w′ = Φ n,
where Φ is a real function in C∞([0, 1],R). Then the projection Ph(w) of w ∈ TγA1([0, 1]) onto the
horizontal space Horγ reads Ph(w) = w −m v where m ∈ C∞([0, 1],R) is the unique solution of

− a

b
m′′ + κ2m = κΦ, m(0) = 0, m(1) = 0. (2.26)

where κ is the curvature function of γ.

Proof. Recall that a tangent vector w to the manifold A1([0, 1]) at γ satisfies w′ · v = 0, where v is
the unit tangent vector field of the curve γ. Hence, for any w ∈ TγA1([0, 1]), the derivative w′ of w
with respect to the arc-length parameter reads w′ = Φ n, where Φ is a real function in C∞([0, 1],R).
One has

Ph(w)′ = Φ n−m′ v−mκn, (2.27)

hence Ph(w)′ ·v = −m′ and Ph(w)′ ·n = (Φ−mκ). The condition (2.24) for Ph(w) to be horizontal is
therefore (2.26). Equation (2.26) is a particular case of Sturm-Liouville equation −(pm′)′+ qm = f
with homogeneous boundary condition m(0) = 0 and m(1) = 0. Here p = a

b > 0 and q = κ2 ≥ 0.
The fact that equation (2.26) has a unique solution follows from Lax-Milgram Theorem (see Section
8.4 in [40]).

For closed curves, the tangent space to A f
1 (S1) at γ contains the vector space of vector fields of

the form c v where c is a constant and v = γ′. These vector fields generate the translation of base
point, which is the natural action of the subgroup S1 of G (S1). One has

TγA
f

1 (S1) ∩ TγO = Tγ
(
S1 · γ

)
,
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where S1 · γ = {s 7→ γ(s + τ), τ ∈ S1}. Therefore one can consider the horizontal projection

Ph : T[γ]A
f

1 (S1)/S1 → Horγ , where [γ] denotes the projection of γ on the quotient space A1(S1)/S1.
We will denote by [w] the projection of w ∈ TγA1(S1) on the tangent space T[γ]A1(S1)/S1. Note

that [w] = {w + c v, c ∈ R} and that
∫ 1

0
w′(s)ds = 0.

Proposition 2.5.3. Let w be a tangent vector to the manifold A1(S1) at γ and write w′ = Φ n, where

Φ is a real function in C∞(S1,R) such that
∫ 1

0
Φ(s) n(s) ds = 0. Then the horizontal projection

Ph([w]) of [w] onto the horizontal space reads Ph([w]) = [w − m v] where m ∈ C∞(S1,R) is the
unique periodic solution of

− a

b
m′′ + κ2m = κΦ. (2.28)

Proof. As before the condition for w − m v to be horizontal is (2.26). The question is whether
there exists a periodic solution m of the equation for given periodic functions κ(x) and Φ(x). Since
κ(s+ 1) = κ(s) and Φ(s+ 1) = Φ(s), we would like to satisfy m′(1) = m′(0) and m(1) = m(0). By
the equation satisfied by m, it will imply that m is a smooth periodic function on S1. Let y1(s) and
y2(s) be solutions of the equation y′′(s)−κ(s)2y(s) = 0, with initial conditions y1(0) = 1, y′1(0) = 0,
y2(0) = 0, and y′2(0) = 1. Then Abel’s formula implies that the Wronskian is

W (s) = y1(s)y′2(s)− y2(s)y′1(s) ≡ 1.

And variation of parameters gives us the solution

m(x) = c1y1(s) + c2y2(s)− y1(s)

∫ s

0

κ(x)Φ(x)y2(x) dx+ y2(s)

∫ s

0

κ(x)Φ(x)y1(x) dx,

where c1 = m(0) and c2 = m′(0).
The question is how to choose c1 and c2 so that m(1) = c1 and m′(1) = c2. We clearly end up

with the system

c1
[
y1(1)− 1

]
+ c2y2(1) = By1(1)−Ay2(1)

c2y
′
1(1) + c2

[
y′2(1)− 1

]
= By′1(1)−Ay′2(1),

where

A =

∫ 1

0

κ(x)Φ(x)y1(x) dx and B =

∫ 1

0

κ(x)Φ(x)y2(x) dx.

This has a solution if and only if the determinant

δ = [y1(1)− 1][y′2(1)− 1]− y2(1)y′1(1)

is nonzero. Note that since the Wronskian is constant, we can write δ = 2− y′2(1)− y1(1).
To further see what’s happening, we now use the reduction of order trick to write y2(s) =

φ(s)y1(s), where

φ(s) =

∫ s

0

dx

y1(x)2
.

It is obvious from the initial condition and the fact that κ(s)2 is positive that y1(s) is strictly
increasing for s > 0, and y′1(s) is nonnegative for s ≥ 0. Thus φ is always well-defined. We now
have y′2(1) = φ′(1)y1(1) + φ(1)y′1(1), and thus our formula is

δ = 2− 1

y1(1)
− y′1(1)

∫ 1

0

dx

y1(x)2
− y1(1)

= −[y1(1)− 1/y1(1)]2 − y′1(1)

∫ 1

0

dx

y1(x)2
.

We see that the only way this can be zero is if y′1(1) = 0 and y1(1) = y1(1), and both these
conditions are equivalent to y1(s) actually being constant, which only happens if κ(s) is identically
equal to zero on [0, 1]. Hence unless the curve is a straight line, one can always solve the differential
equation and get a unique periodic solution m. Since γ is a closed curve, γ cannot be a straight
line.
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Denote by G the Green function associated to equation (2.26). By definition, the solution of

− a

b
m′′ + κ2m = ϕ, (2.29)

where ϕ is any right-hand side, is

m(s) =

∫ 1

0

G(s, x)ϕ(x)dx,

where m satisfies the additional condition:

• m(0) = 0 and m(1)=0 for open curves,

• m is periodic for closed curves.

Remark 2.5.4. Using (2.27), observe that for any tangent vector w ∈ TγA1(I) with w′ = Φ n, one
has

G̃a,b(w,w) =
∫ 1

0

(
a(m′)2 + b(Φ−mκ)2

)
ds, (2.30)

where m satisfies (2.26) for open curves and (2.28) for closed curves.

We will also need the following expression of the quotient elastic metric on A1([0, 1]).

Theorem 2.5.5. Let w and z be two tangent vectors in TγA1([0, 1]) with w′ = Φ n and z′ = Ψ n,
where Φ,Ψ ∈ C∞([0, 1],R). Write Ph(z) = z − p v, where p satisfies −ap′′ + bκ2p = bκΨ with

p(0) = p(1) = 0. Then the scalar product of w and z with respect to the quotient elastic metric G̃a,b

on the space of arc-length parameterized curves A1([0, 1]) reads

G̃a,b(w, z) =
∫ 1

0
bΦ (Ψ− κp) ds. (2.31)

Proof. Denote respectively by Ph(w) and Ph(z) the projections of w and z on the horizontal space,
and define m, p ∈ C∞([0, 1],R) by Ph(w) = w − m v and Ph(w) = z − p v. Since the horizontal
space is the orthogonal space to TγO for the elastic metric Ga,b, one has

Ga,b(w, z) = Ga,b(Ph(w)−m v, Ph(z)− p v) = Ga,b(Ph(w), Ph(z)) +Ga,b(m v, p v).

It follows that

G̃a,b(w, z) = Ga,b(Ph(w), Ph(z)) = Ga,b(w, z)−Ga,b(m v, p v)

=
∫ 1

0

(
bΦΨ− am′p′ − bκ2mp

)
ds.

After integrating the second term by parts, one has

G̃a,b(w, z) =
∫ 1

0

(
bΦΨ + p(am′′ − bκ2m)

)
ds.

Using the differential equation (2.26) satisfied by the function m, we obtain (2.31).

For closed curves, the same construction gives a Riemannian metric on the quotient space
A f

1 (S1)/S1. We can extend the definition of this metric to the space A1(S1)/S1 by the same
formula. We get the following result:

Theorem 2.5.6. Let w and z be two tangent vectors in TγA1(S1) with w′ = Φ n and z′ = Ψ n,
where Φ,Ψ ∈ C∞(S1,R). Write Ph([z]) = [z − p v], where p satisfies −ap′′ + bκ2p = bκΨ with
periodic boundary conditions. Then the scalar product of [w] and [z] with respect to the quotient

elastic metric G̃a,b on the space of arc-length parameterized curves A1(S1)/S1 reads

G̃a,b([w], [z]) =
∫ 1

0
bΦ (Ψ− κp) ds. (2.32)

Proof. Let us check that the expression of G̃a,b([w], [z]) does not depend on the representative of
[w] and [z] chosen. Set z2 = z + c v for some constant c ∈ R. Then z′2 = z′ + cκn = (Ψ + cκ) n.
Denote by p2 the solution of −ap′′2 + bκ2p2 = bκ(Ψ + cκ) with periodic boundary conditions. Then
−a(p2 − c)′′ + bκ2(p2 − c) = bκΨ. By uniqueness of the solution of equation −ap′′ + bκ2p = bκΨ,
one has p = p2 − c. Therefore∫ 1

0

bΦ ((Ψ + c)− κp2) ds =

∫ 1

0

bΦ (Ψ− κp) ds.

By symmetry, one also has the independence with respect to the representative of [w].
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For closed curves, this Riemannian metric can be lifted in a unique way to a degenerate metric
on A1(S1) with only degeneracy along the fibers of the projection A1(S1) → A1(S1)/S1. The
advantage of the degenerate lift is that it allows to compare closed curve irrespective of the position
of the base point. This situation is analogous to the one encountered in Section 2.2.2, where the
degeneracy of the metric was along the orbits by space translations. See also [205] where this idea
is used in the context of 2-dimensional shapes.

Definition and derivative of the energy functional

In this section we will determine the gradient of the energy functional corresponding to the metric
G̃a,b on the spaces A1([0, 1]) and A1(S1)/S1 of arc-length parameterized curves. We will use the
following conventions:

- the arc-length parameter of curves in A1(I) will be denoted by s ∈ I,

- the time parameter of a path in A1(I) will be denoted by t ∈ [0, T ],

- the parameter ε ∈ (−δ,+δ) will be the parameter of deformation of a path in A1(I).

Consider a variation γ : (−δ,+δ) × [0, T ] × I → R2 of a smooth path in A1(I). In general in the
following Sections we will denote partial derivatives by subscripted index notations. Note that,
since any curve in A1(I) is parameterized by arc-length, the arc-length derivative γs of γ is a unit
vector in the plane for any values of the parameters (ε, t, s), previously denoted by v. For this
reason, we will write it as

γs(ε, t, s) = (cos θ(ε, t, s), sin θ(ε, t, s)) , (2.33)

where θ(ε, t, s) denotes a smooth lift of the angle between the x-axis and the unit vector v(ε, t, s) =
γs(ε, t, s). In particular for closed curves, θ(·, ·, 0) = 2πR+ θ(·, ·, 1) where R is the rotation number
of the curve.

Definition 2.5.7. For any ε ∈ (−δ,+δ), the function t 7→ γ(ε, t, ·) is a path in A1(I), whose energy
is defined as

E(ε) =
1

2

∫ T

0

G̃a,b(γt, γt)dt,

where γt is the tangent vector to the path t 7→ γ(ε, t, ·) ∈ A1(I).

Theorem 2.5.8. Consider a variation γ : (−δ,+δ) × [0, T ] × I → R2 of a smooth path in A1(I),
with γs(ε, t, s) = (cos θ(ε, t, s), sin θ(ε, t, s)) for some angle θ(ε, t, s). Then the energy as a function
of ε is given by

E(ε) =
1

2

∫ T

0

∫ 1

0

(
am2

s + b(θt − θsm)2
)
ds dt, (2.34)

where m is uniquely determined by the condition

− amss + bθ2
sm = bθsθt, (2.35)

with m(0) = m(1) = 0 for I = [0, 1] and periodic boundary conditions for I = S1 = R/Z. The
derivative of the energy functional is given by

dE

dε
(0) =

∫ T

0

∫ 1

0

θε(t, s)ξ(t, s) ds dt, (2.36)

where
1

b
ξ = −θtt + ∂t(θsm) + ∂s(θtm)− ∂s(θsm2). (2.37)

Proof. Equation (2.33) implies in particular that

γss(ε, t, s) = θs(ε, t, s) (− sin θ(ε, t, s), cos θ(ε, t, s)) = θs(ε, t, s) n(ε, t, s),

where s 7→ n(ε, t, s) = (− sin θ(ε, t, s), cos θ(ε, t, s)) is the normal vector field n along the parameter-
ized curve s 7→ γ(ε, t, s). In particular, the curvature κ(ε, t, s) of the curve s 7→ γ(ε, t, s) at γ(ε, t, s)
reads

κ(ε, t, s) = θs(ε, t, s).
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For closed curves, one has θs(ε, t, s) = θs(ε, t, s + 1) since the curvature is a feature of the curve.
Furthermore the arc-length derivative of the tangent vector γt along the path t 7→ γ(ε, t, s) reads

γts(ε, t, s) = γst(ε, t, s) = θt(ε, t, s) n(ε, t, s).

For I = S1, since γ is a path of closed curves, γt(ε, t, s) = γt(ε, t, s+1) and θt(ε, t, s) = θt(ε, t, s+1).
Denote by m ∈ C∞([0, T ]× I,R) the solution, for each fixed t, of

− a

b
mss(t, s) + θ2

s(t, s)m(t, s) = θs(t, s)θt(t, s), (2.38)

with m(t, 0) = m(t, 1) = 0 for I = [0, 1] and periodic boundary conditions for I = S1, i.e.,

m(t, s) =

∫ 1

0

G(t; s, x)θx(t, x)θt(t, x)dx, (2.39)

where G is the (time-dependent) Green function associated to equation (2.29) (we have omitted

the dependency on ε here in order to improve readibility). Using the expression of the metric G̃a,b

given in (2.30) with Φ = θt and κ = θs, one has

E(ε) =
1

2

∫ T

0

∫ 1

0

(
am2

s + b(θt − θsm)2
)
ds dt.

Note that the ε-derivative γε at ε = 0 is a vector field along the path t 7→ γ(0, t, s). Hence for
any fixed parameter t ∈ [0, T ], s 7→ γε(0, t, s) is an element of the tangent space Tγ(0,t,·)A1(I) whose
arc-length derivative reads

γεs(0, t, s) = θε(0, t, s) n(0, t, s). (2.40)

The derivative of the energy functional with respect to the parameter ε is therefore

dE

dε
(0) =

∫ T

0

∫ 1

0

amsmsε + b(θt − θsm)(θtε − θsεm− θsmε) ds dt.

Integrate the first term by parts in s, and we obtain

dE

dε
(0) =

∫ T

0

∫ 1

0

b(θt − θsm)(θtε −mθsε) ds dt+

∫ T

0

∫ 1

0

mε(−amss − bθtθs + bθ2
sm) ds dt,

and the last term vanishes by equation (2.35). Integrating by parts in s and t to isolate θε, we
obtain (2.36)–(2.37)

Gradient of the energy functional

In Theorem 2.5.8, the derivative of the energy functional is expressed as the integral of an L2-
product, i.e., as a 1-form. In order to obtain the gradient of the energy functional, we need to
find the vector corresponding to this 1-form via the quotient elastic metric G̃a,b on A1(I). In other
words, the aim is to rewrite the derivative of the energy functional, given by (2.36)–(2.37), as

dE

dε
(0) =

∫ T

0

G̃a,b(γε,∇E(γ))dt, (2.41)

for some vector field ∇E(γ) along the path γ in A1(I). Deforming the path γ in the opposite
direction of ∇E(γ) will then give us an efficient way to minimise the path-energy of γ, and a
path-straightening algorithm will allow us to find approximations of geodesics.

Based on equations (2.31) and (2.32), finding this Riemannian gradient now reduces to solving
the following problem for each fixed time: given functions κ(s) and ξ(s), find a function β(s) such
that

β(s)− κ(s)h(s) = ξ(s), where ah′′(s)− bκ(s)2h(s) = −bκ(s)β(s), (2.42)

with boundary conditions h(0) = h(1) = 0 for open curves, h(0) = h(1) and h′(0) = h′(1) for closed
curves. At first glance this problem seems rather tricky, since in terms of the Green function G
defined by (2.29), we have h = G ? (κβ), and so (2.42) appears to become h− κG ? (κh) = ξ, which
would require inverting the operator I −MκKMκ, where K is the operator h 7→ G ? h and Mκ

is the operator of multiplication by κ. What is remarkable in the following theorem is that this
computation actually ends up being a lot simpler than expected due to some nice cancellations.
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Theorem 2.5.9. Consider a variation γ : (−δ,+δ)×[0, T ]×I → R2 of a smooth path in A1(I), with
γs(ε, t, s) = (cos θ(ε, t, s), sin θ(ε, t, s)) for some angle θ(ε, t, s). Then the gradient ∇E determined
by formula (2.41) satisfies (∇E)s(0, t, s) = β(t, s) n(t, s) with

β(0, t, s) =
1

b
ξ(0, t, s)−1

a
θs(0, t, s)

∫ s

0

(∫ x

0

θs(0, t, y)ξ(0, t, y)dy

)
dx+

1

a
κ(s)s

∫ 1

0

(∫ x

0

κ(y)ξ(y)dy

)
dx,

(2.43)
or equivalently

β(t, s) =
1

b
ξ(t, s)− θs(t, s)mt(t, s)− b

2aC(t)sθs(t, s)

+ 1
2θs(t, s)

∫ s

0

(
mx(t, x)2 + b

aθx(t, x)2m(t, x)2 − b
aθt(t, x)2

)
dx, (2.44)

where ξ is given by (2.37), m satisfies (2.38), and C(t) is given by

C(t) =

∫ 1

0

θs(t, s)θt(t, s)m(t, s) ds−
∫ 1

0

θt(t, s)
2 ds. (2.45)

Proof. By Theorem 2.5.8, the derivative of the energy functional is the integral of 〈θε, ξ〉 where ξ
is given by (2.37). Recall that θε is related to the derivative γε by γεs = θε n. Comparing with the
expression of the quotient elastic metric (2.31), it follows that

〈θε, ξ〉 = G̃a,b(γε,∇E),

where ξ = b (β − κh), and where β and h are related to∇E by (∇E)s = β n and −ah′′+bκ2h = bκβ.
Note that ξ determine the functions β and h since the relation bβ = ξ + bκh implies

−ah′′ = κξ.

A first integration gives

h′(x) = −1

a

∫ x

0

κ(y)ξ(y)dy + c1,

for some constants c1 and a second integration gives

h(s) = −1

a

∫ s

0

(∫ x

0

κ(y)ξ(y)dy

)
dx+ c1s+ c2, (2.46)

for some other constant c2.
For open curves, using the condition h(0) = h(1) = 0, we obtain c2 = 0 and c1 = 1

a

∫ 1

0

(∫ x
0
κ(y)ξ(y)dy

)
dx.

Therefore

h(s) =
1

a

∫ s

0

(∫ x

0

−κ(y)ξ(y)dy

)
dx+

1

a
s

∫ 1

0

(∫ x

0

κ(y)ξ(y)dy

)
dx,

and

β(s) =
1

b
ξ(s)− 1

a
κ(s)

∫ s

0

∫ x

0

κ(y)ξ(y)dy dx+
1

a
κ(s)s

∫ 1

0

(∫ x

0

κ(y)ξ(y)dy

)
dx.

Substituting κ = θs gives (2.43).
Moreover by formula (2.37) we have

κξ = −θsθtt + 2θsθtsm+ θ2
smt + θtθsms − θssθsm2 − 2θ2

smms. (2.47)

But also differentiating (2.38) in time gives

amsst − bθ2
smt = 2bθsθstm− bθstθt − bθsθtt,

and eliminating θsθtt in (2.47) gives the equation

κξ = a
bmsst + θstθt + θsθtms − θssθsm2 − 2θ2

smms.

Now substitute from (2.38) the relation θsθt = θ2
sm− a

bmss, and we obtain

−abhss = κξ = a
bmsst + θstθt − a

bmsmss − θssθsm2 − θ2
smms.
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The right side is now easy to integrate in s, and we get

− ahs = amst + 1
2bθ

2
t − 1

2am
2
s − 1

2bθ
2
sm

2 + b
2aC, (2.48)

where the constant C is chosen so that both sides integrate to zero between s = 0 and s = 1 (since
h(0) = h(1) = 0). Multiplying both sides of (2.38) by m and integrating from s = 0 to s = 1, we
conclude that C(t) satisfies (2.45). Another integration in s gives the formula

h(t, s) = −mt(t, s) + 1
2

∫ s

0

mx(t, x)2 dx+ b
2a

∫ s

0

θx(t, x)2m(t, x)2 − θt(t, x)2 dx− b
2aC(t)s. (2.49)

Since m(t, 0) = m(t, 1) = 0 for all t, this clearly vanishes at s = 0 as it should; furthermore it is
easy to check that it also vanishes at s = 1 by definition of C. Plugging h given by (2.49) into the
formula β = 1

b ξ + κh, we obtain (2.44) as desired.
For closed curves, using the conditions h(0) = h(1) and h′(0) = h′(1) in (2.46), we obtain

c1 = 1
a

∫ 1

0

(∫ x
0
κ(y)ξ(y)dy

)
dx and the condition

∫ 1

0
κ(s)ξ(s) ds = 0, which is satisfied by (2.48) since

the right hand side is periodic. Note that there is no condition on c2 as expected. We take c2 = 0
in order to match the formula for open curves.

Remark 2.5.10. Given the derivative of the gradient flow (∇E)s(0, t, s) = β(t, s) n(t, s) with
β(t, s) given by (2.43) or (2.44), we have flexibility in the choice of the constant of integration
to obtain ∇E. This is related to the fact that the curves are considered modulo translations (see
Section 2.2.2). In the numerics we used the condition ∇E(0) = 0, which corresponds to representing
curves modulo translations as curves starting at the origin. Furthermore, there is no guarantee that∫ 1

0
β(t, s) n(t, s) = 0, in other words the gradient may not preserve the closedness condition. Since

the space of closed curves is a codimension 2 submanifold of the vector space of open curves, we
have to project the gradient of the energy functional to the tangent space of the space of closed

curves. This projection is given by ∇E(s) 7→ ∇E(s)− s
∫ 1

0
∇E(x)dx.

2.5.2 Quotient elastic metrics on arc-length parameterized piecewise lin-
ear curves

Notation

Let us consider a “chain” given by points joined by rigid rods of length 1/n. We denote the points
by γk for 1 ≤ k ≤ n, and periodicity is enforced by requiring γn+1 = γ1 and γ0 = γn. We let

vk = n(γk+1 − γk)

denote the unit vectors along the rods, and θk be the angle between the x-axis and vk, so that

vk = (cos θk, sin θk).

The unit normal vectors are defined by

nk = (− sin θk, cos θk).

We will also introduce the variation of the angles θk:

∆k = θk − θk−1.

Vector fields along a chain are denoted by sequences w = (wk : 1 ≤ k ≤ n). A vector field w
preserves the arc-length parameterization if and only if

d

dt

∣∣
t=0
|γk+1(t)− γk(t)|2 = 2

n 〈wk+1 − wk, vk〉 = 0,

for any k, where γk(t) is any variation of γk satisfying wk = γ′k(0). In particular, any vector field
preserving the arc-length parameterization satisfies

wk+1 − wk = 1
nφknk,

for some sequence φ = (φk : 1 ≤ k ≤ n).

71



Discrete version of the elastic metrics

The discrete elastic metric is given by

Ga,b(w,w) = n

n∑
k=1

(
a〈wk+1 − wk, vk〉2 + b〈wk+1 − wk,nk〉2

)
, (2.50)

which clearly agrees with (2.21) in the limit as n→∞ using w(k/n) = wk. In addition this metric
has the same property as (2.21) in that the a term disappears when w is a field that preserves
the arc-length parameterization. For two vector fields w and z, the expression of their Ga,b scalar
product reads

Ga,b(w, z) = n

n∑
k=1

(
a〈wk+1 − wk, vk〉〈zk+1 − zk, vk〉+ b〈wk+1 − wk,nk〉〈zk+1 − zk,nk〉

)
. (2.51)

For further use note that if w preserves the arc-length parameterization and z is arbitrary,

Ga,b(w, z) = n

n∑
k=1

b〈wk+1 − wk,nk〉〈zk+1 − zk,nk〉. (2.52)

Horizontal space for the discrete elastic metrics

Assume now that w preserves the arc-length parameterization, and write n(wk+1 − wk) = φknk
for some numbers φk. The “vertical vectors” will still be all those of the form uk = gkvk for some
numbers gk, although it is not clear in the discrete context if these actually represent the nullspace
of a projection as in the smooth case. Let us show the following:

Theorem 2.5.11. If (wk : 1 ≤ k ≤ n) satisfies n(wk+1 −wk) = φk nk, then its projection onto the
orthogonal space to the space spanned by vectors of the form uk = gk vk, with respect to the discrete
elastic metric (2.50) is

Ph(w) = wk −mk vk (2.53)

where the numbers mk satisfy

b
n sin ∆kφk−1 = (a + a cos2 ∆k + b sin2 ∆k)mk − a cos ∆kmk−1 − a cos ∆k+1mk+1 (2.54)

with vk = (cos θk, sin θk) and ∆k = θk − θk−1.

Proof. For every vertical vector (gkvk) for any numbers gk, we want to see Ga,b(w −mv, gv) = 0.
We therefore get

0 =

n∑
k=1

a〈wk+1 − wk −mk+1vk+1 +mkvk, vk〉〈gk+1vk+1 − gkvk, vk〉

+ b〈wk+1 − wk −mk+1vk+1 +mkvk,nk〉〈gk+1vk+1 − gkvk,nk〉

=

n∑
k=1

a(mk −mk+1〈vk+1, vk〉)(gk+1〈vk+1, vk〉 − gk)

+ b( 1
nφk −mk+1〈vk+1,nk〉)gk+1〈vk+1,nk〉.

Using the identities

〈vk+1, vk〉 = cos θk+1 cos θk + sin θk+1 sin θk = cos ∆k+1,

and
〈vk+1,nk〉 = − cos θk+1 sin θk + sin θk+1 cos θk = sin ∆k+1,

one gets

0 =

n∑
k=1

gk

[
a(mk−1 −mk cos ∆k) cos ∆k − a(mk −mk+1 cos ∆k+1)

+ 1
nbφk−1 sin ∆k − bmk sin2 ∆k

]
,

after reindexing. Since this must be true for every choice of gk, we obtain (2.54).
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Remark 2.5.12. It is easy to check that (2.54) is a discretization of (2.35), as expected. Note that
equation (2.54) can be rewritten as

b

n


sin ∆1φn
sin ∆2φ1

sin ∆3φ2

...
sin ∆n−1φn−2

sin ∆nφn−1

 = T


m1
m2
m3

...
mn−1
mn


where T is a cyclic tridiagonal matrix of the form

T =


d1 τ2 0 0 ··· 0 0 τ1
τ2 d2 τ3 0 ··· 0 0 0
0 τ3 d3 τ4 ··· 0 0 0

...
...

...
... ···

...
...

...
0 0 0 0 ··· τn−1 dn−1 τn
τ1 0 0 0 ··· 0 τn dn

 (2.55)

with dk = a + a cos2 ∆k + b sin2 ∆k and τk = −a cos ∆k. Note that T is a small deformation of a
tridiagonal matrix which can be inverted in O(n) operations using Thomas algorithm. Observe that
dk > τk + τk+1 as soon as cos ∆k+1 > − 3

4 , hence the matrix T is strictly dominant as soon as the
angles between two successive rods are small enough, and this can be easily achieved by raising the
number of points. This implies that Thomas algorithm is numerically stable ([97]). See [67] where
algorithms are presented to invert cyclic tridiagonal matrices. Other algorithms for the solution of
cyclic tridiagonal systems are given for example in [202].

Definition and derivative of the energy functional in the discrete case

Consider a path t 7→ γk(t), 0 ≤ t ≤ T , preserving the arc-length parameterization (i.e., the length
of the rods) and connecting two positions of the chain γ1,k and γ2,k. Write

γk+1(t)− γk(t) = 1
nvk(t) = 1

n (cos θk(t), sin θk(t)).

We will use a dot for the differentiation with respect to the parameter t along the path. In particular
w = γ̇ is a vector field along the chain γ satisfying

wk+1(t)− wk(t) = 1
n θ̇k(t)nk(t).

Let ∆k(t) = θk(t)− θk−1(t). Given a variation ε 7→ γk(ε, t), ε ∈ (−δ, δ), of the path γk(0, t) = γk(t)
preserving the arc-length parameterization, let us compute the energy functional for the discrete
elastic metrics and its derivative at ε = 0. We will use a subscript ε for the differentiation with
respect to ε, in particular we will use the notation

d

dε
|ε=0 (γk+1(ε, t)− γk(ε, t)) = 1

nθε,k nk(0, t).

Theorem 2.5.13. Suppose we have a family of curves γk(ε, t) depending on time and joining fixed
curves γ1,k and γ2,k (which is to say that γk(ε, 0) = γ1,k and γk(ε, T ) = γ2,k for all ε and k). Then
the energy as a function of ε is

E(ε) = n
2

∫ T

0

n∑
k=1

(
a(mk −mk+1 cos ∆k+1)2 + b( 1

n θ̇k −mk+1 sin ∆k+1)2
)
dt, (2.56)

where m satisfies (2.54) with φk = θ̇k. Its derivative at ε = 0 is given by

dE

dε
(0) =

∫ T

0

1

n

n∑
k=1

θε,k(0, t)ξk(t) dt,

where ξk is given by

ξk = −bθ̈k + bn(ṁk+1 sin ∆k+1 +mk+1 cos ∆k+1θ̇k+1 −mk cos ∆kθ̇k−1)

+ n2(b− a)(m2
k sin ∆k cos ∆k −m2

k+1 sin ∆k+1 cos ∆k+1)

+ an2mk(mk−1 sin ∆k −mk+1 sin ∆k+1). (2.57)
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Proof. By Theorem 2.5.11, the horizontal projection of the velocity vector w = γ̇ is given by
Ph(w) = wk −mkvk where m satisfies (2.54) with φk = θ̇k. Hence the energy is

E(ε) = n
2

∫ T

0

n∑
k=1

a〈wk+1 − wk −mk+1vk+1 +mkvk, vk〉2

+ b〈wk+1 − wk −mk+1vk+1 +mkvk,nk〉2 dt, (2.58)

which reduces to (2.56).
To compute the derivative of the energy functional, we first simplify (2.56) by expanding and

reindexing to obtain

E(ε) = n
2

n∑
k=1

∫ T

0

(
b
n2 θ̇

2
k−1 − 2 bnmkθ̇k−1 sin ∆k + bm2

k sin2 ∆k

+ am2
k − 2amk−1mk cos ∆k + am2

k cos2 ∆k

)
dt.

Now let ψk = ∂θk
∂ε |ε=0, νk = ψk − ψk−1, and gk = ∂mk

∂ε |ε=0. We then get

dE

dε
(0) = n

n∑
k=1

∫ T

0

(
b
n2 θ̇k−1ψ̇k−1 − b

nmkψ̇k−1 sin ∆k − b
nmkθ̇k−1 cos ∆kνk

+ (b− a)m2
k sin ∆k cos ∆kνk + amk−1mk sin ∆kνk

)
dt

+ n

n∑
k=1

∫ T

0

gk

(
− b

n
θ̇k−1 sin ∆k + bmk sin2 ∆k + amk

− amk−1 cos ∆k − amk+1 cos ∆k+1 + amk cos2 ∆k

)
dt.

But notice that the term multiplied by gk vanishes since mk satisfies (2.54); hence it is not necessary
to compute the variation gk. All that remains is to express every term in dE

dε (0) in terms of ψk either
by reindexing or integrating by parts in time, which is straightforward and leads to (2.57).

Gradient of the discrete energy functional

Let us compute the gradient of the discrete energy functional with respect to the quotient elastic
metric Ga,b. Considering equation (2.57), let us first compute ṁk.

Lemma 2.5.14. Let G denote the inverse matrix of the matrix T in (2.55), so that

mj =

n∑
k=1

Gjk
b

n
φk−1 sin ∆k for all j, (2.59)

where ∆k = θk−θk−1 for some angles θk. If θk(t) depends on time and φk(t) = θ̇k(t), then we have
the formula

ṁj =

n∑
k=1

Gjk
( b
n

sin ∆kθ̈k−1 +
b

n
cos ∆kθ̇k−1∆̇k + 2(a− b) sin ∆k cos ∆kmk∆̇k

− a sin ∆kmk−1∆̇k − a sin ∆k+1mk+1∆̇k+1

)
. (2.60)

Proof. We just compute the time derivative of each term of equation (2.54) and notice that the
terms involving ṁk are

b sin2 ∆kṁk + aṁk + a cos2 ∆kṁk − a cos ∆kṁk−1 − a cos ∆k+1ṁk+1.

Hence we need to invert the same matrix T to solve for ṁk as we do to solve for mk. The remainder
is straightforward.

Finally let us rewrite the l2-product in (2.57) as an Ga,b-inner product, analogously to Theo-
rem 2.5.9.
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Proposition 2.5.15. Let w and z be two vector fields along γ with n(wk+1 − wk) = αk nk and
n(zk+1 − zk) = βk nk for some numbers αk and βk. Consider the equation

Ga,b(Ph(w), Ph(z)) =

n∑
k=1

1

n
αkξk (2.61)

for some numbers ξk. Then

βk =
1

b
ξk + nhk+1 sin ∆k+1, (2.62)

where the sequence hk satisfies

1
nξk−1 sin ∆k = (a+ a cos2 ∆k)hk − a cos ∆khk−1 − a cos ∆k+1hk+1. (2.63)

Remark 2.5.16. Note that equation (2.63) can be written as

1
a


sin ∆1ξn
sin ∆2ξ1
sin ∆3ξ2

...
sin ∆n−2ξn−3

sin ∆n−1ξn−2

sin ∆nξn−1

 = M


h1

h2

h3

...
hn−2

hn−1

hn

 ,

where M is the following cyclic tridiagonal matrix

M = n


δ1 t2 0 ··· 0 0 t1
t2 δ2 t3 ··· 0 0 0
0 t3 δ3 ··· 0 0 0

...
...

... ···
...

...
...

0 0 0 ··· tn−1 δn−1 tn
t1 0 0 ··· 0 tn δn

 . (2.64)

where δk = 1 + cos2(∆k) and where tk = − cos(∆k). Note that again, M is strictly dominant as
soon as − 3

4 < cos ∆k+1 (see remark 2.5.12).

Proof. First of all, we have Ga,b(Ph(w), Ph(z)) = Ga,b(w,Ph(z)), since the projection Ph is orthog-
onal with respect to Ga,b. Since the vector field z satisfies n(zk+1−zk) = βk nk, by Theorem 2.5.11,
its horizontal projection reads

Ph(z) = zk − hk vk,

where hk is the solution of

b
nβk−1 sin ∆k − bhk sin2 ∆k = a

(
hk + cos2 ∆khk − cos ∆khk−1 − cos ∆k+1hk+1

)
. (2.65)

Using the expression of the Ga,b-inner product given in (2.52), it follows that

Ga,b(w,Ph(z)) = n
∑n
k=1

b
nαk〈(zk+1 − hk+1 vk+1)− (zk − hk vk),nk〉

= n
∑n
k=1 b

αk
n (βkn − hk+1 sin ∆k+1),

where we have used n(zk+1 − zk) = βk nk and 〈vk+1,nk〉 = sin ∆k+1. Comparing with equa-
tion (2.61), it follows that

1

n
ξk =

b

n
(βk − nhk+1 sin ∆k+1).

Therefore equation (2.65) reads

1

n
sin ∆kξk−1 = a

(
hk + cos2 ∆khk − cos ∆khk−1 − cos ∆k+1hk+1

)
.

Let us summarize the previous results in the following Theorem.
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Theorem 2.5.17. Suppose we have a family of curves γk(ε, t) depending on time and joining fixed
curves γ1,k and γ2,k (which is to say that γk(ε, 0) = γ1,k and γk(ε, T ) = γ2,k for all ε and k). Then
the derivative of the energy functional E associated with the quotient elastic metric Ga,b reads

dE

dε
(0) =

∫ T

0

Ga,b(γε,∇E(γ))dt,

where ∇E(γ) = (zk : 1 ≤ k ≤ n) is the solution of n(zk+1 − zk) = βk nk with βk solving (2.62)
for ξk defined by (2.57). Since we consider curves modulo translation, we can take z0 = 0. The
projection of ∇E(γ) on the manifold of closed curves reads(

zk −
1

n

n∑
k=1

βk nk : 1 ≤ k ≤ n

)
.

2.5.3 Two-boundary problem and Energy landscape

Algorithms for the two-boundary problem

Given two shapes in the plane, solving the two-boundary problem consists in finding a geodesic (if
it exists!) having these shapes as endpoints. A geodesic is a path that is locally length-minimizing.
Using the exact expression of the gradient of the energy functional, we can obtain approximations of
geodesics by a path-straightening method. This method relates to the fact that critical points of the
energy are geodesics, and it consists of straightening an initial path between two given shapes in the
plane by following the opposite of the gradient flow of the energy functional (see Algorithm 1). The
algorithm for the computation of the gradient of the energy functional, based on the computation
given in previous Sections, is given below (see Algorithm 2). Of course the efficiency of the path-
straightening method depends greatly on the landscape created by the energy functional on the
space of paths connecting two shapes, and this landscape in turns varies with the parameters a and
b of the elastic metric. In Section 2.5.3, we illustrate some aspects of this dependence. In all the
numerics presented in [208] we used 100 points for each curve.

Figure 2.15: Toy example: initial path joining a circle to the same circle via an ellipse. The 5 first shapes at the left
correspond to the path at time t = 0, t = 0.25, t = 0.5, t = 0.75 and t = 1. The right picture shows the entire path, with
color varying from red (t = 0) to blue (t = 0.5) to red again (t = 1).

Algorithm 1: Algorithm for the path-straightening method

Input:

1. An initial shape γ1 given by the positions γk,1, 1 ≤ k ≤ n of n points in R2,

2. A final shape γ2 given by the positions γk,2, 1 ≤ k ≤ n of n points in R2.

Output: An (approximation of a) geodesic between γ1 and γ2 under the quotient elastic metric Ga,b, given by the positions

γk(t), 1 ≤ k ≤ n of n points in R2, with γk(0) = γk,1 and γk(1) = γk,2.

Algorithm 1: Initialize γk(t) by a path connecting γ1 to γ2.

1. compute ∇E(γ) using Algorithm 2.

2. while ∇E(γ) < 10−3 do

(a) γk(t) ← γk(t) − δ∇E(γ) where δ is a small parameter to be adjusted (we used δ = 10−9).

(b) Compute the length L(γ) of γk(t) and do γk(t) ← γk(t)/L(γ).
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Algorithm 2: Algorithm for the computation of the gradient of the energy functional

Input: positions γk(t), 1 ≤ k ≤ n of n points in R2 depending on time t ∈ I.

Output: n vectors zk = ∇Ek(t), 1 ≤ k ≤ n in R3, depending on time t ∈ I, corresponding to the values of the gradient of the

Ga,b-energy of γk(t).

Algorithm 2:

1. compute (cos θk(t), sin θk(t)) = n(γk+1(t) − γk(t))/|γk+1(t) − γk(t))|, θk, θ̇k and ∆k = θk+1 − θk.

2. define T as in equation (2.55) and compute (mk, 1 ≤ k ≤ n) defined by: T



m1
m2
m3

.

.

.
mn−1
mn


= b
n



θ̇n sin ∆1
θ̇1 sin ∆2
θ̇2 sin ∆3

.

.

.
θ̇n−2 sin ∆n−1

θ̇n−1 sin ∆n


.

3. compute θ̈k and ∆̇k as well as

Rk =
(
b
n

sin ∆kθ̈k−1 + b
n

cos ∆kθ̇k−1∆̇k + 2(a − b) sin ∆k cos ∆kmk∆̇k

−a sin ∆kmk−1∆̇k − a sin ∆k+1mk+1∆̇k+1

)
.

4. compute ṁk defined by equation (2.60): T ṁ = R.

5. compute ξk defined by equation (2.57):

ξk = −bθ̈k + bn(ṁk+1 sin ∆k+1 +mk+1 cos ∆k+1θ̇k+1 −mk cos ∆kθ̇k−1)

+ n
2
(b − a)(m

2
k sin ∆k cos ∆k −m

2
k+1 sin ∆k+1 cos ∆k+1)

+ an
2
mk(mk−1 sin ∆k −mk+1 sin ∆k+1).

6. define matrix M by equation (2.64) and compute hk defined by: M



h1
h2
h3

.

.

.
hn−2
hn−1
hn


= 1
a



sin ∆1ξn
sin ∆2ξ1
sin ∆3ξ2

.

.

.
sin ∆n−2ξn−3
sin ∆n−1ξn−2

sin ∆nξn−1


.

7. compute βk defined by equation (2.62): βk = 1
b
ξk + nhk+1 sin ∆k+1.

8. compute zk defined by z1 = 0 and zk+1 = zk + 1
n
βk nk −

1
n

∑n
k=1 βk nk.
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Figure 2.16: Straightening of the path illustrated in Fig. 2.15, with a = 100 and b = 1. The first line corresponds to
the initial path, the second line to the path after 3500 iterations, and the third line corresponds to the path after 7000
iterations. At the right the evolution of the energy with respect to the number of iterations is depicted.

Energy landscape

In order to experience the range of convergence of the path-straightening algorithm, we first start
with a toy example, namely we start with an initial path joining a circle to the same circle but
passing by an ellipse in the middle of the path. This path is illustrated in Fig. 2.15, where the middle
ellipse may by replaced by an ellipse with different eccentricity. Starting with this initial path, we
expect the path-straightening method to straighten it into the constant path containing only circles,
which is a geodesic. However, this will happen only if the initial path is in the attraction basin of
the constant path, in the sense of dynamical systems, i.e., if the initial path is close enough to the
constant geodesic. This in turn will depend on the value of the parameter a/b of the elastic metric.
In particular the same path can be in the attraction basin of the constant path for some value of
a/b and outside of it for some other value of the parameter. In order to have a better idea when

a/b = 1/4a/b = 0.01 a/b = 5a/b = 1

a/b = 100a/b = 50a/b = 30a/b = 20a/b = 13

a/b = 10

Figure 2.17: Gradient of the energy functional at the middle of the path depicted in Fig. 2.15 for b = 1 and different
values of the parameter a/b.

the path-straightening method will converge, we plot in Fig. 2.17 the opposite of the gradient of the
energy functional at the middle of the path for different values of the parameter a/b. In this figure,
the magnitude of the gradient is rescaled, hence the only important information is the directions
taken by the vector field. For a/b = 100, the opposite of the gradient is the vector field that one
expects for turning the ellipse into a circle. On the contrary, for a/b = 0.01, the opposite of the
gradient is not bowing the ellipse. In other words, one can conjecture that the initial path depicted
in Fig. 2.15 is in the attraction basin of the constant path for a/b = 100, but not for a/b = 0.01.
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This is indeed what is happening, the path-straightening algorithm applied to the path of Fig. 2.15
converges for a/b = 100 (see Fig. 2.16) but diverge for a/b = 0.01.

Figure 2.18: Gradient of the energy functional at the middle of the path connecting a circle to the same circle via an
ellipse for different values of the eccentricity of the middle ellipse. The first line corresponds to the values of parameters
a = 0.01 and b = 1. The second line corresponds to a = 100 and b = 1.

To have an idea of the attraction basin of the constant geodesic for a/b = 0.01, one can vary the
eccentricity of the middle ellipse in the initial path. Recall that the ellipse eccentricity is defined
as e =

√
1− c2/d2 with c the semi-minor axis and d the semi-major axis. In Fig. 2.18, we have

depicted the gradient of the energy functional at the middle of the initial path for different values
of the middle ellipse’s eccentricity. The first line corresponds to a/b = 0.01. From left to right
the eccentricity of the ellipse at the middle of the path takes the values 0.8844, 0.7882, 0.5750,
0.1980 and 0.0632. One sees a change in the vector field between the third and fourth picture: only
when the middle ellipse is nearly a circle will the path-straightening algorithm converge for the
value a/b = 0.01. In comparison, the second line corresponds to a/b = 100. From left to right the
eccentricity of the ellipse at the middle of the path takes the values 0.9963, 0.95, 0.8, 0.1980 and
0.0632. In this case, the opposite of the gradient is bowing the ellipse even if the ellipse is very far
from a circle.

Another aspect of the gradient in this toy example is that it is localized at the middle shape as is
illustrated in Fig. 2.19. In this picture the gradient is scaled uniformly. One sees that the gradient
is nearly zero except at the middle shape. This is clearly a disadvantage for the path-straightening
method since after one iteration of algorithm 1, only the middle shape is significantly changed. This
localization of the gradient imposes a small step size in order to avoid discontinuities in the path
around the middle shape.

Figure 2.19: Gradient of the energy functional along the path depicted in Fig. 2.15 for a = 1 (upper line), a = 5 (middle
line) and a = 50 (lower line) and b = 1.

In Fig. 2.20, we show a 2-parameter family of variations of a circle. The middle horizontal line
corresponds to the deformation of the circle into an ellipse, and can be thought of as stretching the
circle by pulling or pushing it to opposite circle points. In comparison, the middle vertical column
corresponds to the deformation of the circle into a square and can be thought of as bending the circle
at four corners. We built a 2-parameter family of deformations of the constant path connecting
a circle to itself by interpolating smoothly from the circle to one of these shapes at the middle of
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the path and back to the circle. In Fig. 2.21, the energy plots of the 2-parameter family of paths
obtained this way are depicted for a = 0.01, b = 1 (left upper picture and nearly flat piece in the
lower picture), and for a = 100, b = 1 (right upper picture, and curved piece in the lower picture).
One sees that, for the elastic metric with a = 0.01, b = 1, both directions of deformation - turning
a circle into an ellipse and turning a circle into a square - have the same energy amplitude. On the
contrary, for the elastic metric with a = 100 and b = 1, one needs a lot more energy to deform a
circle into an ellipse than to deform a circle into a square, i.e., stretching is predominant.

Figure 2.20: 2-parameter family of variations of the middle shape of a path connecting a circle to the same circle
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Figure 2.21: Energy functional for the 2-parameter family of paths whose middle shape is one of the shapes depicted in
Fig. 2.20. The left upper picture corresponds to a = 0.01, b = 1 and the right upper picture to a = 100, b = 1. The lower
picture shows the plots of both energy functionals with equal axis.

Finally we consider in Fig. 2.22 the problem of finding a geodesic from a Mickey Mouse hand to
the same hand with a finger missing. The first line is obtained by taking the linear interpolation
of the hands, when both hands are parameterized by arc-length. The second line is obtained by
first taking the linear interpolation of the hands and than parameterizing each shape of the path
by arc-length. The second path serves as initial path for the path-straightening method. The third
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parameter values linear interpolation 1 linear interpolation 2 path 3 path 4 path 5

a = 0.01, b = 1 32.3749 27.45 25.3975 26.2504 28.3768
a = 0.25, b = 1 63.1326 52.4110 47.8818 47.5037 48.2284
a = 100, b = 1 77.6407 66.6800 63.4840 60.9704 57.4557

Table 2.1: Energy of the paths depicted in Fig. 2.22.

line (resp. the fourth line, resp. the last line) corresponds to the path of minimal energy that we
were able to find for a = 0.01, b = 1 (resp. a = 0.25, b = 1, resp. a = 100, b = 1), but the
path-straightening algorithm is struggling in all cases. Note the different shapes of the growing
finger when the parameters are changed. The energy of all these paths, for the different values of
the parameters, is given in Tab. 2.1.

Figure 2.22: Different paths connecting a Mickey Mouse hand to the same hand with a missing finger.

Conclusion

In this section, we presented the study of the pull-back of the quotient elastic metrics to the
space of arc-length parameterized plane curves of fixed length. We computed, for all values of the
parameters, the exact energy functional as well as its gradient. These computations allowed us
to illustrate how these metrics behave with respect to stretching and bending. In particular, we
showed that even for small values of a/b, stretching and bending have contributions of the same
order of magnitude to the energy, a fact that may be surprising in regard to the expression of the
elastic metric on parameterized curves. On the other hand, for large values of a/b, stretching has
a predominant cost to the energy, as expected. This implies that the energy landscape is steeper
for big values of a/b in the sense that some deformations are preferred, a property that facilitates
convergence of a path-straightening algorithm.
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Chapter 3

Shape Analysis of Surfaces

3.1 Introduction

This chapter is based on our publication [212] and our collaborations [205], [169]. It is organized
as follows. In Section 3.2, we first explain how spherical surfaces (i.e. surfaces of genus 0) can be
implemented on a computer using spherical harmonics. Then we explain how a spherical surface
can be aligned in order to have its center of mass at the origin, its inner volume equal to one and
its principal axes along a preferred frame. These steps are usually needed in order to work indepen-
dantly of rotation, scaling and translation. Mathematically the alignment procedure is equivalent
to the projection of a spherical surface of interest onto a preferred section of the fiber bundle of sur-
faces modulo translation, rotation and scaling. The remaining variability is given by the action of
the group of diffeomorphisms of S2 which acts on a parameterized surface f : S2 → R3 by reparam-
eterizations f 7→ f ◦γ, for γ ∈ Diff(S2). Contrary to the group Diff([0, 1]) of reparameterizations of
compact curves which can be deal with dynamic programming, the group Diff(S2) is more difficult
to handle directly. As already mentioned in Part I, a canonical parameterization of spherical shapes
exists modulo PSL(2,C), given by the uniformization map. However it is difficult to implement in
general. For this reason, we propose two different ways to deals with parameterization variability:

• In Section 3.3, we propose a gauge invariant framework (publication [205]) for shape analysis
of spherical surfaces, which allows to define a Riemannian metric directly on the quotient of
parameterized surfaces modulo diffeormorphisms without having to optimize over the group
of diffeomorphisms of S2. In this setting the length of a metamorphosis between two surfaces
depends neither on the parameterizations of starting and ending shapes, nor on the param-
eterizations of shapes along the path of deformations connecting them. This framework is
directly inpired from gauge theories in mathematical physics, and can be applied to the set of
all spherical surfaces. As an example of this setting, the two paths of parameterized surfaces
depicted in Fig 3.1, projecting onto the same deformation of shapes, have the same length.

• In Section 3.4, based on our collaboration [169], we specialize the set of surfaces under consid-
eration to be the set of human bodies with different morphologies and poses. In this case, a
local section of the fiber bundle of parameterized surfaces modulo reparameterization is pro-
vided by surfaces aligned with a SMPL template (see Fig 3.2b). In this case, a Riemannian
metric is defined on the section of human bodies aligned with the template. Notably we pro-
posed a optimization procedure for computing geodesics between aligned human bodies that
preserved this section by constructing a family of deformations out of a database of plausible
poses and morphologies. This idea of creating an adapted deformation basis from the surfaces
under consideration (as opposed to general deformation basis build with spherical harmonics,
see Section 3.2.1) appears to lead to very efficient algorithms. Mathematically, this corre-
sponds to the choice of a finite-dimensional subspace of the tangent space to the manifold of
surfaces, that is relevant for the current application and general enough to provide all plau-
sible deformations. Moreover it improves the stability of the algorithm since the preferred
section of aligned human bodies is by construction preserved by perturbations coming from
this adapted basis of deformations. Fig. 3.2a shows some examples of human shapes from
FAUST dataset [34] and Fig. 3.2b shows the SMPL template T used in [169].
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The fiber bundle structure of the space of parameterized spherical surfaces is explained in more
details in Section 3.2.4. In Section 3.2.5, we explain what characterizes a spherical surface modulo
reparameterization, namely its first and second fondamental forms. In Section 3.3, we will use
this characterization to define a Riemannian metric on the space of shapes and, using Section 3.2.4,
implement it in a way that is independant of the parameterizations ([205]). The Riemannian metrics
introduced in this section are reused in a different way in Section 3.4 ([169]).

Figure 3.1: Two paths of parameterized surfaces with the same sequence of shapes but with different parameterizations
of the corresponding shapes.

(a) Human shapes from the FAUST dataset.

(b) SMPL template used in [169].

84



3.2 Construction and alignment of spherical surfaces

3.2.1 Construction of surfaces using spherical harmonics

In order to represent surfaces on a computer, we start with a basis B1 = {Y ml , 1 ≤ l ≤ N,−l ≤
m ≤ l} of spherical harmonics of degree less than N , available in Matlab as function SPHARM
(see [56] for more information on spherical harmonics). We make three copies of this basis of R-
valued functions in order to obtain a basis B2 of the space L2(S2,R3) of R3-valued functions. Any
spherical surface can be constructed or reconstructed using the resulting basis. The convergence
of the reconstruction process, as the degree of the spherical harmonics grows, is demonstrated in
Fig. 3.3.

Figure 3.3: Reconstruction of several surfaces with different degree of spherical harmonics. From
left to right is depicted the initial surface and its approximation using spherical harmonics with
maximal degree l = 3, l = 5, l = 7, l = 11, l = 15, l = 18, l = 20 and l = 28 respectively.

3.2.2 Alignement of surfaces: removing rotation, translation and scale
variability

If we want to compare shapes in R3, the first thing to do is to state clearly what is relevant in
the shape, and what is not. Depending on our situation, one may for instance think of a shape
as a surface modulo rotation and/or modulo translation and/or modulo scaling. Before comparing
two surfaces, one may therefore want to align them properly first, and do so in a way that does
not depend on the parameterizations. In the next Section, we explain how the first and second
moments of the surface can help us do that. In most situations, it makes sense to think of our
spherical surfaces as boundaries of 3D-volumes (the surface of a cat has a meaning for us, precisely
because it encloses a cat). In order to scale a given surface, we will therefore compute the enclosed
volume V and divide each coordinate of surface points by V 1/3. Accordingly, to center a surface,
we will compute the center of mass of the enclosed volume and substract it from the coordinates
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of surfaces points. The center of mass, whose coordinates are the first moments of the surface, is
defined by the following integral over the enclosed volume:

C =

∫ (
x
y
z

)
dVol.

In order to rotationally align our spherical surface, we will compute the best ellipsoid that approx-
imates the enclosed volume, and apply to the surface points the rotation that maps the axes of the
ellipsoid (with decreasing lengths) to the reference axes. This rotation is uniquely defined if the
approximating ellipsoid is triaxial (i.e. the lengths of its principal axes are distinct). As an example,
Fig. 3.4 shows two hands that have different orientations in space, the corresponding ellipsoids,
and the hands after rotation (with a gap to separates them in order to facilitate visualization).

Figure 3.4: Rotational alignment: two hands before and after the alignment, respectively at the left and at the right.
Each hand is approximated by an ellipsoid. The rotation used apply the axis of one ellipsoid to the axis of the other.

What we expect from the approximation of a surface by an ellipsoid is at least that, if we
start with an ellipsoid, then it returns the ellipsoid itself. We expect also that if we change the
parameterization of the surface, the ellipsoid’s shape does not change. To fulfill both conditions,
we will need the second moments of the surface defined as the following integral over the enclosed
volume

M =

∫ (
x2 xy xz

xy y2 yz

xz xy z2

)
dvol.

The resulting matrix is a symmetric real matrix, hence can be diagonalized in an orthonormal basis.
Its eigenvectors define the rotation we are looking for (more precisely its inverse). To illustrate this
robustness we show in Fig. 3.5 different parameterizations of a horse (middle row) obtained by
pre-composing a given parameterization by a diffeomorphism of the sphere (bottom row) and the
resulting ellipsoid (top row). The diffeormorphims used in this experiment are (from left to right)
ϕ1 = identity, ϕ2 = rotation of− 3π/4 around x-axis, ϕ3 = Möbius transformation that maps z ∈
S2 ' C ∪ {∞} to φ3(z) = 0.4z + 0.5, ϕ4 = rotation of −π/2 around x-axis composed with ϕ3.

Figure 3.5: Robustness of the approximating ellipsoid of a surface with respect to reparameterizations.
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Figure 3.6: Lower rows: different re-parametrizations of the sphere; Middle rows: corresponding
re-parametrizations of a shape; Upper rows: corresponding approximating ellipsoids.
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Figure 3.7: Dependance of the approximating ellipsoid with respect to rotation of the shape.

Recall that, given a spherical surface, we do not have any formula for a parameterization of
it. Moreover we have only a finite number of points on the surface. The integration procedure is
therefore replaced by the sum over the oriented tetrahedra defined by two edges on the surface,
and a surface point (see Fig. 3.8). Recall that the volume of a tetrahedron built on three vectors
v1, v2 and v3 reads 1

6 det(v1, v2, v3). It is important to keep track of the orientation of the surface
(in Fig. 3.8, the volume of the red tetrahedron is coming with a + sign, whereas the volume of
the blue one is coming with a − sign). The value of the integral of a polynomial function on a
tetrahedron can be expressed (exactly) using just the values taken by the polynomial at a finite
number of points on the tetrahedron. For instance, the integral of x2 over the tetrahedron with
vertices 0, v1 = (x1, y1, z1), v2 = (x2, y2, z2), and v3 = (x3, y3, z3) is the volume of the tetrahedron
multiplied by 1

20 × [(x1 + x2)2 + (x2 + x3)2 + (x1 + x3)2].
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Figure 3.8: Integration over a triangulated surface.

3.2.3 Implementation of Alignment of spherical shapes

In this section we provide the details of the alignement program (Algorithm 6) described in the
previous Section. The center of mass of the inscribed volume in a surface f is computed using Algo-
rithm 3. The inscribed volume in a surface f is computed using Algorithm 4. The computation of
the second moments is implemented using Algorithm 5.To find the best ellipsoid that approximates
a surface S and the corresponding rotation U , one can use a singular value decomposition of STS.
However, in the case where the surface is the boundary of a 3D-volume, it is more accurate to
compute the mean of STS over the inscribed volume. It also has a more physical meaning since the
resulting ellipsoid is equivariant with respect to affine transformations (see previous Section). More-
over, the estimation of ellipsoid for an inscribed volume is more stable under reparameterizations.
More pictures illustrating the robustness of the approximating ellipsoid when the parametrization
of the initial surface is changed are given in Fig. 3.6. The dependance of the approximating ellipsoid
with respect to a rotation of the surface is illustrated in Fig.3.7.

Algorithm 3: Computation of center of mass

Input:

1. 3D-parametrized surface f of size a× b× 3

2. Inscribed volume Vol in surface f

3. volume vol1(i, j) of infinitesimal tetrahedron with vertices 0, f(i, j, :), f(i+ 1, j), f(i, j + 1)

4. volume vol2(i, j) of infinitesimal tetrahedron with vertices 0, f(i+ 1, j + 1, :), f(i+ 1, j), f(i, j + 1).

Output: Center of mass of inscribed volume in surface f .
Algorithm: Initialize Center = (0, 0, 0). for i← 1 to size(f, 1) do

for j ← 1 to size(f, 2) do

1- m1 = 1
4

(f(i, j, :) + f(i+ 1, j, :) + f(i, j + 1, :))

2- m2 = 1
4

(f(i+ 1, j + 1, :) + f(i+ 1, j, :) + f(i, j + 1, :))

3- Center← Center + vol1(i, j)×m1+vol2(i, j)×m2
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Algorithm 4: Computation of inscribed volume

Input: 3D-parametrized surface f of size a× b× 3.
Output:

1. Inscribed volume Vol in surface f

2. volume vol1(i, j) of infinitesimal tetrahedron with vertices 0, f(i, j, :), f(i+ 1, j), f(i, j + 1);

3. volume vol2(i, j) of infinitesimal tetrahedron with vertices 0, f(i+ 1, j + 1, :), f(i+ 1, j), f(i, j + 1).

Algorithm: Initialize Vol = 0.
for i← 1 to size(f, 1) do

for j ← 1 to size(f, 2) do

1- Set

edge(1) = f(i+ 1, j, :)− f(i, j, :)

edge(2) = f(i, j + 1, :)− f(i, j, :)

edge(3) = f(i, j + 1, :)− f(i+ 1, j + 1, :)

edge(4) = f(i+ 1, j, :)− f(i+ 1, j + 1, :)

2- Set

vol1(i, j) = 1
6

Det(edge(1), edge(2),−f(i, j, :))

vol2(i, j) = 1
6

Det(edge(3), edge(4),−f(i+1, j+1, :))

3- Vol← Vol + vol(1) + vol(2).

Algorithm 5: Computation of second moments

Input:

1. 3D-parametrized surface f of size a× b× 3

2. Inscribed volume Vol in surface f

3. volume vol1(i, j) of infinitesimal tetrahedron with vertices 0, f(i, j, :), f(i+ 1, j), f(i, j + 1)

4. volume vol2(i, j) of infinitesimal tetrahedron with vertices 0, f(i+ 1, j + 1, :), f(i+ 1, j), f(i, j + 1).

Output: second moments of surface f defined as the following integral over the inscribed volume

M =

∫  x2 xy xz
xy y2 yz
xz xy z2

 dvol

Algorithm: Initialize M = zeros(3, 3).
for i← 1 to size(f, 1) do

for j ← 1 to size(f, 2) do
for k ← 1 to 3 do

for l← 1 to 3 do
s1 = (f(i, j, k) + f(i, j+1, k))∗(f(i, j, l) + f(i, j+1, l)),

s2 = (f(i, j, k) + f(i+1, j, k))∗(f(i, j, l) + f(i+1, j, l)),

s3 = (f(i+1, j, k)+f(i, j+1, k))∗(f(i+1, j, l)+f(i, j+1, l)).

m1 =
1

20
∗ (s1 + s2 + s3).

s4 = (f(i+1, j, k)+f(i, j+1, k))∗(f(i+1, j, l)+f(i, j+1, l)).

s5 = (f(i+1, j+1, k)+f(i+1, j, k))∗(f(i+1, j+1, l) + f(i+1, j, l)),

s6 = (f(i+1, j+1, k)+f(i, j+1, k))∗(f(i+1, j+1, l) + f(i, j+1, l)),

m2 =
1

20
∗ (s4 + s5 + s6).

M(k, l) ← M(k, l) + vol1(i, j). ∗m1 + vol2(i, j). ∗m2.
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Algorithm 6: Alignement of 3D-shapes

Input:

1. a grid of n× n points on the unit sphere, i.e. for each index (i, j) ∈ [1, n]× [1, n], a value of polar angle θ(i, j)
and of azimuthal angle φ(i, j),

2. a parametrized surface f1, i.e. for each index (i, j) ∈ [1, n]× [1, n], a point f1(i, j) in R3 corresponding to the
image of the point on the sphere with spherical coordinates (θ(i, j), φ(i, j)) by the map f1,

3. a parametrized surface f2, i.e. for each index (i, j) ∈ [1, n]× [1, n], a point f2(i, j) in R3 corresponding to the
image of the point on the sphere with spherical coordinates (θ(i, j), φ(i, j)) by the map f2.

Output:

1. a centered and scaled surface F1 having the same shape as f1, with center of mass at the origin and
inscribed volume 1,

2. a centered, scaled and rotated surface F2 having the same shape as f2, with center of mass at the origin,
inscribed volume 1 and principal axes aligned with the principal axes of F1.

3. For k = 1, 2, an approximating ellipse Ek of Fk.

Algorithm:

1- For k = 1, 2, use algorithm 4 to compute the volume V olk inscribed in the surface fk.

2- For k = 1, 2, fk ← fk/ (Volk)1/3.

3- For k = 1, 2, use algorithm 3 to compute the center of mass Centerk of the inscribed volume in surface fk.

4- For k = 1, 2, fk ← fk − Centerk.

5- For k = 1, 2, use algorithm 5 to compute the second moments Mk of surface fk.

6- For k = 1, 2, compute [Uk, Sk, Vk] = svd(Mk).

7- Set F1 = f1 and F2 = U2 × U ′1 × f2.

8- For k = 1, 2, compute

Ak =

(
4π

15

) 1
5

det(Mk)−
1
10Uk ×

√
Sk × U ′k.

9- Set Ek = Ak × sphere, k = 1, 2.

3.2.4 Fiber bundle structure of pre-shape space

In this section, we stressed the distinction between the set of all (aligned) parameterized spherical
surfaces, called pre-shape space, and the set of all (aligned) spherical surfaces, called shape space.
Recall that the group Diff+(S2) of (orientation preserving) diffeomorphisms of the unit sphere
acts on the pre-shape space simply by reparameterization. It is noteworthy that two parameterized
surfaces correspond to the same surface if and only if one can pre-compose the first parameterization
by a diffeomorphism of the sphere to obtain the second parameterization. One can therefore put
an equivalence relation on the pre-shape space, by saying that two parameterized surfaces are
equivalent if and only if they can by related by an element of the group Diff+(S2), i.e. if and only
if they represent the same surface. The equivalence classes are also called the orbits of the group
Diff+(S2) acting on pre-shape space. Note that two distinct orbits do not intersect, therefore the
set of orbits fibers the pre-shape space in a nice way. There is a one to one correspondence between
the set of orbits and the shape space. One says that the shape space is the quotient space of the
preshape space by the action of the group of diffeomorphisms of the sphere. In Fig. 3.1, we have
illustrated this fiber bundle structure: the blue surfaces at the bottom line are elements in the shape
space (no parameterization), and the vertical lines above them symbolize the corresponding fibers
in pre-shape space. Two elements in each fiber are depicted, for instance in the first left fiber one
can see two parameterized horses which correspond to the same shape.

The pre-shape space is a smooth (Fréchet) manifold, meaning that locally it looks like a vector
space, in the same sense that the earth looks locally like a plane. In fact, the pre-shape space is an
open set in the vector space C∞(S2,R3) of smooth maps from the unit sphere into R3. Moreover,
the fiber bundle structure described above is a smooth one, meaning in particular that the tangent
space at some pre-shape point (which can be identified with C∞(S2,R3) itself) can be decomposed
into the tangent space to the fiber passing through this point and some complement. Since we
are dealing with surfaces embedded in R3, there is a natural complement to the tangent space
of the fibers (in mathematical terminology, there is a natural connection on this fiber bundle).
Indeed, let us describe the tangent space of the fiber at some pre-shape point, for instance at the
parameterization of the cat depicted in Fig. 3.9. By definition, a tangent vector to the fiber passing
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through this parameterized cat is the velocity vector at t = 0 of a smooth curve drawn in the fiber
whose initial point at t = 0 is precisely the parameterized cat we are considering. Such a smooth
curve is depicted at the bottom line of Fig. 3.9, and is obtained by the action on the parameterized
cat of a smooth curve in the diffeomorphism group of S2 starting at the identity (upper line of
Fig. 3.9). Hence the tangent space to the fiber passing through the parameterized cat is the space
of tangent vector fields to the surface of the cat. A natural complement to this tangent space in
C∞(S2,R3) (which can be identified with the space of R3-valued vector fields on the cat using the
parameterization at hand) is the space of vector fields which are orthogonal to the surface of the cat,
for the scalar product of the Euclidean space R3. In Fig. 3.10, we have depicted the decomposition
of an element in C∞(S2,R3) into the sum of a vector field tangent to the cat and a vector field
orthogonal to the cat. In Section 3.3.2 we give more details about the invariance of the subbundle
of orthogonal vector fields under the action of the group of diffeomorphism of S2.

Figure 3.9: A vector field on the sphere (upper left), and a path of diffeomorphisms having this vector field as velocity
at t = 0 (5 other spheres). Bottom line : action of this path of diffeomorphisms on a cat and corresponding vector field.

Figure 3.10: Decomposition of a vector field on the cat (green) into a vector field orthogonal to the cat (black) and a
vector field tangent to the cat (red).

3.2.5 Characterization of a shape

If we want to compare shapes, as opposed to parameterized surfaces, one has to understand what
is characteristic of the shape, i.e. what is independent of the parameterization. Recall that on a
spherical surface one can measure distances, and angles, just because the surface is sitting in the
Euclidean 3-dimensional space. This is encoded by the Riemannian metric on the spherical surface
obtained by restricting the Euclidean metric of R3, and is called the first fundamental form of
the surface. The second fundamental form is encoding how the surface is embedded into R3, and
combine with the first fundamental form to define the Shape operator of the surface, which tells us
how the surface is bent in R3. The shape operator is related to the differential of the normal vector
field seen as an application, called Gauss map, from the surface into the unit sphere, assigning to
each point of the surface the unit normal vector to the surface at this point (identified with an
element of the unit sphere). The eigenvalues of the Shape operator at a given point, called principal
curvatures, are the minimal and maximal curvatures that a curve, obtained as intersection of a
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plane containing the normal at this point with the surface, can have. For instance, the principal
curvatures at any point of a plane are both 0, whereas the principal curvatures at any point of a
sphere of radius R are both 1/R. It is a remarkable fact observed by Gauss that the product of
the principal curvatures (called Gauss curvature nowadays) depends only on the first fundamental
form (Theorema Egregium). The half sum of the principal curvatures is the mean curvature and is
what is relevant in the formation of soap films.

To compute the principal curvatures κ1 and κ2 at a given point of a surface, e.g. at the tip of
the index finger of the hand depicted in Fig. 3.11, we first compute the normal at this point by
averaging the normals of the facets having this point as vertex. A tangent plane is then defined as
the plane orthogonal to the normal passing through the point under consideration. A neighborhood
of the point is isolated from the surface (we use a 3-neighborhood, see second drawing in Fig. 3.11).
We then apply a rigid transformation to center the point at the origin and to align the tangent plane
with the xy-plane (see third drawing, and a closeup in the fourth drawing). After that, we compute
the second order polynomial P (x, y) = a1x

2 + a2y
2 + a3xy + a4x+ a5y + a6, which minimizes the

sum
∑
i(zi−P (xi, yi))

2 over the points of the centered and rotated neighborhood. Then, the Gauss
curvature at that point is approximated by K = 4a1a2−a2

3, the mean curvature by H = a1+a2, and
the principal curvatures by κ1 = a1 +a2 +

√
((a1−a2)2 +a2

3) and κ2 = a1 +a2−
√

((a1−a2)2 +a2
3).

Figure 3.11: From left to right: A hand with the tangent plane and normal at the tip of the index finger; 3-neighborhood
of the tip of the index finger; tip of the index finger after rotation; a closeup; approximating second order polynomial.

It follows from the fundamental theorem of surface theory that two parameterized (smooth)
surfaces f1 and f2 having the same first and second fundamental forms differ at most by a translation
and a rotation. Therefore, in order to characterize an aligned surface, one can use its first and second
fundamental forms, or better, its first fundamental form g and its Gauss map n.

3.3 Gauge Invariant Framework for surfaces

In this section, we will explain a framework for analysing shapes of 3D objects that are bounded
be a spherical surface. While there have been many efforts in shape analysis of 3D objects, the
problem is far from solved and the current solutions face many technical and practical issues.
For instance, many general techniques for shape analysis rely on quantifying shape differences by
spatially matching geometric features across objects. Therefore, it becomes important to establish
a correspondence of parts between objects, i.e. which part in one object corresponds to which part
in the other? Some Riemannian frameworks have been used in shape analysis of parameterized
surfaces and treat the problem of shape comparison as the problem of computing geodesic paths
in shape spaces under a chosen metric coming from a Riemannian metric on a pre-shape space F
consisting of embeddings or immersions of a model manifold (like the sphere, or the disc) into the
3D Euclidean space R3. Two embeddings correspond to the same shape in R3 if and only if they
differ by an element of a shape-preserving transformation group, such as rigid motion, scaling, and
reparameterization. The shape space is therefore the quotient space of the pre-shape space by these
shape-preserving groups. If the Riemannian metric on the pre-shape space is preserved by the
action of the shape-preserving group then it induces a Riemannian metric on the quotient space.
The construction of geodesics in shape space provide optimal deformations between surfaces and
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is a very important tool in statistical analysis of shapes. Interestingly, the problem of registration
is handled using parameterizations of surfaces such that the points denoting the same parameter
values on two objects are considered registered.

Let us stress here a big difference between the case of surface in comparaison to the case of
curves studied in previous chapter. The main difficulty in comparing shapes of surfaces is that
there is no preferred parameterization that we could easily implement for general shapes, that can
be used for registering and comparing features across surfaces. To be more precise, a canonical
parameterization of a genus 0 surface sitting in the 3-dimensional Euclidean space exists, but it is
hard to implement. Indeed, from the embedding into R3, it follows that each tangent space at a
given point of a spherical surface (for example at the tip of the middle finger depicted in Fig. 3.12)
can be identified with a 2-dimensional vector subspace of R3 to which the Euclidean scalar product
of R3 can be restricted. The smoothness of the surface then ensures that these 2-dimensional
scalar products on the tangent spaces vary smoothly along the surface, defining what is called a
Riemannian metric on the surface. It follows that, on a spherical surface, one is able to measure
angles between two tangent vectors anchored at the same surface point: this angle is exactly the
angle between these tangent vectors seen as vectors in R3 (see Fig. 3.12). One can also measures
distances, in the same way we are measuring distances on earth, by measuring the shortest path
drawn on earth’s surface (and not inside!) joining two given points. In this context, saying that a

Figure 3.12: Scalar product on the tangent plan to the tip of the middle finger of a hand, and shortest path from the tip
of the index finger to the tip of the thumb.

spherical surface is orientable means exactly that one can define on the surface a unit normal vector
field pointing outside the surface. This is enough to ensure that the surface is naturally endowed
with a complex structure, the complex structure in a given tangent space being nothing but the
rotation of Euclidean angle +π/2 around the normal (the orientability helps defining the direction
of rotation in a coherent way, see Fig. 3.12). In other words, the surfaces we are considering are
Riemann surfaces. Since they are compact and simply connected, the Uniformization Theorem
says that they are conformally equivalent to the unit sphere. This means that, given a spherical
surface, there exists a homeomorphism, called the uniformization map, which preserves the angles
and transforms the unit sphere into the surface. In particular, the uniformization map transforms
the coordinate grid into a grid which also has the property of orthogonal intersections (for the
orthogonality of vectors in R3). Note that the parameterization of the hand given in Fig. ?? is not
conformal since it does not preserve the orthogonality of the grid. In fact, given a spherical surface,
there are many conformal maps from the unit sphere to it, as many as elements in PSL(2,C).
This may sound a lot since there are infinitely many complex 2-by-2-matrices with determinant 1
(and the P in PSL(2,C) only divides this amount by 2), but PSL(2,C) is just a 3-dimensional
complex Lie group, as opposed to the infinite-dimensional Fréchet Lie group Diff+(S2). Hence,
to the question if there exists a preferred parameterization of a spherical surface, one ca answer,
modulo PSL(2,C), there is a unique one, however the Algorithms approximating the uniformization
maps are computationally heavy and can not be applied for our purposes.
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Furthermore, we are not only interested in the comparison and matching of two shapes, but
also in the deformation processes that may transform one shape into another, i.e. metamorphosis.
To be physically meaningful, the evolution from one shape to another should be independent of
the way surfaces may be parameterized. Our approach to shape analysis presented in [205] was
therefore initiated by the following question: What is the natural framework where one can mea-
sure deformations of shapes independently of the way shapes are parameterized? As a motivating
example, the sequence of shapes displayed in Fig. 3.1 (bottom) denotes a path where a horse is
transformed into a jumping cat. During the transformation process, only the change of shape,
drawn in the bottom line as a sequence of blue surfaces, is relevant to us. How the surfaces may
be parameterized during the metamorphosis has no importance in our context. To emphasize this
idea, two paths of parameterized surfaces corresponding to the same transformation process are
displayed in the top two rows. We would like a framework where the physical quantities measured
on the path of shapes, such as its length or its energy, are independent of the parameterizations of
surfaces along the transformation process. In particular, in Fig. 3.1, the two paths of parameterized
surfaces corresponding to the same transformation process should have the same length. Note that
the surfaces along the second path are obtained by applying a different reparameterization at each
time step to the surfaces along the first path.

Let us emphasize that we are not only interested in how far the horse and the jumping cat are
from each other, in other words in a quantity like a distance measuring the minimal cost needed
to deform the horse into a cat. But, given a metamorphosis between these two shapes, we are also
interested in measuring its length on one hand, and its energy on the other hand, independently
of the parameterizations of the transformation process that may have been used to create this
metamorphosis.

What should be a good Riemannian metric on shape space ? A good Riemannian metric on
shape space should be such that: (1) it induces a positive distance function on shape space, i.e.
the infimum of the lengths of paths connecting two different shapes should be non-zero ; (2) the
distance between two shapes should be independent of the way the two shapes are parameterized ;
and, (3) the length of a path of shapes should be independent of the way shapes along the path are
parameterized. The last point should be thought of as the natural generalization of the fact that,
on a finite-dimensional Riemannian manifold, the length of a curve is independent of the way the
curve is parameterized. It should be true for any path (not only for geodesics), and is called gauge
invariance. Indeed the use of parameterized surfaces in order to measure the deformation of a shape
can be compared to the use of a gauge. Let us comment on Fig. 3.1 in order to illustrate this idea.
Each column depicts an orbit under the reparameterization group for the corresponding surface,
the surfaces in a given orbit correspond to the same shape but with different parameterizations. A
path of shapes can be lifted in many ways to a path of parameterized surfaces. In Fig. 3.1 two lifts
of the bottom line path are depicted. The first path connects parameterized surfaces with different
“heights” in the fibers. This is made to emphasize that the variations of the “height” (i.e. of the
parameterization) in the fibers should not influence the value of the length of the path of shapes.

The framework of this section achieves the following:

• The proposed method achieves gauge invariance, i.e. the lengths of paths (geodesics or oth-
erwise) measured under this metric are invariant to arbitrary reparameterizations of shapes
along these paths (in particular, the two paths in Fig.3.1 have the same length).

• It uses an elastic metric that accounts for any deformation of patches to define and com-
pute geodesic paths between given objects in the shape space, and it presents a geometric
interpretation of the different terms involved in this metric.

• By defining a metric directly in the shape space, it avoids the optimization step over the
reparameterization group and difficult mathematical issues arising from inheriting a metric
from pre-shape space.

Note that the third point leads to more efficient Algorithms in cases where one only needs a
shape geodesic and not the optimal registration between surfaces. It provides the same geodesic
path despite arbitrary initial parameterizations (or registrations) of given surfaces, and saves the
computational cost of finding a registration. This fact is also a source of limitation in the situation
where one needs a registration. If one wants to use geodesic lengths for comparing shapes, then
a registration is not needed. However, if one wants to study statistical summaries of deformation
fields, then a registration will be needed.
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The rest of this section is organized as follows. Subsection 3.3.1 describes the mathematical rep-
resentation of embedded surfaces and establishes mathematical setup. Subsection 3.3.2 is devoted
to the description of gauge invariance and to the definition of the Riemannian metric involved in
this (and next) Section. The geodesic computation is described in Subsection 3.3.3 and the final
Subsection presents experimental results.

3.3.1 Mathematical Setup

We will represent a shape S with an embedding f : S2 → R3 such that the image f(S2) is S. The
function f is also called a parameterization of the surface S.

We will use local coordinates (u, v) on the sphere. For the theoretical framework, any coordinates
on the sphere are suitable, but in the application we use spherical coordinates: u stands for the
polar angle and ranges from 0 to π, and v denotes azimuthal angle and ranges from 0 to 2π.

Recall that a map f : S2 → R3 is an embedding when: for any point (u, v) ∈ S2, (1) f is smooth,
in particular the derivatives fu and fv of f with respect to u and v are well-defined, (2) f is an
immersion, i.e. the cross product fu × fv never vanishes and allows us to define the normal (resp.
tangent) space to the surface f(S2) at a point f(u, v) as the subspace of R3 which is generated by
(resp. orthogonal to) fu × fv, and (3) f is an homeomorphism onto its image, i.e. points on f(S2)
that look close in R3 are images of close points in S2. If f is an embedding, then the surface f(S2)
is naturally oriented by the frame {fu, fv}, or equivalently by the normal vector field fu × fv.

We define the space of all such surfaces as

F := {f : S2 → R3, f is an embedding}.

It is often called the pre-shape space since objects with same shape but different orientations or
parameterizations may correspond to different points in F . The set F is itself a manifold, as an
open subset of the linear space C∞(S2,R3) of smooth functions from S2 to R3 (see Theorem 3.1 in
[13] and the references therein). The tangent space to F at f , denoted by TfF , is therefore just
C∞(S2,R3).

The shape-preserving transformations of 3D object can be expressed as group actions on F .
The group R+ with multiplication operation acts on F by scaling : (β, f) 7→ βf , for β ∈ R+ and
f ∈ F . The group R3 with addition as group operation acts on F , by translations: (v, f) 7→ f + v,
for v ∈ R3 and f ∈ F . The group SO(3) with matrix multiplication as group operation acts on F ,
by rotations: (O, f) 7→ Of , for O ∈ SO(3) and f ∈ F . Finally, the group Γ := Diff+(S2) consisting
of diffeomorphisms which preserve the orientation of S2 acts also on F , by reparameterization:
(γ, f) 7→ f ◦ γ−1, for γ ∈ Diff+(S2) and f ∈ F . The use of γ−1, instead of γ, ensures that the
action is from left and, since the action of SO(3) is also from left, one can form a joint action of
G := Diff+(S2)× SO(3)oR3 on F . In our setting, the translation group is taken care of by using
a translation-independant metric (the elastic metric) and, when needed, the scaling is taken care
of by rescaling the surfaces to have unit surface area. Therefore, in the following we will focus only
on the reparameterization group Γ and on the rotation group SO(3).

Shape Space as quotient space

Since we are only interested in shapes of surfaces, we would like to identify surfaces that can be
related through a shape-preserving transformation. This is accomplished using the notion of group
action and orbits under those group actions.

Given a group G acting on F , the elements in F obtained by following a fix parameterized
surface f ∈ F when acted on by all elements of G is called the G-orbit of f or the equivalence class of
f under the action of G, and will be denoted by [f ]. In particular, when G is the reparameterization
group, the orbit of f ∈ F is characterized by the surface f(S2) = S, i.e. the elements in [f ] =
{f ◦γ−1 for γ ∈ Γ} are all possible parameterizations of S. For instance in Fig. 3.1, the first column
contains some parameterized horses that are elements of the same orbit. The set of orbits of F
under a group G is called the quotient space and will be denoted by F/G. The quotient space of
interest ihere is the shape space defined as follows.

Definition 3.3.1. The shape space S is the set of oriented surfaces in R3, which are diffeomorphic
to S2, modulo translation and rotation. It is isomorphic to the quotient space of the pre-shape
space F by the shape-preserving group G := Diff+(S2)× SO(3)oR3: S = F/G.
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It is important to note that the shape space S = F/G is a smooth manifold and the canonical
projection Π : F → F/G, f 7→ [f ] is a submersion (see for instance [33] and [141]). This submersion
is useful in establishing the notion of a vertical space that will be needed a little later. By definition,
the vertical space of a submersion is the kernel space of its differential. When the submersion is a
quotient map by a group action, the vertical space is the tangent space to the orbit (the terminology
comes from the fact that the orbits are usually depicted as vertical fibers over a base manifold which
is the quotient space, see Fig.3.1). In the case of the submersion Π̃ : F 7→ F/Diff+(S2), the vertical
space takes a very natural, intuitive form.

Proposition 3.3.2. The vertical space V er(f) of Π̃ at some embedding f ∈ F is the space of
vector fields which are tangent to the shape f(S2), or equivalently the space of vector fields such that
the dot product with the unit normal vector field nf := fu×fv

‖fu×fv‖ : S2 → R3 vanishes:

V er(f) = {δf : S2 → R3|δf(s) · nf (s) = 0,∀s ∈ S2}.

Remark 3.3.3. A canonical complement to this vertical space (consisting of tangent vector fields)
is given by the space of vector fields normal to the surface f(S2) denoted by Nor. This is the
sub-bundle of the tangent bundle TF defined by

Nor(f) = {δf : S2 → R3|δf(s)× nf (s) = 0,∀s ∈ S2}.

Any tangent vector δf ∈ TfF admits a unique decomposition δf = δfT + δf⊥ into its tangential
part δfT ∈ V er(f) and its normal part δf⊥ ∈ Nor(f). Specifically, the normal part is given by:

δf⊥ = (δf · nf )nf . (3.1)

See Fig. 3.13 for an illustration of this decomposition. Generally speaking, one has TF = V er⊕Nor
as a direct sum of smooth fiber bundles over F . This decomposition is preserved by the action of
the reparameterization group Γ, i.e. (δf ◦ γ)

T
= δfT ◦ γ and (δf ◦ γ)

⊥
= δf⊥ ◦ γ (for a proof of

this statement, see Section 1 of the Supplementary Material).

The interest in splitting a perturbation δf into its normal and vertical components comes from
the fact that the vertical component δfT ∈ V er(f) can only lead to a shape-preserving transforma-
tions of the surface f(S2). Thus, in the process of deforming one shape into another (for instance
along a geodesic path) and quantifying shape differences between them using geodesic lengths, we
are not interested in measuring deformations that are in V er(f). An important novelty of our
approach is that the eventual Riemannian metric is imposed only on the δf⊥ components of the
perturbations, and that the δfT components have a zero contribution to the metric.

3.3.2 Gauge Invariance and Riemannian Metric

In this subsection, we first provide a precise definition gauge invariance and then motivate its use
in shape analysis.

Defining Gauge Invariance

The gauge invariance relates to the parameterization of surfaces along a path in F and, thus, the
mathematical objects of importance in this subsection are paths Ψ : [0, 1] 7→ F . The set of such
paths is the smooth manifold P := C∞([0, 1],F ).

An element of P can be thought of as a metamorphosis from the initial shape to the final shape.
For instance, Fig. 3.1 shows two elements in P as two different deformations from a parameterized
horse to a parameterized cat. To have a picture in mind, consider the upper path Ψ : t 7→ Ψ(t) in
P: at each time step t ∈ [0, 1], Ψ(t) is a parameterized shape, i.e. a map from our model manifold
S2 into R3. The map Ψ(0) is the parameterization of our initial parameterized shape chosen to be
a horse and Ψ(1) is the parameterization of our final parameterized shape which, in this case, is a
cat.

The definition of length of the path t 7→ Ψ(t) requires specification of a metric on F . Given
such a metric ((·, ·)), one can define the length as:

L[Ψ] =

∫ 1

0

((Ψt(t),Ψt(t)))
1
2

Ψ(t)dt, (3.2)
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where Ψt(t) = dΨ
dt (t) is the velocity vector of the path t 7→ Ψ(t), i.e. an infinitesimal deformation of

the parameterized shape Ψ(t). The geodesic distance between two shapes f1 and f2 is then defined
by

d(f1, f2) = inf
Ψ:[0,1]→F |Ψ(0)=f1,Ψ(1)=f2

L[Ψ], (3.3)

where the infimum is taken over all paths connecting shape f1 and shape f2.
We would like the length L[Ψ], for any path Ψ, to match the length of the path t 7→ Ψ(t) ◦ γ(t),

where t 7→ γ(t) ∈ Γ is any time-dependent reparameterization of S2:

L[Ψ] = L[Ψ̃], where Ψ̃(t) = Ψ(t) ◦ γ(t). (3.4)

More formally, set Γ = Diff+(S2) and define the group G := C∞([0, 1],Γ), of time-dependant
reparameterizations that acts on P according to

G ×P −→ P
(t 7→ γ(t), t 7→ Ψ(t)) 7−→ (t 7→ Ψ(t) ◦ γ(t)).

The group G is called the gauge group, and one says that G acts by gauge transformations. We
are looking for a framework where the length of a path is invariant to gauge transformations, i.e.
satisfies Eqn. (3.4). One should distinguish these transformations from temporal reparameterizations
of the path Ψ itself. A gauge transformation changes spatial reparameterization of surfaces, while
preserving shapes, along the path, while a temporal reparameterization changes the time it takes
to reach each shape along the path.

To build a gauge invariant framework, the basic idea is as follows: take any Γ-invariant Rieman-
nian metric 〈〈·, ·〉〉 on the pre-shape space, and ignore the direction tangent to the reparameterization
orbit. (An example of Γ-invariant Riemannian metric is the elastic metric defined in Eqn. (3.7) as
is shown in Section 2 of the Supplementary Material). More precisely, let 〈〈·, ·〉〉 be a Riemannian
metric on pre-shape space F which is preserved by the action of the group of reparameterizations
Γ, that is:

〈〈δf1 ◦ γ, δf2 ◦ γ〉〉f◦γ = 〈〈δf1, δf2〉〉f , (3.5)

for any f ∈ F , for any δf1, δf2 ∈ TfF and any γ ∈ Γ. Given a Γ-invariant sub-bundle H of TF
such that

H(f)⊕ V er(f) = TfF , (3.6)

denote by pH : TfF → H(f) the projection onto H(f) with respect to the direct sum decomposition
given in Eqn. (3.6). This means that any element δf ∈ TfF admits a unique decomposition into

= +

Normal vector !eld Tangent vector !eldGiven vector !eld

H(f)

0

δf

PH(δf)

δf-PH(δf)

(a)

(b)

Figure 3.13: a. Direct sum decomposition H(f)⊕V er(f) = TfF . b. Vector field decomposition into tangent and normal
directions

the sum of an element pH(δf) in H(f) and an element in V er(f). We illustrate this decomposition
of vector spaces in Fig. 3.13.a, while the particular case when H is the space of normal vector fields
Nor is shown in Fig. 3.13.b.
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Proposition 3.3.4. The non-negative semi-definite inner product on pre-shape space defined by

((δf1, δf2))f := 〈〈pH(δf1), pH(δf2)〉〉f
satisfies the gauge-invariance condition given in Eqn. (3.4) and induces a Riemannian metric on
quotient space S such that the quotient map is an isometry between H(f) and the tangent space
T[f ]S .

Distinction between Gauge Invariant Framework and Quotient Riemannian Framework

In practice the subbundle H has to be chosen in order to make the implementation easy. A
natural choice of subbundle H is the normal bundle Nor which is preserved by the action of
the reparameterization group Γ = Diff+(S2) (see below). We have used this subbundle in the
paper [205]. Another requirement is that the chosen Riemannian metric has to be Γ-invariant. This
is the case for the elastic metric defined below. We will therefore apply the idea of gauge invariance
to the concrete example of the elastic metric and the normal bundle Nor. It is worth noting that
the Riemannian metric on shape space obtained by restricting a Riemannian metric on preshape
space to the normal bundle Nor differs in general from the quotient Riemannian metric. In fact,
the quotient metric coincides with the restriction to the subbundle Nor if and only if the Horizontal
subbundle defined by Hor(f) = Ker(dπ)⊥ is the normal bundle. This is not the case for the elastic
metric. We also remark that the present gauge invariant framework has been used implicitly in [16],
Section 6, and [15], Section 11, in the case where the horizontal bundle coincides with the normal
bundle.

The Subbundle of normal vector fields is Γ-invariant

In this subsection, we provide the proof of the fact that the subbundle of normal vector fields is a
Γ-invariant complement to the subbundle of tangent vector fields.

Proposition 3.3.5. Denote by Nor the subbundle of the tangent bundle TF consisting of normal
vector fields which is the space of vector fields such that the cross product with the normal nf : S2 →
R3 to the shape f(S2) vanishes:

Nor(f) = {δf : S2 → R3, such that δf × nf = 0}.

Any tangent vector δf ∈ TfF admits a unique decomposition

δf = δfT + δf⊥

into its tangential part δfT ∈ V er(f) and its normal part δf⊥ ∈ Nor(f). In other words one as

TF = V er ⊕Nor

as a direct sum of smooth fiber bundles over F . Moreover this decomposition is preserved by the
action of the re-parametrization group Γ, i.e. (δf ◦ γ)

T
= δfT ◦ γ and (δf ◦ γ)

⊥
= δf⊥ ◦ γ.

Proof. The uniqueness of the decomposition into tangential and normal direction comes from the
uniqueness of the decomposition of a vector in R3 into a tangent vector and normal vector to the
surface. The smoothness of the decomposition is a consequence of the smoothness of the tangent
and normal bundles. To see that Γ preserves the normal bundle, note that if γ ∈ Γ reads γ =
(γ1(u, v), γ2(u, v)) in a chart, then (f◦γ)u = fu◦γ ∂γ1

∂u +fv◦γ ∂γ2

∂u and (f◦γ)v = fu◦γ ∂γ1

∂v +fv◦γ ∂γ2

∂v ,
therefore

(f ◦ γ)u × (f ◦ γ)v = fu ◦ γ × fv ◦ γ
(
∂γ1

∂u

∂γ2

∂v
− ∂γ2

∂u

∂γ1

∂v

)
.

It follows that the unit normal vector field to the parametrized surface f ◦ γ reads

(f ◦ γ)u × (f ◦ γ)v
‖ (f ◦ γ)u × (f ◦ γ)v ‖

=
fu ◦ γ × fv ◦ γ
‖fu ◦ γ × fv ◦ γ‖

·

(
∂γ1

∂u
∂γ2

∂v −
∂γ2

∂u
∂γ1

∂v

)
|∂γ1

∂u
∂γ2

∂v −
∂γ2

∂u
∂γ1

∂v |
= n ◦ γ,

where in the last equality we have used that γ preserves the orientation of S2. Therefore δf ◦ γ =
(δfT + δf⊥) ◦ γ = δfT ◦ γ + δf⊥ ◦ γ with δfT ◦ γ ∈ V er(f ◦ γ) and δf⊥ ◦ γ ∈ Nor(f ◦ γ). The

uniqueness of the decomposition then implies δfT ◦ γ = (δf ◦ γ)T and (δf ◦ γ)
⊥

= δf⊥ ◦ γ.
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Elastic Riemannian Metric

Next, we will choose a Riemmanian metric on F that will enable a gauge-invariant analysis as stated
above. We will use the elastic Riemannian metric proposed in [101] and given in Eqns. (3.7) and
(3.8). However, before we use this metric we motivate its use by making a connection between the
space of parameterized surfaces F and the space of metrics on a domain, and we will provide some
geometrical interpretation of terms in that elastic metric. The space of positive-definite Riemannian
metrics on S2 will be denoted by Met(S2). Consider a parameterized surface f : S2 → R3. Denote
by g = f∗ḡ the pull-back of the Euclidian metric ḡ of R3 and by nf the unit normal vector field
(Gauss map) on S = f(S2).

The metric g and the normal vector field nf are defined using derivatives of f according to:

g =
(
fu·fu fu·fv
fv·fu fv·fv

)
= Jac(f)T Jac(f),

= (E F
F G ) , Jac(f) = [fu fv], and

nf =
fu × fv
‖fu × fv‖

, ‖fu × fv‖ =
√

det g = |g| 12 ,

where fu and fv are the derivatives of f with respect to the local coordinates (u, v) on the sphere.
We consider the following relationship between parameterized surfaces on one hand and the product
space of metrics and normals on the other:

Φ : F −→ Met(S2)× C∞(S2,S2)
f 7−→ (g, nf ).

It follows from the fundamental theorem of surface theory (see Bonnet’s Theorem in [62] for
the local result, Theorem 3.8.8 in [111] or Theorem 2.8-1 in [53] for the global result) that two
parameterized surfaces f1 and f2 having the same representation (g, n) differ at most by a translation
and rotation. This is an important result, and implies that we can represent a surface by its induced
metric g = f∗ḡ and the unit normal field n = nf , for the purpose of analyzing its shape. We will
not loose any information about the shape of a surface f if we represent it by the pair (g, n). Let
δf1, δf2 denote two perturbations of a surface f , and let (δg1, δn1) = Φ∗(δf1), (δg2, δn2) = Φ∗(δf2)
denote the corresponding perturbations in (g, n) of f . The expression for Φ∗ is given by:

δg = Jac(f)T Jac(δf) + (Jac(δf))T Jac(f)

=

(
2fu · δfu fu · δfv + fv · δfu

fu · δfv + fv · δfu 2fv · δfv

)
,

δn = −1

2
Tr(g−1δg)n+

1

|g| 12
(δfu × fv + fu × δfv) .

Then, by definition, the metric on F used in the present considerations measures these pertur-
bations using the expression

〈〈δf1, δf2〉〉f =

∫
S2

ds|g| 12
{
aTr(g−1δg1 g

−1δg2)

+
λ

2
Tr(g−1δg1) Tr(g−1δg2) +cδn1 · δn2} . (3.7)

The same metric (with a = 1) was introduced in [101], Eqn. (2), and called “elastic metric”. A
related metric measuring the elastic deformation of the interiors of shapes was used in [76] (see
Eqn. (4) in [76]). The metric given in Eqn. (3.7) can be decomposed into three parts

〈〈δf1, δf2〉〉f =

∫
S2

ds|g| 12
{
aTr

(
(g−1δg1)0 (g−1δg2)0

)
+bTr(g−1δg1) Tr(g−1δg2) + cδn1 · δn2

}
, (3.8)

where b = λ+a
2 and where A0 is the traceless part of a 2×2-matrix A defined as A0 = A− Tr(A)

2 I2×2.
The term multiplied by a measures area-preserving changes in the induced metric g, the term
multiplied by b measures changes in the area of patches, and the last term measures bending. Note
that only the relative weights b/a and c/a are meaningful.
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Now we consider a key property of this metric that relates to reparameterization of surfaces.
Recall that Γ := Diff+(S2) denotes the subgroup of Diff(S2) consisting of diffeomorphisms γ which
preserve the orientation of S2, i.e. such that det Jac(γ) > 0. (Note that for a diffeomorphism
γ ∈ Diff(S2), since Jac(γ) is invertible, the determinant of Jac(γ) never vanish. It follows that either
det Jac(γ)(s) > 0 for all s ∈ S2, or det Jac(γ)(s) < 0 for all s ∈ S2.) It will be called the group of
orientation-preserving reparameterizations. The group Γ = Diff+(S2) acts on Maps(S2,R3) by pre-
composition. That is, a surface f is reparameterized by a γ ∈ Diff+(S2) according to f 7→ f ◦ γ−1.
How does the metric-normal representation (g, n) of that surface change due to reparameterization?
This representation of the reparameterized surface is given by (γ−1∗g, n◦γ−1). This representation
is Γ-equivariant for the actions introduced, i.e. if we reparameterize a surface and then compute its
(g, n) representation, or if we compute (g, n) representation of a surface and then reparameterize
them according to (γ∗g, n ◦ γ), we get the same result.

Proposition 3.3.6. The elastic metric is invariant to the action of Diff+(S2).

Proof. Now we will prove the fact that the elastic metric is invariant by the group of orientation-
preserving re-parametrizations Γ = Diff+(S2). This means that

〈〈h ◦ γ, k ◦ γ〉〉f◦γ = 〈〈h, k〉〉f .

for γ ∈ Γ and any tangent vectors h, k at f ∈ F .
Denote by f̃ := f ◦ γ. Set (g, nf ) := Φ(f), and (g̃, ñf̃ ) := Φ(f̃). Define h̃ := h ◦ γ and k̃ = k ◦ γ.

Let us compute the volume form of the metric g̃. For any s ∈ S2, one has Jac f̃(s) = Jac (f ◦ γ) (s) =

(Jac f)(γ(s)) · Jac γ(s), and g̃(s) = (Jac γ)
T
g(γ(s)) (Jac γ) . Therefore

det g̃(s) = det(Jac γ)T det g(γ(s)) det Jac γ

= (det Jac γ)2 det g(γ(s)),

and

|g̃(s)| 12 =
√

det g̃(s) =
√

(det Jac γ)2 det g(γ(s))

= |det Jac γ| |g(γ(s))| 12 .

Let us now compute the first two terms of the elastic metric. Since

g̃(s)−1 = (Jac γ)
−1
g(γ(s))−1

(
Jac γT

)−1
,

and
δ̃g(s) = (Jac γ)

T
δg(γ(s)) Jac γ,

one has

Tr g̃−1δ̃g(s) =

Tr
[
Jac γ−1g(γ(s))−1

(
Jac γ−1

)T
(Jac γ)

T
δg(γ(s)) Jac γ

]
= Tr

[
(Jac γ)

−1
g(γ(s))−1δg(γ(s)) Jac γ

]
= Tr g−1δg(γ(s)).

Therefore, if one denotes by (δ̃g1, δ̃n1) (resp. (δ̃g2, δ̃n2)) the infinitesimal variation of the pull-
back metric g̃ and the normal vector field nf◦γ induced by the tangent vector h̃ ∈ Tf◦γF (resp.

k̃ ∈ Tf◦γF ), and (δg1, δn1) (resp. (δg2, δn2)) the infinitesimal variation of the pull-back metric g
and the normal vector field nf induced by the tangent vector h ∈ TfF (resp. k ∈ TfF ), one has

Tr g̃−1δ̃g1g̃
−1δ̃g2(s) =

Tr
[
(Jac γ)

−1
g−1δg1 (Jac γ) (Jac γ)

−1
g−1δg2 Jac γ

]
= Tr g−1δg1g

−1δg2(γ(s)).

For the last term of the metric, since γ acts by re-parametrization on the normal vector field, one
has δ̃n1(s) = δn1(γ(s)) and δ̃n2(s) = δn1(γ(s)). The invariance by re-parametrization of the elastic
metrics then follows by a simple change of variables in the integral defining it.
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Although this elastic metric has been introduced in [101], it has not been used completely for
shape analysis of surfaces. Furthermore, we are going to use it in a novel way – by restricting its
evaluation only to the normal vector fields on a surface (see next section for a geometric expression
of the resulting metric on shape space).

Definition 3.3.7. For any two perturbations δf1, δf2 ∈ TfF define the pairing

((δf1, δf2))f =
〈〈
δf⊥1 , δf

⊥
2

〉〉
f
,

where δf⊥i is the normal component of δfi as defined in Eqn. (3.1) and where 〈〈·, ·〉〉f is as given in
Eqn. (3.8).

Remark 3.3.8. It follows from proposition 3.3.4, that ((·, ·)) satisfies the gauge-invariant condition
L[Ψ] = L[Ψ̃], where Ψ is any path of shapes, Ψ̃(t) = Ψ(t) ◦ γ(t) with t 7→ γ(t) any time-dependant
reparameterization, and L[Ψ] is as specified in Eqn. (3.2).

Geometric expression of the elastic metric in the normal direction

In this section, we will give some geometric interpretation of the restriction of the elastic metric on
the space of normal vector fields introduced in the previous section. Given a surface f parameterized
by (u, v), we will consider normal variations: fε(u, v) = f(u, v) + εh(u, v)n(u, v), where (u, v) ∈ S2,
ε > 0, n(u, v) = nf (u, v) is the unit normal to the surface f(S2) at f(u, v), and h : S2 → R is
a real function corresponding to the amplitude of the normal vector field hnf . Let us compute
the first fundamental form gε of the surface parameterized by fε, i.e. the metric induced on the
parameterized surface fε by the Euclidian metric of R3. We obtain

fε,u := ∂fε
∂u = fu + εhnu + εhun,

fε,v := ∂fε
∂v = fv + εhnv + εhvn.

(3.9)

Therefore
fε,u · fε,u = fu · fu + 2εhnu · fu + ε2

(
h2nu · nu + h2

u

)
,

where we have used that n · fu = 0 and nu · n = 0 since n · n = 1. Similarly

fε,v · fε,v = fv · fv + 2εhnv · fv + ε2
(
h2nv · nv + h2

v

)
,

and
fε,u · fε,v = fu · fv + εh (nu ·fv+fu ·nv) + ε2

(
h2nu ·nv+huhv

)
.

It follows that

gε = g + 2εh

(
nu · fu nu · fv
nv · fu nv · fv

)
+ε2h2

(
nu · nu nu · nv
nv · nu nv · nv

)
+ ε2

(
h2
u huhv

huhv h2
v

)
.

Using the definition of the second fundamental form II of the surface f(S2), we obtain

gε = g − 2εhII + ε2h2IIg−1II + ε2
(
hu hv

)T (
hu hv

)
.

It follows that
g−1δg = −2hg−1II = −2hL, (3.10)

where L is called the shape operator. Recall that the eigenvalues of L are the principal curvatures
of the surface f(S2), denoted by κ1 and κ2, which provide local information about the surface:
at a given point on the surface, they measure the greatest and smallest possible curvatures of a
curve drawn on the surface passing through this point. For instance, the vanishing of the principal
curvatures at one point of the surface tells that the surface is flat near this point (i.e. looks like a
plane). The equality κ1 = κ2 = 1/R at one point tells that the surface looks like a sphere of radius
R near this point. In other words, κ1 and κ2 are functions on the surface that characterize how the
surface is locally curved.
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On the other hand, the variation δn of the normal vector field satisfies δn · n = 0 since the norm
of n remains constant. Moreover n ·fu = n ·fv = 0, therefore δn ·fu = −n ·δfu and δn ·fv = −n ·δfv.
By Eqn. (3.9), δfu = hnu + hun, hence δn · fu = −hu and similarly δn · fv = −hv. Consequently
δn = αfu + βfv where ( αβ ) = −g−1

(
hu
hv

)
. It follows that for two normal vector fields hn and kn

with h, k ∈ C∞(S2,R), one has

δn1 · δn2 = ( hu hv ) g−1
(
ku
kv

)
. (3.11)

Using Eqn. (3.10) and Eqn. (3.11) the elastic metric restricted to these normal fields is given by:

((hn, kn))f =
∫
S2 ds|g|

1
2

{
hk
(
2a(κ1 − κ2)2

+4b(κ1 + κ2)2
)
+ c ( hu hv ) g−1

(
ku
kv

)}
. (3.12)

This is the form used to define and compute geodesic paths in the shape space S in this section.
The difference κ1 − κ2 in the first term has been called the normal deformation of the surface in
[100]. The sum κ1 + κ2 is twice the mean curvature which measures variations of the area of local
patches. These two terms are related to the shape index idx = 2

πarctanκ1+κ2

κ1−κ2
[112]. The last term

in Eqn. (3.12) measures variations of the normal vector field, i.e. bending.

3.3.3 Geodesic Computation

Finding geodesics between two surfaces f1 and f2 under invariant Riemannian metrics is a difficult
problem. In the present case, analytical solutions are not known and we will use a path-straightening
approach to find geodesics. This method has been used for instance in [120] and [101]. The basic
idea here is to connect f1 and f2 by any initial path and then iteratively straighten it until it becomes
a geodesic. The update is performed using the gradient of an energy function. As mentioned earlier,
this method only achieves a local minimum of the energy function, resulting in a geodesic path that
may not be the shortest geodesic.

Computations of the energy

Let Ψ : [0, 1]→ F . The energy of the path Ψ is defined to be:

E (Ψ(t)) =

∫ 1

0

〈〈
Ψ⊥t ,Ψ

⊥
t

〉〉
Ψ(t)

dt =

∫ 1

0

((Ψt,Ψt))Ψ(t) dt,

where 〈〈·, ·〉〉 is the elastic metric given in Eqn. (3.8), Ψ⊥t = (Ψt · n)n is the normal component of
the deformation, and ((·, ·)) is the inner product presented in Eqn. (3.12). We will present several
numerical strategies for approximating this energy and will compare their computational costs in
Table 3.1. This evaluation uses a linear path connecting two concentric spheres of radius R1 = 1
and R2 = 2.5, with constants a = 1, λ = 0.125 and c = 0 for defining energy (see Fig. 3.14). The
theoretical value of the energy in this case is given by Eth = 32π(a + λ)(R2 − R1)2 and measures
exclusively the cost of changing the area of the spheres (the first and third term of the metric given
in Eqn. (3.8) vanish in this experiment). We expect that improvement in accuracy comes at an
increased computational cost, and this is indeed the case in the results presented in the Table. Note
that a time-dependent rotation is applied on the path of spheres, but the values of the energy is
independant of this rotation.

Figure 3.14: Path connecting two concentric spheres used for computations in Table 3.1.

One way to compute the energy of a path Ψ of shapes is to express it using the coefficients of
the first fundamental form. Consider the mapping Ψ : S2 × R→ R3 and define

E = Ψu ·Ψu, F = Ψu ·Ψv, G = Ψv ·Ψv, (3.13)
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and their time derivatives

Ė = 2Ψ⊥tu ·Ψu, Ḟ = Ψ⊥tu ·Ψv + Ψu ·Ψ⊥tv, Ġ = 2Ψ⊥tv ·Ψv,

as well as the unit normal field n := nf = fu×fv
‖fu×fv‖ and the vector field w = Ψ⊥tu ×Ψv + Ψu ×Ψ⊥tv.

Then, the energy of a path Ψ decomposes into the sum of four terms: E (Ψ(t)) = E1 + E2 + E3 + E4,
where

E1 = a
∫ 1

0

∫
S2(EG− F 2)−3/2B dudv dt

with B = G2Ė2+2(EG+F 2)Ḟ 2+E2Ġ2

−4FGĖḞ+2F 2ĖĠ−4EFḞ Ġ ,

E2 =
(
λ
2 + c

4

)∫ 1

0

∫
S2(EG−F 2)−

3
2(GĖ−2FḞ+EĠ)2du dv dt ,

E3 = −c
∫ 1

0

∫
S2(GĖ − 2FḞ + EĠ)(n · w) du dv dt ,

E4 = c
∫ 1

0

∫
S2(EG− F 2)−

1
2 (w · w) du dv dt .

In the implementation of these formulas, we can reach singularities on the boundary of the inte-
gration domain, which we can ignore. In the example involving two concentric spheres, the total
energy computed by this method is labelled EI&II in Table 3.1.

Another way to compute the energy is based on Eqn. (3.12) that expresses the elastic metric
in terms of principal curvatures. In terms of the coefficients of the first fundamental form given in
Eqn. (3.13) and of the second fundamental given by

e = Ψuu · n = −Ψu · nu,
f = Ψuv · n = −Ψu · nv = −Ψv · nu,
g = Ψvv · n = −Ψv · nv,

the Gauss curvature K and the mean curvature H have the following expressions

K =
eg − f2

EG− F 2
, H =

1

2

eG+ gE − 2fF

EG− F 2
,

and the principal curvatures are given by

κ1 = H +
√
H2 −K, κ2 = H −

√
H2 −K.

Again, in the implementation of these formulas, we can get singularities for curvatures on the
boundary, but we can ignore them in computing the integral given in Eqn. (3.12). This corresponds
to removing a small disc on the parameterized surface around the images of the north and south
poles.

In the example of the two concentric spheres, the theoretical values of κ1 and κ2 is the constant
function equal to 1/R where R = R1 + t(R2 − R1) is the radius of the sphere along the path
interpolating linearly the sphere of radius R1 = 1 to the sphere of radius R2 = 2.5. The total
energy computed by this method is labelled Ek1k2

in Table 3.1.
To improve the computation of the curvatures and therefore also of the energy, we can use

polynomial approximations of the surfaces. This procedure, leading to the computation of the
principal curvatures, is illustrated in Fig. 3.11. To compute the principal curvatures at a given
point of a surface, e.g. at the tip of the index finger of the hand depicted in Fig. 3.11, we first
compute the normal at this point by averaging the normals of the facets having this point as
vertex. A tangent plane is then defined as the plane orthogonal to the normal passing through the
point under consideration. A neighborhood of the point is isolated from the surface (we use a 3-
neighborhood, see second drawing in Fig. 3.11). We then apply a rigid transformation to center the
point at the origin and to align the tangent plan with the xy-plane (see third drawing, and a closeup
in the fourth drawing). After that, we use Algorithm 7 to compute the second order polynomial
P (x, y) = a1x

2 + a2y
2 + a3xy + a4x+ a5y + a6, which minimizes the sum

∑
i(zi − P (xi, yi))

2 over
the points of the centered and rotated neighborhood. Then, the Gauss curvature at that point is
given by K = 4a1a2 − a2

3, the mean curvature by H = a1 + a2, and the principal curvatures by
κ1 = a1 + a2 +

√
((a1 − a2)2 + a2

3) and κ2 = a1 + a2 −
√

((a1 − a2)2 + a2
3). In the example of the

two concentric spheres, the total energy computed using the principal curvatures obtained by this
method is labelled EP in Table 3.1.

In order to show that the energy function of a path of shapes is independent of the way the
objects are parameterized, we replace the integration over the domain of parameterization by the
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Algorithm 7: Computation of second order approximation of a surface at a given point.
Input: a surface passing through the origin, tangent to the xy-plane at the origin
Output: coefficients A = (a1, a2, a3, a4, a5, a6) of the second order polynomial

P (x, y) = a1x2 + a2y2 + a3xy + a4x+ a5y + a6, which minimize the sum
∑

i(zi − P (xi, yi))
2 over

the points (xi, yi, zi) of the surface
Algorithm: Initialize zB = zeros(1, 6), B = zeros(1, 6), B2 = zeros(6, 6).
for i← 1 to number of points do

1- zB(1)← zB(1) + zix
2
i ;

zB(2)← zB(2) + ziy
2
i ;

zB(3)← zB(3) + zixiyi;

zB(4)← zB(4) + zixi;

zB(5)← zB(5) + ziyi;

zB(6)← zB(6) + zi;

2- B(1)← x2i ;

B(2)← y2i ;

B(3)← xiyi;

B(4)← xi;

B(5)← yi;

B(6)← 1;

3- B2← B2 +B′ ∗B;

A = inv(B2) ∗ z′B .

Figure 3.15: A path of zero energy connecting a hand and the same hand with another parameterization.

integration over the triangulated surfaces. This means that we approximate the area elements of
the surfaces by the area of triangles whose vertices are given by the parameterization. In this way,
the parameterization of surfaces is only used to define the surfaces, but plays no role at all in the
computation of the energy function. In the example of the two concentric spheres, the total energy
computed by this method is labelled E∆ and given in Table 3.1. In Fig. 3.15, a path connecting a
hand to the same hand, but with a different parameterization, is shown. The energy of this path,
computed with the constants a = 1, λ = c = 0.125, reads E∆ = 0.4824, hence is close to 0. Now
returning to Fig. 3.1, the energy of the lower path from a horse to a cat computed with the same
constants is E∆ = 227.4049, its length is L[Ψ] = 14.9099, whereas the upper path (obtained from
the lower path by applying a different reparameterization at each time step) has an energy equal
to E∆ = 225.5249 and a length of L[Ψ] = 14.8802. Note that in this example, the colors refer to
the Euclidean distance to the point on the surface corresponding to the image of the north pole of
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Energy, 104 points per object Elapsed time for 104 points

EI&II = 246.2854 0.221726 seconds
Ek1k2 = 249.1969 0.862376 seconds
EP = 255.8288 1.238354 seconds
E∆ = 255.9043 9.738431 seconds

Energy for 4× 104 points Elapsed time for 4× 104 points

EI&II = 249.1503 0.978828 seconds
Ek1k2

= 251.8494 3.45599 seconds
EP = 254.7646 4.906798 seconds
E∆ = 254.7832 39.011899 seconds

Table 3.1: Computation of the energy of a path connecting two concentric spheres (Fig. 3.14) using different methods,
and time needed for the computations. The theoretical value of the energy is Eth = 254.4690. Here R1 = 1, R2 = 2.5,
λ = 0.125 and c = 0.

the sphere (cold colors for small distances versus hot colors for large distances).

Independance of the Energy function with respect to reparametrization

From the theory it is clear that the energy function defined above is independant of the way shapes
are parametrized along a path. To provide numerical examples to illustrate this fact was however
a difficult task. One has to mention here that the parametrization has to be changed smoothly in
order to provide a smooth path in the pre-shape space. Therefore only parametrizations that are
closed to the initial parametrization can be used in these experiments.

In Figure 3.16, we give examples of zero-energy paths, projecting to a point in shape space. The
energy, as computed by our program, is closed to zero for each of them.

In Figure 3.17, we are interested in two different lifts of the same path in Shape space. The
rows go by pairs: the upper two rows show a metamorphosis from a horse to a jumping cat, but
with two different parametrizations. Theoretically the energy of the two upper paths should be the
same. Numerically we obtain an energy E∆ = 225.3565 for the upper path, and E∆ = 225.3216
for the second one. For the third and forth paths, showing a metamorphosis from a jumping cat
to a standing cat, the energy computed by our program is E∆ = 180.8444 and E∆ = 176.8673
respectively. For the fifth and sixth paths, from a standing cat to a standing horse, the computed
energies are E∆ = 243.1812 and E∆ = 239.5410 respectively. These energies were computed with
the parameters a = 1, λ = 0.125, c = 0, 502 numbers of points and using 6-neighboordhoods for
the computation of principal curvatures.

Orthonormal Basis of Deformations

In this subsection, we define bases for representing perturbations of a path of surfaces. These basis
elements form possible directions for use in path-straightening in the next subsection.

We construct a basis of perturbations of a path connecting two parameterized surfaces f1 and
f2. In order to apply the path-straightening method as described below, we want the perturbations
to vanish at t = 0 and t = 1 so that f1 and f2 remain fixed. Therefore, we want a basis of L2(S2 ×
[0, 1],R3) with elements that have this property. To ensure this, each element of B2 is multiplied
by a basis element of L2([0, 1],R) of the form Pj(t) = 1

4 sin(πjt), 1 ≤ j ≤ J . Unfortunately a
major limitation of the resulting L2 basis is that slowly- and rapidly-oscillating harmonics have
comparable amplitudes. In the implementation of the path-straightening method, this implies that
the updated path can go out of the open set of immersions.

One possible way to counter this effect is to orthonormalize the L2-basis with respect to an H1-
type scalar product (i.e. that measures also the variation of the derivatives). For this kind of scalar
product, an orthonormal basis consists of functions which have controlled derivatives (hence can
not oscillate to much). This approach was also used in [120] where the L2-basis is orthonormalized
using the Gram-Schmidt procedure with respect to the following scalar product

(B1, B2) =
∫ 1

0

∫
S2

(
B1 ·B2 +B1

t ·B2
t +B1

u ·B2
u

+B1
v ·B2

v +B1
t,u ·B2

t,u +B1
t,v ·B2

t,v

)
ds dt.
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Figure 3.16: Four Paths connecting the same shape but with a parametrization depending smoothly
on time. The energy computed by our program is respectively E∆ = 0 for the path of hands,
E∆ = 0.1113 for the path of horses, E∆ = 0 for the path of cats, and E∆ = 0.0014 for the path of
Centaurs.

However, when increasing the degree of spherical harmonics, the computational cost of generation
of an orthonormal basis using this scalar product is very high. Therefore, we first orthonormalize
the basis B2 with respect to the following inner product

(B1, B2) =
∫
S2

(
B1 ·B2 +B1

u ·B2
u +B1

v ·B2
v

)
ds, (3.14)

and then we multiply the resulting basis by the time-dependant components Pj(t) = 1
4 sin(πjt),

1 ≤ j ≤ J . The advantage of this method is that the Gram-Schmidt procedure is applied to
matrices of lower dimensions (without the time dimension) and on a smaller number of elements
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Figure 3.17: Pairs of paths projecting to the same path in Shape space, but with different
parametrizations. The energies of these paths, as computed by our program, are respectively (from
the upper row to the lower row): E∆ = 225.3565, E∆ = 225.3216, E∆ = 180.8444, E∆ = 176.8673,
E∆ = 243.1812 and E∆ = 239.5410.

(by a factor J). The spatial oscillations of the resulting basis elements are well controlled by the
presence of the spatial derivatives Bu and Bv in the inner product given in Eqn. (3.14).

Path-straightening method

The path-straightening method is used to find critical points of the energy functional. Starting
with an arbitrary path, the method consists of iteratively deforming (or “straightening”) the path
in the opposite direction of the gradient, until the path converges to a geodesic. The gradient of
the path energy is approximated using a basis B of possible perturbations of a path of surfaces
Ψ, as constructed in the previous section. We first compute the directional derivatives ∇EΨ(b) =
d
dε (E (Ψ + εb))|ε=0 where b ranges over B. This is done by fixing a small ε1 and approximating the
directional derivative by ∇EΨ(b) ' (E (Ψ + ε1b) − E (Ψ))ε1

−1. Using the finite orthonormal basis
B, we obtain a numerical approximation of the gradient: ∇EΨ =

∑
b∈B∇EΨ(b) b. In particular,

the norm of the gradient is approximately given by ‖∇EΨ‖2 =
∑
b∈B∇EΨ(b)2. The update of the

path is done by replacing Ψ by Ψ − ε2∇EΨ, where ε2 is a small parameter that has to be ajusted
empirically. The method is detailed in Algorithm 8 below.

3.3.4 Experimental results

The 3D realistic models used in our experiments are part of the TOSCA [41] dataset. Their spherical
parameterizations were initially implemented in [118].

Examples of geodesics obtained by path-straightening

First we apply the path-straightening method to the case where the surfaces at the extremes of the
initial path have the same shape, but different parameterizations. More precisely, we consider the
special case where Ψ0(0) = f1, Ψ0(1) = f1 ◦ γ for some diffeomorphism γ and where we initialize
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Algorithm 8: Path-straightening method.
Input:

1. A path Ψ between two parameterized surfaces f1 and f2,

2. a basis of perturbation B.

Output:

1. The minimal energy needed to deform f1 into f2 given by the value of the cost function E,

2. the geodesic path between f1 and f2.

Set ‖∇E‖2 = 1.

while ‖∇E‖2 > 10−3 do
2- Compute the energy E of the path Ψ according to Eqn.(3.8) or Eqn. (3.12).
3- Set Ψupd = 0 and ‖∇E‖2 = 0.
for i← 1 to size(B) do

4- Add a perturbation to the current path Ψ: define Ψ(i) = Ψ + ε1 B(i), where B(i) is the element of the
perturbation basis B of index i and ε1 > 0 is small.

5- Compute the energy E(i) of the perturbed path Ψ(i).

6- Compute the gradient of energy ∇E(i) in the direction B(i) using the approximation ∇E(i) ∼ E(i)−E
ε1

.

7- Compute the updating path: Ψupd ← Ψupd +∇E(i) ·B(i).

8- Compute the squarred norm of the gradient of energy at path Ψ: ‖∇E‖2 ← ‖∇E‖2 + (∇E(i))2.

10- Update the path: Ψ = Ψ− ε2Ψupd

the path with piecewise linear interpolation to a different surface f3 in the middle of the path, i.e.
Ψ0( t2 ) = f3. This situation is illustrated in Fig. 3.18. The proposed gauge-invariant approach is
expected to reach a path with constant shape as a geodesic, despite the different shapes appearing
in the initial path and the different parameterization of shapes at the end points of the path (to
emphasize the differences in parameterization, zoom-ins of these surfaces are also shown). Once
we have the geodesic path Ψ between the given surfaces, the distance in the shape space between
f1 and f1 ◦ γ, dΨ(f1, f2), is the length of Ψ as specified in Eqn. (3.2). As expected, the resulting
geodesic path, shown in Fig. 3.18, is constant with the same shape as the either end, and with
dΨ(f1, f2) = 0. Using path-straightening, we obtain a 99.28% decrease in the energy function from
the initial path to the final path.

In Fig. 3.19 we consider more challenging shapes. The top-two rows display the case where
we have Ψ0(0) = f1, Ψ0(1) = f1 (a cat) and where we initialize the path with piecewise linear
interpolation to a horse in the middle of the path. The upper row shows the initial path and the
second row the geodesic path. We can see that the geodesic path has a constant shape throughout, as
expected. We also plot the evolution of the path energy on the right during path-straightening. We
can see that the energy decreases until it reaches a relatively small value; the theoretical minimum
is, of course, zero for a contant path. In the last two rows of Fig. 3.19, we consider the case of two
hands. We initialize the path with linear interpolation (third row in Fig. 3.19), and the resulting
path is shown in the last rows of Fig. 3.19. The energy evolution is shown on the right and we can
see the energy decreasing until it reaches a constant value; thus, the final path is a geodesic. It can
be seen that the deformation along the geodesic path is more natural than the original path.

Inital path

Geodesic path

Energy

Figure 3.18: Illustration of initial path (upper row) and geodesic path in shape space (middle row). The energy is
reported in the buttom row. The surfaces at the end points of the path have different parameterizations.
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Figure 3.19: The top row shows an initial path formed by linear interpolation between a cat to a horse and back to
the cat. The second row illustrates the geodesic obtained after 800 iterations of path-straightening. The corresponding
evolution of the energy is shown on the right. Similarly, the third row shows a linear path between two hands with bad
correspondence and the last row shows the final geodesic, with the corresponding energy is shown on the right.

Classification of 3D shapes

As mentioned earlier, the geodesic paths provide us with tools for comparing, and deforming pa-
rameterized surfaces. We suggest a comparison of shapes of 3D objects using geodesic distances
between their boundary surfaces in the shape space. This section presents a specific application
to illustrate that idea. In this section, we study several shapes belonging to four classes: horses,
hands, cats and centaurs.

We begin by computing the pairwise geodesic distances between corresponding 3D surfaces. The
distance matrix and the classification dendrogram are shown in Fig. 3.20. In the distance matrix,
we can easily distinguish four classes corresponding to four blue boxes. Actually the cold colors
in the illustrated matrix correspond to small values of distances versus hot colors that correspond
to greater distances. The clustering obtained using the dendrogram (command in matlab) can be
interpreted by slicing the top of the dendrogram by a horizontal line to split the shapes into the
desired number of classes, and then sliding the horizontal line to the bottom in order to refine
the classification. The coarsest classification results by slicing the dendrogram into two classes (by
a horizontal line close to the top), the shapes 4, 5 and 6 (the hands) forms a first class and the
remaining (horses, cats and centaurs) are grouped together as a second class. The next level in
classification distinguishes the shapes 1, 2, and 3 (the horses) and 12, 13 (the centaurs) from the
shapes 7, 8, 9, 10, 11 (the cats). The finest level separates the horses and the centaurs in different
classes and results in four classes. Thus, we argue that the proposed framework provides a powerful
tool for shape classification.

The effect of number of basis elements

In this section, we study the effect of the number of basis elements, used in path-straightening, on
the resulting geodesic path. Given two parameterized surfaces f1 and f2, we again initialize the
path with the linear interpolation to a different surface f3 in the middle of the path. This initial
path is shown in the upper row of Fig 3.21. Then, we compute the geodesic path using different
number of basis elements. We show the geodesic paths that use 52, 432 and 1728 basis elements,
respectively. We can see that the larger the number of basis elements, the better the final result is.
We also provide the trade-off between the number of basis elements and the minimum energy value
obtained. The trade-off confirms our assertion. At the bottom of the figure, we show the geodesic
path obtained when the path-straightening Algorithm is initialized with the linear interpolation
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Figure 3.20: Classification performance; left: the distance matrix. right: the dendrogram.

between f1 and f2. This path is also calculated using the number of basis elements corresponding
to the lowest energy. This path can be seen as ground truth to visually interpret the previous
geodesics (with more complicated initial conditions and fewer basis elements).

Figure 3.21: The effect of the number of basis elements, (1) initial path, (2) geodesic path using 52 basis elements, (3)
geodesic path using 432 basis elements, (4) geodesic path using 1728 basis elements, (5) geodesic path using 1728 basis
elements after linear interpolation initialization.

Conclusion

In our collaboration [205], we have proposed a novel Riemannian framework for computing geodesic
paths between shapes of parameterized surfaces. These geodesics are invariant to rigid motion,
scaling and most importantly reparameterization of individual surfaces. The novelty lies in defining
a Riemannian metric directly on the quotient (shape) space, rather than inheriting it from pre-
shape space, and in using it to formulate a path energy that measures only the normal components
of velocities along the path. The geodesic computation is based on a path-straightening technique
that iteratively corrects paths between surfaces until geodesics are achieved. We have presented
some examples of geodesics between surfaces in shape spaces and utilized the distances between
surfaces for classification of some 3D shapes. However, the computational costs of our programs
are deemed high and convergence should be accelerated in order to be able to apply this framework
in realistic practical scenarios such as, for instance, human body action recognition.
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3.4 Shape and Pose recognition of Human bodies

In this section, we present the work that appeared in our collaboration [169]. Human shape analysis
is an important area of research with a wide applications in vision, graphics, virtual reality, product
design and avatar creation. While 3D human shapes are usually represented as 3D surfaces, human
bodies vary significantly across two important properties: shape (or subjects identity) and body
postures (or body pose). These variations make human body shape analysis a challenging problem.
In this section, we seek a framework for human shape analysis which provides: (i) a shape metric
to quantify shape and pose differences (ii) a full pipeline for generating deformations and shape
interpolation; and (iii) a shape summary, a compact representation of human shapes in terms of
the center (mean of human shapes).

The main tasks in human shape analysis can be divided into representing, comparing, deforming
and summarizing human shapes. A common theme in the literature has been to represent human
surfaces by certain geometrical features, such as HKS [198], WKS [8] and ShapeDNA [177]. The
readers can refer to recent surveys [168, 131] for an extensive review and comparison of such
descriptors. Their structure does not allow for more complex tasks such as interpolation or statistical
shape analysis. Recent deep learning approaches try to tackle this problem. They use a deep
neural networks to build ”disentangled” latent spaces [9, 239]. However those approaches requires
training data, while our approach is using purely geometric information. Most of the approaches
use a spherical parameterization of 3D objects, while we propose to use a human template as
a parametrization, and take some advantages of the recent developments of static and dynamic
human datasets such as SMPL and FAUST.

In this section, we present a comprehensive Riemannian framework for analyzing human bodies,
in the process of dealing with the change in shape and pose. Unlike some past works, instead of
using a general parameterization of human body surfaces, we propose to use a human template
and to align the human surfaces to this template. The human body surface is represented by the
normal and the induced surface metric. Using the metric on the space of normals and the Ebin
metric on the space of Riemannian metrics, a family of metrics is proposed to compare shapes and
poses of a human body. We present an efficient framework to compute geodesic between given
human body surfaces under the chosen metric. We provide some basic tools for statistical shape
analysis of human body surfaces. These tools help us to compute an average human body. To
evaluate our approach, we conduct extensive experiments on multiple datasets. The experimental
results show that the proposed family of Riemannian metrics classifies correctly the shapes and the
poses. The experimental results show also that our proposed framework provides better geodesics
than the state-of-the-art Riemannian framework.

3.4.1 Mathematical Framework

Given a reference human being T (also called a template in the sequel), we will represent a human
shape S with an embedding f : T → R3 such that the image f (T ) equals S . The map f is an
embedding onto a human shape f(T ). The function f is also called a correspondence between the
template T and the human shape f(T ).

Recall that a map f : T → R3 is an embedding when: (1) f is smooth, in particular small
variations on the template T correspond to small variations on the human shape f(T ) (2) f is an
immersion, i.e. at each point of the human shape f(T ) one can define the normal (resp. tangent)
space to the surface of the human body as subspace of R3, and (3) f is an homeomorphism onto
its image, i.e. points on f(T ) that look close in R3 are images of close points in T . We define the
space of all registered human shapes as

H := {f : T → R3, f is an embedding}.

It is often called the pre-shape space since human bodies with the same shape but different corre-
spondences with the template may correspond to different points in H . The set H is a manifold,
as an open subset of the linear space C∞(T ,R3) of smooth functions from T to R3. The tangent
space to H at f , denoted by TfH , is therefore just C∞(T ,R3).

The shape preserving transformations can be expressed as group actions on H . The group
R3 with addition as group operation acts on H , by translations: (v, f) 7→ f + v, for v ∈ R3

and f ∈ H . The group SO(3) with matrix multiplication as group operation acts on H , by
rotations: (O, f) 7→ Of , for O ∈ SO(3) and f ∈ H . Finally, the group Γ := Diff+(T ) consisting
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of diffeomorphisms which preserve the orientation of T acts also on H , by reparameterization:
(γ, f) 7→ f ◦ γ−1, for γ ∈ Diff+(T ) and f ∈ H . The use of γ−1, instead of γ, ensures that the
action is from left and, since the action of SO(3) is also from left, one can form a joint action
of G := Diff+(T ) × SO(3) on H . In this section, the translation group is taken care of by
using a translation-independent metric. Therefore, in the following we will focus only on the
reparameterization group Γ and on the rotation group SO(3).

Shape Space of aligned Human bodies

Given a group G acting on H , the elements in H obtained by following a fix registered human
body f ∈ H when acted on by all elements of G is called the equivalence class of f under the
action of G, and will be denoted by [f ]. In particular, when G is the reparameterization group
Γ := Diff+(T ), the orbit of f ∈ H is characterized by the human shape f(T ) = S, i.e. the
elements in [f ] = {f ◦ γ−1 for γ ∈ Γ} are all possible registrations of S. The quotient space H /G
is called shape space and is defined as follows.

Definition 3.4.1. The shape space S is the set of (oriented) human bodies in R3, which are
diffeomorphic to T , modulo rotation. It is isomorphic to the quotient space of the pre-shape space
H by the human motion-preserving group G := Diff+(T )× SO(3): S = H /G.

In this section, each human body surface is aligned to a given template T . This means that
for any equivalence class [f ] ∈H /G a preferred correspondence with the template is chosen. This
alignment is anatomically meaningful (for instance the finger tips of the template correspond to
the finger tips of the other human bodies (See Figure 3.22). The set of aligned human bodies will
be denoted by S0 and is the space of interest in for the application we have in mind. Since the
correspondence with the template is chosen in a smooth way, the shape space S is diffeomorphic
to the manifold of aligned human bodies S0. Mathematically this alignment is called a section S0

of the fiber bundle Π : H →H /G.

3.4.2 Shape Space as Section of a Fiber Bundle

Recall that each human body surface is aligned to a given human template (SMPL template). As
illustrated in Figure 3.22, the geometric features of the template are aligned with geometric feature
of the human surface (for instance, the finger tips of the template correspond to the finger tips of
the other humans bodies).

Figure 3.22: Alignment with the template: The 3 meshes in different poses are displayed with
different color on extremities. This validate the choice to work on this particular section of the fiber
bundle Π : H →H /G
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Mathematically the choice of a preferred alignment with the template is called a section S0 of
the fiber bundle Π : H → H /G. A section of Π is a (smooth) map assigning to each equivalence
class [f0] ∈H /G a representative f0 ∈H in this class, i.e. such that Π(f0) = [f0]. This notion is
illustrated in Figure 3.23. The section we are using, i.e. the correspondence with the template, is
smooth, thanks to the geometric alignment as explained above.

H

Gf0
= Π−1([f0])

S0

H /G

f0

[f0]

Π

s0

Figure 3.23: Section of the fiber bundle Π : H → H /G: the one-to-one correspondance with
the template mesh allows us to work on the corresponding section S0 as a shape space. The
correspondance initially gives the section for Diff+(T ), but with Procrustes analysis, the section
for SO(3) comes straightforwardly.

Elastic Riemannian Metric

Consider a parameterized surface f : T → R3. Denote by g the pull-back of the Euclidian metric
of R3 and by n the unit normal vector field (Gauss map) on S = f(T ). We consider the following
map between parameterized surfaces on one hand and the product space of metrics and normals on
the other:

Φ : S0 −→ Met(T )× C∞(T ,S2)
f 7−→ (g, n).

(3.15)

It follows from the fundamental theorem of surface theory (see Bonnet’s Theorem in [62] for the local
result, Theorem 3.8.8 in [111] or Theorem 2.8-1 in [53] for the global result) that two parameterized
surfaces f1 and f2 having the same representation (g, n) differ at most by a translation (and rotation
for g). This theorem implies that we can represent a surface by its induced metric g and the unit
normal field n, for the purpose of analyzing its shape. We will not loose any information about
the shape of a surface f if we represent it by the pair (g, n). The induced metric g captures the
intrinsic shape, while the normal n captures the extrinsic geometry of shape.

The Manifold of Metrics on T and its Geodesic Distance

The space of positive-definite Riemannian metrics on T will be denoted by Met(T ). Once we
have selected a Riemannian metric for a human body, it is a point in the infinite-dimensional
manifold Met(T ). We will equip the infinite-dimensional space of all Riemannian metrics with
a diffeomorphism-invariant Riemannian metric, called the Ebin (or DeWitt) metric [68, 59], as
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suggested by [195]. The Riemannian metric on the tangent space is defined by:

((δg, δg))g =

∫
T

Tr(g−1δg0g
−1δg0) + λTr(g−1δg)2µg (3.16)

where δg0 = δg − 1
2Tr(g−1δg)g is called the traceless part of δg, and where µg denotes the volume

form defined by g. In this section, we endow the shape space with the following elastic metric and
pull it back on the preferred section S0 given by the correspondence with the template:

(((δg, δn), (δg, δn)))g,n =
a
(∫

T Tr(g−1δg0g
−1δg0) + λTr(g−1δg)2µg

)
+c
∫

T 〈δn, δn〉dx
(3.17)

Here a, λ, and b are constants that will be adjusted empirically depending on the applications.

Computation of Geodesics

As mentioned above, an important advantage of our Riemannian approach is its ability to compute
not only the distance between two human surfaces but also the geodesics or the deformations
between shapes. The computation of geodesics requires the minimization of an energy. In [205],
the path-straightening method is used to find critical points of the energy functional. Starting with
an arbitrary path, the method consists of iteratively deforming (or “straightening”) the path in the
opposite direction of the gradient, until the path converges to a geodesic. In [169], we used another
approach: after choosing a time step 1

T , T ∈ N, the path is set to the linear path (initialization) on
which we add a sum of deformations:

f (t0) = f0, f (tT ) = f1

f (ti) = (1− ti) f0 + tif1 +
∑
j

αijDj ,
(3.18)

where Dj is an orthogonal basis of ND plausible deformations gathered beforehand. The computa-
tion of the geodesic requires the minimization of the energy functional E(α), defined by:

E(α) =

∫ 1

0

((
dΦ(f(t))

dt
,
dΦ(f(t))

dt

))
Φ(f(t))

dt (3.19)

with α ∈ R(T−2)∗ND the vector containing all αij presented in equation 3.18, and ((., .))Φ(f(t))

being the pullback by Φ of the Riemannian metric (3.17) on Met(T )× C∞
(
T ,S 2

)
. To find the

optimal coefficients α, similar to [196], we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [73], implemented in the SciPy library [225] where we calculate the gradient using the
automatic differentiation feature of PyTorch library [165].

Basis Deformations

In [120], [122], [195], [205], spherically parameterization of 3D objects is used and spherical
harmonics are computed to define the set of deformations. However, human surfaces will require a
large number of basis elements to achieve high accuracy and capture all the human surface details.
In addition, in the case of human shapes, we are using a human template as a parametrization and
there are several publicly available dynamic human shapes that can be used to build a PCA basis
of deformations.

In our case to build such real deformations, we use the publicly Dynamic FAUST dataset [34],
which contains motions registered to the template T . 10 individuals (5 males, 5 females) perform
14 different motions, sampled at the rate of 60 frame per second. Given a set of motions, we collect
deformations by gathering differences from the sequences. Let (m1, ...,mT ) ∈ S0 be a motion
available in the dataset. We define the small deformations that we collect from the motions as the
family (mnτ+τ −mnτ )n, with τ being a time interval chosen manually, fixed to 10 frames ('160
ms). Thus, given a set of training samples, we can compute its PCA basis. In our experiments, the
number of PCA basis elements required is of the order of 100.

Note that, by construction, adding a deformations of the basis of deformation to a aligned human
shape will not destroy the alignment with the template.
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Algorithm 9: Computation of Geodesics

Input: the source and target surfaces f1 and f2, a, λ, c the parameter of the elastic metric
Output: fgeo: the geodesic connecting f1 and f2

1: Initialize αij = 0 and f(ti) by linear path;
2: Define the energy functional E(α) in an automatic differentiation framework (PyTorch
here), that computes the gradient value ∇αE along the functional value;

3: Minimize E with respect to α with a BFGS implementation (SciPy BFGS or L-BFGS-B),
that uses the gradient ∇αE;

4: Set the geodesic to be: fgeo(ti) = tif0 + (1− ti)f1 +
∑
j αijDj ;

5: return the final geodesic fgeo

3.4.3 Experiments

Assessment of the Family of Elastic Metrics

To further assess the pertinence of the family of elastic distances defined in Equation ?? in human
shape and pose analysis, we measured pairwise distances of the metric on the registrations present
in the FAUST dataset [34]. It contains 10 individuals (5 males, 5 females) in 10 different poses. We
present in Figure 3.24 and 3.25 2D visualizations of the dataset using the t-Distributed Stochastic
Neighbor Embedding (t-SNE) algorithm [221].

The Figure 3.24 clearly evidences that the 3D human with similar poses belong to very close
distributions. These results show the assumption that given a = 0, λ = 0, c = 1 (normal field L2

metric), the metric is preserved under shape change, and could be used in pose and motion analysis
application [137, 223]. The figure 3.25 shows that 3D human with similar shape belong to very close
distribution. These results states the assumption that given a = 1, λ = 0.0001, c = 0, the metric
is preserved under pose change, and could be used in many shape analysis application approaches
[168] and [131].

Geodesic paths

We performed a number of experiments using human surfaces of same and different persons under
a variety of pose and shape, and studied the resulting geodesic paths.

Figure 3.26 shows the geodesic path between f1 (shown in far left) and f2 (shown in far right).
Drawn in between are human surfaces denoting equally spaced points along the geodesic path. In
terms of the Riemannian metric chosen, these paths denote the optimal deformations in going from
the first human body to the second and the path lengths quantify the amount of deformations. For
this experiment, we also provide a curve of the energy, available right to the paths, which shows
that the energy decreases smoothly with time. For the first path, the change in the pose induces
small changes in shape. We thus want to minimize the shape change along the path, which would
set the extrinsic parameters c = 0. We find that a = 1, λ = 1 gives the best visual results. The
second path is a path with change in shape. We thus want to minimize the pose change along the
path, which would set parameters a = λ = 0, and the normal parameter c = 1.

We also compare the results obtained with our method to the results using linear geodesic path,
SRNF and SMPL descriptors.

1. The linear geodesic path between the inital and final embeddings.

2. The SRNF geodesic path is also visualized. This representation has been used to analyze
human shapes with interesting results [122, 196]. The SRNF is a pointwise representation
based on q =

√
An, where A = ‖fu× fv‖ is the area, and n the normal field. We compute the

geodesic for the SRNF representation with the same method as presented in this section.

As shown in Figures 3.27(a) and (b), the linear interpolation and SRNF lead to unnatural
deformations for human paths. The deformation between surfaces contains many artifacts
and degeneracies.

3. SMPL body model [134] : The SMPL model is a human blend shape model. The human
shape is presented as a function of β, θ, with θ being the parameters of human body pose, as
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Figure 3.24: 2D visualization of the FAUST dataset by our method using t-SNE algorithm. The
metric parameters are set to a = 1, λ = 0.0001, c = 0. Each color represents a class of pose and a
class representative is also displayed.
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Figure 3.25: 2D visualization of the FAUST dataset by our method using t-SNE algorithm. The
metric parameters are set to a = 0, λ = 0, c = 1. Each color represents a class of shape and a class
representative is also displayed.

(a)

(b)

Figure 3.26: Examples of geodesic path between f1 and far left and f2 far right: (a) with metric
parameters (a=1, λ = 1, c=0), (b) with metric parameters (a=0, λ = 0, c=1). The corresponding
energy evolution during optimization are displayed on the right. Computation time was respectively
3min31s and 10.6s.
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(a) Linear geodesic path

(b) Geodesic computed with SRNF

(c) Geodesic computed in SMPL space

(d) Geodesic computed with our approach, metric parameters are set to a = 1, λ = 1, c = 0. Computation
time was 3min10s.

Figure 3.27: Comparison of our approach with different frameworks.
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Repr. NN FT ST

GDVAE intrinsic [9] 27 24.8 46.2
Zhou et al. shape[239] 42 24.8 42.8
SMPL shape vector 98 72.4 86.7
APT [81] 96 86.5 96.2
Metric (1, 0.0001, 0) 100 94.8 97.1

Table 3.2: FAUST dataset results for shape retrieval

a cartesian product of axis angle rotation of skeletal joints (21 joints), in axis-angle represen-
tation, which lives in R21∗3 = R63. β are the parameters of the human body shape being the
coefficients of linear combination of Principal Component Analysis (PCA) shape decomposi-
tion (10 components). After fitting SMPL model to the FAUST dataset, we can compute the
corresponding geodesic, using the resulting shapes of the linear path in the SMPL parameter
space, see Figure 3.27. While the deformation propose by the SMPL body model is in some
way plausible, we first argue that the pose deformation proposed by SMPL does not bend
enough the elbow: this is due to the linear interpolation of the elbow joint angle. In addition,
one can observe that the target and sources shapes are slightly different than for our shapes.
This is due to the fitting step of SMPL: the resulting shape is the closest shape with plausible
SMPL parameters, not exactly the input shape.

3.4.4 Application to Pose and Shape Retrieval

We tested the usefulness of the family of metrics given by equation (3.17) in 3D human shape and
pose retrieval. We use Nearest neighbor (NN), First-tier (FT), Second-tier (ST) as evaluations
criteria. We propose to compare other methods of shape and/or pose retrieval with our method.

1. The first method GDVAE [9] is a point cloud variational autoencoder which is trained to
disantengle the intrinsic and extrinsic informations of a given shape in the latent space, and
propose a latent vector that decomposes in an intrinsic and extrinsic part. We used the
FAUST meshes as input of their available trained network and gathered their extrinsic latent
vectors, which lives in R12, along with their intrinsic latent vectors, which were for human pose
retrieval and shape retrieval respectively. The network has been trained on the SURREAL
dataset [222] .

2. The second method proposed by Zhou et al. [239] is a mesh autoencoder based on Neu-
ral3DMM [38] graph neural network structure. They disantengle the shape and pose in the
latent space. We apply the FAUST meshes on their available network, trained on AMASS
dataset, and use the pose latent vector, which lives in R112 as a descriptor for comparison.

3. For human shape, the Area Projection Transform [81] which won the human shape retrieval
challenge [168] is presented. It has been designed for a different goal here, since it is parame-
terization invariant.

4. We also compare to the SRNF distance that showed reliable results for pose retrieval.

5. Finally we use both shape and pose representation from the SMPL body model for the re-
spective retrieval tasks.

We perform evaluations of our method in FAUST dataset. We evaluate on pose and shape retrieval.
The evaluation results in Table 3.2 demonstrate that our method outperforms the previous state
of the art shape retrieval methods in term of NN criteria. The Table 3.3 shows that the proposed
approach provides the best results on pose retrieval in term of FT and ST criteria. We also find
that for shape retrieval, the best parameters are a = 1, λ << a. The computation times for each
pairwise distance were '70 ms and '80 ms for pose and shape retrieval respectively.
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Repr. NN FT ST

GDVAE extrinsic [9] 60 38.0 54.2
Zhou et al. pose[239] 82 69.2 83.4
SMPL pose vector 80 84.4 95.2
SRNF 73 77.7 94.4
Metric (0, 0, 1) 85 88.3 97.6

Table 3.3: FAUST dataset results for pose retrieval
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Part III

Infinite-dimensional Poisson
Geometry
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Chapter 4

Queer Poisson structures

4.1 Introduction

This chapter is based on the publication [24]. We give a method to construct Poisson brackets
{ · , · } on Banach manifolds M , for which the value of {f, g} at some point m ∈ M may depend
on higher order derivatives of the smooth functions f, g : M → R, and not only on the first-order
derivatives, as it is the case on all finite-dimensional manifolds. We discuss specific examples in this
connection, as well as the impact on the earlier research on Poisson geometry of Banach manifolds.
Those brackets are counterexamples to the claim that the Leibniz property for any Poisson bracket
on a Banach manifold would imply the existence of a Poisson tensor for that bracket.

The Poisson brackets in infinite-dimensional setting have played for a long time a significant role
in various areas of mathematics including (classical and quantum) mechanics and integrable systems
theory (see e.g. [70, 31, 1, 51]). However the rigorous approach to the notion of Poisson manifold
in the context of Banach space is relatively recent (see [156]). It is known that the Poisson brackets
on infinite-dimensional manifolds lack some of the properties known from the finite-dimensional
case. It was shown for instance in [156] that the existence of Hamiltonian vector fields requires
an additional condition on the Poisson tensor in the case of manifolds modelled on a non-reflexive
Banach space (i.e. a Banach space E that is not canonically isomorphic to its second dual E  E∗∗,
where E∗ denotes the topological dual of a Banach space). Another example of a new behaviour
can be found in [61] — a Poisson bracket defined only on a certain space of smooth functions might
lead to an unbounded Poisson tensor. Moreover on some manifolds, Poisson brackets need not be
local although as far as we know a counterexample is not known yet, see a related discussion in [46].

The aim of this chapter is to prove by example still another phenomenon that is specific to
Poisson geometry on an infinite dimensional manifold M , namely the existence of Poisson brackets
of higher order. That is, Leibniz property does not ensure that the bracket depends only on the
first-order derivatives of functions. The constructed Poisson brackets serve as a counterexample
to the statements given in the literature (see [156] or subsequently [99]), where it was claimed
that the existence of a Poisson tensor Π follows from Leibniz property and skew symmetry of the
Poisson bracket {·, ·}, in particular for every m ∈ M one could find a bounded bilinear functional
Πm : T ∗mM × T ∗mM → R satisfying

{f, g}(m) = Πm(f ′m, g
′
m)

where f ′m, g
′
m ∈ T ∗mM are the differentials of f, g ∈ C∞(M) at point m ∈ M . There is a related

fact in [1, Thm. 4.2.16], but we show that it is not applicable here (see Proposition 4.2.6).
We prove the existence of Poisson brackets not given by Poisson tensors on the family of Banach

sequence spaces lp for 1 ≤ p ≤ 2 and present an explicit example for p = 2. Such Poisson brackets
are pathological and do not lead to the dynamics in the usual way, thus from the point of view of
applications in physics one should explicitly assume the existence of Poisson tensor in the definition
of Poisson Banach manifold.

In Section 4.2 we investigate ”queer operational tangent vectors”, that is, derivations which are
differential operators of order higher than 1 on spaces of smooth functions on the manifold. This
notion was introduced with several results on their existence (including the examples on the Hilbert
space) in [117]. We explore the case of queer vectors of order 2 on the family of Banach sequence
spaces lp for 1 ≤ p <∞.
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Section 4.3 contains the main result of this chapter, which shows a way to construct higher order
Poisson brackets out of queer vector fields, and we illustrate the general result by a specific example
on the Hilbert space. We conclude this chapter with a version of the definition of Banach Poisson
manifold which clarifies the one introduced in [156]

All the Banach and Hilbert spaces considered in this chapter are real. By manifold we will
always mean a smooth real manifold modelled on a Banach space.

4.2 Queer operational vector fields

There are two major approaches to tangent vectors, namely the kinematic one and the operational
one. These approaches lead to the same notion for finite-dimensional manifolds, but this is no
longer the case in infinite dimensions. A kinematic tangent vector to a Banach manifold M at a
point m ∈M is an equivalence class of curves passing through that point (for precise definition see
e.g. [1]). On the other hand, an operational tangent vector is defined as a derivation acting in the
space of germs of functions (see [117], [46]).

For any m ∈M we consider the set of all functions f : U → R defined on an open neighborhood
U of m. We define an equivalence relation in that set in the following way: two functions f1 : U1 → R
and f2 : U2 → R are equivalent if there exists an open neighborhood U ⊂ U1 ∩ U2 of m for which
the restrictions of f1 and f2 to U coincide. Any equivalence class [f ] defined in this way is called a
germ at the point m ∈ M . We denote the set of germs of all smooth functions at m by C∞m (M).
We will drop the brackets in the notation of germ when there is no risk of confusion.

Definition 4.2.1. An operational tangent vector at point m ∈M is a linear map δ : C∞m (M)→
R satisfying Leibniz rule:

δ(fg) = δf g(m) + f(m) δg. (4.1)

An operational vector field on M is a collection of maps δU : C∞(U) → C∞(U) for each open
set U ⊂M , compatible with restrictions to open subsets and defining an operational tangent vector
at every m ∈M .

Let us denote by Lk(TmM ;R) the space of bounded k-linear maps on TmM with values in R
and let f

(k)
m ∈ Lk(TmM ;R) be the k-th differential of a function f at m ∈M .

Definition 4.2.2. The operational tangent vector δ is of order n if it can be expressed in the form

δf =

n∑
k=1

`k(f (k)
m ), (4.2)

with `k : Lk(TmM ;R) → R, and `n does not vanish identically on the subspace of symmetric n-
linear maps in Lk(TmM ;R). Otherwise the order of δ is infinite. If only one term is present in the
sum (4.2), δ is called homogeneous. The operational tangent vectors of order at least 2 are called
queer.

The operational vector field δ is of order at most n if there exists a family of smooth sections
`k of the bundle

⊔
m∈M

(Lk(TmM ;R))∗ satisfying (4.2) at each m ∈M .

The Leibniz rule (4.1) satisfied by δ implies certain algebraic conditions on functionals `k, see
[117, 28.2].

By definition, operational tangent vectors of order n depend only on the nth jet of functions.
The existence of infinite order operational tangent vectors is an open problem as far as we know.

Remark 4.2.3. Any kinematic tangent vector defines an operational tangent vector of order 1.
On the other hand in the case of manifolds modelled on non-reflexive Banach spaces, operational
tangent vectors of order 1 are given by elements of T ∗∗M which is larger than the (kinematic)
tangent bundle TM . Thus in the case of Banach manifolds (even the ones having a global chart, as
for instance Banach spaces), the notions of kinematic tangent vector and operational tangent vector
do not coincide in general.
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There are examples of Banach spaces possessing queer operational tangent vectors even in the
reflexive case. A construction of homogeneous second order operational tangent vectors on Hilbert
spaces was given in [117] and we explore it below for a class of Banach spaces. Let E be a Banach
space and consider the natural inclusion of E∗ × E∗ into L2(E;R) by:

E∗ × E∗ → L2(E;R)
(f, g) 7→ (f ⊗ g : (v, w) 7→ f(v)g(w)) .

(4.3)

In general (contrary to the finite-dimensional case) the linear span of its image may not be dense.
A functional ` ∈ (L2(E;R))∗ defines an operational tangent vector of order 2 at any a ∈ E by

δ`f = `(f ′′a ) (4.4)

if and only if it vanishes on E∗ × E∗ regarded as a subspace of L2(E;R) via (4.3). We also recall
here that we can identify L2(E;R) with L(E;E∗).

Proposition 4.2.4. There are no operational tangent vectors of the second order on the Banach
space lp of p-summable sequences for 2 < p < ∞. On the other hand, if 1 ≤ p ≤ 2 there are
non-trivial operational tangent vectors of the second order.

Proof. The existence of operational tangent vectors of the second order follows from [117, Rem.
28.8]. Namely according to Pitt’s theorem, every map from lp to (lp)∗ is compact if 2 < p <∞, see
e.g. [170], [179, Thm. 4.23], [71, Prop 6.25]. Moreover since all (lp)∗ spaces have the approximation
property, the closure of linear span of (lp)∗ × (lp)∗ coincides with the space of compact operators
from lp to (lp)∗ [179, Ch. 4]. So, the only functional ` which would vanish on E∗ × E∗ is the zero
functional. Thus there are no non-zero operational tangent vectors of the second order on lp for
2 < p <∞.

In the case 1 ≤ p ≤ 2, the inclusion map ι : lp ↪→ (lp)∗ is not compact, so using Hahn–Banach
theorem it is possible to define a non-zero functional ` on L2(E;R) that vanishes on the image of
the map (4.3). This implies the existence of non-zero operational tangent vectors of the second
order on lp for 1 ≤ p ≤ 2.

In particular for p = 2 we obtain an operational tangent vector of the second order on the
separable Hilbert space H . We will present this case more explicitly.

Example 4.2.5 (concrete queer operational vector on a Hilbert space). The Banach space L2(H ;R)
can be identified with the Banach space of bounded operators L∞(H ). This identification maps a
bilinear map B to the operator A defined by

B(v, w) = 〈Av,w〉 (4.5)

using Riesz theorem. The closure of the linear span of H ∗ × H ∗ considered as a subspace of
L2(H ;R) ' L∞(H ) by inclusion (4.3) is the ideal of compact operators on H . One can now
obtain ` with required properties by putting e.g. `(1) = 1 where 1 denotes the identity map, and
`(K) = 0 for any compact operator K ∈ L∞(H ) and extend ` to the whole L∞(H ) by means of
Hahn–Banach theorem.

Let us now demonstrate explicitly that the operational tangent vector δ` given by (4.4) with `
defined as above is not a kinematic tangent vector. Without loss of generality we fix the point a = 0.
Taking for example the function

ρ(v) = 〈v, v〉 (4.6)

for v ∈ H , we get ρ′′v = 21, where we have used the identification L2(H ;R) ' L∞(H ) given by
(4.5). From definition it follows that δ`(ρ) = 2. On the other hand, any kinematic tangent vector
to H at 0 can be identified with some w ∈H and

w · ρ = 〈w, 0〉+ 〈0, w〉 = 0.

Thus δ` is in fact a queer tangent vector. One can extend δ` to a queer constant operational vector
field on H , which we will denote by the same symbol.
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Let us show that existence of δ` in Example 4.2.5 is not a contradiction with [1, Thm. 4.2.16]
stating that for manifolds M modelled on Banach spaces with norm smooth away from the origin,
a certain space of derivations is isomorphic to the vector space of kinematic vector fields on M . In
this reference, a derivation D on the Banach manifold M is a collection of linear maps C∞(M,F )→
C∞(M,F ) for all Banach spaces F , such that for any f ∈ C∞(M,F ), g ∈ C∞(M,G), and any
bilinear map B : F ×G→ H, the following Leibniz rule holds

D (B(f, g)) = B(Df, g) +B(f,Dg), (4.7)

where F , G, and H are Banach spaces. An example of such a derivation is the Lie derivative.
However the operational vector field δ` cannot be extended to a derivation in the sense of [1].

Proposition 4.2.6. The queer operational vector field δ` constructed in Example 4.2.5 cannot be
extended to a derivation on all C∞(H , F ) spaces, where F is any Banach space.

Proof. Let us assume that there exists an extension D` of δ`. Let B be the natural duality pairing
between H ∗ and H . Consider the maps f : H →H ∗, v 7→ 〈v, ·〉 and g equal to the identity map
on H . Then B(f, g)(v) = 〈v, v〉 = ρ(v), and

D`

(
B(f, g)

)
(v) = δ`(ρ)(v) = `(21) = 2.

On the other hand,

B(D`f, g)(v) +B(f,D`g)(v) = B(D`f(v), v) + 〈v,D`g(v)〉.

This expression vanishes for v = 0, hence (4.7) cannot be satisfied for any extension of δ`.

Proposition 4.2.7. Let δ be an operational vector field of finite order on a manifold M . Then the
set of points at which it is queer is open while the set of points at which it is kinematic is closed in
M .

Proof. Let n be the order of δ. The set of points at which δ is not queer is the intersection
n⋂
k=2

`−1
k (0) of level sets of zero sections of coefficients `k : M →

⊔
m∈M

(Lk(TmM ;R))∗ of δ. Since `k

are continuous, the above intersection is a closed set.

The set of points at which δ is kinematic is
n⋂
k=2

`−1
k (0) ∩ `−1

1 (TM), where we regard TM as

a subbundle of
⊔

m∈M
(L1(TmM ;R))∗ = T ∗∗M . It is straightforward to check that TM is a closed

subset of T ∗∗M using local trivialization.

4.3 Queer Poisson brackets

In this section we will construct Poisson brackets which are localizable in the sense of the following
definition:

Definition 4.3.1. A Poisson bracket on a manifold M is a bilinear operation { · , · } : C∞(M)×
C∞(M)→ C∞(M) satisfying

(i) skew-symmetry: {f, g} = −{g, f};

(ii) Jacobi identity:
{
{f, g}, h

}
+
{
{g, h}, f

}
+
{
{h, f}, g

}
= 0;

(iii) Leibniz rule: {f, gh} = {f, g}h+ g{f, h};

for all f, g, h ∈ C∞(M).
A Poisson bracket { · , · } on M is called localizable if it has a localization, that is, a family

consisting of a Poisson bracket { · , · }U on every open subset U ⊆M , which satisfy { · , · }M = { · , · }
and are compatible with restrictions, i.e., if U ⊆ V and f, g ∈ C∞(V ) then {f, g}V |U = {f |U , g|U}U .
If this is the case, then for any function h ∈ C∞(M), its corresponding Hamiltonian vector field
is the operational vector field given by

Xh(f)(m) := {h|U , f}U (m) (4.8)

for all f ∈ C∞(U) and m ∈ U , for every open subset U ⊆M .
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Remark 4.3.2. A version of Peetre’s theorem on a Banach space E was proved in [230], to the effect
that if a linear map T : C∞(E) → C∞(E) is local in the sense that suppTf ⊂ supp f for all f ∈
C∞(E), then T is a differential operator of locally finite order provided that E satisfies the condition
of B∞ smoothness (existence of bump functions with Lipschitz property for all derivatives). This
condition is satisfied for Hilbert spaces, but e.g. not for the Banach space of real sequences that
are convergent to zero.

From compatibility with restrictions it follows that operational vector fields (including Hamil-
tonian vector fields) are local in this sense. Thus in the case of B∞ smooth Banach spaces they are
differential operators of locally finite order.

In the following we denote by
∧2

T ∗∗M the bundle of skew-symmetric bilinear functions on the
fibers of T ∗M , for any Banach manifold M .

Definition 4.3.3. A Poisson bracket { · , · } on M is of order one at m ∈ M if there exists a
skew-symmetric bounded bilinear functional Πm : T ∗mM × T ∗mM → R with

{f, g}(m) = Πm(f ′m, g
′
m) (4.9)

for all f, g ∈ C∞(M). Otherwise we say that { · , · } is queer at m ∈M .

If there exists a smooth section Π of the bundle
∧2

T ∗∗M satisfying (4.9) at every point m ∈M ,
then we say that Π is the Poisson tensor of the Poisson bracket { · , · }.

Remark 4.3.4. In the above definition, if the Poisson bracket is of order one at some point m ∈M
then it is not clear that there exists only one functional Πm satisfying (4.9), as the differentials
of globally defined functions at a given point m might not span the whole T ∗mM . However this is
certainly the case if for instance Poisson bracket is localizable or M has a global chart.

Theorem 4.3.5. Let δ1 and δ2 be two commuting operational vector fields on a Banach manifold M ,
and define

{f1, f2}U := (δ1)U (f1) (δ2)U (f2)− (δ2)U (f1) (δ1)U (f2),

for all f1, f2 ∈ C∞(U), for every open subset U ⊆ M . Then { · , · } := { · , · }M is a localizable
Poisson bracket with a localization consisting of the brackets { · , · }U . If moreover δ1 and δ2 are
linearly independent at some point m ∈M , then the Poisson bracket { · , · } is queer at the point m
if and only if at least one the operational vector field δ1 and δ2 is queer at m.

Proof. Bilinearity and skew-symmetry of { · , · } are obvious. Jacobi identity follows from the com-
mutativity of δ1 and δ2 just like in the case of canonical Poisson bracket on R2. This can also be
seen e.g. as the special case n = 2 of [72, Prop. 2]. The Leibniz rule for { · , · } follows easily from
(4.1). Compatibility with restrictions follows from the definition of operational vector fields.

Now assume that δ1 and δ2 are linearly independent at m ∈M . If none of δ1 and δ2 is queer at
m, then it follows by Remark 4.2.3 that their values at m satisfy (δ1)m, (δ2)m ∈ T ∗∗m M . Then (4.9)
is satisfied if we define Πm : T ∗mM × T ∗mM → R by

Πm(µ, ν) = (δ1)m(µ) (δ2)m(ν)− (δ2)m(µ) (δ1)m(ν) for all µ, ν ∈ T ∗mM,

hence { · , · } is not queer at m ∈M .
Conversely, assume that { · , · } is not queer at m ∈ M , hence we have (4.9). Since the linear

functionals (δ1)m, (δ2)m : C∞m (M) → R are linearly independent by hypothesis, there exists a
germ [f1] ∈ C∞m (M) with δ1(f1) = 0 and δ2(f1) 6= 0. Then for every f ∈ C∞(U) we obtain
{f1, f}U (m) = δ2(f1)(m) δ1(f)(m), hence by (4.9)

δ1(f)(m) =
1

δ2(f1)(m)
Πm((f1)′m, f

′
m)

and this shows that the operational tangent vector (δ1)m has order 1 at m. One can similarly prove
that the operational tangent vector (δ2)m has order 1 at m and this completes the proof.
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One can use Theorem 4.3.5 and Proposition 4.2.4 to construct queer Poisson brackets on lp

spaces for 1 ≤ p ≤ 2. Again we will present the case p = 2 in more detail.

Example 4.3.6 (concrete queer Poisson bracket). Now let us take M = H × R. Denote points
of M as (v, x). As the first operational vector field let us take δ` from Example 4.2.5 acting in
v variable, and for the second — ∂

∂x . They commute and thus by Theorem 4.3.5 define a queer
Poisson bracket on H × R:

{f, g}(v, x) := δ`(v)f(·, x)
∂g

∂x
(v, x)− ∂f

∂x
(v, x)δ`(v)g(·, x).

Note that this Poisson bracket has pathological properties: it does not allow Hamiltonian for-
malism in the usual sense since its corresponding Hamiltonian vector fields are in general only
operational vector fields, e.g. for the function h(v, x) = −x is

Xh := {h, ·} = δ`.

Thus it is not a section of TM . Since in the constructed example δ` was a differential operator of
the second order, it will not lead to an evolution flow on M . Note that the system of Hamilton
equations

d

dt
f(v(t), x(t)) = (Xhf)(v(t), x(t))

for f ∈ C∞(M) is not even a well posed problem. Namely for the function ρ given by (4.6) we get

d

dt
ρ(v(t)) = 2. (4.10)

Now consider the function f(v, x) = 〈v, w〉 for a fixed vector w ∈ H . One sees that f ′′ = 0 and
thus Xhf = 0. Since the vector w was arbitrary, it follows that d

dtv(t) = 0.

As demonstrated a queer Poisson bracket does not lead to the dynamics in the usual way.
However it may be possible to consider the dynamics not on the initial manifold but on some jet
bundle or higher (co)-tangent bundle, see e.g. [42] and references therein.

Taking this into account, from the point of view of applications in physics (including classical
mechanics) one should explicitly assume the existence of Poisson tensor in the definition of Poisson
Banach manifold. This also ensures the existence of the map ] : T ∗M → T ∗∗M defined by

](µm) = Πm(µm, ·), µm ∈ T ∗mM. (4.11)

Definition 4.3.7. A Banach Poisson manifold (M, { · , · }) is a Banach manifold M equipped
with a localizable Poisson bracket { · , · } for which there exists a Poisson tensor and the correspond-
ing ] map satisfies

](T ∗M) ⊂ TM. (4.12)

This definition is a clarification of the definition of Banach Poisson manifolds given in [156, Def.
2.1], where the localizability property and the existence of Poisson tensor or ]map were not explicitly
assumed, but were assumed implicitly. In consequence all Banach Poisson manifolds considered
there (including Banach Lie–Poisson spaces) do satisfy the corrected definition. Moreover, the
Poisson tensor of every Banach Lie-Poisson space is uniquely determined. (See Remark 4.3.4.)

The condition (4.12) on the map ] was introduced in [156] and guarantees that Hamiltonian
vector fields are kinematic and it is equivalent to the bilinear functional Πm : T ∗M × T ∗M → R
being separately weak∗-continuous.
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Chapter 5

The restricted Grassmannian as a
symplectic leave in a Poisson
manifold

5.1 Introduction

The present chapter is devoted to an investigation of the relationship between the restricted Grass-
mannian and the theory of Banach Lie–Poisson spaces. It is based on publication [27].

The restricted Grassmannian (whose definition is recalled after Proposition 5.2.11 below) is a
quite remarkable infinite-dimensional Kähler manifold that plays an important role in many areas
of mathematics and physics. There are many interesting objects related to the restricted Grassman-
nian, such as: loop groups (see Proposition 8.3.3 in [172]), the coadjoint orbits Diff+(S1)/S1 and
Diff+(S1)/PSU(1, 1) of the group of orientation-preserving diffeomorphisms of the circle (Proposi-
tion 6.8.2 in [172] and Proposition 5.3 in [182]). It is related to the integrable system defined by
the KP hierarchy (see [185]) and to the fermionic second quantization (see [233]). On the other
hand, the notion of a Banach Lie-Poisson space was recently introduced in [156] and is an infinite-
dimensional version of the Lie-Poisson spaces, that is, the Poisson manifolds provided by dual spaces
of finite-dimensional Lie algebras (see for instance [161] for the finite-dimensional theory). Specifi-
cally, a Banach Lie-Poisson space is a Banach space b whose topological dual b∗ is endowed with a
structure of Banach Lie algebra such that the subspace b of (b∗)∗ is invariant under the correspond-
ing coadjoint action. Equivalently, the Lie bracket of b∗ is separately weak∗-continuous. This new
class of infinite-dimensional linear Poisson manifolds is remarkable in several respects: it includes all
the preduals of W ∗-algebras, thus establishing a bridge between Poisson geometry and the theory
of operator algebras, and hence it provides links with algebraic quantum theories; it interacts in a
fruitful way with the theory of extensions of Lie algebras (see [157]); and finally, there exist large
classes of Banach Lie-Poisson spaces which share with the finite-dimensional Poisson manifolds the
fundamental property that the characteristic distribution is integrable, the corresponding integral
manifolds being in addition Poisson submanifolds which are symplectic and, in several important
situations, are even Kähler manifolds (see [26]).

We have mentioned here two types of infinite-dimensional Kähler manifolds: the restricted
Grassmannian and certain symplectic leaves in infinite-dimensional Lie-Poisson spaces introduced
in [156]. This brings us to the first question addressed:

Question 5.1.1. Is the restricted Grassmannian a symplectic leaf in a Banach Lie-Poisson space?

The main result of our collaboration [27] shows that the answer to this question is essentially
affirmative; see Section 5.5 for the precise statements and a detailed discussion of this problem.
Specifically, we shall employ the method of central extensions to construct a certain Banach Lie-
Poisson space ũ2 whose characteristic distribution is integrable (Theorem 5.5.1) and one of the
integral manifolds of this distribution is symplectomorphic to the connected component Gr0

res of
the restricted Grassmannian (Theorem 5.5.3). Using a similar method, we realize the restricted
Grassmannian as a symplectic leaf in yet another Banach Lie-Poisson space, which is the predual
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to a 1-dimensional central extension of the restricted Lie algebra ures. See Section 5.2 for a detailed
discussion of the Poisson geometry of this new Banach Lie-Poisson space (ũres)∗.

This second construction is closely related to another area where the theory of restricted groups
interacts with the theory initiated in [156]. Specifically, we also address the following question on
the predual (ures)∗ of the restricted Lie algebra:

Question 5.1.2. Does the real Banach space (ures)∗ have a natural structure of Banach Lie-Poisson
space and is its characteristic distribution integrable?

By the very construction of the Banach Lie-Poisson space (ũres)∗, the predual (ures)∗ appears
as a Poisson submanifold of (ũres)∗ and carries a natural structure of Banach Lie-Poisson space.
Nonetheless, the answer to the second part of Question 5.1.2 turns out to be much more difficult
to give than the one to Question 5.1.1 inasmuch as the restricted algebra Bres (see Notation 5.1.3
below) is a dual Banach ∗-algebra with many pathological properties (summarized in Section 5.6):
its unitary group is unbounded, its natural predual is not spanned by its positive cone, and a
conjugation theorem for its maximal Abelian ∗-subalgebras fails to be true. Despite these unpleasant
properties, we show that the characteristic distribution of (ures)∗ has numerous smooth integral
manifolds, which are, in particular, smooth coadjoint orbits of the restricted unitary group Ures (see
Section 5.3). For the sake of completeness, a short section (Section 5.4) is devoted to investigating
smoothness of adjoint orbits of Ures.

Notation 5.1.3. We conclude this Introduction by setting up some notation to be used throughout
this chapter. In the following, H will denote a complex Hilbert space, endowed with a decomposi-
tion H = H+ ⊕H− into the orthogonal sum of two closed subspaces.

It will follow implicitly from the hypotheses of various statements when additional conditions on
the Hilbert space H are imposed. For example, Corollary 5.3.7 requests the existence of a certain
countable orthonormal basis, so H needs to be separable. Also, sometimes it is assumed that both
H± are infinite-dimensional. This is the case in Section 5.6 where we need operators that do not
belong to the restricted algebra Bres.

The orthogonal projection onto H± will be denoted by p±. The Banach ideal of trace class
operators on H will be denoted by L1(H ) and L2(H ) will denote the Hilbert ideal of Hilbert-
Schmidt operators on H . We let B(H ) be the algebra of all bounded linear operators on H . We
shall also need the Banach Lie group of unitary operators on H ,

U(H ) = {u ∈ B(H ) | u∗u = uu∗ = id},

whose Lie algebra is
u(H ) = {a ∈ B(H ) | a∗ = −a}.

Now let us define the following skew-Hermitian element:

d := i(p+ − p−) ∈ u(H ).

The restricted Banach algebra and the restricted unitary group are respectively defined as follows:

Bres = {a ∈ B(H ) | [d, a] ∈ L2(H )} = {a ∈ B(H ) | ‖a‖res := ‖a‖+ ‖[d, a]‖2 <∞}, and
Ures = {u ∈ U(H ) | [d, u] ∈ L2(H )} = U(H ) ∩Bres.

The Lie algebra of Ures is the following Banach Lie algebra:

ures = {a ∈ u(H ) | [d, a] ∈ L2(H )} = u(H ) ∩Bres.

Let us define the following Banach Lie algebra:

(ures)∗ = {ρ ∈ u(H ) | [d, ρ] ∈ L2(H ), p±ρ|H± ∈ L1(H±)}.

A connected Banach Lie group with Lie algebra (ures)∗ is

U1,2 = {a ∈ U(H ) | a− id ∈ L2(H ), p±a|H± ∈ id + L1(H±)}.

The group U1 and its Lie algebra u1 are defined as follows:

U1 = {a ∈ U(H ) | a− id ∈ L1(H )}, and
u1 = u(H ) ∩ L1(H ).

Finally, the Hilbert-Lie group U2 and its Lie algebra u2 are defined by :

U2 = {a ∈ U(H ) | a− id ∈ L2(H )}, and
u2 = u(H ) ∩ L2(H ).
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5.2 The Banach Lie-Poisson space associated to the univer-
sal central extension of ures

In this section we construct a Banach Lie-Poisson space (ũres)∗ whose dual is the universal central
extension of the restricted algebra ures. (See [150] for the definition of universal central extension
and Proposition 5.2.4 below for the justification of this fact.) The Poisson structure of (ũres)∗ is
defined by (5.8) in Proposition 5.2.5. Let us first justify the suggestive notation (ures)∗.

Proposition 5.2.1. The Lie algebra (ures)∗ is a predual of the unitary restricted algebra ures, the
duality pairing 〈· , ·〉 being given by

〈· , ·〉 : (ures)∗ × ures → R, (b, c) 7→ Tr (bc). (5.1)

Proof. Consider two arbitrary elements

a =

(
a++ a+−
−a∗+− a−−

)
∈ ures and ρ =

(
ρ++ −ρ∗−+

ρ−+ ρ−−

)
∈ (ures)∗.

Then

aρ =

(
a++ρ++ + a+−ρ−+ −a++ρ

∗
−+ + a+−ρ−−

−a∗+−ρ++ + a−−ρ−+ a∗+−ρ
∗
−+ + a−−ρ−−

)
, (5.2)

hence
Tr (aρ) = Tr (a++ρ++) + 2<Tr (a+−ρ−+) + Tr (a−−ρ−−), (5.3)

where Rz denotes the real part of the complex number z. Recall that the bilinear functional

B(H±)× L1(H±)→ C, (b, c) 7→ Tr (bc),

induces a topological isomorphism of complex Banach spaces (L1(H±))
∗ ' B(H±). It follows that

the trace induces a topological isomorphism of real Banach spaces

(u(H±) ∩ L1(H±))
∗ ' u(H±). (5.4)

Indeed, the C-linearity of the trace implies that for b ∈ B(H±) the following conditions are equiv-
alent: (

∀c ∈ u(H±) ∩ L1(H±)
)

Tr (bc) = 0 ⇐⇒
(
∀c ∈ L1(H±)

)
Tr (bc) = 0.

Moreover the condition (
∀c ∈ u(H±) ∩ L1(H±)

)
Tr (bc) ∈ R

implies (
∀c ∈ u(H±) ∩ L1(H±)

)
Tr (b+ b∗)c = 0,

hence b belongs to u(H±). On the other hand, the duality pairing of complex Hilbert spaces

L2(H−,H+)× L2(H+,H−)→ C, (b, c) 7→ Tr (bc),

induces a duality pairing of the underlying real Hilbert spaces by

L2(H−,H+)× L2(H+,H−)→ R, (b, c) 7→ <Tr (bc). (5.5)

In view of formula (5.3), we conclude that the trace induces a topological isomorphism of real
Banach spaces

((ures)∗)
∗ ' ures.

That is, (ures)∗ is indeed a predual to ures, the duality pairing being induced by (5.4) and (5.5).

Definition 5.2.2. We define the Banach Lie algebra ũres as the central extension of ures with
continuous two-cocycle s given by

s(A,B) := Tr (A[d,B]), (5.6)

for all A,B ∈ ures. That is, ũres is the Banach Lie algebra ures ⊕ R endowed with the bracket [·, ·]d
defined by

[(A, a), (B, b)]d = ([A,B], s(A,B)) . (5.7)
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Remark 5.2.3. Note that by the very definition of ures, one has [d, ures] ⊂ (ures)∗. It follows from
the duality pairing (5.1), that s is well-defined by (5.6). To see that s defines a two-cocycle on ures,
let us remark that s is (2i)-times the Schwinger term of [233]. It follows from Corollary II.12 in
the aforementioned work that s defines a non-trivial element in the second continuous Lie algebra
cohomology space H2(ures,R). The corresponding U(1)-extension of the unitary restricted group

Ures is isomorphic to the U(1)-extensions U∼res and Ûres of Ures constructed in [233].

Proposition 5.2.4. The cohomology class [s] is a generator of the continuous Lie algebra coho-
mology space H2(ures,R).

Proof. According to Proposition I.11 in [149], the second continuous Lie algebra cohomology space
H2(Bres,C) of the restricted Lie algebra Bres is 1-dimensional. Note that a continuous R-valued
2-cocycle v on ures extends by C-linearity to a continuous C-valued 2-cocycle vC on the complex
Lie algebra Bres. The cocycle vC is a coboundary if and only if there exists a continuous linear
map α : Bres → C such that vC(x, y) = α ([x, y]) for every x, y ∈ Bres. But since vC restricts to
the R-valued 2-cocycle v on ures, this is the case if and only if there exists β := <α : ures → R such
that v(x, y) = β ([x, y]) for every x, y ∈ ures. It follows that the extension vC is a coboundary on
Bres if and only if v is a coboundary on ures. Consequently, there is a natural linear injection of
H2(ures,R) into H2(Bres,C). Since s defines a non-trivial element in H2(ures,R) (see Remark 5.2.3)
and dimCH

2(Bres,C) = 1, it follows that dimRH
2(ures,R) = 1 and thus H2(ures,R) is generated

by s.

Proposition 5.2.5. The Banach space (ũres)∗ is a Banach Lie-Poisson space for the Poisson
bracket

{f, g}d(µ, γ) := 〈µ, [Dµf(µ), Dµg(µ)]〉+ γs(Dµf,Dµg) (5.8)

where f, g ∈ C∞((ũres)∗), (µ, γ) is an arbitrary element in (ũres)∗, and Dµ denotes the partial
Fréchet derivative with respect to µ ∈ (ures)∗.

The pairing in equation (5.8) is the duality pairing defined by (5.1). We will denote by 〈· , ·〉d
the duality pairing between (ũres)∗ = (ures)∗ ⊕ R and ũres = ures ⊕ R given by

〈(µ, γ), (A, a)〉d = 〈µ,A〉+ γa.

Proof of Proposition 5.2.5. By Theorem 4.2 in [156], the Banach space (ũres)∗ is a Banach Lie-
Poisson space if and only if its dual ũres is a Banach Lie algebra satisfying ad∗x(ũres)∗ ⊂ (ũres)∗ ⊂
(ũres)

∗ for all x ∈ ũres. The fact that ũres is a Banach Lie algebra follows directly from the continuity
of s and from the 2-cocycle identity which implies the Jacobi identity of [·, ·]d. To see that the
coadjoint action of ũres preserves the predual (ũres)∗, note that for every (A, a), (B, b) ∈ ũres and
every (µ, γ) ∈ (ũres)∗, one has

〈−ad∗(A,a)(µ, γ), (B, b)〉d :=〈(µ, γ),−ad(A,a)(B, b)〉d = 〈(µ, γ),−[(A, a), (B, b)]d〉d
=〈(µ, γ), (−[A,B],−s(A,B))〉d = −Trµ[A,B]− γTrA[d,B]

=− Trµ[A,B]− γTr [A, d]B = 〈(−ad∗A(µ)− γ[A, d], 0), (B, b)〉d.
(5.9)

Since
[(ures)∗, ures] ⊆ (ures)∗, and [d, ures] ⊂ (ures)∗,

we conclude that −ad∗(A)(µ) − γ[A, d] belongs to (ures)∗ for every A ∈ ures. Hence the predual
(ũres)∗ is preserved by the coadjoint action. Referring again to Theorem 4.2 in [156], it follows that
the Poisson bracket of f , g ∈ C∞((ũres)∗) is given by

{f, g}d(µ, γ) = 〈(µ, γ), [Df(µ, γ), Dg(µ, γ)]d〉d.

Denoting respectively by Dµ and Dγ the partial Fréchet derivatives with respect to µ ∈ (ures)∗ and
γ ∈ R, one has

{f, g}d(µ, γ) = 〈(µ, γ), [(Dµf,Dγf) , (Dµg,Dγg)]d〉d
= 〈(µ, γ), ([Dµf,Dµg], s(Dµf,Dµg))〉d
= 〈µ, [Dµf,Dµg]〉+ γs(Dµf,Dµg),

and this ends the proof.
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Remark 5.2.6. By Theorem 4.2 in [156], it follows that the Hamiltonian vector field associated to
a smooth function h on (ures)∗ is given by

Xh(µ, γ) = −ad∗(Dµh,Dγh)(µ, γ) =
(
−ad∗Dµhµ− γ[Dµh, d], 0

)
. (5.10)

Remark 5.2.7. Note that, for each γ ∈ R, (ures)∗⊕{γ} is a Poisson submanifold of (ũres)∗ for the
following Poisson bracket on the first factor

{f, g}d,γ(µ) := 〈µ, [Dµf(µ), Dµg(µ)]〉+ γs(Dµf,Dµg).

Remark 5.2.8. The central extension (ũres)∗ of the Banach Lie-Poisson space (ures)∗ is a particular
example of the extensions of Banach Lie-Poisson spaces constructed in [157]. Indeed formula (5.8)
for the bracket of two functions on (ũres)∗ can be alternatively deduced from the general formula (5.6)
in Theorem 5.2 of [157], with c = R, a = (ures)∗, ϕ = 0 and ω = s. The pairing in the second
term of the right hand side of (5.6), Theorem 5.2, [157], is, in this special case, just the pairing
between the real line and its dual given by multiplication of real numbers (the element c ∈ c is γ),
and the bracket of partial derivatives of the functions f and g with respect to c vanishes since R is
commutative.

Proposition 5.2.9. The unitary group Ures acts on the Poisson manifold (ures)∗ ⊕ {γ} ⊂ (ũres)∗
by the affine coadjoint action as follows. For g ∈ Ures,

g · (µ, γ) :=
(
Ad∗(g−1)(µ)− γσ(g), γ

)
where µ ∈ (ures)∗, γ ∈ R, and where

σ : Ures → (ures)∗,

g 7→ gdg−1 − d.

Proof. Let us verify that for every g ∈ Ures we have gdg−1 − d ∈ (ures)∗. Consider the block
decomposition of g with respect to the direct sum H = H+ ⊕H−

g =

(
g++ g+−
g−+ g−−

)
∈ Ures.

One has(
g++ g+−
g−+ g−−

)(
i 0
0 −i

)(
g∗++ g∗−+

g∗+− g∗−−

)
=

(
ig++g

∗
++ − ig+−g

∗
+− ig++g

∗
−+ − ig+−g

∗
−−

ig−+g
∗
++ − ig−−g

∗
+− ig−+g

∗
−+ − ig−−g

∗
−−.

)
(5.11)

Since g±∓ belongs to L2(H∓,H±), the off-diagonal blocks of the right hand side are in L2(H±,H∓).
Further, since(

g++ g+−
g−+ g−−

)(
g∗++ g∗−+

g∗+− g∗−−

)
=

(
g++g

∗
++ + g+−g

∗
+− g++g

∗
−+ + g+−g

∗
−−

g−+g
∗
++ + g−−g

∗
+− g−+g

∗
−+ + g−−g

∗
−−

)
=

(
id 0
0 id

)
,

and since L2 ·L2 ⊂ L1, one has

g++g
∗
++ = id− g+−g

∗
+− ∈ id + L1(H+)

and

g−−g
∗
−− = id− g−+g

∗
−+ ∈ id + L1(H−).

Consequently,

g++g
∗
++ − g+−g

∗
+− ∈ id + L1(H+)

and

g−+g
∗
−+ − g−−g∗−− ∈ −id + L1(H−).

Moreover, it is clear that the result of the multiplication (5.11) is skew-symmetric. Hence for all
g ∈ Ures we have g d g−1 − d ∈ (ures)∗.
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Denoting by Aff ((ures)∗ ⊕ {γ}) the affine group of transformations of (ures)∗ ⊕ {γ}, it remains
to show that

(Ad∗,−γσ) : Ures → Aff((ures)∗ ⊕ {γ}) = GL((ures)∗ ⊕ {γ})o (ures)∗

g 7→ (Ad∗(g−1),−γσ(g))

is a group homomorphism. For this, we have to check that σ(g1g2) = Ad∗(g−1
1 )σ(g2) +σ(g1) for all

g1, g2 in Ures (see [148]). In fact

σ(g1g2) = g1g2 d g
−1
2 g−1

1 − d = g1

(
g2 d g

−1
2 − d

)
g−1

1 + (g1 d g
−1
1 − d)

= Ad∗(g−1
1 ) (σ(g2)) + σ(g1),

and this ends the proof.

Proposition 5.2.10. The isotropy group of (0, γ) ∈ (ures)∗ ⊕ {γ} for the Ures-affine coadjoint
action is a Lie subgroup of Ures.

Proof. An element X in the Lie algebra ures of Ures induces by the infinitesimal affine coadjoint
action on (ures)∗ ⊕ {γ} the following vector field

X · (µ, γ) :=
d

dt
[exp(tX) · (µ, γ)]t=0

=
( d
dt

[Ad∗(exp(−tX))(µ)− γσ(exp(tX))]t=0 , 0
)

= (−ad∗X(µ)− γ[X, d], 0) .

By definition, the Lie algebra of the isotropy group of (µ, γ) is

u(µ,γ) := {X ∈ ures | −ad∗X(µ)− γ[X, d] = 0}

The proposition is trivial when µ and γ vanish. For µ = 0 and γ 6= 0, the Lie algebra u(0,γ) consist
of all elements of ures which commute with d. Hence, for γ 6= 0, u(0,γ) = u(H+) ⊕ u(H−). A
topological complement to u(0,γ) in ures is m := u(H ) ∩ (L2(H+,H−)⊕ L2(H−,H+)).

Proposition 5.2.11. The affine coadjoint orbits of Ures that are smooth are tangent to the char-
acteristic distribution of the Poisson manifold (ũres)∗.

Proof. By the proof of Proposition 5.2.10, the image of the differential of the orbit map is

ures · (µ, γ) =
{(
−ad∗X(µ)− γ[X, d], 0

)
| X ∈ ures

}
.

By Remark 5.2.6, the characteristic space at (µ, γ) ∈ (ũres)∗ is

P (µ, γ) = {Xh(µ) =
(
−ad∗Dµhµ−γ[Dµh, d], 0

)
| h ∈ C∞((ures)∗)} = {(−ad∗Xµ− γ[X, d], 0) | X ∈ ures} .

Thus the assertion follows.

The restricted Grassmannian Grres is defined as the set of subspaces W of the Hilbert space H
such that the orthogonal projection from W to H+ (respectively to H−) is a Fredholm operator
(respectively a Hilbert-Schmidt operator). It follows from Propositions 7.1.2 and 7.1.3 in [172] that
Grres is a Hilbert manifold and a homogeneous space under the natural action of Ures. According
to Proposition II.2 in [233], the connected components of Ures are the sets

Uk
res =

{(
U++ U+−
U−+ U−−

)
∈ Ures | index(U++) = k

}
for k ∈ Z.

The pairwise disjoint sets

Grkres = {W ∈ Grres | index(p+|W : W → H+) = k} , k ∈ Z

are the images of the connected components of Ures by the continuous projection Ures → Grres =
Ures/ (U(H+)×U(H−)), and thus they are the connected components of Grres. In particular,
the connected component of Grres containing H+ is Gr0

res. The Kähler structure of the restricted
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Grassmannian is defined in [172], Section 7.8. According to the convention in [172], the Kähler
form ωGr of Grres is the Ures-invariant 2-form whose value at H+ is given by

ωGr(X,Y ) = 2=Tr (X∗Y ), (5.12)

where X,Y ∈ L2(H+,H−) ' TH+Grres and Iz denotes the imaginary part of z ∈ C. Equivalently,
ωGr is the quotient of the following real-valued anti-symmetric bilinear form ΩGr on ures which
vanishes on u(H+)⊕u(H−) and is invariant under the U(H+)×U(H−)-action (see Corollary III.8
in [233]):

ΩGr(A,B) = −1

2
s(A,B) (5.13)

where A and B belong to ures. In this correspondence, an element A =

(
A++ −A∗−+

A−+ A−−

)
in ures is

identified with the vector X = A−+ in L2(H+,H−) ' TH+(Grres).

Proposition 5.2.12. For every γ 6= 0, the connected components of the Ures-affine coadjoint orbit
O(0,γ) of (0, γ) ∈ (ures)∗⊕{γ} are strong symplectic leaves in the Banach Lie-Poisson space (ũres)∗.

Proof. We recall from Proposition 5.2.5 that (ũres)∗ is a Banach Lie-Poisson space. By Proposi-
tion 5.2.10, the isotropy group U(0,γ) of (0, γ) for the Ures-affine coadjoint action is a Banach Lie

subgroup of Ures since its Lie algebra u(0,γ) is complemented in ures. Let us denote by Ũres the

central extension of Ures with Lie algebra ũres and by p : Ũres → Ures the projection map in the
exact sequence 1→ S1 → Ũres → Ures → 1. The group Ũres is isomorphic to the unitary subgroup
of GL∼res, the central extension of the group of invertible elements in Bres constructed in [172],
Section 6.6 (see also Section II.3 in [233]). The usual coadjoint action of Ũres on the dual of its Lie
algebra leaves the predual (ũres)∗ invariant since by equation (5.9) and the arguments in the proof
of Proposition 5.2.5 following it, one has

− ad∗(A,a)(µ, γ) = (−ad∗A(µ)− γ[A, d], 0) ∈ (ũres)∗. (5.14)

The isotropy group Ũ(0,γ) of (0, γ) ∈ (ũres)∗ for the usual coadjoint action of Ũres is a Banach Lie

subgroup of Ũres since its Lie algebra

ũ(0,γ) := {(A, a) ∈ ures | − ad∗(A,a)(0, γ) = 0} = u(0,γ) ⊕ R

is complemented in ũres. It follows from Theorem 7.3 in [156] that the homogeneous space Ũres/Ũ(0,γ),
which admits a unique smooth Banach manifold structure making the canonical projection π̃ :
Ũres → Ũres/Ũres,(0,γ) a surjective submersion, carries a weak symplectic two-form ω(0,γ) given by

ω(0,γ)([g̃])(Tg̃π̃(TeLg̃ξ), Tg̃π̃(TeLg̃η)) := 〈(0, γ), [ξ, η]d〉d , (5.15)

where ξ, η ∈ ũres, g̃ ∈ Ũres, [g̃] := π̃(g̃). The usual coadjoint action of Ũres on the predual (ũres)∗
and the affine coadjoint action of Ures on (ũres)∗ defined in Proposition 5.2.9 are related by

Ad∗(g̃−1)(µ, γ) = p(g̃) · (µ, γ), (5.16)

where (µ, γ) ∈ (ũres)∗. To see this, note that the coadjoint action of the center of the extended
group is trivial. Therefore the corresponding action descends to an action of the restricted unitary
group. The tangent maps of the group homomorphisms Ũres → GL ((ũres)∗) defined by the left
and right hand sides of (5.16) coincide by equation (5.14), hence equation (5.16) holds for g̃ in
the connected component of the unit in Ũres which is simply connected by Proposition IV.9(i) in
[149]. The general case follows by verifying formula (5.16) for the shift operator since by the remark

following Definition and Proposition II.23 and Proposition II.27 in [233], we have Ũres = Ũ
0

res o Z
where the action of 1 ∈ Z on Ũ

0

res projects to the conjugation by the shift on U0
res. Consequently,

the Ures-affine coadjoint orbit O(0,γ) is the coadjoint orbit of (0, γ) for the usual coadjoint action of

Ũres. It follows from Theorem 7.4 in [156] that the map

ι : [g̃] ∈ Ũres/Ũ(0,γ) 7→ Ad∗g̃−1(0, γ) ∈ (ũres)∗ (5.17)
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is an injective weak immersion of the quotient manifold Ũres/Ũ(0,γ) into the predual space (ũres)∗,
and that the connected component of the affine coadjoint orbit O(0,γ) endowed with the smooth
manifold structure making ι into a diffeomorphism and the symplectic form given by ι∗(ω(0,γ)) are
symplectic leaves of the Banach Lie-Poisson space (ũres)∗. By Theorem 7.5 in [156], this symplectic
form is in fact strong.

Theorem 5.2.13. The connected components of the restricted Grassmannian are strong symplectic
leaves in the Banach Lie-Poisson space (ũres)∗. More precisely, for every γ 6= 0, the Ures-affine
coadjoint orbit O(0,γ) of (0, γ) ∈ (ures)∗ ⊕ {γ} is isomorphic to the restricted Grassmannian Grres

via the map
Φγ : Grres → O(0,γ)

W 7→ 2iγ(pW − p+),

where pW denotes the orthogonal projection on W . The pull-back by Φγ of the symplectic form on
O(0,γ) is (−2γ)-times the symplectic form ωGr on Grres.

Proof. An element in the affine coadjoint orbit O(0,γ) of (0, γ) is of the form (ρ, γ) with

ρ = γ(g d g−1 − d) = 2iγ(g p+ g
−1 − p+),

for some g ∈ Ures (where we have used the identity p− = id − p+ to simplify the formula for the
affine coadjoint action given in Proposition 5.2.9). By Corollary III.4 ii) in [233], Φγ is bijective
for γ 6= 0. Since the manifold structure of the orbit O(0,γ) is induced by the identification O(0,γ) =
Ures/ (U(H+)×U(H−)), it follows from Corollary III.4 i) in [233] that Φγ is a diffeomorphism. The
symplectic form ωO on O(0,γ) is the Ures-invariant symplectic form whose value at (0, γ) ∈ O(0,γ) is
the given by

ωO (0, γ) (Xf (0, γ), Xg(0, γ)) = {f , g}d(0 , γ),

where f and g are any smooth functions on (ures)∗. Using formulas (5.10) and (5.8), it then follows
that

ωO (0, γ) (γ[Dµf, d] , γ[Dµg, d]) = γs(Dµf ,Dµg).

Hence for every A,B ∈ ures, one has

ωO (0, γ) (γ[A, d] , γ[B, d]) = γs(A ,B) = −2γΩGr(A,B).

It follows that the real-valued anti-symmetric bilinear form on ures corresponding to the symplectic
form ωO on O(0,γ) = Ures/ (U(H+)×U(H−)) equals −2γΩGr (where the latter identification is
given by the orbit map), and this ends the proof.

Remark 5.2.14. We refer to the paper [157] for additional information on the relationship between
the Banach Lie-Poisson spaces and the theory of Lie algebra extensions.

5.3 Coadjoint orbits of the restricted unitary group

This section includes some partial answers to Question 5.1.2. The main difficulty is to show that
the isotropy group of an element in the predual (ures)∗ is a Lie subgroup of Ures, or equivalently
that its Lie algebra is complemented in ures. Using the averaging method developed in [19] and
[22] for constructing closed complements, we will be able to show that the Ures-coadjoint orbit
of every element ρ ∈ (ures)∗ which commutes with d is a smooth manifold and that its connected
components are symplectic leaves of the characteristic distribution (see Proposition 5.3.3). It follows
that the same conclusion holds for every element ρ ∈ (ures)∗ which is Ures-conjugate to an element
commuting with d, or equivalently to a diagonal operator with respect to a Hilbert basis compatible
with the eigenspaces of d. The set of elements with the latter property is not equal to the whole
(ures)∗; however, it is dense (for more details see the proof of Corollary 5.3.5). Recall that in finite
dimensions, every element in the Lie algebra u(n) of the unitary group U(n) is U(n)-conjugate to
a diagonal matrix with respect to a given basis of Cn, or, in other words, U(n) acts transitively on
the set of Cartan subalgebras of u(n). This is no longer true in the infinite-dimensional case (see
Subsection 5.6.3). It is a difficult question to decide whether a given operator ρ in (ures)∗ or ures has
the good property of being Ures-conjugate to a diagonal operator with respect to a basis adapted to
the decomposition H = H+ ⊕H−. In Propositions 5.3.5 and 5.3.7, we give some concrete criteria
to check that property.
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Conjecture 5.3.1. The real Banach space (ures)∗ has a natural structure of Banach Lie-Poisson
space and its characteristic distribution is integrable.

We refer to [155] for a discussion of integrable distributions on Banach manifolds. The meaning
of the integrability of the characteristic distribution in Conjecture 5.3.1 is that for every µ0 ∈ (ures)∗
there exist a connected Banach manifold M and a smooth injective mapping ψ : M → (ures)∗ such
that µ0 ∈ ψ(M) and for every x ∈M the tangent map Txψ : TxM → Tψ(x)((ures)∗) is also injective
and its range is equal to the fiber of the characteristic distribution at the point ψ(x) ∈ (ures)∗. Such
a pair (M,ψ) (or just the manifold M , for the sake of simplicity) is said to be an integral manifold
of the characteristic distribution of (ures)∗ through the point µ0.

Remark 5.3.2. It is clear that
(ures)∗ ↪→ ures

with a continuous inclusion map. On the other hand, it follows at once by the multiplication
formula (5.2) that

[(ures)∗, ures] ⊆ (ures)∗, (5.18)

which implies that the predual (ures)∗ is left invariant by the coadjoint representation of the Banach
Lie algebra ures. Now the results of [156] imply the following two facts:

• The predual Banach space (ures)∗ has a natural structure of Banach Lie-Poisson space.

• If ρ ∈ (ures)∗ has the property that the corresponding isotropy group

Ures,ρ := {u ∈ Ures | uρu−1 = ρ}

is a Banach Lie subgroup of Ures, then the coadjoint orbit Oρ is an integral manifold of the
characteristic distribution of (ures)∗. Moreover, Oρ is a weakly symplectic manifold when
equipped with the orbit symplectic structure.

Thus, the desired conclusion will follow as soon as we prove that the isotropy group Ures,ρ of any
ρ ∈ (ures)∗ is a Banach Lie subgroup of Ures. Throughout the present chapter, by Banach Lie
subgroup we mean the same notion as in [37] or [156]: a subgroup of a Banach Lie group which
has a structure of Banach Lie group of its own with respect to the relative topology and has the
additional property that the corresponding Lie subalgebra has a closed complement in the Lie
algebra of the ambient Banach Lie group.

As an easy consequence of the Harris-Kaup theorem (see for instance Theorem 4.13 in [20]) the
isotropy group Ures,ρ of any ρ ∈ (ures)∗ does have a structure of Banach Lie group of its own with
respect to the relative topology, so the only point that remains to be settled is the existence of a
closed complement of the isotropy Lie algebra. The Lie algebra of Ures,ρ is given by

ures,ρ = {a ∈ ures | aρ = ρa} = {a ∈ ures | (∀t ∈ R) αt(a) = a},

where
α : R→ B(ures), α(t)b := αt(b) := exp(tρ) · b · exp(−tρ).

It is clear that α is a group homomorphism. Moreover, since ρ ∈ (ures)∗ ⊆ ures and the adjoint action
of the Banach Lie group Ures is continuous, it follows that α : R→ B(ures) is norm continuous.

On the other hand, it follows by (5.18) that

(∀t ∈ R) αt((ures)∗) ⊆ (ures)∗, (5.19)

since ρ ∈ (ures)∗. Then the concrete form of the duality pairing between (ures)∗ and ures (see (5.3))
shows that

(∀t ∈ R) (αt|(ures)∗)
∗ = α−t, (5.20)

and in particular each operator αt : ures → ures is weak∗-continuous.
Now a complement to ures,ρ in ures can be constructed by the averaging technique over the

amenable group (R,+) provided one has sup
t∈R
‖αt‖ < ∞. (Some references for the aforementioned

averaging technique are [19], the proof of Proposition 3.4 in [26], and [22].)
Additionally we note that since for every operator T : X → Y between the Banach spaces X

and Y the norm of T equals the norm of its dual T ∗, it is enough to estimate uniformly the norm of
αt restricted to the predual (ures)∗. This restriction is an adjoint action of the group corresponding
to the predual.
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Proposition 5.3.3. If ρ ∈ (ures)∗ and [d, ρ] = 0, then the coadjoint isotropy group of ρ is a Banach
Lie subgroup of Ures and the connected components of the corresponding Ures-coadjoint orbit Oρ are
smooth leaves of the characteristic distribution of (ures)∗.

Proof. According to Remark 5.3.2 it suffices to show that sup
t∈R
‖αt‖ <∞. The hypothesis [d, ρ] = 0

shows that ρ preserves H+ and H−, that is

ρ =

(
ρ++ 0

0 ρ−−

)
∈ (ures)∗.

An element b ∈ (ures)∗ with block decomposition with respect to the direct sum H = H+ ⊕H−

b =

(
b++ b+−
b−+ b−−

)
is the sum of an element

b1 =

(
b++ 0

0 b−−

)
in the Lie algebra u0 := u1 ∩ (u(H+)× u(H−)) and an element

b2 =

(
0 b+−
b−+ 0

)
in the topological complement m = u(H )∩ (L2(H+,H−)⊕ L2(H−,H+)) of u0 in (ures)∗. Accord-
ingly,

‖αt(b)‖(ures)∗ = ‖ exp(tρ)b exp(−tρ)‖(ures)∗

= ‖ exp(tρ)b1 exp(−tρ) + exp(tρ)b2 exp(−tρ)‖(ures)∗

= ‖ead(tρ)(b1) + ead(tρ)(b2)‖(ures)∗ .

Since ad(tρ) preserves both u0 and m, it follows that

ead(tρ)(b1) ∈ u0 and ead(tρ)(b2) ∈ m.

By the very definition of the norm ‖ · ‖(ures)∗ , one has

‖αt(b)‖(ures)∗ = ‖ead(tρ)(b1)‖1 + ‖ead(tρ)(b2)‖2,

where ‖ · ‖1 (respectively ‖ · ‖2) is the usual norm in L1 (respectively L2). Since the conjugation by
a unitary element preserves both ‖ · ‖1 and ‖ · ‖2, it follows that αt acts by isometries on (ures)∗, in
particular sup

t∈R
‖αt‖ <∞.

Remark 5.3.4. The calculation in the proof of Proposition 5.3.3 actually shows that for every
u ∈ Ures satisfying [d, u] = 0 we have ‖ubu−1‖res = ‖b‖res whenever b ∈ Bres. In fact

‖ubu−1‖res = ‖ubu−1‖+ ‖[d, ubu−1]‖2 = ‖b‖+ ‖u[d, b]u−1‖2 = ‖b‖+ ‖[d, b]‖2 = ‖b‖res

where the second equality follows since [d, u] = 0. Note also that

‖ab‖res = ‖ab‖+ ‖[d, a]b+ a[d, b]‖2 ≤ ‖a‖‖b‖+ ‖[d, a]‖2 ‖b‖+ ‖a‖‖[d, b]‖2 ≤ ‖a‖res‖b‖res.

Corollary 5.3.5. If ρ ∈ (ures)∗ is a finite-rank operator, then the coadjoint isotropy group of ρ is
a Banach Lie subgroup of Ures and the connected components of the corresponding Ures-coadjoint
orbit Oρ are smooth leaves of the characteristic distribution of (ures)∗.

Proof. The set of finite-rank operators F is a dense subset of the predual (ures)∗. For every skew-
symmetric finite-rank operator F there exists a unitary operator u ∈ 1+F , such that uFu−1 leaves
both H− and H+ invariant. (This follows since any two finite-rank operators are contained in a
certain finite-dimensional Lie algebra of finite-rank operators; see for instance Lemma 1 in Chapter I
of [90] or Proposition 3.1 in [194].) Note that u ∈ Ures, and the isotropy groups of the elements F
and uFu−1 are conjugated by the element u. Hence the isotropy group at any finite-rank operator
is a Banach Lie subgroup of Ures, and this shows that the conclusion of Proposition 5.3.3 is satisfied
if we replace the hypothesis [d, ρ] = 0 by the condition that ρ is a finite-rank operator.
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Remark 5.3.6. An alternative way to prove Corollary 5.3.5 is to pick a ∗-invariant d-invariant
subalgebra containing the skew-symmetric finite-rank operator F and thus to reduce things to the
finite-dimensional setting.

Corollary 5.3.7. Assume that ρ ∈ (ures)∗ and that there exist an orthonormal basis {en}n≥1 of
the Hilbert space H and the real numbers t ∈ (0, 1) and s ∈ (0, 3(1− t)/100] such that the following
conditions are satisfied:

(i) We have {en | n ≥ 1} ⊆H+ ∪H−.

(ii) The matrix (ρmn)m,n≥1 of ρ with respect to the basis {en}n≥1 has the properties

|ρm+1,n+1| ≤ t|ρm,n| whenever m,n ≥ 1,

and

|ρm,n|2 ≤
s2

(mn)2
|ρmmρnn| whenever m,n ≥ 1 and m 6= n.

Then the coadjoint isotropy group of ρ is a Banach Lie subgroup of Ures and the connected compo-
nents of the corresponding Ures-coadjoint orbit Oρ are smooth leaves of the characteristic distribution
of (ures)∗.

Proof. It follows at once by Theorem 1 in [98] that there exists an operator a = −a∗ ∈ L2(H )
such that the operator uρu−1 is diagonal with respect to the basis {en}n≥1, where u = exp a. In
particular we have u ∈ U2 ⊆ Ures and [d, uρu−1] = 0, so that we can use Proposition 5.3.3 to get
the desired conclusion.

Remark 5.3.8. Let ρ ∈ B(H ). In addition to the applications of Proposition 5.3.3 in the proofs
of Corollaries 5.3.5 and 5.3.7, we note that each of the following two conditions is equivalent to the
existence of an unitary operator u ∈ Ures such that [d, uρu−1] = 0:

(i) There exists p ∈ B(H ) such that p = p∗ = p2, p− p+ ∈ L2(H ), and ρp = pρ.

(ii) There exists an element W ∈ Grres such that ρ(W ) ⊆ W .

In fact, our assertion concerning (i) follows at once since

{p ∈ B(H ) | p = p∗ = p2 and p− p+ ∈ L2(H )} = {up+u
−1 | u ∈ Ures}

according to Lemma 3.1 in [47].
On the other hand, the assertion on condition (ii) holds since by Proposition 7.1.3 in [172] we

have

Grres = {u(H+) | u ∈ Ures}

and, in addition, if p ∈ B(H ) is the orthogonal projection onto some closed subspace W ⊆ H
then ρ(W ) ⊆ W if and only if [p, ρ] = 0. To see this, recall that ρ∗ = −ρ, hence ρ(W ) ⊆ W if and
only if ρ(W ⊥) ⊆ W ⊥.

5.4 Some smooth adjoint orbits of the restricted unitary
group

We are going to investigate in this section the smoothness of adjoint orbits of the restricted unitary
group and derive some consequences about the smoothness of affine coadjoint orbits of the restricted
unitary group. In particular, we shall find sufficiently many smooth adjoint orbits of Ures to fill
an open subset of the Lie algebra ures (see Proposition 5.4.2), as well as sufficiently many smooth
affine coadjoint orbits of Ures to fill an open subset of the Lie algebra (ũres)∗ (see Corollary 5.4.4).

Lemma 5.4.1. Assume that the element

ρ =

(
ρ++ ρ+−
ρ−+ ρ−−

)
∈ ures
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satisfies the conditions
σ(ρ++) ∩ σ(ρ−−) = ∅, (5.21)

(where σ(ρ±±) denotes the spectrum of ρ±±) and

‖ρ+−‖2 <
1

2
dist(σ(ρ++), σ(ρ−−)). (5.22)

Then there exists u ∈ Ures such that [d, u−1ρu] = 0.

Proof. The hypotheses (5.21) and (5.22) imply that there exists a Hilbert-Schmidt operator k : H+ →
H− satisfying the operator Riccati equation

kρ+−k + kρ++ − ρ−−k = ρ−+.

(This result was obtained in [145]; see also Theorem 4.6 and Remark 4.7 in [3], as well as [4].) Then
the operator

g =

(
idH+

k∗

k −idH−

)
is invertible and has the properties [d, g] ∈ L2(H ), g = g∗, [d, g2] = 0 and

[d, g−1ρg] = 0 (5.23)

(see Subsection 2.3 in [3]). Now let g = us be the polar decomposition of the invertible operator
g ∈ B(H ), where u ∈ B(H ) is unitary and s = (g∗g)1/2.

On the other hand, since d∗ = −d, it follows that the commutant {d}′ is a von Neumann algebra
of operators on H . Thus, since g = g∗ and g∗g = g2 ∈ {d}′, it is straightforward to deduce that
(g∗g)1/2 ∈ {d}′, that is, [d, s] = 0. Now recall that [d, g] ∈ L2(H ) to deduce that the unitary
operator u = gs−1 satisfies [d, u] ∈ L2(H ), that is, u ∈ Ures.

Moreover by (5.23) we have

0 = [d, g−1ρg] = [d, s−1u−1ρus] = s−1[d, u−1ρu]s,

where the latter equality follows since we have seen that [d, s] = 0. Now we get [d, u−1ρu] = 0, as
desired.

Proposition 5.4.2. For any γ ∈ R \ {0}, there exists an open Ures-invariant neighborhood V of
γd ∈ ures such that V is a union of smooth adjoint orbits of the Banach Lie group Ures.

Proof. Denote by Vγ the set of all elements

ρ =

(
ρ++ ρ+−
ρ−+ ρ−−

)
∈ ures

satisfying conditions
σ(ρ±±) ⊆ {y ∈ iR | |y ∓ γi| < 1/3}

and

‖ρ±∓‖2 <
2

3
.

Recall that ρ±± ∓ γi is skew-Hermitian, hence its spectral radius equals its operator norm and the
condition σ(ρ±±) ⊆ {y ∈ iR | |y ∓ γi| < 1/3} is equivalent to ‖ρ±± ∓ γi‖ < 1/3. Note that(

ρ++ 0
0 ρ−−

)
= ρ− 1

2i
[d, ρ],

hence the condition on the spectrum of ρ±± defines an open subset of ures. On the other hand,
the condition ‖ρ±∓‖2 < 2/3 is equivalent to ‖[d, ρ]‖res < 2

√
2/3 (since ρ∗±∓ = ρ∓±) hence it also

describes an open subset of ures. It follows that Vγ is an open neighborhood of γd ∈ ures. We are
going to show that the set

V :=
⋃

u∈Ures

AdUres(u)Vγ ⊆ ures
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has the desired properties.
Indeed, V is clearly invariant under the adjoint action of Ures, it is a union of open sets, and one

of these open sets contains γd. Moreover, it follows by Lemma 5.4.1 along with the construction of
V that for every ρ ∈ V there exists u ∈ Ures such that [d, u−1ρu] = 0. Next denote ρ̃ = u−1ρu, so
that exp(tρ) = u exp(tρ̃)u−1 for all t ∈ R. Then for all t ∈ R and b ∈ ures it follows by means of
Remark 5.3.4 that

‖ exp(tρ)b exp(−tρ)‖res = ‖u exp(tρ̃)u−1bu exp(−tρ̃)u−1‖res

≤ ‖u‖res ‖ exp(tρ̃)u−1bu exp(−tρ̃)‖res ‖u−1‖res

= ‖u‖res ‖u−1bu‖res ‖u−1‖res

≤ ‖u‖2res ‖u−1‖2res ‖b‖res.

Consequently the 1-parameter group

α : R→ B(ures), αt(b) = exp(tρ)b exp(−tρ)

satisfies
sup
t∈R
‖αt‖ ≤ ‖u‖2res ‖u−1‖2res.

Now the arguments in Remark 5.3.2 show that the adjoint isotropy group of ρ is a Lie subgroup of
Ures, and thus the adjoint orbit of ρ is smooth.

An alternative way to see that the set Vγ in the previous proof is open follows by the well known
upper continuity of the spectrum as a function of the operator (see, e.g. [154, 91, 55]). We also
note that a shorter argument for the fact that the adjoint isotropy group of ρ is a Lie subgroup of
Ures consists in an application of Proposition 5.3.3 for u−1ρu along with the fact that the stabilizer
of u−1ρu is conjugate to the stabilizer of ρ.

Corollary 5.4.3. For any γ ∈ R \ {0}, there exists an open U1,2-invariant neighborhood V of
γd ∈ ures = u∗1,2 such that V is a union of smooth coadjoint orbits of the Banach Lie group U1,2.

Proof. Apply Proposition 5.4.2 along with the fact that U1,2 ↪→ Ures and the adjoint action of Ures

restricts to the coadjoint action of U1,2.

Corollary 5.4.4. For any γ ∈ R \ {0}, there exists an open Ures-invariant neighborhood W of
(0, γ) ∈ (ũres)∗ such that W is a union of smooth affine coadjoint orbits of the Banach Lie group Ures.

Proof. For any (µ, λ) ∈ (ũres)∗, the operator ρ = µ− λd belongs to ures and

‖µ− λd‖res ≤ |λ|+ ‖µ‖(ũres)∗

which implies that the linear map θ : (µ, λ) ∈ (ũres)∗ 7→ µ − λd ∈ ures is continuous. With the
notation introduced in the proof of Proposition 5.4.2, let Wγ := {(µ, λ) ∈ (ũres)∗ | µ − λd ∈ V−γ},
that is, Wγ = θ−1(V−γ) and hence Wγ is open in (ũres)∗. Note that (0, γ) ∈Wγ . Moreover since

g · (µ, λ) = (µ, λ)⇐⇒ gµg−1 − λ
(
gdg−1 − d

)
= µ,

the isotropy group of any (µ, λ) for the affine coadjoint action of Ures equals the isotropy group of
µ− λd for the adjoint action of Ures, hence is a Banach Lie subgroup of Ures by Proposition 5.4.2.
Now

W :=
⋃

u∈Ures

u ·Wγ ⊆ (ũres)∗

has the desired properties.

5.5 The Banach Lie-Poisson space associated to the central
extension of u2

Denote by ũ2 := u2⊕R the central extension of u2 defined by the restriction of s to u2×u2, where s
is the two-cocycle defined in (5.6). The natural isomorphism (ũ2)∗ ' ũ2 implies that ũ2 is a Banach
Lie-Poisson space, for the Poisson bracket given by

{f, g}d(µ, γ) := 〈µ, [Dµf(µ), Dµg(µ)]〉+ γs(Dµf,Dµg)
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where f, g ∈ C∞(ũ2), (µ, γ) is an arbitrary element in ũ2, and Dµ denotes the partial Fréchet
derivative with respect to µ ∈ u2.

Theorem 5.5.1. The characteristic distribution of the Banach Lie-Poisson space ũ2 is integrable.

Proof. In order to prove that the characteristic distribution is integrable, it suffices to check that
all of the affine coadjoint isotropy groups are Lie subgroups of the Hilbert Lie group U2. For this
purpose we note that, for arbitrary (µ, γ) ∈ ũ2, the corresponding isotropy group of the affine
coadjoint action of U2 on ũ2 is

(U2)(µ,γ) = {g ∈ U2 | µ = gµg−1 − γgdg−1 + γd},

according to the explicit expression of the affine coadjoint action in Proposition 5.2.9. The previous
equality implies that

(U2)(µ,γ) = {g ∈ C1 + L2(H ) | g∗g = gg∗ = 1 and µ = gµg−1 − γgdg−1 + γd},

and now it is clear that (U2)(µ,γ) is an algebraic subgroup of degree ≤ 2 of the group of invertible
elements in the unital Banach algebra C1+L2(H ). Then the Harris-Kaup theorem (see for instance
Theorem 4.13 in [20]) implies that (U2)(µ,γ) is a Lie group with respect to the topology inherited
from C1 + L2(H ). In particular, this topology coincides with the one inherited from U2. Since
U2 is a Hilbert Lie group, hence the Lie algebra of (U2)(µ,γ) has a complement in the Lie algebra
of U2, it then follows that (U2)(µ,γ) is a Banach Lie subgroup of U2, and this concludes the proof.
(Compare Remark 5.3.2.)

The transitivity of the action of the Lie group U2 on the connected component Gr0
res of the

restricted Grassmannian has been established in Theorem 3.5 in [47], and Proposition V.7 in [149].
That the action of the subgroup U1,2 of U2 on Gr0

res is transitive has been proved in Section 1.3.4
of [206] with the help of the canonical basis defined in Section 7.3 of [172] and associated to any
element of the restricted Grassmannian. Below we give a shorter and geometrical proof of the latter
fact.

Proposition 5.5.2. The connected component Gr0
res of the restricted Grassmannian is a homoge-

neous space under the unitary group U1,2 ⊂ U2.

Proof. The restricted Grassmannian is a symmetric space of the restricted unitary group Ures. It
follows from the description of geodesics in Proposition 8.8 in [7] (see also [160] and [50] or its
infinite-dimensional version as given in Example 3.9 in [151], or Proposition 1.9 in [207]) that each
geodesic of Grres starting at W ∈ Gr0

res is given by

β(t) = (exp tX) ·H+, X ∈ mW , (5.24)

where mW is the orthogonal in ures to the Lie algebra of the isotropy group of W . For W = H+

we have m = u(H ) ∩ (L2(H+,H−)⊕ L2(H−,H+)), and for W = g ·H+ with g ∈ Ures, we have
mW = gm g−1. Note that for X ∈ m, exp tX belongs to U1,2 ⊂ U2. Since the Hopf-Rinow Theorem
is no longer true in the infinite dimensional case, it is not clear whether every two elements in the
complete connected manifold Gr0

res can be joined by a geodesic. Nevertheless Theorem B in [69]
asserts that, for every W ∈ Gr0

res, the set of elements which can be joined to W by a unique minimal
geodesic contains a dense Gδ set. Moreover from the properties of the Riemannian exponential map,
there exists a neighborhood V of H+ in Gr0

res such that every element in V can be joined to H+ be
a (minimal) geodesic. Hence an arbitrary element W ∈ Gr0

res can be joined to an element W ′ ∈ V
by a geodesic

β1(t) = (exp tX1) ·W ′, X1 ∈ mW ′ , t ∈ [0 , 1],

and W ′ can be joined to H+ by a geodesic

β2(t) = (exp tX2) ·H+, X2 ∈ m, t ∈ [0 , 1].

Consequently
W = β1(1) = (expX1) ·W ′ = (expX1)(expX2) ·H+.

But X1 belongs to mW ′ = exp(X2)m exp(−X2), hence

W = (expX2 expX3) ·H+

where X3 = Ad (exp(−X2)) (X1) belongs to m. Since expX3 and expX2 are elements of the unitary
group U1,2, it follows that their product belongs to U1,2. Thus U1,2 acts transitively on Gr0

res.
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Theorem 5.5.3. The connected component Gr0
res of the restricted Grassmannian is a strong sym-

plectic leaf in the Banach Lie-Poisson space ũ2. More precisely, for every γ 6= 0, the U2-affine
coadjoint orbit Õ(0,γ) of (0, γ) ∈ ũ2 is diffeomorphic to Gr0

res via the application

Φγ : Gr0
res → Õ(0,γ)

W 7→ 2iγ(pW − p+),

where pW denotes the orthogonal projection on W . The pull-back by Φγ of the symplectic form on

Õ(0,γ) is (−2γ)-times the symplectic form ωGr on Gr0
res.

Proof. The assertion follows by the method of proof of Theorem 5.2.13, since Gr0
res is transitively

acted upon by the group U2 according to Proposition 5.5.2.

Next we shall investigate the existence of invariant complex structures on certain covering spaces
of the symplectic leaves of ũ2 (Corollary 5.5.6 below). To this end we need two facts holding in
a more general setting. In connection with the first of these statements, we note that invariant
complex structures on certain homogeneous spaces related to derivations of L∗-algebras have been
previously obtained by a different method in Theorem IV.5 in [148].

Proposition 5.5.4. Let X be a real Hilbert Lie algebra with a scalar product denoted by (· | ·).
Assume that there exists a connected Hilbert Lie group UX whose Lie algebra is X; we write L(UX) =
X.

Now let D : X→ X be a bounded linear derivation such that

(∀x, y ∈ X) (Dx | y) = −(x | Dy). (5.25)

Consider the closed subalgebra h0 := KerD of X and define

H0 := 〈expUX
(h0)〉,

that is, the subgroup of UX generated by the image of h0 by the exponential map.
If it happens that H0 has a structure of Banach Lie group with respect to the topology inherited

from UX, then it is actually a Banach Lie subgroup of UX and the smooth homogeneous space
UX/H0 has an invariant complex structure.

Proof. Denote L := XC, that is, the complex Hilbert Lie algebra which is the complexification of
X and is endowed with the complex scalar product (· | ·) extending the scalar product of X. We
denote the complex linear extension of D to L again by D.

Then D∗ = −D as operators on the complex Hilbert space L, so that −iD ∈ B(L) is a self-
adjoint operator. Let us denote its spectral measure by δ 7→ E(δ). Thus E(·) is a spectral measure
on R and we have

D = i

∫
R

tdE(t).

Also denote S = (−∞, 0], which is a closed subsemigroup of R, and

k := RanE(−S) = RanE([0,∞)) ⊆ L.

Then k is a closed subspace of L since it is the range of an idempotent continuous map. In addition,
since D is a derivation of the Hilbert Lie algebra X and S is a closed semigroup, it follows by
Proposition 6.4 in [20] that k is a complex subalgebra of L with the following properties:

(i) [h0, k] ⊆ k,

(ii) k ∩ k = h0 + ih0 (= KerD), and

(iii) k + k = L.

Moreover, for every y ∈ h0 and all x ∈ X we have

D[y, x] = [Dy, x] + [y,Dx] = [y,Dx]

since Dy = 0. Therefore, we have D ◦ adXy = adXy ◦ D for each y ∈ h0. According to the
definition of H0, it then follows that for arbitrary h ∈ H0 we have AdUX

h ◦D = D ◦AdUX
h on X.

Then the latter equality holds throughout L, and it then follows that the operator AdUX
h : L→ L

commutes with every value of the spectral measure E(·). In particular we have AdUX
(h)◦E(−S) =

E(−S) ◦AdUX
(h), whence
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(i’) (∀h ∈ H0) AdUX
(h)k ⊆ k.

Now Theorem 6.1 in [20] shows that the smooth homogeneous space UX/H0 has an invariant
complex structure.

Proposition 5.5.5. Let H be an infinite-dimensional complex Hilbert space and let a ∈ B(H )
such that a∗ = −a. Denote by

D = adu2 a : u2 → u2, x 7→ [a, x]

the derivation of the compact L∗-algebra u2 defined by a, and denote

h0 := KerD = {x ∈ u2 | [a, x] = 0}.

Next denote

H := {u ∈ U2 | uau−1 = a}

and in addition define

H0 := 〈exp(h0)〉.

That is, H0 is the subgroup of U2 generated by the image of h0 by the exponential map. Then the
following assertions hold:

(j) Both H and H0 are Banach Lie subgroups of U2.

(jj) The subgroup H0 is the connected component of 1 ∈ H.

(jjj) The natural map

U2/H0 → U2/H, uH0 7→ uH,

is an U2-equivariant smooth covering map.

Proof. Consider the Banach algebra A := C1 + L2(H ) and denote by ϕ : A → C the continuous
linear functional uniquely defined by the conditions ϕ(1) = 1 and Kerϕ = L2(H ). Then we have

H = {u ∈ A × | u∗u = uu∗ = 1, ua = au, and ϕ(u) = 1}

hence, by the Harris-Kaup theorem (see for instance Theorem 4.13 in [20]), H is a subgroup of A ×

that carries a Banach Lie group structure of its own. In addition, the Lie algebra

L(H) = {x ∈ A | x∗ = −x and xa = ax} = h0,

of H has a closed complement in u2 since the latter is a real Hilbert space. Thus H is a Banach
Lie subgroup of U2.

On the other hand, H0 has the structure of connected Lie group such that the inclusion map
H0 ↪→ U2 is an immersion and L(H0) = h0. (See for instance Theorem 3.5 in [20] and its proof.)
Since H0 ⊆ H and L(H0) = L(H) = h0, it then follows that H0 is the connected component of
1 ∈ H. This can be seen directly by Lie theoretic methods; specifically, one just has to use the fact
that the exponential map of any Banach Lie group is a local diffeomorphism at 0. An alternative
approach is to use the proof of Lie’s second theorem by means of the Frobenius theorem (see for
instance Theorem 5.4 in Chapter VI of [124]). According to that proof, the connected group H0 is
the integral manifold through 1 corresponding to a smooth left-invariant integrable distribution on
U2 whose fiber at 1 is (the complemented closed Lie subalgebra) h0. Now recall the universality
property of the integral leaves of integrable distributions according to Theorem 4.2 in Chapter VI
of [124] or, more generally, Theorem 4(iii) in [155], which implies that the inclusion map H0 ↪→ H
is smooth. Then the wished-for property that H0 is open in H follows since H0 and H have the
same tangent space at 1 ∈ H0 ⊆ H.

By either of these methods it follows that H0 is an open subgroup of the Banach Lie subgroup
H of U2, and then H0 is in turn a Lie subgroup of U2. Thus assertions (j) and (jj) are proved.
Assertion (jjj) follows since the natural map U2/H0 → U2/H is clearly an U2-equivariant map
whose tangent map at every point is an isomorphism.
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In the following statement we need the notion of symplectic leaf in a Banach Lie-Poisson space.
Let G be a Banach Lie group with Lie algebra g. Assume that g admits a predual g∗ such that
the coadjoint action of G on g∗ preserves the predual space g∗. Then, for any ρ ∈ g∗ such that
the isotropy subgroup Gρ := {g ∈ G | Ad∗g ρ = ρ} is a Banach Lie subgroup of G, the coadjoint
orbit O := {Ad∗g ρ | g ∈ G} ⊂ g∗ is a Banach manifold diffeomorphic to the quotient G/Gρ, weakly
immersed in g∗, and the Banach Lie-Poisson structure of g∗ induces on O a weak symplectic form
given by the usual formula (see [156], Theorems 7.3 and 7.4). Weak immersion means that the
derivative of the inclusion is only injective without any assumption on the closedness of the range,
let alone splitting assumptions. This statement was also used in Remark 5.3.2 for G = Ures. See
also the comments preceding it regarding integrable distributions on Banach manifolds. Several
classes of Banach Lie-Poisson spaces that are unions of smooth symplectic leaves are given in [26].
In the corollary below the situation is simpler because we are dealing with a Hilbert Lie-Poisson
space.

Corollary 5.5.6. Every symplectic leaf of the Hilbert Lie-Poisson space ũ2 is transitively acted
on by U2 by means of the affine coadjoint action and is U2-equivariantly covered by some complex
homogeneous space of U2.

Proof. Let (µ, γ) ∈ ũ2 arbitrary and denote a := µ − γd ∈ B(H ). With the notation of Propo-
sition 5.5.5, it is clear that H is equal to the isotropy group of the affine coadjoint action of U2.
Thus the symplectic leaf Õ(µ,γ) through (µ, γ) is U2-equivariantly diffeomorphic to U2/H. Now
the conclusion follows since U2/H is U2-equivariantly covered by the complex homogeneous space
U2/H0, according to Propositions 5.5.4 and 5.5.5.

Remark 5.5.7. It follows by Corollary 5.5.6 that every simply connected symplectic leaf of the
Banach Lie-Poisson space ũ2 has an U2-invariant complex structure. For instance, this is the case
for the connected component Gr0

res of the restricted Grassmannian viewed as a symplectic leaf of
ũ2 by means of Theorem 5.5.3.

5.6 Some pathological properties of the restricted algebras

5.6.1 Unbounded unitary groups in the restricted algebra

We are going to point out a property that provides a good illustration for the difference between
the Banach ∗-algebra Bres and a C∗-algebra (Proposition 5.6.2 below).

Lemma 5.6.1. Let a ∈ B(H−,H+) and assume that a = v|a| and a∗ = w|a∗| are the polar
decompositions of a and a∗, where |a| ∈ B(H−) and |a∗| ∈ B(H+), while v : H− → H+ and
w : H+ →H− are partial isometries. Next, denote

ρ =

(
0 a
−a∗ 0

)
∈ B(H ).

Then

exp ρ =

(
cos |a∗| v sin |a|
−w sin |a∗| cos |a|

)
.

Proof. We have

ρ2 =

(
−aa∗ 0

0 −a∗a

)
= −

(
|a∗|2 0

0 |a|2
)

hence

(∀n ≥ 0) ρ2n = (−1)n
(
|a∗|2n 0

0 |a|2n
)
.

This implies that for every n ≥ 0 we have

ρ2n+1 = ρ · ρ2n = (−1)n
(

0 v|a|
−w|a∗| 0

)(
|a∗|2n 0

0 |a|2n
)

= (−1)n
(

0 v|a|2n+1

−w|a∗|2n+1 0

)
.

Consequently

exp ρ =

∞∑
n=0

(
1

(2n)!
ρ2n +

1

(2n+ 1)!
ρ2n+1

)
=

(
cos |a∗| v sin |a|
−w sin |a∗| cos |a|

)
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which concludes the proof.

Proposition 5.6.2. All of the unitary groups (1 + F ) ∩ U(H ), U1,2, and Ures are unbounded
subsets of the unital associative Banach algebra Bres.

Proof. We have

(1 + F ) ∩U(H ) ⊆ U1,2 ⊆ Ures

so it suffices to show that

sup{‖u‖res | u ∈ (1 + F ) ∩U(H )} =∞. (5.26)

To this end let n ≥ 1 be an arbitrary positive integer, pick a projection qn = q∗n = q2
n ∈ B(H−) with

dim(Ran qn) = n and define an := vn((π/2)qn) = (π/2)vn ∈ B(H−,H+), where vn : H− →H+ is
an arbitrary partial isometry such that v∗nvn = qn. Then |an| = (π/2)qn, so that sin |an| = qn and
then ‖(sin |an|)‖2 =

√
dim(Ran qn) =

√
n. Now Lemma 5.6.1 shows that the element

ρn =

(
0 an
−a∗n 0

)
∈ u(H ) ∩F

satisfies

‖ exp(ρn)‖res ≥ ‖(sin |an|)‖2 =
√
n.

Now the desired conclusion (5.26) follows since exp(ρn) ∈ (1+F )∩U(H ) and n ≥ 1 is arbitrary.

5.6.2 The predual of the restricted algebra is not spanned by its positive
cone

It is well known that every self-adjoint normal functional in the predual of a W ∗-algebra can be
written as the difference of two positive normal functionals. It is also well known and easy to see
that a similar property holds for the preduals of numerous operator ideals. More precisely, if J and
B are Banach operator ideals such that the trace pairing

(B, J)→ C, (T, S) 7→ Tr (TS)

is well defined and induces a topological isomorphism of the topological dual B∗ onto J, then for
every T = T ∗ ∈ B there exist T1, T2 ∈ B such that T1 ≥ 0, T2 ≥ 0 and T = T1 − T2. In fact, we
can take T1 = (|T |+T )/2 and T2 = (|T |−T )/2, and we have T1, T2 ∈ B since |T | ∈ B. (The latter
property follows since if T = W |T | is the polar decomposition of T , then |T | = W ∗T ∈ B.)

We shall see in Proposition 5.6.4 below that the predual (ures)∗ of the restricted Lie algebra fails
to have the similar property of being spanned by its elements ρ with iρ ≥ 0. In fact, the linear span
of these elements turns out to be the proper subspace u1 of (ures)∗.

Lemma 5.6.3. Let H± be two complex separable Hilbert spaces, H = H+⊕H−, 0 ≤ a± ∈ B(H±),
and t ∈ B(H−,H+). Also denote

a =

(
a+ t
t∗ a−

)
∈ B(H ).

Then the following assertions hold:

(i) We have a ≥ 0 if and only if the inequality

|〈ξ, tη〉|2 ≤ 〈ξ, a+ξ〉 · 〈η, a−η〉 (5.27)

holds for all ξ ∈H+ and η ∈H−.

(ii) If a ≥ 0 and in addition a± ∈ L1(H±) and t ∈ L2(H−,H+), then

‖t‖2 ≤ (Tr a)/
√

2. (5.28)
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Proof. For assertion (i) see Exercise 3.2 at the end of Chapter 3 in [164].
Next, let {ξi}i≥1 and {ηj}j≥1 be orthonormal bases in the Hilbert spaces H+ and H−, respec-

tively. Then (5.27) shows that

(∀i, j ≥ 1) |〈ξi, tηj〉|2 ≤ 〈ξi, a+ξi〉 · 〈ηj , a−ηj〉.

Now recall that (‖t‖2)2 =
∑
i,j≥1

|〈ξi, tηj〉|2, Tr a+ =
∑
i≥1

〈ξi, a+ξi〉, and Tr a− =
∑
j≥1

〈ηj , a−ηj〉. Thus,

adding the above inequalities, we get

(‖t‖2)2 ≤ (Tr a+) · (Tr a−) ≤ (Tr a+ + Tr a−)2/2 = (Tr a)2/2

and assertion (ii) follows.

Proposition 5.6.4. The following assertions hold:

(i) If a ∈ (ures)∗ and ia ≥ 0, then a ∈ L1(H ) and ‖a‖1 ≤ ‖a‖(ures)∗ ≤ (1 +
√

2)‖a‖1.

(ii) If ρ ∈ (ures)∗\u1 then there exist no ρ1, ρ2 ∈ (ures)∗ such that iρ1 ≥ 0, iρ2 ≥ 0, and ρ = ρ1−ρ2.

Proof. (i) Let a ∈ (ures)∗ such that ia ≥ 0, and denote ia =:

(
a+ t
t∗ a−

)
. Then

‖a‖1 = ‖ia‖1 = Tr (ia) = Tr a+ + Tr a− = ‖a+‖1 + ‖a−‖1
≤ ‖ia‖(ures)∗ = ‖a+‖1 + ‖a−‖1 + 2‖t‖2
≤ ‖a+‖1 + ‖a−‖1 +

√
2 · Tr (ia) = (1 +

√
2)‖ia‖1 = (1 +

√
2)‖a‖1,

where the second inequality follows by Lemma 5.27(ii). Consequently, for all a ∈ (ures)∗ with ia ≥ 0
we have ‖a‖1 ≤ ‖a‖(ures)∗ ≤ (1 +

√
2)‖a‖1.

(ii) Let ρ ∈ (ures)∗ \ u1 and assume that there exist elements ρ1, ρ2 ∈ (ures)∗ such that iρ1 ≥ 0,
iρ2 ≥ 0, and ρ = ρ1 − ρ2. Then iρ1, iρ2 ∈ L1(H ) according to the assertion (i), which we have
already proved. Consequently, ρ1, ρ2 ∈ u1, whence ρ = ρ1 − ρ2 ∈ u1. This is a contradiction with
the assumption on ρ, which concludes the proof.

5.6.3 The Cartan subalgebras of ures are not Ures-conjugate

For a (finite-dimensional) compact connected semi-simple Lie subgroup G of the unitary group
U(n), every element X of the Lie algebra g of G is conjugate to a diagonal element with respect to
a given basis B of Cn by an element of G. This can be seen as follows (see [95] chap. V Theorem
6.4 for more general results). Take a diagonal element H ∈ g with respect to B such that the one-
parameter subgroup exp tH is dense in the torus whose Lie algebra is the set of diagonal matrices
belonging to g. On G, consider the continuous function g 7→ B (H,Ad(g)(X)), where B denotes
the Killing form of G. By compactness, this function takes a minimum at some g0, and for every
element Y in g one has

d

dt
B (H,Ad(exp tY )Ad(g0)(X))|t=0 = 0,

i.e B (H, [Y,Ad(g0)(X)]) = 0. Since the Killing form is Ad(G)-invariant, one has

B (H, [Y,Ad(g0)(X)]) = B ([Ad(g0)(X), H], Y ) .

The non-degeneracy of the Killing form then implies that [Ad(g0)(X), H] = 0. But H has been
chosen such that the centralizer of H is the set of diagonal matrices with respect to B belonging
to g. Consequently Ad(g0)(X) is a diagonal element in g. It follows that the maximal Abelian
subalgebras, called Cartan subalgebras, of g are conjugate under G.

This proof cannot be extended to the infinite dimensional case since the minimization argument
above uses in a crucial manner the compactness of the group. We shall prove below that the
conjugacy statement itself does not hold, in general. More precisely, we shall show that not all
Cartan subalgebras of (ures)∗ ↪→ ures are Ures-conjugate.

We note that a related fact follows from results in the paper [30]. Specifically, let ρ0 ∈ (ures)∗
such that [d, ρ0] = 0, Ker ρ0 = {0}, and each eigenvalue of ρ0 has multiplicity 1. Next denote by
Oρ0

the coadjoint Ures-orbit of ρ0, let ρ ∈ (ures)∗, and define

fρ : Oρ0
→ (0,∞), fρ(b) = ‖ρ− b‖2.
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If the function fρ happens to have a critical point ρ1 ∈ Oρ0
, then [ρ1, ρ] = 0 according to [30]. Since

ρ1 ∈ Oρ0
, there exists u ∈ Ures such that ρ1 = uρ0u

−1, and then [ρ0, u
−1ρu] = 0. The latter equality

implies that u−1ρu commutes with all of the spectral projections of ρ0. Hence [d, u−1ρu] = 0 in
view of the spectral assumptions on ρ0, and then Proposition 5.3.3 applied to u−1ρu shows that the
coadjoint isotropy group of ρ is a Banach Lie subgroup of Ures and the corresponding Ures-coadjoint
orbit Oρ is a smooth leaf of the characteristic distribution of (ures)∗.

Proposition 5.6.5. The unitary group Ures does not act transitively on the set of Cartan subalge-
bras of its Lie algebra.

Proof. Endow the Hilbert space H with an orthonormal basis B = {en}n∈Z\{0}, such that {e−n}n∈N\{0}
is an orthonormal basis of H+ and {en}n∈N\{0} an orthonormal basis of H−. The set D of skew-
Hermitian bounded diagonal operators with respect to B form a Cartan subalgebra of ures. Now
consider the following subset of the set of anti-diagonal elements in ures:

J = {J ∈ ures | J(en) ∈ Re−n ∀n ∈ Z \ {0}}.

Since the coefficients J−k,k, k ∈ Z \ {0}, of J ∈ J satisfy J−k,k = −Jk,−k, it follows from an
easy computation that J is Abelian. An element B = (Bi,j) ∈ ures commutes with every element
J = (Ji,j) in J if and only if

([B, J ]i,−k) = (Bi,kJk,−k − Ji,−iB−i,−k) (5.29)

vanishes for every J ∈J . This implies the following conditions:

Bi,k = 0 for i /∈ {k,−k};
Bk,k = B−k,−k for k ∈ Z \ {0};
B−k,k = −Bk,−k for k ∈ Z \ {0}.

It follows that the maximal Abelian subalgebra C of ures which contains J is J + D+, where

D+ = {D = (Di,j) ∈ D | D−k,−k = Dk,k ∀k ∈ Z \ {0}}.

Let us prove by contradiction that the Cartan subalgebras C and D are not conjugate under Ures.
Suppose that there exists a unitary operator

g =

(
g++ g+−
g−+ g−−

)
∈ Ures

such that gJ g−1 ⊆ D . Consider an element

J =

(
0 J+−

J−+ 0

)
∈J

which is a Hilbert-Schmidt operator that is not trace class. One has

gJg−1 =

(
g++ g+−
g−+ g−−

)(
0 J+−

J−+ 0

)(
g∗++ g∗−+

g∗+− g∗−−

)
=

(
g+−J−+g

∗
++ + g++J+−g

∗
+− g+−J−+g

∗
−+ + g++J+−g

∗
−−

g−−J−+g
∗
++ + g−+J+−g

∗
+− g−−J−+g

∗
−+ + g−+J+−g

∗
−−

)
.

By hypothesis, gJg−1 is a diagonal operator

D =

(
D++ 0

0 D−−

)
with D++ = g+−J−+g

∗
++ + g++J+−g

∗
+− and D−− = g−−J−+g

∗
−+ + g−+J+−g

∗
−−. Now, since g

belongs to Ures, g+− and g−+ are Hilbert-Schmidt. Since J belongs to L2(H ), J+− and J−+ are
Hilbert-Schmidt as well. From the relation L2 ·L2 ⊂ L1, it follows that D++ and D−− are trace
class, hence D belongs to L1(H ). But this implies that J = g−1Dg is also trace class, since L1(H )
is an ideal of B(H ). This leads to a contradiction by the choice of J ∈J . It follows that elements
in J \ L1(H ) are not Ures-conjugate to diagonal elements with respect to B. Consequently, the
Cartan subalgebra C and D are not Ures-conjugate.
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Remark 5.6.6. The proof of Proposition 5.6.5 implies that the unitary group Ures does not act
transitively on the set of Cartan subalgebras of (ures)∗. Since every compact skew-Hermitian opera-
tor admits an orthonormal basis of eigenvectors, the set of conjugacy classes of Cartan subalgebras
in (ures)∗ is in bijection with U(H )/Ures and is infinite. The conjugacy classes of Cartan subalge-
bras are related to the conjugacy classes of maximal tori. An infinite number of conjugacy classes
of maximal tori has already been encountered in the case of some groups of contactomorphisms (see
[128]). Examples of maximal tori of different dimensions were provided in [94] in some groups of
symplectomorphisms.
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Chapter 6

Banach Poisson–Lie groups and
related structures

6.1 Introduction

This chapter is based on our publication [213]. Poisson–Lie groups and Lie bialgebras were intro-
duced by Drinfel’d in [66]. From this starting point, these notions and their relations to integrable
systems were extensively studied. We refer the readers to the very well documented papers [115],
[189], [135] and the references therein. For a more algebraic approach to Poisson–Lie groups and
their relation to quantum groups we refer to [36]. For more details about dual pairs of Poisson
manifolds we refer to [226], applications to the study of equations coming from fluid dynamics were
given in [77], [78] and [79], and applications to geometric quantization can be found in [10]. The
motivation to write the paper [213] comes mainly from the reading of [136], [185] and [172]. In
[136], the Bruhat-Poisson structure of finite-dimensional Grassmannians were studied. In [185],
the relation between the infinite-dimensional restricted Grassmannian and equations of the KdV
hierarchy was established. In [172], the Schubert cells of the restricted Grassmannian were shown to
be homogeneous spaces with respect to the natural action of some triangular group, which appears
to contain the group that generates the KdV hierarchy in [185]. It is therefore natural to ask the
following questions:

Question 6.1.1. Does the restricted Grassmannian carry a Bruhat-Poisson structure? Can the
KdV hierarchy be related to a Poisson action of a Poisson–Lie group on the restricted Grassman-
nian?

The difficulties to answer these questions come mainly from the following facts

• taking the upper triangular part of some infinite-dimensional matrix does not preserve the
Banach space of bounded operators, nor the Banach space of trace-class operators.

• Iwasawa decompositions may not exist in the context of infinite-dimensional Banach Lie
groups (see however [21] and [25] where some Iwasawa type factorisations where established).

Related papers on Poisson geometry in the infinite-dimensional setting are [32], [152], [156] and
[238] (see Section 3). Let us mention that a hierarchy of commuting Hamiltonian equations related
to the restricted Grassmannian was described in [85]. In the aforementionned paper, the method of
F. Magri was used to generate the integrals of motions. It would be interesting to explore the link
between equations studied in [85] and the Bruhat-Poisson structure of the restricted Grassmannian
introduced in [213]. Some integrable systems on subspaces of Hilbert-Schmidt operators were also
introduced in [63]. There, the coinduction method suggested in [159] was used to construct Banach
Lie–Poisson spaces obtained from the ideal of real Hilbert-Schmidt operators, and Hamiltonian
systems related to the k-diagonal Toda lattice were presented. Last but not least, the relation
between the Bruhat-Poisson structure on the restricted Grassmannian constructed in [213] and the
Poisson–Lie group of Pseudo-Differential symbols considered in [106] in relation to the Korteweg-de
Vries hierarchy needs further study, and the link with the Poisson–Lie Grassmannian introduced in
[238] has to be clarified.
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The present chapter just approaches some aspects of the theory of Banach Poisson–Lie groups,
and a more systematic study of the infinite-dimensional theory would be interesting. It is written
to be as self-contained as possible, and we hope that our exposition enables functional-analysts,
geometers and physicists to read it. However the notions of Banach manifold and fiber bundles
over Banach manifolds will not be recalled and we refer the readers to [124] for more introductory
exposition.

This chapter is devoted to the general theory of Banach Poisson–Lie groups and related struc-
tures. The exposition goes in the opposite direction of the usual exposition in the finite-dimensional
setting, where the notion of finite-dimensional Poisson–Lie groups is introduced first, followed by
the notion of Lie bialgebra (which is the structure that a Lie algebra of a Poisson–Lie group inher-
its), and at last the notion of Manin triples. Here we start with the notion of Banach Manin triples
in Section 6.2, since it is a notion of linear algebra that is easy to adapted to the Banach context,
and which provides a good entry point into the theory of (Banach) Poisson–Lie groups. This point
of view allows us to introduce little by little notation and notions that are fundamental for our
considerations: the notion of duality pairing is recalled in Section 6.2.1, the notion of coadjoint
action on bounded multilinear maps on subspaces of the dual is defined in Section 6.3.3, and the
notion of 1-cocycles on a Banach Lie group or a Banach Lie algebra is explained in Section 6.3.5.
Generalized Banach Poisson manifolds are defined in Section 6.4.1. In Section 6.4.2 we show that
weak symplectic Banach manifolds are examples of generalized Banach Poisson manifolds. In Sec-
tion 6.4.3, we adapt the notion of Banach Lie–Poisson spaces introduced in [156] to the case of
an arbitrary duality pairing between two Banach Lie algebras, and show that they are generalized
Banach Poisson manifolds (Theorem 6.4.14). The notion of Banach Lie bialgebras is introduced
in Section 6.5, and its relation to the notion of Banach Manin triples is given by the following
Theorem:

Theorem 6.1.2 (Theorem 6.5.9). Consider two Banach Lie algebras
(
g+, [·, ·]g+

)
and

(
g−, [·, ·]g−

)
in duality. Denote by g the Banach space g = g+ ⊕ g− with norm ‖ · ‖g = ‖ · ‖g+

+ ‖ · ‖g− . The
following assertions are equivalent.

(1) g+ is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g−;

(2) (g, g+, g−) is a Banach Manin triple for the non-degenerate symmetric bilinear map given by

〈·, ·〉g : g× g → K
(x, α)× (y, β) 7→ 〈x, β〉g+,g− + 〈y, α〉g+,g− .

Finally Section 6.6 is devoted to the notion of Banach Poisson–Lie groups. Basic examples are
given in Section 6.6.3. In Section 6.6.4, we prove that the Lie algebra g of a Banach Poisson–Lie
group (G,F, π) carries a natural structure of Banach Lie bialgebra with respect to Fe, and, with an
additional condition on the Poisson tensor, is a Banach Lie–Poisson space with respect to Fe.

The generalized notion of Banach Poisson manifolds introduced in this chapter is adapted to
the particular examples of Poisson–Lie groups we present in Chapter 7. Examples of Banach
Poisson–Lie group in our sense include the restricted unitary group Ures(H ) and the restricted
triangular group B+

res(H ), which are modelled on non-reflexive Banach spaces (see Section 7.2.3).
In Section 7.4, we show that the restricted Grassmannian viewed as homogeneous space under
Ures(H ) inherits a Poisson structure in analogy to the finite-dimensional picture developped in
[136] and called Bruhat-Poisson structure. Moreover, the natural action of the Poisson–Lie group
B+

res(H ) on the restricted Grassmannian is a Poisson map, and its orbits are the Schubert cells
described in [172]. These results are summarized in the following Theorem (see Theorem 7.3.3,
Theorem 7.4.1, and Theorem 7.4.5).

Theorem 6.1.3. The restricted Grassmannian

Grres(H ) = Ures(H )/U(H+)×U(H−) = GLres(H )/Pres(H )

carries a natural Poisson structure such that:

1. the canonical projection p : Ures(H )→ Grres(H ) is a Poisson map,

2. the natural action of Ures(H ) on Grres(H ) by left translations is a Poisson map,
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3. the following right action of B+
res(H ) on Grres(H ) = GLres(H )/Pres(H ) is a Poisson map:

Grres(H )× B+
res(H ) → Grres(H )

(gPres(H ), b) 7→ (b−1g) Pres(H ).

4. the symplectic leaves of Grres(H ) are the Schubert cells and are the orbits of B+
res(H ).

Let us mention that the infinite-dimensional abelian subgroup of B+
res(H ) generated by the shift

induces the KdV hierarchy as explained in [185].

6.2 Manin triples in the infinite-dimensional setting

We start in this section with the easiest notion related to Poisson–Lie groups, namely the notion
of Manin triples. It will allow us to set up some notation used in [213], and recall the notion of
duality pairing, which is crucial for the following Sections. The unboundedness of the triangular
truncation on the space of trace class operators and on the space of bounded operators (see Sec-
tion 6.2.4) will have important consequences in Section 7.2.2. Examples of Banach Manin triples
coming from Iwasawa decompositions are given in Section 6.2.5. In particular, the Manin triple(
L2(H ), u2(H ), b+

2 (H )
)

of Hilbert-Schmidt operators will have a key rôle in the proofs of most
Theorems in Chapter 7.

6.2.1 Duality pairings of Banach spaces

In this chapter, we will consider real or complex Banach spaces, and we will denote by K ∈ {R,C}
the scalar field. The dual g∗ of a Banach space g will mean the continuous dual, i.e. the Banach
space of bounded linear forms with values in K. In a lot of applications, the dual of a Banach
space g is to big to work with, and one uses proper subspaces of g∗. A duality pairing between
two Banach spaces allows to identify one Banach space with a subspace of the dual of the other.
Additional structures on one of the Banach spaces (like a Lie bracket for instance) give rise to
additional structures on the other Banach space via duality.

Definition of strong and weak duality pairings

Let us recall the notion of duality pairing in the infinite-dimensional setting (see [1], supplement
2.4.C).

Definition 6.2.1. Let g1 and g2 be two normed vector spaces over the same field K ∈ {R,C}, and
let

〈·, ·〉g1,g2
: g1 × g2 → K

be a continuous bilinear map. One says that the map 〈·, ·〉g1,g2 is a duality pairing between g1

and g2 if and only if it is non-degenerate, i.e. if the following two conditions hold:

(〈x, y〉g1,g2
= 0, ∀x ∈ g1)⇒ y = 0 and (〈x, y〉g1,g2

= 0, ∀y ∈ g2)⇒ x = 0.

Definition 6.2.2. A duality pairing 〈·, ·〉g1,g2
is a strong duality pairing between g1 and g2 if

and only if the two continuous linear maps

g1 −→ g∗2
x 7−→ 〈x, ·〉g1,g2

and
g2 −→ g∗1
y 7−→ 〈·, y〉g1,g2

(6.1)

are isomorphisms. In all other cases, the duality pairing is called weak.

The non-degenerate condition of a duality pairing implies that the maps (6.1) are injective.
In other words, the existence of a duality pairing between g1 and g2 allows to identify g1 with a
subspace (not necessary closed!) of the continuous dual g∗2 of g2, and g2 with a subspace of g∗1,
wheras a strong duality pairing gives isomorphisms g1 ' g∗2 and g2 ' g∗1. Therefore the existence
of a strong duality pairing between g1 and g2 implies that g1 and g2 are reflexive Banach spaces.
Note that in the finite-dimensional case, a count of the dimensions shows that any duality pairing
is a strong duality pairing.

Remark 6.2.3. By Hahn-Banach Theorem, the natural pairing between a Banach space g and its
continuous dual g∗ is a duality pairing. It is a strong duality pairing in the reflexive case g∗∗ = g.
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Notation and Examples

In order to give examples of duality pairings, let us introduce some notation used in the present
chapter. The letter H will refer to a general complex separable infinite-dimensional Hilbert space.
The inner product in H will be denoted by 〈·|·〉 : H ×H →H and will be complex-linear in the
second variable, and conjugate-linear in the first variable.

Banach algebra L∞(H ) of bounded operators over a Hilbert space H

Denote by L∞(H ) the space of bounded linear maps from H into itself. It is a Banach space for
the norm of operators ‖A‖∞ := sup‖x‖≤1 ‖Ax‖ and a Banach Lie algebra for the bracket given by
the commutator of operators : [A,B] = A ◦ B − B ◦ A, for A, B ∈ L∞(H ). In the following, we
will denote the composition A ◦B of the operators A and B simply by AB.

Hilbert algebra L2(H ) of Hilbert-Schmidt operators

A bounded operator A admits an adjoint A∗ which is the bounded linear operator defined by
〈A∗x|y〉 = 〈x|Ay〉. A positive operator is a bounded operator such that 〈ϕ|Aϕ〉 ≥ 0 for any ϕ ∈H .
By polarization, if A is positive then A∗ = A. The trace of a positive operator A is defined as

TrA :=

+∞∑
n=1

〈ϕn|Aϕn〉 ∈ [0,+∞],

where ϕn is any orthonormal basis of H (the right hand side does not depend on the choice of
orthonormal basis, see Theorem 2.1 in [191]). The Schatten class L2(H ) of Hilbert-Schmidt opera-

tors is the subspace of L∞(H ) consisting of bounded operators A such that ‖A‖2 := (Tr (A∗A))
1
2 is

finite. It is a Banach Lie algebra for ‖·‖2 and for the bracket given by the commutator of operators.
It is also an ideal of L∞(H ) in the sense that for any A ∈ L2(H ) and any B ∈ L∞(H ), one has
AB ∈ L2(H ) and BA ∈ L2(H ).

Banach algebra L1(H ) of trace-class operators

For a bounded linear operator A, the square root of A∗A is well defined, and denoted by (A∗A)
1
2

(see Theorem VI.9 in [174]). The Schatten class L1(H ) of trace class operators is the subspace of

L∞(H ) consisting of bounded operators A such that ‖A‖1 := Tr (A∗A)
1
2 is finite. It is a Banach

Lie algebra for ‖ · ‖1 and for the bracket given by the commutator of operators. We recall that for
any A ∈ L1(H ) (not necessarly positive), the trace of A is defined as

TrA :=

∞∑
n=1

〈ϕn|Aϕn〉,

where {ϕn} is any orthonormal basis of H (the right hand side does not depend on the orthonormal
basis, see Theorem 3.1 in [191]) and that we have

|TrA| ≤ ‖A‖1.

Moreover L1(H ) is an ideal of L∞(H ), i.e. for any A ∈ L1(H ) and any B ∈ L∞(H ), AB ∈ L1(H )
and BA ∈ L1(H ), and furthermore TrAB = TrBA. Finally for A and B in L2(H ), one has
AB ∈ L1(H ), BA ∈ L1(H ), and TrAB = TrBA (see Corollary 3.8 in [191]).

Banach algebras Lp(H )

For any 1 < p < ∞, the Schatten class Lp(H ) is the subspace of L∞(H ) consisting of bounded
operators A such that

‖A‖p :=
(

Tr (A∗A)
p
2

) 1
p

is finite. It is a Banach algebra for the norm ‖ · ‖p and for the bracket given by the commutator
of operators. Moreover Lp(H ) is an ideal of L∞(H ): for any A ∈ Lp(H ) and any B ∈ L∞(H ),
AB ∈ Lp(H ) and BA ∈ Lp(H ).
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Remark 6.2.4. For 1 < p < 2 < q <∞, one has

L1(H ) ↪→ Lp(H ) ↪→ L2(H ) ↪→ Lq(H ) ↪→ L∞(H ),

where each injection is a continuous map between Banach spaces. In the following, we will repeatedly
use these inclusions.

Let us now give some examples of duality pairings.

Example 6.2.5. The trace of the product of two operators (A,B) 7→ TrAB is a strong duality
pairing between L2(H ) and itself.

Example 6.2.6. Since L1(H ) is a dense subspace of L2(H ), one obtains a weak duality pairing
between L1(H ) and L2(H ) by considering the bilinear map (A,B) 7→ TrAB with A ∈ L1(H ) and
B ∈ L2(H ).

Example 6.2.7. Since the dual of L1(H ) can be identified with L∞(H ) using the trace, one has a
weak duality pairing between L1(H ) and L∞(H ) by considering the bilinear map (A,B) 7→ TrAB
with A ∈ L1(H ) and B ∈ L∞(H ). Note that the dual space of L∞(H ) stricktly contains L1(H )
as a closed subspace.

Example 6.2.8. For 1 < p <∞, define 1 < q <∞ by the relation 1
p + 1

q = 1. For any A ∈ Lp(H )

and any B ∈ Lq(H ), AB ∈ L1(H ) and BA ∈ L1(H ) with

‖AB‖1 ≤ ‖A‖p‖B‖q and ‖BA‖1 ≤ ‖A‖p‖B‖q,

(see Proposition 5, page 41 in [175]) and furthermore TrAB = TrBA. Moreover the trace of the
product of two operators (A,B) 7→ TrAB is a strong duality pairing between Lp(H ) and Lq(H )
and gives rise to the following identifications (see Proposition 7, page 43 in [175] and Theorem VI.26,
page 212 in [174]):

(Lp(H ))
∗ ' Lq(H ) and (Lq(H ))

∗ ' Lp(H )

6.2.2 Duals and injection of Banach spaces

Suppose that h is a Banach space that injects continuously into another Banach space g, i.e. one
has a continuous injection ι : h ↪→ g. Then one can consider two different dual spaces : the dual
space h∗ which consists of linear forms on the Banach space h which are continuous with respect
to the operator norm associated to the Banach norm ‖ · ‖h on h, and the norm dual ι(h)∗ of the
subspace ι(h) ⊂ g endowed with the norm ‖ · ‖g of g, consisting of continuous linear forms on the
normed vector space (ι(h), ‖ · ‖g). Note that, since R is complete, ι(h)∗ is complete even if ι(h) is
not closed in g (see for instance [40] Section 1.1). Let us compare these two duals : h∗ on one hand
and ι(h)∗ on the other hand. First note that one gets a well-defined map

ι∗ : g∗ → h∗

f 7→ f ◦ ι

since f ◦ ι is continuous for the operator norm induced by the norm of h whenever f is continuous
for the operator norm induced by the norm on g. Note that ι∗ is surjective if and only if any
continuous form on h can be extended to a continuous form on g. On the other hand, ι∗ is injective
if and only if the only continuous form on g that vanishes on ι(h) is the zero form.

Suppose that the range of ι : h ↪→ g is closed. Then ι(h) endowed with the norm of g is a
Banach space. It follows that ι is a continuous bijection from the Banach space h onto the Banach
space ι(h), therefore by the open mapping theorem, it is an isomorphism of Banach spaces (see for
instance Corollary 2.7 in [40]). In this case, any continuous form on h is continuous for the norm of
g i.e. one has h∗ = ι(h)∗. By Hahn-Banach theorem, any continuous form on ι(h) can be extended
to a continuous form on g with the same norm (see Corollary 1.2 in [40]). Therefore the dual map
ι∗ : g∗ → h∗ is surjective. Its kernel is the annihilator ι(h)0 of ι(h) and h∗ is isomorphic to the
quotient space g∗/ι(h)0.
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Example 6.2.9. The injection of the Banach space of compact operators K (H ) on a separable
Hilbert space H into the Banach space of bounded operators L∞(H ) is closed. The dual map
ι∗ : L∞(H )∗ → K (H )∗ is surjective and K (H )∗ can be identified with the space L1(H ) of
trace class operators on H using the trace. Therefore L1(H ) is isomorphic to the quotient space
L∞(H )∗/K (H )0.

Suppose now that the range of ι : h ↪→ g is dense in g. In this case, any continuous form on ι(h)
extends in a unique way to a continuous form on g with the same norm i.e. ι(h)∗ = g∗. The kernel
of ι∗ consists of continuous maps on g that vanish on the dense subspace ι(h), hence is reduced to
0. In other words ι∗ : g∗ → h∗ is injective (see also Corollary 1.8 in [40]).

Example 6.2.10. Consider the inclusion ι : L1(H ) ↪→ L2(H ) of the space of trace-class operators
into the space of Hilbert-Schmidt operators on H . Then the range of ι is dense. This leads to the
injection ι∗ : L2(H )∗ = L2(H ) ↪→ L1(H )∗ = L∞(H ).

6.2.3 Definition of Banach Manin triples

The notion of Manin triple is a notion of linear algebra that can be adapted in a straightforward
way to the Banach context.

Definition 6.2.11. A Banach Manin triple consists of a triple of Banach Lie algebras (g, g+, g−)
over a field K and a non-degenerate symmetric bilinear continuous map 〈·, ·〉g on g such that

1. the bilinear map 〈·, ·〉g is invariant with respect to the bracket [·, ·]g of g, i.e.

〈[x, y]g, z〉g + 〈y, [x, z]g〉g = 0, ∀x, y, z ∈ g; (6.2)

2. g = g+ ⊕ g− as Banach spaces;

3. both g+ and g− are Banach Lie subalgebras of g;

4. both g+ and g− are isotropic with respect to the bilinear map 〈·, ·〉g.

Note that in the Banach context, it is important to ask for the continuity of the bilinear map 〈·, ·〉g,
as well as for a decomposition g = g+ ⊕ g− of g into the sum of two closed Banach subspaces. Let
us make some remarks which are simple consequences of the definition of a Manin triple.

Remark 6.2.12. Given a Manin triple (g, g+, g−), condition (2) implies that any continuous linear
form α on g decomposes in a continuous way as

α = α ◦ pg+ + α ◦ pg− ,

where pg+ (resp. pg−) is the continuous projection onto g+ (resp. g−) with respect to the decom-
position g = g+ ⊕ g−. In other words, one has a decomposition of the continuous dual g∗ of g
as

g∗ = g0
− ⊕ g0

+,

where g0
± is the annihilator of g±, i.e.

g0
± := {α ∈ g∗ : α(x) = 0, ∀x ∈ g±}.

Moreover any continuous linear form β on g+ can be extended in a unique way to a continuous
linear form on g belonging to g0

− by β 7→ β ◦ p+. It follows that one has an isomorphism

g∗+ ' g0
−,

and similarly
g∗− ' g0

+.

Remark 6.2.13. Given a Manin triple (g, g+, g−) where 〈·, ·〉g is a strong duality pairing, any
continuous linear form on g can be written as 〈x, ·〉g for some x ∈ g. In particular, for any subspace
h ⊂ g, one has

h0 ' h⊥,
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where

h⊥ := {x ∈ g : 〈x, y〉g = 0, ∀y ∈ h}.

Moreover, any continuous linear form β on g+ can be represented as β(x) = 〈x, y〉g for a unique
element y ∈ g−. Therefore, in this case,

g− ' g∗+

and similarly

g+ ' g∗−.

6.2.4 Triangular truncations of operators

Endow the separable complex Hilbert space H with an orthonormal basis {|n〉}n∈Z ordered ac-
cording to decreasing values of n. For 1 ≤ p ≤ ∞, consider the following Banach Lie subalgebras
of Lp(H )

Lp(H )− := {x ∈ Lp(H ) : x|n〉 ∈ span{|m〉,m ≤ n}}
(lower triangular operators)

Lp(H )++ := {x ∈ Lp(H ) : x|n〉 ∈ span{|m〉,m > n}}
(strictly upper triangular operators).

(6.3)

and
Lp(H )+ := {α ∈ Lp(H ) : α|n〉 ∈ span{|m〉,m ≥ n}}

(upper triangular operators)

Lp(H )−− := {α ∈ Lp(H ) : α|n〉 ∈ span{|m〉,m < n}}
(strictly lower triangular operators).

(6.4)

The linear transformation T− consisting in taking the lower triangular part of an operator with
respect to the orthonormal basis {|n〉}n∈Z of H is called a triangular truncation or triangular
projection (see [6]) and is defined as follows:

〈m|T−(A)n〉 :=

{
〈m|An〉 if m ≤ n

0 if m > n
(6.5)

Similarly, the linear transformation T++ consisting in taking the stricktly upper triangular part of
an operator with respect to {|n〉}n∈Z is defined as follows:

〈m|T++(A)n〉 :=

{
〈m|An〉 if m > n

0 if m ≤ n (6.6)

The linear transformation D consisting in taking the diagonal part of a linear operator is defined
by

〈m|D(A)n〉 :=

{
〈m|An〉 if n = m

0 if n 6= m
(6.7)

Remark 6.2.14. The triangular truncations T− and T++ are unbounded on L∞(H ) and on
L1(H ), but are bounded on Lp(H ) for 1 < p <∞ (see [138], [121], [84] as well as Proposition 4.2
in [6] for the proof and more detail on the subject). See also [57] for an example of bounded operator
whose triangular truncation is unbounded (Hilbert matrix). As far as we know the existence and
construction of a trace class operator whose triangular projection is not trace class is an open
problem. We refer the reader to [23] for related functional-analytic issues in the theory of Banach
Lie groups.

Denote by T+ = T++ + D (resp. T−− = T− − D) the linear transformation consisting in
taking the upper triangular part (resp. strictly lower triangular part) of an operator. One has for
1 < p <∞,

Lp(H ) = Lp(H )+ ⊕ Lp(H )−−, (6.8)

and

Lp(H ) = Lp(H )− ⊕ Lp(H )++. (6.9)
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6.2.5 Example of Iwasawa Manin triples

The Iwasawa decomposition of a finite-dimensional semi-simple Lie group is a generalization of the
decomposition of GL(n,C) as the product of SU(n)×A×N , where A is the abelian group of diagonal
matrices with positive real coefficients, and N is the group of triangular matrices whose diagonal
entries are all equal to 1. The product A×N is often denoted by B for Borel subgroup. At the level
of Lie algebras, the Iwasawa decomposition gives rise to the decomposition M(n,C) = u(n)⊕ b(n),
where b(n) is the Lie algebra of complex triangular matrices with real coefficients on the diagonal.
Since the triangular truncation defined in Section 6.2.4 is bounded on Lp(H ) for 1 < p < ∞,
we can generalize this decomposition to the Banach context (see Lemma 6.2.15). As explained in
[136], (M(n,C), u(n), b(n)) is an example of Manin triple, where the duality pairing is given by the
imaginary part of the trace. This duality pairing can be defined on Lp(H ) for 1 < p ≤ 2 because
in this case Lp(H ) injects into its dual. This gives rise to Banach Manin triples, that we will call
Iwasawa Manin triples (see Proposition 6.2.16 below).

We will use the following notation. The real Banach Lie algebra up(H ) is the Lie algebra of
skew-Hermitian operators in Lp(H ):

up(H ) := {A ∈ Lp(H ) : A∗ = −A}. (6.10)

The real Banach subalgebras b+
p (H ) and b−p (H ) of Lp(H ) are the triangular Banach algebras

defined as follows:

b+
p (H ) := {α ∈ Lp(H ) : α|n〉 ∈ span{|m〉,m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z},

b−p (H ) := {α ∈ Lp(H ) : α|n〉 ∈ span{|m〉,m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}. (6.11)

Lemma 6.2.15. For 1 < p < ∞, one has the following direct sum decompositions of Lp(H ) into
the sum of closed subalgebras

Lp(H ) = up(H )⊕ b+
p (H ), (6.12)

and
Lp(H ) = up(H )⊕ b−p (H ). (6.13)

The projection pup,+ onto up(H ) with respect to the decomposition (6.12) reads

pup,+(A) = T−−(A)− T−−(A)∗ +
1

2
[D(A)−D(A)∗] , where A ∈ Lp(H ). (6.14)

Similarly, the projection pup,− onto up(H ) with respect to the decomposition (6.13) reads:

pup,−(A) = T++(A)− T++(A)∗ +
1

2
[D(A)−D(A)∗] , where A ∈ Lp(H ). (6.15)

Proof. Since the triangular truncations T+ : Lp(H ) → Lp(H ) and T++ : Lp(H ) → Lp(H ) are
bounded for 1 < p <∞ (see remark 6.2.14), the same is true for the operator D = T+ − T++. The
Lemma follows as in the finite-dimensional case.

Proposition 6.2.16. For 1 < p ≤ 2, the triples of Banach Lie algebras (Lp(H ), up(H ), b+
p (H ))

and (Lp(H ), up(H ), b−p (H )) are real Banach Manin triples with respect to the pairing given by the
imaginary part of the trace

〈·, ·〉R : Lp(H )× Lp(H ) −→ R
(x, y) 7−→ =Tr (xy) .

(6.16)

Proof. • Let us show that the bilinear form on Lp(H ) given by the imaginary part of the
trace is invariant with respect to the bracket given by the commutator. Set q := p

p−1 . Then

1 < p ≤ 2 ≤ q < ∞. For any x, y, z ∈ Lp(H ), recall that Lp(H ) · Lp(H ) ⊂ Lp(H ),
Lp(H ) ⊂ Lq(H ), and Lp(H ) · Lq(H ) ⊂ L1(H ). Therefore one has

Tr ([x, y]z) = Tr (xyz − yxz) = Tr (xyz)− Tr (yxz)
= Tr (yzx)− Tr (yxz) = −Tr y[x, z],

where the second equality follows from the fact that both xyz and yxz are in L1(H ), and the
third is justified since yz belongs to L1(H ) and x is bounded. Taking the imaginary part of
the trace preserves this invariance. Hence 〈·, ·〉R is invariant with respect to the Lie bracket
of Lp(H ).
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• By Lemma 6.2.15, one has the direct sum decompositions

Lp(H ) = up(H )⊕ b±p (H ).

• Note that 〈·, ·〉R is well-defined because Lp(H ) ⊂ Lq(H ) for 1 < p ≤ 2. It is clearly symmetric
and continuous. Let us show that 〈·, ·〉R is a non-degenerate bilinear form on Lp(H ). Denote
by HR the real Hilbert space generated by {|n〉}n∈Z. Any bounded linear operator A on the
complex Hilbert space H = HR + iHR can be written in blocks as

A =

(
<A −=A
=A <A

)
.

where <A : HR → HR and =A : HR → iHR. In particular, A ∈ Lp(H ) is the C-linear
extension of <A + i=A (note that this is not the decomposition of A into its symmetric and
skew-symmetric parts). Therefore, for any A,B ∈ Lp(H ),

=Tr (AB) = Tr (<A=B + =A<B) .

Suppose that =Tr (AB) = 0 for any B ∈ Lp(H ). Since Lp(H ) is dense in L2(H ), this implies
that Tr<A · C = 0 for any operator C ∈ L2(HR), and Tr=A · D = 0 for any D ∈ L2(HR).
It follows that <A = 0 and =A = 0 because the trace is a strong duality pairing between
L2(HR) and itself.

• It is easy to show that up(H ) ⊂ (up(H ))
⊥

, b+
p (H ) ⊂

(
b+
p (H )

)⊥
and b−p (H ) ⊂

(
b−p (H )

)⊥
,

in other words up(H ), b+
p (H ) and b−p (H ) are isotropic subspaces with respect to the pairing

〈·, ·〉R.

Remark 6.2.17. In the previous Proposition, the condition 1 < p ≤ 2 is necessary in order to
define the trace of the product of two elements in Lp(H ) (Lp(H ) is contained in its dual Lq(H )
for 1 < p ≤ 2).

6.3 From Manin triples to 1-cocycles

The existence of a Lie bracket on a Banach space g+ has consequences on any Banach space g− in
duality with g+. Under some stability and continuity conditions (see Section 6.3.2), g+ will act on
g− by coadjoint action, as well as on the space of bounded multilinear maps on g− (see Section 6.3.3).
When g+ and g− form a Banach Manin triple, a natural 1-cocycle with respect to the action of g+

on the space of skew-symmetric bilinear maps on g− can be defined (see Section 6.3.6).

6.3.1 Adjoint and coadjoint actions

Recall that a Banach Lie algebra g+ acts on itself, its continuous dual g∗+ and bidual g∗∗+ by the
adjoint and coadjoint actions:

ad : g+ × g+ −→ g+

(x, y) 7−→ adxy := [x, y],

−ad∗ : g+ × g∗+ −→ g∗+
(x, α) 7−→ −ad∗xα := −α ◦ adx,

and
ad∗∗ : g+ × g∗∗+ −→ g∗∗+

(x,F ) 7−→ ad∗∗x F := F ◦ ad∗x.

Here the notation ad∗x : g∗+ → g∗+ means the dual map of adx : g+ → g+. Remark that the
actions ad and ad∗∗ coincide on the subspace g+ of g∗∗+ . These actions extend in a natural way to
spaces of bounded multilinear maps from any Banach product of copies of g+ and g∗+. For Banach
spaces g1, . . . , gk and h, we will use the notation L(g1, g2, . . . gk; h) to denote the Banach space
of continuous k-multilinear maps from the product Banach space g1 × · · · × gk to the Banach
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space h (note the semi-colon separating the initial Banach spaces from the final one). Let us recall
(see Proposition 2.2.9 in [1]) that one has the following isometric isomorphisms of Banach spaces

L(g∗+; L(g+, g+;K)) ' L(g∗+, g+, g+;K) ' L(g+, g
∗
+; L(g+;K)) ' L(g+, g

∗
+; g∗+). (6.17)

In particular, since the map ad : g+ × g+ → g+ is bilinear and continuous, its dual map ad∗

is continuous as a map from g∗+ to L(g+, g+;K) and, following the sequence of isomorphisms in
(6.17), it follows that ad∗ : g+ × g∗+ → g∗+ is continuous. Similarly, using the following isometric
isomorphisms of Banach spaces

L(g∗∗+ ; L(g+, g
∗
+;K)) ' L(g∗∗+ , g+, g

∗
+;K) ' L(g+, g

∗∗
+ ; L(g∗+;K)) ' L(g+, g

∗∗
+ ; g∗∗+ ),

it follows that ad∗∗ : g+ × g∗∗+ → g∗∗+ is continuous.

6.3.2 Coadjoint action on a subspace of the dual

Suppose that we have a continuous injection from a Banach space g− into the dual space g∗+ of a
Banach Lie algebra g+, in such a way that g− is stable by the coadjoint action of g+ on its dual,
i.e. is such that

ad∗xα ∈ g−, ∀x ∈ g+,∀α ∈ g−. (6.18)

Then the coadjoint action −ad∗ : g+ × g∗+ → g∗+ restricts to a continuous bilinear map −ad∗|g− :
g+ × g− → g∗+, where g+ × g− is endowed with the Banach structure of the product of Banach
spaces g+ and g−. In other words

−ad∗|g− ∈ L(g+, g−; g∗+) ' L(g+;L(g−; g∗+)).

Moreover, condition (6.18) implies that −ad∗ takes values in g−, i.e. that one gets a well-defined
action

−ad∗|g− : g+ × g− −→ g−
(x, α) 7−→ −ad∗xα := −α ◦ adx.

However, this action will in general not be continuous if one endows the target space with its Banach
space topology. Nevertheless it is continuous if the target space is equipped with the topology
induced from g∗+. Under the additional assumption that −ad∗|g− : g+× g− → g− is continuous with
respect to the Banach space topologies of g+ and g− (for instance in the case where g− is a closed
subspace of the dual g∗+), g+ acts also continuously on g∗− by

(ad∗|g−)∗ : g+ × g∗− −→ g∗−
(x,F ) 7−→ F ◦ ad∗x.

6.3.3 Adjoint action on the space of continuous multilinear maps

Suppose that we have a continuous injection from a Banach space g− into the dual space g∗+ of
a Banach Lie algebra g+ and that g+ acts continously on g− by coadjoint action, i.e. suppose
that −ad∗|g− takes values in g− and that −ad∗|g− : g+ × g− → g− is continuous. In order to

simplify notation, we will write just ad∗ for ad∗|g− and ad∗∗ for (ad∗|g−)∗. In order to compactify
notations, let us denote by Lr,s(g−, g+;K) the Banach space of continuous multilinear maps
from g−×· · ·×g−×g+×· · ·×g+ to K, where g− is repeated r-times and g+ is repeated s-times.
Since g+ acts continuously by adjoint action on itself and by coadjoint action on g−, one can define
a continuous linear action of g+ on Lr,s(g−, g+;K), also called adjoint action, by

ad(r,s)
x t(α1, . . . , αr, x1, . . . , xs) =

r∑
i=1

t(α1, . . . , ad∗xαi, . . . , αr, x1, . . . , xs)

−
s∑
i=1

t(α1, . . . , αr, x1, . . . , adxxi, . . . xs),

where t ∈ Lr,s(g−, g+;K), for i ∈ {1, . . . , r}, αi ∈ g−, and for i ∈ {1, . . . , s}, xi ∈ g+. In particular,
the adjoint action of g+ on L2,0(g−, g+;K) := L(g−, g−;K) reads:

ad(2,0)
x t(α1, α2) = t(ad∗xα1, α2) + t(α1, ad∗xα2). (6.19)
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6.3.4 Subspaces of skew-symmetric bilinear maps

Note that the adjoint action ad(2,0) defined in (6.19) preserves the subspace of skew-symmetric
continuous bilinear maps on g−, denoted by Λ2g∗−:

Λ2g∗− := {t ∈ L(g−, g−;K) : ∀e1, e2 ∈ g−, t(e1, e2) = −t(e2, e1)} .

For any subspace g+ ⊂ g∗−, the subspace Λ2g+ ⊂ Λ2g∗− refers to the subspace consisting of elements
t ∈ Λ2g∗− such that, for α ∈ g−, the maps α 7→ t(e1, α) belong to g+ ⊂ g∗− for any e1 ∈ g−.

Λ2g+ :=
{
t ∈ Λ2g∗− : ∀e1 ∈ g−, t(e1, ·) ∈ g+

}
.

6.3.5 Definition of 1-cocycless

Let us recall the notion of 1-cocycle. Let G be a Banach Lie group, and consider an affine action of G
on a Banach space V , i.e. a group morphism Φ of G into the Affine group Aff(V ) of transformations
of V . Using the isomorphism Aff(V ) = GL(V )oV , Φ decomposes into (ϕ,Θ) where ϕ : G→ GL(V )
and Θ : G → V . The condition that Φ is a group morphism implies that ϕ is a group morphism
and that Θ satisfies:

Θ(gh) = Θ(g) + ϕ(g)(Θ(h)), (6.20)

where g, h ∈ G. One says that Θ is a 1-cocycle on G relative to ϕ. The derivative dΦ of Φ
at the unit element of G is a Lie algebra morphism of the Lie algebra g of G into the Lie algebra
aff(V ) of Aff(V ). By the isomorphism aff(V ) = gl(V ) o V , dΦ decomposes into (dϕ, dΘ) where
dϕ : g→ gl(V ) is the Lie algebra morphism induced by ϕ and dΘ : g→ V satisfies:

dΘ ([x, y]) = dϕ(x) (dΘ(y))− dϕ(y) (dΘ(x)) , (6.21)

for x, y ∈ g. One says that dΘ is a 1-cocycle on g relative to dϕ.

Example 6.3.1. Let us consider in particular the Banach space V = L(g−, g−;K) of bilinear maps
on g−, where g− is a Banach space that injects continuously in the dual space g∗+ of a Banach Lie
algebra g+, is stable under the coadjoint action of g+, and such that the coadjoint action of g+ on

g− is continuous. A 1-cocycle θ on g+ relative to the natural action ad(2,0) of g+ on L(g−, g−;K)
given by (6.19) is a map θ : g+ → L(g−, g−;K) which satisfies:

θ ([x, y]) = ad(2,0)
x (θ(y))− ad(2,0)

y (θ(x))

where x, y ∈ g+. For α and β in g−, previous condition reads

θ ([x, y]) (α, β) = θ(y)(ad∗xα, β) + θ(y)(α, ad∗xβ)− θ(x)(ad∗yα, β)− θ(x)(α, ad∗yβ). (6.22)

Remark 6.3.2. A continuous map θ : g+ → L(g−, g−;K) from a Banach Lie algebra g+ to the
Banach space of bilinear maps on g− satisfying equation (6.22) defines an affine action of g+ on

L(g−, g−;K) whose linear part is the adjoint action ad(2,0) given by equation (6.19).

6.3.6 Manin triples and associated 1-cocycles

The following proposition enable to define 1-cocycles naturally associated to a Manin triple.

Theorem 6.3.3. Let (g, g+, g−) be a Manin triple for a non-degenerate symmetric bilinear contin-
uous map 〈·, ·〉g : g× g→ K. Then

1. The map 〈·, ·〉g restricts to a duality pairing 〈·, ·〉g+,g− : g+ × g− → K.

2. The subspace g+ ↪→ g∗− is stable under the coadjoint action of g− on g∗− and

ad∗α(x) = −pg+ ([α, x]g)

for any x ∈ g+ and α ∈ g−. In particular, the map

ad∗g− : g− × g+ → g+

(α, x) 7→ −pg+ ([α, x]g)

is continuous.
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3. The subspace g− ↪→ g∗+ is stable under the coadjoint action of g+ on g∗+ and

ad∗x(α) = −pg− ([x, α]g)

for any x ∈ g+ and α ∈ g−. In particular, the map

ad∗g+
: g+ × g− → g−

(x, α) 7→ −pg− ([x, α]g)

is continuous.

4. The dual map to the bracket [·, ·]g− restricts to a 1-cocycle θ+ : g+ → Λ2g+ with respect to

the adjoint action ad(2,0) of g+ on Λ2g+ ⊂ Λ2g∗−.

5. The dual map to the bracket [·, ·]g+
restricts to a 1-cocycle θ− : g− → Λ2g− with respect to

the adjoint action ad(2,0) of g− on Λ2g− ⊂ Λ2g∗+.

Proof. 1. Let us show that the restriction of the non-degenerate bilinear form 〈·, ·〉g : g× g→ K
to g+ × g− denoted by

〈·, ·〉g+,g− : g+ × g− → K

is a non-degenerate duality pairing between g+ and g−. Suppose that there exists x ∈ g+ such
that 〈x, α〉g+,g− = 0 for all α ∈ g−. Then, since g+ is isotropic for 〈·, ·〉g, one has 〈x, y〉g = 0
for all y ∈ g, and the non-degeneracy of 〈·, ·〉g implies that x = 0. The same argument apply
interchanging g+ and g−, thus 〈·, ·〉g+,g− is non-degenerate. As a consequence, one obtains
two continuous injections

g− ↪→ g∗+
α 7→ 〈·, α〉g+,g− ,

and
g+ ↪→ g∗−
x 7→ 〈x, ·〉g+,g− .

(2)-(3) Let us show that both
g+ ⊂ g∗−

and
g− ⊂ g∗+

are stable under the coadjoint action of g− on g∗− and g+ on g∗+ respectively. Indeed, the
invariance of the bilinear form 〈·, ·〉g with respect to the bracket [·, ·]g implies that for any
x ∈ g+ and α ∈ g−,

〈x, [α, ·]g〉g = −〈[α, x]g, ·〉g.

Hence, since g− is isotropic,

〈x, [α, ·]g〉g+,g− = −〈pg+
([α, x]g) , ·〉g+,g− ,

for any x ∈ g+ and any α ∈ g−. It follows that

ad∗α(x) = −pg+ ([α, x]g)

and similarly
ad∗x(α) = −pg− ([x, α]g)

for any x ∈ g+ and α ∈ g−. The continuity of the corresponding adjoint maps follows from
the continuity of the bracket [·, ·]g and of the projections pg+

and pg− .

(4)-(5) Let us prove that the dual map of the Lie bracket on g− restricts to a 1-cocycle with respect
to the adjoint action of g+ on Λ2g+. The dual map

[·, ·]∗g− : g∗− → L(g−, g−;K)

to the bilinear map [·, ·]g− assigns to F (·) ∈ g∗− the bilinear form F
(
[·, ·]g−

)
and takes values

in Λ2g∗−. Since by (2), g− ⊂ g∗+ is stable under the coadjoint action of g+ and since the
coadjoint action ad∗ : g+ × g− → g− is continuous, one can consider the adjoint action of g+

on Λ2g∗− defined by (6.19). Since the duality pairing 〈·, ·〉g+,g− induces a continuous injection
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g+ ↪→ g∗−, one can consider the subspace Λ2g+ of Λ2g∗− defined in Section 6.3.4. Denote by
θ+ : g+ → L(g−, g−;K) the restriction of [·, ·]∗g− to the subspace g+ ⊂ g∗−:

θ+(x) = 〈x, [·, ·]g−〉g+,g− .

Using the identification L(g−, g−;K) ' L(g−; g∗−), one has

θ+(x)(α) = 〈x, [α, ·]g−〉g+,g− = ad∗αx(·).

One sees immediately that the map θ+ takes values in Λ2g+ if and only if ad∗αx ∈ g+ for any
α ∈ g− and for any x ∈ g+, which is verified by (2). Using the fact that the duality pairing
〈·, ·〉g+,g− is the restriction of 〈·, ·〉g and that 〈·, ·〉g is invariant with respect to the bracket
[·, ·]g, one has

〈[x, y], [α, β]〉g−,g+ = −〈[α, [x, y]], β〉g,
and the Jacobi identity verified by [·, ·]g implies

〈[x, y], [α, β]〉g−,g+
= −〈[[α, x], y], β〉g − 〈[x, [α, y]], β〉g.

Using the decomposition

−[α, x] = −pg− [α, x]− pg+
[α, x] = −ad∗xα+ ad∗αx,

and similarly
−[α, y] = −pg− [α, y]− pg+ [α, y] = −ad∗yα+ ad∗αy,

one gets

〈[x, y], [α, β]〉g+,g− = 〈[ad∗αx− ad∗xα, y], β〉g + 〈[x, ad∗αy − ad∗yα], β〉g,

hence
〈[x, y], [α, β]〉g+,g− = 〈[ad∗αx, y], β〉g + 〈[x, ad∗αy], β〉g

+〈y, [ad∗xα, β]〉g − 〈x, [ad∗yα, β]〉g.
(6.23)

It follows that
ad∗α[x, y] = [ad∗αx, y] + [x, ad∗αy] + ad∗ad∗xα

y − ad∗ad∗yα
x.

On the other hand, the condition (6.22) that θ+ is a 1-cocycle reads:

〈[x, y], [α, β]〉g+,g− = +〈y, [ad∗xα, β]〉g+,g− + 〈y, [α, ad∗xβ]〉g+,g−

−〈x, [ad∗yα, β]〉g+,g− − 〈x, [α, ad∗yβ]〉g+,g− .
(6.24)

The first and third terms in the RHS of (6.24) equal the last two terms in the RHS of (6.23).
Using the invariance (6.2) of the bilinear form 〈·, ·〉g with respect to the bracket [·, ·]g, the
last term in the RHS of (6.24) reads

−〈x, [α, ad∗yβ]〉g+,g− = 〈[α, x], ad∗yβ〉g = 〈pg+([α, x]), ad∗yβ〉g+,g−

= −〈ad∗αx, ad∗yβ〉g+,g− = −〈[y, ad∗αx], β〉g+,g− ,

and similarly the second term in the RHS of (6.24) reads

〈y, [α, ad∗xβ]〉g+,g− = 〈[x, ad∗αy], β〉g+,g− .

Hence the equivalence between (6.24) and (6.23) follows. By interchanging the roles of g+

and g−, one proves (5) in a similar way.

In the proof of Theorem 6.3.3, we have showed the following:

Proposition 6.3.4. Let g = g+ ⊕ g− be a decomposition of a Banach Lie algebra g into the direct
sum of two Banach Lie subalgebras, and suppose that g is endowed with a non-degenerate symmetric
bilinear map 〈·, ·〉g, invariant with respect to the Lie bracket in g. Then the cocycle condition (6.22)
for the restriction θ+ of [·, ·]∗g− : g∗− → Λ2g∗− to the subspace g+ ⊂ g∗− reads

ad∗α[x, y] = [ad∗αx, y] + [x, ad∗αy] + ad∗ad∗xα
y − ad∗ad∗yα

x, (6.25)

where x, y ∈ g+ and α ∈ g−.

Remark 6.3.5. Equation (6.25) is exactly the formula given in [136] page 507, but with the
opposite sign convention for the coadjoint map ad∗.
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6.4 Generalized Banach Poisson manifolds and related no-
tions

In this section, we generalize the definition of Poisson manifolds to the Banach context (Sec-
tion 6.4.1). Example of generalized Banach Poisson manifolds are Banach symplectic manifolds
(Section 6.4.2) and Banach Lie–Poisson spaces (Section 6.4.2).

6.4.1 Definition of generalized Banach Poisson manifolds

The notions of Banach Poisson manifolds and Banach Lie–Poisson spaces were introduced in [156].
The notion of sub Poisson structures in the Banach context was introduced in [46]. In the case
of locally convex spaces, an analoguous definition of weak Poisson manifold structure was defined
in [152]. In the symplectic case, related notions were introduced in [32] enabling the study of the
orbital stability of some Hamiltonian PDE’s. In the present chapter, we restrict ourselves to the
Banach setting but generalize slightly these notions to the case where an arbitrary duality pairing
is considered, and where the existence of Hamiltonian vector fields is not assumed (this last point is
assumed in [152] and [46]). Moreover, instead of working with subalgebras of the space of smooth
functions C∞(M) on a Banach manifold M , we will work with subbundles of the cotangent bundle
(see Remark 6.4.2 below).

Definition 6.4.1. Consider a unital subalgebra A ⊂ C∞(M) of smooth functions on a Banach
manifold M , i.e. A is a vector subspace of C∞(M) containing the constants and stable under
pointwise multiplication. An R-bilinear operation {·, ·} : A ×A → A is called a Poisson bracket
on M if it satisfies:

(i) anti-symmetry : {f, g} = −{g, f} ;

(ii) Jacobi identity: {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 ;

(iii) Leibniz formula: {f, gh} = {f, g}h+ g{f, h} ;

Remark 6.4.2. 1. Note that the Leibniz rule implies that for any f ∈ A , {f, ·} acts by deriva-
tions on the subalgebra A ⊂ C∞(M). When M is finite-dimensional and A = C∞(M), this
condition implies that {f, ·} is a smooth vector field Xf on M , called the Hamiltonian vector
field associated to f , uniquely defined by its action on C∞(M):

Xf (h) = dh(Xf ) = {f, h}.

It is worth noting that on an infinite-dimensional Hilbert space, there exists derivations of
order greater than 1, i.e. that do not depend only on the differentials of functions (see Lemma
28.4 in [117], chapter VI). It follows that, contrary to the finite-dimensional case, one may not
be able to associate a Poisson tensor (see Definition 6.4.5 below) to a given Poisson bracket.
Examples of Poisson brackets not given by Poisson tensors were constructed in [24].

2. Given a covector ξ ∈ T ∗pM , it is always possible to extend it to a locally defined 1-form α with
αp = ξ (for instance by setting α equal to a constant in a chart around p ∈ M). However, it
may not be possible to extend it to a smooth 1-form on M . It may therefore not be possible
to find a smooth real function on M whose differential equals ξ at p ∈ M . The difficulty
resides in defining smooth bump functions, which are, in the finite dimensional Euclidean
case, usually constructed using the differentiability of the norm. In [176], it was shown that
a Banach space admits a C 1-norm away from the origin if and only if its dual is separable.
Remark that L∞(H ) is not separable (since it contains the nonseparable Banach space l∞
as the space of diagonal operators). It follows that the dual of L∞(H ) is nonseparable (since
by Theorem III.7 in [174], if the dual of a Banach space is separable, so is the Banach space
itself). Therefore working with unital subalgebras of smooth functions on a Banach manifold
modelled on L∞(H ) (or on Lres(H ) and ures(H ) defined below) may lead to unexpected
difficulties. For this reason, we will adapt the definition of Banach Poisson manifold and work
with local sections of subbundles of the cotangent bundle. The link between unital subalgebras
of C∞(M) and subbundles of the cotangent bundle is given by next definition.
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Definition 6.4.3. Let M be a Banach manifold and A be a unital subalgebra of C∞(M). The first
jet of A , denoted by J1(A ) is the subbundle of the cotangent bundle T ∗M whose fiber over p ∈M
is the space of differentials of functions in A ,

J1(A )p = {dfp : f ∈ A }.

Definition 6.4.4. We will say that F is a subbundle of T ∗M in duality with the tangent bundle
to M if, for every p ∈M ,

1. Fp is an injected Banach space of T ∗pM , i.e. Fp admits a Banach space structure such that
the injection Fp ↪→ T ∗pM is continuous,

2. the natural duality pairing between T ∗pM and TpM restricts to a duality pairing between Fp
and TpM , i.e. Fp separates points in TpM .

We will denote by Λ2F∗ the vector bundle over M whose fiber over p is the Banach space of
continuous skew-symmetric bilinear maps on the subspace Fp of T ∗pM .

Definition 6.4.5. Let M be a Banach manifold and F a subbundle of T ∗M in duality with TM .
A smooth section π of Λ2F∗ is called a Poisson tensor on M with respect to F if:

1. for any closed local sections α, β of F, the differential d (π(α, β)) is a local section of F;

2. (Jacobi) for any closed local sections α, β, γ of F,

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) = 0. (6.26)

Remark 6.4.6. 1. The first condition in Definition 6.4.5 is necessary in order to make sence of
equation (6.26) since the Poisson tensor is defined only on local sections of F.

2. Consider a unital subalgebra A of C∞(M) and set F = J1(A ) the first jet of functions in
A . Then equation (6.26) for a Poisson tensor π on M with respect to F is equivalent to the
Jacobi identity for the Poisson bracket defined for f, g ∈ A by {f, g} = π(df, dg).

Definition 6.4.7. A generalized Banach Poisson manifold is a triple (M,F, π) consisting of
a smooth Banach manifold M , a subbundle F of the cotangent bundle T ∗M in duality with TM ,
and a Poisson tensor π on M with respect to F.

Remark 6.4.8. Let us make the link between our definition of generalized Banach Poisson manifold
and related notions in the literature. Consider a unital subalgebra A of C∞(M), set F = J1(A )
the first jet of functions in A , and consider a Poisson bracket on A given by a Poisson tensor:
{f, g} = π(df, dg). Our definition of generalized Banach Poisson manifold differs from the one
given in [152] and the definition of sub Poisson manifold given in [46] by the fact that we do not
assume the existence of Hamiltonian vector fields associated to functions f ∈ A (condition P3 in
Definition 2.1 in [152] and condition P : T [M → TM in [46]). In other words, for f ∈ A , {f, ·} is
a derivation on A ⊂ C∞(M) that may not –with our definition of Poisson manifold– be given by a
smooth vector field on M . However, since the Poisson bracket is given by a smooth Poisson tensor,
{f, ·} is a smooth section of the bundle J1(A )∗ whose fiber over p ∈ M is the dual Banach space
to J1(A )p. Moreover, in order to stay in the Banach context, we suppose that Fp has a structure
of Banach space.

6.4.2 Banach Symplectic manifolds

An important class of finite-dimensional Poisson manifolds is provided by symplectic manifolds.
As we will see below, this is also the case in the Banach setting, i.e. general Banach symplectic
manifolds (not necessarily strong symplectic) are particular examples of generalized Banach Poisson
manifolds. Let us recall the following definitions. The exterior derivative d associates to a n-form
on a Banach manifold M a (n+1)-form on M . In particular, for any 2-form ω on a Banach manifold
M , the exterior derivative of ω is the 3-form dω defined by:

dωp(X,Y, Z) = −ωp([X̃, Ỹ ], Z̃) + ωp([X̃, Z̃], Ỹ )− ωp([Ỹ , Z̃], X̃) +
〈
dp

(
ω(Ỹ , Z̃)

)
, X̃
〉
T∗pM,TpM

−
〈
dp

(
ω(X̃, Z̃)

)
, Ỹ
〉
T∗pM,TpM

+
〈
dp

(
ω(X̃, Ỹ )

)
, Z̃
〉
T∗pM,TpM

,
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where X̃, Ỹ , Z̃ are any smooth extensions of X, Y and Z ∈ TpM around p ∈ M . An expression

of this formula in a chart shows that it does not depend on the extensions X̃, Ỹ , Z̃, but only on
the values of these vector fields at p ∈M , i.e. it defines an tensor (see Proposition 3.2, Chapter V
in [124]). The contraction or interior product iXω of a n-form ω with a vector field X is the
(n− 1)-form defined by

iXω(Y1, · · · , Yn−1) := ω(X,Y1, · · · , Yn−1).

The Lie derivative LX with respect to a vector field X can be defined using the Cartan formula

LX = iXd+ d iX . (6.27)

The Lie derivative, the bracket [X,Y ] of two vector fields X and Y , and the interior product satisfy
the following relation (see Proposition 5.3, Chapter V in [124]):

i[X,Y ] = LX iY − iY LX . (6.28)

Let us recall the definition of a Banach (weak) symplectic manifold.

Definition 6.4.9. A Banach symplectic manifold is a Banach manifold M endowed with a
2-form ω ∈ Γ

(
Λ2T ∗M

)
such that

1. ω is non-degenerate: ω]p : TpM → T ∗pM , X 7→ iXω := ω(X, ·) is injective ∀p ∈M ;

2. ω is closed: dω = 0.

Lemma 6.4.10. Let (M,ω) be a Banach symplectic manifold. Consider α and β two closed local
sections of ω](TM), i.e. dα = dβ = 0, α = ω(Xα, ·) and β = ω(Xβ , ·) for some local vector fields
Xα and Xβ. Then

1. Xα and Xβ are symplectic vector fields: LXαω = 0 = LXβω

2. i[Xα,Xβ ]ω = −d(ω(Xα, Xβ)).

Proof. 1. Using the Cartan formula (6.27), one has LXαω = iXαdω + d iXαω = d iXαω, since
ω is closed. But by definition iXαω = α is closed. Using d ◦ d = 0 (see Supplement 6.4A in
[1] for a proof of this identity in the Banach context), it follows that LXαω = 0. Similarly
LXβω = 0.

2. By relation (6.28), one has

i[Xα,Xβ ]ω = LXαiXβω − iXβLXαω,

where the second term in the RHS vanishes by (1). Using Cartan formula, one gets

i[Xα,Xβ ]ω = d iXαiXβω + iXαd (iXβω) = d iXαiXβω = d (ω(Xβ , Xα)) = −d (ω(Xα, Xβ)) ,

where we have used that iXβω = β is closed.

Proposition 6.4.11. Any Banach symplectic manifold (M,ω) is naturally a generalized Banach
Poisson manifold (M,F, π) with

1. F = ω](TM);

2. π : ω](TM) × ω](TM) → R defined by (α, β) 7→ ω(Xα, Xβ) where Xα and Xβ are uniquely
defined by α = ω(Xα, ·) and β = ω(Xβ , ·).

Proof. 1. By Lemma 6.4.10, for any closed local sections α and β of F, with α = ω(Xα, ·) and
β = ω(Xβ , ·), one has

d (π(α, β)) := d (ω(Xα, Xβ)) = −i[Xα,Xβ ]ω,

hence is a local section of F = ω](TM).

2. Let us show that π satisfies the Jacobi identity (6.26). Consider closed local sections α, β
and γ of F and define the local vector fields Xα, Xβ and Xγ by α = iXαω, β = iXβω and
γ = iXγω. Using Lemma 6.4.10, the differential of ω satisfies

dω(Xα, Xβ , Xγ) = 2 (−ω([Xα, Xβ ], Xγ) + ω([Xα, Xγ ], Xβ)− ω([Xβ , Xγ ], Xα))
= 2 (π (d (π(α, β), γ))) + π (d (π(γ, α)) , β) + π (d (π(β, γ)) , α) .

Since ω is closed, the Jacobi identity (6.26) is satisfied.
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6.4.3 Banach Lie–Poisson spaces

Banach Lie–Poisson spaces were introduced in [156]. Here we extend this notion to an arbitrary
duality pairing.

Definition 6.4.12. Consider a duality pairing 〈·, ·〉g+,g− : g+×g− → K between two Banach spaces.
We will say that g+ is a Banach Lie–Poisson space with respect to g− if g− is a Banach Lie
algebra (g−, [·, ·]g−) which acts continuously on g+ ↪→ g∗− by coadjoint action, i.e.

ad∗αx ∈ g+,

for all x ∈ g+ and α ∈ g−, and ad∗ : g− × g+ → g+ is continuous.

Remark 6.4.13. A Banach Lie–Poisson space g+ with respect to its continuous dual space g∗+ is
a Banach Lie–Poisson space in the sense of Definition 4.1 in [156].

The following Theorem is a generalization of Theorem 4.2 in [156] to the case of an arbitrary
duality pairing between two Banach spaces g+ and g−. See also Corollary 2.11 in [152] for an
analogous statement. We will include the proof for sake of completeness.

Theorem 6.4.14. Consider a duality pairing 〈·, ·〉g+,g− : g+×g− → K between two Banach spaces,
and suppose that g+ is a Banach Lie–Poisson space with respect to g−.

Denote by F the subbundle of T ∗g+ ' g+ × g∗+ whose fiber at x ∈ g+ is given by

Fx = {x} × g− ⊂ {x} × g∗+ ' T ∗xg+.

For α and β any two local sections of F, define a tensor π ∈ Λ2F∗ by:

πx(α, β) :=
〈
x, [α(x), β(x)]g−

〉
g+,g−

.

Then (g+,F, π) is a generalized Banach Poisson manifold, and π takes values in Λ2g+ ⊂ Λ2F∗.
Let A be the unital subalgebra of C∞(g+) consisting of all functions with differentials in g−:

A := {f ∈ C∞(g+) : dxf ∈ g− ⊂ g∗+ for any x ∈ g+}.

Define the bracket of two functions f, h in A by

{f, h}(x) := πx(dfx, dhx) =
〈
x, [dfx, dhx]g−

〉
g+,g−

, (6.29)

where x ∈ g+, and df and dh denote the Fréchet derivatives of f and h respectively. Then {·, ·} :
A × A → A is a Poisson bracket on g+. If h is a smooth function on g+ belonging to A , the
associated Hamiltonian vector field is given by

Xh(x) = −ad∗dhxx ∈ g+.

Proof. Let α and β be any closed local sections of F. Then α and β are functions from g+ to g−,
and we will denote by Txα : Txg+ ' g+ → g− ' Tα(x)g− and similarly Txβ : g+ → g− their
derivatives at x ∈ g+. For any tangent vector X ∈ Txg+ ' g+, one has

dxπ (α, β) (X) =
〈
X, [α(x), β(x)]g−

〉
g+,g−

+
〈
x, [Txα(X), β]g−

〉
g+,g−

+
〈
x, [α, Txβ(X)]g−

〉
g+,g−

=
〈
X, [α(x), β(x)]g−

〉
g+,g−

−
〈
ad∗βx, Txα(X)

〉
g+,g−

+ 〈ad∗αx, Txβ(X)〉g+,g−

Since α and β are closed local sections of F ⊂ T ∗g+, by Poincaré Lemma (see Theorem 4.1 in [123]),
there exist locally real valued smooth functions f and g on g+ such that α = df and β = dg. It
follows that Txα ∈ L (g+;L(g+,R)) ' L2(g+;R) is the second derivative d2

xf of f at x ∈ g+ and is
symmetric (see Proposition 3.3 in [123]). Similarly Txβ = d2

xg is a symmetric bilinear map on g+.
Consequently

−
〈
ad∗βx, Txα(X)

〉
g+,g−

= −
〈
X,Txα(ad∗βx)

〉
g+,g−

and
〈ad∗αx, Txβ(X)〉g+,g−

= 〈X,Txβ(ad∗αx)〉g+,g−
.
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Therefore, for any closed local section α and β of F, and any x ∈ g+,

dxπ (α, β) = [α(x), β(x)]g− − Txα(ad∗βx) + Txβ(ad∗αx) (6.30)

belongs to g−. It follows that dπ (α, β) a local section of F. Let us show that π satisfies the Jacobi
identity (6.26). One has

πx (α, d (π(β, γ))) =
〈
x, [α(x), [β(x), γ(x)]g− ]g−

〉
g+,g−

−
〈
ad∗αx, Txβ(ad∗γx)

〉
g+,g−

+
〈
ad∗αx, Txγ(ad∗βx)]g−

〉
g+,g−

By the Jacobi identity for the Lie bracket [·, ·]g− and by the symmetry of Txα, Txβ and Txγ, the
Jacobi identity for π is satisfied. Moreover, for any local section α of F, πx(α, ·) = ad∗αx belongs to
g+ since g+ is a Banach Lie–Poisson space with respect to g−. Therefore π ∈ Λ2g+ ⊂ Λ2F∗.

The bracket (6.29) of two functions f, g ∈ A takes values in A because, by equation (6.30),
dx{f, g} belongs to g−. By definition {·, ·} is skew-symmetric and satisfies the Leibniz rule. The
Jacobi identity for {·, ·} follows from the Jacobi identity for π. The expression of the hamiltonian
vector field associated to h ∈ A is straightforward.

We give below some examples of Banach Lie–Poisson spaces (see [156], [158], and [27] for more
information on these spaces).

Example 6.4.15. Dual Banach Lie algebras of operators. Let p and q be such that 1 < p ≤ q <∞
and 1

p + 1
q = 1. Then Lp(H )∗ ' Lq(H ) and Lq(H )∗ ' Lp(H ) where the duality pairing is given

by the trace (see example 6.2.8). Moreover

ad∗αx(β) = Tr
(
x[α, β]Lq(H )

)
= Tr (xαβ − xβα) = Tr (xαβ − αxβ) = Tr ([x, α]β) ,

where the first bracket is the Lie bracket of the dual space Lq(H ), and the second is the commutator
of the bounded linear operators x ∈ Lp(H ) and α ∈ Lq(H ). Since Lp(H ) is an ideal of L∞(H ),
[x, α] ∈ Lp(H ), and the pairing given by the trace being non-degenerate, one has

ad∗αx = [x, α] ∈ Lp(H )

for any x ∈ Lp(H ) and any α ∈ Lq(H ). Therefore Lp(H ) is a Banach Lie–Poisson space with
respect to Lq(H ). In the same manner, one has for any x ∈ Lp(H ) and any α ∈ Lq(H )

ad∗xα = [α, x] ∈ Lq(H ),

hence Lq(H ) is a Banach Lie–Poisson space with respect to Lp(H ).

Example 6.4.16. Trace class operators and bounded operators. For the same reasons as in the
previous example, the Banach Lie algebra L1(H ) is a Banach Lie–Poisson space with respect to
L∞(H ) and L∞(H ) is a Banach Lie–Poisson space with respect to L1(H ), the (weak) duality
pairing being given by the trace.

Example 6.4.17. Trace class operators and Hilbert-Schmidt operators. Since the trace is a weak
duality pairing between L1(H ) and L2(H ) ⊂ L∞(H ) (see Example 6.2.6), one can consider the
coadjoint action of L1(H ) on L2(H ) and vice-versa. For any x ∈ L1(H ) and any α ∈ L2(H ),
one has

ad∗xα = −ad∗αx = [α, x] ∈ L1(H ) ∩ L2(H ),

therefore L1(H ) is Banach Lie–Poisson space with respect to L2(H ), and L2(H ) is a Banach
Lie–Poisson space with respect to L1(H ). Using (6.29), one obtains a Poisson bracket on L1(H )
defined on the algebra of functions on L1(H ) with differentials in L2(H ) ⊂ L∞(H ), as well as
a Poisson bracket on L2(H ) defined on those functions on L2(H ) which have their differential in
L1(H ) ⊂ L2(H ).

Example 6.4.18. Banach Lie algebras of upper and lower triangular operators. For 1 < p < ∞,
consider the Banach algebra Lp(H )− of lower triangular operators in Lp(H ) defined by (6.4) and
its complement Lp(H )++ consisting in stricktly upper triangular operators in Lp(H ). One can

identify Lp(H )∗− with Lp(H )∗/ (Lp(H )−)
0

where

(Lp(H )−)
0

:= {α ∈ Lq(H ),Tr (αx) = 0, ∀x ∈ Lp(H )−}
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Recall that Lp(H )∗ ' Lq(H ) where 1
p + 1

q = 1, the duality pairing being given by the trace.

It is easy to see that (Lp(H )−)
0

is isomorphic to the Banach space Lq(H )−− of stricktly lower
triangular operators in Lq(H ). Therefore, by the direct sum decomposition (6.8), one has

Lp(H )∗− ' Lq(H )+.

The coadjoint action of an element α ∈ Lq(H )+ on x ∈ Lp(H )− ⊂ (Lp(H )−)
∗∗

reads

ad∗αx(β) = Tr
(
x[α, β]Lq(H )+

)
= Tr ([x, α]β) ,

where β is an arbitrary element in Lq(H )+. Since Lp(H ) and Lq(H ) are ideals in L∞(H ), one
has

[x, α] ∈ [Lp(H ), Lq(H )] ⊂ Lp(H ) ∩ Lq(H ).

The relation Lp(H )++ ⊂ (Lq(H )+)
0

then implies

ad∗αx(β) = Tr
(
pLp(H )− ([x, α])β

)
, ∀β ∈ Lq(H )+,

where pLp(H )− is the projection onto Lp(H )− with respect to the direct sum decomposition (6.9).
From Lp(H )− ⊂ (Lq(H )−−)0 and from the direct sum decomposition (6.8), it follows that

ad∗αx = pLp(H )− ([x, α]) .

In particular, ad∗αx ∈ Lp(H )− for any x ∈ Lp(H )− and any α ∈ Lq(H )+. Therefore Lp(H )− is
a Banach Lie–Poisson space with respect to Lq(H )+. Similarly one has

ad∗xα = pLq(H )+
([α, x]) ,

for any x ∈ Lp(H )− and any α ∈ Lq(H )+. Therefore Lq(H )+ is a Banach Lie–Poisson space with
respect to Lp(H )−. Note that the existence of the projections pLp(H )− and pLq(H )+

is crucial in
this example. This is the reason why we have excluded the case p = 1 and q =∞.

Example 6.4.19. Iwasawa Banach Lie algebras. For 1 < p < ∞, consider the unitary algebra
up(H ) defined by (6.10), and its complement b+

p (H ) defined by (6.11). For q := p
p−1 , let us denote

by 〈·, ·〉R the continuous bilinear map given by the imaginary part of the trace:

〈·, ·〉R : Lp(H )× Lq(H ) −→ R
(x, α) 7−→ =Tr (xα) .

It is a strong duality pairing between Lp(H ) and Lq(H ) viewed as real Banach spaces. By
Lemma 6.2.15, one has the direct sum decomposition

Lp(H ) = up(H )⊕ b+
p (H ).

Since (up(H ))
0 ' uq(H ) and

(
b+
p (H )

)0 ' b+
q (H ), one has

up(H )∗ ' Lq(H )/ (up(H ))
0 ' Lq(H )/uq(H ) ' b+

q (H )

and similarly
b+
p (H )∗ = uq(H ).

Consider the coadjoint action of an element α ∈ b+
q (H ) on an element x ∈ up(H ) ⊂ up(H )∗∗

ad∗αx(β) = 〈x, [α, β]〉Lp,Lq = =Tr
(
x[α, β]bq

)
= =Tr ([x, α]β) ,

where β is an arbitrary element in b+
q (H ). Since b+

p (H ) ⊂
(
b+
q (H )

)0
and [Lp(H ), Lq(H )] ∈

Lp(H ) ∩ Lq(H ), one has

ad∗αx(β) = =Tr
(
pup,+ ([x, α])β

)
= 〈pup,+ ([x, α]) , β〉Lp,Lq , ∀β ∈ b+

q (H ),

where pup,+ is the projection onto up(H ) defined by (6.14). Therefore

ad∗αx = pup,+ ([x, α]) .

Analogously one has
ad∗xα = pb+

q
([α, x]) ,

for any x ∈ up(H ) and any α ∈ b+
q (H ). Consequently up(H ) and b+

q (H ) are dual Banach
Lie–Poisson spaces. Similarly up(H ) and b−q (H ) are dual Banach Lie–Poisson spaces.
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6.5 Banach Lie bialgebras

In the finite dimensional case, a couple (g, g∗) of Lie algebras is a Lie bialgebra if and only if the
triple of Lie algebras (g⊕ g∗, g, g∗) form a Manin triple. In that case, (g∗, g) is also a Lie bialgebra.
The symmetry of the situation comes from the fact that g∗∗ = g for finite dimensional spaces.
In Section 6.5.1, we introduce the notion of Banach Lie bialgebra with respect to an arbitrary
duality pairing. In Section 6.5.2, we show that a Banach Lie bialgebra g+ with respect to a Banach
Lie algebra g− gives rise to a Manin triple (g+ ⊕ g−, g+, g−) if and only if g+ is also a Banach
Lie–Poisson space with respect to g− (see Theorem 6.5.9).

6.5.1 Definition of Banach Lie bialgebras

Let us introduce the notion of Banach Lie bialgebras. We refer the reader to [136] for the corre-
sponding notion in the finite-dimensional case.

Definition 6.5.1. Let g+ be a Banach Lie algebra over the field K ∈ {R,C}, and consider a duality
pairing 〈·, ·〉g+,g− between g+ and a Banach space g−. One says that g+ is a Banach Lie bialgebra
with respect to g− if

1. g+ acts continuously by coadjoint action on g− ⊂ g∗+ ;

2. there is given a Banach Lie algebra structure on g− such that the dual map of the Lie bracket
[·, ·]g− : g−×g− → g− restricts to a 1-cocycle θ : g+ → Λ2g∗− with respect to the adjoint action

ad(2,0) of g+ on Λ2g∗− (recall that g+ can be viewed as a subspace of g∗−).

Remark 6.5.2. A finite-dimensional Lie bialgebra (g, g∗) (see Definition 1.7 in [136]) is a Banach
Lie bialgebra g with respect to its dual space g∗, where the duality pairing is the natural pairing
between g and g∗.

Remark 6.5.3. 1. The first condition in Definition 6.5.1 means that g− is preserved by the
coadjoint action of g+, i.e

ad∗xg− ⊂ g− ⊂ g∗+

for any x ∈ g+, and that the action map

g+ × g− → g−
(x, α) 7→ ad∗xα

is continuous. This condition is necessary in order to define the action of g+ on the space
Λ2g∗− of continuous skew-symmetric maps on g− by (6.19).

2. The map θ is a 1-cocycle on g+ if it satisfies:

θ ([x, y]) = ad(2,0)
x (θ(y))− ad(2,0)

y (θ(x))

where x, y ∈ g+. The second condition in Definition 6.5.1 means therefore that (see Sec-
tion 6.3.5)

θ ([x, y]) (α, β) = θ(y)(ad∗xα, β) + θ(y)(α, ad∗xβ)− θ(x)(ad∗yα, β)− θ(x)(α, ad∗yβ), (6.31)

for any x, y in g+ and any α, β in g−. In a more explicite form, the cocycle condition reads

〈[x, y]g+ , [α, β]g−〉g+,g− = 〈y, [ad∗xα, β]g−〉g+,g− + 〈y, [α, ad∗xβ]g−〉g+,g−

−〈x, [ad∗yα, β]g−〉g+,g− − 〈x, [α, ad∗yβ]g−〉g+,g− ,
(6.32)

for any x, y in g+ and any α, β in g−.

3. Let us remark that we do not assume that the cocycle θ takes values in the subspace Λ2g+ of
Λ2g∗−. This is related to the generalized notion of Poisson manifolds given in Definition 6.4.7.

Let us first give examples of Banach Lie algebras which are Banach Lie–Poisson spaces (see
Section 6.4.3) but not Banach Lie bialgebras.
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Example 6.5.4. For 1 ≤ p ≤ ∞, consider g+ := Lp(H ) and its dual space g− := Lq(H ), the
duality pairing 〈·, ·〉g+,g− being given by the trace. By example 6.4.15, Lp(H ) is a Banach Lie–
Poisson space with respect to Lq(H ). For x ∈ Lp(H ) and α ∈ Lq(H ), one has ad∗αx = [x, α] ∈
Lp(H ) and ad∗xα = [α, x] ∈ Lq(H ). Therefore, for any α, β ∈ Lq(H ) and x, y ∈ Lp(H ), one has

〈y, [ad∗xα, β]g−〉g+,g− + 〈y, [α, ad∗xβ]g−〉g+,g− − 〈x, [ad∗yα, β]g−〉g+,g− − 〈x, [α, ad∗yβ]g−〉g+,g−

= 2 〈ad∗α[x, y], β〉g+,g− .
(6.33)

This implies that Lp(H ) is not a Banach Lie bialgebra with respect to Lq(H ) (compare with the
cocycle condition (6.32)).

Example 6.5.5. By example 6.4.16, L1(H ) is a Banach Lie–Poisson space with respect to L∞(H ).
A computation analoguous as in previous example shows that L1(H ) is not a Banach Lie bialgebra
with respect to L∞(H ).

Example 6.5.6. By example 6.4.17, L1(H ) is a Banach Lie–Poisson space with respect to L2(H ).
It is easy to see that equation (6.33) is satisfied for any α, β ∈ L2(H ) and x, y ∈ L1(H ), hence
L1(H ) is not a Banach Lie bialgebra with respect to L2(H ).

Let us now give examples of Banach Lie–Poisson spaces which are also Banach Lie bialgebras.
In Example 6.5.7 and Example 6.5.8, the cocycle condition can be checked by hand using the
expression of the coadjoint actions.

Example 6.5.7. Banach Lie bialgebra of upper and lower triangular operators. For 1 < p < ∞,
consider the Banach algebra Lp(H )− of lower triangular operators in Lp(H ) defined by (6.4) and
its dual space Lq(H )+, where 1

p + 1
q = 1 and where the duality pairing is given by the trace. Then

Lp(H )− is a Banach Lie bialgebra with respect to Lq(H )+.

Example 6.5.8. Iwasawa Banach Lie bialgebras. Let p and q be such that 1 < p <∞, 1 < q <∞
and 1

p+ 1
q = 1. Consider the Banach Lie algebra up(H ) and its dual Banach space b+

q (H ), endowed

with its natural Banach Lie algebra structure, which makes up(H ) into a Banach Lie–Poisson space
(see example 6.4.19). In this case the duality pairing is given by the imaginary part of the trace.
Then up(H ) is a Banach Lie bialgebra with respect to b+

q (H ).

6.5.2 Banach Lie bialgebras versus Manin triples

In the finite-dimensional case, the notion of Lie bialgebra is equivalent to the notion of Manin triple
(see [66] or Section 1.6 in [115]). In the infinite-dimensional case the notion of Banach Lie–Poisson
space comes into play.

Theorem 6.5.9. Consider two Banach Lie algebras
(
g+, [·, ·]g+

)
and

(
g−, [·, ·]g−

)
in duality. De-

note by g the Banach space g = g+⊕g− with norm ‖ ·‖g = ‖ ·‖g+
+‖ ·‖g− . The following assertions

are equivalent.

(1) g+ is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g− with cocycle
θ+ := [·, ·]∗g− : g+ → Λ2g∗−;

(2) (g, g+, g−) is a Manin triple for the natural non-degenerate symmetric bilinear map

〈·, ·〉g : g× g → K
(x, α)× (y, β) 7→ 〈x, β〉g+,g− + 〈y, α〉g+,g−

with bracket given by

[·, ·]g : g× g → g = g+ ⊕ g−
(x, α)× (y, β) 7→

(
[x, y]g+ + ad∗βx− ad∗αy, [α, β]g− + ad∗yα− ad∗xβ

)
.

(6.34)

(3) g− is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g+ with cocycle
θ− := [·, ·]∗g+

: g− → Λ2g∗+;

Proof. (2)⇒ (1) follows from Theorem 6.3.3. Let us prove (1)⇒ (2).
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• Since g+ is a Banach Lie–Poisson space with respect to g−, g− is a Banach Lie algebra
(g−, [·, ·]g−) such that the coadjoint action of g− on g∗− preserves the subspace g+ ⊂ g∗− and
the map

ad∗g− : g− × g+ → g+

(α, x) 7→ ad∗αx,

is continuous. Since g+ is a Banach Lie bialgebra, the coadjoint action of g+ on g∗+ preserves
the subspace g− ⊂ g∗+ and the map

ad∗g+
: g+ × g− → g−

(x, α) 7→ ad∗xα,

is continuous. Therefore bracket (6.34) is continuous on g = g+ ⊕ g−.

• Let us show that the symmetric non-degenerate pairing 〈·, ·〉g is invariant with respect to the
bracket [·, ·]g. For this, we will use the fact that g+ and g− are isotropic subspaces for 〈·, ·〉g.
For x ∈ g+ and α ∈ g−, one has

[x, α]g = (ad∗αx,−ad∗xα). (6.35)

Therefore, for any x ∈ g+ and any α, β ∈ g−, one has

〈[x, α]g, β〉g = 〈ad∗αx, β〉g = 〈x, adαβ〉g = 〈x, [α, β]g〉g
= −〈x, [β, α]g〉g = −〈ad∗βx, α〉g = 〈[β, x]g, α〉g.

Similarly, for any x, y ∈ g+ and any β ∈ g−, one has

〈[x, y]g, β〉g = 〈y, ad∗xβ〉g = 〈y, [β, x]g〉g = −〈ad∗yβ, x〉g = 〈[y, β]g, x〉g.

By linearity, it follows that 〈·, ·〉g is invariant with respect to [·, ·]g.

• It remains to verify that [·, ·]g satisfies the Jacobi identity. Let us first show that for any
x, y ∈ g+ and any α ∈ g−,

[α, [x, y]] = [[α, x], y] + [x, [α, y]].

The dual map [·, ·]∗g− : g∗− → Λ2g∗− of the bilinear map [·, ·]g− : Λ2g− → g− is

[·, ·]∗g−(F ) = F ([·, ·]g−).

In particular, its restriction θ+ : g+ → Λ2g∗− to g+ ⊂ g∗− reads

θ(x)(α, β) = 〈x, [α, β]g−〉 = 〈[x, α]g, β〉g = 〈ad∗αx, β〉g.

Since g+ is a Banach Lie–Poisson space, the cocycle θ+ = [·, ·]∗g− restricted to g+ ⊂ g∗− takes

values in Λ2g+. The cocycle condition (6.31) reads

〈[x, y], [α, β]〉g+,g− = +〈y, [ad∗xα, β]〉g+,g− + 〈y, [α, ad∗xβ]〉g+,g−

−〈x, [ad∗yα, β]〉g+,g− − 〈x, [α, ad∗yβ]〉g+,g− ,
(6.36)

where x, y ∈ g+ and α, β ∈ g−. Using the definition of the bracket 〈·, ·〉g and its invariance
with respect to [·, ·]g, this is equivalent to

−〈[α, [x, y]], β〉g = −〈[ad∗xα, y], β〉g − 〈[α, y], ad∗xβ〉g
+〈[ad∗yα, x], β〉g + 〈[α, x], ad∗yβ〉g.

Using the fact that g+ and g− are isotropic subspaces for 〈·, ·〉g and relation (6.35), one gets

−〈[α, [x, y]], β〉g = −〈[ad∗xα, y], β〉g + 〈ad∗αy, ad∗xβ〉g+,g−

+〈[ad∗yα, x], β〉g − 〈ad∗αx, ad∗yβ〉g+,g− .

Using the definition of the coadjoint actions, one obtains

−〈[α, [x, y]], β〉g = −〈[ad∗xα, y], β〉g + 〈[x, ad∗αy], β〉g+,g−

+〈[ad∗yα, x], β〉g − 〈[y, ad∗αx], β〉g+,g− ,
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or, in a more compact manner,

−〈[α, [x, y]], β〉g = 〈[ad∗αx− ad∗xα, y], β〉g + 〈[x, ad∗αy − ad∗yα], β〉g.

Using [x, α]g = ad∗αx− ad∗xα, and [y, α]g = ad∗αy − ad∗yα, one eventually gets

− 〈[α, [x, y]], β〉g = −〈[[α, x], y], β〉g − 〈[x, [α, y]], β〉g, (6.37)

for any x, y ∈ g+ and any α, β ∈ g−. Since 〈·, ·〉g restricts to the duality pairing between g+

and g−, it follows that

pg+
[α, [x, y]] = pg+

[[α, x], y] + pg+
[x, [α, y]], (6.38)

for any x, y ∈ g+ and any α ∈ g−. On the other hand, considering the projection on g− one
has

pg− [α, [x, y]] = ad∗[x,y]α,

as well as
pg− [[α, x], y] = ad∗yad∗xα,

and
pg− [x, [α, y]] = −ad∗xad∗yα.

Since the bracket in g+ satisfied Jacobi identity, it follows that

〈α, [[x, y], z]〉g+,g− = 〈α, [x, [y, z]]〉g+,g− − 〈α, [y, [x, z]]〉g+,g− ,

therefore
pg− [α, [x, y]] = pg− [[α, x], y] + pg− [x, [α, y]], (6.39)

for any x, y ∈ g+ and any α ∈ g−. Combining (6.38) and (6.39), it follows that

[α, [x, y]] = [[α, x], y] + [x, [α, y]],

for any x, y ∈ g+ and any α ∈ g−.

• It remains to show that for any x ∈ g+ and any α, β ∈ g−,

[x, [α, β]] = [[x, α], β] + [α, [x, β]].

Since the bracket in g− satisfies Jacobi identity, similarly to (6.39) remplacing g− by g+, one
has

pg+
[x, [α, β]] = pg+

[[x, α], β] + pg+
[α, [x, β]]. (6.40)

Let us show that
pg− [x, [α, β]] = pg− [[x, α], β] + pg− [α, [x, β]],

for any x ∈ g+ and any α, β ∈ g−. For any x, y ∈ g+ and any α, β ∈ g−, one has

〈y, pg− [x, [α, β]]〉g+,g− = −〈y, ad∗x[α, β]〉g+,g− = −〈[x, y], [α, β]〉g+,g− = 〈[α, [x, y]], β〉g.

On the other hand, for any x, y ∈ g+ and any α, β ∈ g−, one has

〈y, pg− [[x, α], β]〉g+,g− = 〈y, [[x, α], β]〉g = 〈[[α, x], y], β〉g,

and
〈y, pg− [α, [x, β]]〉g+,g− = 〈y, [α, [x, β]]〉g = 〈[x, [α, y]], β〉g.

By (6.37), it follows that

pg− [x, [α, β]] = pg− [[x, α], β] + pg− [α, [x, β]]. (6.41)

Combining (6.40) and (6.41), it follows that

[x, [α, β]] = [[x, α], β] + [α, [x, β]],

for any x ∈ g+ and any α, β ∈ g−. This ends the proof of (1) ⇒ (2). The equivalence with
(3) follows by symmetry of (2) with respect to exchange of g+ into g−.
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Remark 6.5.10. It is noteworthy that the cocycle condition needs only to be verified for one of
the Banach Lie algebra g+ or g−. The following Corollary is therefore a direct consequence of the
proof of Theorem 6.5.9.

Corollary 6.5.11. Consider two Banach Lie algebras
(
g+, [·, ·]g+

)
and

(
g−, [·, ·]g−

)
in duality. If

g+ is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g−, then g− is a
Banach Lie–Poisson space and a Banach Lie bialgebra with respect to g+.

Example 6.5.12. By Proposition 6.2.16, the triple
(
Lp(H ), up(H ), b+

p (H )
)

is a Banach Manin
triple for 1 < p ≤ 2. Under this condition on p, it follows from Theorem 6.5.9 that up(H ) is a
Banach Lie–Poisson space and a Banach Lie bialgebra with respect to b+

p (H ), and b+
p (H ) is a

Banach Lie–Poisson space and a Banach Lie bialgebra with respect to up(H ).

Example 6.5.13. For 1 < p <∞, by Example 6.4.19, up(H ) is a Banach Lie–Poisson space with
respect to b+

q (H ), where 1
p + 1

q = 1. By Example 6.5.8, up(H ) is a Banach Lie bialgebra with

respect to b+
q (H ). We deduce from Theorem 6.5.9 that

(
up(H )⊕ b+

q (H ), up(H ), b+
q (H )

)
form

a Banach Manin triple, and that b+
q (H ) is a Banach Lie bialgebra with respect to up(H ).

Example 6.5.14. From Example 6.4.18, we know that Lp(H )− is a Banach Lie–Poisson space with
respect to Lq(H )+. By Example 6.5.7, Lp(H )− is a Banach Lie bialgebra with respect to Lq(H )+.
By Theorem 6.5.9, the triple of Banach Lie algebras (Lp(H )− ⊕ Lq(H )+,Lp(H )−, Lq(H )+) is
a Banach Manin triple. By corollary 6.5.11, Lq(H )+ is a Banach Lie bialgebra with respect to
Lp(H )−.

6.6 Banach Poisson–Lie groups

This Section is devoted to the notion of Banach Poisson–Lie groups in the general framework of
generalized Banach Poisson manifolds (see Section 6.4.1). We start in Section 6.6.1 with the defini-
tion, and show that the compatibility condition between the Poisson tensor and the multiplication
on the group gives rise to a 1-cocycle on the group. In Section 6.6.2, we use the triviality of the
tangent and cotangent bundles in order to write the Jacobi identity for a Poisson tensor on a group
at the level of the Lie algebra (Theorem 6.6.8). This allows us to give examples of Banach Poisson–
Lie groups in Section 6.6.3. Finally, in Section 6.6.4, we prove that the tangent space at the unit
element e of a Banach Poisson–Lie group (G,F, π) admits a natural Banach Lie bialgebra structure
with respect to Fe, and, in the case when the Poisson tensor π is a section of Λ2TG, is also a Banach
Lie–Poisson space. The integrability problem of a Banach Lie bialgebra into a Banach Poisson–Lie
group remains open.

6.6.1 Definition of Banach Poisson–Lie groups

In order to be able to define the notion of Banach Poisson–Lie groups, we need to recall the con-
struction of a Poisson structure on the product of two Poisson manifolds. The following Proposition
is straightforward.

Proposition 6.6.1. Let (M1,F1, π1) and (M2,F2, π2) be two generalized Banach Poisson mani-
folds. Then the product M1 ×M2 carries a natural generalized Banach Poisson manifold structure
(M1 ×M2,F, π) where

1. M1 ×M2 carries the product Banach manifold structure, in particular the tangent bundle of
M1 ×M2 is isomorphic to the direct sum TM1 ⊕ TM2 of the vector bundles TM1 and TM2

and the cotangent bundle of M1 ×M2 is isomorphic to T ∗M1 ⊕ T ∗M2,

2. F is the subbundle of T ∗M1 ⊕ T ∗M2 defined as

F(p,q) = (F1)p ⊕ (F2)q,

3. π is defined on F by

π(α1 + α2, β1 + β2) = π1(α1, β1) + π2(α2, β2), α1, β1 ∈ F1, α2, β2 ∈ F2.
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Recall the following definition.

Definition 6.6.2. Let (M1,F1, π1) and (M2,F2, π2) be two generalized Banach Poisson manifolds
and F : M1 →M2 a smooth map. One says that F is a Poisson map at p ∈M1 if

1. the tangent map TpF : TpM1 → TF (p)M2 satisfies TpF
∗(F2)F (p) ⊂ (F1)p and TpF

∗ : F2 → F1

is continuous ;

2. (π1)p (α ◦ TpF, β ◦ TpF ) = (π2)F (p) (α, β) for any α, β ∈ (F2)F (p).

One says that F is a Poisson map if it is a Poisson map at any p ∈M1.

Definition 6.6.3. A Banach Poisson–Lie group G is a Banach Lie group equipped with a
generalized Banach Poisson manifold structure such that the group multiplication m : G × G → G
is a Poisson map, where G×G is endowed with the product Poisson structure.

The compatibility condition between the multiplication in the group and the Poisson tensor can
be checked at the level of the Lie algebra. To see this, let us introduce some notation. Denote by
Lg : G→ G and Rg : G→ G the left and right translations by g ∈ G. By abuse of notation, we will
also denote by Lg and Rg the induced actions of g ∈ G on the tangent bundle TG. The induced
actions on the cotangent bundle T ∗G will be denoted by L∗g and R∗g, and on the dual T ∗∗G of the
cotangent bundle by L∗∗g and R∗∗g . In particular, for g ∈ G and α ∈ T ∗uG, L∗gα ∈ T ∗g−1uG is defined

by L∗gα(X) := α(LgX). The smooth adjoint action of G on its Lie algebra g will be denoted by
Adg = Lg ◦R−1

g , the induced smooth coadjoint action of G on the dual space g∗ by Ad∗g = L∗g ◦R∗g−1 ,

and the induced smooth action of G on the bidual space g∗∗ by Ad∗∗g = L∗∗g ◦ R∗∗g−1 . Suppose that
the restriction of the coadjoint action of G to an invariant subspace g− ⊂ g∗ is continuous for the
topology of g−. Then one can define the coadjoint action Ad∗∗(g) of g ∈ G on Λ2g∗− by

Ad∗∗(g)t := t(Ad(g)∗·,Ad(g)∗·), for t ∈ Λ2g∗−.

By abuse of notation, we will also denote by L∗∗g the action of g ∈ G on a section π of Λ2T ∗∗G:

L∗∗g πu(α, β) = πu(L∗gα,L
∗
gβ), with α, β ∈ T ∗guG.

Similarly, one defines

R∗∗u πg(α, β) = πg(R
∗
uα,R

∗
uβ), with α, β ∈ T ∗guG.

Proposition 6.6.4. A Banach Lie group G equipped with a generalized Banach Poisson structure
(G,F, π) is a Banach Poisson–Lie group if and only if

1. G acts continuously on F by left and right translations ;

2. the Poisson tensor π is a section of Λ2F∗ satisfying

πgu = L∗∗g πu +R∗∗u πg, ∀g, u ∈ G. (6.42)

Proof. The tangent map T(g,u)m : TgG⊕TuG→ TguG to the multiplication m in G maps (Xg, Xu)
to TgRu(Xg) + TuLg(Xu). The first condition in definition 6.6.2 is equivalent to the fact that for
any α ∈ Fgu, the covector α ◦ TuLg belongs to Fu ⊂ T ∗uG and the covector α ◦ TgRu belongs to
Fg ⊂ T ∗gG, and the maps TuL

∗
g : Fgu → Fu and TgR

∗
u : Fgu → Fg are continuous. This is in turn

equivalent to the fact that G acts continuously on F by left and right translations.
The second condition in definition 6.6.2 reads

πG×G
(
α ◦ T(g,u)m,β ◦ T(g,u)m

)
= πgu(α, β),

for any α and β in Fgu. By definition of the Poisson structure on the product manifold G×G, one
has:

πG×G
(
α ◦ T(g,u)m,β ◦ T(g,u)m

)
= πu (α ◦ TuLg, β ◦ TuLg) + πg (α ◦ TgRu, β ◦ TgRu) ,

hence m is a Poisson map if and only if (6.42) is satisfied.
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Corollary 6.6.5. The Poisson tensor π of a Banach Poisson–Lie group vanishes at the unit ele-
ment.

Proof. By equation (6.42), one has πe = πe + πe, hence πe = 0.

Proposition 6.6.6. Let (G,F, π) be a Banach Poisson–Lie group. Then G acts continuously by
coadjoint action on the fiber Fe ⊂ T ∗eG over the unit element e ∈ G.

Proof. Suppose that (G,F, π) is a Banach Poisson–Lie group. The invariance of F by left translations
implies that for any α ∈ Fe and any g ∈ G, the covector L∗gα := α◦Tg−1Lg belongs to Fg−1 ⊂ T ∗g−1G.

The invariance of F by right translations then implies that the covector Ad∗(g)α := R∗g−1 ◦ L∗gα =
α◦Tg−1Lg◦TeRg−1 belongs to Fe ⊂ T ∗eG. Hence Fe is stable by the coadjoint action of G. Moreover,
by Proposition 6.6.4, G acts continuously on F by left and right translations. It follows that the
coadjoint action of G on Fe ⊂ T ∗eG is continuous.

In next Proposition, we introduce a 1-cocycle naturally associated to a generalized Banach
Poisson–Lie group (see Theorem 1.2 in [136] for the finite-dimensional case).

Proposition 6.6.7. A Banach Lie group G equipped with a generalized Banach Poisson structure
(G,F, π) is a Banach Poisson–Lie group if and only if

1. G acts continuously on F by left and right translations ;

2. the map Πr : G → Λ2F∗e defined by g 7→ Πr(g) := R∗∗g−1πg is a 1-cocycle on G with respect to

the coadjoint action Ad∗∗ of G on Λ2F∗e, i.e. for any g, u ∈ G,

Πr(gu) = Ad(g)∗∗Πr(u) + Πr(g). (6.43)

Proof. Using the relation R∗∗(gu)−1 = R∗∗g−1 ◦R∗∗u−1 , the condition πgu = L∗∗g πu+R∗∗u πg for all g, u ∈ G
is equivalent to

R∗∗(gu)−1πgu = R∗∗g−1 ◦R∗∗u−1 ◦ L∗∗g πu +R∗∗g−1 ◦R∗∗u−1 ◦R∗∗u πg.

Since R∗∗u−1 and L∗∗g commutes, the previous equality simplifies to give

Πr(gu) = R∗∗g−1 ◦ L∗∗g Πr(u) + Πr(g) = Ad(g)∗∗Πr(u) + Πr(g),

which is the cocycle condition (see Section 6.3.5).

6.6.2 Jacobi tensor and local sections

The following Lemma will be used in Section 6.6.3 and Section 7.2.3 in order to check the Jacobi
identity for Poisson–Lie groups in the Banach setting.

Lemma 6.6.8. Let G be a Banach Lie group with Lie algebra g, F a subbundle of T ∗G in duality
with TG, invariant by left and right translations by elements in G, and π a smooth section of Λ2F∗.
Then

1. Any closed local section α of F in a neighborhood Vg of g ∈ G is of the form α(u) = R∗u−1α0(u),
where α0 : Vg → Fe ⊂ g∗ satisfies:

〈α0(g), [X0, Y0]〉 = 〈Tgα0(RgY0), X0〉 − 〈Tgα0(RgX0), Y0〉, (6.44)

with Tgα0 : Tg G→ g∗ the tangent map of α0 at g ∈ Vg, and X0, Y0 any elements in g.

2. Let Πr : G→ Λ2F∗e be defined by Πr(g) := R∗∗g−1π(g). Then for any closed local sections α, β

of F around g ∈ G, the differential d (π(α, β)) at g reads

d (π(α, β)) (Xg) = TgΠr(Xg)(α0(g), β0(g))+Πr(g)(Tgα0(Xg), β0(g))+Πr(g)(α0(g), Tgβ0(Xg)),
(6.45)

where Xg ∈ Tg G, TgΠr : Tg G → Λ2F∗e is the tangent map of Πr at g, α = R∗g−1α0 and
β = R∗g−1β0.
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3. Suppose that iα0
Πr(g) ∈ g ⊂ F∗ for any α = R∗gα0 ∈ F. Then for any closed local sections α,

β, γ of F,

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) =
TgΠr(Rgiα0

Πr(g))(β0(g), γ0(g)) + 〈α0(g), [iγ0(g)Πr(g), iβ0(g)Πr(g)]〉
+TgΠr(Rgiβ0

Πr(g))(γ0(g), α0(g)) + 〈β0(g), [iα0(g)Πr(g), iγ0(g)Πr(g)]〉
+TgΠr(Rgiγ0

Πr(g))(α0(g), β0(g)) + 〈γ0(g), [iβ0(g)Πr(g), iα0(g)Πr(g)]〉

(6.46)

where α = R∗g−1α0, β = R∗g1−β0, and γ = R∗g−1γ0. In particular the left hand side of equation

(6.46) defines a tensor.

Proof. 1. Since α is closed, one has:

dα(X,Y ) = LXα(Y )−LY α(X)− α([X,Y ]) = 0

for any local vector fieldsX and Y around g ∈ Vg. But since dα is a tensor (see Proposition 3.2,
Chapter V in [124]), the previous identity depends only on the values of X and Y at g. In
other words, α is closed if and only if the previous identity is satisfied for any right invariant
vector fields X and Y . Set Xg = RgX0 and Yg = RgY0 for X0, Y0 ∈ g. One has

dα(X,Y ) = LXα0(g)(Rg−1Yg)−LY α0(g)(Rg−1Xg)− α0(g)(Rg−1 [X,Y ]g)
= LXα0(g)(Y0)−LY α0(g)(X0) + α0(g)([X0, Y0]g)

Denote by f : Vg → R the function defined by f(g) = α0(g)(Y0) = 〈α0(g), Y0〉, where the
bracket denotes the natural pairing between g∗ and g. Then

dfg(Xg) = 〈Tgα0(RgX0), Y0〉.

It follows that

dα(X,Y ) = 〈Tgα0(RgX0), Y0〉 − 〈Tgα0(RgY0), X0〉+ 〈α0(g), [X0, Y0]g〉.

Therefore dα(X,Y ) = 0 for any X and Y if and only if

〈α0(g), [X0, Y0]g〉 = 〈Tgα0(RgY0), X0〉 − 〈Tgα0(RgX0), Y0〉,

for any X0 and Y0 in g.

2. This is a straighforward application of the chain rule.

3. In the case where iα0
Πr(g) belongs to g, one has the following expression of the differential

of π:

d (π(β, γ)) (Xg) = TgΠr(Xg)(β0(g), γ0(g))−〈Tgβ0(Xg), iγ0(g)Πr(g)〉+〈Tgγ0(Xg), iβ0(g)Πr(g)〉,

where 〈·, ·〉 denotes the duality pairing between g∗ and g. Therefore

π(α, d (π(β, γ)) = Πr(g)
(
α0(g), R∗gd (π(β, γ))

)
= d (π(β, γ)) (Rgiα0(g)Πr(g))

= TgΠr(Rgiα0(g)Πr(g))(β0(g), γ0(g))
−〈Tgβ0(Rgiα0(g)Πr(g)), iγ0(g)Πr(g)〉
+〈Tgγ0(Rgiα0(g)Πr(g)), iβ0(g)Πr(g)〉.

It follows that

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β)))
= −〈Tgβ0(Rgiα0(g)Πr(g)), iγ0(g)Πr(g)〉+ 〈Tgγ0(Rgiα0(g)Πr(g)), iβ0(g)Πr(g)〉
−〈Tgγ0(Rgiβ0(g)Πr(g)), iα0(g)Πr(g)〉+ 〈Tgα0(Rgiβ0(g)Πr(g)), iγ0(g)Πr(g)〉
−〈Tgα0(Rgiγ0(g)Πr(g)), iβ0(g)Πr(g)〉+ 〈Tgβ0(Rgiγ0(g)Πr(g)), iα0(g)Πr(g)〉
+TgΠr(Rgiα0

Πr(g)) (β0(g), γ0(g)) + TgΠr(Rgiβ0
Πr(g)) (γ0(g), α0(g))

+TgΠr(Rgiγ0Πr(g)) (α0(g), β0(g))

Using (6.44), the previous equation simplifies to (6.46).
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6.6.3 Example of Banach Poisson–Lie groups Up(H ) and B±p (H ) for 1 <
p ≤ 2

Let us give some examples of Banach Poisson–Lie groups. We will need to introduce classical
Banach Lie groups of operators.

General linear group GL(H ).

The general linear group of H , denoted by GL(H ) is the group consisting of bounded operators A
on H which admit a bounded inverse, i.e. for which there exists a bounded operator A−1 satisfying
AA−1 = A−1A = Id, where Id : H →H denotes the identity operator x 7→ x.

General linear group GLp(H ).

The Banach Lie algebra Lp(H ) is the Banach Lie algebra of the following Banach Lie group:

GLp(H ) := GL(H ) ∩ {Id +A : A ∈ Lp(H )}. (6.47)

Unitary group U(H ).

The unitary group of H is defined as the subgroup of GL(H ) consisting of operators A such that
A−1 = A∗ and is denoted by U(H ).

Unitary groups Up(H ).

The Banach Lie algebra up(H ) defined by (6.10) is the Banach Lie algebra of the following Banach
Lie group

Up(H ) := U(H ) ∩ {Id +A : A ∈ Lp(H )}. (6.48)

Triangular groups B±p (H ).

To the Banach Lie algebra b±p (H ) defined by (6.11) is associated the following Banach Lie group:

B±p (H ) := {α ∈ GL(H ) ∩
(
Id + b±p (H )

)
: α−1 ∈ Id + b±p (H ) and 〈n|α|n〉 ∈ R+∗, for n ∈ Z},

where R+∗ is the group of strictly positive real numbers.
Let us now give some examples of Banach Poisson–Lie groups. Similar results will be proved in

the more involved restricted case in Section 7.2.3. Recall that the orthogonal projections pup,+ and
pup,− are defined by (6.14) and (6.15) respectively.

Proposition 6.6.9. For 1 < p ≤ 2, consider the Banach Lie group B±p (H ) with Banach Lie
algebra b±p (H ), and the duality pairing 〈·, ·〉R : b±p (H )× up(H )→ R given by the imaginary part
of the trace (6.16). Consider

1. Bb := R∗b−1up(H ) ⊂ T ∗b B±p (H ), b ∈ B±p (H ).

2. Π
B±p
r : B±p (H )→ Λ2up(H )∗ defined by

Π
B±p
r (b)(x1, x2) := =Tr pb±p (b−1x1b)

[
pup,±(b−1x2b)

]
, (6.49)

where b ∈ B±p (H ) and x1, x2 ∈ up(H ).

3. πB±p : B±p → Λ2T B±p (H ) given by πB±p (b) := R∗∗b Π
B±p
r (b).

Then (B±p (H ),B, πB±p ) is a Banach Poisson–Lie group.

Proof. The expression of the Poisson tensor makes sense because Lp(H ) ⊂ Lq(H ) for 1 < p ≤ 2
with 1

p + 1
q = 1. The Jacobi identity is a consequence of equation (6.46). The compatibility of the

Poisson tensor and the multiplication of the group can be checked using equation (6.43).

Similarly one has:
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Proposition 6.6.10. For 1 < p ≤ 2, consider the Banach Lie group Up(H ) with Banach Lie
algebra up(H ) and the duality pairing 〈·, ·〉R : b±p (H ) × up(H ) → R given by the imaginary part
of the trace (6.16). Consider

1. Uu := R∗u−1b±p (H ) ⊂ T ∗u Up(H ), u ∈ Up(H ),

2. Π
U±p
r : Up(H )→ Λ2b±p (H )∗ defined by

Π
U±p
r (u)(b1, b2) := =Tr pup,±(u−1b1u)

[
pb±p (u−1b2u)

]
, (6.50)

where u ∈ Up(H ) and b1, b2 ∈ b±p (H ).

3. πU±p : Up(H )→ Λ2T Up(H ) given by πU±p (g) := R∗∗g Π
U±p
r (g).

Then (Up(H ),U, πU±p ) is a Banach Poisson–Lie group.

6.6.4 The tangent Banach Lie bialgebra of a Banach Poisson–Lie group

In this section, we show that the Banach Lie algebra g of any Banach Poisson–Lie group (G,F, π)
carries an natural Banach Lie bialgebra structure with respect to Fe (see Theorem 6.6.11 below).
Moreover, when the Poisson tensor is a section of Λ2TG ⊂ Λ2T ∗∗G, then g is a Banach Lie–Poisson
space with respect to Fe (see Theorem 6.6.13).

Theorem 6.6.11. Let (G+,F, π) be a Banach Poisson–Lie group. Then g+ is a Banach Lie
bialgebra with respect to g−. The Lie bracket in g− is given by

[α1, β1]g− := TeΠr(·)(α1, β1) ∈ g− ⊂ g∗+, α1, β1 ∈ g− ⊂ g∗+, (6.51)

where Πr := R∗∗g−1π : G+ → Λ2g∗−, and TeΠr : g+ → Λ2g∗− denotes the differential of Πr at the unit
element e ∈ G+.

Proof. • Let us show that the dual map TeΠ
∗
r :

(
Λ2g∗−

)∗ → g∗+ defines a skew-symmetric
bilinear map [·, ·]g− on g− with values in g− ⊂ g∗+. Let α and β be any local sections of F in
a neighboorhood Ve of the unit element e ∈ G+. Define α0 : Ve → g− and β0 : Ve → g− by
α0(u) := R∗uα(u) and β0(u) := R∗uβ(u). It follows from equation (6.45), that for any X ∈ g+,

de (π(α, β)) (X) = TeΠr(X)(α0(e), β0(e)) + Πr(e)(Teα0(X), β0(e)) + Πr(e)(α0(g), Tgβ0(Xg)).

By Corollary 6.6.5, Πr(e) = 0. Hence

de (π(α, β)) (X) = TeΠr(X)(α0(e), β0(e)). (6.52)

By the first condition in the definition of a Poisson tensor, d (π(α, β)) is a local section of F,
therefore de (π(α, β)) belongs to Fe = g−. It follows that the formula

[α1, β1]g− := TeΠr(·)(α1, β1)

defines a bracket on g−. The skew-symmetry of [·, ·]g− is clear.

• Let us show that [·, ·]g− satisfies the Jacobi identity, hence is a Lie algebra structure on g−.
Consider any closed local sections α, β, γ of F defined in a neighborhood of e ∈ G+. Since π
is a Poisson tensor, one has

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) = 0.

Differentiating the above identity at e ∈ G+, one gets

de (π (α, dπ(β, γ))) + de (π (β, dπ(γ, α))) + de (π (γ, dπ(α, β))) = 0. (6.53)

Define α0(u) := R∗uα(u), and δ0(u) := R∗udu (π(β, γ)). Note that α0(e) = α(e) and δ0(e) =
de (π(β, γ)). Hence, by equation (6.52) and (6.51), for any X ∈ g+,

de (π (α, dπ(β, γ))) (X) = TeΠr(X)(α0(e), δ0(e)) = TeΠr(X)(α(e), de (π(β, γ)))
= TeΠr(X) (α(e), TeΠr(·)(β(e), γ(e))
= [α(e), [β(e), γ(e)]g− ]g−(X).
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It follows that equation (6.53) can be rewritten as

[α(e), [β(e), γ(e)]g− ]g− + [β(e), [γ(e), α(e)]g− ]g− + [γ(e), [α(e), β(e)]g− ]g− = 0.

To show that the bracket [·, ·]g− satisfies Jacobi identity, it remains to prove that any element
α1 ∈ g− can be extended to a closed local section α of F such that α(e) = α1. For this, it
suffices to find a scalar function f defined in a neighborhood Ve of e ∈ G+ such that dgf ∈ Fg
for any g ∈ Ve and def = α1. This can be done using a chart around e ∈ G+ and a local
trivialisation of F. Then α := df is a closed local section of F such that α1 = α(e).

• Let us show that g+ acts continuously on g− ⊂ g∗+ by coadjoint action. By Proposition 6.6.6,
G+ acts continuously on g− := Fe by the coadjoint action. By differentiation, g− ⊂ g∗+ is
stable by the coadjoint action of g+ on g∗+ and this action is continuous.

• Let us show that the dual map of the bracket [·, ·]g− restricts to a 1-cocycle θ : g+ → Λ2g∗−
with respect to the adjoint action ad(2,0) of g+ on Λ2g∗−. By definition of the bracket (6.51),
θ = TeΠr. By Proposition 6.6.7, Πr is a 1-cocycle on G+ with respect to the coadjoint action
Ad∗∗ of G+ on Λ2g∗−. Hence TeΠr is a 1-cocycle on g+ with respect to the adjoint action

ad(2,0) of g+ on Λ2g∗− (see Section 6.3.5).

Example 6.6.12. The tangent bialgebras of the Banach Poisson–Lie groups B±p (H ) and Up(H )
defined in Proposition 6.6.9 and Proposition 6.6.10, are the Banach Lie bialgebra b±p (H ) and
up(H ) in duality, which combine into the Manin triple (Lp(H ), up(H ), b±p (H )) given in Proposi-

tion 6.2.16. Indeed, the derivative at the unit element e of Π
U±p
r : Up(H )→ Λ2b±p (H )∗ defined by

equation (6.50) reads:

deΠ
U±p
r (x)(b1, b2) = =Tr

(
pup,±([x, b1])pb±p (b2)

)
+ =Tr

(
pup,±(b1)pb±2

([x, b2])
)
,

= =Tr
(
pup,±([x, b1])b2

)
= =Tr [x, b1]b2 = =Trx[b1, b2]b±p ,

with x ∈ up(H ) and b1, b2 ∈ b±p (H ), where we have used that b±p (H ) is an isotropic subspace.

It follows that deΠ
U±p
r (·)(b1, b2) = [b1, b2]b±p ∈ b±p (H ) ⊂ up(H )∗. Similarly, the derivative of Π

B±p
r

defined by equation (6.49) is given by

deΠ
B±p
r (b)(x1, x2) = =Tr b[x1, x2]up , b ∈ b±p (H ), x1, x2 ∈ up(H ),

and is the dual map of the bracket [·, ·]up .

Theorem 6.6.13. Let (G+,F, π) be a Banach Poisson–Lie group.If the map π] : F → F∗ defined
by π](α) := π(α, ·) takes values in TG+ ⊂ F∗, then g+ is a Banach Lie–Poisson space with respect
to g− := Fe.
Proof. Let α1 ∈ g− and define α(g) = R∗g−1(α1) ∈ Fg. Then π(R∗g−1α1, ·) = π(α, ·) takes values in

TgG+ ⊂ F∗g, and Πr(g)(α1, ·) = π(R∗g−1α1, R
∗
g−1 ·) takes values in g+ ⊂ g∗−. It follows that Πr takes

values in Λ2g+ ⊂ Λ2g∗−. By differentiation, it follows that TeΠr takes also values in Λ2g+. Using
equation (6.51) for the bracket in g−, one has

〈ad∗α1
X,β1〉g+,g− := 〈X, [α1, β1]g−〉g+,g− = TeΠr(X)(α1, β1). (6.54)

where X ∈ g+ and α1, β1 ∈ g−. Hence ad∗α1
X = TeΠr(X)(α1, ·), therefore ad∗α1

X belongs to g+

for any α1 ∈ g−. Since g− = Fe injects continuously in g∗+ (see definition 6.4.4) and since g+ is
Banach subspace of g∗∗+ , the map ad∗ : g−×g+ → g+ is continuous as composition of the continuous
injection g− ⊂ g∗+ with the continuous map ad∗ : g∗+ × g∗∗+ → g∗∗+ . Consequently g+ is a Banach
Lie–Poisson space with respect to g−.

Remark 6.6.14. In the finite-dimensional case, any Lie bialgebra can be integrated to a connected
simply-connected Poisson–Lie group. The Banach situation is more complicated, since not every
Banach Lie algebra can be integrated into a Banach Lie group (see [153] for a survey on the problem
of integrability of Banach Lie algebras and on Lie theory in the more general framework of locally
convex spaces). Even in the case when a Banach Lie bialgebra is a Lie algebra of a connected and
simply-connect Banach Lie group, it is still an open problem to determine if the bialgebra structure
can be integrated into a Poisson–Lie group structure on the group.
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Chapter 7

Poisson–Lie groups and the
restricted Grassmannian

In this chapter we use the notions introduced in chapter6 in order to construct Banach Poisson–Lie
group structures on the restricted unitary group Ures(H ) and on the triangular group B±res(H ),
and a generalized Banach Poisson manifold structure on the restricted Grassmannian such that
both actions of Ures(H ) and B±res(H ) on the restricted Grassmannian are Poisson.

In Section 7.1, we set the notation. In Section 7.2.1, we introduce weak duality pairings between
the Banach Lie algebras ures(H ) and b±1,2(H ), and between b±res(H ) and u1,2(H ). In Section 7.2.2
we use the unboundedness of the triangular truncation on the space of trace class operators to show
that b±1,2(H ) is not a Banach Lie–Poisson space with respect to ures(H ). Similarly u1,2(H ) is
not a Banach Lie–Poisson space with respect to b±res(H ). This implies in particular that there
is no Banach Poisson–Lie group structure on B±res(H ) defined on the translation invariant sub-
bundle whose fiber at the unit element is u1,2(H ) ⊂ b±res(H )∗ (otherwise, by Proposition 6.6.6,
the coadjoint action of b±res(H ) on u1,2(H ) would be continuous). In Section 7.2.3 we overcome
this difficulty by replacing u1,2(H ) by the quotient Banach space L1,2(H )/b±1,2(H ), and construct

a Banach Poisson–Lie group structure on B±res(H ). The Banach Poisson–Lie group structure of
Ures(H ) can be constructed in a similar way. In Section 7.4, we show that the restricted Grass-
mannian is a quotient Poisson homogeneous space of Ures(H ), the stabilizer H of a point being a
Banach Poisson–Lie subgroup of Ures(H ). In Section 7.4.1, we show that the action of B±res(H )
on the restricted Grassmannian is Poisson. In Section 7.4.2, we show that the symplectic leaves of
the Poisson structure of the restricted Grassmannian are the orbits of B±res(H ) and coincides with
Schubert cells. At last, we mention that the action of the subgroup Γ+ of B±res(H ) generated by
the shift gives rise to the KdV hierachy.

7.1 Preliminaries

Let us introduce some notation. If not stated otherwise, the Banach Lie algebras and related notions
are over the field of real numbers. Endow the infinite-dimensional separable complex Hilbert space
H with orthonormal basis {|n〉, n ∈ Z} ordered with respect to decreasing values of n, and consider
the decomposition H = H+ ⊕H−, where H+ := span{|n〉 : n ≥ 0} and H− := span{|n〉 : n < 0}.
Denote by p+ (resp. p−) the orthogonal projection onto H+ (resp. H−), and set d = i(p+ − p−) ∈
L∞(H ).

7.1.1 Restricted Banach Lie algebra Lres(H ) and its predual L1,2(H )

The restricted Banach Lie algebra is the Banach Lie algebra

Lres(H ) = {A ∈ L∞(H ) : [d,A] ∈ L2(H )} (7.1)

for the norm ‖A‖res = ‖A‖∞ + ‖[d,A]‖2 and the bracket given by the commutator of operators. A
predual of Lres is

L1,2(H ) := {A ∈ L∞(H ) : [d,A] ∈ L2(H ), p±A|H± ∈ L1(H±)}. (7.2)
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It is a Banach Lie algebra for the norm given by

‖A‖1,2 = ‖p+A|H+‖1 + ‖p−A|H−‖1 + ‖[d,A]‖2.

The duality pairing between L1,2(H ) and Lres(H ) is given by

〈·, ·〉Lres,L1,2
: Lres(H )× L1,2(H ) → C

(A,B) 7→ Trres(AB),

where the restricted trace Trres (see [85])) is defined on L1,2(H ) by

Tr resA = Tr p+A|H+ + Tr p−A|H− . (7.3)

According to Proposition 2.1 in [85], one has Tr resAB = Tr resBA for any A ∈ L1,2(H ) and any
B ∈ Lres(H ).

7.1.2 Restricted general linear group GLres(H ) and its “predual” GL1,2(H )

The restricted general linear group, denoted by GLres(H ) is defined as

GLres(H ) := GL(H ) ∩ Lres(H ). (7.4)

It is an open subset of Lres(H ) hence carries a natural Banach Lie group structure with Banach Lie
algebra Lres(H ). It is not difficult to show that GLres(H ) is closed under the operation that takes
an operator A ∈ GLres(H ) to its inverse A−1 ∈ GL(H ). It follows that GLres(H ) is a Banach Lie
group.

The Banach Lie algebra L1,2(H ), predual to Lres(H ), is the Banach Lie algebra of the following
Banach Lie group

GL1,2(H ) := GL(H ) ∩ {Id +A : A ∈ L1,2(H )}. (7.5)

7.1.3 Unitary Banach Lie algebras u(H ), ures(H ), u1,2(H )

The subspace

u(H ) := {A ∈ L∞(H ) : A∗ = −A} (7.6)

of skew-Hermitian bounded operators is a real Banach Lie subalgebra of L∞(H ) considered as a
real Banach space. The unitary restricted algebra ures(H ) is the real Banach Lie subalgebra of
Lres(H ) consisting of skew-Hermitian operators:

ures(H ) := {A ∈ u(H ) : [d,A] ∈ L2(H )} = Lres(H ) ∩ u(H ). (7.7)

By Proposition 2.1 in [27], a predual of the unitary restricted algebra ures(H ) is the subalgebra
u1,2(H ) of Lres(H ) consisting of skew-Hermitian operators (see also Remark 7.2.2 below):

u1,2(H ) := {A ∈ L1,2(H ) : A∗ = −A}. (7.8)

Remark 7.1.1. It follows from Proposition 2.5 in [27] with γ = 0 that u1,2(H ) is a Banach Lie–
Poisson space with respect to ures(H ). A direct computation shows that u1,2(H ) is not a Banach
Lie bialgebra with respect to ures(H ).

7.1.4 Restricted unitary group Ures(H ) and its “predual” U1,2(H )

The restricted unitary group is defined as

Ures(H ) := GLres(H ) ∩U(H ). (7.9)

It has a natural structure of Banach Lie group with Banach Lie algebra ures(H ). The Banach Lie
algebra u1,2(H ), predual to ures(H ), is the Banach Lie algebra of the following Banach Lie group

U1,2(H ) := U(H ) ∩ {Id +A : A ∈ L1,2(H )}. (7.10)
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7.1.5 The restricted Grassmannian Grres(H )

In the present chapter, the restricted Grassmannian Grres(H ) denotes the set of all closed subspaces
W of H such that the orthogonal projection p− : W → H− is a Hilbert-Schmidt operator. The
restricted Grassmannian is a homogeneous space under the restricted unitary group (see [172]),

Grres(H ) = Ures(H )/ (U(H+)×U(H−)) ,

and under the restricted general linear group GLres(H ),

Grres(H ) = GLres(H )/Pres(H ),

where
Pres(H ) = {A ∈ GLres(H ) : p−A|H+

= 0}. (7.11)

It follows that Grres(H ) is a homogeneous Kähler manifold (see [233], [27], [210], [211] for more
informations on the geometry of the restricted Grassmannian).

7.1.6 Triangular Banach Lie subalgebras b±1,2(H ) and b±res(H )

Let us define the following triangular subalgebras of L1,2(H ) and Lres(H ):

b+
1,2(H ) := {α ∈ L1,2(H ) : α (|n〉) ∈ span{|m〉,m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−1,2(H ) := {α ∈ L1,2(H ) : α (|n〉) ∈ span{|m〉,m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z},

b+
res(H ) := {α ∈ Lres(H ) : α (|n〉) ∈ span{|m〉,m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−res(H ) := {α ∈ Lres(H ) : α (|n〉) ∈ span{|m〉,m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

7.1.7 Triangular Banach Lie groups B±1,2(H ), and B±res(H )

Consider

B±1,2(H ) := {α ∈ GL(H ) ∩
(
Id + b±1,2(H )

)
: α−1 ∈ Id + b±1,2(H ),∀ n ∈ Z, 〈n|α|n〉 ∈ R+∗}.

For any A ∈ b±1,2(H ) with ‖A‖1,2 < 1, and any α ∈ B±1,2(H ), the operator α − αA belongs to

B±1,2(H ), since

(α− αA)−1 = (Id−A)−1α−1,

and (Id − A)−1 =
∑∞
n=0A

n is a convergent series in
(
Id + b±1,2(H )

)
, whose limit admits strictly

positive diagonal coefficients. Hence B±1,2(H ) is an open subset of
(
Id + b±1,2(H )

)
, stable under

group multiplication and inversion. It follows that B±1,2(H ) is a Banach Lie group with Banach Lie

algebra b±1,2(H ).
Similarly define the following Banach Lie groups of triangular operators:

B±res(H ) := {α ∈ GLres(H ) ∩ b±res(H ) : α−1 ∈ GLres(H ) ∩ b±res(H ) and ∀ n ∈ Z, 〈n|α|n〉 ∈ R+∗}.

Remark 7.1.2. Remark that B+
res(H ) does not contain the shift operator S : H → H , |n〉 7→

|n+ 1〉 since the diagonal coefficients of any element in B+
res(H ) are non-zero. However S belongs

to the Lie algebra b+
res(H ), whereas S−1 belongs to b−res(H ).

7.2 Example of Banach Lie bialgebras and Banach Poisson–
Lie groups related to the restricted Grassmannian

7.2.1 Iwasawa Banach Lie bialgebras

Recall that 〈·, ·〉Lres,L1,2
denote the continuous bilinear map given by the imaginary part of the

restricted trace (see equation (7.3)):

〈·, ·〉Lres,L1,2
: Lres(H )× L1,2(H ) −→ R

(x, y) 7−→ =Tr res (xy) .
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Proposition 7.2.1. The continuous bilinear map 〈·, ·〉Lres,L1,2
restricts to a weak duality pairing

between ures(H ) and b±1,2(H ) denoted by

〈·, ·〉ures,b
±
1,2

: ures(H )× b±1,2(H ) −→ R
(x, y) 7−→ =Tr res (xy) .

Similarly the continuous bilinear map 〈·, ·〉Lres,L1,2 restricts to a weak duality pairing between b±res(H )
and u1,2(H ) denoted by

〈·, ·〉b±res,u1,2
: b±res(H )× u1,2(H ) −→ R

(x, y) 7−→ =Tr res (xy) .

Proof. Let us show that the map (a, b) 7→ =Tr resab is non-degenerate for a ∈ ures(H ) and b ∈
b+

1,2(H ).

Suppose that a ∈ ures(H ) is such that =Tr resab = 0 for any b ∈ b+
1,2(H ) and let us show that a

necessary vanishes. Since {|n〉}n∈Z is an orthonormal basis of H and a is bounded, it is sufficient
to show that for any n,m ∈ Z, 〈m|an〉 = 0. In fact, since a is skew-symmetric, it is enough to
show that 〈m|an〉 = 0 for m ≤ n. For n ≥ m, the operator Enm = |n〉〈m| of rank one given by
x 7→ 〈m,x〉|n〉 belongs to b+

1,2(H ). Hence for n ≥ m, one has

=Tr resaEnm = =

∑
j∈Z
〈j|m〉〈j|an〉

 = =〈m|an〉 = 0.

In particular, for m = n, since 〈n|an〉 is purely imaginary, one has 〈n|an〉 = 0, ∀n ∈ Z. For n > m,
the operator iEnm belongs also to b+

1,2(H ) and

=Tr resaiEnm = =

∑
j∈Z

i〈j|m〉〈j|an〉

 = <〈m|an〉 = 0.

This allows to conclude that 〈m|an〉 = 0 for any n,m ∈ Z, hence a = 0 ∈ ures(H ).
On the other hand, consider an element b ∈ b+

1,2(H ) such that =Tr ab = 0 for any a ∈ ures(H ).
We will show that 〈n|bm〉 = 0 for any n,m ∈ Z such that n ≥ m. For n > m, the operator
Emn − Enm belongs to ures(H ), and for n ≥ m, iEmn + iEnm ∈ ures(H ). Therefore for n > m,
one has

=Tr res (Emn − Enm) b = = (〈n|bm〉 − 〈m|bn〉) = =〈n|bm〉 = 0,

and for n ≥ m, one has

=Tr res (iEmn + iEnm) b = = (i〈n|bm〉+ i〈m|bn〉) = <〈n|bm〉 = 0.

It follows that 〈n|bm〉 = 0 for all n,m ∈ Z such that n > m. Moreover, since 〈n|bn〉 ∈ R for any
n ∈ Z, one also has 〈n|bn〉 = 0,∀n ∈ Z. Consequently b = 0.

It follows that 〈·, ·〉ures,b
±
1,2

: ures(H ) × b+
1,2(H ) → R, (x, y) 7→ =Tr resxy, is non-degenerate

and defines a duality pairing between ures(H ) and b+
1,2(H ). One shows in a similar way that

〈·, ·〉Lres,L1,2
induces a duality pairing between ures(H ) and b−1,2(H ), between u1,2(H ) and b+

res(H ),
and between u1,2(H ) and b−res(H ).

Remark 7.2.2. Recall that by Proposition 2.1 in [27], the dual space u1,2(H )∗ can be identified
with ures(H ), the duality pairing being given by (a, b) 7→ Tr res(ab). By previous Proposition, one
has a continuous injection from b+

res(H ) into u1,2(H )∗ by a 7→ (b 7→ =Tr res(ab)). The correspond-
ing injection from b+

res(H ) into ures(H ) ' u1,2(H )∗ reads:

ι : b+
res(H ) ↪→ ures(H )
b 7→ − i

2 (b+ b∗).

The range of ι is the subspace of ures(H ) consisting of those x ∈ ures(H ) such that the triangular
truncation T−(x) is bounded. Recall that T− is unbounded on L∞(H ), as well as on L1(H )
(see [138], [121], [84]), and that there exists skew-symmetric bounded operators whose triangular
truncation is not bounded (see [57]). Therefore ι is not surjective.
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Theorem 7.2.3. The Banach Lie algebra b±1,2(H ) is a Banach Lie bialgebra with respect to
ures(H ). Similarly the Banach Lie algebra u1,2(H ) is a Banach Lie bialgebra with respect to
b±res(H ).

Proof. Let us show that the Lie algebra structure [·, ·]ures
on ures(H ) is such that

1. b±1,2(H ) acts continuously by coadjoint action on ures(H );

2. the dual map [·, ·]∗ures
: u∗res(H )→ Λ2u∗res(H ) to the Lie bracket [·, ·]ures

: ures(H )×ures(H )→
ures(H ) restricts to a 1-cocycle θ : b±1,2(H )→ Λ2u∗res(H ) with respect to the adjoint action

ad(2,0) of b±1,2(H ) on Λ2u∗res(H ).

• Let us first prove (1). Since by Proposition 7.2.1, 〈·, ·〉b±1,2,ures
is a duality pairing between

ures(H ) and b±1,2(H ), the Banach space ures(H ) is a subspace of the continuous dual of

b±1,2(H ). Recall that the coadjoint action of b±1,2(H ) on its dual reads

−ad∗ : b±1,2(H )× b±1,2(H )∗ −→ b±1,2(H )∗

(x, α) 7−→ −ad∗xα := −α ◦ adx.

Let us show that ures(H ) is invariant under coadjoint action. This means that when α is
given by α(y) = =Tr resay for some a ∈ ures(H ), then, for any x ∈ b±1,2(H ), the one form
β = −ad∗xα reads β(y) = =Tr resãy for some ã ∈ ures(H ). One has

β(y) = −ad∗xα(y) = −α(adxy) = −α([x, y])
= −=Tr resa[x, y] = −=Tr res(axy − ayx),

where a ∈ ures(H ), x, y ∈ b±1,2(H ). Since ay and x belong to L2(H ), ayx and xay belong
to L1(H ) and Tr res(ayx) = Tr (ayx) = Tr (xay). Since axy belongs also to L1(H ), one has

β(y) = −=Tr (axy) + =Tr (ayx) = −=Tr (axy) + =Tr (xay) = −=Tr ([a, x]y).

Note that [a, x] belongs to L2(H ). Recall that by Proposition 6.2.16, the triples of Hilbert
Lie algebras (L2(H ), u2(H ), b+

2 (H )) and (L2(H ), u2(H ), b−2 (H )) are real Hilbert Manin
triples with respect to the pairing 〈·, ·〉R given by the imaginary part of the trace. Using the
decomposition L2(H ) = u2(H ) ⊕ b+

2 (H ), and the continuous projection pu±2
: L2(H ) →

u2(H ) with kernal b±2 (H ), one therefore has

β(y) = −=Tr pu±2
([a, x])y,

since y ∈ b±1,2(H ) ⊂ b±2 (H ) and b±2 (H ) is isotropic. It follows that β(y) = =Tr ãy with

ã = −pu±2 ([a, x]) ∈ u2(H ) ⊂ ures(H ).

In other words, the coadjoint action of x ∈ b±1,2(H ) maps a ∈ ures(H ) to−ad∗xa = −pu±2 ([a, x]) ∈
ures(H ). The continuity of the map

−ad∗ : b±1,2(H )× ures(H ) → ures(H )
(x, a) 7→ −ad∗xa = −pu±2 ([a, x])

follows from the continuity of the product

b±1,2(H )× ures(H ) → L1(H )
(x, a) 7→ ax,

from the continuity of the projection pu±2
and from the continuity of the injections L1(H ) ⊂

L2(H ) and u2(H ) ⊂ ures(H ).

• Let us now prove (2). The dual map of the bilinear map [·, ·]ures
is given by

[·, ·]u∗res
: u∗res(H ) −→ L(ures(H ), ures(H );K) ' L(ures(H ); u∗res(H ))

F (·) 7−→ F ([·, ·]ures
) 7→ (α 7→ F ([α, ·]ures

) = ad∗αF (·)) ,
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and takes values in Λ2u∗res(H ). Since by (1), ures(H ) ⊂ b±1,2(H )∗ is stable under the coadjoint

action of b±1,2(H ) and the coadjoint action ad∗ : b±1,2(H )×ures(H )→ ures(H ) is continuous,

one can consider the adjoint action of b±1,2(H ) on Λ2u∗res(H ) defined by (6.19). Denote by θ

the restriction of [·, ·]∗ures
to the subspace b±1,2(H ) ⊂ ures(H )∗:

θ : b±1,2(H ) −→ L(ures(H ), ures(H );K) ' L(ures(H ); ures(H )∗)

x 7−→ 〈x, [·, ·]ures〉b±1,2,ures
7→
(
α 7→ 〈x, [α, ·]ures〉b±1,2,ures

= ad∗αx(·)
)
.

The condition (6.31) expressing that θ is a 1-cocycle reads:

〈[α, β], [x, y]〉b±1,2,ures
= +〈y, [ad∗xα, β]〉b±1,2,ures

+ 〈y, [α, ad∗xβ]〉b±1,2,ures

−〈x, [ad∗yα, β]〉b±1,2,ures
− 〈x, [α, ad∗yβ]〉b±1,2,ures

.
(7.12)

The first term in the RHS reads

+〈y, [ad∗xα, β]〉b±1,2,ures
= =Tr y[pu±2

([α, x]), β] = =Tr [β, y]pu±2
([α, x]).

Using the fact that [β, y] ∈ L2(H ), and that u2(H ) ⊂ L2(H ) and b±2 (H ) ⊂ L2(H ) are
isotropic subspaces with respect to the pairing given by the imaginary part of the trace, one
has

+〈y, [ad∗xα, β]〉b±1,2,ures
= =Tr pb±2

([β, y])pu±2
([α, x]).

Similarly the second, third and last term in the RHS of equation (7.12) read respectively

+〈y, [α, ad∗xβ]〉b±1,2,ures
= =Tr pb±2

([y, α])pu±2
([β, x]),

−〈x, [ad∗yα, β]〉b±1,2,ures
= −=Tr pb±2

([β, x])pu±2
([α, y]),

−〈x, [α, ad∗yβ]〉b±1,2,ures
= −=Tr pb±2

([x, α])pu±2
([β, y]).

Using once more the fact that u2(H ) ⊂ L2(H ) and b±2 (H ) ⊂ L2(H ) are isotropic subspaces
with respect to the pairing given by the imaginary part of the trace, it follows that the first
and last term in the RHS of equation (7.12) sum up to give

+〈y, [ad∗xα, β]〉b±1,2,ures
− 〈x, [α, ad∗yβ]〉b±1,2,ures

= −=Tr [β, y][x, α],

and the second and third term in equation (7.12) simplify to

+〈y, [α, ad∗xβ]〉b±1,2,ures
− 〈x, [ad∗yα, β]〉b±1,2,ures

= −=Tr [β, x][α, y].

Developping the brackets and using that, for A and B bounded such that AB and BA are
trace class, one has TrAB = TrBA, the RHS of equation (7.12) becomes

=Tr [β, y][x, α] + =Tr [β, x][α, y] = =Tr (−βyxα− yβαx+ βxyα+ xβαy)
= =Tr (xyαβ − xyβα− yxαβ + yxβα)
= =Tr [x, y][α, β]
= 〈[x, y], [α, β]〉b±1,2,ures

,

hence θ satisfies the cocycle condition.

One can show in a similar way that the Lie algebra structure [·, ·]b±res
on b±res(H ) is such that

1. u1,2(H ) acts continuously by coadjoint action on b±res(H );

2. the dual map [·, ·]∗
b±res

: b±res(H )∗ → Λ2b±res(H )∗ to the Lie bracket [·, ·]b±res
: b±res(H ) ×

b±res(H ) → b±res(H ) restricts to a 1-cocycle θ : u1,2(H ) → Λ2b±res(H )∗ with respect to

the adjoint action ad(2,0) of u1,2(H ) on Λ2b±res(H )∗.
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7.2.2 Unbounded coadjoint actions

Recall that for 1 < p < ∞ and q := p
p−1 , up(H ) and b±q (H ) are dual Banach Lie–Poisson spaces

(see Example 6.4.19), and that the coadjoint actions are given by

ad∗αx = pup,± ([x, α]) and ad∗xα = pb±q ([α, x]) ,

where x ∈ up(H ) and α ∈ b±q (H ). In this example, the continuity of the triangular truncation T+

on Lp(H ) and Lq(H ) (see Section 6.2.4) is crucial in order to define the orthogonal projections
pup,± and pb±q using equations (6.14) and (6.15).

The situation is different for the Banach Lie algebras u1,2(H ) and b±res(H ). We will show that
u1,2(H ) is not a Banach Lie–Poisson space with respect to b±res(H ) since the coadjoint action of
b±res(H ) on u1,2(H ) is unbounded. To prove this result, we will use the fact that the triangular
truncation is unbounded on the space of trace class operators. In a similar way, the coadjoint
action of ures(H ) on b+

1,2(H ) is unbounded (see also [209]). Using Theorem 6.5.9, we conclude
that there is no Banach Manin triple associated to the pair (u1,2(H ), b±res(H )) nor to the pair
(b+

1,2(H ), ures(H )) for the duality pairing given by the imaginary part of the restricted trace (see
Theorem 7.2.7 below).

Proposition 7.2.4. There exist a bounded sequence of elements xn ∈ u1,2(H ) and an element
y ∈ b±res(H ) such that

‖T+([xn, y]|H+)‖1 → +∞.

Proof. Consider the Hilbert space H = H+ ⊕H−, with orthonormal basis {|n〉, n ∈ Z} ordered
with respect to decreasing values of n, where H+ = span{|n〉, n > 0} and H− = span{|n〉, n ≤ 0}.
Furthermore decompose H+ into the Hilbert sum of H even

+ := span{|2n+ 2〉, n ∈ N} and H odd
+ :=

span{|2n + 1〉, n ∈ N}. We will denote by u : H odd
+ → H even

+ the unitary operator defined by
u|2n+ 1〉 = |2n+ 2〉.

Since the triangular truncation is not bounded on the Banach space of trace class operators, there
exists a sequence Kn ∈ L1(H odd

+ ) such that ‖Kn‖1 ≤ 1 and ‖T+(Kn)‖1 > n for all n ∈ N. It follows
that either ‖T+(Kn + K∗n)/2‖1 > n/2 or ‖T+(Kn − K∗n)/2‖1 > n/2. Modulo the extraction of a
subsequence, we can suppose that Kn is either Hermitian Kn = K∗n or skew-Hermitian Kn = −K∗n.
Moreover, since the triangular truncation is complex linear, the existence of a sequence of skew-
Hermitian operators such that ‖Kn‖1 ≤ 1 and ‖T+(Kn)‖1 > n/2 implies that the sequence iKn is a
sequence of Hermitian operators such that ‖iKn‖1 ≤ 1 and ‖T+(iKn)‖1 > n/2. Therefore without
loss of generality we can suppose that Kn are Hermitian.

Consider the bounded operators xn defined by 0 on H−, preserving H+ and whose expression
with respect to the decomposition H+ = H even

+ ⊕H odd
+ reads

xn|H+
=

(
0 uKn

−K∗nu∗ 0

)
. (7.13)

By construction, xn is skew-Hermitian. The restriction of x∗nxn to H+ decomposes as follows with
respect to H+ = H even

+ ⊕H odd
+ ,

x∗nxn|H+ =

(
uK∗nKnu

∗ 0
0 K∗nKn

)
,

therefore xn belongs to u1,2(H ) since the singular values of xn are the singular values of Kn but
with doubled multiplicities. Moreover ‖xn‖1 ≤ 2.

Now let y : H →H be the bounded linear operator defined by 0 on H even
+ , by 0 on H−, and

by y = u on H odd
+ . Remark that y belongs to b+

res(H ). Since xn and y vanish on H− and preserve
H+, one has

[xn, y] =

(
[xn, y]|H+ 0

0 0

)
,

where the operators [xn, y]|H+
have the following expression with respect to the decomposition

H+ = H even
+ ⊕H odd

+ ,

[xn, y]|H+
=

(
uK∗nu

∗ 0
0 −K∗n

)
.
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It follows that
‖T+([xn, y]|H+

)‖1 = 2‖T+(Kn)‖1 ≥ n, (7.14)

hence ‖T+([xn, y]|H+)‖1 → +∞.

Lemma 7.2.5. Let xn ∈ u1,2(H ) and y ∈ b+
res(H ) be as in the proof of Proposition 7.2.4. Then

‖xn‖u1,2
≤ 2 but ‖ad∗yxn‖u1,2

→ +∞. Consequently the coadjoint action of b+
res(H ) on u1,2(H ) is

unbounded.

Proof. Consider the linear forms αn on b+
res(H ) given by αn(A) = =TrxnA for xn ∈ u1,2(H )

defined by (7.13). Then the linear forms βn = −ad∗yαn read

βn(A) = −ad∗yαn(A) = −αn(adyA) = −αn([y,A]) = −=Trx[y,A] = −=Tr (xyA− xAy).

According to Proposition 2.1 in [85], one has TrxAy = Tr yxA, therefore

βn(A) = −=Tr [xn, y]A.

The unique skew-symmetric operator Tn such that −=TrTnA = −=Tr [xn, y]A for any A in the
subspace b+

2 (H ) of b+
res(H ) is

Tn = pu+
2

([xn, y]) = T−−([xn, y])− T−−([xn, y])∗ + 1
2 (D([xn, y])−D([xn, y])∗)

Since Kn are Hermitian, [xn, y]|H+
are Hermitian and we get

Tn = [xn, y]− 2T+([xn, y]) +D([xn, y]).

In particular,
2T+([xn, y]) = Tn − [xn, y]−D([xn, y]).

By equation (7.14), 2T+([xn, y]) ≥ 2n. Therefore

‖Tn‖u1,2
+ ‖[xn, y]‖u1,2

+ ‖D([xn, y])‖u1,2
≥ ‖Tn − [xn, y]−D([xn, y])‖u1,2

≥ 2n,

for all n ∈ N, and
‖Tn‖u1,2

≥ 2n− 2− ‖D([xn, y])‖u1,2
.

The operator D consisting in taking the diagonal is bounded in L1(H ) with operator norm less
than 1 (see Theorem 1.19 in [191] or [84] page 134), therefore

‖Tn‖u1,2
> 2n− 4.

It follows that ‖ − ad∗yαn‖u1,2
= ‖Tn‖u1,2

→ +∞.

Using the same kind of arguments (see also [209]), we have:

Lemma 7.2.6. The coadjoint action of ures(H ) on b+
1,2(H ) is unbounded.

From the previous discussion, we obtain the following theorems.

Theorem 7.2.7. The Banach Lie algebra u1,2(H ) is not a Banach Lie–Poisson space with respect
to b±res(H ). Consequently there is no Banach Manin triple structure on the triple of Banach Lie
algebras (b±res(H )⊕ u1,2(H ), b±res(H ), u1,2(H )) for the duality pairing defined in Proposition 7.2.1.

Proof. The Banach space u1,2(H ) is not a Banach Lie–Poisson space with respect to b±res(H ) as a
consequence of Lemma 7.2.5. By Theorem 6.5.9, there is no Banach Manin triple structure on the
Banach Lie algebras (u1,2(H )⊕ b±res(H ), u1,2(H ), b±res(H )) for the duality pairing given by the
imaginary part of the restricted trace.

Along the same lines, we have the analoguous Theorem:

Theorem 7.2.8. The Banach Lie algebra b±1,2(H ) is not a Banach Lie–Poisson space with respect
to ures(H ). Consequently there is no Banach Manin triple structure on the triple of Banach Lie al-
gebras

(
b±1,2(H )⊕ ures(H ), b±1,2(H ), ures(H )

)
for the duality pairing defined in Proposition 7.2.1.
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7.2.3 The Banach Poisson–Lie groups B±res(H ) and Ures(H )

In this section we will construct a Banach Poisson–Lie group structure on the Banach Lie group
B+

res(H ). A similar construction can be of course carried out for the Banach Lie group B−res(H )
instead. Recall that the coajoint action of B+

res(H ) is unbounded on u1,2(H ) (see Section 7.2.2,
in particular Lemma 7.2.5). Therefore, in order to construct a Poisson–Lie group structure on
B+

res(H ), we need a larger subspace of the dual b+
res(H )∗ which will play the role of g− := Fe

(compare with Theorem 6.6.4). Consider the following map:

F : L1,2(H ) → b+
res(H )∗

a 7→ (b 7→ =Tr ab) .

Proposition 7.2.9. The kernel of F equals b+
1,2(H ), therefore L1,2(H )/b+

1,2(H ) injects into the

dual space b+
res(H )∗. Moreover L1,2(H )/b+

1,2(H ) is preserved by the continuous coadjoint action

of B+
res(H ) and strictly contains u1,2(H ) as a dense subspace.

Proof. In order to show that the kernel of F is b+
1,2(H ), consider, for n ≥ m, the operator Enm =

|n〉〈m| ∈ b+
res(H ) given by x 7→ 〈m|x〉|n〉 and, for n > m, the operator iEnm ∈ b+

res(H ). As in the
proof of Proposition 7.2.1, an element a ∈ L1,2(H ) satisfying F (a)(Enm) = 0 and F (a)(iEnm) = 0
is such that 〈m|an〉 = 0 for n > m and 〈n|an〉 ∈ R for n ∈ Z, i.e. belongs to b+

1,2(H ). Let us

show that the range of F is preserved by the coadjoint action of B+
res(H ). Let g ∈ B+

res(H ) and
a ∈ L1,2(H ). For any b ∈ b+

res(H ), one has:

Ad∗(g)F (a)(b) = F (a)(Ad(g)(b)) = F (a)(gbg−1)
= =Tr agbg−1 = =Tr g−1agb = F (g−1ag)(b),

where, in the fourth equality, we have used Proposition 2.1 in [85] (since the product agb belongs
to L1,2(H ) and b to Lres(H )). In fact, B+

res(H ) acts continuously on the right on L1,2(H ) by

a · g = g−1ag.

Then one has the equivariance property

F (a · g) = Ad∗(g)F (a).

Moreover the subalgebra b+
1,2(H ) is preserved by the right action of B+

res(H ) on L1,2(H ). It

follows that there is a well-defined continuous right action of B+
res(H ) on the quotient space

L1,2(H )/b+
1,2(H ) defined by

[a] · g = [a · g],

where [a] denotes the class of a ∈ L1,2(H ) modulo b+
1,2(H ).

Let us show that u1,2(H ) ⊕ b+
1,2(H ) is dense in L1,2(H ). To do this, we will show that any

continuous linear form on L1,2(H ) which vanishes on u1,2(H ) ⊕ b+
1,2(H ) is equal to the zero

form. Recall that the dual space of L1,2(H ) is Lres(H ), the duality pairing being given by the
restricted trace. Consider X ∈ Lres(H ) such that TrXa = 0 and TrXb = 0 for any a ∈ u1,2(H )
and any b ∈ b+

1,2(H ). Letting b = Enm with n ≥ m, we get 〈m|Xn〉 = 0 for n ≥ m. Letting
a = Enm−Emn ∈ u1,2(H ), we get 〈m|Xn〉−〈n|Xm〉 = 0 for n ≥ m. It follows that 〈m|Xn〉 = 0 for
any m,n ∈ Z, which implies that the bounded linear operator X vanishes, hence u1,2(H )⊕b+

1,2(H )

is dense in L1,2(H ). It follows from Section 7.2.2, that u1,2(H )⊕ b+
1,2(H ) is strictly contained in

L1,2(H ).
Let us show that u1,2(H ) is dense in L1,2(H )/b+

1,2(H ). Consider a class [a] ∈ L1,2(H )/b+
1,2(H ),

where a is any element in L1,2(H ). Since u1,2(H ) ⊕ b+
1,2(H ) is dense in L1,2(H ), there is a se-

quence ui ∈ u1,2(H ) and a sequence bi ∈ b+
1,2(H ) such that ui + bi converge to a in L1,2(H ). It

follows that [ui + bi] = [ui] converge to [a] in L1,2(H )/b+
1,2(H ).

Now we are able to state the following Theorem. The proof uses Lemma 6.6.8.

Theorem 7.2.10. Consider the Banach Lie group B+
res(H ), and

1. g− := L1,2(H )/b+
1,2(H ) ⊂ b+

res(H )∗,
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2. B ⊂ T ∗ B+
res(H ), Bb := R∗b−1g−,

3. Π
B+

res
r : B+

res(H )→ Λ2g∗− defined by

Π
B+

res
r (b)([x1]b+

1,2
, [x2]b+

1,2
) = =Tr (b−1 pu+

2
(x1) b)

[
pb+

2
(b−1 pu+

2
(x2) b)

]
,

4. πB
+
res(b) = R∗∗b Π

B+
res

r (b).

Then
(

B+
res(H ),B, πB+

res

)
is a Banach Poisson–Lie group.

Proof. • Let us show that Π
B+

res
r satisfies the cocycle condition.

Π
B+

res
r (u)

(
Ad∗(g)[x1]b+

1,2
,Ad∗(g)[x2]b+

1,2

)
= Π

B+
res

r (u)
(

[g−1 x1 g]b+
1,2
, [g−1x2 g]b+

1,2

)
= =Tr (u−1pu+

2
(g−1x1 g)u)

[
pb+

2
(u−1pu+

2
(g−1x2 g)u)

]
Using the decomposition pu+

2
(g−1x1 g) = g−1x1 g−pb+

2
(g−1x1 g), the fact that b+

2 is preserved

by conjugation by elements in B+
res(H ), and the fact that b+

2 is isotropic, one has:

Π
B+

res
r (u)

(
Ad∗(g)[x1]b+

1,2
,Ad∗(g)[x2]b+

1,2

)
= =Tr (u−1g−1x1 g u)

[
pb+

2
(u−1pu+

2
(g−1x2 g)u)

]
= =Tr (u−1g−1x1 g u)

[
pb+

2
(u−1g−1x2 gu)

]
−=Tr (u−1g−1x1 g u)

[
pb+

2
(u−1pb+

2
(g−1x2 g)u)

]
= =Tr (u−1g−1x1 g u)

[
pb+

2
(u−1g−1x2 gu)

]
−=Tr g−1x1 g pb+

2
(g−1x2 g)

Using the decompositions x1 = pu+
2

(x1) + pb+
2

(x1) and x2 = pu+
2

(x2) + pb+
2

(x2), one gets 8

terms but 4 of them vanish since b+
2 is isotropic. The remaining terms are:

Π
B+

res
r (u)

(
Ad∗(g)[x1]b+

1,2
,Ad∗(g)[x2]b+

1,2

)
= =Tr (u−1g−1pu+

2
(x1) g u)

[
pb+

2
(u−1g−1pu+

2
(x2) gu)

]
+=Tr (u−1g−1pu+

2
(x1) g u)

[
pb+

2
(u−1g−1pb+

2
(x2) gu)

]
−=Tr g−1pu+

2
(x1) g pb+

2
(g−1pu+

2
(x2) g)

−=Tr g−1pu+
2

(x1) g pb+
2

(g−1pb+
2

(x2) g)

The first term in the right hand side equals Π
B+

res
r (gu)([x1]b+

1,2
, [x2]b+

1,2
), the third term equals

−Π
B+

res
r (g)([x1]b+

1,2
, [x2]b+

1,2
), whereas the second term equals +=Tr (pu+

2
(x1)pb+

2
(x2)), and the

last terms equals −=Tr (pu+
2

(x1)pb+
2

(x2)).

• It remains to check that πB
+
res satisfies the Jacobi identity (6.26). We will use Lemma 6.6.8.

Using the cocycle identity, one has for any X in b+
res(H ) and g ∈ B+

res,

TgΠ
B+

res
r (LgX)([x1], [x2]) = TeΠ

B+
res

r (X)(Ad∗(g)[x1],Ad∗(g)[x2]),

in particular,

TgΠ
B+

res
r (RgX)([x1], [x2]) = TgΠ

B+
res

r (LgAd(g−1)(X))([x1], [x2])

= TeΠ
B+

res
r (Ad(g−1)(X))(Ad∗(g)[x1],Ad∗(g)[x2])

= TeΠ
B+

res
r (Ad(g−1)(X))([g−1 x1 g], [g−1 x2 g])

On the other hand

TeΠ
B+

res
r (Y )([x1], [x2]) = −=Tr [Y, pu+

2
(x1)]pb+

2
(pu+

2
(x2))−=Tr pu+

2
(x1)pb+

2
([Y, pu+

2
(x2)])

= −=Tr pu+
2

(x1)[Y, pu+
2

(x2)] = =TrY [pu+
2

(x1), pu+
2

(x2)].

It follows that

TgΠ
B+

res
r (RgX)([x1], [x2]) = =Tr g−1X g[pu+

2
(g−1 x1 g), pu+

2
(g−1 x2 g)]. (7.15)
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In particular, for any x1 and x2 in L1,2(H ), the 1-form on b+
res given by

X 7→ TgΠ
B+

res
r (LgX)([x1], [x2])

belongs to u1,2(H ) and is given by

TgΠ
B+

res
r (Lg(·))([x1], [x2]) = [pu+

2
(g−1 x1 g), pu+

2
(g−1 x2 g)]

Moreover for g ∈ B+
res(H ), x3 ∈ L1,2(H ) and y ∈ L1,2(H ), one has

Π
B+

res
r (g)([x3], [y]) = =Tr (g−1 pu+

2
(x3) g)pb+

2
(g−1 pu+

2
(y) g)

= =Tr pu+
2

(g−1 pu+
2

(x3) g)pb+
2

(g−1 pu+
2

(y) g)

= −=Tr pb+
2

(g−1 pu+
2

(x3) g)pu+
2

(g−1 pu+
2

(y) g)

= −=Tr g pb+
2

(g−1 pu+
2

(x3) g) g−1 pu+
2

(y)

= −=Tr g pb+
2

(g−1 pu+
2

(x3) g) g−1(y)

In particular i[x3]Π
B+

res
r (g) = −g pb+

2
(g−1 pu+

2
(x3) g) g−1 belongs to b+

2 (H ) ⊂ b+
res(H ). Using

(7.15), it follows that

TgΠ
B+

res
r (Rgi[x3]Π

B+
res

r (g))([x1], [x2]) = −=Tr pb+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 x1 g), pu+
2

(g−1 x2 g)]

= −=Tr pb+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1 pu+
2

(x2) g)],

(7.16)
where we have used that g−1 pb+2

(xi) g ∈ b+
2 for any xi ∈ L1,2(H ) and any g ∈ B+

res(H ).

Moreover

〈x1, [i[x3]Π
B+

res
r (g), i[x2]Π

B+
res

r (g)]〉 = =Trx1[g pb+
2

(g−1 pu+
2

(x3) g) g−1, g pb+
2

(g−1 pu+
2

(x2) g) g−1]

= =Tr pu+
2

(x1)[g pb+
2

(g−1 pu+
2

(x3) g) g−1, g pb+
2

(g−1 pu+
2

(x2) g) g−1]

= =Tr g−1pu+
2

(x1)g[pb+
2

(g−1 pu+
2

(x3) g), pb+
2

(g−1 pu+
2

(x2) g)]

= =Tr pu+
2

(g−1pu+
2

(x1)g)[pb+
2

(g−1 pu+
2

(x3) g), pb+
2

(g−1 pu+
2

(x2) g)]

= −=Tr pu+
2

(g−1pu+
2

(x1)g)[pb+
2

(g−1 pu+
2

(x2) g), pb+
2

(g−1 pu+
2

(x3) g)]

(7.17)
Consider α = R∗g−1 [x1] ∈ (Tg B+

res)
∗, β = R∗g−1 [x2] ∈ (Tg B+

res)
∗ and γ = R∗g−1 [x3] ∈ (Tg B+

res)
∗,

for x1, x2 and x3 in L1,2(H ). Injecting (7.16) and (7.17) into (6.46) and using the fact that
the left hand side of (6.46) defines a tensor, one gets :

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β)))
= −=Tr pb+

2
(g−1 pu+

2
(x3) g)[pu+

2
(g−1 pu+

2
(x1) g), pu+

2
(g−1 pu+

2
(x2) g)]

−=Tr pu+
2

(g−1pu+
2

(x1)g)[pb+
2

(g−1 pu+
2

(x2) g), pb+
2

(g−1 pu+
2

(x3) g)]

−=Tr pb+
2

(g−1 pu+
2

(x1) g)[pu+
2

(g−1 pu+
2

(x2) g), pu+
2

(g−1 pu+
2

(x3) g)]

−=Tr pu+
2

(g−1pu+
2

(x2)g)[pb+
2

(g−1 pu+
2

(x3) g), pb+
2

(g−1 pu+
2

(x1) g)]

−=Tr pb+
2

(g−1 pu+
2

(x2) g)[pu+
2

(g−1 pu+
2

(x3) g), pu+
2

(g−1 pu+
2

(x1) g)]

−=Tr pu+
2

(g−1pu+
2

(x3)g)[pb+
2

(g−1 pu+
2

(x1) g), pb+
2

(g−1 pu+
2

(x2) g)]

= −=Tr pb+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1 pu+
2

(x2) g)]

−=Tr pb+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1pu+
2

(x1)g), pb+
2

(g−1 pu+
2

(x2) g)]

−=Tr pu+
2

(g−1 pu+
2

(x3) g)[pb+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1 pu+
2

(x2) g)]

−=Tr pb+
2

(g−1 pu+
2

(x3) g)[pb+
2

(g−1 pu+
2

(x1) g), pu+
2

(g−1pu+
2

(x2)g)]

−=Tr pu+
2

(g−1 pu+
2

(x3) g)[pu+
2

(g−1 pu+
2

(x1) g), pb+
2

(g−1 pu+
2

(x2) g)]

−=Tr pu+
2

(g−1pu+
2

(x3)g)[pb+
2

(g−1 pu+
2

(x1) g), pb+
2

(g−1 pu+
2

(x2) g)]

= −=Tr g−1pu+
2

(x3)g)[g−1 pu+
2

(x1) g, g−1 pu+
2

(x2) g]

= −=Tr g−1pu+
2

(x3)[pu+
2

(x1), pu+
2

(x2)]g

= −=Tr pu+
2

(x3)[pu+
2

(x1), pu+
2

(x2)]

= 0,

hence π is a Poisson tensor.
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Remark 7.2.11. In the proof of the previous Theorem, we have established that

TeΠ
B+

res
r (Y )([x1]b+

1,2
, [x2]b+

1,2
) = =TrY [pu+

2
(x1), pu+

2
(x2)],

where x1, x2 ∈ L1,2(H ) and Y ∈ b+
res(H ). It follows that TeΠ

B+
res

r is the dual map of

L1,2(H )/b+
1,2(H )× L1,2(H )/b+

1,2(H ) → L1,2(H )/b+
1,2(H )

([x1]b+
1,2
, [x2]b+

1,2
) 7→ [pu+

2
(x1), pu+

2
(x2)], (7.18)

which is well defined on L1,2(H )/b+
1,2(H ) since [pu+

2
(x1), pu+

2
(x2)] ∈ L1(H ) for any x1, x2 ∈

L1,2(H ). Note that this bracket is continuous and extends the natural bracket of u1,2(H ).

Along the same lines (see also [209]), we obtain the following Theorem:

Theorem 7.2.12. Consider the Banach Lie group Ures(H ), and

1. g+ := L1,2(H )/u1,2(H ) ⊂ u∗res(H ),

2. U ⊂ T ∗Ures(H ), Ug = R∗g−1g+,

3. ΠUres
r : Ures(H )→ Λ2g∗+ defined by

ΠUres
r (g)([x1]u1,2 , [x2]u1,2) = =Tr (g−1 pb+

2
(x1) g)

[
pu2(g−1 pb+

2
(x2) g)

]
,

4. πUres(g) = R∗∗g ΠUres
r (g).

Then
(
Ures(H ),U, πUres

)
is a Banach Poisson–Lie group.

7.3 The restricted Grassmannian as a Poisson manifold

In this section, we construct a generalized Banach Poisson structure on the restricted Grassmannian,
and called it Bruhat-Poisson structure by reference to the finite-dimensional picture developped in
[136].

7.3.1 A Poisson–Lie subgroup of Ures(H )

The following definition is identical to the definition in the finite-dimensional case.

Definition 7.3.1. A Banach Lie subgroup H of a Banach Poisson–Lie group G is called a Banach
Poisson–Lie subgroup if it is a Banach Poisson submanifold of G, i.e. if it carries a Poisson
structure such that the inclusion map ι : H ↪→ G is a Poisson map.

Let us show the following Proposition.

Proposition 7.3.2. The Banach Lie group H := U(H+) × U(H−) is a Poisson–Lie subgroup of
Ures(H ).

Proof. Denote by ι : H ↪→ Ures(H ) the inclusion map. It is clear that H is a Banach submanifold
of Ures(H ). Denote by h its Lie algebra. Recall that U is the subbundle of T ∗Ures(H ) given by
Ug = R∗g−1g+ where g+ := L1,2(H )/u1,2(H ). Denote by 〈·, ·〉ures the duality pairing between g+

and ures(H ), and by h0 the closed subspace of g+ consisting of those covectors in g+ which vanish
on the closed subspace h of ures(H ). For any covector α ∈ ι∗g+ acting on h, and any vector X ∈ h,
denote by [α]h0 the class of α ∈ i∗g+ in i∗g+/h

0. Then the formula

〈[α]h0 , X〉h := 〈α,X〉ures ,

defines a duality pairing between He := i∗g+/h
0 and h. It follows that H := i∗U/(TH)0 is a

subbundle of T ∗H in duality with TH. Recall that the Poisson tensor on Ures(H ) is defined as
follows

ΠUres
r (h)(α, β) = =Tr (h−1pb+

2
(x1)h)

[
pu+

2
(h−1pb+

2
(x2)h)

]
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where α, β ∈ g+ = L1,2(H )/u1,2 and x1, x2 ∈ L1,2(H ) are such that α = [x1]u1,2
and β = [x2]u1,2

.
Note that an element x2 = (A B

C D ) ∈ L1,2(H ) belongs to h0 if and only if A ∈ u1(H ) and D ∈
u1(H ). In that case, one has

x2 =
(
A −C∗
C D

)
+
(

0 B+C∗

0 0

)
,

with pu+
2

(x2) =
(
A −C∗
C D

)
and pb+

2
(x2) =

(
0 B+C∗

0 0

)
. Note also that for any h =

(
h1 0
0 h2

)
∈ U(H+)×

U(H−), one has

h−1pb+
2

(x2)h =
(

0 h−1
1 (B+C∗)h2

0 0

)
∈ b+

2 (H ).

It follows that ΠUres
r (h)(·, β) = 0 whenever β ∈ h0. By skew-symmetry of ΠUres

r , one also has
ΠUres
r (h)(α, ·) = 0 whenever α ∈ h0. This allows to define the following map

ΠH
r : H → Λ2H∗e

by
ΠH
r (h)([α]h0 , [β]h0) := ΠUres

r (h)(α, β)

for α, β ∈ g+ = L1,2(H )/u1,2. Set πHg := R∗∗g ΠH
r . The Jacobi identity for πH follows from the

Jacobi identity for πUres . By construction, the injection ι : H ↪→ Ures(H ) is a Poisson map.

7.3.2 The restricted Grassmannian as a quotient Poisson homogeneous
space

Theorem 7.3.3. The restricted Grassmannian Grres(H ) = Ures(H )/U(H+)× U(H−) carries a
natural Poisson structure (Grres(H ), T ∗Grres(H ), πGrres) such that:

1. the canonical projection p : Ures(H )→ Grres(H ) is a Poisson map,

2. the natural action Ures(H )×Grres(H )→ Grres(H ) by left translations is a Poisson map.

Proof. 1. The tangent space at eH ∈ Grres(H ) = Ures(H )/U(H+)×U(H−) can be identified
with the quotient Banach space ures(H )/ (u(H+)⊕ u(H−)) which is isomorphic to the Hilbert
space

m := {
(

0 A
−A∗ 0

)
∈ u2(H )}.

The duality pairing between ures(H ) and g+ = L1,2(H )/u1,2(H ) induces a strong duality
pairing between the quotient space ures(H )/ (u(H+)⊕ u(H−)) = m and h0 ⊂ g+. For
α, β ∈ T ∗gH Grres(H ), identify p∗α ∈ T ∗g Ures(H ) with an element L∗g−1x1 in L∗g−1h0, and

p∗β with L∗g−1x2 ∈ L∗g−1h0. Define

πGrres

gH (α, β) = πUres
g (p∗α, p∗β).

We have to check that the right hand side is invariant by the natural right action of H on
Ures(H ), which induces an action ofH on forms in T ∗g Ures(H ) by γ → R∗h−1γ ∈ T ∗gh Ures(H ).
In other words, we have to check that

πUres
g ((p∗α)g, (p

∗β)g) = πUres

gh (R∗h−1(p∗α)g, R
∗
h−1(p∗β)g) (7.19)

⇔ πUres
g (L∗g−1x1, L

∗
g−1x2) = πUres

gh (R∗h−1L∗g−1x1, R
∗
h−1L∗g−1x2)

⇔ ΠUres
r (g)(Ad∗g−1x1,Ad∗g−1x2) = ΠUres

r (gh)(R∗ghR
∗
h−1L∗g−1x1, R

∗
ghR

∗
h−1L∗g−1x2)

Note that R∗ghγ(X) = γ(RghX) = γ(Xgh) = R∗hγ(Xg) = R∗gR
∗
hγ(X). Therefore R∗gh =

R∗gR
∗
h. It follows that (7.19) is equivalent to

ΠUres
r (g)(Ad∗g−1x1,Ad∗g−1x2) = ΠUres

r (gh)(Ad∗g−1x1,Ad∗g−1x2)

By the cocycle identity ΠUres
r (gh) = Ad(g)∗∗ΠUres

r (h) + ΠUres
r (g), one has

ΠUres
r (gh)(Ad∗g−1x1,Ad∗g−1x2) = ΠUres

r (h)(Ad∗gAd∗g−1x1,Ad∗gAd∗g−1x2)
+ΠUres

r (g)(Ad∗g−1x1,Ad∗g−1x2)

195



Since ΠUres
r (h) vanishes on h0, one has

ΠUres
r (h)(Ad∗h−1x1,Ad∗h−1x2) = 0,

therefore equation (7.19) is satisfied. The Jacobi identity for πGrres follows from the Jacobi
identity for πUres . Moreover p is a Poisson map by construction.

2. Consider the action

aU : Ures(H )×Grres(H ) → Grres(H )
(g1, gH) 7→ g1gH

by left translations. Note that the tangent map to aU is given by

T(g1,gH)aU : Tg1
Ures(H )⊕ TgH Grres(H ) → Tg1gH Gr0

res(H )
(Xg1

, XgH) 7→ p∗[(Rg)∗Xg1
] + (Lg1

)∗XgH .

Therefore, for any α ∈ T ∗g1gH
Grres(H ),

α ◦ T(g1,gH)aU (Xg1
, XgH) = α(p∗[(Rg)∗Xg1

]) + α((Lg1
)∗XgH)

= R∗gp
∗α(Xg1

) + L∗g1
α(XgH).

In other words

α ◦ T(g1,gH)aU = R∗gp
∗α+ L∗g1

α,

where R∗gp
∗α ∈ Tg1

Ures(H ) and L∗g1
α ∈ TgH Grres(H ). In order to show that aU is a Poisson

map, we have to show that

(a) for any α ∈ T ∗g1gH
Grres(H ), the covector R∗gp

∗α belongs to

Ug1 = R∗(g1)−1L1,2(H )/u1,2(H ),

(b) the Poisson tensors πUres and πGrres are related by

πGrres

g1gH
(α, β) = πUres

g1
(R∗gp

∗α,R∗gp
∗β) + πGrres

gH (L∗g1
α,L∗g1

β).

For point (a), let us show that for α ∈ T ∗g1gH
Grres(H ), and g1, g ∈ Ures(H ), one has

R∗g1
R∗gp

∗α ∈ L1,2(H )/u1,2(H ). Recall that p∗α can by identified with an element L∗(g1g)−1x1

where x1 ∈ h0. Therefore R∗g1
R∗gp

∗α = Ad∗(g1g)−1x1. For X ∈ Te Ures(H ), one has

R∗g1
R∗gp

∗α(X) = =Trx1Ad(g1g)−1(X) = =Trx1(g1g)−1Xg1g
= =Tr g1gx1(g1g)−1X.

Since g1gx1(g1g)−1 ∈ L1,2(H ) for any g1, g ∈ Ures(H ) and x1 ∈ L1,2(H ), it follows that
R∗g1

R∗gp
∗α ∈ L1,2(H )/u1,2(H ).

In order to prove (b), we will the cocycle identity. Note that for α, β ∈ T ∗g1gH
Grres(H ), one

has

πGrres

g1gH
(α, β) = πUres

g1g (p∗α, p∗β) = ΠUres
r (g1g)(R∗g1gp

∗α,R∗g1gp
∗β)

= Ad(g1)∗ΠUres
r (g)(R∗g1gp

∗α,R∗g1gp
∗β) + ΠUres

r (g1)(R∗g1gp
∗α,R∗g1gp

∗β)
= ΠUres

r (g)(L∗g1
R∗gp

∗α,L∗g1
R∗gp

∗β) + ΠUres
r (g1)(R∗g1

R∗gp
∗α,R∗g1

R∗gp
∗β)

= πUres
g (L∗g1

p∗α,L∗g1
p∗β) + πUres

g1
(R∗gp

∗α,R∗gp
∗β)

= πUres
g (p∗L∗g1

α, p∗L∗g1
β) + πUres

g1
(R∗gp

∗α,R∗gp
∗β)

= πGrres

gH (L∗g1
α,L∗g1

β) + πUres
g1

(R∗gp
∗α,R∗gp

∗β).

Hence the left action of Ures(H ) onGrres(H ) is a Poisson map.
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7.4 Poisson action of B+
res(H ) on Grres(H ) and Schubert cells

7.4.1 Poisson action of B±res(H ) on Grres(H )

The next Theorem shows that the action of B±res(H ) on Grres(H ) is a Poisson map, where B±res(H )
is endowed with the Banach Poisson–Lie group structure defined in Section 7.2, and where Grres(H )
is endowed with the Bruhat-Poisson structure defined in Section 7.3.

Theorem 7.4.1. The following right action of B±res(H ) on Grres(H ) = GLres(H )/Pres(H ) is a
Poisson map:

aB : Grres(H )× B±res(H ) → Grres(H )
(gPres(H ), b) 7→ (b−1g) Pres(H ).

Proof. The tangent map to the action aB reads

T(gH,b)aB : TgH Grres(H )⊕ Tb B±res(H ) → Tb−1gPres
Grres(H )

(XgH , Xb) 7→ (L(b−1))∗XgH − p∗(Rg)∗(b−1Xbb
−1).

Therefore, for any α ∈ T ∗b−1gPres
Grres(H ),

α ◦ T(gH,b)aB(XgH , Xb) = α((L(b−1))∗XgH)− α(p∗(Rg)∗b
−1Xbb

−1)
= L∗b−1α(XgH)−R∗b−1L∗b−1R∗gp

∗α(Xb),

and
α ◦ T(gH,b)aB = L∗b−1α−R∗b−1L∗b−1R∗gp

∗α,

where L∗b−1α ∈ T ∗gH Grres(H ) and R∗b−1L∗b−1R∗gp
∗α ∈ T ∗b B±res(H ).

(a) Let us show that for any α ∈ T ∗b−1gPres
Grres(H ) and any b ∈ B±res(H ), the formR∗b−1L∗b−1R∗gp

∗α

belongs to Bb = R∗b−1L1,2(H )/b1,2(H ). Recall that α can be identified with an element
L∗(b−1g)−1x1 where x1 ∈ h0. For X ∈ Te B±res(H ), one has

L∗b−1R∗gp
∗α(X) = α(p∗Rg∗(Lb−1)∗X) = =Trx1(Lg−1b)∗p∗Rg∗(Lb−1)∗X)

= =Trx1p∗(Ad(g−1)X) = =Tr pb+
2

(x1)g−1Xg

= =Tr gpb+
2

(x1)g−1X.

Recall that for x1 = (A B
C D ) ∈ h0, pb+

2
(x1) =

(
0 B+C∗

0 0

)
. Since for any g ∈ GLres(H ) and any

x1 ∈ h0, gpb+
2

(x1)g−1 ∈ L1,2(H ), the form R∗b−1L∗b−1R∗gp
∗α belongs to Bb.

(b) Let us show that the Poisson tensors πB
+
res and πGrres are related by

πGrres

b−1gPres
(α, β) = πGrres

gH (L∗b−1α,L∗b−1β) + π
B+

res

b (R∗b−1L∗b−1R∗gp
∗α,R∗b−1L∗b−1R∗gp

∗β).

One has

π
B+

res

b (R∗b−1L∗b−1R∗gp
∗α,R∗b−1L∗b−1R∗gp

∗β) = Π
B+

res
r (b)([gpb+

2
(x1)g−1]b+

1,2
, [gpb+

2
(x2)g−1]b+

1,2
)

= =Tr
(
b−1pu+

2
(gpb+

2
(x1)g−1)b

) [
pb+

2
(b−1pu+

2
(gpb+

2
(x2)g−1)b)

]
= =Tr pu+

2
(gpb+

2
(x1)g−1)b

[
pb+

2
(b−1pu+

2
(gpb+

2
(x2)g−1)b)

]
b−1

= =Tr (b−1gpb+
2

(x1)g−1b)
[
pb+

2
(b−1pu+

2
(gpb+

2
(x2)g−1)b)

]
= =Tr (b−1gpb+

2
(x1)g−1b)

[
pb+

2
(b−1gpb+

2
(x2)g−1b)

]
−=Tr (b−1gpb+

2
(x1)g−1b)

[
pb+

2
(b−1pb+

2
(gpb+

2
(x2)g−1)b)

]
Therefore

π
B+

res

b (R∗b−1L∗b−1R∗gp
∗α,R∗b−1L∗b−1R∗gp

∗β) =

=Tr (b−1gpb+
2

(x1)g−1b)
[
pb+

2
(b−1gpb+

2
(x2)g−1b)

]
−=Tr (gpb+

2
(x1)g−1)

[
pb+

2
(gpb+

2
(x2)g−1)

]
.

(7.20)

197



On the other hand

πGrres

gH (L∗b−1α,L∗b−1β) = ΠUres
r (g)([gpb+

2
(x1)g−1], [gpb+

2
(x2)g−1])

= =Tr (g−1pb+
2

(gpb+
2

(x1)g−1)g)
[
pu+

2
(g−1pb+

2
(gpb+

2
(x1)g−1)g)

]
= =Tr pb+

2
(x1)

[
pu+

2
(g−1pb+

2
(gpb+

2
(x1)g−1)g)

]
= =Tr pb+

2
(x1)(g−1pb+

2
(gpb+

2
(x1)g−1)g

= =Tr gpb+
2

(x1)g−1pb+
2

(gpb+
2

(x1)g−1)

which is the second term in the right hand side of equation (7.20) with the opposite sign.
Moreover, since

Grres(H ) = GLres(H )/Pres(H ) = Ures(H )/ (U(H+)×U(H−))

there exist g1 ∈ Ures(H ) and p1 ∈ Pres(H ) such that b−1g = g1p1. In fact, the pair (g1, p1)
is defined modulo the right action by H given by (g1, p1) · h = (g1h, h

−1p1). It follows that
the first term in the right hand side of equation (7.20) reads

=Tr (b−1gpb+
2

(x1)g−1b)
[
pb+

2
(b−1gpb+

2
(x2)g−1b)

]
= =Tr (g1p1pb+

2
(x1)p−1

1 g−1
1 )

[
pb+

2
(g1p1pb+

2
(x2)p−1

1 g−1
1 )
]

Recall that for any x1 = (A B
C D ) ∈ h0, one has

x1 =
(
A −C∗
C D

)
+
(

0 B+C∗

0 0

)
,

with pu+
2

(x1) =
(
A −C∗
C D

)
and pb+

2
(x1) =

(
0 B+C∗

0 0

)
. Note that for any p1 =

(
P1 P2

0 P3

)
∈

Pres(H ), one has

p−1
1 =

(
P−1

1 −P−1
1 P2P

−1
3

0 P−1
3

)
∈ Pres(H ),

and
p1pb+

2
(x1)p−1

1 =
(

0 P1(B+C∗)P−1
3

0 0

)
∈ b+

2 (H ).

Therefore

=Tr (b−1gpb+
2

(x1)g−1b)
[
pb+

2
(b−1gpb+

2
(x2)g−1b)

]
= =Tr (g1p1pb+

2
(x1)p−1

1 g−1
1 )

[
pb+

2
(g1p1pb+

2
(x2)p−1

1 g−1
1 )
]

= ΠUres
r (g1)([g1p1pb+

2
(x1)p−1

1 g−1
1 ], [g1p1pb+

2
(x2)p−1

1 g−1
1 ])

= ΠUres
r (g1)([b−1gpb+

2
(x1)g−1b], [b−1gpb+

2
(x2)g−1b])

= πGrres

g1H
(α, β) = πGrres

b−1gPres
(α, β).

It follows that the right action of B+
res(H ) on Grres(H ) is a Poisson map.

7.4.2 Schubert cells as symplectic leaves of the restricted Grassmannian

In this section, H will be specified to be the space L2(S1,C) of complex square-integrable functions
defined almost everywhere on the unit circle S1 = {z ∈ C, |z| = 1} modulo the equivalence relation
that identifies two functions that are equal almost everywhere. In that case, the inner product of two
elements f and g in L2(S1,C) reads 〈f, g〉 =

∫
S1 f(z)g(z)dµ(z), where dµ(z) denotes the Lebesgue

mesure on the circle. Let us recall some geometric facts about the restricted Grassmannian that
were established in [172], Chapter 7. Set H+ = span{zn, n ≥ 0} and H− = span{zn, n < 0}.

The restricted Grassmannian admits a stratification {ΣS , S ∈ S } as well as a decomposition
into Schubert cells {CS , S ∈ S }, which are dual to each other in the following sense:

(i) the same set S indexes the cells {CS} and the strata {ΣS};

(ii) the dimension of CS is the codimension of ΣS ;

(iii) CS meets ΣS transversally in a single point, and meets no other stratum of the same codi-
mension.
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A element S of the set S is a subset of Z, which is bounded from below and contains all sufficiently
large integers. Given S ∈ S , define the subspace HS of the restricted Grassmannian Grres(H ) by:

HS = span{zs, s ∈ S}.

Recall the following Proposition:

Proposition 7.4.2 (Proposition 7.1.6 in [172]). For any W ∈ Grres(H ) there is a set S ∈ S such
that the orthogonal projection W →HS is an isomorphism. In other words the sets {US , S ∈ S },
where

US = {W ∈ Grres(H ), the orthogonal projection W →HS is an isomorphism},

form an open covering of Grres(H ).

Following [172], let us introduce the Banach Lie groups N+
res(H ) and N−res(H ):

N+
res(H ) = {A ∈ GLres(H ), A(zkH+) = zkH+ and (A− Id)(zkH+) ⊂ zk+1H+, ∀k ∈ Z},

N−res(H ) = {A ∈ GLres(H ), A(zkH−) = zkH− and (A− Id)(zkH−) ⊂ zk+1H−, ∀k ∈ Z}.

In other words, the group N±res(H ) is the subgroup of B±res(H ) consisting of the triangular operators
with respect to the basis {|n〉 := zn, n ∈ Z} which have only 1’s on the diagonal.

Proposition 7.4.3. The Banach Lie group N±res(H ) is a normal subgroup of B±res(H ) and the
quotient group B±res(H )/N±res(H ) is isomorphic to the group of bounded linear positive definite
operators which are diagonal with respect to the orthonormal basis {|zk〉, k ∈ Z}.

Proof. For a triangular operator g ∈ B±res(H ), the diagonal coefficients of g and g−1 are inverses of
each other: 〈n|g−1n〉 = 〈n|gn〉−1, ∀n ∈ Z. Therefore, for any element h ∈ N±res(H ), the composed
operator ghg−1 has only 1’s on it’s diagonal and belong to N±res(H ). This implies that N±res(H )
is a normal subgroup of B±res(H ). Recall that D denotes the linear transformation consisting in
taking the diagonal part of a linear operator (see equation (6.7)). Since |〈n|D(A)m〉| ≤ ‖A‖ and
D(A) is diagonal, the linear transformation D maps bounded operators to bounded operators. By
the definition of B±res(H ), the range of D : B±res(H ) → L∞(H ) is the group of bounded linear
positive definite operators which are diagonal with respect to the orthonormal basis {|zk〉 : k ∈ Z}.
Moreover, the kernel of D : B±res(H )→ L∞(H ) is exactly N±res(H ).

Proposition 7.4.4. (i) The cell CS is the orbit of HS under B+
res(H ).

(ii) The stratum ΣS is the orbit of HS under B−res(H ).

Proof. It follows from Proposition 7.4.1 in [172], that the cell CS is the orbit of HS under N+
res(H ).

Symmetrically, it follows from Proposition 7.3.3 in [172], that the stratum ΣS is the orbit of HS

under N−res(H ). Since the diagonal part of an operator in B±res(H ) acts trivially, one gets the same
result replacing N±res(H ) by B±res(H ).

Recall that the restricted Grassmannian is a Hilbert manifold endowed with the Poisson struc-
ture constructed in Theorem 7.3.3. In this Hilbert context, the Poisson tensor πGrres defines a bundle

map
(
πGrres

)]
: T ∗Grres(H ) → T Grres(H ). The range of this map is called the characteristic

distribution of the Poisson structure, and the maximal integral submanifolds of this distribu-
tion are called symplectic leaves (see [156] Section 7 for a general discussion on characteristic
distributions and symplectic leaves in the Banach context).

Theorem 7.4.5. The Schubert cells {CS , S ∈ S } are the symplectic leaves of Grres(H ).

Proof. The integrability of the characteristic distribution follows from Theorem 6 in [167], since
Grres(H ) is a Hilbert manifold. The fact that the symplectic leaves are the orbits of B+

res(H ) follows
from the construction as in the finite-dimensional case (see Theroem 4.6 (3) in [136]). It follows
from Proposition 7.4.4 that the orbits of B+

res(H ) coincide with the Schubert cells {CS , S ∈ S }.
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7.5 Relation between the restricted Grassmannian and the
KdV hierarchy

Let us recall the construction of G. Segal and G. Wilson explained in [185] which gives a correspon-
dence between some elements of the restricted Grassmannian Grres(H ) and solutions of the KdV
hierarchy.

Let Γ+ be the group of real-analytic functions g : S1 → C∗, which extend to holomorphic
functions g from the unit disc D = {z ∈ C : |z| ≤ 1} to C∗, satisfying g(0) = 1. Any such function
g ∈ Γ+ can be written g = ef , where f is a holomorphic function on D such that f(0) = 0.

Proposition 7.5.1. The group Γ+ acts by multiplication operators on H and Γ+ ⊂ B+
res(H ).

Consequently Γ+ acts on the restricted Grassmannian.

Proof. By Proposition 2.3 in [185], Γ+ ⊂ GLres(H ) := GL(H ) ∩ Lres(H ). Since g ∈ Γ+ is
holomorphic in D and satisfies g(0) = 1, the Fourier decomposition of g reads g(z) = 1+

∑
k>0 gkz

k.

Therefore g(z) · zn = zn +
∑
k>0 gkz

k+n. It follows that the multiplication operator by g is a upper

triangular operator Mg ∈ B+
res(H ), with diagonal elements equal to 1.

Following [185] (see Proposition 5.13), we will see that the action of Γ+ on (some subgrass-

mannians of) Grres(H ) generates the KdV hierarchy. Denote by Gr(n) the subset of the restricted
Grassmannian Grres(H ) given by

Gr(n) = {W ∈ Grres(H ) : znW ⊂W}.

Moreover, given a subspace W ∈ Grres(H ), we set

Γ+
W = {g ∈ Γ+ : g−1W ∩H− = {0}}.

Let us know recall the following Proposition (see [58] for more informations on Baker functions).

Proposition 7.5.2 (Proposition 5.1 in [185]). For each W ∈ Grres(H ), there is a unique function
ΦW (g, z) called the Baker function of W , defined for g ∈ Γ+

W and z ∈ S1, such that

(i) ΦW (g, ·) ∈W for each fixed g ∈ Γ+
W

(ii) ΦW has the form

ΦW = g(z)(1 +

∞∑
1

ai(g)z−i).

The coefficients ai are analytic functions on Γ+
W and extend to meromorphic functions on the

whole of Γ+.

Since any g ∈ Γ+ can be written uniquely as g(z) = exp(xz + t2z
2 + t3z

3 + . . . ), the Baker
function of W ∈ Grres(H ) as the following expression:

ΦW = exp(xz + t2z
2 + t3z

3 + . . . )(1 +

∞∑
1

ai(g)z−i).

Now the following Proposition assigns to W ∈ Grres(H ) a hierarchy of differential operators Pr:

Proposition 7.5.3 (Proposition 5.5 in [185]). Set D = ∂
∂x . For each integer r ≥ 2, there is a

unique differential operator Pr of the form

Pr = Dr + pr2D
r−2 + · · ·+ pr,r−1D + prr

such that
∂ΦW
∂tr

= PrΦW .

Denote by C (n) the space of all operators Pn associated to subspaces W in Gr(n) and evaluated
at t2 = t3 = · · · = 0. Then

Proposition 7.5.4 (Proposition 5.13 in [185]). The action of Γ+ on Gr(n) induces an action on

the space C (n). For r ≥ 1, the flow W 7→ exp(trz
r)W on Gr(n) induces the r-th KdV flow on C (n).
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[31] P. Bóna: Extended quantum mechanics. Acta Physica Slovaca, 50:1–198, 2000.
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