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Titre: Modélisation, analyse et simulation numérique d’une coque poroélastique
et son interaction avec un fluide

Résumé

Nous proposons dans cette these deux modeles de coques poroélastiques. Il s’agit des modeles
Biot-Naghdi et Biot-Koiter. Leurs dérivations sont basées sur les hypotheses de Reissner-Mindlin
et celles de Kirchhoff-Love respectivement et ol la coque poreuse est saturée.

Nous démontrons en utilisant la méthode de Galerkin et le théoreme de Banach-Necas-
Babuska que ces modeles sont bien posés, c’est-a-dire qu’ils admettent des solutions uniques
dans des espaces fonctionnels appropriés.

Nous proposons également un modele décrivant 'interaction entre un fluide incompressible
et une coque poreuse et élastique. C’est le modele Stokes-Biot-Naghdi. Ici, la structure étant
poreuse, les conditions de glissement a l'interface fluide/coque ne sont pas standards. Nous
considérons alors les conditions de Beavers-Joseph-Saffman a l'interface sous forme faible en
introduisant un mutiplicateur de Lagrange. Nous prouvons ensuite que le modele obtenu est
bien posé grace a la méthode de Galerkin et la théorie des équations algébro-différentielles.

Enfin, nous proposons un algorithme de découplage pour résoudre et simuler numériquement
la solution du modele Biot-Naghdi.

Mots-clés: Coque poroélastique, modele Biot, modele de Naghdi, modele de Koiter, Interaction
fluide-structure.
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Title: Modelling, analysis and numerical simulation of a poroelastic shell and its
interaction with a fluid

Abstract

This thesis is devoted to the study of poroelastic thin shells. For derivation of poroelastic
shell equations, we make use of Reissner-Mindlin assumptions for Biot-Naghdi’s model and
Kirchhoff-Love assumptions for Biot-Koiter’s model. We prove the well-posedness of the ob-
tained models by Galerkin semi-discrete method and Banach-Necas-Babuska theorem as well.
Moreover, we establish the strong formulation for Biot-Naghdi poroelastic shell model. Then,
we derive the fluid-structure interaction between Stokes incompressible flow and Biot-Naghdi
poroelastic shell structure where the non standard slip boundary conditions of Beavers-Joseph-
Saffman type on the interface are considered. A Lagrange multiplier method is employed to
impose weakly these conditions. We assume that the boundaries and the interface between the
fluid and the poroelastic material are fixed. The proof proceeds by constructing a semi-discrete
finite element Galerkin approximations and for the existence of the solution we adopt the theory
of differential-algebraic equations. Finally, we simulate the Biot-Naghdi poroelastic shell model
by FreeFem++-.

Keywords: Poroelastic structure, shell, fluid-structure interaction, Naghdi model, Koiter
model.
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Introduction

Shells and their assemblies are a part of the huge variety of elastic structure of the biggest
interest for the contemporary engineering: bodyworks, shells of ships, fuselages, wings of plane,
towers of cooling, etc.

Shell structure are ubiquitous in nature because they are light but “strong”. Their geometry
allows forces to be balanced by tensile strains rather bending. Some examples of shells are given
below.

— Shells in nature:

(a) Clam shell (b) Egg shell

— Manmade shells

(a) CDG Airport Terminal 2E:
Basket-handle profile shell with (b) Bodywork
W?2>_regularity

There exist at least two different families of linear models for thin elastic shells: the one of
Reissner, which relies on the theory of Cosserat surfaces, (Cosserat and Cosserat-[39]), and the
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2 Introduction

Kirchhoff-Love type theories. This second approach is based on the famous Kirchhoff-Love’s
hypothesis, which states that the norms on the reference midsurface are transformed into norms
on the deformed midsurface and that the distance between one point and the midsurface re-
mains constant throughout the deformation of the shell.

Considering those hypothesis, Koiter [55] proposed a two-dimensional mathematical model
for linearly elastic thin shells where the unknown of the problem is the displacement field of
the points on the midsurface of shell. An approximation for the displacement field across the
thickness of shell depends merely on the knowledge of this displacement via the Kirchhoff-Love’s
hypothesis [6].

A theorem of existence and uniqueness for the Koiter’s model was established firstly by
Bernadou and Ciarlet [7], who proposed a particularly technical evidence based on results of
Rougée [79]. By application of a lemma on the distributions in H~!, whose gradient is as well
in H=! of J.L. Lions, Ciarlet and Miara [32] gived a simpler demonstration of the existence
and uniqueness of the same model. At last, Bernadou, Ciarlet and Miarra [8] provided some
improvements of this last evidence. It is important to note that, in all of these demonstrations,
the map defining the shell’s midsurface is assumed at least in C3.

During the same period, Naghdi [68] [70] has presented a model which takes into account the
effects of transverse shearing, while respecting the hypothesis of plane constraint and preserva-
tion of the distance between one point and the midsurface in the course of deformation. Under
these hypothesis and the determination of displacement of points on the midsurface as well as
the rotation of unique normal vector of this surface, the Naghdi’s model permits to have an
approximation of displacement field through the shell thickness.

The mathematical analysis of Naghdi’s model is done the first time by Coutris [40] then
improved by Ciarlet and Miara [32]. See as well Bernadou, Ciarlet and Miara [§] where the
unknowns are the covariant of contravariant components of the displacement and the rotation.
For vector formulations, Blouza[I8] and Blouza - Le Dret [22] proposed a framework in which
they consider shell with little regularity.

Mechanical problems, including the porous elastic body saturated with a fluid, appears in a
diversity of subjects. The mathematic modelling and the numerical analysis of tridimensional
elastic bodies problems are now controlled. Nevertheless, in the cases of thin structures like
membranes, plates and shells, the numerical methods adapted well to the tridimensional cases
fail, because of the small thickness. Therefore, it is natural for thinking about deriving from
the tridimensional modelling to the bidimensional modelling which works on the midsurface of
the shell for decreasing the cost of computation.

Many authors have focused on the limit behavior of the tridimensional equations when the
thickness of the porous shell goes to zero. We can for example quote the works of Mikeli¢ and
Tambaca [64] [65] where they proposed the limit model of poroelastic flexural and membrane



shell model.

We also cite, in the generally poroelastic shell case, the work of Ljulj and Tambaca[60], in
which they derived an iterative method for solving a poroelastic shell model of Naghdi’s type.
In their model, the unknowns are given by their local basis components.

In the present work, we are not concerned with the asymptotic models. Our purpose is
to derive two models from the equilibrium equations of tridimensional elasticity where the
Reissner-Mindlin and Kirchhoff-Love assumptions are used in the case where the thickness is
small enough with respect to other characteristics of the shell. Our framework here is a free
local basis formulation for the displacement and considered shells are with little regularity
midsurface.

Elasticity is the tendency of solid materials to return to their original shape after that
forces are applied on them, when the forces are removed, the structure returns to its reference
configuration and size. In tridimensional elasticity, the undeformed body occupies a region M.
Under loading, a point x € M moves to £ + U(x). Let Fo UT, be a partition of the boundary
OM with meas(I'g) > 0. Then the equilibrium equations of tridimensional elasticity are:

—dive (U
oU

~—

f in M (force balance),
H:eU) in M (constitutive),
0
h

S~—
Il

on I'y (clamping),

s g
Il

on I'; (force balance).

1
where a(U) is the stress tensor and ¢(U) = §(VU + (VU)T) is the strain tensor.

Poroelastic structure is the elastic structure having pores which contain a fluid. Then a
gradient of the pressure is added to the applied force to deform the structure.

As Verruijt wrote in [88], soft soils such as sand and clay consist of small particles and the
pore space between the particles often is fulfilled with water. In soil mechanics, this is denoted
as a saturated or partially saturated porous medium. The deformation of such porous media
depends upon the stiffness of the porous material, and upon the behavior of the fluid in the
pores. If the permeability of the material is small, the deformations may be considerably re-
tarded by the viscous behavior of the fluid in the pores. The simultaneous deformation of the
porous material and the flow of the pore fluid are the subject of the consolidation theory, often
denoted as poroelasticity. The poroelasticity theory was developed by Biot ([10], [11], [12], [13],
[T4] and [15]) several decades ago and it has been studied extensively since.

Poroelastic phenomena are interesting in numerous applications as geomechanics, ground-
surface water flow, reservoir compaction and surface subsidence, seabed-wave interaction prob-
lem, etc. Two examples of poroelastic structures are given below.
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TUNICA Compact Bone & Spongy (Cancellous Bone)

Lacunae containing osteocytes Osteon of compact bone

Lamellae Traheculae of Spongy

Canaliculi bare

== Haversian
canal

[ Osteon
/ TUNICA
" INTIMA

T INTERNAL Periosteum

ELASTIC
“olkmann's canal

ELASTIC L LAMINA
LAMINA TUNICA
MEDIA
(a) Arterial wall (b) Bone anatomy

The poroelastic shells and their interactions with fluids are part of a wide variety of issues
and a largest interest for contemporary engineering (ship hulls, reservoirs, ...) and biomedical
problems (heart, bones, intestine skin, ...). As stated in [30], we point out that simultaneous
with the development of poroelasticity, literature dealing with thermoelasticity has evolved.
Here it is assumed that there is a coupling between the thermal diffusion equations and the
equations of mechanical equilibrium. The complete mathematical analogy of the poroelastic
and thermoelastic problems was noted by Biot [16]. A comprehensive treatment from this lat-
ter point of view is given by Nowacki [72].

Here we introduce the Biot model, as in [47], the constitutive equation for the Cauchy stress
tensor ¢ in terms of the displacement U and fluid pressure p is

6 =0o(U)—apl, (1)
where I is the identity tensor, a(U) is the stress tensor, expressing the Hooke’s law:

o(U) = AdivU)I + 2uc(U), (2)

1
where ¢(U) = §<VU + (VU)T) is the strain tensor, A > 0 (dilation moduli) and x > 0 (shear

moduli) are the Lamé coefficients, and o €]0, 1] is the Biot-Willis constant, which is usually
around one. The flux of the fluid v; is governed by Darcy’s law in porous media

K
vy =", 3
s . (3)

where n > 0 is the fluid viscosity and fluid density assumed to be constant and x is the
permeability of porous medium.
The equation of mass conservation is

9¢ :
FTin —divvy + g,

where ¢ is a volumetric fluid source term and ( is the fluid content of the medium; ¢ related to
the fluid pressure p and material volume div U by

(=cop+adivU (4)



where ¢y > 0 is the constrained specific storage coefficient, that is assumed to be constant. As
explained by Phillips and Wheeler in [75], ¢ = 0 may lead to locking, whatever the value of
the Lamé coefficient A. Although in practical situation, ¢y can vanish, we do not consider this
possibility here and therefore we suppose that ¢g > 0. With and , the equation of mass
conservation reads

)
= (cop + adiv U) - %diva) — g (5)

Finally, the balance of linear momentum is derived by making a quasi-static assumption, namely
by assuming that the material deformation is much slower than the flow rate, and hence the
second-time derivative of the displacement (i.e. the acceleration ) is zero. Denoting by f the
body force, this yields

—divée = f. (6)
Thus, replacing the constitutive relation into @ we obtain
~V-o(U) +aVp=fin Mx]0,T].
Collecting the above equations, we have the following system of equation a.e. in M x]0, 7|

~V-o(U)+aVp=f, (7a)

0 . K
E(Cop + adivl) — ;(VP —pra) =9 (7b)

The coupling first order terms in the system have the following meaning: the term Vp in the first
equation results from the additional stress in the medium coming from the fluid pressure, the
term div U in the second equation represents the additional fluid content due to local volume
change. The Biot system should be supplemented with relevant boundary and initial conditions
that have clear physical meaning.

Afterwards, we sketch out our results in this thesis. In Chapter [I the purpose is the deriva-
tion the weak coupled formulation of shell model of Koiter type and Biot model, and the proof
of its well-posedness. More precisely, we state the derivation in the following theorem,
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4 Theorem

If U and p are a solution of the strong formulation (7)), such that U = u — 2(0yu - a3)a® a
Kirchhoff-Love displacement, then u and p belong, respectively, to Vi and Wy solving the
following weak formulation:

A (w;v) + Bf (pyv) = LT (v) W € X, (8a)
A5 (p;q) + By (u;q) = L£5(q) Vg € Hy(), (8b)
p(0) = po in Q, (8¢)

where

Al (uyv) = / e a®bre [Yas (W) Yp0 (V) + %TQB(U)TPU('U)} Vadz,

BE (p;v) = —Oz/ﬂpdivv\/EdX + oz/Qp div (2(0.v - a3)a®)vadX,
LE(w) = /Q [+ (v—2(0wv - as)a*)adX,
A?(p;q)ZCO/Qp’q\/EdXJrS/QVp-Vq\/EdX,

B (u;q) = —a/Q(div uw)qvadX + oz/ﬂdiv (2(0att’ - @3)a™)q/adX and

L3 (q) = /ng\/EdX.

In the process of deriving the weak form, we face difficulty of writing the poroelastic structure
model in term of shell symbols (metric tensor 7,4, curvature tensor Y,z). In order to solving
this problem, we use the structure displacement U belonging to the space of Kirchhoff-Love
displacements Vi = {V € H'(Q,R?); ¢;3(V) = 0}.

Following, we introduce the theorem of the well-posedness,

Theorem

Let po € HY(Q), f € H'(0,T; L*(2,R3)) and g € L*(2x]0,T[). Then the problem has a
unique solution. The pressure p belongs to L> (0,7, H'(2)) N H'(0,T; L*()).

We are not able to prove the existence and uniqueness of the displacement U and the pressure
p at the same time. Therefore, we firstly turn out the well-posedness of U in the weak form
of constitutive equation by Banach-Necas-Babuska theorem with a given p. Then proving
the well-posedness of p in the weak form of mass conservation equation by making use of
the semi-discrete Galerkin method and the theory of initial value problem for linear systems.



In Chapter [2, we implement analogous to Chapter[I|but with another two-dimensional linear
theory shell theory, Naghdi. Moreover, we obtain the strong formulation of Naghdi-Biot coupled
model which we use for establishing the fluid-structure interaction between incompressible
flow and poroelastic shell structure in Chapter [3] More precisely, we derive the weak coupled
formulation of shell model of Naghdi type and Biot model:

Theorem
If U and p are a solution of the strong formulation , such that U = u+ zr, a Reissner-Mindlin
displacement, then (u,r) and p belong, respectively, to V and Wy solving the following weak
formulation:

A ((u,r); (v,8)) + B{V( ;(v,8)) =LY (v) V(v,s) € Xy, (9a)
Ay (piq) + By ((u,7); ) = EN( ) Vg € Hy(9), (9b)
p(0) = po in €, (9¢)

where

2

AY (.75 0.9) = [ €0 m(wras) + 5

—Xpo (U, T) Xap (v, s)} Va dx
+4u/eaaﬁéag(u,r)éﬁg(v,s)\/a de,
By (p; (v,8)) = —a/ﬂpdivv\/a dX — a/ﬂpdiv(zs) Va dX,
LY (v,5) =Af~(v+28)ﬁdX, A3 (p; q) ZCO/Qp’q\/EdXJr%/QVp-Vq\/EdX,
BY ((u,7);q) = —a /Q (dive)qvadX — o /Q div(zr')q v/a dX and

LY (q) = /gq\/EdX.

In order to cracking the trouble of deriving the weak form, the Reissner-Mindlin displacements
space Vry = {U € H'(Q;R?),e53(U) = 0} is chosen.

We continuously prove the existence and uniqueness of the equation system @ in the following
theorem

Theorem

Let po € HY(Q), f € H(0,T; L*(Q,R?)) and g € L*(Q2x]0, T[). Then the problem (9) is well
posed and its solution p belongs to L (0,7, H*(Q2)) N H'(0,T; L*(2)).

We firstly establish the well-posedness of U in the weak form of constitutive equation by
Banach-Nec¢as-Babuska theorem with a given p as well (see Lemma. The well-posedness of p
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in the weak form of mass conservation equation (7b)) is also obtained by making use of the semi-
discrete Galerkin method and the theory of initial value problem for linear systems. At last,
we proceed the strong formulation of Naghdi-Biot coupled model by using the contravariant
components of the stress resultant n”?, of the stress couple m?® and of the transverse shear
force t#. We state this result in the following theorem,

4 Theorem

Let (f,g) in L*(0,T; L*(Q,R?)) x L?(Q2x]0, T7[), the system of partial differential equations of
the Biot-Naghdi shell model is

Let (f,g) in L*(0,T; L*(Q,R?)) x L*(2x]0,T[), we have a.e. in Q x (0,7),

-, ( [nf? (w)a, + m” (u,r)d,a3 + t*(u,r)as] \/5> + eV (py/a) =ef/a,

(u
[ —m(u,r) + t*(u,r)]a,\/a +ozezV(p\/_) = zef+/a,
cop'v/a + ardiv(u' + 2r')v/a — EdIV(VP\/_) = gV,

with the boundary conditions

( u=r =0on [y,
P =0on Iy,

<[np"(u)ag + m? (u,7)0pas + t”(u,r)as] \/5> n, — aepy/an =0on I,
mP? (u,r)a,\/a n, —aezpy/an =0 on Iy,

L Vp-ny/a =0on ;.

We also derive the Biot-Naghdi shell model in the case where dw = 7y,

4 Theorem

Assume that dw = 7y, so that
Xy = Hy(w;R?) x Hy(w)? and Wy = L>(0,T; L*(Q)) N L*(0,T; Hy(Q)).

If the solution(u,r) € Vy and p € Wy of the corresponding problem (2.22)) of Theorem [J] is
smooth enough, it also satisfies the boundary value problem:

—0,((n*” (w)a, + m*? (u,r)0,a;3 + t*(u,r)as)/a) + aV(py/a) = fy/a, in Qx]0,T]
(=my) (u,r) + t°(u,7))a,v/a+ azV(pya) = zf/a, in Qx]0,T|
Oi(cop + adiv(u + 2r))\/a — %div(Vp\/a) = gv/a, in Qx]0,T| (10)

u=r =0 on v,
p =0 on [y,




In Chapter [3| we carry out the fluid-structure interaction between incompressible flow and
poroelastic shell structure. We use the incompressible Stokes equations for the free fluid and the
Biot-Naghdi model, derived in Theorem for the poroelastic shell structure. It is equivalent
to proving the following theorem

4 Theorem

For f; € L>(0,T; (V}‘)’), fr € L>=(0,T; (X;)’), g e L>(0,T; (WI’})’) and p,,(0) € W), there
exists a unique solution (g s, Mp.hsTphs Uphs Pfhs P An) i L2 (0, T3 Vi) x W (0,T; X)) x
L>(0,T38)) x L=(0,T; V) x L0, T; W) x WE(0,T; Wi x L*(0,T; A") of the weak
formulation (3.29).

In process of proving the well-posedness of this model (see Theorem , we have trouble im-
posing the conditions on the interface which are mass conservation, balance of stress and the
Beavers-Joseph-Saffman conditions. Therefore, the Lagrange multiplier method is employed to
impose weakly this condition. We assume that the boundaries and the interface between the
fluid and the poroelastic material are fixed. The proof proceeds by constructing a semi-discrete
Galerkin approximations, deriving the discrete inf-sup condition and adopting the theory of
differential-algebraic equations (DAEs)[26].

Lastly, in Chapter [4 we derive the validation for the Biot poroelasticity systems by using the
numerical scheme proposed by Chaabane and Riviere [37](§2). Then, we employ this scheme to
simulate the Biot-Naghdi poroelastic shell model on two different domain, hyperbolic paraboloid
shell and plane-cylinder W2 shell. Our results are implemented in FreeFem-++-, a high level,
free software, finite element package (https://freefem.org/).
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Notations, surfaces geometry and
definitions

Geometry of the shell midsurface

Greek indices take their values in the set {1,2} and Latin indices take their values in the set
{1, 2, 3}. Unless otherwise specified, the convention on repeated indices and exponents is used.
Let (e, €9, e3) be the canonical orthonormal basis of the Euclidean space R3. We note u - v is
the inner product of R3, |u| = y/u - u is the associated Euclidean norm and u A v is the vector
product of u and v.
Let w be a domain of R%. We consider a shell whose midsurface is given by S = (@), where
© € W2 (w; R?) one-to-one mapping such that the two vectors

10 (z) = dupl) = 22 (a),

 Oxy,
are linearly independent at all x € @W. We define the normal unit vector

_m () A as(z)
a1 (z) A as(z)|

as(z) , TEW

on the midsurface at point ¢(z). Then the vectors a,(z) which form the covariant basis of
the tangent plane to S at ¢(x) together with the vector as(x) (which is normal to S and has
Euclidean norm one) define the covariant basis at ¢(x).

The contravariant basis a’ is defined by the relations

i) - ol () = 61,

where ¢7 is the Kronecker symbol. In particular, a®(z) = as(z). Note that all these vectors are
of class W1,

We now define the first and second fundamental forms or the metric and curvature tensors
of the surface by their covariant components

{aaﬁ<x> = aa(x) - as(x),
bag(z) = as(x) - 0gan(z) = —as(z) - Opas(z).

11
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The contravariant components of the metric tensor are given by:

The mixed components of the curvature tensor of the surface S are defined by
V2 (z) = a” (2)bao (2).

The derivatives of the vectors of the covariant and contravariant bases are given by the formulas
of Gauss:

Oatp(r) = I'75(7)as () + bap(z)az(z) and 0na°(z) = —TP_(x)a® (x) + b3 (z)as(x),

and Weingarten:
Onasz(x) = 8aa3(x) = —baﬁ(x)aﬂ(x) = =07 (z)a,(x),

where I'? 5 are the Christofell symbols of the surface, given by:
[Ts(x) =15, () = a’(x) - Opaa(r) = —05a"(2) - an(z).
The relation between covariant and contravariant bases is

{aam = aap(z)a’ (z)

a®(z) = a®?(z)ag(x).
The matrix (ao‘ﬁ ) is the inverse matrix of (aag). We note that the determinant
a(z) = det(aaﬁ(l’)) = an(z)ag(z) — (a12($))2 = |ai(z) A a2($)|27 (1)

is strictly positive on @ and we recall that ¢ € W2 (w) and y/a(z) € Wh*(w), then there
exist two constants M and ¢ such that

M >a(x)>0>0 Vrew. (2)
The element of area dS is given by
dS = +/adz.
Note that the element of volume dV is approximately given by
AV = /a(z) dadz.

Let there be given two vectors field u € H'(w,R3) and 7 € H'(w,R3) such that r - a3 = 0. Of
course, a vector can be written in terms of components relative to a local or Cartesian basis.
Hence,
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where
ui(z) = u(z) - a;(z), u'(x) = u(z) - a'(z) and ul(z) = u(z) - e;,

are respectively the covariant, contravariant and Cartesian components of u. In the same way
we write:

r(z) = ro(z)a®(z) = r*(z)aq(z) = r$(x)e;,

where
ro(x) =1(T) - an(z), r%(x) = r(z) - a®(z) and 7i(z) =r(x) - ¢;.

are respectively the covariant, contravariant and Cartesian components of r.
Finally, for v; € H'(w) and r, € H'(w) one can check that u;a’ € H'(w;R3) and r,a® €
H'(w;R3) and partial derivatives 9, (u;a’) € L?(w;R3) and 9,(rsa”) € L?(w;R?) are given by:

Oa(ui(z)a’ () = (Oaus(r) — T74(x)as(x) — bas(x)us(x))a’(x) + (Daus(w) + ba(r)us(x))a’(x)
= (ugla(®) — bap(®)us(2))a’ (x) + (uza(z) + V(2)us(2))a’ (@),

and

Oa(rp(x)a’ (@) = (Gars(w) — To4(x)as(x))a’ () + 07 (2)rs(x))a’ (x)
= rg1a(x)a’ () + b3 (x)rs(2))a’ (),

where

Ua|3(7) = Optia(v) — To5(2)us (), usja(T) = Oqus and rqp(x) = Opra(z) — [s(7)7e (7).

denote the first-order covariant derivatives of the vectors field u;a* and r,a®

4 Remark 1

Whenever no confusion should arise, we henceforth drop the explicit dependence on a particular
point. For instance, the relation “Onas = I'ga, + bagaz” means “Oyag(r) = I'94(7)as () +
bas(z)az(z)” for all z € @w; “0,a® is in the tangent plane” means “d,a*(z) is in the tangent plane
to S at ¢(x) for all x € ©”; ete.

Lebesgue and Lipschitz spaces, Sobolev spaces

Lebesgue and Lipschitz Spaces

Let © be a domain in R™ with boundary I'. Let M(£2) be the space of scalar-valued functions
on ) that are Lebesgue-measurable. In particular, M[(2) contains functions that are piecewise
continuous and, more generally, all the functions that are integrable in the Riemann sense. All
the functions used in this thesis are measurable.
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% Definition 2 I
For 1 < ¢ < o0, let

LP(Q) = {f € M(Q); || f llop< oo},

where
1/p
1 £ lopa= ( / \f(:c)|pdrv> for 1< p < oo,
QO

and
| f 1l0,00.0= €88 sup‘f(x)| = inf{M > 0; !f(x)} < M a.e. on Q}.
e

In this thesis, we employ the notation || f ||zr@)=| f [lop,0- For 1 < p < oo, we denote by p' its
. .11 : : , . , .
conjugate, i.e., — + — =1 with the convention that p’=1if p =00 and p’ = oo if p = 1.
p p

4 Theorem 1

(Holder Inequality) Let f € LP(Q) and g € LP (Q) with 1 < p < oo and fg € L'(Q) and

/Q 9l <N £ vl 9 oo -

The following corollary is a consequence of Holder’s inequality:

—{ Corollary 3

(Interpolation inequality) Let 1 < p < ¢ < oo and 0 < a < 1. Let r be such that

1 =
—:g+ C(.Then
r p q

Ve @ NLAQ), | f lo@<I f I3l £ Il

Theorem 2

(Riesz Representation Theorem). Let 1 < p < oo, the dual space of LP(2) can be identified
with LP'(Q).

From Theorem [2] we see that LP(12) is reflexive if 1 < p < co. However, L'(Q2) and L>(12) are
not reflexive.
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4 Theorem 3
L?(92) is a Hilbert space when equipped with the scalar product

(ﬁmmm—[jg (3)

Hence, we denote by (+;-)o.q the scalar product in L*(2) and when no confusion is possible, we
denote the L?—norm by

1

15 toa= ([ 12)"

In L?(Q), the Holder inequality becomes the Cauchy-Schwarz inequality:

vfag € L2(9)7 (f> g)O,Q S HfHO,QHgHQQ

4 Theorem 4

(Young Inequality). Let p, ¢ € R* be strictly positive real numbers such that:
-+ -=1
p q
Then for any non-negative numbers a and b,
a? bl

ab < — + —.
p q

The Banach-Necas-Babuska (BNB) theorem

Consider the following problem

Seek © € W such that
{ (B)

a(u,v) = f(v), YoeV,

where:

(i) W and V are vector spaces equipped with norms denoted by || - ||w and || - ||y, respec-
tively. In many applications, W and V' are Hilbert spaces, but a more general case where
V is a reflexive Banach space and W a Banach space can be considered. Unless stated
otherwise, we henceforth assume that W and V' are Banach spaces and that V' is reflexive.
W is called the solution space, and V is called the test space.
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(ii) a is a continuous bilinear form on W x V| i.e., a € L(W x V;R); henceforth, we shall also
say that a is bounded on W x V.

(iii) f is a continuous linear form on V', ie., f € V' = L(V;R). To simplify the notation, we
write f(v) instead of (f,v)v v.

4 Theorem 5

(Banach-Necas-Babuska) Let W be a Banach space and let V' be a reflexive Banach space.
Let a € L(W x V;R) and f € V'. Then, problem is well-posed if and only if:

()
a(w, v)

Ja >0, inf sup———————— >« (inf-sup condition).
weW ey || w {lwl| v [lv

(ii)
Yv EV,(‘V’wE W, a(w,v) :O) — (v:O).

Proof. See (Theorem 2.6, [43]).

4 Theorem 6
(Lax-Milgram) Let ¢ be a bounded coercive bilinear form on a Hibert space H. For every
bounded linear functional f on H, there exists a unique x; in H such that

¢(z,25) = f(2), (4)

for all z € H.

Sobolev Spaces

We define D(Q2) to be the linear space of infinitely differentiable functions, with compact
support on €. Then, we set

D(Q) = {¢la; ¢ € DRM)},
or equivalently, if @ denotes any open subset of R” such that Q C O,
D(Q) = {gla; ¢ € D(O)}.

Now, let D'(€2) denotes the dual space of D({2), often called the space of distributions on (2.

We denote by (+,)q the duality pairing between D’(€2) and D(f2), we remark that when f is a
locally integrable function, then f can be identified with a distribution by

(f.0)a = / f(@)o(x)de Yo € D(Q).
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In other words, (-,-)q is an extension of the scalar product of L?(£2). Now, we can define the
derivatives of distributions. Let o = (a, ..., ) € N" and set

af = Z Qs
i=1
for w in D'(§2), we define 0%u in D’(Q2) by:
(0°u, 9)o = (1), 0%¢), V¢ € D(Q),
when u is « times differentiable, 0%u coincides with the usual notion of derivative:

olely

For each integer m > 0 and real p with 1 < p < 0o, we define the Sobolev space:

WmP(Q) = {v e LP(Q); 0% € LP(Q) V|a| < m},

0%u

which is a Banach space for the norm

/p
| w lmpo= llullwme@) = < Z / !(90‘ ‘pdx) for p < oo,

|a|<m
or
| || m,o0,0= ||tt]|m.oo(@) = max (ess sup|0®u(x )|> for p = oc.
lor|<m e

The space WP () is separable for 1 < p < oo and reflexive for 1 < p < co. We also provide
W™P(Q) with the following seminorm
/p
/ ‘8“ }pda:) for p < cc.

tlmpr = (
|a|l=m

When p = 2, W™2(Q) is usually denoted by H™((2), and if there is no ambiguity, we drop the
subscript p = 2 when referring to its norm and seminorm. The space H™(f2) is a Hilbert space
with the inner product:

(U, V) = / 0%u(x)0%(
|a|<m
Sometimes we also make use of the following notation

> [loufa)

la|<m

!u\mg—\mmm_(z/ma W;)

laf=

llms = [l = ey = (

/2

Parallel to the Sobolev spaces, we recall the familiar definition of C™-functions:
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e CY() denotes the space of continuous functions defined in €,
e C"(Q) ={uelC’Q);0uelC’ Q) Vo <m}.
We also recall the Sobolev embeddings :
W2e(Q) = CH(Q),

and -
Wt (Q) — C°(Q).

(See Theorem 4.12 in [I] for more details).

Following the Sobolev space notations, we introduce the Korn’s inequality: Let v in H*(2)?,
there is a constant C' > 0 depending only on 2 and 052, known as the Korn constant of €2, such
that,

(Korn's inequality) — [[o]lm@) < C(€2.09) (Ie@)ll12) + 0] 2om)- (5)

As usual, for handling time-dependent problem, it is convenient to consider functions defined
on a time interval (a, b) with values in a functional space, say X. More precisely, let ||-||x denote
the norm of X; then for any number s, 1 < s < oo, we define

b
L*(a,b; X) = {f measurable in (a, b) : / | f()]|5dt < oo},

and its norm is given by:

17125 (a,b: X) = (/ It ||th) |

The space L*(a,b; X) is a Banach space if X is a Banach space, and for s = 2, it is a Hibert
space if X is a Hilbert space. We denote derivatives with respect to time with a prime and we
define for instance

H'(a,b; X) = {f € L*(a,b;X): f € LQ(a,b;X)}.



Chapter 1

Derivation and well-posedness for
Biot-Koiter poroelastic shell model

Our purpose in this chapter is the derivation of a shell model of Koiter type coupled with
the Biot model (see Theorem . We also prove the well-posedness of the resulting equations
(see Theorem . We use here the linearly elastic thin shell with little regularity in which the
midsurfaces have curvature discontinuity.

More precisely, in the process of deriving the weak form, we face difficulty of writing the
poroelastic structure model in term of shell symbols (metric tensor 7,4, curvature tensor Y,5).
In order to solving this problem, we use the structure displacement U belonging to the space
of Kirchhoff-Love displacements Vi, = {V € H'(Q,R?); &;3(V) = 0}. For the well-posedness,
we are not able to prove the existence and uniqueness of the displacement U and the pressure
p at the same time. Therefore, we firstly turn out the well-posedness of U in the weak form of
constitutive equation by Banach-Necas-Babuska theorem with a given p (see LemmalI5)]).
Then proving the well-posedness of p in the weak form of mass conservation equation in (|1.37)
by making use of the semi-discrete Galerkin method and the theory of initial value problem for

liner systems (see Lemma , & . We begin with some definitions.

1.1 Definition of a shell

Let w be a open, bounded and connected subset of R? with Lipschitz-continuous boundary and
being locally on one side of its boundary. Let S be a surface of R? defined by S = (W), where
© € W2>(w;R3) is an injective mapping. A shell M of the midsurface S is given by

M = {Q)(z,z) = p(x) + za3(x),x € w and _62(x> <z< @}, (1.1)

where e € L®(w) be the thickness of the shell, which we assume to be such that e(z) > ¢ >0
almost everywhere in w (see FiglL.1)).

19
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2 0 © M = &(Q)

Figure 1.1: Parametrization of the shell

1.2 Koiter’s approach

For obtaining his model, Koiter adapted two fundamental hypotheses of Kirchhoff-Love (see
Ph. Ciarlet [35] for more details) that we recall below:

— H1: Any point on a normal to the midsurface remains on the normal to the deformed
midsurface after the deformation has taken place, i.e.,
ai \a;
aj = ——= (1.2)
laj A a3
here a} = a, + O,u is the covariant basis of the deformed surface. We can check easily
that, after linearization:

a;(z) = as(x) — (Ouu - az)a”. (1.3)

— H2: The distance between such a point and the midsurface remains constant.

Taking these two a priori assumptions into account, W.T. Koiter then shows that the dis-
placement filed across the thickness of the shell can be completely determined from the sole
knowledge of the displacement filed of the points on the midsurface S, and he identifies the two-
dimensional problem, i.e., posed over the two-dimensional set w, that this displacement filed
should satisfy. As in the two-dimensional theories encountered so far, the unknown is a vector
field, now denoted u : @ — R, whose components u;, (resp. u¢) : @ — R are the covariant
(resp. Cartesian) components of the displacement field of the midsurface S. This means that
u;(z)a’(z)(resp. ui(zx)e’) is the displacement of the point p(z).

1.3 Functional spaces

Let us set the domain 2 = wx| — e/2;e/2[ and its boundary T'y = 92 = y9x| — €/2;¢/2],
where 79 = Ow. Let us now introduce the following functional spaces:

X = {'v € H'(w,R%); (Oqv - az)a® € H' (w,R?), v = 9,v - a3 = 0 on fyo}, (1.4)
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and
Wk = {q € L>(0,T;L*(Q)) N L*(0,T; H'(Q)); ¢ = 0 on Fg}. (1.6)

We equip the space X'x with the norm

1/2
ol = (101 sy + D 100 - a8)a o)) (1.7)

1.4 Kirchhoff-Love displacement

Let us introduce the Kirchhoff-Love space
Vi ={V € H'(Q;R?); £;5(V) = 0},

and characterize its elements. It is the object of the following lemma.

4 Lemma 4

A displacement field V € H'(Q; R?) is a Kirchhoff-Love displacement if and only if there exists
v € H'(w,R3) such that

V(z,2) =v(z) — 2(0av(z) - as(z))a®(z). (1.8)

Proof. Firstly, we derive the "forward"proof. Let V' € Vi, we have
1

So one have

{ 83V Az = 0, (19)
aaV~a3+83V-ga = 0. (110)

From ((1.9), there exists w € L*(2,R?) such that 93V = w A a3. From that, we have

/OZ 05V (2, 7)dr — (/Ozw(x,f)df)fag.

(.

O(z,z)
Hence,

V(z,z) =V (z,0) = O(z, 2) A az, with O(z,0) = 0.
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We can present O(z, z) as below

O(x,2) = O(z,0) +2050(z,0) + 22030(z,0) + - --
=0

Since z is belong to ] =5 %[ and e is the thickness of the shell, 2" ~ 0 with n > 2. Rewriting V:
V(z,z) =V (x,0) + 20;0(x,0) A as.

Let us denote t(z,z) = 2030(z,0) € H'(Q,R3) (note that t(z,0) = 0) and v(z) = V(z,0) €
H'(w,R?). V(z, z) becomes

V(z,z) =v(z) +t Aas. (1.11)
Replacing ([1.11]) into ((1.10]), we have

0=0,V a3+ 0V - g,
= 8aV - as + (8at VAN CL3) - as —f—(t VAN aaag) - as + (@3t A a3) *Jo
=0
=0y a3 — (t Nag) - Ogaz + (03t A az) - (ag + 20,a3). (1.12)

Setting
s = 0uv - aza® and © =t A ag where © = O(z, 2).
Hence, becomes
S+ Qg — Oatg + O + (ag + 20,a3) - 030 = 0.

Since d,az = —bla,,

s-aq+b0a, - O+ (ay — 2bha,) - 050 =0,
and thanks to a, = ¢fa,, we have
s-a,+ba, O+ (08 a,—zba,) - 050 =0.
We set I =62 and II = b2, so
Is-a,+1a, O+ (Ia,—21la,) 0;0 = 0.
It follows that

[Ir+116 + (I - 211)050] - a, = 0. (1.13)
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Besides, since s - a3 =0, © - a3 = 0 and 030 - a3 = (95t A a3) - a3 = 0, we obtain

[Is+ 110 + (I — 211)950)] - a3 = 0. (1.14)

From (1.13) and (1.14)), one have

[Is+10 + (I— 211)850] - a, = 0,
[Is+ 110 + (I - 211)350] - a3 = 0

Therefore, we obtain that
I[s+ 110 + (I — 2I1)030 = 0
We set A =1— zII and B =1II, then we have
A030 + BO = —Is. (1.15)
Since B = —03A, is equivalent to
A0 —03A0 = —1s
Hence,
A1 0;0 — AT?0;40 = —A%Ls.
Finally, we have

03(A710) = — A2,
O(z,0) = 0.

A particular solution of is O(z, z) = —zs(x).
Indeed, replacing this solution in (E|), we have

O3(A71O) = 95(— Ailzs)
Oy(—A"12)s
= (zA72034 — A )s
A7%(205A — A)s
A
(—A

2( zII—I+zH)
“I)s.

Hence, we have the general solution of the homogeneous equation

O(x,2) = —zs(x),0 € H'(Q,R?) with s = 0w - aza® € H'(w,R?).

Consequently, we can write V(z, z) = v(x) — 20,0 - az a®.



24 Chapter 1. Biot-Koiter poroelastic shell model
Now, we prove the reverse. Let us suppose now that there exist v € H'(w,R?) such that
V(z,z) =v(x) — 2 (04 - az)a”,

is a Kirchhoff-Love displacement field and prove that ;3(V) = 0. It is easy to check that:

Egg(V) = 83V g3 = ((%U . (Zg)a,a a3 = 0,

and
2653(‘/) = c%V ~g3+ 053V - gsg = 8gV ~ag + 05V - gs

= (85'0 — 285 [(8av . ag)aa}) - az — (Gav . ag)aa : (CLB + Zagag)

= 0pv - a3 — (0,0 - az)a® - ag — 2(0av - a3)(0pa” - az + a® - Ogas)

= 0gv - a3 — (0,0 - a3)0° —2(04v - a3)0s (a® - az) = 0.

N - Y ——
=0 —0

Therefore, £;5(V') = 0. We proved Lemma [4] O

1.5 Definition of a deformed shell

After deformation, the normal unit vector as is deformed to a vector aj which is orthonormal
to the deformed surface (transverse shears are neglected). Then, the point ®(z, z) becomes

(@, 2) = () + f(2)ai(x), (1.16)
where ¢* = ¢ +u the mapping defining the deformed midsurface, u being the displacement of
point ¢(x) on w. It should be mentioned that f(z) is an arbitrary function of z. Thus, under

the hypothesis H1 and H2, the deformed shell will be defined by the chart

O*(x,2) = " (z) + z(az — (Oau - az)a®). (1.17)

1.6 Displacement of a Koiter’s shell

Under the hypothesis H; and Hy of Kirchhoff-Love, the displacement of a point ®(z, z) is
written by

U(P(x,2)) =U(z,2) = D (z, 2) — (, 2).
This means that

Uz, z) =u(x) — 2(0su - az)a”. (1.18)
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1.7 Linearized change of shell metric tensor

Let us first introduce the local bases at each point of the three-dimensional shell. The
covariant basis is defined by

{ga = ga(x7 Z) - aaq)@:’ Z) - a’a(x) + Zaaafi(m)a
93 = g3(z, 2) = 0(x, 2) = a3(z).

The contravariant basis is defined by . '
gi g =0
It follows that
¢* =g** =0and ¢** = 1.

We recall that, given arbitrary displacement field V' of a three-dimensional manifold ®(£2) in
R?, the covariant components £;;(V) of the associated linearized change of metric tensor are
defined by:

e(V) =e,;(V)g' @ g with e;5(V) = %(%(V) —gi)", (1.19)

where ¢;;(V) and g;;(V), respectively, are the metric tensor in the configuration of reference
and the deformed shell. The vectors of the deformed local basis are defined by:

9o (V) = 0,0* =a’ — z(bg)a;,
gg(V) = 63@* = a§,

and an approximation of covariant components of metric tensor of the deformed shell is given
by:

9ap(V) = 9o (V) - g5(V) = aly — 22b} 5 + 2°Clg,
ga3<v) =0,
g(V) =1,

where aj 5, bis and ¢z point out the covariant components of the first, second and third
fundamental forms of the deformed midsurface.

Since a surface also has a metric tensor, it is natural to likewise define the covariant compo-
nents of the linearized change of metric tensor associated with any displacement field defined
on it. Thus, for a given arbitrary displacement field v of the surface S the covariant components
of the linearized change of metric tensor associated with this vector field is defined by:

1 lin 1
Yap(v) = E(aag(v) — Qo) = 5(8&0 -ap + 0 - a,). (1.20)
We also introduce the linearized change of curvature tensor on the shell midsurface by its
covariant components:

Top () = (bap(®) = bap)'™ = (Oapu — 7 ,00) - as. (1.21)
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Remark 5

Note that all these quantities make sense for shell with C'-regularity, and are easily expressed
with the Cartesian coordinates of the displacement field and geometrical data. For instance,
Y.s5(v) is a distribution of H~!(w) when v € H'(w;R?) and the chart ¢ is in W% (w; R3).

Now, if the three-dimensional displacement V' is of Kirchhoff-Love type:

Viz,2) =v(z) z(@av(m) - ag(m)>aa(as),

then, by neglecting all the terms containing 2%, the covariant components of the associated
linearized change of metric tensor ([1.19) is given in terms of the change of metric and change
curvature tensors on the midsurface S by:

ap(V) = Yap(v) — 2Tap(v),
€a3(V) = 0, (122)
633(V) =0.

Remark 6

When the normal strain e33(V') and the shear strains €,3(V) are small compared to the cross-
sectional strains, plane strain, (1.22]), is then an acceptable approximation for the shell change

metric tensor ((1.19)).

1.8 The tensor of shell constraints

We consider a three-dimensional continuous homogeneous shell subjected to given forces.
Then, the stresses and strains of this material are connected by Hooke’s law, ({1.23]), which is
only a first-order linear approximation to the real response of the elastic shell to applied forces,
when they are small enough. For a given displacement field V', the stress tensor is then defined
by:

o(V) = Mr(e(V))Id+2us(V), (1.23)
where A and p are the Lamé coefficients of the material (A > 0 and p > 0).

We present in the lemma below the contravariant components of the tensor o in term of
change metric tensor and the geometrical data of the shell.
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4 Lemma 7

Let V be a given displacement field. The stress tensor o(V') given by the Hooke’s law ([1.23)
can be rewritten as

o(V)=0g;,®g;, witho? =0c(V):g'®g = EWey(V), (1.24)

where the notation “” denotes the product of two tensors, o : 7 = 019 g/ 7y and E¥M is the
elastic tensor defined by

B = \gg" + (g g + gtgT®). (1.25)

Proof. We remark that
tr(e(V)Id:g' @ g =tr(e(U)tr(Idg' ® ¢°) = tr(e(V))g",
and
tr(e(V)) = en(V)tr(g" @ ¢') = eng™.
It follows that
Mr(e(V)Id:g' ®g" = Mg gF e (V). (1.26)

Let’s see the second term containing p of (1.23). If we express the tensor (V') in the basis
kol
g ®g, e,

eV)=(c(V): 9 ®9)g" ®g =cu(V)g" @4,

we obtain
eV):g®g =enV)g-wg g @4’
Thanks to
g'eg gog =tr(d©g") (g ®g") = g"g",
we get

€(V) :gi ®gj = €kl(V)gilgkj.

Since (V') is a symmetrical tensor,

e(V):g'@g’ = 5en(V)(g"g" +9"g").
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It is equivalent to
2ue(V) 1 ' @ g’ = pe(V)(g"g" + g"g"). (1.27)
Consequently, from and ((L.27)), we obtain
(Mr(e(V)Id +2ue(V)) : ' @ g = (Ag7g" + u(g™ g + g"9"))ena(V).

Replacing the symbols of the tensor of constraint ¢ and the elastic tensor E¥* to the above
equation, we obtain

O'(V) Zgi ®gj = Eijkl&gl(V).

4 Remark 8

Let us recall that ¢” are the covariant components of shell metric tensor. It should be pointed
out that ¢ = ¢3* = 0 and ¢* = 1. Thus we have

E3Pr = 3336 — (1.28)

)
and

3508 — \go8 338 — 508 and E3338 — \ 19y (1.29)

Finally, in order to derive the two-dimensional Koiter’s model, we state the third hypothesis of
Kirchhoff-Love:
H3: The stress tensors are planar, i.e., for an arbitrary displacement field V', 033(V') = 0.

Remind that

0'33(V> = EsgaBéTag(V) + E3333€33(V)
= )\gaﬁgag(V) + ()\ + 2#)633(‘/).

So, if A # 0, H3 leads to

A
eg3(V) = e 2Iw(]”ﬁsa/;(V).

We then notice that the hypothesis Hs is not compatible with (1.22)) as soon as A # 0. Hence,
we correct the definition of the change of metric tensor introduced in ([1.22)) as following;:

ap (V) =¢€ap(V),
a3 (V) = €as(V),
ez (V) = — 9*%as(V).

A+ 2u
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1.9 Derivation of Biot-Koiter shell model

A word of caution. For notational convenience, we omit throughout this section the
exponent “cor” in the expression &{7".

The poroelasticity theory was developed by Biot ([10], [11], [12], [13], [14] and [15]) several
decades ago and it has been studied extensively. Poroelastic phenomena are interesting in
numerous applications as geomechanics, ground-surface water flow, reservoir compaction and
surface subsidence, seabed-wave interaction problem, etc.

The poroelastic shells and their interactions with fluids are part of a wide variety of issues
and a largest interest for contemporary engineering (ship hulls, reservoirs; ...) and biomedical
problems (heart, bones, intestine skin, ...).

Our purpose here is to derive, from the equilibrium equations of three dimensional lin-
earized poroelasticity, a two dimensional linearized model for porous shell, essentially based on
Kirchhoff-Love assumptions H1, H2 and H3.

Usually, in shell theory (see Ciarlet[35] for details) the unknowns are identified to their
local, covariant or contravariant components of the displacement. Our framework here is a
free local basis formulation for the displacement and considered shells are with little regularity
midsurface, since we authorize surfaces with curvature discontinuities.

In three dimensional linear elasticity, the undeformed body occupies a region M. Under
loading, a point x € M moves to £ +U(z). Let I'oUT'; be a partition of the boundary dM with
meas(fo) > (. Then the equilibrium equations of three dimensional elasticity are:

—dive(U) = f in M (force balance),
oU) =H:cU) in M  (constitutive),
U =0 on Iy (clamping),
o-n =h onT; (force balance),

1
where o(U) is the stress tensor and €(U) = é(VU + (VU)T) is the strain tensor.

Let us recall the Biot model, introduced by Biot in [47], the constitutive equation for the
Cauchy stress tensor ¢ in terms of the displacement U and fluid pressure p is

oc=0U)— apl, (1.30)

where I is the identity tensor, a(U) is the stress tensor, expressing the Hooke’s law:
o(U) = AdivU)I +2uc(U), (1.31)
where A > 0 (dilation moduli) and p > 0 (shear moduli) are the Lamé coefficients, and o €]0, 1|

is the Biot-Willis constant, which is usually around one. The flux of the fluid v is governed by
Darcy’s law in porous media

vy = —%Vp, (1.32)
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where 7 > 0 is the fluid viscosity, assumed to be constant, and x is the permeability of porous
medium.
The equation of mass conservation is

a¢ .
i —dives + g, (1.33)

where ¢ is a volumetric fluid source term and ( is the fluid content of the medium; ( related to
the fluid pressure p and material volume div U by

(=cop+adivU, (1.34)

where ¢g > 0 is the constrained specific storage coefficient, that is assumed to be constant. As
explained by Phillips and Wheeler in [75], ¢ = 0 may lead to locking, whatever the value of
the Lamé coefficient A. Although in practical situation, ¢y can vanish, we do not consider this
possibility here and therefore we suppose that ¢y > 0. With and , the equation of

mass conservation reads

%(Cop +adivU) — %diV(Vp) =g. (1.35)

Finally, the balance of linear momentum is derived by making a quasi-static assumption, namely
by assuming that the material deformation is much slower than the flow rate, and hence the
second-time derivative of the displacement (i.e. the acceleration ) is zero. Denoting by f the
body force, this yields
—dive = f. (1.36)
Thus, replacing the constitutive relation ((1.30f) into ([1.36)) we obtain
~V-o(U)+aVp = fin Mx]0,T].

Collecting the above equations, we have the following system of equations a.e. in 2x]0, T':

( ~V-o(U) +aVp=f, in Mx]0,T], (1.37a)
%(Cop + adivU) — %div(Vp) =g, in M x]0, T, (1.37b)
U =0, on 9Mx]|0,T7, (1.37¢)

p=0, on OMx]0,T], (1.37d)

\ p(z,2,0) = po(x, z), in M. (1.37e)
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4 Remark 9

i) The Biot system is supplemented with relevant boundary and initial conditions that have
physical meaning. The initial condition associated to second equation of should be
given as:

(cop+a divU),_, = copo + o div Up. (1.38)

However, in the practice, the initial pressure is a measured data and the initial displace-
ment Uy is obtained as the the unique solution of first equation of ((1.37)), where we replace

p by po.

ii) The coupling first order terms in the system have the following meaning: The term Vp in
the first equation results from the additional stress in the medium coming from the fluid
pressure, the term div U in the second equation represents the additional fluid content
due to local volume change.

Remark 10 I
When v € Xy, it is easy to check that d,sv - ag belongs to L?(w;R?). Therefore, the tensor
Yos5(v) belongs to L?*(w) since ag is in W,

Let a®%” € L>*(w) be an elasticity tensor, which we assume to satisfy the usual symmetries
and to be uniformly strictly positive, i.e., for all symmetric 7,5 and almost all € w,

a7 (@) TogTe > ¢ [Tagl’, (1.39)
af

with ¢ > 0. In the case of homogeneous, isotropic material with Lamé moduli g > 0 and A > 0,
we have

20\
a®hr7 (x) = 2. fzuao‘ﬁa’” + w(a®a® + a*a’?).

In the theorem below, we establish the weak formulation of the Koiter-Biot shell model.
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4 Theorem 7

If U and p are a solution of the strong formulation ((1.37), such that U = u — 2(d,u - a3)a®
a Kirchhoff-Love displacement, then uw and p belong, respectively, to Vi and Wy solve the
following weak formulation:
A (w;v) + Bf (pyv) = LT (v) W € X, (1.40a)
Az (0;9) + By (u;q) = L3 (a) Vg € Hy(), (1.40b)
p(0) = po in Q, (1.40c)
where
2
e
A{{(u;v) = / eaaﬁpa [Vaﬁ(u)'ypa(v) + ETOAB(U)TPO’(’U)} \/Edar:,
BE (p;v) = —a/pdivv\/EdX + a/p div (2(0.v - a3)a®)vadX,
Q Q
L () = / [+ (v—2(0wv - as)a*)adX,
Q
A3 (p; q) :60/p’q\/5dX+g/Vp-vq\/adX,
Q Q
B (u;q) = —a/(div uw')gvadX + a/ div (2(0,u’ - as)a®)qv/adX and
Q Q
Ly (q) = / ggv/adX.
Q
Remark 11 I

We use p(0) in Eq. (1.40a]) to get u(0). For a given p(0), the initial displacement is the unique
solution of (1.40a)), where we replace p by p(0).

Proof. (of Theorem (7)) Let U be a solution of (1.37). We then multiply the equation (1.37a)) by
a test function V' € Vi of Kirchhoff-Love type, that is to say that, by lemma [ there exist
v € H'(w;R3) such that V = v — 29,v - aza®. We thus obtain:

—/ (v.a(U))-Vdv+a/ vp.VdV:/f.Vdv, WV € Vicr.
M M M

It follows that

- [(eo@)) vvaix o [ vvaax - [ 5vvaax.
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Applying Green’s formula and the boundary condition, we obtain

/QU(U):e(V)\/ade/ﬂvp.V\/adX:/ﬂf-v\/adx.

vV
I

TV TV
J K

We then have

Q

. /Q (U )ens(V)/adX + /Q (U )ess (V) vadX +2 / (U )20 (V VX

=0 =0
Therefore,
I= [ By )an(V)VadX.

Thanks to Remark [§] it follows that:

I= [ B @)as(VIVAAX + [ BPe U)eas(VIVadX
Q Q
i / By (U)eos(V)VadX + / / B3 o (U)eus(V)Va dX
(9] QJO

-

-~
=0 =0

« g )\2 (03 g
= [ B @)aVIVadX < o | e UV VadX
= /Q [Agaﬁg”"+u(g“pgﬂ”+go‘”gﬁp)]6pa( Jeas(V)VadX

)\2 (07 log
- | e U)ean(V)Va aX
_ QIM)‘ aff po
5 | e Uz V) VX

+M/Q(g“”96"+g“"gﬁp)€pa( )eap(V)VadX
- / A9, (U )ens(V) VadX,

where

Aobe =i PgP? + u(g™ g” + g*° g"").

Let us set the covariant components, ¢g®?, of the shell metric. Suppose that

Gap = Qap — 22ba5.

33

(1.41)

(1.42)

(1.43)
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We remark that

11:@’ 22 _ 91112 92
g g g
One deduce an approximation of ¢*?, given by
g°% = a® + 2208 4 ... (1.44)
where b* = a*?a’?b,, are the covariant components of the secondly fundamental form of

surface S. If we neglect the term containing z in ([1.44)), (1.42)) becomes
I= / a®?"e .o (U)eas(V)va dX
Q
e/2

— / / / a®Pro {’ypg(u) — szg(u)} |:")/a,3(’U) - ZTag(U):| Va dz dx

wJ—e/2

1
— /eaaﬁﬂﬂ,ypa(’u,)’yaﬁ(’v)\/a dx + E / 63 aaﬁpa'rpa(u)'raﬁ@))\/a dx
o2

= e/ e {7,)(,(11,)%5(1)) + ETpU(U)Taﬁ<’U):| Va dz, (1.45)

where

20\
a®bro — o fzuao‘ﬁa‘"’ + p(a®a® + a*"aP?).

The second term of becomes:
J:oz/QVp-V\/EdX:oz/F pV~ndF—a/deiVV\/EdX:—oc/Qp divVv/a dX
= —oz/ﬂpdiv('v — 2(04v - a3)a”)a dX.
We continue with the term K,
K:/Qf-V\/EdX = /Qf- (v —2(0av - a3)a”) Va dX.

Consequently, (1.41)) implies that
AF (usv) + B (pyv) = L (v). (1.46)

Similarly, we now multiply the equation ([1.37b)) by ¢ € H}(€2). We then obtain:

/8t(cop+V-U)q\/EdX—%/qu\/EdX:/gq\/EdX, Vg € Hy(Q). (1.47)
Q 0 Q
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For convenience, we replace d;p by p’ and 9,U by U’. So, for all ¢ in HZ (), (1.47) is equivalent
to

—0
00/pIQ\/5dX—|—oz/(divU')q\/Ed —%/ q(Vp-n)\/adF—l—%/Vp.vq\/adX
Q Q To Q

N S/
-~

LS

:/quX. (1.48)
Q
RS

We have
LS:CO/Qp'q\/adX+a/Q(div U’)qﬁdX—i—%/QVp-Vq\/EdX
:/Qp’q\/EdX—koz/Q div (u’—z(aau’-ag)a“)q\/EdX—l—%/QVp-Vq\/EdX,
and

RS:/gq\/adX.
Q

Then, (1.48) becomes
co/p’q\/EdXJroz/ div (v’ — z(@au'-ag)ao‘)q\/adX+%/Vp-Vq VadX :/gq\/EdX,
Q Q Q0 Q

or

A (p;q) + B3 (u;q) = L5 (q). (1.49)

From (1.46) and (L.49), we obtain Theorem 7 O

Succeedingly, we derive the well-posedness of the weak problem (1.40)).

1.10 Well-posedness

In this section, we prove the well-posedness of the problem introduced in Theorem ([7)) and
prove that its solution p belongs to L*(0,T, H'(Q)) N H*(0,T; L*(Q)). For the well-posedness,
we are not able to prove the existence and uniqueness of the displacement U and the pressure
p at the same time. Therefore, we firstly turn out the well-posedness of U in the weak form of
constitutive equation by Banach-Necas-Babus theorem with a given p (see Lemma .
Then proving the well-posedness of p in the weak form of mass conservation equation in
by making use of the semi-discrete Galerkin method and the theory of initial value problem for

linear systems (see Lemma & [19)).
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Theorem 8
Let po € H'(Q), f € H'(0,T; L*(Q,R?)) and g € L*(2x]0, T[). Then the problem (|1.40) has a
unique solution. The pressure p belongs to L> (0,7, H'(2)) N H'(0,T; L*()).

The proof of Theorem |8 is comprised of two steps and each step is comprised of a series of
lemmas.

Step 1. Let us begin by providing an existence and uniqueness result of the displacement
u(p) for the equation when p is given. First of all, we recall the rigid displacement lemma
in the functional framework introduced in [21].

4 Lemma 12

Let v € H'(w;R?) and assume that ¢ € W (w, R3).
1. If y45(v) = 0, then there exists ¢ € L*(w; R?) such that 9,0 = ¢ A a,.

2. If T,p(v) = 0, then 1 is a constant vector in R® and there exists ¢ € R? such that

v(x) =c+ Y Ap(z). (1.50)

Proof. See Theorem 6 in[21]. O

Thanks to Lemma [12] we introduce the new norm ||| x on Xx,

4 Lemma 13

If v € H(w,R3) and ¢ € W?*(w,R3) such that v = 0 on o and ¢(7p) is not included in a
straight line, then v = 0 a.e. on w. Therefore, one can check that:

1/2
lloll,. = (Z s (@) 2y + 3 ||Taﬁ<v>||%z<w)) (L51)
a,B a,B

is a norm on Xy.

Proof. It is clear that this the mapping v € Xk > [[|v|,, is a semi-norm. By Lemma (12} if
v € Xk is such that |||, = 0, then there exist ¢, ¢ € R? such that v(z) = ¢ A p(z) + ¢. The
set of points y € R3 such that ¢ A y + ¢ vanishes is either a straight line (1) # 0 and ¢ # 0),
empty (¢» = 0 and ¢ # 0) or the whole space (¢ = 0 and ¢ = 0). Since v vanishes on dw and
©(0w) is not included in a straight line, it follow that v = 0. O

From Lemma 13} we prove in the following lemma the equivalence between (1.7) and (1.51)).
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4 Lemma 14

The norm

1/2
lloll,. = (} Has @22 + 3 ||Taﬁ<v>||%2(w))
a,B a,B

is equivalent to the norm ([1.7)) on Xy.

Proof. We prove this lemma by contradiction. Let us assume that there exists a sequence v,, in
X such that

vl = 1 and |Jva]]l . — 0 when n — +oc. (1.52)

By extracting a subsequence, still denoted v,,, we may assume that there exists a v € Xk
such that v, — v weakly in H'(w,R?) and 9,sv,,-az — 9,5v-a3 weakly in L*(w). Consequently,

Yap(Vn) = Yap(W) and Ypos(v,) — Top(v) weakly in L*(w), (1.53)

by expressions ([1.20)) and ([1.21]). Since hypothesis ((1.52) implies that these tensors converge
strongly to zero in L?(w), we obtain v = 0 thanks to Lemma Rellich’s lemma now implies

that v,, — 0 strongly in L?(w;R?).
Let us introduce the vector (wy,)o = ¥, @4, which is such that w,, — 0 strongly in L?(w;R?).
Let us define 2e,5(w) = dsw, + 0,wps. We see that, by expression ([1.20)

1
ap(Wn) = Yap(vn) + é'vn - (0gan + 0na3) — 0 strongly in L2(w), (1.54)

since a, € WhH*(w;R?). By the two-dimensional Korn inequality , we deduce then that
w, — 0 strongly in H'(w;R?). Consequently,

Oy - @ = 0,((Wn)a) — Vi - Dpta — 0 strongly in L*(w), (1.55)
since d,a, € L™ (w;R?).

Moreover, as v,, = 0 in H'(w;R?), it follows that d,v,,-az — 0 in L*(w). On the other hand,
(0,0, - az) = Dppvy, - a3 + Opv, - Ogaz — 0 in L*(w). Indeed, dpas € L>®(w;R?) and we already
know that ds,v,, - a3 — 0 weakly in L*(w). Consequently, d,v,, - a3 — 0 weakly in H'(w) and
by Rellich’s lemma

d,v,, - az — 0 strongly in L*(w). (1.56)
We deduce from ([1.52)) and ((1.56) that
Oupln - a3 = Yop(vy,) + F’;ﬁapvn -a3 — 0 strongly in L*(w), (1.57)

since I ; € L=(w), and on the other hand that
0,0, = (0 v, - ai)ai — 0 strongly in LQ(w; R3), (1.58)

by (1.55), (1.56) and since both a; and a’ belong to L>(w;R3). Consequently, v,, — 0 strongly
in H'(w;R3). Since by (1.57)), Oupv, - a3 — 0 strongly in L*(w), we see that ||v,|x, which
contradicts ((1.52)) and proves the lemma. O
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Now, we derive the main proof of the well-posedness by the following lemma,

4 Lemma 15
For a given p in L*°(0,7; L*(2)) and f in H*(0,T; L*(Q2,IR?)), there exists a unique solution
u(p) in Vg solving, for a.e. ¢ in |0, T,

Af (u(p),v) = L, (v) W € X, (1.59)

where L{,(v) = L (v) — B (p;v).

Proof. We will prove the well-posedness by using the Banach-Necas-Babuska theorem [5 For
a.e. t €]0, T and for all w in Vg, we have, thanks to Remark [10} ii):

“up Af (w;v) . AF (w; w)

vexe  llae T [[wllag

. 3 2
min{e, 5 }llw][z
]|
. 3
min{e, 5 }C|lwl|,

[l
. 63
= min{e, - }Cwllx,

by using Lemma [13] and
Therefore, for a.e. ¢ in |0, 7] and for all w in Vg, there exists # = min{e, %}C such that:

K .
“up Al (w;v)

——— > 0||w|| g (1.60)
veEXK HUHXK

On the other hand, for all v in Xk, suppose that, for almost every ¢ €]0, 77,
A (wiv) =0, Vw € V.
Hence, by the equivalence between two norms || - ||x, and ||| - |||k, we have
K - c 2 - ¢’ 2
0= Af (v;v) > min {¢; E}HMHK > min{c; E}CHUH-XK > 0.

Therefore,
v=0. (1.61)

Additionally, there exist positive constants C, Cy, C3, Cy4 such that
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L3 @)] =

o /w Pdive/a dz — a /w ( /_ " div (=000 ag)ao‘)dz)\/&dx

e/2
+/ef -vvadx
< Cilpllowldivollow + Cal|pllowll (Oav - as)a®|| g1 wrs) + Csl| Fllowlv]low

< Co 2R + 1 1R fIivolR, + 11000 - 0)a s ) + 013,

e/2
by using the Cauchy-Schwarz inequality. Note that p(x) = / p(z, z)dz. Therefore, with a
—e/2
given p, there exists a constant C' > 0 such that
14,0)] < O\l mo) + 100 39)° B ) = Clol (162
Combining (|1.60]), (1.61)) and (1.62)), we can see that the bilinear form AX(-; -) and the contin-
uous linear form L£f (-) satisfy the conditions of the Banach-Necas-Babuska theorem. So, the

problem ([1.59)) is well-posed. O

Comment. We are able to prove this theorem by using the Lax-Milgram lemma. Thanks to
the inequality and the equivalence between two norms ||| - |||x and || - ||x,, we obtain
the continuity and coercivity of AX. More precisely, by the Holder inequality and the upper
bounded quality of a®?*° and +/a, there exist C;, Cy and Cs such that

|AK (u,v)| = ‘/ea“ﬁ’” [Yas ()70 (v) + %Tag(u)Tpa(v)}\/de

S 01 +02

[ restun ) da| + Co| [ Vst tyuto) i

< Cil[Yas@)l] 22) 170 ()] £20) + Col I Tap ()] 20 [T oo () | 22(w)

1/2
< cg(umum%?(w) ; ||Ta5<u>||i2<w)) (mﬁ(vﬂ&z(w) i ||Taﬂ<v>||%2(w))

1/2

= Clllull[xl[olll,  Vu, v € X
By the equivalence between two norms ||| - |||k and || - || x,, there exists a constant Cy such that
(AL (u,0)] < Culllull[x ol Yu, v € Xy (1.63)

For the coercivity, by the inequality ([1.39)) and the relation of two norms ||| - |||x and || - || x,,
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there exist constants C7, C4 and C% such that
2
e
AL w0 = | [ e [r0p(0)n(0) + 55 Tas(0) V(0] Vi
>} [ sz + € [ [Tosfo) o

> min{CY; C4) / (@) + | as(@)P)dz
— min{C: Y ll% = Cllol, Vo € Xy (1.64)

From ((1.63)), (1.64) and the Lax-Milgram Lemma, Lemma is proved.

% Remark 16 I
i) When the initial condition py is given, the initial displacement wu is obtained as the unique
solution of the equation ([1.40al) in which we replace p by po.

ii) Since the mapping p — u(p) is a continuous affine mapping from L*(Q) to Xx: There
exists a constant C' such that

vplu D2 € LZ(Q>7

‘U(pl) —U(pz)HXK <O | p1—p2 22 -

Hence, 1) has the equivalent implicit formulation: Find p in L% (O,T; LZ(Q)) N
L2(0,T; H'(Q)) satisying ([1.40c) and for almost every ¢ in 0, 7:

co/p’q\/adX+a/ div(w'(p) — 2(0aw'(p) - a3)a®) g vadX
0 0
+%/Vp-Vq\/5dX:/gq\/EdX, Vg € Hy(Q), (1.65)
Q Q

with u(p) defined by (1.59)).

For proving the well-posedness of the semi-discrete problem (|1.70]). It is convenient to split u(p)
as follows:

u(p) =u+u(p), (1.66)

where u € Xk is the unique solution of
Vv € X, Al (w,v) = (f, (v — 2(0av - a3)a®)Va),,, ac. t €0,T], (1.67)
and u(p) € Xk is the unique solution of

Vv € X, A (u(p),v) = a(p, div(v — 2(0.v - a3)a®)Va),,, a.c. t €]0,T. (1.68)
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According to the proof of Theorem [7} since the term [ is in both (L.41) and (L.45), we see
that

2
e
. / o {w(u)m(v) 5 o) Tas(v) | Va da = (o(U),e(V)Va) .
It leads to
Al (u,0) = (o(U),e(V)Va),,. (1.69)
Subsequently, we show the second step of proof of Theorem [§
Step 2. We use the Galerkin method to construct a solution p.

Let (0,)n>1 be a smooth basis of H}(2) and let @}, be the space spanned by (6;)%_,, i.e.,
Qr = Vect{by, ..., 0 }. Then, our semi-discrete problem reads: Find

k
pi(t) = Zm(t)ﬁi € H'(0,T; Q)
i=1
such that
Co / p;ﬁz\/&dX + CY/ div (17;6 — z(aaﬂ; . ag)aa)ei \/adX + % / Vpk : V@Z \/EdX
Q Q Q

= —a/ div (@' — z(@aﬁ'-ag)aa)é’i\/adx—l—/gé’i\/adX 1<i<k, (1.70a)
) Q
pr(0) = por, (1.70b)
where @ is defined by (1.67)), u, = w(py), i-e. u(px) = U + uy and por. € Qi satisfies
Jim {|pox — poll () = 0-

The system ([1.70)) is a square linear system of k¥ ODEs of order one in matrix form. We establish
now the well-posedness of the problem ({1.70]). It is the object of Lemma

Lemma 17

Let po € HY(Q), f € H'(0,T; L*(Q,R?)), g € L*(2x]0,T[). The semi-discrete problem ([1.70))
has exactly one solution on [0, 7.

Proof. Thanks to , we have
AF <17(7r§(t)02-),v) = a(mj(t)0;, divuv/a) , + a(7j(t)0;, div(z(0av - as)a®)Va),,,
AF <ﬂ(9¢),v7r§(t)) = a(0;, 7(t)divov/a) , + a(0;, 7} (t)div(z(9av - as)a®)Va),,-
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Hence, we obtain

A <'?i(7r§(t)9i),'v> T (ﬂ(&i),vng(t)) YT (ﬂ(&i)wg(t),v).
This follows that
u(mi(t)0;) = u(0:)mi(t).
We write in matrix form and define the following vectors and matrices
P, =m, 1<i<k, Cy=cyb;,0iva)a, 1 <i,j <k,

A = a(div[u(9;) — 2(0.u(0;) - az)a®], 0;v/a)a, 1 <i,j <k,

and

D, = g(vej,w,-\/a)ﬂ, 1<i,j <k

With those notations, (1.70)) is a square system of k linear ODEs of order one: Find P €
[H'(0,T)]* such that

{(C+A)P’+DP — H, vt €]0,T], )

P(O) = PO7

where H is the vector of the right-hand side of (1.70al). Note that C and D are square and

symmetric matrices. Let us prove that they are positive-definite.
For Z € R¥, we have

K K K
ZTCZ =y Y (0;,0a)aZiZ; = co Y (Z;6;, ZibiVa)a = co Y || Zibia" 720

1,j=1 2,j=1 1,j=1

k

ij=1

Since ¢o and ¢ are both positive constants, if ZTCZ = 0 then Zﬁjleiei = 0. Because {6, }n>1

is a basis of H}(Q), then Z; = 0 for all 4. It follows that Z = 0. Therefore ZTCZ > 0 for all
Z # 0 and C is a positive-definite matrix.
Similarly, for matrix D we have,

k k
ZTDZ = =N (V6,, Vo a)aZiZ; = g N (2,6, ZiV6ia)a

i,j=1 6j=1

k k
K K K
= > 1200 3y > ;\/S > 203 > ;\/Scnzieinim) >0,

i,j=1 i,j=1
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thanks to Poincaré’s inequality.
Since C' and & are both positive constants, if ZTDZ = 0 then ijleﬂi = 0. Because

{0, }n>1 is a basis of H}(Q), Z; = 0 for all i. It follows that Z = 0. Therefore ZTDZ > 0 for all
Z # 0 and D is a positive-definite matrix.

Regarding A, by choosing p = 6; and v = u(6;) in (|1.68), we have

Note that A is a square and symmetric matrix. Let us prove that A is positive. Indeed, we have

2 AL = AS @6)506,)) 222, = (2 (@6)).2(66))Va) 42,

>0 a(a(ei)),g(a(ej))> 77,
= 2Vop <g (w(0;)),= (@
- 2\/5u<25(ﬂ(9i)

7

~<ej))9> inzj + VoA (div(ﬂ(&i)) ,div (a(ej))) inzj
)Zi, Z g(a(ej))zj>Q + \/SA@: div (u(6;)) Zi, Z div(a(ej))zj>

> 0.
Q

Q

= 2\/SMH Zs(ﬁ(@i))Zi Z - \/5)\’

Then, we conclude that the matrix C+A is square, symmetric and positive definite. Hence,
(1.71)) has exactly one solution on |0, T'[ by the theory of initial value problem for linear systems
([38]-Theorem 7.4). O

Let us prove now that the sequences (pi)r and (u(pg))r of semi-discrete problem ((1.70)) are
bounded. For obtaining this result, we firstly test with o' (pr) = u(p),), (1.70a)) with py,
add two equations and integrate with respect to time on |0,¢[. Next, we test (1.70a) with p},
differentiating in time (1.59) written for p = py, testing the resulting equation with «'(py),
adding the two equations and integrating with respect to time. Finally, we add all equations
together and apply the Young and Holder inequalities. It is the object of the following lemma.
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4Lemma 18
Let pg € HI(Q), fe Hl(O,T; L2(Q,R3)), g€ LQ(QX]O,TD.

i. The solution p; and u(py) of the semi-discrete problem ((1.70)) satisfy the following uniform
bounds

< (C and (1.72a)
0,T:L2(Q) )

<C, (1.72Db)

0@ ozt + P81 (o) + VPRI

0,T5L2(%2)

[ )| 20 2500y + Ikl ) IVl

0,T;L2(9) 0.TL2(2) )

where C' depends on 7', f, pg and g.

ii. Moreover, there exists a function p in H'! (0, T, LQ(Q)) N L (O, T, Hl(Q)) and a function
win H'(0,T; H}()) such that

pe — p weakly-x in L (0, T; HI(Q)), (1.73a)
pr — p weakly in H' (O,T; L2(Q)), (1.73Db)
u(py) — w weakly in H'(0,T; Xx). (1.73c)

Proof. We adapt some arguments of [47]. We test (1.59) with «'(px), (1.70a]) by p, add two
equations and integrate with respect to time on ]0,¢[. This becomes

/0 / e a7 Yo (w(pi(1))) Yoo (W' (p(1))) vV da dt

-~

Iy

// 07T o (wlp(8))) Yo (& (1)) v/ de d

-~

P

—i—\/ot/gp;(t)pk(t)\/a X+ /Ot/ﬂ\v;ok@)fﬁdm

TV
I3

S/

:/Ot/ﬂgpk(t)\/adth—k/ot/ﬂf- (u'(pk(t))—z(@au'(pk.(t))-ag)ao‘)\/adth. (1.74)

-~

I5

Using the symmetric property of 7,5 and applying the inequality (1.39)) to Iy, there exists a
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positive constants c¢; such that

I, = //eao‘ﬁp” 7,,(,( ( ()))\/admdt
3 [ e s o) e )] Va
/eaaﬁﬂ“/ s (P (6))) oo (i (1)) dt Va da
= Q/GGQWU[’Y 5 (w(Pr(t))) Voo (w(pr(t)) — Yas (w(pro)) Voo (w(pro)) | Va d

-2 / a7 (w(pr(£))) o (w(pr(1))) Vi do

a % /w € a®P7 Yo (w(Pro)) Yoo (W(Pro) ) Va dz

> ﬁ/ ‘Vaﬁ(u(pk(t)))‘%/adx—%/eaaﬁpcr%ﬁ(u(pko))ypg(u(pko))\/adm_

Similarly, thanks to the symmetric property of T,s and the inequality (1.39)), there exists a
positive constants ¢y such that

I= / [ 0wl (0)) T o 10 Vi
/0 [ a7 [Tl ) o (ulpn(4)] v doc
- o e3a°‘5p”( / s (pk(t)))Tpa(u(pk(t)))],dt)\/Ed:l:

0

— 2_14 / e qPre lToﬁ (w(pr ()T po (w(pr(8))) = Yap (w(pro) () Yo (w(pro)) | Va dzx

= o [ A e 0) T (wln(1) Va da

1
~ 54 / e® a®"" Y o5 (w(pro)) T po (w(pro) ) vVa dz
1
> ;—Z /w | Tap (u(pi(t))) \Qﬁdx ~ 9 /w ® a7 Y o5 (w(pro)) Y po (w(pro) ) Va dz.
Subsequently, we make I3 clearer,

L= [ [semovaxa= [ (/ B(Ope(t) i) vaix

5 [ (0 st ) vaax =3 [ o vaax - 5 [ |l vaax.
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Applying the Young and Hélder’s inequalities to I, we have

I4:/Ot/ggpk(t)\/adth

t t
i / / ape(t) dX di < /T / llloallor(®lloadt
0 JO 0
1 [t e [*
< Vi [oliade+VaZ [ ol ot
0

t
&1
< e €1 2
VM ||9|| 2 (0r:2) + VM / Ve ()50
< L2 /AL 2
<V M2€1 H9HL2 (0722(2) + vakHLQ (072(9)"

Lastly, analogous to I, we derive the upper bound of I5 by the Young and Holder inequalities

I - / [ £ ) = =00 (0) - ax)a) Va axa
< VI / [ Flloclof (x(t)) — =00t (pi0)) - as)ac|

S [+ 25 [ TRl + S0 ou0) - aia 3, |

< £||f||2 N o VI

0,T;L2 QR3)) H'U:/(pwHi?(O,T;Xk) (6 < 1),

where €, and €5 are positive constants from Young inequality.

Consequently, (|1.74]) becomes

5 [ astulnn)PVade + 2 [ [Toa(uon(0)[Vado

t
+5 [t vaax = [ [ 19nof vadx a
Q nmJo Jo

1
<3 / a7 Yo (w(Pro)) Yo (u(pro) ) Va dz
1
+ﬂ e a7 Y 5 (w(pro) ) Y por (w(pro) ) va dz + 5/ |pk0|2 VadX
Q
1 2 /_ 2 Vv M 2
—|—\/ ]\4'2—€2||g”[/2 (O,T;LQ(Q ) + ||vpkH (O’T;LQ(Q)) + 251 ||fHL2 (0,T,L2(Q,R3))
v 51

”( T (p )||L2 (0.1,
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Since 0 < V6 < y/a(z) < VM < oo (see —page ,

e @) [, + )1 + Tﬁ | 19mol o

< @ e aaﬁpa'yaﬁ (u(pk())) Voo (u(pkO)) da

w

47

/ aﬂpUT (pkO))Tpa ('U,(pko)) dx + @ /Q {pk()’? dX
wﬂzi@w

2 (01:L2(2))

15 v M
+ VM 2| Vpil? +——|IfI>
2 261 (

L2 (o,T;L2(Q)) L2 o,T;L2(Q,R3))
\/_ Me,

H( pk)) Hiﬁ(O,T;XK)’

here a.o
re C mlﬂ
2 2724

It follows to

(f v 51)\\( >>Hiw<o,T;XK>+—?”pk“>”2w(omm>
\/_ 52 2
( " - VM )”V ” (0TL2 ))

e a7y, (w(Pro)) Voo (u(pro)) dz + g / €* @ o ((pr0)) Y por (w(pro)) dez

<YM /

=9 5
VM 2 1 M

v dX +vVM—|g||2 ~—IfI? :

2 /Q |pk0| + 2, ||g||L2 (O,T;LQ(Q)) + 2e1 Hf”L2 (O,T;LQ(Q,RS))

203\/3 < 2/'43\/5

and &9 -

VM nv M

By choosing the €, and &5 suitably, u.e., e; <

we obtain that

2
[ (u(p) HLOO(OaTQXK) T Hpk”iw (01,22()) + ||Vpk\|; (01322(2)

here Cy depends only on T, [|f]| , (0mz2@) [Poll, . (07:2) and [|g]| , (072

We have just proved the inequality ([1.72a]). Next, we derive the inequality (1.72b)) by testing
(1.70a]) with p;, it leads

/yp;\2\/adx+a/div(u’(pk) ~ 2(Oou - a5)a®)py va dX
Q Q
+%/Vpk-Vp§€\/EdX :/gpﬁc\/adX. (1.76)
Q Q
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And differentiating in time (|1.40b)) written for p = py,
[ i 1)) + 55Tl () Tsl0,9)]
- a/p;div(v — 2(0,v - a3)a®)Va dX = / (v —2(0.v - as)a”)va dX.
0 0

Testing the above achieving equation with u/(py),
2

[ €t ) P 1)) 4 55T )1 ) s .|V

- a/p}cdiv (u’(pk) — 2(0,0 () -ag)ao‘) Va dX :/ (W — 2(0.u - as)a®)va dX.
Q Q
(1.77)
Adding the two equations (1.76)) and ((1.77)) then integrating with respect to time, we obtain

\/Ot /w e a*Pre [Vpo(u/(pk»%ﬁ(ul(pk)) + %Tpo(u’(pk))Tag(u’(pk))} Vva dzdi

v~

Y1
//kal VadXdt+ = //Vpk Vp, vadXdt
Ya g
t t
:/ / f- (u’—z(@au’-ag)aa)\/Edth+/ /gp;\/Edth. (1.78)
0o Ja 0o Ja
Ya Ya

Applying the inequality ((1.39)), there are positive constants ¢}, ¢, ¢4 such that

Y1 :/0 /weaaﬁpo {Vpo(u/(pk))%ﬂ(u/(m)) + %Tpo(u/<pk>>Taﬁ(ul(pk))] \/E dxdt
> [ [ [ehastwo0P + S st ) vadsae = &5 [P
> V3 / ot () |3t = /B0 (i) 220 -

Using the bounds of \/a and integration with respect to time, we carry out the lower bound of
Ys,

t t
—/ /|p;€]2\/Edth+E/ /Vpk-Vpﬁc\/adth
0o Ja nJo Ja

t , 1
25 [ bt + 3 [ (90 -~ (Vo) VaaX
0

Vo VM
> Villp?, (0220 )+—||Vpk||Lz )~ 5 IIVProlliz
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In the following, we employ the Young and Hélder inequalities to find the upper bound of Y3,
t
Vi [ ] £ [ ule) ~ 20 (u(0) - av)a”] Vi dX
0 Jo
t
<V [ 1f ol ((6) = =00 (1 (0) - as)a |

S / 1f HondtJr\/_gl/ [H ‘(p ())HanrgH(@aU'(pk(t))'ag)aaHaw dt
\/_ VMe,

(OTLQ QR3)> 2 ||u Dk HLQ(O,T;X;C) (

e < 1).

Similar to Y3, we also derive the lower bound of Yy},

Y- / t / OV iX i < VT | t [ ooy axae < vt | glloalpe(®) lond:
“_62/ ()it < Y

dt + 2

2
||9|| (OT.LQ(Q))

\/_82

P, g

0T5L2(2))

where €, and €5 are positive constants from Young inequality.
Therefore, ([1.78]) becomes

Vo

) +V6 || p H%Q(O,t;LQ(Q)) +7 | Vi H%Q(Q)
n \/,7\45’1 v M
8,

V100 .
\/_

0,t; Xk

[’ (P HL2 (0,T:,)

Hf (A 2 (o112
(OTL QR )) L (o,T,L (Q))

\/_5 2

M
I 1<:||2 o ) 5 I Voro 1720

0,T;L2()

It implies to

. VvV M¢e! ) VMeé! V6
(698 = S5 1000 ) + (Y3~ 52 ) 1k Boeasan +5 | 9 [
\/_ Vit

_2,

M
—IIF H2 o ) t5 I Viro 17200

0,T;L2(Q R3)) L2 <O,T;L2(Q)

V6 2Vo
%— and e < —\/_, we obtain that

VM

2
) + ||Vpk||Loo(

By choosing the €| and &), suitably, i.e., €] <

< 027

H’u,’(pk)Hi%O’T;XK) + ||p§€||;( QT;LQ(Q)) <

0,T;L2(2)
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here Cy depends only on T\, ||| , 0112’ 1Poll, . (07:22(2) and |lg]| , (022 This in-
equality implies ([1.72b]) in Lemma . From ([1.72)), we have that HpkHL

o0 (D,T;Hl(Q))’ ”pkHHl (0,T;L2(Q))

and Hu(pk are uniformly bounded. This yields ({1.73]). We just finished the proof of

) Hi]l(O,T;XK)
Lemma [18 d

Lastly, we prove that the pressure solution p, which is derived in Lemma , satisfies ([1.65))
and ([1.40c).

Lemma 19
The solution p in Lemma [18|solves ((1.65) and (1.40c)), and w = u(p).

Proof. We pass to the limit in (1.59) after having replaced p by py and based on ((1.73d]),

/ € aaﬁpafyaﬁ (w)’ypd (U)\/adx + 1_12 / e aaﬁpgTaﬁ (’lU) TPU (U)\/de
- /Qﬁ div (v — 2(0av - a3)a®)Va dX = /Q [+ (v—2(0av - a3)a®)Va dX.

By uniqueness of ([1.59)), we have w = u(p). Then passing to the limit in (1.70]), we also obtain
that p solves ((1.65)) and the continuity in time of p gives the initial condition ([1.40c]). O

Proof. (of Theorem . From Lemma and Lemma , we can derive that the problem (|1.40)
is well posed. The remain of theorem is proved by Lemma [18 and Lemma [19] 0

Conclusion: In this chapter, we established the derivation of a poroelastic shell model
of Koiter type coupled with the Biot model. It is the Biot-Koiter poroelastic shell model. We
also proved the well-posedness of the resulting equations by the theory of DAEs and Galerkin
semi-discrete method. We used here the linearly elastic thin shell with little regularity in which
the midsurfaces have curvature discontinuities.



Chapter 2

Derivation and well-posedness for
Biot-Naghdi poroelastic shell model

In this chapter we derive, from the three dimensional elasticity equations, another two-
dimensional linear model for poroelastic shell. A well known shell model, in the engineering
community, as well as Koiter’s model, is due to P. M. Naghdi. In Naghdi’s approach, the
a priori assumption of a mechanical nature about the stress inside the shell is the same as in
Koiter’s approach (Section , but the a priori assumption of a geometrical nature is different:
The points situated on a line normal to S remain on a line and the lengths are constant along
this line after the deformation has taken place, as in Koiter’s approach; however, this line need
no longer remain normal to the deformed midsurface. In the linearized version of this approach,
there are five unknowns, the three covariant components u; : w — R of the displacement filed
w;a’ of the midsurface S and the two covariant components r,, : @ — R of the linearized rotation
field r,a® of the unit normal vector along S.

We also propose the strong formulation of Naghdi-Biot coupled model. The strong formation
will be used later for establishing the fluid-structure interaction between incompressible flow
and a poroelastic shell.

More precisely, we derive the weak coupled formulation of shell model of Naghdi type and
Biot model (see Theorem @, and its well-posedness (see Theorem . In order to cracking
the trouble of deriving the weak form, the Reissner-Mindlin displacements space Vg = {V €
H'(Q;R3),e33(V) = 0} is chosen. For the well-posedness, we firstly prove the well-posedness of
U in the weak form of constitutive equation by Banach-Neéas-Babuska theorem with p
given as well (see Lemma . The well-posedness of p in the weak form of mass conservation
equation is also obtained by making use of the sem-discrete Galerkin method and the
theory of initial value problem for liner systems (see Lemma , & . At last, we proceed
the strong formulation of Naghdi-Biot coupled model by using the contravariant components
of the stress resultant n?”, of the stress couple m*’ and of the transverse shear force t* (see

Theorem .

o1
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Using the same domain €2 in the previous chapter, let us consider the functional spaces:

Xy ={(v,8 = (5,)) € H'(w;R*) x H'(w)*;v =0,5, =0 on 7}, (2.1)
Vn = L=(0,T; Xy), .
Wi = {q € L®(0,T; L*(Q)) N L*(0,T; H'(Q)); ¢ = 0 on Ty}. (2.3)

The space X equipped with the norm
10, $)llaw = (10117 @mey + D Isallf ) (2.4)

is a Hilbert space.
Let us introduce the space of Reissner-Mindlin displacements

VRM = {V € Hl(Q;RS),E;J,g(V) = 0},

and describe its elements. It is the object of the following lemma.

4 Lemma 20

A displacement field V. € H'(Q;R?) is a Reissner-Mindlin displacement if and only if there
exist v € H'(w,R?) and s = (s,) € H'(w)? such that

Vi(z,z) =v(x) + z s4a".

Proof. Let V(x,z) € Vg, we have
0= 833(V) = 83V g3 = 83V - as.

So, there exists w € L*(2,R3) such that 93V = w A az. From that, we have

/OZ 05V (2, 7)dr — (/Oz'w(x, 2)dr) A as.

(&

O(x,2)
Hence,
V(z,z) =V (z,0) = O(x, 2) A ag, with O(z,0) = 0.
We can present ©(z, z) as below

O(x,z) = O(z,0) +2050(z,0) + 22030(z,0) + - -
=0

Since z is belong to | 5%; 5[ and e is the thickness of the shell, 2" ~ 0 with n > 2. Rewriting V:

V(z,z) =V (x,0) + 20:0(x,0) A as.
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Setting v = V(+,0) € H'(w,R?) and s = 930(z,0) A ag, one have V(z, z) = v(z) + zs(z).
Next, we prove that s is a function of H'(w,R?). We have

||ZSH%2(Q,R3) =V - "’H%?(Q,u@)
<Vl 72@.ms) + 21V [ 29 0l 220.89) + [[0] 720 m5)

= [VIlZ2ps) + 2lVIzz@rn Vel 2wz + Vel Lz ps),

and

e/2
2l2s0ms) = / ( / 2 d2)|s(x)] da

—e/2
1

=1 ’ e?|s(x)|? dx

3/2

1
= EHG 3||%2(M,R3)~

From that, we obtain

1 1/2
e sliawms) < VI + 20V [l 289 el )| 0l 2ms) + el ool 01172 o

(2.5)
On the other hand, we have
HV(ZS)H%%Q,RS) =[|VV — V””%?(Q,RS)
< |[VV[Z2i0ms) + 2IVV [ 2 @ps) VO 2 @ps) + VO 220 p9)
= [VV[Z2i0m) + 2IVV [ 2 @ps) Ve VUl L2 rs) + 1VE VOl T2, o9,
and
e/2
IV = [ [ PSP 150+ 50 =
wJ—e/2
1
=1 e |Vs(z)|? dv + / e|s(z)|* dx
1
2 A P
Hence
1
EHegﬂvsH%%w,RB) + H€1/25||%2(W,R3) < ||VV||%2(Q,]R3)
1/2
+ 2H€||L/oo(w)||VVHL2(Q,R3)||Vv||L2(w,R3) + [lell Lo @) Vol 22, ps)- (2.6)

Since V € H'(Q,R?), v € H'(w,R3), e € L®(w), e(z) > ¢ > 0 and from (2.5)) & (2.6]), one can
check that s € H'(w; R?).
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Conversly, suppose now that V € H(Q, R?) such that V(z, 2) = v(z) + 2 so(z)a®(z). Then,
we have

Therefore, V € Vryr = {V € HY(Q,R?);e33(V) = 0}. O

2.1 Definition of a deformed shell
Let M be a shell of the midsurface S and of the thickness e defined by (1.1 of previous
chapter. After deformation, the normal unit vector as is deformed to a vector a} which is not
a priori orthonormal to the deformed surface. The point ®(z, z) becomes
*(x, 2) = " (z) + za3(z), (2.7)
with

a;(z) = as(x) + r,a® and ¢* = ¢ + u, (2.8)

where r,, are the linearly covariant components of the field of rotations of the norm as. In fact,
T =a; — as.

% Remark 21 I
Let us recall that the assumption Hy (of Kirchhoff-Love) which means the normal conservation
property leads to the following approximation of the deformed normal:

a; =az — (O,u-a3)a” =as — Waﬁwo‘(u)aﬁ,

where 1)*(u) are the tangential contravariant components of the infinitesimal rotation field of
the surface. It is given by

1
Y(u) = W“ﬁ(ﬁﬁu - a3)a, + §7ra’3(8au -ag)as

with 7%* = 0 and 7'? = —7?! = 1/a.
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2.2 Displacement of a Naghdi’s shell

Under the hypothesis H; and Hy of Kirchhoff-Love, the displacement of a point ®(z, z) is
written by

UD(x,2) =U(x,z) = D% (x,2) — D(z, 2).
This means that
U(z,z) =u(z)+ zr,(x)a*(x). (2.9)

Note that u(z) is the displacement of midsurface and r, are the covariant components of the
rotation of the norm as.

2.3 Linearized change of shell metric tensor

Let us first introduce the local bases at each point of the three-dimensional shell. The
covariant basis is defined by

{ga =9.(x,2) = 0,9(z, 2) = a,(x) + 20,a3(x),
g3 = g3(x, 2) = 039(x, 2) = as(x).

The contravariant basis is defined by
g9 =0
It follows that
g* =g** =0and ¢** = 1.

We recall that, given arbitrary displacement field V' of a three-dimensional manifold ®(2) in
R?, the covariant components £;;(V') of the associated linearized change of metric tensor are

defined by:
i i 1 in
€(V) = 5Z~j(V)gZ ®gj with 5ij(v) = 5(9”(‘/) — g,-j)l R (210)

where g¢;; and g¢;;(V'), respectively, are the metric tensor in the configuration of reference and
the deformed shell. The vectors of the deformed local basis are defined by:

9o(V) = 0,9* = a}, + 20,43,
gg(V) = 83(1)* = a§.

Obviously, d.a; # (b5)*a}, in this case. This is the difference between Naghdi and Koiter shell
model.
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An approximation of covariant components of metric tensor of the deformed shell is given
by:

9ap(V) = aj5 + 2(a, - Opaz + aj; - Daa}),
9as(V) = (a’, + z0,a3}) - a3,
933(V) = a3 - a3.

Let us recall that:
a, =a,+0,u and O0,a; = 0,a3 + 0a(rﬂaﬂ),

with
aa’u, = (’U,ma — bagug)aﬁ + (aau3 + bg’u’ﬁ)a@’

and
0a(r5a5) = rmaaﬁ + bgrgag.

Since a surface also has a metric tensor, it is natural to likewise define the covariant components
of the linearized change of metric tensor associated with any displacement field defined on it.

We use here all notations introduced in chapter 1. We begin by introducing the expressions
associated with an arbitrary displacement u and rotation r = r,a® = r%a, fields. Our func-
tional framework, in this chapter, still free local basis for the displacement however the second
unknown is identified with its covariant or contravariant components.

We recall the covariant components of the change of metric tensor as in the previous chapter,
1.€,

o) = %(aau ‘ay+ O an). (2.11)

We introduce the new expression of covariant components of the change of transverse shear
tensor and the covariant components of the change of curvature tensor, respectively, are

5ot T) = %(aau ‘@5 +14), (2.12)
1 1
Xaﬁ(’u,,’l") = 5(7‘045 + 7‘5‘@) + é(c%u . 85(13 + 8gu . aaag,), (213)

where 743 = 037q — Fgﬁrp and Fgﬁ are the Christofell symbols of the surface.

% Remark 22 I

i. Note that all those quantities make sense in L?(w) for shell with W1 >-regularity such
that a3 € W and for (v, s,) € H'(w;R?) x H'(w)?. They are easily expressed with the
displacement field, the rotation components and geometrical data.

ii. Let us note that, when the transverse shears are neglected, i.e. d,3(v,8) = 0, we have

Xap(v,8) = —Yo5(v) a.e.on w.
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Now, if the three dimensional displacement field V' is of Reissner-Mindlin type:
V(z,z) =v(z) + zs4(x)a*(x),

then, by neglecting all the terms containing 22, the covariant components of the associated
linearized change of metric tensor (2.10)) is given in terms of the change of metric and change
curvature tensors on the midsurface S by:

€ap(V) = Yas(v) + 2Xas(v, ),
Eag(V) = (aa’ltg + bg’ll,p + Ta), (214)

Remark 23 I
When the normal strain €33(V') is small compared to the cross-sectional strains, plane strain,
(2.14)), is then an acceptable approximation for the shell change metric tensor ([2.10]).

2.4 The tensor of shell constraints
We consider a tridimensional homogeneous isotropic elastic shell satisfying the Hooke’s law
o(V) = Xr(e(V))Id+ 2ue(V). (2.15)

We recall that A and p are the Lamé coefficients of material (A > 0 and g > 0) and o is the
stress tensor.

4 Lemma 24

Let V be a given displacement field. The street tensor (V') given by the Hooke’s law ([2.15)
can be rewritten as

oV)= aijgi ®g; with oY = oU) : gi ®gj = Eijklekl(V), (2.16)

. d o —
where the notation “:” denotes the product of two tensors, o : 7 g 019" g7 7y and E* is the

elastic tensor defined by:

B = 2 g" + u(g* gl + g"g™"). (2.17)

Proof. We remark that

tr(e(V)Id: ¢' ® ¢" = tr(e(V)tr(Idg' ®@ ¢°) = tr(s(V))g",
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and
tr(e(V)) = en(V)tr(g" @ ¢') = eng™.
It follows that
Mr(e(V)Id: g' @ ¢" = Ag7 g e (V). (2.18)

Let’s see the second term containing p of (2.15)). If we express the tensor (V') in the basis
konnl i
g ®gq, te.,

eV)=((V):gr®g9)d" ®¢ =eu(V)d* 24,

we obtain
eV):gdog =cuV)g"®g g 2g.
Thanks to
g'eg gy =tr(g®g") (g ®g) =yg"g",
we get

eV):g®g = akl(V)g“gkj.

Since £(V) is a symmetrical tensor, it follows that

(V) :g'0g = geu(V)(g"d" + 9"¢").

Therefore,
2ue(V) : g' @ ¢ = 2uen(V)(g™g" + g"9").
It is equivalent to
2ue(V) : g' @ ¢ = pen(V) (9™ 9" + g"g"). (2.19)
Consequently, from and , we obtain
(Atr(e(V)Id+2pe(V)) - g' @ g7 = (\g7g™ + (g™ g" + g"g"))en (V).

Replacing the symbols of the tensor of constraint ¢ and the elastic tensor E“* to the above
equation, we obtain

U(V) :gi ®gj = Eijklfkl(V).
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% Remark 25 I
It should be pointed out that ¢** = ¢3* = 0 and ¢** = 1. Thus we have
E3ebe — E3336 _ (2.20)
and
E3B8 = \g®P  E3938 = 14g®® and E333 = \ 4+ 2u. (2.21)

Finally, in order to obtain the two-dimensional Naghdi’s model, we state the third hypothesis
of Kirchhoff-Love:
H3: The stress tensors are approximatively flat, i.e., for an arbitrary displacement field V,
o33(V) = 0.

Remind that

0'33(V) = E33a68a5(V) + E3333833(V)
= )\gaﬁsag(V) + (A +2u)ezs(V).

So, if A # 0, H3 leads to
A

_)\+2,u

exs(V) = gaﬁgaﬂ V).

We then notice that the hypothesis H3 is not compatible with (2.14]) as soon as A # 0. Hence,
we correct the definition of the change of metric tensor introduced in (2.14]) as following:

“HV) = 2aslV),
“H (V) = zas(V),

A
V) = 150" V)

2.5 Derivation of the Biot-Naghdi shell model

A word of caution. For notational convenience, we omit throughout this section the
exponent “cor” in the expression &{7".
In this section, we will establish the weak formulation of the Naghdi Biot shell model. In the
process of deriving the weak form, we face difficulty of writing the poroelastic structure model
in term of shell symbols (metric tensor 7,4, curvature tensor X,gs, transverse shear tensor d,3).
In order to solving this problem, we use the structure displacement U belonging to the space
of Reissner-Mindlin displacements Vgy = {U € H'(Q;R?),e33(U) = 0}. In further detail, we

introduce the following theorem.
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4 Theorem 9
If U and p are solution of the strong formulation ([1.37a))-([1.37b), such that U = u+ 2zr,a®, then
(u,r) and p belong, respectively, to Vy and Wy and solve the weak equations: Find (u,r) € Vy
and p € Wy such that

AV (u,7); (v,8)) + BY (p; (v,8)) = LY (v)  V(v,8) € X, (2.22a)
AY (q) + By ((u,r);0) = L3 () Vg € Hy(), (2.22b)
p(0) = po in &, (2.22¢)

where

2

A () 0:8) = [ € 0)703(0) + St 0, Ix0 0,91V d
+4u/eaaﬁdag(u,r)égg(v,s)\/a de,
BY (p; (v,s)) = —oz/pdivv\/a dX — a/pdiv(zs) Va dX,
0 0
LY (v,5) Z/f-('v+28)\/5dX> A3 (3 q) ZCO/p’q\/EdXJrf/Vp-Vq\/EdX,
Q Q nJa

BY ((u,7);iq) = —a / (dive)gv/adX — o / div(zr)g/adX, LY (g) = / gavadX.

Remark 26 I
We use p(0) in Eq. (2.22a)) to get «(0) and r,(0). For a given p(0), the initial displacement is
the unique solution of (2.22al), where we replace p by p(0).

Proof. (of Theorem [9) For proving the Theorem [9 we use the structure of the displacement U
belonging to the space of Reissner-Mindlin displacements Vry = {U € H'(Q;R?),e33(U) = 0}
and by Lemma , U can be presented by u + zr, where (u,r) is the displacement-rotation
defined on w. In order to use the property €33(V) = 0, we then multiply the Eq. by
V =v + zs with (v,s) € Xk, we thus obtain

—/M(V~U(U))~Vdv+a/MVp~VdV:/Mf~VdV.

It is equivalent to write

- [0y vvaax +a [ Vp-vvaax - [ fvyaix.
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Applying the Green formula and using the boundary condition, we obtain

/QJ(U):e(V)\/EdX%—oz/QVp-V\/EdX:/Qf-V\/EdX.

~
1

We then have
I—/Q H(U)ey(V)VadX
= [ @esV)vadX + [ oS Ozalv iix

JQ

70

+/S20a3(U)5a3(V)\/EdX—|—/o (U)ezs(V)VadX

- /Q EPR e (U eas(V)Va dX + /Q E*Mey(U)eas(V)VadX

-~ -~

Il 12

+/E3Bkl€kl( )635( )\/—dX
Q

-

v~

I3

From Lemma [24] one has

I - /Q E0e (U)eus(V)Va dX + / EO95 ey (U)ews(V)Va dX

Q
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(2.23)

(2.24)

+ / B, (U)es(V)VadX + / B i(U)eas(V)va dX
Q Q

~~
=0

:/QEaﬁwgp( )eas(V)VadX — A /gaﬁg”ep( )eas(V)VadX.

A2

Similarly, we simplify I by applying Lemma [24]

I = /Q B2 (U )ews(V)V/a dX + /Q EO3 o (U)o (V )Vaix

—~ —~

=0 =0

(2.25)

+LE“330630<U>ea3<V>ﬁdX + / B 5 (U)eas(V)vadX

i [ 47 en@)alVIVadX + [ §7en(U)eealV)VadX.

(2.26)
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And the third term of (2.24] ) becomes

Ig = / E3Bpa€pU(U)€3/g(V)\/adX +/ E3ﬁ33€33(U)€35<V)\/adX
Q Q
=0 =0

+ [ B e @znVIVadX + [ Beu0)za(V)vadx

1 [ 4 cwl@eaVIVadX + i [ ¢en@)eV)vadX. (2.27)
Q Q
Therefore, from ([2.25)), (2.26) and (2.27]), we obtain that,

Izll+]2+13

B /[Agaﬁg” + 11(9°° 9" + 9°79"") e o (U)eas(V)VadX
Q

- [ OV IVEAX 4 [ @)V X

2\
- / (2 08000 4 (g0t g0 PP (U)ews (V) v/ dX

A+ 2u
—p / Iego(U)eas(V)Va dX

= [ A @)eas(VIVaAX + 4y [ g zsa(0)zm(VVadX. (2.28)
Q
where
oo = 2N a8 0 4 1(go0gP 4 oo g) (2.29)
A+ 2p

As in the previous chapter, we neglect term z in the expression of ¢*’ and then ({2.28))
becomes

I [ e @)eas(VIVAX + 4 [ 0 O)ein(V)adX
- / 0% [y (10) + 2o ()] [ (0 + 2030, 8))]V/adX

—|—4u/Q 803 (u,7)083(v, 8)v/a dX

= [ @ @ae) + S ) a0, 9)a o

+4;¢e/aaﬁéag(u,r)éﬁg(v,s)\/a de, (2.30)
where

2U\
a®hr7 (x) = Tron fQMao‘ﬁa”” + p(a®a® + a*a’?).
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On the otherwise, the second term of (2.23| ) implies that
J:oz/Vp-V\/adX:oz/ pV~n\/EdF—oz/pdivV\/adX
Q To Q

= —a/p divev/a dX — a/pdiv(zs) Va dX.
Q Q

We continue with the term K,

K:/f-V\/EdX:/f-(v+zs)\/5dX.
Q Q
Consequently, (2.23]) becomes
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/ e&aﬁpa[’)’pa(u)')/aﬁ(v) + EX,OU(ua'r)Xoﬁ(va 3)]\/a dr + 4;“/ eaaﬂéag(u,r)aﬂ;;(’v,s)\/a dx

—a/p div(v + 28)v/a dX :/f~ (v+28)VadX Y(v,s) € Xy,
o Q Q
Al ((u,r); (v,8)) + B (p; (v,5)) = L7 (v, 5). (2.31)
Similarly, we get the weak form of by multiplying by ¢ in H} (),

[ oo+ -0avaax == [ (apgvaax = [ gavaax. vpe m@. (23

For convenience, we replace d;p by p’ and 9,U by U’. So, for all ¢ in Hj (), (2.32) is equivalent
to

=0
A

/cop’qu+a/(divU’)qu—E/ q(Vp-ﬁ)dF—i—E/Vp-quX:/quX, .
Q Q Ty nJa Q
J/ H_/

U
~
LS RS

N

We have
LS:/p'q\/EdX—I—oz/(div U’)q\/adX+%/vp.vq\/adX
Q Q Q

:/p’q\/EdX—l—@/ div (u’+zr’)q\/5dX+%/Vp-Vq\/adX,
Q Q Q
and

RS:/gq\/EdX.
Q

Then, (2.32) becomes
co/p'q\/EdX—Foz/ div (u' + 2r') VadX + E/Vp-Vq\/adX :/gq\/EdX,
Q Q nmJo Q

or
A3 (pq) + By ((w.);0) = £5'(q)- (2:33)
From (2.31)) and (2.33)), we can obtain Theorem ({9). O
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Succeedingly, we derive the well-posedness of the weak problem ([2.22)).

2.6  Well-posedness

In this section, we will prove the well-posedness of the problem introduced in theorem
(©) and prove that its solution p belongs to L=(0,T, H'(Q2)) N H'(0,T; L*(2)). For the well-
posedness (see Theorem , we also face the difficulty as in the previous chapter. Therefore,
we firstly prove the existence and uniqueness of U of the weak form of constitutive equation
by Banach-Necas-Babuska theorem when p is given (see Lemma . We then prove
the existence and uniqueness of p in the weak form of mass conservation equation by
making use of the semi-discrete Galerkin method and the theory of initial value problem for

liner systems (see Lemma [32] B3] & [34).

Theorem 10 I
Let pp € HY(Q), f € H'(0,T; L*(Q,R?)) and g € L?(Q2x]0,T|). Then the problem ({2.22) is well
posed and its solution p belongs to L>(0, T, H'(2)) N H*(0,T; L*(2)).

The proof of Theorem [10] is comprised of two steps and each step is composed of a series of
lemmas.

Step 1. Let us begin by providing an existence and uniqueness result of the displacement
u(p) and rotation r(p) for the equation when p is given. First of all, we recall the rigid
displacement lemma in the hybrid functional framework introduced in [24]. It is a version of the
well known infinitesimal rigid displacement of [§] and [22] for a surface with little regularity.

4 Lemma 27
Let v € H'(w;R3), s, € H'(w) and p € W2>®(w; R3).

1. If 7,5(v) = 0, then there exist a unique ¢ € L*(w; R?) such that

0,0 = Y N Oy lp.

2. If 6,3(v,8) = 0, then J,v-a3 = —s, belongs to H!(w). Furthermore s, = —m,5t-a”, with
1 = g = 0 et mp = =721 = V/a.

3. If in addition x.s(v,s) = 0, then ¢ is equal to a constant vector of R? and we have:

v(z) =c+ P Ap(x). (2.34)

Proof. We remark that if d,3(v,8) = 0, then a8 - a3 € L*(w). Indeed, Dppv - a3 = 95(0yv -
az — 0,v - Ogaz) € L*(w) since a3 € L= (w,R?) and 0,0 - a3 = —s, € H'(w). Thus, xas5(v,8) =
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—(0ppv — I'? ,0,v) - a3 = 0. To conclude, it is enough to use the rigid displacement lemma for
B aB~pP
the Koiter Shell introduced in Lemma 121 O

% Remark 28 I
If v € H'(w;R?), s, € H'(w) and ¢ € W?*(w;R3) such that v = 0 on vy, and ¢(7,) is not
included in a straight line, then v = 0 and s, = 0 a.e. on w. Therefore, one can check that:

@, 8)lly = O 17as @, 8) 172y + D 1Xas®, )72 + 160, 8)172())"? (2.35)
a,pB a,B

is a norm on Xy.

We prove in the following lemma the equivalence between (2.4]) and ([2.35]).

4 Lemma 29

The norm

@, )Ly = O Iras@)7200) + D IXas®, 81720 + Y [6as(®, 8)lI72.) ">,
aB af a

is equivalent to the norm (2.4)) of Xy.

Proof. We use the standard contradiction argument. Let us assume that there exists a sequence
v, € Xy such that

|V, 80) |2y =1 but [l(vs,80)|| y —> 0 when n — +o0. (2.36)
There exists a subsequence, still denoted (v,,,s,) € Xy such that
Vp =, (Sa)n = Sa, Yap(Un) = Ya(), Xas(Vn, $n) = Xap(v,8), and da3(vn, 8n) = da3(v, $)
weakly in their respective spaces. By Rellich’s theorem, we have
(U, 8,) — (v, 8) strongly in L*(w; R?) x L*(w)*
Moreover, as ||(v,, 8,)||y — 0, it holds that
Yap(Vn) = 0, Xas(@n,8,) = 0, and §n3(v,,, 8,) — 0 strongly in L (w). (2.37)

Therefore, we get
Yap(V) = Xap(v,8) = das(v,s) = 0.

By the infinitesimal rigid displacement lemma [27] and boundary conditions, we first conclude
that v =19 = 0 and thus s, =0 a.e. in w.
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Let us now introduce the two-dimensional vector (wy,)q = vy, - @,. We have w,, — 0 strogly
in L?(w; R?). Let us define
2e,5(w) = Oywp + Ogw,.

It is easy to see that
ap(Wn) = Yap(Vn) + v, - Opas — 0 strongly in L*(w).
Then, by and the two-dimensional Korn inequality , we deduce that
w, — 0 strongly in H'(w; R?).

Next, we note that

O - o = 0,((Wy)a) — vy - Oyt — 0 strongly in L*(w), (2.38)
since d,a, € L>(w). Moreover, as (Sa), — 0in L?(w) strongly, and ,v,,-a3 = 7,3(vn, 81) — (Sa ),
then d,v,, - a3 — 0 strongly in L?*(w). We deduce that d,v,, — 0 in L*(w;R?) strongly. Thus,

v, — 0 in H'(w;R3) strongly.
Next, since

1
€ap(8n) = Xap(Vn,8n) — 5(00/% - Opas + Opvy, - uaz) + T4 5(5,)n;

we see by (2.37)

eap(8n) — 0 strongly in L*(w).

Thus, again by the two-dimensional Korn inequality, we conclude that
8, —> 0 strongly in H'(w)?.

Combining now the convergence of v,, and s,, we see that ||(v,, 8,)||xy — 0, which contradicts
the hypothesis and proves the lemma. 0

Now, we derive the main proof of the well-posedness by the following lemma,

| Lemma 30
For a given p in L>®(0,T; L*(Q)) and f in H'(0,T; L*(Q,R?)), there exists a unique solution
(u(p),r(p)) in Xy solving, for a.e. ¢ in (0,7,

AT ((w(p),7(p)); (v, 8)) = L1, (v,8) ¥(v,s) € X, (2.39)

where LI (v,8) = LY (v,8) — B} (p; (v, )).
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Proof. We will prove the well-posedness by using the Banach-Necas-Babuska theorem
(u(p),r(p)) in Xy, we have

AT (), r(0)); (v,9) _ AV ((p),r(); (wp).rp))

sup

R O P (TR S
min{e; & 4y} lfu(p). r() I
@), 7)) lx
min{e; &3 4pe} Clu(p). 7(p) 3,
O
— minfe: &4} Olup). 7).

by using Remark [28 and Lemma 29
Therefore, for all (u(p),r(p)) in Xy, there exists § = min{c; &
Al ((w(p),r(p)); (v, )

sup > 0llu(p), r(p)lxy-
(v,8)EXN ||(v7s)||XN "

~:4p¢}C such that

’12’

On the other hand, for all (v,s) in Xy, suppose that

AY ((u(p),r(p)); (v,8)) = 0 V(u(p),r(p)) € Xn.

Hence, we have

3

0= AY((v,9): (v,8)) > min{c; — 135 4Hetl, s)lly = mln{c 4MC}CH(’U 8)7, >

Therefore,
(v,8) =0.
Additionally, there exist positive constants C;, Cs, C5, Cy such that

e/2

Efp(v,s) = a/ﬁdivv\/a dx + a/(/ pdiv(zs) dz)va dr + / ef -vvade
w w J—e/2 w
< Cil[pllo Idivellow + CollBllow sl w) + Csllflowlllo
< Cuy/ 20l + IF13 o laivelR, + 12y + 013,

e/2
thanks to Cauchy-Schwarz inequality. Note that p(z) = / p(z, z)dz.
—e/2
Therefore, with a given p, there exists a constant C' > 0 such that

1£8,0,9)] < O\l sy + Nl31) = Cll@, )
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. For all

(2.40)

0.

(2.41)

(2.42)

Combining ([2.40)), (2.41)) and ([2.42 -, we can see that the bilinear form AY(-; -) and the contin-
uous linear form E{\fp(-, -) satisfy the conditions of the Banach-Necas-Babuska theorem. So, the

problem ([2.39) is well-posed.

U
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Comment. We are able to prove this theorem by using the Lax-Milgram lemma. Thanks to
the inequality and the equivalence between two norms [|-||5 and || - ||xy, We obtain
the continuity and coercivity of AY. More precisely, by the Holder inequality and the upper
bounded quality of a®?* and +/a, there exist Cy, Cy, C3 and C4 such that

62

LAY () (0.8 = | [ €0 B 005(0) + 5 )09V da

—|—4u/eaaﬂéag(u,r)égg(v,s)\/ﬁ dz

o /%g(u)%a(v) dz| + Cy /Xpa(u,r)xaﬁ(v,S) dx

+C5

/ das(w,1)0p3(v, 8) dz

< C1lYap W) L2 @) 1700 )| 22(w) + Col X po (@, 1) || L2 [ Xas (©, 8) || L2(w)
+ C3[0a3(w, T)|| L2()||0p3(v, 8) || L2 (w)

1/2
e (||va6<u>||i2<w> s )] By + ||5a3<u,r>||%2(w)>

1/2
x (||m<v>||%z<w) s @, 8) o + ||5a3<v,s>||%2(w>)

= CulllCw, )l y v, 8) s YV, v € Xy
By the equivalence between two norms |||-[|| y and || - ||x,, there exists a constant Cs such that
(AL (u,0)] < Cs|lfull |y Il |2y, Vu, v e Xy. (2.43)

For the coercivity, by the inequality (1.39) and the relation of two norms ||-||y and || - ||xy,
there exist constants C], C4; C% and C) such that
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12XPU<I‘)’ S)Xaﬁ<’l), 8)]\/6 dx

AL @) = | [ e nhrnlo) +
+4,u/€aa65a3(073>563(v,3>\/5 dx
>} [ hus)Pde + € [ asto.9)Pda + G [ foalv.s)Pde

> min{Cj; Cy; Cé}/ (las@)* + [Xap (v, 8)* + 00z (v, 8)[*)dz

= min{C}; Cp; C}ll(v, 8)lly > Cillw. s)[%,.  Wv € Xy, (2.44)

From ([2.43), (2.44]) and the Lax-Milgram Lemma, Lemma (30| is proved.
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% Remark 31 I

Since the mapping p — (u(p),r(p)) is a continuous affine mapping from L?(Q) to Xy: There
exists a constant C' such that

Vp1, p2 € L¥(Q), [[(u(pr),m(p1)) — ((p2),7(p2))lly < C [l 1 = P2 22y -

Hence, (2.22) has the equivalent implicit formulation: Find p in L*(0,T;L*(R2)) N
L*(0,T; H'(Q)) satisfying (2.22¢) and for a.e ¢ in (0,7)

60/p’q\/5dX+oz/diV(u’(p)+ZT’(p))QﬁdX+%/Vp-Vq\/EdX
Q Q Q
~ [savadx vee Hy®@, @)
Q

with (u(p),r(p)) defined by (2.39).

For proving the well-posedness of the semi-discrete problem (2.50)), it is convenient to split u(p)
and r(p) as follows:

u(p) =u-+u(p),
{r<p> F+7(), (246)

where (@,7) € Xy is the unique solution of
Y(v,8) € Xy, AV (@,7); v,8)) = (f, (v + 28)Va)q, ae. t€]0,T], (2.47)
and (@(p),7(p)) € Xy is the unique solution of
V(v,s) € Xy, A (@(p),7(p)): (v, 8)) = alp, div(v + z8)v/a)q, a.e. t €]0,T]. (2.48)

According to the proof of Theorem [J] since the term I is in both (2.23]) and (2.30]), we see
that

62

e/ao‘ﬁ””[%g(u)%ﬁ(’v) + EXPU(U,T)Xaﬁ('U?s)]\/E dx + 4//J€/ aaﬁéai”(u’r)af%(v’s)\/a dx
— (o(U),=(V)V/a)o.

It leads to

A ((u,); (v,8)) = (0(U), e(V)Va)a. (2.49)

Subsequently, we consider the second step of proof of Theorem [10]
Step 2. We use the Galerkin method to construct a solution p.
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Let (60,)n>1 be a smooth basis of H}(2) and let @, be the space spanned by (6;)%_,, i.e.,
Qy = Vect{by, ..., 0 }. Then, our semi-discrete problem reads: Find

k

pi(t) =Y mi(t)0i € H'(0,T; Q)

=1

such that
Q Q nJa
= —a/div(ﬂ’+z1_"')9i\/EdX+/gGi\/EdX 1<i<k, (2.50a)
w Q

pr(0) = pro, (2.50D)

where (u,7) is defined by (2.47)), ux = u(py), 7 = 7(pr), i.e. u(pr) =W+ uy, r(pr) =7 + 7 and
Pro € Qp satisfies

]}gilo [Pxo — poll 1) = 0.

Afterwards, we proceed the well-posedness of the problem ([2.50) by the Lemma . More
precisely, we present (2.50)) as a square system of k linear ODEs of order one in matrix form and
then using the theory of initial value problem for linear systems and the technique of solution

splitting ([2.46]).

Lemma 32

Let po € HY(Q), f € H'(0,T; L*(,R?)), g € L*(2x]0,T[). The semi-discrete problem (2.50))
has exactly one solution on [0, 7.

Proof. Thanks to (2.48)), we have

A{V((ﬂ(w;(t)ei),?(w;(t)ei)); ('v,s)) = a(wé(t)@i, diV'v\/a)Q + a(7}(t)6;, div(zs)va)q,
A{V((ﬂ(ei),’f(ei)); (vmi(t), swg(t))) = a(@i, 7TZ'»(t)diV'v\/a)Q + a(b;, wi(t)div(zs)v/a)q.

Hence, we obtain

AT (@(()60:), 7 (mi(1)0:)): (v, 8)) = AY ((@(0:),7(60:)); (wri(t), si(t)).

This implies that
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Combining the above equality and the note (¥'(p),r'(p)) = (u(p'),r(p")), we write in
matrix form and define the following vectors and matrices
P,=m,1<i:<k,
Cij = co(0;,0iva)a,, 1 <i,j <k,
Aij = a(diva(f)) + div(zr(0;)), 6iva)e, 1 <i,j <k,
D,, = g(vej,vei\/a)g, 1<i,j <k

With this notation, writing the time derivative with a prime, (2.50)) is a square system of k
linear ODEs of order one: Find P € [H*(0,T)]* such that

{(C+A)P’+DP =H, Vt € [0, 7], (2.51)

P(O) — Po,
where H is the vector of the right-hand side of (2.50al). Note that C and D are square, symmetric

matrices. Next, we will prove that they are positive-definite.
For Z € R¥, we have

K K K
ZTCZ = ¢y Y | (0;,0:Va)aZiZ; = co Y _(Z;0;, Zibiv/a)o = co Y _ || Zibia"*| 72

2,j=1 2,j=1 1,j=1

k
> Co Z \/SHZiQi ||%2(Q)Z 0.

1,j=1

Since ¢o and § are both positive constant, if Z'CZ = 0 then Zk Z;0; = 0. Because {0, }n>1

ij=1
is a basis of H}(Q), Z; = 0 for all i. It follows that Z = 0. Therefore Z'CZ > 0 for all Z # 0
and C is a positive-definite matrix. Similarly, for matrix D we have,

k k

ZTDZ =" (V6,, Vo /a)aZiZ; = g > (Z;V0;, Z;V0i/a)g

i,j=1 tj=1
Koo K k K
= > 1ZiVbiat 72 > ;\/5 > NZiVill7210) = ;\/EOHZi@iH%m) >0,
i,j=1 tj=1
by using Poincaré’s inequality.
k
Since C and § are both positive constant, if ZTDZ = 0 then ZZiHi = 0. Because {0,,}n>1
ij=1
is a basis of H}(Q), Z; = 0 for all i. It follows that Z = 0. Therefore ZTDZ > 0 for all Z # 0

and D is a positive-definite matrix.
Regarding A, by choosing p = 6; and (v,s) = (u(6;),7(0;)) in (2.48), we consider that

(A)ig = AV[(@(0:),7(0:)); (@(0;),7(6)))]-
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Note that A is a square, symmetric matrix. We prove that A is positive by the following part.
We have

ZTAZ = AY[((60,),7(6,)); (w(0,),7(0,))1Z:Z; = (a(U(6:)),e(V (6))Va)aZiZ;
> Vo(o(U(9:)).2(V(6))))aZiZ;
= 2Vou(e(U(6:)),2(V (0 )))QZZZ +\ﬂ(dlv( U(6:), div(V(0))))aZ:2;
=2Vou(d_c(U(®;

)ZMZ (V(0,))Z;)e + VX Zdw (U0:) 2, div(V(0,)Z;)e
_zfullz Z]|Q+\/_)\]|Zd1v NZ|3 > 0.

<.

(
)

Then, we conclude that the matrix C+A is square, symmetric, positive definite. Hence, ([2.50))
has exactly one solution on [0,7] by the theory of initial value problem for linear systems
(Theorem 7.4 in [38]). O

Let us prove now that the sequences (px) and (u(py),r(px)) of the semi-discrete problem ([2.50))
are bounded. For obtaining this result, we firstly test with (v’ (pr), 7' (pr)) = (u(p},),r(PL)),
(2.50a) with pg, add two equations and integrate with respect to time on ]0,¢[ for arbitrary
t € [0,T)]. Next, we test with p),, differentiating in time written for p = py, testing
the resulting equation (2.50a) with (u'(px),r'(px)), adding the two equations and integrating
with respect to time. Finally, we add all equations together and apply the Young, Holder’s
inequalities and the inequality (1.39). We itemize them in the following lemma.

# Lemma 33

Let po € H'(Q), f € HY(0,T; L*(Q,R3)), g € L*(Q2x]0,T).
i. The solution py, and (u(px),7(px)) of the semi-discrete problem (2.50)) satisfy the following
uniform bounds:
(@w(pr), (@) 70 700) + 1620 0 7220y + VPR IT2(0 10220y < C and  (2.52a)
|1’ (), 7' (i) 720,700 + 1281720722000 + VPRI E 0 0,722y < Cs (2.52b)

where C depends only on T, f , pg and g.

ii. Moreover, there exists a function p in H*(0,T; L*(Q)) N L*°(0,T; H*(€2)) and functions
wy,wy in H'(0,T; H}(Q)) such that

pr — p weakly- x in L>(0, T; H*(Q2)), (2.53a)
pr — p weakly in H'(0,T; L*(2)), (2.53b)
(u(pr),r(pr)) — (w1, ws) weakly in H(0,T; Xy). (2.53¢)
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Proof. Following [47], we test (2.39) with (u'(px), ' (px)), (2.50]) with px, add two equations and
integrate with respect to time on (0,¢) for arbitrary ¢ € [0, T]. This leads to:

/0 / eaaﬁwmm(pk<t>>>vpa<u'<pk<t>>>\/adxdt

/ / 3P o ((pi(£)) 7 (D1 (8)) o (o (pi(£)), 7 (01 (1)) V/a i i

-~~~

p)

+4”/0 /eaa65a3(u(17k(t))aT(Pk(t)))csﬁg(u'(pk(t)),r'(pk(t)))\/Edm dt

I3
t t
+/ /pk(t)pk(t)\/ﬁ dth+f/ /|Vpk(t)|2\/5dth
g0 Ja L MJo Ja
I

— [ [movaaxars [ [ 1 wouo) + o' uo)va dode.
JOo JQ L, Jo Ja B

~
Is

Using the symmetric property of 7,5 and applying the inequality (1.39)) to [y, there exists a
positive constants ¢; such that

I = / / € a9y 5 (w(pi(£)) Ve (o (pi (1)) /@ i
_! / t / € 4y (D1 (£))) 1o (w01 (6))) /@l
/ e a®0v° / o (e (1)) Vo (i (6))) it v/ e
=5 [ €A s i) 6 1(0) ~ 2e0) o lpra)

- % / e a5 (w(p (1)) 150 (w(pi(t))) Va da
N % / e a*7 05 (w(Pro)) Yoo (w(Pro))) Va dz

>4 / s (i (£))) P/ d — / € 45 (P30 (6(ph0)) V@

Similarly, thanks to the symmetric property of x,.s and the inequality (|1.39)), there exists a
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positive constants ¢, such that

o= g5 [ € w0000 0 ). 1 (0) i
/ | € o). o) ol 1)) Va
— 1 [ S / X (0), P (p1(0))) (s 0)). (1)) 1)

=57 | € a7 Dxos@pe(t)), T (0s()))Xpo (P (1), 7 (1 (1))

— Xap(W(Pko)s T(Pro(t))) X po (W(Dro ), 7(Pro) )]V a dz

= 51 Nl 0), 0 o ().l
— i e’ aaﬁPUXaﬁ(u(pr),’r(pko(t)))xpg(u<pk0)’,r(pko))\/adw
= / [Xaup (t(Pi(t >>>| Vadz
1

— ﬂ/e3 a®""? x5 (W(Pro), T (Pro(t))) X po (w(Pro) , 7 (Pro) ) Va da.

By the symmetric property of x,s and the inequality (1.39)), there exists a positive constants
c3 such that

I = dp / / € a5 (w(pr (1)), (p1(£))) 35 (pr()). #* (pu()))V/a e
— oMy / / e 0 B (pi (1)), 7 (0 (1)) s w(pr (1)), (0 (1)))]'V/a d it
~ o / e / 63 (w(pi (1)), 7 (9 (1)) 853 (s (1)) T (1)) dt)a i

0

= 2#/6aaﬁ[%s(u(pk(t)),T(Pk(t)))5ﬂ3(u(pk(t))’?"(Pk(?f)))
— 0a3(w(pro), r(Pro))9s3(w(pro), T (pro) )|V a dz
= QM{/ e a®0os(w(pr(t), 7 (pr(t)))das(w(pr(t)), r(pi(t)))Vadz

— / € a3 (w(pro), 7 (Pro)) 93 (w(pro), T (pro) ) Va dz}
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= 25 [ €0 8.a(upn(8). (00 (0)) o (s (0),(pr(0)) Ve

— [ e bua (i) 1) ulrio) (i) Vi e}
> 26y [ sl 0)7(pu(0)Vada

— 2 [ e Sualuliin) 1) (o) (i) Vi

Subsequently, we make I, clearer,

= [ [ somivadsa = [ ([ sionoavaix =5 [ wio -k vaix
=5 [ 0P vaax - 5 [ il vadx.

Applying the Young and Holder inequalities to I5, we have

I5:/0t/ﬂgpk(t)\/adth

t t
< Vit [ [ g X de < VAT [ lgloaloett) o
0 Q 0
\/_ 1 ! 2 \/_52 ! 2
< M2— 950 dt + ME 1% ()15 0
€2 Jo 0
1 E9 ¢
<V glBsarane + VT2 [ 19n0IR
282 2 0
1 €9
< VM2—€2||9||%2(0,T;L2(Q)) +V M§||Vpk||i2(o,T;L2(Q))-

Lastly, analogous to I5, we derive the upper bound of I by the Young and Holder inequalities

L= t [ 1 W)+ u0))va axa

VAT [ W loaltd (0) + ' Gule) o
\/_61

S [ irtaa+ Y52 [ u)li + 1 o). e
\/M 2 \/_51

< 2_81||f||L2(0,T;L2(Q,R3)

1’ (), 7 (P 2203y (€ << 1)

where €, and €5 are positive constants from Young’s inequality.
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Consequently, one gets

D[ Pastutn@)PVads + 2 [ astu(ou(o), (o0 Vads
2y / (1), pel1))) P Vade + / 0 VadX + / t / Vp(t)*v/a dX di

<3 / € 4P ((50) ) (6(ph0)) v/

+ i /w e’ ao‘ﬁpUXaﬂ(u(Pko)a’"(pko))Xpa(u(pk(J)’r(pko))\/adx

2 [ eaSualulpin).(pra)lulpio). (o) Vada + 5 [ Il Vaax

€2 \/M
+VvM ||9||L2(0TL2 @) TV M§||Vpk:||%2 0,1:22()) T 2_&||f||%2(0,T;L2(Q,R3))

\/_51

—_

O —

Since 0 < V6 < y/a(z) < VM < oo (see —page ,

Vo

eaVo | (w(p(t)), r(pi(t) 13, + = Ir (D) 5.0 + F"T\/S /Ot IV Dk (£)116,0 dt

- @ € a8y (w(p0) Yoo (ko))

w

UL 8 0050 ). 7 10 X (lpr0), (i)

+ 2u\/M/ 6ao‘ﬁfsas(u(pko),T(Pko))553(u(l7ko)7T(pko))d-"J + @/ﬁ@kof dX

v M
+ VM ||9HL2 ©o1:2() TV _HVpk”m (0,1;22(2)) T 2_51||f||%2(0,T;L2(Q,R3))

\/_81

1 (i) 7 () e 0,720

34}

here ¢4 = mm{ 5 ;4 2¢
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It follows to

@M—Felw (v >,r’<pk>>||%w<o,m+?npk(wnag <"nf VI IV 01200

VM

< 5 eao‘ﬁp"%g(u(pko))%a(u(Pko)) dx

/63 a®PPo v, (w(pro), T (Pk0)) X por (W(Pro ), T (Pro)) dz

+ QM\/M/ € a®8a3(u(pro), T (ko)) I3 (w(pro) . 7 (pro)) d + @ /Q kol dX
VM

1
VMol ooy + 51 lorzep)

261
204\/3 26V 0

By choosing the £, and ¢4 suitably, i.e., €4 < —— and €5 < ——=, we obtain that

vM nv M
||(u(pk)7r(pk))||%°°(O,T;XN) + ||pk||%°°(0,T;L2(Q)) + ||Vpk’”%2(0,T;L2(Q)) < (, (2.54)

here Cy depends only on T, || f||z2(0,r;02(2.r3))» [|Pollze(0,7522(0)) and ||g]|z20,m;22(0))-

We have just proved the inequality (2.52a)). Next, we derive the inequality ([2.52b)) by testing
(2.50a]) with p;, it leads

JWPVaax +a [ div @) + o o) vadX
Q Q
+%/Vpk~Vp§€\/5dX :/gpz\/EdX. (2.55)
Q Q

And differentiating in time ([2.22a)) written for p = py,

62

12Xpa< /(pk)a"',<pk))>(aﬁ('l), s)]\/E dx

[ e bt p)reao) +
+ 4u/ e a® 03w (pr), 7 (pr))dps3 (v, 8)vVa dx — 04/919;C div(v + 28)va dX

_ /Q f - (+ zs)v/adX.

Testing the above achieving equation with (v’ (pg), ' (pr)),
[ 0 1) s 0 000) + 50 0 ), 00 0 ) ()
+4u/6aaﬂ%s(u/(m),T'(pk))5ﬁ3( "(px), 7 (pr))Va dﬂf—a/gp div(w'(pr) + 2r'(p))Va dX

/ £ @) + 2 (pr))Va dX. (2.56)
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Adding the two equations (2.55)) and (2.56)) then integrating with respect to time, we obtain

2

[ ™ B0 ) a0 1)) 0 0 ) ) 1), ()] il

J/

-~

Y1

g / / € 0% 3 (! (pi), 7 (pi)) B30 (1) 7" (1)) drdt + / / PP va dXdt

V ~

Y3

/ / Vo Vpk\/_ X dt — / / £ (p) + 2r' (i) a dX dt

/ / gpk\/_ dXdt. (2.57)

Applying the inequality ((1.39)), there are positive constants ¢}, ¢, ¢; such that
15 C25 C3

Yi+Y;
2

:/0 /6ao‘ﬁﬂU['Ypo(u’(pk))'Vaﬁ(u’(pk))+%ng(ul(pk%,r,/(pk»xaﬁ(u,(pk)’r,(pk))]\/adwdt
+4M/0 /6a"‘ﬁéas(“/@k)aT,(pk))%g(ul(pk),r’(pk))\/a dadt
> [ s () + 5 s 0 1), () + el (). 7'

> 4V3 / 1 (i), (o) Pt > /5 / | @ (i), (1)) |, dt
= VB | () (1)) oo -

Using the bounds of \/a and integration with respect to time, we carry out the lower bound of
Y3 + Y,

t t
Virvi= [ [nPvadxacs [ [ Ipevs vaaxa
0 Q 0 Q

t , 1
> V5 [t ey de+ 5 [ (V)P — [Vina)aaX
0 Q
Vi WA

> Vo | P H%Q(O,t;LQ(Q)) +7 | Vpr. ||L2(Q) o9 | Vpko ”%Q(Q)
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In the following, we employ the Young and Hélder inequalities to find the upper bound of Y,
Yy = /0 t /Q o) + 2 (p))Va dX dt
< \/M/t 1F ol (pr(t)) + 27 (pr(£) o, dt
\/_ Me!

||os2dt +

[ 1@z + 51 eI i
\/M vV Me|
+ 2

= o | ||L2 (0,T;L2(1,R3))

1 (i), 7' iDLz 0 i) (€ << D).

Similar to Y5, we also derive the lower bound of Y,

t t t
Vow [ [ atovadxae< Vi [ [ gty axar < var [ fgloalp®los
0 JQ 0 JQ 0
vVMe, [t VM \/ el
52 [ IkOlEa < G lol? k2

= N9llz2 00,712
2, L2(0,T;L2(Q))

0,T;L2(92

where €] and ¢}, are positive constants from Young inequality.
Therefore, (2.57) becomes

Vo
Vo || @ (pr), (pr)) [ 22(0,6:2n) +V5 | i 1132 (0.5L2(9) T 5 | Vi ||%2

VM \/_a1 VM

< oo I lzomizams) + I (' (pw), 7' (i) M2 0.7:0) + 22 o 9l L2072
1

\/_82 \/_

HpkHL2 07;02(9) T 5 | Vpro HL2

It implies to
vV Mg vV MEe. Ve
(c5V5 — 5 ) 1@ (0e), 7' (1) 20750 +(Vo - 5 P20 2@ + 5 1T VEr 2@

AT Vi, Vil

2
< 2, | f HLQ(O»T;LQ(QW)) + 2! HgHLZ(o,T;LQ(Q)) + ) | Vpro HL2(Q)

VO 2V0
%— and e} < \/—%, we obtain that

||(u/(pk)7r,(pk))H%Q(O,T;XN) + Hp;CH%Q(O,T;L?(Q)) + HVpkH%OO(O,T;LQ(Q)) < Oy,

By choosing the €| and &), suitably, i.e., e} <

here C; depends only on T, || f|| z2(0,r;r2(2,83))» |Pollze=(0,7:22(0)) and ||g|r20,7:22(0))-

This inequality implies (2.52b) in Lemma [33] From (2.52)), we have that ||pg|rec(o,r;m1 ),
Pk || bt 0,1 02(52)) and ||(u(pk),r(pk))||fql(0’T;XN) are uniformly bounded. This yields (2.53). We
just finished the proof of Lemma 33| 0
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Lastly, we prove that the pressure solution p, which is derived in Lemma satisfies (2.45]) and
2:229).

Lemma 34
The limit p in Lemma [33] solves (2.45]) and ([2.22c)).

Proof. We pass to the limit in (2.39) after having replaced p by py and based on (2.53¢]),

1
/ e@aﬁmm(wl)%a(v)\/adx + ' / e’ aa’ngXa,B(’wl,’lUQ)Xpo(”»s)\/adx

+4u/eaaﬁéag(wl,wg)égg(v,s)\/adx—/ﬁdiv (v+ z8)v/a dX:/ v+ 28)v/a dX.
w Q Q

By uniqueness of (2.39)), we have w; = u(p) and wy = r(p). Then passing to the limit in (2.50)),
we also obtain that p solves (2.45) and the continuity in time of p gives the initial condition

(2229 O

Proof. (of Theorem [10). From Lemma[30]and Lemma[32] we can derive that the problem (2.22)
is well posed. The remain of theorem is proved by Lemma [33] and Lemma [34] U

2.7 Boundary value problem

In this section, we derive the boundary value problem that is, at least formally, equivalent
to the Biot-Naghdi weak equations ([2.22]).
Let us consider the boundary of €2 and w:

aw:”)/gu’}/l and aQ:FOUH =Y X (—E,S)U”}/l X (—g,g),
and introduce the space
HE () ={q € H'(Q); ¢ =0 on I'p}.

We recall the variational formulation of the problem corresponding to the linearized Biot-Naghdi
shell model. For data (f,g) in L*(0,T; L*(Q,R?)) x L*(Qx]0,T]), it reads: Find (u,r) € Vy
and p € Wy such that

(2.58)

A((u,r,p); (v,8)) =0 V(v,s)€ Xy,
B((u,r,p);q) =0 VYqe Hp (Q),

where
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A[(U,T,p); (’073)] = AJIV[(uvT)’ (’U,S)] + B{V[ ) (’U,S)] - 'Civ(vﬂs)

— [ €0 s )0 (0) + 5 0 7))V

+ 4u/ e a 53w, 7)dp3(u,7)V/a dr — a/ pdiv(v + 28)\/a dX
- / [ (v+28)VadX. (2.59)

Next, we state the system of partial differential equations of the Biot-Naghdi shell model (12.58))
in the case when dw = o U ;.

% Theorem 11 I
If the solution(u,r) € Vy and p € Wy of the corresponding problem (2.22)) of Theorem @ is
smooth enough, it also satisfies the boundary value problem:

—0,((n”” (w)a, + m*? (u,r)0,a;3 + t*(u,r)as)/a) + aV(py/a) = fy/a, in Qx]0, T
(=my) (u,r) + t°(u,7))a,v/a+ azV(pya) = zf/a, in Qx]0, T

Oy(cop + adiv(u + 2r))y/a — %div(Vp\/E) = g/a, in Ox]0, T

u =7 =0 on v, (2.60)
p=0on Iy,
((n”? (w)a, + m*? (u,r)0,a3 + t*(u,r)as)\/a)n, — apy/av = 0 on I'y,
mP? (u,r)a,\/a n, —azpy/av =0 onI'y,
Vp-vy/a=0onTy,

where
nf () = ea®""y,5(u), (2.61a)
m (u,r) = %aaﬁpaxag(u,r), (2.61b)
7 (u, 1) = 4pea® 6,3 (u,r) (2.61c)

and for an arbitrary tensor with differentiable covariant components,

m®?| 5 = 9gm + Fgamﬁ" + Fgamw.

Proof. Let us remind the tensors:
1
Yoo (V) = Yop(v) = 5(80” ra, + O - a,),

1 1
Xpo (V,8) = Xop(v,8) = 5(3,}‘0 + So1p) + 5(8,)1) - Oya3 + 0,v - 0,a3)
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and
1
553(’0, 8) = 5(85’0 -as + 85).
Hence, combining with the symmetry property of n”® and m*? we obtain that
n’ (u)Y,e(v) = 070,V - a,,

and
mP (u,7) X po(v,8) = M (u,7) (8, + Opv - 0ra3).

Therefore, AY|[(u,r), (v,8)] becomes:

AN (u,r), (v,8)] = 1/[n’)"(u)ap'v @, +m (u,r)0,v - Oyas + tﬂ(u,r)agv -ag)vadX
Q

e

+ ! / (M (u,7)8,, + t° (u,7)s5]v/adX — a/pdiv(v + 28)va dX.
Q Q

e
Then, we rewrite A

Al(u,r,p); (v,8)] = 1/[n”"(u)apv @, +m (u,r)0,n - Oya3 + tﬁ(u,r)ﬁﬁ'v az)vadX
Q

e

1
+ - / (M (u,7)8,, + t°(u,7)s5]V/adX — a / pdiv(v + 28)va dX
Q Q

e

—/ng'(vjtzs)\/EdX.

By changing the indices of two terms t°(u,r)dsv - a3 and t°(u,r)ss from 3 to p, we obtain

e

Al(u,r,p); (v,8)] = 1/[n""(u)aa + m (u,r)0,a3 + t*(u,r)az]v/a - Ov dX
Q
+ ! / m? (u,r)8,, VadX + ! / t*(u,r) s, vVadX
€ Ja € Ja
—a/pdiv(v—i—zs)\/EdX —/f~ (v + 28)va dX.
Q 0
From (2.58)), we see that A[(u,r,p); (v,s)] = 0 for all (v,s) € Xy, so one takes (v,s) = (v,0)
Al(,r,p); (v,0)] = = / 0 (wW)ay + m? (u, 1) 9 as + £°(u,)as)a - v dX
0

e
—a/pdivv\/EdX—/f-'v\/adX.
Q Q

Applying the Green theorem to the first and second term and using the elimination of (v, s) on
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['y, we have

! /[n”" (w)a, + m” (u,r)d,a3 + t*(u,r)as)v/a - v dX
Q

(&

= —é / 0,([n”7 (w)a, + m” (u,r)0,a3 + tp(u’,r)ag}\/a) vdX
+ l/F " ([nPU(u)a + mPU('u,,'r')aga,3 + tp(ua”')ag]\/a)np vdl
e / d,([n"? (w)a, + m” (u,r)d,a3 + t*(u,r)as)v/a) - vdX

+ _/F ([n* (w)a, + m* (u,r)0,a3 + t* (u,r)as]v/a)n, - vdl

and
a/gpdiv(v—i—zs)\/adX:a/F
/Flp( v+ 28) - n\/_dF—a/Vp\/_ v+ 28)dX.

p(+ 28) - ny/adl — a/ V(pva) - (v + =8) dX

oUl'y

So we get that
Al )i 0.0)) = = [ 0,10 wa, + 7 . 7)000 -+ (. r)as) V) - v dX
Q

+ é / ([n”? (w)a, + m* (u,r)d,a3 + t*(u,r)as]\/a)n, - vdl
Iy

—a/ pv-n\/EdF+a/V(p\/5) -'vdX—/f-'v\/EdX.
Iy Q Q
Then we derive that:

{—6p([np”(u)aa + mP (u,1)0,as + 17 (u,m)as]/a) + aeV (py/a) = ef/ain
(I

2.62
n’(u)a, + m?’ (u,r)0,as + t*(u,r)as)\/a)n, — aepn/a =0onT;. (2.62)

Similarly, taking (v,s) = (0, s), one can check that
Bl(u,r,p); (0,8)] = E/mp"(u,r)sw VadX + ! / t*(u,r) s,0/adX
€ Ja Q
—a/ (28) - n\/_dF+a/Vp\/_ (28)dX
/mﬂff u,1)(0,8, — Fffasa)\/adX—i- E/tp(u,r) spvadX

Q

—a/rlp(zs)~n\/5dF—|—oz/QV(p\/E)~(zs)dX
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1 1 1
= g/mp"(u,r)(ﬁgsp)\/adX—g/mpa(u,r)Fggsa\/adX—i—g/t”(u,r) spvadX
0 Q Q

-~ -~

11 12

—a/F p(zs)-n\/EdI’—l—a/QV(p\/a)-(zs)dX—/Qf-(zs)\/EdX.

In detail, we make I; clearer

L = —%/an[mp”(u,r)\/a]sp dX—l—/ ne[m?? (u,r)v/als,dl

Toul'y

_ 1 /KZ[&TT?”L”U(u,f")\/a +m (u,r)0,\/als, dX + / ng[m (u,r)v/als,dl

e 'y

- —1/Q[ﬁam””(u,r)\/aJrmp”(%’”)rgg\/a]sp dX+/ ng[m” (u,r)v/a]s,dl

e I8}

= —l/g[ﬁam”"(u,r) + m* (u,r)I'S, JVas,dX —|—/ ne[m?? (u,r)/als,drl.

e I8}

by 0,v/a =T, v/a.

Next, exchanging the index of I5 between p and «,
/ m® (u,r)I \as,dX.

Therefore
Al(u,r,p); (0,5)]
= Il — ]2 —f-l/tp(’ulﬂ”) Sp\/adX — O.//
€ Ja

I'

p(28) - ny/adl' + a/QV(p\/E) - (z8)dX

- _é/ﬂ[aampo(u,r) + P (u, 7T /a s, dX — é/ﬂmaa(u,,ﬂ)rggﬁ%dx
—I—é/r1 na[mPU(U,T)\/a]Sde + é /Qt"(u,r)\/asp dX — a/rlp(zs) -ny/adl
+ a/QV(p\/E) - (28)dX

- /Q[a"mm("”") + ()05, + m (u,r)TG [ Vas, dX
+é/r na[mpa(u,r)\/a]spdf—f—%/Qtp(u,r)\/asde—a/F p(28) - ny/adl

+a/QV(p\/5)-(zs)dX—/Qf-(zs)\/EdX.
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Exchanging the indices of m*? (u,r)['%, and m* (u,r)I'"  between p and «, one has

(Om” (w,7) +m” (u,7)TG, +m® (u,r)T0,)Vas,
= (0" (u,r) + m’(u,r)I7, +m* (u,r)I,)Vas,
= (0,m?(u,r) + m* (u,r)T'7, + m* (u,r)I, )vas, (m" is symmetric)

= mfap(u,r)\/asp.

Then,
Al(u, 7, p); (0,8)]
=2 [ as,aX + ¢ [ o) s+ + [ o) vas,ax
e Jo eJr, €

Q

—a/rlp(zs) ~n\/5dF+a/QV(p\/a) . (zs)dX—/Qf~ (28)/a dX
1 /Q = () + 19w, )]/ s, dX + é / nym (,r)y/a s, dT

€ r

—a/rlp(zs)~n\/5d1“—|—a/QV(p\/a)'(zs)dX—/Qf~(zs)\/EdX
= 1/Q[—'rn"ap(u,r)—|—t”(u,r)]\/5ap-st+%/ nem (u,r)vaa, - s dl

a/rlp(zs).n\/adma/gwp\/a).(zsr)ldx/Qf.(zs)ﬁdx

_ 1/{2[—m"(,p(u,r) +tp(u,r)]\/5ap'3dx+a/gv(p\/5> - (28) dX

(&

—/f-(zs)\/EanLl/ nam"”(u,r)\/aap-sdl“—a/ p(28) -n/adl.
Q €Jr

I'

Hence we get

{<—mrf<u,r> + () Vaa, +acsV(p/a) = zefain Q. (2.63)

mP? (u,r)a,\/a n, — aezpny/a =0on ;.
Next, we work with the weak form
Bl(u,r,p);q] =0 Vg€ Hp (),
where

Bl(u,r,p);q] = co/p’q\/EdX + a/ div (u' + 2r')qgvadX
Q 0

+%/Vp-Vq\/EdX—/gq\/5dX.
Q Q
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Applying the Green theorem to the third term, we have
/ Vp-Vqadr = / (Vp-v)g/a dl — / div(Vpy/a)qdX
Q Toul'y Q
= / (Vp-n)gv/a dl — / div(Vpya)qdX.
r Q

Then, it follows that

Bl(u,r, p); q] =/

Q

- oz/F (Vp-n)gv/a drl.

(cop'Va+adiv (W + 2r')\a - gdiva\/a) — gVa)g dX

Since B|(u,r, p);q] = 0 for all ¢ in H*(Q),

cop'va + adiv(u' + 2r')\/a — %div(Vp\/E) = gy/a in Q,

(2.64)
Vp-ny/a =0 onTy.
From ([2.62)), (2.63)) and (2.64]) we obtain the Theorem ([11]). O

Now, we consider the Biot-Naghdi shell model in the case where dw = 7.

% Theorem 12 I
Assume that dw = 7y, so that

Xy = Hy(w;R?) x Hy(w)? and Wy = L>(0,T; L*(Q)) N L*(0,T; Hy(Q)).

If the solution (u,7) € Vy and p € Wy of the corresponding problem (2.22)) of Theorem [J] is
smooth enough, it also satisfies the boundary value problem:

—0,((n*” (w)a, + m*? (u,r)0,a;3 + t*(u,r)as)/a) + aV(py/a) = fy/a, in Qx]0, T
(=my) (u,r) + t°(u,7))a,v/a+ azV(pya) = zf/a, in Qx]0, T
O (cop + adiv(u + 2r))/a — %div(Vp\/&) = gv/a, in Qx]0,T| (2.65)

u=7r =0 on v,
p =0 on [y,
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Al(,r,p): (v,8)] = / (0 (w)ay + M (u, 7)dpas + ¢ (u,7)as]/a - Ay dx
+ / P (w,7)8 0 /@ d + / (1) s, Vadz — a /Q pdivo\/a dz
—a/ﬂpdiv(zs)\/EdX—/Qf-v\/EdX—/Qf-s\/de,

Bl(w.r,p): gl —co /Q Pavads +a /Q (div o +#)qads + a /Q div(=r')q v/a dX
+%/9Vp-Vq\/de—/w§q\/Edm.

Proof. Following the same steps in Theorem [I1], we obtain Theorem [12]

87

% Remark 35 I

of the solution in a local covariant or contravariant framework.

where the surface is globally W%, the solution regularity is still an open problem.

solution.

i. The solution regularity depends on the regularity of chart defining the shell midsurface. In
the case where the chart is of class C*, O. Tosifescu in [53] has established the H?-regularity

ii. For our Hybrid Naghdi’s formulation of the present work and also for Cartesian equations

iii. In a recent work [63], I. Merabet and S. Nicaise have introduced a new mixed formulation
for Nagdhi’s shell which is appropriate for folded surfaces and have approximated the
solution of the problem using the DK method. The standard a priori error analysis of
such methods uses additional regularity on the solution but in [63], I. Merabet and S.
Nicaise have carried out an error analysis which only requires the regularity of the weak

Conclusion: In this chapter, we established the derivation of a poroelastic shell model of
Naghdi type coupled with the Biot model. It is the Biot-Naghdi poroelastic shell model. We
also proved the well-posedness of the resulting equations by the theory of DAEs and Galerkin
semi-discrete method. Moreover, we obtain the strong formulation of Naghdi-Biot coupled model
which we use for establishing the fluid-structure interaction between incompressible flow and

poroelastic shell structure in Chapter [3]
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Chapter 3

Interaction between a fluid and a
poroelastic shell

In this chapter, we carry out the fluid-structure interaction between incompressible flow
and poroelastic shell structure. We use the incompressible Stokes for the free fluid and the
Biot-Naghdi poroelastic shell model, which we derived in Theorem for the poroelastic shell
structure. In process of proving the well-posedness of this model (see Theorem, we have trou-
ble imposing the conditions on the interface which are mass conservation, balance of stress and
the Beavers-Joseph-Saffman conditions. Therefore, the Lagrange multiplier method is employed
to impose weakly this condition. We assume that the boundaries and the interface between the
fluid and the poroelastic material are fixed. The proof proceeds by constructing a semi-discrete
Galerkin approximations, deriving the discrete inf-sup condition and adopting the theory of
differential-algebraic equations (DAEs)[26].

3.1 Introduction

The interaction between a free fluid and a deformable porous medium is found a wide range
of applications: ground-surface water flow, reservoir engineering and blood-vessel interactions.
We have three common coupling models: Stokes-Darcy [42, 48|, [57, [78, 87, 89], Stokes-Biot[2] [82]
and Navier-Stokes-Biot [3 27, [3T]. In Stokes-Darcy model, the fluid flow is governed by Stokes
equations and the flow in a porous medium is governed by Darcy equations. Coupling the
Stokes and Darcy equations has become a very active area of research because of its potential
for practical applications. Such models can be used to describe physiological phenomena like the
blood motion in vessels, hydrological systems in which surface water percolates through rocks
and sand, and various industrial processes involving filtration. One serious problem today is
surface water and groundwater contamination resulting from leaky underground storage tanks,
chemical spills, and various human activities. A model coupling the Stokes-Darcy equations
with a transport equation [87] can be used to study the spread of pollution released in the
water and assess the danger. J.M. Urquiza [86] considered a weak formulation of the coupled
problem which allows to use classical Stokes finite elements in the fluid domain, and standard

89
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continuous piecewise polynomials in the porous medium domain. In his work, the formula-
tion of Stokes equations is standard while a Galerkin least-squares formulation is used for a
mixed form of Darcy equations, as in [2]. Unlike Stokes-Darcy model, coupling the Stokes-Biot
equations adopt the Biot system [I0] for fluid in the poroelastic media. An alternative parti-
tioned approach for the coupled Stokes-Biot problem based on the Nitsche’s method is studied
in [29]. The resulting method is loosely coupled and non-iterative with conditional stability.
Different to the method in [2§], which is suitable for the pressure formulation of Darcy flow,
the Nitsche’s method can handle the mixed Darcy formulation. In [2], the authors focus on
the the monolithic scheme for full-dimensional Stokes-Biot problem with the approximation
of the continuity of normal velocity condition through the use of a Lagrange multiplier. They
consider the mixed formulation for Darcy flow in the Biot system, which provides a locally
mass conservation flow approximation and an accuracy Darcy velocity. The advantage of the
Lagrange multiplier method is that it does not involve a penalty parameter and it can enforce
the continuity of normal velocity with machine precision accuracy on matching grids. The most
popular fluid-structure interaction (FSI) is Navier-Stokes-Biot coupling model. In which, the
Navier-Stokes equations describes the incompressible fluid. The finite element approximation
of the FSI problem [3] is involved due to the fact that both subproblems are indefinite. In this
work, the authors design residual-based stabilization techniques for Biot systems, motived by
the variational multiscale approach. Then, they state the monolithic Navier-Stokes-Biot system
with the appropriate transmission conditions at the interface. For the solution of the coupled
system, they adopt both monolithic solvers and heterogeneous domain decomposition strate-
gies. In Navier-Stokes-Biot coupling model, the transmission conditions on the interface have
a essential role. The Beavers-Joseph-Saffman (BJS) condition ([5],[54],[81]) describes the slip
boundary conditions between the fluid and elastic shell.

In our work, we use the Stokes equations for the incompressible free fluid and the Biot-
Naghdi shell model, which we derived in section [2.7], for the poroelastic shell structure. Mass
conservation, balance of stress and the BJS condition are imposed on the interface. A Lagrange
multiplier method is employed to impose weakly this condition. We assume that the boundaries
and the interface between the fluid and the poroelastic material are fixed. The proof proceeds
by constructing a semi-discrete Galerkin approximations and for the existence of the solution
we adopt the theory of differential-algebraic equations (DAEs)[26].

3.2 Problem setting

3.2.1 Stokes-Biot-Naghdi poroelastic shell model

We consider a multiphysics model problem for a free fluid’s interaction with a flow in a
deformable porous media, where the simulation domain € in R? is a union of non-overlapping
polygonal region €2y and €2,,. Here () is a free region with flow governed by the Stokes equations
and ﬁp is a poroelastic shell structure governed by the Biot-Naghdi system.
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il
S

F'Lfn F(J)cut

Figure 3.1: Domain 2

Note that, for the poroelastic shell structure, we do not work directly on ﬁp but on 2, =

®(Q,) with ® being the chart given in . Let (us,ps) be the velocity-pressure pair in Qy
and (U,, p,) be the displacement-pressure pair in €2, and let u, be the velocity in €2,. Remind
that U, = n, + 2r, with (n,,7,) is a displacement-rotation pair in w,, where w, C R? is the
midsurface of 2, and satisfies ¢(w,) = @,. By the quality of Naghdi shell, we see that &, C R?

is the midsurface of (NZp. More precisely,
Q, =T, x (—€/2,¢/2) and Q, = w, X (—e/2,¢/2). (3.1)

Let 'y = 9Q N oYy = F}” U Fg’c“t and fp = 00N (9@0 = fg U f}, U fgxt. We also denote
[, =00, =T)ul, Ul

P
N “ T
F;-Tt F;xt B
o . ol w {8 2 = (L)
g g Wy = p(wp)
1:fp Lsp

{2 {2

Figure 3.2: Domain Qp and (2,

Here

Iy = o (I7) with o* (&) = Bz, ¢/2) = p(z) + Sas(a). (3.22)

T}, = ¢ (I'y,) with o~ (z) = ®(z, —¢/2) = p(x) — §a3(m). (3.2b)
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In the following, we derive the relationship between the area element of the midsurface in the
chart ¢ and area elements of surfaces I'y, and T'5*" in charts ¢ and ¢~

4 Lemma 36

Let S. be a surface given by S. = ¢.(@) where ¢.(z) = p(1) + cas(z), z € w, p € WH®(w; R3)
being the chart defining the shell midsurface.

We let a.(x) = |01¢: A Daipe|? so that \/a. is the area element of the surface S in the chart ¢..
Then, if € is small enough, the area element a. associated to the surface S, in the chart . is
given by:

a. = a(l — 4eH + O(£?)), (3.3)

where H is the mean curvature of the midsurface S and 1/a is the area element of the midsurface
S in the chart .

Proof. From the definition of d,¢., we have:

Ve () = [01p: A ape| = |(a1 — ebjag) A (ay — ebyag)].

It follows that:

Va(r) = |ay Aag — ebj(ar Aay) —ebi(ay Aag) + £2(byb3(ar A ay) + bybi(az Aay))l
= la; Aay — (b +b3) (a1 Aay) +2(b1bs — b3bT) (a1 A ay)|
= (a1 A a2) (1 — e(by + 03) + (b — bybi))]-

Recall that H = 1/2(b} + b3) and K = b}b2 — bib? are the mean curvature and the Gaussian
curvature of the midsurface S, respectively. Then we obtain:

V() = |ay Aasl|l — 2¢H + 7K.
Hence, since K is in W1 (w; R?), a.(z) can be written

a-(z) = a1 A as|*(1 — 4eH + O(e?)).
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% Remark 37 I

Therefore, thanks to the previous lemma, the area element a.(x) of the surface S. can be
approximated by the area element of the surface S when ¢ is small enough. In other words one
can assume that:

dS. = v/adzx.

Therefore, we have:

[ F(z)dl = /Feth(x)\/@dx: /F F(z)/adz, (3.4)

Text ext

/ffp F(z)dl = /pfp F(@)y/6cp2 dz = / F(x)vadz. (3.5)

Tsp

Next, we introduce the Stokes and Biot-Naghdi models.
Let pus > 0 be the fluid viscosity, let f; be the body force term in Qy. Let D(uf) and
os(ug,pys) denote, respectively, the strain tensor and the stress tensor,

1
D(’U,f) = §(V'Uff + VU?), O'f(Uf,pf) = —pr -+ 2,U,fD<’U,f) (36)
In the free fluid region Qy, (uy,ps) satisfies the incompressible Stokes equations
—V'O'f(’ll,f,pf) :ff n Qf X (O,T], (37&)
V.uy;=0in Qf x (0,77, (3.7b)

where 7" > 0 is the final time.

In this section, we consider the relative velocity of the fluid within the porous structure
u, as another unknown via the Darcy’s law. Therefore, we couple also the Darcy’s law to the
Biot-Naghdi model. More detailed, let f,, be in L?(0,T; L*(€,, R®) and g be in L?(€,x]0,T7),
((np, r,), Up, pp) satisfy the Biot-Naghdi shell model and Darcy’s equation:

—0,((n”° (mp)as +m” (ny,1,)05a3 + tp(nmrp)a?))\/a) + aeV (pp\/a) = efzv\/a in Q, x (0,77,

(3.8a)
(_m\(;p(np/"p) + tp("h)arp))alp\/a + aezv(pp\/a) = Zefp\/a in €, x (0,77,
(3.8b)

copyVa+ adiv(n, + zr,)v/a — %div(up\/a) = gv/a in Q, x (0,T],
(3.8¢)

Hp
K
where ¢ is the constrained specific storage coefficient, x is the permeability of porous medium,
fp > 0 is the Lamé coefficient and « € (0, 1) is the Biot-Willis constant, which is usually around
one.
Recall that m[? is the covariant derivative of tensor defined by

lo

mlip(nparp) = 0om?’ (1, 7p) + M (0, )5, +m* (1, 1) 15, (3.9)

u, + Vp, =01in Q, x (0,7, (3.8d)
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3.2.2 Boundary and initial conditions

The above system of equations needs to be complemented by a set of boundary and ini-
tial conditions. Let n¢, n, and v, be the outward unit normal vectors to d€2¢, 012, and Ow,,
respectively. Since the boundary conditions have no significant impact on the fluid poroelastic
interaction, for simplicity they are chosen such that the normal fluid stress is prescribed on
inlet and outlet boundaries:

ofng = —pi(t)n; on I' x (0,77, (3.10a)
o'n; =0on '} x (0,7]. (3.10b)

On the boundary of €,, we impose

n,=r,=0on~) x(0,7], p,=0o0n I x (0,7], u, -n,=0o0nT, x (0,7], (3.11a)
([ (mp)ae + mP (n,,7,)0sa3 + 1 (1,,7,)as]Va)n, — aeppv/av, =0 on I') x (0,7], (3.11b)
m” (0, 7p)a,\/a ne — aezpyn/an, =0 on I') x (0,T], Vp, -nyn/a=0onT) x (0,7]. (3.11c)
To avoid the issue with restricting the mean value of the pressure, we assume that [I')| > 0.
For proving the well-posedness of the weak formulation, we also need that dist(l&, I'p) > 0.

For more details, see [46].
Later, we set the initial conditions

Pp(X,0) =ppo(X) in Q,, X = (z, 2). (3.12)

Remark 38 I
The initial condition U,(X, 0) = n,(z,0)+2r,(x,0) is computed by solving the Naghdi equations
when p, (X, 0) is given.

3.2.3 Interface conditions

For a discussion on the interface conditions on the fluid-poroelasticity interface I'f,, see
[3, 83, 66], 67]. For mass conservation, we require that the normal fluid flux must be continuous
across the interface

(Mass conservation) ur-ng+adU, n,+u, n,=0 only x (0,7

e

Note that, on the interface I's,, U,(x, —€/2) = n,(x) 5

r,(x), we then obtain

uyp-ny+ a(omy — gatrp) ‘n,+u, -n,=0 only,x(0,T]. (3.13)
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For the balance of the normal components of stress in fluid phase across I'y,, one have
—(O'fl’lf) Ny =p, ON Ffp X (O,T] (314)

The conservation of momentum requires that the stress of the porous medium is balanced by
the stress of fluid, that is, the total stresses of the fluid and the poroelastic medium must match
at the interface:

(Momentum conservation ) oms+o,n,=0 only x (0,7 (3.15)

Finally, the tangential component of the fluid stress (which is equal to the one of the solid

phase) is supposed to be proportional to the slip rate according to the Beavers-Joseph-Saffman
(BJS) condition

(BJS condition) — (omy) - 7p = prapysVe(uy — a(Om, — gatrp)) Ty (3.16)

here 7 is the unit tangent vector on I'y, and apsg > 0 is an experimentally determined friction
coefficient.

3.3 Weak formulation and Analysis

3.3.1 Weak formulation

In this section, we construct an appropriate variational formulation of Stokes-Biot-Naghdi

system (3.7)) and (3.8)) coupled by the interface conditions in [3.2.3|

In order to find weak formulation, we introduce our functional framework.
— For the Biot-Naghdi model, we introduce
X, ={&, € Hl(wp,R?’) :€,=0on ’yg}, S,={s, € [Hl((,up,R)]2 18, =0 on 72},
V, ={v, € H(div,Qp) :vp,-m, =00n [}, W, = {w, € H'(Q,) : w, =0 on I},
where H(div,$,) is the space of [L?(£,)]*-vector with divergence in L*((2,) with a norm

lopll e,y = (wpllZa0, 29 + 1V - 0pllZ2(0,) >

— For the Stokes equations, we set
Vy={vy € [H'(Q)]?: vy =0o0n Iy} and Wy = L*(Q).
We define the global velocity and pressure spaces:
V={v=(vs,v,) € Vi xV,} and W = {w = (wy,w,) € W, x Wy}
equipped with the norms
[ollv = (ol o, o) + [0y 50"

[wl|lw = (||wf||i2(ﬂf,R3) + ||wp||%2(np))1/2-
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The weak formulation is obtained by multiplying the equations in each region by suitable
test functions, integrating by parts in space and utilizing the interface and boundary conditions.

Let us itemize the weak formulation in each region:

e The variational formulation of the Biot-Naghdi shell equations now reads: Given ¢t € (0, T,
find (n,(t),rp(t), u,(t), pp(t)) in X, x S, x V, x W, such that

- /Q 60( [npa(np)aa +m” (ny,rp)0sa3 + tp(np7rp)a3] \/a) §pdX

+ae [ Vippa) & dX =e | f,-&EadX,
Qp

Qp

—/Q m’ (M, Tp)a, - $p\/a dX+/ (M, rp)a, - Sp/adX

Qp
~|—0ze/ 2V (ppva) - 8,dX = e/ zfp - spvadX,
0 2,

P

/ O (copy + adiv (n, + zrp))wy/adX + / div (upv/a)w,dX = | gwy/adX,
QP Qp QP

% . u, v, dX _/ﬁ Vp, v, dX =0, for all (&, 8p, vy, wp) in X, X S, XV, x W,

Applying the Green Theorem, the boundary conditions and domain transposition from
2, to ), the weak formulation of Biot-Naghdi is written

FluFfp

/ _ap( [npg("lp>aa + mP7 (N, 1p)0pas + tp<"7p7"'p)a3} \/5) -&pdx + 04/ pp\/a §p - m,dl
+O‘/F [(ppy) - 74 [€p - T4]Vadl — Oé/Q ppVa div §,dX = o fp-&pVadX,

— / mif(npﬂ"p)ap -spv/a dx + / t*(Mp,Tp)a, - 8pv/ade + Oé/r . ppVa (z8p) - m,dl
wp wp 1Ulyp

v [ ) rl (=5e) mvadt —a [ padivies,) X = [ £, () Vax.

/ O (copy + adiv(n, + zr,) ) wyv/a dX +/ div(u,y/a)w, dX = / gqwyn/adX,
Qp Qp

QP
% : up-vp\/EdeL/F ppvp-np\/adl“—/ ppdiv (v,v/a) dX = 0.
P fp

Qp

Adding the all four equations and applying the interface conditions, the balance of the
normal components of stress (3.14) and BJS condition (3.16)), the weak form of the Biot-
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Naghdi becomes

- / 8{)( [npomz))aa + mP7 (N, 1p)Opas + (N, "'p)a?)} \/a> -&pdx — / mﬁf(ﬂp, rp)ap : 'Sp\/a dz

+ / t*(ny,1p)a, - sp\/ad:l: + oz/ pp\/a (&, + zs,) -n,dl — a/ pp\/a div(§, + zs,) dX
w ry Qp

D

+/ O (copp + adiv(n, + zr,) ) wyv/adX +/ div (up,v/a)w, dX
0 Q

P P

+ o u, - v, VadX —/ ppdiv (vpv/a) dX +/ ppva [Oé(fp - gsp) +'Up] -1, dl
QP

P Lyp

- /F prapssVe([uy — o(Om, — gat"”p)} 7)) (€, — gsp) -T¢)v/adl
- / fo e (&) + 28,)v/a dX + / gwadX. (3.17)
Q, Q,

e Using the boundary conditions (3.11b))-(3.11c|) and the definitions of n*?, m*? and ¢, we
have

/w —0,([n” (p)a, + M (0, 7,)0pas + t° (N, 7,p)as|Va) - €, de — / m’ (M, Tp)a, - $p\/a dz
+ /tp(np,rp)ap - 8pv/adr + oz/Fl ppva (€, + 28,) - m, dT’
= [ )as 1, 00+ )] V) - 0,6,
+ / M (1, Tp) 501,V ad + / t°(np,1p) 5,V a da
0, )a0 - 0 VA d | 1) 003 0+ 50) - O
+ [ mn,)(a0- 0, + s,)ade
0, r) Ve + [ ) o 80+ [ 0,7,)000(68,) Vi da

w

n” (Mp)Ypo (€p) \/_dx‘l‘/mpa Nps Tp)Xpo (€ps 8 )\/_dm+/ (np7rp)563(£p7sp)\/adx

a\

I
e\a\a\

a®’P [7046 (Mp)7p0 (€p) + Xaﬁ (Mp> )Xo (p; Sp)] Va dx

12
+ 4:“19/ € aaﬁéa?)(npv rp)5ﬁ3 (gpv 319)\/a dz.
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Then (3.18) becomes

62

/ € 0™ [ ()70 €) + 15 X0 (0 T)Xpo (€18,)] vV e

+ 4;@/ e a® 503Ny, 7p)083(E,, 8p)Va dx — a/ ppva div(€, + zs,) dX
w QP

+ / O (copp + adiv(n, + 2r,) ) wyv/adX + /

Q Q

P P
/.

— [ g (ug = atom, = 50m)] -7 (0(€, ~ o) -7)vadr

div (u,v/a)w,dX + %/ u, - v, VadX

Qp

ppdiv (vy,v/a) dX +/ ppva [a(€, — gsp) +v,] - n,dl

Tsp

= / fo- €y + 28,)Va dX +/ gqw,n/adX. (3.18)
Q 2,

e Following, the weak form of the Stokes system reads as follow: Given ¢t € (0,7}, find
(us(t),pr(t)) in Vr x Wy for all (vy,wy) in Vy x Wy

—/~ vy - (opny) df—/~ (vy-7s)[(ofny) - 7] df—/ vy - (ogny)dl

Tty T, Dipurgut

—/ Py div Uy dX—f—Z,U,f D(’U,f) : D(’Uf) dX = ff Uy dX.
Qy Qf Qy

/ div ufwf dXZO
Qy

Applying the domain transposition 1} to the integrations on ffp, using the boundary

conditions (3.10) of oyny on T/ UT$ and the interface condition (3.14) and BJS (3.16),

then adding two equations, one have

—/ pfdiV Vg dX+2,uf D(’U,f) : D(’Uf) dX +/ div Up Wy dX +/ pp(’Uf . nf)\/EdF
Qy

Qy Qp Lfp

+/ prapssVe([uy — a(Om, — g@trp)} 1) (vs - Tf)Vadl
Ffp

= | frvpdX — [ (v np)py(t)dl. (3.19)
Qy rip

e Finally, we write the weak formulation of Stokes-Biot-Naghdi system by adding together
equations (3.18) and (3.19): For ¢ € (0,77, find n,(t) € &, r,(t) € S, u,(t) € V,,
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Po(t) € Wy, up(t) € Vy and py(t) € Wy
2
e

12XO‘5 (nI” rP)XPU <£p7 sp)} \/a dx

/ € 4“7 [5 (1) V0o (€p) +

+ 4, / e a™ 8,3(ny,7p)083(€,p, 8p)Va dx — a/ ppva div(€, + z8,) dX
w Q

P

+ / O (copy + adiv(n, + zrp,) ) wyv/adX + /
0 Q

P P

div(u,v/a)w, dX + &/ u, v, VadX
K

Qp

—/ ppdiv(vp/a)dX — | ppdivesdX +2u; [ D(ug): D(vy)dX +/ divuywy dX
v Qf Qy Qy

—l—/r praprsVE( [uy — a(0m, — g@trp)} 1) ([vp —a(g, — gsp)} -T4)y/adl
+/F ppva (v -ny+ [O‘(gp - gsp) +vp] ‘n,)dl' = /Q fo-(&p+28,)Va dX

+/ gwadX + | fr-vg dX—/ (vy - np)pin(t) dl (3.20)
Q, Q; rin
for all §, € &), 8, € S,v, € V,, w, € W,,,v5 € Vs, wy € Wy.

e We consider the interface terms

IFfp = aBJS(uf> 3t77p> atrp§'vf7€p>3p) + bF (é-p?spavfavp;pp)a (3'21)

where

aBJS(ufy atnzh atrp; vfu 5}77 sp) =

e e
[ raas /i (g~ atom, ~ 50m) 1) [0y~ ol ~ 55)) 7] Var,
Tip
e
br(§p8p 01, Vi Pp) = (vf -y + 0§ — 5517) "Dy + ) np;pp\/arfp'

Using the interface condition for balance of the normal components of stress (3.14), we
set

A= —(O'fl’lf) Ny =Py, ON Ffp X (O,TV]7 (322)

which will be used as a Lagrange multiplier to impose the mass conservation interface
condition (3.13)). Then, I, becomes

Ir,, = apys(us, Omy, Orp; vy, €y, 8p) + br (€, Sp, vy, 05 ). (3.23)

For well-posedness of br, we need that A € A = (V,-n,)". Here the space V,-n, is defined
by

V-0, = {v, -0, v, € V,}. (3.24)
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According to the normal trace theorem, since v, € V, C H(div,€,), then v, - n, €
H=2(08),) . Moreover, since vy, - n, = 0 on I'} and dist(I'),T'y,) > s > 0, then v, - 1, €
H=Y2(T'y,) (see [46]). Then we take A = HY2(T'z,).

e The Lagrange multiplier variational formulation of Stokes/Biot-Naghdi couple is: For
te (O7T]7 find np(t) < Xpu Tp<t> < Sp7 pp(t> < Wp7 ’U,p(t) S Vpa ’U,f<t> < Vf? pf(t> < Wf and
A(t) € A such that

62

/ e a“Pr? [’Yaﬂ(np)%o(fp) - 12Xa,3(77p>rp)xﬂ0<€l” SP)} Va dz

+du, / € %55y, )355(E,, 8,)V/a d — @ / po/a div (€, + 28,) dX
w Q

P

+ / O (copp + adiv(n, + 21,) )w/adX + / div(u,v/a)w, dX + %/ u, v, VadX
Qp Qp Qp

— / ppdiV<’vp\/a) dX — Dy div V¢ dX + Q/Lf D(Uf) : D(’Uf) dX +/ div Uy wy dX
Q, Q; Qf Q

+ aBJS(ufa 3t77p7 atrp;'vfaﬁpasp) +br (ép?spavavp; )‘) = / fp ’ (gp + Zsp)\/a X
Qp

‘|—/ gwp\/EdX + ff Uy dX — / (’Uf : nf)pm(t) dF, (325&)
Qp Qf I‘}n

br (Omy, Oprp, wp, up; 1) = 0, (3.25b)

for all fp S Xp, Sy € Sp, wy € Wp, v, € Vp, Vr € Vf, wy € Wf and p € A.
We write (3.25)) in short form,

A{V((nmrp); (3% sp)) + abp(pp\/a> ) + O‘bp(pp\/av 28p) + co(O:py, wp\/a)ﬂp - O‘bp(wp\/av omy)
— ab,(wyv/a, 20:8,) — by(wy, up/a) + a,(uy,,v,) + by(pp, vpv/a) + by (ps,ve) + ap(us,vy)
—by(wy,up) + br (fpv Sp; U, Up; )‘) + aBJS(“f» Oy, atrp;”fafmsp) = (g9, wp)ﬂp

+ (fp, (&, + zsp)\/a)ﬂp + (fr,v5)a; + brin (v, Din) (3.26a)
br (Omy, Oprp, wp, up; i) = 0. (3.26b)

where

62

Ai\[((nparp% (§p73p)) = /eaaﬁpa[%a(“pwaﬁ(”ﬁ + 12chr("7p>rp)Xaﬁ<§pasp)]\/a dx,

+4Mp/eaa65a3(nparp)5ﬂ3(€p7sp)\/a dma

bp(ppugp) = _(pp7 div gp)va bf<pf7vf) = _(pf7 div vf)ﬂf P
aj(ur,vr) = 2u; (Dlup), Dv))q . ap(pvy) = o™ (5, 9,V/a)a,
bpm (’Uf,pm) = / pm(t)nf . ’Uf drl’.

i
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In the next section, we construct the semi-discrete formulation of (3.26)) and use the DEA theory,
the discrete Lagrange multiplier and inf-sup conditions for proceeding its well-posedness.

3.3.2 Analysis: Semi-discrete formulation

Let ﬁlf and 7 be shape-regular and quasi-uniform partitions of €y and €, respectively,
both consisting of affine elements with maximal element diameter h. The two partitions may be
non-matching at the interface I's,. For the discretization of the fluid velocity and pressure we
choose finite element spaces Vj} C V¢ and W}L C Wy, which are assumed to be inf-sup stable.
For the discretization of the porous medium, we choose VI’} C V, and W;} C W, to be any of
well-known inf-sup stable mixed finite element spaces. The global spaces are

Vh = {’Uh = ('vf,h,'vp,h) € VJ}} X Vg} and Wh = {wh = (wf,h,wp,h) € WI]J X WJ}}} (327)

To approximate the structure displacement, we make use of a conforming Lagrange finite ele-
ment spaces X' C X, and S} C S,. We set also XZ = X' x 8! Note that the finite element
spaces Vi n, Vp i, &pn and Sy, satisfy the homogeneous boundary conditions on external bound-
aries . For the discrete Lagrange multiplier space we take

A=V, nylr,, . (3.28)

Therefore, the semi-discrete continuous-in-time coupled problem is: Given p,, ,(0), for ¢t € (0,77,
find ’I’]pJL(Zf) e Xl TpJL(Zf) e St up,h(t) € Vg, pp,h(t) e Wh ’U:f’h(t) € VJ]}, Pfh € WJ}} and

P’ P’ p?
)\h(t) e I' for all fpﬁ S Xph, Sph € S{;, Uph € V]?, Wpp € WZI}, ’U? S V}L, Wy € W]}f and pp, € "

Aiv ((anw rpn); Epons sp,h)) + O‘bp(ppyh\/a’ Epn) + O‘bp(pp,h\/a’ 28p1) + co(Oupp,ns wp,h\/a)ﬂp
— aby(wpnv/a, Oy n) — aby(wpn/a, 20y 0) = bp(Wp ks Up /@) + ap(Upp, Vpn)
+ 0p(Ppns V@) + b Dy, vpn) + ag(upn,vpn) = bp(wpn, wpn) + 00 (Epns 8pns Vs Vpns An)
+ apjs ('U'f,h; atnp,ha atrp,h;vf,hvé.p,ha Sp,h) = (9\/57 wp,h)ﬂp + (fp’ (fp,h + zsp,h)\/a) Q,

+ (ff,’l]ﬁh)Qf + brin (’Uﬁh,pm), (3.29&)
br (Omp,h, O p s g, Up s i) = 0. (3.29b)

We state the main result of this chapter in the following theorem,

% Theorem 13 I

For f; e L> (O,T; (V}‘)’), fr, e L™ (O,T; (X;‘)’), g e L® (O,T; (W;})’) and p, ,(0) € W;L, there
exists a unique solution (g p, Mp.h,Tpns Ups Pfhs P An) i L2 (0, T3 VE) x W (0,T; X]) X
L>(0,T;8") x L=(0,T5 V) x L2(0,T; Wi) x Whe(0,T; W) x L>(0,T; A") of the weak
formulation (3.29)).
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For proving Theorem , we firstly derive the existence by writing (3.29)) in matrix form and
using the DAE theory (see Lemma . We then prove the uniqueness by the discrete inf-sup
condition (see Lemma [43]).

More detailed, let {cbw} {brpits {upi}s {Dppits {0usi}s {dp,.i} and {@x;} be bases of X,
Sh, VW, Vi, Wi and A", We define the matrices 4,,, A ABJS ABJS ABJS A, A

Npr Lrps ups “lugps
Bufa B?hﬂ Brp7 Bup7 Buf r, Bnpl"; BrpFa BupFaanFrp; uJqup;BFm as fOHOW

Anp = A{V |:<¢77p7j70); ((bnp,i’ ¢7‘pﬂ')} vATp - A{V [( ¢’"P J) (¢’7p“¢”“)} ’
Aup = ap(Qbup,ja Cbup,i)» Auf - af(¢uf7j; ¢uf7i)

ABJS - aBJS(gbuf J0 O 0 ¢uf i7¢upi7¢rp z)
Afpjs - G’BJS( ¢np ]70 d)uf z,¢npz,¢rp )

APTS = apys(0,0,0r, 53 Gupis Guyis Sryi);

Buf b <¢pfja¢Uf Z) p(qﬁpp,jvgénpvi)v
B, =b (¢p,,],2¢r,,z) up =0 (¢pp7j>¢u,,,j\/5),

B, r = br(¢u;,;,0,0,0;0x,), B, r="0br(0,y,;,0,0; 1),
vl = br (0,0, ¢r,.5,0; dri), Bupr =br(0,0,0, du, j; Ori),
Gp = (9Va; Op,i)e,, Fp = (FoV/a, @y, + 2¢r,.0)0,,

Fuf = (ff\/_> ¢uf7i)9f,BFm = (pm,(buf,i)-

Taking in ([3.26a)) -((3.26b))

ZUfz ¢up ) np t .’E anz gbnpz, ( ) = erp,i(t)qsrp,i;

i

prl (bpf i pp prz (bpp i 7 ) = Z)\z(t)(b)\,zv
27 = Zup,i t ¢up,i7

with time-dependent coefficients uy, u,, 9,, Tp, Dy, Dp, A, we get the matrix-vector system of
(13.26)):

AnP T’p + Arp Fp + OC(BT + BT) ij + CoM @}_?p — CKBnp 8t"_7p — OéB (9tFp — Bup ’l_l,p
+ Ay + By by + By, By + Aug Uy = By, Uy + (B o + By, F+B o Bor) A
+ AT ay + AT 0, + AYS OF, = Gy + F, + Fy; + Brn,

B ﬂf + B”]mr (9,5’1_7[, + BTPI 8tFp ‘|‘ Bup,F @’l—l,p — O

ug,l’
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Therefore, the above weak form can be written in the matrix form

EX'(t) + HX(t) = L(t) (3.30)
where ) BJS T T -
Ay +AZS 0 0 0 B OT Bq%f’p
0 A, 0 0 0 aBl B!,
0 0 A, 0 0 Bl Bl;
H = 0 0 0 A 0 Bl Blplf,
-B, 0 0 0 0 0 0
0 0 -B, 0 0 0 0
| —Byr 0 —B,r 0 0 0 0 |
[0 0 0 0 0 0 0] Fr [y |
BJS U n
0 AB/S 0 0 0 0 0 Fy ,
0O 0 0 0 000 Brin ,
E=|0 0 0AS0 0 0|,Lt)={ 0 |,X(t)=|Tp
00 0 0 0 0 0 0 Py
0 —aB,, 0 —aB,, 0 cM 0 Gp Py
|0 -B,r0-B,r0 0 0 0| By

The theory of DAEs say that, if the matrix sE+H is nonsingular for some s # 0, the equa-
tion (3.30) has a solution. So the idea here is to prove that sE+H is nonsingular when s = 1
or E4+H is nonsingular ou invertible. To state the desired result, we note that

AT+ A, 0 0 0 By 0 Byr]
0 APIS+ A, 0 0 0 aBl B! .
0 0 Ay, 0 0 B, B,r
E+H-= 0 0 0 AiJS+Arp 0 aBZ; BZ;I
— By, 0 0 0 0 0 0
0 —aB,, —B.,, —ab,, 0 cM O
L _BUf,F _Br]p,F _Bup,F _Brp,F 0 0 0 .
: . A BT
It can be written as a block 2 x 2 matrix E+ H = B C | where
AT+ Ay, 0 0 0
BJS
A 0 AT+ A, 0 0
0 0 Ay, 0 ’
0 0 0 AP+ A,
B, 0 0 0 0 0 O
B = 0 aB,, B, aB, |, C=|0cMO0

B'MfJ—‘ Bnp,r Bup,r B?"p,l" 0 O 0
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Subsequently, we derive our desired results by the theory of DEAs.

If A and C are positive semi-definite and ker(A) N ker(B) = ker(C) N ker(B")= {0}, then
E + H is invertible.

Proof. The proof is inspired by the Son-Young Yi’s work [91] and the Horn-Johnson’s book
(page 431,[52]). For convenience, we remind here some main points.
Let U = (U;, Uy)T and suppose that (E +H)U = 0. This follows

AU, +B'U, =0
{ L 2T (3.31)

—-BU,; + CU, =0.

Hence, we obtain that UJA x + UIB'U, = UTA x + U;Cy = 0. Since A and C are
positive semidefinite, we have that if Uf A x = 0 and U;C y = 0, then Ax = 0 and Cx = 0
[52] (page 431). Then U; € ker(A) and U, € ker(B). Combining with (3.31]), we get Uy €
ker(A) Nker(B) = {0} and U, € ker(B") Nnker(C) = {0}, i.e., U=0 or E + H is invertible. [

To prove the conditions of Lemma [39], we do not use the matrices A, B and C directly. We will
use the bilinear forms that are associated with those matrices. We define then bilinear forms
dal-s-), ¢5(.,.) and ¢ (.,.) on (V" x X x S x (VI x X x 8)), (VI x Xl x St) x (W' x AP)
and (Wh x A") x (W" x A"), respectively:

ﬁbA((uhanp,hvrp,h% (Vn, &ps Sp,h)) =AY [("p,hv Tpn); (Ephs 5p,h>] + ap(Up,pn, Vpn) + ay(Upp, Vi)
+ aprs(WUsn, Mphs Tp,ps Vshs Ephs Spoh),
¢B((uh’ Np.hs Tp.h), (Wh, Mh)) =by (uf,ha wf,h) + bp(Up p; Wy ) + aby(My i, Wy h)
+ b (Ws s M.y T,y Up s 1)

gbC’ ((pha Mh)v (wh? )‘h)) ZCO(ppyh\/a; wpvh)Qp'

Note that u;, = (’U,f’h,’l.&p’h), vy = (’Uf,h,’l)p’h> eV, and Py = (pﬁh,pp,h), Wy, = (wf,h,wp,h) e W,,.

The first condition in Lemma [39] A and B are positive semi-definite matrices, is obtained
by the two following lemmas,

Lemma 40
The bilinear ¢, is positive semidefinite, that is, for any (v4,&,n,8pn) € VI X X; X SZ},’,

da((Wh,€pns Spn)s (Vn,Ep s Spp)) = 0. (3.32)
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Proof. The assumptions on the fluid viscosity py and the material coefficients x and p, imply
that the bilinear forms A} (-, -), as(-,-) and a,(-, ) are coercive. In particular, thanks to Poincaré
inequality, there exist positive constants cy, ¢, ¢y such that

Aiv((gmsp); (§p>3p)) > CNH('Upasp)”?\fN V(€ 8p) € Xy = &, X S,

ap(Vp, vp) > CpH'UpH%/p Yo, €V,
ap(vg,vp) > crlloslly, Yuy € Vy,
— € 2
apss(y,&p SpiVs. &p, Sp) 2> \/SPJJ‘O‘BJSH'Lg 1/4('Uf —a(é, — §3p))HL2(pfp) >0 (a=6>0)

V(vy,&p,sp) € Vi X &y X S

From the above inequalities, we get (3.32)). It means that A is a positive semi-definite matrix.
O

Similarly, we get the same result for C by the following lemma,

The bilinear ¢¢ is positive semidefinite, that is, for any (wy, A\y) € W x A",

dc ((wny An), (wa,y Ap)) > 0.

Proof. The proof is straightforward since ¢y > 0. O

Afterwards, we introduce the kernel spaces of the above bilinear forms. Let

ker(¢a) = { (wn, M, Tpn) € V" x X x Sg t da((Wn, MpnsTpn), (VR EpnySpn)) =0,
V(Wn,&pnsSpn) €V x X x ShY

ker(¢p) = {(Wn Npn,Tp) €V X X x SV 2 ¢ ((wn, Npn, o), (W, pur)) =0,
V(wp, ) € W x A"},

ker(¢ppr) = {(wh,uh) eW" x A" ¢B((Uh,7lp,h77”p,h)v (wh,uh)) =0,

Y (up, Np.p, Tpn) € Vhx XZ? X S;};}’

ker(¢c) = {(ph,uh) e Wh x AP gbc((ph,uh), (wp, )\h)) =0, V(wp, ) € W x Ah}.

We note that ker(¢4) = ker(A), ker(¢g) = ker(B), ker(¢pr) = ker(B”) and ker(¢¢) = ker(C).

We then show that the second condition in Lemma [39 is satisfied.

Lemma 42
The bilinear forms ¢4 and ¢p satisfy

ker(¢4) Nker(op) = {0}.
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Proof. From the coercivity of AY[-;-], a,(-,-), as(,-) and the non-negativity of agss(-,-) follow
that ker(¢4) = 0. And we can easily see that {0} € ker(¢p). So we obtain ker(¢4) Nker(¢p) =
{0}. O

Now for proving that ker(B”) ={0}, we state a discrete inf-sup condition, which will be utilized
to control the pressure in two region and the Lagrange multiplier. Following [46], we define a
semi-norm in A"
|nla = ap (g, (1in) 5, (1))
where (wy , (pn), Py (1)) € VI x W is the mixed finite element solution to the Darcy problem
with Direchlet condition g, on I'fp:
ap (u;,h(ﬂh>7”p,h) + bp(p;,h(#h)avp,h\/a> = —(pn Dy, )y, YU € V;};v
by (Wp,ps W), (n) V@) = 0 Yy, € W;f.

We equip A" with the norm ||u||3, = H/LhH%Q(Ffp) + |n]3s- This norm can be considered as a

discrete version of the H'/2(T';,)-norm [46]. For convenience of notation we define the composite
norms

[@Wns € Sp) [V xs, = ITally + [[vpall3, + 118,15,
[ (whs ) 3 an = lwnlliy + [l
and
b(’l)h,fp,h, Sp.hs wh) :bf(wfﬁh,vf,h) + bp(wp,h,vm) + Osz(wp,h,ﬁp,h + Zsp,h)7
br (Vh, Ep s Spi 1) =br (Vs s Epns Spohs Upois n)-

With these notations, we proceed the following discrete inf-sup condition.

4 Lemma 43

There exists a constant 5 > 0 independent of h such that

inf sup b('Uh, §p,h7 Sp.hs U)h) + bF ('Uh, gp,h; Sp.hs ,Uh)

> 8. (3.33)
(wh#h)ewhXAh(vh,ﬁp,h,sp,h)th><XZ§1><SI§ ||(vh7£p,h7sp,h>||V><Xp><$pH(wh7 :uh)HWXAh

Instead of proving Lemma directly, we introduce the other inf-sup condition because its
proof is simpler than (3.33)).

4 Lemma 44

There exists a constant 8 > 0 independent of h such that

br(wen,5n) + bp(Wpn, Upn) + (Vin - 0p + Vpp - M3 /@)

inf sup 2N (3.34)

(wnotn)EW " x Ay, i [wnlv Nl (wns ) [ wscan
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Proof. The proof is based on [46]. Firstly, we define two following spaces
Vg = {(’l)f,h,’l)pﬁ) c Vh . (’Uf,h Ny +'vp,h s Ny, Mh\/a)rf =0 for all Lh in Ah}, (335)
V?o = {('vf,h,'vp,h) € Vh . bf(wf,h,'vf,h) + bp(wm,'vp,h) = ( for all Wp, in Wh} (336)

Due to the Lemmas 5.5 and 5.6 in [46], there exist two positive constants ; and (3 independent
of h such that

bf(wf,ha vf,h) + by (Wp 1, Vp 1)

inf sup > B, (3.37)
wh €Wy, cyh [vnlv lwn|[w
Vip Ny +Vpp N ;,uh\/a
inf sup ( ’ ’ )Ffp > . (3.38)
1n €Ay, cyn [onllv[lgnllan

Given (wp, p) € W x A" if wy, # 0, from {} there exists v, = ('U;,h:”;,h) € V" such that

bp(wyn, ”Of,h) + by (wp,h, 'U;,h)
v, llv

> By ||wanllw >0, (3.39)

[eXe)

where (1 independent of wy. If p, # 0, from (3.38) there exists v,” = (v}),,v,7,) € VI such
that
('Uof(,)h Mg U, My ny/a)

F P
— 2> Boll | an > 0. (3.40)
v, llv

We see that, if wy, # 0

bp(wyn, 01 h) + bp(Wpns Upp) + (Vrh Mg + Vpn - s /@)

sup

v, €V [vnllv
N by (wrnsVp) + bp(wpn, v, ) + (V5 -y v, s /).,
N [l llv

by(wpn,v5y) + bp(wpp, v, ,) +0
= Lh Hvoﬁv” Pl > Bi|Jwalw by (3.39).
h

Similarly, if py # 0,

by (e, V) + bp(wWpn, vpn) + ('vf,h Ny +Upp - Np; Mh\/E)rfp

sup
opeVh v lv
- bf<wf,h7”}?h) + bp(wp,ha”;jh) + ('U;‘Th "Ny + ”;:h "Ny, Mh\/a)pfp

(v, -my+v), - ny; py/a)
fh T T Upp Mps bV @)
= 5 2> Bollpnllar by (3.40).

v, [lv
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Then,

by(Wen,Vn) + bp(Wpn, Upn) + (Vpn g + Vpp - T Mh\/a)rfp

sup
v, EVh [va]lv

- min{ Sy, B} min{ Sy, B2}
> mind ) mintf, i}

min{fy, 2}
2

(lwnllw + llpnllan) = (wn, i) lw -

, it can be written as

By choosing g =

bp(win,Vin) + bp(Wpn, Vi) + (Vpn - Mg +Vpn - Ny /@)

inf sup Ly > .

(wn i )JEW " Al e [[nlv | (wn, pn) [[wan

We completed the proof of Lemma [44] Subsequently, we use it for obtaining Lemma [43] 0

Proof. (of Lemma : By simply taking §,, = 0 and s, = 0 and from Lemma [44f we obtain
the positive constant [ satisfying (3.33)). O

From the result of Lemma [44] we derive the third condition of Lemma [39] below,

The bilinear forms ¢o and ¢gr satisfy

ker(¢c) Nker(¢ppr) = {0}.

Proof. The inf-sup condition (3.33)) implies ker(¢pr) = {0} and we can easily see that {0} €
ker(¢¢). Therefore this gives ker(¢c) Nker(¢pr) = {0}. O

We obtained completely the conditions in Lemma [44] and the discrete inf-sup condition. It is
time to prove our main result (Theorem [13).

Proof. (of Theorem The proof is inspired by Theorem 3.1 of [2].

By the DAE theory [26], if the matrix sE+H is nonsingular for some s # 0 and the initial data
is consistent, then the equation has a solution. Lemma |42 and 45| guarantee that sE+H
with s =1 is invertible.

For proving the uniqueness, we assume that there are two solutions satisfying these equations
3.29) with the same initial conditions. Then their difference (wsn, M, 4, p.1, Wp,h Dfhs Dpiis An)
satisfies (3.29) with zero data. By taking

W1y € S Upits Wk, Wy oy ) = (Ogthg s OMy s T s Up, oy Dfhs Ppshs M) (3.41)
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we obtain the energy equality

Ajlv ((ﬁp,h7?p,h); (8tﬁp,h7 at;’v'p,h)) + ¢o(OrPp.hs ﬁp,h\/a)np + ap(Upp, Upp) + ar(Upp, Usp)
+ apys (s n, O, s O ppi gy Oy 1 O ) = 0.

1
Because of / ©Op = 5@”@”%2(1)), we write the energy equality as
D

1 - - ~ ~ ~
50 LAY (@, (8, T (8); (0, (1), T (1)) + CollPpnl T2 (0] (3.43)
o o~ - o~ - - €. -
+ ap('u,p,h,up,h) + af(uf,h,'u,f,h) + |’U,f,h — Oé(aﬂ’)pﬁ — 58151"],7;1) |?LBJS =0. (344)
where
|Uf,h - Oé(amp,h - §atrp,h) |aBJS = apJs ('U'f,ha 8tnp,h> at'rp,h§uf,ha atanU 5’t7'p,h)-

Integrating in time over [0, ] for arbitrary ¢ € (0,7, we get

1 - - ~ ~ ~
AT (@ (1), Tpn(1)); (1 (8). T (1)) + collPpnll 72, ) (3.45)
¢
-~ - - ~ - €~
+ /0 [ap @y, Up ) + ap(Upp, pp) + [Urs — (0, — §8trp,h) ‘GBJS]ds = 0. (3.46)
Because of the coercivity of bilinear forms and ¢y > 0, we derive that o) =0, 7 5(t) =0,

u,, =0 and p,, = 0 for all ¢ in [0, 7. From the inf-sup condition and m

Bl (Drs An)llw s an
by (Dsn,Vsn) + bp(Dphs Vp,n) + Qbp(Dp.is Epn + 28pp) + br ('Uhafpﬁv Sp,h; )‘h)

< sup
(V1 £ sSp,n) EVIX XD X Sh [ (Wn, €pns Sp.) IV, xs,
= sup {[ - A{\[((ﬁp,h7;@h>; (&p.hs sp,h)) — ap(Upp,Vp 1)

(’I)h,fp,h78p7h)évh XX;L XS;L

- af(’thf,h/Uf,h) — apjs (’thf,m 3tﬁp,h7 at;’:p,h;'vf,ha{p,hu sp,h)} /H(Umfp,h, sp,h)HVXXpXSp}
= 0.

Hence, we conclude that pyp(t) = 0, Xp’h(t) = 0 for all ¢ € (0,T]. Therefore the solution of
(3:29) is unique. We finished the proof of Theorem [13] O

Conclusion: In this chapter, we carried out the fluid-structure interaction between incom-
pressible flow and poroelastic shell structure. We used the Stokes equations for the incompress-
ible free fluid and the Biot-Naghdi shell model for the poroelastic shell structure. In process
of proving the well-posedness of this model (see Theorem , we had trouble imposing the
conditions on the interface which are mass conservation, balance of stress and the Beavers-
Joseph-Saffman conditions. For the existence, we adopted the theory of differential-algebraic
equations (DAEs) (see Lemma [39]) and for the uniqueness, we used the semi-discrete Galerkin
method and the Lagrange multiplier method.



110 Chapter 3. Interaction between a fluid and a poroelastic shell



Chapter 4

Numerical simulations

In this chapter, we propose to simulate numerically the poroelastic shell models studied in
the previous chapter. We follow the idea of Chaabane and Riviére [37] for the Biot poroelasticity
system. Several approaches have been developed for the Biot poroelasticity system. Let us
mention them:

e Implicit approach where the fully coupled system is solved;
e Loosely explicit where the mechanical response is only updated every few time steps;

e [terative scheme where a set of equations is solved iteratively at every time step until a
certain tolerance is reached;

e Sequential method where the system is completely decoupled and no iterations are needed.

In this work, we use the sequential approach based on a discontinuous Galerkin discretization.

4.1 Notation

Let us first introduce some notations. Let 7, be a shape-regular family of triangulations of

w. For a triangle E € Ty, let hy be its diameter and set h = maxger, hp. For any subdomain
A of w and for k£ > 0 we define by P(A) the space of polynomials on A with degree < k. We
suppose that the mesh is nondegenerate i.e. there exists a constant 7 > 0 independent of h,
such that

h

L <1 VEEeT,

PE
where hg is the diameter of the element E and pg is the diameter of the largest ball inside of
E. Let k; > 1 and kg > 1 are two integers. We define the following finite element spaces

X" = {v e CoVEVE € Th,v|lp € Py (BE)Y), X ={ve X" v=0o0n 00},
M" = {q € C°(Q);VE € Th.q|s € Pi,(E)}, M} = {q € M"; ¢g=0 on 00Q}.
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We endow the spaces X} and M by the norms:

lvllx = [le(@)llz2(0), Yo € X,
lgllar = 152Vl 12, Va € M.

4.2 Validation for the Biot poroelasticity system
In this section, we carry out the validation to the following problem

Ot (cop + adivu) — kdiv(Vp) = fin Q x [0,T7, (4.1)
—V.o(u)+aVp=gin Q x [0,7].

The system is completed by the following boundary and initial conditions

u =0, p =0, ondQx|0,T],
U(O) = Uy, p(O) = Po, on Q.

We define some bilinear forms:

a(p,q) = (vVp, V), ¥p,q € Hy(9),
b(v,q) = —a(v,Vq)a, Yo € (Hy( Q)) Vg € Hy (Q
c(u,v) = (o(u),e(v)),, Yu,v € Hy(Q).

We solve Eqgs (4.1)-(4.2) at the discrete times t; = iAt,i = 0,1,--- , N where At > 0 denotes
the time step and ¢ty = T'. Thus a weak form the Biot poroelasticity system reads as:

Find (p,u) € My x X, such that:

(P) 4 o @)a + a(p,q) + b(w', q) = (f,v)o, WeX,,
b(v, q) + c(u,v) =(9.0)0, Vg€ M.

4.2.1 The numerical approximation

The weak form above is approximated by a finite element approximation in space and a
bacward Euler scheme in time, i.e:

Find (pn,up) € such that:
(Pn) § co(Phs qn)a + alpn, qn) + b(w),, qn) = (f,vn)a, Y, € Xé‘,
b(Vn, qn) + c(un, vy) = (9, qn)0; Vg, € M.

The well-posedness of the numerical scheme problem (P,) and the error analysis of the method
are proved in [37].
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4.2.2 The splitting algorithm

The decoupling approach consists of two step:

e Solve for the pressure p;*! in the mass balance equation (4.1)) by the time-lagging the
displacement.

e Use pzﬂ in the momentum equation 1} to solve for the displacement 'U,ZH.

The functions pZ“ and uZ“ denote the value of the discrete solutions p, and u, at time %,

and similar to f and g, i.e. f* = f(t,) and g" = g(t,,).

Following the work of Chaabane and Riviere [37], we introduce the numerical scheme: For
1 <n < N —1, solve the following equations:
Step 1: Given uf € X! and u}~' € X}, find p}™' € M} such that

Pt —h 1 up —up ! 1 h
(co—,0) +alpy™ @) + b(———,¢) = (/" @)a Vg € M. (4.3)
At At
Step 2: Find u}*! € X} such that
n+1 n+1 wp ™ — uj up —up! n+1 h
el v) = b, pp ) + i (T e (T e = (97 v)e, YwEe Xy, (44)

where y; > 0 is a stabilization parameter.

The issue of approximating the primary variables at the initial time step was addressed in [30]
where Chaabane and Riviere showed numerically that by choosing a small initial At;,;, the
convergence rates do not deteriorate. We approximate p, and u} in two following initial steps:
Initial step 1: Find p} € M} such that

(C p%z - p%

0 At . 7Q)Q + CL(I#wQ) = (f17Q)Q, Vq € Mél (45)

Initial step 2: Find u} € X} such that

c(uy,v) — b, p,) = (¢',v) Y € X, (4.6)

4.2.3 Numerical tests

In oder to simulate the numerical approximation, we chose the domain €2 is the unit square
Q=(0,1) x (0,1) and I' =992 = [0, 1] x {0; 1} U {0; 1} x [0, 1].
The source functions and the exact solutions are given as follows:
f(@,y,t) = 30cot?e @10 L 0 1a(et + 6ty?) — 0.2k(1 + t3)e@ /10,
g(z,y,t) = (a1 + t3)e@ /10 _0.2pyet, —0.2puxt? — 1.8yt> + a1 + t3)e(x+y)/1O)T,
u(z,y,t) = 0.1('(y* +2), 2 +4)) ", pla,y,t) = 10101 4 £3).
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2

The following parameters Kk =1, a =1, ¢cg =1, A=1, p =1, v = — and initial time step
K

Atiny = 1075 are used. The figures present the numerical and exact solution of Biot model.

7 5295E-03 1.7460E-02 7.8208E-03 1 7460E-02
| |
3.0146E-03 1.2645E-02 22275E-02  3.014BE-03 1.2645E-02 2.2275E-02

(a) Exact displacement component u;. (b) Approximate displacement component u;.
7 S000E-03 2 2500E-02 7 5000E-03 2.2500E-02
2500 —— e
0.0000E+00 1 5000E-02 30000E-02  —3.0136E-36 1.5000E-02 3.0000E-02

(c) Exact displacement component us. (d) Approximate displacement component us.
2 0967E-02 23166E-02 2.0967E-02 23166E-02
e ——
1 9867E-02 2 2067E-02 — 2 426BE-02 1.9867E-02 2.2067E-02 2.4266E-02

(e) Exact pressure p (f) Approximate pressure p.

Figure 4.1: Exact and approximate solution

We also obtain the tables which describes the error between the approximate solution and
the exact solution.
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Pressure rates when ki, ks = 1:

L h | At [PV =i lleze) | Rate [ [V — pi)llr20) | Rate |

1/2 1/2 3.33e - 01 1.68e+00
1/4 | 1/16 1.48e - 01 1.17 6.9¢ - 01 1.28
1/8 | 1/32 4e - 02 1.89 1.84e - 01 1.91
1/16 | 1/128 le - 02 2 4.68e - 02 1.98
Displacement rates when kq, ks = 1:
h At | Ju” —up |12 | Rate | [[V(@" —up )||12(q) | Rate
1/2 1/2 1.3e - 02 7.23e - 02
1/4 | 1/16 3.47e - 03 1.9 2.46e - 02 1.56
1/8 | 1/32 9.76e - 04 1.83 6.87e - 03 1.84
1/16 | 1/128 2.54e - 04 1.94 1.78e - 03 1.95
Pressure rates when kq, ky = 2:
h At HpN — thHLz(Q) Rate HV(pN — p}]LV) ||L2(Q) Rate
1/2 1/2 4.29¢ - 01 1.95e+00
1/4 | 1/16 1.58e - 01 1.44 7.18e - 01 1.44
1/8 | 1/32 4.08e - 02 1.95 1.86e - 01 1.95
1/16 | 1/128 le - 02 2 4.69e - 02 1.99
Displacement rates when ki, ko = 2:
h At | Y —pi |2 | Rate | [V(" — p3)|lr2() | Rate
1/2 1/2 1.65¢ - 02 9.15¢e - 02
1/4 | 1/16 3.98¢ - 03 2 2.75¢e - 02 1.73
1/8 | 1/32 le - 03 1.99 7.1e - 03 1.95
1/16 | 1/128 2.57e - 04 1.96 1.79e - 03 1.99
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Comment: We vary the time step and mesh size accordingly to compute the order of
convergence of the method and report the results in the previous tables. We observe that the

method exhibits optimal order of convergence.

4.3

Some simulations of the Biot-Naghdi Model

In this section, we apply the algorithm in the previous section to simulate the Biot-Naghdi
model in Theorem [0 For the numerical part, we suppose that p does not depend on z, i.e.,
p = p(x). Hence, we simulate our model on two-dimensional domain w. Recall that dw = ~.
Using the same mesh in the previous section, we introduce the discrete space of displacements,
rotations and pressures

Xt = {(v,s = (5q)) € C”(w,R?) x [C°(w)]*; VE € &,

(v,s =

(sa))|, € PU(E,R?) x Py(E)?, v =

Wy = {q € C°W); VE € &, qlp € P1(E), ¢=0o0on v} C Wy.

sa:Oon’y}CXN,
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Thus the discrete problem reads: Find (uy,r) € X% and p, € W such that

AN (wn,74); (vn, 81)] — ae(pn, divopv/a) = e( f,onva) , Y(vn,s1) € XL, (4.7a)
co(Phs V@) + a(divay,, guv/a), + E(Vph, Vaa), = (9,anV/a) , Yan € Wi, (4.7b)
ph(O) = Ph,0- (47(3)

We solve Eqs [£.7 at the discrete times ¢; = iAt,i = 0,1,--- , N where At > 0 denotes the time
step and ty = T'. The decoupling approach consists of two step:

e Solve for the pressure p”+l in the mass balance equation (4.7b)) by the time-lagging the
displacement.

e Use pn+1 in the momentum equation ( - to solve for the displacement u"“.

The functions u} ™, ri"! and p}™' denote the value of the discrete solutions uy, 5, and py,

at time t,,; and similar to f and g, i.e. f* = f(t,) and g" = g¢(t¢,). Now, we introduce the

numerical scheme: For 1 <n < N —1, solve the following equations:
Step 1: Given (ul,r?) € X and (u) ', vy ') € XL, find pi*tt € W such that

C mn mn n n—
5 (ph+1_ph>Q>w n(W [ Vq)wz (g “,q)w—é—(dlv( —w, 1),q>w-

Step 2: Find (u} ™', r}*!) € XL such that

n+1

n n Vi 0n n V1(0n n—
AV [(up ™ e (v,8)] + — 5 (up ™ —up,v) — = (uj —uyp l,v)w

5 T = rhs) = g (=i s), = e dive), e (S ),

t st

We approximate p;, (u), 7)) and (u;,r}) in two following initial steps:
Initial step 0: Find (u?,79) € X% such that

AV [, 72): (0, 8)] = e <p2,divv> Fe(f),.

w

Initial step 1: Find p;, € W such that

Co 0 K 1 1
, —( Vp,,V = , .
5t (ph Ph Q)w + 7 ( D, C])w (9 Q)w

Initial step 2: Find (u},r}) € X% such that

AV (b r): (v, )] = ae<p,g,dm,> Fe(f),.

w
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From the above scheme, we now performe the numerical experiment on the finite element code
FreeFem++. We first consider a hyperbolic paraboloid shell. The reference domain w is the
square

w = {(z,y); =] + |y| < V2b},
as illustrated in [6](§1.3.3 & §2.4.2) and the chart ¢ is defined by
°

o(x,y) = (x,y, 2 (x2 - yQ))T.

However, the symmetry properties of the problem allows us to solve it only on the traingle «’
with vertices (0,0)7, (b,0)T and (0,b)”. We choose here

b=50cm, c=10cm, co=1, k=1, a=0.8, n=1,g=0and f = (0,0, -0.01)".

The thickness of the shell is e = 0.8 cm. We assume that the shell is clamped on the whole
boundary, i.e.

up, =1, =p =0 on dw.

We refer to [23](§6.2) for the artificial conditions issued from the symmetry conditions. The
mechanical data are

E =2.85 x 10° Pa, v =04.

Figure [£.2] presents the numerical solution of Biot-Naghdi model on the hyperbolic paraboloid
shell:
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_3.9342E-08 3.7946E-08 ~3.8007E-08 38513E-08
] =

_7 7986E-03 _5.9315E-10 7 6539E-03 7 B267E-08 25335E-10 7B773E-08

(a) Displacement u;. (b) Displacement wus.
| 47aBE-07 | 3714E-07 5 6198E+01 1.6859E+02
e — —
_28551E-07 1 0409E-08 2 6470E-07 0.0000E+00 1.1240E+02 2.2479E+02

(c) Displacement ug. (d) Pressure p.
-8.1920E-09 SA717E-09 -7 5578E-09 5.6041E-09
| e — ]
L I — T ee— — = -

(e) Rotation r;. (f) Rotation 7o

Figure 4.2: Solution on a hyperbolic paraboloid shell

Next, we consider an other hyperbolic paraboloid shell where the boundary ¢(dw) is not
included in a straight line. The reference domain w of the midsurface is given by

w =] — R, R[x] — R, R],
and the chart ¢ is defined by
o(r,y) = (z.y, b%(w2 -y?)".
We take here
R=50v2cm, b=50, c=10, ¢co=1, k=1, a =08, n=1,g=0 and f = (0,0, —0.01)7.
The thickness of the shell is e = 0.8 cm. The mechanical data are
E =2.85 x 10° Pa, v =04.

The shell is submitted to a uniform downward pressure. Concerning boundary conditions, we
consider the case of hard clamping on the edge

Yo = {_R}X] - R, R[a
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and the shell is free on its remaining edges.
Figure [4.3] presents the numerical solution of Biot-Naghdi model on the hyperbolic paraboloid
shell:

-1.2551E-06 1.2551E-06

6 BB50E-07 5 5445E-06 ‘
o |
-2 2925E-06 3 BB55E-06 9p2seE-0s  2o102E-08 0.0000E+00 25102808

(a) Displacement u;. (b) Displacement us.
~35053E-05 —9.3351E-08 4.9999E+01 1.5000E+02
-
—47812E-05 -22184E-05 I5240E-08 4 4118E-27 9 9997E+01 — 1.9999E+02

(c) Displacement us. (d) Pressure p.
1.4454E-07 6.5643E-07
1913907 1 3139 07
-1 2596E-07 4.1563E-07 9.5723E-07
-3.8278E-07 0.0000E+00 3.8278E-07

(e) Rotation r;. (f) Rotation 79

Figure 4.3: Solution on the hyperbolic paraboloid shell

Comment: With the simulations on two different domains, we need that ¢y has to be small
enough. We observe that the boundary conditions influence our solutions significantly.
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Conclusion and Perspectives

In this work, we have done the derivation and the well-posedness of the weak coupled for-
mulation between shell models and Biot model. We made of using two shell models, Naghdi and
Koiter, which are respectively respect to two displacement spaces, Kirchhoff-Love and Reissner-
Mindlin. In the process of proving the well-posedness, we used the Banach-Necas-Babuska theo-
rem, splitting method, the semi-discrete Galerkin method and the theory of initial value problem
for linear systems. Afterwards, we derived the fluid-structure interaction between incompress-
ible flow and poroelastic shell structure. We use the Stokes system for the incompressible free
fluid and the Biot-Naghdi poroelastic shell model for the poroelastic shell structure. In process
of proving the well-posedness of this model, we imposed the conditions on the interface which
are mass conservation, balance of stress and the Beavers-Joseph-Saffman conditions. Therefore,
the Lagrange multiplier method is employed to impose weakly these conditions. We assume that
the boundaries and the interface between the fluid and the poroelastic material are fixed. The
proof proceeds by constructing a semi-discrete Galerkin approximations, deriving the discrete
inf-sup condition and adopting the theory of differential-algebraic equations (DAESs). At last,
we simulated our results in FreeFem++-, a high level, free software, finite element package.

There are some open problems inspired from our results we are able to develop. Firstly, the
couple between Stokes and Koiter’s model (Blouza, Al Alaoui, Mani — [25]) could be established
similar to Biot-Naghdi model. Secondly, remind that we assumed that the domains of fluid and
poroelastic material are fixed in the fluid structure interaction model, i.e., the domains do not
depend on time. Alternatively, we could extend our results to the time dependent domains
Q, = Q.(t). You can see some fluid structure interaction models with time dependent domain
in [27, 3]. Finally, for numerical simulation, we could consider the simulations of the Stokes-
Biot-Naghdi and Biot-Koiter models.
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