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Neural language models for faithful data-to-text generation and
proactive conversational search

Abstract: Large language models are now prevalent in the vast majority of research
works such as natural language processing, information retrieval, or computer vision.
They have demonstrated great abilities in capturing the semantics of elements and
generating plausible texts or images. However, their training guided by probabilities
and co-occurrence patterns hinders sometimes the relevance of their output. In this
manuscript, we aim at discussing and contributing to three main challenges underlying
neural language models under the scope of data-to-text generation and conversational
information retrieval. The first one focuses on the faithfulness and the relevance of
text generation questioning the way to build different parts of neural language model
architectures (i.e., encoder and decoder). The second contribution addresses the issue to
contextualize language models, more particularly the contextualization of information
needs for conversational search. Finally, we investigate the ability of language models to
continuously adapt to new knowledge when they are used for performing ranking tasks.
We conclude with a discussion about promising perspectives in these three research
questions, and also open new directions in machine learning and robotics.
Keywords: neural language models, data-to-text generation, structured informa-
tion, faithfulness, conversational search, query understanding, query clarification,
continual learning

Résumé: Les grands modèles de langue sont désormais prédominants dans la
plupart des travaux de recherche en traitement du langage naturel, en recherche
d’information ou encore en vision par ordinateur. Ces modèles ont démontré de grandes
capacités à capturer la sémantique des éléments et à générer des textes ou des images
plausibles. Cependant, leur entraînement guidé par des probabilités et la détection de
co-occurrences nuit parfois à la pertinence de leurs résultats. L’ambition de ce manuscrit
est de discuter et de contribuer à trois enjeux majeurs sous-jacents aux modèles de
langue neuronaux dans le cadre d’une tâche de génération de descriptions à partir de
données structurées et de recherche d’information conversationnelle. Le premier défi se
concentre sur la fidélité et la pertinence de la génération de texte, discutant la modéli-
sation des différentes parties des architectures des modèles de langue (i.e., l’encodeur
et le décodeur). La deuxième question de recherche porte sur la contextualisation des
modèles de langue, et notamment sur la contextualisation des besoins en information
pour la recherche conversationnelle. Enfin, nous étudions la capacité des modèles de
langue à s’adapter continuellement aux nouvelles connaissances lorsqu’ils sont utilisés
pour effectuer des tâches d’ordonnancement de documents. Nous concluons par une
discussion sur les perspectives prometteuses de ces questions de recherche, et ouvrons
également de nouvelles directions pour l’apprentissage automatique et la robotique.
Mots-clés: modèles de langue neuronaux, génération data-to-texte, information
structurée, fidélité et pertinence, recherche d’information conversationnelle,
compréhension de la requête, clarification de question, apprentissage continu
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Chapter 1

Introduction

Contents
1.1 Context and research questions . . . . . . . . . . . . . . . . . . . . . 3

1.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Generating faithful and relevant texts (RQ1) . . . . . . . . . . . . . . 7

1.2.2 Contextualizing information needs in naturalistic search sessions
(RQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Analyzing the ability of neural ranking models to continually adapt
to evolving topics (RQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Context and research questions

Natural language Processing (NLP) and Information Retrieval (IR) are the major
research domains focusing on the machine’s abilities to process and analyze natu-
ral language, expressed in the form of words, sentences, and/or documents1. These
research fields ambition the final goal of understanding2 natural language to solve
various tasks, such as machine translation [Bahdanau et al. 2015], question-answering
[Rajpurkar et al. 2016], document ranking [Pradeep et al. 2021], information extraction
[Hoffmann et al. 2011], or dialogue generation [Cai et al. 2019].

In IR, one of the first approaches modeling language has been proposed by
[Ponte & Croft 1998]. The authors leverage probabilities to capture patterns in the lan-
guage of documents and within a collection of documents giving rise to language models
based on the distribution of word sequences. This approach has been used in numerous
works [Balog et al. 2009, Liang et al. 2012] and extended, for instance, with smoothing
techniques [Zhai & Lafferty 2004]. The analysis of the word sequence distribution has
taken a new dimension with [Bengio et al. 2003], combining word sequence analysis with
neural models to learn word representations. Words are thus associated with semantic
vectors projected in a latent space, guided by the intuition that they should have similar
representations if they co-occur in the same context window [Harris 1954, Firth 1957].
These neural representations emphasize the notion of word/text semantics and allow to
overpass the simple surface form analysis of words offered by the bag-of-word represen-
tations [Salton et al. 1975].

1In this manuscript, we only focus on textual data, completely neglecting the audio or the gestural
modalities

2The word understanding is used in this manuscript as the fact of demonstrating "very com-
plex language capabilities" - in terms of process or tasks-, in contrast to the fact of demonstrat-
ing human capacities regarding language - in terms of cognitive sense with, for instance, sentiments
and feeling. We refer the reader to the following blogpost: https://chrisgpotts.medium.com/
is-it-possible-for-language-models-to-achieve-language-understanding-81df45082ee2

https://chrisgpotts.medium.com/is-it-possible-for-language-models-to-achieve-language-understanding-81df45082ee2
https://chrisgpotts.medium.com/is-it-possible-for-language-models-to-achieve-language-understanding-81df45082ee2
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With the resurgence of neural networks in 2010’s in the computer vision com-
munity [Krizhevsky et al. 2012], neural language models for text representation have
gained in attractivity [Mikolov et al. 2013b, Pennington et al. 2014, Kiros et al. 2015,
Devlin et al. 2019, Radford et al. 2019]. Different extensions of the neural lan-
guage model introduced by [Bengio et al. 2003] have been proposed. One can
cite for instance word2vec [Mikolov et al. 2013a], FastText [Bojanowski et al. 2017]
or ELMo [Peters et al. 2018] for word representation learning models, and FastSent
[Bojanowski et al. 2017] or SkipThought [Kiros et al. 2015] for sentence ones. While the
initial approach [Bengio et al. 2003] relies on a classification loss aiming at determining
which words occur in a given context, additional losses have been introduced to better
capture word and sentence semantics. These losses extend the classification objective to
adjacent sentences (previous and next ones) [Bojanowski et al. 2017], or introduce text
generation objectives as in [Kiros et al. 2015].

The Transformer architecture [Vaswani et al. 2017] has fostered research on repre-
sentation learning, introducing a new way to encode texts with the self-attention mech-
anism to contextualize word representations given their similarity with other words
in the sentence. Moreover, the architecture of Transformer surrounds the principle
of recurrent neural networks [Graves et al. 2014, Bahdanau et al. 2015] used in previ-
ous models [Kiros et al. 2015, Peters et al. 2018] with multiple encoding-decoding blocks
and heads, drastically increasing the number of parameters. This model is the ba-
sis of several contextual representation learning models for texts [Devlin et al. 2019,
Radford et al. 2019, Reimers & Gurevych 2019, Raffel et al. 2020, Chiang et al. 2020,
Dai et al. 2019] trained on very large databases and various objectives (e.g., masked
language modeling, next sentence prediction, machine translation, question-answering).
These models are called large language models and have demonstrated their powerful-
ness in capturing textual similarity/word analogy, and also in solving downstream tasks
(e.g., information extraction, text generation, text classification) [Rogers et al. 2020,
Dai & Callan 2020, Raffel et al. 2020]. Initially evaluated on machine translation
and constituency parsing [Vaswani et al. 2017], they have outlined good results in
transfer learning for question-answering [Rajpurkar et al. 2016], named entity recogni-
tion [Lample et al. 2019], abstract summarization [Radford et al. 2019] or information
retrieval [Pradeep et al. 2021]. Recent advances introducing prompt-based fine-tuning
[Wei et al. 2022, Sanh et al. 2022] have shown that it is possible to exhibit zero-shot
learning abilities by adding instructions related to various tasks (and datasets) and tun-
ing the language model only over a small number of updates (i.e., 30k gradient steps
in [Sanh et al. 2022]). First and foremost followers of the advances in terms of machine
learning techniques and deep learning architectures (multi-layer perceptions MLP, con-
volutional networks, ...), the NLP and IR communities are now the focus of attention
of all other communities [Khan et al. 2022, Wu et al. 2020]. Large language models are
seen as world knowledge representations including common sense and allowing semantic
and syntactic analysis, as well as task solving [Bommasani et al. 2021]. Several works
[Bommasani et al. 2021, Cui et al. 2022, Kiela 2022] ambition to extend the learning pro-
cedures to other modalities to design foundation models.

From the NLP and IR points of view, these large language models open the door to
new challenges, with a constant trend to address more difficult tasks. A typical example
is question-answering [Bordes et al. 2014, Rajpurkar et al. 2016, Yang et al. 2018,



1.1. Context and research questions 5

Figure 1.1: Examples of interactions with ChatGPT (Captured from twitter)

Kahou et al. 2018] which initially aims at answering factual questions given short
sentences/paragraphs [Wang et al. 2007, Yao et al. 2013, Rajpurkar et al. 2016]
or knowledge bases [Bordes et al. 2014]. While early methods rely on named
entity recognition [Wang et al. 2007, Yao et al. 2013] and/or comparison of
semantic parsing trees [Yao et al. 2013], the resurgence of neural models
[Bordes et al. 2014, Rajpurkar et al. 2016] enables to introduce meanings to map
questions and texts and increases significantly the performance. These promising
results lead the community to increase the complexity of the task by introducing
multi-hop reasoning over multiple documents [Yang et al. 2018] or numerical/discrete
reasoning with calculation-oriented questions [Dua et al. 2019] or questions over figures
[Kahou et al. 2018]. Very recently, the release and the impressive results of the Chat-
GPT model [Ouyang et al. 2022] aiming at having a dialogue with a user, including
state tracking of a long(-term) context and word knowledge in responses, illustrates the
complexity of tasks that we now envision for large language models. Depending on the
user’s request, ChatGPT is able to generate an interview for which the user can answer
question after question. It can also restyle writing, or write/debug code, for instance.3

However, these new models are not without limitations: some responses are wrong
although plausible, responses lack critical thinking or provide non-ethical decisions,
and obviously, this model (as all neural models) is subject to bias issues included in
training data. Some examples of interactions with ChatGPT are presented in Figure 1.1.

Seen more largely, we believe that the general research challenges of capturing
word and text semantics, and generating fluent texts can be now considered solved
thanks to large language models. However, the current approaches are still improv-
able to gain relevance when addressing complex tasks. In this manuscript, we par-
ticularly investigate the use of neural language models within two research fields:
data-to-text generation (DTG) [Wiseman et al. 2017, Puduppully et al. 2019a] aiming

3Some examples are synthesized in different blogpost such as https://www.anaconda.com/blog/
the-abilities-and-limitations-of-chatgpt.

https://www.anaconda.com/blog/the-abilities-and-limitations-of-chatgpt
https://www.anaconda.com/blog/the-abilities-and-limitations-of-chatgpt
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at generating textual descriptions from structured data, and conversational search
[Radlinski & Craswell 2017, Culpepper et al. 2018] targeting proactive search sessions
with interactions in natural languages. We provide more context about these research
fields in Chapter 3. With this in mind, we focus on three research questions:

RQ1: How to generate faithful and relevant texts? Text generation
models are often based on the encoder-decoder architecture [Sutskever et al. 2011,
Sutskever et al. 2014, Bahdanau et al. 2015, Cho et al. 2014, Raffel et al. 2020] which
embeds information sources and decodes a text as output. Although this archi-
tecture has proven its effectiveness in various tasks, such as machine translation
[Bahdanau et al. 2015] or abstractive summarization [Xu et al. 2020], there is room for
progress to constrain the generation with task-related requirements. In this direction,
we first consider the DTG field [Wiseman et al. 2017] in which the faithfulness of the
generation can be drastically hindered due to the topology of input data (which might
be, for instance, graphs, tables, or time series) and the discrepancy between the vocab-
ulary of input and output data (structured data vs. raw text). Second, we focus on the
conversational search research field [Radlinski & Craswell 2017, Culpepper et al. 2018]
particularly useful to solve exploratory and complex information needs. We consider
a controlled text generation task aiming at producing a response in natural language
with respect to an information need (instead of simply displaying relevant documents
as proposed in current search engines). This task is challenging in the sense that the
response needs to be structured and informative so as to relevantly synthesize pieces of
information included in relevant documents.

RQ2: How to contextualize information needs in naturalistic search sessions?
Language models have been explored in IR, first of all to design ad-hoc ranking models
[Guo et al. 2016, MacAvaney et al. 2019a, Pradeep et al. 2021], and then to integrate
contextual features to personalize the ranking [Qi et al. 2021] or focus on specific do-
mains, such as product search [Bi et al. 2021] or legal prediction [Yue et al. 2021]. In
this manuscript, we focus on conversational search systems [Radlinski & Craswell 2017,
Culpepper et al. 2018] in which the new dimension of natural language conversations
gives rise to two research issues: 1) contextualizing information needs in human-machine
conversations (expressed in natural language) [Dalton et al. 2021], and 2) interacting in
a proactive way with the user to clarify the information need [Zamani et al. 2020a]. The
difficulty in the first research challenge lies in the mapping of the user intent (often vague
and not always properly expressed [Jansen et al. 2000]) with conversation turns, often
characterized by anaphora (i.e., the dependency between two turns) and ellipsis (e.g.
the omission of one or more words) [Rojas Barahona et al. 2019]. The second challenge
underlying query clarification integrates additional difficulties consisting in anticipating
information needs given the previous conversation turns and guiding the user to achieve
his/her goal [Kanoulas et al. 2018, Tang & Yang 2019].

RQ3: Are language models able to continually adapt in neural ranking
tasks? Previous works in computer vision [Kirkpatrick et al. 2016, Asghar et al. 2020,
Veniat et al. 2020] have outlined the drawback of neural models to forget knowledge
when they are fine-tuned on long streams of tasks. This setting refers to as con-
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tinual learning and has also been addressed in the NLP community [Sun et al. 2020,
Lee 2017], with a particular focus on conversational systems [Lee 2018, Veron et al. 2019,
Mazumder et al. 2019, Liu & Mazumder 2021]. With the numerous works gravitating
around conversational search in the IR community, we believe that it is crucial to in-
vestigate the ability of neural ranking models to continually adapt to user interactions.
When deployed in production, search engines might face different users and different top-
ics. Users, information needs, and available documents in the index might evolve over
time, implying a shift in the topic distribution when running trained neural IR mod-
els at the inference step [Cai et al. 2014, McCreadie et al. 2014, Sankepally 2019]. One
challenge is thus to identify whether neural ranking models are able to face new topics
(behavior referring to as transfer) without forgetting previous ones (a phenomenon also
known as catastrophic forgetting).

1.2 Summary of contributions
We summarize our contributions related to the aforementioned research questions.

1.2.1 Generating faithful and relevant texts (RQ1)

The quality of text generation models depends on the ability of encoder and de-
coder components to capture the potential complexity of input data (e.g., length
[Beltagy et al. 2020], structure/format [Wiseman et al. 2017]) and generate appropri-
ate texts given both the input and a possible control factor (e.g. writing style
[Lample et al. 2019], user profile [Ao et al. 2021]). Our contributions target both en-
coder and decoder components. First focusing on the data-to-text generation task, we
aim at 1) designing encoder modules capturing the structure of data (i.e., a table) and
2) proposing a decoder module reducing the generation of hallucinations according to
the input data. In addition, 3) we also consider an information retrieval task in which
an information need can be seen as the control factor to synthesize relevant documents.
These three works have been conducted through a CIFRE thesis and an internship. They
are pursued in the context of the ANR PRCE ACDC project (1 thesis) and a CIFRE
thesis.

A hierarchical encoder to keep the structure of data [Rebuffel et al. 2020a].
In this contribution, we propose to take into consideration the structure of the table in
the encoding process. Our intuition is that a good encoding allows a fine-grained repre-
sentation of the table in the latent space; contributing to a more accurate text generation.
Particularly, while previous works [Wiseman et al. 2017, Puduppully et al. 2019b] sim-
ply linearize all cells in a table as a single raw data without distinction whether they
belong to an entity or another, we believe that it is crucial to encode entities separately
so that their semantics is not lost in the encoding of the whole table. Our contribution
consists in a hierarchical encoding which first embeds entities (i.e., rows) in a table, and
then injects their representation in a second encoder to obtain a table representation.
The decoding is then guided by a hierarchical attention which selects the entity, and then
the fact describing the entity, which are willing to be addressed in the following narra-
tive. In addition, this is the first work in DTG to rely on a Transformer architecture,
the self-attention mechanism allowing us to create special tokens related to entities to
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obtain a single representation for each of them. The effectiveness of our model has been
evaluated on the RotoWire dataset, highlighting that a fine-grained encoding allows to
enhance the quality of the generated descriptions.

A multi-branch decoder to reduce the generation of hallucinations
[Rebuffel et al. 2022]. This contribution focuses on the issue of hallucination gen-
eration which is a classic issue in NLG [Ji et al. 2022]. This is often due to the mis-
alignment/divergences between input and output texts in the training dataset, forcing
the model to generate hallucinations during the training procedure and giving rise to
possible hallucinations at inference. This challenge is however even more critical to
control in DTG due to the heterogeneous type and format of input and output data
[Filippova 2020]. To overcome this issue, we propose a two-step method which: 1)
identifies data/text divergences in a training dataset, and 2) trains a multi-branch de-
coder based on fluency, content, and hallucination factors so as it allows to control the
importance of these factors during inference. Experiments on the WebNLG dataset high-
light the effectiveness of our divergence detection method and the more accurate text
generation of our multi-branch decoder. Also, we demonstrated that our multi-branch
decoder is more effective than a standard DTG model [Wiseman et al. 2017] trained on
the cleaned dataset.

Leveraging content selection and planning techniques for answering complex
information needs [Djeddal et al. 2022]. We also explore text generation in con-
versational search in which information needs are often complex and expect multi-faceted
answers. We focus on the challenge of generating natural language answers for an infor-
mation need. Given a list of relevant documents and an information need, the answer
generation model is also critical to identify relevant pieces of information and producing
a structured and informative response. To do so, we propose to explore the potential
of planning-based DTG models [Puduppully et al. 2019a] aiming at 1) first generating
a structured plan based on retrieved documents to identify and organize salient infor-
mation, and 2) then, generating a multi-faceted answer. The approach experimented on
TREC CAR [Dietz et al. 2018] outlines interesting properties regarding the generation
of plans and shows that it helps in building a more qualitative and a more complete
answer.

1.2.2 Contextualizing information needs in naturalistic search sessions
(RQ2)

The second set of our contributions is centered on the conversational information retrieval
research field in which natural language interactions are predominant. Our objective is
twofold: 1) contextualizing users’ information needs when they are expressed in a natural
language conversation, and 2) interacting with the user to clarify his/her information
need. These works are conducted in the context of the ANR JCJC SESAMS project, in
which I am the principal investigator.

Contextualizing questions within conversations [Hai et al. 2023]. This work
focuses on query understanding within a conversation context and aims at ranking docu-
ments according to a question formulated after several conversation turns. We propose to
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extend SPLADE [Formal et al. 2022], a first-stage neural ranking model learning sparse
representations. We then use a second-stage ranker on the query expanded by keywords
selected by our first-stage ranker. Our model integrates conversation turns as inputs to
obtain sparse representations of queries. This model is trained using a new loss mapping
the distribution of the learned representations with the one of gold queries. This has
the advantage of not using supervision from relevant documents, which is less costly and
less error-prone. Experiments on TREC CAsT [Dalton et al. 2020a, Dalton et al. 2021]
show that our model can compete with the best participants of the track.

Clarifying questions through user simulation [Erbacher et al. 2022]. This
work proposes another step towards query understanding but with a more proactive
framework. The objective of query clarification [Zamani et al. 2020a] is to design an IR
system asking questions to the user about his/her information need (e.g., to identify in
which facets or the specificity level she/he is interested). One critical aspect in the com-
munity is the availability of datasets: they all propose a single-turn query clarification
interaction [Aliannejadi et al. 2019, Zamani et al. 2020a], which might be under-effective
in the case of complex or ambiguous information needs. We, therefore, propose a simula-
tion framework allowing multi-turn query clarification and demonstrate that simulated
multi-turns allow for improving the query formulation and, thus, the search effectiveness.

1.2.3 Analyzing the ability of neural ranking models to continually
adapt to evolving topics (RQ3)

Motivated by the analysis of the catastrophic forgetting phenomenon underlying neu-
ral models in computer vision [Kirkpatrick et al. 2016, Veniat et al. 2020], and later in
conversational systems [Lee 2018, Veron et al. 2019, Mazumder et al. 2019], we investi-
gate here the robustness of neural ranking models to face evolving topics in a continual
learning setting. To the best of our knowledge, we are the first to study continual learn-
ing settings in IR. In addition, our contributions address two settings: short streams
(maximum of three successive tasks) in which tasks are modeled using different datasets,
and long streams (up to 74 successive tasks) in which tasks are modeled as clusters of
query topics. These works are also conducted in the context of the ANR JCJC SESAMS
project that I lead.

Modeling continual learning in IR [Lovón-Melgarejo et al. 2021]. Adapt-
ing existing continual learning frameworks for IR is not obvious. This is mainly
due to the notion of task (usually seen as evolving labels in classification tasks
[Kirkpatrick et al. 2016, Veron et al. 2019, Veniat et al. 2020]) that needs to be defined
in accordance with the ranking objective. Our first contribution is therefore to formalize
a continual learning framework for IR and instantiate the notion of Forward Transfer
and Backward Transfer in IR.

Investigating catastrophic forgetting phenomenon in short streams
[Lovón-Melgarejo et al. 2021]. We design here short streams of tasks through
datasets of different domains. Our empirical analyses exhibit the behavior of neu-
ral ranking models regarding the catastrophic forgetting phenomenon. Neural rank-
ing models being often used as second-stage rankers, we aim at measuring the addi-
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tional knowledge they capture in a continual learning framework regarding a first-stage
ranker relying on exact-matching signals (e.g., BM25) and whether it impacts catas-
trophic forgetting. Finally, we explore the gain of a well-known lifelong-learning strategy
[Kirkpatrick et al. 2016] when applied to neural ranking models.

Investigating catastrophic forgetting phenomenon in long streams and con-
trolled IR scenarios [Gerald & Soulier 2022]. In this contribution, we aim at
designing and investigating longer continual scenarios, guided by the intuition that the
behavior regarding knowledge acquisition and forgetting might be more pronounced.
We, therefore, propose and validate a continual learning dataset based on the MSMarco
one including three scenarios of topic streams of different sizes (19, 27, and 74 topic
sequences). Then we analyze the behavior of neural ranking models in these scenarios
and investigate the correlation between task similarity and catastrophic forgetting. Fi-
nally, we design and explore controlled IR settings modeling direct transfer, information
update, and language drift.
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In this chapter, we provide an overview of neural language models. We refer the
reader to different surveys [Naseem et al. 2021, Gruetzemacher & Paradice 2022] or tu-
torials [Meng et al. 2021, Flanigan et al. 2022] for a complete overview of text-based rep-
resentation models.

2.1 Language models, word and sentence embeddings

Word representations. Initially used for text generation, language models are de-
rived from Markov chain conditioning the probability of appearance of word wt to its
previous words w1, ...,wt−1 (i.e., P (wt∣w1, ...,wt−1)). Bengio et al. 2003 have revisited
language models to learn for each word a continuous representation in the latent space
by maximizing the log-likelihood of the word sequence w1, ...,wT through a language
model f() as follows:

L =
1

T

T

∑
t=1

log f(w1, ...,wt; θ) +R(θ) (2.1)

where f(w1, ...,wt; θ) is the language model of the sequence (with parameters θ) and
R(θ) is a regularization term. The language model estimates the probability of a word
wt given its previous ones w1, ...,wt−1 using neural networks:

f(w1, ...,wt; θ) = ∏
t

P (wt∣w1, ...,wt−1; θ) (2.2)

with P (wt∣w1, ...,wt−1; θ) = g(wt,w1, ...,wt−1; θ) (2.3)

where g(; θ) is a neural network of parameter θ and wt is the embedding of word wt into
the latent space of dimension d. Although pioneering neural language models, this model
might be computationally expensive depending on the form of g(; θ) and intractable for
learning embedding through large datasets. The n larger is, the larger the training
corpus should be to obtain good estimates (e.g., 104×2 for bi-grams, 104×3 for tri-grams,
...). The model size increases exponentially with n.

Collobert et al. 2011 and Mikolov et al. 2013a have contributed to reduce the cost
of the pretraining word embeddings by 1) using negative sampling and 2) defining the
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concept of the window around a central word. The most famous model is the Skip-Gram
model [Mikolov et al. 2013a] aiming at predicting, through the whole word sequence
w1, ...,wT , the surrounding contextual words given the central word. The loss function
is expressed as below:

1

T

T

∑
t=1

∑
−c≤j≤c,j≠0

logP (wt ∣ wt+j) (2.4)

where c is the size of the context. Each word has two representations depending on
whether it is a context word or a central word (respectively called output and input
vectors wO and wI). The probability P (wt+j ∣ wt) is estimated as the following softmax
function:

p (wO ∣ wI) =
exp (wO

⊺wI)

∑
N
i=1 exp (wi

⊺wI)
(2.5)

where N is the number of terms in the vocabulary, making the sum impractical in
practice. Using negative sampling and approximation function, Equation 2.5 is estimated
as follows:

logσ (wO
⊺wI) +

k

∑
i=1

Ewi∼Pn(w) [logσ (−wi
⊺wI)] (2.6)

where σ(x) = 1/(1 + exp(−x)) and wi is a negative context sampled from the noise
distribution Pn(w). A similar model, called C-BOW, learns word representations by
reversing the sequence modeling: they predict the central word given its context. A
competitive model is Glove [Pennington et al. 2014] which relies on both Global Matrix
Factorization as done in LSA and local context window as Skip-Gram. Although these
models have demonstrated great performances in word similarity or word analogy tasks,
they suffer from out-of-vocabulary limitations, since they rely on a predefined vocabulary,
and are not able to generate word representations for new words.

Text units. To tackle this issue, several works have rethought language models by
focusing on sub-word units, instead of words. These units can take different forms:

• Byte-pair encoding (BPE) [Bojanowski et al. 2017] in which words are obtained
using a tokenizer and split into Unicode characters. The latter are merged depend-
ing on their n-gram frequency to form a new symbol. The merging of symbols can
be iterated until reaching the word level.

• Wordpieces [Wu et al. 2016] which follow the same principle as BPE but instead
of merging the most frequent bigrams, Wordpieces merge the symbol pair that
maximizes the likelihood of a unigram language model and the mutual information
between these two symbols.

• SentencePiece [Kudo & Richardson 2018] applying BPE or Wordpieces algorithms
but at the sentence level without applying any tokenizer and by including space
and separation characters.

For convenience, we use in the remainder of this chapter the term "word" to mention
the different units encoded in the text (i.e., word, tokens, BPE, Wordpieces).
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Sentence representations. Learning the representation of sentences or longer texts
is a difficult challenge since it raises the question of aggregating semantics over all words
in the text. Early works [Yin et al. 2016b, Vulić & Moens 2015] have proposed to simply
combine linearly word embeddings without considering word order. But, this approach
is less prevalent due to its low effectiveness results when used in downstream NLP and IR
tasks. Other works focused on extending language models until then applied at the word
level to consider the sentence level [Dai et al. 2015]. This imposed to modify the input
granularity level by averaging/summing words in the sentence to predict, for instance, a
central word given the whole sentence [Dai et al. 2015]. Other losses have been designed
to predict words in previous/next sentences [Hill et al. 2014] or also to predict contextual
sentences [Kenter & De Rijke 2015].

The document representation approaches have evolved with the development of RNN.
This architecture offers a relevant alternative with respect to MLP for encoding text
in which the sequence of words is prevalent. Language models are thus estimated by
recursively encoding previous words in the sequence as follows:

f(w1, ...,wt; θ) = P (wt∣w1, ...,wt−1) (2.7)

≈ g(V st; θg) (2.8)

with st = h(W st−1 +Uwt; θh) (2.9)

with g(; θg) and h(; θh) are usually non linear and linear functions, respectively.
U , V and W are weighting matrices and st is the hidden state of the tth word.
To learn text representations with RNN, different losses might be used, generally
varying between word/sentence classification [Logeswaran & Lee 2018] or generation
[Kiros et al. 2015] tasks. RNN is the backbone of auto-encoder or encoder-decoder
architectures which have been largely used and are still used in NLP and IR tasks
[Wang et al. 2016, Cho et al. 2014]. While auto-encoders aim at reconstructing the
input based on its projection in the latent space, encoder-decoder (and particularly
seq2seq) aims at mapping an input sentence to a different output sentence. While
training these architectures using the maximum likelihood criterion (i.e., teacher forcing
[Lamb et al. 2016]), the distribution of words in the sequence generation might differ
from the original ground truth labels. Indeed, teacher forcing consists in re-injecting
the correct word as input for the next word generation process. This consequently
restrains the word distribution seen during training, which is critical in case of dis-
crepancy between training and inference. Erroneous words generated might lead to
an inconsistent subsequent generation. This problem refers to as exposure bias and is
generally addressed by using domain adaptation [Goyal et al. 2016], reinforcement learn-
ing [Ranzato et al. 2016], adversarial training [Scialom et al. 2020], or learning to search
[Wiseman et al. 2018].

These architectures have also been improved with an attention mechanism allowing
to learn a linear combination of the representation of words/parts of the sentence to build
the context vector. The weights of the linear combination are called attention weights
and denote the importance of specific parts in the sentence. When sentences are long, the
multiplication of gradients in an RNN might lead to a vanishing gradient. To overcome
this limitation, memory-based RNN networks, such as LSTM [Bahdanau et al. 2015] or
GRU [Cho et al. 2014], have been proposed. Also, bi-directional encoding has been used
[Schuster & Paliwal 1997] to take into account the whole sentence input (rather than
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only previous words). It is based on two RNNs, respectively moving forward from the
beginning and backward from the end of the text. The final decision is then taken on the
concatenation of both hidden states. At the inference step, the network generates a single
word/token given the current hidden state (we call this technique greedy decoding). This
might hinder the intelligibility of the generated sentence since there is nothing to avoid
repetitions or non-fluent sentences. To tackle this issue, beam search [Huang et al. 2018]
or sampling strategies [Holtzman et al. 2019] are generally used to maximize the text
likelihood.

2.2 Contextual embeddings, large language models, and
foundation models

One limitation of the language models aiming at representing words presented above is
that we assume that a word must be represented by the same vector regardless of the
context in which the word occurs. It is not coherent with the different meanings a word
can have depending on its context (i.e., polysemy) or the different entities a surface form
can refer to (e.g., does the term "Washington" refer to the city or the politician?).

One of the first attempts to solve word polysemy has been proposed by
[Iacobacci et al. 2015] with their SENSEMBED model by leveraging word senses
inventoried in the BabelNet resource. Later, Peters et al. 2017 address this issue for
a Named Entity Recognition task. In an end-to-end fashion, the authors propose
to combine word embeddings and recurrent language models with the objective that
the latter contextualizes the word embedding. Said otherwise, instead of simply
using language models to map a word to a predefined vector, the recurrent language
model refines word embeddings according to the sequence of words (e.g., the sequence
"Washington eats" suggests that "Washington" is more likely the politician rather than
the city). In addition, McCann et al. 2017 propose to leverage the natural machine
translation task to learn contextual embeddings. Their intuition is that the objective of
machine translation is to preserve word meaning even if the input/output languages are
not the same. To do so, they rely on a two-layer bi-LSTM encoding English texts to
decode in an attention-driven seq2seq architecture.

The real first breakthrough contribution for learning contextual word embeddings
has been proposed by [Peters et al. 2018] with the ELMo embeddings (Embeddings
from Language Models). Their strength relies on several aspects: 1) they learn word
embeddings using long contexts (long sentences/paragraphs) instead of context window,
2) they learn a bi-directional neural language model and use all the network layers in the
prediction, 3) the importance of each layer depends on the targeted task. Experiments
have shown that layers encode different aspects of text understanding: lower layers are
generally related to syntax analysis (part-of-speech tagging, NER, ...) while higher
layers capture high-level semantics (question answering, sentiment, ...).

In parallel, Vaswani et al. 2017 have introduced the self-attention mechanism within
the powerful model called Transformer. Self-attention allows to compare a sequence
with itself using three vectors (query, key, values), and therefore identifies which
part(s) of the sequence is(are) important for each word in the sequence. In addition,
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Transformer is an encoder-decoder architecture composed of multiple heads, including
themselves several blocks of self-attention and feed-forward networks, surrounded by
skip-connections. Starting from these statements, several models [Devlin et al. 2019,
Radford & Narasimhan 2018, Raffel et al. 2020] have been developed, guided by the in-
tuition that a neural language model should be able to encode low-level and high-level
semantic and syntax information. Consequently, a standard learning scheme has been
established: neural language models should be trained simultaneously on different tasks
to capture all this information. The number of parameters has been exponentially in-
creased with respect to previous language models, switching training time from a few
GPU hours to several GPU days. This is the beginning of Large Language Models with
three main lines of models, depending on which part of the Transformer they use: BERT
(encoder), GPT (decoder), and T5 (encoder-decoder).

• BERT [Devlin et al. 2019] is an encoder-only model: it relies on the encoder part of
the Transformer. Its encoder is bi-directional and is trained using two unsupervised
tasks: 1) masked language modeling aiming at recovering words removed from the
text, and 2) next sentence prediction. This pre-trained language model can be fine-
tuned on a given task by simply adding a task-based classifier on top of BERT. This
model has attracted a lot of attention in the community due to its effectiveness
to capture word semantics and to solve NLP tasks. This led to several BERT-
based models and also to a research field, called Bertology, [Rogers et al. 2020,
Dai et al. 2022] aiming at explaining the signals captured by the language models
through, among other strategies, probing tasks, and locating which level of the
architecture is concerned with.

• GPT [Radford & Narasimhan 2018] is a decoder-only model, relying on the decoder
module of the Transformer and processing inputs in a uni-directional manner. The
training loss is similar to the one of neural language models, i.e. autoregressive
text generation. In contrast to BERT models which require fine-tuning, GPT has
shown great abilities in zero-shot / few-shot learning settings. Two variants were
derived from GPT (GPT-2 [Radford et al. 2019] and GPT-3 [Brown et al. 2020]),
different in terms of number parameters (from 117 M in GPT to 1.5 B in GPT-2
to 175B in GPT-3). Also, GPT-4 is on the way to be presented to the community.
Recently, the extended version of GPT-3 (i.e. GPT-3.5) was used as a basis for the
smashing ChatGPT model (inspired by [Ouyang et al. 2022]) exhibiting powerful
ability for dialogue and text generation.

• T5 [Raffel et al. 2020] follows the Transformer encoder-decoder architecture but is
trained on five unsupervised and supervised tasks: masked language modeling and
next sentence prediction as in BERT, and translation, question answering, and
classification tasks. These are all framed as text-to-text tasks. T5 is effective on
other NLP tasks if we prefix a short instruction to the input (e.g., for translation:
"translate English to German: . . .").

These models are now well-established and largely used as standard models for NLP
and IR tasks, fostering the extension of these architectures for devoted tasks or also
improving the language models according to different aspects. We can cite some examples
through the following (non-exhaustive) list:
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• RoBERTa [Liu et al. 2019d] which removes the next sentence prediction loss and
trains the masked language-modeling task on more data.

• Distillation models, such as DistillBert [Sanh et al. 2019], leading to a smaller and
faster Transformer model.

• Models reducing the number of parameters. For instance, ALBERT
[Chiang et al. 2020] splits the embedding matrix into two smaller matrices, and,
thus, leads to lower memory consumption and faster training.

• Adversarial models, such as Electra [Clark et al. 2020] which relies on adversarial
training to distinguish real and fake texts.

• Sparse models: Transformer-XL [Dai et al. 2019] and XLNet [Yang et al. 2019c]
using sparse attention. A version for long text encoding, such as LongFormer
[Beltagy et al. 2020], is also available.

• Specialized models: for scientific texts (SciBert [Beltagy et al. 2019]), for French
(Camembert [Martin et al. 2019] or FlauBert [Le et al. 2019]), for multiple lan-
guages [Pires et al. 2019, Scao et al. 2022a, Chowdhery et al. 2022a].

All these variants have contributed to the success of Transformer-based models
in NLP but also in other domains, such as vision [Khan et al. 2022] or time series
[Wu et al. 2020].

Beyond that, the different lessons learned from model training (effective
knowledge/semantics/syntax captured through self-attention and multi-task
learning) and, accordingly, the breakout step in the effectiveness of unsuper-
vised learning with no necessary fine-tuning on the targeted task have opened
tremendous perspectives towards a new line of models called foundation models
[Bommasani et al. 2021, Cui et al. 2022, Kiela 2022]. The objective of foundation
models is to pre-train models on a sufficiently diverse set of modalities and tasks,
as well as on large datasets, so that they can learn world knowledge at different
granularity levels, and therefore be effective on a new task in a few-shot or zero-shot
setting [Cui et al. 2022]. Said otherwise, foundation models are a generalization of
large language models and change the paradigm of task-focused models towards large
knowledge models able to solve any task without fine-tuning. It is worth noting that
prompt-based large language models, such as the FLAN model [Wei et al. 2022] or the
T0 from BigScience [Sanh et al. 2022], are the premises of those foundation models,
but they only consider the textual modality. One critical issue of those models is
the computational cost to train those models [Bender et al. 2021]. Also, although the
perspective of having a single model to perform various tasks (or fine-tuning it with a
small amount of data) is quite exciting, ethical questions remain (which are also valid
for previous models)[Bender et al. 2021]: what is the dataset used for training? Should
we be aware of possible bias in the model decision? Even if we fine-tune the foundation
model on our small dataset, do we have control over the model output since the training
was performed on a large variety of datasets/tasks?
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3.1 Data-to-text generation

3.1.1 General overview

Data-to-text generation (DTG) aims at understanding structured data (e.g., key-value
pairs, graphs or RDF triplets, tables, charts, figures, temporal data) and describing
it with natural language descriptions [Reiter & Dale 2000, Reiter 2007]. This field is
relevant for several application domains (such as journalism [Oremus 2014] or med-
ical diagnosis [Pauws et al. 2019]) or in wide-audience applications (such as finan-
cial [Plachouras et al. 2016], weather reports [Reiter et al. 2005], or sport broadcasting
[Chen & Mooney 2008, Wiseman et al. 2017]). This is a subfield of Natural Language
Generation (NLG) in which the objective is to generate new texts, often conditioned by
an input.

Given an input x, the objective of conditioned text generation is to gener-
ate a text y. This generation is mainly performed through auto-regressive learn-
ing that aims a maximizing at a given step t, the probability p(ŷt∣ŷ1, . . . , ŷt−1, x)

to generate word ŷt given input x and all previously generated words ŷ1, . . . , ŷt−1.
This research field has been boosted by the recent advances in deep learning,
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Figure 3.1: Example of a training instance in the RotoWire dataset
[Wiseman et al. 2017].

proposing more and more sophisticated architectures (from multi-layer perceptron-
MLP [Rosenblatt 1958], Recurrent Neural Network-RNN [Graves et al. 2014], Long-
Short Term Memory networks-LSTM [Bahdanau et al. 2015] to large language models
[Vaswani et al. 2017, Devlin et al. 2019]) which are more and more effective to capture
the semantics. The backbone architecture in NLG is an encoder-decoder that projects
the input data into a latent semantic space (the encoder part) and then estimates a
probability distribution over the vocabulary to build a sequence of words as output (the
decoder part). The parameters of the language generation model are learned by maxi-
mizing the cross entropy loss between the generated text ŷ and the gold reference text y
given input x:

argmax
θ

L(θ) = argmax
θ

∑
(x,y)∈D

logP (ŷ = y∣x; θ) (3.1)

where D is the training dataset including pairs of input-output texts. During infer-
ence, the sequence ŷ is generated using a greedy decoding aiming at approximating the
maximum likelihood probability conditioned on the input data x:

ŷ∗1∶T = argmax
ŷ1∶T

T

∏
t=1

P (ŷt∣ŷ1∶t−1, x; θ) (3.2)

where ŷ1∶T corresponds to a generated sequence of T words.
DTG follows this task formalization, except that the input data x is a structured

data and not a free-form text. As discussed earlier, the main characteristic of DTG
is that input and output data (x and y) might be of different formats and different
types. This makes even harder the alignment between elements in a structured data and
their translation into a natural language text. For instance, in the RotoWire dataset
[Wiseman et al. 2017] in Figure 3.1, the input data is a table about statistics of basketball
players and the output data is a summary of the basketball game. During training, it
is not obvious at all that a statistical model can identify that the term "assists" in the
gold reference text refers to the column "AST" or that the expression "lost devastating
fashion to" requires comparing the columns "WINS" in the first table and to reason that
the line with the lower score refers to the looser team.

3.1.2 From rule-based to deep learning models

Until recently, efforts to bring out semantics from structured data relied heavily on ex-
pert knowledge [Deng et al. 2013, Reiter et al. 2005]. For example, to better transcribe
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numerical time series of weather data to a textual forecast, [Reiter et al. 2005] implement
complex template schemes in collaboration with weather experts to build a consistent
set of data-to-word rules. From a general point of view, expert-based systems follow a
pipeline of three main steps: content selection aiming at identifying salient information
(also called macro-planning), micro-planning focusing on the content ordering to build a
plan of the textual description, and surface realization generate the sentences in natural
language. Although accurate for the devoted domain and efficient at inference time, one
drawback of expert-based systems is that they are human costly to adapt to new use
cases.

With the rise of neural networks, research turned towards the use of neu-
ral text generation models. Encoder-decoder networks augmented with atten-
tion [Bahdanau et al. 2015] and copy [Gulcehre et al. 2016, See et al. 2017] mecha-
nisms are rapidly adopted as backbone models. The different subtasks in expert-
based systems disappear with end-to-end training on aligned pairs of data and texts
[Gatt & Krahmer 2018], framed as text-to-text generation models. To fit with these ar-
chitectures, the authors represent the data as a single sequence of facts (pairs of key-value
possibly associated with an entity) to be entirely translated into natural language. For
example, the table from Figure 3.1 is linearized to [(Hawks, H/V, H), ..., (Magic, H/V,
V), ...], effectively leading to losing the distinction between rows, and therefore entities.
Moreover, Wiseman et al. 2017 show the limits of traditional encoder-decoder models on
larger structured-data, since they fail to accurately extract salient elements.

A line of works proposes to leverage text generation based on macro-planning
[Kondadadi et al. 2013] to design neural decoders based on planning and templates. The
intuition of such a module is to ensure factual and coherent mentions of input records
in generated descriptions. For example, Puduppully et al. 2019a propose a two-step de-
coder which 1) first identifies “what to say” - i.e. an ordered plan of salient information
that should be included in the summary - (referring to as content selection and planning),
and 2) then focuses on the “how to say” by generating fluent sentences by following the
plan built in the previous step (referring to as text generation). The joint probability of
generating a text y given a data structure s is thus decomposed as the product, over all
possible plans z, of probabilities p(z ∣ s) and p(y ∣ s, z), respectively denoting the content
selection and planning step, and the text generation step:

p(y ∣ s) =∑
z

p(z ∣ s)p(y ∣ s, z) (3.3)

From a reverse point of view, Li & Wan 2018 propose a delayed copy mechanism for
which their decoder acts in two steps: 1) using a classical LSTM decoder to generate
a fill-in-the-blank text and 2) using a pointer network [Vinyals et al. 2015] to replace
placeholders by records from the input data.

3.1.3 Ensuring faithful generation...

... by taking into account the structure. Aware of the limitation under-
lying the linearization of input data, some works [Liu et al. 2018, Liu et al. 2019a,
Puduppully et al. 2019b] propose to take into account the data structure. In TAPAS
[Herzig et al. 2020], the authors propose to add embeddings contextualizing tokens in
the table (e.g., column and row IDs, order of magnitude for numerical variables). A
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further step is proposed by Liu et al. 2018 and Liu et al. 2019a with their dual encoder
[Liu et al. 2019a] which encodes separately the sequence of element names/labels and
the sequence of element values. These approaches are however designed for single-entity
data structures and do not account for delimitation between entities. Taking into ac-
count multiple entities, Iida et al. 2021 propose to encode the table using two transform-
ers, respectively for rows and columns. Each cell is then contextualized over these two
dimensions.

Considering entities as a whole, Puduppully et al. 2019b follow entity-centric theo-
ries [Grosz et al. 1995, Mann & Thompson 1988] and propose a model based on dynamic
entity representation at decoding time. It consists in conditioning the decoder on entity
representations that are updated during inference at each decoding step. For instance,
Puduppully et al. 2019b introduce dynamic encoding updating, where the model up-
dates part of the source data encoding at each decoding step to accurately guide the
decoder throughout the generation. Recently, Wang et al. 2022 leverage transformation
invariance and structure awareness through attention flow to understand cell relations
and reinforce the model robustness regarding the data structure.

In parallel, recent works investigate on answering questions on ta-
bles [Pasupat & Liang 2015, Yin et al. 2016a, Sun et al. 2016, Yin et al. 2020,
Chen et al. 2021]. Early works propose to leverage semantic parsing and build
knowledge graphs from the table [Pasupat & Liang 2015, Sun et al. 2016] or to simply
encode each cell in the semantic space [Yin et al. 2016a]. Other approaches encode
tables in a very similar way to those described above. More particularly, they generally
follow the linearization principle over all cells [Chen et al. 2021] or at the row level
[Yin et al. 2020] but integrate an attention module guided by the question or retrieval
techniques to identify relevant information [Chen et al. 2021].

... by controlling hallucinations. Another drawback of previous models (and
text generation models in general) is that they are subject to over-generation
[Elsahar et al. 2021], i.e., hallucinations. Most of the available corpora are often
constructed from internet sources, which, while easy to access and aggregate, do
not consist of perfectly aligned source-target pairs [Perez-Beltrachini & Gardent 2017,
Dhingra et al. 2019]. Therefore, misaligned fragments from training instances, namely
divergences, can induce similarly misaligned outputs during inference, the so-called hallu-
cinations. This problem arises both from the training procedure (training via maximum
likelihood leads to language models strongly mimicking human behaviors), and from the
testing protocols. Indeed, standard metrics (e.g., BLEU [Papineni et al. 2002], ROUGE
[Lin 2004], METEOR [Banerjee & Lavie 2005]) only measure similarity to ground truth
reference texts and do not fully capture relevance to the source data. Thus, there is no
distinction between a mismatch caused by a paraphrase, poor lexicalization of content,
or made-up/incorrect statement, leading to imperfect model selection.

When corpora include a mild amount of noise, as in handcrafted ones (e.g. E2E,
WebNLG), dataset regularization techniques [Nie et al. 2019, Dusek et al. 2019] or hand-
crafted rules [Juraska et al. 2018] can help to reduce hallucinations. For instance,
Juraska et al. 2018 leverage templating and hand-crafted rules to re-rank the top out-
puts of a model decoding via beam search. However, beyond the significant annotation
labor, all proposed neural approaches still suffer from exposure bias underlying teacher
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forcing training. To overcome these limitations, a strategy [Shen et al. 2020] consists
in increasing the coverage of neural outputs, by constraining the decoder to focus its
attention exclusively on each table cell sequentially until the whole table was discussed
in the narrative. Similarly, Wiseman et al. 2017 propose to include a reconstruction loss
aiming at reconstructing the source table from the hidden states of the decoder. In an-
other direction, Perez-Beltrachini & Lapata 2018 introduce a classifying neural network,
trained (via multi-instance training) to label text tokens depending on their alignment
with the associated table. They use these labels in a reinforcement learning framework
to generate sentences with a maximum of aligned tokens. Also, Liu et al. 2019c propose
a reward based on document frequency to favor words from the source table more than
rare words.

Leveraging controlled text generation [Li et al. 2016, Sennrich et al. 2016,
Lample et al. 2019], Filippova 2020 introduces an hallucination score simply at-
tached as an additional attribute that reflects the degree of hallucinated content in the
associated target description. During inference, this attribute acts as an hallucination
handle used to produce more or less factual text. However, this approach is not without
limitations since it requires a strict alignment at the instance level, namely between
control factors and the whole target text.

3.2 Conversational search

3.2.1 General overview

Search-oriented conversational systems are characterized by a heterogeneous context in-
volving: 1) an IR system retrieving documents according to an information need and/or
collecting users’ clicks, and 2) a dialogue system interacting with the user in natural
language to improve the search experience. The purpose of conversational IR systems
is thus to replace or augment IR systems to support users during their search session
[Culpepper et al. 2018]. Depending on the interaction mode, users might interact with
both the search engine and the dialogue system, or simply with the dialogue system
which also displays information snippets or documents throughout the conversation.
This setting is relevant for complex and/or exploratory information needs that require
multiple steps or document recommendations. In addition, Radlinski & Craswell 2017
and Culpepper et al. 2018 define such so system as a pro-active system in which the
collaboration is jointly conducted by the user and the system (we call these interactions
"mixed-initiative" ones). Conversational search systems have also the role of 1) eliciting
information needs by asking clarifying questions [Zamani et al. 2020a] and 2) maintain-
ing the conversation awareness in order to avoid repeated questions from the system
side and provide the user reminder from previous sessions or previous search interests.
Radlinski & Craswell 2017 characterize conversational search by two learning processes:
user revealment in which the system helps the user to clarify and learns about his/her
need, and system revealment in which the user leverages the system’s abilities to increase
his/her knowledge. An interesting synthesis of all these notions has been proposed at the
devoted Dagstuhl seminar [Anand et al. 2020] and is illustrated in Figure 3.2. Particu-
larly, the report highlights the dimension of conversational search based on: 1) user and
system engagement toward the conversation, 2) the concurrency of the different interac-
tions which should be immediate but with a possible delayed task achievement, 3) the
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Figure 3.2: Dimension of conversational search regarding other fields in IR - image from
[Anand et al. 2020].

naturalness of interactions, 4) the interactivity level, and 5) the state of the conversation
to ensure the session awareness.

It is worth noting that conversational IR has a strong relation with general di-
alogue systems [Roller et al. 2020], both characterized by a multi-turn conversation
between the user and the system. However, in contrast to chitchat conversational
systems [Ritter et al. 2011, Li et al. 2016] that just aim to keep the conversation go-
ing, the purpose of introducing conversational systems in IR is to use natural lan-
guage interactions to find the desired relevant pieces of information over large docu-
ment collections. It is also different from a task-oriented conversation (e.g., restaurant
booking [Bordes & Weston 2016]) evolving in a closed world [Seneff & Polifroni 1996,
Wang & Lemon 2013]. It is worth noting that conversational IR is also different from
question-answering (QA) [Bordes et al. 2014, Haug et al. 2018] according to the final
goal. Indeed, conversational search aims at solving information needs that are often
under-specified and complex to explicit [Jansen et al. 2000], in contrast to question-
answering which often focuses on a fact or an entity. For instance, in question-answering,
typical questions might be "When was Franklin D. Roosevelt born?" [Roberts et al. 2020]
or also "What does the zip in zip code stand for?" [Lee et al. 2019] while information
needs in conversational search were initially defined by keywords (e.g. "dinosaur" or
"south Africa" [Aliannejadi et al. 2019]). With the impressive results of large language
models [Devlin et al. 2019, Radford et al. 2019], the frontier between question-answering
and conversational search is dissolving: question-answering tends to address more com-
plex questions requiring multi-hop reasoning over different documents, and conversa-
tional search limits the usage of keyword queries for the benefit of natural language
questions which might be more explicit.

3.2.2 Contextualizing information needs in conversations

Understanding an information need formulated in natural language is a central is-
sue for conversational systems [Mikolov et al. 2015] and a longstanding goal in IR
[Jansen et al. 2000, Cronen-Townsend & Croft 2002, Sanderson 2008].

One first line of works relies on query reformulation [Rocchio 1971,
Lavrenko & Croft 2001, Amati & Van Rijsbergen 2002, Zukerman & Raskutti 2002]
where the objective is to rewrite the query. A lot of effort has been
provided to design models based on either (pseudo-)relevance feedback
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[Rocchio 1971, Lavrenko & Croft 2001, Amati & Van Rijsbergen 2002] or external
knowledge resources [Zukerman & Raskutti 2002].

Another category of works focuses on search/query diversifica-
tion [Carbonell & Goldstein 1998, Agrawal et al. 2009, Cai et al. 2016,
Nogueira et al. 2019a, MacAvaney et al. 2021] to increase the query coverage, par-
ticularly when the query is multi-faceted. Recently, MacAvaney et al. 2021 proposed
to focus on query diversification by generating queries by designing a Distributional
Causal Language Modeling. However, for all these diversification techniques, the issued
document list might include some top-ranked documents that do not match the user’s
intent [Wang & Zhu 2009].

The keen interest in conversational search has shown that it is possible to bet-
ter understand queries by taking into account the session context that is the dif-
ferent utterances of the conversation. While a few works have proposed to model
IR sessions as sequential actions, and thus, using agents [Nogueira et al. 2019a,
Tang & Yang 2019, Chen et al. 2020c], most prior works rely on a Historical Query Ex-
pansion step [Lin et al. 2020b, Zamani et al. 2022b]. Inspired by previous work mod-
eling users based on their search logs to infer their search intent [Xiang et al. 2010,
Matthijs & Radlinski 2011, Bennett et al. 2012, Harvey et al. 2013, Kong et al. 2015],
this approach consists of a query expansion mechanism that takes into account all past
queries and their associated answers. Such query expansion model is learned on the
CANARD dataset [Elgohary et al. 2019], which is composed of a series of questions and
their associated answers, together with a disambiguated query, i.e. a gold query. How-
ever, relying on a reformulation step is computationally costly and might be sub-optimal
as in [Lin et al. 2021b, Krasakis et al. 2022]. [Krasakis et al. 2022] propose to use Col-
BERT [Khattab & Zaharia 2020] in a zero-shot manner, considering as input a sequence
of queries (instead of a single query), without any training of the model. Lin et al. 2021b
propose to learn a dense contextualized representation of the query history, optimizing a
learning-to-rank loss over a dataset composed of weak labels.

A promising approach has been proposed in [Aliannejadi et al. 2019,
Krasakis et al. 2020, Aliannejadi et al. 2021, Sekulic et al. 2021a, Tavakoli et al. 2022]
to clarify information needs by proactively interacting with the user. Inspired by previous
work in voice queries [Kiesel et al. 2018] and dialogue systems [Stoyanchev et al. 2014],
Aliannejadi et al. 2019 propose a conversation framework that consists in generating
clarifying questions when the query is ambiguous. Clarifying questions might be
query reformulations (e.g., "Would you like to know how to care for your dog during
heat?" for the initial query "dog heat" as in [Aliannejadi et al. 2019]) or questions with
possible options (e.g., "what do you want to know about this British mathematician?
Options: movie, suicide note, quotes, biography" for the initial query "alan turing" as in
[Zamani et al. 2020a]). With this in mind, the classic workflow for asking clarifications
is based on three main steps [Aliannejadi et al. 2019]: 1) the IR system produces a
clarifying question for the user, 2) the latter provides an answer or selects an option,
and 3) the IR system ranks documents according to the user’s feedback. The pioneering
work [Aliannejadi et al. 2019] aims at generating clarifying questions by 1) retrieving a
predefined set of questions using a BERT-based model and 2) at each turn, selecting the
best query through a conversation history-driven model. One drawback of this approach,
due to the cost of using real user interactions, is that the multi-turn conversation is
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Figure 3.3: Training procedure in a continual learning setting [Douillard 2022].

log-based, interactively simulated using predefined logs of conversation history (i.e.,
sequence of questions/answers obtained by HITS). This simulated conversation defined
a priori without interaction with the proposed question selection model might hinder
the evaluation performance in the sense that we are not sure about the soundness of
the conversation flow. Zamani et al. 2020a and Sekulic et al. 2021a tackle this issue by
proposing generative models, that create clarification questions or query suggestions.
But they do not address the multi-turn framework, stopping the clarification process at
the first interaction.

3.3 Continual learning

3.3.1 General overview

Continual learning generally defines the setting in which a model is trained consec-
utively on a sequence of tasks and needs to adapt itself to newly encountered tasks
[Lomonaco & Maltoni 2017]. In Figure 3.3, [Douillard 2022] illustrates the training pro-
cedure underlying continual learning settings. Formally, let’s consider a sequence of
classification tasks T 1 → T 2 → ⋅ ⋅ ⋅ → T n which respectively aims at classifying data on
ten different labels. Said otherwise, each timestamp t of the sequence is associated to a
classification dataset Dt based on ten different classes: classes C1, . . . ,C10 for task T 1,
classes C11, . . . ,C20 for task T 2, and so on. Training a neural modelM0 = g

0 ○f0 on this
sequence consists in building incrementally the model Mt = g

t ○ f t at each timestamp t

on the basis of the previous modelMt−1 and the dataset Dt. This setting is also named
class-incremental learning setting.

To enhance the transferability of neural models from a source domain to a tar-
get domain, transfer learning strategies such as fine-tuning [Yang et al. 2019b], multi-
tasking [Liu et al. 2015], domain adaptation [Pan & Yang 2010], and more recently ad-
versarial learning [Cohen et al. 2018], have been widely used. However, these strate-
gies have in essence two critical limitations reported in the machine learning literature
[Chen & Liu 2018, Kirkpatrick et al. 2016]. The first one, which is also acknowledged in
the NLP and IR communities [Cohen et al. 2018, Liu et al. 2015], is that they require all
the domains to be available simultaneously at the learning stage (except the fine-tuning).
The second limitation is that the model leans to catastrophically forget existing knowledge
(source domain) when the learning is transferred to new knowledge (target domain), lead-
ing to a significant drop in performance on the source domain [Kirkpatrick et al. 2016].
Investigating catastrophic forgetting is addressed as a research field in its own right called
lifelong learning. It has been particularly studied in neural-network-based classification
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tasks in computer vision [Kirkpatrick et al. 2016, Li & Hoiem 2018, Veniat et al. 2020,
Douillard et al. 2020b] and more recently in NLP [de Masson d’Autume et al. 2019,
Mosbach et al. , Thompson et al. 2019, Wiese et al. 2017, Lee 2017, Veron et al. 2019,
Liu & Mazumder 2021].

3.3.2 Lifelong learning strategies

To solve the catastrophic forgetting issue, three main categories of works can be outlined
[Lange et al. 2019].

Regularization approaches continually learn to address new tasks using
soft or hard preservation of weights [Kirkpatrick et al. 2016, Wiese et al. 2017,
Zenke et al. 2017, Li & Hoiem 2018]. For instance, the Elastic Weight Consolidation
model [Kirkpatrick et al. 2016] softly updates weights for a new task according to their
importance in the previous one. The intuition is to leverage the diagonal Fisher informa-
tion matrix to model importance factors and identify which parameters are important
for a task. Li & Hoiem 2018 and [Rebuffi et al. 2017] propose to constraint weights in
the network on the basis of its output through knowledge distillation techniques.

Rehearsal approaches replay examples of previous tasks while training the model
on a new one [Rebuffi et al. 2017, Asghar et al. 2020, de Masson d’Autume et al. 2019].
The number of previous instances might be limited to respect the continual learn-
ing setting. Different strategies are used to choose examples: random sampling
[Castro et al. 2018], nearest-neighbor sampling in the latent space [Castro et al. 2018],
uniform sampling over all classes [Chaudhry et al. 2019], or sampling regarding the loss
criteria [Aljundi et al. 2019]. Another work [Lesort et al. 2019] proposes to generate
pseudo-samples for rehearsal by leveraging Generative Adversarial Networks or auto-
encoders. However, this last strategy suffers from catastrophic forgetting and is not
always able to generate instances (i.e., images) of adapted sizes.

Architecture-based approaches rely on a dynamic strategy to adapt the net-
work architecture for each task [Fernando et al. 2017, Cai et al. 2019, Li et al. 2019,
Veniat et al. 2020, Yan et al. 2021]. The first line of works proposes to adapt by activat-
ing/deactivating parts of the network as done in [Fernando et al. 2017, Cai et al. 2019,
Li et al. 2019] while other works [Veniat et al. 2020, Yan et al. 2021] investigate a strat-
egy consisting in expanding the network through neural architecture search.

Main investigation in NLP. There is a recent research trend in NLP
toward lifelong learning of neural networks, particularly in machine trans-
lation [Thompson et al. 2019, Garcia et al. 2021], language understanding tasks
[Mosbach et al. , Wiese et al. 2017, Xu et al. 2018a, Sun et al. 2020], and for conver-
sational systems [Lee 2017, Veron et al. 2019, Liu & Mazumder 2021]. For instance,
Xu et al. 2018a have recently revisited the domain transferability of traditional word em-
beddings [Mikolov et al. 2013a] and proposed lifelong domain embeddings using a meta-
learning approach. The meta-learner is fine-tuned to identify similar contexts of the same
word in both past domains and the new observed domain. In LAMOL [Sun et al. 2020],
the authors introduce a language model that jointly learns a new task and generates
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training instances for previous tasks. These generated instances are integrated into the
training procedure of the new task, consisting thus of a rehearsal strategy. In IR, de-
spite the existence of ranking approaches able to perform well on different domains (e.g.,
batch-balanced topics [Hofstätter et al. 2021]), lifelong learning is still under-studied.
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In this chapter, we introduce a summary of our works aiming at ensuring faithful and
relevant text generation (RQ1). Depending on the contribution, our works are related
to the research fields of DTG or conversational search.

4.1 Preliminary

In our contributions focusing on the data-to-text generation task, we mainly consider
structured data as tables or key-value elements, which can easily be modeled similarly:
the row and column labels in a table can be seen as an element-key pair, and the corre-
sponding cell as a value. The adaptation to other data structures might not be straight-
forward depending on their complexity, but the main principle of models can serve as a
basis. This choice towards tables or key-value elements was mainly guided by the avail-
able datasets in the research community and also the application domain of industrial
collaborations. Specifically, our objective was to propose models adaptable to descrip-
tive tables in the financial domain1. We, therefore, introduce the formalism with this

1The financial domain is the application domain of the thesis on DTG I co-supervised.
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perspective. With this in mind, let’s introduce the following notations that we use in
the next sections.

We consider a DTG task, in which the dataset D is composed of a set of N data
structure-description pairs, (s, y). A data structure s is an unordered set of I entities
ei. We denote s ∶= {e1, ..., ei, ..., eI}. An entity ei is a variable-sized set of J key-value
pairs of key kij - values vij : xij ∶= (kij , vij). Please note that the number J of pairs
might vary across entities. A description y ∶= y1∶Y is a sequence of Y tokens representing
the (target) natural language description of the data structure s. We refer to the tokens
spanning from indices t to t′ of a description y as yt∶t′ .

The objective of a DTG model is thus to propose a model that produces a textual
description y given a data structure s.

4.2 Leveraging the structure for data-to-text generation

In this section, we introduce our proposed hierarchical model [Rebuffel et al. 2020a] tak-
ing into account the data structure with the assumption that a good encoding will help
to reduce erroneously generated texts. We focus here on tables which might include
several lines and columns. Lines often refer to the different entities that are studied, and
columns express the different analyzed features. More particularly, our contribution is
threefold:

• Encoding the structure of data: instead of flatly concatenating elements
from the data structure to encode them as a single sequence [Liu et al. 2018,
Puduppully et al. 2019a, Wiseman et al. 2017], we propose a hierarchical model-
ing so that the delimitation between entities remains clear.

• Using Transformers to account for the arbitrary order of elements: We
believe that RNNs are not well-fitted for encoding some structures, particularly
tables in which the order of columns is not particularly relevant. We thus exploit
the Transformer architecture [Vaswani et al. 2017] and leverage its self-attention
to directly compare elements with each other, avoiding arbitrary assumptions on
their ordering. We do not use any positional embedding to discard the sequence
order.

• Leveraging hierarchical attention mechanism: we adapt the attention mech-
anism to the hierarchical modeling to guide the decoding process.

4.2.1 Model formalization

Our model follows the encoder-decoder architecture [Bahdanau et al. 2015] in which we
integrate a hierarchical encoder. The latter aims at representing first entities ei (low-
level encoder in Figure 4.1) and then the whole data structure s (high-level encoder).
Both the low-level and high-level encoders consider their input elements as unordered
and rely on the Transformer architecture. For the decoding module, we used the same
as in [Puduppully et al. 2019a, Wiseman et al. 2017]: a two-layers LSTM network with
a copy mechanism.
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Figure 4.1: Diagram of the proposed hierarchical encoder. Once the records are embedded, the
low-level encoder works on each entity independently (A); then the high-level encoder encodes
the collection of entities (B). In circles, we represent the hierarchical attention scores: the α

scores at the entity level and the β scores at the record level.

Low-level encoder. It encodes each entity ei on the basis of its record embeddings
xij obtained from its record xij . Each record embedding xij is compared to other record
embeddings using the self-attention mechanism of Transformers to learn its final hidden
representation hij . Furthermore, we add a special record [ENT] for each entity, illustrated
in Figure 4.1 as the last record. Since entities might have a variable number of records,
this token allows to aggregate final hidden record representations {hij}

J
j=1 in a fixed-sized

representation vector hi. The representation of an entity ei is thus estimated as follows:

hi = transformerlow([ENT ], (xi1, ...,xi,J , [ENT ])) (4.1)

with xij = ReLU(Wkv[kij ; vij] + bx) (4.2)

where transformerlow(x, seq) allows to obtain the representation of the token x given
the sequence seq using a transformer network. Wx ∈ R2d×d and bx ∈ Rd are learned
parameters. d is the dimension of the representation space. Each pair is embedded
through a linear projection on the concatenation of the embeddings of its key and value:
[kij ; vi,j].

High-level encoder It encodes the data structure based on entities’ representations
hi. Similarly to the Low-level encoder, the final hidden state ei of an entity is com-
puted by comparing the entity representations hi. The data-structure representation z

is computed as the mean of the entity representations ei, and is used for the decoder
initialization:

z =
1

I

I

∑
i=1

ei (4.3)

with ei = transformerhigh(hi,{h1, ...,hI}) (4.4)

(4.5)

where transformerhigh(x, seq) allows to obtain the representation of the token x given
the sequence seq using a transformer network.
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Hierarchical attention To fully leverage the hierarchical structure of our encoder,
we adapt the attention mechanism to compute the context fed to the decoder module.
Two different approaches are described below:
● Traditional Hierarchical Attention. As in [Puduppully et al. 2019b], we hypothesize

that a dynamic context should be computed in two steps: first attending to entities, then
to records corresponding to these entities. To implement this hierarchical attention, at
each decoding step t, the model learns the first set of attention scores αi,t over entities
ei and the second set of attention scores βij,t over key-value pairs xij associated with
entity ei. The αi,t scores are normalized to form a distribution over all entities ei, and
βij,t scores are normalized to form a distribution over pairs xij of entity ei. Each entity
is then represented as a weighted sum of its record embeddings, and the entire data
structure is represented as a weighted sum of the entity representations. The dynamic
context is computed as:

ct = ∑
I
i=1(αi,t(∑j βij,txij)) (4.6)

where αi,t ∝ exp(dtWαei) and βij,t ∝ exp(dtWβhij) (4.7)

where dt is the decoder hidden state at time step t, Wα ∈ Rd×d and Wβ ∈ Rd×d are
learned parameters, ∑i αi,t = 1, and for all i ∈ {1, ..., I} ∑j βi,j,t = 1.
● Key-guided Hierarchical Attention. This variant is motivated by the intuition that

once an entity is chosen to be mentioned (thanks to αi,t), only the type of records is
important to determine the content of the description. For example, when deciding to
mention a player, all experts automatically report his score without consideration of
its specific value. The attention scores are thus modeled by computing the βij,t scores
from Equation 4.7 solely on the embedding of the key rather than on the full record
representation hij :

β̂ij,t ∝ exp(dtWa2kij) (4.8)

4.2.2 Experiments

This model has been evaluated on the RotoWire dataset [Wiseman et al. 2017] using
the BLEU metric [Papineni et al. 2002] and Information-extraction ones (RG, CS, CO)
[Wiseman et al. 2017]. These last three metrics respectively estimate how well the sys-
tem can generate text containing factual (i.e., correct) records, how well the generated
document matches the gold document in terms of mentioned records, and how well the
system orders the records discussed in the description.

We compare our hierarchical model against four systems:

• Wiseman [Wiseman et al. 2017] is a standard encoder-decoder system with copy
mechanism.

• Li [Li & Wan 2018] is a standard encoder-decoder with a delayed copy mechanism:
the text is first generated with placeholders, which are replaced by salient records
extracted from the table by a pointer network.

• Puduppully-plan [Puduppully et al. 2019a] acts in two steps: a first standard
encoder-decoder generates a plan, i.e. a list of salient records from the table;
a second standard encoder-decoder generates text from this plan.
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BLEU RG CS CO Nb
P% # P% R% F1 Params

Gold descriptions 100 96.11 17.31 100 100 100 100
Wiseman 14.5 75.62 16.83 32.80 39.93 36.2 15.62 45M
Li 16.19 84.86 19.31 30.81 38.79 34.34 16.34 -
Pudupully-plan 16.5 87.47 34.28 34.18 51.22 41 18.58 35M
Puduppully-updt 16.2 92.69 30.11 38.64 48.51 43.01 20.17 23M

Flat 16.7.2 76.621 18.54.6 31.67.7 42.91 36.42.4 14.64.3 14M
Hierarchical-kv 17.3 89.041 21.46.9 38.571.2 51.50.9 44.19.7 18.70.7 14M
Hierarchical-k 17.5.3 89.461.4 21.171.4 39.471.4 51.641 44.7.6 18.90.7 14M

Table 4.1: Evaluation on the RotoWire test set using relation generation (RG) count
(#) and precision (P%), content selection (CS) precision (P%) and recall (R%), content
ordering (CO), and BLEU. -: the number of parameters unavailable. For each proposed
variant of our architecture, we report the mean score over ten runs, as well as the standard
deviation in subscript.

• Puduppully-updt [Puduppully et al. 2019b]. It consists of a standard encoder-
decoder, with an added module aimed at updating record representations during
the generation process. At each decoding step, a gated recurrent network computes
which records should be updated and what should be their new representation.

We also test the importance of the input structure by training different variants of
the proposed architecture: i) Flat, where we feed the input sequentially to the encoder,
losing all notion of hierarchy. As a consequence, the model uses standard attention. This
variant is closest to Wiseman, with the exception that we use a Transformer to encode the
input sequence instead of an RNN. ii) Hierarchical-kv is our full hierarchical model, with
traditional hierarchical attention, i.e. where attention over records is computed on the
full record encoding, as in Equation 4.7. iii) Hierarchical-k is our full hierarchical model,
with key-guided hierarchical attention, i.e. where attention over records is computed
only on the record key representations, as in Equation 4.8.

Our results on the RotoWire test set are summarized in Table 4.1. From a general
point of view, we can see from Table 4.1 that our scenarios obtain significantly higher
results in terms of BLEU over all models; our best model Hierarchical-k reaching 17.5 vs.
16.5 against the best baseline. We would like to draw attention to the number of param-
eters used by those architectures. We note that our scenarios rely on a lower number of
parameters (14 million) compared to all baselines (ranging from 23 to 45 million). This
outlines the effectiveness of the design of our model relying on a structured encoding, in
contrast to other approaches that try to learn the structure of data/descriptions from a
linearized encoding. Besides, our in-depth insights about our model are reported below.

Hierarchical encoding of entities is better than linearized inputs. Our hierar-
chical models achieve significantly better scores on most metrics when compared to the
flat architecture Wiseman and our Flat scenario, reinforcing the crucial role of structure
in data semantics and saliency. Results show that our Flat scenario obtains a signifi-
cantly higher BLEU score than Wiseman (16.7 vs. 14.5) and generates fluent descriptions
with accurate mentions (RG-P%) that are also included in the gold descriptions (CS-
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Figure 4.2: Right: Comparison of a generated sentence from Hierarchical-k and
Hierarchical-kv. Left: Attention scores over entities (top) and over records inside the
selected entity (bottom) for both variants, during the decoding of respectively 26 or 31
(circled in red).

R%). This suggests that introducing the Transformer architecture is a promising way to
implicitly account for the data structure.

Hierarchical attention on high-level information of the structure is sufficient.
The comparison between scenarios Hierarchical-kv and Hierarchical-k shows that omit-
ting entirely the influence of the record values in the attention mechanism is more effec-
tive: this last variant performs slightly better in all metrics except CS-R%, reinforcing
our intuition that focusing on the structure modeling is an important part of data encod-
ing. To illustrate this intuition, we depict in Figure 4.2 attention scores (recall αi,t and
βi,j,t from Equations 4.7 and 4.8) for both variants Hierarchical-kv and Hierarchical-k.
We particularly focus on the timestamp where the models should mention the num-
ber of points scored during the first quarter of the game. Scores of Hierarchical-k are
sharp, with all of the weight on the correct record (PTS_QTR1, 26) whereas scores of
Hierarchical-kv are more distributed over all PTS_QTR records, ultimately failing to
retrieve the correct one.

Incorporating the structure into the encoder is more effective than in
the decoder. Our hierarchical models outperform the two-step decoders of Li and
Puduppully-plan on both BLEU and all qualitative metrics. For a reminder, these mod-
els impose a structure within the decoder through planning or templating intermediary
steps. Interestingly, the baseline Puduppully-plan reaches 34.28 mentions on average,
showing that incorporating modules dedicated to entity extraction leads to over-focusing
on entities; contrasting with our models that learn to generate more balanced descrip-
tions.

The way to encode the structure in the encoder matters. The comparison with
Puduppully-updt shows that dynamically updating the encoding across the generation
process can lead to better Content Ordering (CO) and RG-P%. However, this does not
help with Content Selection (CS) since our best model Hierarchical-k obtains slightly
better scores.
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4.2.3 Conclusion

In this work we have proposed a hierarchical encoder for structured data, which 1) lever-
ages the structure to form an efficient representation of its input; 2) has strong synergy
with the hierarchical attention of its associated decoder. This results in an effective and
more light-weight model2. Qualitative analyses on the RotoWire benchmark shows that
our approach can still lead to erroneous facts or even hallucinations. This challenge is
addressed in the next section to prevent inaccurate descriptions.

4.3 Handling hallucinations in data-to-text generation

As explained in Section 3.1.3, text generation models might lead to over-generation is-
sues such as hallucinations. This might be because models are trained on non-aligned
datasets in which, in the case of data-to-text generation, the textual description di-
verges from the structured data. It is thus critical to design models that generate
faithful descriptions in accordance with the input data. Based on a literature review,
we aim here at bridging two lines of work: 1) text generation models which inte-
grate regularization into the loss to constrain the model by lack of control [Wang 2019,
Liu et al. 2019b, Rebuffel et al. 2020b], and 2) controlled text generation models which
enable choosing the defined features of generated texts [Filippova 2020]. Moreover, unlike
previous CTG approaches [Li et al. 2016, Sennrich et al. 2016, Ficler & Goldberg 2017,
Filippova 2020] which propose instance-level control factors, we propose an original ap-
proach [Rebuffel et al. 2022] in which the word-level information is integrated at all
phases:

• we propose a word-level labeling procedure, which makes the correspondence
between the input table and the text explicit, based on token co-occurrences and
sentence structure through dependency parsing. This mitigates the failure of the
strict word-matching procedure, while still producing relevant labels in complex
settings.

• we introduce a weighted multi-branch neural decoder, guided by the proposed
alignment labels acting as word-level control factors. During training, the model
is able to distinguish between aligned and unaligned words and learns to generate
accurate descriptions without being misled by un-factual reference information.

4.3.1 Model formalization

Word-level Alignment Labels. Our word-level alignment labels are driven by two
intuitive constraints: (1) important words (names, adjectives, and numbers) should be
labeled depending on their alignment with the data structure, and (2) words from the
same statement should have the same label. We define a statement in the textual de-
scription as text spans expressing one single idea (obtained using dependency relations
on the basis of part-of-speech).

We, therefore, estimate an alignment score between important words (i.e., nouns, ad-
jectives, or verbs) and the data structure using occurrences and co-occurrences statistics.
Then, given a statement, we normalize the score of composing words so that they obtain

2The code is available at https://github.com/KaijuML/data-to-text-hierarchical

https://github.com/KaijuML/data-to-text-hierarchical
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Figure 4.3: Word-level alignment labeling procedure. Every token is associated with its
Part-of-Speech tag and its alignment score at. Words in red denote at < τ , i.e., divergent
words. The dependency parsing is represented by labeled arrows that flow from parents
to children. Important words are kian, emadi, 29, july, 1992, british, track, and cyclist.

all the same score. This will ensure that, if we consider that a statement is not aligned
with the structure data, we can remove it from the description without impacting text
fluency. The alignment score at for a given token yt and a data structure s is estimated
as follows:

at ∶= norm(max
xij∈s

align(yt, xij), y) (4.9)

where:

• the function align() estimates the alignment between important words yt and a
key-value pair xij from the input data s based on occurrences and co-occurrences
statistics. If the word yt appears in the key-value pair xij , align(yt, xij) outputs 1;
otherwise, the output is obtained scaling the number of occurrences coyt,x between
yt and x through the dataset:

align(yt, x) ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if yt ∈ x

a ⋅ (coyt,x−m)
2 if m ≤ coyt,x≤M

0 if 0 ≤ coyt,x≤m

(4.10)

where M is the maximum number of word co-occurrences in the dataset vocabulary
and the row x, m is a threshold value, and a ∶= 1

(M−m)2
.

• norm() is a normalization function based on the dependency structure of the de-
scription y constraining all words in a statement to be assigned to the same align-
ment score at). We first split the sentence y into statements yti∶ti+1−1, via depen-
dency parsing and its rule-based conversion to constituency trees. Given a word
yt associated with the score at and belonging to statement yti∶ti+1−1, its normalized
score corresponds to the average score of all important words in this statement:

norm(at, y) =
1

ti+1 − ti

ti+1−1

∑
j=ti

aj (4.11)

This in-statement average depends on both the specific word and its context, leading
to coherent hallucination scores which can be thresholded without affecting the syntac-
tical sentence structure, as shown in Fig. 4.3. Words are colored in red if this score is
lower than a threshold τ , denoting an alignment label equal to 0.

Multi-Branch Architecture. The proposed Multi-Branch Decoder (MBD) architec-
ture aims at separating co-dependent factors during generation. We build upon the
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Figure 4.4: Our proposed decoder with three branches associated with content (in blue
– left), hallucination (in red – middle), and fluency (in yellow – right). Semi-transparent
branches are assigned the weight 0.

standard DTG architecture, an encoder-decoder with attention and copy mechanisms,
which we modify by duplicating the decoder module into three distinct parallel modules.
The decoding modules’ actual architecture may vary, as we framed the MBD model from
a high-level perspective. Therefore, all types of decoder can be used, such as Recurrent
Neural Networks (RNNs) [Rumelhart et al. 1986], Transformers [Vaswani et al. 2017],
and Convolutional Neural Networks [Gehring et al. 2017].

Our objective is to enrich the decoder to be able to tune the content/hallucination
ratio during generation, aiming at enabling the generation of hallucination-free text
when needed. Our key assumption is that the decoder’s generation is conditioned by
three co-dependent factors:

• A content factor constrains the generation to transcribe only the information in-
cluded in the input;

• An hallucinating factor favors lexically richer and more diverse text, but may lead
to hallucinations not grounded by the input;

• A fluency factor3 conditions the generated sentences toward global syntactic cor-
rectness, regardless of the relevance.

Each control factor (i.e. content, hallucination, or fluency) is modeled via a single
decoding module, also called a branch, whose output representation can be weighted
according to its desired importance.

Our network has a single encoder and F = 3 distinct decoding RNNs, noted RNNf

respectively, one for each factor. During each decoding step, the embedding yt−1 previ-
ously decoded word is fed to all RNNs, and a final decoder state dt is computed using
a weighted sum of all the corresponding hidden states,

df
t ∶= RNNf

(df
t−1, [yt−1,ct]) (4.12)

dt ∶=
F

∑
f=1

ωf
t d

f
t (4.13)

3[Wiseman et al. 2018] showed that the explicit modeling of a fluency latent factor improves perfor-
mance.
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key value

name ryan moore
spouse nichole olson -lrb- m. 2011 -rrb-
children tucker
college unlv
yearpro 2005
tour pga tour
prowins 4
pgawins 4
masters t12 2015
usopen t10 2009
open t10 2009
pga t9 2006
article_title ryan moore -lrb- golfer -rrb-

Ref.: ryan david moore -lrb- born december 5 , 1982 -rrb- is an american professional
golfer , currently playing on the pga tour .
PB&L: ryan david moore -lrb- born december 5 , 1982 -rrb- is an american professional
golfer , currently playing on the pga tour .
Ours: ryan david moore -lrb- born december 5 , 1982 -rrb- is an american professional
golfer , currently playing on the pga tour .

Figure 4.5: WikiBio instances’ hallucinated words according to either our alignment scor-
ing procedure or to the method proposed by [Perez-Beltrachini & Lapata 2018]. PB&L
labels words incoherently and sometimes the whole reference text (as in the example).
In comparison, our approach leads to a fluent breakdown of the sentences in halluci-
nated/factual statements.

where df
t and ωf

t are resp. the hidden state and the weight of the f th RNN at time
t. Weights are used to constrain the decoder branches to the desired control factors
(ω0

t , ω
1
t , ω

2
t for the content, hallucination, and fluency factors resp.) and sum to one.

During training, the weights are dynamically set depending on the alignment score
at ∈ {0,1} of the target token yt. During inference, the weights of the decoder’s branches
are set manually by a user, according to the desired trade-off between information reli-
ability, sentence diversity, and global fluency. Text generation is then controllable and
consistent with the control factors.

Figure 4.4 illustrates a training step over the sentence “Giuseppe Mariani was an
Italian art director ”, in which Italian is a divergent statement (i.e. is not supported by
the source table). While decoding factual words, the weight associated with the content
(resp. hallucination) branch is set to 0.5 (resp. 0) while during the decoding of Italian,
the weight associated with the content (resp. hallucination) branch is set to 0 (resp.
0.5). Note that the weight associated with the fluency branch is always set to 0.5, as
fluency does not depend on factualness.

4.3.2 Experiments
We evaluated the model on two representative large-size datasets: WikiBio and ToTTo.
Both have been collected automatically and present a significant amount of table-text
divergences for training (ToTTo being noisier). To evaluate the generated text, we use
the BLEU [Papineni et al. 2002] and PARENT [Dhingra et al. 2019] metrics. We also
consider: 1) the hallucination rate which computes the percentage of tokens labeled as
hallucinations, 2) the average generated sentence length in the number of words, and 3)
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Model BLEU↑
PARENT↑

Halluc. rate↓ Mean sent.
length Flesch↓

Precision Recall F-measure

Gold - - - - 23.82% 19.20 53.80%
stnd 41.77% 79.75% 45.02% 55.28% 4.20% 13.80 58.90%
stnd_filtered 34.66% 80.90% 42.48% 53.27% 0.74% 12.00 62.10%
hsmm 35.17% 71.72% 39.84% 48.32% 7.98% 14.80 58.60%
halWO 36.50% 79.50% 40.50% 51.70% - - -

MBD 41.56% 79.00% 46.40% 56.16% 1.43% 14.60 58.80%

Table 4.2: Comparison results on WikiBio. ↑ (resp. ↓ ) means higher (resp. lower) is
better. “Gold” refers to the gold reference texts included in the dataset.

the classic readability Flesch index [Flesch 1962], which is based on words per sentence
and syllables per word, and is still used as a standard metric [Kosmajac & Keselj 2019,
Smeuninx et al. 2020, Stajner & Hulpus 2020, Stajner et al. 2020]. We also perform var-
ious human evaluations to obtain word-level hallucination labels of gold descriptions and
an evaluation of generated descriptions.

Evaluation of alignment scores To assess the effectiveness of our alignment labels,
we first compare the alignment labels to human judgment on 300 instances, and then ex-
plore their impact on a DTG task. As a baseline for comparison, we report performances
of PB&L [Perez-Beltrachini & Lapata 2018], which is, to the best of our knowledge, the
only work proposing such a fine-grained alignment labeling.

Our scoring procedure significantly improves over PB&L: the latter only achieves
46.9% accuracy and 29.7% F-measure, against 87.5% and 68.7% respectively for our
proposed procedure. Figure 4.5 depicts an example of this phenomenon. Words labeled
as hallucinated by each respective method are outlined in red, and we can see that the
method proposed in [Perez-Beltrachini & Lapata 2018] over-labels words as hallucinated,
leading to information loss. In contrast, our method is able to detect hallucinated state-
ments inside a sentence, without incorrectly labeling the whole sentence as hallucinated.

Evaluation of our Multi-Branch Decoder To evaluate our Multi-Branch Decoder
(MBD), we consider different baselines: i) stnd [See et al. 2017] and stnd_filtered, LSTM
based encoder-decoder models with attention and copy mechanisms. stnd_filtered has
been trained on a filtered version of the training set: tokens deemed hallucinated ac-
cording to their hallucination scores, are removed from target sentences. ii) hsmm
[Wiseman et al. 2018], an encoder-decoder model with a multi-branch decoder. The
branches are not constrained by explicit control factors. iii) halWO [Filippova 2020], a
stnd -like model trained by augmenting each source table with an additional instance-level
attribute (hallucination ratio, value).

Table 4.2 shows the performances of our model and all baselines on the WikiBio
dataset. The comparison of generated texts over different baselines is presented in Fig-
ure 4.6. The result analysis, combined with a human evaluation based on fluency, factu-
alness, and coverage criteria, allows to outline the following main statements:

• Reducing hallucinations is reached with success, as highlighted by the hal-
lucination rate (1.43% vs. 4.20% for a standard encoder-decoder and 10.10% for
the best SOTA model on BLEU).
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name zack lee
birth_name zack lee jowono
nationality indonesian
occupation actor , boxer , model
birth_date 15 august 1984
birth_place liverpool , merseyside , england , uk
years_active 2003 – present
parents hendra and ayu jowono
spouse nafa urbach ( 2007 – present )
article_title zack lee

Gold zack lee ( born 15 august 1984 ) is an indonesian actor , model and boxer british descent
.

stnd zack lee jowono ( born 15 august 1984 ) is an indonesian actor and model .
stnd_filtered zack lee ( born zack lee jowono ; 15 august 1984 ) is an indonesian actor .
hsmm zack lee jowono ( born 15 august 1984 ) is an indonesian actor

who has appeared in tamil films .
MBD[.4, .1, .5] zack lee ( born zack lee jowono ; 15 august 1984 ) is an indonesian actor , boxer and

model .

name wayne r. dynes
birth_date 23 august 1934
occupation professor , historian , and encyclopedist
article_title wayne r. dynes

Gold wayne r. dynes ( born august 23 , 1934 ) is an american art historian , encyclopedist
, and bibliographer .

stnd wayne r. dynes ( born august 23 , 1934 ) is an american historian and encyclopedist .
stnd_filtered wayne r. dynes is a professor .
hsmm wayne r. dynes ( born august 23 , 1934 ) is an american historian , historian and ency-

clopedist .
hier wayne r. dynes ( born august 23 , 1934 ) is an american professor

of history at the university of texas at austin .
MBD[.4, .1, .5] wayne r. dynes ( born august 23 , 1934 ) is an american professor , historian , and

encyclopedist .

Figure 4.6: Qualitative examples of our model and baselines on the WikiBio test set.
Note that: (1) gold references may contain divergences; (2) stnd and hsmm seem to
perform well superficially, but often hallucinate; (3) stnd_filtered doesn’t hallucinate
but struggles with fluency; (4) MBD sticks to the fact contained by the table, in concise
and fluent sentences.

• Training standard generation model on a cleaned dataset is not sufficient
regarding PARENT and BLEU metrics (MBD > stnd_filtered, except for the Pre-
cision metric). Sentences are shorter and naive in terms of the Flesch readability
index.

• Multibranch decoder models help, but adding a controlled factor is more
effective (hsmm < MDB).

• Word-level is better than sentence-level: finer-grain annotation of hallucina-
tion (at the word-level for MBD vs. at the instance level for hal_wo) increases the
recall in the text generation.

• All factors are co-dependent: an additional analysis (not presented here) of
the impact of different weight combinations outlines, as expected, that changing
weights in favor of the hallucination factor leads to decreases in both precision and
recall (from 80.37% to 57.88% and 44.96% 4.82% respectively). It is interesting to



4.4. Generating relevant answers in natural language in response to
complex information needs 41

note that strictly constraining on content (i.e., removing the hallucination branch)
yields sensibly more factual outputs, at the cost of constraining the model’s gen-
eration creativity. The best combination of weights is [0.4 0.1 0.5], for content,
hallucination, and fluency. It has more “freedom of speech” and sticks more faith-
fully to domain lingo (recall and BLEU), without compromising too much in terms
of content.

A similar analysis on the noisy ToTTo dataset outlines that all models show significantly
decreased scores. They struggle at generating syntactically correct sentences but, at the
same time, they have still learned to leverage their copy mechanism and to stick to the
input. Our proposed finer-grained approach proves helpful in this setting: sentences
generated by MBD are more fluent and more factual. The multi-branch design enables
the model to leverage the most of each training instance, leading to better performances
overall. We acknowledge that despite over-performing other models, MBD obtains only
55.9% of factual sentences. The difficulty of current models to learn on very noisy and
diverse datasets shows that there is still room for improvement in hallucination reduction
in DTG.

4.3.3 Conclusion

We proposed a Multi-Branch decoder, able to leverage word-level alignment labels to
produce factual and coherent outputs. Our proposed labeling procedure is more accurate
than previous work, and outputs from our model are estimated, by automatic metrics and
human judgment alike, more fluent, factual, and relevant. Experiments on ToTTo outline
the narrow exposure to language of current models when used on very noisy datasets.
The naive failure of our model on the noisy version of ToTTo could be attributed to its
narrow exposure to language. We believe that large pre-trained language models, which
have seen significantly more varied texts, may attenuate this problem.

4.4 Generating relevant answers in natural language in re-
sponse to complex information needs

In contrast to our previous contributions [Rebuffel et al. 2020a, Rebuffel et al. 2022]
which consider structured data as input, we tackle here unstructured data, namely
documents, that need to be synthesized for an information retrieval task. The ob-
jective of the generation slightly slides from a faithfulness constraint to a relevance
one, implying to identify information for a decision process objective [Park 1993,
Florance & Marchionini 1995].

In this objective, we focus on complex search tasks which aim at generating a com-
plete and structured answer on the basis of retrieved documents and an information
need. This gives rise to the challenges of 1) considering all the retrieved documents both
as pieces of evidence and sources to generate the answer leading to difficulties in dis-
criminating between relevance and salience of the spans, and 2) building a multiple-span
answer from these documents. We basically assume that the list of documents covers
the different query facets. A naive approach would be to exploit text-to-text models
[Devlin et al. 2019, Radford & Narasimhan 2018]. However, we believe that answering
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multi-faceted queries would require the modeling of the structure prior to generating the
answer’s content [Culpepper et al. 2018].

With this in mind, we propose to leverage one category of works within the
literature on data-to-text generation models which focuses on content planning
[Puduppully et al. 2019a, Li & Wan 2018]. This technique, beyond encoding structured
data (in our case a list of retrieved documents), allows to integrate the structure into the
decoding part to produce a structured text. To do so, the encoder-decoder architecture
is complemented by an intermediary step which determines what to say (called the con-
tent selection/planning step) [Puduppully et al. 2019a]. Based on the planning step, the
model then defines how to say it (called the surface realization step). This intermediary
step reinforces the factualness and the coverage of the generated text since 1) it organizes
the data structure in a latent form to better fit with the generated output, and 2) on
the reverse side, it provides a structure to the generated text based on the elements of
the initial structured data.

Our contribution [Djeddal et al. 2022], therefore, bridges the gap between informa-
tion retrieval and data-to-text generation to provide relevant natural language answers
in response to complex queries. We, therefore, frame the answer generation task as a
data-to-text task in which documents can be seen as entities and the list of the docu-
ments as a table. The objective is thus to generate a query-driven answer guided by the
content of the document list.

4.4.1 Model formalization

Model overview. The designed model is driven by the intuition that the response
should be surrounded by a plan to cover most of the query facets. Therefore, the de-
coding phase follows the principles proposed in [Puduppully et al. 2019a] and processes
in two steps: decoding a plan aiming at structuring the answer and then generating an
answer by leveraging both the generated plan and the context embedding. Figure 4.7
presents an example of a query from TREC Complex Answer Retrieval (CAR) dataset
[Dietz et al. 2017] and the two variants of answers (plain answers, structured answers)
generated by our proposed model.

Notations. We consider a document collection D and a set Q×A×P of query-answer-
plan triplets, where q ∈ Q refer to queries, answers a ∈ A to the final response in natural
language provided to the user and plans p ∈ P to the hierarchical structure of answers
a. All documents d, queries q, and answers a are represented by lists of tokens. For
modeling the structure of plans p, we use p = {h1, ..., hi, ..., h∣p∣} where hi represents an
item in the plan and is modeled as a heading (e.g., title, subtitles, etc.).

Given a query q and a document collection D, our objective is to generate an an-
swer a. To do so, we follow the "Retriever Generator" framework [Lewis et al. 2020,
Nakatsuji & Okui 2020, Song et al. 2018] in which: 1) a ranking model Mret retrieves
a ranked list Dq of documents in response to query q, where Dq = {d

1
q , . . . , d

n
q } and 2)

a text generation model Mgen generates the answer a given the retrieved list Dq and
query q. As outlined earlier, the challenges of our task mainly rely on aggregating infor-
mation over the ranked list of documents and generating a structured answer in natural
language. Thus, we use a pre-trained retrieval model Mret and focus on the generation
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aztec cuisine

aztec cuisine was the cuisine of the Aztec Empire and the Nahua peoples of 
the Valley of Mexico prior to European contact in 1519. 
[h1] Etymology [h1] 
The word xocolatl is derived from the Nahuatl word xocolatl. 
[h1] Aztec cuisine [h1]
      [h2] Mexican food [h2] 
Mexican cuisine is primarily a fusion of indigenous Mesoamerican cooking 
with European, especially Spanish, elements added after the Spanish 
conquest of the Aztec Empire in the 16th century. 
       [h2] Chocolate [h2] 
Chocolate played an important part in the history of Mexican cuisine. 
       [h2] Maize [h2]
 Maize was the single most important staple of the Aztecs.
       [h2] Other foods [h2]
There are many other types of maize that were introduced by the Aztecs.
[h1] History [h1] 
According to legend, the Aztecs had eaten maize for thousands of years.

10 paragraphs

structured answer

Gold standard

Aztec cuisine was the cuisine of the Aztec Empire and the Nahua 
peoples of the Valley of Mexico prior to European contact in 1519. […]
[h1] Meals [h1]
Most sources describe two meals per day, though there is an account of 
laborers getting three meals, one at dawn, another one at around 9 […]
     [h2] Feasts [h2]
Many accounts exist of Aztec feasts and banquets and the ceremony 
that surrounded them.  […]
[h1] Food preparation [h1]
The main method of preparation was boiling or steaming in two-
handled clay pots or jars called xoctli in Nahuatl and translated into 
Spanish as olla ("pot").  […]
[h1] Foods [h1]
The Aztec staple foods included maize, beans and squash to which were 
often added chilis, nopales and tomatoes, all prominent parts of the 
Mexican diet to this day. 
     [h2] Cereals [h2]
Maize was the single most important staple of the Aztecs. […]
     [h2] Spices [h2]
A great number of herbs and spices were available to the Aztecs in 
seasoning food. […]
[h1] Drink [h1]
     [h2] Alcohol [h2]
Many different alcoholic beverages were made from fermented maize, 
honey, pineapple, cactus fruit and other plants. […] 
     [h2] Ātōlli [h2]
[…]
     [h2] Cacao [h2]
[…]

query

.

.

.

data-
to-text 
model plain answer

Aztec cuisine was the cuisine of the Aztec Empire and the Nahua peoples of 
the Valley of Mexico prior to European contact in 1519. Mexican cuisine is 
primarily a fusion of indigenous Mesoamerican cooking with European, 
especially Spanish, elements added after the Spanish conquest of the Aztec 
Empire in the 16th century. Chocolate played an important part in the 
history of Mexican cuisine.

OR

Figure 4.7: Example of a query from the CAR dataset [Dietz et al. 2017] and variants of
outputs (structured or plain answers) obtained using a sequential DTT planning-based
model.

model Mgen. The latter exploits the DTT generation model based on content selection
and planning [Puduppully et al. 2019a].

Decoding plans and answers with the generation model Mgen.
To generate the intermediary plan p and the answer a, we rely on two successive encoder-
decoders (based on T5 [Devlin et al. 2019] as the building-box model):

• The planning encoder-decoder encodes the list Dq of documents dq and the
query to guide the generation of plan p. The training of such a network is guided
by the auto-regressive generation loss:

Lplanning(q, p) = P (p∣q,Dq) =

∣p∣

∏
j=1

∣hj ∣

∏
k=1

P (hjk∣hj,<k, q,Dq) (4.14)

where j and k point out respectively to the heading hj and the kth token hjk in
heading hj . hj,<k corresponds to the token sequence in heading hj before the kth

token.

In practice, we use a pre-trained text-to-text model (i.e., T5) which encodes the
following input:

[Query ∶]q[Documents ∶][Document ∶]d1[Document ∶]d2[Document ∶]d3 . . .

(4.15)
where [Query ∶], [Documents ∶] and [Document ∶] are separator tokens, trained
with loss defined in Equation 4.14.

• The content generation encoder-decoder encodes the generated plan p and
the query q and the document list Dq to generate an answer a. The model input
is a concatenation of associated embeddings for each component: for the plan,
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we used the last layer of the planning encoder-decoder model; for the query q

and the document list Dq, we used the embeddings obtained from a pre-trained
T5 model. The training of the content generation model is guided by the auto-
regressive generation loss:

Lanswer(q, a, p) = P (a∣q, p,Dq) =

∣a∣

∏
k=1

P (ak∣a<k, q, p,Dq) (4.16)

where ak and a<k resp. express the kth token in answer a and the token sequence
of answer a before the kth token.

• The final loss is a combination of both losses:
L = ∑

{q,a,p}∈Q×A×P

Lplanning(q, p) +Lanswer(q, a, p) (4.17)

4.4.2 Experiments

Dataset and metrics. We selected the TREC CAR (Complex Answer Retrieval) 2017
corpus [Dietz et al. 2017]. This dataset includes: (1) queries - denoting complex search
tasks with multiple facets, (2) plans - expressing the different expected facets, and (3)
paragraphs extracted from English Wikipedia - corresponding to texts associated with
plan sections. The TREC CAR task consists of retrieving the paragraphs associated
with each plan section to build a structured answer combining both plan sections and
paragraphs. We used these structured answers as the final objective of our generation
model given the queries; and the plans as the structure prior. Due to the structure prior
constraint, we removed from the training set answers without any plans.

To compare the models’ abilities to generate structured answers, we also evaluate
a new form of expected answer (plain answers) where the structure is not taken into
account. For this aim, we built a new dataset upon the initial TREC CAR dataset
but only considered the paragraphs (without plans). Thus, we obtain two versions of
datasets (for structured answers and plain answers) which both follow the original split
of the TREC CAR dataset4 (see an example in Figure 4.7).

For our model, we implemented two versions: 1) Planning-seq: a sequential model
where the planning module (Equation 3.13) and the content generation module (Equa-
tion 3.15) are trained separately. For this setting, the input embeddings of the con-
tent generation module are obtained using a pre-trained T5 model. 2) Planning-e2e:
the version of our model in which the planning module and the content generation are
trained in an end-to-end manner. We compare them with two baselines: 1) the T5 model
[Devlin et al. 2019] which is fine-tuned on each dataset (for structured answers and plain
answers), and 2) Ext, an extractive method where we extract, for each sentence in the
ground truth, a sentence in the input supporting documents that maximizes the F1 score
of BERTScore.

We evaluate the quality of the generation using three well-known metrics:
1) the ROUGE-L mid metric (Rouge-P, Rouge-R, Rouge-F) [Lin 2004], 2) the
BERTScore [Zhang et al. 2019a] (the F1 score is reported), and 3) the QuestEval
[Scialom et al. 2021]. To evaluate the model’s ability to generate structure (namely the
plans), we use the METEOR score [Banerjee & Lavie 2005] to capture how well-ordered
the output words are.

4The large train set for training, and the Y1 benchmark test set for testing.
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# tokens Rouge-P Rouge-R Rouge-F BERTScore QuestEval

st
ru

ct
ur

ed

an
sw

er
s EXT 898.22 36.50 26.99 29.86 85.50 41.99

T5 126.25 76.19 08.41 14.25 84.95 39.06
Planning-seq 181.39 62.94 09.57 15.36 84.44 37.47
Planning-e2e 203.48 63.4 10.21 16.09 84.91 39.31

pl
ai

n

an
sw

er
s EXT 885.35 34.35 26.73 28.99 86.30 42.34

T5 110.62 78.05 09.24 15.48 85.51 39.89
Planning-seq 163.58 65.73 10.34 16.27 84.29 38.46
Planning-e2e 126.91 75.92 10.34 17.05 85.67 40.78

Table 4.3: Effectiveness of the answer generation. In bold are the highest metric value
among the generation models (T5, Planning-seq, Planning-e2e).

Results Results are presented in Table 4.3, outlining the following statements:

• Planning-based generation models are competitive regarding the T5
generation baseline. Our models allow for generating longer answers (avg. 200
tokens), thus increasing the recall metric (Rouge-R). The smaller precision does
not hinder the semantic content of the answer (see BERTScore and QuestEval
values which are very close to the EXT metrics).

• Generating structured texts is more difficult than plain texts, but in-
termediary plans are useful in both cases. One can see the general trend
towards higher metrics for all models in the plain answers setting compared to
the structured answers setting over all models. In the plain answers setting, our
models are more effective (with an advantage for Planning-e2e). Even if the plain
answers setting does not expect plans in the final answer, our models generate an
intermediary plan that guides the answer generation.

• End-to-end learning is better than sequential learning. Our end-to-end
model seems more effective than the sequential one, suggesting the relevance of
guiding the learning of the planning encoder-decoder by the answer generation
task.

• The analysis of the plans in the final structured answers outlines that: 1) our
plans are longer and more complex than the one generated by the T5 model (more
tokens by plan section - up to 1.88 on average vs. 1.4 for the T5, more and deeper
headings - up to 4/5 headings on average vs. 3 for the T5), 2) our plans generally
cover more facets (higher recall), in the correct order (higher Meteor) with a better
relevant semantics (higher BERTScore).

4.4.3 Conclusion

Traditionally, IR approaches solving complex information needs focus on leveraging
multi-turn interactions to provide optimal rankings of candidate documents at each
turn. In this work, we have suggested alternative retrieval models that do not rely
on the interactive updating of queries and document rankings as answers. We suggest
that data-to-text generation is an alternative way to generate both natural language and
structured answers. Experimental evaluation of a planning-based DTT model using the
TREC CAR dataset shows the potential of our intuition. The discussion on answer ef-
fectiveness (and the higher performance of our models regarding T5) suggests that there
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is a balance to reach between raw text and plan generation and that the structure prior
is however highly beneficial for generating a good answer.

4.5 Discussion and achievements

In this chapter, we presented our works dealing with faithful and relevant text generation
in data-to-text generation and conversational search. From a general point of view, our
research corroborates the literature review exposed in several surveys [Yu et al. 2020,
Li et al. 2021b, Li et al. 2022, Zhang et al. 2022] in the sense that text-to-text models
show great abilities to generate fluent and coherent sentences, but that it is more chal-
lenging to ensure faithfulness regarding input and relevance regarding world knowledge
or a user’s intent. Fine-tuning those models is often the first strategy used to fit with the
task objective [Devlin et al. 2019, Radford et al. 2019, Raffel et al. 2020], but it might
be under-effective [Yu et al. 2020, Li et al. 2021b, Li et al. 2022, Zhang et al. 2022], as
also shown in our experiments. Indeed, we exhibit that our models including task pe-
culiarities are more efficient than simple text-to-text models fine-tuned on the training
dataset (e.g. the Flat transformer vs. our hierarchical model in Table 4.1, or also T5
vs. our Planning-e2e model in Table 4.3). More particularly, the main conclusions that
we can draw from this line of research are directed toward the properties of encoder and
decoder modules:

The way to encode the input is important: toward preserving the structure of
data. We have demonstrated that simply concatenating the data input as done in most
text-to-text generation models is under-effective for encoding complex data, hindering
the faithfulness and relevance of the generated text. For instance, in the data-to-text
application domain, the flat scenario in Table 4.1 obtains the lowest values for the RG,
CS, and CO metrics, measuring how well the generated text includes elements from the
input data. Indeed, linearizing each cell in structured data might suit when data de-
scribe a single element. However, when data concerns multiple entities or heterogeneous
semantic information, it is necessary to better leverage the data structure, as we have
done with our hierarchical encoder [Rebuffel et al. 2020a]. This need for structure in the
encoding process is corroborated with other works addressing different data structures,
such as graphs [Ribeiro et al. 2019, Ribeiro et al. 2020] in which local and global con-
texts of nodes matter in the encoding process or SQL queries [Xu et al. 2018b] which
are transformed into directed graphs to preserve their structure. From a larger point
of view, not limited to data-to-text generation, Li et al. 2022 reinforce this intuition in
their overview of different strategies used in the literature to encode input data, rang-
ing from hierarchical encoding [Li et al. 2021c, Gu et al. 2021a], inter-sentential seman-
tics modeling [Liu & Lapata 2019, Zhang et al. 2019b] to structural encoding module
[Ribeiro et al. 2021, Li et al. 2021a].

Not all the input data are relevant: forcing the encoder to identify what is
relevant. We have also outlined that, even though we encode the structure of data,
it might be interesting to identify what is relevant in the structure depending on the
task objective. For instance, in our first contribution (Section 4.2), we have shown
that considering our data-to-text generation task, our model is more effective when it



4.5. Discussion and achievements 47

focuses on keys rather than key-value pairs, reflecting the need to identify first the
fact related to an entity, instead of the value associated with the fact. It is worth
noting that the strategy might be totally different for question-answering tasks on tables
[Chen et al. 2021, Yin et al. 2020] in which the value might be necessary to map the
semantics of the question with the table. To identify what is relevant, a promising
approach relies on prompt-tuning [Wei et al. 2022, Sanh et al. 2022] (or prefix-tuning
[Li & Liang 2021]) in which the input of large language models includes continuous token
embeddings related to the task and concatenated to the input data (resp. key and value
vectors at each attention layer, for each prepended token in the input). The objective
of such a technique is twofold: 1) fine-tuning large language models in a lightweight
strategy: the large language model is frozen, and only prompt or prefix vectors are
learned, and 2) guiding the encoder in identifying what is relevant in the input data.
Early experiments in [Li & Liang 2021] have shown that this strategy is well-adapted for
data-to-text generation, for instance.

The decoder needs to be controlled to ensure faithfulness and relevance.
First, guided by the statement that the training procedure of text generation models
might lead to mimic divergences contained in training data and therefore generate in-
consistent sentences [Elsahar et al. 2021], we have shown that generating descriptions
both relevant and grounded in the data is not obvious. Handling hallucinations in data-
to-text generation models might be different from text-to-text generation models due to
the different natures of data in input and output. It seems that there is a clear balance
between precision and recall metrics regarded the mentioned facts. For instance, in Ta-
ble 4.2, the backbone model trained on a cleaned dataset (without divergences) is the
best model to limit hallucination mentions, but at the cost of recall metrics, denoting an
incomplete generation of facts. This trend has also been seen in various summarization
tasks [Ji et al. 2022]. Another explanation for hallucinations might also come from large
language models which have been pre-trained on several NLP tasks [Radford et al. 2019,
Raffel et al. 2020, Sanh et al. 2022], and therefore include large knowledge. These mod-
els have demonstrated their effectiveness for all NLP tasks. However, this over-generation
behavior is critical for some tasks, such as data-to-text generation in which we need very
accurate reports of data [Wiseman et al. 2017]. Different strategies might be used to
limit over-generation (including hallucinations) [Ji et al. 2022], including controlled gen-
eration [Lample et al. 2019, Filippova 2020] as we have proposed in [Rebuffel et al. 2022],
reinforcement learning [Paulus et al. 2018, Rebuffel et al. 2020b], or planning-driven
generation [Puduppully et al. 2019a, Puduppully et al. 2019b, Moryossef et al. 2019,
Shao et al. 2019, Djeddal et al. 2022].

Planning-based strategies are promising in NLG, but also in other research
fields. Considering the last strategy based on planning, we have shown in our third
contribution (Section 4.4) the interesting properties of generating intermediate plans
regarding the relevance of the generated text. By introducing a structure in the output
to ensure coverage in terms of information, we believe that this strategy also allows to
better focus on what is important in the input data and therefore reduces the generation
of hallucinations. In the same mind, Shao et al. 2019 have been observed that, for other
NLG tasks, such as advertising and recipe text generation, planing-based models obtain
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the highest coverage metrics and limit the redundancy of information. To complement
and make a parallel with another research field, it is worth noting that planning-based
models have also shown interesting properties in robotics to optimize and control actions
for a robot [Andreas et al. 2018, Sharma et al. 2022], reinforcing our intuition that the
control of text generation is crucial for ensuring faithfulness and relevance.

However, our works are not without limitations. We have addressed the faithfulness
and relevance in general, without a throughout error analysis to identify the topology
of hallucinations. We discuss in what follows some possible improvements we plan for
future work.

• How to better introduce relevance signals in text generation? In our
third work dealing with conversational search, we focused only on the decoding
part using a planning strategy and evaluated the impact of an intermediary plan
on the final text generation. However, we do not have a clear overview of how
the input documents have been considered: whether the pre-trained language
model generates a text from its own knowledge or heavily relied on inputs, and
whether the documents are all considered as relevant or not. We believe that
we can enhance the faithfulness and relevance of the text generation by better
forcing the network to rely on provided evidence sources, namely the relevant
documents, for instance with copy-mechanisms [Gu et al. 2016] or prompt-tuning
[Li & Liang 2021, Weizenbaum 1966] as discussed earlier.

• How to constrain the text generation with the generated plan? One draw-
back of the classic planning-based strategy proposed by [Puduppully et al. 2019a]
and used in our work [Djeddal et al. 2022] is that there is no guarantee that the
paragraph is semantically related to its associated headline (title/subtitle/...), and
the sequence of headlines is coherent. In practice, the structured text (including
a sequence of headlines and their associated paragraphs) is generated on the flow
given a generated intermediary plan. It is however difficult for language models to
align headlines by headlines the intermediary plans and the structured answer: in-
termediary plans are encoded as a whole and are fed as input to the final generator.
We believe that the decoding process can be enhanced by leveraging variational
sequential planning [Shao et al. 2019, Ye et al. 2020, Puduppully et al. 2022], con-
ditioning 1) the text generation to a specific part of the plan, and 2) the headline
generation to the text generated for all previously generated headlines.

Outcomes. I briefly describe my supervision activity regarding the topic:

• The data-to-text generation topic has been initiated in the team by Patrick Gal-
linari with whom I co-supervised the thesis of Clément Rebuffel (September 2018
- July 2022) addressing the issues of encoding the data structure and handling
hallucinations.

• I co-supervised a master student (Hanane Djeddal) through a collaboration with
IRIT (Lynda Tamine-Lechani and Karen Pinel-Sauvagnat) on the third contribu-
tion of using data-to-text generation models for complex search tasks.
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• We (Lynda Tamine, Karen Pinel-Sauvagnat, and myself) have submitted an ap-
plication for a CIFRE thesis with ECOVADIS to the ANRT. This thesis will be
the continuation of the intern topic we have supervised (leveraging data-to-text
generation for generating responses in an information retrieval setting).

• I also co-supervise a thesis, started in December 2022 with Vincent Guigue and
Alexandre Allauzen in the context of the ANR PRCE ACDC - "Apprentissage
Contrefactuel pour Data-to-text Contrôlé" (PI: Sylvain Lamprier).

You can find below a list of related international publications5:

• Clément Rebuffel, Laure Soulier, Geoffrey Scoutheeten, Patrick Gallinari: A Hier-
archical Model for Data-to-Text Generation. ECIR 2020: 65-80
Code: https://github.com/KaijuML/data-to-text-hierarchical.

• Clément Rebuffel, Laure Soulier, Geoffrey Scoutheeten, Patrick Gallinari: PAR-
ENTing via Model-Agnostic Reinforcement Learning to Correct Pathological Be-
haviors in Data-to-Text Generation. INLG 2020: 120-130
Code: https://github.com/KaijuML/PARENTing-rl

• Clément Rebuffel, Thomas Scialom, Laure Soulier, Benjamin Piwowarski, Syl-
vain Lamprier, Jacopo Staiano, Geoffrey Scoutheeten, Patrick Gallinari: Data-
QuestEval: A Referenceless Metric for Data-to-Text Semantic Evaluation. EMNLP
2021: 8029-8036
Code: https://github.com/KaijuML/QuestEval

• Clément Rebuffel, Marco Roberti, Laure Soulier, Geoffrey Scoutheeten, Rossella
Cancelliere, Patrick Gallinari: Controlling hallucinations at word level in data-to-
text generation. Data Min. Knowl. Discov. 36(1): 318-354 (2022)
Code: https://github.com/KaijuML/dtt-multi-branch

• Hanane Djeddal, Thomas Gerald, Laure Soulier, Karen Pinel-Sauvagnat, Lynda
Tamine: Does Structure Matter? Leveraging Data-to-Text Generation for An-
swering Complex Information Needs. ECIR 2022: 93-101
Code: https://github.com/hanane-djeddal/Complex-Answer-Generation

5National publications are not mentioned since they are simple translations of international publica-
tions.

https://github.com/KaijuML/data-to-text-hierarchical
https://github.com/KaijuML/PARENTing-rl
https://github.com/KaijuML/QuestEval
https://github.com/KaijuML/dtt-multi-branch
https://github.com/hanane-djeddal/Complex-Answer-Generation
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In this chapter, we address the research challenge of contextualizing information
needs in conversational search (RQ2) according to two strategies. We first focus on the
understanding of information needs given a natural language conversation between a
dialogue system and the user. Then, we target a more proactive setting aiming, from the
dialogue system side, to clarify the user intent by interacting with him/her in natural
language.

5.1 CoSPLADE: Contextualizing SPLADE for Conversa-
tional IR

The first step toward the understanding of natural language questions expressing
complex information needs consists of modeling conversation turns and integrating them
into a query reformulation or ranking model. We report here our participation to the
TREC CAsT Track [Dalton et al. 2020a, Dalton et al. 2021] and the extended version
presented in [Hai et al. 2023]. With this in mind, the TREC CAsT Track focuses on
conversational retrieval sessions containing around 10 turns of exchange. Each turn
corresponds to a query and its associated canonical answer1 is provided as context for
future queries. For each turn n ≤ N , where N is the last turn of the conversation, we
denote by qn and an respectively the corresponding query and its canonical response.
The context of a query qn at turn n corresponds to all the previous queries and answers,

1Selected by the organizer as the most relevant answer of a baseline system.
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Figure 5.1: Example of TREC CAsT conversation.

i.e. q1, a1, q2, a2, ..., qn−1, an−1. The main objective of the TREC CAsT challenge is
to retrieve, for each query qn and its context (i.e., the conversation turns), the relevant
passages d within a passage collection D. An example of conversation is presented in
Figure 5.1.

Most of the previous methods have focused on a multi-stage ranking approach re-
lying on query reformulation with query expansion systems trained with the CANARD
dataset [Zamani et al. 2022b], a critical intermediate step that might lead to a sub-
optimal retrieval. Other approaches have tried to use a fully neural IR first-stage
[Krasakis et al. 2022, Lin et al. 2021b], but are respectively designed as a zero-shot set-
ting or as a full learning-to-rank based on a dataset with pseudo-labels.

In this contribution, we aim at bridging these two directions and propose a much
lighter training process for the first-stage ranker, where we focus on queries and do
not make use of any passage (and thus of a learning-to-rank training). It moreover
sidesteps the problem of having to derive weak labels from the CANARD dataset. More
particularly, we propose to leverage the sparse representation of queries and documents
provided by the SPLADE model [Formal et al. 2022] with a new loss that optimizes
first-stage ranker in lightweight training. Shortly, we require that the representation
of the query matches that of the disambiguated query (i.e. the gold query). We then
train a second-stage ranker (i.e. re-ranker). Leveraging the fact that our first-stage
ranker outputs weights over the (BERT) vocabulary, we propose a simple mechanism
that provides a conversational context to the re-ranker in the form of keywords selected
by SPLADE.

5.1.1 Model formalization

5.1.1.1 Background: the SPLADE model

In the following, we present our first-stage ranker and second-stage re-ranker, along with
their training procedure, both based, directly or indirectly, on the SPLADE (v2) model
described in [Formal et al. 2022] (which is an extension of SPLADE [Formal et al. 2021].
SPLADE has shown results on par with dense approaches on in-domain collections while
exhibiting stronger abilities to generalize in a zero-shot setting. It outputs a sparse rep-
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Figure 5.2: Overview of the Splade model [Formal et al. 2022].

resentation of a document or a query in the BERT vocabulary, which is key to our model
during training and inference. The SPLADE model we use (v2) [Formal et al. 2022] in-
cludes a contextual encoding function, followed by some aggregation steps: ReLU, log
saturation, and max pooling over each token in the text. Thanks to the FLOPS regu-
larizer [Paria et al. 2020], it learns a sparse vector for queries and documents with only
positive or zero components in the BERT vocabulary space R∣V ∣. This allows to easily
perform term weighting and query expansion for queries and documents as shown in Fig-
ure 5.2. In addition, the SPLADE model [Formal et al. 2022] scores a document using
the dot product between the sparse representation of a document (d̂) and of a query (q̂):
s(q̂, d̂) = q̂ ⋅ d̂. In this work, we use several sets of parameters for the same SPLADE
architecture and distinguish each version by its parameters θ, and the corresponding
model noted SPLADE(. . . ; θ).

5.1.1.2 First stage ranking.

The first-stage ranking performs a cosine similarity between query and document em-
beddings. Similarly to [Lin et al. 2021b], we suppose that the document represen-
tation has been sufficiently well-tuned on the standard ad-hoc IR task. The docu-
ment embedding d̂ is thus obtained using the pre-trained SPLADE model, i.e. d̂ =

SPLADE([CLS] d; θSPLADE) where θSPLADE are the original SPLADE parameters
obtained from HuggingFace2. These parameters are not fine-tuned during the training
process. In the following, we present how to contextualize the query representation us-
ing the conversation history. Then, we detail the training loss of the extended SPLADE
model aiming at reducing the gap between the representation of the gold query and the
contextualized representation.

Query representation. Like state-of-the-art approaches for first-stage conversational
ranking [Lin et al. 2021b, Krasakis et al. 2022], we contextualize the query with the pre-
vious ones. Going further, we propose to include the answers in the query representation
process, which is easier to do thanks to our lightweight training. An overview of our
approach is presented in Figure 5.3.

2The weights can be found at https://huggingface.co/naver/
splade-cocondenser-ensembledistil

https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/naver/splade-cocondenser-ensembledistil
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Figure 5.3: Learning query representations with CoSPLADE.

To leverage both contexts, we use a simple model where the contextual query repre-
sentation at turn n, denoted by q̂n,k, is the combination of two representations, q̂queriesn

which encodes the current query in the context of all the previous queries, and q̂ansn,k

which encodes the current query in the context of k the past answers3. Formally, the
contextualized query representation q̂n,k is:

q̂n,k = q̂
queries
n + q̂ansn,k (5.1)

where we use two versions of SPLADE parameterized by θqueries for the full query history
and θanswers,k for the answers.

Following [Lin et al. 2021b], we define q̂queriesn to be the query representation pro-
duced by encoding the concatenation of the current query and all the previous ones:

q̂queriesn = SPLADE([CLS] qn [SEP] q1 [SEP] . . . [SEP] qn−1; θqueries) (5.2)

To take into account the answers that the user had access to, we need to include
them in the representation. Following prior work [Arabzadeh & Clarke 2020], we can
consider various numbers of answers k, and in particular, we can either choose k = 1 (the
last answer) or k = n − 1 (all the previous answers). Formally, the representation q̂ansn,k is
computed as:

q̂ansn,k =
1

k

n−1

∑
i=n−k

SPLADE([CLS] qn [SEP] ai; θanswers,k) (5.3)

Training The goal of the training is to reduce the difference between the gold query
representation q̂∗n and the representation q̂n,k computed by our model.

To do so, we can leverage the gold query q∗n, that is, a (hopefully) contextualized and
unambiguous query. We can compute the representation q̂∗n of this query by using the
original SPLADE model, i.e.

q̂∗n = SPLADE([CLS] q∗n; θSPLADE) (5.4)

For example, for a query "How old is he?" the matching gold query could be "How
old is Obama?". The representation of the latter given by SPLADE would be as follows:

[(”Obama”,1.5), (”Barack”,1.2), (”age”,1.2), (”old”,1.0), (”president”,0.8), ...]

3In the experiments, we also explore an alternative model where answers and queries are considered
at once. See results in Section 5.1.2.2
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where the terms “Obama” and “Barack” clearly appear alongside other words related to
the current query (“old” and the semantically related “age”).

An obvious choice of a loss function is to match the predicted and gold representations
using cosine loss (since the ranking is invariant when scaling the query). However, we
observed in our preliminary experiments that models trained with the direct MSE do not
capture well words from the context, especially for words from the answers. The reason is
that the manually reformulated gold query usually only contains a few additional words
from the previous turns that are directly implied by the last query. Other potentially
useful words from the answers may not be included. This is a conservative expansion
strategy which may not be the best example to follow by an automatic query rewriting
process. We, therefore, design an asymmetric loss Lossasym() designed to encourage
term expansion from past answers, but which avoids introducing noise by restricting the
terms to those present in the gold query q∗n. The final loss is a combination of the MSE
and asymmetric losses:

Loss(q̂n,k, q̂
∗
n) = LossMSE(q̂n,k, q̂

∗
n) +Lossasym(q̂

ans
n,k , q̂

∗
n) (5.5)

with LossMSE(q̂n,k, q̂
∗
n) = MSE(q̂n,k, q̂

∗
n) (5.6)

and Lossasym(q̂
ans
n,k , q̂

∗
n) = (max(q̂∗n − q̂

ans
n,k ,0))

2 (5.7)

with MSE() is the standard MSE loss, the maximum is component-wise. Lossasym
pushes the q̂ansn,k representation to match the golden query representation q̂∗n if it can, and
LossMSE pushes the queries-biased representation q̂n,k to compensate if not. It thus
puts a strong focus on extracting information from past answers. As a reminder, the
parameters θqueries and θanswers,k used to obtain the different query representations are
learned by optimizing the loss defined in Eq. (5.5).

5.1.1.3 Reranking

We perform reranking using a T5Mono [Nogueira et al. 2020] approach, where we enrich
the raw query qn with keywords identified by the first-stage ranker. Our motivation is
that these words should capture the information needed to contextualize the raw query.
The enriched query q+n for conversational turn n is as follows:

q+n = qn. Context ∶ q1 q2 . . . qn−1. Keywords ∶ w1,w2, ...,wK (5.8)

where the wi are the top-K most important words that we select by leveraging the first-
stage ranker as follows. First, to reduce noise, we only consider words that appear either
in any query qi or in the associated answers ai (for i ≤ n − 1). Second, we order words
by using the maximum SPLADE weight over tokens that compose the word.4

We denote the T5 model fine-tuned for this input as T5+. As in the original pa-
per [Nogueira et al. 2020], the relevance score of a document d for the query qn is the
probability of generating the token “true” given a prompt pt(q+n, d) = “Query: q+n.
Document: d. Relevant:”:

score(q+n, d; θ) =
pT5(true∣pt(q+n, d); θ)

pT5(true∣pt(q+n, d); θ) + pT5(false∣pt(q+n, d); θ)
(5.9)

4To improve coherence, we chose to make keywords follow their order of appearance in the context,
but did not vary this experimental setting.
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where θ are the parameters of the T5Mono model.
Differently from the first-stage training, we fine-tune the ranker by aligning the scores

of the documents, and not the weight of a query (which is obviously not possible with the
T5 model). Here the “gold” score of a document is computed using the original T5Mono
with the gold query q∗n. The T5 model is initialized with weights made public by the
original authors5, denoted as θT5. More precisely, we finetune the pre-trained T5Mono
model using the MSE-Margin loss [Hofstätter et al. 2020]. The loss function for the re-
ranker (at conversation turn n, given documents d1 and d2, with d1 more relevant than
d2) is calculated as follows:

LR = [(s(q+n, d1; θT5+) − s(q
+
n, d2; θT5+)) − (s(q

∗
n, d1; θT5) − s(q

∗
n, d2; θT5))]

2

We optimize the θT5+ parameters by keeping the original θT5 to evaluate the score of
gold queries.

5.1.2 Experimental evaluation

5.1.2.1 Protocol

To train our model, we used the CANARD corpus6, a conversational dataset focusing
on context-based query rewriting. More specifically, the CANARD dataset is a list of
conversation histories, each being composed of a series of queries, short answers (human-
written) and reformulated queries (contextualized). The training, development, and test
sets include respectively 31.538, 3.418, and 5.571 contextual and reformulated queries.

To evaluate our model, we used the TREC CAsT 2020 and 2021 datasets which
include respectively 25 and 26 information needs (topics) and a document collection
composed of the MS MARCO dataset, an updated dump of Wikipedia from the KILT
benchmark, and the Washington Post V4 collection. For each topic, a conversation
is available, alternating questions and responses (manually selected passages from the
collection, aka canonical answers). For each question (216 and 239 in total), the dataset
provides its manually rewritten form as well as a set of about 20 relevant documents.

Metrics and baselines We used the official evaluation metrics considered in the
TREC CAsT 2020 and 2021, namely nDCG@3, MRR, Recall@X, MAP@X, nDCG@X,
where the cut-off is set to 1000 for the CAsT 2020 and 500 for the CAsT 2021. For
each metric, we calculate the mean and variance of performance across the different
queries in the dataset. With this in mind, we present below the different baselines and
scenarios used to evaluate each component of our model.

● First-stage ranking scenarios. To evaluate the effectiveness of our first-
stage ranking model (Section 5.1.1.2), we compare our approach CoSPLADE, based
on the query representation of Eq. (5.1) with different variants (the docu-
ment encoder is set to the original SPLADE encoder throughout our experiments):
SPLADE_rawQuery (lower bound): SPLADE [Formal et al. 2021] using only the
original and ambiguous user queries qn; SPLADE_goldQuery (kind of upper bound):

5We used the Huggingface checkpoint https://huggingface.co/castorini/monot5-base-msmarco
6https://sites.google.com/view/qanta/projects/canard

https://huggingface.co/castorini/monot5-base-msmarco
https://sites.google.com/view/qanta/projects/canard
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SPLADE using the manually rewritten query q∗n; CQE [Lin et al. 2021b], a state-of-
the-art dense contextualized query representation learned using learning-to-rank on a
dataset with pseudo-labels.

To model answers when representing the query using q̂ansn,k , we design variants of our
CoSPLADE model (first-stage ranking model learning queries representation with MSE
and asymmetric losses) by using two historical ranges (“All” with k = n − 1 answers
and “Last” where we use only the last one, i.e. k = 1) and three types of answer
inputs: Answer in which answers are the canonical answers; Answer-Short in which
sentences are filtered as in the best performing TREC CAsT approach [Lin et al. 2021d].
This allows for consistent input length, at the expense of losing information; Answer-
Long : as answers from CANARD are short (a few sentences extracted from Wikipedia
– contrarily to CAsT ones), we expand them to reduce the discrepancy between training
and inference. For each sentence, we find the Wikipedia passage it appears in (if it exists
in ORConvQA [Qu et al. 2020]), and sample a short snippet of 3 adjacent sentences.

Finally, we also conducted ablation studies (on the best of the above variants)
by modifying either the way to use the historical context or the training loss: flat-
Context a one-encoder version of our SPLADE approach in which we concatenate
all information of the context to apply SPLADE to obtain a single representation of
the query (instead of two representations q̂queriesn and q̂ansn,k as in Equations 5.2 and
5.3) trained using a MSE loss function (Equation 5.6) since there is no more two
representations. MSE the version of our SPLADE approach trained with the MSE loss
(Equation 5.6) instead of the proposed one (Equation 5.5); cosine the version of our
SPLADE approach trained with a cosine loss instead of the proposed loss (Equation 5.5).

● Second-stage ranking scenarios. We have compared our model with several
baselines (variants of a T5Mono ranker and of our model). Please note that we will not
present the results of all these baselines but will directly present the final result of our
model with respect to the score obtained by TREC participants.

5.1.2.2 First-stage ranking effectiveness

In our experiments, we focus on the first-stage ranking component of our CoSPLADE
model. Results of the different baselines and scenarios on the TREC CAsT 2021 dataset
are provided in Table 5.17

In general, one can see that all variants of our approach (CoSPLADE_* models)
outperform the scenario applying the initial version of SPLADE on raw and, more
importantly, gold queries. This is very encouraging since this latter scenario might be
considered as an oracle, i.e. the query is manually disambiguated. Finally, we improve
the results over CQE [Lin et al. 2021b] for all the metrics – showing that our simple
learning mechanism, combined with SPLADE, allows for achieving SOTA performance.
More specifically, we can outline the following statements.

Leveraging queries and answers history better contextualizes the current
query. The results of the flatContext scenario with respect to the SPLADE_goldQuery
allow for comparing the impact of evidence sources related to the conversation since

7Similar trends are observed on CAsT 2020, but are not reported.
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Recall@500 MAP@500 MRR nDCG@500 nDCG@3
Baselines

SPLADE_rawQuery 30.8±2.7 5.5±0.9 21.3±2.9 17.8±1.8 13.1±2.1
SPLADE_goldQuery 68.8±2.0 16.1±1.2 55.5±3.3 42.8±1.7 38.3±2.8
CQE [Lin et al. 2021c] 79.1 28.9 60.3 55.7 43.8

Effect of answer processing: CoSPLADE_. . .

AllAnswers 79.5±2.2 28.8±1.7 61.7±3.1 55.3±2.0 46.5±2.9
AllAnswers-short 72.8±2.6 25.7±1.9 54.4±3.3 49.5±2.3 40.1±3.0
AllAnswers-long 80.4±2.1 29.3±1.8 62.0±3.2 55.6±2.1 48.9±3.0

LastAnswer 83.4±2.0 31.2±1.8 61.8±3.1 58.1±2.0 47.4±3.0
LastAnswer-short 79.2±2.2 28.1±1.8 61.4±3.3 54.3±2.1 46.4±3.0
LastAnswer-long 85.2±1.8 32.0±1.7 64.3±03.0 59.4±1.9 48.6±3.0

CoSPLADE_LastAnswer-long variants
flatContext 77.0±2.0 26.0±2.0 55.0±3.0 52.0±2.0 42.0±3.0
MSE loss 70.9±2.4 21.6±1.7 48.7±3.4 45.2±2.3 39.6±3.1
cosine loss 70.4±2.5 22.6±1.7 52.5±3.3 46.9±2.2 39.0±3.0

Table 5.1: Effectiveness of different scenarios of our first-stage ranking model on the
TREC CAsT 2021.

they both use the same architecture (SPLADE). We can observe the usefulness of
context to better understand the information need.

More detailed answers perform better. Since answers are more verbose
than questions, including them is more complex, and we need to study the different
possibilities (CoSPLADE_AllAnswers* and CoSPLADE_LastAnswer*). One can
see that: 1) trimming answers (*-short) into a few keywords is less effective than
considering canonical answers, but 2) it might be somehow effective when combined
with the associated Wikipedia passage (*-long). Moreover, it seems more effective to
consider only the last answer rather than the whole set of answers in the conversation
history. Taking all together, these observations highlight the importance of the way to
incorporate information from answers into the reformulation process.

Dual query representation with asymmetric loss leverages sparse query
representations. The results of the flatContext scenario show that considering at once
past queries and answers perform better (compared to the MSE loss scenario which is
directly comparable). However, if we separate the representations and use an asymmetric
loss function (AllAnswers* and LastAnswer* lines in Table 5.1), the conclusion changes.
Moreover, the comparison of our best scenario CoSPLADE_LastAnswer-long with a
similar scenario trained by simply using MSE or cosine losses reveals the effectiveness of
our asymmetric MSE (Equation 5.7). Remember that this asymmetric loss encourages
the consideration of previous answers in the query encoding. This reinforces our intuition
that the conversation context, and particularly verbose answers, is important for the
conversational search task. It also reveals that the context should be included at different
levels in the architecture (input and loss).
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TREC CAsT 2020 Recall@1000 MAP@1000 MRR nDCG@1000 nDCG@3
TREC Participant (best) 63.3 30.2 59.3 52.6 45.8

TREC Participant (median) 52.1 15.1 42.2 36.4 30.4
TREC Participant (low) 27.9 1.0 5.9 11.1 2.2

CoSPLADE 82.4±2.0 26.9±1.5 58.1±2.9 54.2±1.8 44.0±2.7
TREC CAsT 2021 Recall@500 MAP@500 MRR nDCG@500 nDCG@3

TREC Participants 1 (best) 85.0 37.6 67.9 63.6 52.6
TREC Participants 2 (median) 36.4 17.6 53.4 33.6 37.7

TREC Participants 3 (low) 58.9 7.6 27.0 31.4 15.4
CoSPLADE 84.9±1.7 35.5±1.8 69.8±3 62.2±1.9 54.4±2.9

Table 5.2: TREC CAsT 2020 and 2021 performances regarding participants.

5.1.2.3 Effectiveness compared to TREC CAsT participants

We finally compare our approach (first-stage + second-stage rankings) with TREC
CAsT participants for the 2020 and 2021 evaluation campaigns. For each eval-
uation campaign, we report in Table 5.2 the best, the median, and the lowest
TREC CAsT participants according to the nDCG@3 metric from the two overviews
[Dalton et al. 2020a, Dalton et al. 2021]. For both years, we can see that we obtain
effectiveness metrics that are very close or higher than the ones reached by the best
participants. Indeed, CoSPLADE surpasses the best TREC participant for the 2020
evaluation campaign regarding Recall@1000 and nDCG@1000. For 2021, our model ob-
tains better results than the best one for the MRR and nDCG@3 metrics. For both years,
the best participant is the h2oloo team [Lin et al. 2021d, Dalton et al. 2021] which uses
query reformulation techniques, either using AllenAI or T5. Our results suggest that
our approach leveraging the SPLADE model trained using a ranking loss and fine-tuned
on the conversation context using a query-driven loss allows combining the benefit of
query expansion and document ranking in a single model that eventually helps the final
reranking step. In other words, simply rewriting the query without performing a joint
learning of document ranking can hinder the overall performance of the search task.

We also outline that our CoSPLADE model based on sparse representation obtains
better results than the dense retrieval model T5Mono applied on queries reformulated
with a T5 model (e.g., 84.9 vs. 80.4, respectively, for the Recall@500 for TREC CAsT
2021 - results not presented in this manuscript). This reinforces our intuition that sparse
retrieval models, although being more sensitive to information loss because of the use of
sparse representation to focus on terms, are well adapted to contextualize information
needs.

5.1.3 Conclusion

In this contribution, we have shown how a sparse retrieval neural IR model, namely
SPLADE [Formal et al. 2022], could be leveraged together with a lightweight learning
process to obtain a state-of-the-art first-stage ranker. We further showed that this first-
stage ranker could be used to provide context to the second-stage ranker, leading to
results comparable with the best-performing systems. However, this setting is limited in
the sense that it considers a passive IR system, i.e. simply performing ad-hoc IR. Current
approaches are more willing to investigate mixed-initiative [Aliannejadi et al. 2021], en-
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gaging the system in proactive interactions. Indeed, the TREC CAsT Track evolves into
a mixed-initiative-oriented Track called IKAT8. This paradigm is addressed by another
contribution presented in the following section.

5.2 User simulation for query clarification

In this contribution [Erbacher et al. 2022], we focus on query clarification which consists
of a mixed-initiative between users and conversational search systems to solve an IR task.
The objective of the IR system is thus to propose to the user a clarification of his/her
information need and to interact with him/her to better understand his/her intent.

Unlike previous query clarification work based on single-turn interactions [Rao 2017,
Rao & Daumé III 2018, Zamani et al. 2020a, Sekulic et al. 2021a, Sekulic et al. 2021b,
Tavakoli et al. 2022] or simulated session logs in which successive actions are indepen-
dent, except for the common interest towards the global topic [Aliannejadi et al. 2019],
we propose here to build a fully simulated query clarification framework allowing multi-
turn interactions between IR and user agents. Following [Aliannejadi et al. 2019], the
IR agent identifies candidate queries and ranks them in the context of the user-system
interactions to clarify the initial query issued by the user (agent). We target simple
information needs, leaving multi-faceted information needs for future work since they
might impact the modeling of the query ranking function. Our framework can be seen
as a proof-of-concept for future work willing to integrate sequential models (namely re-
inforcement learning models) for question clarification. It is worth noting that large
language models relying on attention mechanisms (transformers) are not yet well suited
to handle sequential interactions and long-term planning, as current models are hardly
trainable with current reinforcement learning algorithms [Chen et al. 2020b]. Thus, all
agent components in our framework are based on continuous embeddings and simple
models.

5.2.1 Question Clarification Simulation Framework

5.2.1.1 Overview and Research Hypotheses

Our query clarification simulation framework is inspired by [Aliannejadi et al. 2019], but
provides the possibility of leveraging user and system agents’ interactions sequentially.
More particularly, our framework is detailed in Algorithm 1 and illustrated in Figure
5.4. The design of this evaluation framework is guided by some choices/hypotheses.

• First, following [Aliannejadi et al. 2019], we consider a fixed set of candidate
queries Q = {q1, q2, ..., qm} constituting the reformulation of the initial query q0.
All the interactions are leveraged to improve step by step the ranking of this candi-
date query set so that, at the end of the session, the final query used for retrieving
documents is a good clarification of its initial one. Obviously, this means that the
set of candidate queries includes a large variety of queries which, for some of them,
improve the search performance.

• Second, following [Zamani et al. 2020a], we propose to model question clarification
as a possible option between two reformulated queries. In other words, expressed

8https://www.trecikat.com/

https://www.trecikat.com/
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Algorithm 1 Our simulation framework for query clarification
● A) The user issues an initial query q0 associated to her/his information need i.
● B) The IR system generates a set Q = {q1, q2, ..., qm} of candidate queries which
might express different query reformulations or diversified queries to better explore
the information need i.
● C) The IR system selects N queries to display to the user. To do so, we propose to
follow [Aliannejadi et al. 2019] and design a model ranking the candidate query set Q
to identify the top N queries.
● D) The user selects one of the N queries, enabling to extract positive and negative
feedback, resp. noted (q+, q−).
● Steps C) and D) can be repeated several times to model multi-turn interactions. The
query set ranking function (step C) integrates the user’s sequential feedback (q+, q−)
to improve the query ranking along with the interaction simulation.
● E) After T turns, the IR system considers the best-ranked query as the optimal
query reformulation and runs a ranking model to retrieve documents.

in natural language, the IR system agent would ask the user agent the following
question: "Which reformulated query do you prefer? A or B". This implies that
the user is willing to judge queries A or B regarding its information need.

• Third, guided by the motivation to propose a framework for future work on se-
quential models, we consider here that each agent component is modeled at the
embedding level. Indeed, leveraging large language models for generating/ranking
questions is very effective, but integrating them into reinforcement learning models
is still challenging (one main reason being the computational cost). This means
that we processed a priori all queries and documents to represent them using text
embeddings. This processing is done offline, alleviating the sequential modeling of
the text encoding.

In what follows, we present the different components behind the IR system and user
agents.

5.2.1.2 The IR System Agent

The IR agent has three objectives in our framework: 1) generating the set of candidate
reformulated queries willing to be presented to the user, 2) ranking this set to identify
the most relevant queries according to the interaction history, 3) ranking documents
using the best-ranked query (ending the interactive session).

Generation of the candidate reformulated query set. The objective here is
to instantiate various and diverse reformulations covering a wide range of relevant
topics for the initial query q0. Different techniques might be used, leveraging large
language models [Nogueira et al. 2019b, Raffel et al. 2020, Rao & III 2019], query di-
versification [Cai et al. 2016, MacAvaney et al. 2021, Ye et al. 2021] or query expansion
[Pal et al. 2013]. We propose here to use the T5 model [Raffel et al. 2020] which is de-
signed to translate token sequences into other token sequences. It has already been used
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Figure 5.4: Query clarification simulation framework

for query reformulation tasks [Chen et al. 2020b, Raffel et al. 2020, Lin et al. 2020a]. On
the top of that model, the generation process is driven by the diversity beam mecha-
nism [Vijayakumar et al. 2016] which aims at generating a set Q of diversified query
reformulation, Q = {q1, q2, ..., qm}.

Ranking of queries based on the interaction history. The role of the se-
lection policy is to select queries used to interact with the user agent. Following
[Aliannejadi et al. 2019] which proposes to rank queries according to both performance
criteria and the interaction context, we compute a pairwise score between two candidate
queries qi and qj given the context, i.e., the initial query q0 and the additional infor-
mation provided by interaction feedbackt−1, . . . , feedback1 with the user. Formally, the
ranking model relies on the probability that a query qi obtains better IR performances
(yi) than query qj (retrieval performance yj) given the initial query q and the feedback
obtained on queries displayed at previous utterances:

P (yi > yj ∣q0, qi, qj , feedbackt−1, ..., feedback1) (5.10)

In practice, the model architecture is a siamese network that estimates the score yi of
a query qi given the context and trained using a Lambda loss [Wang et al. 2018]. Each
query score is computed as follows:

yi = RNNscore(q0,qi, feedbackt−1, . . . , feedback1; θscore) (5.11)

with feedbackt = RNNfeedb(cos(q
+
), sin(q−); θfeedb) (5.12)

where RNNscore and RNNfeedb() are two different recurrent neural networks with their
own parameters θscore and θfeedb. q0 and qi are embeddings of queries q0 and qi.
feedbackt is the embedding of the user’s feedback feedbackt, corresponding to the
action of selecting or not the queries displayed at interaction turn t. We note q+ and
q− those selected or non-selected queries, and q+ and q− their associated embeddings.
To capture the positive and negative feedback, we encode queries differently using the
cosine and the sine functions, respectively.
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At inference, queries are ranked according to their score estimated using Equation
5.11.

Final ranking of documents Documents are retrieved with the top-ranked query
using a Dense Retriever model [Hofstätter et al. 2021].

5.2.1.3 The User Agent

After issuing the initial query q0, the user agent interacts with the IR system agent
to refine her/his information need. With this in mind, we hypothesize that the user
is greedy toward her/his intent and fully cooperative. Greedy means that the user
always selects the query which is the most similar to the overall intent. Despite being
unrealistic, we ignore the click bias problem for the clarification questions presented in
[Zamani et al. 2020a, Zamani et al. 2020b] which relies on position, presentation, and
trust dimensions. Other choices for user simulation could be done, as experimented in
[Câmara et al. 2022], but we let these variations for future work.

In practice, let d be the vector representing a user intent, qi and qj the clarification
queries presented to the user agent. The user agent selects the best query (noted q+

for highlighting positive feedback from the user) according to a similarity metric (in our
case, the dot product) between the representation of the proposed queries qi and qj and
intent d:

q+ = argmaxqi(⟨qi,d⟩) (5.13)

5.2.2 Experimental evaluation

5.2.2.1 Protocol

Evaluating our simulation framework consists in measuring the effectiveness of the final
ranking after T clarification interactions. Since the user behavior is greedy and follows a
simple behavior dependent on the query selection process, the effectiveness results mainly
denote the quality of this query ranking component. Other components (candidate set
generation and final document ranking) do not depend on the interaction feedback, so
we mainly focus on understanding whether the selection policy integrates users’ feedback
and takes good decisions to select the N clarification questions.

We carry out our experiments on the MS Marco 2020 passages dataset
[Nguyen et al. 2016a] which regroups 8.8M passages and more than 500K query-passage
relevance pairs. We evaluate our model on 2 sets: the small test set (43 queries) and a
subset of the dev set (1000 queries sampled from 59 000). One motivation to consider
these two datasets is their difficulty level: in the dev set, only one passage per query is
labeled relevant in the ground truth, while several passages are considered as relevant in
the test set.

Baselines and Scenarios To evaluate the effectiveness of our selection policy
component, we compare with:
● Non-interactive settings. We measure the ranking effectiveness of the user’s initial
user query (noted User Query) and the Best Reformulation in the candidate query
set - which can be seen as an oracle.
● Naive interactive selection: At each step, we select the 2 top ranked queries from
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Figure 5.5: Effectiveness score of query reformulation by rank. The order of the query is
determined either by the diversity beam search generation process (Output Generator),
the query IR performances predicted by a pre-trained MonoT5 model (MonoT5), and the
optimal ranking of queries according to their performances obtained by a Dense retrieval
model [Hofstätter et al. 2021].

the current query rank and then remove the query which has not been selected by the
user agent. The re-ranking of the candidate query set is only carried out once, at the
beginning of the session, and the size of this list decreases with the interaction number.

To instantiate the selection policy after each interaction-driven query ranking step
(step C in Figure 5.4), we consider these scenarios:

(1) Interact. + Random Sample: we sample 2 queries from the ranked candidate
query set to constitute the interaction pair.

(2) Interact. + Top 2: we select the top 2 query reformulations at each turn.
(3) Interact. + random sample@5: we randomly select 2 queries among the top

5 query reformulations at each turn.
(4) Interact. + Kmeans selection: At each turn, queries in the candidate set

are clustered in 2 groups using K-means. Queries from each cluster are ranked by the
model. The best-ranked query within each cluster is selected. The cluster of the query
not selected by the user is removed for the next turn from the set of candidate queries.
This strategy corresponds to a refinement strategy as suggested in [Mustar et al. 2022],
removing a group of semantically similar queries that have not been chosen by the user
and going deeper into the other cluster.

5.2.2.2 Preliminary analysis: measuring the potential of ranking the query
set

Our model introduces user-system interactions through query clarification to identify its
information need and therefore enhance the retrieval process. To do so, a predefined
query set is generated, assuming to cover a large diversity of information needs related
to the initial query, and we propose to re-rank this query set to identify the most relevant
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No interaction 1 2 3 4 5
Best Reformulation (oracle) MRR@10 0.872 - - - - -
User Query MRR@10 0.455 - - - - -
Naive selection MRR@10 0.213 0.327 0.359 0.403 0.419 0.427
Interact. + random sample MRR@10 0.403 0.478 0.481 0.490 0.481 0.501
Interact. + Top 2 MRR@10 0.403 0.474 0.469 0.490 0.478 0.501
Interact. + random sample@5 MRR@10 0.403 0.473 0.467 0.490 0.479 0.501
Interact. + Kmean MRR@10 0.403 0.523 0.465 0.469 0.486 0.551

Table 5.3: Effectiveness results on the Test set of MS Marco passage 2020 (43 queries -
multiple relevant documents per query)

queries according to the initial need and the interactions. To test our hypothesis that it is
possible to automatically identify the most relevant queries within a predefined query set
without the supervision of relevant documents, we perform here a preliminary analysis
(Figure 5.5) to quantify the potential retrieval performance gain of the candidate query
set when they are ranked according to different criteria. More particularly, given the
candidate query set generated by the T5 model (first paragraph in section 5.2.1.2), we
compare the retrieval performance using the Mean Marginal Rank metric) according to
different ordering within the query set: 1) the initial order provided by the Diversity
Beam Search (called Output Generator), 2) the Oracle order in which queries are
ranked in decreasing order according to their performance obtained through a Dense
retrieval model [Hofstätter et al. 2021] regarding the Mean Marginal Rank metric, 3)
the MonoT5 order in which queries are ranked according to the performance score
predicted by the pre-trained MonoT5 retrieval model [Pradeep et al. 2021].

We can see that predicting the query performance with MonoT5 allows to improve
the performance for the top k queries regarding the query order provided by the Output
Generator. This hurts the end of the list, but it is not critical in our case, since we
consider the selection policy regarding the top query list. Moreover, one can notice that,
although performance is increased, there is still a gap between the curve of the MonoT5
ranked list and the Oracle curve (order defined according to the real performance of
queries using a Dense retriever [Hofstätter et al. 2021]). Our intuition is that leveraging
users’ interactions will lower this gap, which leads to the evaluation we performed in
what follows.

5.2.3 Measuring the retrieval effectiveness after multi-turn query clar-
ification

Second, we analyze the performance of the query ranker at different interaction turns
using MRR@10. Tables 5.3 and 5.4 resp. show the results on the MS Marco passage
2020 test set and dev set. From a general point of view, we can see that performance
metrics are lower for the dev set (Table 5.4) than for the test set (Table 5.3). This can
be explained by the task difficulty, which is higher for the dev set in which only one
document per query is assessed as relevant. By comparing all baselines and scenarios,
we can outline the following trends.

• The first candidate query ranking within our interactive models (No interaction
columns) provides lower performance than non-interactive baselines. For instance,
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No interaction 1 2 3 4 5
Best Reformulation (oracle) MRR@10 0.411 - - - - -
User Query MRR@10 0.209 - - - - -

Naive selection MRR@10 0.122 0.151 0.165 0.176 0.186 0.191
Interact. + random sampl MRR@10 0.171 0.201 0.199 0.195 0.200 0.201
Interact. + Top 2 MRR@10 0.171 0.202 0.198 0.197 0.201 0.199
Interact. + random sampl@5 MRR@10 0.171 0.202 0.198 0.196 0.200 0.200
Interact. + Kmean MRR@10 0.171 0.174 0.198 0.201 0.215 0.222

Table 5.4: Effectiveness results on the subset of MS Marco passage 2020 dev set (1000
queries - 1 relevant document per query)

the Interact. + Top2 scenario observes a decrease of 12% in terms of MRR@10
for the test set w.r.t. the initial user query.

• This trend is reversed with each interaction turn to obtain for certain scenarios
performance higher than baseline ones (see all interaction models in the test set,
and the Interact + Kmeans for the dev set).

• The interaction model with K-mean strategy looks to be the best selection policy
for question clarification since it obtains the highest MRR@10 for both datasets.
This is somehow intuitive because this strategy might correspond to a refinement
strategy, going deeper and deeper into clusters. This is also connected with the
dataset peculiarity since MS Marco is mainly composed mono-faceted questions in
natural language.

• It is moreover worth noting that performances increase with interaction turns but
additional exploratory experiments highlight a saturation point after 5/6 interac-
tion turns. Our setting, therefore, allows to interact with the user to clarify his/her
needs without overloading the search session.

5.2.4 Conclusion

This exploratory work focuses on sequential click-based interaction with a user simulation
for clarifying queries. We provide a simple and easily reproducible framework simulating
multi-turn interactions between a user and an IR system agent. The advantage of our
framework is the simplicity of interactions, as there is no need for a dataset of real and
annotated user-system interactions. Experiments highlight performance gain in terms
of document retrieval through the multi-turn query clarification process and provide a
comparative analysis of selection strategies. This framework can be improved in terms
of naturalness to better fit with conversational search. In practice, this implies learning
to generate natural language interactions for both the IR system and user agents.

5.3 Discussion and achievements

Understanding information needs is a longstanding issue [Jansen et al. 2000,
Moshfeghi et al. 2016] which has gained in maturity with the modeling [Kuhlthau 1991,
Azzopardi 2014] and the leveraging of users’ interactions [Lavrenko & Croft 2001,
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Agichtein et al. 2006]. It has been addressed through different evaluation cam-
paigns, such as TREC Interactive [Hersh & Over 2001], TREC Contextual Suggestion
[Dean-Hall et al. 2014], or TREC Session Search [Carterette et al. 2014], and more re-
cently TREC CAsT [Dalton et al. 2020b] which has introduced interactions in natural
language for solving an IR task. In this chapter, we presented works dealing with the
contextualization of information needs in conversational search, implying to leverage of
users’ interactions to explicit their intent and improve the search effectiveness. Our
objectives were twofold: 1) investigating different conversational search settings: ad-hoc
search given a conversation context and proactive search with query clarification interac-
tions, and 2) exploring the potential of existing retrieval or question generation strategies
based on large language models. We draw the three following main conclusions from our
works.

Sparse retrieval models have good transfer properties to contextualize infor-
mation needs when they are fine-tuned in a lightweight fashion. Sparse neural
retrieval models are known as models focusing on term unit, either for both sparse in-
dexing [Zamani et al. 2018] or term expansion [Bai et al. 2020, MacAvaney et al. 2020,
Formal et al. 2021]. All these models rely on sparse representations and, compared
to dense approaches [Guo et al. 2016, Pradeep et al. 2021], have the advantages to be
efficiently used for indexation, to explicit lexical matching, and being interpretable.
They provide also good generalization performances on out-of-domain benchmarks
[Formal et al. 2022]. Guided by this last statement, our CoSPLADE model introduces
a lightweight fine-tuning strategy to contextualize queries according to conversations.
More particularly, we have not considered relevance signals as evidence sources of the
fine-tuning, but we have rather focused on query intent and matched the representa-
tions of queries with the ones of gold queries. The results obtained by our CoSPLADE
model highlight that it is possible to improve ranking performances in a target task (here
conversational search) without requiring supervision of relevant documents. We believe
that this outcome is promising for future works in IR investigating new research fields
which might lack datasets with complete supervision data. More explicitly, by leverag-
ing the transfer abilities of those sparse neural retrieval models (in our case SPLADE),
it seems that it is possible to integrate new search dimensions (here, the conversation)
without having the supervision of relevant documents in the (new) targeted IR task. Ob-
viously, more experiments are needed to evaluate the generalization of this statement to
other sparse neural retrieval models [Bai et al. 2020, MacAvaney et al. 2020] and other
emerging tasks (e.g., FACT-IR or Personal Information Access [Culpepper et al. 2018]).

The world knowledge captured by language models does not capture well
matching signals: toward the combination of IR signals and language mod-
els. (Large) language models are often seen as world knowledge since they are learned
on large datasets such as Wikipedia enclosing a wide range of knowledge and they
capture several language cues thanks to various learning objectives [Devlin et al. 2019,
Raffel et al. 2020, Dai et al. 2022, Kiela 2022, Bommasani et al. 2021]. They have also
shown great transfer abilities over various tasks, either with fine-tuning or in zero-
shot settings. However, we believe that IR requires specific signals that might not be
learned in standard language models. In 2016, Guo et al. 2016 already discussed the
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difference between semantic matching and relevance matching. The literature review
[Mitra 2021, Lin et al. 2021a, Fan et al. 2022] highlights the need to integrate IR features
in neural ranking models or to pre-train language models by integrating the IR objec-
tive. Indeed, framing IR tasks as pointwise document classification as in the monoBERT
model [Nogueira & Cho 2019] provides an efficient strategy but has quickly been im-
proved by integrating IR techniques such as interaction matrix [Hofstätter et al. 2020],
ranking losses [Pradeep et al. 2021], or leveraging prompt-tuning [Fan et al. 2022].

Throughout this chapter, we have confirmed this need in our both settings. The
experimentation of our CoSPLADE model highlights the synergic effect of addressing
both query reformulation and relevance score prediction to contextualize information
needs and obtain promising retrieval performances. Similarly, the preliminary analysis
of our simulation framework shows that simply generating queries with a T5 model is
not sufficient, and that the decoding should be guided by the relevance signal.

When interactivity can complement language models to perform IR
tasks. The birth of large language models has enabled tremendous advances in
numerous research fields in NLP, particularly in IR allowing to complement match-
ing signals with world knowledge [Nogueira & Cho 2019, Arabzadeh et al. 2021].
The recent large language models released to the community, such as ChatGPT
[Ouyang et al. 2022], T0 [Sanh et al. 2022], BLOOM [Scao et al. 2022b], or PALM
[Chowdhery et al. 2022b], are able to answer a wide range of questions, questioning
the place of search engines in our society. However, in a recent article in the press
(https://iai.tv/articles/all-knowing-machines-are-a-fantasy-auid-2334),
Emily M. Bender and Chirag Shah explain that a search engine, and more largely
information seeking, is more than a tool providing answers to questions. Large language
models are effective tools for fact-based questions, but there is a crucial need to
solve search sessions with human engagement, particularly for complex intents that
require cognitive efforts. As already outlined in early information-seeking models
(e.g., the Information Search Process (ISP) [Kuhlthau 1991], Anomalous States of
Knowledge (ASK) [Belkin et al. 1982], or the Ellis model [Ellis 1989]), a search session
is characterized by multiple sense-making actions relying on the formulation of the
search intent after different observation/exploration/organization phases, and in the
end on the assessment of the displayed information to ensure its truthiness/relevance
regarding the search intent. As suggested in [Culpepper et al. 2018], we believe that
conversational search is not a way to erase all these steps, but should rather support
them. Interacting with users in natural language offers exciting abilities to allow them
to explicit their intent, and early works [Aliannejadi et al. 2019, Zamani et al. 2020a]
on clarifying questions for a mixed-initiative system are the proof that language models
are used in the right way. Our second contribution in this chapter highlights the
retrieval effectiveness improvement of such interactive settings compared to an ad-hoc
search setting. Also, the next focus of the TREC CAsT Track giving up ranking in
conversation context at the benefit of mixed-initiative corroborates the intuition of
leveraging large language models to support search. However, additional steps should
be addressed in the future by the IR community, such as ensuring the truthiness of
answers by complementing natural language answers with relevant pieces of documents
[Culpepper et al. 2018] or providing an overview of sense-making process (e.g., of the

https://iai.tv/articles/all-knowing-machines-are-a-fantasy-auid-2334
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search process pathway) towards explainability [Gu et al. 2021b].

It is worth noting that the results obtained for our contributions are limited to the
experimental design. We mention below some limitations of our works, particularly
for the work dealing with query clarification which reflects the current research trends
toward mixed-initiative, and the associated research perspectives.

• Designing accurate evaluation tasks for conversational search. Al-
though mentioning that conversational search can be particularly relevant for
complex and multi-faceted queries, we have considered the MSMarco dataset
[Nguyen et al. 2016b], which rather refers to simple queries for a few reasoning.
This choice is motivated by the desire to build a proof of concept with simple
elements (from both the IR and user agents) experimented on simple datasets.
Considering a multi-faceted query implies therefore a more complex IR and sys-
tem model balancing relevance and coverage. We think that it would be benefi-
cial to combine our framework with existing models focusing on the modeling of
multi-faceted queries [MacAvaney et al. 2021] or interactive refinement strategies
[Mustar et al. 2022].

In addition, there is a crucial need in the community to design adapted
tasks (and datasets) in which conversational search will be useful. As al-
ready discussed, large language models are able to answer factual questions
but we believe that conversational search can bring more sense-making and
more truthiness in the search process, allowing to solve complex information-
seeking tasks [Shah & Bender 2022]. The current datasets on query clarification
[Aliannejadi et al. 2019, Tavakoli et al. 2022] and the exploratory analyses of user
engagements [Sekulic et al. 2021b] introduce the first step in this direction and
the efforts need to be pursued. Having in mind that Wizard of Woz evaluations
[Sun et al. 2021] might be costly and time-consuming, one strategy could be to
leverage simulations to build new datasets and allowing to vary users’ behaviors as
done in [Câmara & Hauff 2020].

• Towards more naturalistic mixed-initiative with multi-turn interactions
in natural language. One limitation of our framework is that it relies on interac-
tions consisting in displaying two queries and letting users choose between one of
them, without natural language interactions, and especially without discussion. If
the displayed queries are not relevant, the user agent always chooses one of them,
which might hinder the intent clarification process. We believe that the next step
for future work is to enhance our framework with natural language interactions.
To do so, we propose to leverage actual query clarification datasets, such as QuLac
[Aliannejadi et al. 2019] to build system and user agents, respectively aiming at
generating natural language query clarifications and providing answers in response
to those clarifications. Large language models might appear as basic tools to learn
these interactions, but they critically miss the integration of IR task signals to gen-
erate queries that are semantically relevant to the search intent and enhance the
retrieval effectiveness of the conversational search session. We, therefore, envision
using IR techniques, such as pseudo-relevance feedback, to enhance the language
generation underlying query clarification.
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Outcomes All these works are conducted in the context of the ANR JCJC SESAMS
for which I am the principal investigator. I briefly describe my supervision activity
regarding the topic:

• The query clarification topic is addressed by a PhD student, Pierre Erbacher, co-
supervised with Ludovic Denoyer.

• I have also co-supervised two master students Nawel Astouati and Nam Le Hai
who have participated in the TREC CAsT evaluation track, resp. in 2021 and
2022. A research paper has also been submitted to ECIR 2023 to discuss our
model proposed for TREC CAsT 2022. This work is done in collaboration with
Jian-Yun Nie, Thomas Gerald, Thibaut Formal, and Benjamin Piwowarski.

You can find below a list of related publications9:

• Pierre Erbacher, Laure Soulier: État de l’art des approches de modélisation et de
simulation utilisateur pour la recherche d’information conversationnelle. CORIA
2021

• Pierre Erbacher, Ludovic Denoyer, Laure Soulier: Interactive Query Clarification
and Refinement via User Simulation. SIGIR 2022: 2420-2425

• Nawel Astaouti, Thomas Gerald, Maya Touzari, Jian-Yun Nie et Laure Soulier.
“MLIA- LIP6@TREC-CAST2021 : Feature augmentation for query recontextual-
ization and passage ranking”. In : Working Notes of TREC CAST 2021. 2021.

• Le Hai Nam, Thomas Gerald, Thibault Formal, Jian-Yun Nie, Benjamin Pi-
wowarski, Laure Soulier. "MLIA-DAC@TREC CAsT 2022: Sparse Contextualized
Query Embedding". In : Working Notes of TREC CAST 2022. 2022.

• Le Hai Nam, Thomas Gerald, Thibault Formal, Jian-Yun Nie, Benjamin Pi-
wowarski, Laure Soulier. CoSPLADE: Contextualizing SPLADE for Conversa-
tional Information Retrieval. In: ECIR 2023

9National publications are not mentioned if they are simple translations of international publications.
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In this section, we focus on the understanding of neural ranking model behaviors in
terms of knowledge transfer in a continual learning scenario (RQ3).

6.1 Continual learning framework for neural IR

The large majority of works in computer vision [Kirkpatrick et al. 2016,
Douillard et al. 2020b] and NLP [Chen et al. 2015, Veron et al. 2019] address con-
tinual learning through classification tasks (e.g., labeling objects or pixels for object
segmentation). The usual framework consists of a sequence of classification tasks
T 1 → T 2 → ⋅ ⋅ ⋅ → T n in which labels evolve with tasks. Given a task T i decomposed as
a tuple of an input set Xi and their associated label set Yi, the classification function is
formalized as: F ∶ Xi → Yi. The labels Yi belong to a set of predefined classes Ci that
evolve with tasks, implying for the classification model to learn an output distribution
that differs from one task to another one. For instance, a model can be trained on
classifying images of dogs and cats (task 1), and then used for classifying cars and boats
(task2), and so on.

In neural IR, the setting is somehow different. Given a set of queries Q and a
document collection D, a neural ranking model M aims at predicting a score y for a pair
of query-document (q, d) ∈ Q × D; therefore, M ∶ Q × D → R. If we try to apply this
setting in a continual learning framework, there is no sense to vary the distribution of the
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output (i.e., the scores of the documents). What is more willing to evolve in IR are the
users’ intents and the document collection, namely the input distribution of the neural
model. Therefore, a continual learning stream for IR can be formalized as a sequence of
tasks T i which denotes a tuple (Qi,Di) of query-document sets:

T 1 → T 2 → ⋅ ⋅ ⋅→ T n (6.1)

with T i = (Qi,Di) (6.2)

For experimental reasons, each query set Qi in the stream is composed of train and test
sets. Depending on the continual learning setting, either both the query and document
sets might evolve with tasks T i or only one of them (i.e., only the queries or only the
document collection).

With this in mind, the neural ranking model M is trained sequentially using an
adaptation method (e.g., fine-tuning or continual learning techniques) on each training
set of the query set Qi and the associated document collection Di, one by one, to obtain
at each training step a model Mi with parameters θ̂i. For instance, the model M2 with
parameters θ̂2 is obtained by training model M on the training set of Q1 applied on
the document collection D1 to initialize model M1 with parameters θ̂1. Then, this last
model is trained using an adaptation method on the training set Q2 associated with the
document collection D2.

For each trained model Mi with parameters θ̂i, we can estimate its retrieval perfor-
mance Ri,i on the test set of each query set Qi given the document collection Di. In
addition, we can measure the model’s ability to accumulate/forget knowledge through
the stream:

• The Forward Transfer (FT) which estimates the influence that learning a task T i

has on the performance on a future task T j , with j > i. When the forward transfer
is positive, the model Mi is able to accumulate knowledge from previous tasks and
is, therefore, addressing the zero-shot learning problem.

• The Backward Transfer (BT) which measures the impact of learning a task T i on
the performance on a previous task T j , with j < i. When the performance on
previous tasks is lowered, we call this phenomenon (catastrophic) forgetting.

We, therefore, denote Ri,j the performance of model Mi trained on the task stream up
to T i and evaluated on task T j . Depending on whether j < i or j > i, Ri,j is included
in the estimation of the Forward and Backward Transfer. At a high level, a continual
learning framework in IR can be illustrated in Figure 6.1 and in Algorithm 2.

All the difficulty in designing continual learning scenarios for IR lies in the design of
the stream. One can think that each query in a dataset can be equated to a single task,
and thus the continual learning setting is built as a stream of successive single queries
(Qi = qi) and a fixed document collection (Di = D;∀i = 1, . . . , n). One drawback of this
modeling is inherent to the continual learning framework: the additional signals captured
at an iteration while training the model on each task will be very small. Indeed, we are
not sure that the relevance signals of a single query are sufficient to measure knowledge
drift. We, therefore, believe that a task T i in an IR continual learning framework might
include a group of queries (and a possibly evolving collection of documents), characterized
by similar properties to have enough similar knowledge to impact the training step.
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Algorithm 2 A continual learning framework for IR
Set up an ordered task stream setting T 1 → . . .T n−1 → T n with T i = (Qi,Di)

Initialize a model M0 with random parameters or use a pre-trained model
for k=1 to n do

Train model Mi on the training query set Qi given the document collection Di.
Measure the retrieval performance Ri,i of model Mi on test query set Qi.
Measure the retrieval performance Ri,j (j > i) of model Mi on the testing instances
of next query set Qj (forward transfer).
Measure the retrieval performance Ri,j (j < i) of model Mi on the testing instances
of previous query sets Qj (backward transfer)

Figure 6.1: Illustration of the continual learning framework in IR using a 3-task stream
setting for a given model M

The next sections instantiate the continual learning framework in IR in which task
streams are designed using different assumptions:

• A short stream in which tasks are delimitated by the application domain: we
consider different document collections (and their associated queries) dealing with
the generic or medical domain, as well as documents from microblogs. In this
setting, both query and document sets evolve with tasks.

• A long stream in which tasks are delimitated by topics: queries of a single dataset
are clusterized so as to build sets of queries belonging to the same topic/subtopic
(e.g., cooking with barbecue, salad cooking, gardening, etc...). In this setting, the
dataset is fixed throughout all tasks T i and only the query sets Qi evolve.

We investigate the behavior of neural ranking models regarding the catastrophic forget-
ting issue, measured using the backward transfer.

6.2 Analyzing catastrophic forgetting in short streams

Our objective is twofold: 1) evaluating different neural ranking models on a short stream
of successive tasks T i delimited by different domains and 2) investigating their behavior
regarding the catastrophic forgetting issue.
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6.2.1 Experimental setting

We use three datasets chosen to fit with the requirement of cross-domain adapta-
tion [Pan & Yang 2010]: 1) MS MARCO (ms) [Nguyen et al. 2016a] a passage ranking
dataset built using the Bing search logs; 2) TREC Microblog (mb) [Lin & Efron 2013],
an ad-hoc search dataset from TREC Microblog 2013 and 2014, which contains a public
Twitter sample stream; 3) TREC CORD19 (c19 ) [Wang et al. 2020] an ad-hoc docu-
ment search dataset including research articles dealing with SARS-CoV-2 or COVID-19
topics.
Besides, we consider four settings (See Table 6.1, column "Setting") among which
three 2-dataset (n = 2) and one 3-dataset (n = 3) settings. As done in previous work
[Li & Hoiem 2018, Asghar et al. 2020], these settings follow the patterns (task1 → Q2) or
(T 1 → T 2 → T 3) where query set orders (i.e., dataset orders) are based on the decreasing
sizes of the training sets assuming that larger datasets allow starting with well-trained
networks.

Neural ranking models. We consider five state-of-the-art models [Yang et al. 2019a]:
1) interaction-based models: DRMM [Guo et al. 2016], PACRR [Hui et al. 2017] and
KNRM [Xiong et al. 2017]; 2) BERT-based models: Vanilla BERT [Devlin et al. 2019]
and CEDR-KNRM [MacAvaney et al. 2019b]. We use the OpenNIR framework
[MacAvaney 2020] that provides a complete neural ad-hoc document ranking pipeline
(a first-stage ranking with BM25 followed by a second-stage ranking with the mentioned
models). Note that in this framework, the neural models are trained by linearly combin-
ing their own neural score (SNN ) with a BM25 score (SBM25). We call the final score
the global relevance score.

Domain adaptation and lifelong learning methods. We adopt the standard
fine-tuning strategy (training on one domain and fine-tuning on the other) as the rep-
resentative domain adaptation method. Additionally, we investigate the Elastic Weight
Consolidation (EWC) [Kirkpatrick et al. 2016] as the lifelong learning method L and
analyze its potential in IR.

Measures. To measure the knowledge acquired by the model during the re-ranking
step, we measure the relative improvement achieved with the ranking based on the global
relevance score (resp. the neural score) trained and tested on the previous dataset over
the performance of the BM25 ranking obtained on the same testing dataset. We note
this metric MAP@100 ∆MAP (resp. ∆MAPN ). The objective is therefore to estimate
how much knowledge is captured by neural ranking models given the first stage.

Concerning the catastrophic forgetting measure, we use the remembering mea-
sure (REM) derived from the backward transfer measure (BWT) proposed in
[Rodríguez et al. 2018].

• BWT: measures the intrinsic effect (either positive or negative) that learning a
model M on a new task T i has on the model performance obtained on an old task
T j with j < i, referred as backward transfer. Practically, in line with a lifelong
learning perspective, this measure averages, in the task stream, the differences
between the performances of the model obtained on the previous task and the
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performances of the oracle model trained and tested on the same previous task.
Thus, while positive values represent positive backward transfer, negative values
express catastrophic forgetting. Formally, the BWT measure is computed as:

BWT =
∑

n
i=2∑

i−1
j=1(Ri,j −R

∗
j,j)

n(n−1)
2

(6.3)

Ri,j is the performance measure of model Mi obtained right after learning on task
T j . R∗j,j is the performance of the oracle model M∗

j trained on task T j and tested
on the same task. To make fair comparisons between the different studied neural
models, we normalize the differences in performance (Ri,j −R

∗
j,j) on model agnostic

performances obtained using BM25 model on each previous task T j . Formally, we
estimate Rij =

MAP (Mi,T j)

MAP (BM25,T j)
where MAP (Mi,T j) is the effectiveness of model

Mi on the task T j . In our work, we only report the REM values computed using
the MAP measure (we observe similar trends for NDCG@20 and P@20).

• REM: because the BWT measure has a bivalent meaning, i.e. positive values
for positive backward transfer and negative values for catastrophic forgetting, we
report the REM metric that is only concerned about forgetting. Formally, it is
estimated as follows:

REM = 1 − ∣min(BWT,0)∣ (6.4)

A REM value equal to 1 means that the model does not catastrophically forget.
We denote REM and REMN, the remembering metric applied on the ranked list
obtained using, respectively, 1) a linear combination of BM25 and neural scores
(also called global relevance score), and 2) solely the neural score.

6.2.2 Results

Table 6.1 reports all the metric values for each model/setting pairwise. Regarding the
"Fine-tuning" adaptation technique aiming at measuring the catastrophic forgetting
(RQ1), we can outline the following statements.

Catastrophic forgetting in short IR streams is not as clear as in Computer
Vision. While previous works have shown that neural models suffer from catastrophic
forgetting in large proportion [Kirkpatrick et al. 2016], the REM and REMN metrics
in IR are in general close to 1, with small variation. This suggests that catastrophic
forgetting is not as strong as in computer vision, and that neural ranking models
are more driven by relevance matching signals during the learning process than the
application domain or the topic of queries.

Bert-based models are able to bring effectiveness gains additively to
those brought by the exact-based matching signals in BM25. Only CEDR
and VBERT models achieve positive improvements w.r.t to both the global ranking
(∆MAP : +19.6%, +17.4% resp.) and the neural ranking (∆MAP : +29.2%, +25.8%
resp.), particularly under the setting where mb is the previous dataset (mb → c19).
These effectiveness gains can be viewed as new knowledge in terms of semantic matching.
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Model Setting Fine-tuning EWC-based lifelong learning
REM(REMN) ∆MAP (MAPN) REM(REMN) ∆REM(REMN)

DRMM

ms→ c19 1.000(1.000) +2.2(-73.6) 1.000(1.000) 0(0)
ms→mb 0.962(0.943) +2.2(-73.6) 0.971(0.974) +0.9(+3.3)
mb→ c19 1.000(0.965) -1.7(-7.7) 1.000(0.662) 0(-31.4)
ms→mb→ c19 0.976(0.938) +2(-73.6) 0.979(1.000) +0.3(+6.6)

PACRR

ms→ c19 1.000(0.760) +2.5(-30.1) 1.000(0.756) 0(-0.5)
ms→mb 1.000(1.000) +2.5(-30.1) 1.000(1.000) 0(0)
mb→ c19 1.000(0.523) 0(+10) 1.000(0.940) 0(+79.7)
ms→mb→ c19 1.000(0.759) +2.5(-30) 1.000(0.874) 0(+15.2)

KNRM

ms→ c19 1.000(1.000) -12.1(-89) 1.000(1.000) 0(0)
ms→mb 1.000(1.000) -12.1(-89) 1.000(1.000) 0(0)
mb→ c19 1.000(0.810) -2(-13.8) 1.000(0.902) 0(+11.4)
ms→mb→ c19 1.000(1.000) -12.1(-89) 1.000(0.963) 0(-3.7)

VBERT

ms→ c19 0.930(1.000) -10.6(0) 1.000(1.000) +7.5(0)
ms→mb 1.000(0.883) -10.6(0) 1.000(1.000) 0(+13.3)
mb→ c19 0.913(1.000) +17.4(+25.8) 1.000(1.000) +9.5(0)
ms→mb→ c19 0.989(0.922) -10.6(0) 1.000(1.000) +1.1(+8.5)

CEDR

ms→ c19 0.826(1.000) +2.6(+14.2) 1.000(1.000) +21.1(0)
ms→mb 0.510(0.920) +2.6(+14.2) 1.000(1.000) +96.1(+8.7)
mb→ c19 0.940(1.000) +19.6(+29.2) 1.000(1.000) +6.4(0)
ms→mb→ c19 0.771(0.946) +2.6(+14.2) 0.891(1.000) +15.6(+5.7)

Table 6.1: Per model-setting results in our fine-tuning and EWC-based lifelong learning
experiments. All the measures are based on the MAP@100 metric. The improvements
∆MAP (MAPN) and ∆REM(REMN) are reported in percent (%).

Capturing additional knowledge w.r.t exact-matching signals does not
avoid catastrophic forgetting. While some models-settings pairs are able to capture
a large amount of additional knowledge (e.g., VBERT and CEDR in the mb → c19

setting) without forgetting information on previous tasks (REM and REMN metrics
close to 1), this trend is not obvious in other cases when looking at the correlation
between REM and ∆MAP metrics. For instance, DRMM generally does not forget
but the accumulation of knowledge regarding exact-matching signals is very diverse,
ranging from negative to positive values. Interestingly, the KNRM does not accumulate
knowledge regarding exact-matching signals nor forgets knowledge during the fine-tuning.

We turn now our attention to the "EWC-based lifelong learning" columns in
Table 6.1 to investigate the gain of lifelong learning strategies [Kirkpatrick et al. 2016]
(RQ3). Our experiment results show that among the 9 (resp. 11) settings that exhibit
catastrophic forgetting in the combined model (resp. neural model), the EWC strat-
egy allows to improve 9/9 i.e., 100% (resp. 9/11 i.e., 88%) of them in the range
[+0.3%,+96.1%] (resp.[+3.3%,+79.7%]). Given, on the one hand, the high variability
of the settings derived from the samples, and on the other hand, the very low number
of settings (10% i.e., 2/20) where a performance decrease is observed in the previous
dataset, we could argue that the EWC-based lifelong learning is not inherently
impacted by dataset order leading to a general effectiveness gain over the
models.
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6.3 Designing long topic streams and analyzing pathological
IR behaviors

One drawback of the previous contribution is that it focuses on very short and syn-
thetic streams, which can be limited to infer robust behavior in real continual learning
settings characterized by an infinite timeline. Our objective here is to build a long
stream for evaluating the behavior of neural ranking models in a continual learning
framework. Due to computational reasons, we limit this analysis to two neural ranking
models: 1) the vanilla Bert [Devlin et al. 2019] (noted VBert) and 2) the Mono-T5-
Ranker [Nogueira et al. 2020] (noted MonoT5).

6.3.1 Building a dataset with long topic sequences.

One main difficulty is to create this sequence considering the availability of IR datasets.
In contrast to our previous work based on a sequence of datasets of different domains
[Lovón-Melgarejo et al. 2021], we propose to model the task at a lower granularity level,
namely topics, instead of the dataset granularity1. To create the long sequence, we
consider a fixed dataset D, namely the MSMarco dataset [Nguyen et al. 2016c], assuming
that several queries might deal with the same user’s interest (e.g., “what is the largest
source of freshwater on earth?” or “what is water shortage mitigation”). These groups
of queries Qi denote what we call topics and each task T i in the stream is thus built of
a query set Qi and the dataset D.

To extract topics Qi, we propose a clustering-based method consisting in extracting
clusters from randomly sampled queries using a sentence-BERT clustering2 and popu-
lating those clusters with queries from the whole dataset. Finally, the sequence of topics
is produced by randomly rearranging clusters to avoid bias of cluster size. Depending
on the value of clustering hyper-parameters, we obtain three datasets of topic sequences
of different sizes (19, 27, and 74), resp. called MS-TS, MS-TM and MS-TL (for small,
medium, large). To evaluate our topic sequence methodology, for each of the three
datasets we create a long topic sequence baseline in which clusters are randomly built.
We obtain three randomized datasets denoted MS-RS, MS-RM, and MS-RL.

To verify the relevance of the clusters, we measure retrieval similarity within and
between clusters (i.e., queries within clusters might have similar retrieval evidence and
queries between clusters might have different ones). As retrieval similarity between query
clusters, we use the retrieved documents for each query using the BM25 model3. Our
intuition is that similar queries should have more commonly retrieved documents (and
vice versa). For this, we denote the c − score which measures the ratio of common
documents between two topics Qi and Qj . Statistics of these three topic sequences
and the relevance of clusters through intra and inter c-score are described in Table 6.2.
Moreover, Figure 6.2 depicts the c − score matrix for all couples (i, j) ∈ {1,2, . . . , ∣S∣}2

for a subset of 8 topics (for more clarity in the figures) of the MS − S and MS − RS

corpora. We observe that for the randomized matrix (Figure 6.2 right), the metric value

1Please note that the number of datasets adapted to neural IR with a sufficiently large number of
queries and relevance judgments is not sufficient to build a long sequence of datasets as we envision.

2https://www.sbert.net/examples/applications/clustering (fast clustering)
3Implemented in pyserini: https://github.com/castorini/pyserini
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Name ∣#topics∣ #queries by topics inter intra

MS-TS 19 3,650 ± 1,812 3.8% 31.4%

MS-TM 27 3,030 ± 1,723 4.1% 32.1%

MS-TL 74 1,260 ± 633 3.3% 34.6%

MS-RS 19 3,650 ± 1,812 10.3% 10.2%

MS-RM 27 3,030 ± 1,723 9.9% 9.8%

MS-RL 74 1,260 ± 633 8.7% 8.8%

Table 6.2: Parameters and statistics of the generated dataset and their inter/intra topic sim-
ilarity metric (c − score). The intra-score is the mean c − score when comparing a topic with
itself, and the inter-score when comparing different topics.
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Figure 6.2: Matrix of similarities between topics for 8 topics of MS-S (left) and MS-RL (right)
datasets. The c-score (×100) is processed on all topic pairs, a high value (yellow) denotes the
level of retrieved document overlap between queries of topics.

is relatively uniform. In contrast, in the matrix obtained from our long topic sequence
based on clustering (Figure 6.2 left), the c-score is very small when computed for different
topic clusters (low inter similarity) and higher in the diagonal line (high intra similarity).

6.3.2 Analyzing the behavior of neural ranking models on long topic
sequences

We investigate now the global performance of neural ranking models after having suc-
cessively been fine-tuned on topics in our MSMarco-based long sequence setting (Table
6.3). For comparison, we report results for the multi-task baseline in which models are
trained on all the topics of the sequence jointly (without sequence consideration). At
first glance, we can remark that, in a large majority, neural models after fine-tuning on
random sequences or multi-task learning obtain better results than after the fine-tuning
on our long topic sequences. This can be explained by the fact that, within our setting,
the topic-driven sequence impacts the learning performance: a supplemen-
tary effort is needed by the model to adapt to new domains, which is not the
case in the random setting. In this latter, the diversity is at the instance level. This
trend is depicted in Figure 6.3, highlighting peaks in the clustering-based setting (blue
line) referring to topic/cluster changes. This result confirms that catastrophic forgetting
might occur with neural ranking models.
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Model Dataset Learning protocol
Random clustering Multi-task

VBert
SMALL 18.4/19.6 16.3/17.5 18.5/19.7

MEDIUM 17.9/19.0 17.8/18.9 17.5/18.7

LARGE 18.8/19.9 17.3/18.5 18.5/19.7

MonoT5
SMALL 16.1/17.3 13.1/14.4 15.5/16.8

MEDIUM 15.4/16.7 13.4/14.7 15.7/17.1

LARGE 13.9/15.1 13.8/15.1 15.7/17.0

BM25
SMALL 10.8/11.7

MEDIUM 10.5/11.4

LARGE 11.7/12.7

Table 6.3: General performance of neural ranking models on long topic sequences. Mean
performances on all the topic sequences reporting mrr@10/mrr@100 for the different
models.
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Figure 6.3: General performance of neural ranking models on long topic sequences.
VBert loss values for both random and clustering-based large corpus.

Through our different analyzes (see the paper [Gerald & Soulier 2022] for complete
experiments), we highlighted the following general trends:

• Long stream of tasks implies noticeable catastrophic forgetting. The
comparison of neural ranking model performances when trained on task sequences
(random or clustering-based) w.r.t multi-task learning highlights that continual
learning leads to lower effectiveness results. It is more prevalent in our setting, i.e.,
when tasks are split by topic. Combined with the previous analysis highlighting
small catastrophic behaviors on short streams (although using different metrics),
this suggests that neural ranking models are more prone to forget when trained on
long topic streams. This result is consistent with previous work in computer vision
[Kirkpatrick et al. 2016, Douillard et al. 2020b].

• Ranking models behave differently in terms of catastrophic forgetting.
We notice that catastrophic forgetting occurs more the MonoT5 model being
more sensitive to new domains than the VBert model. This can also explain by
the difference in the way of updating weights (suggested in the original papers
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[Devlin et al. 2019, Nogueira et al. 2020]). In VBert, two learning rates are used:
a small one for the Bert model and a larger one for the scorer layer; implying
that the gradient descent mainly impacts the scorer. This intuition needs more in-
vestigation since we use the second-order gradient descent of ADAM. In contrast,
the MonoT5 is learned using a single learning rate leading to modify the whole
model. For a reminder, the previous analysis on short stream highlighted forget-
ting behavior for the CEDR model, which is also a joint model introducing the
representation learning of contextual embedding into neural ranking models such
as PACRR, DRMM, and KRNM. We can therefore infer that multiple objective
functions might hinder knowledge retention in continual learning settings.

• The more topics are similar, the less neural ranking models forget. In
contrast to continual learning in other application domains [Kirkpatrick et al. 2016,
Rebuffi et al. 2017] in which fine-tuning models on other topics always deteriorates
previous topic performance, our analysis suggests that topics might help each other
(particularly when they are relatively similar), at least in lowering the catastrophic
forgetting. Moreover, as discussed in [Guo et al. 2016], relevance matching signals
play an important role in model performance, often more than semantic signals.
The topic sequence may lead to a synergic effect to perceive these relevance signals.

In brief, continual learning in IR differs from the usual classification/generation life-
long learning setting. It is more likely to have different topics allowing to “help” each
other, either by having closely related topics or by focusing on query-document matching
signals.

6.3.3 Analyzing pathological behaviors using IR-driven controlled
stream-based scenarios

Having in mind that a task T i is built of a tuple (Qi,Di) of query and document sets,
we have seen in our two previous analyses that query and documents sets might evolve
simultaneously with the stream (as in our short stream scenario) or not (as in our long
stream scenario). Guided by IR-driven use cases, we aim here to further our investigation
regarding the typology of evolving data (documents and/or queries). Typically, the avail-
able documents may change over time, and some might become outdated (for instance
documents relevant at a certain point in time). Also, queries evolve, either because of
new trends, the emergence of new domains, or shifts in language formulation. To model
those scenarios, we propose three different short task streams designed as IR-controlled
scenarios. Tasks are based on our long topic sequence S = {T 1, . . . ,T i, . . . ,T n} built on
MSMarco. For each scenario, we consider an initial setting T init modeling the general
knowledge before analyzing a particular setting. In other words, T init constitutes the
data used for the pre-training of neural ranking models before fine-tuning on a specific
sequence. The proposed controlled settings are presented in what follows and Tables 6.4
and 6.5 present the obtained results for all settings according to the different scenario
configurations.

• Direct Transfer scenario [Veniat et al. 2020]: The task sequence is
(T init,T

+
i ,T j ,T

−
i ) where tasks T +i and T −i belong to the task T i and have dif-

ferent sizes (∣T −i ∣≪ ∣T
+
i ∣). This setting refers to when the same task comes back
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DT scenario B
T +i T j T −i

MonoT5 26.6 24.9 26.6 27.2

VBert 28.5 26.7 27.3 28.9

Table 6.4: Model performances using MRR@10 on the Direct Transfer (DT) IR-driven
controlled setting. B stands for the baseline model: training on both T init and T i.
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Qi1Di1 ∪Qi2Di2 19.1 30.9 28.9 26.6 27.0 28.9

Table 6.5: Model performances using MRR@10 on IR-driven controlled settings: In-
formation Update (IU) and Language Drift (LD). B stands for the baseline models:
fine-tuning on T i for IU and LD scenarios.

in the stream with newly available data (new queries and new relevant documents).
As shown in the DT scenario column in Table 6.4, the performance of both mod-
els on task T i drops after fine-tuning on a foreign topic (i.e., on task T 2). This
highlights a catastrophic forgetting behavior. However, both models are able to
slightly adapt their retrieval performance after fine-tuning on task T −i . This final
performance is however lower than the baseline model (training on both T init and
T i) and for the VBert model lower than its initial performance at the beginning
of the learning sequence. These two last statements suggest the ability of neural
models to quickly reinject a part of the retrained knowledge learned in the early
sequence to adapt to new query/document distributions on the same topic.

• Information Update scenario: The task sequence is (T init,T
′
i,T

′′
i ) where T ′i

and T ′′i have dissimilar document distributions and a similar query distribution.
Intuitively, it can be interpreted as a shift in the required documents, such as
new trends concerning a topic or an update of the document collection. The IU
columns in Table 6.5 highlight that evaluation performances increase throughout
the fine-tuning process over the sequence. This denotes the ability of models to
adapt to new document distributions (i.e., new information in documents). The
adaptation is more important for the MonoT5 model, probably explained by its
better adaptability to new topics. Interestingly, the performance at the end of the
learning sequence overpasses the result of the baseline (fine-tuning on T i): this can
be explained by the methodology used to create this setting, associating pseudo-
relevant documents to existing queries to simulate the information update (more
details in the paper [Gerald & Soulier 2022]). Our intuition is that the introduced
pseudo-relevant documents in task T ′i might help in perceiving relevance signals.

• Language Drift scenario: The topic sequence is (T init,T
∗
i ,T

∗∗
i ) where T ∗i and
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T ∗∗i have similar document distributions and a dissimilar query distribution. This
can correspond to a change of query formulation or a focus on the same topic. As
outlined in the LD columns in Table 6.5, the behavior is relatively similar to IU in
terms of adaptation: performances increase throughout the sequence. Note that
MonoT5 seems more flexible in terms of adaptation. However, it seems difficult to
sufficiently acquire enough knowledge to reach the baseline performance (although
pseudo-relevant documents have also been introduced as in the IU scenario). This
might be due to the length of queries concerned by the distribution drift: when the
vocabulary changes in a short text (i.e., queries), it is more difficult to capture the
semantics for the model and to adapt itself in terms of knowledge retention than
when the change is carried out on long texts (i.e., documents as in the information
update).

6.3.4 Conclusion

In this work, we have designed a continual learning dataset for IR including long topic se-
quences and controlled IR sequences. Our investigation aims at observing a catastrophic
forgetting metric for different models, and also in regard to topic similarity. Our analysis
suggests different design implications for future work: 1) catastrophic forgetting in IR
exists but is low compared to other domains [Kirkpatrick et al. 2016, Veniat et al. 2020],
2) when designing lifelong learning strategy, it is important to care for topic similarity,
the position of the topic in the learning process and for the type of the distribution that
needs to be transferred (short vs. long texts).

6.4 Discussion and achievements

In these works [Lovón-Melgarejo et al. 2021, Gerald & Soulier 2022], we have defined a
continual learning framework for IR and investigated the catastrophic forgetting behavior
of neural ranking models in short and long settings. We have carried out a fined-grained
evaluation, observing a catastrophic forgetting metric for different models, and also in
regards to topic similarity. The main conclusions that we draw from this line of research
are the followings.

Neural ranking models have generally good properties regarding catas-
trophic forgetting. Previous works in computer vision [Kirkpatrick et al. 2016,
Davidson & Mozer 2020, Douillard et al. 2020a, Ramasesh et al. 2021] highlight a
clear trend toward catastrophic forgetting whether measuring performance on
short [Kirkpatrick et al. 2016, Ramasesh et al. 2021] or long [Douillard et al. 2020a,
Davidson & Mozer 2020] streams. We outlined in our experimental evaluation that this
trend is not as strong. Neural ranking models do not seem to forget a lot throughout
the learning process, and the size of the stream (2 or 3) is not correlated to the amount
of forgotten information. In the long-stream setting, neural ranking models seem to for-
get knowledge when compared with multi-task learning. To get a better understanding
of the phenomenon, we analyze the performance according to two additional dimen-
sions. First, by putting in the abyss the forgetting phenomenon with the similarity of
successive tasks, we show that the greater the similarity, the less the neural ranking
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model forgets. It is worth noting that this trend toward task similarity has also been
demonstrated in natural language understanding [Cattan et al. 2022]. Second, inspired
by [Veniat et al. 2020], we evaluate three controlled IR-driven scenarios, highlighting
generally good properties in terms of knowledge retention. Our intuition underlying this
lower propensity to catastrophic forgetting is that neural ranking models are, by nature,
designed for capturing relevance matching signals beforehand semantic matching sig-
nals [Guo et al. 2016, Lin et al. 2021a]. Consequently, switching topics/domains in IR is
less critical than continually learning over different images to identify their labels that
directly map with the semantics of images [Davidson & Mozer 2020, Douillard 2022].

The model architecture matters. As previously observed in
[Arabzadeh et al. 2021], we have shown that neural ranking models are able to
capture additional knowledge than the one captured by first-stage ranking models based
on exact matching, such as BM25. However, this ability to capture additional knowledge
does not bring necessarily catastrophic forgetting behaviors. This suggests that this ad-
ditional knowledge does not obviously refer to new semantics but can rather complement
relevance-matching signals already captured by exact-matching models. We thus believe
that the model architecture impacts its behavior toward catastrophic forgetting. Depend-
ing on the architecture (i.e., transformer [Devlin et al. 2019, MacAvaney et al. 2019b] or
not [Guo et al. 2016, Hui et al. 2017, Xiong et al. 2017], based on semantic clustering
[Xiong et al. 2017, MacAvaney et al. 2019b] or not) and the losses used (classification
[Nogueira & Cho 2019] or ranking loss [Devlin et al. 2019]), we notice different behaviors
in terms of knowledge acquisition and retention. The more the features are semantically
oriented, the more the model will tend to forget. This statement related to the topology
of neural architecture has already been observed in computer vision by Huo & Zyl 2020.

The type of evolving data matters. The typology of data evolving in the continual
learning scenario (e.g., documents or queries) impacts the learning behaviors regarding
the evolving knowledge. In our IR-driven scenarios, neural ranking models outline good
properties to face direct transfer or information update. In contrast, language drift in
the query vocabulary remains a difficult task, probably due to the small expressiveness
of queries (due to their size). This fine-grained analysis of input-output distribution
has been initiated by Veniat et al. 2020 who have also noticed that a neural model
can exhibit different behaviors regarding different controlled settings (analyzing for
instance the transfer to similar input/output distributions, the knowledge update, the
direct transfer, or the scalability). These experiments highlight the importance of
analyzing different dimensions of the catastrophic forgetting issue. Combined with our
investigations highlighting different behaviors regarding the typology of streams, we
believe that a relevant strategy for designing neural ranking models robust to continual
learning settings is to modularize the learning strategies according to the properties of
the evolving data.

We are aware that obtained results are limited to the experimented models and set-
tings, although we have considered various evaluation scenarios over different dataset
peculiarities (variation in terms of domain, stream size, and controlled settings). We be-
lieve that much remains to be accomplished for more generalizable results, particularly
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at the model level. For instance, it would be interesting to experiment with sparse
neural ranking models [Bai et al. 2020, MacAvaney et al. 2020, Formal et al. 2021] to
identify whether their zero-shot learning abilities are robust to a continual learn-
ing setting. However, we hope that our exploratory analysis is a step forward in
the understanding of continual IR model learning and the design of more robust
neural ranking models. More particularly, we believe that, although less character-
ized by catastrophic forgetting issues than neural models in computer vision, neu-
ral ranking models can gain robustness if they are able to identify critical evolution
in the training data and alleviate this forgetting phenomenon. One promising strat-
egy emerging from the Machine Learning community arises from mode connectivity
[Kuditipudi et al. 2019, Benton et al. 2021, Wortsman et al. 2021] aiming at connecting
different regions within the parameter space to leverage various signals. We believe that
this principle could be used to design models modularizing their parameters depending
on the typology of evolving data.

Outcomes These works are conducted in the context of the ANR JCJC SESAMS for
which I am the principal investigator. I briefly describe my supervision activity regarding
the topic:

• I initiated the framework of continual learning in IR (domain adaptation in short
dataset streams). I collaborated on this topic with Lynda Tamine-lechani and
Karen Pinel-Sauvagnat from the IRIT laboratory through the co-supervision of a
master student (Jesús Lovón-Melgarejo).

• This work has been pursued with a one-year postdoctoral researcher I supervised,
Thomas Gerald.

You can find below a list of related publications4:

• Jesús Lovón-Melgarejo, Laure Soulier, Karen Pinel-Sauvagnat, Lynda Tamine:
Studying Catastrophic Forgetting in Neural Ranking Models. ECIR 2021: 375-
390
Code: https://github.com/jeslev/OpenNIR-Lifelong

• Thomas Gerald, Laure Soulier: Continual Learning of Long Topic Sequences in
Neural Information Retrieval. ECIR 2022: 244-259
Code: https://github.com/tgeral68/continual_learning_of_long_topic

4National publications are not mentioned if they are simple translations of international publications.

https://github.com/jeslev/OpenNIR-Lifelong
https://github.com/tgeral68/continual_learning_of_long_topic
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In this chapter, I briefly introduce other contributions (past and ongoing works) not
discussed in the manuscript.

7.1 Past work: grounding textual representations

A research area that I have worked on between 2015 and 2019 is that of grounding
textual representation through external knowledge. With early text embedding strategies
(e.g., Gloves, word2vec, etc...) before large language models, several works have shown
that textual embeddings do not capture all the semantics [Petroni et al. 2019]. One
explanation of this limitation is the human reporting bias, i.e. we report in texts only
key facts and not basic world knowledge acquired otherwise, leading to perception bias
[Gordon & Van Durme 2013].

Hill et al. 2015 have shown that co-occurrence extraction leads to confusion between
semantic similarity and conceptual relationships. For instance, the terms "bike" and
"tire" will be close to the term "car" since they co-occur frequently although they are
related differently to the term "car". "bike" is similar to "car" since they have the same
functionality while "car" and "tire" have a functional relationship. With the same state
of mind, Mrkšić et al. 2016 and Iacobacci et al. 2015 have also outlined that embeddings
are not able to distinguish synonyms and antonyms.

We have therefore explored the potential of text grounding, aiming at anchoring
textual representation in complementary resources. We have considered two types of
resources: knowledge resources and visual ones. To do so, we have designed multi-
modal representation learning models (often mid-fusion) aiming at leveraging the knowl-
edge available either in images or knowledge bases to improve the semantics of text
embeddings. Two types of evaluation have been conducted: intrinsic evaluation check-
ing the quality of embeddings, and extrinsic evaluation analyzing the impact of such
representations on NLP and IR tasks.
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Outcomes

• 2 defended theses: Gia-Hung Nguyen (collaboration with Lynda Tamine and
Nathalie Souf at IRIT) and Eloi Zablocki (collaboration with Benjamin Piwowarski
and Patrick Gallinari).

• Participation to the MUSTER CHIST-ERA project (MUltimodal processing of
Spatial and TEmporal expRessions)

• Publications on textual grounding with knowledge bases

– Gia-Hung Nguyen, Lynda Tamine, Laure Soulier, Nathalie Bricon-Souf: To-
ward a Deep Neural Approach for Knowledge-Based IR. Neur4IR workshop
at SIGIR (2016)

– Gia-Hung Nguyen, Laure Soulier, Lynda Tamine, Nathalie Bricon-Souf:
DSRIM: A Deep Neural Information Retrieval Model Enhanced by a Knowl-
edge Resource Driven Representation of Documents. ICTIR 2017
Code: https://github.com/giahung24/dsrim

– Gia-Hung Nguyen, Lynda Tamine, Laure Soulier, Nathalie Souf: Learn-
ing Concept-Driven Document Embeddings for Medical Information Search.
AIME 2017

– Gia-Hung Nguyen, Lynda Tamine, Laure Soulier, Nathalie Souf: A Tri-
Partite Neural Document Language Model for Semantic Information Re-
trieval. ESWC 2018

– Lynda Tamine, Laure Soulier, Gia-Hung Nguyen, Nathalie Souf: Offline ver-
sus Online Representation Learning of Documents Using External Knowledge.
ACM Trans. Inf. Syst. 37(4): 42:1-42:34 (2019)

• Publication on textual grounding with images

– Eloi Zablocki, Patrick Bordes, Laure Soulier, Benjamin Piwowarski, Patrick
Gallinari: LIP6@CLEF2017: Multi-Modal Spatial Role Labeling using Word
Embeddings. CLEF (Working Notes) 2017

– Eloi Zablocki, Benjamin Piwowarski, Laure Soulier, Patrick Gallinari: Learn-
ing Multi-Modal Word Representation Grounded in Visual Context. AAAI
2018
Code: https://github.com/EloiZ/embedding_evaluation

– Eloi Zablocki, Patrick Bordes, Laure Soulier, Benjamin Piwowarski, Patrick
Gallinari: Context-Aware Zero-Shot Learning for Object Recognition. ICML
2019

– Patrick Bordes, Eloi Zablocki, Laure Soulier, Benjamin Piwowarski, Patrick
Gallinari: Incorporating Visual Semantics into Sentence Representations
within a Grounded Space. EMNLP/IJCNLP 2019
Code: https://github.com/pbordes/multimodal_sentence_rep

– Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier, Nicolas Thome,
Matthieu Cord: Cross-Modal Retrieval in the Cooking Context: Learning
Semantic Text-Image Embeddings. SIGIR 2018
Code: https://github.com/Cadene/recipe1m.bootstrap.pytorch

https://github.com/giahung24/dsrim
https://github.com/EloiZ/embedding_evaluation
https://github.com/pbordes/multimodal_sentence_rep
https://github.com/Cadene/recipe1m.bootstrap.pytorch


7.2. On-going works 89

7.2 On-going works

7.2.1 Domain adaptation and continual learning

As discussed in the previous chapter, domain adaptation is crucial for interactive neural
models that face evolving trends and different users. From a more general point of view,
human-machine collaboration settings in which an agent and a user interact to solve a
particular task together are also constrained by adaptation issues, whether in terms of
new environments or new interactions. For both neural models or reinforcement learning
approaches, training an optimal model or an optimal policy able to generalize for all
types of interactions/environments is complex. To tackle this issue, we are exploring the
potential of mode connectivity [Benton et al. 2021, Kuditipudi et al. 2019] and more
particularly the characteristics of neural subspaces [Wortsman et al. 2021], to exhibit
interesting properties towards the generalization setting. These methods analyze the
shape of the parameter space to build neural network subspaces. The latter contain
diverse solutions (i.e., a set of model parameters) that process information differently.
The intuition is that neural models in a subspace can be ensembled at the inference
step, and having access to it instead of a single policy facilitates the adaptation without
any cost of additional training. We propose two main works in this direction under
the scope of reinforcement learning. First, we have addressed neural subspace for
reinforcement learning switching the paradigm to subspaces of policies, instead of
subspaces of neural networks. We have also demonstrated in a second contribution that
subspaces of policies are well adapted for continual reinforcement learning.

We are now exploring neural subspaces for information retrieval, but the com-
plexity is even harder since state-of-the-art models are all based on large language models.
Given their large number of parameters, it is not reasonable to build a neural subspace
including the set of all parameters in the encoder-decoder architecture. We are therefore
exploring which parts of large language models can be considered for being included in
the subspace and conducting experiments regarding zero-shot learning.

Outcomes These works have been initiated during the Ph.D. of Jean-Baptiste Gaya
(Facebook CIFRE) and the NLP extension is done in collaboration with Thomas Gerald
(now a postdoctoral researcher at LISN) and Pierre Erbacher (Ph.D. on the ANR JCJC
SESAMS). Works focusing on reinforcement learning have led to two publications:

• Jean-Baptiste Gaya, Laure Soulier, Ludovic Denoyer: Learning a subspace of poli-
cies for online adaptation in Reinforcement Learning. ICLR 2022

• Jean-Baptiste Gaya, Thang Doan, Lucas Caccia, Laure Soulier, Ludovic Denoyer,
Roberta Raileanu. Building a Subspace of Policies for Scalable Continual Learn-
ing. Deep RL workshop @NeurIPS 2023. Also under review for an international
conference.

7.2.2 Contextual information extraction

Named Entity recognition (NER) and Relation Extraction (RE) can be seen as the
reverse side of data-to-text generation with the objective to extract entities and their
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relationships within a text in natural language (see the WebNLG challenge1 addressing
the data-to-text and text-to-data task). We consider two types of contexts:

• The textual context, i.e. the paragraph in which a entity occurs, under the
assumption that the entity class can vary according to the context. Indeed, all
current approaches [Liu et al. 2011, Liang et al. 2020, Souza et al. 2019] have a
major drawback: they all consider an entity as a universal concept, linked to a
single class, even if it may appear in different surface forms and contexts. This
limits the potential of the information extracted which could be useful for more
elaborated downstream tasks. As an example, Amazon will always be classified as
a company, regardless of the context in which it is mentioned. But viewing this
entity through the concepts of seller/buyer implies great differences in the way we
perceive it and treat it. Amazon is likely to sell a product to an individual person
but buy from another company. We therefore propose the Dynamic NER task in
which the label of entity varies depending on the context. We define two datasets
and an evaluation benchmark.

• The multi-modal context, i.e. the whole document, following the line of
work combining textual and visual modalities so as to leverage document lay-
out [Xu et al. 2019]. Our objective is to improve the multimodal fusion which is
generally performed either at an early or a late stage, hindering their interaction
throughout the learning process. We believe that it is crucial to jointly keep modal-
ity independent (to avoid error propagation that can be related, for instance, to
the OCR) and let the possibility for the network to merge them when necessary.

Outcomes This work is conducted with Tristan Luiggi, a PhD student of CIFRE,
co-supervised with Vincent Guigue.

• Tristan Luiggi, Laure Soulier, Vincent Guigue. Dynamic Named Entity Recogni-
tion. In: SAC 2023.

1https://webnlg-challenge.loria.fr/challenge_2020/

https://webnlg-challenge.loria.fr/challenge_2020/
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8.1 Contributions and perspectives

In this manuscript, I have introduced our contributions focused on three main research
axes dealing with relevance and faithfulness in text generation, contextualization of in-
formation needs, and neural ranking models adaptability in continual learning settings.
In what follows, I sum up these contributions and the associated perspectives.

8.1.1 Towards faithful and relevant text generation

To ensure faithfulness and relevance in text generation, we have addressed two main
challenges.

The first challenge focused on input encoding to capture data peculiarities related
to the structure of the data. To do so, we focused on the data-to-text generation re-
search domain and proposed a hierarchical data encoding aiming at representing entities
separately before embedding the data as a whole. This encoding is surrounded by a hier-
archical attention mechanism identifying first which entity is needed to be discussed and
then which element is interesting for this entity. This model has a twofold contribution:
it was the first work to both explicitly encode the data structure and use a transformer
network for data-to-text generation.

The second challenge focused on the decoding process for which we have studied two
use cases:

• In the data-to-text generation research domain, we addressed the pathological be-
havior of generation models that produce hallucinations due to the misalignment
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of training data. This problem is also encountered in standard text-to-text gen-
eration tasks. However, it is even more challenging in data-to-text generation for
several reasons: 1) the nature of input and output elements is different (e.g., nu-
merical data vs. generated text), 2) the textual description might include reasoning
over data (e.g., "player A has mastered the game" means that he scored the most
points, implying a maximum calculus). Altogether, these task peculiarities hinder
the semantic matching of the data input and the textual output, and accordingly
highlight the difficulty to build a relevant semantic space bridging both modalities
and decoding a faithful text. To tackle this issue, we have proposed two models
based either on reinforcement learning (not introduced in the manuscript) or on a
multi-branch decoder. The latter aims at separating during the decoding stage rel-
evant and divergent textual information with respect to the input data constraint.
Our motivation was to learn different decoder modules regarding three factors (flu-
ency, content, and hallucination) to control the importance of each of them during
the inference step.

• In the conversation search research field, we addressed the issue of query-driven text
generation in which the difficulty relies on generating texts that are both faithful
regarding the data input (in our case a list of documents) and the query (i.e.,
the information need). Guided by the constraint of the query to solve a complex
information need, we have shown that the planning-based models are useful to
guide the text generation process and produce structured and relevant texts.

Perspectives.
While several steps forwards have been done these last years toward faithful and rele-
vant text generation, generative models can largely be improved. We present in what
follows the different research directions, particularly related to data-to-text generation
and conversational search, we envision for the future.

Numerical reasoning. In the data-to-text research field, one critical error that stands
out is about numbers [Ji et al. 2022]. Current approaches [Puduppully et al. 2019b,
Wiseman et al. 2017, Rebuffel et al. 2022] are generally effective in reporting values of
tables and paraphrasing them. However, the data-to-text generation task is more com-
plex: it often requires comparing values between them (e.g., identifying the best player
or counting the difference in terms of point numbers between two teams in a basketball
game) or to perform operations with abstractive concepts (e.g., estimating the number of
days between a date and an event such as Christmas). While several works have been ad-
dressed in the Machine Reading Comprehension task [Dua et al. 2019, Herzig et al. 2020]
or numerical reasoning tasks [Trask et al. 2018, d’Ascoli et al. 2022], they are often lim-
ited to simple numerical operations (such as sum or difference) and have not been envi-
sioned in the perspective of data-to-text generation. Our ambition is to address numeri-
cal reasoning through different NLP tasks, such as question-answering [Dua et al. 2019,
Herzig et al. 2020] or data-to-text generation [Puduppully et al. 2019a] including more
complex data, e.g., time series of sensor data for weather presentation [Reiter et al. 2005].
We plan to integrate numerical executors [Andor et al. 2019, Pi et al. 2022] into language
models so as to identify which parts of the input are relevant and how to combine them
to build new knowledge in the generated output. Combined with the ability of large
language models, we believe that it should allow to reason over (like-wise) numerical
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information to improve the faithfulness of textual descriptions.
Personnalization of text generation. One way to ensure the relevance of text gen-

eration is to adapt the generation to the user and his/her intent. While several works
have focused on style transfer [Ao et al. 2021, Chawla & Yang 2020, Malmi et al. 2020],
personalizing data-to-text generation is not obvious. We believe that personalization is
not only an issue of style but also a challenge of selecting the relevant content for the
user. To the best of our knowledge, there is no work and no available dataset in this
direction. To tackle these issues, we are currently building a dataset on movies including
structured meta-data, reviews modeling users’ interests, and personalized textual de-
scriptions. We then plan to explore different techniques to personalize the data-to-text
generation process by either using prompt-based language models [Yao et al. 2022] or
injecting user profiles during decoding [Ao et al. 2021].

Model transferability. For specific text generation tasks, such as data-to-
text generation, models are trained or fine-tuned on specific datasets (restaurants
[Dušek et al. 2020], basketball games [Wiseman et al. 2017], ...). Their transferability
to real use cases that can be encountered by company needs (e.g., summarizing finan-
cial information) is therefore limited. Although large language models have demon-
strated great ability towards zero-shot adaptation [Devlin et al. 2019, Wei et al. 2022,
Cui et al. 2022], we believe that they can reach some limitations in the data-to-text gen-
eration task. Indeed, depending on the structure/format of the input data, it can be
difficult to understand their semantics from a zero-shot setting, and even more, identify
salient information that should be decoded.

8.1.2 Contextualizing information needs expressed in natural language

Another research topic presented in this manuscript is the understanding of information
needs in conversational search systems which are a core topic in the IR community
since 2018 [Culpepper et al. 2018]. We focused on the conversation flow underlying the
understanding the information need, either at a given conversation turn (as designed in
TREC CAsT) or through a proactive interaction (as the query clarification task).

Through our participation in TREC CAsT, we have designed query reformulation
models and contextual ranking models able to take into consideration the conversation
to better represent the query. We have proposed the CoSPLADE model, a contextu-
alized first-stage ranking model trained without the supervision of documents relevant
in the conversation context. While this step is crucial, we also have addressed the
query understanding issue as a proactive setting in which the system interacts with
the user to understand and anticipate his/her information need. While several works
[Aliannejadi et al. 2019, Zamani et al. 2020a] have addressed this task through a one-
turn interaction, we proposed a framework simulating user-system interactions aiming
at suggesting a set of query clarifications to the user who identifies the best one given
his/her initial topic. The query clarification model is based on a diverse set of queries re-
lated to the initial topic which is re-ranked according to user’s interactions. Experiments
have shown the benefit of such a clarification process in the retrieval process.

Perspectives.
Having in mind that mixed-initiative are prevalent for conversational search, our per-
spectives focus on the query clarification task. One underlying challenge relies on the
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fact that there is no dataset with jointly long-term interactions in natural language and
a large amount of supervised data related to the IR tasks. We, therefore, envision two
main challenges for query clarification.

Toward multi-turn query clarification simulation framework with interactions in natu-
ral language. As discussed in section 5.3, the next research issue concerns the interaction
mode, through natural language allowing a more natural framework in which the user
and the system interact. We, therefore, envision extending our simulation framework by
integrating interactions in natural language instead of simply displaying queries for the
IR agent and clicking on the best query for the user agent.

Lightweight domain adaptation of our query clarification simulation framework. Hav-
ing in mind the deployment in production, we believe that a second challenge could be the
transferability of our query clarification simulation framework to other domains/datasets.
Guided by our previous simulation framework demonstrating the potential of query clar-
ification to enhance ad-hoc IR settings and constrained by the fact that it exists only
a single query clarification dataset [Aliannejadi et al. 2019], we plan to work on unsu-
pervised domain adaptation strategies. For instance, by adapting the language model
of our query clarification components through masked language modeling, we hope that
after a few simulated interactions, the IR system would benefit from a clearer vision of
the information needed to perform the retrieval step.

8.1.3 Investigating the ability of neural ranking models to continually
adapt to evolving topics.

Assuming that IR models need to adapt to evolving users and/or topics, we investigated
the continual learning research field and proposed a continual learning framework for
iR modeling short and long topic sequences. We also analyzed the behavior of neural
ranking models while fine-tuning successive tasks. We have compared transformer-based
models with interaction-based models, highlighting different transferability levels and dif-
ferent abilities to face catastrophic forgetting. These works are the first ones to envision
continual learning in IR and can serve as an evaluation framework for future works.

We plan two main future directions: pursuing our effort toward continual learning in
IR and extending this work to intent detection in conversational systems.

Toward lifelong learning strategies adapted to ranking tasks. For IR, we plan to fo-
cus on the long topic sequence scenario, which is the most realistic one, and explore
continual learning techniques for neural ranking models. In contrast to previous works
in vision which mainly address classification tasks and in which catastrophic forgetting
is highly noticeable, we are aware of the possible difficulty to adapt continual learn-
ing techniques for document scoring and acknowledge the unusual behavior of neural
ranking models that show a small catastrophic forgetting in specific settings. There-
fore, as shown in our preliminary experiments using EWC [Lovón-Melgarejo et al. 2021],
continual learning techniques are promising and we envision adapting other strategies
for ranking models. For instance, architecture-based approaches in computer vision
[Cai et al. 2019, Veniat et al. 2020] propose to extend the network by integrating ad-
ditional classes at the output level. In IR, the task is different, and the additional
knowledge should rather be extended in the intermediate layers, focusing more on the
learned embedding space than on the output. Having also in mind the outcomes of our
exploratory analysis, we believe that such lifelong techniques must be integrated into
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neural ranking models with an awareness level regarding the properties of evolving data.
Said otherwise, neural ranking models robust to continual learning settings should in-
clude a modularization component tracking the critical changes in the training data and
adapting accordingly the learning strategy.

Investigating continual learning for cross-lingual intent detection. For intent detec-
tion, we will address the limitation due to the language specificity for intent detection.
If we desire to deploy virtual assistants all over the world, it is therefore important
to design models able to address a large number of languages. Although multilingual
models are a solution, it can be difficult to design a model trained simultaneously on
all languages, particularly for under-resourced ones. We can therefore assume that the
deployment of virtual assistants can be done step by step over different countries in the
world and, thus, that virtual assistants will face different languages at different times.
This assumption implies that, when designing/training a model for this task, languages
can be incrementally added to the training procedure. In our case, we propose to explore
a continual learning setting in which the task is fixed, but the stream is based on differ-
ent languages. The model, therefore, learns the knowledge of language peculiarities. To
satisfy the initial condition of virtual assistants to address different languages, we need
to ensure that our task-based model does not forget previous languages while training
on new ones.

8.2 Future research directions

8.2.1 Retrieval-augmented Machine Learning

The majority of neural models for NLP or Machine Learning are based on the assumption
that all knowledge and reasoning required for the task are captured by parameters. Large
language models have demonstrated that increasing the number of parameters generally
leads to performance increases. However, this strategy focused on parameter size is not
scalable, and accordingly not desired in terms of computational cost. A recent research
paper [Zamani et al. 2022a] has discussed the potential of enhancing neural models with
IR systems. The intuition is to couple neural models with IR systems to access and
reason over large text corpora and knowledge stores with the final objective to reduce
the number of parameters in neural models and improve their scalability. This strat-
egy has already been used for pseudo-relevance feedback in IR [Croft & Harper 1997],
question-answering [Gao et al. 2022, Hsu et al. 2021] or, more recently, to train language
models [Guu et al. 2020]. Beyond scalability, the authors also argue that accessing ex-
ternal knowledge through IR systems has several merits: 1) improving the generalization
performance of the model, 2) being more robust to information updates and temporal
changes, and 3) grounding model decisions with external knowledge leading to more
interpretability and explainability.

We believe that this paradigm deserves attention and is interesting to revisit the
different research fields addressed in this manuscript.

• For the data-to-text generation task, the IR system can thus serve as anchor sources
for knowledge grounding for both in-domain and out-of-domain datasets. For in-
domain, it is worth reminding that the data structure is not fully explicit in terms of
semantics (e.g., for a table, columns can be abbreviated, and values are of different
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formats...). Therefore, understanding the semantics of the data structure might be
difficult. In addition, in many situations, the expected decision relies on implicit
information directly related to the application. For example, in NBA games, the
action "passing" implies that passes are only made between players of the same
team. Therefore, when player A is identified as belonging to the winning team and
passes to player B, B is de facto the winner. Conversely, intercepting a pass from
A would assign B to the losing team. For the out-of-domain case, the difficulty
is greater because, beyond remaining in-domain challenges, the model needs to
capture the semantics of another domain than the one used for its training. We
can believe that using a retrieval module can help to face a larger knowledge over
different application domains and, thus, improve the generalization performance.

• For the interactive information retrieval task, both query clarification and con-
tinual learning settings can benefit from IR-augmented models, but for different
reasons. For query clarification, the difficulty lies in the diversification of sugges-
tions. Therefore, retrieval-augmented models might help in grounding the initial
query and therefore in suggesting different facets or orthogonal topics to improve
the search process. For the continual learning setting, a retrieval-augmented sys-
tem might be beneficial to identify samples characterizing information updates or
temporal changes or to interpolate new knowledge. The component can therefore
serve as a replay buffer for instance for rehearsal strategies.

8.2.2 Language-augmented Robotics

With the recent affiliation of the MLIA team to the Robotic Laboratory (ISIR) of Sor-
bonne University, new research axes have been discussed and promise tremendous col-
laborations. One of the research challenges we are planning to address in the following
years is to improve reinforcement learning models for robotics with natural language
processing. Autonomous agents require reasoning and planning strategies for perform-
ing tasks. We, therefore, believe that the semantics captured by large language models
can enhance the decision process at different levels.

First, it can allow grounding object representations with common sense to iden-
tify their intrinsic and actionable properties. Large language models and also common
sense knowledge bases, such as ConceptNet1, can be used as complementary information
sources, implying to design representation models leveraging multi-modal information.
The difficulty would be to identify which properties are relevant for objects and how
to fuse them into a single representation. Another strategy can be to encode objects
differently according to each modality and then use self-attention to learn the possible
interactions that are relevant for the task solving. Object grounding has been addressed
in [Sridharan & Mota 2022, Tsiami et al. 2018], but we believe that the grounding needs
to be extended to the scene to better model the context and object properties.

Second, natural language can serve for building and clarifying the planning strategy,
and therefore the actions done by a robot. Several works have addressed instruction
identification as abstract representation [Andreas et al. 2018, Jacob et al. 2021] or nat-
ural language expression [Sharma et al. 2022], but the limited data supervision is often

1https://conceptnet.io/

https://conceptnet.io/
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a challenge [Chen et al. 2020a, Sharma et al. 2022]. To tackle this issue, we envision in-
teractive training processes, implying asking humans to label situations with sentences,
with strong care on limiting interactions to a few relevant situations, to reduce human
effort. The challenge consists in defining when to interact with real users in the plan-
ning and which information asking to increase the supervision data. One can imagine a
policy combined with a language model to 1) identify whether to generate the following
instructions or to ask humans about the next instruction. This decision can be taken
by evaluating whether the language model has sufficient knowledge to capture all the
semantics of the current scene (e.g., through a task-guided masked language modeling
loss), 2) leverage the language model to interact with humans if necessary, and 3) gener-
ate the next instruction according to the scene, the state of the policy and the interaction
with humans.

8.3 My last words

Writing this manuscript allowed me to gather different research fields (data-to-text gen-
eration, conversational search, continual learning) that are, on a daily basis, addressed
independently. They all rely on the design of neural models or leverage language models.
Beyond this, I think that there is a synergy in all my research. While NLP techniques
and language models are able to exploit a large amount of human knowledge to cap-
ture the meaning of textual data, IR models allow the retrieval of knowledge from large
databases, and planning techniques are well known to consider complex behavior and
reasoning at the machine level. The crossroad of these research fields conducts me to
design step-by-step components of relevant and robust human-machine collaboration
systems.
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