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English summary
The human brain is a vastly expensive information processing machine with respect to its
relative energy uptake compared to other organs. This cost must be outweighed by potential
benefits in order to be a viable solution. Hence, it can be hypothesized that the human brain
is an extremely efficient information processing apparatus that outperforms any artificial
system in terms of energy efficiency by far. Thereby, an understanding of general underlying
computational principles not only reveals potential new insights into how artificial neural
network systems can be improved but furthermore would have a major impact on clinical
applications, such as brain computer interfaces (BCI), artificial sensory organs (e.g. cochlea
implants) or robotic prosthetics that communicate directly with the nervous system. It has
been demonstrated countless times that neuronal oscillations - rhythmically synchronized
neuronal activity - play an important role in cortical signal processing. However, their exact
role with respect to the actual ongoing information processing remains still widely unclear.
A major problem thereby is that neuronal oscillations and respective cortical computation
models make predictions on the level of cortical laminae. While relatively easy accessible
in animal models, cortical activity with laminar level resolution (< 1 mm) is difficult to
obtain in healthy participants. The present thesis not only aims to demonstrate how to
bridge the gap between human and animal model methodologically by implementing state
of the art neuro-imaging pipelines, but furthermore targets core predictions derived from
animal models and patient studies with respect to the role of neuronal oscillations in local
computations and network brain dynamics. A simultaneous EEG-fMRI experiment was
conducted with a voxel size of 0.8mm. Thereby, stimulus feature specific α activity could be
shown to differentially respond to preferred compared to not preferred stimuli predominantly
in deep and middle cortical layers of V1, separately for low and high α. γ band oscillations
have been found to be correlated with the feature processing itself, predominantly in deep
and superficial layers. Both findings are in line with previous literature. Additionally two
laminar level MEG experiments have been conducted in order to refine respective findings
from the previous experiment. Thereby, one MEG experiment has been specifically designed
to target low level cortical interactions, whereas the second has been designed to target
low to higher order communication for multiple frequency bands. Due to the pandemic
and other circumstances, the recordings of the MEG data have been delayed by more than
a year. For this reason only preliminary results can be presented. Additionally, it has
been planned to investigate different possibilities to test respective hypotheses using neural
network simulations. However, as expected, only the initial planning and piloting phase
has been reached. In summary, this thesis provides new insights into differential α and γ
band activity in different cortical layers, confirming predictions from animal and theoretical
models.
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Résumé français
Le cerveau humain est une machine de traitement de l’information extrêmement coûteuse
en termes de consommation d’énergie par rapport à d’autres organes. Pour être une solu-
tion viable, ce coût doit être compensé par les avantages potentiels. On peut donc émettre
l’hypothèse que le cerveau humain est un appareil de traitement de l’information extrême-
ment efficace qui surpasse de loin tout système artificiel en terme d’efficacité énergétique.
Ainsi, la compréhension des principes généraux de calcul sous-jacents ne révèle pas seulement
de nouvelles perspectives potentielles sur la façon dont les systèmes de réseaux neuronaux
artificiels peuvent être améliorés, mais aurait également un impact majeur sur les applica-
tions cliniques telles que les interfaces cerveau-machine, les organes sensoriels artificiels (par
exemple, les implants de cochlée) ou les prothèses robotiques qui communiquent directement
avec le système nerveux. Il a été démontré à maintes reprises que les oscillations neuronales
- activité neuronale synchronisée de manière rythmique - jouent un rôle important dans le
traitement des signaux corticaux. Cependant, leur rôle exact par rapport au traitement de
l’information en cours reste encore très flou. Un problème majeur est que les oscillations
neuronales et les modèles de calcul cortical respectifs font des prédictions au niveau des
couches corticales. Bien que relativement facile d’accès dans les modèles animaux, l’activité
corticale avec une résolution au niveau laminaire (< 1 mm) est difficile à obtenir chez les
sujets sains. La présente thèse vise non seulement à démontrer comment combler le fossé en-
tre les modèles humains et animaux d’un point de vue méthodologique en mettant en œuvre
des pipelines de neuro-imagerie de pointe, mais aussi à cibler les prédictions fondamentales
dérivées des modèles animaux et des études sur les patients en ce qui concerne le rôle des
oscillations neuronales dans les calculs locaux et la dynamique des réseaux cérébraux. Une
expérience EEG-IRMf simultanée a été menée avec une taille de voxel de 0, 8mm. Il a
ainsi été démontré que l’activité α spécifique aux caractéristiques du stimulus répondait de
manière différentielle aux stimuli préférés des neurones activés par rapport aux stimuli non
préférés par ces neurones, principalement dans les couches corticales profondes et moyennes
de V1, séparément pour les oscillations α de fréquence élevée et basse. On a constaté que
les oscillations de la bande γ étaient corrélées au traitement des caractéristiques du stimu-
lus, principalement dans les couches profondes et superficielles. Ces deux résultats sont en
accord avec la littérature antérieure. En outre, deux expériences MEG au niveau laminaire
ont été menées afin d’affiner les résultats respectifs de l’expérience précédente. Ainsi, une
expérience MEG a été spécifiquement conçue pour cibler les interactions corticales de bas
niveau, tandis que la seconde a été conçue pour cibler la communication de bas à haut niveau
pour des bandes de fréquences multiples. En raison de la pandémie, les enregistrements des
données MEG ont été retardés de plus d’un an. Pour cette raison, seuls des résultats prélim-
inaires peuvent être présentés. En outre, il a été prévu d’étudier différentes possibilités de
tester les hypothèses respectives à l’aide de simulations de réseaux neuronaux. Cependant,
comme prévu, seule la phase initiale de planification et de visualisationa été atteinte. En
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résumé, cette thèse fournit de nouvelles informations sur l’activité différentielle des bandes
α et γ dans différentes couches corticales, confirmant les prédictions des modèles animaux
et théoriques.
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Deutsche Zusammenfassung
Das menschliche Gehirn ist eine sehr kostspielige informationsverarbeitende Maschine, die
im Vergleich zu anderen Organen relativ viel Energie verbraucht. Diese Kosten müssen durch
den potenziellen Nutzen aufgewogen werden, um eine praktikable Lösung darzustellen. Da-
her lässt sich die Hypothese aufstellen, dass das menschliche Gehirn ein äußerst effizienter
Informationsverarbeitungsapparat ist, der jedes künstliche System in Bezug auf die En-
ergieeffizienz bei weitem übertrifft. Das Verständnis der allgemeinen zugrundeliegenden
Rechenprinzipien ermöglicht nicht nur neue Erkenntnisse darüber, wie künstliche neuronale
Netzsysteme verbessert werden können, sondern hätte auch große Auswirkungen auf klinische
Anwendungen wie Gehirn-Computer-Schnittstellen (BCI), künstliche Organe (z. B. Cochlea-
Implantate) oder Prothesen, die direkt mit dem Nervensystem kommunizieren. Dass neu-
ronale Oszillationen - rhythmisch synchronisierte neuronale Aktivität - eine wichtige Rolle
bei der kortikalen Signalverarbeitung spielen, wurde bereits unzählige Male nachgewiesen.
Ihre genaue Rolle im Hinblick auf die tatsächlich ablaufende Informationsverarbeitung ist
jedoch noch weitgehend unklar. Ein Hauptproblem dabei ist, dass neuronale Oszillatio-
nen und entsprechende kortikale Berechnungsmodelle Vorhersagen auf der Ebene der kor-
tikalen Schichten machen. Während die kortikale Aktivität in Tiermodellen relativ leicht
zugänglich ist, ist sie bei gesunden menschlichen Probanden nur schwer mit einer Auflö-
sung auf Schichtebene (< 1 mm) zu erfassen. Die vorliegende Arbeit zielt nicht nur da-
rauf ab zu zeigen, wie die Lücke zwischen Mensch und Tiermodell methodisch überbrückt
werden kann, indem modernste Neuro-Imaging-Verfahren angewendet werden, sondern zielt
darüber hinaus auf zentrale Vorhersagen ab, die aus Tiermodellen und Theorien zur Rolle
neuronalen Oszillationen abgeleitet wurden. Es wurde ein simultanes EEG-fMRI-Experiment
mit einer Voxelgröße von 0, 8mm durchgeführt. Dabei konnte gezeigt werden, dass stimulus-
merkmalsspezifische α-Aktivität auf bevorzugte im Vergleich zu nicht bevorzugten Stimuli
vor allem in tiefen und mittleren kortikalen Schichten von V1 differenziert reagiert, und
zwar getrennt für niedrige und hohe α Frequenzen. Beide Ergebnisse stehen im Einklang
mit der bisherigen Literatur. Zusätzlich wurden zwei MEG-Experimente auf Schichtebene
durchgeführt, um die entsprechenden Ergebnisse aus dem vorherigen Experiment zu verfein-
ern. Dabei wurde ein MEG-Experiment speziell auf kortikale Interaktionen auf niedriger
Ebene, und das zweite Experiment auf die Kommunikation niedriger bis höherer Ordnung
in mehreren Frequenzbändern, ausgerichtet. Aufgrund der Pandemie und anderer Um-
stände haben sich die Erhebungen der MEG-Daten um mehr als ein Jahr verzögert. Aus
diesem Grund können nur vorläufige Ergebnisse vorgelegt werden. Zusätzlich ist geplant,
verschiedene Möglichkeiten zu untersuchen, um entsprechende Hypothesen mit Hilfe von
Simulationen mit neuronalen Netzen zu testen. Wie zu erwarten war, wurde jedoch nur die
erste Planungs- und Pilotphase erreicht. Zusammenfassend lässt sich sagen, dass diese Arbeit
neue Erkenntnisse über die differentielle α- und γ-Bandaktivität in verschiedenen kortikalen
Schichten liefert und die Vorhersagen aus Tier- und Theoriemodellen bestätigt.
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1 Introduction
Plants do neither have a brain nor a nervous system [2], which is surprising, given that
they do communicate [3], adapt to environmental changes [4] and engage in quasi-social in-
teractions [5]. These seemingly complex patterns of behavior are classically reserved for or
attributed to organisms possessing nervous systems. According to Watanabe et al. (2009)
[6], "the function of the nervous system is to sense and relay fast information about surround-
ings" and further, "this rapid and restricted mode of signal transmission allows an animal
to process multiple messages and respond appropriately". According to this definition, the
purpose of a nervous system within an organism is limited to functions that even organisms
without such a complex system can accomplish, except for the two main keywords: process
and fast. Those two keywords however are of major importance for the understanding of
complex systems, such as the human brain. Processing information can be interpreted syn-
onymous to changing information. In biological systems the change of information might
often be an actual reduction of information, such that inputs from the environment can be
meaningfully interpreted and reacted to. An extreme example would be the occurrence of
a predator in the field of view of some animal. The electromagnetic frequency spectrum
perceived as light of different color by the retina or complex short lived air pressure changes
in form of auditory wave patterns, are reduced to the information of the presence of a preda-
tor in order to respond appropriately (e.g. fight or flight). Hence, (complex) information
processing is of increased relevance if a specific input cannot be relayed one-to-one onto a
specific output (like e.g. a simple chemical reaction). Acacia trees for instance warn each
other by releasing molecules into the air if eaten by a herbivore. Neighboring trees receive
odor-like molecules at specific receptors and a short cascade of chemical reactions initiates a
chemical defense program [7]. Importantly, there is no ambiguity within the signal cascade.
The signal molecule directly causes the appropriate response without changing (processing)
the information as such. Receiving the signalling molecule and initiating production and
release of defense molecules does not require the change of information and rather acts sim-
ilar to a light switch. Hence, an organism’s behavior relying on simple signal transmission
cascades is limited to a predetermined number of input-output patterns. Adaptation to
environmental changes are hence slow or even only possible on an evolutionary time scale.
Neuronal information processing enables emergent 1 behavior that is less determined by the
physical substrate of the organism. Fast responses enable an organism not only to react

1Emergence results from the interaction of different parts of a particular system that cannot be explained
by adding up the features of the respective parts [8]. Similarly, the interactions of atoms within a tree or
a human can have dramatic consequences in what emergent behavior they allow for. Life itself is based on
"dead" matter, which by interaction produces emergent features. Emergent properties have been observed
in biological signaling pathways as well [9]. Bi-stable network state patterns (e.g. steady-state activities)
or timed signal integration has been observed (among other patterns) to "emerge" depending on input
properties.
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quickly to changes of the environment, but furthermore to manipulate the environment and
receive (almost) instant feedback. Especially the latter aspect seems of major importance,
since nervous systems can be almost exclusively observed in moving animals. Famously,
juvenile sea squirts travel the ocean in search for a place to cling to for the rest of their
lives and once they found it, start consuming their own brain, because its no longer needed.
Without the need for rapid information processing and adaptation, those animals decide to
get rid of such a costly and otherwise not vital system. Any understanding of functional
principles for any kind of biological nervous system, can hence partly be derived from the
functional purpose it is serving. In other words: Computational properties in the brain are
tightly linked to the respective purpose they serve. A mantis shrimp’s compound eye for
instance was found to contain an array of 16 different photo-receptors for sensitivity to linear
and circular light polarization as well as a multitude of different wavelengths [10]. Exagger-
atedly spoken, those animals have 16 base colors (as opposed to three in humans). Those
findings have been explained, by the predatory nature of those animals and their capability
to communicate in the short wave ultra violet light spectrum with others, unseen from most
- if not all - other marine animals. The behavior of the mantis shrimp is heavily driven by
visual input - that is the sensing and interpretation of a specific spectrum of electromagnetic
radiation - and outperforming other marine animals at the level of electromagnetic spectral
bandwidth provides a potential evolutionary leap. Evolutionary advantages however, do not
necessarily mean that "the best solution" for any given problem was found, but rather that
the solution that was found was sufficient enough to minimize that specific disadvantage
that otherwise would have led to extinction. If plants do not possess a nervous system, this
means that this system is not crucial to their evolutionary niche and respective "behavioral"
patterns. Similar to the concept of "embodied cognition" 2 [11], environmental conditions
and evolutionary niche seem tightly linked to the type and capacity of biological nervous
systems. The human pre-frontal cortex has been found to be particularily large, compared
to chimpanzees and macaques [12] and has been linked to cognitive control [13], a psycho-
logical term describing the underlying effort tied to problem solving, working memory, etc.,
which could be considered core evolutionary features in humans.

2Embodied cognition [11] reflects the idea that an individuals perception of the world is heavily determined
by the shape and physical properties of its body. A very simple example would be the taste of sugar.
Because glucose is one of the most fundamental energy sources for life in general its importance is cognitively
reflected by a pleasant taste (sweet). Another examples would be sheer body size. Depending on the size
of an organisms body, aspects of the environment that are cognitively classified as "small" or "large" might
heavily vary.
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1.1 The human brain: highly efficient, challenging to study

The human brain is a remarkably complex and efficient information processing machinery.
Complex, because even letting temporal dynamics aside, it contains close to 100 billion neu-
rons [14] and an estimated number of about 100 trillion connections [15]. Efficient, because
even though it consumes almost 20% of the energy provided to the body while only weighting
in at 2% of its mass [16], its total power consumption is estimated to be around 20 Watt/h
[17], which is roughly the same consumption as a modern LED-light-bulb. It has been esti-
mated that a real time simulation of the human brain on standard compute hardware, would
result in a power uptake in the Gigawatt/h range [18]. Even though those estimates must
be seen as highly speculative, a difference in power consumption between regular transistor
based computers and the human brain very likely spans multiple orders of magnitude. Un-
derstanding how computations are carried out by the human brain therefore might provide
important insight into efficient and adaptive computing in general. While the human brain
can be considered rather weak in the computation of exact solutions (e.g. mental arithmetic),
approximate solutions in turn are computed very rapid and efficiently (e.g. detecting and
responding to an open door of a car parking next to the cycling lane). Modern applications in
artificial intelligence (AI), employing artificial neural network (ANN) models, could greatly
benefit from insights into the efficient compute machinery, its core functions and architec-
ture. Beside the rather distant goal of developing new methods for information processing
derived from biologically systems, insights into computational patterns play an important
role in the understanding of humankind in itself, as well as for the development of treatments
for brain related disease. While the first can be seen as a more or less philosophical issue,
the latter directly impacts the lives of people suffering from brain related disabilities. Un-
derstanding the anatomical and functional properties of the human brain has thereby led to
the development of deep brain stimulation to ease symptoms related to Parkinson’s disease
[19], made retina [20] and cochlea implants [21] feasible, as well as brain controlled prosthetic
limbs [22]. Beside the major challenge of precisely mapping out anatomical connections in
the order of trillions, a full understanding of human brain functions must entail a funda-
mental understanding of the temporal dynamics of neuronal communication and respective
computational properties. Understanding the temporal dynamics requires an understanding
of the underlying "hardware", which can be achieved on multiple scales (for a short summary
about single cell neuronal activity see What is . . . on page 5 ). However, this condition is
not sufficient, as the example of the Hydra demonstrates. The Hydra is a small freshwater
organism with a remarkably simple neuronal network. Its nervous system is composed of
only a few hundreds to few thousands of neurons [23], which allowed researchers to create the
first fully complete neuronal activation map of a living organism, by recording the activity
of all neurons simultaneously [24]. Its nervous system - due to its simplicity called nerve net
- contains only two sheets or layers of neurons [25] that are functionally largely separated
[24]. One of those sheets mostly comprises sensory neurons (receptors), while the second
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sheet coordinates behavior, such as feeding, elongation, radial and longitudinal contractions.
Notably, the interaction between anatomical structure and temporal dynamics led to rather
complex patterns of emergent behavior in the Hydra model system. Interestingly, even for
such a simple model organism as the Hydra, it has not yet been possible to decipher the full
neuronal code, since the combinatorial explosion for different states of activation for each
neuron, together with the complexity added by temporal dynamics across the network(s),
creates a huge state space at each time point. For much more complex neuronal systems as
the human brain, even obtaining a full activation map might be an intractable task for the
foreseeable future. Focusing macroscopically on functionally distinct compartments (such as
the visual system in mammals) instead of the entire brain including each single connection
and activation state however, still provides meaningful insights into some computational core
principles of the mammal cortex (similar to unraveling the two functionally distinct networks
in the Hydra).

Studying brain network dynamics on a macroscopic scale (not looking at individual neu-
rons) can provide highly accurate insights about the underlying functionality, as demon-
strated in simulation studies on mean field or neural mass models [26–28]. The estimated
temporal dynamics produced by a simulated spiking neural network (simulating the dynam-
ics and interaction of each single neuron) thereby can often be described very precisely from
global dynamics obtained from the entire network and in turn allows for precise models using
mean field or neural mass dynamics without the need for single neuron simulations. In the
context of human brain research, those results suggest that meaningful information about
the fundamental principles of brain network dynamics might be at least partly extractable on
a macroscopic scale. Nonetheless, synaptic density e.g. in the adult human prefrontal cortex
is estimated to lie in the range of 109 synapses per mm3 [29]. Recording the average activity
of this many interactions per unit of time limits the accuracy of macroscopic information
that can be extracted nonetheless, almost irrespective of model accuracy. Therefore, even on
the macroscopic scale, a precise description of anatomical conditions and temporal dynamics
are indispensible to formulate accurate hypothesis to explain (human) brain functions.

Due to the tremendous amount of functions that are carried out by the human brain, a
full functional overview as well as an in depth comparison of anatomical differences between
multiple cortical and sub-cortical areas and functions cannot be provided within the realm of
this work. Instead this work focuses on the human neo-cortex as a structure of interest and
will specifically investigate the visual system as a model system for perception and sensory
information processing in general. Thereby, anatomical and functional properties will be
related to current frameworks on local cortical computations as well as widespread network
dynamics. Structural aspects of the brain will be discussed in the light of Temporal aspects
of the brain approaching the Research question, that is the role of neuronal oscillations in
local computations and network brain dynamics.
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What is . . . neuronal activity (electrically speaking)?
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Neurons are single cells with long extensions and branched out structures (axons and
dendrites) which form the fundamental units of information processing in the brain.
Inside the neuron - and outside in the extracellular space - a variety of ions, such as
positively charged ( ) sodium (Na+) or potassium (K+) and negatively charged
( ) chloride (Cl−) and other organic anions can be found in different concentra-
tions. This causes an electro-chemical gradient and an electric potential across the
neuron’s membrane of ≈ −70 mV . Neuronal information transfer is initiated by the
pre-synaptic cell releasing neurotransmitters into the synaptic cleft, which causes a
conformational change of channel proteins of the post-synaptic cell. Ions from the ex-
tracellular space can now pass the cell membrane of the post-synaptic neuron. This in-
flux is driven by diffusion ("chemical gradient") and the difference in electric potential
("electric gradient"). Voltage gated channel proteins within the post-synaptic neuron’s
membrane perform a conformational change once a specific voltage threshold is hit.
Now even more ions can flow in, which in turn causes a sharp peak in the membrane
potential (action potential). Once an action potential is released, the electro-chemical
gradient "travels" along the axon, where eventually neurotransmitters are released into
the cleft between the current post-synaptic and the next post-synaptic neuron. In case
of an inhibitory incoming signal, negative charges flow inside the neuron, lowering the
resting potential and decreasing the probability to release an action potential even
further. The combined potential changes caused by thousands of synapses that arrive
at varying parts of the neuron are integrated at the membrane and only if the com-
bined signal raises the membrane potential sufficiently, an action potential is released.
The exchange of ions with the extracellular space, as well as the resulting current flow
inside and outside the neuron causes electromagnetic field changes, which - summed
up over a large number of neurons - can be measured even from outside the head (see
What is . . . electroencephalography (EEG) or magnetoencephalography (MEG) on
page 20 or page 22). This info-box was first referenced on page 3.
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1.2 Structural aspects of the brain

The human cortex: a modular, multipurpose neural network

Neurons form the fundamental building blocks of any neural network (hence the name).
Those cells are highly interconnected with each other via axons and dendrites, receive a
weighted input and produce an output of a certain strength that serves as an input for other
cells. An immense microscopic machinery thereby ensures proper functionality of the cells
and modulates cellular activity. This includes neurotransmitter production and transport to
synapses, the regulation of synaptic growth or decay as well as the generation of a resting
state electro-chemical gradient across the cell membrane with a charge of around −70mV .
Irrespective of the immense amount of intra-cellular regulatory processes, inter-cellular con-
nections determine to a large degree the respective functionality of a neuronal assembly (i.e.
local compute module). Famously, Hubel and Wiesel (1962) [30] identified cell populations
in cat’s primary visual cortices, responding to a specific orientation and / or movement di-
rection of high contrast bars projected onto the retina. While bars of specific orientation
have been presented to the sedated cats, neuronal response patterns were recorded using
micro-electrodes from multiple single cells of the cat cortices. Depending on the orienta-
tion of the bar, or its respective movement direction, different cells increased or decreased
their firing rate differentially. It has been hypothesized that cells specifically responding
to bright and cells responding specifically to dark areas, are interconnected, such that the
combined neuronal population responds to a specific orientation of a bar. In this model,
the edge of a bar would be detected, if a cell responding to the dark area of a bar and a
neighboring cell responding to bright areas (no bar), fire simultaneously [31]. If specific bar
orientations are coded within the cortical network structure itself, then the hypothesis of
a correspondence between retinal and cortical activation - as some form of direct mapping
- follows consequently. Indeed, studies employing functional Magnetic Resonance Imaging
(fMRI) (see What is . . . on page 8 for general information about fMRI) revealed a direct
link between the retinal input image and the blood oxygenation level dependent (BOLD)
signal (which serves as a proxy for neuronal activation [32]). Specific locations of the retinal
input image were found to map to specific locations of the visual cortex, preserving spatial
relationships to a large degree. The method of population receptive field (pRF) mapping
can be used to an extent where it is possible to reconstruct visual input stimuli, based on the
spatially distributed BOLD signal in primary visual regions [33]. Interestingly, similar acti-
vation patterns (i.e. stimulus reconstructions from BOLD) could be observed in participants
that were only imagining the respective shapes. Furthermore, it could be demonstrated that
even illusory shapes (e.g. the triangular shape produced by the Kanizsa illusion ),
yield spatially correlated brain activation patterns corresponding to the presumed physical
(but illusory) shape [34]. Nonetheless, those retinal-cortical mappings cannot be described
as 1 : 1 mappings (e.g. transferring "pixel" locations correspondingly). Boskin et al. (1997)
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[35] investigated orientation specificity in V1 of tree shrew and systematically mapped the
orientation of stimuli to locations on the cortical surface sheet. While not random and lo-
cally highly correlated, the resulting map does not follow any linear pattern. It has been
hypothesized that orientation maps of the primary visual cortex are the result of self organi-
zation during development [36], based on the organization principle of Kohonen maps 3 [37].
The fact that there is no 1 : 1 mapping between retinal stimulation and cortical represen-
tation, but nevertheless a non-linear (traceable) mapping means that it could be described
by an unknown function, which potentially could be approximated by some sort of machine
learning algorithm. Previous research demonstrated that using a variety of statistical and
machine learning techniques, such as gaussian mixture models or by employing a generative
adversarial network (GAN), stimuli can be reconstructed with a high degree of accuracy
from cortical activity, represented in the BOLD signal [38–40].

The human sensory cortex: mapping ND to 2D

A similar (locally correlated but non-linear) mapping between real world and cortical rep-
resentations can be observed for the cortical homunculus, where adjacent body parts are
represented adjacently on the surface of sensory and motor cortices [41]. Furthermore, a
relationship between physically correlated input signals and spatially correlated cortical rep-
resentations can be observed in the auditory domain. It has been found that similar fre-
quencies of an auditory signal can be tonotopically mapped to neighboring cortical locations
within the primary auditory cortex [42, 43]. Not surprisingly - though harder to map -
specific spatial organizations have even been observed in the olfactory domain. In mice, the
similarity of odors of specific molecular structures, could be successfully mapped to spatially
correlated locations within the olfactory bulb of mice [44]. Whether this observation can
be extrapolated to human brains remains to be investigated but, given the large similar-
ity between sensory mappings across mammal cortices, it can be considered likely. A major
challenge for odor related research in general, is to classify "adjacency" in the physical world.
Nevertheless, qualitative proximity of a stimulus within the perceptual space, appears to be
tightly linked to structural proximity within the mammal cortex in any (or at least many)
domain(s). A large part of sensory processing within the human brain can hence be ex-
plained by its three dimensional structure (in the examples the two dimensional projection
to the cortical surface which is of course a three dimensional physical structure).

3Kohonen maps [37] are produced by artificial neuronal networks. High dimensional patterns are mapped
to a discrete bi-dimensional feature space via unsupervised self organization. This type of dimensionality
reduction happens e.g. when an object drops a shadow by obscuring a light source. Thereby, the shadow
is an accurate mapping of a three dimensional object to a two dimensional plane. The fundamental idea
has been derived from observations about the cortex. It has e.g. been found that specific bar locations and
orientations are mapped spatially correlated to the approximately two dimensional surface of the cortex,
where spatial and orientation specific proximity determines the respective location in the visual cortex with
some sort of non-linear - but locally correlated - mapping [35].
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What is . . . functional Magnetic Resonance Imaging (fMRI)?
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Far more than half of all atoms in the human body are hydrogen. They consist of only
a single proton that can easily be influenced by an external magnetic field, because due
to its spin the proton has a magnetic moment. A strong magnetic field (B0), causes
all hydrogen cores in a region to align along the magnetic field lines. Using a radio-
frequency (RF) pulse, the aligned protons are collectively realigned relative to B0 (e.g.
90°or 180°). After switching of the RF coils, hydrogen atoms realign again with B0 and
thereby release the energy that they previously absorbed from the RF pulses. Depend-
ing on the tissue composition (e.g. how much hydrogen and in which form it is bound),
absorption and release energies differ, which can be mapped to different brightness val-
ues of the resulting image. By probing multiple spatial locations (recording the signal
and reconstructing the respective images) respective MR images are created slices wise.
For this to work, the RF pulse needs to precisely hit the resonance frequency of the tar-
get (e.g. proton). However, this also enables probing of different atoms or molecules.
It has been discovered that oxygenated and de-oxygenated hemoglobin expose a dif-
ferent magnetic behavior [45]. Activated neurons consume glucose and oxygen at a
higher rate (to synthesize ATP) causing a hemodynamic response (increased blood
flow to active regions) to compensate for the increased uptake. Thereby, the ratio
between oxygenated and de-oxygenated hemoglobin changes (and hence the magnetic
response), which can be detected using fMRI. This is why the resulting signal is called
BOLD signal. Since the hemodynamic response is slow (peak after ≈ 6 s) fMRI has
a poor time resolution. In turn the spatial resolution can be even lower than 1 mm.
This info-box was first referenced on page 6.

However, this direct mapping can only be observed for primary sensory regions and does
not extrapolate well to higher order association areas of the brain. Experiments investi-
gating e.g. inattentional blindness demonstrate however that even fully visible objects (i.e.
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objects that are clearly represented on the level of the retina), are not consciously perceived,
if specific conditions are met (or not met) [46]. A retinal representation, followed by pri-
mary cortical processing, is hence not a sufficient condition for incoming visual stimuli to
be actively perceived. Higher order brain regions mediate or even suppress early sensory
processing across all aforementioned domains [47–49]. These observations led to the insight
that brain regions cannot be described as functionally distinct units that compute an output
that is sent to higher order regions where it is processed further, but rather that the brain
acts as a highly interconnected system, where even primary sensory regions are embedded in
a large modular network structure [50]. Thereby feed-forward and feedback connections can
be found locally within sensory regions [51–55] as well as long-ranging connections between
vastly distinct cortical areas [56–58]. Notable, even though primary sensory and somatosen-
sory regions follow the principle of similarity in the physical space that is represented in
spatial similarity in the cortical space, the influence of higher order regions on primary
regions, as well as how primary sensory information is integrated with higher order brain
functions, remains to be understood. Even though the human cortex is a highly complex
structure, its repetitive, modular organization [50] allows potentially to transfer specific core
computational principles between sensory modalities.

A second core principle that exposes great extrapolation value is convergence [59] (see
Figure 1 lower left). Convergence in the given context means that during each hierarchical
processing step, the dimensionality of the input data gets reduced. This is achieved by group-
ing the signal of many neurons. Anatomically this means that many neurons are connected
to a few from one hierarchical level to the next. An early example of cortical convergence are
the findings by Hubel and Wiesel (1962) [30], where simple cells (responding to light ON or
OFF at specific spatial locations) converge to complex cells (that receive input from many
simple cells) that in turn abstract simple cell respond to e.g. enable spatial in-variance of
input features (such that the actual location of a specifically oriented bar does not matter
anymore, but only its orientation). Low level features are combined into (more abstract)
high level features progressively along the hierarchy exploiting the principle of convergence
[59]. In order to integrate new information in its entirety (e.g. multiple sensory informa-
tion), modality specific analyses in respective sensory cortices extract task relevant features,
converging more and more towards higher hierarchical levels until processed signals from
multiple modalities again converge into a combined representation [60]. Top-down feedback
signals however diverge towards low hierarchical levels. Converging feed-forward and diverg-
ing feedback connectivity combined with the principle of modularity potentially reflect a
core principle that is used throuout the entire cortex.
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The human visual cortex: a model system

The visual system has traditionally been the model system for studying perception related
phenomena in higher order mammals, especially in humans, due to the relative ease at which
stimulation can be controlled and performed. Hence, the visual system is probably the most
studied perceptual system in humans, but - as described above - could potentially serve as a
model system for investigating cortical computational properties in general. Hierarchically
organized, visual information is routed from retinal cells via the thalamus to primary visual
areas V1-4 [61] (see Figure 1). Retinal ganglion cells, respond specifically to certain wave-
length of the electromagnetic wave spectrum [62]. Furthermore, the presence of ON and
OFF ganglion cells could be demonstrated in many mammals [63, 64], including primates
[65, 66], including humans [67]. The combination of cells responding to the presence of
light (ON cells) or its absence (OFF cells), form the basic neuronal coded visual input to
the brain. In a first step, signals from retinal ganglion cells are routed through the lateral
geniculate nucleus (LGN) of the thalamus, with feed-forward connections to primary visual
area V1 that resemble similar receptive field shapes and sizes as found on the retinal level
[68]. Interestingly, those afferent cells from the retina to the LGN, comprise only ≈ 10%
of input to LGN relay cells, whereas ≈ 30% stem from feedback connections from V1 [69].
Similar to thalamo-cortical feed-forward connections, feedback connections from V1 to the
LGN follow the principle of retinotopic organization. It has been hypothesized that feedback
connectivity to the thalamus enables sharpening of the receptive field and enhancing signal
transmission of activated receptive field neurons [70]. Even though non-linear mappings of
receptive field specificity could even be found in frontal areas of the human cortex [71], more
direct mappings between the visual input signal and spatially distributed cortical responses
are mainly found for areas V1-4 [72]. Thereby, similarities between the hierarchical organi-
zation of the brain and the structure of a deep neural network (DNN) 4 can be observed [74]
(see Artificial neural networks: Not so distant relatives). On a fundamental level, elemen-
tary image features, such as lines are processed early in the visual stream (V1) [30] and are
successively combined to form higher order features - such as edges in V2, higher up in the
hierarchy [75]. Additionally, V4 plays a critical role in gating information by attentive pro-
cesses. In macaque monkeys, electric stimulation of specific neurons in the frontal eye field
(FEF) led to a modulation of the signal recorded in V4 [76]. Stimulation of retinotopically
corresponding areas in the FEF led to an increased response, whereas stimulation of not cor-

4Deep neural networks (DNNs) are a class of machine learning algorithms that have been inspired by
the cortical architecture of mammals [73]. For a detailed discussion see "Artificial neural networks: Not so
distant relatives". In a nutshell, a simple DNN consists of an input, an output and N hidden layers. In each
layer the output is computed from the weighted input. The term deep can be derived from the amount of
hidden layers. During training the weight matrix of each layer (input × output) is modified, such that a
specific input leads to a particular output. Since only little insight into the inherent "logic" behind a trained
network can be gained, layers between input and output are called hidden and the network in general is
considered a "black box" with respect to its trained "decision tree".
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responding neurons led to a suppression of respective V4 neurons. It has been hypothesized
that these results mimic the process of the presence or absence of covert or overt attention
to stimuli [77]. However, long-range connections from other sensory areas as well as higher
order cortical regions, such as pre-frontal cortex (PFC) to V1 have been reported as well
[78]. Furthermore, it could be demonstrated that feedback connections from V4 to V1 [52]
modulate incoming visual signals at the earliest stage of the cortical visual processing hier-
archy [79]. The fundamental architecture of the early visual processing pipeline (retina →
thalamus ⇄ primary visual cortex) can hence be described as a hierarchical neural network
with feed-forward and feedback connections that utilizes hierarchical feature processing to
efficiently extract visual information in a bottom-up / top-down feedback-loop.

On the local level of microcircuit connections within primary visual regions, feed-forward
and feedback connections are routed through different cortical layers depending on the pro-
cessing hierarchy [80] (see "Canonical microcircuits: cortical compute modules"). The per-
centage of neurons in each area that fall into supra-granular layers thereby reliably predicts
the rank in the processing hierarchy in the visual system [81]. Incoming signals arrive at layer
4 (L4) - either from thalamic connections or lower level cortical regions - and are internally
routed to layer 2/3 (L2/3), where feed-forward connections to higher order regions and to
layer 5/6 (L5/6) within the same region are found [82]. Intra-areal feedback from L2/3 to
L5/6 is complemented by feedback connections from higher order regions, such that higher
order layer 1 (L1) and L2/3 and L5/6 are connected in feedback direction to their lower
order counterparts. Additional intrinsic feedback connections between L5/6 and granular
layers (L4) have been identified as well [83] (see Figure 1). In turn, the feed-forward flow of
information originates mainly in thalamic nuclei (LGN), superficial cortical layers (L2/3) or
cortical layer 5 [80] and is routed to L4 (from L2/3) or layer 5 of the target region. It has
been hypothesized that dendritic cortical microcircuits are related to error back-propagation
- an algorithm used to train deep neural networks [84] - by exploiting feedback directed
prediction error signals [85]. Even though classic error back-propagation as used in deep
learning has been deemed neuro-biologically implausible [86, 87], more recent hypotheses in-
dicate that error feedback might be implemented different than classical back-propagation,
but nevertheless exposes functional similarities that are represented by the cortical micro-
circuitry as well [88]. Whether the proposed architecture of canonical microcircuits extends
to cortical areas other than striate cortex is still under debate, since the cortical architecture
varies strongly depending on the precise location [89, 90]. Fundamental principles about the
cortical architecture however can be identified irrespective of the stimulus modality: a gen-
eral hierarchical [80, 81, 91], converging and diverging [59, 60] modular network organization
[50]; anatomical and functional distinct layers [52, 80, 82]; bi-directional information flow
[57, 82, 91] and spatial proximity in the cortex for representational proximity of stimulus
features [30, 41, 43]. Computational and theoretical models about the brain’s compute archi-
tecture must necessarily comprise a model for canonical microcircuits and functional (long)
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range connectivity (see "Canonical microcircuits: cortical compute modules" and "Func-
tional and effective connectivity"), because local computations and interactions between
different network parts together compute a coherent percept of the environment.
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Figure 1: Illustration of fundamental visual pathways, canonical microcircuits (see "Canonical microcircuits:
cortical compute modules") and inter-area connectivity. (A) Information from the left visual hemifield is
routed through respecive parts of the retina and the optic nerve, through the optic chiasm to the respective
right LGN of the thalamus and from there to primary cortical visual regions (similar for right visual hemifield,
but mirrored). Cortical columns consist of a composition of around six cortical layers [89] that expose feed-
forward, feedback and intra-area connections that are functionally interlinked to form a canonical microcircuit
[82]. (B) As presented by Bastos et al. (2012) [82] feed-forward connections terminate at L4 to deliver the
input to the circuit. From there, intra-area connections send feed-forward information to L2/3 where it
is transferred to L5/6 and to L4 of the higher order region as input. Deep cortical layers in turn send
intra-area feedback to L4 and inter-area feedback to L5/6 of lower order regions. Furthermore, superficial
layers send feedback information to corresponding layers of the lower order regions (figure adapted). (C)
Markov et al. (2014) [80] found additional feed-forward connections between regions in layer 5 in macaque
monkeys. In addition to that, deep layer feedback are mostly located at layer 6 (figure adapted). (D) Both,
within and between sensory and higher order association areas a neuronal convergence / divergence pattern
can be observed. Meyer and Damasio (2009) [59] argue that bottom up connectivity is highly convergent
(more input than output nodes), whereas top down neuronal connectivity is highly divergent (more output
than input nodes). While bottom up convergence is thought to reflect the process of feature integration
(like multiple edges to form a shape), top down divergence ensures hierarchy level adjusted feedback signals
(figure adapted).
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Canonical microcircuits: cortical compute modules

In a nutshell, the idea of cortical canonical microcircuits is based on the idea that the
(mammalian) cortex can be modelled better as a set of repeating highly connected modules
rather than a more or less randomly connected "super-structure" [92]. Those cortical "micro-
modules" are thought of as a general principle of how the cortex is set up. The earliest model
for a canonical microcircuit was proposed based on findings in the visual cortex of cats by
Douglas et al. (1989) [93]. Single cell neuronal activity from cat’s striate cortex has been
recorded, while simultaneously the optic radiation (fibers from the LGN to the cortex) was
stimulated. It was found that thalamic stimulation could not explain the majority of signals
that were recorded at cortical electrodes. Instead cortico-cortical connections explained the
majority of the data. Additionally, the authors found synaptic delay timings much shorter
than excitatatory or inhibitory event evolution. It has been hypothesized that temporal
dynamics within the cortex cannot be explained by solely relying on synaptic input timings.
The authors proposed that cortical dynamics rely on a microcircuit consisting of three dif-
ferent populations. In that model, incoming signals from the thalamus are routed to L2/3
and L5/6 of the cortex and to a GABA-ergic population of cells with inhibitory connections
to aforementioned cortical layers. Cortical layers L2/3 and L5/6 are connected to each other
and themselves, as well as to GABA-ergic cells via excitatory connections. Testing the model
by measuring the pulse response at the recording sites verified those assumptions. Generality
of the canonical microcircuit model has been demonstrated by testing the model’s predictions
on non-visual cortex areas in a different species. Godlove et al. (2014) [94] tested whether
non-sensory frontal areas (the supplementary eye field) would expose similar response pat-
terns in macaque monkeys, as would be expected from findings of the cat’s striate cortex.
Indeed, local field potentials (LFP) and respective current source density (CSD) patterns
measured at frontal electrode sites, resembled the predicted pattern when light was flashed
onto the monkey’s retina. Current sinks were found for middle layers. Furthermore, local
recurrent connections across all cortical layers were verified by a sharp increase in activity
after stimulation which again was followed by a steep decrease shortly thereafter. However,
initial mid-layer activation, was followed by a spread of activity to superficial and deep layers
which is not predicted by the original model proposed by Douglas et al. (1989) [93], where
deep and superficial layers would receive direct thalamic input. In the updated model, su-
perficial and deep cortical layers only receive feed-forward input from L4 within a region.
Irrespective of this minor deviation and given that original results could be verified using a
different method (LFP rather than single cell recordings), different cortical areas (supple-
mentary eye field rather than striate cortex) and across different species (macaque rather
than cat), the proposed canonical microcircuit model in general provides a sufficient basis for
how fundamental cortical response patterns in mammals can be explained. It was found that
the neuronal response of macaque FEF - a region related to top town attention control [95]
- could be modelled by the canonical microcircuit model proposed by Douglas et al. (1989)
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[93] for a variety of tasks performed by the FEF [96]. In an fMRI study by van Dijk and
colleagues (2021) [97] numerousity specific neuronal populations in parietal association areas
have been identified and investigated in the light of canonical microcircuits. Numerousity
specific neurons are tuned to a specific set size (and width) of items. It was found that neu-
ronal responses sharpened (i.e. neurons preferably responding to a given size had lower width
of tolerance for other sizes) predominantly in deep and superficial layers. Generalizability
of the canonical microcircuit model as a general model for cortical information processing
not only follows from numerous findings across multiple cortical areas and species, but is
furthermore thought to reflect evolutionary sparsity that enables multiple different functions
to be computable on a similar architecture [92]. The canonical microcircuit model thus re-
flects the idea of the fundamental processing unit within the neo-cortex that can be used to
compute a multitude of cognitive functions. More complex computations however involve
the combination of multiple local networks into spatially spread out dynamic brain networks
connected via functional or effective connectivity (see "Functional and effective connectiv-
ity"). Since the brain is by definition a neural network and its general architecture includes
generality, modularity and modular convergence and divergence, a comparison between the
brain and artificial neural networks (especially DNNs) suggests itself. Thereby the interplay
between neuroscientific research and developments in the field of artificial intelligence, could
mutually benefit. In the following section it will be rolled out, how ANNs can be structurally
compared to the (human) brain, where potential comparisons are limited and how insights
from e.g. DNN layer activation can help to shed light on the computational principles the
brain might rely on.

Artificial neural networks: Not so distant relatives

Artificial neural networks (ANN) as a branch of machine learning have become extremely
popular over recent years and made it into technology that is nowadays used by almost
every human being. Even though the first implementation of an ANN dates already back
to 1957 and was called Perceptron [73], only the latest wave of deep learning could make
use of new hardware developments and respective efficient implementations, making ANNs
tremendously popular during the past decade. The Perceptron was based on theoretical
work by McCulloch (1943) [98] and a fully integrated autonomous machine. It comprised
a set of input nodes or neurons - arranged in a grid structure - and a single output node.
Each input neuron (xi) was connected via a set of weights (w, with values between −1 and
1) to the output neuron. Before the total weighted sum was computed each input neuron
activation value was multiplied with the corresponding weight, before the total (weighted)
sum was computed (

∑N
i=1wixi). At the output neuron an additional value (bias) was added

to modify the neurons responsiveness (similar to the voltage threshold at the membrane of
actual neurons). If the computed output value exceeds 0, the Perceptron outputs a 1 and
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otherwise a 0 5. The Perceptron was capable of learning to differentiate between two classes
of inputs. After initializing the weights with random values close to zero, for each training
iteration (t) weights were updated by simply computing the difference between the target
output value (kt) and the Perceptron’s output value (f(x) see Footnote 5) which was then
multiplied with the current input activation (xt) and added to the previous state of the
weight vector wt+1 = wt+xt(k−f(xt)). Both, McCulloch (1943) [98] and Rosenblatt (1957)
[73] have explicitly stated that their work resembles biological processes that could be found
in the (human) brain. Indeed, at a first glance the resemblance is remarkable: The brain
consists of single cells that could either be active (an action potential is released) or not (no
action potential is released). Neuronal signals are transferred via synapses, which vary in
number, size, composition of neurotransmitters and hence can have more or less, excitatory
or inhibitory effects and produce a weighted output from the pre-synaptic neuron to the
post-synaptic neuron. Lastly the bias is biologically reflected by the activation threshold
of postsynaptic neurons. If the resting membrane potential of neurons is around −70 mV
(varies across neuron types) and the activation threshold around −55 mV (where an action
potential is released), then the bias could be −15 mV where the activation threshold is
redefined at 0 mV . Hebbian learning [99] serves as the biologically plausible model for the
learning rule in the early Perceptron, where long-term potentiation would strengthen and
long-term depression weaken the influence of the pre-synaptic neuron onto the post-synaptic
neuron (reflected in the update rule see Footnote 5).

One of the most prominent issues in using the Perceptron as an analogon for human brain
function is that actual biological neurons expose a much more complex response pattern (the
action potential) compared to the single unit on/off response produced by the Perceptron.
Action potentials alone vary significantly in their temporal dynamics, depending on the cell
type, composition of membrane proteins, neurotransmitters, sub-threshold currents or ion
concentration in the extracellular space [100]. Furthermore, mammalian neurons emit ac-
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Simple Perceptron [73]. If the weighted sum of the input values and a bias
value is greater than zero, the Perceptron outputs a 1 and 0 otherwise.
It can be trained by computing the new weights wt+1 as the difference
between the current output value

f(x) =

{
1 if

∑N
i=1 wixi + b > 0

0 otherwise

and the target value k, multiplied with the input values and added to
the old weight values wt: wt+1 = wt + xt(k − f(xt)). In newer versions
e.g. a learning rate discount term for the size of the update per iteration
(wt+1 = wt+ rxt(k−f(xt))) or a time dependent decay function (wt+1 =
wt + r(t)xt(k − f(xt))) have been included.
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tion potentials spontaneously, even in vitro [101]. Additionally, the Perceptron does not
incorporate feedback or recurrent connections, learning is exclusively driven by the external
input and despite large amounts of training data, it is only capable of linearly separating
two classes of (simple) input patterns.

Shortcomings in the simulation of the temporal dynamics have been addressed using spik-
ing neurons that form a spiking neural network (SNN). Simple leaky integrate and fire (LIF)
neurons [102] integrate multiple inputs and make use of a decay function that lowers the
(simulated) membrane potential over time in order to mimic simple neuronal temporal dy-
namics. One of the most sophisticated (and computationally expensive to simulate) models
- the Hodgkin–Huxley model [103] - uses a set of four biologically plausible coupled ordinary
differential equations and is able to closely resemble biologically plausible action potentials
and population response patterns. While the LIF neuron is highly efficient in terms of com-
putational cost, it does not produce biologically plausible temporal dynamics on the single
neuron level. A third model - the Izhikevich model [104] - is highly efficient in terms of
computational cost and produces biologically plausible results. However, the formulation of
the model itself does not find any correspondence in biological processes at all. Irrespective
of the underlying neuron model however, it has been demonstrated for a large variety of
applications that SNNs are capable of modelling the response dynamics of biological neural
networks to a high degree of accuracy. Using a simplified version of the Hodgkin–Huxley
model [105], Beyeler et al. (2014) [106] simulated the spike time temporal dynamics of motion
selectivity in V1 and the middle temporal (MT) visual area. Their model successfully repro-
duced behavioral responses, exposed pattern and direction selectivity, as well as biological
plausible firing rate tuning curves for speed selectivity. Furthermore, biologically plausible
SNNs have been successfully used to mimic visual attention [107], spike-time dependent plas-
ticity [108], learning in general [109], speech recognition [110] and robotic control [111]. For
modelling large scale networks - such as the human brain - the dynamics of entire neuronal
populations are modelled using mean field or neural mass models. The fundamental idea
behind those models is the assumption that on a macroscopic scale the population dynamics
of SNNs can be approximated to a high degree of accuracy by a somewhat overall network
dynamic. Whole brain simulators, such as "The Virtual Brain" (TVB) [112] employ neural
mass models to simulate different modalities of neuro-imaging data, such as fMRI, EEG or
MEG data (see also "Functional and effective connectivity",What is . . . fMRI on page 8,
What is . . . EEG on page 20 and What is . . . MEG on page 22).

Not only does the Perceptron expose very low biologically plausibility (no spiking, no
recurrent or feedback connections, etc) its classification performance could be considered
rather poor. While biological plausibility remains low, at least the poor performance of the
Perceptron could be overcome by effectively stacking multiple neuronal network layers (mul-
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tiple Perceptrons) hierarchically on top of each other 6. The resulting DNN is capable of
modelling a much larger feature space. Additional layers between input and output neurons
are called hidden layers, because they are not accessible to the observer and the term deep
refers to the increased number of hidden layers. Furthermore, the way DNNs are trained
has been immensely improved using techniques, such as stochastic gradient descent [113]
or error back-propagation [84] and the introduction of new types of layer models, such as
convolutional layers [114] or long short-term memory (LSTM) units [115]. Modern DNNs
are able to not only meeting human level performance in certain tasks, but are furthermore
capable of exceeding it. Famously, AlphaGo Zero and its predecessor AlphaGo achieved
superhuman performance in playing the game of Go more than five years ago [116], a task
deemed impossible to achieve for the foreseeable future. Although AlphaGo is made up of
three components of which only one comprises a convolutional neural network (CNN), it
has been this particular improvement to classical Go playing AI systems that allowed Al-
phaGo to achieve superhuman performance [117]. Especially computer vision systems highly
benefited from improved DNN architectures over the past decade. In 2009, the ImageNet
database - until then the largest database of labelled images - was released, containing 1000
different categories of images [118]. With this database, the authors challenged artificial
intelligence researchers to compete over classification performance. Success was measured
in the top 5% error rate, which reflects how often the target image category was not among
the top five predicted results. In 2010, this error rate was at about 28% using the NEC-
UIUC network [119], but soon after dropped to 16% with the introduction of AlexNet [120]
in 2012, to 7% after the release of GoogleNet [121] in 2014 and finally to below 4% using
the ResNet architecture [122] in 2015, which is considered better than human level perfor-
mance [123]. Especially CNN architectures proved well performing for image recognition
tasks. Naturally the question arose if DNNs and in particular CNNs resemble some kind
of functional processes that are similarly implemented in (human) brains. After all, the
visual system of mammals could be coarsly expressed in terms of a DNN architecture: the
retina would resemble a linearly connected input layer and the hierarchical organization of
the visual system the consecutive depth in the neural network. Seeliger et al. (2021) [124]
trained a CNN, set up to partly mimic the human visual stream - retina, thalamus, V1, V2,
V3, MT and fusiform face area (FFA) - to map the (original) stimulus input to the human
BOLD signal. A single subject, watched 23.3 h of movie while fMRI data was recorded.

6

input hidden layers

output
hierarchical  

visual system

DNNBRAIN Stacking multiple neural network layers
on top of each other before computing
the output, creates a deep neural network
and massively increases the computable
feature space. Note, that this is coarsely
similar to the hierarchical organization of
the human visual cortex.
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The CNN was trained to reproduce BOLD data from a re-scaled version of the very same
visual input the subject had perceived. Afterwards, channel weights of the convolutional
layer resembling V1 were extracted and visualized. Among a set of unexplainable channel
visualizations, the authors found a set of stripy patterns that varied in spatial frequency
and orientation, similar to patterns V1 preferably responds to in mammals (see Structural
aspects of the brain). Many of the patterns furthermore exposed a temporal component
in feature processing. In another study, a pre-trained CNN (VGG-S [125]) was compared
to human MEG data obtained using a visual object recognition task [126]. It was found
that the stimulus representations from the CNN could predict the MEG signal spatially and
temporally. Thereby, early CNN layers better predicted MEG data from visual area V1 early
after stimulus onset, whereas stimulus representations in deeper layers of the CNN predicted
better the MEG signal from higher order visual regions later after stimulus onset. The idea
of a computational familiarity between brain processes and activity patterns in deep con-
volutional neural networks, receives further support from Eickenberg et al. (2017) [127].
Again, fMRI data from visual regions low in the visual hierarchy could be modeled best, by
early layers of a CNN, whereas higher order visual regions received higher prediction scores
from activity patterns in deeper layers of the CNN. Additionally, a clear separation between
dorsal and ventral visual stream, as well as high hemispheric symmetry could be observed,
which was interpreted by the authors as a sanity check against spurious results. However
recently, the convergence of scientific opinion towards DNNs reflecting an appropriate model
for human vision has been challenged. Sexton and Love (2022) [128] report that the re-
semblance of cortical and DNN architecture and activation might reflect a methodological
artifact. They used data of two fMRI studies in humans and one study involving macaque
monkeys. But rather than applying aforementioned techniques to measure correspondence
that focus on overall explained (or shared) variance, the authors applied an activity measure
that only included task-relevant activity, which made typical brain-to-DNN correspondence
patterns vanish in favor of deep layers that explain the data in any brain region better than
other layers. Not only seem different relational measures produce strikingly different results,
but furthermore the key driving factor for resemblance has been found to be network di-
mensionality [129]. This finding is remarkable, because it challenges the idea that DNNs
and brains process (i.e. compress) the feature space similarly. However, if the explanatory
power increases by increasing the feature space of the DNN then this view can be seen as
highly questionable. If feature compression is compared between ANNs and the brain, but
feature space inflation actually increases correspondence, then the features to be compared
might actually be different from feature compression. A similar point is brought forward by
Schaeffer et al. (2022) [130]. In a nutshell, the authors argue that the loss function that is
computed in the brain cannot be inferred from the data, since multiple loss functions could
have the same local minima in the resemblance function, making post-hoc parameter choices
being overly influential on simulated brain activity. Nonetheless, all of the above mentioned
critical papers suggest that those resemblance problems could be overcome by either finding
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appropriate statistical measures and or by a rigorous implementation of biological plausible
network architectures and parameter choices.

While comparing activation patterns of trained ANNs and brain data provides potential
insights into the content of cortical processing, principles of how information is organized
or exploited can be compared as well. As described above, error back-propagation and re-
current connections are often missing in DNN models. However, the brain is connected
bi-directional and feedback related signalling explains a substantial amount of even early
sensory neuronal data [69]. According to the predictive coding framework [131] (see What
is . . . on page 33 for a brief overview about core principles of this framework), the brain
creates predictions about upcoming states of sensory processing which are matched against
sensory evidence. The amount of mismatch is reflected in the prediction error which in turn
is used to refine later predictions. Choksi et el. (2021) [132] added this model to standard
feed-forward image classification networks (such as VGG16). Each convolutional layer would
be connected to a generative layer, which aims to predict the respective input to the convolu-
tional layer. The mismatch between prediction and evidence would provide the loss function
for the respective generative layer, whereas remaining layers are trained regularly. During
each training iteration, the generative layers were iteratively updated until convergence. The
main benefit of the augmented model has been the increased robustness against adversarial
attacks. Those attacks target specific weaknesses of the network and can e.g. be made of
very low value (not human detectable) but high impact noise that is added to the image data.
Not only implies this finding a potential gain for AI research, but furthermore provides a
plausible argument (not evidence) for a similar mechanism being at play in the human brain.

Both, SNNs and DNNs provide valuable models for task related activity in the visual
cortex. Nonetheless, as Schaeffer et al. (2022) [130] phrased it, there is "no free lunch
from deep learning in neuroscience". The brain however is a neural network and both,
neuroscience and research on artificial neural network could derive mutual benefit by bringing
both scientific disciplines closer together. Even fundamentally difficult problems like the
creation of general AI could be approachable using neuroscience inspired ANN models [133].
The Neocognitron [134] for instance was directly inspired by the observations of Hubel and
Wiesel on cortical response patterns of cat visual cortex, when exposed to differently oriented
bars [30]. Simple feature selective cells (S-cells) and complex cells (C-cells) responding to
specific activation patterns of S-cells, are stacked to combine simple features (e.g. bars) into
complex features (e.g. corners). Based on the Neocognitron, CNNs could be seen as a direct
consequence of insights about the visual cortex [135]. On the other hand do ANNs not only
provide models and testable hypotheses, but furthermore allow for the development of new
analysis strategies that enable rapid progression in brain computer interface (BCI) research
[136–138], improvements of functional prostheses [139, 140] and neuro-imaging in general
[141, 142]. Here however, neural network models are used and described solely in the context
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of cortex models and applied AI research based on DNNs will be neglected. One major
challenge when employing ANNs as brain network models, is the implementation of temporal
dynamics and connectivity between neurons or populations. As the introduction example of
the Hydra showed, even a fully known (spatially) model, cannot be understood without an
understanding of the temporal and functional dynamics of the neuronal communication, at
least on the level of canonical microcircuits.

What is . . . electroencephalography (EEG)?
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Electroencephalography (EEG) is used to measure small currents, generated by the
brain, on the scalp. Synaptic signalling is tightly linked to the exchange of molecules
and ions at the synaptic cleft (see What is . . . on page 5). An excitatory post-
synaptic potential (EPSP) causes the influx of positive electric charge, leaving the
remaining extracellular space charged relatively negative. On the other end of the
neuron (i.e. axon) a surplus of positive charges in the extracellular space - relative to
the first region - creates an electro-chemical gradient in the extracellular space. This
gradient causes an extracellular current flow towards the area of the initial influx. In
case of an inhibitory post-synaptic potential (IPSP) the direction of current flow is
reversed. The movement of electrical charges spreads through the tissue which is known
as volume conduction. Thereby, different tissues (e.g. brain, skull or scalp) modify the
current flow based on local changes in conductivity. Hence, as compared to MEG, EEG
relies on sophisticated tissue models for source reconstruction. The forward current
flow from the neuronal source to the electrode attached on the scalp is modelled and
the inverse is estimated by maximize the similarity between the forward generated
data and the recorded data, given a specific source location and orientation. EPSPs
thereby are theoretically deflected positively, whereas IPSPs are deflected negatively
in the scalp EEG. In reality, the actual underlying neuronal deflections are hard to
pinpoint from scalp EEG recordings, due to the vast number of neurons averaged in
the signal. This info-box was first referenced on page 16.
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1.3 Temporal aspects of the brain

Cortical neuronal communication comprises at least two aspects: local or proximal connec-
tions and more widespread (e.g. inter-area) connections. So far, only structural aspects, such
as canonical microcircuits (see "Canonical microcircuits: cortical compute modules") have
been discussed, mainly on the basis of anatomical connections. Temporal dynamics however
form the fundamental functional components that enable information encoding in the first
place. Neuronal communication is based on chemical reactions between synapses. Once a
certain electro-chemical threshold is hit, a temporally precisely tuned electro-chemical signal
cascade - the action potential - is initiated, which in turn causes a chemical reaction in the
synaptic junction (see What is . . . Neuronal activity on page 5). Within the realm of this
work however, bio-chemical processes will widely be ignored in favor of information theoret-
ical properties. The term neuronal communication will hence always refer to an exchange of
information between neurons (in the form of spikes). Temporal dynamic aspects of neuronal
communication on the level of single neurons as well as individual neuro-neuronal connec-
tions will be reduced to information theoretical or computational aspects too. Neuronal
activity, reflected in the BOLD signal or electromagnetic fluctuations of intra- and extra-
cellular current flow (LFP, EEG, MEG, etc.) [143], is generated by the joint activation
of many thousands of neurons [29]. Naturally, computational models at this scale cannot
include individual neuronal dynamics. Furthermore, fine grained temporal dynamics that
simultaneously happen across many thousands of neurons inevitably indicate highly non-
random coordinated behavior. Phases of excitation and inhibition between neurons must be
coordinated, such that neither important signal patterns get canceled out (e.g. by acciden-
tally incoming inhibitory activation), nor an over-activation of wide-spreading activity (as
observed in epileptic seizures [144]) disturbs the balance of the entire system.

In terms of Shannon entropy [145], information between neurons can only be transferred
if for a period of time, the probability of any given neuron to fire is neither 0, nor 1. Both
would either yield mathematical implausible results or do not convey any information. This
insight implies already - to some extent - varying firing patterns for specific pieces of infor-
mation that are transferred. Furthermore, since the input to the brain (sensomotoric, visual,
olfactory, etc.) is physically and perceptually structured, a correlation between signals of
e.g. neighboring retinal cells would be expected. In addition to non-random temporal coding
and spatially correlated neuronal signals, the temporal structure of the environment needs
to be accounted as well, which determines a temporal correlation of sensory input signals
too. Spatially correlated non-random spiking activity synchronizes large parts of the respec-
tive neuronal population. Empirical data shows a large variety of rhythmical patterns for
different frequency bands that could be successfully linked to task related and resting state
brain functions in mammals [146]. This finding however is not limited to large complex
networks, since even the neural net of the Hydra with only a few hundreds or thousands of
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What is . . .magnetoencephalography (MEG)?
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Magnetoencephalography (MEG) is a neuro-imaging technique that allows the record-
ing of magnetic fields produced by neuronal activity (see What is . . . on page 5).
Orthogonal (circumferential) to the direction of the intra-cellular current flow within an
active neuron a magnetic field is created (the direction can be inferred using the right
hand rule). Since neuronal populations in the cortex are mostly aligned in columns,
the direction of the current flow for large populations of neurons is similar and hence
the magnetic field of similar direction. The fields of thousands of neurons can be de-
tected using superconducting quantum interference devices (SQUIDs). Thereby, the
magnetic field (red) induces an electric current in the pickup coil (black circular ar-
row). Respective field strengths detected vary in the fT (femto-Tesla: 10−15) range.
Due to the way the signal is measured, neuronal sources that are exactly orthogonal
to the sensor (radial sources) cannot be detected. Using hundreds of sensors, neuronal
generators can be inferred by e.g. modelling neuronal sources as dipoles and estimating
which dipole at which location inside the brain would cause which respective sensor
level data. The model (source location and orientation) with the highest explanatory
power is assumed to be the main contributor to the data. See also What is . . . EEG
on page 20 This info-box was first referenced on page 16.

neurons exposes slow rhythmic fluctuations [147]. It has been hypothesized that neuronal
oscillations couple neuronal activity, such that phases of low and high excitability coordi-
nate cortical information flow [148] and recruit neuronal populations to form widespread
computational networks [91]. Hence, current theoretical models on neuronal communication
are often tightly linked to functionally relevant oscillatory patterns. Furthermore, cortical
oscillations are thought to play an important role for local computations on the level of
canonical microcircuits [82]. Even though the temporal dynamics of neuronal signalling are
within the ms range, temporal dynamics reflected by the BOLD signal in the s range, still
provides insight into cortico-cortical connectivity.
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Functional and effective connectivity

Fundamentally, functional and effective connectivity reflect the idea that (some) cortical
functions are spatially highly distributed across cortical neuronal populations. For example,
it has been suggested that selective attention is implemented using a cortical network that
spans fronto-parietal regions [149]. Rather than implementing every cortical function in a
separate module, multiple cortical modules interact, such that emergent behavior can oc-
cur. Functional and effective connectivity reflect the attempt to infer functional networks of
spatially separated neuronal populations from time resolved neuro-imaging data. Whereas
functional connectivity reflects a mere temporal correlations of jointly activated regions, ef-
fective connectivity considers causal influences (e.g. determined by anatomical connections)
as well [150]. Traditionally, functional connectivity has been assessed in form of correlograms
reflecting the cross-correlation between two region’s spike trains, but was soon extended to
temporal correlations between brain regions using whole brain neuro-imaging methods, such
as positron emission tomography (PET) [151]. Modern estimates of the functional relation-
ship between activity patterns across spatially separated brain areas can be divided into
directional and non-directional methods, as well as model based and model free methods
[152]. Directional measures, such as Granger causality [153] assume (in the given context)
that if one brain region drives another brain region, the time series signal should be sim-
ilarily reflected in both regions, but should occur earlier in the driving region. The lag
is explained as the time the neuronal signal travels physically through the brain. Hence,
Granger causality derives directionality from the sign of the lag between signals. If region
A drives region B, then a similar time series could be observed in region B as compared to
region A, but shifted forward in time. However, if region B would drive region A, a similar
relationship between the signals might be observed as well, however the signal of region B
would be shifted backwards in time compared to region A. More broadly, Granger causality
reflects how well one time series is able to predict another time series in the future. Causal-
ity thereby is assumed, if the time lag between predicting and predicted time series can
be aligned with plausible hypothesis about the underlying mechanisms. For the interaction
between multiple brain areas, a lag in the range of milliseconds might yield higher plausi-
bility than a lag time in the order of minutes. In turn a time lag of close to 0 ms might as
well be seen as biological implausible and hence true causality would be less plausible. In
turn non-directional measures, such as mutual information [145], ask how much information
about one data set can be obtained by observing another data set. One major advantage
of mutual information compared to the Pearson correlation coefficient is that the former
is sensitive to statistical dependencies that are not reflected in the covariance between the
data sets as well [154], whereas the latter depends on exactly this measure. However, as
the name already suggests, the shared information content is mutual and thus conclusions
about directionality cannot be inferred. Model based as compared to model free measures
of functional connectivity, assume a specific known relationship (that is the model) between
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cause and effect. For instance the Pearson correlation coefficient assumes a linear relationship
between multiple data sets (model based), whereas mutual information does not (model free).

A relatively new approach to estimating functional connectivity in terms of effective con-
nectivity is using a dynamic causal model (DCM) [155]. Over the past two decades, this
approach has been widely popularized, due to its capability to capture non-linearities in
the data and the possibility to link observed data to biologically plausible constraints and
the measuring process itself [152]. Dynamic causal modelling can be viewed as a highly
deterministic approach, where every current state could be inferred from previous states.
Thereby dynamic activation states are causally affected non-linearly by perturbations to
the system (e.g. by sensory input). From those perturbations, model parameters for the
coupling of e.g. two brain areas can be inferred. In its core the DCM approach is hence
a generative model, where the error between model predictions and measured data is mini-
mized in order to estimate respective model parameters. While the original paper by Friston
and colleagues (2003) [155] mostly addresses fMRI data, DCM can be used to explain highly
temporal resolved EEG and MEG data as well [156, 157]. By incorporating neural mass mod-
els including feed-forward, feedback and lateral connections (see "Canonical microcircuits:
cortical compute modules"), David et al. (2006) [157] demonstrated that DCM parameters
on cortico-cortical connectivity can be inferred using Bayesian inference. By incorporating
neuro-biological plausible priors into the model, event-related potentials (ERP) and event-
related field (ERF) as macroscopic brain responses to specific tasks could be modeled and
underlying connectivity patterns inferred. However, not only allows the DCM approach to
infer the connectivity patterns that gave rise to certain macroscopic observations, but fur-
thermore to infer connectivity changes from the respective stimulation by the task [156].
While fMRI data inherently constrains the spatial parameter space by tying exact locations
within the brain to the (slow) temporal dynamics of the BOLD signal, applying DCMs based
on EEG or MEG data requires detailed assumptions about the respective anatomy and re-
spective estimated sources of neuronal activity measured at EEG or MEG sensors using e.g.
source reconstruction techniques. Since an infinite configuration of neuronal source models
could potentially give rise to the observed data at the sensor level for EEG or MEG data,
parameter estimation inference using DCM, can in some cases yield ambiguous results [158].
This means that it is not guaranteed that the estimated parameters indeed reflect underlying
processes, which requires additional constraints (e.g. by the research hypothesis) to support
results. Functional and effective connectivity - as a model for long range neuronal interaction
- and frameworks, such as canonical microcircuits (see Canonical microcircuits: cortical com-
pute modules) to describe local interactions, could serve as the basis for simulation studies
putting respective frameworks to the test. Neuroscientific evidence and theoretical models
could be cast into ANN simulations, which would not only allow to test respective model
predictions, but furthermore would potentially enrich the pool of testable hypotheses for in
vivo experiments. Especially neuronal oscillations thereby might play an important role.
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Neuronal oscillations

The term neuronal oscillations refers to rhythmic activation patterns of neuronal populations
that have been observed in many species [146]. In order to investigate neuronal oscillations
in humans, multiple invasive and non-invasive techniques that expose a high time domain
resolution, such as electroencephalography (EEG), magnetoencephalography (MEG), elec-
trocorticography (ECoG), local field potentials (LFP) and others have traditionally been
used. The raw time domain electromagnetic signal is recorded using specific sensors and af-
terwards decomposed into its spectral components using e.g. a Fourier analysis (see What
is . . . time-frequency decomposition on page 26 for an overview of how a signal can be
decomposed into its spectral components using a (fast) Fourier transform).

Neuronal oscillations around 18 Hz have been linked to functional processes in the ol-
factory system of Honey Bees [159]. This remarkable finding indicates a very general role
of neuronal oscillations going way beyond their role in complex information processing as
observed in mammal brains [146]. On an even smaller scale, α oscillations (around 10 Hz)
have been linked to differential responses to a variety of odors in Drosophila [160]. Whether
neuronal oscillations are an inherent feature of every (spiking) neural network remains to
be understood, however simulation studies indicate that spiking neural network models are
capable of producing fast oscillations that are dependent on the spike timing of the neurons
and slow oscillations that are dependent on the membrane time constant [161]. Depending
on the frequency band (and sometimes based on functional differences or the cortical loca-
tion to which they are attributed), neuronal oscillations are categorized in separate bands:
slow waves (below 1 Hz), δ (1 − 4 Hz), θ (4 − 8 Hz), α (8 − 14 Hz), β (14 − 30 Hz), γ
(30− ≈ 120 Hz) and fast oscillations (>≈ 120 Hz). While slow waves and δ oscillations
have been mostly linked to sleep, recent work suggests a potential mediating role of δ oscil-
lations in sensory processing. Specifically, it has been suggested that δ encodes contextual
sensory information and thereby constrains the sampling of this information with respect to
the temporal domain [162]. Since δ oscillations have been only of little interest for studying
awake perception, the literature linking δ and (awake) cognition is rather scarce. In turn θ,
α, β and γ oscillations have been linked to a variety of cognitive, perceptual or motor related
processes for many decades and will thus be discussed in more detail below.

Note however that the term neuronal oscillation is a bit misleading. Even though it does
not imperatively imply a sustained oscillation, it nevertheless has been interpreted for a long
time more or less exclusively this way. Especially for high oscillations (e.g. β or γ), it is
believed today that many seemingly sustained oscillatory response patterns are actually the
result of bursts ( ) of neuronal activation that are averaged across multiple
trials, inducing the illusion of a more or less sustained oscillatory response [163]. Further-
more, thalamic burst activity (specifically in the LGN) inducing slow frequency oscillations
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What is . . . time-frequency decomposition?
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f1(t) = cos 2⇡ft + sin 2⇡fti = e�2⇡fti

To analyze the frequency content of a neuronal signal, one of the major strategies is
the use of a time-frequency decomposition with the help of a fast Fourier transform
(FFT). The basic idea is that any signal can be described by the weighted sum of
a number of fundamental sinusoidal frequencies, with g(t) = a cos 2πft+ p where a
is the amplitude, f the frequency, t the time and p the phase of the oscillation. For
a = 1 and p = 0, the oscillation can be described by f revolutions around the unit circle
(r = 1) in t time. Every point pt of g(t) hence can be described by two dimensional
coordinate that lies on the unit circle. Since r = 1 the movement around the unit
circle can be described by a complex number (in complex plane), where the real part
corresponds to the "x coordinate" and the imaginary part to the "y coordinate" that
describes the points. This is known as Euler’s formula: e−2πfti = cos 2πft+ sin 2πfti.
If an unknown signal g(t), composed of multiple base frequencies is multiplied by a
function with a given base frequencies e−2πfti, then, the resulting integral (the sum
under the curve) reflects the contribution of that frequency f . The Fourier transform
becomes:

ˆg(f) =

∫ ∞

−∞
g(t)e−2πftidt ⇐⇒ g(t) =

∫ ∞

−∞
ĝ(f)e2πftidf

For finite length signals the discrete or fast Fourier transform (FFT) ĝ(f) =∑N−1
n=0 e−

2πfni
N /N is used to obtain the average base frequency contribution for a re-

spective signal with N samples. To furthermore obtain time-frequency resolved data,
a sliding time window of a certain length and sliding step size is used. For each sliding
step, the FFT is computed separately. Since the maximum frequency that can be re-
solved is half the sampling rate (Nyquist frequency),and the lowest frequency is bound
by the sliding window width, time and frequency resolution are inversely related for
this approach. Shorter windows allow for a better time resolution, whereas longer win-
dows increase frequency resolution (and sensitivity to low frequencies). This info-box
was first referenced on page 25.
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(i.e. α and θ) has been considered a main driver for EEG level α and θ oscillations [164].
Here, neuronal oscillations are often displayed as quasi-sustained for illustrative purposes.
Nevertheless, proposed mechanisms for neuronal communication based on neuronal oscilla-
tions (see sub-sections below) do not imperatively imply nor require a sustained oscillatory
activity. Due to their importance especially for visual processing in the human neo-cortex,
general functional roles of α, γ, θ and β oscillations will be highlighted in this section, before
they are respectively linked to theoretical computational models.

Alpha The first oscillatory pattern that has been discovered using EEG was a ≈ 10 Hz
rhythm that became prominently visible over occipital sensor sites when participants closed
their eyes [165]. Hence, the name α oscillation. It has been argued that α oscillations reflect
an inhibitory cortical "idling" state that is suppressed if some kind of cognitive "load" is
applied [166]. A reduction of α power after the onset of an event was explained by asyn-
chronous firing patterns (as compared to idling) of the respective neurons which process the
stimulus and was therefore called event-related de-synchronization (ERD). Enhanced or even
right on enabled information processing by de-correlating neuronal firing can be explained
by means of information theory. In information theory, one classical measure to express the
amount of information within a system is called Shannon entropy [145]. Given a certain
state space (e.g. potential neuronal firing patterns in a network), Shannon entropy describes
the amount of information that can on average be conveyed by an observation of one of those
states (i.e. an event). More "surprising" events - events that are less likely - thereby convey
more information than less surprising events. In other words, a predictable outcome is little
informative. For example, when playing the game "who am I?", a yes answer to the question
"Am I a human?" is less informative than a yes answer to to the question "Am I a female
human?". Without any prior knowledge, the second question reveals more information if
answered positively, however a positive outcome is less likely. In contrast, an event that
could be predicted with absolute metaphysical certainty would yield no information at all
(e.g. "Can my identity be revealed by yes or no answers to questions within the context of
’who am I’?"). Applied to neuronal oscillations, a neuronal state that could be predicted
by the previous state would yield less information than a state that is less predictable. Spa-
tially or temporally correlated signals of a population of neurons would hence contain less
information than a de-correlated pattern. A purely sinusoidal α oscillation across all neu-
rons within a population, phase locked to each other, would hence contain (almost) zero
information. From the perspective of a neuronal population, an unexpected event (e.g. the
onset of a stimulus) would be reflected in increased entropy and the de-correlation of the
signal follows consequently. The change of e.g. retinal input, when participants open their
eyes in the classical experiment by Berger [165] requires the encoding of new information,
which necessarily must be reflected in an increase in entropy. Thus, the brain would leave its
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cortical "idling state" and an ERD could be observed. This very principle has been linked
to memory formation and retrieval as well, where decreased α (and β) power was associated
with more successful memory formation, explained by the increased amount of information
that could be extracted due to the ERD in neuronal populations [167]. If α band ERD
reflects increased information processing, then α band event-related synchronization (ERS)
might as well reflect the converse. In a complex environment, successful information sup-
pression can contribute to the optimization of the overall information processing pipeline,
since otherwise cognitive resources would be allocate to potentially meaningless or irrelevant
stimuli. The interplay between α ERD and ERS - enhancing the processing of relevant and
suppressing the processing of irrelevant information - has thus been considered an important
feature of cortical information processing reflected in the α band [48, 168–170]. Indeed, it
could be demonstrated that occipital α band power positively correlates with the capability
of successfully suppressing irrelevant information in visual tasks [171, 172]. Furthermore,
those suppression effects can even be observed for lateralized stimulus presentation, such
that α power increases over occipital regions ipsi-lateral to the visually presented target
stimulus and contra-lateral to visually presented distractor stimuli [173]. Moreover, Sauseng
et al. (2009) [174] showed that α ERD and ERS effects can be artificially enhanced us-
ing repetitive transcranial magnetic stimulation (rTMS). In a lateral attention, short term
memory task, participants were asked to centrally fixate a screen, displaying one array of
colored squares on either side. A previously presented cue indicated which of the two arrays
should be retained in memory, whereas the array on the other side should be ignored. Af-
terwards, participants were asked to compare the memorized array to a subsequent probe.
Using rTMS, electric pulses (or sham stimulation) in the α range have been applied to
participants posterior parietal cortices. It was found that rTMS stimulation during the re-
tention interval in the α band (enhancing ERS) over ipsi-lateral posterior parietal cortices
relative to the side of attention significantly increase the participants performance, even over
sham and vertex rTMS stimulation. In other words, visual short term memory performance
was enhanced in that condition. Conversely, contra-lateral rTMS stimulation significantly
decreased performance. Those findings were interpreted, such that ERS enhancement via
rTMS over parietal regions ipsi-lateral to the attended side led to better inhibition of task
irrelevant information, resulting in an increase of task performance, whereas a disturbance of
ERD via rTMS over parietal regions contra-lateral to the attended side, disrupted successful
stimulus processing (or encoding). In the light of Shannon entropy, an artificial synchro-
nization of neuronal populations processing task relevant information limited - to a certain
degree - the amount of information that could be extracted, by lowering neuronal entropy.
The nature of α oscillations can hence be described as rhythmic fluctuations of cortical in-
hibition, coordinating neuronal processing by modulating post-synaptic excitability. Recent
findings suggest that α band oscillations do not reflect an active mechanism to implement
selective attention and that findings on rhythmically activity in the α band might be instead
a consequence of selective attention [175]. Additionally, stimulus enhancement rather than
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distractor suppression could explain classical findings just as well [176]. Moreover, it could
be demonstrated that distractor suppression is shaped by previous occurrences of respective
distracting information on spatial and feature level [177]. Again, a simple suppression of dis-
tractor stimuli could not explain those findings. Instead it has been suggested that α band
oscillations hamper distractor processing by stabilizing sensory processes in a particular con-
figuration [178] which could e.g. serve as cause for bi-stable visual perception phaenomena
[179]. This would be in line with the idea of α oscillations implementing spatio-attentional
sampling [180]. Each excitable phase of the α cycle would vary in length, depending on the
exact frequency. Hence, a modulation of α frequency could in this context be interpreted
as the duration a communication channel is set to "open". Stimuli relying on a temporal
integration would hence provoke slower α band activity that in turn would be different in
frequency as compared to the separate distractor signals [181]. Distractor suppression would
hence not be implemented as an active process, but would rather be seen as a consequence
of the non-recruitment of neuronal populations preferring task irrelevant features. See also
"Gating by inhibition" for a discussion about the inhibitory nature of α oscillations, "Com-
munication via nested oscillations" where the role of α oscillations is discussed within a joint
framework developed by Bonnefond et al. (2017) [91] and "Feature specific neuronal oscil-
lations in cortical layers (in prep)" where results of the present project - with respect to the
differential role of α - are rolled out.

Gamma Ranging from ≈ 30 Hz to ≈ 120 Hz, γ oscillations have been linked to stimulus
related activity and was thought to reflect feature specific activation [182]. It has been
hypothesized that simultaneously activated feature specific neurons (e.g. neurons responding
to a specific orientation [30]) must be temporally aligned to integrate multiple information
streams. Rhythmical activity in the γ band was attributed to the process of feature binding
to create a coherent percept of visual input [183, 184]. Time-frequency resolved EEG data
exposed a significant peak in the power spectrum of frequencies between 30 Hz and 60 Hz,
when participants were presented with the Kanizsa illusion ( ). No such power increase
has been observed for a version with rotated pacmans (no illusion effect). The authors
conclude that fast γ band oscillations reflect the formation of coherent task-relevant object
representations. This view was extended to the idea that γ band activity reflects a general
computational mechanism that coordinates spike timing to bind widespread cortical activity
into functional networks that integrate distributed responses [185]. However, later evidence
suggests that not binding by synchrony (causing γ band oscillations) but rather binding by
firing rate (firing not necessarily synchronous but statistically equally likely) could explain
feature binding or grouping [186]. Oscillations in the γ band have instead been linked to more
local processes that are translated into firing rate changes later in the processing pipeline
[187]. Other theories view γ band oscillations as markers for stimulus feature related feed-
forward processing [91] or question the nature of γ as a "true" oscillation in general, by
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suggesting γ might not play a role at all in cortical processing but nevertheless can serve
as a marker for local neuronal interactions [188]. Findings using ECoG data from humans
revealed a stimulus dependent γ band response in primary visual areas V1 and V2 [189].
Properties of the stimulus, such as spatial frequency or color reliably modulated the γ band
response. For noisy stimuli, the response has been reported to be much more broadband
and lower in peak amplitude as compared to grating stimuli. Complex objects in turn
elicited both, a small broadband or a small broadband and a large narrow band γ response
depending on the exact stimulus. Since noisy and complex images are reflected in a more
broadband power spectrum likewise, broadband γ could indicate stimulus complexity to a
certain degree. Functionally different roles for broad and narrow band γ band oscillations
have also been reported by Bartoli et el. (2019) [190]. Narrow band γ was found to be
specifically tuned to specific stimulus features (structure and color), whereas broadband γ
could not be linked to specific stimulus features in the same way. It has been hypothesized
that broadband γ could serve as a proxy for neuronal spiking, due to its high similarity
to multi unit activity (MUA). It has further been argued that high frequency broadband γ
oscillations might reflect a bias in the data. According to this explanation, low frequency
components of neuronal spiking patterns reflected in broadband γ, are actually shadowed
by 1/f noise 7 in the power spectrum [192]. Hence, for lower frequencies, the signal-to-noise
ratio (SNR) is too low for the broadband γ signal to be detectable which makes it only
visible in high frequencies where the SNR is more favorable towards the signal. In mice,
the strength of visual broadband γ LFPs is correlated with contrast, whereas narrow band γ
LFPs are negatively correlated with contrast, but both components have been found to not be
correlated with each other [193]. It has been argued that narrow band γ reflects feed-forward
processing from the thalamus (specifically LGN) to V1, whereas broadband γ is associated
with the activation of cortical inhibition networks. For a discussion of the role of γ band
oscillations in cortical information processing with respect to inter-area communication and
information transfer see section "Communication through coherence" (below). The exact
role of γ band oscillations has been controversially discussed. However, common features
that most hypothesis about the role of γ exhibit include feature specificity, feed-forward
directionality of information flow and the link to selectively activated neuronal populations
as a response to stimulation.

Theta Early theories on the function of θ oscillations (4 Hz to 8 Hz) have been mainly
linked to hippocampal processes [194]. It has been suggested that θ band neuronal fluctua-

7The EEG or MEG power spectral density follows a 1/f shape. With increasing frequency f , the power
spectral density S(f) decreases with S(f) = 1/f (for f > 0): . Hence, the respective noise power
spectral density is higher for low frequencies than for high frequencies as well. This behavior has not only
be observed for neuronal membrane voltages and currents, but furthermore for rain fall, rate of traffic flow
or currents in vacuum tubes [191].

30



tions in the hippocampus of rabbits are driven by "pacemaker" cells in the septum, which
would provide "a sense of time" [195]. Thereby, θ would necessarily be independent of ex-
ternal events. This view has been challenges by observations that the θ phase changes as
a function of behavior and location, linking θ band activity particularly to external events
(spatial locations) [196]. It could be shown that indeed spatial location and not the temporal
dynamics of behavior are causing a change in hippocampal θ band activity [197]. In addi-
tion, hippocampal recordings revealed a strong relationship between θ phase and the spatial
location of freely moving rats, but again not with with the temporal dynamics of behavior
(e.g. motion) itself [198]. θ oscillations thereby were found to be closely related to the activ-
ity of location specific hippocampal neurons (place cells). Firing patterns for specific place
fields 8 were thought to be modulated by a compound wave ( ) of multiple frequencies

( ) and or phases [196]. The envelope frequency of the compound wave ( )
would determine the extent of the place field (size of encoding time window), whereas the
average phase of the base oscillations would be reflected in the phase (and amplitude) of the
compound oscillation, which influences spike timing. Thus, by shifting multiple frequency
specific signals relative to each other in phase and frequency, spike timing is modified, such
that information under the envelope frequency is grouped together. Information about the
exact location would be uniquely coded by the joint phase of the compound oscillation,
whereas the shift of the envelope frequency would determine directionality. The authors
conclude that θ might reflect a general principle of information processing and storage in
the hippocampus. On the other hand, θ was found to play a potential role in active sens-
ing. It could be observed that the whisking frequency in rats [199] as well as saccadic eye
movement in humans [200] are correlated with θ frequency. The general role of θ has since
been attributed to information sampling. It has e.g. been argued that θ could play a main
role in dyslexia. According to Goswami (2011) [201], dyslexia might be a result of poorly
temporally organized data. Impaired θ phase locking in the auditory pathway was thought
to lead to impaired separation of the auditory signal and thus a reduced ability to link au-
ditory features to phonemes. Additionally, the temporal structure that θ provides in the
hippocampus has been associated with episodic memory and its temporal structure [202],
as well as with a general mechanism for encoding and retrieval. An increase in θ power (in
terms of absolute power values and relative changes in form of ERS), was related to bet-
ter memory performance [203]. Those findings have been replicated for long term memory
tasks as well as for working memory tasks and were associated with multi-item organization
or sampling [204]. The detection threshold of attended stimuli depends (among the α fre-
quency) on θ oscillations, such that the stimulus detection threshold could be predicted by
the EEG θ phase [205]. Using a fine grained behavioral experiment, Huang and Luo (2020)

8Place cells are location specific neurons that first have been discovered in the hippocampus of rodents
[197]. Each location specific neuronal population fires with higher probability to a given spatial location,
known as the place field.
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[206], demonstrated that high and low salience stimuli are processed at different relative time
points with respect to stimulus onset. More specifically, behavioral stimulus detection rates
fluctuated in the θ frequency range when represented as a function of the stimulus onset
asynchrony (SOA). High and low salience stimuli are thereby processed at different phases,
temporally prioritizing stimuli based on salience. Together, past and recent findings on the
function of θ oscillations speak in favor of the idea that θ fluctuations reflect a temporally
organized sampling of information uptake and encoding along its phase gradient. Gaillard et
el. (2022) [180] argue, α nested in θ oscillations (see "Communication via nested oscillations"
and "Coding via nested oscillations") reflects the shift of the attentional spotlight during
continuous exploration of space by alternating between "exploration" and "exploitation"
epochs. The possible separate role for θ in visual attention sampling [207] is complemented
by the idea that attention θ acts alongside attention α [208, 209], were the latter is possibly
nested in the former [210, 211].

Beta Between α and γ oscillations, the β frequency range spans roughly 14 Hz or 16 Hz
to 30 Hz. β oscillations have classically been attributed to somatomotor functions [212] and
origin [213] or motor imagery [214]. It has been observed that β power over central sensor
sites (motor area) decreases shortly after the decision to execute a movement was made,
reaching its minimum when the movement was executed and experienced a rebound effect
after movement execution was finished [215]. The decision making process itself was linked to
a fronto-medial β increase when inhibiting movement, which was reflected in a fronto-central
β increase related to motor inhibition as well. Pre-movement related β power decreases (fol-
lowed by post-movement rebound), could further be observed in anticipation of rhythmically
occurring stimuli [216], implying a role of β in top-down related processes. Indeed, top-down
related functions that involve rhythmic activity in the β band was found. Specifically, V4
and temporo-occipital (TEO) area feedback connections to V1/V2 in macaque monkeys have
been related to differential response patterns, depending on the behavioral context (go or no
go for specific stimuli) within the β band [217]. Those results have been argued to reflect
feedback, based on behavioral anticipation of the predicted environment, modulating even
primary sensory (visual) regions. Processes in the β band have hence be linked to "predic-
tive" gain control [218] or feedback related activity within the predictive coding framework
[82, 131] (see What is . . . on page 33). Bressler and Richter (2015) [218] describe the
role of β oscillations to represent feedback-directed context-dependent sensory expectations,
originating in superficial layers of higher order regions that are connected to deep layers of
lower order (or primary) sensory areas. This is in line with findings that investigated the
link between predictive coding, where the prediction error was linked to γ band oscillations
(feed-forward or bottom up operation) and the respective predictions to β band oscillations
(feedback or top down operation) [219]. Oscillatory activity in the β band however, most
likely is expressed in form of short lived burst activity of a specific waveform [220, 221]. Those
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insights have been gained from single trial analyses, because after averaging over many trials
a "sustained" oscillation is implied due to the different times at which β burst occur.

What is . . . Predictive coding?
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The predictive coding framework [131] treats the brain as a dynamic system where
bottom-up sensory information and internally generated top-down predictions com-
bined form a coherent perception. The mismatch between prediction and observation
is called prediction error. Hence, the prediction error encodes new information. Both
predictions and sensory information are constantly updated, which constantly changes
prediction error values that in turn are used to refine predictions. The canonical micro-
circuits (see "Canonical microcircuits: cortical compute modules") model by Bastos
et al. (2012) [82] - on the right side of the figure - assumes an interaction between
multiple frequency bands (β and γ) to implement the predictive coding feed-forward
and feedback network architecture. Feedback connections (blue arrows) would carry
top-down predictions, that are compared against sensory evidence or the incoming sig-
nal from a lower cortical region to compute the prediction error. In turn the prediction
error (orange arrows) is forwarded to higher order regions. Moreover, the predictive
coding framework is an hypothesized implementation of Bayesian inference [222], The
Bayesian Brain is thought to perceive the world through the lens of surprise, that
is the mismatch between the predicted sensory signal and actual evidence. Predic-
tions thereby are constantly adjusted in order to minimize the surprise (prediction
error). Information thereby is represented in form of probabilistic distributions. Two
main aspects have major influence on the prediction error: precision (rate of useful
information out of all information extracted or confidence) and recall (rate of useful
information that could successfully be extracted or sensitivity). Interestingly, some
components could successfully be attributed to certain frequency bands: predictions:
feedback directed β band activity [82]; prediction error: feed-forward γ band activity
[82]; and precision: feedback directed α [223]. This info-box was first referenced on
page 19.

33



The computational role of neuronal oscillations

Neuronal oscillations can be observed for a wide variety of tasks and in varying cortical
regions and furthermore express a high variability within the frequency spectrum. Thereby,
α and β oscillations are often linked to modulating processes operating in feedback direction,
whereas γ oscillations have been linked to a feed-forward flow of information related to the
stimulus itself. Since neuronal oscillations have been linked to a large variety of cortical
functions, theories about general computational properties of rhythmic fluctuations have
been gaining more and more attention. Here the most relevant to the presented project are
rolled out.
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Figure 2: Gating by inhibition hypothesis. Figure adapted
from Klimesch et al. (2007) [224]. A) α amplitude depen-
dent excitability. The length of the window of excitability
(green) depends on the amplitude of inhibitory α oscillations.
The dotted line represents the inhibitory threshold at which in-
coming signals are blocked from traversing between areas. At
high α amplitudes (red), a smaller fraction of time points fall
into a phase where the inhibition is low enough to allow for
the signal to be passed on. If the α amplitude is lower (blue),
this window becomes wider and the signal can pass for a longer
period of time during each cycle. B) Inhibition dependent
spike trains. Given the respective excitable time windows de-
rived in A), the signal of the gray neuron (bottom line of the
spike trains), can be transmitted to a larger degree to neurons
under low α inhibition (blue) as compared to neurons with high
α inhibition (red).

Gating by inhibition

Cortical α oscillations (see also "Neuronal
oscillations") have long been interpreted as
"idling oscillation" [166]. This idea can be
seen as a consequence of early findings by
Berger (1929) [165], who observed a spon-
taneous synchronization of the EEG signal
in the 10 Hz range over occipital areas,
when participants closed their eyes. Obser-
vations that α power increased under high
working memory load [225] and decreased
when performing a visual attention task
[226] support this idea, adding the notion of
α synchrony reflecting an inhibitory "default
state" that under cognitive load frees up re-
sources. Those theories view cortical α oscil-
lations as a global phenomenon [227] and - to
some extent - as some kind of cortical base-
line activity [228]. Around the same time,
early theories of inter-area communication
have emphasized that task related changes
in cortical activity in one area, reflected by
an increase in the BOLD signal in fMRI ex-
periments, might be explained by task re-
lated connectivity changes between e.g. pri-
mary sensory areas and remote areas [229].
It has been hypothesized that the flow of
information between areas is somewhat co-
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ordinated to achieve effective connectivity. In conjunction, electrophysiological findings and
fMRI data on cortical connectivity, led to the idea of cortical α oscillations reflecting gating
processes to modulate information flow between areas [224].

The gating by inhibition (GBI) or inhibition timing hypothesis states that α oscillations
are of inhibitory nature allowing, information to flow between areas only at low inhibition
phases [224]. Hence, an α ERD, which is reflected in lower α power, has been interpreted as
a proxy for active stimulus processing (stimulus → de-correlation of the signal → less syn-
chronization → lower amplitude after frequency decomposition). Thereby, an activation of
neurons caused by the onset of the stimulus is followed by an ERS once stimulus processing
is finished, which brings α power back to baseline [230]. Phase and amplitude thereby play
a crucial role in modelling the time windows at which an exchange of information can occur.
High α amplitudes would shrink the window where information can possibly be transmitted.
It has been suggested that inhibitory α oscillations are implemented by bursts of pulsed
inhibition [231]. Neuronal population A thereby can only transfer information to neuronal
population B in the absence of such a pulse (trough of the oscillation). If the signal from
A to B would arrive at the same time as the inhibitory pulse (peak of the oscillation), the
signal would be "overruled" by the inhibitory activity and thus A could not exert an effect on
B. See Figure 2 for a depiction that coarsely follows the illustration of Figure 1 in Klimesch
et al. (2007) [224]. Evidence supporting the GBI hypothesis is twofold: observed ERD (and
ERS) in response to certain stimuli and changes in cortical connectivity related to power
changes in the α band.

Verification of the GBI hypothesis not only requires the verification of α ERD in task
relevant regions, but furthermore requires evidence for α ERS in task irrelevant regions.
Händel et al. (2011) [173] demonstrated that α ERD is positively and α ERS is negatively
correlated with attention. In this study, participants were cued to attend a particular side
of the screen, where with a probability of 80% a target stimulus would occur, which partic-
ipants were asked to report on detection by a button press. Contra-lateral to the attended
side, α power significantly decreased over occipital sensors, while at the same time a sig-
nificant increase in α power could be observed on ipsi-lateral occipital sensor sites. Those
results can be interpreted as direct evidence for the inhibitory nature of α ERS over task
irrelevant regions. Additional evidence for the inhibitory nature of α oscillations is provided
by research relating perceptual detection performance to the phase of ongoing α oscillations.
It could be demonstrated that visual perception performance strongly depends on the phase
of α oscillations measured at task related sensors sites [205]. Again, α power was negatively
correlated with detection performance. Those findings indicate a strong negative relationship
between α band power and the recruitment of cortical areas to successfully perform a set of
visual tasks. However, the respective phase dependency is tightly linked to the underlying α
power, which indicates that α behaves more in a burst like fashion (short lived creation of a
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gradient of excitability) as compared to a sinusoidal rhythm [232]. Furthermore, target facil-
itation and distractor inhibition linked to α power de-/increases have been question recently
[176]. Only under conditions, where the distractor directly interferes with the information
processing of the target, supposed suppression effects could be reliably observed [233]. A
likely explanation is that the GBI hypothesis does not explain all α activity. Indeed multi-
ple α sources have been hypothesized to carry out different functional purposes [234]. Some
frameworks suggest that (primary) sensory processing related oscillations in the α band and
oscillations tied to more attention related process (or processes related to the modulation
of information flow [148]) in the same band in higher order areas (e.g. FEF) actually re-
flect two distinct computational roles [91]. The GBI hypothesis does not explicitly make this
differentiation but the proposed mechanism has nevertheless been explicitly tied to attention.

It has been suggested that α ERD in sensory areas of the cortex, occurs as a consequence
of anticipatory top-down inhibition of thalamocortical relay cells, forcing them to switch
from "tonic" inhibition mode to "burst" inhibition mode, which allows for stimulus timing
as described above [224]. This idea receives support from animal studies, suggesting that the
pulvinar (a nucleus of the thalamus) influences cortical synchrony in the α band [235]. In
this study, monkeys were trained to perform a variation of the Eriksen flanker task. Thereby,
a spatial cue indicates the respective location of a target stimulus that is flanked by distrac-
tors. It could be shown that pulvinar neurons reliably responded to cues in their respective
receptive field. If the monkeys additionally attended the respective location corresponding
to the receptive field, the response was significantly greater. Importantly it could be shown
that the influence of pulvinar neurons on the V4-TEO phase relationship significantly in-
creased in the time between cue onset and target onset for receptive field locations that were
attended. In the light of the GBI hypothesis, those findings can be seen as evidence for
an involvement of the thalamus in modulating cortical connectivity based on α oscillations.
However, whether the thalamic influence on cortical connectivity (as suggested by Klimesch
et al., 2007, [224]), was triggered by a cortical top-down mechanism, has not been tested.
Recent work suggests that α oscillations have multiple origins, depending on the task, exact
frequency band and recording site [234]. Even intrinsic properties of neo-cortical pyramidal
cells, specifically sodium and calcium channels in layer five neurons, have been identified to
yield sufficient explanatory power for the origin of α oscillations [236]. It has been further
argued that respective results on α as an inhibitor agent could also be interpreted in the
light of α not acting inhibitory to suppress distracting stimulation, but instead might act as
an enhancer for active processing [176]. If α would act as a simple suppressor in order to hin-
der active processing of distractors, then there should be no relationship between distractor
features and α. However, exactly this relationship could been found [177]. In general, the
GBI seems too simplistic in order to explain many recent findings on α and its inhibitory or
dis-inhibitory role (see also "α" in "Neuronal oscillations" on page 27).
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Irrespective of the underlying theoretical framework, α oscillations are often linked to
feedback processes within the cortical architecture [52, 91]. The cortical information transfer
itself, is assumed to be tightly linked to γ band processes instead - especially for certain
types of stimuli [189] - and has been shown to be linked to the BOLD response [237, 238]
and feed-forward information flow [52, 239]. A major theory that emphasizes the role of γ
band synchronizations to set up neuronal communication is the "Communication through
coherence" model.
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Figure 3: Communication through coherence hy-
pothesis. Figure adapted from Fries (2015) [240].
The lower part of the figure illustrate two pre-synaptic
groups of neurons (yellow and green circles), each rep-
resenting a different kind of feature. Thereby the yel-
low group’s γ rhythm entrains the γ rhythm of the
post-synaptic group (upper yellow circle). Both γ os-
cillations of the yellow groups are in phase coherence,
such that information is transferred at coherent times
of excitability. The green pre-synaptic group can-
not transfer information, because the signal reaches
the post-synaptic group at a phase of low excitabil-
ity. Note, that depicted oscillations reflect excitability
of the neuronal groups themselves, but were depicted
separately for better readability.

Communication through coherence

Observed synchronizations in the γ (and
β) band between source and a sink regions
as well as anatomical findings on inter-area
connectivity, led to the model of a spike
time coherence between gain modulation in
a selected sink region region by oscillatory
entrainment of spike rates from the source
region [240]. Communication is hence es-
tablished if two regions are coherently ac-
tive. The general idea behind communica-
tion through coherence (CTC) is that if in-
formation from population A is transferred
to population B, then A and B must be in
a similar excitatory state (γ phase) includ-
ing a delay for B to allow for the physical
information transfer to happen. If A is in a
high excitatory state, neurons will fire and
in turn would cause downstream neurons in
B (also in an excitatory state) to fire as well.
A third area C synchronized with a 180° γ
phase shift relative to A, could not convey
information to B, because B would be in a
low excitation phase at the time the infor-
mation arrives. Hence, information is trans-
ferred between two areas if cortical oscilla-
tions are phase coherent within two regions
(see Figure 3 for a visualization). It has been
argued that this functionality reflects typical feed-forward communication from lower order
(primary sensory) areas to higher order regions [52, 241]. Early findings on γ band activity
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(see section "Neuronal oscillations"), have been linked to visual feature binding [183, 184]
but it has been refuted [186–188]. A transformation of visual input along the visual stream
would require feature specific communication within and between each level of the visual hi-
erarchy, in order to extract and process relevant feature and form a coherent percept of the
visual input. A simple model for the purpose of illustration would be the Neocognitron (see
Artificial neural networks: Not so distant relatives) [134] which directly inspired by findings
on simple and complex cells in the visual cortex [30]. In the light of the CTC hypothesis,
the Neocognitron model would require a functional path from shallow to deep layer feature
spaces that e.g. enables object recognition signalled by some output layer. This path -
again, in light of the CTC - would be laid out by synchronized activity of involved neuronal
populations. Unwanted (e.g. feature unspecific) input could partly be eliminated since un-
involved neuronal populations would not fire in sync with the target region. The "retinal"
input of the Neocognitron would be send to a first processing layer, which would respond
to simple features like oriented bars. Specific complex cells (here C-cells), would respond to
the combined activation of feature specific simple cells (here S-cells). Hence, C-cells would
be specific to a set of combined features. Again, in the next layer, S-cells would respond
to specifically activated C-cells from the previous layer, and again be combined into even
higher order features by another layer of C-cells. In the light of the CTC the path through
the different hierarchical levels would be paved by coherent γ oscillations.

Evidence for the CTC hypothesis stems from findings on anatomical connectivity (see
also "Functional and effective connectivity" and "Canonical microcircuits: cortical compute
modules"), animal studies and studies on humans. The canonical microcircuit model for
predictive coding [82], which is often used as reference model for local functional connectiv-
ity, postulates that γ band activity could be attributed to feed-forward processes originating
mostly in superficial cortical layers, which indeed could be verified by electric stimulation
of macaque V1, which elicited a superficial layer γ response targeting V4 [52]. It could
furthermore be demonstrated in humans using a selective attention paradigm that induced
γ band oscillations indeed reflects coherent signalling between V1 and V4 in feed-forward
direction [242]. Additionally it could be shown that γ band coherence lags in monkeys -
between sending and receiving region - often range from 3 ms (intra-area deep to superficial
[243]) to 10 ms (FEF to V4 [244]), but could last up to 20 ms for connections between infe-
rior frontal junction (IFJ) and the FFA or parahippocampal place area (PPA) [245]. Those
findings would clearly speak in favor of a feed-forward directed information flow represented
by γ oscillations that reflect synchronized firing patterns for coherent intra and inter-area
communication.

While the CTC model provides a straight forward explanation for coherent feed-forward
processes through entrainment of post-synaptic gain, feedback processes have not been ex-
plicitly incorporated in the model to such an extent. In a later article however Bastos et
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al. (2015) [246] explained that the original CTC would threat bi-directional communication
as functional network assemblies, formed via (near) zero lag phase synchrony. Thereby β
band activity is hypothesized to reflect feedback directed predictions. However, the exact
interaction between high frequency feed-forward and low frequency feedback activities is
described in less detail. The updated model would instead propose an interaction between
feed-forward and feedback directed processes, depending on intra and inter-area γ phase.
Each feed-forward flow of information from the thalamus to the visual system would serve as
input in L4 from where it is routed towards supra-granular layers (including a small phase
delay). Areas along the hierarchy would consecutively modulate the gain of the receiving
regions (entrained from the sending region), such that it is phase coherent with the sending
region. From supra-granular layers, feedback can now be send to lower order supra-granular
layers, since both would be in sync as well. This implementation would yield two anatomi-
cally and functionally separable channels for feed-forward and feedback information flow.
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Figure 4: Nested feed-forward high frequency and feedback directed low frequency oscillations.
From dashed to more solid and thicker lines represent the respective progression of oscillations over time
with the dashed line representing the past and solid line thick lines the present state. Slow (e.g. θ or α
oscillations (blue lines) indicate top-down selective processes, whereas high frequency γ oscillations (yellow
lines) are associated with the feed-forward flow of information (feed-forward: left to right). The green lines
represent the compound frequency of both, where high frequency activity is nested in the low frequency
oscillation. See also "Coding via nested oscillations"

Communication via nested oscillations

Models of nested oscillations [247, 248] try to link hypotheses about fundamental princi-
ples of cortical information flow derived from findings on slow oscillations like θ or α (e.g.
Gating by inhibition), with those about high frequency oscillations like γ (see e.g. Commu-
nication through coherence) [240, 249]. Furthermore, anatomical findings about the local
cortical structure (see "Canonical microcircuits: cortical compute modules") and functional
long-range network architecture (see Structural aspects of the brain) are incorporated to
provide the basis for detailed hypothesis testing [91]. Nested cortical oscillations comprise
the idea of a compound frequency of multiple base frequencies (see Figure 4), which imple-
ment different functionality and are implemented differently within the cortical architecture
and frequency spectrum (see also "Coding via nested oscillations"). Thereby "medium slow"
oscillations (α, β) are associated with feedback directed connectivity [249, 250]. The model
by Bonnefond et al. (2017) [91] explains high oscillations (γ) as feed-forward flow of infor-
mation reflecting synchronized neuronal spiking [240]. Slow oscillations are considered to
facilitate the recruitment of neuronal assemblies (cortical networks), modulated by atten-
tion [251] or stimulus anticipation [252]. Neuronal populations involved in ongoing stimulus
processing are thought to be combined into a stimulus processing pipeline via (coherent) α
ERD. Fast oscillations would use newly established dis-inhibited and synchronized network
routes for feed-forward directed information transmission nested in slow oscillations (see also
"Coding via nested oscillations" below). Originating from thalamic nuclei, visual informa-
tion would be projected to granular layers (L4) of the primary visual cortex. The signal is
passed internally to supra-granular layers (L2/3), where it is forwarded to L4 of the next
target region. Feedback connections - according to this model - originate in supra-granular

40



V4

V1

high 𝜶 power 
suppressed communication

low 𝜶 power 
connection established 

in feedback direction

high 𝛄 power 

nested feedforward  
information flow

A B

supra-granular

granular

infra-granular
V1

V4

high 𝜶low 𝜶
high 𝛄

low 𝜶
high 𝛄

no 𝛄

Figure 5: Inter-area communication via nested oscillations. Figure adapted from Bonnefond et al. (2017) [91].
A) Functional connectivity. A communication channel between V1 is established in feedback direction
(from V4 to V1) by decreased but synchronized α band activity in the respective target areas (blue). High
α power in non-target areas suppresses upstream information flow (red). Once a communication channel is
established, γ oscillations carry the respective information from V1 to V4 in feed-forward direction (yellow)
nested in α (see also "Coding via nested oscillations"). B) Micro-circuitry of nested oscillations
communication. Communication channels are established in feedback direction by low α power (blue) in
supra and / or infra-granular cortical layers (light blue and magenta). The feed-forward information flow is
reflected in an increase in γ power (yellow) from supra-granular to granular layers (light blue and cyan) in
the upstream population (supra-granular for long range connectivity), nested in coherent but lower power α
(blue). High α power (red) - possibly in anti-phase - in V1 supra and / or infra-granular layers interrupts
the upstream information flow, suppressing a large part of the respective γ power increase.

and infra-granular layers with respective connection to supra and infra-granular layers of the
lower order region (see Figure5 B).

Within the communication via nested oscillations framework, visual information (re-
flected in the γ band) is transferred along the established communication channel (reflected
in the α band) nested in the phase of the low frequency oscillation. Figure 4 illustrates
bi-directional information flow based on nested oscillations. Multiple points in time (i.e.
snapshots) are represented by line thickness, such that the most thick and solid lines repre-
sent near past or present time points, whereas the dashed line would reflect the time point
furthest in the past. While the blue line "travels" from right to left, the yellow line travels
from left to right. If feed-forward to feedback connectivity is implemented from left to right,
the slow oscillation component of the green compound wave travels in feedback direction,
whereas the fast oscillation component travels into feed-forward direction. Connectivity in
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this model predicts phase coherent γ oscillations in feed-forward direction, originating at
superficial to middle layers (L2/3 possibly L1), connected to granular layers of the target
region (L4), while - more importantly - slow oscillations are thought to occur prominently
in deep and superficial layers, implementing supra-granular to supra-granular and infra-
granular to infra-granular feedback connectivity (See also Figure 1). It could be shown that
α ERDs ranging from 400ms to 700ms after attention cue onset, are accompanied by a state
shift in fronto-parietal attention networks, indicated by a cross-hemisphere laterialization of
fronto-parietal functional connectivity [253]. Top-down directed attentional control networks
involving the FEF have been widely known for years [254], however the critical involvement
of cortical oscillations has been subject to more recent publications. Microstimulation in
FEF leads to attention like neuronal spiking in primary visual cortex areas [76], but fur-
thermore this change seems highly related to respective changes in the α band connectivity
in top-down (feedback) direction [251]. Findings on feedback connectivity estimates from
laminar level fMRI point in a similar direction as well. The perception of an illusory shape
has been shown to be related to increased feedback driven deep layer cortical activation in
V1 in receptive fields corresponding to the position of the illusory figure [34]. Bottom-up
stimulus processing however was reflected by an increase of the overall BOLD signal across
all layers, but predominantly in middle and superficial layers. Using this model common
findings on e.g. phase coherent γ oscillations (see Communication through coherence) as
well as targeted (e.g. attention driven) α (dis-) inhibition (see Gating by inhibition) would
reflect two aspects of a joint model of nested processes.

Within the predictive coding framework (see What is . . . on page 33), feedback directed
predictions are reflected in β burst activity [219]. In the light of the present framework, con-
sidering functional principles of canonical microcircuits (see "Canonical microcircuits: cor-
tical compute modules"), predictions reflected in the β band could potentially be conveyed
downstream by neuronal synchronizations in the α band [219] which results in a upstream
directed information flow in the γ band (nested in α) reflecting the prediction error. Since α
is hypothesized to target specifically important neuronal populations for the ongoing process,
the respective "targeting" would reflect some sort of precision [223] that is set to minimize
surprise (prediction error, γ) by conveying predictions (β) to "best suited" neuronal pop-
ulations, which could increase precision by lowering the false positive rate (falsely active
neuronal populations).
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Figure 6: Multi-item sampling based on nested oscillations [210, 255]. Perceiving a typical scene from
the country side involves the processing of a variety of stimuli of different sensory modalities. Information
could be visual (e.g. a cow), auditory (e.g. the sound of a cricket) or olfactory (e.g. the fresh air of
the country side), for multi- or mono-sensory information processing. Each item is processed by primary
and higher order visual regions, which is expressed as feature [256] or item specific γ oscillations [245].
Each feature specific γ burst corresponding to one item, might arrive from different sensory areas (joint
representation by the yellow line). Depending on the underlying level of inhibition - reflected in the α or θ
band (blue line) - stimuli (or stimulus features) that evoke a stronger response are processed earlier along the
cycle (where inhibition is still quite high). This temporal sorting along the phase gradient allows multiple
items (or features) or multi-sensory input to be combined into coherent percepts [257] via γ band oscillations
[204]. By modulating frequency or amplitude (not shown here), the "window of opportunity" (i.e. where
inhibition is low enough for information to be transferred) can be narrowed (higher frequency or amplitude)
or widened (lower frequency or amplitude). Depending on e.g. the number of items that are combined to one
"object", low frequency amplitude and / or frequency might vary accordingly (wider window, more features).
The green line was created by computing the average between the blue and yellow lines. For illustrative
purposes the average, rather than the sum was chosen, such that the blue line (reflecting underlying slow
oscillations), could serve a second purpose of modelling the gain of the post-synaptic cell (modulating the
threshold at which the post-synaptic cell can be excited). Information is coded along the slow oscillation
phase gradient based on the combined nested oscillation activation. The first item-encoding burst of γ which
exceeds the underlying θ inhibition (values of green line higher than values of blue line) will be transferred
first and successively so forth along the phase gradient for signals exhibiting less excitation. It has been
further suggested that the θ phase gradient encodes multi-object, whereas the α phase gradient encodes
multi-feature (within one object) information in the γ band [91, 210, 258].

Coding via nested oscillations

Beside the notion of nested cortical oscillations implementing bi-directional information
flow, a more functional focused consideration of the duality between low and high frequency
oscillations has been discussed as well. Spike time coordination in hippocampal formations
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modulated via the γ cycle, nested into the θ rhythm, has been hypothesized to reflect a
temporal sorting scheme for multi-item stimulus processing along the θ phase [204]. Low
frequency phase dependent sampling has further been proposed a mechanism for attention
sampling [207]. Those models are based on the notion of a low frequency phase gradient
which allows stronger input signals earlier in the cycle [259]. On the behavioral level, within
object target detection performance (computed by varying SOA times) fluctuated around
8 Hz (α band), whereas between object target detection performance fluctuated with 4 Hz
(θ band) [210] (see Figure 6). Recent findings from SNN simulations support the idea of
sampling based neuronal computations based on low frequency oscillations as well and could
demonstrate that oscillatory "background activity" potentially contributes to fast informa-
tion sampling from multiple sources and speeds up computation time by efficient sampling
from the solution space [260].

Local cortical computations and widespread neuronal network dynamics produce oscil-
latory signals that have been linked to feed-forward and feedback connectivity in the neo-
cortex across multiple cortical layers, spike time coordination in the hippocampus, attention
related fronto-parietal network activity and perception related phenomena. Open questions
however remain with respect to how functional connectivity on the level of cortical laminae,
using non-invasive technologies, such as EEG, MEG, fMRI or network simulations, could
be realized. Estimating laminar level cortical activity for multiple frequency bands further-
more provides the possibility to distinguish functionally separate processes that share similar
time-frequency properties. Multiple "αs" or "θs" serving similar computational properties
as ingredient for functionally different computations or spatial communication patterns are
possible [261]. Connectivity related α ERD - setting up the computational route for stimulus
processing - could e.g. be complemented by attention specific α (dis-) inhibition. Indeed
thalamo-cortical and cortico-cortical sources for α band oscillations could be identified [262].
Whether those two α loop connections are functionally related to the presumed computa-
tional properties mentioned before thereby is less important than the insight that multiple α
sources exist. Hence, it is very well possible that e.g. α band activity stems from attention
related sources or feature related sources or both. This makes sense, considering how vastly
different local and widespread networks are set up, but are operating in the same frequency
band. Receptive field specific α (e.g. center surround suppression [263]), feature specific α
(e.g. salience dependent phase coding [264]) and attention related α (e.g. to one hemi-field
[251]) could hence reflect functionally and anatomically separable processes that make use
of an around 10 Hz inhibitory oscillations which in combination implement a complex in-
hibitory fine grained modulation of the target area (e.g. early visual regions). Functional
nesting of e.g. γ oscillations in low frequency phases in feed-forward direction would hence
be reserved to connectivity related functional (dis-) inhibition.
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1.4 Research question

In a broader sense, this thesis investigates if and to which degree, cortical oscillations play
a functionally, computationally and anatomically describable role in the cortical compute
architecture. Recent advancements in human electro-physiological neuro-imaging methods,
allow for trial based analyses of cortical oscillations that can be narrowed down spatially to
the level of cortical layers. It could be demonstrated that using combined EEG-fMRI, differ-
ential distributed layer profiles for α and γ band oscillations in primary visual regions can
be obtained [238]. Furthermore, connectivity analyses within and between laminar resolved
cortical regions, relating BOLD signal connectivity to EEG power spectrum fluctuations,
have been proven to be a viable option [265]. Additionally, recent advancements for MEG
data acquisition protocols (e.g. using individual head-casts 9 [267]) allowed the mapping
of individual motor related β burst components to a superficial or deep compartment of a
two layer cortex model [220]. Furthermore, recent developments enabled laminar level MEG
research, spatially resolving two cortical layers (deep and superficial) that could be linked
differentially to α and γ oscillations in the visual cortex [268]. Those developments allow to
non-invasively test predictions about "Communication via nested oscillations" (see respective
section on page 1.3) and anatomical implementations in humans using MEG. Investigating
the fundamental compute architecture of the brain on the level of cortical laminae using
electrophysiological methods might reveal fundamental network compute principles which
can be used to inspire or enrich artificial intelligence (AI) research (see Artificial neural net-
works: Not so distant relatives). In SNN simulations, the performance of ANNs for certain
tasks could significantly be increased by introducing a low frequency "background oscilla-
tion", supposedly enhancing the networks sampling-based probabilistic inference capabilities
[260]. In addition to that DNN architectures enhanced with feedback directed generators,
inspired by the predictive coding framework, exposed a much larger resilience against adver-
sarial attacks [132]. Derived computational models in turn would allow for a refinement of
empirical hypothesis testing with respect to theoretical frameworks on the cortical compute
architecture.

From animal research and theoretical frameworks about the underlying functionality of
neuronal oscillations - in particular the communication via nested oscillations (CNO) model
- a set of testable hypothesis can be derived:

9A head-cast is used to create a unique, reproducible fit (relative position in space) between the subject’s
head and the MEG sensors [266]. Individual subject’s anatomy - obtained using T1 weighted magnetic
resonance imaging (MRI) - has been used to obtain the head-shape. From this, a foam negative is created
for the space between the MEG dewar and the subject’s scalp. The participants "wear" the head-cast like an
individual whole head foam helmet that precisely mounts to the MEG dewar’s head opening ( ).
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Hypothesis 1 α power decreases over lower and higher order regions (or neuronal popu-
lations) are specifically linked to ongoing stimulus processing.

Hypothesis 2 α oscillations are in synchrony (coherent) between lower and higher order
regions (or neuronal populations) that are involved in ongoing stimulus processing.

Hypothesis 3 α power related changes with respect to attention differ from those with
respect to ongoing feature processing, which would be expected based on anatomical findings
[80] and the idea that those are implemented in separate cortical processes with different
laminar profiles [91].

Hypothesis 4 α power decreases are linked to increased activity in neuronal populations
that preferred certain stimulus features as compared to the not preferred stimulus features.

Hypothesis 5 α band activity decreases for expected (predictable) stimuli [269].

Hypothesis 6 α power changes are mainly linked to deep (possibly feature processing
[34, 52]) and superficial layer (possibly spatial or directed attention [56, 270, 271]) activity.

Hypothesis 7 γ band activity is related to stimulus feature specific processes.

Hypothesis 8 γ band activity increases when predictions about stimulus features are
violated.

Hypothesis 9 γ band activity is related mostly to superficial and mid layer neuronal
activity for ongoing stimulus processing [52, 91, 238].

Hypothesis 10 γ band activity is nested in α band activity and is coherent between
stimulus processing regions [240].

Hypothesis 11 Spatial filters that transform an image into an edge enhanced version can
be obtained by training a DNN to reproduce γ band power changes (obtained from a MEG
experiment, see below) in the visual cortex from initial stimulus material.

Hypothesis 12 External low frequency oscillatory activity increases robustness against
noise in a SNN performing object classification.
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In the following sections the respective hypotheses will be elaborated and explained given
the respective experimental modality. Thereby, hypotheses mainly linked to anatomical
and functional aspects of active sensory processing, are investigated using laminar level
simultaneous EEG-fMRI (Hypotheses 1-4, 6, 7, 9, 10). Hypotheses that either require a
large number of trials to test (e.g. prediction violation) or mainly focus on temporal aspects,
are tested using MEG (Hypotheses 1-10). Lastly, respective results are used as reference
data for ANN simulations and theoretical functional principles are implemented in ANN
simulations as well (Hypotheses 11, 12). Unfortunately, from the initially planned three-
fold approach (EEG-fMRI, MEG, ANN), only the first one was fully executed. This is
explained by various circumstances, which will be highlighted in the respective sections (see
"Experimental work").

Laminar level EEG-fMRI Computational models involving canonical microcircuits (see
"Canonical microcircuits: cortical compute modules") as well as computation and com-
munication models based on nested oscillations (see "Communication via nested oscilla-
tions") inevitably rely on empirical testing of specific laminar level oscillatory activity. But
only recently respective methodological advancements allowed to conduct laminar and fre-
quency specific human subject experiments using non-invasive techniques on healthy adults
[220, 238]. In a first step it needs to be demonstrated that the novel methodological pos-
sibilities indeed allow for in depth hypothesis testing about the role of (nested) oscillations
in the cortex. Scheeringa et al. (2016) [238] demonstrated in a simultaneous EEG-fMRI
experiment that cortical oscillations can be related to the laminar level BOLD signal in
primary visual regions. In a detection task, where participants were asked to respond to a
speed change in the concentric moving circle pattern, EEG activity in the α band was found
to be correlated with the BOLD signal in deep and superficial, whereas the γ band trial-
by-trial power changes correlated with the BOLD signal mostly in middle and superficial
layers. Since this study provides only a proof of concept for the applicability to functional
hypothesis testing with respect to brain oscillations on the level of cortical laminae, applying
the methodology to task related hypothesis testing remains to be done. Since occipital γ
band oscillations have been related to visual feature related processing [182, 184, 189, 240]
predominantly in supra-granular layers [52, 238] where feed-forward pathways to L4 of higher
order regions have been located [80], a feature selective γ band response for each level of
the visual cortical processing hierarchy would very much be expected (Hypothesis 7). Since
cortical neurons in early visual regions respond predominantly to simple features, such as
bar orientations [30], the visual response in the γ band for distinct low level visual features
(e.g. orthogonal oriented grating stimuli) would be expected to be correlated differential
with the BOLD signal, obtained from different neuronal populations in V1 with respective
orientation preferences. If indeed γ band neuronal activity reflects feature selective ongoing
feed-forward activity, then γ band power should be correlated with the BOLD signal only
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in voxel that capture the separation between both stimulus orientations best. Hence, high
values for the difference between both orientations reflect in each voxel the preference to one
orientation and at least the ignorance (if not suppression) of the respective other. Feature
specific activity has been mainly associated with superficial and potentially middle layers
[238], but also deep layer activity would be expected to some extent [52, 80] (Hypothesis 9).

Vlow Vhigh

low 𝜶

high 𝛄

high 𝜶

weak 𝛄

Figure 7: Feature specific neuronal oscillations. Using a combined EEG-fMRI experiment, feature
specific contributions of high and low frequencies can be related to specific neuronal populations via the
BOLD signal. Stimulus features (represented by the triangle), are expected to elicit higher BOLD responses
in voxel preferring the respective stimulus feature (square with negative triangle) compared to those who do
not (square with negative semi circle). α power in stimulus unspecific or non-preferring regions is expected
to be correlated negatively with the BOLD signal in that regions. No γ increase is expected, due to high
α inhibition. The BOLD signal in neuronal populations preferring a respective stimulus feature are as well
expected to expose a negative correlation with α power. In that case a positive γ correlation would be
expected as well. α power effects are expected to be mainly found in deep and superficial layers, whereas γ
effects are expected to be associated mostly with superficial and middle layer activity (but possibly also deep
[80, 272]). Furthermore, the nested oscillations based information transfer between lower and higher order
regions (lower order visual region: Vlow and higher order visual region: Vhigh) is expected to be reflected
in BOLD signal feedback connectivity that is negatively correlated with α power in deep and superficial
layers between regions and feed-forward connectivity between regions from superficial to middle layers that
is correlated with γ band power. See Figure 4 for a depiction of a bi-directional compound oscillation where
one oscillation is nested into a second oscillation.

As Scheeringa et al. (2022) [265] in their proof of concept further demonstrated, os-
cillatory activity can be related to intra-area (inter-layer) or inter-area BOLD connectivity
measures. This gives rise to the opportunity to relate feature specific cortical activity to
functional connectivity in the visual cortex. Here, γ band activity would be expected to be
significantly related for feature specific voxel connectivity from superficial in the source to
middle layers of the target region (Hypothesis 10). From connectivity related findings on
laminar fMRI [34], as well as electro-physiological findings from monkeys [52], it can be de-
rived that EEG α band activity should be related to the layer specific BOLD signal in mostly
deep, but also superficial layers (Hypothesis 6). This proofs particularly difficult, since the
SNR in deep cortical layers is expected to be lower than in superficial layers due to superficial
draining veins that have an effect on the BOLD signal [273]. However, if respective α effects
expose higher correlation values for deep layers or can be compared to other layer profiles
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(like Scheeringa et al., 2016, [238] did) and prove to be different, then the influence of the
SNR bias towards superficial layers has only little effect on respective conclusions that can
be drawn. Expected deep and superficial α decreases are predicted to be related to top-down
feedback connectivity, which again could be tested relating laminar level BOLD connectivity
to the EEG power changes in each trial (Hypothesis 2). Whether changes in the α band
are indeed related to feature specific populations of neurons (e.g. dis-inhibiting voxel that
preferably respond to stimuli in one orientation and inhibiting voxel preferring the other
orientation) [91] can easily be tested by comparing the α band correlation of the BOLD
signal between voxel exposed to their preferred or non-preferred orientation (Hypothesis 4).
Specifically, an α band decrease linked to BOLD activity of neuronal populations preferring
a respective orientation would be mostly reflected in deep and superficial layers. Given that
α band activity has been associated with spatial attention, but also local canonical microcir-
cuit computations, superficial and deep layer α band negative correlations with the BOLD
signal might reflect distinct feedback processes (Hypothesis 3): establishing feature specific
communication channels and general attention inhibition / enhancement respectively. For
neuronal populations that do not prefer a respective orientation, a spatial attention related
α band power decrease would be expected (Hypothesis 1) as well (mostly in the deep layers),
whereas a relative α increase (compared to the preferred orientation neuronal populations)
would be expected to reflect less stimulus related activation in that population. A negative
correlation between α band power and the BOLD signal for neuronal populations that do
not prefer a respective stimulus orientation would hence be expected but furthermore that
respective (de-) activation patterns between preferred and non-preferred orientation signif-
icantly differ. Receptive field specific α power changes can be assessed by comparing the
general BOLD activation of voxel responding to any stimulus with an increase of activation,
with those responding with a decrease. Since α power was found to be center-surround [263]
and attention hemi-field [251] specific, a decrease in α power for activated (dis-inhibited;
see "Communication via nested oscillations") and an increase in α power for deactivated
(inhibited; see "Gating by inhibition") voxel would be expected. Again, deep and superficial
layers are expected to be source (higher order region) and target (lower order region) of
such oscillatory communication, where superficial α decreases are thought to reflect stimulus
processing related feedback activity and deep layer α more general attentional processes [91].
Lastly, the contrast between preferred and not-preferred feature conditions would shed light
onto the differential role of cortical oscillations in feed-forward and feedback pathways across
different cortical layers.

The described study has been conducted to a large degree. For a detailed description see
the section "Feature specific neuronal oscillations in cortical layers (in prep)" and Figure 7 for
a visualization of the respective research question. A respective publication is in preparation
as of today (January 15, 2023).
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Laminar level MEG A major issue in laminar level EEG-fMRI is the low trial count
per experiment (due to the time it takes to even collect a single fMRI volume) and the
relatively low SNR, considering that neuronal fluctuations in the range of ms - obtained
from a blurred scalp EEG signal - are used as predictors for BOLD signal activity changes
in the order of s - obtained at very precise defined anatomical regions. While the latter
issue can partly be overcome by precise modelling of the hemodynamic response function
[238], the limited trial count per subject limits the complexity of experiments that can be
conducted using this method. As Bonaiuto and colleagues (2021) [220] successfully demon-
strated, the mapping of specific aspects of neuronal oscillations (β burst components in the
motor cortex) to two cortical layers is achievable using MEG irrespective of the inherent
spatial constraints imposed by this method. Furthermore, laminar MEG has been shown in
a proof of concept to be suitable for laminar level (time-) frequency level inference in the
visual cortex in general [274]. Since laminar level MEG does not rely on the BOLD signal
to generate required spatial precision, a more direct link between cortical activity with re-
spect to neuronal oscillations becomes accessible. Due to the potentially massively increased
number of trials by conducting a MEG experiment over fMRI, more complex phenomena,
such as spatial attention, top down predictions or brain network connectivity become viable
for non-invasive studies on healthy human participants allowing to investigate laminar level
brain oscillations. Nonetheless, fMRI data can be easily related to anatomical structures,
while laminar level MEG relies on a multitude of prior assumptions to ensure precise spatial
mapping [267]. Since, feedback directed communication has been associated primarily with
deep layer activity [34, 52] and feed-forward activity with superficial layers [52, 238] a two
layer model might be sufficient to differentiate low and high frequency oscillations across the
visual stream in primary visual regions and higher order areas. Additionally, recent method-
ological developments in our department with respect to individual head-casts - mainly led
by James Bonaiuto [266] and Denis Schwartz - in combination with a supine (lying down)
positioning of the subject inside the MEG have led to promising preliminary results that
suggest the feasibility of even resolving three cortical layers.

In order to assess the relationship between stimulus features, cortical processing and
nested neuronal oscillations within the realm of respective frameworks at the resolution of
cortical layers (Hypothesis 1-10; detailed out in section "MEG experiments" on page 117),
the development of suitable experimental setups and tasks is crucial. In general the targeted
effects are expected to suffer from low SNR on the attempted spatial resolution due to the
physical constraints imposed by MEG as a neuro-imaging tool. Hence, ideally respective
tasks must be designed, such that a large number of trials can be collected as well. To
optimize for different aspects of feature processing, two MEG studies were planned for this
PhD project. In Experiment 1 (see Experiment 1 on page 123) more local aspects related
to canonical microcircuit models are tested, whereas in Experiment 2 (see Experiment 2 on
page 130) feature selective attentional processes as well as long range hierarchical stimulus
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Figure 8: Top-down modulated neuronal oscillations. Using laminar level MEG high and low frequency
modulations in primary visual cortex could potentially be mapped to deep and superficial layers (based on
methodological developments for β bursts [220] and a proof of concept for the visual domain [268]). This
extends the range of possible non-invasive methods for measuring cortical layer specific oscillations from
combined EEG-fMRI [238] to laminar level MEG for research on the visual system. The figure depicts the
expected cortical activity for a subject exposed to a set of two stimuli (one in each visual hemi-field). One
stimulus (the triangle) appeared at the cued location (as expected) and exposed the target shape (triangle
shape). Cortical areas corresponding to receptive field locations of the unattended hemi-field are expected
to expose an α increase. A violation of that prediction (e.g. the target shape appeared on the unattended
side), would be reflected by either α phase dependent missing of the target [207, 210] or a detection of the
target, which would imply a switch in hemispheric α activity. Within the processed hemi-field (contra-lateral
hemisphere), lower α power in deep and higher γ power in superficial layers would be expected [52, 238],
reflecting feedback and feed-forward connectivity respectively. Potential higher order top-down influences
(e.g. from FFA or visual word form area (VWFA) in a face / word Stroop task) on V4 or V1 potentially
expose a similarly complex network behavior as found for the influence of dorsal visual cortex on areas in
the ventral stream [275]. Furthermore, the dorsal attention network [276] and pulvinar [276, 277] potentially
modulate respective stimulus specific activity [91]. It is hypothesized that stimulus related α band decreases
reflect feedback directed communication, where coherently oscillating neurons exchange information reflected
in the γ band nested in α.

processing is targeted. In the first experiment feature specific processing is reduced to a
minimum (gratings) but stimulus predictability has been modulated, such that predictions
derived from canonical microcircuit models can be targeted (see "Canonical microcircuits:
cortical compute modules" and What is . . . on page 33). In the second experiment, long
range feature selective attention modulated responses in the α range are addressed. To avoid
stimulus confounds, compound stimuli that expose at least two conceptually different feature
aspects without changing the retinal image must hence be used. Those conditions are met
by Stroop stimuli 10 [280]. Higher order features (e.g. words and colors or in this experiment
words and faces) compete over interpretive sovereignty and are expected to elicit similar
primary visual area response patterns in low and high frequency oscillations, however the α
driven network communication should vary between FFA [281] or VWFA [282] depending on

10The Stroop effect [276, 278], is a psychological effect that describes a delay in reaction time, for feature
in-congruent stimuli. Classically, participants would be asked to e.g. name the font color of in-congruently
colored words: RED GREEN BLUE. However, any conflicting stimulus could serve as a Stroop stimulus. For
example the relative length of the word LONG could be asked or the task entirely modified to an emotional
version, where emotion related words and pictures (mis-) match [279].
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the feature that was attended. Thereby, γ band oscillations, nested into respective feedback
directed α phases, would be related to feed-forward connectivity between regions involved
in the respective processing. Similar to dorsal and ventral visual pathways for "perception
and action" 11 [283], it is expected for complex feature Stroop tasks that the visual pro-
cessing stream at some point separates to target respective high level features (e.g. faces or
words in FFA or VWFA), which is hypothesized to leave a trail of cortical activity, similar to
what has been observed in monkeys [52, 272]. For feature competing stimuli (e.g. complex
Stroop), a respective increase in α power in the non-target region is hypothesized to facilitate
visual separation and hence should be linked (in phase and / or amplitude) to behavioral
performance [91, 210, 251]. Popov et al. (2018) [275], found increased top-down connectivity
from dorsal visual cortex (dVis) to V1, V2, V3, ventral visual cortex (vVis), MT and medial
temporal gyrus (MTG) in the α band, which was hypothesized to reflect the engagement
of multi-region brain networks during a working memory task. If similar network commu-
nication patterns could be narrowed down to functionally well defined regions (e.g. FFA
or VWFA) at the level of cortical laminae, theoretical computational models based on the
cortical architecture can be put to the test.

On a local level, proposed oscillatory properties described by models of canonical mi-
crocircuits (see Canonical microcircuits: cortical compute modules) [82] could be studied
to a great degree of anatomical precision as the mapping of β burst components to a two
layer cortex model [220] using laminar MEG indicates. In a first step, findings by combined
EEG-fMRI (see section "Feature specific neuronal oscillations in cortical layers (in prep)" or
Scheeringa et al., 2016, [238]) would need to be replicated. A two layer cortex model, would
give rise to the predictions that γ band ERSs can be observed in the superficial layer as a
response to grating stimuli, whereas α power would be expected to decrease predominately in
the deep but potentially in the superficial layer as well. Relating those findings to a cognitive
task (e.g. attention), would furthermore provide potential insight into the cortical compute
architecture in early visual regions. By introducing a lateral distractor stimulus in addition
to the target stimulus, hemi-field specific α ERDs (contra-lateral to the target) and ERSs
(ipsi-lateral to the target) [251] effects would be expected. Top down attention control from
V4 to V1 has been observed in deep and superficial layers in macaque monkeys and has been
related to γ increase and α decrease in those regions [272]. Spatial (covert) and stimulus
feature related attention processes are hence expected to reflect separate neuronal processes
that can be decoded based on the frequency response patterns even within a similar frequency
spectrum. Core predictions of the nested oscillations model by Bonnefond et al. (2017) [91],
such as feed-forward γ between e.g. V1 and V4 in superficial layers, nested into feedback

11It has been hypothesized that the visual stream separates into a dorsal stream towards parietal regions
which translates visual input for sensori-motor guidance (the where stream) and a ventral stream towards
temporal areas where object recognition is performed (the what stream) [283].
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coherent α oscillations between V4 and V1 from deep to deep and superficial to superficial
layers, as well as long range connections from frontal areas in the α band [251] can be tested.
Thereby, the respective phase relationship between source and target region in the α band
as well as nested feed-forward γ, stimulus and region specific, signalling can be further inves-
tigated. In the past it has been demonstrated that deep layer top down influence modifies
response patterns of neuronal populations in primary visual cortices. Kok et el. (2016) [34]
showed that the illusory shape of an optical illusion would cause feedback related laminar
fMRI activity in deep layers, which vanishes after slightly rearranging the figure, such that
principle perception is not altered, but the illusory shape disappeared.Within the predictive
coding framework [131], the brain complements sensory information with internally gener-
ated predictions about the current state of the world that are compared against each other.
Thereby, using an unknown function, predictions and prediction errors (mismatch between
prediction and evidence) can be mapped to each other. Bastos et al. (2012) [82] proposed
that the frequency spectrum of cortical predictions, encoded by deep layer neurons, is bi-
ased towards low frequency oscillations, whereas the spectrum for prediction errors, encoded
by superficial layer neurons, is biased towards high frequency oscillations, due the mapping
process between prediction and prediction errors. Hence, depending on the predictability of
the stimulus, the size of the prediction error and the relative contribution of low and high
frequency oscillations in deep and superficial layers are expected to modulate β and γ band
power differentially. Again, respective neuronal communication between neuronal popula-
tions would be achieved by coherent α activity. Superficial γ power would be expected to
increase depending on stimulus predictability and attention modulation, depending on the
hemi-field. Conversely, modulating predictability would be reflected in modulations of low
frequency (possibly β [82]) oscillations in deep layers and feedback direction. With respect
to the nested oscillations framework (see "Communication via nested oscillations") it is pre-
dicted that during anticipation of the stimulus, feedback predictions (expressed as β bursts)
are nested in coherent α activity, conveying them downstream. Again, incoming information
(after stimulus onset) would be compared to the prediction and respective errors (eliciting
activity in the γ band) are carried feed-forward, nested into coherent feedback α. This in
turn would result in an update of the predictions which establishes a feedback loop that
possibly spans across the entire visual hierarchy.

Artificial neural networks The trilogue between theoretical models (see e.g. "Com-
munication via nested oscillations") empirical evidence (see e.g. above or "Feature specific
neuronal oscillations in cortical layers (in prep)") and replication via simulation often spawns
even complete lines of new research. Inspired by early findings on computational properties
of the visual cortex [30] that developed into artificial neural network models [73, 134], the
foundation for modern day research on artificial neural networks was laid. While state of
the art DNNs outperform humans in a variety of tasks, their biological plausibility is limited

53



and their power consumption and training data requirements immense. Conversely, spiking
neural network models are much more biologically plausible, but could be computationally
very expensive [103, 104] and are much harder to train for certain tasks, but potentially
are more sparse by design [284]. By definition, the brain is a spiking neural network. Nev-
ertheless, it could be shown that classical DNN layer operations, such as convolution, can
be performed using SNNs as well [285, 286]. Converting DNNs to SNNs however is not a
straight forward task. Floating point activation values of the DNNs cannot be mapped 1 : 1
to a spiking neural network. Rate based models (converting the spikes of output neurons to
a rate per time) solve this issue by evaluating an extensive time period to some extent. In
the attempt to optimize this problem, it was found that rhythmic inhibition reduces com-
putational cost dramatically (compared to DNNs), while maintaining output accuracy [287].
Since weight matrices of DNNs can be - to some extent - copied to SNNs (implemented as
varying synaptic strength) [288], the opposite conversion from neural network time resolved
data to DNN layer weights has been hypothesized to carry meaningful information about
the underlying SNNs functional architecture. Indeed, Seeliger et al. (2021) [124] were able
to demonstrate a potential solution for the conversion from fMRI data to a set of DNN layer
weights. Almost 24 h of fMRI recording data has been obtained from a single subject while
watching naturalistic stimuli (a TV series). A generative DNN model - set up to mimic the
early cortical visual processing architecture (V1-3, MT, FFA) - was trained on a reduced
version of the original input that was presented to the subject, to generate the fMRI signal
obtained for each region of interest (ROI). Thereby, the loss function was computed directly
from the univariate predictions and the BOLD signal in a specific region. After training the
model, feature maps of trained layers in the artificial V1 area have been extracted. Fea-
ture maps learned by the convolutional layers contained to a large degree oriented Gabor
patches of varying spatial frequency, many of which contained a temporal component as well.
This approach could be adapted to MEG as well. So far it has been demonstrated that the
MEG signal for viewing of naturalistic objects and DNN response patterns correlate more
the more time after stimulus onset passes and in layer correspondence (early after stimulus
onset only primary visual areas and shallow layers of the DNN correlate, whereas late, deep
layer activity and higher order brain regions correlate stronger) [126]. A similar relation-
ship has been found for the relationship between MEG and DNNs in the linguistic domain
[289]. Applying novel methodological developments to achieve laminar resolution for MEG
(see above or Bonaiuto et al., 2021, [220]), enables the training of DNNs on superficial and
deep layers MEG signals respectively. Combined with the aforementioned developments in
brain-to-DNN feature mapping, laminar MEG could be used to train a model to generate
temporal feature maps (similar to spatial maps like Gabor patches, however rather than
mapping space to space, mapping space to time).

Instead of deriving potential candidates for cortical functions from the fit between DNN
models and the data, which as been shown to have some caveats [128, 130], SNN models
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Figure 9: Brain inspired artificial neuronal networks. Artificial neural networks can contribute to the
investigation of the role of neuronal oscillations in multiple ways. On one hand, biologically derived SNNs
(left side of the figure), can be built to investigate the conceptual role of neuronal oscillations. It has been
shown that SNN models exposed to a background oscillation benefit from this oscillation in sampling based
computations [260]. In that spirit, feed-forward and feedback connected SNNs could be built around the
predicted cortical and rhythmic architecture derived from canonical microcircuits and communication via
nested oscillations models (see "Canonical microcircuits: cortical compute modules" and "Communication
via nested oscillations") and compared in terms of performance and sparsity to other neural network archi-
tectures and in terms of network activity to human brain data. Furthermore, it has been demonstrated that
DNN weight matrices learned from functional brain data can give rise to meaningful interpretations about
cortical "weight matrices" [124]. Even temporal dynamics have been successfully mapped between hierarchi-
cally organized DNN models and the visual cortex hierarchy in human participants [126]. Since laminar level
MEG (see above) pushed the boundaries of spatial resolution for non-invasive electro-physiological methods,
spatio-temporal patterns could be learned from the MEG data (Hypothesis 11), by using a generative DNN
that learns to predict MEG data from input stimuli (right part of the figure). Idealized and simplified in
this figure, the temporal development of spatial filters in one channel (pink) proceeds with a different change
rate over time as compared to the other (blue). Mapping out spatio-temporal weight matrices of the DNN
might provide insight into spatio-temporal dynamics of the brain.

that implement cortical functionality derived from theoretical frameworks and experimental
evidence, might provide a powerful tool for cortical function mapping in general (Hypothe-
sis 12). Recent experiments on oscillation based SNNs show improved generative properties
and sampling [260]. The authors of the study argued that oscillatory background activity
can be seen as equivalent to simulated scheduled cooling, where temporary temperature
rises reduce the risk of getting stuck at a local attractor. Oscillatory background activity
has been argued to implement sampling based computations similar to brain networks. A
similar model could be extended to a compound wave background oscillation (see Figure 4)
or low frequency feedback and high frequency feed-forward activation in different layers.
Parameters could be tuned by relating actual laminar MEG data to SNN activity. From
synaptic weight matrices and the respective temporal activity, spatio-temporal activation
patterns can be computed. Similarly, spatio-temporal connectivity measures from the SNN
can be related to the MEG signal. Furthermore, high resolution time-frequency resolved
MEG data could be used to train a generative model, similar to what has been done in the
domain of fMRI [124].
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Introductory conclusion Laminar level EEG-fMRI, as well as laminar MEG and arti-
ficial neural network simulations provide powerful tools to investigate local computations
and widespread network dynamics with respect to the role of cortical oscillations. In a
rapidly changing environment, efficient processing of sensory information and controlling
targeted behavior has been unlocked by a large variety of species who have developed neural
networks [6]. As non-stationary organisms, animals over plants require much faster envi-
ronmental adaption protocols than sole evolutionary processes or simple chemical reaction
chains [7]. Since neural networks are expensive compared to other body parts of similar
mass [16] the resulting emergent behavior must be capable of at least compensating the
additional energy uptake. Indeed, the human brain consumes only around 20 Watt/h of
energy [17], which given its performance and compared to silicon based hardware is remark-
ably little [18]. Learning about the computational properties of the brain hence unlocks
potential access to a very effective compute architecture, which could help the development
of better artificial intelligence systems [290]. Furthermore, understanding the exact com-
putational properties in the human brain, can help to improve brain implants (e.g. deep
brain stimulation [19], retina implants [20], cochlea implants [21], brain controlled prosthetic
limbs [22]). Theories about brain network communications and local computations often
include neuronal oscillations (see "Neuronal oscillations") as computationally relevant as-
pects of neuronal activity to coordinate sensory information flow [54, 91, 148]. Based on
data recorded from monkeys or intra-cranial recordings from humans, those models predict
α band related feedback activity mainly located to deep cortical (but potentially also super-
ficial) layers. Inter-area connectivity would be achieved by a feed-back dis-inhibition of a
computational pathway reflected in an α power decrease for respective neuronal populations
and feed-forward γ band activity which - nested into the lower frequency - reflects feature
specific processing. New methods developed to map brain oscillations to cortical laminae,
such as laminar level combined EEG-fMRI [238] or MEG [220] became recently available,
such that layer specific computational models can be tested non-invasive in healthy humans.
Laminar level EEG-fMRI can be used to separate feature and receptive field specific activity
for high and low frequency oscillations (see "Feature specific neuronal oscillations in cortical
layers (in prep)") across cortical layers and potentially enables laminar connectivity within
and between cortical areas with respect to α and γ band power [265]. A two layer cortex
model could be used in combination with precise source localization methods up to the level
of cortical laminae using MEG [220]. This gives rise to the opportunity to test a greater
variety of cognitive tasks compared to fMRI studies and the respective limited trial count.
Covert spatial as well as feature specific attention is expected to be reflected in cortical con-
nectivity increase in the α band in top-down direction, targeting mainly deep layers and an
increase in the γ band in superficial layers reflecting feed-forward connectivity (synchronized
by α, see "Communication via nested oscillations"). Lastly, the development of artificial
neural network models, in the attempt to replicate "cortical behavior", provides a veritable
method to put computational theories to the test. This can be achieved, by mapping the
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input space to cortical activity using a DNN in order to extract possible set of weights that
gave rise to that activation [124], or by implementing biologically plausible SNN models that
are perturbed periodically (e.g. by a nested oscillation) to reveal computational properties
of rhythmic fluctuations [260].

2 Experimental work
Methodological developments made up a core part of the present work. This comprised both,
software and conceptual developments. To answer each of the respective research questions
(see "Research question") custom analysis pipelines and / or non-standard experimental
setups and / or stimuli needed to be created for EEG-fMRI and MEG experiments as well as
ANN simulations. In the spirit of open source, those developments are made or will be made
publicly available and open access versions of papers are planned or already available. In this
section methodological and software developments that had been made in order to answer the
respective research question are presented separately for each of the thematic blocks (EEG-
fMRI, MEG, ANN). Since the EEG-fMRI publication almost reached submission status
as of today (January 15, 2023) most of the respective developments are presented in the
quasi-publication-styled section "Feature specific neuronal oscillations in cortical layers (in
prep)" on page 58. Furthermore, additional developments that are not included in the
future publication but nevertheless are considered important developmental steps for this
experiment are shared as well. For both MEG experiments and the ANN simulations the
current state of development will discussed. Again, respective sections have been arranged
roughly according to a more or less publication default style. A short introduction ensures
conceptual embedding of the methodological developments that make up the core part. Since
no results with respect to those MEG experiments have been obtained personally by myself
yet, some preliminary results kindly provided by colleagues are included as well together
with a respective discussion.

2.1 COVID 19 remark

The COVID 19 crisis turned out to be a major setback for the present project. Especially the
planned MEG experiments (see "MEG experiments" on page 117) suffered from lockdown
and hygiene regulations. Our MEG department was closed for more than six months which
caused a substantial delay to the recording schedule. This fact, combined with unexpected
delays in the ethics approval procedure delayed the recordings by more than a year. This
means that within the realm of the present thesis, only the conceptualization and imple-
mentation of tasks as well as the data collection could be achieved. Results from the MEG
experiments are relatively limited. Furthermore, home office regulations as a result of the
global pandemic affected me personally very much, due to a very difficult housing situation.
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2.2 EEG-fMRI experiment

Feature specific neuronal oscillations in cortical layers (in prep)

Clausner, T., van Mourik, T., Marques, J., Haak, K., & Scheeringa, R.∗, Bonnefond, M.∗
Feature specific neuronal oscillations in the α and γ are differentially linked to cortical layers.
(in prep)

∗ both authors contributed equally to the project

The respective processing pipeline will be set to publicly available once the paper has been
submitted at: https://github.com/TommyClausner/laminarfMRIv2. As of today (Jan-
uary 15, 2023) this has not been the case.

Abstract

Cortical rhythmic activity patterns have been related to a variety of of cognitive pro-
cesses. Their particular computational role has been a long debated topic that resulted in a
variety of theoretical frameworks used to explain past findings. Thereby, α band activity has
been related to inhibitory processes of attention, affecting sensory processes as well as other
cognitive functions. In turn γ band oscillations have been related to a more direct measure of
ongoing neuronal activity and is thought to be related to stimulus feature processing. Cur-
rent theoretical frameworks rely on the separation of the cortical architecture into layers to
explain findings mostly derived from animal models. Only recently methodological advance-
ments allow to test layer specific cortical oscillations allowing in depth hypothesis testing
of respective frameworks non-invasively in healthy human participants. The here presented
simultaneous EEG-fMRI experiment investigates oscillatory activity in the visual cortex for
the α and γ band as a response to two orthogonal stimulus features. The most striking
result we found is a layer and frequency dissociation within the α band for attention-related
and feature related processes. We found that general activation (attention effect) related α
oscillations (8 − 10 Hz) were negatively correlated mainly with BOLD signal in superficial
layers. As predicted by some frameworks, but not by the majority of the literature, we
found that α oscillations, in a higher frequency band (11− 13 Hz), to be specifically related
to stimulus feature specific BOLD signal in deep and superficial layers. More interestingly,
both effects (low and high frequency α) were also observed for negative BOLD signal in line
with the inhibitory role of α oscillations. Finally, as predicted, γ oscillations were positively
correlated with feature-specific signal in superficial and deep layers.
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Introduction

Whether brain rhythms have specific computational roles remains a hot debate in the
literature. One of the most popular frameworks suggests that γ rhythms (> 40 Hz) would
be involved in setting up specific communications between populations of neurons [240]. This
framework further implies a role of feedback related α / β in modulating this communication.
Other frameworks emphasised the role of α oscillations in controlling the flow of informa-
tion within networks [91, 291]. Communication would be set-up via the synchronisation
of feedback controlled α oscillations between relevant pools of neurons. Stimulus induced
γ oscillations would be controlled locally by these α oscillations, i.e. nested within their
excitable phase, and transferred to the next hierarchical level for further processing [91].
Moreover, as α oscillations might be related to functional inhibition, high α amplitude in
irrelevant pools of neurons might as well be crucial to ensure the specificity of communication
[91, 224, 231, 251]. Beyond this idea, inhibition of non-specific pools of neurons for enhanc-
ing the specificity of local processing of stimuli has been suggested as well [173, 292, 293].
These different mechanisms suggest the co-existence of multiple α sources. Communication
through α synchronisation implies that α oscillations are at least receptive field specific [176]
if not feature specific during stimulus processing. Such a finding would go against the current
idea regarding the spatial selectivity of α. Instead, α oscillations related to inhibition should
express higher power in irrelevant pools of neurons than in pools of neurons processing a
relevant stimulus.

Across cortical layers, different distinct neuronal projections have been found [294]. Those
have been linked to a multitude of frequency bands in animal studies [52, 295–297]. Fur-
thermore, simulation studies have confirmed that the origin of those cortical oscillations are
potentially linked to the cortical architecture itself [298]. For human studies however, the
relationship between the cortical architecture and different frequency bands remains less
investigated, mostly due to technical and ethical challenges. Previous work has focused
mainly on methodological obstacles [80, 220, 238, 265] or relied on laminar level fMRI only
[34, 299–302]. Hence, it remains widely unclear how low and high frequency oscillations
and related models [91, 224, 240] are reflected in the laminar architecture of the neo-cortex
in healthy humans. The different frameworks suggest that γ oscillations should be feature
specific (see also Scheeringa et al., 2011, [303]), i.e. high in neurons specifically associated
with the stimulus processed (or with prediction error; see Schneider et al., 2021, [304] and
Sedley et el., 2016, [219]). Derived from anatomical findings [80] and studies on animals,
some predictions with respect to the activation profile for α and γ can be formulated. If α
oscillations are related to feedback processes from higher order regions [52, 219, 242] or the
pulvinar ([235, 305]; but see also Saalmann et el., 2011, [306]), they are expected to be found
across all cortical layers [271, 307], but possibly a dissociation with between general or spatial
attention and stimulus feature related α is to be expected as well [91]. For γ oscillations,
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a clear relationship between increased post-stimulus γ power and at least feature process-
ing related BOLD signal changes (if not even stimulus feature specific processing [189]) in
superficial (and middle) layers [52, 91, 238] are expected and have been found. Findings
from animal models [52, 272] and anatomical constrains [80] imply an additional deep layer
related signal transmission component that is possibly located in the γ band [246] and has
been linked to more spontaneous synchronizations [308] as compared to feature carrying co-
herent γ oscillations in superficial layers [53].

In humans, electroencephalography (EEG) or magnetoencephalography (MEG) record a
mixture of these different signals with a relatively low spatial resolution (but see Michalareas
et el., 2016, [242] or Bonaiuto et al., 2018, [268]). However, combining EEG recordings with
high-resolution (laminar-level) functional Magnetic Resonance Imaging (fMRI) allows to
contravene these issues [238, 274] and test for the aforementioned hypotheses. In the present
study, we used such an approach for the first time, focusing at the visual cortex while
participants were presented with left or right oriented gratings. We were able to extract
feature specific BOLD signals in voxel encompassing three compartments associated with
deep, middle and superficial cortical layers in V1, V2 and V3 regions. Interestingly, we further
found that negative BOLD signals also partially exhibited feature specificity. In addition - as
expected from the literature - we could demonstrate that γ oscillations were correlated with
feature specific BOLD signal over deep and superficial layers [52, 52, 91, 238, 272]. More
strikingly, α band oscillations could be related to a more general - possibly attention driven -
process and a differential feature response. Since, a positive BOLD signal will reflect difficult
to separate feature and attention related processes, respective feature selective signals have
been used as control regressor for the general deactivation. Negative correlations between
α oscillations and the BOLD signal have been found from 8 Hz to 14 Hz for positive and
BOLD signals as well as the negative BOLD signal with feature specific BOLD (±) as control
regressor, predominantly in superficial layers. We could show that this pattern is different
from more feature related α band oscillations. Thereby, an inverted frequency profile for
low and high α has been observed to specifically be negatively correlated to voxel preferring
(11− 13 Hz) or not preferring (8− 10 Hz) a respective stimulus orientation over the other
mainly in superficial and deep layers. Furthermore, for preferred or non preferred orientation
a relative increase for the respective other α sub-band as bind observed. Hence, we report
for the first time, evidence for α oscillations that mediate either attention or feature related
processes with a differential layer and frequency activation profile which - combined with
findings on γ - would be in line with predictions by recent theoretical frameworks [91].
Feature unspecific attention related α [251, 272]) as well as feature specific α with respect
to the ongoing feature processing [91, 309] have been predicted. Since those effects could be
observed not only in voxel with strong stimulus driven activation but furthermore in voxel
with stimulus dependent deactivation we would like to emphasize the importance of studying
negative deflections of the BOLD signal to explain cortical processes in full detail.
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Methods and Materials

Subjects Data of 52 right-handed participants (34 ♀) between 18 and 35 years old (µ =
24.0, σ = 4.0) was recorded. Subjects requiring eye sight correction were excluded due
to impracticalities during the recording. Furthermore, participants were excluded if they
exposed a neurological or psychiatric history or underwent neurosurgery. Informed consent
was collected and participants were rewarded monetarily. The experiment was approved by
the local ethics committee.

Data Acquisition Functional and anatomical magnetic resonance imaging (fMRI)
data was collected using a Siemens MAGNETOM Prismafit 3T MRI scanner, employing a
64 channel whole head and neck coil. Before moving into the scanner, the subject was in-
structed and a short practice block of the main experiment was performed. After that the
subject was placed inside the scanner. First, a high resolution (0.8 mm isotropic voxel size)
whole brain volume was recorded using a T1 weighted MP RAGE sequence [310]. Repetition
time (repetition time (TR) ) was set to 2.2 s and echo time (echo time (TE) ) to 2.64 ms. In
total 224 sagittal slices of 256× 256× 0.8 mm were acquired. Functional data was recorded
using a 3D gradient-echo planar imaging (EPI) [311] partial brain protocol. In total 44 tilted
coronal slices of 208.8 × 208.8 × 0.9 mm from the occipital and parts of the parietal lobe,
were collected per volume, including primary visual areas. The phase encoding flip angle
was set to 20° at an (almost) isotropic voxel size of 0.9052 × 0.9052 × 0.9 mm (TR : 3.3 s;
TE: 34 ms). Slices were collected interleaved in ascending order. This protocol was used for
both the main experiment and the retinotopic field mapping. See Figure 10 (B) for a visual
representation of the recording protocol.

Simultaneously, electroencephalography (EEG) data was recorded using a 64 chan-
nel MR compatible EEG system [312] at a sampling rate of 5 kHz. Impedances were kept
below 20 kΩ during subject preparation. Electrode positions were recorded using a pho-
togrammetry based approach as described in Clausner et al. (2017) [313]. A 3D model,
computed from ≈ 50 photographs of participants wearing an EEG cap, is aligned via facial
features to a 3D representation of the anatomical MRI. Electrode positions are determined
from the photogrammetry based 3D model, transformed into MRI space.

Additionally, eye tracking data was recorded simultaneously using an EyeLink 1000+
[314] at a sampling rate of 1 kHz (to check for proper stimulus fixation). Calibration was
performed using a 3 × 3 grid filling the central square of the screen. For each grid point,
the calibration error was kept below 0.5° visual angle deviation from the center. Note, that
due to difficulties during data acquisition and insufficient data quality, eye tracking data was
omitted from the analysis protocol afterwards.
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The full experimental protocol included (in chronological order) the high resolution
anatomical scan (8 min), four blocks of simultaneous EEG-fMRI recording for the main ex-
periment (4×14 min), three blocks of population receptive field (pRF) mapping (3×7 min)
using the same fMRI recording sequence, but omitting EEG data recording, and 20 resting
state volumes of that sequence, but with inverted flip angle (1 min) for estimating field dis-
tortion (omitted from the analysis protocol). The duration of the entire experiment summed
to about 150 min, including preparation time, a 5 − 10 min break between the two main
experimental parts and 15 min after the experiment has ended for participants to wash and
dry their hair.

Stimulus presentation Stimuli were projected onto a screen behind the subject’s head
using an EIKI LC XL100 projector (https://www.eiki.com/) at a resolution of 1024 ×
768 px and a maximum brightness of 5,000 ANSI - lumen, with 1000 : 1 contrast ratio. Light
from the projector screen was re-routed using a mirror system mounted to the MR head coil
to reach the subject’s field of view. The effective field of view comprised 24×18° visual angle
at a distance of 855 mm relative to the subject’s eyes. Throughout the entire experiment,
stimuli were presented in an otherwise dark scanner room. During the anatomical scan,
participants could read the experiment instructions and remained otherwise still with their
eyes opened or closed.

Main experiment Subjects performed a visual attention task, using central stimulus pre-
sentation. Left (counterclockwise) or right (clockwise) oriented gratings (±45° relative to
the vertical axis of the screen) could expose a subtle wavy pattern which served as odd-
ball stimuli that participants were asked to respond to. The non-oddball : oddball ratio
was set to 5 : 1. Stimuli were presented using "Presentation" [315] on a gray background
of 50% luminance. A fixation indicator was created based on the findings of Thaler et al.
(2013) [316], consisting of a black, filled circle overlaid with a white cross ("Greek cross"),

housing a central fixation dot . It was found that such a stimulus yielded the highest
fixation performance compared to more common fixation stimuli like simple crosses or dots.
In our experiment, the central fixation dot could either be red or green indicating the subject
whether to avoid blinking (red = avoid blinking).

Feature specific stimuli (left or right oriented) were constructed as Tukey-filtered grat-
ings of 8° visual angle in diameter and a spatial frequency of 3.125 cycles per 1° = 25 cycles,
presented at the central screen location. The contrast between bright and dark components
was set to 70% luminance change. An area of 0.8° visual angle in diameter was cut out
centrally to house the fixation mark. Stimulus gratings could be presented in either left or
right orientation, deviating ±45° from the vertical axis. Additionally, oddball trials were
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constructed similarly, but exposed a slightly wavy pattern of an amplitude of 0.3571° visual
angle and a frequency of 0.6526 cycles per degree visual angle (≈ 4 cycles across the diame-
ter of the stimulus area). Furthermore four different phase offsets

[
0, π

2
, π, 3π

2

]
were used in a

pseudo-randomized manner. The outer edge of the stimulus, as well as the edge towards the
inner cut-out where the fixation was placed, was filtered using a Gaussian kernel, to avoid
sharp edges.

All settings concerning stimulus appearance were piloted to obtain a satisfactory trade-off
between difficulty and accuracy. An example for an oddball stimulus can be found in Figure
10 (A).

Receptive field mapping To localize regions of interest (ROIs) of primary visual areas,
a population receptive field mapping was performed in order to obtain structural locations
of V1, V2 and V3 (V4 where possible) from functional data for both hemispheres [317].
One hundred twenty-eight volumes were recorded for each of the three experimental blocks.
Stimulus presentation was implemented in PsychToolbox [318] using the VistaDisp software
package [319]. A sequence of full contrast "checkered" bars was presented, moving from
W → E, SE → NW , N → S, SW → NE, and reversed directions, in that particular order.
A circular area of 18°visual angle in diameter was covered in front of an otherwise empty
screen of 50% luminance. Each bar was 2.25° visual angle wide and up to 18° visual angle
long (filling the central circular area 18°). The overlap with neighboring bar locations was
1.125° (half a bar’s width). Sixteen different locations along the directional axis for each
moving direction were sampled (

∑
= 128 trials per block, sampling each location twice).

Within each location an alternating full contrast black and white pattern was presented five
times for 0.66 ms per cycle (= 0.66 ms for 2 alternations). For one of those sets of five
consecutive pattern repetition cycles, one volume was recorded. For each diagonal moving
direction, the pattern disappeared for the last eight locations (40 cycles) of that direction
in order to allow for the BOLD response to fall back to baseline. This procedure is further
described in Alvarez et al. [320]. Central fixation during pRF mapping was ensured by a
fixation dot that would randomly change color between red and green on an average rate of
≈ 0.3 Hz. Subjects were asked to indicate such a color change by a button press with the
left index finger. All three experimental blocks were recorded consecutively without a break.
For subject S11 only the first two blocks were recorded, since the subject had to leave the
scanner because of a feeling of discomfort.

Experimental Procedure After participants were instructed and informed consent was
collected, the EEG cap was fitted and electrode positions were recorded. Hereafter electrode
housings were filled with an electrically conducting gel to bridge the gap between the elec-
trodes and the skull. Afterwards the subject was placed in the scanner. Foam and pillows
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helped to keep the subject’s head stable and to remain comfortable throughout the experi-
ment. A strap of tape across the forehead provided tactile feedback of any head motion and
thus supported the required avoidance of head motion. The eye tracking device was set up
after that and was calibrated using a 3 × 3 calibration grid filling the central square at the
screen. It was ensured that the deviation to the center of each calibration point was below
0.5° visual angle.

Before the main experiment started, a high resolution T1 weighted anatomical scan was
performed using an isotropic voxel size of 0.8 mm. During this the subject performed a
practice block for the actual task that followed hereafter. The practice block was a slightly
modified version of the main task, such that the inter-stimulus-interval (inter stimulus inter-
val (ISI) ) was shortened and the ratio of oddball over non-oddball trials was increased to
facilitate the training effect.

The main experiment consisted of four blocks of 60 trials each, ten of which were oddball
trials that were excluded from the later analysis. Subjects were instructed to respond as
fast as possible to the occurrence of such a trial by pressing the response button with their
left index finger. Each experimental block started with six dummy volumes to allow for the
magnetization to reach a steady state, but only the last three dummy volumes were actually
recorded.

A trial was defined by the following sequence of events: 1200 ms prior to the onset of the
stimulus, the blink indicator of the central fixation would turn to red until 1600 ms after
the onset of the stimulus (

∑
= 2800ms), indicating the subject to stop blinking. Hereafter

the stimulus was presented, such that with a probability of p = 0.167 an oddball trial would
occur. Each of the stimuli was presented for 1600 ms. If no oddball was shown and the sub-
ject did not respond by a button press, the red fixation was presented for additional 600 ms
before turning back to green, which would end the trial. In all other cases the subject would
receive feedback in form of a centrally presented text indicating hit, miss or false alarm,
followed by the green central fixation. Hence, a trial would always last 1.2 + 2.2 = 3.4 s of
which the last 3 s went into the EEG analysis. During that last 3 s before the trial ended,
MRI gradients and RF pulses were switched off, such that no MR data could be collected.
This was done to ensure sufficient EEG data quality. After each trial, three partial brain
3D EPI volumes (TR = 3.3 s) were recorded, sampling the BOLD response for a single
stimulus presentation of that length [321]. For a full overview of how a trial, as well as how
the gaped sequence was constructed see Figure 10 (A).

The described procedure was repeated 60 times within each of the four experimental
blocks, summing up to 240 trials in total per subject. Since trials could be constructed as
left or right oriented, oddball or non-oddball, four possible trial types could occur (ignoring
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the phase offset of the oddball trials). Since the ratio between non-oddball and oddball trials
was fixed at 5 : 1, trial types were unevenly distributed between blocks but counterbalanced
across blocks. Each block contained 25 non-oddball and five oddball trials for each respec-
tive orientation. Hence, each subject was exposed to 100 non-oddball and 20 oddball trials
for left and right oriented gratings respectively (

∑
= 240) across the entire experiment. In

total 180 functional volumes were collected per block. This corresponds to an experimental
duration of ≈ 55 min for all four blocks.

After the main experiment, participants could voluntarily rest for some minutes before
the population receptive field (pRF) mapping [32] was performed. Each of the three pRF
mapping blocks consisted of 128 continuous "trials" lasting for 3.3 s. To ensure central fixa-
tion, a colored fixation dot (red or green) was presented at the center of the screen. Subjects
were asked to indicate a color change that occurred randomly at an average change rate of
3.3 s. Each trial corresponds to 1 TR (3.3 s), sampling each bar location twice. Population
receptive field mapping required additional 21 min of experimental time.

Finally, 20 volumes of the very same sequence used during the pRF mapping were col-
lected with an inverted phase encoding direction (200° flip angle). This was done for later
field distortion correction, but was eventually omitted after a different analysis strategy was
chosen (see below). Furthermore, a whole brain proton density scan and a whole brain
inverted proton density scan was recorded, but not used in the later analysis. The total
experimental duration sums up to ≈ 40 min of preparation time per subject, ≈ 95 min
inside the MRI scanner and another 15 min after the experiment for the participants to
clean their hair.
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Figure 10: A) Experimental Procedure of the main experiment. 1.2 s prior to the stimulus onset the fixation indicator
would turn from green to red, indicating the subject to avoid blinking. After a period of 400 ms (800 ms before stimulus onset)
the last fMRI volume of the previous trial finished recording. For a period of 3 s no fMRI data is collected in order to avoid
gradient artefacts in the EEG data. The stimulus presented is a left or right (±45° from vertical axis) oriented grating. In 16.7%
of stimuli the linear pattern of the grating would expose a slight wiggly pattern (see example grating). Subjects were ask to
respond to those oddball trials with a button press. If no oddball trial was presented, the stimulus would remain on the screen
for 1.6 s, followed by a 600 ms period where only the fixation indicator is shown. In case of a response, corresponding feedback
("correct", "false alarm" or "miss") is displayed instead. Afterwards, the fixation indicator turns back to green, indicating the
subject that the period to avoid blinking has ended. Now, three consecutive 3D EPI volumes (TR : 3.3 s) are recorded, before
the next trial starts. Due to the gapped sequence, a significant signal drop-off over the course of three consecutive volumes can
be observed, which is illustrated by the color of the MRI machine pictograms. B) Experimental Protocol. Each session
would started with the recording of the anatomical MRI, during which the participants practiced the task. Afterwards four
experimental blocks of the main experiment were recorded. The exact sequence of events for each trial is depicted in A). For
each of the four blocks, 60 trials have been recorded. For each trial 3 s of gradient artifact free EEG data and three 3D EPI
fMRI volumes were recorded. The main experiment was followed by three blocks of a pRF mapping experiment, where each
block contained 128 trials.
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Data processing Data analyses were performed using the following software packages
and toolboxes: analyzePRF [32, 322], ANTs [323], FieldTrip [324], Freesurfer [325], FSL
[326], janus3D [313], Metashape [327], MRICron [328], MRI Volume Masker 3000 TM [329],
MrVista [319], OpenFmriAnalysis [330], SPM12 [331], Workbench [332], including respective
dependencies in either Bash, Python or MATLAB. All analysis scripts can be downloaded
from https://github.com/TommyClausner/laminarfMRIv2.

fMRI Motion Correction and Co-registration Motion parameter estimation and cor-
rection was done using ANTs. As a first step, each set of volumes (three blocks pRF mapping;
four blocks main experiment), was striped by the first three initial volumes that were col-
lected as dummy volumes to allow for the BOLD signal to reach a steady state. Afterwards
a manually drawn brain mask was created for every first volume of the first main experiment
block and the first retinotopy block using MRI Volume Masker 3000 TM. Automatically
generated masks were manually “fine tuned”, such that the outer boundary was enclosing the
gray matter as close as possible. Extensive parts of cerebrospinal fluid, fatty components,
arteries and other tissue were carefully excluded from the masks. However, the level of de-
tail on which this operation was performed was kept above single voxel selection. Resulting
masks were used to constrain motion parameter estimation and to correct the anatomical
segmentation performed by Freesurfer within the respective region of interest (the field of
view of the functional scan). The actual motion parameter estimation was then performed
in two stages, but with similar parameter settings. In the first stage all volumes of one
recording block were registered to the within-average over time of that block. During the
second stage all newly computed within-block averages were registered to the first volume
of the first block of the main experiment. Thus all blocks, including pRF mapping, used the
first volume of the first block of the main experiment as the final reference. For both stages,
the actual computation was performed by antsRegistrationSyN.sh that was provided by
ANTs using the default settings that were adjusted when necessary. While for the first stage
a rigid body transformation was used, an affine transformation was computed for the second
stage. The initial linear transformation in that stage was followed by a non-linear transfor-
mation using symmetric normalization (SyN) [333].

A similar approach was used for functional to anatomical partial volume co-registration.
Again, the default settings of antsRegistrationSyN.sh were used for that purpose. Hence,
a 3 stage approach, consisting of a rigid, an affine and a non-linear SyN-registration, was
chosen. However, for co-registration the T1 weighted image was registered to the functional
data. This was done, because the later constructed laminar profile needs to match the
functional data space as close as possible and hence slight distortions due to the spatial
transformation was prevented. All estimated motion parameters were combined and applied
in a single operation to ensure that functional data was interpolated only once [334].
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Anatomical Segmentation Since the ANTs co-registration procedure yields forward and
backward transformation matrices and non-linear transformation volumes, the manually
drawn functional masks could be registered to native T1 space. This was done in order
to ensure proper anatomical segmentation, of the FreeSurfer function recon -all particu-
larly in the area covered by the functional scans. Precisely, recon -all was called, respective
brain masks obtained as described above and parietal parts of the full brain mask (the area
covered by the functional data), were replaced by manually drawn masks of the functional
data. Hereafter the estimation of pial and white matter surface boundaries was recomputed
using recon -all but including the function argument -autorecon-pial. Corrected pial
surfaces and uncorrected white matter surfaces were used as boundaries for the laminar seg-
mentation as this procedure makes use of the surface’s boundaries. White matter boundaries
were kept untouched for that matter.

Population Receptive Field Mapping Population receptive field (pRF) mapping was
performed as implemented in the open source tool-box analyzePRF. More detailed informa-
tion about the algorithmic implementation can be found in the reference literature [32, 322].
Binarized versions of each stimulation frame served as spatial regressors for the underly-
ing general linear model (GLM). Each of the presented 64 unique bar locations (including
blanks) were thresholded, such that the background received a value of 0 and the entire bar
irrespective of the checkerboard pattern received a value of 1. In order to save computation
time, stimuli were downsampled from screen resolution to a resolution of 192 × 192 px. A
Savitzky–Golay filter with a filter window of 61 TR s (201 seconds) was applied to the data.
The data then was converted into percent signal change relative to the median. Whereas
the Savitzky–Golay filter was applied for each experimental block separately, percent signal
change was computed over all blocks combined. Based on a GLM - including third order
polynomials - parameters were estimated for orientation (angle), distance to the center of
the screen (eccentricity) and the explained variance per voxel (R2). The gray matter mask,
obtained from the anatomical segmentation, was applied and only gray matter voxel loca-
tions were fed into the pRF analysis. Based on those maps, regions of interest (V1-4) were
manually labelled using Freeview. To facilitate the manual drawing process, a functional
atlas [335] containing all regions of interest was anatomically fitted to the functional data
beforehand. Fitted regions from the atlas were overlaid together with the results of the pRF
mapping onto the inflated pial surface as obtained from Freesurfer. Marked labels were then
transformed into volumetric data and into functional data space using previously computed
co - registration transformation matrices and volumes.

Estimation of Cortical Layers
Laminar segmentation was performed using co - registered gray and white matter bound-

aries as references for upper and lower bounds of the segmentation. In order to resolve
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cortical depth precisely, the curvature of the anatomical boundaries was taken into account.
This is necessary since the relative thickness of cortical layers varies depending on the cortical
curvature [336]. Each voxel covered by the gray matter mask, received a weight as a function
of its volume belonging to each of the shell-like meshes forming the boundaries. If a layer
boundary would cut the voxel exactly in half, adjacent layers would receive a weight of 0.5
each. Hence, voxels were not separately treated as belonging to different layers, but rather
their signal was seen as a weighted mixture coming from different layers. See Figure 11 for
a visualization. Thus, a voxel located towards the white matter boundary would contribute
more to the signal generated in deeper layers - receiving a higher weight - as compared to a
voxel being closer to the surface, which would receive a lower weight at the reference location
[34]. Layer weights were computed using the open source toolbox OpenFmriAnalysis. As
a result, five layers were obtained (CSF, superficial, middle, deep and white matter layer).
Layer profiles were combined with all regions of interest obtained from the pRF analysis, for
both hemispheres separately.

EEG data processing The major goal of the EEG data preprocessing was to optimize
noise suppression for each frequency band of interest (α, γ). Since linearly constrained mini-
mum variance (LCMV) beamforming works such that in order to solve the inverse problem,
one equivalent current dipole location will be used to fit the sensor data, while all surround-
ing signal sources will be suppressed [337], unsupervised noise reduction can be performed.
Note, that in previously published literature a supervised signal decomposition was used
based on ICA [238]. This approach requires the manual selection of target components for
each frequency band. By removing all non-target components, noise can be suppressed and
the resulting signal will only contain the data of interest. However, beamforming has the
major advantage of being able to perform unsupervised noise suppression [338]. During the
piloting phase, beamformer methods have successfully been applied to EEG data collected
in an (f)MRI environment and yielded accurate source reconstruction results. This has also
been demonstrated before [339, 340]. Since the main hypotheses of the presented study do
not directly address the frequency responses themselves, but rather their relation to the
BOLD response, a subjective selection of EEG data that fits this purpose, still acts as valid
scientific strategy and does not result in a case of "double dipping".

Data was selected for both non-oddball conditions (= 25 trials per orientation per block
= 200 trials per subject). Trials were only excluded in case of a false alarm response, which
was the case in 2% of all trials. Low (α) and high (γ) frequency bands were processed
separately to extract the desired response patterns. The data was filtered for the lower fre-
quencies using a pass band between 2 and 32 Hz and for the high frequencies between 20
and 120 Hz respectively. A 50 Hz dft filter to suppress power line noise was applied to
the latter as well. Afterwards the noise covariance matrix was estimated for a baseline win-
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dow of −500 to −100 ms relative to stimulus onset for every trial separately.EEG electrode
locations were obtained from the photogrammetry based 3D model and co-registered using
the face shape to the anatomical MRI using janus3D, as described in Clausner et al. (2017)
[313]. A finite element model (FEM) was computed from the high resolution anatomical
T1 based on the FieldTrip-SimBio pipeline [341]. FEM models expose increased localization
performance as compared to boundary element models due to their increased spatial reso-
lution with respect to varying tissue types [342, 343]. The leadfield was computed from the
EEG electrode positions and the FEM model. Sources were modeled as equivalent current
dipoles at locations limited to the respective coordinates of voxel included in the gray matter
mask. Dipole orientations were derived from the cortical curvature and thickness, since this
is crucial for a precise mapping especially in EEG [344]. Workbench was used to compute the
surface normals that connect pial and white matter surfaces. The orientation of the result-
ing vectors then served as the dipole orientation for each respective location. The described
procedure was done separately for the left and right hemisphere in order to obtain separate
filter weights, since distinct source activity for both was to be expected [345]. LCMV beam-
former source estimation was performed using a noise regularization of λ = 0.1, where 0.1
refers to 10% of the average amplitude of the noise covariance matrix. The resulting weight
matrices were applied to the band pass filtered data in order to obtain virtual channels at
the corresponding equivalent current dipole locations. A spectral analysis was performed on
each virtual channel separately using a multi-taper approach and the Slepian sequence [346]
also known as discrete prolate spheroidal sequence (DPSS). Seven tapers were used for high
and three for low frequencies. The frequency domain was smoothed using either a kernel
width of ±10 Hz for high or ±2.5 Hz for low frequencies. Afterwards the virtual channel with
the highest average amplitude change between 8 − 12 Hz (α) and 50 − 70 Hz (γ) relative
to baseline, was selected. As a baseline period, a time window from −0.3 to −0.1 s for high
and at −0.3 for low frequencies was chosen. Since gradient artifacts caused by ringing of the
gradient coils of the MR machine could be observed prior to −300 ms relative to stimulus
onset, this time stamp served as lower bound. For low frequencies only a single time point
at −300 ms was chosen, because a pre-stimulus α decrease was expected. pre-stimulus α
has often been related to visual detection performance [347] and might thus reflect different
processes than the actual target time interval. In fact a small but visible α decrease could
be observed 250 ms prior to stimulus onset. The data was transformed into the log10 ra-
tio between the average baseline and each sample point in a time window between 0.1 and
1.6 s after stimulus onset for each hemisphere. The virtual channels with the time-frequency
transform yielding the highest average response was chosen to be the "best" channels that
were later used to build the regressors for combined EEG-fMRI analyses. In total four dipole
locations (i.e. the time-frequency transform of corresponding virtual channels) were selected
for each subject individually: Two for each hemisphere and two for the separate frequency
bands. All steps previously mentioned were implemented in MATLAB R2021a [348] using
the open source toolbox FieldTrip. See Figure 15 (B) for a depiction of the average response.
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Figure 11: Laminar weight profiles: A) functional
MRI overlaid with layer profile maps. A slice
and a zoomed in section of one volume of one sub-
ject of the fMRI data, overlaid with probability maps
as obtained from OpenFmriAnalysis [330]. Shell like
meshes have been computed, separating five distinct
layers: cerebrospinal fluid (CSF), superficial, middle,
deep and white matter. Layer weights are computed as
the fraction of each voxel that lies between two shells.
Weights for all layers but CSF have been used as over-
lay for the functional data to obtain the respective
image. B) Weight profile for a set of voxels. For
a selected amount of voxel (green box), the weight pro-
file over each layer is depicted. Across layers, values
underlying the bar plots sum up to 1. In the later com-
bined EEG-fMRI analysis, correlations between EEG
signal and BOLD response for each voxel are multi-
plied with the respective layer weights.

Combined EEG-fMRI analysis The
general logic of fitting EEG time-frequency
regressors individually for each bin to
the BOLD signal for different cortical re-
gions and across layers, follows coarsely
what is described in Scheeringa et al.
(2016) [238]. Several steps have been
undertaken to prepare the EEG and
fMRI data for the later combined analy-
sis and will be described in the follow-
ing.

Task regressors were built for all tri-
als that did not contain: oddballs, strong
EEG data artifacts (e.g. jumps, muscle,
etc) or false alarm responses. Regressors
were built separately for left and right ori-
ented gratings. Nuisance regressors con-
tained all trial and response combinations
that were not included in the task regressors
(e.g. false alarm trials). Additional regres-
sors contained blink or artifact trials, button
presses and reaction times. All the afore-
mentioned regressors were convolved with
the hemodynamic response function as built
into SPM12. Reaction time regressors were
treated as parameter modulators. Thereby
the onset of the modulation was set to the
average reaction time for each individual
block and the actual reaction time as the
modulator value. This procedure was cho-

sen in accordance with previous literature [238]. Furthermore the average white matter
signal and the average residual signal (signal after regressing out gray and white matter sig-
nals) were included. Due to the way the data was recorded (gapped sequence), a significant
signal drop-off could be observed for every three consecutive volumes which was included as
a nuisance regressor as well. All motion parameters (translation along and rotation around
x, y, z) and their first derivatives were included as well as a set of high pass filters modelled
as five sines and five cosines. Those five sine and cosine waves were constructed, such that
they would span one to five full cycles across one experimental block.
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EEG data regressors were built on time-frequency resolved virtual channel data, obtained
as described above. This was done by convolving different parts of the EEG data with the
hemodynamic response function that comes with SPM12. A regressor was built for each
frequency and time bin separately. Due to the way time-frequency data was obtained, one
frequency bin span 0.5 Hz for low or 2.5 Hz for high frequency data (a single data point)
and time bins were set to 400 ms length. Time bins were shifted by 100 ms intervals.
Thus consecutive time bins contained overlapping data. The data within a respective time
frequency bin was averaged and treated as parameter modulators for the hemodynamic re-
sponse function. Thereby the onset was set to the mid data point of the time domain and
shifted by one to three TR s to match the corresponding three volumes that were recorded
after each gap where EEG data was recorded. This approach yields a multitude of EEG data
regressors, where a separate model for each time frequency bin was constructed. Task and
nuisance fMRI regressors were kept fixed for each model. Thereby three kinds of responses
were taken into account: all trials ("activation") and trials where the stimulus was either
left or right oriented.

Before the combined EEG-fMRI analysis could be conducted, a first level fMRI analysis
on the motion corrected data was performed in order to identify voxel of interest. Thereby
two contrasts were used: Both stimulus orientations vs. baseline (activation: A) and the
contrast between both stimulus orientations, that is left - right (contrast: C). While the first
was used for additional analyses that are explained later, the second served as the contrast
on which most of the following experimental analyses were based on. In general, first level
analyses have been conducted for each subject separately, but on all experimental blocks
combined. The data has been z-scored beforehand only along the time domain, separately
for each voxel and experimental block. Using aforementioned nuisance regressors as control
parameters, the result of the first level analysis was a separate activation t-map for A and C.
For the later inferential analysis, t-value thresholds needed to be defined in order to determine
an appropriate voxel sub-selection. Thereby, a higher threshold indicates higher specificity
for the respective stimulus and a lower threshold increases the signal-to-noise ratio (SNR) by
including more data. This changes the number of voxel selected. In previous publications,
employing a similar experimental setup, 500 voxel with highest feature specific activation
[349, 350] or the top 10% activated voxel [238] were selected. A study by Markuerkiaga et
al., specifically designed to assess the number of voxel required, finds 250 voxel (for 3TfMRI
) to yield the best contrast-to-noise ratio (contrast-to-noise ratio (CNR)) [351]. However,
since all previously mentioned publications set a more or less arbitrary threshold and the
last did not take the correlation with EEG into account and potential changes in SNR and
CNR for those cases, three thresholds have been selected to eliminate eventual uncertainties:
5%, 10% and 25% of most specific (or activated) voxel. The respective average (standard
deviation (SD)) number of voxel for each threshold and first level contrast can be found in
Table 1 for each of the specified ROIs. Since voxel were selected based on the t-value before
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the gray matter and ROI mask was applied, the respective selections do not necessarily imply
a precise five-fold increase in the respective numbers.

A+ A−

top # voxel V1 V2 V3 V1 V2 V3
5% µ (σ) 327 (223) 443 (276) 432 (268) 235 (163) 326 (205) 288 (200)

10% µ (σ) 694 (358) 926 (436) 880 (407) 554 (271) 745 (337) 660 (333)

25% µ (σ) 1727 (608) 2228 (749) 2050 (666) 1515 (505) 1965 (629) 1734 (575)

C+
L C−

R

5% µ (σ) 54 (32) 68 (38) 61 (28) 49 (31) 64 (30) 60 (30)

10% µ (σ) 273 (85) 349 (106) 314 (97) 256 (92) 332 (112) 307 (105)

25% µ (σ) 1354 (349) 1719 (432) 1524 (362) 1291 (370) 1650 (450) 1500 (384)

Table 1: Number of voxel per condition. For each ROI the average number of voxel over participants
and standard deviation (in parentheses) is shown, separately for each selection threshold. These thresholds
reflect the highest 5%, 10% and 25% t-values for the respective condition and ROI (lowest t-values for the
right column). Since gray matter and ROI masks were applied after the respective voxel selection, numbers
do not necessarily increase five-fold. See Figure 15 (D) for a visualization of the number of voxel in V1 with
respect to different condition sub-selections.
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Figure 13: Attention and feature re-
lated processes. Both, attention and fea-
ture related processes modulate the BOLD
signal. Since the relative decrease for the
not preferred feature as compared to the
preferred feature is expected to be lower
than the general modulation by (spatial) at-
tention. A differentiation between features
could be obtained by considering generally
deactivated (unattended) voxel, as the re-
spective feature contrast is expected to be
less influenced by global changes. In ad-
dition to that, feature specific signals can
be used as control signal for the correlation
with deactivated voxel to obtain a general
deactivation measure. It has been hypothe-
sized that both processes (spatial attention
and feature processing) are implemented in
separate mechanisms in the α band [91].

General activation General BOLD activation pat-
terns for stimulus compared to baseline that have
been hypothesized to be linked to attention [354] (see
Figure 15 (C) left) have been related to EEG time-
frequency power changes. Each time-frequency bin
specific EEG regressor for left or right orientation
combined with selected voxel of A for each of the spec-
ified thresholds. Since the respective first level analy-
sis of the fMRI data to determine activation compared
to baseline results in a t value map for each subject
with positive and negative values within respective
ROIs. Since spatial attention has been demonstrated
to cause increased BOLD activity over primary visual
regions in retinotopically corresponding attended ar-
eas and a relative decrease in unattended regions [354]
and has been linked to a general modulation of a mul-
titude of attention related brain networks [355, 356], it
is assumed that A reflects some similar mechanism.
The data has been split between positive (A+) and
negative A− generally active voxel at t = 0. In addi-
tion to that, the signal of the 25% most feature selec-
tive voxel for one orientation compared to the other
(Pc− nPc, see below) has been used as a control re-
gressor for the A− selection. Since, voxel that expose
a positive t value compared to baseline in one of the
contrasts are thought to most likely include feature
and attention related signal components, this analy-
sis has been conducted for A− only (see also Figure 13 and Figure 14 top). A separate
model was built for each time-frequency bin specific EEG regressor, including fMRI task
and nuisance regressors and separately for each voxel (see Figure 12 (A)). This procedure
results in a β weight for each voxel that was multiplied with the corresponding layer weights.
Afterwards, the result was averaged over voxels yielding a layer× frequency× time matrix
for Pc and nPc for every ROI, threshold and subject (see Figure 12 (C)). All main analyses
were performed for a time window ranging from 0.1 s to 0.8 s after stimulus onset, for which
corresponding time bins were averaged. This was done because the average reaction time to
odd-ball stimuli was 759 ms. Since the main stimulus processing is assumed to take place
beforehand, but in order to include as many data points as possible, the time bin including
0.8 s after stimulus onset (50 ms after the average reaction time) was included as well. See
Figure 12 (A-C) for a visualization.
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Contrasting Pc and nPc For the main feature contrast analyses, each time-frequency
bin specific EEG regressor for left and right orientation was combined with selected voxel
of C for each of the specified thresholds (see Figure 12 (B)). Since C was constructed, such
that positive t-values would indicate a voxel’s preference to the left orientation (C+

L), whereas
negative t-values would indicate a preference for right oriented stimuli (C−

R), four possible
combinations arise. Those can be condensed into a preferred (Pc = Preferred based on
contrast) and a non-preferred (nPc = not Preferred based on contrast) condition. Within
the preferred condition the EEG regressor specific to left stimuli would be combined with
C+

L and the EEG regressor specific to right oriented stimuli with C−
R and accordingly for the

non-preferred condition. Thus the main feature contrast could be described as Pc − nPc.
Note, that this analysis has been conducted irrespective of A±. Other regressors and model
parameters have been set exactly as for the general activation (see above). The contrast
between Pc and nPc yields a final result in form of a layer × frequency × subject matrix
for each respective condition of interest, threshold and ROI. In order to separate feature
and attention related signal components, the respective Pc or nPc voxel selection can be
combined with the A+ and A− selection as used for the general activation (see above). Using
this method, e.g. feature specific voxel can be identified that expose e.g. a general positive
or negative BOLD response (see below and Figure 14 bottom).

spatial 
attention

feature  
processing

PcA+ ≠ nPcA+

PcA- ≠ nPcA-
≠ =

PcA+ = nPcA+

PcA- = nPcA- = A-unspec
≠ ≠

Pc
nPc

Predictionsdifferential processes

feature related 
signal components

attention related 
signal components

Figure 14: Attention and feature sepa-
ration. Attention and feature related (α)
processes, are expected to correlated dif-
ferentially with the BOLD signal. General
activation (attention) related processes are
separated at tA = 0 into activated and de-
activated voxel. A difference between Pc
and nPc within each respective condition
of A± is expected as well. Feature specific
components between A+ and A− are not
expected for nPc, but for Pc (attending
and processing and forwarding target fea-
ture information).

Feature and frequency specific (de-) activa-
tion Spatial attention has been associated with a
spatiotypical increases in the BOLD signal in some
primary visual areas, such as MT [355] but further-
more, to receptive field-like increases over attended
and decreases over attended sites [354]. In addition
to that, negative relative changes in the BOLD sig-
nal have been reported to be linked to specific atten-
tion networks [356]. Multiple α sources are expected
depending on the underlying function (e.g. spatial
attention and feature processing). Attention related
α, potentially frontally driven [251], would differen-
tially modulate the excitability of attended and unat-
tended receptive field locations [91]. Such attention-
related α should be found in PcA−, nPcA− and
PcA−unspecific voxels as attention process should
be receptive field specific and decrease both specific
and unspecific voxels. Feature specific α on the other
hand should be specifically related to Pc (and poten-
tially inversely to nPc). By comparing the relative
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deactivation of the BOLD signal between feature conditions, feature selective but not atten-
tion activated neuronal responses can be related to α band oscillations. In a first step, feature
selective voxel have been determined by contrasting both feature conditions in a first level
analysis and extracting the respective difference t-map. From this t-map, top e.g. 5%, 10%
and 25% voxel prefer feature one, whereas bottom e.g. 25%, 10% and 5% voxel prefer feature
two. This selection has been performed for each ROI and combined with the sub-selection of
voxel that resulted in a negative t-value for the comparison between any feature compared
to baseline (global deactivation; A−). To further separate attention related deactivation
from unattended feature specific signals, the signal of the top and bottom 25% most least
activated voxel from C have been averaged and used as control regressor for the combined
EEG-fMRI analysis. The resulting deactivation does hence not depend on feature related
processes anymore. Negative BOLD responses from mostly feature specific and less attention
driven voxel have been correlated with α band power as well. Contrasting P and nP elim-
inates certain aspects of (spatial) attention already because it can be assumed that spatial
attention is not reflected feature selectively in the same process [357]. Hence, combining Pc
and nPc with A− enables the investigation of feature but not attention selective voxel. See
Figure 15 (D) for a visualization of such a sub-selection. The width of the base-line of the
figure corresponds to the number of all voxel (average over participants) in V1. From there,
voxel are split roughly in half by contrasting the two features (one group preferring one and
another group of voxel preferring the other condition). From those that prefer a respective
orientation over the other, a separation is made between those that respond positive or neg-
ative to the respective non preferred stimulus orientation compared to baseline. Again, from
those the still respond positive to the presentation of the not preferred orientation those that
expose a smaller or larger response compared to baseline when the not preferred stimulus
was presented. A similar logic is applied to the combination of (n)Pc and A±.

In order to investigate whether α band oscillations respond differential to different stim-
ulus features (Pc or nPc), the spectrum for the correlation with Pc or nPc has been nor-
malized and contrasted. Since stimulus induced α decreases could be observed for both Pc
and nPc the respective frequency-feature selectivity is overshadowed by general activation
related α effects. Hence, the frequency spectrum for both conditions has been normalized
separately for each cortical layer across the α band (8 Hz to 14 Hz). This indicates the
relative change or shift towards upper or lower α frequencies relative to the other. After
z-transforming the data as described for each subject individually, both groups have been
contrasted using a two sided cluster permutation test [352]. It is hypothesized, that the layer-
frequency profile when comparing Pc and nPc is different for A+ compared to A−, because
the combined activation of A+ and Pc might reflect the ongoing joint process required to
perform the task (see Figures 13 & 14).
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Replication of Scheeringa et al. (2016) [238] Scheeringa et al. used a slightly different
stimulus material, but methodologically comparable analysis strategies. Stimuli were com-
posed of inwards moving concentric rings, where a speed change of the concentric movement
would occur after 1400 ms± 200 ms, which participants had to indicate via a button press.
To match the stimulus response within the voxel selection as close as possible, only Pc voxel
have been taken into account in the present study. Neuronal populations in primary visual
areas (especially V1) respond specifically to certain stimulus orientations [358]. Using con-
centric rings a multitude of orientation would be activated by means of preferred orientation.
Since the analysis was conducted on a trial by trial basis, A could not serve as the respective
contrast of reference, since not the specific orientation, but rather the presentation itself was
modelled. Instead Pc would resemble the respective stimulus specific orientation for each
trial more closely. Furthermore, Scheeringa et al. included the full trial into the analysis.
For this reason the full trial was included in the replication as well (0.1 s to 1.4 s in the
present paper). All remaining analysis steps were undertaken exactly as described above.
Since the present study can be viewed as an extension of Scheeringa et al., the replication
analysis would serve as a sanity check.

Inferential statistics Due to the high dimensionality of the data, a frequency bin of in-
terest (FOI) for low and high frequencies has been selected separately for later inferential
analyses to limit the feature space for the cluster based statistical test. For low frequencies
the FOI was set the frequencies between 8 Hz and 14 Hz, whereas for the high frequencies
the FOI was defined as frequencies between 50 Hz and 70 Hz, which covers the peak re-
sponse frequencies found in the average EEG data (see Figure 17). Within the respective
range, a single tail cluster permutation test [352] has been conducted separately for each
ROI, threshold and FOI for α and γ. Each cluster has been further processed by means of
an auto-regressive rank order similarity (aros) test [353], which was developed by one of the
authors in order to determine layer specificity. Since clusters span layer and frequency bins
unevenly, the data that was used for the later aros test was collapsed over frequencies, such
that the lowest and highest significant frequency bin served as the boundary over which the
frequency domain was averaged. This was done irrespective of the respective cluster size
within a specific layer (see Figure 12 (D)). Nevertheless, testing for layer specificity is not
straight forward due to issues related to multiple comparison and non-normal distributed
data. To circumvent this, Scheeringa et al. (2016) [238] tested for EEG-fMRI layer speci-
ficity by fitting layer profiles for α and γ to the respective other using an ordinary regression
and tested whether β weights differed to zero. While this approach is suitable for demon-
stration purposes, it does not reveal the exact nature of those differences between layers.
While Scheeringa et al. proved the concept of layer specific feature extraction, the present
paper aims to determine the relational activity across layers depending the feature specific
response as well.
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The fundamental idea behind the aros test is whether group averages (i.e. averages
of the signal of cortical layer in the present case), can be ranked and whether this rank
order is explained significantly better by the data than it would if the data could not be
meaningfully sorted (i.e. is shuffled). This is achieved by transforming the group averages
into unique rank order values and computing the average fit of the data to this rank order. In
a second step data points are shuffled between the groups and the same procedure is applied
(i.e. computing the rank order of the mean and the average fit of the now shuffled data
to the new rank order). Repeating this permutation step a large number of times yields a
permutation distribution, to which the initially computed fit value of the un-shuffled data is
compared. Rejecting the null hypothesis would result in the assumption that the rank order
of the group averages indeed can be explained by the data significantly better than it would
if the data points could not be meaningfully sorted into those groups. Thus, in the present
case it could reveal how the correspondence between the EEG and fMRI signals could be
sorted across layers. However, statements about the magnitude of the difference between
two (or more) layers cannot be made. This approach provides insight about the specific
activation profile across layers for specific conditions within a significant depth× frequency
cluster (see Figure 12 (D)).
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frequency transformed virtual channel data in each hemisphere that exposed the highest α decrease or γ increase respectively.
Three sets of EEG derived regressors were created: specific for left or right orientated stimuli or general stimulus presentation
(activation). Trial-by-trial data for each condition was modelled as parameter modulation regressor separately for each time-
frequency bin. General task and nuisance regressors were used as control regressors. In order to determine voxel specific
orientation preferences, a set of first level analyses were conducted. As result, t-maps for general activation (A), left and right
oriented stimuli vs baseline (L and R) and the contrast between left and right (C) could be obtained. For C, orientation
preference depending on the sign of each value of the t-map is indicated. B) Main contrast (Pc−nPc). Preferred and non-
preferred orientations were defined, such that the orientation specific EEG or task regressor could either match the orientation
preference of the voxel derived from C (preferred: Pc) or not (non-preferred: nPc). After obtaining β coefficients for Pc and
nPc, the main contrast was computed. Due to uncertainties about the trade-off between high specificity (restrictive t-value
threshold) and high SNR (liberal t-value threshold), three different thresholds have been selected. Those included the highest
5%, 10% or 25% t-values of either Pc or nPc. C) Layer specificity. Voxel specific β values are multiplied by the layer profile
weights. Over all five layers (CSF, superficial, middle, deep and white matter layer), each voxel contributed a fraction of its
signal to those layers, depending of the proportional volume of a voxel within each shell like mesh of each layer. Hence, β
coefficients for each voxel are seen as the sum of β coefficients of the fraction a voxel is contained within a layer. This was done
separately for each hemisphere and visual region and low and high frequencies. D) Statistical inference. Depth by frequency
resolved data was tested against the hypothesis that there was no significant relationship between the EEG and fMRI data
for each respective condition, using a cluster permutation test [352]. Resulting clusters were averaged over frequencies for the
widest possible window. The layer profiles of the averaged clusters were tested against the hypothesis that the layer profile is
as likely as any other layer profile - under the assumption of exchangeability of the data - using an auto-regressive rank order
permutation (aros) test [353].
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Results

Behavioral data and basic task effects Behavioral and basic task effects were only
analyzed descriptively. No inferential statistics have been conducted, since those analyses
mainly served as sanity checks or reflect intermediate results that were used for the main
analyses. The main purpose of these analyses was to verify subject’s compliance to the
task (behavioral results) and expected functional result patterns (e.g. expected EEG time-
frequency responses). The shown results represent the data as it was used to conduct the
final combined EEG-fMRI analyses.

On average (SD) participants responded correctly to the stimuli in 94% (8%) cases with
a false alarm rate of 2% (3%) to non-oddball stimuli and a miss rate of 5% (7%), indicating
the participants performed the task adequately well and complied to the instructions. The
average (SD) reaction time was 759 ms (131 ms). See Figure 10 (A) for a graphical repre-
sentation of the task.

The EEG signal, used to construct regressors for the final combined EEG-fMRI analy-
ses, was obtained by a frequency analysis of each virtual channel, computed for each voxel
location of the gray matter in V1. In each hemisphere, one virtual channel for low and
one for high frequencies was selected that exposed the strongest α decrease and γ increase
respectively. Figure 15 (B) depicts the average EEG response of the selected, time-frequency
transformed virtual channel of all participants. For demonstration purposes, only low and
high frequency channels of the left hemisphere are shown. By visual inspection, the main
α band decrease was determined to last from 0.2 s to 0.8 s after stimulus onset and for a
frequency range of 8 Hz to 14 Hz. The main γ band increase was determined between 0.1 s
and 0.7 s after stimulus onset for a frequency range between 50 Hz and 70 Hz. A time
window between 0.1 s and 0.8 s, was used for the main analyses, since both time windows
for α and γ responses are covered. Furthermore, this time window ensures that only - but to
the largest extent possible - time bins went into the analyses that were related to the actual
stimulus processing (µRT = 759 ms).

Feature specific fMRI BOLD responses, exposed a clear pattern with respect to Pc and
nPc. Regression β coefficients for orientation specific regressors representing the preferred
stimulus orientation for a set of voxel were higher than for non-preferred orientation specific
regressors. This pattern was preserved for each of the three thresholds (5%, 10% and 25%),
as well as for the average over all voxel that exposed a positive t-value within the respective
contrast. Furthermore, negative t-values within the respective contrasts were more negative
within the preferred than non-preferred orientation. This pattern is true for all ROIs and is
exemplified for V1 by Figure 15 (A). Additionally it has been checked, whether t-maps for the
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Figure 15: Task specific effects: A) Average BOLD response to Pc and nPc. A general linear model was
computed for the relationship between task regressors and the BOLD signal for orientation specific voxel
selections. β coefficients are consistently higher for voxel that prefer the respective stimulus orientation
over the non-preferred. This trend is observed when including all voxel with a positive β coefficient and
pre-selected thresholds (5%, 10%, 25%). B) Time-frequency representation of EEG signal. Subject
average of log-ratios between stimulus and baseline of time-frequency transformed virtual channels, optimized
for low and high frequencies. Only the left hemispheric channels are shown. The white square indicates the
data points that were included in the combined EEG-fMRI analyses. Average reaction time and stimulus
onset are indicated by a white line. C) Average BOLD response for selected conditions. Surface
projection of average t-map of the first level contrast for left stimulus orientation compared to baseline (left)
and the contrast between preferred and non-preferred stimulus orientation (right). D) Differential voxel
response. The width of the base-line represents all voxel in a specific area (here V1). Those are separated
into Pc and nPc, by contrasting both orientations and splitting the t-value map at 0. From there, a sub-
selection for Pc (t > 0) can be made by selecting those voxel that expose a positive response to the preferred
stimulus compared to baseline and a negative response for the respective other orientation. Again, from
positive voxel of PcP+ those that respond stronger to to one feature or the other. Width of each stripe
represents the current sub-selection compared to the base-line. Note, that there is a substantial selection of
voxel that respond positive to the preferred, but negative to the not preferred stimulus (middle of the plot).

respective first level contrasts expose a clear spatially separable pattern for A, Pc and nPc,
but not Pc−nPc. The first three are expected to concentrate spots of highest activation at
the occipital pole due to the central fixation of the participants [32, 359], whereas the latter
is expected to not expose such a patter due to the way the contrast was constructed. Both
expected spatial patterns have been observed. The left Figure 15 (C) shows the average t-
map of the first level contrast for the left oriented stimulus vs baseline. A similar pattern can
be observed for all of the aforementioned contrasts as well. As clearly visible, the activation
peaks at the occipital pole. On the right hand side of Figure 15 (C) the average t-map for
Pc − nPc is shown. No clear pattern of any kind of spatial distribution can be observed.
Furthermore, Figure 15 (D) depicts respective average voxel subselections per condition. The

81



lowest level reflects the number of voxel on average over all participants for all voxel within
V1. In a first separation, Pc and nPc are separated, by contrasting both stimulus features
and extracting positive or negative t-values. Pc (and in reverse nPc) can be grouped further
into voxel that expose a positive response to the preferred stimulus orientation compared to
baseline (P+) or a negative response (P−) and from there on, P+ can be grouped into those
voxel that have a higher or lower response when presented with the respective other stimulus
orientation (PnP+ or PnP−). In addition to PnP+ / PnP− or PcP+ / PcP− or PcnP+

/ PcnP−; PcA+ / PcA− can be computed as well, to sub-select those feature specific voxel
that are (de-) activated on a general level, since A contains both stimulus orientations.

Combined EEG-fMRI analyses The feature specific relationship between the EEG and
fMRI data has been investigated on a trial by trial basis by means of a general linear model
(GLM). Thereby stimulus orientation specific EEG regressors have been related to BOLD
signal changes for congruent (preferred: Pc or P) and non-congruent (not preferred: nPc or
nP) combinations of orientation specific data. All analyses have been conducted for primary
regions V1, V2 and V3. A separate general linear model (GLM) model was computed for
each time-frequency bin derived EEG regressor that was constructed by convolving the EEG
response of time-frequency transformed virtual channels with the standard hemodynamic
response function as built into SPM12. Task and nuisance fMRI regressors served as control
parameters and were fixed. Each β weight for every voxel that was taken into consideration
was multiplied by the layer weights for a respective voxel. This procedure was applied sepa-
rately to low and high frequencies. Furthermore, the procedure was repeated for activation
thresholds used to select a respective subset of voxel, such that the most activated 5%, 10%
and 25% voxel have been considered. For the main analyses, data was averaged for a time
window between 0.1 s and 0.8 s after stimulus onset. Feature specificity was investigated,
by constrasting the relationship between preferred orientation responses and non-preferred
orientation responses (Pc− nPc). In order to replicate findings by Scheeringa et al. (2016)
[238], the time window was set to 0.1 s to 1.4 s and the Pc contrast was chosen. Statis-
tical inference was conducted by means of a cluster permutation test [352] for a selected
frequency range between 8 Hz and 14 Hz for low and between 50 Hz and 70 Hz for high
frequencies, based on the average EEG response (see Figure 15 (B)). Layer specificity was
determined by averaging the widest possible frequency window within a significant cluster
of the depth × frequency result matrix. The depth profile was then tested using an auto-
regressive rank order similarity (aros) test [353]. It was tested, whether the rank order of
the layer profile after averaging over the frequency domain, can be explained better by the
data then it could be if the data could not be meaningfully sorted into the respective groups
(layers) and would thus be random.
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Figure 16: General (de-) activation. Result of cluster and aros test for the correlation between α and γ
band oscillations for either activated (Atpos or A+), deactivated (Atneg or A−) - figures to the left of the
line - or deactivated voxel where the average feature specific signal has been regressed out (Atnegunspecific)
- figure to the right of the line. α band oscillations are significantly negative correlated for both, positive
and negative relative changes of the BOLD signal. Respective effects are strongest in superficial and middle
layers. Since, A+ inevitably includes feature specific signal contributions, the correspondence between A−

and A−unspecific indicates a general process related to feature unspecific deactivation in superficial (and
middle) layers. Note, that for A+ only middle layer is indicated (two conflicting aros test results only
share the middle layer with the commonly highest negative correlation). While A− seems to reflect a more
general deactivation (similar in A− and A−unspecific), A+ differs in terms of frequency band width and
layer activation profile. This might be explained by a significant contribution of processes related to the
separation of preferred and not preferred stimulus orientation. See Figure 19 where A± is combine with
feature specific selectivity. A trend level upper γ band response has been found for A− and A−unspecific
with strongest effects in superficial and middle or superficial and deep layers. See also Figure 19 (A).

The spatial distribution of the BOLD response with respect to stimulus orientation and
general activation compared to baseline (see Figure 15 (C) left), has been interpreted as
retinotopic reflection of attention, since the resulting pattern would be typical [354]. Note,
that attention has not specifically been manipulated and is used here loosely synonymous
with general activation for both stimuli. In order to investigate the general activation or
attention effect with respect to the combined EEG-fMRI analysis, all voxel in V1 have been
separated into positive or negative compared to baseline for any stimulus (A). For both,
positive and negative general BOLD activation (t > 0 or t < 0 respectively), a significant
cluster for negative correlations between α band power changes and the top 5% (p = 0.034
and p = 0.03), 10% (p = 0.02 and p = 0.016) and 25% (p = 0.023 and p = 0.001) most (de-)
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activated voxel has been found. A significant aros test [353] result for A− could be obtained
for the top 5% and 10% most deactivated voxel, where superficial and middle layers exposed
highest negative correlations with the BOLD signal (both p < 0.001). In turn for A+, the
aros test reveal a significant layer profile only for the 5% most deactivated voxel (p = 0.013)
and a trend for the 25% most deactivated voxel (p = 0.068) where middle and deep or middle
and superficial expose the strongest negative correlations respectively. Additionally, the top
25% average signal of Pc and nPc has been regressed out from A− in order to reveal "true"
feature un-specific general deactivation. Two significant clusters for the negative correlation
between α band power changes and the BOLD signal have been observed for the top 5%
and 25% most deactivated voxel (p = 0.036 and p = 0.001 respectively) as well as a almost
significant cluster for the 10% sub-selection (p = 0.053). For those three clusters, a aros
test revealed that strongest effect is observed in superficial and middle layers (p < 0.001 for
the top 10% and 25% and p = 0.018 for the top 5% most deactivated voxel). Clusters for
negative t values span the entire α spectrum (8 Hz to 14 Hz), whereas cluster for positive t
values span only 10 Hz to 13 Hz. In addition to that, a positive correlation with the upper
half of the γ frequency spectrum of interest could be observed for A− (top 5% p = 0.074
and top 25% p = 0.055) as well as for A−unspecific (top 5% p = 0.077, top 10% p = 0.061
and top 25% p = 0.055).

Contrasting Pc and nPc, revealed significant clusters in V1 only for the 25% thresh-
olds in γ. The γ band cluster spans a frequency range between 45 Hz and 65 Hz (25%
p = .019, trend for 10% p = 0.067) and exposed a significant layer profile, such that
deep > superficial > middle layer (p < 0.001 for both). No significant result could be
obtained from Pc or nPc alone (but see Figure 18). Within the α range clusters span a
frequency range of 11 Hz to 14 Hz (5% p = .033, 10% p = .034, 25% p = .035). A signifi-
cant layer specificity could be observed, such that the relationship between EEG regressors
and BOLD signal can be sorted as superficial < deep < middle layer (10% p = .007, 25%
p = 0.035) or deep < superficial < middle (25% p < .001). Feature and frequency speci-
ficity have been found in the α band. Thereby, low frequency α exposed a relative decrease
across the α range for frequencies between 8.5 Hz and 10 Hz for the correlation with not
preferred as compared to preferred voxel in deep and middle layers (deep p = 0.043, middle
p = 0.012). This relationship is reversed for frequencies between 11.5 Hz and 13 Hz and
the correlation with preferred as compared to non preferred voxel (deep p = 0.026, middle
p = 0.026). No such frequency specific effect has been found for superficial layers (but see
Figure 19). See Figure 17 for a depiction of the results.

Feature and frequency specific (de-) activation has been found to be related with
the α but not γ frequency band in both Pc and nPc. Signals from either Pc or nPc have
been analyzed for the fraction of voxel that exposed a relative (de-) activation compared to
baseline for Pc and nPc (corresponds to A). Irrespective of the sign of activation of A,

84



V1 Pc - nPcV1 Pc V1 nPc

Figure 17: Feature contrast. Contrast between the preferred (Pc) and non-preferred (nPc) orientation
for the relationship between EEG regressors and BOLD signal for low and high frequencies in V1 for top
most 5%, 10% and 25% active voxel. Top: Highlighted areas indicate a significant relationship between EEG
regressors and the BOLD signal, tested using a cluster permutation test [352]. Thick black lines indicate
the frequencies of interest that were included for the test. For each cluster an auto-regressive rank order
similarity (aros) test [353] has been conducted. Within each cluster, the widest possible range of frequencies
has been selected over all three layers and averaged to obtain the layer profile. Significant test results are
indicated by the small coordinate system in indicating the profile itself together with the respective p-value
as a result of the aros test. The higher the dot relative to the coordinate system, the higher the respective
rank order value. Superficial layers are represented closest to the vertical axis. Color mapped regression
coefficients reflect the average contribution of one voxel. Bottom: The normalized frequency profile for Pc
and nPc has been contrasted using a two sided cluster permutation test [352]. Significant clusters and
p-values are indicated for each layer. Note, that the contrast is shown for the 25% threshold only.

a significant negative correlation between α power and the BOLD signal for Pc has been
observed for all thresholds (5% p = 0.002, 10% p = 0.001, 25% p < 0.001). For the 10%
and 25% percent thresholds, correlations over layer can be sorted, such that superficial <
middle < deep layers (10% p < 0.001, 25% p < 0.001) and for 5% superficial < deep <
middle layer (p < 0.001). Significant frequency clusters - irrespective of the threshold -
span the entire α frequency band (8 Hz to 14 Hz) but are clearly biased towards higher
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α frequencies (> 11 Hz). For nPc only a negative cluster for the 25% threshold has been
observed (p = 0.042), where respective layer signals could be sorted, such that superficial <
deep < middle (p < 0.001). Here, the cluster spans frequencies from 8 Hz to 11 Hz. A
differential comparison between the normalized α frequency profiles revealed differential α
correlations in deep and middle layers. High α frequencies (11.5 Hz to 13 Hz) are relatively
more negative correlated for Pc compared to nPc (deep p = 0.026, middle p = 0.026),
whereas lower α frequencies (8 Hz to 10 Hz) are relatively more negatively correlated with
nPc (deep p = 0.043, middle p = 0.012). Similar cluster results could be obtained from
the correlation between Pc or nPc voxel activity with α for those that are strictly limited
to positive global activation (A+) or deactivation (A−). For a detailed overview, including
p-values for the lastly mentioned analyses can be found in Figure 19.

V1 Pc - nPcV1 Pc V1 nPc

Figure 18: Full trial analysis This analysis has been performed as a sanity check in order to replicate
Scheeringa et al., (2016) [238]. Relationship between EEG regressors and BOLD signal for low and high
frequencies in V1 for top most 5%, 10% and 25% active voxel. Highlighted areas indicate a significant
relationship between EEG regressors and the BOLD signal, tested using a cluster permutation test [352].
Thick black lines indicate the frequencies of interest that were included in the test. For each cluster an
auto-regressive rank order similarity (aros) test [353] has been conducted. Within each cluster, the widest
possible range of frequencies has been selected and averaged to obtain the layer profile. Significant test
results are indicated by the small coordinate system in turn indicating the profile itself together with the
respective p-value as a result of the aros test. The higher the dot relative to the coordinate system, the
higher the respective rank order value. Superficial layers are represented closest to the vertical axis. Color
coded regression coefficients reflect the average contribution of one voxel.

The replication analysis of Scheeringa et al. (2016) [238] revealed a significant
cluster in the α range for 5% (p = .001), 10% (p < .001) and 25% (p < .001) thresholds
and in γ range for 5% (p = .027), 10% (p = .014) and 25% (p = .002) thresholds in V1. In
V2 significant clusters could be observed in the α range for 5% (p = .004), 10% (p < .001)
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Figure 19: Feature and frequency selective α (de-) activation. The negative correlation between α and the BOLD
signal has been normalized across the frequency spectrum and was compared between Pc and nPc. Additionally, sets of
feature selective voxel have been intersected with the set of voxel that are globally (in-) active (A+ and A−). Highlighted
colors indicate significant clusters. For each cluster with p < 0.1 an aros test [353] has been performed to identify the respective
layer activation profile (p-values and shapes are indicated). Global (feature un-specific) α power changes have been found
predominantly in superficial layers, whereas feature specific α band decreases have been linked to an increase in the BOLD
signal mainly in deep layers. Middle layers could be related to both processes and are hence considered to carry a mixture
of both signals. Interestingly, in superficial layers nPc seems to express a similar response pattern in A+ and A−, but Pc
seems to expose a different response pattern across A+ and A− indicating a combined attention and preferred feature process.
Furthermore, this assumption would explain the differential findings for A+ and A− depicted in Figure 16 left. In addtition to
that a trend level γ band response has been observed for PcA− mostly in deep (feature specific) layers.

87



and 25% (p = .001) thresholds and in γ range for the 5% (p = .027) threshold. Significant
clusters in V3 could be observed in the α range for 5% (p = .003), 10% (p = .001) and 25%
(p < .001) thresholds but not significant clusters for γ. See Figure 18 for a detailed overview.

Discussion

In the present study, laminar level fMRI was combined with simultaneously recorded
EEG in human participants. We tested whether feature specific BOLD activity changes -
across cortical layers - are related to feature specific frequency power variations in the EEG
data as predicted by multiple frameworks [82, 91, 240, 246]. After preferred stimulus orien-
tations have been assigned to each voxel, a general linear model (GLM) was used to assess
the relationship between EEG power modulation regressors and the BOLD signal.

Feature processing specific γ We found feature and cortical depth specific effect for
trial-by-trial power changes of oscillations in the γ band in V1 for the difference between
preferred and not preferred voxel (Pc and nPc, see Figure 17). EEG power in the γ band
(57.5 Hz to 65 Hz) was related positively to the BOLD signal of voxel exposed to their
preferred orientation and negative for voxel exposed to the non-preferred orientation, pre-
dominantly in deep and superficial layers. In addition to that, findings by Scheeringa et al.
(2016) [238], who proved feasibility for relating single trial EEG power to the fMRI BOLD
signal, could be replicated by analyzing the full trial period. A strong positive relationship
between γ power fluctuations and the BOLD signal in deep and superficial (also middle)
layers was found. This has been predicted by animal research [52, 272] anatomical findings
[80, 238] and theoretical frameworks [91, 240, 246]. In the present experiment, only the 25%
threshold exposed a significant γ correlation, but a trend for the 10% threshold has been
observed as well (p = 0.069). A possible explanation is the low signal-to-noise ratio (SNR)
or low contrast-to-noise ratio (CNR) for this type of experiments. Alternatively, γ band
oscillations do not reflect the processing of specific features but rather the general process of
feature processing which is implicit to the communication through coherence (CTC) hypoth-
esis [240, 246] and communication via nested oscillations (CNO) models [91, 204]. Indeed,
only the contrast between both conditions revealed a significant cluster. An analysis of both
conditions separately did not. However, a significant cluster for Pc for the γ band was found
when the full trial was included. What sounds counter-intuitively here is, that if γ is related
to specific feature processing - a process completed early in the trial, indicated by reaction
times - then why does the correlation between γ and the feature specific BOLD only exposes
a significant result when including the "post-decision" period? According to Bonnefond et
al. (2017) [91], γ band oscillations are nested into α oscillations that set up a communi-
cation channel between task relevant neuronal populations. Since the task was actually to
determine a small "wiggly" pattern, the main feature of attention might not have been ori-
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entation but instead e.g. "waviness". This means that the actual relevant decision about the
stimulus, does not include information about the orientation. Orientation specific processes
however would nevertheless be expected on the level of V1, provided those kind of stimuli
[30]. Possibly, the SNR requires the full trial to be included in order to make this effect
visible within a single condition. On the other hand, the EEG signal exposes a much weaker
and less clear signal in the γ band for the late period (see Figure 15). Conversely, full trial
length results for γ appear much more broadband. Hence, it can be assumed (based on EEG
γ power and BOLD correlation) that the full trials includes additional cortical activity that
exceeds feature specific responses. Post-stimulus but pre-response γ power changes in one
condition alone do not sufficiently explain respective changes in the BOLD signal. Hence, a
plausible explanation would be that γ band power does not reflect specific feature activation
but feature determination (i.e. separation or processing). More surprising here is that γ
band oscillations are correlated (on trend level) with general BOLD deactivation, especially
for preferred stimuli (see Figure 16 and Figure 19) While one interpretation would be that
this correlation just reflects the general relationship between γ and BOLD [238, 360, 361], the
fact that this is not observed for generally activated voxel makes this assumption debatable.
However, γ band correlated with negative BOLD responses for directed attention could be
explained by the "true" underlying computations that become visible after stripping away
interaction effects by general activation (attention). If γ band oscillations are nested in co-
herent α (as described above) in order to allow for signal transmission which is gated by an
attentional α component [91], then attended preferred feature signals are composed of a sig-
nature of transmission α, attention α and feature γ. While attention could be demonstrated
to enhance early visual processing [362] - probably mediated by low frequency oscillations
[363] - low frequency suppression effects seem to be much more dependent on the actual
task and stimulus material [233]. Signals of generally deactivated voxel and voxel coding
for the not preferred stimulus features would hence lack the "boost" from attention α and
their effects on γ. The missing γ band correlation in PcA+ could thus be a consequence of
attention processes overshadowing the feature process which however become visible when
looking at the generally deactivated voxel, because supposedly the respective attention sup-
pression has less effect than the attention facilitation of generally activated voxel.
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Figure 20: Feature, layer and BOLD (de-) activation specific α oscillations The Figure summarizes
selected findings (see "Results" on page 80). Thereby, attention related α power changes are predominantly
linked to a general BOLD signal modulation mainly in superficial layers, whereas more feature specific
processing related α-BOLD negative correlations are located in deep and superficial layers, with a differential
profile for preferred and non preferred stimulus orientations in deep and middle layers (high frequency α
decrease, low frequency α increase and vice versa for not preferred stimuli). In general the feature specific
α related processes are mainly attributed to deep layer BOLD activity (positive and negative). Anatomical
and functional attributions are depicted in the center. Even though frequency selectivity could only be found
in deep and middle layers, the modulation in superficial layers seems to be dependent on A±. Especially the
modulation of the frequency profile of Pc seems to drive this difference which needs to be verified in future
analyses.
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Generally speaking, positive correlations between EEG γ power and the fMRI BOLD
signal are a well established finding [238, 360, 361]. Simultaneous recordings of local field
potentials (LFP) signals and fMRI in animals suggest a close relationship between neural
activity reflected by LFPs in the γ band and the BOLD signal [237, 364]. The EEG sig-
nal is closely related to LFPs as well [365–367]. Hence, the relationship between EEG and
simultaneously recorded BOLD signal, can serve as a proxy to investigate the relationship
between cortical oscillatory patterns and underlying neural activity in humans. The here
presented novel approach adds laminar level resolution to simultaneous EEG-fMRI which
gives rise to the opportunity of relating oscillatory brain activity to the cortical architecture
and underlying neuronal activity and test predictions derived from current cortical compu-
tation frameworks. Cortical γ activity has been linked to routing cortical information [240],
stimulus features themselves [368] and spike time coordination [369]. Here we find a feature
specific γ band increase in the correlation with the BOLD signal, for voxel exposed to their
preferred stimulus orientation over not preferred in V1. This effect could be observed for the
25% and on trend level for the 10% threshold. Later layer activation profile analyses revealed
highest correlations with the laminar BOLD in deep and superficial layers. Those findings
have been predicted by previous literature [52, 91, 238], but deep and superficial layers have
been expected to expose the reverse correlation pattern (superficial > deep). Nevertheless,
anatomical γ related feed-forward pathways have been attributed to deep and superficial
layers [80, 82, 246]. Further analyses must investigate the exact connectivity between (and
within across layers [265]) in order to understand exact computational pathways.

For α band oscillations we observed a much more complex response pattern for different
conditions. Thereby, negative effects between α band power changes and the BOLD signal
could be separated into attention (or general activation) and feature (and frequency) specific
processes. The close relationship between electrophysiological and BOLD signals has been
demonstrated previously. Negative correlations with BOLD response could be shown for θ
[370, 371], α [238, 372, 373] and β [303, 374, 375] oscillations.

Attention specific α The analysis of the BOLD signal distribution for each stimulus
feature and both combined compared to baseline, revealed relatively clear separation between
positive and negative t values within the respective contrast (see Figure 15 (C) left). Since
this pattern can be observed likely as a consequence of retinotopic (de-) activation in primary
visual regions driven by spatial attention [354], generally activated or deactivated voxel might
to some extent reflect directed attention [56]. Since it is hypothesized, that separate processes
for attention and feature related activity in the α band should be possible to identify [91],
those processes must constructively overlap for voxel at attended sites that are presented
with their preferred feature since this would reflect the actual ongoing process. In addition
to that and increase in α power over not attended receptive field locations is hypothesized
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to perform some sort of suppression [224] or at least "neglecting" [176] operation. Indeed
we found that decreased α power is related to increased BOLD activity in activated and
deactivated voxel (note: moreα power in deactivated voxel is related to less BOLD activity).
However, the frequency bandwidth between correlations with deactivated and activated voxel
is different. While deactivated voxel expose a negative correlation with broadband low
frequency activity, the negative correlation with activated voxel is limited to a range between
10 Hz and 13 Hz. Since positive activated voxel might contain strong signal contributions
from feature specific voxel that are attended, respective feature specific activity has been
removed from the negative BOLD signal. The resulting negative correlation pattern with α
is very similar to the negative correlation between α and general deactivation. In addition
to that, respective negative BOLD correlations have been found strongest in superficial
(and middle) layers, whereas the correlation with activated voxel has been located primarily
to middle and deep layer activity. This difference is likely not driven by a SNR related
issue, since the layer profile between positive and negative responses and correlations is
highly different. A SNR bias due to superficial draining veins that have an effect on the
BOLD signal [273], would likely affect positive and negative responses similarly (at least in
terms of layer bias). A more likely explanation is that a general deactivation is reflected
predominantly in superficial layers by the α band. Findings related to BOLD deactivation
support this view. Since positive BOLD signal can be interpreted as a proxy for ongoing
neuronal processing [32] and attention has been demonstrated to be on one hand related to
targeted α band changes [251] and negative relative BOLD signal changes [355] a potential
inhibiting relationship between α and BOLD could very well be expected as well. It has
been reported that enhanced negative fMRI default mode activity was correlated to higher
spontaneous EEG α activity [376]. Here we find a negative correlation between α power
and negative BOLD response as well. Moreover, an eyes open eyes closed experiment using
ECoG in humans, revealed that during the eyes open condition respective negative α power
deflections were mostly related to superficial layers [270]. This more or less target-less but
directed attention [56] process would be somewhat similar to our experiment, where directed
attention was required to perform the task. In addition to that, Haegens et al. (2015)
[271] related superficial α band activity to a more general process of sensory parsing in
primary sensory regions. The discrepancy between general activation related to superficial
and findings on "true" attention modulation from animal models [52] mostly related to deep
layer activity, possibly can be resolved by the respective measure, as both, Haegens et al.
(2015) [271] and Halgren et al. (2019) [270], argue that LFPs report spurious deep layer
activity related to attention, due to volume conduction.
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Feature specific α The inhibitory nature of α oscillations to suppress (or neglect [176])
unwanted information is a well established hypothesis [173, 224, 231, 377, 378]. Here we could
show that an decreased α power is linked to increased BOLD activity in voxel that process
their preferred orientation, whereas an increase in α power has been found to be linked to
lower BOLD activity in voxel that were exposed to non-preferred stimuli in superficial and
deep layers. The contrast between Pc and nPc controls for general activation "background"
effects (e.g. receptive field specific or spatial attention [354]) because e.g. spatial attention
is not hypothesized to affect stimulus feature processing per se. However, some theoreti-
cal frameworks predict multiple sources of α that either set up neuronal communication or
gate cortico-cortical information flow [91, 148]. Applying such a framework would predict
that attention specific α and feature processing specific α contribute jointly to the process.
Hence, the contrast between Pc and nPc controls only for e.g. spatial attention but not
interaction effects between spatial attention and feature related processes. Indeed, the neg-
ative correlation pattern between α for the contrast between features (Pc−nPc) exposes a
similar frequency band limitation as observed for A+ (see Figure 16 center and Figure 17).
The layer profile for Pc− nPc locates the strongest negative effects to superficial and deep
layers. A more specific analysis of α for Pc and nPc separately for either A+ or A− (see
Figure 19) revealed however a feature specific activity pattern in the α band that has been
linked predominantly to deep and superficial layers. A separate analysis of Pc and nPc (see
also Figure 17) indicates that negative correlations for oscillations in the α band exposed a
peak lower frequency within the spectrum (8 Hz to 10 Hz) for not preferred as compared to
preferred orientations (10 Hz to 14 Hz). A permutation test revealed where the respective
α frequency profiles for Pc and nPc differ. Predominantly in deep and middle layers, the
frequency profile exposed a higher negative correlation between α and the BOLD signal for
Pc in the upper α band (11 Hz to 13 Hz) as compared to nPc. This pattern was reversed
for the lower α band (8 Hz to 10 Hz) (see Figure 17). Most notably, this exact pattern
was observed for generally activated and deactivated voxel. Even though, a difference with
respect to frequency-specificity in superficial layers could not be observed for activated or
deactivated voxel, the respective frequency profiles expose a striking dis-similarity. While
the overall correlation for Pc and nPc is very similar in superficial layers in deactivated
voxel, this is not necessarily the case for the generally activated selection. Interestingly, the
response for nPc shares high similarities for activated and deactivated voxel in terms of α
frequency profile, however the patterns for Pc seemingly differs (see Figure 20 right). As
described above, attention related processes could be mainly linked to superficial α activity.
The contrast between frequency profiles of Pc and nPc for activated and deactivated voxel
in turn suggests a feature processing related role of deep layer α where processes with respect
to preferred and not preferred orientation expose frequency specificity (see also Figure 20).
This would support the idea that α might play a key role in attended feature selection
[224], but furthermore can be related to feature specific processes and network communica-
tion [255], which is in line with theoretical frameworks taking all those aspects into account
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[91, 291]. Feature selective α band activity has been predicted [91]. However, a differential
feature and frequency selective α oscillation, establishes a very new and interesting finding.
Potential follow up experiments specifically need to target this frequency dissociation with
respect to relative power changes and connectivity. Furthermore, it needs to be investigated,
whether indeed superficial layer α in PcA+ and nPcA± is statistically different. One ap-
proach would be to compute the similarity between frequency profiles in superficial layers
between A+ and A− for Pc and nPc separately. According to current theoretical frame-
works, neuronal commutation is established in feedback direction, by synchronized α band
activity between regions of interest, controlling the flow of information. Targeting specifically
neuronal populations exposed to their preferred stimulus orientation, would thereby result in
a neuronal population (feature) specific α decrease reflecting feature specific dis-inhibition,
similar to what we could show.

Relationship to theoretical frameworks While γ oscillations are on one hand consid-
ered to be a direct consequence of stimulus features and the neuronal architecture [189, 368]
other theories point towards a role of γ in functional network communication [240]. If however
γ oscillations are phase locked to the α cycle in local computations [91, 259, 379], increased
γ power might reflect the process of information processing itself as it occurs. Indeed the
correlation between γ power and feature specific BOLD signals is only present for Pc during
the full trial and crucially not for nPc. Feature specific processing (eliciting high γ power)
might indeed be set up by low frequency (i.e. α) oscillations, dis-inhibiting voxel preferably
processing a certain stimulus orientation. Phase-amplitude coupling between feature specific
α and γ oscillations needs to be investigated in future research. However, the absence of γ os-
cillations in nPc at least indicates the presence of some form of inhibitory feedback process.
This idea would further explain, why the deep layers for Pc− nPc expose a higher correla-
tion with the feature specific BOLD signal, than superficial or middle layers. Since stimulus
induced γ is mostly observed in superficial layers [52, 91, 238], it would be expected that this
pattern could be observed in nPc voxel as well. This process would thereby flow into feed-
forward direction [52, 91]. Nevertheless, it has been found that top down controlled activity
is mainly routed through deep layers [34]. A feedback directed inhibitory signal would lead
to a BOLD signal decrease which would be particularly present in deep layers, and would
hence produce a stronger (positively) correlated signal in those layers (less γ, less BOLD)
for the contrast. After an initial stimulus evaluation period, feedback connections would
"lock" the perceived stimulus orientation by dis-inhibiting neuronal populations in Pc and
inhibiting neuronal populations in nPc [179]. In this model, γ oscillations changes could be
interpreted as markers for ongoing stimulus processing in a selected dis-inhibited subsection
within primary visual regions, which would be in line with findings to α / γ phase-amplitude
coupling [380].
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Figure 20 summarizes main findings and indicates respective links to anatomical layers
and functional roles. General activation (or attention) related processes, are mainly related
to α power changes in superficial and middle layers. This can be observed for the general
activation, strictly positive and strictly negative activation (deactivation). Furthermore,
stimulus feature related α band correlations have been found to be strongest in deep and
superficial layers. Thereby, preferred features are reflected by a high α negative correlation
increase and not preferred features by a low α increase in negative correlation. In a nutshell,
those findings can be interpreted as two differential α systems for feature (deep layers) and
spatial (superficial layers) attention or neuronal recruitment systems.

We reached our main goal of demonstrating the feasibility of relating feature specific
EEG power fluctuations to cortical activity in feature specific populations on the level of
cortical laminae. This enabled us to investigate predictions derived from animal research
using LFPs [52] or recently developed theoretical frameworks [91, 246]. It remains to be
investigated whether the directionality of the information flow across cortical regions (γ
feed-forward, α feedback) adds further evidence to the respective frameworks. Feasibility of
such an analysis has already been demonstrated [265]. This would allow to test the presumed
feedback connectivity in α from higher to lower order visual regions [52, 91] predominantly
in superficial and deep layers, especially in the contrast condition. As a result, inhibited
feed-forward information flow expressed in γ are likely predictable from the correlation with
α power and BOLD connectivity. Additionally, an intra-area correlation of α with the
BOLD signal for deep and superficial layers would be predicted [265]. In general this study
implies that combined EEG-fMRI can be used to study the relationship between oscillatory
brain activity and the cortical architecture. However, future research might not only employ
different modalities to confirm our findings (e.g. using intra-cranial electrodes), but might
as well extend the possible range of experimental paradigms and analysis strategies. Intra
and inter regional connectivity could thereby put current theoretical frameworks to the test.
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Auto-regressive rank order similarity (aros) test (pre-print)

Clausner, T., & Gentili, S. (2022). Auto-regressive Rank Order Similarity (aros) test.
bioRxiv.

https://www.biorxiv.org/content/10.1101/2022.06.15.496113v1

Abstract In the present paper we propose a non-parametric statistical test procedure
for interval scaled, paired samples data that circumvents the multiple comparison problem
(MCP) by relating the data to the rank order of its group averages. Using an auto-regressive
procedure, a single test statistic for multiple groups is obtained that allows for qualitative
statements about whether multiple group averages are in fact different and how they can
be sorted. The presented procedure outperforms classical tests, such as pairwise conducted
t-tests and ANOVA, in some circumstances. Furthermore, the test is robust against noise
and does not require the data to follow any particular distribution. If A is a data ma-
trix containing N observations for k groups, then the test statistic η can be computed by
η =

∑N
i=1 f(Ai, s)/N , where s is a vector of length k containing the average for each group,

transformed into unique rank values. This statistic is compared to the distribution D, ob-
tained by Monte Carlo sampling from the permutation distribution. It will be demonstrated
that D can be described by a normal distribution for a variety of input data distributions
and choices for f , as long as a set of criteria is met. Comparing η to the permutation distri-
bution controls the false alarm (FA) rate sufficiently, since the exact p-value can be estimated
[381]. Multiple examples of possible choices for f will be discussed, as well as detailed de-
scriptions of the underlying test assumptions, possible interpretations and use cases. All
mathematical derivations are supported with a set of simulations, written in Python that
can be downloaded from https://gitlab.com/TommyClausner/aros-test together with
an implementation of the test itself.

Introduction In this paper we propose a paired samples, non-parametric statistical pro-
cedure on the basis of a permutation test, which aims to circumvent the multiple comparison
problem (MCP) by combining multiple group averages into a single statistical value. The
MCP arises from the fact that in order to control the FA rate for comparing more than two
groups, the critical α level needs to be adjusted. Commonly accepted levels for FA rates
are less than 5% or 1%. This means that the null hypothesis (H0) was falsely rejected in
less than 5% or 1% of all cases. As the number of groups k increase, the number of tests
nt increases with nt = k!/(2(k − 2)!). If no adjustments to the critical α was made, the FA
rate increases from ≤ 0.05 to ≤ 1 − (1 − α)nt , which for three groups means the FA rate
becomes ≤ 0.14. This issue is commonly referred to as multiple comparison problem. One
common strategy is to adjust the α level (lower it), until a satisfactory control for the FA
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rate is achieved 12. Adjusting the α level however comes at the cost of potentially reducing
statistical power, that is the sensitivity of the test, and thus the rate at which the so called
type II errors (falsely accepting H0) are produced increases.

A widely known test used for statistical analyses of more than two groups is the analy-
sis of variances (ANOVA). The one-way ANOVA, for instance, uses an F -test to relate the
variances within and between groups to each other. However, a significant result (i.e. reject-
ing the H0, which states no difference between the group means) only indicates a difference
between any subset of the means. Thus, a significant result is often followed by a pairwise
comparison, which again leads to the aforementioned MCP.

Furthermore, classical tests, such as z-tests, t-tests or F -tests often require the underlying
data to be normal distributed or at least that the parameters of the underlying distributions
are known. Instead of relying on knowledge of the underlying distribution, the distribu-
tion under H0 can be estimated by a permutation procedure, which can be applied to all
of the above classical tests. This procedure is well established for a variety of use cases
[352, 382, 383] and allows for an exact estimation of the p-value [381]. The fundamental idea
behind permutation tests is that if there is no difference between multiple averages, then
the members of each group can be exchanged, because they stem from the same distribution
(H0). Commonly, members of each group are shuffled between the groups and the respective
test statistic of interest is computed. By repeating the procedure a large number of times
(ideally by iterating through all possible combinations), the permutation distribution under
H0 is obtained [384]. In a last step the test statistic of the original data is compared to
the permutation distribution and the p-value is computed as the fraction of all values of the
permutation distribution that exceed the test statistic computed from the original data [381].
Since the p-value is computed by Monte Carlo sampling from the permutation distribution,
no knowledge about the underlying parameters is required [385]. Thus, permutation tests
belong to the family of non-parametric tests.

The proposed auto-regressive rank order similarity (aros) test is constructed as a per-
mutation test and thus belongs to the family of non-parametric tests as well. Additionally,
the MCP is circumvented by condensing the relationship between the data and each group
average into a single statistic. Precisely, the group data for each paired observation is treated
as vector that is related to the vector of the rank order of the average group value, by means
of a similarity metric. Thus, the test statistic η can be seen as the average similarity between
the observations and the rank order of the averages. It is tested whether this similarity is
significantly greater than the average similarity within the permutation distribution under
H0.

12There is a large variety of strategies, which are not discussed here.
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The aros test explained The aros test is a non-parametric statistical hypothesis test
for paired sampled, interval scaled data for multiple group average comparison. However,
as compared to conventional tests on interval scaled data, the aros test does not rely on
the difference between the means of multiple distributions, but rather on the relationship of
each paired observation within the data to an ordinal scaled profile or shape derived from
either the group averages or an external source. If we assume k = 3 groups with averages
µa, µb, µc, the standard procedure for classical tests would be to pairwise compare those
three groups in order to obtain the qualitative and quantitative relationship between those
averages. However, when applying the aros test, this question is reduced to the qualitative
relationship of how the group averages rank relative to each other and how well the data
explains this relationship. This means that if we observe a ranking of the means such that
µb < µc < µa, auto-regressive rank order similarity tests, whether this relationship can truly
be justified by the data (as compared to determining, whether the pairwise difference between
those means is zero in a more traditional setting). In other words it is tested, whether - on
average - each observation expresses a similar relationship between each group or condition
as expressed by the group averages. The most general formulation for the test statistic η
can be written as:

η =

∑N
i=1 f(Ai, s)

N

where s is the vector of group averages, transformed into a set of unique, evenly spaced
rank values, such that s = [s1, . . . , sk]. For the aforementioned relationship µb < µc < µa,
one possibility would be to set s = [3, 1, 2]. The function f relates each observation Ai∈[1,...,N ]

(the values for each observation in all conditions) of length k and s separately. η is obtained
by averaging the results from f(Ai, s). Thereby, the function f can be freely chosen, as
long as f relates Ai and s in terms of similarity. Examples for f might be the least square
solution to s = Aiβi for βi, the correlation coefficient, the cosine similarity or the explained
variance. In this paper we will focus on the least square solution to s = Aiβi. To solve for
βi we denote:

β̂i = (AT
i Ai)

−1AT
i s

Since Ai and s are vectors, we can rewrite AT
i Ai as the dot product of Ai with itself and

AT
i s as the dot product between Ai and s. Hence, we denote:

β̂i =
Ai · s
Ai · Ai

By doing so, the test statistic η for f(x, y) = (x · y)/(x · x) can be computed in the
following way:
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η =

∑N
i=1

Ai·s
Ai·Ai

N
In this case η can be interpreted as the average fit of the data to the rank order shape.

If we assume, for example, k = 3 groups with means [µa, µb, µc] and an average rank or-
der shape of s = [3, 1, 2], η can be interpreted as the average fit of each observation Ai

to that shape, or in other words, how well the data explains sorting the means, such that
µb < µc < µa. Note, that we cannot state how much different each mean is from each other,
but how much the data supports this rank order. As previously mentioned, f can be tailored
to the specific needs of the respective research question. To the authors opinion however,
choosing f(x, y) = (x · y)/(x · x), can be applied to a variety of research questions, and gives
rise to a straightforward interpretation. Nevertheless, this specific choice for f is limited by
the fact that if one observation Ai is zero for all groups, then f cannot be computed and thus
η would be invalid. Hence, f needs to be chosen such that it is defined for each observation
and each permutation.

It needs to be pointed out that some of the proposed choices for f are magnitude free
(i.e. correlation coefficient, cosine similarity and explained variance), whereas other choices,
such as f(x, y) = (x · y)/x · x) are not. Magnitude free in this context means that the
absolute value of η does not depend on the absolute values of either the data A or the val-
ues of s. However, due to the fact that the permutation procedure is applied in a similar
fashion, the bias resulting from the absolute values of A (and s) affects the estimation of
η and the permutation distribution equally and thus does not affect the hypothesis test itself.

So far the general idea behind obtaining the test statistic, as well as multiple possible
choices for f have been discussed. The actual hypothesis test has been neglected so far. Gen-
erally speaking the aros test is a test on the null hypothesis (H0). As previously mentioned,
this test is performed by Monte Carlo sampling from the permutation distribution under H0

and comparing the initially obtained η to this distribution. In a first step the number of
permutations I is defined. I should be a relatively high number(e.g. I = 10000). Since for
each permutation step an average over N observations needs to be computed, the maximum
number of all possible permutation steps for k groups (and thus k! possible permutations per
observation) can be computed as I = k!N/N . Where computationally feasible, the computa-
tion of the exact permutation distribution D under H0 (all possible combinations) should be
preferred. Otherwise I samples (ideally, but not necessarily, without replacement [381]) need
to be obtained by means of Monte Carlo sampling. During each iteration i ∈ [1, . . . , I], the
data A is permuted across groups for each observation separately. Then, the test statistic is
computed and added to D. After performing I iterations, D contains I values for the test
statistic under H0, to which the initially obtained η is compared. The p-value is obtained
by computing the fraction of all values in D that exceed η. Figure 21, illustrates this.
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Figure 21: Procedure of the aros test. First, the initial test statistic η is obtained by averaging the data
over groups and transforming the result into rank values forming the shape s (upper left). Afterwards, the
data A is related to s using the function f (upper middle). This procedure is repeated I times to form the
permutation distribution D (lower right), except that the data is shuffled over the data columns for each
observation separately (upper right). Lastly, η is compared to D (lower left). This is achieved by computing
the p-value as the fraction of the values in D that exceed η and compare it to the critical α-value (e.g. 0.05).

During the description of the test procedure, H0 has been mentioned, but was only
implicitly defined. Derived from the general assumption of permutation tests, it is important
that the data is exchangeable under H0. This means that the joint probability distribution
(under H0) remains the same, irrespective of the order of the single values [352]. Less formally
speaking, this means that if there was no difference between multiple groups of values, the
values in each group could be interchanged, because they can be assumed to stem from the
same distribution. The exchangeability assumption is tightly linked to H0 itself. If η does
not depend on the grouping of the data (H0), then η would be expected given D, hence:

H0 : η = E[XD]
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Under H0, s is derived from A, where each value in A
[1,...,k]
i could be exchanged. Hence, s is

the result of randomly arranged group labels and its respective average relationship with A -
expressed by

∑N
i=1 f(Ai, s)/N - could not be predicted by any single Ai or s. Thus, each value

within D could be seen as the average of independent random values. In the "Derivations"
section it will be shown that D can be approximated by a normal distribution:

N (µ, σ2), with µ = E[XD] and σ2 = E[(XD − µ)2]

As described above, the FA rate is controlled and the hypothesis test performed by
estimating the exact p-value p̂ and comparing it to the critical α-value [381]:

H =

{
0, if p̂ =

1+
∑I

i=1 Di≥η

I+1
> α

1, otherwise

Since the p-value can be computed directly from D as the fraction of values in D ex-
ceeding η and comparing it to the critical α-level, the false alarm rate is controlled sufficiently.

Note that D can be approximated by a normal distribution (see "Derivations" for ad-
ditional details) and thus D could be standardized: Z = (D − µD)/σD and η expressed in
terms of the number of standard deviations it is different from the mean of the permutation
distribution (z-scoring).

A special case of aros tests While the standard aros procedure is performed using a
shape derived from the data average (data driven), a special case arises if the shape can be
derived from an external source. If possible, s can be obtained by source independent of
the data (e.g. previous research or derived from the hypothesis). Hence, H0 changes from
asking whether a specific arrangement of the data produces a specific rank order of averages
as likely as any other rank order obtained from shuffling the data, to whether under the
exchangeability assumption the original arrangement of the data explains a specific shape
better than any other arrangement of the data. Then, η would be computed based on
this specific shape. Hence, the shape would not be derived from the average rank order
of the data, which biases the estimation of the permutation distribution. By definition, the
independence of s is strictly necessary. In order to avoid "double dipping" s cannot be derived
from the mean and used as specific shape of interest. It must be derived from some source
other than the data, in order to not violating the independence assumption of s. However,
if s can be derived from some external source, not violating the independence assumption,
then statistical power for this specific shape can greatly be increased (see "Comparison of
test power"). Furthermore, it is not strictly necessary anymore to require s to be a unique
set of equally spaced values, as the probability for any s to occur does not need to be
uniformly distributed anymore (because there is only one shape). Technically this strips
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the aros test of its auto-regressive nature. Nevertheless, the general principle would remain
similar enough to view this as a special case of the aros test. Please see "Discussion" for a
suggested application, where the standard and special case are combined.

Derivations The derivation is almost immediate given the statement of the central limit
theorem.

Theorem 1 (Central limit theorem[386]). Let X1, X2, ... be i.i.d. with E[Xi] = µ, var(Xi) =
σ2 ∈ (0,∞). Let X̄n = X1 + ...+Xn/n. Then, as n → ∞,

(X̄n − µ)

√
n

σ

converges to the standard normal distribution N (0, 1)

From this theorem and the definition of η:

η =

∑N
i=1 f(Ai, s)

N

we can directly conclude:

Corollary 1. Assuming that f(Ai, s) forms a probability distribution with mean µ and
variance σ2, then, for N → ∞, the distribution of η converges to a normal distribution
N (µ, σ2/N)

Given this result one can conclude the distribution of η statistics can be approximated
by a normal distribution.

Now that the distribution of η statistics follows a known probability distribution, we
can conclude that the probability distribution f(Xη|D), that is the distribution of the test
statistic given the permutation, is well defined. Finally, we only need to prove that in general
the permutation test controls the FA rate [352]. We only need to show that the α level of
the permutation distribution is the same as the real α, i.e. P (rejectH0|H0).

Theorem 2. in a permutation test, the probability α = P (rejectH0|D,H0) is equal to
P (rejectH0|H0)

Proof. We rewrite P (rejectH0|H0) to be conditioned on D, as
∑

D

P (rejectH0|D,H0)f(D)

Then, by definition of the α level of the permutation distribution,
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P (rejectH0|H0) =
∑

D

αf(D) = α

So we can conclude that, in particular, the false alarm rate of the η statistic permutation
distribution, f(Xη|D), is controlled.

Simulations In order to demonstrate the validity and applicability of the proposed test
procedure, we conducted a variety of simulations. It will be demonstrated that the type I
error rate (FA rate) can sufficiently be controlled given the proposed procedure. Furthermore,
it will be demonstrated that the permutation distribution under H0 indeed converges to a
normal distribution for multiple different underlying data distributions. Additionally, one
simulation will construct a specific case, where the aros test outperforms pairwise t-test and
a one-way ANOVA. Lastly, it will be simulated how under specific conditions the statistical
power of the aros test compares to pairwise t-tests and a one-way ANOVA. For every set
of example data A, we generated 50 observation for three groups. The α-level was set to
α = 0.05 and f was defined as f(x, y) = (x · y)(x · x) (see "The aros test explained"). All
example simulations, as well as an implementation of the aros test are provided via
https://gitlab.com/TommyClausner/aros-test.

Estimating the type I error (FA rate) The FA rate was estimated by 10000 simulations
on uniformly distributed random data. A new data set was created for each simulation. For
each test, 10000 permutations were performed to estimate the permutation distribution under
H0. If the null hypothesis was rejected, the result of this simulation was set to 1 and to 0
otherwise. To obtain the final result, all individual test results were averaged, yielding a
FA rate of 0.0503, which can be considered sufficiently close to the target of 0.05, as the
deviation is only 0.6%. Figure 22 (A) depicts the cumulative average of the result vector.
After around 1000 simulations, the FA rate converged to 0.05, with only minor fluctuations
for the other 9000 simulations.

Demonstrating independence of sample data distributions A crucial step towards
verifying the validity of the aros test is to demonstrate that the estimated permutation dis-
tribution under H0 (the distribution D), indeed results in normal distribution for a variety
of data distributions. As previously mentioned, Ai (each paired sample) and s (the respec-
tive rank order shape obtained from the average over N observations in A), can be seen
as independent random samples given H0. Therefore, the average of all f(Ai, s) under H0

represents an average of independent random values, which according to the central limit
theorem, distributes normal.
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Figure 22: A) False alarm rate under H0. Each value of the continuous line represents the average of the
result vector up to that respective simulation, whereas the dotted line represents the target value of 0.05 for
the expected FA rate. Each value within the results vector could either be 0 (H0 was accepted) or 1 (H0 was
falsely rejected). B) Probability distribution under H0 for a variety of input data distributions.
All distributions were standardized and transformed according to Z = (D − µD)/σD. Afterwards the data
was transformed into histogram data, where the count per bin was divided by the sum of all counts to obtain
probability values for each point of the histogram. Histogram data was depicted as lines, rather than bars,
for better readability.

For the purpose of demonstration, four different data distributions were used to estimate
the permutation distribution under H0. Random samples from the following distributions
(with stated parameters), were chosen: normal distributed data with N (0, 1), uniform dis-
tributed data with U(0, 1), binomial distributed data with B(3, 0.6) and Poisson distributed
data with P(3). For each simulation 20000 permutations were used to estimate the permu-
tation distribution under H0. The resulting distribution was standardized by subtracting
the data to its mean and dividing it by the standard deviation. Afterwards, the data was
transformed into histogram data with the number of bins determined by Sturges [387] or
Freedman-Diaconis [388] rule. The approach yielding the higher number of bins was used,
as is the standard for the histogram(a, bins=’auto’) function provided by numpy [389].
Furthermore, the count value for each bin was divided by all counts to obtain the prob-
ability for each point of the distribution. As Figure 22 (B) clearly shows, the resulting
estimated permutation distribution approximates the same normal distribution irrespective
of the underlying data distribution.

Simulated example In order to compare the aros test to paired sample t-tests and one-
way ANOVA, we constructed a data set in the following way: A vector of N = 50 random
standard normal distributed values was created, to which an offset of [0.2, 0, 0.1] was added
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Figure 23: A) Simulated raw data. For each of the k = 3 groups, N = 50 observations were generated in
the following way: N random samples were drawn from a normal distributions with parameters N (0, 1).
To simulate the difference in means, the same data was used three times and shifted such that µ1 =
0.2;µ2 = 0;µ3 = 0.1. Additionally uniform random noise was added separately to each group, drawn
from a distribution with parameters U(−0.5, 0.5). B) Cumulative average of relative test power. For
each condition, the number of correctly rejected H0 was counted and plotted cumulatively, relative to the
number of simulations. This was done for k = 3 groups. Additionally, each value was divided by the final
average of correctly rejected H0 obtained from the uncorrected t-test scenario (tUC). For each of the t-test
scenarios, H0 was counted as successfully rejected if all three of the pairwise comparison yielded a p-value
lower than or equal to the critical α. This procedure was performed for the regular aros test (aros), a
version of the aros test, where the shape was set to be known (arosks), pairwise t-test without correction
for MCP (tUC) and with correction for MCP using the Bonferroni (tB) or the Bonferroni-Holm method
(tBH). Additionally a one way ANOVA for the simultaneous comparison of all three groups was performed
(ANOV A). The green line indicates the final average of tUC after 1000 iterations.

in order to simulate the difference between the group averages. Furthermore, uniform ran-
dom noise was added to each group, drawn from a uniform distribution with parameters
U(−0.5, 0.5). A box-plot of the simulated data for each group can be found in Figure 23 (A).
The authors point out that the same random seed as for all other simulations was used and
no particular choice towards tuning the result in a desirable way was made. However, the
authors are aware of the fact that changing the random seed might indeed affect the clarity
of the result. However, the aim of this particular simulation was to demonstrate that there
exist data sets for which the aros test is particularly well suited. Furthermore, additional
1000 simulations were conducted, where multiple sets of data using the same parameters as
in this simulation were constructed and the respective test power was compared.

In a first step the aros test was performed, followed by pairwise paired sample t-tests
between the groups (1 vs. 2; 1 vs. 3; 2 vs. 3) and a one-way ANOVA over all three groups.
The p-value for each test was obtained and in case of the aros test, the rank order shape as
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well. Due to how the data was simulated, it is expected for the three averages to be related
such that µ2 < µ3 < µ1. Respective p-values for each test can be found in Table 2. At
a critical α-level of α = 0.05, only the aros test and the t-test comparing groups 1 and 2
yielded a significant result. All other p-values were greater than the specified critical α-value.
Additionally, from the aros test the rank order shape s = [3, 1, 2] could be obtained. Thus,
the respective means can be ordered as µ2 < µ3 < µ1. This rank order could not have been
obtained (given the data) using any other test.

Table 2: p-value of different statistical tests based on the data depicted in Figure 23 (A)

test p-value
aros test 0.001

t-test 1 vs. 2 0.003
t-test 1 vs. 3 0.065
t-test 2 vs. 3 0.203

one-way ANOVA 0.618

Comparison of test power In order to approximate the relative test power given the
scenario explained in "Simulated example", the procedure was repeated 1000 times (with
similarly constructed, but newly generated data), where we recorded the number of correctly
rejected H0 for each test scenario. The following scenarios were included: aros test (aros),
aros test with known (pre-determined) shape (arosks), pairwise t-tests with uncorrected p-
values (tUC), pairwise t-tests with Bonferroni (tB) or Bonferroni-Holm (tBH) correction and
a one-way ANOVA (ANOV A) for simultaneous comparison of all groups. During each of
the 1000 simulations, it was recorded whether H0 was correctly rejected or not. For the
t-test scenarios, H0 was counted as correctly rejected, if p-values of all three tests (corrected
or not), were lower than or equal to the critical α-level, which was set to α = 0.05. For
all other test tests, H0 was counted as rejected, if the respective p-value was lower than or
equal to α and the predicted shape corresponded to the presumed shape from which the data
was constructed. This last condition was of course omitted from the ANOVA scenario. In a
last step, the cumulative average of each condition was divided by the overall average of the
uncorrected t-test scenario, which acted as a baseline. Figure 23 (B) depicts the cumulative,
relative average for each condition. Thereby a change of the y-axis, e.g. by a factor of two,
would indicate that the relative test power of the respective test was twice as high as the
estimated test power of the uncorrected t-test after 1000 simulations.

None of the traditional methods was able to capture the respective difference between the
three averages as good as the aros test. Note, that the result for the aros test with known
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shape (arosks) needs to be taken with a grain of salt. Technically s was not derived from an
external source and must be considered "double dipping" in this scenario. Nevertheless, it
was included to demonstrate the potential increase in statistical power for that case.

Discussion We propose a paired samples, non-parametric statistical test procedure on the
basis of a permutation test, which aims to circumvent the MCP by combining the relation-
ship between multiple group averages into a single statistical value. Via an auto-regressive
procedure, paired sample data for multiple groups is related to the rank order shape of the
group averages. As such, the aros test acts as a test for interval scaled data, where the test
result needs to be interpreted on the basis of ordinal scaled ranks. It was demonstrated
that the FA rate is controlled sufficiently by a permutation procedure, where the estimated
permutation distribution D under H0 can be described by a normal distribution with pa-
rameters N (E[XD],

√
E[(D − E[XD])2]). A set of simulations has been conducted to verify

the procedure. First, the FA rate was estimated over 10000 simulations, which yielded an
estimated value of 0.0503. This value can be considered sufficiently close to the target value
of 0.05. In order to save computation time, each simulation was based on 10000 permutations
and k = 3 groups. Since it could be demonstrated that each f(Ai, s) yields an independent
random value, the authors do not assume the FA rate to change on the basis of the number
of groups, nor by increasing the number of permutations per simulation. Furthermore, sim-
ulations on the basis of multiple data distributions showed that the estimated permutation
distribution under H0 distributes normal, as predicted. It needs to be pointed out that no
particular reason for the choices of the data distributions can be brought forward. Instead -
to the authors experience - the most common distributions have been chosen. Again, since
each value in D stems from an average of independent random values, it is not expected
that different choices for the data distributions would affect the normality of the estimated
permutation distribution under H0. In a third simulation, the aros test was compared to
the probably most common statistical tests: the t-test and ANOVA. Since the purpose of
this paper was to demonstrate that conducting an aros test in some circumstances can be
beneficial where t-tests or ANOVAs fail, the data was deliberately constructed such that the
result would favor the aros test. However, no particular manipulation was applied to the
data. Instead the data was constructed based on normal distributed data (required by t-test
and ANOVA), where the difference in means was marginal compared to the noise that was
added. This particular case (low signal-to-noise ratio) is one example where the aros test
potentially outperforms classical tests. Nevertheless, the aros test has not been applied to a
real data set in the current publication, which needs to be addressed in the future. However,
one of the authors can confirm that the aros test has been applied successfully to a set of (yet
unpublished) neuro-scientific data. In a last simulation, the relative power between the aros
test and traditional tests has been assessed. For 1000 simulations, the true positive rate was
compared between the tests. Thereby, the true positive rate of uncorrected t-tests served as
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baseline and the result was computed relative to that average. Since the statistical power for
tests on the null hypothesis is generally hard to assess and is strongly dependent on the data,
the relative power to well established statistical tests might provide insight into how the aros
test performs under specific circumstances. On average, the aros test performed more than
three times as good as a uncorrected t-test, given the respective data. However, it needs
to be pointed out that positive results for the pairwise t-tests were only counted if all three
tests yielded a significant result. This procedure might be overly conservative in many cir-
cumstances. However, in this specific case, the distribution of the group averages was known
beforehand and the goal was to determine the specific order in which those averages could
be sorted. For such a statement to be made using t-tests, indeed three significant results
would be required. Since not a single test using the one-way ANOVA yielded a significant
result, the authors presume that it would not be suited for the respective data set. Relating
within and between subject variance might have failed due to the large overall variability in
the data that was much greater within than between the groups. Lastly, the aros test with
pre-defined, known shape performed almost six times better then the baseline method. Since
the present example would clearly be a case of "double dipping", this result should not be
overstated. However, in a real world scenario, if the a specific shape would be expected (e.g.
due to how the hypothesis was constructed or by previous research), this method potentially
increases statistical power significantly.

In general, the biggest advantage of the aros test is its capability of allowing for a qualita-
tive conclusion about the relationship between more than two group averages without prior
knowledge of the underlying data distributions. Thereby, the test is relatively robust against
noise. Depending on the choice for f , a significant result can be interpreted in multiple
ways. Irrespective of f however, rejecting H0 means that the paired observations [1, . . . , N ],
are not fully independent and that the shape s can be predicted by A with a probability
P (s) > 1/k!. This means that the labels of groups [1, . . . , k] are not exchangeable since
the distributions for D[1,...,k] are different. In other words, grouping the data into [1, . . . , k]
groups with labels [1, . . . , k] is in fact meaningful and can be justified by the data. The
respective choice for f enriches this finding with some additional information. If f was set
to e.g. f(x, y) = (x · y)(x · x), η indicates how many units of change in the data explain a
single unit of change in the shape vector s.

As mentioned before, the aros test is meant as an alternative for a variety of scenarios
where more than two groups need to be compared, but classical statistical tests fail, either
by violation of assumptions (e.g. violation of normality of the underlying data distributions)
or if the MCP reduces statistical power unsatisfactorily. We could further demonstrate that
the aros test potentially outperforms classical tests in low signal-to-noise ratio scenarios.
Another positive aspect is the additional information that can be obtained by the rank order
shape. An ANOVA, applied to multiple groups, can inform the user about whether there is

108



any difference across the tested groups, whereas the aros test additionally provides informa-
tion about the qualitative relationship between the group averages. However, the relatively
high statistical power to obtain an ordinal result from interval scaled data, circumventing
the MCP, comes at a cost.

First and foremost the aros test does not provide any information about the quantitative
difference between a set of means and can furthermore not be interpreted in such a way.
Thus, it is impossible to obtain any effect size for the differences in means and hence should
only be applied with this knowledge in mind. In some way the absolute difference between
group averages is sacrificed in favor of an increased power for relative differences between
the groups. Second, the result can only be interpreted in its entirety. This means no sub-
comparisons between the relationship of means can be made and only the entire rank order
profile as such can be interpreted. Note, that this is similar to the result of a cluster based
permutation test [352]. This leads directly to a third caveat, that is the number of groups
that can be meaningfully compared. While the interpretation of the rank order shape for
three groups in most cases might be straight forward, it might not be for a large number of
groups. In general, if a very large number of groups is compared and at least one dimension
of the data is correlated, it might be advisable to choose a cluster permutation test [352].
Since it is possible to compute the aros test for an arbitrary large number of groups, the
authors can only provide a rule of thumb, based on their experience in the fields of experi-
mental Psychology and Neuroscience. The authors believe that the number of groups k to
be compared, should be kept in a range where 3 ≤ k ≤ 7. Values for k higher than that
might be extremely difficult to interpret. Moreover, if H0 was rejected, the obtained shape
can only be interpreted if the group averages are indeed unique. This means that in order for
the aros test to be interpretable, it needs to be ensured beforehand that each group average
is numerically unique.

Lastly, the authors would like to point towards a variation of the aros test, which can
be considered similarly valid as the standard procedure. However, if not applied carefully,
this variation quickly leads to a circular analysis ("double dipping"). In some scenarios, the
expected shape that is explained by the data might already be known. This can be the case
if previous experiments allow for a justified prediction or in other cases the experimental
hypothesis pre-determines the expected shape already. However, it needs to be emphasized
that irrespective of the origin of the shape, it needs to be independent to not bias the
estimation of the permutation distribution under H0. If such an independent shape could
be derived from some external source other than the data, then this shape could be used
to obtain η and computing D. Hence, one could test whether a specific rank order can be
justified by the data with a probability higher than 1/k!. Additionally, this approach can
be combined with the classical procedure: If two independent data sets with k groups exist,
then the classical approach could be applied to one of the data sets and - in case H0 was
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rejected - the obtained shape can be tested against the second data set.

Conclusion As demonstrated, the auto-regressive rank order similarity (aros) test can be
considered an alternative test to circumvent the MCP for a small number of groups in a paired
sample statistical test setting. While the ability to determine the magnitude of differences
between group averages is lost, additional statistical power is gained to test the relationship
between the raw data and the rank order of the group averages. Since the aros test is
based on a permutation procedure to estimate the permutation distribution under H0, no
assumptions about the distribution of the data are required other than exchangeability under
H0. Furthermore, it has been demonstrated that the aros test controls the FA rate sufficiently.
Since the aros test relates the magnitude of the group averages, without comparing them
directly, it is exceptionally well suited for test scenarios, where the signal-to-noise ratio is
low and the rank order of the means is of higher interest than the actual effect size.
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Software developments for the EEG-fMRI experiment

In order to realize the EEG-fMRI experiment necessary to answer some of the research ques-
tions, many analyses strategies had to be custom designed, unified and brought into a format
that can easily be shared and checked. While major methodological developments regarding
the actual experiment are presented in the section which contains the paper in preparation
("Feature specific neuronal oscillations in cortical layers (in prep)"), this section focuses on
developments that arose from data analysis, but are not in detail part of the main publication.

The main issue for laminar resolution simultaneous EEG-fMRI experiments is the rela-
tively low SNR which imposes certain requirements on the experimental design and hence
the analysis [390]. Not only is a relatively high number of participants required (52 in the
present case), but furthermore analyses often involve manual intervention in order maximize
the signal quality. Particularly fMRI pre-processing steps (such as motion parameter esti-
mation /realignment and functional to anatomical volume co-registration) turned out to be
crucial processing steps with major influence on the final SNR [391]. A major break through
could be achieved by employing accurate brain masks in order to limit the parameter esti-
mation for motion parameter estimation to relevant areas [392]. However, this step required
the manual correction of three-dimensional volume masks to almost voxel precision. Since
the EEG-fMRI experiment was composed of a main task and extra blocks for pRF mapping,
at least two masks per subject (one for each experiment) were required to be manually cor-
rected. Thereby, existing tools, such as FreeSurfer’s "freeview" or "tksurfer" [325], turned
out to be quite cumbersome to use which slowed down the overall process. This lead to
the development of the "MRI volume masker 3000 TM" [329] which has been made publicly
available (see below).

An additional challenge arose as a direct consequence of the experimental setup (EEG
combined with high resolution fMRI) which pre-determined that the amount of data pro-
duced will be extensive. Furthermore, again in the spirit of open source and scientific trans-
parency, as large as possible parts of the entire analysis pipeline were aimed to be more or
less easy to replicate without too much in depth knowledge about the code. To solve both
issues (large data and complex but easy to use code), a custom crafted meta script and
configuration file system has been created that allows to pre-define crucial parameters for a
respective analysis (e.g. motion parameter estimation) in a configuration file and returns an
executable script where parameter settings are respected. Furthermore and if specified, each
executable script can automatically be transferred to and executed at a compute cluster.
Parameters with respect to wall time, memory, etc can as well be defined in the configura-
tion file(s). In the current version the implementation relies on the compute infrastructure
of the Donders Institute (DCCN), Nijmegen. Adjusting the system to a new environment
with a different cluster job management however could easily be implemented by changing
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the respective line in the main "wrapper" script. This system allows to run multiple anal-
yses easily (by defining parameters and using the respective wrapper function), in parallel
(shortening computation when dealing with huge data sets) and allows for sharing of exact
processing scripts and functions that could be run independently. Both, the wrapper and
analysis scripts have been made publicly available (see below).

Lastly, previous literature on simultaneous EEG-fMRI [238, 393] did not provide any
methodological suggestion on how to statistically assess relative layer activation. Instead,
a significant difference between α and γ activation profiles demonstrated feasibility but did
show no way to map out where (in which layer) respective activation profiles differ and
how. Traditional approaches (e.g. multiple t-tests with correction for multiple comparison)
yield comparably low statistical power (compared to a e.g. a single t-test) and certain
criteria (e.g. normality of the distribution) must be met. For those reason a custom made
permutation test has been developed [353]. Instead of comparing a number of group means
(or distributions), it is tested whether the rank order of the group means of the data can
be explained better by the data than randomly shuffled data would explain its rank order
obtained from its group means. If e.g. three groups a, b, c with means µa, µb, µc distribute
such that µb > µa > µc, a significant result would indicated that a, b, c can be meaningfully
assigned to ranks [2, 3, 1]. If the null hypothesis cannot be rejected, no evidence for a given
rank order has been found that could be explained by something other than a random order.
The exact difference between group averages or effect sizes are unknown. Nonetheless, such
test provides a useful tool for the respective layer analysis. A detailed description can be
found in the section "Auto-regressive rank order similarity (aros) test (pre-print)". The
code base, as well as all respective simulations used to verify the test are publicly accessible
(https://gitlab.com/TommyClausner/aros-test) as well as an open access version of the
publication (https://www.biorxiv.org/content/10.1101/2022.06.15.496113v1).
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Figure 24: Example screenshot of MRI Volume
Masker 3000 TM. It can be downloaded from
https://github.com/TommyClausner/MRI-Volume-
Masker-3000-TM including instructions for installa-
tion and usage.

MRI Volume Masker 3000 TM has
been developed to facilitate manual mask
drawing on fMRI data [329]. It can be down-
loaded from:

https://github.com/TommyClausner/MRI-
Volume-Masker-3000-TM

The interface and back-end has been devel-
oped in Python 13 and must be executed in a
corresponding environment. Required pack-
ages are installed automatically if the soft-
ware is installed according to the specifica-
tions in the "readme". In a first step of the
processing pipeline, the user indicates which
file (.nii or .nii.gz) containing one or multi-
ple fMRI volumes to load. A first brain mask is computed automatically using dipy [394] 14.
The main window depicts a large centered view of the middle horizontal slice (given RAS
orientation 15) flanked by a small sagittal and coronal view, where the respective position
of the current central slice is indicated via a small line. Positive and negative parts of the
pre-computed mask are overlayed with a semi-transparent layer in green or red respectively.
The mask can be changed up to voxel precision with a closed loop selection. Using arrow
keys it is possible to navigate quickly through the slices. Further, shortcuts allow for contrast
changes to facilitate mask drawing in ambiguous contrast conditions, rotate between view
perspectives and load and export masks. Since this tool was build solely for the purpose
of fMRI mask drawing, it provides functionality to exactly and only do this, which in turn
made mask drawing much easier than with commonly used alternatives from established
software packages. Even though I am sure many researchers found their own solution to deal
time-efficiently with cumbersome manual mask drawing, I believe that sharing solutions to
even small problems helps the field as a whole to become more efficient.

13https://www.python.org/
14https://dipy.org/
15Typically fMRI data is four-dimensional (three spatial and one time dimension). RAS refers to the three

spatial dimensions and how they related to real world topological landmarks. The three letters are meaningful
in their arrangement, since they reflect the real world meaning of the respective axes XYZ. Furthermore, each
letter corresponds to one of two choices which resolves which respective axis direction relative to a topological
landmark is positive. Possible values are R: Right or L: Left;A: Anterior or P: Posterior;S: Superior or
I: Inferior. Hence, RAS means that if the center of the coordinate system is place in the middle of the head,
positive x-axis values are towards the subject’s right, positive y-axis values towards the front and positive
z-axis values towards the top of the head.
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Figure 25: In order to speed up computation time,
increase transparency with respect to analysis param-
eter settings, ease shareability and reconstruction of
results, a custom made analysis management system
has been implemented. For each analysis script (in the
present case either bash or Matlab [348]) the script it-
self and a satellite configuration file (config), form the
building blocks for the script generator from which a
script is generated based on the provided template and
parameters. This script is then executable on a local
machine or compute cluster (provided a Linux envi-
ronment). Once a respective computation is finished,
each script deletes itself.

cluster script runner In the spirit of
open science, sharing respective analysis
scripts helps to verify published results, but
furthermore offers the opportunity for re-
searchers aiming to employ similar strate-
gies to quickly implement novel method-
ological advancements. Thereby, the the-
oretical foundation as rolled out in a re-
spective publication can be traced along the
computational implementation. Lastly, en-
couraging the scientific community to self-
evidently publish analysis scripts might in-
spire future projects but also incentivize
to adhere to good code practice standards
which improves overall "shareability". Of
course, improved overall code quality and
sharing rates should be compensated by
visibility. Systems like "Zenodo" 16 al-
low to link software, data or other digital
items to a digital object identifier (DOI),
enabling or at least simplifying citability
(see e.g. DOIDOI 10.5281/zenodo.721175810.5281/zenodo.7211758 ). In-
creased visibility (via citability) might increase overall compliance to a culture, where
progress is not only shared in the domain of publications but furthermore accompanying
efforts, such as analysis scripts or software tools are made publicly available too. However,
sharing data and analysis scripts on a large scale, requires that certain standards are es-
tablished. The Brain Imaging Data Structure (BIDS) standard [395] for instance has been
proposed as a standard for organizing fMRI experiments and was later extended to included
electro-physiological methods, such as EEG or MEG [396, 397]. Here, data collection for the
EEG-fMRI experiment had started prior to the publication of BIDS extensions to EEG. It
has finally been decided to craft a custom data organization scheme.

The scheme is fundamentally structured such that data and scripts are separated. Fur-
ther, the data is structurally separated between raw and processed data, individually for
each subject. Raw data includes the raw data, transformed into an easy to read file format
(e.g. .nii). For each major step of the analysis, processed data is further structured into
sub-directories. Within the scripts directory, multiple sub-directories include script tem-
plates, toolboxes, configuration files or analysis files that are shared across participants (e.g.

16https://zenodo.org/
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stimulus regressor for pRF mapping). Analyses are run, by calling a management script,
including the target subject and target analysis, which composes a runnable script from a
given template and corresponding configuration files. Afterwards, the script is submitted to
the compute cluster, stored on drive or run locally. Analysis scripts are written in bash or
matlab. This structure has been chosen, due to the large amounts of raw data that have
been produced by the combine laminar resolution simultaneous EEG-fMRI experiment (see
"Feature specific neuronal oscillations in cortical layers (in prep)"). In order to save com-
putation time, individual subject processing steps (such as motion parameter estimation,
co-registration, layer estimation, virtual channel estimation, etc.) can be run in parallel on
the compute cluster (separate for e.g. each subject or ROI, etc). Furthermore, this system
allows for a centralized control over the entire processing pipeline, which increases share-
ability. Even a novice to the code base necessary to replicate the presented result, could
redo certain steps given certain parameters. In addition to that, systems like "Zenodo",
require the underlying Github 17 or Gitlab 18 repository to be time stamped via a release.
Thereby, the state of all files is fixed which enables locking the analysis pipeline to the state
of publication. Hence, the state of each configuration file that comes with the shared code
could be time stamped to submission or publication events.

In order to compute most of intermediate or final results, the user only has to specify
respective compute scripts and participants. By default the management script composes
the final runable script and sends it to the compute cluster (at the moment based on the
cluster architecture of the DCCN, Radboud University, Nijmegen 19). Parameter adjust-
ments for each respective scripts can be done in a simple text editor. In most cases, the
users interaction with the code base boils down to something like this:

for sub j e c t in ‘ seq 1 52 ‘ ; do
sh c on s t r u c tS c r i p t . sh <s c r i p t . [ sh |m]> S$subjec t &

done

Here, a respective script (e.g. sh constructScript.sh eegPreprocessing.m S42) is
constructed for every subject (1 to 52) and sent for execution to the compute cluster. After
the computation has been finished, the temporarily composed script deletes itself. Addi-
tional tools for live monitoring of jobs and cleaning up log files automatically, are provided
as well. The analysis management tool can be downloaded from:

https://github.com/TommyClausner/laminarfMRIv2

17https://github.com/
18https://about.gitlab.com/
19https://www.ru.nl/donders/
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However, as of today (January 15, 2023) the repository is still set to private mode. Conform-
ing to the publication policies of collaborators, the repository will be set to public once the
paper has been submitted (see current state at section "Feature specific neuronal oscillations
in cortical layers (in prep)").

116



2.3 MEG experiments

As explained in the section "COVID 19 remark", MEG data collection has been affected
largely by the global SARS-CoV-2 pandemic. In this section I will hence describe the
progress of the current project(s) in a publication-like manner. However, since results are
largely missing, theoretical and methodological considerations will be the center of the dis-
cussion. Some of the respective data, however, have been shared with collaborators and in
return, preliminary results or results of particular aspects of those experiments that were
of their particular interest have been kindly shared. It has been clearly indicated what the
respective contributions have been and by whom they were performed.

Expected publication output

Ferez M., Clausner T., Lukacs J., Gbadoe M., Daligault S., Schwartz D., & Bonnefond M.
Evidence of functional inhibition of high visual regions by α oscillations (in prep)

In addition to that, one first author publication is planned on laminar MEG with respect to
attention modulation and predictability (Experiment 1, see page 123); one first author pub-
lication on laminar MEG with respect to higher / lower order visual region communication
(Experiment 2, see page 130); and one second author publication - led by Maryam Mostafalu
[1] (see below) - on MEG stimulus decoding with respect to attention and predictability.

Introduction

Some of the above research questions (see "Research question") could be addressed best using
magnetoencephalography (MEG). Two MEG experiments have been conducted, specifically
targeting hypotheses about the interaction of cortical oscillations on a laminar level. One of
the first models relating spatially distributed α band oscillations to task-related, functionally
relevant changes of cortical activity has been the gating by inhibition (GBI) hypothesis [224].
It has been thought that inhibitory α band activity reflects a gating mechanism that modu-
lates the transfer of information by α amplitude and phase driven excitability changes in a
cortical region. More precisely, specific changes of cortical excitability (reflected by α ERD
and ERS) have been thought to enhance the processing of relevant and suppress the process-
ing of irrelevant information [48, 168–170]. A possible hypothesis to explain those findings
that translates to memory encoding performance too (lower α, better encoding), is that in-
coming signals are de-correlated in order to enhance information content [167]. In terms of
Shannon entropy [145], the de-correlation linked to α ERD directly reflects increased infor-
mation transferability. Hence, feedback directed changes in α band connectivity and power
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might be explained by a mechanism lowering the threshold for signal transmission between
regions. This would allow for feed-forward directed nested information flow in the γ band
[91] (see "Communication via nested oscillations") due to a synchronization of excitability in
source (lower order) and target (higher order) regions. Note, that recent findings challenge
the view that α directly inhibits or enhances neuronal signalling [176] and instead imply a
more information sampling related role [179, 180]. The idea would be that beside coherently
activating communicating regions, the α (or θ) band phase gradient is used to sort infor-
mation with respect to signal strength (strong signals are processed earlier in the inhibition
cycle). Indeed, it could e.g. be shown that the respective α phase changes predict whether a
respective target stimulus is missed [207, 210] which indirectly relates perceptual processing
to rhythmic inhibition (high inhibition phase, target was missed). A similar mechanism has
been proposed for the θ rhythm, where stimuli are "sorted" by saliency along the θ phase
[180, 206] (see "Coding via nested oscillations"). Here, the role of α is expected to be similar,
however, on the level of stimulus features (on a lower level e.g. edges or corners and on a
higher level e.g. eyes or nose) rather than objects (on a lower level e.g. squares and on a
higher level e.g. faces) [210]. Furthermore, α is possibly nested into θ [211].

Results from the EEG-fMRI experiment (see "Feature specific neuronal oscillations in
cortical layers (in prep)") furthermore suggest multiple α band processes that fulfil distinct
roles, such as attention or general activity modulation and feature selective activity changes.
Thereby, a superficial layer α band process - possibly directed attention related [56] - could
be successfully distinguished from a deep layer α process that not only exposed feature
selectivity, but furthermore frequency specificity in the α band. The identification of two
separate α processes has been predicted by recent theoretical frameworks [91]. Feedback
related processing in deep layers has been reported from humans and animals [34, 52, 270,
272] and was (indirectly) found by the above mentioned EEG-fMRI experiment. Until now
it has however not been shown - to the best of the author’s knowledge - that feedback
related connectivity changes are indeed linked to feature specific processes across different
cortical layers in healthy human participants. To address this issue, laminar level anatomical
resolution (to be able to identify cortical layers) and a high data signal sampling rate (order
of ms) are required. Simultaneous EEG-fMRI could test for this indirectly, by relating
the BOLD connectivity changes to respective spectral power changes [265]. However, a more
direct estimation of frequency related changes could only be provided by laminar level MEG,
for which feasibility has been demonstrated for sensori-motor related β burst mapping and
the mapping of cortical oscillations in the visual cortex to a two layer model [220, 268].
Current developments in our lab bring even a 3 layer cortex layer into tangible proximity, by
allowing the recording in supine (laying down) position (see "Methods"). However, the here
presented MEG data has been collected before respective changes have been implemented
(lab internal benchmarks using the obtained MEG data, computed by James Bonaiuto,
indeed confirm the required spatial resolution). To investigate multiple aspects of oscillatory
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activity with respect to the cortical architecture, inter-area communication, spatial and
feature attention, as well as processing specificity, two laminar level MEG experiments, as
well as multiple short fMRI experiments related to pRF mapping (determination of visual
ROIs) and stimulus type localization (activation compared to baseline for a given stimulus
type), have been conducted. MEG Experiment 1 has been specifically set up to test inter-
area stimulus dependent frequency changes in early visual cortices across two cortical layers
using simple grating stimuli. Experiment 2 in turn uses more complex (almost naturalistic)
stimuli to trigger face or word processing areas (FFA and VWFA) and trace respective
feature dependent feedback related α power changes and bottom up γ activity along the
visual hierarchy.

Overview Experiment 1: spatial attention and predictability To investigate the
link between α and attention, a lateral attention task was used. Two stimuli were presented
on the screen, one of which should be attended, while the other one should be ignored. This
procedure is known to elicit lateralized hemisphere specific α band modulation, where α
power is lower in visual areas contra-lateral to the side of attention and higher ipsi-lateral
[173] (Hypothesis 1), which has been further shown to be driven by frontal areas [251] (Hy-
pothesis 2). Thereby, different levels of distractor inhibition are implemented by modifying
a) the chance that the respective attention cue is valid (100% and 90%, named V100 or V90
respectively) - cue validity was shown to reduce attention α lateralization with decreased
predictive value of the cue [398]; and b) the side of the cue indicating the switch of the
side of attention - if the switch indicator lies on the unattended stimulus, the α lateraliza-
tion should be reduced due to the reduced distracting "value" of the unattended stimulus
(displays potential important information) [399]. If α is indeed related to attention specific
feature sampling [91, 207, 210], then the lateralization of α should decrease the more likely
task relevant information can be obtained from the actually unattended side. From the
perspective of predictive coding, spatial predictions (attended target location) that are vio-
lated (in case of an invalid cue condition) would be expected to trigger respective responses in
the γ band (prediction error), which are larger compared to the valid cue condition [219, 304].

Invalid stimulus conditions have hence been varied with respect to the cue location that
indicates the switch. The cue to initiate the switch could either be presented on the former
target and the distractor or on the distractor side only. Combined with the always valid
V100 condition, this means that the distractor is a) meaningless to the task (V100), b) only
useful to determine distractor orientation in case of a switch (V90b, for details see "Exper-
iment 1: spatial attention and predictability" on page 123 for details on the nomenclature)
or c) carries information about both: the switch and the potential new target orientation
(V90s).
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Stimulus and feature dependent α activity for different features (orientations) has been
observed and related to deep cortical layer activity in primary visual areas of monkeys [52]
(but see also "Feature specific neuronal oscillations in cortical layers (in prep)" on page 58).
Using the here presented experiment, it is furthermore possible to test whether those findings
can be replicated for (e.g. for the comparison between the left and right easy conditions) and
whether indeed α feedback activity recruits stimulus feature dependent neuronal populations
(Hypothesis 4). In humans, findings from laminar level fMRI indicate feedback feature re-
lated activity in deep layers as well [34]. However, as compared to laminar fMRI, laminar
level MEG [220, 268] enables the investigation of feedback directed (attention related) ac-
tivity with respect to frequency power changes. Again, feature specific neuronal populations
are expected to be related to α power decreases in deep cortical layers (Hypothesis 6).

Stimuli were composed from simple gratings, known to elicit sufficient α and γ power
changes in primary visual regions for this type of stimuli [189]. Due to the parallel lines
each grating has a perceived orientation. The task was set up such that participants had to
respond to the direction of the grating orientation (left or right) relative to the 45° implicit
reference diagonal. For each subject it has been determined beforehand - in a staircase pro-
cedure - which deviations from the reference have been perceived as easy or difficult. From
this, four possible stimulus combinations arise (orientation by difficulty).

On top of the variation of attention, stimulus predictability has been varied as well. The
canonical microcircuits model [82] (see "Canonical microcircuits: cortical compute mod-
ules") links feature specific feedback directed predictions to deep connections and respective
activity to the β bursts conveyed by α [219] (Hypothesis 5). In turn, according to the model,
respective prediction errors would be transferred between regions via superficial layers and
reflected in the γ band [82] (Hypothesis 7, Hypothesis 8 and Hypothesis 9), specifically
transferred via α coherence [91] (Hypothesis 10). Here, predictability has been implemented
by means of a Markov chain 20. Predictability was implemented as the fraction of trials
for the four types that are preceded by a specific stimulus type. Each of the four stimulus
types predicts the next stimulus type with 80%, 10% or 2 × 5% chance different for each
type. Hence, with a probability of 80% the subject could predict the upcoming stimulus.
Violations of those predictions - prediction errors - can be investigated with respect to γ in
superficial layers, including inter-area coherence. It is expected that superficial feed-forward
directed γ band activity is nested phase-dependent in α.

For a more detailed description of the applied methodology see "Methods" on page 122,
20A Markov chain or Markov process is a series of events that are statistically linked to each other. Thereby,

the current state predicts the next state with a certain probability, creating a sequence of probabilistic events
that each are determined by the previous element.
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especially "Experiment 1: spatial attention and predictability" on page 123 for experiment
specific details.

Overview Experiment 2: feature attention and conflicting information In ad-
dition to investigating low and high frequency oscillations with respect to spatial feature
attention and predictability, stimulus or even object specific oscillatory changes, includ-
ing more long range connectivity changes (Hypothesis 2), are investigated in this experi-
ment. Since higher order neuronal activity often encompasses entire networks [276], but
here specific inter-area communication is targeted, functionally and anatomically separable
(preferably with limited spatial extension) higher order regions need to be investigated. The
fusiform face area (FFA) is known to respond relatively specifically to the presentation of
faces [245, 281], whereas the visual word form area (VWFA) exposes increased activity for
the shape of actual words relatively reliably, irrespective of e.g. casing [400] and is known
to play a role in attention to those word shapes [401]. Both regions reflect anatomically
different and functionally separable processes that can be exploited for investigating object
or feature specific targeted α and θ conveyed long range connectivity and its relationship to
forward encoded stimulus information, reflected by γ (Hypothesis 7 and Hypothesis 10) in
more superficial and middle layers (Hypothesis 9). Hemifield specific decreases or increases
in the α band, power contra- or ipsi-lateral to the attended stimulus [251], are hypothesized
to extrapolate to feature attention processes as well (Hypothesis 3). This means that for
rivalling features or information, respective target feature specific higher order areas experi-
ence a decrease in α power, whereas the rivalling other higher order region would experience
an increase (Hypothesis 4). Both requirements (easy to identify, separate target areas and
a functional rivalry between them) have been implemented in form of a Stroop task [278].
Higher order visual areas have been targeted by composing the stimuli from faces with a
semi-transparent overlaid character string. Faces have been synthetically generated by aver-
aging multiple publicly accessible images of public figures. Thereby, the assigned gender of
the faces has bee biased towards stereotypically perceived as more female or stereotypically
perceived as more male. The four letter character strings that have been overlaid on top of
the faces have been selected from publicly accessible name data bases for each of the two
groups. Face and name could hence be either congruent or in-congruent. The elegance of
those stimuli lies in the fact that low level primary visual regions (e.g. V1-4) are targeted
similarly - to a large extent - by the compound stimulus, however higher order regions (FFA
and VWFA) are targeted differently depending on the attended aspect of the compound
image. Especially in the in-congruent condition a specific inhibition of the distracting in-
formation is expected (Hypothesis 1), related to MEG activity in the α [177] and β bands
[254, 402], especially in deep [52], superficial (see "Feature specific neuronal oscillations in
cortical layers (in prep)") or both layers [91, 272] (Hypothesis 6).

For a more detailed description of the applied methodology see "Methods" (below), es-
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pecially "Experiment 2: feature attention and conflicting information" on page 130 for ex-
periment specific details.

Methods

All MEG experiments are embedded in a series of experiments, including fMRI, EEG and
MEG. Data has been recorded from five sessions for each subject where multiple researchers
have been involved and recording time within one session has been shared, as well as e.g.
anatomical data that was not experiment specific (see Figure 26 bottom). Both MEG ex-
periments that are discussed here have been collected during recording sessions two to five
(see details below). Since respective recording modalities are shared and only the stimulus
and task varied, general aspects of the used methodology are presented for both experiments
and only the different task modalities are described separately.

Subjects It has been attempted to record data from 40 participants that completed all
experiment recording sessions. Due to five drop out participants 21, the initial set of par-
ticipants has been extended to 45. From those 45 recorded participants, 40 completed all
recording sessions (24 ♀) at an average (±σ) age of 26.4(3.19) years. Right-handedness was
assured by the Edinburgh Handedness Inventory [403] and participants had either normal or
corrected to normal vision. Both experiments have been approved by the local ethics com-
mittee. Formal consent was collected and participants underwent a medical screening prior
to the experiment, where general medical condition and MEG compatibility was assessed.
Furthermore, participants were asked to fill a set of questionnaires, asking general life style
related questions, such as the overall sleep quantity and quality, as well as alcohol and / or
other drug consumption prior to the date of recording.

Data Acquisition MRI and fMRI data has been recorded using a Siemens Sonata 3T.
Using a T1 and a T2 weighted MP RAGE sequence [310] with a resolution of 1 mm isometric
voxel size (256 × 256 × 256 voxel), anatomical images have been acquired. Those images
have been furthermore used to create individual head-casts that have been manufactured
for each subject in order to reduce between session co-registration errors and within session
movement. In particular, the scalp surface was extracted from MR images for each sub-
ject and used as a template for the inner shape of the head-cast. The outer shape resulted
from the MEG dewar’s inner shape [266, 268]. Each individual head-cast has been built
by Denis Schwartz and Sébastien Daligault from the cermep imaging center 22. In a first
step, the 3D surface meshes obtained from individual MR images have been pre-processed

21The recording was massively impacted and delayed by the COVID 19 pandemic which made it impossible
for some participants to adhere to the initially agreed time schedule that has been rolled out beforehand.

22https://www.cermep.fr/
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in Rhinoceros 3D 23 in order to make them "water tight" for 3D printing and exported to
.stl. Afterwards, individual head-shapes have been 3D printed using a "Raise 3D N2 plus"
printer 24. Hereafter, replica heads have been placed inside a negative replica of the MEG’s
dewar. The space between both surfaces has been filled with polyurethane foam 25. After
hardening (and minor individual adjustments for the subject’s comfort), the head-cast pre-
cisely fills the space between the subject’s head and the MEG dewar. This greatly increases
inter-session repeatability of subject positioning, as well as it reduces motion of the subject
during the experiment below the 1 mm mark [266, 268]. In addition to anatomical scans,
fMRI data of a more or less standard pRF mapping experiment has been recorded [72] that
will not be rolled out here in detail. Most importantly, this experiment was conducted to
obtain primary visual areas for each subject (V1-4) as well as - in a separate task - localize
certain task specific areas, such as FFA.

MEG data has been recorded during each session with the same individual head-cast for
each subject using a CTF Omega 275 channel system 26 in a magnetically shielded room at a
sampling rate of 1.2 kHz. Three fiducial marker coils have been embedded into the surface of
the head-casts at nasion, left and right ear canals, in order to measure the subject’s relative
head motion. In addition to that, eye tracking data has been recorded using an EyeLink
1000+ 27 at a sampling rate of 1 kHz. Stimuli have been projected to a screen of ≈ 50 cm
distance to the subject’s eyes. A two button button-box was used for the participants to
indicate their responses with their right hand’s index and middle finger.

Experiment 1: spatial attention and predictability Data recordings for each subject
in this experiment has been distributed over four MEG recording sessions. This was done
due to the excessive amount of trials that have been collected across the entire experiment.
Since the respective task consumes a lot of attentional resources, too long recording sessions
would have possibly hampered the subject’s performance. Additionally, ethical concerns
regarding a multi-hour recording session could be brought forward as well. Due to the
amount of development that went into the individual head-cast construction [220, 268] for
each subject, inter-session positioning errors have been below or around 1 mm.

Stimuli were composed from gratings ( ) with 12 cycles across and 3.5° visual angle
in diameter (higher spatial frequency than what is shown here), similar to what has been

23https://www.rhino3d.com/
24https://www.raise3d.com/
25Flex Foam-iT!III - https://www.smooth-on.com
26https://www.ctf.com/
27https://www.sr-research.com/eyelink-1000-plus/
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Figure 26: Stimuli, attention conditions, probability conditions and overall recording schedule.
Top left: example stimulus. Deviation from the diagonal to the left or right has been varied for two levels of
difficulty. Right: Variation of cue validity (see page 126). Middle left: Variation of stimulus predictability
(either not predictable: P25 or predictable with 80% probability: P80). See Figure 27 and page 126.
Bottom: Overall recording schedule. Each subject was recorded in 5 sessions. In each session, experiments,
experimental conditions and recording methodology varied.
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used in the EEG-fMRI experiment (see "Feature specific neuronal oscillations in cortical
layers (in prep)"). A central fixation target ( ), designed to maximize fixation perfor-
mance [316] was placed at the central screen location. The task of the participants was to
determine the orientation of the parallel grating lines with respect to the imaginary diagonal.
The reference diagonal could either be left (\) or right (/) with a ±45° angle relative to the
vertical axis. For each subject the reference diagonal would always remain the same over
all experimental sessions, but was counterbalanced across participants. Deviations from the
diagonal could be achieved by clock or counterclockwise rotation of the grating stimulus.
A stimulus rotation of an angle greater than the diagonal would be called a left stimulus
(for left diagonal: stimulus rotated closer to horizontal axis; for right diagonal: stimulus
rotated closer to vertical axis), whereas a stimulus rotation of an angle less than the diago-
nal would be called right (for left diagonal: stimulus rotated closer to vertical axis). With
their right hand index and middle finger participants indicated for each trial whether the
stimulus orientation deviates to the left or right with respect to the assigned diagonal (in-
dex finger: left). The diagonal itself is not be visible. See Figure 26 top left for an illustration.

Task and stimulus composition varied depending on the respective (sub-) experiment.
The first MEG experiment has originally been designed by a post doctoral researcher has
left the lab unexpectedly before the recordings fully started. Since respective recording ses-
sions had already been scheduled, the task was slightly modified to serve as a staircase 28

experiment for this Experiment 1. During the staircase procedure the deviation from the
respective diagonal has been varied between ±1° and ±44° relative to the diagonal. Difficulty
was assessed by the distance of a stimulus rotation to the diagonal. Furthermore, since the
original experiment was planned as a spatial attention task, a stimulus could either be far
away from the center of the screen or close to it with a different visual angle of xyclose = 3° or
xyfar = 4.4142°. Stimuli have been shifted towards the bottom right of the screen with the re-
spective distances above. For the staircase procedure, stimulus presentation was uni-lateral,
however central fixation was instructed and assured by eye tracking. For both, close and
far stimuli, the deviation from the central diagonal that yielded 80% correct responses has
been chosen as a reference for later experiments. Thereby, the difference to the diagonal at

28The staircase procedure is a method to map certain psychometric values. Thereby, features of a stimulus
(e.g. loudness) are modified systematically, such that sensory thresholds can be determined. For example,
participants could be presented with a variety of tones of different frequencies and amplitude, to map the
range of hearing for each frequency band. Instead of collecting many examples for every frequency, the
difficulty could be adjusted based on previous responses. For the auditory example, one could present a
specific tone at a specific frequency and vary amplitude or frequency, such that the tone is perceived less
loud. Once the tone is not heard anymore (e.g. no response), subjective loudness is increased again, until
a threshold is found, where a certain percentage of correct responses is reported on average. This adaptive
procedure greatly facilitates the parameter estimation for certain stimulus parameters, such as difficulty.
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80% correctness for close stimuli is typically smaller, because the stimulus is closer to central
fixation and hence the deviation can be spotted more easily. Therefore, angles derived from
the far condition (that are typically greater) have been used as easy and respective close
condition trials (typically smaller angle) were used as reference for the difficult condition in
the later experiment. For each subject, individual easy and difficult stimulus orientations
have been obtained that way. Since the staircase procedure needed to be performed prior to
the main experiment, all staircase recordings have been conducted during recording session 2
(see Figure 26).
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difficult

easy

difficult

10%

5%

80%

Figure 27: Stimulus predictability Each leading
stimulus predicts a trailing stimulus (the next stim-
ulus) with a certain probability. Thereby, one stimu-
lus is predicted with 80%, one with 10% and two with
5% probability. The two highest probability stimuli
are thereby chosen, such that that the respective but-
ton press can be predicted with 90% probability. For
each subject such a table has been computed. In or-
der to counterbalance respective stimuli, leading stim-
uli for respective trailing stimuli have been rotated
(in the figure this would correspond to switching the
words at the symbols). Hence, four possible combi-
nations arise (one of which is the presented example)
that are assigned counterbalanced to respective par-
ticipants (10 × 4 sets of participants). See Figure 26
for an overview of how this is embedded into the grand
experimental scheme.

Main experiment Two grating stimuli
have been presented lateral (left and right)
on the screen, shifted towards the bottom
(xy ± 3° visual angle from the center). Sub-
jects are asked to report the relative orien-
tation of the grating on the attended side
(left or right) and ignore the respective other
stimulus (indicated before each trial). Dur-
ing each experimental block, the respec-
tive target attention side would remain, but
would change counterbalanced (50 : 50) be-
tween blocks. The cue could either be valid
or invalid. Depending on the condition, the
target stimulus is displayed on the respec-
tive other side of the screen with a chance of
either 0% or 10% (odd ball). The condition
where the cue is valid in 100% of all trials is
called "V100" (100% valid) or "V90", when
the probability that the cue is valid is only
90%. A respective change of target side is
indicated on the stimuli themselves. For the
main experiments, each stimulus was modi-
fied to contain a small black square either on
the top or bottom of the stimulus. On the
attended side the black square would usually
be at the bottom ( ), whereas on the distractor the black square would be at the top

( ). In reality, black squares were smaller relative to the stimulus than depicted here. A
change of attention side is indicated by the black square of the distractor stimulus moving to
the bottom. However, this can happen in two ways: in the s or switch condition, the black
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square is moving to the bottom at the distractor side (making it the new target), which is
accompanied by a switch of the black square on the formerly attended side from bottom to
top. In a second condition, only the black square on the distractor side moves to the bottom
(making it the new target) and the black square on the formerly attended side remains at
the bottom. This condition is called b for "bottom". Note, that in the first condition there
is a cue on the originally attended target, which indicates the switch, whereas in the second
case this indication is not present on the target side, requiring the subject to "monitor"
the unattended side as well. Hence, the experiment was conducted in three variations of
cue validity: 100% validity (V100) and 90% validity, where either the switch of attention
is indicated by a switch of the black boxes (V90s) or by the black boxes of both stimuli
moving to (or staying at) the bottom (V90b).

Each of those three experimental conditions contained 1600 + 320 trials. The separation
comes from an additional variation that has been added: stimulus predictability. Since
stimuli were composed based on whether they are left or right oriented and easy or difficult
(difference to the reference diagonal is large or small), they can be sorted into four groups:
left and easy (Le), right and easy (Re), left and difficult (Ld) and right and difficult (Rd).
Predictability has been introduced by adding a certain probability at which a certain stimulus
from the four groups is preceded by another stimulus of those four groups. This could e.g.
be an 80% chance that stimulus Le is followed by Rd. As a control, a set of 320 trials
(80 trials per block) for each of the three attention conditions has been collected, where the
predictability for each given stimulus was 25% (chance level; no predictability). Additionally,
1600 trials for each of the three attention conditions have been collected with varying stimulus
predictability. Thereby, stimuli are generated by a Markov chain, such that each preceding
stimulus predicts the next stimulus with a certain probability. Subjects have not been
informed about the stimulus predictability. Each stimulus could predict another stimulus
with either 80%, 10% or 2 × 5% certainty. Thereby, the stimuli that are predicted with
80% certainty and 10% certainty form a unit, such that the respective response button for
both is the same (different difficulty). This means that a certain response can be predicted
from any given stimulus with 90% probability. The remaining 10% are distributed evenly
for the remaining two stimuli. This means that a certain stimulus predicts a certain other
stimulus with 80% chance, which already determines the 10% stimulus (same orientation
but different difficulty) and the remaining two (each 5%). To counterbalance across "leading
stimuli" that predict their respective "trailing" stimulus, probabilities for each stimulus to
predict another stimulus with 80% have been rotated. For example, the following leading-
trailing stimulus pairs could predict one another with 80% probability: Le → Le, Ld →
Re, Re → Rd and Rd → Ld. From there, 10% probability stimuli can be derived: Le →
Ld, Ld → Rd, Re → Re and Rd → Le, which further determines the 5% stimuli. Further
counterbalancing is applied by not only varying the trailing but furthermore the leading
stimulus. For each stimulus (e.g. Le) the respective 80% trailing stimulus could be Le, Ld,
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Re and Rd. This leads to four sets of four predicting stimuli. One of those sets is used
for one subject throughout the entire experiment and all four sets are balanced across all
40 participants. See Figure 27 and Figure 26 for a graphical representation. Predictability
conditions are called either "P25" (320 trials for each attention condition) if the stimulus was
predictable with a chance of 25% (chance level) or "P80" for 80% predictability (1600 trials
for each attention condition). All experimental P25 blocks have been recorded either during
session 2 (P25V100), session 3 (P25V90s and P25V90b), session 4 (P80V100 and P80V90s
or P80V90b) or session 5 (P80V90b or P80V90s). If P80V90b was recorded during recording
session 4, then P80V90s was recorded during session 5 and vice versa. Whether P80V90s or
P80V90b was recorded during session 4 for was counterbalanced across participants.

Experimental blocks and trial lengths have been designed with maximum trial count
per amount of time in mind. However, given certain requirements imposed by the MEG
recording software only ≈ 10 min segments of data could be recorded. To keep trial counts
stable across blocks, P25 trials have been divided into chunks of 80 trials per block, whereas
100 P80 trials formed a block in that condition. Before the start of a new block, a 5 s
baseline recording period with only central fixation has been recorded, where the subject
was asked to avoid blinking. After that, the subject would receive instruction about the
attention condition (attend left or right) and whether the attention cue is always (V100)
or mostly (V90) valid. Each trial of the experimental block that followed hereafter was
composed as the following set of events: A baseline period of 1.2 s (up to ±0.2 s) jitter
preludes the stimulus presentation (fixation indicator only). Thereafter, the stimulus is
presented (two lateral gratings and central fixation) and the subject is asked to indicate the
respective deviation of orientation of the target stimulus as fast (but reliable) as possible.
With the button press the trial ends and the 1.2 s baseline period preceding the next trial
begins. Subjects have been instructed to blink at the same time of the response (button
press). Once the block has ended, the subject receives feedback in form of a percentage of
correct answers during that block and additional verbal feedback, such as "Perfect!", "Very
good", "Good" or "You can do better", depending on the overall performance. Within
each recording session, experimental blocks have been shuffled with some minor exceptions.
During recording session 4, where two P80 conditions (2 × 1600 trials) are recorded one
block lasts for 100 trials. In order to facilitate implicit learning of predictability, the first
two blocks of this session have always been V100 blocks. During those blocks, the subject
does not need to focus on whether the side of attention might switch and it has hence been
hypothesized that this helps to pick up the stimulus predictors. After those initial V100
trials, 24 randomly shuffled blocks of V90 and V100 are presented intermixed (16 V90 and 8
V100). The last 4 blocks have again been fixed to V100, since those blocks could be removed
more easily if the attention span of the subject did not last long enough and they wanted to
abort the experiment. However, this happened only two times over all participants.
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Experimental procedure Each subject was recorded multiple times across multiple record-
ing sessions and experiments. This part will only focus on the experimental procedure of
recording sessions 2 to 5, where data for the presented work have been collected. On arrival
of the subject, informed consent and a COVID 19 related questionnaire has been collected,
as well as additional questionnaires related to sleeping behavior and general life style. During
session 2 (where the EEG recording took place: steady state visual evoked potential (SSVEP)
-task; not related to the two experiments here), the EEG cap was now fitted and electrode gel
was applied to ensure proper conductivity. Afterwards, a set of photographs from the subject
wearing the EEG cap was collected for later photogrammetry based 3D head reconstruction
and electrode co-registration [313]. The EEG recording has been performed hereafter inside
the magnetically shielded MEG scanner room. Once the EEG experiment had ended, the
participants could voluntarily rest for a couple of minutes, before they received instructions
about the upcoming MEG experiment and a practice block with increased odd-ball trial prob-
ability (no stimulus predictability) outside the scanner. When the subject felt comfortable
with the task, the head-cast was fitted, reference coils were added and the subject entered
the scanner room, where it performed the staircase and P25V100 task. During recording
session 3, the overall procedure remained similar, except that the first experiment (a motor
related task) was a MEG experiment conducted by yet another researcher. Between this
experiment and the 2 × 4 intermixed P25V90s and P25V90b block instructions have been
refreshed and another practice block was performed outside the scanner room. Session 4 was
solely occupied by the above described procedure of intermixed recording of 2 × 16 blocks
of P80V100 and P80V90s or P80V90b after the subject had again been instructed and had
received practice outside the scanner. Lastly in session 5, either 16 blocks of P80V90b or
P80V90s have been recorded after recording the data for Experiment 2 (below), depending
on which version of the task was presented in session 4. After the main experiment, a lo-
calizer experiment was conducted, consisting of 80 trials of the main experiment, where the
task was modified to a simple color change detection of the central fixation indicator.

All respective scripts to set up and run the experiment are implemented in Python using
PsychoPy 29 and will be available after submission of the publication at:

https://gitlab.com/TommyClausner/meglyon and

https://gitlab.com/TommyClausner/meglyon-experiment-runner.

Due to the delayed recording schedule caused by the pandemic, the respective data of
this experiment has not yet been fully analyzed. Preliminary results and remaining work are
discussed in section "Experiment 1: spatial attention and predictability" on page 134.

29https://www.psychopy.org/
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Experiment 2: feature attention and conflicting information Experiment two tar-
gets specific compute pathways to FFA and VWFA by using multi dimensional stimuli. In
order to minimize the influence of the stimulus material on the response, stimuli were com-
posed as semi-transparent overlays of each other. To probe the system and trace respective
higher order stimulus dependent α feedback, conflicting information stimuli, similar to Stroop
stimuli [278], have been used. However, as compared to words printed in an (in-) congruent
font color, we aimed for more naturalistic and easy to trace stimuli, namely faces, which are
known to elicit FFA activity [404]. Those faces were centrally overlaid with semi-transparent
four character all capital letter words. Faces could expose stereotypically assigned male or
female features and names have been selected from publicly available data bases, where a
gender was asserted already 30.

Stimuli were created using the VGGFace2 data [405], a multi-million labelled image data
set containing faces. This data set consists of photographs of people, most of whom are
public figures. In an attempt to avoid assertion of a gender solely based on the looks and
external cues of unknown people’s faces and since well recognizable public figures necessarily
needed to be excluded (to avoid some stimuli being recognizable), respective underlying faces
have been artificially generated. Before face stimuli could be synthesized, a pre-selection was
made in order to ensure that faces that compose the later average faces are photographed
from a more or less frontal perspective. Furthermore, the sub-selection was based on whether
the depicted person evidently self-asserts to a certain gender or is known to do so. For each
of the two categories (female or male), 60 images have been selected. By using a pre-trained
network provided by Dlib 31, 63 facial landmarks (such as eye corners) are automatically
extracted. Those landmarks can be used to morph two (or more) faces towards each other.
From the set of 60 available images, ten have been chosen randomly and the average face
was computed. After that, a name from a set of 2× 50 names is chosen to be overlaid with
the face, depending on the condition (congruent / in-congruent).

After that and depending on the condition (congruent / in-congruent) a name from a set
of 2 × 50 is chosen to be overlaid with the face. In total there are four possible conditions:
[♀face, ♀name], [♀face,♂name], [♂face, ♀name], [♂face,♂name]. Each stimulus has been overlaid
with a similar fixation indicator as used in Experiment 1 ( ) [316]. See also Figure 28
for a depiction of example stimuli and an overview of the recording procedure.

30Note that the author of this thesis does not support or believes in any binary gender or sex system.
Only in order to obtain two stimulus conditions we chose the respective reference frame. Subjects have been
briefed about the respective setting and that they could at any time drop out of the experiment if they feel
uncomfortable with the task.

31http://dlib.net/
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Figure 28: Stimuli and experimental procedure The top of the figure depicts example stimuli for the different congruence
conditions. Faces have been generated from manually selected examples contained in the VGGFace2 data set [405]. If either a
person self-evidently self-asserted to a certain gender or is known to do so (the data set contains mostly photographs of famous
people) and the photograph was taken with a more or less frontal perspective, it had be selected. From a set of 60 images for
each of the stereotypically assigned gender groups, ten have been selected randomly and averaged using 63 facial landmarks.
Landmarks were detected using a pre-trained ANN. Four-character names for each category have been selected from publicly
accessible name data bases and randomly combined with generated faces. To localize FFA and VWFA respectively, two localizer
experiments (one for names and one for faces) have been conducted using scrambled faces (using diffeomorphic transformations
[406]) or non-words. The bottom half depicts the recording scheme for the main experiment. For each congruence condition,
350 have been recorded (1400 total). The experiment was split into 14 blocks with 100 trials each. A 5 s baseline was recorded,
prior to the attention instructions of each block. Afterwards, a 1.9 s period was allocated to allow the subject to blink. After
that, 5 trials are recorded (0.9 s ± 0.2 s baseline and maximum 1.5 s stimulus). During each trial, participants are asked
to indicate the respective stereotypically assigned gender for either the name or the face. The trial ended with the subject’s
response, but lasted at least 0.4 s. See also Figure 26.
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Experiment and trials have been again set up to maximize trial count. Thereby, the
trial count of Experiment 2 has been weighted against the trial count of Experiment 1,
both competing for experimental recording time in recording session 5. Since Experiment 1
contains extremely unlikely conditions, the experimental schedule during session 5 had been
shifted towards Experiment 1. To maximize trial count in the remaining recording time,
trials were presented in streams of five: Before the onset of a set of five trials, participants
received 1.9 s explicitly allocated for eye blinking, which has been visually indicated by the
fixation indicator increasing in brightness. After that, the fixation indicator would turn back
to medium-gray (indicating the subject to avoid blinking from now on) and a baseline period
of 0.9 s± 0.2 s is recorded. Thereafter, the stimulus is presented for at least 0.4 s and for a
maximum period of 1.5 s but otherwise ended at the subject’s response time. Baseline period
and stimulus presentation alternate five times, before the blink indicator turns bright again,
which indicates to the subject that it can blink now. Before each experimental recording
block (100 trials), a 5 s baseline period of resting state MEG activity was recorded where
the subject was asked to avoid blinking. For each of the four possible stimulus combinations
350 trials have been recorded, summing to 1400 trials in total. Those have been divided
into 14 × 100 trials per block. During each trial, participants were asked to indicate the
stereotypically assigned gender of either the name or the face via button press with index
and middle finger of the right hand. Button mappings with respect to male or female have
been counterbalanced across experimental blocks. Each time a new block starts, instructions
on the current button mapping are displayed. See also Figure 28 bottom for a depiction of
the general experimental recording procedure.

Experimental procedure After the subject’s arrival, informed consent and a COVID 19
related questionnaire has been collected as well as additional questionnaires related to sleep-
ing behavior and general life style. Afterwards, the subject received instructions on the
task, the head-cast was fitted and reference electrodes were attached before it went into
the scanner room. Before the start of each block, it was indicated, whether the sub-
ject was asked to report the stereotypically assigned gender identity of either the face or
the name, while preserving central fixation. Furthermore, the respective button mapping
([left, right] → [female,male]) changed counterbalanced across blocks, which was indicated
prior to the onset of data collection for each block. After recordings of the main experiment
were completed, two additional localizer tasks (160 trials each) were performed. In the face
localizer task either a regular face that has been used throughout the face experiment or a
smoothly scrambled version of that face, transformed using diffeomorphic transformations
[406] (see example in Figure 28) was shown. Diffeomorphic transformed face stimuli have
been used in order to keep image attributes (brightness contrast, etc.) and local correlations
more or less similar, while removing the "facial content". This way, specifically the FFA can
be targeted by contrasting normal and scrambled faces. For each type of stimulus (normal
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or scrambled), 80 trials are shown randomly ordered in one block. The second localizer
functions similarly to the first on, only that instead of faces and scrambled faces, respective
names and four letter pseudo-words are shown. Again, 80 trials for each condition are used
to localize VWFA.

All respective scripts to set up and run the experiment as well as the scripts used to create
the compound stimuli from average faces are implemented in Python and will be available
after submission of the publication at:

https://gitlab.com/TommyClausner/meglyon and

https://gitlab.com/TommyClausner/meglyon-experiment-runner.

Due to the delay in recording schedule caused by the pandemic, the respective data of this
experiment has not yet been fully analyzed. In section "Experiment 2: feature attention and
conflicting information" on page 143, preliminary results and remaining work are discussed.

Open research and discussion

As explained in the respective section ("COVID 19 remark"), data recordings for both MEG
experiments suffered from substantial delays. Hence, only the planning, task development,
implementation, piloting and recording of the data could be completed for both experiments.
However, other members of our lab already analyzed or pre-analyzed certain aspects of the
data which concerns Experiment 1 (see "Experiment 1: spatial attention and predictabil-
ity") and Experiment 2 (see "Experiment 2: feature attention and conflicting information").
Most notably, Oussama Abdoun 32 analyzed the behavioral data and Maryam Mostafalu
[1] analyzed a part of the sensor level data for Experiment 1; and Maxime Ferez analyzed
data of Experiment 2 in sensor and (classical) source space (no laminar level source recon-
struction yet) for his PhD thesis [407]. With their kind permission I will reproduce some
of those results in order to justify future analysis steps, confirm first predictions or obtain
intermediate result verification in form of sanity checks. I will meticulously indicate which
results are theirs. If no such indication is made, results have been originally produced by
the author.

32https://orcid.org/0000-0001-5123-4956
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Experiment 1: spatial attention and predictability

Short methods and results

Start: analyzed by Oussama Abdoun (end on page 136)

In a first step of the behavioral analysis, multiple sanity checks with respect to respective
trial count distributions of conditions, trigger codes etc. have been performed. Additionally,
is has been verified that the data is not subject to the Simon effect [408] 33. On average,
participants responded faster and more accurate to easy, valid and congruent trials (com-
pared to difficult, invalid, in-congruent), which verifies basic assumptions about how the task
should work. Congruency here, is defined as whether the target and distractor have similar
orientation. Furthermore, accuracy and RT data has been investigated with respect to at-
tention condition (V100, V90s, V90b) and predictability (P5, P10, P80). It has been found
that RTs for V100 are lowest, followed by V90b and V90s. Accuracy values for valid trials
do not differ between any attention condition, similar to difficulty. However, invalid trials
do expose a significantly lower accuracy for V90b as compared to V90s. Counter-intuitively,
RTs for invalid congruent trials in V90b are unexpectedly low (see Figure 29 bottom left)
as well as accuracy for in-congruent invalid V90b trials which drops to 53% (not shown in
the figure). For predictability only a minor effect could be observed for accuracy and RTs of
easy trials (see Figure29 right).

33The Simon effect [408] describes the tendency of participants to respond differently (in RT and accuracy)
to trials where stimulus and response side are congruent as compared to in-congruent.
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Accuracy 
V100 > V90S > V90B

P80 > P10 > P5

V100 < V90B < V90S

P80 < P10 = P5

Figure 29: Accuracy and reaction time (RT) results for Experiment 1 (see page 123). Left: results
with respect to the respective attention conditions V100, V90s and V90b. Right: results with respect to
predictability. Bottom-right: summary. Reaction times for V100 were shortest, followed by V90b and V90s,
for easy and difficult trials. In general, easy and difficult trials were different in reaction time (RT) and
accuracy, where easy trials resulted in higher accuracy and shorter RTs compared to difficult trials. If target
and distractor stimuli were congruent (same orientation), RTs for congruent trials in V90b were greatly sped
up. However, accuracy for in-congruent trials in V90b dropped to 53% (not shown), indicating the relatively
higher RT in the same condition might be due to delayed guessing. Accuracy of the congruent trial has not
been affected, indicating that participants in V90b tended towards response repetition (not shown either).
The effect on accuracy as a function of attention condition was larger in the in-congruent condition for hard
trials for V90s followed by V90b. In general a tendency towards higher accuracy values for P5 followed by
P10 and P80 could be observed although with minimal effect size (≈ 1.5 %pt) accompanied by a drop in
respective RTs, at least in easy trials where the previous trial was answered correctly. This figure has been
reproduced with kind permission of Oussama Abdoun.
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End: analyzed by Oussama Abdoun (start on page 134)

Start: analyzed by Maryam Mostafalu [1] (end on page 137)
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Figure 30: Sensor level time-frequency data for anticipatory α and stimulus induced γ band activity.
Left: for the contrast between the attend left or attend right conditions an α band decrease (8 Hz to 12 Hz)
has been observed for the pre-stimulus period (500 ms prior to stimulus onset until stimulus onset) over
contra-lateral sensor sites (relative to the side of attention), whereas an increase is observed for ipsi-lateral
sensors. The log10 power ratio between baseline and respective time range of interest indicates ranges between
≈ ±0.4 indicating the respective activity has been more than doubled (halved). Right: stimulus induced γ
band response (≈ 50 Hz to ≈ 70 Hz) for a period of 200 ms to 400 ms after stimulus onset. A clear peak in
the γ band between 200 ms and 400 ms after stimulus onset could be observed over contra-lateral occipital
sensor sites as well as a corresponding ipsi-lateral negative deflection for the contrast between attend left
and attend right. This figure has been reproduced with kind permission of Maryam Mostafalu [1].

In general, the MEG pre-processing pipeline follows what has been implemented by Ferez
[407] (see Experiment 2 on page 143). Trials have been excluded if SQUID jumps or muscle
artifacts had been detected by the automatic artifact detection algorithm, implemented in
FieldTrip [324] 34. Only sensor level time-frequency analyses have been performed. For that
reason, planar gradients have been computed [409] applying the nearest neighbor method.
No statistical analyses have been conducted. Figure 30 depicts the result of a first sensor
level analysis for α in the pre-stimulus period (500 ms prior to stimulus onset until stimulus
onset) and γ for the early post-stimulus time interval (200 ms to 400 ms after stimulus
onset). Both have been computed as the contrast between attend left and attend right con-
dition. As expected, a clear peak in the γ band between 200 ms and 400 ms after stimulus

34https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/
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onset could be observed over contra-lateral occipital sensor sites as well as a corresponding
ipsi-lateral negative deflection. The respective increase peaks on a log10 power ration scale
between time period of interest and baseline at ≈ 0.4 which indicates an increase of more
than twice the baseline activity (100.4 ≈ 2.5). Furthermore, an attention side specific α band
response can be observed over occipital and parietal sensors sites in the pre-stimulus period
as well. Thereby, the contrast between attend left and attend right condition is expressed as
α band decrease over contra-lateral and an α band increase over ipsi-lateral occipital sensor
sites. Both peak on a log10 power ration scale at ≈ 0.4, again indicating an in-/decrease of
activity of a factor of more than two (100.4 ≈ 2.5).

End: analyzed by Maryam Mostafalu [1] (start on page 136)

Short discussion with respect to the present work Most importantly, the presented
results have not been tested statistically and hence the respective discussion remains highly
speculative. Nevertheless, based on experience, a log10 power ratio value of 0.4 in a spa-
tially limited region often indicates statistical significance in a corresponding test. Such
test could e.g. be the cluster based permutation test for sensors level time-frequency data
[352]. Without such a test, no final judgements can be made. Nonetheless, assumed to be
"real" results, those findings would be in line with the literature. First of all lateralized
attention α changes in occipital cortex areas have been observed in many previous studies
for post-stimulus [251, 410, 411] and anticipatory α activity [412]. Thereby, occipital sensor
sites contra-lateral to the attended stimulus expose a relative decrease, whereas ipsi-lateral
sensors expose a relative increase [413]. The similarity between the literature and the pre-
sented results, combined with the relatively large power changes (log10 ratio) is expected
to finally culminate in a significant statistical test. For γ power changes, this is similar.
Post-stimulus early trial γ power increases over contra-lateral and decreases over ipsi-lateral
occipital sensors after stimulus onset (especially for gratings [189]) are in line with what has
been expected based on previous literature [185, 238, 240, 414]. Furthermore, the relatively
strong γ power de-/increase (log10 ratio of 0.4) - limited to a small number of sensors - indi-
cates effect validity. Since γ band oscillations have been related to feature specific processing
[184, 240, 415], the respective orientation determination of the attended gratings might be
what is reflected here. This would be in line with findings from the EEG-fMRI experiment
that is part of the presented work (see "Feature specific neuronal oscillations in cortical lay-
ers (in prep)"), where a significant increase in γ band oscillations for early trials in a similar
frequency range with similar stimulus material could be observed for the contrast between
voxel that prefer a respective stimulus orientation over those that do not. This would hence
indicate a potential relationship between γ band power and / or coherence changes [240]
and / or reaction time (RT) and / or response accuracy (γ reflects ongoing stimulus process-
ing which would influence behavior). Furthermore, the relationship between pre-stimulus α
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band activity and RTs (and response accuracy), similar to what has been done for Experi-
ment 2 on page 143 [407] could be performed. For Experiment 2, pre-stimulus α band power
was related to RTs in one of the experimental conditions. It has been found that increased
pre-stimulus α band activity over regions processing the respective distractor was larger for
fast as compared to slow trials. Furthermore, β band activity in the pre-stimulus period
exposed a similar effect in the ventral attention network (VAN), which has been linked to
successful inhibition of distracting information at known locations [254, 402]. Here, it would
be expected that a respective α activity change can be observed for the V100 as compared
to V90 conditions as well as between V90b and V90s (see Experiment 1 on page 123). It
has been found that upper α band power changes are related to whether a target stimulus
or non-target stimulus was presented [416] and "involuntary" attention [417]. Since α power
changes have also been related to stimulus specific pre-stimulus processes that have been
hypothesized to reflect feedback directed activity and targeted distractor response modula-
tion [91], a differential response pattern for the three visual conditions is expected. This
is because during the V100 condition, no switch of attention side will happen (guaranteed)
and hence full lateralized attention suppression of unattended stimuli would be reflected
in contra-lateral α power decrease and ipsi-lateral α power increase [251]. During the V90
condition however, the subject is to some extent required to "monitor" the respective unat-
tended side as well, because with a probability of 10%, the respective cued location will be
invalid. The difference between the V90s ("switch") and V90b ("bottom") condition is, how
the respective shift of attention is communicated. In V90s, the black squares indicating the
target shift would switch location on the distractor and former target stimulus. Thus, the
actual indication that the target is located on the other side is reflected on the former target
stimulus. No attention monitoring of the unattended side is required during this condition
with respect to the switch indicator. However, it is hypothesized that in order to improve
performance in case of such an event, a small fraction of spatial attention is allocated to the
unattended side. Even more attention is expected to be allocated to the unattended side in
the V90b condition. Since both black squares indicating the target shift move to the bottom
(no visible change of stimulus on the former attended stimulus), a shift of attention to the
respective other side would only be possible if the unattended side is monitored for shift
indication as well. Correspondingly, the respective α lateralization (see e.g. lateralization
index [173]) should decrease, such that k̄V 100

lat ≥ k̄V 90s
lat > k̄V 90b

lat . In addition to that, respective
variations in stimulus predictability need to be investigated as well.

Remaining work The remaining analyses for this experiment comprise multiple source
analysis approaches, as well as connectivity analyses with respect to attention and pre-
dictability conditions (see Experiment 1 on page 123). A first step however would be the in
depth analysis of RTs and accuracy and relating those to the MEG data. RTs and accuracy
are expected to be highly dependent on the condition. Preliminary RT analyses performed
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by Oussama Abdoun (and initially Lucie Rissoan, an intern under the author’s supervi-
sion), revealed significantly lower RTs for the V100 compared to the V90 condition as well
as a significant difference between valid and invalid cue for both V90 conditions combined
(both p < 0.05). This was expected, since no monitoring of the unattended side whatsoever
has been required in the V100 condition which potentially enabled participants to focus on
stimulus processing alone. The significant difference in RT between valid and invalid cue
conditions in V90 can be explained by the actual switch that has to be performed for invalid
trials which in itself requires time to be executed, irrespective of the underlying features. In
addition to that, RTs have been shorter for V90b than V90s. In fact, the reverse pattern has
been expected, since more monitoring time capacity is required in V90b. On the other hand,
since the accuracy for invalid trials is much lower in V90b, the longer RT in V90s seems to
pay off (see Figure29). In addition to that, during V90s the only source of information is
the attended side which potentially causes a locking mechanism of attention to that side,
making it harder to switch [179] (consequentially longer RTs). Further analyses revealed that
accuracy for invalid trials in V90b that required a change of response compared to what has
been anticipated based on the former target stimulus drops significantly (53%). In addition
to that, RTs for congruent trials in V90b are suspiciously sped up compared to in-congruent
trials. Taken together, those findings indicate that participants either tend towards guessing
for invalid trials in V90b especially in the hard condition or miss the switch indicator in
almost half of the invalid trials. The influence of the target is presumably relatively large,
because congruent invalid (same response button) trials receive higher accuracy and lower
RT values compared to in-congruent trials. Compared to V90s, accuracy for V90b is signif-
icantly lower for invalid trials and again taken together with the shorter response time in
V90b indicates a higher rate of guessing (shorter RT, lower accuracy) or rate of missing (and
then responding to the "false" target).

Effects of predictability on accuracy are relatively small (≈ ±1.5 %pt) with highest pre-
dictable stimuli receiving highest and lowest predictable stimuli receiving lowest accuracy
values. RTs thereby do not differ between prediction groups, however the variance in the 5%
and 10% predictability groups is much larger for trials that are preceded by a trial that was
answered incorrectly as compared to the 80% predicted trials. However, since 80% predicted
trials naturally occur 8× as often as the other two groups (10% and 2 × 5%), their respec-
tive trial count is much lower and hence the variability might be greater. For easy trials,
a tendency for a negative correlation between predictability and RTs is observed (see Fig-
ure 29 top right). However, results for hard trials with respect to RTs remain slightly more
puzzling (especially when taking into account previous response correctness see Figure 29)
as the most predictable exposed very high RTs compared to the general trend. I hypothe-
size that those prolonged RTs are perhaps caused by participants doubting their perception.
Since hard trials have been specifically designed to be more ambiguous with respect to the
orientation than easy trials and given that for each set of predictability per stimulus one
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combination always points back to itself (predicts itself with 80%), participants potentially
hesitate in this situation. The ambiguity and the possibly implicit assumption that so many
repetitions of the same orientation would be unlikely might inflict hesitance and double
checking, which would increase RT. So far this has not been specifically tested. Whether
participants could explicitly predict a respective stimulus has however been assessed at the
very end of all recording sessions. Each of the four stimulus categories was paired with each
of the other four stimulus categories and participants were explicitly asked to predict which
stimulus would following the current reference stimulus. This data however has not yet been
analyzed. Irrespective of that, it could be demonstrated that participants are able to implic-
itly - or unconsciously - learn statistical relationships without being able to formulate those
relationships explicitly [418]. Similar to the implicit association task (IAT) [419] 35, where
implicit associations lead to faster RTs and is reflected in an increase of RTs if behavior is
modified with respect to underlying initial causes, faster responses are expected for stimuli
that could be predicted with highest probability (i.e. 80% in the present case). Thereby,
a violation of prediction (20% of cases) would lead to slower RTs, because it would require
correction. In the present experiment a condition was added, where stimulus expectation
is violated but the resulting button response the same 10% cases). Additionally, 2 × 5% of
trials not only violated the respective predication, but furthermore also the predicted button
response (combined 10%). Note, that theoretically the prediction with respect to difficulty
could still be valid for one of the two final cases, however it is hypothesized that the vi-
olation in predicted orientation overrules the respective decision whether the difficulty is
similar or different. Those three major conditions (predicted with 80%, predicted with 10%
or predicted with 5%) are expected to consecutively cause an increase in RT. Here, only the
attention effect shows a clear separation between the experimental groups. A tendency for a
predictability effect (especially for easy, predicted trials) has been observed as well, however
less clear cut as expected. One hypothesis would be the relatively high task complexity that
explains this. High task difficulty would make it more demanding to a) detect that there
are indeed four different stimuli and b) that those follow a statistic order. If each trial is
so difficult that all resources are required to perform the task, statistical learning might be
hampered. An in depth analysis has to be conducted to see if the predictability effect is
shadowed by e.g. task difficulty (individually determined).

Beside in depth analyses on behavioral responses (that can be later related to MEG
data), neuronal responses in form of MEG data need to be fully investigated on various
levels. In a first step, pre- and post-stimulus α and γ oscillations have to be contrasted for
a variety of conditions. First of all the attend left compared attend right contrast needs

35The implicit association task (IAT) measures implicit associations between categories by differences
in RTs [419]. It is hypothesized that "true" associations cause behavior that is carried out more or less
heuristically / automatically and if top-down control is exerted (e.g. to hide some implicit associations), this
is reflected in increased RTs.

140



to be transformed to reflect "attended side" and "not attended side", by combining both.
The respective contrast furthermore needs to be performed for time-frequency transformed
sensor and source level data, similar to what has been done in Experiment 2 (see page 143).
It is expected that preliminary findings can be confirmed for the pre-stimulus period in α
and that those can be observed during the post-stimulus period as well [251]. For both, pre-
and post-stimulus period, event related α power decreases are expected for contra- and α
power increases for ipsi-lateral regions. In the γ band the respective post-stimulus γ band
increase is expected to be confirmed statistically and will locate to visual cortex areas (V1-4)
for this kind of stimuli (see e.g. "Feature specific neuronal oscillations in cortical layers (in
prep)"). However, a pRF mapping [72] performed using the respective fMRI data, could
help to determine respective primary visual regions for a ROI analysis. Furthermore, the
functional localizer that has been recorded at the end of session 4 (see Figure 26) could help
to further narrow down ROI analyses to particular areas. For both, α and γ, it is expected
that findings from the EEG-fMRI experiment can be replicated (low α and high γ power
in V1). Effects in the γ band are expected to be highly attention and hemisphere specific,
with higher responses for attended stimuli in visual cortex regions contra-lateral to the at-
tended stimulus [415], which has been confirmed here. Furthermore, this would explain the
positive correlation between the γ band signal and generally deactivated voxel (possibly not
attended) found in the EEG-fMRI experiment on trend level.

In addition to that it could be demonstrated that FEF exerts influence during attention
on V4 and V1 [76, 244, 245, 254] which could be linked to changes in α band connectivity
[251]. The influence of higher order frontal and PFC regions on primary visual regions [78]
has further been reported to be modulated in the θ band [204, 420]. In Experiment 2 (see
page 143), pre-stimulus θ band increases were found to be related to behavioral performance.
In-congruent trials in one of the two attention conditions, exposed a stronger θ band (3 Hz
to 7 Hz) increase in activity over frontal areas, for fast compared to slow RT trials (me-
dian split). This indicates that changes in frontal θ band power during the pre-stimulus
period, is related to fast stimulus encoding under conditions where the target information is
rivaled. However, it remains to be investigated whether those θ band power changes trans-
late to changes in top-down connectivity as well, as they could furthermore be explained by
θ power changes with respect to the decision level of cognitive control [421]. Analyses with
respect to cortico-cortical connectivity changes could be carried out using a DCM model
[155, 157] or more traditional approaches, such as mutual information or Granger causality
[152].

While still under development, which is led by James Bonaiuto, a new laminar level
MEG processing pipeline allows for the investigation of neuronal oscillations on the level of
cortical laminae using MEG. It could be demonstrated that sensori-motor related β bursts
can be mapped to two cortical layers [220] as well as low and high frequency activity in the
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visual cortex [268]. This method allows for the opportunity to directly investigate neuronal
oscillations on the level of cortical laminae, non-invasive in humans and test predictions
from very low scale models, such as the canonical microcircuit model by Bastos et al. (2012)
[82]. Provided the presented task (see Experiment 1 on page 123), attention related changes
to cortical α activity are hypothesized to be reflected mostly by deep layer activity [52],
whereas changes in γ band power is hypothesized to locate to superficial layers [52, 238] (but
probably deep layers as well [80, 272]) of primary visual regions. Thereby, a communication
channel between processing regions is thought to be reflected by an α decrease that is shared
coherently over jointly active regions. Depending on the respective side of attention or cue
validity condition (V100, V90s, V90b), those changes are expected hemisphere specifically
in primary visual areas due to the lateralized presentation [251], and in higher order regions
due to target PFC or FEF activity [78]. Specifically, it is expected that attention related
α band hemispheric lateralization and fronto-occipital connectivity changes as a function of
attention condition. Is is expected that the lateralization and connectivity between primary
visual areas and frontal areas is strongest for V100, followed by V90s and V90b. Respective
power connectivity changes are again expected to locate to deep layers. Moreover, a potential
influence of frontal regions on primary visual areas is to be expected in the θ band, exposing
a similar response pattern as described for α [204, 420]. The canonical microcircuit model
(see "Canonical microcircuits: cortical compute modules") further suggests a reflection of
prediction errors in superficial layer γ [82, 246]. Thereby, a violation of prediction should
be reflected in stronger γ band power than for valid predictions [422] which is expected to
locate either to superficial layers [52] or superficial and deep layers [80, 272]. Violations
thereby can happen on two levels. First of all the cue could be valid (80%), invalid but with
the same response button (10%) or invalid but with a different response button required
(2 × 5%). Hence, γ band power in superficial layers should be larger for trials violating
certain predictions and even larger (or across more widespread network activity) when the
prediction violation requires a change in behavior compared to what has been predicted.
Thereby, increased γ band activity is expected to be coherent between "active" regions (e.g.
V1 and V4) [52, 240]. In turn, β band power is thought to reflect the actual "predictions"
that are made in top down direction conveyed by coherent α [219]. Possibly those can be
extracted in the sense that respective trials could be decoded based on the expected stimulus,
which will be investigated by Maryam Mostafalu [1] as part of her PhD project. Similar to
respective α and γ band analyses, θ and β band responses have to be investigated with
respect to attention selectivity, predictability, cortical layer specificity and connectivity.

142



Experiment 2: feature attention and conflicting information

Start: analyzed by Maxime Ferez [407] (end on page 146)

Short methods In a first step, trials were excluded if the respective response time was
shorter than 300 ms or longer than the average and 2 standard deviations (µ + 2σ). Re-
maining trials have been transformed into epochs for a time interval between −700 ms and
response time or at the maximum 1 s, relative to the stimulus onset. An automatic arti-
fact rejection algorithm based on FieldTrip [324] 36 was applied to reject trials containing
SQUID jumps and muscle artifacts. Furthermore, trials have been rejected based on the
eye tracking data. Trials containing saccades or blinks or trials where the subject exposed
weak central fixation performance have been furthermore rejected. Using this procedure,
23.6% of all trials have been rejected. One subject was excluded due to the overall density
of artifacts in the signal. For the sensor level analysis, planar gradients have been calculated
[409] using the nearest neighbor method. Before the sensor level time-frequency analysis has
been conducted, the data was band-pass filtered for frequencies between 3 Hz and 40 Hz.
The calculation of the power spectrum has been conducted using individual frequencies for
each Hanning taper, such that exactly three cycles fit the sliding window length. Source
level time-frequency statistics have been computed using a dynamic imaging of coherent
sources (DICS) beamformer [423] or LCMV beamformer, where the later is transformed
into time-frequency data on the level of reconstructed virtual channel signals. A single shell
model derived from anatomical MRI data has been used to compute the forward model
[424]. Thereby, the brain space has been parcelized into voxel (1 cm isometric) and morphed
towards the standard MNI brain [425]. All respective source level data has been contrasted
between conditions for frequencies in the α range.

A repeated measures analysis of variance (ANOVA) with factors condition (attend-face
or attend-name), congruency (congruent or in-congruent) and type of stimulus (each of
the face/name combinations separately) has been conducted for a reaction time (RT) and
accuracy analysis. Violations of sphericity have been corrected using the Greenhouse-Geisser
[426] correction. Post hoc testing was done using the Tukey-Kramer test (α = 0.05). Both,
sensor and source level time-frequency analyses have been statistically tested using a cluster
permutation test [352] using 1000 permutations to build the permutation distribution.

36https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/
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Figure 31: Reaction time per condition On aver-
age reaction times are significantly smaller for congru-
ent (Cong) than in-congruent (Incong) stimuli as well
as trials in the attend-names (Names) than attend-
face (Faces) condition (*** indicates p < 0.001). This
figure has been reproduced with kind permission of
Maxime Ferez [407].

Short results Analysis of RTs revealed
a difference between the attend-face and
attend-name condition (F (1, 39) = 354.07, p <
0.001), where average (σ) reaction times for
attend-face were 629.1 ms (138.6 ms) and
for attend-name 565.2 ms (157.4 ms). Ad-
ditionally, RTs were shorter for congruent as
compared to in-congruent trials (F (1, 39) =
161.9, p < 0.001). A significant interaction
between congruency and condition was ob-
served (F (1, 39) = 68.0, p < 0.001). Post
hoc analyses revealed that the difference
between congruent and in-congruent trials
with respect to RTs was larger in the attend-
face condition than in the attend-name con-
dition (p = 1.06e − 6 and p = 4.28e − 7
respectively). See Figure 31 for a graph-
ical representation of the RT results. Ac-
curacy analyses revealed a significant differ-
ence (F (1, 39) = 45.1, p < 0.001) for the av-
erage accuracy between attend-face and attend-name conditions (94.7% and 91.5% respec-
tively). An additional main effect was observed for congruency (F (1, 36) = 145.3, p < 0.001),
with in-congruent trials exposing lower overall accuracy.

An anticipatory α effect has been observed during the pre-stimulus period (400 ms to
50 ms prior to the stimulus) for a cluster spanning fronto-temporal sensor sites for the
attend-face compared to the attend-name condition (tsum = 729.84, p = 0.041) for frequen-
cies between 8 Hz and 14 Hz (see Figure 32 left). Source level analysis revealed a significant
cluster for the same frequency band (tsum = 1.25e3, p = 0.008) over left occipito-parietal and
temporal regions (see Figure 32 right). More precisely, this includes left occipito-temporal
(LOT) (possibly including posterior VWFA), left medio-frontal (LMF), left pre-motor (pos-
sibly motor preparation in the word condition because RTs in that condition are significantly
lower in general) and bilateral parietal areas.
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Figure 32: Increased α band baseline activity in the attend-face compared to attend-name condition.
Left: A significant cluster over left occipito-parietal sensor sites for the comparison between attend-face over
attend-name condition has been observed for frequencies between 8 Hz and 14 Hz. Time frequency plots
are obtained from the average activity in encircled sensors. Only significant clusters (p < 0.05) are shown.
Right: Source level analysis for frequencies between 8 Hz and 14 Hz. Red areas mark a significant α power
increase for attend-face compared to attend-name (p < 0.05). This figure has been reproduced with kind
permission of Maxime Ferez [407].

Additionally, α band power changes have been related to performance. If α band increases
- as hypothesized - reflect functional inhibition of neuronal populations [251] tuned to process
conflicting stimulus information [91], then α band power changes should be related to RT
(better inhibition of distracting information or less sampling of those would lead to lower
RTs). This is precisely what was found. In a frequency range between 8 Hz and 14 Hz
for a trial period of −400 ms to −50 ms relative to stimulus onset, an increase for fast
over slow trials (split at the median RT) in the attend-face condition was observed for in-
congruent trials (tsum = 1.12e3, p = 0.009). See Figure 33 left. No difference has been found
for the attend-name condition. Source level statistical analysis revealed a significant cluster
for posterior VWFA (tsum = 317.74, p = 0.009). In addition to that, a significant θ band
increase over frontal areas (tusm = 3174, p = 0.01) has been interpreted as sign of cognitive
control [427] and here faster RTs.
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Figure 33: Increased α and θ band activity for fast over slow RT trials (median split) has been
observed in a range between 8 Hz and 14 Hz (top) and 5 Hz to 7 Hz (bottom) respectively during the pre-
stimulus period for in-congruent trials within the attend-face condition. Left: Significant cluster (p < 0.05)
over parietal, left occipito-temporal and frontal sensors for frequencies in the α and over frontal sensors
in the θ band. Time frequency plots are obtained from the average activity in encircled sensors. Only
significant clusters (p < 0.05) are shown. Right: Corresponding source level data for the period from
−100 ms prior stimulus onset until stimulus onset. Red areas indicate significance (p < 0.05). This figure
has been reproduced with kind permission of Maxime Ferez [407].

End: analyzed by Maxime Ferez [407] (start on page 143)
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Short discussion with respect to the present work Experiment 2 has been conducted
in order to investigate stimulus type dependent α band oscillations (see e.g. "Research ques-
tion"). It has been hypothesized that feedback related α band oscillations coherently de-
crease in power over regions that are used for joint stimulus processing. This however would
be an anticipatory process in order to recruit cortical areas relevant to stimulus processing
[91]. Above results [407], combined with further results from the corresponding paper in
preparation [428] partly confirm this hypothesis. During the pre-stimulus period (400 ms to
50 ms prior to stimulus onset) a significant increase in α band activity has been observed
for the attend-face over the attend-name condition for parts of the VWFA. This is in line
with the hypothesis that α band activity increaes over stimulus processing specific areas that
interfere with target processes [233]. The presented data exposes such a targeted α band
increase over VWFA, where the word component of the stimulus would be a dis-tractor
that needs to be suppressed. Not only would this be in line with the GBI, but furthermore
predictions derived from the work of Bonnefond et al. (2017) [91]. Similar to spatial at-
tentional sampling [180], where higher α amplitudes are interpreted as modulator causing
shorter "window of opportunity" periods for information to be sampled, a targeted α band
increase over VWFA during facial attention would potentially limit the distraction caused
by in-congruent stimulus features. Indeed, RTs are longer for in-congruent as compared to
congruent stimuli. While this is finding is fundamentally trivial and results as a consequence
of conflicting information, similar to the original Stroop task [429, 430], the simultaneously
occurring α band increase indicates the modulation of irrelevant information processing.

In addition to that, all in-congruent trials from the attend-face condition have been split
according to the median of the RTs into fast and slow trials. Fast and slow trials have
been compared, revealing a significantly increased α band activity during the pre-stimulus
period for fast as compared to slow trials. This indicates that high α power is related to a
faster ("better") stimulus processing due to successful inhibition of potentially confounding
information from the VWFA in the attend-face condition. Nevertheless, no particular α
power decrease over VWFA for the attend-name condition has been observed, which would
have been predicted as well. However, since the lexical information seems to interfere more
with attention in the attend-face condition, as compared to the reverse (facial information less
distracting in attend-name condition), the effect could just be less prominent. Recent findings
explicitly link the amount of distraction that is delivered by interfering information to the
strength of α power increases [233]. Furthermore, the observed activity for both contrasts
(attend-face compared to attend-name and fast compared to slow trials) has been widespread
over parietal areas. In general it has been questioned, whether α band activity indeed reflects
cortical inhibition [176]. Recently it has instead be suggested that parietal α reflects a gating
mechanism, modulating the flow of information [175, 431]. In addition to that it has been
reported that anticipatory α power changes only occur during the anticipation of stimuli that
can be predicted in terms of spatial location [432]. Here, this would be the case, since word
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length, position, font size and capitalization had been standardized. Perhaps information is
indeed gated for predicted distractor locations in lower level visual areas, at least within the
attend-face condition.

Remaining work Most importantly, condition specific single trial responses need to be
analyzed for the stimulus presentation period (very preliminary results obtained by Mathilde
Bonnefond - which are not reported here - tend to confirm this). Both, sensor and source
level analyses as presented [407, 428] need to be extended to the main stimulus processing
period (e.g. 0.1 s to R̄T after stimulus onset). It is expected that - irrespective of the condi-
tion - a post-stimulus α band decrease over occipital areas and sensor sites can be observed,
as well as a γ band increase over the same areas. Both are expected to be functionally related
to stimulus processing, where α has been found to modulate bottom up information [264]
and γ to reflect ongoing neuronal activity in active cortical regions [238]. However, in order
to investigate primary visual regions of interest (e.g. V1-4), retinotopic field mapping fMRI
data has to be analysed. The procedure thereby is similar to what has been done in the
laminar level EEG-fMRI experiment (see "Feature specific neuronal oscillations in cortical
layers (in prep)"). A GLM is used to related spatial resolved stimulus patterns on the screen
to voxel activity from the fMRI [72]. This procedure allows the functional identification of
(at least) primary visual areas. Furthermore, a localizer fMRI experiment, targeting FFA
using facial stimuli, has been conducted. Respective primary and higher order visual areas
could be targeted in a region of interest (ROI) analysis to investigate respective α (and β)
and γ band changes. Furthermore, the MEG localizer tasks for face and name (see page
Experiment 2 on page 121) could be furthermore included to narrow down functional ROIs.
Beside primary visual area α decrease and γ increases, a similar pattern would be predicted
for the respective targeted area (e.g. FFA or VWFA). This hypothesis is based on previous
findings on γ, where attended facial stimuli elicited higher γ band responses in FFA; and α,
where FFA related activity was associated with lower α power [433].

Furthermore, functional and effective connectivity could be estimated via a DCM model
[155, 157] or more traditional approaches, such as mutual information or Granger causality
[152]. Based on several frameworks, α band connectivity should be directed in feedback di-
rection from higher order visual regions to lower order visual regions, whereas γ oscillations
are thought to be associated with feed-forward directed activity [52, 82, 91]. If α band oscil-
lations indeed setup communication channels in feedback direction via inter-area coherence,
then not only should α band power decrease over areas relevant to stimulus processing with
feedback directed information flow, but furthermore α band activity is expected to be phase
coherent between high and low order areas [363]. Ideally, a respective feature attention de-
pendent increase or decrease over VWFA or FFA in α power respectively could be observed
for the attend-face condition and the reverse for the attend-name condition. Again, for this
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purpose the pRF mapping and MEG localizer data needs to be analyzed in order to obtain
structural and functional ROIs.

In addition to that, the laminar level MEG processing pipeline is currently under devel-
opment, led by James Bonaiuto. It could be demonstrated previously that sensori-motor
related β bursts can be mapped to two cortical layers [220]. In addition to that it has been
demonstrated that laminar level MEG is in principle possible for visually evoked activity
too [268]. The resulting two layer model hence allows to repeat previously mentioned ROI
specific source space analyses at the level of cortical laminae. It is expected that feedback
directed α band activity can be found predominantly in deep layers, whereas γ band activity
has been associated mainly with superficial layer activity [52, 91]. However, since forward
directed pathways have been located in layer 5 as well [80], γ band activity might be re-
lated to both layers. On the most in depth level, it would be expected that higher order
primary regions (e.g. V4), modulate lower order primary region activity (e.g. V1) in the
α band via deep layer connections [52]. However, an additional attention related α com-
ponent (either spatial or feature specific, but probably both) would further be expected to
gate (ir-) relevant information [309, 431]. The attention related α component would hence
gate respective task specific (ir-) relevant information on a higher order level (e.g. (dis-)
inhibiting FFA or VWFA respectively) and a more stimulus processing related α would set
up necessary communication channels via coherence. Specifically, high α coherence between
stimulus processing early visual regions (V1-4) and higher order regions (FFA in the attend-
face [434] and VWFA in the attend-name condition [435]) is expected. In addition to that
high γ band coherence between low and high order visual regions for areas that are targeted
(e.g. FFA in the attend-face condition) as compared to those that are not (e.g. VWFA
in the attend-face condition) is expected to increase [240], but mainly due to its nesting
in coherent α connectivity between e.g. V1 and FFA [91, 379]. In this case α band activ-
ity over VWFA possibly exposes an anti-phase relationship with FFA α and increased power.

Lastly the investigation needs to be extended to the θ and β frequency bands. A first
intuition about expected β band results can be derived from the pre-stimulus data that
has been presented above [407] and the respective publication in preparation [428]. Over
areas corresponding to the ventral attention network (VAN), a significant increase in activity
could be observed for the attend-face compared to the attend-name condition for a frequency
range between 14 Hz and 30 Hz. Suppression of VAN activity has been related to the
successful suppression of unattended (but relevant) stimuli and the resilience to attention
being captured by unattended stimuli [254, 402]. The canonical microcircuits model by
Bastos et al. (2012) [82] predicts that β band activity is related to top-down predictions. In
the light of the given task, bottom up feature processing in general might be considered easy
and respective distractor suppression more difficult. Here, pre-stimulus β activity might be
explained in terms of which areas and / or features to suppress in order to successfully encode
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the stimulus. However, this remains speculative since actual stimulus or feature predictability
was not manipulated. See Experiment 1 on page 126 where stimulus predictability has been
varied. With respect to θ, the above mentioned paper in preparation [428], that has been
based on the here presented results [407] (see page 143), provides a first intuition. Ferez et al.
(in prep [428]) found that increased θ band activity during the pre-stimulus period was related
to the RTs. Trials that participants responded to with a fast RT thereby elicited significantly
stronger θ band activity (5 Hz to 7 Hz) over frontal areas, including bilateral anterior
cingulate cortex (ACC) and bilateral superior frontal cortices in in-congruent trials of the
attend-face condition. This implies an involvement of frontal cortical control networks [436].
Potentially, θ plays a mediating role supporting the resolution of conflicting information. In
addition to that α seems rather burst-like (see Figure 32 left, the left time-frequency plot
to get an intuition). While not statistically verified yet, this burst like behavior has been
suggested recently [232] and possibly relates to attention sampling [207]. Interestingly, here
burst seem to occur every 200 ms, which would correspond to a 5 Hz rhythm. Whether
a statistical relationship between 5 Hz θ and possibly phase gradient dependent nested α
bursts [210, 211] exists, remains to be tested.
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2.4 Artificial neural networks

Yet again, the global pandemic hindered most of the progress on this part of the project (see
"COVID 19 remark"). For both major experiments (see below), previously recorded MEG
has been a pre-requisite. However, it should not be a secret that this part of the project was
treated as "bonus" right from the beginning. Only once the required MEG data has been
collected sufficient training data would have been available to attempt potential ANN ar-
chitectures seriously with respect to the research questions (see "Research question"). After
MEG data analyses would have been finished, this part could finally be seriously addressed.
This is due to the fact that for Experiment 1 (see page 154), MEG data is either the train-
ing data or required to compared the ANN to. Not only the raw data is required however,
but moreover source level and time-frequency transformed data as well. For Experiment 2
(see page 155), MEG data is not inevitably required, however in order to implement the
hypothesized cortical computational framework as accurately as possible, respective MEG
results from both experiments are required. For those reasons, only very simple first steps
with respect to potential network architectures have been undertaken.

Expected publication output

One first author publication has been planned on spatial features learned from spatially
distributed γ band power by a CNN (Experiment 1, see page 154) and one first author
publication on oscillatory activity and related "behavioral" changes in a trained SNN.

Introduction

Modern, highly sophisticated deep neural network (DNN) applications are based on simple
models derived from findings about computational principles of the cortex. A first machine
incorporating "cortical" compute principles was the Perceptron (Rosenblatt, 1957, [73]). It
was based on the idea that each neuron in a biological network transmits neuronal signals
(action potentials) to other neurons which has an effect on the later neuron, making it more
or less likely to produce an action potential itself. The positive or negative impact a neu-
ronal signal has on other neurons, depends - among many other cellular processes - on the
respective neurotransmitters and the charge and amount of ions that are exchanged with the
extracellular space. Hence, a simplified model of cellular communication could be expressed
by the activation of a neuron that outputs a weighted signal (±) to one or more other neu-
rons. The Perceptron was not a computer according to modern day standards, but rather
a fully integrated machine that has a grid of input receptors that would output their signal
onto a single output neuron. Given a certain threshold, the output could either be 0 or 1,
enabling the Perceptron to separate between two classes. Thereby, each input to output
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connection received a weight that was modified by element wise multiplying the input with
the difference between predicted and target class (either −1, 0 or 1) and adding the result to
the already existing weights. This machine could - as a result - separate two classes of input
examples (simple shapes) reliably, but failed at slightly more complex stimuli. It turned
out that adding more and more - so called "hidden" - layers between input and output
neurons (hence deep neural networks) greatly improved performance. Findings from Hubel
& Wiesel (1962) [30] later inspired the theoretical development of the Neocognitron in 1982
[134]. Thereby, multiple layers of simple (or s cells) and complex (or c cells) are wired up
such that in each processing stage, feature specific s cells respond preferably to the presence
of their preferred feature and c cells if one or a specific combination of s cells are active.
Thereby, features get grouped and are re"interpreted" as combination of simple and hence
complex features. For example, basic features such as lines that are responded to by s cells
are combined by c cells into corners. Higher order s cells in turn would respond to lower
order c cells and so on. This idea later inspired what is known today as convolutional neural
network (CNN) [135]. The brain has been a source of inspiration since day one of artificial
intelligence (AI) research. However, only little effort has been undertaken to transfer insights
from AI back to neuro-science.

As has been pointed out that a simple back-transfer of structural developments from
artificial neural network (ANN) models that have been developed with a somewhat engi-
neering perspective, such as error back-propagation [114], cannot transferred easily [86, 87].
Nonetheless, I would argue that potential difficulties in a respective back transfer of findings
from AI to neuro-science are mostly limited to structural aspects. The respective back-
propagation algorithm for instance could be shown to be functionally similar to what is
theorized to be computed in dendritic connections, however based on a fundamental differ-
ent "software" implementation [85]. The discovery of new ways to implement more powerful
neural networks does not lead to any new insights into computational functions of the brain,
however deriving hypotheses about underlying brain computations from ANNs where archi-
tectural similarities do occur, could potentially provide a powerful tool for a more in depth
understanding of the brain from a computational perspective. Over the past ≈ 5 years,
some researchers have focused on identifying exactly those similarities. The basic principle
behind this kind of research is rather simple: it boils down to training one or more humans
and a ANN on some (often visual) task and compare respective brain activity to ANN layer
activations. Similarly, an ANN can be set up to roughly mimic the primary visual compute
architecture and trained to produce pseudo-neuronal activation from original human brain
data. This has been done e.g. by Seeliger et al. (2021) [124] in an impressive demonstration
how powerful this method indeed is. Human subject fMRI data has been collected, while the
subject was watching more than 23 h of a TV series inside the scanner. Afterwards, a CNN
was built to mimic core parts of the visual processing pipeline: Retina, LGN, V1-3, MT and
FFA. During training, the CNN received a temporally down-sampled version of the original
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video stream as input data and was trained to replicate the respective fMRI data at each
layer. Layer weights of the trained network have been extracted afterwards. Among rather
cryptic patterns, many patterns that have been extracted from "V1" of the CNN (the first
convolutional layer) exposed stripy, grating-like shapes. Applying the learned filter kernels
to images resulted indeed in an edge enhanced version of that image. V1 is known to respond
to different bar orientations and movement directions [30] and hence the assumption of a
functional similarity between the brain and CNNs imposes itself. Nonetheless, this study
does not prove that any of this is indeed what is computed, but that an approximate struc-
ture, trained to transform similar input patterns to similar output patterns learned features
in lower layers to which lower hierarchy brain areas preferably respond. From a long list of
potential issues of drawing the proposed conclusion from the presented results, possibly the
most impacting are spatial and temporal resolution of both, the CNN and fMRI data. While
the CNN does not capture any temporal dynamics, fMRI does on a very low temporal scale
(order of seconds). Computationally relevant time scales for brain activity changes can very
well exceed the 100× per s order [146]. Seeliger et al. (2018) [126] related MEG activity to
the activation profile of a CNN exposed to a similar task: object recognition. Again a CNN
to brain convergence could be observed. Thereby, the highest correspondence between early
CNN layers is to really primary visual region signals, early after stimulus onset, whereas the
correspondence with higher order regions of the brain and deeper CNN layers is higher later
in the trial. This demonstrates as well how - to a certain extent - ANN models can serve as
a reference frame for human brain investigation. Again, thereby not so much structural, but
more functional aspects seem somewhat comparable.

A full neuronal activation map has been recorded from the Hydra and yet the neuronal
code that explained the Hydra’s behavior could not be decrypted [24]. Deciphering the
neuronal code however is not necessarily the only way how information about the exact
computations of the brain could be derived. Again the potential methodology could be
derived from AI research. While the exact underlying logic within a neural network is hidden
to the observer, the collectively (from the neurons) computed functions are to some extent
accessible. The aforementioned filter kernel visualization can count as such an example.
The mathematical operation the network performs thereby is known (convolution), whereby
the operator is learned and can be visualized in terms of feature preference by tracing back
errors and generating a stimulus that maximizing the response at each layer [437]. This
means that even though the metaphysical why the neural network arranged itself in a certain
state remains hidden, what that state or function is, can be read out. Much has e.g. been
hypothesized about the exact computational role of α oscillations [91, 224, 291], but only
recently the relationship between brain data and functionally more or less similar artificial
networks has been targeted. So far, even less investigated remains the relationship between
ANNs and neuronal oscillations in terms of functional similarity. If neuronal oscillations
indeed execute network function relevant signal modulations, then those respective functions
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can potentially be either learned from the data and later visualized [124] or a trial by trial
analysis of time-frequency transformed data reveals insight into what is computed, similar to
what has been done using time-locked MEG data [126]. In general the potential approaches
are two fold: Mapping existing brain data to ANN model activity (or using ANNs to map
respective activity) or building brain data inspired neural network models from ground up
inspired by brain functions and test functional principles thereby.

Experiment 1: brain machine similarity In a first step, previous attempts on map-
ping neuronal network activity to brain data and vice versa, need to be extended to the
time-frequency domain. The study by Seeliger et al. (2021) [124] used fMRI data to train the
CNN model. This model learned to produce the overall fMRI activation for several primary
regions from the original input using 118.000 volumes of fMRI data as training examples. In-
stead of fMRI data, time-frequency resolved MEG could serve as input as well. Trial-by-trial
fluctuations - depending on the input stimulus - would hence not be voxel activity measured
as BOLD activity, but perhaps γ band power. Even more loosely interpreted, the proposed
brain-ANN correspondence with respect to fundamental image processing strategies of both
networks (if existing), should be visible even without "cross-training" the network with brain
imaging data. Instead the hypothesized functional similarity should be possible to extract
even from a pre-trained CNN model, such as the VGG16. This network has been trained to
classify 1000 image categories which is probably less than a human is trained on, but still
reasonable in size. If - as hypothesized - CNNs and the brain share computational similarities
and those similarities are biologically reflected in temporal rather than spatial correlations
(as with the CNN), then relating the frequency spectrum of human participants in primary
visual regions - exposed to certain stimuli - to the activation of more shallow e.g. VGG16
network layers - exposed to the same stimuli - should reveal some correspondence. One
possibility would be to use the MEG data that has been collected during Experiment 2 (see
page 130) and related primary visual region time-frequency resolved data to the activation
pattern of the VGG16 when exposed to the same stimuli. To approach such an experiment,
the raw MEG would need to be transformed into source and time-frequency space, e.g. by
using a DICS beamformer [423] or time-frequency transformed virtual channels obtained
from LCMV beamforming, such that each grid point within the gray matter of the subject’s
e.g. V1 is transformed into a separate channel. The resolution of the fMRI data used by
Seeliger et al. (2021) [124] was relatively low (2.4 mm isometric voxel size) and hence a grid
spacing of around 2.5mm for the beamformer approach might already yield sufficient results.
One major problem however is the amount of training data. During MEG Experiment 2,
1.400 trials have been collected from every subject irrespective of the condition. Since 40
participants have been recorded using this task, theoretically 56.000 trials could be obtained
which would result in high statistical power with respect to a given correspondence metric.
If γ band power is related to feed-forward stimulus processing, then trial-by-trial fluctua-
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tions in the γ band as a response to the stimulus presentation should be spatio-temporally
related to the CNN activation patterns. Similar to what has been demonstrated by Seeliger
et al. (2021) [124], a neural network could furthermore be trained (based on 56.000 trials)
to produce respective time-frequency resolved data for each grid point. The learned spatial
filters from this process are expected to be highly similar to what has been found for fMRI
obtained filters. This is due to the high correspondence between γ and the BOLD signal
[238, 303, 361], but furthermore due to the suspected high functional correspondence. If
such a similarity could be demonstrated (e.g. for γ), then indeed the computational role of
γ becomes directly accessible to some extent.

Experiment 2: brain machine modelling Furthermore, hypothesized computational
functions for different frequency bands could be investigated directly on respective neural
network implementations. One straight forward approach would be to utilize a pre-trained
neural network, such as the VGG16 and transfer the respective CNN layer weights onto a
spiking neural network (SNN) [438]. Resulting spiking neural networks expose - strongly
dependent on parameter settings [104] - a variety of temporal dynamics. Those could be
compared directly to brain data via neural mass models [439] or DCM simulations (see
e.g. The Virtual Brain [112] 37). On a much simpler scale however, the behavior of the
network could be assessed under the influence of a coupled external oscillator. It could be
shown that SNNs can be "entrained" using a spiking neural oscillator (SNO) [440]. External
oscillatory entrained activity would thereby correspond to the role of coherent α band activity
in the cortex [91]. A SNN derived from e.g. a pre-trained version of the VGG16 via DNN-
SNN layer conversion [438] could be connected to a SNO of low frequency (relative to the
networks inherent time scaling) [441]. Classification performance before and after adding
the oscillator potentially adds insight into the potential functional role of low frequency
oscillations in the brain. It has been hypothesized that coherent low frequency α activity sets
up a communication channel in the network, aiding the respective computations [91]. Hence,
a coherent low frequency oscillation across multiple SNN layers would - to some extent -
synchronize the internal network activation as well, which is hypothesized to aide certain (low
coherent α or θ power) computational pathways [260], whereas others are suppressed (high α
power). Since low frequency oscillations have been strongly associated with feedback activity
[52, 82, 91, 420] and the classical version of the VGG16 does not have such connections, the
transferred architecture potentially needs not be complemented. However, even without an
implementation of the connections themselves, classical α inhibition effects [224] whether
true or not [176] could at least be implemented on the level of the hypothesized influence on
each layer, whereby the network’s response (either behaviorally in terms of e.g. accuracy or
computationally) is measured.

37https://www.thevirtualbrain.org/tvb/zwei
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Figure 34: Concept for ANN Experiment 1. Derived from the human visual architecture, a neural
network is set up to comprise, retina, LGN, V1-4 and FFA, similar to what has been done by Seeliger et
al. (2021) [124]. Here however, V4 was added and the respective input size was doubled, while the rate
of convergence was kept constant, leading to a same sized output. Instead of training the network on a
single human subject of whom 23 h of fMRI data has been recorded, the model will be trained on data from
time-frequency resolved virtual channels at respective grid points. The network will be trained to produce
respective time frequency transformed MEG data from the stimulus. Afterwards, layer weights of the ANN
are analyzed and visualized. Data from the second MEG experiment (see page 130) will be used for this
ANN experiment.

Experiment 1: brain machine similarity Brain-machine-similarity can be measured
multiple ways. However, two main strategies have been demonstrated to provide promising
results: Relating brain and neural network activity directly, given a similar task [126, 289], or
by training neural network models on brain data and extracting learned features [124, 442].
For both analyses, previous literature provides template analysis pipelines. From there
hypothesized working principles could be derived. Seeliger et al. (2021) [124] already propose
an architecture where a neural network model was trained to produce fMRI data from input
stimuli that were similar to what the subject has seen during data acquisition. The network
was set up such that primary visual regions (retina, LGN, V1-3, MT, FFA) are resembled.
Due to the close relationship between the BOLD signal and γ band oscillations for the
processing of visual stimuli [238, 303, 361], the principle experiment can be repeated, by
replacing fMRI data with grid spaced single trial data bins of time-frequency resolved MEG
data in the γ band for each virtual channel. Since multiple participants are used, respective
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individual anatomies (an individual virtual channel locations) have to be transformed into
e.g. MNI space [425] in order to achieve the required trial count. Here, the data from
MEG Experiment 2 (see page 130) to train the network. Thereby, 40 × 1400 trials have
been recorded over all participants. This yields 56, 000 training examples (counting in all
trials and ignoring the fact that probably some trials need to be excluded). For each trial -
or training example - time-frequency resolved virtual channels are computed either using a
DICS beamformer [423], or time-resolved virtual channels obtained via a LCMV beamformer
[337] that are transformed into time-frequency data afterwards (see e.g. "Feature specific
neuronal oscillations in cortical layers (in prep)"). The anatomical resolution is obtained
from the recorded T1 weighted MRI, where each respective gray matter voxel is assigned to
a given ROI and used as a grid point for the beamformer search. Not only could respective
time-frequency bins of interest (e.g. shortly after stimulus onset until shortly before the
response) be averaged and used as data points exactly like Seeliger et el. (2021) [124] did,
but furthermore, a sliding window approach could be used, as has been done previously as
well for comparing time-locked MEG data with CNN activation [126, 289]. In both cases,
spatial filters learned by the model can be extracted and visualized. It is hypothesized that
those extracted features expose structural similarities to what has been found by Seeliger et
al. (2021) [124] for fMRI data and that those similarities are on average strongest where the
average γ band response in that respective region is strongest. Furthermore, an exploratory
analysis exploiting the same methodology is planned for θ, α and β as well. See Figure 34
for an overview of how the experiment is conceptualized.

Experiment 2: brain machine modelling In order to build a neural network model
that exposes known similarities to the brain and can be probed to measure the network’s
response to external oscillations, a set of obstacles until then has to be overcome. First,
a potential SNN architecture has to be found that a) can perform the task and b) shares
structural (and temporal) similarities with the brain. Second, SNN neuron and network
parameters have to be found that allow for the expression of realistic low (e.g. α) and high
(e.g. γ) oscillations. Only then a respective perturbance to the system could potentially
generate new predictions that can be tested using brain data. Third respective experiments
have to be carried out.

In general, this part is the least conceptualized of all aspects of the recent work. It
has been thought the most difficult task with the most pre-requisites (e.g. MEG data and
GPU cluster access) and most unclear methodological parameters. Only a few pre-tests
with respect to SNN networks have been conducted. In fact only the second part has
been partly addressed. In a first step, LIF neurons were investigated with respect to their
capabilities to express rich enough dynamics on the network level (α, γ). A SNN was
implemented as proposed by Gu et el. (2019) [443] only with twice as many neurons (see
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Neuron parameters Network parameters

Cm 1.0 membrane capacitance in pF Nexc 800 excitatory neurons
EL 0 resting membrane potential in mV Ninh 200 inhibitory neurons
Ie 0 external current in mA wexc 0.1 excitatory weight
Vm 0 membrane potential in mV winh 0.5 inhibitory weight

Vreset 10.0 reset membrane potential in mV d 5 synaptic delay in ms
Vth 20.0 firing threshold in mV
tref 2.0 refractory period in ms
τm 20.0 membrane time constant in ms

Table 3: Network parameters of LIF model to estimate γ band response depending on stimulus gain,
reproducing previous results [443]. See Figure 35 bottom.

most relevant parameter settings in Table 3). The network architecture has been tuned
towards edge detection in a wider sense. 800 excitatory and 200 inhibitory neurons have
been connected all-to-all mimicking a grid of ON or OFF cells (see "Structural aspects of
the brain"). Depending on the strength of the synaptic input (Poisson distributed input
spikes to each neuron), the neuronal dynamics change. Findings by Gu et el. (2019) [443]
could be replicated (see Figure 35 bottom). If the input gain was set to exactly match
the average response threshold of the network, the network predominantly expressed 10 Hz
oscillations (Figure 35 bottom left). Doubling, tripling or quadrupling the input gain, shifted
the peak frequency in the network from ≈ 70 Hz to ≈ 105 Hz to ≈ 135 Hz. Note, that
only the amplitude but not the frequency of the stochastic input process has been altered.

In a second experiment, the same number of all-to-all connected neurons have been chosen
only this time implementing the Izhikevich neuron model [104]. The respective parameter
settings can be obtained from Table 4. A constant input of duration T has been provided
(similar to the LIF model) however each neuron was tuned to a different input current. This
simulates the response to e.g. differently oriented bars, where neighboring stimulus features
elicit weaker but still substantial responses [30]. A response time of D = 50×T was measured.
Setting T = 20 ms results in a trial length D of 1 s. Figure 35 top middle and right show
the spike raster plots of each single neuron, whereas Figure 35 depicts the time frequency
transformed average membrane potential Vm over all neurons. As a response to typical
single feature stimulation, the inhibitory neurons within the network synchronized in a low
frequency rhythm (≈ 10 Hz) which entrained the high frequency excitatory neurons that
otherwise would expose increased activity between 100 Hz and 150 Hz which is comparable
to what was found for the LIF simulation.
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10 Hz (𝜶) high frequency 𝛾  

Figure 35: SNN to stimulate low and frequency states and SNN response to grating stimuli
The upper part of the figure was derived from a neural network simulation based on the Izhikevich model
[104] to stimulate inhibitory low frequency oscillations that are reflected in excitatory responses as well.
See Table 4 for the set of parameters. The left side reflects the frequency spectrum of the active neuronal
network. Middle and right parts depict the spiking events of inhibitory and excitatory populations within
the network. The network was tuned to expose inhibitory α oscillations on receiving input. As clearly visible
in the frequency spectrum (left) and the spike raster plot (right) low frequency oscillations from inhibitory
neurons impose rhythmicity on excitatory neurons as well, but including a more or less synchronized high
frequency component (here around 90 Hz to 150 Hz). The lower part depicts the time frequency spectrum
of a different SNN based on LIF neurons [443]. This neurons were tuned to respond with γ oscillations to
input grating stimuli (alternating brightness values). Thereby the gain ("contrast") of the stimulus has been
modified, which caused a shift in the frequency spectrum, of the γ band.

Neuron parameters Network parameters

Nexc 800 excitatory neurons a 0.02.+ 0.08α time scale of recovery
Ninh 200 inhibitory neurons b 0.25− 0.05α sensitivity of recovery
Vth 30 firing threshold in mV c −65 + 15α2 reset value of Vm

Vm -65 membrane potential in mV d 8− 6α2 reset value of Um

Vmin -65 lower bound in mV α X ∼ U(0, 1) random between 0 and 1
Um −65b Vm recovery

Table 4: Network parameters for the Izhikevich model [104] to simulate event related α and γ band
responses. See Figure 35 top.
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Future considerations

Both experimental strategies have been explored theoretically but could not finally be devel-
oped to a degree where a first feasibility assessment could be made. Many methodological
questions still remain open and subject to further investigation. A first success on the
road-map to completing Experiment 2 (see page 155) has been to replicate findings by pre-
vious research on the simulation of low and high frequency oscillations using SNNs [104, 443].

Experiment 1 (see page 154) has not exceeded conceptualization phase. From the now
gathered MEG data the network can be trained as described, based on promising approaches
from previous literature [124, 126, 289]. It is expected that γ band oscillation trial-by-trial
power can serve as a similar model as previously used fMRI based models. Indeed, if expected
results became manifest, more evidence towards γ reflecting feature type specific processing
[91, 189] rather than representing feature specific information or binding [184, 444] could be
presented. For Experiment 2 (see page 155) at least a promising pre-selection for respective
neuron models could be made. However, the trained model and hence respective experi-
mental results are still lacking. In a first step, a pre-trained image recognition network -
such as the VGG16 - could be converted into a SNN [438]. Parameters derived from the
pre-experiments thereby serve as starting points for further tuning. By adding an external
oscillatory source to the SNN while image recognition is performed, behavioral performance
(i.e. accuracy) can be measured depending on the frequency, amplitude and phase of one
or more simultaneously active sources. In addition to that the pre-trained VGG16 could be
trained further to perform the task used in MEG Experiment 1 (see page 123). Afterwards
the weight extraction and conversion would be performed similar to the original version. In
one type of experiment, a bottleneck (i.e. limited access to the input) could be introduced
and a controller added to the network, which allows the network to control its input data
frame. This process is similar to what is thought how attention is implemented in humans
[445]. It is hypothesized that simultaneous activation of input and output - depending on
the location of the artificial attentional spotlight - leads to low frequency synchronization in
respective neurons. In a second type of experiment those hypothesize low frequency oscil-
lations could externally be imposed and the respective task performance (i.e. classification
accuracy) is measured.

Irrespective of which approach is targeted first, the neural network development inher-
ently relies on the MEG data analysis which as of today (January 15, 2023) has not been
completed.
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3 General Discussion
The human neo-cortex is of special interest as a computational model, due to its extended
problem solving, motor coordination and linguistic skills. Hence, an understanding of the
computational principles in the cortex does not only provide insight into ourselves from
a philosophical perspective, but furthermore offers the opportunity to transfer respective
findings to artificial machines. In other words, if the human brain is capable to organize
input-output response patterns, such that a human shaped flexible body can autonomously
ride a bike through big city traffic at an average power consumption of 20 Watt/h for
the control unit [17], then a machine, based on brain-compute principles, would provide
a major leap to the current transistor based ANNs which would consume Gigawatt/h of
energy to achieve human level performance [18]. In addition to that, understanding the
exact compute architecture of the brain provides new methodological perspective in the field
of neuro-prosthetics and BCI. Thereby, understanding the exact neuronal code might be
deemed impossible for the foreseeable future, since even the neuronal code of the Hydra
which only has a few hundreds to a few thousands of neurons which all have been recorded
simultaneously, could not be deciphered [24]. This "black-box" problematic of the brain is
shared with ANNs.

3.1 Summary of results

We could demonstrate that α and γ oscillations could be mapped differentially to separate
cortical layers within V1, but furthermore that α and γ band signals are differential related
to feature processing as well. As predicted by previous literature [52, 91, 238, 272], γ band
oscillations have been found to be positively related predominantly to deep and superficial
layer BOLD activity and has been linked to ongoing feature processing (higher γ power for
Pc − nPc). γ oscillations are thought to reflect feed-forward processing [52, 91, 240]. To
confirm this hypothesis it would be necessary to conduct a connectivity analysis similar to
previous literature [265], which remains to be done. In general, predicted findings for the
γ band have been confirmed [52, 82, 272]. However, the data suggests that γ does not di-
rectly reflect specific feature processing but probably rather general feature processing. On
a side note, the here observed EEG γ band responses (see Figure 15 (B)) are comparable
to what has been found for the preliminary analysis of the MEG data of Experiment 1 (see
Experiment 1 on page 123 and Figure 30). A positive γ band response could be observed
post-stimulus and early trial (200 ms to 400 ms after stimulus onset) for the combined ac-
tivation of any stimulus. This verifies that at least expected fundamental γ components are
present [173]. Instead of direct feature selective processing γ oscillations have been thought
to reflect a coherent feed-forward signal of prediction errors [422]. Since in the presented
EEG-fMRI experiment the orientation of the stimulus did not expose any informative value
for the participants with respect to the task and since the actual features of interest have been
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presented randomized in an odd-ball paradigm, presented findings are not easy to reconcile
with this framework. This is different for the MEG data set of Experiment 1 (see Exper-
iment 1 on page 123), where specifically predictability has been modulated. As the MEG
data remains to be investigated, no conclusions about the relationship between γ oscillations
and stimulus predictability can be made. However, first behavioral results indicate that even
though participants were not even able to explicitly report the presence of some probability
scheme (let alone the scheme itself), RTs of easy trials monotonically increase with decreased
predictability. This indicates that predictability did indeed affect the stimulus processing
to some extent. A more detailed interpretation of current findings with respect to current
theoretical frameworks is presented below.

α band activity has been found to be negatively related to the BOLD signal between
8 Hz and 14 Hz with strongest negative effects in deep and superficial layers for activated
(relative BOLD increase) and in superficial and middle layers for deactivated voxel (rel-
ative BOLD decrease), irrespective of the response specificity (amount of voxel included
in the contrast). Negative correlations between α power changes and the BOLD signal in
superficial layers have been found to be related to more general activation / deactivation
processes driven by directed (spatial) attention [56, 270, 354]. First results obtained from
the pre-stimulus period (500 ms prior to stimulus onset until stimulus onset) - computed
by Maryam Mostafalu [1] - indicate the presence of a lateral attention effect over occipital
sensor sites in the α band, in line with findings from previous literature [173]. This means
that potentially a targeted (dis-) inhibition could be observed (hemisphere specific) for the
respective given attention condition. Since this effect occurred pre-stimulus, feedback di-
rected activity is likely to be the cause. Note, that no comparable results have been found
for the γ band, which serves as a sanity check. No laminar specificity has been investigated
yet, however a general attention lateralization selective process has been observed similar
to the general (de-) activation process observed for the EEG-fMRI experiment. While this
effect is consistent between preferred and not preferred orientation for deactivated voxel,
the general α response pattern differs when only considering generally activated voxel. It is
hypothesized, that an interaction between general attention and feature selective processing
results in a non-additive relationship between attention α and feature α for the preferred over
not preferred orientation. Interestingly, a feature and frequency specific difference could be
observed for oscillatory responses in the α band. Comparing the correlation between voxel
preferring one feature with EEG α with voxel preferring the other feature, revealed a dif-
ferential response pattern for low (8 − 10 Hz) and high (11 − 13 Hz) α. Thereby, fMRI
BOLD activity decreases for both, voxel preferring a respective orientation (Pc), which is
correlated negatively with upper α frequencies and voxel preferring the respective other ori-
entation (nPc), which is reflected in lower α frequency. Hence, upper α oscillations are
related to increased processing of the preferred stimulus and decreased processing of the not
preferred stimulus and the reverse for lower α frequencies. This predominantly deep and
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middle layer α effect is present irrespective of the respective attention sub-selection (A±).
Strikingly, even though no significant difference between Pc and nPc has been found with
respect to the α frequency profiles, superficial layer profiles for A− and A+ for nPc appear
rather similar. On the other hand, the profile for Pc deviates strongly from A+ compared to
A−, such that an interaction between α activity related to the general activation of superfi-
cial layers and feature selective α activity of deep layers could be suspected. This hypothesis
receives further support from the fact that we found attention related deactivations in the
BOLD signal for feature and feature signal-free voxel selections in superficial layers, linked
to α. The canonical microcircuit model of the cortex (see "Canonical microcircuits: corti-
cal compute modules") [82] predicted low and high frequencies to be related to deep and
superficial layers. Low frequency (e.g. α or β) oscillations have been attributed mainly to
feedback processes [52, 82, 91] in superficial and deep layers [52, 80, 272].

In Experiment 2, where more long range connections between lower order and higher or-
der cortical regions have been targeted for investigation preliminary results have been kindly
provided by Maxime Ferez [407]. In a face-word Stroop experiment either facial or lexical
features of a compound stimulus of both needed to be attended. It has been hypothesized
that α band activity coherently sets up the communication channels between specific feature
processing neurons in lower and higher order regions and inhibits rivaling information [91]. A
conflict between information derived from facial features with information derived from the
semi-transparent overlaid word should be visible differential by a relative α power decrease
over target (FFA) and a relative α power increase over distractor (VWFA) processing re-
gions. An analysis of the pre-stimulus period of Experiment 2 revealed significantly higher α
band activity for the attend-face condition compared to the attend-name condition over cor-
tical areas that include VWFA. Furthermore, an analysis of the attend-face condition alone
revealed that increased α over VWFA regions was stronger for in-congruent trials, where the
RT was lower. This indicates that successful distractor inhibition improves behavioral per-
formance [432]. Since it appears highly questionable whether distraction inhibition indeed
causes behavioral improvements [176], the presented results could furthermore be interpreted
with respect to modified sampling of information [180, 446].

3.2 Interpretation in the light of current theoretical frameworks

Here presented theoretical models and experimental findings help to shed light onto those
core functional computations. Findings from the laminar EEG-fMRI experiment not only
replicate findings from Scheeringa et al. (2016) [238], but furthermore provide novel insight
into the laminar frequency architecture of the human visual cortex. Multiple sources for
synchronized neuronal activity in a frequency range - often called α - has been suggested
depending on the task and respective cortical region [234]. Bonnefond et al. (2017) [91]
propose the presence of at least two functionally distinct processes that are implemented via
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α frequencies: setting up a neuronal communication channel for feature specific processing
(superficial layer) and a generally modulating activity mainly in deep layers. Since active
feature processing and attentive processes are very likely interlinked (participants have been
explicitly asked to attend and process), activation increases reflected by a relative increase in
BOLD response, cannot be decomposed into feature and attention components easily. How-
ever, given that the main contrast (preferred - not preferred) did at least implicitly control
for (spatial) attention, this contrast might be mainly driven by feature specific processes. It
has been found that attention has a major influence on the BOLD signal in V1 [447] and
and can modulate fMRI responses in a spatially specific manner [448]. Furthermore, it has
been shown that attention modulates the EEG signal particularly in the α band [251]. If
selective attention is related to positive changes in the BOLD signal, then investigating voxel
responding with a relative negative change to the presentation of a stimulus might reveal
feature specific suppression. Indeed, a negative correlation between EEG α and the BOLD
signal for all activated voxel could be observed for frequencies between 10 Hz and 13 Hz
predominantly in the middle layers. When limiting the analysis to deactivated voxel (any
stimulus compared to baseline), the negative correlation is preserved. However, the strongest
effects are found in superficial layers and are more broadband. Regressing out the feature
specific signal from the general activation and repeating the deactivation analysis did not
alter those findings. Hence, superficial layer α band correlations contribute most to a neg-
atively deflected BOLD response (relative to baseline) irrespective of the stimulus feature.
Neurons processing features that are not preferred given a respective stimulus expose a neg-
ative correlation with α, but a lower BOLD signal in general. Higher low frequency α hence
indicates a suppressive effect, similar to hemifield suppression in lateral attention tasks [251].
Attention modulated α (dis-) inhibition in general has been hypothesized a general compute
principle of the cortex implementing the gating of cortical information flow [91, 148, 224] (see
also "Gating by inhibition"). In addition to superficial layer attention related α we identi-
fied a deep layer feature specific component where upper α frequencies are more negatively
related to the BOLD signal for preferred as compared to not preferred features, whereas
the reverse has been observed for not preferred features in the lower α frequency band over
preferred (see Figure 19). The difference between lower and upper frequency α in the overall
frequency profile indeed indicates feature and frequency selective processes in deep layers.
Note however, that a differential response in superficial layers for activated voxel in Pc com-
pared to deactivated is suspected, but has not yet been investigated (see Figure 20). It is
expected that superficial attention α and upper frequency deep layer preferred feature α in-
teract only when solely generally activated voxel are selected. Findings furthermore provide
evidence for a change in α frequency relative to whether stimuli needed to be integrated or
segregated with respect to the temporal domain [449]. For a task requiring temporal segre-
gation α frequency increased contra-lateral to the side of attention and decreased ipsi-lateral
[181]. Respective visual hemifields have been associated with target and distractor stimuli.
The present findings on frequency specificity from the laminar EEG-fMRI experiment could
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reflect a similar process, where not temporal features but instead visual feature processing
is separated depending on relevance (preferred compared to not preferred orientation). A
plausible explanation for the present data would hence be a model where incoming activity
(received at L4) is modulated by feedback activity in deep layers (from higher order regions)
[52], such that the respective signal is phase coherent with the higher order area in the
α band which would allow the exchange of information [91]. Employing the procedure of
nesting the incoming γ band signal into the feedback driven α in deep layers would be a
way to recruit a certain set of feature specific neurons. If neuronal populations are glued
together by coherent low α power [91], then neuronal suppression cannot be in the same
frequency range, if processing populations are spatially very close (like for linear features) in
V1, because of the interference with the recruitment α. Recent theories have emphasized this
role of α oscillations in information sampling [180, 446]. Since feature selective processing
(deep and superficial layers) is inevitably mixed with signals related to "general attention",
but attention related signal changes were mostly attributed to superficial and middle layers,
deep layer correlations are assumed to reflect "pure" feature specific α activity. Given the
framework by Bonnefond et al. (2017) [91], higher order regions are thought to recruit lower
order regions using coherent α oscillations. At this stage, our data speaks in favor of a
feature selective process, where feature separation is achieved by multiple α sub-bands [181]
mostly in deep layers [52]. The canonical microcircuit model by Bastos et al. (2012) [82]
furthermore assumes feedback related connectivity from deep layers to L4 within a single
processing unit (e.g. column). In the light of the nested oscillations framework by Bonne-
fond et al. (2017) [91], incoming activity at L4 either from thalamus or lower order cortical
regions [80] is thereby entrained with feedback α activity (here via deep layers). Since the
targeted entrainment for preferred features is mainly found in higher α bands (11 Hz to
14 Hz), a potential overlap with β (typically starting at around 12 Hz) cannot be excluded.
The predictive coding framework (see What is . . . on page 33) assumes top down pre-
dictions to be reflected by feedback β changes. However, it has been hypothesized that
those changes are conveyed by α reflecting precision [219]. A targeted recruitment of feature
selective neurons implemented by high frequency α / β would be conceptually close to a
"prediction". From the expected sensory content, respective feature selective neurons might
be chosen in order to facilitate bottom up processes. This process might already start prior
to the stimulus [252], but after stimulus presentation the respective predicted percept could
be locked into the evidence based state [179]. The prediction error could be used as specific
marker on how to update the previous set of allocated low hierarchy neurons, such that a
respective value functions is maximized (e.g. feature correspondence) or the current state of
processing is stabilized to collect evidence [181]. Bonnefond et al. (2017) [91] hypothesized
feature specific α band activity to be reflected in superficial layers, which is not challenged
by present results. Feature specific activity inevitably passes superficial layers in order to
be forwarded to the next processing stage [80] and the EEG-fMRI experiment demonstrated
those to be related to feature processing as well.
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Figure 36: Scalability of phase dependent object and feature processing. A) Object groups are redefined depending
on the size of the attentional aperture (assuming a constant field of view). Attending the woman and the dog might form an
object group of two objects (the woman and the dog). Both objects are sampled at different phases of low frequency oscillations
(θ). Features of each object will be processed in separate α cycles per object, along the phase gradient. Thereby salient, goal
driven or otherwise more important features will be sampled early in the cycle. Once an “attentional aperture change” is applied
(i.e. the attentional spotlight is shifted to the dog only) a rearrangement would occur. A new object group is formed, consisting
of more low level “sub-objects”. Those sub-objects are again sampled at θ frequency. This allows for a higher feature resolution
at the (sub-) object level. Features are again sampled / processed within separate α cycles. This inverse relationship between
size of attentional aperture and resolution within the attentional spotlight could be demonstrated by [450]. B) Due to the
limited processing capacity within a single α cycle, low level features need to be grouped into higher level features, such that
the entire object processing still fits within a single cycle, which results in a decrease of spatial resolution for a wide attentional
aperture. Processing visual input at the highest possible resolution (e.g. to determine the exact shape and texturing of the
dog’s collar in A), could only be performed on a small fraction of the visual field. The processing of the entire scene in turn
requires features to be “downsampled” and / or grouped in order to fit a single cycle length. This figure has been reproduced
with kind permission of Bonnefond et al. [258].
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Once the incoming signal (at L4) is entrained via deep layer α connections [52, 80] it is
routed to superficial layers, where the feed-forward transmission mostly happens [80, 82]. I
would propose a second source of α which seems mostly related to signal gain modulation that
decides via its inhibitory strength whether the incoming signal, convolved with deep layer
α activity, can actually pass to the next higher order region (L4). No frequency specificity
could be observed for negative correlations between EEG α and BOLD signal in superficial
layers indicating a general process as well. Hence, multiple simultaneous processes reflected
in the α band could be dedicated to different tasks: general (probably spatial) attention in
superficial layers [270] and feature selective "module selection" via deep layers [52]. I would
hence suggest that by predicting which cortical modules are required and allocating them
even prior to the stimulus (deep layers), higher order regions recruit a set of task specific
neurons via deep layer α coherence. From deep layers, the α signal is probably routed to
L4, where it picks up the "content" from lower order regions (reflected in γ) and nests them
into its phase gradient. In superficial layers, a second α related process fulfills a gate keeping
activity, similar to what the GBI hypothesis describes [224] (see "Gating by inhibition").
E.g. spatial attention would be assumed to act at this level, where the signal is hindered to
leave at superficial layers. However, if superficial α is low (e.g. due to attention), information
that has been brought into coherence with high order region α can travel to L4 of that region.

A relatively novel viewpoint has recently been brought forward by Bonnefond, Jensen
and Clausner [258] in a not yet published article. Figure 36 has been reproduced from this
paper to illustrate the core idea. This framework interprets previous literature in the light of
a more sampling driven low frequency mechanism. In order to keep this section contained,
the respective evidence will not be discussed here in detail. Instead only core assumptions
or predictions that are derived from this model are presented and very shortly discussed.
This was done to relate findings within the realm of this thesis, to novel - yet unpublished -
ideas about ongoing cortical processes without having to present and justify my arguments
in detail. It is argued that α and θ band phases are used to sample specific aspects of
one or multiple objects. Thereby, neuronal activity is "sorted" along the α phase gradient
to separate certain object features, which are nested in a lower frequency θ phase gradient
which drives object sampling. An increase in amplitude of α and θ has been suggested to
reflect narrowing down the "window of opportunity" (decreasing the number of phase points
where inhibition is low enough for an action potential to be released) for neuronal signalling
(increasing object or feature separation). A shift in frequency would be seen as an increase
in the respective sampling rate. The described process would correspond to the feature and
frequency specific α effect that has been found in the EEG-fMRI experiment for deep (and
superficial) layers, since the proposed "sampling α" is hypothesized to be set up via feed-
back directed predictive processes that could be attributed to deep layers [34]. Increased α
power and decreased frequency would reduce the sampling capacity in voxel responding to
the not preferred orientation, which effectively implements a suppression. The model further
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hypothesizes that the relative size of the attentional spotlight, with respect to the size of a
given object, indirectly modulates the feature (or object) resolution, by grouping more and
more feature specific neuronal activation along the phase gradient. However, this respective
aspect could not be tested here. Please see "My personal framework: The convolutional
brain" where I propose my own interpretation of the data and previous literature in a spec-
ulative way. The model proposed in that section shares a lot of predictions with the here
described sampling model.

3.3 Overall progress of the project

The present project aimed to add to the understanding of cortical computations on a lo-
cal level and in widespread brain network dynamics. Oscillations are thought to play an
important role for canonical microcircuit connections [80, 82] and long range higher order
functional communication [253, 451]. It has been hypothesized that multiple attention and
feature related α band processes modulate excitability targeted (e.g. stimulus specific) and
coherently [91]. Here, I present first evidence for feature and frequency selective α band ac-
tivity in deep and middle layers. Furthermore, superficial α power decreases could be shown
to be related to the general level of excitability of large patches of cortex, potentially recep-
tive field specific [48]. To the best of the authors knowledge, this demonstrates for the first
time a differential feature, layer and frequency specific α band activity potentially reflecting
different attention and feature related processes in humans using non-invasive methods. As
has been previously demonstrated, the feasibility of laminar level EEG-fMRI to investigate
cortical oscillations in humans can yield layer specific frequency profiles. Here the range of
possibilities that this method enables has clearly been extended to the level of differential
cortical processes. However, it remains to be investigated how cortical connectivity changes
relate to α band power [265].

In addition, α-γ phase coupling remains to be investigated as well, which could not be
done using EEG-fMRI on a laminar level. Two additional MEG experiments have been
planned, designed, implemented and executed. One has been set up to target local micro-
circuit connectivity, whereas the other one was set up to target long range connections from
higher order regions. Heavily impacted by the COVID 19 pandemic, recordings for both
MEG experiments had been delayed for a substantial amount of time. Only the concep-
tualization and implementation of respective experiments and all subject recordings could
hence be completed. Preliminary analyses, kindly provided by colleagues however, already
allow for a first peak on the data. Both experiments had been set up to test different as-
pects of local or more widespread cortical activity in the visual domain. Experiment 1 (see
Experiment 1 on page 123) specifically targets local computations in early visual cortex ar-
eas, whereas Experiment 2 (see Experiment 2 on page 130) tests hypotheses with respect to
stimulus dependent long range connections between primary areas and higher order regions.
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Data provided by collegues [1, 407], already indicates that key predictions are met which can
serve as a sanity check for ongoing analyses. Thereby, predicted occipital α lateralization
has been observed for the lateral attention task and pre-stimulus α inhibition in higher order
cortical areas for the face-name Stroop task. A post-stimulus generally stimulus driven γ
response has been observed for the lateral attention task as well, but no other meaningful
analyses with respect to γ have been conducted so far. Thus, respective ROI source level
(both, classical and laminar [220, 268]) and connectivity analyses, necessary to collect evi-
dence with respect to the proposed frameworks, remain to be done.

The setback caused by the recording delay was mildly compensated by enabling the au-
thor to invest time in different scientific disciplines. To solve a respective statistical problem
- the determination and statistical testing of layer activation profiles for the laminar level
EEG-fMRI experiment - common statistical procedures did not suffice. Research into the
respective topic resulted in the aros test [353]. Via a permutation procedure it is tested,
whether the ranks of more than three group averages are indeed justifiable by the data. It
could be shown that - under certain circumstances - statistical power with respect to effect
size is sacrificed in favor of a gain in qualitative differentiation power. For the EEG-fMRI
experiments this means that the one or two most active layers can be determined and sta-
tistically backed, however the strength of this effect remains unknown. Nevertheless, the
author does hope that this test will find application where classical test procedures either
fail or result in too conservative test statistics.

With the completion of the MEG data recordings, the training of respective ANN models
(see sections "Artificial neural networks") becomes feasible. In order to investigate brain-
machine similarity, a CNN with a coarse "brain-like" architecture can be trained to reproduce
the data collected in Experiment 2 (see Experiment 2 on page 130) from corresponding
stimuli. While the raw data can be related to the network activity across multiple layers
and time points directly [126], a time-frequency transformed source level γ band signal
could be used instead of fMRI data to replicate findings from previous literature [124]. It
is expected that due to the high similarity between the feature specific BOLD signal and γ
band power changes [238, 303, 361], extracted learned filter kernels from the artificial "V1"
expose patterns that, if convolved with the input stimulus, act edge enhancing. In a second
step, either learned layer weights of the CNN or generic weights from e.g. the trained VGG16
would be transferred to a SNN architecture. First explorations of the parameter space of such
networks, revealed low and high frequency stimulus-dependent responses [443]. It is expected,
that early SNN layers express γ band activity that can be related to the active feature kernels,
as well as α oscillations, synchronizing neurons relevant to the ongoing processing. α band
oscillatory changes could also be implemented by external rhythmic stimulation, which has
been found to support sampling based computations in SNNs [260]. In combination with
recent findings, showing that brain-like feedback generators ("predictors") make networks
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more robust against adversarial attacks [132], this suggests that implementing brain-inspired
features to ANNs can improve their overall performance and advocates once more for an
exchange of knowledge between the fields of neuroscience and AI.

3.4 Closing remark

Plants do not have brains or nervous systems [2]. As has been described mainly for the
visual system, neuronal (cortical) computations are tightly linked to physical stimulus rep-
resentations. Some researchers suggested that neuronal oscillations - or in fact their exact
frequency - are directly linked to the environmental interaction (behavior) [146] or physical
processes of the body [452] and their respective time scales. Neuronal oscillations are either
the result or even required by some general principle of neuronal processing. For instance,
Honey Bees expose a similar response pattern to different kinds of odor stimuli as would
be expected for classical mammalian α band responses, but in the ≈ 18 Hz range [159]. It
can hence be assumed that, since plants do not expose short lived behavior (few exceptions
like the Venus flytrap aside), a corresponding short lived perception and corresponding neu-
ronal coordination is not an inevitable requirement to prevent extinction. The assumption
that functional principles of the human neo-cortex have been developed as a consequence
of a change in nutritional supply and other evolutionary factor has received great support
[453]. Combined, those findings are indicative for a computational setup in the mammalian
(especially human) cortex that has been tuned towards energy efficient solving of problems
related to the living conditions of a given species. I belief, the truth about how the brain
works lies somewhere at the intersection of neuroscience and brain-inspired AI research.

In the last section (see page 173) I would like to role out a more personal theoretical frame-
work that links artificial neural networks and neuro-scientific evidence. On a fundamental
level modern artificial neural networks, such as CNNs have been derived from findings about
cortical compute principles [73, 134]. A respective inverse linkage has however only recently
been considered. The author believes that, since the brain is a neural network, the neuronal
code itself might be inaccessible, however the respective functions that are computed could be
interpreted as spatio-temporal filters, similar to a CNN and could potentially be extracted.
Furthermore, accepting the assumption that artificial and biological neuronal networks share
at least some computational similarities - which has been highly suggested [124] - enables
neuro-scientists to derive testable predictions from artificial intelligence research. If there is
such a thing as a more likely or less likely implementation for a given computation in any
neuronal network, then artificial intelligence research and biological evolution might have
converged at some points that need to be uncovered.
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3.5 Evaluation of Hypotheses

Hypothesis 1 α power decreases over lower and higher order regions (or neuronal popu-
lations) are specifically linked to ongoing stimulus processing.

Evaluation: α oscillations decrease over lower order cortical regions are linked to active
stimulus processing (see Feature specific neuronal oscillations in cortical layers (in prep)
on page 58). For higher order regions the respective analyses remain to be conducted (see
Experiment 2: feature attention and conflicting information on page 143).

Hypothesis 2 α oscillations are in synchrony (coherent) between lower and higher order
regions (or neuronal populations) that are involved in ongoing stimulus processing.

Evaluation: The respective hypothesis remains to be investigated (see Experiment 2: feature
attention and conflicting information on page 143).

Hypothesis 3 α power related changes with respect to attention differ from those with
respect to ongoing feature processing, which would be expected based on anatomical findings
[80] and the idea that those are implemented in separate cortical processes with different
laminar profiles [91].

Evaluation: Results from the EEG-fMRI experiment (see Feature specific neuronal oscilla-
tions in cortical layers (in prep) on page 58) point towards a confirmation of this hypothesis.
However, the results from MEG experiment 1 and 2 (see MEG experiments on page 117)
need to confirm this. The respective analyses remain to be conducted.

Hypothesis 4 α power decreases are linked to increased activity in neuronal populations
that preferred certain stimulus features as compared to the not preferred stimulus features.

Evaluation: The hypothesis could be confirmed (see Results on page 80).

Hypothesis 5 α band activity decreases for expected (predictable) stimuli [269].

Evaluation: The respective hypothesis remains to be investigated (see Experiment 1: spatial
attention and predictability on page 134).

Hypothesis 6 α power changes are mainly linked to deep (possibly feature processing
[34, 52]) and superficial layer (possibly spatial or directed attention [56, 270, 271]) activity.

Evaluation: The hypothesis could be confirmed (see Results on page 80).
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Hypothesis 7 γ band activity is related to stimulus feature specific processes.

Evaluation: The hypothesis could partly be confirmed (see Results on page 80). However,
γ band oscillations appear more related to the feature processing rather than the stimulus
features themselves.

Hypothesis 8 γ band activity increases when predictions about stimulus features are vi-
olated.

Evaluation: The respective hypothesis remains to be investigated (see Experiment 1: spatial
attention and predictability on page 134).

Hypothesis 9 γ band activity is related mostly to superficial and mid layer neuronal ac-
tivity for ongoing stimulus processing [52, 91, 238].

Evaluation: The hypothesis could partly be confirmed (see Results on page 80). However, γ
band oscillations appear more related to superficial and deep layers rather than superficial
and middle layers, which is in line with previous research [52], anatomical findings [80] and
current frameworks [91].

Hypothesis 10 γ band activity is nested in α band activity and is coherent between stim-
ulus processing regions [240].

Evaluation: The respective hypothesis remains to be investigated (see MEG experiments on
page 117).

Hypothesis 11 Spatial filters that transform an image into an edge enhanced version can
be obtained by training a DNN to reproduce γ band power changes (obtained from a MEG
experiment, see below) in the visual cortex from initial stimulus material.

Evaluation: The respective hypothesis remains to be investigated (see Experiment 1: brain
machine similarity on page 156).

Hypothesis 12 External low frequency oscillatory activity increases robustness against
noise in a SNN performing object classification.

Evaluation: The respective hypothesis remains to be investigated (see Experiment 2: brain
machine modelling on page 157).
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4 My personal framework: The convolutional brain
In this last section I would like to role out a - highly speculative - personal opinion on how I
interpret the data in the light of previous literature. For this, I would like to establish two
assumptions: 1) the brain processes information in the sense that it transforms (changes) an
electro-chemically driven temporal code generated at sensory organs (e.g. retina) in a theo-
retically fully traceable manner. 2) the brain is a neural network that shares computational
properties (e.g. such as each node or neuron producing a weighted sum from input activation
or each neuron possessing a certain activation threshold) with ANNs. Especially the second
assumption seems hard to justify. While the first one boils down to the observation of phys-
ical processes, the second implies a correspondence between biological and artificial neural
networks. This correspondence is highly unlikely, since at least modern neural networks are
built radically different, from what is assumed to be biologically plausible. However, while
e.g. classical back-propagation used to train certain types of neural networks [84] are deemed
biologically implausible [86, 87], a functionally similar but implementationally different mech-
anism might nevertheless be at play at dendritic connections [85]. Even though ANNs are
knowingly implemented, the inner organization of how knowledge is acquired or represented
is extremely difficult to access in a comprehensive way [454]. This is all the more true for the
human brain especially since - as mentioned before - the neuronal code for simple organisms
as the Hydra could not even be deciphered [25]. Even though the "machine language" of
the brain remains a mystery to a large degree, respective functions that are implemented by
this brain machine-code could be comparable to those of ANNs, at least in some domains
and to some degree. Especially in the visual domain and early visual cortices, similarities
between CNN activity and brain data are striking [30, 134, 455]. In order to understand
what is computed in the brain, theoretical models about how a neuronal footprint given a
certain function would look like must be developed. Since this pool of potential candidate
functions is mere infinite, it could be narrowed down by hypothesizing that some functions
the brain computes are actually similarly implemented in ANNs. To me, conceptual consid-
erations, findings within the realm of this project and previous literature speak in favor of a
computational concept, implemented in the visual system, that shares high similarities with
CNNs. Functional requirements of a CNN and neuro-scientific evidence thereby provide the
conceptual framework.

As described above, feature selective α in deep layers is hypothesized to reflect feature
specific neuronal acquisition. A side effect of this process would be, that in the lower level
region that receives the coherent feedback in the α band, all neuronal populations that are ad-
dressed, would be coherent in deep layers as well. Hence, information within feature specific
neuronal populations that have been allocated to process a certain stimulus can be shared
as well. In computer vision, image processing or CNN image classification a filter kernel is
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used to enhance certain features of a stimulus. For instance a Sobel filter [456]
+1 +2 +1

0 0 0
−1 −2 −1


can be used to transform a source image into a version with enhanced edges 38 by simply
convolving 39 the input image step by step with the kernel. While the Sobel filter is custom
made, CNNs typically learn the respective filter values from the data. The Neocognitro [134]
can be seen as a predecessor to modern CNNs. It was based on findings on simple and com-
plex cells in the visual cortex, responding with differential firing rate patterns to varying bar
orientation or movement directions [30]. Complex cells are thought to combine simple cell
responses similar to a convolution operation, where the stacked activation of multiple layers
finally results in a joint "percept". Findings from the presented project - as well as previous
literature - could be interpreted such that the targeted allocation through deep layer feed-
back α reflects the recruitment of neurons for a specific filter operation. Since the neuronal
code is time dependent, α band activity at a specific target region would provide windows of
opportunity, where neuronal signals can be transferred [91, 224]. Top down predictions would
hence be realized by predicting the respective set of filter weights, necessary to maximize the
value function, where α determines the "spatio-temporal width" of the filter by coherently
recruiting neurons [91]. The "α - convolved" input signal is transferred to superficial layers
from where it is routed to L4 of the next neuronal assembly [80]. In this model, γ oscillations
would reflect the transformation of the signal. This would yield no feature specific result per
se, but rather a "filter specific" γ (response to a specific kernel; basically the operation itself).

Recently, θ has been suggested to reflect attentional sampling of objects in the visual
and auditory domain [457–459]. Thereby, θ would - similar to α - reflect some sort of input
related sampling but at a different spatial scale [309]. It has been hypothesized that θ-γ cou-
pling may reflect a possible implementation for coherence based long range communication
[204]. The idea that θ coordinates object, whereas α coordinates feature sampling (possibly
within a certain object) can partly be supported by the literature, since at least behavioral
performance fluctuates in respective frequency bands [210]. Phase coherence in the θ between
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Convolution is a mathematical operation, where values of e.g. two similar sized square matrices (kernel size)
are added and multiplied such that the resulting value for the center element is
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 = (i · 1) + (h · 2) + (g · 3) + (f · 4) + (e · 5) + (d · 6) + (c · 7) + (b · 8) + (a · 9)

Hence, this kind of convolution can be seen as a (sliding window) weighted sum between a fraction of the
input and a weight matrix (kernel).
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V4 and PFC has furthermore been demonstrated to be a predictor for short term memory
task performance [420] again indicating a role for item (or object) organization. Within the
hypothesized model, grouping sets of features to objects via attention, would boil down to
a targeted relative increase in gain. To group and potentially sort objects along the θ phase
gradient, the window of opportunity for neuronal activity to be integrated within the same
reference frame (one cycle) must be wider than the window of opportunity for feature phase
sorting which requires a lower frequency compared to α. The respective synchronization
would be implemented using a filter kernel as well. Learned values of a respective "θ-kernel"
(jointly activated neurons in one regions within one θ phase) would modify the respective
input image such that groups of jointly activated α coded feature maps (i.e. objects) are
enhanced or suppressed. A respective analogon in classical ANNs would be the kernel size,
where a larger kernel transforms more values into a single value ( 𝛄𝜶𝜽 ). However,
due to the high inter-connectivity, respective kernels do not necessarily need to be spatial
adjacent, as mere activational adjacency (in a given time window) would suffice. This means
that beside spatial attention modulating relative neuronal gain, any other aspect of the input
could be attended using the very same process. The filtered input would hence be the result
of a joint activation of neurons selected from deep layer feedback α feature selection that is
modulated via superficial attention related α and embedded in a general pool of activation
that potentially spans large distances.

On a local level γ band oscillations would reflect the actual ongoing feature process-
ing, or in the language of ANNs, the operation of convolution. Fast oscillating synchrony,
may be the result of lateral connections of functionally adjacent neurons. Since sensory
cortices are organized such that adjacent real world features are mapped spatially highly
correlated to the cortex (see "Structural aspects of the brain"), almost simultaneously ac-
tive and inter-connected neurons (that are allowed to synchronize by e.g. α dis-inhibition)
lock into respective phases of γ. It has been observed in mice that a reduced number of
inter-neurons lead to a decrease in δ, θ, α and γ power [460]. Hence, local connections of
inter-neurons appear vital for synchronized cortical activity. Indeed, γ band oscillations have
been linked to spike time coordination in the olfactory bulb [461]. Furthermore, it has been
shown that γ band oscillation specifically couple functionally related neuronal assemblies
[462]. Again, this coupling could be interpreted as the active processing within a neuronal
assembly that has been activated and functionally coupled by feature-scale low frequency
oscillations (α) and is further modified by object and feature scale low frequency oscillations
(θ and α respectively). Additional evidence for the δ frequency range implies a role of δ
in temporal sampling to ensure that objects are embedded into a temporal context [162].
Coincidentally, multiple θ cycles would fit into a single δ cycle which - if we extrapolate the
principle - speaks in favor of an even more increased (temporal) kernel size of δ.
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Figure 37 summarizes this principle in one schematic. Convolution is interpreted as the
weighted sum of a subset of the input that is successively performed in order to transform
the input, such that certain features are e.g. enhanced (similar to edge detection using Sobel
filters [456]). Filter kernels are learned weights specifically responding to a certain type of
input data arrangement. This is similar to what has been thought to be implemented via
complex cells [30]. The combined information of a specific set of simple cells would be re-
ceived by feature specific complex cells 40. Here, complex cells are seen as dynamic entities
that recruit specific low level neuronal populations that will predictably transform the input,
such that some higher order value function is maximized. A prediction of the shape of the
letter "A" for instance would cause a pre-stimulus recruitment of neuronal populations at
the level of V1 coding for "/", "\" and "-" via feedback deep layer α coherence. Signals from
neurons in α coherence are now set up to be transferred to the higher order region [91]. Since
neuronal populations are not only synchronized vertically but furthermore horizontally, lat-
eral in phase communication could happen as well, depending on the strength of the input
signal and the correlation of the input signal. However, since locally adjacent input neurons
are driven in a correlated manner anyway, due to adjacent feature to adjacent cortical area
mapping (see "Structural aspects of the brain"), the further joint upwards modulation by
decreased inhibition [91, 172, 224] finally causes some neurons to release an action poten-
tial. Due to lateral connectivity and the already correlated input strength of neighboring
neurons, a burst of joint activity is released, aligning spike times of neurons, which causes γ
band activity [461]. Since, the input signal arrives at L4 and deep layer feedback α is routed
there [80, 82], incoming γ band activity (from previously synchronized feature processing
populations) is nested into deep α, which transfers the information into the communication
channel. In theory, this information could be routed via L2/3 of the sending region to L4 of
the receiving region, however superficial attention α and potentially θ activity modulate the
outgoing signal further. Thereby, attention α acts as a gate keeper and θ increases capacity
of the visual processing by combining features into objects along its phase code [91]. A very
much simplified representation, transferred to the working principle of a simple Perceptron
[73] is proposed below. Note, that the lower order activation (γlow) also depends on α and θ,
even though the model does not directly reflect it. However, non-zero lower order activation
(γlow) would already be meaningfully influenced by low frequencies at a previous time step
and is hence implicit to the model. For the simplified model below, the bias for each neuron
is different, however biases of spatially and functionally adjacent neurons are correlated.

40Whether they would be indeed cellular entities or functionally coupled cell assemblies to fulfill a func-
tionally similar purpose is insignificant for the theory.
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Figure 37: The convolutional brain For detailed explanation see page 176. Deep layer α recruits multiple
feature specific populations of neurons, by anticipating the stimulus. Coherent α "samples" populations of
neurons corresponding to the strength of the input signal. Top down superficial layer α and θ modulate
the respective neuron selection such that a compound phase gradient groups responses to features and
features to objects. Feature and attention α and θ thereby modulate the input signal such that informative
features are enhanced (e.g. edges using a Sobel filter [456]). The process is thought similar to that of applying
convolution filters in CNNs, but the respective filter width is determined by the opportunity window provided
by the underlying frequency. Applying the filter necessarily means correlating the bias of spatially adjacent
neurons and hence a few neurons hitting the threshold would (almost) instantaneously synchronize the entire
population. This operation is hypothesized to be macroscopically visible as γ band activity.
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fhigh(t, θ, αatt, αfeat, γ) =

{
1 if wlow→high · γlow(t) + b(t) > 0,

0 otherwise

, with

b(t) = −(|αfeat(t)|+ |αatt(t)|+ |θ(t)|)

, such that feature specific α (αfeat) recruits a set of neurons that transform the input
into a filtered representation enhancing certain aspects of the stimulus. Thereby, the in-
put signal (transformed into γ band oscillations (L4) via local synchronization) is nested
into αfeat (L5/6) allowing lateral communication between simultaneously dis-inhibited neu-
rons. Attention α (αatt) acts as a gatekeeper, modulating the strength of the respective
γ transformed and αfeat nested output signal in L2/3. Long range θ connectivity binds
or separates respective αfeat and αatt features into sets (objects). The lower right part of
Figure 37 illustrates this process in a graph. Thereby, the x-axis represents the delay time
at which a certain stimulus is processed. Phase coding frameworks propose that a α or θ
phase gradient could be used to sort incoming signals according to their strength [91, 204].
Hence, strong stimuli would be processed earlier than weaker stimuli. Stimulus activation
(strength of neuronal input) is reflected by the y-axis of the graph. A strictly linear rela-
tionship between input strength and activation delay would result in a line from top left
to bottom right of the graph, which would reflect the activation threshold. Crossing the
line towards the top right would thereby indicate neuronal signal transmission (i.e. action
potential). Underlying α and θ oscillations however, modify the activation threshold of the
neuronal populations rhythmically, such that the linear relationship is deflected according to
the phase and amplitude relationship of α and θ. This convoluted processing has two major
advantages: Filter response sorting along the α phase (if the input exposes features to which
the selected neurons strongly respond, those features are processed earlier and the respective
kernel becomes more important) and feature grouping (i.e. object separation) or feature
group sampling (strongest average response of a feature group gets processed earlier in the
θ phase). In a classical CNN, the kernel is moved over a respective domain spatially (with
respect to the input neurons). Here, the kernel is thought to reflect a temporal "movement".
Since the "kernel" would actually be a subset of neurons selected by feedback α coherence
that is modulated by attention α and θ, shifting the kernel is done in the temporal domain.
Sorted along the phase gradient of α, strongest active neurons (coding specific features, e.g.
bar orientations; also known as simple cells [30]) are processed first, which - in the phase
coding framework - sorts them according to their respective importance. Feature, specific
"simple cell" responses (pre-modulated by α) synchronize local activation of adjacent neu-
rons that are just below threshold (upper left part of Figure 37), nesting incoming spikes
via γ into α. Hence, jointly active features (within one α dis-inhibition cycle) form a new
higher order feature once transferred to higher order regions. This process is similar to what
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complex cells have been thought to implement. Superficial attention driven long range top
down feedback α and θ modulate the signal further, such that either important features get
boosted or distractors depressed [251]. Attention related α is hypothesized to be suitable to
implement multiple forms of attention, such as spatial, color, etc, depending on task demand
and stimulus material. Hence, deep layer and superficial layer α might actually implement a
similar functionality, where deep layer α reflects processing feedback for closely related pro-
cesses (e.g. complex cell functionality) or more abstract top down influence (e.g. attention).
Both aspects however modulate the signal (i.e. activation threshold) and thereby shape the
"kernel". Transferred to the logic of classic CNNs, θ reflects the boosted activity of some
top down attention, focusing on the e.g. foreground object. Thereby, θ would spatially bind
neurons encoding the respective objects along its phase. In turn feature specific α would
implement the major part of the convolution operation, by recruiting phase coherent neu-
rons to implement a certain filter to the input. Sliding the filter across the input would be
implemented by a varying response strength of filtered input signals, which are coded along
αfeat. Lastly, αatt applies an importance weighting to the input, depending on the respective
underlying value function.

Predictions In line with previous frameworks [91, 258] a first prediction that could di-
rectly be answered by completing the analysis of the EEG-fMRI experiment with respect
to connectivity, is that, if indeed deep layer α recruits neurons feature specifically, such
that the most informative features get enhanced relative to non informative features, then
increased connectivity from top down deep layer regions to deep layer lower region should
be observed, which is correlated with α band activity. Verification that such an approach
might yield meaningful results has been provided recently [265]. Ideally, α band connectivity
could be measured directly. This would be possible using laminar level MEG, which as well
has been demonstrated to provide suitable spatial resolution [220, 268]. Since MEG data
from both MEG experiments have been recorded with the respective spatial precision in
mind, results on laminar connectivity can shed light on this question. It would be expected
that deep layer α band connectivity specifically targets (functionally closely related) lower
order regions. The face-name Stroop task (see "Overview Experiment 2: feature attention
and conflicting information") has been set up to differentiate multiple higher order visual
processing areas: FFA and VWFA, which draw on information from similar areas (e.g. V1).
Hence, depending on the respective attention condition (attend-face vs attend-name) only
neuronal populations - set up via deep layer α - that a) code task relevant feature informa-
tion and b) are attended and therefore communicate coherently via a channel are selected.
Respective α coherence between FFA and V1 or VWFA and V1 is thus expected to vary
depending on the attention condition.
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Since it is expected that γ band oscillations are nested into feedback α [91] and the
present model predicts this to happen between L5/6 and L4, γ oscillations are expected to
be related to the (at least) deep layer α phase, which could be tested via a corresponding
analysis. In addition to that the interaction between feature selective α and γ is hypothesized
to be modulated by attention α (and possibly θ) which could be tested based on localizer
regions obtained from the fMRI data of respective experiments.

Furthermore, attention α and θ are thought to be reflected in long range connectivity
[420, 457]. While both could be reflected in deep and superficial layers [52], findings from the
present EEG-fMRI experiment (see "Feature specific neuronal oscillations in cortical layers
(in prep)") suggest an influence of attention (or at least more general non-specific activa-
tion modulation) mainly in superficial layers. Whether or not this extrapolates to θ as well
remains unclear, due to conflicting findings in the literature [297], but for the simplicity of
the model it has been asserted to superficial layers as well, since a α / θ attention sampling
mechanism is hypothesized anyway [210, 309, 457]. This means however that functional con-
nectivity in the α and θ range predominantly between superficial layers of high order regions
(e.g. FEF or PFC) is expected. Again the MEG data recorded using the face-name Stroop
task could provide insight into this assumption. Theoretically, it should even be possible to
decode attend-face and attend-name stimuli from long range α / θ connectivity, since the
changes to the "kernel" would be object specific (i.e. for word or face). It has been shown
that θ band activity in the visual cortex spreads predominantly in feed-forward direction
[242] however a feedback evoked (from higher order regions e.g. FEF [251]) feed-forward
sweep in primary visual regions [250] would likely be a consequence of synchronizing neu-
ronal populations anyway.

Since γ oscillations are thought to reflect the "kernel response" (signal after spatio-
temporal filtering), it is not expected to vary as a response to the type of kernel used (e.g.
spatially repetitive; low order features, such as lines vs high order features, such as corners)
- i.e. γ is not a kernel specific signature - but as a function of the stimulus to the kernel.
Simple features - such as gratings - hence elicit large γ band responses (see e.g. "Feature
specific neuronal oscillations in cortical layers (in prep)"), because the response to e.g. edge
enhancing kernels is very strong (the stimulus is composed of edges only). It has been found
that gratings with a higher spatial frequency, elicit stronger γ band responses than gratings
with a lower spatial frequency [189]. Additionally, it has been found by the same study that
complex stimuli result in a more broadband response, whereas simple stimuli (e.g. gratings)
result in a more narrow band response. In the light of the proposed model, this would be the
consequence of "kernel resonance". In other words, the match between neuronal populations
coding for a set of features is stronger, the stronger the correspondence between the features
and the kernel. It has been found that γ band synchronizations between IFJ and either FFA
or PPA vary based on the whether faces or houses were presented [245]. For the face-name
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Stroop MEG experiment, similar connectivity changes between primary visual regions and
either FFA or VWFA (depending on whether a face or word has been attended) would be
expected. Thereby, similarly strong γ band activity would be expected in a region where
the stimulus presented is congruent to the specialization of the target area. Filter kernels
are expected to anatomically (and thereby somewhat functionally) be the result of some sort
of self organized learning, comparable to Kohonen maps [37] during development. Hence,
filter kernels probably respond stronger to stimuli that occur often, as compared to stimuli
that occur less often. The more a kernel proved that the filtered result is informative, the
more distinct this kernel probably finds representation in the cortex. This means that famil-
iar (i.e. common) objects should elicit stronger γ band responses than unfamiliar objects.
Composing stimuli such that a respective regional increase in the narrow band γ can be
observed, which could hence be a way to determine the shape of a respective filter kernel.
One possibility would be to derive feature maps from CNNs, visualize the preferred kernel
response and use those images as stimuli for future experiments. It would be predicted that
at least some filters that a visual discrimination network has learned result in high narrow
band γ band responses. Of course, those correspondences are nowhere near proving an ac-
tual correspondence, but could at least serve as a starting point. A common strategy to
visualize filter weights in neural networks is to generate input images from traced back back-
propagation errors that maximize the response [437]. If γ band oscillations indeed reflect
the response of a set of neurons to certain input filter by feature specific neurons, then a
potential way to visualize filter weights could be a neuro-feedback online BCI system, where
a neural network is trained unsupervised to modify the input to a human subject inside the
MEG, such that γ band activity in a specific region is maximized. In any case, γ band activ-
ity is expected to be coherent between low and higher order regions, nested in the α band [91].

Final remarks It has come to the authors attention that the proposed model might ap-
pear logical and plausible but turns out to be extremely difficult to test down to its core
predictions (e.g. "real" filter kernels). Nevertheless, I believe that this viewing angle helps
to view the brain more from a computational perspective that has implemented certain func-
tions adjusted to environmental requirements. Thus, the presented framework shares high
similarities (in form of predictions) with other contemporary frameworks [91, 240, 247, 379].
The major advantage of the proposed framework however is to provide at least a working
hypothesis about the why of some functionally relevant neuronal (oscillatory) activity on
the level of comprehensive neuronal network understanding. Viewing the brain as a CNN
(at least on the level of primary sensory processing) provides a whole new set of testable
hypothesis. Of course the framework in its current state can be seen as highly speculative.
However, a holistic interpretation of the data almost necessarily comprises the influence of
individual biases. Mine is biased towards the brain as a neural network.
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