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The eld of optomechanics explores the interaction between light, or electromagnetic waves, with the mechanical motion. Such an interaction becomes considerable at micro and nanoscale, where the eective mass of the mechanical oscillator can be signicantly reduced. Cavity optomechanics [1,2] encapsulates light interactions with a mechanical resonator within a cavity (e.g., optical) in order to resonantly enhance the interaction strength. To illustrate the simplest case of optomechanical interaction based on electromagnetic eld enhancement by an optical cavity, one typically uses a model based on a Fabry-Perot resonator where one of the mirrors is attached to a spring and free to move. Laser drive, coupled inside the cavity, may feed a conned optical mode, exerting a force on the mirrors through the radiation pressure [3,4]. As a result, the displacement dx of the moveable mirror (along the axis of the cavity with a frequency f m ) modies the length L of the resonator (the spaci ng between the mirrors), and thus changes the resonance frequency (ν 0 = c/2L for the fundamental mode) of the optical cavity. This in turn changes the intracavity circulating power and the radiation pressure force becomes weaker, therefore resulting in backward movement of the free mirror. The described eects are commonly referred to as dynamical backaction. The backaction cycle repeats as long as there is light inside the cavity, and can last during some period of time after the laser drive shut-o, depending on the photon lifetime inside the resonator.

From this simplest picture of optomechanical interaction in the Fabry-Perot cavity involving the radiation pressure force, the eld of optomechanics extends to a wide variety of systems including another types of light-matter couplings inside a monolithic cavities (e.g., via gradient force, electrostriction, photoelastic eect etc.).

Relevant parameters of optomechanical systems

In our example of generic optomechanical resonator, the optomechanical coupling is when, for a given displacement dx, the frequency of the optical mode will shift by dν 0 = ν 0 • dx L . In this case, in order to maximize the eect, one should use the largest possible frequency ν 0 (while taking into account the limitations related to technical issues such as detection eciency) and the smallest possible cavity length L. From another side, the frequency shift dν 0 of the optical cavity due to optomechanical coupling will result in a phase shift for the cavity photons, proportional to their lifetime. The technique to measure the displacement involves a mixing of such phase-shifted photons from the cavity with reference photons and measuring their interference; as such, it is benecial to maximize the accumulated phase shift via the increase of the photon lifetime directly proportional to the quality factor Q = 2πν 0 τ .

Either in fundamental or applied eld, general trend for the mechanical device part is for increasing its operation frequency f m , leading to the decrease in size and switching from free space to monolithic cavities.

In the case of monolithic optical resonators, which now represent the majority of optomechanical devices, another set of parameters becomes crucial. The following list summarizes the relevant optomechanical quantities for the monolithic devices in some typical experimental implementations.

CHAPTER 1. INTRODUCTION

The reduction of the resonator eective mass m ef f and increase of its vibration frequency f m are generally achieved by shrinking its dimensions, i.e., its length L, as introduced before;

Maximizing the Q m • f m " product, describing the device decoupling from its thermal environment, the mechanical quality factor, directly proportional to the phonon lifetime, can be increased by working on main loss channels, e.g., by designing a system with the lowest possible clamping losses or reducing the intrinsic losses by cooling the resonator down to the cryogenic temperatures;

The optical (photon) dissipation rate γ = ν 0 /Q is minimized by enhancing the quality factor of the optical resonator. Contrary to the Q independence on resonator length L in the free-space cavity, described above, the losses in monolithic cavities are usually dominated by scattering and absorption in the material where the light propagates, thus shrinking the cavity dimensions can reduce the impact of these phenomena;

The vacuum optomechanical coupling rate g 0 , corresponding to the single-photon frequency shift due to the optomechanical interaction;

Cooperativity C ≡ 4g 2 0 nc γΓm , the strenght of the optomechanical interaction where n c is the cavity photon number and Γ m the mechanical damping rate.

Fields of applications

The essential eect of the optomechanical coupling hence is the fact that a mechanical displacement of the cavity induces a change in the state of light. Potential elds of applications cover on one hand fundamental physics studies, eventually going beyond the regime of classical physics or combining otherwise incompatible degrees of freedom of dierent physical systems in a hybrid quantum device. Optomechanical systems propose a basis for the applications in quantum information processing, serving as a coherent interface between light and matter qubits. Optomechanics is also exploited in metrology for implementing high precision measurements for the optical detection of displacement, mass, force, acceleration, etc. and the use in radio frequency devices as integrated clock sources.

From the point of view of fundamental physics, several aspects of cavity quantum optomechanics were explored both theoretically and experimentally, e.g., optomechanical squeezing of light [5,6], quantum non-demolition measurements [7,[START_REF] Jacobs | Quantum-nondemolition measurement of photon number using radiation pressure[END_REF], non-classical (i.e., with the statistics other than Gaussian) and entangled states of light and mechanical motion [9,10] etc. Optical cooling of mechanical oscillators using optomechanical interaction, proposed rst to cool atomic and molecular motion [11], was experimentally demonstrated by cavity-assisted radiation pressure cooling of a macroscopic mirror [12]. Alongside with the demonstration of optomechanical couplings in numerous system from macro to nanoscale, laser cooling of nano-optomechanical resonator has allowed to experimentally reach its quantum ground state [13].

Such experiments in optomechanics have inspired the research on analogous eects in electromechanical systems, where the control of mechanical oscillator is achieved by capacitively coupling the mechanical motion to a microwave cavity [14]. Almost simultaneously with optics, ground state cooling in an electromechanical system was experimentally demonstrated [15], for a mechanical resonator operating in MHz frequency range unlike the similar optomechanical experiment [13] for a mode at the frequency of GHz.

Another application of optomechanical interaction, exploring the radiation pressure force, is related to high-precision measurements of displacements allowing for the exquisite sensitivity, e.g., in gravitational wave detectors such as LIGO [16] and VIRGO [17], with the standard quantum limit for the continuous position detection, established in [18] works.

Development of high-quality optomechanical resonators allowed as well for their implementation as onchip integrated radio frequency (RF) oscillators with high spectral purity. Such optomechanical oscillators, featuring direct coupling to continuous-wave light eld input from one side and attainable high operation frequency Ω m and high quality factor Q m , are good candidates for frequency reference in radio-frequency-photonic architectures. Two dierent implementations exist: phase-locking to an external frequency reference and self-referenced optomechanical microwave oscillators. Already existing experimental realizations [19,20] demonstrate that the frequency and phase of an optomechanical oscillator within certain lock range can be locked to those of an external electronic oscillator, or any other signal that can modulate the power of input optical eld (similar to what is done in the optical domain 1.2. OPTOMECHANICAL SYSTEMS with lasers). Injection locking of an optomechanical to an electronic RF oscillator enables combination of the former with electronic devices and may have interesting applications in certain RF photonics and micro-opto-electro-mechanical systems. In addition, the non-electronic nature of optomechanical devices makes them insensitive to any electromagnetic interferences and good candidates for all-optical systems, also in view of experimental demonstration of such devices, compatible with CMOS platform [21]. Optomechanical devices with coherent switching can be as well used as a non-volatile memory [22,23,24] with the dimensions down to nanoscale, allowing for large scale integration, high speed operation and low power consumption. The potential applications of such devices cover controlled optical switches, logic gates and actuators.

Motivation behind micro and nanoscale devices

From applicative point of view, the experimental realizations, listed above, show good performances in the M Hz working range; most of them, however, would benet from an extension to the GHz frequency range, where several optomechanical systems [25,13,26,27] have already been shown. As an example we can state the sensing domain, where the acquisition times are limited by the device operation frequency not exceeding the M Hz range. Moving to the GHz platform would open a new frontiers for such applications, e.g., in the eld of bio-sensing. The same discussion holds for the on-chip signal processing and RF photonics, where the increase of the operation frequency is highly desired. Another example are the clock references, used in metrology and navigation. Current solutions with an electronic oscillator that is regulated by a quartz crystal are limited to the M Hz range, and a creation of novel sources operating at GHz frequencies will lead to the considerable performance increase for the mentioned applications.

In terms of more fundamental applications, increase of the frequency relaxes the requirement on the temperatures for reaching the quantum regime. This provides the motivation behind the micro-and nanoscale devices, where the higher mechanical frequency f m is attained when shrinking the resonator sizes and therefore its motional mass m. Moreover, in such devices a high optical quality factors can be attained in very small (down to diraction limit) optical resonators. The drawback of the system size reduction is that a concomitant eect, usually observed, is the reduction of the mechanical quality factor Q m , while most of the aforementioned applications require low mechanical losses. Therefore, most of the work in this context is concentrated on the design and fabrication of high-frequency and high mechanical Q m resonators; some of them are described in the following Section.

Optomechanical systems

All aforesaid shows a big impact of device mass, whose decrease generally may lead to the enhancement of several stated optimization parameters (f m , Q, Q m • f m ). This Section provides a non-exhaustive large overview of the kinds of systems used in the eld of optomechanics (see Figure 1.2.1), classied with respect to the mass m of mechanical oscillator, or to the eective motional mass m ef f of the mechanical mode of interest, which is one of the relevant parameters to the optomechanics experiment and can be one of the classication criteria.

From macro-to microscale

The largest scale -both in weight and in size -among the existing optomechanical systems is represented by the end-mirrors in the set-ups employed for the detection of gravitational waves (Fig. 1.2.1a). For a given example from GEO 600, the test mass silica mirror of 5.6 kg [28] weight is suspended at the end of one arm of the Michelson interferometer. The smaller and more lightweight versions of such devices were experimented as well, going down to grams (Fig. 1.2.1b) and milligram (Fig. 1.2.1c) suspended mirrors.

Shrinking dimensions of the reective surfaces further down require micro-structuration techniques and deposition of a reective layer or a stack of layers, creating a Bragg mirror, which allowed to achieve a few hundreds of micrograms (Fig. 1.2.1d) and few tens of nanograms (Fig. 1.2.1e) objects. This tendency ultimately resulted in signicant decrease in area to be addressed by a light beam and resulted to the development of systems, that can itself conne light -optomechanical systems with monolithic optical cavities, reaching eventually the diraction limit. One of the pioneer works was related to the use of (a) Suspended end-mirror from GEO 600 gravitational wave detector interferometric set-up [31]. (b) Gramscale [32] and (c) milligram-scale [33] suspended mirrors, analogous to the (a) device. (d) Double-clamped beam with mirror coating [34]. (e) Bragg mirror, coated on top of a doubly-clamped beam [35]. (f ) Microtoroidal resonator on a thin pillar [36]. (g) `Zipper' cavity optomechanical system, consisting of two doubly-clamped photonic crystal beams [37]. (h) Two doubly-clamped nanobeam resonators, embedded inside a defect cavity within two-dimensional photonic crystal lattice [27]. (i) Schematic of an optomechanical experiment with ultracold atoms [29,[START_REF] Camerer | Realization of an optomechanical interface between ultracold atoms and a membrane[END_REF]. All gures are adapted from the corresponding references.

toroidal microcavities (Fig. 1.2.1f ), which support both high-Q optical resonances and high-Q m radial breathing modes when held by a thin `needle' pillar. The last example (Fig. 1.2.1 i) represents mechanical object weight of the order of zeptogram ( 10-24 kg), referring to optomechanical experiments with ultracold atoms, trapped within a standing optical wave [29]. A cloud of such ultracold atoms can be as well coupled to the motion of a free-standing micromechanical membrane [START_REF] Camerer | Realization of an optomechanical interface between ultracold atoms and a membrane[END_REF] (as shown in illustration), where both the eects of backaction of the atomic cloud on membrane motion and vice versa are observed. Such setup can be used for sympathetic cooling of the membrane motion to quantum ground state. In the same vein, lots of works have been carried on the optical cooling of levitating particle trapped in a macroscopic optical cavity.

Down to nanoscale

One of the rst works on nanoscale devices featuring an optomechanical interaction [38] exploited the optical gradient forces between two partially suspended nanophotonic waveguides. Here, the light connement was achieved only along the two directions for the propagating optical mode. In order to benet further from light connement, diraction limited optical cavities, allowing for an enhancement of the electromagnetic eld, were further developed in the frame of optomechanical experiments.

In the optical domain, the smallest monolithic cavity volume, where an optical mode of wavelength λ 0 1.3. ORGANISATION OF THE MANUSCRIPT can exist, is approximately (λ 0 /2n) 3 , where n is the refractive index of material and λ 0 = c/2πν 0 with c as the speed of light in vacuum. Several diraction limited optomechanical systems were designed, among which photonic crystals, that allow to eciently control the light propagation and connement at micro-and nanoscale. An example of picogram weight scale is a pair of one-dimensional photonic crystal nanobeams (Fig. 1.2.1g), or so-called `zipper' cavity, whose high optomechanical coupling was achieved through a design insuring a high overlap between the optical mode of a defect cavity in the beam centre and its exural mechanical modes. The same technique was used to decrease even more the size of mechanical oscillator down to few tens of femtograms weight and increase its frequency up to GHz range. Such a mechanical oscillator would no more support an optical mode in the usual working range of wavelengths (visible of near infrared), but its motion still introduces a perturbation within an optical cavity, opening a way for a new category of NEMS-in-cavity" devices, based on optomechanical interaction at the nanoscale.

Organisation of the manuscript

Following this brief description and panorama of what is optomechanics and which system can be used in order to perform optomechanical experiments, we will focus our discussion on photonic crystal structures.

Here, we will take advantage of the control of dispersion properties in photonic crystal to discuss in details two kind of structures : perfect suspended photonic crystal used as a vibrating mirror and photonic crystal embedding an optical cavity. Thus, chapter 2 focuses on the theoretical description and simulations of both optical and mechanical properties of these structures. We shed light on these two distinct design in order to further discuss the electromechanical and optomechanical experiments carried with these developed structures.

Based on the description the vibrating photonic crystal mirror, chapter 3 rst describes technological development in order to achieve an ecient and resonant excitation of mechanical vibrations in the MHz range of such structure. With this integrated electromechanical system, nonlinear regime of the driven resonator is reach, openning an new eld of experimentation for photonic crystal membrane. By extensively studying this regime, we introduce several developped unconventional techniques to enhance and amplify weak signal with electromechanical system : stochastic and vibrational resonances.

On the other end of the spectrum, integrated photonic crystal cavity colocalizing optical and mechanical modes in a range of frequency, the GHz range, potentially useful for application are also investigated.

Here, one potential envisionned application is to imprint on an optical carrier a modulation signal with, at the same time, a high frequency, a high purity and integrated on chip. In chapter 4, we describe the successive experimental developements and technological breakthrough to achieve, an integrated low phase noise optomechanical oscillators.

Chapter 2

Photonic crystals for electo-optomechanics Photonic crystal (PhC) describes a natural or articially created system being able to control locally the propagation of light [39]. In general, they are materials which have a periodicity in dielectric constant ε in one or more dimensions. Such a variation, introduced at the optical wavelength scale, can allow to control the light propagation in such a periodic structure along chosen direction(s). In analogy to band gaps for electrons in semiconductor crystal lattice, PhC lattices can as well be designed to prohibit the propagation of photons with certain energies. These forbidden photon energies, or the corresponding wavelength range, represent a photonic band gap (PtBG) [40,41]. These structures oer the possibility of a modal and spatial control of the light which gives rise to a keen interest in many domain of physics. Thus, these last twenty years, thanks to the computer development allowing the resolution and the simulation of Maxwell's equations in complex environments, as well as the improvement of nanofabrication technologies, the photonic crystal eld has experienced a real boom.

If a defect cavity with an optical mode, which frequency ν 0 is situated inside the photonic band gap (PtBG), is created within a PhC lattice, such mode will be highly conned and will show long lifetimes for photons, since no mode can accommodate them within the surrounding lattice. Such system has been intensively employed in various elds and applications from single photon sources [42] to nonlinear optics [43]. Few years ago, vibrational degree of freedom of these structures were investigated by the optomechanics community [44,37]. Less studied than the cavity enclosed within the PhC, perfect PhC (i.e. without intentional defect) can also be engineered in such a way that the incident light impinging the structure can be partially or even completely reected. Interference processes at the heart of this phenomenon, make possible a high reectivity photonic crystal mirror potentially useable in Fabry-Pérot cavity conguration.

Here, we will rst discuss the main features and requirements in the optical and mechanical domain in order to reach ecient electro-optomechanical structures. Then we will explain in details the physics of the two distinct geometries investigated in this document, namely a vibrating photonic crystal mirror and optomechanical crystal. Beyond the design of the optomechanical structures, it is crucial to achieve at the same time high optical and mechanical properties. Material used to fabricate such structure is also part of the equation and cannot be neglected. Thus, we will discuss the interest in developping dierent materials, their use and the involved challenge for optomechanics.

Photonic crystal geometries for electro-optomechanics

In the frame of optomechanics, whether it be photonic crystal mirror or a photonic crystal cavity, to sustain at the same time optical modes and mechanical vibrations, the structure needs to be suspended.

As a consequence, in the following discussion, every investigated structure are based on a dielectric slab surrounded by air. Material used here for the membrane, namely III-V semiconductor, have large refractive index allowing high connement of light within the membrane. From this general picture of a supended membrane in air, depending on which photonic crystal geometry is drawn on the membrane and on how the membrane is clamped to x supports, optical and mechanical properties can drastically change. Here, we will introduce the basic concepts in both domain, optics and mechanics, in order to reach the required features for the two envisoned structures.

External and embedded cavities using photonic crystal

Let's consider a photonic crystal lattice, which represents a 2-D periodic medium with a high-contrast variation of the refractive index between a dielectric material and the surrounding air. This variation can be described by a spatial distribution of the dielectric constant ε ( -→ r ). If we trace the solutions for the wave vector values along all directions within the crystal (following for example the Γ-M -K -Γ trace in the reciprocal space of a hexagonal lattice, see Fig. 2.1.1), we obtain a so-called photonic band structure, describing the dispersion of eigenmodes for the structure under study. The shaded band structure area in Fig. 2.1.1, called the light cone, is the projection of all states that can radiate in the air [39]. With the analogy to an electronic band gap, our crystal has a photonic band gap (highlighted in dark grey),

where at certain frequencies, light is not allowed to propagate. The example band structure given in arrangement, but the concepts we describe below can be applied generally to any type of lattice and any crystal dimensionality.

By taking advantage of photonic band structure and some of the crystal Bloch modes, we can design various kind of suspended photonic crystal membrane dedicated to specic applications in electrooptomechanics. Suspended photonic crystal structure not only allows for the engineering of high optical quality factor cavities with ultimate mode volume (V ∼ ( λ /n) 3 with λ for wavelength and n for the refractive index of dielectric material), but also for high-reectivity of a PhC mirror for a plane wave at normal incidence.

Both requires one key ingredients; the connement due to the total internal reection on the interfaces between membrane dielectric and air. One gets a high refractive index contrast along the direction perpendicular to the membrane plane and thus a high mode connement in the vertical direction. In addition to this normal connement, in-plane structure is also necessary in order to achieve either strong optical connement or high reectivity. Using the two superposed modes with at dispersion at Γ point (Fig. 2.1.1 (a)), we can make a PhC mirror, operating at normal incidence, with very high reectivity at the corresponding mode wavelength (e.g., R > 99.8 % for 50 nm band around 1064 nm for a rectangular lattice 2D PhC slab membrane from [45]). From another hand, we can use the photonic band gap and design inside it a mode of an embedded cavity (Fig. Fano resonances make possible highly reective PhC mirror. Basically, such resonances are based on the coupling between a continuum with discrete modes. In the case of suspended photonic crystal membrane, Fabry-Pérot modes due to abrupt change in index of refraction along the vertical direction are seen as a continuum. On the opposite, discrete modes are due to the photonic crystal which behaves as a diraction grating only under a certain condition named Near Wavelenght Regime (a < λ < a.n ef f , with a the lattice constante). This perfect photonic crystal, as opposed to defect photonic crystal, can thus be used as a highly reecting moving mirror.

Interference eects on the surrounding media with a periodic refractive index for the cavity eigenmode will allow to get an important electromagnetic eld enhancement inside the defect optical resonator, leading to high optical quality factor. In order to do so, we can use the photonic band gap and design inside it a mode of an embedded cavity (Fig. 

Mechanical properties of suspended photonic crystal membrane

The suspended PhC slab not only sustain optical modes but also mechanical vibrations. The rst requirement is to numerically identify the mode prole of the envisioned mechanical modes. Along with the conventional eigenfrequency studies a numerical spectroscopy of these modes can be performed taking into account the constraints of some real-world experimental congurations. It evidences two distinct families which can be separated into low-frequency modes of the entire suspended membrane block (in the MHz frequency range) and localized modes (in the GHz range), which solely appear in the case where a defect PhC cavity is embedded inside the membrane.

Then, the main objective is to achieve resonators with mechanical quality factor as large as possible. The mechanical quality factor reports the ability of a resonator to conserve its mechanical energy and quantify its coupling with the environment. A systematic study of all loss mechanisms is necessary to estimate the total quality factor and thus, to identify the processes limiting the performance of our structures. Loss mechanisms are commonly divided into two categories:

Extrinsic losses, which depend on the environment or geometry. Several physical phenomenon can be listed among the sources of extrinsic loss mechanisms. However, the most commonly described and thus tackled are the gaseous damping, anchor losses, or losses related to the surface states of the resonator.

Intrinsic losses, which depend on phenomena related to the nature and properties of the materials.

Up to now and for historical reasons silicon has been a material of choice intensively used in optomechanics. As a consequence, losses directly related to other materials have been barely studied.

The mechanical dissipation can be optimized while taking into account the main loss channels for each of the two mode families. Thus, the main mechanical dissipation channels have to be investigated and optimized for each of the two mode families. After having studied them, none of the losses channels should limit the mechanical quality factors under the condition of being at a suciently low pressure (10 -2 mbar). This is particularly true for low frequency modes where the whole membrane is moving. In this case, the environment prevents displacement over a large surface, thus reducing its Q-factor. A priori, at low pressure, the rst next eect to be taken into account in the development of such membranes are losses by anchoring.

Optimization will focus on the reduction of mechanical losses for these modes, mainly examining the simulated mechanical quality factor, dened as Q m = ( Ωm /2π) /2 ( Ωm /2π), and the displacement eld -→ Q ( -→ r ) distribution through some geometrical characteristics. In order to obtain both real and imaginary part of the simulated eigenfrequencies, we introduced the perfectly matching layers (PMLs), absorbing the acoustic energy which allows to mimic the phonon losses and also to take into account geometrical inuence on the membrane mechanical eigenfrequencies, present in real devices. Absolute values of mechanical quality factor, obtained with such numerical estimation, will depend on the conguration of used PMLs (position, geometry) and therefore do not pretend to give a precise characterization of clamping losses in the simulated system. We use this approach to obtain rather a qualitative description The second family of mechanical modes sustained by the membrane are the high-frequency vibrations, exclusively observable in PhC defect conguration and localized inside the core of the defect, which were experimentally demonstrated in [25]. These modes are less sensitive to the pressure but are still subject to mechanical losses. In recent years, in order to reduce mechanical dissipation while keeping high optical connement, a new trend in cavity optomechanics emerged, studying the interaction of localized defect optical and mechanical modes, created inside a so-called phoXonic lattices. This structure, if considered without defects, provides band gaps for both electromagnetic and elastic waves. Simultaneous existence of these two types of gaps, leading to an enhanced interaction between elastic and optical modes with strong spatial overlap, were demonstrated theoretically and experimentally for a phoXonic nanobeam cavity [46] and for a two-dimensional phoXonic crystal cavity, conceived inside a square lattice slab [47,48].

Optics Mechanics

a) c) d) e) b)

Photonic crystal membrane as a vibrating mirror

As it was introduced before, the two-dimensional photonic crystal lattice of a nite thickness (i.e., PhC slab) can be addressed in two distinct ways in order to probe the device mechanical motion. This section is focused on the case of a photonic crystal slab membrane employed as a high-reectivity mirror. In the following, optical and mechanical design of such a device are described and investigated in details.

On the optical part, the objective is to achieve a high reectivity (> 90 %) at a normal incidence and at a precise wavelength. On the mechanical part, the investigated vibrational modes are out-of-plane lying in the range of few M Hz. In this case, the objective is to reach high mechanical quality factor by engeneering clampings of the membrane. In this particular study the PhC slab membrane is made of Indium Phosphide (InP), with the main geometrical parameters described in Fig. 2.2 a.

Toward high reectivity

The square lattice is dened by a lattice period a, which corresponds to the distance between the centres of two adjacent holes, a hole radius r and a slab thickness t (along z direction). Main optical property of the structure -its refractive index n = √ ε, is taken to be n InP = 3, 3 at a wavelength λ = 1064 nm, whereas the refractive index of air for the etched holes as well as for the space above and below the membrane is n air = 1.

In the case of a homogeneous membrane (Fig. 2.2b, left panel), reectivity oscillates between a minimum value of 0 and a maximum value of (1-n 2 InP ) /(1+n 2 InP ) 2 ≈ 72%. The periodicity of these oscillations is the signature of the zero-order Fabry-Pérot eect between the two interfaces of the membrane. Higher order modes do not play any role here because none of them is coupled to the incident wave nor to the zero-order mode.

When introducing a modulation of the index, there are several distinct regimes depending on the number of propagating modes in the crystal:

Monomode case : for λ > a.n ef f with n ef f n InP (where n ef f is an eective refractive index of the PhC slab membrane), the situation is very similar to that of the homogeneous membrane, since the higher orders undergo exponential attenuation between the two faces of the crystal (Fig. 2.2b, center panel).

Diraction regime : when λ > a, the condition of specular reection is no longer assured because diracted orders exist. The photonic crystal behaves then as a diraction grating, and the energy lost in the diracted waves does not provide signicant reectivity.

Multimode case or the regime of a near-wavelength diraction grating (NWDG) [49]: The diraction properties of an NDWG element are strongly dierent when comparing to usual diraction gratings (Fig. 2.2b, right panel). Such properties result from a combination of special conditions:

a < λ would imply that all diracted beams of non-zero order are evanescent in the surrounding air.

Besides this, when λ n ef f < a , several propagating modes will exist inside the dielectric slab.

Then, for some particular values of membrane thickness t, the boundary conditions at the dielectric/air interfaces will result in a destructive interference for the transmitted zero-order of the incident plane wave.

Consequently, by conservation of the optical ux, such a phenomenon is associated with a reectivity close to unity for the incoming beam. In each region where an additional diracted order appears, there is a family of Fano resonances. These resonances occur when the thickness of the membrane allows the diracted order to accumulate the right phase between the two reections at the interfaces With the above-mentioned conditions and for the design wavelength λ = 1064 nm, the crystal lattice period was chosen as a = 725 nm. Next, for a hole radius of r = 200 nm a study of the reectivity of our NWDG was performed while varying the membrane thickness t, which revealed a large high-R plateau around 1064 nm wavelength for the value of t = 260 nm. In the technological realization of our devices the lattice parameter a delity is controlled better than the hole radius r, therefore we are looking next for the range of r, where our PhC mirror will exhibit a plateau of high reectivity. In this purpose, for the given layer thickness t = 260 nm and a constant lattice parameter a = 725 nm we analyse the reectivity R dependence on the hole radius (see Fig. 2.2.1a), which shows a relatively large high-reectivity plateau for the radii between 180 and 210 nm. We further explored the given parameter span to simulate the spectral reectivity dependence (see Fig. 2.2.1b). For r = 202 nm, it gives about 50 nm large region with R ≥ 0.99 centred at 1064 nm. Analysis of the structure design tolerance to the fabrication imperfections (the designed and fabricated holes r mismatches) shows that up to 6 nm mismatch the reectivity at 1064 nm will remain as high as for the optimal parameters set.

Presented results are valid in assumption of a perfect plane wave, incident on an innite PhC lattice.

The realistic scenario of a laser beam requires taking into account the angular spread in the wave vector associated with the beam waist on the membrane plane. In the same time this allows to examine the angular dependence of the PhC mirror reectivity for the angles close to normal incidence. The corresponding simulations, performed in [45], show that it is still possible to obtain reectivities R > 99% for a beam waist of 4.2 µm, however, over a reduced wavelength span > 20 nm. Concerning the angular dispersion of an incident wave at 1064 nm wavelength, the PhC membrane re ectivity does not degrade for the angles span up to 5°, and reaches R = 99% value at incidence angle close to 9°. 

Flexural mechanical displacement

Some of the mechanical parameters are directly limited by optical constrains as weel as technological limitations. In order to avoid edge eects and be able to properly probe the reectivity of these suspended photonic crystal membrane, their dimensions have to be much larger than the beam waist. On the other side, reaching large surface suspended membrane with high mechanical Q-factor is still a technological challenge.

The minimum lateral dimensions of the membrane are dictated by the waist of the optical beam (∼ 5 µm) used to probe its vibrations. Thus the membrane has to be larger than these 5 µm. In the opposite, the maximum size of the membrane is directly limited by fabrication processes. Bigger membrane tends to bend and then it brings suspension issues (part of the membrane touch the ground or even completely collapse). In this frame, fully clampled membrane to some extent can be used to achieved large surface membrane but usually at the cost of the high anchor losses. Stress induced during the growth in the layer constituting the membrane has been studied to counter these losses. It allows to reach low loss of mechanical modes at low frequencies (tens to hundreds of kHz). Moreover, with large membrane, the homogeneity of the photonic crystal over the whole surface of the membrane is reduced which, in return, degrade optical properties of the mirror. With smaller size membrane, homogeneity and suspension issues are much easier to handle. As a consequence, the investigated suspended membrane resonator consists of a rectangular plate of 10 µm by 20 µm lateral dimensions, patterned with a square lattice, presented previously. However it still requires to engineered the clamping in order to reach resonable mechanical quality factor.

In order to reduce clamping losses for this 10 µm by 20 µm membrane, the full structure is suspended over a layer of air (whose thickness will depend on the scientic objective) using two pairs of bridges from two opposite sides. These bridges are identical and have lateral dimensions denoted b x and b y and leave the membrane anchored to the suspension pads. As can be seen in Fig. 2.2c, the membrane and all the connected bridges are suspended, whereas the support pads are assumed xed. One of the crucial geometrical parameters for such geometry to reduce mechanical losses (anchor losses) is the position of attachment for the suspension bridges desribed as the parameter b d (cf. Fig. 2.2c). In fact, this parameter can have an important impact both on the mechanical mode spatial prole and on the associated clamping losses [22]. The evolution of three rst eigenmodes of the suspended PhC slab membrane which have a characteristic spectral behavior depending on the position bridges are studied numerically. This family of modes corresponds to an overall displacement of the membrane out of plane with frequency of the order of few MHz for bridge lenght of 2 µm. The mode prole is conditioned by the boundary conditions imposed by the bridges: the mode adapts so that bridges are almost at a minimum displacement. However, as illustrated by the displacement eld for bridges (Fig. 2.2.2c), the bridges are still subjected to energy losses at clamping points. In this case, losses have a minimum for a position of 5.9 µm from the center of the membrane. eld distribution, demonstrating maximally possible uniformity for the given bridge dimensions. That is, the whole membrane would oscillate along z direction with the minimized bending when compared to other possible clamping positions. However, the simulated quality factor Q m shows local minimum for this mode. For this type of displacement eld distribution the clamping losses through the suspension bridges can be then further reduced by their elongation, that is, by increasing by distance. Numerically, an increase by a factor 5 of the lenght of the bridges improves the mechanical quality factor by at least a factor 10 (not shown here). In this case, one can achieve dimensions where suspension issues appear.

2.3

From photonic crystal with an integrated cavity to Optomechanical crystal

One also refers to photonic crystal slabs [39] when considering a structure that is able to conne light in all three dimensions by a combination of two-dimensional periodicity (hence band gap) and a nite thickness in vertical direction for index guiding (via total internal reection). Defects in such structures can be used to create optical waveguides and cavities. Both types of defects in photonic crystal slabs - Photonic crystal beam [44]. (b) `Zipper' cavity, created by two adjacent doubly-clamped PhC beams [37]. (c) Onedimensional phoxonic crystal [50]. (d) PhC beam, coupled to a photonic shield (phononic crystal lattice with complete acoustic band gap) [13]. (e) PhC L3-nanobeam cavity [51]. (f ) Slot-type cavity in 2D PhC lattice [52]. (g) Split beam nanocavity, created from 1D PhC beam [53]. (h) `Snow ake' 2D phoxonic crystal with defect cavity in the middle [54]. (i) Two PhC `zipper' cavities, coupled to a waveguide with 1D PhC mirror [55]. All gures are adapted from the corresponding references.

cavity and waveguide -were employed in optomechanical devices.

Obviously, exural mechanical modes described previously are still present in the range of few M Hz.

Added to these modes, a second family of mechanical modes sustained by the membrane are the highfrequency vibrations, exclusively observable in PhC cavity conguration and localized inside the core of the defect. Thus, the main challenge here is to achieve co-localization of a highly conned optical mode together with a mechanical mode in order to reach a strong intrinsic coupling between them.

State-of-the-art

Original ideas for the enhancement of the optomechanical coupling strength aimed at a reduction of mechanical clamping losses, strongly impacting even the vibrational modes, localized within the central part of a beam. The `zipper' cavity [44] as a combination of two 1D photonic crystal nanobeams [37],

allowed to create an phononic band gap (PnBG) alongside with the existing photonic one. Consequently achieved reduction of mechanical losses for a particular vibration with frequency f m inside the PnBG and reduced eective motional mass of this mode (from 10 pg to 50 f g) have resulted in a dramatically increased force sensitivity of the nal optomechanical system. In addition, this made the photonic crystal systems to possess the lowest eective motional mass among the existing monolithic optomechanical devices, overcoming the performances of microtoroid realizations [1,36] (Fig. 1.2.1 f ). Following this achievement, a system combining two of such `zipper' cavities, coupled to a tapered waveguide with PhC mirror termination [55], was demonstrated; such device can operate as a squeezed light source, created by the optomechanical coupling. Later, a single-beam design of 1D structure, named phoXonic crystal [START_REF] Maldovan | Sound and heat revolutions in phononics[END_REF], was proposed and implemented experimentally [50], featuring two full PnBG in the GHz range and a PtBG for TE optical polarized optical modes. Splitting a suspended beam, as in case of the `zipper' cavity, was re-used in a transverse direction to create a split-beam nanocavity [53]. Resulting device demonstrated a strong modication of the optical mode, conned in its middle, by the movement of each ends of the splitted beam.

Another approach for the enhancement of mechanical Q m factor consists in attaching a resonant structure to the phononic shield (Fig. 2.3.1 d) -a lattice, exhibiting a full acoustic band gap around the mechanical frequency of interest [13]. This technique allows to perform a separate optimization of mechanical losses, while not compromising the optical properties of the defect cavity mode. In addition, such a phononic shield can be conceived for the enhancement of an arbitrary mechanical mode(s) of a nanobeam by adjusting the frequency of PnBG. Simultaneous localization of photons and phonons in two-dimensional periodic structures was demonstrated theoretically by now for L1 (one missing hole) [START_REF] Maldovan | Simultaneous localization of photons and phonons in twodimensional periodic structures[END_REF]47], for L3

(three missing holes in a line) [25] and cross defect cavities [48]. Hole slabs of hexagonal arrangement with parameters suitable to obtain a PtBG in visible or infra-red ranges do not show any PnBG. The last of our examples is also based on the model of defect cavity inside a W1 waveguide, but extends to the eld of phononic crystals, being designed to possess both acoustic and photonic band gaps (Fig. 2.3.1h).

A hexagonal lattice, used in examples in Figs. 2.3.1 e,f, origins in light connement within the defect cavity, whereas a special type of unit cell -a snowake -allowed to create a phononic band gap in the GHz range -rst experimentally demonstrated phoXonic crystal slab device [55].

High connement in a cavity embedded in photonic crystal

A rst strategy to tightly conne photons consists in removing one or few adjacent holes in a perfect 2D or 1D-photonic crystals to form defect cavities [START_REF] Yoshie | High quality two-dimensional photonic crystal slab cavities[END_REF][START_REF] Painter | Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab[END_REF][START_REF] Riedrich-Mã ¶ller | One-and two-dimensional photonic crystal microcavities in single crystal diamond[END_REF][START_REF] Noda | Spontaneous-emission control by photonic crystals and nanocavities[END_REF]. For instance, by removing n holes in a line in a perfect array of holes, one creates a short waveguide close at its both ends by the photonic crystal.

If the frequency of the waveguide mode lies within the photonic bandgap, the photonic crystal then acts as a mirror, which reects back and forth light within the 'spacer' region. Such cavities, usually named L n cavities, has been intensively used in many dierent works for Cavity Quantum ElectroDynamics for example. One issue here relates to the mirror reectivity which impacts the mode connement. Such reectivity can be enhanced by engineering the region around the 'spacer' such that the mode gets 'gently' conned within the spacer. This engineering makes use of small perturbations of the photonic crystal geometry at the edge of the cavity, by slightly and adequately modifying the holes radii or period. As an example, with GaAs, the highest optical quality factor reach is of the order of 24000 when external holes are shift away from the center of the cavity by 0.19a and shrinked by 0.08a (Fig. 2.3.2 a). A defect L n cavity formed inside a PhC slab membrane (three missing holes in a line) was supplemented by a nanobeam within the cavity core (Fig. 2.3.1e), which allowed to obtain a high-frequency mechanical resonator inside a strongly conned electromagnetic eld. Such inclusion resulted in an important decrease of the cavity optical Q-factor, therefore one line of holes (see Fig. 2.3.1e, middle line) was modied in order to restore the good optical properties (nal device Q ∼ 10 4 ). A defect cavity inside a W1 waveguide (one line of holes missing) inside a PhC slab membrane was split in two parts along the waveguiding axis, crossing the middle of the optical mode (Fig. 2.3.1f ), so that the mechanical motion strongly impacts its spatial distribution and therefore results in an important optomechanical coupling. In those cases the probe light needs to be coupled to the cavity mode via an external waveguide which could be a tapered bre or an integrated waveguide with the input-output couplers.

Another strategy relies on an engineering of the dispersion relation in photonic crystal waveguides to form heterostructure cavities. This can obviously be done in the case of bi-dimensional photonic crystal.

However this conguration won't be discussed here. We will rather discuss the case of one-dimensional structures where by changing one parameter of the photonic crystal along the beam, dispersion relation could be engineered in order to achieve high connement. Light connement is achieved by the refractive index periodicity along the beam direction and total internal reection along two remaining axes. Based on this so-called adiabatic tapering, several designs of one-dimensional photonic crystal optomechanical beams exist (Fig. 2.3.1 a-d, g,i), allowing essentially to achieve a very high-Q optical resonances for the localized defect mode.

The cavity is then built in the nanobeam by piercing a 1D-photonic crystal made of holes into which the lattice constant is subtly varied from a 0 , at the center, to a n , at the edge (see Fig. no propagating modes exist: if light with a frequency within the bandgap is injected into the beam, the associated electric eld will decay exponentially as e -qx where x refers to the propagation distance along the beam. This decay rate q strongly varies with the lattice constant a. In order to build a cavity with a Gaussian prole, the underlying idea is to tune the value of q by gradually changing the value of the period a along the beam, so that to obtain a decay of the mode envelope in the form of e -Bx 2

. This imposes to induce a linear variation of q with the distance x from the cavity center, i.e. q = B |x| with a cavity centered in x = 0. This B factor relates the spatial full-width-half-maximum (FWHM) quantifying the mode spatial extension (Fig. 2.3.2 e). This B factor not only impacts the eective mode volume but also the quality factor. These cavities are usually referred to as nanobeam cavities and currently feature record values in the solid state in terms of light connement in space and in time. The associated quality factor of the fundamental mode can reach values up to about 2×10 8 for GaAs-based cavities.

From exural mechanical modes to localized modes

For any suspended membrane-like resonator, out-of-plane displacement is a natural behavior. Depending on the anchors, the displacement eld may be dierents but their frequencies are still in the range of few MHz. At the same time, such structures exhibit some mechanical modes, localized within the beam middle (so that phonon tunnelling losses to the supporting structure are minimized) and thus often eciently coupled to the optical mode, resulting in strong optomechanical coupling.

In the case of 2D photonic crystal cavity, in order to ensure a relatively high optical quality factor, it requires a large number of holes in the surronding of the cavity (∼ 10). Therefore, a membrane of typically 10 µm × 10 µm is required. As a consequences, mechanical modes investigated in the case of photonic crystal mirror are still available here. However, a second family of mechanical modes sustained by the membrane are the high-frequency vibrations, exclusively observable in PhC defect conguration and localized inside the core of the defect as experimentally demonstrated in [25]. Figure 2.3.2c presents the same type of study, as for the membrane exural modes, but this time considers the mechanical resonances, conned within the defect PhC cavity. For this study the PhC slab structure was explicitly simulated, thus excluding the needs for introduction of an eective density. The L 3 M 11 mode is the fundamental cavity mode with a mechanical frequency of about 900 M Hz. Higher-order modes also exist, at higher frequencies from 1 up to 4 GHz. From Figure 2.3.2c, it can be seen that the most prominent modes are the localized modes of the {n, 1} type, where n is odd, meaning that there will be always a mode antinode in the cavity middle. High spatial overlap of such mechanical mode displacement eld with the electromagnetic eld of the optical mode could lead to the enhancement of their mutual interaction. These modes are potential candidates for the high intrinsic optomechanical coupling to the localized cavity optical mode: for example, E y electromagnetic eld component (Fig. 2.3.2a) and {5,1} mechanical mode (L 3 M 51 in Figure 2.3.2c).

Similarly to L 3 cavity, mechanical modes of an one-dimensional cavity can also be distinguished into two families: modes associated to the vibration of the entire nanobeam (occurring at low frequencies from few kHz till hundreds of MHz) corresponding to Group A modes on Figure 2.3.2f and modes associated to the vibration within the nanobeam cavity (with resonant frequencies in the range of few GHz). These latter can again be dierentiated in two categories: modes related to deformations on the nanobeam edges usually referred to as breathing modes [44] (group B) and modes associated to a deformation between the holes usually referred to as pitch modes (or group C). We will mainly focus on Group B modes in this work due to their high optomechanical coupling strength.

In both cases, 2D photonic crystal and nanobeam cavity, connement and, as a consequence, dissipation have been rst optimized for the optical eld. To some extend, displacement elds are also conned by the periodicity used for optics. This is particularly true for GHz mode of the nanobeam cavity. However, the connement could be enhanced by using phononic shield to prevent acoustical leakage out of the optomechanical cavity.

Optomechanical coupling

In the case of photonic crystal cavity, another important parameter come into play namely the vacuum optomechanical coupling strength (g 0 ). This quantity expressed as a frequency quanties the interaction between a single phonon and a single photon: it corresponds to the optical frequency shift induced by the zero point uctuation amplitude (x ZP F ) of the mechanical oscillator, i.e. the spread of the coordinate in the ground-state. This gure of merit is very useful for characterizing the optomechanical coupling strength since it applies to any optomechanical platform independently of its geometry and it does not depend on the amplitude of the possibly complex displacement of the mechanical oscillator. In the case of optomechanical photonic crystals, mainly two mechanical eects can contribute to the optical frequency shift and thus to g 0 . These eects are the moving interface eect and the photoelastic eect. The vacuum optomechanical coupling strength thus develops as:

g 0 = (g M I + g P E ) .x ZP F
where g M I is the frequency shift per displacement induced by the moving interface eect, g P E is the one induced by the photoelastic eect. These two contributions can be calculated in a perturbation theory framework [START_REF] Eicheneld | Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals[END_REF].

The optomechanical coupling will strongly depend on the symmetries of the mechanical mode prole with respect to the optical mode prole. A deformation of the optical resonator boundaries, related to a displacement eld prole of a particular mechanical mode, aects the dielectric tensor at the frontier between dierent materials. This eect is explained by the shift of the high-contrast step prole of ε( -→ r )

across a boundary because of the deformations of the structure. By relating such deformation to a change in the dielectric constant ε, we can use Eq. 2.1 to calculate the optomechanical coupling for the intrinsic case. In [START_REF] Johnson | Perturbation theory for maxwell's equations with shifting material boundaries[END_REF], a robust expression for this shift in frequency was derived, which, when adapted to an optomechanical interaction [START_REF] Eicheneld | Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals[END_REF], gives an optical frequency shift per displacement unit length, or, the dispersive coupling strength due to the eect of moving interfaces, as follows:

g M I = - ω 0 2 dA - → Q ( - → r ) • - → n ∆ε c - → E c, 2 -∆ (ε c ) -1 - → D c,⊥ 2 max - → Q dV ε c - → E c 2 (2.1)
where ∆ (ε c ) -1 = ε -1 c -1 is a dierence permittivity tensor between the cavity dielectric and surrounding medium (including the holes in the PhC lattice), -→ n is the outward facing unit normal vector on the surface of the unperturbed cavity and dA represents the integration over all the available cavity boundaries while taking into account the proper normal vectors.

The photoelastic contribution to the intrinsic optomechanical coupling arises from local changes in the refractive index due to strain in the structure, created by the displacement eld distribution for a given mechanical mode. A simple volume integral from perturbative theory approximation, such as the one shown in Eq. 2.1, can be used to nd the intrinsic dispersive optomechanical coupling strength, coming from to the photoelastic eect:

g P E = - ω 0 2 dV - → E c • ≡ δε • - → E c max - → Q dV ε c - → E c 2 where ≡ δε ( - → r ) is the induced dielectric perturbation for a particular vector displacement eld - → Q ( - → r ).
For 2D photonic crystal cavity, the rst family of mechanical modes, whose frequency lies in the MHz range sustain low g 0 at maximum about 1 kHz. However, due to the enhanced interaction between the optical and mechanical degrees of freedom and their strong overlap, the second family, with mechanical frequencies in the GHz range (localized vibrations within the photonic crystal cavity), could result in a strong optomechanical coupling. However, this enhancement of the optomechanical coupling strongly depends on the symmetries of the mechanical mode prole with respect to the optical mode prole. On L3 cavity, one observes that up to the fth-order modes, the coupling strength is rather modest with equivalent contributions of the moving interface eect and the photoelastic eect. Three modes however feature a strongly dominant contribution of the photo-elastic eect, resulting in very high optomechanical coupling strength up to 580 kHz. This strong contribution comes from the symmetry of this mode, or more precisely the prole of the associated strain prole with respect to the optical mode. Let's note that the eective mass keeps the same order of magnitude for all the modes, in the pg range. Same occurs for the zero-point uctuations that lie in the few f m range.

In the nanobeam geometry, for modes associated to Group A, i.e. mode in kHz range, coupling strength is rather high for these kind of modes (with g0 /2π as high as few kHz) but still small compared to modes at higher frequency. Thus, in the GHz frequency domain, the pitch modes feature the highest resonance frequencies, with rather high g0 /2π values up to 650 kHz. The group B modes lie at a slightly lower frequency around 2 GHz. These are the ones that provide the highest optomechanical coupling strength ( g0 /2π = 1378 kHz). The displacement associated to these breathing modes can be either symmetric or anti-symmetric with respect to the in-plane y axis perpendicular to the nanobeam. The symmetry of the displacement prole plays a crucial role in the coupling. It appears that the vacuum optomechanical coupling rate is higher for the symmetric modes, once again due to their stronger connement at the beam center, resulting in a higher overlap with respect to the optical cavity eld.

Conclusion

This chapter, dedicated to the design of photonic crystal based platform for optomechanics, introduced the optical and mechanical designs together with a description of optomechanical characteristics of system based on suspended photonic crystal membrane. Such structures can be formed either by a perfect photonic crystal acting as a deformable mirror or containing a photonic crystal cavity embedded within the membrane. In the case of a deformable mirror, the main challenge is more about reducing the losses in the mechanical domain in order to reach high mechanical quality factor. In the other case, with optomechaical crystal, optical dissipations are the rst element to manage. In both cases, optimization of the platform required to accurately compute both responses of structures.

According to the chosen design, the motion of the PhC membrane could be probed in a dierent ways.

If a suspended PhC mirror is considered, it can only be optically adressed at normal incidence direction in which the membrane is moving. The available mechanical modes are exural modes which can be read out thanks to an interferometric (e.g., Michelson interferometer) set-up. Depending on the size of the structures, these modes could range from few hundreds of kHz to few thenth of M Hz. Thanks to such an integrability of the optical functionality, photonic crystal mirror could also be used in the canonical conguration of optomechanics, the Fabry-Pérot cavity [45], in order to achieve strong backaction eects to cool to its quantum ground state of motion [START_REF] Fujita | Wide-bandgap semiconductor materials: For their full bloom[END_REF] or near it quantum limited position [START_REF] Guha | High frequency optomechanical disk resonators in iii&#x02013;v ternary semiconductors[END_REF][START_REF] Zhou | Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate[END_REF]. Besides these improvement of detection sensitivity closed to or at the quantum regime, at the heart of optomechanics, photonic crystal mirror could be used for other purposes such as nonlinear dynamics in NOEMS openning new eld of applications including noise reduction, operation at low dissipation regime or even amplication of weak signal. In Chapter 3, we discuss how, by enginneering an integrated resonant excitation, mechanical nonlinear dynamical regime can be reached and futher used to amplify and detect a weak mechanical signal with light.

When optically addressing a PhC cavity, one can employ an access waveguide brought in its evanescent eld [2], either a taper bre or integrated waveguide. The PhC cavity platform embeds the same exual modes seen with the highly reective design and highly localized mechanical modes. Due to the connement of these latest modes, the mechanical frequency could reach high frequencies (few GHz) with high optomechanical coupling. For these reasons, these high frequency mechanical modes range have a broad range of applications from fundamental purposes with quantum limited measurements to potential applications such as oscillators. Thus, exploration and use of the localized modes of PhC cavity in GHz frequency range can be pursued towards the implementation of applied domain functionalities, such as on-chip high-frequency microwave source or logic elements [START_REF] Chang | Slowing and stopping light using an optomechanical crystal array[END_REF][START_REF] Safavi-Naeini | Electromagnetically induced transparency and slow light with optomechanics[END_REF], interconnect-free circuits [START_REF] Mahboob | Interconnect-free parallel logic circuits in a single mechanical resonator[END_REF] and memory [START_REF] Mahboob | A multimode electromechanical parametric resonator array[END_REF]. In Chapter 4, we target to develop an optomechanical platform made of III-V semiconductor in order to directly generate a pure mechanical GHz modulation on an optical carrier, thus achieving a free-runnning optomechnanical oscillator. For any applications mentionned before and even others, integrability is a key issue in order to adress eciently and in reproducibable manner properties of the device. Therefore, we take advantage of mastering a heterogeneous integration technique of III-V semiconductor on silicon-on-insulator (SOI) to fully intergrate several functionnalities for further reducing phase noise compared to a free-runnning optomechnanical oscillator.

Chapter 3

Weak signal detection with a resonantly driven nonlinear electromechanical resonator

Nano-Electro-Mechanical Systems and Nano-OptoElectro-Mechanical Systems (NEMS and NOEMS)

devices [START_REF] Roukes | Plenty of room indeed[END_REF][START_REF] Ekinci | Nanoelectromechanical systems[END_REF][START_REF] Craighead | Nanoelectromechanical systems[END_REF] have witnessed huge advancement in the last decade in terms of advance in nanotechnological applications like metrology or signal processing for instance. These involves applications in several electronic devices including accelerometers [START_REF] Yazdi | Micromachined inertial sensors[END_REF], microphones [START_REF] Tajima | High-performance ultra-small single crystalline silicon microphone of an integrated structure[END_REF], gyroscopes, pressure/mass/gas sensors [START_REF] Eaton | Micromachined pressure sensors: review and recent developments[END_REF][START_REF] Hanay | Single-protein nanomechanical mass spectrometry in real time[END_REF], energy harvesters [START_REF] Cook-Chennault | Powering MEMS portable devicesa review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems[END_REF][START_REF] Mallick | Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester[END_REF], lab-on-chip [START_REF] Manz | Miniaturized total chemical analysis systems: A novel concept for chemical sensing[END_REF] devices for biological applications to name a few. The mechanical resonators are traditionally cantilever structures with clamping on one or both sides [START_REF] Unterreithmeier | Universal transduction scheme for nanomechanical systems based on dielectric forces[END_REF]. Among the most popular applications in sensing the devices there are the ones based on vibratory modes of crystals [START_REF] Narine | Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides[END_REF], micro cantilevers [START_REF] Thundat | Detection of mercury vapor using resonating microcantilevers[END_REF][START_REF] Ilic | Mechanical resonant immunospecic biological detector[END_REF][START_REF] Ono | Noise-enhanced sensing of light and magnetic force based on a nonlinear silicon microresonator[END_REF][START_REF] Lavrik | Femtogram mass detection using photothermally actuated nanomechanical resonators[END_REF] and other electromechanical systems [START_REF] Cleland | A nanometre-scale mechanical electrometer[END_REF][START_REF] Ekinci | Ultrasensitive nanoelectromechanical mass detection[END_REF].

Although rectangular structures have also been realized in order to perform electro-mechanical conversions as demonstrated by [START_REF] Bagci | Optical detection of radio waves through a nanomechanical transducer[END_REF][START_REF] Schmid | Single-layer graphene on silicon nitride micromembrane resonators[END_REF]. At the heart of any MEMS system is a mechanical resonator, where it is interfaced with transducers used for actuating these resonators to detect mechanical displacements. In most cases, mechanical resonators are excited in three dierent manners: magnetomotive, capacitive (electrostatic) and piezoelectric. In case of the former, depending on the orientation of the mechanical beam with respect to the static magnetic eld, the force can be either in or out of plane. In capacitive scheme of actuation, two electrodes work like a parallel plate capacitor applying force on the resonator.

The distance between the resonator and electrodes here becomes governing factor on the electromechanical coupling term and thus the eciency. Some of the devices utilize piezoelectric properties in order to actuate the mechanical resonator. The advantage of these platforms is that its integratibility and the possibility of actuation in the GHz regime. Other schemes of actuation involve magnetostriction or thermal actuation for example.

At the same time these devices have garnered attention for their eectiveness to study and explore nonlinear dynamical behavior. The study of nonlinear dynamics is of utmost importance in terms of application in dierent elds including signal/noise amplication, detection etc. Also nanoscale fabrication allows design of many coupled nanomechanical systems on a single chip, opening the way to study collective nonlinear dynamics eects of intermediate numbers of degrees of freedom.

Here, the system under study consists of a suspended 2D-membrane with embedded photonic crystal on it. The rectangular shaped membrane sustain mechanical modes whose eigenfrequencies are in the range of few MHz. Integration of interdigitated electrodes underneath are used to drive these membranes at its eigen-frequencies. The system therefore has both mechanical and electrical properties enabling possibility of an electro-mechanical coupling. The unique features of the nanomechanical membrane leads to high nonlinearity in the system. The existing nonlinearity in the system enabled us to perform studies highlighting the enhancement of weak signal thanks to a driven electromechanical resonator. In the following, we will investigate several of these nonlinear dynamics. The rst of them will be sub and super-harmonic excitation where an on-resonant weak signal is amplied by a multiple or a sub-multiple of the resonance. Then we will thoroughly discuss two unconventional amplication schemes namely stochastic and vibrational resonance. In these cases, the weak signal is completely o resonance and its amplication could be enhanced either by noise or an additional coherent signal.

From external excitation to integrated excitation

Initally, experiments were performed by doing actuation of the fabricated PhC membranes with an external piezo stack. All the membranes used in these experiments are InP photonic crystal membranes suspended with four bridges (Figure 3.1a). All the membranes have dimension of 10 × 20 µm 2 with dierent bridge lengths (2 -8 µm) and they produce their drum modes in the MHz regime. The piezo stacks could produce actuation up to 10 M Hz. A sinusoidal signal is generated by this signal generator which is used to actuate the piezo. Whenever the actuation frequency is close to the eigen-frequency Ω m0 of the mechanical membrane it will excite the corresponding eigenmode [START_REF] Antoni | Nonlinear mechanics with suspended nanomembranes[END_REF]. The detection then can be performed optically by interferometric method. The indirect piezo actuation of the membrane (stack of inetermediate elements to contect sample to the piezo -shown in Figure 3.1b) induces a not so ecient mechanical response. The target of our experiment was to explore the nonlinear dynamics of the photonic crystal membrane system, which is not possible under this excitation conguration.

An improvement on the actuation can be performed if we could replace the piezo stack actuation with some integrated actuation scheme. Common voltage induced actuation schemes include piezo-electrical [START_REF] Mahboob | A multimode electromechanical parametric resonator array[END_REF][START_REF] Masmanidis | Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation[END_REF][START_REF] Mahboob | Bit storage and bit ip operations in an electromechanical oscillator[END_REF], capacitive [START_REF] Unterreithmeier | Universal transduction scheme for nanomechanical systems based on dielectric forces[END_REF][START_REF] Rugar | Mechanical parametric amplication and thermomechanical noise squeezing[END_REF][START_REF] Schmid | Single-layer graphene on silicon nitride micromembrane resonators[END_REF], magnetomotive [START_REF] Knobel | Nanometre-scale displacement sensing using a single electron transistor[END_REF], electrothermal [START_REF] Bargatin | Ecient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators[END_REF], static dipole-based dielectric [START_REF] Tang | Two-dimensional electron-gas actuation and transduction for gaas nanoelectromechanical systems[END_REF] for example. The latter has less restrictive choice of system and has advantages in term of dissipation, however suers from problems of integration and high frequency actuation.

Integrated actuation scheme of nanomechanical oscillators have already been implemented [START_REF] Eichler | Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene[END_REF][START_REF] Bochmann | Nanomechanical coupling between microwave and optical photons[END_REF]. This kind of actuation can be achieved by utilizing the dielectric properties of InP. Using some electrodes integrated with the photonic crystal structures on the same chip it should be possible to actuate in the desirable frequency range of operation. The requirements here are:

Integration of the actuating electrodes and the mechanical resonator on the same chip.

Increase the actuation eciency while not compromising with the mechanical quality factor of the membranes. This can only be achieved if and only if there is a spatial separation between the actuated membrane and the actuating electrodes.

This separation between the membrane and the electrode governs the actuation eciency, thus enhancement of this actuation eciency can be achieved by decreasing the separation between the electrode and the membrane. This is a purely technological issue and we were able to achieve a relatively satisfactory amount of electromechanical coupling.

The chosen solution is to place electrodes beneath the photonic crystal membranes and then actuating the membrane via capacitive force induced due to the dielectric properties of the InP membrane. The integration also allows control of the distance between the electrodes and the membrane, thereby control over the electromechanical coupling without touching the membrane. It introduces an integrated actuation schemes which can enhance the actuation eciency of the photonic crystal membrane. 

Electromechanical coupling factor

The principal of actuation is the following: when a voltage source V (t) is connected between the external electrodes a potential is applied on the membrane. Field lines penetrate the membrane in a manner shown in Figure 3.1.1a, these eld lines then polarize the membrane and as a result a dielectric force is applied on the membrane. This force causes the membrane to oscillate at the actuation frequency. The system with electrode-membrane acts mainly as a capacitor; thus the force acting on the membrane is proportional to the square of the applied voltage V (t). Thus the force acting on the membrane is:

F = 1 2 dC (z) dz z=z0 V 2
where C(z) is the equivalent capacitance of the electrode-membrane system and z 0 the mean position of the membrane (or position at rest). Now under small signal approximation, the uctuating actuation force acting on the PhC membrane is:

δF = - 1 2 d 2 C (z) dz 2 z=z0 V 2 δz - dC (z) dz z=z0 V δV (3.1)
where the rst term of equation (3.1) represents purely a static (DC) voltage V acting on the system and the second represents inuence of an alternating (AC) voltage V actuating the resonator. The rst term is interestingly proportional to the displacement of the membrane δz which resembles modication of the spring constant of the nanomechanical resonator. The term V still exist in case of a pre-stressed membrane where we can assume a constant stress acting on the system which can be eectively represented by a static voltage. However when there is no external DC or static voltage acting on the membrane we should be able to neglect the inuence of the rst term in equation (3.1) as it practically has no eect on the membrane actuation. In that scenario only the second term remains and then the force acting on the system is:

δF = - 1 2 dC (z) dz z=z0 V δV
Now any resonator under forced oscillator regime can be described by the equation:

z + Γ m ż + Ω 2 m0 z = F = - 1 2 dC (z) dz z=z0 V δV (3.2)
The next step is to optimize the design of the IDEs, for the optimization we decided to look at the how the applied electric eld couples to the mechanical motion of the membrane. To perform this analysis we referred to Bagci et al. [START_REF] Bagci | Optical detection of radio waves through a nanomechanical transducer[END_REF] where they provide extended analysis of a similar system (a SiN membrane without photonic crystal) actuated via electrodes underneath by means of capacitive coupling. They proposed the coupling between the applied electric eld and the mechanical motion to be governed by a factor G known as the electro-mechanical coupling factor and it is expressed as:

G -1 = V C (z 0 ) δ δz 1 C (z) z=z0
In general the capacitance C(z) is an exponential function of z which signies the vertical position of the membrane (Figure 3.1.1a). This makes G automatically an exponential function of membrane position z as well. With increasing membrane-electrode separation therefore there is a gradual decrease in the electro-mechanical coupling factor G.

The electrodes are teeth-like structures with length of 8 µm which we keep xed for all simulations, while we vary the electrode widths and the air gap. The optimization of the electrode geometry is performed by maximizing the force applied on the membranes for a given applied voltage. This quantity can be expressed as a function of the material constants as well as the IDEs geometry. Such approach, as detailed in [START_REF] Makles | Optomechanic's photonic crystal nano-membranes[END_REF], permits to map dC(z) dz as a function of the interdigit separation a and the air-gap height as shown in Fig. 3.1.2. The capacitive force increases as the airgap height is reduced. As a function of the digitseparation a, the force displays a maximum (see Fig. 3.1.2). Finally the electrodes width is chosen as half the digit-separation since this value also maximizes the quantity dC(z) dz , and therefore the force.

For each of these electrode widths we change the electrode-membrane separation and for each case we calculate the electro-mechanical coupling by calculating dC(z) dz of the system. In each case we can observe an exponential decrease of G with the air gap. The value of the electromechanical coupling factor G is found to have a higher value for an electrode width of 0.50 µm (digit separation of 1 µm) . We did not go beyond width of 1 µm for the electrode width as it puts technological restrictions from the point of view of fabrication. When we were in the process of designing the electrodes, due to some technical issues we were restricted to an electrode membrane separation of about 0.4 µm, at this point, theoretically we predict an electromechanical coupling factor of about 4 nm/V .

Mechanical characterization of electromechanical resonators

In order to fully comprehend the experimental results we will refer to equation (3.2), where we got rid of the second part of the forcing term which is related to the DC stress applied to the system. The AC voltage applied to the system is actually the voltage which is responsible for excitation of the eigenmodes.

When the actuating frequency is close to the one of the eigenfrequencies, the resonator starts to oscillate and thereby producing signal at the receiver end. Thus in general the actuating voltage can be written as: 

V (t) = V DC + V ac cos(Ω drive t)
Here, we dene Ω drive as the driving frequency applied to the oscillator externally. When Ω drive ∼ Ω m0 the oscillator starts to oscillate and amplify the motion of the corresponding eigen-mode. In the rst experiment we x V DC = 0 V and V ac = 5 V . Then we vary the driving frequency drive, this frequency is varied from 2 M Hz to 10 M Hz and the resulting spectrum is displayed in Although here we scan up to 10 M Hz but thanks to the integrated actuation scheme it is possible to scan up to any desirable frequency (no cut-o frequency for applied voltage in the limit of the detection scheme). Response of the rst six modes are quite strong and easily observable while the two higher order modes (between 10-20 M Hz) are comparatively weak and dicult to detect (not shown here). The reason can be many fold; (i) small displacement for higher order eigenmodes, (ii) weak overlap between the incident laser spot and the mode prole, (iii) electrical noise present in the system degrading the signal to noise ratio (SNR) of the response. (iv) the electrode design not ecient at these frequencies. The choice of the electrodes as it was mentioned previously, was mainly due to the fact that it was an ecient design strategy in order to uniformly actuate the fundamental mode. While as we move towards higher order modes it becomes more and more dicult to actuate them with similar eciency with this kind of electrode design. If we want to do so, we need to change the electrode design accordingly with the mode prole. In Figure 3.1.3 c and d, we zoomed on the mechanical spectra of the rst two modes each for a drive V ac = 1.0 V . Figure 3.1.3 d displays the amplitude as well as the phase response of the fundamental mode. We are able to retrieve the amplitude as well as the phase response of the system. This mode is centered around 2.75 M Hz and a Lorentzian t yields a Γ m of 0.9 M Hz, that is a quality factor of around 1000, which is of the same order compared to the one extracted for piezo stack excitation in the previous chapter. As the frequency of actuation is modulated around the eigenfrequency the phase of the response rotates by 180°. While the second mode is displayed in Figure 3.1.3 d, this mode has Ω m0 = 3.26 M Hz and the evaluated Γ m is about 1.3 kHz for this mode.

After we could retrieve the mechanical modes, one of the rst objective is to perform proper calibration of the membrane displacement. This process is essential in order to retrieve the electro-mechanical coupling coecient. The calibration process was based on the method followed by Yeo et al. [101].

The characterization of the membrane displacement requires specic attention to the beam spot on the membrane; the beam spot should be as close to a Gaussian beam shape as possible. It was also imperative to nd a good focal spot on the membrane, this was done by observing the reected optical reading from the membrane at the detection end. Then by displacing the sample with the piezo stage along the z-axis i.e. along the focal plane, the beam is not properly focused on the membrane anymore and as a result there is a change in the reected optical intensity which will be imposed in the detected output voltage.

Thus the recorded data t an exponential decay. Now when the membrane is resonantly excited, the membrane starts to uctuate about its mean position (which is at the focal point of the laser beam). The obtained value of the coupling is in good agreement with the predicted 4 nm/V by FEM simulation.

So we are able to excite the eigen-modes more eciently, increase the coupling between the electrical eld and the mechanics and nally, integration without loosing quality of the mechanical response which is governed by the quality factor of the NOEMS platform. Thus, we can reach the nonlinear regime of the mechanical mode of the photonic crystal membrane and perform nonlinear dynamical measurements.

Basics of mechanical bistability

Whenever a mechanical oscillator is considered, the rst system that comes to the mind is a simple harmonic oscillator which follows Hooke's law of linear restoring force. The restoring force acting on such an oscillator is directly proportional to its displacement z. In the case of a mechanical system, the force eld induced by the transducer causes the system to vibrate. The externally induced force and amplitude of displacement are related as : F = kz where F is the external force and k is what is known as the spring constant of the system. Another important factor of NEMS devices is the quality factor or Q-factor. which can range from 10 3 -10 5 . This value greatly exceeds from the available purely electrical devices, thanks to lack of internal dissipation to low operating power levels. For devices used in signal processing high Q-factor implies low insertion loss [START_REF] Nguyen | Micromachined devices for wireless communications[END_REF] and low operating bandwidth [START_REF] Bruland | Optimal control of ultrasoft cantilevers for force microscopy[END_REF][START_REF] Garbini | Optimal control of force microscope cantilevers. i. controller design[END_REF].

Moreover thermomechanical noise is inversely proportional to the Q-factor, thereby making such devices less susceptible to random mechanical uctuations and hence highly sensitive to external forcing.

However this approximation does not hold true whenever a large deformation is involved. What makes micro and nano-mechanical systems very interesting candidates is that they can encounter nonlinear dynamics even before the intrinsic nonlinearity is imposed. The nonlinearity can arise in the system due to two main reasons:

Firstly it can arise when the external force crosses a certain threshold and thereby induces high stress which generates nonlinearity in the system.

Secondly this can happen due to eects induced by geometry even though the forces in play are linear.

The second factor is more interesting, where inherent geometrical eects causes nonlinearity to appear in the system. This situation is what is mostly encountered in NEMS/MEMS systems rather than the former one. In general these resonators are quite thin and when the amplitude of vibration exceeds the resonator tickness, nonlinearity is imposed in the system. Any system under such constraint can be described by Euler-Bernoulli equation.

The Dung oscillator

If an oscillator is under nonlinear regime, then another component of the restoring force (along with the one obeying Hooke's law) acting on the system becomes proportional to the cube of oscillator displacement i.e. F restoring ∼ z 3 . If we dene the proportionality constant as β we can dene the restoring force to be βz 3 . This turns a simple harmonic oscillator with a linear restoring force into a Dung oscillator. Thus using some approximations, we can write equation for the mode as:

z (t) + Γ m ż + Ω 2 m z 1 + βz 2 = δF = F 0 cos (Ω drive t)
Here we dene Ω m as the angular eigenfrequency of an eigen-mode, Γ m is the damping, β as the coecient of Dung nonlinearity δF is the force acting on the oscillator at a drive frequency Ω drive . The restoring potential of such a system will not follow a simple linear rule i.e. restoring potential will not be a simple parabola. On the contrary it will have a rather complicated shape and the system will now have more than one stable states, in this particular case it will have two stable states and its potential will look like a double well potential, this is known as the bistability.

In other situations nonlinearities can be induced from nonlinearity in actuation or detection mechanisms that are interacting with the system. Other sources could include clamping of the mechanical oscillators with the surrounding medium. Finally another source of nonlinearity can arise due to damping mechanisms that act on a mechanical oscillator. One can imagine that when a resonator is under a nonlinear restoring force (i.e. when the restoring force is proportional to z 3 ) then along with linear damping which is proportional directly to the velocity ż there would another nonlinear damping term proportional to żz 2 . And this damping term should increase with increase in the amplitude of displacement z. Although in the following discussions to avoid complicacy we would neglect this nonlinear damping term.

Solution of forced response of the system in Dung regime is not straight forward as the linear superposition theory is no longer valid in this regime. The approximate Dung response of the system can be derived by using secular perturbation theory [START_REF] Strogatz | Nonlinear Dynamics And Chaos: With Applications To Physics[END_REF] and the resulting equation is shown in :

|z| 2 = F 2 0 1 + βz 2 -Ω drive Ωm 2 2 + Γ 2 m 4 (3.3)
Also, the steady state response of the system does depend on the initial conditions, unlike the situation when the system is in linear regime. Interestingly the resonance of the system in this regime can also shift away from the natural resonant frequency attributed to the presence of nonlinearity in the system.

The sign of the nonlinearity factor β governs the nature of the induced nonlinearity. When sign of this β factor is positive, this nonlinear restoring force works in such a way that it assists the linear restoring force thereby making the oscillator more dicult to excite and eventually increasing the natural resonance 32CHAPTER 3. WEAK SIGNAL DETECTION WITH A RESONANTLY DRIVEN NONLINEAR ELECTROMECHANIC frequency. This eect for this very reason is known as spring hardening eect. The opposite situation of this is when the coecient β becomes negative. In such a situation the nonlinear restoring force works against the linear restoring force thereby making the oscillator easier to excite and shifting the natural resonance to a lower value. This is therefore known as the spring softening eect. This is mainly governed by the fact whether the system is under compressive or is under tensile stress [START_REF] Cho | Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities[END_REF]. Depending on the initial condition the nonlinear spring constant will either be positive or negative resulting in either decrease or increase (hardening or softening) in the natural resonance frequency when the system is in Dung regime.

Resonant excitation : Evidence of mechanical nonlinearity

The force δF acting on the system can be written as (provided the membrane is not pre-stressed by an external DC voltage):

F = - 1 2 dC(z) dz z=z0 V δV
where V = V ac cos (Ω drive t) where V ac is the amplitude of the AC voltage driving the system. In order to reach this nonlinear regime the PhC membrane is needed to be excited with an even higher AC bias V ac . We start the actuation from a lower Vac (1 V ) making sure that the system is far from the nonlinear threshold. The drive frequency (Ω drive ) is swept in both upper and lower direction while the amplitude as well as the phase response of the oscillator is tracked simultaneously. The response in amplitude as well as in phase are found to be identical to each other giving no indication of existence of bistability in the system. However, when the external actuation V ac exceeds some threshold of excitation (V T h ) the system starts to enter in the bistable regime. For our system this happens for V ac > 5 V . Response of the system when it is excited well above the threshold and deep into the nonlinear regime is shown in Figure 3.2.1, here the oscillator is resonantly excited at 10 V and the frequency of excitation ( Ω drive ) is swept up and down consecutively. Dierent sweeps result in two dierent responses with two dierent resonant peaks and a hysteresis is being observed between these two sweeps. In this regime, the system is allowed to have two distinct stable and one unstable state at a particular frequency inside the hysteresis region. The width of this hysteresis region is around 4 kHz at 10 V. For the amplitude response in the bistable regime equation (3.3) is used. From this t mechanical eigen-frequency of the drum mode (Ω m0 = 2.73 M Hz) and the FWHM (Γ 1st = 0.9 kHz) can be derived. Considering third order nonlinearity (Dung regime) the nonlinearity factor was computed using the t and we obtain a value of β = 1.4 nm -2 .

Nonresonant excitation of a driven nonlinear nanoresonator

The usual and most straighforward manner to excite nonlinear systems is by resonant excitation i.e.

Ω drive = Ω m . However, nonlinear systems may respond to excitation at its sub or super-harmonics as well.

The idea of sub/super-harmonic resonance has been proposed by Zounes and Rand [START_REF] Zounes | Subharmonic resonance in the non-linear mathieu equation[END_REF]. Theoretical discussion of sub and super harmonic excitation has been greatly discussed by Mallow et al. [START_REF] Mallow | Multiple resonances in the double-ash eect[END_REF] and A. Prosperetti [START_REF] Prosperetti | Subharmonics and ultraharmonics in the forced oscillations of weakly nonlinear systems[END_REF]. More interestingly, the system under study might present several mechanical nonlinearity. The presence of such higher order nonlinearities means that several resonant overtones can exist for the system:

(i)
rstly when the drive frequency Ω drive is near the natural frequency Ω m ; it's called fundamental or primary resonance;

(ii) when drive frequency Ω drive is n times the natural frequency i.e. Ω drive = n × Ω m ; then its called sub-harmonic resonance and

(iii) when drive frequency Ω drive is 1/n times the natural resonance frequency i.e. Ω drive = Ω m /n; it's called super-harmonic resonance.

The phenomenon in nanomechanical systems has been explored by Shim et al. [START_REF] Shim | Synchronized oscillation in coupled nanomechanical oscillators[END_REF] and also idea of such excitation has been utilized by Mahboob et al. to design parametric resonator array [START_REF] Mahboob | A multimode electromechanical parametric resonator array[END_REF]. However phase dynamics of such systems under this regime has not been explored in details.

These kind of excitation are also referred as the parametric excitation as the system is excited on resonance but while being forced at some harmonic of the natural response. The modulation at the sub or higher harmonics of the natural resonance modulates the spring constant of the resonator and after a certain point when the excitation crosses a certain threshold the system is able to respond resonantly. The phenomenon is directly related to the nonlinearity of the system as the nonlinearity of n-th order helps the resonator to be excited at n-th super or sub-harmonic resonance. Thus the threshold of excitation is related to the order of nonlinearity in the system and the above-mentioned threshold increases for higher order nonlinearities. The observation of sub/super-harmonic resonances requires high nonlinearity in the system. These experiments were performed by exciting the system far away from resonance i.e. at Ωm n or n × Ω m and at the same time probing the response of the system at Ω m . 

Excitation of superharmonic resonance

In order to perform the experiment the drive frequency Ω drive was swept around Ωm n (n = 2, 3, 4...) by an amount 2×∆Ω (Figure 3.3 a) where ∆Ω = nΩ drive -Ω m denotes the frequency detuning. Meanwhile, the system was always probed all the time at Ω m . When the drive is not strong enough only a quasiperiodic motion of the oscillator is observed; while when the forcing amplitude is strong enough periodic oscillation at Ω m is observed. In the latter case, the locking of the oscillator frequency on the periodic force frequency occurs within the aforementioned instability tongues. Due to some presence of damping in the system these kinds of instability tongues will be possible only after the excitation exceeds a certain threshold (V T h ). Such regions for several superharmonic resonance congurations are plotted in Figure 3.3.1.

The experiment was performed by recording the spectra at a xed frequency while repeating the experiment step by step at a slightly shifted frequency and nally interpolating peaks from each plot to construct the nal spectra. Even though spectra becomes a bit pixelited, the instability tongue is clearly visible in every case. For the ease of discussion we will segregate this section into two subsections: in the rst one we will discuss about the excited amplitude evolution under superharmonic conguration, while in the later one we will shift our focus on the evolution of the phase space trajectories under superharmonic resonance.

Amplitude evolution

On the 2D surface plots of Figure 3.3.1 x-axis represents detuning of the frequency from the natural frequency of the system, on y-axis is the amount of AC voltage V ac applied to the oscillator, while the color axis represents the noise spectrum of the fundamental mechanical mode Ω m . In relation with the theoretical discussion presented before thus resembles V ac while represents drive. For n = 2 to n = 5 the tongue like behavior can be clearly observed while for n > 5 it becomes dicult to observe the tongue shape. The reason can be attributed due to the fact that the threshold required for the superharmonic resonance (n > 5) to be seen is directly related to the corresponding nonlinear coecients, which decrease as n increases. Several interesting parameters can be deduced from the response spectra, one of them being how the FWHM (∆Ω res ) of the spectra depends on the applied excitation as well as on n. The raw data however are quite noisy, this happens due to the point by point measuring procedure which was mentioned before. The raw experimental data for n = 3 and V ac = 9.0V is shown in Figure 3.3.1 (a). In order to extract some useful information from these data some further data processing was needed to be performed. This was done by performing some data smoothing algorithm on the spectrum, a simple 4thorder average lter was used for the signal processing. The smoothed data is displayed in Figure 3

.3.1 (b),
where it can be seen that we are able to reproduce data which looks much similar to a Lorentzian spectra.

The data are successfully reproduced without much loss of information like amplitude and bandwidth of the spectra. Now it was possible to t this spectra with a mechanical Lorentzian function and retrieve information. The Lorentzian function used to extract the data is displayed in the following equation:

x = x 0 + B ∆Ω res 4 (Ω -Ω m ) 2 + ∆Ω 2 res
where Ω res is the full width half maxima of the spectra. For the particular situation displayed in the applied bias in Figure 3.3.1 (c) for several superharmonic resonances (n = 1, 3, 5, 7, 8). The rst noticeable result from the plots is the clear indication of the saturation of ∆Ω res at higher V ac ; this might be due to the higher orders of perturbation or dissipation due to temperature rise. The saturation eect is clear for n = 1 to 5, while from n = 7 this saturation eect is not particularly evident. Especially for n = 8 in Figure 3.3.1 (c) the growth in ∆Ω res can still be seen even for higher V ac values. One more important information that can be extracted from the data is the variation of the excitation threshold referred as V T h . The extracted ∆Ω res and threshold voltage V T h required for the superharmonic resonance to occur is plotted in Figure 3.3.1 (d). All the Ω res are extracted for V ac = 10 V for dierent superharmonic resonances i.e. dierent n values. It can be clearly seen from this plot that the FWHM (∆Ω res ) gradually decreases with n, while threshold voltage V T h increases with n. This phenomenon can be attributed to the fact that lesser contribution from the higher order nonlinear terms, while the inuence of these higher order terms can be enhanced by increasing the external excitation.

Evolution of phase trajectories

The next study that could be performed on the system is to understand the phase dynamics under superharmonic resonance. Using ring down technique, several trajectories for various superharmonic resonance were tracked and some of the results are plotted in Figure 3.3.1 a (n = 2, 4, 6) for two values of excitation V ac = 2V & V ac = 10V . The record of these phase trajectories are done by doing several ring down measurements while keeping the drive V ac and resonance order n xed. We start by observing the phase trajectory for n = 2; here we can observe that for a low level of excitation (V ac = 2V ) the system displays only a single state which oscillates at a xed phase dierence with respect to the drive.

The radial distance of the phase state from the center determines the amplitude of oscillation of this state. However, when the excitation is higher (V ac = 10 V ) the system enters into the nonlinear regime and along with an enhancement in the oscillation amplitude it also starts to display a bifurcation in phase. The system shows probability close to 50 % to be in each state while dierent switching events are recorded. Similar situation is observed for 4 th superharmonic resonance, near or below the threshold (around V ac = 2 V ) the initial phase approaches the origin (Figure 3.3.1 a). When the drive strength is weak, the resonator occupies only a single state. But for V ac = 10 V , the phase portrait follows two spiral trajectories diered by phase shift. The phase dierence between this two bifurcated points remaining.

Similar eects have been demonstrated by Mahboob et al. [START_REF] Mahboob | Bit storage and bit ip operations in an electromechanical oscillator[END_REF][START_REF] Mahboob | A multimode electromechanical parametric resonator array[END_REF] and Chan et al. [START_REF] Chan | Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators[END_REF]. For higher order superharmonic resonances (n > 5), these in and anti-phase resonances are not observed due to the very narrow width of the instability tongue related to the lower value of the higher nonlinear coecients.

The phase dierence between the oscillator and the driving force is bounded and depends on the excitation frequency detuning. In the experiment we prepare the system at one of the two bifurcated states and then change the frequency detuning from one edge of the tongue to another. At each point of detuning we are able to extract the phase and amplitude of oscillation with respect to the external drive. In Figure 3.3.1 (b) we show how the phase trajectory of one of the oscillator state is evolving for ve dierent detuning values, identical behavior would be observed for the other state as well. We have observed that each states undergoes a π phase shift with the detuning while maintaining a π phase shift with the other state at each detuning point. We start from one edge of the hysteresis where the excited amplitude is quite small with a phase shift of -π/2 with respect to the external drive, and gradually this phase dierence starts to increase towards 0 as the frequency detuning approaches 0. At 0 detuning the amplitude of oscillation is also the highest with zero degree of phase shift measured with 4 % of uncertainity. From here as the detuning is increased the phase dierence increases towards π/2 with a decrease in the oscillation amplitude. Similar eect is observed for both n = 2 and n = 6. While for obvious reason oscillation amplitude for n = 2 is being higher than for n = 6. Another representation of this phase shift is shown in Figure 3.3.1 (c) where we can clearly observe the phase of individual states undergoing a π phase shift while crossing the tongue for a constant drive V ac . Two separate situations are displayed with n = 2 and 6; and in both cases we can observe that each state will under go a π phase shift as the detuning is changed. Thus in conclusion one can say that the phase shift remains bounded within the width of the instability tongue, showing a linear behavior (varying by π while 'crossing' the tongue).

Parametric amplication

Let us consider the opposite situation where the spring constant of the system is modulated at twice the natural frequency. This leads to an amplication of a weak drive at resonance, this is known as parametric amplication. The idea is that if a system resides within its instability tongue, any small perturbation could cause the response to grow exponentially, this happens when the amplitude of modulation is suciently strong enough to overcome any inuence of damping. This phenomenon is known as the parametric amplication and it nds many interesting applications in the eld of MEMS/NEMS resonators. This eect has been demonstrated in several nanomechanical systems; Unterreithmeier et al showed that parametric excitation is possible for a electromechanical system, Mahboob et al showed that parametrically coupled array could produce a network which can demonstrate binary operations [START_REF] Mahboob | Bit storage and bit ip operations in an electromechanical oscillator[END_REF],

while Midtvedt et al [START_REF] Midtvedt | Parametric resonance in nanoelectromechanical single electron transistors[END_REF] demonstrated parametric amplication for carbon nanotube microresonators.

Other nano/micro-mechanical system have been also shown to exhibit the parametric amplication eect [START_REF] Karabalin | Ecient parametric amplication in high and very high frequency piezoelectric nanoelectromechanical systems[END_REF][START_REF] Collin | Nonlinear parametric amplication in a triport nanoelectromechanical device[END_REF]. The threshold of this parametric amplication scales as (Q -1 ) n (where Q denotes the Q-factor of the resonator) [START_REF] Yang | Monocrystalline silicon carbide nanoelectromechanical systems[END_REF] for the the n-th instability tongue; so the eect is strongest for the case when n = 1/2 i.e. when Ω drive = 2Ω m . This is why it is customary to study the case of parametric amplication for this particular case. The idea is really similar to what has been done in the previous section but instead of using super-harmonic resonance we use sub-harmonic driving conguration. The resonator is driven at natural resonance (Ω drive = Ω m ) far away from the bistable threshold so that it remains well inside the linear regime and then at the same time another drive is added; generally referred as pump at a frequency Ω drive = 2 × Ω m (See Figure 3.3 b). This excitation however should be stronger than the drive. Most common case in micron scale is to use an external electrode to pump the system at twice the natural frequency. What happens in such a condition is basically the pump at this frequency modulates the spring constant and at the same time the seed at natural resonance helps this oscillation to build up provided the system is within the instability tongue. In such a condition it will be shown that it is possible to achieve either amplication or deamplication depending on the phase dierence between the drive and pump.

The gain of parametric amplication can thus be expressed as:

G(Φ) = [ cos 2 Φ (1 + Vp Vt ) 2 + sin 2 Φ (1 - Vp Vt ) 2 ] 1/2 (3.4)
When the phase dierence Φ is π/2 between the drive and the pump, there is an amplication which grows towards innity with V p → V t . While on the other hand there is a deamplication for the phase dierence of Φ = 0 between the source and the pump, and it goes asymptotically towards 0.5 with an increase in the parametric pump.

In the experiment two separate signal generators were used for driving the system in these two dierent frequencies. The rst generator is used to drive the resonator weakly at the natural resonance (Ω m ) with a weak drive (V ac = 100 mV ) well below nonlinear regime. A second generator then was used to pump values of parametric pump with the t the system at 2 × Ω m . At the beginning the second generator is used to generate a signal at Ω m with a higher amplitude (typically 4 -10 V ) being synchronized with the rst generator. The output of the second generator is then fed to a frequency multiplier with a multiplication factor of 2 to nally produce a response at 2 × Ω m . In this way it is possible to keep a constant phase relationship between the drive and the pump. A phase shifter is connected at the output of the second signal generator in order to continuously vary the phase dierence between the signal generators. Finally the response is recorded at the natural resonance by using a lock-in amplier. Special care needs to be taken to avoid mixing problem between pump and the drive as well as the shift of the resonant frequency due to the increased eective driving.

The experimental result for V P = 10 V is displayed in Figure 3.3.2 a, which shows variation of parametric gain with the phase dierence between the resonant drive and the parametric pump. The parametric gain is dened as the ratio of the amplitude response of the system when parametric excitation is activated to response of the system when there is no parametric actuation. In every case the resonant drive is xed below nonlinear threshold at 100 mV , while the responses were recorded for several values of the parametric pump, from V p = 4 V to 10 V . The phase dierence between the resonant drive and parametric pump is also varied from 0 • to 180 • . In every case, the gain in the response varies from a region of amplication to a region of deamplication; the eect is strongest for a parametric pump of 10 V . The height of amplication and depth of deamplication is really pronounced in this case, the dierence between these two peaks (dierence between highest value of amplication and lowest value of deamplication) however decreases as the parametric pump is reduced. Since the experiment is susceptible to several noise source (electrical uctuations, uctuations from detectors, lock-in to name a few) better estimation of the amplication and deamplication was extracted from ts rather than providing directly from the plots. These ts were performed by a modied version of the equation (3.4) and can be written as:

G(Φ) = [ cos 2 (Φ + α) (1 + Vp Vt ) 2 + sin 2 (Φ + α) (1 - Vp Vt ) 2 ] 1/2
A parameter α is introduced in equation which acts as a constant phase oset, which comes into play from various delays in electrical connections. This makes the maxima and minima of the gain to occur at dierent values (other than classical π/2 and 0), however the phase dierence between the crest and base should always be π/2. It is the same reason for which these peaks and lows are observed to occur at dierent phase values for dierent pump voltage V p . From the ts not only it's possible to extract the maxima and minima of the gain G(Φ) but also it is possible to determine the critical parametric drive V = Vp Vt . The ts are also represented in Figure 3.3.2 (a) by dotted red lines for each case of parametric amplication. The t follows the response quite nicely, the phase value at which the lowest deamplication and highest amplication is observed is about 20 and 110 degrees respectively, which gives a expected phase dierence of 90 degrees between them. From the ts it is possible to determine the maxima and minima for the gain in each V P . The result is plotted in vibrational resonance with a periodic modulation using a nonlinear system amplication as well as a decrease of deamplication can be observed for two separate phase dierences.

For V p = 10 V an amplication of about 4.5 and de-amplication close to 0.55 is observed. To compute the t we use equation (3.4) with xed phase dierences (depending on if we are looking at gain maxima or minima) and the ts predict a critical voltage V t of around 14.0 V . However this value is above the range of V p considered for the experiment. Due to some technical reasons especially not to damage the membrane or the on chip electrical connectors, parametric excitation with higher drive were not explored. Such a high parametric excitation to observe this exponential enhancement in gain and hence self-oscillation, can be attributed to the fact that the electromechanical coupling for this conguration is not high enough. This however can be increased by tuning the geometry of the system. The sample being used has a separation of 400 nm between the bottom of the membrane and the top of the electrodes. This conguration gives a calculated electromechanical coupling of 3 nm/V

, however this coupling increases exponentially with a decrease in the electrode membrane separation.

With our recent optimization in the fabrication procedure we are able to go down to as small as 200 nm of electrode membrane separation which in theory should result in approximately two time enhancement of the electromechanical coupling factor. With this high degree of coupling we can expect a lower V t and hence observation of self-oscillation at a much lower value of V p .

Weak signal enhancement by nonlinear resonance control

In bistable systems, weak periodic signals can be amplied by use of external driving (Fig. 3.4.1). Such external driving can be some noise of appropriate strength in the case of stochastic resonance [START_REF] Benzi | The mechanism of stochastic resonance[END_REF], or a high-frequency harmonic signal of appropriate amplitude in the case of vibrational resonance [START_REF] Landa | Vibrational resonance[END_REF].

Both physical phenomena share qualitative features including a resonant-like behaviour, though the underlying mechanisms dier. Time matching criterion dependent on the applied noise amplitude required for stochastic resonance is replaced, in the case of vibrational resonance, by an amplitude criterion equivalently to a parametric amplication near the critical point. Both phenomena have been reported in many dierent areas including electronics [START_REF] Zaikin | Vibrational resonance in a noise-induced structure[END_REF]119], optics [START_REF] Mcnamara | Observation of stochastic resonance in a ring laser[END_REF][START_REF] Barbay | Stochastic resonance in vertical cavity surface emitting lasers[END_REF][START_REF] Chizhevsky | Experimental evidence of vibrational resonance in an optical system[END_REF][START_REF] Chizhevsky | Improvement of signal-to-noise ratio in a bistable optical system: Comparison between vibrational and stochastic resonance[END_REF] or neurobiology [START_REF] Ullner | Vibrational resonance and vibrational propagation in excitable systems[END_REF][START_REF] Douglass | Noise enhancement of information transfer in craysh mechanoreceptors by stochastic resonance[END_REF].

In nanomechanics, the bistable system is usually a simple nonlinear resonator and bistability arises thanks to a quasi-resonant forcing.

This phenomenon can be fully understood thanks to the ubiquitous Dung model which, beyond nanomechanics, can be used for superconducting Josephson amplier [START_REF] Vijay | Invited review article: The josephson bifurcation amplier[END_REF], ionization waves in plasma [START_REF] Nambu | A possible plasma wave chaos[END_REF][START_REF] Roy-Layinde | Analysis of vibrational resonance in bi-harmonically driven plasma[END_REF] to describe complex spatiotemporal behaviors such as chimera states [START_REF] Clerc | Chimera states in a dung oscillators chain coupled to nearest neighbors[END_REF]. In the frame of the wellkonwn Dung model, the oscillator features two equilibrium states of dierent amplitudes and phases for the same values of parameters. In this regime, substantial resonant enhancement of a weak and slowly modulated signal through stochastic resonance can be achieved either by use of amplitude [START_REF] Badzey | Coherent signal amplication in bistable nanomechanical oscillators by stochastic resonance[END_REF][START_REF] Guerra | Signal amplication by 1/f noise in silicon-based nanomechanical resonators[END_REF][START_REF] Venstra | Stochastic switching of cantilever motion[END_REF] or phase [START_REF] Chowdhury | Phase stochastic resonance in a forced nanoelectromechanical membrane[END_REF] noise. When the external driving is no more stochastic but rather a harmonic signal of high frequency, a little bit of care has to be taken. The system is then subjected to forces occurring on three dierent timescales: the one of the signal, the one of the external drive and the one of the forcing.

Stochastic resonance with phase noise

The phenomenon of stochastic resonance corresponds to the amplication of a weak signal in a nonlinear system by application of external noise. The concept was actually put forward by Benzi and his collaborators [START_REF] Benzi | The mechanism of stochastic resonance[END_REF] in order to explain the problem of periodically recurring ice ages; its modeling was put forward by Kramer in 1940 [START_REF] Kramers | Brownian motion in a eld of force and the diusion model of chemical reactions[END_REF]. The role of stochastic resonance has become very important in recent years in elds of physics, chemistry, biology and engineering. The theory since then has been applied for many applications e.g. penning trap [START_REF] Lapidus | Stochastic phase switching of a parametrically driven electron in a penning trap[END_REF], superconducting loops with a Josephson junctions [START_REF] Hibbs | Stochastic resonance in a superconducting loop with a josephson junction[END_REF], atomic cloud in a magnetooptical trap [START_REF] Wilkowski | Instabilities in a magneto-optical trap: Noise-induced dynamics in an atomic system[END_REF] and in VCSEL lasers [START_REF] Aldridge | Noise-enabled precision measurements of a dung nanomechanical resonator[END_REF]. Recently this phenomenon has been extended to nanomechanical systems. These highly nonlinear systems include for example double clamped beams [START_REF] Almog | Signal amplication in a nanomechanical dung resonator via stochastic resonance[END_REF][START_REF] Unterreithmeier | Nonlinear switching dynamics in a nanomechanical resonator[END_REF], cantilever structures [START_REF] Venstra | Stochastic switching of cantilever motion[END_REF] and torsional oscillators [START_REF] Chan | Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators[END_REF][START_REF] Mueller | Optomechanical stochastic resonance in a macroscopic torsion oscillator[END_REF]. All of them display stochastic resonances by means of injected noise in the system. Most of them rely on injected amplitude noise.

However it will be shown in the coming sections that another way to implement stochastic resonance can be by using phase of the driving signal.

Concept and ingredients

Stochastic resonance is a phenomenon of amplication of a low amplitude low frequency signal by a bistable system under application of external noise. Let us consider our system with the bistable potential well (Figure 3.4.1), the bistability in this case is induced externally by driving the system within the hysteresis regime. In general if there is no modulation of the bistable potential, the jumps between the metastable states is random. Let us assume now that the bistable potential is modulated weakly by a external periodic drive with a time period of T mod = 2π Ω mod

. The modulation is small enough so that the system can not make jump from one state to another; in other words the system stays in one of the states always if not inuenced externally.

However, if an external disturbance is used by means of modulation of the bistable potential by external modulation or noise, the stable states can become metastable. Under such circumstances the system can switch back and forth between these two states. When purely an external noise is used in order to facilitate this switching, the rate of these switching is dened by the so called Kramer's rate [START_REF] Kramers | Brownian motion in a eld of force and the diusion model of chemical reactions[END_REF] and its normalized form is expressed as:

r = 1 √ 2π e (-∆V /η) (3.5)
where, r is the Kramer's rate and η is the externally injected noise.

Under inuence of external noise the jumps can be synchronized with the external modulation. In order to have a perfect synchronization therefore the system has to jump two times between the metastable states in a single period of driving. This yields fundamental stochastic resonance which will be realized provided Ω mod < r 2π

T , the Kramer's rate. Thus one can write the optimal condition for stochastic resonance as:

T mod = 2T
Realization of stochastic resonance hence requires combination of both external modulation and noise in the system.

Determination of the threshold of modulation A th : we deene the threshold of amplitude of modulation A = A th beyond which jumps between the states takes place. Below A th modulation of the bistable potential is not enough to induce the switching, however when the modulation crosses this value system can jump between the states. This value is important in order to modulate the system well under this threshold under stochastic resonance conguration.

Determination of the cut-o of Ω mod (frequency of modulation): we need to nd the cut-o to make sure the system is modulated always well under this frequency. Otherwise the system would not be able to follow the weak external modulation thereby producing no stochastic resonance.

Determination of the Kramer's rate r: as it was shown by equation (3.5), in order to realize stochastic resonance, the system has to be modulated at a frequency lower than its Kramer's rate. Therefore before starting experiments with stochastic resonance it is imperative to determine Kramer's rate of the system, so that we can keep the external modulation below that frequency.

In our experiments, the stable states correspond to the two basins of attraction in the two-dimensional (2D) phase space of the bistable response sustained by a nanomechanical oscillator forced close to its fundamental mechanical mode (see Fig. 3.2.1). The driving signals (coherent signal and noise) are generated by applying an AC-bias V (t) on integrated interdigitated electrodes placed underneath the oscillator. The phase Φ and the amplitude modulus R of the oscillator displacement are deduced in a homodyne detection scheme and plotted in the phase plane.

The applied voltage, and therefore the applied force, is in the form of :

V (t) = V AC cos [Ω drive t + ∆φ sgn (cos (Ω m t)) + ξ φ (t)] , (3.6) 
Here V AC is the amplitude of the applied voltage, while Ω driv denotes the resonant driving frequency. A phase modulation is added; it displays a square waveform described by the sign function sgn, at frequency Ω m and a phase deviation of ∆φ. White Gaussian phase noise of zero-mean (bandwidth of 10 kHz),

correlation function ξ φ (t) ξ φ (t ) = ξ 2 RM S δ (t -t )
, is also applied on the nonlinear dynamic system. Dierent experimental congurations can be investigated: resonant excitation (∆φ = 0 and ξ RM S = 0), resonant excitation with pure phase modulation (∆φ = 0 and ξ RM S = 0), resonant excitation with pure phase noise (∆φ = 0 and ξ RM S = 0) and phase stochastic resonance under resonant excitation (∆φ = 0 and ξ RM S = 0).

When the system is set in the bistability regime, jumps between the two stable states can be induced by applying a force with a suciently high phase deviation, phase noise strength or both. These jumps are investigated by tracing the amplitude and phase evolution of the fundamental mode with time and are also pictured in the X-Y phase plane. The radial distance between each point and the origin in the X -Y frame corresponds to the mode amplitude R while the angle between the line joining the point and the origin and the X axis, gives the phase Φ.

Bistable response under resonant excitation

Under resonant excitation, the applied voltage is in the form of : and phase (Φ) for driving voltages V AC > 5.5V (Fig 3 .2.1). The system becomes bistable and two stable states (in amplitude and phase) coexist. Depending on the position of the operating point Ω drive in the hysteresis region, one of this stable point will be more probable than the other. In every experiments here, the mechanical mode is prepared in its upper state and V AC is set at 9V , well in the non-linear regime. The driving frequency is set inside the hysteresis region at Ω drive = 2.824 M Hz in order to get symmetrical potential wells.

V (t) = V AC cos [Ω drive t]

Switching by addition of phase modulation

Jumps between the two stable states can be induced by adding to the resonant excitation a phase modulation with a square-waveform at frequency Ω m and with a phase deviation ∆φ. The actuation voltage can here be expressed as: To determine the dynamical properties of such states, evolution of the response in amplitude and in phase are recorded as function of the strength of phase deviation (∆φ) and its frequency (Ω m ). For low ∆φ < 1.83 rad and at a given frequency (Ω m = 500 Hz), the system stays in its initial state (i.e. the upper state). The energy put into the system is not sucient to overcome the barrier height. In this case, no switching between the two states happens and only intra-well modulation occurs. Therefore, the probability of switching at Ω m is null (Fig. 3 sucient for the oscillator's motion to follow the applied modulation and jump between its two stable states: The switching fraction, probability of switching between the states, is maximum and equals 1.

V (t) = V AC cos [Ω drive t + ∆φ sgn (cos (Ω m t))]
When the phase deviation is now set above this threshold value of 1.83 rad, the switching probability will also depend on the modulation frequency (Fig. 

Switching by addition of phase noise

Jumps can also be induced by adding to the resonant excitation pure phase Gaussian white noise of zero-mean, RMS value ξ RM S and correlation function ξ φ (t) ξ φ (t ) = ξ 2 RM S δ (t -t ). In that case, the applied potential to the electrodes can be expressed as

V (t) = V AC cos [Ω drive t + ξ φ (t)] (3.9) 
The experiments have been carried out for dierent noise strengths and for three dierent operating points Ω drive within the bistability region: at the center of the hysteresis window Ω drive = 2.824 M Hz and on the edges of the bistable region Ω drive = 2.824 ± ∆ M Hz with ∆ = ±300 Hz (see Fig. 3.4.3-a).

For each of these operating points, time traces have been recorded for dierent noise strengths. From these traces over the full recording of 300 s duration (see Fig. In the following, the operating point is set at Ω drive = 2.824 M Hz in order to properly extract the Kramer's rate ( 1 /T K ) in the case of a symmetrical potential wells [START_REF] Kramers | Brownian motion in a eld of force and the diusion model of chemical reactions[END_REF]. The Kramer's rate is extracted by dividing the ux of jumps between the two states by the average time the system spends in the corresponding states. The plot of the Kramer's rate with the injected phase noise is displayed in Fig. 3.4.3c. For a noise strength of ξ RM S = 0.52 rad, when two states are equiprobable, it equals 100 Hz.

Contrary to amplitude noise which amounts to additive noise, phase noise acts as a multiplicative noise.

Multiplicative noise shall translate into a shift of the operating point in the hysteresis and thus into an eective detuning, as conrmed in our model (see Annex A). It can be revealed through the dependence of the phase dierence ∆θ between the two equilibria (Fig. 

Phase stochastic resonance

In the case of stochastic resonance, the applied voltage reads:

V (t) = V AC cos [Ω drive t + (∆φ sgn (cos (Ω m t)) + ξ φ )] (3.10) 
Amplication of the signal at Ω m by adding phase noise is inferred by recording the time evolution of the mechanical mode's phase and amplitude during 300 s (only 1 s is shown in Fig. 3.4.5). The stochastic synchronisation between the external noise and the weak coherent signal that occurs in stochastic resonance, takes place when the average waiting time between two noise-induced interwell transitions (T K ) is compa- rable to half the period of the periodic signal (T Ω = 2π /Ωm). In order to match this time-scale condition, modulation frequency Ω m in phase is set at 50 Hz. The deviation ∆φ is also set to 0.09 rad ( 1.56 rad, the hysteresis width (Fig. 3.2.1)), a far too weak value to let the system switch periodically from one well to the other (see Fig. It reaches experimentally a value up to 3 for the same phase noise strength. A double peak is clearly visible in the numerical spectral amplication of the phase. The rst peak is indeed attributed to the synchronized hopping between the two metastable states, whereas the other peak is due to an internal state resonance [START_REF] Alfonsi | Intrawell stochastic resonance versus interwell stochastic resonance in underdamped bistable systems[END_REF]. For higher noise strength, the noise-induced eective detuning makes a longer residence time in the lower state, and the Kramers rates are not balanced anymore.

Amplication of the modulated signal is here limited by the relative orientation of the modulation and of the minimal energy path between the two basins of attraction, which is almost on a direct straight line (see Fig. 3.4.6-c). In the same frame, the added phase modulation shakes the upper state preferentially in the azimutal direction. These two orientations being not parallel, higher amplication value can not be achieved in this conguration. This reveals the importance of the modulation format of the signal: optimal stochastic resonance would certainly require a mixed amplitude-phase format to follow the minimal energy path of the nanomechanical oscillator potential landscape. The distribution of the two states in the phase plane, gets also distorted: The system switches between a symmetric branch (with a quasi-circular state in the phase portrait) to an asymmetric branch (with an elongated state in the polar plot). Such distortion is reminiscent to thermal noise squeezing observed e.g. in parametrically-driven oscillators [START_REF] Rugar | Mechanical parametric amplication and thermomechanical noise squeezing[END_REF][START_REF] Briant | Optical phase-space reconstruction of mirror motion at the attometer level[END_REF][START_REF] Szorkovszky | Strong thermomechanical squeezing via weak measurement[END_REF][START_REF] Pontin | Dynamical two-mode squeezing of thermal uctuations in a cavity optomechanical system[END_REF].

Vibrational resonance

When the external driving is no more stochastic but rather a harmonic signal of high frequency, a little bit of care has to be taken. The system is then subjected to forces occurring on three dierent timescales:

the one of the signal, the one of the external drive and the one of the forcing. In the standard picture of vibrational resonance, the signal must have a much smaller frequency than the one of the external drive.

We here show an enhancement by a factor up to 20 of a weak modulated signal thanks to vibrational resonance. Moreover, the occurence of vibrational resonance in a forced system requires the external driving frequency not only to be higher than the signal frequency but also to be lower than the forcing frequency. Most importantly, we show in that case that the high-frequency driving amplitude renormalises the forced nonlinear resonator response through the manipulation of the nonlinear resonance.

Externally induced dynamics in the time domain

Jumps between the two stable states of oscillation can be induced by slowly modulating the forcing amplitude. This scenario can be implemented by applying to the electrodes a voltage in the form of:

V (t) = V 0 (1 + γ cos(Ω mod t)) • cos[Ω drive t] (3.11) 
where γ and Ω mod denote respectively the modulation index and the frequency of the amplitude modulated signal. Yet, a suciently high modulation amplitude is needed to drive the system in order to overcome the barrier height and to induce inter-well motion following the applied modulation. In the case of a weak amplitude modulated signal (as in our experiments with γ set at 0.1), the system is solely subjected to intra-well modulated motion as can be seen in Fig. 3.4.7 top for the resonator being initially prepared in its upper state. Amplication of the weak modulated signal following jumps of the system between the two states can however still be induced in that case by adding an external driving with a frequency that is much higher than the frequency of the weak modulation, but still lower than the forcing frequency.

In this scenario reproduced in our experiment, the external drive takes the form of an additive amplitude modulation voltage of amplitude V HF ≡ δ * V 0 and frequency Ω HF . The criteria for enabling the onset of vibrational resonance as predicted by theory (see section theoretical analysis), requires strong frequency inequalities : Ω mod Ω HF Ω drive . The total applied voltage then writes:

V (t) = V 0 [1 + γ cos(Ω mod t) + δ cos(Ω HF t)] cos (Ω drive t) (3.12)
Eq (3.12) describes the total applied signal required to achieve amplication of the weak signal at Ω mod . The signals at Ω drive and Ω drive can be externally controlled and triggered in order to respectively probe and enhance amplication of the weak signal which needs to be detected. = 200 kHz > 6500 • Ω mod 2π . The system starts in its upper state (high amplitude state) where the small signal modulation is visible as a small intra-well motion. As the amplitude of the external driving increases, switching events between the two stable states become more prevalent. At rst, occasional inter-well transitions occur, weakly locked to the modulation signal. For V HF = 6.4 V , the system response gets completely synchronised with the applied weak and low frequency modulation. Further increase of the additional external drive amplitude worsens the synchronisation and the system drops into its lower amplitude state, where a small intra-well modulation is visible. There is thus an optimal amplitude of the external drive which maximises the response amplitude. When the system is modulated close to the hysteresis turning points, it is more sensitive to noise induced uctuations which are inherent in the experimental system, and this results in the observed aperiodic switchings in the weakly locked regions (cf. 

Gain factor

The gain or amplication factor can be inferred by quantifying the achieved spectral power amplication.

For every time traces recorded on a time scale of 600s, Discrete Fourier Transform (DFT) are performed.

The resulting DFT spectra are presented in Fig. 3.4.7. They feature peaks, the most prominent being at the modulation frequency Ω mod . The achieved gain M is then given by the ratio between the strength of the peak in the DFT spectrum at Ω mod for a given amplitude of the external driving and its strength without external driving (V HF = 0 V ). The induced gain factor is presented in Figure 3.4.8. The gain factor features a resonant-like behaviour: The gain factor rst rapidly rises with the strength of the external driving, reaches a maximum for V HF = 6.4 V and then drops. The maximum achieved gain factor is M = 20. Experimental noise modies either the amplitude or the bistability region of the response. The probe at the frequency of the quasi-resonant forcing Ω drive being xed, this noise lead to uctuations visible in the gain.

Vibrational resonance is governed by an amplitude condition. It occurs close to the transition from bistability to monostability, during which the eective potential of the slow variable evolves from a rapidly oscillating double well to a single well with a parametric dependence on the high-frequency signal amplitude and frequency [START_REF] Baltanás | Experimental evidence, numerics, and theory of vibrational resonance in bistable systems[END_REF]. As such, this phenomenon has some features in common with parametric amplication near the critical point.

Theoretical analysis

To gure out the origin of this resonant response, we introduce a simplied theoretical model (see Annexe A) and compare its results to our experimental ndings. η is the eective damping, ω o /2π is the natural oscillation frequency of the membrane, α is the nonlinear stiness coecient, F is the amplitude of the modulated forcing with frequency ω f /2π ≡ (ω 0 + ∆)/2π, introducing the small detuning from resonance ∆. We get the characteristic equation Q M = η -1 and the nonlinear spring term α [START_REF] Chowdhury | Phase stochastic resonance in a forced nanoelectromechanical membrane[END_REF]. The signal modulation frequency is chosen to be much larger than mechanical quality factor to ensure almost adiabatic evolution. Figure 3.4.9 shows the steady-state response curves (inferred from Eq.(3.13)) versus the driving amplitude for dierent highfrequency amplitude modulation. Without any high frequency drive (δ = 0), the system displays a large hysteretic response (see Fig. 3.4.9a). A slow modulation of amplitude less than the hysteresis width would not produce any jump between the branches, hence would not produce any strong amplication of the signal at ω m . The addition of the high frequency drive introduces an extra detuning which deforms the nonlinear response: in Fig. 3.4.9a, we observe that the center of the hysteresis loop is shifted towards lower driving forces F , and that the width of the hysteresis shrinks as well. Since the signal modulation amplitude scales as F γ, this means that a smaller slow modulation amplitude γ will be necessary to overcome the hysteresis width and produce large jumps between the lower and upper branch. This is the essence of the vibrational resonance phenomenon. In order to check this, we integrated numerically Eq.(3.13) with a slow amplitude signal at ω m . The results are shown on the time traces plotted in Figs. 3.4.9a,c. In the absence of high frequency amplitude modulation (δ = 0) the response is quasi linear since the system cannot jump between the lower and higher branches for the chosen modulation amplitude. The amplication factor is close to one if the system resides on the lower branch (same as the linear regime), or can be even smaller if it resides in the upper branch (de-amplication). When the driving δ is increased, the system is tuned into resonance and undergoes synchronous jumps with the signal driving frequency between the lower and upper branches (Fig. 3.4.9c). This corresponds to a large signal amplication, provided the signal amplitude is large enough, i.e. larger than the hysteresis width for the chosen parameters.
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The amplication is shown in Fig. 3.4.10, rescaled to the response with zero high-frequency drive in the quasi linear case, i.e. on the lower branch. We plot both the amplitude ratio M a (ratio of the response amplitude with and without high frequency drive) and the power-spectral density (PSD) ratio M . M a displays a sharp transition corresponding to the tuning of the system into the bistable region. When the high-frequency drive is not large enough, the system stays in the lower branch and the response is quasi-linear, leading to an amplication factor close to 1. When the bistable regime is reached, a large amplitude amplication is obtained. And for still higher δ the system stays in the upper branch where the response is sublinear, thus leading to de-amplication as expected. The same thing occurs in the PSD, except that the transition is less marked because the response of the system is highly nonlinear, hence the spectral energy is spread among the dierent harmonics. Note that we reach here, with the chosen parameters, a PSD amplication of the same order of magnitude as in the experiment. However, much larger amplication factors can be reached for other slightly dierent parameters, as illustrated in to the left, i.e. to lower overall forcing, but most importantly reduces the width of the hysteresis while not changing the hysteresis height too much. This makes it possible to amplify a much weaker signal by the vibrational resonance phenomenon. Note also that the amplication factor is even much larger in that case because of the already discussed dierent eect on the width and on the height of the hysteresis.

This shows that it is necessary to tune both the high frequency drive δ and the modulation strength F to amplify optimally a signal of a given amplitude.

The previous analyses clearly indicate the primordial role of the high frequency amplitude modulation and of the proper timescale separation in such vibrational resonance phenomenon. The former allows to control the nonlinear resonance in order to amplify weak signals. The latter, while being compulsory for technical reasons in the theoretical analysis, could potentially be relaxed in experiments. The exact value of the external drive frequency Ω is not critical at all, as long as it satises the timescale separation condition with ω m ω f , Ω and if it remains non-resonant. Signal amplication results from the tuning into resonance of the non-linear response of the system. Amplication could occur also in the case of a non multivalued response, as long as the slope of the tuned response is large enough to ensure appropriate amplication. In principle, for any given signal amplitude, it is always possible to adjust both the forcing strength F and the high frequency modulation strength δ for vibrational resonance to occur. However, the maximum gain achievable will be a complicated function of all the system parameters. It will occur at the nascent bistability, i.e. when the hysteresis curve has an innity tangent. Indeed, in this case, any small nonzero amplitude signal will be maximally amplied until saturation on the lower or upper branches.

Ultimately, maximum gain achievable is limited by signal noise or noise in the system. Concerning the signal amplication frequency, its maximum is limited by the frequency response of the oscillator which is given by the damping rate (∼1 kHz here). In order to push it further it is necessary to either decrease the mechanical quality factor of the nanomembrane or increase the resonant frequency with a similar quality factor.

By comparing the amplitude magnication curves in Figs.3.4.8 and 3.4.10 we note a slight softening eect on the experimental gain curve whereas the theoretical one shows a sharp transition to high gain when the signal modulation is larger than the hysteresis curve turning points. This dierence can be attributed to residual noise in the experiment which can modify the behaviour of the system close to the turning points of the nonlinear response. At last, as observed in previous optical implementations of vibrational resonance [START_REF] Chizhevsky | Analytical study of vibrational resonance in an overdamped bistable oscillator[END_REF][START_REF] Chizhevsky | Improvement of signal-to-noise ratio in a bistable optical system: Comparison between vibrational and stochastic resonance[END_REF] in nonparametrically forced bistable systems, the gain obtained seems higher than to the one observed in stochastic resonance for the same system. Even though vibrational resonance and stochastic resonance are based on dierent physical principles, this observation is veried in our system from a raw quantitative comparison with the stochastic resonance amplication [START_REF] Chowdhury | Phase stochastic resonance in a forced nanoelectromechanical membrane[END_REF].

Discussion

In conclusion, in this chapter, we implemented an electromechanical nanoresonator based on photonic crystal to enhance its reectivity and thus the optical detection of its mechanical diplacements in the MHz frequency range. In addition, an integrated capacitive excitation of out-of-plane displacements of this suspended vibrating mirror has been developped to achieve an experimental electromechanical coupling as high as 2.8 nm/V . By combining these elements, we have built an integrated electromechanical resonator whose ecient excitation allows to easily reach its nonlinear regime and thus perform dynamical and unconventional experiments in this regime. Among many potential applications in this rich domain of nonlinear physics, we have tried to investigate how one could detect or amplify an o-resonant signal by probing the response at resonance. We started with conventional two signals congurations where we keep the probe at the resonance and the second is either at a multiple or a submultiple of the probe.

In these two congurations, either subharmonic and superharmonic excitation, it was shown that it is possible to enhance the resonant response by modulating the spring constant of the resonator. Then we established and analysed the conditions for using stochastic as well as vibrational resonance in order to enhance weak signals in a forced nonlinear oscillator, even if the system is initially monostable. In both case, we derived a model to describe vibrational resonance in a monostable, forced nonlinear oscillator which shows good agreement with our experimental results obtained on a forced nano-electromechanical membrane.

In stochastic resonance, the applied phase noise reveals to act as a multiplicative noise on the system which introduces an eective detuning that plays a crucial role in the potential asymmetry. The stochastic amplication is an universal model that describes the evolution of the envelope of the oscillations near a nonlinear resonance and subjected simultaneously to phase noise and to a phase modulation. That is, it applies to any nonlinear oscillator with such forcing provided one makes use of a suitable nonlinear and periodic change of variables in the initial equations that describe the system. Our model applies to e.g. dispersive optical bistability that plays an important role in nonlinear optical science [START_REF] Talkner | Activation rates in dispersive optical bistability with amplitude and phase uctuations: A case without detailed balance[END_REF] and can thus shed a new light on coherent processes involving phase uctuations in these systems [START_REF] Casteels | Critical dynamical properties of a rst-order dissipative phase transition[END_REF]. Such stochastic resonance obtained by assistance of phase noise may also enable various noise-aided applications, including signal transmission [START_REF] Jung | Amplication of small signals via stochastic resonance[END_REF][START_REF] Inchiosa | Information-theoretic stochastic resonance in noise-oor limited systems: The case for adding noise[END_REF] in particular involving novel coherent schemes such as Phase Key Shifting protocol, or metrology with improved detection in noise-oor limited systems [START_REF] Chapeau-Blondeau | Stochastic resonance at phase noise in signal transmission[END_REF].

On the other side, vibrational resonance is a physical phenomenon based on the resonance manipulation thanks to a non-resonant, high frequency amplitude-modulation drive obeying a timescale separation condition. The deterministic amplication method gives rise to high amplication factors, especially when compared to stochastic resonance [START_REF] Ren | Exploiting vibrational resonance in weak-signal detection[END_REF]. As such, these results pave the way towards the design of novel architectures based on non-linear dynamic resonances for weak signal amplication, as currently done by quantum-limited Josephson parametric ampliers [START_REF] Macklin | A nearâquantum-limited josephson traveling-wave parametric amplier[END_REF] or, in the optical domain, by phasesensitive ampliers in the optical domain Tong to name a few. In a more general framework, it may open new avenues for the manipulation of non-linear resonances with the addition of a non-resonant driving eld.

Chapter 4

Optomechanical crystal for the generation of a pure GHz signal Optomechanical resonators, exploiting the interaction between light and a moving optical cavity [START_REF] Metcalfe | Applications of cavity optomechanics[END_REF],

have been actively looked into in recent years with impressive fundamental demonstrations in the quantum regime [START_REF] Rubiola | Phase noise and frequency stability in oscillators[END_REF][START_REF] Saeedkia | 1 -Optoelectronic techniques for the generation and detection of terahertz waves[END_REF][START_REF]Global crystal oscillator market[END_REF]. Among various sub-micron optomechanical systems presently investigated, suspended membranes containing a photonic crystal cavity oer strong light connement in diractionlimited volumes and are therefore natural candidates for achieving strong optomechanical coupling. In Chapter 2, we describe theoretically the potential mechanical modes that one can observe in such suspended photonic crystal membrane. In the previous chapter we have deeply investigated the MHz mode of a suspended membrane. Here we will tackle the detection of higher order modes namely in the GHz which are embedded in the core of the photonic crystal cavity. Beside quantum other important applications have also been found for ultra-compact sensors [START_REF] Rouphael | Chapter 4 -System Nonlinearity[END_REF] or stable microwave oscillators [START_REF] Rosenberg | Static and dynamic wavelength routing via the gradient optical force[END_REF].

Oscillator from various elds are devices that produces a periodic signal [START_REF] Metcalfe | Applications of cavity optomechanics[END_REF] and can be of very different nature. Their elds of applications are also very broad, among which accurate time-keeping and frequency measurements or generation are the most prominent. Such reference timing oscillators, that generate highly stable reference frequencies and can measure time, are used in a wide range of applications including wireless communication, high-speed digital electronics, radars, timing systems, modern navigation. Achieving high-spectral purity frequency synthesis for microwave applications, directly at the frequency of interest in the GHz domain and in a miniaturized chip-based device is perennial challenge for microwave photonics. By exploiting the enhanced photon-phonon interaction in a high-quality optomechanical resonator oscillating directly in the GHz domain, one already address one of the requirement of the eld. However, integrated such a device on an electronic loop on a single chip is up to now still an an up-to-date challenge.

The simplest architecture for a microwave oscillator exploiting optomechanical interaction, would be an optically-driven optomechanical resonator featuring regenerative oscillations in the GHz. The energy of the continuous wave pump laser is then converted into a microwave signal without any feedback loop. We will rst investigate two geometry of photonic crystal cavity which allow mechanical frequency directly in the GHz. However, while such architecture oers unmatched simplicity and small form-factors, relying solely on regenerative oscillations in optomechanical resonators does not allow for sucient spectral purity, due to environment-induced uctuations, thermo-mechanical noise, detector shot noise... [START_REF] Rokhsari | Radiation-pressure-driven micromechanical oscillator[END_REF][START_REF] Rokhsari | Brownian noise in radiation-pressuredriven micromechanical oscillators[END_REF].

Reduction of these uctuations calls for the integration of several key components (i) waveguide circuitery to read and tailor mechanical oscillation as well as (ii) an ecient resonant excitation to control the mechanical mode in the GHz range. Here the goal of our approach is not only in the use of optomechanical interaction for ultrastable frequency generation but also in the locking and feedback strategies fully exploiting integrated strategies associated to electrical or acoustic actuation tools. such as low propagation of acoustic waves to implement long time delays necessary for high stability/spectral purity (Fig. 4.1.2).

In addition, integration of such III-V semiconductor materials on silicon-on-insulator (SOI) photonic circuitry [25,[START_REF] Tsvirkun | Integrated III-v photonic crystal -si waveguide platform with tailored optomechanical coupling[END_REF] opens up new architectures of optomechanical resonators and oscillators. Beyond stable optomechanical oscillator, the developed architecture, hybrid integration of the optomechanical platform on SOI optical circuitry with an ecient electrical resonant control, opens the path to more advanced and provide today an unmatched combination of compactness and spectral purity, they oscillate at frequencies below a few hundred MHz. In systems operating at higher frequencies, the oscillator frequency must be multiplied, but at the penalty of an increased oscillator noise. Other types of electronic oscillators (such as dielectric resonator oscillators and sapphire oscillators) produce directly signals at high frequencies. These oscillators essentially rely upon resonant devices that feature large storage times or equivalently high quality factors Q. These high Q elements determine both the frequency of operation and the achievable spectral purity. However, the best dielectric resonators exhibit a limited Q-factor at high frequency, while sapphire oscillators are bulky and complex. OptoElectronic microwave Oscillators (OEO) are a promising alternative. Indeed, these oscillators, developed for instance in OEWaves (USA), Selex (Italy)

or Thales (France), provide a direct generation of high-frequency microwave signals and have already demonstrated performances in terms of spectral purity compatible with stringent applications such as radars and high-end communications systems.

Low phase noise

Purity of microwave signal in OEOs is achieved thanks to an optical delay line (usually an optical ber)

inserted into the loop. The Q-factor of the oscillator is then given by L/Λ, with L denoting the ber length and Λ the RF signal wavelength. Q factors of the order of 10 5 are required to obtain high spectral purity (typically 145 dBc/Hz at 10 kHz oset) for an oscillation at 10 GHz ( Λ = 3 cm), which imposes the use of few km-long bers. Such km-long ber delay lines are however sensitive to the environment (vibrations, temperature...), limiting the oscillator close-to-the-carrier noise performance.

Compactness

In addition, OEO architecture, based on individual components (laser, lithium niobate modulator, ciruitery with resonant excitation guided to the mechanical mode with an phononic waveguide photodiode) and including 5-10 cm diameter and 1 cm-thick ber coils, results in bulky devices (typically few liters), preventing their smooth and rapid integration into systems. A challenge here lies in the implementation of miniaturized, compact, transportable and integrated oscillators, especially for on-board applications and on-chip signal processing. This high level of miniaturization is not only important from a compactness point of view, but also for a better insensitivity to environment. To date, these points are addressed by complex manufacturing steps (high-end handmade polishing of the resonator, ultra-precise adjustment of the laser source and coupling optics relative to the resonator in the oscillator package). This leads to a high oscillator cost, that is neither compatible with integration in systems requiring a large number of oscillators (e.g. many-elements radar antennas) or in communication and positioning portable devices.

Oscillators based on optomechanics : State-of-the-art

The enhanced phonon-photon coupling occurring in nanoscale resonators co-localizing phononic and photonic resonances [44], has opened the way, within the timeframe of the last decade, to numerous breakthrough experiments in the eld of optomechanics. A notable contribution that has come out of this area, is the manifestation of parametric instability, resulting in mechanical amplication and thereby oscillation of the mechanical mode driven purely optically [START_REF] Metzger | Cavity cooling of a microlever[END_REF]. This ability to achieve self-sustained oscillation with no need for feedback electronics makes optomechanical resonators compelling for on-chip applications such as microwave clocks, in which directed light energy from a laser is available to fuel the oscillation. Principle-of-concept demonstrations of fully-integrated optomechanically-driven microwave oscillators have already been made [START_REF] Tallur | A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator[END_REF]21]. Yet, in view of implementing o-the-shelf microwave oscillators, specications including the three requirements previously discussed are not presently fully met at the time (on the same chip).

High output frequency

Achieving direct high-frequency operation above few GHz, is made possible by reducing the size of the optomechanical resonator down to nanoscale (see Section 1.2). Nanoscale implementations of optomechanics are mostly inspired from largely explored nanophotonic platforms (nanobeams, microdisks,...) among which suspended photonic crystal slabs [44,27,25]. The frequency of the mechanical modes in photonic crystal slabs can reach the GHz frequency range, directly at the operating frequency of interest for optoelectronic microwave oscillators and metrology applications. In addition, these resonators feature high photon-phonon interaction, which can be quantied by the optomechanical vacuum coupling rate g 0 . This coupling rate equals the optical frequency shift induced by the mechanical mode zero-point uctuations; such rate exceeds 100 kHz in photonic crystal slab resonators.

One can take advantage of the high frequency of the mechanical modes sustained by photonic crystal slab cavities of diraction-limited volumes. Such cavities can simultaneously sustain optical modes and mechanical vibrations in the GHz frequency range. As such, these cavities constitute a natural platform for the use of photon-phonon coupling, by enabling enhanced optomechanical interaction in the GHz domain and consequently a more ecient optical transduction and control of the mechanical frequency.

Their realization is quite recent [START_REF] Villanueva | Surpassing fundamental limits of oscillators using nonlinear resonators[END_REF]54,50] and very few experiments making use of such cavities have yet ventured into the eld of optomechanics [START_REF] Alegre | Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap[END_REF].

Low phase noise

Recent eorts in improving the noise performance of optomechanical resonators focused on several optomechanical frequency stabilization techniques, including injection locking [20,[START_REF] Shlomi | Synchronization in an optomechanical cavity[END_REF], locking on a reference frequency [19], coupling between self-sustained resonators [START_REF] Zhang | Synchronization of micromechanical oscillators using light[END_REF]... These stabilization schemes are a prerequisite in view of achieving hands-on state-of-the-art performances in terms of phase noise.

Expected noise performances of optomechanical resonators, including feedback loops, are indicated on Present state-of-the-art is limited to phase noise of -80 dBc/Hz at 10 kHz oset from a 2.05 GHz carrier [START_REF] Tallur | A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator[END_REF]. Reaching performances in the target region require improvements in chip-integration, mechanical Q and drive eciency. Stabilization could be achieved by implementing optoelectronic loops that are compatible with on-chip integration, exploiting either an optical or external control of mechanical motion.

Thesecould be extended to self-stabilization schemes.

Compactness

This requirement is not only linked to the size of the resonator generating the oscillating signal but should include dimension of the full device with the feedback loop and other constituting elements of a low phase noise optomechanical oscillator. Size reduction of the resonator down to nanocale, translates into a small form-factor and moreover aords for complete chip integration. On-chip optical actuation, detection and resonant excitation have to be achieve.

Materials for optomechanical resonators

If most of current work on optomechanical resonators over the last decade makes use of silicon material mainly driven by their ease of use (processing, availability, material quality...), research in this eld also extended to other host materials, among which III-V semiconductors [START_REF] Fan | Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors[END_REF][START_REF] Ghosh | Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators[END_REF][START_REF] Ghorbel | Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric iii/v semiconductor[END_REF][START_REF] Schneider | Optomechanics with one-dimensional gallium phosphide photonic crystal cavities[END_REF][START_REF] Xiong | Cavity piezooptomechanics: Piezoelectrically excited, optically transduced optomechanical resonators[END_REF][START_REF] Guha | High frequency optomechanical disk resonators in iii&#x02013;v ternary semiconductors[END_REF].

The use of such materials may indeed enable novel functionalities, such as resonant excitation of the mechanical modes via actuation tools exploiting the material piezoelectricity. Now, material choise in optomechanics could also be driven by a targerted applications. In this case, the material's choice is governed by two main requirements: piezoelectricity and large band gap for preventing any two photons absorption processes.

Besides silicon based materials, few of another materials appeared recently in the integrated optomechanical experiments: these are diamond [START_REF] Rath | Diamond electro-optomechanical resonators integrated in nanophotonic circuits[END_REF] for its exceptional mechanical properties (Young's modulus of about 1 GP a) and aluminium nitride (AlN) [START_REF] Pernice | High-q aluminum nitride photonic crystal nanobeam cavities[END_REF][START_REF] Bochmann | Nanomechanical coupling between microwave and optical photons[END_REF] for low mechanical loss and high electromagnetic coupling strength, desired for electrically tunable optomechanical systems. To perform active photonic functionalities, impossible with silicon, gallium arsenide (GaAs) has in recent years found new applications in integrated optomechanical systems exploiting a combination of high optical and mechanical quality factors [26]. Another III-V semiconductors like indium phosphide (InP) or gallium nitride (GaN) exist, allowing to achieve a light generation and wavelength conversion on chip, however, no integrated optomechanical devices were realized.

Materials

Si [ Besides, a shared limitation for every application is thermo-optical instabilities which limit the optical power injected inside the resonator. First optomechanical resonators, and especially optomechanical crystal, made of silicon, suer from two-photon absorption preventing quantum regime in cooling experiments to be achieved. Hence, dierent material such as Silica, Silicon Nitride and diamond have been considered as materials of choice thanks to their large thermal conductivity and low optical absorptions.

Thus, a high number of photons has been reached with diamond optomechanical crystal [START_REF] Rath | Diamond electro-optomechanical resonators integrated in nanophotonic circuits[END_REF]. None of these materials shows piezoelectric properties which could eciently bridge microwave to optics and thus unsuitable for microwave to optics transduction [START_REF] Bochmann | Nanomechanical coupling between microwave and optical photons[END_REF], radiofrequency signals amplication or hybrid opto-electromechanical devices, particularly attractive in various contexts, from telecommunications to quantum information. That is why non centro-symmetric crystals such as large electronic bandgap III-V semiconductors are appealing for optomechanics and have been recently investigated (Gallium Phosphide [START_REF] Schneider | Optomechanics with one-dimensional gallium phosphide photonic crystal cavities[END_REF][START_REF] Stockill | Gallium phosphide as a piezoelectric platform for quantum optomechanics[END_REF], Indium Gallium Phosphide [START_REF] Ghorbel | Optomechanical gigahertz oscillator made of a two photon absorption free piezoelectric iii/v semiconductor[END_REF] and Aluminium Nitride [START_REF] Ghosh | Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators[END_REF]) as they do not suer from Two Photon Absorption (TPA) when operating in the practical telecom spectral range. Piezoelectric materials already found many applications in sensing or driving of resonators. In the context of cavity optomechanics, piezoelectric materials can be either used as an intermediary to induce motion of the optomechanical resontor or directly used to design such an integrated resonators. From the eciency point of view, the latter is to be favor, in order to drive or probe the mechanical modes in an more integrated manner.

In this context, piezoelectric wide bandgap semiconductors are preferable. Indeed the phonon-photon interaction is higher in wide bandgap semiconductors thank to their broadband optical transparency and limited two-photon absorption. Many dierent semiconductor materials can be considered. Yet some materials such as InP, intensively used in Chapter 3, feature at the same time low piezoelectrical property and moderate bandgap energy. Therefore, with time we have discarded InP as a valuable material in the context of driven optomechanical oscillators. Conversely, other III-V materials like GaAs and InGaP, feature either an important piezoelectric response or high bandgap energy (see table (4.1.3).

In some cases, like for GaP and GaN, both conditions seem to be met but the epitaxy of good crystalline material is still an issue and a eld of research by itself.

Optomechanical oscillator directly in the GHz with photonic crystal

Several geometries have been investigated either bidimensional or one dimensional photonic cavity. In the case of bidimensional cavity, the choice of the material has been dictated by practical reasons, InP was used because of a better technological control at that time. Then, for 1D photonic crystal, another material is chosen, InGaP. Its larger bandgap compare to InP allows to reduce thermo-optical instabilities.

In both cases, we provide a direct and robust experimental determination of the vacuum optomechanical coupling rate using frequency modulation, showing a particularly strong coupling for the localized mechanical modes. In the case of 1D photonic crystal, we highlight auto-oscillations directly in the GHz and investigate phase noise of this free running oscillator. 

GHz modes in a 2-D photonic crystal

2D photonic crystal cavities oer the strong light connement possible (i.e. small mode volume), high quality factor (Q) [START_REF] Akahane | High-q photonic nanocavity in a two-dimensional photonic crystal[END_REF] and have been used for studying cavity QED using quantum dots [START_REF] Yoshie | Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity[END_REF] or for realizing nanolasers [START_REF] Painter | Twodimensional photonic band-gap defect mode laser[END_REF][START_REF] Strauf | Self-tuned quantum dot gain in photonic crystal lasers[END_REF]. Here, we show optomechanical coupling using a photonic crystal defect (L 3 ) cavity. The optomechanical device under study consists of a 265-nm thick InP suspended membrane containing a two-dimensional photonic crystal defect cavity shown in Figure 4.2.1(b). The resonance wavelength of the fundamental mode is centered around 1555 nm and the cold-cavity quality factor is measured to be 10 4 (cavity linewidth is κ/2π = 20 GHz). The suspended photonic crystal membrane lies on top of a 10 µm high mesa structure (see Fig. 4.2.1(a)). The mesa structure is processed to enable positioning of a tapered optical ber in the evanescent eld of the cavity, while precluding any interaction with the nearby substrate.

An external-cavity diode laser is used for the read-out of the mechanical motion. Coupling to the optical modes of the suspended membrane is achieved with the optical ber-taper technique accurately positioned to optimize the gap between the ber-taper and the defect cavity, and thus to increase evanescent coupling (Fig. 4.2.1(c)). Despite careful reduction of the taper-cavity gap, only a small fraction of the light can be coupled into the defect cavity, typically not exceeding 10 % of the incoming laser power. The cavityber system is kept in a vacuum chamber with a pressure below 1 mbar. Laser light coupled inside the photonic crystal cavity leads to local heating, which induces a thermal eect arising from the temperature dependent refractive index n [START_REF] Carmon | Dynamical thermal behavior and thermal self-stability of microcavities[END_REF]. As dn/dT > 0 (T is the temperature) for InP [START_REF] Martin | Accurate refractive index measurements of doped and undoped inp by a grating coupling technique[END_REF], the region detuned to the blue side of the resonance allows thermal passive locking [START_REF] Carmon | Dynamical thermal behavior and thermal self-stability of microcavities[END_REF]. In our experiments the laser frequency is chosen to correspond to the blue-detuned side of the fringe of the optical mode requiring no further locking. Mechanical motion of the membrane is imprinted on the transmitted optical intensity through modulation of the internal cavity eld. An electro-optical modulator is used for frequency modulation to determine the optomechanical coupling rate. The transmitted signal is detected by a fast receiver and the electrical signal is analyzed with an oscilloscope as well as an electronic spectrum analyzer, which is used for the spectral analysis.

For a launched laser power of 1.3 mW more than 20 mechanical modes are observed in the frequency range between 10 MHz and 1 GHz. These modes can be separated into two mode families. The rst family consists of exural modes present in the low-frequency range (below 200 MHz), whereas the second family consists of localized modes. Flexural modes correspond to the movement of the whole membrane.

In order to identify the various modes, we modeled the mechanical properties of the photonic crystal slab structure by nite element modeling. A good agreement between measurements and modeling is obtained using a Young modulus of 20 GPa (slightly smaller than usual values observed in bulk InP materials attributed to the perforation for the photonic crystal). of the membrane localized in the cavity core of the defect. We were able to resolve the fundamental localized mode at 0.46 GHz as well as the three higher mode orders (at 0.72 GHz, 0.99 GHz and 1.26 GHz). Importantly, localized mechanical modes coincide spatially fully with the optical defect cavity mode. Therefore, the photonic crystal not only oers strong optical connement, but simultaneously ultra-high phonon connement. The high overlap of the mechanical displacement with the distribution of electromagnetic energy promises strong optomechanical coupling. In a second experiment we determined the coupling rate for various exural modes and the second and third order localized modes.

Usually, the optomechanical coupling strength is determined by two parameters -the optomechanical coupling parameter G = dωc dx , with ω c being the resonance frequency of the optical resonator and x denoting the displacement of the mechanical oscillator, and the eective mass m ef f [START_REF] Gillespie | Thermally excited vibrations of the mirrors of laser interferometer gravitational-wave detectors[END_REF] of the mechanical mode. The necessity of introducing the eective mass routinely arises from the arbitrary denition of x, which often cannot be consistent with the displacement pattern of dierent mechanical modes of the system. Particularly for photonic crystals it is dicult to dene an unambiguous displacement direction of a mechanical mode. Recently, it was suggested that the vacuum optomechanical coupling rate g 0 would be a more proper quantity for optomechanical systems [START_REF] Safavi-Naeini | Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab[END_REF][START_REF] Schliesser | High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators[END_REF]. In analogy to cavity Quantum Electrodynamics (cQED), g 0 is dened as g 0 = Gx zpf , with x zpf = /2m ef f Ω m being the zeropoint-uctuations of the mechanical oscillator ( indicates the reduced Planck constant and Ω m /2π the mechanical resonance frequency). The value g 0 can be determined experimentally via :

g 0 = S ωω (Ω m ) Γ m 4n (4.1)
with n being the average phonon occupancy of the mechanical mode, Γ m /2π being the mechanical damping rate and S ωω (Ω m ) being the frequency spectral density of cavity frequency noise evaluated at the mechanical resonance frequency. For high phonon occupancy one can approximate n ≈ k B T / Ω m , with k B as Boltzmann's constant. S ωω (Ω m ) can be experimentally determined by a frequency modulation technique. We performed a measurement of the cavity frequency noise by applying a known phase modulation to the laser using an LiNbO3 electro-optical modulator. The incoming laser power was reduced to 0.9 mW. To make sure that the mechanical modes were not driven thermally, the laser frequency was slightly detuned from the side of the fringe in both directions just before the experiment. With no change in the resonance frequency of the mechanical mode occurring, we inferred that the mechanical modes were only driven by thermal Brownian motion (T = 300 K). The modulation frequency was chosen to be close to the resonance frequency of the mechanical mode to be calibrated. The measurement also allows calibration of the frequency noise produced by the mechanical mode. A calibrated frequency noise spectrum for the fundamental exural mode is shown in the inset of Figure 4.2.1(d), and the optomechanical vacuum coupling rate was determined to be g 0 /2π = 184 Hz. The mechanical quality factor for this mode is Q m = 890 being the highest for all exural modes. The coupling rate for the exural modes increases with the mode number up to several kHz. The optomechanical coupling for the localized mechanical modes was determined to be g 0 /2π = 84 kHz (Q m = 160) for the third order. A calibrated frequency noise spectrum for this localized mode is shown in Figure 4.2.1(e). The high values of g 0 /2π give a denite experimental proof of the high optomechanical coupling between a photonic crystal defect cavity and a localized mechanical mode. These coupling values are two orders of magnitudes higher than measured in whispering gallery mode toroidal resonators [26] and doubly-clamped strained silicon nitride beams in the near-eld of a silica toroidal resonator [START_REF] Anetsberger | Near-eld cavity optomechanics with nanomechanical oscillators[END_REF], both of which are g 0 /2π = 1 kHz.

Moreover, the measured values were as high as reported coupling of a exural mode to a photonic crystal slot cavity [START_REF] Safavi-Naeini | Proposal for an optomechanical traveling wave phononphoton translator[END_REF].

Oscillator in the GHz with 1-D photonic crystal

An optomechanical crystals made of InGaP using a concept of nanoengineering based on a bichromatic one-dimensional optomechanical crystal has been developped. The optical resonances are probed in a reection geometry using a high resolution optical heterodyne technique [START_REF] Combriã© | Comb of high-q resonances in a compact photonic cavity[END_REF] which give an intrinsic quality factor Q 0 is 2.2 ± 0.2 × 10 5 . The vacuum optomechanical coupling is measured at room temperature and standard pressure with the technique discussed in [START_REF] Gorodetksy | Determination of the vacuum optomechanical coupling rate using frequency noise calibration[END_REF]. The reected optical power is detected by a fast APD which is amplied by a 40 dB low noise amplier before going to an electric spectrum analyser (ESA). The electric power spectra corresponding to the mechanical motion of the resonator is compared to a calibration tone (same technique as discussed previously). In our case, it was not possible to operate the optomechanical resonator at low enough power to avoid dynamical backaction while maintaining the detected signal level well above noise. Thus, the measurement is carried out as a function of the laser-cavity detuning ν L -ν which is corrected for the thermally induced spectral shift and the measurement at zero detuning is retained (Fig. The corresponding mechanical linewidth (Fig. 4.2.2 c) is measured and compared to theory [2] accounting for the narrowing due to the dynamical backaction Γ om , when ∆ = ν L -ν > 0 :

Γ om = n hν g 2 0 κ (∆ + 2πf m ) 2 + κ 2 /4 + κ (∆ -2πf m ) 2 + κ 2 /4
with the number of photons in the cavity given by the usual coupled mode theory n hν = (κ-Γ0)Pc ∆ 2 +κ 2 /4

1 hν .
The parameters used in the model are measured: κ/2π = 6.5 GHz, Γ 0 /2π = 0.9 GHz, f m = 2.92 GHz and g 0 /2π = 385 kHz. The on-chip laser power levels used in the model are P c = 36, 39 and 43 µW . From the lorentzian t in the inset of Fig 4 .2.2a, the mechanical linewidth is equal to Γ m = 1.2 M Hz and the mechanical Q factor Q m = 2300 corresponds to the measurement at zero detuning.

As the power is increased the resonator eventually undergoes regenerative oscillations. The threshold is predicted by the condition that the mechanical loss equates the optical anti-damping calculated above:

Γ m + Γ om = 0, using the measured parameters above, it yields P c,tr = 47 µW .

The knowledge of the number of phonons allows the calculation of the limit to the short-term linewidth, following [START_REF] Hossein-Zadeh | An optomechanical oscillator on a silicon chip[END_REF][START_REF] Vahala | Back-action limit of linewidth in an optomechanical oscillator[END_REF], similarly to the Schawlow-Townes limit for lasers :

2π∆f = Γ m n th + 1 2n = Γ 2 m k B T 2P osc . (4.2) 
This equation, valid above threshold. To verify it, we record several spectra as the laser wavelength is swept toward the red across the resonance and the on-chip power is increased. The linewidth of the mechanical resonance in the RF spectrum (Fig. 4.2.2 a) narrows and drifts by 700 kHz . The mechanical In Fig. 4.2.2 (c), the short-term linewidth is plotted against the RF integrated power. Assuming the optomechanical transduction to be linear, which is only an approximation, the number of phonons n can be deduced from

n th n = P RF,th P RF
, where n th is the number of phonons at thermal equilibrium, given by n th = k B T Ω m , and P RF,th is the RF integrated power at thermal equilibrium, when there is no dynamical backaction. This equation 4.2 used to predict the thermal noise limit to the measured short-term linewidth is plotted in black in Fig. 4.2.2 c, which are indeed in good agreement (e.g. at P c = 53 µW in Fig. 4

.2.2 d).

As the measurements are performed at room temperature, n th + 1 ≈ n th and in that case, the short-term linewidth is limited by thermal noise. As the experimental points obtained by tting the spectra with the Voigt function follow the limit given by Eq. (4.2), we can conclude that the short-term linewidth of the self-sustained oscillations is limited by Brownian motion and this should be improved by lowering the temperature bath.

A deeper insight in the noise properties of the oscillator [START_REF] Hossein-Zadeh | An optomechanical oscillator on a silicon chip[END_REF] is gained by examining the spectral density of the phase noise L(f ) (Fig. 4.2.2), measured when the device is driven to the maximum amplitude. In the range 50 kHz to 2 M Hz the phase noise spectral power density follows the slope P SD = ∆f L /f 2 , which is associated to phase random walk. The Lorentzian linewidth ∆f L = 120 Hz is extracted, which is consistent with the direct measurement on the signal spectral power (Fig. 4.2.2). While white phase noise, due to thermal noise in the photodetector, dominates at higher frequencies, technical noise (1/f 3 ) dominates below 50 kHz, which is not surprising for a free running oscillator. Compared to other optomechanical oscillators, the 1/f 2 term of the phase noise is basically the same as in silicon nitride microtoroids [START_REF] Tallur | A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator[END_REF], which is also a low loss material once corrected for the carrier frequency to allow a fair comparison. We note that Micro-Electro-Mechanical Systems (MEMS) are about 10 dB below [START_REF] Bekker | Injection locking of an electro-optomechanical device[END_REF],

but our optomechanical cavity provides an optical output, convenient for the distribution of the signal on-chip. Completed with piezoelectric transducers and hybridized on a silicon photonic circuit, this device could be used for microwave to optical conversion and more elaborate miniaturized and integrated optoelectronic oscillators. 

Integrated optomechanical crystal resonators

Devices, described previously, have an optical cavity, whose mode takes part in the optomechanical interaction. Traditionally, as it was described in the previous section, this cavity is fed with a light coming from a probe laser. Optical coupling between the cavity and the outside world could be achieved in dierent ways either thanks to a taper bre, which brought into the cavity evanescent eld or by butt coupling. Such bre requires custom preparation and precise alignment with respect to the probed sample in three dimensions with precision down to tens of nanometres. This complicates the experimentation of the device and adds several important restrictions: e.g., two optical cavities are hardly addressed at a time, the coupling conditions between the bre and the cavity is unlikely to be reproduced, further integration of such devices is virtually impossible. Thus, in order to achieve the needs of compactness, a full on-chip integration is required.

After a brief state-of-the-art of the integration of optomechanical devices, we will introduce our answer to this challenge using Silicon-On-Insulator (SOI) waveguide. As previously, for technological reasons, we have started with InP cavity and then jump to a more interesting material, in term of capability, namely GaAs.

State of the art

To overcome these restrictions, the existing systems use an integrated access channel, represented by an optical waveguide, which allows to eciently address an optomechanical resonator at nanoscale. From the fabrication point of view, the easiest solution to implement was a rectangular prole waveguide with input and output grating couplers to couple to the experimental set-up scheme (Figs. As a consequence of in-plane arrangement both waveguide and optomechanical resonator have to be made within the same layer, i.e., of the same material. This may induce additional optical losses due to low connement of guided mode when using materials with low refractive index, therefore restricting the material choice for the resonator. The mode connement in the waveguide is achieved by the index guiding principle; the simplest case is a high-index rectangle on top of a low-index substrate, e.g., silicon on SiO 2 with photonic circuit (red, rib waveguide and grating couplers) [START_REF] Bochmann | Nanomechanical coupling between microwave and optical photons[END_REF]. Microdisk with its suspended coupling waveguide (c) [START_REF] Baker | Critical optical coupling between a gaas disk and a nanowaveguide suspended on the chip[END_REF]; (d) [START_REF] Li | Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides[END_REF]. (e) L3 -nanobeam cavity coupled to defect PhC waveguide [27]. All gures are adapted from the corresponding references.

(also known as SOI). The majority of present integrated devices are made of silicon (Figs. 4.3.1 a,d,e), allowing to take advantage from the CMOS processing expertise. However, silicon is limited to wavelengths above 1.1 µm and does not allow device operation in the visible spectrum range where low-noise lasers are conveniently available. Moreover, its relative narrow electronic band gap also makes silicon optomechanical devices susceptible to strong two-photon absorption and free carrier absorption, which often lead to strong thermal eects that limit the device stability and cooling performance [START_REF] Pernice | Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures[END_REF][START_REF] Safavi-Naeini | Electromagnetically induced transparency and slow light with optomechanics[END_REF].

For the in-plane arrangement using one of the mentioned materials (diamond, AlN, GaN, etc.) important optical waveguide losses, in the material and due to fabrication imperfections (increased sidewalls roughness compared to silicon devices), make one reduce the dimensions of the waveguide, resulting in the designs like in (Fig. 4.3.1 b). Splitting the integrated access waveguide and the optomechanical resonator into two dierent levels may allow for complete exibility when choosing the materials for each of the components. In addition it makes one more exible when designing an optomechanical device, since the optical cavity from any resonator location can be addressed; in the same vein multiple cavities within one or several resonator can be addressed at a time using such access waveguide level, which is desirable for the development of multi-element optomechanical circuits.

Optomechanical eects with L 3 cavity in an integrated platform

The implementation of such multichannel and multimode circuits requires an ecient light coupling at the nanoscale and the combination on a single chip of interacting optomechanical elements with high design exibility. Most current experiments in this direction rely on the planar integration of the various functionalities ensuring light coupling, signal detection, amplication, storing or processing [START_REF] Winger | A chip-scale integrated cavity-electro-optomechanics platform[END_REF][START_REF] Srinivasan | Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator[END_REF][START_REF] Li | Multichannel cavity optomechanics for all-optical amplication of radio frequency signals[END_REF]21,[START_REF] Rath | Diamond electro-optomechanical resonators integrated in nanophotonic circuits[END_REF]. Here, a complete three-dimensional (3D) integration is achieved by relying on a combined bottom-up and top-down approach, as opposed to most schemes, solely based on a top-down processing. This hybrid 3D integration is demonstrated by vertically stacking an array of standalone InP-based optomechanical resonators on top of low-loss silicon-on-insulator (SOI) optical waveguides [see 

Basic optomechanical characterization

The investigated sample consists of two-dimensional photonic crystal (PhC) defect cavities etched into a thin InP membrane, heterogeneously integrated onto a SOI waveguide substrate. The optical resonator consists of a modied L 3 PhC cavity [178]. The mechanical resonator is formed by the suspended PhC diode is used for the readout of the mechanical modes of the PhC membrane. The polarization of the light source is adjusted before coupling it into the access waveguide via the input grating coupler. The light passing through the cavity is outcoupled via the output grating coupler situated at the opposite end of the waveguide. This signal could be directed either to a spectrometer (for transmission spectrum measurements) or, after proper ltering and amplication, to a fast photodiode connected to an electrical spectrum analyzer, to measure the mechanical spectra of the InP membranes. All the measurements were performed at room temperature. The sample was kept in a vacuum chamber, at a pressure of < 10 -4 mbar, 
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Vacuum optomechanical coupling rate

The vacuum optomechanical coupling rate g 0 is a common gure of merit describing an optomechanical interaction between two specic modes (optical and mechanical). We experimentally determine its value by using the phase modulation technique, a known phase modulation at a given frequency closed to the mechanical one (technique explained previously).

The values of the vacuum optomechanical coupling rate g 0 /2π are specied in Table 4.3.2. Together we provide the frequency of the mechanical modes Ω m /2π and the corresponding quality Q m factors, measured at the same optical probe power and detuning. Comparing with the experiment on a nonintegrated system (Part 4.2.1), the present values show good agreement, including the higher frequency mode (M 95M ). Mechanical quality factors in our experiment, however, show higher values: in [25] the highest measured quality factor was Q m = 890 for the fundamental mode, rapidly decreasing at higher frequencies (e.g., a mode at 56 M Hz had Q m = 40), which can be explained by the unoptimized suspension geometry of the device in that work. In our case, using the four suspension bridges, we measure that all the modes have resembling quality factors ranging between 2000 and 3000, including the one for mode at 95 M Hz. Current optomechanical set-up, nevertheless, employs simple detection of laser probe modulation and for the moment permitted us to detect considerably lesser mechanical resonances compared to tapered bre technique used in the non-integrated conguration. This can be related as well to the amount of probe light, coupled inside the PhC defect cavity, which in our set-up and probing conguration is about P c 300 µW due to the relatively low coupling eciency between microscope objectives and grating couplers of the access waveguide. Increasing the coupled powers in order to enhance sensitivity and resolve more mechanical resonances would lead to thermally induced 66CHAPTER 4. OPTOMECHANICAL CRYSTAL FOR THE GENERATION OF A PURE GHZ SIGNAL eects, which in turn may aect the optical and mechanical properties of device and result in false determination of optomechanical coupling strengths.

Optomechanical eects within integrated platform

Optomechanical coupling in our devices arises from four eects. The membrane motion modulates the air gap between the PhC cavity and the waveguide. This aects (i) the resonance wavelength λ c of the PhC cavity, which is modied by the presence in the evanescent tail of the PhC cavity mode of the waveguide, leading to (external) dispersive optomechanical coupling [2]. Such modulation of the air gap also impacts (ii) the optical loss rate of the PhC cavity κ e into the access waveguide. This eect, related to a modulation of the overlap between the PhC cavity mode and the waveguide mode, is referred to as (external) dissipative or reactive optomechanical coupling [START_REF] Elste | Quantum noise interference and backaction cooling in cavity nanomechanics[END_REF][START_REF] Li | Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides[END_REF]53,[START_REF] Sawadsky | Observation of generalized optomechanical coupling and cooling on cavity resonance[END_REF]. Finally, the deformation of the InP membrane introduces a modulation of both λ c and the intrinsic loss rate κ i of the PhC cavity.

The former mechanism, known as (iii) intrinsic dispersive coupling, is related to the wavelength shift due to moving dielectric boundaries and to the photo-elastic eect [START_REF] Chan | Optimized optomechanical crystal cavity with acoustic radiation shield[END_REF]. This eect produces a very small contribution with respect to the external dispersive coupling, as deduced from FEM, and will not be considered henceforth. The latter is referred to as (iv) intrinsic dissipative coupling [53] and originates from the modulation of κ i induced by the membrane deformation. From coupled mode theory, it can be shown that the transmission spectrum T (∆) of a microcavity evanescently coupled to an access waveguide has the form

T (∆) = ∆ 2 + (κ i /2) 2 ∆ 2 + (κ/2) 2 , (4.3) 
where ∆ = ω -ω c is the detuning between the laser light of frequency ω and the cavity mode frequency ω c , and κ = κ i + 2κ e represents the total cavity loss rate [53]. In the case of the exural modes considered here, the membrane motion occurs mainly in the out-of-plane (z) direction. A slight shift dz in this direction induces a variation dT in the transmission spectrum given by

dT (∆) = g ω ∂T ∂∆ + g κ,e ∂T ∂κ e + g κ,i ∂T ∂κ i dz, (4.4) 
where g ω = d∆/dz is the external dispersive (dispersive for short in the remainder of the article) optomechanical coupling coecient, g κ,e = dκ e /dz is the external dissipative coupling coecient, and g κ,i = dκ i /dz is the intrinsic dissipative coupling coecient [53]. At the mechanical resonance Ω = Ω m , the uctuations of the transmission spectrum dT (∆)/dz contribute directly to the measured power spectral density S P (Ω m , ∆) through [START_REF] Hauer | A general procedure for thermomechanical calibration of nano/micro-mechanical resonators[END_REF]53] S P (Ω m , ∆) =

ηβ 2 g ti AP in 2 R 4k B ΘQ m (∆) m e Ω 3 m (∆) dT dz (∆) 2 , (4.5) 
where (for our experimental setup) η ∼ 0.8 accounts for the coupling eciency between the laser output and the lens focusing the beam onto the input grating coupler, β ∼ 0.035 accounts for the coupling eciency into (and out of ) the access waveguide, A ∼ 25 denotes the signal amplication, P in = 6.8 mW designates the probe laser input power, g ti = 1400 v/W is the transimpedance gain of the photodetector, R = 50 Ω stands for the load resistance, k B is the Boltzmann constant, Θ ∼ 294 K is the experiment temperature, and m e is the eective mass of the mechanical mode. Q m (∆) designates the mechanical mode quality factor, and the mechanical frequency Ω m (∆) depends on the probe laser detuning as a result of the optical spring eect [2].

Dynamical backaction : Dependence of coupling strengths on geometrical parameters

In optomechanics, a dynamical backaction -mechanical oscillator response to an external optical force within a device -in the presence of optomechanical coupling leads to the optical spring eect [2]. It consists in the change of principal mechanical properties of the oscillator (frequency and damping rate), strongly dependent on the detuning ∆ = ω -ω 0 of the driving laser carrier with respect to the cavity resonance ω 0 . Measurement of this eect consists in examination of the mechanical response while the pump laser is swept across the optical cavity resonance.

Thus, to gain an insight into the dependence of such coupling mechanisms on the geometric features of the access waveguides, we performed a detailed analysis of the evolution of S P (Ω m , ∆/κ), measured as a function of the normalised laser detuning ∆/κ, on all the waveguide widths w wg present on our sample (all the other geometric parameters of the optomechanical resonators were kept constant). In the case of a purely dispersive coupling, S P (Ω m , ∆/κ) should be proportional to (∂T /∂∆) 2 , yielding a symmetric curve with respect to ∆/κ = 0 with a null mechanical amplitude at the optical resonance wavelength.

Conversely, in the case of a purely dissipative coupling, the optomechanical amplitude is expected to exhibit its maximum around zero detuning.

In Fig. Second, the mechanical linewidth Γ m , which can be roughly estimated from Figs. 4.3.3a,b, increases when the laser probe approaches the cavity resonance ∆ = 0, whereas far from resonance its value converges to a certain constant value for both of modes. In addition, Γ m broadening is more pronounced at the red-detuned side of cavity resonance.

Last, unlike systems in which the optomechanical interaction is generated by intracavity elds, for which the optical spring eect vanishes at zero detuning [34], our device shows the largest mechanical frequency shift around the PhC resonance, suggesting a signicant dissipative coupling [START_REF] Li | Multichannel cavity optomechanics for all-optical amplication of radio frequency signals[END_REF]. This is conrmed by the strong asymmetry of S P (Ω m , ∆/κ) with respect to a zero-laser detuning evaluated at the mechanical resonances Ω m for M1 and M2 [53], as illustrated in Figs. 

Optomechanical couplings with warying phase-matching conditions

The exibility of the sample design permitted by our integrated approach enables us to investigate in detail the variation of the optomechanical coupling mechanisms as a function of the waveguide width w wg , while keeping the membrane suspension height h constant. In Figs. 

Simulation of optomechanical coupling.

A frequently used approach to achieve a deeper understanding of the physical mechanisms governing the optomechanical coupling consists in quantifying the shift of the PhC cavity mode resonance and of the coupling rate between the PhC cavity and the waveguide by perturbation theory. In a perturbative approach, the PhC cavity resonance shift induced by a close-by waveguide is evaluated by computing the overlap integral of the unperturbed PhC cavity mode pattern with the variation to the unperturbed dielectric constant distribution induced by the presence of the waveguide. The cavity loss rate induced by the presence of the waveguide can be obtained by computing the overlap between the unperturbed PhC cavity mode pattern and the unperturbed waveguide mode pattern [START_REF] Hryciw | Tuning of nanocavity optomechanical coupling using a near-eld ber probe[END_REF]. A more thorough (albeit more computationally demanding) approach relies on performing static 3D FDTD computations of the full system comprising both the PhC cavity and the waveguide. We ran 3D FDTD simulations for all the ve values of w wg present on our sample, with the scope of predicting the dispersive and the external dissipative coupling coecients of our optomechanical resonators. The distance between the PhC cavity and the waveguide was dened by the air gap h between the lower edge of the InP membrane and the upper edge of the Si ridge. The computations were performed with an adaptative mesh renement, allowing for a variation of h in steps of 10 nm, to obtain the dependence of the cavity resonance wavelength λ c and of the PhC cavity loss rate κ as a function of h. The derivatives of these curves were subsequently evaluated at a suspension height h = 230 nm, corresponding to the measured separation between the InP membrane and the waveguides on the fabricated sample, providing the computed g ω and g κ,e . In the case of the computed cavity linewidth, to account for deviations from the ideal simulated structures, related to the presence of fabrication-induced defects in the optomechanical resonators, the κ versus h curves have been renormalised (keeping the same eld decay length of the PhC cavity mode in the out-of-plane direction) such that they pass through the experimentally determined κ at h = 230 nm. The computed g ω shows the same trend as the experimentally determined g ω for M1, whose values fall within the error bars of the computed coupling coecients, except for w wg = 350 nm. A good agreement between the simulated g ω and the experimental g ω for M2 is also observed, although M1 is the mechanical mode whose displacement pattern mainly resembles the simulated translation of the InP membrane in the outof-plane direction. The trend of the computed g κ,e versus w wg is also very similar to the corresponding experimentally determined coupling coecient for M1, as shown in Fig. 4.3.5(b). The largest computed g κ,e is observed for w wg = 450 nm, resulting from the interplay between the experimental κ, as detailed above, and the increasing evanescent tail of the guided mode for a decreasing w wg , which should lead to a higher computed g κ,e for small w wg . The latter eect is related to an increased length of the evanescent tail of the guided mode (hence its overlap with the PhC cavity mode) for a decreasing w wg , owing to the squeezing of the guided mode in the lateral direction.
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A further advantage of our heterogeneous integration approach is the possibility to vary h by properly adjusting the thickness of the SiO 2 layer deposited on top of the InP substrate, to achieve a predened optomechanical coupling. The computed g ω and g κ,e for h = 150 nm are compared for reference with the Signicantly larger dispersive and dissipative optomechanical coupling coecients may be therefore expected in such optomechanical resonators, at the expenses of a broader PhC cavity mode.

We observed a dierent relative sign of the dispersive and external dissipative coupling coecients by varying the waveguide width (see insets of Fig. 4.3.5). In the case of a non-zero dissipative coupling, cooling even in the unresolved-sideband regime is permitted [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF]. The tailored optomechanical coupling exhibited by our optomechanical system makes it potentially capable of reaching the optimal mixed coupling (i.e. dispersive-to-dissipative coupling ratio, including the correct relative sign) yielding the minimal phonon number [START_REF] Weiss | Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems[END_REF], paving the way to an optimal mechanical mode cooling in resonators featuring simultaneously dispersive and dissipative coupling and operating in the unresolved-sideband regime. Further, the varying asymmetry of S P (Ω m , ∆/κ) as a function of w wg stems from a change in the relative signs of the optomechanical coupling coecients.

Integrated GHz optomechanical crystal on SOI

Comparing with the state of the art optomechanical systems [46,[START_REF] Balram | Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits[END_REF], the highest g 0 /2π values attain up to 4 MHz, however, reached within the devices with mechanical frequencies of the order of few GHzlocalized modes. Such mechanical modes were not coupled enough to the optical mode of the L3 cavity in order to be measured on the SOI plateform. Thanks to their higher optical quality factor compared to L3 cavity, one dimensional photonic crystal are well known candidate to evidence mechanical modes in the GHz frequency range. As seen previously, they also evidence low phase noise optomechanical self-sustained oscillations.

The developement and the control of the GaAs-based cavities makes it possible to fabricate 1D photonic crystal integrated over a SOI waveguide (Fig. any mechanical coupling as well. As a consequence, each cavity can be considered as independent. Each cavity has been designed to reach a resonance wavelength of their fundamental optical mode around 1550 nm; the higher order modes are equally spaced by about 20 nm.

Figure (4.3.3b) shows a typical transmission spectrum recorded when the waveguide is fed with the broadband light source. In this experiment, all the optical modes of the four cavities are probed simultaneously. This simultaneous excitation of the modes can also be observed on the spectrum that features several resonance dips corresponding to the fundamental and higher order modes of dierent cavities.

A careful investigation has yet to be carried out to attribute each resonance dip to a single cavity and to discuss the evolution of these resonances as a function of geometrical parameters such as holes size.

The identication of the modes sustained by the nanobeam cavities has been carried out by launching in the SOI waveguide tunable laser light. When the input laser wavelength matches the resonance of one cavity, the laser will be coupled to this cavity solely. By observing simultaneously the sample with the IR camera, solely this cavity diract light and not the three other ones. By tting the resonance dips in the transmission spectra by a Lorenztian curve, we can extract the resonance wavelength λ and linewidth κ/2π of each mode. We can estimate resonance wavelength at 1523 nm with a linewith of about 9 GHz. This give an estimated the intrinsic Q 0 ≈ 0.25 × 10 5 as well as the coupled Q c ≈ 0.11 × 10 5 quality factors which are representative of the values reached. To be noticed that this optical mode has been identied

as the second order optical mode.

The optomechanical properties of photonic crystal cavities systems have been performed as previously.

Figure (4.3.3a) displays the power spectrum density of the optical signal transmitted via the waveguide when the input laser is tuned at resonance with the second-order mode. This spectrum features several peaks located around 2.3 GHz. When comparing the frequency of these peaks and the mechanical frequencies expected on such cavities as predicted by our simulations, each peak can be attributed to dierent mechanical modes whose displacement eld prole is also shown (see Figure 4 As previously, the measured coupling strengths g 0 are extracted and are all of the same order of magnitude (hundreds of kHz) than the one observed in reference works dealing with optomechanical crystal cavities sustaining modes in the GHz. Yet our measured g 0 are 3 to 4 times smaller, probably due to the fact that the optical resonance used here is not the fundamental mode but the second-order mode. This brings another consequence namely the imposibility, here, to achieve self-sustained oscillations. This may be due to several limitations. First optical limitations are at stakes. With the limited optical quality factor, optomechanical oscillation threshold is expected at a power of 420 µW and some thermal-optics issues appears before reaching this value degrading the mechanical response. By improving the linewidth of the optical cavity by one order of magniture (similar quality factor as in Section 4.2), we reduce by the same amount the threshold power. Another limitation in our cavity system arises from the low coupling strength. Compared to similar state-of-art III-V nanobeam cavity systems, InGaP and GaP nanobeams all reached g 0 /2π up to 400 kHz. In order to reach self-oscillations in our experiments (with Γ m /2π = 3.8 M Hz), the g 0 /2π value needs to exceed 280 kHz which is two times higher than our actual value. Once again, relying on the fundamental optical mode (and not the second-order mode) should allow to enhance the observed coupling strength. At last, this low optomechanical coupling strength could also arise from mechanical modes competition. At least 5 mechanical modes feature g 0 /2π values of same order of magnitude (around hundred kHz), all located around 2.3 GHz. When injecting some laser power into the cavity, several vibrating modes are excited, leading to some competition between these modes in the optomechanical interaction. By adjusting the nanobeam cavity geometry, it could be possible to maintain the fundamental modes meanwhile suppressing some higher order modes.

4.4

Toward fully integrated and controlled low phase noise oscillators Optomechanics enable to control mechanically the optical mode and reciprocally. In such experiments, the mechanical actuation usually makes use of the radiation pressure eect which is quite weak; this imposes to deal with relatively high optical powers inducing contingently a detrimental rise in temperature of the entire system. As a consequence, other actuation means have to be implemented in order to reach an ecient actuation of the mechanical mode.

Thus, a rst step toward low phase-noise applications using optomechanical oscillators is to build an integrated feedback loop (injection locking, phase lock loop, etc.). In this section, we will focus on dierent complementary electrical actuation tools, that provide a supplementary control channel besides optical control. Due to the piezoelectric properties of the III-V materials investigated here, several strategies can be envisioned to implement such resonant and ecient excitation, such as electrostatic, piezoelectric and acoustical actuation. Among the envisioned actuation schemes, one can put them in two dierent categories, either the physical principle induce by nature a time delay or not. As the distance d decreases to less than 1000 nm, the G starts to increase rapidly. However, the reduction of the electrodes distance also induces optical losses in the nanobeam cavity (see Figure4.4.1c). For d lower than 1200 nm, the quality factor of the fundamental optical mode decreases by more than two orders of magnitude from 1.4 × 10 7 down to 5 × 10 4 . As a trade-o, the electrode-to-electrode distance d should be chosen around 750 to 1000 nm in order to have a high capacitance force actuation while preserving good optical property.

Besides the electrodes distance, some care has also to be taken to their width. The spatial expansion of the mechanical mode along the nanobeam indeed changes as a function of the mode order. For a given capacitor length, the overlap area between the electrodes and the mechanical modes thus varies. For an electrode witdh smaller than the mode expansion along the nanobeam, the induced electrostatic force only acts on part of the mode which is contained inside the capacitor. In order to excite the mechanical modes with large mode spatial distribution along the nanobeam, the electrodes should be designed as long as this spatial connement. According to this geometrical elements, a rst set of structures have been fabricated and are visible in Fig. 4.4.1d-f.

Phase noise reduction with an o-chip delay

Up to now, stable optomechanical oscillators were obtained via injection locking [START_REF] Saeedkia | 1 -Optoelectronic techniques for the generation and detection of terahertz waves[END_REF] or reinjecting the oscillator with itself [START_REF] Rouphael | Chapter 4 -System Nonlinearity[END_REF]. Here, we demonstrate how we can exploit the capacitive eect to stablize an optomechanical crystal made of InGaP with a delayed copy of itself. For technological reasons, we rst implement this resonant excitation with the geometry introduced in chapter 4.2.2. sponding to the case where there is no feedback, the slope is linked to the number of thermal phonons and the cold mechanical linewidth. When the delayed feedback is turned on, the slope changes when the system goes into self-sustained oscillations. This indicates that the optomechanical crystal and the feedback loop form a system of coupled oscillators. Future work is aimed at repeating this experiment in the GHz range and replacing the macroscale ber delay with an integrated acoustic delay line.

On-chip time-delayed resonant excitation

Contrary to the previous actuation method, acoustic actuation mediated by surface acoustic waves may provide wider functionalities but is a resonant process. For instance, one can envision to engineer the speed of the waves in the propagating medium, namely the membrane in our case. This would enable to implement acoustic delays for instance in optomechanical circuits. As such, another foreseen resonant RF transducer uses Surface Acoustic Wave (SAW) technology. Recently, purely acoustic actuation has been investigated by several groups in optomechanics. In acoustic actuation, SAW are generated by the inter-digital transducers (IDT) and then propagate to the resonator. The strong surface displacement eld excites the mechanical modes of the resonator. A frequency macthing between the acoustic and mechanical modes is required. In this frame, H. Li et al [START_REF] Li | Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12ghz[END_REF] and K. C. Balram et al [START_REF] Balram | Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits[END_REF] have implemented For a given piezoelectric material, the generated frequency is directly given by the geometrical parameters of interdigitated electrodes. To reach a range of frequencies between 2 and 3 GHz with piezoelectric III-V semiconductor such as GaAs and InGaP, a pitch of about 600 nm is required. In order to combine SAW technology with integrated optomechanical cavities on SOI waveguide, a compatible process ow for the fabrication of the RF transducers was established. By using a developed process, SAW transducers with dierent pitch were fabricated on GaAs and InGaP membranes bonded on silicon wafer with an insulator layer to be, in the end, implemented on SOI wafer used for integrated optomechanics. Here only results

on GaAs are shown. Similar results were observed on InGaP, even if the amplitude is smaller due to weaker piezoelectric coecients.

To improve the connement of the acoustical wave within the membrane, RF transducers have been sus- 

Conclusion

Here we have exploited the photon-photon interaction in optomechanical resonators in view of proposing a novel architecture of reference oscillators directly in the GHz. The proposed platform consists of photonic crystal-based cavities etched in suspended III-V piezoelectric semiconductor membranes, coupled to integrated optical waveguide for optically probing and controlling the mechanical modes. The dierent elements of this platform have been investigated rst with InP membrane and then on piezoelectric III-V materials such as GaAs or InGaP. This fabrication approach is intrinsically up-scalable, leading to potential applications in optomechanical circuits at the full chip level. A rst multi-element component, which could be fabricated by following our approach, may include multiple membranes, having dierent resonance wavelengths, aligned on top of a single waveguide, potentially allowing for a simultaneous multiple-device addressing through the same channel. The hybrid integration approach demonstrated here could enable us to bring together the strengths of quantum light emitters embedded in a III-V semiconductor matrix and of optomechanical signal processors for the realization of hybrid optomechanical devices.

First, cavities under study, either L3 cavities in a 2D-photonic crystal or 1D-photonic crystal nanobeam cavities, have been studied. Both cavities not only provide high light optical connement but also harbor mechanical modes directly in the GHz frequency range featuring a large spatial overlap with the optical mode. However, solely 1D-photonic crystal nanobeam cavities shows self-oscillation able to be further investigated. Such a structure evidence, in atmospheric conditions, a low phase noise limited by environment-induced noises. Then, the integration of the III-V semiconductor photonic crystal on a SOI plaform is evidence. Finally, a better frequency stability of the oscillators could be insured via the resonant driving of the mechanical mode implemented by various means. We have investigated electrostatic and acoustic transducers. The rst one allows a direct excitation of the mechanical mode but without on-chip delay. Acoustic actuation would in addition allow for engineering an integrated acoustical delay, enabling to integrate on a single chip setting the OMR and the feedback loop circuit.

Chapter 5

Perspectives -Project

In the previous chapters, we introduced the electromechanical photonic crystal membrane (Chapter 3)

and the integrated optomechanical photonic crystal cavity (Chapter 4). In those chapters, we discussed in depth but separately their interesting physical properties. We evidence taht they are well mastered and we understand their advantages as well as their limitations. Now, nothing prevents us to combine them in various ways (see Fig. 5) to open new palygrounds and complexify devices along with the studied physics. Thanks to the distinct mechanical (suspended membrane), optical (photonic crystal cavity) and electrical (interdigitated electrodes for capacitive or acoustical excitations) degree of freedom, many coupling combinations can be investigated.

One of the rst possibility among others is an on-chip electro-optomechanical resonator for separately (i) probing small displacement by optomechanical coupling and (ii) eciently driving the oscillating suspended membrane up to its nonlinear regime by electro-mechanical coupling. This opens the way to ecient transduction from an electrical signal to the optical eld via the mechanical motion. Moreover the resonance of both the photonic crystal microcavity and of the mechanical membrane can be driven in bistable regimes. One can also envisionned to go beyond single elements architecture by coupling two but also several mechanical, optical or optomechanical resonators (see gure 5). Many combinations are at our disposal, e.g. (i) optical coupling between two or several photonic crystals on the same vibrating membrane (Fig. 5a), (ii) optical coupling through the SOI waveguide of distant optomechanical crystal, (iii) mechanical coupling between two or several suspended membranes with or without photonic crystal cavity (Fig. 5c), (iv) simultaneous optical and mechanical coupling between optomechanical crystal.

The multiphysics and multi-element nature of the envionned platform would ensure investigation of a rich fundamental physics and might bring down the line potential concepts for application purposes.

Collective dynamics in networks of electro-optomechanical resonators for enhanced sensing capability

In chapter 3, enhancing the detection of weak signal with nonlinear eletromechanical resonator has been demonstrated either with conventional parametric amplication, or with noise in stochastic resonance and even with an extra modulating signal in the case of vibrational resonance with a single nonlinear resonator.

In order to extend this physics to coupled resonator systems, the experimental control of coupling between subsystems is mandatory. The large playground of couplings envisoinned here opens new avenues on the development of strategies based on nonlinear dynamics in view of enhancing the sensitivity of electrooptomechanical resonators. Nonlinearities in coupled resonator arrays have already been investigated.

Such arrays exhibit interesting nonlinear dynamics ranging from the formation of extended patterns [START_REF] Sato | Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array[END_REF] or intrinsically localized modes [START_REF] Cross | Synchronization by nonlinear frequency pulling[END_REF]. These patterns or modes can be understood in terms of the collective spatial and temporal motion of the array also called Chimera states. Such collective response of coupled array might be useful for signal enhancement and noise reduction [START_REF] Lindner | Array enhanced stochastic resonance and spatiotemporal synchronization[END_REF], as well as for sophisticated mechanical signal processing applications. Thus, we can take advantage of this modularity to implement some noise-assisted phenomena occurring in coupled nonlinear systems, including noiseaided synchronization, spontaneous ordering transition and emergence of bifurcation structures, which Three main strategies for enhancing the sensing ability thanks to noise-assisted eects will be pursued: advanced stochastic resonance, noise-enhanced synchronisation between coupled or uncoupled resonators with noise-induced transition and chaos. These phenomenon could be enhanced by mastering the coupling between single or even independent arrays.

Coupling control

Unfortunately such control is relatively hard to achieve as it is are usually set by the material properties or by the geometry. Howerver, in the electromechanical systems, the membranes natural frequencies can be controlled by inducing an additional internal stress either with a photo-thermal absorption process or via an applied electrical eld. In the purely optical domain, local heating of one resonator compare to another one could also be achieved.

Here, we propose two mechanisms through which the coupling between two resonators can be continuously modied. They are both schematically represented in Fig. 5.1.1a. First (i) by considering two electromechanical membranes A and B simultaneously probed with independent laser beams, each converted optical response can then be amplied and injected in the opposite structure electromechanical actuator. Thus the resonators and both driven by the opposite subsystem. Here the coupling -which not necessarily balanced -can be fully controlled through the amplication gain (η A,B and η B,A ). The second proposal (ii) described how the phase shift experienced by the circulating light between two optical resonators leads to both energy and loss splitting. This phase shift is not easily tunable in integrated photonic circuits. The control of the phase shift could be obtained through a phase modulator placed between the resonators. The control of coupling can also be useful in the context of the oscillator arrays.

For example in the investigation of synchronization patterns formation [START_REF] Lauter | Pattern phase diagram for twodimensional arrays of coupled limit-cycle oscillators[END_REF] or chimera states [START_REF] Pelka | Chimera states in small optomechanical arrays[END_REF] using optomechanical systems, the Kuramoto dynamics strongly depends on the coupling. The previous examples for coupling control could be applied not between resonators but between two arrays as depicted with The control of coupling in either conguration could be of great interest for the dierent physical phenomenon discuss in the following as well as many others.

Noise-aided phenomena in electro-optomechanical networks

The direct observation of stochastic resonance in the bidimensional phase plane in [START_REF] Chowdhury | Phase stochastic resonance in a forced nanoelectromechanical membrane[END_REF] put in evidence a major limitation in the achieved amplication: the misalignment between the noise orientation and the preferential path between the two states of the resonator. Such nonlinear dynamical eect has also been observed recently (in 2017), for the rst time in the eld of optomechanics, with a micro-toroid resonator [START_REF] Moni | Optomechanically induced stochastic resonance and chaos transfer between optical elds[END_REF]. In this case, nonlinear Kerr eect is used for reaching bistable regime of the resonator.

The modulation and the noise, both in amplitude, involved in the stochastic resonance process are also in the optical domain. Therefore, it can be seen as a purely optical stochastic resonance mediated by the mechanical motion of the resonator which lies in the MHz range.

The envisoned platform of coupled resonators will enable us to explore a large number of noise congurations (additive or multiplicative noise, white or coloured noise) and of weak modulation formats (amplitude, phase or both). The modulation and the signal involved in the stochastic resonance are here in the mechanical domain. Particular attentions have to be paid on various design parameters (noise format, coupling strength, site at which noise is applied. . . ). In this framework, the geometry addressed here allows to use, at the same time and in an innovative manner, incoherent or local noise, that is uncorrelated noise from site to site. This is a drastic advantage compared to the usual conguration where coherent signal or global noise is applied to the ensemble of resonators. The platform will also enable the use of dierent kinds of couplings (optical, mechanical, common noise. . . ) providing various ways for reading and controlling the dynamical properties of the coupled resonators.

The multiphysics nature of the platform also enables novel combinations of mixed (optical and/or mechanical) carriers for the weak modulation signal and noise. For instance, a weak optical modulation signal carried by the laser used to probe the mechanical mode, could get amplied by addition of a noise applied on the membrane via an electrostatic force induced by the interdigitated electrodes. Stochastic resonance in complex systems that consist of two or many coupled systems, is indeed barely investigated experimentally. For sucient large numbers of coupled systems, the induced noise is averaged and thus reduces; moreover, the signal-to-noise ratio increases proportionally with the number of coupled systems.

Theory suggests that such systems may however exhibit collective temporal synchronization, known as array-enhanced stochastic resonance [START_REF] Lindner | Array enhanced stochastic resonance and spatiotemporal synchronization[END_REF].

Synchronization is a phenomenon in which an oscillator with xed amplitude and free phase develops a phase preference when weakly coupled to a drive or to other oscillating systems [START_REF] Pikovsky | Synchronization A Universal Concept in Nonlinear Sciences[END_REF]. In an optomechanical system, optical cavity modes are coupled to mechanical motion. In its most basic setup, an optomechanical system is made of a single laser-driven cavity mode which couples to a single mechanical mode via radiation pressure. The dynamics of the systems crucially depends on the frequency of the laser driving the cavity. For that reason, the optomechanical system may exhibit synchronization when coupled to an external drive (an additional external drive, in contrast to the laser driving the self-oscillations) or another optomechanical system or as part of an array of optomechanical systems, as was theoretically

shown in [START_REF] Heinrich | Collective dynamics in optomechanical arrays[END_REF]. Synchronization of an optomechanical system to an external drive [START_REF] Shlomi | Synchronization in an optomechanical cavity[END_REF], of two optomechanical systems [START_REF] Zhang | Synchronization of micromechanical oscillators using light[END_REF], and even of small arrays of up to seven resonators [START_REF] Zhang | Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light[END_REF] have been demonstrated

experimentally. By targeting synchronization with common noise of two uncoupled resonators, we target a new and unexplored eld in optomechanics. This phenomenon occurs when the nonlinear oscillators are driven by a random force. In particular, when nonlinear oscillators with dierent initial conditions are strongly driven with the same random force, their uctuating behavior may reliably lead to asymptotically stable, synchronized state. This seemingly counter-intuitive phenomenon has attracted a continuous interest: it in particular constitutes a powerful demonstration of noise-induced order as a result of the interplay between nonlinear dynamic eects and stochastic process.

In any kind of arrays, noise-induced transition corresponds to a transition of the array to a new state induced by changing the noise intensity, which is qualitatively dierent from the initial state. The transition between the initial state and the new state (noise-induced state) can be quantitatively estimated by a corresponding order parameter by independently addressing several elements of the array. Noiseinduced transition in non-equilibrium systems can be considered as generalization of phase transition in thermodynamic equilibrium systems. Unusual thermodynamic phase transitions driven exclusively by noise could be anticipated [START_REF] Zhang | Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light[END_REF].

Chaos and synchronization in coupled electro-optomechanical resonator

Besides steady operation, theory reveals that a nonlinear physical system of high enough dimension may bifurcate to more complex dynamics including chaos. This applies to many elds of sciences e.g. in physics [START_REF] Rosenblum | Phase synchronization in driven and coupled chaotic oscillators[END_REF][START_REF] Pisarchik | Intermittent lag synchronization in a driven system of coupled oscillators[END_REF][START_REF] Zhang | Synchronization of micromechanical oscillators using light[END_REF][START_REF] Zhang | Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light[END_REF], chemistry [START_REF] Kuramoto | Pattern formation in oscillatory chemical reactions[END_REF], biology [START_REF] Glass | Synchronization and rhythmic processes in physiology[END_REF], ecology [START_REF] Blasius | Complex dynamics and phase synchronization in spatially extended ecological systems[END_REF], economy [START_REF] Volos | Synchronization phenomena in coupled nonlinear systems applied in economic cycles[END_REF] and even in sociology [START_REF] Moussaid | Collective information processing and pattern formation in swarms, ocks, and crowds[END_REF].

Aperiodicity, sensitive dependency to initial conditions are commonly considered as the main properties for chaos. Numerous practical algorithms are available today to dierentiate between deterministic chaos and stochastic noise, including estimating the dominant positive Lyapunov exponent. At the same time, several congurations may be used to overcome damped relaxation oscillations and therefore to generate chaos (i) Optical feedback using, for example an external mirror that reects investigated signal back into the system, (ii) Optical injection from a master to a slave system, (iii) External modulation applied to a system, (iv) Optoelectronic feedback by re-injecting a delayed and amplied signal from a device that measures an output. Only few recent experimental demonstrations of chaos in optomechanical cavity have been reported [START_REF] Navarro-Urrios | Nonlinear dynamics and chaos in an optomechanical beam[END_REF][START_REF] Wu | Mesoscopic chaos mediated by drude electron-hole plasma in silicon optomechanical oscillators[END_REF] with a strong optical driving detrimental for development of applications using chaos. Integrated platform implementing optical and mechanical control will allow to reach chaos with a much lower input power making possible new potential applications. As an example, we have seen that vibrational resonance amplication can be achieved with an electrically driven mechanical resonator.

Similarly we could expect chaos to emerge in a similar system under an amplitude modulation of the drive. Beside the interest of this electro-optomechanical system for a novel physics, it also gives the opportunity to perform dierent type of signal processing operation within the same system. A basic example is given in Fig. 5.1.2 a.

Here, a rst nonlinear resonator in its chaotic regime, is used to generate random bits, and a second is exploited to amplify the random bit sequence thanks to vibrational resonance. Assuming that the rst operation is obtained by electro-capacitive modulation, the mechanical displacement is therefore encrypted in the optical microcavity and can be amplied by vibrational resonance. Generalizing such chain of operation in multimode systems, such as coupled or array of oscillators, opens the path to multispectral encryption protocols [START_REF] Argyris | Chaos-based communications at high bit rates using commercial bre-optic links[END_REF][START_REF] Annovazzi-Lodi | Synchronization of chaotic injected-laser systems and its application to optical cryptography[END_REF][START_REF] Mirasso | Synchronization of chaotic semiconductor lasers: application to encoded communications[END_REF][START_REF] Cuomo | Synchronization of lorenz-based chaotic circuits with applications to communications[END_REF]. In many nonlinear system, the chaotic dynamics emerge via a period doubling cascade. However the following bifurcations can also separate a chaotic dynamics from a simple limit cycle regime. These abrupt bifurcations, or crisis, are very sensitive to any perturbation of the system. Relying on this observation, the perspective of chaos based sensing emerges. In such experiment, depicted in Fig. 5.1.2 b, the system is preliminary stabilized in a given regime, e.g. chaotic in this schematic, and then submitted to external perturbation. For example we have notice that a tiny modication of the probe laser intensity -inducing a mechanical frequency shift of only few Hertz -is enough to pass a bifurcation point and dive the system in a dierent dynamics. This proposal therefore consists in using chaos in a electro-optomechanical system which could be relevant for ultra-precision measurement, fundamental tests on the physical conditions for classical dynamics [START_REF] Bakemeier | Route to chaos in optomechanics[END_REF],

or random number generation and encrypted communication [START_REF] Argyris | Chaos-based communications at high bit rates using commercial bre-optic links[END_REF]. 

Electro-optomechanical oscillators for time-keeping metrology

Reduction of phase noise for optomechanical oscillators calls for an in-depth investigation of photonphonon interactions; their control in an integrated nanoscale device is furthermore compulsory to ensure spectral purity. Thus, a thorough investigation is challenged by the need for innovative instrumental techniques to sense mechanical vibrations as well as to enhance their control with a transverse spatial resolution at the nanoscale. This will notably include the development of a novel experimental techniques based on near-eld microscopy allowing for the detection of broadband-frequency mechanical vibrations. The exploratory approaches developed will provide new tools for transducing mechanical vibrations at the nanoscale and for investigating their coupling to optical modes as well as other loss channels. Here, we aim at providing an in-depth analysis of the phenomena governing photonphonon interactions in the optomechanical platforms. The main goal of this analysis is to obtain an optimized design with enhanced coupling, thus allowing for ecient feedback of the mechanical vibrations. This in-depth understanding of decoherence processes will then call for a ne control and management of these eects. Once it is done, high-purity microwave oscillators calls for the implementation of disruptive strategies to tackle the frequency stability of optomechanically driven oscillators. It is typically limited by the uctuations of the environment as well as the thermodynamic noise and drifts of the oscillating mode. Thus, an in-depth investigation of the physical microscopic processes inducing noise and uctuations within the driven nano-resonators will be carried out to rst identify local uctuations allowing for the implementation of ecient on-chip stabilisation. Based on the preliminary developments of external resonant excitation of mechanical modes (Chapter 4.4), various stabilisation schemes will be explored and develop ecient strategies enabling a control and frequency stability of the mechanical vibrations. Implementation of onchip feedback loop and the use of the concept of synchronisation with networks of coupled nano-resonators developmed previously, will be pursued.

Performances of such integrated optomechanical oscillator will provide insights for its use as timekeeping etalon for metrological applications as well as industrial applications. In the frame of scientic collaboration, the challenge will be completed with a full metrological characterisation and a real implementation in the primary metrological chain composed of an atomic fountain and an optical clock, with an optical frequency standard bridging the microwave to optical gap. It will allow to demonstrate its performance as well as its limitations. A metrological platform to measure spectral purity and stability of the devices will be used for a complete characterisation both in the short term (few seconds of operation) and in medium-long term (seconds to days and beyond) stability. This will also give the possibility to study characteristics like ageing of the devices, that are relevant in electronic applications. Following the realisation of such nano-optomechanical oscillator, we could put the device at the core of primary frequency metrology.

Performances of the electro-optomechanical oscillators could also be used for on-chip application such as global distribution of a multi-GHz clock reference signal for industrial applications. Two strategies could be pursued (i) tree topology with master oscillator at the root which is distributed to all synchronous local oscillators or (ii) generating clock signals locally by oscillators in each synchronous clocking area, and making these oscillators coupled with their neighbouring ones in phase, also called interinjection-locked

Electro-optomechanical multispectral random number generators

The generation of random numbers is essential in many computing applications and communication encryption protocols. Therefore Random Number Generators (RNG) have been widely studied both on the hardware (True RNG) and software (Pseudo RNG) sides. One of the graal for secure communications is to achieve synchronized RNG at dierent carrier frequency. One envisionned solution is to use coupled modes which each of them evidence chaotic features. This requires at the same time, the control of the coupling between sub-systems and the excitation / reading schemes.

Here, we propose to reach multi-frequency chaos taking advantage of coupled optomechanical crystal whose natural frequencies range from few thenth of MHz to few GHz. Such optomechanical systems present the advantages that both mechanical and optical coupling can be envisionned. Compared to its mechanical counterpart, optical coupling allows more exibilty in the design. Thanks to ecient optical circuitery already available, distant coupling between optical resonators can be mastered. Such scheme is, for the moment, hardly achievable mechanically. However, in both cases, local coupling can be easily acheived. Moreover, having synchronization in mind, strong coupling between sub-system is not mandatory but make things easier. As such, a ne external control of the coupling and/or of the frequency mismatch can be necessary. Dierent physical processes can be used and implemented either as external or integrated means for optical or mechanical control. As such, local heating of one optical resonance could achieved either by increasinglaser power or local resistor at the vicinity of the optical resonator. On the mechanical side, the already implemented electro-mechanical driving can be used to shift resonance with V DC . The coupling should also be controlled and tuned. In-situ control is still an up-to-date challenge. Electromechanical control of the optical coupling could be reached with piezo-electric material.

However in-situ control of mechanical coupling seems much harder and only relying on the initial design.

Beside coupling, in order to achieve chaos, excitation and reading schemes are of prime importance. Many components have to be mastered : relative amplitude and phase between excitations, their detuning with respect to the resonances. Depending on the excitation conguration, several dierent regimes of synchronization for chaotic dynamics can be achieved among which On/O intermittency, Imperfect Phase Synchronization and Perfect synchronization. Intermittent Lag Synchronization implies that the two systems are most of the time verifying Lag Synchronization, but intermittent bursts of local nonsynchronous behavior may occur. On-o intermittency is an aperiodic switching between static, or laminar, behavior and chaotic bursts of oscillation. If the chaotic oscillations cover a broad range of time scales (periods of unstable orbits), the phases will not fully synchronize, but synchronization epochs are interrupted by intermittent phase slips. In this sense, synchronization is not lost, but the system exhibits an alternation between dierent locking rates called Imperfect Phase Synchronization. Finally Perfect Synchronization could be achieved between these chaotic signal at dierent frequencies. where x(t) accounts for the displacement of the membrane response, ẍ and ẋ are respectively the acceleration and velocity of the displacement, the natural frequency has been rescaled to one (ω 0 = 1), µ 1 is the damping coecient that accounts for dissipation of energy, α accounts for the nonlinear stiness of the spring, which is positive (negative) for soft (hard) spring [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Non-Linear Oscillations[END_REF] and F the strength of the driving. The near-resonant drive has an angular frequency of ω d = 1 + σ, where σ 1 stands for the detuning between the drive and the natural resonant frequency. The system is also subject to a slow phase modulation φ m (t) ( φm ω 0 φ m ) and to a phase noise term in the form of a Wigner process ∆W φ .

Because equation (5.1) is nonlinear and explicitly time dependent, its analytical analysis is a dicult task in general. One strategy for analyzing this equation is to consider the evolution of resonance in the presence of small injection and dissipation of energy. In this limit, the above equation can rewrite in the following form : ẍ = -x -µ ẋ -αx 3 + 3/2 F cos((1 + σ)t + φ m (t) + √ η 0 ∆W φ )

(5.2)
where is a small control parameter. When = 0, the system describes a simple conservative nonlinear oscillator. In our case, 1 and equation (5.2) describes a perturbative nonlinear oscillator. In the conservative limit and for small displacements, the system exhibits harmonic movement with a small arbitrary amplitude D such that x(t) = Re[De it ]. When considering the nonlinear terms, dissipation and forcing, the displacement of the membrane response can be approximated by [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Non-Linear Oscillations[END_REF][START_REF] Kevorkian | Multiple Scale and Singular Perturbation Methods[END_REF]:

x(t) = 3/2 D(T = t)e i[t+ (σt+φm(t)+ √ η0∆W φ )] + α 9/2 8 D 3 e i3[t+ (σt+φm(t)+ √ η0∆W φ )] + c.c. + o( 5)

where the envelope of the oscillations D is promoted to a temporal variable [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Non-Linear Oscillations[END_REF][START_REF] Kevorkian | Multiple Scale and Singular Perturbation Methods[END_REF][START_REF] Newell | Order parameter equations for patterns[END_REF], T accounts for the slow temporal scale ( Ḋ D and D 2 D), and the symbol c.c. stands for complex conjugate.

Introducing the above ansatz in Eq. (5.2) to order 3/2 , one nds: where ξ = d∆W φ /dT is a zero-mean and delta-correlated white Gaussian noise term. Note that φ m is a slow phase modulation, that is, dφ m /dt = dφ m /dT . To derive the above model, we have considered ansatz as a change of variable and then we have used the usual rules of calculus in stochastic normal form theory [START_REF] Clerc | Front propagation sustained by additive noise[END_REF]. Hence, the Stratonovich prescription for noise has to be adopted. Namely, the stochastic 97 term can induce a non-zero drift term, ξ (T ) D (T ) = 0 , which is responsible for unexpected properties of nonlinear stochastic oscillators.

Clearly, phase noise appears here as a multiplicative noise source. It reproduces well the bistable response in amplitude and phase of our nano-electromechanical oscillator (see Fig. Interestingly, it was also noted in [?] that one particularly important aspect of vibrational resonance was the ability to change the stability of some equilibria, or to have control over the shift of the resonance frequency. Our system only becomes a nonlinear oscillator if it is resonantly driven. Conversley, it cannot show a bistable response per se, whatever the sign of the stiness parameter α. However, with a quasiresonant harmonic forcing, the nonlinear oscillator can become bistable. It is then interesting to examine in more details if an additional "high" frequency forcing can induce a resonance on a small amplitude signal.

The nanoelectromechanical system can be described in a good approximation as a forced nonlinear (cubic) Dung oscillator [START_REF] Chowdhury | Phase stochastic resonance in a forced nanoelectromechanical membrane[END_REF]. Its dynamics can be modelled, in the limit of the small injection and the dissipation of energy by ẍ + η ẋ + ω 2 o x + αx 3 = F [1 + γ cos (ω m t) + δ cos(Ωt)] cos (ω f t) , (5.5) where x(t) accounts for the out-of-plane displacement of the membrane, η is the eective damping, ω o /2π is the natural oscillation frequency of the membrane, α is the nonlinear stiness coecient, F is the amplitude of the modulated forcing with frequency ω f /2π ≡ (ω 0 + ∆)/2π, introducing the small detuning from resonance ∆. The high frequency amplitude modulation has an amplitude F δ and a frequency Ω/2π = ν HF . The oscillation amplitude of the oscillator is the result of the beating of two frequencies: one fast at Ω and one slow at ω m . The parameters γ and δ characterize the amplitude of the beating. By considering the following separation of timescales for the forcing frequencies ω m Ω ω 0 , an amplitude equation for the time-averaged dynamics can be derived. We start by deriving the equation for the amplitude of the forced nonlinear oscillator close to resonance (ω f ∼ ω 0 ) by looking for a solution in the form x(t) = C(t)e i(ω0+∆)t + cc (where cc accounts for the complex conjugate term):

∂ t C = - η 2 C -i∆C + i 3α 2ω 0 |C| 2 C -i F 4ω 0 (1 + γ cos (ω m t) + δ cos(Ωt))
The strong timescale separation of the modulation frequencies motivates the introduction of a timeaveraged variable A over the short period 2π/Ω [?] such that A(τ ) ≡ Ω 2π

τ +2π/Ω τ C(t)dt.

The amplitude equation for the averaged response writes

∂ τ A = - η 2 A -i ∆ - 3αF 2 δ 2 16 A + i 3α 2 |A| 2 A -i F 4 (1 + γ cos (ω m t))
where we have introduced rescaled quantities: F ω0 → F , δ Ω → δ and α ω0 → α.

The averaged equation satises an amplitude equation with a renormalised detuning ∆ -3αF 2 δ 2 /16

which depends on the high frequency driving amplitude. The most important aspect to note here is that the non-resonant and "high" frequency driving can modify the resonance behaviour of a nonlinear system. To study how the intermediate frequency Ω modies the resonance region, we consider the polar representation A = Re iφ /2 with γ = 0, and solve for the steady state Ṙ = φ = 0. We get the characteristic equation

η 2 4 R 2 + ∆ - 3αF 2 δ 2 16 R - 3 8 αR 3 2 = F 2 4 
(5.6)

Note that in the limit of zero high-frequency amplitude modulation (δ → 0) we recover the deterministic forced Dung resonator model. At this point, we highlight that the timescale separation hypothesis, ω m Ω ω 0 , is central to obtain this result. Indeed, if we suppose ω m ω 0 Ω, i.e. a very high frequency driving and average Eq. (5.5) before deriving the amplitude equation, then we cannot show evidence for vibrational resonance.
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 121 Figure 1.2.1: Example realizations of optomechanical devices at dierent weight scales, covering over 20 orders of magnitude. Indicated mass m refers to the eective motional mass (m ef f ) of the resonator mechanical mode, used in the experiment (in the absence of such data, we provide the bulk mass of the moving device part). (a) Suspended end-mirror from GEO 600 gravitational wave detector interfero-
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 211 Figure 2.1.1: Example of a photonic band structure of innite triangular PhC slab with lattice period a. Inset shows the corresponding irreducible Brillouin zone and its special Γ , M and K points. (a) Two optical eigenmodes with a at dispersion at Γ point; (b) Example of a mode, localized inside the defect cavity. Shaded area represents the light cone, where the slab modes can couple to the radiative ones.
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 21 Figure 2.1.1 represents a particular 2-D PhC lattice with equilateral triangular (hereinafter triangular)

Figure 2 .

 2 Figure 2.2.1: a) Schematic view of a photonic crystal slab with a rectangular lattice. b) Reectivity maps as a function of wavelength and thickness, both normalized by the periodicity of the crystal, for an unstructured membrane (left), weakly structured (center), strongly structured (right). c) Schematic view of a suspended photonic crystal slab membrane. The white part of structure is free to move, the grey one is assumed xed. d) (Solid dark blue) Simulated low-frequency mechanical response in the middle of a suspended membrane with a displacement of 10 -15 m in z direction (refers to yellow dashed line) of the suspension pads. (Dashed violet) Simulated eigenfrequencies Ω m /2π of the same system without excitation. Mechanical mode proles with the colour-coded normalized displacement eld for the corresponding coincidences are given at bottom. e) 3D view of the fundamental mode of the suspended membrane
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 222 Figure 2.2.2: Reectivity spectra of an InP photonic crystal slab structure with the parameterst = 260 nm and a = 725 nm for varying hole radius r.

First

  three modes in the default device conguration b d = 5, 9µm are mapped in frequency domain as M1*, M2* and M3*. Given that bridge width is b x = 1µm and the membrane one is m x = 20 µm, b d is swept from 0.5 to 9.5 µm; displacement eld distributions for studied modes and for dierent b d values are shown in Figure 2.2.2c. The change in clamping geometry via b d parameter at rst impacts the frequency
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 223 Figure 2.2.3: Simulated mechanical eigenmodes of the PhC membrane of dimensions 10 × 20 µm versus suspension bridge attachment position b d (for a constant bridge dimensions b x = 1 µm and b y = 2 µm). (a) Evolution of the eigenfrequency Ω m /2π of the rst three modes is considered and illustrated at dierent b d values. (b) Mechanical quality factor, estimated as Q m = Re(Ω m /2π)/2Im(Ω m /2π) (logarithmic scale). Corresponding mode proles (normalized displacement eld -→ Q ( -→ r )) are shown (c). Chosen optimal bd distance of 5.9 µm for the mode M3* is highlighted in green (point D).
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 231 Figure 2.3.1: Example experimental realizations of optomechanical devices with photonic and phoxonic (combining optical and acoustic band gaps) crystals (given arrangement follows no particular order). (a)

Figure 2

 2 Figure 2.3.2: a) Schematic top view of investigated L3 defect cavity (incomplete plot, lattice of real device continues in both x and y directions). Two rst holes (dotted circles) are displaced for dx A outwards from the cavity along x axis. b) Simulated electric eld distributions (E x and E y ) for the fundamental optical TE mode of L3 PhC cavity at 1.55 µm c) [Solid dark blue] Simulated high-frequency mechanical response in the middle of a suspended L3 defect cavity with a prescribed displacement of 10 -15 m in z direction of the lateral sides. [Dashed violet] Simulated eigenfrequencies of the same system without excitation. Mechanical mode proles with the colour-coded normalized displacement eld for the same eigenfrequencies are shown. d) Schematic of the nanobeam cavity with tuned photonic crystal lattice constant a(Top). Example of the variation of the lattice constant as a function of the hole position along the beam (Center).Band diagram of a perfect 1D-photonic crystal for a n = 634 nm and a 0 = 485 nm (Bottom). f ) Optical mode prole conned in thr 1D-photonic crystal. f ) Mechanical displacement proles sustained by the nanobeam belonging to three dierent groups.
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 3 Figure 3.1.1: a) PhC membrane with external piezo stack (white circle shown in b)) on the sample holder.
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 312 Figure 3.1.2: (a) Scheme of integrated actuation of the photonic crystal membrane emphasizig tne eld lines between the electrodes when an AC voltage is applied between them. b) S.E.M. image (false color) of a fabricated PhC membrane (purple) -electrode (yellow)structure of a fully suspended PhC membrane with interdigitated electrodes underneath
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 313 Figure 3.1.3: The quantity dC(z) dz is mapped as a function of the IDEs digit separation and the air gap dimension. The projection are shown for a gap xed to 380 nm, 200 nm and 100 nm (resp. blue straight, dashed and dash-dotted) and with the digit separation xed at 1.5 µm, 3 µm and 0.5 µm (resp. black straight, dashed and dash-dotted). The straight lines correspond to the chosen design.

Figure 3 . 1 .3 b. Between 2 - 10 M

 31210 Hz six mechanical modes are clearly visible (Figure 3.1.3 b) and the corresponding simulated modes (FEM) are shown above.
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 3 Figure 3.1.4: a) A scanning electron microscopic view of the device shows the membrane forming the mechanical oscillator (purple) and the interdigitated electrodes (yellow) underneath, at a distance of about 400 nm. The membrane consists of a suspended InP membrane with a thickness of 260 nm and a 10×20µm2 surface. This device, placed in a vacuum chamber with a pressure of about 10 -4 mbar, is used as one of the end mirrors of a Michelson interferometer combined to an homodyne detection (not shown here). The reectivity of the membrane is enhanced by piercing a square array of holes in it and reaches at normal incidence about 50 % at the laser probe wavelength of 632 nm. An homodyne detection added in the optical set-up allows to get simultaneously both variables R and Φ. The membrane motion is induced by the electrical bias V (t) controlled by a function generation block. b) FEM simulation of 6 dierent mechanical modes, observed mechanical spectra while the membrane is actuated externally via interdigitated electrodes; actuation up to 10 MHz was done in this case. (c) Mechanical displacement amplitude as well as phase response of the rst drum mode for V ac = 1.0V , (d) Mechanical displacement amplitude and phase response of the second mode for V ac = 1.0V .

Figure 3

 3 Figure 3.2.1: (a) Amplitude R and (b) phase Φ spectrum of the driven fundamental mechanical mode in a frequency sweep-up and sweep-down experiment for V AC = 9 V , ∆φ = 0 and ξ RM S = 0; the experimental curves are superimposed to ts from theory (red dashed lines). The vertical dashed line lies at a frequency of Ω d = 2.824 M Hz close to the linear fundamental mechanical frequency at 2.822 M Hz (i.e. zero normalised detuning). (c) Evolution of the amplitude (top) and the phase (bottom) of the mechanical fundamental mode under dierent applied voltages V AC at Ω d = 2.824 M Hz.

  Figure 3.3 (a) shows a schematic diagram of how the experiments were performed.

34CHAPTER 3 .

 3 Figure 3.3.1: a) Schematic diagram of superharmonic resonance experiment:The drive frequency Ω drive is swept around Ω m /n while at the same time the system is probed around the natural resonance of the system Ω m . b) Scheme of experiment on parametric amplication: there is a strong pump at a frequency twice the natural resonance (2 × Ω m ) while there is weaker drive at the natural resonance (Ω m ). The system is also being probed at its natural resonance.

Figure 3 .

 3 Figure 3.3.3: (a) Cross sectional picture of the 2D surface plot; (b) noise spectra of superharmonic resonance after data smoothing; (c) plot of FWHM against external excitation for dierent superharmonic resonances; (d) plot of extracted Ωres (at V ac = 10.0 V ) and V T h values with superharmonic resonance order n.
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 3 Figure 3.3.4: a) Phase trajectories of the system for n = 2, 4, 6. The phase trajectories show that after certain threshold the system displays in and anti-phase oscillation with respect to the drive. This eect is clearly seen for up to n = 4, after that this eect becomes less evident due to decrease in the corresponding nonlinear coecient. b) Phase trajectories for n = 2, 6 for discrete values of for V ac = 10 V (b) phase evolution of a single state with frequency detuning for n = 2, 6.
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 3 Figure 3.3.5: a) Parametric amplication of the nano-mechanical resonator for a xed resonant excitation of 100 mV and one parametric excitation (V p = 10 V ). While the Y-axis displays value of the parametric gain, the X-axis provides the variation of the phase dierence between the resonant drive and parametric pump. The t is shown by red dotted lines. b) Plot of extracted gain maxima and minima for various
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 341 Figure 3.4.1: Schematic of a weak signal enhancement via stochastic resonance with white noise of

( 3 . 7 )

 37 When sweeping the driving frequency Ω drive up and down in the vicinity of the mechanical frequency of the fundamental mode (see Fig 3.2.1), asymmetry in the mechanical spectrum appears in amplitude (R)

(3. 8 )Figure 3

 83 Figure 3.4.2-c reveals such jumps for Ω m = 500 Hz and ∆φ = 2.36 rad. This phase modulation-induced hopping occurs both in phase and in amplitude. From the time traces shown in Fig. 3.4.2-c, we can reconstruct the polar plots with the two quadratures X = R cos (Φ) and Y = R sin (Φ). These experimental and theoretical polar plots are shown in Fig. 3.4.2-a highlighting the two states lying in a 2D potential.
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 342343 Figure 3.4.2: (a) Experimental (left) and theoretical (right) polar plots with experimental values of ∆φ = 1.74 rad and Ω m = 500 Hz. (b) Evolution of the amplitude (top) and the phase (bottom) of the mechanical fundamental mode under dierent applied voltages V AC at Ω d = 2.824 M Hz. The vertical dotted line at V AC = 9 V shows, for this specic bias, the values of the two stable points in both variables. (c) Phase modulation induced jumps between the two states for Ω m = 500 Hz and ∆φ = 2.36 rad for both variables. (d) Evolution of the switching probability (left) of the mechanical fundamental mode amplitude R as a function of the phase modulation amplitude for an applied voltage of V AC = 9 V , a drive frequency Ω d = 2.824 M Hz and a modulation frequency Ω m = 500 Hz. The vertical dotted line shows the phase deviation threshold. Evolution of the normalized modulation amplitude of the mechanical mode amplitude R as a function of the phase modulation frequency (right) for the same specic bias and drive frequency and for a phase deviation ∆Φ = 2.36 rad. The vertical dashed arrow indicates the cut-o frequency.

  Fig. 3.4.2-d (right).

3 . 4 . 3 -a on a 1 s

 3431 time lapse), the state occupancy probabilities have been inferred (see. Whatever the noise strength, one of the two states is more probable than the other when the operating point is set on the edge of the hysteresis window. These probabilities also evolve with the amplitude of the noise strength (see Fig.3.4.3-b). When the operating point lies in the center of the bistable region and for ξ RM S = 0.52 rad, the two states are equiprobable and symmetrical potential is observable. For other noise strength, the potential becomes asymmetrical.
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 344 Figure 3.4.4: (a) Experimental (left) and theoretical (right) polar plots with experimental values of ξ RM S = 0.52 rad and Ω d = 2.824 M Hz. (b) Simulated (open squares) and experimental (red triangles) polar angle dierence between the two stable states for increasing noise strengths.

  Fig.3.4.5), jumps between the two states start to become more probable. First occasional transitions occur, weakly locked to the modulation signal. For ξ RM S = 0.49 rad, the transitions get stochasticaly synchronised with the modulation. Further increasing the noise distorts the bistable potential and the system drops to its lower state.For every recorded time traces, Discrete Fourier Transform (DFT) are performed. Quantication of the achieved spectral power amplication is then given by the ratio between the strength of the peak in the DFT at Ω m for a given noise intensity and its strength without added noise. The evolution of the spectral amplication projected on the amplitude variable as a function of the noise strength is plotted on Fig.3.4.6-a. It presents a bell-shaped maximum up to 6.3 and peaks at ξ RM S = 0, 44 rad. This noise strength is close to the one at which the system has a Kramer's rate of about 100 Hz with only noise applied. Under the same conditions, amplication of the phase variable is also shown on Fig. 3.4.6-b.

Figure 3 . 4 . 5 :Figure 3 . 4 . 6 :

 345346 Figure 3.4.5: The response of the system, now driven by a force combining a weak phase modulation and an increasing phase noise is shown. (From left to right) Experimental time traces recorded on a timescale of 300 s on the amplitude R and phase Φ of the fundamental mode, and associated experimental and theoretical polar plots. (From upper to lower lines) Evolution of these four panels for dierent increasing noises ξ RM S .

Figure 3 . 4 .7 shows time series of the mechanical motion amplitude for Ω mod 2π = 30

 3430 Hz and increasing amplitudes of the amplitude modulation at high frequency Ω HF 2π
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 347347 Figure 3.4.7: Time responses and Discret Fourier Transform as function of high frequency modulation. (a) Time series of the mechanical mode amplitude for a weak modulation with γ = 0.1, Ω mod 2π = 30 Hz and for increasing high-frequency signal intensities V HF = 5 V, 5.7 V, 6.4 V & 7.0 V from top to bottom. The amplitudes of the two stable states at zero amplitude HF drive correspond to the blue and orangeshaded regions on each graph. (b) Discrete Fourier Transform of the time series displayed on the left.The vertical shaded lines enclose the modulation frequency Ω mod of the weak signal.
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 243348 Figure 3.4.8: Amplication by vibrational resonance. Gain factor M with associated error bars as a function of the amplitude of the external driving.
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 34349 Fig. 3.4.10 where M ∼ 140 is obtained for still smaller linear driving signal not accessible in experiments. This important point is illustrated in Figs.3.4.9b,d. If the signal strength is too small to overcome the hysteresis width, it is possible to increase the high frequency drive to tune it into the resonance. As shown in Fig. 3.4.9b for δ = 1000, a higher high-frequency modulation shifts the hysteresis curve further
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 3410 Figure 3.4.10: Simulated power spectral amplication for vibrational resonance. (a) Power spectral density amplication M = P SD(ω, δ)/P SD(ω, 0) as a function of the high frequency drive. Parameters for the solid blue line are : σ = 0.0016, η = 0.001, α = 0.4, ω = 2π/200000, F = 1.05 × 10 -4 and γ = 0.15. The parameters for the dashed blue line are the same except F = 8.5 × 10 -5 and γ = 0.05 (lower resonant and low frequency drivings). . (b) Evolution of the power spectral density magnication as function of the forcing (F ) and the detunning (δ) for (b) γ = 0.15 and (c) γ = 0.05. White dashed vertical lines represent the cut at drivings used in (a).
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 4111 Figure 4.1.1: Comparison of the noise performance between various small-volume microwave oscillators, all carriers being scaled to 10 GHz for direct comparison. The red-shaded region indicates the expected performances of optomechanical devices. The phase noise is expected to be reduced down to -110 dBc/Hz while operating at a high output frequency in the GHz range. Most importantly, the package size of the OMO can be as low as 1 cm 3 which is the most compact microwave oscillators.
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 412 Figure 4.1.2: Schematic of the envisionned optomechancical oscillator integrated on Silicon-On-Insulator

Figure ( 4

 4 Figure (4.1.1) gathers the phase noise performance of various small-volume microwave oscillators presently developed. Voltage Controlled Oscillators (VCO) are compact, but suer from limited phase noise performance, while quartz oscillators (OCXO, TCXO) are less compact and also suer from frequency multiplication. Another alternative pursued in this research eld consists in replacing the ber in the OEO's architectures by an optical resonator. These optical cavity-based versions allow for volume reduction, at the cost however of a high manufacturing complexity; the diculties are here threefold:

Figure 4 .

 4 Figure 4.1.1. Today's high frequency optomechanical resonators do not enter the indicated target region.

Figure 4

 4 Figure 4.2.1: a) Scanning Electron Microscope side view of the suspended photonic crystal membrane, b) Scanning Electron Microscope top view of the cavity embedded within the membrane c) Micrograph (false colors) of a defect cavity ber-taper system used to read out mechanical motion of the cavity. d) Calibrated frequency noise spectrum of the fundamental mode with a Lorentzian t (red line) and spatial displacement pattern of this mechanical modes as obtained from nite element modeling. e) Calibrated frequency noise spectrum of the third order localized mechanical mode with a Lorentzian t (red line).

Figure 4 .

 4 2.1(d) shows the displacement patterns of the rst modes. Localized mode, shown in Figure 4.2.1(e), corresponds to mechanical displacement

60CHAPTER 4 .Figure 4

 44 Figure 4.2.2: a) Top : Scanning Electron Microscope image of the fabricated structure; white arrow: input light. Middle: Calculated normalized real part of the eld E y for the fundamental optical mode at 1545 nm ; Bottom: Calculated normalized mechanical displacement at f m = 3.12 GHz. b) Measured vacuum optomechanical coupling as a function of the normalized laser detuning for three dierent onchip laser power; the calibrated power spectral density of the frequency uctuation is represented in the inset along with the calibration tone and the Lorentzian t; c) the corresponding measured mechanical linewidth compared with the theory.

  4.2.2 b). The measured g 0 /2π = 385 kHz is very close to the calculations including the photoelastic and moving boundary contributions only, also considering the uncertainty on the photoelastic coecients.

Figure 4 .

 4 Figure 4.2.3: a) Raw ESA trace of the detected signal as a function of the detuning for P c = 53 µW ; b) Fit of normalized RF spectrum with the Voigt function; c) Fitted Lorentzian linewidth ∆f L as a function of the RF integrated power for dierent optical pump levels, the black line represents the estimated short term limit based on eq. 4.2, blur is representative of uncertainty; d) measured Lorentzian linewidth and short term limit and corresponding integrated spectral power PRF (right axis); here P c = 53 µW .
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 424 Figure 4.2.4: Measured phase noise spectrum (black lled circles), reference (blue lled circles), phase random walk noise corresponding to a Lorentzian linewidth Γ ef f,L /2π = 120 Hz (red line), and corrected phase noise of the silicon nitride microtoroid from Ref. 44 (green squares).

  4.3.1 a,b). All of the realizations found in the literature demonstrate the access waveguide placed in the plane of optomechanical resonator, several examples are given in Figures 4.3.1 a-d. The principal types of access geometries include straight (Fig. 4.3.1 c) and curved (Fig. 4.3.1 b) waveguide proles at the point of coupling to the optical mode; eventually the optomechanical resonator can be designed as a part of the access waveguide (Fig. 4.3.1 a). Taking advantage from the photonic crystal slab periodicity, one can also integrate an access defect waveguide into the PhC slab membrane (Fig. 4.3.1 e). One or another geometry as well as the waveguide dimensions are adapted regarding the mode-matching conditions and the coupling eciency one wants to attain.
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 431 Figure 4.3.1: Example experimental realizations of optomechanical systems featuring integrated optical access channel. (a) Two suspended waveguides [194]. (b) Suspended optomechanical crystal beam (blue)

Fig. 4 .

 4 Fig.4.3.2 (a) for a schematic illustration of a single device]. This highly exible approach allows in principle for the heterogeneous integration of a wide variety of materials, with specic combinations depending on the targeted applications. Additional functionalities might be also integrated and eciently coupled to the optomechanical resonators such as electrostatic[START_REF] Unterreithmeier | Universal transduction scheme for nanomechanical systems based on dielectric forces[END_REF][START_REF] Bagci | Optical detection of radio waves through a nanomechanical transducer[END_REF] or surface acoustic wave [201] transducers for resonant mechanical excitation. These hybrid fully-integrated optomechanical PhC cavities form systems in which the position of the mechanical oscillator modulates both the resonant frequency (dispersive coupling) and the linewidth (dissipative coupling) of the resonator. A ne tailoring of both optomechanical coupling mechanisms through their dependence on the 3D platform geometry (waveguide width and waveguide-PhC cavity distance) is also shown. Such ne tailoring represents a rst, required step towards novel experiments
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 432 Figure 4.3.2: Optomechanics with heterogeneously integrated InP PhC cavities. (a) Schematic illustration of an integrated PhC mechanical resonator vertically stacked over a SOI waveguide. The mechanical resonator is the suspended PhC membrane, whose motion can be detected over a broad bandwidth by measuring the optical transmission of the waveguide. (b) Scanning Electron Microscope image of a fabricated device. (c) Schematics of experimental setup used for the detection of the mechanical modes. FPC: ber polarization controller, PhC: photonic crystal, EDFA: erbium-doped ber amplier, VOA: variable optical attenuator, BPF: band-pass lter, PD: photodiode, ESA: electrical spectrum analyzer. (d) Wide range, calibrated displacement spectra S 1/2 zz (Ω, λ 1,2 ) of a PhC mechanical resonator, measured on (blue curve) and o (grey curve) the PhC cavity resonance, respectively. The mechanical mode patterns as obtained from nite element modelling are depicted. Inset: transmission spectrum of the PhC cavity mode (grey circles) and Lorentzian t (solid red line). The wavelengths used for the measurements of the displacement spectra are indicated by dashed vertical lines.

slab (lateral size 10 ×

 10 20 µm, measured suspension height h = 230 nm, allowing for evanescent coupling of the guided light into the PhC cavity), connected to the two lateral InP suspension pads through four (1 µm wide, 2 µm long) bridges, as shown in Fig 4.3.2 (b). The fabricated devices are rst characterised optically. The measurement setup is sketched in Fig.4.3.2 (c). The light emitted from a tunable laser

  Fig.4.3.2 (d). Only the fundamental mode peak appears (strongly reduced in amplitude), demonstrating that the peaks observed when the probe laser was tuned in resonance with the PhC cavity mode result from the modulation imprinted in the laser light by the motion of the InP membrane.

  4.3.3(a) and 4.3.3(b), we show S P (Ω, ∆/κ) for the two lowest-frequency mechanical modes, which we refer to as M1 and M2 [see Fig. 4.3.2(d)], for w wg = 400 nm. An optical spring measurement gives us a quick overview on the three main mechanical parameters change while the laser probe is swept across the cavity resonance: mode frequency Ω m , the mechanical linewidth Γ m and intensity of the resonance peak α . First, the frequency Ω m evolution of both modes clearly follows the Lorentzian shape of the cavity optical resonance, pointing out the thermomechanical tuning via the change in temperature-dependent Young's modulus of the membrane material. The optically induced frequency shift of the mechanical mode is more pronounced for the fundamental M1 mode, which can be explained by their respective spatial distributions.

  4.3.3(c) and 4.3.3(d), respectively. By tting the experimental data to Eq. (4.5), we could extract the optomechanical coupling coecients for M1 and M2. The optomechanical coupling coecients and the respective relative contributions to the detected signals (g ω ∂T /∂∆ in blue, g κ,e ∂T /∂κ e in yellow and g κ,i ∂T /∂κ i in red) are shown in Figs. 4.3.3(e) and 4.3.3(f ). For both modes, a strong asymmetry in the mechanical amplitude is observed with respect to a zero laser detuning. The coupling coecients deduced from the ts conrm the importance of the dissipative coupling contribution, whose relative weight is peculiar to each mode, as suggested by the dierent relative contributions to the detected optomechanical response, shown in Fig. 4.3.3(e) and 4.3.3(f ). Theoretical model gives a reasonably tted curve with the maxima of amplitude at ∆ ≈ +γ t /4 detuning. A similar dependence of the mechanical amplitude as a function of the laser detuning is exhibited by M3 and M4 (not shown here), slightly diering from one another for the laser detuning at which the largest mechanical amplitude is observed. The theoretical t allows to extract independently the cavity transmission dependencies on dierent optomechanical coupling mechanisms (see Figs. 4.3.3e,f ). External and intrinsic dispersive interactionscan not be distinguished experimentally, therefore we present only the total dispersive contribution with the corresponding g ω . The external optomechanical coupling components are thus expected to display equal strengths for these two modes. Although g ω refers to a total dispersive coupling, we also expect the external part to be dominant. Measured values of 0.95 GHz/nm for M1 mode and 0.77 GHz/nm for M2 within the imprecision of ts show thus a good agreement. External dissipative strengths g κ,e show a greater dierence, which can be explained regarding the amplitude α (∆) dependencies from Figs.4.3.3c,d. In the case of M1, the mechanical amplitude at the optical resonance is non-zero, suggesting a strong contribution of the dissipative coupling mechanism (Fig.4.3.3e). For M2, though, the amplitude signal is negligible at ∆ = 0, suggesting a relatively larger dispersive contribution to the overall optomechanical response compared to M1, as the opposite signs of the two dissipative contributions shown in Fig.4.3.3f.A similar dependence of the mechanical amplitude S P (Ω = Ω m , ∆) as a function of the probe laser detuning is exhibited for modes M3 and M4 (not shown here), slightly diering from one another for the laser detuning at which the mechanical amplitude peak is observed.

  Δ/κ) (dBm/Hz)
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 433 Figure 4.3.3: Optomechanical response for a xed w wg . Power spectral density S P (Ω, ∆/κ) for modes (a) M1 and (b) M2, measured for w wg = 400 nm. The Lorentzian t of the cavity mode resonance is displayed in dashed line for reference. Power spectral density at mechanical resonance S P (Ω m , ∆/κ) (open circles) as a function of the normalised detuning ∆/κ for modes (c) M1 and (d) M2 and for the same w wg . The solid lines represent the t to the theoretical model. Contributions to transmission spectrum noise plotted in arbitrary units (blue: dispersive coupling; red: intrinsic dissipative coupling; yellow: external dissipative coupling) for (e) M1 and (f ) M2 versus ∆/κ. The inferred optomechanical coupling rates are indicated.

  4.3.4(a), 4.3.4(c), and 4.3.4(e) we illustrate the dependence of the transduction of optomechanical resonators on the waveguide width, for w wg = 350 nm, 450 nm, and 500 nm, respectively. In all cases, the strong non-zero optomechanical signal at the optical resonance conrms the importance of the dissipative coupling mechanism for our optomechanical resonators. However, the relative weight of dierent coupling mechanisms varies as a function of w wg . In particular, Figs. 4.3.4(b), 4.3.4(d), and 4.3.4(f ) reveal a comparatively higher dispersive component for both w wg = 350 nm and w wg = 500 nm. Conversely, w wg = 450 nm is characterised by the highest dissipative contribution to the detected signal, as attested by the mechanical amplitude peaking at zero laser detuning. Our ts also suggest a certain variability of κ i as a function of w wg , which we attribute to defects introduced during the epitaxial growth or during the fabrication process of the optomechanical resonators. The values of g ω and of g κ,e extracted from tting the experimental data to Eq. (4.5) as a function of w wg both for M1 and for M2 are summarised in Figs. 4.3.5(a) and 4.3.5(b), respectively. The observed trend of these two quantities is directly related to the shape and the width of the optomechanical response S P (Ω m , ∆/κ).
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 434 Figure 4.3.4: Optomechanical response for a varying w wg . (a, c, e) Power spectral densities at mechanical resonance (circles: experimental data; solid lines: t to model) S P (Ω m , ∆/κ) and (b, d, f ) relative contributions of coupling dispersive (blue curves) and dissipative (red curves: intrinsic; yellow curves: external) mechanisms (arbitrary units). (a, b) w wg = 350 nm. (c, d) w wg = 450 nm. (e, f ) w wg = 500 nm.
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 435 Figure 4.3.5: Comparison between simulated and experimental coupling coecients. (a) Dispersive coupling coecient g ω and (b) external dissipative coupling coecient g κ,e plotted against waveguide width w wg . Blue, up-pointing triangles: t of experimental points, M1. Blue, down-pointing triangles: t of experimental points, M2. Red squares: simulated values, air gap of 230 nm. Orange diamonds: computed values, air gap of 150 nm. Insets: computed g ω and g κ,e versus w wg .
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 4437 Figure 4.3.6: a) SEM image of the one dimensional photonic crystal (blue) made of GaAs on top of the SOI waveguide (red) b) Optical transmission of the SOI waveguide without any cavity (blue line) and coupled to four GaAs nanobeam cavities (red line) when fed by a broadband light source. The IR image inside the spectrum is the image taken by the IR camera when injecting the broadband light source in the SOI waveguide. The four spots in the image conrm that all the optical modes sustained by the four cavities are excited.
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 414 Figure 4.4.1: a) The displacement eld of the cavity center in a frequency domain simulation of the electrostatic actuation of a nanobeam cavity system. The electrodes are xed on the two side of the nanobeam with a distance d = 2000 nm.b) Simulation of the displacement eld as a function of the electrode-to-electrode distance d for one symmetric mechanical modes Ω m = 1.842 GHz c) Evolution of the electromechanical coupling factor G (left y axis) and optical quality factor Q (right y axis) as a function of the electrodes distance d. d) Optical image of one full structure. (e-f ) SEM images of the electrostatic actuation pads enclosing the onedimensional GaAs nanobeam system. The blue parts in the SEM images indicate the nanobeam cavity, while the yellow parts are the electrodes. The entire nanobeam cavity system is suspended at a distance of few hundreds of nm above the substrate.

Figure 4 .

 4 Figure 4.4.2: a) Experimental set-up with an optical delay-line. b) Phase noise measurements for dierent delay lengths c) Coherence time of the optomechanical crystal undergoing self-sustained oscillations as a function of RF integrated power.
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 443 Figure 4.4.3: (a) Electrical reections, S 11 and S 22 , of acoustical transducers around 2 GHz for dierent nger width (650 nm in green, 600 nm in red and 550 nm in blue). (b) Transmission measurements between the two transducers shown in (a) and with the same nger width.

  pended by dry etching. In this conguration, electrical reection measurements (S 11 and S 22 ) of two trans- ducers show resonances in the targeted range of frequency and with identical frequencies (Fig.4.4.3(a)).In addition, resonant frequencies shift accordingly with nger width as expected by numerical simulations.These results of SAW transducers on GaAs membrane on insulator are comparable to state-of-the-art measurements of similar SAW transducers on GaAs substrates. Transmission measurement (S 21 mea- surement) between these structures spaced by 24 µm show up to 40 dB signal transmission between transducers. Due to technological limitation, it was not possible to fully suspend the large (25 × 50 µm 2 ) area between the transducers. The associated damping of the generated wave by materials underneath the membrane explains the losses seen in the spectrum of Fig.4.4.3(b). The tests are nonetheless promising for resonant excitation of the optomechanical cavity.The last block to achieve on-chip low phase noise optomechanical oscillator, is the integrated delay-line between the RF transducers and the optomechanical cavity. Two designs are investigated in order to control at the same time the direction of propagation and the induced delay: phononic crystal waveguide and corrugated waveguide. Both structures are based on a Kagome lattice which has a larger bandgap than other lattices typically used in phononics. Each of these structures is placed between a pair of RF transducers, in order to study the impact of the waveguide on the propagating wave. Here, all waveguides and transducers are suspended to improve the acoustic connement within the membrane thickness and thus reduce transmission losses. Based on this lattice design, phononic crystals with and without waveguide were fabricated. The waveguides are created by removing several rows of holes to allow propagation. In the case phononic crystal without waveguide, the acoustical band gap of 145 MHz prevents propagation around the excitation frequencies. Indeed, measurement evidences no transmission through this crystal (Fig. 4.4.3(a) bottom). In contrast, introducing the defect waveguide in the phononic crystal leads to measurement of transmission, evidencing the role of the waveguide (Fig. 4.4.3(b) bottom). The second geometry investigated is a corrugated waveguide based on the same Kagome lattice. The ve removed holes within the perfect crystal denes the waveguide width. Using two adjacent lines of holes on both sides creates the desired indentation (Fig. 4.4.3(a)). Membrane openings larger than the transducer width placed on both sides of the waveguide ensure that only transmission of acoustical waves
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 444 Figure 4.4.4: Acoustical characterization of phononic crystal waveguide between two RF transducers. (a) for a perfect phononic crystal structure and (b) for a phononic waveguide. From top to bottom: schematic of the measurements; reection measurements for the two transducers with S 11 in grey and S 22 in red; phononic band diagram; transmission measurements (S 12 measurements).
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 445 Figure 4.4.5: Acoustical characterization of corrugated waveguide between two RF transducers. (a) Scanning Electron Microscopy image of fabricated suspended phononic waveguide and IDTs. Inset zoom: Phononic waveguide design with Kagome crystal lattice implementation. (b) Finite Elements Method simulation of phononic band-gap for a Kagome crystal lattice with lattice constant a = 370 nm (white lled points) and k values of all existing modes along the direction of the 5 missing holes waveguide (shaded and lled orange points). Total displacement of the mechanical propagating mode (orange frame) and non-propagating modes (dashed frames) are shown on le right. (c) Transmission through a phononic engineered waveguide mechanically pumped at dierent frequencies. Top-right inset: schematic view of the tested devices.

Figure 5 .

 5 Figure 5.0.1: (Top) Description of the four constituting elements developped to fabricate nano-electooptomechanical resonators with SEM image of their realizations, numerical simulations and their use in the project. (Middle) Possible elementary couplings combination based on the constituting elements: (a) optical coupling between two photonic crystal cavities; (b) optomechanical coupling between a membrane and a cavity; (c) mechanical coupling between two membranes and (d) eletromechanical coupling between a membrane and electrodes. These couplings are only the fundamental coupling which could be implemented. Values of these couplings obtained from previous or preliminary measurements are given. This opens a new playground by coupling at least three of these coupling to carry out envisioned experiments. (Bottom) Schematic of the envisioned experiments with the use of noise for improved sensitivity detection

5. 1 .

 1 Figure 5.1.1: a) Coupling control examples: i) In coupled electromechanical systems,each resonator is forced with the response of the other. The amplication gains A,B and B,A respectively determine the in uence from A to B and from B to A. ii) The optical coupling between two optomechanical oscillators is controlled via a phase shifter. b) The coupling control (G) between two arrays of identical resonators (yellow disks) has a strong impact on the subsystems dynamics.

Figure 5 .

 5 Figure 5.1.2: a) Bistabilities have proven useful for several applications e.g. here vibrational resonance (VR) amplication or random number generation (RNG). Here we propose to perform several operations in a row on nonlinear resonators of possibly dierent nature. b) Set near a crisis, the system experience a sudden change of its dynamics under small external perturbation, thus enabling sensing experiments to be performed.

5 . 2

 52 Electro-optomechanical devices based on time-delayed feedback Time-delayed oscillators are at the center of a large body of scientic literature. The complex behavior of these nonlinear oscillators has been thoroughly explored both theoretically and experimentally, leading to a better understanding of their dynamical properties. Beyond fundamental research, these systems have also inspired a wide and diverse set of applications, such as ultrapure microwave generation and random number generation. Other applications down the line such as chaos communications, optoelectronic machine learning based on reservoir computing or sensing could be at reach. Development with coupled resonators as well as the state-of-the-art optomechanical oscillators discussed in Chapter 4 permit to envisionned applications for optomechanical technologies such time-keeping metrology, on-chip multispectral optomechanical random number generator and even neuromorphic computing .

ITN

  2019-2023) : Responsable pour le laboratoire (Workpackage leader) ANR JCJC ADOR (2019-2023) : Responsable scientique du projet ANR ASTRID CRONOS (2019-2022) : Responsable pour le laboratoire (Workpackage leader) ANR NanoRobust (2012-2016) : Responsable pour le laboratoire (Workpackage leader) ANR Minotore (2012-2015) Annexe A Stochastic resonance : Model and numerics To gain more insight into the observed dynamics, we compare our results to theoretical predictions of a stochastic amplitude equation. Fits of the experimental results are obtained by modelling the nanoelectromechanical oscillator by a stochastic Dung oscillator whose dynamics can be described by the following equation [234] : ẍ + x + µ ẋ + αx 3 = F cos(ω d t + φ m (t) + √ η 0 ∆W φ ) (5.1)
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 2538225 With the description in Annexe A, one nds:dD dT = -( µ 2 + i(σ + dφ m dT + √ η 0 ξ))D + 3iα .4)

  3.2.1 bottom), as well as the temporal evolution of the response in amplitude or phase, in the case of pure phase modulation, pure phase noise (see Fig.3.4.4) or stochastic resonance (see Fig.3.4.5 and 3.4.6). Regarding the relative scaling between the dierent involved terms, the eective detuning in Eq. (5.4) reduces to σ ef f = σ + η 0 /2, retrieving the observed drift of the operating point for increased noise strengths, signature of the multiplicative nature of the added noise.Vibrational resonance: Theoretical analysisTo gure out the origin of this resonant response, we introduce a simplied theoretical model and compare its results to our experimental ndings. The original treatment of vibrational resonance in[117, ?] considers the motion of a nonlinear oscillator in a bistable potential, subject to a low-frequency signal and a high-frequency drive. Theoretical studies so far have mostly concentrated on studying the impact of the potential shape on the resonance [146, ?, ?], or the response to multi-frequency signals[?].

  

  2.1.1b), created by introducing a defect in a perfect lattice (e.g., by removing or changing the size of one or several holes). The defect embedded in the suspended membrane connes the optical mode within a small volume inside the PhC slab leading to what is now called optomechanical crystal.
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  Localized mechanical mode Ω m (GHz)

		2.19	1.87
	Mechanical mode prole		
	(total displacement)		
	Eective mass m ef f (pg)	0.56	2.26
	x ZP F (fm)	6.55	8.83
	Optomechanical coupling g 0/2π(kHz)	-579.17	1378.50
	Moving interfaces coupling g MI/2π (kHz)	-81.52	160.23
	Photoelastic coupling g PE/2π(kHz)	-497.65	1218.27

Table 2 .

 2 3.1: Numerical values for optical, mechanical and optomechanical properties of photonic crystal cavities made of GaAs in the GHz frequency range

Table 4 .

 4 1.1: Summary of the most important physical features for the materials used in optomechanics

				100]	GaAs	InP	In 0.49 Ga 0.51 P	GaP	GaN
	Index of refraction			3.42	3.3	3.17	3.1	3.02	2.3
	Bandgap energy (eV )	1.12	1.424	1.344	1.9	2.26	3.28
	Young modulus (GP a)	130	86	71	82	103	181
	Density ( kg /m 3 )			2329	5317	4810	4470	4138	6150
	Poisson ratio			0.28	0.31	0.36	0.33	0.31	0.35
									e 15 =-0.3
	Piezoelectric coecient (	C m 2 )		e 14 =-0.16 e 14 =-3.5 10 -2 e 14 =-6.7 10 -2 e 14 =-0.1	e 31 =-0.33
									e 33 =0.65
	Acoustic wave speed (	m s )	8430 5840	4730 3350	4580 3080	5205 3600	5830 4120	6900 5020

Table 4 .

 4 (MHz) 2.17 2.96 12.03 13.88 94.75 Q m 3.1: Vacuum optomechanical coupling rate

		2120	2950	2650	2400	2690
	g 0 /2π (kHz)	0.20	0.18	0.81	2.10	45.5

Table 4 .

 4 .3.3b)). 3.2: Vacuum optomechanical coupling rate g 0 , determined experimentally with the frequency modulation technique for several localized mechanical modes of a suspended nnobeam GaAs membrane

	Mode index	M GHz,1	M GHz,2	M GHz,3
	Ω m /2π (GHz)	2.244	2.283	2.323
	Q m	500	850	643
	g 0 /2π (kHz)	126.5	143.9	114.6
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