
HAL Id: tel-04026346
https://hal.science/tel-04026346

Submitted on 13 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric applications of singular Kähler-Einstein
metrics

Henri Guenancia

To cite this version:
Henri Guenancia. Geometric applications of singular Kähler-Einstein metrics. Differential Geometry
[math.DG]. Université Paul Sabatier - Toulouse III, 2022. �tel-04026346�

https://hal.science/tel-04026346
https://hal.archives-ouvertes.fr
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INTRODUCTION

Given a compact Kähler manifold X, a Kähler-Einstein metric is a Kähler metric ω
such that its Ricci form is proportional to the Kähler form, i.e.

Ricω = λω

for some λ ∈ R. One can always rescale ω so that λ ∈ {−1, 0, 1}. The existence of such
a metric ω strongly constrains the geometry of X. The first constraint is cohomological,
since c1(X) must have a sign (that of λ).

The celebrated theorems of Aubin-Yau and Yau (1978) show that when λ ∈ {−1, 0} is
non-positive, the necessary cohomological condition for the existence of a Kähler-Einstein
metric is also a sufficient condition. It is hard to overestimate the importance of that
result in complex geometry, as it not only had a tremendous number of applications, but
it also opened the door to new fields of research.

The theorems were later extended to some non-compact manifolds (e.g. quasi-projective
manifolds) in the late 80s and early 90s, and to singular compact Kähler spaces another
twenty years later, motivated by the spectacular progress made in the Minimal Model
Program. Due to the pluripotential theoretic nature of their construction, the geometry of
these so-called singular Kähler-Einstein metrics is quite mysterious near the singularities
of the space, making it quite difficult to derive geometric applications as it had been done
for compact Kähler-Einstein manifolds.

The present memoir is mainly devoted to explaining a number of meaningful geometric
applications of the existence of singular Kähler-Einstein metrics, although it will also
survey a couple of results about families and degenerations of such metrics. We have
decided to organize the results by the sign of the curvature, even though some techniques
and ideas are common throughout the text.

The first part deals with negative curvature. We extend stability results for the tan-
gent bundle of a Kähler-Einstein manifold to singular settings, which then allows us to
derive a most general Miyaoka-Yau inequality, valid on any projective minimal model.
Surprinsingly, some of the techniques involved in the proof of these results help answer
a question of Lang on complex hyperbolicity in the particular setting of compact Kähler
manifolds with negative holomorphic sectional curvature. The next paragraph is devoted
to proving the psh variation of the relative Kähler-Einstein metric of a family of manifolds
of general type, generalizing the celebrated case of families of canonically polarized man-
ifolds. Finally, we give two examples of situations where one can degenerate a negative
Kähler-Einstein metric with a cone angle along a smooth divisor by letting the cone angle
go to zero. At the limit, one recovers classical complete Kähler-Einstein metrics: one
has Poincaré singularities and the other is the complex hyperbolic cusp. In passing, this
shows that one can close the cusp in the complex hyperbolic setting, up to working with
orbifolds.

The second part focuses on the zero curvature case. The highlight of this section is
probably the singular analogue of the Beauville-Bogomolov decomposition theorem, for
compact Kähler spaces with klt singularities and zero first Chern class. Its proof relies
on the result in the projective algebraic case by deformation theoretic arguments and
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singular Ricci flat Kähler metrics play a decisive role. In the first paragraph, we explain
three intertwined intermediate results about such varieties: the Bochner principle (reflexive
holomorphic tensors are parallel with respect to the singular KE metric), the étale triviality
of the Albanese map and the computation of the holonomy of the KE metric on the
regular locus. We also explain how these three results contributed to the proof of the
decomposition theorem in the algebraic and transcendental setting. Capitalizing on the
decomposition theorem, we provide a numerical criterion involving the vanishing of the
first two Chern classes to characterize possibly singular quotients of complex tori. Finally,
we switch gears and study families of log Calabi-Yau manifolds. First, we disprove a folkore
conjecture asserting that the relative Ricci flat Kähler metric should be semipositive. Next,
we prove a criterion of local triviality for the family involving the hermitian flatness of
direct image of the log pluricanonical bundle. Two geometric applications are derived; the
first one shows that the Albanese map of a log Calabi-Yau manifold is locally trivial while
the second establishes the bigness of the direct image of the log pluricanonical bundle of
an effective family of log Calabi-Yau manifolds.

The third part contains two results involving Fano varieties and positively curved
Kähler-Einstein metrics. The first result is a decomposition theorem for Q-Fano vari-
eties admitting a singular Kähler-Einstein metric. It states that up to a finite quasi-étale
cover, any such variety is a product of varieties whose tangent sheaf is stable with respect
to the anticanonical polarization. Along the way, we show the polystability of the so-called
canonical extension of the tangent sheaf for such varieties, which is an important ingre-
dient in the numerical characterization of Kähler-Einstein Q-Fano varieties uniformized
by the projective space. The second and last result of the section states that on a Fano
manifold endowed with a smooth anticanonical divisor, the Kähler-Einstein metric with
positive curvature and cone angle along the divisor collapses to an interval when the cone
angle goes to zero, while the complete Ricci-flat Tian-Yau metric on the complement of
the divisor occurs as a bubble.

The final part offers some open problems to explore in the future, ranging from decom-
position and uniformization theorems in the negative curvature case to degeneration of
conic Kähler-Einstein metrics with positive curvature.
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PART I. NEGATIVE CURVATURE

1. Introduction

If X is a compact Kähler manifold such that KX is ample, a celebrated theorem due
independently to Aubin and Yau [Aub78, Yau78] asserts that there exists a unique
Kähler-Einstein metric ω; i.e.

Ricω = −ω.
As an immediate application of this result and the Chern number computations of Chen-
Ogiue [CO75], one obtains the so-called Miyaoka-Yau inequality as well as a uniformiza-
tion result

Theorem 1.1. — Let X be a compact Kähler manifold of dimension n such that KX is
ample. Then

(1.1) (2(n+ 1)c2(X)− nc1(X)2) · c1(KX)n−2 > 0,

and equality holds if and only if X is a ball quotient; i.e. X = Bn/Γ where Γ ⊂ Aut(Bn)
is a discrete subgroup acting freely.

The inequality is referred to as Miyaoka-Yau’s inequality since in his celebrated result
on the so-called generic semi-positivity of cotangent sheaves, Miyaoka proved that for any
non-uniruled projective manifold, the inequality

(1.2)
(
3c2(X)− c2

1(X)
)
·Hn−2 > 0,

holds, for any ample divisors H ⊂ X, cf. [Miy87]. When dimX = 2 and H = KX ,
this is nothing but the former inequality. In higher dimension, this inequality is both
weaker whenH = KX and stronger since it can apply to any minimal manifold for instance.

Another immediate application of Aubin-Yau result relies on the fact that if (X,ω) is
Kähler-Einstein, then the hermitian metric hω on TX induced by ω is actually Hermite-
Einstein; i.e.

Θ(TX , hω) ∧ ωn−1 = λIdTX ⊗ ω
n

where λ ∈ R is a cohomological constant depending only on c1(X) and [ω] ∈ H2(X,R).
Then, the ”easy” direction of the Kobayashi-Hitchin correspondence, usually attributed to
Kobayashi and Lübke, implies the following:

Theorem 1.2. — Let X be a compact Kähler manifold of dimension n such that KX is
ample and let ω be the Kähler-Einstein metric of X. Then, TX is polystable with respect
to KX . More precisely, one can decompose

TX =
⊕
i∈I

Ei

as a direct summand of KX-stable subbundles with slope − 1
n(Kn

X) and which are parallel
and mutually orthogonal with respect to hω.
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In a different direction, Schumacher studied in [Sch12] smooth projective families f :
X → Y such that KX is relatively ample, or equivalently such that the fibers Xy have
positive canonical bundle. If n is the relative dimension of f , the Kähler-Einstein metric
ωy constructed by Aubin and Yau yields a smooth hermitian metric h on KX/Y which is
given by the expression ωny on Xy via the identification KX/Y |Xy ' KXy . In particular,
the curvature ω := iΘ(KX/Y , h) of h is a smooth, closed (1, 1)-form such that ω|Xy = ωy
for every y ∈ Y and it is natural to call it the relative Kähler-Einstein metric of the family.
In that context, Schumacher proves the following

Theorem 1.3 ([Sch12]). — Let f : X → Y be a family of canonically polarized manifolds
and let ω be the relative Kähler-Einstein metric. Then ω is semipositive and ω is positive
along each fiber Xy such that the Kodaira-Spencer map κ(y) : TY,y → H1(Xy, TXy) is
injective.

One of the main relatively recent advances in the minimal model program [BCHM10]
is the so-called finite generation of the canonical ring. That is, the canonical ring R(X) =
⊕+∞
m=0H

0(X,mKX) attached to a projective manifold is finitely generated. One of the
most striking consequence is that any manifold X of general type (i.e. such that KX is
big) admits a birational model

X 99K Xcan

such that Xcan has canonical singularities and KXcan is ample. It is unique (it is necessarily
isomorphic to Proj(R(X))) and called the canonical model of X.

In this context, Aubin-Yau theorem has been generalized to singular varieties with
canonical singularities (or even klt singularities) by Eyssidieux-Guedj-Zeriahi [EGZ09]
(see also [BEGZ10] for the extension of their result to big cohomology classes):

Theorem 1.4 ([EGZ09]). — Let X be a projective manifold with klt singularities and
ample canonical bundle. There exists a unique closed, positive current with local potentials
ω ∈ c1(KX) such that

(i) ω is a genuine Kähler metric on Xreg and it satisfies Ricω = −ω on that locus.
(ii)

∫
Xreg

ωn = (Kn
X).

Note that the second condition (once the first one is satisfied) can be shown to be
equivalent to the local potentials of ω being bounded.

2. Polystability of the tangent sheaf

In [Eno88], Enoki shows that the tangent sheaf of a projective variety X with canonical
singularities and such that KX is nef and big is semistable with respect to KX . He used an
approximation process for the singular Kähler-Einstein metric of X (which was not known
to exist yet!) and relied on Yau’s C2-estimate to deal with Monge-Ampère equation with
degenerate right-hand side.

Thanks to more robust pluripotential techniques and the existence of a singular Kähler-
Einstein metric, we can actually fully generalize to the singular setting. More precisely,
we proved
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Theorem 2.1 ([Gue16]). — Let X be a projective variety with klt singularities and
ample canonical bundle, and let ω be the singular Kähler-Einstein metric. Then, the
tangent sheaf TX is polystable with respect to KX . More precisely, one can decompose

TX =
⊕
i∈I

Ei

as a direct summand of KX-stable subsheaves with slope − 1
n(Kn

X) and which are parallel
and mutually orthogonal with respect to hω on Xreg.

In the result above, we have denoted by hω the Hermitian metric induced on TXreg .
The result is actually proved to hold more generally for log canonical pairs (X,D) with D
reduced, relying on the existence of a singular Kähler-Einstein metric obtained in [BG14]
in this generalized context. Applications to stable varieties are also provided in [Gue16].

The proof of Theorem 2.1 above follows the same strategy as Enoki’s proof, but in this
more general context it uses the full force of Ko lodziej’s celebrated L∞-estimate [Ko l98].
Surprizingly, nothing more than the boundedness of the potentials are required in order to
derive the semistability statement. In order to prove the polystability (and even just state
the parallelism of each factor), we however need the existence and generic smoothness of
singular Kähler-Einstein metrics, i.e. Theorem 1.4.

Relying on the above result, a theory of Higgs sheaves for klt varieties and a general-
ized Simpson’s correspondence on such spaces, Greb-Kekebus-Peternell-Taji were able to
generalize Theorem to the singular setting

Theorem 2.2 ([GKPT19, GKPT20]). — Let X be a projective variety with klt sin-
gularities of dimension n such that KX is ample. Then

(2(n+ 1)ĉ2(X)− nĉ2
1(X)) · c1(KX)n−2 > 0,

and equality holds if and only if X is singular a ball quotient; i.e. X = Bn/Γ where
Γ ⊂ Aut(Bn) is a discrete subgroup acting freely in codimension one.

Let us comment briefly on the Chern classes ĉi in the statement above. On a singular
projective variety, it is not straightforward to make sense of the Chern classes ci(X) =
ci(TX) since TX needs not be locally free anymore. Actually a conjecture of Zariski and
Lipman asserts that TX is locally free if and only if X is regular; the conjecture is known for
a few classes of singularities including log terminal singularities. Several generalizations
of Chern classes exist (e.g. due to Schwartz-MacPherson) but they do not coincide in
general.

Mumford [Mum83] observed that given a coherent sheaf E on a projective variety
X admitting a open subset X◦ with only finite quotient singularities, it is possible to
define a cycle ĉi(E) ∈ Ai(X)⊗Q whenever i 6 codim(X \X◦)− 1. Moreover, if X itself
has only finite quotient singularities, then these Chern classes correspond to the orbifold
Chern classes (after identifying the relevant homology and cohomology spaces), and if
S = D1 ∩ · · · ∩Dn−2 is a general complete intersection surface where Di ∈ |H| are ample,
then S has quotient singularities and ĉ2(E) · Hn−2 = ĉ2(E|S) coincides with the usual
second orbifold Chern number on the orbifold surface S.

Since varieties with klt singularities have at most finite quotients singularities in codi-
mension two, it is then possible to define ĉ2(X) and ĉ2

1(X) which should be thought of
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as multilinear forms on H2(X,R), or as number once paired with Hn−2 for some Cartier
divisor H.

The derivation of Miyaoka-Yau’s inequality from Theorem 2.1 is essentially a conse-
quence of Simpson’s approach to the MY inequality. More precisely, Simpson observed that
the MY discriminant ∆MY(X) = 2(n+ 1)c2(X)−nc1(X)2 corresponds to the Bogomolov-
Gieseker discriminant ∆BG(E) = 2rc2(E) − (r − 1)c1(E)2 for a rank r vector bundle E
applied to E = TX ⊕ OX . Moreover, if TX is semistable with respect to KX , then there
exists a simple, explicit Higgs field θ : E → E ⊗ Ω1

X such that the Higgs bundle (E, θ) is
KX -stable. The Higgs version of Bogomolov-Gieseker inequality for stable bundles implies
∆BG(E) ·Kn−2

X > 0; hence the same holds for ∆MY(X) ·Kn−2
X .

In the singular case, this line of argument carries through essentially unchanged and
allows one to obtain Miyaoka-Yau’s inequality from the (poly)stability of TX .

3. Miyaoka-Yau inequality for minimal models

Generalizations of Miyaoka-Yau inequalities have attracted a lot of attention over the
last thirty years, with major contributions due to Tsuji, R. Kobayashi, Tian-Yau, Simpson,
Megyesi, Y. Zhang, Song-Wang, Greb-Kebekus-Peternell-Taji (cf paragraph above) to cite
only a few. We refer to the introduction of [GT22] for a more detailed account of this
rich history.

In a joint work with Behrouz Taji, we have obtained a Miyaoka-Yau type inequality
valid in a singular setting for minimal varieties X; that is when KX is nef. One should
think of that inequality as bridging the gap between the two inequalities of Miyaoka (1.2)
and Yau (1.1), when the polarization is chosen to be the canonical one.

Theorem 3.1 ([GT22]). — Let X be a normal, projective variety of dimension n with
klt singularities such that KX is nef. Let ν denote the numerical Kodaira dimension of
KX . Then, for any ample divisor H in X, the inequality

(3.1)
(
2(n+ 1) · ĉ2(X)− n · ĉ2

1(X)
)
· (KX)i ·Hj > 0.

holds, where i = min(ν, n− 2) and j = n− i− 2.

We recall that the Chern classes above have to be understood in the sense of Mumford,
and that the numerical Kodaira dimension ν(B) of a nef Q-divisor B is defined by
ν(B) := max{m ∈ N

∣∣ c1(B)m 6= 0}. In [GT22], we prove a more general inequality
holding for dlt pairs with standard coefficients. In particular, it encompasses log smooth,
log canonical pairs (X,D) with KX +D nef.

The proof of Theorem 3.1 follows a very simple strategy, but which unfortunately turns
out to be quite technical. The idea is to first prove a Miyaoka-Yau type inequality for
pairs (X,D) such that KX + D is ample, and then apply it to D = εH for some ample
divisor H and ε→ 0 a small rational number.

The strategy itself therefore relies on being able to define classes like ĉ2(X,D) for certain
klt (or even dlt) pairs. We did it by generalizing Mumford’s construction; a lot of technical
difficulties appear because of the presence of a boundary divisor. Indeed, the local covers
needed to work with necessarily have ramification in codimension one (along the support
of the boundary divisor). As for global covers needed to derive geometric information,
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these will also ramify in codimension one along another divisor. This is the source of
many complications, and we refer to [GT22] for more details about these difficulties and
their treatment.

Once the relevant orbifold objects are defined and showed to satisfy relevant compat-
ibility conditions, the next step is to to work with orbifold tangent bundles associated
to an arbitrary dlt pair (X,D). The Kähler-Einstein techniques introduced in [Gue16]
are robust enough to accomodate boundaries (this amounts to introducing cone-like of
Poincaré-like singularities) and thus prove that the orbifold tangent sheaf of a log canoni-
cal pair (X,D) such that KX +D is ample (or nef and big) is semistable with respect to
KX .

Then, one needs to adapt Simpson’s argument to derive a MY-type inequality for such
pairs (X,D). This turns out to be quite tricky because of the presence of singularities
and the quite complex definition of Chern classes like ĉ2(X,D). One significant difference
compared to e.g. [GKPT19] is that the local uniformizing charts are not quasi-étale
anymore, but they ramify along the boundary divisor D. In particular, we cannot allow
arbitrary coefficients on the boundary divisor as we might otherwise leave the klt (even
lc) world as soon as one performs the necessary task of taking Kawamata cyclic covers in
order to clear the denominators in D.

Finally, with the MY inequality in hand for the pair (X, εH), one needs to pass to the
limit when ε→ 0. This harmless process in the smooth (or log smooth) context becomes
delicate in the presence of singularities, again. But it can be achieved!

4. Kähler manifolds with negative holomorphic sectional curvature

4.1. The compact case. — Let M be a compact Kähler manifold of dimension n and
let ω be a Kähler metric on M such that its holomorphic sectional curvature is negative;
that is, for every x ∈M and any [v] ∈ P(TM,x), one has HSCω(x, [v]) < 0.

Let us briefly recall how that last quantity is defined. Start by picking a point x ∈ X
and a system of holomorphic coordinates (zi) near x, assumed to be orthonormal at x.
If (Rij̄k ¯̀) is the curvature tensor of ω in these coordinates and if v =

∑
vi

∂
∂zi

is a non-

zero tangent vector at x, then the holomorphic sectional curvature of (M,ω) at (x, [v]) is
defined by

HSCω(x, [v]) :=
1

|v|4ω
·
∑
i,j,k,`

Rij̄k ¯̀viv̄jvkv̄`.

Alternatively, one can define HSCω(x, [v]) as the supremum of the Gaussian curvature
of (∆, f∗ω) at the origin among all immersed holomorphic disks f : ∆ → X such that
f(0) = x and df( ∂∂t) = v.

Under the assumptions on (M,ω) above, the Ahlfors-Schwarz lemma shows that M is
Brody hyperbolic; that is, every holomorphic map f : C → M is constant. Hyperbolic-
ity for projective (or merely compact Kähler) manifolds is conjectured to be related to
algebraic properties. More precisely, S. Lang formulated the following

Conjecture 4.1. — A projective manifold X is hyperbolic if and only if each of its
subvarieties (including X itself) is of general type.
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Recall that an irreducible projective variety Y is said to be of general type if the canon-

ical bundle K
Ỹ

of any smooth birational model Ỹ of Y is big; that is, Ỹ has maximal
Kodaira dimension. More than thirty years after its formulation, Lang’s conjecture re-
mains mostly open. Besides the trivial case of curves, the known cases of the conjecture
are:

• Surfaces with some specific geometry [Des79, GG80, MM83, McQ98].
• Generic hypersurfaces of high degree in Pn.

By the work of Clemens [Cle86], Ein [Ein88, Ein91] and Voisin [Voi96] later
improved by Pacienza [Pac04], their subvarieties are of general type. Moreover,
they are hyperbolic thanks to the recent breakthroughs by Siu [Siu15] and Brotbek
[Bro17] independently; cf also Demailly [Dem18].
• Quotients of bounded domains (Boucksom and Diverio [BD21]).

Let us go back to the case of a compact Kähler manifold (M,ω) with negative holomor-
phic sectional curvature. It was proved by Wu and Yau [WY16] that KM is ample pro-
vided that M is a projective manifold. Shortly after, Tosatti and Yang [TY17] extended
the result to the general Kähler case. In particular, under those general assumptions, M is
automatically projective. Now, if Y ⊂ M is a smooth subvariety of M , then the decreas-
ing property of the holomorphic (bi)sectional curvature shows that KY is ample again.
However, in view of Lang’s conjecture, it is crucial to control the geometry of singular
subvarieties of M as well. In [Gue22], we proved the following

Theorem 4.2 ([Gue22]). — Let (M,ω) be a compact Kähler manifold with negative
holomorphic sectional curvature and let Y ⊆ M be a possibly singular, irreducible subva-
riety of M . Then, Y is of general type.

An an immediate application, we get

Corollary 4.3. — Lang’s conjecture holds for compact manifolds M admitting a Kähler
metric with negative holomorphic sectional curvature.

The main original idea is to construct on a desingularization Ỹ of Y a family of singular
Kähler-Einstein metrics (ωb)b>0 having generically cone singularities along a given ample
divisor B and whose cone angle 2π(1 − b) is meant to tend to 2π. These metrics are

relatively well-understood only on the log canonical model of (Ỹ , bB) and the heart of the
proof consists in working on these varying birational models and to show that the volume
of ωb does not go to 0 when b approaches 0. The general idea of using a continuity method
and Royden’s Laplacian estimate originates from [WY16], but the degree of technicality
in the singular setting is significantly higher. For instance, the Ricci curvature blows down
to −∞, thus prohibiting the use of a maximum principle. Also, as the computations are
performed on spaces which depend on the parameter b, establishing the volume estimate
requires a delicate analysis.

We should mention that Theorem 4.2 generalizes to the case of quasi-negative holo-
morphic sectional curvature, where one needs to use as an important first step a result of
Diverio-Trapani [DT19].
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4.2. The quasi-projective case. — Another way to think of the situation of Theo-
rem 4.2 is to view Yreg as a quasi-projective manifold endowed with a Kähler metric ω
such that

• ω has negative holomorphic sectional curvature;
• ω extends smoothly to a (singular) compactification.

Given this point of view, it is natural to ask to which extent Theorem 4.2 generalizes
to arbitrary quasi-projective manifolds. More precisely, given a projective manifold X, a
reduced divisor D with simple normal crossings and a Kähler metric ω on X◦ := X\D
with negative holomorphic curvature, is it true that (X,D) is of log general type; that is,
KX +D is big?

This question is in part motivated by results of Cadorel [Cad21] who proved that given
a projective log smooth pair (X,D) such that X◦ admits a Kähler metric ω with negative
holomorphic sectional curvature and non-positive holomorphic bisectional curvature, then
ΩX(logD) is big, and, moreover, ΩX is big provided that ω is bounded near D.

His proof involves working on P(ΩX(logD)) and considering the tautological line
bundle O(1) on it. By the assumption on the bisectional curvature, ω induces a smooth,
non-negatively curved hermitian metric h on O(1) away from (the inverse image of) D.
Moreover, the Alhfors-Schwarz lemma guarantees that h extends across D as a singular
metric with non-negative curvature. Using a result of Boucksom [Bou02] on a metric
characterization of bigness then completes the proof.

One cannot expect such a strong result on the logarithmic cotangent bundle if one drops
the assumption on the bisectional curvature. However, it seems reasonable to expect it
for the logarithmic canonical bundle. The main difficulty is that one does not get from ω
a positively curved metric on KX +D even on a Zariski open set. So one has to produce
such a metric out of other methods, like the continuity method, cf [WY16]. However, one
faces several new difficulties compared to the setting of Theorem 4.2:

→ To start the continuity method, one needs KX+D to be pseudo-effective. In the case
D = 0, this is a consequence of the absence of rational curves (Ahlfors-Schwarz lemma)
combined with Mori’s bend and break and [BDPP13]. If D is not empty then one only
knows that X◦ has no entire curves hence X has no rational curve meeting D at at most
two points. To conclude, one would then need to have a logarithmic version of Mori’s bend
and break, but unfortunately it is not known as of now. To circumvent the difficulty and
inspired by the proof of [CP15, Thm. 4.1], we modify the boundary D into D + sB for
some ample B and some s > 0 to make KX + D + sB psef. Only at the very end of the
argument, one will see that KX +D is pseudoeffective.

→ The finiteness of the log canonical ring, known for klt pairs and crucial to under-
standing the deforming Kähler-Einstein metrics, is not known for lc pairs like (X,D). The
idea is then to deform (X,D) into a klt pair (X,∆b,s := (1− b)D + (b+ s)B) that makes
it klt and of log general type.

Give or take these adjustements, one can still run the strategy of Theorem 4.2 mutatis
mutandis. A very important point is that the behavior of ω near D is not arbitrary, as
ω must be dominated by a metric with Poincaré singularities along D thanks to Ahlfors-
Schwarz lemma. In the end, the result is the following
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Theorem 4.4 ([Gue22]). — Let (X,D) be a pair consisting of a projective manifold
X and a reduced divisor D =

∑
i∈I Di with simple normal crossings. Let ω be a Kähler

metric on X◦ := X\D such that there exists κ0 > 0 satisfying

∀(x, v) ∈ X◦ × TX,x\{0}, HSCω(x, [v]) < −κ0.

Then, the pair (X,D) is of log general type; that is, KX +D is big. If additionnally ω is
assumed to be bounded near D, then KX is big.

5. Families of manifolds of general type

If f : X → Y is a projective family of canonically polarized manifolds (say over a smooth
base), then we have seen in Theorem 1.3 that the relative Kähler-Einstein metric ω ∈
c1(KX/Y ) is a semipositive form. Schumacher’s proof consists in applying the minimum
principle to the following equation

∆ωyc(ω) = −c(ω) + |∂̄v|2ω
holding on any fixed given fiber Xy, and where

• a one-dimensional disk D ⊂ Y through y is given, and f is co-restricted to D.
• v ∈ C∞(X,T 1,0

X ) is the horizontal lift of ∂
∂t with respect to ω, as introduced by Siu.

In particular, df(v) = ∂
∂t .

• c(ω) is the geodesic curvature of ω, i.e. c(ω) = ωn+1

ωn∧f∗(idt∧dt̄) .

A couple of years later, Tsuji gave a completely different proof of the semipositivity
of the relative Kähler-Einstein metric by relying on the following foundational result of
Berndtsson and Păun:

Theorem 5.1 ([BP08]). — Let f : X → Y be a surjective projective map between smooth
manifolds, and let (L, h) be a holomorphic line bundle endowed with a metric such that

(1) The curvature current of (L, h) is semipositive on X; i.e. Θ(L, h) > 0.
(2) H0(Xy, (KXy + L)⊗I (h)) 6= 0 for some y ∈ Y ◦.

Then the relative Bergman kernel metric of the bundle KX/Y + L|X◦ is not identically
−∞. It has semipositive curvature current and extends across X \ X◦ to a metric with
positive curvature on X.

Here, Y ◦ is the complement of the locus of critical values of f , and X◦ = f−1(Y ◦).

Coming back to families of canonically polarized manifolds f : X → Y , Tsuji [Tsu10]
defined a sequence of metrics hm on mKX/Y +A = KX/Y + (m− 1)KX/Y +A︸ ︷︷ ︸

L

where A is

some fixed very ample line bundles as the Bergman kernel metric associated to (L, hm−1⊗
hA). He shows that there exists an a priori singular hermitian metric h∞ on KX/Y which
is the weak limit

m!
n
mh

1
m
m −→ h∞

and moreover Θ(KX/Y , h∞)|X◦ coincides with the relative Kähler-Einstein metric ω of f .
In particular ω > 0 by [BP08] and it extends to a positive current in c1(KX/Y ) across
X \X◦.
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In view of [BP08] and Theorem 1.3, it is natural to expect that relative singular Kähler-
Einstein metrics with negative curvature should also vary in a plurisubharmonic way.
More precisely, if f : X → Y is a projective family such that KXy is big for y ∈ Y ◦,
there exists a unique singular Kähler-Einstein metric ωy ∈ c1(KXy) thanks to [BCHM10]
and Theorem 1.4 and they glue to a canonical current ω on X◦ in the same way as
in the canonically polarized case. Base points and poor regularity of ωy near B+(KXy)
(and all the more for ω) make Schumacher’s approach essentially hopeless in this singular
situation. At first sight, the method of Tsuji looks very general. However, it uses in an
essential manner the asymptotic expansion of Bergman kernels, which depends on at least
two derivatives of the metric. Using a quite intricate regularization process, we managed
to show that Tsuji’s method can still be carried through for families of manifolds of general
type:

Theorem 5.2 ([CGP21]). — Let f : X → Y be a projective family of manifolds of
general type, and let ω ∈ c1(KX◦/Y ◦) be the relative Kähler-Einstein metric. Then, ω is a
weak limit of relative Bergman kernels, and as such, it is a positive current and it extends
to a positive current in c1(KX/Y ).

The result is actually proved in a slightly larger degree of generality for Kähler-Einstein
metrics associated to pairs (X, (L, h)) such that KX + L is big and where (L, h) is an
hermitian line bundle such that Θ(L, h) > 0 and h has zero Lelong numbers everywhere
on X. Unfortunately, our methods come short of reaching the general case of klt pairs
(X,B) with KX +B big. As another consequence of the theorem above, we can derive a
precise estimate at the level of potentials for the singular relative Kähler-Einstein metric,
cf [DGG20, Remark 5.6]

6. From cones to cusps

Let X be a complex projective manifold and let D ⊂ X be a smooth divisor, and set
X◦ := X \ D. Recall that if β ∈ (0, 1), a Kähler metric ω on X◦ is said to have cone
singularities along D with cone angle 2πβ if it is locally quasi-isometric to the model cone
metric

ωβ,mod :=
idz1 ∧ dz̄1

|z1|2(1−β)
+
∑
j>2

idzj ∧ dz̄j

on each coordinate chart (U, (zi)) where U∩D = (z1 = 0). Such a metric is incomplete, has
finite volume and automatically extends to a closed, positive (1, 1)-current on X. There
is an analogue of the Aubin-Yau theorem guaranteeing the existence and uniqueness of
a negatively curved Kähler-Einstein metric ωβ with cone angle 2πβ along D under the
condition that the adjoint R-line bundle KX +(1−β)D is ample, cf e.g. [Bre13, CGP13,
GP16, JMR16]. Such a metric will then be solving the equation

(6.1) Ricωβ = −ωβ + (1− β)[D]

understood in the sense of currents.
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6.1. The case KX +D ample. — If one assumes that KX +D is ample, then the same
will hold true for KX + (1− β)D as long as β is small enough. In that situation, we have
at hand several Kähler-Einstein metrics on X◦. First, the (incomplete) KE cone metrics
ωβ, and then the unique complete KE metric ω constructed by R. Kobayashi [Kob84] and
Tian-Yau [TY87]. Recall that ω has Poincaré growth near D, meaning that it is locally
quasi-isometric to

idz1 ∧ dz̄1

|z1|2 log2 |z1|2
+
∑
j>2

idzj ∧ dz̄j

whenever D is given by (z1 = 0) in some coordinate chart. The connection between these
metrics was given by

Theorem 6.1 ([Gue20b]). — Let X be a projective manifold and let D be a smooth
divisor such that KX +D is ample. Then the Kähler-Einstein cone metrics ωβ converge to
the complete Kähler-Einstein metric ω on X \D when β → 0. The convergence happens
both weakly as currents on X and locally smoothly on X \D.

Actually, we gave an explicit model metric

ω̂β :=
β2idz1 ∧ dz̄1

|z1|2(1−β)(1− |z1|2β)2
+

n∑
k=2

idzk ∧ dz̄k

such that there is a constant C > 0 independent of β satisfying

C−1ω̂β 6 ωβ 6 Cω̂β.

The metric β2idz1∧dz̄1
|z1|2(1−β)(1−|z1|2β)2

is actually the natural Kähler-Einstein cone metric on D∗

with cone singularity at the origin, as one can convince oneself by choosing β = 1
m and

pushing down the Poincaré metric on D via the map z 7→ zm. On that model, it is clear
to see how the cone singularity degenerates to the cusp when the angle goes to zero.

Interestingly enough, this quasi-isometric control of ωβ also allowed us to show that if
p ∈ D, the rescaled metrics (X,β−2ωβ, p) converge in pointed Gromov-Hausdorff sense
to a cylindrical metric on C∗ × Cn−1, up to extracting a sequence (βk), cf [Gue20b,
Theorem 6.2].

6.2. Closing the cusp. — Another interesting example is provided by toroidal com-
pactifications of ball quotients X◦ = Γ

∖Bn , where Γ ⊂ Aut(Bn) is a torsion-free, discrete
subgroup. It is well-known that one can embed X◦ ↪→ X as a Zariski-open subset of a
projective orbifold X such that D := X \X◦ is a disjoint union of abelian varieties. Note
that the Bergman metric on Bn descends to the complex (complete) hyperbolic metric
ωhyp on X◦, which we normalize to have Ricωhyp = −ωhyp. Capitalizing on the fact that
D admits an euclidean neighborhood U ⊂ X which is isomorphic to a neighborhood of
the zero section in the normal bundle ND|X of D in X, one can get an exact and very
explicit description of ωhyp on U , cf. e.g. [Mok12, Eq. (8)]. As a byproduct, one sees
that if (z1, . . . , zn) is a system of holomorphic coordinates on some open set U ⊂ X such
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that D ∩ U = (z1 = 0), then ωhyp|U is quasi-isometric to

idz1 ∧ dz̄1

|z1|2(− log |z1|)2
+

1

(− log |z1|)

n∑
k=2

idzk ∧ dz̄k.

As opposed to a Poincaré type metric, one notices the degenerating factor 1
(− log |z1|) in

front of the tangential directions of D which explain that ωhyp contracts D.
This can be interpreted as well via the map to the singular, minimal compactification

of Sataka-Baily-Borel Xmin of X◦. Indeed, given the universal property it satisfies (any
normal compactification X◦ ↪→ X yields a unique morphism X → Xmin), we get a bira-
tional morphism π : X → Xmin and one can check that KX + D = π∗KXmin . From this,
it is easy to see that KX + (1− β)D is ample for 0 < β � 1 (but certainly not for β = 0
unless D = ∅) and therefore X◦ also comes equipped with KE metrics ωβ with cone angle
2πβ along D whenever β > 0 is small enough. Again, we can find an explicit relationship
between these metrics thanks to the following

Theorem 6.2 ([BG22]). — Let (X,D) be a toroidal compactification of a ball quotient
X◦ = Γ

∖Bn , and let ωβ be the KE metric solving (6.1) for small β. Then, we have
convergence

ωβ −→
β→0

ωhyp

both in C∞loc(X
◦) and weakly as currents on X. Moreover, we have precise asymptotics of

ωβ near D when β → 0.

On the asymptotics.
The asymptotics are obtained by constructing a model metric on the normal bundle of D

using the Calabi Ansatz, and showing that its curvature is bounded uniformly in the cone
angle. In order to give those, we need to introduce some notation. As explained above,
one can work on a euclidean neighborhood of D ⊂ X isomorphic to an open neighborhood
U of the zero section in the total space of L := ND|X . Since D is a torus, we can pick a flat
metric θD ∈ c1(L∗) on D and choose an hermitian metric h on L such that iΘ(L, h) = −θD.
This yields a function t := log |v|2h on L \D. We also have on L \D a connection 1-form
η which coincides on each fibre of L with the angular form dθ, and satisfies

dη = −ip∗Θ(L, h) = p∗θD,

where p is the projection p : L→ D. Then ξ = 1
2dt+ iη is a (1,0)-form on L\D, coinciding

with dz
z in each fibre. In particular, dt ∧ η = iξ ∧ ξ̄ coincides with idz∧dz̄

|z|2 in each fiber. In

the following, one will identify p∗θD with θD and view the latter as a (1, 1)-form on the
total space L.

We can now describe the behavior or the Kähler-Einstein cone metric ωβ on U as β
approaches zero:

• On {βt→ 0}, it is quasi-isometric to

ωKE = (n+ 1)
[ iξ ∧ ξ̄

(−t)2
+
θD
−t

]
with quasi-isometry constant converging to 1 as βt→ 0.
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• On {βt→ −∞}, it is quasi-isometric to

anβ
2 · eβtiξ ∧ ξ̄ + βθD

with quasi-isometry constant converging to 1 as βt→ −∞ and β → 0 and where an
is some constant that can be made explicit via some integrals.

• Elsewhere, i.e. on {−C 6 βt 6 C−1}; it is quasi-isometric to

β2 · eβtiξ ∧ ξ̄ + βθD

with quasi-isometry constant uniformly bounded as β → 0.

A few comments on the above asymptotics. One recovers from the first item that on
the compact sets of X◦, corresponding to (t > −C), ωβ is asymptotic to ωhyp.

Setting r = e
βt
2 , we have β2 · eβtiξ ⊗ ξ̄ ' dr2 + β2r2η2. This implies that on

(βt 6 C−1) = (r 6 e
1
2C ), the divisor is collapsed at speed

√
β while the circle directions

are collapsed at speed β. We will observe a similar phenomenon in a different geometric
setting (positively curved KE cone metric associated to a smooth anticanonical divisor D
in a Fano manifold).

Bounded symmetric domains.
The first half of the statement (i.e. the convergence part) remains true in the more gen-

eral setting of quotients of bounded symmetric domains, cf [BG22, Theorem 1.1]. In that
case, D needs not be smooth anymore but has simple normal crossings up to a finite cover.

Closing the cusp.
Assume that the lattice Γ is arithmetic. By choosing the angles carefully along each

torus at the boundary, one can find a sequence ωβm of orbifold KE metrics that can be
globally desingularized so that (X◦, ωhyp) is the limit of smooth, compact KE spaces up to
the action of a larger and larger group of isometries, cf [BG22, § 4.3]. In a nutshell, one
can ”close the complex hyperbolic cusp”.
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PART II. ZERO CURVATURE

7. Introduction

7.1. Compact Kähler manifold with zero first Chern class. — Let (X,ω0) be a
compact Kähler manifold of dimension n such that c1(X) = 0 ∈ H2(X,R). One of the
most celebrated theorems of Yau [Yau78] gives the existence of a unique Kähler Ricci-flat
metric ω ∈ [ω0]; i.e.

Ricω = 0.

Classical Chern classes computations (cf e.g. Chen-Ogiue [CO75]) show that for a Ricci
flat Kähler metric ω, one has

c2(X,ω) ∧ ωn−2 = bn‖Θ(TX , ω)‖2ω ωn

for some dimensional constant bn > 0. In particular, integrating the identity over X, one
gets

c2(X) · [ω0]n−2 > 0,

and the vanishing of that quantity implies that ω is flat. In turn, this implies that the
Riemannian universal cover of (X,ω) is (Cn, ωeucl), and then, Bieberbach’s theorem ensures
that X = T/G for some complex torus T and some finite group G ⊂ Aut(T ) acting freely.
All in all, we get

Theorem 7.1. — Let X be a compact Kähler manifold of dimension n. The following
assertions are equivalent

(i) There exists a complex torus T and some finite group G ⊂ Aut(T ) acting freely such
that

X ' T/G.
(ii) We have c1(X) = 0 ∈ H2(X,R), and there exists a Kähler class α ∈ H2(X,R) such

that

c2(X) · αn−2 = 0.

In the same vein as in the negative curvature case, Yau’s result implies the following

Theorem 7.2. — Let (X,ω0) be a compact Kähler manifold of dimension n such that
c1(X) = 0 let ω ∈ [ω0] be the Kähler Ricci-flat metric. Then, TX is polystable with respect
to [ω0]. More precisely, one can decompose

TX =
⊕
i∈I

Ei

as a direct summand of [ω0]-stable subbundles with c1(Ei) = 0 and which are parallel and
mutually orthogonal with respect to ω.

The structure of compact Kähler manifolds with vanishing first Chern class is encapsu-
lated in the following fundamental result, which relies in an essential way on Yau’s solution
of the Calabi conjecture.
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Theorem 7.3 (Beauville-Bogomolov decomposition Theorem, [Bea83])
Let X be a compact Kähler manifold with c1(X) = 0 ∈ H2(X,R). Then, there exists a

finite étale cover X̃ → X such that X̃ decomposes as a Kähler manifold as follows,

X̃ = T ×
∏

i
Yi ×

∏
j
Zj ,

where T is a complex torus, and where the Yi (resp. Zj) are irreducible and simply con-
nected Calabi-Yau manifolds (resp. holomorphic symplectic manifolds).

The strategy of the proof of Theorem 7.3 consists in first using Yau’s theorem in order
to equip X with a Ricci-flat Kähler metric, and then applying the deep theorems of de
Rham and Cheeger-Gromoll to split a finite étale cover of X according to its holonomy
decomposition. The identification of the factors then follows from the Berger-Simons
classification of holonomy groups combined with the Bochner principle, which states that
holomorphic tensors are parallel.

7.2. Singularities and uniformization results in the projective case. — Conjec-
turally, any compact Kähler manifold X with κ(X) = 0 should admit a bimeromorphic
minimal model

X 99K Xmin

such that Xmin has terminal singularities and c1(X) = 0 ∈ H2(X,R). From this perspec-
tive, it is natural to try to extend the Beauville-Bogomolov decomposition theorem to the
singular setting.

The first step in that direction was achieved by Eyssidieux-Guedj-Zeriahi [EGZ09].
Their argument for the generic smoothness required a projectivity assumption which was
later removed by Păun [Pău08]:

Theorem 7.4 ([EGZ09, Pău08]). — Let (X,ω0) be a compact Kähler variety with klt
singularities and c1(X) = 0. There exists a unique closed, positive current with local
potentials ω ∈ [ω0] such that

(i) ω is a genuine Kähler metric on Xreg and it satisfies Ricω = 0 on that locus.
(ii)

∫
Xreg

ωn =
∫
X ω

n
0 .

Note that the second condition (once the first one is satisfied) can be shown to be
equivalent to the local potentials of ω being bounded.

An important step in our topological understanding of klt singularities was achieved
by [Xu14] who proved that the regional fundamental group of a klt singularity is finite.
Building upon that result, Greb-Kebekus-Peternell used a clever induction argument to
prove the following

Theorem 7.5 ([GKP16b]). — Let X be a quasi-projective variety with klt singularities.

There exists a finite, quasi-étale cover X̃ → X such that the inclusion X̃reg → X̃ induced
an isomorphism between the étale fundamental groups

π̂1(X̃reg)
∼−→ π̂1(X̃).
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Equivalenty, any holomorphically flat vector bundle on Xreg extends to a flat vector bundle

on X̃.

Given the solution of Zariski-Lipman conjecture for klt singularities [Dru14, GK14,
GKKP11], an easy consequence of the above theorem is the following

Corollary 7.6 ([GKP16a]). — Let X be a projective variety with klt singularities such
that TXreg is flat. Then, there exists an abelian variety A and a finite, quasi-étale Galois
cover A → X. In other words, X is the quotient of an abelian variety by a finite group
acting freely in codimension one.

One would like to mention the recent striking theorem of Braun about the local funda-
mental group of a klt singularity. Recall that if (X,x) is a germ of a complex variety, the
fundamental groups of Ureg when U run over a fundamental system of neighborhoods of x
eventually stabilizes, and one set π1(Xreg, x) = π1(Ureg) for U small enough in that sense.

Theorem 7.7 ([Bra21]). — Let (X,x) be a germ of a quasi-projective klt singularity.
Then, the local fundamental group π1(Xreg, x) is finite.

Using Theorem 7.7, the proof of Theorem 7.5 can be drastically simplified.

Remark 7.8. — The algebraicity assumption in Theorem 7.7 may sound odd as the
result is fundamentally dealing with the euclidean topology. However, in the analytic
setting such a finiteness result for the local fundamental group is still unknown. However,
and as explained in [CGGN22, Remark 6.10] the only missing step is to be able to run
a relative MMP for projective morphisms between analytic (Stein) spaces. This has been
achieved very recently by Fujino [Fuj22].

Let us end this introductory paragraph by mentioning the following uniformization
result generalizing Theorem 7.1 to the singular projective case. It is due to Greb-Kebekus-
Peternell when X is smooth in codimension two, and to Lu-Taji in full generality.

Theorem 7.9 ([GKP16a, LT18]). — Let X be a projective variety of dimension n with
klt singularities. The following assertions are equivalent

(i) There exists an abelian variety T and some finite group G ⊂ Aut(T ) acting freely in
codimension one such that

X ' A/G.
(ii) We have c1(X) = 0 ∈ H2(X,R), and there exists an ample Cartier divisor H such

that
ĉ2(X) ·Hn−2 = 0.

As in Theorem 2.2 and the remark below it, the Chern class ĉ2 refers to Mumford’s
Chern class. If X is smooth in codimension two and f : Y → X is a log resolution, then
one has ĉ2(X) ·Hn−2 = c2(Y ) · (f∗H)n−2.

Strategy of proof of Theorem 7.9. — Assume for simplicity that X is smooth in codimen-
sion two. Pick a general complete intersection S = D1 ∩ . . . ∩ Dn−2 with Di ∈ |mH|
for m large. Then E := TX |S is a locally free sheaf on the smooth surface S with van-
ishing first and second Chern class. Moreover, E is H-polystable thanks to [GKP16b]
and Mehta-Ramanathan theorem (more precisely, Flenner’s version of that result in the
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singular setting). By the Kobayashi-Hitchin correspondence, E is holomorphically flat,
given by a unitary representation π1(S)→ U(n).

By the singular version of Lefschetz hyperplane theorem, the inclusion S ⊂ Xreg yields
an isomorphism π1(S) ' π1(Xreg). In particular E is given by the restriction to S of a flat
bundle F on Xreg. It remains to see that if S is general, the isomorphism F |S ' TX |S
implies that F is isomorphic to TX over Xreg, so that TXreg is flat. The theorem now
follows from Corollary 7.6.

In the following sections, we will explain how the singular Kähler Ricci flat metrics con-
structed by Eyssidieux-Guedj-Zeriahi and the results of Greb-Kebekus-Peternell recalled
above led to establishing a full generalization of Theorem 7.3 and Theorem 7.1 in the klt
Kähler setting.

8. The Bochner principle and the holonomy cover

If X is a smooth compact Kähler manifold and if ω is a Kähler Ricci-flat metric, then
Bochner formula states that any holomorphic tensor σ ∈ H0(X,T⊗pX ⊗ Ω⊗qX ) satisfies

∆ω|σ|2ω = |∇σ|2ω
where ∇ is the Chern connection induced by ω on T⊗pX ⊗ Ω⊗qX . In particular, integrating
the formula above yields ∇σ ≡ 0; i.e. σ is parallel. Said otherwise, σ is invariant under
parallel transport. In particular, fixing a point x ∈ X and setting V := TX,x, we get a 1:1

correspondence between holomorphic tensors σ ∈ H0(X,T⊗pX ⊗Ω⊗qX ) and invariant vectors

v ∈ (V ⊗p ⊗ (V ∗)⊗q)G where G = Hol(X,ω) is the holonomy group of G, whose action on
V ⊗p ⊗ (V ∗)⊗q is the natural one obtained by tensorization of the action of G on V .

With Daniel Greb and Stefan Kebekus, we generalized this correspondence in the pro-
jective klt case, and later with Benôıt Claudon, Patrick Graf and Philipp Naumann, we
proved the general klt Kähler case:

Theorem 8.1 (Bochner principle, [GGK19, CGGN22])
Let (X,ω0) be a compact Kähler variety with klt singularities and c1(X) = 0, and let ω ∈

[ω0] be the singular Ricci flat metric. Then, any holomorphic tensor σ ∈ H0(Xreg, T
⊗p
X ⊗

Ω⊗qX ) is parallel with respect to ω.

The strategy consists in first taking a resolution f : Y → X and then applying Bochner
formula to f∗σ using a family of approximate Kähler-Einstein metrics ωε on Y converging
to f∗ω. The core of the matter is to deal with the error terms coming from the fact that
f∗σ may pick up poles along the exceptional divisor, and that ωε is not Ricci flat. This is
quite technical, and will not be discussed here further.

An important consequence of the Bochner principle is that the Albanese map of a
compact Kähler variety with canonical singularities and trivial first Chern class is surjective
and locally trivial, generalizing results of Kawamata in the projective case [Kaw85]. More
precisely,

Theorem 8.2 ([CGGN22]). — Let X be a compact Kähler variety with canonical sin-
gularities and c1(X) = 0, and let α : X → A := Alb(X) be the Albanese map of X. Then
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α is surjective with connected fibers, and there exists a finite étale cover B → A such that
X ×A B → B is isomorphic to the trivial fibration F ×B → B.

In [Gue16] (cf [GKP16b] for similar results in the projective case), we proved that
the tangent sheaf of X admits a polystable decomposition

TX =
⊕

Ei

such that the induced subbundles Ei|Xreg are pairwise orthogonal and parallel with respect
to ω. In particular, it is natural to ask if one can compute their holonomy Hol(Ei, ω),
understood as the holonomy of the vector bundle Ei|Xreg with respect to ω|Xreg . In
[GGK19, CGGN22], we proved the following:

Theorem 8.3 (Holonomy covers, [GGK19, CGGN22])
Let (X,ω0) be a compact Kähler variety with klt singularities and c1(X) = 0, and let

ω ∈ [ω0] be the singular Ricci flat metric. Then after replacing X by a finite quasi-étale
cover, there exists a direct sum decomposition of the tangent sheaf of X,

TX = F ⊕
⊕
k∈K

Ek,

where the reflexive sheaves F and Ek satisfy the following:

(i) The sheaves F and Ek are foliations with trivial determinant.
(ii) The sheaf F |Xreg is flat. More precisely, it is given by a special unitary representation

of π1(Xreg).
(iii) Each factor Ek

∣∣
Xreg

is parallel and has full holonomy group either SU(nk) or

Sp(nk/2), with respect to the pullback of the singular Ricci-flat metric ω. Here,

nk = rk(Ek). Moreover, S[m]Ek is strongly stable with respect to any Kähler class,
for any integer m > 1.

The proof of the above theorem goes roughly as follows. Decompose TX =
⊕

Ei into
stable pieces. Up to taking a further quasi-étale cover, one can assume that the pieces are
strongly stable (i.e. they remain stable after any further quasi-étale cover). Then, Bochner
principle essentially guarantees that the component of the identity of the holonomy group,
G◦i := Hol◦(Ei, ω), is irreducible. By Berger-Simons classification, we have only three
possibilities for G◦k, that is, the trivial group, SU(nk) or Sp(nk/2) where nk = rk(Ek). The
first case correspond to flat factors, which we set aside. As for the other ones, we need to
show that Gk/G

◦
k is finite, so that one can perform a finite quasi-étale cover and get the

full holonomy to be what we want. In general, we only have a surjection

π1(Xreg)→ Gk/G
◦
k

but the group on the left-hand side is not yet known to be finite (it is conjectured though,
say for varieties with zero augmented irregularity). The key point is that since G◦k is
normal in Gk ⊂ U(nk), we know that Gk is included in the normalizer of SU(nk) (resp.
Sp(nk/2)) in U(nk). In particular, one can see that

Gk/G
◦
k ⊂ U(1)

is abelian and we get a surjective map

H1(Xreg,Z)→ Gk/G
◦
k.
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In [GGK19, CGGN22], we provide two independent ways to see that the right-hand
side is finite. One appeals to Theorem 7.5 in the projective case while the other one
consists in proving directly that H1(Xreg,Z) is torsion by relying on a theorem of Deligne
allowing us to compute the de Rham cohomology of Xreg via the coherent cohomology of
a resolution of X.

9. The singular Beauville-Bogomolov decomposition theorem

9.1. The irreducible pieces in the decomposition. — Being able to detect whether
a varietyX is covered by a torus by looking at its tangent sheaf is a fundamental question in
the theory; we will first give a criterion in terms of flatness of TXreg and in the next section
we will give a purely numerical criterion, in the spirit of Theorem 7.6 and Theorem 7.9.
The result below was obtained jointly with Claudon-Graf-Naumann:

Theorem 9.1 ([CGGN22]). — Let X be a compact Kähler variety with klt singularities
such that TXreg is holomorphically flat. Then, there exists a finite quasi-étale cover T → X
for some torus T .

The two main tools involved in the proof are, as in the projective case, the solution
of Zariski-Lipman conjecture for klt singularities as well as finiteness results for regional
fundamental groups [Xu14]. As we already explained in § 7.2, that last result only holds
for algebraic singularities. The new idea is to run a delicate induction process starting
from isolated singularities which are always algebraic, and couple the induction with
Zariski-Lipman.

As a consequence of Theorem 9.1, a compact Kähler variety X (of dimension at least
two) with klt singularities, c1(X) = 0 and TX strongly stable cannot be flat. As a result,
Theorem 8.3 combined with Bochner principle imply that X automatically falls into one
of the following classes of varieties:

Definition 9.1 (ICY and IHS varieties). — Let X be a compact Kähler variety of
dimension n > 2 with canonical singularities and KX ' OX .

1. We call X irreducible Calabi–Yau (ICY) if H0(Y,Ω
[p]
Y ) = 0 for all integers 0 < p < n

and all quasi-étale covers Y → X, in particular for X itself.
2. We call X irreducible holomorphic symplectic (IHS) if there exists a holomorphic

symplectic two-form σ ∈ H0(X,Ω
[2]
X ) such that for all quasi-étale covers γ : Y → X,

the exterior algebra of global reflexive differential forms is generated by γ[∗]σ.

The main result of this section is the following:

Theorem 9.2 (Singular Beauville-Bogomolov decomposition Theorem, [Dru18,
GGK19, HP19, BGL22])

Let X be a compact Kähler variety with klt singularities and c1(X) = 0 ∈ H2(X,R).

Then, there exists a finite quasi-étale cover X̃ → X such that X̃ decomposes as a Kähler
variety as follows,

X̃ = T ×
∏

i
Yi ×

∏
j
Zj ,
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where T is a complex torus, and where the Yi (resp. Zj) are irreducible Calabi-Yau varieties
(resp. irreducible holomorphic symplectic varieties).

9.2. The projective case. — Given what we explained above, proving the theorem
amounts to showing that the irreducible factor appearing in the decomposition

TX = F ⊕
⊕
k∈K

Ek

from Theorem 8.3 come from the tangent sheaf of a factor of a splitting of X = T ×
∏
kXk

itself, maybe up to a cover. Indeed, T would then have flat tangent sheaf, hence it would
be covered by a torus, while Xk would have holonomy SU(nk) or Sp(nk/2) and it would
be an ICY or IHS by the Bochner principle.

The proof of the splitting is due to Druel [Dru18] and Höring-Peternell [HP19]. More
precisely, Druel first showed that the flat factor F does indeed come from a torus splitting
fromX after some quasi-étale cover. Moreover, he proved that it would then be sufficient to
show that the foliations Ek are algebraically integrable, that is, that their leaves (defined
as immersed submanifolds of Xreg) are actually algebraic varieties, or equivalently that
they are open in their Zariski closure in X.

Later, Höring-Peternell proved that the strong stability of the reflexive symmetric pow-
ers S[m]Ek implies that E ∗k was not pseudoeffective, i.e. there exists an ample divisor H as
well as a number c > 0 such that for all i, j satisfying i > cj, we have

H0(X,S[i]Ek ⊗OX(jH)) = 0.

In turn, Druel had generalized a theorem of Bost [Bos01] (see also [CP19]) asserting that
the above condition was sufficient to guarantee the algebraic integrability of the leaves of
Ek.

9.3. The Kähler case. — In this paragraph, we will briefly survey the main result
of [BGL22] where we extend the decomposition theorem from the projective case to
the Kähler case. Although the proof is overall quite lengthy and technical, the strategy is
pretty clear and the main idea or starting point is to approximate X by projective varieties
and use the decomposition theorem in the algebraic case. The first step is achieved in the
following

Theorem 9.3. — Any X as in Theorem 9.2 admits a strong locally trivial algebraic
approximation: there is a locally trivial family X → S over a smooth base S specializing
to X over s0 ∈ S such that points s ∈ S for which Xs is projective are analytically dense
near s0.

Let us emphasize that we are not claiming that the Bogomolov–Tian–Todorov theorem
holds in this context—that is, that locally trivial deformations of numerically K-trivial X
as in the theorem are always unobstructed (which would be sufficient to prove Theorem 9.3,
see [GS21a, Theorem 1.2]). However, we can find a locally trivial deformation that is well-
enough behaved so that the base space is smooth, and general enough so that one can find
nearby projective fibres.

The main difficulty in the proof of Theorem 9.3 is therefore to produce sufficiently many
unobstructed deformations. Recall that by Kodaira’s criterion, a compact Kähler manifold
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(or compact Kähler space with rational singularities) with no nonzero holomorphic 2-
forms is automatically projective, so the existence of 2-forms is the only obstruction to
projectivity. The results of [Gue16] extending the polystability of TX to the Kähler
category provide a splitting of TX into foliations and the symplectic foliations among the
factors account for all of the 2-forms on X. More precisely, one can decompose

TX = E ⊕ F =

(
r⊕
i=1

Ei

)
⊕ F,

where for all i = 1, . . . , r, Ei is stable and there exists an index j and an isomorphism
Ei ' E∗j , and H0(X,Λ2F ∗) = 0. The isomorphism Ei ' E∗j can be realized as the
contraction map by a reflexive 2-form, which can be assumed to be non-degenerate on
Ei if j = i. Heuristically (but a posteriori true on a quasi-étale cover), E corresponds
to the torus and irreducible holomorphic symplectic factors while F corresponds to the
irreducible Calabi-Yau factors. Note that E is not necessarily symplectic, as the example
of a 3-torus shows (there, F = 0 but there is no symplectic form).

It is therefore natural to try to deform to the symplectic directions H1(X,E) ⊂
H1(X,TX) and we show that locally trivial deformations obtained by exponentiating
the symplectic foliations of this splitting are always unobstructed. Moreover, one gets
surjectivity of the map obtained by contracting a Kähler class H1(X,E) → H2(X,OX)
almost automatically, hence one can apply the singular version of Green-Voisin criterion
proved by Graf-Schwald [GS21a] in order to find nearby projective fibers.

With Theorem 9.3 in hand, the proof of Theorem 9.2 proceeds as follows. We first
produce a locally trivial deformation π : X → ∆ of X over the disk for which projective
fibers are analytically dense. By cycle-theoretic arguments and Theorem 9.2 in the pro-
jective case, replacing X by a quasi-étale cover it suffices to assume there is a splitting
X ∗ = Y∗ ×∆∗ Z∗ of the family X ∗ := X|∆∗ over the punctured disk, and we must show
that the splitting extends over the puncture.

One first observes that local triviality of the family π : X → ∆ implies the Künneth
decomposition of Rkπ∗QX ∗ extends, in fact as a decomposition of the variation of Hodge
structures. By K-triviality, the factors of the splitting of the tangent bundle TX ∗/∆∗ are
cut out by differential forms and extend, so we have a splitting TX/∆ ∼= A⊕B. The leaves
of the splitting of the family over ∆∗ have well-defined limits in the special fiber which are
therefore tangent to the factors of the limit splitting TX = A0 ⊕ B0 on the regular locus
Xreg.

It remains to show that the limit leaves define a product structure in the singular locus
Xsing. There are essentially two types of phenomena that could go wrong:

(i) the limit leaves could acquire new components in Xsing, or
(ii) limit leaves in the two directions could have positive-dimensional intersections in

Xsing.

To rule these out, we show that the splitting of the Ricci-flat metric ωt = ωAt + ωBt
of Xt for t ∈ ∆∗ induced by the splitting of the family extends over the puncture to a
decomposition ω0 = ωA0 + ωB0 of the Ricci-flat metric on X0 = X into closed positive
currents with bounded potentials. This is the key technical part of the proof of Theorem 9.2
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and the latter condition is critical: it implies that these currents can be restricted to cycles
in the singular locus and that one can compute intersection numbers with these currents.
The fact that the decomposition is compatible with the limit Künneth decomposition and
the semipositivity of the factors together imply neither pathology arises.

Let us give a simplified version of the argument to illustrate how the proof of (ii) goes.
Let F ⊂ X0 (resp. G ⊂ X0) be a cycle obtained as limit of cycles of the form Yt × {zt}
(resp. {yt} × Zt) for some point zt ∈ Zt (resp. yt ∈ Yt). For simplicity, assume that

F,G 6⊂ Xsing
0 . Note that the cycles Yt × {zt} will always converge (after extracting a

subsequence ti → 0) by properness of the irreducible components of the relative Douady
space; this in turn relies on Bishop’s theorem and the fact that the fibers of π are Kähler.

One wants to show that F ∩ G is finite. On the regular locus of X0, the semipositive
form ωA0 satisfies ker(ωA0) = B0. Since G is a limit of leaves Gt tangent to Bt, G is
tangent to B0 and

ωA0 |G ≡ 0 on Xreg
0 .

Similarly, ωB0 |F ≡ 0 on Xreg
0 . The decomposition ω0 = ωA0 + ωB0 implies that

ω0|F∩G ≡ 0 on Xreg
0 .

Now, the crucial information that ω0 has bounded potentials implies that ω0|F∩G is well-
defined and vanishes everywhere. That information also allows us to say that the volume
of F ∩G with respect to the Kähler class [ω0] is nothing but∫

F∩G
ωdimF∩G

0 = 0,

hence F ∩G is finite.

10. Numerical characterization of complex torus quotients

In this section paragraph, we explain the following (partial) generalization of Theo-
rem 7.9 to the Kähler case that we obtained jointly with Claudon and Graf.

Theorem 10.1 ([CGG22]). — Let X be a compact Kähler variety of dimension n with
klt singularities. Assume that X is smooth in codimension two. The following assertions
are equivalent

(i) There exists a torus T and some finite group G ⊂ Aut(T ) acting freely in codimension
two such that

X ' A/G.
(ii) We have c1(X) = 0 ∈ H2(X,R), and there exists a Kähler class α ∈ H2(X,R) such

that
ĉ2(X) · αn−2 = 0.

Let us now explain the proof of the above theorem. It relies on three tools:

• A singular Bogomolov-Gieseker inequality.
• The singular Beauville-Bogomolov decomposition theorem, i.e. Theorem 9.2.
• A formula computing c2 for irreducible holomorphic symplectic varieties.

Step 1. A singular Bogomolov-Gieseker inequality
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Proposition 10.1. — Let X be a normal compact Kähler variety of dimension n to-
gether with a Kähler class α ∈ H2(X,R). Assume that X is smooth in codimension two.
Furthermore, let E be a rank r reflexive coherent sheaf on X which is slope stable with
respect to α.

(1) The discriminant ∆(E ) := 2r c2(E )− (r − 1) c2
1(E ) satisfies the inequality

∆(E ) · αn−2 > 0.

(2) If equality holds, then we have

∆(E ) · βn−2 = 0

for any Kähler class β ∈ H2(X,R).

The inequality part is almost straightforward: take a log resolution f : Y → X, then
f [∗]E is f∗α-stable, hence it remains stable with respect to f∗α + ε[ωY ] for some Kähler
form ωY and 0 6 ε� 1. Then one applies the usual Bogomolov-Gieseker inequality, and
pass to the limit when ε → 0. The second half of the statement is a bit less standard
but it essentially relies on the Kobayashi-Hitchin correspondence providing a family of
Hermite-Einstein metrics hε for f [∗]E .

Step 2. Using the decomposition theorem
Thanks to Theorem 9.2, one can pass to a quasi-étale cover such that X becomes

isomorphic to a product

X ' T ×
∏
i∈I

Yi ×
∏
j∈J

Zj

where Yi are ICY and Zj are IHS. The crucial observation is that α decomposes as a sum

α = pr∗TαT +
∑

pr∗YiαYi +
∑

pr∗ZiαZj

where αT , αYi , αZj are Kähler classes on T (resp. Yi, Zj). This is because of Künneth

formula and the vanishing H1(Yi,C) = H1(Zj ,C) = 0 thanks to the absence of 1-forms
on these varieties with rational singularities. Proposition 10.1 then implies

c2(Yi) · αdimYi−2
Yi

= c2(Zj) · α
dimZj−2
Zj

= 0,

and we are left to showing that this is absurd unless I = J = ∅.

Step 3. Strict positivity of c2 for ICY and IHS varieties.

• Case 1.
Let X be an ICY variety of dimension n such that there exists a Kähler class α satisfying

c2(X) · αn−2 = 0.

Since H0(X,Ω
[2]
X ) ' H2(X,OX) = 0, X is projective. Moreover, the equality case of

Proposition 10.1 implies that one can find an ample divisor H such that c2(X) ·Hn−2 = 0.
By Theorem 7.9, this implies that X is covered by an abelian variety, a contradiction with
the definition of ICY variety.

• Case 2.
Let X be an ICY variety of dimension n such that there exists a Kähler class α satisfying

c2(X) · αn−2 = 0.
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We claim that there exists a non-negative constant C > 0 such that

(10.1) ∀a ∈ H2(X,C), c2(X) · an−2 = C · qX(a)
n
2
−1.

where qX is the Beauville-Bogomolov-Fujiki quadratic form on H2(X,C). The formula
(10.1) can be derived just like in the smooth case from the existence of a universal locally
trivial deformation space along with the Torelli theorem [BL22]. Its non-negativity follows
e.g. from Proposition 10.1.

Since qX(α)
n
2 = αn > 0 up to a positive universal constant, one infers from the vanishing

of c2(X) · αn−2 and (10.1) that C = 0. In particular, one gets

∀a ∈ H2(X,C), c2(X) · an−2 = 0.

The key point is that this property is now deformation invariant (whereas the parallel
transport of a (1, 1) class has no type in general). Take a locally trivial deformation
π : X → D such that Xt is projective some some t ∈ D, whose existence is due to
[BL22]. Then for any (ample) divisor Ht on Xt, we have c2(Xt) · Hn−2

t = 0, hence Xt

is covered by an abelian variety thanks to Theorem 7.9. Since π is locally trivial, the
inclusion Xreg

t ↪→ X reg yields an isomorphism π1(Xreg
t )→ π1(X reg), hence one can find a

quasi-étale cover Y → X such that Yt is abelian. In particular, Y → D is smooth, and
h0(Y0,Ω

1
Y0

) 6= 0. Since Y0 → X0 is quasi-étale, this contradicts the fact that X0 is an IHS
variety.

11. Families of log Calabi-Yau manifolds

Definition 11.1. — A log Calabi-Yau manifold consists in a pair (X,B) where

• X is a compact Kähler manifold.
• B =

∑
biBi is a divisor with snc supports and coefficients bi ∈ (0, 1).

• The class c1(KX +B) ∈ H2(X,R) vanishes.

Associated to a log Calabi-Yau manifold (X,B) are Kähler Ricci flat cones metrics, as
constructed by [Bre13, CGP13, GP16, JMR16]. These are Kähler Ricci-flat metrics
ω on X \ Supp(B) that are locally quasi-isometric to the model cone metric

ωmod :=

p∑
k=1

idzk ∧ dz̄k
|zk|2bk

+
∑
k>p+1

idzk ∧ dz̄k

on each coordinate chart (U, (zi)) where U ∩Bk = (zk = 0) for 1 6 k 6 p, up to relabelling
the Bi’s. Such a metric is incomplete, has finite volume and automatically extends to a
closed, positive (1, 1)-current on X, satisfying the equation

(11.1) Ricω = [B]

understood in the sense of currents.
In this section, we would like to explain how these Kähler Ricci flat cone metrics help

understand the geometry of (X,B), especially in a context of families of such manifolds.
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11.1. The relative Ricci flat metric is not semipositive. — In this paragraph,
we explain a negative result in the case B = 0 that will motivate the result in the next
paragraph when B may not be zero anymore.

The context is as follows. Let p : X → Y be a holomorphic fibration between projective
manifolds of relative dimension n > 1. Let X◦ be the set of regular values, and let
X◦ := p−1(Y ◦). We assume that for y ∈ Y ◦, c1(KXy) = 0, where Xy := p−1(y). Let L
be a pseudoeffective, p-ample Q-line bundle on X. One can write L = H + p∗M for some
ample line bundle H on X and for some line bundle M on Y . In particular, one can find
a smooth (1, 1)-form ω ∈ c1(L) on X such that for any y ∈ Y ◦, ωy := ω|Xy is a Kähler
form on Xy.
By Yau’s theorem, there exists for any y ∈ Y ◦ a unique function ϕy ∈ C∞(Xy) such that:

(i) θy := ωy + ddcϕy is a Kähler form
(ii)

∫
Xy
ϕyω

n
y = 0

(iii) Ric θy = −ddc logωny = 0

Moreover, one can use the implicit function theorem to check that the dependence of ϕy
in y is smooth, so that the form θ := ω + ddcϕ is a well-defined smooth (1, 1)-form on X◦

which is relatively Kähler. A folklore conjecture asserted that the form θ is semipositive
on X, say when L is globally ample. This turns out to be wrong:

Theorem 11.1 ([CGP19]). — There exists a projective fibration p : X → Y as in the
setting above and an ample line bundle L on X such that the relative Ricci-flat metric θ
on X◦ associated with L is not semipositive.

Remark 11.2. — The counter-example is actually pretty explicit: X is a K3 surface
and p is an elliptic fibration onto Y = P1.

Idea of the proof of Theorem 11.1. — Let p : X → P1 be a non-isotrivial elliptic fibration
admitting another transversal elliptic fibration q : X → P 1. First, a relatively harmless
(but crucial) reduction allows us assume that L = q∗OP1(1) is semiample with L2 = 0.

If θ were semipositive on X◦, then one could extend it to a positive current in c1(L) (cf
appendix of [CGP19] by Valentino Tosatti, or [DGG20] for a more general argument).
Necessarily, one would have θ2 ≡ 0 on X◦, otherwise L would be big. One some Zariski
open set of X, the foliation ker(θ) coincides with that of q : X → P1. As the lift V
of ∂

∂t with respect to θ belongs to ker(θ), a short computation shows that V is actually
holomorphic, hence its identifies the smooth fibers of p biholomorphically, a contradiction
with the non-isotriviality of p.

11.2. A metric criterion for local triviality. — In the recent years, metric criteria
to prove the local triviality of a given fibration p : X → Y have been at the heart of
breakthroughs, especially in relation with the structure of projective varieties X with
−KX nef, using canonical fibrations such that the Albanese map or the MRC fibration,
cf. [Cao19, CH19, CCM21, MW21] and references therein. A common feature in the
results there is the existence of a flat hermitian bundle on the base Y , usually obtained
as direct image of a bundle upstairs, having to do with the pluricanonical bundles. The
main result of this paragraph, Theorem 11.3, provides a similar triviality criterion in the
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context of families of log Calabi-Yau manifolds.

• Geometric setting.
In this paragraph, we will be working under the following geometric assumptions. Let
p : (X,B) → Y be a proper, holomorphic fibration between two Kähler manifolds, where
B =

∑
biBi is an effective Q-divisor on X whose coefficients bi ∈ (0, 1) are smaller then

one. We assume that there exists Y ◦ ⊂ Y contained in the smooth locus of p such that
B|Xy has snc support and set X◦ := p−1(Y ◦). The fibers of p are assumed to satisfy

(11.2) c1(KXy +B|Xy) = 0 for any y ∈ Y ◦.

• Direct image of the relative pluricanonical bundle.
For any integer m > 1, one defines

Fm := p?
(
m(KX/Y +B)

)??
which is a reflexive sheaf on Y , enjoying many properties. One of them is to admit a
canonical metric h, called Narasimhan-Simha metric, enjoying many special curvature
properties as observed e.g. [BP08, PT18].

We take advantage of our simple geometric situation (i.e. the condition (11.2)) to offer a
more concise definition of h, since Fm can be showed to be a line bundle as follows. Thanks
to the log abundance in the Kähler setting, cf. [CGP19, Corollary 1.18] and references
therein, we know that KXy + By is Q-effective. Combining this with Ohsawa-Takegoshi
extension theorem in its Kähler version, cf. [Cao17], one can improve (11.2) by obtaining
an integer m > 1 such that

(11.3) m(KXy +B|Xy) ' OXy for any y ∈ Y ◦.

Given a point y ∈ Y ◦, there exists a coordinate ball U ⊂ Y ◦ containing y and a nowhere
vanishing holomorphic section

(11.4) Ω ∈ H0
(
XU ,m(KX/Y +B)|XU

)
where XU := p−1(U). If fB is a local multivalued holomorphic function cutting out the

Q-divisor B, then the form
(Ωy ∧ Ωy)

1
m

|fB|2
induces a volume element on the fibers of p over

U , and one sets

Vy :=

∫
Xy

(Ωy ∧ Ωy)
1
m

|fB|2
.

Now, let σ ∈ H0(U,Fm|U ) be a local holomorphic section of the line bundle Fm defined
over a small coordinate set U ⊂ Y ◦. The expression

(11.5) ‖σ‖2y := V m−1
y

∫
Xy

|σ|2

|Ωy|2
m−1
m

e−φB

defines a metric h on Fm|Y ◦ . This metric extends across the singularities of the map p,
and it has semi-positive curvature current, see [BP08, PT18].

• The relative Kähler Ricci-flat cone metric.
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If we fix a reference Kähler form ω on X, then we can construct a fiberwise Ricci-flat conic
Kähler θy metric, i.e. a solution of the equation{

Ric θy = [By]

θy ∈ [ωy]
.

There exists a unique function ϕ ∈ L1
loc(X

◦) such that{
θy = ωy + ddcϕ|Xy∫
Xy
ϕωny = 0

.

The closed (1, 1)-current θ◦KE := ω + ddcϕ on X◦ is called relative Kähler Ricci-flat cone
metric in [ω].

As we saw in Theorem 11.1, the current θ◦KE is not positive in general, which marks an
important difference with the case of Kähler fiber spaces whose generic fiber is of general
type, cf Theorems 1.3-5.2.

Theorem 11.3. — Let p : (X,B) → Y be a map as above, and let ω be a fixed Kähler
metric on X. Assume that the following conditions are satisfied.

(i) For y ∈ Y ◦, the Q-line bundle KXy +By is numerically trivial.
(ii) For some m large enough, the line bundle p∗(m(KX◦/Y ◦ +B)) is Hermitian flat with

respect to the Narasimhan-Simha metric h on Y ◦, cf (11.5).

Then, we have the following.

(†) The relative Kähler Ricci-flat cone metric θ◦KE is positive and it extends canonically
to a closed positive current θKE ∈ {ω} on X.

(‡) The fibration (X,B) → Y is locally trivial over Y ◦. Moreover, if p is smooth in
codimension one and codimX(B r X◦) > 1, then p is locally trivial over the whole
Y .

The last statement means that for every y ∈ Y ◦, there exists a neighborhood U ⊂ Y ◦

of y such that

(p−1(U), B) ' (Xy, B|Xy)× U.

Idea of the proof. — The key object in the proof is θ◦KE. First, we show that it is semi-
positive as writing it as a limit of negatively curved KE cone metrics using [Gue20a]. Of
course, the flatness of the direct image is crucial here.

Next, the idea is to use the PDE that the geodesic curvature c(θ) of θ := θ◦KE over a
one-dimensional disk ∆ ⊂ Y is solving on a given fiber Xy:

−∆′′θ (c(θ)) = |∂̄vθ|2 −Θ(KX/∆, (θ
n)−1)(vθ, vθ)

where vθ is the lift of ∂
∂t with respect to θ in order to produce a holomorphic vector field

v = vθ which will identify the fibers Xy and the divisors By. The holomorphicity of v
should be derived from integrating the formula above on Xy and using the flatness of
the direct image so that the last term in the RHS integrates to zero. Unfortunately, one
cannot work with the singular metric θ directly and one needs to regularize it, leading to
lengthy computations to ensure that the strategy can indeed be carried out.
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11.3. Applications to families of log Calabi-Yau manifolds. — Theorem 11.3
above has many geometric applications, like for instance a Kähler version of a theorem
of Ambro [Amb05] and a log version of Păun’s result [Pău17] on the surjectivity of the
Albanese map of a compact Kähler manifold with −KX nef.

Corollary 11.4. — Let p : X → Y be a fibration between two compact Kähler manifolds.
Let B be a Q-effective klt divisor on X with snc support.

• If −(KX +B) is nef, then −KY is pseudo-effective. Moreover, the Albanese map of
X is surjective.
• Moreover, if c1(KX + B) = 0 and c1(Y ) = 0, then p is locally trivial, that is, for

every y ∈ Y , there exists a neighborhood U ⊂ Y of y such that

(p−1(U), B) ' (Xy, B|Xy)× U.
In particular, if c1(KX +B) = 0, the Albanese map p : X → Alb(X) is locally trivial.

Another striking consequence is the following positivity property of direct images of pluri-
log canonical bundles. It can be seen as a logarithmic version of Viehweg’s Qn,m-conjecture
for families of log Calabi-Yau manifolds, cf [Vie83].

Corollary 11.5. — Let p : (X,B) → Y be a fibration between two compact Kähler
manifolds such that c1

(
KXy +B|Xy

)
= 0 for a generic y ∈ Y . Assume moreover that the

logarithmic Kodaira-Spencer map

(11.6) TY → R1p?
(
TX/Y (− logB)

)
is generically injective. Then the bundle p?

(
m(KX/Y +B)

)??
is big.

We remark that, based on Corollary 11.5 and some deep tools, Y. Deng [Den19] proved
recently the hyperbolicity of bases of maximally variational smooth families of log Calabi-
Yau pairs.
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PART III. POSITIVE CURVATURE

12. A decomposition theorem for Kähler-Einstein Q-Fano varieties

12.1. Kähler-Einstein metrics on Fano varieties. — Let (X,ω) be a Fano Kähler-
Einstein manifold, i.e. X is a projective manifold with −KX ample and admitting a Kähler
metric ω solving Ricω = ω. It follows from the (easy direction of the) Kobayashi-Hitchin
correspondence that the tangent bundle of X splits as a direct sum of parallel subbundles

(12.1) TX =
⊕
i∈I

Fi

such that Fi is stable with respect to −KX . Since X is simply connected, de Rham’s split-
ting theorem asserts that one can integrate the foliations arising in decomposition (12.1)
and obtain an isometric splitting

(12.2) (X,ω) '
∏
i∈I

(Xi, ωi)

into Kähler-Einstein Fano manifolds which is compatible with (12.1).

Over the last few decades, a lot of attention has been drawn to projective varieties
with mild singularities, in relation to the progress of the Minimal Model Program (MMP).
In that context, the notion of Q-Fano variety has emerged and played a central role in
birational geometry. Recall that we say that a projective variety X is a Q-Fano variety if
X has klt singularities and −KX is an ample Q-line bundle.

On the analytic side, singular Kähler-Einstein metrics with positive curvature on a
Q-Fano variety X have been introduced and studied in [BBE+19]:

Definition 12.1. — Let X be a Q-Fano variety. A Kähler-Einstein metric is a closed,
positive current ω ∈ c1(X) with bounded potentials, which is smooth on Xreg and satisfies

Ricω = ω

on that open set.

Note that the condition on the boundedness of the potentials can be replaced by the
volume condition:

∫
Xreg

ωn = c1(X)n. Singular Kähler-Einstein metrics with positive cur-

vature have played a major role in the resolution of the Yau-Tian-Donaldson conjecture,
cf [CDS15a, CDS15b, CDS15c], as they naturally appear as Gromov-Hausdorff limits
of smooth Fano manifolds along some continuity method.

12.2. Polystability of the canonical extension and applications. — A straight-
forward consequence of Myers theorem is that (Xreg, ω) is geodesically incomplete unless
X is smooth. This prevents the use of most useful results in differential geometry (like
the de Rham’s splitting theorem mentionned above) to analyze their behavior. However,
these objects are well-suited to study (poly)-stability properties of the tangent sheaf as it
was observed by [Gue16], relying on earlier results by [Eno88]. In the positive curvature
case, new difficulties arise since one cannot regularize the singular Kähler-Einstein metrics
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with an equally good control on the Ricci curvature.

Let us recall the definition of the so-called canonical extension of TX for a Q-Fano
variety X. Let F be a coherent sheaf on X sitting in the exact sequence below

(12.3) 0 −→ Ω
[1]
X −→ F −→ OX −→ 0

The sheaf F is automatically torsion-free and it is locally free on Xreg.
From now on, one assumes that the extension class of F is the image of c1(X) in

H1(X,Ω1
X) under the canonical map

Pic(X)⊗Q ' H1(X,O∗X)⊗Q→ H1(X,Ω1
X)→ H1(X,Ω

[1]
X ).

This is legitimate since KX is Q-Cartier.

Definition 12.2 (Canonical extension of TX). — The dual E := F ∗ of the sheaf
F sitting in the exact sequence (12.3) with extension class c1(X) is called the canonical
extension of TX by OX .

The exact sequence (12.3) is locally splittable since for any affine U ⊂ X, one has

h1(U,Ω
[1]
U ) = 0. In particular, when one dualizes (12.3), one see that the canonical exten-

sion of TX by OX sits in the short exact sequence below

(12.4) 0 −→ OX −→ E −→ TX −→ 0.

In [Tia92, Theorem 0.1], Tian proved that if X is a Fano manifold admitting a Kähler-
Einstein metric ω, then the canonical extension E of TX byOX admits an Hermite-Einstein
metric with respect to ω; in particular, it is polystable with respect to −KX . Of course,
this property is stronger than the polystability of TX .

With Stéphane Druel and Mihai Păun, we generalized this statement to the singular
setting:

Theorem 12.1 ([DGP20]). — Let X be a Q-Fano variety admitting a Kähler-Einstein
metric. Then the canonical extension E of TX by OX is polystable with respect to c1(X).

Strategy of proof of Theorem 12.1.

The first step is to focus on TX and prove that it is the direct sum of stable subsheaves
that are parallel with respect to the Kähler-Einstein metric ω on Xreg. This is achieved by
computing slopes of subsheaves using the metric induced by the Kähler-Einstein metric
and using Griffiths’ well-known formula for the curvature of a subbundle. However, the
presence of singularities (for X and ω) makes it hard to carry out the analysis directly
on X. One has to work on a resolution using approximate Kähler-Einstein metrics as in
[Gue16]. Yet an additional error term appears in the Fano case, requiring to introduce
some new ideas to deal with it.

The next step deals with the canonical extension E . It relies largely on the compu-
tations carried out to prove the polystability of TX , but on top of those, several new
ideas are needed to overcome the presence of singularities. First, one needs reduce the
statement to one on a resolution in order to use analytic methods. Then we use again
the technique of working with approximate Kähler-Einstein metrics, but in the current
context this has the effect of modifying the canonical extension as well. As a result, we
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cannot evaluate directly the slope of a subsheaf of the canonical extension corresponding
to the initial Kähler-Einstein metric. Dealing with this difficulty is our main contribution
in this framework. The rest of the proof uses a combination of the original idea of Tian
and the slope computations for subsheaves of TX .

In [GKP22], Greb-Kebekus-Peternell proved the following uniformization theorem:

Theorem 12.2 ([GKP22]). — Let X be a Q-Fano variety such that the canonical ex-
tension of TX is semistable with respect to to KX . Then, the following assertions are
equivalent:

(i) There exists a finite group G ⊂ PGL(n+ 1,C) acting freely in codimension one such
that

X ' Pn/G.
(ii) The Miyaoka-Yau discriminant vanishes:

(2(n+ 1)ĉ2(X)− nĉ2
1(X)) · c1(X)n−2 = 0.

Combining Theorem 12.1 and Theorem 12.2, we get the following singular version of the
usual characterization of Pn as the unique Kähler-Einstein Fano manifold with vanishing
Miyaoka-Yau discriminant:

Corollary 12.3. — Let X be a Kähler-Einstein Q-Fano variety. Then, X is isomorphic
to Pn/G for some finite group G ⊂ PGL(n+ 1,C) acting freely in codimension one if and
only if the Miyaoka-Yau discriminant of X vanishes:

(2(n+ 1)ĉ2(X)− nĉ2
1(X)) · c1(X)n−2 = 0.

12.3. The decomposition theorem. — At this point, one would like to rely on the
polystability of TX and more precisely its decomposition as direct sum of foliations TX =
⊕Ei to integrate these into a splitting of X, similarly to the smooth case (12.2), and in-
spired by the Ricci-flat case [GGK19, Dru18, HP19]. In the Fano case, the algebraic
integrability of Ei is a direct consequence of [BM16] since TX is semistable of positive slope.
However, new difficulties also arise since the singularities are klt rather than canonical and
Gorenstein. Our main result in [DGP20] is obtained by combining the polystability state-
ment above with a general splitting result for algebraically integrable foliations holding
for projective varieties of klt type:

Theorem 12.4 ([DGP20]). — Let X be a Q-Fano variety admitting a Kähler-Einstein
metric ω. Then TX is polystable with respect to c1(X). Moreover, there exists a quasi-étale
cover f : Y → X such that (Y, f∗ω) decomposes isometrically as a product

(Y, f∗ω) '
∏
i∈I

(Yi, ωi),

where Yi is a Q-Fano variety with stable tangent sheaf with respect to c1(Yi) and ωi is a
Kähler-Einstein metric on Yi.

A few remarks about Theorem 12.4.

• Theorem 12.4 shows that for all “practical aspects” the tangent sheaf of a Q-Fano
variety admitting a Kähler-Einstein metric can always be assume to be stable. Moreover,
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it can be expressed in a purely algebraic way using the notion of K-stability thanks to the
solution of the singular Yau-Tian-Donaldson conjecture [LTW22] building upon results
of [CDS15a, CDS15b, CDS15c], [Li17], [BBJ21] in the smooth case.

• The quasi-étale cover above is needed to split X even when TX is already split,
as we see by taking e.g. X = (P1 × P1)/〈ι × ι〉 where ι : P1 → P1 is the involution
ι([u : v]) = [u : −v].

• It was proved very recently by Braun [Bra21, Theorem 2] that the fundamental group
of the regular locus of a Q-Fano variety is finite. Relying on that result, one can refine
Theorem 12.4 and obtain that the varieties Yi satisfy the additional property:

π1(Y reg
i ) = {1}.

About the proof of Theorem 12.4.
With Theorem 12.1 and the algebraic integrability of the factors Ei of TX in hand, the

starting point is the observation that since each foliation Ei admits a complement inside TX ,
Ei is automatically weakly regular. It turns out that weakly regular foliations have many
nice properties. The important fact that needs to be established is that an algebraically
integrable, weakly regular foliation on a Q-factorial projective variety with klt singularities
is induced by a surjective, equidimensional morphism X → Y , cf [DGP20, Theorem 4.6].
When combined with suitable generalisations of other techniques and results in [Dru21],
this leads to the proof of Theorem 12.4.

13. The Tian-Yau metric as limit of positively curved KE cone metrics

13.1. The Tian-Yau metric. — Let X be a compact Fano manifold of dimension n > 2
endowed with a smooth anticanonical divisor D ⊂ X. Note that D is connected by the
Lefschetz hyperplane theorem. We denote by L the normal bundle of D, and we fix an
hermitian metric hL on L such that θD := iΘ(L, hL) is a Ricci-flat Kähler metric on D
(recall that KD is trivial by adjunction). This yields a function t := log |v|2h on L \D and
we also have a connection 1-form η which coincides on each fibre of L with the angular
form dθ, and satisfies

dη = −ip∗Θ(L, hL) = −p∗θD,

where p is the projection p : L → D. Since KX + D ' OX is trivial, we have a global
holomorphic n-form Ω on X with a simple pole along D, which can be suitably normalized.

On {t < 0} ⊂ L \ D, there exists a Ricci-flat metric, complete near D, given by the
expression

ωTY,L =

(
n

n+ 1

)1+ 1
n

i∂∂̄(−t)1+ 1
n

or, after expanding

(13.1) ωTY,L = ( n
n+1)

1
n
(

1
n(−t)−1+ 1

ndt ∧ η + (−t)
1
n θD

)
.
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In [TY90], Tian and Yau metric constructed a complete, Kähler metric ωTY = i∂∂̄ϕTY

on X \D satisfying

(13.2) ωnTY =
in

2

n+ 1
Ω ∧ Ω

and asymptotic to our Tian-Yau metric ωTY,L on the normal bundle near D, via a diffeo-
morphism identifying a neighborhood of D in X with a neighborhood of the zero section
in L. Precise asymptotics near D were given by Hein in [Hei12]. It follows from (13.2)
that RicωTY = 0.

The geometry of (X \D, gTY) is not so standard.

• The distance function r = d(·, x0) to a fixed point x0 is comparable to (− log |sD|)
n+1
2n

if sD is the canonical section of OX(D).

• The volume vol(B(x0, r)) of a ball of radius r behaves like r
2n
n+1 when r → +∞, that

is less than quadratic, but slightly better than linear, which is the minimal possible
growth rate for a complete Ricci flat Kähler metric by a theorem of Yau.

• The volume vol(B(x, 1)) of a ball of radius 1 is of order r(x)−
n−1
n+1 .

13.2. Degeneration of KE cone metrics. — In the same setting as above (X is Fano
andD ∈ |−KX | is a smooth divisor), we see that the Q-line bundle−(KX+(1−β)D) = βD
is ample for any β > 0. A result of Berman [Ber13] (later generalized by Song-Wang
[SW16]) asserts that there exists β0 > 0 such that for any 0 < β < β0, there exists a
unique Kähler metric ωβ on X \ D such that Ricωβ = ωβ and ωβ has cone singularities
with cone angle 2πβ along D, i.e. ωβ solves

(13.3) Ricωβ = ωβ + (1− β)[D]

in the sense of currents.
The existence of such a metric had been conjectured by Donaldson [Don12, § 6] in

relation with his program to prove that a K-stable Fano manifold admits a Kähler-Einstein
metric by using the continuity path Ricωt = tωt + (1− t)[D] involving metrics with cone
singularities. He also predicted that the (conjectural then) ωβ would actually converge to
the Ricci flat complete Kähler metric ωTY constructed by Tian and Yau in [TY90].

If n = 1, then the metrics ωβ on P1 \ {0,∞} are completely explicit, given by the

expression ωβ = β2idz∧dz̄
|z|2(1−β)(1+|z|2β)2

and one sees immediately that β−2ωβ converges locally

smoothly to the cylinder ωcyl = idz∧dz̄
4|z|2 while (P1, ωβ) converges in the Gromov-Hausdorff

sense to the interval ([0, π2 ], dt2) (set r = |z|β to that gβ = dr2+β2r2dθ2

(1+r2)2
and reparametrize

by t = tan−1(r)), cf also [RZ20].
With Olivier Biquard, we showed that this phenomenon happens in any dimension:

Theorem 13.1 ([BG22]). — Let X be a Fano manifold of dimension n and let D ∈
| − KX | be a smooth anticanonical divisor. Then up to a rescaling factor, the conic KE
metrics ωβ solving (13.3) for small β converge to the Tian-Yau metric:

β−1− 1
nωβ −→

β→0
ωTY

in C∞loc(X \D). Moreover, we have precise asymptotics of ωβ near D when β → 0.
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Finally fix a point p ∈ D, denote gβ the Riemannian metric associated to the Kähler

form ωβ and consider the renormalized volume forms νβ =
dvolgβ

volgβ (X) . Then the spaces

(X, gβ, p, νβ) converge in the measured Gromov-Hausdorff sense to the interval(
[0, π2 ], g∞ = 2

n+1ds
2, 0, ν∞ = d(cos

2n
n+1 s)

)
.

A few remarks:

• The fibers of the collapsing to an interval are the normal circle bundle of the divisor
D. The two endpoints of the interval correspond respectively to the conical divisor
D itself and to the Tian-Yau metric. Over interior points of the interval, the fibres
have two speeds of collapsing: speed β for the circle directions and

√
β for the divisor

directions.
• Several recent papers study cases of collapsing of Ricci flat Kähler metrics to an

interval, for K3 surfaces [HSVZ22] or in higher dimension [SZ19]. Our theorem
probably gives the first general example of collapsing of Kähler-Einstein metrics with
positive Ricci: of course this is made possible by the presence of a cone angle going
to zero.
• In the process of the proof, we construct the Kähler-Einstein metrics ωβ for small β,

therefore recovering Berman’s result.

Strategy of proof of Theorem 13.1.

Step 1. Construction of a Calabi cone metric.
On the normal bundle L, we look for a potential ϕβ = ϕβ(t) such that the induced

Kähler metric ωβ,L := i∂∂̄ϕβ is a Kähler-Einstein cone metric on L \D with cone angle
2πβ along D, and Ricci constant 1, i.e.

Ricωβ,L = ωβ,L + (1− β)[D].

This equation can be reduced to an ODE which is solvable explicitly in terms of some
integral, and we get a solution ϕβ(t) defined for all t < 0. Moreover, we have the crucial
relation

ϕβ(t) = ϕ1(βt)

which allows us to understand completely the asymptotic behavior of ωβ,L when β → 0.
This also indicates that the variable u := βt ∈ (−∞, 0) will be better suited for what will
follow. Using that variable, the Riemannian metric gβ,L associated to ωβ,L becomes

(13.4) gβ,L = 2ϕ′′1(u)(1
4du

2 + β2η2)− βϕ′1(u)gD

and we have the asymptotic when u→ −∞:

ϕ′1(u) = −σ +
1

n+ 1
eu +O(e2u)

from which follows, taking r = e
u
2 ∈ (0, 1),

gβ,L = 2
n+1e

u
(

1
4du

2 + β2η2
)

+ βgD +O(eu)

= 2
n+1

(
dr2 + β2r2η2

)
+ βgD +O(r2),

where the O(r2) is with respect to gβ,L and is uniform with respect to β. From this, one
understanding clearly the collapsing behavior of gβ,L when β → 0: the divisor is collapsed
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at speed
√
β while the normal circle directions are collapsing at speed β.

Step 2. The gluing.
We will use a canonical diffeomorphism Φ : U → UL identifying a neighborhood U ⊂ X

of D to a neighborhood UL ⊂ L of the zero section and which is holomorphic along the
disks normal to D. In particular, it satisfies i∂∂̄Φ∗ϕβ,L = Φ∗(i∂∂̄ϕβ,L). We can then use
a cut-off function (depending on β) to define a new potential ϕβ on X \D such that

ϕβ =

{
Φ∗ϕβ,L if u < 2uβ/

β1+ 1
nϕTY if u > uβ/2

where u = βt on U (rather the pull back of t by Φ, which we truncate on {−2 < t < −1}
to be identically −1 near ∂U and then extend by −1 on X \ U). Moreover, we choose
uβ = −βµ for some fixed µ ∈ (0, 1) which we will at the very end of the argument take
close to 1 – that is, we glue the Calabi metric to the Tian-Yau metric ”rather far away
from D in the Tian-Yau part”.

We denote by ωβ := i∂∂̄ϕβ the metric obtained this way, which patches a small
modification of the Calabi metric to the Tian-Yau metric. The asymptotic behavior of
(X,ωβ) is summarized by the picture below.

√
β

√
β1+ 1

n

u
−∞ −β

β1+ 1
nωTY

ωβ,L

2πβ

Step 3. Analysis of the linearization.
The Kähler metric ωβ is certainly not Einstein (it is Ricci flat away from D, but is

closed to having Ric = 1 near D); the strategy is deform ωβ into a (actually, the) Kähler-
Einstein cone metric ω̂β := ωβ + i∂∂̄ϕ̂β for some function ϕ̂β under control, e.g. all of

whose derivatives are a o(β1+ 1
n ) on a given compact subset of X \D.

We look at the operator

Pβ(ϕ) := log
(ωβ + i∂∂̄ϕ)n

in2Ω ∧ Ω
+ (ϕβ + ϕ)− cβ

where the constant cβ is the constant obtained for the model Calabi metric gβ,L, that is
cβ = (n+ 1) log β − log(n+ 1). We can estimate Pβ(0) explicitly, and then hope that it is
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small enough and (dPβ)−1
0 not too big so that one can find a solution Pβ(ϕ) + 0 in a ball

around 0 in some suitable functional space.
The linerarization of Pβ at 0 is simply ∆ωβ + 1 : C2,α → Cα, and the remaining on the

proof (also the bulk of it) relies on estimating its norm in some suitably weighted Hölder
spaces, that is estimating the optimal constant Cβ such that for all f ∈ C2,α, we have

(13.5) ‖f‖C2,α 6 Cβ‖(∆ωβ + 1)f‖Cα .

Since the action of ∆ωβ + 1 on constants is just the identity, it comes down to showing

(13.5) with Cβ ' 1 for functions f satisfying
∫
X fdvolgβ = 0

Assume for the time being that we can prove a Schauder estimate independent of β

(13.6) ‖f‖C2,α 6 C
(
‖f‖C0 + ‖∆ωβf‖Cα

)
.

Then, contradicting (13.5) would provide a sequence fk = fβk with βk → 0 such that

•
∫
X fkdvolgβk = 0.

• ‖fk‖C2,α = 1, ‖(∆ωβk
+ 1)fk‖Cα → 0.

• ‖fk‖C0 remains bounded away from zero.

The general idea is to pick xk where fk(xk) = η > 0 and run a blow-up argument to
extract a non-zero limit f of fk on some Gromov-Hausdorff limit of (X, gβk , xk) which
will then be endowed with a Bakry-Emery Laplacian ∆ and satisfy (∆ + 1)f = 0 which
will be prevented by the geometry of X and the integral normalization condition. There
are actually three cases to consider, depending on whether xk is asymptotically in the
zone where ωβ is either ωβ,L, ωTY or a gluing of both. For instance in the case where
one has u(xk) < η < 0, one can see that fk converges to a function f defined on some
neighborhood of the zero section in L. It turns out that f depends on u only because
the norm ‖dfβ‖C0 involves a factor β−1 in the circle direction or β−1/2 in the divisor D
direction. This implies that f = f(u) satisfies

(13.7)
f ′′(u)

ϕ′′1(u)
+ (n− 1)

f ′(u)

ϕ′1(u)
+ f(u) = 0.

Moreover, one can check that the normalizing condition translates into

(13.8)

∫ 0

−∞
f(u)ϕ′′1(u)ϕ′1(u)n−1du = 0.

The function ϕ′1(u) is an obvious solution of (13.7), it corresponds to the dilation vector
field in the bundle L. It satisfies ϕ′1(u) → −1 when u → −∞, while the other solution
can be shown to be equivalent to u near −∞, which is ruled out by the C0 bound on
fk. Therefore we see that up to a constant we must have f(u) = ϕ′1(u), which gives a
contradiction with (13.8).

Step 4. Schauder estimate.
It remains to establish (13.6), which will be achieved in several steps, each of them quite

technical and lengthy. We will just give a brief overview of the strategy.
The first step is to establish a Schauder estimates of the form

‖f‖C2,α 6 C
(
‖f‖C0 + ‖∆ωβf‖Cα

)



43

with respect to the metric
(dr2 + r2β2dθ2) + gCn−1

and valid on a ball of radius one centered on the divisor. For fixed β, the estimate was
well-known (see e.g. [GS21b, GY21, DE21]), but the novelty is to get uniformity with
respect to the angle degenerating to zero, i.e. when the circle directions collapse. Note
that since we work in a small regime, we can actually control the full C2,α norm of f and
not just the mixed derivatives.

With this first step in hand, we can relatively easily deduce Schauder estimates for 1
β gβ;

this is a scale at which the circle collapses but the divisor does not collapse. Indeed, near
the divisor 1

β gβ is essentially the one considered in the first step. Moreover, 1
β gβ turns

out to have bounded curvature so that we can obtain Schauder estimates from standard
arguments far from the divisor D, and conclude this second step.

The next and final step is to work at the scale of gβ,L, where both the circle directions
and the divisor collapse (at different speed though). In our problem we need estimates
at this scale, on balls of fixed radius, say %, for gβ,L; this corresponds to balls of larger

and larger radius %√
β

in the geometry of 1
β gβ,L; we obtain these estimates from a global

estimate on some limit of 1
β gβ,L, relying notably on Fourier decomposition and separating

the modes.

References

[Amb05] F. Ambro – “The moduli b-divisor of an lc-trivial fibration”, Compos. Math. 141
(2005), no. 2, p. 385–403.
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