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Foreword
This Habilitation à Diriger les Recherches (HDR) thesis aims to provide an overview my re-
search activities since I defended my Ph.D. in December 2012. I started working in the field
of Operations Research (OR) during my Ph.D. which focused on mixed-integer programming
methods for air traffic management. After this first research experience, I explored new ap-
plications of OR mostly in the field of, but not restricted to, transportation and logistics.
This includes notably network design and management, facility location problems, shared
and automated mobility, food rescue logistics, incentive mechanisms and pricing.

While diverse in application topics, these studies share common features: they are largely
based on optimization and game-theoretical methods ranging from mixed-integer program-
ming to bilevel optimization and mechanism design. This thesis attempts to show selected
samples of my contributions in developing such methodologies and their application to tar-
geted transportation systems.
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Chapter 1

Introduction

Motivation

Transportation systems can be viewed as the blood vessels of a society on the grounds that
they provide essential routes for the movements of vital materials that keep every organ
alive. They enable society to function by facilitating human interaction and developing
economies. Transportation occurs at various levels of human society. It can connect people,
provide access to facilities, or ship packages to populations in need. Yet, transportation
systems almost always lead to negative externalities. With few exceptions, the act of moving
is usually not desirable in itself and it is thus natural to optimize transportation with the
goal to minimize such negative externalities. The essence of transportation systems is thus
to optimize the movement of such commodities, e.g. people across places or goods between
locations. The demand for commodities is linked to human behavior, and it is natural to
represent transportation users as utility-maximizing agents. This sets the scene for game-
theoretical decision-making frameworks where agents interact with each other through a
common medium, i.e. a transportation system.

Several areas of research directly or indirectly connect with transportation systems. For
instance, civil infrastructure engineering, urban mobility, logistics, supply chain management
may all consider—and even aim to improve—a part of a transportation system relevant to
their domain of study. Hence, the optimization of transportation systems encompasses a
multitude of efforts across various disciplines including mathematics, economics, computer
science, ecology, psychology and humanities. From a methodological standpoint, this thesis
does little to address the multiple facets of transportation. The scope of this thesis is largely
restricted to operations research (OR) methods for transportation systems with an emphasis
on mathematical programming—and more specifically mixed-integer programming—based
approaches.

OR has a long history of applications in transportation. Several seminal optimization
problems in OR are related to transportation. The assignment and its extension commonly
known as the transportation problem are typical illustrations of decision problems where a
solution is said to be optimal if it minimizes the total cost of connecting two groups of agents.
The traveling salesman problem is concerned with the minimization of distance traveled.
Facility location aims to identify optimal placements of facilities based on their distance to
demand nodes. Network design seeks the optimal configuration of a network so as to minimize
the total usage costs—often travel related—induced by commodities. Trajectory optimization
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Chapter 1

deals with the movements of objects through time and space.

In the OR literature, the traditional treatment of the aforementioned decision problems
involves a mix of graph theory, combinatorial optimization, algorithm design and mathemat-
ical programming; amongst others. The modeling and the analysis of transportation systems
often goes beyond this practice by also embracing a more user-oriented perspective that aims
to take into consideration user behavior in the decision-making process. For example, the
main difference between a classical network design problem and a transportation network de-
sign problem is that the former is purely concerned with cost minimization subject to design
constraints while the latter incorporates additional network equilibrium elements to capture
the long-term behavior of utility-maximizing—or selfish—users. The incorporation of user
behavior in classical OR problems can also be viewed as the problem of finding the optimal
incentives to achieve a certain pattern which falls in the realm of mechanism design.

This brief analysis highlights the strong links existing between transportation systems
and the fields of optimization and game theory. These links stand at the heart of this thesis
which contributes to the development of solutions using OR techniques for decision-making
problems that arise in transportation systems. It should be highlighted that while this thesis
is not dedicated to the study of classical OR problems, several of the problems discussed
therein can be viewed as variants of these seminal decision problems.

Organization of the thesis

This thesis is organized around three main chapters. Each of these chapters addresses a
specific decision problem encountered in transportation systems. The chapters are organized
in terms of methodological approaches as well as by the time scale of the decision problems
addressed. Chapter 2 summarizes some contributions in the field of bilevel optimization and
its applications to transportation network design and maintenance scheduling problems. Such
decision-making problems can be viewed as strategic in that the decisions involved are based
on the long-term behavior of transportation users, which represents a network equilibrium.
Chapter 3 focuses on mixed-integer nonlinear programming (MINLP) and its applications
to aircraft conflict resolution. This is a tactical decision-making problem encountered in air
traffic control that seeks short-to-medium term actions to avoid collisions and ensure the
safe operations of aircraft in congested airspace. Chapter 4 focuses on modeling approaches
for autonomous intersection management in road traffic systems. Autonomous intersection
management can be viewed as an operational decision-making problem that aims to develop
solution approaches for enabling connected and automated mobility at traffic intersections.
Various methodologies ranging from mixed-integer linear programming (MILP), decentralized
control and mechanism design are explored to enable this future mobility paradigm. An
overview of each of these three chapters is provided below, along with some context.

Chapter 2 is concerned with network design problems in transportation. Here the time
scale is strategic, that is, long-term decisions are sought. This may include, for example, net-
work capacity addition, link maintenance or repair aspect, or even facility location decisions.
In constrat to the classical literature on network design problems, however, network design
problems in transportation aim to anticipate the reaction of network users which is typically
modeled as a Nash equilibrium problem. This sets the frame for a so-called leader-follower
game, also known as a Stackelberg game wherein the leader represents the network planner
and the follower represents the collective route choice of network users under some equilibrium
conditions. It is critical to emphasize that the strategic nature of the problem is fundamental
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since user equilibrium conditions aim to represent users’ learning of network conditions over
repeated experiences. This chapter focuses on the analysis and on the development of bilevel
optimization methods for transportation network design problems with a focus on discrete
problems wherein design decisions are represented by integer variables. An initial analysis
of the state-of-the art methods for solving bilevel optimization problems in transportation
networks is conducted. This is followed by the development of a specific method for a multi-
period network maintenance scheduling problem based on a branch-and-price approach. An
application to network disaster recovery is also briefly presented.

Chapter 3 addresses a more tactical decision-making problem in the field of air traffic
control. It focuses on the aircraft conflict resolution problem, which was also the topic of my
Ph.D., but examines an alternative modeling and optimization framework. Specifically, this
chapter summarizes recent efforts to build on and extend state-of-the-art formulations and
exact solution methods for the aircraft conflict resolution problem. Given a set of aircraft
trajectories that may lead to conflicts (loss of separation) or even collisions, the aircraft
conflict resolution problem aims to find a set of conflict-free aircraft trajectories that ensure
that minimal separation requirements are maintained at all times. The difficulty of this
problems largely depends on its decision space and on the modeling assumptions made.
This chapter tackles the continuous form of the problem where neither time nor control
actions are discretized. This variant of the aircraft conflict resolution problem is particularly
challenging since controlling aircraft headings involves manipulating trigonometric functions
that are nonlinear and also involves Euclidean distance-based separation constraints that are
nonconvex. Throughout this chapter, a new formulation based on a reformulation technique
involving complex numbers is proposed and shown to be empirically competitive compared to
state-of-the art algorithms. An extension which aims to incorporate the impact of uncertainty
on aircraft predicted trajectories in the conflict resolution problem is also presented. Initial
results demonstrate the potential of robust optimization to handle such uncertainty.

Chapter 4 targets an operational problem in the context of autonomous intersection man-
agement. Traffic intersections are major bottlenecks of urban transportation networks. Au-
tonomous intersection management is an emerging urban mobility paradigm under which
traffic intersections behave autonomously in a signal-free fashion. In this context, users are
assumed to be able to reserve space-time trajectories through intersections upon approach.
This chapter explores modeling and optimization approaches for autonomous intersection
management based on mixed-integer linear programming. A single intersection is first mod-
eled and this formulation is then embedded in a decentralized framework to consider a net-
work of intersections. A stability analysis is conducted to show how a modified max-pressure
control policy can accommodate stochastic demands. Autonomous intersection management
also opens the door to auction-based mechanisms which hold the potential to improve social
welfare by allowing users to bid for priority service. This chapter reports on advances in
the appliction of online mechanism design for developing incentive-compatible mechanisms
for traffic intersection auctions. The problem set forth is the design of an online payment
mechanism that is able to incentivize utility-maximizing users to reveal their true preferences
upon bidding for service. To this end, two Markov chain models are proposed to estimate
users’ expected waiting time. These models are incorporated into an online payment mecha-
nism that is shown to be incentive-compatible in the dynamic sense. Numerical experiments
are reported to show that, in contrast, static incentive-compatible mechanisms (i.e. that do
not account for future arrivals) may fail to ensure truthful user behavior. This motivate the
necessity to develop online mechanisms for such time-paced game-theoretic applications in
transportation systems.
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Perspectives are provided in a Chapter 5. Research directions that may build on and
extend this thesis are outlined. In addition, an attempt is made to discuss emerging trends
in optimization and game theory and their potential to improve transportation systems.

Other contributions

Throughout my academic career, I have had the opportunity to work on several interesting
topics in the field of transportation and logistics, but also in other fields of research such as
construction engineering and epidemic modeling. A brief overview of my contributions other
than those presented in the core chapters of this thesis is provided hereafter.

At the time I completed my Ph.D., research on shared mobility systems was in great
demand. This lead me to work on one-way carsharing systems based on MILP formula-
tions [Jian et al., 2016, 2019]. I participated in a couple of studies on rideharing systems that
involved real-time computing [Najmi et al., 2017], as well as simulation-based optimization
to identify user subsidies in a discrete choice modeling context [Song et al., 2021]. I had
the insightful opportunity to participate in an experimental economics study on the design
of lottery-based incentive mechanisms for promoting offpeak travel [Rey et al., 2016a]. In
a more OR context, we explored the design of demand-aware park-and-ride mobility sys-
tems [Henry et al., 2022]. Motivated by industry collaborations, I also had the opportunity
to work on vehicle routing problems: first in the context of food rescue and logistics where
fairness considerations arise [Nair et al., 2016, 2017, Rey et al., 2018], and later in the context
of rich, utility-aware dial-a-ride problems [Dong et al., 2020, 2022].

In the same vein as the works summarized in Chapter 2, I participated in several studies
on network design problems, some of which involved bilevel optimization formulations and
solution methods. In a series of studies, I contributed to study the impact of electric vehicles
and the placement of charging infrastructure on network performance [Zhang et al., 2018,
2019a,b]. The impact of facility location decisions was also studied in a sustainability context
using bilevel optimization approaches [Hammad et al., 2017b,a]. Other network design studies
focused on transit network with elastic demand [Hossein Rashidi et al., 2016], school network
capacity optimization [Barbara et al., 2021] and freeway network design in a mixed automated
mobility context [Chakraborty et al., 2021].

In other disciplines, I have developed OR techniques to solve decision-making problems
in civil engineering. This includes developing new MINLP formulations and algorithms for
construction site layout planning problems [Hammad et al., 2016a,b, 2017c], as well as new
modeling approaches for job allocation in construction organizations [Shahbazi et al., 2019]. I
started working on outbreak modeling and control nearly a decade ago by contributing to risk
analysis and modeling [Gardner et al., 2014] and also by proposing combinatorial optimization
approaches to solve a variant of the Steiner tree problem [Rey et al., 2016b]. Other efforts in
this research direction have been focused on developing multiscale network models to evaluate
and optimize the impact of control strategies for mitigating global outbreaks [Chen et al.,
2016, 2017, Zlojutro et al., 2019].

The rest of the thesis follows the plan outlined above which includes three core chapters
and a final chapter wherein research perspectives are discussed. For conciseness, all mathe-
matical proofs of propositions, lemmas and theorems are omitted, and readers are referred
to the associated publications for these details.
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Chapter 2

Bilevel optimization problems in
transportation networks

This chapter is based on Rey et al. [2019], Rey [2020], Rey and Bar-Gera [2020].

2.1 Introduction

We first consider the discrete network design problem (DNDP) which is a challenging problem
in transportation, introduced by Leblanc [1975]. The DNDP can be formulated as a bilevel
optimization problem where the leader problem aims to identify the optimal network design
to minimize network travel time and the follower problem represents network users’ reaction,
typically as a static traffic assignment problem (TAP) under user equilibrium [Wardrop,
1952].

The DNDP can be defined on a network with nodes N and directed links A as a multi-
commodity network flow problem with nonlinear link travel time functions. Let D be the set
of destination nodes and dis be the demand from node i ∈ N to destination node s ∈ D ⊆ N .
If the pair (i, s) is not an Origin-Destination (OD) pair in the network then dis = 0 and to
ensure flow conservation we set dss = −∑i∈N dis. We denote xij,s the flow of on link (i, j) ∈ A
travelling to destination s ∈ D, and xij the total flow on link (i, j) ∈ A. Let tij represent the
travel time on link (i, j) ∈ A, typically modelled as a strictly convex function of the total link
flow xij to ensure the uniqueness of the equilibrium link flows. Let A1 be the set of existing
links and A2 be the set of candidate links to improve the network, A = A1 ∪ A2. For each
link (i, j) ∈ A2, let gij be the cost of adding this link to the network and let yij ∈ {0, 1} be
the variable representing this choice. Let B be the available budget for optimization. In the
resulting formulation DNDP, L is the leader problem and F is the follower problem.

The leader problem L aims to minimize the total system travel time (TSTT) defined as
the sum of xijtij(xij) over all links, subject to a budget constraint capturing the cost of link
addition decisions y—hereby referred to as the leader variable. The link flow pattern variable
x = [xij ](i,j)∈A is optimized in the follower problem F , which is the traditional link-based
TAP formulation under UE [Beckmann et al., 1956, Leblanc, 1975, Magnanti and Wong,
1984]. The impact of the leader variable y in the follower is achieved through the constraint
xij ≤ yijM wherein M is an upper-bound on the total link flow xij .
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(L) min
y

∑
(i,j)∈A

xijtij(xij),

s.t.
∑

(i,j)∈A2

yijgij ≤ B,

yij ∈ {0, 1}, ∀(i, j) ∈ A2,

(F) x ∈ arg min
x

∑
(i,j)∈A

∫ xij

0
tij(v)dv,

s.t.
∑

j∈N :(i,j)∈A

xij,s −
∑

j∈N :(j,i)∈A

xji,s = dis, ∀i ∈ N, ∀s ∈ D,

∑
s∈D

xij,s = xij , ∀(i, j) ∈ A,

xij ≤ yijM, ∀(i, j) ∈ A2,

xij,s ≥ 0, ∀(i, j) ∈ A,∀s ∈ D.
(DNDP)

The goal of this chapter is threefold. A summary of the state-of-the-art of exact method-
ologies for the DNDP is first presented and a computational benchmark is conducted to high-
light existing computational bottlenecks (Sections 2.2-2.3.3). An application of the DNDP
for a network maintenance scheduling problem is then presented (Section 2.4) along with its
extension to a network disaster recovery problem (Section 2.5).

2.2 Literature review

Several efforts have been proposed to solve the DNDP to global optimality. The seminal
work of Leblanc [1975] introduced a Branch-and-Bound (B&B) algorithm for the DNDP
which used the system-optimum (SO) relaxation of the TAP to find lower bounds. This
relaxation requires fixing all unfixed y variables to 1 to avoid Braess’ paradox effects [Braess,
1968], and may thus lead to poor lower bounds. Gao et al. [2005] introduced a mixed-integer
nonlinear programming (MINLP) approach based on generalized Benders’ decomposition.
The authors proposed a benchmark network with a single origin-destination (OD) pair, 12
nodes, 17 existing links and 6 candidate links, commonly referred to as Gao’s instance. They
also provided results for an instance based on the Sioux Falls network which contains 24 zones
and nodes, 76 existing links and 5 candidate projects (which may involve one or more links)
but computation time is not reported. It was noted by Farvaresh and Sepehri [2013] that
despite claims of global optimality, the proposed approach of Gao et al. [2005] may converge
to local optimums.

Bilevel optimization problems with a convex follower problem can be reformulated into
single-level formulations by representing the follower problem using its Karush-Kuhn-Tucker
(KKT) conditions and introducing binary variables to model complementarity slackness con-
ditions [Bard, 2013]. This applies to the DNDP since the follower problem is a TAP which
can be represented as a convex nonlinear program (NLP) [Beckmann et al., 1956]. Farvaresh
and Sepehri [2011] proposed a mixed-integer linear programming (MILP), single-level refor-
mulation of the DNDP obtained using piecewise linear approximations of link travel time
functions. Numerical results are only reported for Gao’s instance and an extended network
based on Gao’s instance which contains 16 nodes, 17 existing links and 25 candidate links, and
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2 OD pairs. Farvaresh and Sepehri [2013] proposed a more scalable approach which extends
the seminal B&B of Leblanc [1975] by solving the SO relaxation of the DNDP—instead of
the TAP—as a mixed-integer nonlinear program (MINLP) to provide tighter lower bounds.
This extended B&B algorithm was shown capable to solve instances with up to 100 nodes,
387 links and 15 candidate projects.

Luathep et al. [2011] proposed an SO-relaxation based approach wherein variational in-
equalities (VIs) are iteratively added to ensure UE conditions. Numerical results are re-
ported for Gao’s instance, as well as for an instance on Sioux Falls network with 5 candidate
projects, and a variation with 10 candidate projects for a mixed (discrete and continuous)
case. Fontaine and Minner [2014] proposed a Benders’ decomposition of a single-level MILP
reformulation of a linearized DNDP with piecewise linear approximations of link travel time
functions. Using this decomposition, the authors are able to solve this linearized DNDP
on a network of Berlin’s centre containing 36 zones, 398 nodes, 871 links and 10 candidate
projects.

Wang et al. [2013] studied an extended DNDP where the capacity of candidate links must
also be decided. They present two global optimization algorithms which are based on the
SO-relaxation of the DNDP, as well as a dynamic outer approximation of link travel time
functions to derive lower bounds. Numerical results for a Sioux Falls network instance with
up to 10 candidates links and 3 levels of capacity are reported. Wang et al. [2015] extended
the DNDP to a variant involving both discrete and continuous decisions variables for adding
links and determining their capacity, respectively. The authors used the VI formulation
of Luathep et al. [2011] but combine it with an outer approximation of link travel time
functions. Numerical results are only reported for Gao’s instance. Bagloee et al. [2017]
proposed a B&B algorithm which uses a generalized Benders’ decomposition approach to
solve the SO-relaxation of the DNDP at each node of the tree. Results on Sioux Falls and
Winninpeg’s network are reported with up to 20 candidate projects.

Although several efforts have been proposed to solve the DNDP or a linear approximation
of this problem, the literature on exact or near-exact approaches remains scarce. Further,
there is no reference datasets for benchmarking solution methods which undermines the
research on this challenging bilevel optimization problem.

2.3 Computational benchmarking of exact methods for the
DNDP

In this section, we discuss formulations and algorithms to the solve the DNDP to optimality.
We start by discussing the role of link travel time functions and attempt to categorize existing
solution methodologies for the DNDP.

A major computational challenge inherent to the DNDP is the nonlinearity of the link
travel time functions tij(xij), typically Bureau of Public Roads (BPR) functions. The con-
sensus on link travel time functions is to use strictly convex functions of the form tij(xij) =
Tij + cijx

eij

ij where Tij represents link free-flow travel time, cij is a coefficient which captures
link capacity and eij ≥ 1 is an exponent; to ensure uniqueness of the link flow solution. The
vast majority of existing data for link travel time functions of this form assumes eij = 4
for all (i, j) ∈ A. Link travel time functions are present in the objective function of both
leader and follower problems in the form xijtij(xij) which involves the nonlinear term x

eij+1
ij .
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This term, and sometimes term x
eij

ij , have been either approximated using piecewise linear
functions [Farvaresh and Sepehri, 2011, Luathep et al., 2011, Fontaine and Minner, 2014] or
using linear outer approximation schemes [Wang et al., 2013, 2015].

Piecewise linear approximations require discretizing the domain of link flow variable x
into m disjunctive segments and requires O(m) auxiliary variables to adjust the approximated
nonlinear term according to the segment activated. The domain of link flows is typically de-
fined as xij ∈ [0, x̄ij ] where x̄ij is the maximum flow that can travel on link (i, j). Determining
tight values for the upper bound x̄ij is not trivial and using a conservative value such as the
total demand of the network may lead to poor approximation schemes. However, since the
nonlinear terms xeij

ij and x
eij+1
ij are convex on [0, x̄ij ], piecewise linear approximations of

these terms do not require any integer variables, as noted by Farvaresh and Sepehri [2011]
and in Fontaine and Minner [2014]. Hence, while piecewise linear approximation may require
a significant amount of additional variables and linear constraints to achieve high-quality
solutions, their impact on computational performance can be moderate.

Outer approximations of link travel time functions attempt to derive compact convex
envelopes of nonlinear terms xeij

ij and x
eij+1
ij using integer-linear constraints. These schemes

are notoriously computationally challenging but guarantee that the original (non-linearized)
DNDP is solved to optimality. Only in rare cases have link travel time functions been in-
corporated without any direct approximation scheme [Farvaresh and Sepehri, 2013, Bagloee
et al., 2017].

We next discuss exact methodologies for the DNDP which have adopted one of the above
approaches to handle link travel time functions. Since piecewise linear approximations of link
travel time functions cannot be guaranteed to converge to optimal solutions unless m→∞,
such methodologies are referred to as linearized DNDP approaches.

2.3.1 SO-relaxation based approaches

Despite its potential weak initial lower bound, the SO-relaxation of the DNDP has emerged
as a powerful mechanism to conceive iterative solution methods for the DNDP. The SO-
relaxation of the DNDP is a single-level optimization problem which ignores the follower
objective function as summarized in SO-DNDP.

min
x,y

∑
(i,j)∈A

xijtij(xij),

s.t.
∑

(i,j)∈A2

yijgij ≤ B,

∑
j∈N :(i,j)∈A

xij,s −
∑

j∈N :(j,i)∈A

xji,s = dis, ∀i ∈ N, ∀s ∈ D,

∑
s∈D

xij,s = xij , ∀(i, j) ∈ A,

xij ≤ yijM, ∀(i, j) ∈ A2,

yij ∈ {0, 1}, ∀(i, j) ∈ A2,

xij,s ≥ 0, ∀(i, j) ∈ A,∀s ∈ D.

(SO-DNDP)

Solving SO-DNDP yields a lower bound on the optimum of DNDP which can serve as
starting point of iterative schemes. Leblanc [1975] was the first to propose a customized
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B&B algorithm which branches on unfixed y variables to yield subproblems that refine the
initial lower bound. At each node of the B&B tree, Leblanc [1975] approach further relaxed
SO-DNDP by temporarily fixing all unfixed y variables and solving the resulting SO-TAP
using a convex programming algorithm, e.g. Frank-Wolfe. This B&B scheme was refined and
extended by Farvaresh and Sepehri [2013] which proposed to solve SO-DNDP at each node
of the tree using a global MINLP algorithm. Upper bounds are obtained by solving the TAP
under UE conditions after obtaining y from SO-DNDP.

Bagloee et al. [2017] proposes a B&B algorithm which uses generalized Benders’ decom-
position approach to solve the SO-relaxation of the DNDP at each node of the tree. The
proposed algorithm is parameterized using a value (denoted α) which influences the solution
of the TAP solved therein. The algorithm is not guaranteed to find global optimal solutions
if α ̸= 1.

Luathep et al. [2011] proposed a cutting-plane algorithm to complement formulation SO-
DNDP with VIs that characterizes UE conditions [Dafermos, 1980]. Let ΩF be the polyhedron
of the feasible region of the follower problem F and let x⋆ be the UE link flow pattern, the
following VI holds: ∑

(i,j)∈A

tij(x⋆
ij)(xij − x⋆

ij) ≥ 0, ∀x ∈ ΩF . (2.1)

The approach of Luathep et al. [2011] is based on the observation that VIs corresponding
to the set of extreme points of the TAP polyhedron is sufficient and necessary to characterize
UE conditions. At each iteration, SO-DNDP is solved with a restricted set of VIs and shortest
path problems are solved for each OD pair to identify violated VIs of the form (2.1), which
are then added as cuts to SO-DNDP until none can be found.

Wang et al. [2013] observed that it was sufficient to iteratively forbid the last y solution
found to construct a UE solution from the SO-relaxation of the DNDP. At each iteration, the
proposed algorithm first solves SO-DNDP before calculating the UE cost of the corresponding
y solution using any TAP algorithm to obtain an upper bound. The process is then repeated
by adding an interdiction constraint to identify the next-best SO network design. Let yk be
the optimal solution of SO-DNDP at iteration k. At iteration k+1, SO-DNDP is solved with
the interdiction constraint:∑

(i,j)∈A2

(
yij(1− yn

ij) + (1− yij)yn
ij

)
≥ 1, ∀n ∈ {1, . . . , k}. (2.2)

The iterative process is repeated until the resulting objective value is greater than or
equal to the upper bound.

2.3.2 KKT conditions-based approaches

Since the TAP can be formulated as a convex optimization problem, an intuitive approach
to solve the DNDP is to replace the follower problem F by its KKT conditions. Farvaresh
and Sepehri [2011] proposed such a direct approach wherein the KKT conditions of the TAP
are represented with auxiliary variables. Let πis ≥ 0 be the travel time or path travel time
from node i ∈ N to destination s ∈ D. The UE conditions of the TAP require:
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Link travel time function Type(s) of optimization
Paper Method approximation problem solved

Leblanc [1975] SO-relaxation and B&B N/A Convex NLP
Gao et al. [2005] Generalized Benders’ N/A MINLP and Convex NLP

decomposition
Farvaresh and Sepehri [2011] KKT conditions Piecewise linear MILP
Luathep et al. [2011] SO-relaxation and VIs Piecewise linear MILP and LP
Farvaresh and Sepehri [2013] SO-relaxation and B&B N/A MINLP and Convex NLP
Wang et al. [2013] SO-relaxation and Outer linear MILP and Convex NLP

interdiction cuts
Fontaine and Minner [2014] KKT conditions and Piecewise linear MILP and LP

Benders’ decomposition
Wang et al. [2015] SO-relaxation and VIs Outer linear MILP and LP
Bagloee et al. [2017] B&B and Generalized N/A MINLP and Convex NLP

Benders’ decomposition

Table 2.1: Summary of exact methodologies for the DNDP.

tij(xij)− πis + πjs ≥ 0, ∀(i, j) ∈ A,∀s ∈ D, (2.3a)
xij(tij(xij)− πis + πjs) = 0, ∀(i, j) ∈ A,∀s ∈ D. (2.3b)

The complementarity slackness conditions (2.3b) is nonlinear and typical mathematical
programming approaches require additional binary variables to obtain an integer-linear form
suitable for MILP. Farvaresh and Sepehri [2011] observe that this surplus of binary variables
yields considerable computational challenge. Fontaine and Minner [2014] proposed an alter-
native approach to incorporate the KKT conditions of the TAP which consists of replacing
the objective of the follower problem F with a primal-dual constraint which requires a null
duality gap. This method is applied to a linearized DNDP, which results in a single-level
MILP composed of leader, primal follower and dual follower constraints and variables, with
the addition of the primal-dual constraint. This MILP does not require any additional binary
variable and the authors propose a Benders’ decomposition approach.

A summary of the solution methods discussed is provided in Table 2.1. Most of these
methodologies can be adapted to work with piecewise linear or outer- approximations of link
travel time functions. While the former only solves the so-called linearized DNDP, piecewise
linear approximations are often capable of identifying global optimal solutions of the original
problem and are, at the same time, substantially easier to implement.

2.3.3 Numerical experiments for the linearized DNDP

We implement three solution methods for the linearized DNDP: i) the B&B algorithm
of Farvaresh and Sepehri [2013] which is an extension of Leblanc [1975]—SOBB; ii) the
SO-relaxation based algorithm of Wang et al. [2013] with interdiction cuts—SOIC, and iii)
the primal-dual formulation of Fontaine and Minner [2014] as a single-level MILP (without
Benders’ decomposition)—MKKT. All three solution methods, SOBB, SOIC and MKKT, are
implemented using the piecewise linear approximation of link travel time functions proposed
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by Farvaresh and Sepehri [2011]. Hence, in all cases, the optimization problems solved are
MILPs and LPs (TAPs within SOBB and SOIC are solved in their linearized form). This
differs from the original implementation of Farvaresh and Sepehri [2013] and Wang et al.
[2013], wherein outer approximation schemes are used. In addition, the method MKKT is
implemented as direct MILP approach unlike the Benders’ decomposition scheme proposed
in Fontaine and Minner [2014]. To measure the quality of the approximated solutions, the
flow pattern corresponding to the best (lowest leader objective value) y solution among all
three methods is calculated by solving the TAP as a convex problem.

All methods are implemented in Python. All MILPs and LPs are solved using CPLEX
12.8. Convex TAPs are solved using the Pyomo module and IPOPT. All solution methods
were tested and implemented on the same Windows 7 machine with 16Gb of RAM and
a CPU of 2.7Ghz, in a single-thread mode with a time limit of 10 minutes. The upper
bound on link flows x̄ij was set to 1e5 and this value is also used for M . The number of
segments used in the piecewise linear approximations of link travel time functions is m =
100. A scaling factor of 1e−3 is used to scale travel demand and link capacities as it was
found to improve computational performance. For reproducibility purposes, all implemented
optimization formulations and codes are provided at https://github.com/davidrey123/
DNDP.

New instances for the DNDP based on Sioux Falls network1 have been designed to test the
implemented solution methods. For these new instances, a total of 15 pairs of new links (total
of 30 links) have been created, along with their performance characteristics and addition costs.
Among these new links, 5 of the 15 pairs are identical to the ones used by Luathep et al.
[2011]. A total of 20 DNDP instances have been created, 10 of these contain 10 new links (5
pairs) and are named SF_DNDP_10, and the remaining contain 20 new links (10 pairs) and are
named SF_DNDP_20. In all our numerical experiments, link addition variables are not paired,
i.e. the size of A2 is equal to the total number of new links which may or may not be added
in pairs; hence instances SF_DNDP_10 require 10 binary variables and instances SF_DNDP_20
require 20 binary variables. All instance data is provided in the public repository available at
https://github.com/davidrey123/DNDP in the TNTP format. An extra column has been
appended to provide link cost data (gij) and a value of 0 indicates that the link is part of the
original network (before optimization).

Two numerical experiments are conducted on instances SF_DNDP_10 and SF_DNDP_20: a
budget sensitivity analysis wherein the available budget B is equal to 25%, 50% and 75% of
the total cost ∑(i,j)∈A2 gij , and a demand sensitivity analysis wherein the budget is fixed to
50% of the total cost and travel demand is set to 50%, 100% and 150% of the base demand.
The average performance of all three methods implemented, i.e. SOBB, SOIC and MKKT,
is reported in Tables 2.2 and 2.3 for budget and demand sensitivity analysis, respectively.

We find that 10-project instances SF_DNDP_10 can present considerable computational
challenges, especially for SO-relaxation based methods when the budget available is relatively
high (B% = 75%). Increasing the number of candidate links to 20 results in substantial
difficulties in most cases, regardless of the method used, since most of the time the methods
implemented were not able to converge within the 10-minute time limit. The results of the
budget sensitivity analysis on SF_DNDP_10 instances show that MKKT is often faster than
other methods at medium and high budgets (B% = 50%, 75%). In turn, SOIC and SOBB
tend to time-out more frequently at these budgets, which is likely due to the more substantial

1These instances are based on Sioux Falls network as available at https://github.com/bstabler/
TransportationNetworks
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SF_DNDP_10 SF_DNDP_20

B% = 25% B% = 50% B% = 75% B% = 25% B% = 50% B% = 75%

Method AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO

SOBB 56.8 0.00 0 333.8 0.39 20 484.9 1.75 60 600 2.48 100 600 4.76 100 600 6.07 100
SOIC 33.8 0.00 0 283.4 0.31 20 357.5 0.69 40 600 3.76 100 600 4.44 100 600 5.26 100
MKKT 57.2 0.00 0 170.6 0.00 0 155.8 0.00 0 600 5.68 100 600 6.46 100 600 6.21 100

Table 2.2: Budget sensitivity experiment. Methods SOBB, SOIC and MKKT are imple-
mented for instances SF_DNDP_10 and SF_DNDP_20 for a budget B equal to B% = 25%, 50%
and 75% of the total cost ∑(i,j)∈A2 gij . The time limit is 10 minutes. AT is the average
runtime in seconds, AG is the average relative optimality gap upon termination in % and TO
is the proportion of time-outs in %.

SF_DNDP_10 SF_DNDP_20

D% = 50% D% = 100% D% = 150% D% = 50% D% = 100% D% = 150%

Method AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO AT AG TO

SOBB 537.7 0.54 80 336.6 0.40 20 79.2 0.00 0 600 2.38 100 600 4.75 100 432.2 0.24 40
SOIC 513.8 0.56 80 284.6 0.34 20 14.6 0.00 0 600 2.14 100 600 4.44 100 254.9 0.12 30
MKKT 87.9 0.00 0 172.1 0.00 0 65.9 0.00 0 600 2.58 100 600 6.46 100 519.8 1.43 50

Table 2.3: Demand sensitivity experiment. Methods SOBB, SOIC and MKKT are imple-
mented for instances SF_DNDP_10 and SF_DNDP_20 for a budget B equal to 50% of the total
cost ∑(i,j)∈A2 gij and a demand of D% = 50%, 100% and 150% of the base demand. The
time limit is 10 minutes. AT is the average runtime in seconds, AG is the average relative
optimality gap upon termination in % and TO is the proportion of time-outs in %.

gap between UE and SO flow patterns when a high budget is available. At low budget (B% =
25%), SOIC outperforms other methods. Instances SF_DNDP_20 result systematically in time-
outs and the average optimality gap upon termination tends to increase with the budget. The
performance of all three methods is of the same order of magnitude, with optimality gaps
in the range of 3%-6%. The demand sensitivity analysis highlights the good performance of
MKKT at low demand (D% = 50%) compared to other methods on SF_DNDP_10 instances.
Increasing the demand to 150% of the base demand yields substantially easier problems,
notably for SF_DNDP_20 instances, and SOIC is found to outperfom other methods in terms
of number of time-outs. To assess the quality of the linear approximation of link travel time
functions, we compare the network travel time obtained by solving the TAP in its convex
NLP form for the best y solution found among all three methods. The deviation observed is
on average of 0.28% with a standard deviation of 0.25%.

Overall, this study shows that even medium-size instances for the linearized DNDP can
present considerable computational challenges. The numerical experiments revealed that
some 10-project instances and most 20-project instances could not be solved within the im-
posed time limit (10 minutes). Although this time limit is relatively small, all methods were
implemented using a piecewise linear approximation of link travel time functions which is
expected to outperform outer approximations approaches.
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2.4 Maintenance scheduling in transportation networks

Road maintenance and repair operations are conducted regularly in major cities. This is
due to the numerous links that connect the transport network as well as to the high travel
demand which contributes in deteriorating road quality. In addition, the organization of
urban areas often relies on the road network to incorporate utility networks, such as electricity,
telecommunications and water networks. As a result, lane or road closures—hereby referred
to as maintenance projects—are frequent and can lead to significant delays within the city
if they are conducted without any coordination across the network. In this section, we
address the problem of determining an optimal schedule for the conduction of maintenance
projects in urban transportation networks. The impact of link capacity reductions induced
by maintenance projects onto network performance is measured by the TSTT. We propose a
novel solution method for the Network Maintenance Scheduling Problem (NMSP) that finds
a schedule which minimizes the TSTT over a planning period subject to project schedule
constraints.

The first effort to account for traffic dynamics in network maintenance scheduling can
be attributed to Chang et al. [2001] who proposed a tabu search approach to solve the op-
timization problem. The authors implement their approach on a 6-project scenario derived
from the Colombus, Ohio network which comprises 5,441 nodes and 12,658 links. All projects
are of equal duration and at most 2 projects can be conducted in parallel (i.e. 2 teams are
available), thus considerably reducing the number of possible patterns. Subsequent works
have mainly focused on meta-heuristics approaches to solve this bilevel scheduling problem.
Ng et al. [2009] used a cell transmission model to account for users’ reaction and proposed a
genetic algorithm-based solution method. The authors implemented the proposed methodol-
ogy on a test network with 13 nodes and 24 links where each link can be eligible for yearly
maintenance over a 3-year planning period. Lee [2009] considered a framework that com-
bines ant colony optimization with a microscopic traffic simulation model to represent traffic
delays caused by maintenance projects. The framework is implemented on a realistic case
study derived from a sewer system construction project on a network with 292 nodes and 178
links. A total of 35 maintenance projects are considered with a maximum of 5 teams over a
planning period of 270 days. A similar approach is used by Xiong et al. [2014] where an ant
colony optimization approach is used along with a static traffic assignment model to account
for users’ reaction. The proposed approach is tested on a 6-project scenario derived from the
Chicago Sketch network which includes 933 nodes and 2,950 links over a planning period of 36
months. Chu and Chen [2012] proposed a hybrid dynamic model to simulate threshold-based
maintenance based on pavement life-cycle. The bilevel optimization formulation is solved
using a modified tabu search algorithm on a network with 70 nodes and 270 links. A 10-year
planning period is considered over which all links are eligible for maintenance operations.
Zheng et al. [2012] introduced a detailed modeling framework for representing maintenance
project features, such as day/night time construction strategies, and used an approximation
of the UE travel times to account for traffic delays. Fontaine and Minner [2017] proposed an
exact approach for the bilevel network maintenance planning problem which is based on a
Benders’ decomposition method of a single-level reformulation of the original problem. The
optimality conditions of the TAP are used as equilibrium constraints. In their formulation,
they assume that a budget is available for maintenance costs. Numerical results on the Sioux
Falls network and an extended Sioux Falls network of 100 nodes of 317 links are reported for
planning periods of 10 and 8 time steps, respectively.

We propose a new bilevel programming formulation and develop a solution methodol-
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ogy based on maintenance project patterns enumeration. This representation of the NMSP
involves a number of decision variables which grows exponentially with the number of main-
tenance projects. We propose a new Branch-and-Price (B&P) algorithm to solve this bilevel
problem. Namely, we introduce customized branching and bounding rules, and develop a
Column Generation (CG) procedure to solve the Linear Programming (LP) relaxation of a
restricted problem at each node of the tree. Problem-specific pricing algorithms are proposed
to iteratively introduce profitable project patterns in the formulation. In addition, we intro-
duce a statistical regression model to approximate congestion effects and derive approximated
lower bounds within the optimization framework.

2.4.1 Network maintenance scheduling

The coordination of maintenance projects within a transport network must satisfy operational
constraints (e.g. spatial and temporal restrictions) and should have a minimal impact onto
network performance. Specifically, we focus on a planning period (e.g. one year) during
which all projects must be completed in consecutive time periods (e.g. one week). The
consecutiveness assumption is consistent with the operations of traffic management centers
in which road maintenance projects are conducted without interruption from their starting
date. It is important to stress that we are mostly concerned with maintenance projects
that have an impact during peak-hour traffic. Strictly overnight work and other off-peak
road maintenance projects with no impact on traffic conditions may be scheduled without
accounting for their influence on network performance. Hence, in this section, we focus on
maintenance projects that span one or more time periods and reduce the capacity of the
associated links during the entire duration of the project.

The proposed network maintenance scheduling problem can be defined on a directed graph
G = (N,A) where the set of nodes N represents travel demand centroids or intersections,
and the set of arcs A represents links among nodes. We assume that the set of projects is
known at the beginning of the planning horizon and we assume that the recovery time of each
project is known deterministically. The network travel time at each time period is determined
based on network link states and its associated traffic assignment pattern determined under
the UE principle. We denote Qw the demand for a specific OD pair w ∈ W , Πw its set of
paths and fw

k the flow on path k ∈ Πw. In addition, we denote δw
a,k the fixed binary value

indicating if link a ∈ A belongs to path k ∈ Πw (1) or not (0). Finally, we denote xa the flow
on link a ∈ A. Let ma denote the state of link a ∈ A. The TAP corresponding to a network
state vector m is summarized in (2.4). Note that bold symbols are used to denote vectors
throughout the chapter.

x⋆(m) ∈ arg min
∑
a∈A

∫ xa

0
ta(v,ma)dv, (2.4a)

s.t.
∑

k∈Πw

fw
k = Qw, ∀w ∈W, (2.4b)

∑
w∈W

∑
k∈Πw

fw
k δ

w
a,k = xa, ∀a ∈ A, (2.4c)

fw
k ≥ 0, ∀w ∈W,k ∈ Πw, (2.4d)
xa ≥ 0, ∀a ∈ A. (2.4e)
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Observe that the link flow pattern x⋆(m) depends on the network state vector m. The
network travel time under UE, also known as the total system travel time, corresponding to
network state m, denoted TSTT (m), is thus calculated as follows:

TSTT (m) = x⋆(m)⊺ t(x⋆(m),m) =
∑
a∈A

x⋆
a(m)ta(x⋆

a(m),ma). (2.5)

Let P be the set of network maintenance projects that must be conducted and let T be the
set of time periods within the planning period considered. Each maintenance project p ∈ P
is defined by the following attributes: the set of links affected by the project Ap ⊆ A, ∀p ∈ P ;
link capacity reduction ratios Ra ∈ [0, 1],∀a ∈ Ap; and project duration Dp ∈ {1, . . . , |T |}.
The set of links affected by each project is typically a subset of the network links and we
assume that each link can only be affected by at most one project during the planning period.
The link capacity reduction Ra is assumed to be a percentage of the maximal capacity of
link a ∈ A. A reduction of 0% for all links of the network (Ra = 0, ∀a ∈ A) corresponds to
the base scenario in which no project is active and all links operate at maximal capacity. If
a project p is active, then all links a ∈ Ap see their capacity reduced by 100 × Ra%. Each
project p must be active for Dp consecutive time periods and completed within the planning
period. Hence, for each project p ∈ P , the set of feasible start times Fp can be defined as:

Fp ≡ {0, . . . , |T | −Dp}. (2.6)

We introduce binary decision variables to represent project start times:

gs,p ≡
{

1 if project p starts at time period s,

0 otherwise,
∀p ∈ P,∀s ∈ Fp. (2.7)

and impose the project schedule constraints:∑
s∈Fp

gs,p = 1, ∀p ∈ P. (2.8)

To connect maintenance projects with the network performance metric (TSTT) we pro-
pose to enumerate all the capacity patterns c resulting from all possible maintenance project
combinations. The number of possible project combination is 2|P |. For each project combina-
tion P̄ ⊆ P—i.e. all projects in P̄ are active—the capacity of the links ⋃p∈P̄ Ap is reduced. We
refer to the corresponding link capacity vector c as a capacity pattern. Since links are associ-
ated with maintenance projects, it is more adequate to handle project patterns than capacity
patterns. Let Σ ≡ {0, . . . , 2|P | − 1} be the set of all project patterns, for each pattern σ ∈ Σ,
we denote TSTT (σ) its associated TSTT under UE conditions. That is, TSTT (σ) represents
the total network travel time corresponding to the unique TAP link flow solution under UE
if pattern σ is active. Observe that each project pattern σ corresponds to a unique network
state vector m with TSTT (σ) = TSTT (m). Further, each pattern can be represented as a
binary vector where each component indicates if the corresponding project is active in this
pattern or not. For instance, consider a scenario with 10 projects: P = {1, . . . , 10}; the
pattern consisting of all odd numbered projects is σ = {1, 3, 5, 7, 9} and this pattern can
be encoded as the binary vector φ = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0] where φp ∈ {0, 1} indicate the
activeness of p ∈ P—we henceforth refer to φ as the binary representation of σ. Throughout
this chapter we use alternatively m, σ and φ to denote a pattern whenever convenient.

15



Chapter 2

The objective of the NMSP is to minimize the overall TSTT over the planning period T .
Hence a possible formulation for the NMSP is to view the decision problem as that of selecting
the optimal sequence of patterns subject to project schedule constraints. We introduce binary
decision variables to represent the pattern selection at each time interval:

kt
σ ≡

{
1 if pattern σ is selected at time period t,

0 otherwise,
∀σ ∈ Σ, ∀t ∈ T. (2.9)

and impose the pattern selection constraints:∑
σ∈Σ

kt
σ = 1, ∀t ∈ T. (2.10)

The objective function of the upper level of the NMSP can then be formulated as:

min
∑
t∈T

∑
σ∈Σ

TSTT (σ)kt
σ. (2.11)

To link the project schedule variables with the pattern selection variables, we introduce
two binary matrices [γσ,p] and [ζt

s,p] defined as:

γσ,p ≡
{

1 if project p is active in pattern σ,

0 otherwise,
∀p ∈ P,∀σ ∈ Σ, (2.12)

ζt
s,p ≡

{
1 if s ≤ t ≤ s+Dp − 1,
0 otherwise,

∀p ∈ P,∀s ∈ Fp, ∀t ∈ T. (2.13)

Matrix [γσ,p] maps maintenance projects to patterns while matrix [ζt
s,p] maps a project

start time s ∈ Fp to Dp consecutive time periods. The linking constraints are:∑
σ∈Σ

kt
σγσ,p =

∑
s∈Fp

gs,pζ
t
s,p, ∀p ∈ P,∀t ∈ T. (2.14)

Let g denote the vector of variables gs,p, ∀p ∈ P,∀s ∈ Fp and k denote the vector of
variables kt

σ, ∀σ ∈ Σ,∀t ∈ T . The space delimited by constraints (2.8), (2.10) and (2.14)
represents the feasible region for the binary variables g and k. We show that, under these
constraints, the integrality constraints on variables k can be relaxed.

Proposition 2.1. The integrality constraints on variables k can be relaxed.

Proposition 2.1 allows us to relax the integrality constraints on variables kt
σ and helps in

significantly reducing the number of subproblems in a Branch-and-Bound (B&B) framework.
Further, because of the pattern selection constraint (2.10), the upper bound on variables kt

σ

can be dropped. The resulting formulation for the NMSP is summarized in Model 2.1.
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Model 2.1 (NMSP).

zNMSP = min
∑
t∈T

∑
σ∈Σ

TSTT (σ)kt
σ, (2.15)

s.t.
∑

s∈Fp

gs,p = 1, ∀p ∈ P, (2.16)

∑
σ∈Σ

kt
σ = 1, ∀t ∈ T, (2.17)

∑
σ∈Σ

kt
σγσ,p =

∑
s∈Fp

gs,pζ
t
s,p, ∀p ∈ P,∀t ∈ T, (2.18)

kt
σ ≥ 0, ∀σ ∈ Σ, ∀t ∈ T, (2.19)
gs,p ∈ {0, 1}, ∀p ∈ P,∀s ∈ Fp. (2.20)

Model 2.1 is a bilevel MIP with an exponential number of variables (recall that |Σ| = 2|P |).
Further each weight TSTT (σ) in the objective function must be obtained by solving the TAP
for the corresponding pattern. Being a combination of MIP and bilevel programming, both
of which are difficult optimization problems, the NMSP is intractable for large instances and
an efficient solution methodology is required to solve the problem on realistic scenarios.

To solve the NMSP using the representation summarized in Model 2.1 we propose to work
with a restricted set of pattern variables and use a Column Generation (CG) algorithm to
introduce additional project patterns as required. Let λt be the dual variable associated to
constraint (2.17) and let µt

p be the dual variable associated to constraint (2.18). To price
unused pattern variables kt

σ we need to determine their reduced-cost rt
σ, given by:

rt
σ = TSTT (σ)− λt −

∑
p∈P

µt
pγσ,p. (2.21)

Therefore determining the reduced-cost of a pattern variable requires solving the TAP for
this particular pattern.

A solution to the NMSP is globally optimal if and only if the reduced cost of all vari-
ables is positive. To efficiently explore the feasible region of Model 2.1, we introduce the
concept of 1-distance optimality. Let d1(σ) be the 1-distance neighborhood of pattern σ,
i.e. the set of patterns obtained by modifying each bit (one at a time) of the binary repre-
sentation of σ to its complementary value. We say that a solution is 1-distance optimal if
the reduced cost of all patterns in the 1-distance neighborhood of the solution is positive.
Let Σ⋆ ≡ {σ ∈ Σ : ∃t ∈ T, kt

σ > 0} be the set of patterns used in the solution; and let
Tσ ≡ {t ∈ T : kt

σ > 0}, ∀σ ∈ Σ be the set of time periods at which pattern σ is used in the
solution. For any solution, the condition of 1-distance optimality can be checked efficiently
using Proposition 2.2.

Proposition 2.2. Let σ ∈ Σ⋆ and let σ′ ∈ d1(σ) where σ′ is obtained from σ by modifying
the activeness of project p′ ∈ P . Define:

µ⋆
p′ =

+ max{µt
p′ : t ∈ Tσ}, if γσ,p′ = 0,

−min{µt
p′ : t ∈ Tσ}, otherwise.

(2.22)
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There exists t⋆ ∈ T such that rt⋆

σ′ < 0 if and only if TSTT (σ)− TSTT (σ′) + µ⋆
p′ > 0.

Since the NMSP is a mixed-integer program, the CG-based approach must be integrated
within a B&P algorithm to guarantee integral solutions. Further, the lower-level must be
accounted for within the optimization framework. The proposed B&P methodology is com-
posed of several components. Specifically, the B&P algorithm requires a method to construct
an initial feasible solution and initialize the columns pool, branching and node selection rules,
a CG procedure to solve the LP relaxation of the Restricted Master Problem (LRMP) at each
node of the B&P tree, pricing algorithms to identify negative reduced-cost pattern variables.
In addition, a statistical regression model to approximate congestion effects will be integrated
within the B&P algorithm to derive approximated lower bounds during the optimization.

We next introduce the concept of first-order TSTT effects of maintenance projects and
discuss how this can be used to inform the solution method for the NMSP.

2.4.2 First-order TSTT effects of maintenance projects

To measure the level of interaction among projects we examine the variation of the TSTT
when projects are active and inactive. This approach is highly combinatorial: for instance,
to measure the variation of the TSTT when np projects are either active or inactive, we need
to consider 2|P |−np subpatterns and, for each of them, compare the resulting TSTT values
when the np projects are either active or inactive. To investigate the interaction among
maintenance projects, we thus focus on low interaction levels. Measuring project interaction
also plays a central role in the proposed solution methodology for the NMSP.

For presentation purposes, we introduce the following notation: we denote φp ∈ {0, 1}
the activeness of project p ∈ P . We introduce the concatenation operator ⊕ to represent the
concatenation of mutually exclusive projects in a pattern. Further, we abuse notation and
use σ̃ to denote a subpattern, i.e. a pattern with a subset of projects, whenever necessary.
For instance, σ = [φp = 1, φq = 0]⊕ σ̃ is a project pattern where p is active, q is inactive and
the activeness of the remaining projects is given by σ̃ (which is a subpattern of the subset of
projects P \ {p, q}).

Using the above notation, we define the first order TSTT effects of a project p with
regards to subpattern σ̃, ∆p,σ̃:

∆p,σ̃ ≡ TSTT ([φp = 1]⊕ σ̃)− TSTT ([φp = 0]⊕ σ̃). (2.23)

We denote ∆p the vector of first order TSTT effects of project p for all subpatterns of the
subset of projects P \ {p}, i.e. ∆p = [∆p,σ̃]σ̃. ∆p represents the influence of a single project
onto the TSTT experienced in the network.

We next present a tailored experimental design based on first-order TSTT information to
construct a statistical regression model that can be used to approximate TSTT values.

2.4.3 Statistical approximation of TSTT effects

Throughout this section, we assume that a set of observed TSTT values and their correspond-
ing project patterns is available. This data will be eventually obtained in a pre-processing
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step prior to the execution of the B&P algorithm which is presented at the end of the section.
We denote Σobs ⊂ Σ the set of observed patterns.

The TSTT corresponding to a project pattern σ can be approximated using regression
analysis by using project activeness variables φp,∀p ∈ P as explanatory variables. Due to the
nonlinear congestion effects inherent to traffic networks, we propose an exponential regression
model of the form:

TSTT (φ) = e
by+
∑

p∈P
bpφp+ϵφ . (E)

where φ = [φp]p∈P is the binary representation of a pattern, by, bp∀p ∈ P are regression
coefficients for each project and a y-intercept, and ϵφ is a normally distributed error on the
prediction of pattern φ.

We use an Ordinary Least Squares (OLS) regression to fit Model (E) to observed TSTT
data. The resulting statistical model can then provide some information on the TSTT corre-
sponding to a non-observed pattern, i.e. for which the TAP has not been solved. This proce-
dure can be helpful in the pricing subproblem within the CG algorithm since the reduced-cost
of a pattern variable depends on its TSTT value. To increase the likelihood that negative
reduced-cost pattern variables are correctly identified, we propose to use a scaling factor ψ̄
to approximate the prediction error ϵφ in the statistical model. We define the approximated
TSTT of pattern φ as:

aTSTT (φ) = ψ̄e
by+
∑

p∈P
bpφp . (2.24)

The value of ψ̄ should be chosen such that aTSTT (φ) is a lower bound on TSTT (φ) for
most patterns. Assuming that ψ̄ is chosen accordingly, this approximation can be used to
efficiently determine lower bounds within the resolution of the NMSP. This stems from the
functional form of aTSTT (φ) which is convex if the integrality constraints on variables φ
are relaxed.

Proposition 2.3. Let φ ∈ [0, 1]|P |. The function aTSTT (φ) is convex with regards to φ.

Using approximated TSTT values within the calculation of patterns’ reduced-cost gives:

r̂t(φ) = aTSTT (φ)− λt −
∑
p∈P

µt
pφp, ∀t ∈ T. (2.25)

If r̂t(φ) ≥ 0, then there is a high likelihood that the true reduced-cost of the corresponding
pattern variable kt

σ (i.e. φ is the binary representation of σ) is positive.

To determine an initial value for ψ̄, we determine the 5th percentile of the cumulative
distribution function of random variable T ST T (φ)

e
by+
∑

p∈P
bpφp

over the observed TSTT data Σobs

and denote this value ψ5th. This initial value for ψ̄ provides a conservative lower bound on
the TSTT values since it guarantees that the approximated TSTT is a lower bound on TSTT
for 95% of the observed patterns. In order to refine this bound, we introduce an ordered set
of scaling factors Ψ and initialize this set with ψ5th. The set Ψ will be updated during the
execution of the B&P algorithm as new TSTT data becomes available in order to provide a
less conservative bound. At any point, the scaling factor ψ̄ used in (2.24) is the average of
all scaling factors in Ψ.

We now explain how we select a subset of the patterns and use their TSTT—obtained by
solving the TAP—to build a robust statistical model. Project patterns can be characterized
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by the number of active projects which follows a binomial distribution, i.e. the number of
patterns with i active projects is

(|P |
i

)
. To span the entire spectrum of patterns, we iterate over

the number of active projects i and, for each i, we randomly select a few patterns. Since the
number of patterns with i active projects follows a binomial distribution, we wish to sample
patterns accordingly. The ratio

(|P |
i

)
/2|P | gives the proportion of patterns with i active

projects over the total number of patterns. We propose to pick an initial number of patterns
nS with a varying density of active projects and explore their 1-distance neighborhood. Let
Si =

⌈
nS(|P |

i )
2|P |

⌉
be the number of randomly selected patterns with i active projects and let

ΣS ⊂ Σ be the set of randomly selected patterns, i.e. |ΣS | =
∑

i=0..|P | Si. We initialize the set
of observed patterns as Σobs = ΣS∪(∪σ∈ΣS

d1(σ)), where d1(σ) is the 1-distance neighborhood
of pattern σ. We solve the TAP for each pattern in Σobs and use the resulting TSTT values
to fit Model (E). We then used the resulting TSTT values to estimate projects’ first order
TSTT effects based on the data gathered. Since not all TAP problems are expected to be
solved during the execution of Algorithm 1, we denote ∆̃p the vector of first order TSTT
effects obtained for Project p ∈ P . The objective of this process is twofold: (i) it provides
an initial set of patterns of reasonable size to build a robust statistical model; (ii) it provides
data on projects’ first-order TSTT effects which is shown to have a high impact on branching
operations. The pseudo-code of this pre-processing step is summarized in Algorithm 1.

Algorithm 1: Pre-processing algorithm
Input: N , A, P , Ap∀p ∈ P , Ra∀a ∈ A, nS

Output: by, bp∀p ∈ P , ∆p, ∀p ∈ P , Ψ, Σobs

1 Σobs ← ∅
2 for i = 0..|P | do

3 Si ←
⌈

nS(|P |
i )

2|P |

⌉
4 for 1..Si do
5 σ ← randomly select a pattern with i active projects
6 Σobs ← Σobs ∪ (σ ∪ d1(σ))
7 for σ ∈ Σobs do
8 TSTT (σ)← Solve TAP (σ)
9 Fit Model (E) on observed TSTT values

10 ∆̃p, ∀p ∈ P ← first-order TSTT effects
11 ψ5th ← 5th percentile of T ST T (φ)

e
by+
∑

p∈P
bpφp

12 Ψ← {ψ5th}

The pre-processing algorithm solves a number of TAP which grows quadratically with
|P |. The exact number of TAP solved depends on nS and on the number of times a modified
pattern has already been processed by the algorithm. The accuracy of this method is discussed
in Section 2.4.7.

2.4.4 Optimization framework and numerical experiments

In this section, we present the optimization framework developed to solve the bilevel NMSP.
This framework ultimately results in a B&P algorithm that integrates a collection of models
and algorithms. B&P algorithms are used to solve mixed integer programs with a large
number of variables [Barnhart et al., 1998] and have only recently been used in game-theoretic
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contexts such as zero-sum Bayesian games [Halvorson et al., 2009] and Stackelberg security
games [Jain et al., 2010]. In B&P, instead of solving the LP relaxation of the integer program
at each node of an enumeration tree—as in traditional B&B frameworks—a CG algorithm is
used to solve the LRMP and iteratively add columns to the Master Problem.

Implementing a B&P algorithm involves the resolution of a pricing subproblem at each
iteration of the CG algorithm. To guarantee global optimality, this pricing subproblem should
be solved to optimality or at least a valid lower bound should be produced and passed to the
children nodes of the current node in the B&P tree. This is typically achieved by solving an
optimization problem that determines the minimal reduced cost value. Deriving such a valid
lower bound is difficult since the existence of Braess’ Paradox effects in the TAP invalidates a
traditional optimization approach aiming to minimize the reduced cost rt

σ of pattern variables
kt

σ as defined by Eq. (2.21).

A global lower bound on rt
σ can be derived by solving the System Optimum (SO) TAP for

the base case configuration, i.e. all projects are inactive: since the resulting SO-TSTT value
is a lower bound on the TSTT of any pattern σ ∈ Σ, this can be used to derive a valid lower
bound on the minimal reduced cost of pattern variables. However, this global lower bound is
expected to be very weak since there is often a substantial gap between the TSTT values at
SO and at UE in congested networks. Extensive numerical experiments have shown that this
bound systematically results in negative bounds on reduced costs, thus invalidating its use
for bounding purposes. To overcome this challenge, we revert to an approximation approach.

The convex approximation of TSTT values outlined in Section 2.4.3 provides a method
to determine a lower bound on the approximated TSTT of a non-observed pattern. This
bounding technique can be used in two ways: (i) to determine an approximated lower bound
at each node of the B&P tree by minimizing aTSTT (φ) with regards to project schedule
constraints; (ii) to determine an approximated lower bound on the price of pattern variables
within the CG algorithm by minimizing r̂t(φ). In both cases the optimization problem can
be solved using a convex algorithm for which efficient implementations are readily available—
recall that we relax the integrality constraints on project activeness variables.

Formally, Model 2.2 represents the Approximated NMSP (ANMSP). Since the objective
function of Model 2.2 is convex with regards to the decision variables and all constraints are
linear, the ANMSP is a convex optimization problem. Observe that the objective function
of Model 2.2 is expressed in terms of variables yt

p which indicate project activeness at each
time period. Although it is not guaranteed that zANMSP ≤ zNMSP , it is highly likely due to
the presence of the scaling factor ψ̄.
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Model 2.2 (Approximated NMSP).

zANMSP = min
∑
t∈T

ψ̄e
by+
∑

p∈P
bpyt

p , (2.26)

s.t.
∑

s∈Fp

gs,p = 1, ∀p ∈ P, (2.27)

∑
s∈Fp

gs,pζ
t
s,p = yt

p, ∀p ∈ P,∀t ∈ T, (2.28)

gs,p ∈ [0, 1], ∀p ∈ P,∀s ∈ Fp, (2.29)
yt

p ∈ [0, 1], ∀p ∈ P,∀t ∈ T. (2.30)

Similarly, Model 2.3 finds a lower bound on the reduced-cost of pattern variables kt
σ by

solving a separable convex optimization problem. For each time period t ∈ T , the integrality
constraints in the formulation of the approximated reduced cost r̂t(φ) are relaxed and the
minimum over all time periods r̂ is a likely lower bound on the true minimal reduced-cost of
pattern variables kt

σ.

Model 2.3 (Lower bound on approximated reduced-cost).

r̂ = min
t∈T

min

ψ̄eby+
∑

p∈P
bpφp − λt −

∑
p∈P

µt
pφp : φ ∈ [0, 1]|P |

 . (2.31)

If r̂ > 0, then the lower bound on the approximated reduced-cost is positive and the
CG algorithm can be terminated with a statistical guarantee. Otherwise, this bound on the
reduced-cost provides a classical lower bound on the objective value of the LRMP which may
be used to prematurely terminate the CG algorithm [Lübbecke and Desrosiers, 2005]. Using
constraint (2.17), the sum of all pattern variables kt

σ is: ∑t∈T

∑
σ∈ΣR

kt
σ = |T |. Let z be the

current value of objective function (2.11) and let z⋆ be its optimal value:

ẑ = z + |T |r̂ ≤ z⋆ ≤ z. (2.32)

The approximated lower bound ẑ provides an approximated optimality gap within the
CG algorithm.

2.4.5 Overview of the B&P algorithm for the NMSP

An overview of the proposed B&P algorithm is summarized in Algorithm 2.

The proposed B&P algorithm starts with a pre-processing step during which the TAP is
solved for a subset of the patterns selected such that projects’ first-order TSTT effects can be
estimated. A MILP approximating the NMSP is then solved to obtain an upper bound and
initialize the set of columns (pattern variables) in the B&P framework. The algorithm then
enters a while loop that iterates over the nodes in the enumeration tree. At first pass, the
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Network Nb of Zones Nb. of Nodes Nb. of Links Nb. of Trips OD Flow Factor

Sioux Falls 24 24 76 360,000 1
BerlinMPF 98 975 2,184 23,648.5 10
Barcelona 110 1,020 2,522 184,679.5 2

Table 2.4: Network Characteristics.

ANMSP is solved (Model 2.2) at the root node and if its solution is not integral, the LRMP
of the NMSP is solved using CG. The best of the two lower bounds obtained is stored. If the
solution of the LRMP is also not integral, a rounding heuristic is triggered and the algorithm
branches on the solution providing the highest lower bound. This procedure is repeated until
the enumeration tree has been fully explored or the approximated optimality gap is closed.

Algorithm 2: Overview of the Branch-and-Price Algorithm
1 Pre-processing step: get observed patterns and first-order TSTT effects
2 Solve MILP to obtain an upper bound for the NMSP and an initial set of columns
3 while optimal =False do
4 Select node in the tree
5 Solve ANMSP at current node
6 if solution is not integral then
7 Solve LRMP by CG at current node
8 if solution is not integral then
9 Select solution with highest lower bound between ANMSP and CG

10 Try rounding heuristic to find an improved upper bound
11 Branch on solution which provides the highest lower bound

Details on each component of Algorithm 2 can be found in Rey et al. [2019].

2.4.6 Numerical experiments

Testing the proposed models and algorithms for the NMSP requires the following input
data: a transport network, flow-dependent link travel time functions, maintenance projects
with their characteristics (duration, links affected and capacity reduction) and a planning
period. Given the many possibilities we focused on specific instances for the NMSP that
we find representative of competitive realistic scenarios. All the results are presented for
three transport networks, namely Sioux Falls, BerlinMPR and Barcelona, available at https:
//github.com/bstabler/TransportationNetworks which characteristics are presented in
Table 2.4. The Sioux Falls is a classical benchmark network in traffic equilibrium whereas
BerlinMPF and Barcelona are larger, more realistic transport networks. We use an OD flow
factor on the latter two networks to increase the baseline congestion effects.

For each network, three network maintenance scenarios are used to evaluate the mod-
els and the algorithms with respectively 10, 15 and 20 projects. Maintenance projects
are composed of spatially clustered links (i.e. all links in Ap are connected) and, when a
project is active, each affected link has its capacity reduced by 50%. The list of links af-
fected by each maintenance project in each of the three networks considered can be found at
https://github.com/davidrey123/Network_Maintenance_Scheduling.
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In the 10-project scenario each project affects 100 links and this scenario induces 210 =
1, 024 patterns on the network. Given that the number of pattern variables in Model 2.1 is
|T |2|P |, NMSP instances based on 10-project scenarios can be handled by most commercial
MILP solvers without resorting to column generation, assuming that all 1,024 TSTT values
can be pre-processed and that |T | is of reasonable size. Hence 10-project scenarios, are used
to explore problem behavior and benchmark some components of the B&P algorithm that do
not require any column pricing. We implicitly make the assumption that these components
will perform similarly when the number of projects increases and a CG algorithm is required
to manage the LP relaxation of the master problem.

In the 15- and 20-project scenarios, each project affects 50 links and these scenarios
induce 32, 768 and 1, 048, 576 patterns, respectively. Extensive testing on these scenarios
indicates that solving Model 2.1 with all pattern variables poses memory management and
runtime issues. Further, pre-processing all TSTT values may be prohibitive, even for medium-
size transport networks. Hence these scenarios are used to benchmark the proposed B&P
algorithm. All the numerical results are presented in terms of relative TSTT (rTSTT) defined
as the ratio of the TSTT by the base TSTT (when all projects are inactive).

We consider two planning periods: |T | = 25 and |T | = 50, which can be thought of as
half-year-long and year-long planning periods if the time unit is assumed to represent a week.
We assume that the duration of projects is normally distributed with a mean of |T |/3 and a
standard deviation of |T |/10; and for all the tests conducted in the optimization framework
we randomly generate NMSP instances by sampling project durations from this distribution.

The computing environment is as follows: all the models and algorithms are implemented
in Python on a Windows machine with 8Gb of RAM and an Intel i7 processor at 2.9GHz.
The linear and integer linear optimization problems are solved with CPLEX v12.7.1 [CPLEX,
2014] in single-threaded mode: CPLEX’s primal Simplex algorithm is used for the LP relax-
ations of Model 2.1 and CPLEX’s MIP algorithm is used for solving the proposed MILPs
to find an initial feasible solution. In addition, we use IPOPT [Wächter and Biegler, 2006]
to solve the convex constrained optimization problems that arise within the CG algorithm.
Finally, we use the TAPAS algorithm [Bar-Gera, 2010] with an accuracy corresponding to
average excess cost of 1e−10 to solve all TAPs in our tests.

2.4.7 Testing of the statistical regression model

We test the statistical model to approximate TSTT values on all three networks for three sets
of projects of size 10, 15 and 20 using the proposed pre-processing procedure (Algorithm 1)
with a varying parameter nS = 1, 10 and 100. For each combination of network, project size
and nS value, we fitted the proposed statistical model and tested its performance with an
out-of-sample validation. For 10-project instances, the number of patterns is relatively small
(210 = 1, 024) and using nS = 1 in Algorithm 1 results in using 10.74% of the patterns. We
use all remaining patterns for the out-of-sample validation of the 10-project models. Since
10.74% is already a significant proportion of patterns, higher values of nS are not tested
for 10-project instances. For 15-project instances, 0.75% (nS = 1) to 5.23% (nS = 100) of
the patterns are used, whereas for 20-project instances these figures are reduced to 0.04%
(nS = 1) to 0.23% (nS = 100). We use 10,000 patterns for the out-of-sample validation of 15-
and 20-project models. The R-square (R2) and Root-Mean-Square-Error (RMSE) in terms of
relative TSTT values are summarized in Table 2.5 wherein the values in parenthesis indicate
the corresponding proportion of patterns used for fitting the statistical model.
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Sioux Falls BerlinMPF Barcelona

|P | nS (% patterns) R2 RMSE R2 RMSE R2 RMSE

10 1 (10.74) 0.977 0.209 0.961 0.283 0.997 0.051

15 1 (0.75) 0.968 0.194 0.974 0.152 0.984 0.035
15 10 (0.95) 0.960 0.219 0.978 0.140 0.979 0.041
15 100 (5.23) 0.975 0.169 0.983 0.105 0.985 0.034

20 1 (0.04) 0.943 0.224 0.946 0.397 0.945 0.528
20 10 (0.05) 0.947 0.222 0.963 0.296 0.961 0.423
20 100 (0.23) 0.961 0.186 0.978 0.191 0.963 0.404

Table 2.5: Validation of the exponential statistical regression model (E). The R2 and RMSE
values are expressed in terms of relative TSTT and are obtained from an out-of-sample
validation of the exponential statistical regression model (E). The patterns used for fitting
the models are obtained using Algorithm 1 with different values of the tuning parameter nS .
The proportion of patterns used for fitting the models with regards to the entire sample space
(2|P |) is provided in parenthesis.

The results highlight that the fitness of the proposed statistical models is of good quality
with an R-square value consistently greater than 0.94, even if only a small fraction of patterns
are used for fitting the models (e.g. nS = 1). Increasing the number of samples through the
nS parameter tends to increases R-square values and reduces RMSE values. We find that
model fitness is impacted by the network and the associated maintenance projects: larger
networks, in terms of number of nodes and links (such as BerlinMPF and Barcelona), appear
to be more sensitive to the number of projects compared to smaller networks (Sioux Falls).
Although increasing the number of projects appears to reduce R-square values and to increase
RMSE values, the fitness of the statistical models remains significant. This suggests that the
proposed exponential statistical regression model together with the proposed pre-processing
procedure (Algorithm 1) which explore the 1-distance neighborhood of selected patterns, are
appropriate to estimate TSTT effects on congested networks. Indeed the proposed expo-
nential approximation cannot capture various effects that occur in transportation networks,
such as cases of Braess’ paradox. However, recent findings suggest that the existence of
Braess’ paradox in real transport networks may be scarce [Bekhor and Sorani, 2017], thus
not diminishing the usefulness of the proposed approximation too much.

B&P vs B&B

To show the performance of the proposed B&P algorithm, we compare the solution returned
by Algorithm 2 with that obtained when solving the same problem using an exact approach
for 10-project scenarios. To solve the latter, all TSTT values of the instance patterns are
pre-calculated and Model 2.1 is then solved using the proposed B&B procedure. The relative
gap between these two solutions are then calculated and the histograms of their distribution
is plotted for each network and number of time periods. For this benchmark, 10.74% of the
patterns are used for fitting Model (E). For each network and each number of time periods,
we solve 50 randomly generated instances. The results are summarized in Figure 2.1. Over
the 300 generated instances, we find that the highest optimality gap observed never exceeds
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Figure 2.1: Benchmark of the B&B and B&P algorithms: relative gap after solving 50
randomly generated instances from three 10-project scenarios (Sioux Falls, BerlinMPF
and Barcelona) with |T | = 25, 50 and normally distributed project durations [Dp]p∈P ∼
N ( |T |

3 , (
|T |
10 )2).

5% and the average optimality gap is 0.57%. In addition, the proposed B&P algorithm is able
to find the optimal solution in 35% of the cases. Finally, the average proportion of patterns
used within the B&P algorithm is 19.9%.

This benchmark shows that the proposed B&P is capable of finding optimal or near-
optimal solutions for the bilevel network maintenance scheduling problem using only a fraction
of the patterns. Without accounting for the time spent solving the TAPs, the average runtime
of the proposed B&B approach is 18.2s and that of the B&P is 56.9s. This gap in runtime is
expected for such small instances since the number of columns remains manageable for a direct
problem resolution using B&B which obviates the need for column generation. However,
extensive implementation reveals that a direct resolution approach by B&B is intractable for
larger instances.

Results on large instances

We now present numerical results for the proposed B&P algorithm on instances derived
from the Barcelona network. Results for the Sioux Falls and the Berlin MPF networks are
available in Rey et al. [2019]. For each network, we consider four experiments consisting of
instances with 15 and 20 maintenance projects and with 25 and for 50 time periods. For
each experiment, we generate 20 random instances with project durations following a Normal
distribution with a mean of |T |/3 and a standard deviation of |T |/10. Hence a total of 240
instances are tested regrouped in four experiments per network. The objective of these tests
is to assess the performance of the proposed solution algorithm with regards to the input
data.
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The results are summarized in Table 2.6 which give the average performance of the B&P
algorithm for each experiment (i.e. column in the tables). For each experiment, the mean
value over the 20 instances is given together with the standard deviation in parenthesis. The
header of the rows is described from top to bottom. The first and second rows give the
number of projects and the number of patterns in each scenario. The third row gives the
number of time periods in each experiment. The next nine rows provide runtime information.
Since the runtime for solving TAPs may change considerably depending on the size of the
network considered, we distinguish the runtime of the B&P algorithm spent solving the TAPs
problems from the rest, hereby referred to as the upper-level problem and denoted U-NMSP.
The next seven rows are expressed in % of the total runtime spent solving U-NMSP while the
following two rows give the total runtime spent solving the U-NMSP and the TAP (lower-
level problem) in hours. FEAS is the total time spent to find an initial and feasible solutions;
ANMSP is the total time spent solving Model 2.2 to find lower bounds; LRMP is the total
time spent solving the LRMP; PH is the total time consumed by the pricing heuristic; ARC
is the total time spent solving convex approximations on reduced-costs (Model 2.3); ES is the
total time spent explicitly searching for negative reduced-cost columns; RH is the total time
spend in the rounding heuristic. The next six rows give statistics (in %) for the proportion
of patterns used within the B&P algorithm, the proportion of TAP solved, the proportion of
false negative approximations, the mean value for ψ̄ used in the convex approximations, the
optimality gap after solving the root node in the B&P tree and the proportion of time spent
solving the root node in the B&P algorithm (with regards to the total solve time). The last
two rows indicate the number of iterations and the value of the objective function zNMSP

in terms of relative TSTT—defined as the ratio of the TSTT by the base TSTT—upon
termination of the B&P algorithm.

We find that the mean total runtime of the upper level problem (U-NMSP) increases with
the number of projects and the number of time periods but that it is robust across network
topologies. Instances with 15 projects require on average 5 (|T | = 25) to 20 (|T | = 50)
minutes; whereas instances with 20 projects require on average 40 (|T | = 25) to 90 (|T | =
50) minutes for the upper-level problem, i.e. solving the LRMP, the convex approximation
problems and the pricing algorithms. Overall, most of the runtime for the upper-level problem
is spent solving the LRMP and within the explicit search (ES) pricing algorithm. The pricing
heuristic (PH) is seen to be robust to the number of time periods but less so to the number of
projects. For 20-project instances, a significant amount of time is also spent exploring the 1-
distance neighborhood of the patterns within the PH algorithm. The robustness with regards
to the number of time periods is a direct consequence of Proposition 2.2 which obviates the
exploration of all time periods to price patterns in the 1-distance neighborhood of the current
solution. Although not as robust, the ES procedure is more sensitive to the number of projects
than that of time periods.

The time spent solving the TAP varies considerably based on the network size and de-
mand. The total TAP solve time is correlated with the number of TAP solved. For 15-project
instances, the implementation on the three networks considered reveals that approximately
15% to 25% of the TAPs are typically solved (i.e. 5,000 to 8,000 TAPs), whereas for 20-project
instances these figures change to 1.2% to 1.5% (i.e. 12,000 to 16,000 TAPs). We also find
that the number of pattern variables used within the LRMP is reduced by a factor of 2 to 5
compared to the number of TAP solved. This is reflected in the high number of false negative
approximations observed (often in the 60% - 80% range) and this can be attributed to the
conservative lower bound which is used to initialize ψ̄.
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|P | 15 20
|Σ| 3e+4 1e+6

|T | 25 50 25 50

Time (% U-NMSP)

FEAS 0.38 (0.23) 0.25 (0.45) 0.02 (0.04) 0.03 (0.04)
ANMSP 2.30 (1.02) 2.88 (1.32) 0.23 (0.07) 0.81 (0.16)
LRMP 50.45 (11.41) 76.55 (8.88) 32.54 (6.98) 38.11 (5.52)
PH 5.62 (1.78) 1.52 (0.49) 30.06 (8.21) 28.50 (6.87)
ARC 23.59 (5.78) 11.64 (4.48) 1.77 (0.58) 1.66 (0.29)
ES 15.07 (4.61) 6.79 (3.27) 30.18 (10.70) 25.66 (6.22)
RH 2.37 (9.23) 0.27 (0.46) 4.49 (14.85) 3.10 (5.18)

Time (h) U-NMSP 0.03 (0.03) 0.15 (0.10) 0.64 (0.41) 1.07 (0.48)
TAP 18.25 (7.57) 18.38 (6.36) 95.99 (19.98) 103.91 (21.44)

(in %)

Patterns used 3.02 (1.17) 3.58 (1.32) 0.39 (0.09) 0.60 (0.18)
TAP solved 16.56 (5.70) 17.37 (4.98) 1.28 (0.21) 1.33 (0.28)
False negative 82.79 (4.34) 83.14 (5.16) 69.93 (7.59) 61.81 (4.08)
Mean ψ̄ 99.91 (0.77) 100.39 (0.78) 101.48 (2.43) 99.18 (2.22)
Root node gap 1.49 (0.54) 1.53 (0.49) 2.36 (0.71) 5.91 (6.35)
Root node time 52.96 (17.72) 50.73 (24.24) 22.11 (27.28) 21.58 (22.96)

Nb. iterations 3.05 (1.02) 3.35 (1.01) 4.10 (1.58) 3.45 (1.20)
zNMSP 32.64 (1.20) 65.16 (2.69) 42.73 (4.19) 92.88 (7.30)

Table 2.6: Performance of the B&P Algorithm on the Barcelona network. Average perfor-
mance of the B&P algorithm on the Barcelona network with 15 and 20 projects and with
25 and 50 time periods. In each experiment, 20 instances with random project durations
([Dp]p∈P ∼ N ( |T |

3 , (
|T |
10 )2)) are solved. The mean of each experiment is given with the stan-

dard deviation in parenthesis.

The root node gap is on average relatively tight, with low values of 1.5% observed for the
15-project instances on the Barcelona network and high values of 5.7 to 6.2% observed for
20-project instances on all three networks tested. The time spent in the B&P algorithm at
the root node is often substantial and varies between 18% and 61% of the total solve time for
the Sioux Falls network. Since this accounts for the time solve TAPs, this proportion changes
considerably based on the network. For the Barcelona network, on average, half of the total
solve time in 15-project instances is spent at the root node whereas this represents only 22%
of the total solve time in 20-project. This is due to the greater time required to solve TAPs
on the Barcelona network compared to the smaller networks tested.

We find that the number of iterations required by the B&P algorithm only slightly in-
creases with the number of projects and time periods, with an average of 3 to 5 iterations
frequently achieved. This low number of iterations together with the analysis of the B&P
algorithm at the root node suggests that most of the progress is performed in the CG process
at the root node. Subsequent iterations then attempt to close the gap by branching but may
also offer the possibility to generate additional patterns and further improve the solution.
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2.5 Scheduling for road network disaster recovery

The scope of this section is the long-term problem of planning the reconstruction of a road
network which was damaged by a disaster. The recovery of the entire road network is assumed
to require a substantial amount of resources, e.g. budget, working crew, equipment; which
are limited in availability. We assume that the recovery of the road network will take place
over a pre-defined planning horizon (e.g. 12-24 months), which is divided into time periods
(e.g. 2-4 weeks). We assume that the time periods are long enough so that travelers have
the time to adjust their route choice preferences under the UE principle. We assume that
the reconstruction of the road network can be organized into recovery projects, each of which
represents a set of roads damaged by the disaster. The network recovery problem of interest
is that of optimizing the order in which the recovery projects should be completed subject to
resource availability constraints and assuming UE conditions. We build on and extend the
pattern formulation of the NMSP presented in Section 2.4.1 to account for network recovery
effects, and introduce customized scheduling heuristics.

2.5.1 Formulation of the network recovery problem

We use the same notation system as in Section 2.4.1. We extend this framework to character-
ize the evolution of links of the network beyond two states (which is the case for the NMSP).
Let γp,m,σ be a binary parameter indicating if project p is in state m in pattern σ (1) or not
(0):

γp,m,σ ≡
{

1 if project p is in state m in pattern σ,

0 otherwise,
∀p ∈ P,∀m ∈M,∀σ ∈ Σ. (2.33)

Let ωs,t
p,m be a binary parameter indicating if project p is in state m at time period t, if p

started at time period s (1) or not (0):

ωs,t
p,m ≡


1 if project p is in state m at time period t,

if p started at time period s,

0 otherwise,
∀p ∈ P,∀m ∈M,∀s ∈ Fp, ∀t ∈ T.

(2.34)

For each project p, for each state m and for each time period t, the following linking
constraints link variables gs,p and kt

σ:∑
σ∈Σ

kt
σγp,m,σ =

∑
s∈Fp

gs,pω
s,t
p,m, ∀p ∈ P,∀m ∈M,∀t ∈ T. (2.35)

Constraints (2.35) combine two representations of the concept of project activeness, i.e.
both its left-hand-side and its right-hand-side take value 1 if project p is in state m at time
t, and 0 otherwise. To model recovery resources availability, e.g. work crew or equipment,
we assume that each project p ∈ P in state m ∈ M requires a known amount of recovery
resources per time period denoted Rp,m. The limited availability in recovery resources can be
represented by the total amount of recovery resources available at time period t ∈ T denoted
Rt. Thus, we impose the following resource availability constraint:∑

p∈P

∑
m∈M

∑
s∈Fp

gs,pω
s,t
p,mRp,m ≤ Rt, ∀t ∈ T. (2.36)
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The objective function of the leader problem is to minimize the total network travel time
over the planning horizon. For each project pattern σ there exists a unique corresponding
network link state vector m. Formally, if pattern σ is selected at time t, i.e. kt

σ = 1, then the
set of links {a ∈ Ap : p ∈ P} are in state m if γp,m,σ = 1.

We can now present the complete formulation of the proposed bilevel network recovery
problem. The leader problem is summarized in (2.37). The leader variables are project
start times gs,p and pattern selection variables kt

σ. The follower problem is only implicitly
represented by the network travel time TSTT (σ)(σ) in the objective function of the leader.

min
∑
t∈T

∑
σ∈Σ

kt
σTSTT (σ)(σ), (2.37a)

s.t.
∑

s∈Fp

gs,p = 1, ∀p ∈ P, (2.37b)

∑
σ∈Σ

kt
σ = 1, ∀t ∈ T, (2.37c)

∑
σ∈Σ

kt
σγp,m,σ =

∑
s∈Fp

gs,pω
s,t
p,m, ∀p ∈ P,∀m ∈M,∀t ∈ T, (2.37d)

∑
p∈P

∑
m∈M

∑
s∈Fp

gs,pω
s,t
p,mRp,m ≤ Rt, ∀t ∈ T, (2.37e)

gs,p ∈ {0, 1}, ∀p ∈ P, s ∈ Fp, (2.37f)
kt

σ ∈ {0, 1}, ∀t ∈ T, σ ∈ Σ. (2.37g)

We detail now how the required model parameters, i.e. binary matrices γp,m,σ and ωs,t
p,m,

and recovery resources Rp,m, can be determined based on the number of states |M |. We
consider a three-states case with the states damaged, repair and restored. In damaged state,
links are deteriorated and perform accordingly. Then, links evolve to the repair state for Dp

time periods. Finally, links evolve to the restored state in which they recover their original
link performance characteristics. In this three-states case, we assume that Rp,damaged =
Rp,restored = 0 and that Rp,repair > 0, thus ensuring that recovery resources are only consumed
during the Dp time periods when p is active. The matrix ωs,t

p,m can then be determined by
partitioning the time line in three segments corresponding to the three states of the project
lifecycle.

ωs,t
p,damaged ≡

{
1 if 0 ≤ t ≤ s− 1,
0 otherwise,

∀p ∈ P,∀s ∈ Fp,∀t ∈ T. (2.38)

ωs,t
p,repair ≡

{
1 if s ≤ t ≤ s+Dp − 1,
0 otherwise,

∀p ∈ P,∀s ∈ Fp,∀t ∈ T. (2.39)

ωs,t
p,restored ≡

{
1 if s+Dp ≤ t ≤ |T |,
0 otherwise,

∀p ∈ P,∀s ∈ Fp, ∀t ∈ T. (2.40)

The choice regarding the number of states used in the model depends on the ability to
estimate the impacts during each state at the time that the scheduling of recovery projects
is determined. In our numerical experiments, we consider a three-state case where M =
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{damaged, repair, restored} but due to the lack of data on link performance characteristics
post-disaster and during reconstruction, we assume that links in either state damaged or
repair behave identically. Thus, in our numerical experiments, although |M | = 3, only 2|P |

project patterns are used to model the network recovery problem.

2.5.2 Scheduling heuristics and numerical experiments

We propose three heuristic algorithms for the bilevel network recovery problem that build on
existing methods in the scheduling literature [Smith, 1956]. All three heuristics are greedy
algorithms that differ in the criterion used to sort recovery projects. Once sorted, recovery
projects are scheduled as soon as possible while respecting the resource availability constraint
(2.36). It should be noted that these heuristics are not guaranteed to find a feasible solution
if one exists.

Shortest Processing Time (SPT)

A natural scheduling heuristic is to sort recovery projects by increasing duration Dp. This
is known as the Shortest Processing Time (SPT) rule [Smith, 1956]. Using the SPT rule is
intuitive in that by completing shortest projects first, the benefits of recovering the associated
nominal link characteristics are expected to yield network-wide improvements early in the
planning horizon. This heuristic does not require any knowledge of the congestion effects
associated with damaged links and their reconstruction.

Largest Average First-Order (LAFO)

To incorporate congestion effects within the scheduling process, we can estimate the average
first-order effects of each recovery project. The first-order effects of a recovery project repre-
sent the network travel time reduction observed before and after this project is completed.
These effects depend on the completion of other recovery projects, hence calculating exactly
the average first-order effect of a recovery project requires comparing network travel time
for all |M ||P |−1 combinations of other recovery projects. We denote ∆p the distribution of
first-order effects for project p ∈ P and we denote ∆̄p the average first-order effect of p.
The Largest Average First-Order (LAFO) heuristic consists of sorting projects by decreasing
average first-order effects ∆̄p. This heuristic is expected to complete the most impactful (in
terms of network travel time reduction) projects first, thus benefiting the entire network for
subsequent time periods.

Largest Approximated Smith’s Ratio (LASR)

Smith’s ratio, also known as weighted-SPT, consists of sorting projects by decreasing “weight”-
to-duration ratio [Smith, 1956]. This rule is optimal for the problem of minimizing the total
weighted completion time in a single-machine scheduling problem. In the context of the bilevel
network recovery scheduling problem, the “weight” of each project is unknown a priori due
to the nonlinear congestion effects inherent to traffic equilibrium. A possible adaptation
of Smith’s ratio consists of using projects’ average first-order network travel time effects to
approximate the “weight” of each project. Hence, we sort projects by decreasing ∆̄p

Dp
values.
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The LASR heuristic requires as much computational effort as the LAFO heuristic but
captures both projects impact and duration in the decision process. Both LAFO and LASR
heuristics require the calculation of project’s average first-order effects, which require the
solution of |M ||P |−1 TAPs. To avoid the possibly resource-intensive computational effort,
heuristics algorithms can be used to approximate the exact average first-order effects by only
solving a subset of the required TAPs. We use Algorithm 1 to sample subsets of the |M ||P |−1

combinations and estimate first-order effects. In our numerical experiments, we compare the
behavior of the LAFO and LASR heuristics where all project patterns are used to determine
the average first-order effects; and the more practical case where only a subset of project
patterns is used for this calculation.

We next report numerical results for the proposed formulation and solution methods.
All numerical experiments are conducted on a desktop computer with 16Gb of RAM and a
CPU of 3.6GHz. The optimal solution of the bilevel network recovery scheduling problem
is obtained by solving the leader problem (2.37) using Mixed-Integer Linear Programming
(MILP) commercial software after having solved all |M ||P | TAPs using TAPAS [Bar-Gera,
2010]. The MILPs are solved with CPLEX 12.8 Python API.

2.5.3 Numerical results

We conduct numerical experiments on two types of disaster scenario: a corridor sce-
nario where all links of a corridor of the network are damaged, and a crossing scenario
where all links of cross-section of the network are damaged. The motivation behind both
disaster scenarios is that a natural disaster such as an earthquake may damage the net-
work within a specific topological region. In the proposed corridor and crossing scenar-
ios, the topology of the damaged region is assumed to follow a fault-line, i.e. longitudi-
nal, pattern. We use the Berlin Mitte Centre network which contains 36 centroids, 398
nodes and 871 links to benchmark the proposed heuristics. This network is available at
https://github.com/bstabler/TransportationNetworks.

For the corridor scenario, damaged links are organized into 10 recovery projects and all
damaged links are assumed to be affected by a 95% reduction in link capacity. For the
crossing scenario, damaged links are organized into 9 recovery projects and all damaged links
are assumed to be affected by a 90% reduction in link capacity. In both scenarios, the free-
flow travel times of damaged links are ten times greater than their default values (additional
link characteristics are provided with the transport network data). Two maps depicting the
damaged and recovery projects in the corridor and crossing scenarios are provided in Figure
2.2.

The planning horizon is set to 52 time periods (in weeks) and we assume that project du-
rations are uniformly distributed in the range {1, . . . , 26}, i.e. the maximum project duration
is half of the planning horizon. We assume that all projects require a unit resource per time
period, i.e. Rp = 1 for all p ∈ P . The available recovery resources Rt are assumed to remain
constant across time periods.

For both corridor and crossing scenarios, we randomly generate 10 instances (total of 20
instances). For each instance, we vary the available amount of recovery resources Rt from 3
to 9 (corridor) or 8 (crossing). Note that in this case, Rt represents the maximum number of
projects that can be under repair in parallel. The lower bound 3 was determined by observing
that the problem is often infeasible if Rt < 3, ∀t ∈ T .
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Corridor Scenario Crossing Scenario

Figure 2.2: Map of the Berlin Mitte Centre network with colored recovery projects for the
corridor and crossing scenarios.

TAPs on the Berlin Mitte Centre network solved with TAPAS require on average 1s
per TAP, hence the pre-processing time required to implement the MILP and to exactly
calculate projects’ first-order effects is on average 210 = 1, 024s for the Corridor scenario, and
29 = 512s for the Crossing scenario. In contrast, implementing heuristics LAFO and LASR
using the sampling algorithm of Rey et al. [2019] to approximate project’s average first-order
effects requires the solution of 113 and 88 TAPs, for the Corridor and Crossing scenarios,
respectively. Further, in all our numerical experiments, the run time of the heuristics (without
pre-processing) is significantly less than 0.1 s. This can be expected, since the heuristics
essentially consists of sorting a list of |P | values by a provided criterion (SPT, LAFO or
LASR) and creating a schedule based on this sorted list.

All numerical results are presented in terms of normalized network travel time. Let
TSTT (σ)(σ0) be the network travel time corresponding to the pattern σ0 wherein all recovery
projects have been completed, i.e. γp,restored,σ0 = 1, γp,damaged,σ0 = γp,repair,σ0 = 0, ∀p ∈ P .
The normalized network travel time of pattern σ is ̂TSTT (σ)(σ) = T ST T (σ)(σ)

T ST T (σ)(σ0) .

The average performance of the heuristics is summarized in Table 2.7. For each type
of disaster (Corridor and Crossing) and for each level of recovery resources (Rt), we report
the minimum (min), average (avg) and maximum (max) optimality gap over all 10 instances
of this group. We also report how frequently each heuristic provides the best optimality
gap (best), and how frequently each heuristic is unable to produce a feasible solution (inf).
Average performance over all levels of recovery resources is reported in the last three rows.

LAFO-all is the heuristic which most frequently provides the best optimality gap for
Corridor instances: this heuristic dominates other heuristics 62.86% of the time. For Crossing
instances, LASR-all dominates 63.33% of them time. LAFO-all is the heuristic less frequently
infeasible in Crossing scenario instances, whereas LASR-all outperforms other heuristics in
this regard on Corridor scenario instances. However, we find that, on average, LASR is the
most robust heuristic and achieves an overall average optimality gap of 0.52% for the Corridor
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Corridor Crossing

Rt Heuristic Type min avg max best inf min avg max best inf

3

SPT 1.51 81.84 100.00 60.00 80.00 0.16 41.16 100.00 50.00 30.00
LAFO All 0.71 76.02 100.00 60.00 70.00 0.83 59.17 100.00 30.00 20.00

(sampling) (0.85) (81.13) (100.00) (80.00) (80.00) (1.23) (26.74) (100.00) (90.00) (10.00)
LASR All 0.43 60.38 100.00 100.00 60.00 0.22 30.61 100.00 60.00 30.00

(sampling) (0.06) (60.29) (100.00) (70.00) (60.00) (0.65) (38.21) (100.00) (50.00) (30.00)

4

SPT 0.33 2.75 9.65 30.00 0.00 0.11 8.70 28.07 30.00 0.00
LAFO All 0.16 12.33 36.48 30.00 0.00 0.36 15.21 52.42 0.00 0.00

(sampling) (0.07) (12.31) (36.39) (60.00) (0.00) (0.84) (6.83) (18.98) (50.00) (0.00)
LASR All 0.22 1.02 3.23 40.00 0.00 0.00 0.46 0.87 70.00 0.00

(sampling) (0.07) (1.33) (8.00) (50.00) (0.00) (0.32) (4.96) (24.20) (10.00) (0.00)

5

SPT 0.08 1.68 5.78 20.00 0.00 0.00 3.90 20.13 50.00 0.00
LAFO All 0.26 1.35 8.36 60.00 0.00 0.17 3.40 30.32 30.00 0.00

(sampling) (0.14) (1.32) (8.49) (60.00) (0.00) (0.24) (0.70) (2.07) (30.00) (0.00)
LASR All 0.09 0.57 1.36 40.00 0.00 0.00 0.35 0.73 40.00 0.00

(sampling) (0.14) (1.36) (8.36) (50.00) (0.00) (0.03) (3.52) (16.16) (50.00) (0.00)

6

SPT 0.17 0.74 1.72 20.00 0.00 0.00 1.79 16.00 50.00 0.00
LAFO All 0.10 0.82 3.85 70.00 0.00 0.00 3.11 29.85 50.00 0.00

(sampling) (0.14) (0.82) (4.18) (40.00) (0.00) (0.09) (0.28) (0.75) (30.00) (0.00)
LASR All 0.10 0.57 1.54 10.00 0.00 0.00 0.17 0.39 40.00 0.00

(sampling) (0.14) (0.85) (3.95) (60.00) (0.00) (0.01) (0.25) (0.57) (50.00) (0.00)

7

SPT 0.12 0.35 0.82 30.00 0.00 0.00 0.13 0.45 20.00 0.00
LAFO All 0.05 0.43 1.34 60.00 0.00 0.00 0.06 0.36 60.00 0.00

(sampling) (0.15) (0.82) (3.94) (40.00) (0.00) (0.00) (0.06) (0.36) (100.00) (0.00)
LASR All 0.06 0.42 1.34 20.00 0.00 0.00 0.01 0.10 90.00 0.00

(sampling) (0.00) (0.41) (1.40) (70.00) (0.00) (0.00) (0.13) (0.36) (60.00) (0.00)

8

SPT 0.08 0.23 0.61 30.00 0.00 0.00 0.03 0.17 30.00 0.00
LAFO All 0.02 0.27 1.08 70.00 0.00 0.00 0.00 0.01 80.00 0.00

(sampling) (0.00) (0.48) (3.74) (70.00) (0.00) (0.00) (0.00) (0.01) (100.00) (0.00)
LASR All 0.07 0.31 1.08 20.00 0.00 0.00 0.00 0.01 80.00 0.00

(sampling) (0.00) (0.21) (0.90) (90.00) (0.00) (0.00) (0.00) (0.01) (100.00) (0.00)

9

SPT 0.02 0.11 0.18 40.00 0.00 - - - - -
LAFO All 0.00 0.06 0.28 90.00 0.00 - - - - -

(sampling) (0.00) (0.06) (0.28) (100.00) (0.00) - - - - -
LASR All 0.00 0.07 0.28 80.00 0.00 - - - - -

(sampling) (0.00) (0.07) (0.28) (90.00) (0.00) - - - - -

avg

SPT 0.02 1.24 16.86 32.86 11.43 0.00 4.51 43.91 38.33 5.00
LAFO All 0.00 3.38 36.48 62.86 10.00 0.00 10.51 82.11 41.67 3.33

(sampling) (0.00) (2.73) (36.39) (64.29) (11.43) (0.00) (4.17) (65.87) (66.67) (1.67)
LASR All 0.00 0.52 3.23 44.29 8.57 0.00 0.28 1.86 63.33 5.00

(sampling) (0.00) (0.71) (8.36) (68.57) (8.57) (0.00) (3.00) (28.21) (53.33) (5.00)

Table 2.7: Summary of the performance of heuristics SPT, LAFO and LASR. All data is
in percentage. For each type of disaster scenario (Corridor and Crossing) and each level of
recovery resources (Rt) the minimum (min), average (avg) and maximum (max) optimality
gap over all 10 instances of this group is reported. Columns “best” indicate the frequency that
this heuristic was the best (least optimality gap), and columns “inf” indicate the frequency
that this heuristic did not produced a feasible solution. The bottom five rows indicate average
performance over all values of recovery resources Rt.
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scenario instances, and of 0.28% for the Crossing scenario instances, followed by SPT. Hence
while LAFO may frequently perform best, it also is more prone to poor performance. This
is reflected in the average maximum optimality gaps observed which are substantially higher
for this heuristic compared to that of SPT and LASR. If only a subset of patterns are used to
approximate project’s first-order effects, we find that the maximum optimality gaps increase
but average performance is marginally impacted for LASR. In contrast, we find that LAFO on
average benefits from this approximation, which suggests while first-order effects are critical
as highlighted by the good performance of LASR, their calculation and incorporation in the
proposed heuristics require further research.

2.6 Conclusion

The DNDP is a challenging bilevel optimization problem with critical implications for net-
work design in urban transport systems. Over the past decade, exact methods have become
more capable to solve non-trivial decisions problems. We synthesized the literature on exact
methodologies and discussed the main approaches developed to solve the DNDP to optimality.
In total, nine papers have been examined. Although some of these papers have not addressed
the DNDP in its present form, they have presented a methodology for a related problem which
can be reduced to the DNDP. The characteristics of the solution methods examined have
been categorized in two types of approaches: SO-relaxation based and KKT conditions based
methods. A computational benchmarking of the DNDP was conducted by adapting three
solution methods and comparing their performance using the same piecewise linear link travel
time function approximation. For this benchmark, a total of 20 new instances for the DNDP
have been created. For reproducibility purposes, all implementation formulations, codes and
benchmarking instances are available at https://github.com/davidrey123/DNDP.

The problem of scheduling maintenance projects in congested transport networks can
be viewed as a multi-period application of the DNDP. TSTT can be used as a metric to
represent the impact of road capacity reductions onto network performance by accounting
for users’ reaction in the schedule optimization. A novel pattern-based formulation has been
proposed which extends previous work by providing a compact MIP representation based
on the enumeration of project patterns. An exponential regression model was introduced
to approximate network congestion effects based on maintenance projects’ first order TSTT
effects. This model is used in combination with a pre-processing algorithm to explore the
project pattern space based on the concept of 1-distance neighborhood which proved to
be very effective in capturing projects’ impact on network congestion. We showed that the
integer-relaxation of the proposed statistical model is convex and that this relaxation provides
an efficient method to approximate TSTT values. MILP models to find feasible solutions as
well as customized branching and node selection rules are proposed and calibrated. A CG
algorithm was then presented to solve the NMSP on large instances where pre-processing all
TSTT values is intractable. The proposed CG algorithm relies on a fast pricing heuristic based
on 1-distance optimality, approximate lower bounds derived from convex approximations of
the NMSP and an explicit search procedure. The proposed B&P algorithm was tested on
instances derived from 15- and 20-project scenarios on three network topologies with 25 and
50 time periods.

Our implementation demonstrated that the proposed B&P algorithm is able to solve all
instances in reasonable time and by using only a fraction of the project patterns during the
exploration. This is an important result since it suggests that competitive solutions can be
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found efficiently even on large instances. From a runtime perspective, the bottleneck of the
algorithm is the time spent solving the TAP and the time spent in the explicit search pro-
cedure. While the former depends on the network size, the latter depends on the number
of projects considered. Both of these steps may be challenging from a computational stand-
point and additional work is necessary to identify more efficient approaches to manage this
complexity.

The pattern-based formulation for the NMSP was then extended to incorporate network
recovery effects. Three heuristics employed from the scheduling literature were adapted for
this bilevel network recovery problem. Numerical experiments were designed on a realistic
transport network wherein two disaster scenarios were considered. Both disaster scenarios
aim to represent the possible damage caused by disasters that exhibit a fault-line topology,
such as earthquakes. A total of 20 instances based on these disaster scenarios were randomly
generated and used to benchmark the proposed solution methods. The numerical results
obtained highlight the performance of the proposed adaptation of Smith’s ratio for the bilevel
network recovery scheduling problem at hand, but also reveal that the proposed heuristic
methods may fall short of optimal solutions when the amount of recovery resources is low
compared to the demand of recovery projects. This research provides a basis to support
decision-making in the context of disaster recovery. The proposed formulation focused on the
reconstruction of the road network under limited recovery resources availability which can
help in informing planning policies.
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Aircraft conflict resolution via
mixed-integer nonlinear
programming

This chapter is based on Rey and Hijazi [2017], Dias et al. [2022], Dias and Rey [2022].

3.1 Introduction

Air traffic control (ATC) is an extremely dynamic and constrained environment where many
decisions need to be taken in a short amount of time. Adopting automation within such
an environment can be vital to reduce controller workload and improve airspace capacity
[Durand et al., 1997, Barnier and Allignol, 2009, Rey et al., 2016c]. Traditional methods for
air traffic control have been exhaustively used and are reaching their limits, hence automated
approaches are receiving a significant and growing attention in the field [Vela et al., 2009b].
The International Civil Aviation Organization (ICAO) determines all regulations related to
civil aviation [ICAO, 2010]. One of its main roles is to set separation standards for commercial
aviation. We focus on aircraft separation for en-route traffic. During cruise stage, separation
conditions require a minimum of 5 Nautical Miles (NM) horizontally or 1000 feet (ft) vertically
between any pair of aircraft. A conflict between two or more aircraft is a loss of separation
among these aircraft. Air traffic networks are organised in flight levels which are separated
by at least 1000 ft, hence during cruise stage, most conflicts occur among aircraft flying at
the same flight level. Congested air traffic networks can lead to loss of separation between
aircraft which impairs flight safety and may result in collisions. The aircraft conflict resolution
problem (ACRP) can be formulated as an optimization problem in which the objective is to
find least-deviating conflict-free trajectories for a set of aircraft. Different strategies have
been used to address this problem based on the type of deconfliction manoeuvres available,
namely: speed control (acceleration or deceleration), heading control, vertical control (flight
level reassignment) or a combination of these manoeuvres.

This chapter presents the complex number formulation for aircraft conflict resolution
introduced by Rey and Hijazi [2017] and further developed by Dias et al. [2022] for the
deterministic case, and by Dias and Rey [2022] for the robust case. Nonconvex mixed-
integer programming (MIP) formulations for ACRPs and exact solution methods are proposed
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for the two-dimensional (2D) conflict resolution problem with speed and heading control
represented as continuous variables; as well as for an extended problem wherein flight level
(FL) changes are also available. Theoretical and numerical contributions are provided, and
extensive numerical results on benchmarking instances are reported. For reproducibility
purposes, all formulations and instances are made available online at the public repository
https://github.com/acrp-lib/acrp-lib.

The chapter is organised as follows. We review the state-of-the-art on aircraft conflict
resolution, highlight existing research gaps and position our contributions to the field in Sec-
tion 3.2. We next characterise pairwise aircraft separation conditions and present nonconvex
aircraft conflict resolution formulations for the 2D problem, as well as for an extension of the
2D problem with FL changes, hereby referred to as 2D+FL in Section 3.3. We present exact
solution methods for the 2D and 2D+FL problems that build on existing convex relaxations
and propose novel decomposition and constraint generation algorithms in Section 3.4. The
robust aircraft conflict resolution problem is discussed in Section 3.5. Numerical results are
provided in Section 3.6 and concluding remarks are discussed in Section 3.7.

3.2 Literature review

The first exact global optimization approach for aircraft conflict resolution problems was
proposed by Pallottino et al. [2002], who introduced two MIP formulations: a first model
based on speed control only and a second model based on heading control only which required
that all aircraft fly at the same speed. In the proposed MIP formulation for conflict resolution
with speed control, the authors derived linear pairwise aircraft separation constraints based
on the geometric construction introduced by Bilimoria [2000]. These separation conditions are
obtained by projecting the shadow of an intruder aircraft onto the trajectory of a reference
aircraft, thus we henceforth refer to these separation conditions as the shadow separation
conditions. Frazzoli et al. [2001] were the first to observe that this geometric construction
provided a basis to characterise the set of aircraft pairwise conflict-free trajectories via linear
half-planes in the relative velocity (speed and heading) plane. The authors introduced a
nonconvex formulation for the conflict resolution problem with speed and heading control,
and proposed a convex relaxation based on semi-definite programming as well as a heuristic
algorithm to find feasible solutions on problems with up to 10 aircraft.

The shadow separation conditions were subsequently used in several formulations. Alonso-
Ayuso et al. [2011] proposed a mixed-integer linear programming (MILP) formulation for
conflict resolution by speed and altitude control and reported solving instances with up to
50 aircraft in competitive time. Alonso-Ayuso et al. [2014] proposed a two-step approach
in which only heading control is available for deconfliction and the available angle changes
are discretised. The same group of authors also proposed a nonconvex formulation involv-
ing trigonometric functions based on the shadow separation conditions that enables speed,
heading and altitude control [Alonso-Ayuso et al., 2016]. The authors used a mixed-integer
nonlinear programming (MINLP) solver to solve the resulting nonconvex formulations and
reported results for the 2D ACRP with up to 7 aircraft on structured instances and up to 20
aircraft on un-structured instances. Alternative representations of pairwise aircraft separa-
tion based on conflict points have been proposed by several authors. In Vela et al. [2009c,b,a],
the authors proposed several MILP formulations which aim to minimise fuel consumption,
incorporate air traffic controller workload in the objective function, and account for the im-
pact of uncertainty on trajectory prediction due to wind effects. Omer [2015] proposed a
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space-discretised MILP formulation involving a finite set of turning angles. In contrast to
most other approaches, the heading control manoeuvres consist of two actions: a first heading
change for collision avoidance and a second turn to recover aircraft’s initial heading. Rey
et al. [2012, 2016c] proposed linear upper bounds for the ACRP with speed control only and
the resulting MILP formulations can solve realistic large-scale instances to optimality within
a few seconds.

More recently, nonlinear global optimization approaches received an increasing attention
in the literature. Omer and Farges [2013] proposed a hybrid algorithm which uses the opti-
mal solution of a MILP as the starting point for solving a nonlinear formulation of the same
problem. Cafieri [2012] introduced a MINLP approach that provides a compact nonlinear
separation condition for conflict resolution. This formulation was then used by Cafieri and
Rey [2017] for conflict resolution with speed control only which highlights that subliminal
speed control alone may not be sufficient to resolve all conflicts in dense traffic scenarios.
Using a similar framework, Cafieri and Omheni [2017] presented a two-step approach where
a maximum number of conflicts are first solved using speed control only and outstanding
conflicts are solved by heading control. Cerulli et al. [2021] proposed a formulation based
on bi-level optimization with multiple follower problems, each of which representing a two-
aircraft separation problem. The authors presented two formulations, one using speed control
only and another using heading control only. A cut generation algorithm is proposed to solve
the corresponding bi-level optimization problems. Recently, Pelegrín and d’Ambrosio [2022]
conducted a review of the literature on mathematical programming approaches for aircraft
conflict resolution and have shown that the disjunctive linear separation conditions intro-
duced by Rey and Hijazi [2017] and the shadow separation conditions are equivalent. This
result combined with the theorem provided in this study – linking the disjunctive separa-
tion conditions with the definitional nonlinear separation conditions (see Theorem 3.1) –
further motivates the comparison of both separation conditions in terms of computational
performance which we address in our numerical experiments.

This review of the literature highlights that despite recent improvements in the devel-
opment of optimization approaches for aircraft conflict resolution, there remains significant
open challenges in the design of scalable and exact global optimization approaches. The
rest of the chapter is organized as follows. Formulations based on disjunctive linear separa-
tion conditions for the deterministic aircraft conflict resolution problem are first presented
(Section 3.3) and exact solution methods are then developed (Section 3.4). An extension
to the robust aircraft conflict resolution problem is presented (Section 3.5) before numerical
experiments are results are summarized (Section 3.6).

3.3 Aircraft conflict resolution formulations

We present mixed-integer formulations for the ACRP with speed, heading and altitude con-
trol. We first focus on the 2D problem under velocity, i.e. speed and heading, control which
aims to represent a single flight level during cruise stage air traffic conditions. We present
disjunctive linear separation conditions in Section 3.3.1. We then characterise 2D separation
conditions for a pair of aircraft based on velocity control bounds in Section 3.3.2, before
introducing a compact nonconvex formulation in Section 3.3.3. We then extend this non-
convex formulation to the case of multiple separated flight levels (FL), denoted 2D+FL in
Section 3.3.4.
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3.3.1 Disjunctive linear separation conditions

Our goal is to find least-deviating conflict-free trajectories for a set of aircraft in cruise
stage, i.e. flying at a fixed altitude and at constant speed. We denote t = 0 the time instant
representing aircraft current positions at the time of decision, also referred to as aircraft initial
positions. We assume that all aircraft are separated at t = 0 and seek to derive separation
conditions to ensure that aircraft trajectories are separated for any time t ≥ 0. Let A be
the set of aircraft. For each i ∈ A, [x̂i, ŷi]⊤ is the aircraft initial position in the 2D plane, v̂i

is its nominal speed (in NM/h) and θ̂i is its heading angle. Assuming uniform motion laws,
aircraft motion can be described as: pi(t) = [xi(t), yi(t)]⊤, where xi(t) = x̂i +qiv̂i cos(θ̂i +θi)t
and yi(t) = ŷi + qiv̂i sin(θ̂i + θi)t. In this model, the decision variables are qi, which is the
speed control variable that determines the acceleration or deceleration with regards to the
initial speed v̂i (qi equals to 1 means no speed variation) and θi, which is the heading control
variable that determines the deviation with regards to the initial trajectory (θi equal to 0
means no deviation in heading angle).

Let P ≡ {i, j ∈ A : i < j} be the set of aircraft pairs, the relative motion of (i, j) ∈ P is
denoted pij(t) = pi(t) − pj(t). Let d be the minimum separation distance (e.g. 5 NM). We
next define the notion of 2D separation for a pair of aircraft.

Definition 3.1 (2D separated trajectories). The trajectories of a pair of aircraft (i, j) ∈ P
are said to be 2D separated, i.e. conflict-free, if and only if:

||pij(t)|| ≥ d, ∀t ≥ 0. (3.1)

Let vij = vi − vj be the 2D relative velocity vector of (i, j) ∈ P, i.e. vij = [vij,x, vij,y]⊤:

vij,x = qiv̂i cos(θ̂i + θi)− qj v̂j cos(θ̂j + θj), (3.2a)
vij,y = qiv̂i sin(θ̂i + θi)− qj v̂j sin(θ̂j + θj). (3.2b)

Aircraft relative velocity equations are linear with regards to speed control variables qi

and qj , but nonlinear with regards to heading control variables θi and θj . Expanding the
expression in Eq. (3.1) and denoting p̂ij the relative initial position of aircraft pair (i, j) ∈ P,
we obtain a second-order polynomial function:

fij(t) ≡ ||vij ||2t2 + 2p̂ij · vijt+ ||p̂ij ||2 − d2 ≥ 0. (3.3)

Since the coefficient of the second-order term is positive, fij(t) admits a minimum which
corresponds to the time instant of minimum separation between aircraft i and j. Let tmin

ij (vij)
be the function corresponding to this time instant parameterised by aircraft relative velocity
vector, then:

tmin
ij (vij) = −p̂ij · vij

||vij ||2
. (3.4)

Evaluating Eq. (3.3) at tmin
ij (vij) yields a time-independent separation condition [Rey and

Hijazi, 2017, Cafieri and Rey, 2017, Cafieri and Omheni, 2017]:

fij(tmin
ij (vij)) = −(p̂ij · vij)2

||vij ||2
+ ||p̂ij ||2 − d2 ≥ 0. (3.5)
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Let gij(vij) ≡ ||vij ||2fij(tmin
ij (vij)). We abuse notation and rewrite gij(·) and tmin

ij (·) as
functions of aircraft velocity components vij,x and vij,y. After expanding and factorising, we
obtain:

gij(vij,x, vij,y) = v2
ij,x(ŷ2

ij − d2) + v2
ij,y(x̂2

ij − d2)− vij,xvij,y(2x̂ij ŷij) ≥ 0. (3.6)

Assuming aircraft are initially separated, if tmin
ij (vij,x, vij,y) ≤ 0, then they are diverging

and do not incur any risk of future conflict. If tmin
ij (vij,x, vij,y) > 0 and g(vij,x, vij,y) ≥ 0,

aircraft are converging but separation is ensured. Otherwise, if tmin
ij (vij,x, vij,y) > 0 and

g(vij,x, vij,y) < 0, there is a loss of separation and aircraft trajectories should be adjusted to
avoid it. Hence, pairwise aircraft separation conditions for (i, j) ∈ P can be written as:

gij(vij,x, vij,y) ≥ 0 ∨ tmin
ij (vij,x, vij,y) ≤ 0. (3.7)

To linearise the separation condition (3.6) with regards to variables vij,x and vij,y, we adopt
the approach proposed by Rey and Hijazi [2017] and recall the main steps hereafter. Observe
that the solutions of the equation gij(vij,x, vij,y) = 0 can be identified by alternatively fixing
variable vij,x and vij,y, and calculating the roots of the resulting single-variable quadratic
equations. Isolating each variable, we obtain the discriminants:

{
∆vij,x = 4d2v2

ij,y(x̂2
ij + ŷ2

ij − d2),
∆vij,y = 4d2v2

ij,x(x̂2
ij + ŷ2

ij − d2).
(3.8)

Assuming aircraft are initially separated, then x̂2
ij + ŷ2

ij − d2 ≥ 0 and the discriminants
are positive, and the roots of equation gij(vij,x, vij,y) = 0 are the lines defined by the system
of equations:

(ŷ2
ij − d2)vij,x − (x̂ij ŷij + d

√
x̂2

ij + ŷ2
ij − d2)vij,y = 0, (3.9a)

(ŷ2
ij − d2)vij,x − (x̂ij ŷij − d

√
x̂2

ij + ŷ2
ij − d2)vij,y = 0, (3.9b)

(x̂2
ij − d2)vij,y − (x̂ij ŷij + d

√
x̂2

ij + ŷ2
ij − d2)vij,x = 0, (3.9c)

(x̂2
ij − d2)vij,y − (x̂ij ŷij − d

√
x̂2

ij + ŷ2
ij − d2)vij,x = 0. (3.9d)

Let us emphasise that if all coefficients in (3.9a)-(3.9d) are non-zero, then (3.9a) is identical
to (3.9c) and (3.9b) is identical to (3.9d). Observe that

x̂ij ŷij ± d
√
x̂2

ij + ŷ2
ij − d2 = 0,

⇒ d2(x̂2
ij + ŷ2

ij − d2) = x̂2
ij ŷ

2
ij ,

⇔ x̂2
ij ŷ

2
ij − d2(x̂2

ij + ŷ2
ij − d2) = 0,

⇔ (x̂2
ij − d2)(ŷ2

ij − d2) = 0.

Eqs. (3.9a), (3.9b), (3.9c) and (3.9d) define two lines, denoted R1 and R2, in the plane
{(vij,x, vij,y) ∈ R2} and the sign of gij(vij,x, vij,y) can be characterised based on the position
of (vij,x, vij,y) relative to these lines. Recall that according to Eq. (3.4), the sign of the dot
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(a) The hashed pink region represents
g(vij,x, vij,y) ≥ 0. The hashed green half-
plane represents diverging trajectories, i.e.
tmin
ij (vij,x, vij,y) ≤ 0.

(b) Illustration of the disjunctive convex regions:
zij = 1 correspond to the region hashed in yellow
and zij = 0 corresponds to the region hashed in
blue.

Figure 3.1: Illustration of a two-aircraft conflict in the plane {(vij,x, vij,y) ∈ R2}. The red
lines represent the lines P and N . The dashed blue lines correspond to the linear equations
R1 and R2 that are the roots of gij(vij,x, vij,y) = 0. The sign of gij(vij,x, vij,y) is shown by
the + and - green symbols.

product p̂ij · vij indicates aircraft convergence or divergence. Let (P ) be the equation of the
line corresponding to p̂ij · vij :

vij,xx̂ij + vij,yŷij = 0. (P )

The line defined by (P ) splits the plane {(vij,x, vij,y) ∈ R2} in two half-planes, each of
which representing converging and diverging trajectories, respectively. This is illustrated in
Figure 3.1a which depicts a two-aircraft conflict in the plane {(vij,x, vij,y) ∈ R2}. The sign of
gij(vij,x, vij,y) is shown by the + and - green symbols and the hashed pink region corresponds
to gij(vij,x, vij,y) ≥ 0. The hashed green half-plane delimited by (P ) represents diverging
trajectories, i.e. tmin

ij (vij,x, vij,y) ≤ 0.

Consider the line normal to (P ), denoted (N):

vij,yx̂ij − vij,xŷij = 0. (N)

Recall that any point (vij,x, vij,y) such that tmin
ij ≤ 0 or gij(vij,x, vij,y) ≥ 0 corresponds to a

pair of conflict-free trajectories. Hence, the conflict-free region is nonconvex and is represented
by the union of the green and pink hashed regions in Figure 3.1a. Reciprocally, the conflict
region, corresponding to conflicting trajectories is convex and represented by the non-hashed
region in Figure 3.1a. An equivalent expression of Eq. (3.9) was proposed by Frazzoli et al.
[2001] which observed that the set of conflict-free trajectories could be characterised by the
union of two half-planes. We next show through Lemmas 3.1 and 3.2 that (N) is a bisector
of the angle formed by lines R1 and R2 in the conflict region (gij(vij,x, vij,y) ≤ 0) and can be
used to generate two disjunctive but convex conflict-free regions.

Lemma 3.1. The lines (P ) and (N) are bisectors of the angles formed by the two lines R1
and R2 representing the solutions of gij(vij,x, vij,y) = 0.

Lemma 3.2. gij(vij,x, vij,y) ≤ 0 for all points (vij,x, vij,y) of the normal line (N).
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Lemmas 3.1 and 3.2 assert that (N) can be used to split the conflict-free region into two
convex but disjunctive regions. We model this disjunction using variable zij ∈ {0, 1} defined
as:

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P, (3.10a)
vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P. (3.10b)

In each convex sub-region, the lines defined by (3.9a)-(3.9d) delineate the conflict-free
region. The expressions of these lines depend on aircraft initial positions, i.e. x̂ij , ŷij . Recall
that we denote R1 and R2 the equation of these lines. Integer-linear separation conditions
with regards to aircraft velocity components can be derived as follows:

vij,yγ
l
ij − vij,xϕ

l
ij ≤ 0, if zij = 1, ∀(i, j) ∈ P, (3.11a)

vij,yγ
u
ij − vij,xϕ

u
ij ≥ 0, if zij = 0, ∀(i, j) ∈ P, (3.11b)

where γl
ij , ϕl

ij and γu
ij , ϕu

ij are coefficients of the lines (3.9a)-(3.9d) corresponding to the
roots of gij(vij,x, vij,y) = 0. The proposed linear disjunction is illustrated in Figure 3.1b which
depicts the resulting convex sub-regions corresponding to the disjunction zij ∈ {0, 1} for a
two-aircraft conflict. This leads to the following result.

Theorem 3.1. The disjunctive linear separation conditions (3.10)-(3.11) fully characterises
the set of aircraft pairwise conflict-free trajectories as given by Eq. (3.1)

Theorem 3.1 asserts that the disjunctive separation conditions (3.10)-(3.11) are equivalent
to the definitional nonlinear separation conditions. Further, these disjunctive separation
conditions are linear with regards to aircraft velocity variables vij,x and vij,y, and only require
a single binary variable per pair of aircraft. This is expected to improve on the so-called
shadow separation conditions which are also linear with regards to aircraft velocity variables,
but require four binary variables per pair of aircraft [Pallottino et al., 2002, Alonso-Ayuso
et al., 2011, 2016].

3.3.2 Characterisation of conflict-free trajectories based on velocity control
bounds

To characterise the set of 2D conflict-free trajectories, we examine the relative velocity vector
vij as a function of aircraft trajectory control bounds. For each aircraft i ∈ A, we assume
that the speed rate variable is lower bounded by q

i
and upper bounded by qi, i.e.

q
i
≤ qi ≤ qi, ∀i ∈ A. (3.12)

We assume that the heading deviation is lower and upper bounded by θi and θi, i.e.
θi ≤ θi ≤ θi, ∀i ∈ A. (3.13)

To derive lower and upper bounds on relative velocity components vij,x and vij,y, we
re-arrange Eq. (3.2) using trigonometric identities:
vij,x = qiv̂i cos(θ̂i) cos(θi)− qiv̂i sin(θ̂i) sin(θi)− qj v̂j cos(θ̂j) cos(θj) + qj v̂j sin(θ̂j) sin(θj),

(3.14a)
vij,y = qiv̂i sin(θ̂i) cos(θi) + qiv̂i cos(θ̂i) sin(θi)− qj v̂j sin(θ̂j) cos(θj)− qj v̂j cos(θ̂j) sin(θj).

(3.14b)
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Let vij,x, vij,x and vij,y, vij,y be the lower and upper bounds for vij,x and vij,y, respectively.
These bounds can be determined using Eq. (3.14) and the bounds on speed and heading
control provided in Eqs. (3.12) and (3.13). The derived bounds on the relative velocity
components can be used to define a box in the plane {(vij,x, vij,y) ∈ R2}.

Definition 3.2 (Relative velocity box). Consider a pair of aircraft (i, j) ∈ P. Let Bij be the
subset of R2 defined as

Bij ≡
{

(vij,x, vij,y) ∈ R2 : vij,x ≤ vij,x ≤ vij,x, vij,y ≤ vij,y ≤ vij,y

}
. (3.15)

Bij is the relative velocity box of (i, j) ∈ P.

The relative velocity box Bij characterises all possible trajectories for the pair (i, j) ∈
P based on the available 2D deconfliction resources, i.e. speed and heading controls. To
characterise the set of conflict-free trajectories of a pair of aircraft (i, j) ∈ P, we compare the
relative position of the relative velocity box Bij with the conflict region of this pair of aircraft.
Observe that the conflict region is convex and can be defined by reversing the inequalities
(3.11) and omitting the disjunction zij ∈ {0, 1}.

Definition 3.3 (Conflict region). Consider a pair of aircraft (i, j) ∈ P. Let Cij be the subset
of R2 defined as

Cij ≡
{

(vij,x, vij,y) ∈ R2 : vij,yγ
l
ij − vij,xϕ

l
ij ≥ 0 ∧ vij,yγ

u
ij − vij,xϕ

u
ij ≤ 0

}
. (3.16)

Cij is the conflict region of (i, j) ∈ P.

The conflict region of a pair of aircraft represents the set of relative velocity vectors which
corresponds to a conflict. The relative positions of the relative velocity box Bij and the conflict
region Cij can be examined to determine the existence or not of a potential conflict. For any
pair (i, j) ∈ P, if Bij ∩ Cij = ∅, then aircraft i and j are separated for any combination of
controls; conversely if Bij ⊂ Cij then i and j cannot be separated via speed or heading control
within the assumed control bounds; otherwise, Bij and Cij intersect but do not completely
overlap. This is illustrated in Figure 3.2 which illustrates the three possible cases. Figure
3.2a illustrates the case where aircraft i and j are separated for any combination of speed and
heading control—we say that such pairs are conflict-free. Figure 3.2b depicts the case where
Bij and Cij only partially intersect—we say that such pairs are separable. Last, Figure 3.2c
illustrates the case where Bij ⊂ Cij—we say that such pairs are non-separable. The following
propositions provide methods to efficiently determine if, given controls bounds on speed and
heading, a pair of aircraft is either conflict-free or non-separable.

Proposition 3.1 (Conflict-free aircraft pair). Consider a pair of aircraft (i, j) ∈ P, and let
LP (i, j) be the feasibility problem defined as:

LP (i, j) :


vij,yγ

l
ij − vij,xϕ

l
ij ≥ 0,

vij,yγ
u
ij − vij,xϕ

u
ij ≤ 0,

(vij,x, vij,y) ∈ Bij .

The pair of aircraft (i, j) is conflict-free for any 2D control if and only if the feasibility
problem LP (i, j) is infeasible.
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Proposition 3.2 (Non-separable aircraft pair). Consider a pair of aircraft (i, j) ∈ P. The
pair (i, j) is non-separable if and only if each of the four extreme points of Bij corresponds
to a conflict.

Using Propositions 3.1 and 3.2, we can design an efficient pre-processing algorithm to
partition the set of aircraft pairs P of a 2D ACRP instance into three categories: conflict-free
pairs denoted PF, separable pairs denoted PS and non-separable pairs PI.

Algorithm 3: Pre-processing of aircraft pairs
Input: A, θ̂, v̂, q, q, θ, θ

Output: P, PF, PS, PI
1 P ← {i, j ∈ A : i < j}
2 PF,PS,PI ← ∅
3 for (i, j) ∈ P do
4 Solve LP (i, j)
5 if LP (i, j) is infeasible then
6 PF ← PF ∪ {(i, j)}
7 else
8 k ← 0
9 for (vij,x, vij,y) ∈ E(Bij) do

10 if gij(vij,x, vij,y) < 0 ∧ tmin
ij (vij,x, vij,y) > 0 then

11 k ← k + 1
12 if k = 4 then
13 PI ← PI ∪ {(i, j)}
14 else
15 PS ← PS ∪ {(i, j)}

To identify conflict-free pairs, LP (i, j) is solved and a pair of aircraft is conflict-free
if and only if the LP is infeasible. Observe that the feasibility problem LP (i, j) is linear
and can be solved by enumerating all extreme points of its feasible region and test if this
corresponds to a conflict or not. Since LP (i, j) consists of four bound constraints and two
shared constraints, there is a total of 13 extreme points to test (the combinations of the
bound constraints of a variable can be excluded). To identify non-separable pairs, we denote
E(Bij) the set of extreme points of the relative velocity box Bij for any pair (i, j) ∈ P and
use the separation condition (3.3) to determine if all extreme points are conflicts or not. This
procedure is summarized in Algorithm 3 (we use boldface to denote vectors). Observe that
pairwise variables and constraints need only to be indexed by the set of separable pairs PS
since pairs in PF are always conflict-free. Further, any 2D conflict resolution problem such
that |PI| > 0 is infeasible.

The nonconvex formulation of the 2D ARCP is summarized in Model 3.1.
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(a) Conflict-free aircraft pair, i.e.
Bij ∩ Cij = ∅. Nominal headings
are θ̂i = 2.01 and θ̂j = 1.30.

(b) Separable aircraft pair, i.e.
Bij ∩Cij ̸= ∅ and Bij ̸⊂ Cij . Nom-
inal headings are θ̂i = 1.25 and θ̂j

= 1.88.

(c) Non-separable aircraft pair,
i.e. Bij ⊂ Cij . Nominal headings
are θ̂i = 1.04 and θ̂j = 2.09.

Figure 3.2: Three aircraft configurations illustrating conflict-free (3.2a), separable (3.2b) and
non-separable (3.2c) pairs. Aircraft initial positions and trajectories are depicted at the
bottom part of each sub-figure, where black dots correspond to initial positions and red lines
represent initial trajectories. The top part of each sub-figure shows a graph of the relative
velocity box Bij represented by a black rectangle, and the conflict region Cij represented by
a red hashed area. Dashed blue lines represent the solutions of g(vij,x, vij,y) = 0 (R1 and
R2). In all cases, aircraft i and j have nominal speeds v̂i = v̂j = 500 NM/h and are initially
separated by 30 NM in the x-axis direction.

Model 3.1 (Nonconvex 2D Formulation).

min
∑
i∈A

(1− w)(1− qi)2 + wθ2
i , (3.17a)

s.t.
vij,x = qiv̂i sin(θ̂i + θi)− qj v̂j sin(θ̂j + θj), ∀(i, j) ∈ P, (3.17b)
vij,y = qiv̂i cos(θ̂i + θi)− qj v̂j cos(θ̂j + θj), ∀(i, j) ∈ P, (3.17c)
vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P, (3.17d)
vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P, (3.17e)
vij,yγ

l
ij − vij,xϕ

l
ij ≤ 0, if zij = 1, ∀(i, j) ∈ P, (3.17f)

vij,xγ
u
ij − vij,yϕ

u
ij ≥ 0, if zij = 0, ∀(i, j) ∈ P, (3.17g)

vij,x, vij,y ∈ Bij , ∀(i, j) ∈ P, (3.17h)
zij ∈ {0, 1}, ∀(i, j) ∈ P, (3.17i)
q

i
≤ qi ≤ qi, ∀i ∈ A, (3.17j)

θi ≤ θi ≤ θi, ∀i ∈ A. (3.17k)

Model 3.1 provides a compact formulation for the ACRP with speed and heading control
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which requires a single binary variable per pair of aircraft. Note that coefficients γl
ij , ϕl

ij ,
γu

ij and ϕu
ij (present in (3.10)) can be pre-processed based on the sign of x̂ij and ŷij . For

implementation details, a fully reproducible formulation can be found at: https://github.
com/acrp-lib/acrp-lib.

3.3.3 Complex formulation for the 2D aircraft conflict resolution problem

An alternative way to represent aircraft motion equation is via the complex number formu-
lation introduced by Rey and Hijazi [2017]. Let Vi be the complex number defined as:

Vi = qi(cos(θi) + i sin(θi)), ∀i ∈ A. (3.18)

Representing Vi in its polar form with δi,x = qi cos(θi) and δi,y = qi sin(θi), yield:

Vi = δi,x + iδi,y, ∀i ∈ A. (3.19)

The magnitude of Vi is |Vi| =
√
δ2

i,x + δ2
i,y = qi and its argument is arg(Vi) = arctan δi,x

δi,y
=

θi. This approach is inspired by complex number formulation for the optimal power flow
problem in power systems, such as in Hijazi et al. [2017] and Coffrin et al. [2015]. Accordingly,
the relative motion equations of a pair of aircraft can be rewritten as:

vij,x = δi,xv̂i cos(θ̂i)− δi,yv̂i sin(θ̂i)− δj,xv̂j cos(θ̂i) + δj,yv̂j sin(θ̂j), ∀(i, j) ∈ PS, (3.20a)
vij,y = δi,yv̂i cos(θ̂i)− δi,xv̂i sin(θ̂i)− δj,yv̂j cos(θ̂i) + δj,xv̂j sin(θ̂j), ∀(i, j) ∈ PS. (3.20b)

The variables δi,x and δi,y are used as the main control variables in this formulation and
their bounds are derived from the bounds of the original control variables qi and θi:

q
i
cos(max{|θi|, |θi|}) ≤ δi,x ≤ qi, ∀i ∈ A, (3.21a)

qi sin(θi) ≤ δi,y ≤ qi sin(θi), ∀i ∈ A. (3.21b)

The speed control constraint (3.12) can be reformulated in quadratic form as:

q2
i
≤ δ2

i,x + δ2
i,y, ∀i ∈ A, (3.22a)

q2
i ≥ δ2

i,x + δ2
i,y, ∀i ∈ A. (3.22b)

The heading control constraint (3.13) can be reformulated in linear form as:

δi,x tan(θi) ≤ δi,y ≤ δi,x tan(θi), ∀i ∈ A. (3.23a)

To design the objective function, we introduce a preference weight w ∈ ]0, 1[ to balance the
trade-offs among velocity controls, i.e. speed and heading. We extend the objective function
proposed by Rey and Hijazi [2017] as follows:

minimise
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2. (3.24)

We next show that the objective function (3.24) attains its minimum value when aircraft
have deviation-free trajectories, i.e. qi = 1 and θi = 0 for all i ∈ A.
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Proposition 3.3. The 2D objective function (3.24) is convex with regards to decision vari-
ables δi,x and δi,y for any value w ∈ ]0, 1[, and is minimal for qi = 1 and θi = 0 for all aircraft
i ∈ A.

Proposition 3.3 shows that the proposed 2D objective function achieves an optimal value
for deviation-free aircraft trajectories for any preference weight w ∈ ]0, 1[. We will show
in Section 3.6.2 that increasing w increases the penalisation of heading deviations whereas
decreasing w increases the penalisation of speed deviations. The complex number nonconvex
formulation for the 2D ACRP is summarized in Model 3.2.

Model 3.2 (Complex number nonconvex 2D formulation).

min
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2, (3.25a)

s.t.
vij,x = δi,xv̂i cos(θ̂i)− δi,yv̂i sin(θ̂i)− δj,xv̂j cos(θ̂i) + δj,yv̂j sin(θ̂j), ∀(i, j) ∈ PS, (3.25b)
vij,y = δi,yv̂i cos(θ̂i)− δi,xv̂i sin(θ̂i)− δj,yv̂j cos(θ̂i) + δj,xv̂j sin(θ̂j), ∀(i, j) ∈ PS, (3.25c)
vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ PS, (3.25d)
vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ PS, (3.25e)
vij,yγ

l
ij − vij,xϕ

l
ij ≤ 0, if zij = 1, ∀(i, j) ∈ PS, (3.25f)

vij,yγ
u
ij − vij,xϕ

u
ij ≥ 0, if zij = 0, ∀(i, j) ∈ PS, (3.25g)

q2
i
≤ δ2

i,x + δ2
i,y ≤ q2

i , ∀i ∈ A, (3.25h)
δi,x tan(θi) ≤ δi,y ≤ δi,x tan(θi), ∀i ∈ A, (3.25i)
q

i
cos(max{|θi|, |θi|}) ≤ δi,x ≤ qi, ∀i ∈ A, (3.25j)

qi sin(θi) ≤ δi,y ≤ qi sin(θi), ∀i ∈ A, (3.25k)
vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ PS, (3.25l)
vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ PS, (3.25m)
zij ∈ {0, 1}, ∀(i, j) ∈ PS, (3.25n)
δi,x, δi,y ∈ R, ∀i ∈ A. (3.25o)

Model 3.2 provides a compact formulation for the 2D ACRP with continuous speed and
heading control variables which requires a single binary variable per pair of aircraft. This
formulation is nonconvex due to the speed lower bound constraint (3.22a) which is nonconvex
quadratic. Note that we use the convex hull reformulation of the linear On/Off constraints
(3.10) and (3.11) as derived in Hijazi et al. [2014]. This reformulation does not require the
introduction of auxiliary variables and is proved to provide the tightest continuous relaxation
for each On/Off constraint. Coefficients γl

ij , ϕl
ij and γu

ij , ϕu
ij (present in (3.10) and (3.11))

can be pre-processed based on the sign of x̂ij and ŷij .

3.3.4 Complex number formulation for the 2D+FL aircraft conflict reso-
lution problem

To model FL changes, we assume that each aircraft i ∈ A is initially assigned to a base FL
denoted ρ̂i. We assume that adjacent FLs are vertically separated (e.g. by 1000 ft). Thus, we
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only need to impose separation constraints on pairs of aircraft which share the same FL. Let
Zi denote the set of available FLs for each aircraft i ∈ A, and consider the binary variable
ρik defined as:

ρik ≡
{

1 if aircraft i ∈ A is assigned to FL k ∈ Zi,

0 otherwise.
(3.26)

By design, ρ̂i ∈ Zi and we require that each aircraft i ∈ A be assigned to exactly one FL
in its reachable set Zi via constraint (3.27):∑

k∈Zi

ρik = 1, ∀i ∈ A. (3.27)

Let P3
S be the set of aircraft pairs which are not conflict-free and may share the same FL,

i.e. P3
S ≡ {(i, j) ∈ PS ∪ PI : Zi ∩ Zj ̸= ∅}. Let φij be the binary variable defined as:

φij ≡
{

1 if aircraft i and j are assigned to the same FL,
0 otherwise.

(3.28)

Variable φij can be linked to binary variables ρik and ρjk via the constraint:

ρik + ρjk ≤ φij + 1, ∀(i, j) ∈ P3
S , k ∈ Zi ∩ Zj . (3.29)

The separation conditions (3.10)-(3.11) are rewritten to account for altitude separation
as follows:

vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1 and φij = 1, ∀(i, j) ∈ P3
S , (3.30a)

vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0 and φij = 1, ∀(i, j) ∈ P3
S , (3.30b)

vij,yγ
l
ij − vij,xϕ

l
ij ≤ 0, if zij = 1 and φij = 1, ∀(i, j) ∈ P3

S , (3.30c)
vij,yγ

u
ij − vij,xϕ

u
ij ≥ 0, if zij = 0 and φij = 1, ∀(i, j) ∈ P3

S . (3.30d)

FL changes are typically less desirable compared to other deconfliction manoeuvres such
as speed or heading control [Bilimoria et al., 1996, Hu et al., 2002, Alonso-Ayuso et al., 2011].
This is due to several practical considerations including an increase in fuel consumption,
passenger discomfort due to climbing or descending and the need for extended monitoring.
Under these considerations, we propose a lexicographic optimization approach for the 2D+FL
ACRP. The number of FL changes is first minimised; before the total 2D deviation of flights
is minimised. The proposed objective function for minimising the number of FL changes is:

minimise
∑
i∈A

∣∣∣∣∣∣
∑

k∈Zi

kρik − ρ̂i

∣∣∣∣∣∣ . (3.31)

The resulting nonconvex lexicographic 2D+FL formulation is summarized in Model 3.3.

Model 3.3 (Complex number nonconvex lexicographic 2D+FL formulation).

1. min
∑
i∈A

∣∣∣∣∣∣
∑

k∈Zi

kρik − ρ̂i

∣∣∣∣∣∣ , (3.32a)
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2. min
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2, (3.32b)

s.t.
vij,x = δi,xv̂i cos(θ̂i)− δi,yv̂i sin(θ̂i)− δj,xv̂j cos(θ̂i) + δj,yv̂j sin(θ̂j), ∀(i, j) ∈ P3

S, (3.32c)
vij,y = δi,yv̂i cos(θ̂i)− δi,xv̂i sin(θ̂i)− δj,yv̂j cos(θ̂i) + δj,xv̂j sin(θ̂j), ∀(i, j) ∈ P3

S, (3.32d)
vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1 and φij = 1, ∀(i, j) ∈ P3

S, (3.32e)
vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0 and φij = 1, ∀(i, j) ∈ P3

S, (3.32f)
vij,yγ

l
ij − vij,xϕ

l
ij ≤ 0, if zij = 1 and φij = 1, ∀(i, j) ∈ P3

S, (3.32g)
vij,yγ

u
ij − vij,xϕ

u
ij ≥ 0, if zij = 0 and φij = 1, ∀(i, j) ∈ P3

S, (3.32h)
q2

i
≤ δ2

i,x + δ2
i,y ≤ q2

i , ∀i ∈ A, (3.32i)
δi,x tan(θi) ≤ δi,y ≤ δi,x tan(θi), ∀i ∈ A, (3.32j)
q

i
cos(max{|θi|, |θi|}) ≤ δi,x ≤ qi, ∀i ∈ A, (3.32k)

qi sin(θi) ≤ δi,y ≤ qi sin(θi), ∀i ∈ A, (3.32l)∑
k∈Zi

ρik = 1, ∀i ∈ A, (3.32m)

ρik + ρjk ≤ φij + 1, ∀(i, j) ∈ P3
S, k ∈ Zi ∩ Zj

(3.32n)
vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ P3

S, (3.32o)
vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ P3

S, (3.32p)
zij ∈ {0, 1}, ∀(i, j) ∈ P3

S, (3.32q)
δi,x, δi,y ∈ R, ∀i ∈ A, (3.32r)
ρik ∈ {0, 1}, ∀i ∈ A, k ∈ Zi. (3.32s)

Compared to Model 3.2, Model 3.3 requires additional binary decision variables ρik and
φij . The former is used to assign aircraft to separated FLs and the latter ensures that aircraft
sharing the same FL are separated via the 2D separation conditions.

3.4 Exact solution methods for the aircraft conflict resolution
problem

We present exact solution methods for the 2D and the 2D+FL ACRPs that build on and
extend the convex relaxations presented by Rey and Hijazi [2017]. We first present a convex
relaxation of the 2D ACRP that fully relaxes the speed control constraint in the complex num-
ber formulation (Section 3.4.1). This relaxation yields a Mixed-Integer Quadratic Program
(MIQP) which solution may violate the speed control bounds of the problem. To eliminate
these potential violations, we incorporate convex quadratic constraints and piecewise linear
outer approximations in a Mixed-Integer Quadratically Constrained Program (MIQCP). We
then propose a constraint generation algorithm to iteratively refine the piece-wise linear ap-
proximation and show that our approach converges to optimal solutions of the 2D ACRP
(Section 3.4.2).

To solve the lexicographic optimization formulation for the 2D+FL ACRP, we propose a
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two-step decomposition approach. We first solve a restricted flight assignment problem that
only implicitly accounts for aircraft trajectories and yields an optimal solution with regards
to the first objective function (total FL deviation). We then use the optimal solution of the
flight assignment formulation to assign aircraft to FLs and solve a series of 2D problems (one
per FL) to construct an optimal solution with regards to the second objective function (total
2D deviation). Both steps are iterated until a global solution is found (Section 3.4.3). We
next present in detail the proposed exact solution methods.

3.4.1 Mixed-integer quadratic relaxation for the 2D ACRP

An initial convex relaxation of Model 3.2 was proposed by Rey and Hijazi [2017] by relaxing
the speed control constraint (3.22). The resulting formulation is a MIQP summarized in
Model 3.4.

Model 3.4 (MIQP 2D formulation).

min
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2, (3.33a)

s.t.
vij,x = δi,xv̂i cos(θ̂i)− δi,yv̂i sin(θ̂i)− δj,xv̂j cos(θ̂i) + δj,yv̂j sin(θ̂j), ∀(i, j) ∈ PS, (3.33b)
vij,y = δi,yv̂i cos(θ̂i)− δi,xv̂i sin(θ̂i)− δj,yv̂j cos(θ̂i) + δj,xv̂j sin(θ̂j), ∀(i, j) ∈ PS, (3.33c)
vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ PS, (3.33d)
vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ PS, (3.33e)
vij,yγ

l
ij − vij,xϕ

l
ij ≤ 0, if zij = 1, ∀(i, j) ∈ PS, (3.33f)

vij,yγ
u
ij − vij,xϕ

u
ij ≥ 0, if zij = 0, ∀(i, j) ∈ PS, (3.33g)

δi,x tan(θi) ≤ δi,y ≤ δi,x tan(θi), ∀i ∈ A, (3.33h)
q

i
cos(max{|θi|, |θi|}) ≤ δi,x ≤ qi, ∀i ∈ A, (3.33i)

qi sin(θi) ≤ δi,y ≤ qi sin(θi), ∀i ∈ A, (3.33j)
vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ PS, (3.33k)
vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ PS, (3.33l)
zij ∈ {0, 1}, ∀(i, j) ∈ PS, (3.33m)
δi,x, δi,y ∈ R, ∀i ∈ A. (3.33n)

Model 3.4 yields a lower bound on the optimal objective value of Model 3.2 and a solution
which is a global optimum if the relaxed constraint (3.22) is not violated.

3.4.2 Mixed-integer quadratically constrained relaxation and constraint
generation algorithm

To tighten the MIQP relaxation given in Section 3.4.1, we build on and extend the MIQCP
relaxation proposed by Rey and Hijazi [2017] by incorporating the speed control constraint
(3.22) using convex quadratic and piecewise linear constraints. Observe that the speed upper
bound constraint (3.22b) is convex quadratic, hence it can be incorporated directly in the
MIQCP formulation.
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To incorporate the speed lower bound constraint (3.22a), for each aircraft i ∈ A, we
introduce real variables δ̃i,x and δ̃i,y to approximate δ2

i,x and δ2
i,y, respectively, via convex

quadratic constraints:

δ̃i,x ≥ δ2
i,x, ∀i ∈ A, (3.34a)

δ̃i,y ≥ δ2
i,y, ∀i ∈ A. (3.34b)

Accordingly, we require:

q2
i
≤ δ̃i,x + δ̃i,y, ∀i ∈ A. (3.35)

To impose upper bounds on δ̃i,x and δ̃i,y, we use their McCormick envelopes [McCormick,
1976]:

δ̃i,x ≤ (qi + q
i
cos(max{|θi|, |θi|}))δi,x − qiqi

cos(max{|θi|, |θi|}), ∀i ∈ A. (3.36a)
δ̃i,y ≤ qi(sin(θi) + sin(θi))δi,y − q2

i sin(θi) sin(θi), ∀i ∈ A. (3.36b)

Constraints (3.34)-(3.36) restrict variables δ̃i,x and δ̃i,y to convex regions thus providing
an initial relaxation of the speed lower bound constraint (3.22a). This initial relaxation is
illustrated in Figure 3.3 which depicts the variation of δ2

i,x and δ2
i,y (in red) over the domain

of δi,x and δi,y for realistic speed and heading control bounds. The green lines in Figures 3.3a
and 3.3b represent the initial McCormick envelopes. This relaxation may still yield infeasible
aircraft speeds. To refine this convex relaxation, we introduce mixed-integer cuts that can
be generated on-the-fly in a constraint generation algorithm.

We next present the general structure of the proposed mixed-integer cuts before discussing
how these cuts are generated iteratively. Let Γi,x and Γi,y be partitions of the domain
of variables δi,x and δi,y, respectively. Since δ2

i,x and δ2
i,y are convex, any line joining two

extremities of a segment in Γi,x and Γi,y refines the initial McCormick upper envelopes. Let
αk

i,x (resp. αk
i,y) and βk

i,x (resp. βk
i,y) be the slope and the intercept corresponding to segment

k ∈ Γi,x (resp. k ∈ Γi,y). Further, let sk
i,x (resp. sk

i,y) be a binary variable taking value 1 if δi,x

(resp. δi,y) belongs to segment k of partition Γi,x (resp. Γi,y). The proposed mixed-integer
cuts take the form of:

δ̃i,x ≤ αk
i,xδi,x + βk

i,x, if sk
i,x = 1, ∀i ∈ A, k ∈ Γi,x, (3.37a)

δ̃i,y ≤ αk
i,yδi,y + βk

i,y, if sk
i,y = 1, ∀i ∈ A, k ∈ Γi,y. (3.37b)

Let δk
i,x and δk

i,x (resp. δk
i,y and δk

i,y) be the extremities of segment k ∈ Γi,x (resp. k ∈ Γi,y).
Binary variables sk

i,x and sk
i,y are defined as:

sk
i,x ≡

{
1 if δi,x ∈ [δk

i,x, δ
k
i,x[,

0 otherwise,
∀i ∈ A, k ∈ Γi,x, (3.38a)

sk
i,y ≡

{
1 if δi,y ∈ [δk

i,y, δ
k
i,y[,

0 otherwise.
∀i ∈ A, k ∈ Γi,y. (3.38b)
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We require the following cut selection constraints:∑
k∈Γi,x

sk
i,x = 1 ∀i ∈ A, (3.39a)

∑
k∈Γi,y

sk
i,y = 1 ∀i ∈ A. (3.39b)

The proposed mixed-integer cuts are illustrated in Figures 3.3a and 3.3b for the case
of |Γi,x| = 2 and |Γi,y| = 4 segments, respectively. The shaded purple region represents the
feasible region of δ̃i,x and δ̃i,y after imposing the mixed-integer cuts. The resulting formulation
is a MIQCP with mixed-integer cuts summarized in Model 3.5. This formulation can be solved
by off-the-shelf commercial optimization software and provides a relaxation of the Model 3.2
which can be tightened as desired by refining the partitions Γi,x and Γi,y of the domain of
variables δi,x and δi,y, respectively.

Model 3.5 (MIQCP 2D formulation).

min
∑
i∈A

wδ2
i,y + (1− w)(1− δi,x)2, (3.40a)

s.t.
vij,x = δi,xv̂i cos(θ̂i)− δi,yv̂i sin(θ̂i)− δj,xv̂j cos(θ̂i) + δj,yv̂j sin(θ̂j), ∀(i, j) ∈ PS, (3.40b)
vij,y = δi,yv̂i cos(θ̂i)− δi,xv̂i sin(θ̂i)− δj,yv̂j cos(θ̂i) + δj,xv̂j sin(θ̂j), ∀(i, j) ∈ PS, (3.40c)
vij,yx̂ij − vij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ PS, (3.40d)
vij,yx̂ij − vij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ PS, (3.40e)
vij,yγ

l
ij − vij,xϕ

l
ij ≤ 0, if zij = 1, ∀(i, j) ∈ PS, (3.40f)

vij,yγ
u
ij − vij,xϕ

u
ij ≥ 0, if zij = 0, ∀(i, j) ∈ PS, (3.40g)

δi,x tan(θi) ≤ δi,y ≤ δi,x tan(θi), ∀i ∈ A, (3.40h)
δ̃i,x ≥ δ2

i,x, ∀i ∈ A, (3.40i)
δ̃i,y ≥ δ2

i,y, ∀i ∈ A, (3.40j)
q2

i
≤ δ̃i,x + δ̃i,y, ∀i ∈ A, (3.40k)

δ̃i,x ≤ (qi + q
i
cos(max{|θi|, |θi|}))δi,x − qiqi

cos(max{|θi|, |θi|}), ∀i ∈ A, (3.40l)
δ̃i,y ≤ qi(sin(θi) + sin(θi))δi,y − q2

i sin(θi) sin(θi), ∀i ∈ A, (3.40m)
δ̃i,x ≤ αk

i,xδi,x + βk
i,x, if sk

i,x = 1, ∀i ∈ A, k ∈ Γi,x, (3.40n)
δ̃i,y ≤ αk

i,yδi,y + βk
i,y, if sk

i,y = 1, ∀i ∈ A, k ∈ Γi,y, (3.40o)

sk
i,x = 1 if δi,x ∈ [δk

i,x, δ
k
i,x[, ∀i ∈ A, k ∈ Γi,x, (3.40p)

sk
i,y = 1 if δi,y ∈ [δk

i,y, δ
k
i,y[, ∀i ∈ A, k ∈ Γi,y, (3.40q)∑

k∈Γi,x

sk
i,x = 1 ∀i ∈ A, (3.40r)

∑
k∈Γi,y

sk
i,y = 1 ∀i ∈ A, (3.40s)

q2
i
≤ δ2

i,x + δ2
i,y, ∀i ∈ A, (3.40t)

q
i
cos(max{|θi|, |θi|}) ≤ δi,x ≤ qi, ∀i ∈ A, (3.40u)
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qi sin(θi) ≤ δi,y ≤ qi sin(θi), ∀i ∈ A, (3.40v)
vij,x ≤ vij,x ≤ vij,x, ∀(i, j) ∈ PS, (3.40w)
vij,y ≤ vij,y ≤ vij,y, ∀(i, j) ∈ PS, (3.40x)
zij ∈ {0, 1}, ∀(i, j) ∈ PS, (3.40y)
δi,x, δi,y ∈ R, ∀i ∈ A, (3.40z)
δ̃i,x, δ̃i,y ∈ R, ∀i ∈ A, (3.40aa)
sk

i,x ∈ {0, 1}, ∀i ∈ A, k ∈ Γi,x,

(3.40ab)
sk

i,y ∈ {0, 1}, ∀i ∈ A, k ∈ Γi,y.

(3.40ac)

(a) Graph of δ2
i,x (in red) over the do-

main given by Eq. (3.21a). The mixed-
integer cuts (3.37a) are illustrated for a
partition of |Γi,x| = 2 segments.

(b) Graph of δ2
i,y (in red) over the domain given by

Eq. (3.21b). The mixed-integer cuts (3.37b) are il-
lustrated for a partition of |Γi,y| = 4 segments.

Figure 3.3: Piecewise linear approximation of δ2
i,x and δ2

i,y (in red). The green lines represent
the initial McCormick relaxation given by (3.36). The purple shaded regions represent the
refined feasible region of δ̃i,x and δ̃i,y after imposing the mixed-integer cuts (3.37). Control
bounds are q

i
= 0.94, qi = 1.03, θi = −π

6 and θi = +π
6 .

We propose a constraint generation algorithm which starts from a relaxed formulation
and iteratively refines the piecewise linear outer approximation of the quadratic terms δ2

i,x

and δ2
i,y via mixed-integer cuts (3.37). At each iteration, the proposed constraint generation

algorithm examines the solution (δi,x, δi,y) of each aircraft i ∈ A for speed lower bound
violations. If δ2

i,x + δ2
i,y < q2

i
, then at least one of the relaxed auxiliary variables δ̃i,x or δ̃i,y

must be such that δ̃i,x > δ2
i,x or δ̃i,y > δ2

i,y. To eliminate the current infeasible solution, the
partition(s) Γi,x or Γi,y of the violating variable(s) is augmented by dividing the segment(s)
corresponding to δi,x or δi,y into two segments which meet at δi,x or δi,y and corresponding
binary variable(s) sk

i,x or sk
i,y are added to the formulation. The process is repeated until

all aircraft have feasible speed profiles which corresponds to a global optimum of Model 3.2.
To further improve the convergence of the solution algorithm, after each solve of the relaxed
formulation 3.5, Model 3.2 is solved as a nonlinear program (NLP) by fixing variable zij . The
pseudo-code of the resulting algorithm is summarized in Algorithm 4.
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Algorithm 4: Solution algorithm for the 2D ACRP
Input: A, θ̂, v̂, q, q, θ, θ, ϵ
Output: q⋆, θ⋆, LB, UB

1 P,PI,PF,PS ← Algorithm 3
2 LB ← 0, UB ← +∞
3 q,θ, δx, δy, z, LB ← Solve MIQP 3.4 and calculate q and θ from δx and δy

4 if MIQP 3.4 is infeasible then
5 Return infeasible
6 if q is feasible (no speed violation) then
7 UB ← LB, q⋆ ← q, θ⋆ ← θ

8 else
9 converged ← False

10 while converged = False do
11 q′,θ′, UB-NLP ← Solve Model 3.2 as NLP with fixed z

12 if UB-NLP < UB then
13 UB ← UB-NLP, q⋆ ← q′, θ⋆ ← θ′

14 for i ∈ A do
15 if δ2

i,x + δ2
i,y > q2

i then
16 Add constraint (3.22b)
17 else if δ2

i,x + δ2
i,y < q2

i
then

18 if δ̃i,x > δ2
i,x then

19 Add segment to Γi,x at δi,x, variable sk
i,x, constraints (3.37a),

(3.38a), and update (3.39a)
20 if δ̃i,y > δ2

i,y then
21 Add segment to Γi,y at δi,y, variable sk

i,y, constraints (3.37b),
(3.38b), and update (3.39b)

22 q,θ, δx, δy, δ̃x, δ̃y, z, LB ← Solve MIQCP 3.5 and calculate q and θ from δx

and δy

23 if MIQCP 3.5 is infeasible then
24 Return infeasible
25 if q is feasible (no speed violation) then
26 UB ← LB, q⋆ ← q, θ⋆ ← θ

27 converged ← True
28 if (UB-LB)/UB ≤ ϵ then
29 converged ← True

3.4.3 Decomposition algorithm for the 2D+FL ACRP

We next introduce a two-step decomposition approach for the nonconvex lexicographic 2D+FL
conflict resolution problem represented by Model 3.3. The first objective function (3.31) fo-
cuses on minimising the number of FL changes. This objective function is null and minimal
if all aircraft can remain at their initial FL. Since minimising aircraft FL re-assignment is the
highest priority, we need only to identify combinations of aircraft which are non-separable in
2D and ensure that such combinations are not assigned to the same FL. Let ΩI ⊆ 2A be the
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set of aircraft combinations which are 2D non-separable, i.e. for any ω ∈ ΩI, the subset of
aircraft ω cannot be separated in 2D. We require:∑

i∈ω

ρik ≤ |ω| − 1, ∀ω ∈ ΩI, ∀k ∈
⋂
i∈ω

Zi. (3.41)

Let ∆ρi ≥ 0 be a variable representing the absolute FL deviation for aircraft i ∈ A. Objec-
tive function (3.31) can be linearised using traditional mathematical programming techniques.
Combining the FL separation constraint (3.41) and the linearised objective function yields
a compact FL assignment formulation summarized in Model 3.6 which is a MILP with an
exponential number of constraints.

Model 3.6 (FL assignment formulation).

min
∑
i∈A

∆ρi (3.42a)

s.t.∑
k∈Zi

ρik = 1, ∀i ∈ A, (3.42b)

∑
i∈ω

ρik ≤ |ω| − 1, ∀ω ∈ ΩI, ∀k ∈
⋂
i∈ω

Zi, (3.42c)

∆ρi ≥
∑

k∈Zi

kρik − ρ̂i, ∀i ∈ A, (3.42d)

∆ρi ≥ ρ̂i −
∑

k∈Zi

kρik, ∀i ∈ A, (3.42e)

ρik ∈ {0, 1}, ∀i ∈ A, k ∈ Zi, (3.42f)
∆ρi ≥ 0, ∀i ∈ A. (3.42g)

We propose to solve Model 3.6 by first restricting Constraint (3.41) to subsets of size
two, i.e. 2D non-separable aircraft pairs, which can be efficiently identified using Algorithm
3 in pre-processing. We then decompose the 2D+FL problem into a series of 2D conflict
resolution problems, one per FL, based on the optimal solution ρ⋆ of the relaxed Model 3.6.
For each FL, we solve the corresponding 2D problem using the exact constraint generation
approach of Algorithm 4 with the aircraft set Ak ≡ {i ∈ A : ρ⋆

ik = 1}. If Algorithm 4 returns
infeasible for FL k, then the corresponding FL separation constraint (3.41) with ω = Ak

is generated and Model 3.6 is re-solved with the additional constraint(s). The process is
repeated until all 2D problems are feasible. Let Z be the set of all FLs, i.e. Z ≡ ∪k∈Zi:i∈AZi,
we denote qk and θk the vectors of speed and heading controls for aircraft assigned to FL
k ∈ Z, respectively. The proposed approach for the lexicographic 2D+FL conflict resolution
problem is summarized in Algorithm 5. Note that this decomposition approach offers the
possibility to solve all 2D problems in parallel via the for loop at Line 8.

3.5 Robust aircraft conflict resolution problem

In this section, we introduce formulations for the robust aircraft conflict resolution problem.
We first define the uncertainty model before discussing how it can be incorporated within the
ACRP. We then propose a tractacble robust counterpart formulation for the robust ACRP.
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Algorithm 5: Solution algorithm for the lexicographic 2D+FL conflict resolution
problem

Input: A, [Zi]i∈A, θ̂, v̂, ρ̂, q, q, θ, θ

Output: q⋆, θ⋆, ρ⋆

1 P,PF,PS,PI ← Algorithm 3
2 ΩI ← {(i, j) ∈ PI : Zi ∩ Zj ̸= ∅}
3 Z ← ∪k∈Zi:i∈AZi

4 converged ← False
5 while converged = False do
6 ρ⋆ ← Solve MILP 3.6
7 converged ← True
8 for k ∈ Z do
9 Ak ← {i ∈ A : ρ⋆

ik = 1}
10 q⋆

k,θ
⋆
k ← Algorithm 4 with A = Ak

11 if Algorithm 4 returns infeasible then
12 ΩI ← ΩI ∪ Ak

13 converged ← False
14 q⋆,θ⋆ ← [q⋆

k]k∈Z , [θ⋆
k]k∈Z

3.5.1 Uncertainty model

We assume that each aircraft has a source of randomness and this affects its current velocity
and position. Let ϵi = [ϵi,x, ϵi,y]⊤ be a vector of random variables representing the uncertainty
on the velocity components of aircraft i ∈ A. We next use this vector of random variables to
define aircraft-based uncertainty sets.

Given aircraft i ∈ A, let vi,x and vi,y its velocity components.

vi,x = qiv̂i cos(θ̂i + θi), (3.43)
vi,y = qiv̂i sin(θ̂i + θi). (3.44)

Definition 3.4 (Uncertainty set of aircraft). The uncertainty set of aircraft i ∈ A, is defined
as:

Ui ≡ {ϵi ∈ R2 | − ϵi,x ≤ ϵi,x ≤ ϵi,x,−ϵi,y ≤ ϵi,y ≤ ϵi,y}, (3.45)

where ϵi,x ≥ 0 and ϵi,y ≥ 0 represent the maximum perturbations on the velocity compo-
nents vi,x and vi,y, respectively, of aircraft i.

We denote [ṽi,x, ṽi,y]⊤ the vector of random aircraft velocity components where the random
variables ṽi,x and ṽi,y take values in ṽi,x ∈ [−vi,x(1 + ϵi,x), vi,x(1 + ϵi,x)] and ṽi,y ∈ [−vi,y(1 +
ϵi,y), vi,y(1 + ϵi,y)], respectively. Accordingly, for each pair of aircraft (i, j) ∈ P, the random
relative velocity components ṽij,x and ṽij,y are:

ṽij,x = vi,x(1 + ϵi,x)− vj,x(1 + ϵj,x) = vij,x + vi,xϵi,x − vj,xϵj,x, (3.46a)
ṽij,y = vi,y(1 + ϵi,y)− vj,y(1 + ϵj,y) = vij,y + vi,yϵi,y − vj,yϵi,y. (3.46b)
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Let ṽij,x, ṽij,x and ṽij,y, ṽij,y be the lower and upper bounds for ṽij,x and ṽij,y, respectively.
These bounds can be determined using Eq. (3.46) and the bounds on speed and heading con-
trol provided in Eqs. (3.12) and (3.13). The derived bounds on the random relative velocity
components can be used to define the random relative velocity box which characterizes all
possible trajectories for the pair (i, j) ∈ P under uncertainty.

Definition 3.5 (Random relative velocity box). Consider a pair of aircraft (i, j) ∈ P. Let
Ui and Uj be the uncertainty sets of aircraft i and j, respectively. Let B̃ij(Ui,Uj) be the
parametric subset of R2 defined as

B̃ij(Ui,Uj) ≡
{

(ṽij,x, ṽij,y) ∈ R2 : ṽij,x ≤ ṽij,x ≤ ṽij,x, ṽij,y ≤ ṽij,y ≤ ṽij,y

}
. (3.47)

B̃ij(Ui,Uj) is the random relative velocity box of (i, j) ∈ P under the uncertainty sets Ui and
Uj.

Figure 3.4: Illustration of a two-aircraft conflict in the plane {(vij,x, vij,y) ∈ R2}. The inner
box with black lines corresponds to the velocity bounds Bij in the deterministic scenario
while the box with purple dots B̃ij(Ui,Uj) is the random relative velocity box. The region
is hashed in red corresponds to the conflict region Cij . If the uncertainty sets Ui and Uj of
aircraft i and j are empty, i.e. aircraft trajectories are deterministic, then aircraft i and j

are conflict-free. In turn, if the uncertainty sets Ui and Uj are such that the random relative
velocity B̃ij intersects with the conflict region Cij , then there exists a risk of conflict.

The random relative velocity box is illustrated in Figure 3.4 for a two-aircraft conflict.
To ensure that a pair of aircraft (i, j) ∈ P is separated for any realization of the random
variables ϵi ∈ Ui and ϵj ∈ Uj , we redefine (3.17e)-(3.17h) using the random velocity variables
ṽij,x and ṽij,y:

ṽij,yx̂ij − ṽij,xŷij ≤ 0, if zij = 1, ∀(i, j) ∈ P, (N1)
ṽij,yx̂ij − ṽij,xŷij ≥ 0, if zij = 0, ∀(i, j) ∈ P, (N0)
ṽij,yγ

l
ij − ṽij,xϕ

l
ij ≤ 0, if zij = 1, ∀(i, j) ∈ P, (S1)

ṽij,yγ
u
ij − ṽij,xϕ

u
ij ≥ 0, if zij = 0, ∀(i, j) ∈ P. (S0)

To find robust aircraft trajectories under uncertainty sets Ui and Uj , we require that
the pairwise separation constraints (N0), (N1), (S1) and (S0) hold for any (ṽij,x, ṽij,y) ∈
B̃ij(Ui,Uj). We next use state-of-the-art approaches in robust optimization to integrate these
constraints into a robust counterpart formulation.
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3.5.2 Robust counterpart formulation

The constraints (N0), (N1), (S1) and (S0) are function of the random variables ṽij,x and ṽij,y.
We use the approach of Bertsimas and Sim [2004] to reformulate these robust separation con-
straints as integer-linear constraints with regards to deterministic relative velocity variables
vij,x and vij,y. The constraints (N0), (N1), (S1) and (S0) are of the form aṽij,x + bṽij,y ≤ 0
(omitting the disjunction), and can be rearranged by separating deterministic and random
elements as follows:

a(vi,x − vj,x)− b(vi,y − vj,y) + avi,xϵi,x − avj,xϵj,x − bvi,yϵi,y + bvj,yϵj,y ≤ 0. (3.49)

We introduce new variables νi,x ≥ 0 and νi,y ≥ 0 for each i ∈ A through constraints (3.50)
to impose artificial bounds on aircraft velocity components vi,x and vi,y:

−νi,x ≤ vi,x ≤ νi,x, ∀i ∈ A, (3.50a)
−νi,y ≤ vi,y ≤ νi,y, ∀i ∈ A. (3.50b)

Let RS ≡ {N1, N0, S1, S0} be a set of indices corresponding to constraints (N0), (N1),
(S1), (S0), respectively. Further, let αk = 1 if k = N1 or k = S1, and let αk = 0 if k = N0
or k = S0. Let Γ be a real parameter that takes values in the range [0,4], where the upper
bound is given by the number of decision variables in constraint (3.49). The parameter Γ
determines the level of robustness for each robust separation constraint. To link the level of
robustness Γ with each robust separation constraint k ∈ RS and each aircraft pair (i, j) ∈ P,
we introduce real decision variables ψk

ij ≥ 0. Further, each constraint of the form (3.49)
involves four decision variables, hence for each constraint k ∈ RS and (i, j) ∈ P, we introduce
associated variables ρl,k

ij,x ≥ 0 and ρl,k
ij,y ≥ 0 for l ∈ {i, j}. These artificial variables reflect

the consumption of robustness resources of each velocity variable in (3.49). The following
constraints link variables ψk

ij ρ
l,k
ij,x and ρl,k

ij,x with νx
i and νx

j :

ψk
ij + ρl,k

ij,x ≥ νi,xϵi,x, if zij = αk, ∀(i, j) ∈ P,∀l ∈ {i, j},∀k ∈ RS, (3.51a)

ψk
ij + ρl,k

ij,y ≥ νi,yϵi,y, if zij = αk, ∀(i, j) ∈ P,∀l ∈ {i, j},∀k ∈ RS. (3.51b)

Constraints of the form (3.49) can then be rewritten as:

a(vi,x− vj,x)− b(vi,y− vj,y) +ψk
ijΓ +

∑
l∈{i,j}

(ρl,k
ij,x + ρl,k

ij,y) ≤ 0, if zij = αk,∀(i, j) ∈ P,∀k ∈ RS.

(3.52)

Combining the above constraints and artificial real variables, we obtain a tractable for-
mulation of the robust separation constraints.

Proposition 3.4. The set of robust separation constraints (N0), (N1), (S1) and (S0) are
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equivalent to the following set of integer-linear constraints and real variables:

a(vi,x − vj,x)− b(vi,y − vj,y)
+ ψk

ijΓ +
∑

l∈{i,j}
(ρl,k

ij,x + ρl,k
ij,y) ≤ 0, if zij = αk, ∀(i, j) ∈ P,∀k ∈ RS, (3.53a)

ψk
ij + ρl,k

ij,x ≥ νi,xϵi,x, if zij = αk, ∀(i, j) ∈ P,∀l ∈ {i, j},∀k ∈ RS,
(3.53b)

ψk
ij + ρl,k

ij,y ≥ νi,yϵi,y, if zij = αk, ∀(i, j) ∈ P,∀l ∈ {i, j},∀k ∈ RS,
(3.53c)

ρl,k
ij,x, ρ

l,k
ij,x ≥ 0, if zij = αk, ∀(i, j) ∈ P,∀l ∈ {i, j},∀k ∈ RS,

(3.53d)
ψk

ij ≥ 0, if zij = αk, ∀(i, j) ∈ P,∀k ∈ RS, (3.53e)
− νi,x ≤ vi,x ≤ νi,x, ∀i ∈ A, (3.53f)
− νi,y ≤ vi,y ≤ νi,y, ∀i ∈ A, (3.53g)
νi,x, νi,y ≥ 0, ∀i ∈ A. (3.53h)

Proposition 3.4 establishes the equivalency between constraints (N0), (N1), (S1) and
(S0), which are expressed in terms of random relative velocity variables ṽij,x and ṽij,y, and
a tractable integer-linear reformulation of these constraints which uses additional real vari-
ables. Using this reformulation, we propose the following robust counterpart formulation of
the ACRP.

Model 3.7 (Robust counterpart nonconvex formulation of the 2D ACRP).

min
∑
i∈A

(1− w)(1− qi)2 + wθ2
i , (3.54a)

s.t.
Motion Equations (3.2),
Robust Separation Constraints and Variables (3.53),
Speed and Heading Control Constraints (3.12), (3.13),
vij,x, vij,y ∈ Bij , ∀(i, j) ∈ P, (3.54b)
zij ∈ {0, 1}, ∀(i, j) ∈ P, (3.54c)
q

i
≤ qi ≤ qi, ∀i ∈ A, (3.54d)

θi ≤ θi ≤ θi, ∀i ∈ A. (3.54e)

The formulation presented in Model 3.7 is nonconvex due to trigonometric functions and
non-linear components. To solve the robust optimization problem represented by Model
3.7, we use the complex number formulation of the ACRP summarized in Model 3.2 and
adapt it for the robust ACRP. Specifically, the complex number reformulation of the robust
is constructed by substituting the original motion equations (3.2) with the reformulated
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aircraft velocities constraints (3.55):

vi,x = δi,xv̂i cos(θ̂i)− δi,yv̂i sin(θ̂i), (3.55a)
vi,y = δi,yv̂i cos(θ̂i)− δi,xv̂i sin(θ̂i). (3.55b)

The speed and heading control constraints and variables bounds are replaced with (3.22),
(3.23) and (3.21), respectively; and the original objective function (3.17a) is replaced with
(3.24). Observe that the robust separation constraints (3.53) remain unchanged since aircraft
velocity variables vi,x and vi,y are linked to variables δi,x and δi,y via constraints (3.55).
We refer to the resulting formulation as the robust complex number formulation and use
Algorithm 4 to solve this problem to optimality.

3.6 Numerical experiments

We first introduce the experimental framework used to test the proposed mixed-integer for-
mulations and algorithms in Section 3.6.1. We then explore the behaviour of the proposed
2D objective function in Section 3.6.2. Numerical results for the 2D ACRP are presented in
Section 3.6.3, and results for the 2D+FL problem are presented in Section 3.6.4.

3.6.1 Experiments design

We test the performance of the proposed mixed-integer formulations and algorithms using
four benchmarking problems from the literature: the Circle Problem (CP), the Flow Problem
(FP), the Grid Problem (GP) and the Random Circle Problem (RCP). The four types of
benchmarking instances are illustrated in Figure 3.5. The CP consists of a set of aircraft
uniformly positioned on the circle heading towards its centre. Aircraft speeds are assumed to
be identical, hence the problem is highly symmetric (see Figure 3.5a). The CP is notoriously
difficult due to the geometry of aircraft initial configuration and has been widely used for
benchmarking CD&R algorithms in the literature [Durand and Alliot, 2009, Rey et al., 2015,
Cafieri and Omheni, 2017, Cafieri and Rey, 2017, Rey and Hijazi, 2017]. To break the
symmetry of CP benchmarking instances, Vanaret et al. [2012] introduced the RCP which
builds on the same framework, but aircraft initial speeds and headings are randomly deviated
within specified ranges to create randomised instances with less structure (see Figure 3.5b).
CP and RCP instances are named CP-N and RCP-N, respectively, where N is the total
number of aircraft. Lehouillier et al. [2017] formally introduced two additional structured
problems which aim to represent more realistic air traffic configurations: the FP and the
GP. The FP consists of two streams of aircraft separated by an angle α and anchored on the
circumference of a circle. In each stream, aircraft are separated by at least 5 NM from each
other (see Figure 3.5c). The GP consists of two FP instances separated by 15 NM diagonally
(see Figure 3.5d). In our experiments, on each stream of aircraft in FP and GP instances,
consecutive aircraft are initially separated by 15 NM. FP and GP instances are named FP-N
and GP-N, respectively, where N denotes the number of aircraft per stream.

In all experiments, we use a circle of radius 200 NM. For CP, FP and GP instances, all
aircraft have an initial speed of 500 NM/h. For RCP instances, aircraft initial speeds are
randomly chosen in the range 486-594 NM/h and their initial headings are deviated from a
radial trajectory (i.e. towards the centre of the circle) by adding a randomly chosen angle
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(a) CP-7: circle problem
with 7 aircraft

(b) RCP-10: random cir-
cle problem with 10 air-
craft

(c) FP-5: flow problem
with 10 aircraft and α =
π
6

(d) GP-8: grid problem
with 32 aircraft and α =
π
2

Figure 3.5: Example of 2D benchmarking instances for the Circle Problem (CP), Random
Circle Problem (RCP), Flow Problem (FP) and Grid Problem (GP).

between −π
6 and +π

6 . For FP and GP instances, we use α = π
6 and α = π

2 , respectively, as
proposed by Lehouillier et al. [2017].

We consider a subliminal speed control range of [−6%,+3%] [Bonini et al., 2009]. We
consider two heading control ranges, we first assume that aircraft can modify their heading
within the range [−30◦,+30◦] as commonly used in the literature [Cafieri and Omheni, 2017,
Rey and Hijazi, 2017], and we also consider a reduced heading control range of [−15◦,+15◦].
For conflict resolution problems with altitude control, we randomly assign each aircraft i ∈ A
to a FL ρ̂i ∈ Z, and we assume that only adjacent FLs are available for aircraft, i.e. Zi =
{ρ̂i − 1, ρ̂i, ρ̂i + 1}.

The proposed approach is referred to as Disjunctive and is compared to two benchmarks
from the literature: the method proposed by Rey and Hijazi [2017] named Disjunctive-2017
and an implementation based on the so-called shadow separation constraints named Shadow.
The method Disjunctive corresponds to Algorithm 4 for 2D ACRP instances and to Algo-
rithm 5 for 2D+FL ACRP instances. The method Disjunctive-2017 is based on the same
disjunctive linear separation conditions as Disjunctive but uses the algorithm proposed by
Rey and Hijazi [2017]. This algorithm has 3 steps: i) solve the MIQP relaxation (Model
3.4), ii) solve the MIQCP relaxation (Model 3.5) without any mixed-integer cuts (3.37),
and, if a feasible solution has not been obtained, iii) solve Model 3.2 as NLP for fixed z.
Compared to Disjunctive, the method Disjunctive-2017 is identical in the first step only. In
step ii) of Disjunctive-2017, the MIQCP relaxation is solved without any constraint genera-
tion, thus all convex quadratic cuts (3.34) are added for all aircraft simultaneously and no
mixed-integer cuts are generated. In addition, if the NLP fails to find a feasible solution in
step iii), then the method fails to yield a feasible solution whereas the method Disjunctive
is guaranteed to converge to a global optimal solution if one exists. In the implementation
of the method Shadow, the control variables and the algorithm are identical to that of the
method Disjunctive, and the only difference between both methods is the set of separation
constraints used, i.e. Constraints (3.10) and (3.11) are replaced with the shadow separation
conditions and the number of binary variables required to express these On/Off constraints.
Specifically, for the 2D ACRP, Disjunctive only requires a single binary variable per aircraft
pair (zij) whereas Shadow requires four binary variables per aircraft pair [Pallottino et al.,
2002, Alonso-Ayuso et al., 2011, 2016]. All three methods are implemented using the same
pre-processing procedure (Algorithm 3) to eliminate conflict-free aircraft pairs.

All 2D ACRPs are solved by implementing Algorithm 4 with an optimality gap ϵ = 0.01
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and a time limit of 10 minutes. All 2D+FL problems are solved by implementing Algorithm
5 which calls Algorithm 4 using the same optimality gap, and we allocate a time limit of 10
minutes per FL. All models are implemented using Python on a personal computer with 16
GB of RAM and an Intel i7 processor at 2.9GHz. The MIQPs and MIQCPs are solved with
Cplex v12.10 [CPLEX, 2009] API for Python using default options.

We next conduct a sensitivity analysis on the preference weight w in the 2D objective
function to explore its impact on aircraft trajectories in Section 3.6.2. We present results on
2D problems in Section 3.6.3 and results on 2D+FL problems in Section 3.6.4.

3.6.2 Sensitivity analysis on the preference weight w

To quantify the impact of the preference weight w in the proposed 2D objective function
(3.24), we conduct numerical experiments on one instance of each of the four types of bench-
marking instances for varying values of w. For this experiment, we focus on the typical
heading control range [−30◦,+30◦]. We report the total speed deviation Σq = ∑

i∈A(1− qi)2,
and the total heading deviation Σθ = ∑

i∈A θ
2
i . Our goal is to show that by varying the pref-

erence weight w ∈ ]0, 1[, the decision-maker can control the desired level of trade-off between
total speed deviation and total heading deviation. Recall that in objective function (3.24),
w is the coefficient of δ2

i,y = (qi sin(θi))2 which is minimal for θi = 0; while (1 − w) is the
coefficient of (1− δi,x)2 = (1− qi cos(θi))2 which is minimal for qi = 1 and θi = 0. Hence, one
can expect that increasing (resp. decreasing) w will tend to penalise heading (resp. speed)
deviations more than speed (resp. heading) deviations.

This behaviour is confirmed in our numerical experiments. Specifically, we solve the 2D
instances CP-8, FP-10, GP-10 and one RCP-30 instance for w = 0.1, . . . , 0.9 in steps of size
0.1, i.e. for a total of 9 values of w per instance. All instances are solved to optimality using
Algorithm 4 with no MIQCP iterations, i.e. the MIQP returned a global optimal solution for
all tests. The change in the total speed deviation Σq and in the total heading deviation Σθ are
reported in Figure 3.6. For all four instances tested, we find that increasing w monotonically
decreases the total heading deviation and monotonically increases the total speed deviation.
Further, we observe that in all cases both the total speed and heading deviations are of similar
order of magnitudes.

This sensitivity analysis shows that using the proposed 2D objective function, the decision-
maker can control which manoeuvre is prioritised by scaling up or down the preference weight
w accordingly. Higher values of w will minimise the total heading deviation while lower values
of w will minimise the total speed deviation. We use w = 0.5 in the numerical experiments
presented in the remaining of this study.

3.6.3 Results on 2D instances

Results for RCP instances are reported in Tables 3.1 and 3.2 for four instance sizes with 10,
20, 30 and 40 aircraft per group. For each instance size, 100 RCP instances are randomly
generated. We compare the performance of the proposed formulations for both the standard
and reduced heading control ranges.

Each row in the results tables represents a group of instances (RCP). The header of
the results tables is presented from left to right. The left-most column, Instance, identifies
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(a) CP-8 (b) FP-10

(c) GP-10 (d) RCP-30

Figure 3.6: Sensitivity analysis on the preference weight w of the 2D objective function (3.24).
For all figures, Σq represents the total speed deviation defined as ∑i∈A(1− qi)2 (in red) and
Σθ represents the total heading deviation defined as ∑i∈A θ

2
i (in blue).

the instance; |A| is the number of aircraft and nc is the number of the conflicts. The next
three columns summarize the performance of the pre-processing algorithm: |PF|/|P| is the
proportion of conflict-free aircraft pairs; |PI|/|P| is the proportion of non-separable aircraft
pairs; and Time is the runtime of Algorithm 3 in seconds. The next six columns summarize the
performance of Disjunctive: LB and UB are the lower and upper bound; Gap is the optimality
gap in percent calculated using LB and UB; Time is the total runtime in seconds; ni is the
number of iterations of the while loop in Algorithm 4, and nt represents the proportion
of instances that could not be solved within the time limit (10 minutes), i.e. the number of
time-outs. The next five columns summarize the performance of Disjunctive-2017: ∆UB is the
upper bound of Disjunctive-2017 minus that of Disjunctive; Gap is the optimality gap, Time
is the total runtime, nt is the proportion of time-outs, and Gain is the performance gain in
runtime for instances solved within the time limit calculated as the runtime of Disjunctive-2017
minus that of Disjunctive in percentage: a positive value indicates that Disjunctive is faster.
The right-most five columns summarize the performance of Shadow relative to Disjunctive,
similarly to the five previous columns. For RCP instances, we also report the number of times
each method failed to find a feasible solution in columns named nf . This value is always zero
for CP, FP and GP instances hence we do not report it in their corresponding results tables.

The experiments performed on RCP instances reveal that the pre-processing procedure
(Algorithm 3) can eliminate approximately 8% of aircraft pairs when using a reduced heading
control range (Table 3.2), whereas no aircraft pairs are conflict-free using a standard heading
control range (Table 3.1). The implementation of Disjunctive on RCP instances (Tables 3.1
and 3.2) reveals that while all 10- and 20-aircraft RCP instances can be solved via the MIQP
iteration, 30- and 40-aircraft RCP instances may require additional MIQCP iterations. Since
no MIQCP iterations are performed (ni = 0) for RCP-10 and RCP-20, the results obtained
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using Disjunctive-2017 are identical to those obtained using Disjunctive. Using the standard
heading control range (Table 3.1), on average, RCP-10 instances can be solved in 0.05 s and
0.14 s using Disjunctive and Shadow, respectively. RCP-20 instances require 0.26 s and 2.52
s, on average, using Disjunctive and Shadow, respectively, under the standard heading control
range. The performance of the proposed formulations on RCP-10 and RCP-20 using a reduced
heading control range (Table 3.2) is of similar order of magnitude due to the relatively low
average number of conflicts per instance, i.e. 3.1 and 13.1, respectively. Those values lead to
a performance gain of Disjunctive over Shadow of 71.8% and 62.6% for standard and reduced
ranges, respectively, for RCP-10 instances; and of 89.6% and 81.3% for RCP-20 instances.

RCP-30 and RCP-40 instances have on average 32.9 and 59.3 conflicts, respectively, and
present considerable computing challenges, notably the latter. Overall, we observe that
reducing the heading control range tends to improve the performance while retaining compa-
rable optimal solutions, as indicated by the similar UB values obtained. Disjunctive requires
an average of 0.4 MIQCP iterations for RCP-30 instances using a standard heading control
range (Table 3.1) compared to 1.4 when using a reduced heading control range(Table 3.2).
These figures increase to 0.8 and 1.6 in RCP-40 instances. For RCP-30 instances, the av-
erage optimality gaps are 0.17%, 4.60% and 2.36% using Disjunctive, Disjunctive-2017 and
Shadow, respectively using the standard heading control range (Table 3.1). These figures are
reduced to 0.01%, 3.13% and 0.89% using the reduced heading control range (Table 3.2).
For RCP-40 instances, the average optimality gaps values are significantly greater: 15%,
51.2% and 29.8% for a standard heading control (Table 3.1); and 13.1%, 52.0% and 25.8%
for a reduced heading control range (Table 3.2). This shows that Shadow tends to double
the optimality gap compared to Disjunctive, while Disjunctive-2017 tends to triple this figure
compared to Disjunctive. Using a standard heading control range (Table 3.1), Disjunctive is
able to solve all but 3% of the RCP-30 instances whereas Disjunctive-2017 and Shadow time
out on 26% and 20% of these instances, respectively. The performance gain of Disjunctive
compared to Disjunctive-2017 and Shadow in terms of runtime are 21.0% and 41.7%, respec-
tively. For RCP-40 instances, Disjunctive can solve 28% of the problems (72% of time-outs),
while Disjunctive-2017 and Shadow time out on 73% and 100% of the instances, respectively.
We also observe that Disjunctive-2017 and Shadow may occasionally fail to find a UB as com-
petitive as that found by the Disjunctive on RCP-40 instances. The runtime performance
gains of Disjunctive on RCP-30 instances are 21.0% and 41.7% compared to Disjunctive-2017
and Shadow, respectively, using standard heading control range; and increase to 57.2% and
60.5% using the reduced heading control range. For RCP-40 instances, the gains of Disjunctive
compared to Disjunctive-2017 are 3.73% and 24.6% for standard and reduced heading control
ranges, respectively; while Shadow is unable to solve any RCP-40 instances to optimality
(100% of time-outs). The method Disjunctive-2017 fails to find a feasible solution for 19%
and 48% of the RCP-40 instances using the standard and reduced heading control ranges,
respectively.

3.6.4 Results on 2D+FL instances

Results on 2D+FL instances are reported using similar tables as in Section 3.6.3. Instead of
reporting the number of aircraft and the number of conflicts, we report the average number
of aircraft and conflicts per FL, i.e. |A|

|Z| ,
nc
|Z| respectively. In addition, we include a section

corresponding to the FL assignment formulation. In all our numerical experiments on 2D+FL
instances, only a single pass through the while loop of Algorithm 5 is required. Hence,
we only report Obj which is the objective function value of MILP 3.6; and Time which is
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Pre-processing Disjunctive

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt nf

RCP-10 10 3.10 0 0 0.12 2.2E-4 2.2E-4 0.00 0.05 0.0 0 0
RCP-20 20 13.1 0 0 0.23 1.7E-3 1.7E-3 0.00 0.26 0.0 0 0
RCP-30 30 32.9 0 0 0.45 7.1E-3 7.1E-3 0.17 135 0.4 3 0
RCP-40 40 59.3 0 0 0.60 1.8E-2 2.4E-2 15.0 516 0.8 72 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-10 0.00 0.00 0.05 0 0 0.00 0.00 0.02 0.14 0 0 71.8
RCP-20 0.00 0.00 0.26 0 0 0.00 0.00 0.01 2.52 0 0 89.6
RCP-30 0.00 4.60 171 26 0 21.0 0.00 2.36 231 20 0 41.7
RCP-40 0.01 51.2 536 77 19 3.73 0.02 29.8 600 100 0 -

Table 3.1: Results for 2D RCP instances with a speed control range of [−6%,+3%] and a
heading control range of [−30◦,+30◦]. Times (Time) are reported in seconds. The propor-
tions of conflict-free ( |PF|

|P| ) and non-separable ( |PI|
|P| ) pairs, optimality gaps (Gap), time-outs

(nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

the corresponding computing runtime in seconds. For numerical experiments on 2D+FL
problems, we focus on RCP instances named RCP-N-Z where N is the number of aircraft
and Z is the number of FLs. We consider three numbers of aircraft: 50, 100 and 150; and
two numbers of FLs: 3 and 5. In terms of conflict density, for the same number of aircraft,
instances with 3 FLs have a greater number of conflicts compared to instances with 5 FLs and
are more computationally challenging. The results are reported in Table 3.3 for the standard
heading control range, and in Table 3.4 for the reduced heading control range.

Using the standard heading control range ([−30◦,+30◦], see Table 3.3), the numerical
experiments reveal that among all six groups of 2D+FL instances, only some RCP-150-3
and RCP-150-5 instances may require aircraft to change FLs. That is, for all other 2D+FL
instances, all conflicts can be resolved using 2D trajectory control only and thus aircraft
do not require performing any FL change. This can be explained by observing that for
RCP-150-3 instances, the average number of aircraft per FL is 50 which corresponds to a
denser aircraft configuration compared to the 2D RCP-40 instances which all admit feasible
solutions. In comparison, only a single RCP-150-5 instance required a FL change for a single
aircraft. For RCP-150-5, even though the average density per FL is 30, some instances may
have denser FL requiring FL separation. Among all 100 RCP-150-3 instances, 35% of the
instances requires a FL change. The maximum number of non-separable pairs (|PI|) is 2 and
the maximum objective value of Model 3.6 is 1, indicating that only a single aircraft deviated
from its initial FL.

Comparing the methods, we find that Disjunctive slightly outperforms the two bench-
marks in terms of solution quality by occasionally finding better UBs than Disjunctive-2017
or Shadow. For instances with 3 FLs, the optimality gaps are relatively small, i.e. less than
1.0% for RCP-50-3 and RCP-100-3 using Disjunctive and around 10% for RCP-150-3 However,
using Disjunctive-2017 and Shadow, the optimality gaps are considerably larger. Especially
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Pre-processing Disjunctive

Instance |A| nc
|PF|
|P|

|PI|
|P| Time LB UB Gap Time ni nt nf

RCP-10 10 3.10 8.2 0 0.33 2.2E-4 2.2E-4 0.03 0.04 0.0 0 0
RCP-20 20 13.1 7.7 0 0.51 1.7E-3 1.7E-3 0.01 0.24 0.0 0 0
RCP-30 30 32.9 7.7 0 0.62 7.2E-3 7.2E-3 0.01 66.3 1.4 3 0
RCP-40 40 59.3 7.9 0 0.75 1.8E-2 2.2E-2 13.1 389 1.6 59 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-10 0.00 0.03 0.04 0 0 0.00 0.00 0.03 0.11 0 0 62.6
RCP-20 0.00 0.01 0.24 0 0 0.00 0.00 0.01 1.39 0 0 81.3
RCP-30 0.00 3.13 155 22 0 57.2 0.00 0.89 167 10 0 60.5
RCP-40 0.01 52.0 516 78 48 24.6 0.02 25.8 600 100 0 -

Table 3.2: Results for 2D RCP instances with a speed control range of [−6%,+3%] and a
heading control range of [−15◦,+15◦]. Times (Time) are reported in seconds. The propor-
tions of conflict-free ( |PF|

|P| ) and non-separable ( |PI|
|P| ) pairs, optimality gaps (Gap), time-outs

(nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

for the former which yields an average gap of 15.7% for RCP-50-3 instances, and of 42.0%
and 61.6% for RCP-100-3 and RCP-150-3 instances, respectively. Using Shadow, those val-
ues are less than 1.0% for RCP-50-3 instances, 53.2% for RCP-100-3 instances and 56.6%
for RCP-150-3 instances. From a computational standpoint, the average runtime of Model
3.6 on RCP-150-3 instances is 4.56 s. For RCP-50-3 instances, Disjunctive, Disjunctive-2017
and Shadow can solve all instances in an average time of 0.88 s, 2.81 s and 10.2 s, respec-
tively. For RCP-100-3 instances, which corresponds to an average number of 33.3 aircraft
per FL, Disjunctive solves all instances in an average time of 3.3 minutes, whereas using
Disjunctive-2017 there is a total of 64 % instances that time out, and for the remaining in-
stances that can be solved the runtime is 411 s. Shadow times out on 46% of the instances
and requires an average runtime of 9.5 minutes for the instances solved. The denser RCP-
150-3 instances, with an average of 50 aircraft per FL, present substantial computational
challenges. Disjunctive is able to solve only 40% of these instances (60% of time-outs) and an
average of 2.8 MIQCP iterations are required. In comparison, Disjunctive-2017 is unable to
solve most of these instances (95% of time-outs) and fails to find a feasible solution for 5%
of them. The method Shadow is unable to solve any of these instances within the available
time limit. The performance gain using 3 FLs shows that a gain of 87.8% and 51.8% can be
obtained using Disjunctive over Disjunctive-2017 and 91.3% and 61.9% using Disjunctive over
Shadow for RCP-50-3 and RCP-100-3 instances, respectively.

Increasing the number of FLs from 3 to 5 reduces the density of aircraft per FL which
translates into better computational performance for all three methods. The UB value ob-
tained by those instances using Disjunctive-2017 is relatively close to the UB obtained with
Disjunctive yielding deviations of 0.08, 0.09 and 0.10 in RCP-50-5, RCP-100-5 and RCP-
150-5 instances, respectively (see Table 3.3). Shadow only deviates from the UB found by
Disjunctive by 0.08 for RCP-150-5 instances. All RCP-50-5 and RCP-100-5 instances are
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solved to optimality within the time limit using all three methods. The optimality gap is
relatively small for Disjunctive and Shadow, and does not exceed 0.2% in those instances.
Using Disjunctive-2017, it reaches 13.4% for RCP-50-5 instances and 45.5% for RCP-100-5
instances. For RCP-150-5 instances, using Disjunctive solves all problems with an optimality
gap of 0.05%. However, Disjunctive-2017 fails to solve all RCP-150-5 instances and yields
an average optimality gap of 45.1%. The method Shadow also fails to solve all RCP-150-5
instances and yields an average optimality gap of 1.56%. In terms of runtime, we observe that
Disjunctive solves all instances with 5 FLs in less than 142 s (see Table 3.3). The performance
of the methods on 2D+FL instances with 5 FLs reveal that gains of 75.6% and 42.7% can be
obtained using Disjunctive over Disjunctive-2017, and 81.8% and 98.8% using Disjunctive over
Shadow for RCP-50-5 and RCP-100-5 instances, respectively.

Reducing the heading control range (see Table 3.4), yields an overall similar performance.
The main differences relative to the results obtained using the standard heading control range
are observed in the pre-processing procedure which, as in the 2D RCP instances, eliminates
on average 8% of the aircraft pairs. We also find that reducing the heading control range
increases the number of non-separable pairs to 1.45% for RCP-150-3 instances and to 0.03%
for RCP-150-5 instances. This increase in the proportion of non-separable aircraft pairs
is reflected in the solution of the flight assignment formulation (MILP 3.6) which has an
average value of 1.62 on RCP-150-3 instances and 0.02 on RCP-150-5 instances, respectively.
For RCP-150-3, 67% of the instances required a FL change, the maximum number of non-
separable pairs (|PI|) is 6 and the maximum objective value of Model 3.6 is 3, indicating that
three aircraft deviated from their initial FL. The methods find the same UBs for RCP-50-5
and RCP-100-5 instances, whereas for RCP-150-5 instances we observe an average deviation
of 0.05 using Disjunctive-2017 and of 0.02 using Shadow. The optimality gap is below 1% for
all instances using Disjunctive, while it ranges from 13.3% in RCP-50-3 instances to 40.1%
in RCP-150-3 instances using Disjunctive-2017, and from 0.01% to 42.1% using Shadow. In
terms of runtime, all three methods are able to solve all RCP-50-3 instances in on average
0.88 s, 2.37 s and 11.3 s using Disjunctive, Disjunctive-2017 and Shadow, respectively. For
RCP-100-3 instances, we observe that all instances are solved by Disjunctive in 168 s, while
26% and 39% of them time out using Disjunctive-2017 and Shadow, respectively. In addition,
Disjunctive-2017 fails to find a feasible solution in 10% of the instances. For those instances
that can be solved, the average runtime is 474 s for Disjunctive-2017 and 453 s for Shadow.
For RCP-150-3 instances, Disjunctive, Disjunctive-2017 and Shadow time out on 46%, 74%
and 100% of the instances, respectively; and Disjunctive-2017 fails to find a feasible solution
in 14% of the instances. For the remaining instances, the runtime is 420 s using Disjunctive
and 587 s using Disjunctive-2017. The performance gains of Disjunctive compared to both
benchmarks are above 62% for RCP-50-3 and RCP-100-3 instances, and near 40% compared
to Disjunctive-2017 for RCP-150-3 instances. All RCP-50-5 and RCP-100-5 instances are
solved to optimality by all methods. The runtime for those instances is less than 1 s for
RCP-50-5 instances and 35.1 s for RCP-100-5 instances using Disjunctive, while Disjunctive-
2017 and Shadow yield larger runtimes but of the same order of magnitude. These figures
do not carry over to RCP-150-5 instances. Using Disjunctive, all RCP-150-5 instances can
be solved with an average runtime of 152 s. However, using Disjunctive-2017 all instances
time out and this method fails to find a feasible solution in 15% of the cases. Further, the
average UB deviation is 0.12 using Disjunctive-2017 and the average optimality gap is 42.3%.
Using Shadow, all RCP-150-5 instances also time out, the average UB deviation is 0.09 and
the average optimality gap is 12.3%.
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Pre-processing FL assignment Disjunctive

Instance |A|
|Z|

nc
|Z|

|PF|
|P|

|PI|
|P| Time Obj. Time LB UB Gap Time ni nt nf

RCP-50-3 15 3.15 0 0.00 0.42 0.00 0.00 1.2E-2 1.3E-2 0.02 0.88 0.0 0 0
RCP-100-3 33 35.6 0 0.00 0.86 0.00 0.00 1.4E-1 1.4E-1 0.12 198 1.2 0 0
RCP-150-3 50 64.1 0 0.55 1.02 0.62 4.56 4.5E-2 5.2E-2 10.2 520 2.8 60 0

RCP-50-5 10 3.11 0 0.00 0.62 0.00 0.00 9.4E-3 9.4E-3 0.00 0.26 0.0 0 0
RCP-100-5 20 14.1 0 0.00 1.25 0.00 0.00 8.3E-3 8.3E-2 0.00 2.51 0.0 0 0
RCP-150-5 30 34.2 0 0.01 1.92 0.01 0.11 3.3E-1 3.3E-1 0.05 142 2.3 0 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-50-3 0.02 15.7 2.81 0 0 87.8 0.00 0.01 10.2 0 0 91.3
RCP-100-3 0.02 42.0 411 64 0 51.8 0.05 53.2 572 46 0 61.9
RCP-150-3 0.10 61.6 600 95 5 - 0.03 56.6 600 100 0 -

RCP-50-5 0.08 13.4 2.17 0 0 75.6 0.00 0.00 1.43 0 0 81.8
RCP-100-5 0.09 45.5 67.2 0 0 42.7 0.00 0.13 126 0 0 98.0
RCP-150-5 0.10 45.1 600 100 0 - 0.08 1.56 600 100 0 -

Table 3.3: Results for 2D+FL RCP instances with a speed control range of [−6%,+3%]
and a heading control range of [−30◦,+30◦]. Times (Time) are reported in seconds. The
proportions of conflict-free ( |PF|

|P| ) and non-separable ( |PI|
|P| ) pairs, optimality gaps (Gap), time-

outs (nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

3.6.5 Results on the robust ACRP

In this section, we analyze the performance of the robust complex number formulation for a
varying level of robustness (Γ) for a fixed maximum uncertainty of ϵ̄ = 5%. We present the
results for RCP instances in Table 3.5 for 3 instance sizes with 10, 20 and 30 aircraft per
group. For each instance group, 100 RCP instances are randomly generated and we report
the average performance. For all instances, we compare the performance of the proposed
formulations for varying level of robustness where Γ = 0 corresponds to the deterministic
case and Γ = 4 coresponds to the most robust configuration.

Each row in the results tables represents a group of instances (RCP). The header of the
results tables is presented from left to right: Γ is the level of robustness; UB is the objective
function value obtained after solving Model 3.7; Gap is the optimality gap in percent obtained
after solving Model 3.7, it is calculated directly by Cplex; Time is the total runtime in
seconds, ni is the number of MIQCP iterations where ni = 0 means that an optimal solution
was found or the time limit was reached during the initial MIQP solve, nt represents the
proportion of instances that could not be solved within the time limit (10 minutes), i.e. the
number of time-outs and n∅ indicates the number/proportion of infeasible instances.

The results of the experiments on RCP instances are summarized in Table 3.5. Increasing
the level of robustness in RCP instances also tends to increase the objective value (UB), and
the effect is on average magnified on instances with a large number of aircraft. For RCP-10
instances, the average objective value for Γ = 4 is two orders of magnitude greater than that
obtained using a deterministic configuration. For RCP-20 instances, the average objective
values obtained are one order of magnitude greater than those obtained for RCP-10. We
observe that RCP-10 instances can be solved within less than a second using for any level of
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Pre-processing FL assignment Disjunctive

Instance |A|
|Z|

nc
|Z|

|PF|
|P|

|PI|
|P| Time Obj. Time LB UB Gap Time ni nt nf

RCP-50-3 15 3.15 7.0 0.00 0.52 0.00 0.00 1.2E-2 1.2E-2 0.02 0.88 0.0 0 0
RCP-100-3 33 35.6 7.2 0.00 0.62 0.00 0.00 1.4E-1 1.4E-1 0.15 168 2.2 0 0
RCP-150-3 50 64.1 8.1 1.45 1.22 1.62 5.62 4.5E-2 5.2E-2 8.60 420 4.8 46 0

RCP-50-5 10 3.11 8.6 0.00 0.52 0.00 0.00 9.4E-3 9.4E-3 0.00 0.26 0.0 0 0
RCP-100-5 20 14.1 7.8 0.00 1.22 0.00 0.00 8.3E-3 8.3E-2 0.00 35.1 0.0 0 0
RCP-150-5 30 34.2 8.0 0.03 1.86 0.02 0.21 3.3E-1 3.3E-1 0.51 152 4.3 0 0

Disjunctive-2017 Shadow

Instance ∆UB Gap Time nt nf Gain ∆UB Gap Time nt nf Gain

RCP-50-3 0.00 13.3 2.37 0 0 62.9 0.00 0.01 11.3 0 0 91.3
RCP-100-3 0.00 37.4 474 26 10 64.6 0.08 43.5 453 39 0 62.4
RCP-150-3 0.05 40.1 587 74 14 39.7 0.02 42.1 600 100 0 -

RCP-50-5 0.00 11.6 1.22 0 0 78.6 0.00 0.00 1.43 0 0 81.8
RCP-100-5 0.00 36.3 54.1 0 0 35.1 0.00 0.13 186 0 0 81.2
RCP-150-5 0.12 42.3 600 100 15 - 0.09 12.3 600 100 0 -

Table 3.4: Results for 2D+FL RCP instances with a speed control range of [−6%,+3%]
and a heading control range of [−15◦,+15◦]. Times (Time) are reported in seconds. The
proportions of conflict-free ( |PF|

|P| ) and non-separable ( |PI|
|P| ) pairs, optimality gaps (Gap), time-

outs (nt), infeasible solutions (nf ) and the performance gain (Gain) are reported in %.

robustness. RCP-20 instances require less than a minute for Γ ≤ 2, on average, but using Γ
equal to 3 and to 4, requires around 2 and 3 minutes, respectively. We also find that 34%, 46%
and 67% of RCP-20 instances cannot be solved when Γ is equal to 2, 3 and 4, respectively.
The results for RCP-30 instances reveal that all problems with Γ ≥ 2 are infeasible, while
only 40% of these instances can be solved with Γ = 1 and all 100 RCP-30 instances are
feasible in the deterministic case.

The impact of the maximum uncertainty is next examined. For this experiment, we
compare the performance of the proposed formulation for a maximum level of robustness, i.e.
Γ = 4 under varying maximum uncertainty ϵ̄: 0% (for the deterministic counterpart), 2.5%,
5%, 7.5% and 10%. The performance is reported similarly as in the previous section.

The results obtained using RCP instances (Table 3.6) reveal that while all problems are
feasible under deterministic conditions, the proportion of infeasible problems increase with the
maximum uncertainty and the number of aircraft. Notably, all RCP-30-1 instances are found
to be infeasible for ϵ̄ ≥ 2.5% (recall that a maximal level of robustness is used). Examining
the change in the objective value, for RCP-10 instances we observe that on average the total
deviation of aircraft increases by three orders of magnitude. In terms of runtime, RCP-10
instances, are solved within 1 s using any value of ϵ̄. RCP-20 instances, require on average
0.24 s in the deterministic case. Using ϵ̄ = 5%, 93 instances are infeasible, 2 timed-out and
among the remaining 5 instances solved to optimality the average runtime is 200 s.
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Γ Instance UB Gap Time ni nt n∅

0
RCP-10 2.2e−4 0.00 0.05 0.0 0 0
RCP-20 1.7e−3 0.00 0.26 0.0 0 0
RCP-30 7.1e−3 0.17 135 0.4 3 0

1
RCP-10 1.0e−2 0.00 0.24 0.0 0 0
RCP-20 9.8e−2 0.00 10.2 0.0 0 0
RCP-30 7.5e−1 0.17 287 0.4 10 60

2
RCP-10 2.7e−2 0.00 0.34 0.0 0 0
RCP-20 2.8e−2 0.00 25.1 0.0 8 34
RCP-30 - - - - - 100

3
RCP-10 4.2e−2 0.00 0.54 0.0 0 0
RCP-20 7.4e−1 0.00 134 0.0 10 46
RCP-30 - - - - - 100

4
RCP-10 5.3e−2 0.00 0.59 0.0 0 0
RCP-20 8.8e−1 0.00 201 0.0 15 67
RCP-30 - - - - - 100

Table 3.5: Summary of results for RCP instances with a speed control range of [−6%,+3%]
and a heading control range of [−30◦,+30◦] using a maximal uncertainty of ϵ̄ = 5%.

3.7 Conclusion

This chapter presented mixed-integer formulations and exact solution methods for aircraft
conflict resolution problems (ACRP). We first considered the 2D ACRP with continuous speed
and heading control manoeuvres and proposed compact disjunctive separation conditions.
The proposed disjunctive separation conditions are linear with regards to aircraft relative
velocity variables and only require a single binary variable per pair of aircraft. We introduced
a simple pre-processing algorithm to identify aircraft pairs which are conflict-free or non-
separable for any combination of controls, which may help in reducing the size of ACRPs
by omitting conflict-free pairs. We built on and extended the complex number formulation
for the ACRP introduced by Rey and Hijazi [2017] by augmenting its objective function
with a preference weight to balance the trade-off between speed and heading deviations. The
resulting formulation is a nonconvex mixed-integer program. This 2D formulation is extended
to the context of altitude control by flight level (FL) change and we proposed a lexicographic
optimization to solve the 2D+FL ACRP which aims to minimise the number of FL changes
in priority and resolve outstanding conflicts by 2D trajectory control. The deterministic
formulation was also extended to a stochastic variant wherein aircraft velocities are subject
to uncertainty and a robust optimization approach was developed.

We presented exact solution algorithms to solve the nonconvex 2D and 2D+FL ACRPs.
The proposed algorithms refine the convex relaxations introduced by Rey and Hijazi [2017].
For the 2D problem, the nonconvex formulations are first relaxed to mixed-integer quadratic
programs (MIQP) which solution may violate the speed control constraint. If such violations
occur, convex quadratic constraints are added together with a constraint generation algorithm
that iteratively refines an outer piecewise linear approximation of the speed control constraint
by solving a sequence of mixed-integer quadratically constrained programs (MIQCP). The
2D+FL lexicographic optimization problem is solved by decomposing the nonconvex problem
into a flight assignment problem and a series of FL-based 2D problems. The proposed flight
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ϵ̄ (%) Instance UB Gap (%) Time (s) ni nt n∅

0.0
RCP-10 2.2e−4 0.00 0.05 0.0 0 0
RCP-20 1.7e−3 0.01 0.24 0.0 0 0
RCP-30 7.2e−3 0.01 66.3 1.4 3 0

2.5
RCP-10 1.6e−2 0.00 0.47 0.0 0 1
RCP-20 8.9e−1 0.00 193 0.0 12 4
RCP-30 - - - - - 100

5.0
RCP-10 5.3e−2 0.00 0.60 0.0 0 1
RCP-20 8.8e−1 0.00 200 0.0 2 93
RCP-30 - - - - - 100

7.5
RCP-10 1.3e−1 0.00 0.76 0.0 0 9
RCP-20 - - - - - 100
RCP-30 - - - - - 100

10.0
RCP-10 3.0e−1 0.00 0.89 0.0 0 26
RCP-20 - - - - - 100
RCP-30 - - - - - 100

Table 3.6: Summary of results for RCP instances with a speed control range of [−6%,+3%]
and a heading control range of [−30◦,+30◦] using a level of robustness of Γ = 4.

assignment formulation is based on a reformulation of the FL separation constraint which
requires an exponential number of constraints and is embedded into an iterative approach to
generate altitude separation constraints as needed.

The performance of the proposed mixed-integer formulations and algorithms was tested
on a total of 2072 benchmarking instances. These instances include four types of ACRPs
with up to 60 aircraft per instance for 2D problems and 150 aircraft per instance for 2D+FL
problems. The performance of the proposed solution algorithms highlights the scalability
of the approach compared to existing methods in the literature. Further, we find that the
combination of the pre-processing algorithm with the MIQP convex relaxation is sufficient
to solve FP and GP instances with up to 60 aircraft, and most RCP instances with up to
30 aircraft. We also find that the number of MIQCP iterations remains low on average
when solving larger problems. For 2D+FL lexicographic optimization problems, we find
that the pre-processing procedure generates enough altitude separation constraints to solve
dense instances with an average of 50 aircraft per FL. Last, the results of the sensitivity
analyses conducted highlight that while the robust ACRP can be solved without significantly
increasing the level of computational resources required, the impact of on system costs (total
deviation) increase rapidly with the level of robustness and/or uncertainty.
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Modeling approaches for
autonomous intersection
management

This chapter is based on Levin and Rey [2017], Rey and Levin [2019] and Rey et al. [2021].

4.1 Introduction

Traffic intersections are major bottlenecks of urban transport networks. Signalized traffic
intersections are typically controlled so as to improve throughput, minimize vehicle delays
or reduce emissions. The emergence of automated mobility in urban networks leads to new
operational challenges that have received a growing attention over the past few years. Several
new technologies have been proposed for AVs to improve traffic flow Chen and Englund [2016].
The overarching theme consists of replacing signalized traffic intersection with signal-free in-
tersections that are controlled by an intersection manager. This has lead to the development
of autonomous intersection management (AIM) wherein the control of signal-free traffic inter-
sections is assumed to be in the hands of an autonomous agent governed by decision-making
algorithms that aim to regulate traffic.

Of particular interest is the future paradigm wherein legacy (or human-operated) vehicles
have been fully replaced with autonomous vehicles (AV). In this futuristic context, several
studies have shown that the management of urban networks may benefit from forecasted
technological advancements, such as improved trajectory control, automatic collision avoid-
ance or platooning. However, the intermediate traffic state wherein legacy and autonomous
vehicles co-exist has not been nearly as much examined by researchers. In such an intermedi-
ate traffic context, urban networks will need to adapt to make the most out of AV technology
and allow the transition towards fully autonomous traffic, if this is ever to happen. The first
AVs evolving in urban traffic networks are likely to have to abide by the existing infrastruc-
ture and legislation. However, this picture may change rapidly. We conjecture that with the
increase in AV demand, urban traffic networks will adapt and that AV-specific infrastructure
will be available to improve network operations at traffic intersections.

The emergence of automated mobility also offers the opportunity to rethink traffic in-

73



Chapter 4

tersections in the light of users’ preferences. Auction-based mechanisms have emerged as
promising alternatives to traditional traffic intersection control approaches [Schepperle and
Böhm, 2007, Vasirani and Ossowski, 2012, Carlino et al., 2013]. In auction-based mecha-
nisms, users are assumed to be able to declare their preferences, e.g. value of time, to an
AIM so as to obtain services commensurate to their need. The intersection can be viewed
as a server which role is to process users’ service requests. In this context, the intersection
manager acts as a controller which decides users’ service sequence and users’ payments.

The chapter summarizes three approaches that address different facets of AIM. First, a
mixed-integer programming formulation is presented to maximize throughput in a fully au-
tonomous mobility context where only AVs share the infrastructure. Second, this formulation
is embedded in a stochastic network traffic control with hybrid mobility wherein legacy vehi-
cles (LV) and AVs co-exist. It is shown that in this hybrid mobility context, a max-pressure
traffic control policy can stabilize the network. While the design criteria of these approaches
have merits they are oblivious to users’ preferences. In a last section, a mechanism design
perspective is considered wherein users have the possibility to bid for priority service at traffic
intersections.

4.2 Literature review

We first discuss the literature on autonomous intersection management before discussing
studies on network traffic control. We then review efforts that have considered a traffic
intersection auction context.

4.2.1 Autonomous intersection management

Due to the real-time computing needs of auction-based traffic intersection mechanisms, such
approaches are typically conceived in the context of autonomous intersection management
(AIM), as proposed in the seminal work of Dresner and Stone [2004, 2008]. In this paradigm,
traffic control is assumed to be signal-free and users are assumed to be able reserve space-
time trajectories through intersections. Several works have built on and extended the AIM
protocol to richer configurations. Fajardo et al. [2011] and Li et al. [2013] proposed AIM
protocols based on a First-Come-First-Served (FCFS) policies where vehicles are prioritized
based on their arrival time at the intersection. De La Fortelle and Qian [2015] and Altché
and De La Fortelle [2016] developed microscopic vehicle trajectory optimization formulations
to coordinate vehicles through intersections. In these formulations, the intersection manager
decides vehicles’ service time and speed while time is discretized. Zhang et al. [2016, 2017]
and Malikopoulos et al. [2018] proposed decentralized approaches for traffic control based
on FCFS conditions and considered energy consumption as well as vehicle separation and
throughput in their formulations. Mirheli et al. [2019] developed a consensus-based approach
for cooperative trajectory planning at signal-free intersections and shows that near-optimal
solution can be achieved in competitive time. Wu et al. [2019] designed a multi-agent Markov
decision process for cooperative trajectory planning in AIM. Levin and Rey [2017] proposed
a conflict point model that obviates the need to discretize the intersection space using tiles.
This conflict point model was then adapted by Rey and Levin [2019] to accommodate both
legacy and automated vehicles with signalized and signal-free traffic phases; and more recently
by Chen et al. [2020] to account for pedestrians movements.
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4.2.2 Network traffic control

The literature on network traffic control spans across several fields such as optimization and
control theory, transportation engineering and computer science. The seminal work of Tassi-
ulas and Ephremides [1992] pioneered the research on stability conditions in network traffic
control with an application to data packets routing in communication networks. The authors
notably introduced the concept of back-pressure algorithm as method for decentralized con-
trol of a network of routers. In the context of urban transport networks, there is an extensive
body of research on network traffic signal control. Varaiya [2013] proposed a network traf-
fic control policy based on max-pressure, a variant of the back-pressure algorithm wherein
the control policy chooses the signal phase that maximizes the pressure at each intersection.
Stability was proven assuming each turning movement has a distinct queue. Wongpiromsarn
et al. [2012] proposed a pressure-based policy which maximizes throughput for unbounded
queues. However, practical limitations such as link length require a careful choice of the pres-
sure function to avoid queue spillback. Building on this effort, Xiao et al. [2014] proposed
a pressure-releasing policy that accounts for finite queue capacities. Nonetheless, to more
canonically apply the pressure-based routing they assumed that each turning movement has
a separate queue, which is often not realistic. Le et al. [2015] proposed a fixed-time pol-
icy wherein all phases are assigned a non-zero activation time and proved stability for fixed
turning proportions and unbounded queues. Recently, Valls et al. [2016] propose a convex
optimization approach to traffic signal control that decouples the stability of the system from
the choice of traffic control policy.

Starting from the seminal work of Smith [1979], several efforts have also attempted to
model the impact of traffic signal optimization on route choice [Gregoire et al., 2014, Zaidi
et al., 2016]. Le et al. [2017] used utility functions in max-pressure control to influence
routing. However, while Tassiulas and Ephremides [1992]’s policy is provably throughput-
optimal, max-pressure route choice makes no guarantees on the efficiency of the travel times.
We assume fixed route choice in our network traffic control model to focus on green and blue
phases signal control, and leave route choice for later studies.

4.2.3 Traffic intersection auctions

Traffic intersection auctions have received a growing attention over the past few years, notably
with the advent of connected and automated vehicle technology. Schepperle and Böhm [2007]
proposed a subsidy-based mechanism for slot allocation which aim to balance vehicle waiting
time. First-In First-Out (FIFO) constraints are accounted for but incentive-compatibility is
not guaranteed. The “effect of starvation” and its impact on fairness are discussed. Vasirani
and Ossowski [2012] developed a policy based on combinatorial auctions for the allocation of
reservations at traffic intersections. The auction winner pays a price that is exactly the bid
that was submitted, which is not incentive-compatible. Carlino et al. [2013] proposed several
types of auctions where users can bid on phases or reservations (one vehicle at a time). All
drivers can participate in the auction but the candidates only include drivers at the front of
their lane. Winners split the cost of the second-highest bid with proportional payment, which
yields a static incentive-compatible mechanism and the strategyproofness of the dynamic case
is not guaranteed. Lloret-Batlle and Jayakrishnan [2016] proposed envy-minimizing mech-
anisms for traffic intersections with traditional phasing. The authors developed a revenue-
neutral, pareto-efficient approach that minimizes envy and delays by considering monetary
transfers across users. A formal proof of incentive-compatibility is not provided although sim-
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Paper Mechanism Auction IC F E C

Schepperle and Böhm [2007] subsidy-based static no some no some
Vasirani and Ossowski [2012] combinatorial auction static no no yes yes
Carlino et al. [2013] marginal cost static yes yes yes some
Lloret-Batlle and Jayakrishnan [2016] envy-minimizing static no yes yes yes
Sayin et al. [2018] marginal cost static yes no yes yes
Censi et al. [2019] karma system static no yes yes some
Lin and Jabari [2020] transferable utility static no some yes yes
Rey et al. [2021] expected marginal cost dynamic yes no yes some

Table 4.1: Summary of the state-of-the-art on traffic intersection auctions. The column
Mechanism describes the mechanism; Auction indicates the type of auction; IC indicates
whether the mechanism is incentive-compatible; F indicates if fairness is considered in the
mechanism; E indicates if the mechanism is efficient, i.e. social welfare is optimized; C
indicates if intersection capacity is considered or optimized.

ulations show that arbitrage is unlikely. Sayin et al. [2018] proposed an auction protocol and
mechanism in which all vehicles within range of the intersection manager communicate their
value of time, and the intersection manager assigns reservations to those vehicles via a static
auction. The proposed mechanism is incentive-compatible in the static sense, i.e. assuming
all participants in the auction are known at the time payments are determined. Censi et al.
[2019] introduced a credit-based auction mechanism, i.e. a karma system in which agents pay
other agents karma for priority. Agents with a low priority today have an incentive to lose
bids so they can achieve higher priority tomorrow by acquiring more karma. The authors
attempt to calculate a Nash equilibria of user bids, and they show that a centralized strategy
can be more unfair than some of the Nash equilibria identified. Recently, Lin and Jabari
[2020] proposed a mechanism for pricing intersection priority based on transferable utility
games. In each game, players have the possibility to trade time among themselves and “win-
ners pay losers to gain priority”. The authors provide empirical evidence that their approach
is robust against adversarial user behavior, but no formal proof of incentive-compatibility is
presented.

A synthesis of the state-of-the-art on traffic intersection auctions is presented in Table 4.1.
The column Mechanism describes the mechanism of the corresponding paper. The column
Auction indicates the type of auction: static or dynamic. A static auction is an auction in
which the set of participants is assumed known, whereas a dynamic auction allows participants
to enter and leave the auction dynamically. Observe that, in a static traffic intersection
auction, losers may need participate in multiple auction rounds until being serviced during
which new users may arrive and further delay these losers. The column IC indicates whether
the mechanism is incentive-compatible or not. The column F indicates if fairness is considered
in the mechanism, either to some extent (some) or via constraints within the mechanism
(yes). The column E indicates if the mechanism is efficient, i.e. if social welfare is optimized.
The column C indicates if intersection capacity is considered in the mechanism, either to
some extent (some) or explicitly optimized (yes). Table 4.1 highlights that, to the best of
our knowledge, existing mechanisms for traffic intersection auctions are restricted to static
auctions. This synthesis also emphasizes that fairness considerations and intersection capacity
are seldom optimized jointly, thus underlining existing research gaps in the design of traffic
intersection auction mechanisms.
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Figure 4.1: 4-approach, 2-lane intersection. Four vehicle paths are available WSR, WER,
WEL, WNL for the West approach. All conflicts points on each trajectory are represented
with a rhombus.

4.3 Conflict point formulation

We now develop an MILP to determine the optimal reservations for a single intersection. We
replace the tiles in early work on reservations Dresner and Stone [2004] with conflict points,
which are the intersections between different turning movement paths. Conflict points are an
alternative method of ensuring collision avoidance that are more amenable to mathematical
programming formulations. Figure 4.1 illustrates the conflict points for a standard four-
approach intersection. Details on the computation of geometrical parameters are provided in
Levin and Rey [2017].

Two vehicles are separated if they do not occupy the same conflict point at the same time.
This is similar to the separation requirement for tiles [Dresner and Stone, 2004, 2006], but
conflict points are only placed where potential conflicts occur. Conflict points have previously
been used to model reservations by Zhu and Ukkusuri [2015], although their formulation was
intended for use within dynamic traffic assignment rather than as a deployable solution
to reservation-based intersection control. Conflict points have also been used for aircraft
separation models Rey et al. [2012, 2015, 2016c], but aircraft require different separation
constraints.

4.3.1 Notation

Consider a single intersection with set of vehicles V. The intersection has sets of entry and
exit lanes, Γ− and Γ+, respectively. Let C be the set of all conflict points. Each vehicle
requests a turning movement traveling from an entry lane to an exit lane. We assume all
specified turning movements are legal and physically feasible. Each vehicle requires a path
ρi through the intersection, which is an ordered set of conflict points. For each vehicle i, we
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must determine ti(c), which is the time that i passes through point c, for all c ∈ ρi. The
first point in ρi is the entrance to the intersection, and the last point is the exit point for the
intersection. Then ti(γ−

i ) is the time at which i enters the intersection.

We assume that vehicles travel at an uniform speed through the intersection, but that
the speed is a decision variable. The reason for this assumption is that varying speeds can
greatly complicate determining how long vehicles occupy conflict points because vehicles may
occupy multiple conflict points simultaneously. Although the uniform speed assumption may
be relaxed in future work, we use it here to focus on the exposition of the conflict avoidance
formulation.

Let U i and U i be the minimum and maximum speed for which i can travel through the
intersection, respectively. We require a minimum speed to ensure that vehicles to do not
spend arbitrarily long times in the intersection. For each vehicle i, and conflict point c ∈ ρi,
i takes some time τi(c) to completely pass through c. τi(c) is a function of the vehicle speed
during the turning movement. Thus, when i moves through the intersection, c is unusable
during the time interval [ti(c), ti(c) + τi(c)). An appropriate buffer may be added to τi(c) to
ensure sufficient separation. Observe that ti(γ+

i ) + τi(γ+
i ) is the time at which i exits the

intersection.

4.3.2 Vehicle ordering

Assume that vehicles do not change lanes while under the control of the intersection manager.
Therefore, FIFO holds on all lanes. Let ei denote the earliest time that i could reach the
intersection. Then

ti
(
γ−

i

)
≥ ei, ∀i ∈ V. (4.1)

Assume without loss of generality that ei < ej , so i comes before j in the lane queue.
Then ti

(
γ−

i

)
< tj

(
γ−

j

)
must hold as well. Because i occupies γ−

i for τi

(
γ−

i

)
:

ti
(
γ−

i

)
+ τi

(
γ−

i

)
≤ tj

(
γ−

i

)
, ∀i, j ∈ V : γ−

i = γ−
j , ei < ej . (4.2)

4.3.3 Travel time between conflict points

For some vehicle i and any two conflict points c1, c2 ∈ ρi with c2 after c1 in ρi, let di (c1, c2)
be the distance i travels between c1 and c2. Note that di (c1, c2) may not be the Euclidean
distance between c1 and c2 because turning vehicles may travel along an elliptical path (e.g.
for left turns). The minimum and maximum vehicle speeds place constraints on the travel
time through the intersection:

di

(
γ−

i , γ
+
i

)
U i

≤ ti
(
γ+

i

)
− ti

(
γ−

i

)
≤
di

(
γ−

i , γ
+
i

)
U i

, ∀i ∈ V. (4.3)

Furthermore, we require that vehicles maintain the same speed throughout the intersec-
tion. This is to ensure that vehicles move through conflict points properly. If several conflict
points are close together, with distance smaller than vehicle length, speed changes could re-
sult in the vehicle blocking a conflict point but not triggering the corresponding constraint.
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Therefore:

ti(c)− ti
(
γ−

i

)
di

(
γ−

i , c
) =

ti
(
γ+

i

)
− ti

(
γ−

i

)
d
(
γ−

i , γ
+
i

) , ∀i ∈ V,∀c ∈ ρi. (4.4)

4.3.4 Time spent at conflict points

For each vehicle i traversing the intersection, we can determine the time spent at each conflict
point c ∈ ρi, τi(c). based on geometry of i and turning movement shape (straight or circular).
Specifically, let Di(c) be the spacing required by i at c. This spacing should depend on the
vehicle speed in case an emergency braking is required to avoid a collision for unforeseen
circumstances (such as a vehicle stall or a pedestrian jaywalking). The spacing for a given
speed may be derived from the speed-density relationship, and can be used to specify the
desired flow-density relationship for reservation travel. Equation (4.4) gives the speed of
vehicle i, ui, as:

ui =
di

(
γ−

i , γ
+
i

)
ti(γ+

i )− ti
(
γ−

i

) . (4.5)

Using the inverse speed of the vehicle, the time vehicle i spends at conflict point c is:

τi(c) = Di(c)
ui

, ∀i ∈ V,∀c ∈ ρi. (4.6)

For simplicity in the formulation, assume that the fundamental diagram is triangu-
lar Newell [1993], Yperman et al. [2005]. The fundamental diagram is defined as:

q(k) = min
{
U ik,w(K − k)

}
, (4.7)

where k is the density, K is the jam density, w is the congested wave speed, and q(k) is the
flow-density relationship. We assume that K and w are constants.

Speeds are constrained by spacing only in the congested region, and from equation (4.7)
the speed satisfies:

ui = w

k
(K − k) . (4.8)

Let Li(c) be the distance the vehicle travels around c. If the turning movement is a
straight line, Li(c) = li, where li is the length of i. For left and right turns, the vehicle will
travel for a greater distance while occupying c. For circular turns (e.g. left and right turns
in a symmetric intersection), Li(c) = 4R sin−1

(
li

2R

)
where R is the turn radius.

Using the fact that spacing is the inverse of density, i.e. Di(c) = 1
k and K = 1

Li(c) ,
equation (4.8) can be rewritten as

Di(c) = Li(c)
ui + w

w
. (4.9)
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From equation (4.9), equation (4.6) can then be rewritten as

τi(c) = Li(c)
ui + w

uiw
,

= Li(c)
w

+ Li(c)
ui

,

= Li(c)
w

+
Li(c)

(
ti(γ+

i )− ti
(
γ−

i

))
di

(
γ−

i , γ
+
i

) , (4.10)

which is linear in the decision variables of conflict point arrival times.

4.3.5 Separation at conflict points

For any two vehicles i, j ∈ V, let δij(c) ∈ {0, 1} denote whether i and j overlap at c. δij(c) is
sensitive to the order of vehicles, so each pair of vehicles has two such δ variables per shared
conflict point. δij(c) = 1 if j arrives at c after i has left. Thus, δij(c) = 1 if tj(c) ≥ ti(c)+τi(c).
This is written as

ti(c) + τi(c)− tj(c) ≤ (1− δij(c))Mij , ∀i, j ∈ V,∀c ∈ ρi ∩ ρj , (4.11)

where Mij is a large positive constant. If tj(c) ≥ ti(c) + τi(c) then δij(c) = 1; otherwise
δij(c) = 0. Note that it suffices to have Mij ≥ max{ti(c) + τi(c) − tj(c)} for this separation
constraint to be valid.

Separation is guaranteed for any two pair of vehicles i, j ∈ V and any conflict point c if j
enters c after i leaves, or if i enters c after j leaves:

δij(c) + δji(c) = 1, ∀i, j ∈ V : i < j, ∀c ∈ ρi ∩ ρj . (4.12)

Constraint (4.12) does not depend on vehicle ordering, and therefore occurs once per pair of
vehicles per shared conflict point.

Note that the number of binary δij(c) variables may be reduced for vehicles with γ−
i = γ−

j .
For such pairs vehicles, the ordering at the entry point determines the ordering at any conflict
points that they share. Constraints (4.11) and (4.12) may therefore be replaced with

ti(c) + τi(c) ≤ tj(c), ∀i, j ∈ V : γ−
i = γ−

j , ei < ej ,∀c ∈ ρi ∩ ρj , (4.13)

for pairs of vehicles i, j ∈ V with γ−
i = γ−

j .

4.3.6 Objective function

The objective function represents how the intersection manager aims to operate traffic. An
intuitive objective consists in maximizing intersection throughput. While this approach may
maximize social welfare, such an intersection control policy may also lead to imbalanced
vehicle delays, thus potentially impacting acceptability. Alternatively, the intersection man-
ager may seek to minimize the maximum delay experienced or maximize fairness. These
alternative objective functions aim to incorporate some level of fairness in the allocation of
reservation assignments at the vehicular scale. More elaborate fair objective functions can
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also be designed to balance reservation assignments across routes or traffic approaches (e.g.
North, South, East, West).

Because the constraints guarantee complete separation of vehicles through the intersec-
tion, the objective function decides in which order vehicles should move. Denote by fi > 0
the weight of each vehicle, which indicates its priority for movement. The weights can model
a variety of situations. For instance, fi = 1 for all vehicles is maximum throughput. fi = ei

weights vehicles by earliest arrival time, which is similar to a fairness based objective. Note
that fi = ei is not the same as the FCFS policy used in previous work on reservations, because
FCFS results in absolute priority for the vehicle with the earliest arrival time. The objective
fi = ei may delay early-arriving vehicles to find the combination with the greatest fairness.

The proposed objective function values movements by the time vehicles exit the intersec-
tion, ti(γ+

i ) + τi(γ+
i ):

min
∑
i∈V

fi

(
ti
(
γ+

i

)
+ τi

(
γ+

i

))
. (4.14)

Exit times are chosen because vehicle speeds are an implicit decision variable. Both vehicle
delays and slower turn speeds will increase the objective value. Note that the objective
function (4.14) will never be equal to 0 if fi > 0. To obtain a measure of delay for vehicle
i, we can subtract the constant term di(γ−

i ,γ+
i )

U i
+ ei, which is the earliest time that vehicle i

could exit the intersection.

4.3.7 Mixed integer linear program

Combining the above constraints and objective function results in the MILP represented
by (4.15) through (4.24), henceforth referred to as the Conflict-Point Intersection Control
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(CPIC) formulation.

min
∑
i∈V

fi

(
ti
(
γ+

i

)
+ τi

(
γ+

i

))
, (4.15)

s.t. ti
(
γ−

i

)
≥ ei, ∀i ∈ V, (4.16)

ti
(
γ−

i

)
+ τi

(
γ−

i

)
≤ tj

(
γ−

j

)
, ∀i, j ∈ V : γ−

i = γ−
j , ei < ej , (4.17)

τi(c) = Li

w
+
Li

(
ti(γ+

i )− ti
(
γ−

i

))
di

(
γ−

i , γ
+
i

) , ∀i ∈ V,∀c ∈ ρi, (4.18)

di

(
γ−

i , γ
+
i

)
U i

≤ ti
(
γ+

i

)
− ti

(
γ−

i

)
≤
di

(
γ−

i , γ
+
i

)
U i

, ∀i ∈ V, (4.19)

ti(c)− ti
(
γ−

i

)
di

(
γ−

i , c
) =

ti
(
γ+

i

)
− ti

(
γ−

i

)
d
(
γ−

i , γ
+
i

) , ∀i ∈ V,∀c ∈ ρi, (4.20)

ti(c) + τi(c) ≤ tj(c), ∀i, j ∈ V : γ−
i = γ−

j , ei < ej , ∀c ∈ ρi ∩ ρj ,

(4.21)
ti(c) + τi(c)− tj(c) ≤ (1− δij(c))Mij , ∀i, j ∈ V : γ−

i ̸= γ−
j ,∀c ∈ ρi ∩ ρj ,

(4.22)
δij(c) + δji(c) = 1, ∀i, j ∈ V : γ−

i ̸= γ−
j , i < j,∀c ∈ ρi ∩ ρj ,

(4.23)
δij(c) ∈ {0, 1}, ∀i, j ∈ V : γ−

i ̸= γ−
j ,∀c ∈ ρi ∩ ρj ,

(4.24)

The decision variables are the arrival times at each conflict point for each vehicle i,
ti(c), and vehicle ordering at conflict points, determined by δij(c) variables. The times
spent at conflict points, τi(c), is defined by the speed at which vehicle i moves through the
intersection, which is implicitly defined by vehicle-specific arrival times at conflict points. It
is not known whether Model CPIC is NP-hard. However, similar collision avoidance models
for aircraft [Chiang et al., 1997] can be generalized as a motion planning problem in the
presence of obstacles, which is NP-hard in most cases [Reif and Sharir, 1994].

Model CPIC is always feasible because there is no upper bound on vehicle entry and exit
times. If necessary, vehicles could be given arbitrarily long delays to ensure that collision
avoidance constraints are satisfied, this is summarized in the following proposition.

Proposition 4.1. Model CPIC has at least one feasible solution.

Vehicles’ waiting time at the intersection entry points is unbounded, hence the values
Mij may also be unbounded. Specifically, if δij = 0, then Constraint (4.22) becomes ti(c) +
τi(c)−tj(c) ≤Mij , which should hold for any values of the decision variables involved therein.
Since max{ti(c)+τi(c)−tj(c)} → ∞, the big-M values should be chosen carefully to maintain
feasibility and avoid cutting out the optimal solution. The proof of Proposition 4.1 provides
a method to construct a feasible solution to Model CPIC. We can use this solution to tighten
the big-M values Mij . Let i = |V| − 1 denote the last vehicle in the sorted set V and let
t̄ = t|V|−1

(
γ+

|V|−1

)
+ τ|V|−1

(
γ+

|V|−1

)
denote the latest instant reserved by the intersection.

Then M = t̄− e0 is a valid big-M value for any pair of vehicles.
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4.4 Hybrid network traffic control policy

We now embed the intersection-based conflict point formulation into a stochastic network
model wherein LVs and AVs co-exist.

4.4.1 Stochastic network model

Consider now a traffic network G = (N ,A) with a set of intersections N connected by a set
of links A. The set of links is partitioned into three subsets: internal links that connect two
intersections, denoted Ao ⊂ A, source links at which vehicles enter the network, denoted
Ar ⊂ A, and sink links at which vehicles exit, denoted As ⊂ A. We model congestion at
network intersections using point-queues of infinite size and we are interested in the evolution
of queue lengths over the entire network.

We consider two classes of vehicles and lanes: autonomous vehicles (AVs), denoted a, and
legacy (or human-driven) vehicles (LVs), denoted l. We assume that each link of the network
consists of a set of lanes which are either restricted to AVs (AV-lanes) or available to both AVs
and LVs (LV-lanes). We use Aa and Al to denote AV-lanes and LV-lanes, respectively, and
we assume that vehicle movement between different classes of lanes are forbidden. Although
AVs can use LV-lanes, we do not model any type of interaction at the traffic-flow level among
AVs and LVs on LV-lanes: if an AV uses an LV-lane we assume that it behaves as an LV.
We assume that each class of lanes is served by a color-coded traffic phase. Specifically, we
assume that LV-lanes are served exclusively by traditional green signal phases. In turn, we
assume that AV-lanes are served exclusively by signal-free blue phases. Blue phases differ
from green phases in that they directly control vehicles’ trajectory within the intersection.
The proposed hybrid network control policy presented hereafter chooses which phase (green
or blue) should be activated at each intersection of the network and each time period over a
discretized time horizon.

Let xi(t) ∈ ℜ+ be the number of vehicles on link i ∈ A seeking to enter the intersection at
time t. Although we discretize vehicles in our numerical experiments, integer queue lengths
are not necessary for the analytical results presented hereafter. Let x(t) be the array of
all queue lengths at time t. x(t) is the state of the network, and the state space is X =
{xi(t) ≥ 0 : i ∈ A}. We consider discretized time and we assume fixed phase time of length
∆t. Further, we assume that the state of the network x(t) is known at each time period
t = 0,∆t, 2∆t, . . .. The goal is to design a throughput-optimal network traffic control policy
that optimally selects a traffic signal control at each time period [t, t+ ∆t[.

The proposed stochastic network traffic control formulation is based on the concept of
vehicle movements which are formally defined below.

Definition 4.1. A movement (i, j) ∈ A2 is a vehicle trajectory from lane i to lane j across
a common intersection n ∈ N in the network. We denote M the set of all movements in the
network.

AVs communicate their position with IMs to make use of the AIM protocol, hence we
assume that movement-specific queues are known for AVs. In contrast, LV-queues can be
detected through loop detectors and flow sensors currently in use for traffic signals but their
destination is assumed unknown. Specifically, let Aa ⊂ A be the set of AV-restricted lanes.
For these lanes, we assume known movements queues, i.e. if j ∈ Aa, then xi(t) = ∑

j∈Aa
xij(t)
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and xij(t) is known. In contrast, for other lanes i ∈ Al = A \ Aa, only xi(t) is known since
route choice for LVs is assumed unknown.

For each lane i ∈ A we assume that lane capacity Ci is known and determined assuming
a triangular fundamental diagram relationship, that is Ci = U iwK

U+w
, where U i is the free-flow

speed on lane i, K is the jam density and w is the congestion wave speed. We also assume
that the maximum, unconditional movement service rate s̄ij is known for each movement
and determined based on lost time, specifically: unconditional movement service rates for all
movements (i, j) are calculated as s̄ij = min{Ci, Cj}∆t−L

∆t .

Let Pij(t) be a random variable denoting the turning proportion from lane i to j at t with
known mean pij . Let Di(t) be a random variable denoting the external incoming traffic onto
lane i at time t with known mean di. We denote p, d and s̄ the vectors of mean turning
proportions, mean demands and unconditional movement service rates, respectively. These
upper bounds on movement service rates represent the maximum number of vehicles that can
be moved from lane i to lane j during time period t when no conflicting movement with (i, j)
is activated. From these rates, we can determine maximum, unconditional lane service rates
s̄i = ∑

j∈A:(i,j)∈M s̄ij . For convenience if i and j do not correspond to a possible movement in
the network, e.g. they belong to different intersections or they are both entry or exit lanes of
the same intersection, we assume that pij = 0. Hence, we can define the sets of AV-movements
Ma ≡ {(i, j) ∈ A2

a : pij ̸= 0} and LV-movements Ml ≡ {(i, j) ∈ A2
l : pij ̸= 0}.

Traffic at network intersections is coordinated by phases which are determined by the
selection of the activation matrix. In addition, we also introduce the concept of service
matrix which is used in the proposed traffic control formulations.

Definition 4.2. An activation matrix β(t) is a |A| × |A|-matrix wherein all entries take
value 0 (inactive) or 1 (active), i.e. βij(t) ∈ {0, 1} at time t.

Definition 4.3. A service matrix α(t) is a |A| × |A|-matrix wherein all entries take a value
between 0 (not serviced) and 1 (fully serviced), i.e. αij(t) ∈ [0, 1] at time t.

The entries of an activation matrix characterize the activeness of the corresponding phase:
βij(t) = 1 means that movement (i, j) is active during phase t whereas βij(t) = 0 means
that movement (i, j) is inactive. The entries of the service matrix characterize the service
level of active movements during phase t: αij(t) = 1 corresponds to a maximal service
level for of movement (i, j), whereas αij(t) = 0 means that movement (i, j) cannot serve any
vehicles during time period t. Fractional service level values model situations where conflicting
movements, i.e. posing a safety risk, simultaneously have non-zero activation values. The
activation and service matrices are linked through the movement-based constraints αij(t) ≤
βij(t). These linking constraints ensure that an intersection can only service vehicles on
movement (i, j) if this movement is active βij(t) = 1. Further, for priority movements, we set
αij(t) = βij(t) which implies that an activated priority movements has full service level. In
the proposed traffic control policy, the selection of the activation matrix requires the solution
of two mathematical optimization problems. Green phases serve LVs using a MILP that
captures FIFO blocking effects on lanes. Blue phases serve AVs using an a modified version
of the MILP presented in Section 4.3 wherein the objective function is adapted for network
traffic control. These MILPs are referred to as Green and Blue. Further details on these
MILPs can be found in Rey and Levin [2019].

Let Yi(t) be a random variable with mean yi(t) denoting the number of vehicles serviced
in lane i at time t. The vector Y (t) is endogenous to the service matrix α(t) selected by the
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control policy. Note that the mean yi(t) of Yi(t) is unknown and yi(t) is modeled as a control
variable in the proposed traffic phase optimization formulation. The proposed stochastic
network traffic control model is summarized by the lane-queue evolution equation (4.25):

xj(t+ ∆t) = xj(t)− Yj(t) +
∑
i∈A

Pij(t)Yi(t) +Dj(t), ∀j ∈ A. (4.25)

Note, if j /∈ Ar then Dj(t) = 0. Conversely, if j ∈ Ar then j has no predecessor links, thus∑
i∈A Pij(t) = 0. Although AV-lanes and other lanes have identical queue evolution equations,

the information available is more accurate for AV-lanes, this used in the calculation of network
control policies.

In related works, the lane service rate vector y(t) is commonly calculated as the minimum
between the supply (lane or movement service capacity) and the demand (lane or movement
queue length) [Varaiya, 2013, Le et al., 2015]. However, this modeling approach does not
always capture the interdependency between the activation of possibly conflicting movements
with lane or movement service capacity and queue length. Precisely, previous efforts have
assumed that a set of activation matrices is provided for each intersection and that lane or
movement service capacities can be pre-processed accordingly. This overlooks the impact of
queue length on intersection capacity. In contrast our proposed integrated approach aims
to accurately estimate the expected number of serviced vehicles at each time period by
leveraging the available lane-queue length information (note that this information is also
assumed available in the aforementioned papers).

4.4.2 Stability analysis

We present a network traffic control policy for intersection control combining green (LV-lane
restricted) and blue phases (AV-lane restricted) and prove that it maximizes throughput.
The proposed network traffic control policy works by repeatedly solving Green and Blue at
each time period t based on the network state x(t) and combining local (intersection-level),
optimal activation matrices into a network-wide activation matrix α(t).

Let M be the set of service matrices. A policy is a function π : X → M that chooses
a service matrix α(t) ∈ M for every state x(t). We use the concept of strong stability to
characterize the proposed stochastic queuing process [Leonardi et al., 2001, Wongpiromsarn
et al., 2012, Zaidi et al., 2016]:

Definition 4.4. Let t̄ be a time period index. A stochastic queue evolution process is strongly
stable under policy π if and only if there exists K < ∞ such that the network state x(t)
verifies:

lim sup
t̄→∞

E

1
t̄

t̄∑
t=1
|x(t)|

 < K. (4.26)

For brevity, we hereby referred to strong stability as stability.

To show that the proposed policy is stabilizing and define the stability region of the
system, we introduce artificial decision variables in Green and Blue MILPs. Let Aro =
Ar ∪ Ao and let γi(t) ∈ [0, 1] be a decision variable representing the lane service supply on
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lane i ∈ Aro. Recall that s̄i = ∑
j∈A:(i,j)∈M s̄ij is the unconditional lane supply. Consider

the lane supply constraints of the form:

yi(t) ≤ γi(t)s̄i, ∀i ∈ Aro, (4.27a)
γi(t) ≤ βij(t), ∀(i, j) ∈M. (4.27b)

Constraints (4.27) require that γi(t) be at least yi(t)/s̄i and impose that γi(t) be null if
any movement emanating from lane i is inactive. Observe that since βij(t) = 0⇒ yij(t) = 0,
FIFO conditions on lanes imply that if there exists a lane j such that pij > 0 and βij(t) = 0,
then yi(t) = 0, which is consistent with Constraints (4.27). Observe that Constraints (4.27a)
are equivalent to the class-specific lane supply constraints:

xi(t)pi(t) ≤ γi(t)s̄i, ∀i ∈ Al, (4.28a)∑
v∈Vn

i (t)
zv ≤ γi(t)s̄i, ∀i ∈ Aa. (4.28b)

Lane supply constraints (4.27) can be incorporated in Green by adding (4.28a) and
(4.27b) to Green. Similarly, (4.27) can be incorporated in Blue by adding (4.28b) and
(4.27b) to Blue. Observe that variables γi(t) ∈ [0, 1] do not influence the optimal solutions
of Green or Blue MILPs since yi(t) ≤ s̄i for all i ∈ Aro. We henceforth refer to the MILPs
with lane supply constraints (4.28) and variables γi(t), ∀i ∈ Aro as the extended Green and
Blue MILPs.

Let ΩGreen and ΩBlue denote the feasible regions of the extended Green and Blue
MILPs, respectively. Further, let Ω = ΩGreen ∪ ΩBlue be the feasible region verifying the
constraint sets of both Green and Blue, and let Conv(Ω) be the convex hull of Ω. We say
that an infinite sequence of controls {γ(t)} for t = 1, 2, . . . is admissible if {γ(t) ∈ Ω} for all
time periods t.

Definition 4.5. For any lane i ∈ Aro, let γ̂i = lim
t̄→∞

1
t̄

∑t̄
t=1 γi(t) be the average lane supply

of i for sequence {γ(t) ∈ Ω}. An admissible control sequence {γ(t) ∈ Ω} accommodates flow
f if

fi < γ̂is̄i, ∀i ∈ Aro. (4.29)

Definition 4.5 states that a flow f can be accommodated if, on average, γ̂is̄i vehicles can
be served on lane i ∈ Aro. From Proposition 2 of Varaiya [2013], γ̂ ∈ Conv(Ω) if and only
if {γ(t) ∈ Ω} is an admissible control sequence. We define the stability region of the system
accordingly.

Definition 4.6. Let D be the set of demand rate vectors such that there exists an admissible
control sequence {γ(t) ∈ Ω} with γ̂ ∈ Conv(Ω) defined as:

D ≡
{

d ∈ ℜ|Ar|
+ : (fi ≤ γ̂is̄i, i ∈ Aro, {γ(t) ∈ Ω})

}
. (4.30)

Let R be the interior of D i.e. R = {d ∈ D◦}. R is the stability region of the system.

The proposed hybrid max-pressure policy selects at each time period t the service matrix
α(t) which maximizes the network-wide pressure among all possible green and blue phases.
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Definition 4.7. The network traffic control policy π⋆(x(t)), defined as:

π⋆(x(t)) = arg max
{∑

n∈N

(
Zn

G(x(t)) ∨ Zn
B(x(t))

)
: α(t) ∈M

}
. (4.31)

is hereby referred to as the hybrid max-pressure network control policy for legacy and au-
tonomous vehicles.

At each intersection n ∈ N , the hybrid max-pressure policy selects the phase (green
or blue) and service matrix (α(t)) maximizing the local pressure. The service matrix is
either αn

G(t) if the green phase is activated or αn
B(t) if the blue phase is activated. The

implementation of the hybrid max-pressure policy requires the resolution of the two MILPs
Green and Blue at each intersection of the network. We next show that policy π⋆ is
stabilizing for any demand rate in the stability region of the system R.

Theorem 4.1. The stochastic queue evolution process (4.25) is stable under the hybrid max-
pressure policy π⋆ (4.31) for any demand rates vector d ∈ R.

A natural extension of Theorem 4.2 is that the pure network traffic control policies wherein
only Green or Blue is used to coordinate traffic are also stable.

Corollary 4.1. The pure pressure-based network traffic control policy consisting of policy π⋆

(4.31) with only green (respectively, blue) phases coordinated by Green (respectively, Blue)
are stable for any demand rates in the stability region R.

Theorem 4.2 proves that the proposed hybrid network control policy π⋆ (4.31) stabilizes
any demand vector in the stability region of the system R (4.30). According to Tassiulas and
Ephremides [1992], and as discussed in Wongpiromsarn et al. [2012] and Varaiya [2013] for
the case of signalized traffic control, this is equivalent to throughput optimality since it shows
that the stability region of policy (4.31) is a superset of the stability region of any policy.

Corollary 4.1 establishes that pure policies based on Green or Blue traffic control models
also maximize throughput. We note that stability of the pure green network traffic control
case is an extension of the work of Varaiya [2013]. Varaiya [2013] proposed a network traffic
control policy for a single class of vehicles and assumed that each movement had a dedicated
queue. In addition, it was assumed that movement capacities are exogenous to the traffic
signal control policy. We have both relaxed this framework by only requiring knowledge of
lane-queues, and extended the formulation to two classes of lanes. Further, we introduced
pressure-based formulations for both green and blue phases which account for FIFO blocking
effects on upstream lanes, and account for the loss of capacity due to conflicting movements
being simultaneously activated.

We are now ready to present our decentralized network traffic control algorithm used to
implement the proposed hybrid max-pressure network control policy. The pseudo-code of
the proposed policy is summarized in Algorithm 6. At each time period t, we calculate the
optimal Green and Blue phases at each intersection of the network n ∈ N based on the
current state of the network x(t). The phase with the highest local pressure is selected for
each intersection.
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Algorithm 6: Hybrid max-pressure network control policy
Input: G = (N ,A), d, p, s̄, t, x(t)
Output: α(t)

1 for n ∈ N do
2 Zn

G(x(t))← Solve Green
3 Zn

B(x(t))← Solve Blue
4 αn(t)← arg maxαn

G(t),αn
B(t){Zn

G(x(t)), Zn
B(x(t))}

5 α(t)← [αn(t)]n∈N

4.4.3 Numerical experiments

We implement the proposed hybrid network control policy on artificial datasets to test com-
putational performance and analyze the algorithm’s behavior. We use a synthesized grid
network of size 5 × 5, wherein each of the 25 nodes corresponds to a controlled intersection
and each edge represents a bidirectional link between adjacent nodes. All intersections have
the same topology as that depicted in Figure 4.2a, i.e. each node has four incoming and four
outgoing links, each of which has one LV-lane and one AV-lane. Each incoming lane allows
three movements: through, left turn and right turn.

(a) (b) (c)

Figure 4.2: Figure 4.2a shows all possible LV- and AV-movements on a typical intersection.
Figure 4.2b depicts a possible green phase involving priority and yield LV-movements and
Figure 4.2c illustrates the conflict-point formulation during blue phase.

We assume that vehicles’ routes in the network are fixed. In each instance generated, we
randomly and uniformly assign an origin and a destination to each vehicle, a route among
these nodes and a departure time within the considered time horizon. Origins and destinations
are chosen among nodes at the edge of the grid. The level of travel demand is determined by
the departure rate of vehicles into the network and the impact of travel demand onto network
performance is assessed through a sensitivity analysis.

The time period is set to ∆t = 10 s. We assume that green phases have a lost time of 2 s to
account for vehicle start-up delays and signal clearance intervals and we conduct a sensitivity
analysis on this input parameter. In turn, blue phases are assumed to have zero lost time.
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Figure 4.3: Total system travel time for a varying proportion of AVs and vehicle departure
rate. The results illustrate the trend of the mean total system travel time over 40 simulations
on a 5 × 5 grid network with each link having one AV and one LV lane. The 2×Green
experiment (benchmark) corresponds to the scenario where each link has the capacity of two
LV-lanes.

We use point-queues for all links in the network and we assume that vehicles take three time
periods to travel from an intersection to the next intersection on their route. Vehicles travel
through 3 links, each with a 10 s free flow time, between each intersection. Hence, in this
configuration, it takes 30 s for a vehicle to travel between two adjacent intersections at free
flow. We set the time horizon to 30 minutes and we execute Algorithm 6 periodically until
all vehicles have exited the network. Vehicles’ speed limit through intersections is assumed
to be uniform and equal to 44 ft/s and the wave propagation speed is taken as 11 ft/s. We
assume that all vehicles have a length of 17.6 ft and that lanes have a width of 12 ft. We use
the triangular fundamental diagram to determine lane capacity which results in 1,440 veh/h
or 5 vehicles per time period.

We explore the sensitivity of the proposed policy with regards to the proportion of AVs
by varying the proportion of AVs from 0% to 100% in increments of 10%. In all our numerical
experiments we assume that AVs always choose AV-lanes. To benchmark the performance of
the proposed hybrid network control policy (summarized in Algorithm 6), we also simulate
network traffic under a traditional traffic signal configuration wherein AV-lanes and blue
phases are nonexistent. Under this configuration all AV-lanes are treated as LV-lanes, and
we model this by using single-lane links with twice the lane capacity of the LV-lanes in the
network configuration with both LV- and AV-lanes. Thus, in this benchmark there are no
AV-lanes and since we assume that AVs behave as LVs and LV-lanes, all vehicles are treated
as LVs. This benchmark is hereby referred to as 2×Green. Each experiment is simulated 40
times and average performance is reported.

The simulation framework is implemented in Java on a Windows machine with 8 Gb of
RAM and a CPU at 3 GHz. All MILPs are solved with CPLEX 12.8 (Java API) with a time
limit of 60 s and default options.
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Figure 4.4: Average vehicle travel time based on AV proportion and vehicle departure rate.
The results depict the mean and standard deviation over 40 simulations on a 5×5 grid network
with each link having one AV and one LV lane. The 2×Green experiment (benchmark)
corresponds to the scenario where each link has the capacity of two LV-lanes.
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The evolution of the total system travel time (TSTT) for a varying departure rate is
depicted in Figure 4.3. For this experiment, the green phase lost time is set to 2 s and we
vary the departure rate from 4,000 veh/h (lowest demand) to 10,000 (highest demand). As
expected, we observe that TSTT increases super-linearly with the departure rate, i.e. travel
demand. We find that the market penetration of AVs has a significant impact on TSTT. If
less than 50% of AVs are present in the system, we find that the use of dedicated AV lanes
and the blue phase is not beneficial for the network in terms of TSTT, even at high demands,
as noted by the performance of the benchmark which outperforms the hybrid network control
policy for these levels of AV market penetration. Recall that the benchmark represents the
TSTT when the pure, green network traffic control policy is used with the equivalent of two
LV-lanes. At high demands (i.e. 8,000 veh/h and beyond), we find that a market penetration
of more than 50% of AVs outperforms the benchmark. At the highest departure rate tested
(i.e. 10,000 veh/h), for a market penetration of 70%, the average TSTT is reduced by 1/2
compared to the benchmark. For AV market penetration rates of 80% and higher, we find
that the reduction of the average TSTT is lesser than that achieved at 70% of AV market
penetration. This can be explained by the fact that network capacity is not fully used at 100%
of AVs compared to 70% since in the former configuration LV-lanes remain empty throughout
the experiment.

To further investigate the behavior of the proposed hybrid network control policy, we
examine average, vehicle-class travel times relative to the benchmark configuration. Figure
4.4 shows the average vehicle travel time for AVs (blue series), LVs (green series) and overall
(orange series) in the network based on AV proportion and departure rate. The benchmark
is shown as a dashed flat line in red. Three main trends can be identified: first, we find
that increasing the departure rate mainly impacts the mean relative travel time of LVs with
regards to the benchmark. Second, the proportion of AVs minimizing the mean vehicle travel
time in the network is relatively robust to the travel demand and is found to be around 70%
of AVs. This suggests that at lower or higher market penetration rates, network capacity
is not saturated and AV- or LV-lanes are under-utilized, respectively. This insight can help
in identifying the optimal AV market penetration rate to deploy AV lanes and blue phases.
Third, for high levels of travel demand, a sufficiently high proportion of AVs improves on the
benchmark, i.e. the average vehicle travel time (over both LVs and AVs) obtained using the
hybrid network control policy is lower than the average vehicle travel time obtained with the
pure, green network control policy.

For a departure rate of 4,000 veh/h, LVs and AVs’ average travel time remain similar
and the hybrid network control policy performs similarly to the benchmark. Increasing the
departure rate from 5,000 to 7,000 veh/h, we observe congestion effects impacting LVs’ average
travel time, while AVs’ average travel time remain only slightly penalized. Further increasing
the departure rate to 8,000 veh/h and beyond yields a new pattern: for a proportion of AVs
greater or equal to 60%, the aggregate average vehicle travel time improves on the benchmark
although LVs’ average travel time remain more penalized than that of AVs. At a departure
rate of 10,000 veh/h, we find that both LVs and AVs’ average travel time are lower than the
average travel time in the benchmark configuration and considerable travel time reduction
are achieved from 60% of AVs and beyond. Specifically, at this departure rate and with a
market penetration of AVs of 70%, we find that the average vehicle travel time is reduced
by approximately 1/2 compared to the benchmark. We also observe that the mean relative
vehicle (LVs and AVs) travel time exhibits a convex-shaped profile with a minima at 70% of
AV market penetration.
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4.5 Online mechanism design for traffic intersection auctions

We now turn our attention to market-based AIM mechanims and present two online pay-
ment mechanisms for traffic intersection auctions. For this study, we restrict ourselves to
a simplified intersection model and focus on the game-theoretical aspects of dynamic user
pricing.

4.5.1 Dynamic traffic intersection auction framework

We consider a traffic intersection with a finite number of access lanes. We consider discrete
time and we assume that at each time period, users arrive on access lanes with a known
probability. Upon arriving at the front of their lane, users are requested to declare their
delay cost which will be used as their bid in a combinatorial auction. We assume that
users seek to minimize a generalized cost function which is a linear combination of their
expected waiting time and their payment to the intersection manager. We assume that users
are serviced sequentially by a single server, i.e. the traffic intersection and that service is
nonpreemptive, i.e. cannot be interrupted once started. This does not prevent several users
to simultaneously traverse the intersection. Instead, the proposed traffic intersection auction
only aims to determine the sequence in which users are to be serviced and the payments they
should be charged based on their declared preferences.

The goal of the intersection manager is to maximize social welfare which is defined as the
total generalized user cost. To achieve optimal social welfare, we seek to determine incentive-
compatible user payments to ensure the truthful declaration of their delay costs. To ensure
truthful user behavior, traffic intersection lanes are serviced in order of decreasing declared
user delay costs. The expected waiting time of users is a function of the declared delay
costs and the state of the system. In turn, the payment of users is to be determined by the
intersection manager so as to maximize social welfare and ensure truthfulness.

To present the proposed online mechanism for determining incentive-compatible pay-
ments, we consider the case of a user i arriving at the front of its lane and declaring a delay
cost of vi. Let Q be the number of access lanes of the intersection. We denote qi (resp. q

i
)

the number of lanes which are occupied by users with greater (resp. lower) delay cost than
i. Further, we denote q∅ the number of empty lanes. Summing qi, qi

and q∅ corresponds to
the Q − 1 lanes of the intersection which are not occupied by user i. Hence, the following
equation holds for any user i at any time period:

Q = q
i
+ qi + q∅ + 1. (4.32)

Accordingly, we can define the pricing queue of the proposed dynamic traffic intersection
auction.

Definition 4.8 (Pricing queue). In a traffic intersection with Q access lanes, the pricing
queue is a dynamic set of at most Q users which represents the users at the front of their
lane at a given time period.

The pricing queue consists of the set of users which have no users in front of them in
their access lane to the intersection. In the proposed traffic intersection auction, only users
in the pricing queue are participants. This implies that users who are behind other users
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are not eligible to participate until they reach the front of their lane. This auction design
aims to obviates blocking effects induced by non-overtaking conditions in access lanes of the
intersection. Under such typical, non-overtaking conditions users waiting behind other users
in their lane cannot bypass users in front of them, thus preventing them to be serviced before
reaching the front of their lane. In the proposed approach, only users in the pricing queue
participate in the auction. While this dynamic auction framework restricts the number of
participants to at most Q users, every user queueing in the intersection will eventually reach
the front of its lane and participate in a single instance of the auction. This is in contrast to
approaches in the literature where auction “losers” may participate in several auctions. We
refer readers to Carlino et al. [2013] who presented pricing mechanisms for traffic intersection
auctions in which blocked users are allowed to “vote” for their lane.

The objective of the traffic intersection auction is to determine incentive-compatible user
payments upon users joining the pricing queue. Let Wi (vi) be the expected waiting time of
user i declaring a delay cost of vi. Let v⋆

i be the true delay cost of user i, the expected waiting
time cost of user i declaring a delay cost of vi is v⋆

iWi (vi). Let Pi (vi) be the payment of user
i declaring vi, which is to be determined by the intersection manager. We denote Ci (vi) the
generalized cost for user i and define the user objective function as:

Definition 4.9 (User objective function). The objective function of user i is:

min
vi

Ci (vi) = min
vi

(v⋆
iWi (vi) + Pi (vi)). (4.33)

Following the approach of Dolan [1978], we will show that setting the payment Pi (vi) equal
to the expected marginal delay cost user i imposes to other users is incentive-compatible, i.e.
the user objective is minimal for vi = v⋆

i .

We assume that the intersection manager has knowledge of the probability distribution
of users’ valuation (delay costs), and of the arrival probability of users on access lanes of the
intersection. These assumptions are reasonable since one can assume that the intersection
manager can observe user behavior (arrival rate and valuations) and learn these probabilities
over time. Let F (vi) be the cumulative distribution function representing the probability
that a user declares a delay cost v ≤ vi. Further, let v and v be lower and upper bounds on
users’ delay costs. For conciseness, we hereby use the term lower-bidding user (resp. higher-
bidding user) to refer to a user with a declared delay cost lower (resp. higher) than that of
user i.

An overview of the proposed dynamic auction process is summarized in Figure 1. Users
are assumed to arrive dynamically and submit their bids (delay cost) to the intersection
manager. The intersection manager then determines a user payment Pi (vi) based on the
user’s bid vi using either the proposed queue- or lane-based model. The user is then charged
Pi (vi) and moves through the intersection.

4.5.2 Online incentive-compatible mechanisms

We propose two online mechanisms to determine the expected waiting time and payment
of users. The proposed mechanisms differ in the way the expected waiting time of users
is determined. We first consider a queue-based model which only tracks the number of
users bidding higher or lower than the reference user (Section 4.5.2). We next extend this
model to a lane-based approach which tracks users’ arrival lane (Section 4.5.2). A generic
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Figure 4.5: Online traffic intersection auction process

payment mechanism is proposed to determine incentive-compatible payments for both queue-
and lane-based models which result in two online mechanisms (Section 4.5.3). The queue-
based mechanism assumes that the arrival probability of users is uniform across lanes of
the intersection and provides a relatively low-dimensional mathematical framework. This
uniformness assumption is relaxed in the lane-based mechanism which can accommodate
non-uniform lane arrival probabilities at the expense of an extended state space.

Queue-based model

We use a MC to determine the expected waiting time of user i under different system states.
The state of the queuing system w.r.t. user i is represented by the number of lanes occupied
by lower bidding vehicles lanes q

i
the number of empty lanes q∅. We denote qi the vector

qi = (q
i
, q∅) characterizing the state of the system w.r.t. user i. User i is serviced when

all lanes are either occupied by a lower-bidding user or empty. Observe that once a lane is
occupied by a lower-bidding user w.r.t. user i, it remains in this state until i is serviced.
Hence, from the perspective of user i, the state space of the MC can be characterized by the
inequality q

i
+ q∅ ≤ Q− 1. This leads to the following characterization of the state space.

Definition 4.10 (State space in the queue-based model). In the queue-based model, the state
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space of the MC for user i declaring a delay cost of vi in a pricing queue of size Q is:

Sq
i =

{
qi = (q

i
, q∅) ∈ N2 : q

i
+ q∅ ≤ Q− 1

}
. (4.34)

For each state qi ∈ Sq
i , we are interested in determining the cost-to-go from this state

through the MC. If q
i
+ q∅ = Q− 1, then (4.32) yields qi = 0 which is equivalent to require

that the pricing queue does not contain any user with declared delay costs higher than that of
i. Hence, if q

i
+q∅ = Q−1, then the MC converges and user i is serviced. Hence, to determine

the state transition probabilities from state qi to state q′
i, we assume that q

i
+ q∅ < Q− 1.

To calculate the expected waiting time of user i in the queue-based model, we enumerate
system states with varying number of lower-bidding and empty lanes w.r.t. user i. We wish
to define a function fq which gives the transition between the state at time step t to the state
at time t + 1. The transition function of the MC, fq, depends on the realization of random
variables. For this problem, there are two random variables affecting the transition: user
delay costs, a continuous random variable; and whether a new vehicle arrives on each lane,
a boolean value. Hence, the uncertain data of the problem can be represented by a vector
ξ ∈ RQ × 2Q where RQ represents user delays costs and 2Q represents vehicle arrivals. Since
the state space of the queue-based model is Sq

i , the transition function maps the current state
qi ∈ Sq

i and the uncertain data ξ ∈ RQ × 2Q to the next state, i.e. fq : Sq
i ×RQ × 2Q → Sq

i .
We denote gq(qi) the one-step-cost of the MC representing the service time of the system in
state qi and we assume that the one-step-cost is deterministic. This assumption is plausible
since users’ behavior is assumed to be deterministic, i.e. users cannot change their declared
delay cost over time.

Let Wq (vi, qi) be the expected waiting time of user i declaring vi for state qi, which
represents the cost-to-go of the MC representing the state evolution in the queue-based model.
Let T q

i = {qi ∈ Sq
i : q∅ + q

i
= Q − 1} be the set of terminal states in the queue-based

mechanism. The expected waiting time of user i declaring vi for state q can be determined
as:

Wq (vi, qi) =
{

0 if qi ∈ T q
i ,

E [Wq (vi, fq (qi, ξ))] + gq(qi) otherwise.
(4.35)

Note that the term E [Wq (vi, fq (qi, ξ))] represents the expected value of the expected
waiting time Wq (vi, fq (qi, ξ)) after the transition function fq. If qi is not a terminal state,
i.e. q

i
+q∅ < Q−1, the expected waiting time of user i can be calculated using the probability

Pr [q′
i|qi] of transitioning from state qi to state q′

i. The expected waiting time of user i
declaring vi is:

E [Wq (vi, fq (qi, ξ))] =
∑

q′
i∈Sq

i

Pr
[
q′

i|qi
]
Wq(vi, q

′
i). (4.36)

Combining Eqs. (4.35) and (4.36) yields the following system of linear equations:

Wq (vi, qi) = 0, ∀qi ∈ T q
i ,

(4.37a)
Wq (vi, qi) (1− Pr [qi|qi])−

∑
q′

i∈Sq
i :q′

i ̸=qi

Wq(vi, q
′
i)Pr

[
q′

i|qi
]

= gq(qi), ∀qi ∈ Sq
i \ T

q
i .

(4.37b)
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Let p be the probability that a user arrives on a lane of the intersection at the next
time period. Recall that F (vi) is the cumulative distribution function of users bids. On
each lane, three events may occur with the following probabilities: i) a lane can become or
remain empty with probability (1 − p); ii) a lower-bidding user can arrive with probability
pF (vi); and iii) a higher-bidding user can arrive with probability p(1−F (vi)). Observe that
there are

(q∅+1
q′

∅

)
ways to choose q′

∅ empty lanes among q∅ + 1 lanes. There are q′
i
− q

i
lanes

which become occupied by lower-bidding users and there are
(q∅+1−q′

∅
q′

i
−q

i

)
ways to choose q′

i
− q

i

of the remaining q∅ + 1 − q′
∅ non-empty lanes to become occupied by a lower-bidding user.

Accordingly, the transition probability from state (q
i
, q∅) to state (q′

i
, q′

∅) is:

Pr
[
q′

i|qi
]

=
(
q∅ + 1
q′

∅

)
(1−p)q′

∅

(
q∅ + 1− q′

∅
q′

i
− q

i

)
(pF (vi))q′

i
−q

i(p(1−F (vi)))q∅+1−q′
∅−q′

i
+q

i . (4.38)

The expected waiting time defined in Eq. (4.35) is a recursive function which can be
calculated by solving a series of systems of linear equations where each equation corresponds
to a possible state qi ∈ Sq

i . Since all states such that q
i

+ q∅ = Q − 1 are terminal, their
corresponding expected waiting time is null and these variables can be eliminated from the
system of equations. Hence, we need only to consider the set of pairs of nonnegative integers
(q

i
, q∅) such that q

i
+ q∅ ≤ Q − 2. Observe that each variable q

i
or q∅ can take Q − 2 + 1

values, thus the number of equations in the system is ∑Q−1
k=0 k =

(Q
2
)
.

Further, observe that q
i

can never decrease while q∅ can increase or decrease. Hence,
for any state qi = (q

i
, q∅), we can calculate Wq (vi, qi) in a dynamic programming fashion

starting with the maximum number of lanes, i.e. k = Q − 1, and iterating downwards until
k = q

i
. At each iteration k, we solve the system of Q−k linear equations with Q−k variables

corresponding to states qi = (k, l) for 0 ≤ l ≤ Q− 1− k.

Lane-based model

We now consider an alternative approach where lane arrival probabilities can be non-uniform
across lanes of the intersection. We abuse notation and denote pj the probability of a user
arriving on lane j at the next time period. Let Li = {σ∅, σvi

, σvi} be the set of possible
lane-based states with regards to user i bidding vi; where σ∅ represents an empty lane, σvi

the arrival of a user bidding lower than vi and σvi the arrival of a user bidding higher than
vi. Let zij ∈ Li be the state of lane j w.r.t. user i. We denote zi = (zi,1, . . . , zi,Q−1) the state
w.r.t. user i in the lane-based model.

Definition 4.11 (State space for lane-based model). In the lane-based model, the state space
of the MC for user i declaring a delay cost of vi in a pricing queue of size Q is

Sz
i =

{
zi = (zi,j1 , . . . , zi,jQ−1) ∈ LQ−1

i

}
. (4.39)

In the lane-based model, the number of possible states w.r.t. user i in an intersection
with Q lanes is |Li|Q−1, hence a four-lane intersection has 33 = 27 possible states.

Let fz : Sz
i ×RQ × 2Q → Sz

i be the MC transition function of the lane-based model and
let gz(zi) be the one-step cost. Let T z

i ⊂ Sz
i be the set of terminal states, i.e. T z

i = {zi ∈
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Sz
i : zij = σ∅ ∨ zij = σvi

, j = 1, . . . , Q − 1}. The expected waiting time Wz(vi, zi) of user i
declaring vi for state zi in the lane-based model is thus:

Wz(vi, zi) =
{

0 if zi ∈ T z
i ,

E [Wz (vi, fz (zi, ξ))] + gz(zi) otherwise,
(4.40)

with:
E [Wz (vi, fz (zi, ξ))] =

∑
z′

i∈Sz
i

Pr
[
z′

i|zi
]
Wz(vi, z

′
i). (4.41)

This leads to the following system of linear equations:

Wz(vi, zi) = 0 ∀zi ∈ T z
i ,

(4.42a)
Wz(vi, zi)(1− Pr [zi|zi])−

∑
z′

i∈Sz
i :z′

i ̸=zi

Wz(vi, z
′
i)Pr

[
z′

i|zi
]

= gz(zi) ∀zi ∈ Sz
i \ T z

i .

(4.42b)

Unlike the systems of equations (4.37), the system (4.42) does not admit an intuitive
decomposition which could be used to solve the system of equations via a recursive algorithm.
Thus, in our numerical experiments, (4.42) is solved in a single step using traditional linear
algebra codes.

To determine transition probabilities in the lane-based mechanism, it is necessary to track
which user will be serviced at the next time period. For any non-terminal state, there is at
least one higher-bidder in the pricing queue, i.e. qi ≥ 1, and the highest-bidder in the queue
will be serviced next. Let V>i be the set of higher-bidders, i.e. V>i = {j1, j2, . . . , jqi

} with
vi < vj1 < vj2 < . . . < vjqi

. If there is more than a single user bidding higher than user i, i.e.
qi > 1, it is unknown which of these higher-bidders will be the highest-bidder. Since users’
delay costs are assumed to all follow the same probability distribution, the probability that
a higher-bidder is the highest-bidder is uniform, i.e. 1/qi.

Let zij(k) be the state of lane j with regards to user i assuming lane k is the moving lane,
i.e. the lane occupied with the highest-bidder in the pricing queue. Let Pr

[
z′

ij |zij(k)
]

be the
transition probability of lane j with regards to user i from state zij(k) to state z′

ij . Since the
arrival process of a lane is assumed to be independent of that of other lanes, the transition
probability from state zi to z′

i denoted Pr [z′
i|zi] is

Pr
[
z′

i|zi
]

= Pr
[
(z′

i,1, . . . , z
′
i,Q−1)|(zi,1, . . . , zi,Q−1)

]
= 1
qi

∑
k∈V>i

Q−1∏
j=1

Pr
[
z′

ij |zij(k)
]
. (4.43)

In the lane-based mechanism, transition probabilities are function of current lane state.
If lane j is empty or if lane j is occupied by the highest bidder in the pricing queue, then we
say that this lane is open. Otherwise, lane j is either occupied by a lower-bidding user or a
higher-bidding user who will not be serviced next and we say that his lane is closed. Let V−i

be the set of users in the pricing queue other than user i. Let Oi,j ⊆ Li and Ci,j ⊆ Li be the
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set of open and closed states for lane j with regards to user i, respectively:

Oi,j =
{
{σ∅, σvi} if j ∈ arg max{vk : k ∈ V−i},
{σ∅} otherwise,

(4.44)

Ci,j =
{
{σvi
} if j ∈ arg max{vk : k ∈ V−i},

{σvi
, σvi} otherwise.

(4.45)

For any lane j in state σ ∈ Oi,j , we have the following transition probabilities:

Pr [σ∅|σ] = 1− pj ∀j ∈ {1, . . . , Q− 1},∀σ ∈ Oi,j , (4.46a)

Pr
[
σvi
|σ
]

= pjF (vi) ∀j ∈ {1, . . . , Q− 1},∀σ ∈ Oi,j , (4.46b)

Pr [σvi |σ] = pj(1− F (vi)) ∀j ∈ {1, . . . , Q− 1},∀σ ∈ Oi,j . (4.46c)

Otherwise if lane j is in state σ ∈ Ci,j , this lane remains in its current state with probability
one, since the corresponding user cannot be serviced at the next time period.

Pr
[
σ′|σ

]
=
{

1 if σ′ = σ,

0 otherwise,
∀j ∈ {1, . . . , Q− 1},∀σ ∈ Ci,j . (4.47)

Using these lane-based transition probabilities, we can determine intersection-based tran-
sition probabilities via Eq. (4.43).

The queue-based model can be viewed as a special case of the lane-based model. Let
1zij=σ be the indicator function taking value 1 if zij = σ and 0 otherwise. We first define the
mapping between the state spaces of both queue- and lane-based models.

Definition 4.12. Let hi : Sz
i → Sq

i be a function mapping the state space of the lane-
based model to the state space of the queue-based model: hi : zi 7→ qi = hi(zi) with q

i
=∑Q−1

j=1 1zij=σvi
and q∅ = ∑Q−1

j=1 1zij=σ∅.

The proposition below highlights the correspondence between queue- and lane-based mod-
els.

Proposition 4.2. If lane arrival probabilities are uniform, i.e. p = pj for all j = 1, . . . Q−1,
and if the one-step-costs of the queue- and lane-based models are such that gz(zi) = gq(qi)
for all states zi ∈ Sz

i and qi ∈ Sq
i such that qi = hi(zi), then Wz(vi, zi) = Wq(vi, qi) for all

such states.

Proposition 4.2 establishes a correspondence between the proposed queue- and lane-based
models for determining the expected waiting times of users and shows that under uniform
lane arrival probabilities and one-step-costs, both models are equivalent.

We next present a payment mechanism that can be used with both of these models to
determine incentive-compatible payments.

98



4.5.3 Payment mechanism

The proposed payment mechanism can be used with both queue- and lane-based models for
determining the expected waiting time of users. Hence, in this section, we simply denote
Wi (vi) the expected waiting time of user i bidding vi. This expected waiting time can be
replaced by Wq (vi, qi) for the queue-based model, or by Wz(vi, zi) for the lane-based model.
To determine incentive-compatible user payments, we calculate the expected marginal cost
user i imposes on other users. For this, we first examine the period of time over which an
extra user in the lane of user i is expected to have an impact on other users.

The busy period w.r.t. user i is the expected time required to clear the queues if i declares
a minimal delay cost, i.e. vi = v. Observe that if vi = v, then q

i
= 0, since no user can bid

lower than v i.e. F (v) = 0. We measure the impact of user i onto other users throughout the
remaining busy period, i.e. the duration between the start of service of user i if i declares
vi, and the start of service of i if i had declared a minimal delay cost. Hence, the remaining
busy period w.r.t. user i bidding vi denoted ∆Wi (vi) can be defined as:

∆Wi (vi) ≡Wi (v)−Wi (vi) . (4.48)

To determine the marginal impact of user i on other users, we can split the remaining
busy period w.r.t. user i into two components: the expected portion of ∆Wi (vi) which affects
users who arrived before user i; and the expected portion of ∆Wi (vi) which affects users who
are expected to arrive after user i. We denote Bi(vi) and Ai(vi) these quantities, respectively,
and intuitively we define

∆Wi (vi) ≡ Bi(vi) +Ai(vi). (4.49)

Calculating Bi(vi) and Ai(vi) correctly is not trivial, especially the latter since the exact
number of users arriving after i that will be delayed by user i is unknown. We next propose
a method to determine Bi(vi), then use Eq. (4.49) together with Eq. (4.48) to obtain Ai(vi).

To determine the marginal delay caused by user i onto users already in the pricing queue,
we need only to consider those q

i
users which bid lower than i since others users are not

delayed by user i. Let V<i be the set of all users bidding lower than i ordered by increasing
declared delay costs, i.e. V<i = {j1, j2, . . . , jq

i
} with vj1 < vj2 < . . . < vjq

i
< vi. To determine

the expected portion of the remaining busy period w.r.t. user i which affects user j ∈ V<i, we
take the perspective of an extra user bidding vj in the lane of user i. The expected period of
time during which this extra user affects user j is the difference between the waiting time of
the extra user if the extra user is bypassed by user j and that if the extra user bypasses user j
in the pricing queue. We abuse notation and denote Wi(vj : zij = σvi) and Wi(vj : zij = σvi

)
these expected waiting times, respectively.

We propose the following formula for Bi(vi):

Bi(vi) =
q

i∑
k=1

Wi (vjk
: zijk

= σvi)−Wi

(
vjk

: zijk
= σvi

)
. (4.50)

The definitional relationship linking the time periods Bi(vi) and ∆Wi (vi), i.e. Eq. (4.49),
implicitly assumes that Bi(vi) ≤ ∆Wi (vi). However, it is not obvious that the right-hand
side of Eq. (4.50) is never greater than ∆Wi (vi). Since this is necessary for the correctness
of the proposed formula for the time period Bi(vi), i.e. Eq. (4.50), we prove this relationship
in Proposition 4.3.
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Proposition 4.3. For any user i bidding vi,
q

i∑
k=1

Wi(vjk
: zijk

= σvi)−Wi

(
vjk

: zijk
= σvi

)
≤ ∆Wi (vi) . (4.51)

Proposition 4.3 together with Eq. (4.49) ensure that the expected portion of the remaining
busy period corresponding to future arrivals is nonnegative, i.e. ∆Wi (vi)−Bi(vi) = Ai(vi) ≥
0. Using Eq. (4.50), the expected marginal delay cost that user i imposes on users who
arrived before her can be determined as:

MBi(vi) =
q

i∑
k=1

(
Wi(vjk

: zijk
= σvi)−Wi(vjk

: zijk
= σvi

)
)
vjk
. (4.52)

To determine the expected marginal delay cost that user i imposes on future arrivals,
denoted MAi(vi), we use the result of Dolan [1978] who observed that this marginal delay
cost can be calculated by integrating dAi(v)

dv v over the bid range [v, vi). Further, the author
observed that the state is constant for any bid comprised between two consecutive bids of
users in the pricing queue. Thus, for any segment corresponding to a pair of consecutive
bids in the sequence {v, vj1 , . . . , vjq

i
−1 , vjq

i
, vi}, the expected marginal delay cost imposed by

user i onto users bidding in this segment can be calculated by integrating dAi(v)
dv v over the

corresponding domain. Specifically, let vj0 = v and let vjq
i
+1 = vi. Let D(k) = (vjk

, vjk+1)
be the domain corresponding to the bid segment (vjm , vjn) for m < n such that jm, jn ∈ V<i.
Accordingly, the expected marginal delay cost imposed by user i on future arrivals can be
determined as:

MAi(vi) =
q

i∑
k=0

∫
D(k)

dAi(v)
dv

vdv =
q

i∑
k=0

∫
D(k)

−dWi(v)
dv

vdv. (4.53)

The expected marginal delay cost imposed by user i declaring vi on other users is thus:

MCi(vi) = MBi(vi) +MAi(vi). (4.54)

We next give the main result.

Theorem 4.2. If the user objective function is minvi v
⋆
iWi (vi) + Pi (vi) and users are ser-

viced in order of decreasing declared delay costs, the payment Pi (vi) = MCi(vi) is incentive-
compatible.

Theorem 4.2 proves that the expected marginal delay cost as defined by Eq. (4.54)
represents an incentive-compatible user payment in the dynamic sense, i.e. by taking into
account the expected impact of users on future arrivals. This provides a basis to implement
the proposed queue- and lane-based mechanisms in an online fashion. Upon reaching the
front of their lane, users are asked to declare their delay cost vi and receive a corresponding
payment Pi (vi) which ensures strategyproof user behavior in the long run.

The proposed queue- and lane-based traffic intersection mechanisms are computationally
efficient. In terms of computational resources, both mechanisms require the solution of Eqs.
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(4.52) and (4.53) to determine user payments. Eq. (4.52) requires the solution of multiple
systems of linear equations ((4.37) or (4.42) depending on the mechanism selected) which
can be accomplished using standard linear algebra codes. To compute Eq. (4.53), standard
numerical integration and differentiation techniques can be used in combination with codes for
systems of linear equations. As will be shown in our numerical experiments, both mechanisms
have low average computation time per user and can thus be expected to be executed in real-
time to determine incentive-compatible payments.

4.5.4 Numerical experiments

We implement the proposed online mechanisms by simulating the arrival and departure of
users at an intersection using a discrete time process. At every time period, random trials are
conducted for each empty lane to simulate the stochastic arrival process of users. For all our
experiments, we use a unit one-step cost, i.e. gq(qi) = gz(zi) = 1 for all states qi ∈ Sq

i and
zi ∈ Sz

i . We set the time period duration to 1 s, i.e. representing a uniform user service time
of 1 s. This value is chosed based on the geometric configuration of typical 4-lane intersection
and average vehicle speeds [Levin and Rey, 2017]. Users’ delay costs are randomly drawn
from a uniform distribution U(5, 10), i.e. v = $5 /hour and v = $10 /hour. These values
are chosen based on a study on value of time for automated vehicles [Wong et al., 2018].
This delay cost range corresponds to user bids between 0.14 ¢ and 0.28 ¢ for a time period
duration of 1 s which aims to represent users’ willingness to pay for service priority at traffic
intersections.

To quantify the value of using a dynamic auction compared to a static auction, we imple-
ment the static mechanism outlined by Dolan [1978] for priority queueing systems. This static
mechanism is a Vickrey-Clarke-Groves auction which is known to be incentive-compatible in
the static sense, i.e. all participating users are assumed to be known when determining pay-
ments [Vickrey, 1961, Clarke, 1971, Groves and Loeb, 1975]. The static mechanism utilizes
the same priority queueing model than that of the proposed online mechanism, i.e. users in
the pricing queue are sorted by decreasing declared delay costs, but differ in the determina-
tion of waiting time and user payments. In the static mechanism, the waiting time of user
i is only function of the position of user i in the pricing queue, e.g. if user i is third in the
pricing queue, her waiting time is the sum of the two one-step costs for transitioning from
the current state to the state where user i served. The payment of user i is sum of user
valuations over lower-bidders in the pricing queue. This payment is incentive-compatible in
the static sense [Dolan, 1978].

In each experiment, we simulate the service of one million users and report the average
user behavior by segmenting users’ delay cost. Specifically, we segment the delay cost range
[5, 10] into 30 uniform bins and group all serviced users throughout the simulation into these
bins. We then report average waiting times, payments and generalized user costs based on
the average quantities obtained for each of these 30 bins. The simulations are implemented
in Python and the linear systems of equations (4.37) and (4.42) are solved using Numpy’s
linear algebra solver on a Windows 10 machine with 8 Gb of RAM and a CPU of 2.7 Ghz.
We compare the behavior of the proposed traffic intersection auctions mechanisms on a four-
lane intersection under non-uniform lane arrival probabilities on a four-lane intersection. We
consider non-uniform lane arrival probabilities pj for all lanes j of a four-lane intersection.

We use cardinal directions, i.e. East (E), South (S), West (W) and North (N) to refer
to all Q = 4 lanes of the intersection and assign lane arrival probabilities of 0.50, 0.25,
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(a) Static mechanism.
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(b) Queue-based mechanism.
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(c) Lane-based mechanism.

Figure 4.5: Relative user generalized cost (Ci (vi)− Ci (v⋆
i )) /Ci (v⋆

i ). Results of a simulation
with 1 million users with lane-based arrival probabilities of 0.50, 0.25, 0.15 and 0.10. Fig-
ure 4.6a illustrates the static mechanism; Figure 4.6b illustrates the queue-based mechanism
and Figure 4.5c illustrates the lane-based mechanism.
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0.15 and 0.10, respectively. For the queue-based mechanism, we use the average lane arrival
probability, i.e. p = ∑Q

j=1 pj = 0.25. We report lane-based heatmaps of the relative difference
in terms of relative user generalized cost (Ci (vi)− Ci (v⋆

i )) /Ci (v⋆
i ) for the static, queue- and

lane-based mechanisms in Figure 4.5. Figure 4.6a shows the outcome of the simulation using
the static mechanism. We find that the static mechanism does not promote truthful user
behavior for all four lanes of the intersection, i.e. regardless of the lane arrival probability
the mechanism is not incentive-compatible, and on all lanes users may reduce their generalized
cost in the long run by over-reporting their delay cost. The outcome of the same simulation
obtained using the queue-based mechanism is summarized in Figure 4.6b. The outcome of
these simulation highlight that using the average lane arrival probability in the queue-based
mechanism fails to yields incentive-compatible outcome for the East, West and North lanes
which have a lane arrival probability different that p = 0.25. Only users on the South lane
with pS = 0.25 = p receive incentive-compatible payments. In turn, Figure 4.5c illustrates
that the lane-based mechanism is incentive-compatible for each lane of the intersection.

Additional numerical results can be found in Rey et al. [2021].

4.6 Conclusion

This chapter first presented a method for optimizing reservation-based intersection controls in
AIM before embedding this conflict point formulation in a stochastic network traffic model.
A pressure-based network traffic control policy for coordinating legacy vehicles (LV) and
autonomous vehicles (AV) was proposed under the assumption that LVs and AVs share the
urban network infrastructure. This policy combines green (for LVs) and blue (for AVs) phases
to coordinate traffic at network intersections. We characterized the stability region of the
proposed queuing system and showed that the proposed decentralized hybrid network control
policy is stable, i.e. that it maximizes network throughput, under conventional travel demand
conditions.

The last part of this chapter focus on market-based auction mechanisms for AIM. As-
suming that users can declare their delay cost privately to the intersection manager, we
investigated the computation of incentive-compatible payments for users to minimize users’
generalized cost which is defined as a linear combination of expected waiting time and user
payment. We introduced two Markov chain models to determine users’ expected waiting
time, and presented a payment mechanism that can be implemented with both models. We
showed that the proposed online traffic intersection mechanisms are incentive-compatible in
the dynamic sense and thus maximize social welfare.
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Perspectives

The goal of this thesis was to provide an overview of some contributions in optimization and
game theory, and their application to decision-making problems encountered in transporta-
tion systems. These contributions have been organized into three main chapters that differ by
the operations research (OR) methodologies used therein, as well as by the decision-making
problems selected in each chapter. Chapter 2 focused on contributions in the field of bilevel op-
timization and its applications to transportation network design problems. Chapter 3 turned
to mixed-integer nonlinear programming and its applications to aircraft conflict resolution
problems. Chapter 4 embraced a broader modeling perspective by summarizing different
optimization and game-theoretical approaches to autonomous intersection management. In
each of these three chapters, novel approaches that leveraged state-of-the-art advances in
OR techniques were conceived, developed and implemented. The contributions of this thesis
are thus both theoretical and numerical, and they lie both in OR as well as in the field of
transportation systems science.

Next, an attempt is made to identify research perspectives that could build on these
works as well as to provide guidelines for extending the OR methodologies used therein. The
rest of this section is organized in two parts: methodological perspectives are examined in
Section 5.1, and perspectives in transportation are discussed in Section 5.2.

5.1 Methodological perspectives

This section attempts to synthesize the state-of-the-art in the fields of bilevel optimization
(Section 5.1.1) and mixed-integer programming (Section 5.1.2) and discusses how method-
ological developments could be steered to achieve greater efficiency. This section also extends
the discussion to machine learning and data-driven optimization approaches (Section 5.1.3),
and their potential to boost optimization and game-theoretical methods.

5.1.1 Bilevel optimization

Bilevel optimization is a rapidly growing field of research. Chapter 2 discussed its appli-
cations to transportation network design problems, which provide a natural framework to
develop bilevel optimization approaches given the existing hierarchical interactions among
multiple players such as transportation authorities and users. Of the many challenges faced
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by researchers in this field, one of most stringent is the computational scalability and the
quality of solution methods for bilevel optimization problems. It can roughly be claimed that
bilevel optimization problems whose follower problem(s) enjoy convexity have a substantial
advantage over problems that do not enjoy this property. This is largely due to the fact that
bilevel optimization problems with convex follower problem can be reformulated into single-
level optimization problems by making use of the follower’s first-order optimality conditions,
such as Karush Kuhn Tucker (KKT) conditions or strong duality. It should be noted that
the single-level reformulation of bilevel optimization problems is not trivial and, often, not
equivalent. It is non-trivial because after embedding the follower’s optimality conditions in a
single-level formulation, the latter is a nonconvex optimization problem, e.g. a mathematical
program with complementarity constraints (MPCC) that requires further care to be solved
efficiently to optimality. In general, the single-level MPCC reformulation is not equivalent to
the bilevel optimization problem in the sense that their solution sets may not always coincide.
However, it is well-known that, under certain constraint qualification conditions, an optimal
(global) solution of the single-level MPCC reformulation corresponds to an optimal (global)
solution of the bilevel optimization problem [Dempe and Dutta, 2012]. Nevertheless, bilevel
optimization problems with a convex follower problem are globally much more tractable than
their counterparts. From a practical standoint, however, this limitation may tend to in-
centivize modelers to simplify their representation of the follower problem so as to achieve
convexity. This simplification is not always desirable as it prevents, notably, the treatment of
bilevel optimization problems with integer follower problems even though substantial progress
has been achieved for this class of bilevel optimization problems [Fischetti et al., 2017, Liu
et al., 2021]. Nevertheless, these approaches remain quite challenging to implement and may
require certain assumptions on the structure of the bilevel optimization problems that can be
handled. Even in the case of linear bilevel optimization, computational tractability and scal-
ability remains a concern [Kleinert et al., 2020, 2021]. Further, by large, most efforts in the
community have been dedicated to optimistic bilevel optimization problems and few meth-
ods are available for solving pessismistic bilevel optimization problems [Aussel and Svensson,
2019, Zeng, 2020].

Transportation systems often aim to improve social welfare using specific performance
metrics, e.g. congestion, pollution. Hence, such systems shall be designed to anticipate the
reaction of the users of the system whose goals are unlikely to be aligned with system-level
objectives. This was the context of the transportation network design problems discussed in
Chapter 2 wherein users’ collective reaction is modeled as a convex optimization problem that
characterizes a Nash equilibrium. Yet, as outlined therein, solving large scale transportation
network design problems to optimality is extremely challenging. This is partly due to the
fact that traditional branch-and-bound algorithms that branch on complementary slackness
conditions cannot scale easily due to the large number of nodes and links—let alone paths—in
large-scale transportation networks. There is thus a need to develop more scalable exact al-
gorithms that can handle the large dimensions of realistic city-scale transportation networks.
A possible avenue of research is to explore the potential of column generation procedures to
iteratively obtain new path variables and embed this approach in a traditional complemen-
tary slackness based branch-and-bound algorithm. One caveat is that iteratively generating
columns may imply that some follower constraints must also be generated iteratively, thus
leading to a row-and-column generation framework wherein newly generated columns also
create new follower constraints for which complementary slackness conditions must hold.

Efforts are also needed to go beyond the classical bilevel network design problem un-
der Nash equilibrium. While this model has been extensively studied, it relies on several
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fundamental modeling assumptions such as link travel cost convexity. The incorporation of
multiple players, as opposed to a system-level approach also holds great potential for devel-
opment. This is reinforced by emerging trends in on-demand mobility and logistics where
several service providers compete for transportation demand [Perboli et al., 2021]. Bilevel
optimization offers the possibility to consider games with multiple leaders and/or followers
and provide new insights for market design and pricing in transportation systems.

A complementary avenue of research is to attempt to refine the leader’s model of the
follower by incorporating uncertainty. Stochastic optimization—and stochastic programming
especially—have greatly contributed to extending deterministic formulations to account for
the uncertainty of model parameters. Much fewer efforts have been devoted to the study of
stochastic bilevel optimization problems [Patriksson, 2008, Fampa et al., 2008]. A colleague
once told me: “solving a bilevel optimization problem is working for the leader”. This is
a general statement about bilevel optimization that recognizes the fact that the follower
problem is only the leader’s representation of the follower’s best response. It is thus natural to
question whether the leader has perfect knowledge of the follower’s strategy. In the event that
the answer to this question is not yes, stochastic bilevel optimization could provide elements
of answer to design richer formulations that account for the leader’s uncertainty regarding
the follower’s response. For example, a transportation network user may adopt a mixed
strategy based on travel time probability distributions to choose her route. Assuming that
the leader has knowledge of such distributions, it could therefore be appropriate for the leader
to anticipate this mixed strategy. This highlights that stochastic bilevel optimization holds
substantial potential to enrich existing deterministic approaches by introducing uncertainty
at either or both levels.

5.1.2 Mixed-integer programming and solvers

Mixed-integer programming (MIP) has become a standard approach to solve challenging
decision-making problems. Recent advances in off-the-shelf MIP solver capabilities and com-
petition among MIP solvers has lead to substantial computational improvements over the
past decades [Achterberg and Wunderling, 2013]. This means that the size of MIP problems
that can be solved in reasonable time (and memory) today is much greater than that it was
in the 2000s [Lodi, 2010]. This trend has supported the democratization of MIP solvers in
the OR community and beyond. This has led to a paradigm shift: a mixed-integer linear pro-
gramming (MILP) problem can now be viewed as tractable, even though no polynomial-time
exact algorithm is available to solve it. Not all MILPs enjoy this treatment. There remains
families of MILPs, such as vehicle routing problems, that are much too challenging to solve
optimally using off-the-shelf solvers. However, some MILPs have become relatively easy to
solve using off-the-shelf MIP solvers. One of the immediate consequences is that it has now
become reasonable to devise solution methods wherein a MILP is solved repeatedly under
the assumption that a (near-)optimal solution can be found rather quickly. This has also
boosted the development of matheuristics wherein mathematical programming problems are
solved in the course of a broader heuristic algorithm [Fischetti and Fischetti, 2018]. Other
classes of MIP problems have also benefited from this progress, e.g. mixed-integer quadratic
programming (MIQP) and mixed-integer quadratically-constrained programming (MIQCP).
Chapter 3 illustrates this by showing that a challenging nonconvex mixed-integer nonlinear
programmming (MINLP) problem can be solved to optimality in reasonable time by an al-
gorithm which repeatedly solves MIQPs and MIQCPs. This suggests that the use of certain
MIP formulations within broader algorithmic frameworks holds great potential.
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Transportation systems are rich in decision-making problems, many of which can be
viewed as variants of classical OR problems. There are therefore strong incentives to develop
the practice of using MIP in solution approaches to decision-making problems encountered in
transportation systems, even when real-time capabilities are at stake. Chapter 4 advocates
that vehicle scheduling within an autonomous intersection management context can be solved
efficiently using MILP up to certain levels of demand. This off-the-shelf approach fits well
operational problems that can be solved repeatedly using a rolling horizon framework. For
instance, in air traffic control, it is difficult to solve conflict resolution problems with a large
lookahead since there is often too much uncertainty associated to aircraft’s future positions
beyond a 30-minute horizon. Hence, from a practical standpoint, it is meaningful to adopt
a rolling horizon framework with a balanced lookahead and to repeatedly solve a small-to-
medium scale MILP that can provide competitive solutions. The main drawback of this
approach is that this may be too myopic in that future events are ignored even though some
knowledge of possible scenarios may be available. There are thus opportunities to enrich MIP-
based approaches by incorporating discounted lookahead information or even attempting to
learn data features over time. This could be achieved by using surrogate objective functions
that aim to anticipate the impact of future events.

MIP provides a flexible modeling framework for OR practitioners. Cutting-edge solution
methods for challenging OR problems often go beyond the implementation of direct, off-the-
shelf MIP solvers. Modern MIP solvers now offer additional features such as the automatic
and customizable application of Benders’ decomposition to MILPs [Bonami et al., 2020]. MIP
modeling environments also provide new tools to implement branch-and-cut-and-price algo-
rithms wherein column generation tasks are made easier to handle for the non-expert, even
though the learning of such modeling environments itself may present some challenges [Maher
et al., 2017]. This trend supports the development of MIP and also advocates for the use
of MIP solvers as a default go-to modeling and solution approach. One notable side-effect
is the computational opportunities that arise from the ubiquity of MIP solvers: under the
hypothesis that their computational performance will continue to improve, there may be a
time when formulating and solving a MIP outperforms dedicated combinatorial algorithms.
An immediate benefit is the facilitation of complex solution methodologies such as branch-
and-cut-and-price algorithms. In the latter, a pricing algorithm is required to price columns
as part of the column generation process. In the context of vehicle routing problems, the pric-
ing subproblem is often a constrained shortest path problem that is NP-hard. Historically,
such subproblems have been solved extensively with customized label correcting algorithms
that may be difficult to implement efficiently. The uprising of MIP solvers raises the ques-
tion: When, if ever, will MIP solvers become competitive with label-correcting algorithms for
pricing subproblems that arise when solving vehicle routing problems via branch-and-price
algorithms? This also applies to the context of bilevel optimization where MIP solvers may
be used to solve follower problems (e.g. Nash equilibrium problems) faster than dedicated
algorithms, thus potentially helping in rapidly obtaining competitive bounds. More broadly,
this perspective may someday shift the practice of algorithm benchmarking in certain fami-
lies of OR problems and this may provide opportunities to develop innovative, MIP-powered
solution approaches.

5.1.3 Machine learning

Machine learning (ML) has been quite successful in solving challenging optimization prob-
lems [Bengio et al., 2021]. Most ML-powered approaches to optimization have been targeted
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towards large-scale problem instances and are therefore heuristic by design. More recently,
the OR and ML communities started to explore the potential of ML-powered approaches to
enhance mathematical programming-based solution algorithms for challenging optimization
problems. This may take the form of data-driven heuristics that are triggered within the
course of branch-and-cut-and-bound algorithm in an attempt to obtain competitive bounds
to prune the tree. One drawback lies in the vast amount of computational resources required
for efficient model training in order to obtain a well-trained predictive model. To overcome
this challenge, carefully selected samples should be obtained to balance training time and the
quality of the predictive model. The convex approximation of congestion effects developed
in Chapter 2 to obviate the need to solve repeated follower problems can be viewed as an
attempt to integrate predictive modeling—in this case nonlinear regression—within a branch-
and-price framework. Other applications of ML are possible: for example, it may be used
to learn the likelihood that a variable be part of the optimal solution [Tahir et al., 2021].
Another instance is the use of ML to learn optimal branching rules [Lodi and Zarpellon,
2017]. A compromise between avoiding resource-intensive model training and reaping the
benefits of ML-powered approaches may be found in the field of reinforcement learning (RL)
which is closely related to Markov decision processes (MDP). RL consists of a training-free
approach to ML: in RL, optimal decision rules are learnt online, i.e. over repeated learning
experiences. Hence, casting a branch-and-bound tree search as a MDP opens the door to a
suite of RL-based algorithms that could help in identifying optimal tree search decisions such
as branching, node selection rules or the decision of when triggering certain heuristics.

So far the interplay between ML and OR has been examined from the perspective of ML-
powered approaches to enhance solution algorithms for OR problems. The reciprocal, i.e. the
use of OR techniques to enhance solution approaches for ML, may be more challenging since
ML usually targets large scale problem instances. It is unlikely that tools from mathemati-
cal programming or combinatorial optimization could enhance the solving of large-scale ML
problems from a computational efficiency standpoint. Nevertheless, recent works on feature
selection for predictive modeling, a classical problem in the ML community, suggest that
bilevel optimization may bring novel insights in regards to solution quality. Feature selection
can be cast as a bilevel optimization problem where the leader represents the modeler and the
follower represents the training problem [Agor and Özaltın, 2019]. If the target ML model
admits a convex optimization formulation, such as support vector machines, one may refor-
mulate the latter using its first-optimality conditions to obtain a single-level mathematical
program with complementary constraints that is amenable to classical solution approaches of
the bilevel optimization literature. While scaling up may remain a challenge, such OR-driven
approaches may assist in discovering global optimal solutions of certain ML problems. Hence,
this stream of research provides an exciting sandbox to test the potential of OR techniques
to assist solving ML problems.

5.2 Perspectives in transportation systems

This section adopts a different stance and attempts to discuss perspectives and trends in
transportations systems. The realm of stochastic, dynamic and online transportation prob-
lems is first discussed (Section 5.2.1). Future transportation systems are then considered
both from the perspective of technological advances and business models (Section 5.2.2).
This section concludes by discussing pressing transportation challenges that are inherently
tied to sustainability (Section 5.2.3).
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5.2.1 Stochastic, dynamic and online transportation problems

Transportation systems have evolved considerably over the past few years. The advent of mo-
bile communication technologies and the scaling up of computing capabilities has opened the
door to new frameworks for on-demand mobility and logistics. This has been first leveraged
by transportation service providers, e.g. Uber, Lift, Didi; who have developed competitive
solutions for urban mobility. Over time, public transportation authorities have also embraced
this new paradigm, and several cities worldwide have welcome new mobility solutions that
attempt to complement classical services. This shift from traditional fixed schedule mobil-
ity systems towards demand-responsive transportation is reflected in the scientific literature
where a fast-growing number of studies are devoted to the latter [Vazifeh et al., 2018].

On-demand transportation presents specific challenges: anticipating future demand and
adjusting transportation solutions over time call for stochastic and dynamic solution ap-
proaches [Soeffker et al., 2021]. Often, dynamic transportation models aim to capture either
time-varying traffic conditions or time-dependent pricing policies. It should be emphasized
that this is different to multi-period formulations: in the latter, the time scale is larger and
at each time period a “copy” of the problem is solved—this is the case of the multi-period
DNDP studied in Chapter 2. In contrast, dynamic routing problems target a much finer
time resolution, e.g. time-dependent shortest path problems aim to find least-cost paths in
time-dependent graphs where link weights vary based on the arrival time at the head of the
link. There exists also a distinction between dynamic optimization problems where the data
is time-dependent and an a priori solution is sought, and online optimization problems where
new data is available over time. In the latter, the solution of the problem is a policy, that is,
a decision rule. Online optimization problems are highly relevant to modern transportation
given the emergence of on-demand mobility and logistics systems where user requests are not
known in advance, such as in same-day delivery systems [Voccia et al., 2019]. In several sit-
uations, the modeler may have access to historical data that allows her to obtain probability
distributions of, for example, user demands. In this context, the decision-making problem
can be cast as a stochastic programming problem where an a priori solution is sought by
optimizing the expected value—or other non-risk-neutral metrics—of the objective function
under such probability distribution. If the problem is both stochastic and online, i.e. new
data is obtained on-the-fly, parameters’ probability distributions can be learnt or refined over
time. This provides room to explore related solution concepts such as RL, which is widely
popular in the artificial intelligence community yet remains in its infancy among OR and
transportation practitioners [Powell, 2019]. RL, much like approximate dynamic program-
ming, can be viewed as a heuristic to solve large scale MDPs which in turn can be used to
model several stochastic and online decision-making problems encountered in transportation.
There exists thus ample opportunities to develop innovative solution approaches to modern
transportation problems, notably in the realm of on-demand mobility and logistics.

5.2.2 Future transportation systems

Recent technological developments in automated and autonomous transportation systems
bring interesting perspectives. While, to date, autonomous cars are not pattroling our streets,
unmanned aerial vehicles—or drones—are increasingly being tracked for their potential to
change urban and rural logistics. In the longer term, urban air mobility may emerge as a
novel mode of transportation [Al Haddad et al., 2020]. The development of autonomous trans-
portation systems offers a rich playground for the OR community. An example is provided in
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Chapter 4 which explores how autonomous intersection management could be designed and
implemented on top of—or alongside—the existing transportation infrastructure. Unmanned
air mobility and logistics brings exciting decision-making problems to the table such as finding
optimal location of vertiports [Shin et al., 2022] or the operations of urban airways to route
drone and air taxi traffic [Rajendran and Srinivas, 2020]. Future air traffic management sys-
tems are also expected to benefit from automation. This is largely discussed in Chapter 3 at
the tactical decision-making level in the context of air traffic control. At a broader scale, au-
tomation holds great potential to sustainably improve air traffic flow management [Bertsimas
et al., 2011]. Several recent efforts have also investigated the potential of market mechanisms
to account for users’ preferences in the decision process [Castelli et al., 2011, Dal Sasso et al.,
2019]. On the road, autonomous mobility provides numerous opportunities to rethink how we
move. Shared autonomous vehicles are increasingly being considered as opposed to private
autonomous vehicle ownership. In a shared autonomous vehicle context, these vehicles are as
a service and thus are not owned by consumers [Krueger et al., 2016]. Automated mobility
also has implications regarding users’ value of time which could be used to dampen congestion
effects if travelers are busy working in their vehicles during their commute [Monteil, 2014,
Rashidi et al., 2020].

The future of transportation is steered towards new business models. As the num-
ber of mobility or logistics service providers increase, transportation systems are becom-
ing marketplaces where transportation may be priced “sur mesure”. Customized user pric-
ing is at the heart of the mobility-as-a-service (MaaS) and the logistics-as-a-service (LaaS)
paradigms [Polydoropoulou et al., 2020]. Both MaaS and LaaS are receiving an increasing
attention from both practitioners and researchers due to their potential to shift the way
people and goods are moved thanks to path-based pricing and integrated payments. The
endgoal of MaaS and LaaS is to provide users the possibility of making seamless payments
for their transportation needs. This would allow users to make multimodal trips, possibly
via competing service providers, by making a single payment that captures precisely users’
willingness-to-pay for such services. Pricing in MaaS and LaaS systems may require the
coordination of multiple non-cooperative service providers as well as consumers competing
for resources. This has motivated researchers to study transportation systems through the
lens of two-sided markets wherein buyers and sellers interact through a virtual marketplace.
In recent efforts, we have investigated the potential of single-leader multi-follower games for
two-sided platform pricing in MaaS systems [Xi et al., 2022], and other efforts have been
dedicated to study collaboration across MaaS platforms [Pantelidis et al., 2020]. This stream
of research highlights the pivotal role of business models in shaping future MaaS and LaaS
transportation systems.

It is worth emphasizing that, business implications aside, future transportation systems
that rely on path-based pricing face considerable computational challenges. Path-based pric-
ing is often synonymous with non-additive pricing [Han and Lo, 2004]. An example of non-
additive, path-based pricing consists of determining optimal user subsidies to encourage the
use of less-congested or low-emission routes in a congested road network. Analogously, one
could seek optimal user subsidies in a multimodal mobility network where the links of the
network are operated by multiple, non-cooperative service providers. These concepts are
promising yet they remain computationally challenging to implement. This steams from the
inherent complexity of path finding with non-additive costs in medium to large transporta-
tion networks. Therefore, innovative methodologies are required to develop non-additive
path-based pricing models at scale.
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5.2.3 Sustainable transportation

Climate change, ongoing conflicts and, more recently, the covid-19 pandemic have also con-
tributed to rethinking transportation systems. Remote working inititatives and e-commerce
deliveries have become part of our daily routine. While the “pandemic effect” could be
ephemeral, it has triggered several research efforts toward studying and developing more
resilient transportation systems capable of absorbing non-recurrent as well as recurrent per-
turbations such as pollution peaks and adverse weather effects [Budd and Ison, 2020]. The
electrification of transportation systems also poses a greater threat to energy networks. Sev-
eral countries have adopted policies that strongly encourage the adoption of electric vehicles
and/or aim to forbid the use of fuel vehicles in a not-so-far future. One may thus expect
that cities with a high rate of electrified transportation fleets will face considerable challenges
in the context of energy demand surges [Muratori, 2018]. This motivates research efforts
focused on developing integrated modeling frameworks that are able to capture the interplay
between transportation and energy networks.

Advances in optimization and transportation systems modeling are also expected to lift
the potential of humanitarian logistics. Transportation is often central to crisis-induced lo-
gistical challenges such as post-disaster network recovery, as outlined in Chapter 2. This
also concerns more operational decision-making problems such as humanitarian aid and food
rescue logistics. Such ressource allocation and/or routing problems share similarities with
their profit-driven counterparts but may differ in the choice of the objective function(s) or in
the properties of the solutions sought wherein fairness and equity play a central role [Eisen-
handler and Tzur, 2019]. At the same time, climate change puts sustainability at the heart of
existing and future transportation systems [Zhao et al., 2020]. Although sustainability-driven
transportation systems have existed for several years in the literature, there is now more than
ever a pressing need to engineer these solutions and develop incentives for practitioners to
implement them. From a modeling standpoint, this provides a narrative to support the de-
velopment of incentive mechanisms for promoting sustainable transportation such as active
transportation modes [Kaspi et al., 2014]. In this regard, game theory and mechanism de-
sign offer several methodological solutions to develop next generation transportation systems.
Pricing problems can directly benefit from game-theoretical enhancements [Brotcorne et al.,
2008]. Pricing is central to several transportation systems such as fare structure in pub-
lic transportation, travel demand balancing, but also last-mile delivery systems. Designing
sustainability-driven incentive mechanisms by adjusting service prices is a promising research
direction. One of the main challenge is to develop both implementable and scalable pricing
mechanisms. Eliciting user preferences requires incentive-compatible mechanisms. Yet, stan-
dard truthful mechanisms such as Vickrey-Clarke-Groves auctions may require private data
that users themselves may not be accurately aware of. For example, one may not know her
value of time with enough precision. Another limitation of such mechanisms arise in the con-
text of combinatorial auctions: it might not be practical for users to report their preferences
for all combinations of a mobility bundle since the number of such combinations may be very
large. There is thus a need to develop incentive mechanisms that are practical, and that also
target goals that are beneficial for the greater good.
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