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Chapter 1

Introduction

Research on light scattering by particles is a fundamental domain. Many scientists

like Fermat, Descartes, Newton, Airy ever studied in this field [1–3]. Even today, it is

still an active area both for science and industry [4, 5].

In our daily life, the phenomena like rainbows (in Figure 1.1), glories and the

blue sky, are all relevant with light scattering by particles. Understanding their phys-

ical principles is always the pursuits of mathematicians and physicists [6, 7]. In

industry, laser technology was developed in 1960. It was largely used in different

domains like chemistry [8], medicine [9–11], meteorology [4, 12], atmosphere sci-

ence [13, 14], remote sensing [15] because of its advantages in accuracy, efficiency

and non-invasion.

In these conditions, the theory of light scattering by particles plays the roles con-

necting the relation between the scattered field and the particle parameters. Ac-

cording to this relation, the particles parameters can be reversed by its scattered

field (the parameters of the incident field being known). Such relation is useful in in-

dustry and science, such as, for the particles like flow or spray, their optical charac-

ter is helpful to improve the liquid fuel utilization efficiency in atomization [16–18].

The optical properties of particles, like ice crystal, can also help us to study climate

change [13, 14].

In the field of optical metrology, many optical measurement techniques have

been developed to measure different parameters of the particles, like particle track-

ing velocimetry, particle image velocimetry, laser Doppler and phase Doppler mea-

surement, phase rainbow refractometry, global rainbow technique [16, 17, 19]. Ac-

cording to the scattered field and the theory of light scattering by particles, we can

reverse the particles parameters like particle size, shape, temperature and velocity.
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Figure 1.1 – Rainbows above lab. CORIA. taken by Ce ZHANG on 01/10/2019

So, the research on the theory of light scattering by particles is crucial.

In this thesis, our attention is on the development of an accurate and efficient

model for light scattering by large particles near the rainbow region. In the following

sections, the basic models of light scattering by particles and the rainbow theories

are introduced respectively.

1.1 Models for scattering by particles

Different models for theory of light scattering by particles have been developed.

These models are mainly divided into three kinds as analytical (or rigorous) meth-

ods, numerical methods and approximate methods [20–22]. In this section, these

models are briefly introduced.

Analytical methods The analytical method is proposed by Lorenz [23], and Mie

[24] independently, for scattering of an incident plane wave by an isotropic homo-

geneous sphere in 1890 and 1908. Its solution takes the form of an infinite series

summations and now known as Lorenz-Mie theory (LMT) or Mie theory [25–28].

The Debye theory is also an analytical method and it gives the LMT series solution

a clear physical interpretation as multi interactions process between the wave and

particle [29]. So, it can be used to study the contributions of each order of the wave

to the scattered field.

2
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The analytical methods have been developed for many years and its application

conditions are extended. For example, the scattered field of the multi-layered cir-

cular cylinder [30] and sphere [31] have been solved, the generalized LMT [27] is

raised for the spherical particles illuminated by the Gaussian beam. However, be-

cause some separation variables technique is used, the analytical methods are lim-

ited to particles of every simple shape, such as sphere, infinite circular cylinder. For

scattering of non-spherical particles, like an ellipsoidal particle, it is very difficult to

deal with [32, 33].

Numerical methods The numerical methods can be further divided into two kinds

as differential and integration methods [34].

The finite-difference time domain (FDTD) is proposed by Yee in 1966 based on

Maxwell differential equations [35, 36]. In this model, the scatterer and fields are

discretized as a lot of the cubic cells. Owning to the flexibility this model, Yang

and Liou used FDTD to simulate light scattering by non-spherical particles as ice

crystals [37]. But, FDTD is usually applicable to the particles whose size parameter

α = ka is smaller than 20 in 3D because of its time-consuming computation and

heavy memory requirements, where k is the wave number, a is the radius of the

sphere.

The discrete dipole approximation (DDA) is proposed by Purcell and Penny-

packer [38] in 1973, who replaced the scatterer by a set of point dipoles. These

dipoles interactions are approximated by the integral equation for the electric field.

This basic model can be used to non-spherical particles scattering. However, as

particle size or relative refraction index m increases, the requirement of the com-

puter resource both in time and memory increases quickly. Even when the paral-

lel computation technique is used, it takes 7.5 hours and used 512 processors and

700Gb memory for light scattering by a sphere with size parameter α = 320 and

m = 1.05 [39].

The method of moments [40] is based on the integration method for the electric

and magnetic currents on the particles surface. Due to the development of mul-

tilevel fast multipole algorithm (MLFMA), the computational complexity reduced

from O(N2) to O(NlogN) [41]. In 2015 [42], MLFMA was applied to light scattering

by non-spherical particle in 3D problems. However, it takes 18.9 hours and used

200Gb memory for light scattering of a particle size near 400.

The T-matrix is raised by Peter Waterman in 1965 [43, 44]. Because its incident
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and scattered fields are expressed in vector spherical functions like LMT, it might

be the most accurate and efficient numerical method for light scattering by non-

spherical particles. That is why many scholars researched this method like Barbar,

Hill, Mishchenko [45, 46] etc. In 1988 , invariant imbedding T matrix (II-TM) is pro-

posed by Johnson [47] for scattering of an arbitrarily shaped, inhomogeneous, di-

electric object. In 2014, Bi and Yang used II-TM to compute the optical properties

of randomly oriented ice crystals, and optical effects of surface roughness and inho-

mogeneity are investigated [48]. However, II-TM is restricted by the memory limita-

tion because the memory demand increases drastically with respect to the particles

size, especially for asymmetric particles.

Though these numerical methods are accurate and can be used to simulate the

light scattering of non-spherical particles, the simulation is limited by the parti-

cle refractive index m or symmetry or computation consumption both in time and

memory when the particle size is large even with help of parallel computation.

Therefore, finding other efficient and accurate models is still necessary.

Approximate model For light scattering by large particles, the approximate mod-

els are usually preferred because of its flexibility and efficiency. These approximate

models mainly fall into two categories: One is the ray model, the other is the wave

model.

Ray model: Geometrical optics (GO) is one of fundamental approximate methods

based ray model and it assumed that the wavelength is much smaller than the size

of the particle or objects [4, 49, 50]. In a homogeneous medium, the rays propagate

along straight lines.

For light scattering by a large spherical water droplet, the scattering patterns

of GO and LMT match well except in the forward region (near the θ = 0◦) and in

the neighbour of rainbow angles [4, 28]. For light scattering of a large spherical air

bubble, its scattering patterns are in agreement between GO and LMT except in

the forward region and critical angle [51, 52]. Though the GO has defects in some

regions, its accuracy is inspiring for spherical particles in general.

For light scattering of a large non-spherical particle with smooth surfaces, be-

cause there is no analytical form of the divergence factor as for spherical parti-

cles [4], the vectorial complex ray model (VCRM) is proposed by Ren et. al [53].

In VCRM, the wavefront is integrated as an intrinsic property of a ray, the relation-

ship between the curvature radii of wavefront and the curvature of the surface are
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expressed by the wavefront equation [50, 53, 54]. So, the divergence factor and the

phase shift of focal line can be calculated directly. Therefore, VCRM provides a fea-

sible method for light scattering of a plane wave or shaped beam by a large particle

with arbitrarily smooth surfaces.

Based on VCRM, light scattering by some non-spherical particles on the equa-

torial plane had been made and compared with experimental results and numer-

ical method [42, 53, 55, 56]. In 2011, Ren et al. proposed VCRM for light scatter-

ing by an ellipsoid on its equatorial plane (or symmetrical plane) illuminated by a

plane wave. For spherical particles, the VCRM and GO have the same scattering pat-

tern [53, 57]. In 2013, Jiang et al. applied it to the scattering of Gaussian beam by an

elliptical cylinder, and the scattering intensities in different observation distances

are presented [58]. In 2015, experimental validation of VCRM for the scattering of

an oblate droplet is made by Onofri et al. The two principal radii and refractive in-

dex of the droplet are retrieved [55]. Yang et al compared the scattering diagrams

for a non-spherical particle between VCRM and MLFMA. The good agreements be-

tween them proved the ability of both MLFMA and VCRM for scattering by large

non-spherical particles [42]. In 2017, Duan et al studied the effect of curvatures for

a liquid jet to its rainbow positions by experiment measurements and theoretical

analysis [59]. In 2019, Duan et al reported the VCRM in 3D for light scattering by a

real liquid jet. A good agreement has been found between the scattering patterns of

the VCRM stimulation and the experimental measurements [60]. Yang applied the

statistical VCRM proposed by Rozé to light scattering of a pendant droplet. Compar-

isons between experimental measurements and statistic VCRM have been made but

it requires a lot of computation resources both in time and memory [61]. In 2020,

Duan et al studied light scattering by a composite infinite elliptical cylinders. The

effect of the particle’s parameters like particles shape, refraction index (affected by

the temperature) and the direction of incident wave are analysed [62]. In 2021 [56],

Duan et al studied light scattering of oblate drops in the rainbow region by VCRM in

3D and compared the scattering patters with experimental measurement. The scat-

tering patterns by VCRM and experiment measurement are in agreement except in

the caustics regions. One caustic is still at rainbow angle in incident plane, the other

caustic being in perpendicular plane.

Therefore, VCRM can simulate the light scattering by large particles with smooth

surface of plane wave or shaped beams. Their validations have been proved with a

good accuracy except in the forward region and rainbow region.
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Wave model: The physical optics (PO) as one of fundamental methods in wave

model has been used to scattering of large particles or scatterers.

For light scattering by spherical particles in the forward direction, the scatter-

ing field is considered as a wave diffracted by an circular disk [4, 53, 63]. For light

scattering by a large spherical water droplet in the rainbow region, GO fails because

of infinite intensity. Airy in 1830s proposed his method based on the idea com-

bining GO and PO for the scattering in the rainbow region on the equatorial plane

of a sphere [3]. However, the positions and intensities of the supernumerary bows

predicted by Airy theory differ from those of rigorous Debye theory with increasing

the order of ray and the scattering angle from the rainbow angle [64, 65]. For light

scattering by a large spherical air bubble in water, the derivative of the scattering in-

tensity calculated by the GO is not continuous in the critical angle. In 1979, Marston

proposed his method based on diffraction theory with a similar idea as Airy theory

for rainbow [51]. The scattering intensities near the critical angle are shown by sim-

ulation and experimental measurements. In 2016, Sentis et al calculated scattering

intensities of an air bubble by combining GO and PO [66]. But there still are some

discrepancies between this combined method and LMT near the critical angle re-

gion. It is probably due to the inaccuracy approximations of the emergent wavefront

near critical angle and infinite integral region in Fresnel integral.

For light scattering by non-spherical particles of ice crystals with plane surface,

Ping Yang and KN Liou proposed a GO integral equation method in 3D case based

on electromagnetic equivalence theorem [67]. The near field character is described

by GO and ray tracing is applied to calculate the multi-interactions between the

light and the particle. The scattering field integral on the particle surface is based

on the principle of PO. The comparisons of this GO+PO model and FDTD had been

made with a good accuracy for the size parameter smaller than 20. By the method

GO+PO, light scattering of a particle aggregated by 8 hexagonal columns had been

simulated where the size parameter is to 1000 [68]. By the two methods of T-matrix

and GO+PO, light scattering of the non-spherical particle whose size parameters

is in the regime of 0.1 to 2000 is reported, where T-matrix is for the regime of 0.1 to

150, GO+PO is for the regime of 100 to 2000.

For scattering of a non-spherical scatterers like an opening arbitrarily shaped

cavity with curved surfaces [69], the combining method GO+PO (also called Shoot-

ing and bouncing rays in reference [69]) was also applied for its scattering field. The

comparisons of scattering diagrams of a large open-ended perfect electric conduct-
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ing circular cylinder between GO+PO and rigorous model analysis [70] were made

with a good agreement. The size of the circular cylinder is 40λ in length and 20λ in

diameter. However, the reason why its integral area was on the outlet of the cavity

was not given (The divergence factor of a ray is affected by this integral area).

In fact, besides GO and PO, there are other approximate models like, geometri-

cal diffraction theory [71, 72], physical diffraction theory [73, 74], and uniform ge-

ometrical theory of diffraction [75]. These models are the extensions of GO or PO

and they are for scattering of the particles or scatterers with edges (or diffraction in

shadow). In this thesis, we focus on the light scattering by the particles with curved

smooth surfaces1, the diffraction of light by the edge of particle is not considered.

Therefore, for light scattering by large particles, the analytical methods are lim-

ited to the scattering by very simple form, the numerical methods are limited by the

expensive computation resource and the particle’s refraction index and symmetry.

The approximate models, such as GO, VCRM, PO and their combination are promis-

ing and will be used in this thesis to study the light scattering of large particles (like

infinite cylinder with circular or elliptical section, sphere and ellipsoid) in the rain-

bow region.

In this thesis, our topic is for light scattering by large particles with smooth sur-

face in its rainbow region. The theories of light scattering near rainbow region are

called as rainbow theories. In the following section, the rainbow theories are intro-

duced.

1.2 Rainbow theories in light scattering by spherical

particles and non-spherical particles

Rainbow is one of the most beautiful phenomena in nature. It occurs intensively

in different cultures, arts and philosophies because of its pleasant and inspiring vi-

sual display [1, 76]. Since ancient time, in order to understand its formation, many

scientists and mathematicians studied it.

In the following, the rainbow theories are introduced in two categories. One is

for light scattering by spherical particles, the other is for non-spherical particles.

1It means that the particle surface is differentiable to the second order or more
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Rainbow theories for spherical particles For light scattering by spherical parti-

cles, Descartes, based on his novel discovery of reflection and refraction, gave ex-

perimental verification and the numerical calculation of the direction of the rain-

bow [1]. The formation of rainbow in nature explained by Descartes is shown in

Figure 1.2

Figure 1.2 – Descartes’ diagram to illustrate the formation of the rainbow.

Newton explained the colours of rainbow by optics dispersion in water drops.

However, the intensity at rainbow angle trends to infinite in GO (known as caustics

problem), as shown in Figure 1.3.

In the 1830s, Airy proposed his method based on diffraction theory for the in-

tensity of light in the neighbourhood of a caustics [3]. In Airy theory, the diffraction

theory is applied to calculate the intensity in the rainbow region [4]. So, the ampli-

tude and phase are required. For the amplitude at emergent point, Airy assumed it

as a constant determined by Fresnel’s coefficients in optical path. For the phase of

the emergent wave near rainbow angle, Airy calculated it approximately as a cubic

function. In order to compute the rainbow integral, its integral region is extended

to infinite [77]. According to Airy theory, the formation of the rainbow is explained

by diffraction theory, the amplitude and phase are calculated by GO. From the au-

thor knowledge, such a method firstly built a basic model of the combining method

GO+PO.

After Airy theory, many scholars continued to study his theory and pointed

its flaws. Based on Airy theory, Pernter’s contribution was the detailed applica-
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The edge ray with an infinite amplitude

Figure 1.3 – The infinite amplitude of the edge ray (or rainbow ray) in light scattering by a
spherical water drop.

tion of Airy theory to the rainbow so as to disentangle the various colour forma-

tions [12, 78, 79]. A high frequency scattering by a transparent sphere was made by

Nussenzveig for the rainbow [80]. The modified Watson transformation was applied

to the rigorous Debye theory in his method. Khare and Nussenzveig compared the

scattering patterns between their method, which later was known as complex angu-

lar momentum theory, Mie theory and Airy theory near the rainbow region [81–83],

the failure of Airy theory in parallel polarization was shown.

In order to improve the Airy theory in parallel polarization, Können and de Boer

took into account still based on diffraction theory the strong variation of the ampli-

tude around the Brewster angle, where the Fresnel coefficient was expanded in the

neighborhood of the angle, but they had not given any quantitative comparisons

with the rigorous method [6, 84]. Only Laven gave its real scattering diagrams but

still no comparison was made with rigorous method [85].

Wang and Van de Hulst compared the scattering patterns between LMT and Airy

theory for higher order near the rainbow region, but the comparisons was not clear

because the contributions of different orders are included in LMT. Besides, the en-

hancement factorα1/3 of the peak intensity was pointed and explained its from scat-

tering diagrams, but their explanations for the enhancement factor are not reason-
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able. Nussenzeig’s comment on the enhancement was from his own method [86],

but no reasonable analyses were given. Hovenac and Lock compared the scattering

patterns between Airy theory and Debye theory near the rainbow region, obvious

discrepancy was observed with increasing with the order of ray and scattering an-

gles from the rainbow angle [65].

Nowadays, benefit from development of computer technology, though the direct

computation of the rigorous LMT or Debye theory for spherical particles scattering

is feasible on ordinary laptop computer, e.g. with Laven’s MiePlot software or Ren’s

ABSphere software [87, 88], the research on light scattering by spherical particles is

still meaningful. Because, for the models like GO and PO, not only can they give a

simple and intuitive understanding like the interference and diffraction principle,

but also these models can be extended to non-spherical particles easily.

Rainbow theories for non-spherical particles We briefly divide the rainbow the-

ories for light scattering by non-spherical particles into three kinds. The first kind

is based on Möbius method. The second kind is the catastrophe optics which is the

same principle as Airy theory for rainbow. The third kind is based on ray model. In

the following, the developments of these methods are introduced.

In 1909, Möbius firstly discussed the rainbows of flattened water drops [89, 90].

using Möbius method, Lock studied the behavior of the first and second order rain-

bows produced by a normally illuminated glass rod and examined by experimental

measurement. Its cross section was nearly elliptical [91]. However, this approach is

limited by the particle shape that is close to a sphere, and there is no comparison of

scattering patterns between Möbius method and any rigorous method [79, 92, 93].

The catastrophe optics was developed for light scattering by particles near the

caustics regions. In 1946, based on the idea of Airy theory for rainbow, Pearcey

studied the structure of an electromagnetic field in the neighbourhood of a cusp

of a caustic [94]. In 1975, Berry studied the wave character of the caustics in differ-

ent kinds. The Thom’s theorem was applied to classify the different caustics diffrac-

tion integrals (in polynomials form) [95–97]. Then, Nye and Berry studied caustics

of liquid drops and examined by experimental measurement and theoretical analy-

sis, where the theoretical analysis of the diffraction field is based on the local caus-

tic structure, the stationary phase method is used for diffraction integrals [98–100].

Based on this, the catastrophe optics is gradually developed. In 1984, Marston and

Trinh observed hyperbolic umbilici diffraction catastrophe near the rainbow region
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for light scattering by oblate spheroidal drops. The diffraction patterns are sensitive

to the ratio of a/c, where a is the radius of the circular cross section between the

incident light and the oblate spheroidal on its equatorial plane, c is the radius in the

perpendicular plane. Nye analysed how this ratio a/c affected the diffraction catas-

trophe based on GO and catastrophe optics [101, 102]. In 1985, Marstion explained

the generalized rainbows from cusp diffraction catastrophe and pointed its applica-

tion in inverse scattering [103]. In 2010, for light scattering by an oblate spheroid,

Lock and Xu studied different kinds optical caustics of the rainbow, transverse cusp,

and hyperbolic umbilic caustics were analysed based on catastrophe optics quanti-

tatively [32].

Based on ray model, in 1998, Lock et al studied the intensity of high order rain-

bows by geometric ray theory for normally incident light of a cylinder with an el-

liptical cross section. The amplification for the intensity of high orders rainbow

was observed and analyzed by total internal reflection of the rays near rainbow re-

gion [104]. Yu studied the rainbow caustics line in 3D based on vector-ray tracing

model for non-spherical particles. In 2013, Yu et al studied the secondary rain-

bow caustics line of oblate droplets in the equatorial plane by vector-ray tracing

model [105, 106]. Because this vectorial ray tracing model is based on GO, only the

boundary limits of the rainbow can be calculated. But these boundaries limits are

not the real intensity maximum in rainbow patterns. So, only the curvature of the

caustic line is relevant with particle shape. Besides, because the interference phe-

nomenon is not considered, the supernumerary structure can not be predicted. So,

the parameters of particle size can not be taken into account.

There are some other methods for the rainbow of non-spherical particles. Lock

and Adler researched the semi-classical scattering theory to analyse the exterior

caustics produced in scattering of a diagonally incident wave by a circular cylin-

der [107, 108]. The comparisons between semi-classical approximation, ray theory

and wave scattering theory were made. When an elliptical cross section cylinder

is normally illuminated by a plane wave, the supernumerary spacing for scatter-

ing pattern are analysed in theory and experimental measurement. It is affected

sensitively by the shape of its cross section. In 2002, the first order rainbow of a

coated cylinder was examined by experimental measurement as the coating thick-

ness changes [109]. There are twin rainbows produced for the large thickness a

coated cylinder, there was a single rainbow for the small thickness a coated cylin-

der but with intensity varies periodically as the coating thickness varies.
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In recent years, the study on rainbow theories is still under developments. In

2017, Lock and Können analysed the high-order rainbows of a flattening droplet by

combination Möbius and Airy approximations [93, 110]. From interference theory,

Laven pointed out the phase shift π
2 in the supernumerary arcs of rainbows [4, 111].

In 2019, Yu et al studied the primary rainbow caustics from tilted spheroidal drops

[112]. In 2021, Berry studied the images in mirrors whose curvatures are convex in

some places and concave on other places. The theoretical analysis is attributed to

the scattering near caustics [113, 114]. Duan et al studied the scattering patterns of

oblate water droplets by VCRM in 3D near the rainbow region and compared with

experimental measurements. However, the intensities near caustics fails like GO.

In 2022, Marston recalled his communications with Mishchenko on the rainbow

in light scattering by oblate spheroidal drops. The developments on the study of

rainbow problems were reported [115].

In the aspect of experimental measurement of rainbow and its applications, in

2016, Wu et al developed a one-dimensional phase rainbow refractometry to mea-

sure the droplet size at the micrometers scale as well as the tiny droplet diameter

variations at the nanoscale [116]. In 2018, Wu et al used the phase rainbow refrac-

tometry to measure the droplet temperature (or refraction index), size and evapo-

ration rate [117]. However, these measurement techniques are limited to spherical

particles. The measurement of non-spherical particles by rainbow technologies is

dependent on the rainbow theory of non-spherical particles.

Therefore, the developments of rainbow theories never stop from ancient to to-

day. It helps us further understand the interactions between light and particles. This

makes the basement for applications both for rainbow technologies and other fields

that light scattering related.

1.3 Motivation and structure of the thesis

The author is motivated by the light scattering in the rainbow region of a large par-

ticle by the method VCRM+PO. The VCRM can calculate the phase and amplitude

of all the emergent rays rigorously in the sense of ray model, PO permits to take

into account the diffraction in the rainbow region. The structures of the thesis are

organized as follows:

In Chapter 2, the fundamentals of GO and PO are introduced. The light scat-

tering of an large infinitely circular cylinder and a large sphere are presented in the
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framework of GO by taking into account the diffraction effect in the forward direc-

tion.

In Chapter 3, the fundamentals of VCRM are introduced. The light scattering by

non-spherical particles like an infinite elliptical cylinder or an ellipsoid are simu-

lated by VCRM.

In Chapter 4, by combining method VCRM+PO, light scattering in the rainbow

region by the particles like an infinite circle cylinder or a sphere are introduced.

In Chapter 5, because of the flexibility of VCRM+PO, this combining method is

extended to light scattering of non-spherical particles near its rainbow region.

In Chapter 6, the conclusions and perspectives of this thesis are summarised.
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Chapter 2

Geometrical optics and physical optics

for light scattering

The geometrical optics (GO) and the physical optics (PO) are two fundamental ap-

proximate models to describe the interaction between light and objects. They can

be used to deal with light scattering by particles in different conditions [4]. In this

chapter, we will recall their fundamental laws and apply them to the light scatter-

ing by infinite circular cylinders and spherical particles. The concepts and the laws

introduced here will be served as a base and a reference to the study of light scatter-

ing by a non-spherical object with the Vectorial Complex Ray Model (VCRM) in the

following chapters.

The GO is an efficient and flexible model for light scattering by particles. It is

admitted often that GO is applicable to the particles of size much bigger than the

wavelength. In fact, this is just a necessary condition. The precision of the GO de-

pends also on the phenomena and the scattering regions under study. For example,

in the vicinity of the GO rainbow angles and in the forward direction, the GO fails

to predict correctly the scattering intensities what ever the size of the particle. In

these cases, the wave properties of the light must be considered. In this thesis, the

physical optics or simply the Huygens-Fresnel principle will be applied to take into

account the diffraction effect in light scattering by particles.

2.1 Geometrical optics

In the GO, the waves are described by bundles of rays and the rays propagate recti-

linearly in a homogeneous medium. The electric field of a monochromatic electro-
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magnetic wave [50] of angular frequency ω along a ray is given by

~E(~r , t ) = E(~r )exp[−i (~k ·~r −ωt −Φi )]ê. (2.1)

where E(~r ) is the amplitude at point~r and time t ,~k the wave vector defined as~k =
kk̂, k = 2π/λ being the wave number, λ the wavelength, k̂ the unit vector of the

propagation direction, ê the polarization direction of electric vector, ω is its angle

frequency, Φi is the initial phase, i is the imaginary unit.

When a ray impinges on a surface of an object (diopter), it will be reflected and

refracted. The directions and the amplitudes of the reflected and refracted rays de-

pend on the incident angle, the refractive index of the two media and the polariza-

tion state, i.e. the direction of~E relative to the incident plane defined by the normal

of the diopter and the incident ray.

2.1.1 Fundamental laws

Snell’s laws Consider a ray incident on a diopter from a medium of refractive index

mi to another medium of refractive index mr with a incident angle θi relative to the

normal of the diopter, then the reflection angle θl and the refraction angle θr are

given by the Snell’s laws

θi = θl , (2.2)

sinθi = m sinθr . (2.3)

where m = mr /mi is the relative refractive index. The Snell’s laws state also that

the incident ray, the reflected ray and the refracted ray are all in the incident plane

defined by the incident ray and the normal of the diopter.

Fresnel’s formulas: The amplitudes of the reflected and the refracted rays are pro-

portional to that of the incident field and described by their ratios to the incident

amplitude. These ratios depend on the polarization state and can be determined by

the boundary conditions of the electromagnetic fields~E and ~H according to Figure

2.1. We will omit the derivation and give directly the Fresnel formulas as follows:

r⊥ = El
⊥

Ei
⊥
= cosθi −m cosθr

cosθi +m cosθr
=−sin(θi −θr )

sin(θi +θr )
, (2.4)
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t⊥ = Er
⊥

Ei
⊥
= 2cosθi

cosθi +m cosθr
= 2sinθr cosθr

sin(θi +θr )
, (2.5)

r∥ =
El
∥

Ei
∥
= m cosθi −cosθr

m cosθi +cosθr
= tan(θi −θr )

tan(θi +θr )
, (2.6)

t∥ =
Er
∥

Ei
∥
= 2cosθi

m cosθi +cosθr
= 2sinθr cosθr

sin(θi +θr )cos(θi −θr )
. (2.7)

where rX and tX represent the reflection and the transmission ratios and the index

(a) Perpendicular polarization (b) Parallel polarization
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Figure 2.1 – Schema for derivation of Snell’s law.

X =⊥ or ‖ stands for the polarization state: electric field perpendicular ⊥ or parallel

‖ to the incident plane.

Reformulation of Snell’s laws and Fresnel formulas In the Snell’s laws, the direc-

tions of the reflected ray and the refracted ray are described by the angles relative

to the normal of the diopter. This is not convenient for 3D scattering. We will show

in the following that the Snell’s laws and the Fresnel formulas can be rewritten as

function of the components of the wave vectors.

In fact, we multiply Eq. (2.3) by the wave number in the vacuum k and get

kmi sinθi = kmr sinθr . This implies that the tangent component of wave vector

of the refracted ray krτ is equal to that of the incident wave kiτ. Similarly, we can

deduce that the tangent components of the reflected ray klτ and that of the incident

ray kiτ are also equal. Therefore, we conclude that the tangent components of the

incident ray, the reflected ray and the refracted ray are all equal, i.e. the Snell’s laws
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can be rewritten simply as

kiτ = klτ = krτ, (2.8)

The normal component of the wave vector of reflected ray kl n is equal to that of the

incident wave but in the opposite direction since they are in the same medium. The

normal component of the refracted ray kr n can be determined by its wave number

kr . So we have

kl n =−ki n , kr n =
√

k2
r −k2

rτ, (2.9)

Knowing that the normal component of a wave vector is the product of the wave

number and the cosine of the corresponding angle relative to the normal of the

diopter kn = k cosθ, the Fresnel formulas can be rewritten as function of the nor-

mal components of the wave vectors

r⊥ = ki n −kr n

ki n +kr n
, (2.10)

t⊥ = 2ki n

ki n +kr n
, (2.11)

r‖ = m2ki n −kr n

m2ki n +kr n
, (2.12)

t‖ = 2mki n

m2ki n +kr n
. (2.13)

The reflection ratios calculated by Eqs. (2.10) and (2.12) may be positive or neg-

ative. If the ratio is positive, the reflected electric field is in phase with the incident

field, if the ratio is negative, the reflected field is in the opposite direction of the

incident field, that is a phase jump of π.

When a ray propagates from a denser medium to a thinner medium (m < 1)

and the incident angle is larger than the critical angle θc (i.e. θi > θc = arcsin(m) or

kiτ > kr ), the total reflection will take place. The reflection ratios calculated by Eqs.

(2.10) and (2.12) will be complex. In this case, k2
r n = k2

r −k2
iτ is negative, Eqs. (2.10)

and (2.12) are written as

r⊥ =
ki n + i

√
k2

iτ−k2
r

ki n − i
√

k2
iτ−k2

r

, (2.14)

r∥ =
m2ki n + i

√
k2

iτ−k2
r

m2ki n − i
√

k2
iτ−k2

r

. (2.15)
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It is evident that the numerator and denominator in Eqs. (2.14) and (2.15) are con-

jugate to each other, so the moduli of amplitude ratios are certainly unity which

reflects correctly the fact of total reflection. The argument of the complex ratios are

the phase shift of the reflected field relative to the incident field. This phase shifts

due to Fresnel coefficient, noted by ΦF and calculated as follows

ΦF = arg(rX) (2.16)

where rX is the refection coefficients in polarization X. It is worth noting that Eq.

(2.16) is applicable to all the cases discussed above: rX positive, negative or complex.

Numerical results and discussion To illustrate the evolution of the amplitude and

the phase of the reflected field as function of the incident angle, the refractive index

and the polarization state, we present in the following the numerical results of the

amplitude ratios and the phase shifts calculated with the Fresnel coefficients for the

reflection of a light ray on a surface of water in two cases: air-water (m = 1.333) and

water-air (m = 0.75).

Figure 2.2 shows the Fresnel coefficients of reflection and refraction on the sur-

face air-water for the two polarizations. We find that the reflection coefficient is

always negative for the perpendicular polarization, that means the reflected field

is always opposite to the incident field (phase shift ΦF = π). For the parallel po-

larization, the Fresnel coefficient is positive when the incident angle is less than

θB = arctan(m) = 53.123◦ (called Brewster angle) and negative for a larger incident

angle.

When a ray impinges on the surface water-air, the variation of the Fresnel co-

efficients (Figure 2.3) are similar to that of the reflection on the air-water surface

with two particularities: (1) The curves are compressed to a narrow region from 0◦

to θc = arcsin(m) = 48.590◦ (called critical angle) [51] and after this angle, the reflec-

tion is total. (2) The sign of the Fresnel reflection coefficients are opposite to that of

the case air-water.

The phase shifts due to the Fresnel coefficients in the Figures 2.2-2.3 are clearly

shown respectively in 2.4 and 2.5. Furthermore, the phase shifts in the total reflec-

tion region are also shown in Figure 2.5. It is important to note that this phase shifts

vary contiuously from 0 at the critical angle to π at the tangent incidence.

The phase shifts of π [118] and in the total reflection are very important in the
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Figure 2.2 – Fresnel coefficients for a ray impinges on an air-water surface m = 1.333.

interpretation and understanding of certain phenomena such as the scattering by a

bubble [51] and Goos–Hanchen effect [21].
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Figure 2.3 – Fresnel coefficients for a ray impinges on an air-water surface m = 0.75.

Finally, we should note that the amplitude ratios of transmission calculated by

Fresnel formulas may be larger than unity (see Figure 2.3). This does not mean that

the intensity of the transmitted wave is stronger than the incident one. This can be

explained by the modulus of the Poynting vector which is defined as

~S =~E×~H =
√
ε

µ
E2k̂ (2.17)

where ε and µ are the dielectric constant and permeability respectively. In a non-
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Figure 2.4 – Phase shifts in the reflection on an air-water surface.
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Figure 2.5 – Phase shifts in the reflection on a water-air surface.
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magnetic medium µ = µ0 and ε = ε0εr , we know m = p
εr , εr being the relative di-

electric constant. So, the modulus of Poynting vectors of the incident, reflected and

refracted waves are given respectively as

Si = mi

√
ε0

µ0
E2

i cosθi (2.18)

Sl = mi

√
ε0

µ0
E2

l cosθl (2.19)

Sr = mr

√
ε0

µ0
E2

r cosθr (2.20)

where mi and mr are the refractive indexes in the incident and refraction media.

Therefore, the ratios of reflected intensity and the refracted intensity to the incident

intensity are respectively

R = Sl

Si
= mi E2

l cosθi

mi E2
i cosθl

= |r |2 (2.21)

T = Sr

Si
= mr E2

r cosθi

mi E2
i cosθr

= m cosθi

cosθr
|t |2 (2.22)

We find that R+T = 1 is true for the two polarizations. This is consistent with energy

balance.

2.1.2 Scattering by an infinite circular cylinder

The fundamental laws of the GO presented in the last section permit to calculate

the amplitudes and the phases of all the reflected and refracted waves when a wave

interacts with a particle, so it can be applied to predict the scattered field of an ob-

ject when it is illuminated by a wave. To illustrate the procedure and examine some

scattering properties, we begin with the simplest case: scattering of a plane wave of

wavelength λ by a homogenous infinite circular cylinder at normal incidence (Fig-

ure 2.6).

1. Directions of emergent rays

The propagation of a ray in the cylinder is shown in Figure 2.7, where m and a are

respectively the relative refractive index and the radius of the particle.
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Figure 2.6 – A plane wave is scattered by an infinite circular cylinder.

The incident wave can be represented by N equal distant rays located at yi =
(2t +1)a/N− a with t = 0,1,2 . . . (N−1). The coordinates xi of the first interaction

points are determined by the circle equation x2
i +y2

i = a2. So, the first incident points

on the particle are given as

xi =−a

√
1− y2

i
a2

yi =
[2t+1

N −1
]

a

(2.23)

The incident angle θi of all the rays are known.

According to the symmetry of the circle and the Snell’s law, the derivation angle

θ of the emergent ray of order p is given as

θp = 2(τ−pτ′), (2.24)

where τ and τ′ are respectively the complementary angle of the incident angle θi

and the refraction angle θr , i.e. τ = π/2−θi , τ′ = π/2−θr . Owing to the symmetry,

only the scattering intensity in the range 0 to π is necessary. The deviation angle θp

is reduced to the scattering angle θp by

θp = 2qp (τ−pτ′)+2kpπ, (2.25)
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where qp equals +1 or −1 and kp is an integer that limits the angle θ in the range

[0,π].
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i

l
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

O


 

2p =

m

a

x

0

1

2

y

Figure 2.7 – Optical path in a circular cylinder.

2. Amplitude of a ray

When a wave is scattered by a particle of smooth surface, the amplitude of scattered

wave is affected by two factors in the viewpoint of GO. One is due to the reflection

and the refraction described by the Fresnel coefficients, the other is the divergence

on the curved surface, which is described by the so called divergence factor.

The amplitude of an emergent ray of order p (after q = p+1 interaction with the

circular cylinder) is given as function of the Fresnel coefficients by

εX,p =
{

rX, p = 0

(1− r 2
X)(−rX)p−1, p ≥ 1

, (2.26)

where (1− r 2
X) is due to the fact that all the emergent rays experience two transmis-

sions and (−rX)p−1 is because that the rays of order p suffer (p −1) internal reflec-

tions.

The divergence factor can be deduced from the energy balance. According to

the geometrical relation of a circular cylinder (Figure 2.8), we have

y = a cosτ, |d y | = a sinτ|dτ| (2.27)
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Figure 2.8 – Energy balance of a pencil of rays in a cylinder.

The energy on a surface element dSi = d yd z = a sinτ|dτ|d z is

Wi = I0|d yd z| = I0a sinτ|dτd z| (2.28)

where I0 is the intensity of the incident wave at the interaction point. This quantity

of energy is emerged, after an attenuation due to the reflection and refraction ε2
X,p ,

into an angle interval dθ which corresponds to a surface dSS = r dθd z for large r .

We note the intensity at r by Ip (r,θ), then according to energy balance Wi ε
2
X,p = WS ,

we obtain

I0ε
2
X,p a sinτ|dτd z| = Ip (r,θ)r |dθd z| (2.29)

and deduce therefore,

Ip (r,θ) =
ε2

X,p I0a sinτ|dτ|
r |dθ| = a

r
I0ε

2
X,p D (2.30)

where D is called divergence factor given as

D = sinτ

|dθ/dτ| =
sinτ

|dθp /dτ| (2.31)
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According to Eq. (2.24) and Snell’s law, we have

dθp

dτ
= 2

(
1−p

tanτ

tanτ′

)
(2.32)

Therefore the divergence factor D of a circular cylinder is

D = m cosθi cosθr

2
(
p cosθi −m cosθr

) (2.33)

The scattered wave being cylindrical in far field, we omit the distance dependent

factor kr in Eq. (2.30) as a convention, the scattered intensity of order p is given

therefore by

Ip (θ) = I0kaDε2
X,p (2.34)

3. Phase of a ray

The phase of an emergent ray is affected by four factors: the initial phase Φi , the

phase due to the optical path ΦP, the Fresnel coefficients ΦF and the focal lines Φ f .

The total phase ΦT of a ray is therefore given as

ΦT =Φi +ΦP +ΦF +Φ f , (2.35)

The phase of the incident wave Φi is constant for a plane wave and can be omitted.

To calculate the phase due to the optical path, we define the reference ray which

arrives at the center of the particle (or a reference point in the particle) in the same

direction as the incident ray as if there is no particle and exits in the same direction

as the emergent ray (blue lines in Figure 2.9).

For a ray of order p = 0, the phase due to the optical path relative to the reference

ray (Figure 2.9) is

ΦP =−~ki ·−→OC+~k0 ·−→OC

=2ka sinτ
(2.36)

For a ray of order p = 1,

ΦP =−~ki ·−→OC+~k1 ·−→OE−mk|CE|
=2ka(sinτ−m sinτ′)

(2.37)

Similarly, a ray of order p ≥ 1 will have p elements of path 2a sinτ′ inside the
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Figure 2.9 – Phase due to the optical path.

particle. We conclude therefore that the phase caused by the optical path of the ray

of order p is

ΦP = 2ka(sinτ−pm sinτ′), (2.38)

The phase shift due to the reflections is evaluated by the Fresnel coefficients ΦF

using Eq. (2.16).

Each time, a ray passes a focal line, the phase jumps π/2. So the phase shift due

to the focal lines Φ f is a count of the focal lines which is given by [4]

Φ f =
π

2

[
p − 1

2
(1− s)

]
, (2.39)

where s is the sign of dθp /dτ in Eq. (2.32).

4. Total complex amplitude

Knowing the phase and amplitude of a ray, the complex amplitude of a emergent

ray in far field is calculated by

EX,p (θ) =
√
π

2
kaD|εX,p |e iΦT , (2.40)

where π/2 is a constant added so that the amplitude calculated by GO is consistent

with LMT [119].
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The total scattered field EX(θ) in direction θ is given as

EX(θ) =
∞∑

p=0
EX,p (θ) (2.41)

However, attention should be paid to the fact that the complex amplitude given

in Eq. (2.40) is for the scattering angles determined by the incident ray and the scat-

tering angle of emergent rays are usually irregular, while scattering summation of

complex amplitude in Eq. (2.41) must be done for the same angle of different or-

ders. The interpolation is therefore necessary.

The total scattered intensity in the angle θ is given as

IX(θ) = |EX(θ)|2 (2.42)

5. Scattering diagrams

As example, we show in Figures 2.10 and 2.11 the scattering diagrams of an infinite

circular cylinder calculated with the GO described in the previous sections for two

polarizations. The wavelength of the incident wave is λ = 0.6328 µm. The radius

and the refractive index of the circular cylinder are a = 100 µm and m = 1.333. The

total intensity is calculated with the rays of orders p = 0 to 7. The incident plane

wave is discretized into 4000 rays. The number of interpolation for scattering angle

θ is 4000. In this thesis, the Lagrange polynomials in third order is applied for the

interpolation.

We would note firstly that the rays of orders 2 (blue) and 3 (yellow) rebound at

137.92◦ and 129.11◦ respectively. These angles correspond to the first and the sec-

ond order of rainbows predicted by the GO. The rays of the same order near these

angles generate the so-called supernumerary bows which will be discussed later.

For the perpendicular polarization (Figure 2.10) we find a strong oscillation

around 70◦ caused by the rays of orders p = 0 and 1 since their amplitudes are in

the same order of magnitude in this region. The amplitude of the refracted rays is

much more important than the other orders in small angle. The oscillations around

120◦ and in the range from 140◦ to 180◦ are also strong which are caused by the

rays of the same orders (p = 2 or 3) which causes the coarse structure and different

orders which generate the high frequency oscillation structure.

In the case of parallel polarization (Figure 2.11), the intensity in the vicinity of

the rainbow angles is much weaker than that of the perpendicular polarization. This
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Figure 2.10 – Scattering diagrams of an infinite circular cylinder. The incident plane wave
with wavelength λ= 0.6328 µm is in perpendicular polarization. The radius of particle and
its refractive index are a = 100 µm and m = 1.333.

is because the Fresnel coefficient at those angles for the parallel polarization ε‖2 =
0.059, ε‖3 = 0.060 is much smaller than that for the perpendicular polarization ε⊥2 =
0.296, ε⊥3 = 0.188.

Furthermore, we note also that for parallel polarization (Figure 2.11), the inten-

sity tends to zero near θ= 73.78◦ for p = 0, θ= 138.74◦ for p = 2, θ= 115◦ for p = 3,

these correspond to the Brewster angles.

2.1.3 Scattering by a sphere

The scattering of light by spherical particle is the most common subject and the

most popular in the interpretations of the natural phenomena, such as the rainbow

in the nature.

Because a symmetric plane of a sphere is exactly a circle - the cross section of

an infinite circular cylinder, the scattering procedure discussed in the last section

is applicable to the scattering of a sphere. Two revisions are, however, to be done.

The first concerns the divergence factor and the other is the phase shift due to focal

lines.
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Figure 2.11 – same parameters as Figure 2.10 except for parallel polarization.

1. Divergence factor

Similar to an infinite circular cylinder, the divergence factor of light scattering by a

sphere is deduced by the law of energy balance. We consider an incident beam of

section d Ai illuminating an area d A = a2 cosτdτdφ on the sphere. All the flux in

the beam, after interaction with the particle, spreads into a solid angle dΩ which

intersects a sphere of radius r of surface d As = r 2dΩ= r 2 sinθdθdφ in far distance

r from the sphere. According to the balance of energy, the scattered intensity Ip (r,θ)

of order p at r is related to the intensity of the incident wave I0 by the relation

Ip (r,θ)r 2 sinθdθdφ= I0ε
2
X,p a2 sinτcosτdτdφ. We deduce therefore,

Ip (r,θ) =
ε2

X,p I0a2 sinτcosτdτdφ

r 2 sinθdθdφ
= a2

r 2
I0ε

2
X,p D (2.43)

where D is the divergence factor of a spherical particle defined by

D = sinτcosτ

sinθ|dθ/dτ| , (2.44)

The derivative dθ/dτ is the same as for a circular cylinder (Eq. (2.32)). The diver-

gence factor of order p can be written in terms of incident and refraction angle as

follows

D =
∣∣∣∣ sin(2θi )

4sinθ
(
p tanθr

tanθi
−1

)∣∣∣∣= ∣∣∣∣ sin(2θi )

4sinθ
(
p cosθi

m cosθr
−1

)∣∣∣∣. (2.45)
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The scattered wave being spherical in far field, we omit the distance dependent

factor (kr )2 in Eq. (2.43) as a convention, the scattered intensity of order p is given

therefore by

Ip (θ) = I0(ka)2Dε2
X,p (2.46)

2. Phase shift due to focal lines

In the scattering of a wave by a spherical particle, the light rays may cross in the

direction perpendicular to the scattering plane. Therefore, there is a set of focal lines

supplementary to the case of the scattering by a circular cylinder [4]. The phase shift

due to the first set of focal linesΦ f 2 is the same as for the circular cylinder Eq. (2.39).

The phase shift due to the the second set is given as

Φ f 1 =
π

2

[
−2kp + 1

2

(
1−qp

)]
. (2.47)

where kp and qp are given in Eq. (2.25). So, the total phase shift due to the focal

lines for a spherical particle is

Φ f =Φ f 1 +Φ f 2. (2.48)

3. Total complex amplitude

Knowing the scattering intensity in far field (Eq. 2.46) and the total phase of the

emergent ray, we get the complex amplitude of the scattered field of a sphere as

EX,p (θ) = ka
p

D|εX,p |exp(iΦT) (2.49)

The amplitude factor due to the reflection and refraction εX,p is the same as for a

cylinder (Eq. 2.26). The formula for the total phase is also the same as for the cylin-

der but the phase shift due to the focal lines are to be calculated by Eq. (2.48).

4. Scattering diagrams

We compare now the scattering diagrams of a infinite circular cylinder and a sphere

calculated by the GO for the perpendicular and parallel polarizations in Figures

2.12 and 2.13. We find first that the scattered intensity in the forward direction

of the sphere is about three orders stronger than that of the cylinder. This is be-

cause that the scattered intensity of a sphere is proportional to (ka)2 while that of
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a cylinder is proportional to ka. For the cases of scattering shown in these Figures

ka = 2πa/λ ' 1000. This ratio decreases as function of the scattering angle from

about 1000 at 00◦ to about 500 at 90◦. This can be understood by the transversal

divergence effect of the spherical particle. Otherwise, the profiles of the scattering

diagrams of a sphere are similar to those of a circular cylinder. Some other differ-

ences, such as the intensities around 100◦ for perpendicular polarization, and in

backward direction are due probably to the phase shift of focal lines and divergence

factor.
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Figure 2.12 – Comparison the scattering diagrams of a sphere and infinite circular cylinder.
The incident plane wave with wavelength λ = 0.6328 µm is in perpendicular polarization.
The radius of particle and its refractive index are a = 100 µm and m = 1.333.
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Figure 2.13 – The parameters are the same as in Figure 2.12 except for parallel polarization.

In Figure 2.12 and 2.13, we find their scattering diagrams have similarly trends

on the whole, but there is a clear difference in intensity which is caused by their
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different divergence factors.

2.2 Physical optics

The ray model of the GO described in the preceding section deals with only the rays

which interact with the particle, but not the rays passing by the particle surface. The

light represented by these rays play an important rule in the scattering in forward

direction. On the other hand, we have seen that the intensity in the vicinity of rain-

bow angle predicted by the GO is not continuous. These are the intrinsic flaws of

the ray model and can be remedied by the physical optics.

2.2.1 Huygens-Fresnel Principle

The physical optics is an approximate method to take into account the wave effect of

light. In this thesis, especially for the two problems mentioned above, the Huygens-

Fresnel principle [120] is sufficient.

Suppose that the complex amplitude E(P) at any point P on the surface Σ is

known (Figure 2.14). The complex field E(P0) at an observation point P0 is, accord-

ing to the Huygens-Fresnel principle, the contribution all the points on the surface

Σ, i.e.

O

0P
0R

R
r



P

Figure 2.14 – Schema for the Huygens-Fresnel principle.

E (P0) = i

λ

Ï
Σ

E(P)
exp(−i kR)

R
cos(n̂, k̂s)dS (2.50)

where λ is the wavelength. R is the distance from point P to P0. R0 is the distance
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between the reference point O to P0, n̂ is the normal of the surface Σ at point P, k̂s

is the unit vector from point P to P0.

If the point P0 is in far field of the surface Σ, we have

exp(−i kR)

R
≈ exp(−i kR0)

R0
exp(i kk̂s ·~r ′), (2.51)

Furthermore, if cos(n̂, k̂s) ≈ 1, Eq. (2.50) is rewritten as

E (P0) = i exp(−i kR0)

λR0

Ï
Σ

E (P)exp
(−i kk̂s~r

′)dS (2.52)

In the light scattering of small particles, the Huygens principle is often used with

Babinet’s principle [21, 119] to deal with the forward diffraction. For the light scat-

tering of an infinite circular cylinder, the diffraction field in the forward direction is

similar to that of a slit of the width equal to the diameter of the cylinder and given

by [50]

Ed (θ) = 1+cosθ

2

sin(ka sinθ)

sinθ
exp

(
i

3π

2

)
(2.53)

where the factor (1+cosθ)/2 is for a non-polarized wave and the phase 3π/2 is added

for the field to be in consistence with that of the Mie theory.

For a spherical particle, the diffraction field in the forward direction is given as

[28, 121]

Ed (θ) = (ka)2J1(ka sinθ)

kaθ
(2.54)

where J1(·) is the Bessel function of the first kind of order 1.

Therefore, the total scattered field by consideration of the forward difraction is

EX(θ) =
∞∑

p=0
EX,p (θ)+Ed (θ) (2.55)

where EX,p corresponds to the scattered field calculated by the GO in the precedent

section for a cylinder or a sphere.

2.2.2 Comparison the scattering diagrams of a spherical particle

with rigorous theories

Now we will compare the scattering diagrams of a spherical particle calculated by

the GO revised with PO to those of the Mie theory and Debye theory, for two pur-
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poses: evaluation of the precision of the approximate methods (GO+PO) and obser-

vation of the points to be improved.

We compare first in Figure 2.15 the scattering diagrams calculated by the Mie

theory and by the GO+PO for the perpendicular polarization. The agreement is very

good in general. We observe, however, significant difference in the rainbow regions.

This is due to the intrinsic default of the ray model [3]. The scattering diagrams
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Figure 2.15 – Comparison the scattering diagrams of a sphere between LMT and GO in per-
pendicular polarization. The forward diffraction is also included here. The incident plane
wave with wavelength λ= 0.6328 µm is in perpendicular polarization. The radius of particle
and its refractive index are a = 100 µm and m = 1.333.

for parallel polarization calculated with the same methods for the same particle are

compared in Figure 2.16. To examine in details the problem of scattering in the

rainbow regions, we zoom the scattering diagrams in the range from 124◦ to 142◦.

We find, both for perpendicular and parallel polarization, GO and Mie theory are

matched very well except for the Alexander zone (the region between primary rain-

bow and secondary rainbows). Apart from the rainbow regions, we observe also

a clear difference near the region 71◦ − 116◦ between LMT and GO. It is probably

caused by Brewster angles of p = 0 and p = 3 and abrupt end rays of p = 1 and p = 3

(see Figure 2.11), this problem being beyond the study of this thesis.

The GO permits to isolate the contributions of different orders. To illustrate scat-

tering near rainbow angles, we compare of the GO and Debye theory in Figures 2.17

and 2.18 by considering only the contributions of the rays of orders p = 2,3. The De-

bye theory is a rigorous method that can also isolate the contributions of different

35



CHAPTER 2. GO AND PO FOR SCATTERING

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 01 0 1

1 0 3

1 0 5

1 0 7

1 0 9

1 0 1 1

1 0 1 3

1 2 4 1 2 8 1 3 2 1 3 6 1 4 01 0 3

1 0 4

1 0 5

Int
ens

ity

S c a t t e r i n g  a n g l e  [ d e g . ]

 

 

Int
ens

ity

S c a t t e r i n g  a n g l e  [ d e g . ]

 L M T
  G O

Figure 2.16 – The parameters are the same as in Figure 2.15 except for parallel polarization.

orders [65]. The difference is significant only in the vicinity of the GO rainbow an-

gles and in the Alexander zone. Out of this region, the GO gives very precise results.

Airy proposed a method to solve this problem [3], which works very well in in the

vicinity of the GO rainbow angles and in the Alexander zone, but not as well out of

this region. Airy theory will be revisited in Chapter 4.
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Figure 2.17 – Scattering diagrams of p = 2 and p = 3 for a sphere in perpendicular polariza-
tion by Debye theory and GO. The incident plane wave with wavelength λ = 0.6328 µm is
in perpendicular polarization. The radius of particle and its refractive index are a = 100 µm
and m = 1.333.
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Figure 2.18 – Same parameters as Figure 2.17 except for parallel polarization.
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2.3 Summary

The fundamental concepts and laws of the geometrical optics (GO) and the physical

(PO) are introduced from the point view of their application to the light scattering

by particles. Then, the scattering of plane wave by an infinite circular cylinder and a

sphere is taken as examples to illustrate the applicability and the limitations of these

two approximate models. By comparison of the scattering patterns with the rigor-

ous Lorenz-Mie theory, it is shown that GO permits to calculate the amplitude and

the phase of all the emergent rays in far field but it fails in prediction of the scattering

in forward direction and near the rainbow angles. PO can remedy the scattering in

the forward direction by considering the particle as a disk but the rectification of the

scattering near the rainbow angles has been an arduous topic since a long time. The

essential concepts presented in this chapter serve as a base to the understanding of

the Vectorial Complex Ray Models and its application in the following chapters.
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Chapter 3

Vectorial complex ray model for light

scattering

The geometrical optics (GO) for light scattering described in the previous Chapter

can only be applied to the spherical particles and the infinite circular cylinders, be-

cause in these special cases, the direction, the amplitude and the phase of all the

emergent rays can be given in analytical form. If a particle has not such circular

symmetry, it will be very difficult, as for a ellipsoidal particle [32, 33], or impossible

(for a particle of arbitrary shape). To deal with this problem, the Vectorial Complex

Ray Model (VCRM) has been developed.

We will present in this Chapter the fundamentals of the VCRM and apply it to

the scattering of a infinite elliptical cylinder and an ellipsoidal particle. In the case

of the scattering by an elliptical cylinder, we will limit ourselves to the normal inci-

dence and we observe the scattering in the plane perpendicular to the cylinder axis,

so call VCRM2D, since this is a pure 2D scattering problem. For the scattering of an

ellipsoidal particle, only the scattering in a symmetric plane will be considered. This

will be called VCRM2D+ because the curvature of the ellipsoid in the direction per-

pendicular to the symmetric plane is taken into account. In both cases, the incident

wave will be a plane wave.

3.1 Fundamentals of VCRM

In the GO, a ray is characterized with four properties (as seen in the last Chapter):

the direction, the amplitude, the phase and the polarization. In the VCRM [53], a

new property of the wavefront curvature is introduced, which describes the curva-

39



CHAPTER 3. VECTORIAL COMPLEX RAY MODEL FOR LIGHT SCATTERING

ture property of the wavefront of the wave that the ray represents at the considered

point. The variation of the amplitude of the wave along a ray is calculated directly

with the wavefront curvature. And the phase due to the focal lines is just a count

of the number of the sign changes of the wavefront curvature radii. In this section

we will explain how to calculate the wavefront curvature when a ray is refracted or

reflected by the particle interface or propagates from one point to the other in the

same medium, and how to deduce the variation of the amplitude from the the wave-

front curvature radii. All these will be applied to the calculation of the scattering

diagrams of an infinite elliptical cylinder and an ellipsoidal particle.

3.1.1 Convention of the sign of curvature radii

In the point view of differential geometry, the curvature property of any smooth sur-

face can be described by a 2×2 curvature matrix in a given base and the matrix is

diagonal if the base are the two principal directions. In the latter case, the two di-

agonal elements of the matrix are the principal curvatures (κ1, κ2) of the surface

and their inverse values are the principal curvature radii. A surface can be convex

or concave, so the values of the curvatures (or principal radii) may be positive or

negative. In the VCRM we adopte following convention: Along the propagation di-

rection of a ray, if the curvature center of the surface locates after the incident point,

the sign of curvature radius is positive, otherwise, it is negative. This convention will

be applied to both the curvature of the wavefront and the curvature of the particle

surface.

Ti illustrate the convention mentioned above, we consider a light ray (red in Fig-

ure 3.1 which represent the propagation of a plane wave impinging on a particle

surface. The two principal curvatures (κ1, κ2) of the wavefront are zero and the cur-

vature radii (R1, R2) are infinity. The curvature radius ρa of the particle surface at

point A in the plane x y is positive since its curvature center Oa is after the interac-

tion point. The curvature radius Ra of the wavefront of the refracted wave at A in the

x y plane is also positive because its curvature center F is after the point A. Similarly,

the curvature radii of the particle surface ρb and the wavefront Rb at point B are both

negative. The wavefront curvatures (or curvature radii) change the sign form A to B,

so there is a focal line between the two points. Consequently, the calculation of the

phase shift due to the focal lines is just a matter of counting the number of the sign

changes of the wavefront curvature. If the wavefront curvatures (or curvature radii)
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change N f times of sign from the first interaction point to the observation point, the

total phase shift due to the focal lines Φ f is given as

Φ f =
π

2
N f (3.1)

The refracted wave at point B in the Figure is divergent, so its wavefront curva-

ture radius is negative and there is not focal line outside of the particle. If the cur-

vature radius of the emergent wave is positive, there will be a supplementary phase

shift from the emergent point to the infity.

A

B
F

1m 
1p =

Incident wave

Emergent wave

x

y

O

0
aR 

0
bR 

a
b

d R
R

=
−

0a 

0b 

aO

bO

Figure 3.1 – Convention the sign of curvature radii.

The wavefront curvature radii at two successive interaction points are related by

the distance between them

Rb = Ra −d

3.1.2 Wavefront equation

As mentioned above, we are only interested in the scattering in a symmetric plane.

In this case, one of the principal directions is always in the symmetric plane and the

other is perpendicular to the this plane. The wavefront equation in matrix form [53,

54] is simplified into two scalar equations. The relationship between the curvature

radii of the particle, the incident wavefront and the refraction wavefront are given
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as
kr

R′
1

= ki

R1
+ kr n −ki n

ρ1
(3.2)

k2
r n

kr R′
2

= k2
i n

ki R2
+ kr n −ki n

ρ2
(3.3)

where kr and ki are the wave numbers of the refracted and the incident waves.

R′
ν and Rν are the principal wavefront curvature radii of the refracted and incident

wave, the subscripts ν= 1 and 2 denote respectively the plane in the incident plane

and that perpendicular to the incident plane. The ρν is the curvature radius of the

particle surface in the plane ν. The wavefront equations (3.2) and (3.3) are also ap-

plicable to the reflected wave [53] by taking kr = ki and kr n =−ki n .

For the scattering by a infinite cylinder illuminated perpendicularly by a plane

wave, only Eq. (3.3) is necessary.

3.1.3 Divergence factor

When a wave propagates, its amplitude decreases or increases along the optical path

according to its convergence or divergence. This property can be described by the so

called divergence factor D. We will derivate the relation of the amplitudes between

two points by the energy balance in a bundle of rays and then generalize it to obtain

the definition of the divergence factor in the VCRM.

Bundle of rays in 2D

A bundle of rays in a 2D wave is shown in Figure 3.2. Suppose that the intensity on

the wavefront A1A2A3A4 is Ii and that on the wavefront B1B2B3B4 is Ie . Ri and Re

represent the value of their curvature radii of the wavefront. The superscript e or i

stands for the emergent or the incident wave. According to the energy balance, we

have

Ii Ri hdθ= Ie Re hdθ (3.4)

where h is the height of the elements. It is ready to deduce that the amplitudes of

the wave at the two points are related by

Ee

Ei
=

√
Ie

Ii
=

√∣∣∣ Ri

Re

∣∣∣ (3.5)
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Figure 3.2 – Ray model in a homogeneous medium for 2D.

Bundle of rays in 3D

Figure 3.3 shows a bundle of rays in 3D. f1 and f2 are two focal lines in the per-

pendicular and parallel planes. Same as in 2D problems, according to the en-

ergy balance, the energy flux crosses area of S(A) = |dα1R1,i dα2R2,i | and S(B) =
|dα1R1,e dα2R2,e | are equal. So, IAS(A) = IBS(B), this is rewritten as,

IB

IA
=

∣∣∣ R1,i R2,i

R1,e R2,e

∣∣∣ (3.6)

where IA and IB are the intensity on the surfaces S(A) and S(B) respectively.
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Figure 3.3 – Ray model in a homogeneous medium for 3D.
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Therefore, the relationship of the amplitudes at two points A and B is given as

Ee

Ei
=

√∣∣∣ R1,i R2,i

R1,e R2,e

∣∣∣ (3.7)

In the light scattering by a particle, a ray interacts successively with the particle sur-

face, we can apply the relation Eq. (3.7) repeatedly and define the divergence factor

as the ratio of the intensity of the emergent wave to that of the incident one.

As an example, we show in Figure (3.4) the trajectory of a ray in a symmetric

plane of a particle. The curvature radius of the wavefront of the reflected wave p = 0

in the scattering plane at point A is noted by Re
2,1 (the curvature radius in the per-

pendicular plane Re
1,1 is omitted for clarity). The curvature radius of the emergent

ray at a distance d from A is Re
2,1 −d . So the divergence factor of the reflected ray is

D2,d =
∣∣∣ Re

2,1

Re
2,1−d

∣∣∣.
The curvature radius of the wavefront of the refracted wave at point A is noted

by R′
2,1. The distant from point A to the next interaction point B is d12. The curva-

ture radius of the incident wave at point B is then R2,2 = R′
2,1 −d12. The ratio of the

intensity between the two points due to the variation of the curvature radii is then∣∣∣ Re
2,1

R′
2,1−d12

∣∣∣. The curvature radius of the wavefront of the first refracted wave p = 1 is

noted by Re
2,2. The divergence factor of the emergent ray p = 1 at an observation

distance d from B is calculated therefore by D2,d =
∣∣∣R′

2,1
R2,2

Re
2,2

Re
2,2−d

∣∣∣.
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Figure 3.4 – Divergence factor in an elliptical cylinder.

44



CHAPTER 3. VECTORIAL COMPLEX RAY MODEL FOR LIGHT SCATTERING

We can continue this procedure to any order p and apply the same principle

to the divergence factor due to the variation of the curvature radii in the direction

perpendicular to the scattering plane. The divergence factor Dd is given as

Dd =
∣∣∣∣R′

1,1R′
2,1

R1,2R2,2
·

R′
1,2R′

2,2

R1,3R2,3
. . .

R′
1,p R′

2,p

R1,q R2,q
·

Re
1,q Re

2,q

(Re
1,q −d)(Re

2,q −d)

∣∣∣∣ (3.8)

where q = p + 1 is the number of interactions of the ray with the particle surface.

The relation between the wavefront curvature radii R′
ν,q and Rν,q+1 of two successive

interaction points is given as their distance dq,q+1

Rν,q+1 = R′
ν,q −dq,q+1 (3.9)

In fact, Eq. (3.8) is valid for the interaction of a ray with a particle of any shape

whether the ray trajectory remains in the same plane or not since only the curvature

radii of the wavefront between two successive points intervene step by step (see

Figure 3.3 and Eq. (3.7)).

Complex amplitude

In far field, the distance d ≈ r →∞. The intensity of an emergent ray can be written

as

IX,p = |EX,p |2
(kr )2

(3.10)

By consideration of the Fresnel factor εX,p and the phase of the ray, omitting the

spherical wave factor 1/(kr )2 as the convention, the complex amplitude of the ray

is given as

EX,p = k
√
Dp |εX,p |exp(iΦT) (3.11)

where εX,p is Fresnel factor given as

εX,p =
{

rX,0, p = 0

tX,0tX,p
∏p−1

j=1 rX, j , p ≥ 1
, (3.12)

tX,0 and tX,p are the Fresnel transmission coefficients at the incident point and

emergent point, rX, j the Fresnel reflection coefficient at j th internal reflection. In

the case of spherical particle, tX,0 = tX,p and rX, j is a constant. Eq. (3.12) is simplied

to the equation given in the Chapter 2.
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Dp is given as

Dp = lim
r→∞(r 2Dr ) =

∣∣∣R′
11R′

21

R12R22
· R′

12R′
22

R13R23
. . .

R1p R′
2p

R1q R2q
·Re

1q Re
2q

∣∣∣ (3.13)

Notice, in the case of a sphere, the complex amplitude Eq. (3.11) is the same as Eq.

(2.49). This will be proved in Appendix C.

For the 2D scattering, such as the scattering of an infinite elliptical cylinder, only

the divergence in the symmetric plane is considered. The divergence factor is sim-

plified to

Dd =
∣∣∣∣R′

2,1

R2,2
·

R′
2,2

R2,3
. . .

R′
2,p

R2,q
·

Re
2,q

Re
2,q −d

∣∣∣∣ (3.14)

So, the complex amplitude in VCRM2D is given as

EX,p = |εX,p |
√
π

2
kDp exp(iΦT) (3.15)

whereD2,p

Dp = lim
r→∞(rD2,r ) =

∣∣∣R′
21

R22
· R′

22

R23
. . .

R′
2p

R2q
·Re

2q

∣∣∣ (3.16)

The presence of the factor π/2 in Eq. (3.15) has been explained in Chapter 2, see

also [119].

The total phase ΦT is given in the same form as in the GO (Eq. (2.35)), but the

calculation of all the terms are not the same. The initial phase Φi depends only

on the incident wave, so independent of the particle. But the phase shift of the

Fresnel coefficients ΦF must be calculated step by step, especially the total reflec-

tion may occurs in a non-spherical particle. The phase shift of the focal lines Φ f is

just a count of the number of the sign changes of the curvature radii in VCRM (Eq.

(3.1)). The phase of the optical path ΦP is also to be calculated step by step since

the optical path between two successive interaction points changes each time in a

non-spherical particle.
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3.2 VCRM for an infinite elliptical cylinder and an el-

lipsoid

In this section, we will apply the VCRM to the study of the scattering of a plane wave

by an infinite elliptical cylinder and an ellipsoidal particle.

3.2.1 Description of the particle surface

An infinite elliptical cylinder:

The cross section of an infinite elliptical cylinder is described by

x2

a2
+ y2

b2
= 1 (3.17)

where a and b are the semi-axes along x and y respectively.

The unit normal vector n̂ and the unit tangent vector τ̂ at a given point (x, y) on

the particle surface are given as

n̂ = (nx ,ny ) =
(

b2x√
b4x2 +a4 y2

,
a2 y√

b4x2 +a4 y2

)
(3.18)

τ̂ = (τx ,τy ) = (−ny ,nx) (3.19)

In the calculation, −n̂ will be used for the first incident point, so that the wave vector
~k makes an acete angle with the normal of the particle surface.

The curvature radius ρ of the particle surface is

ρ= a2b2
(

x2

a4
+ y2

b4

) 3
2

(3.20)

Eqs. (3.18) - (3.20) are applicable to any interaction point of a ray with the particle

surface.

An ellipsoid:

The surface of an ellipsoid is described by

x2

a2
+ y2

b2
+ z2

c2
= 1 (3.21)
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We consider the scattering in the x y plane (so z = 0). The coordinates of the incident

points (xi , yi ), the unit normal vector n̂, the unit tangent vector τ̂ are all the same as

for an infinite elliptical cylinder. But we have now two curvature radii, one is in the

symmetrical plane and the other in the perpendicular direction. The two principal

curvature radiis of an ellipsoidal particle surface ρ1 and ρ2 at point (xi , yi ) are

ρ1 = c2

a

[
1+ (a2/b2 −1)y2

i /b2]1/2
(3.22)

ρ2 = b2

a

[
1+ (a2/b2 −1)y2

i /b2]3/2
(3.23)

3.2.2 Ray tracing

We present now the ray tracing procedure in the framework of the VCRM and the

calculations of all the properties of the emergent rays. Since the cross section of

an infinite elliptical cylinder is the same as the symmetric plane of an ellipsoid of

the same axes. The ray tracing process for the two particles are the same except the

calculation of the curvature radii in the perpendicular direction of an ellipsoid.

Interaction of rays with particle surface

We suppose that the incident plane wave propagates along x axis and is discretized

as N equal distant rays along y axis. The coordinates of the incident points on the

particle surface are

(xi , yi ) =
(
−a

√
1− (yi /b)2, (2t +1)b/N−b

)
(3.24)

where t = 0,1,2 . . . (N−1).

The incident wave vector can be projected in two bases (Figure 3.5):

In the base (n̂, τ̂) :
~ki = ki nn̂ +kiττ̂ (3.25)

where ki n =~ki · n̂ and kiτ =~ki · τ̂. According to the Snell laws (kiτ = klτ = krτ), the

wave vectors of the reflected ray and the refracted ray are
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~kl = −ki nn̂ +kiττ̂ (3.26)

~kr = kr nn̂ +kiττ̂ (3.27)

where kr n =
√

k2
r −k2

iτ. These components are used to determine the directions

of the reflected and refracted rays, and to calculate the Fresnel coefficients at each

interaction point.

The refracted ray at the first interaction point is the incident ray of the second

interaction point (Figure (3.5)), and the reflected ray at the second point is the in-

cident ray of the next point, etc. So we can use Eqs. (3.26) and (3.27) repeatedly to

determine the wave vectors of all the emergent rays.
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Figure 3.5 – Ray tracing in an ellipse.

In the base (êx and êy ) To determine the coordinates at the next interaction point

after the previous interaction point we need the direction parameters of the ray,

which are the two components of the wave vector of the refracted ray. Let ~k the

wave vector between two successive points and (kn ,kτ) its components in the base

(n̂, τ̂). Then
~k = kx êx +ky êy (3.28)
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where êx and êy are two unit vectors in x and y direction for Cartesian coordinate

system. kx and ky are given as

kx = knnx +kττx

ky = knny +kττy
(3.29)

The equation of the ray is given as

y = κx +b0 (3.30)

where κ and b0 is given as

κ= ky

kx
(3.31)

b0 = y0 −κx0 (3.32)

where (x0, y0) are the coordinates of the previous point. The combination of Eq.

(3.17) and (3.30) yields

(b2 +a2κ2)x2 +2κb0a2x + (b2
0 −b2)a2 = 0 (3.33)

The coordinates of the next interaction point (x1, y1) are then the solution of Eq.

(3.30) given as

xc = −B±
p

B2−4AC
2A

yc = κxc +b0
(3.34)

where
A = (b2 +a2κ2)

B = 2κb0a2

C = (b0
2 −b2)a2

(3.35)

The sign ± in Eq. (3.34) take that of kx .

The distance between the two points is

d =
√

(xc −x0)2 + (yc − y0)2 (3.36)

Phase due to optical path

The schema for the calculation of phase due to optical path is shown in Figure 3.6.

We define first the reference ray as a ray arriving at O from the same direction as the

incident ray and goes out as the emergent ray as if there is no particle.
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The phase for p = 0 relative to the reference is given as

ΦP =−~ki ·−→OC+~k0 ·−→OC (3.37)

The phase of p = 1 is given as

ΦP =−~ki ·−→OC+~k1 ·−→OE−mkCE (3.38)
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Figure 3.6 – Calculation of the phase of the optical path in a non-spherical particle.

In general, we deduce that the phase due to optical path of order p is given by

ΦP = (~kp ·~rp −~ki ·~r0)−
p∑

q=1

~k ′
q · (~rq −~rq−1) (3.39)

where ~r0 is the position vector of the incident point, ~kp is the wave vector of the

emergent ray of order p,~rp the position vector of the emergent point,~k ′
q is the wave

vector from the (q − 1)th to the q th interaction points inside the particle. In the

special case of a spherical particle, Eq. (3.39) reduces to Eq. (2.38).

Amplitude and phase of emergent rays

The wavefront curvatures at each interaction point can be calculated by Eq. (3.3) for

the infinite elliptical cylinder and by Eqs. (3.2) and (3.3) for the ellipsoidal particle.

The phase due to focal lines, the phase of Fresnel coefficients, the Fresnel factor

and the divergence factor are calculated with formulas given in the previous section

without difficulty. Therefore, we can calculate the complex amplitudes of all the
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emergent rays. But in practice, the directions of the emergent rays are irregular, we

cannot calculate directly the total field by their summation. The interpolation is

necessary to calculate the amplitudes and the phases of the all the emergent rays

at the given direction. The total field at the that direction is the summation of the

interpolated complex amplitudes.

3.2.3 Scattering diagrams of an infinite elliptical cylinder

According to Eqs. (3.15) and (2.55), the scattering diagrams of an infinite elliptical

cylinder for the perpendicular and parallel polarizations are calculated. We shown

in the following some examples.
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Figure 3.7 – Scattering diagrams of an infinite elliptical cylinder. The incident wavelength
is 0.6328 µm and in perpendicular polarization. The other parameters of the particles are
a = 100 µm and the relative refraction index m = 1.333. For clarity, the scattering diagrams
are offset by 10−2 and 102.

We find, in Figures 3.7 and 3.8, that the intensity in the rainbow region is sensi-

tive to the parameter b. In other regions such as in the region [90◦,110◦] in perpen-

dicular polarization, this obvious discrepancies is due to the effect of parameters

b to their optical path and divergence factor for p = 0 and p = 3. In the region of

[65◦,82◦] in parallel polarization, the intensity varies strongly as function of b, this

is due to the effect of b to order p = 1, the edge ray of b = 100 is in θ = 80◦, but the

edge rays of the particles b = 95 and b = 105 are in θ= 67◦ and θ= 68◦ respectively.

So, the small variation of b can affect the scattering diagrams obviously.
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Figure 3.8 – Scattering diagrams of an infinite elliptical cylinder. Same parameters as Figure
3.7 except for parallel polarization.

3.2.4 Scattering diagrams of an ellipsoid

According to Eqs. (3.11) and (2.55), the scattering diagrams of an ellipsoid on their

equatorial plane are shown in Figures 3.9- 3.11. The forward diffraction of an ellip-

soid is

Ed (θ) = k2bc
J1(kbθ)

kbθ
(3.40)

The infinite elliptical cylinder can be seen as a special condition of an ellipsoid when

its c (that is the semi-axes perpendicular to incident plane) is much larger than the

parameters a and b. So, compare the Figures 3.7, 3.9 and 3.10 or 3.8 and 3.11, we can

analyse the effect of different c to scattering diagrams. From these Figures, we can

find the curvature radii in perpendicular plane of the particle can affect the scatter-

ing diagrams in equatorial plane.

For the scattering diagrams in perpendicular, in Figures 3.7 and 3.9, the hyper-

bolic umbilic (HU) phenomenon caused by parameter c (c is smaller than a and

b [101]) is obvious and its direction is also affected by the ratio of b/a. According to

Figures 3.7 and 3.10, we also find c (c is bigger than a and b [101]) can cause another

kind caustics by the rays of p = 3. Its position is affected also by the ratio of b/a. Be-

sides, the scattering diagrams of these three ellipsoid also keep similarly trends as

as Figure 3.7 because of same shape in incident plane. For the scattering diagrams

in parallel polarization, in Figures 3.8 and 3.11, the parameters c still has the similar
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effects for the scattering diagrams in parallel polarization. The scattering diagrams

for the particle with b = 95 and b = 105 are offset by 104 and 10−4 respective for

clarity.

Therefore, for the scattering of an ellipsoid in its equatorial plane, the parame-

ters c still has the effect to the trend of scattering diagrams both in perpendicular

and parallel polarization.
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H U  c a u s t i c s

Figure 3.9 – Scattering diagrams of an ellipsoid. For the particle, parameters of a = 100 µm,
c = 85 µm, the other parameters are the same as Figure 3.7.

In Table 3.1, the computation time for light scattering by non-spherical particles

are shown in Figure 3.9. The number of incident ray and scattering angle is 4000.

Their simulation time is near 0.469 s. For other simulations in this Chapter, their

time are close to Table 3.1. We can find VCRM is quilt efficient compared with nu-

merical methods.

Table 3.1 – Computation time for light scattering by non-spherical particles in the Figure
3.9.

b(µm) CPU time of Simulation (s)
95 0.468

100 0.469
105 0.469
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Figure 3.10 – Scattering diagrams of an ellipsoid of a = 100 µm, c = 135 µm, the other pa-
rameters are the same as Figure 3.7.
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Figure 3.11 – Scattering diagrams of an ellipsoid with the same parameters as Figure 3.10
except that the incident wave is in the parallel polarization
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3.3 Summary

The Vectorial Complex Ray Model (VCRM) developed in the CORIA laboratory per-

mits to predict the amplitude and the phase of a ray at any position for a particle

of any shape of smooth surface. The essentials of this model are presented and ap-

plied to the scattering of an infinite elliptical cylinder and an ellipsoid. The relation

of the scattering patterns, especially the geometrical rainbow angles as function of

the shape of the particle has been studied. Since VCRM is still a ray model the flaw

of the intensity discontinuity at the rainbow angle persists. This problem is to be

undertaken in the next chapter by the combination of VCRM with the PO.
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Chapter 4

Rainbow theory based on VCRM and

PO

The geometrical optics (GO) and the Vectorial complex ray model (VCRM) for light

scattering presented in the two previous chapters are pure ray models. Because of

the high symmetry of a sphere, the scattering angle, the phase and the amplitude

in far field of each emergent ray can be calculated analytically in the framework

of the GO. On the other hand, thanks to the new property of rays – the wavefront

curvature — in the VCRM, we can predict further the phase and amplitude of each

ray at any position along a ray for a particle of any shape of smooth surface. The

simulations have demonstrated that both the GO and the VCRM can predict well

the scattering diagrams in almost all directions. However both fail in the vicinity of

the geometrical rainbow angles. In fact, this is at the same time a troublesome and

a fruitful subject to the physicians since longtime. And it has not been completely

solved until nowadays, even for a spherical particle. We will address this problem in

this chapter by combining the VCRM and the physics optics.

The rainbow is one of the most beautiful phenomena in nature. Research on

its formation attracts curious minds and great scientists [1, 4, 49]. Descartes gave

the first satisfactory explanation of a rainbow by numerical simulation based on his

new discovered refraction law. He considered the rainbow as the extreme deviation

angles of the emergent rays [R. Descartes, Oeuvres complètes, III. Discours de la

méthode et essais, pp355-361]. Evidently the intensity is not continuous at these

angles, this fact does not agree with the reality because no physical quantity can be

discontinuous in the real world.

In fact, this geometrical rainbow angle θR can be determined analytically using

57



CHAPTER 4. RAINBOW THEORY BASED ON VCRM AND PO

the deviation angle Eq. (2.32), or by setting the divergence factor to infinite of Eqs.

2.33 and 2.45. Here again, the infinite intensity is not realistic neither.

To address this problem, Airy provided a formula [3, 4] – integration of the field

on a virtual line perpendicular to the rainbow ray. For nearly two centuries this

theory has been studied by mathematicians and physicists from different points of

view. For example, several authors [12, 64, 86] have shown that the intensity max-

ima in the scattering patterns of a spherical drop should be corrected by a factor.

However, the comparison with the rigorous Debye theory illustrated clearly that the

discrepancy between the improved Airy theory and the rigorous theory is still evi-

dent [65], and this increases as a function of the order p and the angle difference

θ−θR. On the other hand, it is known also that Airy theory failed to predict correctly

the scattering patterns for the parallel polarization [49, 81, 84]. So it is necessary to

examine if these discrepancies are an intrinsic flaw of the ray model or just due to

the approximation in Airy theory.

4.1 Airy theory

To address the problem of the intensity discontinuity in the rainbow angles, Airy

calculated the phases of the emergent rays in the neighbourhood of rainbow angle

by expanding the relations obtained in the geometrical optics in the vicinity of the

rainbow angle. The amplitude of the emergent wave near rainbow angle is assumed

as constant amplitude along a virtual line. We recall first the Airy theory and its

improvements.

4.1.1 Airy approximations for the phase and amplitude

When a ray impinges on a spherical particle of relative refractive index m (see Figure

4.1), the incident angle θi and the refraction angle θr are related by Snell’s law Eqs.

(2.2) and (2.3). The deviation angle of the emergent ray of order p is given by Eq.

(2.25). In the geometrical optics point of view, the rainbows occur when the devia-

tion angle reaches the extremum value θR. By setting dθp /dτ = 0 in Eq. (2.24) and

using Eq. (2.3), we have

sinτR =
√

m2 −1

p2 −1
, (4.1)
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Though θR can locate the position of the rainbow, the GO cannot predict cor-

rectly the intensity near the rainbow angle. To remedy this problem, Airy applied

diffraction theory [4] to calculate the scattering intensity in the neighborhood of the

rainbow angle by integration of the complex amplitude on the virtual line v perpen-

dicular to the rainbow ray. To obtain the phase function on this line, Airy developed

θp as a function of τ near the rainbow angle θR as

θ−θR ≈ dθ

dτ
(τ−τR)+ 1

2

d 2θ

dτ2
(τ−τR)2, (4.2)
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Figure 4.1 – The emergent rays in the neighbourhood of the rainbow angle.

According to Eqs. (2.3), (2.24) and the condition dθ/dτ= 0 [4], we have

d 2θ

dτ2
= 2

tanτR

(
1− 1

p2

)
(4.3)

So, Eq. (4.2) is given as

θ−θR = 1

tanτR

(
1− 1

p2

)
(τ−τR)2 (4.4)

On the other hand, the coordinate v is defined as (see geometrical means in Figure

59



CHAPTER 4. RAINBOW THEORY BASED ON VCRM AND PO

4.1)

v = a cosτ−a cosτR (4.5)

Again, in the vicinity of the rainbow angle θR, v can be approximated to

v ≈−a (τ−τR)sinτR. (4.6)

We define the orthogonal coordinates (O′ : u, v) with u along the rainbow ray

and v passing by the particle center. The tangent of the wavefront curve

du

d v
= tan(θ−θR) ≈ θ−θR, (4.7)

By combining Eqs. (4.4) and (4.6), we obtain finally

du

d v
= v2

a2 sin2τR tanτR

(
1− 1

p2

)
(4.8)

By integration on v , we find the cubic phase function

u = h

3a2
v3 (4.9)

where h is a constant [7] given as

h = (p2 −1)2

p2

(p2 −m2)1/2

(m2 −1)3/2
(4.10)

We would note that in obtaining this cubic phase function, the approximation

θ−θR ∼ 0 is used in Eqs. (4.2), (4.5) and (4.7). So, the cubic phase function is valid

only in the vicinity of the rainbow angle θR.

4.1.2 Scattered field in the neighbourhood of rainbow angle

To obtain the amplitude of the scattered field in the neighbourhood of rainbow an-

gle, Airy assumed further that the amplitude of the emergent rays on the v line is

constant and “omit entirely the integration for the ordinate perpendicular to the

plane of x, y, because it would only introduce a factor common to every part, and

therefore would not modify the proportion of intensity at different points.” [3]. So

the amplitude of the scattered field (“whole disturbance” of Airy) in the angle θ can

be calculated by an integral in the form
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∫
z ′

exp[−i k(θ−θR)v + i ku(v)]d v (4.11)

He argued further [3] that the limits through which the integration is to be per-

formed are from z ′ a sensible quantity negative to z ′ a sensible quantity positive, and

on account of the minuteness of the divisor λ (wavelength), this will be the same as

taking it between the limits −∞, +∞”. Finally, the amplitude of the scattered field is

calculated by

E(θ) = C
∫ ∞

−∞
exp

[
−i k(θ−θR)v + i k

h

3a2
v3

]
d v (4.12)

The constant C has no influence on the profile of the scattering diagram but

depends on the shape and refractive index (so the Fresnel factor) of the particle.

Several authors have investigated it [12, 64, 86, 107].

The constant C for the infinite circular cylinder is given as

C = k

2
|εX,p | (4.13)

where εX,p is the Fresnel coefficient of the rainbow ray. By using the simple

change of variable t 3 = kh
a2 v3, the Eq. (4.12) is rewritten as

E(θ) = C

(
kh

a2

)−1/3 ∫ ∞

−∞
exp

[
−i

α2/3

h1/3
(θ−θR)t + i

t 3

3

]
d t (4.14)

we define ξ

ξ=−
(
α2

h

)1/3

(θ−θR) (4.15)

where α= ka is the size parameter. According to the definition of the Airy function

in appendix A.1, the scattered field of an infinite circle cylinder in the rainbow region

is eventually given as

E(θ) = π|εX,p |α2/3

h1/3
Ai(ξ) (4.16)

If the particle is spherical, the divergence factor of the wave in the direction per-

pendicular to the scattering plane must be considered. Tricker [12] has shown that

the factor should be multiplied by a size- and wavelength-dependent factor
p

a/λ.

On the other hand, the factor C should take into account the ratio of the divergence

factor of a sphere to that of a circular cylinder (sinθi R/sinθR)1/2 (θi R being the inci-

61



CHAPTER 4. RAINBOW THEORY BASED ON VCRM AND PO

dent angle corresponding to θR)[3]. The constant C in Eq. (4.12) is therefore

C = k|εX,p |
(

sinθi R

sinθR

a

λ

)1/2

(4.17)

Similar deduction to the case of the infinite circular cylinder, the scattered field

of a sphere in the neighbourhood of the rainbow angle is given by

E(θ) = |εX,p |α
7/6

h1/3

(
2πsinθi R

sinθR

)1/2

Ai(ξ) (4.18)

This equation is consistent with those of Nussenzveig, and Wang and van de Hulst

[64, 86] both of them concluding that a factor α1/3 should be added to the intensity

but for different reasons.

To evaluate the precision of the Airy theory, we compare in the following its re-

sults with the scattering diagrams calculated by the rigorous Debye theory for both

the infinite circular cylinder and the sphere.
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Figure 4.2 – Scattering diagrams of an infinite circle cylinder (left) and a sphere (right) of
p = 2 in the rainbow region. The polarization of the incident wave (λ = 0.6328 µm) is per-
pendicular to the scattering plane. The radius of the particle is a = 100 µm and its relative
refraction index m = 1.333.

The scattering diagrams calculated by Eq. (4.16) for an infinite circular cylinder

and by Eq. (4.18) for a sphere are compared, respectively, to those predicted by the

Debye theory in Figures 4.2 and 4.3 for the perpendicular and parallel polarizations.

We find that for the perpendicular polarization (Figure 4.2) Airy theory is in good

agreement with the Debye theory for the main supernumerary bow, but the discrep-

ancy increases gradually as function of the angle difference (θ−θR). And the posi-

tions of the intensity maximum and the minimum of the Airy theory around 150◦
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Figure 4.3 – Same parameters as Figure (4.2) except that the polarization of the incident
wave is in parallel scattering plane.

are opposite to those of Debye theory.

In the case of the parallel polarization (Figure 4.3), Airy theory fails completely to

predict the scattering diagrams. Its maximum and minimum positions are inverse

to those of the Debye theory near the geometrical rainbow angles. The profile of the

scattering diagram of the Debye theory for parallel polarization is completely differ-

ent from that of the perpendicular polarization with the plateau after the rainbow

angle while the Airy theory predicts always the similar profile.

The similar results have been reported by several authors for the spherical parti-

cle [65, 84, 86]. For discrepancies of perpendicular polarization, its is mainly caused

by its approximations on phase (cubic function) and amplitude (constant). These

approximations is accurate in the rainbow angle. For a discrepancies of parallel po-

larization, apart from in perpendicular polarization, the phase shift π at Brewster’s

angle is omitted. The results of the Airy theory for a spherical particle will be given

and examined in details in Section 4.3.

4.2 Phase and amplitude calculated by VCRM

In fact, the precision of the Airy theory has been always wondered by researchers

[1, 111]. Several authors intended to take into account the amplitude variation,

other try to extend the expansion order of the phase function. For example, Tanaka-

date expanded in 1907 both the amplitude and the phase functions in the vicinity

of rainbow angle until the fifth order [122], but his work has been completely for-

gotten (no citation found in the literature). In the 1979s, Können and de Boer [84]
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took into account the strong variation of the amplitude around Brewster’s angle by

expanding the Fresnel coefficient in the neighborhood of this angle to improve the

result, but they have not given a quantitative comparison with the rigorous theory.

This is due probably to the difficulty in the integration with high order phase func-

tion [64, 65, 111].

Here, we use a completely new strategy: The amplitude and the phase of all the

emergent rays along the v line are calculated rigorously in the sense of ray model

by the VCRM. Then, the scattered amplitude in the far field is calculated by the in-

terference of the emergent rays or by the diffraction integration according to their

angular position relative to the geometrical rainbow angle.

The coordinate v of an emergent ray CE (Figure 4.1) is given as its angle τ and

the deviation angle θ by

v = a cosτ

cos(θ−θR)
−a cosτR (4.19)

The origins O′ of the axis v is the intersection of the geometrical rainbow ray Fu and

the axis v . The phase Φ(v) of an emergent ray having the intersection point with

v-axis at v is calculated by

Φ(v) =ΦP +ΦF +Φ f +∆Φvi r −ΦR, (4.20)

where ΦR is the phase of the geometrical rainbow ray, ∆Φvi r is the phase shift due

to the suplementary distance CD from the virtual line given as

∆Φvi r = ka cosτ tan(θ−θR) (4.21)

ΦP, ΦF and Φ f are the phase of optical path, Fresnel coefficient, and focal line, re-

spectively, as given in Chapter 2.

The amplitude of an emergent ray on the virtual line v is determined by the Fres-

nel factor and the divergence factor. The former remains unchanged and the latter

is to be revised because that given in Chapter 2 is for the far field.

In the VCRM, the intensity variation due to the divergence is calculated directly

by the ratios of the wavefront curvatures. The divergence factor of the ray on the

virtual line v due to the divergence on the scattering plane is given by

D2,vi r =
R′

21

R22

R′
22

R23
. . .

Re

Re +dvi r
(4.22)
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where dvi r is the distance between the emergent point E(xe , ye ) and the point on

the v line C(xv , yv ) given as

dvi r =
√

(xv −xe )2 + (yv − ye )2 (4.23)

In order to compute dvi r , we need to determine the coordinates of the emergent

point (xe , ye ). The angular position of the emergent ray of order p is (Figure 4.4)

xO
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B

Ax Bx

i

r

y

C

Ay

By

 

1p =

2p =
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0e
1e
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Figure 4.4 – Incident point and emergent point of a ray.

θe = θe0 −2pτ′ (4.24)

θe0 is the angle position of the incident point given by

θe0 = atan2(yi , xi ) (4.25)

where (xi , yi ) are the coordinates of the incident point. Therefore, the coordinates

of the emergent point (xe , ye ) are given as

(xe , ye ) = (a cosθe , a sinθe ) (4.26)
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and the equation of the emergent ray is given as

y = tanθ(x −a cosθe )+a sinθe (4.27)

Know that the equation of the virtual line v is

y =− x

tanθR
(4.28)

by solving the two above Eqs. (4.27) and (4.28) for x, y , we find the coordinates

(xv , yv ) as

(xv , yv ) =
(

a tanθR
tanθcosθe − sinθe

tanθ tanθR +1
,
−xv

tanθR

)
(4.29)

Thus, the distance dvi r and the divergence factor can be calculated by Eq. (4.23)

and (4.22) respectively.

Now we can examine the precision of the phase and the amplitude in the Airy

theory. We compare in Figures 4.5-4.8 the phase and amplitude of the Airy theory

Eq. (4.9) with those calculated by Eqs. (4.20) and (4.22).
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Figure 4.5 – Phase on the virtual line of p = 2. The polarization of the incident wave (λ =
0.6328 µm) is perpendicular to the scattering plane. The radius of the particle is a = 100 µm
and its relative refraction index m = 1.333.

The phases of the two polarizations for the rays of order p = 2 are compared

in Figure 4.5. We find that the phase of the Airy cubic phase function is in good

agreement with that of the VCRM in the vicinity of the geometrical rainbow angle,

i.e. for v ∼ 0, but the discrepancy increases with v and attains π when v is about
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Figure 4.6 – Amplitude on the virtual line of p = 2. Same other parameters as in Figure 4.5.

−18 µm and 15 µm for the perpendicular polarization. In the case of the parallel

polarization, there is a supplementary phase jump ofπ at the Brewster’s angle which

is not considered in the Airy theory.

The amplitude of the rays of order p = 2 for the two polarizations are compared

in Figure 4.6. Airy assumed that the amplitude is constant. However, we find that

it varies clearly as function of v according to the VCRM. At v = 0, the amplitudes of

Airy and VCRM are the same because that is the reference point (D2,r = 1 and the

same Fresnel factor). Out of this point, the amplitude varies as function of v in a

different manner for the two polarizations. This variation is caused by two factors:

the Fresnel factor ε(v) and the divergence factor Dvi r (v). To examine precisely the

influence of the two factors, we compare some numerical results of the divergence

factor and the Fresnel factor in Table 4.1 and 4.2

In the first column of Table 4.1, the scattering angles of the emergent rays are

presented. They are not regular because in the calculation, we take 2000 incident

rays with a constant step along y in Eq. (3.24) of incident point and the scattering

angles of the emergent rays are calculated by the Snell’s law Eqs. (2.10)-(2.13). The

corresponding coordinates v of these emergent rays are given in the second col-

umn. The wavefront curvature radii at different interaction points calculated by the

wavefront equation (3.3) are given in the columns 3 to 7. They are, respectively, the

refracted rays at the first interaction point R′
2,1, the incident rays at the second inter-

action point R2,2, the reflected rays at the second interaction point R′
2,2, the incident

rays at the third intersection point R2,3 and the refracted/emergent rays at the third

intersection point Re
2,3. The distance between the emergent position and the coor-
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Table 4.1 – Curvature radii (µm) in the scattering plane for the rays of order p = 2 near the
rainbow angle. The incident wavelength is λ= 0.6328 µm, the relative refraction index m =
1.333, the radius of the particle is a = 100 µm. The number of the incident ray is N = 2000.

Angles(◦) v(µm) R′
2,1 R2,2 R′

2,2 R2,3 Re
2,3 dvi r Dvi r

... ... ... ... ... ... ... ...
158.1180 20.23 72.10 −60.57 73.31 −59.36 −2.86 43.76 0.1028
156.8913 19.32 73.34 −59.49 75.17 −57.67 −3.21 42.61 0.1308
155.8650 18.58 74.46 −58.54 76.97 −56.04 −3.45 41.71 0.1575

... ... ... ... ... ... ... ... ...
137.9227 0.20 151.86 −0.63 −0.64 −153.14 6010 50.61 1.000
137.9220 0.10 152.37 −0.25 −0.25 −152.87 15228 50.78 1.000
137.9219 0.00 152.87 0.13 0.13 −152.62 −30580 50.95 1.000
137.9224 −0.10 153.38 0.51 0.50 −152.37 −7765 51.11 1.000
137.9234 −0.20 153.89 0.89 0.87 −152.13 −4492 51.28 1.000

... ... ... ... ... ... ... ... ...
138.7257 −6.00 182.68 22.76 14.50 −145.42 −300.47 61.06 1.005
138.7496 −6.09 183.17 23.13 14.66 −145.38 −297.87 61.22 1.005
138.7739 −6.19 183.65 23.51 14.81 −145.34 −295.37 61.39 1.005

... ... ... ... ... ... ... ... ...
143.9108 −19.74 247.52 73.71 27.34 −146.47 −201.38 82.09 1.058
143.9562 −19.84 247.95 74.06 27.39 −146.50 −201.24 82.22 1.058
144.0017 −19.93 248.38 74.40 27.45 −146.53 −201.11 82.35 1.059

... ... ... ... ... ... ... ... ...

dinate v of the ray as well as the divergence factor deduced from Eq. 4.22 are given

in the last two columns. We find that the divergence factor is almost constant for

the rays of coordinate v near zero or negative, but it decreases until about tenth at

v = 20 µm.

For a particle of circular section, the angles of the rays relative to the normal of

the particle surface are constant for all orders of rays. The influence of the Fresnel

factor can be calculated simply by Eq. (2.10) and (2.13). The values of these factor

for the same case as in Table 4.1 are given in Table 4.2 for the two polarizations. The

final amplitude of the emergent rays on the virtual line v are then calculated by EX =
εX

√
Ddi r and given in the last two columns. It is found that the final amplitude of the

perpendicular polarization is influenced mainly by the divergence factor while that

of the parallel polarization by the Fresnel coefficient, which has a strong variation

around the Brewster’s angle.

The curvature radii and the Fresnel factor of the rays of order p = 3 near the
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Table 4.2 – Fresnel factor εX(v) and the amplitudes of the emergent rays on the virtual line
v . The parameters are the same as in Table 4.1.

Angles(◦) v(µm) ε⊥,2(v) ε‖,2(v)
p

Dvi r E⊥,2(v) E‖,2(v)
... ... ... ... ... ...

158.1180 20.23 0.23354 0.32722 0.32062 0.07489 0.10493
156.8913 19.32 0.26091 0.35071 0.36166 0.09435 0.12682
155.8650 18.58 0.28158 0.36527 0.39686 0.11175 0.14496

... ... ... ... ... ... ...
137.9227 0.20 0.29753 0.06093 1.00000 0.29753 0.06093
137.9220 0.10 0.29679 0.05969 1.00000 0.29679 0.05969
137.9219 0.00 0.29605 0.05846 1.00000 0.29605 0.05846
137.9224 −0.10 0.29531 0.05724 1.00000 0.29531 0.05723
137.9234 −0.20 0.29458 0.05603 1.00000 0.29458 0.05603

... ... ... ... ... ... ...
138.7257 −6.00 0.25818 0.00044 1.00235 0.25878 0.00044
138.7496 −6.09 0.25764 0.00032 1.00244 0.25827 0.00033
138.7739 −6.19 0.25711 0.00108 1.00253 0.25776 0.00108

... ... ... ... ... ... ...
143.9108 −19.74 0.20327 0.07072 1.02856 0.20909 0.07274
143.9562 −19.84 0.20300 0.07105 1.02883 0.20885 0.07310
144.0017 −19.93 0.20272 0.07138 1.02902 0.20861 0.07345

... ... ... ... ... ... ...
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Figure 4.7 – Phase on the virtual line of p = 3 with the same parameters as in Figure 4.5.

rainbow angles are similar to those of the rays of order p = 2. The phase and the

amplitude on the virtual line are shown Figures 4.7 and 4.8. However, three remarks

are worth noting. Because the rays of order p = 3 are far from the Brewster’s angle,

there is no longer the jump of phase and the amplitude variation is more smooth for
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the parallel polarization. Furthermore, the scale of v is limited in a smaller region

because the edge ray is limited in the geometrical optics by

θp,ed g e = 2p cos−1(1/m)

which corresponds to the ray at tangent incidence (θi = 90◦ and τ = 0). The value

of vp,ed g e can be calculated by Eq. (4.19). For a water drop we have v2,ed g e = 0.268a

and v3,ed g e = 0.098a. The variation of the phases and the amplitudes are therefore

almost doubled. All these facts explain why the Airy theory works better for the

lower orders and much better for the perpendicular polarization than for the paral-

lel polarization.
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Figure 4.8 – Amplitude on the virtual line of p = 3. The parameters are the same as in Figure
4.5

4.3 Diffraction effect near rainbow angle

When the phase and the amplitude are calculated with VCRM, the scattering di-

agram in the neighbourhood of rainbow angle can be evaluated according to the

Huygens-Fresnel principle (Eq. (2.14)) by integration with a manner similar to that

used in the Airy theory. But the integration will be done numerically by using the

Hopkins’ algorithm because the phase and the amplitude are not in an analytical

form, so the Airy function for a cubic polynomial function is not applicable accord-

ing to Appendix B.

As in the last section, we will limit our discussion on the symmetric plane of the
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particle when the scattering is concerned. The algorithm described in this section

is applicable to the scattering in a symmetric plane by a particle of a circular or

elliptical section. (In principle, it can be applied to a particle of arbitrary shape in

the plane perpendicular to a caustics line).

Similar to Eq. (4.11) in the case of the Airy theory, the scattered amplitude in the

neighbourhood of the rainbow angle can be calculated rigorously in the sense of ray

model by the amplitude AX,p (v) and the phase ΦT(v) on the virtual line according

to

E(θ) = cD

∫ v1

v0

AX,p (v)exp[iΦT(v)]d v (4.30)

where cD is a dimension dependent constant given as

cD =
{

k
2 2D scattering: circular or elliptical cylinder, ...

k 3D scattering: sphere, ellipsoid, ...
(4.31)

The integration boundary v0 and v1 are taken to be v0 = −2ve and v1 = ve with ve

the value of v of the edge ray because there is no ray outside this limit.

The total phase is calculated by

ΦT(v) =−kv sin(θ−θR)+Φ(v) (4.32)

The amplitude is the product of the Fresnel factor εX,p and the divergence factor

AX,p (v) = |εX,p |
√

Dp,vi r

The former is the same for the 2D and 3D scattering. The latter is given for the 2D

scattering (an infinite cylinder) by

Dp,vi r =
∣∣∣∣∣R′

2,1

R2,2
·

R′
2,2

R2,3
. . .

Re
2,p+1

(Re
2,p+1 +dvi r )

∣∣∣∣∣
and for the 3D scattering (sphere, ellipsoid, ...) by

Dp,vi r =D1,p D2,p

=
∣∣∣∣∣k R′

1,1

R1,2
·

R′
1,2

R1,3
. . .

R′
1,p

R1,p+1
Re

1,p+1

∣∣∣∣∣ ·
∣∣∣∣∣R′

2,1

R2,2
·

R′
2,2

R2,3
. . .

Re
2,p+1

(Re
2,p+1 +dvi r )

∣∣∣∣∣ (4.33)
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The first term is the divergence factor of the wavefront perpendicular to the scat-

tering plane in infinity with the factor kr omitted as a convention for the same rea-

son as in the Airy theory (section 4.1.2). The second term is due to the divergence of

the wave in the scattering plane.

In the following sections we will examine by numerical calculation the influence

of different factors in the scattering diagrams in the neighbourhood of the rainbow

angle calculated by three methods: (1) Rigorous Debye theory, (2) Airy theory and

(3) our method of VCRM with the PO.

4.4 Rainbow diagrams of an infinite circular cylinder

In order to isolate the influence of the diffraction effect from that of the divergence

factor on the scattering diagram, we limit in this section to a 2D scattering problem

– the scattering of a plane wave by an infinite circular cylinder of refractive index

m = 1.333 illuminated by a plane wave of wavelength λ = 0.6328 µm at normal in-

cidence. The geometrical optics rainbow angle is θR = 137.92◦, the incident wave

is divided into N = 4000 rays with a constant step. The amplitude and the phase of

each order of emergent wave are sampled with 300 points obtained from the those

of the emergent rays. The complex amplitude of the scattered field at each given

angle is then calculated by the integration with Hopkin’s algorithm (see appendix

B).

We begin by the most classical and common case: the scattering diagrams for

the perpendicular polarization. This is also the most successful case of the Airy the-

ory. In a series of figures bellow, we will compare the scattering diagrams in the

rainbow region calculated by four methods: the Debye theory as reference, the Airy

theory, the VCRM and the VCRM combined with PO.

In order to simplify the analysis, we anticipate two important points: The first

is that the results of the VCRM with PO are in very good agreement with the Debye

theory in all the cases presented here. The second is that the results of the VCRM

agree well with those of the VCRM+PO except the main bow. We will therefore con-

centrate to the comparison of the Airy theory with the Debye theory – a rigorous

method to be convincing. The difference between the VCRM and the VCRM+PO

will be discussed when necessary.

For a particle of radius a = 100 µm (Figure 4.9), the peak position of the main

supernumerary bow predicted by the Airy theory is at 138.92◦, about 1.00◦ larger
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than the geometrical rainbow position and in a very good agreement with the De-

bye theory. But the discrepancy of the peak positions predicted by the Airy theory

increases with the angle difference∆= θ−θR between the scattering angle θ and the

geometrical rainbow angle θR. This amounts to about 1.3◦ around θ= 160◦, i.e. with

about a shift of two peaks. The intensity predicted by the Airy theory is also in very

good agreement with Debye for the first peak but different more and more when θ

increases.
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Figure 4.9 – Scattering diagrams of the primary rainbow of an infinite circular cylinder of
refractive index m = 1.333 and radius a = 100 µm. The incident plane wave λ = 0.6328 µm
is normal to the cylinder and polarized perpendicular to the scattering plane.

To investigate the precision of the Airy theory and our method, we compare in

Figures 4.10 and 4.11 the scattering diagrams for a particles of radius a = 1000 µm

and a = 10 µm respectively calculated in the same conditions.

We find that whatever the size of the particle (a = 1000 µm or a = 10 µm), the

intensities and the angle positions of the first supernumerary bows of the Airy the-

ory are in a good agreement with those of the Debye theory and of the VCRM+PO.

We would note however that for a large particle, a = 1000 µm for example (Figure

4.10), the supernumerary bows are narrow, the angle difference ∆ for several bows

near the main peak is small, the intensities and the peak positions agree very well

with those of the Debye theory. But for a small particle, say a = 10 µm, the an-

gle difference ∆ is already relatively large for the first peak, the difference between

the results of the Airy theory and the Debye theory is clearly discernible even in

the main peak. We note also that the intensity variation around 160◦ predicted by
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Figure 4.10 – Same parameters as Figure 4.9 except for a = 1000 µm.
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Figure 4.11 – Same parameters as Fig. 4.9 except for a = 10 µm.

VCRM, VCRM+PO, and the Debye theory are in good agreement and they are all

much smaller than that of Airy theory.

In Figure 4.10 are shown also the supernumerary bows near 160◦, but we must

note that the supernumerary peak position of the Airy theory is about 1.3◦ larger

than that predicted by the three other methods. The same case is found as that for

a particle of 100 µm shown in Figure 4.9. Furthermore, the calculation of different

particle sizes has shown that the peak position difference between the Airy theory

and the other three methods is almost independent of the particle radius. So we

may conclude that the precision of the Airy theory is independent of the particle size
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(at least for the perpendicular polarization).

Now, we examine the precision of the scattering diagrams predicted by the four

methods for the same particles but illuminated by a plane wave polarized in the

scattering plane, i.e. parallel polarization case.

The scattering diagrams in the rainbow region of the cylinders of radius a =
100 µm, a = 1000 µm, a = 10 µm are compared respectively in Figures 4.12 , 4.13

and 4.14. We would note firstly that the results of VCRM+PO are in very good agree-

ment with Debye theory in all the region for the three particles of very different sizes.

And the results of the VCRM agree also very well with the Debye theory and the

VCRM+PO except the main bow.

We find, as revealed by several authors [84, 86] and our results in the previous

section (Figure 4.3), that the Airy theory fails to predict correctly the scattering dia-

grams for the parallel polarization. The difference between the Airy theory and the

VCRM+PO for a cylinder of 100 µm (Figure 4.12) in the first three or four supernu-

merary bows is similar as that indicated by Khare and Nussenzveig [81] and ana-

lyzed already in the section 4.1. We can note also that if we compare the results in

a large range we find that the distance between the supernumerary bows predicted

by the Airy theory is larger than those predicted by the Debye theory and VCRM+PO.
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Figure 4.12 – Scattering diagrams of the primary rainbow of an infinite circular cylinder of
refractive index m = 1.333 and radius a = 100 µm. The incident plane wave λ = 0.6328 µm
is normal to the cylinder and polarized parallel to the scattering plane (along the axis of the
cylinder).

For a very large particle (a = 1000 µm in Figure 4.13) the intensity predicted by

75



CHAPTER 4. RAINBOW THEORY BASED ON VCRM AND PO

the VCRM+PO is almost constant near the geometrical rainbow angle so that the ef-

fect of the phase shift ofπ in Brewster angle (opposite of minima and maxima) is not

so visible in the first three bows as for the particle of a = 100 µm. In the large scat-

tering angle, the shift of the peak positions is similar as in the case of perpendicular

polarization.
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Figure 4.13 – Same parameters as Figure 4.12 except for the radius a = 1000 µm.
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Figure 4.14 – Same parameters as Figure 4.12 except for the radius a = 10 µm.

When the particle is very small (a = 10 µm in Figure 4.14) the agreement be-

tween the Debye theory and the VCRM+PO is still very good and the effect opposite

phase is also clear.
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Figure 4.15 – Same parameters as Figure 4.9 except for p = 3.
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Figure 4.16 – Same parameters as Figure 4.12 except for p = 3.

Figures 4.15 and 4.16 present the scattering diagrams of the second order rain-

bow of a particle a = 100 µm for perpendicular and parallel polarization respec-

tively.
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4.5 Detailed examination of Airy theory with

VCRM+PO

The precision of the Airy theory has been wondered and examined by researchers

since long time [4, 89, 111, 123]. We have shown in the previous sections that for

the perpendicular polarization, the discrepancy of the Airy theory from the rigor-

ous theory increases as the angle difference between the scattering angle relative to

the geometrical rainbow angle ∆ = θ−θR due to the cubic phase function approxi-

mation.

But the problem for the parallel polarization is more complicated and less clear.

Several authors agreed that the inverse of the maxima and the minima is due to the

phase shift of π in the Brewster angle and some of them [84, 122] have proposed to

develop the phase function and the Fresnel factor ε in Taylor series of higher orders,

including the shift jump of π but not numerical comparisons are reported. The im-

provement of the precision is unknown/unclear.

Since the VCRM permits to calculate the phase and the amplitudes rigorously in

the sense of ray model, we can examine in details the influence of each factors on

the precision of the Airy theory.

We consider first the phase shift of π in the Airy theory. That is to calculate the

scattering amplitude of an infinite circular cylinder near the rainbow angle by

E(θ) = k

2
|εX,p |

∫ +∞

−∞
exp[−i kv∆+ΦB(v)]d v (4.34)

where the phase ΦB(v) is calculated by considering the phase shift

ΦB(v) =
i k h

3a2 v3 +π, v ≤ vB

i k h
3a2 v3, v > vB

(4.35)

vB is calculated by

vB = a cosτB

cos(θB −θR)
−a cosτR (4.36)

θB is the scattering angle where Brewster effect occurs, τB = π/2−θi ,B, with θi ,B the

corresponding incident angle given as

θi ,B = arctan(m) (4.37)
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Because there is no rigorous solution of Eq. (4.34), we propose another numerical

method in Appendix A.

The magenta curve in Figure 4.17 shows the numerical result calculated with Eq.

(4.34). The black and red curves are for those of the Debye and Airy theory respec-

tively. We see clearly that scattering diagrams calculated by the Airy theory with and

without the phase at the Brewster angle of π are shifted a half period. These results

demonstrate therefore that the inverse the minima and maxima of the supernumer-

ary bows is well caused by the phase shift of π. But the intensity of the Airy theory

with ΦB remains the same and is still less than that of the Debye theory.

Konnen et al argued that the Fresnel coefficient for parallel polarization [84] is

zero and this angle is near the rainbow angle for the primary rainbow, so the dis-

crepancy of the Airy theory from the Debye theory is due to the Fresnel factor. They

expanded the Fresnel factor in Taylor series to intend to improve the precision of the

Airy theory. Here we can use directly the Fresnel factor ε calculated by ray tracing,

i.e. the scattered amplitude is calculated by

E(θ) = k

2

∫ ve

v0

|ε2,2|exp[−i k∆v +ΦB(v)]d v (4.38)

The boundary for the above integral v0 is its real numerical results rather than −2ve .

The cyan curve in Figure 4.17 is calculated with the above integral. It is evident

that the intensity is improved considerably compared to those with constant am-

plitude (magenta curve). But compared to the Debye theory (black curve), the am-

plitudes are about one order of magnitude lower and the peak positions shift more

and more as the supernumerary order.

In fact, ΦB Eq. (4.38) takes into account only the phase jump of π in the cubic

function, but the real phase differs from this function more and more as v increases.

With VCRM we can calculated precisely the real phase variation Φ(v) as function of

v and replace ΦB in Eq. (4.38) by Φ(v) as shown in Figure (4.39). The result (blue

curve) is evidently improved compared with cyan curve. Finally, we take into ac-

count the amplitude variation due to the divergence factor by Eq. (4.30), The result

of this full version of the VCRM+PO is presented by the green curve in Figure 4.17.

Now the result agrees perfectly with the Debye theory.

E(θ) = k

2

∫ ve

v0

|ε2,2|exp[−i k∆v + iΦT(v)]d v (4.39)

The integrals for the Airy theory with ΦB, with ΦB + AF and the VCRM+PO are all
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Figure 4.17 – Scattering diagrams of a circular cylinder near the primary rainbow angle in
parallel polarization. The incident wave is a plane wave of wavelength with λ= 0.6328 µm.
The particle size is a = 50 µm with refraction index m = 1.333.

evaluated by Hopkin’s algorithm (see Appendix B). The number of the incident rays

is 4000. The number of interpolation point for the scattering angle is 4000. The

number of interpolation point for phase and amplitude is 300.

4.6 Rainbow diagrams of a spherical particle

We have discussed in Chapter 2 that the complex amplitude of an emergent ray from

an infinite circular cylinder differs from that of a spherical particle in three points:

1 divergence factor: the ratio of the divergence factors of a sphere to that of an

infinite cylinder is (
sinθ

sinθR

)1/2

2 phase due to the focal line: the spherical particle has a supplementary phase

due to the focal line because of the cross of the rays on the symmetric plane

given by Eq. (2.47)

3 divergence effect due to the cylindrical and the spherical waves.

Among these factors, the first two vary as function of the scattering angle and are

to be considered in the calculation of the scattering diagram while the third varies
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as function of the particle size parameter and independent of the scattering angle

does not influence the profile of the scattering diagrams.

Though the scattering by a spherical particle is in three dimensions, the scat-

tered complex amplitude calculated by the ray model is continuous in the direction

perpendicular to the scattering plane (as pointed by Airy 1838). The diffraction ef-

fect is only necessary in one direction - in the scattering plane as done for the in-

finite cylinder in the two previous sections. The profiles of the scattering diagrams

and the precision of different methods are similar to those of an infinite cylinder.

On the other hand, a comparison of two typical scattering diagrams of an infinite

cylinder and a sphere has been given in Chapter 2. We will hereby focus our atten-

tion to the examination of the scattering diagrams in the rainbow region of particle

of different parameters, mainly the refractive index.

Table 4.3 – Angular positions of the primary θR2 and secondary geometrical θR3 rainbows,
and the scattering angle corresponding to the Brewster angle for a spherical particle as func-
tion of the refractive index m (calculated by VCRMEll2D).

m θR3(◦) θR2(◦) θB(◦)
1.30 138.158 132.868 134.579
1.31 135.327 134.455 135.891
1.32 132.576 135.993 137.125
1.33 129.898 137.484 138.377

1.333 129.108 137.922 138.740
1.34 127.290 138.928 139.593
1.35 124.750 140.330 140.820

In Table 4.3, the rainbow angles θR3 and θR2 and Brewster’s angle θB are calcu-

lated by the software VCRM2D+ [88]. We can find that the rainbow angles and Brew-

ster’s angle are sensitive to the refractive index m.

In Figures 4.18 and 4.19, the scattering diagrams in the rainbow region for per-

pendicular and parallel polarized wave of a sphere are shown by Debye theory, Airy

theory, VCRM and VCRM+PO. In order to illustrate the contribution of every rays,

the intensity of every rays are simulated by VCRM rather than its interference dia-

grams as it for an infinite circular cylinder.

For their accuracy of the different models for the sphere scattering with refrac-

tive index m = 1.333, similarly for an infinite circular cylinder in Figures 4.9 and

4.12, the scattering diagrams calculated by VCRM+PO are still more accurate than

Airy theory and are in agreement with Debye theory both for primary rainbow and
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secondary rainbow. In Figure 4.19 for the parallel polarization, we can further find

the effect of Brewster’s angle (θR2 = 138.740◦) for primary rainbow as calculated in

Table 4.3 that makes the opposite positions for the maximum and minimum com-

pared with the perpendicular polarization. For the secondary rainbow, there is no

effect of Brewster’s angle near, which makes Airy theory still has a good accuracy of

the peaks position [124].
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Figure 4.18 – Scattering diagrams of a sphere near the primary and secondary rainbows (p =
2,3) angle in perpendicular polarization. The incident wave is a plane wave of wavelength
λ= 0.6328 µm. The particle size is a = 100 µm with refraction index m = 1.333.

For the light scattering by sphere with refractive index m = 1.35, their scattering

diagrams are shown in Figures 4.20 and 4.21, similarly trends as the sphere with

refractive index m = 1.333, but there is more long distance between the primary

rainbow and secondary rainbow for the sphere with m = 1.35 compared with it in

the scattering diagrams of the sphere with m = 1.333.
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Figure 4.19 – Same parameters as Figure 4.18 but for the parallel polarization.
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Figure 4.20 – Scattering diagrams of a sphere near the primary and secondary rainbows (p =
2,3) angle in perpendicular polarization. The incident wave is a plane wave of wavelength
λ= 0.6328 µm. The particle size is a = 100 µm with refraction index m = 1.35.
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Figure 4.21 – Same parameters as Figure 4.20 but for the parallel polarization.
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4.7 Summary

The Airy theory of rainbow has been reexamined in this chapter. We have shown

that the size/wavelength dependent factor of the scattered intensity in Airy theory

can be deduced rigorously. Then, by comparison with the scattering patterns of the

rigorous Debye theory, we have examined in detail the influence of each factor in

the calculation of the amplitude and the phase and their precision on prediction of

the scattering patterns in the rainbow region. By replacing the constant amplitude

and the cubic phase function in Airy theory by the those calculated with VCRM, our

method can predict very precisely the scattering patterns in the neighborhood of

rainbow in perpendicular or parallel polarization for a spherical particle from 10

µm to 1 mm (illuminated by visible light).
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Chapter 5

Rainbow of a non-spherical particle

In Chapter 4, our method VCRM+PO has been developed for the study of the rain-

bow of a cylindrical and spherical particles. Thanks to the flexibility of the VCRM

and PO, this method can be applied directly to a non-spherical particle. In this

Chapter, we will demonstrate the applicability using an infinite elliptical cylinder

and an ellipsoid as examples. The cases under study are limited to the scattering

in the symmetric plane. So, the basic steps are similar to the circular cylinder and

spherical particles scattering.

5.1 Rainbow of an infinite elliptical cylinder

For an infinite elliptical cylinder, the rainbow angle depends not only on the refrac-

tive index but also the ellipticity and the incident angle relative to a symmetric axis.

In any case, the infinite intensity exists at the geometrical optics rainbow angle as

shown in Figure 3.7. To solve this problem, the same approach VCRM+PO will be

used. But the geometrical rainbow angle, the phase and the amplitude are calcu-

lated differently.

5.1.1 Rainbow angle and local orthogonal coordinate

For a non-spherical particle, such as an infinite elliptical cylinder, there is no ana-

lytical expression for the geometrical optics rainbow angle θR. So, it is calculated by

numerically in looking for the extreme deviation angle by ray tracing.

As soon as θR is known, we define a local orthogonal coordinate (O′ : u, v). Simi-

lar to the Airy theory for a spherical particle, we define the axis u along the rainbow
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ray and the coordinate v perpendicular to the rainbow ray and passing by the par-

ticle center O as shown in Figure 5.1. The complex amplitude of the emergent wave

on this line will be calculated by using the VCRM and the scattering diagram in the

rainbow region is calculated by the PO according to the field on the v line.
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x
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Figure 5.1 – The local orthogonal coordinate (O′ : u, v) in the rainbow region of an elliptical
cylinder.

5.1.2 Amplitude and phase of emergent rays

In the local coordinate, the value v of an emergent ray is

v = OC−OO′ (5.1)

where OC is

OC =
√

x2
v + y2

v (5.2)

The point C (xv , yv ) is the intersection point of the emergent ray with the virtual line

v . Its coordinates are calculated by

xv = (xe tanθ− ye ) tanθR

tanθ tanθR −1
(5.3)

yv = −xv

tanθR
(5.4)
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The point E(xe , ye ) is the emergent point of the ray and its coordinates are calculated

in ray tracing by Eqs. (3.34).

When θ= θR, the point C is located at O′. So, the coordinate v of every emergent

ray can be calculated by Eq. (5.1).

The phase on the virtual line v of an emergent ray is calculated by

Φ(v) =ΦP +ΦF +Φ f +∆Φvi r −ΦR, (5.5)

where ΦP is the phase of optical path, ΦF is the phase shift due to the Fresnel re-

flection coefficients and Φ f the phase shift of focal lines while ΦR is phase of the

geometrical rainbow ray. ∆Φvi r is the supplementary phase due to the deviation

the emergent ray relative to the geometrical rainbow ray and calculated by

∆Φvi r = kCD (5.6)

where the point D is the intersection point of the emergent ray EG and the virtual

line OD which is perpendicular to EG. According to the geometrical relationship,

the coordinates of the point (xD, yD) are

xD = (xe tanθ− ye ) tanθ

tan2θ−1
(5.7)

yD = −xD

tanθ
(5.8)

So,

CD =
√

(xv −xD)2 + (yv − yD)2 (5.9)

The amplitude on the virtual line is calculated by Eq. (4.22). Therefore, Eqs. (5.5)

and (4.22) permit to calculate the complex amplitude (amplitude and the phase) of

all the emergent rays.

In Figure 5.2, the phase of the rays p = 2 near the rainbow angle of an infinite

elliptical cylinders are shown for three different aspect ratios. These phases are af-

fected obviously by particle shape. Compared to the circular cylinder a/b = 1.0, the

phase of the particle with a/b = 0.95 increases slowly and the phase of the particle

a/b = 1.05 is increase rapidly as v increases. The difference in the shape of its wave-

front will affect the angular spacing between two successive peeks as addressed in

reference [64].

The amplitudes on the virtual line of the same particles are shown in Figure 5.3.
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Figure 5.2 – Phase the rays p = 2 on the virtual line of an elliptical cylinder illuminated by a
plane wave of wavelength λ= 0.6328 µm in perpendicular polarization. The relative refrac-
tion index of the particle is m = 1.333.
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Figure 5.3 – Amplitude on the virtual line of an elliptical cylinder with the same parameters
as Figure 5.2.

Compared to the circular cylinder a/c = 1.0, the amplitude of the particle a/b =
0.95 is bigger and the amplitude of the particle a/b ≈ 1.05 is smaller. Besides, for

the particle a/b = 0.95, there is a peak near v = 13.5 µm, this peak is caused by

total reflection according to Figure 2.3 . At the same point, a phase shift ΦF occurs

according to Figure 2.5, so, there is a small variation in Figure 5.2 in the region v >
13.5 µm. This phenomenon also occurs in parallel polarization in Figure 5.4 and it
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is more easy to observed.

The phases near the rainbow angle for the parallel polarization are shown in

Figure 5.4. The most important difference from the perpendicular polarization is

the phase jump of π in the Brewster angle. The point moves because the Brewster

angle varies as function of the particle shape. Similar to the circular cylinder, the

scattering diagram for the parallel polarization will be very different from that for

the perpendicular polarization due to the phase jump.
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Figure 5.4 – Phase on the virtual line of an elliptical cylinder with same parameters as Figure
5.2 but the incident wave is in the parallel polarization.

The amplitude on the virtual line for the parallel polarization are shown in Fig-

ure 5.5. For the particle a/b = 0.95, there is a peak near v = 13.5 µm, same as the

perpendicular polarization. At Brewster angles θB, the amplitude on the virtual line

equals zero. These points are of course located at the same positions where the

phase jump of π occurs in Figure 5.4.

5.1.3 Scattering diagrams of an elliptical cylinder

After the phase and the amplitude are computed on the virtual line, the diffraction

field is calculated by Eq. (4.30). We rewrite it here for a cylinder as

E(θ) = k

2

∫ v1

v0

|εX,p |
√
D2,vi r exp[iΦT(v)]d v (5.10)

The scattering diagrams in the neighborhood of the primary rainbow angle of
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Figure 5.5 – Same parameters as Figure 5.2 but incident wave is in parallel polarization.

two infinite elliptical cylinders calculated by Eq. (5.10) are shown in Figures 5.6 to

5.9, of which Figures 5.6 and 5.7 are for the perpendicular polarization and 5.8 are

5.9 for the parallel polarization.
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Figure 5.6 – Scatting diagrams of an infinite elliptical cylinder near rainbow region with par-
ticle size in a = 95 µm, b = 100 µm and wave in perpendicular polarization for p = 2.

We find that in the perpendicular polarization, the intensity calculated by the

VCRM is in good agreement with tat calculated by VCRM+PO except in the main

supernumerary bow. But for the parallel polarization, the infinite elliptical cylinder

particle with a/b = 0.95, this agreement can only be found after about 143◦ in Fig-

92



CHAPTER 5. A NON-SPHERICAL PARTICLE SCATTERING BY VCRM AND PO

1 4 0 1 4 2 1 4 4 1 4 6 1 4 8 1 5 01 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

Int
ens

ity

S c a t t e r i n g  a n g l e  [ d e g . ]

 V C R M
 V C R M + P O

Figure 5.7 – Scatting diagrams of an infinite elliptical cylinder in the rainbow region, same
parameters with Figure (5.6) except a = 100 µm, b = 95 µm.

ure 5.8 because the amplitude varies rapidly increasing near the rainbow angle and

rapidly decreasing near the Brewster angle. So the diffraction effect is important.

In Figure 5.9, still as previous scattering diagrams in parallel polarization, VCRM

and VCRM+PO are in agreement except that VCRM fails at rainbow angle, and it

has opposite positions for maximum and minimum compared with perpendicular

polarization.

1 3 5 1 4 0 1 4 5 1 5 01 0 - 2

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

 V C R M
 V C R M + P O
  I n t e n s i t y  o f  e v e r y  r a y s

Int
ens

ity

S c a t t e r i n g  a n g l e  [ d e g . ]
Figure 5.8 – Scatting diagrams of an elliptical cylinder near rainbow region with particle size
in a = 95 µm, b = 100 µm and wave in parallel polarization for p = 2.

Further, we find that the distance between the supernumerary bows are very
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sensible to the particle shape, the for particle a/b = 0.95 (Figures 5.6 and 5.8 ) has

much more supernumerary bows than the particle a/b = 0.95 (Figures 5.7 and 5.9).

This can be understood according to the variation of the shape for wavefront given

in Figures 5.2.
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Figure 5.9 – Scatting diagrams of an elliptical cylinder near rainbow region, same parameters
with Figure (5.8) except a = 100µm,b = 95µm.
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Figure 5.10 – Scattering diagrams of an infinite elliptical cylinder. The parameters are the
same as Figure 5.7 but the refractive index m = 1.362.

To illustrate the influence of the refractive index on the scattering diagram of an

infinite elliptical particle, we show in Figure 5.10 scattering diagram calculated by
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VCRM and VCRM+PO for the same particle as in Figure 5.7 with refraction index

m = 1.362. We find that the spacing between the supernumerary bows are smaller

for a higher refractive index. This conclusion is also true for the parallel polarization.

5.2 Scattering diagrams of an ellipsoid

The light scattering diagrams in rainbow region of an ellipsoid – a 3D particle, are

still calculated by Eq. (4.30), we rewrite it here as

E(θ) =k3/2
∫ v1

v0

|εX,p |
√√√√∣∣∣∣∣R′

1,1

R1,2
·

R′
1,2

R1,3
. . .

R′
1,p

R1,p+1
Re

1,p+1

∣∣∣∣∣√√√√∣∣∣∣∣R′
2,1

R2,2
·

R′
2,2

R2,3
. . .

Re
2,p+1

(Re
2,p+1 +dvi r )

∣∣∣∣∣exp[iΦT(v)]d v,

(5.11)

But different from it in Eq. (4.30), the Fresnel factor εX,p and phase ΦT(v) are calcu-

lated with the same rules as for an infinite elliptical cylinder in the previous section.

Since the reflection, the refraction, the divergence due to the curvature of the

particle surface on the the equatorial plane of an ellipsoidal particle are the same as

those of an elliptical cylinder of the same cross section, we will focus our analyse on

the effect of the value of c – the axis along z (perpendicular to the scattering plane).

So, we consider two categories of ellipsoids: prolate and oblate ellipsoids.

5.2.1 Scattering diagrams of a prolate ellipsoid

The comparisons of the scattering diagrams in perpendicular and parallel polariza-

tions for a propate ellipsoid are shown in Figures 5.11 and 5.12, we can find that

VCRM+PO and VCRM are in agreement except that VCRM fails near the rainbow

angle same as in spherical particles.

In order to further study the effect of the parameter c to the scattering diagrams,

the scattering diagrams in the rainbow region of three prolate ellipsoids for the per-

pendicular and the parallel polarizations are shown in Figures 5.13 and 5.14. We

find that the scattering diagrams are similar trend to those of an circular cylinder

due to the same cross section, i.e. same a and b since ΦP and εX,p are the same.

As the c increases from 110 µm to 200 µm, the intensity decrease initially and then

increases. In order to explain this phenomenon, the amplitude of every individual
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Figure 5.11 – The scattering diagrams of three prolate ellipsoid in the perpendicular polar-
ization. The axes of the ellipsoid are a = b = 100 µm, and c = 120 µm. The refractive index is
m = 1.333. The wavelength the incident plane wave is λ= 0.6328 µm.
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Figure 5.12 – The scattering diagrams of the prolate ellipsoid. Same parameters as in Figure
5.11 except in parallel polarization.

rays near rainbow angle are shown in Figures 5.15 and 5.16 for 5 different values of

c and zoomed in angle ranges [140◦, 141◦] and [149◦, 150◦] respectively.

In Figure 5.15, we find that in the range of θ ∈ [140◦, 141◦] as c increases from

110 µm, the amplitude of its bigger branch decreases until near c = 130 µm, its

small branch decreases until near c = 120 µm. While in Figure 5.16, in the range

θ ∈ [149.0,150.0], as c increases from 110 µm, the amplitude of its bigger branch

96



CHAPTER 5. A NON-SPHERICAL PARTICLE SCATTERING BY VCRM AND PO

1 3 5 1 4 0 1 4 5 1 5 0 1 5 5 1 6 01 0 3

1 0 4

1 0 5

1 0 6

1 0 7

Int
ens

ity

S c a t t e r i n g  a n g l e  [ d e g . ]

 c = 1 1 0  µm
 c = 1 2 0  µm
 c = 2 0 0  µm

Figure 5.13 – The scattering diagrams of three prolate ellipsoids for the perpendicular po-
larization. The axes of the ellipsoid are a = b = 100 µm, and c = 110 µm, c = 120 µm and
c = 200 µm. The refractive index is m = 1.333. The wavelength the incident plane wave is
λ= 0.6328 µm.
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Figure 5.14 – Scattering diagrams of a prolate ellipsoid near rainbow region. Same parame-
ters as in Figure 5.13 but in parallel polarization.

(This bigger branch is the small branch in θ ∈ [140.0,141.0]) decreases until near

c = 120 µm, its smaller branch (This smaller branch is the bigger branch in θ ∈
[140.0,141.0]) decreases until near c = 130 µm.

So, according to the trends of the amplitude of every ray in the two branches, the

scattering intensity decreases and reaches a minimum near c ∈ [120µm,130µm](an
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Figure 5.15 – Amplitude of the individual rays p = 2 of an prolate ellipsoid near rainbow.
Same parameters as in Figure 5.13.
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Figure 5.16 – Amplitude of the individual rays p = 2 of an prolate ellipsoid near rainbow.
Same parameters as in Figure 5.13.

approximation region). This makes the decrease of intensity as c increase. As c

bigger than 130 µm, the intensity of all the rays in two branches increases. So, in

Figures 5.13 and 5.14, the intensity of the prolate ellipsoid c = 110 µm is bigger than

c = 120 µm and smaller than c = 200 µm on the whole.

98



CHAPTER 5. A NON-SPHERICAL PARTICLE SCATTERING BY VCRM AND PO

5.2.2 Scattering diagrams of an oblate ellipsoid

The scattering diagrams in the perpendicular polarization of two oblate spheroidal

particles (a = b = 100µm, c = 90µm and 87µm) calculated by VCRM+PO and VCRM

are shown in Figure 5.17. The other parameters are the same as in Figure 5.13.

When c = 90 µm, there are obvious differences between VCRM and VCRM +
PO near rainbow angle and in the range θ ∈ [153◦,160◦]. It becomes more obvious

for c = 87 µm. In Figure 5.18, the scattering diagrams of the same particles for the

parallel polarization are shown. Similar to the perpendicular polarization, there are

obvious discrepancies between VCRM and VCRM+PO.

In order to find the reason of these differences, the amplitude of the individual

rays calculated by VCRM are shown in Figure 5.19. As c decrease from 90 µm to
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Figure 5.17 – The scattering diagrams of an oblate spheroid in perpendicular polarization
near rainbow region, same parameters as in Figure 5.13 but different in c = 87 µm and c =
90 µm.

87 µm, there is another caustics caused by the curvature radii of the wavefront in

perpendicular plane. As c = 90 µm, there is a caustic near θ = 158◦, as c becomes

smaller, a caustics removes gradually to the rainbow angle. In order to find out what

happened at these caustics directions detailed, part of data for the curvature radii

of the wavefront in perpendicular plane are shown in Table 5.1.

As c = 80 µm, we can find that the caustics direction in perpendicular plane is

between θ ∈ [140.5195◦,140.5372◦] (see Table 5.1 and Figure 5.19), its divergence

factor De
1,2 at its emergent point is the constant 1. The emergent curvature radii Re

1,3
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Figure 5.18 – The scattering field of an oblate spheroid in parallel polarization near rainbow
region. Same other parameters as in Figure 5.17.
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Figure 5.19 – The scattering field of an oblate spheroid near rainbow region, same parame-
ters as in Figure 5.17.

reaches to ∞ (or −∞). These characters are same with Table 4.1 for the caustic in

spherical particles in parallel plane. So, according to Table 5.1 and the Figure 5.19,

we can conclude that the infinite emergent curvature radii at caustics directions

makes VCRM and VCRM+PO failed by the Eq. (5.11). Therefore, for the light scat-

tering of oblate ellipsoid near its rainbow region, the another method to combining

VCRM and PO should be studied further to avoid the infinite emergent curvature in

perpendicular plane.
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Table 5.1 – Curvature radius in perpendicular plane of p = 2 for the particle a = b = 100 µm,
c = 80 µm near the caustics. The relative refraction index of the particle is m = 1.333, the
number of incident ray is 10000 here.

Angles R′
1,1 (µm) R1,2 (µm) R′

1,2 (µm) R1,3 (µm) Re
1,3 (µm) De

1,2

140.5549◦ 142.0302 -0.059164 -0.059239 -142.1486 127919.9 1.000433
140.5372◦ 142.1114 -0.007698 -0.007699 -142.1268 984039.6 1.000039
140.5195◦ 142.1924 0.043663 0.043621 -142.1052 -173668.9 0.999651
140.5020◦ 142.2734 0.094923 0.094723 -142.0837 -79963.7 0.999225

5.3 Summary

The method VCRM+PO has been applied in this chapter to the prediction of the

scattering patterns in the rainbow region of a non-spherical particles like infinite

elliptical cylinder and ellipsoid. The convergence effect and the cusp position as

function of the vertical radius of the particle have been highlighted. However, the

effective rays near the rainbow angle depend on the shape of the particle, the inte-

gral limits used for the spherical particle are to be adjusted. Therefore, VCRM+PO

is a powerful method for light scattering by large spherical or non-spherical parti-

cles. It can also be used in the scattering of an electromagnetic wave or an acoustics

wave.
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Chapter 6

Conclusions and Perspectives

This thesis is devoted to combining the Vectorial Complex Ray Model (VCRM) with

the Physical Optics (PO) for the calculation of the scattering diagrams of a large par-

ticle with smooth surface in the rainbow region. This chapter draws the conclusions

of this thesis and gives perspectives in the following studies.

6.1 Conclusions

For light scattering by a large non-spherical particle, there is no rigorous solution

like Lorenz-Mie Theory for spherical particles. The numerical methods such as

DDA, FDTD, MLFMA and T-matrix can deal with this problem, but they are time

consuming and require huge computer memory. The particle size is also limited.

The approximate models are feasible ways owning to its efficiency and flexibility.

The geometrical optics (GO) is based on ray model. Usually it does not take into

account the variation of the amplitude and phase along the optical path, except in

the special case of scattering of a plane wave by a sphere or an infinite circular cylin-

der. To extend the ray model to light scattering by a large particle, especially when it

is non-spherical particle with smooth surface, the VCRM has been developed in the

laboratory. After more than a decade in development, it has been validated numer-

ically and experimentally and applied to the light scattering by an infinite cylinder

(VCRM2D), the scattering in a symmetric plane of a 3D particle (VCRM2D+) such

as ellipsoidal particle or a pendant drop in the horizontal plane and the scattering

in all space by a 3D particle (VCRM3D).

However, as an intrinsic flaw of the ray model, the VCRM fails to predict cor-

rectly the scattering in the neighborhood of a singular point, i.e. where the intensity
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or the derivative of the intensity is not continuous, for example in forward direction,

near rainbow angles or critical angles. To remedy this problem, the Physical Optics

(PO) can be applied. The Airy theory is a typical, well known and perhaps the most

successful example in this spirit of combining GO and PO. It does work well in pre-

dicting the scattered intensity in the first supernumerary bows of a spherical water

drop in the perpendicular polarization. But the peak positions and the scattered

intensity differ more and more from those of the rigorous Debye theory when the

scattering angle is far from the geometrical rainbow angle. Furthermore, the Airy

theory fails completely in the prediction of the scattered intensity for the parallel

polarization. To understand the reason, the Airy theory has been reexamined in de-

tails and it is found that the flaws of the Airy theory mentioned above are due to its

approximations in the calculation of the phase and the amplitude.

The VCRM has been applied to calculate the amplitude and the phase on the v

line used in the Airy theory for a spherical particle. It is found that the amplitude on

the v line is affected by both the Fresnel factor and the divergence factor, and the

cubic function of phase is approximately true in the neighborhood of the geomet-

rical rainbow angle. The strong amplitude variation and the phase jump of π at the

Brewster angle for the primary rainbow are the main cause of the failure of the Airy

theory in the case of the parallel polarization. Since the amplitude and the phase

can be calculated rigorously by VCRM, the influences of all the factors mentioned

above on the scattering diagrams have been studied in details. It is proved that the

combination VCRM and PO can predict very precisely the scattering diagrams in

both perpendicular and parallel polarizations when compared with Debye theory.

The numerical results are exemplified by the scattering diagrams in the rainbow re-

gion for an infinite circular cylinder and a sphere of radius from 10 µm to 1 mm

(illuminated by visible light).

VCRM being flexible to particle shape, the developed VCRM+PO method has

been applied to the scattering of an infinite elliptical cylinder and an ellipsoidal

particle. The scattering patterns in the rainbow region of the elliptical cylinder are

similar to those of the circular cylinder while the rainbow positions are very sensible

to the ellipticity of the cylinder. The effect of the aspect ratio of a prolate spheroid

on the intensity ratio of the two first rainbows have been studied. However, it seems

that the actual version of VCRM+PO is not robust enough predict the scattering di-

agram near the peak caused by the focusing effect of the short axis.
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6.2 Perspectives

This thesis is the first attempt to include the diffraction effect in the VCRM in order

to correct the scattering diagram in the neighborhood of the rainbow angle (caus-

tics). Only the light scattering in a symmetric plane is considered. The interpo-

lation of the amplitude and the phase of the emergent rays as well as the diffrac-

tion integration are all in one dimension. This simple case permit us to focus our

attention on the understanding the physical mechanism. But the scattering prob-

lems in the real world are usually in three dimensions. So it is necessary to extend

the VCRM+PO to three dimension scattering. To this end, the first work to be un-

dertaken should be the development of ray tracing process [125] and interpolation

algorithm of the VCRM for the scattering of a particle of any shape described by

an analytical mathematical equations or by discrete data. The 3D structure of the

caustics and the their diffraction effect are then to be studied.

In this thesis, our attention is limited to light region which is part of electro-

magnetic wave. In fact, our models can be extended to other regions like Terahertz

region, microwave region [126–128]. Further, our models might be applicable to the

acoustic wave scattering, similar applications are deserved to research further.

The freeform optics is an emerging technology for imaging and non-imaging

[129], the VCRM+PO is a useful tool to find a better curve surface for controlling

of light propagation, because they are applicable to interaction of light with any

smooth surfaces.

The incident wave is limited to the plane wave in this thesis. In fact, our mod-

els can be applied directly to non-plane waves like Gaussian beams, or the beams

carrying orbital angular momentum [28,130–132]. The scattering diagrams of these

shape beams can provide more information about the scatters. Our method can

also be applied to time domain as shown in [133,134]. Therefore, the VCRM and the

combining model VCRM+PO will have more applications in the future [56, 124].
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Appendix A

Evaluation of Airy function

The Airy function Ai had been introduced by Airy for the calculation of the scat-

tering intensity in the neighborhood of a caustic (rainbow angle) [3]. It is defined

as [77]

Ai (x) = 1

π

∫ ∞

0
cos

(
t 3

3
+xt

)
d t (A.1)

Its properties and the numerical calculation have been largely studied by physi-

cians and mathematicians. A typical variation of the function is shown in Figure A.1

(black solid line).
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Figure A.1 – The plot of Airy function.

However, the numerical evaluation of this integration is not a easy task, espe-
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cially when the variable x is large. Furthermore, this function can only be applied

to the case where the phase along the virtual line (see Eq. (4.11)) is a cubic function.

Even the constant phase jump of π in the Brewster angle for parallel polarization in

Eq. (4.34) can not be dealt with directly.

On the other hand, we have shown in Chapter 4 that the cubic function is valid

only in the region very near the GO rainbow angle. In our study, we need to eval-

uate the integration for a phase different from a cubic function; As a first step, we

consider the integration little more general than the Airy function, i.e.

A(x) = 1

π

∫ y

a
cos

(
t 3

3
+ c0 +xt

)
d t (A.2)

where a and c0 are two constants. In the case of Airy function, we have a = 0, c0 = 0

and y =∞. For the phase given as a piece function ( Eq. (4.35)), a corresponds to

vB, c0 = 0, or π according to the piece under consideration.

To evaluate numerically the integration, we consider firstly that the contribu-

tion in the range of large value t is small because of the strong oscillation of the

integrand. So we do not need to integrate to infinity. Instead, we choose the upper

limit of integration as as a multiple number of 2π, i.e.

Φ(t ) = 2Nπ= t 3

3
+xt + c0. (A.3)

Eq. (A.3) may be rewritten as

y3 +py +q = 0 (A.4)

where p = 3x and q = 3c0 − 6Nπ, N is an integer. This integral calculate the main

contribution of the integrand to A(x). So, the upper limit y is decided by the root of

Eq. (A.4) i.e. [135]

y = 3

√√√√−q

2
+

√
q2

4
+ p3

27
+ 3

√√√√−q

2
−

√
q2

4
+ p3

27
(A.5)

To check the proposed method, we compare in Figure A.1 and in Table A.1 the

standard Airy function and that calculated by the proposed method with a = c0 = 0.

In our calculation, N = 100 is accurate enough. We find that the errors between

Airy theory and proposed method is less than 0.001. So, this proposed method is

applicable to our calculation.
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Table A.1 – Comparisons of the standard Airy function with the results calculated by the
proposed method.

x −10.00 −5.00 0.00 5.00
Airy function 0.040241 0.350761 0.355028 0.000108

Proposed method 0.040464 0.350927 0.355075 0.000194

This method has been applied to the calculation the scattering diagram in the

neighborhood of the rainbow angle by taken into account the phase jump of π in

the Brewster angle, i.e. the Airy theory with ΦB (Eq. (4.35)). The comparison of

the Airy theory with and without the phase jump to the Debye theory is given in

Figure A.2. It is clear the Airy theory with the phase jump of π permits to correct

the minima-maxima inverse of the supernumerary bows in the Airy theory. But the

intensity is still about one order of magnitude smaller than the Debye theory and the

peak position differs more and more with the scattering angle: the last minimum of

Debye theory is at 149◦ but 149.4◦ for the corrected Airy theory. To address these

problems, the precise calculations of the amplitude and the phase are necessary

(see Chapter 4).
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Figure A.2 – Comparison of the scattering diagrams in the neighborhood of the primary
rainbow (p = 2) with the parallel polarization calculated by the Debye theory, the Airy theory
and the the Airy theory with phase jump. The particle is an infinite circular cylinder of radius
a = 50 µm, refractive index m = 1.333 illuminated normally by a plane wave of wavelength
λ= 0.6328 µm.

But this method can not be applied to the phase function in other form (different

from the cubic function). An algorithm for more general case – Hopkins’ algorithm

will be presented in Appendix B.
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Hopkins’ integral method

Consider the integral given by

I =
∫ xb

xa

g (x)exp[i f (x)]d x (B.1)

where xa and xb are the lower and upper integral limits, g (x) and f (x) are two slowly

varying functions, and can be considered respectively as the amplitude and the

phase function in the scattering problem. When f (x) is relatively large, the inte-

grand is a strongly oscillation function and the direct numerical evaluation of the

integral is very difficult, even impossible.

Hopkins [136] proposed to linearize the phase function f (x) in each subdivision,

such that Eq. (B.1) is written in the form

I ≈
M∑

m=1
g (xm)

∫ xm+ 1
2δxm

xm− 1
2δxm

exp{i [ f (xm)+ fx(xm)(x −xm)]}d x

=
M∑

m=1
δxm g (xm)exp[i f (xm)]sinc[

1

2
δxm fx(xm)]

(B.2)

where M is the number of subdivisions, δxm the width of mth division. fx is the

partial derivative with respect to x. sinc(t ) is the sinc function defined by sinc(t ) =
sin(t )

t . xm is the coordinate of mth division.

Attention should be paid to the definition of xm (cf Figure B.1):

xm = xa +md x −d x/2, m = 1. . .M (B.3)
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If xm is chosen as [136]

xm = xa +md x, m = 1. . .M (B.4)

or

xm = xa +md x, m = 0. . .M−1 (B.5)

the precision is not good and depends much on the subdivision number.
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Figure B.1 – Hopkins algorithm principle with a constant step d x = δxm = xb−xa
M .
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Compatibility of VCRM with GO

The Vectorial Complex Ray Model (VCRM) is an extended ray model. In some spe-

cial cases, the results of the classical geometrical optics are recovered. The study of

these special cases may help to understand the principle of the VCRM. In this ap-

pendix, I will show that the divergence factors of a circular infinite cylinder and a

spherical particle in the VCRM is in strict consistent with those of the GO [4]. This

procedure is really intuitive for the understanding of the VCRM.

C.1 Divergence factor for an infinite circular cylinder

by VCRM

Consider an infinite circular cylinder of radius a illuminated normally by a plane

wave. The curvature of the cylinder is zero in the direction perpendicularly to the

scattering plane, so only one equation is necessary to describe the variation of the

wavefronts, i.e. Eq. (3.3) is sufficient. In a scalar form, it can be written as a function

of the incident angle θi and the refraction angle θr

kr cos2θr

R′
2

= ki cos2θi

R2
+ kr cosθr −ki cosθi

a
. (C.1)

The curvature radii of incident plane wave are infinite, so R2,i =∞. For the re-

flection wave p = 0, θl = −θi . We deduce from Eq. (C.1) the curvature radius of

emergent wavefront

Re
2,0 =−a cosθi

2
(C.2)
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where the sign − indicates that the reflected wave is divergent. According to Eqs.

(2.40) and (3.16), the relation between divergence factor D2,0 calculated by VCRM

and the divergence factor D2,0 calculated by GO is

D2,0

a
=

∣∣∣∣∣Re
2,0

a

∣∣∣∣∣= cosθi

2
= D2,0 (C.3)

Then by using Eq. C.1 for the refraction wave at the first interaction point, we

find the curvature radius of the emergent wavefront given as

m cos2θr

R′
2,1

= m cosθr −cosθi

a
(C.4)

that is

R′
2,1 =

ma cos2θr

m cosθr −cosθi
(C.5)

The curvature radius of the wavefront at next incident point is

R2,2 = R′
2,1 −d1 = a cosθr (2cosθi −m cosθr )

m cosθr −cosθi
(C.6)

where d1 = 2a cosθr is the distance the two successive interaction points. Again, the

application of Eq. (C.1) for the refracted wave at the second point yields

ki cos2θi

Re
2,2

= kr cos2θr

R2,2
+ ki cosθi −kr cosθr

−a
. (C.7)

Thus, Re
2,2 is given as

Re
2,2 =

a cosθi (m cosθr −2cosθi )

2(m cosθr −cosθi )
(C.8)

So, for the first refracted wave p = 1, the relation between the divergence factorD2,1

calculated by VCRM and the divergence factor D2,1 calculated by GO is

D2,1

a
=

∣∣∣∣∣R′
2,1

R2,2

Re
2,2

a

∣∣∣∣∣= m cosθi cosθr

2(cosθi −m cosθr )
= D2,1 (C.9)

We see for the first two orders of rays (Eqs. (C.3) and (C.9)), the divergence factor

of the VCRM is compatible to that of the GO for light scattering by an infinite circle

cylinder. In principle, we can continue this procedure for higher order rays, but the

calculation is tedious.
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C.2 Divergence factor for a sphere by VCRM

When a plane wave is scattered by a spherical particle, the variation of the wavefront

curvature in the scattering plane is the same as that of a circular infinite cylinder

while the wavefront curvature in the plane perpendicular to the scattering plane

varies at each interaction of the ray with the particle surface. So only this wavefront

curvature is evaluated to obtain the divergence factor.

According to Eqs. (2.33) and (2.45), the ratio of the divergence factor of a sphere

Dsph. and that of a circular cylinder Dc yl . in the GO is

Dsph.

Dc yl .
= sinθi

sinθ
(C.10)

so, we only need to prove that the divergence factor due to the variation of the wave-

front curvature in perpendicular plane is equal to sinθi /sinθ, which is independent

of the order of rays.

According to Eq. (3.2), the curvature radii of the wavefronts in the plane perpen-

dicular to the scattering plane before R′
1 and after R1 the interaction are related to

the the particle radius by

kr

R′
1

= k

R1
+ kr cosθr −ki cosθi

a
(C.11)

Since the curvature radii of incident plane wave are infinite, (R1,i = ∞), the wave-

front curvature radius of the reflected wave ate the first interaction point p = 0 is

given as

Re
1,0 =

−a

2cosθi
(C.12)

So, the divergence factor in the perpendicular plane is given as

D1,0

a
=

∣∣∣Re
1,1

a

∣∣∣= ∣∣∣ 1

2cosθi

∣∣∣= sinθi

sinθ
(C.13)

because the scattering angle θ=π−2θi .

By using again Eq. (C.11), we get the curvature radius of the wavefront of the

refracted ray at the first interaction point

R′
1,1 =

ma

m cosθ−cosθi
(C.14)
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The curvature radius at next incident point is given as

R1,2 = R′
1,1 −d1 = R′

1,1 −2a cosθr (C.15)

The wavefront of the refracted ray at the second interaction point is as

k

Re
1,2

= kr

R1,2
+ k cosθi −kr cosθr

−a
(C.16)

Therefore, the curvature radii of the emergent wavefront is

Re
1,2 =

aR1,2

ma −R1,2(cosθi −m cosθr )
(C.17)

And finally, we get the divergence factor of p = 1

D1,1

a
=

∣∣∣∣∣R′
1,1

R1,2

Re
1,2

a

∣∣∣∣∣
= 1

a

∣∣∣∣∣ R′
1,1Re

1,2

R′
1,1 −2a cosθr

∣∣∣∣∣
= 1

a

∣∣∣∣ ma

2(m cosθr −cosθi )[m −cosθr (m cosθr −cosθi )]

∣∣∣∣
=

∣∣∣∣ m sinθr

2(sinθr cosθi −m sinθr cosθr )(cosθi cosθr −m sin2θr )

∣∣∣∣
=

∣∣∣∣sinθi

sinθ

∣∣∣∣

(C.18)

where the refraction law sinθi = m sinθr , the scattering angle θ = 2(θr − θi ) and

sin2θr +cos2θr = 1 are used.

Eqs. (C.13) and (C.18) show the same the divergence factor between GO and

VCRM in perpendicular plane for p = 0 and 1 as expected, the compatibility for

VCRM to GO of light scattering by a spherical particle is therefore proved.
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Résumé

L’arc-en-ciel est l’un des plus beaux phénomènes de la nature. Le principe de sa for-

mation a toujours attiré de nombreux scientifiques. Les propriétés des particules tels que

la taille, la forme et la température peuvent être mesurés par les diagrammes de diffusion

au voisinage des angles d’arc-en-ciel. Cependant, la prédiction précise ces propriétés et les

diagrammes de diffusion n’est pas une tâche facile, surtout pour les grosses particules non

sphériques. Le but de cette thèse est de chercher une solution à ce problème par la combi-

naison du modèle de rayons complexes vectoriels (Vectorial Complex ray model - VCRM en

anglais) et de l’optique physique (OP), appelé VCRM+OG.

Les concepts et les lois fondamentaux de l’Optique Géométrique (GO) et OP sont

d’abord introduits et examinés dans le but de leur application à la diffusion de la lumière.

The OG permet de calculer l’amplitude et la phase de tous les rayons émergents au champ

lointain mais échoue pour la prédiction de la diffusion dans la direction avant et près des an-

gles d’arc-en-ciel. OP peut remédier à la diffusion avant en considérant la particule comme

un disque mais la rectification de la diffusion près des angles d’arc-en-ciel est un sujet ardu

depuis longtemps.

Le VCRM développé au laboratoire peut prédire l’amplitude et la phase d’un rayon à

n’importe quelle position pour une particule de forme quelconque de surface lisse. Les

éléments essentiels du VCRM sont présentés et appliqués à la diffusion dans un plan de

symétrie d’un cylindre elliptique infini et d’un ellipsoïde pour illustrer la démarche, ses

avantages et ses inconvénients. Comme le VCRM est un modèle de rayon, le défaut de la

discontinuité d’intensité à l’angle de l’arc-en-ciel persiste.

Ensuite, la théorie d’Airy de l’arc-en-ciel a été examinée en utilisant notre VCRM+PO. Il

est montré qu’en remplaçant l’amplitude constante et la fonction de phase cubique de la

théorie d’Airy par celles calculées avec VCRM, notre méthode peut prédire très précisément

les diagrammes de diffusion au voisinage de l’arc-en-ciel en polarisation perpendiculaire

ou parallèle pour une particule sphérique de 10 µm à 1 mm (éclairée par la lumière visible)

par rapport à la théorie rigoureuse de Debye.

La méthode VCRM+PO a été appliquée finalement à la prédiction des diagrammes de

diffusion au voisinage de l’arc-en-ciel d’une particule non sphérique comme un cylindre el-

liptique infini et un ellipsoïde. L’effet de convergence et la position des cuspides en fonction

du rayon vertical de la particule ont été mis en évidence.

On peut conclure donc que VCRM+PO est une méthode puissante pour la diffusion

de la lumière par de grosses particules. Elle peut également être utilisée pour la diffusion

d’une onde électromagnétique ou d’une onde acoustique.
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ABSTRACT

Rainbow is one of the most beautiful phenomena in nature, the physical principle

for its formation ever attracted many scientists. The particle parameters like size,

shape and temperature can be measured by its scattering diagrams in the neighbor-

hood of rainbow angles. However, the precise prediction of these scattering patterns

is not an easy task, especially for large non-spherical particles. The aim of this the-

sis is to solve this problem by the combination of the Vectorial Complex ray model

(VCRM) and physical optics (PO).

The fundamental concepts and laws of GO and PO are firstly introduced and

examined in the purpose for their application to the light scattering of an infinite

circular cylinder and a sphere. GO permits to calculate the amplitude and the phase

of all the emergent rays in far field but it fails in prediction of the scattering in for-

ward direction and near the rainbow angles. PO can remedy the scattering in the

forward direction by considering the particle as a disk but the rectification of the

scattering near the rainbow angles has been an arduous topic since a long time.

VCRM developed in the laboratory can predict the amplitude and the phase of

a ray at any position for a particle of any shape of smooth surface. The essentials

of VCRM are then presented and applied to the scattering of an infinite elliptical

cylinder and an ellipsoid. Since VCRM is still a ray model the flaw of the intensity

discontinuity at the rainbow angle persists.

Then, the Airy theory of rainbow has been examined using our method

VCRM+PO. It is shown that by replacing the constant amplitude and cubic phase

function in Airy theory by the those calculated with VCRM, our method can predict

very precisely the scattering patterns in the neighborhood of rainbow in perpendic-

ular or parallel polarization for a spherical particle from 10µm to 1 mm (illuminated

by visible light) when compared with the rigorous Debye theory.

The method VCRM+PO has been applied finally to the prediction of the scatter-

ing patterns in the rainbow region of a non-spherical particles like infinite elliptical

cylinder and ellipsoid. The convergence effect and the cusp position as function of

the vertical radius of the particle have been highlighted.

Therefore, VCRM+PO is a powerful method for light scattering by large particles.

It can also be used in the scattering of the electromagnetic wave or acoustics wave.

Keywords: Light scattering, rainbow, caustics, vectorial complex ray model, physi-

cal optics, wavefront, divergence factor
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