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Pendant les quatre premières années à Paris Diderot, j’étais responsable de la val-

idation et du suivi des stages des étudiants du Master 2 en Modélisation Aléatoire
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Padoue (2-5 Février 2016).

— Co-organisateur de l’école d’hiver “Frontiers in Stochastic Modeling for Finance” à
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16 RÉSUMÉ

Résumé

Dans ce rapport, je présente une partie de mes travaux effectués entre 2010 et 2017.

Depuis ma soutenance de thèse, mes travaux peuvent essentiellement se repartir en trois

classes sur la base des outils mathématiques utilisés.

- Problèmes de contrôle stochastique appliqué à la finance d’entreprise, au marché du

travail et à la modélisation en risque de liquidité ;

- Théorie du filtrage et ses applications en allocation optimale ;

- Application de l’analyse stochastique à la modélisation des risques financiers.

Cette division est certainement arbitraire en vue de la contigüıté des applications

traitées. Des chevauchements évidents vont apparaitre et vont en partie justifier l’ordre

d’affichage qui s’éloigne de celui de parution des articles liées. Ceci permet tout de même

de présenter mes travaux dans des cadres assez homogènes du point de vue mathématique

et de pouvoir ensuite souligner les liens, les symétries ou parfois la complémentarité, entre

les différents aspects modélisés.

Partie 1 : Contrôle stochastique appliqué à la finance d’entreprise et au marche

du travail

Dans cette partie j’ai principalement travaillé sur des problèmes de contrôle stochas-

tique. Dans cet axe de recherche, les principaux défis sont la modélisation et formulation

mathématique des problèmes ainsi que leur résolution mathématique, numérique voire par-

fois la recherche d’une solution explicite dans des cas particulier au fin d’une étude de

sensibilité. Les problèmes auxquels je me suis intéressé sont formulés comme des problèmes

de contrôle stochastique non standard. Cela nécessite des analyses assez fines au niveau

mathématique, aussi bien dans la partie théorique, qui consiste à caractériser les fonctions

valeurs à l’aide de l’approche de viscosité pour prouver l’existence et l’unicité, que dans la

description des différentes régions caractérisant les politiques optimales des problèmes. Mais

un des gros objectifs de la modélisation et de ses applications en économie est de proposer

des modèles à la fois capables de capter des phénomènes observés en trouvant une expli-

cation simple et parfois surprenante et au même moment d’avoir au moins dans certains

cas des solutions quasi explicites pour pouvoir mesurer l’ampleur de ces phénomènes. Cet

équilibre entre parcimonie du modèle, richesse de ses prévisions et maniabilité n’est jamais

facile et fait ressortir dans notre science dure un certain sens, pas forcement du beau, mais

au moins de l’elegance : “Frustra fit per plura quod fieri potest per pauciora”.

Cette partie correspond à deux chapitres. Le premier est consacré aux problèmes de

finance de marché et il repose sur deux articles, qui se focalisent sur deux aspects différents

de la vie d’une entreprise, le premier [A2] écrit avec Etienne Chevalier (Evry) et Vathana
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Ly Vath (ENSIIE) traite un problème de dividende et d’investissement sous contrainte de

dette. Le deuxième [A6] est une collaboration avec Etienne Chevalier, Vathana Ly Vath

et Alexandre Roch (Montréal) qui s’intéresse à l’instant optimal de liquidation pour un

investissement qui n’est plus rentable. Du point de vue mathématique, le premier problème

est formulé comme un contrôle combiné singulier et de changement multiple de regimes sous

contraintes. Le vrai défi est de réussir à caractériser la politique optimale avec un contrôle

mixte et en multi-regimes et de pouvoir fournir des interprétations financières de cette

politique. Le deuxième problème se focalise sur la stratégie optimale de désinvestissement

d’un projet qui n’est plus profitable avec un coût de liquidation stochastique. L’entreprise

a le choix entre attendre un éventuel repreneur ou liquider immédiatement en assumant le

coût. Le coût de liquidation est gouverné par un processus de retour à la moyenne alors

que l’arrivée d’un repreneur est décrite par un processus de Cox dirigé par une chaine

de Markov. Nous formulons le problème comme un arrêt optimal en deux dimensions avec

horizon aléatoire. Le gros défit du problème vient de l’absence à priori d’unicité de la solution

du processus de liquidation qui nous demande une analyse fine pour la caractérisation de

la solution. En plus nous réussissons à exhiber les solutions en forme fermée dans le cas

d’utilités logarithmique et puissance si le coût de liquidation suit un processus de type CIR.

Le deuxième chapitre s’intéresse à un problème économique central pour l’époque ac-

tuelle à savoir la régulation du marché du travail et il est basé sur un article [A4] écrit avec

Cristina Tealdi (Lucca) et Andrea Vindigni (Genova). Nous étudions l’impact des coûts de

turnover, à savoir les couts d’embauche et de licenciement, sur le chômage. Nous trouvons

aussi une explication politique à la forte dichotomie entre pays anglo-saxons et le conti-

nent européen et l’augmentation progressive de ce clivage dans les dernieres décennies. Du

point de vue mathématique, le problème se configure comme un arrêt optimal avec horizon

aléatoire. Le vrai défi de l’article a été de caractériser les distributions ergodiques des entre-

prises et des travailleurs, leur salaires, etc. L’objectif a toujours été d’obtenir des formules

fermées pour pouvoir calculer explicitement les effets d’une variation des paramètres sur

les variables économiques comme le taux de chômage et les salaires.

Parmi mes articles publiés et en cours qui ne sont pas resumés dans ce memoire mais

ont leur place dans cette partie, je peux citer les travaux sur la liquidation optimale [A8]

qui est un sujet assez centrale dans la finance récente, voir [4], [5], [6], et sur le quel je

compte revenir avec les méthodes des processus de branchement comme dans le cadre de

[7]. Avec Luca Prezioso, qui vient de commencer son doctorat à Verona, je m’intéresse à

une extension du problème de la dette en introduisant le cycle économique et un retard

dans l’arrivée des opportunités de croissance externe [W20]. Dans la suite du travail sur

l’application du contrôle stochastique au marché du travail, je travaille à une extension au

cadre d’entreprises avec un continuum de travailleurs [W15]. Je m’intéresse aussi à l’etude

de l’économie parallèle et des politiques optimales pour la gestion optimale de la part du

gouvernent, [W16].



18 RÉSUMÉ

Partie 2 : Filtrage stochastique et applications à l’allocation optimale

Dans cette partie, je vais détailler mes contributions en allocation optimale en informa-

tion partielle. Le problème d’allocation optimale a été longuement traité dans la littérature

en arrivant au consensus que la stratégie optimale revient à trouver un portefeuille de

marché optimal, celui complètement investi en actifs risqués et qui optimise la diversifica-

tion du portefeuille en donnant le meilleur rapport entre rendement et volatilité, et répartir

ensuite la richesse entre ce portefeuille et un actif sans risque pour permettre à l’investisseur

de limiter son risque mesuré par la volatilité du portefeuille globale. Ce paradigme, introduit

par Markowitz [91], se montre globalement solide si on prend en compte des imperfections

de marché comme de la consommation ou des coûts de transaction, par exemple voir [96],

[80], [43].

Dans l’article [A10], en collaboration avec Giorgia Callegaro (Padova), M’hamed Gaigi

(Tunis) et Carlo Sgarra (Poli-Milano), nous nous concentrons tout d’abord sur une imper-

fection très différente à savoir la sous ou sur-réaction des actifs à l’arrivée d’actualités les

concernants. Ces phénomènes sont très connus en littérature de finance comportementale,

voir [47], [48]. Il faut voir que le cadre usuel d’une évolution continue des trajectoires des

prix des actifs financiers est lié à l’hypothèse implicite que le flux d’informations se comporte

comme un fleuve tranquille. Dans la réalité les nouvelles, surtout les mauvaises, arrivent

aux marchés soudainement entrainant des réactions de la part des acteurs de marché qui

induisent des brutaux ajustements des prix. Le mot même d’ajustement, usuellement uti-

lisé pour décrire ce phénomène, cache une hypothèse implicite d’efficience qui revient à

assumer que les marchés arrivent à trouver immédiatement un nouvel équilibre tenant en

compte les informations qui viennent d’être dévoilées. Ceci n’est que rarement le cas. Dans

les jours et même les semaines qui suivent, les actifs ont tendance à accentuer l’effet du

saut, à la hausse comme à la baisse, ou à retracer en réduisant son effet. On parle alors

dans le premier cas de sous-réaction, de sur-réaction dans le deuxième. L’interprétation

financière de la sous-réaction est que le marché a sous-estimé l’impact de la nouvelle, le

saut n’est donc pas assez important pour que le nouveau prix tienne en compte la nouvelle

réalité économique de l’entreprise. A l’opposé dans le cas de une sur-réaction, le marché

a surestimé l’impact, le prix va donc se réaligner progressivement en réduisant l’écart. Il

n’est évidement pas possible pour un investisseur de savoir a priori si après un fort saut le

cours de l’actif va faire état d’une sur- ou sous-réaction et des estimations historiques [63]

donnent autant des chances à priori aux deux cas. Le problème auquel nous nous sommes

confrontés est donc l’impact qui a cette imperfection de marché sur la politique optimale à

la Markowitz.

Du point de vue mathématique, nous avons un problème de filtrage non-standard car la

filtration naturelle du processus observé est générée à la fois par un mouvement Brownien et

par un processus à sauts. L’approche standard par la méthode des innovations ne peut pas

être appliquée directement car il se fonde intrinsèquement sur l’égalité entre la projection
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prévisible et celle optionnelle, paradigme usuel dans le cadre d’une filtration brownienne

mais clairement faux en présence de sauts observables. Nous avons contourné le problème

par une stratégie nouvelle en littérature et à première vue surprenante à savoir par une

suite de grossissement initiaux des filtrations. Surprenant est le moins qu’on puisse dire de

cette approche : pour réduire l’information on commence par l’augmenter. Pour être plus

précis, pour le k-ième grossissement nous rajoutons les marques des k premiers sauts. Des

potentiels k-agents initiés seront informés à l’avance de l’amplitude des k premier sauts

mais pas des instants de saut. Le point clef de notre démonstration est de remarquer que

avec ces filtrations grossies, il est possible d’adapter la méthode des innovations. Enfin un

point crucial de notre preuve est que ces k-agents redeviennent des agents classiques après le

k-ième saut car ils n’ont plus d’information privilégiée. Le filtrage optimal, et donc ensuite

la politique d’investissement, sera donc, entre le saut k et k+1, celle qui suivrait le k-agent.

Parmi mes articles publiés et en cours qui ne sont pas resumés dans ce memoire mais

ont leur place dans cette partie, je peux citer les travaux sur l’allocation optimale avec

incertitude sur le drift sur étude des sensibilités [A3] et [A5]. Il y a aussi un étude sur

la detection des trends fondé sur les ondelettes [A7] Je travaille aussi à une extension de

l’article sur la sous et sur-reaction à des problèmes de contrôle impulsionel avec application

au marché de credit [W21].

Partie 3 : Analyse stochastique et applications à la gestion des risques fi-

nancières

Dans cette partie, j’ai réuni mes travaux qui font recours à des méthodes de l’analyse

stochastique dans le but d’évaluer et gérer les risques financières. Pendant ma thèse sous

la direction de Nicolas Bouleau (ENPC) je me suis familiarisé avec les techniques de l’ana-

lyse stochastique et en particulier la théorie des capacités et des formes de Dirichlet. Ces

méthodes ont fait preuve de leur puissance dans la modélisation et dans la prise en compte

des risques extremes mal décrits par le paradigme usuel du vingtième siècle. Ce chemin

m’a conduit récemment à m’intéresser aux processus de Hawkes qui sont un des axes de

recherche en plein expansion ces derniers années, voir par example [7].

Dans un premiere temps, nous allons nous concentrer sur l’application de la decom-

position en chaos pour l’extension du Capital Asset Pricing Model et du coefficient beta

dans le but de tenir en compte la presence de risques extremes. Notre méthode repose

sur l’expansion en chaos. Dans l’article [A9], écrit en collaboration avec Guillaume Bernis

(Natixis Asset Management), nous étendons le cadre Gaussian du CAPM, voir [91], pour

prendre en compte les queues épaisses des distributions qui sont observés sur les marchés

financiers. Le coefficient beta joue un role central dans la politique d’allocation optimale et

dans la couverture des mouvements du portefeuille vis à vis des fluctuations du marché. La

simplicité du beta et en particulier le manque de dependance fonctionnelle avec les valeurs

du portefeuille et de l’indice sont souvent pointés, voir par example [100] et [102]. Dans ce

cadre nous avons proposé une extension du coefficient beta basé sur la decomposition en
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chaos du portefeuille et de l’indice en autorisation une ponderation pour chaque chaos. Le

beta usuel se retrouve donc on concentrant le poids sur le seul premier chaos. Nous avons

aussi montré des résultats financiers intéressant par example en liant le nouveau beta à

une insensibilité du portefeuille à un changement de drift de l’indice. Enfin notre cadre se

prête bien à fournir des formules fermés ou quasi-fermés pour plusieurs diffusions avec le

cas notable des processus de Jacobi. Une autre application interessante est la possibilité de

définir des bandes de Bollinger fonctionnelles capables de detecter les changements dans

l’evolution des marchés financiers.

Dans le meme cadre d’analyse stochastique mais en suivant un tout autre approche, je

me suis récemment intéressé aux modèle d’évolution basé sur le champs aléatoires. Dans les

articles fondateurs de Dawson et Li [55] et [56], les auteurs introduisent une nouvelle classe

d’equation différentielles stochastiques dirigé par des champs aléatoires. La principale in-

novation est d’accroitre la dimension des champs pour intégrer par rapport à cette nouvelle

dimension jusqu’à la valeur du processus lui meme. Dawson et Li arrivent à montrer l’exis-

tence et l’unicité de la solution et que cette dernière vérifie la propriété de branchement, à

savoir le processus est infiniment divisible par rapport à la donnée initiale. Filipovic avait

deja montré un lien très fort entre processus de branchement et structure exponentielle

affine, donc les processus ayant une fonction cumulatrice affine. Les modèles à structure ex-

ponentielle affine représentent un filon de recherché très prolifique en finance mathématique

tout d’abord grace à la forme explicite de la transformé de Laplace ce qui permet de calculer

rapidement les prix des produits dérivées et par leur maniabilité. Les applications couvrent

quasiment tout les domaines du secteur et des sous-jacents aussi different que les actions,

les taux ou les temps de faillite, voir par example [73], [59] et [62]. Le principal intérêt, de

mon point de vue, de la forme intégrale proposé par Dawson et Li est de fournir une écriture

explicite de l’équation différentielle stochastique satisfaite par le processus. Ceci permet de

comprendre plus en profondeur les raisons de certaines phénomènes qui sont anticipés par

les processus à l’étude.

Dans ce contexte, je travaille actuellement avec Ying Jiao (ISFA Lyon), Chunhua Ma

(Nankai, Chine), Carlo Sgarra (Politecnico di Milano, Italy) et Chao Zhou (National Uni-

versity of Singapore) sur des applications des modèles de branchement en finance. Dans

un premier travail [A11] avec Ying et Chunhua, présenté dans le sixième chapitre, nous

entendons le modèle CIR [37] pour la modélisation du taux d’interet court en incluant un

processus de branchement dirigé par un alpha-stable à spectre positif. Nous donnons deux

formes équivalentes pour écrire l’EDS associée, une basé sur l’écriture intégrale de Dawson

et Li, l’autre par une équation plus standard mais moins maniable. A l’aide de l’écriture

intégrale nous arrivons à mettre en lumière certaines previsions du modèle. Tout d’abord la

structure auto-excitante des processus de branchement a au fait un drôle d’effet sur les taux

et les obligations, à savoir nous prouvons que le modèle reproduit aisément la persistence

des faibles taux d’intérêts ce qui semble en contradiction avec l’idée d’auto-excitation. Ce

effet s’explique financièrement par le fait que si l’arrivé d’un saut va augmenter l’intensité
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du saut suivant, par symétrie l’absence d’un saut va réduire cette meme intensité. Il y a

donc une trappe propre aux branching qui va anéantir le processus qui trop s’approche

de zero. Du point de vue mathématique, ce phénomène se traduit par une augmentation

brutale de la vitesse de retour à la moyenne entre deux sauts. Cet increment de la vitesse

observé est propre à la structure de branchement et nous l’avons mis en evidence grace à la

representation intégrale qui permet d’évaluer cette vitesse effective de retour à la moyenne

entre deux sauts. De plus, ce terme de correction de la vitesse de retour à la moyenne vient

du compensateur du processus à saut qui dirige l’EDS satisfait par le taux d’intérêt. Or ce

compensateur augmente clairement si on augmente l’amplitude des sauts, ce que dans un

alpha-stable revient à réduire le paramètre α. On a donc un effet très contre-intuitif car la

persistence des taux bas est accentué par l’épaisseur de la queue droite de la distribution

des sauts, dans une sorte de loi du contra et patior. Ce meme effet est tellement important

qu’il est transféré aux taux longs en enduisant une inversion de la dependence des prix des

zero-coupons vis à vis des risques de increments brutaux des taux.

Dans le travail [S12] avec Ying, Chunhua et Carlo, nous utilisons un modèle de bran-

chement pour décrire l’evolution des prix spot de l’énergie. La principale raison de ce choix

vient de la presence de fortes fluctuations, dites spikes, et du fait que leur distribution n’est

pas homogène dans le temps mais des regroupements (cluster) apparaissent. Nous avons

essayé de voir les consequences si nous remplaçons le terme martingale du modèle usuel de

type Levy Ornstein Uhlenbeck, voir [17], par un terme auto-excitant. Nous avons prouvé

que les prix des forwards restent inchangés mais que la structure de la prime de risque

change remarquablement montrant naturellement une courbe non-monotone et changeante

de signe chose assez difficilement reproduite par les modèles usuels. De plus nous proposons

une méthode de calibration astucieuse basé uniquement sur l’observation des temps d’arrivé

des sauts. Cette stratégie est basé mathématiquement sur un résultat de convergence du

processus de branchement vers l’intensité d’un processus de Hawkes sous condition que la

vitesse de retour à la moyenne diverge, ce qui est notre cas. Nous pouvons en suite adapter

un résultat connu d’estimation sur les processus ponctuels pour déduire la vraisemblance

et l’estimateur qui la maximise.

Je suis en fin en train de travailler sur plusieurs articles en utilisant les processus de bran-

chement avec representation intégrale. Tout d’abord, dans le preprint [S14] avec Guillaume

Bernis et Kaouther Salhi, nous travaillons à l’étude de la sensibilité pour un modèle pour

les obligations de dette collateralisé (CLO) Ce modèle est naturellement basé sur les pro-

cessus de Hawkes marqué qui dirige les temps de faillite. Ce travail représente, dans un

certain sense, la fermeture d’une boucle commencé pendant ma thèse sur les . Avec Ying

Jiao, Chunhua Ma et Chao Zhou, nous travaillons à une extension du modèle de Heston en

utilisant des processus de branchement, [W17]. Je travaille aussi à une suite sur le modèle

de l’énergie, [W19], dans un cadre plus théorique pour étudier les conditions sous les quelles

un modèle multifacteur avec des processus de branchement a un comportement coherent

avec l’effet Samuelson.
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The theory of optimal stochastic control problem, developed in the seventies, has over

the recent years once again drawn a significance of interest, especially from the applied ma-

thematics community with the main focus on its applications in a variety of fields including

economics and finance. For instance, the use of powerful tools developed in stochastic control

theory has provided new approaches and sometime the first mathematical approaches in

solving problems arising from corporate finance. It is mainly about finding the best optimal

decision strategy for managers whose firms operate under uncertain environment whether

it is financial or operational. A number of corporate finance problems have been studied, or

at least revisited, with this optimal stochastic control approach. There is a vast literature

on firm’s investment decisions in stochastic environments, see for instance [26] and [54],

[25], [49], [88], [93], [95] and [104].

In this part, we focus on three aspects. First-of-all, we deal with firm managerial deci-

sions on dividend distribution policy and investment decisions. The second chapter focuses

on social preferences over employment protection regulation in a general equilibrium model

of dynamic labor demand. The third subject is

In Chapter 1 we investigate a number of problems related to optimal dividend distribu-

tion policy and investment decisions, which will lead us to a variety of combined singular

and switching control problems. One of the first corporate finance problems using singular

stochastic control theory was the study of the optimal dividend strategy, see for instance

[36], [12] and [74]. The first paper focuses on the study of a singular stochastic control

problem arising from the research on optimal dividend policy for a firm whose cash reserve

follows a stochastic process. The cash reserve may either grow when the firm makes profits

or decrease when it is loss-making. The firm goes into bankruptcy when its cash reserve

reaches zero. In these studies, some strong assumptions are made. The firm holds no debt

and it is not possible to make any investment for future growth. Furthermore, it is clearly

assumed that the firm does have the possibility to dispose of parts of its assets for some

cash to avoid bankruptcy when the cash reserve approaches zero. Tackling this new issues

is precisely the subject of the study in the first subject.

In [A2], we consider the problem of determining an optimal control on the dividend

and investment policy of a firm under debt constraints. We allowed the company to make

investment by increasing its outstanding indebtedness, impacting therefore its capital struc-

ture and risk profile. The presence of a high-level of debt is a challenging constraint to any

firm as it is no other than the threshold below which the firm value should never go to

avoid bankruptcy. The formulation of this financial problem has led to a combined singular

and multi-switching control problem under constraints. Studying such a combined control

problem turns out to be a real challenge to us, especially when our objective is to provide

quasi-explicit solutions to our problems.

A second relevant subject is when a firm, engaged in a project that does not produce

to its full potential, faces the difficult dilemma of shutting it down or keeping it alive in

the hope that it will become profitable once again. In relation to our studies, Dixit and



24

Pindyck [54] consider various firm’s decisions problems with entry, exit, suspension and/or

abandonment scenarios in the case of an asset given by a geometric Brownian motion.

The firm’s strategy can then be described in terms of stopping times given by the time

when the value of the assets hit certain threshold levels characterized as free boundaries

of a variational problem. Duckworth and Zervos [57], and Lumley and Zervos [90] solve an

optimal investment decision problem with switching costs in which the firm controls the

production rate and must decide at which time it exits and re-enters production.

In [A6], we consider the problem of a firm having the option to keep the project going

while waiting for a buyer, or liquidating the assets at immediate liquidity and termination

costs. The liquidity and termination costs are governed by a mean-reverting stochastic pro-

cess whereas the rate of arrival of buyers is governed by a regime-shifting Markov process.

The formulation of this problem has led to a multidimensional optimal stopping time pro-

blem with random maturity. The main difficulty arises from the lack of regularity of the

SDE inducing the non-uniqueness of the solution. This problem is overcame thanks to a

rigorous analysis to show some properties of regularity of the value function thanks to an

hypothesis having a nice financial interpretation.

The second problem, in Chapter 2, is formulated as an optimal stopping problem trying

to ask to the question about the dichotomy between American and European labor mar-

kets, sometimes called the phenomenon of Eurosclerosis. In [A4], we are interested in the

employment protection legislation. It varies significantly across OECD countries and an

important dichotomy appears between the two sides of Atlantic and the paths diverges

during the past forty years. Relatively stringent job security provisions are currently imple-

mented in several Continental European countries whereas other countries such as the U.K.

and especially the U.S. are characterised by relatively flexible labor markets, see [19]. We

investigate how the interaction of institutional and economic factors affects the emergence

and the potential persistence of political support for some form of employment protection

regulations. In order to pursue this goal, we develop and fully characterise the solution of a

general equilibrium model of dynamic labor demand. Our model is based on three features.

First, a firm can hire one worker (one worker per firm model) to be active. Then it becomes

active and its productivity evolves stochastically until the exogenous quit decision of the

worker. Second, the employed workers appropriate a rent, i.e. an economic benefit in excess

of the utility of the unemployed. This benefit is justified by different facts : firms have

to cope with an underlying moral hazard problem, etc.. But also by political-institutional

factors different across countries. These fundamentals are captured by one parameter lin-

ked to the power of extraction of rents of the employed workers. Third, firm can decide

to quit operating by firing the worker paying a legislated tax (firing cost). This cost is

determined through a political process based on standard majority voting. We show that

the Eurosclerosis can be easily explained by the appearance of a “middle working class”,

i.e. employed workers with intermediate productivity, preferring a rigid labor market with

very high firing costs.



Chapitre 2

Optimal dividend, investment and
exit strategies under constraints

This Chapter is based on

[A2]. “An optimal dividend and investment control problem under debt constraints”, avec

V. Ly Vath, et E. Chevalier, 2013, SIAM J. Finan. Math., 4(1), 297 - 326.

[A6]. “Exit Optimal exit strategies for investment projects”, avec E. Chevalier, V. Ly Vath

et A. Roch, 2015, Journal of Mathematical Analysis and Applications, Vol.425(2), pp.666-

694.

Summary. In this chapter, we look at two different problems arising in corporate

finance, related in particular to optimal dividend distribution policy and investment or

exit decisions. we first consider a combined stochastic control problem which studies the

interactions between dividend policy and investment under uncertainty. The formulation of

the financial problem under constraints has led to combined singular and multi-switching

control problem under constraints. A viscosity solutions approach is employed to carry out

an analysis on the associated system of variational inequalities, leading to sharp qualitative

characterizations of the switching regions. In the second paper, we study the problem of

an optimal exit strategy for an investment project which is unprofitable and for which the

liquidation costs evolve stochastically. The firm has the option to keep the project going

while waiting for a buyer, or liquidating the assets at immediate liquidity and termination

costs. The liquidity and termination costs are governed by a mean-reverting stochastic

process whereas the rate of arrival of buyers is governed by a regime-shifting Markov process.

We formulate this problem as a multidimensional optimal stopping time problem with

random maturity. We characterise the objective function and derive explicit solutions and

numerical examples in the case of power and logarithmic utility functions when the liquidity

premium factor follows a mean-reverting CIR process. Studying such a combined control

problems turns out to be a real challenge to us, especially when our objective is to provide

quasi-explicit solutions to our problems.
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2.1 Introduction

The first and natural dividend control problem was studied by [74]. They consider a

firm whose cash reserve follows a drift brownian motion as follows :

dXt = µdt+ σdWt − dZt, X0− = x.

The objective is to find the best dividend policy which maximizes shareholder’s value :

V̂0(x) = sup
Z∈Z

E

[∫ T−0

0
e−ρtdZt

]
, (2.1.1)

where T0 = inf{t ≥ 0 : Xt ≤ 0} is the time bankruptcy of the cash reserve in regime 0.

It is known that V̂0, as the value function of a pure singular control problem, is charac-

terized as the unique continuous viscosity solution on (0,∞), with linear growth condition

to the variational inequality :

min
[
ρV̂0 − L0V̂0 , V̂

′
0 − 1

]
= 0, x > 0, (2.1.2)

and boundary data

V̂0(0) = 0.

Actually, V̂0 is C2 on (0,∞) and explicit computations of this standard singular control

problem are developed in Shreve, Lehoczky and Gaver [101], Jeanblanc and Shiryaev [74],

or Radner and Shepp [97] :

V̂0(x) =

{
f0(x)
f ′0(x̂0)

, 0 ≤ x ≤ x̂0

x− x̂0 + µ0
ρ , x ≥ x̂0,

where

f0(x) = em
+
0 x − em

−
0 x, x̂0 =

1

m+
0 −m

−
0

ln

(
(m+

0 )2

(m−0 )2

)
,

and m−0 < 0 < m+
0 are roots of the characteristic equation :

ρ− µ0m−
1

2
σ2m2 = 0.

In other words, this means that the optimal cash reserve process is given by the reflected

diffusion process at the threshold x̂0 with an optimal dividend process given by the local

time at this boundary. When the firm starts with a cash reserve x ≥ x̂0, the optimal dividend

policy is to distribute immediately the amount x− x̂0 and then follows the dividend policy

characterized by the local time.
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In this section, the objective is to address related problems when we incorporate the

following aspects :

- investment problems : the interaction between dividend policy and investment

policy. By investment, we mean the ability of the firm to allow the company to capture

growth opportunity which it self-finances on its cash reserve.

- investment under debt constraints : the firm is allowed to make investment and

finance it through debt issuance/raising, which in turn would impact its capital structure

and risk profile.

- dividend and investment policy under liquidity risk : the firm is allowed to

make investment decisions by acquiring or selling productive assets. But we no longer

assume that firm assets are either infinitely illiquid or liquid.

The formulation of these financial problems has led to different combined singular and

multi-switching control problems under constraints, which turn out to be real challenges to

us, especially when our objective is to provide quasi-explicit solutions to our problems.

2.2 An optimal dividend and investment control problem un-
der debt constraints

In this paper, we consider the problem of determining the optimal control on the divi-

dend and investment policy of a firm under debt constraints. As in the Merton model, we

consider that firm value follows a geometric Brownian process and more importantly we

consider that the firm carries a debt obligation in its balance sheet. However, as in most

studies, we still assume that the firm assets is either highly liquid and may be assimilated

to cash equivalents or cash reserve, or infinitely illiquid except the cash reserve. We allow

the company to make investment and finance it through debt issuance/raising, which would

impact its capital structure and risk profile. This debt financing results therefore in higher

interest rate on the firm’s outstanding debts. More precisely, we model the decisions to

raise or redeem some debt obligations as switching decisions controls where each regime

corresponds to a specific level debt.

Furthermore, we consider that the manager of the firm works in the interest of the

shareholders, but only to a certain extent. Indeed, in the objective function, we introduce

a penalty cost P and assume that the manager does not completely try to maximize the

shareholders’ value since it applies a penalty cost in the case of bankruptcy. This penalty

cost could represent, for instance, an estimated cost of the negative image upon his/her

own reputation due to the bankruptcy under his management leadership. Mathematically,

we formulate this problem as a combined singular and multiple-regime switching control

problem. Each regime corresponds to a level of debt obligation held by the firm.

The studies that are most relevant to our problem are the one investigating combined

singular and switching control problems, see [70]. However, none of the above papers on

dividend and investment policies, which provides qualitative solutions, has yet moved away
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from the basic Bachelier model or the simplistic assumption that firms hold no debt obliga-

tions. In our model switching from one regime, i.e. debt level, to another directly impacts

the state process itself. Indeed, the drift of the stochastic differential equation governing

the firm value would equally switch as the results of the change in interest rate paid on the

outstanding debt. A given level of debt is no other than the threshold below which the firm

value should never go to avoid bankruptcy. As such, debt level switching also signifies a

change of default constraints on the state process in our optimal control problem. Further

original contributions in terms of financial studies of our paper include the feature of the

conflicts of interest for firm manager through the presence of the penalty cost in the event

of bankruptcy. Studying a mixed singular and multi-switching problem combining with

the above financial features including debt constraints and penalty cost turns out to be

a major mathematical challenge, especially when our objective is to provide quasi-explicit

solutions. In addition, it is always tricky to overcoming the combined difficulties of the

singular control with those of the switching control, especially when there are multiple re-

gimes, for instance, building a strict supersolution to our HJB system in order to prove the

comparison principle.

2.2.1 The model formulation

We assume that the cash-reserve process of the firm Xx,i,α, denoted by X when there

is no ambiguity and associated to a strategy α = (Zt, (τn)n≥0, (kn)n≥0), is governed by the

following stochastic differential equation :

dXt = bXtdt− rItDItdt+ σXtdWt − dZt + dKt (2.2.3)

where It =
∑
n≥0

kn1τn≤t<τn+1 , I0− = i and kn ∈ IN := {1, ..., N}. Di and ri represent

respectively different levels of debt and their associated interest rate paid on those debts.

The process Kt represents the cash-flow due to the change in the firm’s indebtedness.

More precisely Kt =
∑
n≥0

(
Dκn+1 −Dκn − g

)
1τn+1≤t, where g represents the additional cost

associated with the change of firm’s level of debt.

For a given control strategy α =, the bankruptcy time is represented by the stopping time

Tα defined as

Tα = inf{t ≥ 0, Xx,i,α
t ≤ DIt}. (2.2.4)

We equally introduce a penalty cost or a liquidation cost P > 0, in the case of a holding

company looking to liquidate one of its own affiliate or activity. In the case of the penalty,

it mainly assumes that the manager does not completely try to maximize the shareholders’

value since it applies a penalty cost in the case of bankruptcy.

We define the value functions which the manager actually optimizes as follows
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vi(x) = sup
α∈A

E(i,x)

[∫ T−

0
e−ρtdZt − Pe−ρT

]
, x ∈ R, i ∈ {1, ..., N}, (2.2.5)

where A represents the set of admissible control strategies, and ρ the discount rate.

2.2.2 PDE characterization

Using the dynamic programming principle, we obtain the associated system of variational

inequalities satisfied by the value functions :

min

[
−Aivi(x) , v′i(x)− 1 , vi(x)−max

j 6=i
vj(x+Dj −Di − g)

]
= 0, x > Di, i ∈ IN

vi(Di) = −P,

where the operatorAi is defined byAiφ = Liφ−ρφ, and Liϕ = [bx−riDi]ϕ
′(x)+1

2σ
2x2ϕ′′(x)

We may obtain the following results :

Proposition 2.2.1. The value functions vi are continuous on (Di,∞) and satisfy

vi(D
+
i ) := lim

x↓Di
vi(x) = −P. (2.2.6)

Theorem 2.2.1. The value functions vi, i ∈ IN , are continuous on (Di,∞), and are the

unique viscosity solutions on (Di,∞) with linear growth condition and boundary data vi(Di)

= −P , to the system of variational inequalities :

min

[
−Aivi(x) , v′i(x)− 1 , vi(x)−max

j 6=i
vj(x+Dj −Di − g)

]
= 0, x > Di. (2.2.7)

Actually, we obtain some more regularity results on the value functions.

Proposition 2.2.2. The value functions vi, i ∈ IN , are C1 on (Di,∞). Moreover, if we

set for i ∈ IN :

Si =

{
x ≥ Di , vi(x) = max

j 6=i
vj(x+Dj −Di − g),

}
(2.2.8)

Di = int ({x ≥ Di , v′i(x) = 1}), (2.2.9)

Ci = (Di,∞) \ (Si ∪ Di), (2.2.10)

then vi is C2 on the open set Ci ∪ int(Di)∪ int(Si) of (Di,∞), and we have in the classical

sense

ρvi(x)− Livi(x) = 0, x ∈ Ci.

Si, Di, and Ci respectively represent the switching, dividend, and continuation regions

when the outstanding debt is at regime i.
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2.2.3 Qualitative results on the switching regions

For i, j ∈ IN and x ∈ [Di,+∞), we introduce some notations :

δi,j = Dj −Di, ∆i,j = (b− rj)Dj − (b− ri)Di and xi,j = x+ δi,j − g.

We set x∗i = sup{x ∈ [Di,+∞) : v′i(x) > 1} for all i ∈ IN
We equally define Si,j as the switching region from debt level i to j.

Si,j = {x ∈ (Di, +∞), vi(x) = vj(xi,j)}.

and notice that Si = ∪j 6=iSi,j , i ∈ IN .
We now turn to the first result which that there exists a finite level of cash such that it

is optimal to distribute dividends up to this level.

Lemma 2.2.1. For all i ∈ IN , we have x∗i := sup{x ∈ [Di,+∞) : v′i(x) > 1} < +∞.

In order to compute the dividend regions, we establish the following lemma.

Lemma 2.2.2. Let i, j ∈ IN such that j 6= i. We assume that there exists x̂i a left-boundary

of Di.
i) Assume that x̂i 6∈ Si, then we have (b− ri)Di > −ρP and ρvi(x̂i) = bx̂i − riDi.

As x→ ρvi(x)− bx+ riDi is increasing, it implies that

ρvi(x) < bx− riDi on (Di, x̂i) and ρvi(x) > bx− riDi on (x̂i,+∞).

ii) Assume that x̂i ∈ Si,j then we have

ii.a) [x̂i, x̂i + ε] ⊂ Si,j and x̂i + δi,j − g is a left-boundary of Dj .
ii.b) ρvi(x̂i) = bx̂i − riDi + ∆i,j − bg and ∆i,j > 0.

ii.c) ∀k ∈ IN − {i, j}, x̂i 6∈ Si,k.
Notice that the last equality implies that −ρP + bg < (b− rj)Dj.

We now establish an important result in determining the description of the switching

regions. The following Theorem states that it is never optimal to expand its operation, i.e.

to make investment, through debt financing, should it result in a lower “drift” ((b− ri)Di)

regime. However, when the firm’s value is low, i.e. with a relatively high bankruptcy risk,

it may be optimal to make some divestment, i.e. sell parts of the company, and use the

proceedings to lower its debt outstanding, even if it results in a regime with lower “drift”.

In other words, to lower the firm’s bankruptcy risk, one should try to decrease its volatility,

i.e. the diffusion coefficient. In our model, this clearly means making some debt repayment

in order to lower the firm’s volatility, i.e. σXt.

Theorem 2.2.2. Let i, j ∈ IN such that (b − rj)Dj > (b − ri)Di. We have the following

results :
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1) x∗j 6∈ Sj,i and D̊j = (x∗j , +∞).

2) S̊j,i ⊂ (Dj + g, x∗j ). Furthermore, if Dj < Di, then S̊j,i = ∅.

From the above Theorem, we may obtain the following Corollary and Proposition on

the determination of different regions. We will in particular see in the next section how

from these results, we may obtain the complete results in the two-regime case and above.

Corollary 2.2.1. Let m ∈ IN such that (b− rm)Dm = maxi∈IN (b− ri)Di.

1) x∗m 6∈ Sm and D̊m = (x∗m, +∞).

2) For all i ∈ IN − {m}, we have :

i) If Dm < Di, S̊m,i = ∅.
ii) If Di < Dm, S̊m,i ⊂ (Dm + g, x∗m). Furthermore, if b ≥ ri, then S̊m,i ⊂ (Dm +

g, (a∗i + δi,m + g)∧x∗m), where a∗i is the unique solution of the equation ρvi(x) =

(bx− riDi)v
′
i(x). We further have a∗i 6= x∗i .

We now turn to the following results ordering the left-boundaries (x∗i )i∈IN of the divi-

dend regions (Di)i∈IN .

Proposition 2.2.3. Consider i, j ∈ IN , such that (b− ri)Di < (b− rj)Dj. We always have

x∗i + δi,j − g ≤ x∗j unless there exists a regime k such that (b − rj)Dj < (b − rk)Dk and

x∗i ∈ Si,k, then we have x∗j − δi,j + g < x∗i < x∗k − δi,k + g.

2.2.4 The two regime-case

Throughout this section, we now assume that N = 2, in which case, we will get a

complete description of the different regions. We will see that the most important parameter

to consider is the so-called “drifts” ((b− ri)Di)i=1,2 and in particular their relative positions.

To avoid cases with trivial solution, i.e. immediate consumption, we will assume that −ρP <

(b− ri)Di, i = 1, 2. Throughout the following Theorems, we provide a complete resolution

to our problem in each case.

Theorem 2.2.3. We assume that (b− r2)D2 < (b− r1)D1.

We have

C1 = [D1, x
∗
1), D1 = [x∗1, +∞), and S̊1 = ∅ where ρv1(x∗1) = bx∗1 − r1D1.

1) If S2 = ∅ then we have

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.

2) If S2 6= ∅ then there exists y∗2 such that S2 = [y∗2, +∞) and we distinguish two cases

a) If x∗2 + δ2,1 − g < x∗1, then y∗2 > x∗2, y∗2 = x∗1 + δ1,2 + g and

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.
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b) If x∗2 + δ2,1 − g = x∗1 then y∗2 ≤ x∗2, ρv2(x∗2) = bx∗2 − r2D2 + ∆2,1 − bg.

We define a∗2 as the solution of ρv2(a∗2) = ba∗2 − r2D2 and have two cases

i) If a∗2 6∈ D2, we have

D2 = [x∗2, +∞) and C2 = [D2, y
∗
2).

ii) If a∗2 ∈ D2, there exists z∗2 ∈ (a∗2, y
∗
2) such that

D2 = [a∗2, z
∗
2 ] ∪ [x∗2, +∞) and C2 = [D2, a

∗
2) ∪ (z∗2 , y

∗
2).

Theorem 2.2.4. We assume that (b− r1)D1 < (b− r2)D2,

1) we have

D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2

S̊2 = ∅ or there exist s∗2, S
∗
2 ∈ (D2 + g, x∗2) such that S̊2 = (s∗2, S

∗
2).

2) If S̊1 = ∅ then we have

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.

3) If S̊1 6= ∅ there exists y∗1 such that S̊1 = (y∗1, +∞)

a) If x∗1 + δ1,2 − g < x∗2, then y∗1 > x∗1, y∗1 = x∗2 + δ2,1 + g and

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.

b) If x∗2 + δ2,1 − g = x∗1, then y∗1 ≤ x∗1, ρv1(x∗1) = bx∗1 − r1D1 + ∆1,2 − bg.

We define a∗1 as the solution of ρv1(a∗1) = ba∗1 − r1D1 and have two cases.

i) If a∗1 6∈ D1, we have

D1 = [x∗1, +∞) and C1 = [D1, y
∗
1).

ii) If a∗1 ∈ D1, there exists z∗1 ∈ (a∗1, y
∗
1) such that

D1 = [a∗1, z
∗
1 ] ∪ [x∗1, +∞) and C1 = [D1, a

∗
1) ∪ (z∗1 , y

∗
1).

2.3 Optimal exit strategies for an investment project

2.3.1 Introduction

There is often a time when a firm is engaged in a project that does not produce to its full

potential and faces the difficult dilemma of shutting it down or keeping it alive in the hope

that it will become profitable once again. When an investment in not totally irreversible,

assets can be sold at their scrap value minus some liquidation and project termination

costs, which may include for example termination pay to workers, legal fees and a liquidity

premium in the case of fire sale of the assets. Since these closing costs may be substantial, it
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may be worthwhile to wait for the project to be profitable again or to wait for an interested

buyer that will pay the fair value of the assets and put them to better use. In this study,

we give an analytical solution to this problem when the liquidation costs and the value of

the assets are diffusion processes and the arrival time of a buyer is modeled by means of

an intensity function depending on the current state of a Markov chain.

The firm, we consider, in this paper, must decide between liquidating the assets of an

underperforming project and waiting for the project to become once again profitable, in a

setting where the liquidation costs and the value of the assets are given by general diffusion

processes. We formulate this two-dimensional stochastic control problem as an optimal

stopping time problem with random maturity and regime shifting.

Amongst the large literature on optimal stopping problems, we may refer to some related

works including Bouchard, El Karoui and Touzi [21], Carr [31], Dayanik and Egami [45],

Dayanik and Karatzas [46], Guo and Zhang [71], Lamberton and Zervos [82]. In [46] and

[82], the authors study optimal stopping problems with general 1-dimensional processes.

Random maturity in optimal stopping problem was introduced in [31] and [21]. It allowed

to reduce the dimension of their problems as well as addressing the numerical issues. We

may refer to Dayanik and Egami [45] for a recent paper on optimal stopping time and

random maturity. For optimal stopping problem with regime shifting, we may refer to

Guo and Zhang [71], where an explicit optimal stopping rule and the corresponding value

function in a closed form are obtained.

In this paper, our optimal stopping problem combines all the above features, i.e., random

maturity and regime shifting, in the bi-dimensional framework. We are able to characterize

the value function of our problem and provide explicit solution in some particular cases

where we manage to reduce the dimension of our control problem.

In the general bi-dimensional framework, the main difficulty is related to the proof of

the continuity property and the PDE characterization of the value function. Since it is not

possible to get the smooth-fit property, the PDE characterization may be obtained only

via the viscosity approach. To prove the comparison principle, one has to overcome the

non-linearity of the lower and upper bounds of the value function when building a strict

supersolution to our HJB equation.

In the particular cases where it is possible to reduce our problem to a one-dimensional

problem, we are able to provide explicit solution. Our reduced one-dimensional problem is

highly related to previous studies in the literature, see for instance Zervos, Johnson and

Alezemi [106] and Leung, Li and Wang [83].

2.3.2 The investment project

Let (Ω,F,P) be a probability space equipped with a filtration F = (Ft)t≥0, satisfying the

usual conditions. It is assumed that all random variables and stochastic processes are defined

on the stochastic basis (Ω,F,P). We denote by T the collection of all F−stopping times.
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Let W and B be two correlated F–Brownian motions, with correlation ρ, i.e. d[W,B]t = ρdt

for all t.

We consider a firm which owns assets that are currently locked up in an investment

project which currently produces no output per unit of time. Because the firm is currently

not using the assets at its full potential, it considers two possibilities. The first is to liquidate

the assets in a fire sale and recover any remaining value. The cash flow obtained in the

latter case is the fair value of the assets minus liquidation and project termination costs.

We denote by θ the moment at which the firm decides to take this option. The second

option is to wait for the project to become profitable once again, or equivalently, to wait

for an investor or another firm who will purchase the assets as a whole at their fair value

Sτ where τ is the moment when this happens.

The fair value of the assets are given by S = exp(X), in which

dXt = µ(Xt)dt+ σ(Xt)dBt, t ≥ 0 (2.3.11)

X0 = x.

Assume that µ and σ are Lipschitz functions on R satisfying some growth conditions.

Liquidation and Termination Costs. We model the liquidation cost of the assets and

terminal costs of the project as a given process (f(Yt))t≥0, where f is strictly decreasing

C2 function defined on R+ → [0, 1], and satisfies some conditions.

Unlike the value of financial assets, it is natural to model liquidation costs with mean-

reverting properties. As such, the costs, given by f(Yt) at time t, is defined in terms of the

mean-reverting non-negative process Y which is governed by the following SDE :

dYt = α(Yt)dt+ γ(Yt)dWt, (2.3.12)

Y0 = y,

where α is a Lipschitz function on R+ and, for any ε > 0, γ is a Lipschitz function on

[ε,∞). We assume that α and γ satisfy linear growth conditions.

The recovery time. We model the arrival time of a buyer, denoted by τ , or equivalently

the time when the project becomes profitable again, by means of an intensity function

λi depending on the current state i of a continuous-time, time-homogenous, irreducible

Markov chain L, independent of W and B, with m+ 1 states. The generator of the chain L

under P is denoted by A = (ϑi,j)i,j=0,...m. Without loss of generality we assume λ0 > λ1 >

. . . > λm > 0.

Utility function. We let U denote the utility function of the firm. We assume that U

satisfies the following assumptions.

Assumption 2.3.1. U : R+ → R is non-decreasing, concave and twice continuously diffe-

rentiable, and satisfies

lim
x→0

x U ′(x) < +∞. (2.3.13)
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Assumption 2.3.2. U is supermeanvalued w.r.t. S, i.e.

U(St) ≥ E[U(Sθ)|Ft] (2.3.14)

for any stopping time θ ∈ T .

Objective function. The objective of the firm is to maximize the expected profit obtained

from the sale of the illiquid asset, either through liquidation or at its fair value at the

exogenously given stopping time τ . As such, we consider the following value function :

v(i, x, y) := sup
θ∈T

Ei,x,y
[
h(Xθ, Yθ) 1θ≤τ + U(eXτ ) 1θ>τ

]
, x ∈ R, y ∈ R+, i ∈ {0, . . . ,m}

(2.3.15)

where Ei,x,y stands for the expectation with initial conditions X0 = x, Y0 = y and L0 = i,

and h(x, y) = U(exf(y)). Recall that τ is defined through the Markov chain L.

2.3.3 Characterization of the value function

Before characterizing the value function, We first prove the continuity of the value

function, which has two main difficulties that need a no-standard treatment. The first one

comes from the SDE (2.3.12) satisfied by Y since we do not assume the standard hypothesis

of Lipschitz coefficients. We overcome this drawback by showing that the local Lipschitz

property is satisfied until the smallest optimal exit time from the investment. The second

difficulty is related to the bi-dimensional setting where the classical arguments used to

show the regularity of value function are not longer available. We then need to show the

continuity in term of limits of sequences and to distinguish different sub-sequences with

ad-hoc proofs.

The complexity of the proof of the continuity suggests that a direct proof of differentia-

bility, i.e. smooth-fit property, of the value function is probably out of reach in our setting.

We will then turn to the viscosity characterization approach to overcome the impossibility

to use a verification approach.

Theorem 2.3.5. The value functions vi, i ∈ {0, . . . ,m}, are continuous on R × R+, and

constitute the unique viscosity solution on R× R+ with growth condition

|vi(x, y)| ≤ |U(ex)|+ |U(ex)f(y)|,

and boundary condition

lim
y↓0

vi(x, y) = U(ex),

to the system of variational inequalities :

min
[
− Lvi(x, y)− Giv.(x, y)− Jivi(x, y) , vi(x, y)− U(exf(y))

]
= 0,

∀ (x, y) ∈ ×R× R+
∗ , and i ∈ {0, . . . , n},

(2.3.16)
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in which L is the second order differential operator associated to the state processes (X,Y )

and Gi and Ji are defined as

Giϕ(., x, y) =
∑
j 6=i

ϑi,j (ϕ(j, x, y)− ϕ(i, x, y))

Jiϕ(i, x, y) = λi (ex − ϕ(i, x, y)) .

Remark 2.3.1. To prove the comparison principle, one has to overcome the non-linearity

of the lower and upper bounds of the value function when building a strict supersolution to

our HJB equation.

2.3.4 Liquidation and continuation regions

We now prove useful qualitative properties of the liquidation regions of the optimal

stopping problem. We introduce the following liquidation and continuation regions :

LR =
{

(i, x, y) ∈ {0, ...,m} × R× R+ | v(i, x, y) = h(x, y)
}

CR = {0, ...,m} × R× R+ \ LR.

Clearly, outside the liquidation region LR, it is never optimal to liquidate the assets at the

available discounted value. Moreover, the smallest optimal stopping time θ∗ixy verifies

θ∗ixy = inf
{
u ≥ 0 |

(
Liu, X

x
u , Y

y
u

)
∈ LR

}
.

We define the (i, x)−sections for every (i, x) ∈ {0, ...,m} × R by

LR(i,x) = {y ≥ 0 | v(i, x, y) = h(x, y)} and CR(i,x) = R+ \ LR(i,x).

Proposition 2.3.4 (Properties of liquidation region).

i) E is closed in {0, ...,m} × R× (0,+∞),

ii) Let (i, x) ∈ {0, ...,m} × R.

- If Ei,x[U(eXτ )] = U(ex), then, for all y ∈ R+, v(i, x, y) = U(ex) and E(i,x) = {0}.

- If Ei,x[U(eXτ )] < U(ex), then there exists x0 ∈ R such that E(i,x0) \ {0} 6= ∅ and

ȳ∗(i, x) := sup E(i,x) < +∞.

2.3.5 Logarithmic utility

Throughout this section, we assume that the diffusion processes X and Y are governed

by the following SDE, which are particular cases of (2.3.11) and (2.3.12)

dXt = µdt+ σ(Xt)dBt; X0 = x (2.3.17)

dYt = κ (β − Yt) dt+ γ
√
YtdWt; Y0 = y. (2.3.18)
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The following theorem shows that in the logarithmic case, we can reduce the dimension

of the problem by factoring out the x-variable. For this purpose, we define TL,W the set

of stopping times with respect to the filtration generated by (L,W ), and the differential

operator Lφ(y) := 1
2γ

2y ∂
2φ
∂y2

+ κ(β − y)∂φ∂y + µ, for φ ∈ C2(R+).

Theorem 2.3.6. For (i, y) ∈ {1, ...,m} × R+ we define the function :

w(i, y) = sup
θ∈TL,W

Ei,y[µ(θ ∧ τ) + ln (f(Yθ)) 1l{θ≤τ}].

Then,

v(i, x, y) = x+ w(i, y) on {0, ...,m} × R× R+,

with w the unique viscosity solution to the system of equations :

min
[
− Lw(i, y) + λiw(i, y)−

∑
j 6=i

ϑi,j (w(j, y)− w(i, y)) , w(i, y)− g(y)
]

= 0, (2.3.19)

where g(y) := ln(f(y)) Moreover, the functions w(i, .) are of class C1 on R+ and C2 on the

open set C(i,x) ∪ Int(E(i,x)).

2.3.6 Liquidation region

In the logarithmic case, the liquidation region can be characterized in more details.

Proposition 2.3.5. Let i ∈ {0, ...,m} and set

ŷi = inf{y ≥ 0 : Hig(y) ≥ 0} with Hig(y) = Lg(y)− λig(y) +
∑
j 6=i

ϑi,j (w(j, y)− g(y)) .

There exists y∗i ≥ 0 such that [0, y∗i ] = LR(i,.) ∩ [0, ŷi]. Moreover, w(i, ·) − g(·) is non-

decreasing on [y∗i , ŷi].

Proposition 2.3.6. Assume that the function y 7→ Lg(y) is non-decreasing on R+, then

for all i ∈ {0, ...,m}, w(i, ·) − g(·) is non-decreasing on R+ and we have LR(i,·) = [0, y∗i ],

with y∗i > 0.

2.3.7 Explicit solutions in logarithmic utility in the two regime case

From the above results, we may get completely explicit solution in the two-regime case.

In particular, the value function may be written in terms of the confluent hypergeometric

functions.
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Proposition 2.3.7. The function w is given by

w(0, y) =


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w(1, y) =



g(y) y ∈ [0, y∗1]
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0

[
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,
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γ2
y

)
+
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]
,

where Φ and Ψ denote respectively the confluent hypergeometric function of first and second

kind, and I is a particular solution to the non-homogeneous confluent differential equation.

Moreover, (y∗0, y
∗
1, ĉ, d̂, ê, f̂) are such that w(0, y) and w(1, y) belong to C1(R+).

Numerical Simulation

In Figure 2.1, we represent the value functions in the two-regime case, for the cases

µ = −.05 and µ = −0.3. Other numerical results, in particular sensitivity analysis for the

parameters µ, λ, β, and ϑ0,1 are equally obtained.
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Figure 2.1: Value functions in the two-regime case, for the cases µ = −0.05 (solid line) and
µ = −0.3 (dashed line). Regime 0 is presented in blue and regime 1 in red. The parameters
used are λ0 = 2, λ1 = 0.5, ϑ0,1 = ϑ1,0 = 1, κ = 1, β = 0.25, γ = 0.5. The liquidation region
are indicated by dashed lines. In the case µ = −0.5, y∗0 = 0.0172 and y∗1 = 0.0288. In the
case µ = −0.3, y∗0 = 0.0983 and y∗1 = 0.1742.



Chapitre 3

Labor market and firing costs

This Chapter is based on

[A4]. “Uncertainty and the Politics of Employment Protection”, with C. Tealdi and A.

Vindigni, 2015, Journal of Labor Economics, Vol.33(1), pp.209-267.

Summary.

This chapter investigates social preferences over employment protection regulation, in

a general equilibrium model of dynamic labor demand, and sheds some light on the com-

parative dynamics of Eurosclerosis. When firing costs are low, a transition to a rigid labor

market is favoured by all the employed workers with idiosyncratic productivity below some

threshold ; when their status quo level is high, preserving a rigid labor market is favoured

only by the employed with intermediate productivity. A more volatile environment, and a

lower rate of productivity growth increase the political support for labor market rigidity

only in high rents economies.

Employment protection legislation varies significantly across OECD countries. Rela-

tively stringent job security provisions are currently implemented in several Continental

European countries whereas other countries such as the U.S. are characterised by relati-

vely flexible labor markets. There is evidence that in Continental Europe firing costs have

gradually become higher since the early 1970’s, see for example Caballero and Hammour

[29], Blanchard [19], and Blanchard and Wolfers [20], the period traditionally associated

with the build-up of “Eurosclerosis,”see Giersch [68], and mildly reduced since the 1990’s.

During the same period, the structure of the labor markets of the U.S. has instead changed

relatively little.

The goal of this work, is to investigate how the interaction of institutional and economic

factors affects the emergence and the potential persistence of political support for some form

of employment protection regulations. In order to pursue this goal, we develop and fully

characterise the solution of a general equilibrium model of dynamic labor demand, which

carries three distinctive features.

40
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3.1 Basic environment

The economy is a small and open one, populated by a continuum of measure one of

risk neutral workers who always consume all of their disposable income. Workers can be

employed or unemployed, and discount future welfare at rate r equal to the real interest

rate. Firms are created by a small set of risk neutral entrepreneurs, by paying a fixed cost

C. The Firm produces some amount of output per unit of time by hiring one worker only.

The productivity X of each firm varies over time due to the realization of two independent

types of random idiosyncratic shocks. Specifically, X follows a geometric Brownian process,

whose stochastic differential is represented by

dXt = µXtdt+ σXtdWt, (3.1.1)

where W stands for a Wiener process. In addition, each production unit is also subject to

a Poisson shock with arrival rate λ, which reflects a potential exogenous voluntary quit of

the worker, driving permanently the productivity of the firm to zero.

Because productivity is variable, a firm may eventually decide to stop producing and

to lay-off the worker. When this event happens, the firm pays a mandatory firing cost F

for dismissing the worker, which represents a pure deadweight loss, i.e., the corresponding

income is entirely wasted.

The value of a firm J (· | R, θ) active at time t ∈ R+ conditionally on the endogenous

reservation productivity R and on the endogenous job creation rate θ, can be written as

J (x | R, θ) = sup
T̄∈Tt

Ex
{∫ T̄ ∧ Tλ

t
e−r(τ−t) [Xτ − w (Xτ | R, θ)] dτ − Fe−r(T̄−t)IT̄ ≤ Tλ

| Ft

}
,

(3.1.2)

Notice that the supremum is taken over the set Tt of possible stopping times within [t,+∞).

However, the actual random separation time is equal to the minimum between T̄ , i.e., the

random time at which the firm decides to stop producing, and the arrival time Tλ of the

exogenous Poisson quitting shock of the worker. By standard arguments, the value function

J (· | R, θ) satisfies the following Bellman equation

rJ (x | R, θ) = max {x− w (x | R, θ) + LJ − λJ ,−rF} , (3.1.3)

which characterizes the optimal stopping problem of the firm.

The value of a firm J (· | R, θ) also satisfies the initial value condition following from

the standard assumption of free entry, which implies that firms earn no pure profits in

equilibrium, since the ex-ante value of job creation, corresponding to the initial level of

productivity x = 1 is equalized to the set-up, or hiring cost C. Formally, free entry of

vacancies implies that

J (1 | R, θ) = C. (3.1.4)
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We now describe the wage setting mechanism. By standard arguments, the valueW (x | R, θ)
of working in a firm with idiosyncratic productivity x ∈ (R,+∞), and the value U(R, θ) of

unemployment satisfy the following system of functional equations

rW (x | R, θ) = w (x | R, θ) + LW + λ [U (R, θ)−W (x | R, θ)] , (3.1.5)

and,

rU (R, θ) = b+ θ [W (1 | R, θ)− U (R, θ)] , (3.1.6)

where w (x | R, θ) is the wage rate paid by the firm to the worker, b is the exogenous level

of unemployment compensation (or value of leisure). We have the following main result.

Proposition 3.1.1 (Firm and Workers value functions and Wages). We have the following

closed relation for firm value function, worker value function and wages.

J (x | R, θ) =
(1− β)x

r + λ− µ
− b

r + λ
− θβ

r + λ

(
1−R1−α

r + λ− µ

)
− (1− β)R1−αxα

α (r + λ− µ)
, (3.1.7)

where α corresponds to the negative root of the characteristic polynomial associated with

the differential equation satisfied by J (· | R, θ), see the appendix of the paper for a closed

form.

V (x | R) =
x

r + λ− µ
− R1−αxα

r + λ− µ
, (3.1.8)

w (x | R, θ) = b+ θβ
1−R1−α

r + λ− µ
+ βx. (3.1.9)

3.2 Economic equilibrium

In section 3.1, we have assumed that the job creation rate θ and the job destruction

rate δ are given. The objective of the following part is to characterise the equilibrium value

of job creation and job destruction.

Because the transition density function of the stochastic process (3.1.1) describing the

dynamics of productivity is time-homogenous, the random time T̄ (R) ≡ T̄1 (R)− t elapsed

since the time t of creation of a firm (with productivity Xt = 1), at the moment when

absorption takes place, does not depend on the calendar time of creation of the firm.

Therefore, we can write the probability distribution of T̄ (R) as follows

P
{
T̄ (R) ∧ Tλ > τ

}
=

∫ +∞

R
p̃λ (1, ξ; τ) dξ,

where p̃λ (1, ·; τ) denotes the time-homogenous transition density function of x, conditional

on the absence of absorption or exogenous quit at rate λ since the moment of creation of

the firm t up to time t+ τ .
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Proposition 3.2.2 (Steady state equilibrium relation).

In the steady state, we have the labor market flows-balance condition δL = θ (1− L)

where L denotes denotes the total mass of employed workers at equilibrium. Moreover we

have the following relation for the job destruction rate

δ =
1∫ +∞

0 P
{
T̄ (R) ∧ Tλ > t

}
dt
. (3.2.10)

A second result links the job creation and the reservation productivity R and R as

fonction of the costs C and F .

Proposition 3.2.3 (Job creation and reservation productivity relations).

We have the two following relations

θ =
r + λ

πβ (1−R1−α)

[
(1− β)R1−α + π (r + λ− µ)

(
1− β

r + λ− µ
− b

r + λ
− C

)]
, (3.2.11)

and

1− β
r + λ− µ

(
1−R+

R−R1−α

α

)
= C + F. (3.2.12)

Finally, under the condition that the two costs C and F are smaller than some explicit

boundaries, we have the following result.

Proposition 3.2.4 (Job destruction and ergodic distribution). If F ∈ (0, FMAX ], the

steady state aggregate job destruction rate, δ, reads

δ =
λ

(1−R−φ2)
, (3.2.13)

if λ > 0, and

δ0 =

(
σ2/2

)
− µ

R̂+
=

η

ln (R)
, (3.2.14)

if λ = 0, with R̂+ ≡ | lnR|, and η ≡
[
µ−

(
σ2/2

)]
. In addition, the ergodic cross-sectional

distribution of productivity across firms, Ψλ (·), has probability density function ψλ(x) re-

presented by

ψλ(x) =
φ2φ1

(φ2 − φ1)

{[(
Ix≥1 + IR<x<1x

φ1−φ2
)
−Rφ1−φ2

]
x−φ1−1

(
1−R−φ2

)−1
}
,

(3.2.15)

where I denotes the indicator function defined in the standard way, and φ1 and φ2 are

constant reported in the appendix of the related paper, with φ1 > 0, φ2 < 0 and φ2−φ1 < 0.

An important corollary concerns how Employment Protection Legislation (EPL) affects

the mean level of productivity across establishments, which is equivalent to the mean value

of the productivity of labor as one firms hires one worker only.
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Corollary 3.2.1. Higher firing costs reduce the equilibrium average productivity of labor.

In our economy, this result is not surprising since firing costs correspond to a pure dead-

weight loss, and have no potential role in improving the competitive allocation of resources.

Furthermore, we can compute the expected value of lifetime of a firm conditionally on its

productivity.

Proposition 3.2.5. The expected duration of a job with current productivity x reads

E
[
T̄x (R) ∧ Tλ

]
=

1

λ

[
1−

( x
R

)φ2]
. (3.2.16)

Corollary 3.2.2. If λ = 0 (i.e., Tλ = +∞), the expected duration of a firm with productivity

x reads

E
[
T̄x (R)

]
=

ln (x)− ln (R)

|η|
. (3.2.17)

The economic equilibrium of the model has a number of comparative statics properties,

some of which are non-standard, with the qualification that the firing cost will still be trea-

ted as an exogenous parameter at this stage of the analysis of the model (general economic

equilibrium). Some numerical and graphic simulations, illustrating the main properties of

the model, are reported on the paper.

3.3 The political mechanism

We assume that a given level of the firing cost F = F0 is initially implemented, re-

presenting the status quo level of employment protection, and that the economy is in the

corresponding stationary equilibrium. The status quo value of F may be changed as a re-

sult of a majority voting process. We assume that voting on the firing cost takes place

only once, immediately after an unexpected shock to the exogenous variables of the model

occurs, potentially affecting the rent extraction power of the workers, and the drift and

standard deviation of the Brownian process describing the evolution of productivity, when

the economy is in the politico-economic equilibrium corresponding to F = F0. The new le-

gislated firing cost corresponds to any point of the policy space, i.e., the interval [0, FMAX ].

The main political result of the paper is the following.

Proposition 3.3.6. If β ≤ β̂, where β̂ is given in the related paper, then the unique

unconditional political equilibrium of the model involves setting R = 1, and this choice is

preferred at unanimity to any alternative.

Proposition 3.3.6 tells us that as long as the rent extraction power of the employed is

relatively low, a fully flexible labor market is politically stable, in the sense that workers

prefer it at unanimity to any possible alternative, whatever the status quo is.
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Over the last fifty years stochastic filtering theory in continuous time has drawn more

and more attention, due to the variety of possible applications, that cover Biology, Enginee-

ring, Physics, Economics and Finance. Optimal filtering can be combined with stochastic

control theory, leading, e.g., to the solution of problems of insider trading and of optimal

allocation under partial information. So, it is possible to compare optimal investment stra-

tegies for informed and uninformed investors, finding estimates for the price of information.

The problem of stochastic filtering spans a very large and different subjects in the area

of applied probability and mathematical finance, see for instance [86], [30] and [41]. The

objective is to replace the unobservable processes by their best proxy, that is their condi-

tional expectation with respect to filtration generated by the observable processes. From

the measure theory point of view, the filtering problem is associated with the construction

of the optional projection of the signal process on the observation filtration. We think that

the following remark, taken from [52] chapter VII, page 118 could be useful for the reader :

Soit X un processus mesurable : si X n’est pas adapté, la v.a. Xt ne fait pas partie de l’uni-

vers connu á l’instant t, et elle peut tout au plus être estimée. Il est d’usage de considérer

comme meilleure estimation possible l’espérance conditionnelle E[Xt|Ft], et nous ne discute-

rons pas ce point. Maintenant, supposons que l’observateur suive ainsi à la trace le processus

(Xt) tout au long du temps : peut on recoller toutes ces espérances conditionnelles en un seul

processus, de manière raisonnable, alors que E[Xt|Ft] est en realité une classe de variables

aléatoires et qu’il faut donc faire une infinité non dénombrable de choix ? Ce que nous dit

le théorème 43, c’est que si l’on impose au processus des estimations d’être optionnel et

de realiser aussi la meilleure estimation en certains instants aléatoires, les temps d’arrêt,

alors ce processus des estimations peut être défini de manière unique, et c’est évidemment

très satisfaisant.

The role and the properties of the observable filtration, hence forward called partial

or investor’s filtration, are crucial, whereas the global filtration, that is the one where

the unobservable processes are defined, is less relevant. In particular a large part of the

literature in stochastic filtering focuses on partial filtration generated by Brownian motion,

even if the global filtration contains a discontinuous process as a Markov chain, see [86]. The

usual strategy to compute the optimal filter is known as innovation theory, it particular in

some case it gives us explicitly the stochastic differential equation satisfied by the optimal

filter allowing to write an SDE for the whole system under partial information and to

state a control problem for partially informed investors. That is by comparison of two

different ways to write the product of the optimal filter and a generic combination of the

observable processes. The first way require to apply the Ito formula on the global filtration

and then to take the predictable version of the conditional expectation with respect to the

investor’s filtration. The second one inverts the order : first taking the optional version

of the conditional expectation and then writing the SDE satisfied by the product. It is

possible then to deduce the explicit SDE satisfied by the optimal filter if its predictable and

optional version coincide. The main advance of a partial filtration generated by continuous



47

stochastic processes, is that the filtration is continuous in the sense of Dellacherie-Meyer

[52], that is it is continuous on the set of stopping times, is that the two versions are the

same.

Unfortunately, the hypothesis that the investor’s filtration is generated by continuous

processes is sometimes to restrictive in finance. For instance it is plain that jumps occurs,

see [47] and [48]. In this framework, the investor’s filtration cannot be longer considered as

continuous and a different approach is needed. A recent and increase literature has then

focus on the subject in particular for financial applications, see [33] and [34].

In the paper with Giorgia Callegaro, M’hamed Gaigi and Carlo Sgarra [A10], we follow a

different strategy, that is we try to reconquer the continuity of the filtration on the stopping

times by a countable number of initial enlargements of filtration. Our basic remark is that

a stopping time θ is Fθ−-mesurable. The problem of the lack of continuity does not come

from the presence of jumps themselves but by their size and in particular the fact that

these size are unpredictable. It can be surprising but a pure counting process, that is a pure

jump process with jump size equal to one, generates a continuous filtration in the sense of

Dellacherie and Meyer.

Our strategy to reconquer the stochastic differential equation satisfied by the filter

is then to look at the jump processes, that are compound Poisson processes, as marked

counting processes. That is, our idea is to enlarge the filtration including the size of the

jumps. A potential demiurge investor will then known at the beginning the size of the

jumps, the only unknown will be the jump times. His/her filtration is then continuous

and the usual innovation theory will apply with some technical arrangements. The main

drawback is that now, the demiurge has to many information and can of course exploit it. It

is then impossible to use this approach without introducing arbitrages. In order to overcome

this second problem we remark that a stochastic differential equation is, by definition, a

forward equation. Our approach works then up to the first jump with random size. Our

solution is then to focus between jump k and k+ 1 and to consider the initial enlargement

with the first k size. The interest of this particular enlargement is twice. First-of-all, up to

the (k + 1)-jump time, the related filtration is continuous in the sense of Dellacherie and

Meyer allowing to perform the usual filtering strategy above detailed. Moreover, after the k-

jump time the k-demiurge, that is the one working under the k-partially informed filtration,

loses his/her advantage since the usual investor knows the size of the first k jumps too. To

conclude, we have only to recombine the optimal filter over all small intervals between two

jumps to obtain the global filter.

Our approach is new in the literature and quite counterintuitive since it is based on

enlargement of filtration procedures that are the natural converse to the filtering procedure.

This method seems able to be generalised to others cases, I actually work with Guillaume

Bernis (Natixis) and Vathana Ly Vath (ENSIIE), [W21], including memory between jumps

and self-exciting structure
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Over and under-reaction

This Chapter is based on

[A10]. Optimal investment in markets with over and under-reaction to Information avec

G. Callegaro, M. Gaigi et C. Sgarra, 2017, Mathematics and Financial Economics. vol 11,

issue 3, pp. 299-322.

Summary.

In this chapter, we introduce a jump-diffusion model of shot-noise type for stock prices,

taking into account over and under-reaction of the market to incoming news. We work in a

partial information setting, by supposing that standard investors do not have access to the

market direction, the drift, after a jump. We focus on the expected utility maximization

problem by providing the optimal investment strategy in explicit form, both under full and

partial information.

The main mathematical contribution of our paper concerns the determination of the

optimal filter dynamics, that is the evolution of the conditional law of the non observable

quantities given the available information. On the mathematical side, it is well known that

many results obtained when dealing with diffusion models are not robust, i.e., they cannot

be immediately generalised in the presence of jumps. Standard proofs in stochastic filtering

in continuous time and for the diffusive case crucially use the equivalence between optional

and predictable versions of the filter itself. This does not hold true in general when dealing

with jump-diffusion models. We introduce, then, a countable increasing family of filtrations,

obtained by initially enlarging the observation filtration. We then show that these filtrations

satisfy a property, that we can call “continuity” to a certain extent, that does not lead to

the equivalence between optional and predictable versions of the process, but that is strong

enough to obtain the filter dynamics in the enlarged filtrations. Finally, the desired filter

dynamics in the standard investors’ filtration is obtained via projection.

We test our results on market data relative to Enron and Ahold stocks. The three main

contributions are : the introduction of a new market model dealing with over and under-

reaction to news, the explicit computation of the optimal filter dynamics using an original

approach combining enlargement of filtrations with Innovation Theory and the application

48
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of the optimal portfolio allocation rule to market data.

4.1 Introduction

In this work, we introduce a new market model in which over-reaction and under-

reaction to market news is taken into account. We consider two assets : one risk-free and

one risky. The dynamics of the latter exhibits jumps. As usual, jumps are used to model

the arrival of important (positive or negative) news about the firm. An extensive literature

focuses on empirical studies on cross-section average stock returns and shows the presence

of anomalies that are classified as “under-reaction to information” and “over-reaction to

information”, see for instance De Bondt and Thaler [47], Barberis et al. [22] and Fama [63]

and references therein.

These phenomena can be described as follows : over-reaction takes place when, after

some news related to the firm, the amplitude of the jump in the trajectory of the stock price

is extremely large, both in the case of positive jumps related to good news, and in the case

of negative jumps related to bad news. Under-reaction describes the opposite situation :

the amplitude of the jump after a news is relatively small. The under/over-reaction effects

are usually mitigated after the jump : the real relevance of the new information becomes

accessible to the whole market as time goes by, so that the jump’s effect fades away.

Our first contribution is, then, the introduction, in a market model for stock prices, of

over and under-reaction effects under partial information.

Another contribution of this work is the application to a problem of maximisation

of expected logarithmic utility from terminal wealth. As a matter of fact, the optimal

investment problem in our paper is related to the wide class of trend following trading.

Under this point of view, the under-reaction (respectively the over-reaction) of the signal

can be interpreted as the dominance of a trend follow (resp. contra-trend) strategy of the

active market participants. Trend following trading strategies have attracted increasing

interest during the last ten years and a relevant amount of literature deals with portfolio

optimisation problems in this context. We just mention the papers by Dai et al. [41], [39] and

[40]. We shall show how standard (performing our filtering procedure) investors’ strategies

and naive investment strategies do not exhibit significant differences as far as jumps are not

very large. On the contrary, a positive significant difference appears when jumps describe

the occurrence of dramatic events, in both over and under-reaction cases.

4.2 The mathematical framework

We consider a complete probability space (Ω,G,P), representing all the randomness of

our economic context. We denote by (Gt)t≥0 the global information filtration (typically the

one accessible to a limited set of well-informed investors) and by (Ft)t≥0 the investors’

filtration, with Ft ⊂ Gt for every t ≥ 0. The two filtrations will be made precise in Section
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4.3. We suppose that they satisfy the usual hypotheses introduced by Dellacherie and Meyer

[51, Ch. IV, 48]. The probability space is equipped with a Brownian motion {Wt}t≥0 and

a Poisson process {Ct}t≥0, defined as

Ct :=
∑
n≥1

Iτn≤t, (4.2.1)

independent of W . The arrival times (τn)n≥1 (notice that, implicitly, we have assumed

that τ0 = 0), are supposed to be exponentially distributed with parameter λ > 0. We also

introduce a triplet (Zt, Nt,Γt)t≥0 as follows :

Zt =

Ct∑
n=1

ζn (4.2.2)

Nt =

Ct∑
n=1

ζne
−ρ(t−τn) (4.2.3)

Γt =
∑
n≥1

γnIt∈[τn,τn+1) =

Ct∑
n=0

(γn − γn−1), (4.2.4)

where {ζn, γn}n≥1 is a sequence of i.i.d. random variables (henceforth r.v.) independent

of C and W , taking values in {(−1,∞)\{0}} × {−1, 1}. Every r.v. ζn is supposed to be

Fτn-measurable and it will represent the jump size of the stock S at time τn. The Bernoulli

r.v. γn, n ≥ 1, is supposed to be measurable with respect to Gτn . We take ρ > 0. Even if the

over/under-reaction process is not fully accessible to standard investors, since the γn are

not observable, we suppose that investors know the prior probability of γn = 1, i.e., they

have an a priori estimate of the probability P(γn = 1) for every n ≥ 1. We denote this prior

distribution, that will be extensively used henceforth, by πn :

πn := P(γn = 1) for every n ≥ 1. (4.2.5)

With the above elements, we are now ready to introduce the dynamics of S : we have

S0 > 0 and

dSt = St− {[b0 + b(Nt)Γt] dt+ σ(Nt)dWt + ζCtdCt} , (4.2.6)

where b0 ∈ R is the drift coefficient of S in absence of any shock, b : R → R, b(0) = 0, is

an increasing function (think, for example, of b(x) = x) that measures the impact of the

jumps on the drift, and σ : R→ R+ is a continuous, strictly positive and bounded function.

4.3 Optimal filtering of the over/under-reaction process

Let us recall that in our model the global filtration is denoted by G = (Gt)t≥0, while the

investors’ filtration is denoted by F = (Ft)t≥0. More precisely, the full information filtration
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is the one generated by W,N and Γ, while, when the reference filtration is F, the r.v. γn in

Γ are not observable.

The filtering problem consists, roughly speaking, in evaluating the r.v. Γt, measurable

w.r.t. Gt, given the σ-algebra Ft, i.e., in computing

Γ̂t := E[Γt|Ft], t ≥ 0. (4.3.7)

For a given k ∈ N, k ≥ 1, we introduce two filtrations F(k) and G(k) obtained by initially

enlarging F and G with the first k marks (ζ1, . . . , ζk) and 2k marks (ζ1, γ1, . . . , ζk, γk),

respectively, i.e., for t ≥ 0 :

F (k)
t := Ft ∨ σ(ζ1, . . . , ζk)

G(k)
t := Gt ∨ σ(ζ1, γ1, . . . , ζk, γk) .

(4.3.8)

Remark 4.3.1. It is worth noticing here the embedding properties that hold in our setting

and that we are going to use henceforth : ∀k ∈ N, k ≥ 1

— F ↪→ F(k)

— G ↪→ G(k)

— F(k) ↪→ G(k)

where the symbol ↪→ denotes immersion according to the definition provided by P. Brémaud

and M. Yor [24] (Section 2.4).

The main result of this section is the following :

Theorem 4.3.1 (SDE verified by the optional version Γ̂).

Let Γ̂ be the optional version of the optimal filter process : Γ̂t = E [Γt|Ft], for all t ≥ 0.

Then, we have

Γ̂t =
∑
n≥1

11τn≤t<τn+1Γ̂
(n)
t =

∑
n≥1

11τn≤t<τn+1E
[
γn|F (n)

t

]
=
∑
n≥1

11τn≤t<τn+1 (2π̂n,nt − 1) ,

where π̂n,nt := P
(
γn = 1

∣∣F (n)
t

)
and E

[
γn|F (n)

t

]
is a standard conditional expectation with

respect to the filtration F(n) with initial condition π̂n,n0 := πn. Moreover, we find the follo-

wing explicit expression for the dynamics of π̂n,n over the interval [τn, τn+1) :

dπ̂n,nt := 2
b(Nt)

σ2(Nt)
π̂n,nt (1− π̂n,nt ) dỸ n,2

t , (4.3.9)

where

Ỹ n,2
t := Ut − log(s0)−

∫ t

0

(
b0 + b(Ns)Γ̂

(n)
s −

1

2
σ2(Ns)

)
ds, t ≥ 0 (4.3.10)

is the innovation process.
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Remark 4.3.2. Notice that the optimal filter of Γ in Theorem 4.3.1 differs from the optimal

filter of a Markov chain usually found in the literature (see for instance Liptser and Shiryaev

[86, Th. 9.1]). We deem this is due to the fact that the jump times {τn}n≥1 are observable

here.

We shall split the proof of Theorem 4.3.1 into three steps, that we are going to resume

in the next lines.

Step 1 : Properties of enlarged filtrations. Studying the initial enlargement in (4.3.8),

we will show that for every k, F(k) is continuous at any stopping times θ strictly

smaller than τk+1, in the sense that F (k)
θ− = F (k)

θ .

Step 2 : Computation of the filter under F(k). We obtain the optimal filter of Γ

given the observations F(k), namely the (optional) projections :

Γ̂
(k)
t := E[Γt|F (k)

t ], t ≥ 0, (4.3.11)

following a direct application of the Innovation Theory in our setting (the continuity

of the filtration F(k) will be crucial). We will see that this reduces to obtaining, for

every k, the following (optional) projections on F(k) :

γ̂j,kt := E
[
γj |F (k)

t

]
, 0 ≤ t < τk+1, (4.3.12)

where k ≥ j ≥ 1.

Step 3 : Projection on F. We conclude noticing that between two jumps τk and τk+1

the investor filtration F coincides with F(k), so that we will obtain the optimal filter

by pasting together the filters γ̂k,kt defined in Equation (4.3.12).

4.4 The optimal portfolio problem

In this section we deal with the problem of optimal portfolio selection over a finite time

horizon T > 0 both under full and under partial information. We consider a financial market

model consisting of a risk-free asset (representing the money market account) and a risky

asset S, whose dynamics evolves following equation (4.2.6). Without loss of generality, as

said before, we assume r = 0. We then introduce the fraction αt of wealth invested in the

risky asset at time t, so that the admissibility condition becomes 0 ≤ αt ≤ 1 a.s. for every

t ∈ [0, T ]. Distinguishing between the complete and the incomplete information settings we

introduce the following sets of admissible strategies

AH :=
{
αH |αHis H− predictable, 0 ≤ αH

t ≤ 1 a.s. ∀t ∈ [0, T ]
}
. (4.4.13)

where H can be F or G.

Following a classical approach, in this paper we consider the problem of a fully informed

(resp., partially informed) investor having a logarithmic utility function, who maximizes her
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expected utility from terminal wealth, over a finite time horizon T :

sup
α∈AG

E [log(VT )]

(
resp., sup

α∈AF
E [log(VT )]

)
. (4.4.14)

In what follows we characterize the optimal investment strategies under full and partial

information, following a direct approach.

As we shall see, the solution under partial information will be obtained from the solu-

tion in the complete information setting by replacing the unobservable γ by their current

conditional expectation via the filter process Γ̂. This property is known as certainty equiva-

lence (CE) (this concept was originally introduced in the 80’s, see e.g. Aoki [10, Ch. II.E]

and it has been always used in further papers, such as in e.g. Callegaro et al. [30].

The following two propositions provide the optimal investment policies under both full

and partial information.

Proposition 4.4.1 (Optimal policy for the fully-informed investor). The optimal fraction

of wealth αG,?
t to be invested in the risky asset at time t is

αG,?
t =


0 if Pt(0) ≤ 0

P−1
t (0) if Pt(0) > 0 and Pt(1) < 0

1 if Pt(1) ≥ 0

(4.4.15)

where

Pt(α) := b0 + b(Nt)Γt − ασ2(Nt) +

∫
z

1 + αz
ν(dz) , (4.4.16)

and with ν(dz) denoting the Lévy measure of the jumps with support R ⊂ {(−1,∞)\{0}}.
Moreover, we have :

VT = V0 exp

{∫ T

0
αG,?
t σ(Nt)dWt +

∫ T

0

∫
R

log
(

1 + αG,?
t z

)
Q̃(dt, dz)

+

∫ T

0

[
αG,?
t [b0 + b1NtΓt]−

(
αG,?
t

)2 σ2(Nt)

2

+

∫
R

[
log
(

1 + αG,?
t z

)]
dν(z)

]
dt

} (4.4.17)

where Q̃(dt, dz) is the compensated version of the Poisson random measure associated with

Z.

Proposition 4.4.2 (Optimal policy for a standard/partially informed investor). The op-

timal fraction of wealth αF,?
t to be invested in the risky asset at time t is such that

αF,?
t =


0 if PF

t (0) ≤ 0
(PF

t )−1(0) if PF
t (0) > 0 and PF

t (1) < 0
1 if PF

t (1) ≥ 0
(4.4.18)

where

PF
t (α) := b0 + b(Nt)Γ̂t − ασ2(Nt) +

∫
z

1 + αz
ν(dz) . (4.4.19)
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The two Propositions introduce similar functions Pt and PF
t differing only by one factor,

that is independent of α. We can conclude our analysis remarking that the particular case

introduced by Kou [81] gives closed formula in our framework and it will be also used in

the following. See the related paper for the explicit computation.

4.5 Two relevant examples : empirical facts and statistics

Market analysts usually explain market fluctuations from an “event-based” point of

view, i.e., linking every movement to an economic event or to an announcement. It is clear

that important and sudden news can induce large market movements. Even if these events

rarely occur, their impact is important.

Accounting scandals happened frequently over the last years, the most resounding cases

being Enron, Worldcom, Royal Ahold and Parmalat. We focus on Enron’s scandal, because

of its impact on the US market and Ahold’s one, since it was considered the European

analogous to Enron, even if the end of the two stories was different.

The Enron scandal revealed in October 2001. As many reports highlight (see for instance

Jickling [75]), Enron’s problems did not arise in its core business, but in its Internet and

high-tech communications investments, in which it entered during the late 1990, i.e., just

before the “dot com” bubble burst. Enron falsified its accounts to cover its bad investments,

using special-purpose entities to remove investment losses for nearly 18 months. Enron

stocks reached the record level of $90.75 per share in August 2000. When the accounting

fictions came to light, over 80% of the profits reported since 2000 vanished and Enron

quickly collapsed. Enron’s stock price, which quoted US$90 in mid 2000, plummeted to

less than $1 one year later. Left figure 4.1 shows the evolution of Enron’s stock price. We

highlight using red vertical lines the estimated jump times (see Section 4.5.1 for more details

on jumps’ detection).

The second example is Ahold, that in the US was even defined “Europe’s Enron” (see

for instance Knapp and Knapp [79]). On February 24th 2003, Ahold announced that :

“... net earnings and earning per share are significantly lower than previously indicated,

primarily due to overstatements of income ...”. The accounting irregularities were mainly

concentrated at two US subsidiaries. As a consequence, Ahold’s stock’s price collapsed by

63%. After two months, the parallelism with Enron seemed an exaggeration and Ahold

stock rose during the next five months.

Right figure 4.1 shows the evolution of Ahold stock’s price. We highlight using red

vertical lines the estimated jump times.

4.5.1 Statistical analysis

In this subsection we estimate the parameters in the model for S in Equation (4.2.6)

and the law of the jumps ζ, by working on market data relative to Enron and Ahold.

Our statistical sample for Enron’s stock consists of closure prices between January 1997
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Figure 4.1: Closing prices in blu, estimated jump times for Enron and Ahold in red.

and December 2002 (1508 values, see left Figure 4.1), while for Ahold’s stock it consists

of closure prices between January 2002 and December 2004 (769 values, see right Figure

4.1). For simplicity, we choose b(x) = x and σ constant in Equation (4.2.6). Moreover, we

consider the model introduced by Kou in [81], namely we suppose that the law of log(ζn+1)

is for every n ≥ 1 equal to

νE(dz) =
[
λpη1e

−η1zIz>0 + λ(1− p)η2e
−η2|z|Iz<0

]
dz,

where 0 < p < 1, η1 > 1, η2 > 0 and λ > 0 is the intensity rate of the Poisson process. We

obtain the following estimates :

σ λ p η1 η2 ρ

Enron 0.38 21.37 0.40 8.89 8.51 2.85

Ahold 0.43 9.74 0.50 29.07 12.58 1.90

4.5.2 A qualitative analysis of the optimal policies

In this subsection we consider four different market actors :

— An insider trader : an agent who has access to the r.v. γ, i.e., whose filtration is G ;

— A partially informed investor : an agent who does not observe the r.v. γ, i.e., whose

filtration is F ;

— An insider but irrational investor : an agent acting oppositely to the insider trader,

i.e., in the worst possible way ;

— A näıve (or blind) investor : an agent supposing that no fade-away effects occur on

the market, i.e., Γ ≡ 0. This investor can observe the jumps but she does not know

if the market undergoes over/under-reaction.

Our final aim is comparing their (optimal) portfolios in the two different cases of Enron

and Ahold in Figures 4.1. Namely, we consider four investors facing an optimal investment
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problem in Enron’s (resp., Ahold’s) stock in the period January 1997 - December 2002

(resp., January 2002 - December 2004).

Figures 4.2 show, respectively, the information process N (in black) and the optimal

filter Γ̂ (in blue) for Enron and Ahold.

Figure 4.2: The information process N and the optimal filter Γ̂ for Enron and Ahold

In Figures 4.3 we depict the value of the optimal portfolios for the four agents, when

investing in Enron and Ahold, respectively.

Figure 4.3: The four optimal investment strategies for Enron.

It can be noticed that, as long as no jump occurs (recall left Figure 4.1), i.e., Nt = 0,

all the portfolios are identical. After a few small jumps arrive, i.e., Nt 6= 0 and small, only

the informed investor takes advantage of her information, while the näıve investor and the

partially informed trader perform similarly, but clearly worse than the insider and better

than the irrational. The best portfolio performance is the one of the fully informed investor,
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followed by the agent who uses the filter, the näıve one and the irrational one.

When the first big (negative) jump occurs, both the näıve and the uninformed investors

suffer a similar big loss, but immediately afterwards the partially informed investor can take

advantage of the incoming information, since the big jump allows the filtering procedure

to distinguish soon the sign of Γ and this introduces a difference in the two portfolios

performances. As time increases, this effect tends to disappear because of the exponentially

decaying behavior (due to the presence of ρ > 0) of the stock price trajectory between two

jumps.

Notice, moreover, that in the Enron’s case, both the partially informed and the näıve

investors’ portfolios are “annihilated” by the big negative jump in 2002. This can be as-

sociated to Enron’s stock becoming a “penny stock”. Nevertheless, even in this case the

filtering procedure performs very well : it allows the portfolio of the investor using the filter

to rise from its ashes.
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During my PhD thesis, with Nicolas Bouleau as supervisor, I started to work on sto-

chastic analysis and in particular potential theory and Dirichlet forms. They give powerful

methods to deal with stochastic sensitivity and they came back to the mathematical finance

research mainstream after the subprime crisis that had emphasise the lack of knowledge

about the probability measures that we use to describe the financial markets. My PhD the-

sis was devoted to how to take into account this ambiguity in a parsimonious framework.

This research has lead me to focusing during the two last years on self-exciting processes

using a random field representation. This field is seething during the last years with many

different applications, see for instance [7].

In a first part, we will focus on an extension of the paradigm of Capital Asset Pricing

Model that takes into account only the Gaussian framework to different risks. Our approach

is based on the chaos decomposition of both the portfolio and the benchmark in order to take

into account extreme risks. In a work [A9] with Guillaume Bernis (Natixis AM), we define

a new beta index that take into account the fat tails observed on financial markets. The

literature, see for instance [100] and [102], has pointed the lack of functional dependency of

the coefficient beta. The chaos decomposition is historically related to the Malliavin calculus

and then to the concept of stochastic sensitivity, a more direct example on stochastic

sensitivity via “weights” à la Malliavin is detailed in [S14]. We have also show interesting

financial results as the fact that the new beta is linked to the insensitivity of the portfolio

with respect to a change on the index drift. Moreover, our framework is suitable in order

to obtain closed formula in many particular cases notably the Jacobi processes. Another

financial application is the opportunity to define functional Bollinger bands ables to detect

the changing on the financial markets evolution.

This dissertation ends with my most recent subject of research, that is the evolution

models based on random fields and the branching processes. In their keystone papers, [55]

and [56], Dawson and Li introduces a new class of SDE driven by random fields. Their idea

is to increase the dimension of each field in order to integrate along this new direction up

to the process itself. The authors show the existence and the uniqueness of the solution and

that it satisfies the branching property, i.e. the process is infinitely divisible with respect

to the initial condition. Filipovic has shown that branching processes have exponential

affine structure and this property is often exploited in finance. The applications span a

wide spectrum of underlying, e.g. stocks, interest rates and default times, see [73], [59] and

[62]. In my opinion, the most interest of the integral representation proposed by Dawson

and Li is to give an explicit form for the SDE satisfied by a branching process allowing to

understand some phenomena appearing in financial markets.

In light of this, I actually works with Ying Jiao (ISFA Lyon), Chunhua Ma (Nankai,

China), Carlo Sgarra (Politecnico di Milano, Italy) and Chao Zhou (National University

of Singapore) on some applications of branching models in finance. In a first paper [A11],

we extend the CIR model [37] for interest rates including a spectrally positive alpha-stable

branching process. The self-exciting structure, characteristic of branching process, has an
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intriguing impact on the interest rates and bonds. We have shown that our model can

reproduce the persistency of very low interest rates, intriguing since it seems in contradiction

with the idea of self-exciting. This effect can be explained in financial terms by the fact

that, if the occurence of a jumps increases the intensity of the next one, by symmetry, in its

absence, the intensity decreases. There exists then a trap specific to branching processes able

to annihilate the process that approches zero. We link this result to a sudden increment of

the mean reverting speed between two jumps. This term is proportional to the compensator

of the jump term driving the SDE. It is plain that if we increase the jumps size, i.e. decrease

the parameter α, we also increase the compensator. As a consequence, a second counter-

intuitive effect is that the persistency of low interest rates is magnified increasing the tail

of jumps distribution. This effect is so strong that the same impact is transferred to long

interest rates producing an inversion of the dependency of zero-coupon prices toward the

risk of large fluctuations in interest rates.

In a second paper, [S12] with Ying, Chunhua and Carlo, we use a branching process in

order to describe the evolution of energy prices. The main reason comes from the presence

of strong fluctuations, known as spikes, and their inhomogeneous distribution over the time

exhibiting clusters. Our idea is to replace the martingale term into the usual Levy Ornstein

Uhlenbeck model, see [17], by a self-exciting term. We show that the forward prices are

unchanged but the structure of risk premium changes remarkably exhibiting a change of

sign. This phenomenon is observed on energy markets but it is difficult to reproduce it

using previous models. Moreover, we propose a calibration method cleverly based only on

the time arrival of spikes. Our strategy is mathematically based on a convergence result

of the branching processes to an Hawkes process assuming that the mean reverting speed

diverges, that is coherent with the energy data. We then can use a known result about the

estimation of point process in order to deduce the likelihood and the related estimator.

Finally, I work actually on different papers related to branching processes. First of all,

in the preprint [S14] with Guillaume Bernis and Kaouther Salhi (Natixis AM) we study the

sensitivity in a model for CLO. This model is based on Hawkes process and this work can

be seen as a closure of cycle started with my PhD thesis. With Ying, Chunhua and Chao,

we work on an extension of Heston model using branching processes, [W17]. I also work on

an extension of the model for energy prices, [W19] in a more theoretical framework in order

to study the conditions to have that a multi-factor branching model satisfies the Samuelson

effect.



Chapitre 5

Alternative to beta coefficients in
the context of diffusions

This Chapter is based on

[A9]. Alternative to Beta Coefficients in the Context of Diffusions avec G. Bernis, Quanti-

tative Finance, volume 17, issue 2, pp.275-288, 2017.

Summary.

We develop an alternative to the beta coefficient of the CAPM theory. We show the

link between this notion and the Wiener chaos expansion of the underlying processes. In

the setting of Markov diffusions, we define the drift-neutral beta, which is the quantity

of benchmark such that the resulting portfolio is immune to an infinitesimal change of

drift on the Brownian motion driving the benchmark. Our approach yields a coefficient

which depends on the initial values of both the portfolio and its benchmark, in many

practical cases. It can also be used to take into account extreme risks and not only the

variance. We study several classical diffusion processes and give a full analysis in the case

of Jacobi processes. Examples with credit indices show the efficiency of the method to hedge

a portfolio.

5.1 Introduction

The beta coefficient plays a central role in the CAPM theory, developed by Markovitz

[91]. It represents the exposition of a portfolio to a benchmark, representing the global

market. This coefficient can be used to hedge the movements of the portfolio with respect

to the market fluctuations. It also allows the portfolio manager to build an allocation

exposed to a specific risk (for instance, the risk of a certain sector), once the global market

movements have been neutralised. Some authors point out limitations of the beta coefficient

- especially the problems stemming from the underlying regression - and emphasise the lack

of a functional relationship between the portfolio and the benchmark, see [100] and [102]. In

the first section of this work, we show the link between the beta and the decomposition of the

61
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portfolio and its benchmark into Wiener chaos. The expansion of a Brownian functional into

Wiener chaos consists in a decomposition on an orthogonal basis of multiple Itō integrals,

see [94]. More precisely, from a static point of view, we define the value of the portfolio and

its benchmark as two random variables. The “Wiener chaos beta” coefficient is such that

the projection of the portfolio minus beta times the benchmark, on a certain mixture of

Wiener chaos, is null. We will show that this new definition coincides with the classic one

either if the portfolio and its benchmark are both Gaussian, or if the mixture is reduced to

the first chaos, i.e. the Gaussian term. This approach is very general and does not require

any restrictive hypothesis on the financial side. In particular, the static approach and the

Wiener chaos decomposition do not require the Markov property. However, this general

approach has two drawbacks, which unfortunately are intrinsically linked. First, the Wiener

chaos decomposition exists under very general assumptions but the proof is not constructive

because it is based on the martingale representation theorem. However, Di Persio et al. [53]

propose a new and efficient technique to evaluate numerically the chaos decomposition of

a random process modelled by a SDE. Moreover, Briand and Labart [27] and Geiss and

Labart [66] develop recently algorithms for BSDE based on chaos decomposition confirming

that this technique is a powerful tool in numerical schemes.

This is why we propose to adapt our framework to a Markov diffusion setting. We show

that our approach can be seen, equivalently, as a notion of resilience of the portfolio with

respect to a change of drift on the Brownian motion driving the market risk. Basically,

it constructs a portfolio which is immune, at the first order, to a change of drift on the

Brownian motion which drives the benchmark. Therefore, we will denote by “drift-neutral

beta” the coefficient produced by this method. We will show that the drift-neutral beta

coincides with the Wiener chaos beta under technical assumptions assuring, essentially,

the existence of the Wiener decomposition. We provide an analysis of this problem in the

case of several classical diffusion processes : Ornstein-Uhlenbeck, co-integrated diffusions,

geometric Brownian motion and Jacobi processes, see [50].

5.2 Mathematical framework

Let (Bt,Wt)t≥0 be a 2-dimensional standard Brownian motion, on a probability space

(Ω,F ,P). We define the following diffusion process in R2

dXt = µ(Xt)dt+ σ(Xt)dBt

dYt = ν(Xt, Yt)dt+ γ(Xt, Yt)
[
ρdBt +

√
1− ρ2dWt

] (5.2.1)

The process (Zt)t≥0 := (Xt, Yt)t≥0 is assumed to be a continuous diffusion process on

an open rectangle R :=]m,M [×]n,N [ of R2, with −∞ ≤ m < M ≤ +∞, and −∞ ≤ n <

N ≤ +∞. In the following, we will work under the natural filtration of the process Z,

denoted by F := (Ft)t≥0. We will also need the natural filtration generated by B, denoted

by FB := (FBt )t≥0
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Set T > 0, the time horizon of our hedging problem. Let 0 ≤ t ≤ T and z = (x, y). Let

F (ZT ) := YT −βXT be the portfolio, with its hedge. Parameter β has to be chosen in order

to offset the risk stemming from the benchmark X in the portfolio Y .

5.2.1 Wiener chaos approach

Analysing the Gaussian framework, we can notice that the standard beta coefficient is

given by the projection on the first Wiener chaos of the Brownian X, through the following

equation :

E
[
YT

∫ T

0
σdBs

]
= Cov[YT , XT ] ≡ β0V ar[XT ] = β0E

[
XT

∫ T

0
σdBs

]
.

In this case, a straightforward application of Itō calculus shows that the result does not

depend on the drifts, neither on the time.

We now introduce our

Definition 5.2.1. Let ΦT be a zero-mean square integrable FBT -random variable. The Wie-

ner chaos beta coefficient with respect to the zero-mean random variable ΦT , horizon T , and

initial condition z = (x, y), is the real number β
(Φ)
T,z , which solves

E [YTΦT ] = β
(φ)
T,z E [XTΦT ] . (5.2.2)

We have the following proposition.

Proposition 5.2.7. Let XT , YT ΦT be square integrable respectively FB-random variable

(r.v.), F-r.v. and a zero-mean FB-r.v.. Then

β
(Φ)
T,z =

∞∑
k=1

〈
fYk , f

Φ
k

〉
Sk

∞∑
k=1

〈
fXk , f

Φ
k

〉
Sk

(5.2.3)

where fXk and fΦ
k are the k-projection of XT and ΦT with respect to the Wiener chaos

decomposition of the probability space (Ω,FBT ,P) and whereas fYk is the B-component of

the k-projection of YT with respect to the Wiener chaos decomposition of the probability

space (Ω,FT ,P).

The financial consequences of Proposition 5.2.7 are summarised in the following remark.

Remark 5.2.1. The main financial result of Proposition 5.2.7 is that β
(Φ)
T,z can be seen as

a weighted beta of the chaos of Y and X, where the weights are the chaos of the process

Φ, see Equation (5.2.3). As a consequence, it is possible to put more weight on extreme

values of X and Y , in order to obtain a hedge β
(Φ)
T,z adapted to situations of stress on the

markets. Thus, our approach can be used in a risk management point of view. A second

important point is that the Wiener chaos expansion has the advantage of not depending on

a Markovian set-up. Then our Definition 5.2.1 is still valid in a non-Markovian framework.

This is another useful property from a risk management perspective.
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5.2.2 A change of drift point of view

The idea that we will follow is to restrict slightly the form of the variable ΦT . It is given

by
∫ T
t h(Xs)dBs, where h is a square-integrable and measurable function from ]m,M [ into

R. The reason why we use a mapping of X is twofold. First, we will show, in Proposition

5.2.9, that our method is based on the stability of portfolio F with respect to an infinitesimal

change of drift for the Brownian motion B. As the market index X is used to hedge, we

restrict our attention to drifts which are mappings of X. Second, this approach leads to

a simple form, which is tractable by the means of Itō calculus, in many cases. Of course,

this framework is Markovian, then more restrictive than the previous one. We introduce

the alternative beta definition that we will call drift-neutral beta coefficient as follows :

Definition 5.2.2. Let h be a square-integrable and measurable function from from ]m,M [

into R. The drift-neutral beta coefficient at time t, for drift h, horizon T ≥ t, and initial

condition z, is the real number β
(h)
t,T,z, which solves, in β ∈ R, the following equation

E
{
YT

∫ T

t
h(Xs) dBs

∣∣∣∣ Ft} = βE
{
XT

∫ T

t
h(Xs) dBs

∣∣∣∣ Ft} . (5.2.4)

We will remark that, even if h is constant, this approach differs from the traditional

beta, when X and Y are not standard Brownian motions. The next proposition links the

Definitions 5.2.1 and 5.2.2, the proof is straightforward.

Proposition 5.2.8. Fix t = 0. Let h be as in Definition 5.2.2. Define Φ :=
∫ T

0 h(Xt)dBt.

Under the conditions of Proposition 5.2.7. We have that the Wiener chaos beta coefficient

associated to Φ coincides with the drift-neutral beta one for drift h.

As noticed above, Definition 5.2.2 can be put in relation with a variational approach,

in which we consider the resilience of the portfolio with respect to infinitesimal change of

drifts on B. The notion of change of drift for a Brownian motion is closely linked to the

Girsanov theorem, which provides the form of the density of the probability under which

(Bs − εh(Xs))s≥0 is a standard Brownian motion. We will resort to this approach to link

the notion of portfolio neutrality with respect to a change of drift with Definition 5.2.2.

This is the purpose of the following proposition.

Proposition 5.2.9. Let us consider a measurable mapping h from ]m,M [ into R (endowed

with their Borelian sigma-fields) such that there exists δ > 0 such that E
[
eδ

∫ T
0 h2(Xs)ds

]
<

+∞. Then,

lim
ε→0+

E
{

1

ε

[
Λε(T )

Λε(t)
− 1

]
F (ZT ) | Ft

}
= E

{
F (ZT )

∫ T

t
h(Xs)dBs | Ft

}
where Λε := (Λε(t))t≥0 is the Doléans-Dade exponential of (εh(Xs))s≥0, i.e. the unique

strong solution of the following stochastic differential equation :

Λε(t
′) = 1 + ε

∫ t′

0
Λε(s)h(Xs)dBs (5.2.5)
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The following proposition provides a more convenient form for the drift-neutral beta.

Proposition 5.2.10. Let h be as in Proposition 5.2.9 and set B[h](s,t) :=
∫ t
s h(Xu)dBu,

for any t ≥ 0. Assume, for technical reasons, that X, σ(X), Y and γ(X,Y ) have finite

moments of order 4 and that

A(t, T ) := E {XTB[h](t, T ) | Ft} 6= 0.

Then, the drift-neutral beta coefficient β
(h)
t,T,z is given by

β
(h)
t,T,z =

Et,z
{∫ T

t

[
B[h](t,s)ν(Zs) + ρh(Xs)γ(Zs)

]
ds
}

Et,x
{∫ T

t

[
B[h](t,s)µ(Xs) + h(Xs)σ(Xs)

]
ds
} (5.2.6)

where Et,z (resp. Et,x ) stands for the expectation with initial condition Zt = z (resp.

Xt = x).

5.3 Application to credit indices

In this section, we apply the results that we have derived in the previous sections to

synthetic credit indices. We consider X as the iTraxx Europe 5 years index and Y as the

iTraxx Cross-Over 5 years index. It means that we want to hedge a purely directional

credit trend from a high yield index, in order to capture the specific high yield component.

We calibrate the parameters of a Jacobi process, see for instance [11], on a set of daily

observations from 20/06/2011 to 23/03/2015. We obtain the following set of parameters :

m M λ µ σ n N η ν γ ρ

0.408% 2.396% 0.5 1.36% 0.658 1.865% 10.056% 0.5 5.96% 0.652 65%

We consider mapping h localised on a side of the volatility function, whether left or

right. For instance, σ−25%(x) is equal to σ if x is below the left quarter of ]m,µ[ and 0

elsewhere. Figure 5.1 displays β
(h)
0,T,z as a mapping of the initial condition z = (x, y). We

observe that it tends to attain high values for small values of x and y. Outside this zone, the

surface shows two valleys surrounding the central hump. This general shape also prevails

for h ≡ σ, h ≡ σ50% or h constant.
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Figure 5.1: Beta coefficient with h = σ−50% as a mapping of the initial conditions (x, y)
for iTraxx Europe (X) and Cross-Over (Y ) (5 year)s indices. The time horizon T is 30 days.
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[A11]. “Alpha-CIR model with branching processes”, with Y. Jiao and C. Ma, 2017, Finance

and Stochastics, vol 21, issue 3, pp. 789-813.

[S12]. “A Branching Process Approach to Power Markets”, with Y. Jiao, C. Ma and C.

Sgarra, 2017, submitted.

Summary.

In this chapter, we look at two different problems arising in mathematical modelisation

normally considered as really far, that is the evolution of sovereign interest rate and energy

prices. Our main result is to show that a similar model based on Branching processes, see

for instance Kawazu and Watanabe [76] or the recent monograph [84], can explain different

features appearing in term structure and energy prices. Considering interest rates, they have

reached a historically low level in the Euro countries. On the other hand, sovereign bonds

can have large variations when uncertainty about unpredictable political or economical

events increases such as in the Greek case. Considering energy prices, they exhibits jumps

with cluster phenomenon. Moreover, the risk premium sign, according to many empirical

investigations performed in different power markets, can change suddenly, and induce a

change between a contango to a backwardation regime, see for instance Benth and Sgarra

[18], and Benth et al. [17].

Recently, the Hawkes processes introduced in [72] have been widely adopted since they

exhibit self-exciting properties which are suitable for such modelling. A large and growing

literature is devoted to the financial application of Hawkes processes, see for example Aı̈t-

Sahalia, Cacho-Diaz and Laeven [2], Errais, Giesecke and Goldberg [62], Dassios and Zhao

[42] and Rambaldi, Pennesi and Lillo [98]. In the above mentioned papers, as naturally

in the Hawkes framework, the driving process is at least two-dimensional since both the

dynamics of jump process and its intensity are taken into account.

67



68 CHAPITRE 6. BRANCHING MODELLING

Our idea is to use the self-exciting structure of the “frequency” of Hawkes process. We

will introduce a new class of financial models based on CBI (continuous state branching

processes with immigration) processes. This class of model can be seen as an extension of

Hawkes process adding specific marks for each jumps and including infinite activity. We

exploit an integral representation of the model with random fields. From the theoretical

point of view, this general representation has been thoroughly studied by Dawson and Li

[55], [56] and Li and Ma [85]. In the financial literature, the random field modelling has

been adopted to describe financial quantities, see for example Kennedy [78], Albeverio et al.

[3] in interest rate framework or Ambit Field-based models in energy modelling introduced

by O.E. Barnorff-Nielsen et al. [14]. In our model, we adopt the integral representation to

emphasize on the property of branching processes since they arise as the limit of Hawkes

processes and exhibit, by their inherent nature, the self-exciting property implying that the

jump frequency increases or decreases with the value of the process itself. In the modelling

of interest rate, the link between the CBI processes and the nonnegative affine models has

been established by the pioneering paper of Filipović [64] where the exponential affine term

structure of bond prices for general CBI processes has been highlighted. By consequence the

CBI processes prove to be a prolific subject in probability having interesting applications

in finance, see for instance Duffie, Filipović and Schachermayer [59]. The most simple and

popular CBI process is the continuous CIR model.

6.1 The modeling framework

We now introduce our modeling framework, which is based on stochastic differential

equations driven by Lévy random field. We consider a Lévy random field which is a combi-

nation of a Gaussian random measure W and a compensated Poisson random measure N

independent to W . For background for such general stochastic equations with jumps, we

refer the readers to Dawson and Li [56], Li and Ma [85].

Let us briefly present the preliminaries. We fix a probability space (Ω,A,P). A white

noise W on R2
+ is a Gaussian random measure such that, for any Borel set A ∈ B(R2

+) with

finite Lebesgue measure |A|, W (A) is a normal random variable of mean zero and variance

|A| ; and that if A1, · · · , An are disjoint Borel sets in B(R2
+), then W (A1), · · · ,W (An) are

mutually independent. We denote by N the Poisson random measure on R3
+ with intensity

λ which is a Borel measure on R3
+ in form of the product of the Lebesgue measure on

R+ ×R+ with a Borel measure µ on R+ such that
∫∞

0 (ζ ∧ ζ2)µ(dζ) < +∞. Note that µ is

a Lévy measure since
∫∞

0 (1 ∧ ζ2)µ(dζ) < +∞. Recall that for each Borel set A ∈ B(R3
+)

with λ(A) < +∞, the random variable N(A) has the Poisson distribution with parameter

λ(A) ; moreover, if A1, . . . , An are disjoint Borel sets in B(R3
+), then N(B1), · · · , N(Bn) are

mutually independent. We let Ñ = N −λ be the compensated Poisson random measure on

R3
+ associated to N .

We introduce the filtration F = (Ft)t>0 as the natural filtration generated by the Lévy
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random field and satisfying the usual conditions, namely, for any Borel subset A ∈ B(R+)

and B ∈ B(R2
+) of finite Lebesgue measure, the processes (W ([0, t] × A), t ≥ 0) and

(Ñ([0, t] × B), t ≥ 0) are F-martingales. We consider the following stochastic differential

equation in the integral form.

Definition 6.1.1. Let a, b, σ, γ ∈ R+ be constant parameters. Consider the equation

Y (t) = Y (0)+

∫ t

0
a (b− Y (s)) ds+σ

∫ t

0

∫ Y (s)

0
W (ds, du)+γ

∫ t

0

∫ Y (s−)

0

∫
R+

ζÑ(ds, du, dζ)

(6.1.1)

where W (ds, du) is a white noise on R2
+ with unit covariance, Ñ(ds, du, dζ) is an inde-

pendent compensated Poisson random measure on R3
+ with intensity λ = dsduµ(dζ) with

µ(dζ) being a Lévy measure on R+ and satisfying
∫∞

0 (ζ ∧ ζ2)µ(dζ) <∞.

The integral appearing in the previous formula (and in the following) is in the sense of

[105]. It follows from [56, Theorem 3.1] or [85, Theorem 2.1] that the equation (6.1.1) has

a unique strong solution. Below are several particular examples.

Example 6.1.1. (CIR model) In the case where γ = 0, we have

Y (t) = Y (0) +

∫ t

0
a (b− Y (s)) ds+ σ

∫ t

0

∫ Y (s)

0
W (ds, du)

= Y ∗(t) + σ

∫ t

0

∫ Y (s)

0
e−a(t−s)W (ds, du),

(6.1.2)

where Y ∗(t) = r0e
−at + ab

∫ t
0 e
−a(t−s)ds is a deterministic function. This corresponds to

the classic CIR model in the interest rate where an equivalent representation of (6.1.2) in

probability is given as

Y (t) = Y (0) +

∫ t

0
a(b− Y (s))ds+ σ

∫ t

0

√
Y (s)dB(s)

where B = (B(t), t ≥ 0) is a Brownian motion.

Example 6.1.2. (α-CIR model) As a generalization of the CIR model with jumps, let

σ = 0 and the Lévy measure µ be given by as

µ(dζ) = −
1{ζ>0}dζ

cos(πα/2)Γ(−α)ζ1+α
, 1 < α < 2, (6.1.3)

then the model (6.1.1) admits the following representation

Y (t) = Y (0) +

∫ t

0
a (b− Y (s)) ds+ γ

∫ t

0
(Y (s−))

1
αdL(s) (6.1.4)

where L = (L(t), t ≥ 0) is a spectrally positive compensated α-stable Lévy process with

parameter α ∈ (1, 2], which is independent of B and whose Laplace transform is given, for

q ≥ 0, by

E
[
e−qL(t)

]
= exp

(
− tqα

cos(πα/2)

)
.

When α = 2, L reduces to a Brownian motion scaled by
√

2 and we recover the standard

CIR model.
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6.1.1 Connection with CBI and affine processes

The purpose of this section is to highlight the relation between the process class intro-

duced in the previous section and the classes of CBI processes and affine processes. This

relation will turn out to be relevant in order to apply transform-based methods to deri-

vatives evaluation. Our model actually belongs to the family of CBI processes. We briefly

recall the definition by Kawazu and Watanabe [76]. A Markov process X with state space

R+ is called a CBI process characterized by branching mechanism Ψ(·) and immigration

rate Φ(·), if its characteristic representation is given, for p ≥ 0, by

Ex
[
e−pX(t)

]
= exp

(
−xv(t, p)−

∫ t

0
Φ
(
v(s, p)

)
ds

)
, (6.1.5)

where the function v : R+ × R+ → R+ satisfies the following differential equation

∂v(t, p)

∂t
= −Ψ(v(t, p)), v(0, p) = p (6.1.6)

and Ψ and Φ are functions of the variable q ≥ 0 given by

Ψ(q) = βq +
1

2
σ2q2 +

∫ ∞
0

(e−qu − 1 + qu)π(du),

Φ(q) = δq +

∫ ∞
0

(1− e−qu)ν(du),

with σ, γ ≥ 0, β ∈ R and π, ν being two Lévy measures such that∫ ∞
0

(u ∧ u2)π(du) <∞,
∫ ∞

0
(1 ∧ u)ν(du) <∞. (6.1.7)

It is proved in Dawson and Li [56, Theorem 3.1] that the process (6.1.1) is a CBI process

with the branching mechanism Ψ given by

Ψ(q) = aq +
1

2
σ2q2 +

∫ ∞
0

(e−qσZζ − 1 + qσZζ)µ(dζ) (6.1.8)

and the immigration rate Φ(q) = abq.

The link between CBI processes and the affine interest rate term structure models has

been established by Filipović [64]. If the process takes values in R+ he proves equivalence

between the two classes. We recall the joint Laplace transform of a CBI process X and its

integrated process, which is given in [64, Theorem 5.3], as follows. For non-negative real

numbers ξ and θ, we have

Ex
[
e−ξX(t)−θ

∫ t
0 X(s)ds

]
= exp

{
− xv(t, ξ, θ)−

∫ t

0
Φ
(
v(s, ξ, θ)

)
ds
}
, (6.1.9)

where v(t, ξ, θ) is the unique solution of

∂v(t, ξ, θ)

∂t
= −Ψ(v(t, ξ, θ)) + θ, v(0, ξ, θ) = ξ. (6.1.10)
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6.2 Interest rate modelling and the persistency of low inter-
est rate

6.2.1 Introduction

On the current European sovereign bond market, there exists a number of well-established

and seemingly puzzling facts. On one hand, the interest rate has reached a historically low

level in the Euro countries. On the other hand, sovereign bonds can have large variations

when uncertainty about unpredictable political or economical events increases such as in

the Greek case. In literature, large fluctuations in financial data motivate naturally the

introduction of jumps in the interest rate dynamics such as in Eberlein and Raible [61],

Filipović et al. [65]. Nevertheless, the presence of jumps conflicts in general with the trend

of low interest rates. One way to reconcile large fluctuations with low rates is to use a

regime change framework but this may increase the dimension of stochastic processes in

order to preserve the Markov property.

Empirical studies underline that the behavior of the bond prices cannot be fully explai-

ned by the CIR model which systematically overestimates short interest rates, as pointed

out by Brown and Dybvig [28] and Gibbons and Ramaswamy [67]. In our framework the

CIR model is the departing model and the inclusion of the α-stable processes allows to bet-

ter describe the low interest rate behavior. Despite the simplicity and the reduced number of

extra parameters compared to the standard CIR, the α-CIR model show several advantages

from the financial point of view. First, the α-CIR model exhibits positive jumps and, in

particular, by combining heavy-tailed jump distribution with infinite activity, can describe

in a unified way both the large fluctuations observed in recent sovereign bond market and

the usual small oscillations. Second, the interest rate can be split into different components

in a branching process framework which can eventually be interpreted as spreads, each one

following the same dynamics. Third, by the link between the α-CIR model and the CBI

processes, we deduce the bond prices in an explicit way by using the joint Laplace transform

of the affine model in Filipović [64] and we analyze the bond yield behaviors following the

paper of Keller-Ressel and Steiner [77].

The main, and perhaps most interesting, forecast of the α-CIR model is that the bond

prices decrease with respect to the parameter α, with those given by the standard CIR

model being the lowest prices. The parameter α is inversely related to the tail fatness. In

general, the standard behavior of bond prices increases with respect to the fatness of tails,

such as the case in the extended CIR model with jumps in Duffie and Gârleanu [58] or in the

Lévy-Ornstein-Uhlenbeck (LOU) dynamics (e.g. Barndorff-Nielsen and Shephard [13]) in

which the jump part is a subordinator. The explanation of this seemingly paradoxical result

is based on the features of the α-CIR model. The use of fat-tail distributed positive jumps

will imply a large negative compensator, then between two jumps the mean reversion term

is magnified whenever α decreases. Moreover, for a given value of α, the branching property
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Figure 6.1: Lévy process Z and the corresponding short rate r with different values of α.

adds a new phenomenon in the α-CIR model. The frequency of large jumps decreases when

interest rates are low thanks to the self-exciting structure which allows some “freezing”

effect of low short rates for relatively longer time period compared to the standard CIR

model. We are particularly interested in the jump behavior, notably for the large jumps

which signify in the interest rate dynamics a sudden increasing sovereign risk. We focus on

the number of large jumps occurred during a given time interval and deduce its Laplace

transform, with which we obtain the probability law and the expectation for the first large

jump time. The impact of the tail index α is emphasized.

6.2.2 Two representations for α-CIR model

We begin by presenting the following root representation for the short interest rate

r = (rt, t ≥ 0), which is a direct extension of the standard CIR model as

rt = r0 +

∫ t

0
a (b− rs) ds+ σ

∫ t

0

√
rsdBs + σZ

∫ t

0
r

1/α
s− dZs (6.2.11)

where B = (Bt, t ≥ 0) is a Browinan motion and Z = (Zt, t ≥ 0) is an spectrally positive

α-stable compensated Lévy process with parameter α ∈ (1, 2] which is independent of B

and whose Laplace transform is given, for q ≥ 0, by

E
[
e−qZt

]
= exp

(
− tqα

cos(πα/2)

)
.

When α ∈ (1, 2), the corresponding Lévy measure is given by

−
1{z>0}dz

cos(πα/2)Γ(−α)z1+α
.

Figure 6.1 gives a simulation for the compensated α-stable process Z and the corres-

ponding short interest rate r defined in (6.2.11) with three different values of α : 2, 1.5 and

1.2.

Finally, when the Lévy measure µ is given by

µα(dζ) = −
1{ζ>0}dζ

cos(πα/2)Γ(−α)ζ1+α
, 1 < α < 2, (6.2.12)
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the solution of (6.1.1) has the same probability law as that of the equation (6.2.11). Moreo-

ver, in an expanded probability space, the solution of the two equations are equal almost

surely by using similar arguments as in [84, Theorem 9.32].

6.2.3 Positivity and limit distribution of α-CIR model

We use the CBI characterization to deduce some properties of the α-CIR model. First,

we show that the usual condition of inaccessibility of the point 0 is preserved when we

extend CIR to α-CIR model .

Proposition 6.2.11. For the α-CIR (a, b, σ, σZ , α) process with α ∈ (1, 2), the point 0 is

an inaccessible boundary if and only if 2ab ≥ σ2. In particular, a pure jump α-CIR process

with ab > 0 never reaches 0.

Finally, we characterize the ergodic distribution of the α-CIR process. Note that the

first part of the following result was also shown in Keller-Ressel and Steiner [77, Theorem

3.16].

Proposition 6.2.12. The α-CIR integral type process defined in (6.1.1) has a limit distri-

bution, whose Laplace transform is given by

E[e−pr∞ ] = exp
(
−
∫ p

0

Φ(q)

Ψ(q)
dq
)
, p ≥ 0. (6.2.13)

Moreover, the process is exponentially ergodic, namely

‖P[rt ∈ · ]− P[r∞ ∈ · ]‖ 6 Cρt

for some positive constants C and ρ < 1, where ‖ · ‖ denotes the total variation norm.

6.2.4 Behaviors of bond price and bond yield

We now focus on the properties of bond prices and the corresponding bond yield curves.

Proposition 6.2.13. Let the short rate r be given by the α-CIR model (6.2.11) under the

probability measure Q. Then the zero-coupon bond price is given by

B(t, T ) = exp
(
− rtv(T − t)− ab

∫ T−t

0
v(s)ds

)
(6.2.14)

where v(s) is the unique solution of the equation

∂v(t)

∂t
= 1−Ψα(v(t)), v(0) = 0, (6.2.15)

with Ψα(q) = aq + σ2

2 q
2 − σαZ

cos(πα/2)q
α. Moreover, we have

v(t) = f−1(t) where f(t) =

∫ t

0

dx

1−Ψα(x)
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Figure 6.2: Bond prices B(0, T ) with different values of α, and in comparison with the
CIR model.

The next proposition highlight an interesting and surprising result.

Proposition 6.2.14. The function v is increasing with respect to α ∈ (1, 2]. In particular,

the bond price B(0, T ) is decreasing with respect to α.

Proposition 6.2.14 seems to be surprising at first sight since the parameter α is an inverse

measure of heaviness of distribution tails, more as α is close to 1, more likely that the large

jumps appear. In addition, in the α-CIR model, α coincides with the so-called generalized

Blumenthal-Getoor index which is defined as inf{β > 0 :
∑

0≤s≤T ∆rβs < ∞, a.s.} with

∆rs := rs− rs− and T a horizon time (see e.g. Aı̈t-Sahalia and Jacod [1]) and is often used

to measure the activity of the small jumps in a semimartingale. When µα(du) is defined

by (6.2.12), this index is reduced to inf{β > 0 :
∫ T

0 rsds
∫ 1

0 u
βµα(du) < ∞, a.s.} and

thus is equal to α. The index α ∈ (1, 2) shows that the jumps are of infinite variation. The

explanation of Proposition 6.2.14 is based on the self-exciting property. For the compensated

α-stable Lévy process Z in the α-CIR model (6.2.11), a smaller α is related to a deeper

(negative) compensation and hence a stronger mean-reversion. Then as the interest rate

becomes low because of the mean-reversion effect, the self-exciting property will imply a

decreasing frequency of jumps and enforce the tendency of low interest rate.

6.2.5 Analysis of jumps

We now focus on the jump part of the short interest rate r. In particular, we are

interested in the large jumps which capture significant changes in the interest rate dynamics.

Let us fix a jump threshold y = σZy > 0. In this subsection, we study the following

two quantities : the number of large jumps whose jump sizes are larger than y and the

first large jump time. For this purpose, we separate the large and small jumps and use the

non-compensated version of the Poisson random measure in the integral form (6.1.1).

We introduce the auxiliary process which represents the truncated interest rate r except
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the jumps larger than y as

r̂
(y)
t = r0 +

∫ t

0
ã(α, y)

(
b̃(α, y)− r̂(y)

s

)
ds+ σ

∫ t

0

∫ r̂
(y)
s

0
W (ds, du)

+ σZ

∫ t

0

∫ r̂
(y)
s−

0

∫ y

0
ζÑ(ds, du, dζ).

(6.2.16)

Where ã, b̃ are defined on the related paper. For any jump threshold y > 0, the process r̂(y)

coincides with r up to the first large jump time τy := inf{t > 0 : ∆rt > y}. The process

r̂(y) is a CBI process with the branching mechanism given by

Ψ(y)
α (q) :=

(
a+ σαZ

∫ ∞
y

ζµα(dζ)
)
q +

1

2
σ2q2 + σαZ

∫ y

0
(e−qζ − 1 + qζ)µα(dζ) (6.2.17)

and the immigration rate given by Φ(q) = abq.

Proposition 6.2.15. Let r be an α-CIR(a, b, σ, σZ , α) process with initial value r0 ≥ 0.

Then for any p ≥ 0 and t ≥ 0,

E
[
e−pJ

y
t

]
= exp

(
−l(p, y, t)r0 − ab

∫ t

0
l(p, y, s)ds

)
(6.2.18)

where l(p, y, t) is the unique solution of the following equation

∂l(p, y, t)

∂t
= σαZ

∫ ∞
y

(
1− e−p−l(p,y,t)ζ

)
µα(dζ)−Ψ(y)

α (l(p, y, t)), (6.2.19)

with initial condition l(p, y, 0) = 0 and Ψ
(y)
α given by (6.2.17).

Now we consider the first time when the jump size of the short rate r is larger than

y = σZy. We show that this random time also exhibits an exponential affine cumulative

distribution function. The following result gives its distribution function as a consequence

of the above proposition.

Corollary 6.2.3. For any t ≥ 0, we have

P[τy > t] = exp
(
− l(y, t)r0 − ab

∫ t

0
l(y, s)ds

)
(6.2.20)

where l(y, t) is the unique solution of the following ODE

dl

dt
(y, t) = σαZ

∫ ∞
y

µα(dζ)−Ψ(y)
α (l(y, t)), (6.2.21)

with initial condition l(y, 0) = 0 and Ψ
(y)
α given by (6.2.17).

Corollary 6.2.3 has an alternative form

P[τy > t] = E
[
exp

(
−σαZ

(∫ ∞
y

µα(dζ)

) (∫ t

0
r̂(y)
s ds

))]
. (6.2.22)
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Proposition 6.2.16. We have P(τy <∞) = 1. Furthermore,

E [τy] =

∫ l∗y

0

1

F (u)
exp

(
− ur0 −

∫ u

0

abs

F (s)
ds
)
du <∞, (6.2.23)

where l∗y is the unique solution of the equation F (q) = 0, which identifies with limt→∞ l(y, t)

where the function l(y, t) is given by (6.2.21).

6.3 Modeling the electricity price

We now turn to the application of our modelling framework to the description of elec-

tricity price dynamics. We follow the arithmetic model as in [17] in which the power price

dynamics is assumed to be the sum of several factors. In our model the factors are assumed

to be given by the SDE (6.1.1).

6.3.1 An arithmetic model for the spot price

We assume that the spot price process S = (S(t), t ≥ 0) evolves according to the

following dynamics

S(t) = α(t) +X(t) (6.3.24)

where α(t) is a deterministic function representing the seasonality, and the process X =

(X(t), t ≥ 0) is a superposition of the factors Yi as

X(t) =
n∑
i=1

Yi(t). (6.3.25)

The factors Yi(t) evolve according to the equation (6.1.1), more precisely,

Yi(t) = Yi(0) +

∫ t

0
ai (bi − Yi(s)) ds+ σi

∫ t

0

∫ Yi(s)

0
Wi(ds, du)

+ γi

∫ t

0

∫ Yi(s−)

0

∫
R+

ζÑi(ds, du, dζ)

(6.3.26)

Figure 6.3 plots two trajectories of the spot price in a two-factor model where the first

factor Y1 follows a standard CIR model as in Example 6.1.1 and the second factor Y2 is an

α-CIR process as in Example 6.1.2. In order to get a more faithful description of the power

prices dynamics it is convenient to increase the values of the parameters, in agreement with

the values proposed in the previous literature, see [17], in particular the mean reversion

speed and the jumps sizes should be magnified. In Figure 6.3b the trajectory is plotted

with same parameters as in the previous case except Y1(0) = Y2(0) = 5, a1 = 10, a2 = 20,

b1 = b2 = 5, γ2 = 10, exhibiting a more realistic behavior.

The following result computes the expected value of the factors Yi given in (6.3.26) and

will be useful for the pricing of energy derivatives.
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Figure 6.3: Simulation of the spot price in a two-factor model

Lemma 6.3.1. For any T ≥ 0 and τ ≤ T , we have

E
[
Yi(T )

∣∣Fτ ] = bi + (Yi(τ)− bi)e−ai(T−τ). (6.3.27)

In the electricity market, the risk-neutral probability Q is often chosen by introducing a

drift adjustment in the dynamics of an underlying asset. Compared to the original historical

probability P, such measure change is done by using Esscher transform such as in [14]. We

now define the equivalent probability measures in our model. The following proposition

shows that the spot process S defined in (6.3.24) will remain in the same class.

Proposition 6.3.1. Let Y1, Y2, · · · , Yn be independent CBI processes where for each i ∈
{1, · · · , n}, Yi is a CBI process under the probability measure P. Assume that the filtration

F = (Ft)t≥0 is generated by the random fields W1,W2, · · · ,Wn and Ñ1, Ñ2, · · · , Ñn. For

each i, fix ηi ∈ R and θi ∈ R+ and define

Ut :=
n∑
i=1

ηi

∫ t

0

∫ Yi(s)

0
Wi(ds, du) +

n∑
i=1

∫ t

0

∫ Yi(s−)

0

∫ ∞
0

(e−θiζ − 1)Ñi(ds, du, dζ). (6.3.28)

Then the Doléans-Dade exponential E(U) is a martingale and the probability measure Q
defined by

dQ
dP

∣∣∣∣
Ft

= E(U)t, (6.3.29)

is equivalent to P. Moreover, under Q, the processes Y1, Y2, · · ·Yn are independent of each

other and, for each i, Yi is a CBI process with the parameters (a′i, b
′
i, σ
′
i, γ
′
i, µ
′
i), where

a′i = ai − σiηi − γi
∫ ∞

0
ζ(e−θiζ − 1)µi(dζ), b′i = aibi/a

′
i, σ′i = σi, γ′i = γi (6.3.30)

µ′i(dζ) = e−θiζµi(dζ). (6.3.31)
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6.3.2 Pricing of forward and flow forward

By applying the previous results, we can provide an explicit and simple expression for

the (instantaneous) forward contract price in the present modeling framework. Recalling

the definition of a forward contract, we have for any τ ≤ T that

F (τ, T ) := EQ[S(T )
∣∣Fτ ]. (6.3.32)

Proposition 6.3.2. We have the following expression for the forward contract

F (τ, T ) = S(τ) +
(
α(T )− α(τ)

)
+

n∑
i=1

(
e−a

′
i(T−τ) − 1

)(
Yi(τ)− b′i

)
(6.3.33)

where a′i and b′i are as in (6.3.30).

Forward contracts in electricity markets deliver the underlying commodity over a period

rather than at a fixed time, and for this reason they are sometimes called flow forwards.

The future price with delivery period [T1, T2] is defined by

F (τ, T1, T2) =
1

T2 − T1
EQ
[ ∫ T2

T1

S(u)du | Ft
]

=
1

T2 − T1

∫ T2

T1

F (τ, u)du,

which leads directly to the following result.

Corollary 6.3.1. The value of the flow forward contract F (τ ;T1, T2) is given, for τ < T1 <

T2, by

F (τ, T1, T2) = S(τ) +
( 1

T2 − T1

∫ T2

T1

α(u)du− α(τ)
)

−
n∑
i=1

(
1− e−a

′
i(T1−τ) − e−a′i(T2−τ)

a′i(T2 − T1)

)(
Yi(τ)− b′i

) (6.3.34)

6.3.3 The risk premium

The risk premium is an important quantity in power markets which provides a link

between the forward and expected spot prices. We present an explicit representation formula

for this quantity in our modeling framework. The risk premium is defined as the difference

between conditional expectations of the underlying price computed with respect to the

risk-neutral measure Q and the historical measure P :

R(τ, T ) = EQ [S(T )|Fτ ]− EP [S(T )|Fτ ] (6.3.35)

Since the factors Yi remain to be CBI processes under the equivalent measure change,

according to Lemma 6.3.1 and Proposition 6.3.2, we have the following result.
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Corollary 6.3.2. Let the risk-neutral probability Q be given as in Proposition 6.3.1. Then

we have

R(τ, T ) =
n∑
i=1

Yi(τ)
(
e−a

′
i(T−τ) − e−ai(T−τ)

)
−

n∑
i=1

[
b′i

(
e−a

′
i(T−τ) − 1

)
− bi

(
e−ai(T−τ) − 1

)] (6.3.36)

where the parameters a′i, b
′
i are related to the parameters ai and bi by the relations (6.3.30).

The most relevant feature exhibited by the present modeling framework is that the very

simple measure change introduced in the previous section implies a change in the mean

speed reversion parameter. This feature is not feasible for Lévy-driven Ornstein-Uhlenbeck

models as long as simple measure changes are considered. The Esscher transform for the

Lévy driver implies a change in the long-term mean, but not in the mean-reversion speed ;

this in turn implies a risk premium term structure exhibiting sign change only for very

special choice of the exponential tilting parameter θ (see Benth and Sgarra [18]).
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Figure 6.4: Risk premium term structure in a two factor model for different values of jump
tail parameter α.

6.3.4 Jumps analysis in a two-factor model

In this section, we consider a model with two factors. The first factor is continuous and

corresponds to a standard CIR model and the second one is with jumps. Our objective is to

make a thorough analysis of the jump behavior, in particular, for large jumps and spikes.

The results will also be applied to the statistical analysis. Let the first factor Y1 be driven

by a Gaussian random measure as

Y1(t) = Y1(0) +

∫ t

0
a1 (b1 − Y1(s)) ds+ σ1

∫ t

0

∫ Y1(s)

0
W1(ds, du), t ≥ 0 (6.3.37)
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and the second factor Y2 be driven by a pure jump Poisson random measure as

Y2(t) = Y2(0)+

∫ t

0
a2 (b2 − Y2(s)) ds+γ2

∫ t

0

∫ Y2(s−)

0

∫
R+

ζÑ2(ds, du, dζ), t ≥ 0. (6.3.38)

The presence of large jumps and spikes is an important feature discussed in literature for

electricity prices. A “spike” here means a sudden large rise in the price followed by a rapid

drop to its regular level.

6.3.5 Locally equivalent jump process

The purpose of the present section is threefold : the first target is to introduce the spike

frequency by identifying a suitable auxiliary process, the second is to prove formally that

the last process is, up to a constant factor, the intensity of the next spike ; the third is

to show how Y2 can be approximated by the intensity of a Hawkes-type process and this

result will allow to adopt the maximum likelihood estimator for Hawkes processes as an

approximate estimator for the model described. Consider a family of jump times {τk}k∈N
of the process Y2 which corresponds to significant movements of the market. For example,

it can denote jump times larger than a threshold. More precisely, for a given constant z0,

we denote {τ (z0)
k }k∈N as the sequence of jump times of Y2 whose jump sizes are equal or

larger than γ2z0, i.e.,

τ
(z0)
k = inf{t > τ

(z0)
k−1 : ∆Y2(t) > γ2z0}, τ

(z0)
0 = 0. (6.3.39)

In the following, we shall suppress the over-quote z0 for sake of readability. We are interested

in the evolution of process Y2 between two jump times, that is for any t ∈ [τk, τk+1),

Y2(t) = Y2(τk) +

∫ t

τk

a2 (b2 − Y2(s)) ds+ γ2

∫ t

τk

∫ Y2(s−)

0

∫
R+

ζÑ2(ds, du, dζ). (6.3.40)

With these notations, the time τk+1 is the arrival time of the first jump after τk larger

than z0 for the measure N2 or equivalently, larger than γ2z0 for Y2. By the following result,

we can separate small and large jumps and move the compensation inside the speed and

mean coefficients. We remark that the second line of (6.3.41) describes a finite activity pure

jump process, then it can be seen as a compounded Poisson process jumping only at an

increasing sequence of times, such that only an almost surely finite number of jumps arrive

in a compact set of time.

Proposition 6.3.3. The process Y2 can be written, for all t ∈ [τk, τk+1), as

Y2(t) = Y2(τk) +

∫ t

τk

A2

(
B2 − Y (z0)

2 (s)
)
ds+ γ2

∫ t

τk

∫ Y
(z0)
2 (s−)

0

∫ z0

0
ζÑ2(ds, du, dζ)

+γ2

∫ t

τk

∫ Y
(z0)
2 (s−)

0

∫ ∞
z0

ζN2(ds, du, dζ),

(6.3.41)
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where z0 > 0 is a fixed constant,

A2 := a2 + γ2

∫ ∞
z0

ζµ(dz), B2 :=
a2b2
A2

(6.3.42)

and Y
(z0)

2 is the truncated process, for all t ∈ [τk, τk+1), defined by

Y
(z0)

2 (t) = Y2(τk) +

∫ t

τk

A2

(
B2 − Y (z0)

2 (s)
)
ds+ γ2

∫ t

τk

∫ Y
(z0)
2 (s−)

0

∫ z0

0
ζÑ2(ds, du, dζ).

(6.3.43)

The main idea of Proposition 6.3.3 is to distinguish the original process Y2 by the

intensity of its jumps, that is, the truncated process Y
(z0)

2 given by formula (6.3.41). These

two processes coincide up to the next large jump occurred.

The process Y
(z0)

2 is related to the intensity of large jumps since it appears inside the last

integral in (6.3.41) associated to large jumps. The instantaneous intensity of the jumps of

Y2 at time t is then Y
(z0)

2 (t−) times the normalization term associated to the jump measure,

i.e. 1{ζ>z0}µ(dζ). We stated that the truncated process Y
(z0)

2 is linked to the intensity of the

large jumps of Y2. The following proposition explains in detail this link. Up to a constant,

the process Y
(z0)

2 is the stochastic intensity or hazard rate of the random time of the next

big jump.

Proposition 6.3.4. Let {τk}k∈N be defined by (6.3.39). Then we have

P (τk+1 − τk > t) = E
[
exp

{
−K(z0)

Y

∫ τk+t

τk

Y
(z0)

2 (s)ds

}]
, (6.3.44)

where the renormalisation term K
(z0)
Y = γ2

∫∞
z0
ζµ2(dζ) which is the proper truncated mass

of the jumps distribution, and the frequency process Y
(z0)

2 is given by (6.3.43).

Finally, we deal with the asymptotic behaviour of Y
(z0)

2 when the mean reverting speed

a2 diverges. Let us introduce the process Ŷ
(z0)

2 defined as

Ŷ
(z0)

2 (t) = b2 + e−A2t [Y2(0)− b2] +γ2

∫ t

0

∫ Ŷ
(z0)
2 (s−)

0

∫ ∞
z0

e−A2(t−s)ζN2(ds, du, dζ). (6.3.45)

The next proposition shows that the two processes Y2 and Y
(z0)

2 have the same behaviour

when a2 goes to infinity. As a consequence, we can approximate the frequency of large

jumps by the one of the Hawkes process as soon as a2 is large.

Proposition 6.3.5. Consider Y2 with E[Y2(0)] <∞. As a2 → +∞, we have that for each

t > 0, Y2(t)− Ŷ2(t) goes to zero in probability.
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6.3.6 Statistical analysis

Fitting the model to real data is a relevant target, especially in the present case where

a new feature, i.e. the clustering effect, must be taken into account. In this section, we

are going to highlight the main issues and to propose a theoretical statistical approach. In

particular, we are going to derive the maximum likelihood estimator for the parameters of

the intensity process Y
(z0)

2 . These parameters are in a one-to-one relation with the parame-

ters of the process Y2. Following the ideas presented in [17], the first step to perform is to

de-seasonalise the data. The second step, definitely less trivial, is to split the components Y1

and Y2 emerging from the data. We then focus on the process Y1. Following [17], we look for

the ergodic distribution of Y1 fitting the data. By recalling that the ergodic distribution of a

CIR diffusion is of Gamma type [37], our model is in agreement with the previous literature

(see subsection 5.4.2 in[17]) and we obtain in a similar way the estimated parameters for

Y1.

The estimation of the parameters of the spike process Y2 is then our following main

issue. We remark that the process Y2 is not directly observable since the data are given

by the sum of three components, i.e. the seasonality function, the base signal and the

spike process itself. However, we easily remark that the spikes signal is not invariant by

translation, see equation (6.1.1). In our model, the translation is impossible since the long-

run value b is related to the frequency of jumps far from the cluster periods as pointed

out in Propositions 6.3.4 and 6.3.5. As a consequence, we propose a different strategy to

estimate the parameters of the spike signal. Our proposal it based on the following remark.

The spike signal is observable only when a spike occurs. That is the observation is reduced

to the sequence (τk,∆S(τk))k∈N, ∆S(τk) = S(τk)− S(τ−k ), where τk is the time of the kth

spike and ∆Sτk is its jump size. Due to the continuity of the seasonality function and the

base signal, we have ∆S(τk) = ∆Y2(τk). As a consequence, we can assume that we observe

the jump times and the jump sizes of Y2.

Our idea is then to estimate the intensity process Y
(z0)

2 rather than Y2 itself. As a conse-

quence, we have to deal with a marked point process estimation. Looking at Proposition

6.3.4, we have that the reverting speeds of Y
(z0)

2 and Y2 coincide. This speed is very high

with respect to the mean reversion speed of the base signal as it has been pointed out in

literature, see for instance [17]. We may then consider that the limit distribution expressed

by Proposition 6.3.5 as the approximate distribution of the jump frequency and we can

then neglect small jumps. The approximated intensity is then given by (6.3.45).

In looking then at the sequence (τk,∆S(τk))k∈N, it can be considered as the realization

of a marked Hawkes process N2 with intensity Y
(z0)

2 . We remark that the parameters B2,

γ2 and A2 can then be estimated by the maximum likelihood estimator.

Proposition 6.3.6 (Marked Hawkes Likelihood function). Given the observations (τk,∆S(τk))k=1...N ,
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we have the following Likelihood function

logL (τ1,∆S(τ1), . . . τN ,∆S(τN )|B2, γ2, A2) :=

−B2τN +

N∑
i=1

γ2∆S(τi)

A2

[
e−A2(τN−τi) − 1

]
+

N∑
i=1

log

B2 + γ2

i−1∑
j=1

∆S(τj)e
−A2(τi−τj)


(6.3.46)

Moreover, the MLE estimators are :

∂ logL

∂B2
= −τN +

N∑
i=1

B2 + γ2

i−1∑
j=1

∆S(τj)e
−A2(τi−τj)


−1

(6.3.47)

∂ logL

∂γ2
=

N∑
i=1

∆S(τi)

A2

[
e−A2(τn−τi) − 1

]
+

N∑
i=1

∑i−1
j=1 ∆S(τj)e

−A2(τi−τj)

B2 + γ2
∑i−1

j=1 ∆S(τj)e−A2(τi−τj)
(6.3.48)

∂ logL

∂A2
=

N∑
i=1

γ2∆S(τi)

A2
2

{
1−

[
A2(τn − τi) + 1

]
e−A2(τn−τi)

}
(6.3.49)

−
N∑
i=1

γ2
∑i−1

j=1 ∆S(τj)(τi − τj)e−A2(τi−τj)

B2 + γ2
∑i−1

j=1 ∆S(τj)e−A2(τi−τj)

By applying the procedure just outlined, the estimated value of the parameters for the

two factor model illustrated from the historical series of power prices available on the public

site of the National Energy Authority, are the following : a1 = 2.9, b1 = 31.24, σ1 = 2.86,

for the first factor, while for the second factor (including just the jump contribution) we

obtained a2 = 5.1, b2 = 34.7, γ2 = 4.7 and the tail parameter α = 1.54. The values are very

close to those assumed for the simulations illustrated in Section 6.3.
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Chapitre 7

Ongoing research and projects

In this Chapter, I present some on-going and future research projects. At the mo-

ment, my future research projects concerns in particular interest/credit rates modelling

with branching mechanism, stochastic control applied to economic problems and applica-

tions of Hawkes processes and their sensitivity.

7.1 Alpha-Heston model

Joint project with Y. Jiao, C. Ma and C. Zhou.

We want ot extend Heston model [73] including self-exciting jumps into the equation

satisfied by the volatility. Our objective is to propose a parsimonious model explaining in

a unified way some features of derivatives assets, in particular the long memory of the

volatility and the roughness for short maturities.

7.2 Sensitivity analysis for marked Hawkes processes - application to
CLO pricing

Working paper, with G. Bernis and K. Salhi

In this work, we introduce a model for pricing Collateralized Loan Obligations, where

the underlying credit risk is driven by a marked Hawkes process, involving both clustering

effects on defaults and random recovery rates. We provide a sensitivity analysis of the CLO

price with respect to the parameters of the Hawkes process using a change of probability

and a variational approach. We also provide a simplified version of the model where the

intensity of the Hawkes process is taken as the instantaneous default rate. In this setting,

we give a moment-based formula for the expected survival probability.
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7.3 Optimal dividend and takeover control problem

Joint project with L. Di Persio, V. Ly Vath and L. Prezioso.

We consider an optimal mixed singular/switching control under constraints and with

jumps and regime changes.

In this work, we extend our paper [A2] including regime changes modelling economic

cycles and taking into account that the external growth or the reduction of debt are rela-

ted to the arrival of proposal to external acquisition or takeover (resp. disinvestments or

handover). Our objective is to characterise the value function using viscosity approach and

to describe rigorously the optimal policy.

7.4 Wages and employment in economies with multi-worker firms, un-
certainty and labor turnover costs

Working paper, with B. Bruegemann, V. Ly Vath and A. Vidigni

We present a dynamic general equilibrium model of the labor market where multi-

worker firms, producing with decreasing returns to scale technology subject to a number

of different productivity shocks, bargain à la Stole-Zwiebel (a generalization of Nash bar-

gaining) over wages, in presence of hiring and dismissal costs. We show that the optimal

employment policy of firms lets the marginal value of labor fluctuate persistently in an

interval, defined as the inaction range, and hirings or dismissals take place only when the

two reflecting barriers characterizing it are hit. We prove that the uncertainty generated

by random shocks which directly affect the size of the firm, increases the size of the in-

action range by making firms more cautious in both hiring and dismissal, and decreases

job creation and employment. Higher uncertainty generated by shocks to the productivity

of firms, also reduces unambiguously long run aggregate employment, consistently with

recently provided empirical evidence, but has no effect on the employment policy of each

particular firm. Additionally, we provide formal proofs for a number of well-established

empirical regularities, such as the existence of wage dispersion across observationally equi-

valent workers, and the fact that larger firms tend to pay higher wages. We also account

for the fact that the differential growth rate of employment in large vs. small firms appears

to be strongly procyclical, along many dimensions. Furthermore, we demonstrate that Gi-

brat’s law holds on and off the stationary equilibrium, if idiosyncratic productivity follows

a particular diffusion process. The causal mechanism at work in our theory does not rely

on search frictions and convex vacancy creation costs (which are intentionally ignored),

but only on the interaction between labor turnover costs, the existence of firms of (endo-

genously) variable size due to stochastic shocks, and to the relatively standard production

technology and wage setting rule assumed. Methodologically, our problem is formulated as

a bi-dimensional singular control problem and we use the viscosity theory to characterize

and solve explicitly or quasi-explicitly our problem.
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7.5 Shadow economy dynamics

joint project with V. Ly Vath, D. Teobaldelli and D. Ticchi

We consider a two dimensional switching control problem under constraints. We focus

on an economy with firms that can produce in the formal and in the informal sector with two

production functions. We assume that the technology of the competitive firm is described by

a constant returns to scale Cobb-Douglas on capital and labor. Firms can move capital from

informal to formal sector and viceversa paying some proportional cost. formal sector is taxed

but receive some long term support by the state thanks for instance to the infrastructure

funded through taxes. We are interested on the labor and firm equilibria and in particular

on the ratio between shadow and formal sector.

7.6 Optimal trading strategies in a credit market with over/under-reaction

joint project with G. Bernis and V. Ly Vath.

We consider an impulse control problem under constraints and partial information. We

consider a market model in which over-reaction and under-reaction to market news is taken

into account as in [A10]. As usual, jumps are used to model the arrival of important (positive

or negative) news about the firm. The objective is to extend the previous model taking into

account a self-exciting structure for large jumps and memory between jumps. Moreover, we

have to take into account the peculiarities of credit markets described in [A5]. Market data

will be used for calibration purposes.
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