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Résumé

Dans cette thése on est intéressé a I'étude des catégories dérivées d'une variété lisse et projective sur
un champ.

En particulier on étude I'information géométrique et catégorielle d'une variété et sa catégorie dérivée
pour mieux comprendre I'ensemble de structures monoidales on peut munir la catégorie dérivée.

La motivation de ce projet s'inspire en deux théorémes. L'un c'est le théoréme de réconstruction de
Bondal-Orlov qu'établit que la catégorie dérivée d'une variété avec diviseur (anti-)canonique ample,
c'est assez pour récupérer la variété. D'une autre cGté, on a la construction du specturm de Balmer
qu'utilise le produit tensoriel dérivé pour récupérer un nombre plus grande de variétés a partir de sa
catégorie dérivée de complexes parfaits comme une categorie monoidale.

L'existence de différentes structures monoidales est par contre garanti par |'existence des variétés avec
des catégories dérivées équivalentes. On a pour but alors comprendre quel est-le role de les produits
tensoriels dans I'existence ( ou non existence ) de ces types de variétés. Les résultats principaux qu’on

a obtenu sont:

1. Si X est une variété avec diviseur (anti-)canonique ample, et [X] est une structure de catégorie
tensoriel triangulée sur D®(X) tel que le spectrum de Balmer Spc(Db(X),[x]) est isomorphe a
X, alors pour tous F,G € D*(X), ona FXIG ~ F®H5( G.

2. On utilise le théoreme de Morita pour les dg-catégories de Toén pour donner une caractérisation
d'une structure tronquée en termes de bimodules sur un produit des dg-algebres, qu'induisent

une structure de catégorie tensoriel triangulée sur la catégorie homotopique.

3. On a étudie la théorie de déformation de cettes structures dans le sens de la cohomologie de
Davydov-Yetter. On montre que il existe une correspondence entre un des groupes de cohomologie

et I'ensemble de associateurs dont le produit tensoriel peut s'en déformer.

On utilise des techniques a un niveau des catégories triangulées et aussi des perspectives de la théorie
des catégories supérieurs comme des dg-catégories et quasi-catégories.
Mots-clés Catégories dérivées, géométrie algébrique dérivée non-commutative, catégorie tensoriel tri-

angulée, dg-catégorie, transformations de Fourier-Mukai.



Abstract

In this thesis we are interested in studying derived categories of smooth projective varieties over a field.
Concretely, we study the geometric and categorical information from the variety and from it's derived
category in order to understand the set of monoidal structures one can equip the derived category with.
The motivation for this project comes from two theorems. The first is Bondal-Orlov reconstruction
theorem which says that the derived category of a variety with ample (anti-)canonical bundle is enough
to recover the variety. On the other hand, we have Balmer's spectrum construction which uses the
derived tensor product to recover a much larger number of varieties from it's derived category of perfect
complexes as a monoidal category.

The existence of different monoidal structure is in turn guaranteed by the existence of varieties with
equivalent derived categories. We have as a goal then to understand the role of the tensor products in
the existence ( or not ) of these sort of varieties.

The main results we obtained are

1. If X is a variety with ample (anti-)canonical bundle, and is a tensor triangulated category
on D’(X) such that the Balmer spectrum Spc(DY(X),x]) is isomorphic to X, then for any
F,G e D*(X) we have FG:F@H)} G.

2. We have used Toén's Morita theorem for dg-categories to give a characterization of a truncated
structure in terms of bimodules over a product of dg-algebras, which induces a tensor triangulated

category at the level of homotopy categories.

3. We studied the deformation theory of these structures in the sense of Davydov-Yetter cohomology,
concretely showing that there is a relationship between one of these cohomology groups and the

set of associators that the tensor product can deform into.

We utilise techniques at the level of triangulated categories and also perspectives from higher category

theory like dg-categories and quasi-categories.

Keywords: Derived categories, noncommutative derived algebraic geometry, tensor triangulated

category, dg-category, Fourier-Mukai transforms.
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Introduction

Conventions

Through the rest of this work and unless said otherwise we will be working exclusively over an alge-
braically closed field k of characteristic 0. Our grading is always cohomological, so that differentials

rise degree.

The goal of this work is to provide some results about monoidal category structures on the derived
category of a given variety X. The interest in this goal is broad as derived categories arise in connected
but still different corners of mathematics, and similarly the interest in studying the extra data of
monoidal structures on such a category can be motivated from different points of view.

Our adopted point of view in general is that of derived noncommutative geometry in the specific sense of
trying to understand spaces ( varieties, schemes, stacks, or higher versions of thereof ) through the lense
of their derived categories. This point of view can be traced back to the different duality phenomena
that pops in different branches of mathematics and we could perhaps trace it back to classical Stone
duality, and passing through a number of generalizations and analogue versions in different contexts
along many different branches of mathematics.

In the algebraic geometric case we can start the story by the Gabriel-Rosenberg reconstruction theorem
([Ros96, Bral8]), a celebrated result which says that for a large class of schemes it is enough to look
at the abelian category of coherent sheaves on it to completely determine the space, so that for such
a space X there exists a way to extract information from Coh(X) in such a way that we can get back
X. We could then call a certain sort of Grothendieck categories noncommutative schemes keeping in
mind then that these categories must be in some way categories of coherent sheaves over some possibly
non-realizable space. This is perhaps too good of a result in the sense that while the equivalence

between categories and spaces can provide a fruitful difference in point of views, in practice the fact

9
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that this is a lossless correspondence means it is expected that studying these categories is at least as
complicated as studying the spaces themselves.

On the other hand, the use of homological methods in algebraic geometry has proven to be an extremely
useful tool since the introduction of derived categories and derived functors, just as in algebraic topology
one very potent tool in classification problems is to restrict our parameters in terms of homological
invariants. As such, one immediate question is whether these derived invariants and the derived category
from which they stem contains all the possible information about the space.

Let us briefly recall the different notions of derived category in our context,

Definition. Let .o/ be an abelian category, the derived category D (<) is the localization of the category

of chain complexes on </ by quasi-isomorphisms.

In the geometric context we should consider, for a scheme X the abelian category of coherent
sheaves on X, Coh(X) and we can construct its derived category, which we denote by D(Coh(X))
( which we will often denote simply by D(X) ), as described above. In full generality this cate-
gory can be difficult to work with, and so in applications one would often run into the subcategories
D= (X),D*(X), D*(X) of bounded below, bounded above, and bounded coherent sheaves on X, re-
spectively, and of special interest for us the derived category Per f(X) of bounded perfect complexes
on X.

One of our interests is in understanding equivalences between these derived categories, to do so one has
to move to the more general notion of triangulated category introduced by Grothendieck and Verdier to
point out the relevant structure that we would like to conserve under a functor. Roughly, a triangulated
category consists of the data of a distinguished set of triples of morphisms which one calls triangles
and which we further require to satisfy a number of axioms. It is these triangles that we would like
to preserve under equivalences, and so when we deal with equivalences of derived categories one is
interested in these so-called triangulated functor which are in addition an equivalence of categories.
Now to answer our question from before, we know that C'oh(X) is able to recover the space X in a
wide class of situations but is the passing to D’(X) too much loss in information for this reconstruction
to be broken? The answer to this has been known for many years, originally it was Mukai who noticed
while studying abelian varieties that it is possible for two non isomorphic abelian varieties to have
isomorphic derived categories. Concretely in [Muk78], it is shown that if A is an abelian variety and A
is its dual abelian variety, then D?(A) is equivalent to D?(A), while non-polarized abelian varieties are
not isomorphic to their duals.

Mukai named the equivalence between these derived categories a Fourier functor as they resemble a
categorification of the classical Fourier transform between spaces of functions. Nowadays two given
spaces with equivalent derived categories are said to be Fourier-Mukai partners. Despite these cate-
gories not being a complete invariant, it is still reasonable to wonder to which degree does the derived
category determine a space and if there are spaces X which are completely determined by D?(X).

An answer to this latter question comes from the following celebrated result of Bondal and Orlov
(18001])
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Theorem. Let X be a smooth projective variety and suppose that its (anti-)canonical sheaf wx is

ample. If Y is another smooth projective variety such that there is an equivalence
F:DYX)— DY)

then there is an isomorphism X =Y .

Combined with the situation described by Mukai, the hypothesis of this theorem might hint that
properties of the canonical bundle wx - or equivalently the associated divisor Kx - play an interesting
role in how fine of an invariant is the derived category, on one side Calabi-Yau varieties might have
many different Fourier-Mukai partners while varieties with ample (anti-)canonical bundles however are
uniquely determined by the category.

These phenomena has been recognized in the following conjecture, appearing for example in [Kaw02]

Conjecture. (K-equivalence implies D-equivalence) Let X and Y be birationally equivalent smooth

projective varieties. Then the following are equivalent.

1. There exists an equivalence of triangulated categories D*(X) ~ D(Y).

2. There exists a smooth projective variety Z and birational morphisms f : Z — X and g : Z —Y
such that f*Kyx =~ g*Ky

In fact in the same work Kawamata shows the following

Theorem ([Kaw02], Theorem 1.4). Let X andY be smooth projective varieties. Assume that D°(X) ~
DP(Y) as triangulated categories. Then the following hold:

1. dimX = dimY = n.

2. If Kx (resp. —Kx ) is nef, then Ky (resp. —Ky ) is also nef, and the numerical Kodaira
dimensions v(X), v(Y') coincide (resp. v(X,—Kx) = v(Y,—Ky)).

3. If X is of general type, or if the Kodaira dimension k(X,—K) is equal to n, then X andY are
birationally equivalent. Moreover there exists birational morphisms f : Z — X, g: Z — Y from

a smooth projective variety Z such that f*Kx ~ ¢* Ky

We recall that a line bundle £ is said to be nef if for every irreducible curve C then D - C > 0
where D is the divisor associated to .. Here v(X,.%) (or v(X) in the case .Z = wx ) denotes the
numerical Kodaira dimension of the line bundle .#, which is defined as the maximal integer m such
that there exists a proper morphism ¢ : W --» X W of dimension m with ([¢*(Z)]™ - W) = 0.
What the theorem is telling us is that the birational geometry of spaces is captured to a certain degree in

the derived category at least in good enough situations, and it then would be interesting to understand
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to what extent does the categorical data know about the geometry in this sense.

Using the language of triangulated categories it is possible for example to answer the question of
whether it is possible to recover the space from the derived category if we add some extra structure.
This is the theme of Balmer's tensor (triangulated) geometry when applied to derived categories of a
space. In [Bal02, Bal05] Balmer exploited the classification theorem of Thomason ([Tho97]) to show

the following

Theorem. Let Perf(X) be the derived category of perfect complexes on a noetherian scheme equipped
with the monoidal structure given by the derived tensor product, then the set Spc(Per f(X)) of thick
prime tensor ideals can be equipped with a topology and a locally ringed space structure such that
Spe(Perf(X)) = X.

Here by tensor thick ideal we mean a thick triangulated subcategory of Perf(X) such that it is
closed by taking derived tensor products by any object of Perf(X) and such that if z ®% y is in this
subcategory, then either x or y were in the subcategory to begin with.

The topology that this Balmer spectrum carries is strikingly similar to the Zariski topology of affine
schemes defined for commutative rings, and the structure sheaf comes from choosing an appropriate
basis for the topology and defining on each of these opens a ring of endomorphisms of the unit object
for the derived tensor product.

In other words, Balmer showed that when the derived category of perfect complexes carries a given
monoidal structure then it is always possible to recover the space. The combination of the theorems
of Bondal-Orlov and Kawamata with this result leads to the question of the nature of the monoidal
structure on such derived category.

Balmer's construction inputs a triangulated category equipped with a monoidal structure which is com-
patible with the given triangulated structure, i.e. a tensor triangulated category, and outputs a locally
ringed space. If we are able to completely classify all the possible tensor triangulated category structures
on a given derived category of perfect complexes of a space X, the classification of all Fourier-Mukai
partners must follow along as they will all correspond to different monoidal structure son the same
underlying triangulated category. It is entirely possible however that the derived category is able to be
equipped with tensor structures resulting -after passing through Balmer's construction- in locally ringed
spaces which are not derived equivalent to the space X.

This is in fact the main motivation of our work, through this thesis we are mainly interested in under-
standing results like Bondal-Orlov through the lenses of tensor structures on a triangulated category
and what are the properties that the space X reflects on the derived category D?(X) such that it
admits ( or not ) different tensor structures.

We believe that this point of view can be of importance, for example as Balmer's spectrum yields a
locally ringed space of which one can consider its abelian category of sheaves of modules, or under the
assumption this space is a scheme we obtain an abelian category of coherent sheaves. We would like

to draw the attention that similar things occurs when studying t-structures on triangulated categories,
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the heart of such structure is an abelian category one can construct out of the triangulated category
and in particular good situations we get a comparison between the derived category of the heart and

the derived category of the space, or more generally in a homotopy category of a different nature.

While the context of triangulated categories is enough for much of the work that has been done
about derived categories, it has been known from their inception that they are not always well-behaved.
For example, one limitation comes from the mapping cone construction.

Just as in the derived category case in any triangulated category .7, given a morphism f : X — Y,

there is always an object cone(f) such that
X ->Y — cone(f) — X[1]

is a distinguished triangle. This object is determined up to isomorphism but the construction is not
canonical in the sense that if we consider the category of arrows Arr(J) with objects given by mor-
phisms f : X — Y in .7 and morphisms between arrows f : X — Y and g : X’ — Y’ are given by
commutative squares

X—Y .

Lo

X —Y

And the mapping cone construction induces a morphism cone(f) — cone(g), resulting in a diagram:

X%Y%cone(f)%)([l]

Lokl

X 25y —— cone(g) — X'[1]

However this induced map is not in general functorial, if we give another morphism h : X” — Y” and
morphisms (a’, b')

X#Y%cone(f)%X[l]

Lol ]
X ——Y' —— cone(g) —— X'[1]
T
X" ——Y" —— cone(h) —— X"[1]

Then the morphism cone(f) — cone(h) induced by the morphisms f,h,a’ o a, and ' o b is not in
general the morphism cone(f) — cone(h) given by the composition cone(f) — cone(g) — cone(h).
Another such aspect which is of importance to us in this work, is that the category of triangulated
functors between triangulated categories does not carry a canonical triangulated structure and so it is
complicated to use some of the existing tools to study general triangulated categories.

It was with the development of homotopy theory and keeping this and other problems in mind, that
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the notion of enhanced category was found and developed. From a pure homotopy theory perspective,
the notion of stable oo-category serves as a model for an object which contains the structure of a
triangulated category in its l-categorical shadow along with extra data that doesn’t show up when
working classically. Another possible model for this, and the one we will be using, is that of dg-
categories, these are simply categories enriched over chain complexes and so they are easy to describe
and work with, and in the same fashion as their co-categorical versions, they can be used to enhance
triangulated categories under the right conditions.

An important feature of dg-categories is that they can be equipped with model structures which can
then help us refine some of the behavior that was not showing up in full when working directly with
triangulated categories.

The key insight for us is that a tensor product [X]:  x .7 —  in a tensor triangulated structure is
among other things a triangulated functor on each variable and as such if we were able to work with a
space of such functors as an ambient space we would be able to work with more concrete description
of the objects we are looking for.

Indeed in full analogy with the classical Morita theory for rings and algebras, Toén showed the following

theorem for dg-categories of perfect complexes over smooth proper schemes:

Theorem (Thm 8.15, [Toé07]). Let X andY be two smooth proper schemes over Speck. Then, there

exists an isomorphism in the homotopy category Ho(dg — Cat)

RHom(Perfqg(X), Perfag(Y)) =~ Perfi,(X x Y).

Where the homotopy category Ho(dg — Cat) is the homotopy category of one of the model struc-
tures we can equip the category of dg-categories with, and where Per f4,(X) denotes an enhancement
of the bounded derived category of perfect complexes on X.

What this theorem is essentially telling us is that the relevant functors in the homotopy theory of
dg-categories between these enhancements is parametrized by perfect complexes on the product of the
spaces. In other words functors come from a sort of generalized bimodules, the category of which has
a dg-category structure itself.

This interpretation has a direct relationship with the Fourier-Mukai side of things, in fact one important
feature of these sort of equivalences is that they are precisely given by functors of this form, where
one picks an object ( the kernel of the transform, following the integral transform nomenclature ) and
then the transform can be written as a tensor product of a pullback followed by a pushforward by the
projection morphisms X «— X x; Y — Y.

This context of dg-categories is then where we expect to be able to work with collections of structures,
as Toén's Morita theorem allows us to work comfortably with them unlike the triangulated setting in
which one would have to keep track of whether each step preserves the structure we are working on.
To make use of this theory we have too to understand the theory of dg-enhancements for our derived
categories. This means that there exists dg-categories such that their homotopy categories are triangu-

lated equivalent to these derived categories of perfect complexes and they are in a certain sense unique.
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With the motivating background laid out, let us summarize the work developed in this thesis:

Organization of this work

In the first chapter we go over the basic theory of derived categories and review the necessary concepts
and results that would allow us to sketch Bondal and Orlov's original proof of their reconstruction for
varieties with ample (anti-)canonical bundle, and similarly with Kawamata's result. We introduce the
notions of exceptional collections, semi-orthogonal decompositions, Serre functors, and Fourier-Mukai
transforms along with some examples of known families of spaces where we have some knowledge on
the Fourier-Mukai partners.

In chapter two we go over general tensor triangulated categories and Balmer's reconstruction theorem,
we give a brief overview of the developments of the theory and some general structural results about
the Balmer spectrum and tools used to understand it.

Chapter three introduces our first results, we approach Bondal-Orlov’s reconstruction and Kawamata's
result from the point of view of tensor triangulated categories and develop some general ideas on the
collection of tensor triangulated structures we can impose on a derived category coming from a variety

with ample (anti-)canonical bundle, or in general a variety of general type. Concretely we have:

Corollary. (Corollary 3.0.11) Let X be a variety of general type and let [X] a tensor triangulated category
structure on Db(X) with unit Ox . Then for any [X]-invertible object U such that U X]Ixx < Ixx*, the
equivalence UX] : D*(X)/Ix« — D(X)/Ix induced by U [X _ is equivalent to an equivalence given
by objects in the group Pic(D®(X)/Ixx, (;)E) of invertible (;)i—objects.

Here the proper ideal Ix« is determined by the complement of the augmented base locus of the
canonical bundle ( Definition 3.0.3 ). Our corollary above follows from our definition of almost spanning
class relative to an ideal ( Definition 3.0.7 ) and its relationship with the hypothesis on the canonical
bundle.

Theorem 0.0.1. (Theorem 3.0.8) Let X be a smooth projective variety of general type. Then the
collection of tensor powers (w)®(i)iez forms an almost spanning class with respect to the thick tensor

ideal I« in the tensor triangulated category (D*(X),®%).

Here the ideal Ixx might not be a [X-ideal and so the Verdier quotient D®(X)/Ixx might not
carry a tensor triangulated category structure, however any autoequivalence of the form U [x] _, for
U € Pic(D*(X),[X) such that U X Ix+ S Ixx induces an autoequivalence functor D*(X)/Ix+ —
DP(X)/Ix« by the universal property of the Verdier quotient, and what this result is saying is that all
these induced equivalences of D?(X)/I are given by ®"“-invertible objects.

In case the ideal Iyx happens to be a [x-ideal too then what we obtain is that the Picard group
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Pic(DY(X)/Ix+,[]) is isomorphic to a subgroup of Pic(D?(X)/Ix,®").

The specialization to the case where the canonical bundle of the variety X is ample gives us that any
other tensor triangulated structure has a Picard group isomorphic to a subgroup of shifted line bundles
on X. This is because in that case the ideal Iy« from the corollary above is the O ideal and so we
obtain Pic(D*(X),X) < Pic(Db(X),®").

By the reasoning used for these results, we have a criterion for varieties with ample (anti-)canonical
bundle:

Corollary. (Corollary 3.0.14) Let X be a smooth projective variety over k with ample (anti-)canonical
bundle. If[X] is a tensor triangulated category structure on D®(X) such that wx is [<-invertible, then

we have that [X] coincides on objects with the derived tensor product ®H)‘(.

Using this results we can give a proof of Bondal-Orlov reconstruction theorem (Theorem 3.0.20)
under some additional slightly stronger conditions.
Using the same reasoning, we see that if one has any tensor structure [x] with Balmer spectrum isomor-

phic to our variety X then [x] and ®% have to coincide on objects. Concretely we have:

Theorem. (Theorem 3.0.23) Let X be a smooth projective variety with (anti-)canonical bundle. Con-
sider a tensor triangulated category structure [x] on D®(X) such that Ox is its unit and Spc(Xl) is

isomorphic to X, then [x] and ®E)‘( coincide on objects.

In chapter four we present the general theory of dg-categories and review the theory behind dg-
enhancements of derived categories, the model structure(s) on the category of dg-categories over a field
along with their derived tensor product and Toén's homotopy Morita theory result.

We make use of this theorem in a strong way in chapter five to give a correspondence between tensor
triangulated category structures on a given derived category and the data of a certain bimodule and
coherent isomorphisms. This follows analogous results by Hovey in [Hov11] where the classical Morita
theory is used for the purposes of classifying symmetric closed monoidal structures on a category of
R-modules for a ring R. To be more precise, as our derived categories have generating objects and it is
known that one can show these derived categories are then homotopy equivalent to a category of dg-
modules over the dg-algebra of endomorhisms of a generator, then our result from the previous chapter
saying that a tensor triangulated structure corresponds roughly to the data of a 2-fold dg-bimodule
over such a dg-algebra together with coherent morphisms corresponding to the unit, associators, and
symmetry isomorphisms.

We reproduce some structural results about the bimodule controlling the bifunctor of the tensor trian-
gulated structure and other conditions on the unit or the dg-algebra of coefficients.

Formally we introduce the definitions of pseudo dg-tensor structure (Definition 5.1.5), perfect pseudo
dg-tensor structure (Definition 5.1.6), and pseudo dg-tensor functor (Definition 5.1.8). We then see

that these structures indeed induce tensor triangulated structures at the homotopy category level.

Lemma (Lemma 5.1.7). A perfect pseudo dg-tensor structure I' on a dg-category 7 induces a tensor



CONTENTS 17

triangulated category structure on H°(7,.).

Using this lemma it is possible to reproduce a series of structural results about the objects involved

in this characterization of tensor triangulated structures. We show for example:

Corollary (Corollary 5.1.14). Let A be a dg-algebra and let T’ be a perfect pseudo dg-tensor structure

on Aye. Then T is faithful as a H°(A)-module with either multiplication structure.

Here A, denotes the dg-enhancement of perfect complexes over A, and we recall that a module
is faithful if its annihilator is the zero ideal.
Then, we dedicate some time to discuss symmetric monoidal dg-categories as commutative algebra
objects in the (00, 1) —-category of dg-categories induced from the model category structure we discussed
in chapter four. We show that our perfect pseudo dg-tensor structures are truncations of these structures
in Theorem 6.2.4.
In chapter seven we review the deformation theory of monoidal categories in the sense of Davydov-
Yetter. This is a cohomology theory developed for tensor categories which controls in lower cohomology
groups the deformation of some of the structural morphisms in the monoidal data. For example in degree

2 the cohomology parametrizes deformations of the coherent associators
a:(XRY)®Z - X® (Y ®Z)

We develop an analogous theory for our tensor triangulated structures exploiting the correspondence
from the previous chapter by constructing a double complex which contains information too about the
deformation of the associators in our derived context.

In concrete terms, we show that we can relate our generalized Davydov-Yetter cohomology HDYd”; as
described in Definition 7.2.4 in lower degrees and deformations of the associator of a perfect pseudo

dg-tensor structure.

Theorem (Theorem 7.2.7). Let 7 be a dg-category and let T be a perfect pseudo dg-tensor structure
on . Then to any cocycle in H DYd?’g(ﬂ ) corresponds a first order infinitesimal deformation of the

associativity condition of I up to equivalence.

In this chapter we study in more depth the collection TT'S(D%(X)) of tensor triangulated struc-
tures on D®(X) and we give some structural results, in particular we take interest in the subcollection
of such structures with a fixed tensor unit TT'S(D%(X), 0).

After reviewing different moduli spaces and deformation problems relevant to our situation, we show
that the space of tensor triangulated structures with a fixed tensor bifunctor and unit has an affine

scheme structure

Theorem (Theorem 7.3.1). Let .7 be a dg-category, A a k-algebra, a perfect module U and T" a 2-fold
dg-bimodule over ®Y A. Then the set TTS A(T") of perfect pseudo dg-tensor structures over R A
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which has T as a 2-fold dg-bimodule and U as a unit, has a structure of a quotient of an affine scheme

by an algebraic affine variety.

In our final chapter we take time to pose a number of questions and conjectures that arose during
this work and investigation of tensor triangulated geometry from this point of view. We intend to mo-
tivate these conjectures and give partial answers and evidence for their validity as legitimate questions.
These include the interaction with invariants of the derived category such as t-structures or exceptional
collections and decompositions, and we go over some remarks on the nature of the Balmer spectrum
of higher homotopical spaces. We mention some results given in the literature we could not include

elsewhere.



Chapter 1

Derived categories

In this chapter we give a brief review of the use of derived categories in algebraic geometry. Most of
the material here explained is already classical and so we source our exposition from [Huy06]. Through
this chapter and unless said otherwise, a space or a variety ( often denoted by X or V') will refer to a

smooth projective variety over k.

1.1 Generalities

Let us first start by recalling some basic definitions. If X is a variety we can associate to it its
abelian category C'oh(X) of coherent sheaves on X and its abelian category of quasi-coherent sheaves
QCoh(X).

Our main interest is in a localization of the category of chain complexes on Coh(X). We say that
the derived category D(X) of X as the localization of the category of chain complexes C(Coh(X))
by quasi-isomorphisms. That is, we will invert every chain complex morphism f : F* — G* with the
property that H™(f) is an isomorphism for every n € N.

This category while still important can be difficult to work with and we then restrict ourselves to the
better behaved bounded derived category D’(X) of X which consists of bounded chain complexes.
Similarly one can consider the bounded above and below derived categories, D~ (X) and D*(X)
respectively.

It is a feature of X being a smooth projective variety that in fact this bounded derived category coincides
with the even better behaved category of perfect complexes Perf(X), the subcategory of bounded

complexes locally free of finite type.

19
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When we refer to the derived category of X we will be referring thus to this category of perfect
complexes, equivalent to the bounded derived category of X.

In general given an abelian category A we can consider its derived categories D(A) and D’(A) but the
category Perf(A) doesn't have to be equivalent to the bounded derived category nor does it have to
share some of the good properties it has in the case where A is a category of coherent sheaves on a

space X. In the geometric case we also have the following very useful identification:

Theorem 1.1.1. Let X be a noetherian scheme ( in particular quasi-compact and quasi-separated
), then the natural functor D*(X) — DY(QCoh(X)) identifies D®(X) with the derived category

Db, (QCoh(X)) of bounded complexes of quasi-coherent sheaves with coherent cohomology.
Proof. See [Huy06, Proposition 3.5] O

Derived categories on their own are a great framework to study homological phenomena for a
given space X, but trying to deduce abstract general properties of derived categories require an axiom-
atizatiom of those in itself. One such attempt for putting derived categories in an abstract setting was
that of triangulated categories by Verdier and Grothendieck. Let us recall briefly that a triangulated

category is a k-linear category .7 equipped with a shift autoequivalence:
[1: 9 -7

And a family of morphisms X — Y — Z — X[1] called distinguished triangles, satisfying a number
of axioms (cf. [May01]). In particular a derived category carries a triangulated category structure by
declaring distinguished triangles to be the induced triangles coming from exact sequences, and the shift
autoequivalence being the degree shift in chain complexes.

Among the axioms the structure must satisfy, let us single out that given a morphism f: X — Y in a

triangulated category 7 there always exists an object Z such that the triangle
X->Y -7 X|[1]

is a distinguished triangle. We call Z the cone of f : X — Y and often we denote it too by cone(f)
or cone(X - Y).

A full subcategory is a triangulated subcategory if it is triangulated and its triangulation coincides at
the larger category. Alternatively, if it is closed under cones and shifts.

A triangulated functor consists of the data (%, u) where # : J — ' is a functor sending triangles
to triangles and w is an equivalence .% o [n] ~ [n] o F for every n € N.

Similarly a full subcategory J’ of a triangulated category 7 is a triangulated subcategory if the inclu-
sion functor 7’ — 7 is exact.

Our goal through this section is to provide some exposition about the relationship between the formal
properties of a derived category D®(X) and the geometry of the space. For this we will sometimes

work with general triangulated categories and sometimes will provide concrete properties of derived
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categories.
Working directly with a triangulated or even with a derived category can be complicated without further
information, one important property that helps us manipulate the category is that of it being generated

by some object. Let us be more precise with the following series of definitions.

Definition 1.1.2. Let 7 be a triangulated category, and .% < 7 a full triangulated subcategory, we
say that it is thick if it is closed under direct summands. So that if A® Be . then A,Be /.

Definition 1.1.3. We will say that a thick subcategory T < 7 of a triangulated category admitting

coproducts, is dense if it is closed under coproducts.

It is perhaps interesting to mention that this is not the only characterization of a thick subcategory,
the previous definition is equivalent to asking for a full triangulated subcategory to be closed under
extensions of distinguished triangles. For a proof of this see [Ric89, Proposition 1.3].

If Z < 7 is a class of objects of a triangulated category .7, we denote by (Z) the thick subcategory
generated by Z, meaning the smallest thick subcategory of .7 containing Z.
For two classes 71,7, © 7 of objects, we denote by Z; * 75 the full subcategory of objects F that sit
in a distinguished triangle

E, - E — E; — Eq[1]
with E; € Z;.
We write 71 QZ; for the subcategory (Z; = Zo), the smallest thick subcategory containing . * %.
Finally, for an object E € .7, we put (E); = (E);_10(E) where {(E’); = (E). This means for example
that given an object F € 7, the subcategory (E), consists of all the objects F' such that F is sitting
in a triangle

EF-F->E -F

Where E’ and E” are direct sums of shifts of direct summands of E.

Definition 1.1.4. We will say that T is classically generated by an object E € .7 if 7 = |, (E)k.
If there exist a k € Z such that F = (E)y then we say in turn that 7 is strongly generated.

In [Orl09] Orlov introduced the following invariants for a triangulated category related to the

number of generators that are required to obtain the whole category.

Definition 1.1.5. For a triangulated category T, its Orlov spectrum is the subset of integers k € 7 for

which there is an object E € T that generates T in k-many steps. That is (Eyg41 =T.

Definition 1.1.6. The (Rickard) dimension of T, dim(T), is the minimum integer appearing in its

Orlov spectrum.

As an example, a well known result for the derived category of X = P! says that D®(X) is strongly
generated by E = O @® O(—1), and does so in 1 step so that (E); = D’(X), which implies that the
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dimension of the category is 1. It is possible however that there might be other complexes in D*(X)
such that they generated D®(X) in more steps, for example if we take F' = 0@ O, for pe X a closed
point, then we have that F' is a strong generator but instead generates the category in two steps.

In other words, the Orlov spectrum of the derived category D°(X) contains {1,2} and what would be
left to see is that there are no other integers showing up in this set. But this follows from observing
that for any object .# which strongly generates D’(X) in > 2 steps there is a line bundle and a torsion
sheaf as a direct summand, and an extension of two such objects is a different line bundle contained in
{F); and as any two line bundles generate the category, we would have (F)3 = D?(X).

It is however still an open conjecture whether the dimension of the space coincides with the dimension
of the triangulated category in the case of smooth projective varieties, and whether the Orlov spectrum
forms a full integer interval for these derived categories.

We have however that the dimension must be finite.

Theorem 1.1.7. Let X be a quasi-projective scheme and let L be an ample line bundle, then E = (P L*

is a classical generator for Per f(X).

As generators in the case of a triangulated category relate directly to the triangulated structure
and how one can obtain every object as a sequence of cones of direct sums of shifts of direct summands
of the given object, there exists a general ( and in the case of triangulated categories, related ) notion

of spanning class:
Definition 1.1.8. A collection of objects {X;} S 7 of a triangulated category is called a spanning
class if:

1. If Hom(X;,D[j]) = 0 for all i, j then D ~ 0

2. If Hom(D|j],X;) =0 for all i,j then D ~ 0

Before giving out examples, we point that it's possible to cut down the work by half if the derived

category has good duality properties.

Definition 1.1.9. Let 7 be a triangulated category an autoequivalence S : & —  satisfying
Hom(A, B) = Hom(B, S(A))* for all objects A, B € 7, is called a Serre functor.

Example 1.1.1. Specifically if for example the triangulated category is a derived category of a smooth
projective scheme of dimension n, we have Grothendieck-Verdier duality which implies that for every
pair of objects M, N € D(X), Hom(M,N) = Hom(N,M ® wx|[n])* where wx is the canonical
bundle of X.

We will come back to the general study of Serre functors later, but for now let us observe that

if 7 has such a functor, then a collection of objects {X;} satisfying any of the two conditions of
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spanning classes satisfies the other automatically, indeed if for example it satisfies the first one and
Hom(Dl[j], X;) = 0 for all 4, j, then

Hom(D[j], X,) = Hom(X,, S(D[j]))* = 0

implies S(D) ~ 0 which implies D ~ 0.

Proposition 1.1.10. [Huy06, 3.17] Let X be a smooth projective variety. The collection {O, | x €

X for x a closed point} forms a spanning class on D*(X).

Proof. For F € D(X) we pick a maximal m such that H™(F) % 0 and = € Supp(H™(F). Then
there then a nontrivial morphism H™(F)) — O,, by shifting by m and composing with the morphism
F — H™(F)[m] we see that Hom™(F,O,) 0 O

There are some relationships between the generators of a triangulated category, specially with the
existence of Serre functors. We have,
Definition 1.1.11. An object E € .7 of a triangulated category is called a weak generator if for any
non-zero object D, there is j with Hom(E, D[j]) # 0.

In other words, an one-object spanning class is a weak generator. The notion of classical generator
and weak generator are related in one direction in general:

Lemma 1.1.12. /f E € 7 is a classical generator then it is a weak generator.

Proof. If E' € 7 is such that Hom(E, E'[k]) = 0 for all k € Z, implies that for any E” € (E), we
have Hom(E", E') = 0, in particular Hom(E', E') = 0 which is not possible unless E’ = 0. O

The converse of this lemma is not in general true, however it is known in some concrete situations
for derived categories as we will see by using the following Brown representation theorem for triangulated

categories due to Neeman.
Theorem 1.1.13. [Nee96] Let 7 be a triangulated category with small coproducts, if E € T is a
compact object, the following are equivalent:

1. Eis a classical generator of 7¢ and .7 is compactly generated

2. E is a weak generator

We should begin first by formally introducing the terms we have yet not defined that appear in

the statement of the previous theorem
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Definition 1.1.14. Let .7 be a triangulated category admitting coproducts, an object X € .7 is called

compact if for every collection of objects Y; we have

Hom(X,PY:) =~ P Hom(X,Y;)

The full subcategory of compact objects of a triangulated category .7 will be denoted by .77¢. We
will also say that .7 is triangulated category compactly generated if there is a collection of compact

objects X; € 7 ¢ such that @X; is a weak generator.

Definition 1.1.15. Given a sequence of objects in a triangulated category,
XO g X1 - ...

with transitions f, : X, — X,.11, we define the homotopy colimit HocolimX,, of the sequence as the

object that fits in a distinguished triangle

Where the map ®@X; — @X; is the map 1 — f,,.

We will need a few more lemmas:

Lemma 1.1.16. [Sta22, Tag 09SN] Let T be a triangulated category with coproducts, such that
@F; is a weak generator 7 with E; compact objects, then every object M € 7 can be written as
X = HocolimX,,.

Where X, € {E;); for some n; € Z, and there is a distinguished triangle

Y, - X - Xpp1 — Yn[l]

And where Y, € (E;»

Proof. Let X be the direct sum @; ,,4) Ei[m] where m € Z and ¢ : E;[m] — X, and let us consider
the canonical morphism X; — X. Inductively if we are given a morphism X,, — X, construct Y,, as
a sum @F;[n;] such that the composition of morphisms E; — X,, — X is zero. Thus there exists a
triangle Y,, - X,, — X,,41 — Y,[1] and it's possible to pick X,, — X,,11 — X in such a way that
these compositions are the morphisms X,, — X.

This gives us a morphism HocolimX,, — X that we can fit in a triangle
C — HocolimX, — X — C[1]

Compactness of the F; and the way we constructed the Y;, show that any morphism E, [n;] — C —
HocolimX,, must compose to zero. This in turn means any such morphism E,[n;] — C must be
zero, as it factorizes as E,[n;] —» X[—1] —» C — HocolimX,,. Since ®F; is a weak generator, C' ~ 0
and so X ~ HocolimX,,. O
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Lemma 1.1.17. If C — X € 7 is a morphism from a compact object, it can be factorized as
C—>E—XwithEelE, ®- - @®E,,) for some indices 1, ..., 7).

Proof. Proceeding by induction on n. For n = 1 nothing needs to be done. If n > 1 then given a
morphism C' — X,,, as we have the triangle C — X,, — Y,,_1[1], since Y,,_1[1] is in (®E;); then we
can factor the morphism through C — E[1] — Y,,_1[1] with E€(E, & ---® E,, ).

This produces a morphism of triangles (E,C’,C) — (Y,,—1, X;,—1, X,). Using the induction hypothesis
we see that we can factor C' — X,,_1 in a similar fashion by C’ - E’ — X,,_1. This in turn gives us
another morphism of triangles (E,C’,C) — (E, E',®FE;) — (Y,—1, Xn—1, X5). Then all that remains
is to show that it is possible to show the existence of E” such that the vertical morphisms compose

correctly, but this can be done again by induction hypothesis and we obtain E” @ E' — X,,. O

With these two lemmas in hand, we can proceed to the proof of Neeman's Brown representability

theorem.

Proof of Theorem 1.1.13. One direction was shown before, we then assume that E is a weak generator
of 7, then we write any compact object as X = HocolimX,,, however compactness implies X —
HocolimX,, factors through X,, for some n. By the previous lemma this factors as X — F' — X,
and by construction this means X € (E)). O

As a consequence of this theorem we can now give a proof of Theorem 1.1.7. Let us first point

out the important properties we will use about ample line bundles.

Definition 1.1.18. We call a collection of objects of an abelian category A, {L;} < A an ample

sequence if the following conditions are met: Fori << 0, and all Ae A

1. Hom(L;, A) ® L; — A is surjective.
2. Hom(A,L;) =0

3. Exti(L;, A) =0, j+£0

The canonical example of such sequence is of course a family of ample line bundles on a scheme
X.
In general ample sequences are very useful and we will make partially use of this concept in the future.
To illustrate this let us mention the following useful theorem of Bondal and Orlov which makes use of an

ample sequence to fully determine the nature of an autoequivalence. We give the theorem without proof.

Theorem 1.1.19. [BOOI, Prop. A.3] Let F : D(A) — D(A) be a an exact autoequivalence between

the derived category of an abelian category A of finite homological dimension, and let {L;} be an
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ample sequence of A, if there is an isomorphism id |,= F |1, of functors on the full subcategory of

{L;} < D(A) then it can be extended to an isomorphism idp() = F

To continue with our proof of theorem 1.1.7, we need the following lemma showing an ample
sequence in an abelian category with finite homological dimension forms a spanning class. As anticipated

we also have the following result:

Lemma 1.1.20. Let A be an abelian category of finite homological dimension and let {L;} be an

ample sequence, then the collection {L;} seen as objects of D(A) form a spanning class

Proof. We will assume D(A) has a Serre functor and so will only show that Hom(L;, D[j]) = 0 for
all 4,7 implies D ~ 0. For the proof that doesn't assume the existence of the Serre functor see [Huy06,
Proposition 2.73].

Suppose Hom(L;, D[j]) = 0 for all 4, j, then D is quasi-isomorphic to a complex

D=--.50-0—-D"—- D"

with H™(D’) % 0 and so Hom(L;, H"(D')) embeds in Hom(L;, D'[n]) = 0 for every i, however as
{L;} is an ample sequence Hom(L;, H"(D")) ® L; — H™(D') is surjective for some i, so it can't be
that D 0. O

Combining Lemma 1.1.20 and Theorem 1.1.13 by picking as weak generator the direct sum of
the spanning class formed from the induced objects from the ample sequence, we obtain the proof of

theorem 1.1.7.

1.1.1 Decomposition of triangulated categories

Besides the study of generators as seen previously, one very important tool for the study of derived
categories is their decompositions. Roughly speaking the idea is that one is able to study the category
in pieces that don't interact much with each other, or if they do we ought to be able to understand
the nature of their gluing. Using the language of dg-categories and enhancements we will see in later
chapters, this idea of gluing can be put into a more formal language.

In our geometric setting, it is precisely the information of the space that will reflect on the structure of

its derived category and will inform us about these decompositions.

Definition 1.1.21. Anobject E € 7 of a triangulated category is called exceptional if Hom(E, E[r]) =
0 for allr &= 0 and Hom(E,E) = k.
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Similarly this definition can be extended to an ordered sequence of objects

Definition 1.1.22. A collection Ex, ..., E,, €  is called an exceptional collection if Hom(E;, E;[r]) =
0ifi>jandr 40, and Hom(E;, Ej[r]) = k otherwise.

As an example there is the well known theorem of Beilinson of the resolution of the diagonal which

allows us to conclude that in P™ we have an exceptional collection given by line bundles. Namely:

Theorem 1.1.23. The collection {O,...,O(n)} is an exceptional collection in the derived category
Db (P™).

Definition 1.1.24. An exceptional collection in a triangulated category which generates the category

is called a full exceptional collection.

In particular we see that the collection {O,...,O(n)} generates D*(P') and so it is also full.

Definition 1.1.25. An exceptional collection such that Hom(E;, E;[r]) = 0 for all v & 0 is called

strong.

We have talked about how an exceptional collection allows us to break down the category in
simpler pieces, what this means formally is that the inclusion functor from the subcategory of the
triangulated subcategory generated by the exceptional objects to the ambient category admits a right

adjoint. In general we have the following definition.

Definition 1.1.26. Let .7 be a triangulated category and .7 a full triangulated subcategory of 7, we
say that 7' is an admissible subcategory of .7 if the inclusion functor 7' — 7 has a right adjoint.

In particular,

Lemma 1.1.27. Let 7 be a triangulated category such that dim @, Hom(A, B[n]) <. If E€ T

is an exceptional object then (E) is an admissible subcategory.

In this case when E is an exceptional object the category {F) is equivalent to the derived category
of Speck.
In general we see that in the presence of an exceptional collection we have a decomposition in terms

of the subcategories generated by the objects on the sequence, we can define

Definition 1.1.28. A sequence of admissible triangulated subcategories 7,..., 7, < T is semi-
orthogonal if fori > j, F; < T+

In addition this is semi-orthogonal decomposition if the subcategories .7; classically generate T
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From the lemma above we can deduce that in the presence of a full exceptional collection, we can
obtain a semi-orthogonal decomposition of our category by considering the triangulated subcategories

generated by each object.

Example 1.1.2. In D*(P") the full exceptional collection {O,...,O(n)} induces a semi-orthogonal

decomposition of the category.

It should be said that not every derived category accepts a full exceptional collection, in fact in

the presence of an exceptional collection we can always define the following:

Definition 1.1.29. Let {E,...,E,} be an exceptional collection in a triangulated category .7, then
the category (Eif n...EX) == {X € 7 | Hom(E;, X[p]) = 0 Vi € {1,...,n},p € Z} is called the
Kuznetsov component of the collection K(7) := {E\, ..., E,}.

Let us remark that in the previous definition the component depends on the collection we pick.
By construction one sees that one has a semi-orthogonal decomposition (K(.7), E1, ..., Ep).
Evidently if the component vanishes then the exceptional collection is full, but as this is rarely the case
then finding concrete descriptions for this component becomes an important task in understanding the
decomposition and the category itself.
As an illustration we will quickly list some known cases of decompositions for some varieties. First, a

general result for Fano varieties:

Theorem 1.1.30. [Kuzl6, Example 2.11] Let X be a Fano variety of index r with —Kx = rH. Then
the collection of line bundles {Ox(1 — r)H,...,Ox(—H),Ox} is an exceptional collection and we

have a semi-orthogonal decomposition

DY(X) =(K(X),0x(1 —m)H,...,0x(—H), Ox}.

remark is that these exceptional collections don't need to be strong in general even in the Fano

case.

Example 1.1.3. Let Q" — P**! be a smooth quadric with n odd. Then there is an exceptional
collection
Db(Qn) = <Db(k)a ﬁX(l - n)7 sy ﬁ@(_1)7 ﬁX>

When n is even the first component is in turn equivalent to D’(k x k).
The case of Grassmanians was also studied by Kapranov in [Kap88|, Kuznetsov has done a deep study
of exceptional collections for Fano 3-folds, a survey can be consulted on [Kuz16].
The following theorem will be explored in depth in more general contexts in the future, but for the

moment let us express it in these terms.
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Theorem 1.1.31. [Bon89, Theorem 6.2] Let F,...,E, €  be a full exceptional collection on the

derived category 7 of a smooth variety, then there exists an equivalence of triangulated categories

T — D(End(®E;) — mod)

Let us mention that the relevant functor here is Hom( ,®F;) composed with a an assignment of
an injective resolution.
A perhaps important remark is that one way of justifying the notion that the study of these derived
categories is noncommutative in nature is precisely this sort of equivalence, as we have that at the level
of derived categories we are interested in categories of modules over a noncommutative dg-algebra.
This result can be thought as classical enough by interpreting this endomorphism algebra as correspond-
ing to the path algebra of a quiver which we can construct from the exceptional collection. Concretely if
{E\,...,E,} is a full strong exceptional collection, we construct the quiver with n vertices and between
vertices ¢ and j we write n edges corresponding to the dimension of the vector space Hom(E;, E;).

Let us see with a concrete space.

Example 1.1.4. In the case of P! for example the collection {O,O(1)} will gives us the Kronecker
quiver which is known to produce an equivalence between the derived category of P! and the category
of modules over the path algebra of the quiver, or equivalently the derived category of quiver represen-
tations.

Concretely we have an endomorphism algebra

A=

This behavior is another witness of the strong relationship between the derived and the geometric
world. To give another such example of the geometry influencing the properties of the derived category,
let us mention the relationship between the birational geometry of a space, and in particular the MMP
in birational geometry and properties about the decomposition of the derived category.

First let us define what it means for a category to be indecomposable:

Definition 1.1.32. We say a triangulated category 7 is indecomposable if for any pair of full subcat-
egories J1, J» every object X € J decomposes as X1 @ Xo with X; € J; and if Hom™(7;, 7;) =0
fori & j and n € Z, then either 7; = 0 or 7; = 0.

In ([Bri99]) Bridgeland proves the following result.

Theorem 1.1.33. Let X be a scheme, then D*(X) is indecomposable if and only if X is connected.

Proof. Suppose X is connected and we have subcategories .7, % < D?(X). Let Y be an integral

subscheme of X then Oy is indecomposable as an object of Db(X), and so Oy € 7, for example, for
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similar reasons the sheaves O, are also in .7 for any point ye Y.

We then have X = X7 U X5 for X; the union of integral closed subschemes Y with Oy in .7;. We see
that the intersection needs to be empty and thus as X is connected, one of X3, X5, say, X5, must be
empty and so for all points z € X we see that O, € ..

It follows by 1.1.10 that any object F € %5 must be zero.

For the converse see [Huy06, Proposition 3.10].

As a corollary of this theorem we have that Calabi-Yau varieties, which are minimal models under
the MMP, cannot be decomposed as a semiorthogonal decomposition. Indeed, for a Calabi-Yau variety

X of dimension n, it can be shown (see Example 1.1.1) that the Serre functor is given by shifting
F — Fln].
This means that if D?(X) had a semiorthogonal decomposition < .73, 7 >, we would have
Hom™ (%, %) = Hom(%(n], 71) = Hom(Z, %) =0

which would mean D®(X) would be decomposable, which is not possible as X is connected.

Besides semiorthogonal decompositions induced by exceptional collections, the next two results due to
Orlov ([Orl92]) are an important tool to produce such decompositions in a number of general cases.
Theorem 1.1.35 in particular is another instance of the geometry having a direct role in the categorical
properties of D’(X)

Theorem 1.1.34. If V is a vector bundle of rank r over a projective variety Y, and if there exists
a full exceptional collection {E1,...,E,} in the derived category D*(Y) then the derived category
DP(P(V))) also possesses a full exceptional collection given by {p*Eo @ Op(yy(—7 + 1),...,p*E, ®
Opvy(=r+1),...,p*Ey,...,p*E,}. Wherep:P(V) — Y is the structure morphism.

We can use this theorem to give a full exceptional collection of D?(P! x P!) by considering

Beilinson's full exceptional collection for P!, we obtain:
{0,0(1,0),0(1,0),0(1,1)}.
Similarly it is possible to produce semi-orthogonal decompositions on the derived category of a blowup.

Theorem 1.1.35. Let X = Blz(Y) be the blowup of a smooth scheme Y along a smooth subscheme
Z of codimension m, if we put j : E — X be the inclusion of the exceptional divisor andp: X —Y
the blowup morphism, i : Z — Y the inclusion of the subscheme and m : E — Z, then there is a

semi-orthogonal decomposition

(Rjx(Op(1 —m) ® Ln*(D"(2)))...., Rjx(Op(-1) ® L7*(D"*(Z2))), Lp* (D" (Y)))-
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The terms of the form Rp.(F ® Lg*(_)) turn out to be of central importance in this story of
derived equivalences, indeed these have appeared since the foundational findings of Mukai about abelian

varieties and thus bear the name of Fourier-Mukai transforms.

Definition 1.1.36. Let X,Y be two varieties and consider the projections X & X xY Y, an
object E € D*(X x Y) is called the kernel the Fourier-Mukai transform ®¥ . := Rq,(FE ® Lp*(_)).

It should be clear that having such a description for a functor is an strict improvement over the
abstract data that one can infer individually, hence the importance of the following nontrivial result by

Orlov:

Theorem 1.1.37. Let F : D*(X) — D(Y) be an exact full and faithful functor with right adjoint,
then there exists an objet E € D*(X x Y) such that F ~ ®%_ ..

In particular autoequivalences are of this form, a fact that we will be using frequently. In fact we
are interested very particularly in such cases.
Mukai first found in [Muk78] found that for an abelian variety A there exists an equivalence between
the derived category of A and the derived category of its dual abelian variety A and this equivalence is
given by a Fourier-Mukai transform whose kernel is the Poincaré bundle.
Two varieties with equivalent derived categories ( as triangulated categories ) are said to be Fourier-
Mukai partners and they are crucial to our current work.
A natural question light of Mukai's transform for abelian varieties is whether every variety admits a
non-isomorphic Fourier-Mukai partner. Bondal and Orlov proved a theorem in which it is possible to
characterize by a geometric condition a class of varieties without such non-isomorphic partners. We
explore briefly the steps of their original proof. We remark that their original proof showed that it is
just the graded structure and not the triangulated one what is enough to fully characterize the variety
in question, we would also like to mention that as we will present more than one proof of the theorem (
with some flexibility in the hypothesis ) we will only give a rough sketch of their original proof and would

recommend the interested reader to refer to the source material [BOO01] for a more detailed exposition.

1.1.2 The Bondal-Orlov reconstruction theorem

In this section we discuss the anticipated Bondal-Orlov reconstruction theorem, which establishes that
in the presence of an (anti-)canonical bundle, the variety is entirely determined by its derived category.
In fact it should be more precise to say that the variety depends only on the graded structure of the
derived category as we will see, since the distinguished triangles dont play an essential role. As a
consequence of the reconstruction theorem, we obtain a description of the group of autoequivalences
of the derived category in terms of autoequivalences of the variety X itself.

This section follows closely [BOO01], a very precise treatment can also be found on [Huy06]. The proofs

of the results here will be only sketched without much detail but trying to maintain the essential ideas
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behind the arguments.

In the previous section we discussed very briefly the concept of Serre functors and how they play an
important role in the structure of the triangulated categories. Here we develop the theory further.
The immediate importance of the canonical or anticanonical bundle being ample is that they induce a

Serre functor by duality on the derived category D*(V).

Lemma 1.1.38. [BVdBO03] If & is a triangulated category and S :  — & is a Serre functor then it

is an exact functor.

The main example of interest for us is the (anti-)canonical bundle

Example 1.1.5. Let V be a variety of dimension n over a field k, and let wy be its canonical bundle,
then the functor S := - ® wy[n] : D*(V) — D(V) is a Serre functor. This is true since it commutes

with any shift [m] by the nature of the derived tensor product, and by Serre duality we have the desired

isomorphisms Hom(z,y) =~ Hom(y, x ® wy[n])*.

The following couple of lemmas show that the Serre functor, when it exists, is part of the trian-
gulated category and is not an extra piece of data one needs to equip it with.

Lemma 1.1.39. Let .7 be a triangulated category with Serre functor S, and let v :  — 7 be any

autoequivalence, then ¥ oS =~ S o

Proof. Combining 1 and the isomorphisms ¢, , we get equivalences

Hom(¢(x),9(S(y))) = Hom(y, z)*
= Hom(y(x), S(¢(y))

for any given z,y € .7, hence ¢ being essentially surjective gives us isomorphisms of representable
functors Hom(-, 9 (S(y))) = Hom(-, S(x(y))) which implies the required equivalence. O

Theorem 1.1.40. Let 7 be a triangulated category and let S be a Serre functor in 7, then it is

unique up to graded isomorphism.

Proof. Suppose there exists another Serre functor S' then there are isomorphisms Hom(z,x) =
Hom(x,S(x))* = Hom(S(z),S’(x)), then the image of Id, € Hom(z,z) in Hom(S(x), S (z

)
is a graded isomorphism S — S’ that commutes with ¢ ,. O

Now we can proceed to define the necessary terminology to sketch the proof of the reconstruction

theorem. From now on we assume our triangulated categories all have a Serre functor S.

Definition 1.1.41. An object p € 7 is called a point object of codimension s if
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2. Hom'(p,p) =0 fori <0
3. Hom®(p,p) = k(p) where k(p) is a field depending on p.

Definition 1.1.42. An object L € 7 is called an invertible object if for any point p € £ there is an
integer s such that Hom?*(L,p) = k(p), and Hom'(L,p) = 0 for any i % s.

The axiomatization of these two kind of objects correspond to what is expected in the case our

category .7 is the derived category of a variety V, when the (anti-)canonical bundle is ample.

Lemma 1.1.43. [BOO1, 2.2] Let V be a variety with ample (anti-)canonical bundle, then p € D*(V') is

a point object if and only if it is isomorphic to the shift of a skyscraper sheaf over a closed pointp e V

Proof. If p is a closed point of V, then it clearly satisfies the condition of a point object in D*(V). On
the other hand if p is a point object, then there is a i, with H:(p) & 0. That s = dimV follows from
taking i-th cohomology H® on S(p) = p Q@ wy[dimV] = H*4mV(p). The (anti-)ampleness of wy

implies that the support of H (p) must be zero dimensional, this implies there is a sequence

plm] — H™(p) — H"(p) — p[n]

with m > n, where m = min{i | H(p) # 0} and n = max{i | H'(p) # 0}, and then by the second

condition m = n. The third condition then shows p = O,[m]. O

Lemma 1.1.44. [BOO01, 2.4] Let V be a smooth irreducible variety, and suppose all point objects
p € Db(V) are of the form Ov,,[s] for some point p € V and some s € Z.. Then L € D*(V') is invertible

if and only if it is isomorphic to a shift of an invertible sheaf.

Proof. If we start with a translated line bundle £[r] then a simple computation shows that it is an
invertible object under the definition above.

On the other hand if £ is an invertible object, let m = max{i | H*(£) # 0}, then from Hom(ZL, k(z)[r]) =
Hom(H™ (L), k(x)[r]) & 0 with 2 € V a closed point and r € Z we deduce s = —m.

The spectral sequence EY'? = ExtP(H™9(L), k(x)) converges to ExtPT4(L, k(x)) and the fact that
Ext!=™(L, k(x)) = 0 imply that Ext*(H™ (L), k(x)) = 0, which in turn gives us that H™ (L, k(z))
is locally free.

The fact that it has rank 1 follows from Hom(L, k(z)[—m]) = Hom(H™ (L, k(z)) which is k. Fur-
ther analysis of the spectral sequence above shows that £ =~ H™(L)[—m], as for any n < m we
have H"(L) = 0. We refer to the proof of [BOO1, 2.4] or [Huy06, Proposition 4.9] for the explicit
details. O

Finally the expected reconstruction theorem
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Theorem 1.1.45. [BOO01, 2.5] Let V be an irreducible smooth projective variety with ample (anti-
)canonical bundle and if D(V') ~ D(V"') for some other smooth algebraic variety V', then V! = V.

Proof. We will very roughly sketch the steps to follow in the proof
Step 1: First we use Theorem 1.1.43 to establish an equivalence between the point objects in D(V)
and the ones in D(V").

Step 2: Using Theorem 1.1.44 we see there is an equivalence between invertible objects in D(V)
and D(V").

Step 3: By the previous step it is possible to pick and fix an invertible sheaf £ € D(V) and real-
ize it as one in D(V’), and by the first step identify the points of V and V' by comparing both sets to
the point objects p € D(V) such that Hom(L,p) = k(p).

Step 4: For a subset L of invertible objects realized at the same time in both categories, a mor-
phism o : Hom(Ly, Ls) for £; € L, induces a morphism «j : Hom(Lq,p) — Hom(La,p) for each
point object p. This identifies the basis of the topology as the subsets of points U, z, -, for which
ay £ 0.

Step 5: We notice that the codimension of the point objects imply the dimensions of V and V'
coincide. Additionally using the (anti-)ampleness of wy we show that wy~ is (anti-)ample too. Bondal
and Orlov show this by appealing to [BGI77, lllusie Exposé Il, Proposition 2.2.3] which characterizes
ample families in this context using the basis of the previous point.

In [Huy06] however we can find a more geometric argument for this, which goes by showing that wy~
separates points and tangent lines.

The graded algebra A® := Hom/(L, S*(L)) is isomorphic to canonical algebras of both V and V'. We
then can deduce the equivalence between V and V'.

Again we will refer to [BO01] and [Huy06] for the precise details of this proof. O

The following theorem describes in detail the autoequivalences of the derived category of a variety
V as above. Additionally it will help us forward in identifying some of the 'rigidness’ of a derived

category.

Theorem 1.1.46. [BOO01, 3.1] Let V be a smooth irreducible projective variety with ample (anti-
)canonical bundle, over a field k. Then the autoequivalences of D(V') are generated by automorphisms

of V, twists by invertible sheaves and translations.

Corollary 1.1.47. There is an exact sequence

0 — PicV ®Z — Aut(D(V)) — Aut(V) — 0 (1.1.1)
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And a decomposition Aut(D(V)) =~ Aut(V) x (Pic(V)®Z) as Pic(V) D Z is normal in Aut(D(V)).

Let us just mention that the proof of this follows from a careful analysis of what the autoequiv-
alences of D®(V) with their isomorphisms. In particular it can be shown that we can suppose any
autoequivalence F : D*(V) — DP(V) fixes Oy and thus wf, for any k, as tensoring by invertible
sheaves and shifting is an autoequivalence. It can be shown that it's possible to pick an isomorphic
autoequivalence that acts trivially on the canonical algebra, and with this in hand all that remains is
to show that we have an isomorphism of functors id |(,xy= F" ¢+, and apply Theorem 1.1.19.

We have already touched a little bit on the interaction of derived and birational equivalences in the
Blowup decomposition formula (Theorem 1.1.35) but as it turns out the relationship runs deeper and
we are able to say more.

We will touch briefly on this by proving a theorem of Kawamata which generalizes Bondal and Orlov's
reconstruction. It is important to mention too a result of Bridgeland and Maciocia as well as touch
briefly on flops and some known results about the converse implication, that is, wether birational equiv-
alence, or the stronger condition of K-equivalence, implies equivalences at the derived level.

We recall a standard definition of big bundles and then present a classical and very helpful characteri-

zation of such bundles by Kodaira.

Definition 1.1.48. A line bundle L on a variety X is big if there exists r such that X is birationally
equivalent to its image in P(H°(X, L)) under the map given by the sections of L".

Theorem 1.1.49. If X is a projective irreducible variety and w is a big line bundle on X, then there

exists an ample bundle A and effective bundle E, such that w is rationally equivalent to A + E.

We also will need the concept of nef-ness of a line bundle, and we would also like to recall the

notion of numerical Kodaira dimension.

Definition 1.1.50. Let .Z be a line bundle on X with associated divisor D we say it is nef if for every
irreducible curve C' € X we have that D - C = 0.
And,

Definition 1.1.51. The numerical Kodaira dimension v(X,.%) of a line bundle £ on X is defined as
the maximal integer m such that there exists a proper morphism ¢ : W --+ X with W of dimension
m such that ([¢*Z]™ - W) = 0.

Using Theorems 1.1.49 and 1.1.37 Kawamata showed that

Theorem 1.1.52. Let X,Y be smooth projective varieties with F : D*(X) =~ D®(Y') as triangulated

categories, then
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1. dm X =dimY.

2. If the canonical divisor Kx is nef, so is Ky and there is an equality in the numerical Kodaira
dimensions v(X) and v(Y).

3. If X is of general type, then X and Y are birational and furthermore, there is a smooth projective
varietyp: Z — X, q: Z — Y such that p*Kx ~ ¢*Ky.

Proof. From theorem 1.1.37 we know that F ~ ®¥ for some object £ € D*(X x Y). It can be shown
that the right and left adjoints of this Fourier-Mukai functor are of the form ®E~ ®mfwx[dimX] 4nq
PE @rfwy [dimY] respectively, since this is an equivalence this means that the representing kernels are
isomorphic and so dimX = dimY .

Now consider the support of EV, Z = | JSupp(H'(E") and consider its irreducible component de-
composition Z = Zy U -+ U Zy.

Let v; : Z; — Z; be the normalization morphism and assume Z; is an irreducible component of a
single H'(EY). We can then deduce from the fact that Z; that vinfwy = viniwy for some integer
r ( See [Huy06, Lemma 6.9] for details ).

On the other hand, if on an irreducible component Z; dominating Y via the projection w3 Kx is nef

then so is rvfmy

Kx and so is rv;‘ﬂ';‘Ky which in turn implies Ky is nef.

Now for 3) we use theorem 1.1.49 and see that Kx ~ A + B with A ample and B effective, again
let us pick an irreducible component Z; of Z that dominates X, the claim is that 7o |z,: Z1 — Y is
quasifinite outside of SuppB. It's possible to see this if we consider a curve C on Zj N wz_l(y) of a
point y € Y, as ma contracts such curve then the degree of intersection with 73wy must be 0. If we
suppose that C is not contained entirely on SuppB then that the degree of intersection with 7 Kx is
larger than that of the intersection with the ample divisor A, but by ampleness this is strictly greater
than zero and we have arrived to a contradiction, the fiber outside of SuppB is finite.

We deduce that dimZ; = dimX, from here we can deduce that the fibers of a point over x € X must
be connected. This is because we can write the fiber as a union of non-empty disjoint subsets Y; U Y5
which must be equal to the support of F(k(z)), and then it's possible to write this as a direct sum
F1 @ Fa, each with respective support on Y;, however k = End(F(k(z))) = End(k(z)) which can't

be End(F; @ Fz2). This implies Z is the graph of a birational morphism. O
The condition on the last part of the theorem is of interest,
Definition 1.1.563. We say two varieties X,Y are K-equivalent if they are birational and there exists

a smooth varietyp: Z - X, q: Z - Y withp*Kx ~ ¢*Ky

Let us notice that theorem 1.1.52 generalizes Bondal and Orlov’s theorem as K-equivalent varieties
for which one of them has an ample canonical bundle implies the varieties are isomorphic.

Let us note too the following result by Bridgeland and Maciocia:
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Theorem 1.1.54. Let X be a minimal surface of general type. Then the only FM partner of X is X
itself.

An important conjecture is whether being derived equivalent is the same as being K-equivalent.
We have given some conditions for derived equivalence to imply K-equivalence, on the other direction
general results are more scarce, but we have an interesting concrete example ( taken from [Kaw02,
Example 5.2] ).

Example 1.1.6. Let X be a smooth projective variety of dimension 2m+1, Z a subvariety isomorphic
to P™ and suppose the normal bundle N is isomorphic to Opm (1)™*1. Let f : Blz;X — X be the
blowup along Z. Then exceptional divisor is isomorphic to P™ x P™ and we can blow-down towards
X by contracting one of the copies of P™ but we could also do it on the other copy, so we have a

morphism g : BlzX — Y. The composition h: go f~' is called the standard flop.

Using a form of Theorem 1.1.19 described in [BKRO1] it is possible to show that there exist a
derived equivalence given as a Fourier-Mukai functor with kernel O .
Before finishing let us give a brief summary of some of the known examples of Fourier-Mukai partners.

For abelian varieties Orlov showed the following:

Theorem 1.1.55. [Orl02] Let A, B be abelian varieties over k. Then there is an equivalence of
triangulated categories between the derived categories D*(A) and D®(B) if and only if there is an

isometric isomorphism between A x A and B x B.

For K3 surfaces we have

Theorem 1.1.56. [Orl97] Let Sy and Sy be smooth projective K3 surfaces over C. Then the derived
categories D(S1), D(Sy) are equivalent if and only if there exists a Hodge isometry f : H(Sy,7) —
ﬁ(Sg,Z) between the Mukai lattices of S and Ss.

The case of polarised K3 surfaces is treated in [HP13], extensions of Bondal-Orlov reconstruction
to relative, twisted and singular cases have been studied in [Call8], and elliptic minimal surfaces in
[Ueh04] to name a few.

Along the interest for giving conditions for such derived equivalences to exist, one immediate question
is that of the cardinality of non-isomorphic Fourier-Mukai partners. Kawamata conjectured that the
number must be finite based on the relationship with birational geometry, however in [Les15] it was
shown that it is possible to blow-up P? in countably infinite many configurations of 8 points producing
then a countably infinite number of non-isomorphic spaces with equivalent derived category.

This turns out to be an upper bound as indeed it was shown in [AT08] that there can only be countably
many non-isomorphic Fourier-Mukai partners for a given space.

We finish this chapter by reviewing the theory of t-structures on a derived category.
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1.1.3 t-structures on derived categories

Our interest in t-structures in this work is to put in precise terms what is the relationship between a
given derived category and the abelian category of coherent sheaves of all its non-isomorphic Fourier-
Mukai partners.

Let us start with some basic definitions.

Definition 1.1.57. Let 7 be a triangulated category, a t-structure on  is the data of two full
triangulated subcategories (7 <, 7>9) satisfying:

1. Hom(7<% 72°[-1]) =0
2. 751 < 750 and 7>[-1] < T>°

3. Any object X € 7 sits in a distinguished triangle X' — X — X" — X'[1] where X' € T <0,
X"e 721

As we mentioned above, the idea we can keep in mind is the situation in which 7 = D?(X) and
then 7 <0 is the full triangulated subcategory {X € 7 | HY(X) =0 Vi > 0} and 72° = {F € 7 |
Hi(F) = 0Vi< 0}. We are thus picking the two subcategories given by complexes with cohomology
on negative degrees, and complexes with cohomology on positive degrees respectively.

The main examples to keep in mind for this note are the structures coming from the situation in
which we have two smooth projective varieties and a triangulated equivalence D?(X) =~ D’(Y),
for a fixed variety X each of these derived equivalent varieties Y determine a t-structure on D°(X)
given by the so-called standard structures we mentioned above, that is, we consider the structures
TS0 = {F e Coh(Y) | H(Y) =0Vi<0}.

We will denote 7 >°[n], respectively 7 <[—n], as T>", resp T<".

Definition 1.1.58. We say that a t-structure on a triangulated category 7, (<Y, %) is bounded
if 7 =U;; 7' n T3, and it is non-degenerate if (17<' = 7' = 0. One could check easily
that the property of being bounded implies nondegeneracy as any object X € N.7S* must be in some
TS~ T>"+L put these are orthogonal and so X should be 0.

The heart of a t-structure on .7 is just the intersection .7 = .70~ .70 We have the following
useful characterization of hearts of t-structures due to Bridgeland [Bri07].
Theorem 1.1.59. Let A € 7 be a full additive subcategory of a triangulated category. then A is the

heart of a bounded t-structure if and only if :

1. For all ky > ko, Hom(A[k1], B[k2]) =0 for any A,Be A
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2. For any E € 7 different from 0, there is a filtration
OZE()—>E1—>E2—>"'—>En:E

such that Cone(E; — E;y1) € Alkii1] for integers ky > --- >k,

Proof. Let 7<" be the category generated by | J;»o A[—i], so 720 is (7<0)+[~1]. Clearly A =
F<0 A 20
On the other hand, by the second condition, for any object A € A there is a nonzero map to an object
A, € Alk,] for some integer k,, > 0, and then the distinguished triangle A’ — A — A,, must have
A" € Alk,,] where k,,, <0, by the first condition.

O

An important property of t-structures is that we have truncation functors, concretely we have

Lemma 1.1.60. Let .7 be a triangulated category with a bounded t-structure (7<°, 7>°), then for
any integer n the inclusion functors i, : <" — 7 and " : 2% — T have right and left adjoints

n

T, T" respectively.
Proof. If we pick X € 7 then by definition of t-structure there is a unique distinguished triangle
X' - X - X" — X'[1] with X' € 75% and 721, let Y € 70, then we have a sequence

Hom(Y, X"[-1]) - Hom(Y, X') —» Hom(Y,X) — Hom(Y, X")

which becomes
0— Hom(Y,X') > Hom(Y,X) - 0

as Y € 7<% and X is any object in .7, we see that we can pick 7,,(X) = X’. The description of 7"

is analogous. O

Given a t-structure on a triangulated category .7 we can talk about cohomology functors on .7
which take values on the heart A of .7 with said t-structure. If X € .7 we set H°(X) = 77X and
Hi(X) = H°(X[i]).

The important fact about the heart of a t-structure is that this is always an abelian category, the proof
can be consulted on [GM94], what we must show is that this category has kernels and cokernels, we
claim without proof that if X — Y € 7 the kernel is given by Ker = 7_1(Cone(X — Y)) and
the cokernel is given by Coker = 7°(Cone(X — Y)), with morphisms given by the compositions
Ker — Cone(X - Y) - X[1] and Y — Cone(X — Y) — Coker. And it can be showed that any
morphism in A factors as one would want in an abelian category.

As A is abelian, we can wonder if it is true that Db(.A) =~ .7, however constructing a functor relating
the two categories is an obstruction that we will have to deal with later, but even given the existence
of such a functor we are not guaranteed to have an equivalence.

There is however a good criterion to see whether this happens
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Definition 1.1.61. A triangulated functor F' : . — ' between triangulated categories with t-
structures is said to be a left t-exact if F(.72°) < 7'2°, we have a similar notion of right t-exact

functor.

Remark 1.1.62. There is a graded algebra given by the Ext functors that we can define on the heart
of any t-structure, we simply set Ext'(X,Y) = Hom(X,Y[i]) and consider the composition between
i-th and j-th graded parts Ext'(X,Y) x Ext/ (Y, Z) — Ext'tJ(X, Z) by composition of morphisms in
. We denote this algebra as Ext*(X,Y).

Theorem 1.1.63. Let .7 a triangulated category with a bounded t-structure (<0, 7>%) with a
heart A = <0~ T2, Suppose there is a t-functor F : D*(A) — 7, then F is an equivalence if
and only if for any two objects X,Y € .7, Ext*(X,Y) is generated by a sequence of elements c; in
Ext/(X;,Xj1) for X; € T and X1 = X, X;41 =Y.

Proof. [BBDG18] O

One way to produce such equivalent derived categories by means of constructing derived cate-
gories of the heart of a t-structure on D®(X) is by tilting. The process consists on taking a torsion
pair of certain type and then constructing a new t-structure with cohomology objects taking values in

the torsion or torsion free class.

Definition 1.1.64. Let A be an abelian category, a torsion pair (T, F) is a pair of full subcategories
of A such that 7 <+ F and such that for any X € A there is a short exact sequence

0->t(X)—> X - X/t(X)—>0

with t(X) e T and X /t(X) e F.
We say that (T, F) is cotilting if F is a generator, meaning that for any X € A there is an epimorphism
Y > X withY e F.

Given a t-structure and a torsion pair on its heart A, we can get a t-structure on D®(A) by defining
DY(A)S":= {X e D*(A) | H(X)=0Vi<0,H(X) e T}

Which has as heart the objects of D¥(A) with cohomology H'(X) e F, H°(X) € T and 0 otherwise.

The importance of these t-structures comes from a result due to Happel,Reiten and Smalo ([HRS96] )

Theorem 1.1.65. Let A be an abelian category and let us consider a t-structure on D*(A) with heart
B obtained by tilting by a cotilting torsion pair (T, F) as above.

If B has enough projective objects, then there exists an equivalence of derived categories D*(A) —
D*(B)



Chapter 2

Tensor triangulated categories

After having studied the general properties of derived categories and having gone through some known
results about the reconstruction theorems from a derived category, we now dedicate this chapter to the
study of tensor triangulated categories.

As a first example, given a space X, the abelian category of coherent sheaves carries a tensor product
which can in turn be derived and thus equip the derived category D’(X) with a derived tensor product
®%.

As the tensor product is in fact a derived functor it is compatible, in a way we will explain shortly, with
the triangulated structure of the derived category.

In light of Bondal and Orlov's reconstruction and the existence of non-isomorphic Fourier-Mukai part-
ners, one natural question to ask is whether the derived category could when equipped with some extra
structure, be capable of reconstructing the full space.

This was shown to be true by Balmer in [Bal02, Bal05] where it was shown that in the case of nice
enough spaces this derived tensor product is enough to produce back the space.

However this then implies that if for example a variety has more than one non-isomorphic Fourier-Mukai
partner then the derived category admits many different derived tensor structures. As the Balmer con-
struction works for general triangulated categories with compatible tensor structures, one of the main
motivating questions of this thesis is then the study of the space of all possible tensor triangulated
structures on a fixed derived category.

This chapter is then dedicated to the study of tensor triangulated structures and Balmer's reconstruc-

tion theorem. We will go over some known examples, limitations and general theory.

We start with some general definitions:

Definition 2.0.1. A tensor triangulated category (TTC for short) 7 is a triangulated category together
with the following data:

41
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1. A closed symmetric monoidal structure given by a functor ® : 7 x 7 — 7 additive and exact

( with respect to the k-linear structure ) on both entries.
2. The internal hom functor hom : 7 x J — 7 sends triangles to triangles ( up to a sign ).

3. Coherent natural isomorphisms for each n and m, r : x® (y[n]) = (x®y)[n] and | : (z[n]) Ry =
(x ® y)[n] giving rise to the commutativity of the following diagrams:

z[n] «——z[n]®1 z[n]+—— 1 Q@ x[n]
(z®1)[n] (1®x)[n]
Where 1 is the unit of the monoidal structure, and the horizontal and diagonal morphisms are given by
the unit multiplication morphisms A : x ® 1 — xz, p: x ® 1 — x respectively in each diagram.
We require also the following compatibility diagram between r and [ :

rit

z[n] @ y[m] (z®y)[n+m]

J/ l(l)rﬂwn

ylm] @ z[n] (z®@y)[n +m]

And finally compatibility with the associative morphism:

(@®Y)[n]®@z—— (t®y) ®2)[

\

/fc® (y®2))[n]
(y® 2)

We will refer to a TTC by the triple that defines it (#,®, 1) or simply by J# interchangeably

(@] ®y) ®z ——z[n]®

when there is no risk of confusion.

Remark 2.0.2. It is important to mention that the precise definition of a tensor triangulated category
from author to author might slightly change depending on the intended use. Morally what we are
interested in is in a triangulated category with a monoidal structure such that the monoidal product ®
is exact in each variable.

Some results and examples however will depend on some extra hypothesis and some conventions might

change, for example among the coherence conditions showed above.
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As usual structure preserving functors are of great importance:

Definition 2.0.3. An exact monoidal functor F : 7 — 7' between TTC's (7 ,Q7,17), (7' ,Qz/,15/)
will be called a ®-triangulated functor

With the above defined functors its possible to consider then the category TTC of essentially small
tensor triangulated categories.
An idea to keep in mind is that tensor triangulated categories are categorified algebra objects in a
category of triangulated categories. With this analogy then one can wonder if one can develop some

basic commutative algebra theory for TTC's. For example:

Definition 2.0.4. Let (,87,15) be a TTC. We will say that a thick subcategory & < & is
® — ideal if for every x € T we havex ® & < &

As done in the previous chapter with derived categories one would like to relate the geometry
of the space with categorical properties, in this case with properties corresponding to the monoidal
structure.

In [Tho97] Thomason, went on to study some relationship between the topology of a variety and its
Ky group.
Before describing Balmer's reconstruction, we will follow [Rou05] and give a sketch of a proof of Bondal-

Orlov's result using the derived tensor structure.

Definition 2.0.5. Let X be a variety, then the Oth K-group of Perf(X) is the group generated by
isomorphism classes of objects M, N.P € Perf(X) modulo the equivalence M = N + P whenever
there is a distinguished triangle

N —> M — P — NJ[1]

It is denoted by Ky(Perf(X))

The immediate goal is to show the following result which already relates dense subcategories with
subgroups of Ko(.7).

Lemma 2.0.6. An object D € .7 is in a dense triangulated subcategory A if and only if it is 0 in the
quotient group Ko(.7)/Im(Ky(A))

Proof. The proof is straight-forward, what needs to be shown explicitly is only that if D is 0 in
Ko(7)/Im(Ky(A)) then there are objects B, B’ € A such that D@ B ~0® B’ and so D@ B is in
A, as such there is a triangle B—> B® D — B — D[1] in A which is triangulated, and then D € 7.
Indeed the lemma follows as the quotient of isomorphism classes of objects of .7 modulo the rela-
tion A ~ Biff A®@D =~ B@® D with D € D turn out to be isomorphic to the quotient group
Ko(2)/Im(Ko(A)). O
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Theorem 2.0.7. There exist a bijection between full dense triangulated subcategories of .7 and sub-
groups of the Oth K-group Ko(7). The correspondence is given by associating to a full dense tri-
angulated subcategory its own K-group and realize it as a subgroup via the inclusion. The inverse
correspondence associates a subgroup H to the full subcategory Ay of objects whose isomorphism

class is in H.

Proof. The proof of this relies on Lemma 2.0.6.
One checks immediately that indeed the image is a subgroup of Ky(7) and that the category Ay is
full triangulated dense subcategory of 7.

One uses the Lemma 2.0.6 to show that the assignment is inverse of one another. O

If .# ¢ & is a full subcategory of a triangulated category, let us denote by 7 the smallest
subcategory of .7 closed under infinite direct sums containing .#.
Let us recall that given an object .# € D’(X) for some space X, we can define the cohomological
support of .Z as | Jsupp(H*(%)) which is a subset of X. If Z < X we denote by Dz (QCoh(X))
the full subcategory of D(QCoh(X)) of complexes with cohomology sheaves supported in Z. Similarly
Perf(X)z is the subcategory of perfect complexes in Dz(QCoh(X)).
We close this subsection by proving the following result, and then using it to reprove the Bondal-Orlov
reconstruction using the language of ®-ideals. Mentally the original proofs of Bondal and Orlov and
the proof of Kawamata are very algebro-geometric in nature and they come from deep understanding of
the particularities of the geometry that results in the hypothesis of the theorem. The proof presented
here however relies heavily on the role of Thomason's classification and paints the derived category

more as an affine object from our point of view.
Theorem 2.0.8. [Rou05, Theorem 3.6] Let X be a variety, then the assignment
Z — Perf(X)z
from closed subsets of X to the set of ®-ideals generated by a single object, is a bijection.
The fact that an object # € Perf(X) supported in Z generates the whole ideal Perf(X)y
is proved in [Rou05, Lemma 3.8] and follows from the following results by using Neeman's Brown

representability Theorem (1.1.13).

o —

Lemma 2.0.9. If Z c X is a closed subset then Perf(X)z = Dz(QCoh(X))
Proof. By Lemma 1.1.20 it is enough to show that Perf(X)% = 0. O

The following is a key result describing the decomposition of the category by ideals through

subideals and quotients.
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Theorem 2.0.10. Let 7', Z < X closed subsets. Let U = X\Z and j : U — X the inclusion. Then
the functor j* induces a full and faithful functor Perf(X)z/Perf(X)znz — Perf(X)un~z. An
object in Perf(X)yn~z Is in the image if and only if its class in Ko(Perf(U)ynz/) is the image of a
class in Ko(Perf(X)z)

Lemma 2.0.11. /f Z < X is closed, then there exists a perfect complex M with support on Z.

Proof. On an open affine Spec(A) this can be seen by considering the perfect complex 0 — A" —
A™ — 0 where the map corresponds to the defining equations of Z, assuming Z is irreducible.
Globally if we have an open affine U, by the previous point there exists a perfect complex M with
support on U n Z such that M @ M|1] is supported on Z.

If Z is no longer irreducible, the direct sum of the perfect complexes with support in each irreducible

component has support on the whole Z. O

Proposition 2.0.12. [Tho97, Proposition 3.11] Let X be a quasi-compact quasi-separated scheme and
let {w;} be an ample sequence. Then a thick triangulated subcategory is an ®—ideal if and only if

I ®w; for any i << 0.

Proof. Follows from Lemma 1.1.20. Indeed the sequence {w’ } forms an ample sequence and thus a

spanning class in the derived category. O

The original proof of Thomason relies on a deep and non trivial analysis of this derived category.
The proof using Neeman's Brown representability seems to save some steps and this is why we have
chosen to present it here instead of the original proof.
Rouquier goes to use theorem 2.0.8 to give an alternative proof of Bondal and Orlov reconstruction
just from understanding the ®%-ideals in Per f(X) for some Fano variety. We echo Rouquier’s remark
that the result here does depend on the triangulated structure in contrast of the original proof which

utilizes only the graded structure.

Theorem 2.0.13. Let X,Y be smooth projective varieties such that X has ample (anti-)canonical
bundle and there is an equivalence D*(X) ~ D*(Y) then X =Y.

Proof. We refer to [Rou05, Theorem 3.17] for the full details of the proof.

From Theorem 2.0.8 we can deduce that there is a bijection ® between the closed subsets of Y and X
by noticing that, if F': D*(X) — D®(Y) is the given equivalence, then F~1(D%(Y")) is a subcategory
of Db(X) stable by the Serre functor and thus an ideal and so of the form D«%(z) (X).

The assignment ¢ : Y — X, defined by ¢(y) = ®(y) sends closed points to closed points, since
closed points correspond to minimal thick subcategories Perf(Y'),, property that is preserved under
the equivalence, so Per f(X)4(,) should be minimal and ¢(y) automatically closed.

Then ¢ must be bijective since the set of all skyscraper sheaves form a spanning class (Lemma
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1.1.10). So if there were a point 2 € X not in the image of ¢, Hom (O, Oyy)[i]) = 0, however
Hom(F(O,),Oy[i]) = 0 for any i. Thus F(O,) = 0 which is not possible.

We can see, finally, that ¢ is continuous as a point y € Y is in a closed Z if and only if Perf(Y), <
Perf(Y)z if and only if Perf(X)gs-1¢,) < Perf(X)o(z)-

This says that there is an homeomorphism between the underlying topological spaces of X and Y,
we recover the structure sheaves through the derived equivalence as there are isomorphisms I'(U)
Z(Perf(U))rea = Z(Perf(¢(U))) = T'(¢(U)) for any open U < X. O

lle

2.0.1 Balmer spectrum and reconstruction of schemes

As promised at the beginning of this chapter we will now dedicate this section to Balmer's reconstruction
theorem and general construction of a locally ringed space from a given tensor triangulated category.
A thing to note is that this result goes well beyond algebraic geometry and the general theory of this
spectrum has found a place in both homotopy theory and representation theory. Indeed the general
theory of classifying tensor ideals on a given tensor triangulated category has turned out to be of great
importance as they correspond to certain thick ( and localizing subcategories ) which turn out to be of
great general interest.

Among those applications is for example the category of finite spectra with smash product is of great
interest as is the general classification problem for related categories in the so-called telescope conjec-
ture.

This latter result a witness of the deep connections to stable homotopy theory through the work of
Thomason and the well known telescope conjecture.

Let us start as usual with a number of definitions.

Definition 2.0.14. Let .# < .7 be a subset of objects in a tensor triangulated category. Then (. )g
denotes the the ®-ideal generated by .7 .

Mimicking the commutative algebra definition we are interested in localizations and quotients by

tensor triangulated ideals. Of great interest are prime ®-ideals.

Definition 2.0.15. Let .¥ be a ® — ideal, we will say that it is prime if t®y € ¥ implies either x € &
orye s.

The following implies that this construction yields a nonempty set for a given nonzero TTC 7
Definition 2.0.16. Let S ¢ 7 be a family of objects, it is @-multiplicative if 1 € §, and x,y € §
impliest®y € S.

Lemma 2.0.17. [Bal05, 2.2] Let T be a nonzero TTC, .¢ < Z a ®-ideal and S ¢ T a ®-
multiplicative family of objects with S n % = (¥, then there is a prime ®-ideal p € Spc(.T) with
S cpandpnS=g
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Proof. Let F be the family of thick ® —ideals # with 7 nS = &, # < _# and such that forall s € S
and z € .7 such that s@z € ¢ impliesze 7. Theset 7y ={xe T |Ise Swithe®se S} is

in F, then by Zorn there is a maximal element p which can be shown to be prime. O

Corollary 2.0.18. If 7 is a nonzero TTC, then Spc(T) + &

Proof. If we let for example S = 1 and .# = 0, applying 2.0.17 guarantees the existence of a thick
prime ® — ideal p. O

Definition 2.0.19. Let .# be a ®-ideal of a tensor triangulated category 7. The radical of %, /.9
istheset {ae 7 |3In>1,a®%" € ¥}.

We say that a ®-ideal is radical if it is equal to V.
As remarked by Balmer, in practice most of the time all thick tensor ideals on a given tensor triangulated
category are in fact radical and so there is no need to make a distinction. We have for example the

following characterization of such situations.

Lemma 2.0.20. The following are equivalent fora TTC 7 :

1. Any thick ®-ideal is radical

2. We have a € {a ® a)g for all objects a € T

Proof. If .7 is radical then so is .#/ = (a ® a)g and so a € .#’. On the other hand we can