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Introduction

Ce mémoire présente une synthèse de mes travaux de recherche -listés dans les deux pages précédentes -sans rentrer dans les détails techniques des preuves, même si certaines idées sont présentées. Il présente mes contributions concernant les marches aléatoires en milieu aléatoire sur Z (récurrentes et transientes), différents modèles dits log-corrélés, les marches aléatoires activées et les intègre à la littérature existante. Il est divisé en trois parties selon les thèmes précédemment mentionnés.

Marches aléatoires en milieu aléatoire sur Z

Le Chapitre 1 constitue une introduction aux marches aléatoires en milieu aléatoire sur Z et présente, en plus de motivations en physique et en biologie, les différents résultats historiques utiles à la présentation de mes contributions.

Le Chapitre 2 concerne le cas récurrent : il présente un résultat, obtenu avec Z. Shi [A1], qui peut être vu comme une "faiblesse" du phénomène de localisation forte pour la marche de Sinai, ainsi qu'une étude fine du comportement de la marche de Sinai en paysage aléatoire [A2], qui répond à une conjecture de Révész.

Dans le Chapitre 3, nous donnons une nouvelle preuve d'un théorème de renouvellement de Kesten dans le cas uni-dimensionnel, qui nous permet d'obtenir une expression explicite d'une constante qui était jusqu'alors inconnue dans le cas général. Ce travail en collaboration avec N. Enriquez et C. Sabot [A3] est motivé par l'étude des marches aléatoires en milieu aléatoire transientes sur Z, qui font l'objet du chapitre suivant.

Le Chapitre 4 regroupe une série de travaux avec N. Enriquez et C. Sabot [A4, A5], et avec N. Enriquez, C. Sabot et L. Tournier [A7] concernant les marches aléatoires en milieu aléatoire transientes. Nous commençons par donner une nouvelle démonstration du théorème obtenu par Kesten, Kozlov et Spitzer dans le cas sous-balistique. En introduisant une notion adéquate de vallées associées au potentiel, nous obtenons une expression du paramètre de la loi stable limite [A4]. Dans un second temps, nous exploitons ce nouveau point de vue pour prouver un résultat de vieillissement ou aging exprimé en fonction de la loi de l'Arcsinus généralisée, ainsi qu'un résultat de localisation quenched, toujours dans le cas sous-balistique [A5]. Cette étude nous permet également [A7] de décrire, pour les régimes sous-balistiques et balistiques, les fluctuations du temps d'atteinte d'un niveau n autour de sa moyenne en termes d'une fonction explicite de l'environnement. De plus leur loi limite peut être décrite en utilisant un processus ponctuel de Poisson dont l'intensité INTRODUCTION est calculée. Une conséquence importante de cette série de travaux est qu'ils fournissent des méthodes qui ont pu être utilisées ultérieurement pour analyser des marches aléatoires en milieu aléatoire sur des graphes tels que les arbres ou Z d avec d ≥ 2.

Enfin nous présentons une étude simple d'un modèle-jouet [A6] : le modèle de trappes dirigé uni-dimensionnel, introduit par Bouchaud. Initialement introduit pour comprendre la dynamique des verres de spin, il s'avère être un outil central dans la compréhension des marches aléatoires biaisées sur des arbres de Galton-Watson ou sur des clusters de percolation.

Modèles log-corrélés

Dans le Chapitre 5, nous considérons les marches aléatoires branchantes tuées en zéro dans les cas critiques et sous-critiques, pour lesquels la population s'éteint presquesûrement. Dans un travail avec E. Aïdékon et Y. Hu [A8], nous étudions la population totale et estimons précisément sa queue de distribution dans les cas critiques et souscritiques, ce qui répond à un problème ouvert de D. Aldous.

Le Chapitre 6 présente un travail en collaboration avec L.-P. Arguin [A9], dans lequel nous étudions un modèle Gaussien sur le cercle, non-hiérarchique et dont les corrélations décroissent logarithmiquement avec la distance. Notre approche, de type verres de spin, est similaire à celle de Derrida et Spohn qui utilisent la mesure de Gibbs (à basse température) pour étudier les extrêmes du mouvement Brownien branchant. Le modèle en question a les avantages d'avoir une représentation graphique pour les corrélations, un paramètre d'échelle continu et aucun effet de bord, ce qui rend les idées des preuves plus transparentes. Notre premier résultat établit le fait que l'overlap entre deux points tirés indépendamment selon la mesure de Gibbs est asymptotiquement égal à 0 ou 1 ; on dit que le modèle présente un régime one-step replica symmetry breaking (1-RSB) à basse température. La preuve est basée sur une adaptation d'une technique perturbative de Bovier et Kurkova développée pour des champs Gaussiens hiérarchiques. Elle consiste à introduire un modèle perturbé dont l'énergie libre est calculable et peut être reliée à la distribution de l'overlap pour le modèle initial. Ce résultat combiné aux identités de Ghirlanda-Guerra nous permet, dans un second temps, de montrer que la loi jointe des poids de Gibbs converge, dans un certain sens, vers une variable aléatoire de Poisson-Dirichlet. Le Chapitre 7 concerne le champ libre Gaussien discret en dimension 2. Après un rappel des premiers résultats sur le modèle, nous présentons un travail avec L.-P. Arguin [A10] dans lequel nous obtenons des résultats similaires à ceux du Chapitre 6 pour le modèle Gaussien log-corrélé sur le cercle unité. Mentionnons simplement que les preuves pour le champ libre Gaussien nécessitent beaucoup plus d'efforts à cause des effets de bords.

Nous présentons ensuite les différents progrès concernant ce modèle, qui ont suivi ce travail. En particulier soulignons l'obtention, par Biskup et Louidor, de la convergence du processus extrêmal, qui nous permet, dans un travail avec M. Pain [A13], de montrer l'absence de chaos en température pour le champ libre Gaussien discret en dimension 2.

Dans le Chapitre 8, nous étudions les marches aléatoires activées et prouvons, dans un travail en collaboration avec L. T. Rolla et feu V. Sidoravicius [A11], qu'il existe une densité critique ζ c bien définie, qui sépare deux familles d'états initiaux spatialement ergodiques : ceux dont la densité est inférieure à ζ c pour lesquels le processus est presquesûrement stabilisable et ceux dont la densité est supérieure à ζ c pour lesquels le processus est presque-sûrement explosif. Une conséquence importante est que les hypothèses (sur l'état initial) spécifiques et nécessaires à certaines techniques mathématiques récemment introduites peuvent être maintenant omises. Une autre conséquence est que ce résultat appuie la croyance que les marches aléatoires activées ont des propriétés de mélange bien meilleures que le modèle de tas de sable abélien, pour lequel il n'est pas possible de définir une telle densité critique. Enfin le résultat ainsi que les techniques développées ne fournissent absolument pas une preuve de la conjecture dite de densité (reliée au phénomène de criticalité auto-organisée) mais peuvent constituer un pas dans cette direction.

Motivations et applications

Les milieux aléatoires constituent un modèle permettant de décrire des phénomènes de diffusion et de transport en milieux inhomogènes, possédant néanmoins des propriétés de régularité à grande échelle (statistique). Depuis leur apparition, l'étude des phénomènes aléatoires en milieu aléatoire intéresse physiciens théoriciens, biologistes et mathématiciens.

Les milieux aléatoires sont liés à des modèles utilisés notamment par les physiciens de la matière molle pour les polymères et les gels ; on se reportera à De Gennes [START_REF] De Gennes | Capture d'une fourmi par des pièges sur un amas de percolation[END_REF] pour l'un des premiers modèles de ce type. Les modèles multi-dimensionnels étant souvent hors de portée, on se ramène à l'étude de modèles simplifiés : les marches aléatoires en milieu aléatoire uni-dimensionnelles, qui par la présence de "pièges" (aussi appelées "trappes") présentent les mêmes types de phénomènes que les modèles multi-dimensionnels. Il y a deux sources d'aléa : le mouvement de la particule (correspondant à l'agitation thermique) et le milieu, qui dicte les règles de déplacement. La combinaison de ces deux aléas de natures différentes fait que les marches aléatoires en milieu aléatoire exhibent des propriétés asymptotiques surprenantes et très différentes de la marche aléatoire simple.

Ces dernières années, le modèle a bénéficié d'un regain d'intérêts en biologie moléculaire, dû à l'explosion de techniques monomoléculaires pour explorer la matière biologique. En contraste avec des expériences plus traditionnelles, ces nouvelles approches permettent d'accéder aux variations à l'échelle de la molécule, sans avoir besoin de faire la moyenne sur un échantillon macroscopique. Citons Lubensky et Nelson [START_REF] Lubensky | Single molecule statistics and the polynucleotide unzipping transition[END_REF] qui s'intéressent, d'un point de vue théorique, à des expériences de micromanipulation d'ADN. Ils analysent la séparation d'un double brin d'ADN grâce à des micro-pinces. Le nombre de bases rompues est modélisé par une marche aléatoire en environnement aléatoire, dont le rôle est joué par l'énergie libre du double-brin d'ADN (celle-ci est aléatoire car la séquence des bases A-T et G-C est supposée aléatoire). Récemment, Monasson et Cocco [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF] ont étudié le nombre de trajectoires d'une marche aléatoire en milieu aléatoire uni-dimensionnelle transiente à considérer pour reconstruire l'environnement. On renvoit à Le Doussal, Monthus et Fisher [START_REF] Doussal | Random walkers in onedimensional random environments : exact renormalization group analysis[END_REF] et la bibliographie associée en ce qui concerne les résultats obtenus par les physiciens théoriciens.

1. Modèle, motivations et certains résultats

Le modèle uni-dimensionnel

On définit les marches aléatoires en milieu aléatoire (MAMA) uni-dimensionnelles, qui font l'objet principal de cette partie, de la façon suivante. Définition 1. Soit ω = (ω x ) x∈Z une famille de variables aléatoires indépendantes et identiquement distribuées à valeurs dans (0, 1). On appelle ω l'environnement. Etant donné une réalisation de l'environnement ω = (ω x ) x∈Z , on appelle MAMA la chaîne de Markov (X n ) n≥0 définie par X 0 = 0 et pour n ≥ 0 par

P ω (X n+1 = x + 1 | X n = x) = ω x = 1 -P ω (X n+1 = x -1 | X n = x),
voir la Figure 1. On note P la loi de l'environnement et P ω la loi de la marche aléatoire dans l'environnement aléatoire ω, appelée loi quenched. Enfin on note P et on appelle loi annealed la moyenne de la loi quenched sur tous les environnements, i.e. P(•) := P ω (•)P (dω). Remarquons que si la loi de ω 0 est une masse de Dirac, alors (X n ) n≥0 correspond à la marche aléatoire simple. C'est pourquoi nous éviterons ce cas dégénéré dans la suite.

ω x 1 -ω x x x -1 x + 1 -1 0 1 ω 0 1 -ω 0
Le terme quenched, qui est associé à la loi de la marche aléatoire conditionnellement à l'environnement, signifie "trempé" dans la terminologie issue de la métallurgie. La loi quenched a la propriété d'être Markovienne, mais n'est pas invariante par translation. La loi annealed ("recuite"), quant à elle, est invariante par translation mais non-Markovienne. Nous verrons que les comportements de la marche aléatoire sous la loi quenched et sous la loi annealed dépendent fortement de la loi P de l'environnement.

Dans la section suivante, nous verrons que les MAMA ont des propriétés très différentes de la marche aléatoire simple. Nous y rappelons les principaux résultats historiques concernant les MAMA uni-dimensionnelles et soulignons ainsi la richesse des comportements en milieu aléatoire, richesse résultant de la compétition entre les deux sources d'aléa : l'environnement et l'agitation thermique.

Rappel de certains résultats connus

3.1. Récurrence-transience et loi des grands nombres. En 1975, Solomon [START_REF] Solomon | Random walks in a random environment[END_REF] obtient un critère de récurrence-transience pour les MAMA. Définissons ρ 0 := (1 -ω 0 )/ω 0 . Solomon montre que, dans le cas où E[log ρ 0 ] est défini, la marche aléatoire est récurrente si et seulement si E[log ρ 0 ] = 0. De plus, il établit une loi des grands nombres : il existe une vitesse v ∈ [-1, 1], ne dépendant que de la loi de l'environnement, telle que, P-presque sûrement,

X n n -→ v, n → +∞, où v vérifie v :=          1-E[ρ 0 ] 1+E[ρ 0 ] > 0, si E[ρ 0 ] < 1, 0, si (E[ρ -1 0 ]) -1 ≤ 1 ≤ E[ρ 0 ], E[ρ -1 0 ]-1 E[ρ -1 0 ]+1 < 0, si (E[ρ -1 0 ]) -1 > 1.
On remarque notamment qu'il est possible que la MAMA soit transiente et de vitesse nulle, contrairement à la marche aléatoire simple. Le caractère sous-diffusif de la marche dans ce cas sera étudié en détails dans le Chapitre 4.

3.2.

Cas récurrent : marche de Sinai et localisation. Dans le cas récurrent, Sinai [START_REF] Sinai | The limit behavior of a one-dimensional random walk in a random environment[END_REF] montre, en 1982, que la MAMA est nettement plus lente que la marche aléatoire simple. Avant de préciser le résultat obtenu par Sinai, nous donnons les hypothèses (ne concernant que l'environnement) sous lesquelles la MAMA est appelée marche de Sinai : il existe δ > 0 tel que

P (δ ≤ ω 0 ≤ 1 -δ) = 1, (1.1) E[log ρ 0 ] = 0, (1.2) σ 2 := Var[log ρ 0 ] > 0. (1.3)
La première est une hypothèse technique, la seconde assure que la MAMA est récurrente d'après le critère de Solomon [START_REF] Solomon | Random walks in a random environment[END_REF] et la troisième permet d'éviter le cas de la marche aléatoire simple. Alors, sous les hypothèses (1.1)-(1.3), Sinai [START_REF] Sinai | The limit behavior of a one-dimensional random walk in a random environment[END_REF] montre que

σ 2 X n log 2 n (loi) -→ b ∞ , n → +∞,
où b ∞ est une variable aléatoire non-dégénérée et non-Gaussienne, qui ne dépend pas de la loi de l'environnement. En 1986, Golosov [START_REF] Golosov | Limit distributions for random walks in random environments[END_REF] et Kesten [START_REF] Kesten | The limit distribution of Sinai's random walk in random environment[END_REF] explicitent la loi de cette variable aléatoire. Il est intéressant d'observer que la renormalisation en log 2 n contraste avec le comportement asymptotique de la marche aléatoire simple en √ n, dans le cas récurrent.

Par ailleurs, la démonstration de Sinai fait apparaître un processus qui ne dépend que de l'environnement ω et appelé potentiel. Ce potentiel, noté V = (V (x), x ∈ Z), est défini par

(1.4) V (x) :=        x k=1 log ρ k , si x ≥ 1, 0, si x = 0, -0 k=x+1 log ρ k , si x ≤ -1, où (1.5) ρ i := 1 -ω i ω i , ∀ i ∈ Z.
Il s'avère que cette fonctionnelle de l'environnement joue le rôle d'une énergie en physique. Plus précisément, le caractère sous-diffusif démontré par Sinai dans le cas récurrent est dû à l'existence de puits de potentiel, correspondant à des minimas locaux pour le processus (V (x), x ∈ Z). On parle de vallées piégeant la marche aléatoire (X n ) n≥0 , voir la Figure 2. 

(a) il existe 0 < κ < 1 pour lequel E[ρ κ 0 ] = 1 et E ρ κ 0 log + ρ 0 < ∞, (b) la loi de log ρ 0 est non-arithmétique.
Le comportement de la MAMA dans le cas transient de vitesse nulle est alors décrit par le résultat suivant.

Théorème 2 (Kesten, Kozlov et Spitzer [START_REF] Kesten | A limit law for random walk in a random environment[END_REF]). Sous les hypothèses (a)-(b), on a les convergences en loi suivantes :

lim n→+∞ P(n -1/κ τ (n) ≤ x) = L κ (x), lim n→+∞ P(n -κ X n ≤ x) = 1 -L κ (x -1/κ ), où L κ (•) est la fonction de répartition d'une loi stable complètement asymétrique d'indice κ (L κ est concentrée sur [0, ∞)).
Remarquons que, comme la MAMA est transiente vers +∞, la convergence en loi de n -κ X n est une conséquence de la convergence en loi de n -1/κ τ (n). De plus, les trois auteurs obtiennent un comportement en n/ log n dans le cas κ = 1 et traitent aussi le cas κ > 1.

Temps local, sites favoris et concentration.

En raison des phénomènes de localisation de la MAMA aux fonds de vallées, il paraît naturel de s'intéresser au temps local. Le temps local en x au temps n, noté L(n, x), correspond au nombre de visites de la marche aléatoire au site x avant le temps n et est défini par

L(n, x) := #{0 ≤ i ≤ n : X i = x}, n ≥ 0, x ∈ Z.
Grâce au phénomène de localisation, on peut raisonnablement penser que le maximum du temps local de la MAMA, défini par

L * (n) := max x∈Z L(n, x), n ≥ 0,
sera considérablement plus grand que celui de la marche aléatoire simple. Dans ce sens, Révész [START_REF] Révész | In random environment the local time can be very big[END_REF], pour un environnement particulier, et Shi [START_REF] Shi | A local time curiosity in random environment[END_REF], sous les hypothèses (1.1)-

(1.3), montrent que lim sup n→+∞ L * (n) n = C > 0, P-p.s.
En outre, le comportement asymptotique en "lim sup" du maximum du temps local est étudié par Gantert et Shi [START_REF] Gantert | Many visits to a single site by a transient random walk in random environment[END_REF] dans le cas transient. La "lim inf" dans le cas récurrent est obtenue par Dembo, Gantert, Peres et Shi [START_REF] Dembo | Valleys and the maximum local time for random walk in random environment[END_REF], qui montrent que

lim inf n→+∞ L * (n) n/ log (3) n = c > 0, P-p.s.,
où log (j) désigne la j-ème itérée de la fonction logarithme. La même question dans le cas transient reste un problème ouvert. Par ailleurs, Hu et Shi [START_REF] Hu | The problem of the most visited site in random environment[END_REF] traitent le problème des sites favoris (ou sites les plus visités), que l'on définit par

V(n) := {x ∈ Z + : L(n, x) = L * (n)}, n ≥ 0. (1.7)
Ils prouvent notamment que le processus défini par le maximum (ou l'infimum) de V(n) est transient vers +∞.

Chapitre 2

Marche de Sinai [A1, A2]

1. Un paradoxe lié à la localisation pour la marche de Sinai [A1] 1.1. Présentation du problème et résultat. Cette première section présente la résolution d'une conjecture d'Erdös et Révész [START_REF] Erdös | On the favourite points of a random walk[END_REF] (rappelée dans [START_REF] Révész | Random walk in random and nonrandom environments[END_REF]) initialement posée pour la marche aléatoire simple. Il s'agit de savoir si le fait que la marche passe quasiment tout son temps sur Z + implique que les sites favoris appartiennent également à Z + . Pour préciser ce problème, introduisons d'abord la notion de suite positive : une suite (aléatoire) d'entiers 0 < n 1 < n 2 < . . . est appelée suite positive pour la marche aléatoire si

lim k→+∞ #{0 ≤ i ≤ n k : X i > 0} n k = 1.
Du fait que la marche de Sinai soit connue pour un phénomène de localisation forte, les sites favoris devraient être situés au fond de la vallée du potentiel dans laquelle la marche a passé presque tout son temps. Il est alors naturel de penser que, le long d'une suite positive, les vallées qui piègent la marche aléatoire, et donc les sites favoris, soient portés par Z + . Rappelons que l'ensemble des sites favoris V(n) est défini en (1.7). Nous pouvons maintenant formuler rigoureusement la conjecture de la manière suivante.

Question 3. Est-il vrai que, P-presque sûrement, pour toute suite positive (n k ), on ait V(n k ) ⊂ Z + pour tout k assez grand ? En réalité, le comportement de la marche de Sinai peut être tout autre et nous obtenons le résultat suivant.

Théorème 4 ([A1]). Sous les hypothèses

(1.1)-(1.3), P( ∀ suite positive (n k ), on ait V(n k ) ⊂ Z + , pour k assez grand) = 0.
1.2. Idée de la preuve. En fait, la raison pour laquelle l'heuristique précédente est incorrecte est que même si la marche est fortement localisée au fond d'une vallée, il se peut qu'il y ait un grand nombre de sites au voisinage du fond de cette vallée. Dans ce cas, aucun site n'est nécessairement favori, car le temps passé au fond de la vallée est partagé entre tous ces sites. Nous parlons dans ce cas de bon environnement, voir la Figure 1. 

Y n := n i=0 ξ(S i ), n ≥ 0.
Ce processus est également appelé marche aléatoire en paysage aléatoire de Kesten-Spitzer. On peut en faire l'interprétation suivante : si un marcheur doit payer ξ x à chaque fois qu'il visite le site x, alors Y n correspond à la quantité totale qu'il a payée pendant l'intervalle de temps [0, n]. Une remarque importante dans l'étude des marches aléatoires en paysage aléatoire consiste à observer que l'on peut, dans un certain sens, dissocier les deux sources d'aléa en réécrivant Y n en fonction du temps local de S. En effet, il est facile de voir que

Y n = x∈Z ξ x L(n, x), n ≥ 0,
où, exceptionnellement ici, L(n, x) désigne le temps local de la marche aléatoire S au site x et au temps n, et non pas le temps local de la marche aléatoire en milieu aléatoire.

Présentation du problème et résultat.

La deuxième section de ce chapitre concerne une conjecture de Révész ([116], page 353) pour la marche de Sinai en paysage aléatoire. Des problèmes combinant environnement aléatoire et paysage aléatoire ont déjà été étudiés pour des modèles plus généraux. Par exemple, remplaçant Z par un groupe dénombrable, Lyons et Schramm [START_REF] Lyons | Stationary measures for random walks in a random environment with random scenery[END_REF] obtiennent, sous certaines conditions, l'existence d'une mesure stationnaire du point de vue de la particule, pour la marche aléatoire en environnement aléatoire et paysage aléatoire. Quant à Häggström [START_REF] Häggström | Infinite clusters in dependent automorphism invariant percolation on trees[END_REF], puis Häggström et Peres [START_REF] Häggström | Monotonicity of uniqueness for percolation on Cayley graphs : all infinite clusters are born simultaneously[END_REF], ils utilisent ce modèle pour traiter des problèmes de percolation. Voyant la percolation comme un paysage aléatoire, ils considèrent l'environnement aléatoire déterminé par ce paysage et construisent la marche aléatoire en milieu aléatoire associée, qu'ils étudient afin d'obtenir des informations sur l'environnement, i.e. l'amas de percolation.

Pour introduire le modèle de marche de Sinai en paysage aléatoire, nous considérons d'abord la marche de Sinai (X n , n ≥ 0) sous les hypothèses (1.1)-(1.3) et rappelons les notations P ω et P associées respectivement à la loi quenched et à la loi annealed. Comme dans la Sous-Section 2.1, on considère une famille de variables aléatoires i.i.d. pour définir le paysage aléatoire, noté ξ = (ξ x , x ∈ Z). On suppose, de plus, que ξ est indépendant du couple (ω, (X n ) n≥0 ). On note alors (Z n , n ≥ 0) la marche de Sinai en paysage aléatoire définie par

Z n := n i=0 ξ(X i ), n ≥ 0.
Comme précédemment, remarquons que Z n peut être réécrit en terme du temps local de la marche de Sinai

Z n = x∈Z ξ(x) L(n, x), n ≥ 0.
Dans un certain sens, on dissocie ainsi les deux sources d'aléa liées à la marche de Sinai et au paysage aléatoire. On s'intéresse ici au comportement de la limite supérieure de (Z n /n, n ≥ 0) dans le cas où le support de la loi de ξ 0 est borné supérieurement, i.e. a := ess sup ξ 0 < ∞. Rappelons ici la propriété de concentration d'ordre β démontrée par Andreoletti [START_REF] Andreoletti | Almost sure estimates for the concentration neighborhood of Sinai's walk[END_REF] : il existe (β) > 0, tel que lim sup

n→+∞ sup x∈Z L(n, [x -(β), x + (β)]) n ≥ β, P-p.s.
Le cas où β est très proche de 1 associé au caractère "i.i.d." du paysage aléatoire nous permet de formuler la conjecture de Révész ([116], page 353).

Question 5. L'hypothèse a = ess sup ξ 0 < ∞ implique-t-elle que, P ⊗ Q-presque sûrement, lim sup n→+∞ Z n n = a ?
Il s'avère que la conjecture n'est vérifiée que si l'on fait une hypothèse supplémentaire. En effet, une étude fine de la compétition entre propriété de concentration pour la marche de Sinai et records négatifs pour le paysage aléatoire nous permet d'obtenir le théorème suivant, qui donne une solution au problème en fonction du comportement asymptotique de la queue de distribution de ξ - 0 := max{-ξ 0 , 0}.

Théorème 6 ([A2]). Supposons (1.1)-(1.3) et a := ess sup ξ 0 < ∞. (i) Si Q(ξ - 0 > λ) ≤ 1 (log λ) 2+ε
, pour un certain ε > 0 et tout λ assez grand, alors

P ⊗ Q lim sup n→+∞ Z n n = a = 1. (ii) Si Q(ξ - 0 > λ) ≥ 1 (log λ) 2-ε
, pour un certain ε > 0 et tout λ assez grand, alors

P ⊗ Q lim n→+∞ Z n n = -∞ = 1.
Remarque 7. En fait, il est possible de donner plus de précision dans le cas (ii). En effet, on peut montrer que, si 

Q(ξ - 0 > λ) ≥ 1 (log λ) α ,
(s) = 1, avec k(s) := lim n→+∞ E[ A 1 . . . A n s ] 1/n .
En dimension 1, Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] se passe de l'hypothèse de positivité et simplifie la preuve de Kesten. En outre, il obtient une formule pour la constante implicite C K de Kesten dans le cas particulier où A i est positif et κ entier. En 1991, Chamayou et Letac [START_REF] Chamayou | Explicit stationary distributions for compositions of random functions and products of random matrices[END_REF] montrent qu'en dimension d = 1, si A i a même loi que (1 -X i )/X i , où X i suit une loi Beta sur (0, 1), alors la loi de la série elle-même peut être calculée de telle sorte que la constante C K est explicite. On peut alors se poser la question suivante. Comment peut-on évaluer la constante C K ?

Dans ce travail, nous considérons le cas d = 1 et supposons que ρ i = A i est une famille de variables aléatoires i.i.d., B i = 1 et qu'il existe κ > 0 tel que E[ρ κ 1 ] = 1. On suppose, de plus, une condition d'intégrabilité et que la loi de log ρ i , qui a une moyenne négative sous les hypothèses précédentes, est non-arithmétique. On s'intéresse alors à la série

R := 1 + k≥1 ρ 1 • • • ρ k .
Ces hypothèses impliquent que la queue de distribution de la série de renouvellement est équivalente à C K t -κ , quand t tend vers l'infini. Notre but ici est de donner une représentation probabiliste de la constante C K .

En outre, ce travail est relié à l'étude de marches aléatoires en milieu aléatoire unidimensionnelles. Rappelons que Kesten, Kozlov et Spitzer [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] (voir le Théorème 2 dans ce manuscrit) montrent, en utilisant le résultat de Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF], que si la marche aléatoire en milieu aléatoire transiente est de vitesse nulle, alors son comportement dépend d'un indice κ ≤ 1 : la marche aléatoire en milieu aléatoire X n renormalisée par n Soyons plus précis et considérons une famille de variables aléatoires positives i.i.d. (ρ i ) i∈Z de loi Q = µ ⊗Z . On associe à la suite (ρ i ) i∈Z le potentiel (V k ) k∈Z (similaire à celui défini en (1.4)) donné par (3.1)

V n :=        n k=1 log ρ k , si n ≥ 1, 0, si n = 0, -0 k=n+1 log ρ k , si n ≤ -1.
Notons ρ une variable aléatoire de loi µ. On suppose alors que la loi µ vérifie

(a) il existe κ > 0 pour lequel E µ [ρ κ ] = 1 et E µ [ρ κ log + ρ] < ∞, (b) la loi de log ρ est non-arithmétique.
Alors la loi µ est telle que log ρ satisfait E µ [log ρ] < 0, ce qui implique que, Q-p.s., lim n→+∞ V n /n = log ρ dµ < 0. On appelle S le maximum absolu de (V k ) k≥0 , défini par S := max{V k , k ≥ 0} et on appelle hauteur de la première excursion positive du potentiel la quantité

H := max{V k , 0 ≤ k ≤ T R -}, où T R -est le premier temps d'atteinte strictement positif de R -, défini par T R -:= inf{k > 0 : V k ≤ 0}. On pose également T S := inf{k ≥ 0 : V k = S} et T H := inf{k ≥ 0 : V k = H}. On a clairement, H ≤ S < ∞ et T H ≤ T S < ∞, Q-p.s.
Des résultats classiques de théorie des fluctuations [START_REF] Feller | An introduction to probability theory and its applications[END_REF] donnent le comportement de la queue de distribution de S :

P Q (e S ≥ t) ∼ C F t -κ , t → +∞, où C F := 1 -E Q [e κV (T R -) ] κ E µ [ρ κ log ρ] E Q [T R -]
.

Le comportement de la queue de distribution de H est obtenu par Iglehart [START_REF] Iglehart | Extreme values in the GI/G/1 queue[END_REF] :

P Q (e H ≥ t) ∼ C I t -κ , t → +∞, (3.2) où C I := (1 -E Q [e κV (T R -) ]) 2 κ E µ [ρ κ log ρ] E Q [T R -] = (1 -E Q [e κV (T R -) ]) C F .
En outre, on remarque que la variable aléatoire R, qui nous intéresse, peut être réécrite R = n≥0 e Vn et satisfait l'équation de renouvellement

R (loi) = 1 + ρR,
où ρ est une variable aléatoire de loi µ, indépendante de R. Dans [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF], Kesten montre (son résultat est plus général et concerne le cas multi-dimensionnel) qu'il existe une constante positive C K telle que

(3.3) P Q (R ≥ t) ∼ C K t -κ , t → +∞.
Rappelons que le but de ce chapitre est d'obtenir une expression de cette constante en terme de l'espérance d'une variable aléatoire simple. A cet effet, on a besoin d'introduire une certaine transformée de Girsanov de Q. Grâce à l'hypothèse (a), on peut introduire la mesure de probabilité μ := ρ κ µ ainsi que Q := μ⊗Z . On définit alors M par

M := k<0 e -V k + k≥0 e -V k , où (V k ) k<0 est distribué sous Q( • | V k ≥ 0, ∀k < 0) et indépendant de (V k ) k≥0 distribué sous Q( • | V k > 0, ∀k > 0)
. On a alors le résultat suivant qui donne notamment une expression probabiliste de C K en fonction de E[M κ ] < +∞.

Théorème 8 ([A3]). (i) Sous les hypothèses (a)-(b), on a P

Q (R ≥ t) ∼ C K t -κ , lorsque t → +∞, avec C K = C F E[M κ ]. (ii) Sous les hypothèses (a)-(b), on a P Q (R ≥ t ; H = S) ∼ C KI t -κ , lorsque t → +∞, avec C KI = C I E[M κ ].

Idée de la preuve

Mentionnons que la première idée est de prouver la Partie (ii) du Théorème 8 pour en déduire la Partie (i) assez facilement. On ne s'intéressera donc qu'à l'idée de la preuve de la Partie (ii).

On remarque d'abord que

P Q (R ≥ t | H = S) = P Q (R ≥ t | I), où l'événement I est défini par {H = S} ∩ {V k ≥ 0 , ∀k ≤ 0}, voir la Figure 1. x V x 0 H = S T H T R - Figure 1. I := {H = S} ∩ {V k ≥ 0 , ∀k ≤ 0}.
Puis, sous P Q ( • | I), une propriété de symétrie permet de montrer que R = M 2 e S a même loi que M 1 e S , avec M 2 := k≥0 e V k -S et M 1 := T S k=-∞ e -V k , qui sont représentés sur la Figure 2. Il s'agit alors de montrer un résultat d'indépendance asymptotique entre M 1 et e H . Pour cela on utilise des arguments délicats de couplage pour des processus conditionnés qui ne fonctionnent que pour H grand. Il faut donc d'abord montrer que R grand implique H grand, puis obtenir une expression explicite pour la loi de (V 0 , . . . , V T H ), qui s'avère être la loi de V sous P Q( • | V k > 0, ∀k > 0) stoppé en un certain temps d'arrêt.

Finalement, montrer que M 1 est proche de M en loi nous permet de voir que P Q (R ≥ t | I) est proche de P Q (M e H ≥ t | I), avec M et e H indépendants. On conclut grâce à la connaissance de la queue de distribution de e H (voir l'Equation (3.2)) et en montrant que M a suffisamment de moments. 

x V x 0 T S H = S M 2 := k≥0 e V k -S M 1 := T S k=-∞ e -V k

Chapitre 4

Marches aléatoires en milieu aléatoire transientes sur Z [A4, A5, A6, A7]

Introduction

Dans la première section de ce chapitre, nous commençons par donner une nouvelle démonstration du théorème obtenu par Kesten, Kozlov et Spitzer [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] dans le cas sousbalistique. En utilisant le potentiel associé à l'environnment ω, nous obtenons une expression du paramètre de la loi stable limite. En outre, cette expression est explicite dans le cas d'environnements de Dirichlet.

La preuve présente une approche radicalement différente de celle utilisée dans [START_REF] Kesten | A limit law for random walk in a random environment[END_REF]. Alors que les preuves de [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] sont basées sur une représentation de la trajectoire de la marche aléatoire en termes de processus de branchement en milieu aléatoire (avec immigration), notre approche repose sur l'interprétation faite par Sinai d'une particule dans un potentiel aléatoire. Cependant, dans le cas récurrent, le potentiel concerné correspond à une marche aléatoire récurrente et Sinai introduit une notion de vallée qui n'a plus de sens dans notre contexte, où le potentiel est une marche aléatoire (disons) négativement biaisée. On introduit alors une notion de vallée différente, qui est étroitement liée aux excursions de cette marche aléatoire au dessus de son minimum passé. Par ailleurs, Iglehart [START_REF] Iglehart | Extreme values in the GI/G/1 queue[END_REF] donne un équivalent de la queue de distribution de la hauteur de ces excursions. Dans un premier temps, nous prouvons que l'étude du temps d'atteinte du niveau n peut être réduite à celle du temps mis par la marche aléatoire en milieu aléatoire pour gravir les hautes excursions du potentiel au dessus de son minimum passé entre 0 et n. Comme ces hautes excursions sont bien séparées en espace, on peut montrer qu'elles admettent asymptotiquement une propriété "i.i.d." Du coup, le problème peut être réduit à l'étude de la queue de distribution du temps mis par la marche aléatoire pour gravir une telle excursion.

Il s'avère que cette queue de distribution fait apparaître l'espérance d'une fonctionnelle d'un certain méandre associé à la marche aléatoire qui définit le potentiel. En outre, l'espérance de cette fonctionnelle est, elle-même, reliée à la constante du théorème de renouvellement de Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF], étudiée dans le Chapitre 3. Enfin, dans le cas où les probabilités de transition suivent une loi Beta, un résultat de Chamayou et Letac [START_REF] Chamayou | Explicit stationary distributions for compositions of random functions and products of random matrices[END_REF] donne une expression explicite de cette constante, qui nous permet d'obtenir une formule explicite pour le paramètre de la loi stable limite. L'introduction des vallées et l'étude de leurs temps d'occupation, faites dans la Section 2, nous permet dans la Section 3 d'obtenir un résultat de vieillissement exprimé en fonction de la loi de l'Arcsinus généralisée ainsi que, dans le cadre quenched, une estimation précise de la loi de la marche aléatoire en milieu aléatoire au temps t.

Dans la Section 4, nous considérons les marches aléatoires en milieu aléatoire dans les cas sous-balistiques et balistiques. Pour un ensemble d'environnements dont la probabilité converge vers 1 quand t tend vers l'infini, nous décrivons les fluctuations du temps d'atteinte d'un niveau n, autour de sa moyenne, en termes d'une fonction explicite de l'environnement. De plus leur loi limite est décrite en utilisant un processus ponctuel de Poisson dont l'intensité est calculée.

Une conséquence importante de cette série de travaux est qu'ils fournissent des méthodes qui ont pu être utilisées ultérieurement pour analyser des marches aléatoires en milieu aléatoire sur des graphes tels que les arbres ou Z d avec d ≥ 2 ; nous faisons référence à Ben Arous et Fribergh [START_REF] Ben Arous | Biased random walks on random graphs[END_REF] pour de plus amples détails.

Lois limites pour les marches aléatoires en milieu aléatoire transientes de vitesse nulle [A4]

2.1. Résultats. Avant d'énoncer les principaux résultats de ce chapitre, nous rappelons que le temps d'atteinte τ (x) du site x pour la marche aléatoire (X n , n ≥ 0) a été défini en (1.6) par τ (x) := inf{n ≥ 1 : X n = x}, et que pour α ∈ (0, 1), on note S ca α une variable aléatoire stable complètement asymétrique d'indice α, ayant pour transformée de Laplace E[e -λS ca α ] = e -λ α , pour tout λ > 0.

Théorème 9 ([A4]

). Soit ω := (ω i , i ∈ Z) une famille de variables aléatoires indépendantes et identiquement distribuées telle que 

(a) il existe 0 < κ < 1 pour lequel E[ρ κ 0 ] = 1 et E ρ κ 0 log + ρ 0 < ∞, (b) la loi de log ρ 0 est non-arithmétique. Alors on a, quand n → +∞, τ (n) n 1/κ (loi) -→ 2 πκ 2 sin(πκ) C 2 K E[ρ κ 0 log ρ 0 ] 1 κ S ca κ , X n n κ (loi) -→ sin(πκ) 2 κ πκ 2 C 2 K E[ρ κ 0 log ρ 0 ] 1 S ca κ κ , où C K désigne
( dx) = 1 B(α,β) x α-1 (1 -x) β-1 1 [0,1] (x) dx, où α, β > 0 et B(α, β) := 1 0 x α-1 (1 - x) β-1 1 [0,1] (x)
dx, le Théorème 9 peut être nettement plus explicite. Les hypothèses du Théorème 9 correspondent aux cas où 0 < α -β < 1 et un rapide calcul montre que κ = α -β. On obtient alors le résultat suivant.

Corollaire 10 ([A4]). Dans le cas d'environnements ω tels que

ω 1 suit une loi Beta(α, β) avec 0 < α -β < 1, le Théorème 9 s'applique avec κ = α -β. Alors on a, quand n → +∞, τ (n) n 1/κ (loi) -→ 2 π sin(π(α -β)) ψ(α) -ψ(β) B(α, β) 2 1 α-β S ca κ , X n n κ (loi) -→ sin(π(α -β)) 2 α-β π B(α, β) 2 ψ(α) -ψ(β) 1 S ca κ κ , où ψ désigne la fonction Digamma définie par ψ(z) := (log Γ) (z) = Γ (z) Γ(z) .
Si C K est inconnue, il est possible de donner une représentation probabiliste du paramètre caractérisant la loi stable limite. En réalité, on montre d'abord le Théorème 11 qui suit, puis on en déduit le Théorème 9. Avant d'énoncer le Théorème 11, on introduit le premier record négatif du potentiel défini par

e 1 := inf{k > 0 : V (k) ≤ 0}.
Remarquons que des résultats classiques de théorie des fluctuations (voir [START_REF] Feller | An introduction to probability theory and its applications[END_REF], page 396), garantissent que sous les hypothèses (a)-(b) du Théorème 9, on a (4.1)

E[e 1 ] < ∞.

On introduit, en plus, la loi classique P associée au potentiel (V (x), x ∈ Z) sous P vu comme une marche aléatoire. A cet effet, si µ désigne la loi de log ρ 0 , alors grâce à l'hypothèse (a) du Théorème 9 on peut définir la loi μ qui satisfait dμ = ρ κ 0 dµ ainsi que P = μ⊗Z qui correspond à la loi d'une suite de variables aléatoires i.i.d. de loi μ. La définition de κ implique que log ρ μ( dρ) > 0.

Théorème 11 ([A4]

). Soit ω := (ω i , i ∈ Z) une famille de variables aléatoires indépendantes et identiquement distribuées satisfaisant les hypothèses (a)-(b) du Théorème 9. Alors on a, quand n → +∞,

τ (n) n 1/κ (loi) -→ 2 π sin(πκ) E[M κ ] 2 E[e 1 ] 2 (1 -E[e κV (e 1 ) ]) 2 E[ρ κ 0 log ρ 0 ] 1 κ S ca κ , X n n κ (loi) -→ sin(πκ) 2 κ π E[e 1 ] 2 E[M κ ] 2 E[ρ κ 0 log ρ 0 ] (1 -E[e κV (e 1 ) ]) 2 1 S ca κ κ .
où M a la loi de l'exponentielle d'un méandre définie par

M (loi) = k<0 e -V k + k≥0 e -V k , avec (V k ) k<0 distribué sous P ( • | V k ≥ 0, ∀k < 0) et indépendant de (V k ) k≥0 distribué sous P ( • | V k > 0, ∀k > 0).
Remarque 12. Lorsque C K n'est pas explicite, il est plus intéressant d'utiliser l'expression du paramètre de la loi stable limite en termes de E[M κ ], qui peut facilement être estimée numériquement.

Idée de la preuve.

Le potentiel est divisé en excursions (au-dessus de son minimum passé), grâce à ses weak descending ladder epochs (e p ) p≥0 définis par e 0 := 0 et

e p+1 := inf{x > e p : V (x) ≤ V (e p )}, p ≥ 0.
Il est évident que les (e i -e i-1 ) i≥1 forme une famille de variables aléatoires i.i.d. et rappelons que, sous (a), on a E[e 1 ] < ∞, voir l'Equation (4.1).

On considère alors le potentiel jusque e n et on construit des vallées profondes autour des excursions dont la hauteur dépasse une certaine hauteur critique h c n . On notera N n le nombre aléatoire de telles vallées profondes, voir la Figure 1.

x V (x) b 1 c 1 b 2 c 2 b Nn c Nn 0 e n Figure 1. Potentiel et vallées.
On introduit maintenant le temps d'inter-arrivée entre x et y :

τ (x, y) := inf{t ≥ 0 : X τ (x)+t = y}, ∀ x, y ∈ Z.
Comme la MAMA est transiente vers +∞ et ne revient pas "trop" en arrière, on montre que le temps passé entre les vallées profondes est négligeable (pour cela il ne faut pas choisir h c n trop grand) pour obtenir que τ (e n ) est bien approximé par τ (b

1 , c 1 ) + τ (b 2 , c 2 ) + • • • + τ (b Nn , c Nn ). Ensuite en choisissant h c
n assez grand, on obtient que N n n'est pas trop grand non plus et que les vallées profondes sont suffisamment espacées pour que leurs temps d'occupation soient quasiment i.i.d., dont on déduit que

E[exp{-λ n 1/κ τ (e n )}] est proche de E[E ω [exp{-λ n 1/κ τ (b 1 , c 1 )}] Nn ].
Puis en décomposant le temps d'occupation en excursions (pour la MAMA cette fois-ci) du fond de la vallée au fond de la vallée, on peut voir que 

E ω [exp{-λ n 1/κ τ (b 1 , c 1 )}] est proche de (1 + 2λ n 1/κ e H M 1 M 2 ) -1 , où M 1 et M 2 ont
E 1 1 + 2λ n 1/κ e H M 1 M 2 Nn = exp -2 κ πκ sin(πκ) E[M κ ] 2 C I λ κ + o n (1). x V (x) 0 T S H = S M 2 := k≥0 e V (k)-S M 1 := T S k=-∞ e -V (k) Figure 2. M1 et M2.

Vieillissement et localisation "quenched" pour les marches aléatoires en milieu aléatoire transientes de vitesse nulle [A5]

3.1. Introduction. Rappelons que, dans le cas des MAMA transientes de vitesse nulle, la preuve de la loi limite obtenue par Kesten, Kozlov et Spitzer [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] n'utilise pas le potentiel. Du coup, un analogue du résultat de localisation de Sinai dans le cadre quenched manquait. Comme nous allons le voir, la réponse à cette question est plus compliquée que dans le cas récurrent mais toujours très explicite.

Par ailleurs, les vallées introduites pour les MAMA transientes sous-balistiques dans [A4] ou la Section 2 de ce chapitre sont reliées aux excursions du potentiel au-dessus de son minimum passé. Alors l'observation-clef est, qu'avec probabilité 1, la marche ou particule est localisée au temps t au fond d'une vallée de profondeur et largeur d'ordre log t. Alors comme la marche passe un temps aléatoire d'ordre t dans une vallée de profondeur log t, il n'est pas surprenant d'observer un phénomème de vieillissement.

Ce qui est généralement appelé vieillissement est un phénomène physique de dynamique hors-équilibre observé pour les systèmes désordonnés tels que les verres de spin à basse température. Il est défini, pour un système donné, comme l'existence d'une limite pour une fonction de corrélation associée à deux temps (habituellement notés t ω et t ω + t) lorsque ces deux temps divergent en gardant un rapport fixé. Alors la limite doit être une fonction non-triviale de ce rapport. Ce phénomène a été largement étudié dans la littérature physique, voir [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF] et ses références.

Plus précisément, dans le cadre des MAMA transientes sous-balistiques, le Théorème 13 explicite la probabilité que, pour tout rapport donné h > 1, la particule reste confinée dans la même vallée pendant l'intervalle de temps [t, th]. Cette probabilité est exprimée en fonction de la loi de l'Arcsinus généralisée, ce qui confirme son statut d'universalité établi par Ben Arous et Černý dans leur étude des modèles de trappes [START_REF] Ben Arous | Dynamics of trap models[END_REF]. Mentionnons finalement que le cas récurrent, qui révèle également un phénomène de vieillissement, a été traité par Dembo, Guionnet et Zeitouni [START_REF] Dembo | Aging properties of Sinai's model of random walk in random environment[END_REF].

Le deuxième aspect de ce travail concerne une propriété de localisation pour la marche et peut être considérée comme l'analogue, dans le cas transient, du résultat de localisation de Sinai. Mais contrairement au cas récurrent, la marche aléatoire n'est pas localisée au fond d'une seule vallée. Néanmoins, si on se donne un seuil α ∈ (0, 1), il est possible de dire qu'asymptotiquement, au temps t, avec une probabilité sur l'environnement convergeant vers 1, la marche aléatoire reste localisée, avec une probabilité plus grande que α aux fonds d'un nombre fini de vallées ayant une profondeur d'ordre log t. Ce nombre dépend de t et de l'environnement mais ne diverge pas avec t. Enfin, grâce au Théorème 14 et au Corollaire 15, nous estimons précisément la probabilité pour que la marche soit au temps t dans chacune de ces vallées.

Résultats.

Le premier résultat de cette section est le théorème suivant qui établit un phénomène de vieillissement pour les MAMA transientes de vitesse nulle.

Théorème 13 ([A5]). Soit ω := (ω i , i ∈ Z) une famille de variables aléatoires i.i.d. telle que (a) il existe 0 < κ < 1 pour lequel E[ρ κ 0 ] = 1 et E ρ κ 0 log + ρ 0 < ∞, (b) la loi de log ρ 0 est non-lattice. Alors, pour tout h > 1 et tout η > 0, on a lim t→+∞ P(|X th -X t | ≤ η log t) = sin(κπ) π 1/h 0 y κ-1 (1 -y) -κ dy.
De plus, nous introduisons l'indice de la dernière vallée profonde visitée au temps t définie par

t := sup{n ≥ 0 : τ (b n ) ≤ t}.
Avant d'établir le résultat de localisation quenched, rappelons que X peut être définie de manière canonique sur l'espace de probabilité Z N . On introduit alors e = (e i , i ≥ 1) une suite de variables aléatoires exponentielles i.i.d. de paramètre 1 et indépendante de X. On définit e sur un espace de probabilité Ξ et on note P (e) sa loi. Afin d'exprimer l'indépendance entre X et e, on considère pour chaque environnement ω, l'espace de probabilité (Z N × Ξ, P ω ⊗ P (e) ) sur lequel on définit (X, e). Enfin, on définit le poids de la k-ième vallée par t,ω := sup i ≥ 0 :

W k (ω) := 2 a k ≤m≤n b k ≤n≤d k e Vω(n)-Vω(m) , (les a k , b k et d k sont
i k=1 W k (ω) e k ≤ t , ∀ t ≥ 0.
On peut maintenant établir le deuxième résultat de cette sous-section.

Théorème 14 ([A5]

). Sous les hypothèses (a)-(b) du Théorème 13, on a (i) pour tout η > 0,

lim t→+∞ P(|X t -b t | ≤ η log t) = 1, (ii) pour tout δ > 0, lim t→+∞ P d T V ( t , (e) 
t,ω + 1) > δ = 0, où d T V est la distance en variation totale.

Remarquons que l'on peut aisément déduire de ce théorème (en assemblant les Parties (i) et (ii)) le résultat de localisation quenched (en probabilité) suivant. Nous précisons ici que ce résultat est établi en probabilité car on ne peut pas espérer un énoncé presque-sûr, voir [START_REF] Peterson | Quenched limits for transient, zero speed one-dimensional random walk in random environment[END_REF].

Corollaire 15 ([A5]

). Sous les hypothèses (a)-(b) du Théorème 13, on a, pour tous δ, η > 0,

P i≥1 P ω (|X t -b i | ≤ η log t) -P (e) i-1 k=1 W k (ω) e k ≤ t < i k=1 W k (ω) e k > δ -→ 0, quand t tend vers +∞.
Le contenu de ce corollaire est double. Il nous dit premièrement, qu'avec probabilité convergeant vers 1, le processus au temps t est concentré au voisinage du fond d'une vallée de profondeur d'ordre log t. Deuxièmement, il détermine également, pour chacune de ces vallées, la probabilité de piéger la particule au temps t. Cette probabilité est exprimée en fonction d'un processus de renouvellement de Poisson pondéré par les poids de ces vallées. Ce résultat a enfin un intérêt indépendant : il permet d'obtenir des informations sur l'environnement en se basant sur un échantillon de trajectoires de la particule. Nous renvoyons à [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF] pour un exemple dans un article traîtant de la reconstruction d'ADN.

Limites "quenched" pour les fluctuations des marches aléatoires en milieu aléatoire transientes [A7]

4.1. Introduction. Une remarque importante est que les résultats du Chapitre 1 ne concernent que le comportement annealed, sauf quand il s'agit d'énoncés presque-sûrs. Cependant pour les applications, ce qu'on appelle milieu (ou environnement) est fixé pendant l'expérience (par exemple une séquence d'ADN) et il est naturel de vouloir considérer le comportement quenched de la marche. Les premiers résultats dans cette direction [START_REF] Peterson | Quenched limits for transient, zero speed one-dimensional random walk in random environment[END_REF]111] sont malheureusement négatifs, montrant que, pour presque tout environnement, la loi des fluctuations de la marche a plusieurs points d'accumulation. Cela étant, nous avons vu dans la Section 3 de ce chapitre que, pour les MAMA transientes de vitesse nulle, il est possible d'obtenir un résultat de localisation quenched en changeant légèrement de point de vue. Dans le même esprit, on s'intéresse ici aux fluctuations quenched du temps d'atteinte en exploitant la notion de vallées introduite en Section 2. Plus précisément, nous montrons que les fluctuations du temps d'atteinte du site x autour de sa moyenne proviennent essentiellement du temps passé à visiter un petit nombre de vallées profondes. On rappelle alors que comme ces vallées sont bien séparées, leurs temps d'occupation sont presque indépendants. De plus, nous prouvons que les lois de ces temps d'occupation sont bien approximées par des variables aléatoires exponentielles dont l'espérance est fonction de l'environnement et s'avère être reliée à la série de renouvellement de Kesten vue au Chapitre 3. Finalement, notre résultat principal établit le fait que la loi de la différence entre le temps d'atteinte et sa moyenne est proche de la loi d'une somme de variables aléatoires exponentielles, recentrées et indépendantes, qui sont pondérées par des fonctions de l'environnement à queue lourde ; ce qui nous permet de décrire leur loi limite en fonction d'un processus ponctuel de Poisson dont l'intensité est explicitement calculée.

Notations et résultats.

On rappelle que τ (x) désigne le temps d'atteinte du site x pour la marche (X n , n ≥ 0) et τ (x, y) le temps d'inter-arrivée entre x et y. De plus, on rappelle que le potentiel est divisé en excursions (au-dessus de son minimum passé), grâce à ses weak descending ladder epochs (e p ) p≥0 . Le nombre d'excursions avant le site x sera noté n(x) := max{p : e p ≤ x}. Finalement, on rappelle la définition de la métrique de Wasserstein W 1 entre deux mesures de probabilité µ, ν sur R :

W 1 (µ, ν) := inf (X,Y ): X∼µ, Y ∼ν E[|X -Y |] ,
où l'infimum est pris sur tous les couples (X, Y ) de lois marginales µ et ν. On notera W 1 ω (X, Y ) la distance W 1 entre les lois des variables aléatoires X et Y conditionnellement à ω, i.e. entre les lois quenched de X et Y .

Soulignons que les résultats, qui suivent et décrivent la loi quenched de τ (x) en fonction de l'environnement, peuvent être énoncés de différentes façons selon l'application que l'on a à l'esprit, pratique ou théorique. On présente ici deux variantes et on précise que ces résultats sont valides pour tout κ ∈ (0, 2) (ce qui inclut le cas sous-balistique, même si une étude plus fine a été menée pour κ ∈ (0, 1) dans [A5] ou en Section 3 de ce chapitre).

Théorème 16 ([A7]

). Soit ω := (ω i , i ∈ Z) une famille de variables aléatoires i.i.d. telle que 

(a) il existe κ ∈ (0, 2) pour lequel E[ρ κ 0 ] = 1 et E ρ κ 0 log + ρ 0 < ∞, (b) la loi de log ρ 0 est non-lattice. Alors, on a W 1 ω   τ (x) -E ω [τ (x)] x 1/κ , 1 x 1/κ n(x)-1 p=0 E ω [τ (e p , e p+1 )] ēp   (P -probabilité) -→ x→+∞ 0, avec ēp := e p -
P ( Z p > t) ∼ 2 κ C U t -κ , t → +∞, où C U := E[ρ κ 0 log ρ 0 ] E[e 1 ] (C K ) 2 et P   W 1 (ω, Z)   τ (x) -E ω [τ (x)] x 1/κ , 1 x 1/κ x/E[e 1 ] p=1 Z p ēp   > δ   < ε,
avec ēp := e p -1, où (e p ) p sont des variables aléatoires exponentielles i.i.d. de paramètre

1 et indépendantes de Z, et W 1 (ω, Z) (X, Y ) est la distance W 1 entre la loi de X étant donné ω et la loi de Y étant donné Z.
Grâce à un résultat classique de probabilité (cf. [START_REF] Resnick | Extreme values, regular variation, and point processes, Applied Probability[END_REF], page 138), l'ensemble donné par {n -1/κ Z p | 1 ≤ p ≤ n} converge vers un processus ponctuel de Poisson d'intensité 2 κ C U κ x -(κ+1) dx. Il est donc naturel d'envisager le corollaire suivant.

Corollaire 18 ([A7]). Sous les hypothèses (a) et (b) du Théorème 16, on a

L τ (x) -E ω [τ (x)] x 1/κ ω (W 1 ) -→ x→+∞ L   ∞ p=1 ξ p ēp (ξ p ) p≥1  
en loi, où la convergence est la convergence en loi sur l'espace des mesures de probabilité sur R admettant un moment d'ordre 1 muni de la métrique W 1 , et (ξ p ) p≥1 un processus ponctuel de Poisson d'intensité λ κ u -(κ+1) du avec 

λ := 2 κ C U E[e 1 ] = 2 κ κ E[ρ κ 0 log ρ 0 ] C 2 K et ēp := e p -
= 1, λ = 2 E[ρ 0 log ρ 0 ] , et dans le cas où ω 0 suit une loi Beta(α, β), avec 0 < α -β < 2, λ = 2 α-β Ψ(α) -Ψ(β) (α -β)B(α -β, β) 2 , où Ψ est la fonction Digamma : Ψ(z) := (log Γ) (z) = Γ (z) Γ(z) et B(α, β) := 1 0 x α-1 (1 - x) β-1 dx = Γ(α)Γ(β)
Γ(α+β) .

Un modèle-jouet relié : une version dirigée du modèle de trappes de Bouchaud [A6]

5.1. Introduction. Rappelons que ce qui est généralement appelé vieillissement est un phénomène physique de dynamique hors-équilibre observé pour les systèmes désordonnés tels que les verres de spin à basse température. Il est défini, pour un système donné, comme l'existence d'une limite pour une fonction de corrélation associée à deux temps (habituellement notés t ω et t ω + t) lorsque ces deux temps divergent en gardant un rapport fixé. Alors la limite doit être une fonction non-triviale de ce rapport. Ce phénomène a été largement étudié dans la littérature physique, voir [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF] et ses références.

Le modèle de trappes est un modèle de marche aléatoire qui a d'abord été proposé par Bouchaud et Dean [START_REF] Bouchaud | Weak ergodicity breaking and aging in disordered systems[END_REF][START_REF] Bouchaud | Aging on parisi's tree[END_REF] en tant que modèle-jouet pour étudier le phénomène de vieillissement. Au cours des deux dernières décennies, les mathématiciens se sont particulièrement intéressés au modèle de trappes et de nombreux résultats de vieillissement ont été obtenus. Le modèle de trappes sur Z est traité dans [START_REF] Fontes | Random walks with strongly inhomogeneous rates and singular diffusions : convergence, localization and aging in one dimension[END_REF] et [START_REF] Ben Arous | Bouchaud's model exhibits two different aging regimes in dimension one[END_REF], sur Z 2 dans [START_REF] Ben Arous | Aging in two-dimensional Bouchaud's model[END_REF], sur Z d (d ≥ 3) dans [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF] et sur l'hypercube dans [START_REF] Ben Arous | Glauber dynamics of the random energy model. I. Metastable motion on the extreme states[END_REF][START_REF] Ben Arous | Glauber dynamics of the random energy model. II. Aging below the critical temperature[END_REF]. Une approche générale permettant d'obtenir des résultats de vieillissement pour le modèle de trappes a ensuite été développée dans [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF]. Un fait surprenant est que ces résultats de vieillissement sont identiques pour Z d avec d ≥ 2, le graphe complet et le REM (le Random Energy Model de Derrida [START_REF] Derrida | Random-energy model : an exactly solvable model of disordered systems[END_REF]). Autrement dit, les résultats en champs moyen sont valides de la dimension infinie à la dimension 2.

Le modèle de trappes uni-dimensionnel possède des caractéristiques spécifiques qui le distinguent de tous les autres cas. La caractéristique la plus significative est qu'il est possible d'identifier sa limite d'échelle à une intéressante diffusion singulière en environnement aléatoire, voir [START_REF] Fontes | Random walks with strongly inhomogeneous rates and singular diffusions : convergence, localization and aging in one dimension[END_REF]. Ce processus diffère notamment de manière considérable de la limite d'échelle pour d ≥ 2, appelée fractional kinetics, i.e. le changement de temps d'un mouvement Brownien d-dimensionnel par l'inverse d'un subordinateur α-stable, voir [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF]. Il s'avère en fait que l'universalité du phénomène de vieillissement est lié à la question de transience dans la relaxation vers l'équilibre et pas nécessairement à des questions d'équilibre.

Ici nous identifions la limite d'échelle d'un modèle très simple appelé modèle de trappes dirigé uni-dimensionnel, introduit par Bouchaud [START_REF] Bouchaud | Weak ergodicity breaking and aging in disordered systems[END_REF], avec l'inverse d'un subordinateur αstable et montrons un résultat de vieillissement exprimé en fonction de la loi de l'arcsinus généralisée.

Il est important de mentionner que l'analyse de ce modèle-jouet est sans prétention d'un point de vue mathématique. Cependant, comme expliqué dans [START_REF] Ben Arous | Biased random walks on random graphs[END_REF], cette version dirigée du modèle de trappes de Bouchaud, initialement introduit pour comprendre la dynamique des verres de spin, s'avère être un outil central dans la compréhension de marches aléatoires en milieu aléatoire sur différents graphes tels que les arbres et Z d , avec d ≥ 2. Pour plus de détails, nous renvoyons à Ben Arous et Fribergh [START_REF] Ben Arous | Biased random walks on random graphs[END_REF], qui expliquent comment les marches aléatoires biaisées sur des arbres de Galton-Watson ou sur des clusters de percolation, par exemple, peuvent être reliées au modèle de trappes dirigé uni-dimensionnel.

Modèle et résultats.

Fixons 0 < ε ≤ 1/2. Le modèle de trappes dirigé est le processus de Markov à temps continu sur Z, aux plus proches voisins X = (X t ) t≥0 tel que X 0 = 0 et dont les taux de saut sont donnés par 

c(x, y) :=    1 2 + ε τ -1 x , si y = x + 1, 1 2 -ε τ -1 x , si y = x -
u α P(τ x ≥ u) = 1. (4.2)
En particulier, ceci implique que E[τ x ] = +∞. Mentionnons que τ est parfois appelé environnement aléatoire de trappes. Le processus de Markov X passe en x un temps aléatoire de loi exponentielle de moyenne τ x , ce après quoi il saute à droite avec probabilité p ε := ( 1 2 + ε) ou à gauche avec probabilité q ε := ( 1 2 -ε). On voit donc que X est une marche aléatoire sur Z à temps discret, biaisée et changée de temps. Plus précisément, cela nous amène à définir un processus horloge (clock process en anglais) et une marche aléatoire squelette (embedded random walk en anglais) associés au processus X de la manière suivante. 

Remarquons que (Y

n ) n≥0 satisfait P(Y n+1 = Y n + 1) = p ε = 1 -P(Y n+1 = Y n -1)
, pour tout n ≥ 0. On en déduit que (Y n ) n≥0 est transiente vers +∞ et que la loi forte des grands nombres implique que, P-presque-sûrement,

Y n n -→ v ε := 2ε > 0, n → +∞. (4.3)
Qui plus est, il découle de la définition de X que le processus horloge peut être réécrit

S(k) = k-1 i=0 τ Y i e i , k ≥ 1,
où (e i ) i≥0 est une suite de variables aléatoires i.i.d. et de loi exponentielle de moyenne 1.

Alors le processus (X t ) t≥0 satisfait

X t = Y S -1 (t) , ∀ t ∈ R + ,
où l'inverse continu à droite d'une fonction croissante est défini par φ -1 (t) := inf{u ≥ 0 : φ(u) > t}.

A présent, fixons T > 0 et notons D([0, T ]) l'espace des fonctions càdlàg de [0, T ] dans R. De plus, considérons X (N ) la suite d'éléments de D([0, T ]) définis par

X (N ) t := X tN N α , 0 ≤ t ≤ T.
Alors le résultat de limite d'échelle peut être énoncé de la façon suivante.

Théorème 20 ([A6]

). La loi du processus (X

(N ) t ; 0 ≤ t ≤ T ) converge vaguement, lorsque N tend vers +∞, vers la loi de (v # ε V -1 α (t); 0 ≤ t ≤ T ) sur D([0, T ]) muni de la topologie uniforme, où (V α (t); t ≥ 0) est un subordinateur α-stable satisfaisant E[e -λVα(t) ] = e -tλ α , et v # ε := sin(απ) απ v α ε = sin(απ) απ (2ε) α .
Remarque 21. Bien que ce résultat puisse être comparé avec la limite dans [START_REF] Ben Arous | Scaling limit for trap models on Z d[END_REF], nous n'obtenons pas le processus appelé fractional kinetics. Cette différence s'explique en rappelant que le "fractional kinetics" est un mouvement Brownien changé en temps par l'inverse d'un subordinateur α-stable indépendant, alors que dans le cas présenté ici la marche aléatoire squelette satisfait la loi des grands nombres avec vitesse strictement positive, voir (4.3).

Nous énonçons à présent le deuxième résultat de cette section, qui concerne le phénomène de vieillissement.

Théorème 22 ([A6]). Pour tout h > 1, on a lim t→+∞ P(X th = X t ) = sin(απ) π 1/h 0 y α-1 (1 -y) -α dy.

Deuxième partie

Modèles log-corrélés

Chapitre 5

Marches aléatoires branchantes tuées en zéro [A8]

Modèle et présentation du problème

On considère, dans ce chapitre, une marche aléatoire branchante (MAB), notée V , unidimensionnelle et à temps discret sur la droite réelle R. Au début, il y a une seule particule située à l'origine 0. Ses enfants, qui forment la première génération, sont positionnés selon un certain processus ponctuel L sur R. Les particules de cette première génération donnent indépendamment naissance à de nouvelles particules, qui sont positionnées (par rapport à leur position de naissance) selon un processus ponctuel de même loi que L ; elles forment la seconde génération. Et ainsi de suite... Pour tout n ≥ 1, les particules à la génération n produisent de nouvelles particules indépendamment les unes des autres et de tout le reste jusqu'à la n-ième génération.

Il est clair que les particules de la marche aléatoire branchante V forment un arbre de Galton-Watson, que nous noterons T . Appelons ∅ sa racine. Pour chaque particule u ∈ T , on note |u| sa génération (alors |∅| = 0) et {V (u), |u| = n} les positions des particules à la n-ième génération. On peut donc écrire L = |u|=1 δ {V (u)} . L'arbre T encode alors la généalogie de la MAB.

Il sera utile dans la suite de considérer, plus généralement, une marche aléatoire branchante V commençant en un point arbitraire x ∈ R (i.e. V (∅) = x), dont la loi sera notée P x et l'espérance correspondante E x . Pour alléger les notations, nous écrirons P ≡ P 0 et E ≡ E 0 . Nous noterons également ν := |u|=1 1 le nombre de particules à la première génération et ν(u) le nombre d'enfants de u ∈ T .

Supposons que E[ν] > 1, i.e. que l'arbre de Galton-Watson T est surcritique ; alors le système survit indéfiniment avec une probabilité strictement positive, i.e. P #T = +∞ > 0. On introduit ensuite la fonction génératrice logarithmique de la MAB :

ψ(t) := log E |u|=1 e tV (u) ∈ (-∞, +∞], t ∈ R.
Nous supposerons également que ψ est finie sur un intervalle ouvert contenant 0 et que suppL ∩ (0, ∞) = ∅ (cette dernière condition assure que V peut visiter (0, ∞) avec une probabilité strictement positive, sinon le problème, que nous allons considérer, est d'une toute autre nature). Supposons qu'il existe * > 0, tel que Rappelons (Kingman [94], Hammersley [START_REF] Hammersley | Postulates for subadditive processes[END_REF], Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype agedependent branching process[END_REF]) que, conditionnellement à {T = ∞},

lim n→+∞ 1 n max |u|=n V (u) = ψ ( * ), p.s.,
où * est définie par (5.1). Selon que ψ ( * ) = 0 ou ψ ( * ) < 0, nous parlerons de cas critique ou sous-critique. Conditionnellement à {T = ∞}, la particule la plus à droite de la MAB non-tuée en zéro a une vitesse négative dans le cas sous-critique, alors que, dans le cas critique, elle converge presque-sûrement vers -∞ à une échelle logarithmique (voir [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] et [START_REF] Addario-Berry | Minima in branching random walks[END_REF] pour un énoncé précis concernant le taux de convergence presque-sûre dans ce cas). Nous plaçons maintenant une barrière absorbante en zéro. Plus précisément, toute particule qui entre dans (-∞, 0) est enlevée et ne produit plus d'enfants. Donc à chaque génération n ≥ 0, seules les particules qui sont toujours restées positives jusqu'au temps n survivent. Appelons Z l'ensemble des particules vivantes de la MAB :

Z := u ∈ T : V (v) ≥ 0, ∀ v ∈ [∅, u] ,
où [∅, u] est le plus court chemin (dans T ) de u à la racine ∅. On s'intéresse alors à la population totale :

Z := #Z .
On a alors évidemment Z < +∞ presque-sûrement dans les deux cas, critique et souscritique. David Aldous [START_REF] Aldous | Power laws and killed branching random walks[END_REF] a proposé la conjecture suivante.

Conjecture 23 (D. Aldous [START_REF] Aldous | Power laws and killed branching random walks[END_REF]). (1) quand n → +∞.

P(Z > n) = n -b+o
On appelle "cas iid" le cas où L est de la forme L = ν i=1 δ {X i } avec (X i ) i≥1 une suite de variables aléatoires i.i.d à valeurs réelles et indépendantes de ν. Il existe plusieurs travaux antérieurs à celui présenté ici dans le cas critique et iid. Lorsque les (X i ) i≥1 sont des variables aléatoires de Bernoulli, Pemantle [START_REF] Pemantle | Critical killed branching process tail probabilities[END_REF] a obtenu un comportement asymptotique précis pour P(Z = n) lorsque n → +∞ ; un ingrédient clé de sa preuve est une structure récursive du système, héritée des variables aléatoires de Bernoulli. Pour des variables aléatoires (X i ) i≥1 générales, Addario-Berry et Broutin [START_REF] Addario-Berry | Total progeny in killed branching random walk[END_REF] ont confirmé la conjecture (i) d'Aldous. Ce résultat a ensuite été amélioré par Aïdékon [START_REF] Aïdékon | Tail asymptotics for the total progeny of the critical killed branching random walk[END_REF], qui a montré que pour un arbre régulier T (i.e. lorsque ν est déterministe et égal à un entier) et pour tout x ≥ 0 fixé,

c 1 R(x)e * x ≤ lim inf n→+∞ n(log n) 2 P x (Z > n) ≤ lim sup n→+∞ n(log n) 2 P x (Z > n) ≤ c 2 R(x)e * x ,
où c 2 > c 1 > 0 sont deux constantes et R(x) une certaine fonction de renouvellement. Dans le cas continu, le mouvement Brownien branchant, Maillard [START_REF] Maillard | The number of absorbed individuals in branching Brownian motion with a barrier[END_REF] a traité la question avec des outils analytiques, exploitant notamment le lien avec l'équation F-KPP.

Résultats

Dans le travail présenté ici, nous établissons le comportement exact de la queue de distribution de Z dans les cas critique et sous-critique, pour un processus ponctuel L général. Avant d'énoncer le résultat, nous remarquons que dans le cas sous-critique (i.e. lorsque ψ ( * ) < 0), il existe deux nombres réels -et + tels que 0 < -< * < + et ψ( -) = ψ( + ) = 0, (l'existence de + est une conséquence de l'hypothèse suppL ∩ (0, ∞) = ∅). Dans le cas critique, nous supposons que

(5.2) E ν 1+δ * < ∞, sup θ∈[-δ * , * +δ * ] ψ(θ) < ∞, pour un certain δ * > 0.
Dans le cas sous-critique, nous supposons que

(5.3) E   |u|=1 (1 + e -V (u) ) + - +δ *   < ∞, sup θ∈[-δ * , + +δ * ] ψ(θ) < ∞,
pour un certain δ * > 0. Dans les deux cas, nous supposons toujours qu'il n'existe pas de grille ("lattice" en anglais) qui supporte L presque-sûrement. Notre résultat sur la population totale est le suivant.

Théorème 24 (Queue de la population totale, [A8]). Supposons (5.1) et que

(5.4) E[ν α ] < ∞, pour un certain α > 2, dans le cas critique, α > 2 +
-, dans le cas sous-critique. (i) (Cas critique) Si ψ ( * ) = 0 et (5.2) est satisfait, alors il existe une constante c crit > 0 telle que, pour tout x ≥ 0,

P x Z > n ∼ c crit R(x) e * x 1 n(log n) 2 , n → +∞,
où R(x) est une certaine fonction de renouvellement bien définie.

(ii) (Cas sous-critique) Si ψ ( * ) < 0 et (5.3) est satisfait, alors il existe une constante c sub > 0 telle que, pour tout x ≥ 0,

P x Z > n ∼ c sub R(x) e + x n -+ -, n → +∞,
où R(x) est une certaine fonction de renouvellement bien définie.

Les valeurs des constantes c crit et c sub sont données dans le Lemme 28 ci-dessous. Faisons maintenant quelques remarques concernant les hypothèses (5.2) et (5.3).

Remarque 25 (Cas iid). Si L = ν i=1 δ {X i } avec (X i ) i≥1 une suite de variables aléatoires i.i.d. à valeurs réelles, indépendante de ν, alors (5.2) est satisfait si et seulement si, pour un certain δ > 0,

E[ν 1+δ ] < ∞ et sup θ∈[-δ, * +δ] E e θX 1 < ∞ alors que (5.3) est satisfait si et seulement si E[ν + - +δ ] < ∞ et sup θ∈[-δ, + +δ] E e θX 1 < ∞, pour un certain δ > 0.

Ingrédients de la preuve

Afin d'expliquer quelques ingrédients de la stratégie de la preuve du Théorème 24, nous introduisons certaines notations : pour tout particule u ∈ T et tout a ∈ R, on définit

τ + a (u) := inf{0 ≤ k ≤ |u| : V (u k ) > a}, τ - a (u) := inf{0 ≤ k ≤ |u| : V (u k ) < a}, avec la convention inf ∅ := ∞ et pour n ≥ 1 et tout |u| = n, on écrit {u 0 = ∅, u 1 , ..., u n } = [∅, u]
pour le plus court chemin de la racine ∅ à u (u k correspond alors à l'ancêtre de u à la k-ième génération). Avec ces notations, la population totale Z de la MAB tuée en 0 peut être représentée de la façon suivante :

Z = {u ∈ T : τ - 0 (u) > |u|}. Pour a ≤ x, on définit L[a]
, l'ensemble des particules pour la MAB non-tuée, qui passent pour la première fois en-dessous de a (voir la Figure 1) : (i) (Cas critique) Si ψ ( * ) = 0 et (5.2) est satisfait, alors, pour tout x ≥ 0,

L[a] := {u ∈ T : |u| = τ - a (u)}, a ≤ x.
P x (#L[0] > n) ∼ c crit R(x) e * x 1 n(log n) 2 , n → +∞, où c crit := Q[e - * S τ - 0 ] -1.
(ii) (Cas sous-critique) Si ψ ( * ) < 0 et (5.3) est satisfait, alors, pour tout x ≥ 0,

P x (#L[0] > n) ∼ c sub R(x) e + x n -+ -, n → +∞,
pour une certaine constante c sub > 0.

Mentionnons ici que Q, S, et R(•) dépendent notamment d'un paramètre = * (dans le cas critique) ou = + (dans le cas sous-critique). Si |u|=1 (1 + e -V (u) ) a des moments plus grands, alors il est possible de donner, comme dans le cas critique (i), une interprétation probabiliste de la constante c sub dans le cas sous-critique.

Lemme 27 ([A8]

). Supposons (5.1) avec ψ ( * ) < 0 et (5.3). Supposons de plus que

E   |u|=1 (1 + e -V (u) ) + - +1+δ   < ∞,
pour un certain δ > 0.

Alors 

c sub = c -(c * sub ) + / -Q(τ - 0 = ∞), où les constantes c -et c * sub sont explicitement données dans [A8] (Q(τ - 0 = +∞) > 0 car la marche aléatoire S tend vers +∞ sous Q).

Lemme 28 ([A8]). Supposons (5.4). Alors le Théorème 26 implique le Théorème 24 avec (i) (Cas critique)

c crit = (E[ν] -1) -1 c crit , (ii) (Cas sous-critique) c sub = (E[ν] -1) -+ -c sub .
Pour prouver le Théorème 26, nous avons besoin de comprendre le comportement du maximum de la MAB tuée en 0 ainsi que celui de sa descendance. Définissons pour L > 0, Remarquons que le résultat qui suit a de l'intérêt en soi : les Parties (i) et (ii) donnent une estimée précise sur la probabilité que la MAB tuée en 0 atteigne un niveau t, alors que dans la Partie (iii), conditionnellement au fait que le niveau t soit atteint, nous obtenons la convergence en loi des overshoots au niveau t, vus comme un processus ponctuel aléatoire.

H(L) := u 1 {τ - 0 (u)>τ + L (u)=|u|} = #H (L), L > 0,

Théorème 29 ([A8]

). Supposons (5.1).

(i) (Cas critique) Si ψ ( * ) = 0 et (5.2) est satisfait, alors

P x (H(t) > 0) ∼ Q[ -1 ] C R R(x) e * x e - * t t , t → +∞, où la variable aléatoire et la constane C R > 0 sont définies dans [A8]. (ii) (Cas sous-critique) Si ψ ( * ) < 0 et (5.3) est satisfait, alors P x (H(t) > 0) ∼ Q[ -1 ] C R R(x) e + x e -+ t , t → +∞,
où la variable aléatoire et la constane C R > 0 sont définies dans [A8]. (iii) Dans les deux cas et sous P x (• | H(t) > 0), le processus ponctuel défini par µ t := u∈H (t) δ {V (u)-t} converge en loi vers un processus ponctuel µ ∞ sur (0, ∞), où µ ∞ est distribué comme µ ∞ sous la mesure de probabilité

-1 Q[ -1 ] • Q et µ ∞ est un processus ponctuel bien défini, voir [A8]. n V (u) 0 x L particules dans H (L) particules tuées Figure 2. L'ensemble H (L)
Le résultat de type "Yaglom" dans le Théorème 29 joue un rôle crucial dans la preuve du Théorème 26. L'idée est que pour rendre la population totale Z (ou le nombre de feuilles #L[0]) aussi grande que possible (disons supérieure à n, avec n grand), la MAB tuée en 0 doit atteindre un niveau L = L(n) grand également en fonction de n. Alors la principale contribution à #L[0] vient de la descendance des particules qui ont atteint le niveau L. Par ailleurs, on contrôle la contribution des autres particules en calculant les moments de Z[0, L], ce qui constitue la partie la plus technique dans la preuve du Théorème 26.

Chapitre 6

Un modèle Gaussien log-corrélé sur le cercle [A9]

Modèle et présentation du problème

Dans ce chapitre, nous étudions les statistiques des extrêmes d'un champ Gaussien dont les corrélations décroissent logarithmiquement avec la distance. Ce modèle est relié au processus introduit par Bacry et Muzy [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] et similaire au Random Energy Model logarithmique ou log-REM étudié par Carpentier et Le Doussal [START_REF] Carpentier | Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models[END_REF] et Fyodorov et Bouchaud [START_REF] Fyodorov | Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential[END_REF]. Un autre modèle Gaussien log-corrélé, que nous étudierons dans le chapitre suivant, est le champ libre Gaussien en dimension deux.

Il est conjecturé par les physiciens que les statistiques des extrêmes des champs Gaussiens log-corrélés se comportent comme celles de variables aléatoires Gausiennes i.i.d., i.e. comme le Random Energy Model (REM) introduit par Derrida [START_REF] Derrida | Random-energy model : an exactly solvable model of disordered systems[END_REF] et, à un niveau plus fin, comme celles du mouvement Brownien branchant (MBB). En fait, il est conjecturé que les champs log-corrélés constituent le cas critique où les corrélations commencent à affecter les statistiques des extrêmes. Nous renvoyons aux travaux de Carpentier et Le Doussal [START_REF] Carpentier | Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models[END_REF], Fyodorov et Bouchaud [START_REF] Fyodorov | Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential[END_REF] et Fyodorov, Le Doussal et Rosso [START_REF] Fyodorov | Statistical mechanics of logarithmic REM : duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields[END_REF] pour des motivations physiques. Par ailleurs, mentionnons que ce qui rend l'analyse des champs Gaussiens log-corrélés particulièrement compliquée est le fait que, contrairement au MBB, les corrélations ne sont pas nécessairement induites par une structure d'arbre.

Notre approche est similaire à celle de Derrida et Spohn [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF] qui utilisent la mesure de Gibbs (à basse température) pour étudier les extrêmes du MBB. La méthode que nous adoptons est robuste et applicable à une large classe de modèles log-corrélés et nonhiérarchiques. Le modèle, que nous étudions ici, a les avantages d'avoir une représentation graphique pour les corrélations, un paramètre d'échelle continu et aucun effet de bord (cf. la Sous-Section 1.1), ce qui rend les idées de la preuve plus transparentes. Bien que, pour les modèles Gaussiens log-corrélés généraux, les corrélations ne soient pas engendrées par un arbre, de tels champs peuvent souvent être décomposés en somme de champs indépendants opérant à différentes échelles. Les principaux résultats de ce chapitre sont le Théorème 33 sur les corrélations des extrêmes et le Théorème 34 sur les statistiques des poids de Gibbs. Ces résultats montrent qu'en effet les statistiques des extrêmes de ce champ log-corrélé sont les mêmes que celles du MBB au niveau de la mesure de Gibbs comme l'ont conjecturé Carpentier et Le Doussal [START_REF] Carpentier | Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models[END_REF].

La preuve du premier théorème est basée sur une adaptation d'une technique de Bovier et Kurkova [START_REF] Bovier | Derrida's generalised random energy models. I. Models with finitely many hierarchies[END_REF][START_REF] Bovier | Derrida's generalized random energy models. II. Models with continuous hierarchies[END_REF], que ces derniers ont développée pour des champs Gaussiens hiérarchiques tels que le Generalized Random Energy Model (GREM) introduit par Derrida [START_REF] Derrida | A generalization of the random energy model which includes correlations between energies[END_REF] ou le Continuous Random Energy Model (CREM), son extension continue. Pour ce faire, nous introduisons une famille de modèles Gaussiens log-corrélés pour lesquels la variance dans la décomposition en échelle dépend de l'échelle elle-même. L'énergie libre de ces modèles perturbés est calculée en utilisant les idées de Daviaud [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF]. Le second théorème, qui dit que les poids de Gibbs convergent vers une variable aléatoire de Poisson-Dirichlet, est prouvé en utilisant le premier théorème sur les corrélations ainsi que des résultats généraux de la théorie des verres de spin.

Un modèle Gaussien log-corrélé.

En suivant les travaux de Bacry et Muzy [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF], nous considérons le demi-cylindre infini Pour σ > 0, le paramètre variance, il existe une mesure aléatoire µ sur C + qui satisfait : i) pour tout ensemble mesurable A dans B(C + ), la variable aléatoire µ(A) est une variable aléatoire Gaussienne centrée de variance σ 2 θ(A), ii) pour toute suite d'ensembles disjoints (A i ) i dans B(C + ), la tribu borélienne associée à C + , les variables aléatoires (µ(A i )) i sont indépendantes et

C + := {(x, y) ; x ∈ [0, 1] ∼ , y ∈ R * + },
µ i A i = i µ(A i ), p.s.
On appelle Ω l'espace de probabilité sur lequel µ est définie et P la loi de µ. L'espace Ω est muni des tribus F u engendrées par les variables aléatoires µ(A) pour tous les ensembles A à une distance plus grande que u de l'axe des x. Nous renvoyons à [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF] pour l'existence de l'espace de probabilité (Ω, (F u ) u , P).

Les ensembles dont nous avons besoin pour définir le champ Gaussien qui nous intéresse sont les ensembles A u (x) dans C + qui ressemblent à des cônes et définis par :

A u (x) := {(s, y) ∈ C + : y ≥ u , -f (y)/2 ≤ s -x ≤ f (y)/2},
où f (y) = y pour y ∈ (0, 1/2) et f (y) = 1/2 sinon. Voir la Figure 1 pour une description graphique de ces ensembles. Remarquons que, par construction, si x -x = > u, alors A u (x) et A u (x ) s'intersectent exactement au dessus du niveau y = .

Le processus Gaussien ω u = ω u (x) , x ∈ [0, 1] ∼ est défini en utilisant la mesure aléatoire µ par

ω u (x) := µ(A u (x)), x ∈ [0, 1] ∼ .
Grâce aux propriétés i) et ii) de µ, la covariance de ω u (x) et ω u (x ) est donnée par l'intégrale selon θ de l'intersection entre A u (x) et A u (x ) :

(6.1) E[ω u (x)ω u (x )] = Au(x)∩Au(x )
θ( ds, dy).

Dans ce chapitre, nous nous intéressons à une version discrète de ω u . Soit n ∈ N et notons ε = 1/n. Définissons alors

X n := 0, 1 n , 2 n , . . . , i n , . . . , n -1 n .
Pour un n donné, le champ Gaussien log-corrélé est la collection de variables aléatoires Gaussiennes et centrées ω ε (x) pour x ∈ X n :

X = (X x , x ∈ X n ) = (ω ε (x), x ∈ X n ).
Une propriété remarquable de cette construction est qu'une décomposition en échelle pour X est facilement obtenue grâce à la propriété ii) de µ. En effet, il suffit d'écrire la variable aléatoire X x comme une somme de champs Gaussiens indépendants correspondant aux bandes horizontales disjointes dans C + . L'axe des y joue alors le rôle d'échelle.

Les covariances de ce champ sont facilement calculées grâce à (6.1) en intégrant selon θ, voir également la Figure 1. 

Lemme 30. Pour tout 0 < ε = 1/n < 1/2, E[X 2 x ] = σ 2 (log n + 1 -log 2), x ∈ X n , E[X x X x ] = σ 2 (log(1/ x -x ) -log 2), x = x ∈ X n . 0 1 ε 1/2 y x x A ε (x) A ε (x )

Résultats antérieurs.

Sans perte de généralité, les résultats de cette section sont énoncés pour le paramètre variance σ = 1. Les points où le champ est anormalement haut, les extrêmes ou les hauts points, peuvent être étudiés via une adaptation mineure des arguments de Daviaud [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF] pour le champ libre Gaussien discret en dimension 2.

Théorème 31 (Daviaud,[START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF]). Soit H n (γ) := x ∈ X n : X x ≥ √ 2 γ log n l'ensemble des γ-hauts points. Alors pour tout 0 < γ < 1,

lim n→+∞ log #H n (γ) log n = 1 -γ 2 , en probabilité.
De plus, pour tout ρ > 0 il existe une constante c = c(ρ) > 0 telle que

P #H n (γ) ≤ n (1-γ 2 )-ρ ≤ exp{-c(log n) 2 },
pour n assez grand.

La technique de Daviaud repose sur une approximation par un arbre introduite par Bolthausen, Deuschel et Giacomin [START_REF] Bolthausen | Entropic repulsion and the maximum of the two-dimensional harmonic crystal[END_REF] 

Z n (β) := x∈Xn exp{β X x }, ∀ β > 0, et l'énergie libre f n (β) := 1 log n log Z n (β), ∀ β > 0.
On utilise le Théorème 31 pour calculer l'énergie libre du modèle.

Corollaire 32 ([A9]). Soit β

c := √ 2. Alors, pour tout β > 0, f (β) := lim n→+∞ f n (β) =    1 + β 2 2 , si β < β c , √ 2β, si β ≥ β c , p.s. et dans L 1 .
L'énergie libre est la même que pour le REM avec variance log n. En particulier, le modèle présente un phénomème de freezing pour β plus grand que β c , dans le sens où la quantité f (β)/β est constante.

Résultats

Encore une fois, sans perte de généralité, les résultats sont énoncés pour le paramètre variance σ = 1. Considérons maintenant les poids de Gibbs normalisés ou la mesure de Gibbs

G β,n (x) := e βXx Z n (β) , x ∈ X n .
Par nature, la mesure de Gibbs se concentre sur les hauts points du champ Gaussien. Le premier résultat de ce chapitre permet d'obtenir un contrôle sur les corrélations au niveau de la mesure de Gibbs. Plus précisément, en ayant la théorie des verres de spin à l'esprit, nous considérons les covariances normalisées ou overlaps

q(x, y) = q (n) (x, y) := - log y -x log n , x, y ∈ X n .
Il est clair que x -y = ε q(x,y) et 0 ≤ q(x, y) ≤ 1. De plus, l'overlap q(x, y)

est égal à la covariance normalisée E[X x X y ]/E[X 2 
x ] plus un terme qui tend vers 0 quand n tend vers l'infini. Un objet fondamental, qui permet de mesurer les corrélations des hauts points, est la fonction de répartition de l'overlap entre deux points tirés indépendamment selon la mesure de Gibbs. Plus précisément, notons G ⊗2 β,n la mesure produit sur X n × X n . Soient (x 1 , x 2 ) ∈ X 2 n deux points tirés selon G ⊗2 β,n . Pour alléger les notations, nous écrirons q 12 au lieu de q(x 1 , x 2 ). La moyenne de la fonction de répartition de l'overlap est alors donnée par x

(n) β (q) := E G ⊗2 β,n (q 12 ≤ q) , 0 ≤ q ≤ 1.
Notre premier résultat est l'analogue de celui obtenu par Derrida et Spohn pour la mesure de Gibbs du MBB (voir l'Equation (6.19) dans [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF]), de Chauvin et Rouault pour les marches aléatoires branchantes [START_REF] Chauvin | Boltzmann-gibbs weights in the branching random walk[END_REF] et de Bovier et Kurkova pour le Generalized Random Energy Model de Derrida (GREM) [START_REF] Derrida | A generalization of the random energy model which includes correlations between energies[END_REF], [START_REF] Bovier | Derrida's generalised random energy models. I. Models with finitely many hierarchies[END_REF]. Carpentier et Le Doussal ont également conjecturé ce résultat pour des champs Gaussiens log-corrélés non-hiérarchiques, voir la page 16 dans [START_REF] Carpentier | Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models[END_REF].

Théorème 33 ([A9]). Pour β > β c , lim n→+∞ x (n) β (q) = lim n→+∞ E G ⊗2 β,n (q 12 ≤ q) =    βc β , for 0 ≤ q < 1, 1, for q = 1.
Ce résultat est le même que pour le REM [START_REF] Talagrand | Spin glasses : a challenge for mathematicians, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]. Il est donc en accord avec une distribution riche des extrêmes qui consistent en plusieurs grandes valeurs dont les corrélations sont soit très grandes soit très proches de 0.

Remarquons que, pour β ≤ β c , l'énergie libre contient toute l'information sur la distribution de l'overlap. En effet, comme l'énergie libre obtenue dans le Corollaire 32 est dérivable en tout point β > 0 (β c y compris), on obtient, grâce à la convexité de l'énergie libre, que la dérivée de la limite est la limite des dérivées, d'où

lim n→+∞ f n (β) = lim n→+∞ β 1 -E G ⊗2 β,n [q 12 ] = f (β).
La première égalité est obtenue par intégrations par parties Gaussiennes. On en déduit donc que lim n E G ⊗2 β,n [q 12 ] = 0, pour β ≤ β c . En particulier, comme les corrélations sont positives, l'overlap est égale à 0 presque sûrement pour tout β ≤ β c .

Dans le cas où β > β c , le premier moment de l'overlap est strictement positif, on a donc besoin de plus d'information pour déterminer sa distribution. Une façon de faire est de pouvoir calculer suffisamment d'espérances de fonctionnelles de q 12 . Cela est possible en ajoutant un paramètre au champ et de considérer la dérivée appropriée de l'énergie libre du champ ainsi perturbé. Il s'avère que cette approche perturbative initiée par Bovier et Kurkova [START_REF] Bovier | Derrida's generalized random energy models. II. Models with continuous hierarchies[END_REF] pour des champs Gaussiens sur des arbres peut être généralisée aux champs log-corrélés. Le contrôle des corrélations est alors obtenu en introduisant une version perturbée du modèle à la bonne échelle. Dans le cas qui nous intéresse, la preuve est plus délicate car la structure des corrélations du champ Gaussien pour un n fini n'est pas engendrée par un arbre ou ultramétrique comme c'est le cas pour le GREM ou le MBB. Par exemple, pour le MBB, q(x, y) correspond au temps de branchement du dernier ancêtre commun entre deux particules x et y au temps t, divisé par t. En raison de la structure branchante de ce modèle, il est évident que (6.3) l'inégalité q(x, y) ≥ min{q(x, z), q(y, z)} est satisfait pour tout x, y, z.

(La terminologie ultramétrique vient du fait que la distance induite par q(•, •) est ultramétrique lorsque (6.3) est vérifié.) La conjecture d'ultramétricité de Parisi dans la littérature des verres de spin dit que, même si les corrélations peuvent ne pas être engendrées par un arbre pour un n fini, les corrélations deviennent hiérarchiques dans la limite où n tend vers +∞ pour une large classe de champs Gaussiens regardés du point de vue de la mesure de Gibbs associée, i.e.

lim n→+∞ E G ⊗3 β,n (q 12 ≥ min{q 13 , q 23 }) = 1.
Il n'est pas difficile de voir que le Théorème 33 implique la conjecture d'ultramétricité pour le champ Gaussien considéré ici, étant donné que asymptotiquement les overlaps ne peuvent prendre que les valeurs 0 et 1. Dans le jargon des verres de spin, on dit que le champ exhibe un régime one-step replica symmetry breaking (1-RSB) à basse température. Le deuxième résultat principal de ce chapitre est de décrire la loi jointe d'overlaps associés à plusieurs points tirés indépendamment selon la mesure de Gibbs. A cet effet, pour s ≥ 2, on notera G ⊗s β,n la mesure de Gibbs produit sur X s n . On considère la classe des fonctions continues F : [0, 1]

s(s-1) 2 → R et on écrira E G ⊗s β,n F (q ll ) pour E G ⊗s β,n F ({q(x l , x l )} 1≤l<l 
≤s ) , i.e. la moyenne de F ({q(x l , x l )} 1≤l<l ≤s ) lorsque le s-uplet (x 1 , ..., x s ) est tiré selon G ⊗s β,n . On rappelle aussi la définition de variable aléatoire de Poisson-Dirichlet. Pour 0 < α < 1, appelons η = (η i , i ∈ N) les atomes d'un processus ponctuel de Poisson sur (0, ∞) de mesure intensité s -α-1 ds. Une variable aléatoire de Poisson-Dirichlet ξ de paramètre α, dont on notera PD(α) la loi, est une variable aléatoire sur l'espace des poids décroissants s = (s 1 , s 2 , . . . → R des overlaps de s points :

) avec 1 ≥ s 1 ≥ s 2 ≥ • • • ≥ 0 et i s i ≤
lim n→+∞ E G ⊗s β,n [F (q ll )] = E   k 1 ,...,ks∈N ξ k 1 . . . ξ ks F (δ k l k l )   .
Remarque 35. Il est important de noter que, comme dans le cas du MBB et contrairement au REM, ce n'est pas la collection (G β,n (x), x ∈ X n ) ↓ en tant que telle qui converge vers une variable aléatoire de Poisson-Dirichlet. Le Théorème 34 suggère plutôt que les poids de Poisson-Dirichlet sont formés par la somme des poids de Gibbs de hauts points qui sont arbitrairement proches les uns des autres, car la continuité de la fonction F identifie naturellement les points x, y pour lesquels q(x, y) tend vers 1 quand n tend vers l'infini. Dans la théorie des verres de spin, ces agrégats de hauts points sont souvent appelés pure states.

Idées des preuves

3.1. Le Théorème 33 implique le Théorème 34. En utilisant un résultat de concentration sous la mesure de Gibbs pour tout β > 0 où l'énergie libre est différentiable (ce qui est vrai dans notre cas, voir le Corollaire 32), dû à Panchenko [START_REF] Panchenko | The Ghirlanda-Guerra identities for mixed p-spin model[END_REF], ainsi que des intégrations par parties Gaussiennes, on peut prouver que la mesure de Gibbs satisfait les identités de Ghirlanda-Guerra, i.e.

E G ⊗s+1 β,n [q 1,s+1 F (q ll )] = 1 s E G ⊗2 β,n [q 1,2 ] E G ⊗s β,n [F (q ll )] + 1 s s k=2 E G ⊗s β,n [q 1,k F (q ll )] + o n (1).
Ensuite la première étape est de trouver un bon espace de convergence, puis d'appliquer le théorème de représentation de Dovbysh et Sudakov [START_REF] Dovbysh | Gram-de Finetti matrices[END_REF]. Alors, combiner le fait que l'overlap ne prenne asymptotiquement que les valeurs 0 et 1 avec les identités de Ghirlanda-Guerra permet de montrer que l'éventuelle mesure de probabilité aléatoire limite est atomique et que l'espérance de la somme des carrés de ses poids est égale à 1 -β c /β. Enfin la deuxième étape consiste en une ré-utilisation adéquate des identités de Ghirlanda-Guerra, qui permet de conclure grâce à une caractérisation des poids de Poisson-Dirichlet faisant intervenir leurs moments joints ( [START_REF] Talagrand | Spin glasses : a challenge for mathematicians, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF], pages 24 et 25). [START_REF] Bovier | Derrida's generalised random energy models. I. Models with finitely many hierarchies[END_REF][START_REF] Bovier | Derrida's generalized random energy models. II. Models with continuous hierarchies[END_REF] initialement introduite pour des modèles hiérarchiques. Le principe consiste à considérer le bon modèle perturbé afin de pouvoir relier son énergie libre à la distribution de l'overlap pour le modèle initial. Il ne reste alors plus qu'à pouvoir calculer explicitement l'énergie libre du modèle perturbé pour conclure.

Idées de la preuve du Théorème 33. Rappelons d'abord que l'idée est d'adapter une technique de Bovier et Kurkova

Pour construire le modèle perturbé, on commence par se fixer 0 2. On remarquera que, par définition du modèle, µ(A 1 n (x)) et µ(A 2 n (x)) sont des variables aléatoires indépendantes. Mentionnons également, qu'à notre niveau d'analyse, ce modèle perturbé sera comparable au 2-GREM de paramètres (σ, α). La technique de Bovier et Kurkova consiste alors à choisir σ de la forme particulière σ = (1, 1+u) avec u ∈ (-1, 1). On note f

< α < 1 et σ := (σ 1 , σ 2 ) ∈ R 2 + . On notera alors Y (σ,α) = (Y (σ,α) x , x ∈ X N ) le nouveau champ Gaussien perturbé défini par Y (σ,α) x := σ 1 µ(A 1 n (x)) + σ 2 µ(A 2 n (x)), x ∈ X n , où A 1 n (x) et A 2 n (x) partitionnent A ε (x) comme sur la Figure
0 1 1/2 y 1 n 1 n ↵ x 2 1 A 2 n (x) A 1 n (x)
(σ,α) n (β) l'énergie libre du modèle perturbé Y (σ,α) donnée par f (σ,α) n (β) := 1 log n log x∈Xn e β Y (σ,α) x , ∀ β > 0,
et on définit également (sous réserve d'existence), pour tout β > 0,

x β (q) := lim n→+∞ x (n) β (q), ∀ q ∈ (0, 1).
Alors, si l'on suppose que l'on est capable de calculer explicitement la limite dans L 1 de l'énergie libre du modèle perturbé, une application d'intégrations par parties Gaussiennes combinée à des arguments de convexité (afin d'échanger les différentes limites) permet de montrer le résultat-clef suivant, reliant, lorsque l'on choisit σ = (1, 1 + u), l'énergie libre du modèle perturbé à la distribution de l'overlap pour le modèle initial.

Proposition 36. On a, pour tout β > 0,

β 2 1 α x β (q) dq = d du lim n→+∞ E f (σ,α) n (β) u=0 , ∀ α ∈ (0, 1).
Il est évident que la connaissance des intégrales 1 α x β (q) dq, pour α ∈ (0, 1), permet de déduire x β (q) pour tout q ∈ (0, 1). Afin d'achever la preuve du Théorème 33, il ne reste donc plus qu'à calculer explicitement la limite dans L 1 de l'énergie libre du modèle perturbé, qui sera la même que celle du 2-GREM de paramètres (σ, α). Notons f (β; σ 2 ) l'énergie libre du REM constitué de n variables aléatoires i.i.d. Gaussiennes centrées de variance σ 2 log n, qui est donnée par

f (β; σ 2 ) =    1 + β 2 σ 2 2 , si β ≤ β c (σ 2 ) := √ 2 σ , √ 2σβ, si β ≥ β c (σ 2 ).
On a alors le résultat suivant qui permet de conclure la preuve du Théorème 33.

Proposition 37. Soit V 12 := σ 2 1 α + σ 2 2 (1 -α). L'énergie libre du modèle perturbé Y (σ,α) est la même que pour le 2-GREM de paramètres (σ, α) :

• cas 1 : si σ 1 ≤ σ 2 , alors lim n→+∞ E[f (σ,α) n (β)] = f (β; V 12 ). • cas 2 : si σ 1 ≥ σ 2 , alors lim n→+∞ E[f (σ,α) n (β)] = αf (β; σ 2 1 ) + (1 -α)f (β; σ 2 2 ).
Cette proposition se prouve grâce à une méthode de Laplace ainsi que les deux lemmes suivants, qui estiment respectivement le premier ordre du maximum du modèle perturbé Y (σ,α) et le nombre logarithmique de ses hauts points.

Lemme 38. Rappelons que

V 12 = σ 2 1 α + σ 2 2 (1 -α).
Le maximum du modèle perturbé Y (σ,α) est le même que pour le 2-GREM de paramètres (σ, α) :

lim n→∞ P max x∈Xn Y (σ,α) x ≥ √ 2 γ max log n = 0, où γ max = γ max (σ, α) :=    √ V 12 , si σ 1 ≤ σ 2 , σ 1 α + σ 2 (1 -α), si σ 1 ≥ σ 2 .
Ce lemme se prouve par une comparaison directe avec le 2-GREM de paramètres (σ, α). Le lemme suivant nous dit que la quantité définie, pour tout 0 < γ < γ max , par

E (σ,α) (γ) := lim n→+∞ log #{x ∈ X n : Y (σ,α) x ≥ √ 2 γ log n} log n , en probabilité,
existe et nous fournit une expression explicite.

Lemme 39. Rappelons que

V 12 = σ 2 1 α + σ 2 2 (1 -α).
Le nombre logarithmique de γhauts points E (σ,α) (γ) est le même que pour le 2-GREM de paramètres (σ, α) : pour tout 0 < γ < γ max ,

• cas 1 : si σ 1 ≤ σ 2 , alors

E (σ,α) (γ) = 1 - γ 2 V 12 ,
• cas 2 : si σ 1 ≥ σ 2 , alors

E (σ,α) (γ) =    1 -γ 2 V 12 , si γ < V 12 σ 1 , (1 -α) -(γ-σ 1 α) 2 σ 2 2 (1-α) , si γ ≥ V 12 σ 1 .
Ce dernier lemme se prouve en appliquant récursivement l'analyse multi-échelle de Daviaud [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF], inspirée du travail de Bolthausen, Deuschel et Giacomin [START_REF] Bolthausen | Entropic repulsion and the maximum of the two-dimensional harmonic crystal[END_REF].

Projet

En utilisant les travaux récents de Chhaibi et Najnudel [START_REF] Chhaibi | On the circle, GM C γ = CβE ∞ , for γ = 2 β , (γ ≤ 1)[END_REF], qui font le lien entre le chaos multiplicatif Gaussien sur le cercle et l'ensemble Beta circulaire (CβE pour Circular Beta Ensemble en anglais), je souhaite confirmer les prédictions de Cao et Le Doussal [START_REF] Cao | Joint min-max distribution and Edwards-Anderson's order parameter of the circular 1/f -noise model[END_REF] concernant le paramètre d'ordre d'Edwards-Anderson pour le champ Gaussien log-corrélé sur le cercle. Plus précisément, on considère d'abord le cercle dans le plan complexe ∂D défini par ∂D := {e 2πiθ , θ ∈ [0, 1]} et on réalise la même construction que dans la Section 1 de ce chapitre. Puis on s'intéresse à une discrétisation du modèle en se restreignant à l'ensemble des racines n-ièmes de l'unité ∂D n := {ξ j,n , 0 ≤ j ≤ n -1} avec ξ j,n := e 2πij n , pour tout j ∈ {0, . . . , n -1}. Si G β,n désigne la mesure de Gibbs associée, le paramètre d'ordre d'Edwards-Anderson est défini (sous réserve d'existence) par

lim n→+∞ E | G β,n [ ξ ] | 2 , où G β,n [ ξ ]
est l'espérance de ξ tiré selon la mesure de Gibbs. Alors, Cao et Le Doussal [START_REF] Cao | Joint min-max distribution and Edwards-Anderson's order parameter of the circular 1/f -noise model[END_REF] conjecturent que, pour tout β > 0,

lim n→+∞ E | G β,n [ ξ ] | 2 = β 2 /(1 + β 2 ), si β ≤ β c , 1 -1/(2β), si β ≥ β c ,
et que si Z n (β) désigne la fonction de partition du modèle, on ait, pour tout β, t > 0,

lim n→+∞ E Z n (β) -t/β | G β,n [ ξ ] | 2 E Z n (β) -t/β = β 2 /(1 + tβ + β 2 ), si β ≤ β c , ((t + 2)β -1)/((t + β)(t + 2)), si β > β c . Chapitre 7

Le champ libre Gaussien discret en dimension 2 [A10, A13]

Le champ libre Gaussien discret en dimension 2 fait partie de la classe des champs Gaussiens log-corrélés, nous renvoyons donc à la Section 1 du Chapitre 6 pour une présentation des motivations physiques.

Le champ libre Gaussien discret en dimension 2

Nous considérons dans ce chapitre le champ libre Gaussien discret en dimension 2 (DGFF) sur une approximation en grille admissible d'un ensemble ouvert et borné D ⊂ C. Plus précisément, soit D un ensemble ouvert et borné de C, tel que sa frontière ∂D ne possède qu'un nombre fini de composantes connectées, qui ont chacune un diamètre positif et constituent un chemin C 1 (i.e. l'image d'une fonction C 1 de [0, 1] dans C). Nous noterons dist ∞ la distance engendrée par la norme ∞ sur Z 2 . Nous considérons alors l'approximation en grille admissible de D, notée (D N ) N ≥1 , famille de sous-ensembles de

Z 2 définis par D N := x ∈ Z 2 : dist ∞ (x/N, D c ) > 1/N .
Nos hypothèses sont légèrement plus restrictives que celles utilisées récemment par Biskup et Louidor [START_REF] Biskup | Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field[END_REF][START_REF] Biskup | On intermediate level sets of two-dimensional discrete Gaussian Free Field[END_REF][START_REF] Biskup | Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field[END_REF], mais ne servent qu'à éviter certains problèmes techniques dûs à des effets de bord.

Le champ libre Gaussien discret sur D N est le processus Gaussien (h N x ) x∈D N dont la matrice de covariances est donnée par la fonction de Green G N de la marche aléatoire simple sur Z 2 tuée à sa sortie de D N . Dans la suite de ce chapitre, pour alléger les notations, nous oublierons la dépendance en N pour le champ h N et écrirons simplement (h x ) x∈D N . En comparaison avec la théorie des verres de spin, D N joue le rôle de l'ensemble des configurations et -h x représente l'énergie de la configuration x. De plus, l'overlap entre x, y ∈ D N peut être défini par

q N (x, y) := E[h x h y ] sup x∈D N E[h 2 x ] = G N (x, y) sup x∈D N G N (x, x) .
Remarquons que q N (x, y) ∈ [0, 1] et se comporte comme 1 -log x-y log N , au moins pour des points x et y suffisamment loin du bord ∂D N (en utilisant le comportement asymptotique de G N , voir [START_REF] Lawler | Random walk : a modern introduction[END_REF] par exemple).

Rappelons que Bolthausen, Deuschel et Giacomin [START_REF] Bolthausen | Entropic repulsion and the maximum of the two-dimensional harmonic crystal[END_REF] ont montré que le maximum du DGFF, ou ground state dans la terminologie des verres de spin, satisfait

max x∈V N h x log N 2 -----→ N →+∞
√ g, en probabilité, avec g := 2/π et dans le cas particulier du carré unité, i.e. pour V N = (0, N ) 2 ∩ Z 2 . Nous avons également vu dans le Chapitre 6 que leur technique a été raffinée par Daviaud [START_REF] Daviaud | Extremes of the discrete two-dimensional Gaussian free field[END_REF] pour estimer le nombre logarithmique de hauts points dans V N : pour tout 0 < λ < 1, lim

N →+∞ 1 log N 2 log #{x ∈ V N : h x ≥ λ √ g log N 2 } = 1 -λ 2 , en probabilité. (7.1)
Grâce au travail récent de Biskup et Louidor (voir [31, Théorème 2.1]), ce résultat est valide pour une approximation en grille admissible générale (D N ) N ≥1 .

Une approche de type "verres de spin" : régime 1-RSB à basse température et distribution de Poisson-Dirichlet pour les poids de Gibbs [A10]

La mesure de Gibbs associée au DGFF et à la température inverse β > 0 est définie par

G β,N := 1 Z β,N x∈D N e βhx δ x ,
où Z β,N := x∈D N e βhx est la fonction de partition. Ce modèle présente une transition de phase au niveau de l'énergie libre définie par

f N (β) := log Z β,N log N 2 .
En effet, on peut facilement voir grâce à (7.1) (voir [A10]) que l'énergie libre converge lorsque N → +∞ et lim

N →+∞ f N (β) = f (β) := 1 + (β/β c ) 2 , si β ≤ β c , 2 β/β c , si β ≥ β c , en probabilité et dans L 1 ,
où la température inverse critique est donnée par

β c := √ 2π = 2 √ g .
Nous pouvons à présent énoncer les deux théorèmes de cette section. Ils sont similaires à ceux obtenus dans le Chapitre 6 pour le modèle sur le cercle unité et ont été prouvés dans le cas particulier du carré V N . Mentionnons simplement que la preuve pour le DGFF nécessite plus d'efforts à cause des effets de bords ; en effet, comme les variances et les covariances décroissent quand on se rapproche du bord, les arguments classiques de comparaison (inégalité de Slepian ou inégalité de Kahane par exemple) ne peuvent pas être utilisés.

Théorème 40 ([A10]). Pour β > β c , E G ⊗2 β,N (q N (u, v) ∈ •) -----→ N →+∞ β c β δ 0 + 1 - β c β δ 1 .
Ce théorème nous dit que le DGFF présente un régime one-step replica symmetry breaking (1-RSB) à basse température. Nous renvoyons au Chapitre 6 pour davantage de commentaires sur ce résultat ainsi que le suivant. L'idée de la preuve est la même que pour le modèle sur le cercle : on introduit un DGFF perturbé puis on adapte la technique de Bovier et Kurkova [START_REF] Bovier | Derrida's generalised random energy models. I. Models with finitely many hierarchies[END_REF][START_REF] Bovier | Derrida's generalized random energy models. II. Models with continuous hierarchies[END_REF], qui relie l'énergie libre du DGFF perturbé à la distribution de l'overlap pour le DGFF initial.

On peut alors déduire du Théorème 40 le résultat suivant qui nous dit que les poids de Gibbs convergent dans un certain sens vers ceux d'une variable aléatoire de Poisson-Dirichlet, définie en (6.4). → R associée aux overlaps de s points :

lim N →∞ E G ⊗s β,N F ((q ll ) l<l ) = E   k 1 ∈N,...,ks∈N ξ k 1 . . . ξ ks F ((δ k l k l ) l<l )   .
Remarque 42. Il est intéressant de souligner que tous les résultats présentés jusqu'ici sont les mêmes que pour le REM, qui est défini, pour tout N ≥ 1, comme (h REM x ) x∈D N , qui sont des variables aléatoires i.i.d. Gaussiennes centrées de variance max x∈D N G N (x, x) (afin de pouvoir être comparé au DGFF).

Plus à propos du champ libre Gaussien discret en dimension 2

La première différence observée entre le REM et le DGFF concerne le second ordre du maximum : dans une série de travaux par Bolthausen, Deuschel et Zeitouni [START_REF] Bolthausen | Recursions and tightness for the maximum of the discrete two dimensional Gaussian free field[END_REF], Bramson et Zeitouni [START_REF] Bramson | Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field[END_REF] et Bramson, Ding et Zeitouni [START_REF] Bramson | Convergence in law of the maximum of the two-dimensional discrete Gaussian free field[END_REF], il a été prouvé (également dans le cas du carré V N ) que le maximum recentré du DGFF max x∈V N h x -m N , avec

m N := 2 √ g log N - 3 4 √ g log log N,
converge en loi vers une limite non-triviale, alors que le bon recentrage pour le REM est

m REM N := 2 √ g log N -1 4
√ g log log N . Biskup et Louidor décrivent la limite dans [START_REF] Biskup | Extreme local extrema of two-dimensional discrete Gaussian free field[END_REF] et étendent le résultat à une classe d'approximations en grille admissibles pour D dans [START_REF] Biskup | Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field[END_REF]. L'étape suivante dans l'étude des extrêmes du DGFF est l'étude du processus extrêmal, qui décrit le champ vu de la position m N . Plus précisément, le processus extrêmal est défini comme la mesure aléatoire sur D × R × R Z 2 donnée par :

η N,r := x∈D N 1 {hx=max y∈Λr (x) hy} δ x/N ⊗ δ hx-m N ⊗ δ (hx-h x+z ) z∈Z 2 , où Λ r (x) := {y ∈ D N : x -y ≤ r}.
Cette mesure contient les informations suivantes : les positions renormalisées des maxima locaux, leurs valeurs recentrées ainsi que le champ vu de ces maxima locaux. La convergence du processus extrêmal a été prouvée par Biskup et Louidor [START_REF] Biskup | Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field[END_REF] et peut être énoncée de la façon suivante : il existe une mesure aléatoire borélienne finie Z D sur D et une mesure de probabilité ν sur (R + ) Z 2 telles que, pour toute suite de réels positifs (r N ) N ≥1 avec r N → +∞ et N/r N → +∞, on ait

η N,r N (loi) -----→ N →+∞ η := PPP Z D (dz) ⊗ e -βch dh ⊗ ν(dφ) , (7.2)
dans le sens où, pour toute fonction continue f : 1 . Cela signifie que, conditionnellement à Z D , les positions renormalisées des maxima locaux sont asymptotiquement des variables aléatoires i.i.d. de loi Z D /Z D (D), leurs valeurs recentrées sont données par un processus ponctuel de Poisson d'intensité Z D (D) e -βch dh et à chacun de ces maxima locaux est attaché un cluster indépendant de loi ν. La mesure aléatoire Z D est étudiée et caractérisée dans [START_REF] Biskup | Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field[END_REF] : en particulier, Z D admet un support plein dans D et Z D (∂D) = 0, presquesûrement. De plus, Biskup et Louidor [START_REF] Biskup | Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field[END_REF] donnent une description explicite de la loi ν du cluster.

D × R × R Z 2 → R ne dépendant que d'un sous-ensemble fini de coordonnées A ⊂ Z 2 et à support compact dans D × R × R A , on ait que η N,r N (f ) = f dη N,r N converge en loi vers η(f )
La convergence du processus extrêmal permet une description précise de la mesure de Gibbs surcritique, i.e. de G β,N pour β > β c . Pour N grand, la mesure est concentrée sur les points x ∈ D N tels que h x = m N + O [START_REF] Addario-Berry | Total progeny in killed branching random walk[END_REF]. Et donc dans la terminologie des verres de spin, les pure states sont des boules de diamètre O(1) centrées en chaque maximum local de hauteur m N + O(1) : si deux points sont dans le même pure state, alors leur overlap est proche de 1, et si ils appartiennent à deux pure states distincts alors leur overlap est proche de 0. Ce phénomène justifie le fait que le DGFF présente un régime one-step replica symmetry breaking à basse température, comme vu dans la Sous-Section 2 de ce chapitre. De plus, La convergence du processus extrêmal permet également de montrer que, pour β > β c , les poids des pure states sous G β,N (réordonnés) suivent asymptotiquement une loi PD(β c /β). Plus précisément, Biskup et Louidor [32, Corollaire 2.7] ont montré que, pour β > β c , sur l'espace des mesures de Radon sur D équipé de la convergence étroite, on a

x∈D N G β,N ({x}) δ x/N -----→ N →+∞ i≥1 p i δ χ i , en loi, où, conditionnellement à Z D , (χ i ) i≥1 est une suite de variables aléatoires i.i.d. de loi Z D /Z D (D) et (p i ) i≥1 est indépendant de (χ i ) i≥1 , de loi PD(β c /β).
Remarquons que ce résultat améliore la version de la convergence de Poisson-Dirichlet (pour la loi de l'overlap) obtenue dans la Section 2.

Pour le REM, la mesure de Gibbs G REM β,N à basse température est également portée par les points extrêmaux, qui sont les x ∈ D N tels que h REM 

Absence de chaos en température avec une distribution de l'overlap différente de celle du REM [A13]

4.1. Le problème de chaos en température. Le problème de chaos en température ou en désordre est un problème classique dans l'étude des verres de spin ; il a été découvert par Fisher et Huse [START_REF] Fisher | Ordered phase of short-range Ising spinglasses[END_REF] pour le modèle d'Edwards-Anderson et Bray et Moore [START_REF] Bray | Chaotic nature of the spin-glass phase[END_REF] pour le modèle de Sherrington-Kirkpatrick. Il est apparu avec la découverte que, pour certains modèles, un léger changement d'un paramètre extérieur (tel que la température ou le désordre) peut induire un changement dramatique dans le paysage d'énergies et modifier la position du ground state ainsi que l'organisation des pure states pour la mesure de Gibbs. Ces dernières décennies, ce phénomène a largement été étudié par les physiciens pour différents modèles ; nous renvoyons à Rizzo [START_REF] Rizzo | Chaos in mean-field spin-glass models[END_REF] pour un état de l'art récent. Plusieurs résultats mathématiques ont également été obtenus ces dernières années par Chen et Panchenko [START_REF] Chen | An approach to chaos in some mixed p-spin models[END_REF], Chen [START_REF] Chen | Chaos in the mixed even-spin models[END_REF], Auffinger et Chen [START_REF] Auffinger | Universality of chaos and ultrametricity in mixed p-spin models[END_REF], Panchenko [START_REF] Panchenko | Chaos in temperature in generic 2p-spin models[END_REF], Subag [START_REF] Subag | The geometry of the Gibbs measure of pure spherical spin glasses[END_REF], Chen et Panchenko [START_REF] Chen | Temperature chaos in some spherical mixed p-spin models[END_REF] et Ben Arous, Subag et Zeitouni [START_REF] Ben Arous | Geometry and temperature chaos in mixed spherical spin glasses at low temperature -the perturbative regime[END_REF].

Dans cette section, nous considérons le problème de chaos en température, qui peut être décrit plus précisément comme suit. Rappelons que l'overlap entre deux configurations correspond à la covariance normalisée entre deux énergies de ces configurations. Le chaos en température peut alors être défini par le fait que, si l'on tire indépendamment deux configurations de spin selon des mesures de Gibbs à températures différentes mais à désordre fixé, alors leur overlap est presque-sûrement déterministe. Ce phénomène se produit lorsque l'ensemble des configurations privilégiées (sous la mesure de Gibbs) change radicalement lorsque la température est à peine modifiée ; pour les modèles de verres de spin, la mesure de Gibbs à une température donnée se concentre proche d'un niveau d'énergie fixé et sur certains pure states, et les deux peuvent changer avec la température.

Certains modèles de verres de spin peuvent exhiber ce phénomène de chaos en température alors que d'autres non. Par exemple, Subag [START_REF] Subag | The geometry of the Gibbs measure of pure spherical spin glasses[END_REF] a récemment démontré l'absence de chaos en température pour les modèles sphériques dits pure p-spin avec p ≥ 3, alors que Ben Arous, Subag et Zeitouni [START_REF] Ben Arous | Geometry and temperature chaos in mixed spherical spin glasses at low temperature -the perturbative regime[END_REF] ont prouvé l'existence de chaos en température pour certains modèles sphériques dits mixed p-spin. Les deux résultats reposent sur une description géométrique précise de la mesure de Gibbs et sont valides à basse température (i.e. pour β assez grand) dans une partie du régime dit one-step Replica Symmetry Breaking (1-RSB). Pour les modèles sphériques pure p-spin, les supports des mesures de Gibbs sont proches les uns des autres à des températures différentes (suffisamment basses), alors que, pour les modèles sphériques mixed p-spin, la mesure de Gibbs se concentre sur de fines bandes qui dépendent de la température. Cette différence explique partiellement pourquoi le chaos en température a lieu pour la seconde classe de modèles mais pas pour la première.

Afin de mieux comprendre les mystères de la théorie de Parisi pour les verres de spin en champ moyen, nous avons déjà vu que Derrida a introduit dans les années 80 le Random Energy Model (REM) [START_REF] Derrida | Random-energy model : an exactly solvable model of disordered systems[END_REF], pour lequel les niveaux d'énergie Gaussiens sont supposés indépendants, et sa généralisation, le Generalized Random Energy Model (GREM) [START_REF] Derrida | A generalization of the random energy model which includes correlations between energies[END_REF], dont les corrélations sont données par une structure d'arbre de profondeur finie. Ces deux modèles ont été intensivement étudiés et ont notamment permis de mieux comprendre le phénomène dit de Replica Symmetry Breaking. Nous renvoyons à Bolthausen [START_REF] Bolthausen | Random media and spin glasses : an introduction into some mathematical results and problems[END_REF] et Kistler [START_REF] Kistler | Derrida's random energy models. From spin glasses to the extremes of correlated random fields[END_REF] pour le lien avec la théorie des verres de spin. Mentionnons ici que Kurkova [START_REF] Kurkova | Temperature dependence of the Gibbs state in the random energy model[END_REF] a montré l'absence de chaos en température pour le REM, ce que nous allons expliquer plus précisément dans la suite.

Deux exemples de modèles hiérarchiques naturels avec un nombre infini de niveaux sont le mouvement Brownien branchant (MBB) et la marche aléatoire branchante (MAB), voir par exemple le célèbre article de Derrida et Spohn [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF], qui ont introduit les polymères dirigés sur des arbres (i.e. les MAB avec des déplacements i.i.d.) en tant qu'extension infinie du GREM pour les verres de spin. Récemment, ces deux modèles ont connu d'importantes avancées avec des contributions remarquables ainsi que des répercussions dans d'autres domaines (temps de couverture [START_REF] Belius | The subleading order of two dimensional cover times[END_REF][START_REF] Belius | Tightness for the cover time of compact two dimensional manifolds[END_REF][START_REF] Schmidt | A simple proof of the DPRZ-theorem for 2D cover times[END_REF], polynômes caractéristiques de matrices unitaires aléatoires [START_REF] Arguin | Maximum of the characteristic polynomial of random unitary matrices[END_REF][START_REF] Chhaibi | On the maximum of the CβE field[END_REF][START_REF] Lambert | The law of large numbers for the maximum of almost Gaussian log-correlated fields coming from random matrices[END_REF][START_REF] Paquette | The maximum of the CUE field[END_REF], la fonction zeta de Riemann sur la droite critique [START_REF] Najnudel | On the extreme values of the Riemann zeta function on random intervals of the critical line[END_REF][START_REF] Arguin | Maximum of the Riemann zeta function on a short interval of the critical line[END_REF] et un modèle aléatoire de la fonction zeta de Riemann [START_REF] Arguin | Maxima of a randomized Riemann zeta function, and branching random walks[END_REF][START_REF] Arguin | Is the Riemann zeta function in a short interval a 1-RSB spin glass ?[END_REF][START_REF] Ouimet | Poisson-Dirichlet statistics for the extremes of a randomized Riemann zeta function[END_REF]). Nous renvoyons à Shi [START_REF] Shi | Branching random walks[END_REF] pour un état de l'art concernant les MAB et à Bovier [START_REF] Bovier | From spin glasses to branching Brownian motion-and back ? In Random walks, random fields, and disordered systems[END_REF] pour une référence qui traite les liens entre MBB et verres de spin.

Les physiciens suggèrent que les MAB Gaussiennes et le MBB devraient appartenir à une classe d'universalité appelée modèles Gaussiens log-corrélés. Nous renvoyons aux travaux de Carpentier et Le Doussal [START_REF] Carpentier | Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models[END_REF], Fyodorov et Bouchaud [START_REF] Fyodorov | Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential[END_REF][START_REF] Fyodorov | Statistical mechanics of a single particle in a multiscale random potential : Parisi landscapes in finite-dimensional Euclidean spaces[END_REF] et Fyodorov, Le Doussal et Rosso [START_REF] Fyodorov | Statistical mechanics of logarithmic REM : duality, freezing and extreme value statistics of 1/f noises generated by Gaussian free fields[END_REF] pour les liens avec la théorie des verres de spin. Nous avons vu que le DGFF, que nous étudions dans ce chapitre, est un tel modèle et révèle une structure hiérarchique implicite similaire à celle des MAB. On renvoie aux notes de Biskup [START_REF] Biskup | Extrema of the two-dimensional discrete Gaussian Free Field[END_REF] qui donne un excellent aperçu des résultats obtenus récemment pour le DGFF et à [START_REF] Zeitouni | Gaussian fields[END_REF] pour les liens entre DGFF et MAB.

Dans ce chapitre, nous montrons également l'absence de chaos en température pour le DGFF en utilisant la convergence du processus extrêmal obtenue récemment par Biskup et Louidor [START_REF] Biskup | Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field[END_REF]. Mais nous montrons surtout que la moyenne de l'overlap entre deux points tirés indépendamment selon des mesures de Gibbs à températures différentes est strictement inférieure à celle du REM ; ce qui peut être surprenant étant donné que la loi limite de l'overlap est la même pour les deux modèles si les points sont tirés à la même température, voir le Théorème 40 et l'Equation (7.4).

Distribution de l'overlap à deux températures différentes.

Nous avons vu, dans la Section 3, que les pure states de la mesure de Gibbs surcritique (i.e. pour β > β c ) du DGFF sont des points à une hauteur m N + O [START_REF] Addario-Berry | Total progeny in killed branching random walk[END_REF]. En particulier, ils ne dépendent pas de la température et pour, β, β > β c , deux points tirés indépendamment selon G β,N et G β ,N ont une probabilité positive de tomber dans le même pure state mais également de tomber dans des pure states distincts : on en déduit que leur overlap peut être 0 ou 1 et il est clair qu'il ne peut pas y avoir de chaos en température pour le DGFF. Cet énoncé est rendu plus précis grâce au premier résultat de cette section qui établit la convergence de l'overlap sous

G β,N ⊗ G β ,N . Théorème 43 ([A13]). Soient β, β > 0. (i) Si β ≤ β c ou β ≤ β c , alors, pour tout a ∈ (0, 1), G β,N ⊗ G β ,N (q N (u, v) ≥ a) -----→ N →+∞ 0, dans L 1 . (ii) Si β > β c et β > β c , alors, pour tout a ∈ (0, 1), G β,N ⊗ G β ,N (q N (u, v) ≥ a) -----→ N →+∞ Q(β, β ), en loi, où Q(β, β ) := k≥1 x∈Z 2 e β(ξ k -φ k x ) x∈Z 2 e β (ξ k -φ k x ) k≥1 x∈Z 2 e β(ξ k -φ k x ) k≥1 x∈Z 2 e β (ξ k -φ k x )
, avec (ξ k ) k≥1 les atomes d'un processus ponctuel de Poisson d'intensité e -βch dh et (φ k ) k≥1 des copies i.i.d. de loi ν (voir (7.2)), indépendantes de (ξ k ) k≥1 .

En d'autres termes, ce théorème établit la convergence de la mesure image de la mesure G β,N ⊗ G β ,N par la fonction q N , qui est une mesure aléaoire sur [0, 1]. La limite est soit δ 0 si min{β, β } ≤ β c , soit (1 -Q(β, β ))δ 0 + Q(β, β )δ 1 sinon. Remarquons que dans le cas (ii), étant donnée la limite du processus extrêmal, Q(β, β ) est simplement la probabilité de tirer deux points dans le même cluster, lorsqu'ils sont choisis proportionnellement à leurs poids de Gibbs de paramètre β et β respectivement.

Pour le REM, l'overlap entre x, y ∈ D N est défini par

q REM N (x, y) := E h REM x h REM y sup x∈D N G N (x, x) = 1 {x=y} .
Kurkova [START_REF] Kurkova | Temperature dependence of the Gibbs state in the random energy model[END_REF] a montré le résultat suivant : si β, β > β c , alors, pour tout a ∈ (0, 1), on a e -βφ k x , tel que la limite de la fonction de répartition de l'overlap peut être ré-écrite

G REM β,N ⊗ G REM β ,N (q REM N (u, v) ≥ a) (loi) -----→ N →+∞ Q REM (β, β ) := k≥1 e βξ k e β ξ k
Q(β, β ) = k≥1 e β(ξ k +X β,k ) e β (ξ k +X β ,k ) k≥1 e β(ξ k +X β,k ) k≥1 e β (ξ k +X β ,k )
.

Alors en remarquant que (X β,k ) k≥1 est une suite de variables aléatoires i.i.d., également indépendante de (ξ k ) k≥1 , on obtient que

(ξ k + X β,k ) k≥1 (loi) = ξ k + β -1 c log E e βcX β,1
k≥1 , (7.3) où l'égalité en loi a lieu lorsque les deux côtés sont vus comme des processus ponctuels. Ce résultat pour des processus ponctuels d'intensités exponentielles date au moins de Ruzmaikina et Aizenman [START_REF] Ruzmaikina | Characterization of invariant measures at the leading edge for competing particle systems[END_REF] et implique que 2 pour comparer les moyennes de l'overlap pour les deux modèles. Remarque 45. Le Théorème 44 peut être pensé de la façon suivante : Q(β, β ) et Q REM (β, β ) ont la même loi que i≥1 p i q i , où p = (p i ) i≥1 et q = (q i ) i≥1 ont respectivement pour loi PD(β c /β) et PD(β c /β ) et peuvent être corrélés. Trouver de tels p et q qui maximisent E[ i≥1 p i q i ] = E[ p, q ] est équivalent à trouver (p, q) qui minimise la distance de Wasserstein entre les mesures PD(β c /β) et PD(β c /β ) sur l'espace de Hilbert 2 (N). Dans le cas du REM, on a

Q(β, β) (loi) = k≥1 e 2βξ k k≥1 e βξ k 2 = Q REM (β,
β 1 0 E[Q(β, β )] E[Q REM (β, β )] β c β β c /β
q i = p β /β i k≥1 p β /β k ,
et on peut se demander si ce choix est optimal, comme suggéré par le Théorème 44. Mais ce n'est pas le cas, car on peut vérifier que P ⊗ P {(ω, ω ) : p(ω) -p(ω ), q(ω) -q(ω ) < 0} > 0, ce qui montre que (p, q) n'atteint pas la distance de Wasserstein grâce à [59, Théorème 2.3].

Remarque 46. Dans le cas où β < ∞ et β = ∞, il est plus facile de voir que la distribution de l'overlap pour le DGFF devrait être différente de celle du REM. On peut définir G ∞,N comme la mesure qui attribue une masse égale à 1 au point où max x∈D N h x est atteint. Alors, en supposant que (ξ k ) k≥1 est ordonné de manière décroissante, on peut montrer, d'une part, que la distribution limite de l'overlap est donnée par

Q(β, ∞) = x∈Z 2 e β(ξ 1 -φ 1 x ) k≥1 x∈Z 2 e β(ξ k -φ k x ) = e β(ξ 1 +X β,1 )
k≥1 e β(ξ k +X β,k ) , qui est asymptotiquement la probabilité que le point tiré selon G β,N est dans le même cluster que la particule la plus haute. D'autre part, on a Q REM (β, ∞) = e βξ 1 /( k≥1 e βξ k ). Enfin, on peut déduire de (7.3) 

: R → R + , E[f (Y )] = E e βcX β f (X β -X β ) E e βcX β . Alors, le processus ponctuel (ξ k + X β,k , ξ k + X β ,k ) k≥1 à valeurs dans R 2 a la même loi que (ξ k + c β , ξ k + c β + Y k ) k≥1 , où (Y k ) k≥1 sont des copies i.i.d. de Y , indépendantes de (ξ k ) k≥1 .
Le deuxième lemme qui suit est relativement intuitif et prouvé par un calcul direct.

Lemme 49. Soient (p n ) n≥1 et (q n ) n≥1 deux suites décroissantes de nombres réels positifs telles que n≥1 p n = 1. Soit (A n ) n≥1 une suite de variables aléatoires i.i.d. et positives. On pose

pn := A n p n k≥1 A k p k , ∀ n ≥ 1.
Alors, on a E n≥1 pn q n ≤ n≥1 p n q n .

De plus, si A 1 n'est pas presque-sûrement constante, (q n ) n≥1 n'est pas constante et pour tout n ≥ 1, p n > 0, alors l'inégalité est stricte. Le dernier lemme s'obtient en utilisant la description de la loi ν des clusters obtenue par Biskup et Louidor [START_REF] Biskup | Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field[END_REF].

Lemme 50. Pour tout y ∈ Z 2 \ {0}, sous ν, la loi conditionnelle de φ y sachant (φ x ) x =y est une loi Gaussienne de moyenne On combine alors ces trois lemmes de la manière suivante pour conclure. Grâce au Lemme 48, on peut écrire :

E Q(β, β ) = E   n≥1 e βξn e β (ξn+Yn) k≥1 e βξ k k≥1 e β (ξ k +Y k )   .
On suppose maintenant que les atomes (ξ k ) k≥1 sont ordonnés de manière décroissante.

Alors le Lemme 49 avec Il suffit de prendre l'espérance des deux côtés pour conclure.

Projets

Dans le prolongement du travail effectué en Section 4, nous souhaitons, avec M. Pain, étudier les propriétés des fonctions Un deuxième projet avec M. Pain consiste à mener une analyse similaire à celle de la Section 4 mais en comparant cette fois-ci le mouvement Brownien branchant inhomogène

β → E[Q REM (β, β )] et β → E[Q(β, β )] lorsque β > β c est fixé.

Introduction et résultat

Le concept de criticalité auto-organisée a été introduit à la fin des années 80 pour expliquer la découverte de comportement critique pour des états stationnaires sans réglage fin de paramètres du système [START_REF] Bak | Self-organized criticality[END_REF]. Des relations intrinsèques entre ce phénomène et celui de transition de phase ordinaire ont commencé à émerger à la fin des années 90 avec un nouveau paradigme : le phénomène de criticalité auto-organisée observé pour certains systèmes dit driven-dissipative est relié à la criticalité ordinaire pour le système correspondant (i.e. qui utilise le même mécanisme de relaxation) à énergie fixée [START_REF] Dickman | Paths to self-organized criticality[END_REF]. Un problème central est la conjecture de densité : la densité typique ζ s dans l'état stationnaire du système driven-dissipative devrait coïncider avec la densité critique ζ c du système à énergie fixée. Dix ans plus tard, il a été montré [START_REF] Fey | Driving sandpiles to criticality and beyond[END_REF] que la conjecture de densité est fausse pour le modèle de tas de sable abélien (ASM pour Abelian Sandpile Model en anglais). Il s'avère que la dynamique des ASM ne permet pas d'oublier les conditions initiales avant que la configuration devienne explosive [START_REF] Jo | Comment on "driving sandpiles to criticality and beyond[END_REF] ; nous reviendrons sur ce point un peu plus tard.

Le modèle de tas de sable stochastique (SSM pour Stochastic Sandpile Model en anglais) et les marches aléatoires activées (ARW pour Activated Random Walks en anglais) ont été introduits comme alternatives de mécanismes de relaxation non-déterministes. Les corrélations à longue distance (en espace et en temps) dues à la conservation des particules et le manque de structure algébrique similaire au ASM rendent l'analyse mathématique de ces modèles particulièrement ardue. Il a fallu deux décennies pour voir apparaître dans la littérature les premiers résultats rigoureux concernant les propriétés de stabilité pour ces systèmes [START_REF] Dickman | Activated random walkers : Facts, conjectures and challenges[END_REF][START_REF] Rolla | Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z[END_REF]. Ces quatre dernières années ont connu des avancées considérables pour les ARW [START_REF] Basu | Non-fixation for conservative stochastic dynamics on the line[END_REF][START_REF] Cabezas | Non-equilibrium phase transitions : Activated random walks at criticality[END_REF][START_REF] Cabezas | Recurrence and density decay for diffusion-limited annihilating systems[END_REF][START_REF] Rolla | Non-fixation for biased activated random walks[END_REF][START_REF] Sidoravicius | Absorbing-state transition for stochastic sandpiles and activated random walks[END_REF][START_REF] Stauffer | Critical density of activated random walks on transitive graphs[END_REF][START_REF] Taggi | Absorbing-state phase transition in biased activated random walk[END_REF][START_REF] Taggi | Active phase for activated random walks on Z d , d ≥ 3, with density less than one and arbitrary sleeping rate[END_REF] grâce notamment à l'introduction de techniques et outils ad hoc. Un certain nombre de ces outils étaient particulièrement sensibles aux hypothèses sur l'état initial (nécessitant l'indépendance et/ou une queue de distribution légère par exemple).

Dans ce chapitre, nous étudions les marches aléatoires activées et prouvons que la densité critique ζ c est bien définie et sépare deux familles d'états initiaux ergodiques : ceux dont la densité est inférieure à ζ c pour lesquels le processus est presque-sûrement stabilisable et ceux dont la densité est supérieure à ζ c pour lesquels le processus est presque-sûrement explosif. Une conséquence importante est que les hypothèses spécifiques et nécessaires à certaines techniques mathématiques récemment introduites peuvent être maintenant omises. Une autre conséquence est que ce résultat appuie la croyance que les ARW ont des propriétés de mélange bien meilleures que les ASM. Enfin le résultat ainsi que les techniques développées ici ne fournissent absolument pas une preuve de la conjecture de densité mais peuvent constituer un pas dans cette direction.

1.1. Criticalité auto-organisée et résultat. Les modèles d'avalanches sont devenus un exemple standart de criticalité auto-organisée dans le contexte d'états stationnaires hors-équilibres. Contrairement aux modèles classiques de mécanique statistique, ces modèles ne présentent pas de paramètre explicite permettant d'observer une transition de phase quand on le modifie. A la place, on s'attend à ce qu'ils conduisent spontanément à un état stationnaire critique révélant les caractéristiques de systèmes critiques comme des distributions en loi puissance ou des propriétés d'invariance d'échelle.

Un cadre commun à ces modèles d'avalanches implique une évolution de type réactiondiffusion, où les sites d'un graphe contiennent des particules qui se dissipent selon certaines règles jusqu'à stabilisation. Trois procédures de relaxation ont été utilisées pour l'étude du phénomène de criticalité auto-organisée : le modèle de tas de sable abélien (ASM), pour lequel les sites contenant au moins 2d particules en envoient une à chaque voisin ; le modèle de tas de sable stochastique (SSM), pour lequel les sites contenant au moins 2 particules en envoient 2 à des voisins choisis aléatoirement ; le modèle de marches aléatoires activées (ARW), pour lequel les sites contenant des particules actives en envoient une à un voisin choisi aléatoirement et les particules seules peuvent devenir passives ou endormies avec une probabilité dépendant d'un paramètre λ. Les mécanismes de ces trois modèles permettent une propagation de l'activité comme une tendance à l'extinction de l'activité et le comportement des systèmes est donc déterminé par une compétition entre ces deux facteurs.

La criticalité auto-organisée apparaît dans les dynamiques driven-dissipative correspondantes : des particules sont ajoutées au coeur d'une grande boîte finie et absorbées à son bord au cours de la relaxation, qui suit l'un des trois mécanismes présentés ci-dessus. Une particule est ajoutée que lorsque le système est totalement stabilisé. Au cours de ces dynamiques, quand la densité moyenne ζ de particules dans la boîte est trop faible, la masse a tendance à s'accumuler ; quand elle est trop grande, il y a une activité intense et une dispersion substantiel au bord. Ces deux observations permettent d'expliquer que le système est spontanément attiré vers un état critique avec une densité moyenne ζ s .

Un nouveau paradigme a été introduit dans [START_REF] Dickman | Paths to self-organized criticality[END_REF], soutenant que la criticalité autoorganisée pour ces systèmes est reliée à la transition de phase ordinaire. Plus précisément, les systèmes conservatifs en volume infini correspondants, pour lesquels la densité ζ reste constante, présentent une transition de phase ordinaire et leur comportement critique serait intimement relié aux systèmes à la criticalité auto-organisée présentés ci-dessus. En Par la suite, des résultats rigoureux et des simulations à grande échelle précises ont montré que la conjecture de densité est fausse en général, au moins pour l'ASM [START_REF] Fey | Driving sandpiles to criticality and beyond[END_REF][START_REF] Fey | Critical densities in sandpile models with quenched or annealed disorder. Markov Process[END_REF], suggérant que la relation entre systèmes driven-dissipative et systèmes conservatifs est plus subtile. Ce résultat négatif est attribué au fait que l'ASM est très sensible à l'état initial [START_REF] Jo | Comment on "driving sandpiles to criticality and beyond[END_REF]. En effet, pour tout d < ζ < 2d -1, il est possible de construire des états spatialement ergodiques avec une densité moyenne de particules ζ pour lesquels le processus est explosif et d'autres avec la même densité pour lesquels le processus est stabilisable [START_REF] Boer | Organized versus self-organized criticality in the Abelian sandpile model[END_REF].

Cette découverte a eu deux conséquences. Premièrement, elle a accentué l'intérêt des mathématiciens à propos des propriétés de l'ASM et a initié un débat afin de pouvoir formuler une nouvelle conjecture de densité. Deuxièmement, elle a alimenté l'intérêt des physiciens pour d'autres modèles comme le SSM et les ARW, dont on pense qu'ils ont de meilleures propriétés de mélange, pour l'étude de la criticalité auto-organisée et de la distribution des avalanches. Dans ce chapitre, nous montrons que ζ c est bien défini pour les ARW, ce qui va dans le sens de cette dernière affirmation. Nous énonçons maintenant le résultat principal de ce chapitre et renvoyons à la Section 2 pour des définitions précises. Alors que certaines preuves sont robustes en ce qui concerne l'état initial, d'autres y sont très sensibles. Certains résultats dans [START_REF] Amir | On fixation of activated random walks[END_REF][START_REF] Cabezas | Non-equilibrium phase transitions : Activated random walks at criticality[END_REF][START_REF] Cabezas | Recurrence and density decay for diffusion-limited annihilating systems[END_REF][START_REF] Stauffer | Critical density of activated random walks on transitive graphs[END_REF][START_REF] Taggi | Absorbing-state phase transition in biased activated random walk[END_REF] nécessitent un champ i.i.d., les preuves dans [START_REF] Sidoravicius | Absorbing-state transition for stochastic sandpiles and activated random walks[END_REF] sont présentées pour un champ i.i.d. de loi de Poisson, et certains résultats dans [START_REF] Stauffer | Critical density of activated random walks on transitive graphs[END_REF] et [START_REF] Taggi | Absorbing-state phase transition in biased activated random walk[END_REF] nécessitent même un champ i.i.d. de loi de Bernoulli. Grâce au Théorème 51, toutes ces conditions peuvent être omises et les arguments qui nécessitaient certaines contraintes pour la loi de l'état initial fournissent maintenant des bornes supérieures et inférieures valides pour tout état initial spatialement ergodique. On utilisera P pour la loi de (η t ) t 0 et on renvoit à [START_REF] Rolla | Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z[END_REF][START_REF] Rolla | Activated random walks[END_REF] pour plus de détails concernant l'existence et la construction de P. On dira que (η t ) t 0 se fixe si η t (x) finit par être constant (en temps fini) pour tout x ∈ Z d .

Représentation par site et stabilisation.

On utilise maintenant η pour désigner une configuration dans (N s ) Z d au lieu du processus en temps continu. On dit que le site x est instable pour la configuration η si η(x) 1 ; sinon, x est dit stable. On appelle toppling au site x l'application d'un opérateur τ xy ou τ xs à η. Toppling un site instable est légal. Si η(x) = s, toppling le site x n'est pas légal mais acceptable (ici on se détache de la dynamique du modèle mais permettre cette opération est utile dans les preuves), et pour cela on définit s -1 = 0 et s • s = s. Les topplings légaux sont également acceptables. Si η(x) = 0, toppling le site x n'est pas acceptable.

Soit I = (τ x,j ) x∈Z d ,j∈N un champ d'instructions fixé, i.e. pour tout x et j, τ x,j est égal à τ xs ou τ xy pour un certain y. soit h ∈ (N 0 ) Z d . Le champ h est appelé odomètre et permet de compter le nombre de topplings appliqués à chaque site. L'opération de toppling au site x est définie par Φ x (η, h) = τ x,h(x)+1 η, h + δ x . Etant donnée une suite finie α = (x 1 , . . . , x k ), on définit

Φ α = Φ x k • Φ x k-1 • • • • • Φ x 1 .
On dit que α est une suite de topplings légale ou acceptable pour (η, h) si, pour tout j = 1, . . . , k, Φ x j est légale ou acceptable pour Φ x 1 ,...,x j-1 (η, h).

Etant donné V ⊆ Z d , on dit que (η, h) est stable dans V si tout x ∈ V est stable pour η. On dit que α est contenu dans V si x 1 , . . . , x k ∈ V . On dit que α stabilise (η, h) dans V si α est acceptable pour (η, h) et Φ α (η, h) est stable dans V . Soit m α donné par m α (x) = 1+λ et égal à τ xs avec probabilité λ 1+λ , indépendamment pour tous les x et les j. Supposons aussi que η 0 ∈ N Z d 0 suit une loi ν spatialement ergodique avec une densité finie E ν [η 0 (o)] < ∞ et indépendante de I. On utilisera alors le lemme crucial suivant, prouvé dans [START_REF] Rolla | Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z[END_REF].

Lemme 57 (Rolla et Sidoravicius, [START_REF] Rolla | Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z[END_REF]). P(fixation pour (η t ) t 0 ) = P(η 0 stabilisable) = P(m η 0 (o) < ∞) = 0 ou 1.

Idée de la preuve

Dans cette section, on énonce un théorème équivalent au Théorème 51, dont on donnera une idée de la preuve en trois étapes : on couple la configuration initiale avec une autre de densité supérieure, puis on stabilise cette configuration obtenue après couplage et enfin on stabilise la configuration initiale. 

Projets

Avec L. T. Rolla, nous projetons d'étendre ce résultat au cas où les particules endormies sont autorisées. Au-delà d"être intéressant en soi, ce résultat serait probablement une nouvelle étape importante pour prouver la fameuse conjecture des physicens, dite de densité.

Je souhaite également utiliser la propriété d'abélianité du modèle et la représentation par sites pour étudier la distribution de la géométrie de l'ensemble des particules après stabilisation (dans le régime où elle a lieu) en fonction de la loi de la configuration initiale.
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 1 Figure 1. Probabilités de transition.
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 2 Figure 2. Potentiel donné à gauche et marche aléatoire en milieu aléatoire associée à droite (cas récurrent).

3. 3 .

 3 Cas transient de vitesse nulle. Le comportement de la MAMA dans le cas transient de vitesse nulle a été précisé par Kesten, Kozlov et Spitzer [93], qui considèrent le cas transient vers +∞. Ils introduisent un processus de branchement en milieu aléatoire avec immigration, qui tient compte des deux sources d'aléa (l'environnement et le mouvement de la marche aléatoire) et utilisent un résultat de renouvellement sophistiqué, dû à Kesten [91], faisant apparaître l'indice κ tel que E[ρ κ 0 ] = 1, qui détermine le comportement asymptotique de la MAMA. Avant de donner le théorème correspondant, définissons le temps d'atteinte τ (x) du site x pour la marche aléatoire (X n , n ≥ 0) par τ (x) := inf{n ≥ 1 : X n = x}, x ∈ Z. (1.6) et énonçons les hypothèses faites par Kesten, Kozlov et Spitzer, que nous reprendrons dans le Chapitre 4 :
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 121 Figure 1. Exemple d'un "bon" environnement
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 2 Figure 2. Représentation de M1 et M2.

  été définis dans la preuve du Théorème 8, voir la Figure 2 ci-dessous. Alors un argument d'indépendance asymptotique (similaire à la preuve du Théorème 8) entre e H , M 1 et M 2 sous forme de résultat Taubérien permet de conclure en montrant que

  des fonctions du potentiel associées à la k-ième vallée et on renvoit à [A5] pour une définition précise) ainsi que l'entier aléatoire (e)

Définition 19 .

 19 Posons S(0) := 0 et notons S(k) le k-ème temps de saut de X, pour k ∈ N * . Pour s ∈ R + , on définit S(s) := S( s ) et on appelle S le processus horloge. On définit ensuite la marche aléatoire squelette à temps discret (Y n ) n≥0 par Y n := X t pour S(n) ≤ t < S(n + 1). Il est alors évident que (Y n ) n≥0 est une marche aléatoire biaisée sur Z.

(5. 1 )

 1 ψ( * ) = * ψ ( * ). Par ailleurs, nous supposons que ψ est finie sur un ensemble ouvert contenant [0, * ]. Mentionnons ici que la condition (5.1) n'est pas restrictive. En effet, si on appelle m * = esssup supp L , alors (5.1) est satisfaite soit si m * = +∞ ou bien si m * < +∞ et E[ |u|=1 1 {V (u)=m * } ] < 1, nous renvoyons à [89] pour une discussion plus détaillée.

  (i) (Cas critique): Si ψ ( * ) = 0, alors E[Z] < +∞ et E[Z log Z] = +∞.(ii) (Cas sous-critique): Si ψ ( * ) < 0, alors il existe une constante b > 1, telle que

  Comme le système entier tend vers -∞, L[a] est bien défini. En particulier, L[0] correspond à l'ensemble des feuilles de la population de la MAB tuée en 0. En appliquant un résultat général valide pour une large classe de graphes aléatoires, il est possible de comparer l'ensemble des feuilles L[0] à Z . Ainsi, il est suffisant d'étudier le comportement asymptotique de la queue de distribution de #L[0]. Afin d'énoncer le résultat obtenu pour #L[0], il est nécessaire d'introduire une marche aléatoire auxiliaire S, sous une certaine mesure de probabilité Q. Nous ne la définissons pas précisément dans ce manuscrit mais mentionnons que, sous Q, la marche aléatoire S est récurrente dans le cas critique et transiente vers +∞ dans le cas sous-critique. On considère également une fonction de renouvellement, notée R(x), associée à S et τ - 0 , le premier instant où S devient strictement négative. Pour alléger les notations, nous écrirons Q[ξ] pour l'espérance de ξ sous Q. Le résultat est alors le suivant.Théorème 26 (Queue du nombre de feuilles,[A8]). Supposons(5.1).

Figure 1 .

 1 Figure 1. L'ensemble L[a] Le lemme suivant établit la relation entre #L[0] et la population totale Z = #Z . Rappelons que E[ν] > 1.

  oùH (L) := {u ∈ T : τ - 0 (u) > τ + L (u) = |u|} est l'ensemble des particules de la MAB sur [0, L] avec deux barrières absorbantes (en 0 et en L), qui ont été absorbées au niveau L (on a donc H (L) ⊂ Z ), voir la Figure2. Enfin, définissons Zparticules (plus précisément de feuilles) qui touchent 0 avant L, voir la Figure2.

où [0, 1 ]

 1 ∼ désigne l'intervalle unité pour lequel les deux points extrêmaux sont identifiés. On écrit x -x := min{|x -x |, 1 -|x -x |} pour la distance sur [0, 1] ∼ .On munit alors C + de la mesure positive θ(dx, dy) := y -2 dx dy.

Figure 1 .

 1 Figure 1. Les deux ensembles Aε(x) et Aε(x ) pour ε = 1/n. Les variances des variables ωε(x) et ωε(x ) sont calculées en intégrant les ensembles Aε(x) et Aε(x ) par rapport à θ( dt, dy) = y -2 dt dy, et la covariance en intégrant leur intersection, i.e. la région en gris foncée ici.

,

  où ↓ désigne le réordonnement décroissant. Théorème 34 ([A9]). Soit β > β c et ξ = (ξ k , k ∈ N) une variable aléatoire de Poisson-Dirichlet de paramètre β c /β. On note E l'espérance par rapport à ξ. Pour toute fonction continue F : [0, 1] s(s-1) 2

Figure 2 .

 2 Figure 2. Construction du champ Gaussien perturbé

Théorème 41 (

 41 [A10]). Soit β > β c et ξ = (ξ k , k ∈ N) une variable aléatoire de Poisson-Dirichlet de paramètre β c /β ∈ (0, 1). On écrit E pour l'espérance selon la loi de ξ. Alors, pour toute fonction continue F : [0, 1] s(s-1) 2

x

  = m REM N + O[START_REF] Addario-Berry | Total progeny in killed branching random walk[END_REF]. Par ailleurs, ces points sont tirés uniformément dans D N et, à la limite, leurs hauteurs sont données par un processus ponctuel de Poisson d'intensité c e -βch dh, avec c > 0. On en déduit que, dans le cas du REM, les pures states sont des singletons formés par les points extrêmaux qui sont à une distance d'ordre N les uns des autres. Cependant, on peut aisément montrer que leurs poids de Gibbs suivent asymptotiquement une loi de Poisson-Dirichlet de paramètre 1. Ce n'est pas la convergence étroite pour les mesures de Radon sur D × R × R Z 2 comme énoncée dans [32, Théorème 2.1], mais c'est ce qui est montré dans leur preuve.

  β c /β, d'où l'overlap sous (G REM β,N ) ⊗2 a asymptotiquement la même loi que pour le DGFF, voir la Figure1.

Figure 1 .

 1 Figure 1. Réalisations de e βh , où h est le DGFF en-haut et le REM en-bas. Le domaine considéré est le carré VN = (0, N ) ∩ Z 2 avec N = 127 et β est légèrement surcritique (β = 1.1 • βc). On remarque que les points qui portent la masse de la mesure de Gibbs sont regroupés en clusters pour le DGFF et uniformément distribués sur le carré pour le REM.

k≥1 e βξ k k≥1 e β ξ k ,

 k où les (ξ k ) k≥1 sont également les atomes d'un processus ponctuel de Poisson d'intensité e -βch dh. Notre but est alors de comparer Q(β, β ) et Q REM (β, β ). Dans le cas β = β , il est bien connu que Q(β, β) et Q REM (β, β) ont même loi. En effet, pour β > β c et k ≥ 1, introduisons les variables aléatoires X β,k := 1 β log x∈Z 2

Figure 2 .

 2 Figure 2. Représentation schématique de l'espérance de l'overlap pour deux points tirés à des températures inverses différentes β and β , lorsque β est fixé et β varie, pour le DGFF (en bleu) et pour le REM (en rouge).

  p n := e β ξn k≥1 e β ξ k , q n := e βξn k≥1 e βξ k , et A n := e β Yn , où A n n'est pas presque-sûrement constante (grâce au Lemme 50), implique que, presquesûrement, E   n≥1 e βξn e β (ξn+Yn) k≥1 e βξ k k≥1 e β (ξ k +Y k ) (ξ k ) k≥1   < n≥1 e βξn e β ξn k≥1 e βξ k k≥1 e β ξ k .

  En particulier, il s'agit de montrer que ces fonctions sont continues sur [0, ∞), différentiables sur [0, ∞) \ {β c }, de dérivée à droite infinie en β c , croissantes et concaves sur [β c , ∞).

  particulier, il existe une densité seuil ζ c telle que les dynamiques en volume infini devraient se fixer pour ζ < ζ c et rester actives pour ζ > ζ c ; de plus, ζ c devrait coïncider avec la densité stationnaire ζ s des systèmes driven-dissipative. Depuis ce travail, une littérature riche est apparue explorant cette relation et les principes qui pourraient l'expliquer.

Théorème 51 ( 1 . 2 .

 5112 [A11]). Considérons le modèlede marches aléatoires activées sur Z d avec d ≥ 1 fixé et un taux d'endormissement λ. Supposons la loi de saut p(•) donnée et telle qu'elle engendre Z d , et pas un sous-réseau. Alors il existe ζ c tel que, pour toute distribution spatialement ergodique portée par les configurations de densité moyenne ζ et sans particule passive, une ARW de loi initiale ν est presque-sûrement stabilisable si ζ < ζ c et presque-sûrement explosive si ζ > ζ c . Résultats mathématiques. Au cours des quatre dernières années, plusieurs bornes non-triviales ont été obtenues pour ζ c . Pour d = 1, il a été prouvé [119] que ζ c > 0 pour tout λ et ζ c → 1 lorsque λ → +∞. Pour d ≥ 2 et λ = ∞, il a aussi été montré dans [123] que ζ c > 0 et dans [47, 48] que ζ c ≥ 1. Pour d ≥ 2 et λ > 0 avec une loi de saut non-biaisée et bornée, il a été montré [126] que ζ c > 0. Ce résultat a été généralisé à une loi de saut quelconque dans [129], article dans lequel il est également montré que ζ c → 1, lorsque λ → +∞. Il a été prouvé [6, 123] que ζ c ≤ 1 pour toute dimension et tout λ. Pour des sauts biaisés, il a été montré dans [131] que, pour d = 1, ζ c < 1 pour tout λ et ζ c → 0 lorsque λ → 0, et pour d ≥ 2, que ζ c < 1 pour λ suffisamment petit. Le "tableau" pour d ≥ 2 a été étendu dans [120], qui montre que ζ c < 1 pour tout λ et ζ c → 0 lorsque λ → 0. Pour des sauts non-biaisés, il a été prouvé que ζ c → 0 lorsque λ → 0, dans [16] pour d = 1 et dans [129] pour d ≥ 3, et finalement dans [132] que ζ c < 1 pour tout λ < ∞ et d ≥ 3.

2. Définitions et outils 2 . 1 .

 21 La dynamique. L'ARW commence avec des particules actives placées sur Z d selon une distribution ν et évolue de la façon suivante. Les particules actives se déplacent de manière indépendante selon des marches aléatoires en temps continu (de taux 1) sur Z d avec une loi de saut invariante par translation p(x, y) = p(y -x). Elles passent à un état passif, noté s, à un taux λ > 0 lorsqu'elles sont seules sur un site. les particules passives ne bougent plus et sont immédiatement réactivées si une autre particule visite le même site.SoitN 0 = {0, 1, 2, . . .} et N s = N 0 ∪ {s},où s représente une particule passive (s pour sleepy en anglais). Afin de simplifier les notations, on définit |s| = 1, |n| = n pour n ∈ N 0 et on écrira 0 < s < 1 < 2 < • • • . On définit également s + 1 = 2 et n • s = de l'ARW au temps t 0 est donné par η t ∈ (N s ) Z d et le processus évolue de la façon suivante. Pour chaque site x ∈ Z d , une horloge exponentielle sonne au taux (1 + λ) |η t (x)| 1 {ηt(x)∈N} . Quand une horloge sonne à un site x, le système évolue selon la transition η → τ xs η avec probabilité λ 1+λ et selon η → τ xy η avec probabilité p(y -x) 1 1+λ . Ces transitions sont définies parτ xy η(z) = ) -1, z = x, η(y) + 1, z = y, η(z), sinon, τ xs η(z) =    η(x) • s, z = x, η(z),sinon, et n'ont lieu que si η(x) ≥ 1. L'opérateur τ xs représente une particule au site x essayant de s'endormir, ce qui aura effectivement lieu si aucune autre particule n'est présente en x. Sinon, par définition de n • s le système restera inchangé. L'opérateur τ xy représente une particule sautant de x à y, avec une éventuelle activation d'une particule passive qui se trouverait en y, activation représentée par la convention s + 1 = 2.

1

  {x =x} , ∀x ∈ Z d . On écrit m β m α si m β (x) m α (x) pour tout x ∈ Z d et la même chose pour η η. Les lemmes suivants sont démontrés, par exemple, dans[START_REF] Rolla | Activated random walks[END_REF].Lemme 52 (Abélianité locale). Si α et β sont des suites acceptables de topplings pour la configuration (η, h), telles quem α = m β , alors Φ α (η, h) = Φ β (η, h). Etant donné V ⊆ Z d , pour tout x ∈ Z d , on définit m V,η,h (x) = sup{m β (x) : β ⊆ V est une suite légale pour (η, h)}. Remarquons que m V,η,h (x) = sup{m V ,η,h (x) : V ⊆ V fini} et définissons m η,h = m Z d ,η,h .Lemme 53 (Principe de moindre action). Si α est une suite acceptable de topplings qui stabilise (η, h) dans V , alors m V,η,h ≤ m α .Remarquons que dans le lemme ci-dessus, la suite α n'a ni besoin d'être légale ni contenue dans V . Ce lemme est extrêmement utile car il permet de choisir une suite de topplings arrangeante et même de réveiller certaines particules si on le souhaite, et l'odomètre obtenu alors fournit une borne supérieure pour le vrai champ m V,η,h .Lemme 54 (Abélianité globale). Si α et β sont deux suites légales de topplings pour (η, h), qui sont contenues dansV et stabilisent (η, h) dans V , alors m α = m β = m V,η,h . En particulier, Φ α (η, h) = Φ β (η, h). Lemme 55 (Monotonicité). Si V ⊆ Ṽ et η η, alors m V,η,h m Ṽ ,η,h .Définition 56. Une configuration η est dite stabilisable en partant de l'odomètre h si m η,h (x) < ∞ pour tout x ∈ Z d , et est dite explosive si m η,h (x) = ∞ pour tout x ∈ Z d . Il se peut qu'on ait besoin d'indiquer explicitement le champ d'instructions I avec lequel on travaille ; par exemple, on dira que η est I-stabilisable si m η,h;I (x) < ∞ pour tout x ∈ Z d . La lettre h pourra être omise dans les notations lorsque h est identiquement nul.

2. 3 .

 3 Stabilisation et fixation. Les propriétés précédentes sont vraies pour tout champ d'instructions I fixé. A partir de maintenant, nous considérerons I aléatoire et distribué de la façon suivante. Pour tout x ∈ Z d et j ∈ N, nous choisissons τ x,j égal à τ xy avec probabilité p(y-x) 

Théorème 58 ( 1 . 1 : 1 ≥ ζ 2 .Étape 3 :

 5811123 [A11]). Soient d, λ et p(•) donnés. Soient ν 1 et ν 2 deux lois spatialement ergodiques sur (N 0 ) Z d , de densités respectives ζ 1 < ζ 2 . Si la ARW se fixe presquesûrement avec loi initiale ν 2 , alors la ARW se fixe aussi presque-sûrement avec loi initiale ν Étape On définit récursivement (A k , η k , h k ) de la façon suivante. On commence par définirA k := {x : η k-1 (x) > ξ 0 (x)}, dont on considère une énumération arbitraire A k = {x k 1 , x k 2 , x k 3 , . . .}. On pose alors (η k , h k ) := lim j Φ (x k 1 ,x k 2 ,...,x k j ) (η k-1 , h k-1 ), en remarquant que h k est bien défini et satisfait h k (x) = h k-1 (x) + 1 A k (x).Par ailleurs, on peut également voir, en appliquant le principe de transport de masse, que η k est bien défini et presque-sûrement fini. On va alors utiliser le lemme suivant pour montrer queζ 1 < ζ 2 implique que h 0 (o) := lim k h k (o) < +∞, presque-sûrement. Lemme 59. P(lim k h k (o) = +∞) > 0 ⇒ ζPour démontrer ce lemme, on reprend d'abord la preuve de [119,Lemme 4], pour montrer, via un argument d'ergodicité, queP(lim k h k (o) = +∞) ∈ {0, 1}. Ainsi P(lim k h k (o) = +∞) > 0 implique P(lim sup k {o ∈ A k }) = 1. On remarque ensuite que, si o ∈ A k 0 , alors η k 0 -1 (o) > ξ 0 (o) et que donc, par définition des A k , on a η k (o) ≥ ξ 0 (o), pour tout k ≥ k 0 . On déduit de ce dernier point que lim inf k η k (o) ≥ ξ 0 (o) .Par ailleurs, le principe de transport de masse impliqueE η k (o) = E η k-1 (o) = • • • = E η 0 (o) = ζ 1 .En combinant les deux derniers résultats et en appliquant le lemme de Fatou, on obtientζ 1 = lim inf k E η k (o) ≥ E lim inf k η k (o) ≥ E ξ 0 (o) = ζ 2 ,ce qui conclut la preuve du Lemme 59.Grâce au lemme précédent, on sait donc queζ 1 < ζ 2 implique h 0 (o) := lim k h k (o) < +∞, presque-sûrement. Or comme η k (o) ne décroît que quand o ∈ A k , i.e. quand h k (o) croît,il s'avère que (η k (o)) k est p.s. décroissante à partir d'un certain rang, et converge donc p.s. Par définition des A k , sa limite, notée η 0 (o), satisfait η 0 (o) ≤ ξ 0 (o). Finalement un argument d'invariance par translation nous permet de conclure qu'il existe (η 0 , h 0 ) telle que presque-sûrementη 0 (x) ≤ ξ 0 (x) et h 0 (x) < ∞, ∀ x ∈ Z d .Étape 2 : Soit Ĩ le champ d'instructions défini parτ x,j = τ x,h 0 (x)+j , ∀ x ∈ Z d , ∀ j ∈ N.Comme Ĩ est un champ i.i.d. de même loi que I, on a P(ξ 0 est Ĩ-stabilisable) = 1. Alors un argument de monotonicité (on a vu que η 0 ≤ ξ 0 ) implique que P(η 0 est Ĩ-stabilisable) ≥ 1.Il existe donc presque-sûrement h 1 tel que, pour tout V ⊆ Z d fini et tout x ∈ Z d , m V,η 0 ; Ĩ (x) ≤ h 1 (x) < ∞. Il suffit de sommer les deux odomètres (obtenus aux Étapes 1 et 2) pour conclure que m η 0 ;I (x) ≤ h 0 (x) + h 1 (x) < ∞, pour tout x ∈ Z d et terminer la preuve du Théorème 58.
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Une représentation probabiliste des constantes dans le théorème de renouvellement de Kesten [A3] 1. Présentation du problème et résultats En

  1973, Kesten publie un papier célèbre[START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] concernant le comportement de la queue de distribution de séries de renouvellement de la formei≥1 A 1 . . . A i-1 B i , où (A i ) i≥0 estune suite de matrices aléatoires d × d positives et i.i.d., et (B i ) i≥1 une suite de vecteurs aléatoires i.i.d. de R d . Son résultat montre que la queue de distribution d'une projection quelconque de ce vecteur aléatoire est équivalente à C K t -κ , quand t tend vers +∞ et où C K et κ sont des constantes positives. La constante κ est définie comme la solution de l'équation k

	Chapitre 3
	pour un certain α < 2, alors on a que
	lim n→+∞ n -2 α +ε Z n = -∞, P ⊗ Q-presque sûrement, pour tout ε > 0. Par ailleurs, le cas
	ε = 0 reste une question ouverte.

  Cependant, ils n'obtiennent pas d'expression explicite de C κ . Dans le Chapitre 4 ou dans[A4], nous obtenons une expression explicite, soit en fonction de la constante de Kesten C K lorsqu'elle est connue, soit en fonction de l'espérance d'une série aléatoire lorsque C K n'est pas connue. Pour cela, nous avons besoin d'estimer le comportement de la queue de distribution d'une variable aléatoire intimement reliée à la série aléatoire R et utilisons le travail présenté dans ce chapitre.

	en loi vers C κ	1 Sκ	κ	1/κ converge , où S κ est une variable aléatoire stable complètement asymétrique
	d'indice κ.			

  1, où (e p ) p sont des variables aléatoires exponentielles i.i.d. de paramètre 1 et indépendantes de ω ; de plus, les termes E ω [τ (e p , e p+1 )] peuvent être explicités et n(x) remplacé par x/E[e 1 ] . 'introduire des variables aléatoires i.i.d. Z = ( Z p ) p≥0 telles que

Théorème 17 ([A7]). Sous les hypothèses (a) et (b) du Théorème 16, pour tout δ > 0 et tout ε > 0, si x est assez grand, il est possible "d'élargir" l'espace de probabilité afin d

  pour le champ libre Gaussien discret en dimension 2. Dans cet article, les auteurs obtiennent le premier ordre du maximum. Les mêmes arguments s'appliquent ici. Le Théorème 31 et de simples estimées Gaussiennes permettent aussi de montrer que bonne approximation pour des observations plus fines des extrêmes des champs Gaussiens log-corrélés. A cet effet, nous utilisons des outils de physique statistique qui permettent un bon contrôle des corrélations. Considérons d'abord la fonction de partition Z n (β) du modèle (β correspondant à l'inverse de la température) :

	(6.2)	lim n→+∞	max x∈Xn X x log n	=	√ 2,	p.s.

Il est important de souligner qu'une propriété du Théorème 31 et de l'Equation (6.2) est qu'ils sont identiques aux résultats pour n variables aléatoires Gaussiennes centrées et i.i.d. de variance log n. Autrement dit, le comportement des hauts points n'est pas affecté par les corrélations du champ. Dans la littérature des verres de spin, le cas i.i.d. est appelé Random Energy Model (REM).

L'objectif de ce chapitre est de comprendre jusqu'à quel point le cas i.i.d. est une

  De plus, grâce à un simple changement de variables, on peut voir que (e βξ i / k≥1 e βξ k , i ≥ 1) ↓ a même loi que (p i ) i≥1 une variable aléatoire de Poissons-Dirichlet de paramètreβ c /β ; d'où Q(β, β) et Q REM (β,β) ont même loi que i≥1 p 2 i , qui correspond au fait que les pure states sont des poids de Poisson-Dirichlet. Il est alors légitime de se demander si Q(β, β ) et Q REM (β, β ) ont même loi lorsque β = β . La réponse est négative et le deuxième résultat de cette section montre que, en moyenne, l'overlap a moins de chance d'être proche de 1 lorsqu'il est tiré sous G β,N ⊗ G β ,N que lorsqu'il est tiré sous G REM β,N ⊗ G REM β ,N . La raison derrière cette inégalité stricte est la suivante. Pour le REM, le poids d'un pure state dépend seulement de sa hauteur : un pure state favorisé sous G REM β,N le sera donc également sous G REM β ,N . A contrario, le poids d'un pure state pour le DGFF dépend à la fois de la hauteur du maximum local mais également de la géométrie du cluster autour, et donc certains pure states seront plus favorisés pour β proche de β c que pour β grand et inversement, voir la Figure 1. Il est donc plus difficile de tirer le même pure state sous deux mesures de Gibbs à températures différentes pour le DGFF que pour le REM. Ce résultat conduit à l'image proposée par la Figure

		Théorème 44 ([A13]). Pour tous β, β > β c tels que β = β , on a
		E Q(β, β ) < E Q REM (β, β ) .
	(7.4)	β).

4.3. Idées des preuves. Le

  que Q(β, ∞) est strictement dominé stochastiquement par Q REM (β, ∞), car avec probabilité positive max k≥1 (ξ k + X β,k ) n'est pas atteint pour k = 1 (ce qui est le cas dès que X β,k n'est pas presque-sûrement constant, résultat vrai grâce au Lemme 50 qui suit). 47. Il est possible de démontrer des résultats similaires pour le MBB et les MAB. En effet, en utilisant la convergence du processus extrêmal du MBB[START_REF] Aïdékon | Branching Brownian motion seen from its tip[END_REF][START_REF] Arguin | The extremal process of branching Brownian motion[END_REF][START_REF] Bovier | Extended convergence of the extremal process of branching Brownian motion[END_REF] ou de la MAB[START_REF] Madaule | Convergence in law for the branching random walk seen from its tip[END_REF][START_REF] Mallein | Genealogy of the extremal process of the branching random walk[END_REF], on peut aisément obtenir le Théorème 43, voir en particulier la preuve du Théorème 4.3 in[START_REF] Mallein | Genealogy of the extremal process of the branching random walk[END_REF]. Concernant le Théorème 44, la preuve utilisée pour le DGFF est générale et robuste ; elle fonctionne également pour le MBB et les MAB à l'exception du Lemme 50 qui doit être adaptée. Théorème 43 se déduit aisément de la convergence du processus extrêmal obtenue par Biskup et Louidor, voir l'Equation (7.2). Pour cette raison, nous ne présenterons ici que les arguments du Théorème 44 et commençons par donner une série de lemmes. Le premier s'obtient en considérant la transformée de Laplace du processus ponctuel qu'on peut calculer on utilisant la formule exponentielle pour les processus ponctuels de Poisson. Lemme 48. On note c β := β -1 c log E[e βcX β ] et on considère une variable aléatoire Y telle que, pour toute fonction mesurable f
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 1 x∼y φ x et de variance 1, conditionnée à être positive. Alors, la variable aléatoire Y définie dans le Lemme 48 n'est pas presque-sûrement constante.
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