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Outline of the manuscript

This document presents and put in perspective my research work carried out after my Phd Thesis since my position
as an associate professor at the university Paris Diderot (Paris VII) started in September 2012.

This work consists in two topics that interact with one another. The first part concerns stochastic approximation
algorithm with some applications in mathematical finance. The second part focuses on Markovian perturbation of
stochastic processes with several applications such that probabilistic representation, unbiased Monte Carlo simulation,
density estimates, asymptotic expansions of some Markov semigroups, weak approximation error of some discretisation
schemes.

The first four chapters deals with stochastic approximation theory. The first chapter is an introduction. We briefly
present two problems arising in numerical probability. The first one deals with stochastic approximation algorithm,
also referred in the literature as Robbins-Monro algorithms, which are simulation based recursive schemes that are
widely used in stochastic optimization. We review results about a.s. convergence, strong and weak convergence rates
and present some applications in mathematical finance. The second one concerns several problems related to the
discretisation of stochastic processes. We present the main results available in the literature and the different tools to
obtain them, with a special emphasis on the weak discretisation error.

Chapter 2 deals with some contributions to risk management in financial and energy markets. It summarises the
results contained in [5] and [6]. First, we study theoretical and computational aspects of risk minimisation in financial
market models operating in discrete time [6]. To define the risk, we consider a class of convex risk measures defined
on LP in terms of shortfall risk. A dynamic programming principle in a non-Markovian framework is established,
under mild assumptions, namely the absence of arbitrage opportunity and the non-degeneracy of the price process.
Moreover, we provide a probabilistic algorithm to compute the optimal dynamic strategy using optimal quantization
and analyse the global error between the true value function and the approximated one.

As an alternative method to simulation based recursive importance sampling procedure to estimate the optimal
change of measure for Monte Carlo simulations, we propose an algorithm which combines (vector and functional)
optimal quantization with Newton-Raphson zero search procedure [5]. We analyse the error induced by the proposed
procedure and illustrate its efficiency on several examples.

In Chapter 3, we focus on non-asymptotic concentration bounds, deviation estimates and related transport entropy
inequalities for stochastic approximation schemes [7], [8]. Our results include the deviation between the expectation
of a given function of an Euler like discretization scheme of some diffusion process at a fixed deterministic time and its
empirical mean obtained by the Monte-Carlo procedure as well as the deviation between the value at a given time of a
stochastic approximation algorithm and its target. Under suitable assumptions both concentration bounds turn out to
be Gaussian [7]. In order to obtain different non-Gaussian concentration regimes, one has to quantify the contribution
of the diffusion term to the concentration regime [8]. We also derive a general non-asymptotic deviation bound for the
difference between a function of the trajectory of a continuous Euler scheme associated to a diffusion process and its
mean. Finally, we obtain non-asymptotic bound for stochastic approximation with averaging of trajectories. Notably,
it is shown that averaging a stochastic approximation algorithm with a slow decreasing step sequence provide the
optimal concentration rate.

In Chapter 4, we present a class of multi-level and multi-step Richardson Romberg extrapolation methods for
stochastic approximation algorithms [9], [10]. In a first part, we extend the scope of the multilevel Monte Carlo
method recently introduced for the expectation of a given function of some diffusion process to the framework of
stochastic optimisation by means of stochastic approximation algorithm. A central limit theorem is proved and
the possible optimal choices of step size sequence are provided [9]. In a second part, we also extend the well-
known Richardson-Romberg extrapolation method for Monte Carlo linear estimator to the framework of stochastic
approximation algorithm [10]. We illustrate the method to the estimation of the quantile of diffusion processes.
For both methods, numerical results confirm the theoretical analysis and show a significant reduction in the initial
computational cost.

The next chapters are related to the second part of my research work which focuses on Markovian perturbation of
stochastic processes and its application.

Chapter 5 is dedicated to two approximation problems [12], [11]. We begin by a brief presentation of the parametrix
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CHAPTER 0. OUTLINE OF THE MANUSCRIPT

method “a la Mc Kean and Singer” in the framework of diffusion processes. This perturbation method is a classical
technique in PDE theory to construct the fundamental solution to an elliptic or parabolic PDE. Our presentation here
is based on probabilistic arguments. We also briefly present its discrete counterpart when one considers discretisation
schemes of stochastic processes.

In the second part of this chapter, we consider a discrete version of the parametrix technique that we apply in order
to study the weak approximation error of a one-dimensional skew diffusion with bounded measurable drift and Holder
diffusion coefficient by an Euler-type scheme, which consists of iteratively simulating skew Brownian motions with
constant drift. First, we establish two sided Gaussian bounds for the density of this approximation scheme. Then, a
bound for the difference between the densities of the skew diffusion and its Euler approximation is obtained under the
same assumption [12].

In the third part, we study the asymptotic expansion of a Markov semigroup with respect to a small parameter
[11]. The method proposed combines a perturbation approach of Markov semigroup and Malliavin’s calculus. We
study two applications. In the first one, heat kernel expansions of some hypo-elliptic diffusion processes are revisited.
In the second one, we obtain an asymptotic expansion of the transition density of a skew diffusion process with small
skew.

Chapter 6 is divided into two parts. In the first part, we focus on the regularity of the law associated to the
first hitting time of a threshold by a one-dimensional uniformly elliptic diffusion process and to the associated pro-
cess stopped at the threshold [13]. We present explicit expressions for the corresponding transition densities and
studies their regularity properties up to the boundary under mild assumptions on the coefficients. Some Gaussian
upper-estimates for these densities (and their derivatives) are also established. Our construction allows to obtain a
probabilistic representation that can be used for the construction of an unbiased Monte Carlo simulation method and
also to derive some integration by parts formula.

In the second part, we investigate the weak existence and uniqueness for some SDEs with coefficients depending on
some of its path-functionals. A general method is developed in order to deal with a process whose law is singular with
respect to the Lebesgue measure. We illustrate our approach on two examples: a diffusion process with coefficients
depending on its running local time and a diffusion process with coefficients depending on its running maximum. We
also construct the associated transition density and establish some Gaussian upper-estimates.
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Chapter 1

Introduction : On two problems arising in
numerical probability

In this introductory chapter, we briefly present two problems arising in numerical probability. The first part deals with
a brief presentation of the stochastic approximation algorithm theory. Since their introduction in the seminal paper of
H. Robbins and S. Monro |117] , these simulation based procedures are widely used in various fields such that stochastic
optimisation or zero search problems. The stochastic approximation theory provides various theorems that guarantee
the a.s., weak and/or strong convergence rates towards the desired target. We present here some results related to the
a.s. convergence, known as the Robbins-Siegmund theorem and the ordinary differential equation (ODE) method. We
provide the key points for their proofs. Then, we review strong and weak convergence rates. Such algorithm satisfies
a central limit theorem (CLT) with a rate that depends on the step sequence. Finally, we present some applications
in mathematical finance.

In the second part, we briefly present several problems related to the discretisation of diffusion-jump type stochastic
processes. We distinguish between strong and weak approximation since these two problems are of different nature
and require different mathematical tools for their study. We first investigate the strong approximation error which is
related to the error between the paths of the process and of its approximation scheme. Then, we focus on the weak
approximation error which is the error between the law of the process and of its approximation scheme. This error
is often estimated on a class of test functions. Since the pioneering paper of Talay and Tubaro [122], we know that
there is a strong connection between the weak approximation error and the solution of the underlying parabolic linear
partial differential equation (PDE) via the Feynman-Kac representation.

We try to gather major results obtained the past thirty years since they will be useful in order to understand some
of the next chapters.

We will focus on the weak approximation and the mathematical tools needed in order to study the resulting error.
More precisely, we will distinguish between the two following cases: when the test function and the coefficients of the
stochastic differential equation are smooth; when the process is non-degenerated. This will be the topic of Section
in Chapter [5 which deals with the weak approximation error of a skew diffusion by an FEuler-type scheme.

We briefly present the Multi-level Monte Carlo method developed by Giles |48] which allows to significantly increase
the computational efficiency of the Monte Carlo method for the computation of the expectation of a non-simulatable
random variable. We extend the scope of this method to the framework of stochastic optimisation by means of
stochastic approximation algorithm in Chapter [4]

We conclude this chapter by presenting an unbiased simulation technique for stochastic differential equations based
on a probabilistic representation of the parametrix technique that has been recently developed Bally and Kohatsu-
Higa [7]. In Chapter @, we will propose a similar probabilistic representation for hitting times and associated killed
process of one-dimensional elliptic diffusions.

1.1 Stochastic approximation algorithm

1.1.1 Introduction

In applied mathematics, one often has to numerically solve some optimisation or zero search problems. The former
problem can often be cast into the latter one when one faces a convex optimisation problem. Some commonly
encountered examples are the computation of the quantile at level « € (0, 1) of probability distribution, in mathematical
finance the extraction of implicit volatility or the minimisation of a convex function with respect to a parameter (e.g.
quantity of assets in a portfolio, minimisation of the variance, etc).

11



CHAPTER 1. INTRODUCTION : ON TWO PROBLEMS ARISING IN NUMERICAL PROBABILITY

In a deterministic framework, the zero-search recursive procedure has the following dynamics
9n+1 = Qn - FYn-&-lh(en); n=0 (11)

where h : R? — R is a continuous function satisfying a sub-linear growth assumption and (7, ),>1 is a non-negative
non-increasing step sequence such that an 1 Yn = +00.

Under an appropriate mean-reverting assumption on the function h, one shows that the deterministic sequence
(0n)n>1 defined by is bounded and eventually converges toward a zero 6* of h. More precisely, assuming that
the following mean-reverting assumption

O —0%h0))y=0, VO+06* (1.2)

and that {h = 0} = {#*}, then one proves that (6,,),>1 converges towards 6* as n — o0. An example of such procedure
is the Newton-Raphson zero-search algorithm obtained by choosing h := Dh~'h and 7, = 1.

However, in a stochastic optimization framework as described in the examples mentioned above, one does not have
straightforward access to the value of h(6) because h is given by the expectation of some given random function, say

h(0) := E[H(0,U)]

where H : R? x R? — R? is a measurable function and U is an R%-valued random variable with law p € P(RY). Here
it is implicitly assumed that one can easily simulate according to the law p and has direct access to the value of the
function H. One simple idea could be to simply approximate the above dynamics by using at each iterate a
Monte Carlo approximation of h(6,,). A more interesting idea consists in doing both simultaneously by using on the
one hand H(6,,U™*Y) instead of h(6,) and on the other hand by letting the step sequence goes to zero not too
fast to take into account the additional variance induced by this randomisation. Hence, one is led to introduce the
following dynamics

Oni1 = On — Yoy 1 HO,, UMDY 0 >0 (1.3)
where (U ("))n>1 is an i.i.d. sequence of random vector distributed according to p on a given probability space (2, F,P)

and 6, is an R%valued random vector independent of the sequence (U (n))ngl.

Ezxample:
As a first simple example, consider the empirical average (U™)p>1 of i.i.d. and integrable samples (U(),,»; defined
by U™ := %ZZ=1 UK U% = 0. We observe that it satisfies the following dynamics

gntl — g 1 (Un _ U(n+1)) _ " —
n+1
where H(0,U) := §—U and h(f) := 6—E[U], so that §* = E[U]. Moreover, it is well-known that the sequence (U"),,>1
given by converges a.s. to the unique zero of h. When one knows how to sample from the distribution pu, this
procedure is easy to implement contrary to its deterministic counterpart . We see that stochastic approximation
appears as a natural extension of the Monte Carlo method to solve optimisation or zero search problems when the
function of interest h writes as the integral of some function against a law p from which it is easy to sample.

Let us make an important remark. Writing H(6,,, U™*Y) = h(6,) + AM, 4, where AM, 1 := H(f,,U"*1) —
h(6,) is a martingale increment with respect to the natural filtration {F,}, F,, := (6, UM, --- ;U™), n > 1 induced
by the algorithm, we observe that the dynamics can be seen as a perturbed Euler scheme (with decreasing step)
of the ordinary differential equation (ODE)

H(@™, Ut >0 1.4
n+1 ( ) )7 n b ( )

0 = —h(6) (1.5)

From this connection it may be motivating to use some ODE techniques such that existence of a Lyapunov function
in order to study the asymptotic behaviour of the recursive scheme . A Lyapunov function for the ODE is
a function L : R — R, such that any solution t + 6(t) satisfies t — L(6(t)) is non-increasing. Assuming that L is
continuously differentiable, it is mainly equivalent to the condition (VL,h) > 0 since dL(0(t)) = (VL(0(t)),0(t)) =
—(VL,h)(6(t))dt. Finding a Lyapunov function may be a difficult task and there is no result that guarantees its
existence! Usually it requires a deep knowledge and understanding of the underlying dynamic ([L.5). However, if
such function does exist, the system is said to be dissipative. We will have in mind two commonly encountered
situations:

e when one faces a convex optimisation problem, the recursive scheme (|1.3)) is usually a stochastic gradient algo-
rithm. The function L is the object of interest that is one has h = VL and one is computing a minimum of
L.

e Unfortunately, as is so often the case when dealing with stochastic approximation algorithm, the function L is
not identified a priori and one has to find a Lyapunov function associated to the function h, if such function
exists!
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CHAPTER 1. INTRODUCTION : ON TWO PROBLEMS ARISING IN NUMERICAL PROBABILITY

1.1.2 Standard a.s. convergence results

We now turn our attention to results related to the a.s. and/or LP convergence of the recursive procedure . We
first provide a general result known as Robbins-Siegmund Lemma based on the existence of an a priori Lyapunov
function from which we will deduce two corollaries that ensures the a.s. (and L) convergence of the sequence (6,,)n>1-
We refer the interested reader to the monographs of Benveniste and al. [19], Duflo [39] and Kushner and Yin [81]
among others for developments and a more complete overview in stochastic approximation theory.

Theorem 1.1.1 (Robbins-Siegmund Lemma). Assume that there exists a continuously differentiable function L :
R? — R, such that VL is Lipschitz-continuous and

IVL?<C(1+1L) (1.6)
and such that the mean-reverting assumption holds
(VL,h) > 0. (L.7)
Assume furthermore that H satisfies the following sub-linear growth assumption
Vo eRY, E[H(6,U))%]? < C(1+ L(6))?, (1.8)

for some positive constant C.
Let (vn)n=1 be a positive step sequence satisfying the following decreasing step assumption

Z Yo =00 and Z 72 < 0. (1.9)

n=1 n=1

Finally assume that 0y is independent of the innovation sequence (U™), =, and satisfies E[L(0y)] < 0. Then, the
sequence (0, )n>1 defined by the recursive procedure (|1.3)) satisfies the following properties:

1. the sequence (0, — 0p_1)n>1 converges a.s. and in L?(P) to zero as n goes infinity,
2. the sequence (L(0,,))n>1 is L' (P)-bounded,

3. L(0,) = Ly € LY(P) a.s. as n — 0.

4o 2ins1 WlV LAY (0p 1) <0 a.s.

Proof. The key ingredient of the proof is the convergence theorem for non-negative super-martingale. We only sketch
the proof. Since VL is Lipschitz-continuous, by the fundamental theorem of calculus, one has

L(0py1) < L(0n) + 7n+1<VL(9n)v Ons1 — On) + C|9n+1 - 9n|2

= L(05) — Yn+1{V L, h)(0n) — Yn+1(VL(0n), AMp11) + 0772:,+1|H(9m ytn+h ‘2 (1.10)
where we recall that AM, 1 = H(0,,U™+)) — h(6,,) is an {F,}-martingale increment. Using the above inequality
together with assumptions (1.7), (1.8) and (1.9), one proves that L(6,) € L*(P) so that AM, 1 € L?(P), n = 0. The

key idea is to introduce the following sequence
_ L(an) + Zzzl ’Yk<VL7 h>(0k—1) + CZk;n.;_l 7]%
! [Tiea (1 +C7) 7
with Sg = L(6y). From assumption (|1.7)) and using ([1.10]), one proves that (S, ),>0 is a non-negative super-martingale
so that it converges a.s. toward an integrable random variable Sy,. As a by-product of this convergence, one deduces

the L'-boundedness of (L(0p))n>0 and that >} _ v.(VL, h)(0—1) < o a.s. Then one proves that L(6,) — Lo, a.s.
and ZnZOEHen-‘rl - en‘Q] < 0. -

n=1

Remark 1.1.1. We also want to mention that when the innovation sequence (U™), =1 is not i.i.d. but only {F,}-
adapted, the recursive procedure (L.3)) can be written

0n+1 =0, — ’Yn-‘rlh(on) - ’Yn-&-l(AMn-&-l + Tn+1)

where 741 = h(0,) — E[H(0,, U™V |F,] is an Fyy1-measurable remainder term. In this case, assuming that

Z Yolrn|? < 0,  a.s.

n=1

one still proves that the conclusions of the Robbins-Siegmund Lemma hold.

13



CHAPTER 1. INTRODUCTION : ON TWO PROBLEMS ARISING IN NUMERICAL PROBABILITY

The next result allows one to conclude that the recursive scheme (|1.3)) converges toward its target 6*.

Corollary 1.1.2 (Robbins-Monro & Stochastic gradient algorithms).

(1) [Robbins-Monro algorithm| Assume that the function of interest h satisfies
VO # 60%, (6 —0% h(d)) >0, (1.11)

and
Vo eRY, E[H(0,U)*]2 <C(1+10]) (1.12)

with Oy € L*(P) independent of the innovation sequence (U™),=1. Assume that the step sequence (yn)n>1 satisfies
(1.9). Then, the sequence (0y,)n>1 defined by (L.3) converges a.s. to 6%, which satisfies {h = 0} = {0*}.

(2) [Stochastic Gradient algorithm| Assume that h = VL for a conver and continuously differentiable function L
satisfying (L.6), limjg o L(0) = o0, {VL = 0} = {6*}. Assume that E[|H(0,U)|*] < C(1+ L(0)) and that L(6) €
LY(P). Assume that the step sequence (Yn)n>1 satisfies (1.9). Then, 6% = argmingega h(0) and (0,,)n>1 converges a.s.
toward 0*.

Remark 1.1.2. There is also an alternative to the stochastic gradient algorithm known as the Kiefer- Wolfowitz (K. W.)
procedure. In this approach, the function of interest h is given by h(0) = E[0gH (0,U)]. In some practical implemen-
tations, the local gradient dpH(0,U) may be difficult to simulate because of Malliavin weights, log-likelihood ratio,
ete, whereas the computation of H(0,U) is easy. The K.W. algorithm combines the recursive stochastic approzimation
algorithm with o finite difference approach to differentiation. Based on the following approximation of the local gradient

H(0 +n'e;,U) — H(O —ne;, U)

00, H(0,U) ~ T

where (e;)1<i<q denotes the canonical basis of R and || << 1, (n")1<i<a € RY, one introduces the following recursive

scheme | |
H(0p + 0ty UMDY — H(O,, — i1, UMHY)

2n2+1
is a step sequence satisfying (1.9) and (n%),>1, 1 <i < d, are d non-negative step sequences satisfying

R , 1<i<d, (1.13)
where (Yn)n=1
for1<i<d, . 4 4

M= 0, Yimi=o and ) (w/m) < .

n=1 n=1

We refer to the monograph Benveniste and al. [19] for a result about the a.s. convergence of (1.13).

We conclude by the ODE method which establishes a link between the recursive procedure and the underlying
ODE (1.5)) as mentioned above. The main improvement provided by the ODE method is to study the asymptotic
behaviour of the sequence (6,,),>0 (assumed to be bounded a priori) from a sequence function (6));,,, n > 1 defined
by linear interpolation. Importantly, we will not require the mean reverting assumption or the existence of a
Lyapunov function that separates the target 6*. However, the convergence of the procedure will be related to the
asymptotic behaviour of the underlying ODE.

We set Tg = 0 and I';, = >,;'_; 7%. Then we define the cadlag step function (Ggo))go by
0 = 0,, te[ln,Tnii).

and the sequence of time shifted function
0" =60, teR..
For every t € R, we also set N(t) := max {k: I’y < t}. Forevery t € [[';,,T';,+1), the dynamics (1.3 can be written

as follows

I, n
o\ = o\ — f h(O)ds — > v AMy,
0 k=1
which in turn satisfies
TN (o) N(t)
veeR,, 61 =g® —J h(0)ds — Y AM,
0 k=1
t N(t)

1
— o\ - J h(6)ds + f h(0)ds — > Yk AM;.
0 k=1

IS0
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Now by the definition of the shifted function 8(™), one gets

n 0 0 0
0" =6 + o), — 6

T+t
=6 — f h(O)ds + %" (t)
r.,
where Z"(t) := S?::Ft i h(HgO))ds - 2;(1;14{75) Y AMj, is a remainder term.
The next result establishes a connection between the asymptotic behaviour of (6,,),>0 and the asymptotic of the
sequence of functions (6(™),,~¢.

Proposition 1.1.3. Let L : R? — R, be a continuously differentiable function such that VL is Lipschitz-continuous,
limg— o0 L(0) = +00 and satisfying (1.6). If || < C(1 + L)2 and (VL,h) is a non-negative lower semi-continuous
function then the limiting values of (0n)n>1 is a connected component of {{VL,h) = 0}.

1.1.3 Convergence rate

We now present some results related to the convergence rate of the recursive scheme in the i.i.d. framework.
In standard settings, a stochastic algorithm converges to its target at rate /v,, which suggests to choose v, = v/n,
v > 0, under assumption . Under a strong mean-reverting assumption, we will see that this is a sharp non-
asymptotic L*(P), which is consistent with the Monte Carlo method. In Chapter [3|, we will see that this rate also
appears when one investigates concentration inequalities, that is non-asymptotic deviation estimates between (6,)n>1
and its target. Then, we present the standard central limit theorem (CLT) which establishes that the renormalised

sequence /7y * (6,, —6*) converges in distribution to a normal distribution with mean 0 and a covariance matrix based
on E[H(6*,U)H(6*,U)"].

Proposition 1.1.4. Assume that the assumptions of C’omllary (1) (Robbins-Monro algoirthm) are satisfied.
Assume that there exists a > 0 such that the strong mean reverting assumption holds

VO e R, (0 — 6% hB)) = ald — 6% (1.14)
Then, there exists a positive constant C', such that one has
E[|6, — 0*[*] < Cyn, n>1,
for the two following step sequences:
o v, = fy/nﬁ, Be(1/2,1),n=> 1.
o Y =7/n, withy > 5. n>1.

The above result suggests a weak rate given by \/7, *. The study of the asymptotic distribution of the renormalised
sequence \/7n (6, — 6*) led to a considerable and expanding literature starting from some pioneering (independent)
works by Bouton and Kushner in the early 1980 until recently, see e.g. Fort [43] or Lelong [90]. We give here a result
obtained by Pelletier |[113] which has as the main advantage to be local in the sense that the CLT holds on the set
of convergence of the algorithm to an equilibrium which makes possible a straightforward application to multi-target
algorithms.

Theorem 1.1.5 (Central limit theorem). Consider the sequence (6y,)n>1 defined by (1.3)) and let 6* € {h = 0} be one
possible target. Assume that the following assumptions hold:

(1) Attractivity: 6% is a strong attractor for the underlying ODE, that is h is twice continuously differentiable at
0* and Dh(0*) is an Hurwitz matriz, i.e. all its eigenvalues have positive real parts. We denote by A, the
etgenvalue with the lowest real part.

(2) Regularity of H: The function H satisfies the following regularity and growth control property
0 — E[H(0,U)H(0,U)"] is continuous at 0* and 0 — E[|H (0, U)|**°] is locally bounded on R?

for some § > 0.
(3) Non-degenerate asymptotic variance: The covariance matriz
Y* = E[H(0*,U)(H (6*,U))"]
is a positive definite matrix.
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(4) Choice of the step sequence: The step sequence is given by

v
’YnZW, a,y>0

for some B € (%, 1], with the additional constraint, when B = 1,

1

_—. 1.15
77 9RO (1.15)

Then, the a.s. convergence is ruled on the event {6,, — 0%} by the following stable central limit theorem
Yo 2 (O — 0%) = N(0,T), (1.16)

where
OO 0%)—1d Dh(§%)—1d
F::f (e~(Dh(O*) = 3)s byt ~(Dh(O*) = 33 g
0

with c =0 if B # 1 and ¢ = v if B = 1. Moreover, the convergence is stable, that is, for every bounded continuous
function f and every A € Fy, one has

E[Lg, ~ox)naf(\/ 7 (0n — 0%)] — E[Ljg, soxynaf(DZC)], n— o0
where ¢ ~ N(0,1).

We see that the best rate of convergence is achieve for 5 = 1 but we have an additional constraint on the
constant vy depending on the unknown matrix Dh(6*). In practical implementations, one does not “observe” such
constraint but we remark that the algorithm spends most of its time exploring the state space. The CLT regime
occurs when the algorithm gets trapped after the mentioned search phase.

In order to circumvent this (theoretical) constraint on the step sequence, one can use the averaging principle, also
known as Ruppert & Polyak principle in stochastic approximation community, in order to achieve (for free!) the best
convergence rate. The original motivation was to smoothen the behaviour of the original procedure by considering
the empirical mean of the past values up to the nth iteration rather than the computed value at the nth iteration. If
one devices this averaging procedure with a slow decreasing step sequence (v,)n>1 then one reaches for free the best
possible rate of convergence.

More precisely, we consider the step sequence v, = (v/(a + n))?, with 8 € (1/2,1) and n > 1 and define the
empirical mean

By, - 1,
On = OnT =0h1— E(en—l —0n), n=1,

of the sequence (6,,),>0 defined by (1.3). We observe that by Cesaro’s lemma, one has 0,, — 0* a.s. if §,, — 0% a.s.
as n — o0. Then, under the assumptions (1), (2), (3) of Theorem one has

Vi, — 6%) = N(0,T%), n— +o0

where

I'* ;= Dh(6*)"'S*(Dh(6*)") !

is the optimal asymptotic covariance matrix.

From a practical point of view, one should not start averaging the initial procedure at the very beginning but wait
until the exploration phase is finished.

We have seen some basic results related to a.s. convergence and convergence rate of stochastic approximation,
whilst other interesting aspects have purposely not been cited. For instance, we will mention traps, that is parasitic
equilibrium such saddle points local maxima, see e.g. Brandiére and Duflo [25], Pemantle [114] for some aspects on how
an excited enough parasitic equilibrium point is a.s. not a possible limit point for a stochastic approximation algorithm.
We also mention stochastic approximation with averaging innovation where the innovation sequence (U(),>; is no
longer i.i.d. but satisfies some mild ergodic or simply averaging assumption, thus allowing for deterministic sequence
Quasi Monte Carlo stochastic approximation or to plug exogenous data, like market data, see Laruelle & Pages |87
and the references therein.

Example: A Robbins-Monro algorithm for quantile estimation
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We conclude this section by a simple illustration of the mentioned results to the recursive computation of the
a-quantile (or VaR,,) of a real-valued random variable X, with law p, defined as a solution 8* to the equation:

P(X<0) =a < h0):=EH®X)]=0, ac(0,1)

with H(0,z) := Ijz<gy — @ and h(f) = P(X < 0) — a. Since X is finite, a solution to the above equation always
exists. If the probability distribution function of X is increasing, this solution is unique. For sake of simplicity, we
will assume that this is case. Let (7,)n>1 be a deterministic positive step sequence satisfying . The dynamics of
the Robbins-Monro algorithm is given by

9n+1 =0p — 7n+1H(9naX(n+1))7 n=0

where 0y € L?(P) and is independent of the i.i.d. innovation sequence (X(),~; (with common law z). We introduce
the Lyapunov function L(6) := 3| — 6*|*> and remark that

(VL h)(0) = (0 — 0%)(P(X < 0) —P(X < 0%)) >0, V0 0%

since 8§ — P(X < 0) is increasing. Moreover, the function H being bounded assumption is clearly satisfied.
Hence, by Corollary the sequence (6,,)n>1 converges a.s. toward its target 6*.

In order to investigate the weak rate of convergence, we assume that X admits a continuously differentiable density
px satisfying px (6*) > 0. Our aim is to apply T heorem Assumptions (1) and (2) are clearly satisfied. Moreover,
by the very definition of 6*, one has X* = E[H (6*, X)?] = a(1 — «) > 0. In order to achieve the optimal asymptotic
rate we set 7, = v/(a + n), with @ > 0 and v > 1/(2px (6*)). From Theorem [I.1.5] one gets

Vn(0, —0*) = N(0,T), n— o

with )
i

2ypx (0*) =1
1

This asymptotic variance is minimal for v = PrCE) with an optimal value I' = «(1 — «)/p% (6*). However, in

I'=ao(l—-a)

practical implementations, one does not have access to the value of 6% or the density of X. As a consequence, one
is naturally led to consider the averaged form of the algorithm although it is completely satisfactory for a practical
point of view. When one tries to implement the stochastic approximation scheme (6,,),>1, one observes a chaotic
behaviour with a slow convergence, specially when « ~ 1, say o > 95%. In [1] and [2], we proposed a R.M. algorithm
to compute the quantile and the expected shortfall and improved its performance by combining it with a stochastic
approximation based importance sampling technique.

In Chapter 2, we propose an application to the recursive computation of the shortfall LP-risk of a financial portfolio
and the recursive computation of risk minimising strategies.

We refer the interested reader to the Phd dissertation of Laruelle [86] for some applications of the stochastic
approximation theory to the optimal splitting of orders across liquidity pools such that dark pools, to multi-arm
clinical trials by urn models. We also mention the monograph of Pageés [110] for stochastic approximation based
procedures for parameter implicitation and calibration of financial models, or the computation of optimal quantizers
by e.g. the Competitive Learning Vector Quantization (CLVQ) method.

1.2 Discretisation and simulation of stochastic processes

1.2.1 Motivation

In this section, we consider an R?-valued stochastic differential equation (SDE in short) with dynamics

¢ ¢
Xi=x+ J b(s, Xs—)ds + f o(s,Xs—)dZs, t=0, (1.17)
0 0

where the coefficients b : Ry x R* —» R4, 5 : R x R? —» R?®@R? are bounded measurable in time, Lipschitz-continuous
in space (uniformly in time) and where (Z;):>0 is a ¢-dimensional Lévy process with Lévy-Khintchine decomposition
given by

Juf?

Efexp(iu, Z))] = exp(tp(u)),  d(u) = exp(=—- + JRQ (exp(iu, 2)) — 1 = iCu, 2)Igj21<1})v(d2)). (1.18)
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In other words, the SDE (|1.17)) is driven by a process Z that is given by the sum of a g-dimensional Brownian
motion and pure jump process N of Lévy measure v.

Such dynamics appears in various fields. This is so because of the strong connection between SDEs and PDEs (see
e.g. Bass [14], Friedman [45]) via Feynman-Kac representation formulas. In various situations, the unique classical
solution of a linear parabolic or elliptic PDE can be expressed as the expectation of a (path) functional of the SDE
(1.17)).

When Z is a g-Brownian motion, the diffusion process is commonly used to provide probabilistic represen-
tation of the heat equation in non-homogeneous media. It is also commonly used to model the dynamics of assets in
financial and energy markets. In [4], we proposed a joint model of Gas and electricity spot prices based on Ornstein
processes with parameterized diffusion coefficients that captures the most salient statistical properties observed on
data. When Z is a pure jump process, the dynamics allows to reproduce some stylised features observed in
energy markets such that spikes in the spot prices, see e.g. Benth and al. [18]. In mathematical finance, the price of
an option is usually seen as the solution of a parabolic PDE in which the terminal condition is given by the payoff.

In order to compute a quantity related to the law of the process with dynamics , which is not known in
most applications, one usually considers a discrete approximation scheme. A natural scheme that can be implemented
very easily is the Euler-Maruyama scheme that we now describe. On the interval [0,T], T > 0, for a given time step
h=T/N >0, N € N* we introduce the time grid ¢; = ih, i = 0,--- , N and the continuous Euler scheme (X[L)te[O,T]

defined for ¢ € [0, T] by
t

Xth=x+J
0

t

b(p(s), X}}(oy)ds + fo o(¢(s), X}y))dZs, =0, (1.19)
where ¢(s) = sup {t; : t; < s}. In other words, the Euler scheme is obtained by freezing the coefficients to the current
discretisation point in each small interval [¢;,¢;11]. Let us mention that in the case where Z has Brownian and jump
parts, it is not always possible to simulate the increments (Z; — Zs)o<s<t<r of the innovation process so that it is not
always possible to implement the scheme . However, it is still possible to provide an analysis of the error, see
Section In many important cases, one can implement this scheme for instance when Z is a stable process or
Gamma process, etc.

We will present two different results related to the approximation of (X¢).eo,7] solution to the SDE by the
scheme (Xth)te[o,T] given by . Approximation of stochastic processes goes back to the works of Stroock and
Varadhan. They investigated approximation of the distribution of solutions to martingale problems by Markov chains.
We refer the interested reader to Chapter 11 in [120] and to [119] for Dirichlet boundary problems.

The pionnering works of Milstein [103], |[104] investigated the strong approximation error, that is the LP-error
between the path of (X)o7 and the path of its approximation (XM)i=0. Then, Misltein |105| and Talay [121]
proved that the weak error, that is the error between the law of the random variable X7 and the law of X%, is of
order h under some regularity assumptions.

1.2.2 Strong error
The strong error associated to the process (1.17) and its approximation scheme (|1.19) is the quantity E[supg,<7 | X¢ —

Xth|p]% for p > 0. When the underlying innovation process Z is an R%-valued Brownian motion, one has the following
result:

Proposition 1.2.1. Suppose that the coefficients b and o of the SDE (1.17)) satisfy the following regularity condition:
V(s t) € [0, T, V(z,y) e R, |b(t,x) — b(s,y)| + |o(s,2) — ot y)| < Ot — s|* + |z — y]) (1.20)
where o € [0, 1] and for some positive constant C. Then, for all p > 0, there exists a positive constant C,, such that

E[ sup | X, — XP]» < Cp(1 + |a|) ho" 3. (1.21)

0<t<T

As a consequence, we remark that the Holder regularity time exponent « rules the strong convergence rate of the
Euler approximation scheme as soon as a < 1/2. The key ingredient for the proof of Proposition is to use a
Gronwall Lemma to upper-bound E[supy<,<r |X; — X}*|P]'/? by the LP-norm of the increments X, — Xg(s) of the
diffusion. As a straighforward corollary, we deduce that the Euler approximation scheme converges a.s. toward

the diffusion process at a rate 8 € [0, a A %), namely

1 _
Vﬁe[(),a/\i), h=? sup X, — XM -0, as.

0<t<T
as h | 0. The proof follows from the LP-convergence Proposition and an argument using Borel-Cantelli Lemma.
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In order to compensate this slow convergence rate Milstein introduced in |104] a new scheme in order to achieve
the usual strong error of order h that appears in the deterministic framework. In dimension d = ¢ = 1 its expression
is simple and it can be easily implemented provided that b and ¢ have enough regularity. In higher dimension, some
theoretical and simulation problems make its use more questionable. The key idea is to use an It6-Taylor formula in
the stochastic integral between to discrete times of the grid (which behaves like v/A and is the leading term in the
strong approximation error) in order to introduce higher order terms in the dynamics of the scheme . We refer
to the book of Kloeden and Platten [71] for an overview about higher order schemes.

Similar arguments can be used in order to quantify the strong error with the same rate of convergence when the
innovation process Z is a square integrable Lévy process, see e.g. Kohatsu-Higa and Protter [72]. We also mention
the work of Bruti Liberati and Platen [27] where the authors investigate the strong approximation error for pure jump
SDEs, propose jump-adapted time discretizations and higher order scheme (in the strong sense) when the intensity of
the jump process is finite ¥(R?) < o0.

1.2.3 Weak error

In many situations, like the pricing of European options in mathematical finance, an Euler discretisation scheme
(X{")iefo,) such that (1.19) is introduced to evaluate quantities writing as E[F((X;)[o,7])] where F : C(R;,R?) — R
is a path functional. In order to evaluate such quantities, one is led to use the Monte Carlo estimator

M
1 i
E}y = Vi Z F((X)" Jeefo,r]); M =1
=1

where ((Xth’i)te[o,T])lsisM are i.i.d. samples of the path of the Euler scheme (Xth)te[O,T] defined by (1.19).

The global error between E[F((Xt)e[0,77)], the quantity to estimate, and its implementable approximation EY,
can be decomposed as follows:

5glob = (]E[F((Xt)te[o,T])] - E[F((Xth)tE[O,T]]) + (E[f((Xth)tE[O,T])] - E]}\L4)
= &k + &Y. (1.22)

The term £ corresponds to the statistical error. If F((X[")ejo,r)) € L*(P), the statistical error is of order o /v/AM
in L2(PP) and the renormalised statistical error satisfies a CLT. One may also be interested in non-asymptotic deviation
estimates of this quantity in order to device non-asymptotic confidence interval. We will come back to this particular
topic in Chapter

The term 5"}[, corresponds to the weak error and has been widely investigated in the literature since the seminal
work of Talay and Tubaro [122] for the case F((X¢)teo,r]) = F'(X7). One may be interested in quantifying this error
for other type of functionals. We will briefly present some results related to the two functionals:

L F((Xt)eo,ry) = F(Xr)
2. F((Xt)eeqo,r) = F(r AT, X7 47), where 7 :=inf {t > 0: X; ¢ D} for a domain D < R<.

The first case corresponds to the standard Cauchy problem since the quantity to estimate is related to the unique
classical solution of linear parabolic PDE with terminal fonction F'.

The second case corresponds to the Cauchy-Dirichlet problem since the quantity to estimate is related to the
solution of linear parabolic PDE with Dirichlet conditions.

Other type of functional can be discussed such that F(maxo<i<r X, X7) OF F(Sg I;x,>0ydt, X7) both in dimension
d=q=1.

Still in the one-dimensional diffusion case d = ¢ = 1, we mention the works of Alfonsi, Jourdain and Kohatsu-
Higa [2], |3] where the Wasserstein distance between the laws of (X¢)¢e[o,7] and (Xth)te[O,T] defined by

Wi(L(X), L(X")) = sup [E[F(X")] - E[F(X)]]
F:C([0,T],R)>R, Lip(F)<1

is investigated by means of a pathwise optimal transport technique. Here Lip(F') denotes the Lipschitz constant of F
(with respect to the sup norm on C([0,T],R)). It is proved that this quantity is upper-bounded by h3=¢, Ve > 0, which
is an intermediate rate between the strong error and the usual weak error rates. In the multi-dimensional diffusion
case, when the coefficients b and ¢ are time-homogeneous C?, bounded together with their derivatives up to the order
2 and uniform ellipticity holds, the p-Wasserstein distance is shown to be of order 4/log(N)/N.
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The Cauchy problem for diffusion processes

For the standard continuous Euler scheme , the weak discretisation error is of order h, provided the coefficients
b,o and the test function F are C* with the same polynomial growth assumption. The key idea [121], |122] consists
in observing that the function u(t,z) = E[F(X7)|X; = 2] = E[F(X%")] (note that (Xt)te[o,r] is a Strong Markov
process under this assumption) is a classical solution to the parabolic linear PDE

{ (@ + L)u=0, (t,x)e[0,T) xR (1.23)

u(T,z) = F(z),

where £, is the infinitesimal generator associated to (L.17), namely £,F(z) = (b(t,z), VF(z)) + 3Tr(a(t, z) D2F (z)),
for F € CF(R?), where a(t,z) = (00*)(t,z). Under the mentionned assumption on the coefficients and test function
F, one gets that u € C>*([0, T'] x R?) with the following controls on the derivatives: ¥(t,z) € [0, T] x R?, |0idu(t, )| <
Cr(1+ |z[Pi7). We remark that the last controls allow to deduce that |0fd%u(t;, X[')| € LP(P) for any p > 1. The next
step is to introduce the solution of the PDE ([1.23)) as follows

£l += BLF(Xr)] ~ B[FOC)] = ~(E[u(T, X0)] —u(0,2)) = — Y &

with 5‘}}‘/,1‘ = Elu(tit1, X[:H) —u(t;, X')]. From these representation, one applies It6-Taylor formula around the point
(ts, Xth) for i =0,--- , N — 1 using the regularity of u. In order to prove that E‘I}Vz = O(h?), it is necessary to obtain
an expansion of order two in time and 4 in space, the term of order 3 in space vanishes because of the third moment
of the underlying noise is zero.

Let us also mention here that when the Gaussian increments of the scheme are replaced by more general (possibly
discrete) random variables having the same covariance matrix and odd moments up to order 5 as the standard Gaussian
vector of R?, it can be checked that the error expansion at order h still holds for b, o, F' smooth enough.

If we keep on that direction by doing an expansion at order 3 in time and 6 in space, observing that the odd
moments of the underlying Gaussian vector vanishes, one gets

&y = Crh + O(h?),

where C1 is an explicit constant independent of h. According to Talay and Tubaro [122], when b, ¢ are C* with
bounded derivatives of all orders and F' is C* with polynomial growth together with its derivatives, then for each
integer L > 1, the expansion

L
&y = >, Crh' + O(" ) (1.24)
=1
holds.

On can take advantage of the previous expansion in order to perform a Richardson-Romberg extrapolation. This
idea was originally introduced in |122] and then deeply investigated by Pagés in [109]. One considers the strong
solution X? of a “copy” of equation , driven by a second Brownian motion W?2 defined on the same probability
space (€, A,P). One may always choose such a Brownian motion by enlarging the space Q if necessary.

Then one counsiders the continuous Euler scheme with a twice smaller step h/2, denoted by (th ’h/z)te[o,T] of the

diffusion X2. Then combining the two time discretisation error expansions associated to X'" (related to the first
Brownian motion W) and X%//2, we get

02
E[F(Xr)] = E[2F(X2"?) = F(Xz")] = ZFh* + O(h")
so that the global quadratic error becomes

Var(2F(X2"?) — F(X2"
M

1< 2,h/2,(3) 1,h,(4) ’ C7 5o ) 5
B | (BUPCe] - g 2P0 — POt ) | = (Gt + o)

If one follows a naive approach by simulating X2//2 and X'"/2 independently, this corresponds to two independent
Brownian motion W1, W2, then one increases the variance by a factor 5 (asymptotically) since Var(2F (X;’h/ 2) -

F(X%h)) = 4Var(2F(X%’h/2) + Var(F(X%’h)) — 5Var(F(Xr)) as h | 0. It is shown in [109] that the consistent
choice W' = W? leading to consistent Brownian increments for the two schemes is asymptotically optimal among all
possible choice of Brownian motions W*' and W?2. We will see in Chapter 4] an extension of the Richardson-Romberg
extrapolation method to stochastic optimisation by means of stochastic approximation algorithm.

20



CHAPTER 1. INTRODUCTION : ON TWO PROBLEMS ARISING IN NUMERICAL PROBABILITY

Anyway in order to analyse the weak discretisation error we will always proceed this way. As mentioned above
the key ingredient is to have controls on u and its derivatives and to proceed using [to-Taylor’s formula. This is for
that reason that we require regularity on b, ¢ and F. However, in practical situations the test function F' is not
regular. For instance, in mathematical finance, one often deals with payoff F' that are not regular, e.g. Call option
F(z) = (z — K)4 or digital option F(z) = Ifz> k3.

One can weaken the regularity assumption on F' if one can benefit from the smoothness of the underlying transition
density. More precisely, if the process (Xt);e[o,7] solution to admits a smooth transition density, one can relax
the smoothness assumption on F. Indeed, in this case one has u(t,z) = §, F(y)p(t, T, z,y)dy where y — p(t,T,z,y)
is the density function of the random vector Xf,ix. When the coefficients are time homogeneous, the density is given
by p(T - tvxay)'

However, in order to benefit from this regularising property one has to assume that the operator £ satisfies some
non-degeneracy assumption. One usually considers two type of assumptions: the Hérmander assumption (H) and
uniform ellipticity assumption (UE) of a = oo®.

The Hérmander condition is a sufficient (and is known to be nearly necessary) condition for a second-order linear
Kolmogorov PDE with smooth coefficients to be hypoelliptic, that is, P,Cy(R%,R) < C°(R%, R), for all ¢t € (0,00),
where (P;):>0 denotes the associated Markov semigroup. Note that in the non-hypoelliptic regime, even in the case
of smooth coefficients, there exist counterexamples to regularity preservation. In Hairer, Hutzenthaler, Jentzen [59],
the roughening effect of the noise for non-hypoelliptic linear PDE is exhibited. From the perspective of numerical
probability, this has the consequence that numerical approximations may converge (in the strong and weak sense)
without any arbitrarily small polynomial rate.

Assumption (H): The coefficients b and o are C* and time homogeneous, with bounded derivatives of order larger
than 1 (importantly the functions b and o are not supposed to be bounded). Let Ag = b — %U.VU and A; = oy,

i=1,---,q where 0 = (01, ,0,). For a multi-index o = (a1, , ) € {0, , ¢} we define the vector fields A
by Ai@ = A; for 1 <i < qand Aia’]) = [A;, A?] for 0 < j < g where for two smooth R?-valued vector fields V, W,
[V,W] = VWV — VVW, VV = (d;V%)1<i,j<d, stands for their Lie bracket. The Hérmander condition holds if the
vector space spanned by A%, 1 <i < g, a being a multi-index, at the point z is R%.

Under (H), the density function y — p(T — ¢, x,y) of X%z exists and is smooth. Moreover, if the vector fields

Ay, .-+, Ay satisfies the uniform Héormander assumption (UH), that is if there exists an integer L and A > 0 such
that
Vz e RY, ueiélde | lZ:L<AO‘(m), uy? =\ (1.25)
<

Kusuoka and Stroock [83] provided the following controls on the density. For any integers m, k and any multi-index
a and 8 such that 2m + |a| + |B] < k, there exist an integer M and a non-decreasing function T' — C(T') such that
the following inequality holds:

C(T)(A + |=[™) (— ly — = )

oMo o8 p(t < 0 TCRRE]
104" 0z 0y p(t . )| L+ [y —aP)F P+ a2

(1.26)
Moreover, the inverse of the Malliavin covariance matrix denoted by I';(x) is bounded in any LP(P). More precisely,
for any p > 1, there exists a non-decreasing function C'(T) and an integer k such that

1+ |z|*
tdL

In |10, Bally and Talay take benefit from and in order to extend for hypo-elliptic diffusions
without any regularity on the test function F', which is supposed to be measurable with exponential growth at infinity.
The main quantities that appears in the expansion of the weak discretisation error are Q? = E[@g‘u(ti,XZ)G(X{‘i )]
for a smooth function G with polynomial growth. Roughly speaking, when ¢; is close to 0, say i < N/2, then one
uses in order to control Q. When t; is close to T, one has to use Malliavin’s integration by parts formula
with respect to the random variable XZ which is expected to be non-degenerated with high-probability. We are led
to compare I'? and I'y, where I'} is the inverse of the Malliavin covariance matrix of X" at time #. This can be done
using a localisation argument.

Let us also mention that in general the Euler scheme does not admit a density under assumption (UH). In [11],
Bally and Talay introduced a perturbed Euler scheme which admits a transition density p” and proved an expansion
of the error p — p".

E[|T|*]7 < C(T) (1.27)

Assumption (UE): The diffusion matrix a is bounded and uniformly elliptic, that is there exists @ such that
V(t,2)[0,T] x R, Vu e RY, a=tul? < (a(t, 2)u, u) < alul?.

When b and o are Holder continuous in space (uniformly in time) and bounded, the unique (weak) solution
to (1.17) (driven by a Brownian motion W) satisfies the following Gaussian bound VT > 0, 3C > 1, VY(t,z,y) €
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[0,7) x R? x RY |p(t, T, z,y)| < Cexp(—C~t|ly — x|?/t). The latter bound follows from the parametriz method, see
Friedman [44] or McKean and Singer [95]. The parametrix technique is a classical perturbation method used in
PDE theory that was originally formulated in order to give an expansion in infinite series of iterated kernels of the
fundamental solution of an elliptic or parabolic PDE of order 2p, p € N* with time inhomogeneous coefficients. More
precisely, one has
p(t,T,x,y) = 2(ﬁ®H")(t,T,x,y) (128)
n=0

where p(t, T, z,y) is the Gaussian density of the system where we removed the drift b and fixed the diffusion
coefficient to the terminal point y. This system is often referred to the frozen or parametriz process. The space-time
convolution operator ® is defined by (f ® ¢)(t, T, z,y) := StT dsSgadzf(t,s,x,2)g(s,T,z,y) and H is a kernel. The
keystone of this approach is that the underlying parametrix kernel H enjoys a regularising property in the sense that
(p® H™)(t,T,z,y) is explicitly controlled by the term of an absolutely (and uniformly) convergent series times a
Gaussian density. We will come back to this point latter on in the second part of this manuscript in Chapter [5}

This method has been successfully applied to many equations and various situations. Its merit and success are due
to its flexibility as it can be invoked for a wide variety of PDEs both for theoretical goals such as density estimates [34],
martingale problems [97], strong existence and uniqueness for SDE [29] and for numerical approximations |75]. Let us
be more precise on the latter topic since it will be used in Chapter 5] If we replace in the dynamics of the continuous
Euler scheme the Brownian increments by a sequence of i.i.d. random variables with common law p which
admits a density with respect to the Lebesgue measure (with the same moments as the Gaussian density up to a
certain order), then the new scheme admits a transition density p” which admits a representation in infinite series

pN(t,T,z,y) = Z (p@n HN™)(t, T, x,y) (1.29)

n=1

where y — pV (¢, T, x,7) is the density of the recursive scheme where we removed the drift b and fixed the diffusion
coefficient to the terminal point y. The kernel HYV and the operator ® y are discrete version of the kernel H and the
space time convolution operator ®. In |75, Konakov and Mammen followed these approach. By comparing the two
series and they obtained local limit theorems for the difference (p — p™¥)(¢,T, z,%) at a rate hs.

When one considers the true continuous Euler scheme with Brownian increments, an expansion of the error for
p —p™V can be obtained. More precisely, Konakov and Mammen in [76] proved the following expansion

L N
0 (t,T,I,y) 1
VLGN*, (p_pN)(thal:vy) = Z £ NZ + NL+1
(=1

with the following Gaussian controls

ly —=|?

Cr—y > 1, V(Iay) € (Rd)27 |7Tév(t7T7x’y)| + |RN(t,T,JZ7y)| < Cr— eXp(—c T _¢

)

under the assumptions (UE) and assuming that the coefficients b, o are C* with bounded derivatives of all order.
We will present in Chapter [5] some results related to the weak approximation error of a skew diffusion with bounded
measurable drift and Hélder diffusion coefficient by an Euler-type scheme. We obtained a similar error bound for the
difference between the densities of the skew diffusion and its Euler approximation under mild smoothness assumption
on the coefficients.

Under stronger smoothness assumption on the coefficients, Gobet and Labart [53| quantified the small time asymp-
totics of the difference p — p~. More precisely, using Malliavin Calculus techniques, they established the bound
|(p — p™)(t, T,z,y)| < Ch(T — t)_% exp(—cly — z|?/(T —t)), where C, ¢ > 1 are constants independent of ¢, 7.

The main advantage of compared to the previous approach is that one can considerably weaken the assump-
tion on the test function F. Guyon [58] proved that holds if F' is a tempered distributions, e.g. a Dirac mass or
derivatives of a Dirac mass. We will see in Chapter [f] that this point is very important in order to obtain an expansion
of the implicit discretisation error for solutions to inverse problems. It is also important to quantify this kind of error
when one considers the computation of greeks in option hedging.

Recent research works have shown a rising interest in weak higher order approximation schemes starting with the
pioneering work of Kusuoka [82]. The method relies on the splitting of the infinitesimal generator in order to use
composition techniques of ODEs flow see Ninomiya and Victoir [107] and very recently Bally and Rey [9]. In the latter
work, the authors obtained estimates of the error in total variation distance for the Ninomiya Victoir scheme using
Malliavin calculus techniques under a Doeblin’s condition on the underlying noise.

An interesting problem, which has not been investigated (to the best of our knowledge), will be to study the
existence of a transition density for higher order scheme like the Ninomiya scheme (as well as Gaussian lower and
upper-bounds) and to see if expansions similar to holds. For instance, one may try to follow the approach
initiated by Konakov and Mammen [76].
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The Cauchy problem in the case of SDE driven by jump process

The approach of Talay and Tubaro [122] still works when one adds jumps in the innovation process Z appearing in
the dynamics (1.17)). The key idea still consists in controlling the derivatives of the function w, the unique classical
solution to linear integro-differential PDE

(at + Et)u(t, .73)+
S]Rq (u(t,x + U(tax)z - U(t, LIJ) - <V’U’(tax)a U(tvx)z>1{|z\<1}) =0, (tvx) € [07T) x R (131)
u(T,z) = F(x),

Like in the Brownian case, under regularity assumptions on the coefficients and terminal condition F' and under
integrability condition of the Lévy measure, Protter and Talay |115] derived an expansion of the weak discretisation
error similar to .

One important issue that does not appear in the Brownian framework is the simulation of the increments of the
Lévy process Z. In many cases such that stable, Gamma, compound poisson process, one knows how simulate the
increments but in general one does not know how to do. Jacod and al. |66] proposed an implementable Euler scheme
where the increments (Z;,,, — Z;,)o<i<n—1 are approximated by a sequence (UMo<icn—1 of i.i.d random variables
satisfying |E[g(Z) — g(U)]| < Chey, for g € C*(R?). Under some integrability conditions on v, they obtained the
bound |E[F(X7) — F(X2)]| < C(en v h) and derived an expansion of the error similar to under stronger
smoothness assumption on the coefficients b and o.

When the innovation is a non-degenerated stable process, Konakov and Menozzi in |77 extended the parametrix
machinery developed in [76] and successfully derived an error expansion similar to ((1.30]).

Let us also mention the work of Kohatsu-Higa and Tankov [74] where the authors study the weak approximation
for a jump-adapted discretisation scheme of Lévy driven SDEs. The approach consists in building upon adaptive
non-uniform discretisation based on the jump times of the driving process coupled with suitable approximations of
the solutions between these jump times.

The Cauchy-Dirichlet problem for diffusion processes

For a Brownian driven SDE with dynamics , let us consider the first exit time 7 of the domain D < R? defined
by 7 =inf{t > 0: X; ¢ D}. The computation of E[F (7 AT, X, )] is an important issue that appears in various fields
such as mathematical finance for the pricing and hedging of look-back options. More generally, it is the probabilistic
representation of the classical solution of the following Cauchy-Dirichlet problem

{ (0r + Lo)u(t,z) =0, (t,x)e[0,T)x D,

u(t,r) = F(t,z), (t,z) € [0,T) x 0D U {T} x D (1.32)

g Th’/\T))] where 7" := inf {ti : Xthi ¢ D}and
IT5 is the projection on D. Then, using the same decomposition as in the standard Cauchy problem, one has

One is naturally led to consider the approximation E[F (7" A T, 5 (X"

&y =E[F(t" A T, Tp (X2 ) —E[F(T AT, Xy a7)] = E[u(r" A T, p(Xn 7)) — (0, 7).

Then, following a similar strategy as in the standard Cauchy problem, one has to apply Ité-Taylor formula and
use the regularity of the solution u to (|1.32]).

If the domain D is sufficiently smooth and under non-degeneracy assumption (namely (UE) or (H)), one is able
to prove that &} is of order hz. More precisely, Gobet [50], [51] proved that & = O(h%) under some regularity
assumption on F. Then, Gobet and Menozzi [54] sharpened this result by proving a lower bound of order h'/? and a
first order expansion that writes & = C1h'/? + o(h'/?).

1.2.4 Multi-level Monte Carlo simulation

The multi-level Monte Carlo method introduced by Heinrich [61] for parametric integration and recently developed
by Giles [48] for Monte Carlo simulation as an extension of the two level method of Kebaier [70] allows to minimise
the simulation cost of the quantity E[Y] where Y is an R-valued random variable that can only be approximated
by a sequence (Y"),>1 of easily simulatable random variables as the bias parameter n goes to infinity with a weak
discretisation error or bias E[Y] — E[Y™] of order n=%, a > 0.

This method is now very popular, notably in mathematical finance where as mentioned in the previous sections the
random variable of interest is given by a functional of an SDE with dynamics . However, it has been widely applied
to various problems of numerical probability, see Giles [47], Dereich [36], Giles, Higham and Mao [49] among others.
We refer the interested reader to the webpage: http://people.maths.ox.ac.uk/gilesm/mlmc_community.html| for
further developments.
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Let us be more specific. In this context, the standard Monte Carlo method uses the statistical estimator M ~1 x
Zﬁl Y ™) where the (YU ))1<J< m are M independent copies of Y. Given the order of the weak error, a natural
question is to find the optimal choice of the sample size M to achieve a global error. If the weak discretisation error
is of order n=% (for instance o = 1 for the standard Cauchy problem and a = % for the Cauchy Dirichlet problem)
then for a total error of order n=* (a € [1/2,1]), the minimal computation necessary for the standard Monte Carlo
algorithm is obtained for M = n2?®, see Duffie and Glynn [38]. So, if the computational cost required to simulate one
sample of Y™ is of order n (as it is the case for the Euler scheme ) then the optimal computational cost of the
Monte Carlo method is Casc = C x n?®*1, for a positive constant C' > 0.

In order to reduce the complexity of the computation, the principle of the multi-level Monte Carlo method intro-
duced by Giles [48| consists in using the telescopic sum

L mf=1
Ep ] =B+ Y EY™ YT,
=1
for an integer m > 1 satisfying m’ = n®. For each level £ € {1,--- , L} the numerical computation of IFJ[Y’”’Z - Ympl]

is achieved by the standard Monte Carlo method using N, independent samples of (Ymh1 , le). An important point

is that the random samples Y™ and Y™ are perfectly correlated. Then the expectation E[Y™] is approximated by
the following multi-level estimator

WL, 2 LSyt =1 ()
yLo) 4 3 — (Ym»ﬂfym”ﬂ»
1 ;Nf

Jj=1

1
E = —
MLMC "= 7o |
j=
where for each level ¢, (me,(j 1< j<n, is a sequence of i.i.d. random variables with the same law as Y™ The variance
of the new estimator is the sum of the local variance:

1

L
Var(Eprvc) = Z N7 Wi, Vei=Var(Y™ —y™ ), 0=0,--- L
(=0

with the convention Y™ ' = 0. The computational cost is proportional to Zf:o Nem~=¢.

A simple optimisation problem shows that the variance of the multi-level estimator is minimised for a fixed com-
putational cost by choosing N, proportional to 1/Vym~—¢. In the case we have in mind corresponding to the Euler
discretisation scheme with Lipschitz-continuous coefficients, one has ym' = F (XFE) for a Lipschitz continuous func-
tion F so that V; = O(m~%) and N, is proportional to the variance V; (at least asymptotically). This leads us
to choose N, satisfying N, 'V, = O(n=2*(L + 1)~!). Then the variance of Eyzac is O(n™2%) and the biais is
still n=! Moreover, in order to achieve a global error of order n~%, the computational cost of the new estimator
is O(n=2°L?) = O(n=2*(log(n))?). Based on this heuristic, we clearly see that the new multi-level Monte Carlo
estimator outperforms the basic Monte Carlo estimator in terms of computational complexity.

More recently, Ben Alaya and Kebaier [1] proposed a different analysis to obtain the optimal choice of the parameters
that relies on a Lindeberg-Feller CLT for the multi-level Monte Carlo algorithm.

More importantly, Lemaire and Pages [93] proposed a multi-level Richardson-Romberg estimator which combines
the higher order bias cancellation of the multi-step Richardson Romberg method investigated in |[109] and the variance
control of the multi-level Monte Carlo method briefly exposed above. Notably, in standard frameworks like the
discretisation of diffusion processes, for a global error of order n~%, the computational cost is of order O(n=2%log(n)).

In Chapter [ we extend the scope of the multi-level Monte Carlo method to the framework of stochastic optimi-
sation by means of stochastic approximation algorithm. The optimal choice of the parameters is done by proving a
CLT for the new estimators. We also present some numerical results that confirm the theoretical analysis and show a
significant reduction in the initial computational cost.

1.2.5 Unbiased simulation of SDE

Unbiased simulation methods of SDEs offers an alternative to the Multi level Monte Carlo for the computation of
E[F(Xr)] where (X)o7 is solution to (L.17). We differentiate here between exact methods and unbiased methods.
Exact methods allows to sample a path, at a finite set of points, with the exact distribution of the SDE, while unbiased
means that we can estimate E[F(X7)] without any bias, which is enough for many applications such that the pricing
and hedging of financial claims.

An example of an exact simulation method is given in Beskos and al. [20] in dimension d = ¢ = 1 based on the
Lamperti transform of the original SDE. For some extensions to the SABR and the Heston models we refer the reader
to Broadie and Kaya [26], Chen and al. [30]. However, all these methods cannot be easily extended to a general SDE.
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The unbiased simulation technique for the multi-dimensional SDE has been introduced by Bally and Kohatsu-
Higa [7] and developed by Anderson and Kohatsu-Higa [4] for multi-dimensional diffusions with hélder continuous
coefficients. This method is based on a probabilistic interpretation of the parametrix method introduced by E. Lévi
to construct the fundamental solution of elliptic and parabolic PDE. The proposed method is also based on the Euler
scheme although in the proposed simulation scheme the time partition is random.

We now briefly expose the main guidelines for multi-dimensional diffusion processes with infinitesimal general
L = %Zu a;i j0;j + Zl b;0; where a is assumed to be uniformly elliptic. The coefficients ¢ and b are smooth, say
ai; € C2(RY) and b; € C}(R?). We know that the unique solution to defines a strong Markov semigroup (P;);=0
defined for all bounded measurable maps by P.f(z) = E[f(X:)]. Under these assumptions it is also known that
P,f € CE(RY) for all t > 0, see e.g. Friedmann [44].

We introduce the approximation process X defined by X; = x + b(z)t + o(x)Wj, that is the process obtained from
- by freezing the drift and the diffusion coefficients at the initial point . We 1ntr0duce accordlngly the collection of
linear maps (P;)¢>¢ defined for all bounded measurable functions f by P, f(z) = E[f = { f(y)g(a(z)t, y—b(z)t—x),
where, for a symmetric positive definite matrix a, g(a,x) is the probability densﬂcy functlon of N (0 a) taken at z. In
particular, one has 0, P;f(z) = P,Lf for every t > 0. As a consequence, using an integration by parts formula the
following one step formula holds

Ptf( ) Pt f@ Pt st( ))dS_Ptf( ) Lptfs(,c—Z)Psf( )dS_Pt JSt S.Pf ) S (133)

where we introduced the operator S, f(x) = ;. f(y)0:(x,y)g(a(z)t,y — b(x)t — x)dy with

1 d d )

=3 Z NI EWACE)E
j=1 i=1

07 jaii(y) + 0jai; () H' (a(a)t,y — = — bla)t

(z) )
+ (aij(y) — aig(2))H (a(@)t,y — @ — b)),
pi(z,y) = a:b'(y) + (b'(y) — b'(2)) H' (a(z)t;y — o — b(x)t).

Here H(a,z) = —(a~'2)" and H" (a,x) = (a7 'z)(a"'2)? — (a=1)% are the Hermite polynomials of order 1 and
2 associated to the Gaussian density g(a,z). From the space-time inequality Yz € R, |z|Pe=1" < ((p/(2qe))P/2, valid
for any p,q > 0, one easily gets |S;—sflo < C(t — 8)72|f|w, for a constant C' depending only on the coefficients a, b
and their derivatives.

Iterating the first step expansion , one proves that the following expansion holds

ry (a,y) = x +0;a™ (y) HY (a(2)t,y — x — b(x)t)

Z f dsp 1_[ SS]H S;Pt s f (@), (1.34)

n=0
where Ak (t) := {sp, = (51, ,8n) €[0,¢]": 0 <81 <--- <8, <t} and s9 = 0.
In order to provide a probabilistic representation of the above series, for a time partition 7 : 0 = 59 < 51 < -+ <

Sn < Spt+1 = t, we introduce the following discrete time process

X _XTr +b(X )(SZJrl ')+O—(X;:-)(W81‘+1 —WS.), i=0,-+,n.

Sit+1
Then, the following intermediary probabilistic representation holds

n—1

Pif(z) =) f s E[f(XT) [ | 00y 0—s, (XTI, XT )], (1.35)
n>0"An(t) i=0
and it remains to provide a probabilistic interpretation of the time integrals. To this end, we let N(¢) be a Poisson
process with intensity parameter A > 0 and define N = N(¢). Let 7y,---,7y be the event times of the Poisson
process and set 7p = 0 and T+ = t. Since, conditional on N, the event times are distributed as a uniform statistic,
P(N =n,71 €dsy, -+ , Ty € ds,) = \"e >, for s, € A%(t) and the following probabilistic representation holds
N—
P f(x) = E[f(X;)] = ME[f H o (XTLXT ) (1.36)

Let us note that the right-hand side of (1.36]) can be sampled exactly, this gives us an unbiased simulation method
for the computation of E[f(Xr)]. The simulation algorithm consists in independently simulating the event times
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of a Poisson process and an Euler scheme with a time partition given by the simulated random times. However,
the method suffers from a poor convergence rate since the variance of the associated estimator may be infinite. An
importance sampling on the time steps using a Beta or Gamma distribution is proposed in [4] which allows to achieve
finite variance.

Another method is proposed in |7] and [4] which relies on a backward Euler scheme. The backward method can be
applied for Holder continuous coefficients. In this case, the Euler scheme is ran backward on the random time grid.

In Chapter [6] we will extend the above probabilistic representation to the one dimensional Cauchy-Dirichlet
problem. More precisely, we obtain probabilistic representation of the process (7 A t, X, .¢)t=0 and obtain partial
integration by parts formula that can be explicitly simulated without any bias.

We also mention the work of Henry-Labordére and al. [62] where the authors proposed a probabilistic representation
for a class of semi-linear parabolic PDEs using a branching process. Usually this class of PDEs is solved using
probabilistic numerical schemes of Backward SDEs. Here the algorithm is forward and backward regressions are no
longer needed.
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Chapter 2

Some contributions to risk management in
financial and energy markets

In this chapter we present the two research works [5] and [6].

In [6], which can be seen as a continuation of [3], we study the theoretical and computational aspects of risk
minimisation in financial and energy market models operating in discrete time. The risk is defined by considering
a class of convex risk measures defined on LP(P) in terms of shortfall risk [6]. Existence of an optimal strategy is
proved under the absence of arbitrage and the non-degeneracy of the price process in a non-Markovian framework.
We propose a Robbins-Monro algorithm to compute the shortfall risk of a given real-valued random variable. Then,
we propose and analyse a Newton-Raphson optimisation algorithm to compute the optimal static risk minimising
strategy. Finally, in a dynamic framework a quantisation based stochastic approximation algorithms to compute the
corresponding risk measures as well as the optimal dynamic strategies is proposed.

In the research work [5], in collaboration with A. Sagna of University Evry Val d’ Essonne, we study a quantisa-
tion based Newton-Raphson algorithm to compute the optimal importance sampling (IS) parameter. The approach
proposed here can be seen as a robust and automatic deterministic counterpart of recursive IS (by translation of the
mean) by means of stochastic approximation algorithm, as proposed by Lemaire and Pagés [92] which may require
tuning of the step sequence and a good knowledge of the payoff function in practice.

2.1 Risk minimisation in financial or energy markets operating in discrete
time

In [6], we investigate the risk minimisation problem of a portfolio loss with maturity T described by an R-valued
random variable L which contains an observable but non-tradable source of risk. More precisely we consider an energy
market operating at discrete trading dates tg = 0 < t; < --- < tny = T. We have d assets available for trade with
price process X = (X',--- , X%) and X' = (XZ)0<£<M fori=1,---,d.

In our framework, the source of market incomf)lgteness comes from the presence in L of a state process Z that is
observable but not available for trade. Thus, it induces a source of risk that is not completely hedgeable. Typically,
in the electricity market, the loss L suffered by an energy company may be due to an anormal annual electricity (or
gas) consumption. This consumption depends on the temperature, which is an observable but non tradable source of
risk. In this example the process (Z¢),,<,, can be considered as the temperature which may influence not only the
loss but the assets available for trade, i.e. electricity prices of spot and forward contracts (which are in this example
the only assets available for hedge). The probability space is equipped with a filtration F = (]:4)0<2< - Intuitively,
F¢ represents the observable information at time ¢, by all investors, so that F; = o {X;, Z;;0 < i < ¢}.

The gains from a trading strategy 6 with an initial investment of 0 are described by the discrete stochastic
integral Z?;leg,l.AXg, where we denote by AX, the increments X, — X, 1 and 0 = (0¢)g<,_p; € Ar, where
Ar = {9 = (0¢)o<e<r—1 | O¢ € Lﬂ%d (Fe,P), £=0,---, M — 1} is the set of admissible strategies, Lﬂ%d (F¢,P) denoting
the space of all F-mesurable and P — a.s. finite random variables with values in R?. In order to measure the risk,
we consider a class of risk measures defined on LP(P) in terms of shortfall risk. It is a standard class of convex risk
measure as mentioned by Follmer and Schied [41] and Kaina and Riischendorf [69].

To be more precise about this risk measure, let £ : R — R, be a non-decreasing convex loss function, not identically
constant, hence satisfying lim,_, o, () = +00. Assume that lim,_, o l(z) = [ < l(xg). For some zg € R, we define
the acceptance set

A:={LeL? :E[{(-L)] < ¥l(xo)},
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and the corresponding shortfall convex risk measure p : LP(P) - R u {4+ w0}
p(L)y:=inf{€eR: L+ A} =inf{{eR:E[{(—L—¢&)] <l(zxo)}, (2.1)

Under the assumption on the function ¢, the infimum in (2.1]) exists. Assuming that VM > 0, E[I(—L + M)] < +o0,
one has p(L) € R. Moreover, it is the lowest solution of the equation:

E[{(=L = &)] = l(zo). (2.2)

Classical examples are the entropic risk measure defined by setting ¢(z) = e, x € R, A > 0, 29 € R, p(L) =
§logE [e*’\(L””O)] and the LP-shortfall risk measure, defined by setting £(x) = 2PI(,>0y, € R, p > 1, 29 > 0.
The basic problem for the investor with a given portfolio loss L is to minimise the risk

N N
ot p <L - Gn_l.AXn> = jnf inf {g eR:E lﬁ(—L + 3 1 AX, — 5)] < E(xo)} . (2.3)

n=1 n=1

The main difference between the CVaR risk minimisation problem investigated in [3] and the shortfall risk min-
imisation problem is that a shortfall risk measure does not write as an expectation contrary to the CVaR but
appears as the level of a function which can be written as the expectation of a loss. Hence the arguments developed
in [3] do not work.

Under the absence of arbitrage, we prove that the following two steps strategy works:

e the first step consists in solving for every £ € R, the following stochastic control problem,

N
inf E|6(—L 0, 1 AX, — 9.4
ol E L +;1 ! £) (2.4)

By performing a non-trivial dynamic programming argument and using a measurable selection theorem, see e.g.
p. 266 Lemma 5 in Jacod and Shiryayev [67] or Dellacherie and Meyer [35] Theorem 82, p. 252, we prove the
existence of optimal strategies for the risk minimisation problem under the absence of arbitrage property
(NA). EIThe optimal strategy is computed by a backward induction

N
ON (6,01, 0N 1) i=U(~L+ ) b 1.AX, —&), as.

n=1
for all £ e R, 0 € Ar; for 0 <t < N and for all { € R, (61,---,60;) € L, (P) x --- x LY, (P),

th(fa 017 T vat) = essinf E [SDtJrl(gvela T 79t)| ]:t] , @.S. (25)

0111€0;

e once an optimal solution to (2.4) is computed (if any), say 0*(£), £ € R, the second step consists in finding the
lowest solution &* of the following equation

N N
Jnf E|0(-L+ n; Op_1.AX, — 5)1 -E [z(—L + n; 0% _L(€).AX, — €) | = £(x0). (2.6)

Then we are concerned by the problem of computing the shortfall risk of a random variable X and the optimal
strategy for the risk minimization problem . In order to estimate the shortfall risk, which is a solution to equation
(2.2), we propose a Robbins-Monro stochastic algorithm. Assuming that there exists a positive function ¢ such that
E[(—L -] <CA+ ¢(§)), £ € R, we implement

t(=z = &) — l(zo)
(1+ ()2
where (L(™),> is an i.i.d. sequence of random variables with the same distribution as L, independent of &, € L?(PP)

and (v,)n>1 IS a step sequence satisfying the classical condition (L.9). We prove that the sequence (&,)n>0 a.s.
converges to a random variable p(L) taking values in the set T* := {{ : E[(—L — £)] = —£€(z0)} as n — 0.

£n+1 = gn + ’7n+1H(£na L(n+1))7 n = 07 H(&x) = (27)

1

t
Denoting V;v’e =v+ Z 0¢.AXy, one has (NA) : VO € Ag, (Vjej’e =>0a.s = Vjel’e =0 a.s.)
=1
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Moreover, if one implements the recursive scheme (2.7) with a step sequence =, = ® +n)ﬁ, a,b >0, % <p<l1

and computes the empirical mean &, = ﬁ > h—o&ks n = 0 then according to the Ruppert and Polyak averaging
principle one has

E|(U(~L - p(L)))*| - (x0)
E[¢(-L—pL)]

Similarly to CVaR hedging we first investigate the case of static hedging, that is, the holder of the portfolio only
uses one step strategy. In this case, the problem (2.4)) and (2.6) can be written

Vi, — p(X)) SN (0,02), oF =

ellng[é(—L + 0.X — f)] = g(.’lﬁo), with X := XN - Xo. (28)
€

which amounts to the computation of (£*,6%) € R x R? of the unique solution (for simplicity ¢ is assumed to be
increasing and strictly convex) to the following systems of d + 1 non-linear equations of d + 1 unknowns

E[6(—H +60.X —&)] = l(zo), E[XV(-H+0.X—-¢)]=0. (2.9)
In order to solve this system, we implement the following Newton-Raphson’s optimisation algorithm
241 = Rk — Dhn(zk)_lhn(zk), k=0, z9:= (60790) (210)

where we approximated h and Dh using Monte Carlo simulation with n samples

n

(; i L") L9 x®) ) — l(xo), % Z L&y (7L(k) Lo.x® _ £)>

and

ho(€.6) = — I3 U(—L®) +0.XH) —¢) Ly 1 (L™ 4+ 0.XH) —¢)
ST AL X W (—L®) 9. X (R) ¢ %Z,H k) (X < >)Te” (=L™ +9.X*) —¢)

(L(k), X ™))} cx<pn being an i.i.d. sequence of random vectors having the distribution of (H, X). The recursive algorithm
is known to converge to (£, 67%) unique solution to h,(&,0) = 0 if zg := (&0, 60) is sufficiently close to (£, 0:).
Moreover we prove that (¥, 60%),>1 a.s. converges to (£*,6%) as n — oo.

Finally, in the dynamic framework we propose a probabilistic algorithm to compute the optimal strategy using
optimal Markovian quantization. As argued in Bally and Pages [8] and Pagés and al. [111], Markovian quantization
algorithms are suited for stochastic control problem in high dimensions. It consists in approximating the underlying
Markov process by a process taking its values in optimized finite grids which take into account the fine structure of
the Markov dynamics. We suppose that F; := o((Xs,Zs),s < t), t = 1,--- , N and restrict consideration to cases
of strategies taking values in a bounded domain A — R?. Like in the CVaR hedging framework, the process Z is
observable but not available for trade. We also assume that the loss is given by L = ¢(z), x € R9*9. We introduce the
notation V; = 3 _ 0, 1.AX,,, t > 1 and Vp = —¢.

The dynamics of the discretized process X := (X¢, Zi)o<t<n is given by a Gaussian Euler scheme with step h that
is

X1 = Xo + b(X)h+ o(X)hY ey i= Gu(Xy,6041), t=0,--- N — 1, (2.11)
where g;,1 = h—3 (Wipn — Wi) ~ N(0, I4+4) independent of F;. Given a strategy 6 € Ax, the dynamics of (V;)i>o is
given by:

‘/t_i,-l = ‘/t + et.(Xt+1 - Xt) = ‘/t + 0t-B(Xt+1 - Xt) = Hh(Xt,‘/t,at7€t+1), (212)

where B = (I4,04x,). The dynamic programming principle that we established can be solved recursively by the
backward algorithm:

@N(xv U) = l(*(b(ﬂj) + ’U), (I‘,U) € Rd+q X R: (213)
@t(‘r7 U) = égng [@t-ﬁ-l(Xﬁ»l? ‘/;.111}79) (Xt7 Vrt) = (.’I?, U)] ,(l‘,U) € Rd+q xR (214)

fort =0,---,N—1, where X7, | := Gp(2,e441) and V77" = Hp(x,0,0,2041). At step 0, one has to solve 7y (Xo, —) =
l(zg). In the spirit of the (multi-dimensional) Markov chaln approximation method for solving non-linear problems
(see e.g. |8], [111]), we consider an approximating dynamic of (X;, V;)o<t<n by a process (Xi, Vi)o<i<n taking its
value in a finite grid.

Let Ty := (26)Z n B(0,R) = {ve R : v = 26z, for some z € Z,|v| < R} be a fixed bounded lattice grid on R. The
projection on I'y according to the closest neighbour rule is denoted 7y . At each time ¢, we consider a finite grid
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Table 2.1: Shortfall risk estimation and One Step risk hedging of Spark Spread option

l No hedging One step hedging 0*
lexp | -18.60 £0.02119 | -21.71 £0.01809 | 15.98
lo -2.79 £0.00349 -5.83 +£0.01440 4.68
I3 -2.05 £0.00197 -3.69 +0.01253 2.56
ly -1.73 +£0.00132 -2.71 +£0.00983 1.54

Iy = {x,}, e 795,]5\7"} on the state space R4, for the uncontrolled process X. The projection on the grid I'; will be
denoted ;. We consider a quantized Euler scheme X and a finite state space Markov chain V both defined by

Xit1 = T (Gh(Xta€t+1)) , Vipr=my (Hh(XtamvgtJrlaXtJrl) ; t=0,--- ,N—1
and following [111], we approximate (2.13]) and (2.14)), by the following stochastic control problem

on(z,0) =1(—¢(x) +v), (z,v)eTn xTy, (2.15)

Gi(v) = i E | g (Koo, V)| (K6 V) = (20)| = i€ E [ @ (X2, V517 @) e T x Dy (2.16)

where X7 = mi11 (Gh(z, €141)) and ‘A/tgf{’e =Ty (Hh(a:,v, G,Xﬁrl)), t=0,---,N—1.

Now, using the optimal dispatching of the grid sizes (Ny)1<¢<n for the Markovian quantization of the process X
and Theorem 3.1 in Pages and al. |111], under some mild assumptions on the coefficients b and o, for all v € T'y one
has -

N*"7» N
/Nyt N+ Gl
where M := Ny +---+ Ny, p:=max(2,p1 + 1), p > 1, C1, Cy and Cs3(p) are positive constants. Therefore, we deduce
the convergence of the value function approximated by optimal quantization toward the value function of the original
control problem and the convergence of é* toward £* as 1/M, N§ and N/RP~! go to zero.

As a simple numerical illustration of our approach we consider a portfolio composed of an exchange option between
gas and electricity (called Spark Spread) of maturity 7" = 1 year. The payoof of such option is defined by L =
(S5 — hrS% —O) - Since Electricity has very limited storage possibilities, the holder of this option hedges by trading
only a gas forward contract of maturity 7. We choose to model the price (S§)o<i<r of the electricity spot contract
and the price (th’T)()gth of the gas forward contract of maturity T' by two correlated geometric Brownian motions,
the correlation factor between the two Brownian motions is p = 0.5. The parameters are: heat rate hg = 4BTU/kWh
(BTU: British Thermal Unit), the generation costs C = 33/MWh, the two volatilities o, = 0.4, o. = 0.8, the
correlation factor p = 0.5 and the electricity and gas initial spot prices are S§ = 40$/MWh, S§ = 3$/MMBTU. In
this section, we only consider the one-step hedging and we refer the reader to [6] for numerical results in the dynamic
framework. Results about shortfall risk estimations and one step hedging are summarised in Table The first
column corresponds to the loss function. Four loss functions are considered: l..,(z) = e, A\ = 1/50 and x¢ = 0;
Ip(z) = 2PLiz>0y, ©o = 1. The second column corresponds to the risk without any hedging using the Robbins-Monro
algorithm with its confidence interval at level 95%. The third column is the estimate of the shortfall risk with a
one step risk minimization strategy and the fourth is the estimate of the optimal strategy 6*.

Po(v) — o(v)| < Ch (2.17)

2.2 Quantisation based recursive importance sampling

In this section, we present [5] related to a quantisation based recursive importance sampling (IS) technique. We follow
the idea of Pagés and Lemaire [92] who proposed a recursive IS stochastic gradient algorithm for the computation of
E[F(X)] where X : (2, A,P) — (E,|.|g) is a random vector taking values in a Banach space E and F': E — R is a
Borel function such that F(X) e L?(P). We present briefly the procedure proposed in [92]. For sake of simplicity we
confine the presentation to the case E = R%. Note that one can also consider a functional space of paths of a process
X = (Xt)te[o,1) solution to the SDE (L.17).

The IS is done by translating the distribution of the underlying random vector. The main idea of importance
sampling by translation applied to the computation of E[F(X)] is to use the invariance by translation of the Lebesgue
measure, for every § € R?,

p(X + 9)]

E[F(X)] =E|F(X +6) %

(2.18)

32



CHAPTER 2. SOME CONTRIBUTIONS TO RISK MANAGEMENT IN FINANCIAL AND ENERGY MARKETS

where p : R? — R is probability density function of X. Among all these random variables with the same expectation
we want to select the one with the lowest variance, i.e. the one with lowest quadratic norm
p(X)

]—E[FQ(X)W], § e RY. (2.19)

p*(X +6)
p*(X)

Assuming that 6 — log p(z — ) is log-concave, = € R?, and lim|g|_, o, p(z — 0) = 0 then one shows that @ is convex

Q) :=E [FZ‘(X +0)

and goes to infinity at infinity so that arg min @ is non-empty. Assume now that p is differentiable on R?. Under
additional growth and integrability conditions that we do not detail here, @ is differentiable on R? with a gradient
given by

p*(X —0) Vp(X —20)
p(X)p(X —20) p(X —20)

S

VQ() :=E | F(X —0)?

(2.20)

~~ i

W (6,X)
Now if the growth of the function F' is controlled by G (say G grows exponentially), under some integrability

assumption, setting \
~ e—2010]

W(9,X) = WW(G,X), K(6,X):= F(X —0)*W (0, X), (2.21)

where p and ¢ are some positive constants, one proves that the function K satisfies the linear growth assumption

(1.12) of the Robbins-Monro theorem, see Corollary

For instance, when X ~ N(0, 1), taking p = 3, b = 2, one gets

K(0,x) = F?(z —60)(20 — z).

1
1+ G(=0)%*
Coming back to the general case, the mean function of K has the same zeroes as V@, namely one has
{0eRY |E[K(0,X)] =0} = {0eR? | VQ(0) = 0}.

Since @ is convex h := V(@ satisfies (1.11)) and the same holds for the function h : § — h(#) = E[K (0, X)]. Hence,
according to the Robbins-Monro algorithm the sequence (6,,),>0 defined by

Oni1 = O — Vs 1 K (0, XD 0, € RY, (2.22)

a.s. converges to an arg min @-valued (square integrable) random variable 6*.

In the infinite dimensional setting when E = C([0,T],R?) (equipped with the supremum norm) in order to deal
with the case where X is a continuous path-dependent diffusion process, a recursive scheme similar to is proposed
in [92]. However, one relies on the Girsanov theorem instead of the invariance by translation of the Lebesgue measure
in order to derive a representation similar to .

From a numerical point of view, the procedure suffers from several drawbacks. First the tuning of the
algorithm needs a good knowledge of the behaviour of F' at infinity. Moreover, in practical implementations, recursive
importance sampling methods using stochastic approximation algorithm need specific tuning of the step sequence and
the convergence may be slow even when the dimension of the underlying random vector X is low. As a consequence,
sometimes one may prefer deterministic optimisation procedures when it is possible.

In [5], we propose a deterministic version of the IS algorithm investigated in [92]. The main idea can be summed up
as follows. Assume that X with probability density function p, supposed to be two times continuously differentiable,
can be approximated by a discrete random variable taking N values and whose distribution is known. Let us denote
by (zx)1<k<n its possible values and by (pi)i<k<ny the associated probabilities. For every # € R¢, the function Q
given by as well as VQ and V2@ can be easily approximated by

N N
0) = F? M f) = F? M —9
Qn () k;pk @) gy Ven® gzjlpk (@) 5y gy VP —0):
N
Vp(zp — 0)Vp(zr — 0)'  Vp(ay —6)
V2Qn () = F2(gy) 220 (2 - . 2.23
() = 2 pe P o) Pl - 6) e (225)
Hence, one may devise a classical Newton-Raphson algorithm, namely
O = 0n —V2QNON)T'VQN(OY), OoeRY k=0 (2.24)
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to approximate the optimal (variance) minimiser 8* of Q. Starting from that idea, Jourdain and Lelong [68] proposes
to replace X, where X is assumed to be a d-dimensional standard normal random vector, by a close discrete random
variable obtained by a Monte Carlo simulation. The (unique) minimum of @ is approximated by the (unique) zero
6N of VQu which can be computed using the deterministic Newton-Raphson algorithm involving V@ and
V2Qn. Moreover, several asymptotic properties are addressed.

Here, we propose to replace the Monte Carlo phase by a vector or functional quantization phase of X. Optimal
quadratic quantisation of the random vector X consists basically of finding the best approximation (in L?(PP)) of X by
a discrete random variable XV (the quantization of X) taking at most N values. When X takes its values in R, one
speaks about vector quantization. When X takes its values in an infinite dimensional Hilbert space like L? ([0, T], dt)

1
endowed with the usual norm |u|y = (SOT u(t)%lt) *, one speaks about functional quantization.

For N > 1 and z := (1, ,2n) € EN (E will either be R? or L? ([0, T],dt) in what follows) an N-tuple referred
as an N— quantizer, we let Proj, : E — {x1,--- ,xn} be a Borel projection following the nearest neighbour rule.
Then, the Borel partition C' = {C4,--- ,Cn} of E defined by Cy, :=Proj;!(zx), k =1, -, N and satisfying

Proj; ! ({z1}) < {y eE |zx —ylp = 12211\/ l; — y|E}, 1<k <N,
is called a Voronoi tessellation of E induced by x and one defines accordingly the Voronoi quantization of X induced
by x as follows

N
X = Proj, (X) = 2 Trlixecy,)
k=1

Note that the discrete random variable X is the best L? (P)-approximation of X among all measurable random
variable taking values in x := {x1, -+ ,zy}. For any fixed N-quantizer x, we associate the LP(P)-mean error E[|X —
X \p]l/ P induced by z and computing an optimal quantization of X consists in finding an N—tuple 2 € EV which
minimises the LP-mean error over E. It amounts to minimising the function A% : (z1, -+ ,2x) — E[|X — )2'|p]1/1’ =
E[(mini<icn |X — zi|)?P]"7.

One shows that, if X € L% (PP), the function QX reaches its minimum (at least) at one N-tuple 2* called an optimal
N-quantizer. This minimum is in general not unique, except in some cases, e.g. when d = 1 and the density of X
is log-concave. Moreover, the LP-mean quantization error ef\,{p '= mingn~ QJ)\(, converges toward 0 as NV 1 o and for

“non-singular” R?-valued random vectors, the rate of convergence of eﬁ_’p is ruled by the so-called Zador Theorem (see

Graf and Luschgy [57]) which asserts that limy_, o Nl/deﬁp = ¢p(d) (Sf(x)d/(der)da:)(der)/dp if X e Lfgé(]}”) where
f denotes the density of the absolutely continuous part of Px and g,(d) a positive constant depending on p and d.

The main idea now is that we know that X is close to X in distribution and if one has a numerical access _to the
optimal N-quantizer x with the associated weights sequence (pr = P (X € Cx())); <<y of the quantisation X then
the computation of the functions Qy, VQy and V2Q are dramatically faster compared to any other simulation based
approach. For instance, a sharply optimised database of quantizers of standard univariate and multivariate Gaussian
distributions is available on the web site www.quantize.maths-fi.com |112] for download. To an N-quantizer xz we
associate the unique minimum oN of Qn, that is, the unique solution to the equation VQn(0) = 0. One expects that
0N — 0% as the size N of its associated N-quantizer z goes to infinity.

Under the assumptions that the payoff function F' is Lipschitz-continuous, the density p is strictly log-concave with
lim| 4, 4o p(z) = 0 then under some growth condition on the first and second derivatives of p that we do not detail

here, one gets ~ ~
N — 0%, Qn(OY) - Q(A*)as N — +©

as soon as E[| X — )Z'N|2] —0as N — +o0.

In order to obtain a convergence rate, we assume that Vp/p is n-Holder. For instance, for the multi-dimensional
Gaussian law 7 = 1. Under these additional assumption, one obtains the following convergence rate |6V — 0% =

~ @ ~
@ (HX — XNH ) as N — co. For instance, when X is a d-dimensional Gaussian vector, one has |8V — %] < CN—Y/4,
2

We also extend our approach to the infinite dimensional setting, i.e. the case of path-dependent diffusion. Instead
of the invariance by translation of the Lebesgue measure, we rely on the Girsanov transform to play the role of mean
translator. To be more precise, we consider a d-dimensional It6 process X solution to the SDE

t t
Xi=x+ J b(s, X*)ds + J o(s, X*)dWs (2.25)
0 0

where W = (W¢)se(0,17 i @ g-dimensional Brownian motion and where X' := (Xy,s)sefo,r] (With X = XT) is the
stopped process at time t. We assume that a strong solution to the SDE (12.25)) exists. In order to devise a quantized
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IS procedure for E[F(X)], F being a Borel map defined on C ([0, 7], R?) we consider a translation functional given
by 6 € L7, := L*([0,T],R9) which is slightly less general than the one used in [92|. From the Girsanov Theorem it
follows that for every 6 € L7, q
—(T¢o,,dW, 0|2
E[F(X)]:E[ (X0 [7¢0s, W)~ 1| L%q]

where X (@ denotes the unique strong solution to (2.25) with drift b + 0. Among all these estimators we want to
select the one with the lowest quadratic norm so that we want to solve the following minimization problem

—2 {5 (0, dWa)—[0]3

min Q(#) where Q(0) :=E [FQ(X(G))e T] -E [F?(X)e

—§T0.. AW+ 510]2
T,q | .
0eL? ,

Note that @ is strictly convex and hmH9H2 o Q(0) = +00 so that it admits a unique minimum. Moreover, Q is

twice differentiable at any 6 € LTq and <DQ( ) w>L%)q, (D2Q(0)v, ), for ¥, ¢ € LTq admit a representation as an
expectation.

In view of a numerical implementation of Newton-Raphson’s algorithm to estimate a minimum of @), we are led to
consider a (non-trivial) finite dimensional subspace E of L7, , spanned by an orthonormal basis (e, - - , ey, ). Like for
the finite dimensional framework, our procedure will be based on the representation (as an expectatlon) of the first
and second differential of @ on E combined with functional quantization of the solution to .

. oo . i L3
The functional quantization of ([2.25) is based on the Karhunen-Loéve (K-L) decomposition W = D=1 VAnénen
where (e, )n>1 is the K-L orthonormal basis, A, are the corresponding eigenvalues of the covariance operator associated
to the one-dimensional Brownian motion W and {fn =W, en) /VAn, n = 1}, is an ¢.¢.d. sequence of random variables

with standard normal distribution. One considers an optimal N,-quantization (N,, > 1) of &,, denoted fn where

én = Proj, (), zn := (acf[", e ,x%:) is the unique optimal N,-quantizer of the normal distribution and N; x
- X Np < N, with Ny,---, N, > 1. For large enough n, we set N,, = 1, én = 0 (which is the optimal 1-quantization

of N(0,1)) and we define the product quantizer by (the finite sum) W, = D1 VAnénen(t). The product quantizer
X that produces the above Voronoi quantization W is defined by Xi(t) = Yps1 VAnien(t), i = (i1, yin, ) €
[[,>:{1,---, Ny} in the sense that P (W = Xi) =[I,=1 P (& € Ci, (z)) with an approximation rate ’W - I//I\/'NHQ <
Cr(log N)~2. Then, for each i, one solves the following ODEs

dat) = (0as(6) = 500w ) do-+ o(adrsto) (226)

and set )N(tN = Zi 2 () o,y (W), N = 1. Assuming that b, o are continuously differentiable, this non-Voronoi
N-functional quantization of (2.25) produces an error rate HX — )N(NH < Cr(log N)’%. We approximate @ by @N,
2

the m-tuple <DQ(9),€¢>L% by J(6); = <DC§N(9),6¢> , 1 <4 < m and the m x m symmetric positive definite

2
T,q
matrix (DQQ((‘))ei, ej) by H(0);, := (D2©N(9)ei, ej), 1<i<m,1<j<m, for every € E where we replaced the

random variables (X, W) by their quantized version ()N( N WwnN ) in the representation as an expectation of @, DQ and
D2Q. Hence, we compute the minimum 6V of Qy by devising the following Newton-Raphson algorithm

§,JCV+1 = 0N —HOENJOY), k=0, 0Y c E given. (2.27)
We briefly illustrate the performance of the algorithm in the infinite dimensional setting by considering three
different basis of L?([0, 1], R)
e a polynomial basis composed of the shifted Legendre polynomials (Pn)n>0 defined by

1 4"

Vn =0, Yte [0,1], P,(t) = P,(2t —1) where P,(t) = Sl
n.

(-1)). (ShLeg)
e the Karhunen-Loéve basis defined by

Vn >0, Vte[0,1], en(t) =2 sin (<n + ;) 7rt) . (KL)
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e the Haar basis which is defined by

. 1 iftef0, 1)
Vn =0, Yk =0,..,2" — 1, ¥t € [0,1], ¥ni(t) =22¢(2Ft —n), () =3 —1 ifte[i1) (Haar)
0 otherwise.

We consider a Downé&In Call option of strike K and barrier L. This option is activated when the underlying
process X moves down and hits the barrier L. The payoff function at maturity T is defined by

F(X) = (XT - K)+1{min0stsT X:<L}-

A standard approach to price the option is to consider the continuous Euler scheme X of step t;, = k% obtained by
extrapolation of the Brownian Motion between two instants of discretization. For every t € [tx, tx+1], we can write

Xt = th + b(th)(t - tk,) + O'(th)(Wt - Wtk)7 XO = X9 € R.

By pre-conditioning,

M-—1
E [(XT ~ K)o thL}] —E l(XT ~K), (1 - E) p(ti,ti+l)>1 , (2.28)

where p(zp, zp11) =P (mintpététp+l X, >L | ()_(tp, tiﬂ) = (zp, .'I;p+1)) is the probability of non-exit from [L, +00) of

some Brownian bridge. Using the law of the Brownian bridge (see e.g. Gobet [52]), we can write

o 2(L—=zp)(L—xp41)

t —tp)o2(x :
W, Lp+1 — xp) L—e Grnmmrn, L < min(zp, 2p1),

e o(zp)

L —
p(Tp,Tpt1) =1 —P | min Wy < Tp 2.29
P Lp

te[0,t1] o(zp)

0 , otherwise.

Hence we run ou algorithm with the probabilistic representation appearing in the right-hand side of . We
consider the local volatility model b(x) = rx, o(z) = o' *# /(1 + 22)2, with r = 4%, o = 5, = 100, 8 = 0.5. The
number of Monte Carlo simulations n is 5.10* in every case. We set the optimal product quantizer at level dy = 966
which corresponds to the optimal decomposition Ny = 23, No = 7, N3 = 3, Ny = 2 for the product quantization
(51,52, ég, 54). The numerical results are summarised in Table In Figure the optimal variance reducers for the
local volatility model are depicted

Basis m Price MC Variance MC Price QIS Variance QIS
Constant 1 0.684 25.80 0.673 15.33
Legendre 2 0.711 27.92 0.662 4.58
(ShLeg) 4 0.683 25.66 0.684 3.46

8 0.686 26.59 0.685 3.35

Karhunen-Loéve 2 0.680 25.38 0.696 5.22
(KL) 4 0.702 26.39 0.683 6.53

8 0.687 26.39 0.688 5.80

Haar 2 0.648 24.90 0.673 8.15
(Haar) 4 0.671 25.15 0.692 5.46

8 0.709 30.17 0.700 5.29

Table 2.2: Down&In Call option in Local volatility model with Xo = 100, K = 115, L=65,T =1, 0 =5, 7 = 4%, 8 = 0.5, dy = 966,
n = 5.10%, M = 100.
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. — — Haar
1.0 -~~~ Legendre

— — Haar
- Legendre

— KL
— — Haar
- Legendre

Figure 2.1: Down & In Call option: Optimal 8V obtained by our algorithm in the case of the Local Volatility model for different basis
and several values of m (m = 2 for the left upper curves, m = 4 for the right upper curves and m = 8 for the lower curves).
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Chapter 3

Concentration inequalities and deviation
estimates for stochastic approximation
schemes

In this chapter, we present [7] which is a joint work with S. Menozzi from the university of Evry Val d’Esonne
and [8] which is a joint work with M. Fathi from the university Paul Sabatier of Toulouse. Both works are related to
concentration inequalities and deviation estimates for stochastic approximation schemes. Here we are interested in two
kinds of discrete stochastic approximation schemes. The first one refers to the law of an Euler like discretisation scheme
of a diffusion process at a fixed deterministic date and the second one concerns the law of a stochastic approximation
algorithm at a given time-step.

Concentration inequalities consists in establishing a non-asymptotic Gaussian [7] or sub-Gaussian [8] control of the
probability that the law of the scheme deviates from its target. More precisely, we consider the deviations between the
expectation of a given function of an Euler like discretisation scheme of some diffusion process at a fixed deterministic
time and its empirical mean obtained by the Monte Carlo procedure. We then consider some estimates concerning
the deviation between the value at a given time-step of a stochastic approximation algorithm and its target.

Much work on non asymptotic deviation estimates for the law of the Euler discretisation scheme has now been
conducted. In the ergodic framework and for a constant diffusion coeflicient Gaussian controls have been obtained
by Malrieu and Talay [94]. For the standard Euler scheme, a first attempt to establish two-sided Gaussian bounds
for the statistical error can be found in Lemaire and Menozzi [91] under some non-degeneracy conditions and up to
a systematic bias. Very rencently, Honoré, Menozzi and Pagés [63] obtained non-asymptotic Gaussian concentration
bounds for the difference between the invariant measure v of an ergodic Brownian diffusion process and the empirical
distribution of an approximating scheme with decreasing time step along a suitable class of smooth enough test
functions f such that f — v(f) is a coboundary of the infinitesimal generator of the process.

Such concentration inequalities are strongly connected to transport-entropy inequalities. In Section we present
this connection and recall basic definitions and properties. For a complete overview and recent developments in the
theory of transport inequalities, the reader may refer to the recent survey of Gozlan and Leonard [56] and the book
of Villani |126]. We establish Gaussian concentration inequalities in [7] for the two specific problems mentioned
above under suitable assumptions. The key tool consists in exploiting accurately the concentration properties of the
increments of the schemes and proving that this concentration transfers to the law of the scheme. We will explain this
point in Section Finally, in Section we explain the results obtained in [8] which improve and complete those
obtained in [7]. The key point is to properly quantify the contribution of the diffusion term to the concentration regime.
We also derive a non-asymptotic bound for stochastic approximation with averaging of trajectories, in particular we
prove that averaging a stochastic approximation algorithm with a slow decreasing step sequence gives rise to optimal
concentration rate.

3.1 A brief presentation of transport inequalities and concentration in-
equalities

In this section, we present the connection between transport inequalities and concentration inequalities. We also recall

some basic definitions and properties that will be needed in the two next sections. We denote by P(R?) the set of

probability measures on R%.
For p > 1, we consider the set ?p(Rd) of probability measures with finite moment of order p. The Wasserstein
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metric W, (u1, ) of order p between two probability measures p, v € P,(R?) is defined by
WP (p,v) = inf {J |z — y|Pr(de,dy) : e PR x RY), 79 = p, 71 = 1/}
R4 xR

where 7y and 7, are two probability measures standing for the first and second marginals of 7 € P(R? x R%). For
u € P(R?), we define the relative entropy w.r.t v € P(R%) as

dp
H(p,v) = J]Rd log (dy> dp

if p « v and H(u,v) = +00 otherwise. We are now in position to define the notion of transport-entropy inequality.
Here as below, ® : R, — R, is a convex, increasing function with ®(0) = 0.

Definition 3.1.1. A probability measure p on R satisfies a transport-entropy inequality with function ® if for all
v e P(RY), one has
(I)(Wl(ya ,LL)) < H(Va ,LL)

For the sake of simplicity, we will write that p satisfies Te.

The following proposition comes from Corollary 3.4. in Gozlan and Leonard [56].
Proposition 3.1.1. The following propositions are equivalent:

o The probability measure u satisfies Tg.

e For all 1-Lipschitz function f :R? — R, one has
VA =0, fexp()\f)du < exp ()\ffdu + @*(A)) ,

where ®* is the monotone conjugate of ® defined on Ry as ®*(\) = sup,-o {A\p — ®(p)}. Note that since ® is
a non-negative convex function which is non-decreasing with ®(0) < 0o, the monotone conjugate of ®* is P.

As an important example we will say that u satisfies the Gaussian concentration property if there exists 5 > 0
such that ®(\) = A2/, A = 0 so that ®*(\) = A\?3/4. In this chapter we will simply say that u satisfies GC(3).

From the Markov exponential inequality and GC(f3), one derives P[f (Y1) —E[f(Y1)] = 7] < exp(—Ar+ BT/\2), YA, 7>
0. An optimisation over A gives that this probability is bounded by exp(—%).

A practical criterion for GC(3) to hold is given by Bolley and Villani [24]. If there exists € > 0s.t. {exp(e|y|?)u(dy) <
00, then p satisfies GC(B) for some 3 := f(g). The two claims are actually equivalent.

In [7] and [8], GC(p) is the only crucial property we require on the underlying innovations of the approximation
schemes.

Such transport-entropy inequalities are very attractive especially from a numerical point of view since they are
related to the concentration of measure phenomenon which allows to establish non-asymptotic deviation estimates. In
particular, some non-asymptotic confidence intervals can be explicitly computed. This can be very useful in practice
when the computational ressources are constrained.

The three next results put an emphasis on this point. Suppose that (X ("))n>1 is a sequence of i.i.d. R%valued
random variables with common law .

Corollary 3.1.2. If pu satisfies Ty then for all 1-Lipschitz function f : R? — R and for all r = 0, for all M > 1, one
has

M
1
P (lM 2 FXW) —E[f(x )] > 7“) < 2exp(—Mo(r))
k=1
Deriving non-asymptotic deviation bounds for Wi (uas, 1) is of interest for many applications in the fields of

numerical probability and statistic. In its present form, next result is due to Gozlan and Leonard [55], Theorem 12.

Proposition 3.1.3. If u satisfies Tg then the empirical measure py; defined as ppy = ﬁZkMﬂ dx ) satisfies the
following concentration bound

P (W1 (s, i) = E[Wi(par, )] +7) < exp (—M®(r)).

where for x € R%, 6, stands for the Dirac mass at point x.
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The quantity E[W; (par, p)] will go to zero as M goes to infinity, by convergence of empirical measures, but we
still need quantitative bounds. The next result is an adaptation of Theorem 10.2.1 in |116] on similar bounds but for
the distance Wa. A proof can be found in the appendix of [8].

Proposition 3.1.4. Assume that p has a finite moment of order d + 3. Then, one has
E[Wi(uar, )] < C(d, ) M~

where

C(d, p) = 4Vd + 2\/j (1+ |x|d+1)1dm\/22d +93-d J ly|4+3 u(dy) + 23-dd(d + 3)!.
R4

This bound is not optimal in general, but has the advantage of having very explicit constants. In the case of a
distribution with compact support, it has been shown in [12], Section 7, that E[Wj (uaz, u)] is of order O(M ), and
that this is the optimal exponent in d when d > 3.

In view of Kantorovich-Rubinstein duality formula, namely

Wi, v) = sup{ffdu— | rv 151 < 1}

where [f]; denotes the Lipschitz-modulus of f, the latter result provides the following concentration bounds

M
Vr>0, YM>1, P ( sup (;4 DA — E[f(X<1>)]> > C(d, p) M~ @2 4 r> <exp (—Md(r)).
Flh<t P

Similar results were first obtained for different concentration regimes by Bolley, Guillin and Villani [23] relying on
a non-asymptotic version of Sanov’s Theorem. Some of these results have also been derived by Boissard [22] using
concentration inequalities, and were also extended to ergodic Markov chains up to some contractivity assumptions in
the Wasserstein metric on the transition kernel.

Some applications are proposed in Bolley, Guillin and Villani [23|. Such results can indeed provide non-asymptotic
deviation bounds for the estimation of the density of the invariant measure of a Markov chain. Let us note that the
(possibly large) constant C(d, 1) appears as a trade-off to obtain uniform deviations over all Lipschitz functions.

In the two next sections we will present some transport-entropy inequalities and, as a consequence, some non-
asymptotic deviation estimates for the laws at a given time step of two kinds of discrete-time and d-dimensional
stochastic evolution scheme of the form

Xn+1 = Xn + "Yn+1H(n7Xn; Un+1)7 n = OaXO =€ Rda (31)

where (7,)n>1 is a deterministic positive sequence of time steps, (U;)ien+ is an i.i.d. RY-valued sequence of random
variables defined on some probability space (£2, F,P) with law x and the function H : NxR?x R? — R? is a measurable
function satisfying for all # € R?, for all n € N, H(n,z,.) € £L'(u), and p(du)-a.s., H(n,.,u) is continuous. We will
also assume that p satisfies the Gaussian concentration property GC ().

As a consequence of the transport-entropy inequalities obtained for the laws at a given time step of Euler like
schemes and stochastic approximation algorithm, we will derive in Section [3.3] non-asymptotic deviation bounds in
the Wasserstein metric.

3.2 Gaussian concentration inequalities

In this section, we present the results obtained in [7] in collaboration with S. Menozzi from the university of Evry Val
d’Essonne related to Gaussian concentration inequalities for two kinds of recursive scheme with dynamics . In
Section [3.3] we will extend those results to other regimes ranging from exponential to Gaussian.

We consider the unique strong solution X to the SDE (1.17) where the underlying innovation process Z is a ¢-
dimensional Brownian motion (W;):>o. In [7], we assume that the coefficients satisfy the mild smoothness condition:

(A) The coefficients b, o are uniformly Lipschitz continuous in space uniformly in time, o is bounded.

Note that we do not assume any non-degeneracy condition on ¢ in (A).

We do not consider the associated continuous Euler Maruyama scheme ([1.19) but rather define an Euler like
scheme. For a fixed time step A = T/N, N € N*| and the time grid ¢; := A, for all i = 0,--- , N, we consider the
following dynamics

X5 =z, XA

tit1

= X2 +b(t;, XP)A + o(ty, X5)AY2UEHD =0, N —1 (3.2)
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where (U®);cy+ is a sequence of R%-valued i.i.d. random variables with law  satisfying: E[U™M] = 0,, E[UM(UM)*] =
I,, where (UM)* denotes the transpose of the column vector U!) and 0y, I, respectively denote the zero vector of
R? and the identity matrix of R? ® R?. We also assume that p satisfies GC(8) for some § > 0. The main advantage

of such a situation is that it includes the case of the standard Euler scheme where U1 < A7 (0, I,) and the case of

the Bernoulli law where U(1) & (Bi, - ,By), (Bk)i<k<q are iid random variables with law p = 1(6_y + &;), both
satisfying GC(f3) with 8 = 2.

As already mentioned, for practical purposes, we are interested in non-asymptotical controls of the statistical error,
which is given by - Zf\il f(X?’(l)) — E[f(X%)] where the ((X$7(l))i)1<i€<M are independent copies of the scheme
starting at = at time 0 and evaluated at time T'. Precisely, for a fized M and a given threshold r > 0, one would
like to give bounds on the quantity P[|; Zf\il f(XTA’(Z)) —E[f(X)]]| > r].

Our first main result obtained in [7] shows that when the innovations satisfy GC(5), the Gaussian concentration
property transfers to the statistical error.

Theorem 3.2.1 (Concentration Bounds for an Euler-like scheme). Denote by X:% the value at time T of the scheme
. Assume that the common law of the i.i.d. sequence (U;)ienx in (3.2) satisfies GC(B) for some B > 0 and that
the coefficients b, o satisfy (A). Let f be a real valued uniformly Lipschitz continuous function on R?. For all M € N*
and oll v = 0, one has

r2 M
TLIJ(T’ f’ b? 0-7 q)
(T, f,b,0,q9) := 48[ f1ilo1% exp (2([b]s + c[o]1 (1 v ¢[a]:))T),

where q is the dimension of the underlying Brownian motion W and ¢ := ¢(q).

M .
Plloz 2 7O — B > 1] < 2exp(- )

Note that contrary to Lemaire and Menozzi [91] we do not need any non-degeneracy condition on the diffusion
coefficient and we got rid off the systematic bias.

The strategy to prove the above concentration inequality is similar to the first step of the analysis of the dis-
cretisation error of Talay and Tubaro |122] presented in Section Indeed, introducing the functions v (t;,z) :=
E[f(XTA)|XtAi =1x],0 <i < N,z e R we use the Markov property satisfied by the scheme and the following telescopic
sum

UA(tm XtAi) - E[UA(ti7 Xt?)'XS*l]

=

s
Il
—

FXP) —ELf(X7)] =

FAXE VAUD) —E[fA(XE | VAUD) XA ] (3.3)

I
1=

@
Il
—

where f2(z,u) = E[f(X£)| X = z + b(ti—1,2)A + o(ti—1,z)u], 1 < i < N, (z,u) € R? x R%. In Talay and

Tubaro [122], v2(t;, X£) is replaced by v(t;, X2) = E[f(X1)| X, = ] xa, that is the expectation involving the

diffusion at time T starting from the current value of the scheme at ¢;. Direct clomputations based on B-D-G inequality

and Gronwall’s Lemma show that u — f(z,u) is Lipschitz-continuous with [f2(z,.)]1 < (¥(T, f,b,0,q))"?, z € R%
Since U satisfies GC(B), from Proposition it follows that

lz=

Efexp(A(fA (XA, VAUD) ~E[fA(XA |, VAUD) XA D)IXA ] < exp(BIFACXE , JVANZ/A), =1, ,N.

(3.4)

Now using the Markov exponential inequality, the decomposition (3.3) and the tower property of condition expec-

tation one proves Theorem for M = 1. The bound for all positive integer M follows from a simple tensorization
argument for independent random variables satisfying the Gaussian concentration property.

Besides our consideration for the Euler scheme, we also consider a Robbins-Monro algorithm with dynamics
Oni1 = Op — Vs 1 H(0,, UMDY 0 >0, 6, e RY, (3.5)

where (U(™),>1 is an i.i.d. R%valued sequence of random variables with law p satisfying GC(8) for some > 0 and
(Yn)n=1 is a sequence of non-negative deterministic steps satisfying the usual assumption ([1.9). We assume that the
following conditions on the function H and the step sequence (v,),>1 in (4.1]) are in force:
(HL) The map (6,u) € R? x R? + H(,u) is uniformly Lipschitz continuous.
(HUA) The map h: 0 € R — E[H(0,U)] is continuously differentiable in 6 and there exists A > 0 s.t. V0 e RY, V¢ €
R, \E|12 < (Dh(0)E,€) (Uniform Attractivity).
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As we have seen in Section [I.1.3] of the introductory chapter, in order to derive a Central Limit Theorem for the
sequence (6,,),>1 as described in Duflo [39] or Kushner and Yin [81], it is commonly assumed that the matrix Dh(6*)
is uniformly attractive. In our current framework, this local condition on the Jacobian matrix of h at the equilibrium
is replaced by the uniform assumption (HUA). In the framework of stochastic gradient algorithm, this assumption is
also known as uniform convexity.

Here the global error between the stochastic approximation procedure 6,, at a given time step n and its target 0*
can be decomposed as follows:

zn =0 — 0% = (|6 — 0% = E[|6, — 0%[]) + E[|0,, — 07[]
= Epmp(y,n, H A\ a) + 0y, (3.6)

where §,, := E[|0,, — 0*[].
The term Egpmy (7, n, H, A, ) corresponding to the difference between the absolute value of the error at time n and

its mean can be viewed as an empirical error. The term §,, is an intrinsic bias coming from the non-linear nature of
the algorithm. Note that from Proposition in Section under (HL) and (HUA) one has

1

v <E[|on —0*"]7 <C(w)?, N>1

for the two following step sequences: 7, = ¢/n®, B € (1/2,1), and v, = ¢/n, with ¢ > 1/(2)\, n > 1.
An explicit expression for the constant C' is provided in [7]. As for the Euler scheme, we prove that the Gaussian
concentration property transfers to the empirical error under (HL) and (HUA).

Theorem 3.2.2 (Concentration Bounds for Robbins-Monro algorithms). Assume that the function H of the recursive
procedure (0,,)n=0 (with starting point 6y € R?) defined by satisfies (HL) and (HUA), and that the step sequence
(Yn)n>1 satisfies the usual step assumption . Suppose that the law of the innovation satisfies GC(B), 8 > 0. Then,
for all N e N* and all v > 0,

7,.2
P(0N0*>r+61v)<exp< >
BIH My 33, 72 /T

where Iy := 2:01 (1 =2 k41 + [H]%’YI%H)'

Concerning the choice of the step sequence (7,)n>1 and its impact on the concentration rate and bias, we obtain
the following results:

e If we choose v, = £, with ¢ > 0. Then, I'y = Zﬁ:l Y = clog(N) + ¢} + ry, ¢; > 0 and ry — 0, so that
Oy = (N2¢),

—Ife< i7 we obtain Il ng’zl 72 /M), = O(N~22).

—Ife> L

55 @ comparison between the series and the integral yields Iy Zszl V2L, = (N71).

e If we choose v, = -5, ¢ > 0, 3 < p < 1, then one has Iy ch\;l YL = o(N~PF€), €€ (0,1 — p).

ne?

As for the Euler like scheme, the strategy consists in introducing again a telescopic sum of conditional expectations.
Denoting for all 4 € N, F; := U(U(]), Jj < 4), ie. (Fi)ien is the natural filtration of the algorithm, we write for all
n € N*:

I
.MZ

s
Il
—

Epmp(v, N, H, A, @) = |zn| = E[[2n]] Ellzn|Fi] = E[|2n[[Fi-1]

[ (0:) — E[v] (0:)|Fi-1],

Il
M=
(4
S

@
Il
-

F(0i—1,UD) —E[f] (0;—1,UD)|Fi_1],

7

I
.MZ

s
Il
—

where we used the Markov property for the second equality and we introduced the notations v; (6) := E[|0,,—0%||0; = 6],
1<i<n,f0eRe f7(0,u) =v] (0 —v:H(0,u)). The stability of the Gaussian concentration property is then derived
using that the f] are Lipschitz with respect to the variable u and similar arguments to those employed for the Euler
like scheme.

43



CHAPTER 3. CONCENTRATION INEQUALITIES AND DEVIATION ESTIMATES FOR STOCHASTIC
APPROXIMATION SCHEMES

3.3 From Exponential to Gaussian concentration regimes

In [7], we obtained Gaussian concentration inequalities for the law of an Euler like scheme of a diffusion process and
for the deviation of a Robbins-Monro algorithm from its target. It should be noted that it is the boundedness of
the diffusion coefficient ¢ and the uniform Lipschitz continuity of the function u — H(6,u), # € R%, that give rise
to the Gaussian concentration regime for the deviation of the empirical error. In this section, we present the results
obtained [8] in collaboration with M. Fathi from the university Paul Sabatier that extend and complete those exposed
in the previous section. The key point is to quantify to properly quantify the contribution of the diffusion term
to the concentration regime. We also obtain non-asymptotic bound for stochastic approximation with averaging of
trajectories, in particular we prove that averaging a stochastic approximation algorithm with a slow decreasing step
sequence gives rise to optimal concentration rate.

We consider the Euler-like scheme (X{)o<i<ny with dynamics (3.2). The innovation sequence (U™ <icn satisfies
GC(p) for some 5 > 0. In [8], we replace assumption (A) by the following smoothness and domination assumptions

(HS) The coefficients b, o are uniformly Lipschitz continuous in space uniformly in time.

(HD,) There exists a C*(R%,R*) function V satisfying 3Cy > 0,|VV|? < Cy'V, n:= Jsup,epa |[VZV ()| < +00 and
Ja € (0, 1], such that for all z € R?,

3C, >0, sup |b(t,z)]> < CWV(x), , 3C, >0, sup Tr(a(t,z)) < C,VI%(x).
te[0,T] te[0,T]

where a = oo®.

The idea behind assumption (HD,,) is to parameterize the growth of the diffusion coefficient in order to quantify its
contribution to the concentration regime. Indeed, under (HS) and (HD,,), with a € [1/2, 1] we derive non-asymptotic
deviation bounds for the statistical error ranging from exponential (if @ = 1/2) to Gaussian (if « = 1) regimes.

Theorem 3 3.1 (Transport Entropy inequalities for Euler like schemes). Denote by X5 the value at time T of the
scheme and by uT its law. Denote the Lipschitz modulus of b and o by [b]; and [o]1 respectively. Assume that the
common law of the innovation sequence (U( ))1<1<N in (3.2) satisfies GC(B) for some B > 0 and that the coefficients
b,o satisfy (HS) and (HD,) for some o € [1,1].

Then, g satisfies Tys with ®%(X) = sup,-q {Ap — Pa(p)} and one has:

e Ifae(3,1], forallp >
Do(p) = Va(T,A,b, a,a:)(p2 v p%)v

o Ifa=21, forallpel0,o(T,bo,A)"2\35)

1
2

(ng(T7 b7 g, A)l/?/A3.2>2
1- (p(p(T, b, g, A)I/Q/A&?) -

D1 /5(p) = K322

Moreover, we have Uo (T, A, b,0,x) = K3.1(0(T,b,0, A)>vo(T,b,0,A)Z-1), o(T,b,0,A) = 005%630@”,
C(A) :=2[b]1 + [0]? + A[b]? where K31, A\3.2 and K35 are explicit constants.

e In the case a € (%7 1], one easily gets the following explicit formula:

— If A€ [0,20], then % (\) = 1-A%;
— If A€ [52250, +00), then B¥(A) = - (%

200—1

— If A€ (20, ;24 U) then ®*(\) = A — V.

)2& 1)\2 ’

Let us note that the linear behavior of ®* on a small interval is due to the fact that ®,, is not C*.

e In the case @ = 1/2, tedious but simple computations show that

1 2
>\3‘2 2
A 1 A -1 .
12 = (( +K3.2<P(T7b,0,A)1/2 ) )

We also consider the Robbins-Monro algorithm with dynamics (4.1) under the assumption that the innovation
sequence (U");<;<n satisfies GC(B) for some 8 > 0. Instead of (HL) we will make the following assumptions:
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(HL) For all u € R, the function H(.,u) is Lipschitz-continuous with a Lipschitz modulus having linear growth in the
variable u, that is:

H —H(
10y >0, YueRY, sy 1EOW = HE, )

- < Cy(1+|u|).
(6,0")e(R4)? 10— 0|

(HLS)a (Lyapunov Stability-Domination) There exists a C*(R?, R* ) function L satisfying 3C1, > 0, |VL|?> < CLL, n :=
3 SUD epd HV L(x H < 400 such that

voeRY, (VL(0),h(0))=0, and 3C, >0, Ve R |h(0)* < ChL(H).
and Ja € (0,1],

30,50, VoeR:, sy OW—HEu)
(u,u')E(R9)? lu —u|

< O, L2 (0).

Assumption (HLS), is similar to assumption (HD),, for the Euler like scheme and allows to quantify the contribu-
tion of the diffusion term to the concentration regime of the empirical error gy (v, N, H, A, ) of the Robbins-Monro
scheme.

Theorem 3.3.2 (Transport-Entropy inequalities for stochastic approximation algorithms). Let N € N*. Assume that
the function H of the recursive procedure (0,,)o<n<n (with starting point 6y € RY) defined by ([A.1) satisfies (HL),

(HUA) and (HLS), for a € [3,1], and that the step sequence v = (Vn)nso satisfies (L.9). Suppose that the law of
the innovation satisfies GC(B), B> 0. Denote by u}; the law of On.

Then, iy, satisfies Tys with <I>(’§1N()\) = sup,>o {Ap — Pa.n(p)} and one has:

o Ifac(3,1], forallp>
Do N (p) = al, H,00)(CYp?* v C%p7a=T).

o Ifa= %, for all pe [0, 4.1/5N),

A ) 2
®y2.n(p) = 2¢1/2(7, H, 00)0%%'

Moreover the three concentration rate sequences are defined for N € N* by

G- Xt
N = Ve+1 77, Hlk
N—-1
a = H N 1—a
O™ = 3 Wy ()7 (4 1) log? k + 4)) 3+
k=0 ’

1 N—
= max (k+1)"?log(k + 4 <>
N osng—l( ) &l Vik+1 Z:: (p+1) log (p+ 4))

with I} y = g;()l(l —2A Vet + CH#%%H) and where Cgp, and ¢ := @ (v, H,0p) are explicitly constants.

As in the case of Euler like schemes, for o € (%, 1], we have:

o if A€ [0,20(C3/(C3*)2 ) T7], then @F (X) = A2/(40C3);

o If Me [520

20 20

1 2a—1 o B
(CY/(CR)2 )7 4oo), then % v (V) = o5 (%)™ (A2 /(CR )™ L);

~

o If X e (2p(C}/(CY*)> o t)zay, ;2 =P PP k.

P (CR/(CR)271) ), then @ v (M) = (5 e
N

C’YO‘

For a = %, we obtain the following explicit bound for the Legendre transform of ®,/;

1 2
2(,007 < §N)\41/\)2
VA =0, ®F ) = TN 1+ —77—] —1
1/2,N () 8?\[ < 2@0%

Hence, for N > 1 being fixed, the following simple asymptotic behaviours can be easily derived:
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o When A is small, &7, \(A) ~ A1 A2/ (20C);

e When \ goes to infinity, <I>’1“/2(/\) ~ A1N/SN.

Concerning the choice of the step sequence (y,)n>1 and its impact on the concentration rate and bias, we obtain
the following results:

e If we choose vy, = <, with ¢ > 0.

~ If ¢ < g, one has C}, = O(N722), C}" = O(N™251%), 5y = (N~2),

—If ¢ > &, one has €3, = O(N1), O% = O((log(N))?3 T N~%1), 5§y = O(log(N)N~3).

(p—(1-a)
o If we choose v, = -5, ¢ > 0, 3 < p < 1, then one has C}; = o(N~7%¢), e € (0,1 — p), C}* = o(N~ “pai

ne?

and iy = O (1og(N)N—<p—% )

‘)

We see that the optimal convergence rate O(N 1) and O((log(N))Q% N~2a-1) is obtained by choosing v, = ¢/n
for ¢ > 1/(2\). Let us notice that we find the same critical level for the constant ¢ as in the CLT for stochastic
algorithms, see Theorem m Indeed, if ¢ > m where A.,;n, denotes the eigenvalue of Dh(6*) with the
smallest real part then we know that the optimal rate v/N is achieved in the CLT.

In order to get rid of this constraint, we also proved in [8] a transport entropy inequality for the law fi}; of the
empirical mean (,)o<n<n of the sequence (6,,)o<n<n defined by when the step sequence is given by v, = ¢/n”,
% < p < 1. In particular, we prove that averaging the original Robbins-Monro dynamics with this slow decreasing step
allows to achieve for free the optimal concentration rates, that is, the one obtained with ~,, = ¢/n with ¢ > 1/(2)).

We briefly explain the strategy used in [8] to prove this new transport entropy. The first step is similar to the
one presented in the previous section. We consider the telescopic sum . However, under (HD,,) the bound
becomes

)\2

]E[exp(/\(fiA(Xt%ﬂ, \/ZU(Z'))—IEE4[]‘Z.A()(}A1_717 \/KU(U)‘XSA])NXSAJ < exp(BYL(T, A, b, 0, x)AIVI_a(Xt?,l)% i=1,--
(3.7)

Let My = Zfil v2(t;, XP) —E[v2 (t;, X£)| X ], N > 1 and My = 0. From (3.7) and Hélder inequality, one gets

E[exp(AMy)] < E[exp(AMy_1) exp(BY (T, A, b, o, x)AAZQVl—a(XtAN )

Q=

. 2
< Elexp(ApMpy—1)]?E[exp(qB8¥ (T, A, b, o, l‘)A)\ZVl_a(Xﬁ\_I )]

N—1 1 k
U, T7 A7 ba ) — o\’
< n (E [exp( ( ; 7 m)”BAqu%AVl a(Xﬁvkl)ﬂ )
k=0

where we used an induction argument for the last inequality. Hence, since (p, q) are conjugate, one gets

|-

E [exp(A(f(X£) —E[£(X£)])] < exp ( sup log (]E [6 <52 A2qu2N(1+c(A)A)NV1—“(X?n)])> .

0<n<N

Finally, by stability arguments on the dynamics (3.2) with an innovation sequence satisfying GC(3), 8 > 0 one
gets

sup log (E [exp(\2VI™*(X))]) <

os<n<N

{ Kz (A v AmT) ae(3,1],
1

(M As.2)? _
Ks.2 1*(//\/?’)\23.2)’ a=

A suitable choice of p and ¢ allows to conclude. The strategy of proof for the Robbins-Monro algorithm follows
similar lines of arguments.

3"

3.4 Perspective

An interesting problem is to investigate the case of non-regular test function f. In practical situations, notably in
mathematical finance, one often has to deal with an irregular payoff function f such as indicator functions. One
possibility to address this problem is to allow ¢ to be non-degenerated so that the Euler scheme admits a smooth

46



CHAPTER 3. CONCENTRATION INEQUALITIES AND DEVIATION ESTIMATES FOR STOCHASTIC
APPROXIMATION SCHEMES

density. Then, one has to investigate the connection between the lack of regularity of f, the regularity of the density
of the scheme and the resulting Lipschitz modulus of the function y — f&(x,y).

Another interesting problem is to investigate concentration inequalities for the multi-level Monte Carlo estimator
presented in Section One expects that if the test function f is Lipschitz-continuous then the Gaussian concen-
tration regime still holds for this estimator but with a convergence rate given by the CLT established in [1]. The same
problem may be considered for the multi-level stochastic approximation schemes presented in the next chapter.
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Chapter 4

Improving the computational efficiency of
stochastic approximation algorithms

In this chapter, we present [9] and [10], the latter being a joint work with L. Huang from the engineering school INSA
of Toulouse. Both works aim to improve the computational efficiency for stochastic approximation schemes when one
does not know how to directly sample from the exact distribution of the underlying innovation sequence. We extend
the scope of the multi-level Monte Carlo and the multi-step Richardson Romberg methods briefly presented in Section
[L2.4] and Section [.2.31

The paradigm for both methods is described in Section In Section we present the results obtained in [9]
related to multi-level methods for stochastic optimisation by means of stochastic approximation schemes. Contrary
to the L?(P) analysis initiated by Giles |48], our methodology is based on establishing CLT for the proposed multi-
level stochastic approximation estimators as proposed by Ben Alaya and Kebaier [1] in the standard Monte Carlo
framework. In Section we present the results obtained in [10] where we show that the principle of the multi-
step Richardson-Romberg extrapolation method for Monte Carlo linear estimator as investigated in Pages [109] can
be extended to the framework of stochastic optimisation by means of stochastic approximation algorithm. For both
methods we will see in particular that the new estimator outperforms the standard stochastic approximation estimator
in terms of computational cost. Numerical results are presented in order to confirm the analysis.

4.1 Motivation

As was already mentioned in Section of the introductory chapter, in many fields of applied mathematics such as
computational finance, one often has to face some stochastic optimisation or zero search problems. We have seen some
of them in Chapter [2 The stochastic approximation theory provides some recursive schemes in order find the zero of
the function h : RY — RY defined by h(0) := E[H(,U)], H : R x R? — R?, based on i.i.d. samples of the Ri-valued
random vector U.

Now assume, as it is the case of the Monte Carlo method, that the random vector U is not directly simulatable (at
a reasonable cost) but can only be approximated by another sequence of easily simulatable random vectors ((U")?)p>1,
which strongly approximates U as n — +0o0 with a standard weak discretization error (or bias) E[f(U)] —E[f(U™)] of
order n~% for a specific class of functions. The computational cost required to simulate one sample of U™ is assumed
to be of order n that is Cost(U™) = K x n for some positive constant K. One standard situation corresponds to the
case of a discretization of an SDE by means of an Euler-Maruyama scheme with n time steps.

The important point here is that the function h is generally neither known nor computable (at least at reasonable
cost) and since the random variable U cannot be simulated, estimating #* using a Robbins-Monro algorithm is not
possible. Therefore, two steps are needed to compute 6*:

- the first step consists in approximating the zero 6* of h by the zero 6™ of h™ defined by h™(0) := E[H(6,U™)],
6 € R?. Tt induces an implicit weak error which writes

Ep(n) == 0% — %",

Let us note that %™ appears as a proxy of 8* and one would naturally expect that 6*" — 6* as the bias parameter
n tends to infinity.

- the second step consists in approximating 0*™ by M € N* steps of the following SA scheme

Op 1 =05 — i  H(Op, UmPTD), 0<p< M —1, (4.1)
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where (U”’(p))lgng is an ii.d. sequence of random variables with the same law as U", 6 is independent of the
innovation of the algorithm with sup,,~; E[|6f|*] < 40 and v = (7;)p>1 is a sequence of non-negative deterministic
and decreasing steps satisfying the usual step assumption (1.9). This induces a statistical error which writes

Es(n, M,~) := 6%" —0%,.

The global error between 6*, the quantity to estimate, and its implementable approximation 67, can be decomposed
as follows:

Eglob(n, M, ’y) = 0% — g L g 9»,;/[
i=&p(n) + Es(n, M, 7).

Concerning the asymptotic behaviour of the implicit weak error £p(n), the following result is established in [9].

Proposition 4.1.1 (Implicit discretisation error). For all n € N*, assume that h and h™ satisfy the mean reverting
assumption of Corollary . Moreover, suppose that (h")n>1 converges locally uniformly towards h. Then,
one has

0" — 0* as n — +o0.

Moreover, suppose that h and h™, n = 1, are continuously differentiable and that Dh(0*) is non-singular. Assume
that (Dh™),>1 converges locally uniformly to Dh. If there exists o € R* such that

voeRY, lim n*(h"(0) — h(8)) = E(h, a,b),
n—+00
then, one has
lim n*(0*™ — 6%) = —Dh™1(6*)E(h, o, 6%).
n—+00

Hence we see that the standard weak rate of convergence transfers to the implicit weak error under mild assump-
tions. The above proposition is the first step toward an expansion of %™ — * in powers of n~%. This will be discussed
in further details in Section [£.3] for the development of a multi-step Richardson-Romberg method.

Regarding the statistical error Eg(n, M,~) := %™ — 0%,, it is well-known that under standard assumptions, the
Robbins-Monro theorem, guarantees that limys Eg(n, M,vy) = 0 a.s. for each fixed n € N* see Corollary More-
over, under mild technical conditions, a CLT holds at rate y~/2(M), that is, for each fixed n € N*, y~Y2(M)Eg(n, M, ~)
converges in distribution to a normally distributed random variable with mean zero and finite covariance matrix, see
Theorem In particular if we set v(p) = vo/p, 70 > 0, p = 1, the weak convergence rate is VM provided that
2Re(Amin)yo > 1 where A, denotes the eigenvalue of Dh(6*) with the smallest real part. Moreover, the Ruppert
and Polyak averaging principle allows one to achieve the optimal rate of convergence for free by devising a standard
Robbins-Monro algorithm with step sequence v(p) = ~o/p”, % < p < 1 and computing the empirical mean of the
trajectory (0} )1<p<nr-

Given the order of the implicit weak error and a step sequence ~y satisfying a natural question is to find the
optimal balance between the value of n and the number M of steps in the recursive scheme in order to achieve
a given global error. This problem was originally investigated by Duffie and Glynn [38] for the standard Monte Carlo
method. The error between #* and the approximation 6}, writes 873, — 6* = 63, — %™ 4+ %" — * suggesting to select
M = ~y~1(1/n?), where y~! is the inverse function of vy, when the weak error is of order n=.

However, due to the non-linearity of the SA algorithm , the methodology developed in [38] does not apply in
our context. The key ingredients to tackle this question consists in linearising the dynamic of (6} )1<p<m around its
target 6™, quantifying the contribution of the non linearities in the space variable ¢, and the innovations and finally
exploiting stability arguments from SA schemes. The next result is established in [9].

Theorem 4.1.2 (Optimal tradeoff). Suppose that the assumptions of Pmposition are satisfied and that h satisfies
the assumptions of Theorem[I.1.5 Assume that h™ is twice continuously differentiable with DR™ Lipschitz continuous
uniformly in n and that it satisfies the strong mean-reverting assumption with a constant A (instead of o) that
does not depend on n. Then, under some additional assumptions that we omit for sake of simplicity, one has

ne (93—1@/”%) - 9*) — — DI (0%)E(h, a, 0%) + N (0,%) ,

where

T = Loo exp (—s(Dh(6*) — 1)) E[H(0*, U)H (0", U) ] exp (—s(Dh(6*) — CI,)) ds (4.2)

with ¢ = 0 if v(n) = /0, 5 < p <1 and ¢ = 1/(2%) if 7(n) = v0/n, 70 > 1/(2A).
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Define the empirical mean sequence (g;’)p>1 of the sequence (0)),>1 by setting

9’”

p p+1 _;*1_p+1(917;*1_9;)’

R R/ 1

with a the step sequence 7y, = ~o/p” with p € (1/2,1). Then, one has
n® (0120 — 0*) = —Dh™ 1 (0*)E(h, o, 6*) + N (0, DR(6*) "E[H (6*,U)H (6*,U)"|(Dh(6*)"1)T), n — .

Optimising with respect to the usual choice of the step sequence, the minimal computational cost (to achieve an
error of order n~?) is given by Csa = K xn xy~1(1/n2¥) and is optimal for v(p) = vo/p, p = 1, provided that v, > i
or for the Ruppert and Polyak averaged algorithm, leading to a complexity of order n2**!. In this case, we see that
the computational cost is similar to the one achieved by the classical Monte Carlo algorithm for the computation of
E[f(Xr)]

In Section [:2] we present a multi-level estimator which allows to significantly increase the efficiency the standard
stochastic algorithm designed according to the optimal tradeoff.

4.2 Multi-level stochastic approximation algorithm

The multi-level stochastic approximation method uses the following decomposition %" = %1 + Zszl (9""7”2 — 9*””[71)
with m* = n, m > 2, and implements L + 1 stochastic schemes with a sequence of bias parameter (m*)o</<z. More
precisely, the target 0* is estimated by the quantity

L
1 1 e £—1
o =9M0+2(g}e—% )
l=1

It is important to point out here that for each level ¢ the couple (9”1\}[2, Hﬁjl) is computed using M, i.i.d. copies

of (U m“l,U mz). Moreover the random variables U™ and U™ use two different bias parameter but are perfectly
correlated. Finally, for two different levels, the SA schemes are based on independent samples.

Theorem 4.2.1. Suppose that h and (h™)nen satisfy the assumptions of Theorem [4.1.1 Assume that h™ is twice
continuously differentiable in a neighbourhood of 0%, with Dh™ Lipschitz-continuous uniformly in n. Assume that the
following CLT holds:

mlp(Um* — ym' Ty
where V'™ is an R?-valued random variable eventually defined on an evtension (Q, F,P) of (Q, F,P).

Suppose that E[(D,H (6%, U)V™—E[D,H (0%, U)V™])(D.H(0* , U)V™—E[D,H(6*,U)V™)T] is a positive definite
matriz. Assume that the step sequence is given by v, = v(p), p = 1, where v is a positive function defined on [0, +00]
decreasing to zero, satisfying one of the following assumptions:

V™ as £ — +w

e v varies regularly with exponent (—a), a € (1/2,1), that is, for any x > 0, limy_, ;o (tz)/y(t) = 7.
o fort>=1, v(t) = v/t and vo satisfies Ay > 1.

Suppose that p satisfies one of the following assumptions:

o if pe (0,1/2), then assume that o > 2p, Ayo > af(a — 2p) (if ¥(t) = yo/t) and

36 > p, V0 eR? supn’|Dh"(H) — Dh(B)| < +c0.
n=1

In this case we set:

1-2p

My = 771 (1/(n** log(n)), My =y~ (m! 2" (m' 7 —1)/(n**(n" 2"
o if p=1/2, then assume that o = 1, O = 6y, £ = 1,--- , L, with E[|6|?] < +o0 and

36 > 1/2, Ve R supn’|Dh™(0) — Dh(6)| < +oo.
n=1

In this case we set
My ="' (1/(n*log(n))), M; =~ (m"log(m)/(n*log(n)(m —1))), £=1,--- , L.
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Then one has

n®(O@M — 9*) — —Dh~Y(6*)E(h,1,6%) + N(0,5%), n — +w
with

0 T . - - T
$* = j (esonem—ci) E[(DwH(e*,U)v—E[DxH(e*,UW]) (D H(O*, U)V ~E[D,H(6*,U)V]) ]e—S<Dh<9*>—<fd>ds.
0

Remark 4.2.1. The previous CLT for the multi-level stochastic approximation estimator of 6% holds if the standard
weak error (and thus the implicit weak error), is of order 1/n® and the strong rate error is of order 1/nf with a > 2p or
a =1 and p = 1/2. Due to the non-linearity of the scheme, which leads to annoying remainder terms in the Taylor’s
expansions used in the proof, those results do not seem to easily extend to a weak discretisation error of order 1/n®
with a < 1 and p = 1/2 or a faster strong convergence rate p > 1/2. Moreover, for the same reason this result does
not seem to extend to the empirical sequence associated to the multi-level estimator according to the Ruppert € Polyak
averaging principle.

The assumption related to the CLTs satisfied by the two sequences (U(") —U)p>1 and (Ume — Umpl)g;l includes
the case of the value at time T of a SDE, namely U = X approximated by its continuous Euler-Maruyama scheme
U™ = X} with n steps. Under mild assumption on the coefficients of the SDE, one has p = 1/2. Moreover, U may
depend on the whole path of the process. For instance, one may have U = L3.(X), the symmetricc local time at level
0 of the one-dimensional continuous diffusion process X and the approzimations may be given by

[nt]
- ;f (unX%,\/ﬁ(X% _X%)) '

Then under some assumptions on the function f and the coefficients b, o, the weak and strong rate of convergence
are p = 1/4, see Jacod [65]] for more details. Let us note that we do not know what happens in our results when p > 1/2
which includes the case of higher order schemes for discretisation schemes of SDE, like the Milstein scheme.

The CLT presented in Theorem shows that in order to obtain an error of order 1/n®, one has to set My =
v 1(1/n2®) and M, = y—l(n#%(ml 2 1)/(n2(nF2 — 1)), if p e (0,1/2) or My = 4~ 1(1/n2) and M, =
v~ t(m*log(m)/(n?log(n)(m —1))) if p=1/2, £ = 1,--- , L with L = log(n)/log(m). In both cases the complexity of
the multi-level stochastic approximation method is given by

Cumi-sa(y) = C x ( L(1/(n**1og(n))) + Z My(m® 4+ m* 1)) . (4.3)

{=1

In order to compute this complexity, we distinguish the two following cases:

e If v(p) = 7o/p then the optimal complexity is given by

L
n2( Z (1+2p)g m +m 1)) _ O(nQanl_Qp),

m” =1

a- 2P)

Cursa(y) =C (n%‘ log(n) + —————>

if p € (0,1/2) under the constraint A\yp > a(a — 2p) and
m? —1

— 2 2 g m~—1
Cuvrsa(y) =C <n log(n) + n*(logn) (log m)?

) _ O(n? (log(n)?),

if p = 1/2 under the constraint A\yy > 1. These computational costs are similar to those achieved by the multi-
level Monte Carlo method for the computation of E[f(Xr)], see Giles [48] and Ben Alaya and Kebaier |1]. As
discussed in Giles [48], this complexity attains a minimum near m = 7.

e If we choose v(p) = v0/p%, % < a < 1 then simple computations show that the computational cost is given by

L
Chsa(y) = C (" log® (n) +n# (n' =2 — 1)7 Y m~ T (m + mH)) = O(n

if pe(0,1/2) and

Cunsa(2) = C x (” log? () + n' (log ) (1= 1) 51 m‘“’”) - O(n? (1ogn)?)

if p=1/2.
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Hence we see that the optimal complexity is achieved for (p) = ~o/p under a constraint on -y involving A.
We also obtained a CLT for the statistical Romberg stochastic approximation estimator that is defined by O =
Q’AL/Z + 0%, — 0?/[52. The couple (G’Al/lz,@”MZ) is computed using i.i.d. copies of (U”B, U"™), the random variables U’
and U™ being perfectly correlated. Moreover, the random variables used to obtain 0}\’;1 are independent to those
used for the computation of (67, , 9}(;2). The optimal parameters are M; = v~ 1(1/n%®) and My = y~1(1/(n22=2r8)).
When ~(p) = 70/p, a constraint on - involving A appears. Here we can circumvent this issue by considering the
averaged version of the last estimator namely ©3" = 9_}(/;3 + 67’1(44 - 5%;4, with M3 = n?® and My = n?*~28 for any
B € (0,1) (note that p < a so that p8 < ). The optimal choice is §* = 1/(1 + 2p) leading to an optimal complexity
Osresa(7) = Csporp(7) = Ot 7557,

As a numerical illustration of these results we consider the following toy example. We turn our attention to the
computation of the level of the function § — e~"TE(X7 — 6), (European call option), X7 = zexp((r — %Z)T +oWrp),
which is given by the Black-Scholes formula.

Therefore, we first fix a value 8* (the target of our procedure) and compute the corresponding level £ = e "TE(X 7 —
0*)+ by the Black-Scholes formula. Accordingly, we set h(0) = E[H (0, Xr)] with H(8,z) = ¢ — (x — ). We use
the following values for the parameters: z = 100, r = 0.05, o = 0.4, T = 1. We plot in Figure [£.1] the behaviors of
nh™(0*) and n(6*™ — 0*) for n = 100,--- ,500. The value of h™(6*) is approximated by its Monte Carlo estimator
and 0*" is estimated by 6%, both estimators being computed with M = 10% samples. The variance of the Monte
Carlo estimator ranges from 9.73 x 10 for n = 100 to 9.39 x 107 for n = 500.

To compare the three methods in terms of computational costs, we compute the different estimators, namely
0:;,1(1/712) where (0)))p>1 is given by , O3 and O for a set of N = 200 values of the target 6* equidistributed on
the interval [90,110] and for different values of n. For each value n and for each method we compute its complexity
as the number of operations and the root-mean-squared error which is given by

| N 1/2
RMSE = (N PNCIE= 9;;‘)2)

k=1

where O =07, 2, O} or O™ is the considered estimator. For each given n, we provide a couple (RMSE, Complexity)
which is plotted on Figure[f.2] Let us note that the multi-level SA estimator has been computed for different values of
m (ranging from m = 2 to m = 7) and different values of L. We set v(p) = vo/p, with v0 = 2, p = 1, so that §* = 1/2.

We briefly comment Figure The curves of the statical Romberg SA and the multi-level SA methods are
displaced below the curve of the SA method. Therefore, for a given error, the complexity of both methods are much
lower than the one of the crude SA. The difference in terms of computational cost becomes more significant as the
RMSE is small, which corresponds to large values of n. The difference between the statistical Romberg and the
multi-level SA method is not significant for small values of n, i.e. for a RMSE between 1 and 0.1. For a RMSE lower
than 5.1072, which corresponds to a number of steps n greater than about 600-700, we observe that the multi-level
SA procedure becomes much more effective than both methods. For a RMSE fixed around 1 (which corresponds to
n = 100 for the SA algorithm and Statiscal Romberg SA), one divides the complexity by a factor of approximately 5
by using the statistical romberg SA. For a RMSE fixed at 107!, the computational cost gain is approximately equal
to 10 by using either the statistical romberg SA algorithm or the multi-level SA one. Finally, for a RMSE fixed at
5.5.1072, the complexity gain achieved by using the multi-level SA procedure instead of the statistical Romberg one
is approximately equal to 5.

4.3 Multi-step Richardson-Romberg for stochastic approximation algo-
rithm

This section is devoted to the work [10] related to a Multi-step Richardson-Romber method for the stochastic ap-
proximation algorithms introduced in [9]. Our first result is an expansion of the implicit discretisation error *™ — 0*
presented in the previous expansion. We will denote by [H-k] the following set of assumptions:

1. For all 6 € R¢,

n A9 (6) AR(0) 1
2. h,h™ € C*(R?,RY) and for all | < k — 1, for all § € RY,
AL (0) AL _(6) 1
lpn l _ M k-l
D'h™(0) — D'I(0) = e Tt Gy T (na<kl>> . (4.5)

%]
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Convergence of n.h"(®) Convergence of n.(8""-8)
5 T T T 8 T T T

n.(e""-e")

-5 -4
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
discretization size n discretization size n

Figure 4.1: On the left: Weak discretization error n — nh™(6*). On the right: Implicit discretization error n —
n(6*" —6*), n = 100, - - -, 500.

where for all § € R?, AL(6),--- , Al _,(0) and o(n=**~V) are multilinear maps from (R?)" to R%.
3. Forall 1 <1<k, (D'h"™),>1 converges locally uniformly towards D'h.
4. Dh(0*) is invertible.

Under (H-1) we have seen in Proposiiton that a first order expansion of 8*™ — 6* holds, that is, %" — 6* =
Cin~* + o(n~%). In [10], we obtained a generalisation of this first result.

Theorem 4.3.1. Assume that 6%™ — 0%, n — 400, and that [H-p] holds for some p € N*. Then, 6*™ — 6* has an
expansion up to order p, that is, the following expansion holds:

9*)"_9*=C’1+...+Cvp+o(1>'
«a nor

n nep

From the previous expansion, one is able to develop a multi-step Richardson-Romberg extrapolation method for
stochastic approximation algorithm. The idea is the same as for the Richardson-Romberg method in the context of
Monte Carlo linear estimator for the computation of E[f(X7)], see Section for a brief description and Pages [109)
for a complete overview.

We proceed as follows. Let R > 2 be an integer. To devise a SA estimator whose target has an implicit discretisation

error of order n~*% asn — +00, we introduce a sequence of R random vectors {U",1 < r < R}, n € N*. It is assumed

that this sequence satisfies U™ Eurwithur £ U , 1 <7 < R, all variables being defined on the same probability

space. If assumption [H-R] holds then for r = 1,--- | R one gets

rop pop raR nocR

R—-1
1 1
0+ = 0% + G 1 O 1), enn) 0.
p=1

By solving a Vandermonde system, one finds an Rd x d weight matrix w = (wy,--- ,wg)T, w; being a d x d matrix
i=1,---, R such that Zil w, = Ig and

4 *,rn * 1 (_I)Ril
Z WT.G ’ =0" + CRTLQTT (1 + €R+1(n)) (46)
r=1 '
Hence, we removed the R — 1 first terms of the expansion by considering a suitable linear combination of the
(0%"™)1<r<r- We now approximate the new target Zle w,.0%"" by means of M € N* steps of R stochastic algorithms
with dynamics

=0 — e HO U PTY) 0<p< M —1,r =1, R, (4.7)
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Figure 4.2: Complexity with respect to RMSE.
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where (U™®) r =1, , R)1<p<ns is an i.i.d sequence with the same law as (U™, r =1,--- ,R), 65", r=1--- R are
the initial conditions independent of the innovation sequence satisfying sup,,~, E|0|*> < +00 and the sequence (7;)p>1
satisfies (1.9). Now the new statistical error of the Richardson-Romberg extrapolation estimator writes

EFR(n, M) : Zw o+ — 057).

r=1

Under mild assumptions, we prove that this statistical error satisfies

(€5 ] < vry2(M) (1 + ¢7(n) + 65 (M)

971/2
where vg := CE “Zf_l w,H(0*,U") ] , oF oLt are two positive functions satisfying: ¢f*(n) — 0 and ¢&(M) — 0

respectively as M — +o0, n — 400 and ¢If is non-increasing. Hence, the global error of the Richardson-Romberg

estimator is bounded by E[|€);,7[] < prn™F (1 + [egy1(n)]) + vay/2(M)(1 + ¢1i(n) + ¢5 (M) with pp = %.

In practical situations, one is looking for an efficient estimator among the family {Zil w007, (n, M) € (N*)Z}

To be more precise, one is interested in minimising the computational cost for a given L!(P)-error £ > 0. We assume
that the cost of a single simulation of U™ is proportional to n and is given by K x n, where K is a generic positive
constant independent of n. It notably corresponds to the case of discretisation schemes of a stochastic process. In the
case of the Richardson-Romberg method for SA, at each step p = 1,--- , M of the procedure, for r = 1,--- | R, one

has to simulate the random vector (U™, U?",--- ,U%") so that the global computational cost is given by
i R(R+1)
Cost(R-R) := KM Z rm=KMn———=,
r=1 2
Hence the problem of interest writes
(n(e), M(e)) = arg min Cost(R-R).

prn = R (Lt ler+1(n) ) +vry /2 (M) (146 f (n) + ¢35t (M) <e

We solve the above computational optimisation problem asymptotically. More precisely, if v(p) = vo/p°, 70 > 0,
p >0, 8 €(1/2,1]. The multi-step Richardson-Romberg estimator of order R satisfies

1
Lz o] 2aR\ °F B
inf Cost(R-R) ~ K———  Va "t —— <1 + 2 ) (1 + ﬂ)
prn= R (L |epi1 (n) ) +vry Y2 (M) (1467 (n) +¢F (M))<e 2 5tam B 2aR

as € — 0. Eventually this asymptotically optimal bound may be achieved with parameters satisfying:

2R R 1 12 3
n(e) ~ (a + 1> ppfe”af and M(e) ~ vy v <1 + 26R> e 5 ase—0. (4.8)
Let us note that when one decides to implement the Richardson-Romberg extrapolation scheme with an innovation
satisfying U" = U a.s. r = 1,--- , R then one has H(0*,U") = H(6*,U) a.s. for every r = 1,--- , R which in turn

yields

2 2

R R
w, H(6*,U") (Y, w,)H(0*
—1 =1

Hence we clearly see that this choice leads to a control in the L'-norm of the statistical error of the multi-step
Richardson-Romberg SA estimator. On the opposite considering mutually independent innovations U" lead to an
explosion of the previous control with respect to R. Using the exact expression of the weights, one has

2 R r2aR )
- E||H(0*,U
(Z [To(r = j*)2 ;! (ja—raﬁ) .0}

r=1 7=0 j=r+1

> <§>QQE [|H(9*, U)|2]

oR 20
N(\/M) E[\H(G*,U)\Z] as R — +oo0,

—E [\H(@*,U)F].

H(O*,U")
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For instance when one is concerned with the discretisation of a Brownian diffusion, the first aforementioned case
consists in implementing the Richardson-Romberg method with R Euler schemes devised with the same Brownian
motion W namely W™ = W, r =1,--- , R whereas the second case consists in implementing the method with mutually
independent Brownian motions W”. The optimality of this choice is discussed in Pages |109].

Finally, we illustrate our results by applying the Richardson-Romberg method to the estimation of the ¢-quantile
(0 e (0,1)) 0% = inf{f e R : P, (X{ < 0) > ¢} where X is a d-dimensional stochastic process solution to a stochastic
differential equation where the underlying process Z is a symmetric a-stable, for a € (0,2]. Note that the case
a = 2 corresponds to the standard Brownian motion.

The mean function h is defined by h(f) = E[H(0,U)], H(0,u) = I,<p and U = X{!. We approximate U by
Uum =X/ 4 where X™ is the continuous Euler scheme associated to X.

In order to prove an expansion in powers of 1/n for the implicit discretisation error we first remark that (h—h™)(0) =

Pr(X¢ < 0) — P*(X]? < 6) so that (%Ckh(ﬁ) — %h”(ﬂ) = g;c—illpxd 0,1,,0) — %pff"’d(o, 1,z,0). Hence, one has
to rely on the smoothness of the law of X{ and X}’ 4 in order to verify [H-K].

We rely on the parametrix expansion for the error pX (0,1, z,60) —pX" (0,1, z,6) between the densities of the process
X and its Euler approximation X™ obtained by Konakov and Mammen [76] in the case of Brownian SDEs and by
Konakov and Menozzi |77] in the case of stable SDEs (see Section for a brief presentation) when the coefficients
b, o of the SDE are assumed to be smooth and bounded. Moreover, we assume that the diffusion matrix is uniformly
elliptic and the spectral measure of Z when o < 2 is non-degenerated. When o < 1, we put b = 0.

Note that we require more than an expansion of the error between the two densities since we also need an expansion
of their derivatives in order to verify [H-k]. As a simple extension of the results of Theorem 1.1 in Konakov and
Mammen in [76], for the Brownian case, and Theorem 21 in Konakov and Menozzi in |77|, for the Stable case, we
derive in [10] an expansion in powers of n=! for dgp™X (0,1,z,0) — depX" (0,1, ,6). Hence, [H-K] is satisfied and we
obtain an expansion of #*™ — §* in powers of n~! at any order. Our result notably extend the error bound for the
computation of the quantile of a diffusion process obtained by Talay and Zheng [123].

To illustrate the method we consider a geometric Brownian motion (X;)se[o,7)- Its dynamics and /-quantile are
given by

Vte [0,T], X; = zoexp((r — a®/2)t + oWy), 0% = xgexp((r — o2/2)t + a/td~ 1 (£))

where W is a one dimensional standard Brownian motion, ¢ is the distribution function of the standard normal
distribution N'(0,1). We use the following values for the parameters: o = 100, r = 0.05, 0 = 0.4, T =1, £ = 0.7.
The reference Black-Scholes quantile is 8* = 119.69. We set v(p) = ~o/p with vy = 60.
We plot in Figurethe behaviours of Zf’:l w,.0%"" — 0% for R =2,3,4and n = 2,---,15. We estimate %" by
m with M = 10° samples for R = 2 and M = 108 samples for R = 3,4 using consistent Brownian increments, that
is, the same Brownian motion for each R. We clearly see that the Richardson-Romberg estimator efficiency increases
with R and the method gives satisfying results with R = 3,4 for small values of n.

Convergence of Romberg SA estimators

Implicit discret. error

2 4 6 8 10 12 14
discretization size n

Figure 4.3: Richardson Romberg SA estimators: Zfil w,.0%"" — 0* with respect ton =2,--- 15 for R = 2,3,4.

In order to illustrate the computational efficiency of the Richardson-Romberg estimator we set the optimal param-
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Target accuracy: ¢ | Ll-error time (s) | R || n M
5.00 x 1071 321 x 1071 [ 0.9x 10" | 2 [ 14 | 8.69 x 10°
2.50 x 1071 480 x 1072 | 5.15 x 10* | 2 || 20 | 3.48 x 108
1.25 x 1071 432 x1072 | 1.70 x 102 | 3 || 8 | 1.21 x 107
6.25 x 1072 3.48 x 1072 | 7.92 x 10% | 3 || 10 | 4.85 x 107
Table 4.1: Richardson-Romberg SA estimators for the quantile at level £ of a geometric Brownian motion with a target
accuracy e =2"P, p=1,--- 4.
Target accuracy: ¢ | Li-error time (s) n M
5.00 x 1071 2.09 x 1071 | 1,09 x 107 235 | 1.25 x 108
2.50 x 1071 3.84x 1072 | 8.18 x 10% || 469 | 5.01 x 106
1.25 x 107! 3.48 x 1072 | 7.09 x 103 938 | 2.00 x 107
6.25 x 1072 2.91 x 1072 | 5.25 x 10* || 1876 | 8.01 x 107

Table 4.2: Crude SA estimators for the quantile at level ¢ of a geometric Brownian motion with a target accuracy
g:?fp,p:]_v... ’4.

eters according to (4.8)), namely

2

- g BB B\ 2
+1 ppfe ar] and M(e) = [yy vy 1+m e B

2aR
B

The target accuracy e for the L'-error has been set at € = 277, p = 1,--- ,4. The L'-error is estimated using 400
runs of the algorithm. The results are summarized in Table for the Richardson-Romberg extrapolation SA method
and in Table for the crude SA methodB Note that as expected the L'-error is always lower than the specified € for
our estimators. Using the Richardson-Romberg SA scheme instead of the crude SA method leads to a gain in terms
of CPU-time varying from 12 (for e = 5.00 x 1071) to 66 (for € = 6.25 x 1072).

o) =1

4.4 Perspective

From a theoretical point of view it would be interesting to obtain a CLT for the multi-level Robbins-Monro algorithm
when one uses the averaging principle of Ruppert-Polyak since we only obtain the optimal computational cost under
a constraint on 9 when v(p) = ~o/p. One expects to remove this constraint by devising a Robbins-Monro algorithm
devised with a low decreasing step sequence ~y(p) = ~o/p%, % < a < 1 and computing the empirical mean along its
trajectories.

From a practical point of view, we investigated multi-level and multi-step Richardson-Romberg methods. It
would be interesting to combine them in order to obtain a multi-level Richardson-Romberg method for stochastic
approximation as it is done by Pagés and Lemaire [93| for the estimation of E[f(U)] by the Monte Carlo method.
One expects to achieve a complexity of order O(n?log(n)) with a target accuracy of order O(n~1), that is, to remove
a log(n) factor in the multi-level optimal complexity.

IThe computations were performed on a computer with 4 multithreaded(16) octo-core processors (Intel(R) Xeon(R) CPU E5-4620 @
2.20GHz).
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Chapter 5

Weak approximation and asymptotic
expansion of some Markov semigroups

In this chapter we present [11] and [12]. The first work, in collaboration with A. Kohatsu-Higa, deals with asymptotic
expansions of Markov semigroups with respect to a small parameter. The key tools are the parametrix method and
Malliavin’s calculus. We revisit heat kernel expansions of some hypo-elliptic diffusion processes. We also discuss some
extensions to skew diffusions with non-regular coefficients.

In the second work, we are interested in the weak approximation error of a skew diffusion with bounded measurable
drift and Holder continuous diffusion coefficient by an Euler-type scheme which consists of iteratively simulating skew
Brownian motions with constant drift. Here, we rely on a discrete version of the parametrix method “a la McKean
and Singer” |95]. This approach has been successfully applied in the Brownian case by Konakov and Mammen |75]
in order to derive some local limit theorems for Markov chain approximations and to establish weak approximation
expansions for the Euler scheme of a diffusion [76] when the coefficients of the underlying scheme are smooth. We
also refer to Konakov and Menozzi 77| for an extension to stable driven SDEs still in the case of smooth coefficients.
However, little attention has so far been given to the case of SDEs with non-smooth coefficients.

We first briefly present in Section a probabilistic point of view of the parametrix method “a la McKean and
Singer”. For simplicity of the presentation, we consider the case of time-homogeneous diffusion process. In Section
we present a discrete version for the approximation of Lévy driven SDEs.

In Section we illustrate the effectiveness of the parametrix method for the weak approximation of a skew
diffusion with non-smooth coefficients. In Section [5.3] we present a general approach for asymptotic expansion of a
Markov semigroup (Pf):>o with respect to the small parameter € by means of the parametrix method and Malliavin’s
calculus and illustrate it on two examples.

5.1 A brief presentation of the parametrix method “a la Mc Kean and
Singer”

5.1.1 The case of diffusion processes

Let T'> 0. We consider the (strong) time-homogeneous Markov process (Xt)te[o,T] taking values in R¢ with infinites-
imal generator defined by:

LF() = (), V() + STra(@Dif(), e R (51)

where b : R? — R? and ¢ : R? — RY®RY are bounded measurable functions, a(.) = (co*)(.) is n-Hblder continuous and
uniformly elliptic, that is, V(x, &) € (R?)2, {a(z)¢,€) = a|¢|?. Under these assumptions, its is known that the related
martingale problem is well-posed, see Stroock and Varadhan [120], in other words, the SDE with £ as infinitesimal
generator admits a unique weak solution. We denote by (P;)¢=o the Markov semigroup defined on bounded measurable
functions f : R — R by P,f(x) = E[f(X¢)|Xo = x] where (X;);>0 is the unique weak solution to the SDE with
L as infinitesimal generator. The idea of the parametrix method is to approximate the dynamics of X by a simple
process X#, referred as parametrix process, obtained by removing the drift and freezing the diffusion coefficient to a
fixed point z € R%. More precisely, one has X7 = z + o(2)W;, where (W;);e(0,7] stands for a g-dimensional Brownian
motion, with infinitesimal generator L7 f(x) = 3Tr(a(z)D2f(z)). We denote by (Pf)o<i<r the associated Markov
semigroup. For ¢ > 0, the (transition) density of the parametrix process taken at time ¢ starting from x at time 0 is
y — p*(t,y — ), where p*(t, z) is the Gaussian density with mean 0 and covariance matrix a(z)¢ taken at z. We also
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denote by (87).~0 a sequence of positive mollifier converging weakly to the Dirac mass at z. For instance, one may
consider §Z(y) = g(e,y — z) with the notation g(c,z) := (2mc) =% exp(—|y — 2|2/(2¢)). Let 7, e > 0 and f € Cy(R?). By
It0’s lemma, for s € [0, ], one has

t sprzézf( ) = Ptz+7“6§f( ) JO (a + ‘C) t— v+r62f(Xv)dU + Ms

= P76 f(z) + J- (L — L)PE 62 f(Xy)dv + M (5.2)
0

where (Mj)qefo,¢] is @ square integrable martingale. Taking expectations in both sides of the previous equality and
letting s — t and then integrating with respect to z, one gets

J P67 () d :J e, 6% f(w)dz + J J J 52 () f (W)SEy o (Ko, 1) dzdy]dv. (5.3)
where we introduced the notations:
St1@) = [ SISt dn, i) i= {000) — 0,V @Ity ) - W@ Ha(EIy -2 glalelty - o)

with Hy? (a,z) = (g(a,x))*laghmjg(a,x), Hi(a,z) = (9(a,z))" 0z, 9(a, ). Passing to the limit as e | 0 then in r | 0
and omitting technical details, we get

Pif(z) = Bof(x) + f P& o f(x)dv, te[0,T] (5.4)

with P, f(z) := { f(y)g(a(y)t,y — z)dy and S;f(x) := § f(y)Si(x y)dy, Si(z,y) := §Y(x,y). Importantly, using the
n-Holder reg‘ularlty of a, one has the following control. vt e (0,71, [Se(z,y)| < Ct~ '3 g(ct,y — x) for some positive
constants C := C(a,b,T), ¢ := c(a).

The above lines of reasoning allows to select the point z where the coefficients of the parametrix process are fixed
as the terminal point where the transition density is evaluated. This argument will be referred as the diagonalisation
argument. In Section [6.2] of Chapter [6] we will see that this argument still works when the probability measure of the
parametrix process is not absolutely continuous with respect to the Lebesgue measure. Assuming that b is continuous,
one may iterate the first step expansion :

N—
2 )+ 2 f () (5.5)

where I} f(x) := { ® Psngsn_l_sn S, f(@)dsy, I0f(2) := Pof(x) and ZN f(z) := SAN(t) Py Sen 1—sn Sicsy f(x)dsn.
Using repeatedly the previous control on the kernel St(x y), one gets
a L(n/2)Y
N < d - (1-3) NyNn/2_ = \1/2)
#2101 < e [ o T Crton =070 = oo OB

where I' denotes the Gamma function. From the asymptotics of the Gamma function, one may let N goes to infinity
in and deduces that the series >, _ I{' f(x) converges absolutely and uniformly for ¢ € [0, T']. From the previous
expansion, one may prove the existence of the transition density for the process (Xi)seqo,r]- Indeed, from Fubini’s
theorem, one has

P f(x Z Irf ff(zo) Z j dsnf dz,, g(a(zn)sn, 2n — ) SP° o, (21, 20) 1_[5@1_gz+1 (zit1,2i) | dzo
n=0 \YA&n(T) R)n

n=0

so that the transition density (¢,z,y) — p(t, z,y) associated to (P;):>o exists and is given by

p(t,x,y) = 2 JA o ds,, J(]Rd)n dzyn g(a(2n)sn, 2n — 1) S0 (21,4 1_[ 857_57+1 (zit1, 2i)- (5.6)
n=0 n

Moreover, from the asymptotics of the Gamma function, one deduces the Gaussian upper-bound: 3C := C(a, |b|s,T), ¢ :=
c(a) > 0 such that Y(t,z,y) € (0,T] x (R?)2, p(t,z,y) < Cg(ct,y — ). The case of a bounded measurable drift can be
handled by an approximation argument: take (b, )n>o such that b, is continuous, sup,,~; [bp|w < |b|o and b, — b a.c.
Denote by (P/*):=o the semlgroup associated to this approximation. By a compactness argument and uniqueness of
the martingale problem, { te[O 7], N = O} converges weakly to (X¢);>0 and one can pass to the limit in the corre-
sponding parametrix series. When b is Holder continuous, one can prove that the series expansion for (¢, z) — p(t, z,y)
satisfies the Backward Kolmogorov equation, namely: (8t + L)p(t,z,y) = 0 with p(t,.,y) — d,(.) ast | 0, see e.g.
Friedman [44].
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5.1.2 A discrete version of the parametrix method

In the previous section, we have exposed a probabilistic point of view of the parametrix method of McKean and
Singer [95] for a time-homogeneous diffusion process. We illustrate now its robustness by showing that it can be easily
adapted for approximation schemes. In this section, we consider an R%valued process (Xt)te[o,r) With generator £
given by .
For a positive integer N, we define the time step h = T/N and the corresponding uniform time grid ¢; = ih,
i =0,---,N. A natural approximation scheme of the dynamics of (X;)seo,r] by a Markov chain is given by the
following scheme:
XN

tiv1

=X +bo(Xh+o(),, i=0,-- ,N—1, X =2 (5.7)

where ((V)1<i<n are i.i.d. random variables such that their common law approximate the law of the true increments
W}, and such that ¢}V has a density. If o is non-degenerated then the one step transition admits a density and so does
Xt]:[ fori =1,---,N. The density of the Markov chain approximation scheme taken at time ¢;; starting from x at
time ¢; will be denoted y — pn(t;,t;, z,y). In the spirit of the previous section, we introduce a parametrix process
denoted by (XtN ’7”/) j<i<j associated to (X}V);<i<;» which consists in removing the drift part and freezing the diffusion
coefficient in the dynamics of at the terminal point 2’ where the density of (XtN )j<i<j is evaluated. Its dynamics
is given by

o0
~

x0T =X 4o (XN =g i -1 X = (5.

tiv1 J

and its transition density is denoted by ﬁf\;. To simplify the notations, we will write pn (t;,t;,z, ) for ]55]”\; (tj,tjr, @, a’).
We also introduce the discrete counterpart of the infinitesimal generators considered so far. For g : Cy(R%), j =
0,---,7 — 1, we define

E[g(X, ) IXE = 2] - g(x)
h )

~ N J,'/ ~
E[g(X, )IXE = a] - g(x)

N _
‘ctjg(x)_ h

and ﬁfjg(x) =

(5.9)

for 0 < j < j° < N, the discrete kernel Hy(t;,t/,x,2") = ((Ei\j — Eg) pn(ty + h,tj/,.,x’)) () and finally the
discrete time-space convolution type operator ®x as follows

i'=1

(g ®N f)(tj,tj’,l‘,l‘/) = 2 hf g(tj,ti,x,z)f(ti,tj/,z,x/)dz
— R4

with the convention that ZZ;l <. =01if j = 4. From (5.9), it is easily seen that
_ tr, ! ~
HN<tj7tj/7$,.’L‘/) = h 1 J (pN —p]'\} * )(tj,thrh.%‘,Z)pN<tj+1,tj/7Z,$/)dZ.
Rd

After some simple computations that we omit, see e.g. Lemma 3.6 in Konakov and Mammen [75], for 0 < j < j' <
N, the following expansion holds

J'=J
V(x,x’) € (Rd)27 pN(tjﬂtj/a'raxl) = Z (ﬁN XN H](\;ﬂ)> (tj,tj’,x7l'/) (510)
r=0

where we define the convolution as follows: ¢ @y Hz(\/q) =gand forr =1, gQn H](\?) = (g ®n HJ(\;_D) ®n Hy and

use the convention p(tj,tj,.,a') = p(tj, tj,.,2") = d(.) in the computation of p @n Hg). From (5.10) and (5.6]),
the densities of X; and of its approximation scheme share a similar representation. In order to control the weak
approximation error p — py between the two densities, one has to quantify the following errors:

1. the error coming from the approximation of the “true” Brownian increment by the sequence (¢¥
words the error p — py.

)1<i<N, in other
2. the error coming from the discretisation of the space-time convolution operator appearing in ([5.6)).
3. the contribution when one replaces the continuous kernel S‘t_s( .,.) by its discrete counterpart Hy(s,t,.,.).

When the coefficients are smooth and time-inhomogeneous, following these steps, Konakov and Mammen [75|
proved an error bound for the difference p — py, namely |(p — pn)(0,t,z,2')| < ChYV2=42(1 + (|2’ — z|/tV/?)5) 1
for some S depending of the integrability properties of the underlying innovation sequence ((¥)i<i<n. It is the
approximation coming from step 1 that dominates in the error bound.
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2 )1<i<n according to the true law h%/\/(O7 14), that is, when one removes
the error coming from step 1, one obtains an error bound of order h. An expansion of the error in powers of h has
been established by Konakov and Mammen [76], as mentioned in equation in Section All these results
are obtained under enough regularity on the coefficients b and o.

When the coefficients b and o are not smooth, there are only few results. Very recently, in the diffusion case,
Konakov and al. [78] derived an upper bound for p — px of order h2=CY() where ¥(h) is a slowly varying factor that
goes to zero as h — 0 under the assumption that the coeflicients b and o are n-Holder continuous. Their strategy
consists in introducing perturbed dynamics of the considered SDE and its scheme by suitably mollifying the coefficients
of both dynamics and to quantify the distance between the densities and their respective perturbations.

We also mention the work of Mikulevicius and Platen [101] who established an error bound for the weak approxi-
mation error E[f(X7) — f(XN)] of order h"/? provided f € C2*([0,T] x R?) and the coefficients b and ¢ are n-Holder
continuous in space and 7/2-Holder continuous in time. We also refer the reader to [100] and [102]| for some recent
extensions of this result to the case of Lévy driven SDEs.

In the next section we present the results obtained in [12] where we proved an error bound for the difference
between the densities of the skew diffusion and its Euler approximation of order A2 under the assumption that b is
bounded measurable and o is 7-Hélder continuous and uniformly elliptic.

When one directly samples the sequence (¢V

5.2 Weak approximation of a skew diffusion by an Euler-type scheme

We consider the unique weak solution of the following R-valued SDE (X )¢ with dynamics

X, =x+ Jt b(Xs)ds + Jt o(X)dW, + (2a —1)LY(X), «ae(0,1) (5.11)
0 0

where W = (W})¢>¢ is a one dimensional Brownian motion defined on a filtered probability space (2, F, (Ft)=0,P)
satisfying the usual assumptions and L%(X) is the symmetric local time of X at the origin.

When b = 0 and o = 1, the solution to is called the skew Brownian motion. Harrison and Shepp [60] proved
that if |2« — 1] < 1 then there is a unique strong solution and if |2« — 1| > 1, there is no solution. The case a =1

corresponds to reflecting Brownian motion.
Here we assume that the coefficients of the SDE (5.11)) satisfies the following assumptions:

(HR) The drift b is bounded measurable and a = o is n-Hélder continuous, for some 1 € (0,1]. That is, there exists
a positive constant L such that
a(r) —a
sup |b(x)| +  sup laz) = aly)| < L.
zeR (z,y)ER2,z#y |£L’ - y|77
(HE) The diffusion coefficient is uniformly elliptic that is there exists A > 1 such that for every x € R, \™! < a(z) < A.
Since o is continuous, without loss of generality, we may assume that o is positive.

The previous assumptions guarantee the existence of a unique weak solution to . Moreover, for any (¢,x) €
R* x R, X; admits a density y — p(0,t,z,y), which is continuous on R* and satisfies a Gaussian upper-bound. We
refer to Kohatsu-Higa and al. [73] for more details, see also Le Gall [88]. We also refer the interested reader to the
recent survey of Lejay [89] and the references therein for various applications of such equation.

In particular, in |73|, a representation of the transition density p(0, ¢, z,y) by means of the parametrix method “a
la McKean and Singer” similar to the expansion is obtained. However, the parametrix process is chosen to be
the skew Brownian motion, that is, X7 = z + o(2)W; + (2o — 1) LY(X*?) for which the transition density p*(0,¢,z,y)
is defined by

Case 1: For x > 0, one has
p°(0,t,2,y) = {g(a(2)t,y — x) + (2a — 1)g(a(2)t,y + )} L0y + 2(1 — a)g(a(2)t,y — 2)I(, <0}
Case 2: For x < 0, one has
p(0,t, 2, y) = {g(a(2)t,y — x) + (1 = 2a)g(a(2)t, y + @)} Ly <oy + 2ag(a(2)t, y — 2)Ly=0-

Note also that the infinitesimal generators £ of and L7 of X* are respectively given by £ = fa(x)02 + b(z)d,
and L* f(x) = $a(z)0% acting on D(«a) the set of bounded continuous functions f : R — R with bounded continuous
derivatives f’ and f” on R* such that f'(0+) and f'(0—) exists, are finite and satisfies af’(0+) = (1 — a)f'(0—).
Instead of It6’s lemma, one has to use the It6-Tanaka formula in .
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To approximate equation on the time interval [0, T], T > 0, we introduce the Euler type scheme (X}¥ )tel0,T]
associated to the time step h = T/N, N € N* and time grid t; = ih, i = 0,--- , N, defined by X' = z and for all
t <t <t

XN =X +o(X)(t —t) + o(X )Wy = We,) + (20— 1)LY_, (XN (i, X7)). (5.12)

Observe that the above scheme does not correspond to a standard Euler-Maruyama approximation scheme since
we do not discretise the part corresponding to the local time in the dynamics (5.11)). However, its computation only
requires to be able to simulate exactly the skew Brownian motion with a constant drift at time ¢ — ¢;. This process
is known to be exactly simulatable and we refer to Etoré and Martinez [40] for the exact expression of its density. In
partiular, under assumptions (HR) and (HE), the transition between ¢; and ¢ € (¢;,¢;+1] admits a positive density
so that the discretisation scheme admits a positive transition density between two times ¢; and ¢;, that we will
denote pn(ti, t;,x,y), for any 0 < t; < t; < T, (x,y) € R x R*. In particular, a Gaussian upper-bound has been
established in 73] for the transition density of the skew diffusion under (HR) and (HE). Our first result is to
prove similar Aronson’s estimate, that is a Gaussian upper estimate but also a lower bound hold for the discretisation

scheme ([5.12)).

Theorem 5.2.1. (Two sided Gaussian estimates for the scheme) Under (HR) and (HE), there exist two constants
C:=C(T,b,0),c:=c(\n) > 1 such that for every 0 < j <i < N,

V($7y) e R x R*a C_lg(c_l(ti - t]>7y - l‘) <pN(t]atla$7y) < Cg(c(tl - tj)7y - .’L')

The proof relies on a parametrix expansion of the density o (t),ti, x,y) as explained in the previous sections. In
particular, one proves that the series representatlon ) holds for the transition density of the scheme (| with
PN (.t x,x') = p(ty, ty, z,2') = p* (t],tjf,x ). The lower bound is obtained by a chaining argument as usually
done in this context, see Chapter VII in Bass [14], Kusuoka and Stroock [84] and Lemaire and Menozzi [91] in the
case of discretisation schemes of uniformly elliptic diffusions and of some degenerate Kolmogorov processes.

Our second result is an error bound for the difference between the densities of the skew diffusion and its

approximation scheme ([5.12)).

Theorem 5.2.2 (Error bound on the difference between the densities). Assume that (HR) and (HE) hold. Then,
there exists a constant ¢ := c¢(\,n) > 1 such that, for all0 <t; <t; < N, one has

V(x,y) € xR x R*, [(p— pn)(tj,ti, 2,9)| < C(T,b,0)h"?g(c(t; — t;),y — )
where T — C(T,b,0) is a non-decreasing positive function.

Observe that the weak rate h"/? is coherent with previous results obtained in the literature for the weak approx-
imation error E[f(X7) — f(X%)] where X is given by a Brownian SDE and X% is its Euler scheme when b and o
are n-Holder continuous in space and 7/2-Ho6lder continuous in time, see [101]. In Konakov and al. 78], the error
bound on the densities is proved to be of order hz ~¢¥() 4)(h) = logs(h~")/log,(h~!) when the coefficients b and &
are n-Holder continuous. Moreover, in their results, the singularity in time is given by C(t; — tj)*(lfn/ 2)1/2 whereas
this quantity does not appear in the previous theorem so it is tighter in this sense. For o = 1/2, which corresponds
to the case of (time homogeneous) diffusion process (since the local time part vanishes), compared to [78], our result
notably removes the slowly varying factor ¢)(h) and shows that the drift plays no role in the approximation of the
density since we only require b to be a bounded measurable function. This phenomenon is not surprising since one
of the advantages of the parametrix method is the removal of the drift part in the analysis. Eventually, it should be
possible to extend our strategy of proof to the case of multi-dimensional Brownian diffusion.

In order to prove the error bound of Theorem [5.2.2] our strategy is the following. The main point is to compare the
parametrix series of the transition p(t;,t;,x,y) obtained in |73| and the parametrix series of the Euler scheme (.12)
which differs on account of the discrete nature of time-space convolution operator ® x and the discrete smoothing
kernel Hy. In order to do this, we introduce for 0 < j < j' < N,

V(x,2') e R x R*, p&(t;,tir,x,2') = Zp@;v Dty ti,x,a). (5.13)

r=0

Arguments smular to those used in Section 1| show that the series converge absolutely and uniformly on
R x R* and that p% satisfies the following Gau551an upper-bound:

V(z,2') € R x R* pk(t;,tj, 2, 2") < C(T, |blo, a)glc(ty —t;), 2" — z). (5.14)

Indeed, by induction on r, one proves that

~ r & Z_ 1)77 n
V(z, ') e R x R¥ [p@n H" (t;,t5,z,2")| < CT(t; —t; "/2HB( 2)gc(tj,_tj)(x'—x) (5.15)
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where C' := C’()\717)(|b|ooTl_TT7 + 1) and B(m,n) = S(l) dv(1 —v)m~1y"~1! is the Beta function. Then, (5.14)) follows
from the previous bound. We omit technical details.
The idea is now to decompose the global error as follows:

A similar decomposition has been used in [76] when the coefficients b and o are smooth. The smoothness of the
coefficients notably allows to use Taylor expansions to express the transition density p as the fundamental solution
of the underlying parabolic PDE and to use integration by parts (that may be expressed as the duality relation
satisfied by the infinitesimal generator when seen as a differential operator) in order to equilibrate time singularities.
Obviously, these arguments do not work here under the mild smoothness assumption (HR) so that computations
become more delicate. In a first step, we express the difference p?l\, — py in an infinite parametrix series that involves
the difference between the two kernels H and Hy. Then, the symmetric [t6-Tanaka formula allows to express the
difference H — Hy as the difference of the kernel H between two consecutive discretisation times plus a remainder
term Zpy. We then study the weak approximation rate induced by Zy. The delicate point here lies in the non-
differentiability of x — 0,p(t;,t;,, x,2') at zero caused by the presence of the local time part in the dynamics of XV
and XV which prevents us to use (again) the It6-Tanaka formula. In a second step, in order to study p—p%, we express
this difference as an infinite parametrix series that involves the difference between the two convolution operators ®
and ®p. Then, we notably use a (kind of) Lipschitz property in time for the transition density p and a smoothing
procedure for the drift part.

5.3 Asymptotic expansion of Markov semigroups and application to dif-
fusion processes

In this section, we present the results obtained in [11] in collaboration with A. Kohatsu-Higa. We develop a general
framework for asymptotic expansion of a Markov semigroup (Pf);>o with respect to a small parameter £ based on
the parametrix technique and Malliavin’s calculus. The main idea can be summed up as follows. Assume that a first
order expansion for the infinitesimal generator £5 of (Pf)y=o holds, that is £5 = £9 + £, ¢t > 0, where £? is the
infinitesimal generator of some strongly continuous Feller semigroup (P? t)0<g<t, which will be referred to as the prozy
semigroup. The basic argument in order to obtain the expansion in powers of € consists in writing

B f(x) — PO, f(x j 0s(P P2 f () ds—fPosﬁ LO)PY, f(z)ds = ¢ f FS LLPY f(x)ds  (5.16)

where we assumed that P?,f € Dom(LS) for f € Dom(£L)) and s € [0, t] In order to iterate the above expansion,

one needs an expansion of £°, namely we assume £° = L0 + eL' 4+ ... 4 1 LH1LE . More precisely, for every
feCP(RY) ¢ ny=pDom (L) n Dom(LY) - - A Dom(LL ), we assume that

Lof(x) = LOf(x) + eLif(x) + -+ 1L F (). (5.17)

Then, under some integrability conditions that we omit, for all (¢,z) € R, x R%, the following expansion holds

14

PS5 f(x) = P9 f(x) + ) ePL(f)(x) + "1 (Ry® + RY) (5.18)
p=1
with
-y ¥ f ASLP00 L8PS, oy o P L8PS, (@)
k=1a=(ay,...,
lleell= 5
and limsup,_,, {|Ré’6| + \R?E|} < . The norm of the index o = (ay, - ,ay), a; € {1,--- ¢}, is defined as |a| =

Zé':l Q-

! The main application discussed in this work concerns semigroups generated by diffusion processes which are defined
as solutions of SDEs. In order to extend the expansion of Fj,f to the class of bounded Borel functions, we will rely
on some integration by parts formula on the Wiener space. We now explain the main idea. We will use the standard
notations of Malliavin calculus. We refer to Ikeda and Watanabe |64] and Nualart |[108] for a complete exposition of
this topic. We consider the unique strong solution Z of the following SDE

t t
Zy=Zs+ | blu, Zy)du + J oo(u, Z,)dWE; Zy = ze R%, (s,t) € [0,T]? (5.19)

S
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with coefficients b(t,.), o¢(t,.) € C°(R%, R%), t € [0,T], £ = 1,--- , q, with bounded derivatives of all orders greater than
one. We also assume that b(¢,0),01(¢,0),- - ,04(¢,0) are bounded on [0,7]. The corresponding time inhomogeneous
Markov semigroup is given by P, f(x) := E[f(Zi(s,x))], 0 < s <t < T, for any given bounded measurable function
f.
It is well known that the above non-homogeneous diffusion defines a C* non-homogeneous stochastic flow, see e.g.
Kunita [80]. Therefore we may define flow derivatives of the type agal zon 2y for any sy € [0,¢]* and any multi-index
A,

ae{l,--- ,d}k, k € N*. Similarly, we also define accordingly the multilinear form 6’Z Z;, i € N. Notice that we can
therefore understand 62(11 4o Zt as a (random) function of the vector (Zs,, - Zs,).
For j € N, s € [0,T], € € [0,1], we consider coefficients Bl(e,.) € C*(R% R%) and Al(e,.) € C*(RY, S%(R)) such
that for any multi-index « of elements of {1,--- ,d} and any j € N,
sup  {]0aBl(e,2)| + [0aAl(e, 2)|} < Qallzl) (5.20)

s€[0,77],e€[0,1]

for some polynomial function @,. We also define the corresponding non-homogeneous derivative operators
. . 1 .
LI f(2) = Bi(e, 2)Vaf (@) + 5 Al(e, 2)07 f(2) (5.21)

and note that we are using product notation: bV, f(x) = 22.1:1 b0y, f(x) and AG2f(x) = 3% A; 0%  f(x) for

1,j=1""b) " xz;,x;
feC*R?), beR? and A e SY(R). With this notation together with the existence of smooth flows the interchange of
derivatives and expectations is straightforward, that is for any f € C;°(R%), one has

LIP, , f(z) = E [cgjf(zt)] Z, — x] , with L3 () = Bl(e, 2V 2, f(Z) + %Ag(e, 7% f(Z4) (5.22)

Clearly, this formula transfers derivatives operators applied to semigroups into differentiation along the flow gen-
erated by the diffusion. From here, we can also obtain the following generalised transfer formula:

... P

Y L2EP i L8 Py f () =B €57 £5° £(Z0)| 24, = ]

Sp,Sp—1
with

L LYf(Z) = ), 0sf(Z)O2% (8, Zs,)-
5€A0(2p)

We use the notation Ay (p) for the set of multi-indices o = (v, -+ , ) € {1, -+ ,d}e, with length £ € {1,--- | p}. Also
{y — ©2(s,,y), B € Ay(2p),e € [0,1]} is a family of smooth functions such that for any 8 € Ay(2p), € € [0,1] and
any tuple v of elements of {1,---,d}, ©2 : A, (t) x R? — D% satisfies

1. ©82(s,,.) € C*(RY) and [07©2/dy7](.,.) is continuous on A,(t) x R? a.s.

2. V(k,p) e N x [1,0), there exists a polynomial Q) , function such that

vyeRY  sup  [0702/0y" (sp,y)],, < Quply)-
spEA,(t),e€[0,1] ’

Moreover, if one assumes that the Malliavin covariance matrix I'z,. of Zr is invertible and that det(T" ZT)_1 has
moments of all orders. Then, making use of the Malliavin integration by parts formula, for any multi-index « of length
p and any s, € A,(T), one has

Po.s, L3P Py, o,y Pay o L2 Po, o f(x) = Y E[f(Zr(2))Hp(Zr(x), 02 (sp, Zs, (2)))]. (5.23)
BeAo(2p)

We apply this approach to a d-dimensional diffusion processes (Xf):>o solution of an SDE with dynamics:

t t
X; = = +J b(e, X5)ds + 5f oo(XE)dWE, (e,t) € [0,1] x [0,T], (5.24)

0 0
where (W, = W}, - s W)iero,r) is a g-dimensional Brownian motion, o = (o1,---,04) is a system of R%-valued

functions all defined on R? and b : [0,1] x R? — R? and ¢ € [0,1]. Our aim is to derive an asymptotic expansion of
the density p®(0, T, zo,y) of (5.24)) starting from xg at time 0 and evaluated at terminal point y at time T as ¢ | 0.
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Small noise as well as short time asymptotics can be derived from the heat kernel expansion of . As the first
part of our main results, we obtain the expansion at any order of p*(0, T, zo,y) by combining the parametrix approach
exposed above with Malliavin’s calculus techniques.

Short time expansions, that is, the case b(e,.) = €2b(.), have been investigated by Molchanov [106] and Azencott |6]
for elliptic operators. An application of the Malliavin calculus to this problem was first discussed by Bismut [21] under
the so-called (H2) assumption which is weaker than the ellipticity assumption. Then, Watanabe |127] obtained a similar
expansion through the asymptotics of generalized Wiener functionals. Following [6] and [21], Ben Arous [16], |17],
combined the Laplace method on Wiener space with the Malliavin calculus to derive short-time asymptotics for
hypo-elliptic diffusion processes.

A first order expansion for the transition density of has already been considered in Deuschel and al. |37]
using the Laplace method on Wiener space, as initially developed by Ben Arous in [16] and [17] in the small time
case. Here, following our approach, we derive the full expansion of p*(0, ¢, z¢,y) at any order under mild conditions,
including unicity of the minimiser and a non-degeneracy condition (ND) (see below for precise statement) in the spirit
of Bismut’s hypothesis.

In the sequel we will suppose that the following assumption is in force:

(Hy) b € C*([0,1] x R4 R) and 0 ; € C*(RY,R), (i,7) € {1,--- ,d} x {1,--- ,q}. Moreover, for all € [0, 1] and for all
integer n, the functions 02b;(e,.), o5 ;(.) have bounded derivatives of all orders greater or equal to one.

(WH) span{o;(zo),i =1, ,q;[0i,0](20),0 < i,j < g;--- } = R, where we set gq(.) = b(0,.) for convenience.

We consider the process (X} ’h)te[oz] with dynamics

t t t

oo(XEMaw?t +J oo(XEMhlds (5.25)

V(e t) €[0,1] x [0,T], XE" = 2 +J
0

b(e, XSM)ds + ef
0

0

where h is an element of the Cameron-Martin space H. Under (H;), for fixed 2 and h € H, for all integer N, X"
has the asymptotic expansion

N
XPh = X2 T RAEX R (1) + NHLANHLX R () (5.26)
k=1
1 1t
with A§X"(t) = yafxf’hk:o, residue AN T X (t) = ﬁj dA(1 = N)NNFTLX " . and the convention Y1), ... =
! "Jo

0.
Moreover, from the previous definition, for all integer N, for all integer p > 1, one has

sup E[ sup |ANTLX;"P] < 0. (5.27)
re[0,1]  O<t<T

In particular, the limit equation as € goes to zero of the previous system is given by

+ t
X o+ [ 00,305 + [ on(xhits,
0 0

t t
XI = f Y (YR 0,60, XOM)ds + j YY) o (XMW,
0 0

" t
Y =1+ J 0,00, XY/ ds + J 0p00(XP Y hds.
0 0

A crucial assumption to derive the expansion of the density is that the set K, 4 1= {h e H: X%h = y} is non-
empty. It is satisfied under the strong Hérmander condition (see e.g. Coron [31])
(SH) Vx e R, Lie{oy, -+ ,0,} () = R4,

Now let h € K, which minimises the norm that is | 2], = infrexc, , |23 A standard weak-compactness argument
shows that such an h always exists (see e.g. Bismut [21] or Watanabe [127]). In the spirit of Bismut |21], we introduce
the following non-degeneracy assumption:

(ND) For every u € R,

L {Ul (1'0)7 o ,0’@(.’[0), [Ula V] (‘ro)v Tty [Uf, V] (xo)} = Rda for V(l’o) = Z Uzo’g(xo) + b(oa xO)
(=1
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Assuming that (H;) and (ND) are satisfied and that h € H n C?([0,T]) then the Malliavin covariance matrix
IV x5 is uniformly non degenerate in the sense that

lim sup | det(I" g1 yen) " lp < 0. (5.28)
e—0 eoT

Once we have fixed the minimiser on the set K., , of |h|% and in the interests of simplifying notations we
omit the variable denoting this element of the Cameron-Martin space in all processes. Therefore, we will have, e.g.,

Xeoh = X0 = X¢, AéX"h = X% for e € [0,1], X0k = X0, A%)X"E = Xi_and Yyh =Y.
In particular, the “deterministic” Malliavin covariance matrix I'x1 of X} defined by

s = 3} [ ) o RN Fo) e Ry, (i) 1, (5:29
{=1

is invertible under (ND).
Moreover, in order to characterise some properties of the minimiser, one uses the Lagrange multiplier method
which ensures that

INeR? s.t. for a.a. te[0,T], ﬁf =\ YY) to (X)), £=1,--- ,q. (5.30)

Using the dynamics of (th ’h)te[o,:r] with (5.30]), we deduce the following crucial identity

T T T
f <ﬁs,dws>=<x,f V() T oo(XO)dWEy = (A, Kby — (A, j Vr(¥.)~12.0(0, X0)ds). (5.31)
0 0 0

Finally we introduce the following condition
(Hs) E[exp(), X3)| X7 = 0] < 0.

We now give a guideline of the arguments to prove the main result (Theorem [5.3.1]) of this section. Let 6 > 0 to
be fixed later on. Under (WH), the density of X5 may be decomposed as follows

P70, T, 20, ) = B[S, (X7)] = E[ws(Z57)8, (X7)] + E[(1 — ¥5(Z7°))0,(X7)] (5.32)

where ¢ € C*(R) is a bump function such that 0 < ¥(z) < 1, ¢(z) = 1 on |z| < 1/2 and ¢(z) = 0 for |z| > 1,
for § > 0, ¥s(z) := (/) and we introduced the following process Z, ¢ = Sg |Xs — X02ds, t € [0,T]. The above
decomposition is necessary in order to deal with the remainder terms in the expansion in powers of € of the first term
appearing in the right-hand side of .

Using Malliavin’s integration by parts and a large deviation arguments, one can prove that 0 < E[(l—w(;(Z%’g))éy (X5)] <
Cexp(—(|h|% + ¢)/(2¢2)), for some positive constant ¢, C, so that, as it will be clear later on, this term only appears
in the remainder of the asymptotic expansion (at any order).

We now focus on the first term appearing in the right hand side of . By the Girsanov Theorem with drift
equals to h/e, h e Koy with N = 0,1 and , one successively deduces

lexp <—iL (hs, dWs>> %(Z%’E)%(X%)}

=

112
BLv(255,065)] = exp (- )

— e dexp ( ';‘E’) E l exp <J <hs,dWs>> bs(Z7%)00(X7 5)1

= e dexp < ”;‘Jz’f ) E lexp (i_ LTO\,YT(YS (XO)de>> Ps(Z3°)00( X + e X7 5)1

_ cdoxp <_ ';‘J?) exp C—Q’L Vi (V)1 0.(0, Xo)ds>> [ (ZL5)50( X + e X2 f)]
— e lexp <_ ';‘!?) exp (i@, OT YT(Y;)—lagb(o,Xg)ds>> [ AXEDys(27°)00( Xy 5)] :

(5.33)

In the above formula, we extracted the main term of the asymptotic expansion. To conclude we prove that

E [eo\,)’(%%w(;(Z%,e)(go(xéﬂ] admits an expansion in powers of ¢ using the framework developed above. Roughly
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speaking we introduce the Markov semigroup (F;)e[o,r] associated to the trivariate process (th’e, Ztl’e, X’f’a)te[oj].
We prove that its infinitesimal generator admits an expansion in powers of e. We use the integration by parts formula
w.r.t the non-degenerate process X' in order to get rid of the derivatives on the test function. In order to deal
with the remainder term in the expansion, one has to use a localised version of the usual Malliavin’s integration by
parts and the asymptotic non-degeneracy . Finally we obtain the following expansion.

Theorem 5.3.1. Let 2o,y € R%. Assume that (Hy), (WH), (Hz) and (ND) hold. Suppose that Ko, # & (which
is guaranteed under (SH)) and that the minimizer h = arg minpcx h||% is unique. Then, for all £ € N, one has

0,y

h
p(02ry) = e (1) ( o [ w00, X°>ds>) (ol ) + cea(e.) + -+ healay) + OEH)).
We can compute the exact expressions of the coefficients. One notably has
co(@,y) = B |8o(X5)e D

2d - B _ B
Cl(may) [60 <)\ X Z {/\ﬁlH X’11"7@51(317X31)7<)‘7Xt2>)+ Z )‘ﬁQHB(Xil"aeﬂ(317XS1>7<A7X%>)}1'

pf1=1 B2=1

where, (s,z) — 01 (s, z), ©(s,r) are two explicit smooth random functions and we interpret B = Fif B €
{d+1,---,2d} and that Hy = 1.

As a second application we consider a one dimensional Markov semigroup with singular coefficients for which we
derive an asymptotic expansion with respect to a small parameter e. We consider the following skew diffusion with

small skew .

¢

X;=x+ J b(XZ)ds + J o(XE)dW, + eLY(X¢), e € [0,1). (5.34)
0 0

where W = (W,);>0 is a one-dimensional standard Brownian motion and L°(X¢) = (LY(X*®))¢>¢ is the symmetric

local time of X¢ at the origin. We work under assumptions (HR) and (HE) presented in Section [5.2] which guarantees

the existence of a unique weak solution to (5.34). The first order approximation is the semigroup (P?);>o associated

to LV = L0 = a@% + b0,. For f e CF(R), we prove the following first step expansion

t € € —
PEf(e) = POfa) e [ [ OO B SRED 0 00, 0,00 (0 dyds

or equivalently,

¢ (0, s1,2,0+) + p°(0, s1,x,0—)

p°(0,t,2,y) = p°(0,t,z,y) + a(O)EJ dsy 5
0

ampo(slv ta Oa y)

We understand that the expansion (5.17) is satisfied in a generalised sense with £1¢ = £ = a(0)§00,. Then, using
some sharp estimates on lim, o %(&;po(sh t,0,1) + 02p°(s1,t,0,—7)), we prove that we can iterate the above first step
expansion.

Theorem 5.3.2. Under (HR) and (HE), for all € € [0,1), the transition density of (5.34) can be expressed as

p—1

V(t, x,y) € R* xRxR*, p°(0,¢,2,y) = p°(0, t,x,y)—l-z (G(O)E)pj dsy 1_[ 020" (5041, 5¢,0,0)p%(0, 8, 7, 0)0,p" (51,1, 0,9)
p=1 Ap(t) =1
with s = t. Alternatively, for all positive integer n, one has
n p—1
V(t,ﬂf,y) GRT_ x R x R*v p6(07t,$,y) O t Y y + Z Pf dspl—la.'l;po(sé-ﬁ-lvS€7OaO)p0(07Spvxao)awpo(slat707y)
p=1 Ap(t) =1

+1(n+1)2—1 p1,
4 e t(n )3 2Rn6

with limsup,_,, |RL¢| < +c0.
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Chapter 6

One-dimensional elliptic diffusions and some
of their path-functionals

In this last chapter we present the results of [13] in collaboration with A. Kohatsu-Higa from Ritsumeikan university
and L. Li from the university of New South Wales and [14] in collaboration with L. Li. In both works we are interested
in Markov perturbation problems related to some path-functionals of a one-dimensional elliptic diffusion.

In Section we expose the results obtained in [13] related to the joint law of the first hitting time of a threshold
by a one-dimensional uniformly elliptic diffusion process and to the associated process stopped at the threshold. Our
methodology relies on the parametrix method that we apply to the associated Markov semigroup. In the spirit of
Bally and Kohatsu-Higa [7], see Section for a brief account, we obtain a probabilistic representation that may be
useful for the construction of an unbiased Monte Carlo path simulation method. Some integrations by parts formula
are also established under mild assumptions on the coefficients.

In Section we present the results obtained in [14] related to the weak existence and uniqueness as well as
density estimates for SDEs with coefficients depending on some path-functionals of the process. We consider two
examples: a diffusion process with coefficients depending on its running symmetric local time and a diffusion process
with coefficients depending on its running maximum. In each example, we also prove the existence of the associated
transition density and establish some Gaussian upper-estimates.

6.1 Hitting time and killed process associated to a one-dimensional dif-
fusion

In this section, we expose the results obtained in [13] in collaboration with A. Kohatsu-Higa and L. Li related to the
first hitting time of a one-dimensional diffusion process with dynamics

t t
Xy :oc-i-f b(Xf)ds—&—f o(X3)dW,, zeR (6.1)

0 0
where (W}):>0 stands for a one-dimensional Brownian motion on a given filtered probability space (Q, F, (Ft)t>0, P).
We denote by 7% := inf {¢t > 0, X} > L} the first hitting time of the level L (or equivalently the exit time of the open
set (—o0, L)) by the one-dimensional process X and by (X7:):;>0 the associated killed process. Here we introduced
the notation 7 := 7% A t. In order to study the joint law of (77, Xftm)tzo, we introduce the collection of linear maps

(Py)i=0, acting on By(R), as follows

Y(u,z) e Ry xR, Ph(u,z) =E [h(u + Tf,Xftz)] . (6.2)
In a multi-dimensional setting and for a domain D such that 0D is smooth and noncharacteristic, Cattiaux [28|
developed a Malliavin’s calculus approach to prove that the semigroup associated to a process killed when it hits the
boundary 0D admits an infinitely differentiable kernel under a restricted Hérmander condition on the vector fields.
Gaussian bounds on this kernel are also established in small time. We also refer the reader to Ladyzenskaja and
al. [85], Friedman [44] and Garroni and Menaldi [46] for constructions of Green functions related to a class of Cauchy-
Dirichlet value problems in a uniformly elliptic setting using a partial differential equation framework. In particular,
in Chapter IV in the latter reference, the authors introduced the notion of Poisson and Green functions related to a
similar Cauchy-Dirichlet problem and in Chapter VI existence and Gaussian upper-bounds are established when the
coefficients b and ¢ are Holder continuous and a = o2 is uniformly elliptic. As a slight extension of the latter result, in
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[13], we prove the existence of a transition density for (P;)¢>0, thus proving existence of a density for (77¥, Xftm), t>0,
under the assumption that b is bounded measurable and ¢ is Holder continuous and a is uniformly elliptic. Some
Gaussian upper-bounds for both densities are also established. In this section, we rather focus on the probabilistic
representation for (P;)=o.

The fundamental idea in order to obtain a probabilistic representation for the joint law (7} ,X‘T”tm) is to see the
operator P; as a perturbation of the operator P; defined by Pih(u,z) = E[h(u + 7£, )_(%)] where (X;);>0 is obtained
from by removing the drift and freezing the diffusion coefficient to the initial point z, namely X¥ = z + o(z)W,;
and 7% is its associated first hitting time. Note that from the reflection principle of Brownian motion, the kernel
associated to P, is given by

Pih(u,x) = Lospyh(u, 2) + E[h(u +t, th)]:{'?l'>t}] +E[h(u+ 7%, L)Ize <]
= Loy h(u, ) + SPh(u, ) + K h(u, x)

u+t L
=Topyh(u, ) + Tpopy J J h(s,z) [fZ(z,s —u)dr(dz)ds + @ (x, 2)dz6y++(ds)] .
u —0

with
t L—-x (L — x)?
Kh(u,z) =1y, h(u + s, L) fZ(z,8)ds, fZ(x,s):=0sP(T* < 8) = ——————ex ()Iw
H) = Tcpy | Bt o, D)), 3,8) 1= ORG7 <9) = i igg e ({0 ey

L
Stxh(ua I) = I{I<L} J h(u +1, Z)(jg(.’l?, Z)dZ, Lﬁ!(l‘7 Z) = (g(a(y)tv z = l‘) - g(a(y)ta z+T— 2L)) I{st}I{sz}a

—0

and g(a,z) = (2ma)”2 exp(—3a~'z?). A direct application of It6’s lemma allows to characterise the infinitesimal

generators £ of P, and L% of P;, namely for h € C;’z(R+ x (—oo0,L]) and (u,z) e Ry x R

Pih(u,x) — h(u, x)
t
P;h(u,z) — h(u, )
t

— Lh(u,x) :=Topy (b(x)&zh(u,x) + %a(x)@%h(u,a:) + d1h(u, 1‘)) ,

_ 1
— L%(u, ) = Ty <2a(x)6§h(u, x) + alh(u,x)>

as t | 0. We assume that a € CZ(R), b € C} (R). Roughly speaking, the first step of the forward parametrix method
writes as follows

P;h(u,z) = Ph(u,z) + Lt 0s(P;_sPsh(u,x))ds = Ph(u, ) + f: P, (L — L) Psh(u,x))ds

where (£ — L%)h(v,y) = 4 (a(y) — a(z))d3h(v,y) + b(y)02h(v,y). Now, by an integration by parts formula, one can
remove the derivatives on P;h and put them on the kernel of P;_. Taking care of border terms, one gets

Prh(u,) — Prh(u,z) — L (RrouPoi(u,2) + S1 Ph(u, ) ds. (6.3)
with
(a(L) —a(z)) 2(L — z)
2 a(@)t
Sih(u,a) = | " b 628 )z Si(en) = Tuey {;a [(a(z) — a(2)) (z, 2)] - - [b(z)qf(oaz)]} .

—00

Kth’(u’ I) = Kt(I7L)h(u +t, L)7 Kt(va) = I{a:<L} g(a(x)t, L— SC) = I{x<L}

Moreoyer, one has the following controls of the two kernels: |K;(z, L)| < C%g(a(w)t,L—x)I{m<L} < Clypopyg(ct, L—
z) and |Sy(z,z)| < Crlz<ry—rg(ct,z — x). In order to iterate the first step expansion (6.3), we remark that
t2

Ksh(u,L) = Ssh(u,L) = 0 so that Kr_s Ks,—s,h(u,z) = Kr_g Ss,—s,h(u,z) = 0. We also define the following
family of operators for (sg,u,z) € [0,T] x Ry x (—o0, L] :

n—1 g n—2 g 7% .
" h(u, Z‘) — SAW,(SO) dSn {<H¢=0 Ssi_SH»l) Pth(u’ .Z‘) + (Hi:O Ssi_si+1) Ksnfl_snh(u’x)} ifn> 1’ (64)
S0 .

P h(u,x) ifn=0,
where ds, = ds; - - - ds;, and for a fixed time ¢ > 0, we denote by A, (t) = {s, € [0,¢]7 : 511 :=0< s < 5p_1 < -+ < 51 <t =50}
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In [13], we prove that the series Y} o I7h(u, ) converges absolutely and uniformly and iterating (6.3) one obtains

VheCp®(Ry x (—0,L]), Pih(u,x) = Y I'h(u,z), (t,u,z)€[0,T] x sRy x R. (6.5)

n=0

Actually we will work with the following expression of I"h(u,z). By Fubini’s theorem and the change of variable
ti=t—s;,1=0,---,n, one has

n—1 ne1l
I'h(u,z) = J ds, Ssi—siin | Ps,h(u,x) = J dt,, Sii—t, | Pi_y, h(u, )
t ( An(t) (71:([) ,+1> 3 Aﬁ(t) Zl:([) tip1—t t—t

where we used the notation A¥(t) = {s, € [0,¢]” : 50 := 0 < sy <o < sp <t =:5p11}. We begin by providing a
probabilistic interpretation of each kernel appearing in . Flrst one has,

51(0.2) = Tty {2 | 5(02) ~ ale)F (0,)| - 2. Bl 0,2
~Ta {(G0(0) ~ VO (@2) + (@) — U 0.2) + (0(2) - ale) 2t (0,2) |

= 0(z,2)g(a(x)t, z — x). (6.6)

002, 2) = Tpery M, 2) 4 20"(2) = U(2) ) + (@ (2) — b)) (&, 2) + 2 (a(2) — a(@))d(a, ) b,
2 2

Y, 2) = a(x)t,z —x) — ! 2L )
R A e ce iy ey
1 4(z — L)(L — x)

2
pi(z, z) == Ha(a(z)t,z — x) + : )
i(,2) 2(a(@) a?(x)t? (exp(—%) —1)

o L—z AN (L—z)(L—z— (2 —12))
At({E,Z) = P(Olgf}li(t WU < W | Wt = %) = {1 — exp <2 ta(m) I{sz}I{sz}
From the expression above, for h € By(Ry x (—o0, L]), one gets Sth(u,z) = E[h(u+T, X%)0r
time partition 7 : 0 =ty < t; < --- <ty < tyy1 = T, we introduce the Euler scheme X™ = (
following dynamics

)] For a given

(2, X
X ) 0<s +1 with the

xT
™
t;

X7T

r=XFro(XT)(W, Wi), Xp==

i1 i

which in turn allows us to write the following (partial) probabilistic representation

n—1
(ﬂ st,iﬂ_ti) Pr_g, h(u,x) = E[h(u+ T XD, sp 0 Or—e, (X7, XD )0, (2, X))
=0

+ E[h(u + t, + 7%, L)I 5,5"4"_1()2;‘;/_1,)2&) x -étl(x,ng)]

{tn+7"tn <T}

= E[h(u+ (tn +7500) AT, X7

(tn+7 )ét"*t"—l (Xt:_l,XZrn) T g_tl (z, XZZ ),

Xin VAT
where 7% is a Lévy distributed random variable with scale parameter ¢ = (L — 2)?/a(x) and location parameter u = 0
which is independent of the underlying Brownian motion W. Similarly, for the second term appearing in (6.4)), after

noting that
Sn—1 L) — ~
J K, _,—s, hu,z)ds, = E[h(u+ 77, L)MI{;ISSMI}] =: K,,_, h(u, )
0 a(x)
we can write
n—22

n—2
ds,, Ssi—s: K, s, h(u,x) = f dt,—1 St | Kot h(u, ).
an (11) “) o A% (T) g) R e

Similarly to the previous term, one obtains the following partial probabilistic representation

(a(L) —a(X7 )

tn—1

{f <T bn— 1} (XZ:L 1)
th,l)"'etl('raX;)]'

n—2 _

(n Sti+1ti> KT,tnflh(u, .’E) = E[h(u +t,_1+ ’77'Xt"*1 s L)I xr
1=0

X gtnfl_tn—Z (Xﬂ-

tn—27
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Finally, in the spirit of Bally and Kohatsu-Higa |7], we let (N(¢))¢=0 be a simple Poisson process with intensity
parameter A > 0 and define N = N(¢) for t € [0,T]. Let {; < (s < --- < (y be the jump times of the Poisson process
and set (o = 0, (ny1 =T. We still denote by 7 the random time partition 7 : (o = 0 < (1 < -+ < {ny+1 = T and

denote by X7 = (X[ )o<i<n+1 its associated Euler scheme. In [13], we obtain the following theorem.

Theorem 6.1.1. Let T > 0. Assume that a € Cf(R), be C}(R) and a is uniformly elliptic. Define the two sequences
(Tn(2))n=0 and (Tn(z))n=0 as follows

N-1y_-1p YT T ;
FN(CU) :{ szo A 9Cj+1—€_7'(ng7X¢H1) if N> 1,

1 ZfN =0,
and (a(L)—a(X )
a(L)—a Xg B N—2\_15 Sr o .
fN(l‘) = a(XZrN,iv) : Hj:o A 94]’*179 (XC:"XCJH) fN=1,
0 if N =0.

Then, for all h € By(Ry x R), for all (u,x) € Ry x R, the following probabilistic representation holds

T x t _XZ VT
E[h(7] 7XTtm)] = ME lh((g“N(t) + 7TNW ) A t,X(C FggN(t)) tWN(t)(@}
N(t) T AN
_XT _
" eAtE [h(CN(t)l tT e ’ L)I{’FXZFN(t)—l <t7CN(r)—1}FN(t) (I)] .

Similarly, for all (s,x,z) € (0,t] x (—o0, L]?, the following probabilistic representation for the probability law of
(i, X7») is satisfied
pi(0,z,ds,dz) = pP (x,2)dz6:(ds) + p™ (x,5)dL(dz)ds

with, for all,

D U S
py (z,2) = e"E qt*CN(t)(XCN(t)’z)FN(t)(w) ’

Koo D _
p"(z,s) = ME [ff MOXE ot = v sz v Tve (@) + f2 1(XcN<,,>_1vS—<N<t>—1)1{s><w1}FN<t>($)]~

As a corollary, we also obtain the following integration by parts formula.

Corollary 6.1.2. Suppose that the assumptions of the previous theorem hold. Let h € Ct((—oo, L]) satisfying: there
exist ¢ > 0, such that for all z € (—o0, L], |h(2)| + |[W(2)| < cexp(c|z|). Then, for all x € (—0, L), one has

I['z[h/(‘thC)I{TI >t}] = _e/\TE [h(XZr)AngN(t) (XgN(t) ’ X?)N%*CNU) (XgN(t) ’ XZT)FN(t)(x)] :

An unbiased Monte Carlo method for evaluating E[h(77, XTo )] E[A'(X)I(2~4] or the probability law pr (0, z, dt, dz)
of (17, X ;’}) stems from the probabilistic representations obtained in Theorem and Corollary The explosion
of the variance may be an important issue that can induce poor convergence rate of the method as pointed out in |4]
for unbiased simulation of multi-dimensional diffusions. In these situations, an importance sampling method on the
time steps using a Beta or Gamma distribution may be used. In short, it would seem that this approximation will
work well in the case of small parameters. A very close analysis could be carried out here but we do not intend to
develop importance sampling schemes and refer the interested reader to [4] for some developments in the diffusion
case.

6.2 Weak uniqueness and density estimates for SDEs with coefficients
depending on some path-functionals

In this section, we expose the results obtained in [14] in collaboration with L. Li related to the weak existence and
uniqueness as well as density estimates of SDEs with dynamics

t

X, _x+f b(XS,AS(X))ds+J o (X, Ay(X))dW,s, t € [0,T] (6.7)
0 0

where (W;);>0 stands for a one-dimensional Brownian motion and (A4;(X)):= is an R?~!-valued functional depending
on the path X, d > 2. Some examples include its local and occupation times, its running maximum or minimum,
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its first hitting time of a level, its running average, etc. From the point of view of apphcatlons systems of the type
appear in many fields. Let us mention stochastic Hamiltonian systems where A;(X) = So s, Xs)ds, see e.g.
Soize [118] for a general overview, Talay [124] for convergence to equilibrium or Barucci and al. [13] for an apphcatlon
to the pricing of Asian options. We also mention the work of Forde [42], where the author constructs a weak solution
to the SDE (6.7) with b = 0 and A;(X) = maxp<s<t X5 is the running maximum of X and investigates an application
in mathematical finance.

In order to prove weak uniqueness for the SDE , we follow the recent approach of Bass and Perkins [15] for
proving uniqueness for the martingale problem and illustrated it in the framework of non-degenerate, non-divergence
and time-homogeneous diffusion operators under the assumption that the diffusion matrix is strictly positive and
Holder continuous. It has also been recently extended by Menozzi [98] for a class of multi-dimensional degenerate

Kolmogorov equations that is the case of a multi-dimensional path functional A = (A},--- , AN);>0 given by: A}(X) =
Sé Fi(Xs, As(X))ds, A2(X S Fy(AL - JANYds, -+, AN(X) = Sé Fn(AY=1 AN)ds, under an assumption of weak
Hoérmander type on the functlons (Fl, -+, Fxn). The main new feature added here compared to previous works on

this topic is that our technique enables us to deal with a process whose probability law is absolutely continuous with
respect to a o-finite measure.

For instance, if one considers the couple (Xy, A;(X))i=0, A¢(X) = LY(X) being the symmetric local time at point
0 accumulated by X up to time ¢, it is easy to see that on {Ty > t}, Ty being the first hitting time of 0 by X, one
has LY(X) = 0 whereas on {T, < t}, the process may accumulate local time so that the probability law of the couple
(X¢, LY(X)) consists in two parts, one being singular with an atom in the local time part, the other one (hopefully)
being absolutely continuous with respect to the Lebesgue measure on R x R, . Hence, we see that for such dynamics the
situation is more challenging than in the standard diffusion setting. This new difficulty will be overcome by choosing
two independent parametrix kernels, one for each part, and then by proceeding with a non-trivial selection of the
freezing point according to the singular measure induced by the approximation process.

We first provide a general framework in order to establish weak uniqueness for SDEs with dynamics (6.7)). The
contribution of this part compared to the existing literature on this topic lies in the fact that we identify the main
assumptions, namely (H1) and (H2) see below, needed to establish weak uniqueness, thus allowing for a general
treatment.

We assume that there exists a weak solution (X, W), {F;} to and that the process Y := (X¢, A+(X))t>o0,
starting from the initial point = at time 0, lives on a closed space j c R%. The process Y induces a probability
measure P? (or simply denoted P) on Q = C([0,0),J) which is endowed with the canonical filtration (F)i=o. We
consider the collection of linear maps (F;);>o defined by P, f(z) := E[f(X;, A;(X))] for feBy(J).

We denote the approximation or the proxy process by X, that is the solution of (6.7) with b = 0 and the diffusion
coefficient o evaluated at some fixed point z € J. Without going into details at this pomt the key idea is to consider
the process Y as a perturbation of the proxy Y = (X;, A(X;))t=0 whose law is denoted by ﬁt(x dy) = ﬁt (z,dy).
Accordingly, we define the collection of linear maps (P;)i=o by Pif(z) := E[f(Xs, A(X))] = §f(y)pe(z,dy) for
f € Bb(j)

We work under the following set of assumptions:

Assumptions (H1): Given the initial and frozen point z,z € J.

(i) (a) The proxy process Y* is a Markov process with infinitesimal generator £*.

(b) There exists a o-finite measure v(x,.) such that for all + > 0, the law of Y}* is absolutely continuous with
respect to v(z,.). More specifically, there exists a v(z, dy)-integrable function (¢, z,y) — P (x,y) satistying

p (w, dy) = py (2, y)v(z, dy) (6.8)
and P7 f(z) = § f(y)pi (z, y)v(x, dy) for all f e By(J).
(ii) There exists a class of functions D = Dom(L?) n C,(J) and a linear operator £ acting on D such that:

(a) For all g€ C°(J), PfgeD.
(b) For all functions h such that: s+ h(s,.) € C}(R., D), the process

h(t, Y:) — h(0, 2) — Lt {0rh(s,Ys) + Lh(s,Y,)}ds, 30

is a continuous square integrable martingale under P*.

(c) There exists a parametriz kernel 0; with respect to the measure v, that is a measurable map (¢, z, x,y) —
07 (z,y) such that for all g € C;°(J)

(€ — £9)Prg(z) = f oW)F (@)l dy), £ >0, (6.9)
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(iii) For all ,y € J, the maps (¢, 2) — p7(x,y) and (t,2) — 07 (x,y) are continuous on (0,0) x 7.

(iv) For all ¢ > 0, there exists some v(z, dy)-integrable functions pf (z,y), 67 (x,y), a constant ( = ((z) € R and a
positive constant C, eventually depending on ¢ but in a non-decreasing way, such that

17 (2, 9)| < P (z,9), 107 (2,9)| < 07 (z,), and lef($7y)\V($7dy) <ct. (6.10)

For the case z = y, we assume that the parametrix kernel enjoys the following smoothing property: there exists
¢ > —1 and a positive constant C, eventually depending on ¢ in a non-decreasing way, such that

Vt>0,VreJ, J‘@’(m,yﬂu(x,dy) < Ctt. (6.11)
(v) For any g € Cp(J), one has

lim 9()pt (z,y)v(z,dy) = g(x).

For notational simplicity, we define for ¢ > 0,

pe(x,y) == o} (x,y),
Pif(e ff V)pe(z, y)v(z, dy) = ff (. dy),

Sig(z) = f o(9)bs(z, ), dy) = fg<y> 3 (2, ), dy).

Theorem 6.2.1. Let T > 0. Assume that (H1) holds. Then, for any g € Co(J) and any t € [0,T], one has

Pug(x) = Prg(a) + j P.Si-ag(x) ds.

Moreover, if for t > 0, the function x — Sig, g € Cp(J), belongs to Co(T). Then one may iterate the first order
formula

Pg(w) = Pgla) + Y, I7g(a), with I7g(x) = L()dsnz%nssn_l_snmst_slg(a:) (6.12)
n(t

n=1

Moreover, the series (6.12) converges absolutely and uniformly for x € J. The notation A, (t) has been defined in
the previous section, just after equation (6.4)).

We consider two weak solutions of the SDE ([6.7]) starting at time 0 from the same initial point « € J. Denote by
P; and Py the two probability measures induced on the space (C([0,00),7), B(C([0, ), J))). Define for f € By(J),
A>0andi=1,2

531 (x) ::Ei[JO e*”fm)dt]:fo NEF(V))dt,  S2f(x) = (SL— S (), [S2] = sup [SDS)

[flleo<1

We notice that by (H1) (ii) b), Si(A — £)f(z) = f(x),Vf € D,i = 1,2. For z € J, the resolvent of the process
with frozen coefficients is defined by

Q0

RJ(@:J e MP, f(x)dt, VfeBy(J) (6.13)

0

and for f € D one has R\(A— L)f = f. We make the following assumptions:
Assumption (H2): For all A > 0, one has R\D < D and for f € D,
0
(A=L)Ryf = R\(A—L)f and (L—L)Rrf(x)= f e ML — L)P,f(x) dt. (6.14)

0

Theorem 6.2.2. Assume (H1) and (H2) are satisfied, then weak uniqueness holds for the SDE (6.7]).
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We sketch the proof and omit some technical details. Let z € J and r > 0. We consider a sequence of non-negative
mollifiers 67, ¢ > 0, converging to the Dirac mass at z as ¢ | 0. Let us first observe that if g € C;°(J) then P.g € D,
and by (H2) one has

(A= L)R\P:o2g(x) = (N = L)R\P,0Zg(x) — (L — L)YR\P,0Zg(x) = ProZg(w) — (L — L)RAP,0Zg(x). (6.15)

We integrate both sides of (6.15) with respect to dz and apply S/\A. For ¢ = 1,2, applying Fubini’s theorem, one
gets

0

S J(/\ — L)RiP%gdz = f

N[\ DR P32V dz)dt = [ S50 DR3P0z gd:
0

so that
Sf([ P?6%gdz) — Sf(f(/: — LA)R;P?6%gdz) = 0. (6.16)

Passing to the limit as ¢ | 0 and 7 | 0, one gets S{g = S/\A(Sgo e *S;gdt) and one can pick A such that
1§ e MSegdt| < |gloo § e Mtdt = |g|oo)1:1(§)C < 1|g|e. Hence, from the definition of |S{|, we find that |S{g| =
|Sf(§80 e MSigdt)| < S8 [gleo- Taking the supremum over |gle, < 1 yields |S{| < 4S5 and, since S| < oo,
we conclude that S/\A = 0. By the uniqueness of the Laplace transform together with continuity w.r.t the variable t,
Ei1[g(Y?)] = Ea[g(Y)] for all ¢ > 0if ¢ is bounded measurable. Now one can use the standard argument based on regular

conditional probabilities to show that the finite dimensional distributions of the process (Y;)i=0 = (X, A:(X))i=0 agree
under P; and Ps.

In [14], we considered the two following examples: A;(X) = LY(X) where LY(X) is the symmetric local time at
0 accumulated by X at time ¢ with state space J = R x R and A;(X) = M; := mg v maxogs<t Xs, Mo = Zg, with
state space J = {(x, m)eR?:x < m}. We work under the following mild assumptions:

(R-n) The coefficients b and a = ¢? are bounded measurable functions defined on J. The diffusion coefficient a is
n-Hélder continuous on 7.

(UE) There exists some constant a > 0 such that Vz € J, a < a(z).

In the following we detail the computations for the first case only, namely the diffusion process with its symmetric
local time at zero. A similar analysis for the SDE with its running maximum is done in [14]. The set D is the
class of function f € Cp"'(R\{0} x Ry) n Cy(R x Ry) such that d;f(0+,£) = lim, o w and 0 f(0—,¢) =

f(=,0)=f(0,6)

exist, are finite and satisfy the following transmission condition:
01f(0+,€) — 01 f(0—,¢)
2

We define the linear operator £ by Lf(x,0) = b(x,0)01f(z—,0) + ta(z,0)d}f(xz—,0), (z,£) € R x R;. As we need a
chain rule formula for the process (X, A¢(X))t>0, we rely on the following generalisation of It6’s Lemma:

limxm

T

VieR,, +2£(0,0) = 0. (6.17)

F(t, X, LY(X)) = f(0,2,0) +JO {01f (s, X5, LI(X)) + Lf(s,.)(Xs, LX) } ds

+ Jt {aZf(S’O+7L2(X)) — an(S,O—,Lg(X))

. Ty f (5.0, LS(X))} 4L0(X)

0

¢
+ | o L2X0)ES (5, X, L)W, as
0
for f e CV1(Ry x R\{0} x Ry) nC(R;y x R x Ry) such that daf(t,0+,¢) = lim,o(f(t, 2, £) — f(£,0,¢))/x and
O2f(t,0—,0) = limgyo(f(t, 2, 0) — f(¢,0,£))/x exist and are finite. This chain rule formula allows one to associate a
martingale problem to the SDE (6.7) with A;(X) = L?(X). This connection provides a natural way to establish weak
existence by a compactness argument when b and o are continuous, see e.g. Stroock and Varadhan [120]. Remark
that one can remove the continuity assumption on b when o is uniformly elliptic via the Girsanov transform method.
We now introduce the proxy process X; := zg + o(21)Ws, t = 0, 21 = (21,41) € R x Ry. For f € C(R x R,),
simple computations show that P f(zo, ) = E[f(X¢, lo + LY(X))] = SRX]M f(z, O)pe(x0, Lo, x, £)v (20, bo, dx, dl) with

pe(z0, Lo, ,€) == fi(xo,2)Lie—gyy + G@t(wo0, Lo, , ) L4, <¢y and

fi(xo,x) = gla(z1)t,x — z) — g(a(21)t,x + xp),

(|| + |aol + £ — €o)
az(z)t

v(zo, Lo, dr,dl) := Ty cppdrdl + T o> 0ydxdg, (dE).

qi(zo, bo, z, £) 1= gla(z1)t, || + |zo| + £ — &),

7
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and fi(xo,2) := g(a(z, bo)t, x — x0) — gla(z, lo)t, © + 20), Gi(x0, Lo, 2, 0) = %g(a(m,ﬁ)t |z| + |xo| + € — £p).
a2 (z,
We also observe that the measure v(zg, fo, dz, d?) satisfies an important convolution type property in the sense

that
v(wo, Lo, dz’, d0 v (2’ 0, dx, dl) = u(zg, by, x, ¢, dx’, dl)v(xg, Lo, dz, dl) (6.18)
As an application of the general methodology developed above, we obtain the following result.

Theorem 6.2.3. If (R-n) and (UE) are satisfied for some n € (0,1] then weak uniqueness holds for the SDE (6.7
with Ay(X) = LY(X), t = 0.

Moreover, the first step expansion obtained in Theorem holds. However, since (xg,fy) — Oz, Gt (20, o, x,¢)
is not continuous at zero, the function (z¢,£y) — Sig(zo, o) shares the same property unless the drift b satisfies
b(0,¢) = 0, £ € R;. Unfortunately, one cannot iterate the first step expansion. We first remove the drift. Now the
function S;g is continuous. Applying repeatedly and Fubini’s theorem, one gets

J dsnﬁs”Ssnfl,S" S 9(x0,bo) = J g(x, O)pi(xo, Lo, , £)v(xg, Lo, dz, dl)
A, (T) RxR

with
SA,L(t) ds, S(RXR+)" ﬁsn (:L'Oa £07 371761) X
p?(xoﬂ éO? z, f) = I:H?zl osn—i—57171+1 (xi7éia Ti+1, ei-i—l)u(x()a eo; Tit+1, €i+1a dl‘iv dél)] n = 17 (619)
ﬁt(IO;E(hxvg) n=0

where we omit the exact expression of ét(:zo, by, z,0).
As our second main result, we prove that the transition density of (X, £o+ L?(X))¢>0 exists and satisfies a Gaussian
upper bound.

Theorem 6.2.4. Let T > 0. Assume that (R-n) and (UE) hold for some n € (0,1]. For (t,x0,0) € (0,T] x Rx Ry,
define the probability measure

pe (0, Lo, dx, dl) := pi(z0, Lo, z, £)v (0, Lo, dz, dl) = p} (20, Lo, T, ) Ly, <pydxdl + p2(z0, Lo, T) Iipz0=0ydxdy, (dl)

wjthpt(l'O;gva é) Zn>0pt (x0a€07$ g) pt(:r’(%g()ax E) Zn>0p?(1'0,€075€,€)7 th(CCO,EQ,J?) = Zn;()p?(x(hg()vxaéo)'
Then, both series defining py(xo, Lo, z,£) and p?(xo, Ly, x) converge absolutely and uniformly for (xq,4), (x,f) €
(R x R;)2. Moreover for h € Cy(R x Ry) the following representation for the semigroup holds,

Pih(xo,4o) = j h(z,€) pt(xo, o, x, £)v(z0, Lo, dx, dl).
RxR4

Therefore, for all (zg,4y) € R x R, the function (z,£) — pi(xo, Lo, z,{) is the probability density function of the
random vector (X[°, £y + LY (X)) with respect to the o-finite measure v(xg, lo, dx, dl), where X' is the solution taken
at time t of the SDE (with Ay(X) = LY(X)) starting from x¢ at time 0, LY(X®°) being its running symmetric
local time at time t.

Finally, there exists some constants C,c > 1 such that for all (zo,ly), (x,€) € R x R, the following Gaussian
upper-bounds hold

pi (w0, Lo, ,0) < Ct™g(ct, x| + |wo| + £ —Lo) and  p}(x0, Lo, x) < Cy(ct, — ). (6.20)

The proof is done in several steps. First, we assume that b = 0 and obtain the above series expansion. Then, we
prove the existence of a transition density in the presence of a bounded measurable drift via Girsanov transform. This
allows us to extend Theorem [6.2.1] for a non-continuous function g. Finally we repeat the same argument as above.

We point out that the proof of the convergence of the asymptotic expansion for the transition density is not
standard in the current setting. Indeed, in the classical diffusion setting, the parametrix expansion of the transition
density converges since the order of the singularity in time induced by the parametrix kernel 6, is of order t 1% which
is still integrable near 0. The main difficulty that appears here is when one wants to control the whole convolutlon
appearing in the right-hand side of . More precisely, it lies in the cross-terms which are of a different nature,
for instance when one convolutes the non-singular part in the convolution kernel éT_sl with the singular part in the
convolution kernel ésl,@. Standard arguments similar to those used in the standard diffusion case do not guarantee
the convergence of the integral defining . To overcome this difficulty and show that the parametrix expansion for
the transition density converges, one has to make use of the symmetry in the initial and terminal point of the density
of the killed proxy process, in order to retrieve the integrability in time of the underlying convolution kernel.
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6.3 Perspective

In [13], we considered probabilistic representations for the first hitting time and the associated killed process of a one
dimensional elliptic diffusion. We obtain some integration by parts for the killed diffusion process for the first derivative
of a test function. One may be interested in establishing higher order integration by parts and also integration by
parts formulas for the first hitting time. This is not a simple extension of Corollary where we performed an
integration by parts in the last interval [(y,T]. If we want to keep the Malliavin weights in L?(IP), one has to perform
the integration by parts on the whole time interval [0, T'] using the whole underlying noise.

One may be interested in establishing a probabilistic representation as well as integration by parts formulas for other
path functionals such as the local time, the running maximum, the occupation time, etc as considered in Section [6.2]
Using the parametrix expansions of the transition densities of (X, A¢(X))¢=0, one can prove that the corresponding
semigroup P;h is smooth when a and b are Holder continuous. Then, one may proceed using the forward parametrix
method as presented in Section [6.1

More challenging extensions could include other type of processes. One may notably consider the case of a skew
diffusion with path-dependent coefficients involving its local and occupation times, see Appuhamillage & al. [5] for an
expression of the trivariate density (B(*), LO(B(®), T9(B(®))), t > 0, where (B{*));>¢ is an a-skew Brownian motion
or reflected SDEs. We are working on this topic with L. Li.

Another interesting point to investigate in that direction is to weaken the assumption on the coefficients, notably
on a by assuming only uniform ellipticity and continuity, in order to establish weak uniqueness for the martingale
problem using Calderon-Zygmund estimates, see Menozzi [99] for some degenerate equations of Kolmogorov type.
Another related issue concerns pathwise uniqueness for the SDE . A possible strategy could be to extend the
results of Zvonkin [128] and Veretennikov [125], Krylov and Rockner [79] established in the diffusion case to the case
of a diffusion with a path-functional.

On may study a class of Hérmander equations with non-regular coefficients. The structure of the irregularity has
to be carefully chosen so that the approximation process satisfies a uniform Hérmander condition or even a UFG
condition. We refer to the work of Kusuoka and Stroock [84] for a careful analysis of the regularity properties of
the unique solution to the related linear parabolic PDE by probabilistic tools. We also refer to the work of Crisan
and Delarue [32]| for an extension to degenerate semi-linear PDE. For instance, one may consider an equation of the
form: Vo + (1/2) Zf\il V2, Vo, -+, Vy being first order differential operators and the drift term Vg being irregular.
One simple example is Vj + Zfil @iVi+ Daeay(2) PaVia), Where Vo € CF (R%) and (¢;)1<i<n are bounded measurable

functions, (¢a)acdy(2) are Cg (R%). Questions of interests are: pathwise uniqueness, density estimates, regularity of
the solution of the PDE, etc.

A challenging problem is to investigate probabilistic representation such as the one obtained in Section [6.1] for
McKean-Vlasov equations. These equations exhibit a dependence w.r.t to the law of the process in its coefficients.
Unlike the two examples investigated in [14], the law of the underlying process is a deterministic object so that it is
not natural to expect a regularising property w.r.t. this variable. We refer to the P.h.d. of Murray [96] and the recent
work of Crisan and Murray [33] for some integration by parts formula and density estimates for such equations.
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