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Outline of the manuscript

This document presents and put in perspective my research work carried out after my Phd Thesis since my position as an associate professor at the university Paris Diderot (Paris VII) started in September 2012.

This work consists in two topics that interact with one another. The first part concerns stochastic approximation algorithm with some applications in mathematical finance. The second part focuses on Markovian perturbation of stochastic processes with several applications such that probabilistic representation, unbiased Monte Carlo simulation, density estimates, asymptotic expansions of some Markov semigroups, weak approximation error of some discretisation schemes.

The first four chapters deals with stochastic approximation theory. The first chapter is an introduction. We briefly present two problems arising in numerical probability. The first one deals with stochastic approximation algorithm, also referred in the literature as Robbins-Monro algorithms, which are simulation based recursive schemes that are widely used in stochastic optimization. We review results about a.s. convergence, strong and weak convergence rates and present some applications in mathematical finance. The second one concerns several problems related to the discretisation of stochastic processes. We present the main results available in the literature and the different tools to obtain them, with a special emphasis on the weak discretisation error.

Chapter 2 deals with some contributions to risk management in financial and energy markets. It summarises the results contained in [5] and [6]. First, we study theoretical and computational aspects of risk minimisation in financial market models operating in discrete time [6]. To define the risk, we consider a class of convex risk measures defined on L p in terms of shortfall risk. A dynamic programming principle in a non-Markovian framework is established, under mild assumptions, namely the absence of arbitrage opportunity and the non-degeneracy of the price process. Moreover, we provide a probabilistic algorithm to compute the optimal dynamic strategy using optimal quantization and analyse the global error between the true value function and the approximated one.

As an alternative method to simulation based recursive importance sampling procedure to estimate the optimal change of measure for Monte Carlo simulations, we propose an algorithm which combines (vector and functional) optimal quantization with Newton-Raphson zero search procedure [5]. We analyse the error induced by the proposed procedure and illustrate its efficiency on several examples.

In Chapter 3, we focus on non-asymptotic concentration bounds, deviation estimates and related transport entropy inequalities for stochastic approximation schemes [7], [8]. Our results include the deviation between the expectation of a given function of an Euler like discretization scheme of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte-Carlo procedure as well as the deviation between the value at a given time of a stochastic approximation algorithm and its target. Under suitable assumptions both concentration bounds turn out to be Gaussian [7]. In order to obtain different non-Gaussian concentration regimes, one has to quantify the contribution of the diffusion term to the concentration regime [8]. We also derive a general non-asymptotic deviation bound for the difference between a function of the trajectory of a continuous Euler scheme associated to a diffusion process and its mean. Finally, we obtain non-asymptotic bound for stochastic approximation with averaging of trajectories. Notably, it is shown that averaging a stochastic approximation algorithm with a slow decreasing step sequence provide the optimal concentration rate.

In Chapter 4, we present a class of multi-level and multi-step Richardson Romberg extrapolation methods for stochastic approximation algorithms [9], [10]. In a first part, we extend the scope of the multilevel Monte Carlo method recently introduced for the expectation of a given function of some diffusion process to the framework of stochastic optimisation by means of stochastic approximation algorithm. A central limit theorem is proved and the possible optimal choices of step size sequence are provided [9]. In a second part, we also extend the wellknown Richardson-Romberg extrapolation method for Monte Carlo linear estimator to the framework of stochastic approximation algorithm [10]. We illustrate the method to the estimation of the quantile of diffusion processes. For both methods, numerical results confirm the theoretical analysis and show a significant reduction in the initial computational cost.

The next chapters are related to the second part of my research work which focuses on Markovian perturbation of stochastic processes and its application.

Chapter 5 is dedicated to two approximation problems [12], [11]. We begin by a brief presentation of the parametrix method "à la Mc Kean and Singer" in the framework of diffusion processes. This perturbation method is a classical technique in PDE theory to construct the fundamental solution to an elliptic or parabolic PDE. Our presentation here is based on probabilistic arguments. We also briefly present its discrete counterpart when one considers discretisation schemes of stochastic processes.

In the second part of this chapter, we consider a discrete version of the parametrix technique that we apply in order to study the weak approximation error of a one-dimensional skew diffusion with bounded measurable drift and Hölder diffusion coefficient by an Euler-type scheme, which consists of iteratively simulating skew Brownian motions with constant drift. First, we establish two sided Gaussian bounds for the density of this approximation scheme. Then, a bound for the difference between the densities of the skew diffusion and its Euler approximation is obtained under the same assumption [12].

In the third part, we study the asymptotic expansion of a Markov semigroup with respect to a small parameter [11]. The method proposed combines a perturbation approach of Markov semigroup and Malliavin's calculus. We study two applications. In the first one, heat kernel expansions of some hypo-elliptic diffusion processes are revisited. In the second one, we obtain an asymptotic expansion of the transition density of a skew diffusion process with small skew.

Chapter 6 is divided into two parts. In the first part, we focus on the regularity of the law associated to the first hitting time of a threshold by a one-dimensional uniformly elliptic diffusion process and to the associated process stopped at the threshold [13]. We present explicit expressions for the corresponding transition densities and studies their regularity properties up to the boundary under mild assumptions on the coefficients. Some Gaussian upper-estimates for these densities (and their derivatives) are also established. Our construction allows to obtain a probabilistic representation that can be used for the construction of an unbiased Monte Carlo simulation method and also to derive some integration by parts formula.

In the second part, we investigate the weak existence and uniqueness for some SDEs with coefficients depending on some of its path-functionals. A general method is developed in order to deal with a process whose law is singular with respect to the Lebesgue measure. We illustrate our approach on two examples: a diffusion process with coefficients depending on its running local time and a diffusion process with coefficients depending on its running maximum. We also construct the associated transition density and establish some Gaussian upper-estimates.

Chapter 1

Introduction : On two problems arising in numerical probability

In this introductory chapter, we briefly present two problems arising in numerical probability. The first part deals with a brief presentation of the stochastic approximation algorithm theory. Since their introduction in the seminal paper of H. Robbins and S. Monro [START_REF] Robbins | A stochastic approximation method[END_REF] , these simulation based procedures are widely used in various fields such that stochastic optimisation or zero search problems. The stochastic approximation theory provides various theorems that guarantee the a.s., weak and/or strong convergence rates towards the desired target. We present here some results related to the a.s. convergence, known as the Robbins-Siegmund theorem and the ordinary differential equation (ODE) method. We provide the key points for their proofs. Then, we review strong and weak convergence rates. Such algorithm satisfies a central limit theorem (CLT) with a rate that depends on the step sequence. Finally, we present some applications in mathematical finance.

In the second part, we briefly present several problems related to the discretisation of diffusion-jump type stochastic processes. We distinguish between strong and weak approximation since these two problems are of different nature and require different mathematical tools for their study. We first investigate the strong approximation error which is related to the error between the paths of the process and of its approximation scheme. Then, we focus on the weak approximation error which is the error between the law of the process and of its approximation scheme. This error is often estimated on a class of test functions. Since the pioneering paper of Talay and Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], we know that there is a strong connection between the weak approximation error and the solution of the underlying parabolic linear partial differential equation (PDE) via the Feynman-Kac representation.

We try to gather major results obtained the past thirty years since they will be useful in order to understand some of the next chapters.

We will focus on the weak approximation and the mathematical tools needed in order to study the resulting error. More precisely, we will distinguish between the two following cases: when the test function and the coefficients of the stochastic differential equation are smooth; when the process is non-degenerated. This will be the topic of Section 5.2 in Chapter 5 which deals with the weak approximation error of a skew diffusion by an Euler-type scheme.

We briefly present the Multi-level Monte Carlo method developed by Giles [48] which allows to significantly increase the computational efficiency of the Monte Carlo method for the computation of the expectation of a non-simulatable random variable. We extend the scope of this method to the framework of stochastic optimisation by means of stochastic approximation algorithm in Chapter 4.

We conclude this chapter by presenting an unbiased simulation technique for stochastic differential equations based on a probabilistic representation of the parametrix technique that has been recently developed Bally and Kohatsu-Higa [7]. In Chapter 6, we will propose a similar probabilistic representation for hitting times and associated killed process of one-dimensional elliptic diffusions.

Stochastic approximation algorithm

Introduction

In applied mathematics, one often has to numerically solve some optimisation or zero search problems. The former problem can often be cast into the latter one when one faces a convex optimisation problem. Some commonly encountered examples are the computation of the quantile at level α P p0, 1q of probability distribution, in mathematical finance the extraction of implicit volatility or the minimisation of a convex function with respect to a parameter (e.g. quantity of assets in a portfolio, minimisation of the variance, etc).

In a deterministic framework, the zero-search recursive procedure has the following dynamics θ n`1 " θ n ´γn`1 hpθ n q, n ě 0 (1.1) where h : R d Ñ R d is a continuous function satisfying a sub-linear growth assumption and pγ n q ně1 is a non-negative non-increasing step sequence such that ř ně1 γ n " `8. Under an appropriate mean-reverting assumption on the function h, one shows that the deterministic sequence pθ n q ně1 defined by (1.1) is bounded and eventually converges toward a zero θ ˚of h. More precisely, assuming that the following mean-reverting assumption xθ ´θ˚, hpθqy ě 0, @θ ‰ θ ˚ (1.2) and that th " 0u " tθ ˚u, then one proves that pθ n q ně1 converges towards θ ˚as n Ñ 8. An example of such procedure is the Newton-Raphson zero-search algorithm obtained by choosing h :" Dh ´1h and γ n " 1.

However, in a stochastic optimization framework as described in the examples mentioned above, one does not have straightforward access to the value of hpθq because h is given by the expectation of some given random function, say hpθq :" ErHpθ, U qs where H : R d ˆRq Ñ R d is a measurable function and U is an R q -valued random variable with law µ P PpR q q. Here it is implicitly assumed that one can easily simulate according to the law µ and has direct access to the value of the function H. One simple idea could be to simply approximate the above dynamics (1.1) by using at each iterate a Monte Carlo approximation of hpθ n q. A more interesting idea consists in doing both simultaneously by using on the one hand Hpθ n , U pn`1q q instead of hpθ n q and on the other hand by letting the step sequence goes to zero not too fast to take into account the additional variance induced by this randomisation. Hence, one is led to introduce the following dynamics θ n`1 " θ n ´γn`1 Hpθ n , U pn`1q q, n ě 0

(1.3)
where pU pnq q ně1 is an i.i.d. sequence of random vector distributed according to µ on a given probability space pΩ, F, Pq and θ 0 is an R d -valued random vector independent of the sequence pU pnq q ně1 .

Example: As a first simple example, consider the empirical average p Ū n q ně1 of i.i.d. and integrable samples pU pnq q ně1 defined by Ū n :" 1 n ř n k"1 U pkq , Ū 0 " 0. We observe that it satisfies the following dynamics Ū n`1 " Ū n ´1 n `1 ´Ū n ´U pn`1q ¯" Ū n ´1 n `1 Hp Ū n , U pn`1q q, n ě 0, (1.4) where Hpθ, U q :" θ´U and hpθq :" θ´ErU s, so that θ ˚" ErU s. Moreover, it is well-known that the sequence p Ū n q ně1 given by (1.4) converges a.s. to the unique zero of h. When one knows how to sample from the distribution µ, this procedure is easy to implement contrary to its deterministic counterpart (1.1). We see that stochastic approximation appears as a natural extension of the Monte Carlo method to solve optimisation or zero search problems when the function of interest h writes as the integral of some function against a law µ from which it is easy to sample.

Let us make an important remark. Writing Hpθ n , U pn`1q q " hpθ n q `∆M n`1 where ∆M n`1 :" Hpθ n , U pn`1q q hpθ n q is a martingale increment with respect to the natural filtration tF n u, F n :" σpθ 0 , U p1q , ¨¨¨, U pnq q, n ě 1 induced by the algorithm, we observe that the dynamics (1.3) can be seen as a perturbed Euler scheme (with decreasing step) of the ordinary differential equation (ODE) 9 θ " ´hpθq (1.5) From this connection it may be motivating to use some ODE techniques such that existence of a Lyapunov function in order to study the asymptotic behaviour of the recursive scheme (1.3). A Lyapunov function for the ODE (1.5) is a function L : R d Ñ R `such that any solution t Þ Ñ θptq satisfies t Þ Ñ Lpθptqq is non-increasing. Assuming that L is continuously differentiable, it is mainly equivalent to the condition x∇L, hy ě 0 since dLpθptqq " x∇Lpθptqq, θptqy " ´x∇L, hypθptqqdt. Finding a Lyapunov function may be a difficult task and there is no result that guarantees its existence! Usually it requires a deep knowledge and understanding of the underlying dynamic (1.5). However, if such function does exist, the system (1.5) is said to be dissipative. We will have in mind two commonly encountered situations:

• when one faces a convex optimisation problem, the recursive scheme (1.3) is usually a stochastic gradient algorithm. The function L is the object of interest that is one has h " ∇L and one is computing a minimum of L.

• Unfortunately, as is so often the case when dealing with stochastic approximation algorithm, the function L is not identified a priori and one has to find a Lyapunov function associated to the function h, if such function exists!

1.1.2 Standard a.s. convergence results

We now turn our attention to results related to the a.s. and/or L p convergence of the recursive procedure (1.3). We first provide a general result known as Robbins-Siegmund Lemma based on the existence of an a priori Lyapunov function from which we will deduce two corollaries that ensures the a.s. (and L p ) convergence of the sequence pθ n q ně1 . We refer the interested reader to the monographs of Benveniste and al. [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF], Duflo [START_REF] Duflo | Algorithmes stochastiques[END_REF] and Kushner and Yin [START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF] among others for developments and a more complete overview in stochastic approximation theory.

Theorem 1.1.1 (Robbins-Siegmund Lemma). Assume that there exists a continuously differentiable function L : R d Ñ R `such that ∇L is Lipschitz-continuous and

|∇L| 2 ď Cp1 `Lq (1.6)
and such that the mean-reverting assumption holds x∇L, hy ě 0.

(1.7)

Assume furthermore that H satisfies the following sub-linear growth assumption

@θ P R d , Er|Hpθ, U q| 2 s 1 2 ď Cp1 `Lpθqq 1 2 , (1.8) 
for some positive constant C. Let pγ n q ně1 be a positive step sequence satisfying the following decreasing step assumption ÿ ně1 γ n " 8 and ÿ ně1 γ 2 n ă 8.

(1.9)

Finally assume that θ 0 is independent of the innovation sequence pU pnq q ně1 and satisfies ErLpθ 0 qs ă 8. Then, the sequence pθ n q ně1 defined by the recursive procedure (1.3) satisfies the following properties:

1. the sequence pθ n ´θn´1 q ně1 converges a.s. and in L 2 pPq to zero as n goes infinity, 2. the sequence pLpθ n qq ně1 is L 1 pPq-bounded, 3. Lpθ n q Ñ L 8 P L 1 pPq a.s. as n Ñ 8.

4.

ř ně1 γ n x∇L, hypθ n´1 q ă 8 a.s. Proof. The key ingredient of the proof is the convergence theorem for non-negative super-martingale. We only sketch the proof. Since ∇L is Lipschitz-continuous, by the fundamental theorem of calculus, one has Lpθ n`1 q ď Lpθ n q `γn`1 x∇Lpθ n q, θ n`1 ´θn y `C|θ n`1 ´θn | 2 " Lpθ n q ´γn`1 x∇L, hypθ n q ´γn`1 x∇Lpθ n q, ∆M n`1 y `Cγ 2 n`1 |Hpθ n , U pn`1q | 2 (1.10)

where we recall that ∆M n`1 " Hpθ n , U pn`1q q ´hpθ n q is an tF n u-martingale increment. Using the above inequality together with assumptions (1.7), (1.8) and (1.9), one proves that Lpθ n q P L 1 pPq so that ∆M n`1 P L 2 pPq, n ě 0. The key idea is to introduce the following sequence

S n :" Lpθ n q `řn k"1 γ k x∇L, hypθ k´1 q `C ř kěn`1 γ 2 k ś n k"1 p1 `Cγ 2 k q
, n ě 1 with S 0 " Lpθ 0 q. From assumption (1.7) and using (1.10), one proves that pS n q ně0 is a non-negative super-martingale so that it converges a.s. toward an integrable random variable S 8 . As a by-product of this convergence, one deduces the L 1 -boundedness of pLpθ n qq ně0 and that ř ně1 γ n x∇L, hypθ n´1 q ă 8 a.s. Then one proves that Lpθ n q Ñ L 8 , a.s. and ř ně0 Er|θ n`1 ´θn | 2 s ă 8.

Remark 1.1.1. We also want to mention that when the innovation sequence pU pnq q ně1 is not i.i.d. but only tF n uadapted, the recursive procedure (1.3) can be written θ n`1 " θ n ´γn`1 hpθ n q ´γn`1 p∆M n`1 `rn`1 q where r n`1 :" hpθ n q ´ErHpθ n , U pn`1q |F n s is an F n`1 -measurable remainder term. In this case, assuming that ÿ ně1 γ n |r n | 2 ă 8, a.s.

one still proves that the conclusions of the Robbins-Siegmund Lemma hold.

The next result allows one to conclude that the recursive scheme (1.3) converges toward its target θ ˚.

Corollary 1.1.2 (Robbins-Monro & Stochastic gradient algorithms).

(1) [Robbins-Monro algorithm] Assume that the function of interest h satisfies @θ ‰ θ ˚, xθ ´θ˚, hpθqy ą 0, (1.11)

and @θ P R d , Er|Hpθ, U q| 2 s 1 2 ď Cp1 `|θ|q (1.12)
with θ 0 P L 2 pPq independent of the innovation sequence pU pnq q ně1 . Assume that the step sequence pγ n q ně1 satisfies (1.9). Then, the sequence pθ n q ně1 defined by (1.3) converges a.s. to θ ˚, which satisfies th " 0u " tθ ˚u.

(2) [Stochastic Gradient algorithm] Assume that h " ∇L for a convex and continuously differentiable function L satisfying (1.6), lim |θ|Ñ8 Lpθq " 8, t∇L " 0u " tθ ˚u. Assume that Er|Hpθ, U q| 2 s ď Cp1 `Lpθqq and that Lpθ 0 q P L 1 pPq. Assume that the step sequence pγ n q ně1 satisfies (1.9). Then, θ ˚" arg min θPR d hpθq and pθ n q ně1 converges a.s. toward θ ˚.

Remark 1.1.2. There is also an alternative to the stochastic gradient algorithm known as the Kiefer-Wolfowitz (K.W.) procedure. In this approach, the function of interest h is given by hpθq " ErB θ Hpθ, U qs. In some practical implementations, the local gradient B θ Hpθ, U q may be difficult to simulate because of Malliavin weights, log-likelihood ratio, etc, whereas the computation of Hpθ, U q is easy. The K.W. algorithm combines the recursive stochastic approximation algorithm with a finite difference approach to differentiation. Based on the following approximation of the local gradient B θi Hpθ, U q « Hpθ `ηi e i , U q ´Hpθ ´ηi e i , U q 2η i where pe i q 1ďiďd denotes the canonical basis of R d and |η| ăă 1, pη i q 1ďiďd P R d , one introduces the following recursive scheme

θ i n`1 " θ i n ´γn`1 Hpθ n `ηi n`1 , U pn`1q q ´Hpθ n ´ηi n`1 , U pn`1q q 2η i n`1 , 1 ď i ď d, (1.13) 
where pγ n q ně1 is a step sequence satisfying (1.9) and pη i n q ně1 , 1 ď i ď d, are d non-negative step sequences satisfying for

1 ď i ď d, η i n Ñ 0, ÿ ně1 η i n " 8 and ÿ ně1
pγ n {η i n q ă 8.

We refer to the monograph Benveniste and al. [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF] for a result about the a.s. convergence of (1.13).

We conclude by the ODE method which establishes a link between the recursive procedure (1.3) and the underlying ODE (1.5) as mentioned above. The main improvement provided by the ODE method is to study the asymptotic behaviour of the sequence pθ n q ně0 (assumed to be bounded a priori) from a sequence function pθ pkq q kěn , n ě 1 defined by linear interpolation. Importantly, we will not require the mean reverting assumption (1.11) or the existence of a Lyapunov function that separates the target θ ˚. However, the convergence of the procedure will be related to the asymptotic behaviour of the underlying ODE.

We set Γ 0 " 0 and Γ n " ř n k"1 γ k . Then we define the cádlàg step function pθ p0q t q tě0 by θ p0q t

:" θ n , t P rΓ n , Γ n`1 q.

and the sequence of time shifted function θ pnq t

:" θ p0q Γn`t , t P R `. For every t P R `, we also set N ptq :" max tk : Γ k ď tu. For every t P rΓ n , Γ n`1 q, the dynamics (1.3) can be written as follows The next result establishes a connection between the asymptotic behaviour of pθ n q ně0 and the asymptotic of the sequence of functions pθ pnq q ně0 . Proposition 1.1.3. Let L : R d Ñ R `be a continuously differentiable function such that ∇L is Lipschitz-continuous, lim |θ|Ñ`8 Lpθq " `8 and satisfying (1.6). If |h| ď Cp1 `Lq 1 2 and x∇L, hy is a non-negative lower semi-continuous function then the limiting values of pθ n q ně1 is a connected component of tx∇L, hy " 0u.

θ p0q t " θ p0q 0 ´ż Γn 0 hpθ p0q s qds ´n ÿ k"1 γ k ∆M k which in turn satisfies @t P R `, θ p0q t " θ p0q 0 ´ż Γ N ptq 0 hpθ p0q s qds ´Nptq ÿ k"1 γ k ∆M k " θ p0q 0 ´ż t 0 hpθ p0q s qds `ż t Γ N ptq hpθ p0q s qds ´Nptq ÿ k"1 γ k ∆M k .

Convergence rate

We now present some results related to the convergence rate of the recursive scheme (1.3) in the i.i.d. framework. In standard settings, a stochastic algorithm converges to its target at rate ? γ n , which suggests to choose γ n " γ{n, γ ą 0, under assumption (1.9). Under a strong mean-reverting assumption, we will see that this is a sharp nonasymptotic L 2 pPq, which is consistent with the Monte Carlo method. In Chapter 3, we will see that this rate also appears when one investigates concentration inequalities, that is non-asymptotic deviation estimates between pθ n q ně1 and its target. Then, we present the standard central limit theorem (CLT) which establishes that the renormalised sequence a γ ´1 n pθ n ´θ˚q converges in distribution to a normal distribution with mean 0 and a covariance matrix based on ErHpθ ˚, U qHpθ ˚, U q t s. Proposition 1.1.4. Assume that the assumptions of Corollary 1.1.2 (1) (Robbins-Monro algoirthm) are satisfied. Assume that there exists α ą 0 such that the strong mean reverting assumption holds @θ P R d , xθ ´θ˚, hpθqy ě α|θ ´θ˚| .

(1.14)

Then, there exists a positive constant C, such that one has

Er|θ n ´θ˚|2 s ď Cγ n , n ě 1,
for the two following step sequences:

• γ n " γ{n β , β P p1{2, 1q, n ě 1.

• γ n " γ{n, with γ ą 1 2α . n ě 1.

The above result suggests a weak rate given by a γ ´1 n . The study of the asymptotic distribution of the renormalised sequence a γ ´1 n pθ n ´θ˚q led to a considerable and expanding literature starting from some pioneering (independent) works by Bouton and Kushner in the early 1980 until recently, see e.g. Fort [START_REF] Fort | Central limit theorems for stochastic approximation with controlled markov chain dynamics[END_REF] or Lelong [START_REF] Lelong | Asymptotic normality of randomly truncated stochastic algorithms[END_REF]. We give here a result obtained by Pelletier [START_REF] Pelletier | Weak convergence rates for stochastic approximation with application to multiple targets and simulated annealing[END_REF] which has as the main advantage to be local in the sense that the CLT holds on the set of convergence of the algorithm to an equilibrium which makes possible a straightforward application to multi-target algorithms.

Theorem 1.1.5 (Central limit theorem). Consider the sequence pθ n q ně1 defined by (1.3) and let θ ˚P th " 0u be one possible target. Assume that the following assumptions hold:

(1) Attractivity: θ ˚is a strong attractor for the underlying ODE, that is h is twice continuously differentiable at θ ˚and Dhpθ ˚q is an Hurwitz matrix, i.e. all its eigenvalues have positive real parts. We denote by λ m the eigenvalue with the lowest real part.

(2) Regularity of H: The function H satisfies the following regularity and growth control property

θ Þ Ñ ErHpθ, U qHpθ, U q t s is continuous at θ ˚and θ Þ Ñ Er|Hpθ, U q| 2`δ s is locally bounded on R d
for some δ ą 0.

(3) Non-degenerate asymptotic variance: The covariance matrix

Σ ˚:" ErHpθ ˚, U qpHpθ ˚, U qq t s
is a positive definite matrix.

(4) Choice of the step sequence: The step sequence is given by γ n " γ a `nβ , a, γ ą 0 for some β P p 1 2 , 1s, with the additional constraint, when β " 1,

γ ą 1 2Repλ m q . (1.15)
Then, the a.s. convergence is ruled on the event tθ n Ñ θ ˚u by the following stable central limit theorem

γ ´1{2 n pθ n ´θ˚q ñ N p0, Γq, (1.16) 
where Γ :"

ż 8 0 pe ´pDhpθ ˚q´I d 2c qs q t Σ ˚e´pDhpθ ˚q´I d 2c qs ds with c " 8 if β ‰ 1 and c " γ if β " 1.
Moreover, the convergence is stable, that is, for every bounded continuous function f and every A P F 8 , one has

ErI tθnÑθ ˚uXA f p b γ ´1 n pθ n ´θ˚q qs Ñ ErI tθnÑθ ˚uXA f pΓ 1 2 ζqqs, n Ñ 8
where ζ " N p0, I d q.

We see that the best rate of convergence is achieve for β " 1 but we have an additional constraint (1.15) on the constant γ depending on the unknown matrix Dhpθ ˚q. In practical implementations, one does not "observe" such constraint but we remark that the algorithm (1.3) spends most of its time exploring the state space. The CLT regime occurs when the algorithm gets trapped after the mentioned search phase.

In order to circumvent this (theoretical) constraint on the step sequence, one can use the averaging principle, also known as Ruppert & Polyak principle in stochastic approximation community, in order to achieve (for free!) the best convergence rate. The original motivation was to smoothen the behaviour of the original procedure by considering the empirical mean of the past values up to the nth iteration rather than the computed value at the nth iteration. If one devices this averaging procedure with a slow decreasing step sequence pγ n q ně1 then one reaches for free the best possible rate of convergence.

More precisely, we consider the step sequence γ n " pγ{pa `nqq β , with β P p1{2, 1q and n ě 1 and define the empirical mean θn :"

θ 0 `¨¨¨`θ n n `1 " θn´1 ´1 n p θn´1 ´θn q, n ě 1,
of the sequence pθ n q ně0 defined by (1.3). We observe that by Cesàro's lemma, one has θn Ñ θ ˚a.s. if θ n Ñ θ ˚a.s.

as n Ñ 8. Then, under the assumptions p1q, p2q, p3q of Theorem 1.1.5, one has

? np θn ´θ˚q ñ N p0, Γ ˚q, n Ñ `8
where

Γ ˚:" Dhpθ ˚q´1 Σ ˚pDhpθ ˚qt q ´1
is the optimal asymptotic covariance matrix. From a practical point of view, one should not start averaging the initial procedure at the very beginning but wait until the exploration phase is finished.

We have seen some basic results related to a.s. convergence and convergence rate of stochastic approximation, whilst other interesting aspects have purposely not been cited. For instance, we will mention traps, that is parasitic equilibrium such saddle points local maxima, see e.g. Brandière and Duflo [START_REF] Brandière | Les algorithmes stochastiques contournent-ils les pièges?[END_REF], Pemantle [START_REF] Pemantle | Non convergence to unstable points in urn models and stochastic approximations[END_REF] for some aspects on how an excited enough parasitic equilibrium point is a.s. not a possible limit point for a stochastic approximation algorithm. We also mention stochastic approximation with averaging innovation where the innovation sequence pU pnq q ně1 is no longer i.i.d. but satisfies some mild ergodic or simply averaging assumption, thus allowing for deterministic sequence Quasi Monte Carlo stochastic approximation or to plug exogenous data, like market data, see Laruelle & Pagès [START_REF] Laruelle | Stochastic approximation with averaging innovation applied to finance[END_REF] and the references therein.

Example: A Robbins-Monro algorithm for quantile estimation

We conclude this section by a simple illustration of the mentioned results to the recursive computation of the α-quantile (or VaR α ) of a real-valued random variable X, with law µ, defined as a solution θ ˚to the equation: PpX ď θq " α ô hpθq :" ErHpθ, Xqs " 0, α P p0, 1q with Hpθ, xq :" I txďθu ´α and hpθq " PpX ď θq ´α. Since X is finite, a solution to the above equation always exists. If the probability distribution function of X is increasing, this solution is unique. For sake of simplicity, we will assume that this is case. Let pγ n q ně1 be a deterministic positive step sequence satisfying (1.9). The dynamics of the Robbins-Monro algorithm is given by θ n`1 " θ n ´γn`1 Hpθ n , X pn`1q q, n ě 0 where θ 0 P L 2 pPq and is independent of the i.i.d. innovation sequence pX pnq q ně1 (with common law µ). We introduce the Lyapunov function Lpθq :" In order to investigate the weak rate of convergence, we assume that X admits a continuously differentiable density p X satisfying p X pθ ˚q ą 0. Our aim is to apply Theorem 1.1.5. Assumptions p1q and p2q are clearly satisfied. Moreover, by the very definition of θ ˚, one has Σ ˚" ErHpθ ˚, Xq 2 s " αp1 ´αq ą 0. In order to achieve the optimal asymptotic rate we set γ n " γ{pa `nq, with a ą 0 and γ ą 1{p2p X pθ ˚qq. From Theorem 1.1.5, one gets

? npθ n ´θ˚q ñ N p0, Γq, n Ñ 8 with Γ :" αp1 ´αq γ 2 2γp X pθ ˚q ´1 .
This asymptotic variance is minimal for γ " 1 p X pθ ˚q with an optimal value Γ " αp1 ´αq{p 2 X pθ ˚q. However, in practical implementations, one does not have access to the value of θ ˚or the density of X. As a consequence, one is naturally led to consider the averaged form of the algorithm although it is completely satisfactory for a practical point of view. When one tries to implement the stochastic approximation scheme pθ n q ně1 , one observes a chaotic behaviour with a slow convergence, specially when α « 1, say α ą 95%. In [1] and [2], we proposed a R.M. algorithm to compute the quantile and the expected shortfall and improved its performance by combining it with a stochastic approximation based importance sampling technique.

In Chapter 2, we propose an application to the recursive computation of the shortfall L p -risk of a financial portfolio and the recursive computation of risk minimising strategies.

We refer the interested reader to the Phd dissertation of Laruelle [START_REF] Laruelle | Analyse d'algorithmes stochastiques appliqués à la finance[END_REF] for some applications of the stochastic approximation theory to the optimal splitting of orders across liquidity pools such that dark pools, to multi-arm clinical trials by urn models. We also mention the monograph of Pagès [START_REF] Pagès | Introduction to numerical probability for finance[END_REF] for stochastic approximation based procedures for parameter implicitation and calibration of financial models, or the computation of optimal quantizers by e.g. the Competitive Learning Vector Quantization (CLVQ) method.

Discretisation and simulation of stochastic processes

Motivation

In this section, we consider an R d -valued stochastic differential equation (SDE in short) with dynamics

X t " x `ż t 0 bps, X s´q ds `ż t 0 σps, X s´q dZ s , t ě 0, (1.17) 
where the coefficients b : R `ˆR d Ñ R d , σ : R `ˆR d Ñ R d b R q are bounded measurable in time, Lipschitz-continuous in space (uniformly in time) and where pZ t q tě0 is a q-dimensional Lévy process with Lévy-Khintchine decomposition given by Erexppixu, Z t yqs " expptψpuqq, ψpuq " expp´| u| 2 2 `żR q pexppixu, zyq ´1 ´ixu, zyI t|z|ď1u qνpdzqq.

(1.18)

In other words, the SDE (1.17) is driven by a process Z that is given by the sum of a q-dimensional Brownian motion and pure jump process N of Lévy measure ν.

Such dynamics appears in various fields. This is so because of the strong connection between SDEs and PDEs (see e.g. Bass [14], Friedman [START_REF] Friedman | Stochastic differential equations[END_REF]) via Feynman-Kac representation formulas. In various situations, the unique classical solution of a linear parabolic or elliptic PDE can be expressed as the expectation of a (path) functional of the SDE (1.17).

When Z is a q-Brownian motion, the diffusion process (1.17) is commonly used to provide probabilistic representation of the heat equation in non-homogeneous media. It is also commonly used to model the dynamics of assets in financial and energy markets. In [4], we proposed a joint model of Gas and electricity spot prices based on Ornstein processes with parameterized diffusion coefficients that captures the most salient statistical properties observed on data. When Z is a pure jump process, the dynamics (1.17) allows to reproduce some stylised features observed in energy markets such that spikes in the spot prices, see e.g. Benth and al. [START_REF] Benth | Stochastic Modelling of Electricity and Related Markets[END_REF]. In mathematical finance, the price of an option is usually seen as the solution of a parabolic PDE in which the terminal condition is given by the payoff.

In order to compute a quantity related to the law of the process with dynamics (1.17), which is not known in most applications, one usually considers a discrete approximation scheme. A natural scheme that can be implemented very easily is the Euler-Maruyama scheme that we now describe. On the interval r0, T s, T ą 0, for a given time step h " T {N ą 0, N P N ˚, we introduce the time grid t i " ih, i " 0, ¨¨¨, N and the continuous Euler scheme pX h t q tPr0,T s defined for t P r0, T s by

X h t " x `ż t 0 bpφpsq, X h φpsq qds `ż t 0 σpφpsq, X h φpsq qdZ s , t ě 0, (1.19) 
where φpsq " sup tt i : t i ď su. In other words, the Euler scheme is obtained by freezing the coefficients to the current discretisation point in each small interval rt i , t i`1 s. Let us mention that in the case where Z has Brownian and jump parts, it is not always possible to simulate the increments pZ t ´Zs q 0ďsďtďT of the innovation process so that it is not always possible to implement the scheme (1.19). However, it is still possible to provide an analysis of the error, see Section 1.2.3. In many important cases, one can implement this scheme for instance when Z is a stable process or Gamma process, etc. We will present two different results related to the approximation of pX t q tPr0,T s solution to the SDE (1.17) by the scheme pX h t q tPr0,T s given by (1.19). Approximation of stochastic processes goes back to the works of Stroock and Varadhan. They investigated approximation of the distribution of solutions to martingale problems by Markov chains. We refer the interested reader to Chapter 11 in [START_REF] Stroock | Multidimensional diffusion processes, volume 233 de Grundlehren der Mathematischen Wissenschaften[END_REF] and to [START_REF] Stroock | Diffusion processes with boundary conditions[END_REF] for Dirichlet boundary problems.

The pionnering works of Milstein [START_REF]Mil'shtein : Approximate integration of stochastic differential equations[END_REF], [START_REF]Mil'shtein : A method of second-order accuracy integration of stochastic differential equations[END_REF] investigated the strong approximation error, that is the L p -error between the path of pX t q tPr0,T s and the path of its approximation pX h t q tě0 . Then, Misltein [START_REF]Mil'shtein : Weak approximation of solutions of systems of stochastic differential equations[END_REF] and Talay [START_REF] Talay | Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution[END_REF] proved that the weak error, that is the error between the law of the random variable X T and the law of X h T , is of order h under some regularity assumptions.

Strong error

The strong error associated to the process (1.17) and its approximation scheme (1.19) is the quantity Ersup 0ďtďT |X t Xh t | p s 1 p for p ą 0. When the underlying innovation process Z is an R q -valued Brownian motion, one has the following result: Proposition 1.2.1. Suppose that the coefficients b and σ of the SDE (1.17) satisfy the following regularity condition:

@ps, tq P r0, T s 2 , @px, yq P R d , |bpt, xq ´bps, yq| `}σps, xq ´σpt, yq} ď Cp|t ´s| α `|x ´y|q (1.20)
where α P r0, 1s and for some positive constant C. Then, for all p ą 0, there exists a positive constant C p such that

Er sup 0ďtďT |X t ´X h t | p s 1 p ď C p p1 `|x|q h α^1 2 . (1.21)
As a consequence, we remark that the Hölder regularity time exponent α rules the strong convergence rate of the Euler approximation scheme as soon as α ă 1{2. The key ingredient for the proof of Proposition 1.2.1 is to use a Gronwall Lemma to upper-bound Ersup 0ďtďT |X t ´X h t | p s 1{p by the L p -norm of the increments X s ´Xφpsq of the diffusion. As a straighforward corollary, we deduce that the Euler approximation scheme (1.19) converges a.s. toward the diffusion process at a rate β P r0, α ^1 2 q, namely

@β P r0, α ^1 2 q, h ´β sup 0ďtďT |X t ´X h t | Ñ 0, a.s.
as h Ó 0. The proof follows from the L p -convergence Proposition 1.2.1 and an argument using Borel-Cantelli Lemma.

In order to compensate this slow convergence rate Milstein introduced in [START_REF]Mil'shtein : A method of second-order accuracy integration of stochastic differential equations[END_REF] a new scheme in order to achieve the usual strong error of order h that appears in the deterministic framework. In dimension d " q " 1 its expression is simple and it can be easily implemented provided that b and σ have enough regularity. In higher dimension, some theoretical and simulation problems make its use more questionable. The key idea is to use an Itô-Taylor formula in the stochastic integral between to discrete times of the grid (which behaves like ? h and is the leading term in the strong approximation error) in order to introduce higher order terms in the dynamics of the scheme (1.19). We refer to the book of Kloeden and Platten [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF] for an overview about higher order schemes.

Similar arguments can be used in order to quantify the strong error with the same rate of convergence when the innovation process Z is a square integrable Lévy process, see e.g. Kohatsu-Higa and Protter [START_REF] Kohatsu-Higa | The Euler scheme for SDE's driven by semimartingales[END_REF]. We also mention the work of Bruti Liberati and Platen [START_REF] Bruti-Liberati | Strong approximations of stochastic differential equations with jumps[END_REF] where the authors investigate the strong approximation error for pure jump SDEs, propose jump-adapted time discretizations and higher order scheme (in the strong sense) when the intensity of the jump process is finite νpR q q ă 8.

Weak error

In many situations, like the pricing of European options in mathematical finance, an Euler discretisation scheme pX h t q tPr0,T s such that (1. [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF]) is introduced to evaluate quantities writing as ErF ppX t q tPr0,T s qs where F : CpR `, R d q Ñ R is a path functional. In order to evaluate such quantities, one is led to use the Monte Carlo estimator

E h M :" 1 M M ÿ i"1 F ppX h,i t q tPr0,T s q, M ě 1
where ppX h,i t q tPr0,T s q 1ďiďM are i.i.d. samples of the path of the Euler scheme pX h t q tPr0,T s defined by (1.19). The global error between ErF ppX t q tPr0,T s qs, the quantity to estimate, and its implementable approximation E h M can be decomposed as follows:

E glob :" pErF ppX t q tPr0,T s qs ´ErF ppX h t q tPr0,T s sq `pErf ppX h t q tPr0,T s qs ´Eh

M q :" E h W `EM S . (1.22) 
The term E M S corresponds to the statistical error. If F ppX h t q tPr0,T s q P L2 pPq, the statistical error is of order σ h { ? M in L 2 pPq and the renormalised statistical error satisfies a CLT. One may also be interested in non-asymptotic deviation estimates of this quantity in order to device non-asymptotic confidence interval. We will come back to this particular topic in Chapter 3.

The term E h W corresponds to the weak error and has been widely investigated in the literature since the seminal work of Talay and Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] for the case F ppX t q tPr0,T s q " F pX T q. One may be interested in quantifying this error for other type of functionals. We will briefly present some results related to the two functionals:

1. F ppX t q tPr0,T s q " F pX T q 2. F ppX t q tPr0,T s q " F pτ ^T, X τ ^T q, where τ :" inf tt ě 0 :

X t R Du for a domain D Ă R d .
The first case corresponds to the standard Cauchy problem since the quantity to estimate is related to the unique classical solution of linear parabolic PDE with terminal fonction F .

The second case corresponds to the Cauchy-Dirichlet problem since the quantity to estimate is related to the solution of linear parabolic PDE with Dirichlet conditions.

Other type of functional can be discussed such that F pmax 0ďtďT X t , X T q or F p ş T 0 I tXtě0u dt, X T q both in dimension d " q " 1.

Still in the one-dimensional diffusion case d " q " 1, we mention the works of Alfonsi, Jourdain and Kohatsu-Higa [2], [3] where the Wasserstein distance between the laws of pX t q tPr0,T s and pX h t q tPr0,T s defined by W 1 pLpXq, LpX h qq :" sup

F :Cpr0,T s,RqÑR, LippF qď1
|ErF pX h qs ´ErF pXqs| is investigated by means of a pathwise optimal transport technique. Here LippF q denotes the Lipschitz constant of F (with respect to the sup norm on Cpr0, T s, Rq). It is proved that this quantity is upper-bounded by h

The Cauchy problem for diffusion processes

For the standard continuous Euler scheme (1.19), the weak discretisation error is of order h, provided the coefficients b, σ and the test function F are C 4 with the same polynomial growth assumption. The key idea [START_REF] Talay | Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution[END_REF], [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] consists in observing that the function upt, xq " ErF pX T q|X t " xs " ErF pX t,x T qs (note that pX t q tPr0,T s is a Strong Markov process under this assumption) is a classical solution to the parabolic linear PDE " pB t `Lt qu " 0, pt, xq P r0, T q ˆRd upT, xq " F pxq,

where L t is the infinitesimal generator associated to (1.17), namely L t F pxq " xbpt, xq, ∇F pxqy `1 2 T rpapt, xqD 2 x F pxqq, for F P C 8 0 pR d q, where apt, xq " pσσ ˚qpt, xq. Under the mentionned assumption on the coefficients and test function F , one gets that u P C 2,4 pr0, T sˆR d q with the following controls on the derivatives: @pt, xq P r0, T sˆR d , |B i t B j x upt, xq| ď C T p1 `|x| pi,j q. We remark that the last controls allow to deduce that |B i t B j x upt i , X h ti q| P L p pPq for any p ě 1. The next step is to introduce the solution of the PDE (1.23) as follows

E h W :" ErF pX T qs ´ErF pX h T qs " ´pErupT, X h T qs ´up0, xqq " ´N´1 ÿ i"0 E h,i W with E h,i W :" Erupt i`1 , X h ti`1 q ´upt i , X h ti qs.
From these representation, one applies Itô-Taylor formula around the point pt i , X h ti q for i " 0, ¨¨¨, N ´1 using the regularity of u. In order to prove that E h,i W " Oph 2 q, it is necessary to obtain an expansion of order two in time and 4 in space, the term of order 3 in space vanishes because of the third moment of the underlying noise is zero.

Let us also mention here that when the Gaussian increments of the scheme are replaced by more general (possibly discrete) random variables having the same covariance matrix and odd moments up to order 5 as the standard Gaussian vector of R q , it can be checked that the error expansion at order h still holds for b, σ, F smooth enough.

If we keep on that direction by doing an expansion at order 3 in time and 6 in space, observing that the odd moments of the underlying Gaussian vector vanishes, one gets

E h W " C 1 T h `Oph 2 q,
where C 1 T is an explicit constant independent of h. According to Talay and Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], when b, σ are C 8 with bounded derivatives of all orders and F is C 8 with polynomial growth together with its derivatives, then for each integer L ě 1, the expansion

E h W " L ÿ "1 C T h `Oph L`1 q (1.24)
holds.

On can take advantage of the previous expansion in order to perform a Richardson-Romberg extrapolation. This idea was originally introduced in [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] and then deeply investigated by Pagès in [START_REF] Pagès | Multi-step Richardson-Romberg extrapolation: remarks on variance control and complexity[END_REF]. One considers the strong solution X 2 of a "copy" of equation (1.17), driven by a second Brownian motion W 2 defined on the same probability space pΩ, A, Pq. One may always choose such a Brownian motion by enlarging the space Ω if necessary.

Then one considers the continuous Euler scheme with a twice smaller step h{2, denoted by pX 2,h{2 t q tPr0,T s of the diffusion X 2 . Then combining the two time discretisation error expansions associated to X 1,h (related to the first Brownian motion W 1 ) and X 2,h{2 , we get

ErF pX T qs " Er2F pX 2,h{2 T q ´F pX 1,h T qs ´C2 T 2 h 2 `Oph 3 q
so that the global quadratic error becomes

E » -˜ErF pX T qs ´1 M M ÿ i"1 2F pX 2,h{2,piq T q ´F pX 1,h,piq T q ¸2fi fl " p C 2 T 2 h 2 q 2 `V arp2F pX 2,h{2 T q ´F pX 1,h T qq M `Oph 5 q
If one follows a naive approach by simulating X 2,h{2 and X 1,h{2 independently, this corresponds to two independent Brownian motion W 1 , W 2 , then one increases the variance by a factor 5 (asymptotically) since V arp2F pX 2,h{2 T q F pX 1,h T qq " 4V arp2F pX 2,h{2 T q `V arpF pX 1,h T qq Ñ 5V arpF pX T qq as h Ó 0. It is shown in [START_REF] Pagès | Multi-step Richardson-Romberg extrapolation: remarks on variance control and complexity[END_REF] that the consistent choice W 1 " W 2 leading to consistent Brownian increments for the two schemes is asymptotically optimal among all possible choice of Brownian motions W 1 and W 2 . We will see in Chapter 4 an extension of the Richardson-Romberg extrapolation method to stochastic optimisation by means of stochastic approximation algorithm.

Anyway in order to analyse the weak discretisation error we will always proceed this way. As mentioned above the key ingredient is to have controls on u and its derivatives and to proceed using Itô-Taylor's formula. This is for that reason that we require regularity on b, σ and F . However, in practical situations the test function F is not regular. For instance, in mathematical finance, one often deals with payoff F that are not regular, e.g. Call option F pxq " px ´Kq `or digital option F pxq " I txěKu .

One can weaken the regularity assumption on F if one can benefit from the smoothness of the underlying transition density. More precisely, if the process pX t q tPr0,T s solution to (1.17) admits a smooth transition density, one can relax the smoothness assumption on F . Indeed, in this case one has upt, xq " ş R q F pyqppt, T, x, yqdy where y Þ Ñ ppt, T, x, yq is the density function of the random vector X t,x T . When the coefficients are time homogeneous, the density is given by ppT ´t, x, yq.

However, in order to benefit from this regularising property one has to assume that the operator L satisfies some non-degeneracy assumption. One usually considers two type of assumptions: the Hörmander assumption (H) and uniform ellipticity assumption (UE) of a " σσ t .

The Hörmander condition is a sufficient (and is known to be nearly necessary) condition for a second-order linear Kolmogorov PDE with smooth coefficients to be hypoelliptic, that is,

P t C b pR d , Rq Ď C 8
b pR d , Rq, for all t P p0, 8q, where pP t q tě0 denotes the associated Markov semigroup. Note that in the non-hypoelliptic regime, even in the case of smooth coefficients, there exist counterexamples to regularity preservation. In Hairer, Hutzenthaler, Jentzen [START_REF] Hairer | Loss of regularity for kolmogorov equations[END_REF], the roughening effect of the noise for non-hypoelliptic linear PDE is exhibited. From the perspective of numerical probability, this has the consequence that numerical approximations may converge (in the strong and weak sense) without any arbitrarily small polynomial rate.

Assumption (H):

The coefficients b and σ are C 8 and time homogeneous, with bounded derivatives of order larger than 1 (importantly the functions b and σ are not supposed to be bounded). Let A 0 " b ´1 2 σ.∇σ and A i " σ i , i " 1, ¨¨¨, q where σ " pσ 1 , ¨¨¨, σ q q. For a multi-index α " pα 1 , ¨¨¨, α r q P t0, ¨¨¨, qu r we define the vector fields A α i by A H i " A i for 1 ď i ď q and A pα,jq i " rA j , A α i s for 0 ď j ď q where for two smooth R d -valued vector fields V, W , rV, W s " ∇W V ´∇V W , ∇V " pB j V i q 1ďi,jďd , stands for their Lie bracket. The Hörmander condition holds if the vector space spanned by A α i , 1 ď i ď q, α being a multi-index, at the point x is R d . Under (H), the density function y Þ Ñ ppT ´t, x, yq of X t,x T exists and is smooth. Moreover, if the vector fields A 0 , ¨¨¨, A q satisfies the uniform Hörmander assumption (UH), that is if there exists an integer L and λ ą 0 such that @x P R d , inf

uPS d´1 ÿ |α|ďL xA α pxq, uy 2 ě λ (1.25) 
Kusuoka and Stroock [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF] provided the following controls on the density. For any integers m, k and any multi-index α and β such that 2m `|α| `|β| ď k, there exist an integer M and a non-decreasing function T Þ Ñ CpT q such that the following inequality holds:

|B m t B α x B β y ppt, x, yq| ď
CpT qp1 `|x| M q t q p1 `|y ´x| 2 q k expp´c |y ´x| 2 tp1 `|x| 2 q.

(1.26)

Moreover, the inverse of the Malliavin covariance matrix denoted by Γ t pxq is bounded in any L p pPq. More precisely, for any p ě 1, there exists a non-decreasing function CpT q and an integer k such that

Er}Γ t } p s 1 p ď CpT q 1 `|x| k t dL (1.27)
In [10], Bally and Talay take benefit from (1.26) and (1.27) in order to extend (1.24) for hypo-elliptic diffusions without any regularity on the test function F , which is supposed to be measurable with exponential growth at infinity. The main quantities that appears in the expansion of the weak discretisation error are Q h i " ErB α x upt i , X h ti qGpX h ti qs for a smooth function G with polynomial growth. Roughly speaking, when t i is close to 0, say i ď N {2, then one uses (1.26) in order to control Q h i . When t i is close to T , one has to use Malliavin's integration by parts formula with respect to the random variable X h ti which is expected to be non-degenerated with high-probability. We are led to compare Γ h t and Γ t , where Γ h t is the inverse of the Malliavin covariance matrix of X h at time t. This can be done using a localisation argument.

Let us also mention that in general the Euler scheme does not admit a density under assumption (UH). In [11], Bally and Talay introduced a perturbed Euler scheme which admits a transition density p h and proved an expansion of the error p ´ph .

Assumption (UE):

The diffusion matrix a is bounded and uniformly elliptic, that is there exists ā such that @pt, xqr0, T s ˆRd , @u P R d , ā´1 |u| 2 ď xapt, xqu, uy ď ā|u| 2 . When b and σ are Hölder continuous in space (uniformly in time) and bounded, the unique (weak) solution to (1.17) (driven by a Brownian motion W ) satisfies the following Gaussian bound @T ą 0, DC ą 1, @pt, x, yq P r0, T q ˆRd ˆRd , |ppt, T, x, yq| ď C expp´C ´1|y ´x| 2 {tq. The latter bound follows from the parametrix method, see Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] or McKean and Singer [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF]. The parametrix technique is a classical perturbation method used in PDE theory that was originally formulated in order to give an expansion in infinite series of iterated kernels of the fundamental solution of an elliptic or parabolic PDE of order 2p, p P N ˚, with time inhomogeneous coefficients. More precisely, one has ppt, T, x, yq "

ÿ ně0 pp b H n qpt, T, x, yq (1.28) 
where ppt, T, x, yq is the Gaussian density of the system (1.17) where we removed the drift b and fixed the diffusion coefficient to the terminal point y. This system is often referred to the frozen or parametrix process. The space-time convolution operator b is defined by pf b gqpt, T, x, yq :" ş T t ds ş R d dzf pt, s, x, zqgps, T, z, yq and H is a kernel. The keystone of this approach is that the underlying parametrix kernel H enjoys a regularising property in the sense that pp b H n qpt, T, x, yq is explicitly controlled by the term of an absolutely (and uniformly) convergent series times a Gaussian density. We will come back to this point latter on in the second part of this manuscript in Chapter 5.

This method has been successfully applied to many equations and various situations. Its merit and success are due to its flexibility as it can be invoked for a wide variety of PDEs both for theoretical goals such as density estimates [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF], martingale problems [START_REF] Menozzi | Parametrix techniques and martingale problems for some degenerate Kolmogorov equations[END_REF], strong existence and uniqueness for SDE [START_REF] Chaudru De Raynal | Strong existence and uniqueness for degenerate SDE with Hölder drift[END_REF] and for numerical approximations [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF]. Let us be more precise on the latter topic since it will be used in Chapter 5. If we replace in the dynamics of the continuous Euler scheme (1.19) the Brownian increments by a sequence of i.i.d. random variables with common law µ which admits a density with respect to the Lebesgue measure (with the same moments as the Gaussian density up to a certain order), then the new scheme admits a transition density p N which admits a representation in infinite series

p N pt, T, x, yq " ÿ ně1 pp b N H N,n qpt, T, x, yq (1.29) 
where y Þ Ñ pN pt, T, x, yq is the density of the recursive scheme where we removed the drift b and fixed the diffusion coefficient to the terminal point y. The kernel H N and the operator b N are discrete version of the kernel H and the space time convolution operator b. In [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], Konakov and Mammen followed these approach. By comparing the two series (1.28) and (1.29) they obtained local limit theorems for the difference pp ´pN qpt, T, x, yq at a rate h 1 2 . When one considers the true continuous Euler scheme with Brownian increments, an expansion of the error for p ´pN can be obtained. More precisely, Konakov and Mammen in [START_REF] Konakov | Edgeworth type expansions for euler schemes for stochastic differential equations[END_REF] proved the following expansion @L P N ˚, pp ´pN qpt, T, x, yq

" L ÿ "1 π N pt, T, x, yq N `1 N L`1 R N pt, T, x, yq (1.30) 
with the following Gaussian controls DC T ´t ą 1, @px, yq P pR d q 2 , |π N pt, T, x, yq| `|R N pt, T, x, yq| ď C T ´t expp´c |y ´x| 2 T ´t q under the assumptions (UE) and assuming that the coefficients b, σ are C 8 with bounded derivatives of all order. We will present in Chapter 5 some results related to the weak approximation error of a skew diffusion with bounded measurable drift and Hölder diffusion coefficient by an Euler-type scheme. We obtained a similar error bound for the difference between the densities of the skew diffusion and its Euler approximation under mild smoothness assumption on the coefficients. Under stronger smoothness assumption on the coefficients, Gobet and Labart [START_REF] Gobet | Short time asymptotics of the density of the Euler scheme[END_REF] quantified the small time asymptotics of the difference p ´pN . More precisely, using Malliavin Calculus techniques, they established the bound |pp ´pN qpt, T, x, yq| ď ChpT ´tq ´d`1 2 expp´c|y ´x| 2 {pT ´tqq, where C, c ą 1 are constants independent of t, T . The main advantage of (1.30) compared to the previous approach is that one can considerably weaken the assumption on the test function F . Guyon [START_REF] Guyon | Euler scheme and tempered distributions[END_REF] proved that (1.24) holds if F is a tempered distributions, e.g. a Dirac mass or derivatives of a Dirac mass. We will see in Chapter 4 that this point is very important in order to obtain an expansion of the implicit discretisation error for solutions to inverse problems. It is also important to quantify this kind of error when one considers the computation of greeks in option hedging.

Recent research works have shown a rising interest in weak higher order approximation schemes starting with the pioneering work of Kusuoka [START_REF] Kusuoka | Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus[END_REF]. The method relies on the splitting of the infinitesimal generator in order to use composition techniques of ODEs flow see Ninomiya and Victoir [START_REF] Ninomiya | Weak approximation of stochastic differential equations and application to derivative pricing[END_REF] and very recently Bally and Rey [9]. In the latter work, the authors obtained estimates of the error in total variation distance for the Ninomiya Victoir scheme using Malliavin calculus techniques under a Doeblin's condition on the underlying noise.

An interesting problem, which has not been investigated (to the best of our knowledge), will be to study the existence of a transition density for higher order scheme like the Ninomiya scheme (as well as Gaussian lower and upper-bounds) and to see if expansions similar to (1.30) holds. For instance, one may try to follow the approach initiated by Konakov and Mammen [START_REF] Konakov | Edgeworth type expansions for euler schemes for stochastic differential equations[END_REF].

The Cauchy problem in the case of SDE driven by jump process

The approach of Talay and Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] still works when one adds jumps in the innovation process Z appearing in the dynamics (1.17). The key idea still consists in controlling the derivatives of the function u, the unique classical solution to linear integro-differential PDE $ & % pB t `Lt qupt, xqş R q pupt, x `σpt, xqz ´upt, xq ´x∇upt, xq, σpt, xqzyI t|z|ď1u q " 0, pt, xq P r0, T q ˆRd upT, xq " F pxq, (1.31) Like in the Brownian case, under regularity assumptions on the coefficients and terminal condition F and under integrability condition of the Lévy measure, Protter and Talay [START_REF] Protter | The Euler scheme for lévy driven stochastic differential equations[END_REF] derived an expansion of the weak discretisation error similar to (1.24).

One important issue that does not appear in the Brownian framework is the simulation of the increments of the Lévy process Z. In many cases such that stable, Gamma, compound poisson process, one knows how simulate the increments but in general one does not know how to do. Jacod and al. [START_REF] Jacod | The approximate euler method for Lévy driven stochastic differential equations[END_REF] proposed an implementable Euler scheme where the increments pZ ti`1 ´Zti q 0ďiďN ´1 are approximated by a sequence pU h i q 0ďiďN ´1 of i.i.d random variables satisfying |ErgpZ h q ´gpU h 1 qs| ď Ch h for g P C 4 pR q q. Under some integrability conditions on ν, they obtained the bound |ErF pX T q ´F pX h T qs| ď Cp h _ hq and derived an expansion of the error similar to (1.24) under stronger smoothness assumption on the coefficients b and σ.

When the innovation is a non-degenerated stable process, Konakov and Menozzi in [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF] extended the parametrix machinery developed in [START_REF] Konakov | Edgeworth type expansions for euler schemes for stochastic differential equations[END_REF] and successfully derived an error expansion similar to (1.30).

Let us also mention the work of Kohatsu-Higa and Tankov [START_REF] Kohatsu-Higa | Jump-adapted discretization schemes for lévy-driven sdes[END_REF] where the authors study the weak approximation for a jump-adapted discretisation scheme of Lévy driven SDEs. The approach consists in building upon adaptive non-uniform discretisation based on the jump times of the driving process coupled with suitable approximations of the solutions between these jump times.

The Cauchy-Dirichlet problem for diffusion processes

For a Brownian driven SDE with dynamics (1.17), let us consider the first exit time τ of the domain D Ă R d defined by τ " inf tt ě 0 : X t R Du. The computation of ErF pτ ^T, X τ ^T qs is an important issue that appears in various fields such as mathematical finance for the pricing and hedging of look-back options. More generally, it is the probabilistic representation of the classical solution of the following Cauchy-Dirichlet problem " pB t `Lt qupt, xq " 0, pt, xq P r0, T q ˆD, upt, xq " F pt, xq, pt, xq P r0, T q ˆBD Y tT u ˆD (1.32)

One is naturally led to consider the approximation ErF pτ h ^T, Π D pX h τ h ^T qqs where τ h :" inf t i : X h ti R D ( and Π D is the projection on D. Then, using the same decomposition as in the standard Cauchy problem, one has

E h W " ErF pτ h ^T, Π D pX h τ h ^T qs ´ErF pτ ^T, X τ ^T qs " Erupτ h ^T, Π D pX τ h ^T qqs ´up0, xq.
Then, following a similar strategy as in the standard Cauchy problem, one has to apply Itô-Taylor formula and use the regularity of the solution u to (1.32).

If the domain D is sufficiently smooth and under non-degeneracy assumption (namely

(UE) or (H)), one is able to prove that E h W is of order h 1 2
. More precisely, Gobet [START_REF] Gobet | Schémas d'Euler pour diffusion tuée[END_REF], [START_REF] Gobet | Euler schemes for the weak approximation of killed diffusion[END_REF] proved that E h W " Oph 1 2 q under some regularity assumption on F . Then, Gobet and Menozzi [START_REF] Gobet | Stopped diffusion processes: boundary corrections and overshoot[END_REF] sharpened this result by proving a lower bound of order h 1{2 and a first order expansion that writes

E h W " C 1 h 1{2 `oph 1{2 q.

Multi-level Monte Carlo simulation

The multi-level Monte Carlo method introduced by Heinrich [START_REF] Heinrich | Multilevel Monte Carlo methods[END_REF] for parametric integration and recently developed by Giles [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF] for Monte Carlo simulation as an extension of the two level method of Kebaier [START_REF] Kebaier | Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing[END_REF] allows to minimise the simulation cost of the quantity ErY s where Y is an R-valued random variable that can only be approximated by a sequence pY n q ně1 of easily simulatable random variables as the bias parameter n goes to infinity with a weak discretisation error or bias ErY s ´ErY n s of order n ´α, α ą 0. This method is now very popular, notably in mathematical finance where as mentioned in the previous sections the random variable of interest is given by a functional of an SDE with dynamics (1.17). However, it has been widely applied to various problems of numerical probability, see Giles [START_REF] Giles | Improved multilevel Monte Carlo convergence using the Milstein scheme[END_REF], Dereich [START_REF] Dereich | Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian correction[END_REF], Giles, Higham and Mao [START_REF] Giles | Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff[END_REF] among others. We refer the interested reader to the webpage: http://people.maths.ox.ac.uk/gilesm/mlmc_community.html for further developments.

Let us be more specific. In this context, the standard Monte Carlo method uses the statistical estimator M ´1 řM j"1 Y n,pjq where the pY n,pjq q 1ďjďM are M independent copies of Y n . Given the order of the weak error, a natural question is to find the optimal choice of the sample size M to achieve a global error. If the weak discretisation error is of order n ´α (for instance α " 1 for the standard Cauchy problem and α " 1 2 for the Cauchy Dirichlet problem) then for a total error of order n ´α (α P r1{2, 1s), the minimal computation necessary for the standard Monte Carlo algorithm is obtained for M " n 2α , see Duffie and Glynn [START_REF] Duffie | Efficient monte carlo simulation of security prices[END_REF]. So, if the computational cost required to simulate one sample of Y n is of order n (as it is the case for the Euler scheme (1.19)) then the optimal computational cost of the Monte Carlo method is C M C " C ˆn2α`1 , for a positive constant C ą 0.

In order to reduce the complexity of the computation, the principle of the multi-level Monte Carlo method introduced by Giles [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF] consists in using the telescopic sum

ErY m L s " ErY 1 s `L ÿ "1 ErY m ´Y m ´1 s,
for an integer m ą 1 satisfying m L " n α . For each level P t1, ¨¨¨, Lu the numerical computation of ErY m ´Y m ´1 s is achieved by the standard Monte Carlo method using N independent samples of pY m ´1 , Y m q. An important point is that the random samples Y m and Y m ´1 are perfectly correlated. Then the expectation ErY n s is approximated by the following multi-level estimator

E M LM C :" 1 N 0 N0 ÿ j"1 Y 1,pjq `L ÿ "1 1 N N ÿ j"1 ´Y m ,pjq ´Y m ´1 ,pjq ¯,
where for each level , pY m ,pjq q 1ďjďN is a sequence of i.i.d. random variables with the same law as Y m . The variance of the new estimator is the sum of the local variance:

V arpE M LM C q " L ÿ "0 N ´1 V , V :" V arpY m ´Y m ´1 q, " 0, ¨¨¨, L
with the convention Y m ´1 " 0. The computational cost is proportional to ř L "0 N m ´ . A simple optimisation problem shows that the variance of the multi-level estimator is minimised for a fixed computational cost by choosing N proportional to a V m ´ . In the case we have in mind corresponding to the Euler discretisation scheme with Lipschitz-continuous coefficients, one has Y m " F pX m T q for a Lipschitz continuous function F so that V " Opm ´ q and N is proportional to the variance V (at least asymptotically). This leads us to choose N satisfying N ´1 V " Opn ´2α pL `1q ´1q. Then the variance of E M LM C is Opn ´2α q and the biais is still n ´α! Moreover, in order to achieve a global error of order n ´α, the computational cost of the new estimator is Opn ´2α L 2 q " Opn ´2α plogpnqq 2 q. Based on this heuristic, we clearly see that the new multi-level Monte Carlo estimator outperforms the basic Monte Carlo estimator in terms of computational complexity.

More recently, Ben Alaya and Kebaier [1] proposed a different analysis to obtain the optimal choice of the parameters that relies on a Lindeberg-Feller CLT for the multi-level Monte Carlo algorithm.

More importantly, Lemaire and Pagès [START_REF] Lemaire | Multilevel richardson-romberg extrapolation[END_REF] proposed a multi-level Richardson-Romberg estimator which combines the higher order bias cancellation of the multi-step Richardson Romberg method investigated in [START_REF] Pagès | Multi-step Richardson-Romberg extrapolation: remarks on variance control and complexity[END_REF] and the variance control of the multi-level Monte Carlo method briefly exposed above. Notably, in standard frameworks like the discretisation of diffusion processes, for a global error of order n ´α, the computational cost is of order Opn ´2α logpnqq.

In Chapter 4, we extend the scope of the multi-level Monte Carlo method to the framework of stochastic optimisation by means of stochastic approximation algorithm. The optimal choice of the parameters is done by proving a CLT for the new estimators. We also present some numerical results that confirm the theoretical analysis and show a significant reduction in the initial computational cost.

Unbiased simulation of SDE

Unbiased simulation methods of SDEs offers an alternative to the Multi level Monte Carlo for the computation of ErF pX T qs where pX t q tPr0,T s is solution to (1.17). We differentiate here between exact methods and unbiased methods. Exact methods allows to sample a path, at a finite set of points, with the exact distribution of the SDE, while unbiased means that we can estimate ErF pX T qs without any bias, which is enough for many applications such that the pricing and hedging of financial claims.

An example of an exact simulation method is given in Beskos and al. [START_REF] Beskos | Retrospective exact simulation of diffusion sample paths with applications[END_REF] in dimension d " q " 1 based on the Lamperti transform of the original SDE. For some extensions to the SABR and the Heston models we refer the reader to Broadie and Kaya [START_REF] Broadie | Exact simulation of stochastic volatility and other affine jump diffusion processes[END_REF], Chen and al. [START_REF] Chen | A low-bias simulation scheme for the sabr stochastic volatility model[END_REF]. However, all these methods cannot be easily extended to a general SDE.

The unbiased simulation technique for the multi-dimensional SDE has been introduced by Bally and Kohatsu-Higa [7] and developed by Anderson and Kohatsu-Higa [4] for multi-dimensional diffusions with hölder continuous coefficients. This method is based on a probabilistic interpretation of the parametrix method introduced by E. Lévi to construct the fundamental solution of elliptic and parabolic PDE. The proposed method is also based on the Euler scheme although in the proposed simulation scheme the time partition is random.

We now briefly expose the main guidelines for multi-dimensional diffusion processes with infinitesimal general L " 1 2 ř i,j a i,j B i,j `ři b i B i where a is assumed to be uniformly elliptic. The coefficients a and b are smooth, say a i,j P C 2 b pR d q and b i P C 1 b pR d q. We know that the unique solution to (1.17) defines a strong Markov semigroup pP t q tě0 defined for all bounded measurable maps by P t f pxq " Erf pX t qs. Under these assumptions it is also known that P t f P C 2 b pR d q for all t ą 0, see e.g. Friedmann [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]. We introduce the approximation process X defined by Xt " x `bpxqt `σpxqW t , that is the process obtained from (1.17) by freezing the drift and the diffusion coefficients at the initial point x. We introduce accordingly the collection of linear maps p Pt q tě0 defined for all bounded measurable functions f by Pt f pxq " Erf p Xt qs " ş f pyqgpapxqt, y´bpxqt´xq, where, for a symmetric positive definite matrix a, gpa, xq is the probability density function of N p0, aq taken at x. In particular, one has B t Pt f pxq " Pt Lf for every t ą 0. As a consequence, using an integration by parts formula the following one step formula holds

P t f pxq " Pt f pxq `ż t 0 B s p Pt´s P s f pxqqds " Pt f pxq `ż t 0 Pt´s pL ´LqP s f pxqds " Pt f pxq `ż t 0 S t´s P s f pxqds (1.33)
where we introduced the operator S t f pxq " ş R d f pyqθ t px, yqgpapxqt, y ´bpxqt ´xqdy with

θ t px, yq " 1 2 d ÿ i,j"1 κ i,j t px, yq ´d ÿ i"1 ρ i t px, yq, κ i,j t px, yq " B 2
i,j a i,j pyq `Bj a i,j pyqH i papxqt, y ´x ´bpxqtq `Bi a i,j pyqH j papxqt, y ´x ´bpxqtq `pa i,j pyq ´ai,j pxqqH i,j papxqt, y ´x ´bpxqtq,

ρ i t px, yq " B i b i pyq `pb i pyq ´bi pxqqH i papxqt; y ´x ´bpxqtq.
Here H i pa, xq " ´pa ´1xq i and H i,j pa, xq " pa ´1xq i pa ´1xq j ´pa ´1q i,j are the Hermite polynomials of order 1 and 2 associated to the Gaussian density gpa, xq. From the space-time inequality @x P R, |x| p e ´qx 2 ď ppp{p2qeqq p{2 , valid for any p, q ą 0, one easily gets |S t´s f | 8 ď Cpt ´sq ´1 2 |f | 8 , for a constant C depending only on the coefficients a, b and their derivatives.

Iterating the first step expansion (1.33), one proves that the following expansion holds

P t f pxq " ÿ ně0 ż ∆ n ptq ds n n´1 ź j"0 S sj`1´sj Pt´sn f pxq, (1.34) 
where ∆ nptq :" ts n " ps 1 , ¨¨¨, s n q P r0, ts n : 0 ă s 1 ă ¨¨¨ă s n ă tu and s 0 " 0.

In order to provide a probabilistic representation of the above series, for a time partition π : 0 " s 0 ă s 1 ă ¨¨¨ă s n ă s n`1 " t, we introduce the following discrete time process

X π si`1 " X π si `bpX π si qps i`1 ´si q `σpX π si qpW si`1 ´Wsi q, i " 0, ¨¨¨, n.
Then, the following intermediary probabilistic representation holds

P t f pxq " ÿ ně0 ż ∆nptq ds n Erf pX π t q n´1 ź i"0 θ sj`1´sj pX π sj , X π sj`1 qs, (1.35) 
and it remains to provide a probabilistic interpretation of the time integrals. To this end, we let N ptq be a Poisson process with intensity parameter λ ą 0 and define N " N ptq. Let τ 1 , ¨¨¨, τ N be the event times of the Poisson process and set τ 0 " 0 and τ N `1 " t. Since, conditional on N , the event times are distributed as a uniform statistic, PpN " n, τ 1 P ds 1 , ¨¨¨, τ n P ds n q " λ n e ´λt , for s n P ∆ nptq and the following probabilistic representation holds

P t f pxq " Erf pX t qs " e λt Erf pX π t q N ´1 ź i"0 θ τj`1´τj pX π τj , X π τj`1 qs. (1.36)
Let us note that the right-hand side of (1.36) can be sampled exactly, this gives us an unbiased simulation method for the computation of Erf pX T qs. The simulation algorithm consists in independently simulating the event times of a Poisson process and an Euler scheme with a time partition given by the simulated random times. However, the method suffers from a poor convergence rate since the variance of the associated estimator may be infinite. An importance sampling on the time steps using a Beta or Gamma distribution is proposed in [4] which allows to achieve finite variance.

Another method is proposed in [7] and [4] which relies on a backward Euler scheme. The backward method can be applied for Hölder continuous coefficients. In this case, the Euler scheme is ran backward on the random time grid.

In Chapter 6, we will extend the above probabilistic representation to the one dimensional Cauchy-Dirichlet problem. More precisely, we obtain probabilistic representation of the process pτ ^t, X τ ^tq tě0 and obtain partial integration by parts formula that can be explicitly simulated without any bias.

We also mention the work of Henry-Labordère and al. [START_REF] Henry-Labordère | A numerical algorithm for a class of BSDEs via the branching process[END_REF] where the authors proposed a probabilistic representation for a class of semi-linear parabolic PDEs using a branching process. Usually this class of PDEs is solved using probabilistic numerical schemes of Backward SDEs. Here the algorithm is forward and backward regressions are no longer needed.

Part I : Stochastic approximation algorithm and applications

Chapter 2

Some contributions to risk management in financial and energy markets

In this chapter we present the two research works [5] and [6].

In [6], which can be seen as a continuation of [3], we study the theoretical and computational aspects of risk minimisation in financial and energy market models operating in discrete time. The risk is defined by considering a class of convex risk measures defined on L p pPq in terms of shortfall risk [6]. Existence of an optimal strategy is proved under the absence of arbitrage and the non-degeneracy of the price process in a non-Markovian framework. We propose a Robbins-Monro algorithm to compute the shortfall risk of a given real-valued random variable. Then, we propose and analyse a Newton-Raphson optimisation algorithm to compute the optimal static risk minimising strategy. Finally, in a dynamic framework a quantisation based stochastic approximation algorithms to compute the corresponding risk measures as well as the optimal dynamic strategies is proposed.

In the research work [5], in collaboration with A. Sagna of University Evry Val d' Essonne, we study a quantisation based Newton-Raphson algorithm to compute the optimal importance sampling (IS) parameter. The approach proposed here can be seen as a robust and automatic deterministic counterpart of recursive IS (by translation of the mean) by means of stochastic approximation algorithm, as proposed by Lemaire and Pagès [START_REF] Lemaire | Unconstrained recursive importance sampling[END_REF] which may require tuning of the step sequence and a good knowledge of the payoff function in practice.

Risk minimisation in financial or energy markets operating in discrete time

In [6], we investigate the risk minimisation problem of a portfolio loss with maturity T described by an R-valued random variable L which contains an observable but non-tradable source of risk. More precisely we consider an energy market operating at discrete trading dates t 0 " 0 ă t 1 ă ¨¨¨ă t N " T . We have d assets available for trade with price process X " `X1 , ¨¨¨, X d ˘and X i " `Xi ˘0ď ďM for i " 1, ¨¨¨, d.

In our framework, the source of market incompleteness comes from the presence in L of a state process Z that is observable but not available for trade. Thus, it induces a source of risk that is not completely hedgeable. Typically, in the electricity market, the loss L suffered by an energy company may be due to an anormal annual electricity (or gas) consumption. This consumption depends on the temperature, which is an observable but non tradable source of risk. In this example the process pZ q 1ď ďM can be considered as the temperature which may influence not only the loss but the assets available for trade, i.e. electricity prices of spot and forward contracts (which are in this example the only assets available for hedge). The probability space is equipped with a filtration F " pF q 0ď ďM . Intuitively, F represents the observable information at time t by all investors, so that F " σ tX i , Z i ; 0 ď i ď u.

The gains from a trading strategy θ with an initial investment of 0 are described by the discrete stochastic integral ř N "1 θ ´1.∆X , where we denote by ∆X the increments X ´X ´1 and θ " pθ q 0ď ăM P A F , where

A F " θ " pθ q 0ď ďM ´1 | θ P L 0 R d pF , Pq , " 0, ¨¨¨, M ´1( is the set of admissible strategies, L 0 R d pF ,
Pq denoting the space of all F-mesurable and P ´a.s. finite random variables with values in R d . In order to measure the risk, we consider a class of risk measures defined on L p pPq in terms of shortfall risk. It is a standard class of convex risk measure as mentioned by Föllmer and Schied [START_REF] Föllmer | Convex measures of risk and trading constraints[END_REF] and Kaina and Rüschendorf [START_REF] Kaina | On convex risk measures on l p -spaces[END_REF].

To be more precise about this risk measure, let : R Ñ R `be a non-decreasing convex loss function, not identically constant, hence satisfying lim xÑ`8 pxq " `8. Assume that lim xÑ´8 lpxq " l ă lpx 0 q. For some x 0 P R, we define the acceptance set A :" tL P L p : E r p´Lqs ď px 0 qu , and the corresponding shortfall convex risk measure ρ : L p pPq Ñ R Y t`8u ρpLq :" inf tξ P R : L `ξ P Au " inf tξ P R : E r p´L ´ξqs ď lpx 0 qu , (

Under the assumption on the function , the infimum in (2.1) exists. Assuming that @M ą 0, E rlp´L `M qs ă `8, one has ρpLq P R. Moreover, it is the lowest solution of the equation: E r p´L ´ξqs " lpx 0 q.

(2.

2)

Classical examples are the entropic risk measure defined by setting pxq " e λx , x P R, λ ą 0, x 0 P R, ρpLq "

1 λ log E " e ´λpL`x0q
‰ and the L p -shortfall risk measure, defined by setting pxq " x p I txě0u , x P R, p ě 1, x 0 ą 0. The basic problem for the investor with a given portfolio loss L is to minimise the risk

inf θPA F ρ ˜L ´N ÿ n"1 θ n´1 .∆X n ¸" inf θPA F inf # ξ P R : E « p´L `N ÿ n"1 θ n´1 .∆X n ´ξq ff ď px 0 q + . (2.
3)

The main difference between the CVaR risk minimisation problem investigated in [3] and the shortfall risk minimisation problem (2.3) is that a shortfall risk measure does not write as an expectation contrary to the CVaR but appears as the level of a function which can be written as the expectation of a loss. Hence the arguments developed in [3] do not work.

Under the absence of arbitrage, we prove that the following two steps strategy works:

• the first step consists in solving for every ξ P R, the following stochastic control problem,

inf θPA F E « p´L `N ÿ n"1 θ n´1 .∆X n ´ξq ff (2.4)
By performing a non-trivial dynamic programming argument and using a measurable selection theorem, see e.g. p. 266 Lemma 5 in Jacod and Shiryayev [START_REF] Jacod | Local martingales and the fundamental asset pricing theorems in the discrete-time case[END_REF] or Dellacherie and Meyer [START_REF] Dellacherie | Chapitres I à IV, Édition entièrement refondue[END_REF] Theorem 82, p. 252, we prove the existence of optimal strategies for the risk minimisation problem (2.4) under the absence of arbitrage property (NA). 1 The optimal strategy is computed by a backward induction

ϕ N pξ, θ 1 , ¨¨¨, θ N ´1q :" p´L `N ÿ n"1 θ n´1 .∆X n ´ξq, a.s.
for all ξ P R, θ P A F ; for 0 ď t ă N and for all ξ P R, pθ 1 , ¨¨¨, θ t q P L 0 F0 pPq ˆ¨¨¨ˆL 0 Ft´1 pPq,

ϕ t pξ, θ 1 , ¨¨¨, θ t q :" ess inf θt`1PΘt E r ϕ t`1 pξ, θ 1 , ¨¨¨, θ t q| F t s , a.s. (2.5) 
• once an optimal solution to (2.4) is computed (if any), say θ ˚pξq, ξ P R, the second step consists in finding the lowest solution ξ ˚of the following equation

inf θPA F E « p´L `N ÿ n"1 θ n´1 .∆X n ´ξq ff " E « p´L `N ÿ n"1 θ n´1 pξq.∆X n ´ξq ff " px 0 q. (2.6)
Then we are concerned by the problem of computing the shortfall risk (2.1) of a random variable X and the optimal strategy for the risk minimization problem (2.3). In order to estimate the shortfall risk, which is a solution to equation (2.2), we propose a Robbins-Monro stochastic algorithm. Assuming that there exists a positive function ϕ such that E " 2 p´L ´ξq ‰ ď Cp1 `ϕpξqq, ξ P R, we implement ξ n`1 " ξ n `γn`1 Hpξ n , L pn`1q q, n ě 0, Hpξ, xq :" p´x ´ξq ´lpx 0 q p1 `ϕpξqq (2.7)

where pL pnq q ně1 is an i.i.d. sequence of random variables with the same distribution as L, independent of ξ 0 P L 2 pPq and pγ n q ně1 is a step sequence satisfying the classical condition (1.9). We prove that the sequence pξ n q ně0 a.s. converges to a random variable ρpLq taking values in the set T ˚:" tξ : E r p´L ´ξqs " ´ px 0 qu as n Ñ 8.

1 Denoting V v,θ t " v `t ÿ "1
θ .∆X , one has (NA) : @θ P A G , ´V 0,θ M ě 0 a.s. ùñ V 0,θ M " 0 a.s.

Moreover, if one implements the recursive scheme (2.7) with a step sequence γ n " a pb`nq β , a, b ą 0, 1 2 ă β ă 1 and computes the empirical mean ξn`1 " 1 n`1 ř n k"0 ξ k , n ě 0 then according to the Ruppert and Polyak averaging principle one has

? np ξn ´ρpXqq L ñ N `0, σ 2 ˚˘, σ 2 ˚:" E " p p´L ´ρpLqqq 2 ı ´ 2 px 0 q E r 1 p´L ´ρpLqqs 2 .
Similarly to CVaR hedging we first investigate the case of static hedging, that is, the holder of the portfolio only uses one step strategy. In this case, the problem (2.4) and (2.6) can be written inf θPR d E r p´L `θ.X ´ξqs " px 0 q, with X :" X N ´X0 .

(2.8) which amounts to the computation of pξ ˚, θ ˚q P R ˆRd of the unique solution (for simplicity is assumed to be increasing and strictly convex) to the following systems of d `1 non-linear equations of d `1 unknowns E r p´H `θ.X ´ξqs " px 0 q, E " X 1 p´H `θ.X ´ξq ‰ " 0.

(2.9)

In order to solve this system, we implement the following Newton-Raphson's optimisation algorithm

z k`1 " z k ´Dh n pz k q ´1h n pz k q, k ě 0, z 0 :" pξ 0 , θ 0 q (2.10)
where we approximated h and Dh using Monte Carlo simulation with n samples

h n pξ, θq " ˜1 n n ÿ k"1 p´L pkq `θ.X pkq ´ξq ´lpx 0 q, 1 n n ÿ k"1 L pkq 1 ´´L pkq `θ.X pkq ´ξ¯a nd Dh n pξ, θq " ˆ´1 n ř n k"1 1 p´L pkq `θ.X pkq ´ξq 1 n ř n k"1 X pkq 1 `´L pkq `θ.X pkq ´ξ1 n ř n k"1 X pkq 2 p´L pkq `θ.X pkq ´ξq 1 n ř n k"1 X pkq pX pkq q T 2 `´L pkq `θ.X pkq ´ξ˘ṗ
L pkq , X pkq q 1ďkďn being an i.i.d. sequence of random vectors having the distribution of pH, Xq. The recursive algorithm (2.10) is known to converge to pξ n , θ nq unique solution to h n pξ, θq " 0 if z 0 :" pξ 0 , θ 0 q is sufficiently close to pξ n , θ nq. Moreover, we prove that pξ n , θ nq ně1 a.s. converges to pξ ˚, θ ˚q as n Ñ 8.

Finally, in the dynamic framework we propose a probabilistic algorithm to compute the optimal strategy using optimal Markovian quantization. As argued in Bally and Pagès [8] and Pagès and al. [START_REF] Pagès | Printems : Handbook of Numerical Methods in Finance, chapitre Optimal quantization methods and applications to numerical problems in finance[END_REF], Markovian quantization algorithms are suited for stochastic control problem in high dimensions. It consists in approximating the underlying Markov process by a process taking its values in optimized finite grids which take into account the fine structure of the Markov dynamics. We suppose that F t :" σppX s , Z s q, s ď tq, t " 1, ¨¨¨, N and restrict consideration to cases of strategies taking values in a bounded domain A Ă R d . Like in the CVaR hedging framework, the process Z is observable but not available for trade. We also assume that the loss is given by L " φpxq, x P R d`q . We introduce the notation V t " ř t n"1 θ n´1 .∆X n , t ě 1 and V 0 " ´ξ. The dynamics of the discretized process X :" pX t , Z t q 0ďtďN is given by a Gaussian Euler scheme with step h that is

X t`1 " X t `bpX t qh `σpX t qh 1{2 ε t`1 :" G h pX t , ε t`1 q, t " 0, ¨¨¨, N ´1, (2.11) 
where ε t`1 " h ´1 2 pW t`h ´Wt q " N p0, I d`q q independent of F t . Given a strategy θ P A F , the dynamics of pV t q tě0 is given by:

V t`1 " V t `θt .pX t`1 ´Xt q " V t `θt .BpX t`1 ´Xt q :" H h pX t , V t , θ t , ε t`1 q, (2.12) 
where B " pI d , 0 dˆq q. The dynamic programming principle that we established can be solved recursively by the backward algorithm:

ϕ N px, vq " lp´φpxq `vq, px, vq P R d`q ˆR, (2.13) 
ϕ t px, vq " inf θPA E " ϕ t`1 pX x t`1 , V x,v,θ t`1 q ˇˇpXt, V t q " px, vq ı , px, vq P R d`q ˆR (2.14)
for t " 0, ¨¨¨, N ´1, where X x t`1 :" G h px, ε t`1 q and V x,v,θ t`1 :" H h px, v, θ, ε t`1 q. At step 0, one has to solve ϕ 0 pX 0 , ´ξq " lpx 0 q. In the spirit of the (multi-dimensional) Markov chain approximation method for solving non-linear problems (see e.g. [8], [START_REF] Pagès | Printems : Handbook of Numerical Methods in Finance, chapitre Optimal quantization methods and applications to numerical problems in finance[END_REF]), we consider an approximating dynamic of pX t , V t q 0ďtďN by a process p Xt , Vt q 0ďtďN taking its value in a finite grid.

Let Γ V :" p2δqZ X Bp0, Rq " tv P R : v " 2δz, for some z P Z, |v| ď Ru be a fixed bounded lattice grid on R. The projection on Γ V according to the closest neighbour rule is denoted π V . At each time t, we consider a finite grid 

Γ t " ! x 1 t , ¨¨¨, x Nt t )
on the state space R d`q , for the uncontrolled process X. The projection on the grid Γ t will be denoted π t . We consider a quantized Euler scheme X and a finite state space Markov chain V both defined by

Xt`1 " π t`1 ´Gh p Xt , t`1 q ¯, Vt`1 " π V ´Hh p Xt , Vt , θ t`1 , Xt`1 ¯, t " 0, ¨¨¨, N ´1
and following [START_REF] Pagès | Printems : Handbook of Numerical Methods in Finance, chapitre Optimal quantization methods and applications to numerical problems in finance[END_REF] 

φt px, vq " inf θPA E " φt`1 p Xt`1 , V θ t`1 q ˇˇp Xt , Vt q " px, vq ı " inf θPA E " φt`1 p Xx t`1 , V x,v,θ t`1 q ı , px, vq P Γ t ˆΓV (2.16)
where Xx t`1 " π t`1 pG h px, t`1 qq and V x,v,θ t`1 " π V ´Hh px, v, θ, Xx t`1 q ¯, t " 0, ¨¨¨, N ´1. Now, using the optimal dispatching of the grid sizes pN t q 1ďtďN for the Markovian quantization of the process X and Theorem 3.1 in Pagès and al. [START_REF] Pagès | Printems : Handbook of Numerical Methods in Finance, chapitre Optimal quantization methods and applications to numerical problems in finance[END_REF], under some mild assumptions on the coefficients b and σ, for all v P Γ V one has

|ϕ 0 pvq ´φ 0 pvq| ď C 1 N 2´1 p pM {N q 1{pd`qq `C2 N δ `C3 ppq N R p´1 , (2.17) 
where M :" N 1 `¨¨¨`N N , p :" maxp2, p 1 `1q, p ą 1, C 1 , C 2 and C 3 ppq are positive constants. Therefore, we deduce the convergence of the value function approximated by optimal quantization toward the value function of the original control problem and the convergence of ξ˚t oward ξ ˚as 1{M , N δ and N {R p´1 go to zero. As a simple numerical illustration of our approach we consider a portfolio composed of an exchange option between gas and electricity (called Spark Spread) of maturity T " 1 year. The payoof of such option is defined by L " pS e T ´hR S g T ´Cq `. Since Electricity has very limited storage possibilities, the holder of this option hedges by trading only a gas forward contract of maturity T . We choose to model the price pS e t q 0ďtďT of the electricity spot contract and the price pF g t,T q 0ďtďT of the gas forward contract of maturity T by two correlated geometric Brownian motions, the correlation factor between the two Brownian motions is ρ " 0.5. The parameters are: heat rate h R " 4BTU/kWh (BTU: British Thermal Unit), the generation costs C " 3$/MWh, the two volatilities σ g " 0.4, σ e " 0.8, the correlation factor ρ " 0.5 and the electricity and gas initial spot prices are S e 0 " 40$/MWh, S g 0 " 3$/MMBTU. In this section, we only consider the one-step hedging and we refer the reader to [6] for numerical results in the dynamic framework. Results about shortfall risk estimations and one step hedging are summarised in Table 2.1. The first column corresponds to the loss function. Four loss functions are considered: l exp pxq " e λx , λ " 1{50 and x 0 " 0; l p pxq " x p I txě0u , x 0 " 1. The second column corresponds to the risk without any hedging using the Robbins-Monro algorithm (2.7) with its confidence interval at level 95%. The third column is the estimate of the shortfall risk with a one step risk minimization strategy and the fourth is the estimate of the optimal strategy θ ˚.

Quantisation based recursive importance sampling

In this section, we present [5] related to a quantisation based recursive importance sampling (IS) technique. We follow the idea of Pagès and Lemaire [START_REF] Lemaire | Unconstrained recursive importance sampling[END_REF] who proposed a recursive IS stochastic gradient algorithm for the computation of ErF pXqs where X : pΩ, A, Pq Ñ pE, |.| E q is a random vector taking values in a Banach space E and F : E Ñ R is a Borel function such that F pXq P L 2 pPq. We present briefly the procedure proposed in [START_REF] Lemaire | Unconstrained recursive importance sampling[END_REF]. For sake of simplicity we confine the presentation to the case E " R d . Note that one can also consider a functional space of paths of a process X " pX t q tPr0,T s solution to the SDE (1.17).

The IS is done by translating the distribution of the underlying random vector. The main idea of importance sampling by translation applied to the computation of ErF pXqs is to use the invariance by translation of the Lebesgue measure, for every θ P R d ,

ErF pXqs " E " F pX `θq ppX `θq ppXq  , (2.18) 
where p : R d Ñ R is probability density function of X. Among all these random variables with the same expectation we want to select the one with the lowest variance, i.e. the one with lowest quadratic norm

Qpθq :" E " F 2 pX `θq p 2 pX `θq p 2 pXq  " E " F 2 pXq ppXq ppX ´θq  , θ P R d . (2.19)
Assuming that θ Þ Ñ log ppx ´θq is log-concave, x P R d , and lim |θ|Ñ8 ppx ´θq " 0 then one shows that Q is convex and goes to infinity at infinity so that arg min Q is non-empty. Assume now that p is differentiable on R d . Under additional growth and integrability conditions that we do not detail here, Q is differentiable on R d with a gradient given by 

∇Qpθq :" E » - - - - - - F pX
Ă W pθ, Xq :" e ´2ρ|θ| b 1 `Gp´θq 2c W pθ, Xq, Kpθ, Xq :" F pX ´θq 2 Ă W pθ, Xq, (2.21) 
where ρ and c are some positive constants, one proves that the function K satisfies the linear growth assumption (1.12) of the Robbins-Monro theorem, see Corollary 1.1.2. For instance, when X " N p0,

I d q, taking ρ " 1 2 , b " 2, one gets Kpθ, xq " 1 1 `Gp´θq 2c F 2 px ´θqp2θ ´xq.
Coming back to the general case, the mean function of K has the same zeroes as ∇Q, namely one has

θ P R d | E rKpθ, Xqs " 0 ( " θ P R d | ∇Qpθq " 0 ( .
Since Q is convex h :" ∇Q satisfies (1.11) and the same holds for the function h : θ Þ Ñ hpθq " ErKpθ, Xqs. Hence, according to the Robbins-Monro algorithm the sequence pθ n q ně0 defined by

θ n`1 " θ n ´γn`1 Kpθ n , X pn`1q q, θ 0 P R d , (2.22) 
a.s. converges to an arg min Q-valued (square integrable) random variable θ ˚.

In the infinite dimensional setting when E " Cpr0, T s, R d q (equipped with the supremum norm) in order to deal with the case where X is a continuous path-dependent diffusion process, a recursive scheme similar to (2.22) is proposed in [START_REF] Lemaire | Unconstrained recursive importance sampling[END_REF]. However, one relies on the Girsanov theorem instead of the invariance by translation of the Lebesgue measure in order to derive a representation similar to (2.18).

From a numerical point of view, the procedure (2.22) suffers from several drawbacks. First the tuning of the algorithm needs a good knowledge of the behaviour of F at infinity. Moreover, in practical implementations, recursive importance sampling methods using stochastic approximation algorithm need specific tuning of the step sequence and the convergence may be slow even when the dimension of the underlying random vector X is low. As a consequence, sometimes one may prefer deterministic optimisation procedures when it is possible.

In [5], we propose a deterministic version of the IS algorithm investigated in [START_REF] Lemaire | Unconstrained recursive importance sampling[END_REF]. The main idea can be summed up as follows. Assume that X with probability density function p, supposed to be two times continuously differentiable, can be approximated by a discrete random variable taking N values and whose distribution is known. Let us denote by px k q 1ďkďN its possible values and by pp k q 1ďkďN the associated probabilities. For every θ P R d , the function Q given by (2.19) as well as ∇Q and ∇ 2 Q can be easily approximated by

Q N pθq " N ÿ k"1 p k F 2 px k q ppx k q ppx k ´θq , ∇Q N pθq " N ÿ k"1 p k F 2 px k q ppx k q p 2 px k ´θq ∇ppx k ´θq, ∇ 2 Q N pθq " N ÿ k"1 p k F 2 px k q ppx k q ppx k ´θq ˆ2 ∇ppx k ´θq∇ppx k ´θq t p 2 px k ´θq ´∇2 ppx k ´θq ppx k ´θq ˙. (2.23)
Hence, one may devise a classical Newton-Raphson algorithm, namely

θ N k`1 " θ N k ´∇2 Q N pθ N k q ´1∇Q N pθ N k q, θ 0 P R d , k ě 0 (2.24)
to approximate the optimal (variance) minimiser θ ˚of Q. Starting from that idea, Jourdain and Lelong [START_REF] Jourdain | Robust adaptive importance sampling for normal vectors[END_REF] proposes to replace X, where X is assumed to be a d-dimensional standard normal random vector, by a close discrete random variable obtained by a Monte Carlo simulation. The (unique) minimum of Q is approximated by the (unique) zero θ N of ∇Q N which can be computed using the deterministic Newton-Raphson algorithm (2.24) involving ∇Q N and ∇ 2 Q N . Moreover, several asymptotic properties are addressed.

Here, we propose to replace the Monte Carlo phase by a vector or functional quantization phase of X. Optimal quadratic quantisation of the random vector X consists basically of finding the best approximation (in L 2 pPq) of X by a discrete random variable p X N (the quantization of X) taking at most N values. When X takes its values in R d , one speaks about vector quantization. When X takes its values in an infinite dimensional Hilbert space like L 2 pr0, T s, dtq endowed with the usual norm |u| 2 " ´şT 0 uptq 2 dt ¯1 2 , one speaks about functional quantization.

For N ě 1 and x :" px 1 , ¨¨¨, x N q P E N (E will either be R d or L 2 pr0, T s, dtq in what follows) an N -tuple referred as an N ´quantizer, we let Proj x : E Ñ tx 1 , ¨¨¨, x N u be a Borel projection following the nearest neighbour rule. Then, the Borel partition C " tC 1 , ¨¨¨, C N u of E defined by C k :"Proj ´1 x px k q, k " 1, ¨¨¨, N and satisfying

Proj ´1 x ptx k uq Ă " y P E, |x k ´y| E " min 1ďjďN |x j ´y| E * , 1 ď k ď N,
is called a Voronoi tessellation of E induced by x and one defines accordingly the Voronoi quantization of X induced by x as follows

p X " Proj x pXq " N ÿ k"1 x k I tXPC k u .
Note that the discrete random variable p X is the best L p pPq-approximation of X among all measurable random variable taking values in x :" tx 1 , ¨¨¨, x N u. For any fixed N -quantizer x, we associate the L p pPq-mean error Er|X ṕ X| p s 1{p induced by x and computing an optimal quantization of X consists in finding an N ´tuple x P E N which minimises the L p -mean error over E N . It amounts to minimising the function

Λ X N : px 1 , ¨¨¨, x N q Þ Ñ Er|X ´p X| p s 1{p " Erpmin 1ďiďN |X ´xi | E q p s 1{p .
One shows that, if X P L p E pPq, the function Q X N reaches its minimum (at least) at one N -tuple x ˚called an optimal N -quantizer. This minimum is in general not unique, except in some cases, e.g. when d " 1 and the density of X is log-concave. Moreover, the L p -mean quantization error e X N,p :" min E N Q X N converges toward 0 as N Ò 8 and for "non-singular" R d -valued random vectors, the rate of convergence of e X N,p is ruled by the so-called Zador Theorem (see Graf and Luschgy [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]) which asserts that lim N Ñ`8 N 1{d e X N,p " q p pdq `ş f pxq d{pd`pq dx ˘pd`pq{dp if X P L p`δ R d pPq where f denotes the density of the absolutely continuous part of P X and q p pdq a positive constant depending on p and d.

The main idea now is that we know that p X is close to X in distribution and if one has a numerical access to the optimal N -quantizer x with the associated weights sequence pp k " P pX P C k pxqqq 1ďkďN of the quantisation p X then the computation of the functions Q N , ∇Q N and ∇ 2 Q N are dramatically faster compared to any other simulation based approach. For instance, a sharply optimised database of quantizers of standard univariate and multivariate Gaussian distributions is available on the web site www.quantize.maths-fi.com [START_REF] Pagès | [END_REF] for download. To an N -quantizer x we associate the unique minimum θN of Q N , that is, the unique solution to the equation ∇Q N pθq " 0. One expects that θN Ñ θ ˚as the size N of its associated N-quantizer x goes to infinity.

Under the assumptions that the payoff function F is Lipschitz-continuous, the density p is strictly log-concave with lim |x|Ñ`8 ppxq " 0 then under some growth condition on the first and second derivatives of p that we do not detail here, one gets

p θ N Ñ θ ˚, Q N p p θ N q Ñ Qpθ ˚q as N Ñ `8 as soon as Er|X ´p X N | 2 s Ñ 0 as N Ñ `8.
In order to obtain a convergence rate, we assume that ∇p{p is η-Hölder. For instance, for the multi-dimensional Gaussian law η " 1. Under these additional assumption, one obtains the following convergence rate

| p θ N ´θ˚| " O ´› › ›X ´p X N › › › α 2
¯as N Ñ 8. For instance, when X is a d-dimensional Gaussian vector, one has | p θ N ´θ˚| ď CN ´1{d . We also extend our approach to the infinite dimensional setting, i.e. the case of path-dependent diffusion. Instead of the invariance by translation of the Lebesgue measure, we rely on the Girsanov transform to play the role of mean translator. To be more precise, we consider a d-dimensional Itô process X solution to the SDE

X t " x `ż t 0 bps, X s qds `ż t 0 σps, X s qdW s (2.25)
where W " pW t q tPr0,T s is a q-dimensional Brownian motion and where X t :" pX t^s q sPr0,T s (with X " X T ) is the stopped process at time t. We assume that a strong solution to the SDE (2.25) exists. In order to devise a quantized IS procedure for E rF pXqs, F being a Borel map defined on C `r0, T s, R d ˘we consider a translation functional given by θ P L 2 T,q :" L 2 pr0, T s, R q q which is slightly less general than the one used in [START_REF] Lemaire | Unconstrained recursive importance sampling[END_REF]. From the Girsanov Theorem it follows that for every θ P L 2 T,q

E rF pXqs " E " F pX pθq qe ´şT 0 xθs,dWsy´1 2 }θ} 2 L 2 T ,q
 where X pθq denotes the unique strong solution to (2.25) with drift b `σθ. Among all these estimators we want to select the one with the lowest quadratic norm so that we want to solve the following minimization problem

min θPL 2 T ,q
Qpθq where Qpθq :"

E " F 2 pX pθq qe ´2 ş T 0 xθs,dWsy´}θ} 2 L 2 T ,q  " E " F 2 pXqe ´şT 0 xθs,dWsy`1 2 }θ} 2 L 2 T ,q  .
Note that Q is strictly convex and lim }θ} 2

L 2 T ,q
Ñ8 Qpθq " `8 so that it admits a unique minimum. Moreover, Q is twice differentiable at any θ P L 2 T,q and xDQpθq, ψy L 2 T ,q , pD 2 Qpθqψ, φq, for ψ, φ P L 2 T,q admit a representation as an expectation.

In view of a numerical implementation of Newton-Raphson's algorithm to estimate a minimum of Q, we are led to consider a (non-trivial) finite dimensional subspace E of L 2 T,p spanned by an orthonormal basis pe 1 , ¨¨¨, e m q. Like for the finite dimensional framework, our procedure will be based on the representation (as an expectation) of the first and second differential of Q on E combined with functional quantization of the solution to (2.25).

The functional quantization of (2.25) is based on the Karhunen-Loève (K-L) decomposition W

L 2 T " ř ně1 ?
λ n ξ n e n where pe n q ně1 is the K-L orthonormal basis, λ n are the corresponding eigenvalues of the covariance operator associated to the one-dimensional Brownian motion W and ξ n :" xW, e n y { ? λ n , n ě 1 ( , is an i.i.d. sequence of random variables with standard normal distribution. One considers an optimal N n -quantization (N n ě 1) of ξ n , denoted ξn where ξn :" Proj xn pξ n q, x n :" ´xNn 1 , ¨¨¨, x Nn Nn ¯is the unique optimal N n -quantizer of the normal distribution and N 1 Nn ď N , with N 1 , ¨¨¨, N n ě 1. For large enough n, we set N n " 1, ξn " 0 (which is the optimal 1-quantization of N p0, 1q) and we define the product quantizer by (the finite sum) x W t " ř ně1 ?

λ n ξn e n ptq. The product quantizer χ that produces the above Voronoi quantization x W is defined by χ i ptq " ř ně1 ? λ n x in e n ptq, i " pi 1 , ¨¨¨, i n , ¨¨¨q P ś ně1 t1, ¨¨¨, N n u in the sense that P ´x W " χ i ¯" ś ně1 P pξ n P C in px n qq with an approximation rate

› › ›W ´x W N › › › 2 ď C T plog N q ´1 2 .
Then, for each i, one solves the following ODEs

dx i ptq " ˆbpx i ptqq ´1 2 σσ 1 px i ptqq ˙dt `σpx i ptqqdχ i ptq, (2.26) 
and set r X N t " ř i x i ptqI tCipχqu pW q, N ě 1. Assuming that b, σ are continuously differentiable, this non-Voronoï N -functional quantization of (2.25) produces an error rate

› › ›X ´r X N › › › 2 ď C T plog N q ´1 2 . We approximate Q by r Q N , the m-tuple xDQpθq, e i y L 2 T ,q by Jpθq i " A D r Q N pθq, e i E L 2 
T ,q

, 1 ď i ď m and the m ˆm symmetric positive definite matrix `D2 Qpθqe i , e j ˘by Hpθq i,j :" ´D2 r Q N pθqe i , e j ¯, 1 ď i ď m, 1 ď j ď m, for every θ P E where we replaced the random variables pX, W q by their quantized version p r X N , x W N q in the representation as an expectation of Q, DQ and D 2 Q. Hence, we compute the minimum r θ N of r Q N by devising the following Newton-Raphson algorithm

r θ N k`1 " r θ N k ´Hp r θ N k q ´1J p r θ N k q, k ě 0, r θ N 0 P E given. (2.27)
We briefly illustrate the performance of the algorithm in the infinite dimensional setting by considering three different basis of L 2 pr0, 1s, Rq • a polynomial basis composed of the shifted Legendre polynomials p Pn q ně0 defined by @n ě 0, @t P r0, 1s, Pn ptq " P n p2t ´1q where P n ptq "

1 2 n n! d n dt n ``t 2 ´1˘˘.
(ShLeg)

• the Karhunen-Loève basis defined by @n ě 0, @t P r0, 1s, e n ptq " ? 2 sin ˆˆn `1 2 ˙πt ˙.

(KL)

• the Haar basis which is defined by @n ě 0, @k " 0, ..., 2 n ´1, @t P r0, 1s, ψ n,k ptq "

2 k 2 ψp2 k t ´nq, ψptq " $ & % 1 if t P r0, 1 2 q ´1 if t P r 1 2 , 1q 0 otherwise. (Haar)
We consider a Down&In Call option of strike K and barrier L. This option is activated when the underlying process X moves down and hits the barrier L. The payoff function at maturity T is defined by

F pXq " pX T ´Kq `1tmin0ďtďT XtďLu .
A standard approach to price the option is to consider the continuous Euler scheme X of step t k " k T M obtained by extrapolation of the Brownian Motion between two instants of discretization. For every t P rt k , t k`1 s, we can write Xt " Xt k `bp Xt k qpt ´tk q `σp Xt k qpW t ´Wt k q, X0 " x 0 P R.

By pre-conditioning,

E " p XT ´Kq `1tmin0ďtďT XtďLu ı " E « p XT ´Kq `˜1 ´M´1 ź p"0 pp Xtp , Xtp`1 q ¸ff , (2.28) 
where ppx p , x p`1 q " P `min tpďtďtp`1 Xt ě L ˇˇ`X tp , Xtp`1 ˘" px p , x p`1 q ˘is the probability of non-exit from rL, `8q of some Brownian bridge. Using the law of the Brownian bridge (see e.g. Gobet [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF]), we can write

ppx p , x p`1 q " 1 ´P ˆmin tPr0,t1s W t ď L ´xp σpx p q ˇˇˇW t1 " x p`1 ´xp σpx p q ˙" $ ' & ' % 1 ´e´2 pL´xp qpL´x p`1 q pt p`1 ´tp qσ 2 pxp q , L ď minpx p , x p`1 q, 0 , otherwise. (2.29) 
Hence we run ou algorithm with the probabilistic representation appearing in the right-hand side of (2.28). We consider the local volatility model bpxq " rx, σpxq " σx 1`β {p1 `x2 q 1 2 , with r " 4%, σ " 5, x " 100, β " 0.5. The number of Monte Carlo simulations n is 5.10 4 in every case. We set the optimal product quantizer at level d N " 966 which corresponds to the optimal decomposition N 1 " 23, N 2 " 7, N 3 " 3, N 4 " 2 for the product quantization p ξ1 , ξ2 , ξ3 , ξ4 q. The numerical results are summarised in Chapter 3

Concentration inequalities and deviation estimates for stochastic approximation schemes

In this chapter, we present [7] which is a joint work with S. Menozzi from the university of Evry Val d'Esonne and [8] which is a joint work with M. Fathi from the university Paul Sabatier of Toulouse. Both works are related to concentration inequalities and deviation estimates for stochastic approximation schemes. Here we are interested in two kinds of discrete stochastic approximation schemes. The first one refers to the law of an Euler like discretisation scheme of a diffusion process at a fixed deterministic date and the second one concerns the law of a stochastic approximation algorithm at a given time-step. Concentration inequalities consists in establishing a non-asymptotic Gaussian [7] or sub-Gaussian [8] control of the probability that the law of the scheme deviates from its target. More precisely, we consider the deviations between the expectation of a given function of an Euler like discretisation scheme of some diffusion process at a fixed deterministic time and its empirical mean obtained by the Monte Carlo procedure. We then consider some estimates concerning the deviation between the value at a given time-step of a stochastic approximation algorithm and its target.

Much work on non asymptotic deviation estimates for the law of the Euler discretisation scheme has now been conducted. In the ergodic framework and for a constant diffusion coefficient Gaussian controls have been obtained by Malrieu and Talay [START_REF] Malrieu | Concentration inequalities for euler schemes[END_REF]. For the standard Euler scheme, a first attempt to establish two-sided Gaussian bounds for the statistical error can be found in Lemaire and Menozzi [START_REF] Lemaire | On some non asymptotic bounds for the euler scheme[END_REF] under some non-degeneracy conditions and up to a systematic bias. Very rencently, Honoré, Menozzi and Pagès [START_REF] Honoré | Non-asymptotic gaussian estimates for the recursive approximation of the invariant measure of a diffusion[END_REF] obtained non-asymptotic Gaussian concentration bounds for the difference between the invariant measure ν of an ergodic Brownian diffusion process and the empirical distribution of an approximating scheme with decreasing time step along a suitable class of smooth enough test functions f such that f ´νpf q is a coboundary of the infinitesimal generator of the process.

Such concentration inequalities are strongly connected to transport-entropy inequalities. In Section 3.1, we present this connection and recall basic definitions and properties. For a complete overview and recent developments in the theory of transport inequalities, the reader may refer to the recent survey of Gozlan and Leonard [START_REF] Gozlan | Transport inequalities. A survey. Markov Process[END_REF] and the book of Villani [START_REF] Villani | Optimal transport: Old and New[END_REF]. We establish Gaussian concentration inequalities in [7] for the two specific problems mentioned above under suitable assumptions. The key tool consists in exploiting accurately the concentration properties of the increments of the schemes and proving that this concentration transfers to the law of the scheme. We will explain this point in Section 3.2. Finally, in Section 3.3 we explain the results obtained in [8] which improve and complete those obtained in [7]. The key point is to properly quantify the contribution of the diffusion term to the concentration regime. We also derive a non-asymptotic bound for stochastic approximation with averaging of trajectories, in particular we prove that averaging a stochastic approximation algorithm with a slow decreasing step sequence gives rise to optimal concentration rate.

A brief presentation of transport inequalities and concentration inequalities

In this section, we present the connection between transport inequalities and concentration inequalities. We also recall some basic definitions and properties that will be needed in the two next sections. We denote by PpR d q the set of probability measures on R d . For p ě 1, we consider the set P p pR d q of probability measures with finite moment of order p. The Wasserstein metric W p pµ, νq of order p between two probability measures µ, ν P P p pR d q is defined by

W p p pµ, νq " inf "ż R d ˆRd
|x ´y| p πpdx, dyq : π P PpR d ˆRd q, π 0 " µ, π 1 " ν * where π 0 and π 1 are two probability measures standing for the first and second marginals of π P PpR d ˆRd q. For µ P PpR d q, we define the relative entropy w.r.t ν P PpR d q as Hpµ, νq " ż R d log ˆdµ dν ˙dµ if µ ! ν and Hpµ, νq " `8 otherwise. We are now in position to define the notion of transport-entropy inequality.

Here as below, Φ : R `Ñ R `is a convex, increasing function with Φp0q " 0.

Definition 3.1.1. A probability measure µ on R d satisfies a transport-entropy inequality with function Φ if for all ν P PpR d q, one has ΦpW 1 pν, µqq ď Hpν, µq.

For the sake of simplicity, we will write that µ satisfies T Φ .

The following proposition comes from Corollary 3.4. in Gozlan and Leonard [START_REF] Gozlan | Transport inequalities. A survey. Markov Process[END_REF].

Proposition 3.1.1. The following propositions are equivalent:

• The probability measure µ satisfies T Φ .

• For all 1-Lipschitz function f : R d Ñ R, one has @λ ě 0,

ż exppλf qdµ ď exp ˆλ ż f dµ `Φ˚p λq ˙,
where Φ ˚is the monotone conjugate of Φ defined on R `as Φ ˚pλq " sup ρě0 tλρ ´Φpρqu. Note that since Φ is a non-negative convex function which is non-decreasing with Φp0q ă 8, the monotone conjugate of Φ ˚is Φ.

As an important example we will say that µ satisfies the Gaussian concentration property if there exists β ą 0 such that Φpλq " λ 2 {β, λ ě 0 so that Φ ˚pλq " λ 2 β{4. In this chapter we will simply say that µ satisfies GCpβq.

From the Markov exponential inequality and GCpβq, one derives Prf pY 1 q´Erf pY 1 qs ě rs ď expp´λr`β λ 2 4 q, @λ, r ě 0. An optimisation over λ gives that this probability is bounded by expp´r 2 β q. A practical criterion for GCpβq to hold is given by Bolley and Villani [START_REF] Bolley | Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities[END_REF]. If there exists ε ą 0 s.t. ş exppε|y| 2 qµpdyq ă 8, then µ satisfies GCpβq for some β :" βpεq. The two claims are actually equivalent.

In [7] and [8], GCpβq is the only crucial property we require on the underlying innovations of the approximation schemes.

Such transport-entropy inequalities are very attractive especially from a numerical point of view since they are related to the concentration of measure phenomenon which allows to establish non-asymptotic deviation estimates. In particular, some non-asymptotic confidence intervals can be explicitly computed. This can be very useful in practice when the computational ressources are constrained.

The three next results put an emphasis on this point. Suppose that pX pnq q ně1 is a sequence of i.i.d. R d -valued random variables with common law µ.

Corollary 3.1.2. If µ satisfies T Φ then for all 1-Lipschitz function f : R d Ñ R and for all r ě 0, for all M ě 1, one has

P ˜| 1 M M ÿ k"1
f pX pkq q ´Erf pX p1q qs| ě r ¸ď 2 expp´M Φprqq Deriving non-asymptotic deviation bounds for W 1 pµ M , µq is of interest for many applications in the fields of numerical probability and statistic. In its present form, next result is due to Gozlan and Leonard [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF], Theorem 12. where for x P R d , δ x stands for the Dirac mass at point x.

The quantity ErW 1 pµ M , µqs will go to zero as M goes to infinity, by convergence of empirical measures, but we still need quantitative bounds. The next result is an adaptation of Theorem 10.2.1 in [START_REF] Rachev | Probability and its Applications[END_REF] on similar bounds but for the distance W 2 . A proof can be found in the appendix of [8]. Proposition 3.1.4. Assume that µ has a finite moment of order d `3. Then, one has ErW 1 pµ M , µqs ď Cpd, µqM ´1{pd`2q where Cpd, µq :" 4

? d `2d ż R d p1 `|x| d`1 q ´1dx d 2 ´2d `23´d ż |y| d`3 µpdyq `23´d dpd `3q!.
This bound is not optimal in general, but has the advantage of having very explicit constants. In the case of a distribution with compact support, it has been shown in [12], Section 7, that ErW 1 pµ M , µqs is of order OpM ´1{d q, and that this is the optimal exponent in d when d ě 3. In view of Kantorovich-Rubinstein duality formula, namely

W 1 pµ, νq " sup "ż f dµ ´ż f dν : rf s 1 ď 1 *
where rf s 1 denotes the Lipschitz-modulus of f , the latter result provides the following concentration bounds @r ě 0, @M ě 1, P ˜sup

f :rf s1ď1 ˜1 M M ÿ k"1
f pX pkq q ´Erf pX p1q qs ¸ě Cpd, µqM ´1{pd`2q `r¸ď exp p´M Φprqq .

Similar results were first obtained for different concentration regimes by Bolley, Guillin and Villani [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF] relying on a non-asymptotic version of Sanov's Theorem. Some of these results have also been derived by Boissard [START_REF] Boissard | Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance[END_REF] using concentration inequalities, and were also extended to ergodic Markov chains up to some contractivity assumptions in the Wasserstein metric on the transition kernel.

Some applications are proposed in Bolley, Guillin and Villani [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF]. Such results can indeed provide non-asymptotic deviation bounds for the estimation of the density of the invariant measure of a Markov chain. Let us note that the (possibly large) constant Cpd, µq appears as a trade-off to obtain uniform deviations over all Lipschitz functions.

In the two next sections we will present some transport-entropy inequalities and, as a consequence, some nonasymptotic deviation estimates for the laws at a given time step of two kinds of discrete-time and d-dimensional stochastic evolution scheme of the form

X n`1 " X n `γn`1 Hpn, X n , U n`1 q, n ě 0, X 0 " x P R d , (3.1) 
where pγ n q ně1 is a deterministic positive sequence of time steps, pU i q iPN ˚is an i.i.d. R q -valued sequence of random variables defined on some probability space pΩ, F, Pq with law µ and the function H : NˆR d ˆRq Ñ R d is a measurable function satisfying for all x P R d , for all n P N, Hpn, x, .q P L 1 pµq, and µpduq-a.s., Hpn, ., uq is continuous. We will also assume that µ satisfies the Gaussian concentration property GCpβq.

As a consequence of the transport-entropy inequalities obtained for the laws at a given time step of Euler like schemes and stochastic approximation algorithm, we will derive in Section 3.3 non-asymptotic deviation bounds in the Wasserstein metric.

Gaussian concentration inequalities

In this section, we present the results obtained in [7] in collaboration with S. Menozzi from the university of Evry Val d'Essonne related to Gaussian concentration inequalities for two kinds of recursive scheme with dynamics (3.1). In Section 3.3, we will extend those results to other regimes ranging from exponential to Gaussian.

We consider the unique strong solution X to the SDE (1.17) where the underlying innovation process Z is a qdimensional Brownian motion pW t q tě0 . In [7], we assume that the coefficients satisfy the mild smoothness condition:

(A) The coefficients b, σ are uniformly Lipschitz continuous in space uniformly in time, σ is bounded.

Note that we do not assume any non-degeneracy condition on σ in (A).

We do not consider the associated continuous Euler Maruyama scheme (1.19) but rather define an Euler like scheme. For a fixed time step ∆ " T {N, N P N ˚, and the time grid t i :" i∆, for all i " 0, ¨¨¨, N , we consider the following dynamics

X ∆ 0 " x, X ∆ ti`1 " X ∆ ti `bpt i , X ∆ ti q∆ `σpt i , X ∆ ti q∆ 1{2 U pi`1q , i " 0, ¨¨¨, N ´1 (3.2) 
where pU piq q iPN ˚is a sequence of R q -valued i.i.d. random variables with law µ satisfying: ErU p1q s " 0 q , ErU p1q pU p1q q ˚s " I q , where pU p1q q ˚denotes the transpose of the column vector U p1q and 0 q , I q respectively denote the zero vector of R q and the identity matrix of R q b R q . We also assume that µ satisfies GCpβq for some β ą 0. The main advantage of such a situation is that it includes the case of the standard Euler scheme where U p1q d " N p0, I q q and the case of the Bernoulli law where U p1q d " pB 1 , ¨¨¨, B q q, pB k q 1ďkďq are i.i.d random variables with law µ " 1 2 pδ ´1 `δ1 q, both satisfying GCpβq with β " 2.

As already mentioned, for practical purposes, we are interested in non-asymptotical controls of the statistical error, which is given by 1

M ř M i"1 f pX ∆,piq T
q ´Erf pX ∆ T qs where the ppX ∆,piq T q i q 1ďiPďM are independent copies of the scheme (3.2) starting at x at time 0 and evaluated at time T . Precisely, for a fixed M and a given threshold r ą 0, one would like to give bounds on the quantity Pr| 1

M ř M i"1 f pX ∆,piq T
q ´Erf pX ∆ T qs| ą rs. Our first main result obtained in [7] shows that when the innovations satisfy GCpβq, the Gaussian concentration property transfers to the statistical error. Theorem 3.2.1 (Concentration Bounds for an Euler-like scheme). Denote by X ∆

T the value at time T of the scheme (3.2). Assume that the common law of the i.i.d. sequence pU i q iPN ˚in (3.2) satisfies GCpβq for some β ą 0 and that the coefficients b, σ satisfy (A). Let f be a real valued uniformly Lipschitz continuous function on R d . For all M P N ånd all r ě 0, one has

Pr| 1 M M ÿ i"1 f pX ∆,piq T q ´Erf pX ∆ T qs| ě rs ď 2 expp´r 2 M T ΨpT, f, b, σ, qq q, ΨpT, f, b, σ, qq :" 4βrf s 2 1 |σ| 2 8 exp p2prbs 1 `crσs 1 p1 _ crσs 1 qqT q ,
where q is the dimension of the underlying Brownian motion W and c :" cpqq.

Note that contrary to Lemaire and Menozzi [START_REF] Lemaire | On some non asymptotic bounds for the euler scheme[END_REF] we do not need any non-degeneracy condition on the diffusion coefficient and we got rid off the systematic bias.

The strategy to prove the above concentration inequality is similar to the first step of the analysis of the discretisation error of Talay and Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] presented in Section 1.2.3. Indeed, introducing the functions v ∆ pt i , xq :" Erf pX ∆ T q|X ∆ ti " xs, 0 ď i ď N , x P R d , we use the Markov property satisfied by the scheme and the following telescopic sum

f pX ∆ T q ´Erf pX ∆ T qs " N ÿ i"1 v ∆ pt i , X ∆ ti q ´Erv ∆ pt i , X ∆ ti q|X ∆ ti´1 s " N ÿ i"1 f ∆ i pX ∆ ti´1 , ? ∆U piq q ´Erf ∆ i pX ∆ ti´1 , ? ∆U piq q|X ∆ ti´1 s (3.3)
where f ∆ i px, uq :" Erf pX ∆ T q|X ∆ ti " x `bpt i´1 , xq∆ `σpt i´1 , xqus, 1 ď i ď N , px, uq P R d ˆRq . In Talay and Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF]

, v ∆ pt i , X ∆ ti q is replaced by vpt i , X ∆ ti q " Erf pX T q|X ti " xs |x"X ∆ t i
, that is the expectation involving the diffusion at time T starting from the current value of the scheme at t i . Direct computations based on B-D-G inequality and Gronwall's Lemma show that u Þ Ñ f ∆ i px, uq is Lipschitz-continuous with rf ∆ i px, .qs 1 ď pΨpT, f, b, σ, qqq 1{2 , x P R d . Since U piq satisfies GCpβq, from Proposition 3.1.1 it follows that

Erexppλpf ∆ i pX ∆ ti´1 , ? ∆U piq q´Erf ∆ i pX ∆ ti´1 , ? ∆U piq q|X ∆ ti´1 sqq|X ∆ ti´1 s ď exppβprf ∆ i pX ∆ ti´1 , .qs 1 ? ∆λq 2 {4q, i " 1, ¨¨¨, N.
(3.4) Now using the Markov exponential inequality, the decomposition (3.3) and the tower property of condition expectation one proves Theorem 3.2.1 for M " 1. The bound for all positive integer M follows from a simple tensorization argument for independent random variables satisfying the Gaussian concentration property.

Besides our consideration for the Euler scheme, we also consider a Robbins-Monro algorithm with dynamics θ n`1 " θ n ´γn`1 Hpθ n , U pn`1q q, n ě 0,

θ 0 P R d , (3.5) 
where pU pnq q ně1 is an i.i.d. R q -valued sequence of random variables with law µ satisfying GCpβq for some β ą 0 and pγ n q ně1 is a sequence of non-negative deterministic steps satisfying the usual assumption (1.9). We assume that the following conditions on the function H and the step sequence pγ n q ně1 in (4.1) are in force:

(HL) The map pθ, uq P R d ˆRq Þ Ñ Hpθ, uq is uniformly Lipschitz continuous.

(HUA) The map h : θ P R d Þ Ñ ErHpθ, U qs is continuously differentiable in θ and there exists λ ą 0 s.t. @θ P R d , @ξ P R d , λ|ξ| 2 ď xDhpθqξ, ξy (Uniform Attractivity).

As we have seen in Section 1.1.3 of the introductory chapter, in order to derive a Central Limit Theorem for the sequence pθ n q ně1 as described in Duflo [START_REF] Duflo | Algorithmes stochastiques[END_REF] or Kushner and Yin [START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF], it is commonly assumed that the matrix Dhpθ ˚q is uniformly attractive. In our current framework, this local condition on the Jacobian matrix of h at the equilibrium is replaced by the uniform assumption (HUA). In the framework of stochastic gradient algorithm, this assumption is also known as uniform convexity.

Here the global error between the stochastic approximation procedure θ n at a given time step n and its target θ can be decomposed as follows:

z n :" |θ n ´θ˚| " p|θ n ´θ˚| ´Er|θ n ´θ˚| sq `Er|θ n ´θ˚| s :" E Emp pγ, n, H, λ, αq `δn (3.6) where δ n :" Er|θ n ´θ˚| s. The term E Emp pγ, n, H, λ, αq corresponding to the difference between the absolute value of the error at time n and its mean can be viewed as an empirical error. The term δ n is an intrinsic bias coming from the non-linear nature of the algorithm. Note that from Proposition 1.14 in Section 1.1.3 under (HL) and (HUA) one has

δ N ď Er|θ N ´θ˚| 2 s 1 2 ď Cpγ N q 1 2 , N ě 1
for the two following step sequences: γ n " c{n β , β P p1{2, 1q, and γ n " c{n, with c ą 1{p2λ, n ě 1.

An explicit expression for the constant C is provided in [7]. As for the Euler scheme, we prove that the Gaussian concentration property transfers to the empirical error under (HL) and (HUA). Theorem 3.2.2 (Concentration Bounds for Robbins-Monro algorithms). Assume that the function H of the recursive procedure pθ n q ně0 (with starting point θ 0 P R d ) defined by (4.1) satisfies (HL) and (HUA), and that the step sequence pγ n q ně1 satisfies the usual step assumption (1.9). Suppose that the law of the innovation satisfies GCpβq, β ą 0. Then, for all N P N ˚and all r ě 0,

P p|θ N ´θ˚| ě r `δN q ď exp ˜´r 2 βrHs 2 1 Π N ř N k"1 γ 2 k {Π k
where

Π N :" ś N ´1 k"0 `1 ´2λγ k`1 `rHs 2 1 γ 2 k`1 ˘.
Concerning the choice of the step sequence pγ n q ně1 and its impact on the concentration rate and bias, we obtain the following results:

• If we choose γ n " c n , with c ą 0. Then, Γ N " ř N k"1 γ k " c logpN q `c1 1 `rN , c 1 1 ą 0 and r N Ñ 0, so that Π N " pN ´2cλ q.

-If c ă 1 2λ , we obtain

Π N ř N k"1 γ 2 k {Π k " OpN ´2cλ q.
-If c ą 1 2λ , a comparison between the series and the integral yields

Π N ř N k"1 γ 2 k {Π k " pN ´1q. • If we choose γ n " c n ρ , c ą 0, 1 2 ă ρ ă 1, then one has Π N ř N k"1 γ 2 k Π ´1 k " opN ´ρ` q, P p0, 1 ´ρq.
As for the Euler like scheme, the strategy consists in introducing again a telescopic sum of conditional expectations. Denoting for all i P N, F i :" σpU pjq , j ď iq, i.e. pF i q iPN is the natural filtration of the algorithm, we write for all n P N ˚:

E Emp pγ, N, H, λ, αq " |z N | ´Er|z N |s " N ÿ i"1 Er|z N ||F i s ´Er|z N ||F i´1 s " N ÿ i"1 v γ i pθ i q ´Erv γ i pθ i q|F i´1 s, " N ÿ i"1 f γ i pθ i´1 , U piq q ´Erf γ i pθ i´1 , U piq q|F i´1 s,
where we used the Markov property for the second equality and we introduced the notations v γ i pθq :" Er|θ n ´θ˚| |θ i " θs, 1 ď i ď n, θ P R d , f γ i pθ, uq " v γ i pθ ´γi Hpθ, uqq. The stability of the Gaussian concentration property is then derived using that the f γ i are Lipschitz with respect to the variable u and similar arguments to those employed for the Euler like scheme.

From Exponential to Gaussian concentration regimes

In [7], we obtained Gaussian concentration inequalities for the law of an Euler like scheme of a diffusion process and for the deviation of a Robbins-Monro algorithm from its target. It should be noted that it is the boundedness of the diffusion coefficient σ and the uniform Lipschitz continuity of the function u Þ Ñ Hpθ, uq, θ P R d , that give rise to the Gaussian concentration regime for the deviation of the empirical error. In this section, we present the results obtained [8] in collaboration with M. Fathi from the university Paul Sabatier that extend and complete those exposed in the previous section. The key point is to quantify to properly quantify the contribution of the diffusion term to the concentration regime. We also obtain non-asymptotic bound for stochastic approximation with averaging of trajectories, in particular we prove that averaging a stochastic approximation algorithm with a slow decreasing step sequence gives rise to optimal concentration rate.

We consider the Euler-like scheme pX ∆ ti q 0ďiďN with dynamics (3.2). The innovation sequence pU piq q 1ďiďN satisfies GCpβq for some β ą 0. In [8], we replace assumption (A) by the following smoothness and domination assumptions (HS) The coefficients b, σ are uniformly Lipschitz continuous in space uniformly in time.

(HD α ) There exists a C 2 pR d , R ˚q function V satisfying DC V ą 0, |∇V | 2 ď C V V, η :" 1 2 sup xPR d › › ∇ 2 V pxq › › ă `8
and Dα P p0, 1s, such that for all x P R d ,

DC b ą 0, sup tPr0,T s |bpt, xq| 2 ď C b V pxq, , DC σ ą 0, sup tPr0,T s T rpapt, xqq ď C σ V 1´α pxq.
where a " σσ ˚.

The idea behind assumption (HD α ) is to parameterize the growth of the diffusion coefficient in order to quantify its contribution to the concentration regime. Indeed, under (HS) and (HD α ), with α P r1{2, 1s we derive non-asymptotic deviation bounds for the statistical error ranging from exponential (if α " 1{2) to Gaussian (if α " 1) regimes.

Theorem 3.3.1 (Transport-Entropy inequalities for Euler like schemes). Denote by X ∆

T the value at time T of the scheme (3.2) and by µ ∆ T its law. Denote the Lipschitz modulus of b and σ by rbs 1 and rσs 1 respectively. Assume that the common law of the innovation sequence pU piq q 1ďiďN in (3.2) satisfies GCpβq for some β ą 0 and that the coefficients b, σ satisfy (HS) and (HD α ) for some α P r 1 2 , 1s. Then, µ ∆ T satisfies T Φ α with Φ αpλq " sup ρě0 tλρ ´Φα pρqu and one has:

• If α P p 1 2 , 1s, for all ρ ě 0 Φ α pρq " Ψ α pT, ∆, b, σ, xqpρ 2 _ ρ 2α 2α´1 q,
• If α " 1 2 , for all ρ P r0, ϕpT, b, σ, ∆q ´1{2 λ 3.2 q Φ 1{2 pρq " K 3.2 pρϕpT, b, σ, ∆q 1{2 {λ 3.2 q 2 1 ´pρϕpT, b, σ, ∆q 1{2 {λ 3.2 q .

Moreover, we have Ψ α pT, ∆, b, σ, xq " K 3.1 pϕpT, b, σ, ∆q 2 _ϕpT, b, σ, ∆q α 2α´1 q, ϕpT, b, σ, ∆q " C σ β p1`Cp∆q∆q 4Cp∆q e 3Cp∆qT , Cp∆q :" 2rbs 1 `rσs 2 1 `∆rbs 2 1 where K 3.1 , λ 3.2 and K 3.2 are explicit constants.

• In the case α P p 1 2 , 1s, one easily gets the following explicit formula:

-

If λ P r0, 2Ψs, then Φ αpλq " 1 4Ψ λ 2 ; -If λ P r 2α 2α´1 Ψ, `8q, then Φ αpλq " 1 2α `2α´1 2αΨ ˘2α´1 λ 2α ; -If λ P p2Ψ, 2α 2α´1 Ψq,then Φ αpλq " λ ´Ψ.
Let us note that the linear behavior of Φ α on a small interval is due to the fact that Φ α is not C 1 .

• In the case α " 1{2, tedious but simple computations show that

Φ 1{2 pλq " ˜ˆ1 `λ3.2 K 3.2 ϕpT, b, σ, ∆q 1{2 λ ˙1 2 ´1¸2 .
We also consider the Robbins-Monro algorithm with dynamics (4.1) under the assumption that the innovation sequence pU piq q 1ďiďN satisfies GCpβq for some β ą 0. Instead of (HL) we will make the following assumptions:

(HL) For all u P R q , the function Hp., uq is Lipschitz-continuous with a Lipschitz modulus having linear growth in the variable u, that is:

DC H ą 0, @u P R q , sup pθ,θ 1 qPpR d q 2 |Hpθ, uq ´Hpθ 1 , uq| |θ ´θ1 | ď C H p1 `|u|q.
(HLS) α (Lyapunov Stability-Domination) There exists a C 2 pR d , R ˚q function L satisfying DC L ą 0, |∇L| 2 ď C L L, η :"

1 2 sup xPR d › › ∇ 2 Lpxq › › ă `8 such that
@θ P R d , x∇Lpθq, hpθqy ě 0, and DC h ą 0, @θ P R d , |hpθq| 2 ď C h Lpθq.

and Dα P p0, 1s, DC α ą 0, @θ P R d , sup pu,u 1 qPpR q q 2 |Hpθ, uq ´Hpθ, u

1 q| |u ´u1 | ď C α L 1´α 2 pθq.
Assumption (HLS) α is similar to assumption (HD) α for the Euler like scheme and allows to quantify the contribution of the diffusion term to the concentration regime of the empirical error E Emp pγ, N, H, λ, αq of the Robbins-Monro scheme.

Theorem 3.3.2 (Transport-Entropy inequalities for stochastic approximation algorithms). Let N P N ˚. Assume that the function H of the recursive procedure pθ n q 0ďnďN (with starting point θ 0 P R d ) defined by (4.1) satisfies (HL), (HUA) and (HLS) α for α P r 1 2 , 1s, and that the step sequence γ " pγ n q ně0 satisfies (1.9). Suppose that the law of the innovation satisfies GCpβq, β ą 0. Denote by µ γ N the law of θ N . Then, µ γ N satisfies T Φ α with Φ α,N pλq " sup ρě0 tλρ ´Φα,N pρqu and one has:

• If α P p 1 2 , 1s, for all ρ ě 0 Φ α,N pρq " ϕ α pγ, H, θ 0 qpC γ N ρ 2 _ C γ,α N ρ 2α 2α´1 q. • If α " 1 2 , for all ρ P r0, λ 4.1 {s N q, Φ 1{2,N pρq " 2ϕ 1{2 pγ, H, θ 0 qC γ N pρ{λ 4.1 q 2 1 ´pρs N {λ 4.1 q .
Moreover the three concentration rate sequences are defined for N P N ˚by C γ N :"

N ´1 ÿ k"0 γ 2 k`1 Π 1,N Π 1,k , C γ,α N :" N ´1 ÿ k"0 γ 2α 2α´1 k`1 p Π 1,N Π 1,k q 2α 2α´1 ppk `1q log 2 pk `4qq 1´α 2α´1 sN :" max 0ďkďN ´1pk `1q 1{2 logpk `4qγ k`1 ˆΠ1,N Π 1,k ˙1 2 expp N ´1 ÿ p"0 1 pp `1q log 2 pp `4q q with Π 1,N :" ś N ´1 k"0 p1 ´2λγ k`1 `CH,µ γ 2 k`1
q and where C H,µ and ϕ :" ϕ α pγ, H, θ 0 q are explicitly constants.

As in the case of Euler like schemes, for α P p 1 2 , 1s, we have:

• if λ P r0, 2ϕpC γ N {pC γ,α N q 2α´1 q 1 2p1´αq s, then Φ α,N pλq " λ 2 {p4ϕC γ N q; • If λ P r 2α 2α´1 ϕpC γ N {pC γ,α N q 2α´1 q 1 2p1´αq , `8q, then Φ α,N pλq " 1 2α ´2α´1 2αϕ ¯2α´1 pλ 2α {pC γ,α N q 2α´1 q; • If λ P p2ϕpC γ N {pC γ,α N q 2α´1 q 1 2p1´αq , 2α 2α´1 ϕpC γ N {pC γ,α N q 2α´1 q 1 2p1´αq q, then Φ α,N pλq " p C γ N C γ,α N q 2α´1 2p1´αq λ ´ϕ pC γ N q α 1´α pC γ,α N q 2α´1 1´α
.

For α " 1 2 , we obtain the following explicit bound for the Legendre transform of Φ 1{2,N @λ ě 0, Φ 1{2,N pλq "

2ϕC γ N s2 N ˜ˆ1 `s N λ 4.1 λ 2ϕC γ N ˙1 2 ´1¸2
Hence, for N ě 1 being fixed, the following simple asymptotic behaviours can be easily derived:

• When λ is small, Φ 1{2,N pλq " λ 2 4.1 λ 2 {p2ϕC γ N q;

• When λ goes to infinity, Φ 1{2 pλq " λ 4.1 λ{s N .

Concerning the choice of the step sequence pγ n q ně1 and its impact on the concentration rate and bias, we obtain the following results:

• If we choose γ n " c n , with c ą 0.

-If c ă 1 2λ , one has C γ N " OpN ´2cλ q, C γ,α N " OpN ´2α 2α´1 cλ q, sN " pN ´cλ q.

-If c ą 1 2λ , one has C γ N " OpN ´1q, C γ,α N " OpplogpN qq 2 1´α 2α´1 N ´α 2α´1 q, sN " OplogpN qN ´1 2 q.

• If we choose γ n " c n ρ , c ą 0, 1 2 ă ρ ă 1, then one has C γ N " opN ´ρ` q, P p0, 1 ´ρq, C γ,α N " opN

´pρ´p1´αqq 2α´1
´ q and sN " O ´logpN qN ´pρ´1 2 q ¯.

We see that the optimal convergence rate OpN ´1q and OpplogpN qq 2 1´α 2α´1 N ´α 2α´1 q is obtained by choosing γ n " c{n for c ą 1{p2λq. Let us notice that we find the same critical level for the constant c as in the CLT for stochastic algorithms, see Theorem 1.1.5. Indeed, if c ą 1 2Repλminq where λ min denotes the eigenvalue of Dhpθ ˚q with the smallest real part then we know that the optimal rate ? N is achieved in the CLT. In order to get rid of this constraint, we also proved in [8] a transport entropy inequality for the law μγ N of the empirical mean p θn q 0ďnďN of the sequence pθ n q 0ďnďN defined by (4.1) when the step sequence is given by γ n " c{n ρ , 1 2 ă ρ ă 1. In particular, we prove that averaging the original Robbins-Monro dynamics with this slow decreasing step allows to achieve for free the optimal concentration rates, that is, the one obtained with γ n " c{n with c ą 1{p2λq.

We briefly explain the strategy used in [8] to prove this new transport entropy. The first step is similar to the one presented in the previous section. We consider the telescopic sum (3.3). However, under (HD α ) the bound (3.4) becomes

Erexppλpf ∆ i pX ∆ ti´1 , ? ∆U piq q´Erf ∆ i pX ∆ ti´1 , ? ∆U piq q|X ∆ ti´1 sqq|X ∆ ti´1 s ď exppβΨ α pT, ∆, b, σ, xq∆ λ 2 4 V 1´α pX ∆ ti´1 qq, i " 1, ¨¨¨, N. (3.7) Let M N " ř N i"1 v ∆ pt i , X ∆ ti q ´Erv ∆ pt i , X ∆ ti q|X ∆ ti´1 s, N ě 1 and M 0 " 0. From (3.

7) and Hölder inequality, one gets

ErexppλM N qs ď ErexppλM N ´1q exppβΨ α pT, ∆, b, σ, xq∆

λ 2 4 V 1´α pX ∆ t N ´1 qqs ď ErexppλpM N ´1qs 1 p ErexppqβΨ α pT, ∆, b, σ, xq∆ λ 2 4 V 1´α pX ∆ t N ´1 qqs 1 q ď N ´1 ź k"0 ˜E " exp ˆΨα pT, ∆, b, σ, xqβ 4 λ 2 qp 2k ∆V 1´α pX ∆ t N ´k´1 q ˙ 1 q ¸1 p k
where we used an induction argument for the last inequality. Hence, since pp, qq are conjugate, one gets

E " exppλpf pX ∆ T q ´E " f pX ∆ T q ‰ q ‰ ď exp ˆsup 0ďnďN log ´E " e Cσ β 4 λ 2 ∆qp 2N p1`Cp∆q∆q N V 1´α pX ∆ tn q ı¯˙.
Finally, by stability arguments on the dynamics (3.2) with an innovation sequence satisfying GCpβq, β ą 0 one gets

sup 0ďnďN log `E " exppλ 2 V 1´α pX ∆ tn qq ‰˘ď # K 3.1 pλ _ λ α 2α´1 q α P p 1 2 , 1s, K 3.2 pλ{λ3.2q 2 1´pλ{λ3.2q , α " 1 2 .
A suitable choice of p and q allows to conclude. The strategy of proof for the Robbins-Monro algorithm follows similar lines of arguments.

Perspective

An interesting problem is to investigate the case of non-regular test function f . In practical situations, notably in mathematical finance, one often has to deal with an irregular payoff function f such as indicator functions. One possibility to address this problem is to allow σ to be non-degenerated so that the Euler scheme admits a smooth density. Then, one has to investigate the connection between the lack of regularity of f , the regularity of the density of the scheme and the resulting Lipschitz modulus of the function y Þ Ñ f ∆ i px, yq. Another interesting problem is to investigate concentration inequalities for the multi-level Monte Carlo estimator presented in Section 1.2.4. One expects that if the test function f is Lipschitz-continuous then the Gaussian concentration regime still holds for this estimator but with a convergence rate given by the CLT established in [1]. The same problem may be considered for the multi-level stochastic approximation schemes presented in the next chapter.

Chapter 4

Improving the computational efficiency of stochastic approximation algorithms

In this chapter, we present [9] and [10], the latter being a joint work with L. Huang from the engineering school INSA of Toulouse. Both works aim to improve the computational efficiency for stochastic approximation schemes when one does not know how to directly sample from the exact distribution of the underlying innovation sequence. We extend the scope of the multi-level Monte Carlo and the multi-step Richardson Romberg methods briefly presented in Section 1.2.4 and Section 1.2.3.

The paradigm for both methods is described in Section 4.1. In Section 4.2 we present the results obtained in [9] related to multi-level methods for stochastic optimisation by means of stochastic approximation schemes. Contrary to the L 2 pPq analysis initiated by Giles [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], our methodology is based on establishing CLT for the proposed multilevel stochastic approximation estimators as proposed by Ben Alaya and Kebaier [1] in the standard Monte Carlo framework. In Section 4.3 we present the results obtained in [10] where we show that the principle of the multistep Richardson-Romberg extrapolation method for Monte Carlo linear estimator as investigated in Pagès [START_REF] Pagès | Multi-step Richardson-Romberg extrapolation: remarks on variance control and complexity[END_REF] can be extended to the framework of stochastic optimisation by means of stochastic approximation algorithm. For both methods we will see in particular that the new estimator outperforms the standard stochastic approximation estimator in terms of computational cost. Numerical results are presented in order to confirm the analysis.

Motivation

As was already mentioned in Section 1.1 of the introductory chapter, in many fields of applied mathematics such as computational finance, one often has to face some stochastic optimisation or zero search problems. We have seen some of them in Chapter 2. The stochastic approximation theory provides some recursive schemes in order find the zero of the function h : R d Ñ R d defined by hpθq :" ErHpθ, U qs, H : R d ˆRq Ñ R d , based on i.i.d. samples of the R q -valued random vector U . Now assume, as it is the case of the Monte Carlo method, that the random vector U is not directly simulatable (at a reasonable cost) but can only be approximated by another sequence of easily simulatable random vectors ppU n q p q pě1 , which strongly approximates U as n Ñ `8 with a standard weak discretization error (or bias) Erf pU qs ´Erf pU n qs of order n ´α for a specific class of functions. The computational cost required to simulate one sample of U n is assumed to be of order n that is CostpU n q " K ˆn for some positive constant K. One standard situation corresponds to the case of a discretization of an SDE by means of an Euler-Maruyama scheme with n time steps.

The important point here is that the function h is generally neither known nor computable (at least at reasonable cost) and since the random variable U cannot be simulated, estimating θ ˚using a Robbins-Monro algorithm is not possible. Therefore, two steps are needed to compute θ ˚:

-the first step consists in approximating the zero θ ˚of h by the zero θ ˚,n of h n defined by h n pθq :" ErHpθ, U n qs, θ P R d . It induces an implicit weak error which writes

E D pnq :" θ ˚´θ ˚,n .
Let us note that θ ˚,n appears as a proxy of θ ˚and one would naturally expect that θ ˚,n Ñ θ ˚as the bias parameter n tends to infinity.

-the second step consists in approximating θ ˚,n by M P N ˚steps of the following SA scheme

θ n p`1 " θ n p ´γp`1 Hpθ n p , U n,pp`1q q, 0 ď p ď M ´1, (4.1) 
where pU n,ppq q 1ďpďM is an i.i.d. sequence of random variables with the same law as U n , θ n 0 is independent of the innovation of the algorithm with sup ně1 Er|θ n 0 | 2 s ă `8 and γ " pγ p q pě1 is a sequence of non-negative deterministic and decreasing steps satisfying the usual step assumption (1.9). This induces a statistical error which writes E S pn, M, γq :" θ ˚,n ´θn M .

The global error between θ ˚, the quantity to estimate, and its implementable approximation θ n M can be decomposed as follows:

E glob pn, M, γq " θ ˚´θ ˚,n `θ˚,n ´θn M :" E D pnq `ES pn, M, γq.

Concerning the asymptotic behaviour of the implicit weak error E D pnq, the following result is established in [9]. Proposition 4.1.1 (Implicit discretisation error). For all n P N ˚, assume that h and h n satisfy the mean reverting assumption (1.11) of Corollary 1.1.2. Moreover, suppose that ph n q ně1 converges locally uniformly towards h. Then, one has θ ˚,n Ñ θ ˚as n Ñ `8.

Moreover, suppose that h and h n , n ě 1, are continuously differentiable and that Dhpθ ˚q is non-singular. Assume that pDh n q ně1 converges locally uniformly to Dh. If there exists α P R ˚such that Hence we see that the standard weak rate of convergence transfers to the implicit weak error under mild assumptions. The above proposition is the first step toward an expansion of θ ˚,n ´θ˚i n powers of n ´α. This will be discussed in further details in Section 4.3 for the development of a multi-step Richardson-Romberg method.

@θ P R d ,
Regarding the statistical error E S pn, M, γq :" θ ˚,n ´θn M , it is well-known that under standard assumptions, the Robbins-Monro theorem, guarantees that lim M E S pn, M, γq " 0 a.s. for each fixed n P N ˚, see Corollary 1.1.2. Moreover, under mild technical conditions, a CLT holds at rate γ ´1{2 pM q, that is, for each fixed n P N ˚, γ ´1{2 pM qE S pn, M, γq converges in distribution to a normally distributed random variable with mean zero and finite covariance matrix, see Theorem 1.1.5. In particular if we set γppq " γ 0 {p, γ 0 ą 0, p ě 1, the weak convergence rate is ? M provided that 2Repλ min qγ 0 ą 1 where λ min denotes the eigenvalue of Dhpθ ˚q with the smallest real part. Moreover, the Ruppert and Polyak averaging principle allows one to achieve the optimal rate of convergence for free by devising a standard Robbins-Monro algorithm with step sequence γppq " γ 0 {p ρ , 1 2 ă ρ ă 1 and computing the empirical mean of the trajectory pθ n p q 1ďpďM . Given the order of the implicit weak error and a step sequence γ satisfying (1.9) a natural question is to find the optimal balance between the value of n and the number M of steps in the recursive scheme (4.1) in order to achieve a given global error. This problem was originally investigated by Duffie and Glynn [START_REF] Duffie | Efficient monte carlo simulation of security prices[END_REF] for the standard Monte Carlo method. The error between θ ˚and the approximation θ n M writes θ n M ´θ˚" θ n M ´θ˚,n `θ˚,n ´θ˚s uggesting to select M " γ ´1p1{n 2α q, where γ ´1 is the inverse function of γ, when the weak error is of order n ´α.

However, due to the non-linearity of the SA algorithm (4.1), the methodology developed in [START_REF] Duffie | Efficient monte carlo simulation of security prices[END_REF] does not apply in our context. The key ingredients to tackle this question consists in linearising the dynamic of pθ n p q 1ďpďM around its target θ ˚,n , quantifying the contribution of the non linearities in the space variable θ n p and the innovations and finally exploiting stability arguments from SA schemes. The next result is established in [9]. Theorem 4.1.2 (Optimal tradeoff). Suppose that the assumptions of Proposition 4.1.1 are satisfied and that h satisfies the assumptions of Theorem 1.1.5. Assume that h n is twice continuously differentiable with Dh n Lipschitz continuous uniformly in n and that it satisfies the strong mean-reverting assumption (1.14) with a constant λ (instead of α) that does not depend on n. Then, under some additional assumptions that we omit for sake of simplicity, one has n α ´θn γ ´1 p1{n 2α q ´θ˚¯ù ñ ´Dh ´1pθ ˚qE ph, α, θ ˚q `N p0, Σ ˚q , where

Σ ˚:" ż 8 0 exp p´spDhpθ ˚q ´ζI d qq T ErHpθ ˚, U qHpθ ˚, U q T s exp p´spDhpθ ˚q ´ζI d qq ds (4.2)
with ζ " 0 if γpnq " γ 0 {n ρ , 1 2 ă ρ ă 1 and ζ " 1{p2γ 0 q if γpnq " γ 0 {n, γ 0 ą 1{p2λq. 50

Define the empirical mean sequence p θn p q pě1 of the sequence pθ n p q pě1 by setting

θn p " θ 0 `θn 1 `¨¨¨`θ n p p `1 " θn p´1 ´1 p `1 `θ n p´1 ´θn p ˘,
with a the step sequence γ p " γ 0 {p ρ with ρ P p1{2, 1q. Then, one has n α `θ n n 2α ´θ˚˘ù ñ ´Dh ´1pθ ˚qE ph, α, θ ˚q `N `0, Dhpθ ˚q´1 ErHpθ ˚, U qHpθ ˚, U q T spDhpθ ˚q´1 q T ˘, n Ñ 8.

Optimising with respect to the usual choice of the step sequence, the minimal computational cost (to achieve an error of order n ´α) is given by C SA " K ˆn ˆγ´1 p1{n 2α q and is optimal for γppq " γ 0 {p, p ě 1, provided that γ 0 ą 1 2α or for the Ruppert and Polyak averaged algorithm, leading to a complexity of order n 2α`1 . In this case, we see that the computational cost is similar to the one achieved by the classical Monte Carlo algorithm for the computation of Erf pX T qs

In Section 4.2, we present a multi-level estimator which allows to significantly increase the efficiency the standard stochastic algorithm designed according to the optimal tradeoff.

Multi-level stochastic approximation algorithm

The multi-level stochastic approximation method uses the following decomposition θ ˚,n " θ ˚,1 `řL "1 pθ ˚,m ´θ˚,m ´1 q with m L " n, m ě 2, and implements L `1 stochastic schemes with a sequence of bias parameter pm q 0ď ďL . More precisely, the target θ ˚is estimated by the quantity

Θ ml n " θ 1 M0 `L ÿ "1 ´θm M ´θm ´1 M ¯.
It is important to point out here that for each level the couple pθ m M , θ m ´1 M q is computed using M i.i.d. copies of pU m ´1 , U m q. Moreover the random variables U m ´1 and U m use two different bias parameter but are perfectly correlated. Finally, for two different levels, the SA schemes are based on independent samples. Theorem 4.2.1. Suppose that h and ph n q nPN satisfy the assumptions of Theorem 4.1.1. Assume that h n is twice continuously differentiable in a neighbourhood of θ ˚, with Dh n Lipschitz-continuous uniformly in n. Assume that the following CLT holds:

m ρ pU m ´U m ´1 q stably ùñ V m as Ñ `8
where V m is an R q -valued random variable eventually defined on an extension p Ω, F, Pq of pΩ, F, Pq. Suppose that ẼrpD x Hpθ ˚, U qV m ´ẼrD x Hpθ ˚, U qV m sqpD x Hpθ ˚, U qV m ´ẼrD x Hpθ ˚, U qV m sq T s is a positive definite matrix. Assume that the step sequence is given by γ p " γppq, p ě 1, where γ is a positive function defined on r0, `8r decreasing to zero, satisfying one of the following assumptions:

• γ varies regularly with exponent p´aq, a P p1{2, 1q, that is, for any x ą 0, lim tÑ`8 γptxq{γptq " x ´a.

• for t ě 1, γptq " γ 0 {t and γ 0 satisfies λγ 0 ą 1.

Suppose that ρ satisfies one of the following assumptions:

• if ρ P p0, 1{2q, then assume that α ą 2ρ, λγ 0 ą α{pα ´2ρq (if γptq " γ 0 {t) and

Dβ ą ρ, @θ P R d , sup ně1 n β }Dh n pθq ´Dhpθq} ă `8.
In this case we set:

M 0 " γ ´1p1{pn 2α logpnqqq, M l " γ ´1pm p1`2ρq 2 pm 1´2ρ 2 ´1q{pn 2α pn p1´2ρq 2 
´1qqq, " 1, ¨¨¨, L.

• if ρ " 1{2, then assume that α " 1, θ m 0 " θ 0 , " 1, ¨¨¨, L, with Er|θ 0 | 2 s ă `8 and

Dβ ą 1{2, @θ P R d , sup ně1 n β }Dh n pθq ´Dhpθq} ă `8.
In this case we set M 0 " γ ´1p1{pn 2 logpnqqq, M l " γ ´1pm logpmq{pn 2 logpnqpm ´1qqq, " 1, ¨¨¨, L.

Then one has n α pΘ ml n ´θ˚q ùñ ´Dh ´1pθ ˚qE ph, 1, θ ˚q `N p0, Σ ˚q, n Ñ `8 with

Σ ˚:" ż 8 0 ´e´spDhpθ ˚q´ζI d q ¯T
Ẽ " ´Dx Hpθ ˚, U qV ´ẼrD x Hpθ ˚, U qV s ¯´D x Hpθ ˚, U qV ´ẼrD x Hpθ ˚, U qV s ¯T  e ´spDhpθ ˚q´ζI d q ds. Remark 4.2.1. The previous CLT for the multi-level stochastic approximation estimator of θ ˚holds if the standard weak error (and thus the implicit weak error), is of order 1{n α and the strong rate error is of order 1{n ρ with α ą 2ρ or α " 1 and ρ " 1{2. Due to the non-linearity of the scheme, which leads to annoying remainder terms in the Taylor's expansions used in the proof, those results do not seem to easily extend to a weak discretisation error of order 1{n α with α ă 1 and ρ " 1{2 or a faster strong convergence rate ρ ą 1{2. Moreover, for the same reason this result does not seem to extend to the empirical sequence associated to the multi-level estimator according to the Ruppert & Polyak averaging principle.

The assumption related to the CLTs satisfied by the two sequences pU pnq ´U q ně1 and pU m ´U m ´1 q ě1 includes the case of the value at time T of a SDE, namely U " X T approximated by its continuous Euler-Maruyama scheme U n " X n T with n steps. Under mild assumption on the coefficients of the SDE, one has ρ " 1{2. Moreover, U may depend on the whole path of the process. For instance, one may have U " L 0 T pXq, the symmetricc local time at level 0 of the one-dimensional continuous diffusion process X and the approximations may be given by

U n " rnts ÿ i"1 f ´un X i´1 n , ? n ´X i n ´X i´1 n ¯¯.
Then under some assumptions on the function f and the coefficients b, σ, the weak and strong rate of convergence are ρ " 1{4, see Jacod [START_REF] Jacod | Rates of convergence to the local time of a diffusion[END_REF] for more details. Let us note that we do not know what happens in our results when ρ ą 1{2 which includes the case of higher order schemes for discretisation schemes of SDE, like the Milstein scheme.

The CLT presented in Theorem 4.2.1 shows that in order to obtain an error of order 1{n α , one has to set M 0 " γ ´1p1{n 2α q and M l " γ ´1pm ´1qqq, if ρ P p0, 1{2q or M 0 " γ ´1p1{n 2 q and M l " γ ´1pm logpmq{pn 2 logpnqpm ´1qqq if ρ " 1{2, " 1, ¨¨¨, L with L " logpnq{ logpmq. In both cases the complexity of the multi-level stochastic approximation method is given by

C ML-SA pγq " C ˆ˜γ ´1p1{pn 2α logpnqqq `L ÿ "1 M pm `m ´1q ¸. (4.3)
In order to compute this complexity, we distinguish the two following cases:

• If γppq " γ 0 {p then the optimal complexity is given by

C ML-SA pγq " C ˜n2α logpnq `n2 pn p1´2ρq 2 ´1q m 1´2ρ 2 ´1 L ÿ "1 m ´p1`2ρq 2 pm `m ´1q ¸" Opn 2α n 1´2ρ q,
if ρ P p0, 1{2q under the constraint λγ 0 ą αpα ´2ρq and

C ML-SA pγq " C ˆn2 logpnq `n2 plog nq 2 m 2 ´1 mplog mq 2 ˙" Opn 2 plogpnqq 2 q,
if ρ " 1{2 under the constraint λγ 0 ą 1. These computational costs are similar to those achieved by the multilevel Monte Carlo method for the computation of Erf pX T qs, see Giles [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF] and Ben Alaya and Kebaier [1]. As discussed in Giles [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF], this complexity attains a minimum near m " 7.

• If we choose γppq " γ 0 {p a , 1 2 ă a ă 1 then simple computations show that the computational cost is given by

C ML-SA pγq " C ˜n 2α a log 1 a pnq `n 2 a pn 1´2ρ ´1q 1 a L ÿ "1 m ´p1`2ρq a pm `m ´1q ¸" Opn 2α a n 1´2ρ a q,
if ρ P p0, 1{2q and

C ML-SA pγq " C ˆ˜n 2 a log 1 a pnq `n 2 a plog nq 1 a pm ´1q 1 a pm `1q mplog mq 1 a L ÿ "1 m ´ p 1 a ´1q ¸" Opn 2 a plog nq 1 a q if ρ " 1{2.
Hence we see that the optimal complexity is achieved for γppq " γ 0 {p under a constraint on γ 0 involving λ. We also obtained a CLT for the statistical Romberg stochastic approximation estimator that is defined by

Θ sr n " θ n β M1 `θn M2 ´θn β
M2 . The couple pθ n M2 , θ n β M2 q is computed using i.i.d. copies of pU n β , U n q, the random variables U n β and U n being perfectly correlated. Moreover, the random variables used to obtain θ n β M1 are independent to those used for the computation of pθ n M2 , θ n β M2 q. The optimal parameters are M 1 " γ ´1p1{n 2α q and M 2 " γ ´1p1{pn 2α´2ρβ qq. When γppq " γ 0 {p, a constraint on γ 0 involving λ appears. Here we can circumvent this issue by considering the averaged version of the last estimator namely Θsr n " θn β M3 `θ n M4 ´θ n β M4 , with M 3 " n 2α and M 4 " n 2α´2ρβ , for any β P p0, 1q (note that ρ ď α so that ρβ ă α). The optimal choice is β ˚" 1{p1 `2ρq leading to an optimal complexity C SR-SA pγq " C SR-RP pγq " C 1 n 2α`1 1`2ρ .

As a numerical illustration of these results we consider the following toy example. We turn our attention to the computation of the level of the function θ Þ Ñ e ´rT EpX T ´θq `(European call option), X T " x expppr ´σ2 2 qT `σW T q, which is given by the Black-Scholes formula.

Therefore, we first fix a value θ ˚(the target of our procedure) and compute the corresponding level " e ´rT EpX T θ˚q

`by the Black-Scholes formula. Accordingly, we set hpθq " ErHpθ, X T qs with Hpθ, xq " ´px ´θq `. We use the following values for the parameters: x " 100, r " 0.05, σ " 0.4, T " 1. We plot in Figure 4.1 the behaviors of nh n pθ ˚q and npθ ˚,n ´θ˚q for n " 100, ¨¨¨, 500. The value of h n pθ ˚q is approximated by its Monte Carlo estimator and θ ˚,n is estimated by θ n M , both estimators being computed with M " 10 8 samples. The variance of the Monte Carlo estimator ranges from 9.73 ˆ10 6 for n " 100 to 9.39 ˆ10 7 for n " 500.

To compare the three methods in terms of computational costs, we compute the different estimators, namely θ n γ ´1p1{n 2 q where pθ n p q pě1 is given by (4.1), Θ sr n and Θ ml n for a set of N " 200 values of the target θ ˚equidistributed on the interval r90, 110s and for different values of n. For each value n and for each method we compute its complexity as the number of operations and the root-mean-squared error which is given by

RMSE " ˜1 N N ÿ k"1 pΘ n k ´θk q 2 ¸1{2
where Θ n k " θ n γ ´1p1{n 2 q , Θ sr n or Θ ml n is the considered estimator. For each given n, we provide a couple pRMSE, Complexityq which is plotted on Figure 4.2. Let us note that the multi-level SA estimator has been computed for different values of m (ranging from m " 2 to m " 7) and different values of L. We set γppq " γ 0 {p, with γ 0 " 2, p ě 1, so that β ˚" 1{2.

We briefly comment Figure 4.2. The curves of the statical Romberg SA and the multi-level SA methods are displaced below the curve of the SA method. Therefore, for a given error, the complexity of both methods are much lower than the one of the crude SA. The difference in terms of computational cost becomes more significant as the RMSE is small, which corresponds to large values of n. The difference between the statistical Romberg and the multi-level SA method is not significant for small values of n, i.e. for a RMSE between 1 and 0.1. For a RMSE lower than 5.10 ´2, which corresponds to a number of steps n greater than about 600-700, we observe that the multi-level SA procedure becomes much more effective than both methods. For a RMSE fixed around 1 (which corresponds to n " 100 for the SA algorithm and Statiscal Romberg SA), one divides the complexity by a factor of approximately 5 by using the statistical romberg SA. For a RMSE fixed at 10 ´1, the computational cost gain is approximately equal to 10 by using either the statistical romberg SA algorithm or the multi-level SA one. Finally, for a RMSE fixed at 5.5.10 ´2, the complexity gain achieved by using the multi-level SA procedure instead of the statistical Romberg one is approximately equal to 5.

Multi-step Richardson-Romberg for stochastic approximation algorithm

This section is devoted to the work [10] related to a Multi-step Richardson-Romber method for the stochastic approximation algorithms introduced in [9]. Our first result is an expansion of the implicit discretisation error θ ˚,n ´θp resented in the previous expansion. We will denote by [H-k] the following set of assumptions:

1. For all θ P R d ,

hpθq ´hn pθq " Λ 0 1 pθq n α `¨¨¨`Λ 0 k pθq n αk `o ˆ1 n αk ˙. (4.4)
2. h, h n P C k pR d , R d q and for all l ď k ´1, for all θ P R d , where for all θ P R d , Λ l 1 pθq, ¨¨¨, Λ l k´l pθq and opn ´αpk´lq q are multilinear maps from pR d q l to R d .

D l h n pθq ´Dl hpθq " Λ l 1 pθq n α `¨¨¨`Λ l k´l pθq n αpk´lq `o ˆ1 n αpk´lq ˙. ( 4 
3. For all 1 ď l ď k, pD l h n q ně1 converges locally uniformly towards D l h.

4.

Dhpθ ˚q is invertible.

Under (H-1) we have seen in Proposiiton 4.1.1 that a first order expansion of θ ˚,n ´θ˚h olds, that is, θ ˚,n ´θ˚" C 1 n ´α `opn ´αq. In [10], we obtained a generalisation of this first result. Theorem 4.3.1. Assume that θ ˚,n Ñ θ ˚, n Ñ `8, and that [H-p] holds for some p P N ˚. Then, θ ˚,n ´θ˚h as an expansion up to order p, that is, the following expansion holds:

θ ˚,n ´θ˚" C 1 n α `¨¨¨`C p n αp `o ˆ1 n αp ˙.
From the previous expansion, one is able to develop a multi-step Richardson-Romberg extrapolation method for stochastic approximation algorithm. The idea is the same as for the Richardson-Romberg method in the context of Monte Carlo linear estimator for the computation of Erf pX T qs, see Section 1.2.3 for a brief description and Pagès [START_REF] Pagès | Multi-step Richardson-Romberg extrapolation: remarks on variance control and complexity[END_REF] for a complete overview.

We proceed as follows. Let R ě 2 be an integer. To devise a SA estimator whose target has an implicit discretisation error of order n ´αR as n Ñ `8, we introduce a sequence of R random vectors tU rn , 1 ď r ď Ru, n P N ˚. It is assumed that this sequence satisfies U rn P ÝÑ U r with U r d " U , 1 ď r ď R, all variables being defined on the same probability space. If assumption [H-R] holds then for r " 1, ¨¨¨, R one gets

θ ˚,rn " θ ˚`R´1 ÿ p"1 C p r αp 1 n αp `CR r αR 1 n αR p1 `εr pnqq , ε r pnq Ñ 0.
By solving a Vandermonde system, one finds an Rd ˆd weight matrix w " pw 1 , ¨¨¨, w R q T , w i being a d ˆd matrix

i " 1, ¨¨¨, R such that ř R r"1 w r " I d and R ÿ r"1 w r θ ˚,rn " θ ˚`C R 1 n αR p´1q R´1 R! α p1 `εR`1 pnqq (4.6)
Hence, we removed the R ´1 first terms of the expansion by considering a suitable linear combination of the pθ ˚,rn q 1ďrďR . We now approximate the new target ř R r"1 w r θ ˚,rn , by means of M P N ˚steps of R stochastic algorithms with dynamics θ rn p`1 " θ rn p ´γp`1 Hpθ rn p , U rn,pp`1q q, 0 ď p ď M ´1, r " 1, ¨¨¨, R, ( where pU rn,ppq , r " 1, ¨¨¨, Rq 1ďpďM is an i.i.d sequence with the same law as pU rn , r " 1, ¨¨¨, Rq, θ rn 0 , r " 1 ¨¨¨, R are the initial conditions independent of the innovation sequence satisfying sup ně1 E|θ n 0 | 2 ă `8 and the sequence pγ p q pě1 satisfies (1.9). Now the new statistical error of the Richardson-Romberg extrapolation estimator writes

E R´R S pn, M q :" R ÿ r"1 w r pθ ˚,rn ´θrn M q.
Under mild assumptions, we prove that this statistical error satisfies

Er|E R´R S |s ď ν R γ 1{2 pM q `1 `φR 1 pnq `φR 2 pM q where ν R :" CE " ˇˇř R r"1 w r Hpθ ˚, U r q ˇˇ2  1{2 , φ R 1 , φ R
2 are two positive functions satisfying: φ R 1 pnq Ñ 0 and φ R 2 pM q Ñ 0 respectively as M Ñ `8, n Ñ `8 and φ R 2 is non-increasing. Hence, the global error of the Richardson-Romberg estimator is bounded by

Er|E R´R glob |s ď µ R n ´αR p1 `| R`1 pnq|q `νR γ 1{2 pM qp1 `φR 1 pnq `φR 2 pM q with µ R :" |C R | pR!n R q α .
In practical situations, one is looking for an efficient estimator among the family

! ř R r"1 w r θ rn M , pn, M q P pN ˚q2
) .

To be more precise, one is interested in minimising the computational cost for a given L 1 pPq-error ε ą 0. We assume that the cost of a single simulation of U n is proportional to n and is given by K ˆn, where K is a generic positive constant independent of n. It notably corresponds to the case of discretisation schemes of a stochastic process. In the case of the Richardson-Romberg method for SA, at each step p " 1, ¨¨¨, M of the procedure, for r " 1, ¨¨¨, R, one has to simulate the random vector pU n , U 2n , ¨¨¨, U Rn q so that the global computational cost is given by

Cost(R-R) :" KM R ÿ r"1 rn " KM n RpR `1q 2 .
Hence the problem of interest writes pnp q, M p qq " arg min

µ R n ´αR p1`| R`1 pnq|q`ν R γ 1{2 pM qp1`φ R 1 pnq`φ R 2 pM qďε Cost(R-R).
We solve the above computational optimisation problem asymptotically. More precisely, if γppq " γ 0 {p β , γ 0 ą 0, p ą 0, β P p1{2, 1s. The multi-step Richardson-Romberg estimator of order R satisfies

inf µ R n ´αR p1`| R`1 pnq|q`ν R γ 1{2 pM qp1`φ R 1 pnq`φ R 2 pM qqďε Cost(R-R) " K RpR `1q 2 γ 1 β 0 ν 2 β R µ 1 αR R 1 ε 2 β `1 αR ˆ1 `2αR β ˙1 αR ˆ1 `β 2αR ˙2 β
as ε Ñ 0. Eventually this asymptotically optimal bound may be achieved with parameters satisfying:

npεq " ˆ2αR β `1˙1 αR µ 1 αR R ε ´1 αR and M pεq " γ 1 β 0 ν 2 β R ˆ1 `β 2αR ˙2 β ε ´2 β as ε Ñ 0. (4.8) 
Let us note that when one decides to implement the Richardson-Romberg extrapolation scheme with an innovation satisfying U r " U a.s. r " 1, ¨¨¨, R then one has Hpθ ˚, U r q " Hpθ ˚, U q a.s. for every r " 1, ¨¨¨, R which in turn yields

E » -ˇˇˇˇR ÿ r"1 w r Hpθ ˚, U r q ˇˇˇˇ2 fi fl " E » -ˇˇˇˇp R ÿ r"1 w r qHpθ ˚, U q ˇˇˇˇ2 fi fl " E " |Hpθ ˚, U q| 2 ı .
Hence we clearly see that this choice leads to a control in the L 1 -norm of the statistical error of the multi-step Richardson-Romberg SA estimator. On the opposite considering mutually independent innovations U r lead to an explosion of the previous control with respect to R. Using the exact expression of the weights, one has

E » -ˇˇˇˇR ÿ r"1 w r Hpθ ˚, U r q ˇˇˇˇ2 fi fl " ˜R ÿ r"1 r 2αR ś r´1 j"0 pr α ´jα q 2 ś R j"r`1 pj α ´rα q 2 ¸E " |Hpθ ˚, U q| 2 ı ě ˆRR R! ˙2α E " |Hpθ ˚, U q| 2 ı " ˆeR ? 2π ? R ˙2α E " |Hpθ ˚, U q| 2 ı as R Ñ `8,
For instance when one is concerned with the discretisation of a Brownian diffusion, the first aforementioned case consists in implementing the Richardson-Romberg method with R Euler schemes devised with the same Brownian motion W namely W r " W, r " 1, ¨¨¨, R whereas the second case consists in implementing the method with mutually independent Brownian motions W r . The optimality of this choice is discussed in Pagès [START_REF] Pagès | Multi-step Richardson-Romberg extrapolation: remarks on variance control and complexity[END_REF].

Finally, we illustrate our results by applying the Richardson-Romberg method to the estimation of the -quantile ( P p0, 1q) θ ˚" inftθ P R : P x pX d 1 ď θq ě u where X is a d-dimensional stochastic process solution to a stochastic differential equation (1.17) where the underlying process Z is a symmetric α-stable, for α P p0, 2s. Note that the case α " 2 corresponds to the standard Brownian motion.

The mean function h is defined by hpθq " ErHpθ, U qs, Hpθ, uq " I tuďθu and U " X d 1 . We approximate U by U n " X n,d 1 where X n is the continuous Euler scheme associated to X. In order to prove an expansion in powers of 1{n for the implicit discretisation error we first remark that ph´h n qpθq "

P x pX d 1 ď θq ´Px pX n,d 1 ď θq so that d k dθ k hpθq ´dk dθ k h n pθq " B k´1 Bθ k´1 p X d p0, 1, x, θq ´Bk´1 Bθ k´1 p X n,d n p0, 1, x, θq.
Hence, one has to rely on the smoothness of the law of X d 1 and X n,d 1 in order to verify [H-k]. We rely on the parametrix expansion for the error p X p0, 1, x, θq´p X n n p0, 1, x, θq between the densities of the process X and its Euler approximation X n obtained by Konakov and Mammen [START_REF] Konakov | Edgeworth type expansions for euler schemes for stochastic differential equations[END_REF] in the case of Brownian SDEs and by Konakov and Menozzi [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF] in the case of stable SDEs (see Section 1.2.3 for a brief presentation) when the coefficients b, σ of the SDE are assumed to be smooth and bounded. Moreover, we assume that the diffusion matrix is uniformly elliptic and the spectral measure of Z when α ă 2 is non-degenerated. When α ď 1, we put b " 0.

Note that we require more than an expansion of the error between the two densities since we also need an expansion of their derivatives in order to verify [H-k]. As a simple extension of the results of Theorem 1.1 in Konakov and Mammen in [START_REF] Konakov | Edgeworth type expansions for euler schemes for stochastic differential equations[END_REF], for the Brownian case, and Theorem 21 in Konakov and Menozzi in [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF], for the Stable case, we derive in [10] an expansion in powers of n ´1 for B θ p X p0, 1, x, θq ´Bθ p X n n p0, 1, x, θq. Hence, [H-k] is satisfied and we obtain an expansion of θ ˚,n ´θ˚i n powers of n ´1 at any order. Our result notably extend the error bound for the computation of the quantile of a diffusion process obtained by Talay and Zheng [START_REF] Talay | Approximation of quantiles of components of diffusion processes[END_REF].

To illustrate the method we consider a geometric Brownian motion pX t q tPr0,T s . Its dynamics and -quantile are given by @t P r0, T s, X t " x 0 expppr ´σ2 {2qt `σW t q, θ ˚" x 0 expppr ´σ2 {2qt `σ? tφ ´1p qq

where W is a one dimensional standard Brownian motion, φ is the distribution function of the standard normal distribution N p0, 1q. We use the following values for the parameters: x 0 " 100, r " 0.05, σ " 0.4, T " 1, " 0.7.

The reference Black-Scholes quantile is θ ˚" 119.69. We set γppq " γ 0 {p with γ 0 " 60. We plot in Figure 4.3 the behaviours of ř R r"1 w r θ ˚,rn ´θ˚f or R " 2, 3, 4 and n " 2, ¨¨¨, 15. We estimate θ ˚,rn by θ rn M , with M " 10 6 samples for R " 2 and M " 10 8 samples for R " 3, 4 using consistent Brownian increments, that is, the same Brownian motion for each R. We clearly see that the Richardson-Romberg estimator efficiency increases with R and the method gives satisfying results with R " 3, 4 for small values of n. ř R r"1 w r θ ˚,rn ´θ˚w ith respect to n " 2, ¨¨¨, 15 for R " 2, 3, 4.

In order to illustrate the computational efficiency of the Richardson-Romberg estimator we set the optimal param-Target accuracy: ε L R ε ´1 αR s and M pεq " rγ

1 β 0 ν 2 β R ˆ1 `β 2αR ˙2 β ε ´2 β s.
The target accuracy ε for the L1 -error has been set at ε " 2 ´p, p " 1, ¨¨¨, 4. The L 1 -error is estimated using 400 runs of the algorithm. The results are summarized in Table 4.1 for the Richardson-Romberg extrapolation SA method and in Table 4.2 for the crude SA method. 1 Note that as expected the L 1 -error is always lower than the specified ε for our estimators. Using the Richardson-Romberg SA scheme instead of the crude SA method leads to a gain in terms of CPU-time varying from 12 (for ε " 5.00 ˆ10 ´1) to 66 (for ε " 6.25 ˆ10 ´2).

Perspective

From a theoretical point of view it would be interesting to obtain a CLT for the multi-level Robbins-Monro algorithm when one uses the averaging principle of Ruppert-Polyak since we only obtain the optimal computational cost under a constraint on γ 0 when γppq " γ 0 {p. One expects to remove this constraint by devising a Robbins-Monro algorithm devised with a low decreasing step sequence γppq " γ 0 {p a , 1 2 ă a ă 1 and computing the empirical mean along its trajectories.

From a practical point of view, we investigated multi-level and multi-step Richardson-Romberg methods. It would be interesting to combine them in order to obtain a multi-level Richardson-Romberg method for stochastic approximation as it is done by Pagès and Lemaire [START_REF] Lemaire | Multilevel richardson-romberg extrapolation[END_REF] for the estimation of Erf pU qs by the Monte Carlo method. One expects to achieve a complexity of order Opn 2 logpnqq with a target accuracy of order Opn ´1q, that is, to remove a logpnq factor in the multi-level optimal complexity.

Part II : Markovian perturbation of stochastic processes and applications

Chapter 5

Weak approximation and asymptotic expansion of some Markov semigroups

In this chapter we present [11] and [12]. The first work, in collaboration with A. Kohatsu-Higa, deals with asymptotic expansions of Markov semigroups with respect to a small parameter. The key tools are the parametrix method and Malliavin's calculus. We revisit heat kernel expansions of some hypo-elliptic diffusion processes. We also discuss some extensions to skew diffusions with non-regular coefficients.

In the second work, we are interested in the weak approximation error of a skew diffusion with bounded measurable drift and Hölder continuous diffusion coefficient by an Euler-type scheme which consists of iteratively simulating skew Brownian motions with constant drift. Here, we rely on a discrete version of the parametrix method "à la McKean and Singer" [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF]. This approach has been successfully applied in the Brownian case by Konakov and Mammen [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF] in order to derive some local limit theorems for Markov chain approximations and to establish weak approximation expansions for the Euler scheme of a diffusion [START_REF] Konakov | Edgeworth type expansions for euler schemes for stochastic differential equations[END_REF] when the coefficients of the underlying scheme are smooth. We also refer to Konakov and Menozzi [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF] for an extension to stable driven SDEs still in the case of smooth coefficients. However, little attention has so far been given to the case of SDEs with non-smooth coefficients.

We first briefly present in Section 5.1.1 a probabilistic point of view of the parametrix method "à la McKean and Singer". For simplicity of the presentation, we consider the case of time-homogeneous diffusion process. In Section 5.1.2, we present a discrete version for the approximation of Lévy driven SDEs.

In Section 5.2, we illustrate the effectiveness of the parametrix method for the weak approximation of a skew diffusion with non-smooth coefficients. In Section 5.3, we present a general approach for asymptotic expansion of a Markov semigroup pP ε t q tě0 with respect to the small parameter ε by means of the parametrix method and Malliavin's calculus and illustrate it on two examples.

A brief presentation of the parametrix method "à la Mc Kean and

Singer"

The case of diffusion processes

Let T ą 0. We consider the (strong) time-homogeneous Markov process pX t q tPr0,T s taking values in R d with infinitesimal generator defined by:

Lf pxq " xbpxq, ∇f pxqy `1 2 T rpapxqD 2 x f pxqq, x P R d (5.1)
where b : R d Ñ R d and σ : R d Ñ R d bR q are bounded measurable functions, ap.q " pσσ ˚qp.q is η-Hölder continuous and uniformly elliptic, that is, @px, ξq P pR d q 2 , xapxqξ, ξy ě a|ξ| 2 . Under these assumptions, its is known that the related martingale problem is well-posed, see Stroock and Varadhan [START_REF] Stroock | Multidimensional diffusion processes, volume 233 de Grundlehren der Mathematischen Wissenschaften[END_REF], in other words, the SDE with L as infinitesimal generator admits a unique weak solution. We denote by pP t q tě0 the Markov semigroup defined on bounded measurable functions f : R d Ñ R by P t f pxq " Erf pX t q|X 0 " xs where pX t q tě0 is the unique weak solution to the SDE with L as infinitesimal generator. The idea of the parametrix method is to approximate the dynamics of X by a simple process Xz , referred as parametrix process, obtained by removing the drift and freezing the diffusion coefficient to a fixed point z P R d . More precisely, one has Xz t " x `σpzqW t , where pW t q tPr0,T s stands for a q-dimensional Brownian motion, with infinitesimal generator Lz f pxq " 1 2 T rpapzqD 2 x f pxqq. We denote by p P z t q 0ďtďT the associated Markov semigroup. For t ą 0, the (transition) density of the parametrix process taken at time t starting from x at time 0 is y Þ Ñ pz pt, y ´xq, where pz pt, xq is the Gaussian density with mean 0 and covariance matrix apzqt taken at x. We also denote by pδ z ε q εą0 a sequence of positive mollifier converging weakly to the Dirac mass at z. For instance, one may consider δ z ε pyq " gpε, y ´zq with the notation gpc, xq :" p2πcq ´d 2 expp´|y ´z| 2 {p2cqq. Let r, ε ą 0 and f P C b pR d q. By Itô's lemma, for s P r0, ts, one has

P z t´s P z r δ z ε f pX s q " P z t`r δ z ε f pxq `ż s 0 pB v `Lq P z t´v`r δ z ε f pX v qdv `Ms " P z t`r δ z ε f pxq `ż s 0 pL ´L z q P z t´v`r δ z ε f pX v qdv `Ms (5.2) 
where pM s q sPr0,ts is a square integrable martingale. Taking expectations in both sides of the previous equality and letting s Ñ t and then integrating with respect to z, one gets

ż P t P z r δ z ε f pxqdz " ż P z t`r δ z ε f pxqdz `ż t 0 Er ż ż δ z ε pyqf pyqS z t´v`r pX v , yqdzdysdv. (5.3) 
where we introduced the notations: 

S z t f pxq :" ż f pyqS z t px
P t f pxq " Pt f pxq `ż t 0 P v Ŝt´v f pxqdv, t P r0, T s (5.4) 
with Pt f pxq :" ş f pyqgpapyqt, y ´xqdy and Ŝt f pxq :" ş f pyq Ŝt px, yqdy, Ŝt px, yq :" Ŝy t px, yq. Importantly, using the η-Hölder regularity of a, one has the following control: @t P p0, T s, | Ŝt px, yq| ď Ct ´1`η 2 gpct, y ´xq for some positive constants C :" Cpa, b, T q, c :" cpaq.

The above lines of reasoning allows to select the point z where the coefficients of the parametrix process are fixed as the terminal point where the transition density is evaluated. This argument will be referred as the diagonalisation argument. In Section 6.2 of Chapter 6, we will see that this argument still works when the probability measure of the parametrix process is not absolutely continuous with respect to the Lebesgue measure. Assuming that b is continuous, one may iterate the first step expansion (5.4):

P t f pxq " N ´1 ÿ n"0 I n t f pxq `RN t f pxq (5.5) 
where I n t f pxq :" ş ∆nptq Psn Ŝsn´1´sn ¨¨¨Ŝ t´s1 f pxqds n , I 0 t f pxq :" Pt f pxq and R N t f pxq :" ş ∆ N ptq P s N Ŝs N ´1´s N ¨¨¨Ŝ t´s1 f pxqds N . Using repeatedly the previous control on the kernel Ŝt px, yq, one gets

|R N t f pxq| ď |f | 8 ż ∆ N ptq ds N N ´1 ź n"0 C T ps n ´sn`1 q ´p1´η 2 q " |f | 8 C N T t N η{2 Γpη{2q N Γp1 `N η{2q ,
where Γ denotes the Gamma function. From the asymptotics of the Gamma function, one may let N goes to infinity in (5.5) and deduces that the series ř ně0 I n t f pxq converges absolutely and uniformly for t P r0, T s. From the previous expansion, one may prove the existence of the transition density for the process pX t q tPr0,T s . Indeed, from Fubini's theorem, one has

P t f pxq " ÿ ně0 I n t f pxq " ż f pz 0 q ÿ ně0 ˜ż∆npT q ds n ż pR d q n dz n gpapz n qs n , z n ´xq Ŝz0 t´s1 pz 1 , z 0 q n´1 ź i"1
Ŝzi si´si`1 pz i`1 , z i q ¸dz 0 so that the transition density pt, x, yq Þ Ñ ppt, x, yq associated to pP t q tě0 exists and is given by ppt, x, yq "

ÿ ně0 ż ∆npT q ds n ż pR d q n dz n gpapz n qs n , z n ´xq Ŝz0 t´s1 pz 1 , yq n´1 ź i"1 Ŝzi si´si`1 pz i`1 , z i q. (5.6)
Moreover, from the asymptotics of the Gamma function, one deduces the Gaussian upper-bound: DC :" Cpa, |b| 8 , T q, c :" cpaq ą 0 such that @pt, x, yq P p0, T s ˆpR d q 2 , ppt, x, yq ď Cgpct, y ´xq. The case of a bounded measurable drift can be handled by an approximation argument: take pb n q ně0 such that b n is continuous, sup ně1 |b n | 8 ď |b| 8 and b n Ñ b a.e. Denote by pP n t q tě0 the semigroup associated to this approximation. By a compactness argument and uniqueness of the martingale problem, pX n t q tPr0,T s , n ě 0 ( converges weakly to pX t q tě0 and one can pass to the limit in the corresponding parametrix series. When b is Hölder continuous, one can prove that the series expansion for pt, xq Þ Ñ ppt, x, yq satisfies the Backward Kolmogorov equation, namely: pB t `Lqppt, x, yq " 0 with ppt, ., yq Ñ δ y p.q as t Ó 0, see e.g. Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF].

A discrete version of the parametrix method

In the previous section, we have exposed a probabilistic point of view of the parametrix method of McKean and Singer [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF] for a time-homogeneous diffusion process. We illustrate now its robustness by showing that it can be easily adapted for approximation schemes. In this section, we consider an R d -valued process pX t q tPr0,T s with generator L given by (5.1).

For a positive integer N , we define the time step h " T {N and the corresponding uniform time grid t i " ih, i " 0, ¨¨¨, N . A natural approximation scheme of the dynamics of pX t q tPr0,T s by a Markov chain is given by the following scheme:

X N ti`1 " X N ti `bpX N ti qh `σpx 1 qζ N i`1 , i " 0, ¨¨¨, N ´1, X N 0 " x (5.7) 
where pζ N i q 1ďiďN are i.i.d. random variables such that their common law approximate the law of the true increments W h and such that ζ N 1 has a density. If σ is non-degenerated then the one step transition admits a density and so does X N ti for i " 1, ¨¨¨, N . The density of the Markov chain approximation scheme taken at time t j 1 starting from x at time t j will be denoted y Þ Ñ p N pt j , t j 1 , x, yq. In the spirit of the previous section, we introduce a parametrix process denoted by p XN,x 1 ti q jďiďj 1 associated to pX N ti q jďiďj 1 which consists in removing the drift part and freezing the diffusion coefficient in the dynamics of (5.7) at the terminal point x 1 where the density of pX N ti q jďiďj 1 is evaluated. Its dynamics is given by XN,

x 1 ti`1 " XN,x 1 ti `σp XN,x 1 ti qζ N i`1 , i " j, ¨¨¨, j 1 ´1, XN,x 1 j " x (5.8) 
and its transition density is denoted by px 1 N . To simplify the notations, we will write pN pt j , t j 1 , x, x 1 q for px 1 N pt j , t j 1 , x, x 1 q. We also introduce the discrete counterpart of the infinitesimal generators considered so far. For g : C b pR d q, j " 0, ¨¨¨, j 1 ´1, we define

L N tj gpxq " ErgpX N tj `hq|X N tj " xs ´gpxq h , and 
LN tj gpxq " Ergp XN,x 1 tj `hq| XN tj " xs ´gpxq h (5.9) 
for 0 ď j ă j 1 ď N , the discrete kernel H N pt j , t j 1 , x, x 1 q " ´´L N tj ´L N tj ¯p N pt j `h, t j 1 , ., x 1 q ¯pxq and finally the discrete time-space convolution type operator b N as follows pg b N f qpt j , t j 1 , x, x 1 q "

j 1 ´1 ÿ i"j h ż R d gpt j , t i , x, zqf pt i , t j 1 , z, x 1 qdz
with the convention that ř j 1 ´1 i"j ¨¨¨" 0 if j ě j 1 . From (5.9), it is easily seen that

H N pt j , t j 1 , x, x 1 q " h ´1 ż R d pp N ´p t j 1 ,x 1 N
qpt j , t j`1 , x, zqp N pt j`1 , t j 1 , z, x 1 qdz.

After some simple computations that we omit, see e.g. Lemma 3.6 in Konakov and Mammen [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], for 0 ď j ă j 1 ď N , the following expansion holds @px, x 1 q P pR d q 2 , p N pt j , t j 1 , x, x 1 q "

j 1 ´j ÿ r"0 ´p N b N H prq N ¯pt j , t j 1 , x, x 1 q (5.10)
where we define the convolution as follows:

g b N H p0q N " g and for r ě 1, g b N H prq N " pg b N H pr´1q N
q b N H N and use the convention ppt j 1 , t j 1 , ., x 1 q " ppt j 1 , t j 1 , ., x 1 q " δ x 1 p.q in the computation of p b N H prq N . From (5.10) and (5.6), the densities of X t and of its approximation scheme share a similar representation. In order to control the weak approximation error p ´pN between the two densities, one has to quantify the following errors:

1. the error coming from the approximation of the "true" Brownian increment by the sequence pζ N i q 1ďiďN , in other words the error p ´p N .

2. the error coming from the discretisation of the space-time convolution operator appearing in (5.6).

3. the contribution when one replaces the continuous kernel Ŝt´s p., .q by its discrete counterpart H N ps, t, ., .q.

When the coefficients are smooth and time-inhomogeneous, following these steps, Konakov and Mammen [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF] proved an error bound for the difference p ´pN , namely |pp ´pN qp0, t, x, x 1 q| ď Ch 1{2 t ´d{2 p1 `p|x 1 ´x|{t 1{2 q S q ´1 for some S depending of the integrability properties of the underlying innovation sequence pζ N i q 1ďiďN . It is the approximation coming from step 1 that dominates in the error bound.

When one directly samples the sequence pζ N i q 1ďiďN according to the true law h 1 2 N p0, I d q, that is, when one removes the error coming from step 1, one obtains an error bound of order h. An expansion of the error in powers of h has been established by Konakov and Mammen [76], as mentioned in equation (1.30) in Section 1.2.3. All these results are obtained under enough regularity on the coefficients b and σ.

When the coefficients b and σ are not smooth, there are only few results. Very recently, in the diffusion case, Konakov and al. [START_REF] Konakov | Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients[END_REF] derived an upper bound for p ´pN of order h η 2 ´Cψphq , where ψphq is a slowly varying factor that goes to zero as h Ñ 0 under the assumption that the coefficients b and σ are η-Hölder continuous. Their strategy consists in introducing perturbed dynamics of the considered SDE and its scheme by suitably mollifying the coefficients of both dynamics and to quantify the distance between the densities and their respective perturbations.

We also mention the work of Mikulevicius and Platen [START_REF] Mikulevičius | Rate of convergence of the Euler approximation for diffusion processes[END_REF] who established an error bound for the weak approximation error Erf pX T q ´f pX N T qs of order h η{2 provided f P C 2`η pr0, T s ˆRd q and the coefficients b and σ are η-Hölder continuous in space and η{2-Hölder continuous in time. We also refer the reader to [START_REF] Mikulevicius | On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs[END_REF] and [START_REF] Mikulevičius | Weak Euler approximation for Itô diffusion and jump processes[END_REF] for some recent extensions of this result to the case of Lévy driven SDEs.

In the next section we present the results obtained in [12] where we proved an error bound for the difference between the densities of the skew diffusion and its Euler approximation of order h η{2 under the assumption that b is bounded measurable and σ is η-Hölder continuous and uniformly elliptic.

Weak approximation of a skew diffusion by an Euler-type scheme

We consider the unique weak solution of the following R-valued SDE pX t q tě0 with dynamics

X t " x `ż t 0 bpX s qds `ż t 0 σpX s qdW s `p2α ´1qL 0 t pXq, α P p0, 1q (5.11) 
where W " pW t q tě0 is a one dimensional Brownian motion defined on a filtered probability space pΩ, F, pF t q tě0 , Pq satisfying the usual assumptions and L 0 pXq is the symmetric local time of X at the origin. When b " 0 and σ " 1, the solution to (5.11) is called the skew Brownian motion. Harrison and Shepp [START_REF] Harrison | On skew Brownian motion[END_REF] proved that if |2α ´1| ď 1 then there is a unique strong solution and if |2α ´1| ą 1, there is no solution. The case α " 1 corresponds to reflecting Brownian motion.

Here we assume that the coefficients of the SDE (5.11) satisfies the following assumptions:

(HR) The drift b is bounded measurable and a " σ 2 is η-Hölder continuous, for some η P p0, 1s. That is, there exists a positive constant L such that (HE) The diffusion coefficient is uniformly elliptic that is there exists λ ą 1 such that for every x P R, λ ´1 ă apxq ă λ. Since σ is continuous, without loss of generality, we may assume that σ is positive.

The previous assumptions guarantee the existence of a unique weak solution to (5.11). Moreover, for any pt, xq P R ˚ˆR, X t admits a density y Þ Ñ pp0, t, x, yq, which is continuous on R ˚and satisfies a Gaussian upper-bound. We refer to Kohatsu-Higa and al. [START_REF] Kohatsu-Higa | The parametrix method for skew diffusions[END_REF] for more details, see also Le Gall [START_REF] Gall | One-dimensional stochastic differential equations involving the local times of the unknown process[END_REF]. We also refer the interested reader to the recent survey of Lejay [START_REF] Lejay | On the constructions of the skew Brownian motion[END_REF] and the references therein for various applications of such equation.

In particular, in [START_REF] Kohatsu-Higa | The parametrix method for skew diffusions[END_REF], a representation of the transition density pp0, t, x, yq by means of the parametrix method "à la McKean and Singer" similar to the expansion (5.6) is obtained. However, the parametrix process is chosen to be the skew Brownian motion, that is, Xz t " x `σpzqW t `p2α ´1qL 0 t p Xz q for which the transition density pz p0, t, x, yq is defined by Case 1: For x ě 0, one has pz p0, t, x, yq " tgpapzqt, y ´xq `p2α ´1qgpapzqt, y `xqu I tyě0u `2p1 ´αqgpapzqt, y ´xqI tyă0u .

Case 2: For x ă 0, one has pz p0, t, x, yq " tgpapzqt, y ´xq `p1 ´2αqgpapzqt, y `xqu I tyă0u `2αgpapzqt, y ´xqI tyě0u .

Note also that the infinitesimal generators L of (5.11) and Lz of Xz are respectively given by L " 1 2 apxqB 2 x `bpxqB x and Lz f pxq " 1 2 apzqB 2 x acting on Dpαq the set of bounded continuous functions f : R Ñ R with bounded continuous derivatives f 1 and f 2 on R ˚such that f 1 p0`q and f 1 p0´q exists, are finite and satisfies αf 1 p0`q " p1 ´αqf 1 p0´q. Instead of Itô's lemma, one has to use the Itô-Tanaka formula in (5.2).

To approximate equation (5.11) on the time interval r0, T s, T ą 0, we introduce the Euler type scheme pX N t q tPr0,T s associated to the time step h " T {N , N P N ˚and time grid t i " ih, i " 0, ¨¨¨, N , defined by X N 0 " x and for all t i ď t ď t i`1 X N t " X N ti `bpX N ti qpt ´ti q `σpX N ti qpW t ´Wti q `p2α ´1qL 0 t´ti pX N pt i , X N ti qq.

(5.12)

Observe that the above scheme does not correspond to a standard Euler-Maruyama approximation scheme since we do not discretise the part corresponding to the local time in the dynamics (5.11). However, its computation only requires to be able to simulate exactly the skew Brownian motion with a constant drift at time t ´ti . This process is known to be exactly simulatable and we refer to Etoré and Martinez [START_REF] Étoré | Exact simulation for solutions of one-dimensional stochastic differential equations with discontinuous drift[END_REF] for the exact expression of its density. In partiular, under assumptions (HR) and (HE), the transition between t i and t P pt i , t i`1 s admits a positive density so that the discretisation scheme (5.12) admits a positive transition density between two times t i and t j , that we will denote p N pt i , t j , x, yq, for any 0 ď t i ă t j ď T , px, yq P R ˆR˚. In particular, a Gaussian upper-bound has been established in [START_REF] Kohatsu-Higa | The parametrix method for skew diffusions[END_REF] for the transition density of the skew diffusion (5.11) under (HR) and (HE). Our first result is to prove similar Aronson's estimate, that is a Gaussian upper estimate but also a lower bound hold for the discretisation scheme (5.12). Theorem 5.2.1. (Two sided Gaussian estimates for the scheme) Under (HR) and (HE), there exist two constants C :" CpT, b, σq, c :" cpλ, ηq ą 1 such that for every 0 ď j ă i ď N , @px, yq P R ˆR˚, C ´1gpc ´1pt i ´tj q, y ´xq ď p N pt j , t i , x, yq ď Cgpcpt i ´tj q, y ´xq.

The proof relies on a parametrix expansion of the density p N pt j , t i , x, yq as explained in the previous sections. In particular, one proves that the series representation (5.10) holds for the transition density of the scheme (5.12) with pN pt j , t j 1 , x, x 1 q " ppt j , t j 1 , x, x 1 q " px 1 pt j , t j 1 , x, x 1 q. The lower bound is obtained by a chaining argument as usually done in this context, see Chapter VII in Bass [14], Kusuoka and Stroock [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF] and Lemaire and Menozzi [START_REF] Lemaire | On some non asymptotic bounds for the euler scheme[END_REF] in the case of discretisation schemes of uniformly elliptic diffusions and of some degenerate Kolmogorov processes.

Our second result is an error bound for the difference between the densities of the skew diffusion (5.11) and its approximation scheme (5.12). Theorem 5.2.2 (Error bound on the difference between the densities). Assume that (HR) and (HE) hold. Then, there exists a constant c :" cpλ, ηq ą 1 such that, for all 0 ď t j ă t i ď N , one has @px, yq P ˆR ˆR˚, |pp ´pN qpt j , t i , x, yq| ď CpT, b, σqh η{2 gpcpt i ´tj q, y ´xq where T Þ Ñ CpT, b, σq is a non-decreasing positive function.

Observe that the weak rate h η{2 is coherent with previous results obtained in the literature for the weak approximation error Erf pX T q ´f pX N T qs where X is given by a Brownian SDE and X N is its Euler scheme when b and σ are η-Hölder continuous in space and η{2-Hölder continuous in time, see [START_REF] Mikulevičius | Rate of convergence of the Euler approximation for diffusion processes[END_REF]. In Konakov and al. [START_REF] Konakov | Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients[END_REF], the error bound on the densities is proved to be of order h η 2 ´Cψphq , ψphq " log 3 ph ´1q{ log 2 ph ´1q when the coefficients b and σ are η-Hölder continuous. Moreover, in their results, the singularity in time is given by Cpt i ´tj q ´p1´η{2qη{2 whereas this quantity does not appear in the previous theorem so it is tighter in this sense. For α " 1{2, which corresponds to the case of (time homogeneous) diffusion process (since the local time part vanishes), compared to [START_REF] Konakov | Weak error for the Euler scheme approximation of diffusions with non-smooth coefficients[END_REF], our result notably removes the slowly varying factor ψphq and shows that the drift plays no role in the approximation of the density since we only require b to be a bounded measurable function. This phenomenon is not surprising since one of the advantages of the parametrix method is the removal of the drift part in the analysis. Eventually, it should be possible to extend our strategy of proof to the case of multi-dimensional Brownian diffusion.

In order to prove the error bound of Theorem 5.2.2, our strategy is the following. The main point is to compare the parametrix series of the transition ppt j , t i , x, yq obtained in [START_REF] Kohatsu-Higa | The parametrix method for skew diffusions[END_REF] and the parametrix series of the Euler scheme (5.12) which differs on account of the discrete nature of time-space convolution operator b N and the discrete smoothing kernel H N . In order to do this, we introduce for 0 ď j ă j 1 ď N , @px, x 1 q P R ˆR˚, p d N pt j , t j 1 , x, x 1 q " ÿ rě0 p b N H prq pt j , t j 1 , x, x 1 q.

(5.13)

Arguments similar to those used in Section 5.1.1 show that the series (5.13) converge absolutely and uniformly on R ˆR˚a nd that p d N satisfies the following Gaussian upper-bound: @px, x 1 q P R ˆR˚, p d N pt j , t j 1 , x, x 1 q ď CpT, |b| 8 , aqgpcpt j 1 ´tj q, x 1 ´xq.

(5.14) Indeed, by induction on r, one proves that @px, x 1 q P R ˆR˚, |p b N H prq pt j , t j 1 , x, x 1 q| ď C r pt j 1 ´tj q rη{2 r ź i"1 B ˆ1 `pi ´1qη 2 , η 2 ˙gcpt j 1 ´tj q px 1 ´xq (5.15)

where C :" Cpλ, ηqp|b| 8 T 1´η 2

`1q and Bpm, nq " ş 1 0 dvp1 ´vq m´1 v n´1 is the Beta function. Then, (5.14) follows from the previous bound. We omit technical details.

The idea is now to decompose the global error as follows:

pp ´pN qpt j , t i , x, yq " pp ´pd N qpt j , t i , x, yq `pp d N ´pN qpt j , t i , x, yq.

A similar decomposition has been used in [START_REF] Konakov | Edgeworth type expansions for euler schemes for stochastic differential equations[END_REF] when the coefficients b and σ are smooth. The smoothness of the coefficients notably allows to use Taylor expansions to express the transition density p as the fundamental solution of the underlying parabolic PDE and to use integration by parts (that may be expressed as the duality relation satisfied by the infinitesimal generator when seen as a differential operator) in order to equilibrate time singularities. Obviously, these arguments do not work here under the mild smoothness assumption (HR) so that computations become more delicate. In a first step, we express the difference p d N ´pN in an infinite parametrix series that involves the difference between the two kernels H and H N . Then, the symmetric Itô-Tanaka formula allows to express the difference H ´HN as the difference of the kernel H between two consecutive discretisation times plus a remainder term R N . We then study the weak approximation rate induced by R N . The delicate point here lies in the nondifferentiability of x Þ Ñ B x ppt j , t j 1 , x, x 1 q at zero caused by the presence of the local time part in the dynamics of X N and XN which prevents us to use (again) the Itô-Tanaka formula. In a second step, in order to study p´p d N , we express this difference as an infinite parametrix series that involves the difference between the two convolution operators b and b N . Then, we notably use a (kind of) Lipschitz property in time for the transition density p and a smoothing procedure for the drift part.

Asymptotic expansion of Markov semigroups and application to diffusion processes

In this section, we present the results obtained in [11] in collaboration with A. Kohatsu-Higa. We develop a general framework for asymptotic expansion of a Markov semigroup pP ε t q tě0 with respect to a small parameter ε based on the parametrix technique and Malliavin's calculus. The main idea can be summed up as follows. Assume that a first order expansion for the infinitesimal generator L ε t of pP ε t q tě0 holds, that is L ε t " L 0 t `εL 1,ε t , t ě 0, where L 0 t is the infinitesimal generator of some strongly continuous Feller semigroup pP 0 s,t q 0ďsďt , which will be referred to as the proxy semigroup. The basic argument in order to obtain the expansion in powers of ε consists in writing P ε 0,t f pxq ´P 0 0,t f pxq " ż t 0 B s pP ε 0,s P 0 s,t qf pxqds "

ż t 0 P ε 0,s pL ε s ´L0 s qP 0 s,t f pxqds " ε ż t 0 P ε 0,s L 1,ε s P 0 s,t f pxqds (5.16)
where we assumed that P 0 s,t f P DompL ε s q for f P DompL 0 s q and s P r0, ts. In order to iterate the above expansion, one needs an expansion of L ε , namely we assume L ε " L 0 `εL 1 `¨¨¨`ε `1L `1,ε . More precisely, for every f P C 8 c pR d q Ă X tě0 DompL ε t q X DompL 0 t q ¨¨¨X DompL `1,ε t q, we assume that

L ε t f pxq " L 0 t f pxq `εL 1 t f pxq `¨¨¨`ε `1L `1,ε t f pxq.
(5.17)

Then, under some integrability conditions that we omit, for all pt, xq P R `ˆR d , the following expansion holds P ε 0,t f pxq " P 0 0,t f pxq ` ÿ p"1 ε p I p pf qpxq `ε `1pR 1,ε `R2,ε q (5.18) with I p pf qpxq :"

p ÿ k"1 ÿ α"pα 1 ,...,α k q }α}"p ż ∆ k ptq ds k P 0 0,s k L α k s k P 0 s k ,s k´1 ¨¨¨P 0 s2,s1 L α1 s1 P 0 s1,t f pxq and lim sup εÑ0 ! |R 1,ε | `|R 2,ε | ) ă 8.
The norm of the index α " pα 1 , ¨¨¨, α q, α i P t1, ¨¨¨, u, is defined as }α} "

ř j"1 α j .
The main application discussed in this work concerns semigroups generated by diffusion processes which are defined as solutions of SDEs. In order to extend the expansion of P ε 0,t f to the class of bounded Borel functions, we will rely on some integration by parts formula on the Wiener space. We now explain the main idea. We will use the standard notations of Malliavin calculus. We refer to Ikeda and Watanabe [START_REF] Ikeda | Stochastic differential equations[END_REF] and Nualart [START_REF] Nualart | Malliavin calculus and related topics[END_REF] for a complete exposition of this topic. We consider the unique strong solution Z of the following SDE Z t " Z s `ż t s bpu, Z u qdu `ż t s σ pu, Z u qdW u ; Z 0 " z P R d , ps, tq P r0, T s 2 (5. [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF] with coefficients bpt, .q, σ pt, .q P C 8 pR d , R d q, t P r0, T s, " 1, ¨¨¨, q, with bounded derivatives of all orders greater than one. We also assume that bpt, 0q, σ 1 pt, 0q, ¨¨¨, σ q pt, 0q are bounded on r0, T s. The corresponding time inhomogeneous Markov semigroup is given by P s,t f pxq :" Erf pZ t ps, xqqs, 0 ď s ď t ď T , for any given bounded measurable function f . It is well known that the above non-homogeneous diffusion defines a C 8 non-homogeneous stochastic flow, see e.g. Kunita [START_REF] Kunita | Stochastic flows and stochastic differential equations[END_REF]. Therefore we may define flow derivatives of the type B k Z α 1 s 1 ,...,Z α k s k Z t for any s k P r0, ts k and any multi-index α P t1, ¨¨¨, du k , k P N ˚. Similarly, we also define accordingly the multilinear form B i Zs Z t , i P N. Notice that we can therefore understand

B k Z α 1 s 1 ,...,Z α k s k
Z t as a (random) function of the vector pZ s1 , ¨¨¨Z s k q.

For j P N, s P r0, T s, ε P r0, 1s, we consider coefficients B j s pε, .q P C 8 pR d , R d q and A j s pε, .q P C 8 pR d , S d pRqq such that for any multi-index α of elements of t1, ¨¨¨, du and any j P N, sup sPr0,T s,εPr0,1s

|B α B j s pε, xq| `|B α A j s pε, xq| ( ď Q α p|x|q (5.20)
for some polynomial function Q α . We also define the corresponding non-homogeneous derivative operators

L j,ε s f pxq " B j s pε, xq∇ x f pxq `1 2 A j s pε, xqB 2 x f pxq (5.21)
and note that we are using product notation: b∇ x f pxq "

ř d i"1 b i B xi f pxq and AB 2 x f pxq " ř d i,j"1 A i,j B 2
xi,xj f pxq for f P C 2 pR d q, b P R d and A P S d pRq. With this notation together with the existence of smooth flows the interchange of derivatives and expectations is straightforward, that is for any f P C 8 b pR d q, one has L j,ε s P s,t f pxq " E " L j,ε Zs f pZ t q ˇˇZs " x ı , with L j,ε Zs f pZ t q " B j s pε, Z s q∇ Zs f pZ t q `1 2 A j s pε, Z s qB 2 Zs f pZ t q (5.22)

Clearly, this formula transfers derivatives operators applied to semigroups into differentiation along the flow generated by the diffusion. From here, we can also obtain the following generalised transfer formula:

y Þ Ñ L αp,ε sp P sp,sp´1 ¨¨¨P s2,s1 L α1,ε s1 P s1,t f pyq "E " L αp,ε Zs p ¨¨¨L α1,ε Zs 1 f pZ t q|Z sp " y ı with L αp,ε Zs p ¨¨¨L α1,ε Zs 1 f pZ t q " ÿ βPA0p2pq B β f pZ t qΘ β,α ε ps p , Z sp q.
We use the notation A 0 ppq for the set of multi-indices α " pα 1 , ¨¨¨, α q P t1, ¨¨¨, du , with length P t1, ¨¨¨, pu. Also y Þ Ñ Θ β,α ε ps p , yq, β P A 0 p2pq, ε P r0, 1s

( is a family of smooth functions such that for any β P A 0 p2pq, ε P r0, 1s and any tuple γ of elements of t1, ¨¨¨, du, Θ β,α ε : ∆ p ptq ˆRd Ñ D 8 satisfies 1. Θ β,α ε ps p , .q P C 8 pR d q and rB γ Θ β,α ε {By γ sp., .q is continuous on ∆ p ptq ˆRd a.s.

2. @pk, pq P N ˆr1, 8q, there exists a polynomial Q k,p function such that

@y P R d , sup spP∆pptq,εPr0,1s › › rB γ Θ β,α ε {By γ sps p , yq › › k,p ă Q k,p p|y|q.
Moreover, if one assumes that the Malliavin covariance matrix Γ Z T of Z T is invertible and that detpΓ Z T q ´1 has moments of all orders. Then, making use of the Malliavin integration by parts formula, for any multi-index α of length p and any s p P ∆ p pT q, one has P 0,sp L αp,ε sp P sp,sp´1 ¨¨¨P s2,s1 L α1,ε s1 P s1,T f pxq "

ÿ βPA0p2pq
Erf pZ T pxqqH β pZ T pxq, Θ β,α ε ps p , Z sp pxqqqs.

(5.23)

We apply this approach to a d-dimensional diffusion processes pX ε t q tě0 solution of an SDE with dynamics:

X ε t " x 0 `ż t 0 bpε, X ε s qds `ε ż t 0 σ pX ε s qdW s , pε, tq P r0, 1s ˆr0, T s, (5.24) 
where pW t " W 1 t , ¨¨¨, W q t q tPr0,T s is a q-dimensional Brownian motion, σ " pσ 1 , ¨¨¨, σ q q is a system of R d -valued functions all defined on R d and b : r0, 1s ˆRd Ñ R d and ε P r0, 1s. Our aim is to derive an asymptotic expansion of the density p ε p0, T, x 0 , yq of (5.24) starting from x 0 at time 0 and evaluated at terminal point y at time T as ε Ó 0.

Small noise as well as short time asymptotics can be derived from the heat kernel expansion of (5.24). As the first part of our main results, we obtain the expansion at any order of p ε p0, T, x 0 , yq by combining the parametrix approach exposed above with Malliavin's calculus techniques.

Short time expansions, that is, the case bpε, .q " ε 2 bp.q, have been investigated by Molchanov [START_REF] Molčanov | Diffusion processes, and Riemannian geometry[END_REF] and Azencott [6] for elliptic operators. An application of the Malliavin calculus to this problem was first discussed by Bismut [START_REF] Bismut | Large deviations and the Malliavin calculus[END_REF] under the so-called (H2) assumption which is weaker than the ellipticity assumption. Then, Watanabe [START_REF] Watanabe | Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels[END_REF] obtained a similar expansion through the asymptotics of generalized Wiener functionals. Following [6] and [START_REF] Bismut | Large deviations and the Malliavin calculus[END_REF], Ben Arous [START_REF] Arous | Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus[END_REF], [START_REF] Arous | Methodes de laplace et de la phase stationnaire sur l'espace de wiener[END_REF], combined the Laplace method on Wiener space with the Malliavin calculus to derive short-time asymptotics for hypo-elliptic diffusion processes.

A first order expansion for the transition density of (5.24) has already been considered in Deuschel and al. [START_REF] Deuschel | Marginal density expansions for diffusions and stochastic volatility I: Theoretical foundations[END_REF] using the Laplace method on Wiener space, as initially developed by Ben Arous in [START_REF] Arous | Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus[END_REF] and [START_REF] Arous | Methodes de laplace et de la phase stationnaire sur l'espace de wiener[END_REF] in the small time case. Here, following our approach, we derive the full expansion of p ε p0, t, x 0 , yq at any order under mild conditions, including unicity of the minimiser and a non-degeneracy condition (ND) (see below for precise statement) in the spirit of Bismut's hypothesis.

In the sequel we will suppose that the following assumption is in force:

(H 1 ) b i P C 8 pr0, 1s ˆRd , Rq and σ i,j P C 8 pR d , Rq, pi, jq P t1, ¨¨¨, du ˆt1, ¨¨¨, qu. Moreover, for all ε P r0, 1s and for all integer n, the functions B n ε b i pε, .q, σ i,j p.q have bounded derivatives of all orders greater or equal to one.

(WH) spantσ i px 0 q, i " 1, ¨¨¨, q; rσ i , σ j spx 0 q, 0 ď i, j ď q; ¨¨¨u " R d , where we set σ 0 p.q " bp0, .q for convenience.

We consider the process pX ε,h t q tPr0,T s with dynamics @pε, tq P r0, 1s ˆr0, T s,

X ε,h t " x 0 `ż t 0 bpε, X ε,h s qds `ε ż t 0 σ pX ε,h s qdW s `ż t 0 σ pX ε,h s q 9 h s ds (5.25)
where h is an element of the Cameron-Martin space H. Under (H 1 ), for fixed x and h P H, for all integer N , X ε,h t has the asymptotic expansion

X ε,h t " X 0,h t `N ÿ k"1 ε k ∆ k 0 X ¨,h ptq `εN`1 ∆ N `1 ε X ¨,h ptq (5.26) 
with ∆ k 0 X ¨,h ptq " (5.27)

1 k! B k ε X ε,h t | ε"0 , residue ∆ N `1 ε X ¨,h ptq " 1 N ! ż 1 0 dλp1 ´λq N B N `1 α X α,
In particular, the limit equation as ε goes to zero of the previous system is given by

X 0,h t " x 0 `ż t 0 bp0, X 0,h s qds `ż t 0 σ pX 0,h s q 9 h s ds, X 1,h t " ż t 0 Y h t pY h s q ´1B ε bp0, X 0,h s qds `ż t 0 Y h r pY h s q ´1σ pX 0,h s qdW s , Y h t " I d `ż t 0 B x bp0, X 0,h s qY h s ds `ż t 0 B x σ pX 0,h s qY h s 9 h s ds.
A crucial assumption to derive the expansion of the density is that the set K x0,y :"

! h P H : X 0,h T " y
) is nonempty. It is satisfied under the strong Hörmander condition (see e.g. Coron [START_REF] Coron | Control and nonlinearity[END_REF]) (SH) @x P R d , Lie tσ 1 , ¨¨¨, σ q u pxq " R d , Now let h P K x,y which minimises the norm that is } h} 2 H " inf hPKx,y }h} 2 H . A standard weak-compactness argument shows that such an h always exists (see e.g. Bismut [START_REF] Bismut | Large deviations and the Malliavin calculus[END_REF] or Watanabe [START_REF] Watanabe | Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels[END_REF]). In the spirit of Bismut [START_REF] Bismut | Large deviations and the Malliavin calculus[END_REF], we introduce the following non-degeneracy assumption:

(ND) For every u P R q , L tσ 1 px 0 q, ¨¨¨, σ px 0 q, rσ 1 , V spx 0 q, ¨¨¨, rσ , V spx 0 qu " R d , for V px 0 q " q ÿ "1 u σ px 0 q `bp0, x 0 q Assuming that (H 1 ) and (ND) are satisfied and that h P H X C 2 pr0, T sq then the Malliavin covariance matrix

Γ ∆ 1 ε X ε,h T is uniformly non degenerate in the sense that lim sup εÑ0 } detpΓ ∆ 1 ε X ε,h T q ´1} p ă 8.
(5.28)

Once we have fixed the minimiser on the set K x0,y of } h} 2 H and in the interests of simplifying notations we omit the variable denoting this element of the Cameron-Martin space in all processes. Therefore, we will have, e.g., X ε, h " X0,ε " Xε , ∆ i ε X¨, h " Xi,ε , for ε P r0, 1s, X 0, h " X0 , ∆ i 0 X¨, h " Xi and Y h " Ȳ .

In particular, the "deterministic" Malliavin covariance matrix Γ X1

T of X1 T defined by Finally we introduce the following condition

pΓ X1 T q i,j " q ÿ "1 ż T 0 p ȲT p
(H 2 ) E " expxλ, X2 T y| X1 T " 0 ‰ ă 8.
We now give a guideline of the arguments to prove the main result (Theorem 5.3.1) of this section. Let δ ą 0 to be fixed later on. Under (WH), the density of X ε T may be decomposed as follows

p ε p0, T, x 0 , yq " Erδ y pX ε T qs " Erψ δ pZ 1,ε T qδ y pX ε T qs `Erp1 ´ψδ pZ 1,ε T qqδ y pX ε T qs (5.32) 
where ψ P C 8 pRq is a bump function such that 0 ď ψpxq ď 1, ψpxq " 1 on |x| ď 1{2 and ψpxq " 0 for |x| ą 1, for δ ą 0, ψ δ pxq :" ψpx{δq and we introduced the following process Z 1,ε t " ş t 0 |X ε s ´X 0 s | 2 ds, t P r0, T s. The above decomposition is necessary in order to deal with the remainder terms in the expansion in powers of ε of the first term appearing in the right-hand side of (5.32).

Using Malliavin's integration by parts and a large deviation arguments, one can prove that 0 ď Erp1´ψ δ pZ 1,ε T qqδ y pX ε T qs ď C expp´p} h} 2 H `cq{p2ε 2 qq, for some positive constant c, C, so that, as it will be clear later on, this term only appears in the remainder of the asymptotic expansion (at any order).

We now focus on the first term appearing in the right hand side of (5.32). By the Girsanov Theorem with drift equals to h{ε, h P K x0,y , (5.26) with N " 0, 1 and (5.31), one successively deduces

Erψ δ pZ 1,ε T qδ y pX ε T qs " exp ˆ´} h} 2 H 2ε 2 ˙E « exp ˜´1 ε ż T 0 x hs , dW s y ¸ψδ p Z1,ε T qδ y p Xε T q ff " ε ´d exp ˆ´} h} 2 H 2ε 2 ˙E « exp ˜´1 ε ż T 0 x hs , dW s y ¸ψδ p Z1,ε T qδ 0 p X1,ε T q ff " ε ´d exp ˆ´} h} 2 H 2ε 2 ˙E « exp ˜´1 ε ż T 0 xλ, ȲT p Ȳs q ´1σ p X0 s qdW s y ¸ψδ p Z1,ε T qδ 0 p X1 T `ε X2,ε T q ff " ε ´d exp ˆ´} h} 2 H 2ε 2 ˙exp ˜1 ε xλ, ż T 0 ȲT p Ȳs q ´1B ε bp0, X0 s qdsy ¸E " e ´xλ, X1 T y ε ψ δ p Z1,ε T qδ 0 p X1 T `ε X2,ε T q  " ε ´d exp ˆ´} h} 2 H 2ε 2 ˙exp ˜1 ε xλ, ż T 0 ȲT p Ȳs q ´1B ε bp0, X0 s qdsy ¸E " e xλ, X2,ε T y ψ δ p Z1,ε T qδ 0 p X1,ε T q ı .
(5.33)

In the above formula, we extracted the main term of the asymptotic expansion. To conclude we prove that E " e xλ, X2,ε T y ψ δ p Z1,ε T qδ 0 p X1,ε T q ı admits an expansion in powers of ε using the framework developed above. Roughly speaking we introduce the Markov semigroup pP ε t q tPr0,T s associated to the trivariate process p X1,ε t , Z1,ε t , X2,ε t q tPr0,T s . We prove that its infinitesimal generator admits an expansion in powers of ε. We use the integration by parts formula (5.23) w.r.t the non-degenerate process X1 in order to get rid of the derivatives on the test function. In order to deal with the remainder term in the expansion, one has to use a localised version of the usual Malliavin's integration by parts and the asymptotic non-degeneracy (5.28). Finally we obtain the following expansion.

Theorem 5.3.1. Let x 0 , y P R d . Assume that (H 1 ), (WH), (H 2 ) and (ND) hold. Suppose that K x0,y ‰ H (which is guaranteed under (SH)) and that the minimizer h " arg min hPKx 0 ,y }h} 2 H is unique. Then, for all P N, one has

p ε p0, T, x, yq " ε ´d exp ˆ´} h} 2 H 2ε 2 ˙exp ˜1 ε xλ, ż T 0 ȲT p Ȳs q ´1B ε bp0, X0 s qdsy ¸`c 0 px, yq `εc 1 px, yq `¨¨¨`ε c px, yq `Opε `1q ˘.
We can compute the exact expressions of the coefficients. One notably has

c 0 px, yq " E " δ 0 p X1 T qe xλ, X2 T y ı , c 1 px, yq " E « δ 0 p X1 T qe xλ, X2 T y 2d ÿ β1"1 # λ β1 H β1 p X1 T , Θ β1 ps 1 , Xs1 q, xλ, X2 t yq `2d ÿ β2"1 λ β2 H β p X1 T , Θ β ps 1 , Xs1 q, xλ, X2 T yq +ff .
where, ps, xq Þ Ñ Θ β1 ps, xq, Θ β ps, xq are two explicit smooth random functions and we interpret β1 " H if β 1 P td `1, ¨¨¨, 2du and that H H " 1.

As a second application we consider a one dimensional Markov semigroup with singular coefficients for which we derive an asymptotic expansion with respect to a small parameter ε. We consider the following skew diffusion with small skew

X ε t " x `ż t 0 bpX ε s qds `ż t 0 σpX ε s qdW s `εL 0 t pX ε q, ε P r0, 1q. (5.34) 
where W " pW t q tě0 is a one-dimensional standard Brownian motion and L 0 pX ε q " pL 0 t pX ε qq tě0 is the symmetric local time of X ε at the origin. We work under assumptions (HR) and (HE) presented in Section 5.2 which guarantees the existence of a unique weak solution to (5.34). The first order approximation is the semigroup pP 0 t q tě0 associated to L 0 s " L 0 " 1 2 aB 2 x `bB x . For f P C 8 c pRq, we prove the following first step expansion

P ε t f pxq " P 0 t f pxq `ε ż t 0 ż R
p ε p0, s, x, 0`q `pε p0, s, x, 0´q 2 B x p 0 ps, t, 0, yqf pyqdyds or equivalently, p ε p0, t, x, yq " p 0 p0, t, x, yq `ap0qε ż t 0 ds 1 p ε p0, s 1 , x, 0`q `pε p0, s 1 , x, 0´q 2 B x p 0 ps 1 , t, 0, yq.

We understand that the expansion (5.17) is satisfied in a generalised sense with L 1,ε " L 1 " ap0qδ 0 B x . Then, using some sharp estimates on lim ηÓ0 1 2 pB x p 0 ps 1 , t, 0, ηq `Bx p 0 ps 1 , t, 0, ´ηqq, we prove that we can iterate the above first step expansion.

Theorem 5.3.2. Under (HR) and (HE), for all ε P r0, 1q, the transition density of (5.34) can be expressed as @pt, x, yq P R ˚ˆRˆR ˚, p ε p0, t, x, yq " p 0 p0, t, x, yq`ÿ B x p 0 ps `1, s , 0, 0qp 0 p0, s p , x, 0qB x p 0 ps 1 , t, 0, yq with s 0 " t. Alternatively, for all positive integer n, one has @pt, x, yq P R ˚ˆR ˆR˚, p ε p0, t, x, yq " p 0 p0, t, x, yq `n ÿ B x p 0 ps `1, s , 0, 0qp 0 p0, s p , x, 0qB x p 0 ps 1 , t, 0, yq

`εn`1 t pn`1q η 2 ´1 2 R 1,ε n with lim sup εÑ0 |R 1,ε n | ă `8.

Chapter 6

One-dimensional elliptic diffusions and some of their path-functionals

In this last chapter we present the results of [13] in collaboration with A. Kohatsu-Higa from Ritsumeikan university and L. Li from the university of New South Wales and [14] in collaboration with L. Li. In both works we are interested in Markov perturbation problems related to some path-functionals of a one-dimensional elliptic diffusion. In Section 6.1, we expose the results obtained in [13] related to the joint law of the first hitting time of a threshold by a one-dimensional uniformly elliptic diffusion process and to the associated process stopped at the threshold. Our methodology relies on the parametrix method that we apply to the associated Markov semigroup. In the spirit of Bally and Kohatsu-Higa [7], see Section 1.2.5 for a brief account, we obtain a probabilistic representation that may be useful for the construction of an unbiased Monte Carlo path simulation method. Some integrations by parts formula are also established under mild assumptions on the coefficients.

In Section 6.2, we present the results obtained in [14] related to the weak existence and uniqueness as well as density estimates for SDEs with coefficients depending on some path-functionals of the process. We consider two examples: a diffusion process with coefficients depending on its running symmetric local time and a diffusion process with coefficients depending on its running maximum. In each example, we also prove the existence of the associated transition density and establish some Gaussian upper-estimates.

Hitting time and killed process associated to a one-dimensional diffusion

In this section, we expose the results obtained in [13] in collaboration with A. Kohatsu-Higa and L. Li related to the first hitting time of a one-dimensional diffusion process with dynamics

X x t " x `ż t 0 bpX x s qds `ż t 0 σpX x s qdW s , x P R (6.1)
where pW t q tě0 stands for a one-dimensional Brownian motion on a given filtered probability space pΩ, F, pF t q tě0 , Pq. We denote by τ x :" inf tt ě 0, X x t ě Lu the first hitting time of the level L (or equivalently the exit time of the open set p´8, Lq) by the one-dimensional process X and by pX x τ x t q tě0 the associated killed process. Here we introduced the notation τ x t :" τ x ^t. In order to study the joint law of pτ x t , X x τ x t q tě0 , we introduce the collection of linear maps pP t q tě0 , acting on B b pRq, as follows

@pu, xq P R `ˆR, P t hpu, xq " E " hpu `τ x t , X x τ x t q ı . (6.2)
In a multi-dimensional setting and for a domain D such that BD is smooth and noncharacteristic, Cattiaux [START_REF] Cattiaux | Calcul stochastique et opérateurs dégénérés du second ordre. II. Problème de Dirichlet[END_REF] developed a Malliavin's calculus approach to prove that the semigroup associated to a process killed when it hits the boundary BD admits an infinitely differentiable kernel under a restricted Hörmander condition on the vector fields. Gaussian bounds on this kernel are also established in small time. We also refer the reader to Ladyzenskaja and al. [START_REF] Ladyzenskaja | ceva : Linear and quasi-linear equations of parabolic type[END_REF], Friedman [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] and Garroni and Menaldi [START_REF] Garroni | Green functions for second order parabolic integro-differential problems[END_REF] for constructions of Green functions related to a class of Cauchy-Dirichlet value problems in a uniformly elliptic setting using a partial differential equation framework. In particular, in Chapter IV in the latter reference, the authors introduced the notion of Poisson and Green functions related to a similar Cauchy-Dirichlet problem and in Chapter VI existence and Gaussian upper-bounds are established when the coefficients b and σ are Hölder continuous and a " σ 2 is uniformly elliptic. As a slight extension of the latter result, in [13], we prove the existence of a transition density for pP t q tě0 , thus proving existence of a density for pτ x t , X x τ x t q, t ą 0, under the assumption that b is bounded measurable and σ is Hölder continuous and a is uniformly elliptic. Some Gaussian upper-bounds for both densities are also established. In this section, we rather focus on the probabilistic representation for pP t q tě0 . The fundamental idea in order to obtain a probabilistic representation for the joint law pτ x t , X x τ x t q is to see the operator P t as a perturbation of the operator Pt defined by Pt hpu, xq " Erhpu `τ x t , Xx τ x t qs where p Xt q tě0 is obtained from (6.7) by removing the drift and freezing the diffusion coefficient to the initial point x, namely Xx t " x `σpxqW t and τ x is its associated first hitting time. Note that from the reflection principle of Brownian motion, the kernel associated to Pt is given by gpct, z ´xq. In order to iterate the first step expansion (6.3), we remark that Ks hpu, Lq " Ss hpu, Lq " 0 so that KT ´s1 Ks1´s2 hpu, xq " KT ´s1 Ss1´s2 hpu, xq " 0. We also define the following family of operators for ps 0 , u, xq P r0, T s ˆR`ˆp ´8, Ls :

I n s0 hpu, xq " # ş ∆nps0q ds n !´ś n´1 i"0 Ssi´si`1 ¯P sn hpu, xq `´ś n´2 i"0 Ssi´si`1 ¯K sn´1´sn hpu, xq ) if n ě 1, Ps0 hpu, xq if n " 0, (6.4) 
where ds p " ds 1 ¨¨¨ds p and for a fixed time t ě 0, we denote by ∆ p ptq " ts p P r0, ts p : s p`1 :" 0 ď s p ď s p´1 ď ¨¨¨ď s 1 ď t ": s 0 u.

In [13], we prove that the series ř ně0 I n T hpu, xq converges absolutely and uniformly and iterating (6.3) one obtains @h P C papLq ´ap Xπ tn´1 qq ap Xπ tn´1 q ˆθ tn´1´tn´2 p Xπ tn´2 , Xπ tn´1 q ¨¨¨θ t1 px, Xπ t1 qs.

Finally, in the spirit of Bally and Kohatsu-Higa [7], we let pN ptqq tě0 be a simple Poisson process with intensity parameter λ ą 0 and define N " N ptq for t P r0, T s. Let ζ 1 ă ζ 2 ă ¨¨¨ă ζ N be the jump times of the Poisson process and set ζ 0 " 0, ζ N `1 " T . We still denote by π the random time partition π : ζ 0 " 0 ă ζ 1 ă ¨¨¨ă ζ N `1 " T and denote by Xπ " p Xπ ζi q 0ďiďN `1 its associated Euler scheme. In [13], we obtain the following theorem. ś N ´2 j"0 λ ´1 θζj`1´ζj p Xπ ζj , Xπ ζj`1 q if N ě 1, 0 if N " 0.

Then, for all h P B b pR `ˆRq, for all pu, xq P R `ˆR, the following probabilistic representation holds Similarly, for all ps, x, zq P p0, ts ˆp´8, Ls 2 , the following probabilistic representation for the probability law of pτ x t , X As a corollary, we also obtain the following integration by parts formula.

Corollary 6.1.2. Suppose that the assumptions of the previous theorem hold. Let h P C 1 pp´8, Lsq satisfying: there exist c ą 0, such that for all z P p´8, Ls, |hpzq| `|h 1 pzq| ď c exppc|z|q. Then, for all x P p´8, Lq, one has ı .

An unbiased Monte Carlo method for evaluating Erhpτ x t , X x τ x t qs, Erh 1 pX x t qI tτ x ątu s or the probability law p T p0, x, dt, dzq of pτ x t , X x τ x t q stems from the probabilistic representations obtained in Theorem 6.1.1 and Corollary 6.1.2. The explosion of the variance may be an important issue that can induce poor convergence rate of the method as pointed out in [4] for unbiased simulation of multi-dimensional diffusions. In these situations, an importance sampling method on the time steps using a Beta or Gamma distribution may be used. In short, it would seem that this approximation will work well in the case of small parameters. A very close analysis could be carried out here but we do not intend to develop importance sampling schemes and refer the interested reader to [4] for some developments in the diffusion case.

Weak uniqueness and density estimates for SDEs with coefficients depending on some path-functionals

In this section, we expose the results obtained in [14] in collaboration with L. Li related to the weak existence and uniqueness as well as density estimates of SDEs with dynamics X t " x `ż t 0 bpX s , A s pXqqds `ż t 0 σpX s , A s pXqqdW s , t P r0, T s (6.7)

where pW t q tě0 stands for a one-dimensional Brownian motion and pA t pXqq tě0 is an R d´1 -valued functional depending on the path X, d ě 2. Some examples include its local and occupation times, its running maximum or minimum, its first hitting time of a level, its running average, etc. From the point of view of applications, systems of the type (6.7) appear in many fields. Let us mention stochastic Hamiltonian systems where A t pXq " ş t 0 F ps, X s qds, see e.g. Soize [START_REF] Soize | The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions[END_REF] for a general overview, Talay [START_REF] Talay | Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme[END_REF] for convergence to equilibrium or Barucci and al. [13] for an application to the pricing of Asian options. We also mention the work of Forde [START_REF] Forde | A diffusion-type process with a given joint law for the terminal level and supremum at an independent exponential time[END_REF], where the author constructs a weak solution to the SDE (6.7) with b " 0 and A t pXq " max 0ďsďt X s is the running maximum of X and investigates an application in mathematical finance.

In order to prove weak uniqueness for the SDE (6.7), we follow the recent approach of Bass and Perkins [START_REF] Bass | A new technique for proving uniqueness for martingale problems[END_REF] for proving uniqueness for the martingale problem and illustrated it in the framework of non-degenerate, non-divergence and time-homogeneous diffusion operators under the assumption that the diffusion matrix is strictly positive and Hölder continuous. It has also been recently extended by Menozzi [START_REF] Menozzi | Parametrix techniques and martingale problems for some degenerate Kolmogorov equations[END_REF] for a class of multi-dimensional degenerate Kolmogorov equations that is the case of a multi-dimensional path functional A " pA 1 t , ¨¨¨, A N t q tě0 given by: A 1 t pXq " ş t 0 F 1 pX s , A s pXqqds, A 2 t pXq " ş t 0 F 2 pA 1 s , ¨¨¨, A N s qds, ¨¨¨, A N t pXq " ş t 0 F N pA N ´1 s , A N s qds, under an assumption of weak Hörmander type on the functions pF 1 , ¨¨¨, F N q. The main new feature added here compared to previous works on this topic is that our technique enables us to deal with a process whose probability law is absolutely continuous with respect to a σ-finite measure.

For instance, if one considers the couple pX t , A t pXqq tě0 , A t pXq " L 0 t pXq being the symmetric local time at point 0 accumulated by X up to time t, it is easy to see that on tT 0 ą tu, T 0 being the first hitting time of 0 by X, one has L 0 t pXq " 0 whereas on tT 0 ď tu, the process may accumulate local time so that the probability law of the couple pX t , L 0 t pXqq consists in two parts, one being singular with an atom in the local time part, the other one (hopefully) being absolutely continuous with respect to the Lebesgue measure on RˆR `. Hence, we see that for such dynamics the situation is more challenging than in the standard diffusion setting. This new difficulty will be overcome by choosing two independent parametrix kernels, one for each part, and then by proceeding with a non-trivial selection of the freezing point according to the singular measure induced by the approximation process.

We first provide a general framework in order to establish weak uniqueness for SDEs with dynamics (6.7). The contribution of this part compared to the existing literature on this topic lies in the fact that we identify the main assumptions, namely (H1) and (H2) see below, needed to establish weak uniqueness, thus allowing for a general treatment.

We assume that there exists a weak solution pX, W q, tF t u to (6.7) and that the process Y :" pX t , A t pXqq tě0 , starting from the initial point x at time 0, lives on a closed space J Ă R d . The process Y induces a probability measure P x (or simply denoted P) on Ω " Cpr0, 8q, J q which is endowed with the canonical filtration pF t q tě0 . We consider the collection of linear maps pP t q tě0 defined by P t f pxq :" Erf pX t , A t pXqqs for f P B b pJ q.

We denote the approximation or the proxy process by X, that is the solution of (6.7) with b " 0 and the diffusion coefficient σ evaluated at some fixed point z P J . Without going into details at this point, the key idea is to consider the process Y as a perturbation of the proxy Ȳ " p Xt , Ap Xt qq tě0 whose law is denoted by pt px, dyq " pz t px, dyq. Accordingly, we define the collection of linear maps p Pt q tě0 by Pt f pxq :" Erf p Xt , A t p Xqqs " ş f pyqp t px, dyq for f P B b pJ q.

We work under the following set of assumptions: Assumptions (H1): Given the initial and frozen point x, z P J .

(i) (a) The proxy process Ȳ z is a Markov process with infinitesimal generator Lz .

(b) There exists a σ-finite measure νpx, .q such that for all t ą 0, the law of Ȳ z t is absolutely continuous with respect to νpx, .q. More specifically, there exists a νpx, dyq-integrable function pt, x, yq Þ Ñ pz t px, yq satisfying pz t px, dyq " pz t px, yqνpx, dyq (6.8)

and P z t f pxq " ş f pyqp z t px, yqνpx, dyq for all f P B b pJ q. (ii) There exists a class of functions D Ă Domp Lz q X C b pJ q and a linear operator L acting on D such that: (a) For all g P C 8

b pJ q, P z t g P D. (b) For all functions h such that: s Þ Ñ hps, .q P C 1 pR `, Dq, the process hpt, Y t q ´hp0, xq ´ż t 0 tB 1 hps, Y s q `Lhps, Y s qu ds, t ě 0 is a continuous square integrable martingale under P x .

(c) There exists a parametrix kernel θt with respect to the measure ν, that is a measurable map pt, z, x, yq Þ Ñ θz t px, yq such that for all g P C 8 b pJ q pL ´L z q P z t gpxq " ż gpyq θz t px, yqνpx, dyq, t ą 0. (6.9)

(iii) For all x, y P J , the maps pt, zq Þ Ñ pz t px, yq and pt, zq Þ Ñ θz t px, yq are continuous on p0, 8q ˆJ .

(iv) For all t ą 0, there exists some Moreover, if for t ą 0, the function x Þ Ñ S t g, g P C b pJ q, belongs to C b pJ q. Then one may iterate the first order formula P t gpxq " Pt gpxq `ÿ ně1 I n t gpxq, with I n t gpxq " ż ∆nptq ds n Psn S sn´1´sn ¨¨¨S t´s1 gpxq (6.12)

Moreover, the series (6.12) converges absolutely and uniformly for x P J . The notation ∆ n ptq has been defined in the previous section, just after equation (6.4).

We consider two weak solutions of the SDE (6.7) starting at time 0 from the same initial point x P J . Denote by P 1 and P 2 the two probability measures induced on the space pCpr0, 8q, J q, BpCpr0, 8q, J qqq. Define for f P B b pJ q, λ ą 0 and i " 1, 2 We notice that by (H1) (ii) b), S i λ pλ ´Lqf pxq " f pxq, @f P D, i " 1, 2. For z P J , the resolvent of the process with frozen coefficients is defined by Rλ f pxq " ż 8 0 e ´λt Pt f pxqdt, @f P B b pJ q (6.13) and for f P D one has Rλ pλ ´Lqf " f . We make the following assumptions: Assumption (H2): For all λ ą 0, one has We sketch the proof and omit some technical details. Let z P J and r ą 0. We consider a sequence of non-negative mollifiers δ z ε , ε ą 0, converging to the Dirac mass at z as ε Ó 0. Let us first observe that if g P C λ " 0. By the uniqueness of the Laplace transform together with continuity w.r.t the variable t, E 1 rgpY t qs " E 2 rgpY t qs for all t ě 0 if g is bounded measurable. Now one can use the standard argument based on regular conditional probabilities to show that the finite dimensional distributions of the process pY t q tě0 " pX t , A t pXqq tě0 agree under P 1 and P 2 .

In [14], we considered the two following examples: A t pXq " L 0 t pXq where L 0 t pXq is the symmetric local time at 0 accumulated by X at time t with state space J " R ˆR`a nd A t pXq " M t :" m 0 _ max 0ďsďt X s , m 0 ě x 0 , with state space J " px, mq P R 2 : x ď m ( . We work under the following mild assumptions:

(R-η) The coefficients b and a " σ 2 are bounded measurable functions defined on J . The diffusion coefficient a is η-Hölder continuous on J .

(UE) There exists some constant a ą 0 such that @z P J , a ď apzq.

In the following we detail the computations for the first case only, namely the diffusion process with its symmetric local time at zero. A similar analysis for the SDE with its running maximum is done in [14]. The set D is the class of function f P C 2,1 b pRzt0u ˆR`q X C b pR ˆR`q such that B 1 f p0`, q " lim xÓ0 f px, q´f p0, q x and B 1 f p0´, q " lim xÒ0 f px, q´f p0, q x exist, are finite and satisfy the following transmission condition: @ P R `, B 1 f p0`, q ´B1 f p0´, q 2 `B2 f p0, q " 0. (6.17)

We define the linear operator L by Lf px, q " bpx, qB 1 f px´, q `1 2 apx, qB 2 1 f px´, q, px, q P R ˆR`. As we need a chain rule formula for the process pX t , A t pXqq tě0 , we rely on the following generalisation of Itô's Lemma: f pt, X t , L 0 t pXqq " f p0, x, 0q `ż t 0 B 1 f ps, X s , L 0 s pXqq `Lf ps, .qpX s , L 0 s pXqq ( ds `ż t 0 " B 2 f ps, 0`, L 0 s pXqq ´B2 f ps, 0´, L 0 s pXqq 2 `B3 f ps, 0, L 0 s pXqq * dL 0 s pXq `ż t 0 σpX s , L 0 s pXqqB 2 f ps, X s ´, L 0 s pXqqdW s a.s.

for f P C 1,2,1 pR `ˆRz t0u ˆR`q X CpR `ˆR ˆR`q such that B 2 f pt, 0`, q " lim xÓ0 pf pt, x, q ´f pt, 0, qq{x and B 2 f pt, 0´, q " lim xÒ0 pf pt, x, q ´f pt, 0, qq{x exist and are finite. This chain rule formula allows one to associate a martingale problem to the SDE (6.7) with A t pXq " L 0 t pXq. This connection provides a natural way to establish weak existence by a compactness argument when b and σ are continuous, see e.g. Stroock and Varadhan [START_REF] Stroock | Multidimensional diffusion processes, volume 233 de Grundlehren der Mathematischen Wissenschaften[END_REF]. Remark that one can remove the continuity assumption on b when σ is uniformly elliptic via the Girsanov transform method.

We now introduce the proxy process Xt :" x 0 `σpz 1 qW t , t ě 0, z 1 " px 1 , 1 q P R ˆR`. For f P C b pR ˆR`q , simple computations show that Pt f px 0 , 0 q " Erf p Xt , 0 `L0 t p Xqqs " ş RˆR`f px, qp t px 0 , 0 , x, qνpx 0 , 0 , dx, d q with pt px 0 , 0 , x, q :" ft px 0 , xqI t " 0u `q t px 0 , 0 , x, qI t 0ă u and ft px 0 , xq :" gpapz 1 qt, x ´x0 q ´gpapz 1 qt, x `x0 q, qt px 0 , 0 , x, q :" p|x| `|x 0 | ` ´ 0 q a

Perspective

In [13], we considered probabilistic representations for the first hitting time and the associated killed process of a one dimensional elliptic diffusion. We obtain some integration by parts for the killed diffusion process for the first derivative of a test function. One may be interested in establishing higher order integration by parts and also integration by parts formulas for the first hitting time. This is not a simple extension of Corollary (6.1.2) where we performed an integration by parts in the last interval rζ N , T s. If we want to keep the Malliavin weights in L 2 pPq, one has to perform the integration by parts on the whole time interval r0, T s using the whole underlying noise.

One may be interested in establishing a probabilistic representation as well as integration by parts formulas for other path functionals such as the local time, the running maximum, the occupation time, etc as considered in Section 6.2. Using the parametrix expansions of the transition densities of pX t , A t pXqq tě0 , one can prove that the corresponding semigroup P t h is smooth when a and b are Hölder continuous. Then, one may proceed using the forward parametrix method as presented in Section 6.1.

More challenging extensions could include other type of processes. One may notably consider the case of a skew diffusion with path-dependent coefficients involving its local and occupation times, see Appuhamillage & al. [5] for an expression of the trivariate density pB pαq t , L 0 t pB pαq q, Γ 0 t pB pαq qq, t ě 0, where pB pαq t q tě0 is an α-skew Brownian motion or reflected SDEs. We are working on this topic with L. Li.

Another interesting point to investigate in that direction is to weaken the assumption on the coefficients, notably on a by assuming only uniform ellipticity and continuity, in order to establish weak uniqueness for the martingale problem using Calderón-Zygmund estimates, see Menozzi [START_REF] Menozzi | Martingale problems for some degenerate kolmogorov equations[END_REF] for some degenerate equations of Kolmogorov type. Another related issue concerns pathwise uniqueness for the SDE (6.7). A possible strategy could be to extend the results of Zvonkin [START_REF] Zvonkin | A transformation of the state space of a diffusion process that removes the drift[END_REF] and Veretennikov [START_REF] Yu | Veretennikov : On the criteria for existence of a strong solution to a stochastic equation[END_REF], Krylov and Röckner [START_REF] Krylov | Strong solutions of stochastic equations with singular time dependent drift[END_REF] established in the diffusion case to the case of a diffusion with a path-functional.

On may study a class of Hörmander equations with non-regular coefficients. The structure of the irregularity has to be carefully chosen so that the approximation process satisfies a uniform Hörmander condition or even a UFG condition. We refer to the work of Kusuoka and Stroock [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF] for a careful analysis of the regularity properties of the unique solution to the related linear parabolic PDE by probabilistic tools. We also refer to the work of Crisan and Delarue [START_REF] Crisan | Sharp gradient bounds for solutions of degenerate semi-linear partial differential equations[END_REF] for an extension to degenerate semi-linear PDE. For instance, one may consider an equation of the form: V 0 `p1{2q ř N i"1 V 2 i , V 0 , ¨¨¨, V N being first order differential operators and the drift term V 0 being irregular. One simple example is V 0 `řN i"1 ϕ i V i `řαPA0p2q ϕ α V rαs , where V 0 P C 8 8 pR d q and pϕ i q 1ďiďN are bounded measurable functions, pϕ α q αPA0p2q are C 1 b pR d q. Questions of interests are: pathwise uniqueness, density estimates, regularity of the solution of the PDE, etc.

A challenging problem is to investigate probabilistic representation such as the one obtained in Section 6.1 for McKean-Vlasov equations. These equations exhibit a dependence w.r.t to the law of the process in its coefficients. Unlike the two examples investigated in [14], the law of the underlying process is a deterministic object so that it is not natural to expect a regularising property w.r.t. this variable. We refer to the P.h.d. of Murray [START_REF] Mcmurray | Regularity of mckean-vlasov stochastic differential equations and applications[END_REF] and the recent work of Crisan and Murray [START_REF] Crisan | Smoothing properties of mckean-vlasov sdes[END_REF] for some integration by parts formula and density estimates for such equations.
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 21 Figure 2.1: Down & In Call option: Optimal θ N obtained by our algorithm in the case of the Local Volatility model for different basis and several values of m (m " 2 for the left upper curves, m " 4 for the right upper curves and m " 8 for the lower curves).
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 313 If µ satisfies T Φ then the empirical measure µ M defined as µ M " 1 M ř M k"1 δ X pkq satisfies the following concentration bound P pW 1 pµ M , µq ě ErW 1 pµ M , µqs `rq ď exp p´M Φprqq .
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 41 Figure 4.1: On the left: Weak discretization error n Þ Ñ nh n pθ ˚q. On the right: Implicit discretization error n Þ Ñ npθ ˚,n ´θ˚q , n " 100, ¨¨¨, 500.
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 42 Figure 4.2: Complexity with respect to RMSE.
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 43 Figure 4.3: Richardson Romberg SA estimators:ř R r"1 w r θ ˚,rn ´θ˚w ith respect to n " 2, ¨¨¨, 15 for R " 2, 3, 4.
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 611 Let T ą 0. Assume that a P C 2 b pRq, b P C 1b pRq and a is uniformly elliptic. Define the two sequences pΓ N pxqq N ě0 and p ΓN pxqq N ě0 as followsΓ N pxq " " ś N ´1 j"0 λ ´1 θζj`1´ζj p Xπ ζj , Xπ ζj`1 q if N ě 1

  e λt E « hppζ N ptq `τ Xπ ζ N ptq q ^t, Xπ pζ N ptq `τ Xπ ζ N ptq q^t qΓ N ptq pxq ff `eλt E " hpζ N ptq´1 `τ Xπ ζ N ptq´1 , LqI tτ Xπ ζ N ptq´1 ďt´ζ N ptq´1 uΓNptq pxq  .

S i λ f pxq :" E i r ż 8 0e ´λt f pY t qdts " ż 8 0e

 88 ´λt E i rf pY t qs dt, S ∆ λ f pxq :" pS 1 λ ´S2 λ qf pxq, }S ∆ λ } :" sup }f }8ď1 |S ∆ λ f |.

8 0e

 8 Rλ D Ă D and for f P D, pλ ´Lq Rλ f " Rλ pλ ´Lqf and pL ´Lq Rλ f pxq " ż ´λt pL ´Lq Pt f pxq dt. (6.14) Theorem 6.2.2. Assume (H1) and (H2) are satisfied, then weak uniqueness holds for the SDE (6.7).

  Now by the definition of the shifted function θ pnq , one gets

				θ	pnq t	" θ	p0q Γn	`θp0q Γn`t	´θp0q Γn
						" θ	p0q Γn	´ż Γn`t	hpθ p0q s qds `Rn ptq
							Γn
	where R n ptq :"	ş Γn`t Γ N pΓn`tq hpθ	p0q s qds	´řNpΓn`tq

k"n`1 γ k ∆M k is a remainder term.

  1 2 |θ ´θ˚|2 and remark that x∇L, hypθq " pθ ´θ˚q pPpX ď θq ´PpX ď θ ˚qq ą 0, @θ ‰ θ PpX ď θq is increasing. Moreover, the function H being bounded assumption (1.8) is clearly satisfied. Hence, by Corollary 1.1.2 the sequence pθ n q ně1 converges a.s. toward its target θ

since θ Þ Ñ ˚.

Table 2 .

 2 1: Shortfall risk estimation and One Step risk hedging of Spark Spread option

	l	No hedging	One step hedging	θ	lexp
		-18.60 ˘0.02119	-21.71 ˘0.01809	15.98
	l 2	-2.79 ˘0.00349	-5.83 ˘0.01440	4.68
	l 3	-2.05 ˘0.00197	-3.69 ˘0.01253	2.56
	l 4	-1.73 ˘0.00132	-2.71 ˘0.00983	1.54

  , we approximate (2.13) and (2.14), by the following stochastic control problem φN px, vq " lp´φpxq `vq, px, vq P Γ N ˆΓV , (2.15)

  ´θq 2 p 2 pX ´θq

				fi	
				ffi	
	ppXqppX ´2θq	∇ppX ´2θq ppX ´2θq	ffi ffi ffi ffi	.	(2.20)
	l	jh	n fl	
		W pθ,Xq		
	Now if the growth of the function F is controlled by G (say G grows exponentially), under some integrability
	assumption, setting				

Table 2 .

 2 2. In Figure2.1, the optimal variance reducers for the local volatility model are depicted

	Basis	m Price MC Variance MC Price QIS Variance QIS
	Constant	1	0.684	25.80	0.673	15.33
	Legendre	2	0.711	27.92	0.662	4.58
	(ShLeg)	4	0.683	25.66	0.684	3.46
		8	0.686	26.59	0.685	3.35
	Karhunen-Loève	2	0.680	25.38	0.696	5.22
	(KL)	4	0.702	26.39	0.683	6.53
		8	0.687	26.39	0.688	5.80
	Haar	2	0.648	24.90	0.673	8.15
	(Haar)	4	0.671	25.15	0.692	5.46
		8	0.709	30.17	0.700	5.29

Table 2 . 2 :

 22 Down&In Call option in Local volatility model with X

0 " 100, K " 115, L " 65, T " 1, σ " 5, r " 4%, β " 0.5, d N " 966, n " 5.10 4 , M " 100.

  lim

	nÑ`8	n α ph n pθq ´hpθqq " Eph, α, θq,
	then, one has	
	lim nÑ`8	

n α pθ ˚,n ´θ˚q " ´Dh ´1pθ ˚qE ph, α, θ ˚q.

Table 4 .

 4 1: Richardson-Romberg SA estimators for the quantile at level of a geometric Brownian motion with a target accuracy ε " 2 ´p, p " 1, ¨¨¨, 4.

		1 -error	time (s)	R	n	M
	5.00 ˆ10 ´1	3.21 ˆ10 ´1	0.9 ˆ10 1	2 14 8.69 ˆ10 5
	2.50 ˆ10 ´1	4.80 ˆ10 ´2 5.15 ˆ10 1	2 20 3.48 ˆ10 6
	1.25 ˆ10 ´1	4.32 ˆ10 ´2 1.70 ˆ10 2	3	8 1.21 ˆ10 7
	6.25 ˆ10 ´2	3.48 ˆ10 ´2 7.92 ˆ10 2	3 10 4.85 ˆ10 7
	Target accuracy: ε L 1 -error	time (s)		n	M
	5.00 ˆ10 ´1	2.09 ˆ10 ´1 1, 09 ˆ10 2		235 1.25 ˆ10 6
	2.50 ˆ10 ´1	3.84 ˆ10 ´2 8.18 ˆ10 2		469 5.01 ˆ10 6
	1.25 ˆ10 ´1	3.48 ˆ10 ´2 7.09 ˆ10 3		938 2.00 ˆ10 7
	6.25 ˆ10 ´2	2.91 ˆ10 ´2 5.25 ˆ10 4		1876 8.01 ˆ10 7

Table 4 .

 4 2: Crude SA estimators for the quantile at level of a geometric Brownian motion with a target accuracy ε " 2 ´p, p " 1, ¨¨¨, 4.

	eters according to (4.8), namely			
	npεq " r ˆ2αR β	`1˙1 αR	µ	1 αR

  , yqdy, S z t px, yq :" xq " pgpa, xqq ´1B 2 xi,xj gpa, xq, H i 1 pa, xq " pgpa, xqq ´1B xi gpa, xq. Passing to the limit as ε Ó 0 then in r Ó 0 and omitting technical details, we get

	" 1 2	* 1 papzqt, y ´xq 2 papzqt, y ´xq ´bi pxqH i pa i,j pxq ´ai,j pzqqH i,j	gpapzqt, y ´xq
	with H i,j 2 pa,		

  Ȳs q ´1σ p X0 s qq i p ȲT p Ȳs q ´1σ p X0 s qq j ds, pi, jq P t1, ¨¨¨, du

						2	(5.29)
	is invertible under (ND).					
	Moreover, in order to characterise some properties of the minimiser, one uses the Lagrange multiplier method
	which ensures that					
		Dλ P R d s.t. for a.a. t P r0, T s, 9 h t " xλ, ȲT p Ȳt q ´1σ p X0 t qy, " 1, ¨¨¨, q.	(5.30)
	Using the dynamics of pX 1,h t q tPr0,T s with (5.30), we deduce the following crucial identity	
	ż T	x 9 hs , dW s y " xλ,	ż T	ȲT p Ȳs q ´1σ p X0 s qdW s y " xλ, X1 T y ´xλ,	ż T	ȲT p Ȳs q ´1B ε bp0, X0 s qdsy.	(5.31)
	0		0		0		

  Pt hpu, xq " I txěLu hpu, xq `Erhpu `t, Xx t qI tτ x ątu s `Erhpu `τ x , LqI tτ x ďtu s " I txěLu hpu, xq `Sx Lqf x τ px, sqds, f y τ px, sq :" B s Ppτ x ď sq " and gpa, xq " p2πaq ´1 2 expp´1 2 a ´1x 2 q. A direct application of Itô's lemma allows to characterise the infinitesimal generators L of P t and Lx of Pt , namely for h P C 1,2 b pR `ˆp´8, Lsq and pu, xq P R `ˆR Pt´s pL ´L x qP s hpu, xqqds where pL ´L x qhpv, yq " 1 2 papyq ´apxqqB 2 2 hpv, yq `bpyqB 2 hpv, yq. Now, by an integration by parts formula, one can remove the derivatives on P s h and put them on the kernel of Pt´s . Taking care of border terms, one gets P T hpu, xq ´P T hpu, xq " T ´sP s hpu, xq `S T ´sP s hpu, xq ˘ds. ´8 hpu `t, zq St px, zqdz, St px, zq " I txăLu Moreover, one has the following controls of the two kernels: | Kt px, Lq| ď C |L´x| 2 t gpapxqt, L´xqI txăLu ď CI txăLu gpct, Lx q and | St px, zq| ď C T I txăLu

					t hpu, xq `Kx t hpu, xq
						ż u`t	ż L
		" I txěLu hpu, xq `ItxăLu	u	´8 hps, zq rf x τ px, s ´uqδ L pdzqds `q x t px, zqdzδ u`t pdsqs .
	with					
	K x t hpu, xq " I txăLu	ż t 0	hpu `s, L a 2πapyqs 3{2 ´x	exp	ˆ´pL ´xq 2 2apyqs ˙ItxďLu
			ż L		
	S x t hpu, xq " I txăLu	´8 hpu `t, zqq x	
							ż T
							`K (6.3)
							0
						txăLu	papLq ´apxqq 2	2pL ´xq apxqt	gpapxqt, L ´xq " I txăLu	papLq ´apxqq apxq	f x τ px, tq,
	St hpu, xq "	ż L					" 1 2	* t px, zqs t px, zqs ´Bz rbpzqq x z rpapzq ´apxqqq x B 2	.
				1	
				t	1 2	

t px, zqdz, qy t px, zq :" pgpapyqt, z ´xq ´gpapyqt, z `x ´2Lqq I txďLu I tzďLu , P t hpu, xq ´hpu, xq t Ñ Lhpu, xq :" I txăLu ˆbpxqB 2 hpu, xq `1 2 apxqB 2 2 hpu, xq `B1 hpu, xq ˙, Pt hpu, xq ´hpu, xq t Ñ Lx hpu, xq " I txăLu ˆ1 2 apxqB 2 2 hpu, xq `B1 hpu, xq ȧs t Ó 0. We assume that a P C 2 b pRq, b P C 1 b pRq. Roughly speaking, the first step of the forward parametrix method writes as follows P t hpu, xq " P hpu, xq `ż t 0 B s p Pt´s P s hpu, xqqds " P hpu, xq `ż t 0 with Kt hpu, xq " Kt px, Lqhpu `t, Lq, Kt px, Lq " I

  1,2 b pR `ˆp´8, Lsq, P t hpu, xq " Actually we will work with the following expression of I n t hpu, xq. By Fubini's theorem and the change of variable t i " t ´si , i " 0, ¨¨¨, n, one has Sti`1´ti ¸P t´tn hpu, xq where we used the notation ∆ p ptq " ts p P r0, ts p : s 0 :" 0 ď s 1 ď s 2 ď ¨¨¨ď s p ď t ": s p`1 u. We begin by providing a probabilistic interpretation of each kernel appearing in(6.4). First one has, For a given time partition π : 0 " t 0 ă t 1 ă ¨¨¨ă t N ă t N `1 " T , we introduce the Euler scheme Xπ " p Xπ ti q 0ďiďN `1 with the following dynamics Sti`1´ti ¸P T ´tn hpu, xq " Erhpu `T, Xπ T qI where τ x is a Lévy distributed random variable with scale parameter c " pL ´xq 2 {apxq and location parameter µ " 0 which is independent of the underlying Brownian motion W . Similarly, for the second term appearing in (6.4), after noting that Sti`1´ti ¸q K T ´tn´1 hpu, xq.

										ÿ	I n t hpu, xq, pt, u, xq P r0, T s ˆsR `ˆR.	(6.5)
										ně0
	I n t hpu, xq "	ż ∆nptq	ds n	˜n´1 ź i"0	Ssi´si`1 ¸P sn hpu, xq "	ż ∆ n ptq	dt n	˜n´1 ź i"0
	St px, zq " I txăLu	" B 2 z	2 " 1	papzq ´apxqqq x t px, zq		´Bz rbpzqq x t px, zqs *
	" I txăLu	" p	2 1	a 2 pzq ´b1 pzqqq x t px, zq `pa 1 pzq ´bpzqqB z	qx t px, zq	`1 2	papzq ´apxqqB 2 z	qx t px, zq	*
	" θt px, zqgpapxqt, z ´xq.	(6.6)
	θ "ˆ1 2	a 2 pzq ´b1 pzq ˙`pa 1 pzq ´bpzqqµ 1 t px, zq	`1 2	papzq ´apxqqµ 2 t px, zq	*	,
	µ 1 t px, zq :" H 1 papxqt, z ´xq	´1 apxqt	2pL ´xq apxqt pexpp´2 pz´LqpL´xq	q ´1q	,
	µ 2 t px, zq :" H 2 papxqt, z ´xq	`1 a 2 pxqt 2	4pz ´LqpL ´xq apxqt q ´1q pexpp´2 pz´LqpL´xq	,
	Λ t px, zq :" P ´max 0ďvďt	W v ď		L σpxq ´x ˙* I Xπ ˇˇW t " z ´x σpxq ¯" " 1 ´exp ˆ´2 pL ´xqpL ´x ´pz ´xqq tapxq ti`1 " Xπ ti `σp Xπ ti qpW ti`1 ´Wti q, Xπ t0 " x
	which in turn allows us to write the following (partial) probabilistic representation
	˜n´1								
	ź i"0									ttn`τ	Xπ tn ąT u θtn´tn´1 p Xπ tn´1 , Xπ tn q ¨¨¨θ t1 px, Xπ t1 qs
										`Erhpu `tn `τ	Xπ tn , LqI	ttn`τ
										Xπ tn q ^T, Xπ ptn`τ	Xπ tn q^T	q θtn´tn´1 p Xπ tn´1 , Xπ tn q ¨¨¨θ t1 px, Xπ t1 qs,
	ż sn´1 0	Ksn´1´sn hpu, xqds n " Erhpu `τ x , Lq	papLq ´apxqq apxq	I tτ x ďsn´1u s ": q K sn´1 hpu, xq
	we can write								
	ż ∆npT q	ds n	˜n´2 ź i"0	Ssi´si`1 ¸K sn´1´sn hpu, xq "	ż ∆ n´1 pT q	dt n´1	˜n´2 ź i"0

t px, zq :" I txăLu Λ t px, zq txďLu I tzďLu .

From the expression above, for h P B b pR `ˆp´8, Lsq, one gets ST hpu, xq " Erhpu `T, Xx T q θT px, Xx T qs. Xπ tn ďT u θtn´tn´1 p Xπ tn´1 , Xπ tn q ¨¨¨θ t1 px, Xπ t1 qs " Erhpu `pt n `τ Similarly to the previous term, one obtains the following partial probabilistic representation ˜n´2 ź i"0 Sti`1´ti ¸q K T ´tn´1 hpu, xq " Erhpu `tn´1 `τ Xπ t n´1 , LqI tτ Xπ t n´1 ďT ´tn´1u

  x τ x t q is satisfied p t p0, x, ds, dzq " p D t px, zqdzδ t pdsq `pK px, sqδ L pdzqds with, for all, p D t px, zq " e λt E Xπ ζ N ptq , t ´ζNptq qI tsěζ N ptq u Γ N ptq pxq `f Xπ

	"	q Xπ
		Xπ ζ N ptq	ζ N ptq´1

ζ N ptq t´ζ N ptq p Xπ ζ N ptq , zqΓ N ptq pxq  , p K px, sq " e λt E " f τ p τ p Xπ ζ N ptq´1 , s ´ζNptq´1 qI tsěζ N ptq´1 u ΓNptq pxq  .

  Erh 1 pX x t qI tτ x ątu s " ´eλT E

	" hp Xπ

t qΛ T ´ζNptq p Xπ ζ N ptq , Xπ t qµ 1 t´ζ N ptq p Xπ ζ N ptq , Xπ t qΓ N ptq pxq

  νpx, dyq-integrable functions p t px, yq, θ t px, yq, a constant ζ " ζpzq P R and a positive constant C, eventually depending on t but in a non-decreasing way, such that |p z t px, yq| ď p t px, yq, | θz t px, yq| ď θ t px, yq, and ż |θ t px, yq|νpx, dyq ď Ct ζ . (6.10)For the case z " y, we assume that the parametrix kernel enjoys the following smoothing property: there exists ζ ą ´1 and a positive constant C, eventually depending on t in a non-decreasing way, such that @t ą 0, @x P J , ż | θy t px, yq|νpx, dyq ď Ct ζ . (6.11) (v) For any g P C b pJ q, one has

	ż	
	lim tÓ0	gpyqp y t px, yqνpx, dyq " gpxq.

For notational simplicity, we define for t ą 0, pt px, yq :" py t px, yq, Pt f pxq :"

ż f pyqp t px,

yqνpx, dyq " ż f pyqp y t px, yqνpx, dyq, S t gpxq :" ż gpyq θt px, yqνpx, dyq " ż gpyq θy t px, yqνpx, dyq. Theorem 6.2.1. Let T ą 0. Assume that (H1) holds. Then, for any g P C b pJ q and any t P r0, T s, one has P t gpxq " Pt gpxq `ż t 0 P s S t´s gpxq ds.

  8 b pJ q then Pr g P D, and by (H2) one has pλ ´Lq Rλ Pr δ z ε gpxq " pλ ´Lq Rλ Pr δ z ε gpxq ´pL ´Lq Rλ Pr δ z ε gpxq " Pr δ z ε gpxq ´pL ´Lq Rλ Pr δ z ε gpxq. (6.15) We integrate both sides of (6.15) with respect to dz and apply S ∆ λ . For i " 1, 2, applying Fubini's theorem, one gets Passing to the limit as ε Ó 0 and r Ó 0, one gets S ∆ λ g " S ∆ λ p ş 8 0 e ´λt S t g dtq and one can pick λ such that | ş 8 0 e ´λt S t gdt| ď |g| 8 ş 8 0 e ´λt t ζ dt " |g| 8 Γpζq λ 1`ζ ă 1 2 |g| 8 . Hence, from the definition of }S ∆ λ }, we find that |S ∆ λ g| " |S ∆ λ p ş 8 0 e ´λt S t g dtq| ď 1 2 }S ∆ λ }|g| 8 . Taking the supremum over |g| 8 ď 1 yields }S ∆ λ } ď 1 2 }S ∆ λ } and, since }S ∆ λ } ă 8, we conclude that S ∆

	S i λ	ż	pλ ´Lq Rz λ	P z r δ z ε g dz "	ż 8	ż e ´λt E i r	pλ ´Lq Rz λ	P z r δ z ε gpY t qdzsdt "	ż	S i λ pλ ´Lq Rz λ	P z r δ z ε gdz
					0						
	so that			ż			ż				
				S ∆ λ p	P z r δ z ε g dzq ´S∆ λ p	pL ´L z q Rz λ	P z r δ z ε g dzq " 0.	(6.16)

´ε, @ε ą 0, which is an intermediate rate between the strong error and the usual weak error rates. In the multi-dimensional diffusion case, when the coefficients b and σ are time-homogeneous C 2 , bounded together with their derivatives up to the order 2 and uniform ellipticity holds, the ρ-Wasserstein distance is shown to be of order a logpN q{N .

The computations were performed on a computer with 4 multithreaded(16) octo-core processors (Intel(R) Xeon(R) CPU E5-4620 @

2.20GHz).

2 pz 1 qt gpapz 1 qt, |x| `|x 0 | ` ´ 0 q, νpx 0 , 0 , dx, d q :" I t 0ă u dxd `Itx0xě0u dxδ 0 pd q.

Remerciements

List of research works presented in this manuscript:

Publications related to my Phd Thesis: and ft px 0 , xq :" gpapx, 0 qt, x ´x0 q ´gpapx, 0 qt, x `x0 q, qt px 0 , 0 , x, q :" p|x|`|x0|` ´ 0q a 3 2 px, qqt gpapx, qt, |x| `|x 0 | ` ´ 0 q.

We also observe that the measure νpx 0 , 0 , dx, d q satisfies an important convolution type property in the sense that νpx 0 , 0 , dx 1 , d 1 qνpx 1 , 1 , dx, d q " upx 0 , 0 , x, , dx 1 , d 1 qνpx 0 , 0 , dx, d q (6.18)

As an application of the general methodology developed above, we obtain the following result.

Theorem 6.2.3. If (R-η) and (UE) are satisfied for some η P p0, 1s then weak uniqueness holds for the SDE (6.7) with A t pXq " L 0 t pXq, t ě 0. Moreover, the first step expansion obtained in Theorem 6.2.1 holds. However, since px 0 , 0 q Þ Ñ B x0 qt px 0 , 0 , x, q is not continuous at zero, the function px 0 , 0 q Þ Ñ S t gpx 0 , 0 q shares the same property unless the drift b satisfies bp0, q " 0, P R `. Unfortunately, one cannot iterate the first step expansion. We first remove the drift. Now the function S t g is continuous. Applying repeatedly (6.18) and Fubini's theorem, one gets

where we omit the exact expression of θt px 0 , 0 , x, q.

As our second main result, we prove that the transition density of pX t , 0 `L0 t pXqq tě0 exists and satisfies a Gaussian upper bound. Theorem 6.2.4. Let T ą 0. Assume that (R-η) and (UE) hold for some η P p0, 1s. For pt, x 0 , 0 q P p0, T s ˆR ˆR`, define the probability measure p t px 0 , 0 , dx, d q :" p t px 0 , 0 , x, qνpx 0 , 0 , dx, d q " p 1 t px 0 , 0 , x, q I t 0ă u dxd `p2 t px 0 , 0 , xq I txx0ě0u dxδ 0 pd q with p t px 0 , 0 , x, q :" ř ně0 p n t px 0 , 0 , x, q, p 1 t px 0 , 0 , x, q :" ř ně0 p n t px 0 , 0 , x, q, p 2 t px 0 , 0 , xq :" ř ně0 p n t px 0 , 0 , x, 0 q. Then, both series defining p 1 t px 0 , 0 , x, q and p 2 t px 0 , 0 , xq converge absolutely and uniformly for px 0 , 0 q, px, q P pR ˆR`q 2 . Moreover for h P C b pR ˆR`q the following representation for the semigroup holds, P t hpx 0 , 0 q " ż RˆR`h px, q p t px 0 , 0 , x, qνpx 0 , 0 , dx, d q.

Therefore, for all px 0 , 0 q P R ˆR`, the function px, q Þ Ñ p t px 0 , 0 , x, q is the probability density function of the random vector pX x0 t , 0 `L0 t pX x0 qq with respect to the σ-finite measure νpx 0 , 0 , dx, d q, where X x0 t is the solution taken at time t of the SDE (6.7) (with A t pXq " L 0 t pXq) starting from x 0 at time 0, L 0 t pX x0 q being its running symmetric local time at time t.

Finally, there exists some constants C, c ą 1 such that for all px 0 , 0 q, px, q P R ˆR`, the following Gaussian upper-bounds hold p 1 t px 0 , 0 , x, q ď Ct ´1{2 gpct, |x| `|x 0 | ` ´ 0 q and p 2 t px 0 , 0 , xq ď Cgpct, x ´x0 q. (6.20

The proof is done in several steps. First, we assume that b " 0 and obtain the above series expansion. Then, we prove the existence of a transition density in the presence of a bounded measurable drift via Girsanov transform. This allows us to extend Theorem 6.2.1 for a non-continuous function g. Finally we repeat the same argument as above.

We point out that the proof of the convergence of the asymptotic expansion for the transition density is not standard in the current setting. Indeed, in the classical diffusion setting, the parametrix expansion of the transition density converges since the order of the singularity in time induced by the parametrix kernel θt is of order t ´1`η 2 , which is still integrable near 0. The main difficulty that appears here is when one wants to control the whole convolution appearing in the right-hand side of (6.19). More precisely, it lies in the cross-terms which are of a different nature, for instance when one convolutes the non-singular part in the convolution kernel θT ´s1 with the singular part in the convolution kernel θs1´s2 . Standard arguments similar to those used in the standard diffusion case do not guarantee the convergence of the integral defining (6.19). To overcome this difficulty and show that the parametrix expansion for the transition density converges, one has to make use of the symmetry in the initial and terminal point of the density of the killed proxy process, in order to retrieve the integrability in time of the underlying convolution kernel.