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Foreword

This report summarizes most of the work that I carried out since my PhD (2011-2014).
Co-advised by G. Biau and P. Massart, the central theme of this PhD was theoretical
aspects of high-dimensional clustering problems. Technically speaking, these three years
complete my former "classical" formation in Statistics via a thorough study of
M -estimation problems and related empirical processes techniques.
The year (2014-2015) I spent in the Geometrica (now DataShape) team at Inria Saclay
as a post-doctoral fellow has made me discover a rich field of interfaces between
Statistics and Geometry/Topology. In addition to specific estimation problems such
interfaces naturally carry (estimation of manifolds, curvature, persistence diagrams,
etc.), dedicated methods in computational geometry may also provide original
approaches to classical problems in Statistics. To me, the benefits of such an interplay
are most valuable, so that a significant part of my research work from 2014 until now is
focused on these themes.
At last, I was hired in 2015 as Assistant Professor in Université Paris Diderot (now
Université de Paris), that is my current position. Interaction with the local research
team (LPSM) lead to several lines of research work mostly dealing with quantization and
robustness, that are also related to geometric inference problems mentioned in the above
paragraph.
The different themes are not equally developed, in particular I chose not to detail the
theoretical aspects of k-means clustering that are straight continuation of my PhD. The
interested reader could find these details in [Levrard, 2014, 2018, Chazal et al., 2021].

Summary

Most of my recent work pertains to geometric inference or quantization. Distance
inference may be thought of as a common thread between these two domains, that allows
to understand the difference of targets, proximity measures and means they induce.
Though none of these fields can be reduced to distance estimation, we chose to
emphasize this particular aspect and the corresponding results.

Chapter 1: Support Estimation

Chapter 1 is devoted to set estimation: the target is dK (the distance function to K), for
a compact set K embedded in RD and sampled by {X1, . . . , Xn} = Xn. This problem is
one of the salient interfaces between Geometry and Statistics mentioned above.
From a Computational Geometry point of view, some dedicated fields such as curve and
surface reconstruction [Dey, 2007] aim at building meshes from a deterministic point
cloud that are close enough to K in terms of Hausdorff distance (that is, for a mesh K̂
built from a deterministic sample Xn, controlling the term ∥dK̂ − dK∥∞). In turn,
practical applications of surface meshing can be found in medical imaging, computer
graphics and engineering among others. An important feature of these meshes is that
their topological structure may be computationally investigated and proved close to that
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of K in some particular instances (see [Boissonnat et al., 2018] for a comprehensive
introduction).
From a Statistics viewpoint, the sample Xn is random, with common distribution P that
has support K. This support inference problem may be declined into various statistical
applications, depending on the structure of K. For instance, seeking connected
components of K has clear connection with clustering [Cuevas et al., 2001], whereas
retrieving the boundary of a 2-dimensional K ⊂ R2 has applications in image analysis
[Solé et al., 2004]. A special interest has been recently paid to the case where K has a
much smaller dimension d than the ambient space. In this case, estimation of K may be
thought of as a non-linear dimensionality reduction technique. This intuition gave birth
to numerous dimensionality reduction algorithms via embedding, such as Isomap
[Tenenbaum et al., 2000] and LLE Roweis and Saul [2000].
Chapter 1 consists in a panoramic view on minimax rates for support estimation under
various regularity assumptions, that provides a frame to our results in the manifold case
(where K is a d-dimensional manifold). This still active line of work has been carried out
in collaboration with E. Aamari and C. Aaron.
To start with, we introduce the base convergence rate n−1/d that is minimax over the set
of distributions that have d-dimensional supports, and is achieved by the naive estimator
K̂ = Xn, that is the sample itself [Devroye and Wise, 1980]. Then, we expose several
convexity-type assumptions on the support that can guarantee improved convergence
rates in the full-dimensional case. Namely, in the case where K is D-dimensional and
satisfies a convexity-type assumption, then some compact estimators K̂ can be built that
satisfy

E(dH(K̂,K)) ≲ n− 2
D+1 ,

provided that the boundary ∂K is smooth enough. Importantly, the proposed estimators
rely on constructive and geometrically flavored procedures based on sample points that
can be easily implemented. From the theoretical side, the key point is that both
regularity of the compact K and its boundary ∂K are needed to ensure that better
estimators than Xn can be conceived.
At last, we expose our work in the general manifold case, when K is assumed to be a
d-dimensional manifold, for d ≤ D. Based on the intuition provided by the
full-dimensional case, key regularity parameters of the targeted manifolds are its reach
(Federer [1959]), that generalizes the aforementioned convexity-type conditions, and the
reach of its boundary, if any. Our results can be summarized in a few lines: in the
particular case where K is a compact Ck manifold without boundary, then some
manifold estimators K̂ achieve

E(dH(K̂,K)) ≲ n− k
d ,

where the ambient dimension D plays no role (even in the constants). This rate is also
proved minimax optimal, and in the case where k = 2, a constructive estimator K̂ based
on the Tangential Delaunay Complex [Boissonnat and Ghosh, 2014] is given that is also
topologically consistent. This is also the case for the estimator given in the recent work
[Divol, 2021], based on the Čech complex of Xn.
In the case where K is a manifold with non-empty boundary, we provide convergence
rates for the C2 case, showing that

E(dH(K̂,K)) ≲ n− 2
d+1 ,

for some estimator K̂ that relies on local linear patches and a preliminary boundary
detection step. This rate is in line with the convergence rates for the full-dimensional
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case, and is also proved minimax optimal. The general Ck case with boundary remains an
open question, our current work suggests that a rate in n− k

k+d−1 is likely to be optimal.
We conclude this chapter with an overview of results in noisy cases, that is where sample
points Xn are not necessarily drawn on K. Three noise cases are exposed: ambient noise
(a portion β of the sample is drawn on K, the remaining part is drawn from a uniform
distribution in the ambient space), bounded tubular noise (a sample point Xi takes the
form Yi + εi, where Yi is on K and εi is orthogonal to K), and general additive noise.
While the two first cases still yields polynomial decay of convergence rates (n− 2

d for the
ambient noise model for C2 manifolds, n− 2

d+2 for the tubular noise model), the general
additive noise model presents a logarithmic decay of the minimax rate (at most log(n)−1

if the noise is Gaussian) that mitigates the interest of support estimation as a
preliminary step for further inference in this case.

Chapter 2: Coresets and Quantization for distance to support
estimation

Chapter 2 motivates the introduction of the notion of coreset for distance to compact
functions, and exposes how quantization theory can be adapted to provide such coresets
in noisy situations, based on [Brécheteau and Levrard, 2020].
The notion of coreset is tied to a branch of the computational geometry field, that
intends to build ε-approximations of various quantities such as volumes, diameters, etc.
based on the least possible inputs. Following [Agarwal et al., 2005], a general definition
of this notion could be "the extraction of small amount of most relevant information
from the given data, and performing the computation on this extracted data".
In the case where the targeted quantity is the distance to compact set dK , a coreset will
be a set of points c = (c1, . . . , ck) and weights ω = (ω1, . . . , ωk) such that
dc,ω : x 7→ minj=1,...,k

√
∥x− cj∥2 + ω2

j is a good approximation of dK . This particular
form has the advantage of allowing for topological inference from the sub-level sets of
dc,ω [Chazal et al., 2011], as well as decreasing the computational cost of algorithms that
construct topological descriptors. For instance, if the topological descriptors are
retrieved from a Rips complex filtration of n points (that requires computation of O(n2)
pairwise distances), then the (weighted) Rips filtration based on dc,ω would rather
require O(k2) computations.
This chapter begins with a brief presentation of the topological descriptors that
motivates the introduction of our particular form of coresets. Some of them, such as
Persistence Diagrams, are now common tools from the Topological Data Analysis field
(TDA) that have been proved to be relevant features in many statistical learning
applications [Singh et al., 2008, Carrière et al., 2019]. Then, preliminary results are given
for the conception of coresets from sample in the noise-free case for the sup-norm, that
are consequences of Chapter 1: for a precision parameter ε and a sample Xn drawn on a
d-dimensional K, a coreset of size k(ε) = O(ε− 1

d ) may be extracted from Xn using the
Farthest Point Sampling Algorithm (choose a first point c1 at random from Xn, then
pick c2 as the furthest sample point from c1, c3 as the furthest sample point from
{c1, c2}, etc., and stop when d(ck+1, {c1, . . . , ck}) is smaller than ε). A standard volume
argument ensures that k(ε) is optimal, in the sense that any coreset dĉ,ω̂ built from Xn
that satisfy E∥dĉ,ω̂ − dK∥∞ ≤ ε must have Ω(ε− 1

d ) points.
In additive noise settings, choosing as coreset a subsample of Xn is no more relevant.
Chapter 2 then follows by introducing quantization as a way to build coresets in this
noisy case. To be more precise, quantization aims at designing so-called codebooks
c = (c1, . . . , ck) that minimize c 7→ P (du)V (dc(u)) rather than ∥dc − dSupp(P )∥∞, where
P (du)f(u) denotes integration of f with respect to P and V is a non-decreasing
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function. This general principle originates from signal compression theory [Gersho and
Gray, 1991], and finds its natural application in source coding [Leis, 2019] and numerical
integration [Pagès, 1998]. Usual choices for the potential V are power functions, whose
exponent is closely tied with the specification of noise (exponent r is suited for signal
perturbation seized in r-Wasserstein distance), this chapter focus on the special case
r = 2, that intends to minimize RP (c) = P (du)d2

c(u). This squared-distance choice is
motivated by the following facts. First, [Clarkson, 2006] ensures that optimal codebooks
in the sense of RP are optimal coresets for the sup-norm, in the noise-free case. Second,
it allows for perturbations seized in W2 distance, that is
|
√
RP (c)−

√
RQ(c)| ≤W2(P,Q), so that minimizers of a perturbed version RQ are

O(W2(P,Q))-close to noise-free minimizers, in terms of RP . At last, codebooks may be
built from sample using fast and well-known algorithms such as [Lloyd, 1982].
Unfortunately, optimal codebooks in the sense of RQ can be proved arbitrarily bad
coresets for dSupp(P ) in some cases, that is ∥dc∗

Q
− dSupp(P )∥∞ → +∞, where c∗

Q

minimizes RQ and k → +∞. Intuitively, this is due to the fact that P 7→ dSupp(P ) is not
continuous with respect to Wasserstein perturbation.
To address the instability issue of dSupp(P ), as well as to bypass the log(n)−1 convergence
rate for estimating it under Wasserstein perturbation, a standard approach is to
introduce a surrogate d̃ to dSupp(P ) that is close enough to convey topological guarantees
and that can be estimated from sample with faster rates. Such an approach has been
proved fruitful for instance in Genovese et al. [2014], Fefferman et al. [2018], where
surrogates for the distance to a manifold are proposed that can be estimated at a
polynomial rate. In our Wasserstein perturbation framework, a relevant surrogate choice
is the Distance to Measure (DTM) Chazal et al. [2011], that is provably stable with
respect to W2 metric and whose bias term may be controlled in the models exposed in
Chapter 1, that is ∥dP,h − dSupp(P )∥∞ → 0 whenever h→ 0, where dP,h denotes the
DTM. The remaining of Chapter 2 exposes joint work with C. Brécheteau that builds a
coreset for the DTM, based on quantization.
Our coreset for the DTM relies on the fact that the distance to measure may be
expressed as a power distance, that is

d2
P,h(x) = inf

τ∈RD
∥x− τ∥2 + ω2

P,h(τ).

The k-Power Distance to Measure (k-PDTM) we propose as a coreset is
straightforwardly dP,h,k(x) = minj=1,...,k ∥x− c∗

j∥2 + ω2
P,h(c∗

j ), where c∗ minimizes the
least-square criterion c 7→ P (du)[minj=1,...,k ∥u− cj∥2 + ω2

P,h(cj)]. This k-PDTM has
robustness properties with respect to Wasserstein noise, as for the DTM, and bounds on
∥dSupp(P ) − dQ,h,k∥∞ may be stated for the models of Chapter 1 that can exploited for
topological inference whenever W2(P,Q) is small enough. At last, dQ,h,k may be
estimated from sample at a parametric rate in terms of distortion using an empirical risk
minimizer, that is |Q(du)(d2

Qn,h,k
− d2

Q,h,k)(u)| = O(n− 1
2 ), that can be used to get a final

guarantee on ∥dSupp(P ) − dQn,h,k∥∞. From a computational viewpoint, dQn,h,k may be
approximated using a straightforward adaptation of the Lloyd quantization algorithm
[Lloyd, 1982], that is proved efficient in numerical experiments.

Chapter 3: Outlier detection and Clustering

Our last chapter presents two extensions of the coreset designing via quantization
principle exposed in Chapter 2. First, we propose an adaptation and generalization of it
in the case where adversarial noise is allowed and for dissimilarity measures that can be
expressed as Bregman divergences. Second, we depart from the distance function
estimation framework to expose a vectorization and compression scheme in the case
where data samples come as measures, based on quantization as well.
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Robust Bregman Quantization

The first part of Chapter 3 is motivated by the following two remarks. First, the coreset
designing problem for the DTM exposed in Chapter 2 can be reduced to minimize
c 7→ Q(du)dϕ(u, c), for a particular Bregman divergence dϕ. Second, though the
aforementioned k-PDTM adapts to additive noise, it is provably highly sensitive to
adversarial perturbations. In collaboration with C. Brécheteau and A. Fischer, we
propose a general Robust Bregman Quantization scheme that intends to answer these
two remarks. Apart from the robustification of the procedure exposed in Chapter 2, a
major interest of this procedure relies in its applications to robust clustering, that is a
field of growing interest in the last decades [Banerjee and Davé, 2012, Brunet-Saumard
et al., 2022, Cardot et al., 2013, Fritz et al., 2012].
The base idea is simple: for a prescribed threshold α (thought of as the maximal
proportion of adversarial noise that can be faced), we intend to minimize the trimmed
Bregman Distortion c 7→ Rα(c) = minA|Q(A)≥1−αQ(du)[dϕ(u, c)1A(u)] from sample,
using an empirical risk minimization strategy. In other words, we seek both a coreset
ĉn,α and a trimming set A outside which points are considered as noise, by minimizing
minA|Qn(A)≥1−αQn(du)[dϕ(u, c)1A(u)], where Qn is the empirical distribution associated
with the (possibly corrupted) sample. The robustness of an empirical distortion
minimizer ĉn,α is assessed in two ways: first by proving oracle inequalities of the type

Rα(ĉn,α)− inf
c
Rα(c) ≲ n− 1

2 ,

under an order 2 moment condition that is usual in the robust estimation literature
[Brownlees et al., 2015, Catoni and Giulini, 2018]. Second, robustness with respect to
adversarial noise is seized in terms of Finite Sample Breakdown Point (FSBP, [Donoho
and Huber, 1983]), the minimal portion of adversarial noise that is required to render an
estimator arbitrarily bad. In our robust quantization setting, the FSBP of ĉn,α is closely
tied to the structure of Q: indeed, let pj,α is the Qn-mass of
{x ∈ RD | ∀i ̸= j dϕ(x, ĉn,α,i) ≥ dϕ(x, ĉn,α,j)} ∩A(ĉn,α), where A(ĉn,α) denotes the
optimal trimming set associated with ĉn,α, and pmin,α is the smallest of these Qn-masses.
Then, if α > pmin,α, replacing the portion pmin,α of the sample that corresponds to the
trimmed Bregman Voronoi cell with the smallest weight by a mass pmin,α located at
{xo}, where xo is far enough from the support of Q, will enforce one code point to be
located at xo. Thus the FSBP is smaller than pmin,α. On the other hand, it is immediate
that the FSBP is smaller than α. We provide a precise bound on the FSBP in terms of
structural quantities of Q, that we prove optimal.
In a clustering framework, that is when signal sample is organized around k0 natural
centers, the FSBP may be interpreted as the minimal mass a spurious noise cluster must
have to be considered as signal by our procedure. In practice, the choice of a trim level
set α and a number k of clusters are interleaved issues: small clusters labeled as signal
for small α’s may be labeled as noise for larger α’s. We propose a screening procedure to
identify relevant choices of k (number of clusters) and α from data, that is illustrated on
a stylometric author clustering task based on word counting. Interestingly, choosing as
Bregman divergence the one associated with the potential ϕ : u 7→ u log(u)− u (Poisson
divergence) yields excellent results for this problem. From a theoretical point of view,
the choice of a Bregman divergence may be interpreted as a choice of a distribution from
the exponential family, the sample being then modeled as drawings from a mixture of
those distributions [Banerjee et al., 2005b]. To some extent, our Robust Bregman
Quantization method may be thought of as a robust Classification EM method [Celeux
and Govaert, 1992] with arbitrary distributions from the exponential family, in a robust
clustering framework.
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Quantization-based embedding of measures

We conclude Chapter 3 by presenting an application of quantization to the case where
the sample Xn consists of n i.i.d. measures Xi rather than points. The motivating
example of this work is TDA-based learning, in which persistence diagrams play the role
of features and are thought of as discrete measures on R2. This situation may also be
encountered whenever data are spatial point patterns, as in species distribution modeling
[Renner et al., 2015], crime distribution [Shirota et al., 2017], etc., or as bags of
instances, this last case being referred to as Multiple Instance Learning (MIL) [Dietterich
et al., 1997]. In TDA-based learning, persistence diagrams are often processed via a
vectorization scheme that intends to convert the (discrete) measures into vectors that
can be used in standard learning algorithms. This vectorization step can be carried out
by constructing finite-dimensional embeddings [Adams et al., 2017, Carrière et al., 2019]
or kernel embeddings [Bubenik, 2015, Carrière et al., 2017]. Most of the more recent
vectorization methods are intended to provide the "best" possible vectorization for some
dedicated problem, that is often supported by numerical investigations. The approach
we propose originates from F. Chazal’s empirical remark: "running a k-means on the
whole set of points and transforming measures into vector of counts points around
centers yields not that bad results". The line of work [Royer et al., 2021, Chazal et al.,
2021] we conducted, in collaboration with F. Chazal and M. Royer, backs this intuition.
The vectorization process we propose is simple: for a codebook c = c1, . . . , ck, a kernel ψ
and a bandwidth σ, we embed measures into Rk via

vi = v(Xi) = (Xi(du)ψ(∥u− c1∥/σ), . . . , Xi(du)ψ(∥u− ck∥/σ)).

In practice, the kernel ψ(u) = exp(−u) gives satisfactory results [Royer et al., 2021], but
other choices are possible that convey the same theoretical guarantees [Chazal et al.,
2021]. The vectorization codebook is built using quantization algorithms that intend to
approximate the mean measure E(X) (defined by E(X)(A) = E(X(A)), for a measurable
set A, where X is a random measure with the same distribution as Xi, i = 1, . . . , n).
Intuitively speaking, this vectorization scheme encodes the mass that Xi spreads around
every code point cj . In a mixture model with two components, with distributions
X(j) ∼ Xi | {Zi = j}, j ∈ {1, 2}, where Zi is the label, if a code point c falls in an area
where X(1) and X(2) differ, then the resulting coordinate on the vectorization will be
discriminative. More precise results on discriminative code points, that relate areas of
discrimination, kernel and bandwidth choice are stated, that provide guarantees on the
vectorization output in a clustering framework, provided one code point fall into such a
discriminative area. Of course, similar result can be derived in a supervised learning
framework.
Our theoretical targeted codebook is an optimal codebook for E(X), that is

c∗ ∈ arg min
c∈(RD)k

E(X)(du) min
j=1,...,k

∥u− cj∥2.

In view of the following learning task, ensuring that optimal codebooks have code points
in discriminative areas is crucial. Again, the intuition is simple: in the two-components
mixture model considered above, a discriminative area A∗ must have positive X(j) mass,
for some j ∈ {1, 2} and w.h.p.. Thus, A∗ has positive E(X) mass. Since optimal
codebooks are coverings of the support of E(X) (Clarkson [2006]), an optimal code point
must fall in A∗ provided k is large enough. This intuition may be quantified, for instance
in the case where X is a mixture distribution of persistence diagrams from different
shapes. Though the exposed heuristic also works if c∗ is chosen as a uniform grid of the
ambient space, let us emphasize that the quantization approach yields the same benefits
as for the distance estimation framework of Chapter 2. First it adapts to the intrinsic
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dimension (of the support of E(X)), thus requiring less code points than uniform
gridding. Second, it may adapt to small additive noise, contrary to choosing code points
as a grid of the support of observed measures. In some sense, choosing code points via
quantization may be thought of as middle road between uniform grid and sample
gridding, the flaws of each being mitigated. This point is illustrated via numerical
investigation, showing that our quantization-based approach indeed takes the best of
these two gridding methods.
The next step is to build approximations of optimal c∗’s from (measure) sample. To this
aim, simple quantization algorithms designed for the point sample [Lloyd, 1982,
MacQueen, 1967] case may be adapted to our measure-sample case, resulting in a batch
and mini-batch algorithm. From a theoretical point of view, following [Bottou and
Bengio, 1995], the aforementioned algorithms may be thought of as a Newton gradient
descent (batch version) and a stochastic gradient descent for the risk function
R : c 7→ E(X)(du) minj=1,...,k ∥u− cj∥2, so that standard conditions such as
co-coercitivity and Lispchitz gradients may ensure convergence of those algorithms.
Interestingly, a straightforward adaptation of the margin condition [Levrard, 2015] to the
measure sample case is sufficient to guarantee〈

D(c)−1∇cR, c− c∗
〉
≥ (1− ε0)∥c− c∗∥2 (co-coercitivity),∥∥∥D(c)−1∇cR

∥∥∥ ≤ (1 + ε0)∥c− c∗∥ (Lipschitz Gradient),

where D(c)−1 is a suitable (almost Newton) renormalization used in the algorithms and
ε0 is a small enough constant, provided that c (thought of as a starting point of the
algorithm) is close enough to an optimal c∗. Thus, provided that E(X) satisfies a margin
condition and that initialization is close enough to an optimal c∗, the output of the
batch algorithm (stopped after 2 log(n) iterations) and the minibatch algorithm
(single-pass) both satisfy

∥ĉn − c∗∥ ≲ n− 1
2 ,

that is the minimax rate over the class of distributions satisfying margin conditions
[Levrard, 2018].
From an empirical point of view, complexities of the aforementioned quantization
algorithms (O(n log(n)) for the batch one and O(n) for the single-pass one) suggest a
practical interest in large-scale measure classification or clustering problems. This claim
is backed by extensive numerical experiments, including large-scale graph classification
for which our global scheme (quantization → vectorization → classification) shows close
to the state of the art performance, with a much milder computational cost than
dedicated methods. To summarize, the (fully unsupervised) vectorization we propose is
simple enough to adapt a broad range of situations and scales, at the price of some
(experimentally reasonable) loss of optimality. Investigating supervised counterparts of
this simple vectorization scheme is ongoing work with O. Hacquard and G. Blanchard.
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Notations
We list here some notation that are used throughout the manuscript.

▶ B(x, r) (resp B̄(x, r)), open (resp. closed) ball centered at x ∈ RD, with radius r.

▶ For A ⊂ RD, B(A, r) = {x ∈ RD | d(x,A) < r} (resp.
B̄(A, r)) = {x ∈ RD | d(x,A) ≤ r}).

▶ ∂M , differential boundary, ∂̄M ambient boundary.

▶ For K,A ⊂ RD, BK(A, r) = B(A, r) ∩K (resp. B̄K(A, r) = B̄(A, r) ∩K)).

▶ For K ⊂ RD, dK is the distance to K function.

▶ For K,K ′ ⊂ RD, dH(K,K ′) is the Hausdorff distance between K and K ′.

▶ For a closed K ⊂ RD, πK is the projection onto K (defined wherever the projection
onto K is unique).

▶ For f a (multi) linear map (resp. matrix, tensor), ∥f∥op is the operator norm.

▶ If T0, T1 are two d-dimensional subspaces of RD, ∠(T0, T1) = ∥πT0 − πT1∥op is the
angle between T0 and T1.

▶ For P a measure and f a function, P (dx)f(x) is the integration of f with respect
to P (when properly defined).

▶ For v ∈ RD and i ∈ N∗, v⊗i = (v, . . . , v) ∈ RD×i (tensor product).

▶ TV(P0, P1), total variation distance between P0 and P1 (probability measures).

▶ Cα1,...,αp , cα1,...,αp , large (resp. small) enough constants that only depend on the
parameters α1, . . . , αp.

xiii
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Chapter 1

Distance to compact estimation:
noise-free case and sup-norm

This chapter contains a non-exhaustive survey of results in compact set estimation
theory, often referred to as support estimation in Statistics. Minimax convergence rates
in terms of Hausdorff distance, of the type

inf
estimators K̂

sup
K∈K

EdH(K̂,K),

are investigated under several regularity assumptions on the class of compact sets K.
This overview starts from relaxed convexity assumptions in the full dimensional case,
under which the naive estimator K̂ = Xn, that is the sample itself, is no more optimal.
A careful analysis of the influence of these regularity parameters allows to design
regularity classes in the case where K has smaller intrinsic dimension d than the ambient
dimension D, namely in the manifold case. To summarize, the key regularity
assumptions in the manifold case are: differential regularity of the manifold, convexity of
the manifold (encoded by its reach), and convexity of its boundary.
Section 1.4 gathers and frames the results in Aamari and Levrard [2018, 2019], Aamari
et al. [2021] pertaining to manifold estimation, emphasizing connections with the
full-dimensional regularity classes exposed in the first sections. To summarize, provided
the reach of manifolds and boundaries (if any) are uniformly lower bounded, the
minimax convergence rates in terms of Hausdorff distances are n− k

d in the Ck case
without boundary, and n− 2

d+1 in the C2-case with boundary. These rates are attained by
constructive manifold and boundary estimators that are described throughout the
section.
We conclude this chapter by providing a short overview of existing results in noisy cases,
giving some insights on what type of noise leads to a difficult estimation problem.

1.1 The compact set estimation framework
Throughout this chapter, we let P be a probability distribution whose support K ⊂ RD
is to be inferred. The support K is formally defined via

K =
⋂

F closed s.t. P (F ) = 1
F.

By definition, K is a closed subset of RD. We make the additional assumption that K is
bounded, thus compact.
Given Xn = {X1, . . . , Xn}, an i.i.d. n-sample drawn from P , an estimator K̂ of K is a
random subset of RD. The proximity between K and K̂ will be seized in terms of
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Hausdorff distance,

dH(K̂,K) = inf
{
r ≥ 0 | K̂ ⊂ B̄(K, r) and K ⊂ B̄(K, r)

}
,

where, for any set A ⊂ RD, B(A, r) (resp. B̄(A, r)) denotes the (closed) r-offset of A,
that is B(A, r) =

⋃
x∈AB(x, r) (resp.

⋃
x∈A B̄(x, r)). If dA denotes the distance to A

function

dA :
{
RD −→ R+

x 7→ infx∈A ∥x−A∥,

then it is easy to see that

dH(K̂,K) = ∥dK̂ − dK∥∞.

This basic equality exposes the equivalence between compact set estimation in terms of
Hausdorff distance and distance estimation in terms of sup-norm. To bypass potential
measurability issues in the space of compact sets, we assume that{

(RD)n,B
(
(RD)n)

)
−→ (R,B(R))

(x1, . . . , xn) 7→ dH(K̂(x1, . . . , xn),K)

is measurable.

1.2 The (a, b)-standard assumption

Without additional regularity assumptions on K (and P ), it falls under the intuition
that the compact set estimation problem is hard in the minimax sense, that is

inf
K̂

sup
Supp(P )=K⊂B(0,R)

EdH(K̂,K),

for some maximal radius R. Indeed, consider P0 = δ0 with support K0 = {0}, and
P1 = (1− u)δ0 + uδx0 with support K1 = {0, x0}, where u ∈]0, 1[. To make the
discrimination between K0 and K1 based on Xn, a sample point must fall on {x0}. Such
an event has probability smaller than 1− (1− u)n, therefore, with probability larger
than (1− u)n, deciding whether the support is K0 or K1 is a random guess. The cost
incurred for such a random guess is dH(K0,K1)/2 = R/2. Choosing u small enough (1/n
for instance) allows to lower bound the minimax risk. This intuition can be formalized
using Le Cam’s lemma (see, e.g., Yu [1997]), adapted to our framework.

Let P be a set of compactly supported distributions. Then, for any P0, P1 ∈ P, with
supports K0 and K1, we have

inf
K̂

sup
P∈P

E
(
dH(K̂,K)

)
≥ 1

2dH(K0,K1)(1− TV (P0, P1))n,

where TV denotes the total variation distance, that is

TV(P0, P1) = sup
A∈B(RD)

|P0(A)− P1(A)| .

Lemma 1.1 : [Aamari and Levrard, 2019, Theorem 8]
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Considering P0 and P1 described above, it easily follows that

inf
K̂

sup
Supp(P )=K⊂B(0,R)

EdH(K̂,K) ≥ c0R,

where c0 is an absolute constant. From this viewpoint, the constant estimator K̂ = {0}
is minimax optimal over the class of compactly supported distribution (whose support is
included in a prescribed ball).
To avoid the potential for spurious areas with arbitrarily small weights, a general
approach is to require that P spreads enough mass around every point of its support,
leading to the following definition.

Let a, b be positive real numbers. A measure P on RD satisfies the (a, b)-standard
assumption at scale r0 if

∀x ∈ Supp(P ) ∀r ≤ r0 P (B(x, r)) ≥ arb ∧ 1.

A measure P is called (a, b)-standard if it satisfies the (a, b)-standard assumption at
scale r0, for some r0 > 0.

Definition 1.2 :

Roughly, the (a, b)-standard assumption requires that balls with centers in the support
have masses that can be compared with Lebesgue volumes of b-dimensional Euclidean
balls (whenever b ∈ N). Note that a more general definition can be found in Cuevas and
Fraiman [1997] for instance, allowing comparison with a general measure µ rather than
the b-dimensional Lebesgue measure.
This (a, b)-standard assumption is usual in set estimation theory (Cuevas [2009], Cuevas
and Rodríguez-Casal [2004], but also in Topological Data Analysis, from the statistics
point of view (Fasy et al. [2014], Chazal et al. [2015a,c, 2016]). It encompasses convexity
type assumptions such as the ones described in Section 1.3, but also cases where P is a
distribution on a smooth structure (such as a C2 manifolds), with lower bounded density.
As described by the following examples, both smoothness of the support and density
assumptions are encoded via the (a, b)-standard assumption.
Example 1.3.

1. Assume that P is supported by M , a C2 d-dimensional submanifold of RD. Let
HM denote the Hausdorff volume measure on M ([Federer, 1969, 2.10.2]), and
assume that P has a density f with respect to HM , lower bounded by fmin. Then
P is (a, d)-standard, for some a > 0 (Aamari et al. [2021]).

2. If K is the Cantor set, HK is its Hausdorff measure, and P has a lower-bounded
density f with respect to HK , then P is (a, log(2)/log(3))-standard.

3. If K = [0, 1], and P has density proportional to [x(1− x)]+, then P is
(a, 2)-standard, for some a > 0.

4. Assume that K ⊂ R2 has an arbitrarily narrow corner (as depicted by Figure 1.1),
and that P has a density f with respect to the 2-dimensional Lebesgue measure.
Then, for any (a, b) such that b ≤ 2, P cannot be (a, b)-standard.

Provided that the (a, b)-standard assumption holds, consistent estimators of K may be
defined. A basic estimator is K̂ = Xn, that estimates K directly via the sample point.
The following result gives convergence rates for this naive estimator.
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K
x0

Figure 1.1: Arbitrarily narrow corner at x0. Uniform distribution on K cannot be (a, 2)-
standard.

Assume that P is (a, b)-standard at scale r0, let K denote the support of P , and
K̂ = Xn. Denote by

rn =
(

[(1 + 1/b) ∨ 4b] log(n)
an

) 1
b

.

If n is large enough so that rn ≤ 2r0, then

E[dH(K̂,K)] ≤ rn.

Theorem 1.4 : [Aamari, 2017, Proposition III.14]

Note that deviation bounds can also be found in Chazal et al. [2015d]. Interestingly, the
same authors prove that no faster rate of convergence can be expected over the class of
(a, b)-standard distributions.

Let P(a,b)−st denote the set of (a, b)-standard probability measures. Then

inf
K̂

sup
P∈P(a,b)−st

E
[
dH(K̂,K)

]
≥ ca,b

( 1
n

) 1
b

.

Proposition 1.5 : [Chazal et al., 2015d, Section B.2.2]

This result is based on Lemma 1.1, with two hypotheses on the real line, namely δ0 (that
is (a, b)-standard for any a and b), and (1− 1/n)δ0 + (1/n)δxn , where xn tends to 0 with
rate n−1/b. This stresses out that the (a, b)-standard assumption is not completely tied
to the geometric structure of the support. Concerning the log(n) term of the upper
bound, we strongly believe that a lower bound in (log(n)/n)

1
b could be derived, at the

price of more technicalities as in Kim and Zhou [2015].
Though providing consistent estimators, the (a, b)-standard assumption is still too loose
to render the construction of interesting compact estimators relevant, as alleged by
Proposition 1.5. Consequently, additional assumptions on the structure of Supp(P ) will
be exposed in the following sections, under which the naive estimator Xn will be no
longer minimax optimal.

1.3 Convexity type assumptions
As detailed in the last section, structural assumptions on K are needed to conceive
better estimation strategies than the sample points estimator Xn. Several convexity-type
properties have been conceived, leading to different estimation strategies. We briefly
expose here the notions of r-rolling condition Cuevas et al. [2012], r-convexity
Rodríguez Casal [2007b], and bounded reach Federer [1959].
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Let r > 0.

▶ [Cuevas et al., 2012, Definition 1]: K satisfies the r-rolling condition if, for all
x ∈ ∂̄K, there exists p /∈ K such that B̄(p, r) ∩K = {x} and B(p, r) ∩K = ∅.

▶ [Rodríguez Casal, 2007b, Definition 1]: K is r-convex ,for r > 0, if

K =
⋂

B(x,r)⊂Kc

B(x, r)c.

Definition 1.6 :

Note that the r-convex condition is strictly stronger than the r-rolling ball assumption
(see, e.g., [Cuevas et al., 2012, Proposition 2]). To introduce the bounded reach
condition, let us first introduce the medial axis

Med(K) = {x ∈ RD | ∃a, b ∈ K, a ̸= b, ∥x− a∥ = ∥x− b∥ = d(x,K)}. (1.1)

The reach Federer [1959] of K, τK is then defined by

τK = inf
p∈Med(K)

d(p,K) = min
x∈K

d(x,Med(K)).

Then the bounded reach assumption is τK > 0. This assumption is standard in

r

τK

y

r

B(y, r) ⊂ Kc

K

Figure 1.2: r convexity and reach. K is r-convex, but τK < r.

topological inference, where τ−1
K is called condition number Niyogi et al. [2008], Singer

and Wu [2012]. Note that, for a given r > 0, τK ≥ r implies the r-convexity assumption,
but the converse is not true Cuevas et al. [2012], see Figure 1.2. At last, let us mention
that τK = +∞ is equivalent to K is convex [Federer, 1959, Remark 4.2]. For any r > 0,
implications between these convexity conditions can be summarized as

Convexity ⇒ τK ≥ r ⇒ r-convexity ⇒ r-rolling ball,

with strict inclusions. Whenever such a convexity-type assumption is required, more
involved estimators can be designed. For instance, if K is convex, then K̂ = Conv(Xn)
seems a relevant estimator of K. This intuition may be further pushed in the r-convex
case by considering the r-convex hull of the sample point, that is

K̂ =
⋂

B(x,r)⊂Xc
n

B(x, r)c.

However, without further regularity assumptions, these convexity conditions are not
enough to provide improved convergence rates. Indeed, let C be a d-dimensional convex
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δd/2

δ

Figure 1.3: Two hypothesis for convex estimation.

set, and assume that P has a density with respect to the d-dimensional Lebesgue
measure that is lower bounded by fmin. We denote by Pcvx,fmin the set of such
probability distributions. Note that a distribution P ∈ Pcvx,fmin is (a, d)-standard, for
some a > 0. Intuitively speaking, if C has a corner, then it is likely that taking the
convex hull will not yield better results than considering the sample in the corner area.
This intuition is formalized by the following result.

Recall that Pcvx,fmin is the set of distributions with convex support and density f ≥
fmin > 0. It holds, for fmin small enough,

inf
Ĉ

sup
Pcvx,fmin

E[dH(Ĉ, C)] ≥ cd,fminn
− 1

d .

Proposition 1.7 :

Such a lower bound has been proved in [Korostelëv and Tsybakov, 1994, Theorem 2] for
the special case d = 2 (with explicit constants). We provide here a short generalization
to the d-dimensional case.

Proof of Proposition 1.7. Following the intuition, we will define two convex sets with
corners that will differ at corners (see Figure 1.3). We start from the unit cube [0, 1]d.
For a fixed δ > 0, we let Λδ denote the pyramidal cap defined as the convex hull of
{0, δe1, . . . , δed}, where (e1, . . . , ed) denotes the canonical basis of Rd. Then C0 is defined
via C0 = [0, 1]d \ Λδ, and C1 = [0, 1]d \ (1− Λδ). P0 and P1 are defined as the uniform
distributions over C0 and C1.
It is immediate that dH(C0, C1) =

√
dδ. Moreover, for δ ≤ Cdn− 1

d , we have
TV (P0, P1) ≤ n−1. Applying Lemma 1.1 gives the desired result.

Roughly speaking, Proposition 1.7 shows that no statistical gain can be expected from
the additional convexity assumption compared to the (a, d)-standard model. Since the
convex assumption is stronger than all aforementioned convexity-type conditions, there
is no hope that such conditions could lead to better set estimators than Xn.
To get better convergence rates, we have to ensure that no corner can occur. There
exists several assumptions to avoid such a situation, such as the ones given in Dümbgen
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and Walther [1996], Bárány [1989], Korostelëv and Tsybakov [1994] for the convex case,
all of them requiring that ∂K is smooth, in a certain sense. To ease the intuition, we will
assume that ∂K is C2, that is enough to satisfy the aforementioned conditions. In this
case, improved convergence rates can be derived.

Let P ∈ Pcvx,fmin, and let K̂ denotes the convex hull of the sample points. It holds

dH
(
K̂,K

)
=

 O
(
(log(n)/n)

1
d

)
a.s.

O
(
(log(n)/n)

2
d+1
)

a.s. if ∂K is C2.

Theorem 1.8 : [Dümbgen and Walther, 1996, Corollary 1]

A more precise result for the case d = 2 can be found in [Korostelëv and Tsybakov, 1994,
Theorem 3], with explicit constants depending on the curvature of ∂K. Note that the
convexity condition can be slightly relaxed: a similar result is given by [Rodríguez Casal,
2007b, Theorem 3] for the r-convex hull in the r-convex case. In these two cases (convex
and r-convex), the proposed convergence rates are in fact driven by the estimation rate
of the boundary ∂K.
It is important to mention that improved convergence results under regularity
assumptions of the boundary hold in the full-dimensional case d = D, or in the case
where K is included in a d-dimensional linear subspace of RD, that allows to define the
boundary ∂K. The following section extend this flat case, by considering the case of
submanifolds of RD.

1.4 Manifold estimation

Throughout this section we assume that K is a compact d-dimensional submanifold of
RD, that we rename M . In the manifold setting, the boundary may be defined in a
differential geometric way. By definition, the d-dimensional submanifolds M ⊂ RD with
boundary are the subset of RD that can locally be parametrized either by the Euclidean
space Rd, or the half-space Rd−1 × R≥0 [Lee, 2011, Chapter 2].

A closed subset M ⊂ RD is a d-dimensional submanifold with boundary of RD, if, for
all p ∈M and all small enough open neighborhood Vp of p in RD, there exists an open
neighborhood U0 of 0 in RD and a diffeomorphism Ψp : U0 → Vp with Ψp(0) = p, such
that either:

(i) Ψp

(
U0 ∩

(
Rd × {0}D−d

))
= M ∩ Vp. Such a p ∈ M is called an interior point

of M , the set of which is denoted by M̊ .

(ii) Ψp

(
U0 ∩

(
Rd−1 × R≥0 × {0}D−d

))
= M∩Vp. Such a p ∈M is called a boundary

point of M , the set of which is denoted by ∂M .

Definition 1.9 : Submanifold with Boundary, Boundary, Interior

Remark 1.10. Recall that the geometric (or differential) boundary ∂M is not to be
confounded with the ambient topological boundary ∂̄S := S̄ \ S̊ for S ⊂ RD, where the
closure and interior are taken with respect to the ambient topology of RD. One easily
checks that if d < D, then ∂̄M = ∅. On the other hand, the two notions ∂̄M and ∂M are
guaranteed to coincide when d = D. This differential boundary definition naturally
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extends the definition of the boundary of a convex set expressed in terms of locations of
supporting hyperplanes.
Then, submanifolds without boundary are those M that fulfill ∂M = ∅, i.e. that are
everywhere locally parametrized by Rd, and nowhere by Rd−1 × R≥0. From this
perspective, as confusing as this standard terminology can be, (sub)manifolds without
boundary are special cases of (sub)manifolds with boundary. Note that key instances of
manifolds without boundary are given by boundaries of manifolds, as expressed by the
following result.

If M ⊂ RD is a d-dimensional submanifold with nonempty boundary ∂M , then ∂M
is a (d− 1)-dimensional submanifold without boundary.

Proposition 1.11 : [Lee, 2011, Example 2.17]

Concerning smoothness assumptions, we will require that M is Ck, for k ≥ 2, that is the
diffeomorphism of Definition 1.9 are Ck. This allows us to endow M with the
Riemannian metric given by the ambient Euclidean metric, that provides a convenient
framework for calculations. Further, the reach condition implies results on the structure
of this Riemannian metric, as exposed below.

Let M be a compact C2 submanifold of RD. Then the following holds.

(i) τM > 0.

(ii) [Niyogi et al., 2008, Proposition 6.1]: For all p in M , ∥II∥op ≤ τ−1
M , where II

denotes the second fundamental form of M at point p ([do Carmo, 1992, p.125]).

(iii) [Niyogi et al., 2008, Proposition 2.1], [Alexander and Bishop, 2006, Corollary
1.4]: The injectivity radius (see, e.g., [Gallot et al., 2004, Definition 2.116]) of
M is at least πτM .

Proposition 1.12 :

The two last items are well-known results, the first one easily derives from the
characterization of the reach given by [Federer, 1959, Theorem 4.18] and basic differential
geometry. It follows from our definition of the boundary, Definition 1.9, Propositions 1.11
and 1.12 that ∂M is a Ck manifold without boundary and positive reach, provided that
M is a Ck manifold with boundary. Thus, for a smoothness order k ≥ 2, the regularity of
M is parametrized by τM and τ∂M . We define our geometric model in the following way.

Let d ≤ D, and k be integers. For positive constants τmin, τ∂,min, we let Mk,d,D
τmin,τ∂,min

denote the set of Ck d-dimensional submanifolds M ⊂ RD satisfying

(i) τM ≥ τmin,

(ii) τ∂M ≥ τ∂,min.

Definition 1.13 : Geometric model

Some remarks on the connection of our model to convexity models are well as some
insights on the connections between τM and τ∂M are given below.
Remark 1.14.
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M

∂M

(a) τ∂M < τM =∞.

∂M

M

(b) τ∂M = τM .

∂M

M

(c) τ∂M > τM .

Figure 1.4: In full generality (d ≤ D), the reach of a submanifold M and that of its
boundary ∂M are not related quantities.

▶ Let us recall that the model Mk,d,D
τmin,τ∂,min includes both submanifolds with empty and

non-empty boundary ∂M , the main requirement on it being that τ∂M ≥ τ∂,min. If
∂M = ∅, this requirement is always fulfilled since τ∅ =∞. Note also that Definition
1.13 does not exclude the case d = D, in which case M consists of a domain of RD
with non-empty interior. Furthermore, since the boundary ∂M of a submanifold M is
either empty or itself a submanifold without boundary, a non-empty ∂M cannot be
convex [Hatcher, 2002, Theorem 3.26]. As a result, Mk,d,D

τmin,∞ is exactly the set of
submanifolds M ∈Mk,d,D

τmin,τ∂,min that have empty boundary. In particular, Definition
1.13 encompasses the model of Genovese et al. [2012b], Kim and Zhou [2015], Aamari
and Levrard [2018].

▶ Similarly, since τM =∞ if and only if M is convex, Mk,d,D
∞,τ∂,min is exactly the set of

submanifolds M ∈Mk,d,D
τmin,τ∂,min that are convex (and hence have non-empty boundary).

In particular, Definition 1.13 encompasses the model of Dümbgen and Walther [1996].

▶ In full generality, the two lower bounds on the respective reaches of M and ∂M are
not redundant with one another. As shown in Figure 1.4, τM and τ∂M can be in any
order. However, for d = D, ∂M is the topological boundary of M , ∂̄M . In this case,
[Federer, 1959, Remark 4.2] and an elementary connectedness argument show that
τM ≥ τ∂M . Hence, for d = D one may set τmin = τ∂,min without loss of generality.

Our geometric model Mk,d,D
τmin,τ∂,min being settled, the sampling scheme on such manifolds

may be defined. We recall here that any d-dimensional submanifold of RD inherits a
natural measure from the d-dimensional Hausdorff measure Hd on RD [Federer, 1969,
p.171], that we denote by volM .

Let 0 < fmin ≤ fmax be positive numbers. We define Pk,d,Dτmin,τ∂,min(fmin, fmax) as the set
of Borel probability distributions P on RD such that:

▶ M = Supp(P ) ∈Mk,d,D
τmin,τ∂,min ,

▶ P has a density f with respect to the volume measure volM = 1MHd on M , such
that fmin ≤ f(x) ≤ fmax for all x ∈M .

Definition 1.15 : Statistical Model

In a nutshell, we will assume that Xn is a n-sample drawn almost uniformly on a
manifold from Mk,d,D

τmin,τ∂,min . This statistical model has clear connections with
(a, d)-standard models. Moreover, some of the parameters of this model are in fact
related, as detailed below.
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P0

(a) P0.
2δ

σ δσ

P1

(b) P1.

Figure 1.5: Two (a, d)-standard hypothesis.

Let P ∈ Pk,d,Dτmin,τ∂,min(fmin, fmax) with support M .

(i) [Aamari and Levrard, 2018, Lemma 2] If diam(M) denotes the diameter of M ,

diam(M) ≤ Cd

τd−1
M fmin

.

(ii) [Aamari et al., 2019, Proposition 2.7] If M is connected, then

τdmin ≤
Cd
fmin

.

(iii) Combining [Aamari et al., 2021, Corollary A.6] and [Aamari and Levrard, 2019,
Lemma B.7]: Assume that 0 ≤ r ≤ τmin∧τ∂,min

40 . Then, for every x ∈M ,

P (B(x, r)) ≥ cdfminr
d.

Proposition 1.16 :

Though the original results i) and ii) are stated for the case of manifolds with empty
boundary, their proof also hold in the boundary case. The intuition behind these two
first points is that, for a prescribed geometric regularity τmin, the lower bound fmin has
to be small enough to have a non-empty model Pk,d,Dτmin,τ∂,min(fmin, fmax). Point iii)
confirms that our model is a submodel of the set of (a, d)-standard distributions, for a
small enough a. Note that τmin and τ∂,min, that encodes respectively smoothness and
convexity of the manifold and its boundary, are parameters of key importance to depart
from the (a, d)-standard case.
Indeed, consider the two hypothesis depicted by Figure 1.5 in the empty boundary case,
and smooth P1 with a kernel with radius σ, leading to a smoothed peak of height δσ and
basis δ, where δσ → 0 as σ → 0. Then, for any fmin small enough and fmax large enough,
applying Lemma 1.1 leads to

inf
M̂

sup
P∈Pk,d,D

0,τ∂,min
(fmin,fmax)∩P(a,d)−st

E[dH(M̂,M)] ≥ 1
2δσ(1− Cd(δ + σ)d)n,

for a small enough (depending on fmin) and every τ∂,min. Choosing δ ≤ Cdn−1/d and σ
small enough with respect to n leads to, for a small enough fmin, small enough a, and
large enough fmax,

inf
M̂

sup
P∈Pk,d,D

0,τ∂,min
(fmin,fmax)∩P(a,d)−st

E[dH(M̂,M)] ≥ cdn−1/d,

whatever the choice of τ∂,min.
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Concerning τ∂,min, smoothing the hypothesis of the convex case depicted by Figure 1.3,
with a smoothing parameter that tends to 0 gives

inf
M̂

sup
P∈Pk,d,D

τmin,0(fmin,fmax)∩P(a,d)−st

E[dH(M̂,M)] ≥ cdn−1/d,

for fmin, a small enough and fmax large enough, whatever the choice of τmin. This
demonstrates that controlling both the regularity of M and ∂M via τmin and τ∂,min is a
crucial assumption to obtain improved convergence rates. In other words, not controlling
τM or τ∂,M brings us back to the (a, d)-standard model.
Note that if the hypothesis are allowed to go out the (a, d)-standard model (that is not
the case in the two aforementioned examples), then adding an arbitrarily narrow smooth
peak to a boundaryless manifold or an arbitrarily narrow corner to a manifold with
boundary leads to statistical undecidability, that is

inf
M̂

sup
P∈Pk,d,D

0,τ∂,min
(0,fmax)

E[dH(M̂,M)] ≥ cd,

for fmax large enough and every τ∂,min, and

inf
M̂

sup
P∈Pk,d,D

τmin,0(0,fmax)
E[dH(M̂,M)] ≥ cd,

for fmax large enough and τmin small enough.
We are now in position to investigates convergence rates for support estimation over
these regularity classes. We begin with the particular case of manifolds without
boundary.

1.4.1 C2 manifolds without boundary

In this section we investigate the case where M is C2, without boundary. Following the
definition of our statistical model (Definition 1.15), we consider the class
P2,d,D
τmin,∞(fmin, fmax). From a theoretical viewpoint, convergence rates over this class are

well-known, at least in terms of the sample size n.

For τmin > 0, 0 < fmin ≤ fmax, it holds

(i) [Genovese et al., 2012a, Theorem 3], [Maggioni et al., 2016, Corollary 8], [Divol,
2020, Theorem 3.7]:

inf
M̂

sup
P∈P2,d,D

τmin,∞(fmin,fmax)
E[dH(M̂,M)] ≤ Cd,D,τmin,fmin,fmax

( log(n)
n

) 2
d

,

(ii) [Kim and Zhou, 2015, Theorem 1]:

inf
M̂

sup
P∈P2,d,D

τmin,∞(fmin,fmax)
E[dH(M̂,M)] ≥ cd,τmin,fmin,fmax

( log(n)
n

) 2
d

.

Theorem 1.17 :

The lower bound is based on the comparison of manifolds with bumped or not areas, in
the same spirit as the one used in Section 1.4.3 for Theorem 1.36, Figure 1.15. The
upper bound is based on a theoretical estimator, that is an empirical risk minimizer over
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the class of C2 manifolds whose reach is lower bounded by τmin. Concerning dependency
on the sample size n, this result shows that improved convergence rates in n−2/d can be
obtained from the empty boundary assumption, compared to the n−1/d rate provided by
the (a, d)-standard assumption these distributions satisfy.
In Aamari and Levrard [2018], we propose a constructive estimation scheme based on
simplicial complexes. This estimator will also be at use in the case where M has a
boundary, as depicted by Theorem 1.25. The construction of this simplicial complex
estimator is detailed below.

1.4.1.1 The tangential Delaunay complex estimator

The construction of the tangential Delaunay complex estimator is based on restricted
and weighted Delaunay triangulations. We settle here in a deterministic setting, by
letting X be a finite subset of RD. For ε, δ > 0, X is said to be ε-dense in M if
supy∈M d(y,X ) ≤ ε, and δ-sparse if d(x,X \ {x}) ≥ δ for all x ∈ X . A (δ, ε)-net (of M)
is a δ-sparse and ε-dense point cloud.

Weighted restricted Delaunay Complexes

We now assume that X ⊂M . A weight assignment to X is a function ω : X −→ [0,∞).
The weighted Voronoi diagram is defined to be the Voronoi diagram associated to the
weighted distance d(u, xω)2 = ∥u− x∥2 − ω(x)2. Every x ∈ X is associated to its
weighted Voronoi cell Vorω(x). For τ ⊂ X , let

Vorω(τ) =
⋂
x∈τ

Vorω(x)

be the common face of the weighted Voronoi cells of the points of τ . The weighted
Delaunay triangulation Delω(X ) is the dual triangulation to the decomposition given by
the weighted Voronoi diagram. In other words, for τ ⊂ X , the simplex with vertices τ ,
also denoted by τ , satisfies

τ ∈ Delω(X )⇔ Vorω(τ) ̸= ∅.

Note that for a constant weight assignment ω(x) ≡ ω0, Delω(X ) is the usual Delaunay
triangulation of X . Under genericity assumptions on X and bounds on ω, Delω(X ) is an
embedded triangulation with vertex set X Boissonnat and Ghosh [2014]. The
reconstruction method we propose is based on Delω(X ) for some weights ω to be chosen
later. As it is a triangulation of the whole convex hull of X and fails to recover the
geometric structure of M , we take restrictions of it in the following manner.
Given a family R = {Rx}x∈X of subsets Rx ⊂ RD indexed by X , the weighted Delaunay
complex restricted to R is the sub-complex of Delω(X ) defined by

τ ∈ Delω(X , R)⇔ Vorω(τ) ∩
(⋃
x∈τ

Rx

)
̸= ∅.

In particular, we define the Tangential Delaunay Complex Delω(X , T ) by taking
R = T = {TxM}x∈X , the family of tangent spaces taken at the points of X ⊂M
Boissonnat and Ghosh [2014]. Delω(X , T ) is a pruned version of Delω(X ) where only the
simplices with directions close to the tangent spaces are kept. Indeed, TxM being the
best linear approximation of M at x, it is very unlikely for a reconstruction of M to have
components in directions normal to TxM (see Figure 1.6). As pointed out in Boissonnat
and Ghosh [2014], computing Delω(X , T ) only requires to compute Delaunay
triangulations in the tangent spaces that have dimension d. This reduces the
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p

TpM

Figure 1.6: Construction of Delω(X , T ) at p for ω ≡ 0: p has three incident edges in the
ambient Delaunay triangulation, but only two (bold) have dual Voronoi face intersecting
TpM .

computational complexity dependency on the ambient dimension D > d. The weight
assignment ω gives degrees of freedom for the reconstruction. The extra degree of
freedom ω permits to stabilize the triangulation and to remove the so-called
inconsistencies, the points remaining fixed. For further details, see Boissonnat et al.
[2009], Boissonnat and Ghosh [2014].
Whenever X ⊂M is a (ε, 2ε)-net of M and T = {TxM}x∈X , reconstruction guarantees of
Delω∗(X , T ) are given by [Boissonnat and Ghosh, 2014, Theorem 5.3]. Let us mention
that ω∗ is a special weight assignment that can be computed from (X , T ) Boissonnat and
Ghosh [2014].

Construction of the estimator

To build a weighted tangential Delaunay complex from a random sample point Xn, we
have to build a (ε, 2ε)-net from it, and to give estimates of the tangent spaces. The first
point may be adressed using the Farthest-Point Sampling algorithm that originates from
graph clustering techniques Gonzalez [1985] and may be described in a few lines: for a
point cloud X and a prescribed resolution ε0, pick a first point x1 at random, then select
the farthest point x2 from x1, the farthest point x3 from {x1, x2}, etc. Stop when the
k+ 1-th farthest point has distance smaller than ε0 to {x1, . . . , xk}. It is immediate that,
provided Xn is a ε-covering of M , the Farthest Point Sampling algorithm with scale ε0
outputs a (ε0, ε0 + ε)-net of M .
To estimate the tangent spaces at sample points, Local Principal Component Analysis
(PCA) is performed. Namely, for j = 1, . . . , n and a bandwidth h > 0, we define the local
covariance matrix at Xj ∈ Xn by

Σ̂j(h) = 1
n− 1

∑
i ̸=j

(
Xi − X̄j

) (
Xi − X̄j

)t
1B(Xj ,h)(Xi), (1.2)

where X̄j = 1
Nj

∑
i ̸=j Xi1B(Xj ,h)(Xi) is the barycenter of sample points contained in the

ball B(Xj , h), and Nj = |B(Xj , h) ∩ Xn|. The estimated tangent space at Xj , T̂j , is then
defined as the linear span of the first d eigenvectors of Σ̂j(h).
Our estimator is built as follows: for two parameters ε, h > 0, denote by Yn the output
of the Farthest Point Sampling algorithm based on Xn, with scale parameter ε, and by
T̂Yn = {T̂j | Xj ∈ Yn}. The estimator M̂TDC is defined by

M̂TDC = Delω∗(Yn, T̂Yn). (1.3)
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Let P ∈ P2,d,D
τmin,∞(fmin, fmax), and choose h and ε as follows.

h =
(
Cd
f4

max log(n)
f5

minn

) 1
d

, ε = τmin

(
Cd
f4+d

max log(n)
f5+d

min nτ
d
min

) 1
d

.

Then, for n large enough so that ε ≤ τmin/4, we have, with probability larger than

1− 2
(

1
n

) 1
d ,

(i) dH(M̂TDC ,M) ≤ Cd ε2

τmin
≤ Cdτmin

(
f4+d

max log(n)
f5+d

min nτ
d
min

) 2
d

,

(ii) M̂TDC and M are ambient isotopic.

Theorem 1.18 : [Aamari and Levrard, 2018, Theorem 6]

The bound in terms of Hausdorff distance exposed in Theorem 1.18 has the correct
dependency on n (that is n−2/d from Theorem 1.17), and allows to seize the influence of
other parameters such as the regularity parameter τmin. It is worth mentioning that the
ambient dimension D plays no role here. Therefore, such a bound is valid uniformly over
the class P2,d,D

τmin,∞(fmin, fmax). The second point of Theorem 1.18 ensures that M̂TDC has
the same topology as M . Note however that recovering the topology of M can be
performed using simpler estimators such as the Devroye-Wise compact estimator
Devroye and Wise [1980], Niyogi et al. [2008]. The interesting fact here is that M̂TDC

achieves both minimax optimality over P2,d,D
τmin,∞(fmin, fmax) and topological consistency.

On the technical side, Theorem 1.18 is based on three ingredients: the reconstruction
results from [Boissonnat and Ghosh, 2014, Theorem 5.3], standard concentration
inequalities for tangent space estimation, and an interpolation lemma that is interesting
on its own.

Let M ∈ M2,d,D
τmin,∞. Let X = {p1, . . . , pq} ⊂ RD be a finite point cloud and T̃ ={

T̃1, . . . , T̃q
}

be a family of d-dimensional linear subspaces of RD. For θ ≤ π/64 and
18η < δ ≤ ρ, assume that

▶ X is δ-sparse: min
i ̸=j
∥pj − pi∥ ≥ δ,

▶ the pj’s are η-close to M : max
1≤j≤q

d(pj ,M) ≤ η,

▶ max
1≤j≤q

∠(TπM (pj)M, T̃j) ≤ sin θ.

Then, there exist a universal constant c0 ≤ 285 and a compact d-dimensional connected
submanifold M ′ ⊂ RD without boundary such that

1. X ⊂M ′,

2. τM ′ ≥
(
1− c0

(η
δ + θ

) τM
δ

)
τM ,

3. TpjM
′ = T̃j for all 1 ≤ j ≤ q,

4. dH(M,M ′) ≤ δθ + η,

5. M and M ′ are ambient isotopic.

Theorem 1.19 : [Aamari and Levrard, 2018, Theorem 9]

Theorem 1.19 fits a submanifold M ′ to noisy points and perturbed tangent spaces with
no change of topology and a controlled reach loss. For an appropriate choice of
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Tπ(pj)M

pj

M ′

TpjM
′

π(pj)

Figure 1.7: An instance of the interpolating submanifold M ′. Dashed lines correspond to
the image of vertical lines by the ambient diffeomorphism Φ defining M ′ = Φ(M).

parameters δ and θ, Theorem 1.19 combined with [Boissonnat and Ghosh, 2014,
Theorem 5.3] ensures that M̂TDC is a good interpolation of M ′, that is both
geometrically and topologically close to M . In other words, Theorem 1.19 allows to
consider a noisy sample with estimated tangent spaces as an exact sample with exact
tangent spaces. The degree of freedom given by η will be of key interest when dealing
with boundary estimation, or considering noisy cases. In a nutshell, if ε is chosen as in
Theorem 1.18, allowing some orthogonal perturbations of amplitude ε2/τmin will not
deprecate the convergence rate of our Tangential Delaunay Complex estimator M̂TDC .

1.4.2 C2 manifolds with boundary

In this section manifolds are allowed to have boundaries, that is we consider the general
model P2,d,D

τmin,τ∂,min(fmin, fmax), for positive τmin, τ∂,min, fmin and fmax.
To give an intuition on this problem, let us consider the simple case where M is a
d-dimensional convex set of Rd, with C2 boundary ∂M . Define M̂ = Conv(Xn), and
∂̂M = ∂M̂ . Since M̂ ⊂M , we have dH(M̂,M) = dH(∂M̂, ∂M), so that the convergence
rate for the estimation of M is in fact driven by the convergence rate for the estimation
of ∂M . This idea may be found in [Dümbgen and Walther, 1996, Corollary 1] for the
convex case, and in [Rodríguez Casal, 2007b, Theorem 3] for the r-convex case. These
two results (and the related boundary estimators) rely on the detection and
identification of points that are close to the boundary, onto which a boundary estimator
is based. We extend this boundary detection approach to the manifold case.

1.4.2.1 Detecting boundary points

In the full-dimensional case d = D, under the convexity-type assumptions exposed in
Section 1.3, there exists a boundary ∂K, so that the boundary detection problem is
trivial. In the submanifold case, a first move is to decide if there exists a boundary,
based on the sample Xn. Up to our knowledge, the only result for this question is to be
found in Aaron and Cholaquidis [2020], with the additional assumption that the density
f is Lipschitz continuous. In this paper, the boundary detection procedure is based on
the behavior of local barycenters. In a nutshell, for a point x and bandwidth h, the
authors compute the local barycenter mx(h) = Pn(du)[u1B(x,h)(u)]/Pn(B(x, h)), and
label x as a boundary point if ∥x−mx(h)∥ is large enough (of order c0× h). A boundary
is then detected if there exists at least one boundary point. Considering the model
P2,d,D
τmin,τ∂,min(fmin, fmax), it is likely that this procedure would lead to false discoveries:
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indeed, potential jumps of the density lead to displacements of local barycenters that fall
above the prescribed threshold (see Figure 1.8).

M
x0 ∈ M̊

f

h
mx0,h

∆

Figure 1.8: One-dimensional case with a jump of the density f at x0 ∈ M̊ . If mx0,h denotes
the local barycenter of P , easy computation yields ∥mx0,h − x0∥ ≥ ∆h

4fmax
, that is an order

h shift (same order as boundary points).

We rather follow the intuition given in Rodríguez Casal [2007b] in the full-dimensional
case, where boundary points are characterized by large Voronoi cells. To be more
precise, if ρ > 0 denotes a detection radius, the boundary observations may be defined by

Yρ = {Xi ∈ Xn | ∃O ∈ RD, ∥O −Xi∥ ≥ ρ and B(O, ∥O −Xi∥) ∩ Xn = ∅}.

Interestingly, if Xi ∈ Yρ for some O in RD, then η̂i = O−Xi
∥O−Xi∥ provides an estimator of

the unit outer normal vector at π∂M (Xi) Aaron et al. [2021]. This intuition is depicted
by Figure 1.9. For a precise definition of the unit outer normal vector we refer to
[Aamari et al., 2021, Proposition 6].
We aim to extend the above intuition to the d-dimensional submanifold case, with
d < D. First note that even if Xi is far from ∂M , its Voronoi cell can be large in the
direction TXiM

⊥. Thus we shall restrict ourselves to the Voronoi cells of the projected
sample onto TXiM , or an estimate. Second, if Xi ∈ ∂M and M is folded over Xi, then
the Voronoi cell of Xi in the Voronoi diagram of the projected sample might be small.
Thus, not all the sample should be projected but rather Xn ∩ B̄(Xi, R0), for some local
scale R0 that will prevent such foldings. Figure 1.10 below illustrates these remarks.
These two remarks guide our procedure of boundary points detection.
First, an estimation of tangent spaces is carried out using local PCA again. Namely, we
let T̂i denote the linear span of the first d eigenvectors of Σ̂j(h) (1.2), for
h ≲ (log(n)/n)1/d, and consider the affine space T̂i = Xi + T̂i. Now, for a local (but
macroscopic) scale R0 > 0, a detection radius ρ > 0 and a local bandwidth r > 0, we
compute the Voronoi diagrams of (πT̂i

(B̄(Xi, R0) ∩ Xn))i=1,...,n and define our boundary
points detection procedure as follows.

Let i ∈ [[1, n]]. We define JR0,r,ρ(Xi) as the set of r-neighbors of Xi that gives Xi a
ρ-large Voronoi cell in the corresponding Voronoi diagram, that is

JR0,r,ρ(Xi) := {Xj ∈ B̄(Xi, r) ∩ Xn | ∃O ∈ T̂j s.t.
∥∥∥O − πT̂j

(Xi)
∥∥∥ ≥ ρ and

B(O, ||O − πT̂j
(Xi)||) ∩ πT̂j

(B̄(Xj , R0) ∩ Xn) = ∅}.

Then, the set of candidate boundary points YR0,r,ρ is defined as the set of points that
have at least one large Voronoi cell (in the collection of Voronoi diagrams), namely

YR0,r,ρ = {Xi ∈ Xn | JR0,r,ρ(Xi) ̸= ∅}. (1.4)

Definition 1.20 :
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ρ Ω

Xi

π∂M(Xi)

ηi η̂i∂M

Figure 1.9: In the full-dimensional case, ρ-large Voronoi cells correspond to boundary
points, and η̂i provides an estimator of ηπ∂M (Xi) = ηi.

∂M

M

Xi

Xi′

R0

Ω

Figure 1.10: An ambient Voronoi diagram built on top of observations Xn lying on an
open plane curve (d = 1, D = 2). The denser Xn in M , the narrower the Voronoi cell of
the Xi’s in the tangent directions TXiM . Observations close to ∂M yield cells that extend
in the outward pointing direction. Localization radius R0 > 0 prevents global foldings of
M that would mix different ambient neighborhoods of M when projecting onto TXiM .
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Detecting boundary points requires to compute n Voronoi diagrams in dimension d.
Note that this step does not depend on the ambient dimension D, and can be processed
through parallel computation. This boundary points detection procedure also provides a
natural way to estimate unit normal outward-pointing vectors, as exposed below.

Let Xi ∈ YR0,r,ρ, Xj ∈ JR0,r,ρ(Xi) and ΩR0,r,ρ,j ∈ T̂j be such that ||ΩR0,r,ρ,j −
πT̂j

(Xi)|| ≥ ρ and B(ΩR0,r,ρ,j ,
∥∥∥ΩR0,r,ρ,j − πT̂j

(Xi)
∥∥∥) ∩ πT̂j

(B̄(Xj , R0) ∩ Xn) = ∅. The
estimator of the unit normal outward-pointing vector in T̂j is defined by

η̃
(j)
i =

ΩR0,r,ρ,j − πT̂j
(Xi)∥∥∥ΩR0,r,ρ,j − πT̂j
(Xi)

∥∥∥ .
The final estimator of the unit normal outward-pointing vector at Xi is then defined
by

η̃i = 1
#JR0,r,ρ(Xi)

∑
Xj∈JR0,r,ρ(Xi)

η̃
(j)
i . (1.5)

Definition 1.21 :

Theorem 1.22 below provides theoretical guarantees for our detection and normal
estimation procedure.

Take R0 ≤
τmin∧τ∂,min

40 . Define

r− :=
√

(τmin ∧ τ∂,min)R0

(
cd
f5

max logn
f6

minnR
d
0

) 1
d+1

, r+ := R0
12 , and ρ− := R0

4 =: ρ+
2

Then, for n large enough, with probability at least 1 − 4n− 2
d , we have that for all

ρ ∈ [ρ−, ρ+] and r ∈ [r−, r+]:

(i) If ∂M = ∅, then YR0,r,ρ = ∅;

(ii) If ∂M ̸= ∅ then:

(a) For all Xi ∈ YR0,r,ρ, d(Xi, ∂M) ≤ 2r2

τmin∧τ∂,min
;

(b) For all x ∈ ∂M , d(x,YR0,r,ρ) ≤ 3r;
(c) For all Xi ∈ YR0,r,ρ, ∥ηπ∂M (Xi) − η̃i∥ ≤

20r√
R0(τmin∧τ∂,min)

.

Theorem 1.22 : [Aamari et al., 2021, Theorem 19]

The bounds exposed in Theorem 1.22 heavily depend on the scale R0 and the local
bandwidth r, that need to be carefully tuned in practice. Whenever prior information on
the reaches τmin and τ∂,min is at hand, we may choose R0 as large as τmin∧τ∂,min

40 . Then,
an optimal choice r = r− leads to the bounds:

(ii)a For all Xi ∈ YR0,r,ρ,

d(Xi, ∂M) ≤ τmin ∧ τ∂,min

(
Cd
f5

max
f5

min

logn
nfmin(τmin ∧ τ∂,min)d

) 2
d+1

,

18



(ii)b For all x ∈ ∂M ,

d (x,YR0,r,ρ) ≤ τmin ∧ τ∂,min

(
Cd
f5

max
f5

min

logn
nfmin(τmin ∧ τ∂,min)d

) 1
d+1

,

(ii)c For all Xi ∈ YR0,r,ρ,

∥ηπ∂M (Xi) − η̃i∥ ≤
(
Cd
f5

max
f5

min

logn
nfmin(τmin ∧ τ∂,min)d

) 1
d+1

.

In a nutshell, Item (i) guarantees that no false positive occur if ∂M = ∅. On the other
hand, if ∂M ̸= ∅, for ε ≍ (logn/n)1/(d+1) and optimal choices of r− and R0, Items (ii)a
and (ii)b ensure that YR0,r,ρ is an O(ε)-covering of ∂M that consists of points
O(ε2)-close to ∂M . In the convex case τmin =∞, taking the convex hull of YR0,r,ρ —
similarly to Dümbgen and Walther [1996] — would result in an O(ε2)-approximation of
M , and the boundary of this convex hull in an O(ε2)-approximation of ∂M . Finally,
Item (ii)c asserts that the estimated normals at boundary observations are O(ε)-precise.
To build a boundary estimator, we follow the convex case intuition again. In the convex
case, taking the boundary of the convex hull of YR0,r,ρ as in Dümbgen and Walther
[1996] results in a ε2-approximation of ∂M . Still based on YR0,r,ρ, we extend this “hull”
construction to the non-convex case by leveraging the additional tangential and normal
(Theorem 1.22 (ii)c) estimates, to provide estimators of M and ∂M .

1.4.2.2 Boundary estimation

In the general (a, d)-standard case for compact sets included in Rd, Cuevas and
Rodríguez-Casal [2004], Aaron and Bodart [2016] shows that the boundary of the
Devroye-Wise estimator

⋃n
i=1 B(Xi, rn) converges towards ∂K with rate n−1/d. Note

that, even in this case where boundary estimators are built from compact estimators, the
convergence rates of the compact estimator is driven by the boundary convergence rate.
When adding regularity conditions, as explained above, a relevant strategy is to build a
boundary estimator from detected boundary points. In the C2 manifold case, a first
remark is that ∂M is a C2 manifold without boundary (Proposition 1.11). Thus,
estimators of C2 boundaryless manifolds such as in Maggioni et al. [2016], Genovese et al.
[2012a], Aamari and Levrard [2018] may be a relevant strategy, provided they can adapt
to some orthogonal noise. Indeed, on the probability event described by Theorem 1.22,
for

ε = C
τ∂,min
R0

r,

YR0,r,ρ is a ε-covering of ∂M , whose points are ε2/τ∂,min close to ∂M . Thus, to apply
Theorem 1.19 and provide convergence rates for ∂̂MTDC , it remains to provide boundary
tangent space estimators for points in YR0,r,ρ.

For Xi ∈ YR0,r,ρ, T̂∂,i is defined as the orthogonal complement of πT̂i
(η̃i) in T̂i. In

other words
T̂∂,i := (πT̂i

(η̃i))⊥ ∩ T̂i.

Definition 1.23 :

A straightforward consequence of Theorem [Aamari and Levrard, 2018, Proposition 13]
and Theorem 1.22 ensures that T̂∂,i is a ε/τ∂,min approximation of Tπ∂M (Xi)∂M , for any
Xi ∈ YR0,r,ρ.
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Under the assumptions of Theorem 1.22, for a bandwidth h as in Theorem 1.18 for
the local PCA, we have, for n large enough, with probability larger than 1− 4n− 2

d ,

max
Xi∈YR0,r,ρ

∠(Tπ∂M (Xi)∂M, T̂∂,i) ≤
20r√

(τmin ∧ τ∂,min)R0
.

Corollary 1.24 : [Aamari et al., 2021, Corollary 3.10]

Interestingly, the estimation rate for Tπ∂M (Xi)∂M is driven by ∠ηπ∂M (Xi),η̃i. Equipped
with Corollary 1.24, an estimator for ∂M can be build, based on Aamari and Levrard
[2018].
For the sake of clarity, we expose results in the case where R0 is chosen as τmin∧τ∂,min

40 and
r = r−. In this framework, we have

ε = C
τ∂,min
R0

r− = τ∂,min

(
cd

f5
max logn

f6
minn(τmin ∧ τ∂,min)d

) 1
d+1

,

and we let Y∂ denote a ε∂M -sparsification of YR0,r,ρ (using Farthest Point Sampling).
This results in a 2ε∂M -covering of ∂M , according to Theorem 1.22.
We also denote by T∂ the collection of T̂∂,i’s, for Xi ∈ Y∂ , and define our estimator of
∂M as the (weighted) Tangential Delaunay Complex based on (Y∂ ,T∂):

∂̂M := Delω∗(Y∂ ,T∂).

Since ∂M has no boundary, Theorem 1.19 applies, leading to the following guarantees
for boundary estimation based on ∂̂M .

Provided that ∂M ̸= ∅ and under the assumptions of Corollary 1.24 with R0 =
τmin∧τ∂,min

40 and r = r−, it holds, for n large enough, with probability larger than
1− 4n− 2

d ,

(i) dH(∂M, ∂̂M) ≤ τ∂,min
(
Cd

f5
max logn

f6
minn(τmin∧τ∂,min)d

) 1
d+1 ,

(ii) ∂M and ∂̂M are ambient isotopic.

As a consequence, for n large enough, we have

E
[
dH(∂M, ∂̂M)

]
≤ τ∂,min

(
Cd

f5
max logn

f6
minn(τmin ∧ τ∂,min)d

) 2
d+1

.

Theorem 1.25 : [Aamari et al., 2021, Theorem 3.11]

As for the case ∂M = ∅, Theorem 1.25 assesses the topological correctness of our
estimator ∂̂M , showing the particular interest of estimators based on simplicial
complexes. It also provides a uniform upper bound on dH(∂̂M, ∂M) over the class
P2,d,D
τmin,τ∂,min(fmin, fmax). This uniform convergence rate is in line with the convergence

rate n−2/(d+1) for boundary estimation, under convexity type assumptions in the full
dimensional case given in Rodríguez Casal [2007a], Dümbgen and Walther [1996]. Recall
that this convex case is a sub-case of our class of distributions Pd,Dτmin,τ∂,min(fmin, fmax),
letting τmin =∞. Surprisingly, we can show that this n−2/(d+1) convergence rate is
minimax over the class of convex submanifolds.
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Assume that fmin ≤ cd/τd∂,min and c′
d/τ

d
∂,min ≤ fmax for some small enough cd, (c′

d)−1 >
0. Then for all n ≥ 1,

inf
B̂

sup
P∈Pd,D

∞,τ∂,min (fmin,fmax)
EPn

[
dH
(
∂M, B̂

)]
≥ Cdτ∂,min

1 ∧
(

1
fminτd∂,minn

)2/(d+1)
 .

Theorem 1.26 : [Aamari et al., 2021, Theorem 3.12]

As usual, the proof of Theorem 1.26, relies on Lemma 1.1, the two hypothesis are
depicted by Figure 1.11.

∂M0

∂M1 η

δ

Figure 1.11: Convex supports M0 and M1 of Theorem 1.26 for d = D = 2.
Here, the total variation between the associated uniform distributions is of
order TV(P0, P1) ≍ fminHd(M0△M1) ≍ fminδ

d−1η and Hausdorff distance
dH(M0,M1) = dH(∂M0, ∂M1) = η. The reach bound forces the bump to have
height η ≲ δ2/τ∂,min, so that optimal parameter choices yield:

δ ≍
(

1
τ∂,minfminn

)1/(d+1)

and η ≍ δ2

τ∂,min
≍ τ∂,min

(
1

fminτd∂,minn

)2/(d+1)

.

As TV(P0, P1) ≤ 1, this can only be done when fminδ
d−1η ≲ 1, i.e. n ≳ 1/(fminτ

d
∂,min).

Since, for any τmin > 0, Pd,D∞,τ∂,min(fmin, fmax) ⊂ Pd,Dτmin,τ∂,min(fmin, fmax), Theorem 1.25
combined with Theorem 1.26 ensures that our boundary estimation procedure is minimax
over the class Pd,Dτmin,τ∂,min(fmin, fmax), up to logn factor. Intuitively, these two results
show that estimating the boundary under reach conditions on M is not more difficult
than estimating the boundary in the convex case, from a statistical viewpoint. Since the
convex case is the strongest of the assumptions exposed in Section 1.3, Theorem 1.26
also demonstrates the optimality of the boundary estimators given for the convex case in
Dümbgen and Walther [1996], and for the r-convex case in Rodríguez Casal [2007b].

1.4.2.3 Manifold (with boundary) estimation

In the convex case, an estimator of the manifold might be deduced from the boundary
estimator, by taking the convex hull. In the manifold case, such an approach can not be
readily extended. In general, support estimation methods dedicated to the
full-dimensional case, such as the ones exposed in Aaron and Bodart [2016],
Rodríguez Casal [2007b], Dümbgen and Walther [1996], cannot be adapted to a low
intrinsic dimension framework. For instance, it is easy to see that the r-convex hull
described in Rodríguez Casal [2007b] boils down to Xn, for r ≤ τmin ∧ τ∂,min.
We rather adopt a local patches approach, as in Maggioni et al. [2016], Aamari and
Levrard [2019]. The points of Xn will be divided into interior points and boundary
points. If Xi is an interior point, then we locally approach M via B̄T̂i

(Xi, εM̊ ), the affine
ball centered at Xi, for some interior radius εM̊ . Whenever Xi is close the the boundary,
it is likely that B̄T̂i

(Xi, εM̊ ) would spill over ∂M , leading to a poor estimate of M . In
this case, replacing B̄T̂i

(Xi, εM̊ ) by a tangential half-ball with respect to the
outward-pointing normal vector ηπ∂M (Xi) seems more appropriate.
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We formalize this intuition as follows. Let YR0,r,ρ denote the detected boundary points of
Definition 1.20. These points will generate half-balls, with radius ε∂M , that will roughly
approximate the inward slab of radius ε∂M , M ∩ B̄(∂M, ε∂M ). To approximate the
remaining part of M , we further define the ε∂M -inner points as

Y̊ε∂M
:= {Xi ∈ Xn | d(Xi,YR0,r,ρ) ≥ ε∂M/2} . (1.6)

Then we define our local patch manifold estimator as follows.

Given some inner and boundary radii parameters εM̊ and ε∂M , the manifold estimator
M̂ is defined by

M̂ :=

 ⋃
Xi∈Y̊ε∂M

B̄T̂i
(Xi, εM̊ )

 ∪
 ⋃
Xi∈YR0,r,ρ

B̄T̂i
(Xi, ε∂M ) ∩ {z, ⟨z −Xi, η̃i⟩ ≤ 0}

 ,
where the T̂i’s are the affine spaces passing through the Xi’s with vector spaces T̂i’s,
the estimated tangent spaces via local PCA as in Theorem 1.18. The η̃i’s are the
estimators of the outward-pointing normal vectors given by (1.5).

Definition 1.27 :

Note that M̂ is adaptive in the sense that, if ∂M = ∅, then, with high probability, we
have YR0,r,ρ = ∅. In this case M̂ is the minimax manifold estimator from Aamari et al.
[2019] for the class of C2 manifolds with empty boundaries. Whenever ∂M ̸= ∅, Theorem
1.28 below gives the convergence rate of M̂ .

Choose (R0, r, ρ) as in Theorem 1.22, with R0 = τmin∧τ∂,min
40 and r = r−. Define

εM̊ =
(
Cd

logn
fminn

) 1
d

and ε∂M = 18r−.

Then, for n large enough, it holds

E
[
dH(M, M̂)

]
≤ Cd



τmin

(
f

2+d/2
max

f
2+d/2
min

logn
fminτdminn

) 2
d

if ∂M = ∅,

(τmin ∧ τ∂,min)
(
f5

max
f5

min

logn
fmin(τmin ∧ τ∂,min)dn

) 2
d+1

if ∂M ̸= ∅.

Theorem 1.28 :

Theorem 1.28 is a special case of [Aamari et al., 2021, Theorem 3.14] with the optimal
choice of parameters r = r− and R0 = (τmin ∧ τ∂,min)/40. In the empty boundary case,
M̂ achieves the minimax rate n−2/d described in Section 1.4.1. Note however that in the
empty boundary case, no guarantees on the topology of M̂ may be stated, contrary to
the empty boundary dedicated estimator M̂TDC exposed in Theorem 1.18.
Whenever ∂M is not empty, the convergence rate of our estimator is in fact driven by
the convergence rate of the boundary estimation problem of Theorem 1.25, as for the
convex and r-convex full-dimensional case. Note that the convergence rates for these two
cases, given in [Dümbgen and Walther, 1996, Corollary 1] for the convex case and in
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[Rodríguez Casal, 2007a, Theorem 3] for the r-convex case, are recovered by Theorem
1.28, at least in terms of sample size dependency. As for the boundary estimation
problem, we can show that this n−2/(d+1) rate is in fact the minimax rate over the class
of convex C2 submanifolds.

(i) (Boundariless Case): Assume that fmin ≤ cd/τ
d
min and c′

d/τ
d
min ≤ fmax, for

some small enough cd, (c′
d)−1 > 0. Then for all n ≥ 1,

inf
M̂

sup
P∈Pd,D

τmin,∞(fmin,fmax)
EPn

[
dH
(
M, M̂

)]
≥ Cdτmin

1 ∧
(

1
fminτdminn

)2/d
 .

(ii) (Convex Case): Assume that fmin ≤ cd/τ
d
∂,min and c′

d/τ
d
∂,min ≤ fmax, for some

small enough cd, (c′
d)−1 > 0. Then for all n ≥ 1,

inf
M̂

sup
P∈Pd,D

∞,τ∂,min (fmin,fmax)
EPn

[
dH
(
M,M̂

)]
≥ Cdτ∂,min

1 ∧
(

1
fminτd∂,minn

)2/(d+1)
 .

Theorem 1.29 :

The hypothesis used in the proof of Theorem 1.29, Item (ii) are the same as in the proof
of Theorem 1.26. The first point is a slight refinement of [Aamari et al., 2019, Theorem
7] or [Genovese et al., 2012b, Theorem 2], that exhibits the dependency on τmin and fmin
of the minimax rates over the class of C2 manifolds with no boundary. Interestingly, this
shows that the upper bounds given in Theorem 1.28 or Theorem 1.18 for the empty
boundary case are sharp with respect to τmin. The second point of Theorem 1.29
provides the minimax rate for manifold estimation over the class of convex manifolds
whose boundary has bounded reach. Concerning the dependency on the sample size, this
shows that our estimator has the correct n−2/(d+1) convergence rate for this convex case,
as well as the two aforementioned procedures of Dümbgen and Walther [1996],
Rodríguez Casal [2007a]. Note however that [Korostelëv and Tsybakov, 1994, Theorem
4] provides a lower bound in (log(n)/n)2/(d+1) in the convex and d = 2 case. This
suggests that the sample size dependency may be improved in Theorem 1.29, borrowing
techniques from Kim and Zhou [2015] for instance.
As for the boundary estimation problem, this result intuitively carries the message that
estimating a manifold with boundary under reach conditions is not more difficult than
estimating a d-dimensional convex C2-domain. In other words, for ∂M ̸= ∅ and a fixed
boundary’s convexity radius τ∂,min, no additional gain can be expected from requiring a
large convexity radius for the manifold (driven by τmin). At last, Theorem 1.28 shows
that the given dependency on the reach boundary τ∂,min is sharp, at least in the case
where τ∂,min ≤ τmin. Whether the tradeoff between τmin and τ∂,min exhibited in Theorem
1.28 is sharp in general remains an open question.

1.4.3 Smooth(er) manifolds without boundary

The previous sections show that a controlled regularity of order 2 for M (and ∂M)
provides improved convergence rates for the support estimation problem, of order n−2/d

in the empty boundary case and n−2/(d+1) if the boundary is not empty. A natural
question is to determine whether requiring more smoothness can further improve the
convergence rates. The intuition here is simple: consider a 1-dimensional manifold M in
R2, going through 0 and whose tangent space at 0 is not Re2 (the vertical axis), see
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M

O

T̂0

M 3 x = f(πT̂0
(x))

πT̂0
(x)

Figure 1.12: One-dimensional manifolds can be locally parametrized by their projections
on estimated tangent spaces.

Figure 1.12. Then, around 0, M is the graph of a function f .

The estimators exposed in Section 1.4.2 and 1.4.1 consist in locally approximating f
with a linear term around 0, in terms of the local coordinates defined by T̂0. Provided
the estimated tangent space is not Re2, for a scale h, this provides a h2-approximation of
M near 0. Now if f is assumed to be Ck around 0, then fitting a polynomial order k − 1
in terms of the local coordinates could lead to a hk approximation of M , locally around
0. This approach can be extended to arbitrary intrinsic dimension d, for instance using
osculating d-jets as in Cazals and Pouget [2005], provided that around every point, the
manifold can be locally expressed as the graph of a Ck map for some coordinate system.

1.4.3.1 An appropriate Ck model

We investigate here the case where M has no boundary. According to Definition 1.9, if
M is a Ck manifold, then locally around each p ∈M , M can locally be expressed as the
image of a Ck function with arguments in TpM (for a scale h small enough so that
πTpM ◦Ψp :

(
U0 ∩

(
Rd × {0}D−d

))
→ πTp [M ∩ Vp ∩B(p, h)] is a diffeomorphism). We

may then parametrize our regularity class by:

(i) Requiring that M can be locally parametrized by Ck diffeomorphisms, for a local
scale that is uniform over M (such a scale exists, by compactness arguments).

(ii) Requiring bounds on the p-th derivatives of such parametrizations, p = 1, . . . , k,
uniformly on M . This prevents jumps into the Ck−1 class when considering
uniform bounds over the Ck model.

This lead us to introduce the following Ck regularity class.
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For k ≥ 3, τmin > 0, and L = (L⊥, L3, . . . , Lk), we let Mk,d,D
τmin,∞,L denote the set of

d-dimensional compact connected submanifolds M of RD with τM ≥ τmin and such
that, for all p ∈M , there exists a local one-to-one parametrization Ψp of the form:

Ψp : BTpM (0, r) −→M

v 7−→ p+ v + Np(v)

for some r ≥ 1
4L⊥

, with Np ∈ Ck
(
BTpM (0, r) ,RD

)
such that

Np(0) = 0, d0Np = 0,
∥∥∥d2

vNp

∥∥∥
op
≤ L⊥,

for all ∥v∥ ≤ 1
4L⊥

. Furthermore, we require that∥∥∥divNp

∥∥∥
op
≤ Li for all 3 ≤ i ≤ k.

Definition 1.30 :

For the case k = 2, [Aamari and Levrard, 2019, Lemma 1] shows that the exponential
parametrization roughly satisfies the requirements of Definition 1.30, with L⊥ = 1/τmin.
From this point of view, Definition 1.30 extends the relevant properties of the
exponential map in the C2 case to the Ck case, k ≥ 3. Note that for k ≥ 3 the
exponential map can happen to be only Ck−2 for a Ck-submanifold Hartman [1951].
Hence, it may not be a good choice of Ψp.
It is important to note that such a family of Ψp’s exists for any compact Ck-submanifold,
if one allows τ−1

min, L⊥, L3,. . .,Lk to be large enough. The radius 1/(4L⊥) has been
chosen for convenience, other smaller scales would do and we could even parametrize this
constant, but without substantial benefits in the results.
The Ψp’s can be seen as unit parametrizations of M . The conditions on Np(0), d0Np,
and d2

vNp ensure that Ψ−1
p is close to the projection πTpM (like the exponential map in

the C2-case, see [Aamari and Levrard, 2019, Lemma 1]). The bounds on divNp

(3 ≤ i ≤ k) allow to control the coefficients of the polynomial expansion we seek. Indeed,
whenever M ∈ Ckτmin,L, we can show that for every p in M , and y in B

(
p,

τmin∧L−1
⊥

4

)
∩M ,

y − p = π∗(y − p) +
k−1∑
i=2

T ∗
i (π∗(y − p)⊗i) +Rk(y − p), (1.7)

where π∗ denotes the orthogonal projection onto TpM , the T ∗
i are i-linear maps from

TpM to RD with ∥T ∗
i ∥op ≤ L′

i and Rk satisfies ∥Rk(y − p)∥ ≤ C∥y − p∥k, where the
constants C and the L′

i’s depend on the parameters τmin, d, k, L⊥, . . . , Lk. The technical
details that relates the L′

i’s to the parameter of the model Mk,d,D
τmin,∞,L can be found in

[Aamari and Levrard, 2019, Lemma A.2, Appendix].
Considering the Mk,d,D

τmin,∞,L, a natural question is to determine whether it is
over-parametrized, in the sense that controlling L = (L⊥, L3, . . . , Lk) could be enough to
lower bound τmin. A first step is to recall that the reach allows to control the curvature
of the manifold, but also the size of bottlenecks. Following this intuition and Aamari
et al. [2019], we may define the local reach and global reach as follows.
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Let M be a compact C2 submanifold of RD without boundary. The local reach Rℓ is
defined by

Rℓ = min
x∈M
∥IIx∥−1

op ,

where we recall that IIx is the second fundamental form of M at x.
The global reach Rg is defined by

Rg = min{∥q1 − q2∥ | q1, q2 ∈M and (q1 + q2)/2 ∈ Med(M)},

where Med(M) denotes the medial axis of M defined in (1.1).

Definition 1.31 :

Note that the global reach Rg is closely related to the weak feature size, that
characterizes the distance from M to the set of critical points of the distance function
dM (see, e.g., Attali et al. [2013] for a formal definition). Using Proposition 1.12, it is
immediate that τM ≤ Rg ∧Rℓ. The following result from Aamari et al. [2019] guarantees
that the local and global reach fully characterize τM .

Let M ⊂ RD be a compact manifold without boundary. Then

τM = Rℓ ∧Rg.

Theorem 1.32 : [Aamari et al., 2019, Theorem 3.4]

Equipped with Theorem 1.32, we can now conceive Ck manifolds with fixed smoothness
parameters L whose reach tends to 0, by letting Rg decrease. To do so, start from the
curves depicted in Figure 1.13.

δ = τM

M

Figure 1.13: One dimensional manifolds with fixed L, but τM = δ → 0.

To obtain d-dimensional manifolds, we may consider Cartesian products of these curves,
that are embedded in R2d. This provides us with manifolds M ∈Mk,d,2d

0,∞,L, for a fixed L,
whose reach is arbitrarily small, addressing the over-parametrization issue.

We may now define our statistical model Pk,d,Dτmin,∞,L(fmin, fmax), that slightly differs from
Definition 1.15.
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For k ≥ 3, τmin > 0, L = (L⊥, L3, . . . , Lk) and 0 < fmin ≤ fmax, we define
Pk,d,Dτmin,∞,L(fmin, fmax) as the set of Borel probability distributions P on RD such that:

▶ M = Supp(P ) ∈Mk,d,D
τmin,∞,L,

▶ P has a density f with respect to the volume measure volM = 1MHd on M , such
that fmin ≤ f(x) ≤ fmax for all x ∈M .

Definition 1.33 :

It is immediate that Pk,d,Dτmin,∞,L(fmin, fmax) ⊂ Pk,d,Dτmin,∞(fmin, fmax), and conversely, for any
P in Pk,d,Dτmin,∞(fmin, fmax), there exists L such that P ∈ Pk,d,Dτmin,∞,L(fmin, fmax).
Proposition 1.16 ensures that if P ∈ Pk,d,Dτmin,∞,L(fmin, fmax), then P is (cdfmin, d)-standard
at scale τmin/16. Since the Mk,d,D

τmin,∞,L model allows to separately investigate local and
global regularity, a more refined result might be stated.

Let P ∈ Pk,d,Dτmin,∞,L(fmin, fmax). Then P is (cdfmin, d)-standard at scale 1/(4L⊥).

Proposition 1.34 :

Proof of Proposition 1.34. Let p ∈M . For u ∈ TpM such that ∥u∥ ≤ 1/(4L⊥), and
t ∈ [0, 1], denote by g(t) = dtuNp. According to Definition 1.33, we may write

duNp = d0Np +
∫ 1

0
g′(t)dt

= d0Np +
∫ 1

0
d2Ntu(u)dt,

so that ∥duNp∥op ≤ L⊥∥u∥. Proceeding as above leads to ∥Np(u)∥ ≤ L⊥∥u∥2

2 , that entails
7
8∥u∥ ≤ ∥ψp(u)− p∥ ≤ 9

8∥u∥,

as well as

Juψp ≥ (1− ∥duNp∥op)d ≥
(3

4

)d
,

where Juψp denotes the Jacobian of ψp at u. Now let h ≤ 1/(4L⊥). We may write∫
M
1B(p,h)(x)f(x) volM (dx) ≥

∫
M
1ψp(BTpM (0,8h/9))(x)f(x) volM (dx)

≥ fmin

∫
BTpM (0,8h/9)

Jψp(u)du

≥ cdfminh
d,

using the co-area formula ([Federer, 1959, Theorem 3.1]).

An interesting consequence of Proposition 1.34 is that Pk,d,D0,∞,L(fmin, fmax) is a subset of
(cdfmin, d)-standard measures at scale 1/(4L⊥), that guarantees a uniform convergence
rate of (1/n)1/d for Hausdorff estimation over this class, according to Theorem 1.4. In
other words, letting τmin be arbitrarily small with fixed smoothness parameters L still
entails consistency of some manifold estimators. This is not the case for tangent space
and curvature estimation, as alleged by [Aamari and Levrard, 2019, Theorem 1].
Now, for a distribution P ∈ Pk,d,Dτmin,∞,L(fmin, fmax), we may formalize our local polynomial
intuition.
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1.4.3.2 Local polynomials

For this, we need one more piece of notation. For 1 ≤ j ≤ n, P (j)
n−1 denotes integration

with respect to 1/(n− 1)
∑
i ̸=j δ(Xi−Xj), and z⊗i denotes the D × i-dimensional vector

(z, . . . , z). For a bandwidth h > 0 to be chosen later, we define the local polynomial
estimator (π̂j , T̂2,j , . . . , T̂k−1,j) at Xj to be any element of

arg min
π,sup2≤i≤k ∥Ti∥op≤1/h

P
(j)
n−1

∥∥∥∥∥x− π(x)−
k−1∑
i=2

Ti(π(x)⊗i)
∥∥∥∥∥

2

1B(0,h)(x)

 , (1.8)

where π ranges among all the orthogonal projectors on d-dimensional subspaces, and
Ti :

(
RD
)i
→ RD among the symmetric tensors of order i such that ∥Ti∥op ≤ 1/h. Note

that compactness of the domain of minimization ensures that such a minimizer exists
almost surely. The bound 1/h on ∥Ti∥op follows from technical considerations, that are
detailed in [Aamari and Levrard, 2019, Theorem 2]. Such a constraint on the higher
order tensors might have been stated under the form of a ∥.∥op-penalized least squares
minimization (as in ridge regression) leading to the same results.
In the case where k = 2, the sum over the tensors Ti is empty, and the integrated term
reduces to ∥x− π(x)∥2 1B(0,h)(x). We thus recover the local PCA tangent spaces
estimates defined below (1.2), that eventually lead to a local linear patch estimator of M
as in Section 1.4.2.
From a computational viewpoint, it is worth noting that the set of d-dimensional
orthogonal projectors is not convex, which leads to a more involved optimization
problem than usual least squares. In practice, this problem may be solved using tools
from optimization on Grassman manifolds Usevich and Markovsky [2014], or adopting a
two-stage procedure such as in Cazals and Pouget [2005]: from local PCA, a first
d-dimensional space is estimated at each sample point, along with an orthonormal basis
of it. Then, the optimization problem (1.8) is expressed as a minimization problem in
terms of the coefficients of (πj , T2,j , . . . , Tk,j) in this basis under orthogonality
constraints.
Before turning to the definition of our Ck manifold estimator, let us mention that some
coefficients of (π̂j , T̂2,j , . . . , T̂k−1,j) are of particular interest: indeed, choosing T̂j as im π̂j
provides a tangent space estimator that has convergence rate n−(k−1)/d, according to
[Aamari and Levrard, 2019, Theorem 2]. Further, when k ≥ 3, letting ÎIj = T̂2,j ◦ π̂j
provides an estimator of IIXj that has convergence rate n−(k−2)/d ([Aamari and Levrard,
2019, Theorem 4]). In a nutshell, several geometric quantities on M may be inferred
from the coefficients (π̂j , T̂2,j , . . . , T̂k−1,j).
Now, for a fixed j ∈ [[1, n]], we try to estimate the local parametrization exposed in (1.7)
by defining

Ψ̂j(v) = Xj + v +
k−1∑
i=2

T̂i,j
(
v⊗i
)
,

for v ∈ im π̂j , where (π̂j , T̂2,j , . . . , T̂k−1,j) are given by (1.8). For a bandwidth h, our
manifold estimator M̂ can then be defined as

M̂ =
n⋃
j=1

Ψ̂j

(
BT̂j

(0, 7h/8)
)
, (1.9)

where T̂j = im π̂j . Contrary to the estimator M̂TDC given in Theorem 1.18 for the C2

case, the set M̂ has no reason to be globally smooth, since it consists of a mere union of
polynomial patches (see Figure 1.14). However, M̂ is provably close to M for the
Hausdorff distance.

28



M̂

X1

XnX4

Figure 1.14: A one-dimensional quadratic patches estimator, that may not even be con-
nected.

Let P ∈ P ∈ Pk,d,Dτmin,∞,L(fmin, fmax), and h =
(
Cd,k

f2
max log(n)
f3

min(n−1)

) 1
d . Then, for n large

enough so that h ≤ (τmin ∧ L−1
⊥ )/8, we have, with probability at least 1− 2

(
1
n

) k
d ,

dH
(
M, M̂

)
≤ Cd,k,τmin,L

√
fmax
fmin

hk.

In particular, for n large enough,

sup
P∈Pk,d,D

τmin,∞,L(fmin,fmax)
EP⊗ndH

(
M, M̂

)
≤ Cd,k,τmin,L

 f
2+ d

2kmax logn

f
3+ d

2k
min (n− 1)


k
d

.

Theorem 1.35 :

For greater orders of smoothness (k ≥ 3), the local polynomial estimator M̂ outperforms
reconstruction procedures based on a somewhat piecewise linear interpolation Aamari
and Levrard [2018], Genovese et al. [2012a], Maggioni et al. [2016], and achieves the
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faster rate (logn/n)k/d for the Hausdorff loss. This is done at the price of a probably
worse dependency on the dimension d than in Aamari and Levrard [2018], Genovese
et al. [2012a]. This faster rate of convergence may be proved (almost) minimax optimal
over the class Pk,d,Dτmin,∞,L(fmin, fmax).

If τminL⊥, . . . , τ
k−1
min Lk, (τdminfmin)−1 and τdminfmax are large enough (depending only on

d and k), then for n large enough,

inf
M̂

sup
P∈Pk,d,D

τmin,∞,L(fmin,fmax)
EP⊗ndH

(
M, M̂

)
≥ cd,k,τmin

( 1
n

) k
d

,

where the infimum is taken over all the estimators M̂ = M̂(X1, . . . , Xn).

Theorem 1.36 :

The proof of Theorem 1.36 is based on Lemma 1.1 with suitable hypothesis depicted in
Figure 1.15.

Λ

δ

M0

M1

Figure 1.15: Manifolds M0 and M1 of Theorem 1.36. The width δ ≍ (τminfminn)− 1
d of the

bump is chosen to have TV(P0, P1) ≤ 1
n . The distance Λ = dH(M0,M1) is of order δk to

ensure that M1 ∈ Ckτmin,∞(fmin, fmax).

Let us note that it is likely for the extra logn term appearing in Theorem 1.35 to
actually be present in the minimax rate. Roughly, it is due to the fact that the Hausdorff
distance dH is similar to a L∞ loss. The logn term might be obtained in Theorem 1.36
with the same combinatorial analysis as in Kim and Zhou [2015] for k = 2. In some
sense, Theorem 1.36 generalizes Theorem 1.17, ii) to higher orders of regularity (k ≥ 3).
Unfortunately, the constants Cd,k,τmin,L and cd,k,τmin,L in Theorems 1.35 and 1.36 do not
allow to seize the influence of the regularity parameters τmin and L. However, some
intuition on the importance of these parameters may be given. First, if L is allowed to
be arbitrarily large and τmin arbitrarily small, then adding a small sphere of radius
τmin ∼ n−1/d far from a Ck manifold render the manifold estimation problem
undecidable, leading to a constant lower bound over Pk,d,D0,∞ (fmin, fmax). Note that in this
case both (L⊥)−1 and τmin tend to 0. It is clear that a high curvature, encoded by L⊥,
entails a small reach, thus letting L⊥ tend to ∞ will imply τmin → 0.
As alleged by Proposition 1.12 and Figure 1.13, the converse is not true, and a natural
question is to determine which convergence rate may be expected on Pk,d,D0,∞,L(fmin, fmax),
for a fixed L. Combining Proposition 1.34 with Theorem 1.4 ensures that the
convergence rate over Pk,d,D0,∞,L(fmin, fmax) should be smaller than (1/n)

1
d . Nevertheless,

up to our knowledge there exists no lower bound to match this rate. Its optimality
remains an open question.
An other open question is to determine the minimax convergence rate over the class
Pk,d,Dτmin,τ∂,min(fmin, fmax), that is over the class of Ck manifolds with boundary. We
conjecture that this rate is n−k/(k−1+d), under suitable smoothness assumptions on both
M and ∂M . Indeed, for a positive h, take a h-cover of ∂M , and consider the "slabs" of

30



heights hk and basis h, that is, for an element x of the h-covering,

Sx(h) = {y ∈M | d(y, ∂M) ≤ hk and d∂M (π∂M (y), x) ≤ h}.

Since the volume of such a slab is roughly hd−1 × hk, the probability that Xn leave such
a slab empty can be made polynomial in n−1 by choosing h ≲ (log(n)/n)1/(k+d−1). Thus,
were we able to identify those (very) close to boundary points, then estimating the
boundary with rate hk would be possible using a local polynomial patch estimator of ∂M
and [Aamari and Levrard, 2019, Theorem 6] (that allows for small orthogonal
perturbations). Therefore, the key point would be to detect those hk-close points to ∂M ,
that remains out of our reach for the moment.
Before turning to noisy situations, let us recap the exposed convergence rates for support
estimation in the noiseless case, depending on support smoothness.

(a, b)-standard Convex Ck without boundary C2 with boundary
Rate n−1/b n−1/d n−k/d n−2/(d+1)

Table 1.1: Convergence rates for Hausdorff support estimation–Noise free cases.

1.4.4 Noisy cases

Most of existing results on noisy situations for manifold estimation deal with the case
where M is C2 without boundary. We briefly introduce the different types of noise that
are commonly investigated, and give a brief summary of the aforementioned results.

1.4.4.1 Clutter noise

The clutter noise assumption introduces some ambient noise. Namely, for a mixing
parameter β, the observations Xi’s are assumed to have distribution

Q ∼ βP + (1− β)UB(0,R),

where P ∈ P2,d,D
τmin,∞(fmin, fmax) and B(0, R) is the D-dimensional unit ball (that we

assume to contain the support of P ). With a slight abuse of notation, we denote by
βP2

τmin + (1− β)UB(0,R) the set of such distributions.

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

(a) Circle with outliers: d = 1, D = 2, β < 1. (b) Torus with outliers: d = 2, D = 3, β < 1.

Figure 1.16: Point clouds Xn drawn from distributions in βP2
τmin + (1− β)UB(0,R).

Roughly speaking, when facing such a situation, βn sample points are sampled on the
manifold, and (1− β)n are spurious points lying in the D-dimensional ball B(0, R) (see
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Figure 1.16). To detect those spurious points, the intuition is simple: if x denote a point,
T is the tangent space at πM (x) (whenever d(x,M) ≤ τM ), and h is a bandwidth, the
slab Sx(h) may be defined by

Sx(h) =
{
y | ∥πT (y − x)∥ ≤ h and ∥πT⊥(y − x)∥ ≤ h2

}
.

If d(x,M) ≥ h2, the Q-volume of Sx(h) will be roughly h2D−d, whereas it is of order hd
(that is much larger) whenever x ∈M . This provides a way to detect outliers, based on
counting sample points in slabs, that is the core of the following upper bounds.

▶ [Genovese et al., 2012a, Theorem 5], [Aamari and Levrard, 2018, Theorem 7]:
There exists M̂ such that, for n large enough,

sup
Q∈βP2

τmin +(1−β)UB(0,R)

EdH(M̂,M) ≤ Cd,τmin,fmin,fmax

( log(n)
βn

) 2
d

.

▶ [Genovese et al., 2012a, Theorem 4]:

inf
M̂

sup
Q∈βP2

τmin +(1−β)UB(0,R)

EdH(M̂,M) ≥ cd,τmin,fmin,fmax

( 1
βn

) 2
d

.

Theorem 1.37 :

The intuition behind Theorem 1.37 is that in the clutter noise model, detecting the
(1− β)n outliers is somehow easy enough to get the same convergence rate as in the C2

case based on the βn signal points. The two mentioned procedures for the upper bound
are based on outlier detection based on slabs. The one proposed in Genovese et al.
[2012a] consider an empirical fit maximizer over the set of C2 manifolds, where the fit is
defined as the number of points that fall into all possible slabs. The estimator exposed in
Aamari and Levrard [2018] relies on an iterative tangent space and denoising procedure:
for a subset of Xn, an iteration computes tangent space estimates at subset points and
discard points whose corresponding slabs have too small weight, leading to a smaller
subset of points. In both cases the ambient dimension D plays no role in the convergence
rate. Let us mention however that the prescribed lower bound on n in fact depends on D.

1.4.4.2 Offset noise models

The offset noise models assume that we observe (Y1, . . . , Yn) = Yn drawn on the offset
Mσ = {x ∈ RD | d(x,M) ≤ σ}. This kind of assumption encompasses the uniform noise
model investigated in Aizenbud and Sober [2021], Sober et al. [2021], Maggioni et al.
[2016], Aamari et al. [2019], but also structured additive noise models as in Genovese
et al. [2012b], Puchkin and Spokoiny [2019]. To simplify, we give results for the uniform
noise model, defined by

Ukτmin(σ) =
{
U(Mσ) s.t. M ∈Mk,d,D

τmin,∞

}
,

and the tubular noise model, defined by

Tubkτmin(σ) =
{
Y = X + ε s.t. X ∈ Pk,d,Dτmin,∞(fmin, fmax),

(ε | X) ∈ B(TXM)⊥(σ), E(ε | X) = 0
}
,
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with a slight abuse of notation. Up to our knowledge, these two models are the only ones
that account for additive normal noises in the literature. The difference between these
two models is the additive noise centering. Indeed, using for instance [Federer, 1959,
Theorem 3.1], if Y ∼ Q ∈ Uτmin(σ), then Y = πM (Y ) + (Y − πM (Y ) can be written as
Y = X + ε, with X ∈ Pk,d,Dτmin,∞(fmin, fmax) and (ε | X) ∈ B(TXM)⊥(σ). However, curvature
of M can prevent E(ε | X) to be null.

Example 1.38. Assume that Y has a uniform distribution over the annulus
C(R− σ,R+ σ) ⊂ R2. Then Y = X + ε, where X is the uniform distribution on the unit
circle, and (ε | X) ∈ B(TXM)⊥(σ). However,

E (ε | X) = σ2

3RX ̸= 0.

To sum up, uniform noise may be considered as additive normal and non-centered noise,
and conversely tubular noise is noise that has density with respect to the uniform
distribution on the offset Mσ. The upper bounds for the offset noise model are
summarized below.

Let Y ∼ Q ∈ Ukτmin(σ).

▶ Maggioni et al. [2016]: For k = 2 and σ < (C log(n)/n)
1

d+2 < τmin, a local linear
patch estimator M̂ achieves

E
∥∥πM̂ (Y )− πM (Y )

∥∥ ≤ Cd,D,τmin

( log(n)
n

) 2
d+2

.

▶ [Aizenbud and Sober, 2021, Theorem 3.3]: For σ < Cτmin
√
D log(D), there is

an iterative algorithm A based on Yn such that, for any y ∈ Mσ there exists
p̂ ∈M satisfying

E ∥p̂−A(y)∥ ≤ Cd,k,D,τmin

( log(n)
n

) k
2k+d

.

Theorem 1.39 :

Note that the first bound upper bound given in Theorem 1.39 differs from the results
exposed in Maggioni et al. [2016]. It can be derived from the proof of [Maggioni et al.,
2016, Theorem 6]. The result from Aizenbud and Sober [2021] roughly ensures that
supx∈A(Mσ) d(x,M) ≲ n− k

2k+d .
These two results address a slightly different problem from the originate manifold
estimation problem. Indeed, both are focused on sending an ambient point onto the
manifold. However, it is likely that these two rates can be retrieved for the manifold
estimation problem, for instance choosing M̂ as the set of projections of a thin enough
grid of the ambient ball B(0, R), or using some polynomial patches around them. The
latter approach seems more relevant, since both methods exposed in Aizenbud and Sober
[2021], Maggioni et al. [2016] have a tangent space estimation procedure step, combined
with a local polynomial fit in Aizenbud and Sober [2021]. The optimality of these rates
might be discussed considering the following lower bound.
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For a fixed τmin and L large enough, it holds, for all σ < τmin,

inf
M̂

sup
Q∈Uk

τmin (σ)
E
(
dH(M̂,M)

)
≥ cd,k,τmin

( log(n)
n

) k
k+d

.

Theorem 1.40 : [Aamari and Levrard, 2019, Theorem 7]

Note that the same result for k = 2 is to be found in [Genovese et al., 2012b, Theorem 1]
Considering Theorems 1.39 and 1.40, we see that there is a gap between the n−k/(2k+d)

rate for the upper bound and the n−k/(k+d) rate for the lower bound. To determine
which of the two bounds is optimal, if any, is still an open question for k ≥ 3, up to our
knowledge. A similar phenomenon occurs for the tubular noise model, the corresponding
upper bounds are given below.

Let Q ∈ Tubkτmin(σ).

▶ Genovese et al. [2012b] For k = 2, (ε | X) ∼ U
(
B(TXM)⊥(σ)

)
and σ < τmin,

there exists M̂ such that, for n large enough,

E
(
dH(M̂,M)

)
≤ Cσ,d,D,fmin,fmax,τmin

( log(n)
n

) 2
d+2

.

▶ Puchkin and Spokoiny [2019] For k = 2 and σ ≲ n− 2
3d+8 , there exists a

Nadaraya-Watson type estimator M̂ such that, for n large enough

E
(
dH(M̂,M)

)
≤ Cfmin,fmaxτ

−1
min

(
Dσ2τ2

min log(n)
n

) 2
d+4

.

Theorem 1.41 :

The result of Genovese et al. [2012b] is stated for the particular case where the tubular
noise is uniform on the orthogonal fiber, whereas the results in Puchkin and Spokoiny
[2019] also allows for small tangential noise. Moreover, this n−2/(d+4) convergence rate
has been proved optimal in Puchkin and Spokoiny [2019] for k = 2 when a small
tangential noise is allowed. Up to our knowledge, there is no minimax lower bound for
the tubular noise model.
Gathering all these results and remarks, we see that identifying the correct convergence
rate for the offset noise model and for the tubular noise model globally remains an open
question that depend on the structure of the noise. Both of these models may be written
as Y = X + ε, where ε | X ∈ B(TXM)⊥(σ), they differ by the structural assumptions on
ε | X (centered or not, has uniform distribution on B(TXM)⊥(σ), yields uniform
distribution on Mσ). We strongly believe that the key assumption is the
(a, b)-standardness of the noise distribution in the normal fibers. To be more precise, we
conjecture that the correct convergence rate for "uniform-like" noises on the normal fiber
(that is with lower bounded density, encompassing the uniform offset noise model as well
as the tubular noise model) is n− k

k+d , and that the convergence rate deprecates whenever
this orthogonal noise is no more (a, (D − d))-standard. This is ongoing work with E.
Aamari.
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1.4.4.3 Gaussian noise model

As emphasized in the last Section, in the case of centered additive noise, the structure of
the noise with respect to the geometry of the underlying manifold plays an important
role in the convergence rates. We mention here the results pertaining to a specific
instance of unstructured noise model,

Gkτmin(σ) =
{
Y = X + ε s.t. X ∈ Pk,d,Dτmin,∞(fmin, fmax),

ε ∼ N (0, σ2), ε ⊥⊥ X
}
,

that is the Gaussian noise model. The only results on the convergence rates in such a
model are given in Genovese et al. [2012a] for the C2 case, summarized below.

▶ [Genovese et al., 2012a, Theorem 8]: For n large enough,

inf
M̂

sup
Q∈Gk

τmin (σ)
E
(
dH(M̂,M)

)
≥ Cd,D,τmin,fmin,fmax,σ

1
logn.

▶ [Genovese et al., 2012a, Theorem 9]: Let Q ∈ Gkτmin(σ), and 0 < δ < (1/2). Then
there exists a deconvolution-based estimator M̂ such that, for n large enough,

E(dH(M̂,M)) ≤ Cd,D,τmin,fmin,fmax,σ,δ

( 1
logn

) 1−δ
2
.

Theorem 1.42 :

Intuitively, Theorem 1.42 assesses that manifold estimation with Gaussian additive noise
is at least as difficult as the regression with error in variables problem (Fan and Truong
[1993]), from a statistical point of view, as detailed in [Genovese et al., 2012a, Section 6].
The similarity between these two problems is clear, at least locally: from the
parametrization described in 1.30, we see that allowing noise in the tangential directions
boils down to the observation of both a perturbed regression function (parametrization
+ noise in the normal direction) and perturbed variables (parameter/projection onto the
tangent space + noise in the tangent direction). This justifies in some sense the slow
convergence rates in (logn)−β (as in Fan and Truong [1993]).
To give a partial conclusion, we can infer from Theorem 1.37, Theorem 1.39 and
Theorem 1.42 that, in the additive noise case, the less the noise is tied to the manifold
structure, the slower the convergence rates for Hausdorff estimation will be. The
Gaussian noise model may be thought of as a limiting case, that allows too much error in
variables for a manifold estimator to converge faster than in (logn)−1.

1.5 Discussion and directions for future research
Tractable manifold estimators for the Ck case (with boundary).
The local polynomial estimator of M in the Ck model that is proposed in (1.9) is more a
theoretical object than an efficient manifold estimator. We list here some improvements
that are in our opinion worth trying. First, from a computational viewpoint, the
canonical basis of monomials to approximate a polynomial approximation of the
parametrization leads to poor conditioning constants (to relate the square deviation and
the coefficients). This fact somehow appears in the constants of Theorem 1.35, where the
dependency in k is at least 4k, due to this conditioning issue. Using a more L2 dedicated
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basis, such as multivariate Lagrange polynomials, could be a way to alleviate this
conditioning problem, at the price of the loss of differential quantities estimators that
naturally arise from the monomial estimates (such as curvature, see e.g. [Aamari and
Levrard, 2019, Section 3.2]). More generally, understanding more closely the influence of
the regularity k in the convergence rates would pave the way to adaptivity with respect
to k, using standard model selection procedures for instance.
Second, since it consists of a mere union of polynomial patches, this estimator has poor
structure. To provide a manifold as estimator, a first step could be to "glue" patches
using a kernel approach in the spirit of Puchkin and Spokoiny [2019]. Providing a
minimax and topologically correct estimator as for the C2 case would require more
technical work, for instance by replacing the convex hull of d-dimensional simplices of
the Tangential Delaunay complex with small polynomial caps in the reconstruction.
Such an approach would also require some gluing procedure. Since the topology of such
an estimator would still be based on the TDC complex topology, topological correctness
is likely to follow.
At last, manifold estimation in the Ck case with boundary is still an open question.
Some insights may be gained in the special case where D = d+ 1 in the offset noise
model: in this case, estimating M via M̂ naturally provides an estimator of ∂Mσ via
{x | d(x, M̂) = σ}. This yields a n− k

k+d rate for the estimation of the boundary of Mσ,
that is in line with the n− 2

2+(D−1) rate for boundary estimation of Mσ for the C2 case.
We conjecture that the boundary estimation rate for the Ck case is indeed n

− k
k+(d−1) ,

that is also the correct rate for the manifold estimation problem.

Offset noise models and regression
Informal connection between manifold estimation problem and regression has been
established in Genovese et al. [2012a]. Indeed, locally around some point x ∈M , if T is
such that ∠(T, TxM) < 1, then M can be parametrized by ψ(u), where u ∈ T . Adding
normal noise then amounts to observe (U + ε1, ψ(U) + ε2), that is a regression problem
with error in variables. Through this lens, the n− k

2k+d rate given in Aizenbud and Sober
[2021], Puchkin and Spokoiny [2019] is in line with the convergence rate for
non-parametric regression Stone [1982]. However, the n− 2

2+d rate obtained in Genovese
et al. [2012a] suggests that the manifold estimation problem with tubular noise is
somehow easier than the regression problem in full generality. We conjecture that this is
due to the particular structure of the noise: in a regression setting with bounded noise
ε ∈ [−σ, σ], faster convergence rates may be obtained with a local extrema based
estimator, of the type f̂(x) = min∥Xi−x∥≤h Yi + σ, provided that P (ε ∈ [−σ,−σ + δ]) is
large enough with respect to δ. This intuition might be adapted to the tubular and offset
noise models for manifold estimation: we conjecture that the n− k

k+d rate is achievable
whenever the noise distribution spreads enough weight around its extrema, the centering
assumption playing no role in this case.

Byproducts of manifold estimation.
The manifold estimation procedures we described allows to infer some manifold
parameters, based on M̂ or its construction. For instance, the local polynomials
estimation that is carried out in Section 1.4.3 provides estimates of tangent spaces and
second fundamental form (see also [Aamari and Levrard, 2019, Section 3.1,3.2]). These
estimates can be used to build estimators of the mean curvature Aamari and Levrard
[2019], they can be further exploited to build estimators of the reach based on the
heuristics exposed in Aamari et al. [2019], Berenfeld et al. [2020].
Other quantities such as the volume of the manifold or that of its boundary may be
estimated using estimators M̂ , using for instance the local decomposition of the volume
of M r for r → 0 given in Federer [1959]. Note that this decomposition (based on
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curvature measures) heavily depends on the existence of a boundary, so that the
procedure described in Section 1.4.2 is of particular interest in this case.
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Chapter 2

Coresets for distance to support
estimation

This chapter exposes and motivates the robust quantization scheme we conceived in
Brécheteau and Levrard [2020] in a compact set estimation framework. The key notion
to connect compact set estimation and quantization is the notion of coreset: for a target
precision ε we intend to build ε-close estimators of dK based on a small number k of
points, of the type dc1,...,ck

for instance, where the cj ’s are points in RD.
First, we motivate the design of k-points approximations at a macroscopic scale (of order
τK), by introducing some topological features of K that can be retrieved from such an
approximation, such as its persistence diagram.
Next, a short overview of selected quantization results takes place, that explains the
expected benefits of the quantization approach in a noisy compact set estimation setting,
as well as its limitation. To summarize, the quantization approach intends to minimize
P (du)∥dc1,...,ck

(u)− dK(u)∥2, rather than ∥dc1,...,ck
− dK∥∞. Adopting such a L2-like

criterion renders the estimation less sensitive to additive noise. However, providing
guarantees on the Hausdorff precision of dc1,...,ck

in noisy settings needs some adaptation
of this quantization principle.
The k-PDTM (k-power distance to measure) we propose consists in replacing dK by a
robust distance approximation (the distance to measure). This heuristic is described in
Section 2.3, along with theoretical guarantees on the sample-based k-PDTM in terms of
Hausdorff precision. These results guarantee that topological inference based on the
k-PDTM is a sensible strategy in additive noise cases. This statement is alleged by
numerical experimentation in a persistence diagram estimation framework.

2.1 Motivation and noise-free case

2.1.1 Topological inference from distance to support

The previous chapter was devoted to get, under various regularity settings, optimal
estimators of dK . Besides from the compact reconstruction problem, such distance
estimators may be used to retrieve some topological properties of the compact K from
their sublevel sets. In other words, for a distance estimator d̂, we may infer some
topological properties of K from d̂−1[0, r], for a suitable choice of r and provided that d̂
looks like a distance function in the following sense.
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A non-negative function ϕ : RD → R+ is distance-like if there exists I ⊂ R and
{(ci, ωi)}i∈I ∈ (RD × R+)I such that

ϕ2(x) = inf
i∈I
∥x− ci∥2 + ω2

i ,

for all x ∈ RD.

Definition 2.1 :

Note that Definition 2.1 differs from the original definition of distance-like functions given
by [Boissonnat et al., 2018, Definition 10.1]. However, [Chazal et al., 2011, Proposition
3.1] ensures that these definitions are equivalent. In particular, a distance-like function
in the sense of Definition 2.1 is 1-Lipschitz, 1-semiconcave and proper.
Distance-like functions are roughly the set of power-distance functions. In particular, for
any compact K ′ ⊂ RD, dK′ is distance-like, so that for instance dXn (distance to the
sample) is distance-like. The interesting point is that, for a distance-like function d̂,
L∞-type bounds for d̂− dK may be translated into topological inference results.

Let d̂ be a distance-like function such that

∥d̂− dK∥∞ ≤ ε.

If ε ≤ τK
9 and 4ε < r < τK − 3ε, then K and d̂−1 ([0, r]) are homotopy equivalent.

Theorem 2.2 : [Chazal et al., 2011, Theorem 4.6]

In a nutshell, homotopy equivalence ensures that d̂−1 ([0, r]) continuously retracts on K.
In particular, homotopy equivalence ensures that the singular homology groups of K and
d̂−1 ([0, r]) are isomorphic (see e.g., [Munkres, 1984, Theorem 30.8]). To give an
intuition, the k-th homology group of K is spanned by the k-dimensional holes of K. For
instance, if K has a single connected component, then the 0-th homology group of K is
isomorphic to F2. If K has two 1-dimensional holes, that is portions of K in which closed
loops cannot continuously retract on a single point, then the first homology group of K
is isomorphic to F2

2, etc. For k ≥ 0, the number of k-dimensional holes of K is the k-th
Betti number, that is just the dimension of the k-th homology group. For a general
introduction to simplicial homology the interested reader is referred to Munkres [1984],
Hatcher [2002].
According to Theorem 2.2, it is enough to provide a τK/9-close estimation of K in terms
of Hausdorff distance to recover its homology groups (via the homology groups of the
sublevel sets of the corresponding distance d̂). For instance, if d̂ = dXn , Theorem 2.2
ensures that the Devroye-Wise estimator B(Xn, r) of K has the correct singular
homology structure, provided n is large enough (depending on regularity assumptions on
K) and that the radius r of the balls is suitably chosen.

2.1.1.1 Persistence diagrams

To tackle the tough question of the selection of r, or simply to track multiscale
information, the concept of persistent homology has been introduced in Edelsbrunner
et al. [2002]. It consists in describing the evolution of the homology of the sublevel sets
of a function f . Namely, for f : RD 7→ R, not only the homology groups of f−1 ((−∞, r])
are described, but also the morphisms between homology groups of f−1 ((−∞, r]) and
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f−1 ((−∞, s]) the inclusion map induces, allowing to keep tracks of apparitions and
collapses of topological features.
Persistent homology can be encoded via persistence diagrams. A persistence diagram is
a multiset of points (b, d). Each point (b, d) is associated to one topological feature (that
accounts for one dimension of the corresponding homology group: a connected
component, a hole, a void, etc.) that appears when r = b (its birth time) and disappears
when r = d (its death time). To give an intuition, Figure 2.1 below exposes the
persistence diagram of dK , where K is the (unbalanced) infinity symbol. Slightly
anticipating, this persistence diagram is well-defined.

Figure 2.1: Persistence diagram for the infinity symbol: The red point accounts for the
(infinitely persistent) connected component. The two green points represent the two loops
(one-dimensional holes).

Note that points of a persistence diagrams are located in the one eight of plane defined
{(x, y) ∈ (R+)2 | y > x}. If ∆ denotes the diagonal {(x, y) ∈ (R+)2 | y = x}, and (b, d) is
a points of a persistence diagram corresponding to a topological feature, the distance of
(b, d) to ∆ may be interpreted as the persistence of the topological feature, that seizes
how long this feature is represented in the filtration. For technical reasons, the
persistence diagrams include the diagonal ∆, with infinite multiplicity. For a general
introduction to persistence diagrams the interested reader is referred to [Boissonnat
et al., 2018, Section 11.5]. Persistence diagrams are well-defined for functions f that
satisfy the q-tameness regularity assumption (see [Boissonnat et al., 2018, Definition
11.20]). To spare the reader the general definition of q-tameness, the following result
ensures that distance functions are q-tame.

Let K ⊂ RD be a compact set. Then dK is q-tame.

Theorem 2.3 : [Boissonnat et al., 2018, Theorem 11.28]

In particular, dXn is also q-tame, so that persistence diagrams for the distance to a finite
point set is also well-defined. It follows from the proof of Theorem 2.3 that weighted
distances to a finite set of points, that is functions of the form
x 7→

√
minj=1,...,k ∥x− cj∥2 + ω2(cj) are also q-tame. Slightly anticipating, since all

considered functions for which persistence diagrams will be build are weighted distance
to finite sets of points or distance to compact sets, it is implicitly assumed that the
q-tameness assumption is satisfied (and thus the persistence diagram is well defined).
For such a function, we denote by D(f) its persistence diagram.
To assess proximity between persistence diagrams, a distance between diagrams is

41



needed. The most common choice is the so-called bottleneck distance, defined below.

Let D1 and D2 be persistence diagrams. A pairing between D1 and D2 is a bijection
between the multisets of points D1 and D2 (recall that they both contain the diagonal
with infinite multiplicity).

The bottleneck distance is then defined by

dB(D1, D2) = inf
pairings γ

sup
p∈D1

∥p− γ(p)∥∞ ,

with the convention ∥(bp,+∞)− (bq,+∞)∥∞ = |bp− bq|, to account for the connected
component with infinite persistence.

Definition 2.4 :

Intuitively speaking, the bottleneck distance may be thought of as a L∞ transportation
distance between diagrams, where each point can be mapped to the diagonal. See Figure
2.2 below to get an intuition on pairings and bottleneck distance. If persistence diagrams

∆

b

d

D1

D2

dB(D1, D2)

Figure 2.2: An optimal pairing between D1 (red) and D2 (green). The bottleneck distance
is depicted in gold

are built from the sublevel sets of tame functions f and g, then the following stability
results connects bottleneck distance between D(f) and D(g) to the sup-norm deviation
between f and g.

If f and g are q-tame functions, then

dB(D(f), D(g)) ≤ ∥f − g∥∞ .

Theorem 2.5 : Cohen-Steiner et al. [2007]

In the particular distance estimation case, Theorem 2.5 ensures that the persistence
diagrams D(d̂) and D(dK) are close whenever ∥d̂− dK∥∞ is small, that is the lifetimes
d− b of the topological features will be similar. In this case, let δmin denote the smallest
distance of points in D(dK) (the diagonal being excluded) to ∆, and D(d̂)≥ε the set of
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points in D(d̂) that have persistence larger than ε. Then D(dK) and D(d̂)≥ε have the
same structure whenever ε < δmin/2. In particular they have the same number of points
(see Figure 2.3 below).

∆

b

d

δmin

ε
D(dK) D(d̂)

Figure 2.3: Points of D(d̂) farther than ε to the diagonal account for "true" topological
features of K.

To conclude this section, let us emphasize that topological inference based on the
sublevel sets of a distance estimator d̂ needs a prescribed precision in terms of
∥d̂− dK∥∞ to provide relevant topological descriptors. This precision threshold can be
τK/9 for homology inference, or δmin/2 for persistence diagram inference.

2.1.2 Noise-free case and coresets

As exposed above, a standard way to estimate the topology of K is to compute the
singular homology groups of B(Xn, r), for a suitable choice of r. In practice, the singular
homology of B(Xn, r) is retrieved via the computation of the simplicial homology of the
Čech complex Čech(Xn, r) defined by

{Xi0 , . . . , Xik} ∈ Čech(Xn, r) ⇔
⋂

j=0,...,k
B(Xij , r) ̸= ∅.

Indeed, the Nerve Theorem [Chazal et al., 2011, Theorem 2.8] ensures that B(Xn, r) and
Čech(Xn, r) are homotopy equivalent, and, for the simplicial complex Čech(Xn, r), the
singular homology groups are isomorphic to simplicial homology groups. For more
details on simplicial complexes and their use in topological inference the interested
reader is referred to [Boissonnat et al., 2018, Chapter 2 and 11]. As well, computing the
persistence diagram of dXn may be carried out by computing the persistence diagram of
Čech(Xn, r), for increasing r ∈ [0,+∞).
From a computational viewpoint, the Čech complex for a radius r may be computed
with O(n× (d+ 1)!) operations in expectation (see, e.g., [Edelsbrunner and Harer, 2010,
Section III.2]), that may become intractable for large dimensions. The Vietoris-Rips
complex Rips(Xn, r), defined by

{Xi0 , . . . , Xik} ∈ Rips(Xn, r) ⇔ ∀j ̸= ℓ B(Xij , r) ∩ B(Xiℓ , r) ̸= ∅,

is often preferred to compute simplicial homology groups. Indeed, it is immediate that

Rips(Xn, r) ⊂ Čech(Xn, r) ⊂ Rips(Xn, 2r),

43



so that the homology groups of K may be retrieved from those of Rips(Xn, r) for
2ε ≤ r < 1

4(τK − ε), whenever ∥dXn − dK∥∞ ≤ ε < τK/9 (see, e.g., [Chazal and Oudot,
2008, Theorem 3.6]). In this case, only pairwise distances between sample points are
needed to compute the Rips complex, that is O(dn2) operations. Computing the
homology of this complex may be carried out using Zomorodian and Carlsson [2005].
Whatever the simplicial complex (and algorithm) used, it is immediate that if C ⊂ Xn is
a τK/18-covering of Xn and Xn is a τK/18-covering of K, then

∥dC − dK∥∞ ≤
τK
18 + ∥dXn − dK∥∞ ≤

τK
9 ,

so that the correct homology groups might be computed from Rips(C, r), at a lower
computational cost (depending on the cardinality of C). In the noise-free case, given a
precision level (for instance τK/18), such a sub-sample may be extracted from Xn via the
Farthest Point Sampling algorithm, and may have a much smaller cardinality than n,
depending on the sampling assumptions. For instance, if the source distribution P is
(a, b)-standard, then using Theorem1.4 yields |C| ≲ τ−b

K , with high probability. Thus, in
the (a, b)-standard noise-free case, only O(τ−b

K ) points are needed to compute a correct
topology estimator. Those points form a coreset for dK at precision τK/9. This
application in topological inference is to be kept in mind to justify the introduction of
dedicated methods in the sections to follow.
Once motivated, let us now define the notion of coreset that we will use throughout this
chapter.

Let ϕ2 : x 7→ infi∈I ∥x − ci∥2 + ω2
i be a distance-like function, and ε > 0, k ∈ N∗. A

k-points coreset for ϕ with precision ε is a subset of (RD ×R+)k, {c̃j , ω̃j}j=1,...,k, such
that ∥∥∥ϕ− ϕ̃∥∥∥

∞
≤ ε,

where

ϕ̃ :
{
Rd → R+

x 7→ minj=1,...,k
√
∥x− c̃j∥2 + ω2

j := minj=1,...,k ϕ̃j(x) .

Definition 2.6 : Coresets

This definition of a coreset is tied to the topological inference framework: since ϕ̃ is
distance-like, homology of the sublevel sets of ϕ are related to those of ϕ̃, using [Chazal
et al., 2011, Proposition 4.3] for instance. We might figure out cases where the function
to approximate is not distance-like, or where the requirements on the approximation
functions ϕ̃j are different, for instance allowing weighted distances to base structures
such as ellipsoids rather than points. Up to our knowledge, the formal definition of a
coreset may vary depending on the field and purpose of such an approximation. Most of
existing references can be found in the computer science literature. Definition 2.6 is thus
an attempt to formalize the notion of k-points distance approximation that fits our
purpose, and should not be taken as a canonical definition.
In the simple case where ϕ = dK for some compact set K, if Xn is an n-sample from an
(a, b)-standard measure on K, then the output of the Farthest Point Sampling Algorithm
with parameter ε/2 provides a ε-coreset for dK whenever dH(Xn,K) ≤ ε/2, by letting
ϕ̃j = d(., cj), where cj ∈ C (and C is the sub-sample). With a slight abuse of
terminology, the set C = {c̃1, . . . , c̃k} is also called a k-points coreset (when the choice of
weights ω̃j is clear). The general definition of a coreset also allows other distance-like
function to be approximated, that will be of key interest in Section 2.3.
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Our aim will to build coresets for distances, based on a sample. In other words, for a
precision parameter ε, we intend to build a ε-approximation of f with k simple
distances, based on sample. A special interest will be paid on the smallest size of a such
a ε-coreset, denoted by k(ε). Following up Theorem 1.4, whenever P is (a, b)-standard, it
holds k(ε) ≲ ε−b, and a ε-coreset based on Xn mat be computed using the Farthest Point
Sampling Algorithm on Xn. According to Proposition 1.5, this ε−b asymptotic rate is
tight.
Note that the results of Section 1.4 might be adapted as well in terms of "generalized"
coresets. Indeed, in the C2 manifold case without boundary, following Section 1.4.3, if
{c1, . . . , ck} is the output of the Farthest Point Sampling algorithm with parameter ε,
and if T1, . . . , Tk are the corresponding estimation of tangent spaces, then defining
ϕ̃j = dP̂j

, where

P̂j = BTj (cj , 7ε/8),

leads to ∥∥∥ϕ̃− dM∥∥∥∞
≲ ε2,

with high probability, for n large enough. In this framework, it holds k(ε) ≲ ε−d/2. Note
however that such an approximation requires the additional input of (estimated) tangent
spaces, and falls slightly beyond the scope of Definition 2.6. Though the topological
correctness result given by Theorem 1.19 remains valid, the additional computation of
tangent spaces and the computational cost of retrieving the homology of the sublevel
sets of ϕ̃ (that does not resort to Rips complexes in this case) might deprecate the
practical interest of such an approximation. Such an approach is also developed in
Maggioni et al. [2016]. As well, enabling additional inputs such as higher order
derivatives, normal to boundary, etc. would provide improved rates for k-distances
approximation, that are straightforward..
To sum up, in the noise-free case, coresets may be easily build using the Farthest Point
Sampling algorithm, and further processing as described in Section 1.4 can readily apply
(providing more complex distances). Building coresets in noisy cases is more challenging,
as exposed in the following section.

2.2 Noisy cases and quantization
From now on we assume that the sample Xn is drawn from Q, a perturbation of the
noise-free distribution P that has support K. In full generality, allowing additive noise
ensures that a ε-coreset for dK would have cardinality larger than Ce−1/ε, according to
Theorem 1.42. However, the latter bound is purely asymptotic, so that building a
τK/9-coreset for dK with reasonable cardinality might be attempted, whenever τK > 0.
Note that this would be enough to carry further topological inference, as described below
Theorem 2.2. In other words, for a fixed desired precision ε, it is likely that, for a
bounded level of noise, reasonable coresets may be conceived.
This regime is different from the framework of Theorem 1.42, where the noise level is
fixed, and ε is allowed to be arbitrarily small. It falls under the intuition that a key
quantity to determine whether such an approximation is feasible will be the level of
noise, that we define by σ = W2(P,Q), the 2-Wasserstein distance between the noisy and
the noise-free distribution. Note that other distances between P and Q are possible,
however the 2-Wasserstein distance allows to readily apply some results from the
quantization theory, as detailed below.
Since Q is allowed to have an unbounded support, procedures that rely on gridding the
sample point Xn such as Farthest Point Sampling are likely to fail. Such procedures are
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devoted to minimize ∥dK − dC∥∞, via minimizing ∥dXn − dC∥∞, where C = {c1, . . . , ck}
is a k-points coreset. To prevent candidate points to grid the whole ambient space, a
local mean approach could be preferred. To do so, a suitable strategy is to minimize

P (dx)
∣∣∣d2
K(x)− d2

C(x)
∣∣∣ = P (dx)d2

C(x) = P (dx) min
j=1,...,k

∥x− cj∥2 := RP (C),

rather than RP,∞(C) = ∥dK − dC∥∞. Minimizing such a criterion is the main purpose of
the quantization field. To cope with the quantization terminology, candidate elements
c1, . . . , ck of RD will be called code points, and c = (c1, . . . , ck) will be called a codebook.
The only difference with a k-points coreset is the specification of an order between code
points, that allows to use some Euclidean properties of (RD)k, for instance in Levrard
[2013, 2015]. Now, for c ∈ (RD)k, R(c) is straightforwardly defined by

RP (c) = RP (C),

where C = {c1, . . . , ck}. With a slight abuse of notation, for c ∈ (RD)k, we let dc = dC .
Contrary to the targeted L∞ criterion, this L2 risk is adapted to perturbations expressed
in terms of W2 distance, as exposed below.

Let Q be such that W2(P,Q) ≤ σ. Then, for c ∈ (RD)k, we have∣∣∣∣√RP (c)−
√
RQ(c)

∣∣∣∣ ≤ σ. (2.1)

As a consequence, if

c∗
Q ∈ arg min

c∈(RD)k
RQ(c),

then, we have

RP (c∗
Q) ≤ 4 min

c∈(RD)k
RP (c) + 6σ2.

Proposition 2.7 :

Before turning to the short proof of Proposition 2.7, note that the existence of such a c∗
Q

follows from the assumptions Supp(P ) = K and W2(P,Q) ≤ σ, according to [Fischer,
2010, Theorem 3.1] or [Graf and Luschgy, 2000, Theorem 4.12]. In what follows, the
existence of such an optimal codebook will be implicitly assumed.

Proof of Proposition 2.7. Let c ∈ (RD)k. To prove (2.1), simply note that
√
RP (c) (resp.√

RQ(c)) is the Wasserstein distance between P (resp. Q) and Pc, that is the set of
probability distributions supported by c. The result then follows from a basic triangle
inequality.
Next, if c∗

Q ∈ arg minc∈(RD)k RQ(c) and c∗
P ∈ arg minc∈(RD)k RP (c), we have

RP (c∗
Q) ≤ 2RQ(c∗

Q) + 2σ2

≤ 2RQ(c∗
P ) + 2σ2

≤ 4RP (c∗
P ) + 6σ2.

Thus, minimizing Q(dx)d2
c(x) allows to approximate minc P (dx)d2

c(x) for reasonable σ’s.
Next, bounds on P (dx)d2

c(x) may in turn be converted into L∞-type bounds whenever P
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is (a, b)-standard. Interestingly, in this case minc P (dx)d2
c(x) can also be controlled, as

exposed below.

Assume that P is (a, b)-standard at scale r0, with compact support K. Then we have:

(i) For all k ≥ r−b
0
a ,

min
c∈(RD)k

P (dx) min
j=1,...,k

∥x− cj∥2 ≤ 4(ak)− 2
b ;

(ii) For any c ∈ (RD)k,

∥dc − dK∥∞,K := max
x∈K
|dc(x)− dK(x)| ≤ 2

(RP (c)
a

) 1
b+2
∨
√
RP (c)

1 ∨ 1√
arb0

 ,
where we recall that RP (c) = P (dx)d2

c(x).

Proposition 2.8 :

Proof of Proposition 2.8. For ε > 0, denote by N (ε) the ε-covering number of K, that is
the smallest number of closed balls with radius ε that cover K, and by Pack(ε) the
ε-packing number of K, that is the largest cardinality of a subset of K that consists of
ε-separated points. Let us quote a classical inequality relating Pack(ε) and N (ε):

Pack(ε) ≥ N(ε) ≥ Pack(2ε).

If P is (a, b)-standard at scale r0 and k = Pack(2ε), denote by C = {c1, . . . , ck} such a
maximal 2ε-net. It holds

P

 ⋃
j=1,...,k

B̄(cj , ε)

 ≤ P (K) ≤ 1,

so that, for ε ≤ r0,

Pack(2ε)(aεb ∧ 1) ≤ 1.

This leads to

N (ε) ≤ 2b

a
ε−b ∨ 1,

whenever ε ≤ 2r0, hence, for all ε > 0,

N (ε) ≤ 2b

a
ε−b ∨ r

−b
0
a
∨ 1.

Now, if k ∈ N∗ is such that k ≥ r−b
0
a , then there exists c a εk-covering of K with k points,

with

εk = 2(ak)− 1
b ,

so that

min
c
P (dx)d2

c(x) ≤ RP (c) ≤ ε2
k = 4(ak)− 2

b ,
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which proves (i).
To prove (ii), let c ∈ (RD)k, ∆∞,K = maxx∈K |dc(x)− dK(x)|, and let y ∈ K be such
that |dc(y)− dK(y)| = ∆∞,K . Then

B̄
(
y,

∆∞,K

2

)
∩K ⊂

{
z ∈ K | |dc(z)− dK(z)| ≥ ∆∞,K

2

}
.

Markov’s inequality entails that

RP (c) ≥
∆2

∞,K

4 P

(
B̄

(
z,

∆∞,K

2

))
≥

∆2
∞,K

4

(
a

∆b
∞,K

2b ∧ arb0 ∧ 1
)
,

so that

∆∞,K ≤ 2
(
RP (c)
a

) 1
b+2
∨ 2

(
RP (c)
arb0

) 1
2

∨ 2RP (c)
1
2 .

Proposition 2.8, (ii) allows to convert bounds on RP (c) onto bounds on the covering
radius of K with base points c. Combined with Proposition 2.7 and Proposition 2.8, (i),
it ensures that, if W2(P,Q) ≤ σ and c∗

Q is an optimal codebook for Q,

∥∥∥dc∗
Q
− dK

∥∥∥
∞,K

≤ C
(
a− 1

b k
− 2

b(b+2) + a− 1
b+2σ

2
b+2

)
,

whenever P is (a, b)-standard. Turning to the topological inference problem described in
Section 2.1,

∥∥∥dc∗
Q
− dK

∥∥∥
∞,K

can be smaller than the threshold of Theorem 2.2, τK/9,

whenever σ ≲ τ
1+ b

2
K and k is large enough. Therefore, building coresets with reasonable

cardinality seems at first sight possible, in the case where σ ≲ τ
1+ b

2
K , using quantization

related tools.
Besides, in the noise-free case, Proposition 2.8 ensures that optimal codebooks for P
yield O(k− 2

b(b+2) ) coverings of the support K. With slightly more requirements on K,
this rate can be improved to reach the k− 1

b covering rate that a k-points optimal
covering induces in this case.

Assume that P is (a, b)-standard with scale r0, with a connected support K. Then, for
k large enough, if c∗ denotes an optimal k-points codebook for P , it holds

∥dc∗ − dK∥∞,K ≤ C(ak)− 1
b .

Theorem 2.9 : From [Clarkson, 2006, Theorem 5.4]

The original result from Clarkson [2006] is valid under slightly stronger conditions than
(a, b)-standardness. However its proof easily adapts as follows.

Proof of Theorem 2.9. We follow the proof of [Clarkson, 2006, Theorem 5.4]. Let c∗

denote an optimal k-points codebook for P , and denote, for j = 1, . . . , k, by Vj(c∗) the
Voronoi cell of c∗

j . According to [Graf et al., 2007, Proposition 1], for i ̸= j, we have
P (Vi(c∗) ∩ Vj(c∗)) = 0, so that with a slight abuse we may thought RP (c∗) as the
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distortion of the quantizers Q∗ that maps each Vj(c∗) onto c∗
j , that is

RP (Q∗) = P (du)∥u−Q∗(u)∥2.
As in the proof of Proposition 2.8, let ∆∞,K = maxx∈K dc∗(x). For every j ∈ [[1, k]], we
let c∗,−j denote the (k − 1)-points codebook obtained via removing c∗

j from c∗. Let
i ∈ [[1, k]] be fixed. Since, for all j ∈ [[1, k]], Vj(c∗) ∩K ̸= ∅, there exists x1 and x2 in K
such that (dc∗,−i − dc∗

i
)(x1) ≤ 0 and (dc∗,−i − dc∗

i
)(x2) ≥ 0. Since K is connected, there

exists x3 ∈ K such that dc∗,−i(x3) = dc∗
i
(x3). It follows that, for every x ∈ K ∩ Vi(c∗),

dc∗,−i(x) ≤ ∥x− x3∥+ dc∗,−i(x3)
≤ ∥x− c∗

i ∥+ 2∥x3 − c∗
i ∥

≤ 3∆∞,K .

Let i0 ∈ arg mini=1,...,k P (Vi(c∗)). It holds P (Vi0(c∗)) ≤ k−1, so that

RP (c∗,−i0)−RP (c∗) ≤
9∆2

∞,K

k
.

Next, let x0 ∈ K be such that dc∗(x0) = ∆∞,K . With a slight abuse of notation we
denote by c∗,−i0 ∪ {x0} the k-points codebook obtained via concatenation. Note that, for
any y ∈ B̄

(
x0,

∆∞,K

4

)
, we have dc∗(y) ≥ 3∆∞,K

4 . This entails

RP (c∗,−i0 ∪ {x0}) ≤ RP (c∗,−i0)− P
(

B̄
(
x0,

∆∞,K

4

))[ 9
16∆2

∞,K −
1
16∆2

∞,K

]
≤ RP (c∗,−i0)−

∆2
∞,K

2 (a∆b
∞,K ∧ 1),

whenever ∆2
∞,K ≤ 4r0. According to Proposition 2.8, ∆∞,K → 0 as k → +∞. This

yields, for k large enough,

RP (c∗,−i0 ∪ {x0}) ≤ RP (c∗) + ∆2
∞,K

(
9
k
−
a∆b

∞,K

2

)
.

Since RP (c∗,−i0 ∪ {x0}) ≥ RP (c∗), it holds

∆∞,K ≤ C(ak)− 1
b ,

for k large enough.

Theorem 2.9 assesses that optimal coverings of K with k points may be performed via
quantization, in the noise-free case. Contrary to Proposition 2.8, this results does not
easily adapts to Wasserstein perturbations, so that an open question is to know whether
a O(k− 1

b + σ) is attainable for a k-points optimal quantizer of Q. Note that the results of
Theorem 2.9 hold for more general distance-based risk functions. The interested reader
is referred to Graf and Luschgy [2000], Gruber [2004], Clarkson [2006] for an
introduction to quantization in a more general framework.
Moving back to our initial problem, that is building a coreset for dK based on a noisy
n-sample Xn, it remains to build optimal codebooks ĉn from sample, and to connect
∥dĉn − dK∥∞ to ∥dĉn − dK∥∞,K .
The first point may be carried out using empirical risk minimization, that is choosing

ĉn ∈ arg min
c∈(RD)k

Qn(du)d2
c(u),

where Qn is the distribution of the sample Xn, or other k-means like approach. More
details are to be found in the following Chapter 3, let us briefly sum up here the
convergence rates for RQ(ĉn)−RQ(c∗

Q), depending on assumptions on Q.
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Q SubGaussian Bounded support Margin condition
Rate (log(n)3/n)

1
2 n−1/2 n−1

Upper Brécheteau and
Levrard [2020]

Biau et al. [2008], Linder
[2002] Levrard [2015, 2018]

Lower \ Bartlett et al. [1998], Antos
[2005], Levrard [2015] Levrard [2018]

Table 2.1: Convergence rates for E(RQ(ĉn)−RQ(c∗
Q)).

Some of the results exposed in Table 2.1 may be retrieved from results in Bachem et al.
[2017]. Note also that other conditions on Q might ensure a n−1 rate, such as the one
exposed in Pollard [1982] or Antos et al. [2005]. Some insights on the connections
between these conditions and the aforementioned ones may be found in Levrard [2013,
2015, 2018].
Connecting RQ(ĉn) with RP (ĉn) may be performed using (2.1). Then, using Proposition
2.8, Item (ii) allows to bound ∥dĉn − dK∥∞,K whenever P is (a, b)-standard.
The second point (connecting ∥dĉn − dK∥∞ to ∥dĉn − dK∥∞,K) is hopeless in the general
case, as alleged by the following example.

Example 2.10 : [Brécheteau and Levrard, 2020, Example 3]. Let
Qβ = β US(0,1) + (1− β)UB(0,1) be a noisy version of P = US(0,1), the uniform
distribution on the circle, for some β ∈ (0, 1).
Then W2(Qβ, P ) ≤

√
1− β, so that, if c∗ denotes an optimal k-points codebook for Qβ,

we have, for k large enough,

sup
x∈S(0,1)

|dc∗(x)− dS(0,1)(x)| ≤ C
( 1
k2 + (1− β)

) 1
3
.

Nonetheless, for every ρ > 0, there exists kρ,β such that, for all k ≥ kρ,β, c∗ has at least
one codepoint in B(0, ρ).
As a consequence,

sup
k≥0
∥dS(0,1) − dc∗∥∞ ≥ sup

k≥0
|dS(0,1)(0)− dc∗(0)| = 1.

The intuition behind Example 2.10 is that though optimal codebooks designed via
classical quantization can yield provably good covering of topological structures such as
manifolds, they are also likely to have codepoints far from the structure in some noisy
cases. In this case, geometric inference based on the sublevel sets of dc∗ might lead to
poor results. From a technical point of view, the good covering properties of optimal
codebooks exposed in Proposition 2.8 only provide bounds on

sup
x∈RD

dc∗(x)− dK(x).

Example 2.10 illustrates that supx∈RD dK(x)− dc∗(x) may stay arbitrarily large
whenever k → +∞.
Note however that for special regimes of k and σ, such as σ << k−1 << τK , the
averaging effect of optimal codebooks might still lead to suitable approximations of dK .
Such approaches could lead to case-dependent bounds on ∥dK − dc∗∥∞, that will not be
discussed here. To bypass the spurious codepoints issue, we rather adopt a
robustification method, as detailed in the following section.
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2.3 Robust quantization via k-PDTM

To prevent optimal codebooks obtained via classical quantization of the noisy
distribution Q to have code points far from the targeted support K, a first idea could be
to remove code points whose Voronoi cell has too small weight (thus accounting for
noise). The intuition behind is that, to account for noise, one may not target the support
of the distribution (area with positive mass) but rather areas of RD that gather enough
mass. In other words, we want to estimate surrogates of the support that we hope close
enough to the original support.
Such surrogates estimation approaches has been successfully developed in the manifold
case. In Genovese et al. [2014], for the noise model Q ∼ P ⋆N (0, σ2), the targeted
surrogate is the so-called ridge Rσ of Q, that is the set of d-maxima of the density fQ. In
the P2,d,D

τmin,∞(fmin, fmax) model, [Genovese et al., 2014, Theorem 7] ensures that
dH(Rσ,M) = O

(
σ2 log(σ−1)

)
, so that their ridge estimation procedure provides an

estimator R̂ such that

dH(R̂,M) ≲ σ2 log(σ−1) +
( log(n)

n

) 2
D+8

,

that is enough to allow for topological inference whenever σ2 << τM . Note that the
proposed estimator rely on differential quantities of density estimator, this requires at
least estimation of tangent spaces. Such an estimator might be "sparsified", for instance
using the Farthest Point Sampling algorithm onto the input sample Xn, allowing to reach
a prescribed accuracy level with less points.
The tangential structure is also heavily used in Fefferman et al. [2018], where the authors
choose as surrogate a somehow local linear interpolation of Q, showing clear connection
with the work in Maggioni et al. [2016], Canas et al. [2012] in the additive noise model.
This locally linear approximation can be proved O(σd7√D) close to M , and can be build
with O((σ

√
D)−d) points. Thus, the proposed (inconsistent) estimator conveys the

correct topology whenever σ << τM and n ≳ σ−d, with the additional benefit of a much
milder dependency on D than the method proposed in Genovese et al. [2014].
It is worth noting that the two aforementioned methods are valid under the manifold
assumption in the additive noise case, and both rely on tangent spaces estimation. In
Brécheteau and Levrard [2020], we propose a more general approach that is valid under
the (a, b)-standard model and Wasserstein perturbation.

2.3.1 The distance to measure (DTM)

Our approach is based on a particular surrogate of dK that originates in Chazal et al.
[2011], the Distance to Measure (DTM). For a distribution P such that P (dx)∥x∥2 <∞,
and a mass parameter h > 0, we denote by Ph(P ) the set of h-submeasures of P , that is

Ph(P ) =
{1
h
Q | Q << P and Q(RD) = h

}
. (2.2)

The distance to measure may be defined as follows.

Let P be such that P (dx)∥x∥2 < ∞. Then, for x ∈ RD, the distance to the measure
P at x is defined by

dP,h(x) = inf
Q∈Ph(P )

Q(du) ∥u− x∥2 .

Definition 2.11 :
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Equivalent definitions of the DTM may be stated, that reveal its stability with respect to
Wasserstein perturbations. Namely, if rP,h(x) = inf{r ≥ 0 | P

(
B̄(x, r)

)
≥ h, it holds

d2
P,h(x) = 1

h

∫ h

0
r2
P,u(x)du,

so that, for a point x with dK(x) > 0 (where K = Supp(P )), if Q = βP + (1− β)N for
(1− β) < h, we have dQ,h(x) ≥ dK(x) (see Figure 2.4). From a formal point of view, the

rP,h(x)

P

h

x

rQ,h(x)

Q

h

x

Figure 2.4: To grab enough mass from P , rQ,h ≥ dK(x) whenever (1− β) < h.

desired Wasserstein stability derives from the following characterization.

Let P be such that P (du)∥u∥2 <∞, and h > 0. Then

d2
P,h(x) = inf

Q∈Ph(P )
W 2

2 (Q, δ{x}).

As a consequence, if Q(du)∥u∥2 <∞, we have

∥dQ,h − dP,h∥∞ ≤
W2(P,Q)√

h
.

Theorem 2.12 : [Chazal et al., 2011, Proposition 3.3 and Theorem 3.5]

Now, for the DTM to consist in a good surrogate of dK , it remains to connect dP,h to
dK , whenever P = Supp(K). It is immediate that dP,h ≥ dK , in fact dK may be thought
of as the limiting case limh→0 dP,h. A converse bound may be stated in the case of
(a, b)-standard measures.

Assume that P is (a, b)-standard at scale r0, and denote by K = Supp(P ). Then, for
any h ≤ arb0, we have

∥dP,h − dK∥∞ ≤
(
h

a

) 1
b

.

Moreover, for every h ∈ (0, 1), it holds

∥dP,h − dK∥∞ ≤
Diam(K)

r0

(
h

a

) 1
b

.

Proposition 2.13 : [Chazal et al., 2011, From Lemma 4.7]
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Thus, combining Theorem 2.12 and Proposition 2.13 ensures that the topology of K may
be retrieved from the sublevel sets of dQ,h whenever h ∼ τ bK and W2(P,Q) ≲ τ

1+ b
2

K , in the
(a, b)-standard case. The Distance to Measure then appears as a suitable surrogate for
the distance to support for the (a, b)-standard case with Wasserstein perturbation. As
noted by Guibas et al. [2013], in practice, if Qn denotes the empirical distribution
induced by Xn, then computing the sublevel sets of the empirical DTM would require to
build unions of

(n
q

)
balls, where q = hn. Computing the corresponding topological

features becomes intractable for large n’s, hence the particular interest of k-points
approximations of the DTM. Note however that Guibas et al. [2013], Buchet et al. [2016]
propose approximations of the DTM, whose sublevel sets consists of union of n balls for
the empirical DTM, rendering the computation of topological features tractable for
moderate sample sizes. In what follows, we intend to build k-points coreset for the
DTM, that would lead to compute the homology of a union of k balls.

2.3.2 A coreset for the DTM

To build a k-points approximation of the DTM, first note that it may be expressed as a
power distance.

Let P be such that P (du)∥u∥2 <∞, h > 0 and x ∈ RD. Then

d2
P,h(x) = min

Q∈Ph(P )

[
∥x−m(Q)∥2 + v(Q)

]
= min

τ∈RD

[
∥x− τ∥2 + ω2

P,h(τ)
]
,

where m(Q) and v(Q) respectively denote the mean and variance of Q, and

ω2
P,h(τ) = sup

x∈RD

d2
P,h(x)− ∥x− τ∥2.

In particular, the elements of Ph(P ) that achieves the minimum are the elements of

Px,h(P ) =
{1
h
Q | Q|B(x,rp,h(x)) = P|B(x,rp,h(x)) and Supp(Q) ⊂ B̄(x, rP,h(x))

}
.

Lemma 2.14 : [Brécheteau and Levrard, 2020, Lemma 11]

Lemma 2.14 ensures that d2
P,h(x) may be expressed as ∥x− c∥2 + ω2

P,h(c) or
∥x−m(Pt,h)∥2 + v(Pt,h), for a suitable c or t, depending on the parametrization. In
particular, Lemma 2.14 ensures that the DTM is a distance-like function in the sense of
Definition 2.1. Approximating d2

P,h via a k-points based distance may then be processed
in a straightforward way, by considering

min
j=1,...,k

∥x− cj∥2 + ω2
P,h(cj)

or

min
j=1,...,k

∥x−m(Ptj ,h)∥2 + v(Ptj ,h),

for a suitable choice of c = (c1, . . . , ck) or t = (t1, . . . , tk). As explained at the beginning
of Section 2.2, choosing c via a regular grid of K, though theoretically optimal, does not
adapt to the noisy case. We rather adopt a quantization approach, that is we choose t
(or c) via the minimization of a L2 criterion.
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Let P be such that P (du)∥u∥2 <∞, and h > 0. For all x ∈ RD, the k-PTDM at x is
defined by

d2
P,h,k(x) = min

j=1,...,k
∥x− c∗

j∥2 + ω2
P,h(c∗

j ) = min
j=1,...,k

∥x−m(Pt∗j ,h)∥2 + v(Pt∗j ,h),

where

c∗ ∈ arg min
c∈(RD)k

P (du) min
j=1,...,k

∥u− cj∥2 + ω2
P,h(cj),

or equivalently

t∗ ∈ arg min
t∈(RD)k

P (du) min
j=1,...,k

∥u−m(Ptj ,h)∥2 + v(Ptj ,h).

Definition 2.15 :

A proof of the equivalence between the two parametrizations is given by [Brécheteau and
Levrard, 2020, Theorem 12]. Intuitively, elements c such that ωP,h(c) is small will be
favored. Such c’s gather a proportion h of the mass of P on their neighborhood. On the
contrary, for elements c such that ωP,h(c) is large, the ball associated to such c’s will
appear in the r-sublevel set of the function x 7→ ∥ · −c∥2 + ω2

P,h(c) for large r’s only. This
is a way to "remove" code points that fall far from the support.
According to Definition 2.15, the squared k-PDTM may be interpreted as the closest
squared k-power distance to the squared DTM from above, in terms of L1(P ) norm.
This interpretation comes from the straightforward inequality
∥x− c∥2 + ω2

P,h(c) ≥ d2
P,h(x). The resulting inequality d2

P,h,k ≥ d2
P,h allows for further

comparison with k-means approximation of the distance-to-compact-set in noisy settings.
A follow-up of Example 2.10 is exposed below.

Example 2.16 : Example 2.10, follow-up. For the distribution
Qβ = β US(0,1) + (1− β)UB(0,1). If h > 1− β, since d2

Qβ ,h,k
(0) ≥ d2

Qβ ,h
(0), we have

d2
Qβ ,h,k

(0) ≥ 1− 1−β
h . As a consequence, infk≥0 d2

Qβ ,h,k
(0) ≥ 1− 1−β

h , whereas
infk≥0 d2

c∗(0) = 0, where c∗ denotes an optimal k-points codebook.

The above example shows that we can expect the k-PDTM to approximate well the
distance-to-compact-set in remote areas, contrary to the distance based on classical
quantization, dc∗ . To formally assess the relevance of our approach, it remains to
establish approximation properties of the k-PDTM in the (a, b)-standard case, as well as
its robustness with respect to Wasserstein perturbations.
Robustness of the k-PDTM is assessed by the following result.

Let P be such that Supp(P ) ⊂ B̄(0, R), for some R > 0, and Q be
such that Q(du)∥u∥2 < ∞. Let d2

Q,h,k denote a k-PDTM for Q. Then,
P (du)

∣∣∣d2
Q,h,k − d2

P,h

∣∣∣ (u) ≤ BP,Q,h,k, where

BP,Q,h,k = 3∥d2
Q,h−d2

P,h∥∞,B(0,R)+P (du)(d2
P,h,k−d2

P,h)(u)+4W1(P,Q) sup
s∈Rd

∥m(Ps,h)∥.

Proposition 2.17 : [Brécheteau and Levrard, 2020, Proposition 17]

The first and third term in the above equation might be bounded in term of Wasserstein
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distance. Indeed, using [Chazal et al., 2011, Theorem 3.5], we easily have

∥d2
Q,h − d2

P,h∥∞,B(0,R) ≤
σ2

h
+ 4Rσ√

h
,

where W2(P,Q) ≤ σ. Next, the third term might be bounded by 4σR. The second term
is less usual, and depends on the approximation properties of the k-PDTM. Such an
approximation term might be roughly bounded in the (a, b)-standard case.

Assume that P is (a, b)-standard at scale r0. Then, for k ≥ r−b
0
a ,

P (du)d2
P,h,k(u) ≤ 4R2

r2
0

(
h

a

) 2
b

+ 4(ak)− 2
b .

Proposition 2.18 :

Proposition 2.18 easily follows from the proof of Proposition 2.8, Item (i) and
Proposition 2.13. With more structural assumptions, refined bounds on
P (du)(d2

P,h,k − d2
P,h)(u) may be derived.

Let P ∈ C2,d,D
τmin,∞(fmin, fmax), and suppose that Supp(P ) ⊂ B̄(0, R). Then, for k ≥

cτmin,fmin and h ≤ Cτmin,fmin, we have

0 ≤ Pd2
P,h,k − d2

P,h ≤ Cτmin,fmin,fmaxk
−2/d.

Proposition 2.19 : [Brécheteau and Levrard, 2020, Corollary 16]

Proposition 2.19 is a particular instance of a more general result [Brécheteau and
Levrard, 2020, Proposition 14] that relates the L2 bias of the k-PDTM to covering
numbers and stability of local means. Note that Proposition 2.19 allows to bound
∥dP,h,k − dP,h∥∞ in a similar way to that of Proposition 2.8. This proves that the
k-PTDM is a coreset for the DTM in this case. However, the simpler bound given by
Proposition 2.18 is enough to provide guarantees on ∥dK − dP,h,k∥∞ in the
(a, b)-standard case.

Let P be (a, b)-standard at scale r0, with K = Supp(P ) ⊂ B̄(0, R), and let Q be such
that W2(P,Q) ≤ σ. Then, we have

∥dQ,h,k − dK∥∞ ≤ max

2
(

arb0
(2R)b

)− 1
b+2

∆
2

b+2
P , 2∆P , σh

− 1
2

 ,
where ∆2

P = P (du)d2
Q,h,k(u). Besides, if σ ≤ R, it holds, for k ≥ r−b

0
a ,

∆P ≤ C

R
r0

(
h

a

) 1
b

+ (ak)− 1
b +

√
Rσ

h

 .

Proposition 2.20 : [Brécheteau and Levrard, 2020, Proposition 18]

It is worth noting that the ambient dimension D plays no role in Proposition 2.20 To fix
ideas, let us consider the (a, b)-standard case with b ≥ 1, R, τK ≤ 1. In this case, for the
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sublevel sets of dQ,h,k to provide the correct topology, one has to choose

h ∼ τ
b(b+2)

2
K , σ ≲ τ

3b(b+2)
2

K , k ≳ τ
− b(b+2)

2
K .

These conditions are more stringent than the regime h ∼ τ bK and σ ≲ τ
1+ b

2
K that is

sufficient for the DTM to provide topological guarantees. As well, the τ− b(b+2)
2

K bound for
k is in line with Proposition 2.8, though worse than the τ− 1

b
K that follows from Theorem

2.9 in the noiseless case. It is an open question to know whether the optimal relation
between ∥dc∗ − dK∥L2(P ) and ∥dc∗ − dK∥∞ exposed in Theorem 2.9 could be adapted to
the k-PDTM.
Once the k-PTDM is proved to be a coreset for dK under (a, b)-standard assumptions, it
remains to provide an estimate of the k-PDTM from sample.

2.3.3 Sample-based approximation

Recall that Xn is an n-sample from Q, with empirical distribution Qn = 1
n

∑n
i=1 δXi . The

empirical k-PDTM is just the straightforward plug-in dQn,h,k, that intend to
approximate dQ,h,k. Note that for k = n, the empirical n-PDTM is the q-witnessed
distance of Guibas et al. [2013], for q = nh. The following result provides bounds on the
estimation error between dQn,h,k and dQ,h,k, in a sub-Gaussian additive noise model. We
formalize our definition of sub-Gaussian random variable below.

Let X be a random variable on RD. X is called sub-Gaussian with variance σ2 if, for
every t > 0,

P (∥X − E(X)∥ ≥ t) ≤ 2e− t2
2σ2 .

Definition 2.21 :

Let P be such that Supp(P ) ⊂ B̄(0, R). Assume that, for i ∈ [[1, n]], Xi = Yi + Zi,
where the (Yi)’s and (Zi)’s are independent, the Yi’s are sampled from P , and the Zi’s
from a sub-Gaussian distribution with variance σ2, with σ ≤ R. Then, for any p > 0,
with probability larger than 1− 10n−p, we have

∣∣∣P (du)(d2
Qn,h,k − d2

Q,h,k)(u)
∣∣∣ ≤ C√kdR2((p+ 1) log(n))

3
2

h
√
n

+ C
Rσ√
h
.

Theorem 2.22 : [Brécheteau and Levrard, 2020, Theorem 19]

This
√
kd/n rate is in line with the rate given in Linder [2002] in a classical quantization

with bounded support framework. Note that the second term of the bounds is due to the
integration with respect to P , the first term of the right-hand side being a bound on∣∣∣Q(du)(d2

Qn,h,k
− d2

Q,h,k)(u)
∣∣∣. It is also worth mentioning that the result of Theorem 2.22

is valid under the milder assumptions Xi ∼ Q, Q is sub-Gaussian with variance bounded
by (R+ σ)2, and W2(P,Q) ≤ σ ≤ R. Combining the results of Theorem 2.22 and
Proposition 2.18 ensures that, whenever n ≳ k

b+4
b , and h, σ, k are properly chosen (see

below Proposition 2.18), topological guarantees hold on the sublevel sets of dQn,h,k, with
high probability. Conversely, choosing k ∼ n

b
b+4 yields an optimal bias-variance tradeoff

in the aforementioned bounds.
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Whether n−1 rates might be achieved as for the classical empirical quantization scheme
via k-means, under regularity assumptions such as those depicted in Levrard [2015], is
still an open question. However, optimality of the 1/

√
n rate over the class of bounded

distributions may be proved similarly to Bartlett et al. [1998].

For t ∈ (Rd)(k) and P a probability measure, denote

d2
P,h,t : x 7→ min

j∈[[1,k]]

[
∥x−m(Ptj ,h)∥2 + v(Ptj ,h)

]
.

For k ≥ 3, n ≥ 3k
2 and h ≤ 1

2k , we have

inf
t̂

sup
P |Supp(P )⊂B(0,R)

EP (d2
P,h,t̂ − d2

P,h,k) ≥ c0
R2k

1
2 − 2

d

√
n

,

where c0 is a constant and t̂ denotes an empirically designed vector (t̂1, . . . , t̂k) in
(Rd)(k). Moreover, if n ≥ 14k, then

inf
t̂

sup
P |Supp(P )⊂B(0,R)

EP (d2
Pn,h,t̂ − d2

P,h,k) ≥ c0
R2k

1
2 − 2

d

√
n
− 32R2ke− n

72k2 .

Proposition 2.23 : [Brécheteau and Levrard, 2020, Proposition 21]

From a practical point of view, minimizing c 7→ Qn(du) minj=1,...,k ∥u− cj∥2 + ω2
Qn,h

(cj)
seems intractable (for h = 0, that is the k-means case, the problem is provably NP-hard
for D ≥ 2 Mahajan et al. [2012]). In the k-means case, local minimizers of the objective
function might be found via a iterative schemes, such as Lloyd’s algorithm Lloyd [1982]
or Mac-Queen algorithm MacQueen [1967]. These algorithms have been extended to the
case where the squared Euclidean norm is replaced by a Bregman divergence in Banerjee
et al. [2005b]. In a nutshell, Bregman divergences are functions of the form
dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇yϕ, x− y⟩, where ϕ is a convex function. The formal
definition of Bregman divergences will be given in Section 3.1. To apply the iterative
scheme of Banerjee et al. [2005b] to our case, it remains to express
c 7→ minj=1,...,k ∥u− cj∥2 + ω2

Qn,h
(cj) as a Bregman divergence. To do so, denote by

ψP,h :
{
RD → R
x 7→ ∥x∥2 − d2

P,h(x).

According to [Chazal et al., 2011, Proposition 3.6], ψP,h is convex, with subgradients
{m(Px,h) | Px,h ∈ Px,h(P ))}. Hence, straightforward computation leads to

dψP,h
(x, t) = ∥x−m(Pt,h)∥2 + v(Pt,h)− d2

P,h(x),

for any x, t ∈ RD. Thus, minimizing c 7→ Qn(du) minj=1,...,k ∥u− cj∥2 + ω2
Qn,h

(cj) is
equivalent to minimize c 7→ Qn(du) minj=1,...,k dψQn,h

(u, cj), that falls in the scope of
[Banerjee et al., 2005b, Proposition 2]. More details on the algorithm are given in
Section 3.1.

2.3.4 Numerical illustration

According to Theorem 2.2, if K is a compact subset of RD, then geometric and
topological information about K can be recovered from some r-sublevel sets of dK .
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To assess the relevancy of our approach in a noisy topological inference setting, we will
compute the persistence diagrams associated with the empirical k-PDTM, and compare
it with the outputs of other methods.
Following Guibas et al. [2013], we choose for K the infinity symbol embedded in R2. The
targeted persistence diagram associated to dK is the one depicted in Figure 2.1 (right).
This diagram contains one red point (0,∞), that corresponds to the connected
component (0-dimensional topological feature), and two green points that account for
the two holes (1-dimensional topological features). We generated a sample of 200 points,
uniformly on the infinity symbol, with an additional additive Gaussian noise, with
standard deviation σ = 0.02. This sample is corrupted by 80 outliers – 40 points
generated according to the uniform distribution on the rectangle [−2, 5]× [−2, 2] and 40
points on the rectangle [−4, 7]× [−4, 4]. This results in a corrupted sample Xn of 280
points.
We compared three methods to recover relevant features of M from Xn. Each method
boils down to build a coreset approximation f of dM in the sense of Definition 2.6: they
are of the type f : x 7→

√
mini∈I ∥x− τi∥2 + ω2

i , for some finite set I, centers τi ∈ Rd and
weights ωi ≥ 0. The first function we consider is derived from the k-means algorithm
McLachlan and Peel [2000] (|I| = k, centers τi are given by the optima of the k-means
criterion and ωi = 0), the second is the q-witnessed distance Guibas et al. [2013]
(|I| = n = 280, it coincides with the k-PDTM for k = n, with mass parameter h = q/n)
and the third one is the k-PDTM (|I| = k, with mass parameter h = q/n).
These methods depend on two parameters q and k, that are respectively fixed to q = 10
and k = 50. Roughly, q is chosen small enough so that the distance to the q-th nearest
neighbor remains small compared to the curvature of M but large enough to deal with
noise, and k is chosen large enough so that a uniform grid with k points has grid size
small compared to the curvature of M . More details on this heuristic can be found in the
Appendix of Brécheteau and Levrard [2020].

k-means q-witnessed distance k-PDTM

Figure 2.5: Centers and persistence diagrams for the noisy infinite symbol and three
algorithms.

We implemented the three methods with the R software. We used the R function kmeans
for the first method, and the FNN R library to compute the nearest neighbors for the two
other methods. In Figure 2.5 we plotted the points of Xn. Points are represented with
the same color when they lie in the same weighted Voronoi cell (for the centers τi and
weights ω2

i ). Centers τi are represented by triangles and colored in function of the
weights ω2

i (black centers correspond to ω2
i = 0). The second row of Figure 2.5 depicts

the corresponding persistence diagrams, for the three methods. They were obtained
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using the function weighted_alpha_complex_3d_persistence in the Gudhi C++ library,
based on alpha-shapes Edelsbrunner [1992]. We observe on Figure 2.5 that the three
main features of the symbol infinity (one connected component, two holes) are recovered
for the k-PDTM and the q-witnessed distance, but not for k-means. As exposed in
Example 2.10, this is due to the "void-filling" drawback of k-means.
It is worth noting that outliers points are somehow identified by our method: they
correspond to high levels of d̂. As detailed in the following Section 3.1, it is possible to
combine topological inference and outlier detection based on the k-PDTM.

2.4 Discussion and directions for future research

Towards structure-adaptive robust quantization.
Though optimal in the (a, b)-standard case (see Theorem 2.9), centroid-based
quantization does not allow to take advantage of the structure of the support, for
instance in the manifold case. In the noiseless case, the k-flats approach, that is
replacing dc by the distance to

⋃k
j=1 BTj (cj , λ), for some subspaces Tj , yields improved

bias term in the C2 manifold case (see, e.g., Canas et al. [2012], Maggioni et al. [2016]),
as in the standard manifold estimation scheme. Pushing further the comparison,
approximating dM via the distance to a k-union of polynomial patches that minimize a
L2-like risk also improves the bias term. As for the manifold estimation case,
investigating the dependency of the estimation error with respect to the regularity k may
also lead to regularity-adaptive polynomial quantization schemes. Nevertheless, to
convert L2-type optimality results into optimal covering properties, structural results
ensuring that centers of patches are well-separated (as in [Clarkson, 2006, Theorem 5.4])
should be needed, that are not established even in the k-flats case, up to our knowledge.
Robustification of the aforementioned structure adaptive methods is likely to need
adaptation of the DTM principle. A natural extension can be based on optimal
transportation: since d2

P,h(u) = infx∈RD W 2
2 (Px,h, δ{u}), where Px,h is roughly P|B(x,rh),

one could attempt to replace P|B(x,rh) by P|B(C(x,λ),rh), where C(x, λ) denotes a
polynomial cap of radius λ centered at x and rh = inf{r ≥ 0 | P (B(C(x, λ), r)) ≥ h}.
The quantization scheme would then be to minimize a criterion that looks like
P (du) minj=1,...,k P|B(C(cj ,λ),rj(h))(dv)∥u− v∥2. Though purely theoretical, such an
approach would benefit from robustness in terms of Wasserstein perturbations.
Implementing it in practice would require to carry out optimization on the polynomial
cap parameters, as well as the choice of a cap radius λ.
An other approach to extend the k-PDTM to k-flats case might be derived from a local
maximum likelihood point of view. Namely, for a cell Cj associated with the measure
Ptj ,h, the risk on Cj writes as

Ptj ,h(dv)P|Cj
(du)

[
− log(V (u | e−∥.−v∥2))

]
= P|Cj

(du)
[
− log(V (u | e−∥.−mj∥2)) + vj

]
,

where V (. | f) denotes the likelihood with respect to f . This suggests that quantization
with k-PTDM may be thought of as local matching with Gaussian spherical
distributions in terms of Kullback distance. Thus, a natural extension that could take
advantage of a structural anisotropy of P could be to minimize

P (du) min
j
Pµj ,Σj ,h(dv)

[
− log

(
V

(
u | e

−∥.−v∥2
Σ−1

j

))]
,

where Σj ranges in a structured space of covariance matrices (for instance with D − d
eigenvalues fixed at σ2, smaller than the d largest ones), and Pµj ,Σj ,h is a submeasure of
P constrained on the corresponding Mahalanobis ball. This heuristic amounts to local

59



matching with heteroscedastic Gaussian distributions, that show clear connections with
robust PCA. This is ongoing work with C. Brécheteau and B. Michel.
Let us conclude by stressing on the fact that whatever the chosen approach, a special
attention has to be paid to complexity of the quantization algorithms, not to deprecate
the computational benefits of the quantization-based inference.
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Chapter 3

Outlier detection and Clustering

The last chapter presents two extensions and applications of the quantization principle,
corresponding to the papers Brécheteau et al. [2021] and Chazal et al. [2021], Royer
et al. [2021].
The first extension, exposed in Section 3.1, considers the general quantization with
Bregman divergence framework, that intends to minimize c 7→ P (du)dϕ(u, c), in the case
where the sample may contain a prescribed proportion of outliers. After introducing
some base models for outliers (Huber noise model and adversarial noise), as well as a
way to seize robustness to noise in terms of Finite Sample Breakdown Point, we
introduce our robust quantization scheme, based on the minimization of
c 7→ minA|P (A)≥1−α P (du)dϕ(u, c)1A(u), that is a trimmed distortion minimization
approach. Some theoretical guarantees on the distortion and robustness of empirical risk
minimizers are given, that emphasize the influence of a so-called discernability factor,
which seizes the minimal portion of a signal quantized with k points that can be
considered as noise when quantized with k − 1 points. We also provide a Lloyd-type
algorithm, and investigates the numerical properties of our robust quantization scheme
in two case studies: robust topological inference, following up the last chapter, and
robust clustering.
The second extension we propose deals with the case where we observe n i.i.d. measures
X1, . . . , Xn drawn from X rather than n i.i.d. points. In this framework, quantizing the
mean measure E(X) with k points provides a way to convert the measure sample into a
Rk-valued sample, by roughly encoding how much mass does a measure spread around
every code point. After investigating the properties of a classical quantization algorithm
(Mac Queen algorithm) adapted to the measure sample case, we provide some insights
on the ability of our embedding strategy to discriminate between different classes of
measures. A theoretical case study is conducted in clustering a measure sample drawn
form a mixture of persistence diagram. At last, some experimental results in graph
classification tasks are exposed.

3.1 Robust Bregman quantization

3.1.1 Outliers modeling and robustness

Following up the example given in Section 2.3.4, where 80 of the 280 samples were drawn
uniformly on ambient cubes, some noisy situations involve outlier points. The example
given in Section 2.3.4 is a particular instance of the so-called Huber contamination
model, defined by

Q ∼ (1− α)P + αN, (3.1)

61



where P is the signal distribution (supported on a compact set K in our topological
inference framework) and N is a noise distribution. In this model, a portion α of the
sample points are sampled according to a noise distribution N , that are called outliers.
Up to our knowledge, this is the first introduced model that accounts for corrupted
samples (see, e.g., Huber [1964, 1965]). In some sense, robustness to Huber’s
contamination model is already alleged for the DTM and k-PDTM. Indeed, if Q follows
(3.1), then W2(P,Q) ≤

√
αW2(P,N), so that Theorem 2.12 and Proposition 2.17 may

apply whenever W2(P,N) is controlled. However, such stability results do not allow to
identify and remove outlier points, that could be of interest to carry further topological
or geometric inference.
More concerning, Wasserstein stability of objects does not allow to face more mischievous
contamination models, such as the adversarial contamination model, where a portion ε of
the sample can have arbitrary values (not necessarily i.i.d. with respect to a noise
distribution). To be more precise, the adversarial noise model assumes that we observe

Xcn+s = Xn ∪ {x1, . . . , xs},

where Xn originates from the signal distribution (possibly with Wasserstein noise), and
{x1, . . . , xs} are points in RD. This corresponds to the situation where a portion
s/(n+ s) of the sample is arbitrarily corrupted. Since Wasserstein stability is no more
relevant in this framework, robustness of statistical procedures may be alleged using the
so-called Breakdown Point Donoho and Huber [1983].

Let T̂ be a vector-valued estimator. The Finite Sample Breakdown Point of T̂ is

inf
{

s

n+ s
| sup
x1,...,xs

∥∥∥T̂ (Xcn+s)
∥∥∥ = +∞

}
.

Definition 3.1 :

Intuitively speaking, the FSBP (Finite Sample Breakdown Point) is the smallest
proportion of adversarial noise in a sample that can render an estimator arbitrarily bad,
for a fixed signal sample. For instance, in a central tendency estimation framework, the
empirical mean has a FSBP of 1/(n+ 1) (one corrupted data point is enough to drive
the empirical mean at infinity), whereas the empirical median has breakdown point
(n+ 1)/(2n). Note that FSBP do not assess quality of estimation (for instance constant
estimators have infinite FSBP). Therefore, they should be combined with other results
(such as oracle bounds) to evaluate the overall performance of an estimator in a noisy
setting.
Let us mention that other contamination models and measures of robustness exist.
Concerning the contamination models, the Huber noise model might be considered as
the easier to deal with, whereas the adversarial one is the most difficult. A panoramic
view of different and intermediate contamination models may be found in [Bateni and
Dalalyan, 2020, Section 2]. Other methods to seize robustness of estimators are exposed
in [Maronna et al., 2019, Section 3] or Bateni and Dalalyan [2020].

3.1.2 Trimmed Bregman quantization

To identify outlier sample points based on a distance to compact estimator d̂, a standard
way could be to compute {d̂(Xcn+s)} and to discard the points corresponding to the most
extreme values. Though this approach seems to work well on the example given in
Section 2.3.4 (see Figure 2.3), it strongly relies on the fact that d̂ is close to dK
beforehand, that is not a realistic assumption. For instance, in our k-PDTM framework,
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if the s outliers are concentrated at a single location, it is likely that one code point of an
optimal codebook for the k-PDTM would account for this location, rendering the
aforementioned strategy irrelevant.
To cope with the adjunction of a portion of possibly structured noise (whose proportion
α is known beforehand), in a mean estimation framework, one can resort to trimmed
mean, that is

m̂α ∈ arg min
m

min
{Y⊂Xc

n+s||Y |≥(1−α)|Xn+s|}

1
|Y |

∑
y∈Y
∥y −m∥2.

In other words, the trimmed mean is the “best” possible mean one could get from a
1− α sub-sample, quality of these subsamples means being seized by their corresponding
L2 inertias. From a theoretical viewpoint, this amounts to optimize
(Qα,m) 7→ Qα(du)∥u−m∥2, where Qα ∈ P1−α(Q) ranges into the set of (1− α)
sub-measures of Q as defined in (2.2). Robustness of the trimmed mean may be seized in
terms of FSBP: indeed, for a trimming level α, its FSBP is roughly α (see, e.g. [Maronna
et al., 2019, Section 3.2.5]). Note that other robust mean estimator may be conceived
with better theoretical properties, based on PAC-Bayesian or MOM techniques for
instance (Catoni and Giulini [2018], Brownlees et al. [2015], Lecué and Lerasle [2020]).
However, this trimming approach also allows to simply identify outliers (the α portion of
mass that is discarded), and easily adapts to every M -estimation procedure.
In the quantization framework, robustification of the k-means scheme has been proposed
in Cuesta-Albertos et al. [1997], via the minimization of the so-called trimmed
k-variation

(Qβ, c) 7→ Qβ(du) min
j=1,...,k

∥u− cj∥2,

where Qβ ∈ P(1−α)+(Q) that is the set of set of s-sub-measures of Q, for s ≥ 1− α,

P(1−α)+(Q) =
⋃

s≥(1−α)
Ps(Q). (3.2)

This heuristics results in a sample-based robust quantization procedure called trimmed
k-means.
To encompass the special case of the k-PDTM, this method can be adapted to
quantization with generic Bregman divergences. Let us recall here the definition
informally given in Section 2.3.4.

Let ϕ be a C1 convex real-valued function defined on a convex set Ω ⊂ RD. The
Bregman divergence dϕ is defined, for all x, y ∈ Ω, by

dϕ(x, y) = ϕ(x)− ϕ(y)− ⟨∇yϕ, x− y⟩ .

Definition 3.2 :

The choice ϕ(u) = ∥u∥2 corresponds to the trimmed k-means of Cuesta-Albertos et al.
[1997], whereas ϕ(u) = ∥u∥2 − d2

Q,h(u) corresponds to the k-PDTM case (note that in
this case ϕ is C1 Q a.s. whenever Q(du)∥u∥2 < +∞, according to [Chazal et al., 2011,
Corollary 3.7]). Some Bregman divergences are of particular interest in exponential
mixture models, as will be detailed in Section 3.1.6. A key property of Bregman
divergences is that means are minimizers of Bregman inertias.
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Let Q be such that Q(du)∥u∥ <∞, Q(du)u ∈ Ω̊, and Q(du)ϕ(u) <∞. Then, for any
x ∈ Ω,

Q(du)dϕ(u, x) = Q(du)dϕ(u,Q(du)u) + dϕ(Q(du)u, x).

Proposition 3.3 : [Banerjee et al., 2005b, Proposition 1]

Uniqueness of Bregman inertia minimizers follows from Proposition 3.3 whenever ϕ is
strictly convex. Interestingly, Bregman divergences are in fact characterized by this
property (see, e.g., [Banerjee et al., 2005a, Theorem 3]). Slightly anticipating, this
property allows for iterative algorithm to search for local minimizers, by iteratively
replacing the center of a code cell Vj by its mean, as described in Banerjee et al. [2005b].
Similarly to the trimmed k-means case, we intend to minimize

R(Qα, c) = Qα(du)dϕ(u, c), (3.3)

where c ∈ (RD)k, dϕ(u, c) = minj=1,...,k dϕ(u, cj), and Qα ranges in P(1−α)+(Q).
Structural results on minimizers of (3.3) may be derived, in a similiar way to Gordaliza
[1991], Cuesta-Albertos et al. [1997]. For c ∈ (RD)k and r > 0, we denote by Bϕ(c, r)
(resp. B̄ϕ(c, r)) the Bregman ball {x |

√
dϕ(x, c) < r} (resp. ≤), and by rα(c) the radius

r such that

Q(Bϕ(c, rα(c)) ≤ 1− α ≤ Q(B̄ϕ(c, rα(c)).

Next, for c ∈ (RD)k and α ∈ [0, 1], the following subset of (1− α)-submeasures of Q is of
particular interest:

Pc,α(Q) =
{
Q̃ ∈ P(1−α)(Q) | Q̃|Bϕ(c,rα(c)) = Q|Bϕ(c,rα(c)) and Q̃|B̄ϕ(c,rα(c)) = 1− α

}
,

that is the set of (1− α)-submeasures that minimize Qα 7→ Qα(du)dϕ(u, c). Equipped
with these definitions, we may define the α-trimmed distortion of a codebook c via

Rα(c) = (1− α)Qc,α(du)dϕ(x, c) = (1− α)R(Qc,α, c),

for Qc,α ∈ Pc,α(Q). In the case where Q(∂̄Bϕ(c, rα(c))) = 0 (for instance whenever Q has
a density), Rα(c) is just Q(du)dϕ(u, c)1Bϕ(c,rα(c))(u). The following result ensures that
minimizing (3.3) is equivalent to minimize the α-trimmed distortion.

Let α ∈ [0, 1]. Then

(1− α) min
Qα∈P(1−α)+(Q),c∈(RD)k

R(Qα, c) = min
c∈(RD)k

Rα(c).

Proposition 3.4 :

Proposition 3.4 generalizes [Cuesta-Albertos et al., 1997, Proposition 2.3], and ensures
that optimal trimming sets are in fact Bregman balls (up to boundary effects). Thus,
seeking for both optimal codebooks and trimming sets boils down to minimize the
α-trimmed distortion, that may be carried out using an iterative scheme using
Proposition 3.3. For the sake of completeness, it remains to ensure that optimal
codebooks for the trimmed distortion do exist.
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Let α ∈]0, 1[, and assume that conv (Supp(Q)) ⊂ Ω̊. If Q(du)∥u∥ < +∞, then the set
arg minc∈(RD)k Rα(c) is not empty.

Theorem 3.5 :

This result generalizes [Cuesta-Albertos et al., 1997, Theorem 3.1] as well as [Fischer,
2010, Theorem 3.1]. Note that the assumption Q(du)∥u∥ < +∞ is slightly milder than
the usual Q(du)∥u∥2 < +∞ that is required for the existence of optimal codebooks in
the usual squared-distance quantization framework (see, e.g., Pollard [1981]). From now
on we denote by c∗

α a minimizer of Rα, and intend to approximate such an optimal
trimmed codebook from sample.

3.1.3 Iterative algorithm

The main idea behind the iterative algorithm that is exposed below is based on the
following Proposition 3.7. To formalize the assignment of one point x to a code point, we
introduce the so-called code cells.

Let c ∈ (RD)k. The subsets C1(c), . . . , Ck(c) are code cells for c if

(i) (C1(c), . . . , Ck(c)) is a partition of RD;

(ii) For all j ∈ [[1, k]],

V̊j(c) ⊂ Cj(c) ⊂ Vj(c),

where Vj(c) is the Voronoi cell associated with cj .

Definition 3.6 :

The notion of code cells allows to switch from codebooks to quantizers, that is maps
from RD to a subset of k points, by defining the quantizers qc that map every Cj(c) onto
cj . It is designed to bypass the assignment of Voronoi boundaries ∂(Vj(c) ∩ Vi(c)).
Recall that according to [Graf et al., 2007, Proposition 1], Q(Vi(c∗)∩ Vj(c∗)) = 0, so that
the assignment of boundaries is somehow artificial for optimal codebooks. Since there
exists an infinite number of code cell choices associated with a codebook, to fix the ideas
we choose to assign boundaries with the lexicographic order, that is

Cj(c) = Vj(c) ∩

⋂
i<j

Vi(c)

c ,
so that code cells associated with c are well-defined. Code cells being defined, we are in
position to state the key result of this section.

Let c ∈ Ω(k) and Q̃c ∈ Pc,α(Q). Assume that for all i ∈ [[1, k]], Q̃c(Ci(c)) > 0,
and denote by m the codebook of the local means of Q̃c. In other words, mi =
Q̃c(u1Ci(c)(u))/Q̃c(Ci(c)). Then

Rα(c) ≥ Rα(m),

with equality if and only if for all i in [[1, k]], dϕ(mi, ci) = 0.

Proposition 3.7 :
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Proposition 3.7 is a straightforward consequence of Proposition 3.3, that emphasizes the
key property that Bregman divergences are minimized by expectations (this is not the
case for the L1 distance for instance). Note that whenever ϕ is strictly convex,
dϕ(mi, ci) = 0 if and only if ci = mi, so that a codepoint modification entails a decrease
of the risk function in this case. In the DTM case, where ψ(u) = ∥u∥2 − d2

Q,h(u), it holds
dϕ(mi, ci) = 0 if and only if Qci,h ∈ Pmi,h(Q) (see for instance [Brécheteau and Levrard,
2020, Proposition 9]). In particular, if Q = Qn and q = nh, equality holds if and only if
ci and mi have the same q nearest neighbors.
In line with Banerjee et al. [2005b] for the non-trimmed case, Proposition 3.7 provides an
iterative scheme to minimize Rα The algorithm we introduce is inspired by the trimmed
version of Lloyd’s algorithm Cuesta-Albertos et al. [1997], and is also a generalization of
the Bregman clustering algorithm [Banerjee et al., 2005b, Algorithm 1]. Recall that
{X1, . . . , Xn} = Xn, and that Qn denotes the empirical distribution

∑n
i=1 δxi . Further,

we assume that α satisfies (1− α) = q
n for some positive integer q.

Algorithm 1 : Bregman trimmed k-means.

▶ Input: {X1, . . . , Xn} = Xn, q, k.

▶ Initialization: Sample c1, c2,. . . ck from Xn without replacement,
c(0) ← (c1, . . . , ck).

▶ Iterations: Repeat until stabilization of R(t)
n,q.

– NN
(t)
q ← indices of the q smallest values of dϕ(x, c(t−1)), x ∈ Xn.

– For j = 1, . . . , k, C(t)
j,q ← Cj(c(t−1)) ∩NN (t)

q .

– Compute R(t−1)
n,q = 1

q

∑k
j=1

∑
x∈C(t)

j,q

dϕ(x, c(t−1)
j ).

– For j = 1, . . . , k, c(t)
j ←

∑
x∈C

(t)
j,q

x∣∣∣C(t)
j,q

∣∣∣ .

▶ Output: c(t), C(t)
1,q, . . . , C

(t)
k,q.

As a remark, whenever ϕ is strictly convex, the stopping criterion in Algorithm 1 can be
replaced with the stabilization of c(t), and the computation of R(t)

n,q can be spared. As for
every EM-type algorithm, initialization may be crucial. Section 3.2.1 gives some insight
of what is a good initialization and on the probability that such a good initialization is
obtained by random sampling of Xn, in a simpler case. In practice, several random starts
will be proceeded. More sophisticated strategies, such as k-means ++ Arthur and
Vassilvitskii [2007], could be an efficient way to address the initialization issue.
An easy consequence of Proposition 3.7 for the empirical measure Qn associated with Xn
is the following. For short we denote by Rn,α the trimmed distortion associated with Qn.

Algorithm 1 converges to a local minimum of the function Rn,α.

Proposition 3.8 :

It is worth mentioning that in full generality the output of Algorithm 1 is not a global
minimizer of Rn,α. However, it is likely that suitable clusterability assumptions as in
Kumar and Kannan [2010], Tang and Monteleoni [2016], Levrard [2018] would lead to
further guarantees on such an output. Section 3.2.1 gives an instance where such results
can be obtained, in a simpler case though.
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3.1.4 Theoretical guarantees

Theoretical guarantees for our sample-based robust quantization scheme are given under
slightly stronger conditions on the underlying Bregman divergence and sampling
distribution Q. In this section we further assume that

(i) ϕ is strictly convex;

(ii) ϕ is C2;

(iii) conv(Supp(Q) ⊂ Ω̊.

Note that these assumptions are satisfied for ∥u∥2 − d2
Q,h(u) whenever Q has a

continuous density on RD, using for instance [Chazal et al., 2011, Proposition 3.6] and
Baddeley [1977].

3.1.4.1 Convergence of empirically optimal codebooks

Recall that Rn,α denotes the α-trimmed empirical distortion (associated with the
empirical distribution Qn). We let ĉn,α denote an empirically optimal trimmed k-points
codebook, that is a minimizer of Rn,α, and investigate the generalization properties of
ĉn,α (that is how it compares with optimal codebooks for Rα). We begin with an
asymptotic convergence result.

Assume that Q is absolutely continuous with respect to the Lebesgue measure and
satisfies Q∥u∥p < ∞ for some p > 2, then there exists c∗

α an optimal codebook such
that

lim
n→+∞

Rn,α(ĉn,α) = Rα(c∗
α) a.e..

Moreover, up to extracting a subsequence, we have

lim
n→+∞

D(ĉn,α, c∗
α) = 0 a.e.,

where D(c, c′) = minσ∈Σk
maxi∈[[1,k]] |ci − c′

σ(i)| and Σk denotes the set of all permu-
tations of [[1, k]]. At last, if c∗

α is unique, then limn→+∞D(ĉn,α, c∗
α) = 0 a.e. (without

taking a subsequence).

Theorem 3.9 :

This result generalizes [Cuesta-Albertos et al., 1997, Theorem 3.4], ensuring that
empirically optimal trimmed k-points codebooks converge to optimal trimmed k-points
codebooks. In the Huber contamination model Q ∼ (1− γ)P + γN , ensuring that
optimal trimmed codebooks do not account for noise seems possible if the noise
distribution is far enough from P . Example 3.10 gives an instance of such a result.

Example 3.10. We let ϕ(u) = ∥u∥2. Let P ∼ U (−1, 1), and Q ∼ (1− γ)P + γδN , where
N ≥ 5. Assume that 0 ≤ γ ≤ α ≤ 0.18, and k = 2. Then c∗

α is an optimal two-point
codebook for U

(
−1−α

1−γ ,
1−α
1−γ

)
.

Proof of Example 3.10. Let c = (−1
2 ,

1
2). Then straightforward computation leads to

Rα(c) ≤ 1−γ
12 .
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On the other hand, assume that {N} ∈ B̄(c, rα(c)), and c1 ≤ c2. Then c2 ≥ N−1
2 ≥ 2, so

that

Rα(c) ≥ (1− γ)P (du)∥u− c1∥21B̄(c,rα(c))(u)

≥ (1− γ)
∫ 1−(γ+α)

1−γ

0
u2du

≥ (1− (γ + α))2

3(1− γ)3 >
1− γ

12

whenever 0 ≤ γ ≤ α ≤ 0.18. Thus, for any optimal codebook c∗
α, {N} /∈ B̄(c∗, rα(c∗)),

hence c∗
α is an optimal codebook for (1− γ)U (−1+, 1) at trim level α− γ.

Straightforward calculation gives that c∗
α is then an optimal codebook for

U
(
−1−α

1−γ ,
1−α
1−γ

)
.

As exposed above, providing guarantees on trimmed optimal codebooks in the Huber
contamination model heavily depends on the structure of P and N , thus providing a
general result seems hard. For instance, if the noise distribution is close to the support of
P , then the benefit of trimming this noise might be smaller than trimming P . As well,
the benefit of noise trimming also depends on the portion γ: for large γ’s, quantizing N
and trimming P could yield better trimmed distortions whenever N is more
concentrated than P . In this case, the distinction between noise and signal seems
intuitively less relevant, and cannot be carried out via trimmed L2 criterions. More
insights on the structures of P that guarantee the non-degeneracy of optimal codebooks
are given in the following Section 3.1.4.2.
In addition to Theorem 3.9, non-asymptotic bounds on the excess trimmed distortion of
an empirically optimal codebook may be derived.

Assume that Q∥u∥p < ∞, where p ≥ 2. Further, if R∗
k,α denotes the α-trimmed

optimal distortion with k points, assume that R∗
k−1,α − R∗

k,α > 0. Then, for n large
enough, with probability larger than 1− n− p

2 − 2e−x, we have

Rα(ĉn,α)−Rα(c∗
α) ≤ CQ√

n
(1 +

√
x).

Theorem 3.11 :

The requirement R∗
k−1,α −R∗

k,α > 0 ensures that optimal codebooks will not have empty
cells. Note that if R∗

k−1,α −R∗
k,α = 0, then there exists a subset A of RD satisfying

Q(A) ≥ 1− α and such that the restriction of Q to A is supported by at most k − 1
points, that allows optimal k-points codebooks with at least one empty cell. It is worth
mentioning that Theorem 3.11 does not require a unique trimmed optimal codebook,
and only requires an order 2 moment condition for ĉn,α to achieve a sub-Gaussian rate in
terms of trimmed distortion. This condition is in line with the order 2 moment condition
required in Brownlees et al. [2015] for a robustified estimator of c∗ to achieve similar
guarantees, as well as the finite-variance condition required in Catoni and Giulini [2018]
in a mean estimation framework.
As well, Theorem 3.11 can be used to non-asymptotically assess that the outliers are
removed by empirically optimal codebooks, in some particular instances of Huber’s
contamination model. Indeed, following up Example 3.10, in this case not trimming the
noise located at {N} incurs a lower bound on the distortion, that may be combined with
Theorem 3.11 to ensure that it is impossible for an empirically optimal codebook with
high probability. It falls under the intuition that a key quantity to guarantee noise
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trimming is R∗
k−1,α −R∗

k,α, that seizes how much costs the removal of one code point to
the signal. If this cost is negligible compared to not quantizing the noise, then it is likely
that optimal codebooks will be degenerate with respect to the noise. This heuristic is at
the core of the robustness properties exposed below.

3.1.4.2 Breakdown point

We recall that the corrupted sample (with s outliers) is denoted by
Xcn+s = Xn ∪ {x1, . . . , xs}, where {x1, . . . , xs} are (possibly adversarial) outliers and Xn
is drawn from Q. Further, we denote by Qn+s the empirical distribution associated with
Xcn+s and by ĉn+s,α a minimizer of c 7→ Rn+s,α(c). We intend to seize the robustness of
our robust Bregman quantization scheme in terms of Breakdown point (Definition 3.1),
that is the smallest proportion of outliers that can drive ∥ĉn+s,α∥ to infinity.
To give an intuition, the standard mean (minimizer of the 0-trimmed empirical
distortion for k = 1, ϕ(u) = ∥u∥2) has breakdown point 1

n+1 , whereas α-trimmed means
have breakdown point roughly α (see, e.g., [Maronna et al., 2019, Section 3.2.5]).
According to [Vandev, 1993, Theorem 1], this is also the case whenever ϕ is strictly
convex (but still k = 1). In the case k > 1, as noticed in Cuesta-Albertos et al. [1997] for
trimmed k-means, the breakdown point may be much smaller than α. As mentioned
above, if an α-trimmed optimal codebook has a too small cluster, then adding an
adversarial cluster with greater weight might switch the roles between noise and signal,
resulting in an α-trimmed codebook that allocates one point to the adversarial cluster
and trims the too small optimal cluster. To quantify this intuition, we introduce the
following discernability factor Bα.

Let α ∈]0, 1[, and, for b ≤ (1 − α), denote by α−
b = (α − b)/(1 − b), α+

b = α/(1 − b).
The discernability factor Bα is defined as

Bα = sup
{
b ≥ 0 | b ≤ α ∧ (1− α) and min

j∈[[2,k]]
R∗
j−1,α+

b

−R∗
j,α−

b

> 0
}
.

Definition 3.12 :

In fact, (α+
Bα
− α) = αBα/(1−Bα) is the portion of the (1− α) mass in an optimal

k-points trimming set that may be considered as noise by an optimal k − 1-points with
trim level α+

Bα
. As exposed in the following proposition, Bα is related to the minimum

cluster weight of optimal α-trimmed codebooks.

Under the assumptions of Section 3.1.4, if R∗
k−1,α−R∗

k,α > 0, then Bα > 0. Moreover,
for any j ∈ [[1, k]], if c∗,(j) is an optimal j-points α-trimmed codebook and pj,α =
(1− α) minp∈[[1,j]] Q̃c∗,(j)

(
Cp(c∗,(j))

)
, with Q̃c∗,(j) ∈ Pc∗,(j),1−α(Q), then

Bα ≤
pj,α

α+ pj,α
.

Proposition 3.13 :

Proposition 3.13 emphasizes that, for a fixed trim level α, the discernability factor Bα
may become arbitrarily small whenever the minimal weight of an optimal α-trimmed cell
decreases. Theorem 3.14 below makes connection between this discernability factor and
robustness properties of optimal k-points α-trimmed codebook, stated in terms of
Bregman radius.
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For ℓ ≥ 1, let R∗
ℓ,α denote the ℓ-points α-trimmed optimal distortion. Assume that

Q∥u∥p < +∞, for some p ≥ 2. Moreover, assume that R∗
k−1,α−R∗

k,α > 0. Let b < Bα,
and assume that s/(n+ s) ≤ b. Then, for n large enough, with probability larger than
1− n− p

2 ,
max
j∈[[1,k]]

dϕ (B(0, CQ,b), ĉn+s,α,j) ≤ KQ,b,

where CQ,b and KQ,b do not depend on n nor s.

Theorem 3.14 :

Theorem 3.14 guarantees that the proposed trimming procedure is robust in terms of
Bregman divergence, that is, the corrupted empirical distortion minimizer belongs to
some closed Bregman ball, provided the proportion of noise is smaller than the
discernability factor introduced in Definition 3.12. Unfortunately Bregman balls might
not be compact sets if c 7→ dϕ(x, c) is not a proper map. For instance, with ϕ(x) = ex

and Ω = R, we have ]−∞, 0] ⊂ {c | dϕ(0, c) ≤ 1}. In the proper map case, Theorem 3.14
entails that the FSBP is larger than Bα, with high probability, for n large enough. In the
other case, Corollary 3.15 below ensures that this breakdown point is positive, provided
that p > 2. We denote by B̂n,α the FSBP of our trimmed Bregman quantization
estimator.

Assume that Q∥u∥p < +∞, for p > 2. Under the assumptions of Theorem 3.14, there
exists c > 0 such that, almost surely, for n large enough, B̂Pn,α ≥ c.

In addition, if, for every x ∈ Ω, c 7→ dϕ(x, c) is a proper map, then almost surely,
for n large enough B̂Pn,α ≥ Bα.

Corollary 3.15 :

Corollary 3.15 guarantees that our trimmed Bregman quantization procedure is
asymptotically robust in the usual sense to a certain proportion of adversarial noise,
contrary to plain Bregman quantization whose FSBP is 1/(n+ 1). However this
unknown authorized proportion depends on both the choice of Bregman divergence and
the discernability factor Bα. In the proper map case, the FSBP is larger than Bα. Note
that for x ∈ Ω, c 7→ dϕ(x, c) is proper whenever ϕ is strictly convex, that is the case for
trimmed k-means Cuesta-Albertos et al. [1997]. For this particular Bregman divergence,
the result of Corollary 3.15 is provably tight.
Example 3.16 : [Brécheteau et al., 2021, Example 17]. Let ϕ1 = ∥.∥2, ϕ2 = exp(−.),
Ω = R, P = (1− p)δ−1 + pδ1, with p ≤ 1/2. Then, for ϕ = ϕj , j ∈ {1, 2}, k = 2 and
p > α, we have Bα = p−α

p ∧ α. Let Qγ,N = (1− γ)P + γδN . The following holds.

▶ If (1 + p)(1− α) > 1, Bα = α, and for every γ > α, any sequence of optimal
2-points h-trimmed codebook c∗

2(Qγ,N ) for Qγ,N satisfies

lim
N→+∞

∥c∗
2(Qγ,N )∥ = +∞.

▶ If (1 + p)(1− α) ≤ 1, then Bα = p−α
p , and, for γ = Bα, (−1, N) is an optimal

2-points α-trimmed codebook for Qγ,N .

Note that upper bounds on the FSBP when n→ +∞ may be derived for Example 3.16
using standard deviation bounds. Example 3.16 illustrates the two situations that can be
encountered when some adversarial noise is added, depending on the balance between
trim level and smallest optimal code cell. If the trim level is small enough compared to

70



the smallest mass of an optimal cell (first case), then the breakdown point is simply α,
that is the amount of points that can be trimmed. This corresponds to the breakdown
point of the trimmed mean (see, e.g., Vandev [1993]). When the trim level becomes large
compared to the smallest mass of an optimal cell (second case), optimal codebooks for
the perturbed distribution can be codebooks that allocate one point to the noise and
trim the small optimal cell, leading to a breakdown point possibly smaller than α. This
corresponds to the situation exposed in Proposition 3.13. In both cases, the breakdown
point is smaller than Bα, thus, according to Corollary 3.15, it is equal to Bα.
As mentioned in Cuesta-Albertos et al. [1997] for the trimmed k-means, in practice,
breakdown point and choice of the correct number of cells k are closely related questions,
that depend on the structure of the noise. Namely, in an adversarial framework, the
proportion α0 of noise that can be satisfactorily processed via a robust quantization
scheme with trimming level α0 must be smaller than 1/k, according to Corollary 3.15,
Example 3.16 and Proposition 3.13. In practice, if the noise is less concentrated than the
signal, for instance in a Huber contamination model with ambient noise and signal on a
lower dimensional structure, it is likely that larger proportion of noises may be
successfully managed. This phenomenon is empirically illustrated in Section 3.1.5.
Providing general bounds on authorized proportions of noise in Huber’s contamination
model remains an open question.
At last, in a clustering framework (that is in the case where the signal is naturally
organized around k0 poles), some heuristic may be given to empirically choose both the
number of clusters k and the trim level α. This point is illustrated in Section 3.1.6,
where the correct number of clusters depends on what is considered as noise.

3.1.5 Outliers detection (and topological inference) with robust
k-PDTM

We come back to the experiment of Section 2.3.4. Recall that 200 points are uniformly
drawn on the infinity symbol K, with an additional additive Gaussian noise, with
standard deviation σ = 0.02. Then 80 outliers are added: 40 points are uniformly drawn
on the rectangle [−2, 5]× [−2, 2], and 40 points on the rectangle [−4, 7]× [−4, 4]. This
results in a proportion α0 = 2/7 of outliers, for a corrupted sample Xcn+s with 280 points.
First we illustrate the naive approach that consists in removing the (n+ s)α0 points that
corresponds to the largest values of d̂, for estimates d̂ of dK given by the k-means,
q-witness distance, and k-PDTM. This general scheme is referred to as truncation,
resulting in truncated k-means, truncated q-witnessed and truncated k-PDTM. As in
Section 2.3.4, we choose q = 10 and k = 50. Once outliers removed, we remove code
points corresponding to empty cells and compute the persistence diagram associated
with the resulting (truncated) distance estimate.
Truncated k-PDTM and q-witnessed distance seem to correctly grid K and identify
outliers. Compared with Figure 2.5, the removed code points correspond to code points
with high weight ω2

Q, that are the light-shaded triangles. The resulting persistence
diagrams are slightly better, especially for high values of the filtration parameter (that
take into account the spurious light-shaded triangles). The truncated k-means succeed in
removing a lot of centers accounting for noise (see Figure 2.5), but still involves centers
far from K, and inside loop centers that blur the 1-persistence signal, resulting in a poor
topological inference.
Next, we compute the centers and the corresponding distance to K estimator for the
trimmed k-means and trimmed k-PDTM, with trim level α0 and for k = 50. In this case,
there is no need to remove code points with empty cell, since all cells are structurally
non-empty.
Trimmed k-means succeed in removing far from K centers, compared to truncated
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Truncated k-means Truncated q-witnessed
distance Truncated k-PDTM

Figure 3.1: Comparison of truncation methods. Red points are labelled as outliers. In
the persistence diagrams, red points correspond to connected components, green points to
loops.

Trimmed k-means Trimmed k-PDTM True compact set

Figure 3.2: Trimmed k-PDTM and k-means. Red points are labelled as outliers.

k-means (see Figure 3.1). However, it also provides inside loop centers that do not allow
to retrieve the two loops of K. Trimmed k-PDTM illustration is very close to the
truncated k-PDTM one depicted in Figure 3.1. Difference between the two methods is
very thin, and essentially consists in a slightly lesser persistence of spurious connected
components for the trimmed k-PDTM, as exposed in Figure 3.3 below. It is interesting
to note that α0 = 2/7 >> 1/k = 0.02, so that from a theoretical viewpoint the FSBP of
the α-trimmed procedures cannot be controlled by Corollary 3.15. Nonetheless the
outliers labellings these procedure provide remain relevant, showing that the prescribed
bound on the outlier proportion given by the discernability factor is suited for the
adversarial case, and might be too pessimistic for Huber’s contamination model with
noise less concentrated than signal.
To numerically assess the performance of our robust quantization procedures in outlier
identification and topological inference, we repeated the experiment 100 times. At each
time, we computed the lifetimes of the topological features and sorted them in
decreasing order. Figure 3.3 (Left) below exposes the means of these lifetimes. Figure
3.3 (Right) depicts the mean amount of False positive over the 100 repetitions, that is
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the number of signal points that are labeled as outliers by the algorithm. In addition to
q-witness, k-means and k-PDTM, we also include comparison with other trimming
approaches for outlier detection, such as tclust Fritz et al. [2012] (tclust function in
trimcluster R library) and a truncated version of k-median Cardot et al. [2013]
(kGmedian function of the Gmedian R library).

Holes Connected components False positive number

Figure 3.3: Features lifetimes and False positive numbers.

Overall, methods based on the DTM (q-witnessed, k-PDTM) outperform
Euclidean-based methods (k-means, k-median, tclust). Concerning topological inference,
k-means based methods show poor performance in retrieving 1-dimensional homology:
no clear gap appears between the life spans of the two first features and the remaining
spurious ones. For the 0-dimensional homology (where the first 0-dimensional feature,
corresponding to the infinite connected component, has been removed in Figure 3.3),
(truncated) k-means add too many persistent connected components compared to other
methods. On the whole, k-PDTM-based approaches compared well with q-witnessed
methods.
Concerning outlier detection, around 30 points drawn from the noise distribution fall
close to K, so that all methods fail to detect them. q-witnessed distance, truncated and
trimmed k-PDTM overall succeed in retrieving the remaining 50 noise points, whereas
k-median and k-means based approaches correctly identify at least 10 points less than
the aforementioned methods. tclust exhibits an intermediate behavior, correctly labeling
around 45 outliers. For the q-witnessed and k-PDTM methods, labeling noise points that
fall close to K as signal (hence removing some signal points that may be far from K)
seems not to affect the topological correctness of the final distance estimator d̂. Such a
behavior is likely to be due to the particular structure of the noise (Huber noise
contamination with ambient noise). This might not be the case when encountering more
structured noise, as in the following Section 3.1.6.

3.1.6 Robust Clustering

The robust Bregman quantization scheme introduced in the previous section finds
applications in clustering. We expose here a particular application in stylometric
clustering based on texts. The aim of clustering differs from the quantization one in the
following sense: following Duda, Hart and Stork’s formulation, given a set of points Xn,
clustering intends to partition Xn into dissimilar groups of similar items [Duda et al.,
2001, Chapter 10]. Thus, clustering is focused on cells, while quantization also seeks for
code points that represent each cell.
From a theoretical viewpoint, if we assume that Xn is drawn from a distribution Q, most
existing clustering techniques are density-based, centroid-based, or model-based.
Density-based methods aim to partition data with respect to properties of the density q
of Q (assuming that there exists a density), by choosing cells as super-level sets of the
density (DBSCAN Ester et al. [1996], Single Linkage Gower and Ross [1969], Spectral
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Clustering Ng et al. [2001]) or as basins of attraction of local modes (MeanShift Cheng
[1995], Tomato Chazal et al. [2013]). Centroid-based methods are in fact based on the
quantization principle: code cells with a prescribed shape and code points are built to
minimize a distortion-like criterion. This class of methods encompasses Bregman
clustering Banerjee et al. [2005a], but also non-Bregman dissimilarities such as L1-norm
(k-median MacQueen [1967], Cardot et al. [2012], k-medoids (Kaufman and Rousseeuw
[1990]) and prescribed forms of cells such as rectangles (CART, Breiman et al. [1984]). At
last, model-based clustering schemes intend to fit a mixture model distribution to data,
then to partition the space via the MAP rule. The EM algorithm Dempster et al. [1977] is
suited for the Gaussian mixture model. As detailed below, Bregman clustering
algorithms have connections with model-based techniques, whenever the mixture
components are assumed to be in an exponential family.
When some outliers are added, some of the aforementioned clustering methods can adapt
to a certain extent. Namely, density-based clustering schemes are allegedly robust to
some noise in Huber’s contamination model, whereas some centroid-based methods such
as k-median or k-medoids seem able to face some adversarial noise due to the L1
criterion. Note that density-based methods are likely to show deprecated performances
in high-dimensional settings, as for every non-parametric method. Apart from our robust
Bregman quantization scheme, some other robustification methods for the k-means
algorithm may be found in Klochkov et al. [2020], Brunet-Saumard et al. [2020], based
on the Median of Means principle (see, e.g., Lecué and Lerasle [2020]). At last, we
mention that the tclust algorithm Fritz et al. [2012] may be thought of as a robust
version of the EM algorithm.

3.1.6.1 Bregman clustering and exponential mixtures

Recall that an exponential family associated to a proper closed convex function ψ defined
on an open parameter space Θ ⊂ Rd is a family of distributions Fψ = {Pψ,θ | θ ∈ Θ},
such that, for all θ ∈ Θ, Pψ,θ, defined on Rd, is absolutely continuous with respect to
some distribution P0, with density pψ,θ defined for all x ∈ Ω by

pψ,θ(x) = exp(⟨x, θ⟩ − ψ(θ)).

The function ψ is called the cumulant function and θ is the natural parameter. For this
model, the expectation of Pψ,θ may be expressed as µ(θ) = ∇θψ. We define

ϕ(µ) = sup
θ∈Θ
{⟨µ, θ⟩ − ψ(θ)} .

By Legendre duality, for all µ such that ϕ is defined, we get ϕ(µ) = ⟨θ(µ), µ⟩ − ψ(θ(µ)),
with θ(µ) = ∇µϕ. The density of Pψ,θ with respect to P0 can be rewritten using the
Bregman divergence associated to ϕ as follows:

pψ,θ(x) = exp(−dϕ(x, µ) + ϕ(x)).

Standards distributions such as Gaussian, Poisson, Binomial and Gamma may be
expressed that way. Table 3.1 below presents the 4 densities together with the functions
ψ and ϕ, as well as the associated Bregman divergences dϕ.
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Distribution pψ,θ(x) θ ψ(θ)
Gaussian 1√

2πσ2 exp
(
− (x−a)2

2σ2

)
a
σ2

σ2

2 θ
2

Poisson λx exp(−λ)
x! log(λ) exp(θ)

Binomial N !
x!(N−x)!q

x(1− q)N−x log
(

q
1−q

)
N log (1 + exp(θ))

Gamma xk−1 exp(− x
b

)
Γ(k)bk − k

µ k log
(
−1
θ

)
Distribution µ ϕ(µ) dϕ(x, µ)
Gaussian a 1

2σ2µ
2 1

2σ2 (x− µ)2

Poisson λ µ log(µ)− µ x log
(
x
µ

)
− (x− µ)

Binomial Nq µ log
( µ
N

)
+ (N − µ) log

(
N−µ
N

)
x log

(
x
µ

)
+ (N − x) log

(
N−x
N−µ

)
Gamma kb −k + k log

(
k
µ

)
k
µ

(
µ log

(µ
x

)
+ x− µ

)
Table 3.1: Exponential family distributions and associated Bregman divergences.

More instances of exponential families and their related Bregman divergence can be
found in [Fischer, 2010, Table 1]. It falls under the intuition that clustering with the
appropriate Bregman divergence is relevant whenever the source distribution follows a
mixture distribution with components that belong to the corresponding exponential
family. In this case, clustering with Bregman divergence may be thought of as a
hard-threshold model-based clustering scheme (see, e.g., Banerjee et al. [2005b]). The
following Remark 3.17 gives an illustration of this connection in a simple case.
Remark 3.17. We let k = 2, θ1 ̸= θ2, z∗

1 , . . . , z
∗
n be hidden labels in {1, 2}, and

X1, . . . , Xn be an independent sample such that Xi has density

1z∗
i =1pψ,θ1(x) + 1z∗

i =2pψ,θ2(x),

where pψ,θj
(x) = exp(−dϕ(x, µj) + ϕ(x)), for j ∈ {1, 2}. The parameters of this model

are (z∗
i )i∈[[1,n]], θ1, θ2. This model slightly differs from a classical mixture model since the

labels are not assumed to be drawn at random.
Let zi,j , i ∈ [[1, n]], j ∈ {1, 2}, denote assignment variables, that is such that zi,j = 1 if Xi

is assigned to class j and 0 otherwise. Also denote by m =
∑n
i=1 zi,1, n−m =

∑n
i=1 zi,2,

X̄1 =
∑n
i=1Xizi,1/m, X̄2 =

∑n
i=1Xizi,2/(n−m). Maximizing the log-likelihood of the

observations boils down to maximizing in (zi,j)i,j :

ln
n∏
i=1

exp
[
−zi,1dϕ

(
Xi, X̄1

)
− zi,2dϕ

(
Xi, X̄2

)
+ ϕ(Xi)

]
= −

n∑
i=1

zi,1dϕ
(
Xi, X̄1

)
−

n∑
i=1

zi,2dϕ
(
Xi, X̄2

)
+

n∑
i=1

ϕ(Xi).

On the other hand, since optimal codebooks are local means of their Bregman-Voronoi
cells (Proposition 3.7), minimizing Pndϕ(., c) is equivalent to minimizing∑n
i=1 zi,1dϕ

(
Xi, X̄1

)
+
∑n
i=1 zi,2dϕ

(
Xi, X̄2

)
. Thus, clustering with Bregman divergences

is the same as maximum likelihood clustering based on this model. Further, if we assume
that µ1 and µ2 are known, then the Bregman assignment rule
x 7→ arg minj∈{1,2} dϕ(x, µj) is the Bayes rule.

3.1.6.2 A case study: stylometric author clustering

We illustrate the relevance of our robust Bregman quantization scheme for texts
clustering based on stylometric descriptors, as described in [Taylor Arnold, 2015, Section
10]. Raw data consist in 26 annotated texts from 4 authors (Mark Twain, Sir Arthur
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Conan Doyle, Nathaniel Hawthorne and Charles Dickens). These texts are available as
supplementary material for Taylor Arnold [2015], and are framed as a sequence of
lemmatized string characters (for instance "be" and "is" are instances of the same lemma
"be"). Following Taylor Arnold [2015], we base our stylometric comparison on lemmas
corresponding to nouns, verbs and adverbs, and split every original text in chunks of size
5000 of such lemmas that will be considered as data points. Then the 50 overall most
frequent lemmas are chosen, and every chunk is described as the vector of counts of these
lemmas within it. Thus, signal points consists of 189 count vectors with dimension 50,
originating from 4 different authors.
The signal points are corrupted using the same process for the 8 State of the Union
Addresses given by Barack Obama (available in obama dataset from package CleanNLP
in R), resulting in 5 additional points, and for the King James Version of the Bible
(available on Project Gutenberg) that we preliminary lemmatize using the CleanNLP
package, resulting in 15 more additional points. Our final dataset consists of the n = 189
signal points and the s = 20 outlier points described above. Slightly anticipating, these
20 outliers might also be thought of as two additional small clusters with size 5 and 15.
Since every individual lemma count can be modeled as a Poisson random variable in the
random character sequence model Evert [2004], the appropriate Bregman divergence for
this dataset is likely to be the Poisson divergence. In the following, we compare our
method with Poisson divergence to trimmed k-means, trimmed k-medians, and t-clust.
Calibration of α and k:
When the number of clusters k is known beforehand, we propose the following heuristic
to select the trimming parameter q = (n+ s)(1− α), that is, the number of points in the
sample which are assigned to a cluster and not considered as noise. We let q vary from 1
to the sample size n+ s, plot the curve q 7→ cost[q] where cost[q] denotes the optimal
empirical distortion at trimming level q, and choose q⋆ by seeking for a cut-point on the
curve. Indeed, when the parameter q gets large enough, it is likely that the procedure
begins to assign outliers to clusters, which dramatically deprecates the empirical
distortion. Note that such an approach can also be used to calibrate α in a quantization
framework: for k large enough, if the q kept points correspond to signal points from an
(a, b)-standard distribution, then Zador’s Theorem ([Graf and Luschgy, 2000, Theorem
6.2], [Liu and Belkin, 2016, Lemma2]) suggests that cost[q] ∼ qk− 2

b , so that whenever
some outliers from Huber’s noise contamination model are added, the cost slope is likely
to increase, to some extent depending on the difference between dimensionality of the
signal and dimensionality of the noise (provided the noise has higher dimensionality than
signal).
Whenever both k (number of clusters) and q are unknown, we propose to select these
two parameters following the same principle as the algorithm tclust Fritz et al. [2012].
First we draw, for different values of k, the cost curves q 7→ costk[q], for 1 ≤ q ≤ n. For
each curve, the q’s for which there is an abrupt slope increase can correspond to cases
where outliers are assigned to clusters, or where some small clusters are included in the
set of signal points (if k is chosen too small). In the sequel, we split [[1, n+ s]] into several
bins [[qj , qj+1]]. On every such bin, we select a k that provides a significant cost decrease,
as well as the q yielding a slope jump. Note that this heuristic may result in several
possible pairs (k, q), corresponding to different point of views, depending on what data
point are considered as outliers or not. An illustration of this fact is given in Figure 3.4,
where outliers consist in small additional clusters.
In Figure 3.4, we draw the cost of our method as a function of q (number of kept points,
that is (n+ s)(1− α)), for different cluster numbers k. According to this figure, several
choices of k and q are possible. For values of q up to 175, the significant jumps in the
risk function are for k = 3 and k = 6. For k = 3, the slope heuristic yields q = 175,
whereas for k = 6 the slope heuristic suggests that no data points might be considered as
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Figure 3.4: Cost curves for authors clustering with Poisson divergence, with respect to
number of kept points q.

outliers. When q ranges between 175 and 193, the significant distortion jumps are for
k = 4 and k = 6, another possible choice is then k = 4 and q = 188. When q is larger
than 193, the only significant jump is for k = 6. To summarize, the pairs
(k = 3, q = 175), (k = 4, q = 188), (k = 6, q = n = 209) seem reasonable. These three
solutions correspond to the 3 natural trimmed partitions: clustering only 3 authors
writings (Twain writings being considered as outliers), clustering the 4 authors writings
and removing the outliers from the Bible and B. Obama addresses, and at last clustering
the six sources of writings (none of them being considered as noise). The two latter
situations are depicted in Figure 3.5, in the 2-dimensional basis given by a linear
discriminant analysis of the proposed clustering.

Figure 3.5: Author stylometric clustering with Poisson divergence.

Quality of clustering schemes will be assessed in terms of their Normalized Mutual
Information with respect to ground truth (NMI, Strehl and Ghosh [2002]), that ranges
between 0 ("orthogonal" clustering to ground truth) and 1 (same partition as ground
truth). The outliers are treated as the 0-th cluster. For k = 6 and q = 209, our clustering
globally retrieves the corresponding author. When k = 4, q = 188 is chosen, outliers are
correctly identified and only one sample text from C. Dickens is labeled as outlier. The
sample points seems on the whole well classified, that is assessed by a NMI of 0.7347.
This performance is compared with the other clustering algorithms in Table 3.2. Note
that values of q for competitors have been chosen to minimize the NMI, leading to
q = 190 for trimmed k-means, q = 202 for trimmed k-medians, and q = 184 for tclust.
The corresponding NMI curves may be found in [Brécheteau et al., 2021, Supplementary
material].
The associated partitions for k-median and tclust are depicted in Figure 3.6, showing
that these two methods fail in correctly identifying outliers.
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Method trimmed 4-means trimmed 4-medians tclust trimmed Poisson
NMI 0.5336 0.4334 0.4913 0.7347

Table 3.2: Comparison of robust clustering methods for Author retrieving.

Figure 3.6: Author stylometric clustering with trimmed k-median and tclust.

On the whole, the Bregman clustering scheme with Poisson divergence seems well suited
to the generative model of stylometric descriptors described in Evert [2004]. The
trimmed version we propose allows to adapt to structured noise (such as spurious
clusters). It also provides a screening method to investigate what may be considered as
noise (via the calibration of k and α), at the cost of more expensive computations.

3.2 Clustering of measures

Let us conclude this chapter with an other application of the quantization principle to
clustering. We intend here to cluster measures, that is, given a sample
Xn = {X1, . . . , Xn} where Xj is a (finite) measure on RD, to provide a partition of Xn
into L classes. The proposed procedure relies on a vectorization of the measures, that is
a map from M(RD) onto Rk build via quantization that preserves cluster structures if
any. From a practical viewpoint, clustering of measures finds a natural application in
clustering persistence diagrams (each multiset of points in R2 described in Section 2.1.1.1
may be thought of as a finite measure), but also in every situation where data comes as a
collection of finite point sets, for instance in ecology Renner et al. [2015], genetics Royer
et al. [2021], Adams et al. [2017], graphs clustering Carrière et al. [2019], Hoan Tran
et al. [2018] and shapes clustering Chazal et al. [2009].
The vectorization scheme we propose is simple: for a codebook c ∈ (RD)k, we map each
measure Xi onto a vector vi ∈ Rk that roughly encodes how much mass Xi spreads
around each code point. We build such a codebook via the quantization of a central
tendency of the Xi’s, the so-called mean measure, in Section 3.2.1. Then we show in
Section 3.2.2 that for mixture models and under suitable assumptions such a
vectorization allows to discriminate between mixture components.

3.2.1 Quantization of the mean measure

Assuming that the sample measures Xi’s are i.i.d. with distribution X, the targeted
central tendency is the mean measure E(X), defined by (E(X))(A) = E(X(A)), for any
measurable set A ⊂ RD. We intend to approximate E(X) by a k-points supported
measure via quantization, that is minimizing in c a distortion-like criterion

R(c) = E(X)(du) min
j=1,...,k

∥u− cj∥2 = W 2
2 (E(X), Pc), (3.4)
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where Pc =
∑k
j=1 E(X)(Cj(c))δcj , whenever E(X)(du)∥u∥2 < +∞. Note that, if

P ′
c =

∑k
j=1 µjδcj , with

∑k
j=1 µj = E(X)(RD), then W2(E(X), P ′

c) ≥W2(E(X), Pc), so
that finding an optimal codebook in the sense of (3.4) amounts to find an optimal
k-points approximation of E(X) in terms of Wasserstein distance.
From now on we restrict our attention to bounded support and bounded total mass
measures. Denoting by M(Λ,M) the set of measures Q such that Q(RD) ≤M and
Supp(Q) ⊂ B(0,Λ), we assume that X ∈M(Λ,M) a.s., so that E(X) ∈M(Λ,M). In
particular, the distortion R of (3.4) is well-defined, and [Fischer, 2010, Corollary 3.1]
ensures that there exist optimal codebooks in the sense of (3.4), whose set will be
denoted by Copt.
Based on Xn, a straightforward approach to build from sample a k-points approximation
is to minimize c 7→ X̄n(du) minj=1,...,k ∥u− cj∥2, where X̄n := 1

nXi (since X ∈M(Λ,M)
a.s., X̄n ∈M(Λ,M) a.s.). Since minimizing such a criterion is NP-hard in general (see,
e.g., Mahajan et al. [2012]), we propose a stochastic-gradient like algorithm that we
prove (almost) minimax optimal, under suitable assumptions.
Note that other central tendency measures and k-points approximations are possible.
For instance, one may choose as central measure a restrained Wasserstein barycenter of
the form arg minν||Supp(ν)|≤k E

(
W 2

2 (X, ν)
)

and its empirical counterpart. However, such
an approach is valid only in the case where X(RD) is constant. Moreover, computing
such a Wasserstein barycenter for X1, . . . , Xn becomes intractable for large n’s, even
with approximating algorithm Cuturi and Doucet [2013], Rabin et al. [2012]. The mean
measure E(X) and its empirical counterpart are much more easier to compute, and can
be of particular interest in image analysis Cuturi and Doucet [2013] or point processes
modeling Renner et al. [2015], Diggle [1990], Shirota et al. [2017] (in this case the mean
measure is referred to as the intensity function of the point process).
To minimize the empirical distortion, an adaptation of Lloyd’s Algorithm Lloyd [1982] or
Algorithm 1 is possible (see [Chazal et al., 2021, Algorithm 1]). We rather expose here a
counterpart of Mac Queen’s algorithm MacQueen [1967], based on mini-batches. Recall
that πB(0,Λ) denote the projection onto B(0,Λ).

Algorithm 2. Mini-batch k-means

▶ Input: {X1, . . . , Xn} = Xn, divided into mini-batches (B1, . . . , BT ) with sizes
(n1, . . . , nT ), and k.
For t = 1, . . . , T , Bt is divided in two halves , B(1)

t and B
(2)
t ;

▶ Initialization: Sample c(0)
1 , c(0)

2 ,. . . c(0)
k from X̄n.

▶ Iterations: for t = 0, . . . , T − 1 do:

– for j = 1, . . . , k,

c
(t+1)
j = πB(0,Λ)

c(t)
j −

X̄
B

(2)
t+1

(du)
[
(c(t)
j − u)1Cj(c(t))(u)

]
(t+ 1)X̄

B
(1)
t+1

(
Cj(c(t))

)
 ;

▶ Output: c(T ) (codebook of the last iteration).

We mention here that the mini-batches split in two halves is motivated by technical
considerations only. In the following experiments we take Bt = B

(1)
t = B

(2)
t . Whenever

Xi = δxi for i = 1, . . . , n (and B
(1)
i = B

(2)
i = {xi}), that is the classical point sample

case, Algorithm 2 is a slight modification of the original Mac-Queen algorithm
MacQueen [1967]. Indeed, the Mac-Queen algorithm takes mini-batches of size 1, and
estimates the population of the cell j at the t-th iteration via

∑t
ℓ=1 p̂

(ℓ)
j instead of tp̂(t)

j ,
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where p̂(t)
j = X̄

B
(1)
t

(
Cj(c(t))

)
. These modifications are motivated by Theorem 3.21, that

guarantees near-optimality of the output of Algorithm 2, provided that the mini-batches
are large enough and that E(X) satisfies the assumption described below.

To formally introduce the so-called margin condition, additional quantities must be
introduced. In what follows, R∗ will denote the optimal distortion achievable with k
points, that is R∗ = R(c), where c ∈ Copt. It is immediate that R∗ = 0 if and only if
E(X) is supported by less than k points, in which case the quantization problem is
trivial. In what follows we assume that E(X) is supported by more than k points. Some
basic properties of Copt are needed.

Recall that E(X) ∈M(Λ,M). Then,

1. B := infc∗∈Copt,j ̸=i ∥c∗
i − c∗

j∥ > 0,

2. pmin := infc∗∈Copt,j=1,...,k E(X) (Cj(c∗)) > 0.

Proposition 3.18 : [Levrard, 2018, Proposition 1]

We can now introduce a so-called margin condition, that slightly extends the one
exposed in [Levrard, 2015, Definition 2.1] for the point sample case.

E(X) ∈M(Λ,M) satisfies a margin condition with radius r0 > 0 if and only if, for all
0 ≤ t ≤ r0,

sup
c∗∈Copt

E(X) (B(N(c∗), t)) ≤ Bpmin
128Λ2 t,

where, for c ∈ (RD)k,

N(c) =
⋂
i ̸=j

Vi(c) ∩ Vj(c),

that is the skeleton of the Voronoi diagram of c.

Definition 3.19 : Margin condition

Intuitively speaking, a margin condition ensures that the mean distribution E(X) is
well-concentrated around k poles. For instance, finitely-supported distributions satisfy a
margin condition. Following Levrard [2018], a margin condition will ensure that usual
k-means type algorithms are almost optimal in terms of distortion. Up to our knowledge,
margin-like conditions are always required to guarantee convergence of Lloyd-type
algorithms Tang and Monteleoni [2016], Levrard [2018]. From a technical viewpoint, the
margin condition ensures that the the risk function defined by (3.4) is locally
co-coercitive around optimal codebooks.
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Assume that E(X) satisfies a margin condition with radius r0. Denoting by Λ0 =
Br0

16
√

2Λ , if c∗ ∈ Copt and ∥c− c∗∥ ≤ Λ0, it holds

〈
D(c)−1G(c), c∗ − c

〉
≥
(64

65 −
1

8
√

2

)
∥c− c∗∥2,

where G(c) is the gradient of R at c, defined by

G(c)j = 2E(X)(du)[(u− cj)1Cj(c)(u)],

and D(c) is the diagonal matrix with entries 2E(X) (Cj(c)), for j = 1, . . . , k, provided
that E(X) (Cj(c)) ̸= 0.

Lemma 3.20 : [Chazal et al., 2021, Lemma 21]

Of course the constants 64/65, 1/8
√

2 are purely artificial, and depend on the radius Λ0.
The main idea is that locally, around every optimal codebook c∗, it holds
⟨G(c), c∗ − c⟩ ≥ a∥c− c∗∥2, for a fixed constant a. In particular, this ensures that
codebooks in Copt are Λ0-separated. Such a co-coercitivity condition is a key ingredient
to prove convergence of stochastic-gradient based techniques to approximate a minimizer
of R. Such techniques apply to Algorithm 2, that may be considered as a mini-batch
stochastic gradient descent.

Let X ∈ M(Λ,M). Assume that E(X) satisfies a margin condition with radius r0,
and denote by Λ0 = Br0

16
√

2Λ , κ0 = Λ0/Λ. If (B1, . . . , BT ) are equally sized mini-batches
of length ckM2 log(n)/(κ0pmin)2, where c is a positive constant, and c(T ) denotes the
output of Algorithm 2, then, provided that c(0) ∈ B(Copt,Λ0), we have

E
(
R(c(T ))−R∗

)
≤ E(X)(Rd)

(
Ck2M3Λ2 log(n)

nκ2
0p

3
min

)
.

In the sample point case, the same result holds with the centroid update

c
(t+1)
j = c

(t)
j −

X̄Bt+1(du)
[
(c(t)
j − u)1Cj(c(t))(u)

]
(t+ 1)X̄Bt+1

(
Cj(c(t))

) ,

that is without splitting the batches.

Theorem 3.21 : [Chazal et al., 2021, Theorem 10]

Interestingly, the result of Theorem 3.21 is dimension-free. In other words, this result
would also be valid in any separable Hilbert space, provided that Supp(X) ⊂ B(0,Λ)
a.s., as for the point sample result [Levrard, 2015, Theorem 3.1]. The sample size
dependency is optimal up to a log(n) factor: indeed, [Levrard, 2018, Proposition 7]
provides a 1/n lower bound in the point sample case under margin condition, that is a
sub-case of the measure sample (with margin condition). Note that the 1/n rate may be
attained in the measure sample case using a Lloyd type algorithm (see, e.g., [Chazal
et al., 2021, Theorem 9]), in the finite-dimensional case with margin condition. In this
case, deviation bounds might also be stated, that are not easy to derive for Algorithm 2.
The dependency on k is more subtle to investigate: in the point sample case, under
margin condition with fixed parameters B, pmin and r0, [Levrard, 2018, Proposition 7]
provides a lower bound in k1−2/D, whereas [Levrard, 2015, Theorem 3.1] states an upper
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bound in k. From this viewpoint the k2 term of Theorem 3.21 appears suboptimal.
However, it is important to remark that quantities such as pmin and κ0 also depend on k,
so that the overall influence of k remains a hard question to answer.
As a byproduct, Theorem 3.21 shed some light on what a good initialization is. Roughly
speaking, if the initial state of Algorithm 2 is in the area where the distortion is convex,
then the output has the desired behavior. The size of such a good initialization
neighborhood depends on the margin condition, and a lower bound on the volume of
B(Copt,Λ0) may be used to prescribe the number of trials needed to get at least one good
initialization in practice. This intuition may be compared with the good initializations
for Lloyd’s algorithm given in Tang and Monteleoni [2016], that need to be close to an
optimal from a distortion point of view. However such a volume approach will heavily
suffer from the curse of dimensionality, the volume of B(c∗,Λ0) being of order (Λ0/Λ)D
whenever E(X) has a D-dimensional density. In the following experiments, several
initializations with a k-means ++-like Arthur and Vassilvitskii [2007] approach are
drawn, and the final codebook with the lowest empirical distortion is chosen.
At last, though natural in a clustering framework, the margin condition exposed in
Definition 3.19 seems not necessary for Lloyd and MacQueen algorithm to converge.
Indeed, imposing structural assumptions such as log-concavity of a density is enough to
provide a co-coercitivity result such as Lemma 3.20, hence to guarantee convergence of
the two aforementioned algorithms in dimension 1 (Kieffer [1983]). Extending the
validity of results such as Theorem 3.21 is part of the ongoing work of the authors. A
preliminary result shows that the log-concavity assumption of Kieffer [1983] can be
removed, proving that the optimal 1/n convergence rate may be attained generally in
dimension D = 1, whenever E(X) has a density. The authors strongly believe that such
a result can be extended to higher dimensions.
Once the mean measure being (almost optimally) quantized, we can now use this
k-points approximation to build a measure vectorization scheme.

3.2.2 Vectorization of measures and clustering

For a given codebook c and a scale r > 0, we may represent a measure µ via the vector of
weights (µ(B(c1, r)), . . . , µ(B(ck, r))) that encodes the mass that µ spreads around every
pole cj . Provided that the codepoints are discriminative (this will be discussed in the
following section), separation between clusters of measure will be preserved. In practice,
convolution with kernels is often preferred to local masses (see, e.g., Royer et al. [2021]).
To ease computation, we will restrict ourselves to the following class of kernel functions.

For (p, δ) ∈ N∗ × [0, 1/2], a function ψ : R+ → R+ is called a (p, δ)-kernel function if

i) ∥ψ∥∞ ≤ 1, ii) sup|u|≤1/p ψ(u) ≥ 1− δ,
iii) sup|u|>2p ψ(u) ≤ δ, iv) ψ is 1-Lipschitz.

Definition 3.22 :

Let us mention that a (p, δ)-kernel is also a (q, δ)-kernel, for q > p. This definition of a
kernel function encompasses widely used kernels, such as Gaussian or Laplace kernels. In
particular, the function ψ(u) = exp(−u) that is used in Royer et al. [2021] is a
(p, 1/p)-kernel for p ∈ N∗. The 1-Lispchitz requirement is not necessary to prove that the
representations of two separated measures will be well-separated. However, it is a key
assumption to prove that the representations of two measures from the same cluster will
remain close in Rk. From a theoretical viewpoint, a convenient kernel is
ψ0 : x 7→ (1− ((x− 1)∨ 0))∨ 0, which is a (1, 0)-kernel, thus a (p, 0)-kernel for all p ∈ N∗.
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From now on we assume that the kernel ψ is fixed, and, for a k-points codebook c and
scale factor σ, consider the vectorization

vc,σ :
{
M(Λ,M) → [0,Λ]k

µ 7→ (µ(du)ψ(∥u− c1∥/σ), . . . , µ(du)ψ(∥u− ck∥/σ)) . (3.5)

Note that the dimension of the vectorization depends on the cardinality of the codebook
c. To guarantee that such a vectorization is appropriate for a clustering purpose is the
aim of the following section.

3.2.2.1 Discriminative codebooks

To assess that our vectorization scheme is discriminative in some sense, we have to
assume that there exists hidden classes Zi’s and seek to retrieve them. Thus, from now
on we assume that there exists a vector (Z1, . . . , Zn) ∈ [[1, L]]n of (hidden) label variables,
and denote by X(ℓ) ∼ X | Z = ℓ, the distributions of the mixture components. We
further assume that X(ℓ) ∈M(Λ,M), for every ℓ ∈ [[1, L]].
For a vectorization v, a good discrimination property should be to guarantee that
∥v(Xi1)− v(Xi2)∥ is large whenever Zi1 ̸= Zi2 . For the vectorization vc,σ proposed by
(3.5), discrimination between two classes µ1 ̸= µ2 will likely occur whenever µ1(B(cj , σ))
is different enough from µ2(B(cj , σ)), for some cj . Since there exists x ∈ B(0,Λ) and
r > 0 such that µ1(B(x, r)) ̸= µ2(B(x, r)), such a discrimination seems possible if there
exists a codepoint cj close enough to x and σ is of order r. We extend this intuition to
the multi-classes case, by introducing, for a given codebook c, the following definition of
(p, r,∆)-scattering to quantify how well c will allow to separate clusters.

Let (p, r,∆) ∈ (N∗ ×R+ ×R+). A codebook c ∈ B(0,Λ)k is said to (p, r,∆) -shatter
X1, . . . , Xn if, for any i1, i2 ∈ [[1, n]] such that Zi1 ̸= Zi2 , there exists ji1,i2 ∈ [[1, k]]
such that

Xi1(B(cji1,i2
, r/p)) ≥ Xi2(B(cji1,i2

, 4pr)) + ∆, or
Xi2(B(cji1,i2

, r/p)) ≥ Xi1(B(cji1,i2
, 4pr)) + ∆.

Definition 3.23 :

In a nutshell, a codebook c shatters the sample if two different measures from two
different clusters have different masses around one of the codepoint of c, at scale r. Note
that, for any i, j, Xi(B(cj , r/p)) ≥ Xi({cj}), so that a stronger definition of shattering in
terms of Xi({cj})’s might be stated, in the particular case where Xi({cj}) > 0. It
naturally follows that a codebook which shatters the sample yields a vectorization into
separated clusters, provided the kernel decreases fast enough.

Assume that c ∈ B(0,Λ)k shatters X1, . . . , Xn, with parameters (p, r,∆). Then, if Ψ
is a (p, δ)-kernel, with δ ≤ ∆

4M , we have, for all i1, i2 ∈ [[1, n]] and σ ∈ [r, 2r],

Zi1 ̸= Zi2 ⇒ ∥vc,σ(Xi1)− vc,σ(Xi2)∥∞ ≥
∆
2 .

Proposition 3.24 :

This proposition gives details on how X1, . . . , Xn has to be shattered with respect to the
parameters of Ψ. Indeed, assume that ∆ = 1 (that is the case if the Xi’s are
integer-valued measures, such as count processes for instance). Then, to separate
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clusters, one has to choose δ small enough compared to 1/M , and thus p large enough if
Ψ is non-increasing. Hence, the vectorization will work roughly if the support points of
two different counting processes are rp-separated, for some scale r. This scale r then
drives the choice of the bandwidth σ. Section 3.2.3 below provides an instance of
shattered measures in the case where measures are persistence diagrams originating from
well separated shapes. If the requirements of Proposition 3.24 are fulfilled, then a
standard hierarchical clustering procedure such as Single Linkage with L∞ distance will
separate the clusters for the scales smaller than ∆/2. Without more assumptions, this
global clustering scheme can result in more than L clusters, nested into the ground truth
label classes.
Now, to achieve a perfect clustering of the sample based on the vectorization vc,σ, we
have to ensure that measures from the same cluster are not too far in terms of
Wasserstein distance, implying in particular that they have the same total mass. This
motivates the following definition.

The sample of measures X1, . . . Xn is called w-concentrated if, for all i1, i2 in [[1, n]]
such that Zi1 = Zi2 ,

i) Xi1(Rd) = Xi2(Rd), ii) W1(Xi1 , Xi2) ≤ w,

where W1 denotes the 1-Wasserstein distance.

Definition 3.25 :

It now falls under the intuition that well-concentrated and shattered sample measures
are likely to be represented in Rk by well-clusterable points. A precise statement is given
by the following Proposition 3.26.

Assume that X1, . . . , Xn is w-concentrated. If Ψ is 1-Lipschitz, then, for all c ∈
B(0,Λ)k and σ > 0, for all i1, i2 in [[1, n]] such that Zi1 = Zi2,

∥vc,σ(Xi1)− vc,σ(Xi2)∥∞ ≤
w

σ
.

Therefore, if X1, . . . , Xn is (p, r,∆)-shattered by c, and (r∆/4)-concentrated, then, for
any (p, δ)-kernel satisfying δ ≤ ∆

4M , we have, for σ ∈ [r, 2r],

Zi1 = Zi2 ⇒ ∥vc,σ(Xi1)− vc,σ(Xi2)∥∞ ≤ ∆
4 ,

Zi1 ̸= Zi2 ⇒ ∥vc,σ(Xi1)− vc,σ(Xi2)∥∞ ≥ ∆
2 .

Proposition 3.26 :

An immediate consequence of Proposition 3.26 is that (p, r,∆)-shattered and
r∆/4-concentrated sample measures can be vectorized in Rk into a point cloud that is
structured in L clusters. These clusters can be exactly recovered via Single Linkage
clustering, with stopping parameter in ]∆/4,∆/2]. In practice, tuning the parameter σ is
crucial. Some heuristic is proposed in Royer et al. [2021] in the special case of i.i.d
persistence diagrams. An alternative calibration strategy is proposed in Section 3.2.3. It
remains to prove that optimal codebooks obtained in Section 3.2.1 are shattering
codebooks. Intuitively speaking, for large k’s it is likely that optimal codebooks have
code points in discriminative areas. Providing upper bounds on such a suitable k is a
case-dependent issue. An example is given in the following Section 3.2.3, in a mixture of
persistence diagram framework.
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3.2.3 Application to clustering of persistence diagrams

In this section we consider a sample Xn of n persistence diagrams (see Section 2.1.1.1),
that we consider as a sample of finite measures on H+ = {(x, y) ∈ R2 | y > x} (see (3.6)
below). For more insights on the measure point of view on persistence diagrams the
interested reader is referred to Chazal and Divol [2019]. First we provide theoretical
guarantees in the case where these diagrams follow a mixture distribution.

3.2.3.1 Clustering persistence diagrams of a mixture of shapes

Our mixture of persistence diagrams model is the following. For ℓ ∈ [[1, L]] let S(ℓ) denote
a compact dℓ-manifold and D(ℓ) denote the persistence diagram generated by dS(ℓ) , the
distance to S(ℓ). For a fixed scale s > 0, we define D(ℓ)

≥s as the thresholded persistence
diagram of dS(ℓ) , that is

D
(ℓ)
≥s =

∑
{(b,d)∈D(ℓ)|d−b≥s}

n(b, d)δ(b,d) :=
k

(ℓ)
0∑
j=1

n(m(ℓ)
j )δ

m
(ℓ)
j

, (3.6)

where the multiplicities n(b, d) ∈ N∗, and the m(ℓ)
j ’s satisfy (m(ℓ)

j )2 − (m(ℓ)
j )1 ≥ s. Let us

mention here that k(ℓ)
0 is finite, according to [Chazal et al., 2021, Lemma 12].

Now, for ℓ ∈ [[1, L]] we let YNℓ
be an Nℓ-sample drawn on S(ℓ) with density f (ℓ) satisfying

f (ℓ)(u) ≥ fmin,ℓ, for u ∈ S(ℓ). If D̂(ℓ) denotes the persistence diagram generated by dYNℓ
,

we define X(ℓ) as a thresholded version of D̂(ℓ), that is

X(ℓ) ∼ D̂(ℓ)
≥s−hℓ

,

for some bandwidth hℓ. At last, recall that our mixture model is defined by
Xi | {Zi = ℓ} ∼ X(ℓ), so that conditionally on Zi = ℓ, Xi is a thresholded persistence
diagram corresponding to a Nℓ-sampling of the shape S(ℓ). Recall also that the weights
of the components are defined by πℓ = P(Z = ℓ).
To retrieve the labels Zi’s from a vectorization of the Xi’s, we have to assume that the
persistence diagrams of the underlying shapes differ by at least one point.

The shapes S(1), . . . , S(ℓ) are discriminable at scale s if for any 1 ≤ ℓ1 < ℓ2 ≤ L
there exists mℓ1,ℓ2 ∈ H+ such that

D
(ℓ1)
≥s ({mℓ1,ℓ2}) ̸= D

(ℓ2)
≥s ({mℓ1,ℓ2}),

where the thresholded persistence diagrams are considered as measures.

Definition 3.27 :

It is immediate that, if mℓ1,ℓ2 satisfies the discrimination condition stated above, then
mℓ1,ℓ2 ∈ D

(ℓ1)
≥s or mℓ1,ℓ2 ∈ D

(ℓ2)
≥s . Next, we must ensure that optimal codebooks of the

mean measure have codepoints close enough to discrimination points.
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Let hℓ =
(
Cdℓ

log(Nℓ)
fmin,ℓNℓ

)1/dℓ

, for some constants Cdℓ
, and h = maxℓ≤L hℓ. Moreover, let

Mℓ = D
(ℓ)
≥s(H+), M̄ =

∑L
ℓ=1 πℓMℓ, and πmin = minℓ≤L πℓ.

Assume that S(1), . . . , S(L) are discriminable at scale s, and let m1, . . . ,mk0 denote
the discrimination points. Let K0(h) denote

inf{k ≥ 0 | ∃t1, . . . , tk
L⋃
ℓ=1

D
(ℓ)
≥s \ {m1, . . . ,mk0} ⊂

k⋃
s=1

B∞(ts, h)}.

Let k ≥ k0 + K0(h), and (c∗
1, . . . , c

∗
k) denote an optimal k-points quantizer of E(X).

Then, provided that Nℓ is large enough for all ℓ, we have

∀j ∈ [[1, k0]] ∃p ∈ [[1, k]] ∥c∗
p −mj∥∞ ≤

5
√
M̄h

√
πmin

.

Proposition 3.28 :

The bandwidths hℓ are defined in line with the convergence rate for the point sample in
the (a, dℓ)-standard case (see Theorem 1.4 and Proposition 1.16, Item (iii)). If D̄≥s

denotes the mean persistence diagram
∑L
ℓ=1 πℓD

(ℓ)
≥s, and D̄≥s has K0 points, then it is

immediate that k0 +K0(h) ≤ K0. Moreover, we also have k0 ≤ L(L+1)
2 . At last, if the

S(ℓ)’s are included in B(0,Λ), a standard covering argument entails K0(h) ≤ 1
2

(
Λ
h

)2
. To

sum up, the choice k = K0 satisfies the requirements of Proposition 3.28, but smaller
choices are possible depending on the structure of the mixture.
Proposition 3.28 ensures that the discrimination points are well enough approximated by
optimal k-centers of the expected persistence diagram E(X), provided the shapes S(ℓ)

are well-enough sampled and k is large enough so that D̄≥s is well-covered by k balls
with radius h. In turn, provided that the shapes S(1), . . . , S(L) are discriminable at scale
s and that k is large enough, we can prove that an optimal k-points codebook c∗ is a
(p, r,∆)-shattering of the sample, with high probability.

Assume that the requirements of Proposition 3.28 are satisfied. Let B̃ =
mini=1,...,k0,j=1,...,K0,j ̸=i ∥mi−mj∥∞ ∧ s. Let κ > 0 be a small enough constant. Then,
if Nℓ is large enough for all ℓ ∈ [[1, ℓ]], X1, . . . , Xn is (p, r, 1)-shattered by c∗, with

probability larger than 1− nmaxℓ≤LN
−
(

(κB̃)dℓ fmin,ℓNℓ
Cℓdℓ log(Nℓ)

)
ℓ , provided that

▶ r
p ≥ 2κB̃,

▶ 4rp ≤
(

1
2 − κ

)
B̃.

Moreover, on this probability event, X1, . . . , Xn is 2MκB̃-concentrated.

Proposition 3.29 :

Proposition 3.29 provides scales for the shattering constants of c∗ in terms of the
mixture parameter B̃. It can be combined with Proposition 3.26 and the results of
Section 3.2.1 to provide guarantees on the output of the Lloyd type algorithm [Chazal
et al., 2021, Algorithm 1] (or Algorithm 1), combined with a suitable kernel. We choose
to give results for the theoretical kernel ψ0 : x 7→ (1− ((x− 1) ∨ 0)) ∨ 0, and for the
kernel used in Royer et al. [2021], ψAT = x 7→ exp(−x).
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Assume that E(X) satisfies a margin condition, and that the requirements of Propo-
sition 3.29 are satisfied. For short, denote by vi the vectorization of Xi based on the
output of Algorithm 1. Then, with probability larger than

1− exp
[
−C

(
nr2p2

min

p2M2Λ2k2d log(k) −
p2
minB

2r2
0

M2Λ4k2d log(k)

)]
− nmax

ℓ≤L
N

−
(

(κB̃)dℓ fmin,ℓNℓ
Cℓdℓ log(Nℓ)

)
ℓ ,

where κ and C are small enough constants, we have

Zi1 = Zi2 ⇒ ∥vi1 − vi2∥∞ ≤ 1
4 ,

Zi1 ̸= Zi2 ⇒ ∥vi1 − vi2∥∞ ≥ 1
2 ,

for σ ∈ [r, 2r] and the following choices of p and r:

▶ If Ψ = ΨAT , pAT = ⌈4M⌉, and rAT = B̃
32pAT

.

▶ If Ψ = Ψ0, p0 = 1 and r0 = B̃
32 .

Corollary 3.30 :

This result can be turned into probability bounds on the exactness of the output of
hierarchical clustering schemes applied to the sample points. For instance, on the
probability event described by Corollary 3.30, Single Linkage with norm ∥.∥∞ will
provide an exact clustering. The probability bound in Corollary 3.30 shed some light on
the quality of sampling of each shape that is required to achieve a perfect classification:
roughly, for Nℓ in Ω(log(n)), the probability of misclassification can be controlled.
Provided deviation bounds were also available for Algorithm 2, a similar result might be
stated. Note that though the key parameter B̃ is not known, in practice it can be scaled
as several times the minimum distance between two points of a diagram.
To determine whether the margin condition holds for E(X) is satisfied in the mixture of
shapes framework is not straightforward. As mentioned below Theorem 3.21, it is likely
that milder condition on the regularity of E(X) could be enough to guarantee the
convergence of quantization algorithms. Interestingly, regularity results on E(X) are
derived in Chazal and Divol [2019]. Though purely conjectural at the moment, the
intuition that our quantization/vectorization scheme works for this 2-dimensional
particular instance of sample measures is supported by the experimental results exposed
in the following section.

3.2.3.2 Large-scale graph classification

We intend to apply our quantization/vectorization method to the large-scale graph
classification problem. Provided that graphs may be considered as measures, our
vectorization method provides an embedding into Rk that may be combined with
standard learning algorithms. In this framework, our vectorization procedure can be
thought of as a dimensionality reduction technique for supervised learning, that is
performed in an unsupervised way. The notion of shattering codebook introduced in
Section 3.2.2 is still relevant in this context, since a (p, r,∆)-shattering codebook would
lead to exact sample classification if combined with a classification tree for instance.
We provide results for the Atol procedure Royer et al. [2021], that is a particular
instance of our general scheme with kernel ψ = ψAT = x 7→ e−x. As exposed above, since
Atol is an unsupervised procedure that is not specifically conceived for graphs, it is
likely that other dedicated techniques would provide better performances in this graph
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method SF NetLSD FGSD GeoScat Atol
problem size de Lara and Pineau [2018] Tsitsulin et al. [2018] Verma and Zhang [2017] Gao et al. [2019]
reddit threads (203K) 81.4±.2 82.7±.1 82.5±.2 80.0±.1 80.7±.1
twitch egos (127K) 67.8±.3 63.1±.2 70.5±.3 69.7±.1 69.7±.1
github stargazers (12.7K) 55.8±.1 63.2±.1 65.6±.1 54.6±.3 72.3±.4
deezer ego nets (9.6K) 50.1±.1 52.2±.1 52.6±.1 52.2±.3 51.0±.6

Table 3.3: Large graph binary classification problems. Mean ROC-AUC and standard
deviations.

classification problem. However, its simplicity can be a competitive advantage for
large-scale applications.
There are multiple ways to interpret graphs as measures. In this section we borrow from
Carrière et al. [2019]: for a diffusion time t > 0 we compute the Heat Kernel Signatures
(HKSt) for all vertices in a graph, so that each graph G(V,E) is embedded in R|V | (see,
e.g., [Carrière et al., 2019, Section 2.2]). Then four graph descriptors per diffusion time
may be computed using the extended persistence framework (see, e.g., [Carrière et al.,
2019, Section 2.1]), that is four types of persistence diagrams (PDs). Schematically for a
graph G(V,E) the descriptors are derived as:

G(V,E) heat kernel−−−−−−−→
signatures

HKSt(G) ∈ R|V |,

G(V,E) extended−−−−−−→
persistence

PD(HKSt(G), G) ∈ (M(R2))4. (3.7)

In these experiments we will show that the graph embedding strategy of (3.7) paired with
Atol can perform up to the state of the art on large-scale graph classification problems.
Large-scale binary classification from Rozemberczki et al. [2020]
Recently Rozemberczki et al. [2020] introduced large-scale graph datasets of social or
web origin. For each dataset the associated task is binary classification. The authors
perform a 80% train/test split of the data and report mean area under the curve (AUC)
along with standard errors over a hundred experiments for all the following graph
embedding methods. SF from de Lara and Pineau [2018] is a simple graph embedding
method that extracts the k lowest spectral values from the graph Laplacian, and a
standard Random Forest Classifier (RFC) for classification. NetLSD from Tsitsulin et al.
[2018] uses a more refined representation of the graph Laplacian, the heat trace signature
(a global variant of the HKS) of a graph using 250 diffusion times, and a 1-layer neural
network (NN) for classification. FGSD from Verma and Zhang [2017] computes the
biharmonic spectral distance of a graph and uses histogram vectorization with small
binwidths that results in vectorization of size [100, 1000000], with a Support Vector
Machine (SVM) classifier. GeoScattering from Gao et al. [2019] uses graph wavelet
transform to produce 125 graph embedding features, also with a SVM classifier.
We add our own results for Atol paired with (3.7): we use the extended persistence
diagrams as input for Atol computed from the HKS values with diffusion times
t1 = .1, t2 = 10, and vectorize the diagrams with budget k = 10 for each diagram type
and diffusion time so that the resulting vectorization for graph G is vAtol(G) ∈ R2×4×10.
We then train a standard RFC (as in de Lara and Pineau [2018], we use the
implementation from sklearn Pedregosa et al. [2011] with all default parameters) on the
resulting vectorized measures.
The results are shown Table 3.3. Atol is close to or over the state-of-the-art for all four
datasets, for a much lighter computational cost. Most of these methods operate directly
from graph Laplacians so they are fairly comparable, in essence or as for the dimension
of the embedding that is used. The most positive results on github stargazers
improves on the best method by more than 6 points. Interestingly, there are other ways
than (3.7) to represent graphs by measure, for which our methodology readily applies.
We present below a short example.
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A variant of the large-scale graph classification from Royer et al. [2021]
The graph classification tasks above were binary classifications. Yanardag and
Vishwanathan [2015] introduced now popular datasets of large-scale graphs associated
with multiple classes. These datasets have been tackled with top performant graph
methods including the graph kernel methods RetGK from Zhang et al. [2018], WKPI
from Zhao and Wang [2019] and GNTK from Du et al. [2019] (combined with a graph
neural network), and the aforementioned graph embedding method FGSD from Verma
and Zhang [2017]. PersLay from Carrière et al. [2019] is not designed for graphs but used
(3.7) as input for a 1-NN classifier. Lastly, in Royer et al. [2021], we also used (3.7) and
the same diagrams as input data for the Atol procedure and obtained competitive
results within reasonable computation times (the largest is 110 seconds, for the COLLAB
dataset, see [Royer et al., 2021, Section 3.1] for all computation times).
Here we propose to bypass the topological feature extraction step in (3.7). Instead of
topological descriptors, some simpler graph descriptors are preferred: we compute four
HKS descriptors corresponding to diffusion times t1 = .1, t2 = 1, t3 = 10, t4 = 100 for all
vertices in a graph, but this time directly interpret the output as a measure embedding
in dimension 4. From there we use Atol with k = 80 budget. Therefore each graph
G(V,E) is embedded in R4|V | seen as M(R4) and our measure vectorization framework
is readily applicable from there. To sum-up we now use the point of view:

G(V,E) heat kernel−−−−−−−→
signatures

HKSt1,t2,t3,t4(G) ∈ R4|V | ≈M(R4). (3.8)

It is important to note that the proposed transformation from graphs to measures can be
computed using any type of node or edge embedding. Our vectorization method could be
applied the same way as for HKS’s.

method RetGK FGSD WKPI GNTK PersLay Atol Atol
problem Zhang et al. [2018] Verma and Zhang [2017] Zhao and Wang [2019] Du et al. [2019] Carrière et al. [2019] with (3.7) with (3.8)
REDDIT (5K, 5 classes) 56.1±.5 47.8 59.5±.6 — 55.6±.3 67.1±.3 66.1±.2
REDDIT (12K, 11 classes) 48.7±.2 — 48.5±.5 — 47.7±.2 51.4±.2 50.7±.3
COLLAB (5K, 3 classes) 81.0±.3 80.0 — 83.6±.1 76.4±.4 88.3±.2 88.5±.1
IMDB-B (1K, 2 classes) 71.9±1. 73.6 75.1±1.1 76.9±3.6 71.2±.7 74.8±.3 73.9±.5
IMDB-M (1.5K, 3 classes) 47.7±.3 52.4 48.4±.5 52.8±4.6 48.8±.6 47.8±.7 47.0±.5

Table 3.4: Mean accuracies and standard deviations for the large multi-classes problems
of Yanardag and Vishwanathan [2015].

On Table 3.4 we quote results and competitors from Royer et al. [2021] and on the right
column we add our own experiment with Atol. The Atol methodology works very
efficiently with the direct HKS embedding as well, although the results tend to be
slightly inferior. This may hint at the fact that although persistence diagrams are not
essential to capturing signal from this dataset, they can be a significant addition for
doing so. Overall Atol with (3.8), though much lighter than Atol with (3.7), remains
competitive for large-scale graph multiclass classification.
Let us conclude this experimental section by recalling that since our vectorization
scheme is fully unsupervised, its advantages mostly rely in its simplicity (hence reduced
computational cost) and large scope of applications. Some task-dedicated embedding
achieve better overall performances, that is not surprising. This empirical study shows
that on the whole our vectorization scheme fairly compares with dedicated methods, for
a much lighter computational cost. This computational benefit is particularly prominent
in large dimensions, an instance of this point is given for a text classification task in
[Chazal et al., 2021, Section 4.3].

3.3 Discussion and directions for future research

Dimensionality reduction for persistence diagram classification
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The quantization-based vectorization of persistence diagrams proposed in Section 3.2.3,
though unsupervised, allows for efficient classification whenever a code point takes place
in a discriminative area. Then, a natural question is to find such a discriminative area,
whenever the sample is labeled as X1, . . . , XN1 , Y1, . . . , YN2 , with Xi ∼ X and Yi ∼ Y , or
slightly generalizing, a function f : R2 → Rk such that ∥X(du)(f(u))− Y (du)(f(u))∥ is
as large as possible with high probability. Through this lens, a classification-adapted
vectorization of measures is X(f) = (X(du)(f1(u)), . . . , X(du)(fk(u))), for such a
discriminative f with coordinates fj .
Interestingly, several persistence diagram vectorization schemes are indeed of the form
X(f), where f has some particular structure. For instance, persistence silhouettes
(Chazal et al. [2015b]) evaluated at some t > 0 is just X 7→ X(du)ϕt(u), where
ϕt(u) = (u(2) − |t− u(1)|)+ (in a birth/persistence representation of a diagram).
Similarly, persistence image Adams et al. [2017] evaluates, at each pixel p of a pixel grid,
the functional X 7→

∫
p(X ⋆ gσ)(x)dx (mass given by a Gaussian convolution to a pixel),

that can be written as X 7→ X(du)(fp(u)) for some continuous and compactly supported
fp, using the Riesz representation Theorem.
Dimensionality reduction in such an integral vectorization framework might be
performed in two ways. First, using standard dimensionality reduction techniques for
classification based on a prior multidimensional vectorization, such as ℓ1-penalized
logistic regression based on persistence image as in Obayashi et al. [2018]. Second, by
constructing discriminative f̂1, . . . , f̂k based on sample, for instance by seeking for a
discriminative function between E(X) and E(Y ) in a suitable RKHS, as suggested by
Gretton et al. [2012]. Both of these approaches would lead to interesting developments in
measure classification, provided theoretical conditions that can guarantee discrimination
are well understood. This is ongoing work with Olympio Hacquard and Gilles Blanchard.

Sufficient conditions for (optimal) convergence of quantization algorithms
The key assumption to prove convergence of quantization algorithms 2 and [Chazal
et al., 2021, Algorithm 1] was the margin condition (see Definition 3.19), that is roughly
valid whenever the source distribution is concentrated enough around k poles. Though
adapted to a clustering framework (see Levrard [2018]), such a condition is not adapted
to quantization of uniform distribution on structures for large k’s, that are key instances
of quantization applications (see Section 2.1). To give an example, easy computation
show that such a condition does not hold for the uniform distribution on [−1, 1], for
k = 2. However, convergence results for Lloyd-type algorithms may be derived under
structural assumptions that bypass the margin condition, in dimension d = 1: by
requiring the source distribution to have a log-concave density (Kieffer [1983]), or to
have a continuous and compactly supported density (unpublished result). The basic idea
that grounds these two results is that iterations of the Lloyd algorithm can only move
codepoints in directions where co-coercitivity occurs (see Lemma 3.20), that is less
requiring than co-coercitivity in every direction a margin condition entails. Extension of
these results in arbitrary dimension d is ongoing work.
Up to our knowledge, fast rates of convergence (faster than 1/

√
n) for ERM or iterative

algorithm outputs are available in the k-means case only, that is Bregman divergence
with ϕ(u) = ∥u∥2. Deriving fast rates for general Bregman quantization might be
performed by two ways. First by extending the margin conditions to the Bregman case,
that is not trivial since Bregman divergences do not satisfy the triangular inequality that
is required in the proof of [Levrard, 2015, Lemma 4.2]. The second option would be to
adapt the aforementioned principle, by proving that iterations of Lloyd type algorithms
move codepoints in positive eigenspaces of the Hessian matrix of the Bregman distortion
function at optimal codebooks (when properly defined). Such a result could also pave
the way to prove optimality of mini-batches version of Algorithm 1 in the Bregman case.
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