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Inés MACHO-STADLER, Professeure, Universitat Autònoma de Barcelona, Examinatrice
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de thèse
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je n’aurais pu rêver meilleur duo en guise de direction de thèse.
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pour son travail rigoureux. Merci à Nikola Gerasimovic pour m’avoir accompagné
dans tous les restaurants de la rue Saint-Anne à Paris et pour avoir écouté mes
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vité au Workshop OSGAD en 2021. Enfin, merci à Yukihiko Funaki, Frank Huettner
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pour avoir été là lors des hauts et des bas qui ont jonché ma thèse. Merci à mes
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Merci à mon parrain Marc, ma tante Jacqueline, ma nourrice Andrée et Marie-Claude
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Chapitre 1: Introduction

1.1 La distribution de gaz en France

Le gaz naturel est une énergie fossile (aussi appelée énergie primaire) car il n’est pas
produit par la transformation d’une autre énergie (contrairement à l’électricité). Le
gaz naturel peut être utilisé à des fins domestiques, mais il est également utile dans
d’autres domaines tels que l’industrie, l’agronomie et les transports. Sa consomma-
tion n’a cessé de crôıtre ces dernières années, principalement grâce à ses qualités envi-
ronnementales : il n’émet pratiquement pas de particules fines et est l’hydrocarbure
libérant le moins de gaz à effet de serre dans l’atmosphère. Avant d’être livré aux
consommateurs, le gaz naturel doit être extrait du sol, traité et enfin transporté
jusqu’au lieu de consommation.

Ces dernières années, le biogaz est devenu une sérieuse alternative au gaz na-
turel, car plus écologique. On le produit en cuve par la fermentation de matières
organiques en l’absence d’oxygène. Sa production permet de recycler des déchets
organiques tout en évitant l’épuisement des ressources naturelles de la planète. Les
sites de production de biogaz sont situés relativement proches des lieux de consom-
mation. Ainsi, le biogaz nécessite généralement moins de moyens afin d’être livré
aux consommateurs.

Nous étudions l’activité de distribution de gaz, qui est l’étape finale du proces-
sus de livraison du gaz. Tout d’abord, expliquons brièvement les différentes étapes
constituant ce processus. En premier lieu, les producteurs sont en charge d’extraire
le gaz des sols. Celui-ci est alors traité et est ensuite transporté aux points d’entrée
frontaliers via des gazoducs internationaux ou des méthaniers. Depuis ces points
d’entrée frontaliers, le réseau de transport prend le relais et achemine le gaz à haute
pression, via de larges canalisations en acier, jusqu’à l’entrée des villes (ou vers un
stockage). Enfin, le réseau de distribution réceptionne le gaz à l’entrée des villes
pour ensuite l’acheminer jusqu’au consommateur. Toutes les étapes constituant la
livraison de gaz sont résumées dans la Figure 1.1.
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Réseau de transport

Bio gaz

Gazoducs internationnaux

Méthaniers Stockage

Consommateur

Figure 1.1

Un réseau de distribution de gaz peut être représenté par un graphe arbores-
cent avec une source unique. Les nœuds de l’arbre représentent les consomma-
teurs et les arcs les canalisations. Notons qu’un réseau de distribution de gaz peut
éventuellement avoir plusieurs sources. Cependant, dans cette thèse, nous supposons
qu’un réseau de distribution de gaz n’a qu’une unique source (voir la figure 1.2 pour
un exemple de trois réseaux représentés par des graphes arborescents avec source
unique).

En France, le marché de la distribution d’énergie a été ouvert à la concurrence le
1er juillet 2007. Cette ouverture a permis la création d’un marché unique à l’échelle
européenne et la possibilité pour un consommateur de choisir librement son gestion-
naire de réseau de distribution de gaz parmi la cinquantaine existant en France. La
distribution de gaz en France est une mission de service public. Elle s’exerce sous
une triple autorité : l’État, les collectivités locales et la Commission de régulation
de l’énergie (CRE). L’État fixe le cadre général du marché de l’énergie en garantis-
sant le respect des règles de la concurrence et des missions de service public. Les
collectivités locales supervisent la distribution du gaz à plus petite échelle et veillent
à son bon fonctionnement. La CRE veille au bon fonctionnement du marché français
de l’énergie et à ce que tous les opérateurs de réseaux gaziers bénéficient des mêmes
conditions d’accès au réseau de distribution. L’opérateur de distribution de gaz le
plus important en France est (de loin) GRDF (Gaz Réseau Distribution France). Cet
opérateur gère un réseau de distribution de gaz de plus de 200.000 km de long avec
plus de 10.000 salariés pour alimenter plus de 11 millions de clients.
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Réseau de transport
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1.2 Le problème

L’activité de GRDF engendre de nombreux coûts, dont certains ne sont pas directe-
ment affectables à un consommateur donné. Par exemple, il existe des coûts liés à
l’accès au réseau de transport et des coûts liés à l’accès aux sites de production de
biogaz. De plus, l’entretien du réseau, sa surveillance et ses éventuelles extensions
génèrent des coûts supplémentaires. GRDF souhaite facturer ces coûts aux consom-
mateurs. Chaque consommateur signe un contrat de distribution avec GRDF (ou un
autre gestionnaire de réseau de distribution). Ce contrat contient deux informations
majeures. Tout d’abord, il précise la catégorie à laquelle appartient le consomma-
teur. GRDF classe les consommateurs en fonction d’un système de catégorisation
bien établis. La demande effective d’un consommateur est l’information la plus
déterminante pour sa catégorisation. Cette demande effective correspond au plus
haut volume de gaz que le consommateur s’attend à consommer sur une courte
période de temps. Typiquement, cela correspond à la quantité qu’un ménage pense
consommer pendant les jours les plus froids de l’hiver. Pour une entreprise de trans-
port, cela correspond à la période de l’année où la flotte de l’entreprise est la plus
sollicitée. Pour une industrie, cela correspond à la période de l’année où l’activité de
production est à son plus haut niveau. Sans perte de généralité, nous supposons que
l’ensemble des demandes effectives cöıncide avec le système de catégorisation établi
par GRDF. Ensuite, le contrat liant le consommateur et GRDF spécifie le montant
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que chaque consommateur doit payer en fonction de sa demande effective. Ce mon-
tant est déterminé par un tarif de distribution, appelé “Accès des Tiers au Réseau
de Distribution” (ATRD). L’ATRD se présente sous forme d’une grille précisant le
montant que les consommateurs doivent payer en fonction de leur demande effective.
GRDF cherche à recouvrir l’ensemble des coûts via l’ATRD. Pour ce faire, GRDF
doit déterminer une méthode afin de partager ces coûts entre les consommateurs. La
performance de GRDF dépend fortement de la manière dont ces coûts sont répartis.
En particulier, une méthode de partage des coûts est pertinente si elle répond aux
principes attendus par le gestionnaire de réseau.

Il existe deux grands principes défendus par GRDF concernant les méthodes de
partage des coûts: le principe de péréquation et le principe d’indépendance aux
demandes supérieures.1. Tout d’abord, le principe de péréquation stipule que deux
consommateurs ayant les mêmes demandes effectives doivent se voir facturer le même
montant, indépendamment de leur localisation géographique. Par exemple, il ne
devrait pas y avoir de différence en termes de tarif appliqué entre les zones rurales et
les zones urbaines, bien que les coûts sous-jacents soient différents. Ce principe vise
à réduire les inégalités de traitement entre les différents consommateurs. Ce principe
est très répandu en France, non seulement dans le domaine de la fourniture de gaz,
mais aussi dans celui de la fourniture d’électricité, d’eau et d’autres services publics
(voir Fleurbaey & Trannoy (1998)). Ce principe fait même partie du droit français :
“Constitution-article 72-2, révision du 28 mars 2003 [. . .] la loi assure des mécanismes
de péréquation pour promouvoir l’égalité entre les territoires”. Deuxièmement, le
principe d’indépendance aux demandes supérieures indique qu’un consommateur ne
doit pas avoir à payer pour des demandes supérieures aux siennes. Ce principe permet
d’éviter les situations où la présence d’un consommateur ayant une demande élevée
implique des coûts supplémentaires pour les consommateurs ayant de plus modestes
demandes. Par exemple, il semble injustifié d’augmenter la facture d’un ménage
lorsqu’une usine consommant de larges volumes de gaz emménage à proximité.

La plupart, sinon la totalité, des méthodes de partage des coûts utilisées par
GRDF sont inspirés du modèle standard de partage des coûts (version discrete) (voir
par exemple Moulin (2003) et Hougaard (2018)). Dans ce qui suit, nous présentons
brièvement la méthode d’Aumann-Shapley (version discrète) et la méthode de Shapley-
Shubik (version discrète), qui sont deux méthodes de partage des coûts couramment
utilisées par GRDF. Fixons un ensemble fini N de n consommateurs de gaz. Chaque
consommateur i ∈ N possède une demande effective qi déclarée auprès du gestion-
naire de réseau. Ce dernier ne dispose d’aucune information concernant les autres
demandes qu’un consommateur effectue tout au long de l’année, en dehors de sa
demande effective. Par conséquent, chaque consommateur i ∈ N est doté d’un en-
semble discret {0, 1, . . . , qi} représentant toutes les demandes potentielles que i est en
mesure de faire au cours d’une année. Le profil q = (q1, . . . , qn) collecte l’intégralité
des demandes effectives des consommateurs. Le problème de partage des coûts de

1Le principe de péréquation se traduira par “Uniformity” en anglais.
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GRDF peut être représenté par le couple (q, C), où C est une fonction mesurant
le coût d’exploitation d’un réseau de distribution en mesure de satisfaire tout profil
de demande dans lequel chaque consommateur i ∈ N demande au plus sa demande
effective qi. Formellement, la fonction C est en mesure d’évaluer le coût C(s) de tout
réseau de distribution conçu pour satisfaire à un profil de demande s ≤ q. La fonc-
tion C est croissante et vérifie C(0, . . . , 0) = 0, ce qui signifie que C(t) ≤ C(s) pour
tout t ≤ s ≤ q. Le montant C(q) correspond au coût total du réseau de distribu-
tion de gaz. Par exemple, prenons un ensemble de 4 consommateur N = {a, b, c, d}.
Le profil des demandes effectives est q = (2, 1, 1, 1), ce qui signifie que a possède
une demande effective de 2 alors que b, c et d ont une demande effective de 1. Une
fonction C est capable de mesurer le coût de tout réseau de distribution conçu pour
répondre à un profil de demande s ≤ q. Par exemple, C est en mesure d’évaluer le
coût du profil (1, 1, 0, 0) dans lequel a demande 1, b demande 1 et c et d demandent
0. Bien sûr, ce profil est hypothétique et ne correspond pas aux demandes effectives
réelles. Mais il est nécessaire de considérer un tel scénario pour pouvoir calculer
les méthodes d’Aumann-Shapley et de Shapley-Shubik. GRDF cherche à recouvrir
tous les coûts via l’ATRD. Cela signifie que le tarif défini par GRDF doit recouvrir
C(q) en l’allouant au sein de l’ensemble des consommateurs. Maintenant, nous intro-
duisons quelques prérequis sur les jeux coopératifs afin de comprendre les méthodes
d’Aumann-Shapley et de Shapley-Shubik. Le modèle standard des jeux coopératifs
sont les jeux à utilité transférable (jeux TU en abrégé). Les jeux TU modélisent
des situations dans lesquelles certains joueurs peuvent former des coalitions pour
engendrer une certaine utilité. Formellement, un jeu TU est un couple (N, v), où
N est un ensemble fini de joueurs et v est une fonction caractéristique en mesure
d’évaluer l’utilité de chaque coalition de joueurs E ⊆ N . Un vecteur de gain attribue
un certain gain à chacun joueur en fonction des différentes utilitéq engendréeq par la
fonction caractéristique. Une solution sur une classe de jeux TU attribue un unique
vecteur de gain à chaque jeu de cette classe. La valeur de Shapley (voir Shapley
(1953)) est probablement la solution la plus connue pour les jeux TU. Elle est cal-
culée comme suit. Supposons que la grande coalition N , dans laquelle tous les joueurs
coopèrent, soit formée étape par étape selon un certain ordre linéaire sur l’ensemble
des joueurs. À chaque étape, un joueur rejoint la coalition courante et obtient sa
contribution marginale (correspondant à la variation de gain engendrée lorsque ce
joueur rejoint la coalition). La valeur de Shapley attribue à chaque joueur sa contri-
bution marginale espérée en supposant que chaque ordre linéaire sur l’ensemble des
joueurs se survienne avec la même probabilité. Nous avons maintenant les éléments
nécessaire pour présenter brièvement la méthode d’Aumann-Shapley et la méthode
de Shapley-Shubik.

La méthode de Shapley-Shubik : étant donné une coalition E ⊆ N de consomma-
teurs, calculons le coût associé aux demandes effectives des consommateurs dans la
coalition. Ce coût est représenté par v(E) = C(qE, 0N\E), où (qE, 0N\E) est le profil
dans lequel les consommateurs dans E demandent leur demande effective et les con-
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sommateurs en dehors de E ont une demande nulle. La méthode de Shapley-Shubik
calcule la valeur de Shapley du jeu TU (N, v). Autrement dit, le coût imputé à
un consommateur est déterminé par sa contribution marginale espérée dans ce jeu.
Remarquez que la méthode de Shapley-Shubik ne tient pas compte de l’ensemble de
demandes {0, 1, . . . , qi} dont est doté chaque consommateur i ∈ N . Cette méthode
suppose que chaque consommateur atteint sa demande effective sans passer par des
niveaux de demande intermédiaires.

La méthode d’Aumann-Shapley : étant donné un consommateur i ∈ N , chaque unité
demandée par i peut être vue comme une unité à part. Il existe donc un ensemble
N q = ∪i∈NNi d’unités, où |Ni| = qi. Chaque Ni peut être vu comme un ensem-
ble contenant qi unités identiques de gaz associées au consomateur i. On supposera
qu’un consommateur i peut donc effectuer une demande de di ≤ qi unités de gaz.
Soit E ⊆ N q, on note d(E) = (|E ∩Ni|)i∈N les unités de gaz demandées par chaque
consommateurs dans E et on note vq(E) = C(d(E)) le coût associé à ces demandes.
La valeur de Shapley du jeu (N q, v) attribue un certain paiement à chaque élément
de N q. Pour chaque i ∈ N , la somme de tous les paiements des éléments de Ni

constitue son allocation par la méthode d’Aumann-Shapley. Observons que, con-
trairement à la méthode de Shapley-Shubik, la méthode d’Aumann-Shapley prend
en compte l’ensemble discret des demandes {0, 1, . . . , qi} de chaque consommateur
i ∈ N . Cette méthode suppose donc que chaque consommateur atteint progressive-
ment sa demande effective.

Puisque nous sommes dans le cadre de la distribution de gaz, deux critiques peu-
vent être formulées à l’égard de ces méthodes. Premièrement, les principes attendus
par GRDF ne sont pas satisfais par ces méthodes. Par définition de ces méthodes,
l’indépendance aux demandes supérieures n’est clairement pas satisfaite. Si un con-
sommateur augmente sa demande, alors d’autres consommateurs avec des demandes
plus faibles peuvent potentiellement être affectés. De plus, le principe de péréquation
n’est également pas satisfait par ces deux méthodes. En effet, ces méthodes étant
basées sur les contributions marginales des consommateurs dans certain jeux TU,
il est peu probable que deux consommateurs ayant la même demande effective se
voient facturer le même montant.

Deuxièmement, aucune de ces méthodes ne prend en compte le réseau de distri-
bution comme une information indépendante du problème. Cela est dû au fait que
l’information fournie par le réseau est souvent contenue dans la fonction de coûts.
En clair, le problème de partage des coûts de GRDF devrait être écrit (q, CNet),
la fonction CNet mesurant les coûts en se basant sur les informations fournies par
le réseau de distribution. Cette fonction peut être vue comme la combinaison de
deux informations : le réseau de distribution Net et les caractéristiques économiques
de GRDF C (par exemple, les coûts d’accès au réseau de transport et aux produc-
teurs de biogaz, l’activité administrative, la gestion des contrats, etc.) La méthode
d’Aumann-Shapley ou de la méthode de Shapley-Shubik ont leurs avantages tech-
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niques mais aussi leurs inconvénients puisque CNet comprime une grande quantité
d’information. De plus, une telle compression d’information à des conséquences sur la
méthode axiomatique, qui est centrale dans cette thèse. La méthode axiomatique est
utilisée pour déterminer une solution à partir de certains axiomes qui expriment des
principes raisonnables ou désirables qu’une solution pourrait ou devrait satisfaire.
Un axiome tire profit de l’information du problème pour formuler une propriété.
Ainsi, si le problème comprime les informations fournies par le réseau de distribution
et les caractéristiques économiques de GRDF, cette compression aura un effet direct
sur la pertinence et le contenu des axiomes. Nous proposons de dissocier Net et C en
deux informations distinctes, et de considérer un nouveau problème représenté par
le triplet (q, C,Net). De cette façon, le réseau de distribution sera une information
indépendante des autres informations du problème. D’un point de vue théorique,
cette approche permet une étude axiomatique plus fine du problème de partage des
coûts de GRDF. Ce point est détaillé dans la section 1.5. La section suivante présente
la méthode axiomatique.

1.3 Méthode axiomatique

Cette section est fortement inspirée de Thomson (2001). Une étude axiomatique
d’une situation à plusieurs agents commence par la spécification d’une classe de
problèmes. Un problème est un ensemble d’alternative disponibles pour des agents
ainsi qu’un ensemble d’information sur les agents (s’ils sont joueurs, consomma-
teurs, électeurs, etc.). Des informations supplémentaires peuvent être fournies avec
le problème (préférences des agents, une structure sur l’ensemble des agents, etc.)
Présentons quelques situations pour illustrer le large éventail de problèmes possibles.
Un problème de choix social consiste en un ensemble non structuré d’alternative
réalisables, ainsi que les préférences des agents sur cet ensemble. Le problème con-
siste alors à choisir une ou plusieurs alternative en fonction des préférences des agents.
Pour les problèmes de négociation et d’allocation des coûts, l’ensemble des alternative
consiste uniquement en un ensemble de vecteurs d’utilités réalisables. Le problème
consiste alors à sélectionner un sous-ensemble de ces vecteurs. Dans les problèmes de
banqueroute, il existe une quantité donnée d’un bien parfaitement divisible, et chaque
agent réclame une certaine quantité de ce bien. Le problème est alors de partager la
quantité totale de ce bien entre les agents en supposant que cette quantité n’est pas
suffisante pour satisfaire à toutes leurs réclamations.

Étant donné une classe de problèmes D, une solution sur D est une fonction
qui associe un ensemble d’alternative à chaque problème dans D. Une solution est
représentée par f et l’ensemble des alternative est représenté par X. Par conséquent,
une solution peut être écrite sous la forme f : D → X. Les solutions peuvent
être un ensemble d’alternative dans certains modèles et peuvent être un singleton
dans d’autres. Que l’objectif soit descriptif ou prescriptif, les solutions-singleton
(aussi appelées “valeur”) sont souvent préférées, car une solution capable de faire
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des prédictions ou des recommandations spécifiques a plus de chances d’être selec-
tionnée par un décideur. Cependant, les solutions-singleton peuvent être très diffi-
ciles à caractériser et pour de nombreux modèles, les solutions ensemblistes sont donc
préférées. Dans la théorie de la négociation et des problèmes de choix social, la plu-
part des concepts de solution sont des solutions-singleton. Dans les jeux coopératifs
et les problèmes de partage des coûts, les deux types de concepts de solution sont
populaires.

Une étude axiomatique commence par la spécification d’une classe de problèmes,
elle-même suivie par la formulation d’une liste de propriétés souhaitables ou raisonnables
(axiomes) pour les solutions aux problèmes de cette classe. L’étude se termine
par la description de l’ensemble des solutions satisfaisant à diverses combinaisons
d’axiomes. L’étude doit également proposer une analyse de l’indépendance logique
entre les axiomes, car c’est un moyen efficace d’évaluer leur puissance relative. En
outre, il est tout aussi utile de formuler et d’explorer des variantes des axiomes, car
il n’est pas rare que les idées générales qui les inspirent aient pu être obtenues par
des formulations mathématiques légèrement différentes mais tout aussi désirable.
Une étude axiomatique aboutit souvent à des théorèmes de caractérisation. Ces
théorèmes identifient une solution satisfaisant à une liste donnée d’axiomes. Une
étude axiomatique peut également produire des théorèmes d’impossibilité, indiquant
l’incompatibilité d’une certaine liste d’axiomes sur une certaine classe de problèmes.
Pour des raisons pratiques, l’étude peut commencer par les solutions. Bien que les
axiomes soient conceptuellement les premiers à devoir être considérés, il est utile
d’avoir à notre disposition plusieurs concepts de solution. En effet, cela nous permet
d’évaluer la force des axiomes en testant les conjectures concernant la compatibilité
des axiomes et l’indépendance logique entre eux. Précisement, étant donné un certain
théorème de caractérisation, on dira que les axiomes sont logiquement indépendants
si, en supprimant l’un d’entre eux, la caractérisation ne tient plus. L’indépendance
logique des axiomes est importante car elle garantit que le théorème de caractérisation
soit aussi général que possible. En pratique, pour établir l’indépendance logique d’un
axiome par rapport aux autres dans une caractérisation, il suffit d’établir une solu-
tion, différente de celle qui est caractérisée, satisfaisant à tous les axiomes sauf celui
qui nous intéresse.

1.4 Objectif de la thèse

L’objectif de cette thèse est de fournir des méthodes afin de répartir les coûts de
GRDF entre ses consommateurs. Contrairement aux méthodes d’Aumann-Shapley
et de Shapley-Shubik, nos méthodes doivent réussir à prendre en compte le réseau
de distribution comme une information indépendante du reste du problème et être
cohérentes avec les principes attendus par GRDF. A l’aide d’un partage des coûts,
GRDF souhaite mettre en place une grille tarifaire. L’idée centrale d’un tarif est de
fournir une grille spécifiant un montant à payer par les consommateurs en fonction
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de leur demande. Une méthode de partage des coûts doit donc être adaptée pour
en dériver une grille tarifaire et être capable de spécifier un montant à payer par les
consommateurs en fonction de leur demande.

Nous utilisons les jeux coopératifs pour déterminer des méthodes pertinentes. Ces
jeux ont été grandement étudiés et appliqués aux problèmes de partage des coûts et
autres situations connexes. Cependant, la plupart des concepts de solution des jeux
TU allouent un gain par joueur (par exemple, la valeur de Shapley, la valeur de
division égalitaire, voir Béal et al. (2016), ou les valeurs de Shapley égalitaires, voir
Joosten (1996)) sans aucune précision sur la façon dont ce gain varie en fonction de
la demande du joueur.2 Du point de vue de GRDF, les concepts de solution issus des
jeux TU ne sont clairement pas suffisants pour établir une grille tarifaire. Pour palier
cet inconvénient, la thèse se concentre sur une extension des jeux TU: les jeux multi-
choix. Les jeux multi-choix, introduits par Hsiao & Raghavan (1992) et van den
Nouweland (1993), sont une extension naturelle des jeux TU dans lesquels chaque
joueur peut choisir parmi plusieurs niveaux d’activité auxquels il peut coopérer au
sein d’une coalition.

Par le passé, les jeux multi-choix ont été appliqués avec succès en économie. Par
exemple, Branzei et al. (2009) étudie les jeux multi-choix qui découlent de situations
de marché avec deux factions. L’une des factions est constituée d’un groupe de
joueurs puissants ayant des choix de type oui ou non. L’autre faction est constituée
de joueurs non puissants avec plusieurs choix concernant le degré de coopération au
sein de la faction; Grabisch & Rusinowska (2010) généralise un modèle d’influence
oui-non à un cadre multi-choix. Les auteurs étudient une situation dans laquelle
certains agents font partie d’un réseau social. Chaque agent a un ensemble ordonné
d’actions possibles et est influencé par ses voisins dans le réseau lorsqu’il choisit son
action; enfin, Techer (2021) aborde le problème du coût social, introduit à l’origine
par Coase (1960), en utilisant des jeux multi-choix. L’auteur étudie des situations
dans lesquelles un pollueur interagit avec plusieurs victimes potentielles, et vise à
négocier un accord stable concernant le niveau de pollution. Le pollueur a plusieurs
niveaux auxquels il souhaite produire et polluera proportionnellement, tandis que les
victimes peuvent participer ou non aux négociations.

Soit N un ensemble de joueurs. Dans un jeu multi-choix, chaque joueur i ∈ N est
en mesure de choisir parmi plusieurs niveaux d’activité auxquels il peut coopérer. Le
niveau 0 signifie qu’il ne coopère pas et le niveau mi représente son niveau d’activité
maximal. Le profilm = (m1, . . . ,mn) rassemble tous les niveaux d’activité maximaux
des joueurs. Un profil s ≤ m est une coalition (multi-choix). Un jeu multi-choix est
un couple (m, v) où v est la fonction caractéristique qui associe à chaque coalition
s ≤ m une valeur réelle et qui vérifie v(0, . . . , 0) = 0, où (0, . . . , 0) est la coalition
vide. La sous-classe des jeux multi-choix où m = (1, . . . , 1) peut être vue comme
la classe complète des jeux TU sur N . De plus, la classe des problèmes de partage
des coûts (discrets) peut être vue comme la sous-classe des jeux multi-choix non

2Les concepts de solution-singletons des problèmes de partage des coûts discrets allouent
également un gain unique par joueur.
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décroissants. Lorsque l’on se place dans le cadre du problème de la conception
d’un tarif, les niveaux d’activité représentent les demandes des consommateurs. Un
vecteur de paiement (multi-choix) décrit dans quelle mesure le paiement de chaque
joueur varie en fonction de son niveau d’activité, ce qui permet d’établir une grille
tarifaire. Une solution-singleton (que l’on appellera “valeur” par la suite) sur une
classe de jeux multi-choix attribue un vecteur de paiement unique à chaque jeu dans
cette classe. Une solution ensembliste définie sur une classe de jeux multi-choix
attribue un ensemble (éventuellement vide) de vecteurs de paiements à chaque jeu
dans cette classe.

Dans cette thèse, nous introduisons de nouveaux concepts de solution pour les
jeux multi-choix. En particulier, nous étudions des situations dans lesquelles le jeu
est doté d’une structure qui tire partie de l’information fournie par le réseau de
distribution afin d’établir des relations entre les consommateurs. De cette façon, les
concepts de solution pourront prendre en compte l’information fournie par le réseau
de distribution. De plus, certains des concepts de solution réussiront à satisfaire aux
principes attendus par GRDF. Nous soulignons que tous les concepts de solution
proposés dans cette thèse ne parviennent pas forcément à satisfaire les principes
poursuivis par GRDF et à prendre en compte le réseau en même temps.

Le reste de cette introduction est organisé comme suit. Nous discutons de
l’interaction entre les jeux coopératifs et les structures dans la section 1.5. Les
concepts de solution des jeux multi-choix et le principe d’indépendance aux deman-
des supérieures sont abordés dans la section 1.6. La section 1.7 discute du principe
de péréquation. Enfin, la section 1.8 présente un résumé de cette thèse et détaille les
contributions des différents chapitres.

1.5 Jeux et structures

Dans un jeu TU, on suppose généralement que la coopération entre un groupe de
joueurs n’est pas entravée par un quelconque facteur exogène. Cependant, en pra-
tique, plusieurs structures exogène peuvent avoir un impact sur la formation des
coalitions, l’évaluation des coalitions ou le processus d’allocation. Des jeux TU dotés
d’une structure sur l’ensemble des joueurs ont été introduits pour modéliser des situ-
ations où la formation ou l’évaluation des coalitions peuvent dépendre de contraintes
de communication, de coalition ou hiérarchiques.

Les contraintes de communication, modélisées par un graphe non orienté (par ex-
emple, la figure 1.3), sont abordées dans Myerson (1977). Les joueurs sont représentés
par les nœuds d’un graphe non orienté dans lequel les arêtes représentent les canaux
de communication entre les joueurs. Une coalition de joueurs ne peut coopérer que
si elle peut communiquer par un chemin qui se trouve à l’intérieur de cette coalition.
Le modèle des jeux TU avec contraintes de communication peut être représenté par
un triplet (N, v, L), où (N, v) est un jeu TU et (N,L) est un graphe non orienté
représentant les contraintes de communication. Ce modèle distingue la fonction car-
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actéristique de la structure. Comme mentionné dans la Section 1.2, cette approche
permet de mener une étude axiomatique sur un problème (N, v, L) où (N, v) et (N,L)
sont deux informations distinctes. Myerson (1977) caractérise axiomatiquement un
concept de solution calculé comme la valeur de Shapley du jeu (N, vL), où vL est une
fonction caractéristique qui combine v et L. La valeur vL(E) d’une coalition E ⊆ N
dans le jeu (N, vL) est calculée comme la somme de la valeur de chaque coalition
connectée maximale (par rapport au graphe de communication) contenue dans E.
Ainsi, les contraintes de communication affectent l’évaluation des coalitions.

La façon dont v et L sont combinés en vL est entièrement déterminée par les ax-
iomes, ce qui signifie qu’un autre ensemble d’axiomes pourrait conduire à un résultat
différent. Cela illustre bien l’un des avantages théoriques de la distinction entre
la fonction caractéristique et la structure : il existe différents ensembles d’axiomes
possibles qui donnent lieu à différentes combinaisons de v et L.

Les contraintes de coalition liées à l’existence d’unions à préexistantes modélisent
des situations dans lesquelles les joueurs sont amenés à s’unir de façon prédéterminées.
Elles sont représentées par une partition de l’ensemble des joueurs (par exemple, la
figure 1.4). Ces structures sont discutées dans Aumann & Dreze (1974) et Owen
(1977). Différentes interprétations de ce modèle sont possibles. Dans Aumann &
Dreze (1974), les joueurs appartenant à différentes unions a priori ne peuvent pas
coopérer, ce qui n’est pas le cas dans Owen (1977), mais la formation d’une coalition
doit être compatible avec les unions. Ainsi, les contraintes coalitionnelles formées par
la partition de l’ensemble des joueurs en unions affectent la formation des coalitions.
Le modèle des jeux TU avec contraintes de coalition peut être représenté par un
triplet (N, v,W ), où (N, v) est un jeu TU et (N,W ) est une partition de l’ensemble
des joueurs représentant les contraintes de coalition. De même que pour les con-
traintes de communication, ce modèle distingue le jeu de la structure. Aumann &
Dreze (1974) et Owen (1977) proposent deux valeurs pour les jeux TU avec des con-
traintes de coalition et les caractérisent axiomatiquement. Aumann & Dreze (1974)
proposent un concept de solution calculé, pour chaque i ∈ N , comme la valeur de
Shapley du jeu (W (i), vW (i)), où W (i) est une union contenant le joueur i ∈ N ,
et vW (i) est la restriction de v au domaine W (i). Owen (1977) propose la valeur
d’Owen qui peut être considérée comme une procédure en deux étapes. Dans la
première étape, un jeu TU entre les unions préexistantes est utilisé pour déterminer
le gain total obtenu par chaque union a priori. Dans la seconde, un jeu TU au sein de
chaque union a priori est utilisé pour allouer à ses membres le gain total obtenu par
l’union a priori dans la première étape. La valeur d’Owen est obtenue en appliquant
la valeur de Shapley dans les deux étapes.
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Les structures de permission, modélisées par des graphes dirigés (par exemple,
Figure 1.5), furent introduites par Gilles et al. (1992). Ces structures décrivent des
situations dans lesquelles les joueurs ont besoin de la permission d’autres joueurs
avant d’être autorisés à coopérer au sein d’une coalition. Un jeu TU muni d’une
structure de permission peut être représenté par un triplet (N, v,D), où (N, v) est
un jeu TU et (N,D) est un graphe dirigé représentant la structure de permission.
van den Brink & Gilles (1996) introduit la valeur de permission pour de tels jeux.
Cette valeur est calculée comme la valeur de Shapley du jeu TU (N, vD), où vD(E)
mesure la valeur de la plus grande coalition réalisable contenue dans E ⊆ N . Dans ce
contexte, une coalition est réalisable si elle contient tous les supérieurs des membres
de la coalition. Tout comme dans les situations avec contraintes de communication, la
structure affecte l’évaluation des coalitions. Plusieurs caractérisations axiomatiques
de la valeur de permission ont été proposées par van den Brink & Gilles (1996),
van den Brink et al. (2015) et van den Brink et al. (2018) entre autres.

Enfin, les structures de priorité, modélisées par ordre partiel, furent introduites
par Béal et al. (2021a). Elles décrivent des situations dans lesquelles certains joueurs
ont la priorité sur d’autres joueurs dans le processus d’allocation. Le modèle des
jeux TU avec une structure de priorité peut être représenté par un triplet (N, v,D),
où (N, v) est un jeu TU et (N,D) est un ordre partiel représentant la structure
de priorité. Béal et al. (2021a) introduisent la valeur de priorité pour les jeux TU
muni d’une structure de priorité. Selon cette valeur, la structure affecte le processus
d’allocation, mais n’a pas d’effet sur la formation ou l’évaluation des coalitions. Deux
caractérisations axiomatiques de la valeur de priorité sont proposées par Béal et al.
(2021a). De toute évidence, le modèle des jeux TU avec une structure de priorité est
très similaire aux jeux TU avec une structure de permission. Cependant, les deux
modèles ont une interprétation et une utilisation différentes de la structure.

Dans cette thèse, nous étudions les jeux multi-choix muni d’une structure. Quelques
études ont été menées sur ce sujet. Par exemple, Béal et al. (2012) aborde le thème
des jeux multi-choix avec des contraintes de communication et caractérise axioma-
tiquement une solution étendant la solution proposée par Herings et al. (2008) pour
les jeux TU avec des contraintes de communication. Albizuri (2009) étudie les jeux
multi-choix avec des unions préexistantes. L’auteur caractérise axiomatiquement une
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solution qui étend la valeur d’Owen (voir Owen (1977)).
Dans les jeux TU, les joueurs n’ont qu’un seul niveau d’activité auquel participer

au sein d’une coalition. Par conséquent, la structure est facile à interpréter puisqu’elle
établit des relations entre les joueurs. Dans les jeux multi-choix, ces relations sont
plus difficiles à déterminer en raison de la multiplicité des niveaux d’activité. Par
exemple, considérons une structure de permission. Une relation de permission directe
entre deux joueurs est claire si les deux joueurs n’ont que deux choix : 0 ou 1, c’est-à-
dire s’ils coopèrent ou non. En effet, supposons que i ∈ N ait besoin de la permission
de k ∈ N pour coopérer. Si k joue 1, alors i est autorisé à jouer 1. Au contraire,
si k joue 0, alors i n’est pas autorisé à jouer 1. Maintenant, supposons que k ait 3
niveaux d’activité, et supposons que mi = 2. Quel niveau d’activité doit jouer k afin
de permettre au joueur i de jouer son niveau d’activité 1 ? Il n’y a pas de manière
triviale de déterminer un tel niveau. Un scénario possible serait le suivant : i ne peut
coopérer que si k coopère. Dans ce cas, i a besoin que k joue son niveau d’activité 1
(ou plus) avant de coopérer lui-même (voir figure 1.6). Un autre serait : i ne peut
pas coopérer à moins que k ne coopère à son niveau d’activité maximal. Dans ce
cas, i a besoin que k joue son niveau d’activité 3 avant de pouvoir coopérer lui-même
(voir figure 1.7). Ceci rend l’étude des jeux multi-choix muni d’une structure plus
complexe que les jeux TU muni d’une structure.

k, 1 k, 2 k, 3

i, 1 i, 2

k Autorise i

Figure 1.6

k, 1 k, 2 k, 3

i, 1 i, 2

k Autorise i

Figure 1.7

Les niveaux d’activité d’un joueur sont supposés linéairement ordonnés : un
joueur k ne peut pas jouer 2 s’il ne joue pas 1 au préalable. En un sens, les niveaux
d’activité des joueurs font déjà partie d’une structure. Cette idée est illustrée en
dessinant des flèches entre les niveaux d’activité de chaque joueur dans les figures
1.6 et 1.7. Un premier objectif de cette thèse est de fournir des moyens pertinents
de combiner la structure sur l’ensemble des niveaux d’activité et la structure sur
l’ensemble des joueurs en une structure sur l’ensemble des niveaux d’activité (tout
comme nous l’avons fait dans la figure 1.6 et 1.7). Nous abordons cette question en
considérant les structures de permission et les structures de priorité. Nous étudions
comment ces structures peuvent être combinées avec la structure sur l’ensemble des
niveaux d’activité, puis nous fournissons des concepts de solution basés sur ces com-
binaisons. Cette discussion est particulièrement intéressante pour GRDF car elle
fournit différentes interprétations sur la façon dont les caractéristiques géographiques
du réseau affectent ses caractéristiques économiques.
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1.6 Indépendance aux demandes supérieures

Des propriétés similaires au principe d’indépendance aux demandes supérieures exis-
tent déjà dans la littérature économique. Par exemple, la méthode serial cost sharing
pour les problèmes de partage des coûts discrets, introduite par Moulin & Shenker
(1992), satisfait à la propriété. Plus récemment, Albizuri et al. (2020) ont étudié
des solutions pour des problèmes de négociation satisfaisant à une propriété simi-
laire d’indépendance aux demandes supérieures. Dans cette section, nous discutons
du principe d’indépendance aux demandes supérieures dans le cadre des jeux multi-
choix.

Une solution pour jeux multi-choix suit le principe d’indépendance aux demandes
supérieures si le montant alloué à un niveau d’activité d’un joueur est indépendant
aux niveaux d’activité supérieurs au sien. Malheureusement, la plupart des con-
cepts de solution pour jeux multi-choix ne vérifient pas ce principe. Ces solutions
sont généralement des extensions de la valeur de Shapley au cadre multi-choix. La
première extension est introduite par Hsiao & Raghavan (1992). Les auteurs étudient
les jeux multi-choix dans lesquels les joueurs partagent tous le même niveau d’activité
maximal. Les niveaux d’activité sont pondérés, ce qui permet aux auteurs d’étendre
l’idée des valeurs de Shapley pondérées (voir Kalai & Samet (1987)) des jeux TU aux
jeux multi-choix. Cette valeur ne vérifie pas le principe d’indépendance aux deman-
des supérieures. van den Nouweland et al. (1995) se focalisent sur la classe complète
des jeux multi-choix et proposent une seconde extension de la valeur de Shapley,
que l’on écrira vdN . Supposons que la grande coalition m se forme étape par étape,
selon un certain ordre, en partant de la coalition vide (0, . . . , 0), ce qui signifie qu’à
chaque étape, un joueur augmente son niveau d’activité d’une unité. Ainsi, à chaque
étape, la contribution marginale d’un joueur à la coalition correspond à la variation
de valeur que subit la coalition lorsque ce joueur augmente son niveau d’activité
d’une unité. La valeur vdN alloue à chaque joueur l’espérance de ses contributions
marginales, en supposant que la grande coalition puisse se former selon tout ordre
admissible, où chaque ordre admissible à la même probabilité de survenir. Calvo
& Santos (2000) montrent que la valeur vdN cöıncide avec la méthode d’Aumann-
Shapley discrète sur la classe des problèmes de partage des coûts discrets. Ainsi,
la valeur vdN ne verifie pas le principe d’indépendance aux demandes supérieures.
D’autres extensions peuvent être trouvées dans Derks & Peters (1993), Peters &
Zank (2005) et Grabisch & Lange (2007). Aucune de ces solutions ne satisfait au
principe d’indépendance aux demandes supérieures (voir Chapitre 2). Ce principe
est également lié à un concept de stabilité : le Coeur d’un jeu multi-choix introduit
par Grabisch & Xie (2007) (le Coeur, en abrégé). Le Coeur est un ensemble de solu-
tions pour jeux multi-choix contenant tous les vecteurs de gains stables. Un vecteur
de gain est stable si aucune coalition ne peut obtenir, par elle-même, une meilleure
utilité que celle prescrite par le vecteur de gain. Pour qu’un vecteur de gain soit dans
le Coeur, il doit nécessairement satisfaire la propriété de multi-efficience. Cette pro-
priété stipule que, pour tout niveau d’activité, si tous les joueurs sont d’accord pour
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jouer ce niveau (ou leur niveau d’activité maximal s’ils sont incapables d’atteindre ce
niveau), alors ils devraient obtenir la même valeur que celle prescrite par le vecteur de
gain dans le Coeur. Ce type d’accord est appelé une coalition synchronisée. Si une
valeur satisfait au principe d’indépendance aux demandes supérieures et recouvre
également la valeur de la grande coalition, alors elle est multi-efficiente. Cela rend
le principe d’indépendance aux demandes supérieures particulièrement désirable.

1.7 Péréquation

Le principe de péréquation préconise une égalité de traitement entre deux consomma-
teurs ayant la même demande effective. En termes de jeux multi-choix, cela signifie
que deux joueurs ayant le même niveau d’activité maximal doivent recevoir le même
gain. De même que pour le principe d’indépendance aux demandes supérieures, au-
cun concept de solution des jeux multi-choix ne satisfait au principe de péréquation
puisque la plupart d’entre eux sont calculés en fonction des contributions marginales
des joueurs.

Au sein de la classe des jeux TU, la division égalitaire, qui divise également
le gain de la grande coalition entre les joueurs, satisfait clairement au principe
de péréquation. Étonnamment, il existe très peu d’études dans la littérature qui
étendent la division égalitaire des jeux TU aux jeux multi-choix. A notre connais-
sance, la seule solution qui étende la division égalitaire est la solution égalitaire multi-
choix contrainte introduite par Branzei et al. (2014). Nous introduisons une extension
de cette valeur satisfaisant au principe de péréquation et au principe d’indépendance
aux demandes supérieures dans le chapitre 4.

1.8 Aperçu de la thèse

1.8.1 Chapitre 2: Préliminaires

Le second chapitre de cette thèse contient des préliminaires sur les jeux TU, sur les
jeux TU muni d’une structure et sur les problèmes de partage de coûts discrets. Tout
d’abord, nous introduisons des définitions de base sur les jeux TU, ainsi que sur les
concepts classiques de solution ainsi que sur leur caractérisation axiomatique. En-
suite, nous présentons deux modèles de jeux TU muni d’une structure : les jeux muni
d’une structure de permission (voir Gilles et al. (1992)) et les jeux muni d’une struc-
ture de priorité (voir Béal et al. (2021a)). Ensuite, nous introduisons des définitions
sur les jeux multi-choix et discutons des extensions de certain concepts de solution
des jeux TU aux jeux multi-choix. Enfin, nous présentons les problèmes de partage
de coûts discrets (voir Moulin (1995)). Nous présentons plusieurs concepts de solu-
tion pour les problèmes de partage des coûts discrets, tels que la serial cost sharing
method (voir Moulin & Shenker (1992)) et la pseudo average method (voir Moulin
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(1995)). Nous faisons aussi le parallèle entre les problèmes de partage de coûts et les
jeux multi-choix.

1.8.2 Chapitre 3: Valeurs pour jeux multi-choix muni d’une
structure de permission

Les structures de permission modélisent des situations dans lesquelles certains joueurs
ont besoin de la permission d’autres joueur pour coopérer. Il s’avère que l’on peut
établir des relations de permission entre les consommateurs de gaz. En effet, his-
toriquement, le réseau de distribution a été construit de manière progressive en fonc-
tion des demandes croissantes des consommateurs. Ainsi, certains consommateurs
n’auraient jamais été en mesure de demander du gaz si d’autres consommateurs
n’avaient pas été connectés au préalable : on peut considérer qu’il s’agit d’une rela-
tion de permission.

Ce chapitre traite des jeux multi-choix muni d’une structure de permission (ar-
borescente). Nous étudions comment une structure de permission sur l’ensemble des
joueurs peut être combinée avec différents niveaux de participation. Une structure
de permission est représentée par un graphe dirigé D. van den Brink & Gilles (1996)
combinent la fonction caractéristique d’un jeu TU (N, v) avec une structure de per-
mission en une nouvelle fonction vD (voir la section 1.5). Ce chapitre propose une
étude similaire réalisée dans le cadre des jeux multi-choix. Cependant, comme men-
tionné dans la section 1.5, il n’y a pas de manière triviale d’aggréger une structure de
permission avec plusieurs niveaux d’activité. Pour ce faire, nous procédons en deux
étapes.

Dans un premier temps, nous introduisons les structures de pal-permission.3 Ces
structures dépeignent des relations de permission entre les niveaux d’activité des
joueurs. Par exemple, les graphes dirigés représentés sur la figure 1.6 et la figure
1.7 peuvent être considérés comme des structures de pal-permission. Cette approche
généralise le modèle introduit par Gilles et al. (1992). Nous introduisons la valeur
de pal-permission pour les jeux multi-choix muni d’une structure de pal-permission.
Cette valeur est calculée comme la valeur DP (voir Derks & Peters (1993)) du jeu
multi-choix (m, vQ), où vQ est une combinaison d’un jeu multi-choix (m, v) et d’une
structure de pal-permission Q. Cette combinaison étend la combinaison vD proposée
par van den Brink & Gilles (1996).

Ensuite, nous étudions les jeux multi-choix muni d’une structure de permission,
cette fois ci, définie sur l’ensemble des joueurs. Nous exploitons le fait que l’ensemble
des niveaux d’activité de chaque joueur soit totalement ordonné. De nouveaux ax-
iomes sont proposés et nous permettent de caractériser trois nouvelles valeurs pour
les jeux multi-choix muni d’une structure de permission. Chacune cöıncide avec
une valeur de pal-permission pour jeux multi-choix muni d’une structure de pal-
permission telle que décrite dans la première étape. Cette approche est intéressante

3abréviation de player-activity level permission
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pour plusieurs raisons. D’abord, elle distingue a priori une structure de permis-
sion entre les joueurs (les relations inter-joueurs) de l’ordre linéaire sur les niveaux
d’activité de chaque joueur (les relations intra-joueurs). Puis, l’étude axiomatique
met en lumière la manière dont les relations inter-joueurs et intra-joueurs se com-
binent pour former une structure de pal-permission. L’étude axiomatique fait ap-
parâıtre des structures de permission très différentes, qui ont des interprétations
naturelles mais néanmoins différentes.

Ce chapitre met en lumière les difficultés qui surviennent lorsqu’on essaie de
combiner un jeu multi-choix avec une structure sur l’ensemble des joueurs. Notons
que l’on ne tient pas compte de l’indépendance aux demandes supérieures ou du
principe de péréquation.

1.8.3 Chapitre 4: Marginalisme, égalitarisme et efficacité
dans les jeux multi-choix

Ce chapitre se concentre sur les jeux multi-choix sans structure. Il aborde le com-
promis entre le marginalisme et l’égalitarisme, qui est l’une des principales ques-
tions dans les problèmes d’allocation économique. Le marginalisme soutient les al-
locations basées sur la contribution marginale d’un joueur aux coalitions, tandis
que l’égalitarisme est en faveur d’une allocation égale de l’utilité. Le principe de
péréquation peut être vu comme une forme d’égalitarisme.

Dans le contexte des jeux TU, ce compromis peut être vu comme un arbitrage
entre la valeur de Shapley et la division égalitaire puisque ces deux valeurs sont
respectivement considérées comme l’incarnation du marginalisme et de l’égalitarisme.
Cet arbitrage peut peut se faire par des combinaisons convexes entre la valeur de
Shapley et la division égalitaire (voir Joosten (1996), van den Brink et al. (2013),
Casajus & Huettner (2013), Abe & Nakada (2019) et Béal et al. (2021b)). Nous
discutons de ce compromis dans le cadre des jeux multi-choix. L’indépendance aux
demandes supérieures et la péréquation sont pris en compte dans ce chapitre.

Tout d’abord, nous proposons une extension de la valeur de Shapley, appelée
valeur de Shapley multi-choix. Elle est calculée comme suit. Supposons que la
grande coalition se forme étape par étape en partant de la coalition vide. À chaque
étape, un joueur augmente son niveau d’activité d’une unité, disons de j à j + 1,
mais ce, à condition que tous les autres joueurs (qui sont capables de jouer j) aient
déjà atteint leur niveau j. Ce processus de formation de coalition est un ordre re-
streint. La valeur de Shapley multi-choix attribue à chaque joueur l’espérance de ses
contributions marginales à chacun de ses niveau d’activité en supposant que chaque
ordre restreint survienne à probabilité égale. Cette valeur se situe dans le Coeur de
tout jeu multi-choix super-modulaire. Un jeu multi-choix super-modulaire peut être
vu comme un jeu dans lequel les incitations à rejoindre une coalition augmentent au
fur et à mesure que la coalition grandit. En outre, le valeur de Shapley multi-choix
satisfait au principe d’indépendance aux demandes supérieures.

Ensuite, nous proposons une extension de la division égalitaire, appelée valeur
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de division égalitaire multi-choix. Cette valeur divise de manière égale le surplus de
gain entre deux coalitions synchronisées consécutives parmi les joueurs capables de
jouer les niveaux d’activité requis. Cette valeur n’est pas une extension triviale de
la valeur de division égalitaire: c’est une solution égalitaire qui satisfait au principe
d’indépendance aux demandes supérieures et au principe de péréquation. Cette
valeur est clairement souhaitable puisqu’elle satisfait à tous les principes poursuivis
par GRDF.

A notre connaissance, aucun travail antérieur n’a abordé le compromis entre
marginalisme et égalitarisme dans le contexte des jeux multi-choix. Dans ce chapitre,
nous étudions ce compromis à l’aide de la valeur de Shapley multi-choix et de la valeur
de division égalitaire multi-choix. A cette fin, nous proposons les valeurs de Shap-
ley égalitaires multi-choix. Cette famille de valeurs est composée de combinaisons
convexes de la valeur de Shapley multi-choix et de la division égalitaire multi-choix.
Nous fournissons plusieurs caractérisations axiomatiques de ces nouveaux concepts
de solution en utilisant des axiomes classiques ainsi que de nouveaux axiomes pour
les jeux multi-choix.

1.8.4 Chapitre 5: Valeurs pour jeux multi-choix muni d’une
structure de priorité

Une structure de priorité capture les asymétries entre joueurs, celles-ci pouvant
refléter des droits, des besoins ou des mérites, etc. Des relations de priorité ap-
paraissent naturellement entre les consommateurs de gaz. Par exemple, il sem-
ble raisonnable de donner la priorité à la fourniture d’un hôpital plutôt qu’à celle
d’un parc d’attractions. En hiver, il semble raisonnable de donner la priorité à
l’approvisionnement des ménages avant celui des équipements publics.

Ce chapitre traite des jeux multi-choix muni d’une structure de priorité. Nous
introduisons une valeur pour cette classe de jeux : la valeur de priorité multi-choix.
Elle étend la valeur de priorité pour les jeux TU avec une structure de priorité
introduite par Béal et al. (2021a). Notre valeur peut être vue comme une procédure
lexicographique définie comme suit. Pour chaque coalition (multi-choix), choisissons
les joueurs ayant les niveaux d’activité les plus élevés dans la coalition. Parmi ces
joueurs, sélectionnons ceux qui n’ont pas de supérieurs selon la structure de priorité.
Le surplus généré par la coalition, c’est-à-dire son dividende d’Harsanyi, est divisé
de manière égale entre les joueurs sélectionnés.

Puisque la valeur de priorité multi-choix discrimine d’abord les joueurs selon leur
niveau d’activité, elle satisfait au principe d’indépendance aux demandes supérieures.
Cette valeur est la première à combiner un principe poursuivi par GRDF avec une
information fournie par le réseau de distribution de gaz. Deux caractérisations ax-
iomatiques de cette valeur sont proposées. L’une est une caractérisation classique qui
utilise un axiome d’additivité, la seconde est basée sur un axiome de contributions
équilibrées (voir Myerson (1980)).
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1.8.5 Chapitre 6: Partager les coûts d’un réseau de distri-
bution de gaz

Un problème de partage de coûts dans le cadre de la distribution de gaz peut être
représenté par un triplet (q, CNet, Net), où q est le profil des demandes effectives,
Net est le réseau de distribution, et CNet est une fonction de coût intégrant des
informations de Net. Rappelons que CNet peut être vue comme une combinaison
d’une fonction de coût C et de Net. Dans le Chapitre 1.2, il est préconisé d’étudier
le problème (q, C,Net), dans lequel C est indépendant de Net, plutôt que (q, CNet).
Ici, nous nous focaliserons sur le triplet (q, CNet, Net) plutôt que sur (q, C,Net),
car la fonction de coût est censée mesurer le coût des canalisations du réseau. Par
conséquent, la fonction de coût doit inévitablement prendre en compte Net. Cepen-
dant, nous nous différencions du cas où l’on ne considère que (q, CNet) et gardons
Net comme une donnée supplémentaire afin de ne négliger aucune information du
réseau.

Nous proposons trois règles distinctes de partage des coûts qui dépendent du
réseau et des demandes des consommateurs. À cette fin, un nouveau principe est
introduit. Pour approvisionner un consommateur en gaz, toutes les canalisations
reliant ce consommateur à la source doivent être mobilisées. En d’autres termes, ce
consommateur dépend d’un certain nombre de canalisations. Il semble raisonnable
de facturer à ce consommateur les coûts générés par ces canalisations. D’une manière
plus générale, les consommateurs ne devraient payer que pour la portion du réseau
qu’ils utilisent. Cette idée se nomme : le principe de raccordement.

La première règle est appelée règle de raccordement, et elle satisfait au principe
d’indépendance aux demandes supérieures ainsi qu’au principe de raccordement.
La deuxième règle s’appelle la règle de péréquation, et elle satisfait au principe
d’indépendance aux demandes supérieures ainsi qu’au principe de péréquation. De
la même manière que le marginalisme est incompatible avec l’égalitarisme, le principe
de raccordement est incompatible avec le principe de péréquation. Pour faire un com-
promis entre ces deux principes, nous introduisons les règles mixtes qui constituent
un arbitrage entre la règle de raccordement et la règle de péréquation. Pour chaque
règle, une caractérisation axiomatique est fournie.

La règle de raccordement cöıncide avec la valeur de Shapley multi-choix (intro-
duite au Chapitre 4) d’un jeu multi-choix spécifique dérivé du réseau et des demandes
des consommateurs. De plus, la règle de raccordement est dans le Coeur de ce jeu
multi-choix. De même, la règle de péréquation cöıncide avec la division égalitaire
multi-choix (introduite au chapitre 4) et les règles Mixtes cöıncident avec les valeurs
de Shapley égalitaires multi-choix (introduites au chapitre 4).

1.8.6 Chapitre 7: Remarques

Il existe deux principes désirables pour GRDF : le principe de péréquation et le
principe d’indépendance aux demandes supérieures. L’information fournie par le
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réseau de distribution est également importante. Tout cela est étudié de manière
progressive au long de la thèse. Le chapitre 3 ne prend en compte que les informations
fournies par le réseau de distribution. Le chapitre 4 ne prend en compte que les deux
principes désirés par GRDF. Le chapitre 5 ne prend en compte qu’un seul de ces
principes et le couple avec les informations fournies par le réseau de distribution.
Enfin, le chapitre 6 prend en compte les deux principes ainsi que les informations
fournies par le réseau de distribution.

Chapitre 2: Préliminaires

Chapitre 3: Valeurs pour jeux multi-
choix muni d’une structure de permission

Chapitre 4: Marginalisme, égalitarisme
et efficacité dans les jeux multi-choix

Chapitre 5: Valeurs pour jeux multi-
choix muni d’une structure de priorité

Chapitre 6: Partager les coûts
d’un réseau de distribution de gaz

Chapitre 7: Remarques

Figure 1.8

←− réseau

←− péréquation
+ indépendance

←− indépendance
+ réseau

←− péréquation
+ indépendance
+ réseau

Des remarques supplémentaires concernant les travaux de cette thèse sont détaillées
au Chapitre 7. Ces remarques mettent en évidence les liens entre les différents
chapitres.

- Chapitres 3, 4 et 6 : nous proposons de nouveaux concepts de solution pour
les jeux multi-choix muni d’une structure de permission ainsi que pour les
jeux multi-choix muni d’une structure de priorité. Ces nouveaux concepts de
solution sont définis en utilisant des éléments du chapitre 3 et du chapitre 4.
De plus, sous certaines conditions, l’un de ces concepts de solution cöıncide
avec la règle de connexion du chapitre 6.

- Chapitres 5 et 6 : nous discutons de ce qui se passe si l’on applique la valeur de
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priorité multi-choix à un jeu multi-choix dérivé d’un problème de distribution
de gaz.

- Chapitres 3, 4 et 5 : nous introduisons les structures de pal-priorité pour les
jeux multi-choix et introduisons une valeur sur cette classe de jeux. Nous
montrons que cette valeur cöıncide, sous certaines conditions, avec la valeur de
priorité multi-choix, du chapitre 5, ou avec la valeur de Shapley multi-choix,
du chapitre 4.
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Chapter 1: Introduction

1.1 Gas distribution in France

Natural gas is a fossil energy, also called primary energy, because it does not come
from the transformation of another energy (unlike electricity). Natural gas is used
for domestic purposes, but it is also useful in other areas such as industry, agronomy
and transportation. Its consumption has been steadily growing in the past few
years, mostly because of its environmental qualities: it emits almost no fine particles
and is the hydrocarbon that releases the least amount of greenhouse gases into the
atmosphere once consumed. Before being delivered to the consumers, natural gas
must be extracted from the ground, processed and finally transported to the place
of consumption.

In recent years, the production of biogas has become a serious and more ecological
alternative to natural gas. Biogas is produced by the fermentation of organic matter
in the absence of oxygen. Its production allows to recycle organic wastes while
preventing the depletion of the planet’s natural resources. Biogas production sites
are located relatively close to the places of consumption and it therefore generally
requires less effort to be delivered to the consumers.

This thesis is motivated by gas distribution,1 which is the final step of the gas
delivering process from the extraction sites (or biogas production sites) to the con-
sumers. We briefly explain the various steps involved in gas delivering. Gas produc-
ers are in charge of extracting gas, which is then transported to border entry points
through international pipelines or by LNG tankers. In the case of LNG tankers, the
gas must be regasificated from its liquid state to its gas state before any use. The
transmission network carry the gas at high pressure through large-diameter steel
pipes, from border entry points or LNG regasification sites to the entrance of cities.
Contrary to natural gas extraction sites, bio gas production sites are directly con-
nected to the entrance of the cities and towns. Ultimately, the distribution network
carry the gas from the entrance of the cities to the final consumer, through smaller
diameter pipelines. All the steps of gas delivering are summarized in Figure 1.1.

1A particular attention is given to gas distribution in France.
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Figure 1.1

A gas distribution network connects consumers to a source in gas through pipelines.
The source can either be a transmission network or a biogas production site. A gas
distribution network can be illustrated by a rooted tree graph in which the nodes
represent the consumers and the arcs represent the pipelines. Note that a gas distri-
bution network can be connected to multiple sources. In this case, a gas distribution
network cannot be represented by a rooted tree graph with a unique source. In this
thesis, we consider the case where a gas distribution network is connected to only one
source (see Figure 1.2 for an example of three gas distribution networks represented
by rooted tree graphs).

In France, the energy distribution market was opened to competition on July 1,
2007. It allowed the creation of a single market on an European scale and the possi-
bility for a consumer to freely choose its gas distribution network operator among the
fifty or so that currently exist in France. Gas distribution in France is a public service
mission. It is carried out under a triplet authority: the State, the local authorities
and the Energy Regulation Commission (CRE-French acronym). The State sets the
general framework for the energy market by guaranteeing compliance with both the
rules of competition and public service missions. Local authorities supervise gas
distribution on a smaller scale and ensure its safe running. The CRE ensures that
the French energy market runs smoothly and that all gas network operators have
the same access conditions to the distribution network. The most prominent gas
distribution operator in France is (by far) GRDF (Gaz Réseau Distribution France).
This operator manages an over 200, 000 km long gas distribution network with over
10, 000 employees to supply more than 11 millions of customers.
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1.2 The gas distribution problem

In order to carry out its task properly, GRDF is confronted with various costs, some
of which are not directly assignable to a given consumer. For instance, there are some
costs related to the access to the transmission network and some costs related to the
access to biogas production sites. In addition, the maintenance of the network, its
monitoring and possible extensions generate additional costs. These costs are called
operation costs and are ultimately billed to the consumers. Each consumer signs a
distribution contract with GRDF (or another distribution network operator), which
specifies two major pieces of information. First, it specifies the category to which
the consumer belongs. GRDF classifies the consumers according to a well-established
categorization system. The category of a consumer is highly related to its gas usage
over the course of a year. In particular, the effective demand of a consumer is
the most meaningful information for GRDF, and it determines the category of a
consumer. The effective demand of a consumer corresponds to the highest volume
in gas a consumer expects to demand over a short period of time. Typically, this
corresponds to the amount a household expects to consume during the coldest days
of winter. For a transportation company, this corresponds to the period of the year
when the company’s fleet is the most solicited. For an industry, this corresponds to
the period of the year when the production activity is at its greatest level. Without
loss of generality, we assume that the set of effective demands coincides with the
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categorization system established by GRDF. The distribution contract between a
consumer and GRDF specifies the effective demand of the consumer. Second, the
contract specifies the amount each consumer has to pay depending on its effective
demand. This amount is determined by a distribution rate, which is called “Third-
party access to the distribution network” (ATRD - French acronym). The ATRD
establishes a grid that specifies the amount the consumers have to pay depending
on their demand. GRDF seeks to recover all the operation costs via the ATRD. To
that end, GRDF must determine a method to share the operation costs among the
consumers. The competitiveness of GRDF significantly depends on how these costs
are divided. In particular, a cost sharing method is relevant if it meets the principles
retained and the objective pursued by the network operator.

There are two major principles retained by GRDF regarding the cost sharing
methods: the Uniformity principle and the Independence of higher demands princi-
ple.2 First, the Uniformity principle simply states that two consumers with the same
demands should be charged the same amount regardless of their geographical local-
ization. For instance, there should be no difference in terms of rate applied in rural
areas compared to urban areas, although the underlying costs are different. This
principle aims to reduce inequality of treatment between different consumers. This
principle is highly prevalent in France, not only in the field of gas delivering, but also
in electricity delivering, water delivering and other public services (see Fleurbaey &
Trannoy (1998)). This principle is even part of French law: “Constitution-article
72-2, révision du 28 mars 2003 [. . .] the law ensures uniformity mechanisms to pro-
mote equality among territories” (author’s translation). Second, the Independence
of higher demands principle indicates that a consumer should not have to pay for
demands higher than its own. This principle allows to avoid situations where the
presence of a consumer with a high demand implies additional costs to consumers
with lower demands. For example, it seems unjustified to increase the bill of a
household whenever a factory with a large gas consumption moves in next door.

Most, if not all, cost sharing methods used by GRDF are solution concepts taken
from the standard model of cost sharing problems. In the following, we briefly present
the (discrete) Aumann-Shapley method and the (discrete) Shapley-Shubik method,
which are two cost sharing methods commonly used by GRDF. To that end, we
represent the problem of GRDF as a discrete cost sharing problem (see e.g. Moulin
(2003) and Hougaard (2018)).

Fix a discrete finite set N of n gas consumers. Consider that each consumer
i ∈ N has an effective demand qi declared to the operator. The network operator
has no information regarding the other demands that a consumer makes throughout
a year, aside from its effective demand. Therefore, each consumer i ∈ N is endowed
with a discrete set of potential demands {0, 1, . . . , qi} that represents all the potential
demands i can make throughout a year. The profile of all effective demands is given
by q = (q1, . . . , qn). GRDF’s cost sharing problem can be viewed as a couple (q, C),

2The Uniformity principle translates into “péréquation” in French.
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where the map C measures the cost of operating the distribution network designed
to meet any demand profile in which each consumer i ∈ N demands at most its
effective demand qi. Formally, the map C measures the cost C(s) of operating a
distribution network designed to meet any profile of demand s ≤ q. The map C
verifies C(0, . . . , 0) = 0 and is a non-decreasing map, meaning that C(t) ≤ C(s)
for each t ≤ s ≤ q. The cost of operating the gas distribution network is given by
C(q). For instance, consider that the set of consumers is given by N = {a, b, c, d}.
The profile of effective demands is given by q = (2, 1, 1, 1), meaning that a has an
effective demand of 2 whereas b, c and d have an effective demand of 1. A map C
measures the cost of operating a distribution network designed to meet any demand
profile s smaller than q. For instance, C measures the cost of (1, 1, 0, 0), the profile
in which a demands 1, b demands 1 and c and d demand 0. Of course, this scenario is
hypothetical and does not correspond to the effective demands. But it is necessary to
consider such scenario to use the Aumann-Shapley and the Shapley-Shubik methods.
Since C is non-decreasing, the cost C(1, 1, 0, 0) is smaller than the cost C(1, 1, 1, 0),
in fact, any demand profile smaller than q has a smaller cost than C(q). Ultimately,
GRDF seeks to recover all the operation costs via the ATRD. This means that the
rate defined by GRDF should recover C(q), which is equivalent to sharing C(q)
among the consumers.

Next, we introduce some prerequisites from cooperative games necessary to under-
stand the Aumann-Shapley and the Shapley-Shubik methods. The standard model
of cooperative games is transferable utility games (TU-games for short). TU-games
model situations in which some players (possibly consumers) can form coalitions to
generate a worth. A TU-game consists of a couple (N, v), where N is a discrete and
finite set of players and v is a characteristic function that measures the worth of
each coalition of players E ⊆ N . A payoff vector for a TU-game assigns a payoff to
each player. A single-valued solution on a class of TU-games assigns a unique payoff
vector to each game in this class. The Shapley value (see Shapley (1953)) is probably
the most prominent single-valued solution for TU-games. It is computed as follows.
Assume that the grand coalition N , in which all players cooperate, is being formed
step by step according to a certain linear order over the player set. At each step, a
player joins the coalition and obtains its marginal contribution (corresponding to the
variation in worth generated when this player joins the coalition). The Shapley value
assigns to each player its expected marginal contribution assuming that each linear
order over the player set occurs with equal probability. We now have the material
to briefly present the Aumann-Shapley method and the Shapley-Shubik method.

The Shapley-Shubik method : given a coalition E ⊆ N of consumers, the method
considers the cost associated with the effective demands of those consumers, which is
given by v(E) = C(qE, 0N\E), where (qE, 0N\E) is the profile in which consumers in E
demand their effective demand and consumers outside of E have a null demand. The
Shapley-Shubik method computes the Shapley value of the transferable utility game
(N, v). Put differently, the cost share of a consumer is determined by its expected
marginal contribution to this game. Observe that the Shapley-Shubik method has no
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consideration for the discrete set of demands {0, 1, . . . , qi} that each consumer i ∈ N
is endowed with. This method assumes that each consumer attains its effective
consumption without passing through intermediary consumption levels.

The Aumann-Shapley method : given a consumer i ∈ N , each unit demanded by
i is viewed as a different consumer. Thus, there is a set of N q = ∪i∈NNi consumers,
where |Ni| = qi. Each Ni can be viewed as a multi-set that contains qi of the
same unit. When a consumer selects a certain number di of units of gas in Ni, it
is equivalent to saying that i demands di units of gas. Given E ⊆ N q, denote by
d(E) = (|E ∩ Ni|)i∈N the units of gas demanded by consumers in E and denote
the cost associated with those demands by vq(E) = C(d(E)). The Shapley value
of (N q, v) allocates to each element in N q a certain payoff. For each i ∈ N , the
sum of all the payoffs of the elements of Ni constitutes the allocation for consumer
i provided by the Aumann-Shapley method. Observe that, contrary to the Shapley-
Shubik method, the Aumann-Shapley method considers the discrete set of demands
{0, 1, . . . , qi} that each consumer i ∈ N is endowed with through the set N q. This
method assumes that each consumer attains its effective consumption gradually.

Since we consider the framework of gas distribution, two criticisms can be voiced
regarding these two methods. First, the principles pursued by GRDF are violated by
these methods. By definition of the solutions, the Independence of higher demands
is violated. If a consumer increases its demand, then other consumers with lower
demands can be potentially impacted. Additionally, the Uniformity principle is also
violated by the two solutions. Both methods are based on the marginal contributions
of the consumers to some specific TU-games. Therefore, it is unlikely that consumers
with the same effective demand will be charged the same amount.

Second, none of these methods consider the distribution network as an indepen-
dent information within the cost sharing problem. This is because the information
provided by the network is often contained in the map that measures the opera-
tion costs of GRDF. To be precise, the cost sharing problem of GRDF should be
written (q, CNet), where the map CNet measures the operation costs by relying on
the information provided by the distribution network. This map can be viewed
as the combination of two information: the distribution network Net and the eco-
nomic characteristics of GRDF C (e.g. access costs to the transmission network and
to biogas producers, executive activity, contract management, etc.). Applying the
Aumann-Shapley method or the Shapley-Shubik method to the problem (q, CNet) has
its technical advantages but also its drawbacks since CNet compresses a large amount
of information. The main drawback lies in its consequences on the axiomatic method,
which is central in this thesis. Such a method is used to determine a solution to a
class of problems on the basis of its properties (axioms). An axiom takes advantage
of the information of the problem to formulate a property. Therefore, if the problem
compresses the information provided by the distribution network and the economic
characteristics of GRDF, this compression has a direct impact on the relevance of
the axioms. We propose to dissociate Net and C as two separate pieces of informa-
tion, and to consider a new problem denoted by the triplet (q, C,Net). This way,
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the distribution network is an information independent from the other information
of the problem. From a theoretical point of view, this approach allows for a finer
axiomatic study of GRDF’s cost sharing problem. This point is detailed in section
1.5. The next section presents the axiomatic method.

1.3 The axiomatic method

This section is highly inspired from Thomson (2001). An axiomatic study of a sit-
uation in which several agents interact begins with the specification of a class of
problems. A problem is given by a set of alternative available to the agents and
information about the agents (whether they are players, consumers, voters, etc).
Additional information can be provided with the problem (preferences of the agents,
a structure over the set of agents, etc). To illustrate the wide range of possible
problems, a social choice problem consists of an unstructured set of feasible alterna-
tive, together with the preferences of the agents over this set. The problem is then
to elect one or several alternative based on the agents’ preferences. For bargaining
problems and cost allocation problems, the set of alternative consists only of a set of
attainable utility vectors. The problem is then to select one subset of these vectors.
In bankruptcy problems, there is a given amount of a perfectly divisible good, and
each agent claims a certain amount of this good. The problem is then to share the
total amount of this good among the agents under the assumption that this amount
is not sufficient to satisfy all their claims.

Given a class of problems D, a solution on D is a map that associates a non-
empty set of alternative to each problem in D. A solution is denoted by f and the
set of alternative X. Therefore, a solution can be written as f : D → X. Solutions
can be set-valued in some models and must be single-valued in others. Whether
the goal is descriptive or prescriptive, single-valued solutions are preferred, since a
solution that makes specific predictions or recommendations is more likely to be
useful. However, single-valued solutions can be very hard to characterize, and for
many models, set-valued solutions are retained. In bargaining theory and social
choice problems, most solution concepts are single-valued solutions. In cooperative
games and cost allocation problems, both types of solutions are popular.

An axiomatic study begins with the specification of a class of problems, which
is followed by the formulation of a list of desirable properties (axioms) of solutions
for problems in this class. The study ends with the description of the set of solu-
tions satisfying various combinations of the axioms. The study should also offer an
analysis of the logical independence between the axioms, since it is an effective way
to assess their relative power. Moreover, formulating and exploring variants of the
axioms is equally useful as it is not rare that the general ideas that inspire them
could have been given in slightly different and almost as appealing mathematical
formulations. An axiomatic study often results in characterization theorems. These
theorems identify a single-valued or a set-valued solution satisfying a given list of
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axioms. An axiomatic study may also produce impossibility theorems, stating the
incompatibility of a certain list of axioms on a certain class of problems. For prac-
tical reasons, the study may begin from the solutions. Although axioms come first
conceptually, it is useful to have at our disposal several solution concepts. Indeed,
this allows us to assess the strength of the axioms, testing conjectures regarding the
compatibility of the axioms and the logical independence between them. We develop
the latter point. Given a certain characterization theorem, we say that the axioms
are logically independent if by deleting any one of them, the characterization does
not holds anymore. The logical independence of the axioms is important since it
ensures that the characterization theorem is as general as possible. In practice, to
establish the logical independence of one axioms from the others in a characterization
result, it is sufficient to exhibit one solution, different from the characterized one,
which satisfies all the axioms but the one we are interested in.

1.4 Purpose of the thesis

The ultimate objective of this thesis is to provide cost sharing methods to divide
GRDF’s operation costs among the consumers. In opposition to the Aumann-Shapley
and the Shapley-Shubik methods, these methods should consider the distribution net-
work as a separate information from the game and be consistent with the principles
pursued by GRDF. By dividing operation costs, GRDF wishes to estalish a rate
grid. The basic idea of a rate is to provide a grid that specifies an amount to pay
for each potential demand of the consumers. A cost sharing method for GRDF must
therefore be adapted to establish a rate grid.

The theory of cooperative games is used to determine relevant methods. TU-
games have been extensively studied and applied to cost sharing problems and related
situations. However, most solution concepts from TU-games allocate a payoff per
player (e.g. the Shapley value, the Equal Division value, see Béal et al. (2016), or
the Egalitarian Shapley values, see Joosten (1996)) without any details on how this
payoff varies according to its demand.3 From the point of view of GRDF, solution
concepts from TU-games are clearly not enough to establish a rate grid. To overcome
this drawback, the thesis focuses on an extension of TU-games, known as multi-choice
games.

Multi-choice games, introduced by Hsiao & Raghavan (1992) and van den Nouwe-
land (1993), are a natural extension of TU-games in which a player can choose several
activity levels at which it can cooperate within a coalition.

Multi-choice games have been successfully applied to economic theory. For in-
stance, Branzei et al. (2009) study multi-choice games that arise from market situ-
ations with two factions. One faction consists of a group of powerful players with
yes-or-no choices and clan behavior. The other faction consists of non-powerful play-

3Single-valued solution concepts from discrete cost sharing problems also allocate a unique payoff
per player.
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ers with several choices regarding the extent at which cooperation with the clan can
be achieved; Grabisch & Rusinowska (2010) generalize a yes-no influence model to
a multi-choice framework. The authors consider a situation in which some agents
are part of a social network. Each agent has an ordered set of possible actions and
is influenced by its neighbors in the network when choosing its action; and Techer
(2021) addresses the social cost problem, originally introduced by Coase (1960), us-
ing multi-choice games. The author studies situations in which one polluter interacts
with several potential victims, and aims at negotiating a stable agreement regarding
the level of pollution. The polluter has several levels at which it wishes to pollute,
whereas the victims can either participate or not in the negotiations.

Let N be the set of players. In a multi-choice game, each player i ∈ N is allowed
to choose several activity levels at which it can cooperate, from 0, meaning that it
does not cooperate, up to mi, representing its maximal activity level. The profile
m = (m1, . . . ,mn) collects all the maximal activity levels of the players. A profile
s ≤ m is called a (multi-choice) coalition. A multi-choice game is a couple (m, v)
where v is the characteristic function that associates to each coalition s ≤ m a real
worth and verifies v(0, . . . , 0) = 0, where (0, . . . , 0) is the empty coalition. The sub-
class of multi-choice games where m = (1, . . . , 1) is the full class of TU-games with
the fixed player set N . Moreover, the class of (discrete) cost sharing problems can
be viewed as the class of non-decreasing multi-choice games. Therefore, multi-choice
games are a more general framework than (discrete) cost sharing problems. For the
rest of the thesis, we assume that activity levels and demands are two equivalent
concepts. A (multi-choice) payoff vector describes how much each player’s payoff
varies according to its activity levels, which is suitable to establish a rate grid. A
single-valued solution (a value, for short) on a class of multi-choice games assigns a
unique payoff vector to each game in this class. A set-valued solution on a class of
multi-choice games assigns a (possibly empty) set of payoff vectors to each game in
this class.

In this thesis, we introduce new solution concepts for multi-choice games. In
particular, we consider situations in which the game is endowed with a structure. A
structure takes advantage of the information provided by the distribution network
and uses it to establish relationships between the consumers. This way, the solution
concepts take into account the information provided by the distribution network.
Moreover, some of the solution concepts follow the principles pursued by GRDF:
the Uniformity principle and the Independence of higher demands principle. We
point out that not all solution concepts proposed in this thesis manage to satisfy the
principles pursued by GRDF and take the network into account at the same time.

The rest of this introduction is organized as follows. The interaction between
cooperative games and structures is discussed in section 1.5. Solution concepts from
multi-choice games and the Independence of higher demands principle are discussed
in section 1.6. Additionally, the Uniformity principle is discussed in Section 1.7.
Finally, Section 1.8 presents an overview of this thesis and details the contributions
of the different chapters.
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1.5 Games and structures

In cooperative games, it is generally assumed that cooperation among a group of
players is not constrained. However, in practice, several structures may have an
impact on the formation of coalitions, the evaluation of coalitions or the allocation
process. TU-games endowed with a structure on the player set have been intro-
duced to model situations where the formation or evaluation of coalitions depends
on communicational, coalitional or hierarchical constraints.

Communication constraints, modeled by an undirected graph (e.g. Figure 1.3),
are discussed in Myerson (1977). Players are located on the nodes of an undirected
graph where the edges represent the communication channels between pairs of play-
ers. A coalition of players can cooperate only if they can communicate through a
path that lies within this coalition. The model of TU-games with communication
constraints can be represented by a triplet (N, v, L), where (N, v) is a TU-game
and (N,L) an undirected graph representing the communication constraints. Ob-
serve that this model distinguishes the characteristic function from the structure. As
mentioned in Section 1.2, this approach allows to conduct an axiomatic study on a
problem (N, v, L) where (N, v) and (N,L) are two different pieces of information.
Myerson (1977) axiomatically characterizes a solution concept computed as the Shap-
ley value of the game (N, vL), where vL is a characteristic function that combines
v and L. The worth vL(E) of a coalition E ⊆ N in the game (N, vL) is computed
as the sum of the worth of each maximal connected coalition (with respect to the
communication graph) contained in E. Thus, communication constraints affect the
evaluation of coalitions.

The way v and L are combined into vL is entirely determined by the axioms,
which means that another set of axioms could lead to a different result. This empha-
sises one of the theoretical advantages of distinguishing the characteristic function
from the structure: there are different possible sets of axioms resulting in different
combinations of v and L.

Coalitional constraints, where players meet together in coalitions and form a pri-
ori unions, are modeled by a partition of the player set (e.g. Figure 1.4). These
structures are discussed in Aumann & Dreze (1974) and Owen (1977). Different
interpretations of this model are possible. In Aumann & Dreze (1974) players be-
longing to different a priori unions can not cooperate, whereas in Owen (1977) the
formation of a coalition must only be consistent with the a priori unions. Thus, coali-
tional constraints affect the formation of coalitions. The model of TU-games with
coalitional constraints can be represented by a triplet (N, v,W ), where (N, v) is a
TU-game and (N,W ) is a partition of the player set representing the coalitional con-
straints. Similarly to communication constraints, this model distinguishes the game
from the structure. Aumann & Dreze (1974) and Owen (1977) propose two values
for TU-games with coalitional constraints and axiomatically characterize them. Au-
mann & Dreze (1974) propose a solution concept computed, for each i ∈ N , as the
Shapley value of the game (W (i), vW (i)), where W (i) is the a priori union containing
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player i ∈ N and vW (i) is the restriction of v to the domain W (i). Owen (1977)
proposes the Owen value that can be viewed as a two-step procedure. In the first,
a TU-game among a priori unions is used to determine the total payoff obtained by
each a priori union. In the second, a TU-game within each a priori union is used
to allocate the total payoff obtained by the a priori union in the first step to its
members. The Owen value is obtained by applying the Shapley value at each step.
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Permission structures, modeled by directed graphs (e.g. Figure 1.5), are intro-
duced by Gilles et al. (1992). Such structures describe situations in which players
need the permission from other players before they are allowed to cooperate within
a coalition. The model of TU-games with a permission structure can be represented
by a triplet (N, v,D), where (N, v) is a TU-game and (N,D) is a directed graph
representing the permission structure. van den Brink & Gilles (1996) introduce the
Permission value for TU-games with a permission structure. This value is computed
as the Shapley value of the TU-game (N, vD), where vD(E) measures the worth of the
largest feasible coalition contained in E ⊆ N . In this context, a coalition is feasible
if it contains all the superiors of the coalition members. As in situations with com-
munication constraints, the structure affects the evaluation of the coalitions. Several
axiomatic characterizations of the Permission value can be found in van den Brink
& Gilles (1996), van den Brink et al. (2015) and van den Brink et al. (2018).

Finally, priority structures, modeled by acyclic directed graphs (e.g. Figure 1.5),
are introduced by Béal et al. (2021a). They describe situations in which some players
have priority over other players in the allocation process. The model of TU-games
with a priority structure can be represented by a triplet (N, v,D), where (N, v) is
a TU-game and (N,D) is a directed graph representing the priority structure. Béal
et al. (2021a)introduce the Priority value for TU-games with a priority structure.
The structure affects the allocation process: the surplus generated by each coalition
is allocated among the players in the coalition that have no superior present within
the coalition. Two axiomatic characterizations of the Priority value are proposed
by Béal et al. (2021a). Obviously, the model of TU-games with a priority structure
is very similar to TU-games with a permission structure. However, the two models
have a different interpretation and use of the structure.
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In this thesis, we study multi-choice games endowed with a structure. A few
studies have been conducted on this topic. For instance, Béal et al. (2012) consider
multi-choice games with communicational constraints and axiomatically characterize
a solution that extends the Average tree solution (see Herings et al. (2008)) from
TU-games with communication constraints. Albizuri (2009) considers multi-choice
games with a coalition structure in which players come together in coalitions and
form a coalition structure. The author axiomatically characterizes a solution that
extends the Owen value (see Owen (1977)) from TU-games with a coalition structure
to multi-choice games with a coalition structure.

Observe that, in TU-games, players have only one activity level at which they
can participate in a coalition. Therefore, the structure is easy to interpret since it
establishes relationships between the participating players. In multi-choice games,
these relationships are harder to determine due to the multiplicity of the activity
levels. For instance, let us consider a permission structure. A direct permission
relationship between two players is clear if the two players only have two choices:
0 or 1, i.e., if they cooperate or not. Indeed, assume that i ∈ N needs permission
from k ∈ N to cooperate. Then, if k plays 1, then i is authorized to play 1. On the
contrary, if k plays 0, then i is not authorized to play 1. Now, assume that k has 3
activity levels, meaning that mk = 3, and assume that mi = 2. What gives player i
the permission to play its activity level 1? There is no trivial way to determine which
activity level of k is necessary to authorize i to play 1. For instance, one possible
scenario is: i cannot cooperate unless k cooperates. In this case, i needs k to play
its activity 1 (or above) before cooperating itself (see Figure 1.6). Another possible
scenario is: i cannot cooperate unless k cooperates at its maximal activity level. In
this case, i needs k to play its activity 3 before cooperating itself (see Figure 1.7).
This makes the study of multi-choice games endowed with a structure more complex
than TU-games endowed with a structure.

k, 1 k, 2 k, 3

i, 1 i, 2

k Authorizes i

Figure 1.6

k, 1 k, 2 k, 3

i, 1 i, 2

k Authorizes i

Figure 1.7

Observe that the activity levels of a player are already linearly ordered: a player
k cannot play 2 unless it plays 1 beforehand. In a sense, the activity levels of the
players are already part of a structure in which they are linearly ordered. This
idea is illustrated by drawing arrows between the activity levels of each player in
Figure 1.6 and 1.7. A first objective of this thesis is to provide relevant ways to
combine the structure over the set of activity levels and the structure over the set of
players into one structure over the set of player-activity level pairs (just as we did

44



in Figure 1.6 and 1.7). This issue is addressed by considering permission structures
and priority structures. We study how these structures can be combined with the
structure over the set of activity levels, and provide solution concepts based on these
aggregations. This discussion is particularly worthwhile for GRDF since it provides
different interpretations on how the geographical characteristics of the network affect
its economic characteristics.

1.6 Independence of higher demands

Properties similar to the Independence of higher demands principle exist in the eco-
nomic literature. The serial cost sharing method for discrete cost sharing problems,
introduced by Moulin & Shenker (1992), satisfies the property of Independence of
higher demands. Recently, Albizuri et al. (2020) study solutions for bargaining prob-
lems that satisfy the independence to higher claims property. In this section, we dis-
cuss the Independence of higher demands principle in the framework of multi-choice
games.

A solution concept for multi-choice games follows the Independence of higher
demands principle if the amount allocated to the activity level of a player is in-
dependent from higher activity levels. Unfortunately, most solution concepts from
multi-choice games do not satisfy this principle. Values for multi-choice games are
usually extensions of the Shapley value. The first extension is introduced by Hsiao
& Raghavan (1992). The authors consider multi-choice games in which players all
share the same maximal activity level. Weights on the activity levels are used, which
allow the authors to extend the idea of the weighted Shapley values (see Kalai &
Samet (1987)) from TU-games to multi-choice games. This value does not satisfy the
Independence of higher demands principle. van den Nouweland et al. (1995) consider
the full class of multi-choice games and provide a second extension of the Shapley
value, denoted by vdN . Assume that the grand coalition m forms step by step, ac-
cording to a certain order, starting from the empty coalition (0, . . . , 0), meaning that,
at each step, a player increases its activity level by one unit. Thus, at each step, a
player’s marginal contribution to the coalition corresponds to the variation in worth
the coalition undergoes when this player increases its activity level by one unit. The
vdN value allocates to each player the sum of its expected marginal contributions,
assuming that the grand coalition can form according to any admissible order, where
each admissible order occurs with the same probability. Calvo & Santos (2000) show
that the vdN value coincides with the discrete Aumann-Shapley method on the class
of discrete cost sharing problems. This shows that the vdN value does not satisfy
the Independence of higher demands principle. Other extensions can be found in
Derks & Peters (1993), Peters & Zank (2005) and Grabisch & Lange (2007). None
of these solutions satisfy the Independence of higher demands (see Chapter 2). The
Independence of higher demands principle is also related to a concept of stability:
the Core of a multi-choice game introduced by Grabisch & Xie (2007) (the Core, for
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short). The Core is a set-valued solution for multi-choice games that contains all
stable payoff vectors. A payoff vector is stable if no coalition can achieve, by itself, a
better worth than the one prescribed by the payoff vector. For a payoff vector to be
in the Core, it necessarily needs to satisfy the multi-efficiency property. This prop-
erty states that, for any activity level, If all the players agree on playing this level (or
their maximal activity level if they are unable to reach this level), then they achieve
the same worth as the one prescribed by the payoff vector in the Core. This kind of
agreement is called a synchronized coalition. If a value satisfies the Independence of
higher demands principle and also recovers the worth of the grand coalition, then it
satisfies multi-efficiency. This makes the Independence of higher demands principle
particularly desirable.

1.7 Uniformity

The Uniformity principle advocates for an equality of treatment between two con-
sumers with the same effective demand. In terms of multi-choice games, this means
that two players with the same maximal activity level should receive the same pay-
off. Similarly to the Independence of higher demands principle, no solution concept
from multi-choice games satisfies the Uniformity principle since most of them are
computed according to the contributions of the players to coalitions.

On the class of TU-games, the Equal division value, which equally divides the
worth of the grand coalition among the players, clearly satisfies the Uniformity prin-
ciple. Surprisingly, there are very few studies in the literature that extend the
Equal division value from TU-games to multi-choice games. To our knowledge, the
only single-valued solution extending the Equal division value from TU-games to
multi-choice games is the multi-choice constrained egalitarian solution introduced
by Branzei et al. (2014). We introduce an extension that satisfies the Uniformity
principle and the Independence of higher demands principle in Chapter 4.

1.8 Outline of the thesis

1.8.1 Chapter 2: Preliminaries

The first chapter of this thesis contains preliminaries on cooperative games (TU and
multi-choice games), TU-games endowed with a structure and discrete cost shar-
ing problems. First, basic definitions from TU-games, along with classical solution
concepts and their axiomatic characterization are introduced. Then, two models of
TU-games with a structure defined on the player set are discussed: games with a
permission structure (see Gilles et al. (1992)) and games with a priority structure
(see Béal et al. (2021a)). The two models fit GRDF’s cost sharing problem since
they both consider a directed graph as an exogenous information. Next, specific
definitions from multi-choice games are introduced. Extensions of solution concepts
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from TU-games to multi-choice games and their axiomatic characterizations are dis-
cussed. Finally, discrete cost sharing problems (see Moulin (1995)), are introduced.
Several solution concepts for discrete cost sharing problems such as the discrete se-
rial sharing methods (see Moulin & Shenker (1992)) and the discrete pseudo average
method (see Moulin (1995)) are presented. Special attention is given to how solu-
tion concepts from discrete cost sharing problems relate to solution concepts from
multi-choice games.

1.8.2 Chapter 3: Values for multi-choice games with a per-
mission structure

Permission structures model situations in which some players may need permission
from other players to cooperate. It turns out that permission relationships between
gas consumers arise in the framework of gas distribution. The gas distribution net-
work has a history: it has been constructed in a progressive way according to the
increasing demands of the consumers. As such, some consumers would never have
been able to demand gas if other consumers were not connected beforehand: this
can be seen as a permission relationship.

This chapter focuses on multi-choice games with a permission (tree) structure.
We investigate how a permission structure on the player set can be combined with
different levels of participation. A permission structure is represented by a directed
graph D. van den Brink & Gilles (1996) combine the characteristic function of a TU-
game (N, v) with a permission structure into a new function vD (see Section 1.5).
This chapter proposes a similar study performed within the framework of multi-
choice games. However, as mentioned in Section 1.5, there is no straightforward
way to interpret a permission structure if the players have several activity levels. To
conduct this study, we proceed in two-steps.

In a first step, pal-permission4 structures are introduced. These structures de-
scribe permission relationships between the activity levels of the players. For in-
stance, the directed graphs depicted in Figure 1.6 and Figure 1.7 can be viewed as
pal-permission structures. Pal-permission structures allow us to consider multi-choice
games with a pal-permission structure. This approach generalizes in a straightfor-
ward way the model introduced by Gilles et al. (1992). The pal-Permission value for
multi-choice games with a pal-permission structure is introduced. This value is com-
puted as the DP value (see Derks & Peters (1993)) of the multi-choice game (m, vQ),
where vQ is a combination of a multi-choice game (m, v) and a pal-permission struc-
ture Q. This combination extends the combination vD proposed by van den Brink
& Gilles (1996) for TU-games with a permission structure.

In a second step, multi-choice games with a permission structure on the player
set are considered. We exploit the fact that the set of activity levels of each player
is totally ordered. New axioms are proposed and allow us to characterize three

4player-activity level permission
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new values for multi-choice games with a permission structure. Each one coincides
with a pal-Permission value on multi-choice games enriched with a pal-permission
structure as described in the first step. They differ in the way the pal-permission
structure emerges from the set of axioms. This approach is interesting for several
reasons. First, it distinguishes a priori a permission structure between the players
(the inter-player relationships) from the linear order on the activity levels of each
player (the intra-player relationships). Then, the axiomatic study sheds light on how
the inter-player and intra-player relationships are combined to form a pal-permission
structure. Quite different pal-permission structures emerge from the axiomatic study,
which have natural but different interpretations.

All in all, this chapter sheds light on the additional difficulties that arise when
one tries to combine a multi-choice game with a structure on the player set, but
does not take into account the Independence of higher demands or the Uniformity
principle.

1.8.3 Chapter 4: Marginalism, egalitarianism and efficiency
in multi-choice games

This chapter focuses on multi-choice games without any structure. This study ad-
dresses the trade-off between marginalism and egalitarianism, which is one of the
main issues in economic allocation problems. Marginalism supports allocations based
on a player’s marginal contribution to coalitions, while egalitarianism is in favor of an
equal allocation at the expense of the differences between players’ marginal contribu-
tion to coalitions. The Uniformity principle can be seen as a form of egalitarianism.

In the context of TU-games, this trade-off can be seen as a compromise between
the Shapley value and the Equal division value since the two values are often seen as
the embodiment of marginalism and egalitarianism, respectively. This compromise
can be made by considering convex combinations of the Shapley value and the Equal
division value (see Joosten (1996)). These convex combinations of the Shapley value
and the Equal division value have been recently studied by van den Brink et al.
(2013), Casajus & Huettner (2013), Abe & Nakada (2019) and Béal et al. (2021b).
This chapter investigates the trade-off between marginalism and egalitarianism in the
context of multi-choice games. The Independence of higher demands and Uniformity
principles are taken into account.

An extension of the Shapley value, called the multi-choice Shapley value, is pro-
posed. This value is computed as follows. Assume that the grand coalition forms
step by step starting from the empty coalition. At each step, one player increases its
activity by one unit, let us say from j to j + 1, under the condition that all other
players (that are capable to play j) have already reached their level j. This coalition
formation process is called a restricted order. The multi-choice Shapley value as-
signs to each player the sum of its expected marginal contribution assuming that each
restricted order occurs with equal probability. This value assigns a payoff vector in
the Core, for each super-modular multi-choice game. A super-modular multi-choice

48



games can be viewed as a game in which the incentives for joining a coalition increase
as the coalition grows. Furthermore, this value satisfies the Independence of higher
demands principle.

Then, an extension of the Equal division value, called the multi-choice Equal
division value is proposed. This value equally divides the surplus in worth between
two consecutive synchronized coalitions among the players able to play the required
activity levels. Thus, this value is not a trivial extension of the Equal division
value: it is an egalitarian solution that satisfies the Independence of higher demands
principle and the Uniformity principle. This value is clearly desirable since it satisfies
all the principles pursued by GRDF.

To our knowledge, no previous work has addressed the trade-off between marginal-
ism and egalitarianism in the context of multi-choice games. This trade-off is made
by compromising between the multi-choice Shapley value and the multi-choice Equal
division value. To that end, the multi-choice Egalitarian Shapley values for multi-
choice games are introduced. This family of values is composed of convex combi-
nations of the multi-choice Shapley value and the multi-choice Equal division value.
We provide several axiomatic characterizations of these new solution concepts, by
invoking classical axioms as well as new axioms for multi-choice games.

1.8.4 Chapter 5: Values for multi-choice games with a pri-
ority structure

A priority structure captures asymmetries between players which may reflect exoge-
nous rights, different needs or merit, and so on. Priority relationships naturally arise
between GRDF’s consumers. For instance, it seems reasonable to prioritize the sup-
ply of a hospital rather than the supply of an amusement park. During winter, it
seems reasonable to prioritize the supply of households before public facilities.

This chapter considers multi-choice games with a priority structure. A value for
multi-choice games with a priority structure is introduced. This value is called the
multi-choice Priority value, and it extends the Priority value for TU-games with a
priority structure introduced by Béal et al. (2021a). Our value can be viewed as a
lexicographic procedure defined as follows. For each (multi-choice) coalition, choose
the players with the highest activity levels in the coalition. Among these players,
select the players with no superiors in the priority structure. The surplus generated
by the coalition, i.e., its Harsanyi dividend is equally divided among the selected
players.

Regarding the Priority value for TU-games with a priority structure, the sur-
plus generated by a coalition is shared according to one criterion: the inter-player
relationships given by the priority structure. Our extension of this value shares the
surplus generated by a coalition according to two criteria: the inter-player relation-
ships given by the priority structure and the intra-player relationships given by the
linear order of the activity levels. First, players are discriminated according to their
activity level, then the remaining players are selected according to their position in
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the directed graph.
Since the multi-choice Priority value first discriminates the players according to

their activity level, it satisfies the Independence of higher demands principle. This
result is the first result that combines a principle pursued by GRDF with an infor-
mation provided by the gas distribution network. Two axiomatic characterizations
of this value are proposed. One is a classical characterization that uses an additivity
axiom, the second is based on a balanced contributions axiom (see Myerson (1980)).

1.8.5 Chapter 6: Sharing the cost of a gas distribution net-
work

This chapter introduces the class of gas distribution cost sharing problems (gas dis-
tribution problems for short). A gas distribution problem can be represented by a
triplet (q, CNet, Net), where q is the profile of effective demands of some consumers,
Net is the distribution network, and CNet is a cost function that uses the information
provided by Net. Recall that CNet can be viewed as a combination of a cost function
C and Net. In Section 1.2, it is advocated that considering the problem (q, C,Net),
in which C is independent from Net, instead of (q, CNet), is more desirable. In this
chapter, the triplet (q, CNet, Net) is considered instead of (q, C,Net), because the
cost function is supposed to measure the cost of the pipelines in the network. There-
fore, the cost function inevitably has to take Net into account. However, we differ
from the case where one considers (q, CNet) and keep Net as a separate data, so that
we do not neglect any information from the gas distribution network.

We define solution concepts on the class of gas distribution problems that asso-
ciate a payoff to each demand of each consumer, and call them cost sharing rules.
Three distinct rules that depend on the network and the demands of the consumers
are proposed. To that end, a new principle is introduced. Consider a gas distribu-
tion network in which all consumers, except one, have a null demand in gas. To
supply this consumer with gas, all the pipelines connecting this consumer to the
source must be involved. In other words, this consumer depends on a number of
pipelines in addition to the one to which it is the tail. It should be reasonable to
charge this consumer for the costs of operating these pipelines. In a more general
way, consumers should pay for the portion of the network they use. This idea is the
Connection principle.

The first rule is called Connection rule, and it satisfies the Independence of higher
demands principle and the Connection principle. The second rule is called the Uni-
form rule, and it satisfies the Independence of higher demands principle and the
Uniformity principle. In the same way that marginalism is incompatible with egal-
itarianism, the Connection principle is incompatible with the Uniformity principle.
To make a trade-off between these two principles, the Mixed rules, which compromise
between the Connection rule and the Uniform rule, are proposed. For each rule, an
axiomatic characterization is provided.

The Connection rule coincides with the multi-choice Shapley value (introduced
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in Chapter 4) of a specific multi-choice game derived from the network and the
demands of the consumers. Moreover, the Connection rule is in the Core of this
specific multi-choice game. Similarly, the Uniform rule coincides with the multi-
choice Equal division value (introduced in Chapter 4) and the Mixed rules coincide
with the multi-choice Egalitarian Shapley values (introduced in Chapter 4).

1.8.6 Chapter 7: Concluding remarks

Two major principles are pursued by GRDF: the Uniformity principle and the Inde-
pendence of higher demands principle. The information provided by the distribution
network is also important. These considerations are studied in a progressive way
throughout the thesis. Chapter 3 only considers the information provided by the dis-
tribution network. Chapter 4 only considers the two principles pursued by GRDF.
Chapter 5 only considers one of these principles and the information provided by
the distribution network. Finally, Chapter 6 considers the two principles and the
information provided by the distribution network.

Chapter 2: Preliminaries

Chapter 3: Values for multi-choice
games with a permission structure

Chapter 4: Marginalism, egalitarianism
and efficiency in multi-choice games

Chapter 5: Values for multi-choice
games with a priority structure

Chapter 6: Sharing the cost
of a gas distribution network

Chapter 7: Additional remarks

Figure 1.8

←− Network

←− Uniformity
+ Independence

←− Independence
+ Network

←− Uniformity
+ Independence
+ Network

The sixth chapter of this thesis provides additional remarks. These remarks
highlight the links between the different chapters.
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- Chapter 3, 4 and 6: new solution concepts for multi-choice games with a pal-
permission structure and multi-choice games with a permission structure are
proposed. These new solution concepts are defined using elements from Chap-
ter 3 and Chapter 4. Then, observe that, under certain conditions, one of these
solution concepts coincides with the Connection rule from Chapter 6.

- Chapter 5 and 6: we discuss what happens if one applies the multi-choice
priority value to a multi-choice game derived from a gas distribution problem.

- Chapter 3, 4 and 5: we introduce pal-priority structures for multi-choice games.
Such structures can be understood as priority structures defined over the set of
player-activity level pairs. We introduce a value for multi-choice games with a
pal-priority structure, and show that it coincides with the multi-choice Priority
value, from Chapter 5, and the multi-choice Shapley value, from Chapter 4,
under certain conditions.
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Chapter 2: Preliminaries

This chapter provides preliminary definitions and notation for the thesis and is or-
ganized as follows. The first section presents transferable utility games, solution
concepts for such games and their axiomatic characterizations. The second section
presents the model of transferable utility games with a permission structure as intro-
duced by Gilles et al. (1992). The Permission value and two of its axiomatic charac-
terizations are discussed. Then, the third section presents the model of transferable
utility games with a priority structure as introduced by Béal et al. (2021a). The
Priority value and two of its axiomatic characterizations are discussed. The fourth
section presents multi-choice games as introduced by Hsiao & Raghavan (1992) and
van den Nouweland (1993). Extensions of solution concepts from TU-games to multi-
choice games and their axiomatic characterizations are discussed. Finally, discrete
cost sharing problems in the sense of Moulin (1995) are introduced. Several solu-
tion concepts for discrete cost sharing problems are presented. Special attention is
given to how solution concepts from discrete cost sharing problems relate to solution
concepts from multi-choice games.

2.1 TU-games

A situation in which a group of players can obtain certain payoffs by cooperation can
be described by a cooperative game with transferable utility, or simply a TU-game.
TU-games are appropriate tools to address many economic allocation problems. For
instance, Littlechild & Owen (1973) apply TU-games to address the allocation of
aircraft landing fees problem. Another application is proposed by Ambec & Spru-
mont (2002). The authors use TU-games to model river sharing problems that deal
with the fair allocation of water among a set of players. As a final example, Ni &
Wang (2007) model the polluted river problem with TU-games. In such setting, a
set of players, located along a polluted river, seek to determine a way to share the
cost of cleaning the river. This section introduces the model of TU-games along with
some definitions. We discuss several solution concepts on this class along with their
axiomatic characterizations.
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2.1.1 Basic definitions

Let N ⊂ N be a non-empty and finite set of players. Each subset E ∈ 2N is referred
to as a coalition of cooperating players. The grand coalition N represents a
situation in which all players cooperate. Coalition ∅ represents a situation in which
no player cooperates, it is called the empty coalition. For each E ∈ 2N , the integer
|E| ∈ N denotes the cardinality of coalition E.

Definition 1 (Transferable utility game). A transferable utility game, or sim-
ply a TU-game, is a couple (N, v) consisting of a finite player set N ⊂ N and a
characteristic function v : 2N → R, with the convention that v(∅) = 0.

The real number v(E) can be interpreted as the worth the players in E generate
when they cooperate. The class of TU-games with the finite set of players N ⊂ N is
denoted by GN . The class of all TU-games with a finite set of players is denoted by
G = ∪N⊂NGN .

A TU-game is non-negative if each coalition generates a non-negative worth in
this game. Formally, (N, v) ∈ G is non-negative if

∀E ∈ 2N , v(E) ≥ 0.

In some TU-games, a larger coalition always implies a higher worth. Such TU-
games are called monotonic TU-games. Formally, (N, v) ∈ G is monotonic if

∀E, T ∈ 2N ,
[
E ⊆ T

]
=⇒

[
v(E) ≤ v(T )

]
.

A monotonic game is non-negative by the convention v(∅) = 0.
The sub-class of monotonic TU-games is denoted by Gm, and verifies Gm ⊆ G.
In some situations, cooperation is useless because the players do not manage to

generate any surplus through cooperation. An additive TU-game models this idea.
In such game, the worth of a coalition is equal to the sum of each coalition member’s
marginal contribution to the empty coalition. Formally, (N, v) ∈ G is additive if

∀E ∈ 2N , v(E) =
∑
i∈E

v({i}).

On the contrary, in some situations, cooperation is clearly beneficial to players.
In particular, two coalitions of players may have an interest in merging in the sense
that the worth they would generate together outperforms the sum of their worth.
Super-additive TU-games model this idea.

A TU-game (N, v) ∈ G is super-additive if

∀E, T ∈ 2N , E ∩ T = ∅, v(E) + v(T ) ≤ v(E ∪ T ).

A stronger requirement than super-additivity is super-modularity. A TU-game (N, v) ∈
G is super-modular if

∀E, T ∈ 2N , v(E) + v(T ) ≤ v(E ∪ T ) + v(E ∩ T ).
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The class of super-modular games is denoted by Gsm ⊆ G. If a game is super-
modular, then it is super-additive by the convention v(∅) = 0. Similarly, a TU-game
(N, v) ∈ G is sub-modular if

∀E, T ∈ 2N , v(E) + v(T ) ≥ v(E ∪ T ) + v(E ∩ T ).

In a TU-game, different types of players can be distinguished. In particular, these
types can be defined according to the marginal contributions of the players to the
coalitions. Take any (N, v) ∈ G. The marginal contribution of a player i ∈ N to
a coalition E ∈ 2N\{i} in (N, v) is defined as

v(E ∪ {i})− v(E).

Note that, for each (N, v) ∈ Gm, the marginal contribution of each player is always
non-negative. Two players i, j ∈ N are equal in (N, v) if they have the same marginal
contributions to coalitions. Formally, such players are defined as

∀E ∈ 2N\{i,j}, v(E ∪ {i}) = v(E ∪ {j}).

A player i ∈ N is a veto player in (N, v) if a non-null worth cannot be achieved
without its cooperation in a coalition. Formally, such player is defined as

∀E ∈ 2N\{i}, v(E) = 0.

Two veto players both have the same marginal contributions to coalitions since their
cooperation is necessary to generate a non-null worth. Thus, two veto players are
equal, but the converse is not true.

A player i ∈ N is a null player in (N, v) if it has null marginal contributions to
coalitions. Formally, such player is defined as

∀E ∈ 2N\{i}, v(E ∪ {i}) = v(E).

A player i ∈ N is a nullifying player in (N, v) if its cooperation within a coalition
implies a null worth for this coalition. Formally, such player is defined as

∀E ∈ 2N : E ∋ i, v(E) = 0.

Take any GN ⊆ G and any (N, v) ∈ GN . Since 2N is a finite set, a characteristic

function v : 2N → R can be described by the vector (v(E))E∈2N ∈ R2|N|
. Therefore,

the class GN is a linear sub-space of R2|N|
. It follows that (N, v) can be expressed as

a linear combination of 2|N | − 1 linearly independent games, since v(∅) = 0. In his
original chapter, Shapley (Shapley (1953)) identifies a salient basis: the basis formed
by unanimity games. For any non-empty coalition E ∈ 2N , the unanimity game uE

with ruling coalition E is defined as

uE(T ) =

{
1 if E ⊆ T,
0 otherwise.

(2.1)
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Therefore, for each N , and each (N, v) ∈ GN , there exists a unique decomposition
of v in terms of unanimity games

v =
∑

E∈2N\{∅}

∆v(E)uE. (2.2)

The coordinate ∆v(E) is the Harsanyi dividend (see Harsanyi (1958)) of a coalition
E ∈ 2N . This dividend reflects the net surplus generated by E. Formally, Harsanyi
dividends are defined as

∆v(E) = v(E)−
∑
T⊂E

∆v(T ). (2.3)

Example 1. Consider a TU-game (N, v) ∈ G and take two players i, j ∈ N . The
surplus of the coalition {i, j} is the difference between the worth of the coalition
minus the dividends of all its sub-coalition {i} and {j}. The dividend of a singleton
is equal to the worth of the singleton. Formally, the dividend of coalition {i, j} is
∆v({i, j}) = v({i, j})− v({i})− v({j}).

2.1.2 Solution concepts

One of the basic issues in the theory of cooperative TU-games is as follows: “If the
grand coalition forms, how to divide its worth among the players”. This issue is
addressed through solution concepts for TU-games. In a TU-game (N, v) ∈ G, each
player i ∈ N may receive a payoff. A payoff vector x ∈ R|N | is a |N |-dimensional
vector that assigns a payoff xi ∈ R to each player i ∈ N .

Take any (N, v) ∈ G. A payoff vector x ∈ R|N | is efficient if it redistributes the
worth of the grand coalition among the players, formally∑

i∈N

xi = v(N). (2.4)

A payoff vector x ∈ R|N | is individual rational if the payoff of each player is higher
than its stand-alone worth in the game, formally

xi ≥ v({i}). (2.5)

A payoff vector x ∈ R|N | is coalitionally rational if no coalition of players has an
interest to split off from the grand coalition. Formally

∀E ∈ 2N ,
∑
i∈E

xi ≥ v(E). (2.6)

A single-valued solution on G (a value for short) is a map f that assigns a unique
payoff vector f(N, v) to each (N, v) ∈ G. A set-valued solution on G is a map F
that assigns a (possibly empty) set of payoff vectors F (N, v) to each (N, v) ∈ G.
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There are several well-known solution concepts for TU-games that have given rise to
many studies.

The Core (see Gillies (1953) and Shapley (1955)) is probably the most well-known
set-valued solution for TU-games. This solution concept is often viewed as the set of
stable payoff vectors since each payoff vector in this set is efficient and coalitionally
rational.

Definition 2 (Core). For each (N, v) ∈ G, the Core C(N, v) of (N, v) is defined
as the set of payoff vectors satisfying both (2.4) and (2.6).

Another well-known set-valued solution for TU-games is the Weber set (Weber
(1988)). To define this solution, denote the set of all (linear) orders on N by ΘN .
Assume that the grand coalition forms step by step, starting from the empty coalition.
At each step, a player enters the coalition. The players enter according to an order
θ ∈ ΘN . The step θ(i) is the step at which i ∈ N enters. When a player enters,
it contributes positively or negatively to the worth of the coalition. The marginal
vector of (N, v) with respect to the order θ collects all the marginal contributions
of the players when they enter the coalition according to θ. This vector is denoted
by mθ

v and is defined as

mθ
v = v(Eθ,i ∪ {i})− v(Eθ,i), (2.7)

where Eθ,i = {j ∈ N : θ(j) < θ(i)} is the set of predecessors of i ∈ N with respect to
θ. The Weber set is defined as the convex hull of the set of all n! marginal vectors.
Observe that this set is always non-empty.

Definition 3 (Weber set). For each (N, v) ∈ G, the Weber set is defined as

W (N, v) = conv{mθ
v : θ ∈ ΘN}.

Proposition 1 (Weber (1988), Derks (1992)). For each (N, v) ∈ G,

C(N, v) ⊆ W (N, v).

In a super-modular TU-game, cooperation is clearly beneficial to players. There-
fore, no coalition of players has an interest to split off from the grand coalition. The
next result, proved by Shapley (1971), indicates that the Core and the Weber set
coincide on the class of super-modular TU-games. This directly implies that the
Core is non-empty on the class of super-modular TU-games.

Proposition 2 (Shapley (1971)). For each (N, v) ∈ Gsm,

W (N, v) = C(N, v).

The Shapley value (see Shapley (1953)) is probably the most prominent single-
valued solution for TU-games. This value admits a number of different expressions,
but we only retain two of them since the others are not useful for the rest of the
thesis.

58



Definition 4 (Shapley value). Take any (N, v) ∈ G. The Shapley value is the
average of all marginal vectors, meaning that the payoff of each player corresponds
to its average marginal contribution to coalitions. Formally, the Shapley value can
be written as

∀i ∈ N, Shi(N, v) =
1

n!

∑
θ∈ΘN

mθ
v. (2.8)

The Shapley value can be defined using Harsanyi dividends. The value divides the
dividend of each coalition equally among its members. Therefore, for each (N, v) ∈ G,
the Shapley value can be written as

∀i ∈ N, Shi(N, v) =
∑

E∈2N :E∋i

∆v(E)

|E|
. (2.9)

By definition, the Shapley value is always in the Weber set of any game. Therefore,
this value is always in the Core of super-modular games.

The Shapley value is often seen as an embodiment of marginalism. On the con-
trary, the Equal division value ensures an identical payoff to each player by dividing
the worth of the grand coalition equally among the players. Naturally, this value is
often seen as an embodiment of egalitarianism.

Definition 5 (Equal division value). For each (N, v) ∈ G, the Equal division
value is defined as

∀i ∈ N, EDi(N, v) =
v(N)

n
. (2.10)

The Equal division value is part of a larger family of values called (non-negative)
Weighted division values, which are introduced in Béal et al. (2016). A value in this
class divides the worth of the grand coalition among the players according to certain
weights. Let Ω = {ω ∈ R∞

+ |(ωi)i∈N} be an infinite set of strictly positive weights.

Definition 6 (Weighted division values). Take any ω ∈ Ω. For each (N, v) ∈
G, the Weighted division value WEDω is defined as

∀i ∈ N, WEDω
i (N, v) =

ωi∑
j∈N ωj

v(N). (2.11)

For any weights ω ∈ Ω such that ωi = ωj for any two distinct players i, j ∈ N , the
Weighted division value WEDω coincides with the Equal division value on any game
in G.

One of the main issues in economic allocation problems is the trade-off be-
tween marginalism and egalitarianism. Marginalism supports allocations based on a
player’s marginal contributions, while egalitarianism is in favor of an equal allocation
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at the expense of the differences between players’ marginal contributions. In the con-
text of TU-games, this trade-off can be seen as a compromise between the Shapley
value and the Equal division value. This compromise can be made by considering
convex combinations between the Shapley value and the Equal division value (see
Joosten (1996)). These convex combinations of the Shapley value and the Equal
division value have been recently studied by van den Brink et al. (2013), Casajus &
Huettner (2013), Abe & Nakada (2019) and Béal et al. (2021b). These combinations
form a set-valued solution called Egalitarian Shapley values and denoted by ESh.

Definition 7 (Egalitarian Shapley values). Take any α ∈ [0, 1]. For each (N, v) ∈
G, the Egalitarian Shapley value EShα is defined as

∀i ∈ N, EShα
i (N, v) = αShi(N, v) + (1− α)EDi(N, v). (2.12)

2.1.3 Axiomatic characterizations

This section presents and discusses classical axioms for solution concepts on G. Com-
bining these axioms, we present at least one axiomatic characterization for each value
introduced in the last section. Consider a value f on G.

The first axiom is ubiquitous in almost every axiomatic characterization, as it
transcribes the simple idea that the total worth of the grand coalition should be
entirely allocated among the players.

Axiom 1 (Efficiency). For each (N, v) ∈ G,∑
i∈N

fi(N, v) = v(N). (2.13)

Note that Efficiency only makes sense under the assumption that the grand coalition
forms. There exists some axioms that play a similar role than Efficiency but do not
take this assumption for granted. For instance, Pérez-Castrillo & Wettstein (2001)
and Béal et al. (2021b) study the Cohesive efficiency axiom. This axiom states that
the sum of the payoffs should be equal to the maximal total worth that the players
are able to achieve by organizing themselves into a partition.

When dealing with a problem, it can be useful to divide this problem into several
smaller problems. By doing so, it is desirable that the sum of the outcomes of the
smaller problems is equal to the outcome of the original problem. The next axiom
translates this idea to the framework of TU-games. It is frequently used in many
axiomatic characterizations. This axiom states that the solution is additive with
respect to TU-games with the same player set.

Axiom 2 (Additivity). For each (N, v), (N,w) ∈ G,

f(N, v + w) = f(N, v) + f(N,w).
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A slightly stronger axiom is also common in the literature. This axiom states that
the solution is linear with respect to TU-games with the same player set.

Axiom 3 (Linearity). For each (N, v), (N,w) ∈ G and λ ∈ R,

f(N, v + λw) = f(N, v) + λf(N,w).

Obviously,

Linearity =⇒ Additivity

If a player is unproductive or causes harm to others, it seems reasonable to
penalize them accordingly. The next axiom, introduced by Shubik (1962), indicates
that if a player never contributes to the worth of the coalitions, then it should not
receive anything from the value.

Axiom 4 (Null player property). For each (N, v) ∈ G, if a player i ∈ N is a
null player, then

fi(N, v) = 0.

A player can harm the other players in a coalition if its cooperation nullifies the
worth of the coalition. van den Brink (2007) introduces an axiom that advocates for
a null payoff to any nullifying player.

Axiom 5 (Nullifying player property). For each (N, v) ∈ G, if a player i ∈ N
is a nullifying player, then

fi(N, v) = 0.

When the worth of the grand coalition is non-negative, it is reasonable that any
player ends up with a non-negative payoff. In particular, null players need not to
receive a negative payoff. Since they do not harm any the players, they should obtain
non-negative payoffs. Casajus & Huettner (2013) models this idea and proposes an
axiom that guarantees a non-negative payoff to null players whenever the worth of
the grand coalition is non-negative.

Axiom 6 (Null player in a productive environment). For each
(N, v) ∈ G such that v(N) ≥ 0 and each null player i ∈ N in (N, v),

fi(N, v) ≥ 0.

If a value satisfies the Null player property, then if satisfies Null player in a productive
environment, but the converse is not true.

Null player property =⇒ Null player in a productive environment
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In some situations, it may be desirable that the payoff of a player does not depend
on exogenous factors. Shapley (1953) proposes an axiom ensuring anonymity between
the players. This means that the payoff of a player does not depend on its label i ∈ N .
A preliminary definition is necessary to introduce the axiom. Take any order θ ∈ ΘN .
The game (N, θv) is defined as

∀E ∈ 2N , θv(∪i∈E{θ(i)}) = v(E).

In this game, each player in E has a new label but keeps the same marginal contri-
butions to coalitions.

Axiom 7 (Anonymity). For each (N, v) ∈ G and each order θ on N ,

fi(N, v) = fθ(i)(N, θv).

Alternatively, the payoff of a player may depends on its marginal contributions
to coalitions. Maschler & Peleg (1966) introduce an axiom that requires players to
obtain no lower payoffs than less productive players.

Axiom 8 (Desirability). For each (N, v) ∈ G, if for two distinct players i, j ∈ N
it holds that v(E ∪ {i}) ≥ v(E ∪ {j}), for each E ∈ 2N\{i,j}, then

fi(N, v) ≥ fj(N, v). (2.14)

In case two players have the same marginal contribution to coalitions. Desirability
implies that these two players receive the same payoff. Shubik (1962) proposes an
axiom that formalizes this idea.

Axiom 9 (Equal treatment of equals). For each (N, v) ∈ G, if two distinct
players i, j ∈ N are equals, then

fi(N, v) = fj(N, v).

If a value satisfies Anonymity, then it satisfies Equal treatment of equals. The
converse is not true. Similarly, if a value satisfies Desirability then it satisfies Equal
treatment of equals. The converse is also not true.

Anonymity =⇒ Equal treatment of equals

Desirability =⇒ Equal treatment of equals

Two veto players both have the same marginal contributions to coalitions since
their presence is necessary to generate a non-null worth. Equal treatment of equals
indicates that such players should receive the same payoffs. Béal & Navarro (2020)
propose an axiom that formalizes this idea.
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Axiom 10 (Veto players property). For each (N, v) ∈ G and two distinct veto
players i, j ∈ N ,

fi(N, v) = fj(N, v).

If a value satisfies Equal treatment of equals, then it satisfies the Veto players prop-
erty. The converse is not true.

Equal treatment of equals =⇒ Veto players property

The same payoff for two equal players can be viewed as a strong requirement, es-
pecially if exogenous factors may justify different payoffs for such equal players. The
next axiom follows this idea and proposes a qualitative version of Equal treatment
of equals. This axiom relaxes Equal treatment of equals and states that two equal
players may receive a payoff of the same sign (see Casajus (2018)). Define the sign
of a real number as

∀x ∈ R, sign(x) =


+1 if x > 0,

−1 if x < 0,

0 otherwise.

Axiom 11 (Sign symmetry). For each (N, v) ∈ G and each i, j ∈ N such that i
and j are equal,

sign(fi(N, v)) = sign(fj(N, v)).

Clearly, if a value satisfies Equal treatment of equals, then it satisfies Sign symmetry.

Equal treatment of equals =⇒ Sign symmetry

Some axioms indicate how the payoff of players may vary when some inputs of the
problem vary. If a player leaves the game, this may affect other players’ payoffs. For
instance, Null player out introduced by Derks & Haller (1999) states that if a null
player leaves the game, then the payoff of the other players remain unchanged. This
axiom will be formally introduced later in Section 2.3.2. Myerson (1980) introduces
an axiom stating that for any two players, the amount that each player would gain
or lose by the other’s withdrawal from the game should be equal.

Axiom 12 (Balanced contributions). For each (N, v) ∈ G and each i, j ∈ N ,

fi(N, v)− fi(N \ {j}, v) = fj(N, v)− fj(N \ {i}, v).

Casajus (2017) proposes the Weak balanced contributions axiom, which relaxes
Balanced contributions. This axiom requires that the amount that each player would
gain or lose by the other’s withdrawal from the game should be of the same sign.

Some axioms assume that the characteristic function may vary. van den Brink
(2002) introduces a fairness axiom for TU-games that makes such assumption. This
axiom states that if one adds a game (N, v) ∈ G to another game (N,w) ∈ G in
which two players i and j are equal, then the payoffs of the players i and j change
by the same amount.

63



Axiom 13 (Fairness). If i, j ∈ N are equal in (N,w) ∈ G, then

∀(N, v) ∈ G, fi(v + w)− fi(v) = fj(v + w)− fj(v).

Casajus (2011) shows that Fairness is equivalent to theDifferential marginality
axiom. Differential marginality compares two different games. It indicates that the
difference between two players’ payoffs is completely determined by the difference
between their productivities. Then, Weak Differential marginality is introduced
by Casajus & Yokote (2017). This axiom indicates that the payoffs of the two players
vary in the same direction if the difference between their productivities is the same
is both situations.

If a value satisfies Equal treatment of equals and Additivity, then it satisfies Fair-
ness. The converse is not true. Moreover, if a value satisfies the Null player property
and Fairness, then it satisfies Equal treatment of equals. Again, the converse is not
true. Clearly, these implications still holds if one replaces Fairness by Differential
marginality.

Equal treat of eq +Additivity =⇒ Fairness/Diff marginality

Null player prop+Fairness/Diff marginality =⇒ Equal treat of eq

As a reminder, Desirability compares the payoffs of two players with different
productivities in a unique situation. Young (1985) proposes an axiom that compares
the payoffs of a single player in two different situations. This axiom guarantees that
a player whose marginal contributions weakly increases does not end up with a lower
payoff.

Axiom 14 (Strong monotonicity). For each (N, v), (N,w) ∈ G and each i ∈ N
such that

∀E ∈ 2N\{i}, v(E ∪ {i})− v(E) ≥ w(E ∪ {i})− w(E),

it holds that

fi(N, v) ≥ fi(N,w).

Requiring that the payoff of a player does not decrease if its marginal contri-
butions do not decrease (as required by Strong monotonicity) irrespective of what
is to be allocated is a very strong requirement. Indeed, this property may imply a
decrease in payoff for other players if the total worth to be shared does not increase
significantly. The next axiom requires that the worth of the grand coalition does not
decrease on top of the original conditions stated in Strong monotonicity (see van den
Brink et al. (2013)).

Axiom 15 (Weak monotonicity). For each (N, v), (N,w) ∈ G such that v(N) ≥
w(N), and each i ∈ N such that

∀E ∈ 2N\{i}, v(E ∪ {i})− v(E) ≥ w(E ∪ {i})− w(E),
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it holds that

fi(N, v) ≥ fi(N,w). (2.15)

If a value satisfies Strong monotonicity, then it satisfies Weak monotonicity. The
converse is not true.

Strong monotonicity =⇒ Weak monotonicity

Strong monotonicity also implies Marginality (see Young (1985)), which states that
if the marginal contribution of a player does not change from one game to another,
so does its payoff in these games.

We now have the material to present some axiomatic characterizations of the
Shapley value, the Equal division value, the Egalitarian Shapley values and the
Weighted division values. This list of characterizations is not exhaustive, but each
characterization will prove to be useful for the rest of this thesis.

Theorem 1 (Shubik (1962)). A solution f on G satisfies Efficiency, Additivity,
the Null player property and Equal treatment of equals if and only if f = Sh.

This characterization still holds if one replaces Equal treatment of equals in the
axioms of Theorem 1 by the Veto players property (see Béal & Navarro (2020)) or
by Sign symmetry (see Casajus (2018)).

Additivity and Linearity are often criticized for their lack of economic interpre-
tation, and are often accused of only being of technical usefulness. Several studies
proposed axiomatic characterization of the Shapley value without relying on these
axioms. Myerson (1980) proposes an axiomatic characterization of the Shapley value
that relies on only two axioms, none of them being Additivity or Linearity.

Theorem 2 (Myerson (1980)). A solution f on G satisfies Efficiency and Bal-
anced contributions if and only if f = Sh.

Young (1985) proposes another characterization by replacing Additivity and the
Null player property by Strong monotonicity in Theorem 1.

Theorem 3 (Young (1985)). A solution f on G satisfies Efficiency, Equal treat-
ment of equals and Strong monotonicity if and only if f = Sh.

It is possible to replace Strong monotonicity by Marginality in Theorem 3 (see Young
(1985) and Pintér (2015)). Casajus (2018) shows that one can relax Equal treatment
of equals in Theorem 3 into Sign symmetry without affecting the result.

Theorem 4 (Casajus (2018)). A solution f on G satisfies Efficiency, Sign sym-
metry and Strong monotonicity if and only if f = Sh.
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Another approach that does not rely on Additivity/Linearity is proposed by
van den Brink (2002). The author shows that Fairness captures enough informa-
tion to characterize the Shapley value in presence of Efficiency and the Null player
property.

Theorem 5 (van den Brink (2002)). A solution f on G satisfies Efficiency, the
Null player property and Fairness if and only if f = Sh.

Since Fairness is equivalent to Differential marginality, one can substitute Fairness
by Differential marginality in Theorem 5. Additionally, Casajus & Yokote (2017)
show that the characterization still holds if one weakens Differential marginality into
Weak Differential marginality. Finally, Casajus (2017) shows that Efficiency, Weak
marginal contribution and Weak Differential marginality are enough to characterize
the Shapley value.

Efficiency seems to be mandatory to characterize the Shapley value, but it is
in fact possible to do without. For instance, Einy & Haimanko (2011) manages
to characterize the Shapley value without Efficiency. Casajus (2014) drops both
Efficiency and Additivity and still manages to characterize the Shapley value. Finally,
Béal et al. (2015) provides an axiomatic characterization of the Shapley value that
does not rely on Efficiency, Additivity or even Equal Treatment of Equals.

The characterization of the Shapley value provided by Shubik (1962) can be
slightly modified to characterize other values. van den Brink (2007) provides an
axiomatic characterization of the Equal division value by substituting the Null player
property by the Nullifying player property.

Theorem 6 (van den Brink (2007)). A solution f on G satisfies Efficiency, Ad-
ditivity, the Nullifying player property and Equal treatment of equals if and only if
f = ED.

Béal et al. (2016) show that one can substitute Equal treatment of equals in Theorem
6 by the Null player in a productive environment axiom and obtain a characterization
of the Weighted division values.

Theorem 7 (Béal et al. (2016)). A solution f on G satisfies Efficiency, Linear-
ity, the Nullifying player property and Null player in a productive environment if and
only if f = WEDω, for some ω ∈ Ω.

Casajus (2018) points out that, for each ω ∈ Ω, a Weighted division value satis-
fies Sign symmetry and the Nullifying player property. Casajus & Huettner (2013)
replace Linearity and the Nullifying player property in Theorem 7 by Linearity and
Desirability to characterize Egalitarian Shapley values.

Theorem 8 (Casajus & Huettner (2013)). A solution f on G satisfies Efficiency,
Additivity, Desirability and Null player in a productive environment if and only if
f = EShα, for some α ∈ [0, 1].
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At last, we present a second axiomatic characterization of the Egalitarian Shapley
values proposed by van den Brink et al. (2013).

Theorem 9 (van den Brink et al. (2013)). A solution f on G satisfies Efficiency,
Linearity, Anonymity and Weak monotonicity if and only if f = EShα, for some
α ∈ [0, 1].

2.2 TU-games with a permission structure

This section presents TU-games with a permission structure as introduced by Gilles
et al. (1992). This class of games describes situations in which the players are part
of a permission structure that is represented by a directed graph. In a permission
structure, there are players that need permission from other players before they are
allowed to cooperate.

Various assumptions can be made about how a permission structure affects coop-
eration. In the conjunctive approach, it is assumed that every player needs permis-
sion from all its predecessors before it is allowed to cooperate. Alternatively, in the
disjunctive approach, it is assumed that each player needs permission from at least
one of its predecessors before it is allowed to cooperate with other players. Depend-
ing on the approach, a coalition can be evaluated in different manners. Two major
solution concepts exist, which take into account two different manners a coalition
can be evaluated in a game with a permission structure. van den Brink & Gilles
(1996) introduce the permission value for TU-games with a permission structure by
adopting the conjunctive approach. van den Brink (1997) conduct a similar study
but adopt the disjunctive approach. This section describes the model of TU-games
with a permission structure. It introduces the (conjunctive) permission value, and
provides two axiomatic characterizations of this value.

2.2.1 The model

A permission structure is a couple (N,P ), where N ⊂ N is a finite set of players
and P is a map P : N → 2N . When no confusion arises, we simply denote a
permission structure (N,P ) by P . The relationship j ∈ P (i) means that j needs
the permission from i to cooperate. Equivalently, denote i ∈ P−1(j) if and only if
j ∈ P (i). In this case, player i is the predecessor of j, whereas j is the successor
of i. The trivial structure P 0 is such that, for each i ∈ N , P 0(i) = ∅. The transitive
closure of a permission structure P is a permission structure P̂ such that, for each
i ∈ N , we have j ∈ P̂ (i) if and only if there exists a path i = h1, h2, . . . , hk = j such
that hk ∈ P (hk−1), . . . , h2 ∈ P (h1). The players in P̂ (i) are called the subordinates
of i in P , and the players in P̂−1(i) := {j ∈ N : i ∈ P̂ (j)} are called the superiors of
i in P . A cycle occurs in the structure when there exists a path i = h1, h2, . . . , hk = i
such that hk ∈ P (hk−1), . . . , h2 ∈ P (h1). A permission structure is acyclic if no cycle
occurs in it.
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The class of acyclic permission structures on a finite set of players is denoted by
P. A permission tree structure is an acyclic permission structure in which each
player has at most one predecessor and only one player has no predecessor. Such a
player is referred to as the root of the tree. The subclass of permission tree structures
is denoted by PT ⊆ P.

1

3 2

456

(a) Acyclic structure

1

3 2

456

(b) Tree structure with root 1

In a permission structure, cooperation between the players is restricted. A player
cannot cooperate unless some of its superior(s) also cooperate. Various assumptions
can be made about how a permission structure affects cooperation. A distinction
is made between the conjunctive approach and the disjunctive approach. In the
conjunctive approach, as developed in Gilles et al. (1992) and van den Brink &
Gilles (1996), a player needs permission from all its predecessors (If any) in the
permission structure. On the other hand, in the disjunctive approach, a player needs
permission from at least one of its predecessors (If any). Both approaches coincide
on permission tree structures since each player has at most one predecessor.

A TU-game with a permission structure on N ⊂ N is a triplet (N, v, P ), where
(N, v) ∈ G is a TU-game, and (N,P ) ∈ P is a (acyclic) permission structure. The
class of TU-games with an acyclic permission structure is denoted by GP, and the
class of TU-games with a permission tree structure is denoted by GPT .

Essentially, one can think of v as representing the economic possibilities open to
every coalition in N . Thus v(E) represents the amount of utility, which coalition
E ∈ 2N could normally obtain if no permission structure was imposed on the game.
Due to the presence of the permission structure, all coalition can form, by only a
subset of coalitions can efficiently cooperate. Such coalitions are the ones containing
all the superiors of their members. They are called feasible coalitions.

Definition 8 (Feasible coalitions). Take any (N,P ) ∈ P. The set of feasible
coalitions is defined as

AP :=
{
E ∈ 2N : P−1(i) ⊆ E for each i ∈ E

}
. (2.16)

The feasible coalitions are essentially the only worth generating coalitions within a
game with a permission structure. The definition shows explicitly that indeed all
superiors of the players in an feasible coalition are also members of that coalition.
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Proposition 3 (Gilles et al. (1992)). Take any (N,P ) ∈ P. The set of feasible
coalitions AP verifies the following properties

- ∅ ∈ AP ,

- N ∈ AP ,

- If E,F ∈ AP , then E ∪ F ∈ AP and E ∩ F ∈ AP .

Even if acoalition is not feasible, there may be one or several worth generating
sub-coalition(s) contained within it. The largest of these sub-coalitions is called
the sovereign part of the original coalition. Put differently, the sovereign part of a
coalition is the payoff generating part of a coalition. Additionally, to any coalition, it
is possible to find one or several feasible super-coalition(s) containing it. The smallest
of these super-coalition(s) is called the authorizing part of the original coalition. Put
differently, the authorizing part of a coalition is the smallest coalition that contains
all the players necessary to make the original coalition feasible.

Definition 9 (Sovereign and authorizing parts). Take any (N,P ) ∈ P and E ∈
2N . The sovereign part of E according to P is the largest feasible subset of E defined
as

σ(E) :=
⋃

{F∈AP :F⊆E}

F.

The authorizing set of E ∈ 2N according to P is the the smallest feasible set contain-
ing E defined as

α(E) :=
⋂

{F∈AP :E⊆F}

F.

The sovereign of the authorizing operators are well defined by Proposition 3.

Example 2. Consider the set of player N = {1, 2, 3, 4, 5, 6}. Define the following
permission structure P as follows

P :1 −→ {2, 3} P−1 :1 −→ ∅
2 −→ {4, 5} 2 −→ {1}
3 −→ {6} 3 −→ {1}
4 −→ ∅ 4 −→ {2}
5 −→ ∅ 5 −→ {2}
6 −→ ∅ 6 −→ {3}
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Here, players 2 and 3 are successors of 1. Player 4 and 5 are successors of 2 and
subordinates of 1.

1

3 2

456

We have σ({2, 3, 4, 5}) = ∅ because there is no feasible subset of {2, 3, 4, 5},
σ({1, 2, 4, 6}) = {1, 2, 4} because {1, 2, 4} is the largest feasible subset of {1, 2, 4, 6}
and α({1, 2, 4, 6}) = {1, 2, 3, 4, 6} because {1, 2, 3, 4, 6} is the smallest feasible super-
set of {1, 2, 4, 6}.

Some properties of the sovereing and the authorizing sets, proved in Gilles et al.
(1992), are introduced.

Proposition 4 (Gilles et al. (1992)). Take any (N,P ) ∈ P. For and each E,F ∈
2N , it holds that:

- σ(E) ∪ σ(T ) ≤ σ(E ∪ T );

- σ(E) ∩ σ(T ) = σ(E ∩ T );

- α(E) ∪ α(T ) = α(E ∪ T );

- α(E ∩ T ) ≤ α(E) ∩ α(T ).

2.2.2 The Permission value

In a TU-game with a permission structure (N, v, P ) ∈ GP, the characteristic function
can be combined with the permission structure into a new characteristic function.
This new function, describes all possibilities open to the players embedded in P ,
given their potential marginal contributions to coalitions as described by the game
v. The resulting characteristic function is called the restriction of v by P and is
denoted by RP (v). Take any (N, v, P ) ∈ GP. The restriction of v by P is defined as

RP (v) = v ◦ σ. (2.17)

The restriction RP is linear. Indeed, for λ ∈ R and (N, v), (N,w) ∈ G,

RP (λv + w) = (λv + w)(σ(E))

= λv(σ(E)) + w(σ(E))

= λRP (v) +RP (w).
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Proposition 5. Take any (N, v, P ) ∈ GP. For each, E ∈ 2N , E ̸= ∅,

RP (uE) = uα(E). (2.18)

Proof. Take any T ∈ 2N , and let us show that RP (uE)(T ) = uα(E)(T ). One has

RP (uE)(T ) = uE(σ(T ))

=

{
1 σ(T ) ⊇ E,

0 otherwise.

Let us show that

E ⊆ σ(T ) ⇐⇒ α(E) ⊆ T.

First, since α(E) =
⋂

{T∈AP :E⊆T} T ,

E ⊆ σ(T ) =⇒ α(E) ⊆ σ(T ).

Then, since σ(T ) ⊆ T ,

E ⊆ σ(T ) =⇒ α(E) ⊆ T.

Second, since σ(T ) =
⋃

{E∈AP :E⊆T}E,

α(E) ⊆ T =⇒ α(E) ⊆ σ(T ).

However, since E ⊆ α(E), it holds that E ⊆ σ(T ). This shows that

E ⊆ σ(T ) ⇐⇒ α(E) ⊆ T. (2.19)

By (2.19), for each T ∈ 2N ,

RP (uE)(T ) =

{
1 α(E) ⊆ T,

0 otherwise.

This is equivalent to say that RP (uE) = uα(E). ■

From the linearity of RP (v) : 2
N → R and Proposition 5, we provide an alterna-

tive expression of the conjunctive restriction of v by P .

RP (v) = RP

(∑
E∈2N

∆v(E)uE

)
=
∑
E∈2N

∆v(E)RP (uE)

=
∑
E∈2N

∆v(E)uα(E). (2.20)

The next result provides some inheritance properties from (N, v) to (N,RP (v)),
which are proved in Gilles et al. (1992).
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Proposition 6 (Gilles et al. (1992)). Take any (N, v, P ) ∈ GP.

- If (N, v) is monotonic, then (N,RP (v)) is monotonic.

- If (N, v) is super-modular, then (N,RP (v)) is super-modular.

The (conjunctive) permission value, introduced by van den Brink & Gilles (1996), of
a TU-game with a permission structure (N, v, P ) ∈ GP is computed as the Shapley
value of (N,RP (v)) ∈ G.

Definition 10 (Permission value, van den Brink & Gilles (1996)). The Per-
mission value Pm is defined, for each (N, v, P ) ∈ GP, as

Pm(N, v, S) = Sh(N,RP (v)). (2.21)

If one considers a TU-game (N, v, P 0) ∈ GP with the trivial permission structure
P 0, then it is easy to see that σ(E) = E for each E ∈ 2N , and thus RP 0(v) = v.
Thus, the conjunctive permission value is a generalization of the Shapley value for
TU-games. One can express the conjunctive permission value in terms of Harsanyi
dividends.

Take any (N, v, P ) ∈ GP. For each i ∈ N and each E ∈ 2N , by (2.9), it holds
that

Shi(N, uα(E)) =


1

|α(E)|
i ∈ α(E),

0 otherwise.

Since the Shapley value satisfies Additivity, it follows that, for each i ∈ N ,

Shi(N,RP (v)) =
∑
E∈2N

∆v(E)Shi(N, uα(E))

=
∑
E∈2N
α(E)∋i

∆v(E)

|α(E)|
.

Thus, the Permission value Pm can be re-written, for each (N, v, P ) ∈ GP, as

∀i ∈ N, Pmi(N, v, S) =
∑
E∈2N
α(E)∋i

∆v(E)

|α(E)|
.

This value distributes the surplus generated by each coalition equally among the
authorizing part of the coalition.
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2.2.3 Axiomatic characterizations

This section introduces two axiomatic characterizations of the permission value. The
first characterization works on the class of TU-games with an acyclic permission
structure, whereas the second axiomatic characterization works on the class of TU-
games with a permission tree structure. Consider a value f for TU-games on GP.

In a TU-game with a permission structure, an inessential player is a null player
such that each of its subordinates in the permission structure is also a null player.
For instance, consider a firm in which the hierarchical organization of the employees
is represented by a permission structure. An inessential player can be viewed as
an employee going on strike with all its subordinates. This group of strikers no
longer makes any contribution to the firm. Clearly, an inessential player has null
marginal contributions to coalitions, but can also be viewed as responsible for its
subordinates’ null marginal contributions. It seems reasonable to penalize such an
inessential player. van den Brink & Gilles (1996) introduces an axiom requiring that
an inessential players should obtain a null payoff.

Axiom 16 (Inessential player property). For each (N, v, P ) ∈ GP and each
inessential player i ∈ N ,

fi(N, v, P ) = 0. (2.22)

If a value satisfies the Inessential player property, then it satisfies the Null player
property.

Inessential player property =⇒ Null player property

Many economic decision situations may be described by monotonic TU-games. Since
the total amount to be shared is non-negative in a monotonic game, and the players
are part of a permission structure it seems reasonable to require that a player i ∈ N
obtains at least as much as any of its successors in the permission structure. For
instance, it seems natural that an executive, in a firm, earns more than any of its
subordinates if the firm produces good results. The class of monotonic TU-games
with an acyclic permission structure is denoted by GmP.

Axiom 17 (Structural monotonicity). For each (N, v, P ) ∈ GmP and each player
i ∈ N such that P (i) ̸= ∅,

fi(N, v, P ) ≥ max
j∈P (i)

fj(N, v, P ).

Suppose that a player is veto for any coalition to obtain any positive payoff in a
monotone TU-game. Then, regardless of its position in the permission structure,
this player can always guarantee that the other players earn nothing by refusing any
cooperation. Therefore it seems fair that such a veto player gets at least as much as
any other player.
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Axiom 18 (Veto player dominance). For each (N, v, P ) ∈ GmP and each veto
player i ∈ N ,

∀j ∈ N, fi(N, v, P ) ≥ fj(N, v, P ).

Theorem 10 (van den Brink & Gilles (1996)). A value f on GP satisfies Effi-
ciency, Additivity, the Inessential player property, Structural monotonicity and Veto
player dominance if and only if f = Pm.

Just like the Shapley value, it is possible to axiomatically characterize the Per-
mission value without relying on Additivity on the sub-class GPT . Take any two
players i, j ∈ N such that j ∈ P (i). Define the associated game (v−ij, P ) in which i
is enforcing its power over j in the sense that it does not allow player j and all its
subordinates to cooperate. This game is formally defined as

∀E ∈ 2N \ {∅}, v−ij(E) = v(E \ (P̂ (j) ∪ {j})).

In (N, v−ij, P ), all subordinates of i are null players. If a player i ∈ N enforces its
power over player j ∈ P (i), the change in payoffs of player i is equal to the change
in payoff to the player j.

Axiom 19 (Permission fairness). For each (N, v, P ) ∈ GPT and each {i, j} ∈ 2N

such that j ∈ P (i),

fi(N, v, P )− fi(v−ij, P ) = fj(N, v, P )− fj(v−ij, P ). (2.23)

Theorem 11 (van den Brink et al. (2015))). A value f on GPT satisfies Effi-
ciency, the Inessential player property and Permission fairness if and only if f =
Pm.

For further details on the axiomatic characterizations of the permission value we
refer to van den Brink & Gilles (1996), van den Brink (1997), van den Brink et al.
(2015), van den Brink (2017), and van den Brink et al. (2018).

2.3 TU-games with a priority structure

TU-games with a priority structure were originally introduced by Béal et al. (2021a).
A priority structure can be viewed as a hierarchical organization of the players where
some players have priority over other players. In the introduction, we mentioned
that priority structures can be modeled by a directed graph. We adopt an equivalent
approach and model priority structure by a partial order on the player set to make
the distinction with permission structures clearer. Béal et al. (2021a) introduce the
Priority value for TU-games with a priority structure. This value shares the Harsanyi
dividend of each coalition equally among the subset of its members over whom no

74



other player in the coalition has priority. Contrary to the previous model where the
permission structure influences the evaluation of the coalitions through a restricted
game, the priority structure influences the allocation process. This section describes
the model of TU-games with a priority structure, it introduces the Priority value,
and provides two axiomatic characterizations of this value.

2.3.1 The model

Take any N ⊂ N. A binary relation on N is some relation ⪰ where, for each i, j ∈ N ,
the statement i ⪰ j is either true of false.

Definition 11. A binary relation ⪰ on N ⊂ N is

- reflexive if i ⪰ i for each i ∈ N ;

- antisymmetric if i ⪰ j and j ⪰ i then i = j for each i, j ∈ N ;

- transitive if i ⪰ j and j ⪰ k then i ⪰ k for each i, j, k ∈ N ;

- complete if i ⪰ j or j ⪰ i for each i, j ∈ N .

A partially ordered set, or simply a poset, on N is a reflexive, antisymmetric and
transitive binary relation on N . A priority structure on N can be represented by a
poset (N,⪰) on the player set N . The relation i ⪰ j means that i has priority over j.
The poset (N,⪰0) containing no priority relations among pair of distinct players is
called the trivial poset. If ⪰ is a complete binary relation, then the priority structure
is said to be linear. The class of all posets on a finite set of players is denoted by S.
The class of all linear posets on a finite set of players is denoted by SL.

A poset (N,⪰) gives rise to the asymmetric binary relation (N,≻): i ≻ j if i ⪰ j
and i ̸= j. Two distinct players i and j are incomparable in (N,⪰) if neither i ⪰ j
nor j ⪰ i. For each player i ∈ N , define the priority group of i, denoted by ↑≻ i,
as the set of players having priority over i in (N,⪰)

↑≻ i = {j ∈ N : j ≻ i},

and the set players over which i has priority in (N,⪰) as

↓≻ i = {j ∈ N : i ≻ j}.

For each nonempty E ∈ 2N , the sub-poset (E,⪰E) of (N,⪰) induced by E is
defined as follows: for each i ∈ E and j ∈ E, i ⪰E j if i ⪰ j. We will also use the
notation (E,⪰) instead of (E,⪰E). A player i ∈ N is a priority player in (E,⪰)
if, for j ∈ E, the relation j ⪰ i implies i = j. The non-empty subset of priority
players in (E,⪰) is defined as

Z(E,⪰) = {i ∈ E : ∀j ∈ E such that j ⪰ i, j = i}.
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Example 3. Consider the set of player N = {1, 2, 3, 4, 5}. Consider the priority
structure described by the following directed graph

1

4 2

35

The set of priority players of the coalition {2, 3, 4, 5} is given by

T ({2, 3, 4, 5},⪰) = {2, 4}.

The only priority player in N is T (N,⪰) = {1}. The priority group of player 5 is
given by

↑≻ {5} = {1, 2, 4}.

The set of players over which player 2 has priority is given by

↓≻ {2} = {3, 5}.

A TU-game with a priority structure is a triplet (N, v,⪰) such that (N, v) ∈ G
and (N,⪰) ∈ S. The class of TU-games with a priority structure is denoted by
GS. Béal et al. (2021a) introduce the Priority value on GS. This value divides the
Harsanyi dividend of each coalition among the priority players of this coalition.

Definition 12 (Priority value, Béal et al. (2021a)). The Priority value Pr is
defined, for each (N, v,⪰) ∈ GS, as

∀i ∈ N, Pri(N, v,⪰) =
∑
E∈2N

Z(E,⪰)∋i

∆v(E)

|Z(E,⪰)|
. (2.24)

The Priority value extends the Shapley value (Shapley (1953)). Indeed the two values
coincide when (N,⪰) is the trivial poset.

2.3.2 Axiomatic Characterizations

This section presents the two axiomatic characterizations of the Priority value in-
troduced by Béal et al. (2021a). Let f be an allocation rule for TU-games with a
priority structure.

If a null player leaves a game, it seems natural that the payoff of each remaining
player should not get impacted. Derks & Haller (1999) formalize this idea via the
following axiom.

76



Axiom 20 (Null player out). For each (N, v,⪰) ∈ GS and each j ∈ N such that
j is a null player in (N, v,⪰),

∀i ∈ N \ j, fi(N, v,⪰) = fi(N \ j, v,⪰).

If a value satisfies Efficiency and Null player out, then it satisfies the Null player
property.

Efficiency + Null player out =⇒ Null player property

The next axiom is a weak version of the Veto players property. It requires that
two veto players with the same priority group are treated equally, no matter over
which set of players they have priority.

Axiom 21 (Veto players with equal priority group property). For
each (N, v,⪰) ∈ GS and each i, j ∈ N such that i and j are veto players and ↑≻i=↑≻j,

fi(N, v,⪰) = fj(N, v,⪰).

If a value satisfies the Veto players property, then it satisfies the Veto players with
equal priority group property.

Veto players prop =⇒ Veto players with equal priority group prop

If a player is dominated by a veto player, its payoff possibilities are doubly blocked
by the fact that another player both has priority over it and vetoes any creation of
worth.

Axiom 22 (Veto and priority player property). For each (N, v,⪰) ∈ GS and
each j ∈ N such that j is a veto player,

∀i ∈↓≻j, fi(N, v,⪰) = 0.

The next axiom expresses an idea close to the Veto and priority player property.
It states that removing a player from both the game and the priority structure does
not affect the payoff of the players over which this player has priority.

Axiom 23 (Priority player out). For each (N, v,⪰) ∈ GS and each j ∈ N ,

∀i ∈↓≻j, fi(N, v,⪰) = fi(N \ {j}, v,⪰).

The next axiom indicates that adding a priority relation between two incompa-
rable players i and j, in the sense that i has now priority over j, does not affect
the players payoffs, including j, if player i and the players in the priority group of i
are null players. This means that a player does not care that a group of unproduc-
tive players have priority over it, and that this local change in the priority structure
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should have no impact on the other players. In a sense here, the lack of productivity
takes precedence over priorities.

Given a poset (N,⪰) and two distinct players i, j ∈ N such that j ∈ N\ ↑≻i,
define the poset (N,⪰i→j) as follows

∀k, l ∈ N, l ⪰i→j k ⇐⇒

{
l ∈ {i} ∪ (↑≻i) and k ∈ {j} ∪ (↓≻j),

l ⪰ k otherwise.

The poset (N,⪰i→j) is called the elementary extension of (N,⪰) with respect to
{i, j}. In this poset, player i has now priority on player j.

Axiom 24 (Invariance to unproductive priority extension). For each (N, v,⪰
) ∈ GS and each i, j ∈ N such that i and each k ∈↑≻i are null players in (N, v),

f(N, v,⪰) = f(N, v,⪰i→j).

Theorem 12 (Béal et al. (2021a)). A value f on GS satisfies Efficiency, Addi-
tivity, Priority player out, the Veto players with equal priority group property and
Invariance to unproductive priority extension if and only if f = Pr.

Another characterization of the Priority value can be obtained by substituting
Priority player out and Invariance to unproductive priority extension, by Null player
out and the Veto and priority player property.

Theorem 13 (Béal et al. (2021a)). A value f on GS satisfies Efficiency, Addi-
tivity, Null player out, the Veto players with equal priority group property and the
Veto and priority player property if and only if f = Pr.

2.4 Multi-choice games

Multi-choice games, introduced by Hsiao & Raghavan (1992) and van den Nouweland
(1993), are a natural extension of TU-games in which each player can choose several
activity levels at which it can cooperate within a coalition. This section presents the
model of multi-choice games and introduces some definitions. Solution concepts and
axiomatic characterization of some of these concepts are introduced.

2.4.1 The model

Let N = {1, . . . , n}, be a fixed1 set of players and fix an upper-bound K ∈ N
for activity levels. Each player i ∈ N has a finite set of pairwise distinct activity
levels Mi := {0, . . . ,mi} such that mi ≤ K. For each player i ∈ N , the set Mi is
linearly ordered from the lowest activity level 0 (i does not cooperate) to the maximal

1The set of players is fixed but we allow the activity levels to vary.
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activity level mi. Denote by Q(j) ∈ 2N the set of players able to play the activity
level j ≤ K. Formally, for each j ≤ K, the set Q(j) is defined as

Q(j) =
{
i ∈ N : mi ≥ j

}
.

Without loss of generality, assume that Q(1) = N . LetM be the cartesian product∏
i∈N Mi. Each element s = (s1, . . . , sn) ∈ M specifies a participation profile for

players and is referred to as a (multi-choice) coalition. So, a coalition indicates each
player’s activity level. Then, m = (m1, . . . ,mn) ∈ M is the greatest participation
profile, which plays the role of the grand coalition, whereas 0⃗ = (0, . . . , 0) plays
the role of the empty coalition. For each s ∈ M, denote by (s−i, k) the coalition
where all players except i play at levels defined in s while i plays at k ∈ Mi. For
each s ∈ M, denote by sT = maxi∈N si the highest activity level player by a player
within s. The set M endowed with the usual binary relation ≤ on Rn induces
a (complete) lattice with greatest element m and least element 0⃗. For any two
coalitions a, b ∈M, a∨ b and a∧ b denote their least upper bound and their greatest
lower bound over M, respectively. We use the notation M+

i = Mi \ {0} for each
i ∈ N and M+ =

⋃
i∈N
(
{i} ×M+

i

)
. A pair (i, j) ∈M+ represents a player and one

of its activity levels.
A (cooperative) multi-choice game on N is a couple (m, v) where v :M−→ R

is a characteristic function such that v(⃗0) = 0, that specifies the worth v(s) when
players participate at profile s. Take any q ∈ Rn such that qi ≤ K for each i ∈ N .
Denote by Gq the set of multi-choice games on N with the grand coalition q. Denote
by G = ∪q≤(K,...,K)Gq the set of all multi-choice games on N with K as an upper
bound for activity levels. Notice that TU-games can be viewed as a subclass of
multi-choice games satisfying m = (1, . . . , 1). Several sub-class of multi-choice games
are identified. To that end, let us introduce a few definitions.

A multi-choice game (m, v) ∈ G is the null game if each coalition has a null
worth. Formally, such game is defined as

∀s ∈M, v(s) = 0.

A multi-choice game (m, v) ∈ G is non-negative if each coalition has a non-
negative worth. Formally, such game is defined as

∀s ∈M, v(s) ≥ 0.

A multi-choice game (m, v) ∈ G is monotonic If an increase in activity levels always
leads to an increase in worth. Formally, such game is defined as

∀s, t ∈M : s ≤ t, v(s) ≤ v(t).

The class of monotonic multi-choice games is denoted by Gm ⊆ G. A null game is
a non-negative game and a monotonic game is a non-negative game due to the fact
that v(⃗0) = 0.

79



A multi-choice game (m, v) ∈ G is super-modular if

∀s, t ∈M, v(s ∨ t) + v(s ∧ t) ≥ v(s) + v(t).

On the contrary, a multi-choice game (m, v) ∈ G is sub-modular if

∀s, t ∈M, v(s ∨ t) + v(s ∧ t) ≤ v(s) + v(t).

The classes of super-modular and sub-modular multi-choice games are denoted by
Gspm ⊆ G and Gsbm ⊆ G respectively.

Take any (m, v) ∈ G and any coalition s ∈M such that si = j−1. Themarginal
contribution of player i for its activity level j (or simply the marginal contribution
of the pair (i, j)) to the coalition s is defined as

v(s+ ei)− v(s).

This corresponds to the variation in worth incurred by coalition s following an in-
crease in activity of player i by one unit.

A pair (i, j) ∈ M+ is a weakly null pair in (m, v) ∈ G if it has null marginal
contribution to coalitions.

A pair (i, j) ∈ M+ is a null pair in (m, v) ∈ G if the marginal contribution of
each pair (i, j′) such that j ≤ j′ ≤ mi, to each coalition is null. Put differently, (i, j)
is a null pair if player i generates no worth from its activity level j up to its maximal
activity level mi. Formally, (i, j) ∈M+ is a null pair if

∀s ∈M,∀j ≤ l ≤ mi, v(s−i, l) = v(s−i, j − 1). (2.25)

In the null game, each pair is a null pair. Moreover, a null pair is also a weakly
null pair. The converse is not true. Two distinct pairs featuring the same activity
level are equal if they have the same marginal contribution to coalitions. Formally,
(i, j), (i′, j) ∈M+ are equal pairs if

∀s ∈M : si = si′ = j − 1, v(s+ ei) = v(s+ ei′). (2.26)

Observe that two null pairs in a game are equal.
A pair (i, j) ∈ M+ is a veto pair in (m, v) ∈ G If any coalition in which player

i plays strictly less than j has a null worth. Formally, (i, j) ∈M+ is a veto pair if

∀s ∈M : si < j, v(s) = 0. (2.27)

By definition, if (i, j) is a veto pair, then each pair (i, j′) such that j′ < j, is also a
veto pair. Two distinct veto pairs featuring the same activity level are equal pairs.

Among the veto pairs, we identify the decisive pairs. If there exist several veto
pairs featuring the same player, then the pair featuring the highest activity level
among these pairs is called a decisive pair. Formally, a pair (i, j) ∈ M+ is a
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decisive pair in (m, v) ∈ G if it is a veto pair and there is at least one coalition s
with non-null worth and such that si = j. Formally, (i, j) ∈M+ is a decisive pair if

∀s ∈M : si < j, v(s) = 0 and

∃t ∈M : ti = j, v(t) ̸= 0. (2.28)

For s ∈ M, we introduce the set of top pairs T (s) containing players playing
the highest activity levels in s. Formally, the set of top pairs in s is defined as

∀s ∈M, T (s) =
{
(i, si) ∈M+ : si ≥ sk, ∀k ∈ N

}
. (2.29)

For (m, v) ∈ G, define the sub-game (t, vt) ∈ G, induced by t ∈M, as

∀s ∈M, vt(s) =

{
v(s) if s ≤ t,

0 otherwise.
(2.30)

When no confusion arises, we simply denote the sub-game (t, vt) of (m, v) by (t, v).
The sub-game (t, v) corresponds to a cooperative situation in which each player i ∈ N
can play at most the level ti, where ti ≤ mi. In other words, this describes a situation
where the maximal activity level of some players have been reduced.

Take any t ∈ M, t ̸= 0⃗. An analogue of an unanimity TU-game in the multi-
choice setting is the concept of minimal effort game (m,ut) ∈ G defined as

∀s ∈M, ut(s) =

{
1 if s ≥ t,

0 otherwise.
(2.31)

In a minimal effort game (m,ut), each player needs to achieve at least the activity
level specified by coalition t to generate a non-null worth. Observe that any game
(s, ut) ∈ G such that s < t, is the null game.

Remark 1. Take any t ∈ M, t ̸= 0⃗. Each pair (i, j) ∈ M+ such that j > ti, is a
null pair in (m,ut). Let (i, j), (i

′, j) ∈M+ be two distinct pairs such that j ≤ ti and
j ≤ ti′. Both pairs are decisive in (m,ut).

For each q ≤ (K, . . . ,K), Hsiao & Raghavan (1992) show that {ut}t≤q are linearly
independent and thus constitute a basis for Gq ⊆ G. Therefore, for each (m, v) ∈ Gq,

v =
∑
t≤m

∆v(t)ut, where ∆v(t) = v(t)−
∑

s≤t,s ̸=t

∆v(s). (2.32)

For each t ∈ M, ∆v(t) is the (multi-choice) Harsanyi dividend of t. Similarly to
TU-games, the Harsanyi dividend of a multi-choice coalition can be viewed as the
net surplus generated by a coalition.

Consider t ∈M, t ̸= 0⃗. The Dirac game (m, δt) ∈ G, induced by t, is defined as

∀s ∈M, δt(s) =

{
1 if s = t,

0 otherwise.
(2.33)
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Remark 2. Take any t ∈ M, t ̸= 0⃗. Each pair (i, j) ∈ M+ such that j > ti + 1 is
a null pair in (m, δt). If there exists two distinct players i, i′ ∈ N such that ti = ti′,
then (i, ti) and (i′, ti′) are equal in (m, δt).

For each multi-choice game (m, v) ∈ G, the characteristic function v admits a
unique linear decomposition in terms of Dirac games as follows

v =
∑
t≤m

v(t)δt. (2.34)

2.4.2 Solution concepts

Solution concepts for multi-choice games differs from solution concepts from TU-
games. The later allocates a collection of payoffs to each player, whereas the former
allocates a collection of payoffs to each activity level of each player. Therefore, in
multi-choice games, a player receives as many collection of payoffs as it has activity
levels. A payoff vector for a game (m, v) ∈ G is an element x ∈ R|M+|, where
xij ∈ R is the payoff received by the pair (i, j) ∈ M+. A set-valued solution on G is
a map F that assigns a collection of payoff vectors F (m, v) to each (m, v) ∈ G. A
value f is a single-valued solution on G that assigns a unique payoff vector f(m, v)
to each (m, v) ∈ G. This section presents single-valued solution and set-valued
solutions for multi-choice games. Regarding single-valued solutions, extensions of the
Shapley value and the Equal division value from TU-games to multi-choice games
are presented. As for set-valued solutions, we present extensions of the Core and the
Weber set from TU-games to multi-choice games.

Extensions of the Shapley value

This section presents three extensions of the Shapley value from TU-games to multi-
choice games. These are the extensions proposed by Derks & Peters (1993), van den
Nouweland et al. (1995) and Peters & Zank (2005) respectively.2 Each extension
admits an expression in terms of marginal contributions and in terms of Harsanyi
dividends.

A first approach is proposed by Derks & Peters (1993) and studied by Klijn et al.
(1999). An order over M+ can be represented by a map

θDP : M+ → {1, . . . ,
∑
i∈N

mi}. (2.35)

The integer θDP (i, j) indicates the position at which the pair (i, j) is ordered in
θDP . Denote by ΘDP the set of all orders over M+ whose cardinality is given by
(
∑

i∈N mi)!. The subset θ
−1
DP ({1, . . . , k}) of M+, which is the subset of pairs ordered

2Additional extensions of the Shapley value from TU-games to multi-choice games can be found
in Hsiao & Raghavan (1992) and Grabisch & Lange (2007).

82



up to k steps, is denoted by SθDP ,k. Additionally, define the map σ that assigns to
each subset S ⊆ M+ the maximal feasible coalition σ(S) ∈ M. Formally, this map
is defined, for S ⊆M+, as

σ(S) = (t1, . . . , tn),

where ti =

{
max{l ∈M+

i : (i, 1), . . . , (i, l) ∈ S} if (i, 1) ∈ S,

0 otherwise.

In other words, ti is the highest level that can be observed for a pair in S featuring
player i, given that all the pairs featuring player i from (i, 1) to (i, ti− 1) are also in
S. The marginal vector ηθDP (m, v) corresponding to θDP ∈ ΘDP is defined as

∀(i, j) ∈M+, ηθDP
ij (m, v) = v(σ(SθDP ,θDP (i,j)))− v(σ(SθDP ,θDP (i,j)−1)).

Observe that v ◦ σ can be interpreted as the restriction of v by σ. Then, each
ηθDP
ij (m, v) represents the marginal contribution of (i, j) to the coalition σ(SθDP ,θDP (i,j)−1).
The Derks Peters value, or simply the DP value, proposed by Derks & Peters (1993),
assigns to each pair its expected marginal contribution to the restriction of v, by as-
suming that each order θDP ∈ ΘDP over the set of pairs occurs with equal probability.

Definition 13 (Derks & Peters (1993)). For each (m, v) ∈ G, the DP value is
defined as

∀(i, j) ∈M+, DPij(m, v) =
1

(
∑

i∈N mi)!

∑
θDP∈ΘDP

ηθDP
ij (m, v). (2.36)

The DP value admits an expression in terms of Harsanyi dividends. Define the set

∀s ∈M, B(s) = {(i, j) ∈M+ : j ≤ si}

as an interpretation of the support of a coalition s. For each (m, v) ∈ G, an
alternative expression of the DP value is given by

∀(i, j) ∈M+, DPij(m, v) =
∑
s≤m

(i,j)∈B(s)

∆v(s)

|B(s)|
. (2.37)

The DP value allocates to each pair (i, j) ∈ M+ a share of the dividend of each
coalition s such that (i, j) is in the support of s.

Remark 3. Take any (m, v) ∈ G. Let us interpret M+ as a set of players, meaning
that each pair is viewed as a player. Take any characteristic function w : 2M

+ → R
satisfying

∀S ⊆M+, w(S) = v(σ(S)).
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The couple (M+, w) forms a TU-game. Observe that w(M+) = v(m). There exists a
unique permission structure over M+, denoted by (M+, P ), which captures the linear
order of the activity levels. This permission structure is such that each pair (i, j) ∈
M+, j > 1, needs permission from the pairs (i, j− 1), (i, j− 2), . . . , (i, 1) ∈M+. For
instance, take

M+ = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2)}.

The permission structure over M+ can be illustrated by

(1, 3)

(1, 2)

(1, 1)

(2, 2)

(2, 1)

In this structure, the pair (1, 2) needs the permission from (1, 1), (1, 3) needs the
permission from (1, 2) and (1, 1). The DP value of a multi-choice game (m, v) ∈ G
can be viewed as the Permission value of the TU-game with a permission structure
(M+, w, P ).

Another approach is proposed by van den Nouweland et al. (1995). The authors
suppose that the grand coalition forms step by step, starting from the empty coalition
and where in each step, the level of one of the player increases by one unit. Compared
to Derks & Peters (1993) and Klijn et al. (1999), van den Nouweland et al. (1995)
consider the subset of admissible orders on M+ such that no pair (i, j) ∈ M+ is
ordered before a pair (i, l) featuring the same player and such that l < j. Formally,
an admissible order for the game (m, v) is a map θvdN : M+ → {1, . . . ,

∑
i∈N mi}

such that θvdN(i, j − 1) < θvdN(i, j) for each (i, j) ∈ M+. Denote by ΘvdN ⊆ ΘDP

the set of all admissible orders on M+ whose cardinality is given by

(
∑

i∈N mi)!∏
i∈N(mi!)

.

Let θvdN ∈ ΘvdN be an admissible order and h ∈ {1, . . . ,
∑

i∈N mi}. We denote by
sθvdN ,h the coalition formed after step h. Formally, it is defined as

∀i ∈ N, sθvdN ,h
i = max{j ∈Mi : θvdN(i, j) ≤ h} ∪ {0}.

The marginal vector ηθvdN (m, v) corresponding to θvdN ∈ ΘvdN is defined as

∀(i, j) ∈M+, ηθvdNij (m, v) = v(sθvdN ,θvdN (i,j))− v(sθvdN ,θvdN (i,j)−1). (2.38)
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Each ηθvdN (m, v) represents the marginal contribution of (i, j) to the coalition sθvdN ,θvdN (i,j)−1.
The value vdN proposed by van den Nouweland et al. (1995) assigns to each pair
its expected marginal contribution assuming that all admissible orders over the set
of pairs occur with equal probability. Contrary to the DP value, the game is not
restricted by the operator σ. Instead, the set of orders is reduced to admissible orders
in ΘvdN .

Definition 14 (van den Nouweland (1993)). For each (m, v) ∈ G, the vdN value
is defined as

∀(i, j) ∈M+, vdNij(m, v) =

∏
i∈N(mi!)

(
∑

i∈N mi)!

∑
θvdN∈ΘvdN

ηθvdNij (m, v).

The vdN value admits an expression in terms of Harsanyi dividends provided by
Faigle & Kern (1992). Define hij(s) as the hierarchical strength of a pair (i, j) ∈
M+ in the coalition s, si = j. The hierarchical strength of (i, j) in s represents the
average number of admissible orders such that all the pairs in B(s), except (i, j), are
ordered prior to step |B(s)| − 1 and (i, j) is ordered last among the pairs in B(s).
Formally, the hierarchical strength of a pair (i, j) ∈ M+ in a coalition s, in which
si = j, is defined as

hij(s) =
1

|ΘvdN |
|{θvdN ∈ ΘvdN : θvdN(i, j) = |B(s)|}|.

In addition, define

∀s ∈M, C(s) = {(i, j) ∈M+ : j = si} (2.39)

as an interpretation of the support of coalition s. Observe that C(s) ⊆ B(s). For
each (m, v) ∈ G, an alternative expression of the vdN value is given by

∀(i, j) ∈M+, vdNij(m, v) =
∑
s≤m

(i,j)∈C(s)

hij(s)∆v(s). (2.40)

This value allocates to each pair a share of a dividend ∆v(s) proportional to its
hierarchical strength.

Finally, we consider the value proposed by Peters & Zank (2005). We refer to
this value as the PZ value. The PZ value allows for a probabilistic interpretation
closely related to the Shapley value. Consider (i, j) ∈M+. The PZ value of (i, j) is
computed as follows. Assume that the coalition (m−i, j) is being formed in n steps
starting from the coalition (⃗0−i, j−1), with respect to a certain order over the player
set. Let h, h ≤ n, be the step at which i is ordered. At each step t ̸= h, a player
k ̸= i is ordered and immediately plays its maximum activity level. At step h, player
i is ordered and increases its activity level from j − 1 to j. The PZ value assigns
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to (i, j) its expected marginal contribution assuming that each order over the player
set occurs with equal probability.

Formally, define Yij the set of coalitions in which i plays j − 1 while the other
players play either 0 or their maximal activity level. Formally, it is defined as

∀(i, j) ∈M+, Yij = {s ∈M : si = j − 1 and sk = {0,mk} for each k ̸= i}.

For each s ∈ Yij, denote by

z(s) = |{k ∈ N : k ̸= i, sk = 0}|

the number of players that do not cooperate in s.

Definition 15 (Peters & Zank (2005)). For each (m, v) ∈ G, the PZ value is
defined as

∀(i, j) ∈M+, PZij(m, v) =
∑
s∈Yij

z(s)!(n− z(s)− 1)!

n!

(
v(s+ ei)− v(s)

)
.

In contrast to the DP and vdN values, the PZ value only uses a restricted subset of
information provided by the game (m, v). In order to compute this value, it suffices
to know the worth of those coalitions where only one player is allowed to play at an
activity level different from 0 or its maximum activity level. The PZ value admits
an expression in terms of Harsanyi dividends. For each (m, v) ∈ G, an alternative
expression of the PZ value is given by

∀(i, j) ∈M+, PZij(m, v) =
∑
s≤m

(i,j)∈C(s)

∆v(s)

|C(s)|
. (2.41)

The PZ value allocates to each pair (i, j) ∈ M+ an equal share of the dividend of
each coalition s such that (i, j) is in the support C(s) of s. Put differently, each
dividend ∆v(s) is equally shared among the players that play a non-null activity
level in s. This allocation of the dividend differs from Derks & Peters (1993) and
van den Nouweland et al. (1995) since the division of the dividend does not depend
on the level of activity of the players within the coalition.

A new extension of the Shapley value from TU-games to multi-choice games is
introduced in Chapter 4. It turns out that this value satisfies the Independence of
higher demands principle (if one interprets activity levels as demands), which is not
the case of the DP , vdN or PZ values.

Extensions of the Equal division value

This section briefly presents some possible extensions of the Equal division value from
TU-games to multi-choice games. The d-value proposed by Branzei et al. (2014).
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This value generalizes the constrained egalitarian solution (see Dutta & Ray (1989))
from TU-games to super-modular multi-choice games. The d-value is computed with
an algorithm that searches for a solution as egalitarian as possible, while taking into
account the activity levels of the players. Not all activity levels of the same player
will receive the same payoff, but similar activity levels of different players will be
treated as equally as possible.

We now present two reasonable extensions of the Equal division value from TU-
games to multi-choice games. The first extension divides the worth of the grand
coalition equally among the pairs in M+. This value is defined, for each (m, v) ∈ G,
as

∀(i, j) ∈M+, ED1
ij(m, v) =

v(m)

B(m)
. (2.42)

Obviously, the player’s total payoff increases with respect to their maximal activity
level. The second extension can be defined as a two-steps procedure. This value
divides the worth of the grand coalition equally among the players, then the amount
allocated to each player is divided equally among their activity level. This value is
defined, for each (m, v) ∈ G, as

∀(i, j) ∈M+, ED2
ij(m, v) =

v(m)

n×mi

.

Another extension of the Equal division value from TU-games to multi-choice
games is introduced in Chapter 4. It turns out that this value satisfies the Indepen-
dence of higher demands principle (if one interprets activity levels as demands).

Extensions of the Core and the Weber set

This section presents two extensions of the Core and the Weber set from TU-games
to multi-choice games proposed by Grabisch & Xie (2007) and van den Nouweland
et al. (1995) respectively. We discuss these solution concepts and point out that the
Weber set and the Core proposed by Grabisch & Xie (2007) coincide on the class of
super-modular multi-choice games.

Definition 16 (Core, Grabisch & Xie (2007)). For each (m, v) ∈ G, the Core
of (m, v) is denoted by C(m, v). A payoff vector x is in C(m, v) if

∀s ∈M,
∑
i∈N

si∑
j=1

xij ≥ v(s) (2.43)

∀h ≤ max
k∈N

mk,
∑
i∈N

h∧mi∑
j=1

xij = v((h ∧mi)i∈N). (2.44)

The first Core condition (2.43) states that no coalition can achieve, by itself, a
better outcome than the one prescribed by the payoff vectors in the Core. Observe
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that, on the class of multi-choice games such that m = (1, . . . , 1), condition (2.43)
coincides with the coalitional rationality condition for TU-games (2.6). Next, assume
that all players agree on forming a coalition in which everyone plays the same activity
level, let us say h. Players unable to cooperate at such level play their maximal
activity level. We call such coalition an h-synchronized coalition. The second
condition (2.44) states that an h-synchronized coalition achieves the same outcome
than the one prescribed by the payoff vectors. On the class of multi-choice games
such thatm = (1, . . . , 1), condition (2.44) coincides with the efficiency Core condition
(2.4) for TU-games.

Grabisch & Xie (2007) also propose an extension of the Weber set from TU-
games to multi-choice games. To do so, let us introduce restricted orders over M+.
These orders are such that no pair (i, j) ∈M+ is ordered before a pair (i′, j′) ∈M+

containing a strictly lower activity level j′ < j. Formally, a restricted order over the
set of pairs is a map

θGX : M+ → {1, . . . ,
∑
i∈N

mi} (2.45)

defined as

∀(i, j), (i′, j′) ∈M+,
[
j < j′

]
=⇒

[
θGX(i, j) < θGX(i

′, j′)
]
.

Denote by ΘGX the set of all restricted orders over the set of pairs. Obviously,
ΘGX ⊆ ΘvdN . The number of restricted orders over the set of pairs is given by∏

j≤ max
k∈N

mk

|Q(j)|!

Let θGX ∈ ΘGX be a restricted order and h ∈ {1, . . . ,
∑

i∈N mi}. We denote by sθGX ,h

the coalition formed after step h. Formally, it is defined as

∀i ∈ N, sθGX ,h
i = max

{
j ∈Mi : θGX(i, j) ≤ h

}
∪ {0}. (2.46)

We use the convention sθGX ,0 = 0⃗. For each θGX ∈ ΘGX , the marginal vector
ηθGX (m, v) is defined as

∀(i, j) ∈M+, ηθGX
ij (m, v) = v(sθGX ,θGX(i,j))− v(sθGX ,θGX(i,j)−1).

Each ηθGX
ij (m, v) represents the marginal contribution of (i, j) to the coalition sθGX ,θGX(i,j)−1

formed after θGX(i, j)− 1 steps according to the restricted order θGX .

Definition 17 (Grabisch & Xie (2007)). For each (m, v) ∈ G, the Weber set W
of (m, v) is the convex hull of all marginal vectors computed from restricted orders.
This set is defined as

W(m, v) = co({ηθGX (m, v) | θGX ∈ ΘGX}).
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Proposition 7 (Grabisch & Xie (2007)). The Weber set coincides with the Core
on the class of super-modular multi-choice games.

van den Nouweland et al. (1995) propose alternative extensions of the Core and the
Weber set from TU-games to multi-choice games.

Definition 18 (van den Nouweland et al. (1995)). For each (m, v) ∈ G, the
Core of (m, v) is denoted by C(m, v). A payoff vector x is in C(m, v) if and only if
it satisfies these three conditions

∀s ∈M,
∑
i∈N

si∑
j=1

xij ≥ v(s) (2.47)

∑
i∈N

mi∑
j=1

xij = v(m) (2.48)

∀i ∈ N, ∀j ∈Mi \ {0}, xij ≥ v(jei)− v((j − 1)ei). (2.49)

Condition (2.47) is the same condition than (2.43). Condition (2.48) states that the
sum of the payoffs is equal to the worth of the grand coalition. Clearly, this condition
extends the Efficiency condition of the Core for TU-games (see 2.4). This condition
can be viewed as a particular case of condition (2.44), where h = maxk∈N mk. Con-
dition (2.49) states that the payoff of any player i for any of its activity level j is at
least equal to the increase in worth that player i can obtain when it works alone and
changes its activity from level j− 1 to level j. This condition extends the individual
rationality condition (2.5) from TU-games to multi-choice games.

Definition 19 (van den Nouweland et al. (1995)). For each (m, v) ∈ G, the
Weber set W of (m, v) is the convex hull of all marginal vectors computed from
admissible orders (2.38). This set is defined as

W(m, v) = co({ηθvdN (m, v) | θN ∈ θvdN}).

Contrary to the extensions of the Core and the Weber set proposed by Grabisch
& Xie (2007), the extensions of the Core and the Weber set proposed by van den
Nouweland et al. (1995) do not coincide on the class of super-modular multi-choice
games. This is why we prefer to focus on the extensions provided by Grabisch & Xie
(2007).

2.4.3 Axiomatic characterizations

This section presents axiomatic characterizations of the DP , vdN and PZ values
for multi-choice games. Several axioms for multi-choice games are discussed, some
of them being straightforward extensions of axioms from TU-games to multi-choice
games.3

3Certain names of the axioms are identical to Section 2.1.3 due to their normative similarities.
In the following, when using such names, we refer to the multi-choice version of these axioms.
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Take a value f on G. The first axiom is ubiquitous in almost every axiomatic
characterization, as it translates the simple idea that the total worth of the grand
coalition should be entirely allocated among the pairs in M+. Clearly, this axiom
extends Efficiency from TU-games to multi-choice games.

Axiom 25 (Efficiency). For each (m, v) ∈ G,∑
i∈N

∑
j≤qi

fij(m, v) = v(m).

The next axiom is also frequently used in many axiomatic characterizations. This
axiom states that the solution is additive with respect to multi-choice games. This
means that there is no difference between considering two problems separately or
at the same time. This axiom extends Additivity from TU-games to multi-choice
games.

Axiom 26 (Additivity). For each (m, v), (m,w) ∈ G,

f(m, v + w) = f(m, v) + f(m,w).

If a player is unproductive at a certain activity level, it seems reasonable to
penalize it accordingly. An unproductive activity level of a player can be modeled
by a weakly null pair, which has null marginal contributions to coalitions. Peters &
Zank (2005) introduce an axiom indicating that weakly null pairs should obtain a
null payoff.

Axiom 27 (Weak null pair property). For each (m, v) ∈ G, if (i, j) ∈ M+ is a
weakly null pair, then

fij(m, v) = 0.

If a player stops being productive starting from a certain activity level up to its
maximal activity level, it seems reasonable to penalize it accordingly. This situation
can be modeled by a null pair that describes a player and one of its activity level
from which it stops being productive. Klijn et al. (1999) introduce a stronger version
of the Weak null pair property indicating that any null pair should obtain a null
payoff.

Axiom 28 (Null pair property). For each (m, v) ∈ G, if (i, j) ∈ M+ is a null
pair, then

fij(m, v) = 0. (2.50)

The Null pair property implies that not only a null pair (i, j) receives a null payoff,
but each of the pairs (i, j′) such that j′ > j also receives a null payoff, since they are
also null pair themselves. Clearly, if a value satisfies the Weak null pair property,
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then it satisfies the Null pair property. The Null pair property and the Weak null
pair property both boil down to the Null player property on the class of multi-choice
games with m = (1, . . . , 1).

Weak null pair property =⇒ Null pair property

A veto pair represents a player’s activity level that is necessary for a coalition
to generate a non-null worth. Since all veto pairs are all equally necessary, it seems
reasonable to allocate them the same amount. van den Nouweland (1993) introduce
an axiom stating that two veto pairs should receive the same payoffs. This axiom
extends the Veto players property from TU-games to multi-choice games.

Axiom 29 (Veto pair property). For each (m, v) ∈ G and each
(i, j), (i′, j′) ∈M+ two veto pairs,

fij(m, v) = fi′j′(m, v).

Anonymity for solutions of TU-games indicates that the payoff of the players
does not depend on their label, meaning that one can permute the labels of two
players without changing the final allocation. Peters & Zank (2005) proposes a
straightforward extension of Anonymity from TU-games to multi-choice games. To
permute the labels of two players it is necessary that these players have the same
number of activity levels. Therefore, this axiom only holds on the class of multi-choice
games in which all the players have the same maximal activity level. The sub-class
of multi-choice games such that all players have the same maximal activity level
is denoted by G.

Axiom 30 (Anonymity). For each (m, v) ∈ G, each t ∈ M and each order θ ∈
ΘN , we define θt as θtθ(i) = ti for each i ∈ N , and θv as θv(θt) = v(t). Then, it
holds that

fij(m, v) = fθ(i)j(m, θv).

If Anonymity for TU-games implies Equal treatment for equals, which in turn implies
the Veto players property for TU-games, this is no longer true for Anonymity for
multi-choice games.

If a player decides to stop playing above a certain activity level, this can poten-
tially affects the payoffs of its remaining activity levels. Klijn et al. (1999) introduce
an axiom stating that if aplayer reduces its maximal activity level by one unit, then
the variation in payoff incurred by each of its remaining activity levels is equal to
the payoff it received for this maximal activity level.4

4This axiom is called the Equal loss property in Klijn et al. (1999).

91



Axiom 31 (Intra-balanced contributions). For each (m, v) ∈ G and
each (i, j) ∈M+ such that j ̸= mi,

fij(m, v)− fij(m− ei, v) = fimi
(m, v).

Klijn et al. (1999) propose an axiom indicating that for any two players, the
amount that each player would gain or lose for its maximal activity level if the
other’s reduces its maximal activity level by one unit should be equal.

Axiom 32 (Upper balanced contributions). For each (m, v) ∈ G and any i, i′ ∈
N ,

fimi
(m, v)− fimi

(m− ei′ , v) = fi′mi′
(m, v)− fi′mi′

(m− ei, v).

Tang et al. (2019) propose an axiom that compares the payoffs of two veto pairs.
This axiom is inspired from the Hierarchical strength axiom introduced by Faigle &
Kern (1992) for TU-games with precedence constrains. Take any (m, v) ∈ G. To
introduce the axiom, define a veto coalition t ∈M as

∀s ∈M, v(s) =

{
v(t) if s ≥ t,

0 otherwise.

A veto coalition for a game (m, v) ∈ G, is a profile that collects all the minimal
activity levels required to generate a non-null worth. For instance, in a minimal
effort game (m,ut), t is a veto coalition. Observe that a veto coalition t always
verifies t > (0, . . . , 0).

Axiom 33 (Hierarchical symmetry). Take any (m, v) ∈ G. For each veto coali-
tion t ∈M and each pairs (i, ti), (i

′, ti′) ∈M+,∑
s≥t

si′=ti′

hi′ti′
fiti(m, v) =

∑
s≥t
si=ti

hitifi′ti′ (m, v).

The last axiom indicates that if two activity levels of the same player have the
same marginal contributions, then it seems reasonable that they obtain the same
payoff.

Axiom 34 (Intra symmetry). For each (m, v) ∈ G and each (i, j), (i, j′) ∈ M+

such that

∀s ∈M, v(s−i, j)− v(s−i, j − 1) = v(s−i, j
′)− v(s−i, j

′ − 1),

we have

fij(m, v) = fij′(m, v).
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Klijn et al. (1999) provide an axiomatic characterization of the DP value concep-
tually close to the characterization of the Shapley value provided by Béal & Navarro
(2020) (see Theorem 1).

Theorem 14 (Klijn et al. (1999)). A value f on G satisfies Efficiency, Additiv-
ity, the Veto pair property and the Null pair property if and only if f = DP .

Klijn et al. (1999) propose another characterization of the DP value conceptually
close to the characterization of the Shapley value provided by Myerson (1980).

Theorem 15 (Klijn et al. (1999)). A value f on G satisfies Efficiency, Intra-
balanced contribution, and Upper balanced contributions if and only if f = DP .

Tang et al. (2019) propose an axiomatic characterization of the vdN value, which
is conceptually close to the characterization of the Shapley value for TU-games with
precedence constrains proposed by Faigle & Kern (1992). Another characterization,
conceptually close to the characterization of the Shapley value provided by Myerson
(1980), is proposed by Calvo & Santos (2000). Here, we limit ourselves to the
characterization provided by Tang et al. (2019).

Theorem 16 (Tang et al. (2019)). A value f on G satisfies Efficiency, Additiv-
ity, the Weak null pair property and Hierarchical symmetry if and only if f = vdN .

One can replace Hierarchical symmetry in Theorem 16 by Anonymity and Intra
symmetry to obtain a characterization of the PZ value on G. Such a characterization
is proposed by Peters & Zank (2005).

Theorem 17 (Peters & Zank (2005)). A value f on G satisfies Efficiency, Ad-
ditivity, Anonymity, the Weak null pair property and Intra symmetry if and only if
f = PZ.

2.4.4 Consistent discrete cost sharing methods

This section presents the class of discrete cost sharing problems (see Moulin (1995),
Albizuri et al. (2003), Sprumont (2005) and Bahel & Trudeau (2013) to cite a few)
and discusses several solution concepts on this class of problems called discrete cost
sharing methods.

Fix N = {1, . . . , n} a set of n different consumers that demand a certain com-
modity.5 A discrete cost sharing problem is a couple (q, C), where q = (q1, . . . , qn).
Fix K ∈ N an upper bound for demands. Each qi ≤ K represents the effective
demand of i ∈ N . A demand profile s ≤ q describes a situation in which each
consumer i ∈ N demands a quantity si ≤ qi of commodity. The cost function

C :
∏
i∈N

{0, 1, . . . , qi} → R+

5In the original discrete cost sharing model, the set N refers to goods instead of consumers.
Without loss of generality, we stick to the term consumer to fit in the framework of the thesis.
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is a non-decreasing map verifying C (⃗0) = 0 for each s ≤ q. The real C(s) represents
the cost of satisfying the demand profile s. The total cost to be shared is given by
C(q). Clearly, q can be interpreted as a vector of maximal activity levels and C can
be interpreted as a non-decreasing characteristic function. Therefore, the class of
discrete cost sharing problems is the class of monotonic multi-choice games Gm.

In the cost sharing literature, a method on Gm is a map g that associates to
each problem (q, C) ∈ Gm a vector g(q, C) ∈ Rn

+ satisfying the budget balanced
condition, i.e,∑

i∈N

gi(q, C) = C(q).

Take any (q, C) ∈ Gm. A cost sharing method on Gm differs from a value on G,
for the following reasons:

- a discrete cost sharing method is a map from Gm to R|M+|, whereas a value is a
map from G to R|M+|. Put differently, a discrete cost sharing method allocates
a payoff to each consumer (player), whereas a value allocates a payoff to each
demand of each player;

- by definition, a discrete cost sharing method satisfies the budget balanced con-
dition, which is equivalent to say that to satisfies Efficiency. On the contrary,
a value does not necessarily satisfy Efficiency.

Despite their differences, it is possible to establish some links between discrete cost
sharing methods and values on Gm. Two types of links are detailed: the consistency
and the weak consistency.

A value f on G is consistent with a method g on Gm if

∀(q, C) ∈ Gm, ∀i ∈ N, gi(q, C)− gi(q − ei, C) = fiqi(q, C).

In other words, f describes the variation in cost share a consumer undergoes when
its demand increases by one unit whereas g describes the total cost share allocated
to each consumer. We say that a value f on G is weakly consistent with a method
g on Gm if

∀(q, C) ∈ Gm, ∀i ∈ N, gi(q, C) =
∑
j∈M+

i

fij(q, C).

Obviously, if a value f is consistent with a method g on Gm, then it is also weakly
consistent with g. The converse is not true.

Three well known discrete cost sharing methods are the Aumann-Shapley method
(see Sprumont (2005)), the Pseudo Average method (see Moulin (1995)) and the
Serial cost sharing method (see Moulin (1995)). Each of these methods is an additive
method, in the sense that, for each (q, C), (q, C ′) ∈ Gm,

g(q, C) + g(q, C ′) = g(q, C + C ′).
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In the following, we provide a mathematical expression of these methods and point
out if the method is consistent/weakly consistent with an existing value for multi-
choice games.

Since a discrete cost sharing problem is a multi-choice game, then by (2.32),

∀(q, C) ∈ Gm, C =
∑
s≤q

∆C(s)us.

For a certain s ∈ M such that ∆C(s) is negative, (q,∆C(s)us) is a non-monotonic
game and so is not a discrete cost sharing problem. To get around this drawback,
let us re-writte the cost function C as

C =
∑
s≤q

∆C(s)≥0

∆C(s)us +
∑
s≤q

∆C(s)<0

∆C(s)us

C =
∑
s≤q

∆C(s)≥0

∆C(s)us −
∑
s≤q

∆C(s)<0

(−∆C(s)us).

With this re-writing, one can express any cost function with monotonic games only.
Formally, for any additive discrete cost sharing method g,

g(q, C) =
∑
s≤q

∆C(s)≥0

g(q,∆C(s)us)−
∑
s≤q

∆C(s)<0

g(q,−∆C(s)us). (2.51)

For the sake of clarity, we define discrete cost sharing methods on a minimal effort
game (q, us). One can always retrieve the expression of the method on (q, C) by
(2.51).

The discrete Aumann-Shapley method, originally introduced in Moulin (1995),
has been defined, in the introduction, in terms of Shapley values. This method has an
expression in terms of hierarchical strengths (see (2.40)) when applied to a minimal
effort game.

Definition 20 (Aumann-Shapley method, Moulin (1995)). For each (q, us) ∈
Gm, where s ≤ q, the (discrete) Aumann-Shapley method is defined as

∀i ∈ N, ASi(q, us) = hisi(s).

Recall that the hierarchical strength of a pair (i, j) ∈ M+ in s ≤ q represents the
average number of admissible orders over M+ such that all the pairs in B(s) =
{(k, l) ∈M+ : l ≤ sk}, except (i, j), are ordered prior to step |B(s)| − 1 and (i, j) is
ordered last. Formally, the hierarchical strength of a pair (i, j) ∈M+ in s is defined
as

hij(s) =
1

|ΘvdN |
|{θvdN ∈ ΘvdN : θvdN(i, j) = |B(s)|}|.

Clearly, the higher the demand si of i within s, the more admissible orders satisfying
in which (i, j) is ordered last. Therefore, the higher the demand of i within s, the
higher its cost share in (q, us).
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Proposition 8 (Calvo & Santos (2000)). The vdN value is weakly consistent
with the discrete Aumann-Shapley method on Gm.

The (discrete) Pseudo-average method is introduced by Moulin (1995). For a
minimal effort game (q, us), this method allocates to each consumer a cost share
proportional to its demand si.

Definition 21 (Pseudo-average method, Moulin (1995)). For each
(q, us) ∈ Gm, where s ≤ q, the (discrete) Pseudo-average method is defined as

∀i ∈ N, PAi(q, us) =
si
|B(s)|

.

Similarly to the Aumann-Shapley method, the Pseudo-average method allocates an
amount to each player that increases with respect to the player’s demand within s.

Proposition 9 (Albizuri et al. (2003)). The DP value is weakly consistent with
the pseudo average cost method on Gm.

To conclude this section, we introduce the (discrete) Serial cost sharing method
(see Moulin & Shenker (1992) and Moulin (1995)), which proves useful for Chapter
4. For a minimal effort game (q, us), this method allocates the total cost among the
consumers with the highest demands in s. For each profile s ∈ M, define the set of
players with the highest demands within the profile by

Y (s) = {i ∈ N : si ≥ si′ ,∀i′ ∈ N}.

Definition 22 (Serial cost sharing method, Moulin (1995)). For each (q, us) ∈
Gm, where s ≤ q, the (discrete) Serial cost sharing is defined as

∀i ∈ N, SCSi(q, us) =


1

|Y (s)|
if i ∈ Y (s),

0 otherwise.
(2.52)

A new extension of the Shapley value from TU-games to multi-choice games is intro-
duced in Chapter 4. We will show that this value is consistent with the Serial cost
sharing method on Gm.
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Chapter 3: Values for Multi-Choice
Games with a Permission (tree) Struc-
ture

3.1 Introduction

Permission structures model situations in which some players may need permission
from other players to cooperate (see Section 2.2). It turns out that permission rela-
tionships between gas consumers can arise in the context of gas distribution. Indeed,
the gas distribution network has a history: it was built progressively according to
the growing demands of consumers. Thus, some consumers would never have been
able to demand gas if other consumers had not been connected beforehand: this can
be considered as a permission relationship.

For example, let us consider Figure 3.1 representing a distribution (tree) net-
work managed by GRDF. Consumer a is located at the root of this network, which
means that a was the first consumer that GRDF connected to the network. In par-
ticular, GRDF determined that it was worth connecting a to the network given the
investment required to connect it.

Consumers b and c were able to take advantage of a’s connection to connect
themselves to the distribution network. Indeed, in the absence of a, the investments
required for their connection may have been too great. Consequently, GRDF may
have decided to not connect them directly to the root. Since a is connected, GRDF
determined that it was worth connecting b and c to the network since the only
investment required is an additional connection to a for both of them.

This situation can be represented by permission relationship: b and c need per-
mission from a to be connected. Similarly, f needs permission from c, d needs
permission from b and e needs permission from b. All in all, a permission structure
can be extracted from the information provided by the distribution network.
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a

c b

def

Figure 3.1: A distribution network.

This chapter takes advantage of the information provided by the distribution
network to enrich the model of multi-choice games with a permission (tree) structure.
No consideration is given to the principles pursued by GRDF. Instead, we focus on
the information provided by the distribution network and investigate how to combine
a permission structure with a multi-choice game to derive relevant solution concepts.

A few studies have enriched the model of multi-choice games with a structure
(see Section 1.5). In this study, we investigate how a permission structure on the
player set can be combined with different levels of participation. There is no straight-
forward way to combine these two aspects. We propose to deal with this problem
in two steps that correspond to two approaches describing two different but closely
related models. In a first approach, we consider multi-choice games enriched with
a permission structure defined on the set of player-activity levels pairs. In a second
approach, we consider multi-choice games with a permission structure defined on the
set of players.

The first approach consists in defining a permission structure on the set of player-
activity level pairs (a pal-permission structure henceforth) and not on the player set
as in Section 2.2. The underlying idea is that a player i making a certain activity
level j may need another player k to make a certain activity level l beforehand to
cooperate. This approach generalizes in a straightforward way the model of TU-
games with a permission structure (see Section 2.2). We proceed in several steps.
First, we define a set of feasible coalitions with respect to a pal-permission struc-
ture and show that this set forms a sub-lattice of the set of coalitions. Second,
we define the sovereign and authorizing parts of a coalition s as its largest feasible
sub-coalition and its smallest feasible super-coalition, respectively. Third, we intro-
duce a restricted multi-choice game given by the worth of the sovereign part of the
coalitions. Finally, we define the Pal-permission value as the DP value (see (2.37))
applied to the above restricted multi-choice game. This value generalizes both the
DP value for multi-choice games and the Permission value (2.21) for TU-games with
a permission structure.

The second approach keeps a permission structure on the player set, as in Section
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2.2, and combines it with a multi-choice game. In this second approach, it is always
considered that the players are part of a permission structure but we also exploit the
fact that the set of activity levels of each player is totally ordered. This leads us to
consider that there are two types of permission structures: the first one operates be-
tween players and the second one operates between the activity levels of each player.
Indeed, one considers that the activity levels are part of a permission structure in
the sense that choosing the activity level j requires having made or being able to
make the activity level j − 1. In other words, players gradually deploy their activity
levels, from the lowest to the highest level.

We then propose several axioms allowing us to characterize three new values
for multi-choice games with a permission structure. Each one coincides with a Pal-
permission value on multi-choice games enriched with a specific pal-permission struc-
ture as described in the first approach. They differ in the way that the pal-permission
structure emerges from the set of axioms:

- for the first value, the pal-permission structure is such that a player is allowed
to cooperate at any activity level if and only if its superiors in the hierarchy
cooperate at their maximal level;

- for the second one, the pal-permission structure is such that a player is allowed
to cooperate at any activity level if its superiors already participate (meaning
that each superior is deploying at least its first activity level);

- for the third one, a player can cooperate at some activity level j if, and only if,
its superiors cooperate at least at the activity level j. In this case, it should be
noted that even if the permission structure on the player set is a rooted tree,
the induced pal-permission structure is not a rooted tree.

These three axiomatic characterizations are inspired from the axiomatic charac-
terization of the Permission value for TU-games with a permission tree structure
recently provided by van den Brink et al. (2015) (see Theorem 11). Our approach
is interesting for several reasons. First, it distinguishes a priori a permission struc-
ture between the players from a permission structure on the activity levels of each
player. Then, the axiomatic study sheds light on how these two types of permis-
sion structures are combined into one pal-permission structure on the player-activity
level pairs, taking into account the inter and intra players relationships. Quite dif-
ferent pal-permission structures emerge, each one of them having its own natural
interpretation.

All in all, this chapter sheds light on the additional difficulties that arise when
one tries to combine a multi-choice game with a structure on the player set. This
chapter makes use of the information provided by the distribution network, but has
no consideration for the Independence of higher demands or the Uniformity principle.

The chapter is organized as follows. Section 3.2 introduces pal-permission struc-
tures. Section 3.3 deals with the set of feasible coalitions and its properties as well
as the sovereign and authorizing parts of a coalition. Section 3.4 introduces the
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Pal-permission value. Section 3.5 investigates the model of multi-choice games with
a permission structure on the player set and how a pal-permission structure can
emerge from such model. Section 3.6 introduces the above three values for multi-
choice games with a permission tree structure. Section 3.7 contains the axiomatic
results. Section 3.8 concludes the chapter.

3.2 Pal-permission structures

In the context of multi-choice games, we consider situations in which some players
cannot cooperate at a certain activity level until some other players have reached
a certain activity level. To model such situations, we introduce player-activity
level permission structures (pal-permission structures henceforth) that extend
permission structures from N to M+.

Take any nonempty set of player-activity level pairs M+. A pal-permission struc-
ture on M+ is a map

P+ : M+ −→ 2M
+

such that the relationship (k, l) ∈ P+(i, j) indicates that player k cannot cooperate at
activity level l until i has reached its activity level j. In this case, the pair (k, l) ∈M+

is a successor of the pair (i, j) ∈ M+. Moreover, (i, j) ∈ (P+)−1(k, l) indicates that
the pair (i, j) is a predecessor of the pair (k, l). The map P+ is assumed to be
asymmetric, that is,

∀i ∈ N,∀(i, j) ∈M+
i , (i, j) ̸∈ P+(i, j).

The notation P̂+ stands for the transitive closure of P+, the set of superiors and
subordinates of a player are defined accordingly.

Because player’s i set of activity levels Mi is totally ordered from the null activity
level 0 to the greatest activity level mi, the set of pairs {i}×M+

i can be also totally
ordered as follows: (i, 1) < (i, 2) < . . . < (i,mi). From this point of view, we obtain
a pal-permission structure between i’s activity levels. The trivial pal-permission
structure P+,0 on M+ is the pal-permission structure modeling this idea. In P+,0,
a player cannot cooperate at its activity level j if it has not reached its activity level
j − 1 and no pair formed by two player-activity level pairs involving distinct players
are in relation. Formally,

P+,0 : M+ −→ 2M
+

is defined as

∀i ∈ N,∀j ∈M+
i \ {mi}, (i, j + 1) ∈ P+,0(i, j).
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Take any two pal-permission structures P+ and Q+. We say that P+ extends
Q+ if

∀(i, j), (k, l) ∈M+,
[
(i, j) ∈ Q+(k, l)

]
=⇒

[
(i, j) ∈ P+(k, l)

]
.

Finally, we say that a pal-permission structure P+ is cohesive with respect to P+,0

or simply cohesive if it extends P+,0. Thus, in a cohesive pal-permission structure, a
player cannot cooperate at its activity level j if it has not reached its activity level
j − 1.

Example 4. Consider the player set N = {a, b} and the vector of maximal activity
levels m = (3, 2) where ma = 3 and mb = 2. Consider the pal-permission struc-
tures P+,0 and P+ such that P+ extends P+,0. We represent the two pal-permission
structures by the following digraphs

(a,2)

(a,1)

(a,3)

(b,1)

(b,2)

(a) P+,0

(a,2)

(a,1)

(a,3)

(b,1)

(b,2)

(b) P+

In P+,0, a needs to achieve its activity levels 1 and 2 before deploying its activity
level 3. In P+, a not only has to achieve its activity levels 1 and 2 to deploy its
activity level 3, but also needs that b achieves its activity levels 1 and 2.

In the following, we only consider the set of cohesive and acyclic pal-permission
structures that we denote by P .

3.3 Feasible multi-choice coalitions

A multi-choice game (m, v) ∈ G enriched with a pal-permission structure P+ ∈ P
is the triplet (m, v, P+). The class of multi-choice games with a pal-permission
structure is denoted by GP . A pal-permission structure P+ ∈ P influences the
possibilities of cooperation in a multi-choice game in the following way. Let (k, l) be
a predecessor of (i, j) with respect to P+ and s be a coalition such that si = j. In
order for player i to be able to to cooperate at activity level j, player k must have an
activity level of at least l in s, that is, sk ≥ l. In this sense, the player-activity level
pair (i, j) needs the permission of the player-activity level pair (k, l) to cooperate
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in s. A coalition s is feasible if each player-activity level pair has the permission
of all its superiors in s. This way of introducing the influence of the permission
relationships in a coalition is a natural generalization of the conjunctive approach
from TU-games to multi-choice games (see 2.16).

Definition 23 (Feasible coalitions). Take any m ≤ (K, . . . ,K). Take any pal-
permission structure P+ ∈ P on M+. The set of feasible coalitions F(m,P+) is
defined as

F(m,P+) =
{
s ≤ m : si > 0 =⇒ ∀(k, l) ∈ (P̂+)−1(i, si), sk ≥ l)

}
(3.1)

Example 5. Consider again Example 4 where the pal-permission structure P+ is
given by Figure (b). A coalition s is of the form (sa, sb), where sa ∈ {0, 1, 3} is the
activity level of a and sb ∈ {0, 1, 2} is the activity level of b. Then, the set of feasible
coalitions is defined as

F(m,P+) =M\ {(0, 2), (3, 0), (3, 1)}.

For instance, consider the coalition (sa, sb) = (0, 2). This coalition is not feasible
because b needs a to play an activity level sa ≥ 1 to cooperate at level 2, which is not
the case in coalition (0, 2). On the other hand, coalition (sa, sb) = (0, 1) is feasible
because b does not need the permission of any activity level of a to be able to cooperate
at activity level 1.

The next proposition establishes that the set of feasible coalitions forms a (finite)
lattice whose greatest element is the grand coalition and the least element is the null
coalition.

Proposition 10. Take any (m, v, P+) ∈ GP. The set F(m,P+) satisfies the fol-
lowing properties

(i) 0⃗ ∈ F(m,P+);

(ii) m ∈ F(m,P+);

(iii) for each s, t ∈ F(m,P+), it holds that s ∧ t and s ∨ t are still elements of
F(m,P+).

Proof. Take any (m, v, P+) ∈ GP .

(i) Consider the null coalition s = 0⃗. Because there is no i ∈ N such that si > 0,
by definition of F(m,P+) conclude that 0⃗ ∈ F(m,P+).

(ii) Consider the grand coalition m. Because each coordinate of m is maximal, by
definition of F(m,P+) conclude that m ∈ F(m,P+).
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(iii) Consider two feasible coalitions s, t ∈ F(m,P+) and set a = s∧ t and b = s∨ t.
Let us show that a, b ∈ F(m,P+).

First, we show that a ∈ F(m,P+). We proceed by contradiction. Suppose that
a /∈ F(m,P+). By definition, there exist i, k ∈ N such that ai > 0, ak < l,
and (k, l) ∈ (P̂+)−1(i, ai). Observe that for such a player i, it holds that either
ai = si or ai = ti. Without loss of generality, suppose that ai = si ≤ ti. In the
same way, either ak = sk or ak = tk.

- If ak = sk, then sk < l. Because ai = si, it follows that (k, l) ∈
(P̂+)−1(i, si) and so s /∈ F(m,P+), which is a contradiction.

- If ak = tk, then tk < l. Because ai = si ≤ ti and (k, l) ∈ (P̂+)−1(i, si), by
consistency of P+ we also have
(k, l) ∈ (P̂+)−1(i, ti). Thus,t /∈ F(m,P+), which is a contradiction.

All in all, we have shown that a ∈ F(m,P+). The proof that b ∈ F(m,P+) is
similar and so is left to the reader.

■

Clearly, Proposition 10 extends Proposition 3 from TU-games with a permission
structure to multi-choice games with a pal-permission structure.

Because F(m,P+) is a finite sub-lattice ofM for each coalition s, we can define
the supremum of the feasible coalitions smaller than s and the infimum of the feasible
coalitions larger than s. In the first case, we obtain the greatest feasible coalition
σ(s) ∈ F(m,P+) such that σ(s) ≤ s; in the second case, we obtain the smallest
feasible coalition α(s) ∈ F(m,P+) such that α(s) ≥ si for each i ∈ N . To paraphrase
Definition 9, σ(s) is the sovereign part of s and α(s) is the authorizing part of
s.

Definition 24 (Sovereign and authorizing parts). Take any
(m, v, P+) ∈ GP. Take any pal-permission structure P+ on M+ and any multi-
choice coalition s ∈M. The sovereign and authorizing parts of s with respect to P+

are respectively given by

σ(s) =
∨

t∈F(m,P+)
t≤s

t, α(s) =
∧

t∈F(m,P+)
t≥s

t. (3.2)

Obviously, for each t ∈ F(m,P+), it holds that σ(t) = α(t) = t; in particular,
σ(m) = α(m) = m. Finally, for any s, t ∈ M such that s ≤ t, it holds that
σ(s) ≤ σ(t) and α(s) ≤ α(t).

To close this section, the following proposition provides interesting properties of
the sovereign and authorizing parts of a multi-choice coalition. This proposition
echoes Proposition 4 for coalitions of players.

104



Proposition 11. Take any (m, v, P+) ∈ GP. For any pal-permission structure P+

on M+ and any pair of coalitions s, t ∈M, it holds that:

(i) σ(s) ∨ σ(t) ≤ σ(s ∨ t);

(ii) σ(s) ∧ σ(t) = σ(s ∧ t);

(iii) α(s) ∨ α(t) = α(s ∨ t);

(iv) α(s ∧ t) ≤ α(s) ∧ α(t).

Proof. Take any pal-permission structure P+ on M+ and any pair of coalitions s, t ∈
M.

(i) By definition, s ≤ s∨ t and t ≤ s∨ t and so σ(s) ≤ σ(s∨ t) and σ(t) ≤ σ(s∨ t).
By definition of the supremum,

σ(s) ∨ σ(t) ≤ σ(s ∨ t) ∨ σ(s ∨ t) = σ(s ∨ t).

(ii) By definition, t ≥ s∧ t and s ≥ s∧ t and so σ(s) ≥ σ(s∧ t) and σ(t) ≥ σ(s∧ t).
This implies that σ(s) ∧ σ(t) ≥ σ(s ∧ t). On the other hand, by definition of
σ, σ(s) ≤ s and σ(t) ≤ t. Thus, we obtain

σ(s) ∧ σ(t) ≤ s ∧ t

⇐⇒ σ(σ(s) ∧ σ(t)) ≤ σ(s ∧ t)

⇐⇒ σ(s) ∧ σ(t) ≤ σ(s ∧ t),

where the equality

σ(σ(s) ∧ σ(t)) = σ(s) ∧ σ(t)

comes from the fact that σ(s)∧ σ(t) ∈ F(m,P+) by Proposition 10. Conclude
that σ(s) ∧ σ(t) = σ(s ∧ t).

(iii) By definition of α, α(s) ≥ s and α(t) ≥ t, from which we get:

α(s) ∨ α(t) ≥ s ∨ t

⇐⇒ α(α(s) ∨ α(t)) ≥ α(s ∨ t)

⇐⇒ α(s) ∨ α(t) ≥ α(s ∨ t)

On the other hand, s ≤ s∨ t, which implies that α(s) ≤ α(s∨ t). By definition,
α(t) ≤ α(s ∨ t). It implies that α(t) ∨ α(s) ≤ α(s ∨ t). From the above
arguments, we arrive at α(s) ∨ α(t) = α(s ∨ t).

(iv) The fact that s ∧ t ≤ s and s ∧ t ≤ t implies that α(s ∧ t) ≤ α(s) and
α(s ∧ t) ≤ α(t), and so α(s ∧ t) ≤ α(s) ∧ α(t).

■
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3.4 Values for multi-choice games with a pal-permission

structure

In a multi-choice game with a pal-permission structure (m, v, P+), the multi-choice
game (m, v) describes the possibilities of cooperation regardless of the restrictions
induced by the pal-permission structure. To take these restrictions into account, a
new multi-choice game (m,RP+(v)) ∈ G is constructed. This game takes into ac-
count both the cooperation possibilities represented by (m, v) and the permission
relationships represented by P+. The resulting multi-choice game (m,RP+(v)) is
the (conjunctive) restriction of the multi-choice game of (m, v) induced by the pal-
permission structure P+. Then, the DP value (see (2.37)) is applied to (m,RP+(v)).
This allows to define a value for multi-choice games with a pal-permission structure.
Because the DP value is a generalization of the Shapley value, and the Permission
value is the Shapley value of a TU-game restricted by a permission structure, it
follows that the DP value applied to (m,RP+(v)) can be viewed as a possible gen-
eralization of the Permission value from TU-games with a permission structure to
multi-choice games with a pal-permission structure.

Take any (m, v, P+) ∈ GP . The restriction of (m, v) on P+ is the multi-choice
game (m,RP+(v)) where the characteristic function RP+(v) is defined as

RP+(v) = v ◦ σ. (3.3)

Thus, the worth RP+(v)(s) of the multi-choice coalition s is the worth v(σ(s))
of its sovereign part. In other words, the mapping σ indicates how s is evaluated:
the sovereign part with respect to P+, that is, the greatest feasible coalition smaller
than s, generates a worth v(σ(s)) when s forms. Clearly, this restriction extends the
restriction of a TU-game by a permission structure (see (2.17)) to the framework of
multi-choice games.

If (m, v) is monotonic, then (m,RP+(v)) is also monotonic. Indeed, if s ≤ t
implies v(s) ≤ v(t), then σ(s) ≤ σ(t) and so RP+(v)(s) ≤ RP+(v)(t). Fix the
set of multi-choice coalitions M. The operator RP+ is linear in v on M, that is,
RP+(v + γw) = RP+(v) + γRP+(w) for each (m, v), (m,w) ∈ G and each γ ∈ R.

Proposition 12. For each (m,us, P
+) ∈ GP, s ∈M such that s ̸= (0, . . . , 0)

RP+(us) = uα(s).

Proof. Take any (m,us, P
+) ∈ GP and any s ∈ M such that s ̸= (0, . . . , 0). By

definition of RP+(us),

∀t ∈M, RP+(us)(t) = us(σ(t)) =

{
1 if σ(t) ≥ s,

0 otherwise.

First, let us show the following equivalence

σ(t) ≥ s ⇐⇒ t ≥ α(s).
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- Suppose that σ(t) ≥ s. We have α(σ(t)) = σ(t) ≥ α(s). Because t ≥ σ(t), we
obtain t ≥ α(s);

- Reciprocally, if t ≥ α(s), then σ(t) ≥ σ(α(s)) = α(s) ≥ s.

Thus, we obtain that:

∀t ∈M, RP+(us)(t) =

{
1 if t ≥ α(s),

0 otherwise,

so that RP+(us) = uα(s), as desired. ■

By Proposition 12 and the linearity of the operator RP+ , the characteristic function
RP+(v) can we rewritten as

RP+(v) = RP+

(∑
s∈M

∆v(s)us

)
(3.4)

=
∑
s∈M

∆v(s)RP+(us) (3.5)

=
∑
s∈M

∆v(s)uα(s). (3.6)

We introduce a new value for multi-choice games with a pal permission structure,
called the Pal-permission value, which allocates the worth of the grand coali-
tion according to the DP value applied to the restricted game induced by the pal-
permission structure.

Definition 25 (Pal-permission value). The Pal-permission value Υ is defined,
for each (m, v, P+) ∈ GP, as

∀(i, j) ∈M+, Υij(m, v, P+) = DPij(m,RP+(v)). (3.7)

From (2.32), (2.31), and the fact that the DP value is linear (see (2.36)), Υ can be
rewritten as

∀(i, j) ∈M+, Υij(m, v, P+) =
∑
s≤m

(i,j)∈B(α(s))

∆v(s)

|B(α(s))|

=
∑
s≤m

j≤αi(s)

∆v(s)∑
h∈N αh(s)

. (3.8)

The Pal-permission value Υ distributes the dividend of each coalition s equally among
the admissible pairs of the authorizing part α(s) of s. It follows that Υ is a gener-
alization of both the DP value (see (2.37)) and the Permission value (see (2.21)).
Indeed, in case (m, v) is a TU-game, i.e., m = (1, . . . , 1), the Pal-permission value
boils down to the Permission value. In case P+ = P+,0, the Pal-permission value
boils down to the DP value.
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3.5 Pal-permission structures induced by a per-

mission tree structure

Consider the situation where the players are part of a permission structure and
the sets of activity levels are totally ordered from the lowest activity level to the
greatest activity level. In such a situation, several pal-permission structures can be
created from the permission structure on the player set and the sets of activity levels.
This amounts to say that the relations between the players, the inter-individual
relationships, and the relations between the activity levels of each player, the intra-
individual relationships, are a priori two independent objects. This means that they
can be combined to obtain a single hierarchical organization represented by a pal-
permission structure. This leads to the following definition.

Definition 26 (Induced pal-permission structures). A pal-permission structure
induced by a permission tree structure P ∈ PT and the vector of maximal activity
levels m is a cohesive and acyclic pal-permission structure P+ ∈ P constructed from
the relationships given by P and the set of the activity levels obtained from m.

We focus the study on three particular induced pal-permission structures that we
detail below. For a permission tree structure P ∈ PT and any profile of maximal
activity levels m:

- the m-permission structure on M+ induced by P and m, is the cohesive
pal-permission tree structure in which a player can cooperate only if all its su-
periors in P participate by choosing their maximal activity level. The resulting
structure is denoted by P+

m . Formally, P+
m ∈ P is defined as

∀i, j ∈ N,
[
j ∈ P (i)

]
⇐⇒

[
(j, 1) ∈ P+

m(i,mi)
]
;

- the 1-permission structure on M+ induced by P and m is the cohesive
pal-permission tree structure in which a player can cooperate only if all its
superiors in P participate. Such a structure is denoted by P+

1 . Formally,
P+
1 ∈ P is defined as

∀i, j ∈ N,
[
j ∈ P (i)

]
⇐⇒

[
(j, 1) ∈ P+

1 (i, 1)
]
;

- the Full-permission structure on M+ induced by P and m is the cohesive
and acyclic pal-permission structure in which a player can cooperate at a certain
activity level l if its superiors in P participate at level l or more. We assume
that, for each j ∈ P (i), mj ≤ mi. This assumption leads to a specific class
of games which will be detailed later (in Section 4.3). Formally, P+

F ∈ P is
defined as

∀i, j ∈ N,∀l ∈Mj,
[
j ∈ P (i)

]
⇐⇒

[
(j, l) ∈ P+

F (i, l)
]
.
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Observe that, for each P ∈ PT and each m, the structures P+
m , P+

1 and P+
F are

uniquely determined and are acyclic pal-permission structures P by construction.

Example 6. Consider once again Example 4, where the two players are {a, b} and
the vector of maximal activity levels is m = (3, 2). Consider the permission tree
structure P ∈ PT such that b ∈ P (a). The induced pal-permission structures P+

m , P+
1

and P+
F are represented by figures (a), (b) and (c), respectively.

(a,2)

(a,1)

(a,3)

(b,1)

(b,2)

(a) P+
m

(a,2)

(a,1)

(a,3)

(b,1)

(b,2)

(b) P+
1

(a,2)

(a,1)

(a,3)

(b,1)

(b,2)

(c) P+
F

Observe that the induced pal-permission structures P+
m and P+

1 are always trees,
whereas P+

F is clearly not a tree.

3.6 Three new values for multi-choice games with

a permission structure

Let GP be the class of games (m, v, P ) where the players in N play the multi-choice
game (m, v) ∈ G and are organized according to the permission structure P ∈ P on
N . The class of multi-choice games with a permission tree structure is denoted by
GPT . Clearly, it holds that GPT ⊆ GP.

We consider three possible values on GPT . Each of these values are computed
using the Pal-permission value Υ for multi-choice games with a pal permission struc-
ture. The first one consists in applying the Pal-permission value on multi-choice
games with the m-permission structure. The second one consists in applying the
Pal-permission value on multi-choice games with the 1-permission structure. And
the last one consists in applying the Pal-permission value on multi-choice games with
the Full-permission structure.

Proceeding in this way, the inter-individual relationships represented by P and
the intra-individual relationships represented bym and the linear order of the activity
levels are combined into a pal-permission structure (P+

m , P+
1 , or P+

F ) on M+. Then,
the allocation of the payoffs are given by the DP value of the restricted game induced
by the corresponding pal-permission structure. This leads to the following definition.
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Definition 27 (Values for multi-choice games with a permission structure).

- The value f (+,m) on GPT is defined as

f (+,m)(m, v, P ) = Υ(m, v, P+
m)

= DP (m,RP+
m
(v)). (3.9)

- The value f (+,1) on GPT is defined as

f (+,1)(m, v, P ) = Υ(m, v, P+
1 )

= DP (m,RP+
1
(v)). (3.10)

- The value f (+,F ) on GPT is defined as

f (+,F )(m, v, P ) = Υ(m, v, P+
F )

= DP (m,RP+
F
(v)). (3.11)

Example 7. Consider the permission structure of Example 6. For the sake of sim-
plicity, assume that ma = 2 and mb = 1 so that m = (2, 1). The induced pal-
permission structures P+

m , P+
1 and P+

F are represented by figures (a), (b) and (c),
respectively.

(a,1)

(a,2) (b,1)

(a) P+
m

(a,1)

(a,2) (b,1)

(b) P+
1

(a,1)

(a,2) (b,1)

(c) P+
F

The multi-choice game (m, v) is given by the following table

(sa, sb) (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1)
v(s) 0 1 4 1 3 5

The three restricted games corresponding to each induced pal-permission structure
are as follows

(sF , sW ) (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1)
RP+

m
(v)(s) 0 1 4 0 1 5

RP+
1
(v)(s) 0 1 4 0 3 5

RP+
F
(v)(s) 0 1 4 0 3 5
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The worth RP+
m
(v)(1, 1) = v(1, 0) = 1 because b is unable to achieve activity level

1 if a has not reached activity level 2. It follows that σ(1, 1) = (1, 0) under the
m-permission structure. Thus, we obtain

RP+
m
(v)(1, 1) = v(σ(1, 1)) = v(1, 0) = 1.

Similarly, RP+
1
(v)(0, 1) = 0 because b does not have the permission of a to cooperate

at level 1 if a is inactive. It follows that σ(0, 1) = (0, 0) under the 1-permission
structure. Thus, we obtain

RP+
1
(v)(0, 1) = v(σ(0, 1)) = v(0, 0) = 0.

In this example, RP+
1
(v) and RP+

F
(v) coincide because P+

1 and P+
F coincide in this

particular case. Finally, we compute f (+,m), f (+,1), f (+,F ) and the DP value.

(i, j) (a, 1) (a, 2) (b, 1)

f (+,m)(m, v, P ) 3.17 1.17 0.67

f (+,1)(m, v, P ) 2.83 1.83 0.33

f (+,F )(m, v, P ) 2.83 1.83 0.33
DP(m, v) 2.67 1.17 1.17

As expected f (+,m), f (+,1) and f (+,F ) allocate a greater payoff to the root (a, 1) than
the DP value.

3.7 Axiomatic characterizations

This section provides comparable axiomatic characterizations of f (+,m), f (+,1), and
f (+,F ). These axiomatic characterizations preserve the principles of Efficiency, Per-
mission fairness, and the Inessential player property contained in Theorem 11 for
TU-games with a permission tree structure. However, four types of modifications
need to be incorporated due to the multi-choice nature of the game and the two
types of permission relationships:

- two, rather than one, principles of permission fairness are introduced. The
first one concerns inter-individual relationships, the second one concerns intra-
individual relationships;

- the above two principles of permission fairness no longer concern the players
but the player-activity level pairs;

- the notion of inessential player must be extended to that of inessential pair;

- because the values f (+,m), f (+,1) and f (+,F ) are built on different pal-permission
structures, P+

m , P+
1 and P+

F respectively, each of them have different interpre-
tation of permission fairness and of an inessential pair.
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3.7.1 Characterization of f (+,m)

Suppose that a pair (i, j) ∈M+ is null in a game (m, v, P ) ∈ GPT . Assume first that
P coincides with the trivial permission structure S0. Then, player i does not need
anyone’s permission to participate at level j, and the principle incorporated in the
Null pair property (see 2.50) applies. But, if P differs from the trivial structure S0,
although the pair (i, j) is a null pair, it might be the case that other players need
(i, j)’s permission to fully cooperate. In that case, it seems no longer reasonable to
assume that the pair (i, j) gets a zero payoff. The Null pair property is still applicable
for the case in which (i, j) is a null pair and all pairs (k, l) are null pairs in (m, v),
where k is a subordinate of i. Formally, a pair (i, j) ∈M+ is a m-inessential pair
if it is a null pair in (m, v) and if, for each of its subordinates k ∈ P̂ (i), it holds
that (k, 1) is a null pair in (m, v, P ). The set of all m-inessential pairs in (m, v, P )
is denoted by ILm(m, v, P ). The following axiom indicates that each m-inessential
pair gets a null payoff.

Axiom 35 (m-Inessential pair property). For each (m, v, P ) ∈ GPT , if (i, j) ∈
ILm(m, v, P ), then

fij(m, v, P ) = 0.

The m-Inessential pair property implies the Null pair property (see 2.50).

m-Inessential pair property =⇒ Null pair property

Also, the m-Inessential pair property extends the Inessential player property (see
2.22) from TU-games with a permission structure to multi-choice games with a per-
mission structure.

The following two axioms apply the principle of permission fairness into two di-
rections. Before introducing these axioms, we need a definition. Take any (m, v, P ) ∈
GPT . For each pair (i, j′) ∈ M+, define the associated (i, j′)-game (m, v

−(i,j′)
m , P ) ∈

GPT where in v
−(i,j′)
m , player i stops any activity from level j′ onwards, and its sub-

ordinates are no longer active. For each s ∈ M, the worth v
−(i,j′)
m (s) is defined

as

v−(i,j′)
m (s) = v(s̄), where s̄k =


j′ − 1 if k = i and sk ≥ j′,

0 if k ∈ P̂ (i),

sk otherwise.

By construction, for each k ∈ P̂ (i) and each l ∈M+
k ,

(k, l) ∈ ILm(m, v−(i,j′)
m , P ).

Similarly, for each j′ ≤ j ≤ mi,

(i, j) ∈ ILm(m, v−(i,j′)
m , P ).

The first axiom of permission fairness indicates that the changes in payoff of the
pairs (i, j) ∈M+

i , for j ≤ j′ are equal.
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Axiom 36 (Intra m-fairness). For each (m, v, P ) ∈ GPT and each
(i, j), (i, j′) ∈M+ such that j′ ≥ j,

fij(m, v, P )− fij(m, v−(i,j′)
m , P ) = fij′(m, v, P )− fij′(m, v−(i,j′)

m , P ).

The second axiom of permission fairness considers the payoff variation of the first
activity level of a player k and the payoff variation of the maximal activity level of its
superior i when player k and all its subordinates do not participate anymore. This
axiom requires an equal payoff variation for the pairs (k, 1) and (i,mi).

Axiom 37 (Inter m-fairness). For each (m, v, P ) ∈ GPT and each (k, 1) ∈ M+,
where k is different from the root of P , and i ∈ P−1(k),

fimi
(m, v, P )− fimi

(m, v−(k,1)
m , P ) = fk1(m, v, P )− fk1(m, v−(k,1)

m , P ).

Inter m-fairness extends Permission fairness (see 2.23) from TU-games with a per-
mission structure to multi-choice games with a permission structure.

In a pal-permission structure P+
m , a coalition s ∈ M is feasible in the sense of

(3.1) if the superiors of each active player have reached their maximal activity level.
From this observation, the set of feasible coalitions F(m,P+

m) is given by

F(m,P+
m) :=

{
s ∈M :

[
si > 0 and k ∈ P̂−1(i)

]
=⇒

[
sk = mk

]}
, (3.12)

from which we deduce the following proposition.

Proposition 13. The sovereign part σ(s) and the authorizing part α(s) of a coalition
s with respect to P+

m are defined as1

- ∀i ∈ N , σi(s) =

{
0 if there exists k ∈ P̂−1(i) such that sk < mk,

si otherwise.

- ∀i ∈ N , αi(s) =

{
mi if there exists k ∈ P̂ (i) such that sk > 0,

si otherwise.

Proof. The proof follows directly from (3.12) and (3.2). ■

Example 8. In Example 6, the set of feasible coalitions under P+
m consists of all

coalitions such that if sb > 0, then sa = 3. For instance, coalition (sa, sb) = (2, 2) is
not feasible since sb = 2 > 0 and sa = 2 < 3. In this case, σ(2, 2) = (2, 0) because
σb(2, 2) = 0 for the above mentioned reason. On the other hand, α(2, 2) = (3, 2)
since αa(2, 2) = 3.

1We continue to denote the sovereign part and the authorizing part of s by σ(s) and α(s) with
the understanding that the underlying pal-permission structure is P+

m .
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The next proposition identifies a subset of coalitions whose worth is unchanged
in the associated (k, l)-game (m, v

−(k,l)
m , P ). From this proposition, we deduce that

the Harsanyi dividends of these coalitions coincide in (m, v, P ) and (m, v
−(k,l)
m , P ).

Proposition 14. For each (m, v, P ) ∈ GPT , each (k, l) ∈ M+ and each coalition
s ∈M such that αk(s) < l,

v−(k,l)
m (s) = v(s).

Proof. By definition of v
−(k,l)
m (s),

v−(k,l)
m (s) = v(s̄),

where

s̄h =


l − 1 if h = k and sh ≥ l,

0 if h ∈ P̂ (k),

sh otherwise.

First, by Proposition 13, αk(s) < l ≤ mi and h ∈ P̂ (k) imply that sh = 0, so
that sh = s̄h = 0. Second, by definition of the authorizing part of a coalition,
sk ≤ αk(s). Thus, by definition of v

−(k,l)
m , s̄k = sk. Third, by definition of v

−(k,l)
m , we

also have s̄h = sh for each other player h /∈ P̂ (k) ∪ {k}. Conclude that s̄ = s and so

v
−(k,l)
m (s) = v(s̄) = v(s). ■

Proposition 15. For each (m, v, P ) ∈ GPT and each s ∈M such that αk(s) < l,

∆
v
−(k,l)
m

(s) = ∆v(s).

Proof. The proof follows from Proposition 14 and the recursive definition of the
Harsanyi dividend (see (2.3)). ■

Theorem 18. A value f on GPT satisfies Efficiency, the m-Inessential pair property,
Intra m-fairness and Inter m-fairness if and only if f = f (+,m).

Proof. First, we show that f (+,m) satisfies all the axioms of the statement of Theo-
rem 18. Take any (m, v, P ) ∈ GPT . The permission structure P induces the unique
m-permission structure P+

m ∈ P and thus a unique game (m, v, P+
m) ∈ GP .

Efficiency: By definition of f (+,m),

f (+,m)(m, v, P ) = DP(m,RP+
m
(v)) = DP(m, v ◦ σ).
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From Section 2.4.2, we know that the DP value is an efficient value, and from (3.2),
we know that σ(m) = m. Thus, we obtain

∑
i∈N

mi∑
j=1

f
(+,m)
ij (m, v, P ) =

∑
i∈N

mi∑
j=1

DPij(v ◦ σ) = v(σ(m)) = v(m),

which proves that f (+,m) satisfies Efficiency.

m-Inessential pair property: From Section 2.4.2, we know that the DP value
satisfies the Null pair property, that is, each null pair obtains a null payoff in a
multi-choice game. Thus, by definition of f (+,m), it is sufficient to prove that an
m-inessential pair in (m, v, P ) is a null pair in (m,RP+

m
(v)). Take any m-inessential

pair (i, j) ∈ ILm(m, v, P ) and any coalitions s, s′ ∈ M such that si = j − 1 and
s′ = (s−i, l), j ≤ l ≤ mi. Because s′k = sk for each k ∈ N \ P̂ (i), it follows that
σk(s

′) = σk(s). For each k ∈ P̂ (i) ∪ {i}, it holds that σk(s
′) ≥ σk(s). In particular,

the superiors of player i play the same activity level in s and s′. Thus, if σi(s) = 0,
then σi(s

′) = 0, and so v(σ(s′)) = v(σ(s)). If σi(s) = j − 1, then σi(s
′) = l ≥ j.

Because (i, j) is an m-inessential pair, we still have v(σ(s′)) = v(σ(s)). It follows
that (i, j) is a null pair in RP+

m
(v), and so

f
(+,m)
ij (m, v, P ) = DPij(m,RP+

m
(v)) = 0,

which shows that f (+,m) satisfies the m-Inessential pair property.

Intra m-fairness: Take any two pairs (i, j), (i, j′) ∈ M+ such that j < mi and
j′ ≥ j. By definition,

f
(+,m)
ij (m, v, P )− f

(+,m)
ij (m, v−(i,j′)

m , P )

=
∑
s≤m

j≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)

∆
v
−(i,j′)
m

(s)∑
h∈N αh(s)

=
∑
s≤m

j≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′>αi(s)

∆
v
−(i,j′)
m

(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′≤αi(s)

∆
v
−(i,j′)
m

(s)∑
h∈N αh(s)
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By Proposition 15, ∆
v
−(i,j′)
m

(s) = ∆v(s) when αi(s) < j′. Thus, we obtain

f
(+,m)
ij (m, v, P )− f

(+,m)
ij (m, v−(i,j′)

m , P )

=
∑
s≤m

j≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′>αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′≤αi(s)

∆
v
−(i,j′)
m

(s)∑
h∈N αh(s)

=
∑
s≤m

j≤αi(s)
j′≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j′≤αi(s)

∆
v
−(i,j′)
m

(s)∑
h∈N αh(s)

=
∑
s≤m

j′≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j′≤αi(s)

∆
v
−(i,j′)
m

(s)∑
h∈N αh(s)

= f
(+,m)
ij′ (m, v, P )− f

(+,m)
ij′ (m, v−(i,j′)

m , P ),

which shows that f (+,m) satisfies Intra m-fairness.

Inter m-fairness: Take any k, i ∈ N such that i ∈ P−1(k). By definition,

f
(+,m)
imi

(m, v, P )− f
(+,m)
imi

(m, v−(k,1)
m , P )

=
∑
s≤m

mi=αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

mi=αi(s)

∆
v
−(k,1)
m

(s)∑
h∈N αh(s)

=
∑
s≤m

mi=αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

mi=αi(s)
αk(s)=0

∆
v
−(k,1)
m

(s)∑
h∈N αh(s)

−
∑
s≤m

mi=αi(s)
1≤αk(s)

∆
v
−(k,1)
m

(s)∑
h∈N αh(s)

By Proposition 15, ∆
v
−(k,1)
m

(s) = ∆v(s) when αk(s) = 0. Thus, we obtain

f
(+,m)
imi

(m, v, P )− f
(+,m)
imi

(v−(k,1)
m , P )

=
∑
s≤m

mi=αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

mi=αi(s)
αk(s)=0

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

mi=αi(s)
1≤αk(s)

∆
v
−(k,1)
m

(s)∑
h∈N αh(s)

=
∑
s≤m

mi=αi(s)
1≤αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

mi=αi(s)
1≤αk(s)

∆
v
−(k,1)
m

(s)∑
h∈N αh(s)

.
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Recall that, for each s ∈ M, α(s) is a feasible coalition. By definition of a feasible
coalition, if αk(s) ≥ 1 > 0 then αi(s) = mi because k ∈ P (i). Thus, we obtain

f
(+,m)
imi

(m, v, P )− f
(+,m)
imi

(v−(k,1)
m , P )

=
∑
s≤m

1≤αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αk(s)

∆
v
−(k,1)
m

(s)∑
h∈N αh(s)

= f
(+,m)
k1 (m, v, P )− f

(+,m)
k1 (m, v−(k,1)

m , P ),

which shows that f (+,m) satisfies Inter m-fairness. In particular,
f
(+,m)
k1 (m, v

−(k,1)
m , P ) = 0, because (k, 1) is an m-inessential pair in v

−(k,1)
m .

To complete the proof, it remains to show that there is at most one value f
satisfying Efficiency, the m-Inessential pair property, Intra m-fairness and Inter m-
fairness. So, take any value f that satisfies the above four axioms and take any
(m, v, P ) ∈ GPT . Without loss of generality, suppose that 2 ∈ S(1) and 1 is the root
of the permission tree. To show uniqueness, we proceed by (descending) induction
over the cardinality of ILm(m, v, P ).

Initialization: If |ILm(m, v, P )| =
∑

i∈N mi, then each activity level of each player
is an m-inessential pair. By the m-Inessential pair property, for each (i, j) ∈M+,

fij(m, v, P ) = 0.

If |ILm(m, v, P )| =
∑

i∈N mi − 1, then each activity level of each player is an m-
inessential pair, except the first activity level of the top player, that is, (1, 1) /∈
ILm(m, v, P ). Indeed, if (1, 1) ∈ ILm(m, v, P ) then, by definition of a m-essential
pair, any pair in M+ is a null pair, which leads to a contradiction. By Efficiency and
the m-Inessential pair property,

f11(m, v, P ) = v(m) and fij(m, v, P ) = 0

for each pair (i, j) ̸= (1, 1). So, f is uniquely determined.

Induction hypothesis: Suppose that the statement is true for any (m, v, P ) ∈ GPT

such that |ILm(m, v, P )| = I + 1 where I + 1 ≤
∑

i∈N mi − 1.

Induction step: Take any (m, v, P ) ∈ GPT such that |ILm(m, v, P )| = I.
For any pair (i, j) ∈ ILm(m, v, P ), the m-Inessential pair property implies

fij(m, v, P ) = 0.

For any two pairs (i, j), (i, j + 1) ∈ M+
i \ ILm(m, v, P ) such that i ∈ N and

j < mi, Intra m-fairness implies
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fij(m, v, P )−fi(j+1)(m, v, P ) = fij(m, v−(i,j+1)
m , P )−fi(j+1)(m, v−(i,j+1)

m , P ). (3.13)

Next, for any two pairs (i,mi), (k, 1) ∈M+ \ ILm(m, v, P ) such that k ∈ P (i), Inter
m-fairness implies

fimi
(m, v, P )− fi1(m, vm, P ) = fimi

(m, v−(k,1)
m , P )− fk1(m, v−(k,1)

m , P ). (3.14)

Using Intra m-fairness and Inter m-fairness and the fact that P is a permission
tree structure, we can generate

∑
i∈N mi − |ILm(m, v, P )| − 1 linear equations. By

Efficiency, ∑
(i,j)∈M+\ILm(m,v,P )

fij(m, v, P ) = v(m). (3.15)

We obtain a system of
∑

i∈N mi − |ILm(m, v, P )| linear equations of the following
form 

f11(m, v, P )− f12(m, v, P ) = f11(m, v(1,2)m , P )− f12(m, v−(1,2)
m , P )

f12(m, v, P )− f13(m, v, P ) = f12(m, v
(1,3)
m , P )− f13(m, v

−(1,3)
m , P )

. . .

f1(m1−1)(m, v, P )− f1m1(m, v, P ) =

f1(m1−1)(m, v
(1,m1)
m , P )− f1(m1−1)(m, v

−(1,(m1−1))
m , P )

f1m1(m, v, P )− f21(m, v, P ) = f1m1(m, v
−(2,1)
m , P )− f21(m, v

−(2,1)
m , P )

f21(m, v, P )− f22(m, v, P ) = f21(m, v
(2,2)
m , P )− f22(m, v

−(2,2)
m , P )

. . . ∑
(i,j)∈M+\ILm(m,v,P )

fij(m, v, P ) = v(m).

Recall that (k, 1) and (i, j + 1) are m-inessential pairs in v
−(k,1)
m and v

−(i,j+1)
m respec-

tively, but are not m-inessential pairs in (m, v). Thus,

|ILm(m, v
−(k,1)
m , P )| ≥ I + 1 and |ILm(v

−(i,j+1)
m , P )| ≥ I + 1. By the induction hy-

pothesis,
f(m, v

−(k,1)
m , P ) and f(m, v

−(i,j+1)
m , P ) are uniquely determined. Therefore, all the

unknowns of the linear system formed by (3.13), (3.14), and (3.15) are located on
the left hand side side of the equations.

Let us show that this system of
∑

i∈N mi − |ILm(m, v, P )| linear equations with∑
i∈N mi − |ILm(m, v, P )| unknowns leads to a unique solution. It admits a unique

solution if and only if

Ax = b
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admits a unique solution x ∈ R
∑

i∈N mi−|ILm(m,v,P )|, where A is a matrix of size(∑
i∈N

mi − |ILm(m, v, P )|)× (
∑
i∈N

mi − |ILm(m, v, P )|
)

and b a real vector of size∑
i∈N

mi − |ILm(m, v, P )|,

respectively given by

A =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
. . .
0 0 . . . 1 −1 0
0 0 . . . 0 1 −1
1 1 1 . . . 1 1



b =



f11(m, v
(1,2)
m , P )− f12(m, v

−(1,2)
m , P )

f12(m, v
(1,3)
m , P )− f13(m, v

−(1,3)
m , P )

. . .

f1m1(m, v
−(2,1)
m , P )− f21(m, v

−(2,1)
m , P )

. . .
v(m)


The equation Ax = b admits a unique solution x = A−1b if and only if A is invertible,
i.e., the matrix A is full rank.

We show that A is full rank. We prove such statement by showing the linear
independence of A’s columns. Let us denote by ai the i-th column of A such that
A = (a1, . . . , an). Suppose that there exists λ ∈ R

∑
i∈N mi−|ILm(m,v,P )| such that

λ1a1 + λ2a2 + . . .+ λ∑
i∈N mi−|ILm(m,v,P )|a

∑
i∈N mi−|ILm(m,v,P )| = 0.

First, one can infer from the
∑

i∈N mi − |ILm(m, v, P )| − 1 first rows of A that

λ1 = λ2 = . . . = λ∑
i∈N mi−|ILm(m,v,P )|.

Then, the last row of A indicates that

λ1 + λ2 + . . .+ λ∑
i∈N mi−|ILm(m,v,P )| = 0.

Hence λ1 = λ2 = . . . = λ∑
i∈N mi−|ILm(m,v,P )| = 0, meaning the columns of A are

linearly independent which is equivalent to say that A is a full rank matrix. Hence,
the linear system of equations leads to a unique solution. This completes the proof
of the induction step.

Conclude that f (+,m) is the unique value on GPT satisfying Efficency, the m-
Inessential pair property, Intra m-fairness and Inter m-fairness, as desired.

■
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The four axioms of the statement of Theorem 18 are logically independent, as
shown by the following alternative solutions.

- The value f given, for each (m, v, P ) ∈ GPT , by f(m, v, P ) = 0⃗, satisfies all the
axioms except Efficiency.

- We use an extension of the Equal division value from TU-games to multi-choice
games (see (2.42)). Fix a real number α ∈]0, 1[. The value fα given, for each
(m, v, P ) ∈ GPT , by

∀i ∈ N, j ∈Mi, fα
ij(m, v, P ) = αED1

ij(m, v) + (1− α)f
(+,m)
ij (m, v, P ),

satisfies all the axioms except the m-Inessential pair property.

- Take any (m, v, P ) ∈ GPT . Recall that

∀s ∈M, C(s) = {(i, j) ∈M+ : j = si}. (3.16)

Define, for each s ∈M, the set of pairs

W (s) = C(s) ∪ {(i,mi) ∈M+ : (P (i), 1) ∈ C(s)}.

The value f given by

∀(i, j) ∈M+, fij(m, v, P ) =
∑
s≤m

(i,j)∈W (s)

∆v(s)

|W (s)|
,

satisfies all the axioms except Intra m-fairness.

- The value f given, for each (m, v, P ) ∈ GPT , by f(m, v, P ) = DP (m, v), sat-
isfies all the axioms except Inter m-fairness. Indeed, Inter m-fairness indicates
that the payoff of a pair (i,mi) varies if the subordinates of i do no longer par-
ticipate. This implies that the pair (i,mi) may have a non-null payoff before or
after these players stop participating, even if (i,mi) is a null pair. However, the
DP value satisfies the Null pair property, which contradicts this observation.

3.7.2 Characterization of f (+,1)

The reasoning is similar to the previous characterization, except that the concepts
of inessential players and fairness properties must be adjusted according to the pal-
permission structure P+,1.

Here, a player is considered to be inessential in two cases. First, if it and each of
its subordinates do not generate any worth at any level of activity. Second, if there
is an activity level greater than 1 at which its productivity falls to zero. Formally,
a pair (i, j) ∈ M+ is a 1-inessential pair in (m, v, P ) ∈ GPT in the following two
cases:
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- either j = 1 and (i, j) is a null pair in (m, v, P ) and for each k ∈ P̂ (i), (k, 1) is
also a null pair in (m, v, P );

- or j > 1 and (i, j) is a null pair in (m, v, P ).

The set of 1-inessential pairs in (m, v, P ) is denoted by IL1(m, v, P ). Observe
that ILm(m, v, P ) ⊆ IL1(m, v, P ). This leads to a new inessential pair property,
weaker than the m-Inessential pair property.

Axiom 38 (1-Inessential pair property). For each (m, v, P ) ∈ GPT , if (i, j) ∈
IL1(m, v, P ), then

fij(m, v, P ) = 0.

The 1-Inessential pair property implies the Null pair property (see 2.50).

1-Inessential pair property =⇒ Null pair property

Also, the 1-Inessential pair property extends the Inessential player property (see 2.22)
from TU-games with a permission structure to multi-choice games with a permission
structure.

Next, we provide two new axioms of intra and inter fairness, which are based
on similar principles as the previous ones except that the associated game from
which they are defined is different. Precisely, take any (m, v, P ) ∈ GPT . For each

pair (i, j′) ∈ M+, define the associated (i, j′)-game (m, v
−(i,j′)
1 , P ) ∈ GPT where in

v
−(i,j′)
1 , player i stops its activity from level j′ onward. If j′ > 1, the other players
are not affected. If j = 1, then i and its subordinates are no longer active. For each
s ∈M,

v
−(i,j′)
1 (s) = v(s̃) where s̃k =


j′ − 1 if k = i and sk ≥ j′,

0 if k ∈ P̂ (i) and j′ = 1,

sk otherwise.

In (m, v
−(i,j)
1 , P ) two cases occur: either j′ = 1, and in this case any pair (k, l) such

that k ∈ P̂ (i)∪{i} becomes an 1-inessential pair; or j′ > 1, and in this case, for each
j ≥ j′, the pair (i, j) becomes 1-inessential.

Axiom 39 (Intra 1-fairness). For each (m, v, P ) ∈ GPT and each
(i, j), (i, j′) ∈M+ such that j′ ≥ j,

fij(m, v, P )− fij(m, v
−(i,j′)
1 , P ) = fij′(m, v, P )− fij′(m, v

−(i,j′)
1 , P ).

Axiom 40 (Inter 1-fairness). For each (m, v, P ) ∈ GPT , each k ∈ N , each (k, 1) ∈
M+ and each i ∈ P−1(k),

fi1(m, v, P )− fi1(m, v
−(k,1)
1 , P ) = fk1(m, v, P )− fk1(m, v

−(k,1)
1 , P ).
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Contrary to Intra m-fairness, which compares the variations in payoffs of (k, 1)
and (i,mi), Inter 1-fairness compares the variations in payoffs of (k, 1) and (i, 1).

Inter 1-fairness extends Permission fairness (see 2.23) from TU-games with a
permission structure to multi-choice games with a permission structure.

In a pal-permission structure P+
1 , a coalition s ∈ M is feasible if the superiors

of each active player are active as well. From this observation the set of feasible
coalitions F(m,P+

1 ) is given by

F(m,P+
1 ) =

{
s ∈M :

[
si > 0 and k ∈ P−1(i)

]
=⇒

[
sk ≥ 1

]}
. (3.17)

Example 9. From Example 6, the coalition (sa, sb) = (2, 1) is a feasible coalition in
P+
1 (see Figure (b)). In this situation, b cannot cooperate until a makes at least its

first activity level. When the coalition (2, 1) forms, it is understood that a undertakes
its activity level 1 before reaching level 2. In this sense, both pairs (a, 1) and (a, 2) are
to be considered, and because (b, 1) ∈ P+

1 (a, 1), b is allowed to make its activity level
1. In other words, although (a, 2) is not a predecessor of (b, 1) in P+

1 , we consider
that if level 2 is reached by a then level 1 must have been reached as well.

From the definition of feasible coalitions, we deduce the following proposition.

Proposition 16. The sovereign part σ(s) and the authorizing part α(s) associated
with a coalition s ∈M in P+

1 are defined as

∀i ∈ N, σi(s) =

{
0 if ∃k ∈ P̂−1(i) such that sk = 0,

si otherwise.

∀i ∈ N, αi(s) =

{
1 if ∃k ∈ P̂ (i) such that sk > 0 and si = 0,

si otherwise.

Proof. The proof of the proposition follows directly from (3.17) and (3.2). ■

Example 10. Continuation of Example 9. The set of feasible coalitions under P+
1

consists of all coalitions such that if sb > 0, then sa ≥ 1. For instance, coalition
(sa, sb) = (0, 1) is not feasible since sb = 1 > 0 and sa = 0 < 1.

The next proposition identifies a subset of coalitions whose worth is unchanged in
the associated (k, l)-game (m, v

−(k,l)
1 , P ). From this proposition, we obtain that the

Harsanyi dividends of these coalitions coincide in (m, v, P ) and (m, v
−(k,l)
1 , P ).

Proposition 17. For each (m, v, P ) ∈ GPT and each coalition s ∈ M such that
αk(s) < l,

v
−(k,l)
1 (s) = v(s).
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Proof. By definition of v
−(k,l)
1 ,

v
−(k,l)
1 (s) = v(s̃),

where

s̃h =


l − 1 if h = k and sh ≥ l,

0 if h ∈ P̂ (k) and l = 1,

sh otherwise.

By definition of the authorizing part of s and hypothesis, sk ≤ αk(s) < l. Thus,
sk < l and so s̃k = sk. For each h ∈ P̂ (k), if l = 1, then αk(s) = 0 = sk. Thus,
by Proposition 16, sh = 0 and, by definition, s̃h = 0, so that sh = s̃h. For any
h /∈ P̂ (k) ∪ {k}, by definition, s̃k = sk. All in all, we get v

−(k,l)
1 (s) = v(s̃) = v(s). ■

Proposition 18. For each (m, v, P ) ∈ GPT and each s ∈M such that αk(s) < l,

∆
v
−(k,l)
1 (s)

= ∆v(s).

Proof. The proof follows directly from Proposition 17 and the recursive definition of
the Harsanyi dividend (see (2.3)). ■

Theorem 19. A value f on GPT satisfies Efficiency, the 1-Inessential pair property,
Intra 1-fairness and Inter 1-fairness if and only if f = f (+,1).

Proof. We only show that f (+,1) satisfies the 1-Inessential pair property, Intra 1-
fairness and Inter 1-fairness. The rest of the proof is similar to the proof of Theorem
18, and so is omitted. Take any (m, v, P ) ∈ GPT . The permission structure P induces
the unique 1-permission structure P+

1 ∈ P and thus a unique game (m, v, P+
1 ) ∈ GP .

1-Inessential pair property: to show that f (+,1) satisfies the axiom it is sufficient
to show that any 1-inessential pair in (m, v, P ) is a null pair in (m,RP+

1
(v)). Take

any pair (i, j) ∈ IL1(m, v, P ). Take any s ∈ M such that si = j − 1, and consider
the coalition s′ = (s−i, l) such that j ≤ l ≤ mi. We distinguish two cases:

- if j = 1, then (i, 1) ∈ IL1(m, v, P ) means that (i, 1) is a null pair as well as each
pair (k, 1), k ∈ P̂ (i). Next, by definition of the sovereign part of a coalition,
s′ ≥ s implies σ(s′) ≥ σ(s). By Proposition 16, for each k ̸∈ P̂ (i), σk(s

′) =
σk(s). For k ∈ P̂ (i) ∪ {i}, σk(s

′) ≥ σk(s). But, because (i, 1) ∈ IL1(m, v, P ),
we obtain that v(σ(s′)) = v(σ(s));

- if j > 1, then (i, j) ∈ IL1(m, v, P ) means that the pair (i, j) is a null level pair.
By Proposition 16, only the sovereign part of (i, j)’s subordinates can be af-
fected by a deviation initiated by i, and, by definition of P+

1 , these subordinates
are precisely the pairs (i, j + 1), . . . , (i,mi). Because j > 1, the sovereign part
of (i, j)’s subordinates are not affected by such a deviation. Finally, because
(i, j) is a null level pair, it follows that v(σ(s′)) = v(σ(s)).
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Thus, (i, j) is a null pair in (m,RP+
1
(v)). By definition of f (+,1) and the Null pair

property,

f
(+,1)
ij (m, v, P ) = DPij(m,RP+

1
(v)) = 0,

which shows that f (+,1) satisfies the 1-Inessential pair property.

Intra 1-fairness: Take any two (i, j), (i, j′) ∈M+ such that j < mi and j′ > j.
By definition of f (+,1),

f
(+,1)
ij (m, v, P )− f

(+,1)
ij (m, v

−(i,j′)
1 , P )

=
∑
s≤m

j≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)

∆
v
−(i,j′)
1

(s)∑
h∈N αh(s)

=
∑
s≤m

j≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′>αi(s)

∆
v
−(i,j′)
1

(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′≤αi(s)

∆
v
−(i,j′)
1

(s)∑
h∈N αh(s)

.

By Proposition 18, ∆
v
−(i,j′)
1

= ∆v(s) when αi(s) < j′. Thus, we obtain

f
(+,1)
ij (m, v, P )− f

(+,1)
ij (m, v

−(i,j′)
1 , P )

=
∑
s≤m

j≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′>αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′≤αi(s)

∆
v
−(i,j′)
1

(s)∑
h∈N αh(s)

=
∑
s≤m

j≤αi(s)
j′≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j≤αi(s)
j′≤αi(s)

∆
v
−(i,j′)
1

(s)∑
h∈N αh(s)

=
∑
s≤m

j′≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

j′≤αi(s)

∆
v
−(i,j′)
1

(s)∑
h∈N αh(s)

= f
(+,1)
ij′ (m, v, P )− f

(+,1)
ij′ (m, v

−(i,j′)
1 , P ),

which shows that f (+,1) satisfies Intra 1-fairness. Note that

f
(+,1)
ij′ (m, v

−(i,j′)
1 , P ) = 0 because (i, j′) is an 1-inessential pair in (m, v

−(i,j′)
1 , P ).

Inter 1-fairness: Take any k, i ∈ N such that i ∈ P−1(k). It holds that
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f
(+,1)
i1 (m, v, P )− f

(+,1)
i1 (m, v

−(k,1)
1 , P )

=
∑
s≤m

1≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αi(s)

∆
v
−(k,1)
1

(s)∑
h∈N αh(s)

=
∑
s≤m

1≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αi(s)
1>αk(s)

∆
v
−(k,1)
1

(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αi(s)
1≤αk(s)

∆
v
−(k,1)
1

(s)∑
h∈N αh(s)

.

By Proposition 18, note that ∆
v
−(k,1)
1 (s)

= ∆v(s) when αk(s) < 1. Thus, we obtain

f
(+,1)
i1 (m, v, P )− f

(+,1)
i1 (m, v

−(k,1)
1 , P )

=
∑
s≤m

1≤αi(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αi(s)
1>αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αi(s)
1≤αk(s)

∆
v
−(k,1)
1

(s)∑
h∈N αh(s)

=
∑
s≤m

1≤αi(s)
1≤αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αi(s)
1≤αk(s)

∆
v
−(k,1)
1

(s)∑
h∈N αh(s)

=
∑
s≤m

1≤αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤αk(s)

∆
v
−(k,1)
1

(s)∑
h∈N αh(s)

= f
(+,1)
k1 (m, v, P )− f

(+,1)
k1 (m, v

−(k,1)
1 , P ),

where the third equality follows from the fact that αk(s) ≥ 1 implies αi(s) ≥ 1
for i ∈ P̂−1(k). This shows that f (+,1) satisfies Inter 1-fairness. Observe that

f
(+,1)
k1 (m, v

−(k,1)
1 , P ) = 0, because (k, 1) is an 1-inessential pair in (m, v

−(k,1)
1 , P ). ■

The four axioms of the statement of Theorem 19 are logically independent. One
can find examples showing this independence that are close to the examples proposed
for the logical independence of Theorem 18. Therefore, we will omit the demonstra-
tion of the logical independence for Theorem 19.

3.7.3 Characterization of f (+,F )

The characterization of f (+,F ) slightly differs from the previous ones. There are two
main changes:

- first, the axiomatic characterization cannot be stated on the full class GPT .
Due to the definition of the F-permission structures (see Section 3.5) we need
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to restrict the study to situations where, for each multi-choice game (m, v) and
each permission tree structure P , the following holds:

∀i, j ∈ N, j ∈ P (i) =⇒ mj ≤ mi.

The class of games satisfying this assumption is denoted by GPT . This class
of games contains the games in which each player has the same set of activity
levels. The reason for this change is that the F-permission structure conveys
the idea that each player should be able to supervise its subordinates. Thus,
we expect each player to be able to achieve at least the same activity levels as
its subordinates;

- second, we will no long apply the principle of permission fairness into two direc-
tions. Instead, a single axiom, generalizing the axiom of permission fairness,
is proposed. As in the previous sections, the notion of inessential players is
adjusted in the same way as in the previous sections.

Here, a player is considered to be inessential if there is an activity level at which
its productivity and the productivity of its subordinates fall to zero. Formally, a
pair (i, j) ∈ M+ is a F-inessential pair in (m, v, P ) ∈ GPT if it is a null pair
in (m, v, P ) and if, for each k ∈ P̂ (i), (k, j) is also a null pair in (m, v, P ). The
set of F-inessential pairs in (m, v, P ) is denoted by ILF (m, v, P ). Observe that
ILm(m, v, P ) ⊆ ILF (m, v, P ). This leads to a new inessential pair property, weaker
than the m-Inessential pair property.

Axiom 41 (F-inessential pair property). For each (m, v, P ) ∈ GPT , if (i, j) ∈
ILF (m, v, P ), then

fij(m, v, P ) = 0.

The F-Inessential pair property implies the Null pair property (see 2.50).

F-Inessential pair property =⇒ Null pair property

Also, the F-Inessential pair property extends the Inessential player property (see 2.22)
from TU-games with a permission structure to multi-choice games with a permission
structure.

Next, we provide one last axiom of permission fairness. Instead of dealing with
permission fairness within and between players, the axiom compares the variations
in payoffs of each pair with the variations in payoffs of the root of P+

F (despite not
being a tree, the pal-permission structure P+

F still has a unique root). Without loss
generality, we suppose that (1, 1) is the root of M+. Before introducing the axiom,
we need a definition. Take any (m, v, P ) ∈ GPT . For each pair (i, j′) ∈ M+, define

the associated (i, j′)−game (m, v
−(i,j′)
F , P ) ∈ GPT where in v

−(i,j′)
F , player i and its
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subordinates stop any activity from level j′ onward. For each s ∈ M, the worth

v
−(i,j′)
F is defined as

v
−(i,j′)
F (s) = v(ŝ), where ŝk =

{
j′ − 1 if sk ≥ j′ for k ∈ P̂ (i) ∪ {i},
sk otherwise.

By construction, for each k ∈ P̂ (i) ∪ {i} and each l ∈ M+
k such that l ≥ j′, (k, l) ∈

ILF (m, v
−(i,j′)
F , P ). The next axiom of permission fairness indicates that the changes

in payoffs of the pair (1, 1) is equal to the changes in payoffs of the pair (i, j′).

Axiom 42 (F-fairness). Take any (m, v, P ) ∈ GPT , for each (i, j′) ∈M+\{(1, 1)},

f(1,1)(m, v, P )− f(1,1)(m, v
−(i,j′)
F , P ) = f(i,j′)(m, v, P )− f(i,j′)(m, v

−(i,j′)
F , P ).

In a pal-permission structure P+
F , a coalition s ∈ M is feasible in the sense of (3.1)

if each player is active at a higher level than its subordinates. From this observation,
the set of feasible coalitions according to P+

F is denoted by F(m,P+
F ) and given by

F(m,P+
F ) =

{
s ∈M :

[
si > 0 and k ∈ P̂−1(i)

]
=⇒

[
sk ≥ si]

}
, (3.18)

from which we deduce the following proposition.

Proposition 19. The sovereign part σ(s) and the authorizing part α(s) of a coalition
s in P+

F are defined as

- ∀i ∈ N, σi(s) = min
k∈P̂−1(i)∪{i}

sk;

- ∀i ∈ N, αi(s) = max
k∈P̂ (i)∪{i}

sk.

Proof. The proof of the Proposition 19 follows directly from (3.18) and (3.2).
■

Example 11. Continuation of Example 9. The set of feasible coalitions under P+
F

consists of all coalitions such that if sa ≥ sb. For instance, coalition (sa, sb) = (0, 1)
is not feasible since sb = 1 > 0 and sa = 0 < 1.

As in the previous sections, we introduce a proposition stating that the Harsanyi
dividends of a certain subset of coalitions coincide in (m, v, P ) and (m, v−(k,l), P ).

Proposition 20. For each (m, v, P ) ∈ GPT , s ∈ M, k ∈ N and l ∈ M+
k such that

αk(s) < l,

∆
v
−(k,l)
F

(s) = ∆v(s).
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We have the material to state the main result of this section.

Theorem 20. A value f satisfies Efficiency, the F-inessential pair property and
F-fairness on GPT if and only if f = f (+,F ).

Proof. We show that f (+,F ) satisfies the F-inessential pair property and the F-
fairness. Efficiency follows in the same way as in the previous theorems. Take
any F-permission structure P+

F ∈ P and the game (m, v, P+
F ) ∈ GPT .

F-inessential pair property: It is sufficient to show that an F-inessential pair in
(m, v, P ) is a null pair in (m,RP+

F
(v)). Take any pair (i, j) ∈ ILF (m, v, P ). Take

any s ∈ M such that si = j − 1, and take any coalition s′ = (s−i, l) such that
j ≤ l ≤ mi. By definition of the sovereign part of a coalition, s′ ≥ s implies
σ(s′) ≥ σ(s). By Proposition 19, for each k ∈ P̂−1(i), σk(s

′) = σk(s), and if, for
k ∈ P̂ (i) ∪ {i}, σk(s

′) > σk(s) then σk(s
′) = l. But, because (i, j) ∈ ILF (m, v, P ),

we obtain v(σ(s′)) = v(σ(s)).
Thus, (i, j) is a null pair in (m,RP+

F
(v)). By definition of f (+,F ) and the Null

pair property,

f
(+,F )
ij (m, v, P ) = DPij(m,RP+

F
(v)) = 0,

which shows that f (+,F ) satisfies the F-inessential pair property.

F-fairness: Take any (k, l) ∈M+ \ {(1, 1)}. By definition of f (+,F ),

f
(+,F )
11 (m, v, P )− f

(+,F )
11 (m, v

−(k,l)
F , P )

=
∑
s≤m

1≤α1(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤α1(s)

∆
v
−(k,l)
F

(s)∑
h∈N αh(s)

=
∑
s≤m

1≤α1(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤α1(s)
αk(s)<l

∆
v
−(k,l)
F

(s)∑
h∈N αh(s)

−
∑
s≤m

1≤α1(s)
l≤αk(s)

∆
v
−(k,l)
F

(s)∑
h∈N αh(s)
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By Proposition 20, ∆
v
−(k,l)
F

(s) = ∆v(s) when αk(s) < l. Thus, we obtain

f
(+,F )
11 (m, v, P )− f

(+,F )
11 (m, v

−(k,l)
F , P )

=
∑
s≤m

1≤α1(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤α1(s)
l>αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤α1(s)
l≤αk(s)

∆v−(k,l)(s)∑
h∈N αh(s)

=
∑
s≤m

1≤α1(s)
l≤αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

1≤α1(s)
l≤αk(s)

∆
v
−(k,l)
F

(s)∑
h∈N αh(s)

=
∑
s≤m

l≤αk(s)

∆v(s)∑
h∈N αh(s)

−
∑
s≤m

l≤αk(s)

∆
v
−(k,l)
F

(s)∑
h∈N αh(s)

= f
(+,F )
kl (m, v, P )− f

(+,F )
kl (m, v

−(k,l)
F , P ),

where the third equality follows from Proposition 19. Conclude that f
(+,F )
kl satisfies

F-fairness. Note that f
(+,F )
kl (m, v

−(k,l)
F , P ) = 0 because (k, l) is an F-inessential pair

in (m, v
−(k,l)
F , P ).

The uniqueness part of the proof is similar to the proof of Theorem 18. The
only difference lies in the fact that the linear system of equations arises from F-
fairness and Efficiency, instead of two axioms of permission fairness and Efficiency as
in the previous proofs. Indeed, remark the F-fairness generates

∑
i∈N mi − 1 linear

equations and Efficiency generates one linear equation. We obtain a linear system of∑
i∈N mi equations with

∑
i∈N mi unknows. Proceeding as in the proof of Theorem

18, it is easy to show that this system is linearly independent. ■

The three axioms of the statement of Theorem 20 are logically independent, as
shown by the following alternative solutions.

- The value f given, for each (m, v, P ) ∈ GPT , by f(m, v, P ) = 0⃗, satisfies all the
axioms except Efficiency.

- We use an extension of the Equal division value from TU-games to multi-choice
games (see (2.42)). Fix a real number α ∈]0, 1[. The value fα given, for each
(m, v, P ) ∈ GPT , by

∀i ∈ N, j ∈Mi, fα
ij(m, v, P ) = αED1

ij(m, v) + (1− α)f
(+,F )
ij (m, v, P ),

satisfies all the axioms except the F-inessential pair property.
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- The value f given, for each (m, v, P ) ∈ GPT , by f(m, v, P ) = DP (m, v), sat-
isfies all the axioms except F-fairness. Indeed, F-fairness indicates that the
payoff of the pair (1, 1) varies if a player and all of its subordinates no longer
participate above a certain activity level. This implies that the pair (1, 1) may
receive a non-null payoff before or after these players stop participating, even
if (1, 1) is a null pair. However, the DP value satisfies the Null pair property,
which contradicts this observation.

3.8 Conclusion

This chapter takes advantage of the information provided by the distribution network
to combine multi-choice games and permission tree structures. We have proposed
two approaches to combine the intra-player relationships provided by the permission
structure with the intra-player relationships provided by the game. This led us to the
definition of three specific pal-permission structures from which we have constructed
three new values. Finally, we have provided comparable axiomatic characterizations
of these values.

This chapter sheds light on the additional difficulties that arise when one tries to
combine a multi-choice game with a structure on the player set. It makes use of the
information provided by the distribution network, but has no consideration for the
Independence of higher demands or the Uniformity principle.
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Chapter 4: Marginalism, Egalitari-
anism and Efficiency in Multi-Choice
Games

4.1 Introduction

Contrary to Chapter 3, this chapter focuses on the Independence of higher demands
principle and the Uniformity principle. It will disregard the information provided by
the distribution network.

This chapter addresses the trade-off between marginalism and egalitarianism,
which is one of the main issues in economic allocation problems. Marginalism sup-
ports allocations based on a player’s marginal contributions to coalitions, whereas
egalitarianism is in favor of an equal allocation at the expense of the differences
between the players’ marginal contributions to coalitions. Observe that the Unifor-
mity principle can be seen as a form of egalitarianism. In the context of TU-games,
the trade-off between marginalism and egalitarianism can be seen as a compromise
between the Shapley value and the Equal division value since the two values are
often seen as the embodiment of marginalism and egalitarianism, respectively. This
compromise can be made by considering convex combinations of the Shapley value
and the Equal division value (see Section 2.1.2).

In multi-choice games, several solution concepts were inspired by the Shapley
value, the Equal division value, the Core and the Weber set. In Chapter 2, the
extensions of the Core from TU-games to multi-choice games by Grabisch & Xie
(2007) (see Definition 16) and van den Nouweland et al. (1995) (see Definition 18)
are presented. Grabisch & Xie (2007) show that their extension of the Core and
the Weber set both coincide on the class of super-modular multi-choice games (see
Proposition 7). It should be observed that this property does not hold for the
extension of the Core and the Weber set provided by van den Nouweland et al.
(1995), since, for each multi-choice game, their extension of the Weber set is strictly
included in their extension of the Core. For this reason, we prefer to consider the
Core and the Weber set as introduced by Grabisch & Xie (2007) (or simply the Core
and the Weber set afterwards). Precisely, we focus on a necessary condition for a
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payoff vector to be in the Core (see Definition 16). This condition, called Multi-
efficiency, extends Efficiency from TU-game to multi-choice games. As a reminder,
Multi-efficiency is based on the concept of synchronized coalition (see (2.44)). A
payoff vector is Multi-efficient if for each level j, the sum of the payoffs of all players
for their activity levels up to j is equal to the worth of the j-synchronized coalition.
We say that a solution on multi-choice games satisfies Multi-efficiency if it assigns a
multi-efficient payoff vector to each game in this class.

In this chapter, we introduce a new axiom for multi-choice games related to Multi-
efficiency and the Independence of higher demands principle: Independence of higher
activity levels. This axiom ensures that the payoff distributed to a player’s activ-
ity level is independent from higher activity levels. In particular, Independence of
higher activity levels protects players with lower activity levels from being influenced
by players with higher activity levels. We show that if a value satisfies Independence
of higher activity levels and Efficiency, then it satisfies Multi-efficiency. Therefore,
Multi-efficiency can be seen as a desirable axiom for multi-choice games. First, it
is implied by two desirable axioms for multi-choice games, one of them being a di-
rect translation of the Independence of higher demands principle. Second, from a
technical point of view, it is a necessary condition to be in the Core. However, none
of the previously introduced single-valued solutions for multi-choice games (see Sec-
tion 2.4.2) satisfies Multi-efficiency.1 For this reason, we propose several solution
concepts for multi-choice games satisfying Multi-efficiency. This allows us to discuss
the trade-off between marginalism and egalitarianism by means of a compromise be-
tween multi-efficient solutions. To that end, we first study a multi-efficient extension
of the Shapley value, which we call the multi-choice Shapley value. This value
is computed as follows. Assume that the grand coalition forms step by step starting
from the empty coalition, in which no player participates at all. At each step, one
player increases its activity by one unit according to a restricted order (see (2.35)).
The marginal contribution of a player for an activity level to a coalition is the varia-
tion in worth that is created when that player reaches that particular level from the
level just below. The multi-choice Shapley value assigns to each activity level of each
player its expected marginal contribution assuming that each restricted order occurs
with equal probability. This value is the centroid of the Weber set and therefore
belongs to the Core of super-modular multi-choice games. As an additional remark,
we show that the multi-choice Shapley value is consistent with the discrete serial cost
sharing method for discrete cost sharing problems (see Definition 22).

Then, we introduce the multi-choice Equal division value: it divides the
variation in worth between two consecutive synchronized coalitions (e.g. the j-
synchronized and the (j + 1)-synchronized coalitions) equally among the players
able to play the required activity levels. This value applies the Uniformity principle
since it allocates the same amount to any two players with the same maximal activity
level.

1The list of single valued solutions provided in Section 2.4.2 is not exhaustive, but, to our
knowledge, no multi-efficient value for multi-choice games exist in the literature.
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To our knowledge, no previous work has addressed the trade-off between marginal-
ism and egalitarianism in the context of multi-choice games. We address this trade-off
by compromising between the multi-choice Shapley value and the multi-choice Equal
division value. To that end, we introduce the multi-choice Egalitarian Shapley
values for multi-choice games. This family of values is composed of convex combi-
nations of the multi-choice Shapley value and the multi-choice Equal division value.
Obviously, the multi-choice Egalitarian Shapley values are multi-efficient. Since we
consider multi-choice games, we can define a specific convex combination at each ac-
tivity level. This allows for different types of compromise, depending on the activity
level.

We provide several axiomatic characterizations of these new multi-efficient solu-
tion concepts. To that end, we introduce Sign symmetry for equal pairs, which is an
extension of Sign symmetry from TU-games to multi-choice games. Additionally, we
propose Equal treatment for equal pairs, which strengthens Sign symmetry for equal
pairs. Furthermore, we introduce Weak monotonicity, which relaxes Strong mono-
tonicity. Combining classical and new axioms for multi-choice games, we provide
two characterizations of the multi-choice Shapley value, one that relies on Additivity
(Theorem 21) and another one that does not (Theorem 22). Furthermore, we show
that the multi-choice Shapley value admits an expression in terms of Harsanyi divi-
dends (see (4.23)). Next, we provide an axiomatic characterization of the multi-choice
Equal Division value (Theorem 23). Finally, we provide an axiomatic characteriza-
tion of the Egalitarian Shapley values (Theorem 24).

The rest of the chapter is organized as follows. Multi-efficient solution concepts
are introduced in Section 4.2. Section 4.2.1 introduces Multi-efficiency. Subsection
4.2.2 introduces the multi-choice Shapley value, Section 4.2.3 introduces the multi-
choice Equal Division value and Section 4.2.4 introduces the multi-choice Egalitarian
Shapley values. Axiomatic characterizations of these solution concepts are intro-
duced in Section 4.3. Additional remarks regarding the multi-choice Shapley value
and its relationship with the serial cost sharing method are made in Section 4.4.
Finally, Section 4.5 concludes the chapter.

4.2 Multi-efficient solution concepts

In this section, we discuss a necessary condition for a payoff vector to be in the
Core of multi-choice games (see Definition 16), which we call Multi-efficiency.
We propose new multi-efficient solution concepts for multi-choice games. We first
provide a new extension of the Shapley value (see Definition 4) from TU-games to
multi-choice games. Next, we provide new extensions of the Equal division value and
the Egalitarian Shapley values from TU-games to multi-choice games.
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4.2.1 Multi-efficiency

Recall that the Core of a multi-choice game (m, v) ∈ G (see Definition 16) is denoted
by C(m, v) and defined as the set of payoff vector x satisfying

∀s ∈M,
∑
i∈N

si∑
j=1

xij ≥ v(s) (4.1)

and ∀l ≤ max
k∈N

mk,
∑
i∈N

l∧mi∑
j=1

xij = v((l ∧mi)i∈N). (4.2)

Equation (4.2) is the Multi-efficiency condition. Let us translate this condition
into an axiom for solutions on G. Let f be a solution on G.

Axiom 43 (Multi-efficiency). For each (m, v) ∈ G,

∀l ≤ max
k∈N

mk,
∑
i∈N

l∧mi∑
j=1

fij(m, v) = v((l ∧mi)i∈N). (4.3)

Remark 4. For each (m, v) ∈ G, (4.3) can be re-written as

∀l ≤ max
k∈N

mk,∑
i∈Q(l)

fil(m, v) = v((l ∧mk)k∈N)− v(((l − 1) ∧mk)k∈N). (4.4)

The sum of the payoffs of all pairs (i, l) containing activity level l is equal to the
surplus generated between the l-synchronized coalition and the (l − 1)-synchronized
coalition.

4.2.2 The multi-choice Shapley value

In this section, we define the multi-choice Shapley value, which is a multi-efficient
value that extends the Shapley value from TU-games to multi-choice games.

Assume that the grand coalition m forms according to a restricted order (see
(2.45)) over the set of pairs. The multi-choice Shapley value assigns to each pair
(i, j) ∈ M+ its expected marginal contribution, assuming that each restricted order
over the set of pairs occurs with equal probability.

Definition 28 (Multi-choice Shapley value). For each (m, v) ∈ G, the multi-
choice Shapley value φ is defined as

∀(i, j) ∈M+, φij(m, v) =
1∏

j≤ max
k∈N

mk
|Q(j)|!

∑
θGX∈ΘGX

ηθGX
ij (m, v). (4.5)
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Whenever m = (1, . . . , 1), this value coincides with the Shapley value on TU-games.
Recall that, for each (m, v) ∈ G, the Weber setW is the convex hull of all marginal

vectors defined as

W(m, v) = co({ηθGX (m, v) | θGX ∈ ΘGX}).

The multi-choice Shapley value is the centroid of the Weber set. By Proposition 7,
the Weber set coincides with the Core on the class of super-modular multi-choice
games. Therefore, the following result holds.

Proposition 21. For each super-modular multi-choice game (m, v) ∈ G,

φ(m, v) ∈ C(m, v).

The next results states that the multi-choice Shapley value admits an alternative
expression which requires less orders over the set of pairs to be computed. For each
j ≤ maxk∈N mk, denote by

M+,j = {(i, j) ∈M+ : i ∈ Q(j)}

the subset of pairs containing the activity level j. An order over M+,j is given by

θj : M
+,j → {1, . . . , |Q(j)|}.

Denote by Θj the set of all orders over M+,j. These orders can also be interpreted
as orders over the set of players in Q(j). For each θj ∈ Θj and h ∈ {0, . . . , |Q(j)|},
define sθj ,h as

∀i ∈ N, s
θj ,h
i =


j if i ∈ Q(j) and θj(i, j) ≤ h,

j − 1 if i ∈ Q(j) and θj(i, j) > h,

mi if i /∈ Q(j).

(4.6)

Observe that

sθj ,|Q(j)| = (j ∧mk)k∈N and sθj ,0 = ((j − 1) ∧mk)k∈N .

The coalition sθj ,h ∈ M represents a situation in which each player able to play at
j and ordered prior to step h, with respect to θj, participates at its activity level
j, whereas each player able to play j but not ordered prior to step h, with respect
to θj, participates at its activity level j − 1. Players unable to play j participate at
their maximal activity level.

Proposition 22. For each (m, v) ∈ G, the multi-choice Shapley value φ admits an
alternative expression given by

∀(i, j) ∈M+, φij(m, v) =
1

|Q(j)|!
∑
θj∈Θj

[
v(sθj ,θj(i,j))− v(sθj ,θj(i,j)−1)

]
. (4.7)
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Proof. We show that the multi-choice Shapley value admits an alternative expression
given by (4.7). Observe that there are |Θl| = |Q(l)|! ways to order the pairs in M+,l

for each l ≤ maxk∈N mk. Additionally, there are∏
l<j

|Q(l)|!

ways to order the pairs in M+,1, then the pairs in M+,2, and so on, until the pairs
in M+,j−1. Similarly, there are∏

l>j

|Q(l)|!

ways to order the pairs in M+,j+1, then the pairs in M+,j+2, and so on. Observe that,
for each θGX ∈ ΘGX , there exists exactly one order θj ∈ Θj such that sθGX ,θGX(i,j) =
sθj ,θj(i,j). Additionally, for each θj ∈ Θj, there are∏

l<j

|Q(l)|!×
∏
l>j

|Q(l)|!

orders θGX ∈ ΘGX such that sθGX ,θGX(i,j) = sθj ,θj(i,j). It follows that, for each (m, v) ∈
G and (i, j) ∈M+,

φij(m, v)

=
1∏

l≤ max
k∈N

mk
|Q(l)|!

∑
θGX∈ΘGX

[
v(sθGX ,θGX(i,j))− v(sθGX ,θGX(i,j)−1)

]

=
(
∏

l<j |Q(l)|!)(
∏

l>j |Q(l)|!)∏
≤ max

k∈N
mk
|Q(l)|!

∑
θj∈Θj

[
v(sθj ,θj(i,j))− v(sθj ,θj(i,j)−1)

]
.

The first line comes from the definition of the multi-choice Shapley value, the second
line follows from (4.6) and the fact that there are∏

l<j

|Q(l)|!×
∏
l>j

|Q(l)|!

orders θGX ∈ ΘGX such that sθGX ,θGX(i,j) = sθj ,θj(i,j) for each θj ∈ Θj. Simplifying
the expression, we obtain the desired result

∀(i, j) ∈M+, φij(m, v) =
1

|Q(j)|!
∑
θj∈Θj

[
v(sθj ,θj(i,j))− v(sθj ,θj(i,j)−1)

]
.

■

In the sequel, we will retain expression (4.7) of the multi-choice Shapley value.

137



4.2.3 The multi-choice Equal division value

In this section, we propose a new multi-efficient value that extends the Equal division
value from TU-games to multi-choice games. This value is referred to as the multi-
choice Equal division value. The multi-choice Equal division value divides the surplus
generated between two consecutive synchronized coalitions (4.4) equally among the
pairs containing the activity level on which the players in the larger of the two
coalitions are synchronized.

Definition 29 (Multi-choice Equal division value). For each (m, v) ∈ G, the
multi-choice Equal division value ξ is defined as

∀(i, j) ∈M+,

ξij(m, v) =
1

|Q(j)|

[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N))

]
. (4.8)

Whenever m = (1, . . . , 1), the multi-choice Equal division value boils down to the
Equal division value on TU-games (see (2.10)). The Multi-choice Equal division
value allocates the same total payoff to any two players sharing the same maximal
activity level. Therefore, this value is in line with the Uniformity principle.

4.2.4 The multi-choice Egalitarian-Shapley values

In this section, we propose a trade-off between marginalism and egalitarianism by
considering convex combinations of the multi-choice Shapley value and the multi-
choice Equal division value.

Definition 30 (Multi-choice Egalitarian Shapley value). Let
α = {αj}1≤j≤K be a parameter system such that αj ∈ [0, 1] for each 1 ≤ j ≤ K. For
each (m, v) ∈ G, the multi-choice Egalitarian Shapley value χα is defined as

∀(i, j) ∈M+, χα
ij(m, v) = αjφij(m, v) + (1− αj)ξij(m, v). (4.9)

Whenever m = (1, . . . , 1), these values boil down to the Egalitarian Shapley values
on TU-games (see (2.12)). We illustrate the possibilities offered by multiple convex
combinations through an example.

Example 12. Consider (m, v) ∈ G and i ∈ N such that mi = 3. Consider an
Egalitarian Shapley value defined by α1 = 0.2, α2 = 0.5 and α3 = 0.8. The payoff
χα
ij will be closer to the multi-choice Equal division value if j = 1 and closer to the

multi-choice Shapley value if j = 3. Thus, egalitarianism is progressively overtaken
by marginalism as the activity level increases. This is due to the fact that α1 < α2 <
α3. Depending on the parameter system, a multi-choice Egalitarian Shapley value
operates different compromises between egalitarianism and marginalism for different
activity levels. These differences can be progressive as it is the case in this example.
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4.3 Axiomatic characterizations

In this section, we discuss new and classical axioms for multi-choice games. We also
provide axiomatic characterizations of each solution introduced in Section 4.2.

4.3.1 Characterizations of the multi-choice Shapley value

We provide two axiomatic characterizations of the multi-choice Shapley value. The
first characterization relies on Linearity, whereas the second does not. We also pro-
vide an expression of the multi-choice Shapley value in terms of Harsanyi dividends.
Let f be a value on multi-choice games.

The next axiom adapts the Independence of higher demands principle to the
framework of multi-choice games. It requires that if the maximal activity level of
each player reduces to a certain level, then the payoff of each player for this activity
level remains unchanged.

Axiom 44 (Independence of higher activity levels). For each
(m, v) ∈ G,

∀(i, j) ∈M+, fij(m, v) = fij((j ∧mk)k∈N , v). (4.10)

It turns out that Independence of higher activity levels combined with Efficiency
implies Multi-efficiency.

Proposition 23. If a value f on G satisfies Efficiency and Independence of higher
activity levels, then it satisfies Multi-efficiency.

Proof. Let (m, v) ∈ G, l ≤ maxk∈N mk and f a value satisfying Efficiency and In-
dependence of higher activity levels. Consider the sub-game ((l ∧ mk)k∈N , v). By
Efficiency, it holds that∑

i∈N

l∧mi∑
j=1

fij((l ∧mk)k∈N , v) = v((l ∧mk)k∈N). (4.11)

By Independence of higher activity levels,∑
i∈N

h∧mi∑
j=1

fij((l ∧mk)k∈N , v) =
∑
i∈N

l∧mi∑
j=1

fij(m, v). (4.12)

Combining (4.11) with (4.12), we obtain the desired result. ■

Remark 5. The converse of Proposition 23 is not true. Indeed, consider the value
d defined for each (m, v) ∈ G and each (i, j) ∈M+ as

dij(m, v) =


v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

|{h ∈ N : mh ≥ mk, ∀k ∈ N}|
if mi ≥ mk,∀k ∈ N,

0 otherwise.
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The value d satisfies Multi-efficiency, but does not verify Independence of higher
activity levels. To see this, consider N = {1, 2, 3} and (m, v) ∈ G such that m =
(3, 2, 3). Observe that d1,1((2, 2, 2), v) =

1
3
v(1, 1, 1) ̸= d1,1(m, v) which shows that d

violates Independence of higher activity levels.

The next two axioms compare the payoffs of equal pairs (see (2.26) for the defini-
tion of equal pairs). First, we introduce the Equal treatment for equal pairs axiom,
which states that two equal pairs should receive the same payoff. We also suggest
a relaxation of Equal treatment for equal pairs into Sign symmetry for equal pairs.
This new axiom states that two equal pairs should receive a payoff of the same sign.

Axiom 45 (Equal treatment for equal pairs). For each (m, v) ∈ G and two
distinct equal pairs (i, j)(i′, j) ∈M+,

fij(m, v) = fi′j(m, v).

Whenever m = (1, . . . , 1), Equal treatment for equal pairs boils down to the classical
axiom of Equal treatment for equal for TU-games.

Axiom 46 (Sign symmetry for equal pairs). For each (m, v) ∈ G and two dis-
tinct equal pairs (i, j), (i′, j) ∈M+,

sign(fij(m, v)) = sign(fi′j(m, v)).

Whenever m = (1, . . . , 1), Sign symmetry for equal pairs boils down to the Sign
symmetry axiom for TU-games.

Equal treatment for equal pairs =⇒ Sign symmetry for equal pairs

We have the material to provide a first axiomatic characterization of the multi-
choice Shapley value.

Theorem 21. A value f on G satisfies Efficiency, Independence of higher activity
levels, Linearity, Sign symmetry for equal pairs and the Null pair property if and
only if f = φ.

Proof. The proof is divided in two-steps.

Step 1: we show that φ satisfies all the axioms of the statement of Theorem 21.

Efficiency: For each (m, v) ∈ G,∑
i∈N

∑
j∈M+

i

φij(m, v)

=
∑

j≤ max
k∈N

mk

∑
i∈Q(j)

φij(m, v)

(4.7)
=

∑
j≤ max

k∈N
mk

1

|Q(j)|!
∑
θj∈Θj

∑
i∈Q(j)

[
v(sθj ,θj(i,j))− v(sθj ,θj(i,j)−1)

]
.
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Observe that, for each θj ∈ Θj,∑
i∈Q(j)

[
v(sθj ,θj(i,j))− v(sθj ,θj(i,j)−1)

]
= v(sθj ,|Q(j)|)− v(sθj ,0).

By (4.6), for each θj ∈ Θj,

sθj ,|Q(j)| = (j ∧mk)k∈N , and sθj ,0 = ((j − 1) ∧mk)k∈N .

It follows that∑
i∈N

∑
j∈M+

i

φij(m, v)

=
∑

j≤ max
k∈N

mk

1

|Q(j)|!
∑
θj∈Θj

[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

]
. (4.13)

Since the quantity v((j ∧mk)k∈N) − v(((j − 1) ∧mk)k∈N) is independent from any
order θj ∈ Θj, it follows that it is summed as many times in (4.13) as there are orders
in Θj. Therefore, it holds that∑

i∈N

∑
j∈M+

i

φij(m, v)

=
∑

j≤ max
k∈N

mk

1

|Q(j)|!
Q(j)!

[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N

]
=

∑
j≤ max

k∈N
mk

[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

]
= v(m),

which shows that the value satisfies Efficiency.

Other axioms: By definition of the multi-choice Shapley value (see (4.7)), the
payoff of a pair is independent from any activities different from the activity level
contained in this pair. Therefore, we have that φ satisfies Independence of higher
activity levels. Linearity follows directly from (4.7). By definition of equal pairs (see
(2.26)), φ satisfies Equal treatment of equal pairs, which implies that φ satisfies Sign
symmetry for equal pairs. By definition of null pairs (see (2.25)), φ satisfies the Null
pair property. This concludes Step 1.

Step 2: To complete the proof, it remains to show that there is at most one value
satisfying all the axioms of the statement of Theorem 21. Take any f satisfying all
the axioms of the statement of Theorem 21. Consider any (m, v) ∈ G. We know that
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each multi-choice game admits a unique linear decomposition in terms of minimal
effort games {us}s∈M. Consider s ∈ M such that s ̸= −→0 . The set of top pairs T (s)
(see (2.29)) can be re-written as

T (s) = {(i, sT ) ∈M+,sT : si = sT},

where sT = maxi∈N si. Let us show that f(m,us) is uniquely determined. We divide
this Step 2 into several sub-steps.

Step 2.1. Let us show that, for each (i, j) ∈ M+ such that j ̸= sT , fij(m,us) is
uniquely determined.

Step 2.1.1. If j < sT , then (j ∧mk)k∈N ≱ s. It follows that ((j ∧mk)k∈N , us) is the
null game since us(t) = 0 for each t ≤ (j ∧mk)k∈N . Recall that each pair is a null
pair (see (2.25)) in the null game. By Independence of higher activity levels and the
Null pair property, for each (i, j) ∈M+ such that j < sT , we obtain

fij(m,us) = fij((j ∧mk)k∈N , us) = 0.

Step 2.1.2. If j > sT then, by definition of a minimal effort game (see (2.31)), (i, j)
is a null pair in (m,us). By the Null pair property, for each (i, j) ∈ M+ such that
j > sT ,

fij(m,us) = 0.

We have shown that fij(m,us) = 0, and so is uniquely determined, for each (i, j) ∈
M+ such that j ̸= sT .

Step 2.2. We now show that, for each pair (i, j) ∈ M+ such that j = sT , i.e., each
pair (i, sT ) ∈ M+,sT , fisT (m,us) is uniquely determined. To that end, consider the
game (m,w) ∈ G defined as

∀t ≤ m, w(t) = us(t)−
∑

(i,sT )∈T (s)

φisT (m,us)u(0−i,sT )(t). (4.14)

Step 2.2.1. We show that∑
(i,sT )∈M+,sT

fisT (m,w) = 0.

We consider pairs in M+,sT . By definition of M+,sT , observe that∑
i∈Q(sT )

fisT (m,w) =
∑

(i,sT )∈M+,sT

fisT (m,w).
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We have that any pair (i, sT ) ∈M+,sT is either in T (s) or not. Since f satisfies Effi-
ciency and Independence of higher activity levels, by Proposition 23, f also satisfies
Multi-efficiency. Therefore,

∑
(i,sT )∈M+,sT

fisT (m,w) =w((sT ∧mk)k∈N)− w(((sT − 1) ∧mk)k∈N)

(4.14)
= us((s

T ∧mk)k∈N)

−
∑

(i,sT )∈T (s)

φisT (m,us)u(0−i,sT )((s
T ∧mk)k∈N)

−us(((s
T − 1) ∧mk)k∈N)

+
∑

(i,sT )∈T (s)

φisT (m,us)u(0−i,sT )(((s
T − 1) ∧mk)k∈N).

(4.15)

Observe that ((sT ∧mk)k∈N) ≥ s ≥ ((0−i, s
T ), (((sT − 1)∧mk)k∈N) ̸≥ s and (((sT −

1) ∧ mk)k∈N) ̸≥ (0−i, s
T ), where (i, sT ) ∈ T (s). By definition of a minimal effort

game (2.31),

us((s
T ∧mk)k∈N) = 1,

and, ∀(i, sT ) ∈M+,sT , u(0−i,sT )((s
T ∧mk)k∈N) = 1.

us(((s
T − 1) ∧mk)k∈N) = 0,

and, ∀(i, sT ) ∈M+,sT , u(0−i,sT )(((s
T − 1) ∧mk)k∈N) = 0.

It follows that (4.15) becomes∑
(i,sT )∈M+,sT

fisT (m,w) =1−
∑

(i,sT )∈T (s)

φisT (m,us)− 0 + 0. (4.16)

Observe that, since (i, sT ) /∈ T (s) if and only if sT > si, then each (i, sT ) /∈ T (s) is
also a null pair in (m,us). Since φ satisfies the Null pair property, φisT (m,us) = 0
for each (i, sT ) /∈ T (s). Since φ satisfies Efficiency, Independence of higher activity
levels, by Proposition 23 the value satisfies Multi-efficiency. Therefore,∑

(i,sT )∈T (s)

φisT (m,us) =
∑

(i,sT )∈T (s)

φisT (m,us) +
∑

(i,sT )/∈T (s)

φisT (m,us)

=
∑

(i,sT )∈M+,sT

φisT (m,us)

=us((s
T ∧mk)k∈N)

=1.
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Therefore, (4.16) becomes∑
(i,sT )∈M+,sT

fisT (m,w) =1− 1 = 0, (4.17)

which concludes Step 2.2.1.

Step 2.2.2. We show that, for each (i, sT ) ∈M+,sT ,

fisT (m,w) = 0.

We know that each pair (i, sT ) /∈ T (s) is a null pair in (m,us). Moreover, each
pair (i, sT ) /∈ T (s) is a null pair in each (m,u(⃗0−i′ ,s

T )), (i
′, sT ) ∈ T (s). Indeed, in

(m,u(⃗0−i′ ,s
T )), (i

′, sT ) is the only productive pair and all other pairs are null pairs.

It follows that each pair (i, sT ) /∈ T (s) is a null pair in (m,w). By the Null pair
property, for each (i, sT ) /∈ T (s),

fisT (m,w) = 0. (4.18)

It follows that∑
(i,sT )∈M+,sT

fisT (m,w) =
∑

(i,sT )∈T (s)

fisT (m,w) +
∑

(i,sT )/∈T (s)

fisT (m,w)

=
∑

(i,sT )∈T (s)

fisT (m,w) + 0

(4.17)
= 0. (4.19)

To complete the proof of Step 2.2.2, it remains to show that if there exist two
distinct pairs (i, sT ), (i′, sT ) ∈ T (s), then these pairs are equal. By definition of a
minimal effort game (see (2.31)), two distinct pairs (i, sT ), (i′, sT ) ∈ T (s) are equal in
(m,us). Since φ satisfies Equal treatment for equal pairs, it follows that φisT (m,us) =
φi′sT (m,us). By definition of a minimal effort game, for each t ∈ M such that
ti = ti′ = sT − 1,

u(0−i,sT )(t) = u(0−i′ ,s
T )(t) = 0, (4.20)

and u(0−i,sT )(t+ ei) = u(0−i′ ,s
T )(t+ ei′) = 1. (4.21)
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Therefore, for each t ∈M such that ti = ti′ = sT − 1,∑
(k,sT )∈T (s)

φksT (m,us)u(0−k,sT )(t+ ei)

=
∑

(k,sT )∈T (s)

φksT (m,us)u(0−k,sT )(t) + φisT (m,us)

=
∑

(k,sT )∈T (s)

φksT (m,us)u(0−k,sT )(t) + φi′sT (m,us)

=
∑

(k,sT )∈T (s)

φksT (m,us)u(0−k,sT )(t+ ei′),

where the first equality and the third equality follow from (4.20) and (4.21), and the
second equality follows from φisT (m,us) = φi′sT (m,us) by Equal treatment for equal
pairs. It follows that

w(t+ ei) = w(t+ ei′),

for each t ∈ M such that ti = ti′ = sT − 1, showing that (i, sT ), (i′, sT ) ∈ T (s)
are equal pairs in (m,w). By Sign symmetry for equal pairs, sign(fisT (m,w)) =
sign(fi′sT (m,w)). It follows from (4.19) that, for each (i, sT ) ∈ T (s),

fisT (m,w) = 0. (4.22)

Combining (4.18) with (4.22), the proof of Step 2.2.2 is complete.

Step 2.2.3. We show that for each (i, sT ) ∈M+,sT ,

fisT (m,us) = φisT (m,us).

By (4.14), (4.22) and Linearity, for each (i, sT ) ∈M+,sT ,

fisT (m,w) = fisT (m,us)− fisT
(
m,

∑
(k,sT )∈T (s)

φksT (m,us)u(0−k,sT )

)
⇐⇒ fisT (m,us)

(4.22)
= fisT

(
m,

∑
(k,sT )∈T (s)

φksT (m,us)u(0−k,sT )

)
=

∑
(k,sT )∈T (s)

φksT (m,us)fisT
(
m,u(0−k,sT )

)
.

Additionally, by the Null pair property and Multi-efficiency,

fisT (m,u(0−i,sT )) = 1
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since (i, sT ) is the only productive pair in (m,u(0−i,sT )). Therefore, for each (i, sT ) ∈
M+,sT ,

φksT (m,us)fisT
(
m,u(0−k,sT )

)
=

{
φksT (m,us) if k = i,

0 otherwise.

It follows that, for each (i, sT ) ∈M+,sT ,

fisT (m,us) = φisT (m,us),

therefore fisT (m,us) is uniquely determined. This concludes Step 2.2.3.
From Step 2.1 and Step 2.2, we conclude that f(m,us) is uniquely determined.

By Linearity, f(m, v) is uniquely determined, which concludes the proof of Theorem
21. ■

The five axioms of the statement of Theorem 21 are logically independent, as
shown by the following alternative solutions.

- The value f given, for each (m, v) ∈ G, by f(m, v) = 0⃗ satisfies all the axioms
except Efficiency.

- The value f given, for each (m, v) ∈ G, by

fij(m, v) =



φij(m, v) +
∆((2∧mk)k∈N )(v)

|Q(1)|
if j = 1 and mT > 1,

φij(m, v)−
∆((2∧mk)k∈N )(v)

|Q(2)|
if j = 2 and mT > 1,

φij(m, v) otherwise,

satisfies all the axioms except Independence of higher activity levels.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v) =
∑
s≤m

(i,j)∈T (s)

(v(((j − 1) ∧mh)h∈N + ei)
2) + 1∑

(k,sk)∈T (s)((v(((j − 1) ∧mh)h∈N + ek)2) + 1
∆v(s),

satisfies all the axioms except Linearity.

- The multi-choice Equal division value ξ satisfies all the axioms except the Null
pair property.
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- Take any (m, v) ∈ G and fix any arbitrary integer βij ∈ {1, 2} for each (i, j) ∈
M+. The value fβ given by

∀(i, j) ∈M+, fβ
ij(m, v) =

∑
s≤m

(i,j)∈T (s)

βij∑
(k,l)∈T (s) βkl

∆v(s),

satisfies all the axioms except Sign symmetry for equal pairs.

By Theorem 21, we provide another alternative expression of the multi-choice
Shapley value in terms of Harsanyi dividends.

Corollary 1. The multi-choice Shapley value admits an alternative expression in
terms of Harsanyi dividends. For each game (m, v) ∈ G, the value is defined as

∀(i, j) ∈M+, φij(m, v) =
∑
s≤m

(i,j)∈T (s)

∆v(s)

|T (s)|
. (4.23)

Proof. By the the proof of Theorem 21, φ satisfies Efficiency, Linearity, Independence
of higher activity levels, the Null pair property and Equal treatment for equal pairs.
Consider (m,us) ∈ G, s ∈ M such that s ̸= −→0 . Similarly to (4.18), for each
(i, j) /∈ T (s), the Null pair property and Multi-efficiency imply

φij(m,us) = 0. (4.24)

All pairs in T (s) are equal pairs in (m,us). Thus, by Equal treatment for equal pairs,

φisT (m,us) = . . . = φi′sT (m,us). (4.25)

By Efficiency and Linearity, we obtain the desired result. ■

We provide a second axiomatic characterization of the multi-choice Shapley value
without resorting to Linearity. In line with Young (1985) and Casajus (2018) (see
Theorem 3 and 4), we use a Strong monotonicity axiom. This axiom states that,
if the marginal contributions to coalitions of a pair increase from a game (m,w) to
another game (m, v), then the payoff of this pair also increases.

Axiom 47 (Strong monotonicity.). For each (m, v), (m,w) ∈ G, each (i, j) ∈
M+ and each s ∈M such that si = j − 1,

v(s+ ei)− v(s) ≥ w(s+ ei)− w(s),

it holds that

fij(m, v) ≥ fij(m,w).
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Whenever m = (1, . . . , 1), Strong monotonicity boils down to the axiom of Strong
monotonicity for TU-games introduced by Young (1985). We have the material to
provide a second axiomatic characterization of the multi-choice Shapley value.

Theorem 22. A value f on G satisfies Efficiency, Independence of higher activity
levels, Strong monotonicity and Sign symmetry for equal pairs if and only if f = φ.

Proof. From Theorem 21, we know that φ satisfies Efficiency, Independence of higher
activity levels and Sign symmetry for equal pairs. By definition (see (4.7)), the multi-
choice Shapley value satisfies Strong monotonicity.

Next, we show that φ is the unique value satisfying all the axioms of the state-
ment of Theorem 22. Take any f satisfying all the axioms of the statement of
Theorem 22 and consider any (m, v) ∈ G. Recall that (m, v) ∈ G can be rewritten as
(m,

∑
t∈M ∆v(t)ut). We define the set of coalitions for which the Harsanyi dividend

is non-null as

T (v) = {t ∈M | ∆v(t) ̸= 0}.

By induction on the cardinality of T (v), we show that

f(m, v) = φ(m, v).

Initialization: If |T (v)| = 0, then each Harsanyi dividend is null. The only game
(m, v) ∈ G such that |T (v)| = 0 is the null game. Recall that

M+,j = {(i, j) ∈M+ : i ∈ Q(j)}.

Since f satisfies Efficiency and Independence of higher activity levels, by Proposition
23, it satisfies Multi-efficiency. It follows that, for each j ≤ maxk∈N mk,∑

(i,j)∈M+,j

fij(m, v) =v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

=0. (4.26)

Recall that any two distinct pairs (i, j), (i′, j) ∈ M+,j are equal in the null game
(m, v). Therefore, by Sign symmetry for equal pairs,

sign(fij(m, v)) = sign(fi′j(m, v)). (4.27)

Combining (4.26) and (4.27), for each j ≤ maxk∈N mk and each (i, j) ∈ M+,j, we
obtain

fij(m, v) = 0.
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Recall also that each pair is a null pair in the null game. Since φ satisfies the Null
pair property, for each j ≤ maxk∈N mk and each (i, j) ∈M+,j,

φij(m, v) = 0 = fij(m, v).

This concludes the initialization.

Hypothesis: Fix r ∈ N such that r < |M|−1. We assume that, for each (m, v) ∈ G
such that |T (v)| ≤ r,

f(m, v) = φ(m, v).

Induction: Consider any (m, v) ∈ G such that |T (v)| = r + 1. Let us show that

f(m, v) = φ(m, v).

We define the minimum coalition of the set T (v) as

p =
∧

t∈T (v)

t.

Two cases can be distinguished. First, assume that p ̸= −→0 . Consider any pair
(i, j) ∈ M+ such that j > pi. By definition of p, there exists a t ∈ T (v) such that
j > ti. For such t, consider the game (m, v − ∆v(t)ut). By definition of a minimal
effort game (2.31) and (4.4), (i, j) is a null pair in (m,∆v(t)ut). Therefore (i, j) has
the same marginal contributions in (m, v) and in (m, v−∆v(t)ut). Moreover, observe
that

|T (v)| > |T (v −∆v(t)ut)|.

Therefore,

r ≥ |T (v −∆v(t)ut)|

By the induction hypothesis and Strong monotonicity, for each (i, j) ∈M+ such that
j > pi,

fij(m, v) = fij(m, v −∆v(t)ut)

Hyp
= φij(m, v −∆v(t)ut)

= φij(m, v). (4.28)

Next, we assume that p =
−→
0 . For each (i, j) ∈M+, there exists a t ∈ T (v) such

that j > ti. In this case, (4.28) holds for each (i, j) ∈M+ and the proof is complete.

It remains to show that, if p ̸= −→0 , then for each (i, j) ∈M+ such that j ≤ pi,

fij(m, v) = φij(m, v).
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We proceed in two-steps.

Step 1. We define the game (m,w) ∈ G as

w = v −
∑

(i,j)∈M+

j≤pi

φij(m, v)u(0−i,j), (4.29)

and we show that, for each (i, l) ∈M+ such that l ≤ pi,

fil(m,w) = 0. (4.30)

Step 1.1. To that end, we show that∑
(i,l)∈M+,l

l≤pi

fil(m,w) = 0.

By Proposition 23, f satisfies Multi-efficiency. By Multi-efficiency and (4.29), for
each l ≤ maxk∈N mk,∑

(i,l)∈M+,l

fil(m,w) =w((l ∧mk)k∈N)− w((l − 1 ∧mk)k∈N

⇐⇒
∑

(i,l)∈M+,l

l≤pi

fil(m,w) =w((l ∧mk)k∈N)− w((l − 1 ∧mk)k∈N

−
∑

(i,l)∈M+,l

l>pi

fil(m,w)

(4.29)
= v((l ∧mk)k∈N)− v((l − 1 ∧mk)k∈N

−
∑

(i,j)∈M+

j≤pi

φij(m, v)u(0−i,j)((l ∧mk)k∈N)

+
∑

(i,j)∈M+

j≤pi

φij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N)

−
∑

(i,l)∈M+,l

l>pi

fil(m,w). (4.31)
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Before proceeding further into the computation of (4.31), observe that

−
∑

(i,j)∈M+

j≤pi

φij(m, v)u(0−i,j)((l ∧mk)k∈N)

+
∑

(i,j)∈M+

j≤pi

φij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N)

=−
∑

(i,j)∈M+

j≤pi
j<l

φij(m, v)u(0−i,j)((l ∧mk)k∈N)

−
∑

(i,j)∈M+

j≤pi
j=l

φij(m, v)u(0−i,j)((l ∧mk)k∈N)

−
∑

(i,j)∈M+

j≤pi
j>l

φij(m, v)u(0−i,j)((l ∧mk)k∈N)

+
∑

(i,j)∈M+

j≤pi
j<l

φij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N)

+
∑

(i,j)∈M+

j≤pi
j≥l

φij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N)

By definition, pi ≤ mi for each i ∈ N . For each i ∈ N and j ≤ pi ≤ mi,

u(0−i,j)((l ∧mk)k∈N) =

{
1 if j ≤ (l ∧mi),

0 otherwise.

It follows that

−
∑

(i,j)∈M+

j≤pi

φij(m, v)u(0−i,j)((l ∧mk)k∈N) (4.32)

+
∑

(i,j)∈M+

j≤pi

φij(m, v)u(0−i,j)((l − 1 ∧mk)k∈N)

=−
∑

(i,j)∈M+

j≤pi
j<l

φij(m, v)−
∑

(i,j)∈M+

j≤pi
j=l

φij(m, v) +
∑

(i,j)∈M+

j≤pi
j<l

φij(m, v)

=−
∑

(i,j)∈M+

j≤pi
j=l

φij(m, v) = −
∑

(i,l)∈M+,l

l≤pi

φil(m, v). (4.33)

151



By (4.32), (4.31) becomes∑
(i,l)∈M+,l

l≤pi

fil(m,w) =v((l ∧mk)k∈N)− v((l − 1 ∧mk)k∈N

−
∑

(i,l)∈M+,l

l≤pi

φil(m, v)−
∑

(i,l)∈M+,l

l>pi

fil(m,w). (4.34)

By (4.28), for each (i, l) ∈M+,l such that l > pi,

fil(m,w) = φil(m,w). (4.35)

Combining (4.34) and (4.35), we obtain∑
(i,l)∈M+,l

l≤pi

fil(m,w) =v((l ∧mk)k∈N)− v((l − 1 ∧mk)k∈N

−
∑

(i,l)∈M+,l

l≤pi

φil(m, v)−
∑

(i,l)∈M+,l

l>pi

φil(m,w). (4.36)

Moreover, each (i, l) ∈ M+,l such that l > pi, is a null pair in (m,u0−i,j), where
(i, j) ∈ M+ is such that j ≤ pi. By definition of (m,w) (see (4.29)), it follows that
each pair (i, l) such that l > pi, has the same marginal contributions in (m,w) and in
(m, v). Since φ satisfies Strong monotonicity, for each (i, l) ∈M+,l such that l > pi,

φil(m,w) = φil(m, v). (4.37)

Combining (4.36), (4.37) and the fact that φ satisfies Multi-efficiency, we obtain∑
(i,l)∈M+,l

l≤pi

fil(m,w) =v((l ∧mk)k∈N)− v((l − 1 ∧mk)k∈N (4.38)

−
∑

(i,l)∈M+,l

φil(m, v)

=0. (4.39)

This concludes Step 1.1.

Step 1.2. We show that all the pairs (i, l) ∈ M+,l such that l ≤ pi, are equal in
(m,w).

By definition of M+,l, it holds that l ≥ 1. Consider two pairs (i, l), (i′, l) ∈ M+,l

such that l ≤ pi and l ≤ pi′ . Since p =
∧

t∈T (v) t, each t ∈ T (v) verifies ti ≥ l and
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ti′ ≥ l. In other words, for each s ∈ M such that si < l or si′ < l, ∆v(s) = 0.
Therefore, for each s ∈M such that si = si′ = l − 1,

v(s+ ei) = v(s+ ei′) = 0. (4.40)

Therefore, (i, l) and (i′, l) are equal in (m, v). Since φ satisfies Equal treatment for
equal pairs and by (4.29), for each s ∈M such that si = si′ = l − 1,

w(s+ ei)
(4.29)
= v(s+ ei)−

∑
(h,j)∈M+

j≤ph

φhj(m, v)u(0−h,j)(s+ ei)

=v(s+ ei)−
∑

(h,j)∈M+

j≤ph
h̸=i,i′

φhj(m, v)u(0−h,j)(s+ ei)

−
∑
j≤pi′
j≤l−1

φi′j(m, v)u(0−i′ ,j)
(s+ ei)

−
∑
j≤pi
j≤l−1

φij(m, v)u(0−i,j)(s+ ei)− φil(m, v)u(0−i,l)(s+ ei)

=v(s+ ei)−
∑

(h,j)∈M+

j≤ph
h̸=i,i′

φhj(m, v)u(0−h,j)(s+ ei)

−
∑
j≤pi′
j≤l−1

φi′j(m, v)u(0−i′ ,j)
(s+ ei)

−
∑
j≤pi
j≤l−1

φij(m, v)u(0−i,j)(s+ ei)− φil(m, v)

=v(s+ ei′)−
∑

(h,j)∈M+

j≤ph
h̸=i,i′

φhj(m, v)u(0−h,j)(s+ ei′)

−
∑
j≤pi′
j≤l−1

φi′j(m, v)u(0−i′ ,j)
(s+ ei′)

−
∑
j≤pi
j≤l−1

φij(m, v)u(0−i,j)(s+ ei′)− φi′l(m, v)

(4.29)
= w(s+ ei′).

Therefore, two pairs (i, l) and (i′, l) such that l ≤ pi and l ≤ pi′ , are equal in
(m,w). This concludes Step 1.2

153



By Sign symmetry for equal pairs,

sign(fil(m,w)) = sign(fi′l(m,w)). (4.41)

Combining (4.38) and (4.41), for each (i, l) ∈M+ such that l ≤ pi, we obtain

fil(m,w) = 0,

which concludes Step 1.

Step 2. For each (i, j) ∈M+ such that 0 < j ≤ pi, we define the game (m,wij) ∈ G
as

wij = v − φij(m, v)u(0−i,j). (4.42)

In this step, we first show that, for each (i, j) ∈M+ such that j ≤ pi,

φij(m, v) = fij(m, v)− fij(m,wij).

The game (m,wij) is defined in such a way that the pair (i, j) has the same marginal
contributions in (m,w) and in (m,wij). Indeed, observe that the pair (i, j) has null
marginal contributions to coalition in each game (m,u(0−i′ ,j

′)) such that i′ ̸= i or
i′ = i and j′ ̸= j. Therefore, by Strong monotonicity, for each (i, j) ∈M+ such that
j ≤ pi,

fij(m,w) = fij(m,wij). (4.43)

Additionally, by Multi-efficiency, (4.42) and the definition of a minimal effort game
(see (2.31)),∑

(k,j)∈M+,j

fkj(m,wij) =wij((j ∧mk)k∈N)− wij(((j − 1) ∧mk)k∈N)

(4.42)
= v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

− φij(m, v)u(0−i,j)((j ∧mk)k∈N)

+ φij(m, v)u(0−i,j)(((j − 1) ∧mk)k∈N)

(2.31)
= v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

− φij(m, v). (4.44)

Each pair in M+,j \ {(i, j)} is null in (m,u0−i,j). Therefore, by (4.42), each pair
in M+,j \ {(i, j)} has the same marginal contributions in (m,wij) and in (m, v). It
follows that, by Strong monotonicity, each pair in M+,j \ {(i, j)} receives the same
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payoff in (m,wij) and in (m, v). Thus,∑
(k,j)∈M+,j

fkj(m,wij) =
∑

(k,j)∈M+,j

k ̸=i

fkj(m,wij) + fij(m,wij)

=
∑

(k,j)∈M+,j

k ̸=i

fkj(m, v) + fij(m,wij)

=v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

− fij(m, v) + fij(m,wij). (4.45)

Combining (4.44) and (4.45), for each (i, j) ∈M+ such that j ≤ pi, we obtain

φij(m, v) = fij(m, v)− fij(m,wij), (4.46)

which concludes Step 2.
We have the material to conclude the proof of the Induction step. By (4.43),

fij(m,wij) = fij(m,w) and by (4.30), fij(m,w) = 0 for each (i, j) ∈ M+ such that
j ≤ pi. By (4.46), for each (i, j) ∈M+ such that j ≤ pi,

fij(m, v) = φij(m, v).

Therefore, for each (m, v) ∈ G and each (i, j) ∈M+,

fij(m, v) = φij(m, v).

The proof of the theorem is complete. ■

The four axioms of the statement of Theorem 22 are logically independent, as
shown by the following alternative solutions.

- The value f given by f(m, v) = 0⃗ for each (m, v) ∈ G satisfies all the axioms
except Efficiency.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v) =


φij(m, v) +

mT

|Q(1)|
if j = 1 and mT > 1,

φij(m, v)− mT

|Q(2)|
if j = 2 and mT > 1,

φij(m, v) otherwise.

satisfies all the axioms except Independence of higher activity levels.

- The multi-choice Equal division value ξ satisfies all the axioms except Strong
monotonicity.
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- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+, fij(m, v) =


φij(m, v) + 1 if (i, j) = (1, 1),

φij(m, v)− 1 if (i, j) = (n, 1),

φij(m, v) otherwise,

satisfies all the axioms except Sign symmetry for equal pairs.

4.3.2 Characterization of the multi-choice Equal Division
value

To characterize the multi-choice Equal Division value, we introduce the Sign preser-
vation axiom. This axiom is a stronger version of Sign symmetry for equal pairs. It
requires that two pairs featuring the same activity level receive a payoff of the same
sign.

Axiom 48 (Sign preservation). For each (m, v) ∈ G and each (i, j), (i′, j) ∈M+,

sign(fij(m, v)) = sign(fi′j(m, v)).

Sign preservation =⇒ Sign symmetry for equal pairs.

We have the material to provide an axiomatic characterization of the multi-choice
Equal Division value.

Theorem 23. A value f on G satisfies Efficiency, Linearity, Independence of higher
activity levels, Sign preservation and Equal treatment of equal pairs if and only if
f = ξ.

Proof. First, let us show that ξ satisfies all the axioms of the statement of Theorem
23.

Efficiency: For each (m, v) ∈ G,∑
i∈N

∑
j∈M+

i

ξij(m, v)

=
∑

j≤ max
k∈N

mk

∑
i∈Q(j)

1

|Q(j)|

[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

]

=
∑

j≤ max
k∈N

mk

v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

= v(m).

156



This shows that the value satisfies Efficiency.

Other axioms: By definition of ξ (see (29)), the payoff of a pair does not depends
on activity levels different from the one contained in this pair. Therefore, ξ satisfies
Independence of higher activity levels. Linearity, Sign preservation and Equal treat-
ment of equal pairs are direct consequences from the definition of ξ.

Next, we show the uniqueness of the solution. Let f be a value satisfying all the
axioms of the statement of Theorem 23. We know that each characteristic function
v admits a linear decomposition in terms of Dirac games. By Linearity, for each
(m, v) ∈ G,

f(m, v) =
∑
s≤m

v(s)f(m, δs).

For each s ∈M, we show that

f(m, δs) = ξij(m, δs).

We consider several cases.

Case 1. Suppose that s ∈M is not a synchronized coalition, that is s ̸= ((l∧mk)k∈N)
for each l ≤ maxk∈N mk. Since f satisfies Efficiency, and Independence of higher
activity levels, by Proposition 23 it satisfies Multi-efficiency. Therefore, by Multi-
efficiency, for each j ≤ maxk∈N mk,∑

(i,j)∈M+,j

fij(m, δs) = δs((j ∧mk)k∈N)− δs(((j − 1) ∧mk)k∈N).

Since s ̸= ((j ∧mk)k∈N) and s ̸= (((j − 1) ∧mk)k∈N), by definition of a Dirac game,∑
(i,j)∈M+,j

fij(m, δs) = 0. (4.47)

Since δs((j ∧mk)k∈N)− δs(((j − 1) ∧mk)k∈N) = 0, by Sign preservation and (4.47),
for each (i, j) ∈M+,j,

fij(m, δs) = 0 = ξij(m, δs).

Case 2. Suppose that s ∈ M is a synchronized coalition, that is s = (l ∧mk)k∈N ,
where l ≤ maxk∈N mk. Take any activity level j such that j < l. By Multi-efficiency,∑

(i,j)∈M+,j

fij(m, δs) = δs((j ∧mk)k∈N)− δs(((j − 1) ∧mk)k∈N).
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Since s ̸= ((j ∧mk)k∈N) and s ̸= (((j − 1) ∧mk)k∈N), by definition of a Dirac game,∑
(i,j)∈M+,j

fij(m, δs) = 0.

Since δs((j ∧mk)k∈N)− δs(((j − 1) ∧mk)k∈N) = 0, by Sign preservation and (4.47),
for each pair (i, j) ∈M+,j such that j < l,

fij(m, δs) = 0 = ξij(m, δs).

Case 3. Suppose that s ∈M is a synchronized coalition such that s = (l∧mk)k∈N ,
where l ≤ maxk∈N mk. Similarly to Case 1 and 2, for each (i, j) ∈ M+ such that
j > l + 1,

fij(m, δs) = 0 = ξij(m, δs).

Case 4. Suppose that s ∈M is a synchronized coalition such that s = (l∧mk)k∈N ,
where l ≤ maxk∈N mk. Consider the pairs (i, j) ∈ M+ such that j = l, that is the
pairs in M+,l. By Multi-efficiency and the definition of a Dirac game,∑

(i,l)∈M+,l

fil(m, δs) = δs((l ∧mk)k∈N)− δs((l − 1 ∧mk)k∈N)

= 1. (4.48)

Two distinct pairs (i, l), (i′, l) ∈ M+,l are equal in (m, δs). Therefore, by Equal
treatment of equal pairs,

fil(m, δs) = fi′l(m, δs). (4.49)

From (4.48) and (4.49), it follows that for each (i, l) ∈M+,l,

fil(m, δs) =
1

|Q(l)|
= ξil(m, δs).

Case 5. Consider s ∈M such that s = (l∧mk)k∈N , where l < maxk∈N mk. Consider
the pairs (i, l+ 1) ∈M+,l+1. By Multi-efficiency and the definition of a Dirac game,∑

(i,l+1)∈M+,l+1

fi(l+1)(m, δs) = δs(((l + 1) ∧mk)k∈N)− δs((l ∧mk)k∈N)

= 0− 1

= −1.

Similarly to Case 4, for each (i, l + 1) ∈M+,l+1,

fi(l+1)(m, δs) = −
1

|Q(l + 1)|
= ξi(l+1)(m, δs).

Therefore, for each s ∈M, f(m, δs) = ξ(m, δs). By Linearity, we conclude the proof
of Theorem 23. ■
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The five axioms of the statement of Theorem 23 are logically independent, as shown
by the following alternative solutions.

- The value f given, for each (m, v) ∈ G, by f(m, v) = 0⃗ satisfies all the axioms
except Efficiency.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v) =
1

|Q(j)|
∑
k≥j

v((k ∧mh)h∈N)− v(((k − 1) ∧mh)h∈N)

k

satisfies all the axioms except Independence of higher activity levels. Observe
that this value extends the Equal division value from TU-games to multi-choice
games.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v) =
(v(((j − 1) ∧mh)h∈N + ei)

2) + 1∑
k∈Q(k)

((v(((j − 1) ∧mh)h∈N + ek)
2) + 1

×
[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N

]
,

satisfies all the axioms except Linearity.

- The multi-choice Shapley value φ satisfies all the axioms except Sign preserva-
tion.

- Take any (m, v) ∈ G and fix any arbitrary integer βij ∈ {1, 2} for each (i, j) ∈
M+. The value fβ given by

∀(i, j) ∈M+,

fβ
ij(m, v) =

βij∑
k∈Q(j) β

kj

[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

]
,

satisfies all the axioms except Equal treatment for equal pairs.

4.3.3 Characterization of the multi-choice Egalitarian Shap-
ley values

In this subsection we provide an axiomatic characterization of the multi-choice Egal-
itarian Shapley values. To that end, we introduce two new axioms.
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A multi-efficient value shares the surplus generated between two consecutive syn-
chronized coalitions among the pairs containing the required activity level (see (4.4)).
This surplus can eventually be negative. Requiring that the payoff of a pair varies
according to its marginal contributions to coalitions regardless of the surplus to be
shared is then a strong requirement in Strong monotonicity. On the contrary, it
seems reasonable that the payoff of a pair, let us say (i, j) ∈M+,j, does not decrease
from one game, let us say (m, v) ∈ G, to another, let us say (m,w) ∈ G, if the
surplus generated between the j-synchronized coalition and the (j− 1)-synchronized
coalition does not decrease from (m, v) to (m,w). The next axiom is a weaker ver-
sion of Strong monotonicity which requires that the surplus generated between two
synchronized coalitions should not decrease from one game to another.

Axiom 49 (Weak monotonicity). For each (m, v), (m,w) ∈ G and each (i, j) ∈
M+ such that

v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

≥
w((j ∧mk)k∈N)− w(((j − 1) ∧mk)k∈N),

and for each s ∈M such that si = j − 1,

v(s+ ei)− v(s) ≥ w(s+ ei)− w(s),

then,

fij(m, v) ≥ fij(m,w).

Whenever m = (1, . . . , 1), Weak monotonicity boils down to the axiom of Weak
monotonicity for TU-games (see (2.15)). Obviously, Strong monotonicity implies
Weak monotonicity.

Strong monotonicity =⇒ Weak monotonicity

Consider (m, v) ∈ G and two distinct pairs (i, j), (i′, j) ∈ M+,j. We say that the
pair (i, j) is more desirable than the pair (i′, j) in (m, v) if its has better marginal
contributions to coalitions. Formally, (i, j) is more desirable than (i′, j) if for each
s ∈M such that si = si′ = j − 1,

v(s+ ei) ≥ v(s+ ei′).

The next axiom requires that a pair receives a greater payoff than other less desirable
pairs.

Axiom 50 (Level desirability). For each (m, v) ∈ G and two distinct pairs (i, j), (i′, j) ∈
M+ such that (i, j) is more desirable than (i′, j) in (m, v),

fij(m, v) ≥ fi′j(m, v).
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Whenever m = (1, . . . , 1), Level desirability boils down to the axiom of desirability
for TU-games (see (2.14)). We have the material to provide a characterization of the
multi-choice Egalitarian Shapley values.

Remark 6. By definition, Level desirability implies Equal treatment for equal pairs.
If (m, v) ∈ G is the null game, then Multi-efficiency and Level desirability imply
fij(m, v) = 0 for each (i, j) ∈M+.

Theorem 24. A solution f on G satisfies Efficiency, Linearity, Independence of
higher activity levels, Weak monotonicity and Level desirability if and only if f = χα,
for some parameter system α.

Proof. Consider any parameter system α. By definition and the fact that multi-
choice Egalitarian Shapley values are convex combinations of the multi-choice Shap-
ley value and the multi-choice Equal division value (see (4.9)), χα satisfies all the
axioms of the statement of Theorem 24.

Next, we show that the multi-choice Egalitarian Shapley values are the only
values satisfying all the axioms of the statement of Theorem 24. Consider a value f
satisfying all the axioms of the statement of Theorem 24. To prove the uniqueness
part, we show that, for each (m, v) ∈ G, there exists a parameter system α such that

f(m, v) = χα(m, v).

By Linearity, for each (m, v) ∈ G,

f(m, v) =
∑
t≤m

∆t(v)f(m,ut).

For each t ∈ M, we introduce the notation tT = maxi∈N ti. Take any 1 ≤ l ≤ mT .
Let us show that f can be written, for each (m,ut) such that tT = l, as

∀(i, j) ∈M+,

fij(m,ut) =

{
αlφil(m,ut) + (1− αl)ξil(m,ut) if j = l,

0 otherwise,

for some 0 ≤ αl ≤ 1. To that end, consider all pairs (i, j) ∈M+ such that j < l. By
Independence of higher activity levels,

fij(m,ut) = fij((j ∧mk)k∈N , ut).

Since ((j∧mk)k∈N , ut) is the null game, by Remark 6, for each (i, j) ∈M+ such that
j < l,

fij(m,ut) = 0. (4.50)
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Consider all pairs (i, j) ∈ M+ such that j > l. These pairs are null pairs in (m,ut)
and thus are equal. From Remark 6 and Multi-efficiency, for each (i, j) ∈ M+ such
that j > l,

fij(m,ut) = 0. (4.51)

Now, consider all pairs (i, l) ∈ M+ such that i ∈ Q(l). We show that f can be
written, for each (m,ut) such that tT = l, as

∀(i, l) ∈M+, fil(m,ut) = αlφil(m,ut) + (1− αl)ξil(m,ut),

for some 0 ≤ αl ≤ 1. We proceed by induction on qt(l) the number of players that
play l in coalition t.

Initialization: Take any minimal effort game (m,ut) ∈ G such that tT = l and
qt(l) = 1. In such game, there is exactly one player, let us say k ∈ N , that plays the
activity level l in t.

Before proceeding further into the initialization step, we must show the following
claim. There exists a unique cl ∈ R such that, for any minimal effort game (m,ut) ∈
G, tT = l, qt(l) = 1, it holds that

∀(i, l) ∈M+, i ̸= k, fil(m,ut) = cl, (4.52)

where k refers to the only player that plays the activity level l in t. This means that
all the pairs (i, l) ∈M+, i ̸= k, receive the same payoff in (m,ut) and that this payoff
does not depend on the player k that plays the activity level l in t. To this end, we
distinguish three exclusive cases.

Case 1. If |Q(mT )| ≥ 3, then there is at least three players in Q(l). Consider any
three distinct players in Q(l) denoted by k, i and i′. Consider the three coalitions
t, t′, t′′ ∈M defined as

tk = l, and ∀h ∈ N \ {k}, th < l,

t′i = l, and ∀h ∈ N \ {i}, t′h < l,

t′′i′ = l, and ∀h ∈ N \ {i′}, t′′h < l.

Consider the minimal effort games (m,ut), (m,ut′) and (m,ut′′). Observe that:

- (i, l) ∈ M+ is a null pair in (m,ut) and (m,ut′′), and it is the only non null
pair in (m,ut′);

- (i′, l) ∈ M+ is a null pair in (m,ut) and (m,ut′), and it is the only non null
pair in (m,ut′′);

- (k, l) ∈ M+ is a null pair in (m,ut′) and (m,ut′′), and it is the only non null
pair in (m,ut);
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- (i, l), (i′, l) ∈M+ are equal pairs in (m,ut);

- (i, l), (k, l) ∈M+ are equal pairs in (m,ut′′);

- (i′, l), (k, l) ∈M+ are equal pairs in (m,ut′).

Observe that

ut((l ∧mh)h∈N) = ut′((l ∧mh)h∈N)

= ut′′((l ∧mh)h∈N)

and ut(((l − 1) ∧mh)h∈N) = ut′(((l − 1) ∧mh)h∈N)

= ut′′(((l − 1) ∧mh)h∈N). (4.53)

By (4.53), the fact that (i, l) ∈ M+ is a null pair in (m,ut) and (m,ut′′), and Weak
monotonicity, one obtains

fil(m,ut) = fil(m,ut′′). (4.54)

Similarly,

fi′l(m,ut) = fi′l(m,ut′)

and fkl(m,ut′) = fkl(m,ut′′). (4.55)

By the fact that (i, l), (i′, l) ∈ M+ are equal pairs in (m,ut) and Level desirability,
one obtains

fil(m,ut) = fi′l(m,ut). (4.56)

Similarly,

fi′l(m,ut′) = fkl(m,ut′)

and fil(m,ut′′) = fkl(m,ut′′). (4.57)

Combining (4.54), (4.55), (4.56) and (4.57), one obtains

fil(m,ut)
(4.54)
= fil(m,ut′′)

(4.57)
= fkl(m,ut′′)

(4.55)
= fkl(m,ut′)

(4.57)
= fi′l(m,ut′)

(4.55)
= fi′l(m,ut)

= cl,

for some cl ∈ R.
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We have shown that there exists a unique cl ∈ R such that, for any minimal effort
game (m,ut) ∈ G, |Q(mT )| ≥ 3, tT = l, qt(l) = 1, (4.52) holds.

Case 2. If |Q(mT )| = 2, then there is at least two players in Q(l). If there are at
least three players in Q(l), then the proof is identical to the one in Case 1. Therefore,
let us assume that Q(l) = 2. Let us call the players in Q(l) by i and k. Consider the
two coalitions t, t′ ∈M defined as

ti = l, and ∀h ∈ N \ {i}, th < l,

t′k = l, and ∀h ∈ N \ {k}, t′h < l.

Consider the minimal games (m,ut) ∈ G, (m,ut′) ∈ G, and (m,ut + ut′) ∈ G.
Observe that (i, l), (k, l) ∈ M+ are equal pairs in (m,ut + ut′). Therefore, by Level
desirability, it holds that

fil(m,ut + ut′) = fkl(m,ut + ut′). (4.58)

By Linearity, (4.58) becomes

fil(m,ut) + fil(m,ut′) = fkl(m,ut) + fkl(m,ut′)

⇐⇒ fil(m,ut) = fkl(m,ut) + fkl(m,ut′)− fil(m,ut′). (4.59)

Since f satisfies Efficiency and Independence of higher activity, by Proposition 23,
f satisfies Multi-efficiency. Since i and k are the only two players in Q(l), by Multi-
efficiency, it holds that

fil(m,ut) + fkl(m,ut) = 1

and fil(m,ut′) + fkl(m,ut′) = 1.

It follows that

fil(m,ut) + fkl(m,ut) = fil(m,ut′) + fkl(m,ut′) (4.60)

Combining (4.59) and (4.60), one obtains

fkl(m,ut) + fkl(m,ut′)− fil(m,ut′) + fkl(m,ut)

= fil(m,ut′) + fkl(m,ut′)

⇐⇒ fkl(m,ut)− fil(m,ut′) + fkl(m,ut) = fil(m,ut′)

⇐⇒ fkl(m,ut) = fil(m,ut′) = cl,

for some cl ∈ R.
We have shown that there exists a unique cl ∈ R such that, for any minimal effort

game (m,ut) ∈ G, |Q(mT )| = 2, tT = l, qt(l) = 1, (4.52) holds.
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Case 3. Finally, assume that |Q(mT )| = 1. If there is only one player in Q(l), then
there is nothing to show. If there are two players in Q(l), then (4.52) holds according
to Case 2. If there three players or more in Q(l), then (4.52) holds according to Case
1.

We have shown that there exists a unique cl ∈ R such that, for any minimal effort
game (m,ut) ∈ G, tT = l and qt(l) = 1, (4.52) holds.

Next, take any minimal effort game (m,ut) ∈ G such that tT = l and qt(l) = 1.
The pair (k, l) is the only non-null pair in (m,ut) featuring the activity level l and
ut(m) ≥ 0. By (4.52), Multi-efficiency and the fact that null pairs featuring the
activity levels l are equal pairs in (m,ut), it holds that

fkl(m,ut) = 1− (|Q(l)| − 1)cl.

Define αl as

αl = 1− cl|Q(l)|,

so that one obtains

cl =
1− αl

|Q(l)|
.

Now, we show that αl ≤ 1. By Remark 6, each pair receives a zero payoff in the null
game. Observe that each pair in M+ has better marginal contributions to coalitions
in (m,ut) than in the null game. Moreover, it holds that

ut((l ∧mk)k∈N)− ut(((l − 1) ∧mk)k∈N) ≥ 0.

Thus, by Weak monotonicity, fil(m,ut) ≥ 0 for each (i, l) ∈M+. It follows that

cl =
1− αl

|Q(l)|
≥ 0 =⇒ αl ≤ 1.

Therefore, for each (i, l) ∈M+,

fil(m,ut) =


1− αl

|Q(l)|
if j = l and i ̸= k,

1− αl

|Q(l)|
+ αl if j = l and i = k,

(4.61)

for some 0 ≤ αl ≤ 1. Observe that, for each (i, l) ∈M+,

ξil(m,ut) =
1

|Q(l)|
, φil(m,ut) =

{
0 if i ̸= k,

1 if i = k.
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Comparing ξil(m,ut) and φil(m,ut) with (4.61), one obtains

∀(i, l) ∈M+, fil(m,ut) = αlφil(m,ut) + (1− αl)ξil(m,ut).

for some 0 ≤ αl ≤ 1. This concludes the initialization step.

Hypothesis: Consider r ∈ N such that 1 ≤ r < |Q(l)|. Consider any t such that
qt(l) = r. In this case, there are r players that play l in t. Assume that

∀(i, l) ∈M+, fil(m,ut) = αlφil(m,ut) + (1− αl)ξil(m,ut).

Induction: Consider any t such that qt(l) = r + 1. Let s = t− eh, for some k ∈ N
such that tk = x. Obviously, it holds that qs(l) = W . Recall that (i, l) /∈ T (t) if
ti < l. Observe that if (i, l) /∈ T (t) then (i, l) /∈ T (s). If (i, l) /∈ T (t) then (i, l) is
a null pair in (m,ut) and is also a null pair in (m,us). Therefore, each (i, l) /∈ T (t)
has the same marginal contributions in both games (m,ut) and (m,us). Moreover,
it holds that

ut((l ∧mh)h∈N)− ut(((l − 1) ∧mh)h∈N)

= us((l ∧mh)h∈N)− us(((l − 1) ∧mh)h∈N).

Then by double application of Weak monotonicity, the induction hypothesis and by
definition of φ and ξ, for each (i, l) /∈ T (t),

fil(m,ut) = fil(m,us)

Hyp
= αlφil(m,us) + (1− αl)ξil(m,us)

=
(1− αl)

|Q(l)|
. (4.62)

By Multi-efficiency, (4.62) and the definition of a minimal effort game,∑
(i,l)∈T (t)

fil(m,ut) =ut((l ∧mh)h∈N)− ut(((l − 1) ∧mh)h∈N)

−
∑

(i,l)/∈T (t)

fil(m,ut)

=1− 0− (|Q(l)| − |T (t)|)1− αl

|Q(l)|
. (4.63)

Additionally, any two distinct pairs (i, l), (i′, l) ∈ M+ such that (i, l), (i′, l) ∈ T (t),
are equal in (m,ut). By Remark 6 and by Level desirability, for each (i, l) ∈ T (t),

fil(m,ut) = c′,
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for some c′ ∈ R. It follows that∑
(i,l)∈T (t)

fil(m,ut) = |T (t)|c′. (4.64)

Therefore, combining (4.63) and (4.64), for each (i, l) ∈ T (t), we obtain

c′ =

1− (|Q(l)| − |T (t)|)1− αl

|Q(l)|
|T (t)|

.

It follows that, for each (i, l) ∈ T (t),

fil(m,ut) =

1− (|Q(l)| − |T (t)|)1− αl

|Q(l)|
|T (t)|

=
αl

|T (t)|
+

1− αl

|Q(l)|
= αlφil(m,ut) + (1− αl)ξil(m,ut). (4.65)

Combining (4.62) and (4.65), if tT = l, then for each (i, l) ∈M+,

fil(m,ut) = αlφil(m,ut) + (1− αl)ξil(m,ut).

This concludes the induction step.
We have shown that there exists a parameter system α such that f can be written,

for each (m,ut) such that tT = l, as

∀(i, j) ∈M+, fij(m,ut) =

{
αlφil(m,ut) + (1− αl)ξil(m,ut) if j = l,

0 otherwise.

By definition of multi-choice Egalitarian Shapley values (see (4.9)), for such a pa-
rameter systems α, there is a χα such that, for each (m,ut),

f(m,ut) = χα(m,ut).

We conclude by Linearity that there exists a parameter system α such that, for each
(m, v) ∈ G,

f(m, v) = χα(m, v).

This concludes the proof of the theorem. ■

The five axioms of the statement of Theorem 24 are logically independent, as shown
by the following alternative solutions.
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- The value f given, for each (m, v) ∈ G, by f(m, v) = 0⃗ satisfies all the axioms
except Efficiency.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v) =
maxk∈N mk∑

k∈N mk

φ(m, v) +
(
1− maxk∈N mk∑

k∈N mk

)
ξ(m, v),

satisfies all the axioms except Independence of higher activity levels.

- The following value f on G satisfies all the axioms except Linearity. Take any
(m, v) ∈ G. Denote the difference in worth between the grand coalition and
the (mT − 1)-synchronized coalition by

V = v(m)− v(((mT − 1) ∧mk)k∈N .

The value f is defined as follows:

· if |Q(mT )| ≠ 2, then f(m, v) = φ(m, v);

· if |Q(mT )| = 2, then there are two players i and i′ in Q(mT ). For each
(k, j) ∈M+ such that j ̸= mT ,

fkj(m, v) = φkj(m, v),

and for the two remaining pairs (i,mT ), (i
′,mT ) ∈M+, it holds that

(fimT
(m, v), fi′mT

(m, v)) =

(φimT
(m, v), φi′mT

(m, v)) if φimT
(m, v) ≥ 0 and φi′mT

(m, v) ≥ 0,

(0, V ) if φimT
(m, v) < 0, φi′mT

(m, v) > 0 and V ≥ 0,

(V, 0) if φimT
(m, v) < 0, φi′mT

(m, v) > 0 and V < 0,

(φimT
(m, v), φi′mT

(m, v)) if φimT
(m, v) ≤ 0 and φi′mT

(m, v) ≤ 0,

(0, V ) if φimT
(m, v) > 0, φi′mT

(m, v) < 0 and V ≤ 0,

(V, 0) if φimT
(m, v) > 0, φi′mT

(m, v) < 0 and V > 0.

Let us illustrate this value with a simple example. Consider the two games
(m, v), (m,w) ∈ G, where Q(mT ) = {1, 2}, and such that

V = v(m)− v(((mT − 1) ∧mk)k∈N > 0

W = w(m)− w(((mT − 1) ∧mk)k∈N ≤ 0

V +W > 0

φ1mT
(m, v) > 0 and φ1mT

(m,w) > 0

φ2mT
(m, v) < 0 and φ2mT

(m,w) < 0.
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According to the value f , it holds that

(f1mT
(m, v), f2mT

(m, v)) = (V, 0)

(f1mT
(m,w), f2mT

(m,w)) = (0,W )

(f1mT
(m, v + w), f2mT

(m, v + w)) = (V +W, 0).

Obviously, (V + W, 0) ̸= (V, 0) + (0,W ). This shows that f does not satisfy
Linearity.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v) =v(((j − 1) ∧mk)k∈N) + ei)

+
(v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N))

|Q(j)|

−
∑

k∈Q(j) v(((j − 1) ∧mk)k∈N) + ek)

|Q(j)|
,

satisfies all the axioms except Weak monotonicity. Observe that this value
extends the Equal surplus division from TU-games to multi-choice games.

- Take any (m, v) ∈ G and fix any arbitrary integer βij ∈ {1, 2} for each (i, j) ∈
M+. The value fβ given by

∀(i, j) ∈M+,

fβ
ij(m, v) =

βij∑
k∈Q(j) β

kj

[
v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

]
,

satisfies all the axioms except Level desirability.

4.4 Additional remarks

In this last section, we formulate two remarks regarding the solutions introduced
in this chapter. First, we discuss the relationship between the multi-choice Shapley
value and the discrete serial cost sharing method introduced by Moulin & Shenker
(1992) for discrete cost sharing problems (see Definition 22). Second, we discuss a
potential application of the multi-choice Egalitarian Shapley values.

Fix N = {1, . . . , n} a set of n different goods produced in indivisible units.
Recall that a discrete cost sharing problem can be expressed by a couple (q, C),
where q = (q1, . . . , qn). Each qi ∈ N represents the demand in good i, and C is a non

decreasing real-valued function on
∏

i∈N{0, 1, . . . , qi} such that C(
−→
0 ) = 0. The total

cost to be shared is given by C(q). As mentioned in Section 2.4.4, the class of discrete
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cost sharing problems is the class of monotonic multi-choice games Gm. Recall that
a method on Gm is a map g that associates to each problem (q, C) ∈ Gm a vector
g(q, C) ∈ Rn satisfying the budget balanced condition, i.e.,

∑
i∈N gi(q, C) = C(q). A

popular cost sharing method for cost sharing problems is the discrete serial cost
sharing method (see Definition 22) introduced by Moulin & Shenker (1992).

We provide an alternative expression of the discrete serial cost sharing method
proposed by Albizuri et al. (2003). To that end, we define a specific TU-game.

Consider (q, C) ∈ C and j ≤ mT . Define the TU-game (Q(j), w
(q,C)
j ) as

∀E ⊆ Q(j),

w
(q,C)
j (E) = C

(
((j − 1) ∧ qk)k∈N + eE

)
− C

(
((j − 1) ∧ qk)k∈N

)
.

The worth w
(q,C)
j (E) can be interpreted as the additional costs generated when each

player in E increases its activity level (demand) from j − 1 to j while all the other
players play either the activity level j − 1 or their maximal feasible activity level if
they are unable to do so. Albizuri et al. (2003) show that the discrete serial cost
sharing admits the following expression

∀i ∈ N, SCSi(q, C) =

qi∑
j=1

Shi

(
Q(j), w

(q,C)
j

)
. (4.66)

Proposition 24. The multi-choice Shapley value is consistent with the discrete se-
rial cost sharing method proposed by Moulin & Shenker (1992).

Proof. Observe that, for each i ∈ N and each j < qi,

∀E ⊆ Q(j), w
(q,C)
j (E) = w

(q−ei,C)
j (E).

Therefore,

∀i ∈ N, j < qi, Shi

(
N,w

(q,C)
j

)
= Shi

(
N,w

(q−ei,C)
j

)
. (4.67)

Additionally, recall that, for each j ≤ mT , the set of orders Θj over M+,j can be
interpreted as the set of orders over the set of players in Q(j). An order over Q(j) is a
map θNj : Q(j)→ {1, . . . , |Q(j)|}. We denote by Q(j) the set of of orders over Q(j).

Consider an order θNj ∈ Qj and h ∈ {1, . . . , |Q(j)|}. Recall that, for each B ∈ 2N ,

the vector eB ∈ R|A| is defined as (eB)i = 1 if i ∈ B and (eB)i = 0 otherwise. We
denote by

((j − 1) ∧ qk)k∈N + e
E

θN
j

,h

the coalition in which each player in Q(j) ordered prior to step h with respect to
θNj , participates at its activity level j, whereas each player in Q(j) ordered after
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step h with respect to θNj , participates at its activity level j − 1. Each player not
in Q(j) participates at its maximal activity level. Obviously, this coalition coincides
with sθj ,h, where θj is the counterpart of θNj among the orders in Θj. We use the
convention

((j − 1) ∧ qk)k∈N + e
E

θN
j

,0 = ((j − 1) ∧ qk)k∈N .

Consider an order θNj ∈ Qj. For each i ∈ Q(j), we denote by

µ
θNj
i (q, C) =C

(
((j − 1) ∧ qk)k∈N + e

E
θN
j

,θN
j

(i)

)
− C

(
((j − 1) ∧ qk)k∈N + e

E
θN
j

,θN
j

(i)−1

)
, (4.68)

the marginal contribution of player i for its activity level j with respect to the order
θNj . By (4.6), (4.7) and (4.68), for each (q, C) ∈ C, the multi-choice Shapley value
can be re-written as

∀(i, j) ∈M+,j, φij(q, C) =
1

|Q(j)|!
∑

θNj ∈Qj

µ
θNj
i (q, C).

By definition of the Shapley value for TU-games (see Shapley (1953)), for each j ≤
mT ,

∀i ∈ Q(j), Shi

(
N,w

(q,C)
j

)
=

1

|Q(j)|!
∑

θNj ∈Qj

µ
θNj
i (q, C) = φij(q, C). (4.69)

It follows that the multi-choice Shapley value is consistent with the discrete serial
cost sharing method since, for each i ∈ N ,

SCSi(q, C)− SCSi(q − ei, C) =

qi∑
j=1

Shi

(
N,w

(q,C)
j

)
−

qi−1∑
j=1

Shi

(
N,w

(q−ei,C)
j

)
=Shi

(
N,w(q,C)

qi

)
=φiqi(q, C),

where the second equality follows from (4.66) and (4.67), and the third equality
follows from (4.69). ■

To conclude this section, we discuss a potential application of the multi-choice
Egalitarian Shapley values. Consider a wage assignment problem in a firm as dis-
cussed in Abe & Nakada (2019). In a firm, each worker may receive a base salary in
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addition to a reward for its contribution to the firm. This wage assignment may be
more secure than an assignment without a base salary given the possibility that em-
ployees cannot contribute due to raising children, for instance. Such assignment can
obviously be viewed as a compromise between marginalism and egalitarianism. Abe
& Nakada (2019) point out that the wage may be affected by exogenous variables
independent of one’s contributions, such as seniority or educational background. A
way to address this problem is to model it with a multi-choice game and endow
each employee with a maximal activity level representing its seniority or education
background. In this case, if we assume that the assignment of an employee is equal
to the total payoff she receives by a multi-choice Egalitarian Shapley value, then the
base salary a worker receive corresponds to the egalitarian part of the value. Observe
that, the base salary of an employee will increase with respect to her seniority or
education. In addition, this increase depends on the parameter system used for the
computation of the value. For instance, one could select a parameter system that
operates a progressive compromise between marginalism and egalitarianism.

4.5 Conclusion

This chapter focuses on the principles pursued by GRDF and the doctrines that are
driving the solution concepts for cooperative games. Consequently, it disregards the
information provided by the distribution network.

We introduced: the multi-choice Shapley value and the multi-choice Equal di-
vision value. The two values satisfy Independence of higher activity levels, which
is a translation of the Independence of higher demands principle to the framework
of multi-choice games. We show that the combination of Independence of higher
activity levels and Efficiency implies Multi-efficiency, which is Core necessary con-
dition. Additionally, the multi-choice Equal division value is a solution in line with
the Uniformity principle.

Finally, we introduce the multi-choice Egalitarian Shapley values for multi-choice
games. These values are computed as the convex combination of the multi-choice
Shapley value and the multi-choice Equal division value.

Two axiomatic characterizations of the multi-choice Shapley value are provided.
Following the first characterization, we show that the multi-choice Shapley value
admits an expression in terms of Harsanyi dividends. Finally, one axiomatic char-
acterization of the Equal division value and one axiomatic characterization of the
Egalitarian Shapley values are provided.
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Chapter 5: Values for Multi-Choice
Games with a Priority Structure

5.1 Introduction

The two previous chapters deal with the principles pursued by GRDF and the in-
formation provided by the distribution network respectively. This chapter aims to
address both issues at the same time. Contrary to Chapter 3, a permission structure
is not extracted from the information provided by the distribution network. Instead,
we extract a priority structure, which naturally arises in the context of gas distribu-
tion. For instance, it seems reasonable to prioritize the supply of a hospital rather
than the supply of an amusement park. Additionally, contrary to Chapter 4, which
considers both the Uniformity principle and the Independence of higher demands
principle, this chapter only focuses on the latter.

In the framework of multi-choice games, the use of a priority structure on the
player set brings additional possibilities that would not have been possible in the
framework of TU-games. Similarly to Chapter 2, the set of activity levels is linearly
ordered. Consequently, it provides an intra-player information, whereas the priority
structure provides an inter-player information. Depending on the cooperative situ-
ation, these two pieces of information can be useful to define a relevant allocation
process. In this chapter, a lexicographic order defined over the set of player-activity
level pairs is defined. Consider any two player-activity level pairs (i, j) and (i′, j′).
The two players i and i′ are part of a priority structure. The activity levels of the
players are assumed to be the most significant criterion. If one of the two pairs has a
higher position than the second in the lexicographic order, then it features a higher
activity level than the second pair. If the two activity levels are equal, then the pair
featuring the player that has priority over the second player has a higher position
than the other pair in the lexicographic order.

In line with this lexicographic order, a generalization of the Priority value from
TU-games to multi-choice games is introduced: the multi-choice Priority value.
This value equally divides the net surplus of each coalition among the player(s) in
the coalition with the highest position in the lexicographic order. Such allocation
process especially makes sense when resources are scarce, and trade-offs have to be
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made among different criteria.
We provide two axiomatic characterizations of the multi-choice Priority value.

Both characterizations rely on known axioms for multi-choice games: Efficiency,
Additivity and Independence of higher activity levels. In addition, we use new axioms
that take into account the priority structure. The two characterizations differ in these
new axioms.

As our first main result, we show that the multi-choice Priority value is charac-
terized by the combination of Efficiency, Additivity, Independence of higher activity
levels and the next two axioms (see Theorem 25). The first axiom is called: Priority
relation for the same maximal activity level. This axiom considers two players with
the same maximal activity level and comparable in terms of priority. This axiom
expresses the idea that the payoff possibilities of a player are blocked by any other
player with higher priority, even if they both have the same maximal activity level.
In terms of gas distribution, this axioms holds a nice interpretation: the supply pos-
sibilities in gas of a consumer are blocked if there is another consumer with the same
demand in gas and who has priority over it. For instance, the supply of a hospital
should be prioritized over the supply of an amusement park, even if both of them
have the same demand in gas. The second axiom is called: Balanced contributions
for the same prevailing group. This axiom relies on a fairness requirement for indis-
tinguishable players regarding both the priority structure and their maximal activity
level. It indicates that such players affect each other payoff in the same manner.

The second characterization of the multi-choice Priority value consists of a set
of axioms with similar interpretations than the axioms of the statement of Theorem
21. It invokes Independence of null pairs: removing a player’s maximal activity
level does not alter the payoffs of the remaining player’s activity level if this player
is unproductive in each coalition in which it plays its maximal activity level. Yet,
the multi-choice Priority value departs from the multi-choice Shapley value in one
important aspect. Contrary to the latter, it does not satisfy Equal treatment for
equal pairs: two players that contribute the same amount to each coalition in which
they play the same activity level should receive the same payoff for this activity level.
In the presence of priority relations, this axiom becomes very strong. Therefore, it
is replaced by two new axioms that take into account the priority structure. Both
axioms deal with decisive players. A player is decisive if each coalition in which it does
not play its maximal activity level generates a null worth. This notion generalizes
the notion of a veto player from TU-games to multi-choice games. In terms of
gas distribution, a decisive player can be viewed as a consumer without whom the
distribution network would never have existed. For instance, some consumers with
very large demand in gas can be held responsible for the creation of the distribution
network. Indeed, in some cases, a distribution network is created for the sole purpose
to supply a single consumer with an important demand in gas. Subsequently, this
allowed other (smaller) consumers to be connected to this distribution network. All
in all, the decisive gas consumers can be viewed as the necessary condition for a gas
distribution network to exist. Consider two decisive players with the same maximal
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activity level. The axiom of Priority relation for decisive players requires that the
payoff of the first decisive player is zero if the second decisive player has priority over
it. This axiom has a strong meaning in terms of gas distribution since it ensures
a null payoff to any decisive gas consumer as long as another consumer with the
same demand has priority over it. Second, the axiom of Decisive players with equal
prevailing group property deals with decisive players that are incomparable in terms
of both maximal activity level and priority. It requires that such players should be
treated equally for their maximal activity level. Therefore, this axiom is a relaxation
of Equal treatment for equal pairs. As our second main result, we show that the
multi-choice Priority value is the unique value that satisfies Efficiency, Additivity,
Independence of higher activity levels, Independence of null pairs, Priority relation
for decisive players and the Decisive players with equal prevailing group property
(see Theorem 26).

Finally, we consider priority structures in which the set of players can be par-
titioned into several priority classes. Precisely, each class contains incomparable
players that have priority over each player in the next class. In such priority re-
lations structured by classes, we show that the multi-choice Priority value can be
interpreted as a sequential procedure involving specific TU-games. Consider a given
activity level that is played by at least one player and a priority class p. Consider all
players in this priority class which are able to play the required activity level. The
payoff obtained by these players correspond to their marginal contribution to the
coalition formed by all players over which this class has priority (and that are able
to play the required activity level). The final payoff of each player in this priority
class for the required activity level is the Shapley value applied to a TU-game on the
subset of players in the priority class p, which are able to play the required activity
level (Theorem 27).

The rest of the chapter is organized as follows. Section 5.2 introduces the axioms
and proceeds to the axiomatic study. Section 5.3 discusses multi-choice games with
a priority relation structured by classes. Finally, Section 5.4 concludes the chapter.

5.2 Axiomatic study

The class of multi-choice games with a priority structure is denoted by GS. There are
several ways to consider the influence of a priority structure on multi-choice games.
Here, this issue is approached through an axiomatic study. Denote by f a value on
GS.

Remark 7. If f satisfies Independence of higher activity levels, then for each
(m, v,⪰) ∈ GS and each i, i′ ∈ N such that mi = mi′,

∀j < mi, fij(m, v,⪰) = fij(m− ei′ , v,⪰).
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5.2.1 Balanced contributions

This section introduces axioms that compare players with the same maximal activity
level. Consider two players i and i′ such that mi = mi′ and i ≻ i′. This axiom states
that the payoff of i′’s maximal activity level remains unchanged if player i’s maximal
activity level decreases by one unit.

Axiom 51 (Priority relation for the same maximal activity level). For each
(m, v,⪰) ∈ GS, and each i, i′ ∈ N such that mi = mi′ and i′ ≻ i,

fimi
(m, v,⪰) = fimi

(m− ei′ , v,⪰).

To introduce the next axiom, a definition is needed. A player i prevails on
another player i′ if it has priority over i′ and its maximal activity level mi is not
lower than mi′ . Take any (m, v,⪰) ∈ GS. For each i ∈ N , the set of players that
prevail on i is defined as

Li(m, v,⪰) =↑≻ i ∩
{
k ∈ N \ {i} : mk ≥ mi

}
.

The next axiom is inspired by the well known Balanced contributions axiom
introduced by Myerson (1980) for TU-games (see Axiom 12). Originally, Balanced
contributions asserts that for any two players, the amount that each player gains or
loses by the other player’s withdrawal from the game should be equal. It expresses
a fairness requirement according to which two players affect each other payoff in
the same way. There are several generalizations of this axiom from TU-games to
multi-choice games that translate this fairness condition in case a player gets access
to (or looses) an additional activity level (see Theorem 15). However, because of
the exogenous asymmetries between players, it seems more reasonable that such
condition applies with respect to the priority structure. In particular, the next
axiom relies on the idea that two players affect each other payoff in the same manner
if they have the same maximal activity level and the same prevailing group.

Axiom 52 (Balanced contributions for the same prevailing group). For each
(m, v,⪰) ∈ GS, and each i, i′ ∈ N such that i ̸= i′, mi = mi′ and Li(m, v,⪰) =
Li′(m, v,⪰),

fimi
(m, v,⪰)− fimi

(m− ei′ , v,⪰) = fi′mi′
(m, v,⪰)− fi′mi′

(m− ei, v,⪰).

Proposition 25. There is at most one value on GS that satisfies Efficiency, Inde-
pendence of higher activity levels, Priority relation for the same maximal activity
level and Balanced contributions for the same prevailing group.

Proof. Let f be a value on GS that satisfies all the axioms from the statement of
Proposition 25. Let us show that, for each (m, v,⪰) ∈ GS, f(m, v,⪰) is uniquely
determined. We proceed by induction on the number of activity levels in a game
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given by
∑

i∈N mi for each (m, v) ∈ GS.

Initialization: Take any (m, v,⪰) ∈ GS such that
∑

i∈N mi = 1. There exists a
unique i ∈ N such that mi = 1 and mk = 0 for each k ̸= i. By Efficiency and by
definition of a payoff vector, each payoff vector verifies fi1(m, v,⪰) = v(m). This
shows that f(m, v,⪰) is uniquely determined.

Induction hypothesis: Assume that f(m, v,⪰) is uniquely determined for each
(m, v,⪰) ∈ GS such that∑

i∈N

mi = W ≥ 1.

Induction step: Take any (m, v,⪰) ∈ GS such that∑
i∈N

mi = W + 1.

Let us show that f(m, v,⪰) is uniquely determined. Recall that the highest maximal
activity level in (m, v,⪰) is denoted by

mT = max
k∈N

mk,

and denote the set of players having access to mT by

Q(mT ) = {i ∈ N | mi = mT}.

By Independence of higher activity levels, for each player i ∈ N \Q(mT ) and for
each j ≤ mi,

fij(m, v,⪰) = fij((mk ∧ j)k∈N , v,⪰). (5.1)

Observe that there is less than W activity levels in (m− ei, v,⪰). Therefore, by the
induction hypothesis, fij((mk ∧ j)k∈N , v,⪰) is uniquely determined. Thus, by (5.1),
fij(m, v,⪰) is uniquely determined, for each i ∈ N \Q(mT ) and for each j ≤ mi.

Then, take any i ∈ Q(mT ). Assume that |Q(mT )| = 1. It follows that mk < mi

for each k ∈ N . Denote by M+
−ei = M+ \ {(i,mi)} the set of pairs associated with

the game ((mk ∧ (mi − 1))k∈N , v,⪰) = (m − ei, v,⪰). By Independence of higher
activity levels,

∀k ∈ N, j < mi fkj(m, v,⪰) = fkj(m− ei, v,⪰)

=⇒
∑

(k,j)∈M+
−ei

fkj(m− ei, v,⪰) =
∑

(k,j)∈M+
−ei

fkj(m, v,⪰). (5.2)
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By Efficiency and (5.2),∑
(k,j)∈M+

−ei

fkj(m− ei, v,⪰) =v(m− ei)

=⇒
∑

(k,j)∈M+
−ei

fkj(m, v,⪰) =v(m− ei)

=⇒ fimi
(m, v,⪰) =

∑
(k,j)∈M+

fkj(m, v,⪰)

−
∑

(k,j)∈M+
−ei

fkj(m, v,⪰)

= v(m)− v(m− ei).

This shows that fimi
(m, v,⪰) is uniquely determined.

Now, assume that |Q(mT )| > 1. Consider the subposet (Q(mT ),⪰Q(mT )) of
(N,⪰) and the priority group ↑≻Q(mT ) k of a player k ∈ Q(mT ). Two separate cases
are considered.

Case 1. Take any k ∈ Q(mT ) such that ↑≻Q(mT ) k ̸= ∅. Then, there is at least one
i ∈ Q(mT ) such that i ≻ k. By Priority relation for the same maximal activity level,

fk,mk
(m, v,⪰) = fk,mk

(m− ei, v,⪰). (5.3)

Observe that there is a total of W activity levels in (m − ei, v,⪰). By the induc-
tion hypothesis, fk,mk

(m − ei, v,⪰) is uniquely determined. Therefore, by (5.3),
fk,mk

(m, v,⪰) is uniquely determined.

Case 2. Take any i ∈ Q(mT ) such that ↑≻Q(mT ) i = ∅. Define

Q(mT ) = {i ∈ Q(mT ) | ↑≻Q(mT ) i = ∅}

the set of players with the highest maximal activity level and with an empty priority
group in (Q(mT ),⪰). Denote by |Q(mT )| the number of players in Q(mT ). By
definition, for each i ∈ Q(mT ), Li(m, v,⪰) = ∅. If |Q(mT )| > 1, then by Balanced
contributions for the same prevailing group,

∀i, i′ ∈ Q(mT ),

fimi
(m, v,⪰)− fi′mi′

(m, v,⪰) = fimi
(m− ei′ , v,⪰)− fi′mi′

(m− ei, v,⪰). (5.4)

Observe that there is a total of W activity levels in (m− ei, v,⪰) and (m− ei′ , v,⪰).
The right hand-side of (5.4) is uniquely determined by the induction hypothesis.

Applying the same argument for each player in Q(mT ) one generates

(
|Q(mT )|

2

)
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equations of type (5.4). Moreover, by Efficiency∑
(i,j)∈M+

fij(m, v,⪰) =
∑
i∈N

mi∑
j=1

fij(m, v,⪰)

=v(m)

=
∑
i∈N

mi−1∑
j=1

fij(m, v,⪰)

+
∑

k ̸∈Q(mT )

fkmk
(m, v,⪰) +

∑
i∈Q(mT )

fimi
(m, v,⪰).

This can also be written as∑
i∈Q(mT )

fimi
(m, v,⪰) =v(m)−

∑
i∈N

mi−1∑
j=1

fij(m, v,⪰)

−
∑

k ̸∈Q(mT )

fkmk
(m, v,⪰)−

∑
k∈Q(mT )

k ̸∈Q(mT )

fkmk
(m, v,⪰). (5.5)

Let b denote the right-hand side of (5.5). At this step, it has been shown that:

- fij(m, v,⪰) is uniquely determined for each j < mi;

- fkmk
(m, v,⪰) is uniquely determined for each k ̸∈ Q(mT );

- fkmk
(m, v,⪰) is uniquely determined for each k ∈ Q(mT ) and k ̸∈ Q(mT ).

Therefore, b is uniquely determined. From (5.5) and (5.4), one generates the system

of
(|Q(mT )|

2

)
+ 1 equations with Q(mT ) unknowns

(A) =


∑

i∈Q(mT )

fimi
(m, v,⪰) = b,

∀i, i′ ∈ Nm, fimi
(m, v,⪰)− fi′mi′

(m, v,⪰)
= fimi

(m− ei′ , v,⪰)− fi′mi′
(m− ei, v,⪰).

Without loss of generality, relabel each player in Q(mT ) by i1, i2, . . . , i|Q(mT )|. By
considering the sequence of players (i1, i2, . . . , i|Q(mT )|), one obtains the subsystem of

|Q(mT )| equations with |Q(mT )| unknowns

∑
i∈Q(mT )

fimi
(m, v,⪰) = b,

∀k ∈ {1, . . . |Q(mT )| − 1},
fikmik

(m, v,⪰)− fik+1mik+1
(m, v,⪰)

= fikmik
(m− eik+1

, v,⪰)− fik+1mik+1
(m− eik , v,⪰).
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It is straightforward to verify that these |Q(mT )| equations are linearly indepen-
dent. Therefore, the subsystem of (A) admits a unique solution. We conclude that
the original system (A) admits at most one solution. This allows to conclude the
induction step. The proof of the theorem is completed.

■

In many economic decision problems, a decision maker has to choose an option
within a finite set of possible alternative. Often, these alternative are defined accord-
ing to a finite number of criteria (see Svenson (1979)). A popular decision making
process is to select the alternative according to a lexicographic order based on these
criteria (see Fishburn (1974)). Put simply, one classifies the criteria according to
their relative significance. Then, the alternative that performs the best on the first
criterion is selected. If more than one alternative is selected, then the second crite-
rion is used to tiebreak the alternative. This process continues until there is only
one alternative left, or no criterion left.

We introduce the multi-choice Priority value for multi-choice games with a
priority structure that follows a lexicographic allocation process. The activity levels
of the players are assumed to be the most significant criterion. The multi-choice
Priority value allocates the surplus of each coalition among a subset of players within
this coalition. These players are chosen according to a lexicographic decision process
that selects the players with the highest activity level in the coalition. In case more
than one player is selected, the process sorts the players according to their position
in the priority structure.

Precisely, we derive a lexicographic partial order (M+,⪰∗) from the total order
on the set of activity levels (M+

i ,≥) of the players i ∈ N and the priority structure
(N,⪰).

Definition 31. Given a multi-choice game with a priority structure (m, v,⪰) ∈ GS,
define the lexicographic partial order ⪰∗ on the set of pairs M+ as

∀(i, j), (i′j′) ∈M+,

(i, j) ⪰∗ (i′, j′) ⇐⇒
[
[j > j′] or [j = j′ and i ⪰ i′]

]
. (5.6)

We now have the material to define the multi-choice Priority value, Γ. For each
s ∈ M, the value assigns to a pair (i, si) ∈ C(s) a share of the Harsanyi dividend
∆v(s) if no other pair in C(s) has a higher position in the lexicographic order induced
by the coalition.

Definition 32 (Multi-choice Priority value). For each (m, v,⪰) ∈ GS, the multi-
choice Priority value Γ is defined as

∀(i, j) ∈M+, Γij(m, v,⪰) =
∑
s≤m
j=si

(i,j)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|
, (5.7)
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where for each s ∈ M, Z(C(s),⪰∗) is the set of maximal elements of the sub-poset
(C(s),⪰∗), and C(s) is the set of pairs featuring players and their non-null activity
level in s (see (2.39)).

Whenever m = (1, . . . , 1), this value coincides with the Priority value for TU-games
with a priority structure (2.24). Whenever the priority structure is a trivial poset
(N,⪰0), this value coincides with the multi-choice Shapley value (4.5).

The next theorem provides an axiomatic characterization of the value Γ on the
class of multi-choice games with a priority structure.

Theorem 25. A value f on GS satisfies Efficiency, Independence of higher activity
levels, Priority relation for the same maximal activity level and Balanced contribu-
tions for the same prevailing group if and only if f = Γ.

Proof. By Proposition 25, we know that there is at most one value that satisfies all
the axioms from the statement of Theorem 25. It remains to show that the value Γ
satisfies these axioms.

Efficiency: Take any (m, v,⪰) ∈ GS. By definition of Γ, the Harsanyi dividend of
a coalition s ∈M is equally allocated among the pairs in Z(C(s),⪰∗). Therefore, it
holds that∑

(i,j)∈M+

Γij(m, v,⪰) =
∑
s≤m

∑
(i,j)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|

=
∑
s≤m

∆v(s)

= v(m).

This shows that the value Γ satisfies Efficiency.

Independence of higher activity levels: Take any (m, v,⪰) ∈ GS and any pair
(i, j) ∈M+ such that j < mi. By definition of Γ, the payoff Γij(m, v,⪰) only depends
on the coalitions s ∈M verifying sk ≤ j for each k ∈ N . Thus, it is straightforward
to see that the value Γ satisfies Independence of higher activity levels.

Priority relation for the same maximal activity level: Take any (m, v,⪰) ∈
GS, any s ∈ M, and any two players i, i′ ∈ N such that mi = mi′ and i′ ≻ i. If
(i,mi) ∈ Z(C(s),⪰∗), then we necessarily have si′ < mi′ , i.e., s ≤ m−ei′ . Therefore,
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it holds that

Γimi
(m, v,⪰) =

∑
s≤m
mi=si

(i,mi)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|

=
∑

s≤m−ei′
mi=si

(i,mi)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|

= Γimi
(m− ei′ , v,⪰).

This shows that the value Γ satisfies Priority relation for the same maximal activity
level.

Balanced contributions for the same prevailing group: Take any (m, v,⪰) ∈
GS and any two players i, i′ ∈ N such that mi = mi′ and Li(m, v,⪰) = Li′(m, v,⪰).
Observe that, for each s ∈M, if (i,mi), (i,mi′) ∈ C(s), then

(i,mi) ∈ Z(C(s),⪰∗) ⇐⇒ (i′,mi′) ∈ Z(C(s),⪰∗). (5.8)

Let us compute the payoff of the pair (i,mi). By definition of Γ,

Γimi
(m, v,⪰) =

∑
s≤m

(i,mi)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|

=
∑
s≤m

(i,mi)∈Z(C(s),⪰∗)
si′<mi′

∆v(s)

|Z(C(s),⪰∗)|
+

∑
s≤m

(i,mi)∈Z(C(s),⪰∗)
si′=mi′

∆v(s)

|Z(C(s),⪰∗)|
.

By (5.8),

Γimi
(m, v,⪰) =

∑
s≤m

(i,mi)∈Z(C(s),⪰∗)
si′<mi′

∆v(s)

|Z(C(s),⪰∗)|

+
∑
s≤m

(i,mi),(i
′,mi′ )∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|
.

Moreover,

Γimi
((m− ei′), v,⪰) =

∑
s≤(m−ei′ )

(i,mi)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|

=
∑
s≤m

(i,mi)∈Z(C(s),⪰∗)
si′<mi′

∆v(s)

|Z(C(s),⪰∗)|
.
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The same reasoning holds for (i′,mi′), from which one concludes that

Γimi
(m, v,⪰)− Γimi

((m− ei′), v,⪰) =
∑
s≤m

(i,mi),(i
′,mi′ )∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|

= Γi′mi′
(m, v,⪰)− Γi′mi′

((m− ei), v,⪰),

as desired. This concludes the proof of the theorem. ■

The four axioms of the statement of Theorem 25 are logically independent, as
shown by the following alternative solutions.

- The value f given, for each (m, v) ∈ G, by f(m, v) = 0⃗ satisfies all the axioms
except Efficiency.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+, fij(m, v,⪰) =
∑
s≤m

si≥j>0
(i,si)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|
∑

(k,sk)∈Z(C(s),⪰∗)

sk
,

satisfies all the axioms except Independence of higher activity levels.

- The multi-choice Shapley value satisfies all the axioms except Priority relation
for the same maximal activity level.

- Take any (m, v) ∈ G and fix any arbitrary integer βk,l ∈ {1, 2} for each (k, l) ∈
M+. The value fβ given by

∀(i, j) ∈M+, fβ
ij(m, v,⪰) =

∑
s≤m
si=j

(i,si)∈Z(C(s),⪰∗)

βi,j∑
(i′,j′)∈Z(C(s),⪰∗)

βi′j′

∆v(s),

satisfies all the axioms except Balanced contributions for the same prevailing
group.

5.2.2 Decisive players and priority relations

This section provides a second characterization of the value Γ for multi-choice games
with a priority structure. The next two axioms are generalizations of standard axioms
for multi-choice games to multi-choice games with a priority structure.

Axiom 53 (Null game). If (m, v,⪰) ∈ GS is the null game, then

∀(i, j) ∈M+, fij(m, v,⪰) = 0.
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Axiom 54 (Independence of null pairs). For each (m, v,⪰) ∈ GS and each null
pair (i, j) ∈M+,

∀(i′, j′) ∈M+ \ {(i,mi)}, fi′j′(m, v,⪰) = fi′j′(m− ei, v,⪰).

By successive applications of Independence of null pairs and Efficiency one obtains
the following result.

Proposition 26. If a value f on GS satisfies Efficiency and Independence of null
pairs, then it satisfies the Null pair property.

The next two axioms relate to decisive players with the same maximal activity
level. A player i ∈ N is decisive if any coalition in which it does not play its
maximal activity level generates zero worth. Put differently, i ∈ N is decisive if the
pair (i,mi) is a decisive pair. Let s ∈ M be a coalition such that si = j − 1. The
surplus v(s+ ei)− v(s) refers to the marginal contribution of i for its activity level j
to the coalition s. It is straightforward to see that two decisive players i, i′ such that
mi = mi′ have the same marginal contributions to coalitions, i.e., for each s where
si = si′ = mi−1 and sk ≤ mk, k ̸= i, i′, it holds that v(s+ei) = v(s+ei′) = 0.1 In this
case, the pairs (i,mi) and (i′,mi′) are equals. Equal treatment of equal pairs imposes
that equal pairs receive the same payoff. However, two decisive players may differ
according to their position in the priority structure. Priority relation for decisive
players aims to accommodate this difference. It requires that the payoff of a decisive
player is zero if the other decisive player has priority over it.

Axiom 55 (Priority relation for decisive players). For each
(m, v,⪰) ∈ GS, for each i, i′ ∈ N decisive players such that mi′ = mi and i′ ≻ i,

fimi
(m, v,⪰) = 0.

Whenever two decisive players are indistinguishable in terms of both maximal
activity levels and priority, there is no reason to treat them differently. The next ax-
iom relies on this idea and weakens the Equal treatment of equal pairs by considering
decisive players with the same prevailing group and maximal activity level.

Axiom 56 (Decisive players with equal prevailing group property). For each
(m, v,⪰) ∈ GS, for each pair of decisive players i, i′ ∈ N such that mi = mi′ and
Li(m, v,⪰) = Li′(m, v,⪰),

fimi
(m, v,⪰) = fimi′

(m, v,⪰).

Interestingly, the combination of Priority relation for the same maximal activity
level and Null game implies Priority relation for decisive players. Moreover, the
combination of Balanced contributions for the same prevailing group and Null game
implies the Decisive players with equal prevailing group property.

1This observation can be extended by considering two decisive players with different maximal
activity levels.
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Proposition 27. On GS, the two following properties hold:

a. Priority relation for the same maximal activity level and Null game imply Pri-
ority relation for decisive players;

b. Balanced contributions for the same prevailing group and Null game imply the
Decisive players with equal prevailing group property.

Proof. We prove both points of the proposition separately.

Point a: Let f be a value on GS that satisfies Priority relation for the same maximal
activity level and Null game. Take any (m, v,⪰) ∈ GS and any decisive player i′ ∈ N .
By Priority relation for the same maximal activity level, for each decisive player i ∈ N
such that mi′ = mi and i′ ⪰ i,

fimi
(m, v,⪰) = fimi

(m− ei′ , v,⪰).

Since (i′,mi′) is decisive in (m, v,⪰), the sub-game (m − ei′ , v,⪰) is a null game.
Therefore, by Null game,

fimi
(m, v,⪰) = fimi

(m− ei′ , v,⪰) = 0.

This shows that f satisfies Priority relation for decisive players.

Point b: Let f be a value on GS that satisfies Balanced contributions for the same
prevailing group and Null game. Take any (m, v,⪰) ∈ GS and any two decisive
players i, i′ ∈ N such that mi = mi′ and Li(m, v,⪰) = Li′(m, v,⪰). By Balanced
contributions for the same prevailing group,

fimi
(m, v,⪰)− fimi

(m− ei′ , v,⪰) = fi′mi′
(m, v,⪰)− fi′mi′

(m− ei, v,⪰).

Since (i,mi) and (i′,mi′) are decisive in (m, v,⪰), it holds that (m − ei′ , v,⪰) and
(m− ei, v,⪰) are null games. By Null game,

fimi
(m− ei′ , v,⪰) = fi′mi′

(m− ei, v,⪰) = 0.

Thus, we conclude that

fimi
(m, v,⪰) = fi′mi′

(m, v,⪰).

This shows that f satisfies the Decisive players with equal prevailing group property.
■

The next result provides a second axiomatic characterization of Γ on the class of
multi-choice games with a priority structure.
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Theorem 26. A value f on GS satisfies Efficiency, Additivity, Independence of
higher activity levels, Independence of null pairs, Priority relation for decisive players
and the Decisive players with equal prevailing group property if and only if f = Γ.

Proof. By Theorem 25, we know that the value Γ satisfies Efficiency and Indepen-
dence of higher activity levels. Since Γ is a weighted sum of the Harsanyi dividend,
it satisfies Additivity. Observe that, for each null pair (i, j) ∈ M+ and each s ∈ M
such that si ≥ j, it holds that ∆v(s) = 0. From this observation, it follows that Γ
satisfies Independence of null pairs. Since Additivity implies Null game, by Proposi-
tion 27, Γ satisfies Priority relation for decisive players and the Decisive players with
equal prevailing group property.

It remains to show the uniqueness of the value. Let f be a value on GS that
satisfies all the axioms from the statement of Theorem 26. Let us show that f is
uniquely determined. Take any (m, v,⪰) ∈ GS. By Additivity, it is enough to show
that, for each t ∈ M, f(m,∆v(t)ut,⪰) is uniquely determined. Take any t ∈ M,
recall that the highest activity level in t is denoted by tT .

Each pair (i, j) ∈ M+ such that j > ti, is a null pair in (m,∆v(t)ut,⪰). Since f
satisfies Efficiency and Independence of null pairs, by Proposition 26 it satisfies the
Null pair property. Therefore, for each (i, j) ∈M+ such that j > ti, fij(m,∆v(t)ut,⪰
) = 0. By successive applications of Independence of null pairs, for each (i, j) ∈M+

such that j ≤ ti, we obtain

fij(m,∆v(t)ut,⪰) = fij(t,∆v(t)ut,⪰).

Take any pair (i, j) ∈ M+ such that j < tT . By Independence of higher activity
levels,

fij(t,∆v(t)ut,⪰) = fij((tk ∧ j)k∈N ,∆v(t)ut,⪰).

Then, by definition of a minimal effort game (see Definition 2.31) and by the fact
that Additivity implies Null game,

fij((tk ∧ j)k∈N ,∆v(t)ut,⪰) = 0

= fij(t,∆v(t)ut,⪰).

Observe that any i ∈ Q(tT ) is a decisive player in the game (t,∆v(t)ut,⪰).
Take any pair (i, j) ∈ M+ such that j = ti = tT , i.e., i ∈ Q(tT ). Two cases are
distinguished. First if Li(t,∆v(t)ut,⪰) ̸= ∅. Since i’s maximal activity level in
(t,∆v(t)ut,⪰) is tT , i′ ∈ Li(t,∆v(t)ut,⪰) implies i′ ≻ i and ti′ = tT . Thus, there
exists another player i′ ∈ Q(tT ) such that i′ ≻ i. By Priority relation for decisive
players,

fij(t,∆v(t)ut,⪰) = 0.
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Now suppose that Li(t,∆v(t)ut,⪰) = ∅. Consider the set of pairs

M+
L(t) = {(i, j) ∈M+ | i ∈ Q(tT ), Li(t,∆v(t)ut,⪰) = ∅}.

At this step, we know that fij(m,∆v(t)ut,⪰) = 0 for each (i, j) ∈ M+ \M+
L(t). If

|M+
L(t)| = 1, then fij(m,∆v(ut),⪰), for (i, j) ∈ M+

L(t), is uniquely determined by

Efficiency. If |M+
L(t)| > 1, then by Efficiency,∑

(i,j)∈M+

fij(m,∆v(t)ut,⪰) =
∑

(i,j)∈M+
L(t)

fij(t,∆v(t)ut,⪰) = ∆v(t). (5.9)

By the Decisive players with equal prevailing group property,

∀(i, j), (i′, j′) ∈M+
L(t), fij(t,∆v(t)ut,⪰) = fi′j′(t,∆v(t)ut,⪰) = c, (5.10)

for some c ∈ R. From (5.10) and (5.9), fij(m,∆v(t)ut,⪰) is uniquely determined for
each (i, j) ∈M+

L(t). Additivity allows to conclude the proof.
■

The six axioms of the statement of Theorem 26 are logically independent, as
shown by the following alternative solutions.

- The value f given, for each (m, v) ∈ G, by f(m, v) = 0⃗ satisfies all the axioms
except Efficiency.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v,⪰) =
∑
s≤m

si≥j>0
(i,si)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|
∑

(k,sk)∈Z(C(s),⪰∗)

sk
,

satisfies all the axioms except Independence of higher activity levels.

- The value f given, for each (m, v) ∈ G, by

∀(i, j) ∈M+,

fij(m, v,⪰) =
∑
s≤m
si=j

(i,j)∈Z(C(s),⪰∗)

(v(0−i, j))
2 + 1∑

(k,j)∈Z(C(s),⪰∗)

(v(0−k, j))
2 + 1

∆v(s),

satisfies all the axioms except Additivity.
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- Take any (m, v) ∈ G. For the sake of presentation, we use the notation

∀j ≤ mT , ZC(j) = Z(C((j ∧mk)k∈N),⪰∗).

The value f given by

fij(m, v,⪰)

=


v((j ∧mk)k∈N)− v(((j − 1) ∧mk)k∈N)

|ZC(j)|
if (i, j) ∈ ZC(j),

0 otherwise,

satisfies all the axioms except Independence of null pairs. Indeed, this value
allocates to each pair (i, j) ∈ ZC(j) an equal share of the difference between
the worth of (j ∧mk)k∈N and ((j − 1) ∧mk)k∈N . Take any pair (i, j) ∈ ZC(j)
and assume that it is a null pair. If player i reduces its maximal activity level to
j−1, this may impact the payoff of the other pairs in ZC(j), which contradicts
Independence of null pairs.

- The multi-choice Shapley value satisfies all the axioms except Priority relation
for decisive players.

- Take any (m, v) ∈ G and fix any arbitrary integer βk,l ∈ {1, 2} for each (k, l) ∈
M+. The value fβ given by

∀(i, j) ∈M+, fβ
ij(m, v,⪰) =

∑
s≤m
si=j

(i,si)∈Z(C(s),⪰∗)

βi,j∑
(i′,j′)∈Z(C(s),⪰∗)

βi′j′

∆v(s),

satisfies all the axioms except the Decisive players with equal prevailing group
property.

5.3 Priority relations structured by classes

This section presents situations in which the set of players can be partitioned into
several priority classes (N1,, . . . , Nq). Each priority class contains incomparable play-
ers that have priority over each player in the next class. Such priority structures
generalize the linear priority structures. Formally,

∀i, i′ ∈ N, [i ≻ i′] ⇐⇒ [i ∈ Np, i
′ ∈ Np′ =⇒ p < p′].

The set of players over which player i ∈ Np has priority is

↓≻ i =
⋃
p′>p

Np′ .

In the following, N>p stands for
⋃

p′>p Np′ .
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Example 13. Let N = {1, 2, 3, 4, 5, 6, 7, 8} be the set of players and consider (N,⪰)
a priority structured by classes. Suppose that the set of players is partitioned into
three cells: N1 = {4, 5, 6}, N2 = {2, 3} and N3 = {1, 7, 8}. Each player in N1 has
priority over players in N2 ∪N3, and each player in N2 has priority over players in
N3. Figure 2 represents the Hasse diagram of the poset (N,⪰).

5

3 2

4

1

6

78

N1

N2

N3

Figure 2: Hasse diagram of (N,⪰) structured by classes.

■

5.3.1 The multi-choice Priority value as a sequential alloca-
tion process

Consider the class of multi-choice games with priority relations structured by classes.
We define a sequential allocation process denoted by f . First consider an activity
level j ≤ maxi∈N mi and the set of players that are able to play this activity level, i.e.,
the set Q(j). Then, consider the priority class p ∈ {1, . . . , q}, and players in Np that
are able to play j, i.e., the subset of players Np ∩Q(j). Finally, one assigns to each
pair (i, j) ∈M+ such that i ∈ Np, the Shapley value obtained by i in a TU-game on
Np ∩Q(j). This sequential allocation process is detailed by the following procedure.
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Allocation process for multi-choice games with a priority relation struc-
tured by classes

1: for j = 1 to maxi∈N mi do
2:

3: for t = 1 to q do
4: p = q − t+ 1
5: if Np ∩Q(j) ̸= ∅ then
6:

∀E ⊆ Np ∩Q(j),

wp
j (E) =v

(
((j − 1) ∧mk)k∈N + e(E∪N>p)∩Q(j)

)
− v
(
((j − 1) ∧mk)k∈N + eN>p∩Q(j)

)
(5.11)

∀i ∈ Np ∩Q(j),

fij(m, v,⪰) = Shi(Np ∩Q(j), wP
j )

7: else
8:

9: end if
10: end for
11: end for

Line 1 highlights that the procedure applies from the smallest activity level j = 1
to the highest activity level in the multi-choice game. Similarly, line 3 emphasizes
that for each level of activity, the procedure applies from the last priority class Nq

to the first priority class N1. Line 6 defines the TU-game (Np ∩ Q(j), wp
j ), whose

interpretation is the following. Assume that all players in Np∩Q(j) play the activity
level j. These players obtain their marginal contribution to the coalition in which
all players in N>p ∩Q(j) play j, while all other players play j − 1 (or their maximal
activity level). To determine how this contribution is allocated, one defines the TU-
game (Np∩Q(j), wp

j ) as in (5.11). For each coalition E ⊆ Np∩Q(j), the worth wp
j (E)

corresponds to the surplus generated (in the game (m, v,⪰)) when each player in E
increases its activity level from j − 1 to j. For an illustration of the procedure, see
Example 14 below.

Remark 8. Observe that, for each priority class p ∈ {1, . . . , q} the TU-game (Np ∩
Q(j), wp

j ), as defined in (5.11), is the sub-game of the TU-game (Q(j), wj) where

∀E ⊆ Q(j), wj(E) = v
(
((j−1)∧mk)k∈N +eE

)
−v
(
((j−1)∧mk)k∈N

)
. (5.12)

One can interpret wj(E) as follows. Suppose that each player outside coalition E
plays its activity level j−1 or its maximal activity level (if it is unable to play j−1).
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Then, the worth wj(E) corresponds to the surplus generated (in the game (m, v,⪰))
when each player in E increases its activity level from j − 1 to j.2

Let E ⊆ Q(j), by definition of the Harsanyi dividends given by (2.32),

wj(E) =
∑

t≤((j−1)∧mk)k∈N+eE

∆v(t)−
∑

t≤((j−1)∧mk)k∈N

∆v(t),

that is

∀E ⊆ Q(j), wj(E) =
∑

t≤((j−1)∧mk)k∈N+eE
t̸≤((j−1)∧mk)k∈N

∆v(t). (5.13)

It should be observed that this sum takes in arguments each coalition t ≤ ((j − 1) ∧
mk)k∈N +eE in which at least one player in E plays activity level j. This observation
will be useful to prove the next results.

Example 14. To illustrate the allocation process, consider (m, v,⪰) ∈ GS such that
(N,⪰) is the priority structured by classes given in Example 13. Let m7 = 1, m1 =
m2 = m6 = 2, m3 = m4 = m5 = m8 = 3. It holds that Q(1) = N , Q(2) = N \ {7}
and Q(3) = {3, 4, 5, 8}. Apply the sequential procedure to determine the payoffs of
the pairs in M+.

1. Consider the activity level j = 1, and the subset of players Q(1) = N .

1.1. Consider the priority class p = 3 and players in N3 ∩ Q(1) = {1, 7, 8} = N3.
All players in this subset cooperate at activity level j = 1. The contribution
v(eN3) − v(⃗0) is allocated among all players in N3 according to the TU-game
(N3, w

3
1) defined as,

∀E ⊆ N3, w3
1(E) = v(eE).

Then, assign Shi(N3, w
3
1) to each player in i ∈ N3, which corresponds to their

payoff for their activity level j = 1.

1.2. Consider the priority class p = 2 and players in N2 ∩ Q(1) = {3, 2} = N2.
Define the TU-game (N2, w

2
1) as

∀E ⊆ N2, w2
1(E) = v(eE + eN3)− v(eN3).

Then, assign Shi(N2, w
2
1) to each player i ∈ N2, which corresponds to their

payoff for their activity level j = 1.

2One can also find a similar construction of TU-games in the context of cost sharing problems
(for instance, see Albizuri et al. (2003)).
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1.3. The procedure is applied similarly. Thus, one defines the TU-game (N1, w
1
1) as

∀E ⊆ N1, w1
1(E) = v(eE + eN2∪N3)− v(eN2∪N3).

Then, each player i ∈ N1 receives Shi(N1, w
1
1) which corresponds to their payoff

for their activity level j = 1.

The total worth allocated to players in Q(1) is

v(eN1 + eN2∪N3) + v(eN2∪N3) + v(eN3)− v(eN2∩N3)− v(eN3) = v(1, . . . , 1).

2. Consider the activity level j = 2 and the subset of players Q(2).

2.1. Consider the priority class p = 3 and players in N3 ∩ Q(2). Then, define the
TU-game (N3 ∩Q(2), w3

2) as

∀E ∈ 2N3 ∩Q(2), w3
2(E) = v((1, . . . , 1) + eE)− v((1, . . . , 1)).

Then, assigns Shi(N3 ∩Q(2), w3
1) to each player i ∈ N3 ∩Q(2).

The next steps are applied similarly. ■

We now show that the multi-choice Priority value applied to a multi-choice game
with a priority structure organized by classes coincides with the Shapley value of a
certain TU-game. First, we need an intermediary result.

The following proposition establishes that the Harsanyi dividend of a coalition
E ⊆ Q(j) of the intermediary TU-game (Q(j), wj), defined as (5.12), has a relevant
expression in terms of the Harsanyi dividends of multi-choice coalitions (of the multi-
choice game (m, v,⪰)). Specifically, the Harsanyi dividend of a coalition E ⊆ Q(j)
is the sum of the Harsanyi dividend of the multi-choice coalitions t such that for each
i ̸∈ E, ti ≤ (j − 1) ∧mi and for each i ∈ E, ti = j.

Proposition 28. For each TU-game (Q(j), wj) as defined by (5.12), it holds that

∀E ⊆ Q(j), ∆wj
(E) =

∑
t≤((j−1)∧mk)k∈N+eE :

∀i∈E,ti=j

∆v(t).

Proof. Let (Q(j), wj) be the TU-game derived from (m, v,⪰) ∈ GS and the activ-
ity level j ≤ maxi∈N mi. The proof proceeds by induction on the size of coalitions
E ⊆ Q(j).

Initialization: Take any coalition E ⊆ Q(j) such that |E| = 1. Let say that
E = {i} ⊆ Q(j). By definition of the Harsanyi dividend of a TU-game,

∆wj
({i}) = wj({i})

=
∑

t≤((j−1)∧mk)k∈N+ei
t̸≤((j−1)∧mk)k∈N

∆v(t).
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where the first equality comes from the definition of the Harsanyi dividend in TU-
games and the definition of wj; and the second equality comes from (5.13). Observe
that the set of coalitions t ≤ ((j − 1) ∧ mk)k∈N + ei and t ̸≤ ((j − 1) ∧ mk)k∈N is
equal to the set of coalitions t ≤ ((j − 1) ∧mk)k∈N + ei such that ti = j. Therefore,
we obtain

∆wj
({i}) =

∑
t≤((j−1)∧mk)k∈N+ei

ti=j

∆v(t),

the desired result.

Induction hypothesis: Assume that for each E ⊆ Q(j) such that |E| = r with
1 ≤ r < |Q(j)|,

∆wj
(E) =

∑
t≤((j−1)∧mk)k∈N+eE :

∀i∈E:ti=j

∆v(t).

Induction step: Take any coalition E ⊆ Q(j) such that |E| = r + 1. By definition
of the Harsanyi dividend, it holds that

∆wj
(E) = wj(E)−

∑
T⊂E

∆wj
(T ).

Observe that, for each T ⊂ E, it holds that |T | ≤ r. By (5.13) and the induction
hypothesis, it follows that

∆wj
(E) =

∑
t≤((j−1)∧mk)k∈N+eE

t̸≤((j−1)∧mk)k∈N

∆v(t)−
∑
T⊂E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T :ti=j

∆v(t). (5.14)

Note that, each coalition t ≤ ((j − 1) ∧mk)k∈N + eE and t ̸≤ ((j − 1) ∧mk)k∈N is
such that

- for each player i ∈ N \ E, ti ≤ (j − 1) ∧mi,

- for some players in E, ti = j.

Consider a coalition t ≤ ((j − 1) ∧mk)k∈N + eE and t ̸≤ ((j − 1) ∧mk)k∈N . Denote
by T ⊆ E, the subset of players such that ti = j. Summing over all coalitions t of
this form, one obtains∑

T⊆E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T :ti=j

∆v(t) =
∑

t≤((j−1)∧mk)k∈N+eE
t̸≤((j−1)∧mk)k∈N

∆v(t).
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From this observation, (5.14) now becomes

∆wj
(E) =

∑
T⊆E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T :ti=j

∆v(t)−
∑
T⊂E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T :ti=j

∆v(t)

=
∑

t≤((j−1)∧mk)k∈N+eE
∀i∈E:ti=j

∆v(t).

This concludes the induction step and completes the proof. ■

The main result of this section establishes that, on the class of multi-choice games
with a priority structure organized by classes, the multi-choice Priority value assigns
to each pair (i, j) ∈M+ a payoff resulting from the above sequential procedure: the
payoff assigned to an activity level j of the player i ∈ Np coincides with the Shapley
value obtained by i in the TU-game (Np ∩Q(j), wp

j ).

Theorem 27. For each (m, v,⪰) ∈ GS, where (N,⪰) is a priority structured by
the classes (N1, . . . , Nq), for each priority class p ∈ {1, . . . , q}, and for each pair
(i, j) ∈M+ where i ∈ (Np ∩Q(j)), it holds that

Γij(m, v,⪰) = Shi((Np ∩Q(j)), wp
j ),

where the TU-game (Np ∩Q(j), wp
j ) is defined as (5.11).

Proof. Take any multi-choice game with priority structure (m, v,⪰) ∈ GP , where
(N,⪰) is structured by the classes (N1, . . . , Nq). Take any class p, any activity
level j ≤ maxi∈N mi and consider the TU-game (Np ∩ Q(j), wp

j ) given by (5.11).
Adapting an intermediary result provided by Béal et al. (2021a),3 one can show that
the Harsanyi dividends of the TU-game (Np ∩Q(j), wp

j ) are given by

∀E ⊆ Np ∩Q(j), ∆wp
j
(E) =

∑
T⊆N>p∩Q(j)

∆wj
(T ∪ E).

From, Proposition 28, one can write

∀E ⊆ Np ∩Q(j), ∆wp
j
(E) =

∑
T⊆N>p∩Q(j)

∑
t≤((j−1)∧mk)k∈N+eE∪T

∀i∈E∪T :ti=j

∆v(t). (5.15)

Next, take any priority class p ∈ {1, . . . , q} and any pair (i, j) ∈ M+ such that
i ∈ Np. The payoff of the pair (i, j) through the value Γ is

Γij(m, v,⪰) =
∑
s≤m
si=j

(i,j)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|
.

3The reader is referred to the proof of Theorem 3 in Béal et al. (2021a).
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Observe that, if apair (i′, j′) ∈ C(s) is such that either i′ ̸= i and j′ > j or i′ = i
and j′ > j, then we necessarily have (i, j) ̸∈ Z(C(s),⪰∗). From this observation,
Γij(m, v,⪰) can be written as

Γij(m, v,⪰) =
∑

s≤(j∧mk)k∈N
si=j

(i,j)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|

=
∑

s≤((j−1)∧mk)k∈N+eQ(j)

si=j
(i,j)∈Z(C(s),⪰∗)

∆v(s)

|Z(C(s),⪰∗)|
.

Because i ∈ Np, for each coalition s ≤ ((j − 1) ∧mk)k∈N + eQ(j) such that (i, j) ∈
Z(C(s),⪰∗), it holds that

- si = j

- ∀k ∈ N \Q(j): sk ≤ mk < j;

- ∀k ∈ Np′ ∩Q(j), where p′ > p: sk < j;

- ∀k ∈ (Np ∪N>p) ∩Q(j): sk ≤ j.

These four points imply that the payoff of the pair (i, j) is obtained by summing
the Harsanyi dividends of (m, v,⪰) over the multi-choice coalitions s ≤ ((j − 1) ∧
mk)k∈N + e(Np∪N>p)∩Q(j) such that si = j. Moreover, by summing over such multi-
choice coalitions, one considers all sub-coalitions of players T ⊆ (Np ∪ N>p) ∩ Q(j)
containing player i. Thus, we obtain

Γij(m, v,⪰) =
∑

E⊆Np∩Q(j)
i∈E

∑
T⊆N>p∩Q(j)

∑
s≤((j−1)∧mk)k∈N+eE∪T

∀k∈E∪T : sk=j

∆v(s)

|Z(C(s),⪰∗)|
.

It should be observed that |Z(C(s),⪰∗)| does not depend on the coalitions T ⊆
N>p ∩ Q(j). More precisely, it can be shown that, for each coalition s ≤ ((j − 1) ∧
mk)k∈N + eE∪T such that ∀k ∈ E ∪ T where sk = j, one have |Z(C(s),⪰∗)| = |E|.
Therefore, it holds that

Γij(m, v,⪰) =
∑

E⊆Np∩Q(j)
i∈E

1

|E|
∑

T⊆N>p∩Q(j)

∑
s≤((j−1)∧mk)k∈N+eE∪T

∀k∈E∪T : sk=j

∆v(s)

=
∑

E⊆Np∩Q(j)
i∈E

1

|E|
∆wp

j
(E)

= Shi((Np ∩Q(j)), wp
j ),

where the second equality comes from (5.15), and the third equality comes from
the definition of the Shapley value for TU-games. This completes the proof of the
theorem. ■
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5.4 Conclusion

This chapter provides an axiomatic study on the class of multi-choice games with
a priority structure. A new value for this class is introduced and characterized:
the multi-choice Priority value. This value takes advantage of a lexicographic partial
order resulting from a specific combination of the ordered sets of activity levels of the
players with the priority structure. The axiomatic approach allows to endogenously
determine the partial lexicographic order on the set of pairs (composed of players
and their activity levels). It can be pointed out that many other combinations are
possible. In particular, several relaxations/alternative forms of the axioms would
lead to different combinations, and thus, to different values.

This chapters takes advantage of the information provided by the distribution
network by extracting a priority structure from it. Moreover, this chapter has con-
sideration for the principles pursued by GRDF since the multi-choice Priority value
is in line with the Independence of higher demands principle. However, this chapter
fails at considering the Uniformity principle.
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Chapter 6: Sharing the Cost of a
gas Distribution Network

6.1 Introduction

To convey out its task properly, a gas distribution network operator is confronted
with various operation costs, some of which are not directly assignable to a given
consumer. Usually, a network operator recovers these costs by sharing them among
the consumers. A cost sharing is relevant if it meets the principles selected and the
objective pursued by the network operator.

In our case, the main principles pursued by GRDF are the Independence of
higher demands principle and the Uniformity principle. In this chapter, we consider
these two principles along with a third one that makes sense in the context of gas
distribution. Moreover, we take the distribution network into account in the model
and in the cost sharing rules developed in this chapter.

The gas distribution network is represented by a finite set N ⊂ N of n consumers
and a rooted tree graph D. The nodes of the graph represent the consumers, the
root represents the source in gas and the arcs of the graph represent the pipelines
making up the network. An integer in N refers to both a consumer and the pipeline
having this consumer at its tail since each node has at most one direct predecessor
in a rooted tree graph.

Each consumer i ∈ N has an effective demand qi ≤ K, where K ∈ N is an
upper bound for effective demands. This effective demand corresponds to the highest
daily volume that this consumer expects to achieve in a year. For instance, the effec-
tive demand of a regular household is often determined by its consumption during
winter. The effective demand is communicated to the operator in advance in order
to design the network accordingly. The profile of all effective demands is given by
q = (q1, . . . , qn). Without loss of generality, for each i ∈ N , assume that qn ≥ qi.
Each consumer i ∈ N is endowed with a discrete set {0, 1, . . . , qi} that describes
its effective demand qi and each of the demands smaller than qi. This set can be
interpreted as the set of all demands available to i, since i is not required to demand
qi all year round.
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The network operator must be able to satisfy any effective demand at any time.
Therefore, we assume that each pipeline is designed to satisfy the highest effective
demand of the consumers located at the tail and downstream of that pipeline (its
highest downstream demand for short). Formally, a pipeline with consumer i
located at its tail is designed to meet its highest downstream demand denoted by qi,
and is given by

qi = max
k ∈ {i} ∪ {downstream consumers of i}

qk.

There are alternative to this approach to pipeline design that we will not consider for
our study. Each of these approaches, including this one, has its advantages and its
drawbacks. We will discuss these alternative approaches at the end of the chapter.

A non-decreasing cost function C : N × {0, . . . , qn} → R+ computes the cost of
any pipeline of any capacity. From this function, the total cost of operating the
network is computed as the sum of the costs of all pipelines, assuming that each
pipeline is designed to meet its highest downstream demand.

The problem is then to determine a relevant rule to share the total cost among the
consumers. This problem is called the cost sharing problem of gas distribution (the
gas distribution problem for short) and is denoted by (N, q, C,D). A cost sharing
rule is a map f that associates to each gas distribution problem (N, q, C,D) a profile

f(N, q, C,D) ∈ R
∑

i∈N qi
+ .

This profile specifies a positive cost share fij(N, q, C,D) to each demand j ∈ {1, . . . , qi}
of each consumer i. This allows us to have a detailed overview of how much a con-
sumer must pay to increase its demand by one unit or more. A cost sharing rule is
particularly useful if the operator wants to derive a rate schedule from it.

Subsequently, a consumer i ∈ N with an effective demand qi is charged with the
total cost share∑

j∈{1,...,qi}

fij(N, q, C,D).

Obviously, a consumer’s total cost share is non-decreasing in its effective demand.
This property relates to the axiom of (demand) monotonicity discussed in Moulin &
Shenker (1992) and Moulin (1995). A cost sharing rule satisfies the budget balanced
condition, meaning that it recovers the total cost of operating the network.

We adopt a normative approach to determine relevant rules. Three principles
are considered: the Independence of higher demands principle, the Uniformity prin-
ciple and the Connection principle. The first two principles have been extensively
discussed in the previous chapters. In particular, we saw that the Uniformity prin-
ciple can be seen as a form of egalitarianism. The Connection principle has been
mentioned in the introduction of the thesis (see Section 1.8.5). Below we provide
additional details.
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Consider a gas distribution network in which all the consumers, except one, have
a null demand in gas. To supply this consumer with gas, all the pipelines connecting
this consumer to the source must be involved. In other words, this consumer depends
on a number of pipelines in addition to the one to which it is the tail. It should be
reasonable to charge this consumer for the costs of operating these pipelines. In a
more general way, a consumer should pay for the portion of the network it uses.
This idea is the Connection principle. This principle is in the same spirit than the
upstream responsibility principle that comes from the unlimited territorial integrity
theory for polluted river problems. In short, the upstream responsibility principle
states that agents, located on a polluted river network, should pay for the cost of
cleaning the portion of the river that connect them to the source (see Dong et al.
(2012) for details).

We define three cost sharing rules on the basis of these principles. Recall that
a cost sharing rule charges a cost share to each demand of each consumer. To
clearly present our cost sharing rules, assume that a pipeline is built, step by step,
by increasing its capacity to satisfy a demand from 0 up to its highest downstream
demand. At each step, an incremental cost is generated. This allows us to understand
how each incremental cost is shared among the demands of the consumers depending
on the cost sharing rule.

The first cost sharing rule is called the Connection rule and is computed as
follows. Consider any pipeline. Assume that each consumer located downstream
of this pipeline has an effective demand of at most 1 unit. Then, this pipeline is
designed to meet a demand of 1 unit. The Connection rule shares the cost of this
pipeline equally among the first unit of demand of all downstream consumers. Next,
assume that each consumer located downstream of this pipeline now has an effective
demand of at most 2 units. Then, upgrade this pipeline in order to meet a demand
of 2. This upgrade generates a positive incremental cost. The Connection rule shares
this incremental cost equally among the second unit of demand of all downstream
consumers whose demand is at least 2 units. This procedure continues until the
demand for which this pipeline is designed, i.e., its higher downstream demand is
reached and is applied to each pipeline. Obviously, this cost sharing rule recovers the
total cost of the network and respects the Connection principle. It should be pointed
out that the Connection rule also respects the Independence of higher demands
principle. Indeed, a consumer will never have to pay for upgrades with the purpose
of meeting demands higher than its own effective demand. This cost sharing rule
shares some similarities with the Downstream equal sharing solution, introduced by
Dong et al. (2012) for polluted river problems. However, contrary to the Downstream
equal sharing solution, the Connection rule takes into account the demands of the
consumers.

The second cost sharing rule is called the Uniform rule and is computed in a
similar manner to the Connection rule. Consider any pipeline. Assume that this
pipeline is designed to meet a demand of 1 unit. The Uniform rule shares the cost of
this pipeline equally among the first unit of demand of all the consumers regardless of
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their position on the network. Then, assume that this pipeline is upgraded to meet a
demand of 2 units. This upgrade generates a positive incremental cost. The Uniform
rule shares this incremental cost equally among the second unit of demand of all the
consumers whose demand is at least 2 units. This procedure continues until the
demand for which this pipeline is designed (i.e., its higher downstream demand) is
reached and is applied to each pipeline. Obviously, this cost sharing rule recovers the
total cost of the network and respects the uniform principle and the Independence
of higher demands principle.

In the same way that we reach a compromise between marginalism and egalitari-
anism in Chapter 4, we try to reach a compromise between the Connection principle
and the Uniformity principle through a new family of cost sharing rules. Each cost
sharing rule in this family achieves a compromise by means of convex combinations
between the Connection rule and the Uniform rule. These cost sharing rules are
called the Mixed rules and are computed in a similar manner to the two other cost
sharing rules. Consider any pipeline. Assume that this pipeline is designed to meet
a demand of 1 unit. The Mixed rule charges to the first unit of demand of each
consumer a share of the cost of this pipeline. This share is computed as a convex
combination between the share that would have been allocated by the Connection
rule and the share that would have been allocated by the Uniform rule. In other
words, the amount charged to the consumers for their first unit of demand results
from a compromise between the Connection principle and the uniform principle.
Then, assume that this pipeline is upgraded in order to meet a demand of 2 units.
The incremental cost generated when this pipeline is upgraded is shared among the
second unit of demand of all the consumers whose demand is at least 2 units. This
share is computed as a convex combination (possibly different from the first combi-
nation) between the share that would have been allocated by the Connection rule
and the share that would have been allocated by the Uniform rule. In other words,
the amount charged to the consumers for their second unit of demand results from
a compromise between the Connection principle and the Uniformity principle. This
second compromise being potentially different from the first compromise. This pro-
cedure continues until the demand for which this pipeline is designed (i.e., its higher
downstream demand) is reached and is applied to each pipeline. The Mixed rules
allow for different compromises depending on the level of demand. For instance, it is
possible to operate a compromise in favor of the Uniformity principle for the demand
1, in which case, each consumer will be charged an amount relatively similar to other
consumers for their first demand. Meanwhile, it is possible to operate a compromise
in favor of the Connection principle for the demand 2, in which case, each consumer
with a demand of at least 2 will be charged an amount that greatly depends on its
position on the network for its second demand.

We axiomatically characterize these three cost sharing rules. To do so, we for-
malize the three principles into axioms for cost sharing rules. Moreover, we provide
additional axioms that do not necessarily fit into the idea of the three principles but
can still be viewed as desirable properties for cost sharing rules. We formally detail
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all the axioms in Section 6.3.
Finally, we establish a link between the cost sharing rules introduced in this chap-

ter and the values for multi-choice games introduced in Chapter 4. From any gas dis-
tribution problem (N, q, C,D), one can derive the gas distribution game (N, q, vC,D).
In this game, the player set represents the set of consumers, and the activity levels
represent the demands of the consumers. The worth of a coalition s corresponds to
the cost of the gas distribution network (N, s, C,D) designed to meet the demands
of the coalition s. We show that the Connection rule of a gas distribution problem
corresponds to the multi-choice Shapley value of the corresponding gas distribution
game. Similarly, we show that the Uniform rule corresponds to the multi-choice Equal
division value and the Mixed rules to the multi-choice Egalitarian Shapley values.
Moreover, we show that, for each gas distribution problem, the multi-choice Shapley
value of the corresponding gas distribution game is in the Core of the gas distribution
game. A related study by van den Brink et al. (2018) considers a polluted river prob-
lem and derives a special TU-game with a permission structure from the problem.
In particular, the authors show that the permission value (see Section 2.2) of this
special TU-game coincides with the Downstream equal sharing solution applied to
the original polluted river problem. Additionally, several other papers address the
cooperative aspect of gas-related problems. For instance, Massol & Tchung-Ming
(2010) consider cooperation among liquefied gas suppliers and Csercsik et al. (2019)
partition function form games to model transfer profit as externalities.

The rest of this chapter is organized as follows. After dealing with preliminaries on
the gas distribution framework in Section 6.2.1, we define gas distribution problems
in Section 6.2.2. In Section 6.3, we define above mentioned rules and provide their
axiomatic characterization. Then, we show how solution concepts for multi-choice
games relate to our rules in Section 6.4. Section 6.5 concludes.

6.2 The model

6.2.1 Notation and Definitions

Fix N = {1, 2, . . . , n}, n ≥ 2 a finite set of consumers. These consumers are
connected to a source in gas S through pipelines. The consumers and the pipelines
form a fixed gas distribution network, which is modeled by a rooted tree graph.
A rooted tree graph is a couple (N ∪ S, D) where

D : N ∪ S −→ 2N∪S

is a map representing the connections (pipelines) between the nodes. The relationship
i′ ∈ D(i) means that i′ ∈ N is supplied right after consumer i. Equivalently, we
denote by i ∈ D−1(i′) if and only if i′ ∈ D(i). In this case, consumer i is the
predecessor of i′ while i′ is the successor of i. Put differently, i is the head of the
pipeline and i′ is the tail of the pipeline.
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The transitive closure of a directed graph D is a directed graph D̂ such that, for
each i ∈ N , i′ ∈ D̂(i) if and only if there exists a path

i = h1, h2, . . . , hk = i′, such that hk ∈ D(hk−1), . . . , h2 ∈ D(h1).

The consumers in D̂(i) are called the subordinates of i ∈ N inD, and the consumers
in D̂−1(i) := {i′ ∈ N : i ∈ D̂(i′)} are called the superiors of i ∈ N in D. Similarly,
the set D̂(E) represents the subordinates of the players in E ∈ 2N and D̂−1(E)
represents the superiors of the players in E ∈ 2N . A cycle occurs in a graph
(N ∪ S, D) if there exists a path

i = h1, h2, . . . , hk = i, such that hk ∈ D(hk−1), . . . , h2 ∈ D(h1).

A rooted tree graph is an acyclic directed graph in which each node has at most one
predecessor and only one node (the source) has no predecessor, i.e., D−1(S) = ∅. For
each i ∈ N , we call pipeline i the pipeline having consumer i as a tail. Consumer
i ∈ N and its subordinates are called the downstream consumers of pipeline i. If
no confusion arises, we simply denote the gas distribution network by D.

Each consumer i ∈ N has several levels of demand in gas that vary throughout
a year. A consumer’s effective demand qi ∈ N∗, refers to the highest daily volume
that a consumer i ∈ N expects to demand in a year. Fix K ∈ N an upper bound
for effective demands, such that qi ≤ K for each i ∈ N . We model the set of all
available demands of any consumer i ∈ N by the discrete set Mi = {0, . . . , qi}. We
denote by

Q(j) = {i ∈ N : qi ≥ j}

the set of consumers with an effective demand of at least j. The profile of effective
demands is denoted by q = (q1, . . . , qn). Without loss of generality, assume that
qn ≥ qi for each i ∈ N .

A cost function is a map

C : N × {0, . . . , K} → R+

that measures the cost of any pipeline when designed to meet any demand. Formally,
for each i ∈ N and j ∈ {1, . . . , K}, C(i, j) represents the cost of operating the
pipeline i when it is designed to meet a demand of j. We use the convention C(i, 0) =
0 for each i ∈ N . We assume that each map

∀i ∈ N, C(i, .) : {1, . . . , K} → R+

is non-decreasing: the larger the demand, the larger is the pipeline’s capacity, which
leads to higher costs. On the other hand, for any j ∈ {1, . . . , K} and any two
i, i′ ∈ N , we do not necessarily have C(i, j) = C(i′, j). Indeed, the cost of operating
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a pipeline may differ depending on the pipeline. These differences are due to exoge-
nous features of the gas distribution network such as the length or the geographical
location.

Equivalently, a cost function can be expressed as a matrix of incremental costs.
We denote by AC

ij the incremental cost of pipeline i for a demand j. The incre-
mental cost AC

ij represents the increase in cost of pipeline i when it is upgraded by
one unit to meet a demand of j instead of j − 1. Formally, it is defined as

∀i ∈ N,∀j ∈ {1, . . . , K}, AC
ij = C(i, j)− C(i, j − 1).

Obviously, AC
ij ≥ 0 for each i ∈ N and each j ∈ {1, . . . , K}, since C(i, .) is a

non-decreasing map. The (n,K) matrix of incremental costs collects all the
incremental costs, and is denoted by AC . Take any i ∈ N and any j ≤ K. The unit
cost matrix I ij is the (n,K) matrix defined as

∀k ∈ N, l ≤ K, I ijkl =

{
1 if k = i, l = j,

0 otherwise.
(6.1)

In such matrix, only one pipeline i generates a non-null incremental cost for a cer-
tain demand j. A matrix of incremental costs AC can be expressed as the linear
combination of n×K unit cost matrices:

AC =
∑
i∈N

∑
j≤K

AC
ijI

ij. (6.2)

Alternatively, the (n, qn) sub-matrix AC,qn collects all the incremental costs gen-
erated by demands lower or equal than qn. Such sub-matrix represents a situation
where the highest effective demand of the consumers in N is qn. Similarly, a sub-
matrix I ij,qn is a (n, qn) matrix where only one pipeline i ∈ N generates a non-null
incremental cost for a certain demand j ≤ qn. In the following, we are only interested
in the incremental costs contained within AC,qn . Thus, we are going to focus on the
sub-matrix AC,qn instead of the whole matrix AC . For the sake of clarity, we keep
the notation AC to refer to AC,qn . Similarly, for each i ∈ N and each j ≤ qn, we keep
the notation I ij to refer to I ij,qn .

6.2.2 The gas distribution problem

We propose an approach to compute the total cost of operating a gas distribution
network from N , q, D and C. Alternative approaches are discussed at the end of
this chapter.

Assume that each pipeline is always designed to meet the highest effective demand
of its downstream consumers. Then, for each i ∈ N , the cost of operating pipeline i
is given by

C(i, qi), where qi = max
k∈D̂(i)∪{i}

qk. (6.3)
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Equivalently, observe that

∀i ∈ N, C(i, qi) =
∑

j∈{1,...,qi}

AC
ij.

For each i ∈ N , one may have qi > qi. This is due to the fact that the highest
effective demand of the downstream consumers of i may be strictly greater than the
effective demand of i. We compute the total cost of operating the gas distribution
network as the sum of the costs of all the pipelines designed as in (6.3), which is
given by∑

i∈N

C(i, qi), or equivalently
∑
i∈N

∑
j∈{1,...,qi}

AC
ij. (6.4)

Definition 33 (The cost sharing problem of gas distribution). A cost shar-
ing problem of gas distribution (a gas distribution problem for short) is denoted by
(N, q, C,D), or (q, AC) for short, since N and D are fixed and C and AC are equiv-
alent. The problem is to determine a way to share the total cost among consumers
based on their demands and location on the distribution network. The set of gas
distribution problems is denoted by GDP.

We address gas distribution problems by defining cost sharing rules (rules for
short). A rule on GDP is a map

f : GDP→
⋃

q≤(K,...,K)

R
∑

i∈N qi
+ ,

that describes how much each consumer is charged for each of its demand units.
Take any (q, AC) ∈ GDP. A rule f applied on (q, AC) ∈ GDP assigns a non-negative
real number fij(q, A

C) ∈ R+ to each demand j ∈ {1, . . . , qi} of each consumer i ∈ N .
This number represents the amount that a consumer must pay for its demand j,
assuming that it already pays a certain amount for its demand j − 1, its demand
j − 2, and so on. A rule is particularly useful if the gas network operator wants
to derive a rate schedule from it. A rule satisfies the budged balanced condition,
which states that a rule recovers the total cost of operating the gas distribution
network. Formally, the budget balanced condition is given by

∀(q, AC) ∈ GDP,
∑
i∈N

∑
j∈{1,...,qi}

fij(q, A
C) =

∑
i∈N

C(i, qi)

=
∑
i∈N

∑
j∈{1,...,qi}

AC
ij. (6.5)
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Example 15. Consider the set of consumers N = {a, b, c, d}, the upper bound for
effective demands is K = 3, and the source in gas is S. In this example, we consider
the following tree graph D representing a gas distribution network.

D(S) = {a}, D(a) = {b, c}, D(c) = {d}, D(b) = D(d) = ∅.

Consider the profile of effective demands q = (1, 3, 1, 2). We introduce the lengths
of the pipelines, which is one of the possible exogenous features of a gas distribution
network. The profile L = (1, 1, 2, 1) collects the length of each pipeline. The network,
the profile of effective demands and the profile of lengths are described in Figure 1.

Consider the cost function

C : {a, b, c, d} × {1, 2, 3} → R+

(i, j) 7→ Li + j,

which specifies the cost of each pipeline when designed to meet a certain demand. The
cost of a pipeline is computed as the sum of its length and the highest downstream
demand it needs to meet. This cost function is obviously overly simplified but it is
consistent with the facts since the cost of a pipeline is increasing with respect to both
parameters.

Consider pipeline c. This pipeline is designed to meet its downstream effective
demand. In this case, the downstream effective demand of pipeline c is 2 since d ∈
D(c), qd = 2 and maxk∈D̂(c)∪c qk = qd. Thus, this pipeline costs

C(c, qd) = Lc + qd

= 4.

Applying the same reasoning to each pipeline, we obtain the cost of operating each
pipeline. These costs are represented in Figure 2. The total cost of operating this gas
distribution network is given by∑

i∈N

C(i, qi) = C(a, qb) + C(b, qb) + C(c, qd) + C(d, qd)

= 15.

S

a,1b,3 c,1

d,2

La = 1
Lb = 1

Lc = 2
Ld = 1

Figure 6.1

S

ab c

d

4

4 4
3

Figure 6.2
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6.3 Rules and their axiomatic characterizations

This section is devoted to the study of the Connection rule, the Uniform rule and the
Mixed rules. We provide an axiomatic characterization for each one of these rules.

6.3.1 The Connection rule

We define a rule on gas distribution problems that satisfies the Connection principle
and the Independence of higher demands principle. This rule is called the Connection
rule, it ensures that each consumer pays a fair share of the portion of the network
that connects it to the source. Formally, for each pipeline k and each demand j
such that some downstream consumers of pipeline k are in Q(j), the Connection
rule shares the incremental cost AC

kj equally among the downstream consumers of
pipeline k that are in Q(j).

Definition 34 (Connection rule). The Connection rule Ψ is defined, for each
(q, AC) ∈ GDP, as

∀j ≤ qn,∀i ∈ Q(j), Ψij(q, A
C) =

∑
k∈D̂−1(i)∪{i}

AC
kj

|(D̂(k) ∪ {k}) ∩Q(j)|
. (6.6)

Proposition 29. The Connection rule satisfies the budget balanced condition.

Proof. Take any (q, AC) ∈ GDP and any incremental cost AC
kj, where k ∈ N and

j ≤ qn. By Definition 34, AC
kj is taken into account in the computation of the

Connection rule if and only if the set of consumers (D̂(k)∪{k})∩Q(j) is non-empty.
The Connection rule divides AC

kj equally among the consumers in (D̂(k)∪{k})∩Q(j)
for their level of demand j, which implies that the rule recovers AC

kj entirely.
The set AC(Ψ) of incremental costs taken into account in the computation of the

Connection rule can be defined as

AC(Ψ) = {AC
kj : (D̂(k) ∪ {k}) ∩Q(j) ̸= ∅}.

Alternatively, the set AC(Tot) of incremental costs taken into account in the com-
putation of the total cost (6.4) can be defined as

AC(Tot) = {AC
kj : j ≤ qk}.

To prove Proposition 29, let us show that

AC(Ψ) = AC(Tot). (6.7)

First, let us show that AC(Ψ) ⊆ AC(Tot). Take any AC
kj ∈ AC(Ψ). If (D̂(k) ∪

{k}) ∩Q(j) ̸= ∅, then there is at least one downstream consumer of pipeline k with
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an effective demand of at least j. Put differently, this means that qk ≥ j. This shows
that AC(Ψ) ⊆ AC(Tot).

Next, let us show that AC(Tot) ⊆ AC(Ψ). Take any AC
kj ∈ AC(Tot). By def-

inition of AC(Tot), it holds that j ≤ qk. Therefore, there is at least one down-
stream consumer of pipeline k with an effective demand of at least j. It follows that
(D̂(k) ∪ {k}) ∩Q(j) ̸= ∅. This shows that AC(Tot) ⊆ AC(Ψ).

Since (6.7) holds, and since the Connection rule recovers the entirety of the incre-
mental costs in AC(Ψ), it holds that∑

i∈N

∑
j∈{1,...,qi}

Ψij(q, A
C) =

∑
A∈AC(Ψ)

A

=
∑

A∈AC(Tot)

A

=
∑
k∈N

∑
j∈{1,...,qk}

AC
kj.

The proof of Proposition 29 is complete. ■

The Connection rule shares some similarities with the Downstream equal sharing
solution introduced by Dong et al. (2012) for polluted river problems. Both solutions
share the costs generated by an arc of the graph among downstream consumers. The
difference between the two solutions lies in the fact that gas distribution problems
consider situations in which agents can have several demands, which is not the case in
the model studied by Dong et al. (2012). We provide an axiomatic characterization
of the Connection rule. Let f be a rule on GDP. The costs of operating a distribution
network can be divided into two categories called: the construction costs and the
maintenance costs. The first axiom, Weak linearity, ensures that there is no difference
whether the consumers share the two costs separately or together. If the costs are
expressed in USD and we want the rule to be expressed in EUR, then Weak linearity
ensures that there is no difference between converting the currencies before or after
the application of the rule.

Axiom 57 (Weak linearity). For each (q, AC), (q, AC′
) ∈ GDP and each β ∈ R+,

∀i ∈ N, j ≤ qi, fij(q, A
C + βAC′

) = fij(q, A
C) + βfij(q, A

C′
).

The next axiom is a formal expression of the Independence of higher demands
principle. It ensures that the amount charged to a consumer for a certain demand
is independent of any higher demand. This axiom compares two situations. The
first situation is a gas distribution problem. The second situation is another gas
distribution problem similar to the first one, except that it is no longer possible for
consumers to demand more than a certain quantity, let us say l. This axiom requires
that the amount charged to any consumer for any demand below l remains the same
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in both situations. Clearly, this axiom is an adaptation of Independence of higher
activity level (see Axiom 44) to the framework of gas distribution problems.

Axiom 58 (Independence of higher demands). For each (q, AC) ∈ GDP and
each l ≤ qn,

∀i ∈ Q(l), j ≤ l, fij(q, A
C) = fij((l ∧ qk)k∈N , A

C).

The next result states that if a rule satisfies Independence of higher demands,
then the sum of all cost shares charged to consumers in Q(j) for their demand j is
equal to the sum of all incremental costs, generated by the pipelines, for a demand
j, that connect the consumers in Q(j) to the source.

Proposition 30. If a rule f on GDP satisfies Independence of higher demands then,
for each (q, AC) ∈ GDP,

∀l ≤ qn,
∑

k∈Q(l)

fkl(q, A
C) =

∑
i∈D̂−1(Q(l))∪Q(l)

AC
il .

Proof. Consider a rule f on GDP that satisfies Independence of higher demands. By
the Budget Balanced condition (see (6.5)), for each (q, AC) ∈ GDP,∑

k∈N

∑
j∈{1,...,qk}

fkj(q, A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij

⇐⇒
∑

j∈{1,...,qn}

∑
k∈Q(j)

fkj(q, A
C) =

∑
i∈N

∑
j∈{1,...,qi}

AC
ij. (6.8)

Recall that, for each i ∈ N , qi = maxh∈D̂(i)∪{i} qh. Observe that, for each l ≤ qn,

((l ∧ q)k∈N)i = l ∧ qi. (6.9)

Indeed, for each l ≤ qn and i ∈ N ,

((l ∧ q)k∈N)i = max
h∈D̂(i)∪{i}

((l ∧ q)k∈N)h

= max
h∈D̂(i)∪{i}

(l ∧ qh)

=

{
l if maxh∈D̂(i)∪{i} qh ≥ l

maxh∈D̂(i)∪{i} qh otherwise.

= l ∧ qi.

By Independence of higher demands (IHD), (6.8) and (6.9), for each l ≤ qn,∑
j∈{1,...,l}

∑
k∈Q(j)

fkj(q, A
C)

(IHD)
=

∑
j∈{1,...,l}

∑
i∈Q(j)

fij((l ∧ qk)k∈N , A
C)

(6.8)
=
∑
i∈N

∑
j∈{1,...,((l∧q)k∈N )i}

AC
ij

(6.9)
=
∑
i∈N

∑
j∈{1,...,l∧qi}

AC
ij.
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Similarly, it holds that∑
j∈{1,...,l−1}

∑
k∈Q(j)

fkj(q, A
C) =

∑
j∈{1,...,l−1}

∑
i∈Q(j)

fij(((l − 1) ∧ qk)k∈N , A
C)

=
∑
i∈N

∑
j∈{1,...,(l−1)∧qi}

AC
ij.

Therefore, for each l ≤ qn,∑
k∈Q(l)

fkl(q, A
C) =

∑
j∈{1,...,l}

∑
i∈Q(j)

fij(q, A
C)−

∑
j∈{1,...,l−1}

∑
i∈Q(j)

fij(q, A
C)

=
∑
i∈N

∑
j∈{1,...,l∧qi}

AC
ij −

∑
i∈N

∑
j∈{1,...,(l−1)∧qi}

AC
ij

=
∑
i∈N

[ ∑
j∈{1,...,l∧qi}

AC
ij −

∑
j∈{1,...,(l−1)∧qi}

AC
ij

]
.

To conclude this proof, observe that, for each i ∈ N such that l ∧ qi = (l − 1) ∧ qi,
i.e., qi ≤ l − 1,∑

j∈{1,...,l∧qi}

AC
ij −

∑
j∈{1,...,(l−1)∧qi}

AC
ij = 0.

On the contrary, for each i ∈ N such that l ∧ qi > (l − 1) ∧ qi, i.e., qi ≥ l),∑
j∈{1,...,l∧qi}

AC
ij −

∑
j∈{1,...,(l−1)∧qi}

AC
ij = AC

il .

Observe that qi ≥ l if and only if i ∈ D̂−1(Q(l)) ∪Q(j). Therefore, for each l ≤ qn,
we obtain the desired result∑

k∈Q(l)

fkl(q, A
C) =

∑
i∈D̂−1(Q(l))∪Q(l)

AC
il .

■

We say that a pipeline is irrelevant to a consumer if it is not a pipeline that helps
to connect this consumer to the source. The next axiom is in line with the Connection
principle. It ensures that a consumer is not charged for the costs generated by
irrelevant pipelines. Formally, the axiom is formulated using unit cost matrices (see
(6.1)). Take any (q, I ij) ∈ GDP. Recall that the unit cost matrix I ij possesses a
unique non-null incremental cost. The next axiom states that the consumers for
whom this incremental cost is irrelevant should pay nothing in (q, I ij).

Axiom 59 (Independence of irrelevant costs). For each (q, I ij) ∈ GDP,

∀h ∈ Q(j), h /∈ (D̂(i) ∪ {i}), fhj(q, I
ij) = 0.
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The next axiom ensures that the rule treats each downstream consumer equally
regarding a given upstream cost. Take any (q, I ij) ∈ GDP. This axiom states that
any two distinct consumers located downstream of pipeline i are charged the same
amount for their demand j in (q, I ij).

Axiom 60 (Downstream symmetry). For each (q, I ij) ∈ GDP,

∀h, h′ ∈ [D̂(i) ∪ {i}] ∩Q(j), fhj(q, I
ij) = fh′j(q, I

ij).

We have the material to characterize the Connection rule.

Theorem 28. A rule f on GDP satisfies Weak linearity, Independence of higher
demands, Independence of irrelevant costs and Downstream symmetry if and only if
f = Ψ.

Proof. First, we show that Ψ satisfies the axioms of the statement of Theorem 28.

Weak linearity: The proof is straightforward and so is omitted.

Independence of higher demands: The proof follows directly from the definition
of the Connection rule. The cost share charged to a consumer i for a demand j is
computed using only the incremental costs generated by the demand j of the con-
sumers. Therefore, we directly have that Ψ satisfies the axiom.

Independence of irrelevant costs: The proof follows directly from the definition
of the Connection rule. The cost share charged to a consumer i for a demand j is
computed using only the incremental costs generated by the pipelines that connect i
to the source. Therefore, the incremental costs generated by the pipelines irrelevant
to i are not taken into account by the Connection rule in the computation of the
cost share of i for its demand j.

Downstream symmetry: Take any (q, I ij) ∈ GDP. For each h, h′ ∈ [D̂(i)∪{i}]∩
Q(j), it holds that

Ψhj(q, I
ij) =

∑
k∈D̂−1(h)∪h

I ijkj

|(D̂(k) ∪ {k}) ∩Q(j)|

=
1

|(D̂(k) ∪ {k}) ∩Q(j)|
,

and Ψh′j(q, I
ij) =

∑
k∈D̂−1(h′)∪l

I ijkj

|(D̂(k) ∪ {k}) ∩Q(j)|

=
1

|(D̂(k) ∪ {k}) ∩Q(j)|
,
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which shows that Ψ satisfies the axiom.

Next, we show that the Connection rule is the only rule on GDP that satisfies all
the axioms of the statement of Theorem 28. Take any (q, AC) ∈ GDP. Let f be a rule
that satisfies all the axioms of the statement of Theorem 28 on GDP. Let us show
that f(q, AC) is uniquely determined. To do so, we focus on unit cost matrices, since
each problem (q, AC) ∈ GDP can be expressed as a non-negative linear combination
of unit cost matrices (see (6.2)), f satisfies Weak linearity and each incremental cost
is non-negative.

Take any I ij such that j ≤ qn and i /∈ D̂−1(Q(j))∪Q(j). By the budget balanced
condition, it holds that∑

k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij) =

∑
k∈N

∑
l∈{1,...,qk}

I ijkl . (6.10)

By (6.1), it holds that I ijkl ̸= 0 if k = i and l = j. However, since

i /∈ D̂−1(Q(j)) ∪Q(j),

it holds that

qi = max
h∈D̂(i)∪{i}

qh < j.

Therefore, there is no k ∈ N and l ∈ {1, . . . , qk} such that I ijkl ̸= 0. Therefore, (6.10)
becomes∑

k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij) = 0.

Since the cost share charged to each demand of each consumer is always non-negative,
it follows that, for each k ∈ N and each l ∈ {1, . . . , qk},

fkl(q, I
ij) = 0.

Therefore, f(q, I ij) is uniquely determined.
Now, consider I ij such that j ≤ qn and i ∈ D̂−1(Q(j)) ∪Q(j). By Independence

of irrelevant costs, for each k ∈ Q(j) such that k /∈ D̂(i) ∪ {i},

fkj(q, I
ij) = 0. (6.11)

By Downstream symmetry, for each k, h ∈ Q(j) such that k, h ∈ D̂(i) ∪ {i},

fkj(q, I
ij) = fhj(q, I

ij). (6.12)
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By Proposition 30,∑
k∈Q(j)

fkj(q, I
ij) =

∑
k∈D̂−1(Q(j))∪Q(j)

I ijkj

= 1. (6.13)

Combining (6.11), (6.12) and (6.13), for each k ∈ (D̂(i) ∪ {i}) ∩Q(j), we obtain

fkj(q, I
ij) =

1

|(D̂(i) ∪ {i}) ∩Q(j)|
. (6.14)

By the budget balanced condition,∑
k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij) = 1. (6.15)

Combining (6.13) and (6.15), we obtain∑
k∈N

∑
l∈{1,...,qk}

l ̸=j

fkl(q, I
ij) =

∑
k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij)−

∑
k∈Q(j)

fkj(q, I
ij)

= 1− 1

= 0.

Since the cost share charged to each demand of each consumer is always non-negative,
for each l ̸= j and each k ∈ Q(l), it holds that

fkl(q, I
ij) = 0. (6.16)

Combining (6.11), (6.14) and (6.16), for each l ≤ qk and k ∈ Q(l), we obtain

fkl(q, I
ij) =


1

|(D̂(i) ∪ {i}) ∩Q(j)|
if k ∈ D̂(i) ∪ {i} and l = j,

0 otherwise.

Therefore, f(q, I ij) is uniquely determined. By (6.2) and by Weak linearity we
conclude that f(q, AC) is uniquely determined. The proof of Theorem 28 is complete.
■

The four axioms of the statement of Theorem 28 are logically independent, as
shown by the following alternative solutions.

- Take any (q, AC) ∈ GDP and fix any arbitrary integer βi′ ∈ {1, 2} for each
i′ ∈ N . The rule fβ given by

∀j ≤ qn,∀i ∈ Q(j),

fβ
ij(q, A

C) =


Ψij(q, A

C) if |{AC
kj ̸= 0, k ∈ Q(j)}| ≤ 1,∑

k∈D̂−1(i)∪{i}

βi∑
i′∈Q(j)

βi′

× AC
kj otherwise,

satisfies all the axioms except Weak linearity.
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- The rule f given, for each (q, AC) ∈ GDP, by

∀j ≤ qn,∀i ∈ Q(j), fij(q, A
C) =

∑
k∈D̂−1(i)∪{i}

∑
l≥j

AC
kl

|(D̂(k) ∪ {k})| × l
.

satisfies all the axioms except Independence of higher demands.

- The Uniform rule (introduced in the next section, see Definition 35) satisfies
all the axioms except Independence of irrelevant costs.

- Take any (q, AC) ∈ GDP and fix any arbitrary integer βi′ ∈ {1, 2} for each
i′ ∈ N . The rule fβ given by

∀j ≤ qn,∀i ∈ Q(j),

fβ
ij(q, A

C) =
∑

k∈D̂−1(i)∪{i}

βi∑
x∈Q(j)

βx

× AC
kj,

satisfies all the axioms except Downstream symmetry.

6.3.2 The Uniform rule

We define a rule on gas distribution problems that follows the Independence of higher
demands principle and the Uniformity principle. This rule is called the Uniform
rule, it ensures that two consumers are charged with the same amount for the same
demand, regardless of their location on the distribution network. Formally, take any
j ≤ qn. The Uniform rule shares each incremental cost AC

kj, where k ∈ D̂−1(Q(j)) ∪
Q(j), equally among each consumer in Q(j), even if some of the consumers in Q(j)
are not downstream consumers of pipeline k.

Definition 35 (Uniform rule). The Uniform rule Ω is defined, for each (q, AC) ∈
GDP, as

∀j ≤ qn,∀i ∈ Q(j), Ωij(q, A
C) =

1

|Q(j)|
∑

k∈D̂−1(Q(j))∪Q(j)

AC
kj. (6.17)

Proposition 31. The Uniform rule satisfies the budget balanced condition.

Proof. The proof is similar to the proof of Proposition 29, and so is omitted.

■
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Observe that, for each j ∈ {0, . . . , qn} and each i ∈ Q(j), Ωij(q, A
C) does not

depend on the position of i in the gas distribution network. Observe that the Uniform
rule satisfies Weak linearity and Downstream symmetry.

We introduce a new axiom for rules on gas distribution problems. Let f be a
rule on GDP. Assume that one or several pipelines generate additional costs due
to exogenous reasons (incident, natural disaster, etc), which leads to an increase
of the incremental costs. This axiom ensures that additional costs do not increase
the inequalities between the cost shares of the consumers. Formally, consider any
demand j. This axiom compares the difference in cost share between two consumers
in Q(j) before and after the costs increase. In particular, it compares the difference
between the highest cost share charged to a consumer for its demand j with the
lowest cost share charged to a consumer for its demand j. This axiom states that if
the incremental costs increase, then this difference does not increase.

Axiom 61 (Non-increasing inequalities). For each (q, AC), (q, AC′
) ∈ GDP such

that AC′
ij ≥ AC

ij, each i ∈ N and each j ≤ qn,

∀j ∈ {1, . . . , qn}, max
i∈Q(j)

fij(q, A
C′
)− min

i∈Q(j)
fij(q, A

C′
)

≤ max
i∈Q(j)

fij(q, A
C)− min

i∈Q(j)
fij(q, A

C).

We have the material to characterize the Uniform rule.

Theorem 29. A rule f on GDP satisfies Independence of higher demands and Non-
increasing inequalities if and only if f = Ω.

Proof. First, we show that Ω satisfies the axioms of the statement of Theorem 29.

Independence of higher demands: The proof follows directly from the definition
of the Uniform rule. The cost share charged to a consumer i for a demand j is com-
puted using only the incremental costs generated by the demand j of the consumers.
Therefore, we directly have that Ω satisfies the axiom.

Non-increasing inequalities: The proof is straightforward since each consumer is
charged with the same amount for a given demand.

Next, we show that the Uniform rule is the only rule on GDP that satisfies all
the axioms of the statement of Theorem 29. Consider (q, AC) ∈ GDP and a rule f
that satisfies all the axioms of the statement of Theorem 29 on GDP. Let us show
that f(q, AC) is uniquely determined. By Proposition 30, for each j ≤ qn,∑

i∈Q(j)

fij(q, A
C) =

∑
i∈D̂−1(Q(j))∪Q(j)

AC
ij. (6.18)
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Consider the matrix of incremental costs 0C in which each incremental cost is null.
By definition of a rule, each cost share is non-negative. Thus, by (6.18),

∀j ≤ qn,∀i ∈ Q(j), fij(q, 0
C) = 0.

Observe that the difference between any two cost shares is always null. Therefore,
by Non-increasing inequalities and the non-negativity of the cost shares, we obtain

∀j ≤ qn,∀i, i′ ∈ Q(j), fij(q, A
C) = fi′j(q, A

C). (6.19)

Combining (6.18) and (6.19), f(q, AC) is uniquely determined, which concludes the
proof of Theorem 29. ■

The two axioms of the statement of Theorem 29 are logically independent, as
shown by the following alternative solutions.

- The rule f given, for each (q, AC) ∈ GDP, by

∀j ≤ qn,∀i ∈ Q(j), fij(q, A
C) =

1∑
k∈N qk

∑
i∈N

∑
j∈{1,...,qi}

AC
ij

satisfies Non-increasing inequalities but does not satisfy Independence of higher
demands.

- The Connection rule satisfies Independence of higher demands but does not
satisfy Non-increasing inequalities.

6.3.3 The Mixed rules

Observe that the Uniform rule does not satisfy Independence of irrelevant costs. On
the other hand, the Connection rule does not satisfy Non-increasing inequalities.
This testifies that the Uniformity principle and the Connection principle are clearly
incompatible. However, both can be highly desirable in the context of gas distribu-
tion problems. For this reason, we propose a trade-off between the two principles
by compromising between the Connection rule and the Uniform rule. We define a
class of rules on gas distribution problems that follow the Independence of higher
demands principle and compromise between the Uniformity principle and the Con-
nection principle. A rule in this class is called a Mixed rule and is computed as
convex combinations of the Connection rule and the Uniform rule. Moreover, the
Mixed rules allow for different compromises between the Uniformity principle and
the Connection principle, depending on the level of demand.

Definition 36 (Mixed rules). Let α = {αj}1≤j≤K be a parameter system such
that αj ∈ [0, 1] for each 1 ≤ j ≤ K. The α-Mixed rule µα is defined, for each
(q, AC) ∈ GDP, as

∀j ≤ qn,∀i ∈ Q(j), µα
ij(q, A

C) = αjΨij(q, A
C) + (1− αj)Ωij(q, A

C).
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An α-Mixed rule operates convex combinations between the Connection rule and
the Uniform rule. For each demand j ∈ {1, . . . , qn}, a consumer i ∈ Q(j) is charged
a cost share µα

ij(q, A
C) lying between Ψij(q, A

C) and Ωij(q, A
C). This cost share is

determined by the parameter αj. For instance, pretend that αj is closer to 1. This
leads to a cost share closer to Ψij(q, A

C). On the other hand, if αj is closer to 0,
then this cost share will be closer to Ωij(q, A

C).

Proposition 32. The Mixed rules all satisfy the bugdet balanced condition.

Proof. The proof follows directly from Proposition 29 and Proposition 31.

■

To characterize the Mixed rules, we introduce three new axioms. The first axiom
describes how an irrelevant cost impacts the cost share of two distinct consumers.
The second axiom describes how the cost share of a consumer is impacted by two
distinct irrelevant costs. Finally, the last axiom describes the impact of a given cost
on two consumers. This cost being irrelevant for one of them, and relevant for the
other.

Let f be a rule on GDP. The first axiom states that any two distinct consumers
are equally impacted by irrelevant costs, without specifying the extent of this impact.
Take any (q, I ij) ∈ GDP. Recall that a unit cost matrix I ij possesses a unique non-
null incremental cost. The next axiom states that any two distinct consumers for
whom this incremental cost is irrelevant should pay the same amount in (q, I ij).

Axiom 62 (Equal impact of irrelevant costs). For each (q, I ij) ∈ GDP,

∀h, h′ ∈ Q(j), h, h′ /∈ D̂(i) ∪ {i}, fhj(q, I
ij) = fh′j(q, I

ij).

Observe that both the Connection rule and the Uniform rule satisfy Equal impact
of irrelevant costs. Moreover, Independence of irrelevant costs implies Equal impact
of irrelevant costs.

Indep of irrelevant costs =⇒ Equal impact of irrelevant costs

The next axiom states that no matter where an irrelevant cost is located, the impact
of that cost on a consumer, for whom that cost is irrelevant, remains the same. Take
any two distinct problems (q, I ij), (q, I i

′j) ∈ GDP. Assume that each of the two unit
cost matrices features a unique non-null incremental cost that can be considered
irrelevant for a given consumer. The axiom states that the consumer for whom these
incremental costs are not relevant should pay the same amount in both problems.

Axiom 63 (Location independence of irrelevant costs). For each
(q, I ij), (q, I i

′j) ∈ GDP,

∀h ∈ Q(j), h /∈
[
D̂(i) ∪ {i}

]
∪
[
D̂(i′) ∪ {i′}

]
, fhj(q, I

ij) = fhj(q, I
i′j).
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Observe that both the Connection rule and the Uniform rule satisfy Location in-
dependence of irrelevant costs. Moreover, Independence of irrelevant costs implies
Location independence of irrelevant costs.

Indep of irrelevant costs =⇒ Location indep of irrelevant costs

Similarly to Equal impact of irrelevant costs, the third axiom compares the cost share
charged to the consumers on the basis of the consumer’s geographical localization.
Take any problem (q, I ij) ∈ GDP. A unit cost matrix I ij possesses a unique non-null
incremental cost. The axiom states that any consumer located downstream of the
cost generating pipeline should not pay less than any other consumer for whom this
cost is irrelevant.

Axiom 64 (Fairness). For each (q, I ij) ∈ GDP,

∀k ∈ [D̂(i) ∪ {i}] ∩Q(j),

∀h ∈ Q(j), h /∈ D̂(i) ∪ {i}, fkj(q, I
ij) ≥ fhj(q, I

ij).

Observe that both the Connection rule and the Uniform rule satisfy Fairness. We
have the material to characterize the Mixed rules.

Theorem 30. A rule on GDP satisfies Weak linearity, Independence of higher de-
mands, Equal impact of irrelevant costs, Location independence of irrelevant costs,
Fairness and Downstream symmetry if and only if f = µα, for some parameter sys-
tem α.

Proof. Take any α parameter system and consider the Mixed rule µα. By definition,
and the fact that µα is computed as a convex combination of Ψ and Ω, µα satisfies
all the axioms of the statement of Theorem 30.

It remains to show that the Mixed rules are the only rules that satisfy all the
axioms of the statement of Theorem 30. Consider (q, AC) ∈ GDP and f on GDP a
rule that satisfies all the axioms of the statement of Theorem 30.

Take any I ij such that j ≤ qn and i /∈ D̂−1(Q(j))∪Q(j). In the same way as the
proof of Theorem 28, by the budget balanced condition,∑

k∈N

∑
l∈{1,...,qk}

fkl(q, I
ij) =

∑
k∈N

∑
l∈{1,...,qk}

I ijkl

= 0.

Since the cost share charged to each demand of each consumer is always non-negative,
it follows that, for each k ∈ N and each l ∈ {1, . . . , qk},

fkl(q, I
ij) = 0.
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Therefore, f(q, I ij) is uniquely determined whenever j ≤ qn and i /∈ D̂−1(Q(j)) ∪
Q(j).

Now, take any I ij such that j ≤ qn and i ∈ D̂−1(Q(j)) ∪Q(j). By Equal impact
of irrelevant costs, for each h, h′ ∈ Q(j) such that h, h′ /∈ D̂(i) ∪ {i},

fhj(q, I
ij) = fh′j(q, I

ij)

= Y, (6.20)

for some Y ≥ 0. By Fairness and Downstream symmetry, for each h ∈ (D̂(i)∪{i})∩
Q(j),

fhj(q, I
ij) ≥ Y

⇐⇒ fhj(q, I
ij) = Y +W, (6.21)

for some W ≥ 0. By Independence of higher demands and Proposition 30,∑
h∈Q(j)

fhj(q, I
ij) = 1. (6.22)

Observe that Y ≤ 1
Q(j)

. By 6.21 and (6.22), it follows that

|(D̂(i) ∪ {i}) ∩Q(j)|(Y +W ) + |Q(j) \ ((D̂(i) ∪ {i}) ∩Q(j))|Y = 1

⇐⇒ |(D̂(i) ∪ {i}) ∩Q(j)|W = 1− |Q(j)|Y
=⇒ 0 ≤ |(D̂(i) ∪ {i}) ∩Q(j)|W ≤ 1

⇐⇒ 0 ≤ W ≤ 1

|(D̂(i) ∪ {i}) ∩Q(j)|

⇐⇒ W =
αj

|(D̂(i) ∪ {i}) ∩Q(j)|
, (6.23)

for some 0 ≤ αj ≤ 1. Combining (6.20), (6.21),(6.22) and (6.23), we obtain

|Q(j)|Y + αj = 1

⇐⇒ Y =
1− αj

|Q(j)|
. (6.24)

Combining (6.21) and (6.24), for each h ∈ (D̂(i) ∪ {i}) ∩Q(j), we obtain

fhj(q, I
ij) =

1− αj

|Q(j)|
+

αj

|(D̂(i) ∪ {i}) ∩Q(j)|
. (6.25)

By (6.22) and the budget balanced condition, for each l ̸= j and h ∈ Q(l),

fhl(q, I
ij) = 0. (6.26)
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Finally, combining (6.24),(6.25) and (6.26), we obtain

∀l ≤ qn, h ∈ Q(l),

fhl(q, I
ij) =


0 if l ̸= j,
1− αj

|Q(j)|
if l = j and h /∈ D̂(i) ∪ {i},

1− αj

|Q(j)|
+

αj

|(D̂(i) ∪ {i}) ∩Q(j)|
if l = j and h ∈ D̂(i) ∪ {i},

for some 0 ≤ αj ≤ 1. However, observe that

∀l ≤ qn, h ∈ Q(l),

Ψhl(q, I
ij) =


0 if l ̸= j,

0 if l = j and h /∈ D̂(i) ∪ {i},
1

|(D̂(i) ∪ {i}) ∩Q(j)|
if l = j and h ∈ D̂(i) ∪ {i}.

and

Ωhl(q, I
ij) =


0 if l ̸= j,

1

|Q(j)|
if l = j and h /∈ D̂(i) ∪ {i},

1

|Q(j)|
if l = j and h ∈ D̂(i) ∪ {i}.

Thus, for each h ∈ N and l ≤ qh,

fhl(q, I
ij) = αlΨhl(q, I

ij) + (1− αl)Ωhl(q, I
ij), (6.27)

for some parameter system α such that αj is the one determined above. Observe that,
for any I i

′j such that i′ ∈ D̂−1(Q(j)) ∪ Q(j) and i′ ̸= i, Equal impact of irrelevant
costs and Location independence of irrelevant costs ensure that 6.21 still holds. It
follows that (6.27) still holds with the same parameter system α.

By Weak linearity, we conclude that f(q, AC) = µα(q, AC). The proof of the
theorem is complete. ■

The six axioms of the statement of Theorem 30 are logically independent, as
shown by the following alternative solutions.

- The rule f given, for each (q, AC) ∈ GDP, by

∀j ≤ qn,∀i ∈ Q(j),

fij(q, A
C) =

{
Ωij(q, A

C) if
∑

i∈N
∑

j∈{1,...,qi}
AC

ij ≤ 10,

Ψij(q, A
C) otherwise.

satisfies all the axioms except Weak linearity.
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- The rule f given, for each (q, AC) ∈ GDP, by

∀j ≤ qn,∀i ∈ Q(j), fij(q, A
C) =

1∑
k∈N qk

∑
i∈N

∑
j∈{1,...,qi}

AC
ij

satisfies all the axioms except Independence of higher demands.

To properly explain the next two alternative solutions, we introduce the following
claim. Take any (q, AC) ∈ GDP. Denote by AC(Tot) the set of incremental costs
taken into account in the computation of the total cost (6.4). Take any sequence
(f ij)ij:AC

ij∈AC(Tot) of |AC(Tot)| rules on GDP. Then, the map f defined as

f(q, AC) =
∑

AC
ij∈AC(Tot)

f ij(q, I ijAC
ij) (6.28)

is also a rule on GDP. Indeed, by the properties of the sum, it holds that f assigns a
positive cost share to each demand of each consumer. Moreover, by (6.4), f satisfies
the budget balanced condition.

In the next two alternative solutions, we define rules computed in a similar manner
than (6.28). This will be useful to understand how the rule treats each incremental
cost individually.

- Take any (q, AC) ∈ GDP and any h ∈ N . Let us focus on a given (q, Ik1AC
k1).

Recall that Q(1) = N . Define the cost share Ψ−h
i1 (q, Ik1AC

k1) of a consumer
i ∈ N for its demand unit 1 by

Ψ−h
i1 (q, Ik1AC

k1) =



AC
k1

N
if i /∈ D̂(k) ∪ {k} and i = h,

0 if i /∈ D̂(k) ∪ {k} and i ̸= h,

AC
k1

1− 1
N

|D̂(i) ∪ {i}|
if i ∈ D̂(k) ∪ {k} and h /∈ D̂(k) ∪ {k},

Ψij(q, I
k1AC

k1) otherwise.

This cost share behaves just like the Connection rule, but it gives special treat-
ment to h by allocating it a non-null share for irrelevant costs. Indeed, for each
i ∈ N , the cost share allocated by the Connection rule in (q, Ik1AC

k1) is given
by

Ψi1(q, I
k1AC

k1) =


0 if i /∈ D̂(k) ∪ {k},

AC
k1

D̂(i) ∪ {i}
if i ∈ D̂(k) ∪ {k}.

The main difference between the two costs shares Ψ−h
i1 (q, Ik1AC

k1) and

Ψi1(q, I
k1AC

k1) is that the former allocates
AC

k1

N
to h whenever AC

k1 is an irrelevant
cost for h, whereas the later allocates it a null share. In case AC

k1 is a relevant
cost for h, then the two cost shares coincide.
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Observe that∑
i∈N

Ψ−h
i1 (q, Ik1AC

k1) = AC
k1. (6.29)

Indeed, if h ∈ D̂(k) ∪ {k}, then Ψ−h
i1 (q, Ik1AC

k1) = Ψi1(q, I
k1AC

k1). By the fact
that Ψ satisfies Independence of higher demands and by Proposition 30, it
follows that (6.29) holds. If h /∈ D̂(k) ∪ {k}, then∑

i∈N

Ψ−h
i1 (q, Ik1AC

k1) =
AC

k1

N
+ |D̂(i) ∪ {i}|AC

k1

1− 1
N

|D̂(i) ∪ {i}|
= AC

k1,

which shows that (6.29) holds.

Using the rule Ψ−h, let us define another rule denoted by f . For each demand
level j > 1 and each consumer i ∈ Q(j), fij(q, A

C) = Ψij(q, A
C). As for the

demand level 1, f is defined by

∀i ∈ N, fi1(q, A
C) =

∑
k∈N

Ψ−h
i1 (q, Ik1AC

k1).

We show that f satisfies the budget balanced condition. By (6.29), it holds
that ∑

i∈N

fi1(q, A
C) =

∑
k∈N

∑
i∈N

Ψ−h
i1 (q, Ik1AC

k1)

=
∑
k∈N

AC
k1.

This means that f recovers all the incremental costs generated by the first
demands of the consumers, and share them entirely among the first demand
unit of the consumers. Since f coincides with the Connection rule for any level
of demand above 1, by definition of the Connection rule, we can conclude that
f satisfies the budget balanced condition. The rule f satisfies all the axioms
except Equal impact of irrelevant costs since consumer h is getting a special
treatment for its first level of demand.

- Take any (q, AC) ∈ GDP. For each k ∈ N , fix any parameter αk ∈ [0, 1]. The
rule fα is defined, for each (q, AC) ∈ GDP, as

∀j ≤ qn,∀i ∈ Q(j),

fα
ij(q, A

C)

=
∑

k∈D̂−1(Q(j))∪Q(j)

[
αkΨij(q, I

kjAC
kj) + (1− αk)Ωij(q, I

kjAC
kj)
]
.
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This rule operates different compromises between the connection principle and
the uniformity principle for each pipeline of the network. For instance, pipeline
k ∈ N may be attributed a parameter αk = 1, in which case the rule fα

will share the incremental costs generated by k according to the connection
principle. Alternatively, pipeline k′ ∈ N may be attributed a parameter αk′ =
0, in which case the rule fα will share the incremental costs generated by k′

according to the uniformity principle.

We show that fα satisfies the budget balanced condition. Pick any j ≤ qn. By
definition of the Connection rule and the Uniform rule, it holds that∑

i∈Q(j)

fα
ij(q, A

C)

=
∑

k∈D̂−1(Q(j))∪Q(j)

[
αk
∑

i∈Q(j)

Ψij(q, I
kjAC

kj) + (1− αk)
∑

i∈Q(j)

Ωij(q, I
kjAC

kj)
]

=
∑

k∈D̂−1(Q(j))∪Q(j)

[
αkAC

kj + (1− αk)AC
kj

]
=

∑
k∈D̂−1(Q(j))∪Q(j)

AC
kj.

We obtain the desired result∑
j≤qn

∑
i∈Q(j)

fα
ij(q, A

C) =
∑
j≤qn

∑
k∈D̂−1(Q(j))∪Q(j)

AC
kj

=
∑
k∈N

∑
j≤qk

AC
kj.

The rule fα satisfies all the axioms except Location independence of irrelevant
costs.

- The rule f is defined, for each (q, AC) ∈ GDP, as

∀j ≤ qn,∀i ∈ Q(j),

fij(q, A
C) =

[( 1

|Q(j)|2
+

1

|Q(j)|

) ∑
k∈D̂−1(Q(j))∪Q(j)

AC
kj

]
− Ψij(q, A

C)

|Q(j)|
.

To leave no room for doubt, let us show that this rule satisfies the budget
balanced condition. Take any (q, AC) ∈ GDP and any j ≤ qn. Since Ψ satisfies
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Independence of higher demands, by Proposition 30, it holds that∑
i∈Q(j)

fij(q, A
C) =|Q(j)|

[( 1

|Q(j)|2
+

1

|Q(j)|

) ∑
k∈D̂−1(Q(j))∪Q(j)

AC
kj

]
− 1

|Q(j)|
∑

k∈D̂−1(Q(j))∪Q(j)

AC
kj

=
1

|Q(j)|
∑

k∈D̂−1(Q(j))∪Q(j)

AC
kj +

∑
k∈D̂−1(Q(j))∪Q(j)

AC
kj

− 1

|Q(j)|
∑

k∈D̂−1(Q(j))∪Q(j)

AC
kj

=
∑

k∈D̂−1(Q(j))∪Q(j)

AC
kj.

Therefore, we obtain the desired result∑
j≤qn

∑
i∈Q(j)

fij(q, A
C) =

∑
j≤qn

∑
k∈D̂−1(Q(j))∪Q(j)

AC
kj

=
∑
k∈N

∑
j≤qk

AC
kj.

This rule satisfies all the axioms except Fairness. Indeed, for any (q, I ij) ∈ GDP
such that i ∈ Q(j), it holds that

fij(q, I
ij) =

[( 1

|Q(j)|2
+

1

|Q(j)|

) ∑
k∈D̂−1(Q(j))∪Q(j)

I ijkj

]
− Ψij(q, I

ij)

|Q(j)|

=
1

|Q(j)|2
+

1

|Q(j)|
− 1

|Q(j)|
1

(D̂(i) ∪ {i}) ∩Q(j)
.

Moreover, for each k ∈ Q(j) such that k /∈ D̂(i) ∪ {i}, it holds that

fkj(q, I
ij) =

1

|Q(j)|2
+

1

|Q(j)|
.

The desired result holds since

fkj(q, I
ij) > fij(q, I

ij).

- Take any (q, AC) ∈ GDP. For each k ∈ N and each j ≤ qk, define the vector
β(kj) as

∀i ∈ N, βij(kj) =


20 if i = k,

10 if i ∈ D̂(k),

1 otherwise.
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The rule fβ given by

∀j ≤ qn,∀i ∈ Q(j),

fβ
ij(q, A

C) =
∑

k∈D̂−1(i)∪{i}

βij(kj)∑
i′∈Q(j)

βi′j(kj)
× AC

kj,

satisfies all the axioms except Downstream symmetry.

6.4 Rules and multi-choice games

For each gas distribution problem, we derive a specific multi-choice game, which we
call the gas distribution game. Using this gas distribution game, we study how our
rules relate to the solution concepts for multi-choice games introduced in Section 4.2.
In particular, we show that the Connection rule is a stable rule, in the sense that
consumers have an interest in becoming customers of the operator.

6.4.1 The gas distribution game

A gas distribution game, derived from a gas distribution problem (q, AC), measures
the total cost of each gas distribution problem (s, AC) in which each consumer i ∈ N
has an effective demand of si ≤ qi. Put differently, a gas distribution game is a
collection of all the total costs that could be generated by gas distribution networks
smaller than the one they are derived from.

Definition 37 (The gas distribution game). For each (q, AC) ∈ GDP, its asso-
ciated gas distribution (multi-choice) game (q, vC,D) is defined as

∀s ≤ q, vC,D(s) =
∑
i∈N

C(i, si)

=
∑
i∈N

∑
j∈{1,...,si}

AC
ij (6.30)

where ∀i ∈ N, si = max
k∈D̂(i)∪{i}

sk.

In a gas distribution game, the players represent the consumers and the activity
levels represent the demands of the consumers. The worth vC,D(s) represents the total
cost associated with the gas distribution problem (s, AC) in which each consumer
i ∈ N has an effective demand of si. Obviously, vC,D(q) coincides with the total cost
of operating the gas distribution network and vC,D(0, . . . , 0) = 0 since C(i, 0) = 0
for each i ∈ N . Since C(i, .) is non-decreasing, for each i ∈ N , it follows that a gas
distribution game is monotonic, meaning that for each (q, AC) ∈ GDP,

∀s ≥ t, vC,D(s) ≥ vC,D(t).
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6.4.2 Rules and solution concepts for multi-choice games

For each gas distribution problem, the Connection rule applied to the problem co-
incides with the multi-choice Shapley value applied to the gas distribution game
associated with the problem. To prove this, we need an intermediary result. To
that end, consider a gas distribution problem (q, AC) ∈ GDP and its associated gas

distribution game (q, vC,D). For each j ≤ qn, define the TU-game (N,w
(q,vC,D)
j ) as

∀E ∈ 2N , w
(q,vC,D)
j (E) =vC,D

[(∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
− vC,D

[(∑
k∈N

(j − 1)ek
)
∧ q

]
.

The worth w
(m,vC,D)
j (E) can be interpreted as the surplus in cost generated in vC,D

when a group of players E decide to increase their activity level from j−1 to j while
all the other players play the activity level j − 1 or their maximal feasible activity
level if they are unable to play j − 1. The next proposition is already proved on the
class of monotonic multi-choice games (see 4.69).

Proposition 33. For each gas distribution problem (q, AC) ∈ GDP and its associ-
ated gas distribution game (q, vC,D), it holds that

∀(i, j) ∈M+, φij(q, v
C,D) = Shi(N,w

(q,vC,D)
j ). (6.31)

Theorem 31. For each gas distribution problem (q, AC) ∈ GDP and its associated
gas distribution game (q, vC,D), it holds that

φ(q, vC,D) = Ψ(q, AC). (6.32)

Proof. Consider (q, AC) ∈ GDP and j ≤ qn. For each k ∈ N , define the TU-game
(Q(j), Rk) as

∀E ⊆ Q(j), Rk(E) =

{
1 if E ∩ (D̂(k) ∪ {k}) ̸= ∅,
0 otherwise.

By definition of the Shapley value,

∀i ∈ N, Shi(Q(j), Rk) =


1

|(D̂(k) ∪ {k}) ∩Q(j)|
if i ∈ D̂(k) ∪ {k},

0 otherwise.

(6.33)
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Consider (q, vC,D) ∈ G, the gas distribution game associated with (q, AC). Consider
the TU-game (Q(j), w(q,vC,D)) and observe that, for each E ⊆ Q(j),

w
(q,vC,D)
j (E) =vC,D

[(∑
k∈N

(j − 1)ek +
∑
k∈E

ek

)
∧ q

]
− vC,D

[(∑
k∈N

(j − 1)ek

)
∧ q

]

=
∑
i∈N

[
C

(
i, max

h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

)

− C

(
i, max

h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek
)
∧ q

]
h

)]

=
∑

i∈D̂−1(E)∪E

[
C

(
i, max

h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

)

− C

(
i, max

h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek
)
∧ q

]
h

)]

+
∑

i/∈D̂−1(E)∪E

[
C

(
i, max

h∈D̂(i)∪{i}

[
(
∑
k∈N

(j − 1)ek +
∑
k∈E

ek) ∧ q

]
h

)

− C

(
i, max

h∈D̂(i)∪{i}

[
(
∑
k∈N

(j − 1)ek) ∧ q

]
h

)]
. (6.34)

For each i ∈ D̂−1(E)∪E, there exists at least one h ∈ D̂(i)∪{i} such that h ∈ E ⊆
Q(j). Therefore, for each i ∈ D̂−1(E) ∪ E,

max
h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

= j. (6.35)

On the other hand,

max
h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek
)
∧ q

]
h

= j − 1. (6.36)

For each i /∈ D̂−1(E)∪E, there is no h ∈ D̂(i)∪ {i} such that h ∈ E. Therefore, for
each i /∈ D̂−1(E) ∪ E,

max
h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek +
∑
k∈E

ek
)
∧ q

]
h

= max
h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek
)
∧ q

]
h

.

(6.37)
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For the sake of clarity, for each i /∈ D̂−1(E) ∪ E, we use the notation

Ki = max
h∈D̂(i)∪{i}

[(∑
k∈N

(j − 1)ek
)
∧ q

]
h

.

Therefore, by (6.35), (6.36) and (6.37), (6.34) becomes

w
(q,vC,D)
j (E) =

∑
i∈D̂−1(E)∪E

[
C(i, j)− C(i, j − 1)

]
+

∑
i/∈D̂−1(E)∪E

[
C(i,Ki)− C(i,Ki)

]
=

∑
i∈D̂−1(E)∪E

AC
ij + 0

=
∑
i∈N

AC
ij ×Ri(E).

By Proposition 33, for each i ∈ N and j ∈ {1, . . . , qi},

φij(q, v
C,D) = Shi

(
Q(j),

∑
l∈N

AC
lj ×Rl

)
=
∑
l∈N

AC
lj × Shi

(
Q(j), Rl

)
=

∑
l∈D̂−1(i)∪{i}

AC
lj

|(D̂(l) ∪ l) ∩Q(j)|

= Ψij(q, A
C).

The second equality follows from the Linearity of the Shapley value and the third
equality follows from (6.33). This concludes the proof of the theorem. ■

The next result states that, for each gas distribution problem, the Uniform rule
applied to the gas distribution problem coincides with the multi-choice Equal division
value applied to the gas distribution game associated with the problem.

Theorem 32. For each gas distribution problem (q, AC) ∈ GDP and its associated
gas distribution game (q, vC,D), it holds that

ξ(q, vC,D) = Ω(q, AC). (6.38)

Proof. The proof of the theorem follows directly from (6.30) and Definition 29. ■

The next result states that, for each gas distribution problem, the set of Mixed
rules applied to the problem coincides with the set of multi-choice Egalitarian Shapley
values applied to the gas distribution game associated with the problem.
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Theorem 33. Let α = {αj}1≤j≤K be a parameter system such that αj ∈ [0, 1] for
each 1 ≤ j ≤ K. For each gas distribution problem (q, AC) ∈ GDP and its associated
gas distribution game (q, vC,D), it holds that

χα(q, vC,D) = µα(q, AC). (6.39)

Proof. The proof of the theorem follows directly from Theorem 31 and Theorem 32.
■

We introduce the definition of the Core of a gas distribution game. This definition
is highly inspired from the definition of the Core of multi-choice games (see Definition
16).

Definition 38 (The Core). The Core of a gas distribution game (q, vC,D), denoted
by C(q, vC,D), is the set of payoff vectors x ∈ R

∑
i∈N qi defined as

∀s ≤ q,
∑
i∈N

si∑
j=1

xij ≤ vC,D(s), (6.40)

∀l ≤ qn,
∑
i∈N

l∧qi∑
j=1

xij = vC,D((l ∧ qi)i∈N). (6.41)

If we re-interpret the Core conditions in terms of rule for gas distribution problems,
condition (6.40) ensures that consumers always pay less than the cost of supplying
themselves in gas and (6.41) states that if a group of consumers, which synchronize
their demands in the sense of a synchronized coalition, decide to supply themselves
without resorting to the network operator, then they should pay the same amount
as they would have been charged by the operator. Thus, the Core can be viewed as
the set of stable rules, in the sense that consumers have an interest in becoming
customers of the operator. We point out that condition (2.43) is the opposite of
the original definition of the Core of a multi-choice game (see Definition 16). This
difference lies in the fact that the worth of a coalition and the payoffs both represent
some costs. In this context, it is more desirable, for a coalition of consumer, to pay
less than their actual worth. For each gas distribution problem, the multi-choice
Shapley value applied to a gas distribution game is always in the Core. Therefore,
the Connection rule is a stable rule.

Theorem 34. For each gas distribution problem (q, AC) ∈ GDP and its associated
gas distribution game (q, vC,D), it holds that

φ(q, vC,D) ∈ C(q, vC,D). (6.42)

Proof. In Chapter 4, we show that the multi-choice Shapley value belongs to the Core
of super-modular games. Since the game reflects costs in this framework, the multi-
choice Shapley value belongs to the Core of sub-modular (cost) games. Therefore, it
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suffice to show that gas distribution games are sub-modular games to prove Theorem
34. Consider a gas distribution game (q, vC,D) ∈ G associated with a gas distribution
problem (q, AC) ∈ GDP. For each s, t ∈M,

vC,D(t) + vC,D(s) =
∑
i∈N

C(i, max
k∈D̂(i)∪{i}

sk)

+
∑
i∈N

C(i, max
k∈D̂(i)∪{i}

tk),

and vC,D(s ∨ t) + vC,D(s ∧ t) =
∑
i∈N

C(i, max
k∈D̂(i)∪{i}

(sk ∨ tk))

+
∑
i∈N

C(i, max
k∈D̂(i)∪{i}

sk ∧ tk)).

Take any i ∈ N . Without loss of generality, assume that

max
k∈D̂(i)∪{i}

sk ≥ max
k∈D̂(i)∪{i}

tk.

Then, on the one hand,

max
k∈D̂(i)∪{i}

(sk ∨ tk) = max
k∈D̂(i)∪{i}

sk

=⇒ C(i, max
k∈D̂(i)∪{i}

(sk ∨ tk)) = C(i, max
k∈D̂(i)∪{i}

sk).

On the other hand, since C is non-decreasing, it holds that

∀k ∈ D̂(i) ∪ {i}, sk ∧ tk ≤ tk

⇐⇒ max
k∈D̂(i)∪{i}

(sk ∧ tk) ≤ max
k∈D̂(i)∪{i}

tk

=⇒ C(i, max
k∈D̂(i)∪{i}

(sk ∧ tk)) ≤ C(i, max
k∈D̂(i)∪{i}

tk).

This shows that, for each i ∈ N ,∑
i∈N

C(i, max
k∈D̂(i)∪{i}

(sk ∨ tk)) +
∑
i∈N

C(i, max
k∈D̂(i)∪{i}

(sk ∧ tk))

≤
∑
i∈N

C(i, max
k∈D̂(i)∪{i}

sk) +
∑
i∈N

C(i, max
k∈D̂(i)∪{i}

tk),

and so, we obtain the desired result

vC,D(s ∨ t) + vC,D(s ∧ t) ≤ vC,D(s) + vC,D(t).

■
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6.5 Conclusion

In this chapter, we define gas distribution problems and provide three solutions con-
cepts for these problems. Applying the Connection principle and the Independence
of higher demands principle, we propose the Connection rule. Applying the Unifor-
mity principle and the Independence of higher demands principle, we propose the
Uniform rule. In order to make a trade-off between the Connection principle and
the Uniformity principle, we propose the Mixed rules. We provide an axiomatic
characterization of each one of these rules. Additionally, we show that these rules
coincide with solution concepts from multi-choice games. In particular, we show that
the Connection rule applied to a gas distribution problem belongs to the Core of a
specific multi-choice game derived from this problem.

Throughout this chapter, we have assumed that each pipeline is designed to meet
its highest downstream demand. Let us call this approach the optimistic approach
to pipeline design. The main drawback of this approach is that a pipeline can only
satisfy a few effective demands at a time. In particular, the highest downstream
demand of a pipeline already saturates its capacity, preventing any other demand
from being satisfied at the same time. However, this approach has its advantages
since it can be implemented at a low cost while ensuring a minimal service to the
consumers.

An alternative approach is the pessimistic approach to pipeline design: the
network operator must be able to satisfy all the effective demands at any time.
Therefore, each pipeline should be designed to meet the sum of all of its downstream
effective demands. Unlike the previous approach, this approach ensures a flawless
service to the consumers. The main drawback of this approach is the resulting total
cost of operating the network. Indeed, a network designed this way would be possibly
too huge and too expensive to be operational.

The two approaches have their advantages and their drawbacks. In practice, a gas
distribution network is rarely design according to the optimistic or the pessimistic
approach. It may be interesting to investigate a new approach that compromises
between these two. Such an approach would be more consistent with the facts since
it makes the network more capable of handling multiple effective demands at the
same time, while limiting the total cost of the network.

232



233



Chapter 7: Concluding Remarks

To conclude, we propose an overview of the results obtained in this thesis. This
allows us to discuss the connections between the chapters, and to show that some
solution concepts introduced in this thesis are interlinked. A diagram to explicit
these connections concludes this chapter.

7.1 Overview

Chapter 3 focuses on multi-choice games with a permission (tree) structure. It inves-
tigates how a permission structure on the player set can be combined with different
levels of participation. To conduct this study, pal-permission structures are intro-
duced, allowing us to define the pal-permission value for multi-choice games with a
pal-permission structure. The pal-permission value is computed as the DP value of a
game restricted by a pal-permission structure. Alternatively, three solution concepts
for multi-choice games with a permission structure are defined. Each of these solu-
tions is computed as the pal-permission value of a multi-choice game with a specific
pal-permission structure, which is derived from the original permission structure and
the participation levels of the players. An axiomatic characterization is provided for
each of these three solutions. This chapter sheds light on the additional difficulties
that arise when one tries to combine a multi-choice game with a structure on the
player set, but does not take into account the Independence of higher demands or
the Uniformity principle.

Chapter 4 focuses on multi-choice games without consideration for any structure.
It addresses the trade-off between marginalism and egalitarianism, which is one of the
main issues in economic allocation problems. The multi-choice Shapley value, the
multi-choice Equal division value and the multi-choice Egalitarian Shapley values
are introduced. Each of these solution concepts satisfies Independence of higher
activity levels, which clearly is an equivalent formulation of the Independence of
higher demands principle adapted to the class of multi-choice games. Additionally,
the multi-choice Equal division value is in line with the Uniformity principle. At least
one axiomatic characterization is provided for each of these solution concepts. This
chapter puts into perspective the principles pursued by GRDF by showing that they
are not always compatible with other desirable properties. We should observe that
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this chapter does not consider the information provided by the distribution network.
Chapter 5 focuses on multi-choice games with a priority structure. The multi-

choice Priority value is introduced, which is defined according to a lexicographic
procedure on two criteria: the activity levels and the position of the players in
the priority structure. Contrary to the solution concepts introduced in Chapter 3,
the multi-choice Priority value satisfies Independence of higher activity levels. This
value combines a principle pursued by GRDF with an information provided by the
gas distribution network. Two axiomatic characterizations of this value are provided.

Chapter 6 proposes cost sharing rules to determine relevant distribution rates.
We resort to three principles: (i) the Independence of higher demands principle, (ii)
the Connection principle and (iii) the Uniformity principle. Applying (i) and (ii),
we derive the Connection rule and applying (i) and (iii), we derive the Uniform rule.
In order to make a trade-off between (ii) and (iii), we propose the Mixed rules. For
each cost sharing rule, an axiomatic characterization is provided. Then, we show that
the Connection rule coincides with the multi-choice Shapley value of a specific multi-
choice game derived from the network and the demands of the consumers. Moreover,
the Connection rule is in the Core of this specific multi-choice game. Finally, we show
that the Uniform rule coincides with the multi-choice Equal division value and the
Mixed rules coincide with the multi-choice Egalitarian Shapley values. Similarly to
Chapter 4, this chapter puts into perspective the principles pursued by GRDF in
the framework of gas distribution problems. This chapter is the only chapter in this
thesis that considers both the information provided by the distribution network and
the two principles retained by GRDF.

7.2 Discussion on Chapters 2, 3 and 5

In this section, new solution concepts for multi-choice games with a pal-permission
structure and multi-choice games with a permission structure are proposed. These
new solution concepts are defined using elements from Chapter 3 and Chapter 4.
Then, we observe that one of these solution concepts coincides with the Connection
rule from Chapter 6, under certain conditions.

In Chapter 3, the Pal-permission value Υ for multi-choice games with a pal-
permission structure is computed by applying the DP value to a restricted game
induced by a pal-permission structure (see (3.7)). Instead of applying the DP value,
one can apply the multi-choice Shapley value, from Chapter 5, to the restricted game.
This results in a new solution concept for multi-choice games with a pal-permission
structure, denoted by υ, and defined, for each (m, v, P+) ∈ GP , as

∀(i, j) ∈M+, υij(m, v, P+) = φij(m,RP+(v))

=
∑
s≤m

(i,j)∈T (α(s))

∆v(s)

|T (α(s))|
.
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This value extends the Permission value from TU-games with a permission structure
and the multi-choice Shapley value from multi-choice games to multi-choice games
with a pal-permission structure.

Similarly to Definition 27, three new solution concepts for multi-choice games with
a permission (tree) structure can be defined. These solutions are computed from υ
and the m-permission structure, the 1-permission structure and the F -permission
structure from Chapter 2 (see Section 3.5).

- The value g(+,m) on GPT is defined as

g(+,m)(m, v, P ) = υ(m, v, P+
m).

- The value g(+,1) on GPT is defined as

g(+,1)(m, v, P ) = υ(m, v, P+
1 ).

- The value g(+,F ) on GPT is defined as

g(+,F )(m, v, P ) = υ(m, v, P+
F ).

Ni & Wang (2007) and Dong et al. (2012) study a situation where a river is
polluted. To consume the water, the river must be cleaned. When the river passes
through several different countries, a natural question is how should the cleaning
costs be shared among the countries. An extreme solution is that each country only
pays for the cleaning cost at its own region. However, if upstream countries are
also partly responsible for the pollution at a certain river segment, then it seems
reasonable that upstream countries share their downstream countries’ pollution cost.
This idea resulted into the Upstream equal sharing method (UES). On the other
hand, since downstream countries benefit from upstream countries cleaning the river,
it might be reasonable that downstream countries contribute in the cleaning cost of
upstream countries. This idea resulted into the Downstream equal sharing method
(DES). van den Brink et al. (2018) show that the UES and DES methods can be
obtained as the (conjunctive) permission value of an associated TU-game with a
permission structure. The permission structure is opposite to the river structure.
Meanwhile, the associated TU-game, called the stand-alone game, is an additive
game that associates to each coalition of countries the sum of their cleaning costs.

A study similar to van den Brink et al. (2018) can be conducted to show that
the Connection rule can be computed as a value of a specific multi-choice game with
a permission structure. Consider a gas distribution network D and a finite set of
consumers N . Assume that each consumer has an effective demand smaller than
its subordinates in the distribution network. Let us define an associated permis-
sion structure PD that indicates opposite relationships to the ones described by the
distribution network.
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Example 16. For instance, consider a situation with six consumers in a distribution
network D. The gas distribution network and its associated permission structure PD

are given by

a

c b

def

Figure 7.1: D

a

c b

def

Figure 7.2: PD

Thus, in such associated permission structure PD, each consumer has an effective
demand greater than its subordinates.

Consider a gas distribution problem (q, AC) ∈ GDP, where AC is a matrix of
incremental costs induced by a cost function C : Πi∈N{0, 1, . . . , qi} → R. From
(q, AC) ∈ GDP, one can derive a multi-choice game with a permission structure
(q, CSA, PD), C (⃗0) = 0, where CSA : M → R is a characteristic function different
from vC,P , and conceptually close to the stand-alone TU-game used by van den Brink
et al. (2018). For each (q, AC) ∈ GDP, this game verifies

Ψ(q, AC) = g(+,F )(q, CSA, PD). (7.1)

Observe that PD is not a (rooted) permission tree. Therefore, the conjunctive ap-
proach and the disjunctive approach to coalition restriction do not coincide anymore.
Then, (7.1) only holds if one defines RP+

F
as a conjunctive restriction operator.

7.3 Discussion on Chapters 4 and 5

In Chapter 6, we show that the Connection rule applied to a gas distribution problem
coincides with the multi-choice Shapley value applied to a multi-choice game derived
from the gas distribution problem.

Take any gas distribution problem (q, AC) ∈ GDP and derive the multi-choice
game, as in (6.30), (q, vC,P ) from it. Endow (q, AC) and (q, vC,P ) with a priority struc-
ture (N,⪰) on the player set. The priority structure can model the priority needs of
certain consumers (heating for households, hospital, etc). The triplet (q, vC,P ,⪰) can
be viewed as a monotonic multi-choice game with a priority structure. Therefore,
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one can apply the multi-choice Priority value to (q, vC,P ,⪰), which results in a rule γ
for gas distribution problems with a priority structure. Formally, the rule is defined
as

∀(i, j) ∈M+, γ(q, C,⪰) = Γij(q, v
C,P ,⪰)

=
∑
s≤q

(i,j)∈H(C(s),⪰∗)

∆vC,P (s)

|H(C(s),⪰∗)|
.

This rule divides the surplus generated by each coalition of gas consumers accord-
ing to the lexicographic partial order (M+,⪰∗) introduced in Chapter 5. This rule
differs from the Connection rule since exogenous asymmetries between the players
are taken into account. In this case, the information provided by the gas distribution
network is taken into account two times. It is used to define the game (q, vC,P ), and
also affect the allocation process through a priority structure (N,⪰). Similarly, a
number of rules for gas distribution problems can be defined in this way.

7.4 Discussion on Chapters 2,3 and 4

Chapter 3 considers pal-permission structures, which are structures defined over the
set of pairs player-activity levels, whereas Chapter 5 has very little consideration for
structures defined over the set of pairs, excepted the lexicographic partial order over
the set of pairs.

This section introduces pal-priority structures for multi-choice games. Such struc-
tures can be understood as priority structures defined over the set of player-activity
level pairs. We introduce a value for multi-choice games with a pal-priority structure,
and show that it coincides with the multi-choice Priority value, from Chapter 5, and
the multi-choice Shapley value, from Chapter 4, under certain conditions.

Take any (m, v) ∈ G. A pal-priority structure on M+ represents priority relation-
ships between the pairs formed by a player and one of its activity levels. It reflects
the fact that some activity levels of a player may have priority over some activity
levels of other players in the allocation process. Formally, a pal-priority structure on
M+ is a poset (M+,⪰+). The class of pal-priority structures is denoted by S.

Take any A ⊆ M+. Denote by H(A,⪰+) the non-empty subset of priority pairs
in (A,⪰+) defined as

H(A,⪰+) =
{
(i, j) ∈ A :

[
(i′, j′) ⪰+ (i, j)

]
=⇒

[
(i, j) = (i′, j′)

]}
.

Example 17. Let N = {a, b, c} and m = (3, 3, 2), we have

M+ = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2)}.

Take the pal-priority structure (M+,⪰+) illustrated by the following Hasse diagram
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(a, 3)

(a, 2)

(a, 1)

(b, 2)

(b, 3)(b, 1)

(c, 2) (c, 1)

In this case,

H({(a, 1), (a, 2), (b, 1), (b, 2)},⪰+) =
{
(a, 2), (b, 2)

}
;

H({(a, 3), (b, 3), (c, 2)},⪰+) =
{
(c, 2)

}
;

H(M+,⪰+) =
{
(a, 2), (b, 2), (c, 1), (c, 2)

}
.

A multi-choice game on N with a pal-priority structure is a triplet (m, v,⪰+).
The class of multi-choice games with a pal-priority structure is denoted by GS. We
introduce a new value on GS denoted by Λ, and defined for each (m, v,⪰+) ∈ GS as

∀(i, j) ∈M+, Λij(m, v,⪰+) =
∑
s≤m

(i,j)∈H(B(s),⪰+)

∆v(s)

|H(B(s),⪰+)|
. (7.2)

This value extends the Priority value from TU-games with a priority structure and
the DP value from multi-choice games to multi-choice games with a pal-priority
structure.

Observe that the lexicographic partial order (M+,⪰∗) (see Definition 31) is a
pal-priority structure. Therefore, for each (m, v,⪰) ∈ GS, one can derive the unique
pal-priority structure (m, v,⪰∗) ∈ GS, which verifies

∀(i, j) ∈M+, Γij(m, v,⪰) = Λij(m, v,⪰∗).

Take any (m, v) ∈ G. Define the pal-priority structure (M+,⪰Sh) that prioritizes
the pairs with the highest activity levels in (m, v) ∈ G by

∀(i, j), (k, l) ∈M+, (i, j) ⪰Sh (k, l) ⇐⇒ j > l.

Put simply, a pair has priority over another pair in (M+,⪰Sh) if and only if the former
features a strictly greater activity level than the latter. Clearly, to each multi-choice
game (m, v) ∈ G, one can associates a unique (M+,⪰Sh). Observe that (M+,⪰Sh)
verifies

∀s ∈M, H(B(s),⪰Sh) = T (s). (7.3)

By (4.23) and (7.3), for each (m, v) ∈ G, it holds that

∀(i, j) ∈M+, φij(m, v) = Λij(m, v,⪰Sh).
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Example 18. Let N = {a, b, c} and m = (3, 3, 2). The set of pairs is given by

M+ = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2)}.

The pal-priority structure (M+,⪰Sh) is illustrated by the following digraph.

(a, 3)

(a, 2)

(a, 1)

(b, 2)

(b, 3)

(b, 1)

(c, 2)

(c, 1)

If s = (1, 2, 2), then

B(s) = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

and

H(B(s),⪰Sh) =
{
(b, 2), (c, 2)

}
= T (s).

If s = (3, 2, 2), then

B(s) = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (c, 1), (c, 2)}

and

H(B(s),⪰Sh) =
{
(a, 3)

}
= T (s).

All the elements discussed in this conclusion are illustrated by the following figure.
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Chapter 3: Values for
multi-choice games with
a permission structure

Chapter 4: Marginalism,
egalitarianism and effi-

ciency in multi-choice games

Chapter 5: Values for
multi-choice games with

a priority structure

Chapter 6: Sharing the cost
of a gas distribution network

Applying the multi-choice Shap-
ley value to a game augmented
by a pal-permission structure,
yields υ, which can be used to
define g(+,m),g(+,1) and g(+,F ).

The Connection rule applied
to a gas distribution problem
coincides with the value g(+,F )

when applied to a stand-
alone game with a permission
structure derived from the
gas distribution problem.

A rule γ for gas distribution
problems with a priority

structure can be defined by
applying the multi-choice
Priority rule to the multi-

choice games (q, vC,P ) endowed
with a priority structure.

Multi-choice games with a pal-
Priority structure and a value
Λ for such games are possible.

The value Λ can be used
to express the multi-choice

Priority value and the
multi-choice Shapley value.
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