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surface ages. For example, the surface of Venus is estimated to be about 230 Myr old. Caloris Mare, on Mercury, is dated at 2.70 Gyr. We calculate the time of accumulation of terrestrial cratons as 380 Myr, which is in perfect agreement with geologic data. 9 Révision de la datation par comptage de cratères 9.1 Recalibration de la chronologie . . . . . . . .

Résumé

L'objectif de ce travail est de donner de nouvelles estimations du taux de formation des cratères à la surface de la Lune et des planètes telluriques. Pour ce faire, nous commençons par bâtir une population réaliste d'impacteurs potentiels, à partir des observations et modèles de la distribution orbitale des astéroïdes et comètes qui parcourent le systeme solaire interne. Les probabilités d'impact sont calculées en fonction des conditions d'approche avec la planète (vitesse, direction), en utilisant les formules existantes. L'étude de la Lune a nécessité l'établissement de probabilités adaptées, applicables au cas de n'importe quel autre satellite. Connaissant la distribution de probabilité des conditions d'approche, nous déterminons le flux et les conditions d'impact en fonction de la position à la surface du corps bombardé, à l'aide de nouveaux outils analytiques. Par le biais des dernières lois d'échelles qui relient l'impact à la taille du cratère formé, nous convertissons enfin nos estimations en terme de taux de formation des cratères.

Notre modèle reproduit de manière excellente la distribution taille / fréquence des cratères lunaires observés, sous l'hypothèse que le régolithe superficiel induit la formation des petits cratères en régime dit « poreux », tandis que les cratères plus grands, plus profonds, se forment en régime « non poreux ». Le nombre absolu de cratères formés par nos simulations est en accord avec l'hypothèse répandue selon laquelle la population d'impacteurs, réapprovisionnée par les résonances au sein de la ceinture principale d'astéroïdes, est en état de relatif équilibre depuis trois milliards d'années. Le modèle est également en accord raisonnable avec les données sismiques lunaires. Nous prédisons des variations spatiales du taux de cratérisation, significatives en particulier sur Mars et sur la Lune. Les pôles martiens, une fois les variations d'obliquité de la planète prises en compte, accumulent les cratères 30 % plus rapidement que l'équateur (par unité de surface).

Sur la Lune, des variations en longitude s'ajoutent, engendrées par sa rotation synchrone. Le minimum est localisé en (±60 • N, 90 • E), et le maximum, près de 50 % plus élevé, se situe en (0 • N, 90 • W ). Les résultats lunaires semblent être validés par certaines observations, même si les incertitudes associées à ces der-nières sont grandes. Les variations journalières du flux d'impacts terrestre sont en accord avec les observations radar de météores. Sur l'ensemble de la population de croiseurs, on s'attend à observer deux maxima : l'un à midi, l'autre à minuit.

A mesure que l'on considère des projectiles de plus en plus rapides, le flux se concentre autour de 6 heures du matin. 

Abstract

The aim of this work is to give new estimates of the cratering rate on the Moon and terrestrial planets. We first build a realistic impacting population by using observations and models of the orbital distribution of the asteroids and comets that evolve in the inner solar system. Impact probabilities are then calculated as a function of the encounter conditions with the planet (velocity, direction), by the use of existing formulas. In the case of the Moon, we establish appropriate probabilities, applicable to any other satellite. We calculate the impact flux and impact conditions as a function of the position on the target body, with new analytical tools. Using the latest scaling law that relates the impact to the crater size, we convert our estimates in terms of cratering rate.

Our model reproduce very well the size-frequency distribution of observed lunar craters, under the assumption that the surface regolith implies that small craters form in the porous regime, while large (and thus deep) craters form in the non porous regime. The absolute number of simulated craters is in agreement with the common statement that the impacting population, resupplied via resonnances inside the main asteroid belt, has been in a state of relative equilibrium during the last three billion years. We predict spatial variations of the cratering rate, in particular on Mars and the Moon. The martian poles, once the obliquity variations taken into account, accumulate the craters at a rate 30 % higher than the equator (per unit area). On the Moon, as the synchronous rotation induces longitudinal variations, the minimum is at (±60 • N, 90 • E), while the maximum, almost 50 % higher, is located at (0 • N, 90 • W ). The lunar results seems to be validated by some observations, even if uncertainties of these latest are high.

Daily variations of the meteoritic flux on Earth are consistent with radar observations. For the entire population of Earth-crossers, we expect a flux that reaches a maximum at noon and another at midnight. By considering faster and faster projectiles, the flux concentrates at 6 a.m. Surface ages are linked to crater densities, through an empirical relationship built with the lunar samples. In essence, this relationship predicts a constant accumulation of craters during the last three billion years, and an exponential enhancement beyond. We correct the calibration points by accounting for the spatial variations. It follows that the reference analytical solution is reinforced.

One should account for the location of a geologic unit to be dated to convert the measured crater density into a global average on the entire surface on the planet.

Even if the uncertainties of the method are generally higher than errors induced by spatial variations, the bias can be as high as 800 millions years in worst case. Having estimated the cratering rates relative to the Moon, the datation method can be applied to other planets . Our results gives new estimates of several [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] et Stuart [2001] en comparaison avec le total des objets observés en janvier 2008.9 . . . . . . . . . [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF]. . . . . 3.5 Nombre cumulé d'objets de périhélies inférieurs à q, en fonction de q, pour différentes magnitudes. Les détails sont donnés dans le texte. 3.6 Croiseurs observés en fonction de l'inclinaison, par intervalle de 0.5 • . 
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Variations

Introduction

La formation des cratères d'impact est un processus géologique majeur, qui façonne le relief de l'ensemble des corps rocheux (planètes, lunes, astéroïdes) peuplant le système solaire. Comprendre ce processus, c'est bien sûr évaluer le risque encouru par la vie terrestre, voire par de futures bases lunaires ou martiennes, mais aussi placer des contraintes sur l'histoire géologique des planètes et l'évolution de la population d'astéroïdes et de comètes à travers le temps. Les cratères sont en effet de précieux marqueurs chronologiques. Connaissant l'âge d'une surface, ils sont le reflet de la population des petits corps à cette époque [Öpik, 1960], et témoignent de l'intensité du bombardement. A l'inverse, le nombre de cratères accumulés par une unité géologique nous informe, en prenant quelques précautions, sur son âge de formation. Ce travail a pour objet de donner de nouvelles estimations du taux de formation des cratères à la surface de la Lune et des planètes telluriques. Après quelques généralités à propos des cratères d'impact et de la dynamique du système solaire, le problème sera traité étape par étape, partant de la distribution orbitale des astéroïdes et comètes pour aboutir à la distribution taille-fréquence des cratères, en passant par le calcul des probabilités d'impact et la conversion du flux d'impacts en taux de formation de cratères d'une certaine taille.

Le premier chapitre décrit succinctement les différentes morphologies de cratères [Melosh, 1989], ainsi que les principales phases de formation consécutives à l'impact. Il se concentre ensuite sur la méthode dite de « datation par comptage des cratères », qui se base sur le postulat qu'une surface est d'autant plus Introduction jointes au principe de superposition, permettent d'établir une chronologie relative de l'histoire géologique lunaire [START_REF] Baldwin | The face of the moon[END_REF][START_REF] Wilhelms | The geologic history of the Moon[END_REF]. Suite aux missions Apollo et Luna, de nombreux travaux s'attachent à relier les âges isotopiques mesurés sur les échantillons lunaires à la densité de cratères recouvrant l'unité géologique correspondante, dans le but d'établir une chronologie absolue [START_REF] Shoemaker | Geology of the apollo 12 landing site[END_REF][START_REF] Baldwin | On the history of lunar impact cratering : the absolute time scale and the origin of planetesimals[END_REF][START_REF] Hartmann | Paleocratering of the moon : review of post-apollo data[END_REF][START_REF] Neukum | Different ages of lunar light plains[END_REF]Basaltic Volcanism Study Project, 1981]. Neukum et al. [2001a] établissent une relation « âge / densité de cratères » analytique, qui prédit une accumulation constante de cratères d'une taille donnée dans les trois derniers milliards d'années, et exponentielle au-delà. Cela traduit la forte décroissance du bombardement à mesure que le jeune système solaire vieillit, pour atteindre un état d'équilibre après le premier milliard et demi d'années. Cette relation, un raffinement de celle proposée par [START_REF] Neukum | Meteorite bombardment and dating of planetary surfaces[END_REF], se base sur la dernière tentative en date de faire le lien entre âges isotopiques et unités géologiques majeures, proposée par Stöffler et Ryder [2001].

La mesure du nombre de cratères se fait à l'aide de distributions taille-fréquence, qui répertorient en fonction de leur diamètre le nombre de cratères, et ce sur une gamme de diamètres la plus grande possible afin d'obtenir une mesure robuste, peu sensible aux fluctuations statistiques. G. Neukum et collaborateurs [START_REF] Neukum | Meteorite bombardment and dating of planetary surfaces[END_REF][START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF]Neukum et al., 2001a], et W. Hartmann et collaborateurs [Basaltic Volcanism Study Project, 1981;[START_REF] Hartmann | Martian cratering VI. Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor[END_REF], proposent chacun une forme analytique de cette distribution, et concluent à partir de mesures effectuées sur des surfaces d'âges variés qu'elle est restée inchangée au cours des 4 derniers milliards d'années, reflétant la stabilité de la distribution en taille des astéroïdes et comètes. Estimer l'âge d'une surface revient alors à déterminer le nombre absolu de cratères qui permet à la distribution analytique relative de fournir le meilleur accord avec les données. les observations spatiales de la population d'astéroïdes à cette date, Hartmann et Neukum [2001] et plus récemment [START_REF] Fassett | The timing of martian valley network activity : Constraints from buffered crater counting[END_REF] attribuent (notamment) un âge aux coulées volcaniques martiennes récentes. [START_REF] Neukum | Geologic evolution and cratering history of Mercury[END_REF] tentent de manière similaire de replacer l'histoire géologique de Mercure dans un contexte chronologique absolu. Notons que ce premier chapitre fait également état des controverses qui entachent la méthode de datation.

Le second chapitre revient sur les fondamentaux de la mécanique céleste [START_REF] Newton | Philosophiae Naturalis Principia Mathematica[END_REF][START_REF] Kepler | Astronomica Nova[END_REF][START_REF] Kepler | Harmonices Mundi Libri V[END_REF], grâce auxquels il place les principaux acteurs du système solaire dans un contexte global. Il donne les outils nécessaires à la description d'une orbite dans l'espace, via la définition des éléments orbitaux. Il fait le lien entre ces derniers et les vecteurs position et vitesse de l'objet à un instant donné, exprimés dans un repère adéquat, afin de préparer le lecteur aux calculs qui suivront dans les chapitres suivants. Il introduit également les approximations permettant de traiter le problème à trois corps de manière analytique, à travers la définition de la sphère de Hill, qui découpe l'espace en zones d'influence gravitationnelle centrées sur chaque masse, ainsi que du paramètre de Tisserand, qui permet en particulier de déterminer dans quelle mesure un objet est dynamiquement lié à Jupiter, et de faire le tri entre comètes et astéroïdes. Il évoque enfin le phénomène de résonance avec les géantes gazeuses, qui façonne la répartition orbitales des astéroïdes de la ceinture principale.

Le troisième chapitre a pour objet la construction d'une population réaliste d'impacteurs potentiels pour l'ensemble des planètes telluriques. Après quelques généralités sur les astéroïdes et les comètes (définition, origine, propriétés), il fait la synthèse des observations et modèles concernant la distribution orbitale et la distribution de taille des croiseurs. En particulier, il se concentre sur le modèle orbital de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF], qui établissent une carte de probabilité de présence des géocroiseurs dans l'espace des éléments orbitaux. A cet effet, les auteurs intègrent numériquement le comportement orbital de milliers de particules tests initialement placées au niveau des principales résonances du système solaire, et calibrent leurs résultats grâces aux observations du programme Spacewtach. Le modèle ne s'appliquant qu'aux planètes incluses dans l'orbite terrestre, nous nous inspirons d ' Ivanov [2001] pour inclure les observations de la distribution orbitale des croiseurs martiens dans la construction d'un modèle hybride qui s'applique à l'ensemble des planètes telluriques. Ce modèle suppose que la population de croiseurs, réalimentée par les résonances, est en état d'équilibre depuis au moins trois milliards d'années.

Introduction

Les observations donnent accès à la magnitude d'un objet (i.e. sa luminosité), et non à son diamètre, même si celui-ci est relié à la magnitude via l'albédo [START_REF] Bowell | Application of photometric models to asteroids[END_REF]. Aucune corrélation n'apparaît entre la distribution orbitale des objets et la magnitude considérée [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF]Stuart, 2001]. La conversion de la magnitude en diamètre se fait selon les valeurs d'albédo données par Stuart et Binzel [2004] (voir également [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF]), qui distinguent deux valeurs d'albédo moyennes selon que le croiseur est un astéroïde ou une comète.

Notamment, les grandes variations de l'excentricité et de l'obliquité de Mars [Laskar et al., 2004;[START_REF] Armstrong | A 1 Gyr climate model for Mars: New orbital statistics and the importance of seasonally resolved polar processes[END_REF] auront une forte incidence sur les résultats à venir. On s'intéresse enfin à l'évolution du système Terre-Lune, et notamment à l'accroissement de la distance Terre-Lune avec le temps, qui a lui aussi une influence significative sur certains de nos résultats. Les données fournies par la fluctuation des dépôts argileux de marée [START_REF] Sonett | Neoproterozoic earth-moon dynamics : rework of the 900 ma big cottonwood canyon tidal laminae[END_REF]] ou la croissance des coraux [START_REF] Lambeck | The Earth's variable rotation[END_REF], combinées à des modèles de dissipation thermique [START_REF] Webb | Tides and the evolution of the earth-moon system[END_REF], placent certaines contraintes sur l'évolution de la durée du jour terrestre et donc sur celle de la distance Terre-Lune [START_REF] Bills | Lunar orbital evolution : a synthesis of recent results[END_REF].

Le cinquième chapitre se penche en détail sur le calcul des probabilités d'impact et des conditions d'approche avec les planètes et la Lune. Connaissant les élément orbitaux de l'ellipse décrite par un croiseur donné, les travaux de E. J.

Öpik et de ses successeurs [Öpik, 1951;Wetherill, 1967;Greenberg, 1982;Bottke et Greenberg, 1993] permettent de calculer la probabilité d'impact avec une planète quelconque, sous l'approximation raisonnable que l'orbite du projectile est animé d'un mouvement de précession uniforme. Les expressions analytiques développées par ces auteurs permettent un calcul rapide du bombardement généré par l'ensemble de la population de croiseurs, en tenant compte de l'influence de la masse de la cible sur la capture des projectiles. Elles permettent également de déterminer les conditions d'approche, c'est-à-dire la vitesse relative entre projectile et cible, et l'orientation du vecteur vitesse dans un repère fixe attaché à la cible. La distribution de ces conditions d'approche permettra dans le chapitre suivant de déterminer les variations du flux d'impacts à la surface de la planète.

Dans le cas de la Lune, les projectiles qui pénètrent dans la sphère d'influence terrestre voient leur orbite elliptique se muer en hyperbole, dont les caractéristiques dépendent des conditions d'approche avec le système Terre-Lune. En nous inspirant des travaux mentionnés plus haut, nous développons les outils analytiques nécessaires au calcul des probabilités d'impact avec la Lune, et plus généralement avec n'importe quel autre satellite. Shoemaker et Wolfe [1982] ont déjà réécrit les formules d'Öpik dans le cas d'orbites hyperboliques (voir également [START_REF] Zahnle | Cratering rates on the Galilean satellites[END_REF][START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF]), mais en supposant que le bombardement du système planète-satellite est isotrope.

Les résultats obtenus dans ce chapitre concernent notamment le flux d'impacts relatif entre les planètes et la Lune, ainsi que les vitesses d'impact moyennes à la surface de chacune. Nos estimations procurent une mise à jour des résultats de Neukum et al. [2001b] pour Mercure, de Shoemaker et al. [1991] pour Vénus, et d 'Ivanov [2001] pour Mars. Elles sont proches des résultats de Stuart [2001], [START_REF] Marchi | Flux of meteoroid impacts on Mercury[END_REF] et [START_REF] Ivanov | The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate[END_REF] pour la Terre, Mercure et Mars, respectivement.

Le sixième chapitre développe des outils analytiques, qui, connaissant la distribution des conditions d'approche avec la cible, permettent de calculer le flux d'impacts relatif en tout point de la surface, en tenant compte de l'obliquité.

Puisque la cible est petite au regard de l'orbite d'un astéroïde, on considère que chaque approche décrite par des conditions particulières génère une nuée de projectiles de directions parallèles et d'orbites hyperboliques, qui finiront leur course en différents points de la planète. Deux conditions peuvent mener à l'homogénéité du flux d'impacts à la surface d'une planète. La première est, bien sûr, l'isotropie de la source de projectiles. La seconde est que la masse de la planète soit suffisamment grande au regard de la vitesse des projectiles pour dévier les trajectoires et forcer l'isotropie. Cependant, rien n'indique a priori que l'une ou l'autre de ces conditions soit respectée. La rotation des planètes autour de leur axe interdit tout effet de longitude. Si effet il y a, il sera uniquement fonction de la latitude.

Sur la Lune, en revanche, comme sur tout satellite en rotation synchrone (i.e., quand la période de révolution coïncide avec la période de rotation propre), on s'attend à observer une variation longitudinale. En premier lieu, le flux d'impacts est a priori plus grand à l'apex (le centre de l'hémisphère qui est en tête du mouvement) qu'à l'antapex (le centre de l'hémisphère opposé). Autour de l'apex, la vitesse lunaire s'additionne à la vitesse des projectiles, alors qu'elle se soustrait autour de l'antapex. Le nombre d'impacts par unité de temps est donc nécessairement plus élevé autour du premier que du second. Une seconde asymétrie est possible entre l'hémisphère qui fait face à la Terre et l'hémisphère opposé : la Terre, comme une lentille, est susceptible de concentrer les projectiles le long d'une ligne « focale », qui, lorsqu'elle est croisée par la Lune, intensifie le bombardement sur la face visible. D'éventuelles variations spatiales ont d'importantes implications dans la mise en oeuvre de la méthode de datation par comptage de cratères, qui ne tient pas compte de cette source potentielle d'erreur, considérant que le flux d'impacts est le même partout. Si ce n'est pas le cas, et si certaines zones subissent un flux significativement plus important que d'autres, leur âge se verra surestimé par la méthode (et inversement).

De nombreux travaux ont suspecté l'existence de variations spatiales, et proposé des résultats, souvent en désaccord, voire contradictoires. L'étude de la Lune a notamment fait l'objet d'une attention toute particulière. Citons pour commen-cer [START_REF] Wiesel | The meteorite flux at the lunar surface[END_REF], qui, à partir d'une population d'impacteurs estimée au mieux (mais qui diffère sensiblement des connaissances actuelles), prédit un effet apex / antapex significatif, une légère concentration équatoriale, et un très léger effet de concentration sur la face visible. [START_REF] Bandermann | Calculation of meteoroid impacts on moon and earth[END_REF] proposent une expression analytique basée sur de très lourdes approximations qui confirme l'effet apex / antapex mais prédit une très légère concentration de projectiles sur la face cachée. Les simplifications qu'ils utilisent ne leur permettent pas de vérifier l'effet de latitude. [START_REF] Wood | Bombardment as a cause of the lunar asymmetry[END_REF] conclut, par l'usage de simulations numériques, à un excès d'impacts localisé entre le centre de la face visible et l'apex, mais se restreint à des projectiles d'inclinaison nulle. Pinet [1985] étudie numériquement les variations spatiales générées par une population d'objets en orbite géocentrique.

Il conclut à une concentration autour de l'équateur et de la face visible qui va en s'amenuisant à mesure que la Lune s'éloigne de la Terre, jusqu'à présenter un excès polaire. Si la contribution de tels projectiles au bombardement lunaire a certainement été très importante dans les premières centaines de millions d'années, elle fut probablement minime par la suite, en particulier durant les trois derniers milliards d'années, période à laquelle nous nous intéressons plus particulièrement. Horedt et Neukum [1984], Shoemaker et Wolfe [1982], [START_REF] Zahnle | Cratering rates on the Galilean satellites[END_REF] et [START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF] proposent tous une expression analytique du flux d'impacts en fonction de la distance angulaire à l'impact, mais l'amplitude de l'effet prédit est très disparate (Horedt et Neukum [1984], notamment, concluent à l'inexistence d'un tel effet sur la Lune). Qui plus est, ces quatre études se basent sur l'hypothèse d'un bombardement isotrope. Halliday [1964] prédit l'existence de variations latitudinales à la surface de la Terre, mais son étude se cantonne au cas de projectiles confinés dans le plan de l'écliptique. Halliday et Griffin [1982] reprennent les résultats d 'Halliday [1964], avec un jeu d'orbites plus représentatif mais encore éloigné des estimations récentes. Notre approche, outre le fait de proposer une expression analytique aboutie et rigoureuse du flux d'impacts (validée par des simulations numériques présentées en annexe), se base sur une population réaliste de projectiles. Elle permet également le calcul de la distribution des conditions d'impact (vitesse et angle d'incidence) en fonction de la position. [START_REF] Gallant | Current bombardment of the Earth-Moon system: Emphasis on cratering asymmetries[END_REF] proposent une étude parallèle du bombardement Terre-Lune, par intégration numérique du système Soleil-Terre-Lune-astéroïde.

Nos résultats indiquent une dépendance systématique du flux en fonction de la latitude sur les planètes telluriques, même si, à l'exception de Mars et de la Lune, celles-ci sont très réduites. Sur la Lune, un effet de longitude significatif est éga-Introduction lement obtenu. Nous comparons ces derniers résultats aux données récoltées par Morota et Furumoto [2003]. Nous estimons également le bombardement terrestre en fonction de l'heure du jour, et comparons nos résultats aux données radar de Campbell- [START_REF] Campbell-Brown | High resolution radiant distribution and orbits of sporadic radar meteoroids[END_REF], [START_REF] Webster | Canadian meteor orbit radar (cmor)[END_REF] et [START_REF] Jones | The canadian meteor orbit radar : system overview and preliminary results[END_REF]. Enfin, nous modélisons le bruit sismique généré par les impacts lunaires et comparons nos résultats aux enregistrements des stations sismiques Apollo.

Le septième chapitre fait le lien entre conditions d'impact et taille du cratère formé. L'étude adimensionnée d'expériences de chocs supersoniques effectuées en laboratoire a permis l'établissement de lois d'échelles qui donnent le diamètre du cratère en fonction de la taille du projectile, de sa vitesse, de l'angle d'impact, des masses volumiques du projectile et de la cible, de la cohésion du sol et de la gravité de surface [Schmidt et Housen, 1987;Holsapple et Schmidt, 1987;Holsapple, 1993;[START_REF] Gault | Impact cratering[END_REF] (voir aussi la revue de Melosh [1989]). La dernière mise à jour de cette relation est due à Holsapple et Housen [2007]. Sur les planètes, des processus d'effondrement dus à la gravité, et non reproductibles en laboratoire, interviennent pour agrandir la taille du cratère final. Ils sont pris en compte comme préconisé par Pike [1980] et Melosh [1989]. Connaissant la distribution en taille des impacteurs, le flux d'impacts absolu et la distribution des conditions d'impact, nous sommes alors en mesure de générer les distributions taille-fréquence des cratères qui recouvrent les planètes et la Lune. Nous nous attachons notamment à réconcilier notre distribution synthétique lunaire avec l'expression polynomiale construite par Neukum et al. [2001a] à partir des observations. La comparaison, excellente, nécessite toutefois de faire intervenir selon leur taille deux régimes de formation des cratères, dits régimes « poreux » et « non poreux » [Schmidt et Housen, 1987], comme le propose Ivanov [2006]. Nous vérifions également l'hypothèse d'un bombardement relativement constant dans les trois derniers milliards d'années. Enfin, nous estimons les taux de cratérisation relatifs à la Lune. Puisque, pour une même taille de projectile, le diamètre moyen du cratère formé n'est pas le même d'une planète à l'autre (vitesse d'impact et gravité de surface différentes), le taux de cratérisation relatif, qui représente le rythme de formation de cratères d'une taille donnée, diffère du flux d'impacts relatif.

Le huitième chapitre se concentre sur les variations spatiales du taux de cratérisation, accentuées par rapport aux variations du flux d'impacts en raison de la dépendance spatiale de la vitesse et de l'angle d'impact, qui contribuent à déterminer la taille du cratère formé. Sur la Lune, par exemple, le bombardement plus intense à l'équateur s'accompagne d'un angle d'impact en moyenne plus proche de la verticale qu'il ne l'est aux pôles. Pour une même taille de projectile, le cratère formé est donc en moyenne plus grand à l'équateur. Les deux effets se combinent pour accentuer les variations en terme de taux de cratérisation.

Le neuvième et dernier chapitre se base sur les résultats obtenus tout au long des chapitres précédents pour apporter les corrections adéquates à la méthode de datation par comptage des cratères. Nous proposons une correction des points de calibration de la relation « âge / densité de cratères » établie par Neukum et al. [2001a] et Stöffler et Ryder [2001]. Nous développons ensuite une méthodologie qui inclut les variations spatiales du taux de cratérisation dans l'usage de la méthode de datation. Nous proposons enfin des nouvelles estimations d'âge pour quelques exemples typiques sur la Lune, Mercure, Vénus, la Terre et Mars.

Chapitre 1

Les cratères d'impact

Les cratères d'impact existent sur tous les corps qui possèdent une surface solide, c'est-à-dire les planètes telluriques, les satellites, les astéroïdes et les comètes.

Ils constituent le relief le plus abondant à la surface des planètes géologiquement inactives dotées d'une atmosphère relativement ténue. C'est en général le cas des petites planètes, qui ont rapidement dissipé leur chaleur de formation résiduelle et ne possèdent pas une gravité suffisante pour retenir leurs volatils. En particulier, il suffit de jeter un oeil à la Lune à travers un télescope très modeste pour constater qu'elle en est recouverte. En revanche, si on sait désormais que des cratères se forment régulièrement à la surface de la Terre, la plupart ont disparu, soit à cause de la tectonique des plaques, soit en raison de la forte érosion provoquée par son enveloppe fluide. Quand au petits cratères que l'on peut observer sur la Lune (cette fois avec un télescope nettement plus performant), ils sont tout simplement absents sur la Terre, puisque les objets de petites tailles qui pénètrent dans l'atmosphère sont désintégrés par frottement. Mercure, Venus, Mars et les satellites des géantes gazeuses présentent toutes elles aussi des telles structures. L'étude des cratères d'impact commence avec la publication de Galilei Galileo en 1610 intitulée Sidereus Nuncius, dans laquelle il ébauche une topographie de la surface lunaire. Il faudra plusieurs siècles pour que l'on comprenne le processus de l'impact et que l'on soit convaincu de sa réalité. Le sujet reste un vaste champ d'étude, et les recherches se poursuivent à travers l'observation plus fine permise par la technologie spatiale, les expériences de choc hypersonique en laboratoire, l'exploitation des explosions nucléaires et les modélisations numériques.

La bonne compréhension des mécanismes qui mènent à la formation d'un cratère sont d'une importance capitale en planétologie ; elle nous renseigne, entre autres, sur la morphologie des reliefs planétaires, sur la population passée et présente des astéroïdes, sur l'âge de certaines unités géologiques, sur le risque encouru par l'homme et par la vie en général.

1.1 Généralités 25

Généralités

Observation et morphologie

Les cratères d'impact prennent la forme de dépressions plus ou moins circulaires qui présentent une bordure surélevée. On appelle diamètre apparent la largeur moyenne du cratère à une altitude qui correspond à la topographie environnante, tandis que le diamètre vrai est mesurée de part et d'autre de la bordure.

Les observations très précises obtenues sur la Lune ont permis de différencier les cratères d'impact des cratères volcaniques, notamment parce que la taille des premiers couvre un très large spectre, allant de quelques microns à plusieurs milliers de kilomètres (South Pole-Aitken, bassin lunaire, est le plus grand bassin d'impact observé dans le système solaire, avec un diamètre d'environ 2500 km).

De nombreuses missions spatiales à destination des différentes planètes et satellites ont permis de recenser des centaines de milliers de cratères (par exemple, la mission Clementine pour la Lune, Magellan pour Venus, Mars express ...). Le lecteur est invité à se référer au chapitre 4 pour de plus amples détails.

La classification des cratères d'impact est décrite en détail dans Melosh [1989].

On distingue quatre grands groupes de cratères d'impact (voir la figure 1.1), dont la morphologie a pour critère déterminant la taille considérée :

-les micro-cratères, de tailles sub-centimétriques, sont formés par la collision de grains de poussière sidérale. Ils ne sont donc susceptibles de se former que sur des corps sans atmosphère, et furent originellement observés sur les échantillons rocheux rapportés par les missions Apollo.

-les cratères simples ont la forme d'un bol. Leur bordure est approximativement circulaire, et leur profil vertical est paraboloïde. Leur diamètre est typiquement de l'ordre de quelques mètres à quelques kilomètres.Meteor Crater, en Arizona, en est un exemple terrestre. Leur profondeur est de l'ordre du cinquième de leur diamètre.

-les cratères complexes, plus grands, présentent en général un fond plat, une bordure en terrasses, et un piton central. Ils résultent de l'effondrement par gravité des bords du cratère initial. On peut donner en exemple le cratère lunaire Copernicus. La transition entre cratères simples et complexes se fait autour d'un diamètre critique qui dépend du corps heurté. Ce diamètre seuil varie approximativement de manière inversement proportionnelle à la gravité de surface. Sur la Terre, il est de l'ordre de trois kilomètres, alors qu'il est d'environ 18 kilomètres sur la Lune. Il faut également mentionner que les cratères récents sont entourés de jets de matière (ejecta) particulièrement visibles, qui rayonnent à partir du point d'impact. On parle de cratères étoilés. Ces structures sont éphémères (voir la section suivante). En guise de très bel exemple, on observera le cratère Tycho, qui balafre la quasi totalité de l'hémisphère visible de la Lune. Ces éjectas sont criblés de petits cratères dit secondaires, par opposition au cratère primaire dont les débris propulsés par l'excavation ont réimpacté la surface.

Formation, altération et saturation

Les cratères d'impact résultent de la collision d'un objet céleste avec le sol, qui se produit à une vitesse allant de quelques kilomètres par seconde à la centaine de kilomètres par seconde. Leur formation consiste en une rapide succession de processus, qui débute par l'impact proprement dit et s'achève lorsque la cavité à atteint un état d'équilibre. On distingue trois phases : la phase de compression, la phase d'excavation, et enfin la phase de modification.

-Contact et compression : la brutale décélération du projectile au moment de l'impact transmet son énergie cinétique au sol sous la forme d'ondes de choc.

La pression exercée est de l'ordre de 1 2 ρu 2 , ρ étant la densité du matériau et u la vitesse d'impact. Typiquement, ρ ∼ 3000 kg.m -3 et u ∼ 10 km.s -1 . La roche est donc aisément compressée par le choc, et une grande quantité de matière est purement et simplement vaporisée (pour la plupart des roches, il suffit de quelques centaines de kilobars). L'onde de choc s'atténue avec la distance pour finalement se transformer en onde sismique, de vitesse acoustique. La durée de cette phase est de quelques millisecondes.

-Excavation : la décompression qui suit l'éloignement de l'onde de choc accélère la matière alentour, et initie un processus d'excavation subsonique, qui voit la formation d'un cratère dit transitoire, dont la taille croît progressivement. La matière déplacée contribue à la formation de la bordure, dont la hauteur représente environ 4 % du diamètre de la cavité pour des cratères simples, ou est expulsée selon une trajectoire quasi parabolique pour former des rais d'éjectas ou des agrégats de cratères secondaires. Typiquement, un projectile d'une taille donnée produit un cratère 10 fois plus grand.

Les cratères d'impact

-Effondrement et modification : lorsque toute l'énergie de l'impact a été dissipée ou évacuée par les éjectas, la cavité est modifiée par la gravité de surface et par la relaxation du matériel qui forme la base du cratère. Les bords du cratère s'effondrent, accroissant son diamètre et réduisant sa profondeur.

La forme finale du cratère, appartenant aux groupes morphologiques décrits plus haut, dépendra principalement de la gravité de la planète. La 

Une mesure du temps écoulé

Partant du principe simple selon lequel une surface ancienne aura eu le temps d'accumuler un plus grand nombre de cratères qu'une surface récente, il est possible de bâtir une chronologie relative qui s'appuie sur le décompte des cratères.

1.2 Une mesure du temps écoulé 29 Cette chronologie bénéficie même, grâce aux âges des échantillons de roches lunaire mesurés en laboratoire, de points de calibration absolus. La Lune est donc la pierre angulaire de la méthode de datation par comptage des cratères. La détermination d'âges sur les autres corps du système solaire se fait par extrapolation, en tenant compte des conditions différentes qui président à la formation des cratères, notamment l'intensité du bombardement, la vitesse d'impact et la gravité de surface. En l'absence d'échantillons ou de mesures in situ, les cratères d'impact pourvoient à l'un des seuls moyens de replacer dans un contexte temporel l'évolution géologiques des grands objets du système solaire.

La Lune, corps étalon

La surface de la Lune offre un environnement très favorable à l'étude des cratères d'impact. Tout d'abord, sa grande proximité avec la Terre lui a valu (et lui vaut encore) d'être l'objet d'une attention toute particulière. L'intense investigation à laquelle elle fut soumise a permis de collecter quantité d'informations.

Ensuite, dans la mesure où la plus grande partie de l'activité géologique du satellite a cessé il y a plus de 3 milliards d'années, les paysages qui la recouvrent mettent les cratères au premier plan.

Comme le mentionne l'introduction, [START_REF] Wilhelms | The geologic history of the Moon[END_REF] établit une cartographie de référence de nombreuses unités géologiques lunaires et de leur relations chronologiques, qui, avec l'essor des missions spatiales, n'a cessé de progresser depuis [START_REF] Jolliff | Major lunar crustal terranes : surface expressions and crust-mantle origins[END_REF]. Les unités géologiques sont définies sur des critères de composition et/ou de morphologie. Les progrès amenés par les missions spatiales postérieures pourront par exemple être consultés dans [START_REF] Jolliff | Major lunar crustal terranes : surface expressions and crust-mantle origins[END_REF]. Le principe de superposition géologique, qui dit en substance que les formations géologiques jeunes coupent ou recouvrent les anciennes, permet d'établir une première chronologie relative. Lorsque les contacts géologiques ne sont pas bien définis, ou lorsque l'on souhaite attribuer un âge absolu, il est nécessaire de faire usage des cratères d'impact. Les missions Apollo et Luna offrent en effet l'opportunité de placer l'évolution géologique lunaire dans un contexte chronologique absolu. Au total, neuf missions ont collecté et rapatrié pas moins de 382 kilogrammes de roche lunaire. L'analyse isotopique a permis de dater ces échantillons avec une très bonne précision. Dans le but de relier l'âge d'une unité géologique à la densité de cratère qui la recouvrent, les méthodes qui mènent à la détermination du moment de la dernière cristallisation sont les plus importantes. Citons les méthodes Rb-Sr et Sm-Nd pour les roches à gros grains, et la méthode 40 Ar -39 Ar Les cratères d'impact pour les roches ignées et les produits d'impact (voir par exemple [START_REF] Faure | Principles of isotope geology[END_REF]).

Le lecteur trouvera de nombreux exemples de datation de roches lunaires, ainsi que de multiples références aux précédentes publications dans l'article de Snyder et al. [2000]. De nombreux travaux s'attachent à relier les âges radiométriques mesurés sur les échantillons lunaires à la densité de cratères recouvrant l'unité géologique correspondante, dans le but d'établir une chronologie absolue [START_REF] Shoemaker | Geology of the apollo 12 landing site[END_REF][START_REF] Baldwin | On the history of lunar impact cratering : the absolute time scale and the origin of planetesimals[END_REF][START_REF] Hartmann | Terrestrial, Lunar, and Interplanetary Rock Fragmentation[END_REF]Hartmann, W. K., , 1970b,a;,a;[START_REF] Hartmann | Paleocratering of the moon : review of post-apollo data[END_REF][START_REF] Neukum | A study of lunar impact crater size-distributions[END_REF][START_REF] Neukum | Different ages of lunar light plains[END_REF]Basaltic Volcanism Study Project, 1981;[START_REF] Neukum | Meteorite bombardment and dating of planetary surfaces[END_REF]. Les travaux conjoints de Stöffler et Ryder [2001] et Neukum et al. [2001a] établissent une relation « âge / densité de cratères » qui fait référence aujourd'hui.

A titre d'exemple, l'âge du bassin Nectaris est déduit des âges isotopiques mesurés sur les échantillons prélevés sur le site d'Apollo 16, pourtant éloigné du bassin de quelques centaines de kilomètres. En effet, la stratigraphie du site présente deux unités géologiques majeures : la formation Cayley, jeune, et la formation Descartes, plus ancienne. On considère que cette dernière a été exposée par les éjectas de l'impact à l'origine du cratère North Ray, il y a environ 50 millions d'années. La formation Descartes est elle-même interprétée comme faisant partie de la matière éjectée par l'événement qui forma le bassin Nectaris [START_REF] Wilhelms | The geologic history of the Moon[END_REF]. La mission Apollo 16 a récolté les éjectas du cratère North Ray. L'âge des plus jeunes brêches qui composent la roche analysée en laboratoire est considéré comme étant l'âge de la formation Descartes, et par conséquent comme l'âge du bassin d'impact Nectaris, soit environ 3.85 milliards d'années [Stöffler et Ryder, 2001]. La densité de cratères correspondante est mesurée sur la bordure du bassin Nectaris, l'intérieur étant occupé par des laves plus jeunes qui forment Mare Nectaris [START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF]. De manière plus simple, la mission Luna 24 procure l'âge des basaltes qui forment la partie sud de Mare Crisium, sur laquelle la densité de cratères est directement mesurée.

En se basant sur les points de calibration donnés par Stöffler et Ryder [2001], Neukum et al. [2001a] proposent une solution analytique, représentée en figure 1.2, qui lie la densité de cratères d'un diamètre supérieur à 1 km à l'âge de surface sous la forme N (> 1, t) = 5.44 × 10 -14 e 6.93 t -1 + 8.38 × 10 -4 t .

(1.1) V of [START_REF] Stöffler | Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System[END_REF]. Right: The part of the lunar cratering chronology in linear scale. Les petits cratères sont beaucoup plus nombreux que les grands, reflétant la distribution en taille des projectiles. En première approximation, ils suivent une loi de puissance. Pour obtenir des données aussi robustes que possible, on recense le nombre de cratères pour une succession de tailles différentes. Il s'agit de distributions dites « taille-fréquence », auxquelles on fera parfois référence par l'usage de l'acronyme SFD (size-frequency distributions) et qui sont représentées sur un diagramme log-log. Plusieurs types de distributions sont utilisés [Crater analysis techniques working group, 1979]. La forme cumulative donne le nombre de cratères plus grands qu'un diamètre donné, et présente l'avantage (ainsi que l'inconvénient) d'être peu sensible aux variations statistiques. On utilise également la forme différentielle, qui est donnée par le nombre de cratères dans un certain intervalle de taille, divisé par la largeur de cet intervalle, ainsi que la forme relative, qui est le produit de la forme différentielle par le cube du diamètre moyen Les cratères d'impact de l'intervalle. Ces deux dernières formes reflètent plus fidèlement les processus géologiques qui affectent certains cratères d'une taille particulière (érosion, oblitération), mais peuvent présenter de grandes fluctuations statistiques. La distribution relative, appelée R-plot, a été définie comme telle parce que la pente de la distribution différentielle est souvent proche de -3. Les changements de pente autour de cette valeur sont alors plus visibles sous cette représentation. On peut écrire les différentes formes de distributions taille-fréquence, sous l'approximation qu'une simple loi de puissance est représentative, comme

distribution cumulée N (> D) = AD -α (1.2) distribution differentielle N (D) = d dD N (> D) = AαD -(α+1) (1.3) distribution relative r(D) = D 3 N (D) = AαD -(α-2) (1.4)
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Fig. 1.3 -Distributions taille-fréquence cumulées de diverses populations de cratères lunaires, normalisées. Figure extraite de Neukum et al. [1975].

La figure 1.3, extraite de Neukum et al. [1975], présente diverses distributions cumulées pour différentes zones de la Lune. Puisque leur âge diffère a priori, 

Exportation de la méthode vers les planètes

Connaissant, pour la Lune, la relation qui lie la densité de cratères qui recouvre une surface à son âge, on peut tenter d'exporter la méthode de datation aux planètes telluriques, aux satellites des géantes gazeuses, voire aux gros astéroïdes.

Pour cela, il faut successivement 1. Connaître la forme de la distribution taille-fréquence des cratères lunaires 2. Estimer, sur la planète considérée, le taux de formation de cratères relatif à la Lune ficients in Equation ( 2) are listed in Table I in comparison with "old" coefficients from [START_REF] Neukum | Meteorite bombardment and dating of planetary surfaces[END_REF]. Figure 4 illustrates the new Orientale counts and the crater SFD fit to these data and to the typical highland counts near the Tsiolkovsky area, on the farside, published by Ronca et al. (1981) and other highland counts by [START_REF] Neukum | Meteorite bombardment and dating of planetary surfaces[END_REF] and for a Nectarian aged geological unit (Mendeleev) by [START_REF] Neukum | Different ages of lunar light plains[END_REF]. Most of the craters were formed > 3 Gyr ago, so the question remains how the projectile [START_REF] Neukum | Geologic evolution and cratering history of Mercury[END_REF]. Dans cet article, le bassin Caloris, stratigraphiquement parlant le plus jeune des bassins de Mercure, est estimé vieux de 3.77 ±0.06 Ga. L'âge de la surface de Venus, supposée globalement renouvelée par l'activité volcanique, est estimée dans [START_REF] Strom | The global resurfacing of Venus[END_REF] à environ 600 Ma.

La figure 1.5, extraite de Ivanov et al. [2002], résume différentes reconstructions de distributions planétaires à partir de la distribution lunaire. Les auteurs ont établi la distribution taille-fréquence des projectiles en inversant les données de cratérisation lunaire, et estimé une vitesse d'impact moyenne sur chaque planète à partir des observations orbitales. Ils concluent que l'on peut considérer que l'ensemble des planètes telluriques subissent le bombardement de la même population de projectiles.

Incertitudes et controverses

Il existe de nombreuses remises en question de la précision, voire de la validité, de la méthode de chronologie basée sur les cratères d'impact. Les principaux auteurs estiment que celle-ci donne des estimations dont l'incertitude est au mieux d'un facteur 2. Nous allons ici faire la liste de ses principales fragilités.

-La méthode estime l'âge de rétention des cratères d'une certaine surface, et pas nécessairement son âge véritable, puisque l'érosion et l'oblitération peuvent jouer un rôle important. On mesure alors la durée de vie des cratères (si c'est effectivement le cas, ces processus affectent inégalement différentes tailles de cratères, et on peut espérer déduire de la forme des distri- [START_REF] Hartmann | Possible long-term decline in impact rates[END_REF] suggère que, pendant cette période, le bombardement lunaire aurait décru d'un facteur 3. La même estimation est donnée par [START_REF] Culler | Lunar impact history from 40 Ar/ 39 Ar dating of glass spherules[END_REF], qui ajoute que le bombardement pourrait avoir brutalement augmenté (d'un facteur 4) lors d'une disruption il y a 500 Ma (voir aussi [START_REF] Nesvorný | The Flora family: A case of the dynamically dispersed collisional swarm?[END_REF]). Ces travaux se basent principalement sur l'analyse radiogénique de quelques (environ 200) sphérules de verre obervées sur un gramme d'échantillon lunaire. L'évolution temporelle du nombre de ces structures, dont l'origine est associée à de petits impacts, est censée refléter l'histoire du bombardement lunaire.

1.2 Une mesure du temps écoulé Ivanov et al.: Size-Frequency Distribution 93 also account for gravitational focusing, which decreases with increasing encounter velocity. Hence, different model assumption about encounter velocities result in variation of impact rate comparisons for the terrestrial planets.

Projectile Sizes

Using scaling laws and estimated impact velocities, one can find the projectile SFD, dN/dD P , for a given impactcrater SFD, dN/dD. To simplify the problem in this chapter, we test the endmember hypothesis of a purely asteroidal projectile flux onto the terrestrial planets. Having such an estimate, we keep open the problem of the cometary impact fraction in the observed crater population. For the same reason, we assume the same projectile density [2.7 g cm -3 , the density of typical S-type asteroids [START_REF] Britt | Asteroid Density, Porosity, and Structure. Asteroids III[END_REF]] for all estimates. The procedure we use to transform craters into projectiles (and vice versa) can be found in [START_REF] Ivanov | Mars/Moon cratering rate ratio estimates[END_REF]. Briefly, the crater-scaling law derived by [START_REF] Schmidt | Some recent advances in the scaling of impact and explosion cratering[END_REF] is used to estimate the transient and simple crater diameter for a given projectile. The collapse of complex craters (e.g., Melosh and Ivanov, 1999) is taken into account using the semiempirical model derived by Croft (1985) (see also Chapman and McKinnon, 1986;McKinnon et al., 1991).

The SFD of the projectiles is approximated in the same form as equation ( 2), with a polynomial of 14th degree valid for projectile diameters between ~0.25 m and ~27 km. Com- (1995). Crater counts are digitized from figures in Hartmann et al. (1981). (b) R plot for the size-frequency distribution of venusian craters (1) in comparison with the lunar curve recalculated for venusian conditions with the [START_REF] Schmidt | Some recent advances in the scaling of impact and explosion cratering[END_REF] scaling law and Croft's (1985) crater collapse model. Dashed curves 2 and 3 represent two models of how projectiles undergo atmospheric disintegration [START_REF] Mckinnon | Cratering on Venus : models and observations[END_REF]. "Lunar analogs" for an atmosphere-less Venus are shown as HPF and NPF. (c) The R plot for terrestrial craters in comparison with data for cratons (North American + European). To determine the change in the impactor flux over time, the two datasets are divided by factors of 0.115 (115 m.y.) and 0.370 (370 m.y.) in order to put them at the 1-G.y. position. Black dots are crater counts provided by Hughes (2000). (d) R plot for martian craters. The crater SFD for heavily cratered terrain [1, after Hartmann et al. (1981)], "young plains" (2, after [START_REF] Strom | The Martian impact cratering record[END_REF]] and a relatively younger volcanic caldera floor (Hartmann et al., 1999a). Dashed lines show an approximate saturation level after [START_REF] Hartmann | Planetary cratering I : Lunar highlands and tests of hypotheses on crater populations[END_REF]. (2) jeunes plaines, (3) jeunes caldeiras. Les diagonales tiretées correspondent au niveau de saturation calculé d'après [START_REF] Hartmann | Planetary cratering I : Lunar highlands and tests of hypotheses on crater populations[END_REF]. Figure extraite de Ivanov et al. [2002]. Voir les références incluses.

-Une seule et même population est supposée être à l'origine des cratères telluriques, et sa distribution en taille est supposée inchangée depuis 4 milliards d'années. Pourtant, les disruptions catastrophiques sont susceptibles de modifier ponctuellement cette distribution [START_REF] Bottke | Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion[END_REF][START_REF] Brien | Craters on asteroids : reconciling diverse impact records with a common impacting population[END_REF]. Qui plus est, on peut discuter, au vu de la figure 1.5, la corré-

Les cratères d'impact

lation supposée des distributions de cratères planétaires. Enfin, [START_REF] Strom | The origin of planetary impactors in the inner Solar System[END_REF] affirment que la distribution en taille des astéroïdes était différente lors de la phase de bombardement intensif.

-Cette unique population est estimée à partir des observations orbitales (qui restent incomplètes) et des modèles associés [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF]Stuart, 2001], ou bien à partir de l'inversion des données de cratérisation lunaire [START_REF] Werner | NOTE : The Near-Earth Asteroid Size-Frequency Distribution : A Snapshot of the Lunar Impactor Size-Frequency Distribution[END_REF]. Le passage du flux d'impact au taux de formation de cratères se fait par l'usage de lois d'échelles dont certains paramètres, notamment l'angle d'incidence, restent mal contraints.

-Le rôle des comètes quasi-isotropes (voir le chapitre 3) n'est pas certain.

Cela dit, les derniers travaux à ce sujet tendent à conclure que leur contribution est modérée, de l'ordre de 1 à 10 % [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF][START_REF] Bottke | Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion[END_REF][START_REF] Weissman | Evolution of comets into asteroids[END_REF].

-La contribution des cratères secondaires fait débat. [2007]).

-La méthode de datation considère que le flux de projectiles est isotrope.

Il en découle que le taux de formation de cratères est indépendant de la position sur la planète. Si tel n'était pas le cas, des biais systématiques seraient introduits dans l'attribution d'âges tant relatifs qu'absolus. 

Problème à deux corps

Dans le premier volume de ses Principia, [START_REF] Newton | Philosophiae Naturalis Principia Mathematica[END_REF] nous dit en substance que la force d'attraction exercée par un objet ponctuel de masse m 1 sur un objet de masse m 2 peut s'écrire 

F = - Gm 1 m 2 r 2 r r , ( 2 
R 1 = m 2 m 1 + m 2 r et R 2 = m 1 m 1 + m 2 r , (2.9) où R 1 et R 2 sont
θ = ω r = q θ = ω + f θ = ω + π r = Q + foyer vide m 1 m 2 Fig. 2.
v 2 = ṙ • ṙ = ṙ2 + (r θ) 2 =   dr dθ 2 • θ2 + r 2 θ2   .
(2.20)

En constatant d'après l'équation (2.4) que C = r 2 θ, on peut écrire, Les éléments orbitaux permettent en particulier de déterminer si la collision entre un objet et une planète est possible ou non, et si oui, dans quelle configuration. Ainsi, un impact n'est envisageable que si q < Q 0 ou Q > q 0 , q 0 et Q 0 

v 2 = C 2   1 r 2 + d dθ 1 r 2   . ( 2 
où ω ∈ [0, π] si e • K ≥ 0, et ω ∈]π, 2π[ dans le cas contraire.
Enfin, on trouve l'anomalie vraie à partir de

cos f = e • r er , (2.34) où f ∈ [0, π] si r • ṙ ≥ 0, et f ∈]π, 2π[ sinon.
L'obtention des éléments orbitaux via les équations précédentes s'applique aux orbites aussi bien elliptiques qu'hyperboliques.

Le problème réciproque, à savoir déterminer les vecteurs position et vitesse dans le repère cartésien à partir des éléments orbitaux, se résout comme suit.

La norme de r est donnée par l'équation (2.13) si l'orbite est elliptique, ou par l'équation (2.15) si elle est hyperbolique, et l'on a Cela engendre une stabilité ou au contraire, une instabilité accrue du système.

r ( Î, Ĵ, K) = r      cos Ω cos θ -sin Ω sin θ cos i sin Ω cos θ + cos Ω sin θ cos i sin θ sin i      , ( 2 
Les progrès de l'investigation numérique permettent de comprendre de mieux en mieux les phénomènes de résonance. La figure 2.3, qui représente le nombre d'astéroïdes observés en fonction de leur demi-grand axe, illustre de façon frappante la structure résonante du système solaire. La période orbitale étant proportionnelle au cube du demi-grand axe, on constate que certaines zones qui correspondent à certaines périodes particulières sont appauvries. On parle des Kirkwood gaps. Il s'agit de résonances avec Jupiter. Par exemple, la résonance 3 :1 correspond aux astéroïdes possédant un demi-grand axe tel que, pour une révolution jovienne, ils font trois fois le tour du Soleil. A l'inverse, la résonance 1 :1, par exemple, montre une concentration d'objets qui correspond aux Troyens.

Le caractère chaotique du système engendre également des phénomènes de variations séculaires. Ainsi, les orbites et l'axe de rotation de tous les objets sont animées d'un mouvement de précession : leur orientation varie dans l'espace, et ce sur des échelles de temps très variables. Les éléments orbitaux principaux des objets (a, e, i) ne sont pas non plus fixes. Ils varient selon des pseudo-cycles dont la période est de l'ordre du million à la dizaine de millions d'années. Ces variations, notamment celles de Mars -particulièrement spectaculaires -, ont fait l'objet d'études numériques (notamment par J. Laskar ; voir le chapitre 4). Nous verrons dans quelle mesure ces variations affectent le bombardement des planètes. Météoroïdes, astéroïdes, comètes : les petits corps qui évoluent au sein du système solaire sont de différents types, eux-mêmes divisés en sous-groupes, chacun traduisant une différence de taille, d'orbite ou de composition. Nous détaillerons les propriétés de chacune de ces catégories, et ferons l'état des lieux des observations les concernant. Enfin, nous nous attacherons à décrire les efforts faits afin d'obtenir, à partir des observations spatiales incomplètes et biaisées, une vue globale de la population des impacteurs potentiels.

Définitions, origine et observations

Les astéroïdes et comètes, tout comme les planètes, sont le produit du phénomène de compétition accrétion/destruction engendré par les multiples collisions de la matière éparse qui constituait le jeune système solaire. A mesure que les géantes gazeuses se forment, leur masse augmente les vitesses de collisions dans les alentours, et, notamment, empêche la formation d'une planète entre Mars et Jupiter, laissant à la place ce qu'on appelle la ceinture principale d'astéroïdes.

Qui plus est, avant que le système ne se stabilise, un scénario plausible suppose que les variations d'excentricité de ces mêmes géantes gazeuses ont « excité » les orbites des petits corps voisins, engendrant un bombardement massif sur la Lune et les planètes telluriques [START_REF] Gomes | Origin of the cataclysmic late heavy bombardment period of the terrestrial planets[END_REF]. Par la même occasion, un grand nombre d'objets auraient été éjectés au-delà de l'orbite de Neptune, créant ainsi le nuage d' Oort et la ceinture de Kuiper, dont Pluton est aujourd'hui considéré comme un membre parmi bien d'autres.

Astéroïdes et comètes sont de petits corps rocheux. Stricto sensu, les comètes se distinguent des astéroïdes par le fait qu'elles exhibent une traînée de gaz et de poussière. La richesse en volatils des comètes s'explique par leur provenance : la pression solaire à repoussé la plupart des éléments légers dans le système solaire externe. A la différence des astéroïdes, les comètes possèdent en général des orbites très excentriques, ce qui les amène à faire de brèves excursions dans le système solaire interne. L'exposition au Soleil, subitement accrue, provoque alors un dégazage partiel qui englobe le noyau rocheux. Cependant, une exposition prolongée au Soleil est susceptible d'« éteindre » une comète, lui donnant l'apparence d'un astéroïde. Inversement, il n'est pas exclu qu'un astéroïde riche en volatils se métamorphose en comète. L'ambiguïté entre comètes actives, comètes en sommeil et comètes éteintes rend la distinction avec les astéroïdes plutôt floue. Sur des considérations orbitales, on désignera comme comètes (qu'elles soient actives ou non) les objets très excentriques qui résident dans le système solaire externe (incluant la ceinture de Kuiper, le nuage d'Oort) et les objets qui s'en échappent.

La ceinture principale d'astéroïdes s'étend de 2 à 4 unités astronomiques du Soleil. La figure 3.1, où les 5000 premiers astéroïdes numérotés sont projetés sur le plan de l'écliptique, la schématise. Les orbites des cinq premières planètes du 3.1 Définitions, origine et observations 57 système, de Mercure à Jupiter, sont représentées, ainsi que, à titre d'exemple, celle de l'astéroïde Adonis, qui est susceptible de croiser la route de chacune des planètes telluriques. La ceinture principale d'astéroïdes est considérée comme le principal réservoir qui alimente le bombardement des planètes telluriques. Sa masse totale est estimée à environ 5 × 10 -4 masses terrestres. La ceinture de Kuiper, qui s'étend au-delà de l'orbite de Neptune, est supposée contenir encore bien plus d'objets que la ceinture principale d'astéroïdes.

Plusieurs centaines ont été découverts à ce jour, avec une inclinaison modérée ( 30 • ) et à des distances héliocentriques inférieures à 50 UA. Sa masse estimée est de l'ordre 3 × 10 -3 masses terrestres. Elle est considérée comme la principale source du bombardement des satellites des géantes gazeuses [START_REF] Zahnle | Cratering rates on the Galilean satellites[END_REF][START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF]. Le nuage d'Oort, à la différence de la ceinture de Kuiper, est un réservoir sphérique qui englobe le système solaire, à une distance héliocentrique 10 4 UA [Weissman, 1990]. Il est la source de ce qu'on appelle les comètes quasi-isotropes (NICnearly isotropic comets). Ces comètes ont une excentricité encore supérieure aux comètes écliptiques, et leur orbite s'apparente à une parabole du point de vue des planètes. Comme mentionné au chapitre précédent, le paramètre de Tisserand (Eq. (2.38)) permet de faire un tri entre les comètes [START_REF] Levison | Comet Taxonomy[END_REF]. Les comètes pour lesquelles T < 2 sont quasi-isotropes. Les autres sont dites comètes écliptiques, puisqu'elles possèdent une inclinaison modérée. Parmi celles-ci, celles dont la paramètre de Tisserand vérifient 2 < T ≤ 3 sont dynamiquement liées à Jupiter, et l'on parle de la famille des comètes joviennes (JFC -Jupiter-Family Comets). Ces objets se voient donc attribuer le nom de comète, même si leur aspect ne permet pas a priori de les distinguer des astéroïdes. Les orbites telles que T > 3 ne pénètrent pas dans la sphère de Hill de Jupiter, et sont donc en général considérées comme appartenant à des astéroïdes.

Jusque récemment, les collisions étaient considérées comme le principal mécanisme capable d'éjecter les objets hors de leur réservoir pour les transformer en croiseurs [Wetherill, 1967]. On considère désormais que le phénomène de résonance avec les géantes gazeuses est principalement à l'origine du bombardement des planètes. Comme on l'a vu au chapitre précédent, les plus importantes résonances avec Jupiter engendrent des « creux » dans la répartition des objets de la ceinture principale en fonction du demi-grand axe. Les deux résonances principalement identifiées comme responsables du bombardement des planètes telluriques sont la résonance 3 :1 avec Jupiter et la résonance v 6 avec Saturne [Michel et al., 2005], parmi de nombreuses autres [START_REF] Morbidelli | Orbital and temporal distributions of meteorites originating in the asteroid belt[END_REF]]. Ces résonances produisent des changements chaotiques de l'excentricité, capable de mener certains objets vers une trajectoire qui coupe celle des planètes [START_REF] Wisdom | Meteorites may follow a chaotic route to earth[END_REF]. De la même manière, les résonances avec Jupiter, Saturne et Uranus alimentent la famille des comètes écliptiques à partir de la ceinture de Kuiper [Duncan et Levison, 1997]. Ces objets sont les principaux responsables du bombardement des lunes des géantes gazeuses, mais contribuent aussi, dans une moindre mesure, à celui des planètes telluriques [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF].

Outre ces mécanismes gravitationnels, il existe un autre phénomène capable de modifier les éléments orbitaux des petits corps du système solaire : l'effet Yarkovsky. La chaleur solaire, accumulée par l'astéroïde sur l'hémisphère diurne, est dissipée lorsque celui-ci, par rotation, devient l'hémisphère nocturne. Typiquement, l'énergie émise est capable, pour un astéroïde de taille kilométrique, de modifier son demi-grand axe d'environ 10 -4 UA par millions d'années. C'est cet effet qui est considéré comme étant à l'origine de la relative stabilité du flux d'impact durant les trois derniers milliards d'années, en réapprovisionnant les zones de résonances de la ceinture principale en astéroïdes d'un diamètre inférieur à 40 kilomètres [Bottke et al., 2000c[START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF][START_REF] Bottke | Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion[END_REF][START_REF] Bottke | The Yarkovsky and Yorp Effects : Implications for Asteroid Dynamics[END_REF]. Une fois les objets éjectés des zones chaotiques de résonance, le principal événement (en terme d'échelle de temps) qui affecte la distribution orbitale des croiseurs est la collision avec les planètes. L'effet Yarkovsky n'a donc pas le temps d'influencer significativement leur distribution orbitale [Michel, P. and Yoshikawa, M., 2005].

Les astéroïdes montrent une grande diversité de tailles, allant de quelques dizaines de mètres à plusieurs centaines de kilomètres. Cérès, le plus grand objet de la ceinture principale, possède un diamètre de près de mille kilomètres, et représente à lui seul le tiers de la masse totale estimée de la ceinture. La distribution en taille des astéroïdes suit un comportement de type « loi de puissance », les petits objets étant beaucoup plus nombreux que les grands. Dans les réservoirs, les collisions qui se produisent régénèrent la population de « petits » objets expulsés à partir de l'immense masse offerte par les objets les plus gros, dont on pense qu'ils sont d'âge comparable aux planètes. Les vitesses de collisions sont typiquement de l'ordre de 5 km.s -1 [O' Brien et Greenberg, 2005]. Une population en équilibre collisionnel simple (collision cascade) s'exprime [START_REF] Dohnanyi | Interplanetary objects in review : Statistics of their masses and dynamics[END_REF],

N (> d) ∝ d -2.5 , (3.1)
où N est le nombre d'objets d'un diamètre supérieur à d. En réalité, observations et modèles [START_REF] Bottke | Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion[END_REF][START_REF] O'brien | The collisional and dynamical evolution of the main-belt and nea size distributions[END_REF] prédisent une forme ondulée de la distribution en taille des astéroïdes, due au fait que la cohésion du matériau est fonction de sa taille (les petits objets deviennent de plus en plus résistants à mesure que leur taille diminue, car ils présentent moins de fissures ; les gros objets deviennent de plus en plus résistants à mesure qu'ils grossissent, à cause de leur propre gravité). La population des croiseurs reflète celle de leur réservoir, mais les processus qui génèrent ces croiseurs étant fonction de leur diamètre, elle ne la reproduit pas nécessairement à la perfection (voir la section suivante). Notons que les astéroïdes d'une taille inférieure à 50 mètres sont arbitrairement désignés comme étant des météoroïdes.

Il n'est pas trivial d'estimer le diamètre d'un objet. La mesure la plus accessible, par photométrie, est celle de la magnitude apparente, c'est-à-dire la luminosité. La détermination de l'orbite permet de ramener cette mesure à la magnitude absolue, H, qui est définie comme la luminosité qu'aurait l'objet s'il était observé à une distance de 1 AU avec un déphasage nul (observateur et Soleil alignés), alors qu'il se trouve à 1 AU du Soleil. H ne dépend plus alors que de l'albédo de l'objet et de sa taille selon la relation [START_REF] Bowell | Application of photometric models to asteroids[END_REF]]

d = 1347 √ ρ v 10 -H/5 , (3.2)
où d s'exprime en kilomètres et ρ v est l'albédo géométrique de la sphère de diamètre d. On note que le diamètre diminue à mesure que la magnitude augmente.

L'albédo dépend de la classe taxinomique de l'objet. Celle-ci est déterminée à partir du spectre optique, qui dépend de la composition de surface. On distingue principalement deux classes d'astéroïdes, le type C, sombre, et le type S, brillant.

La classe C, de type carbonné, est la moins facile à détecter. La classe S, de type silicique, est riche en métal (Fe, Ni, Mg). [START_REF] Luu | On the relative numbers of c types and s types among near-earth asteroids[END_REF] considèrent que la distribution d'albédo est bimodale, le premier pic à 0.047 correspondant aux objets sombres, le second à 0.15 correspondant aux objets brillants. En supposant que le ratio réel entre objets sombres et brillants égale 1 [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF],

l'albédo moyen est 0.098 et les objets d'une magnitude inférieure à 18 ont une taille supérieure à 1 km.

La densité des astéroides est très variable, allant de 500 (pour les objets les plus poreux) à 7000 kg.m -3 (pour les plus métalliques). Le travail de Britt et al.

[2002] isole cependant deux principaux pics de densité dans la distribution des météorites analysée, l'un à 1300 kg.m -3 pour les objets de type C, l'autre à 2700 kg.m -3 pour le type S, même si certains travaux ont montré que certains grands astéroïdes de type S ont une structure « empilée » qui peut réduire significativement leur densité gobale [START_REF] Fujiwara | The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa[END_REF]. Qui plus est, la rotation rapide des petits objets (d <∼ 100m) suggère que ceux-ci, parce qu'ils sont beaucoup moins poreux, présentent des densités supérieures à leurs plus gros homologues, dont la formation fut gouvernée principalement par la gravité. Nous désignons par le terme de croiseurs les objets qui coupent l'orbite d'une planète. L'acronyme NEO (Near Earth Objects) s'applique aux objets (astéroïdes ou comètes) qui gravitent dans le voisinage de la Terre. Les NEO sont définis par un périhélie q ≤ 1.3 AU et un aphélie Q ≥ 0.983 AU. Leur définition est 3.2 Caractériser la population globale 61 quelque peu arbitraire, et englobe celle des géocroiseurs à proprement parler (Q ≥ 0.983 et q ≤ 1.0167). La figure 3.2, inspirée de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF], représente l'ensemble des objets observés pour une magnitude inférieure à 15, soit d'une taille approximativement supérieure à quelques km. Sur le long terme des variations d'excentricité martienne (voir le chapitre suivant), les croiseurs martiens vérifient q 1.8 (pour son excentricité actuelle, q ≤ 1.66). On constate que la proximité de Mars avec la ceinture d'astéroïdes l'expose à un bombardement plus intense.
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La zone grisée correspond à la famille des comètes dynamiquement liées à Jupiter 

Caractériser la population globale

Distribution orbitale et magnitude absolue

Comme nous l'avons dit précédemment, les observations télescopiques sont nécessairement biaisées. Les travaux de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] et Stuart [2001] s'attachent à éliminer ce biais. Il faut souligner qu'à l'époque où ces travaux furent publiés, moins de 50 % des objets de magnitude H < 18 recensés aujourd'hui avaient été découverts. Même si les observations actuelles présentent quelques divergences avec les modèles, ceux-ci restent les plus complets à ce jour. De manière générale, la procédure qui s'applique à corriger les observations consiste à définir une probabilité de détection qui dépend de l'orbite de l'objet, de sa luminosité, et des conditions dans lesquelles se fait l'observation.

Les estimations de Stuart [2001] s'appuient sur les donnés obtenues par le programme LINEAR (pour H < 22.5, soit pour un diamètre supérieur à la centaine de mètres environ). La méthodologie décrite dans Stuart [2003] est la suivante : après sélection d'une triade (a, e, i), une population d'ellipses d'orientation aléatoire est générée par un choix équiprobable de Ω et ω ; des particules sont disposées tout le long de chaque ellipse en distribuant la valeur de f ; les particules sont détectées ou non en fonction de la fraction de temps pendant laquelle le télescope pointe dans telle ou telle direction ; la valeur maximale de H qui permette une détection, selon les conditions atmosphériques et les caractéristiques techniques du détecteur, est déterminée ; la fraction de chaque quadruplet (a, e, i, H) détecté est enfin convertie en une probabilité de détection. La probabilité de détection, combinée aux observations, permet d'obtenir par inversion le modèle orbital le plus probable. Stuart [2001] ne trouve aucune corrélation entre H et (a, e, i). [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] utilisent une approche différente. Par le biais de simulations numériques intensives, ils intègrent le comportement orbital de milliers de particules tests initialement placées au niveau des principales résonances, et calculent la fraction de temps qu'elles passent au niveau de chaque point de l'espace (a, e, i). Ils construisent ainsi, pour chaque source, une carte de temps de résidence (ou de probabilité de présence) dans l'espace des géocroiseurs. Par comparaison avec les observations préalablement débiaisées du programme Spacewatch (observations pour H < 22), ils déduisent la contribution relative de chaque source et construisent le modèle orbital global, étant entendu que la population des croiseurs, réalimentée par la ceinture d'astéroïdes, est en équilibre.

Ils concluent que les résonances qui alimentent principalement les croiseurs se situent sur le bord interne de la ceinture principale (v 6 , 3 : 1, croiseurs martiens), mais que les autres sources sont également significatives. Considérant que chaque région source présente la même distribution de magnitude, et s'appuyant sur de précédents travaux [Bottke et al., 2000a;[START_REF] Rabinowitz | A reduced estimate of the number of kilometre-sized near-Earth asteroids[END_REF], ils donnent une relation pour N (< H) en fonction de H. La figure 3.3 compare ces deux modèles avec l'ensemble des observations disponibles au mois de novembre 2007 (compilées par E. Bowell dans le fichier astorb.dat1 ). Les trois premiers tableaux représente les distributions marginalisées sur a, e et i, pour l'ensemble des objets de magnitude H < 18. Le dernier tableau donne le nombre d'objets d'une magnitude inférieure à H, en fonction de H. Comme on peut le voir, les observations ont aujourd'hui atteint un niveau qui s'approche du total estimé par les modèles pour H < 18, et ne présentent pas un accord idéal avec les modèles. Le nombre d'objets en fonction de H est donné comme une loi de puissance qui s'écrit Stuart [2001] donne un estimation plus élevée : N (H < 18) = 1227 +170 -90 , tandis que la distribution en magnitude s'éloigne quelque peu d'une loi de puissance. Son meilleur ajustement pour l'équation (3.3) donne α H = 0.39 ± 0.013.

N (< H) = N (< H 0 )10 α H (H-H 0 ) . (3.3) Bottke et al. [2002] donnent α H = 0.35 ± 0.02 et N (H < 18) = 960 ± 120.
Le modèle de Bottke et al. (représenté par la figure 3.4) présente l'immense avantage de donner une représentation quasi-continue de la distribution orbitale en terme de probabilité de présence. Même si le total des observations s'approche du total prédit par ces auteurs, elles s'assimilent à un instantané. La durée de vie des croiseurs étant de l'ordre de 10 Ma [START_REF] Morbidelli | Orbital and temporal distributions of meteorites originating in the asteroid belt[END_REF]Morbidelli, 1999], le modèle de Bottke et al. nous fournit, dans l'idéal, une image à long terme de la distribution d'équilibre. Qui plus est, l'évolution des observations nous semble plutôt en faveur de ce modèle. Il faut noter que le nombre absolu d'objets tels que H < 18 est un paramètre qui nous apparaît comme l'un des moins contraints dans le travail de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF]. Il n'est pas exclu que ce nombre soit sous-estimé, et qu'il s'approche en réalité du total estimé par Stuart Mars, selon la valeur de l'excentricité martienne, très variable (voir le chapitre suivant). Le modèle de Bottke et al. s'étend jusque q = 1.3 UA. La similarité des distributions pour H < 15 et H < 13 apporte une bonne confiance dans le fait que l'observation des objets de magnitude H < 15 est relativement complète [Ivanov, 2001;[START_REF] O'brien | The collisional and dynamical evolution of the main-belt and nea size distributions[END_REF] dans la zone des croiseurs martiens. Considérant que ces objets représentent un bon compromis entre complétion des observations et nombre statistiquement suffisant d'objets, nous faisons l'hypothèse que leur distribution orbitale actuelle est représentative du temps de résidence relatif dans l'espace de phase (a, e, i). Pour construire un modèle de croiseurs global, nous attribuons à chaque objet observé tel que H < 15 une densité de présence α calculée comme αN obs (1.25 < q < 1.3) = N Bot (1.25 < q < 1.3), où N Bot est le nombre de NEO du modèle de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] pour une magnitude quelconque (par exemple H = 18). En combinant les objets observés pour lesquels Périhélie q (UA) Nombre cumulé d'objets N(< q) Mars q = 1.3 UA Fig. 3.5 -Nombre cumulé d'objets de périhélies inférieurs à q, en fonction de q, pour différentes magnitudes. Les détails sont donnés dans le texte. estimé auquel la population est réapprovisionnée par la ceinture principale. Si cet appauvrissement n'est pas pris en compte, on doit s'attendre à calculer des probabilités d'impact invraisemblablement élevées pour les projectiles très faiblement inclinés (et même infinies pour une inclinaison nulle), et à en déduire que seul ce type de projectiles contribue au bombardement. Les études existantes [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF]Stuart et Binzel, 2004], ignorent ce phénomène en calculant simplement la probabilité d'impact associée au centre de chaque cellule de leur modèle, ce qui correspond à une inclinaison minimale de 2.5 • . Il nous semble cependant nécessaire de mettre en lumière cette source potentielle d'erreur, si l'on devait considérer que chaque cellule est uniformément peuplée.

Nous modélisons cet appauvrissement pour les projectiles qui croisent l'orbite terrestre en considérant qu'il n'est significatif qu'en-deça d'une inclinaison de Nous devons mentionner que le modèle de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF], pour des raisons pratiques, néglige de prendre en compte certaine régions sources dans leurs simulations. Les réservoirs utilisés, ceux au niveau desquels des particules test ont été injectées puis suivies à la manières de traceurs, sont les suivants : la résonance v 6 avec Saturne, la résonance 3 : 1 avec Jupiter, les croiseurs martiens dont le comportement orbital reproduit celui de la ceinture principale (IMC, pour intermediate Mars-crossers), la ceinture d'astéroïdes externe (qui comporte de nombreuses résonances), et enfin les comètes écliptiques. Les régions écartées, avec le souci de réduire le nombre de paramètres et le coût calculatoire, sont par exemple la famille des Hungarias et celle des Phocaeas. Ces familles, qui possèdent une inclinaison moyenne relativement élevée, bordent la région des IMC. Des tests effectués par [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] tendent à montrer qu'elles ne génèrent pas un afflux significatif d'objets vers la région des géocroiseurs, au regard des principales régions sources énumérées plus haut. Stuart [2001] voit dans la non inclusion de ces familles la raison de la principale différence avec son modèle, à savoir une plus grande proportion d'objets fortement inclinés. La nette augmentation des observations -qui approchent de la complétude et dont le biais observationel se réduit nécessairement -ne révèle pas un tel comportement orbital. Pour cela, nous allons dans le sens des conclusions de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF].

Le modèle ne prend pas non plus en compte la contribution possible du nuage d'Oort, c'est-à-dire des comètes quasi-isotropes (NIC), puisqu'aucune n'a été découverte parmi les NEO par le programme Spacewatch. La plupart des travaux récents suggèrent cependant que cette contribution est relativement mineure, de l'ordre de 10 % [START_REF] Weissman | Evolution of comets into asteroids[END_REF][START_REF] Bottke | Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion[END_REF]. [START_REF] Strokes | Report of the Near-Earth Objects Science Definition Team: A study to determine the feasibility of extending the search for near-Earth objects to smaller limiting diameters[END_REF] considèrent même que cette contribution est de l'ordre de 1 %.

Concernant les satellites des géantes gazeuses, très peu d'informations sont à disposition. L'éloignement rend l'observation très difficile et les statistiques concernant les croiseurs du système solaire externe sont minces. Qui plus est, les résonances capables d'éjecter les objets de la ceinture de Kuiper restent mal connues. Les travaux de [START_REF] Zahnle | Cratering rates on the Galilean satellites[END_REF], [START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF] et plus récemment [START_REF] Schenk | Ages and interiors : the cratering record of the Galilean satellites[END_REF] considèrent que la formation des cratères est majoritairement due aux comètes ecliptiques, provenant soit de la ceinture de Kuiper, soit du disque trans-neptunien [Duncan et Levison, 1997], et que les comètes quasi-isotropes ne sont pas significativement impliquées. La vitesse à l'infini des comètes qui heurtent Jupiter est en moyenne de l'ordre de ∼ 5 km.s -1 [Levison et Duncan, 1997;[START_REF] Levison | Note : Planetary impact rates from ecliptic comets[END_REF] -en comparaison, cette vitesse est pour la Terre trois fois supérieure -et une expression analytique qui reproduit grossièrement la distribution des vitesses pour les quatre planètes gazeuses peut-être consultée dans [START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF]. Ce basant sur les 144 impacts observés sur Jupiter [Levison et Duncan, 1997], [START_REF] Zahnle | Cratering rates on the Galilean satellites[END_REF] et [START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF] considèrent que la distribution en inclinaison des projectiles joviens est isotrope.

De la magnitude au diamètre

Pour générer des cratères d'impact, il nous faut connaître la distribution en taille des croiseurs. Les estimations de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] et Stuart [2001], qui donnent la distribution de magnitude des géocroiseurs, sont convertibles en distributions de taille si l'albédo est connu (Eq. (3.2)). Les deux études considèrent qu'il n'existe pas de corrélation entre la magnitude H et les paramètres orbitaux (a, e, i). La difficulté provient du fait que les croiseurs appartiennent à des classes taxinomiques très variées [START_REF] Binzel | Observed spectral properties of near-earth objects : results for population distribution, source regions, and space weathering processes[END_REF] définit dix complexes taxinomiques qui regroupent chacun plusieurs classes, dont C et S ne sont que particulièrement représentatives) et présentent donc une grande variété d'albédos. Malheu-3.2 Caractériser la population globale 69 reusement, un nombre limité d'objets a été soumis aux mesures infrarouges qui permettent de déterminer albédo et classe taxinomique. [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF] estiment la distribution en albédo pour chacune des régions sources qui contribuent à alimenter le modèle construit par [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF]. Pour cela, ils s'appuient sur les mesures d'albédo obtenues pour les plus gros objets, et extrapolent les distributions obtenues à des tailles qui correspondent aux objets qui peuvent être éjectés de leurs sources et devenir des géocroiseurs. En combinant ces distributions selon la contribution relative de chaque source, ils obtiennent la distribution d'albédo pour l'ensemble des géocroiseurs.

Celle-ci leur permet de convertir chaque magnitude en une variété de diamètres, et de bâtir la distribution globale de taille des géocroiseurs. Considérant que la frontière qui sépare objets brillants et objets sombres se situe à un albédo de 0.089 [START_REF] Tedesco | Asteroid albedos and diameters[END_REF], ils attribuent à chaque objet une densité de 2700 kg m -3 si p v < 0.089, et une densité de 1400 kg m -3 si p v > 0.089. Ils calculent ainsi la probabilité d'impact (voir le chapitre 5) avec la Terre en fonction du diamètre, de la densité et de la vitesse du projectile, c'est-à-dire en fonction de l'énergie d'impact, et en déduisent le risque encouru. Stuart et Binzel [2004] poursuit les mêmes objectifs, en utilisant une approche complémentaire. Ils se basent sur les données taxinomiques de Binzel et al. [2004], sur les données d'albédo de Delbó et al. [2003] et sur le modèle orbital de Stuart [2001], et considèrent que les distributions d'albédo et les proportions taxinomiques ne sont corrélées qu'avec la valeur du paramètre de Tisserand (qui, rappelons-le, discrimine les comètes des astéroïdes). Ils obtiennent, en dé-biaisant les observations, une estimation de la proportion relative de chaque classe taxinomique contribuant à former la population des géocroiseurs, ainsi que l'albédo moyen de chaque classe, et déduisent la distribution en diamètre de la distribution en magnitude.

Les deux études concluent que l'albédo moyen des géocroiseurs est de l'ordre de 0.13 -0.14. La correspondance entre diamètre et magnitude est alors H = 17.8 ⇔ d = 1km, plutôt que H = 18 ⇔ d = 1km. D'après le travail de Stuart, cet albédo moyen se scinde en deux albédos représentatifs selon la valeur du paramètre de Tisserand : p v = 0.08 pour T ≤ 3 (comètes) et p v = 0.16 pour T > 3 (astéroïdes). Le nombre de NEO d'un diamètre supérieur au kilomètre est estimé à 855±110 pour [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF] et à 1090±180 pour Stuart et Binzel [2004]. Ces derniers estiment alors que la probabilité annuelle d'impact sur la Terre pour les géocroiseurs d'un diamètre supérieur au kilomètre est 1.67 +04 -0.3 × 10 -6 (cela correspond à un impact tous les 0.60 ± 0.1 Ma). Les estimations du flux d'impact terrestre en fonction du diamètre des projectiles sont très similaires pour [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF] (voir la figure 7 de Stuart et Binzel [2004], qui compare les deux travaux), et ce malgré l'écart qui existe au niveau de l'estimation du nombre absolu de projectiles. Cela provient sans doute du fait que l'excédent de projectiles estimé par Stuart est compensé par leur plus forte inclinaison, et donc par leur plus faible probabilité d'impact (voir le chapitre 5). Stuart et Binzel [2004] estiment la densité moyenne des objets qui heurtent la Terre à 2050 kg m -3 . Cette estimation se base sur la moyenne des objets, pondérée à la fois par leur distribution taxinomique et par leur probabilité d'impact avec la Terre. Le ratio NEO sombres sur NEO brillants est donné à 1.6 par ces mêmes auteurs, pour un diamètre donné. Il est pourtant frappant de constater que la même valeur de densité est obtenue en considérant que la population des impacteurs terrestres est composée à parts égales d'objets brillant de densité 2700 kg m -3 et d'objets sombres de densité 1400 kg m -3 , laissant supposer que le ratio objets ombres / objets brillants qui participent effectivement au bombardement est proche de l'unité.

Dans la mesure où la répartition objets sombres / objets brillants n'est pas identique pour toutes les régions sources (une plus grande proportion d'objets sombres provient du bord externe de la ceinture principale ou bien sont des comètes dormantes), la distribution orbitale pour un diamètre d donné est quelque peu différente de celle pour une magnitude H donnée. En particulier, la proportion d'objets de demi-grand axe a > 2.5 AU est plus grande dans le premier cas que dans le second, et la proportion d'objets pour lesquels e < 0.6 plus faible, puisque la majorité de ces objets vérifie a < 2.5 AU (voir [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF]).

Nous prenons en compte ces différences, même si elle restent modérées. Ne disposant pas du modèle orbital recalculé pour d par [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF], et ce modèle n'incluant pas de toute façon les croiseurs martiens, nous convertissons notre modèle orbital global en considérant l'albédo moyen selon le paramètre de Tisserand jovien, T , d'après Stuart et Binzel [2004]. Puisque le paramètre T reste raisonnablement inchangé durant l'évolution orbitale des objets, il permet de déterminer grossièrement la provenance des objets. La conversion des objets se fait en calculant la valeur de T pour chacun des objets, et en déduisant la magnitude pour un certain diamètre, à l'aide de la valeur d'albédo correspondant à ce T . Ainsi, pour d = 1 km (par exemple), un astéroïde (T > 3) se voit attribuer un magnitude (H 1 ) plus grande qu'une comète (H 2 ). La proportion relative d'objets pour une magnitude donnée (par exemple H = 18) est alors recalculée pour un diamètre d = 1 km à l'aide de l'équation (3.3), de telle sorte que n(a, e, i, d) = n(a, e, i, H)10 α H (H i -18) , H i correspondant à H 1 ou H 2 selon la valeur de T donnée par (a, e, i). Le modèle résultant, donné par la figure 3.9, est très similaire à la figure 5 de [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF]. 

F (> E) = 3.7 E -0.9 , (3.6) pour E ∈ [∼ 0.1, ∼ 30] ktons. Utilisant une vitesse d'impact moyenne de 20.3
km.s -1 calculée à partir du modèle de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF], ils convertissent cette estimation en terme de masses (E = 0.5 m v 2 ) telle que

F (> m) = 27.83 × 10 3 m -0.9 , (3.7) pour m ∈ [∼ 1.5 × 10 3 , ∼ 1.5 × 10 6 ] kg.
Enfin, considérant que tous les objets possèdent une densité ρ de 3000 kg.m -3 (un compromis entre la densité des chondrites primitives carbonnées et celle des chondrites ordinaires), ils donnent

(m = π 6 ρd 3 ), F (> d) = 37. d -2.7 , (3.8) pour d ∈ [∼ 1, ∼ 10] m.
Le prolongement de cette loi de puissance vers les plus faibles énergies est en bon accord avec les estimations de [START_REF] Halliday | Detailed data for 259 fireballs from the canadian camera network and inferences concerning the influx of large meteoroids[END_REF]. A partir des observations réalisées par le réseau canadien de caméras au sol MORP, qui, au cours d'une On peut s'interroger sur la légitimité pour [START_REF] Brown | The flux of small near-Earth objects colliding with the Earth[END_REF] d'utiliser une vitesse d'impact moyenne calculée à partir du modèle de [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF], modèle donné valide par ses auteurs pour H < 22, soit m 10 9 kg. En particulier, on peut s'inquiéter de l'effet de la pression radiative solaire (effet Yarkovsky), puisque celle-ci est censée affecter d'autant plus les objets qu'ils sont petits. Nous utilisons pour vérification la base de données2 compilée par [START_REF] Lindblad | Iau meteor database of photographic orbits -version 2003[END_REF],

qui recense un grand nombre d'observations de météores par de multiples programmes de recherches [START_REF] Mccrosky | Prairie network fireballs. i -general information and orbits[END_REF][START_REF] Ceplecha | Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks[END_REF][START_REF] Halliday | Detailed data for 259 fireballs from the canadian camera network and inferences concerning the influx of large meteoroids[END_REF][START_REF] Oberst | The "european fireball network" : Current status and future prospects[END_REF]. 

Distribution en taille

La figure 3.8 fait la synthèse des principales estimations de la probabilité d'impact avec la Terre en fonction de la taille des objets [START_REF] Halliday | Detailed data for 259 fireballs from the canadian camera network and inferences concerning the influx of large meteoroids[END_REF][START_REF] Revelle | Bolide dynamics and luminosity modeling : comparisons between uniform bulk density and porous meteoroid models[END_REF][START_REF] Brown | The flux of small near-Earth objects colliding with the Earth[END_REF][START_REF] Harris | A New Estimate of the Population of Small NEAs[END_REF][START_REF] Rabinowitz | A reduced estimate of the number of kilometre-sized near-Earth asteroids[END_REF][START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF]Stuart et Binzel, 2004]. [START_REF] Harris | A New Estimate of the Population of Small NEAs[END_REF] 

P T erre (> d) = 8 × 10 -8 d -2.95 pour 10 cm < d < 100 m , P T erre (> d) = 1.5 × 10 -6 d -1.7 pour 100 m < d < 2 km , (3.9) P T erre (> d) = 2.8 × 10 -6 d -2.3 pour 2 km < d < 20 km . (3.10)
On a donc une pente d'environ 2 pour les projectiles dont la taille s'étale de la centaine de mètres à quelques dizaines de kilomètres. Elle correspond aux pentes observées sur les populations de cratères des planètes telluriques. Sans entrer dans les détails (cela sera fait au chapitre 7), la pente de la distribution de cratères complexes (cratères plus grands qu'un diamètre de transition, allant de 3 à 20 kilomètres selon les planètes) correspond grossièrement à celle des projectiles. Il s'avère que sur Terre, la pente de la distribution des cratères plus grands que 20-30 km est de 1.8 [START_REF] Grieve | The record of past impacts on Earth[END_REF]. Il en va de même sur la Lune [Shoemaker, 1983]. On observe une pente de 2 pour les cratères martiens de diamètre compris entre 10 et 50 km [START_REF] Strom | The Martian impact cratering record[END_REF], et pour les cratères vénusiens de taille supérieure à 35 km [START_REF] Schaber | Geology and distribution of impact craters on venus -what are they telling us ?[END_REF]. Dans le cas des satellites galiléens, la pente est plutôt de l'ordre de 2.2 [Shoemaker et Wolfe, 1982], ce qui laisse à penser que, même si la population de projectiles est différente, leur distribution en taille reste relativement similaire. préconisée par Ivanov [2006]. On la note S(> d) telle que The Imbrian is divided into the two Epochs of Early Imbrian and Late Imbrian, which have greatly differing styles of geological activity (rock stratigraphic units, i.e, systems, are not used in this paper). Although the chronostratic divisions into these two Epochs (the Nectarian and the pre-Nectarian) are perfectly clear, the correlation with absolute time is less established, although the age of the Fra Mauro Formation (Imbrium ejecta morphology) that defines the division of Early Imbrian and Nectarian is fairly well established at 3.84 or 3.85 Ga (e.g., Dalrymple and Ryder, 1993).

Synthèse

S(> d) = 6.31 × 10 -2 d -2.9 pour 10 -4 < d < 0.1 km , S(> d) = d -1.7 pour 0.1 < d < 2 km , S(> d) = 1.87 d -2.6 pour 2 < d < 15 km , S(> d) = 5.52 × 10 -2 d -1.
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during the Nectarian Period, including Serenitatis and Crisium, whose ejecta regions have been sampled (Apollo 17 and Luna 20). The Schrödinger Basin is Early Imbrian, as are several large craters, including some that are almost 200 km in diameter. The oldest mare deposits were erupted in the Late Imbrian Epoch, the end of which is defined in terms of crater degradation and crater counts in the absence of any globally useful stratigraphic-datum horizons comparable to basin ejecta. The dating of these boundaries, as well as of other basins within the stratigraphic units, defines the chronology of lunar bombardment and the flux over the main period of interest here. Absolute ages quoted have been recalculated using the revised decay constants of Steiger and Jäger (1977), and thus most are slightly younger than those given in some of the original publications.

Although these divisions for lunar time were introduced above in normal stratigraphic sequence from oldest to youngest, it is more convenient to discuss the absolute dating of the boundaries from youngest to oldest, from the simplest interpretations based on the best preserved impact craters, to the more difficult.

2.2.1. The oldest mare surfaces. The Late Imbrian Epoch commenced with the formation of the Orientale Basin, the final large multiring basin to have formed on the Moon. It was followed by few large (>10 km) cratering events. The end of the Late Imbrian Epoch is arbitrarily Fig. 2. Stratigraphy and chronology of early lunar history, based on relative stratigraphy discussed in Wilhelms (1987) and absolute age inferences as discussed in this paper. The basins with underlined names define the stratigraphic column. Some other significant events or features of early lunar history are shown. While significant impacting and contraction of the geologic column is obvious at 3.8-3.9 Ga, the event/time correlations within the pre-Nectarian, and even the age of the Nectaris Basin, are much more contentious. The age of the oldest Akilia sediments, discussed in this paper, are shown (**) for comparison with lunar stratigraphy. La nature chaotique des orbites planétaires est vérifiée par l'usage de simulation numériques lourdes qui intègrent les équations du mouvement de l'ensemble des planètes [START_REF] Sussman | Chaotic evolution of the solar system[END_REF]. En raison de l'incertitude sur les modèles et les conditions initiales, la nature chaotique du système interdit l'obtention d'une solution précise au-delà de quelques dizaines de millions d'années. Cependant, une étude statistique est possible : en compilant les solutions obtenues pour 1000 simulations basées sur des conditions initiales très proches, [START_REF] Laskar | Chaotic diffusion in the solar system[END_REF] est à même de produire des fonctions de densité de présence des paramètres orbitaux des planètes sur un intervalle de temps quelconque. Les simulations intègrent numériquement les équations séculaires moyennes développées par [START_REF] Laskar | A numerical experiment on the chaotic behaviour of the solar system[END_REF],
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obtenues par expansion en séries de Fourier des perturbations des orbites képlériennes.

Laskar [2008] constate que les résultats obtenus pour l'excentricité et l'inclinaison sont reproduits de manière excellente par des fonctions densité de Rice, qui s'expriment Webb [1982] propose un modèle de dissipation qui fait la moyenne statistique de multiples géométries océaniques. Ce modèle produit un âge lunaire supérieur à 3 Ga, encore insuffisant mais nettement meilleur. La croissance des coraux, qui répond à des cycles journaliers et annuels [START_REF] Lambeck | The Earth's variable rotation[END_REF], ainsi que le taux de dépôt des sédiments sur les bordures oceániques [START_REF] Sonett | Neoproterozoic earth-moon dynamics : rework of the 900 ma big cottonwood canyon tidal laminae[END_REF] Enfin, la cible possède une masse capable d'attirer à elle les projectiles passant à proximité, « avantage » dont ne bénéficie pas l'archer. Les travaux successifs de Öpik [1951], Wetherill [1967], Greenberg [1982] et enfin Bottke et Greenberg [1993] ont permis l'établissement d'un formalisme qui prend tout ceci en compte dans la détermination de la probabilité d'impact. 

f R (x) = x σ 2 e -x 2 +m 2 2σ 2 I 0 x m σ 2 , ( 4 
f o b( ) = sin 2m [erf (b(1 -cos + m)) -erf (b(1 -cos -m))] , ( 4 
sin i ∞ = -U Z U ∞ , (5.5) cos j ∞ = -U X U 2 X + U 2 Y , (5.6) sin j ∞ = -U Y U 2 X + U 2 Y .
(5.7)

Les formules présentées ou établies plus loin dans ce chapitre permettent, pour chaque projectile (a, e, i), de calculer la probabilité d'impact avec une cible donnée. Cette probabilité d'impact dépend de la géométrie des deux orbites, mais aussi de la masse et du rayon de la cible, comme nous le verrons. Pour chaque objet (a, e, i), la probabilité d'impact s'associe à des conditions d'approche particulières. En répétant ce calcul pour l'ensemble des objets, et en pondérant les résultats par la proportion relative de tel ou tel objet (n(a, e, i)), on construit pour une cible donnée la distribution de probabilité des conditions d'approche Au début de la phase d'approche, le projectile possède une vitesse relative non nulle à une distance infinie de la cible. Son énergie totale par unité de masse dans le référentiel de la cible de masse M 0 est donc (2) la description des orbites qui pénètrent dans un système planète-satellite, en vue de déterminer la probabilité d'impact avec le satellite (ce chapitre, section 3). La dernière égalité fait usage d'un nombre sans dimension qui se révélera un paramètre important de notre étude, tel que 

P (U ∞ , i ∞ , j ∞ ),
ξ = 1 2 U 2 ∞ - GM 0 ∞ = 1 2 U 2 ∞ > 0 , ( 5 
τ = R 0 1 + 2 GM 0 R 0 U 2 ∞ = R 0 1 + v 2 e U 2 ∞ = R 0 √ 1 + ∆ , ( 5 
∆ = 2 GM 0 R 0 U 2 ∞ , ( 5 
ω 1 = cos -1 C ; ω 2 = -cos -1 C ; ω 3 = π -cos -1 C ; ω 4 = π + cos -1 C . (5.
P ω = ∆ω 2π × ∆t T 0 , (5.16)
où ∆ω 2π est la fraction angulaire sur l'espace des valeurs de ω qui permet à un impact de se produire (potentiellement) autour de ω n , et où ∆t T 0 est la fraction de temps pendant laquelle les deux objets sont suffisamment proche l'un de l'autre pour que la collision ait réellement lieu, T 0 étant la période orbitale de la cible.

5.2 Formalisme d'Opik : probabilité d'impact avec une planète 97 Les composantes de la vitesse relative au noeud commun, U ∞ , se calculent dans le repère orbital (OXY Z) comme

         U 2 X = v 2 0 2 -a 0 a -a a 0 (1 -e 2 ) , U Y = -v 0 a a 0 (1 -e 2 ) cos i -1 , U 2 Z = v 2 0 a a 0 (1 -e 2 ) sin 2 i , (5.17) et donc U 2 ∞ = v 2 0 3 - a 0 a -2 a a 0
(1e 2 ) cos i , (5.18) avec v 0 la vitesse orbitale de la planète telle que v 0 = (GM S +GM 0 ) a 0 GM S a 0 . On considère que U ∞ est la vitesse relative au vrai point de collision, celuici se trouvant dans le voisinage du noeud commun, voisinage quasi ponctuel au regard de la distance planète-Soleil. On rappelle que la vitesse U ∞ n'inclut pas la perturbation gravitationnelle de la planète. On s'autorise à la qualifier de vitesse à l'infini en considérant que la distance au-delà de laquelle la perturbation gravitationnelle liée à la cible est négligeable (rayon de la sphère de Hill) est elle aussi très petite comparée à la distance planète-Soleil. Notons que par commodité pour la suite de notre étude, nous n'utilisons pas le repère traditionnel utilisé par Opik et ses successeurs. Dans ce dernier (appelons-le (Oxyz)), U x = -U X et

U y = -U Y .
Il y a collision lorsque la distance qui sépare les deux corps est inférieure à une certaine valeur d min . Si on ne prend pas en compte l'attraction gravitationnelle, et si on considère que le projectile est suffisamment petit au regard de la cible pour être assimilé à un objet ponctuel, on a d min = R 0 , où R 0 est le rayon de la planète cible. En réalité, la planète, massique, attire à elle par gravité un certain nombre de projectiles qui passent à proximité. L'impact aura lieu si d min ≤ τ , où τ est le rayon de la section gravitationnelle de la cible, donné par l'équation (5.10).

La fraction angulaire sur l'espace ω qui permet à la distance minimale entre les deux orbites d'être inférieure à τ s'exprime

∆ω 2π = τ a 0 1 π sin i U 2 ∞ -U 2 Y |U X | . (5.19)
La fraction temporelle est quant à elle donnée par

∆t T 0 = τ 4a 0 U ∞ U 2 ∞ -U 2 Y .
(5.20)

La probabilité totale d'impact par unité de temps est donnée par P = P orb /T , où T = 2πa 3/2 / √ GM s est la période orbitale de l'astéroïde. La probabilité d'impact annuelle, puisque 1 an 

√ GMs 2π , est donc P = τ 2 a 2 0 U ∞ |U X | 1 π sin i a -3/2 . ( 5 
U Z = ± U 2 Z .
Il en va de même pour U Z selon que l'approche se fait dans le sens planète-Soleil ou inversement (U X = ± U 2 X ). Chacune des quatre géométries résultantes est équiprobable. Ainsi, par exemple, une collision de probabilité P aura lieu dans 25 % des cas alors que le projectile plonge vers la planète (U Z > 0) avant d'avoir atteint son périhélie (U X > 0).

Il faut enfin mettre en évidence le fait que la probabilité d'impact donnée par l'équation (5.21) présente deux singularités. Elle tend vers l'infini quand i ou bien U x tendent vers zéro. Le premier cas est soluble en posant sin i = τ /a 0 quand sin i < τ /a 0 . Le deuxième, qui correspond à une collision au niveau du périhélie ou de l'aphélie du projectile, se résout en posant

U x = U min quand U x < U min , avec U min = τ a 0 v 0 a a 0 (1 -e 2 )
. Cela permet de conserver la validité du calcul avec une précision du troisième ordre [START_REF] Dones | Dynamical lifetimes and final fates of small bodies: Orbit integrations vs Öpik calculations[END_REF]. .22) où P est définie pour q ≤ a l , (5.23) avec q = a(e -1) le péricentre de l'hyperbole. On note que a,e et i font ici référence aux éléments orbitaux de l'hyperbole, i étant l'inclinaison du projectile par rapport au plan orbital du satellite.

Orbites hyperboliques

P = τ 2 a 2 l U ∞ |U x | 1 π sin i , ( 5 
La différence principale réside dans l'expression de la vitesse relative d'approche, qui fait intervenir le péricentre q. Comme indiqué dans Shoemaker et

Wolfe [1982], celle-ci est donnée par 

                 U 2 ∞ = v 2 l 3 -a l (1-e) q -2 q a l (1 + e) cos i , U 2 X = v 2 l 2 -a l (1-e) q -q a l (1 + e) , U Y = -v l q a l (1 + e) cos i -1 , U 2 Z = v 2

Cas général

Nous nous plaçons ici dans le cas où la planète cible possède une excentricité e 0 et une inclinaison i 0 non nulles. Cela complique sensiblement l'expression et le calcul de la probabilité d'impact, qui dépend alors de deux variables supplémentaires, ω 0 et Ω 0 . Nous attestons ici des principales formules et de la démarche générale qui mènent à l'obtention de cette probabilité, le détail de celles-ci pouvant être trouvé dans le travail original de Greenberg [1982] et Bottke et Greenberg [1993]. Notons que Öpik [1951] incluait une simple facteur correctif à ses équations pour tenir compte de l'excentricité de la cible (voir aussi Shoemaker et Wolfe [1982]), ce qui fut démontré comme étant une source importante d'erreurs [Wetherill, 1967;Greenberg, 1982].

Avant toute chose, une collision n'est possible que si

q < Q 0 et Q > q 0 .
(5.25)

Si ces conditions sont respectées, il faut encore que l'orientation des deux orbites soit favorable.

On rappelle que la distance qui sépare le projectile du Soleil est donnée par Une autre valeur de Θ 0 , distante de π, est possible. La symétrie du problème permet pourtant de se cantonner à la valeur retournée par l'équation (5.27).

r = a(1 -e 2 ) 1 + eC ,
Une condition nécessaire à ce que la distance entre les deux orbites soit nulle (r = r 0 ) est r = r 0 , c'est-à-dire La vitesse de la particule au noeud commun est

C = 1 e (1 + e 0 C 0 ) a(1 -e 2 ) a 0 (1 -e 2 0 ) -1 . ( 5 
v 2 = GMs a(1-e 2 ) (1 + 2eC + e 2 ), v X = -v cos α, v Y = -v sin α cos i m , v Z = v sin α sin i m ,
(5.30) tandis que la vitesse de la cible est

v 2 0 = GMs a 0 (1-e 2 0 ) (1 + 2e 0 C 0 + e 2 0 ), v 0,X = -v 0 cos α 0 , v 0,Y = -v 0 sin α 0 , v 0,Z = 0 .
(5.31) La vitesse relative d'approche est donnée par

U ∞ = v -v 0 .
( 

∆ω 2π = τ π A(1 + eC) 2 a(1 -e 2 )e|S| sin i m , (5.33) avec A = [cot 2 α + cot 2 α 0 + sin 2 i m -2 cot α 0 cot α cos i m ] 1/2 , (5.34) et ∆t T 0 = πτ 2T 0 U ∞ /v 0 [U 2 ∞ -(U ∞,x cos α 0 + U ∞,y sin α 0 ) 2 ] 1/2 .
(5.35)

Pour un couple (ω 0 , ∆Ω) donné, et pour une des quatre géométries possibles, la probabilité de collision s'exprime

P ω 0 ,∆Ω = 1 (2π) 2 × ∆ω 2π × ∆t T 0 × 1 T , (5.36)
où le facteur 1 (2π) 2 tient compte de l'espace total sur ω 0 et ∆Ω. Afin d'obtenir la probabilité de collision totale selon toute les orientations orbitales possibles, P ω 0 ,∆Ω doit être évaluée aux quatre points correspondant à un couple (C, C 0 ) donné (c'est-à-dire à chaque quadruplet C, C 0 , ±S, ±S 0 ) comme il a été mis en évidence par Bottke et Greenberg [1993], puis intégrée (numériquement) sur l'espace ω 0 and ∆Ω. Pourtant, comme il est noté dans Bottke et al.

[1994], la vitesse et l'inclinaison d'approche dépendent de ω 0 et ∆Ω. Puisque nous souhaitons obtenir la distribution réelle des conditions d'approche et non la distribution de leurs valeurs moyennes sur un cycle de precession, nous évaluerons la probabilité de collision et les conditions associées pour chaque orientation orbitale donnée par le couple (ω 0 ,∆Ω). Notons que si l'orbite de la planète cible est parfaitement circulaire, cela n'est pas nécessaire. La distance qui sépare le projectile sur sa trajectoire hyperbolique du centre du système (centre de la planète) s'écrit, en posant C = cos f (Eq (2.17))

Formules applicables au satellite

r = q(1 + e) 1 + eC .
(5.37)

La valeur de C telle que r = a l est donc 

C l = q/a l (1 + e) -1 e . ( 5 
U v l 2 b l a l 2 - U v l 2 b l a l sin i sin i -sin δ cos i sin i -1 = 0 , ( 5 
cos i = cos δ cos i et sin i = √ 1 -cos 2 δ cos 2 i .
(5.40)

La solution (physiquement acceptable) de l'équation (5.39) est 

b l = a l 2   sin i sin i + sin i sin i 2 + 4 1 + tan δ tan i v l U 2   . ( 5 
                 U 2 ∞ = U 2 + 3v 2 l -2U v l b l a l cos i , U 2 X = U 2 1 -b l a l 2 + 2v 2 l , U Y = v l -U b l a l cos i , U 2 Z = U 2 b l a l 2 sin 2 i ,
(5.42) Les angles d'approche i ∞ et j ∞ en découlent via l'équation (5.7).

La différence essentielle avec les probabilités d'Öpik est que ces dernières s'appliquent en considérant que l'argument du péricentre ω varie uniformément.

Cela ne saurait être vrai ici, comme il est expliqué au début de cette section. où ∆ω 2π est la fraction angulaire sur l'espace des valeurs de ω qui permet à un impact de se produire autour de ω n , ω n étant l'argument du périhélie pour lequel les deux orbites s'intersectent exactement. Le second terme du produit, ∆t T 0 , représente la fraction de temps pendant laquelle les deux objets sont suffisamment proche l'un de l'autre pour que la collision ait réellement lieu, T 0 étant la période orbitale de la cible. De manière analogue, nous définissons notre probabilité comme

P l (U , i , δ) = ∆(b 2 ) b 2 max × ∆t T l , (5.44)
où ∆(b 2 ) est l'intervalle autour de b 2 l tel que la distance minimale qui sépare les deux orbites est inférieure à τ l , le rayon de la section gravitationnelle de la lune.

Ce sont les variations du carré de b qui nous intéressent ici, puisqu'il peut prendre une valeur équiprobable entre 0 et b 2 max , alors que b n'est pas uniforme. Le terme ∆t T l , où T l est la période orbitale de la lune, s'exprime exactement comme dans le cas des probabilités d'Öpik, c'est-à-dire, avec les notations de cette section, Or, d'après l'équation (B.4),

∆t T l = τ l 4a l U ∞ U 2 ∞ -U 2 Y . ( 5 
max = τ l 1 + U 2 X /U 2 Z .
(5.47) L'équation (2.17) donne r θ=π en fonction de q, e et cos ω. On exprime q, e et 

∂r θ=π ∂b 2 b=b l = 1 2a l U v l 2 sin i 2 sin i + 2 cos i sin δ + U v l 2 b l a l sin i sin i + cos i sin δ + U v l 2 b l a l sin i 2 . (5.48) 108 Probabilité d'impact et conditions d'approche
La probabilité s'exprime enfin

P l (U , i , δ) = τ 2 l a 2 l U ∞ |U Z | v 2 l 2v 2 l + U 2 1 sin i sin i + cos i sin δ + U |U Z | v 2 l sin i sin i 2 2 sin i + 2 cos i sin δ + U |U Z | v 2 l sin i sin i (5.49)
Pour respecter la symétrie du problème, on calcule cette probabilité pour +i et -i . On rappelle que b l n'est pas toujours défini. Dans ce cas, on pose P l = 0.

Le signe de la composante verticale de la vitesse d'approche avec la lune est choisi de manière équiprobable :

U Z = ± U 2 Z . Le signe de U X se détermine comme suit. Comme le montre la figure B.1, U X < 0 pour cos α > 0. D'après l'équation (B.1), cela correspond à S = sin f = sin(θ -ω) > 0, soit ω ∈ [0, π] pour le noeud descendant (θ = π). ω est donné par l'équation (A.34), et l'on a U X = -U 2 X pour ω ∈ [0, π] (5.50) U X = U 2 X pour ω ∈]π, 2π[ (5.51) 
(5.52)

Si U X est négatif (le projectile s'éloigne de la planète) alors que q ≤ R p , une collision avec la planète a nécessairement déjà eu lieu, et l'on pose P l (U , i , δ) = 0.

La valeur de b correspondant à q = R p est

b p = 2R p a l v l U 2 + R 2 p (5.53)
La probabilité d'impact avec la planète est donc

P p (U , i , δ) = 1 2 b 2 p b 2 max -P l (U , i , δ) = 1 2 R 2 p + 2R p a l v l U 2 a 2 l + 2a 2 l v l U 2 -P l (U , i , δ) , (5.54)
où le facteur 1/2 vient du fait que nous nous sommes restreints à l'un des deux noeuds possibles.

Méthodologie

Planètes

Nous résumons ici étape par étape la démarche qui permet la construction de la distribution de probabilité des conditions d'approche pour chaque planète ou retourne une valeur définie de C (entre -1 et 1) via l'équation (5.28). A partir de C, on trouve S = ± √ 1 -C 2 , dont le signe est choisi de manière équiprobable. S 0 est calculé de la même manière. Les couples (C 0 , S 0 ) et (C, S) déterminent une des quatre géométries de collision possibles, et permettent de calculer U ∞ , i ∞ , j ∞ et P ω 0 ,∆Ω (en utilisant successivement les équations (5.29),(5.31), (5.30),(5.32),(5.7),(5.33),(5.35) et (5.36)). Puisque la valeur de P ω 0 ,∆Ω est singulière quand i m = 0, on pose sin i m = τ /r 0 quand sin i m < τ /r 0 . Qui plus est, quand la collision a lieu près de l'aphélie ou du périhélie du projectile, S tend vers zéro et la probabilité vers l'infini. D'après Greenberg [1982], cela est évité en permutant de manière appropriée la définition du projectile et de la cible (voir la référence pour plus de détails). La probabilité de collision est finalement pondérée par le nombre relatif d'objets dont l'orbite est décrite par la triade (a, e, i), telle qu'elle a été déterminée au chapitre 3 par la quantité n(a, e, i). La procédure est répétée de sorte que p(U ∞ ) converge, et le nombre d'itérations est le même pour chaque planète. En sommant toutes les probabilités de collision calculées en construisant p(U ∞ ), puis en divisant par l'aire de la surface planétaire (4πR 2 0 ) nous obtenons le flux d'impact relatif entre les planètes. On note que si les variations séculaires de l'orbite de la cible sont incluses dans la simulation, une autre étape qui consiste à échantillonner e 0 et i 0 selon leur distribution de probabilité (cf. chapitre 4) est nécessaire à chaque itération. Si on considère que l'orbite de la planète est circulaire (approximation excellente pour la Terre et Venus), le calcul est très simplifié : on évalue les conditions d'approche ainsi que la probabilité de collision de chaque triade (a, e, i) avec les équations (5.17),(5.7) et (5.21).

5.4 Méthodologie 109 satellite, p(U ∞ ) (soit p(U ∞ , i ∞ , j ∞ )),

Satellites

On commence par calculer la distribution de probabilité des conditions d'approche avec le système planète-lune global, que l'on note p (U , i ). Notons que cette distribution de probabilité est intégrée sur toutes les valeurs possibles de l'angle j , ce dernier ne jouant aucun rôle en raison de la symétrie du problème.

p est calculée exactement de la même façon que dans le cas des planètes décrit juste au-dessus, à ceci près que la section gravitationnelle est ici posée comme étant U Z = ± U 2 Z de manière équiprobable et où le signe de U X est donné par l'équation (5.52) selon la valeur de ω, elle-même donnée par l'équation (A.34). Les angles d'approche sont donnés par l'équation (5.7). On en déduit la probabilité de collision P l donnée par l'équation (5.49) si U X > 0 et b l > b p , avec b p donné par l'équation (5.53). Dans le cas contraire, on pose P l = 0. On calcule ensuite la probabilité d'impact avec la planète P p (équation (5.54)). On pondère enfin la contribution de chaque projectile en multipliant P l et P p par p (U , i ). En répétant cette procédure sur l'ensemble des conditions d'approche avec le système planète-satellite, on construit la distribution des conditions d'approche avec le satellite p(U ∞ , i ∞ ). Le bombardement relatif entre la planète et sa lune s'obtient en prenant le ratio de la somme des P p sur la somme des P l . -un effet de bouclier terrestre qui réduit le nombre des impacts lunaires.

τ = a l 1 + 2 v l U 2 , ( 5 

Traitement simplifié du cas du satellite

-un effet de lentille gravitationnelle qui concentre une partie des projectiles vers la Lune.

Nous verrons que, pour notre modèle de projectiles et pour la distance Terre-Lune actuelle, cette approche s'avère être une approximation raisonnable. La probabilité d'impact est calculée à partir de l'équation (5.21) (en supposant ici par souci de simplicité que l'orbite terrestre est parfaitement circulaire), avec [START_REF] Neukum | Meteorite bombardment and dating of planetary surfaces[END_REF]Shoemaker et Wolfe, 1982;[START_REF] Zahnle | Cratering rates on the Galilean satellites[END_REF][START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF] considèrent que l'orientation du vecteur v l ∞ est isotrope dans le référentiel du satellite, et en déduisent une expression analytique traduisant l'accroissement du flux selon la distance angulaire à l'apex. Notons qu'ils ignorent de ce fait les autres asymétries potentielles (effet de latitude ou effet face visible / face cachée). Il reste possible de traiter l'effet de latitude en considérant que la Terre ne modifie pas substantiellement la distribution des i ∞ , mais l'étude de l'effet face visible / face cachée, qui ne dépend que de la présence de la Terre, nécessite une autre approche. Nous comparerons, au chapitre suivant, ce genre d'approximations avec nos résultats, plus rigoureux. obtenu en faisant pour chaque croiseur la moyenne des conditions d'approche sur un cycle de précession (probabilité intégrée sur ω 0 et ∆Ω). La figure 5.12 donne l'ensemble des distributions d'approche qui caractérisent le bombardement terrestre. On constate notamment que la distribution des j ∞ dépend fortement de la vitesse d'approche considérée. La distribution des coordon- It is also useful to look at the distribution of radiants after correcting for the probability of collision with the Earth, using Öpik's formalism as cited in Galligan and Baggaley ( 2004):

R 0 = R l , M 0 = M l , a 0 = a p .

Résultats
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n c ∼ v 2 ∞ v 2 g a 1.5 sin i 3 -a -1 -2 a(1 -e 2 ) cos i 2 -a -1 -a(1 -e 2 ) .
Here v ∞ is the meteoroid speed at the top of the atmosphere, without deceleration. Under certain conditions, the collision probability becomes infinite (an inclination of 0, for example, will produce this result); we dealt with this by setting the collision probability to 100 in such cases. The log of the collision probability is shown in Fig. 6. Each meteor radiant was individually corrected, after its collision probability had been calculated; the results are shown in Fig. 7. The main effect is to remove radiants on the ecliptic, which are very likely to collide with the Earth.

Comparison with previous studies

Positions and relative strengths of the apparent sporadic sources

We can compare the relative strengths of the apparent sporadic sources and their positions with other data. To find the positions and strengths, we have fitted a gaussoid function to each of the five sources, in the raw and the corrected data. This gives the relative activity, longitudinal and latitudinal width and position for each of the five apparent sources. The five uncorrected apparent sources are shown in Fig. 8; the positions and widths of the apparent sources (raw, and after bias corrections and weighting to a common limiting mass) are given in Table 1. For comparison, we have AMOR data from Galligan and Baggaley (2005), both raw and corrected; data from Brown and Jones (1995), who used raw data from Harvard and other radars to calculate positions and data from the Springhill and Christchurch radars gathered in the 1960s to calculate the corrected flux of each of the apparent sporadic sources; and raw positions and strengths from JRO (Chau et al., 2007).

In the raw CMOR data, the antihelion source is by far the strongest, with the helion and north apex having similar strengths. The AMOR data shows a similar antihelion strength, but the helion source is a smaller fraction of the antihelion strength (approximately 60%, compared to approximately 75% for CMOR). The sum of the apex sources [Galligan and Baggaley (2005) do not separate the north and south apex] is much greater in the raw AMOR data than the raw CMOR data. Galligan and Baggaley ( 2005 Les valeurs moyennes des grandeurs qui caractérisent le bombardement sont listées en table 5.1. 
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(U ∞ , i ∞ ). Au milieu. Probabilité de chaque couple (U ∞ , j ∞ ). A droite. Probabilité de chaque couple (i ∞ , j ∞ ).
Tab. 5.1 -Conditions moyennes du bombardement des planètes telluriques. 
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Hypothèse d'isotropie

Considérer que le bombardement est isotrope revient à dire que le flux d'impacts (nombre de projectiles qui heurtent la planète par unité de temps et de surface) est constant quelle que soit la valeur du couple (λ, ϕ), la latitude et la longitude géographiques.

En un point donné, l'élément surfacique s'exprime dS = R 2 0 cos λ dλ dϕ. Une densité d'impacts constante est donc vérifiée si la probabilité d'impact à une latitude donnée est proportionnelle à cos λ, et si la longitude du site d'impact est uniformément distribuée entre 0 et 2π. Outre la position de l'impact, il est important de connaître la valeur de l'angle d'incidence θ (que l'on choisit ici de mesurer par rapport à l'horizontale). En effet, cet angle joue un rôle important dans la détermination de la taille du cratère d'impact (chapitre suivant). Il peut aisément être montré [Pierazzo et Melosh, 2000] que cette probabilité est sin 2θ.

Notons que cela implique que l'angle d'incidence moyen à la surface de la planète est π/4.

Echantillonner une variable revient à identifier sa probabilité cumulée (et normalisée) avec un nombre aléatoire compris entre 0 et 1. Pour une variable donnée v, on appelle « probabilité cumulée et normalisée »la probabilité d'avoir une valeur de v supérieure (ou inférieure) à v, donnée par

P (> v) = Const.× vmax v P (v )dv , et normalisée telle que v P (> v)dv = 1.
On peut ainsi simuler un bombardement isotrope en tirant pour N impacts la position et l'angle d'incidence tels que 

         λ = sin -1 (2 x 1 -1) ϕ = 2πx 2 θ = 1 2 cos -1 (2 x 3 -1) , ( 6 

Expression analytique

La probabilité d'impact pour un type d'approche particulier peut s'écrire

p(U ∞ ) = τ b=0 2π δ=0 f (U ∞ ) db dδ = f (U ∞ )σ , (6.2)
où f , constant sur (σ), est le flux surfacique de projectiles qui traversent (σ), c'est-à-dire leur nombre par unité de temps et de surface. 

φ(β, U ∞ ) = Φ(β, U ∞ ) Φ(U ∞ ) = S 0 σ dσ dS = 4 τ 2 b db sin β dβ . ( 6 
= f i -f ∞ , où f i est l'anomalie vraie à l'impact, et f ∞ est l'anomalie vraie à l'infini (annexe A). On a donc    cos β = C i C ∞ + S i S ∞ , sin β = S i C ∞ -C i S ∞ . (6.6)
En faisant usage des équations (A.7)-(A.10), (A.11) et (6.6), on vérifiera que le paramètre d'impact b s'exprime en fonction de la distance angulaire d'impact au Le flux relatif en β, par unité de surface, une fois b db exprimé et inséré dans l'équation (6.5), est 

radiant β comme b = R 0 tan β/2 1 + tan 2 β/2 1 + 1 + ∆(1 + tan 2 β/
φ(β, U ∞ ) = 1 + cos β 2(1 + ∆) 1 + Ξ Ξ Ξ 2 + Ξ -(1 + Ξ) 1 -cos β 1 + cos β , (6.9) avec Ξ = 1 + ∆ + ∆ 1 -cos β 1 + cos β . ( 6 
lim ∆→∞ φ(β, U ∞ ) ∼ 1+cos β 2∆ √ ∆ √ ∆ ∆ 1 + 1-cos β 1+cos β
= 1 ; le flux relatif d'impact est dans ce cas le même sur toute la surface de la planète.

Il nous faut maintenant relier β à la position absolue sur la planète. Dans un premier temps, nous faisons intervenir la latitude et la longitude orbitales, λ 0 et ϕ 0 . Dans le repère orbital (OXY Z), λ 0 est l'angle qui sépare le vecteur position du site d'impact et le plan orbital, et ϕ 0 est l'angle entre la projection de ce vecteur sur (OXY ) et l'axe (OX). La différence avec i ∞ et j ∞ est qu'il s'agit des réelles cordonnées de l'impact, et non des cordonnées du radiant.

Dans (OXY Z), le vecteur unitaire dans la direction du radiant, rad, s'écrit 

rad =      C i∞ C j∞ C i∞ S j∞ S i∞      , ( 6 
cos β = (cos λ 0 cos ϕ 0 , cos λ 0 sin ϕ 0 , sin λ 0 ) ×      C i∞ C j∞ C i∞ S j∞ S i∞     
, (6.12) et il suffit de choisir la latitude et la longitude orbitales pour en déduire cos β. Si β > β max (Éq. (6.8)), φ est nul, sinon, il est donné par l'équation (6.9). On écrit

φ(λ 0 , ϕ 0 , U ∞ ) = φ(β(λ 0 , ϕ 0 , i ∞ , j ∞ ), U ∞ ) si β(λ 0 , ϕ 0 , i ∞ , j ∞ ) ≤ β max , φ(λ 0 , ϕ 0 , U ∞ ) = 0 si β(λ 0 , ϕ 0 , i ∞ , j ∞ ) > β max .
(6.13) L'angle d'incidence mesuré à partir de l'horizontale, θ, est donné par (cf. équation (A.18)),

θ(λ 0 , ϕ 0 , U ∞ ) = cos -1 1 + Ξ 2 √ 1 + ∆ 1 -cos 2 β . (6.14)
tandis que la vitesse d'impact est (cf. équation (A.16))

u(λ 0 , ϕ 0 , U ∞ ) = u(U ∞ ) = U ∞ √ 1 + ∆ . (6.15)
On pourra vérifier en intégrant l'équation (6.14) entre β = 0 et β = β max que l'angle d'impact moyen sur l'ensemble de la surface bombardée est toujours égal à π/4, indépendamment des conditions d'approche et de la masse de la planète.

En intégrant sur l'ensemble des conditions d'approche, on obtient La matrice de passage de (OXY Z) à (Oxyz) s'écrit

φ(λ 0 , ϕ 0 ) = φ(λ 0 , ϕ 0 , U ∞ ) p(U ∞ ) dU ∞ di ∞ dj ∞ . ( 6 
M =      C 2 ϕ + S 2 ϕ C C ϕ S ϕ (1 -C ) -S ϕ S C ϕ S ϕ (1 -C ) S 2 ϕ + C 2 ϕ C C ϕ S S ϕ S -C ϕ S C     
, (6.17 

(λ) = 1 ∀λ, quand p(U ∞ , i ∞ ) = p(U ∞ ) p(i ∞ ) = p(U ∞ ) 1
2 cos i ∞ . C'est, avec le cas ∆ = 0, la deuxième cause possible à l'absence de variations latitudinales du flux d'impacts à la surface d'une planète.

Nous verrons dans quelle mesure le fait que ces conditions ne sont pas respectées produit une dépendance spatiale. 

Discussion
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Latitude # (º) Angle d'impact moyen ! (º) Fig. 6.7 -Variations latitudinales de l'angle moyen d'impact pour différentes valeurs de ∆ et i ∞ .

Pour les mêmes raisons, l'angle d'impact moyen présente les plus fortes variations latitudinales quand ∆ est faible, comme le montre la figure 6.7. Il sera plus élevé à l'équateur dans le cas (1), et plus élevé aux pôles dans le cas (2). L'amplitude des variations se réduit à mesure que ∆ augmente, jusqu'à ce que l'angle d'impact soit égal à 45 • en tout point. On note qu'on retrouve ce dernier résultat lorsque la distribution de projectiles est isotrope.

L'hypothèse répandue selon laquelle le bombardement est isotrope est correcte, on l'a vu, si la source de projectile est elle-même isotrope, ou si ∆ = ∞.

Pourtant, la première condition n'est en général pas respectée pour les planètes telluriques (voir les résultats du chapitre précèdent). La deuxième condition non plus, comme le montrent les valeurs moyennes de ∆ listées en table 5.1. [1998] proposent que le flux d'impacts s'écrive :

φ(γ) =   1 + v l 2v 2 l + U 2 cos γ   . (6.23)
Dans un deuxième temps, en déterminant empiriquement une solution analytique que reproduit au mieux les résultats de leurs simulations, [START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF] donnent Intéressons nous maintenant au bombardement terrestre en fonction des coordonnées orbitales (ce qui revient à rester dans le repère (OXY Z)). On procède ainsi afin de pouvoir évaluer l'intensité du bombardement en fonction de l'heure locale, ce qui est d'une grande utilité dans la mise en oeuvre de protocoles d'observation. Une longitude orbitale de 90 • E correspond à 18h, 270 • E à 6h. La partie gauche de la figure 6.17 montre que, sur l'ensemble des projectiles , le bom- milligramme) effectuées par [START_REF] Webster | Canadian meteor orbit radar (cmor)[END_REF] et [START_REF] Jones | The canadian meteor orbit radar : system overview and preliminary results[END_REF] dans cette même gamme de vitesse sont relativement bien reproduites, comme le montre la figure 6.18. Cela laisse supposer que les particules qui bombardent la Terre sont des débris générés par de plus gros astéroïdes, et que leurs orbites sont par conséquent relativement similaires à celles utilisées dans notre modèle [START_REF] Gallant | Current bombardment of the Earth-Moon system: Emphasis on cratering asymmetries[END_REF].

φ(γ) =   1 + v l 2v 2 l + U 2 cos γ   2 . ( 6 
! (°) Φ (!)
Notons pour conclure que nous sommes capables, en utilisant les mêmes hypothèses, de reproduire à l'identique les résultats de Halliday [1964] et Halliday et Griffin [1982] avec la méthode analytique décrite dans ce chapitre. Dans Halliday [1964], le flux d'impacts relatif est calculé numériquement sur Terre pour des projectiles lancés parallèlement au plan orbital, et pour différentes vitesses d'impact.

La partie gauche de la figure 6.19 reproduit exactement ces résultats. On rappelle cependant que l'hypothèse utilisée (i ∞ = 0) n'est pas réaliste. Dans Halliday et Griffin [1982], un jeu d'orbites supposé représentatif est extrait des observations 6.6 Modéliser la bruit sismique lunaire 139
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s(t -T ) = pE L s 1 (t -T 1 ) L 1 p 1 E 1 + s 2 (t -T 2 ) L 2 p 2 E 2 , ( 6 
.26) avec p, p 1 et p 2 les quantités de mouvement de l'impact synthétique et des deux impacts artificiels, T , T 1 et T 2 les temps de propagation respectifs, et

E = e -ωT 2Q , E 1 = e -ωT 1 2Q et E 2 = e -ωT 2
2Q les corrections d'amplitude par atténuation. La figure 6.20 (à droite) montre un exemple typique d'impact synthétique (en noir).

Il reste à présent à produire une « population » d'impacts à partir de notre modèle. Les incertitudes inhérentes à notre approche nous conduisent à négliger ici les variations spatiales du bombardement. Le nombre d'impacts par unité de temps sur l'ensemble de la surface lunaire s'écrit en fonction de la masse du projectile comme Le signal produit par les séismes profonds n'a pas été pris en compte, et est également susceptible de générer un bruit de fond significatif. Cependant, puisque ces événements ont une activité cyclique [Bulow et .al, 2006], on peut s'attendre à ce que le signal présente une variation périodique dont le minimum correspond au bruit associé aux impacts, estimé ici. Ces lois d'échelles ont fait l'objet de nombreuses études, mais certains paramètres (notamment l'influence de l'angle d'incidence) restent mal contraints.

F (> m) = F (m > m 0 ) m -f , ( 6 

Simuler le bombardement
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La plus complète synthèse sur le sujet reste à ce jour celle de Melosh [1989].

La démarche clef consiste en l'étude adimensionnée d'expériences de tirs supersoniques en laboratoire ou d'explosions nucléaires, propre à isoler les grandeurs indépendantes de l'échelle du phénomène et les coefficients qui y sont associés [Schmidt et Housen, 1987;Holsapple et Schmidt, 1987;Holsapple, 1993;[START_REF] Gault | Impact cratering[END_REF]. L'applicabilité à grande échelle des relations ainsi obtenues reste délicate, puisque certains processus physiques associés aux grands impacts ne sont pas reproductibles. C'est le cas notamment de la vaporisation produite par des pressions et des températures extrêmes, ou encore de l'influence de la gravité dans les stades terminaux de la formation du cratère. L'usage de simulations numériques [Pierazzo et Melosh, 2000] et de l'observation de phénomènes d'échelle planétaire (par exemple l'impact de la comète Shoemaker-Levy avec Jupiter) procurent des contraintes supplémentaires. La plus récente mise à jour des lois d'échelle est due à Holsapple et Housen [2007], où les auteurs se consacrent à l'étude des résultats de la mission Deep Impact.

Nous donnons dans un premier temps les relations qui permettent de calculer la taille du cratère. Nous appliquons ensuite ces relations à la construction de distributions taille / fréquence des cratères, à partir de notre modèle de bombardement, en ajustant les paramètres mal contraints à l'aide des distributions observées, notamment sur la Lune. Nous faisons alors état de nos résultats concernant le taux relatif de formation des cratères entre les planètes. Les variations spatiales de ce taux à la surface des planètes sont laissées au chapitre suivant.

Formation du cratère

Comme le mentionnent Holsapple et Housen [2007], le couplage de l'énergie et de la quantité de mouvement de l'impact avec le matériau de la cible s'étend sur une zone dont la taille est de l'ordre de celle du projectile. Dans la mesure où le cratère formé est bien plus grand que le projectile, le processus peut-être traité comme résultant d'une source ponctuelle. Pour un impact vertical et un type de matériau cible donné, les processus qui caractérisent la formation du cratère (vitesse d'excavation notamment) dépendent d'une seule mesure, le paramètre de couplage : du µ ρ ν , où d est le diamètre du projectile, u sa vitesse d'impact, ρ sa densité et µ et ν deux exposants dont la valeur dépend de la nature de la cible. L'exposant µ (1/3 < µ < 2/3) décrit dans quelle mesure c'est, soit l'énergie cinétique, soit la quantité de mouvement qui gouverne le processus.

Pour µ = 2/3, il n'y a pas de dissipation de l'énergie et c'est cette dernière qui contrôle l'excavation ; à mesure que la porosité de la cible augmente, l'énergie se dissipe plus facilement, jusqu'à laisser la main-mise à la quantité de mouvement quand µ = 1/3. 

D ⊥ d = K    g d u 2 ρ 0 ρ 2ν µ + Ȳ ρ 0 u 2 2+µ 2 ρ 0 ρ ν(2+µ) µ    -µ 2+µ , (7.1)
où g est la gravité de surface, ρ la masse volumique du projectile, ρ 0 et Ȳ respectivement la masse volumique et la cohésion moyenne du sol. La constante K s'ajoute à ν et µ pour caractériser la réponse de ce sol à l'impact. Notons que Ȳ représente la moyenne de la cohésion en régime de tension et de la cohésion en régime de compression.

On se situe en régime de contrainte lorsque l'échelle du phénomène est suffisamment réduite pour que la gravité n'intervienne pas. On pose alors g = 0 dans l'équation précédente, et c'est la cohésion du matériau cible qui est déterminante.

A l'inverse, les grands cratères se forment en régime gravitaire, et l'on pose Ȳ = 0.

En régime gravitaire, on peut donc écrire

D ⊥ d = K u 2 g d ν 1 ρ ρ 0 ν 2 . (7.2)
Pour des roches non poreuses, les constantes s'expriment K = 1.17, ν 1 = 0.22 et ν 2 = 0.31, tandis que pour un sable sec on prendra K = 1.03, ν 1 = 0.17 et ν 2 = 0.332 [Schmidt et Housen, 1987;Holsapple et Housen, 2007].

On sait que la valeur de l'angle d'impact θ influe sur la taille du cratère, mais la relation fonctionnelle n'est pas clairement établie. Beaucoup d'auteurs considèrent que seule la composante verticale de la vitesse d'impact contribue à former le cratère [e.g. [START_REF] Pierazzo | A reevaluation of impact melt production[END_REF]. En revanche, des mesures de laboratoire effectuées par Gault et Wedekind [1978] suggèrent que le volume de matière éjecté est proportionnel à sin θ. Si le ratio profondeur / diamètre du cratère ne change pas, le diamètre sera alors proportionnel à (sin θ)

1 3 [voir Melosh, 1989]. Beaucoup d'études considèrent simplement que tous les impacts sont verticaux [e.g. Shoemaker, 1983]. On a vu (figure 6.12) que la distribution de l'angle d'impact varie en fonction de la position à la surface des corps bombardés. Le taux de formation des cratères, qui s'exprime pour une taille donnée, dépendra donc de la manière dont l'angle d'incidence est pris en compte. Ecrivons que le diamètre transitoire est donné en fonction de θ comme par Croft [1985] : (7.5) avec ν 4 = 0.18.

D T = D ⊥ (sin θ) ν 3 , ( 7 
D =    D s pour D s < D * D -ν 4 * D 1+ν 4 s pour D s ≥ D * ,

Cratères en régime de contrainte

Dans le cas des petits cratères, c'est, on l'a dit, la cohésion de sol qui gouverne le processus de formation. On constate en posant g = 0 dans l'équation (7.1) que le diamètre de transition du cratère (qui est aussi son diamètre final ici) C'est-à-dire, 

D (D + D • ) ν 1 1-ν 1 = d 1.56K (u sin θ) 2 g ν 1 ρ ρ 0 ν 2 1 1-ν 1 . ( 7 

Distributions taille-fréquence

Nous décrivons ici les outils nécessaires au calcul des distributions taillefréquence des cratères à partir du flux et des conditions d'impact déterminées au chapitre 6. On ne considère ici que la formation des cratères d'impact à l'échelle de la planète entière. Les variations spatiales sont laissées au chapitre suivant.

Formalisme

On rappelle que le flux de projectiles d'un diamètre supérieur à d qui entrent en collision avec la planète à une certaine époque est donné par

Φ(> d, t) = ï(t) Φ(> d) , avec Φ(> d) = Φ(d > 1) S(> d) ,
en supposant que la distribution orbitale des astéroïdes est indépendante du diamètre considéré et du temps. De la même manière, on écrit le taux de formation des cratères, c'est-à-dire le nombre de cratères d'un diamètre supérieur à D qui se forment par unité de temps et de surface (en moyenne sur toute la surface de la planète), comme

Φ c (> D, t) = ï(t) Φ c (> D) . (7.7)
En utilisant la relation d (D, u, θ), qui lie le diamètre du projectile au diamètre du cratère et est donnée par les équations (7.2)-(7.5), on écrit 

Φ c (> D) = Φ(d > 1) S(> d(D)) , (7.8) avec S(> d(D)) = 1 2π 2 λ 0 ,ϕ 0 U∞ S (> d (D, u(U ∞ ), θ (λ 0 , ϕ 0 , U ∞ ))) (7.9) × φ (λ 0 , ϕ 0 , U ∞ ) p(U ∞ ) dU ∞ dλ 0 dϕ 0 . ( 7 
R c (> D) = Φ c (> D) Φ c (> D) = R S(> d(D)) S(> d(D)) , ( 7 
Φ c (D > 1) = Φ(d > 1) 1.56Kg -ν 1 ρ ρ 0 ν 2 s u 2ν 1 sin ν 3 θ s , ( 7 
s = n 1 -ν 1 . (7.20)
Si on suppose que la densité de surface est la même, la production relative de cratères par rapport à la Lune est donc,

R c = R g g ν 1 s (u 2ν 1 sin ν 3 θ) s (u 2ν 1 sin ν 3 θ) s , (7.21)
et l'on note que R c ne dépend pas de D dans ce cas. Une approximation raisonnable est donnée en prenant directement les valeurs moyennes de la vitesse d'impact et de l'angle d'impact, plutôt que (u 2ν 1 sin ν 3 θ) s (équation (7.12)).

L'angle d'impact moyen étant toujours de π/4, on a

R c (> D) = R g g u u ν 1 s . (7.22)
Pour s 2 -3, la pente généralement observée sur l'ensemble des planètes, on se fait une idée rapide du taux de production relatif des cratères. On constate que le ratio pour un diamètre de cratère donné, peut, selon les différences de gravité de surface et de vitesse d'impact, être accru ou réduit par rapport au ratio pour une taille de projectile donnée : un objet d'une certaine taille ne produira pas le même cratère selon la planète sur laquelle il échoue. Sur Mars, par exemple, il sera plus petit que sur la Lune, car la vitesse d'impact est en moyenne deux fois moindre. Ainsi, même si R est grand, nous verrons que R c est proche de l'unité pour cette planète. de la subsurface est marqué par une zone de faible vitesse sismique (∼ 1 km.s -1 pour les ondes P). Puisque la profondeur d'un cratère est de l'ordre de D/5 [Melosh, 1989], les cratères se forment entièrement dans cette zone jusque D T 5km, et l'on retrouve notre transition régime poreux / régime non poreux. Reste à savoir si l'on peut raisonnablement supposer que ce comportement est le même sur les autres planètes. La question reste ouverte, et peut remettre en cause l'exportation de la courbe de Neukum sur les autres planètes. En l'absence de réponse, on considérera que la transition est identique sur les autres objets de cette étude.

On remarque que l'hypothèse d'un flux de projectiles constant sur les trois derniers milliards d'années, associée à une loi d'échelle qui se base sur la composante verticale de la vitesse d'impact, reproduit de manière excellente le nombre absolu de cratères formés sur cette période de temps. Bien sûr, il faut garder à l'esprit que de grandes incertitudes existent sur l'ensemble des étapes qui ont mené à l'obtention de cette courbe, et que celles-ci sont susceptible de se contrebalancer favorablement pour aboutir à ce résultat (étonnamment ?) en accord.

On note en particulier que notre modèle n'inclut pas la contribution des cratères secondaires, potentiellement importants pour D <∼ 1 km.

La relation d(D, u, θ) qui a permis produire la figure 7.1 s'écrit donc et le taux de caractérisation lunaire actuel (par unité de temps et de surface)

   D s = D si D < D * , D s = D 0.15 * D 0.85 si D ≥ D * , D T = D s /1.56 , d 1 = 0.97D 1 (u sin θ) -0.34 g 0.17 ρ 0 ρ 0.33 1.2 , d 2 = 0.85D 2 (u sin θ) -0.44 g 0.22 ρ 0 ρ 0.31 1.28 ,                d = 0.97D T (u sin θ) -0.34 g 0.17 ρ 0 ρ 0.33 1.2 si D T < D 1 , d = d 1 + d 2 -d 1 D 2 -D 1 (D T -D 1 ) si D 1 ≥ D T ≤ D 2 , d = 0.85D T (u sin θ) -0.44 g 0.22 ρ 0 ρ 0.31 1.28 si D T > D 2 . ( 7 
est donné par l'équation (7.8). Puisque le flux de projectiles a été calculé comme

Φ (d > 1) = 2.1 × 10 -15 km -2 an -1 , on a, par exemple pour D > 1 km , Φ c (D > 1) = 9.3 × 10 -13 km -2 an -1 .

Comparaison interplanétaire

En considérant que les mêmes hypothèses s'appliquent sur l'ensemble des planètes telluriques (transition régime poreux / non poreux entre 5 et 15 km ; densité du sol de 2800 kg.m -3 ; même distribution taille / fréquence des astéroides), nous calculons ici le taux de formation des cratères relatif à la Lune, R c (> D), qui dépend, outre du bombardement relatif R, des conditions d'impact différentes et de la gravité de surface. Les valeurs obtenues à partir de l'équation (7. (8.4) 8.1 Formalisme 159 avec p λ 0 ,ϕ 0 (u, θ) la distribution de probabilité des conditions d'impact à la position (λ 0 , ϕ 0 ). S(> d(D)), la moyenne planétaire globale, est donnée par l'équation (7.10) (ou 7.11). Si la planète possède une obliquité significative, le passage du repère orbital aux coordonnées géographiques (λ, ϕ) se fait par rotation de l'axe de spin, comme détaillé au chapitre 6 (équation (6.20), en substituant Φ c à Φ). La distribution taille / fréquence des cratères qui recouvrent une surface d'âge

φ c (> D, λ 0 , ϕ 0 ) = φ(λ 0 , ϕ 0 ) S(> d(D)) λ 0 ,ϕ 0 S(> d(D)) . (8.1) avec S(> d(D)) λ 0 ,ϕ 0 = U∞ S (> d (D, u(U ∞ ), θ (λ 0 , ϕ 0 , U ∞ ))) (8.2) × φ (λ 0 , ϕ 0 , U ∞ ) p(U ∞ ) dU ∞ . (8.3) ou encore S(> d(D)) λ 0 ,ϕ 0 = S (> d(D; u, θ)) p λ 0 ,ϕ 0 (u, θ) du dθ ,
A et de position (λ, ϕ) est simplement donnée par

N (> D, A, λ, ϕ) = φ c (> D, λ, ϕ)N (> D, A) , ( 8.5) 
où N (> D, A), la distribution taille / fréquence moyenne sur la totalité de la planète, est donnée par l'équation (7.13).

Pour extraire un sens physique clair des équations précédentes, supposons un instant, comme au chapitre précédent, que la distribution de taille des projectiles suit une simple loi de puissance telle que S(> d) = d -n . Dans ce cas, si on considère que tous les cratères formés sont simples, et qu'il ne se forment que dans un seul type de régime (poreux ou non poreux) on a 

φ c (λ, ϕ) = φ(λ, ϕ) u 2ν 1 s sin ν 3 s θ λ,ϕ u 2ν 1 s sin ν 3 s θ , ( 8 

Confrontation aux observations

Nous tentons ici de comparer nos estimations avec les observations. Une com- La population des cratères vénusiens a été observée à partir de l'imagerie SAR de la mission Magellan [START_REF] Phillips | Impact craters and Venus resurfacing history[END_REF]. On pense de Vénus que sa surface entière s'est reformée simultanément suite à un épisode d'activité volcanique intense, et des tests statistiques ont montré que la distribution des cratères d'impact n'est pas distinguable d'une distribution uniforme [START_REF] Strom | The global resurfacing of Venus[END_REF].

Cela est en parfait accord avec nos estimations, qui prédisent une dépendance en latitude quasi-nulle. Dans le cas de la Lune, nous utilisons la base de données 1 des cratères baptisés, compilée par J. McDowell à partir du travail de Andersson et Whitaker [1982].

Dans la mesure où tous les cratères lunaires n'ont évidemment pas été nommés, nous nous restreignons aux cratères de diamètre supérieur à 25 ou 50 km, en supposant que ceux-ci sont suffisamment visibles pour tous avoir été reconnus et nommés. La résolution des images lunaires se dégradant quelque peu vers les pôles (Tableau 2 de [START_REF] Wilhelms | The geologic history of the Moon[END_REF]), la différence entre les deux jeux de données (> 25 et > 50 km ) est supposée donner une idée raisonnable de l'influence de la précision variable des observations. L'histoire géologique de la face visible est rendue complexe par la présence des mers basaltiques, plus jeunes que les hautplateaux environnants. Nous nous restreignons donc aux observations effectuées sur la face cachée, dont on peut raisonnablement supposer qu'elle a été affectée uniformément par les mêmes processus géologiques tout au cours de son histoire. [START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF].

techniques allow one to derive ages not only for the Apollo and Luna landing sites but also for unsampled regions. Superposition of geologic units onto each other, crater degradation stages, and crater size-frequency distribution measurements have been used in order to obtain relative and absolute model ages for lunar surface units from remote sensing data [e.g., Shoemaker and Hackman, 1962;Boyce, 1976;Wilhelms, 1987;[START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF]Hiesinger et al., 2000].

[3] Here we present model ages of lunar mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum (Figure 1) that are based on one of these remote sensing techniques, that is, crater counts. Compared to previous crater counts [e.g., [START_REF] Neukum | A study of lunar impact crater size-distributions[END_REF]Greeley and Gault, 1970;Hartmann, 1966], we applied a new approach in that we performed crater size-frequency distribution measurements for spectrally homogeneous basalt units. A major goal of this study is to provide absolute model ages for these basalts in order to investigate their stratigraphy and to understand better the nature and evolution of lunar mare basalt volcanism.

[4] On the basis of our new age data we address the following questions: (1) What was the time period of active volcanism in the investigated area, i.e., when did volcanism start and when did it end? (2) Was lunar volcanism continuously active or are there distinctive periods of volcanic activity? (3) Is there a trend in the spatial distribution of basalt ages on the lunar surface? Finally, (4) What is the flux of lunar mare basalts, i.e., what volumes of basalts were erupted within a certain period of time?

[5] We present results on the spatial and temporal distribution of basalt ages and will discuss our findings in the context of previously published geologic and spectral maps as well as age data [e.g., Wilhelms and McCauley, 1971;Boyce, 1976;[START_REF] Schaber | Geology and distribution of impact craters on venus -what are they telling us ?[END_REF]Johnson, 1978, Pieters, 1978;Whitford-Stark and Head, 1980;Wilhelms, 1987].

Technique, Approach, and the Definition of Units

[6] Crater size-frequency distribution measurements are a powerful remote sensing technique to derive relative and absolute model ages for unsampled planetary surfaces. As this technique is described elsewhere [e.g., [START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF]Hiesinger et al., 2000;Sto ¨ffler and Ryder, 2001;[START_REF] Neukum | Cratering records in the inner Solar System in relation to the lunar reference system[END_REF]Ivanov, 2001;Hartmann and 

Méthodologie révisée

Puisque la relation entre âge et densité de cratères lunaires reste identique à la relation établie par Neukum et al. [2001a], notre fonction ï(t) (qui traduit l'évolution temporelle du flux de projectiles et est posée égale à 1 de nos jours) La distribution taille / fréquence des cratères qui recouvrent une surface d'âge L'estimation de l'âge s'appuie alors sur cette seule valeur, telle que

A et de position (λ, ϕ) est donc N (> D, A, λ, ϕ) = φ c (> D, λ, ϕ) N (> D, A) , = φ c (> D, λ, ϕ) R c (> D) N (> D, A) . ( 9 
N (D > 1, A) = N (D > 1, A, λ, ϕ) φ c (D > 1, λ, ϕ) R c (D > 1)
, (9.5) avec φ c (D > 1, λ, ϕ) donné par les figures 8.1 et 8.4 (pour les planètes, φ c ne dépend pas de ϕ, mais cette variable est conservée ici pour que les relations Tab. 9.1 -Conversion des densité de cratères lunaires données par [Stöffler et Ryder, 2001] en équivalent global moyen, par correction spatiale.

Unité Localisation Diamètre Age Densité de cratères Equivalent global moyen [Stöffler et Ryder, 2001] (cette étude)

N (> 1, λ, ϕ) N (> 1) (km) (Ga) (10 -4 km -2 ) (10 -4 km -2 )
1 Cratère Cone -3.7 Enfin, la figure 9.7 correspond à Amazonis Planitia, sur Mars. Il semble que les grands cratères soient plus anciens, puisque la distribution synthétique ne peut reproduire convenablement les données sur l'ensemble de la gamme de diamètres.

C'est en tout cas ce que proposent Hartmann et Neukum [2001], en suggérant que l'épanchement de lave qui s'étend sur Amazonis Planitia, mince et récent, est recouvert par les petits cratères (le jeune âge de la coulée laisse peu de chances à de grands cratères, moins fréquents, de se former), tout en laissant apparaître les grands cratères préexistants recouverts. Bien sûr, il est possible que le modèle ne soit pas adapté dans ce cas, pour une raison ou pour une autre (autre population de projectiles, autre régime de formation des cratères, etc.). Quoiqu'il en soit, l'âge est estimé à environ 1 Ga pour D >∼ 1km, et 100 -200 Ma pour les cratères plus petits, c'est-à-dire pour la coulée de lave. Hartmann et Neukum [2001] donnent une estimation équivalente. Les progrès constants dans le domaine de l'observation spatiale, de la dynamique du système solaire et de la mécanique de formation des cratères permettront à court terme d'affiner les estimations établies dans ce manuscrit.

La distribution orbitale et la distribution en taille de la population d'astéroïdes et de comètes ont été bâties en faisant la synthèse de nombreux travaux indépendants [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF][START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF]Stuart et Binzel, 2004;[START_REF] Halliday | Detailed data for 259 fireballs from the canadian camera network and inferences concerning the influx of large meteoroids[END_REF][START_REF] Revelle | Bolide dynamics and luminosity modeling : comparisons between uniform bulk density and porous meteoroid models[END_REF][START_REF] Brown | The flux of small near-Earth objects colliding with the Earth[END_REF][START_REF] Harris | A New Estimate of the Population of Small NEAs[END_REF][START_REF] Rabinowitz | A reduced estimate of the number of kilometre-sized near-Earth asteroids[END_REF]. Les fomules d'Öpik [Öpik, 1951;Wetherill, 1967;Greenberg, 1982;Shoemaker et Wolfe, 1982] ont été utilisées pour déterminer les probabilités d'impact avec les planètes, et adaptées au cas de la Lune. Les derniers résultats concernant l'évolution temporelle des orbites planétaires ont été inclus dans les estimations [START_REF] Laskar | Chaotic diffusion in the solar system[END_REF]; Laskar et al. [2004]; [START_REF] Eriksson | Quantifying the oldest tidal record : The 3.2 ga moodies group, barberton greenstone belt, south africa[END_REF]; [START_REF] Sonett | Neoproterozoic earth-moon dynamics : rework of the 900 ma big cottonwood canyon tidal laminae[END_REF]; [START_REF] Touma | Evolution of the earth-moon system[END_REF]. Une méthode analytique a été développée pour calculer le bombardement comme fonction de la position à la surface des planètes, à partir de la distribution des conditions d'approche déterminées par le calcul des probabilités. La conversion du flux d'impacts en taux de formation de cratères a été rendue possible par l'usage des lois empiriques établies en laboratoire [Melosh, 1989;Schmidt et Housen, 1987;Holsapple et Housen, 2007].

L'évolution journalière du bombardement terrestre est en remarquable accord avec les données radar d'entrées micro-météoritiques dans l'atmopshère [START_REF] Campbell-Brown | High resolution radiant distribution and orbits of sporadic radar meteoroids[END_REF][START_REF] Jones | The canadian meteor orbit radar : system overview and preliminary results[END_REF][START_REF] Webster | Canadian meteor orbit radar (cmor)[END_REF]. Cela suggère fortement que les météoroïdes reproduisent le comportement orbital de leurs astéroïdes parents, lesquels, plus facilement observables, ont servi à bâtir le modèle. Sur l'ensemble de la population de croiseurs, on observe deux maxima du flux d'impacts terrestre : l'un à midi, l'autre à minuit. A mesure que l'on considère des projectiles de plus en plus rapides, le flux se concentre autour de 6 heures du matin.

Le pente de la distribution amplitude / fréquence des enregistrements sismiques des stations lunaires Appolo (corrigée des séismes profonds) est très bien reproduite par le modèle, suggérant qu'il est apte à prédire le bombardement micro-météoritique du satellite. Nous déterminons un bruit de fond météoritique qui varie entre deux centièmes et un dixième du pouvoir de résolution des sismomètres Appolo.

Sur la Lune, nous calculons qu'un cratère de diamètre supérieur au kilomètre se forme tous les 3500 ans. Cela est en accord avec le taux de cratérisation établi par Neukum et al. [2001a] pour les trois derniers milliards d'années. La distribution taille-fréquence des cratères lunaires, modélisée à partir de notre distribution d'astéroïdes, reproduit de manière excellente celle de Neukum et al. [2001a], donnée valide pour les 4 derniers milliards d'années. Il est nécessaire pour cela de considérer que les petits cratères (diamètre transitoire inférieur à 5 km) se forment en régime poreux, comme suggéré par Ivanov [2006]. Cela revient à considérer que le premier kilomètre de la croûte possède une porosité importante, ce qui semble en accord avec les faibles vitesses sismiques déterminées dans cette zone [START_REF] Lognonné | A new seismic model of the moon : implications for structure, thermal evolution and formation of the moon[END_REF]. La réconciliation entre les distributions observées d'astéroïdes et de cratères est possible sans l'inclusion dans le modèle des cratères secondaires de tailles subkilométriques. Cela demande une analyse plus poussée [START_REF] Mcewen | The Importance of Secondary Cratering to Age Constraints on Planetary Surfaces[END_REF].

Nous calculons le taux de cratérisation relatif entre les planètes telluriques et la Lune, en moyenne sur les derniers milliards d'années. Celui-ci est, par unité de surface et pour des cratères de diamètre supérieur au kilomètre, et sans tenir compte d'une éventuelle atmosphère, de 2.8 pour Mercure, 0.9 pour Vénus, 0.6 pour la Terre et 0.8 pour Mars. Pour des cratères de taille supérieure à 30 kilomètres, il est de 3.5, 1.7, 1.2 et 1.2, respectivement.

Nous prédisons des variations spatiales significatives du bombardement à la surface de la Lune et de Mars. Les pôles martiens, une fois les variations d'obliquité de la planète prises en compte, accumulent les cratères 30 % plus rapidement que l'équateur (par unité de surface). Sur la Lune, des variations en longitude s'ajoutent, engendrées par sa rotation synchrone. Le minimum est localisé en (±60 • N, 90 • E), et le maximum, près de 50 % plus élevé, se situe en (0 • N, 90 • W ).

Les variations longitudinales lunaires sont validées par le comptage des cratères étoilées [Morota et Furumoto, 2003;[START_REF] Morota | Influence of the asymmetrical cratering rate on the lunar cratering chronology[END_REF]. Les variations en latitude nécessitent d'être confrontées à de plus amples observations, mais une tendance semble être visible dans les jeux de données utilisés, même si les incertitudes statistiques sont grandes. Ces résultats ont d'importantes implications dans la recherche des meilleurs sites d'implantation de futures bases lunaires ou martiennes. Ils ont aussi une conséquence directe sur les âges prédits par la méthode de datation par comptage de cratères [START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF]Neukum et al., 2001a;Hartmann et Neukum, 2001], qui considère que le bombardement est isotrope. Si les incertitudes inhérentes à la méthode sont en général plus grandes que les erreurs induites par les variations spatiales, le biais associé peut être de 800 millions d'années dans le pire des cas.

Nous donnons de nouvelles estimations de certains âges géologiques. En particulier, le temps d'accumulation des cratons terrestres est estimé à 380 millions d'années, un âge extrêmement proche de celui donné géologiquement par Grieve et Dence [1979], à savoir 375 Ma. Cet âge ne pouvait jusqu'ici être retrouvé par la méthode de datation [START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF] (1) la description de la trajectoire du projectile à l'approche de la cible (planète ou satellite) afin de déterminer les coordonnées de l'impact ; (2) la description des orbites qui pénètrent dans un système planète-satellite, en vue de déterminer la probabilité d'impact avec le satellite (chapitre 6, section 2.2).

On a défini le repère (Ox 1 x 2 x 3 ) comme indiqué par la figure 5.3. Quand les angles d'approche sont tous deux nuls, le repère (Ox 1 x 2 x 3 ) se confond avec (OXY Z). Dans (Ox 1 x 2 x 3 ), le vecteur position sur le disque s'exprime

r ∞(Ox 1 x 2 x 3 ) =      ∞ b cos δ b sin δ      , (A.1)
tandis que le vecteur vitesse initial est donné par

U ∞(Ox 1 x 2 x 3 ) =      -U ∞ 0 0      . (A.2)
Trajectoires hyperboliques générées par une phase d'approche

Le passage au repère orbital se fait par l'intermédiaire de la matrice P telle que Au point d'impact, on a r = R 0 . Le cosinus de l'anomalie vraie correspondant à l'impact, f i , est donc donné par (f = 0), c'est aussi le cas pour l'anomalie vraie à l'impact. On a donc

P (Ox 1 x 2 x 3 )→(OXY Z) =      cos i ∞ 0 -sin i ∞ 0 1 0 sin i ∞ 0 cos i ∞      ×      cos j ∞ -sin j ∞ 0 sin j ∞ cos j ∞ 0 0 0 1      . (A.
C i = p/R 0 -
S i = -1 -C 2 i et S ∞ = -1 -C 2 ∞ . (A.11)
Il y a impact quand le péricentre de l'hyperbole est inférieur au rayon de la cible, soit q ≤ R 0 . On vérifie aisément en exprimant q = p/(1 + e) (éq. Considérons à ce stade un nouveau repère, (On 1 n 2 n 3 ), tel que n 2 est colinéaire à b, et qui est confondu à (Ox 1 x 2 x 3 ) quand δ = 0. La trajectoire du projectile appartient donc au plan (On 1 n 2 ). La matrice de passage est

P (On 1 n 2 n 3 )→(Ox 1 x 2 x 3 ) =      1 0 0 0 cos δ -sin θ 0 sin δ cos θ      . (A.12)
Les coordonnées du point d'impact dans (On 1 n 2 n 3 ) sont Le péricentre q est alors donné par (Eq (2. 16))

r i(On 1 n 2 n 3 ) = R 0      -sin(f i -f ∞ ) -cos(f i -f ∞ ) 0      = R 0      -S i C ∞ + S i C ∞ -(C i C ∞ + S i S ∞ ) 0      , (A.13) sont notées U , i et j , pour les distinguer de U ∞ , i ∞ et j ∞ ,
q = a l (e -1) / U v l 2 (A.21)
Un impact avec la Lune requiert q ≤ a l , ce qui entraîne

b max = a l 1 + 2 v l U 2 . (A.22)
La rotation de la lune engendre une symétrie qui nous permet de faire abstraction de l'angle d'approche j . On pose j = 0. Les axes (OX) et (Ox 1 ) sont alors confondus. Dans (Ox 1 x 2 x 3 ), les vecteurs position et vitesse initiaux sont donnés par les équations (A.1) et (A.2). Le vecteur h s'exprime d'après l'équation (2.4) comme .23) et le vecteur excentricité est donné par l'équation (2.28) comme

h (Ox 1 x 2 x 3 ) =      0 -U b sin δ U b cos δ      , ( A 
e (Ox 1 x 2 x 3 ) =       -1 b a l U v l 2 cos δ b a l U v l 2 sin δ       , (A.24)
On exprime h et e en faisant usage de la matrice de passage P : 

h (OXY Z) =      -U b cos δ sin i -U b sin δ U b cos δ cos i      , (A.25) et e (OXY Z) =       -cos i -sin i b a l U v l 2 sin δ b a l U v l 2 cos δ -sin i + cos i b a l U v l 2 sin δ       . (A.
         v X = -v cos α , v Y = -v sin α cos i , v Z = v sin α sin i . (B.2) avec v = GM s /a 1+e 2 +2eC
1-e 2 d'après les relations sur une orbite keplérienne. La vitesse de la cible, selon -(OY ), est donnée par v 0 = GM s /a 0 . Avec C donné par l'équation (5.13) et S 2 = 1 -C 2 , on exprime la vitesse relative d'approche U ∞ = vv 0 en fonction des éléments orbitaux selon l'équation (5.17). Sous l'approximation que les mouvements sont rectilignes, la distance minimale d min qui sépare les deux trajectoires s'écrit

d min = | | sin i √ cot 2 α + sin 2 i . (B.3)
On en déduit que d min ≤ τ correspond à une valeur maximale de l donnée par

max = τ √ cot 2 α + sin 2 i sin i = τ 1 + U 2 X /U 2 Z , (B.4)
où la dernière égalité fait intervenir les relations données par l'équation (B.2).

Exprimons ∆ω 2π . En dérivant r par rapport à ω, on trouve (Eq. (2.13)), 

dr dω noeud = a(1 -e 2 ) eS (1 + eC) 2 = a 0 cot α = a 0 U X U Z
∆ω 2π = τ a 0 1 π sin i U 2 ∞ -U 2 Y |U X | . (B.6)
Etablissement des probabilités d'Öpik

Il reste à exprimer ∆t T 0 . Appelons ∆ 0 t l'intervalle de temps pendant lequel la collision est possible quand ω = ω n , c'est-à dire quand = 0 et que le projectile coupe l'origine du repère (OXY Z) (Fig. B.1). Alors, en moyenne sur toutes les valeurs de ∈ [max , max ], ∆t = π 4 ∆ 0 t. Considérons donc le cas particulier = 0. À t = 0, on décide que le projectile et l'origine du repère coïncident (X = 0, Y = 0, Z = 0, soit = 0). La cible, elle, est à une distance de l'origine (X 0 = 0, Y 0 = -l , Z 0 = 0). Au temps t = δt, la distance L qui sépare les deux objets s'exprime donc

L 2 = (X 0 -U X δt) 2 + (Y 0 -U Y δt) 2 + (Z 0 -U Z δt) 2 (B.7) = (U 2 X + U 2 Z )δt 2 + ( -U Y δt) 2 . (B.8)
La valeur minimale de L est obtenue pour le temps qui annule la dérivée temporelle de l'équation (B.8), telle que

L 2 min = 2 1 - U 2 y U 2 ∞ . (B.9)
La valeur maximale de qui permet L min < τ est donc La trajectoire du projectile, soumise à la fois à l'attraction terrestre et lunaire, vérifie 

max = τ U ∞ U 2 ∞ -U 2
∆ 0 t = 2 max v 0 . (B.11) Avec ∆t = π 4 ∆ 0 t et T 0 = 2πa 3/2 0 / √ GM s , on obtient ∆t T 0 = τ 4a 0 U ∞ U 2 ∞ -U 2
ẍ = -GM T • x (x 2 + y 2 + z 2 ) 3 2 -GM l • x -x l [(x -x l ) 2 + (y -y l ) 2 + (z -z l ) 2 ] 3 2 , ÿ = -GM T • y (x 2 + y 2 + z 2 ) 3 2 -GM l • y -y l [(x -x l ) 2 + (y -y l ) 2 + (z -z l ) 2 ] 3 2 , z = -GM T • z (x 2 + y 2 + z 2 ) 3 2 -GM l • z -z l [(x -x l ) 2 + (y -y l ) 2 + (z -z l ) 2 ]
v l = G(M T + M l ) a l .
Notons que si on prend en compte l'inclinaison de l'orbite lunaire, il faut choisir à chaque tir une valeur de Ω l , l'argument du noeud ascendant, uniformément compris entre 0 et 2π.

La trajectoire d'un projectile est calculée en résolvant numériquement la relation fondamentale de la dynamique à l'aide de l'algorithme de Bulirsch-Stoer [START_REF] Press | Numerical recipes in FORTRAN. The art of scientific computing[END_REF]. Cet algorithme est un schéma de différences finies qui adapte le pas de calcul (ici le pas de temps) selon les besoins. Ainsi, plus d'itérations sont effectuées dans les zones à fort gradient de vitesse, c'est-à-dire à proximité de la 

C.3 Précision et optimisation du code

La précision du code est ajustée de la manière suivante. On calcule avec l'algorithme la position du projectile à la sortie du système Terre-Lune, pour une Lune de masse nulle. Puis on compare, au même temps, cette position avec celle déterminée analytiquement dans le cadre d'un problème à deux corps (Terre et projectile).

Dans la mesure où l'équation de la conique ne fait pas intervenir le temps explicitement, il est nécessaire d'avoir recours à une méthode itérative pour connaître la position du projectile sur l'hyperbole du problème à deux corps à un temps précis. L'objectif est de trouver la valeur u 0 qui annule la fonction

F (u) = σ 0 u 2 c(αu 2 ) + (1 -αr 0 )u 3 s(αu 2 ) + r 0 u -GM T (t -t 0 ) , où σ 0 = r 0 • ṙ0 √ GM T , α = 2 r 0 - ṙ2 0 √ GM T ,
Simulation numérique dans le système Terre-Lune

et c(u ) = cosh ( √ -u ) -1 -u , s(u ) = sinh ( √ -u ) - √ -u √ -u 3 .
Ayant déterminé u 0 par itération, par exemple à l'aide de l'algorithme de

Newton [START_REF] Press | Numerical recipes in FORTRAN. The art of scientific computing[END_REF], la position à l'instant t est donnée (voir par exemple [START_REF] Murray | Solar System Dynamics[END_REF]) par

r(t) = 1 - u 2 0 r 0 c(αu 2 0 ) r 0 + (t -t 0 ) - u 3 0 √ GM T s(αu 2 0 ) ṙ0 .
Le paramètre de précision de l'algorithme est choisi tel que l'écart entre la trajectoire numérique (en l'absence de Lune) et la trajectoire analytique n'excède pas la dizaine de mètres dans les cas les plus sensibles (qui correspondent à des trajectoires qui frôlent la Terre, où le projectile subit un fort gradient de vitesse).

Il est vérifié qu'une fois la Lune incluse dans les simulations, une précision accrue n'induit pas une différence significative dans la localisation des impacts. Au final, sachant que la position de l'impact est interpolée sur un intervalle de temps au cours duquel la distance parcourue par le projectile n'excède pas 30 km, on peut considérer que l'erreur sur la surface lunaire est inférieure au degré.

C.4 Comparaison avec la méthode semi-analytique.

A la différence de la méthode semi-analytique construite aux chapitres 5 et We estimate the impact flux and cratering rate as a function of latitude on the terrestrial planets using a model distribution of planet crossing asteroids and comets [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433]. After determining the planetary impact probabilities as a function of the relative encounter velocity and encounter inclination, the impact positions are calculated analytically, assuming the projectiles follow hyperbolic paths during the encounter phase. As the source of projectiles is not isotropic, latitudinal variations of the impact flux are predicted: the calculated ratio between the pole and equator is 1.05 for Mercury, 1.00 for Venus, 0.96 for the Earth, 0.90 for the Moon, and 1.14 for Mars over its long-term obliquity variation history. By taking into account the latitudinal dependence of the impact velocity and impact angle, and by using a crater scaling law that depends on the vertical component of the impact velocity, the latitudinal variations of the cratering rate (the number of craters with a given size formed per unit time and unit area) is in general enhanced. With respect to the equator, the polar cratering rate is about 30% larger on Mars and 10% on Mercury, whereas it is 10% less on the Earth and 20% less on the Moon. The cratering rate is found to be uniform on Venus. The relative global impact fluxes on Mercury, Venus, the Earth and Mars are calculated with respect to the Moon, and we find values of 1.9, 1.8, 1.6, and 2.8, respectively. Our results show that the relative shape of the crater size-frequency distribution does not noticeably depend upon latitude for any of the terrestrial bodies in this study. Nevertheless, by neglecting the expected latitudinal variations of the cratering rate, systematic errors of 20-30% in the age of planetary surfaces could exist between equatorial and polar regions when using the crater chronology method.
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Introduction

Impact cratering is not only a major geologic process that shapes planetary surfaces (see Melosh, 1989), but it is also a method by which surfaces can be dated. In essence, a fresh surface will accumulate craters at a given rate, and the number of craters per square kilometer can be converted to an approximate age (e.g., [START_REF] Neukum | Cratering records in the inner Solar System in relation to the lunar reference system[END_REF][START_REF] Stöffler | Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System[END_REF][START_REF] Hartmann | Cratering chronology and the evolution of Mars[END_REF]. While certain regions of the Moon have been dated directly by the analysis of radiogenic isotopes in samples with known geologic context, for other planets, such as Mercury, Venus, and Mars, "crater counting" is one of the only reliable means for placing relative geologic stratigraphy into an approximate absolute framework.

When dealing with planetary cratering rates, and in particular when using this crater chronology method, it is commonly assumed that a given bolide is equally likely to impact at any location on the planet's surface. Furthermore, most studies also assume that the impact velocity and impact angle distributions * Corresponding author. Fax: +33 (0) 1 45 11 42 57. E-mail address: lefeuvre@ipgp.jussieu.fr (M. Le Feuvre). are independent of position (e.g., [START_REF] Pierazzo | Understanding oblique impacts from experiments, observations, and modeling[END_REF][START_REF] Neukum | Cratering records in the inner Solar System in relation to the lunar reference system[END_REF][START_REF] Strom | The origin of planetary impactors in the inner Solar System[END_REF]. Given that the impact flux is assumed to be everywhere the same, and that the impact velocity and angle are also assumed not to depend upon position, the resulting cratering rate would also be independent of position.

The above assumptions would be expected to be true if the velocity distribution of candidate impactors were isotropic (e.g., [START_REF] Pierazzo | Understanding oblique impacts from experiments, observations, and modeling[END_REF], or if the planet were sufficiently massive so that the trajectories of objects with high encounter velocities could be gravitationally deflected. However, the assumption of isotropy is questionable. Furthermore, many impactors have high enough approach velocities such that their trajectories are not significantly deviated by the planet. Indeed, in the case of zero inclination with respect to the equator of the planet, simple geometric considerations predict that objects with infinite approach velocities will produce an impact flux that varies with the cosine of the geocentric latitude. Conversely, if the average relative inclination of projectiles striking an object were extremely high, one would expect more impacts to occur (per unit area) at the poles.

With few exceptions (e.g., [START_REF] Morota | Asymmetrical distribution of rayed craters on the Moon[END_REF][START_REF] Morota | Influence of the asymmetrical cratering rate on the lunar cratering chronology[END_REF][START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF] spatial variations of the cratering rate have not been considered when applying the crater chronology method. Assuming that the average cratering rate of a planet Average impact and cratering rate with respect to the Moon r b (λ)

(••••) •••-•••
Latitudinal variations of the impact rate with respect to the Moon, normalized to the average value r c (>D, λ)

Latitudinal variations of the cratering rate with respect to the Moon, normalized to the average value is constant with time, a latitudinal variation of the cratering rate of a certain percentage would translate directly into an age bias of the same magnitude. Given the importance of the crater chronology methodology in deciphering a planet's geologic evolution, it is important to quantify the magnitude of such an effect. Halliday (1964) predicted latitudinal variations in the rate of meteorites falling on the Earth. However, this study was limited to the case of projectiles confined to the ecliptic plane with a limited number of encounter velocities. From the limited observations of fireballs provided by the Canadian camera network (MORP), [START_REF] Halliday | A study of the relative rates of meteorite falls on the Earth's surface[END_REF] generated a set of synthetic orbits believed to be representative, and deduced among other results a pole/equator impact flux ratio of 0.85 on the Earth. Here we improve upon and extend this analysis to the terrestrial planets, using a realistic population of impactors [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF]. In Section 2.1, we describe how we calculate for each planet the encounter conditions from the planet-crossing population model. Next, in Section 2.2, using this encounter probability distribution, we analytically calculate the impact rate on the planet's surface under the approximation that the gravitational attraction of the Sun can be neglected during the encounter phase. In Section 3 we discuss our results in terms of impact flux and cratering rates, given scaling laws that relate crater size to the impact velocity and impact angle. In Section 4 we quantify the sensitivity of these results, and discuss how they compare with some observations. A selected nomenclature of the more important variables used in this study is given in Table 1.

Method

In order to estimate the latitudinal variations of impact rates, impact velocities, and impact angles, we divide the problem in two steps. First, given an appropriate model of impactors in terms of semi-major axis a, eccentricity e and inclination i, we determine the impact probability distribution as a function of the relative encounter velocity and of the encounter inclination with respect to the orbital plane of the planet. Second, using these probabilities, we analytically calculate the trajectories of the impactors, account for the planet's obliquity, and determine the coordinates, velocity and incidence angle of each impact. This second step is performed in the framework of the 2-body problem, and ignores the gravitational influence of the Sun. Relative number as a function of the inclination and semi-major axis. Objects with perihelia larger than 1.3 AU (white curve) are not plotted, so this population is not a complete representation of the objects that cross Mars.

Planetary encounter probabilities and conditions

We start with the debiased population of near Earth objects (NEOs) from [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF]. This distribution has been determined by numerical simulations of test particles coming from five intermediate source regions: the v 6 resonance (boundary of the inner main belt fed by the adjacent material), the intermediate Mars-crossers bordering the main belt, the 3:1 mean motion resonance with Jupiter, the outer main belt, and the transneptunian disk (including both active and inactive Jupiter-family comets). This model has been calibrated by fitting a linear combination of these source regions to the real population observed by Spacewatch, after taking into account the observational bias. The Bottke et al. model assumes that the population of small bodies is currently in steady state.

Fig. 1 shows the number of objects in the orbital element space, N(a, e, i), from the Bottke et al. model that reproduce the observed NEO population. We note that this model is discretized in 5 • of inclination, 0.1 AU in semi-major axis, and 0.05 in eccentricity. One should be aware that the Bottke et al. model does not consider the isotropic comets, as no such discoveries with perihelia less than 1.3 AU were made by the Spacewatch survey. The affects of isotropic comets on our results will be discussed in Section 4.1.

As the vast majority of objects that encounter the terrestrial planets are derived from the asteroid belt and outer Solar System, and as there is no known source of objects within the orbit of Mars, the population of objects plotted in Fig. 1 Latitudinal cratering rates on the inner planets 3 Fig. 2. Observed objects with 1.3 < q < 1.8 AU and H < 15. For clarity, three objects with semi-major axes greater than 5 AU are not shown. [START_REF] Marchi | Flux of meteoroid impacts on Mercury[END_REF] argue that this neglect should not significantly affect the orbital dynamics of planet crossing objects nor the impact rates.

The NEO model can not be directly applied to Mars as it does not include all of the Mars-crossing objects. In order to account for these, it will be assumed that the observation of objects with perihelia q larger than 1.3 AU and magnitudes H smaller than 15 is relatively complete and representative of the orbital distribution of smaller objects (see Ivanov, 2001). These objects are tabulated in the file astorb.dat1 compiled by E. Bowell and shown in Fig. 2 as of January 2007. The upper bound for Mars-crossing objects is taken at about q < 1.8 AU, which corresponds to the maximum martian eccentricity of about 0.2 that could occur over the past 3 Ga (Laskar et al., 2004a). A model for the planet-crossing objects (PCOs) that is applicable to Mars was constructed by combining the observed Mars-crossers for q > 1.3 AU with the Bottke et al. NEO model for q < 1.3 AU. As shown in Fig. 3, the Bottke et al.

model was uniformly scaled such that the two models were coincident at q = 1.3 AU.

It is assumed that no correlations exist between the magnitude of an object and its orbital elements, as stated by (Stuart, 2001) for H < 22.5. This implies that the objects are large enough not to be significantly affected by the Yarkovsky effect (a size-dependent solar radiation pressure effect) during their collision lifetime (see Michel and Yoshikawa, 2005). We consider that this assumption is valid for the entire cratering population considered here, that is, objects that will produce craters larger than a kilometer. We also q > 1.3 AU and H < 15 (dashed line), and scaled such that the two distributions are continuous at q = 1.3. The combined model is scaled to the estimated total number of objects with H < 18,960, from [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF].

assume that the albedos of the planet crossing objects do not vary as a function of the orbital elements, and this allows us to convert an object's relative magnitude to a diameter using a single average albedo. While this is not completely correct (see [START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF][START_REF] Stuart | Bias-corrected population, size distribution, and impact hazard for the near-Earth objects[END_REF] we will ignore this complication here.

The first step of our analysis is to calculate the probability that an object with the orbital elements (a, e, i) will impact a given planet, and to determine under what encounter geometries these impacts will occur. Since all of the planets in this study are rotating, the impact flux and cratering rate will only depend on latitude. This simplifies the analysis of the encounter geometry, as it will only be necessary to consider the angle between the relative encounter velocity vector and the orbit plane, as well as the magnitude of the relative encounter velocity. We use the method of Greenberg (1982) and [START_REF] Bottke | Asteroidal collision probabilities[END_REF], which is based on the approach of Öpik (1951) and Wetherill (1967), where it is assumed that the apsides and nodes of all bodies precess uniformly. This method explicitly accounts for the eccentricity of the target planet. The impact probabilities relate to the fraction of time during which the two bodies are close enough for a collision to occur (this corresponds to encounters with an impact parameter less than the radius of the planet's gravitational cross section). As is described more fully in Appendix A, individual (a, e, i) triads from our combined model of Fig. 1 and Fig. 2 are chosen randomly, then the probabilities of impact and corresponding encounter conditions are computed for a random orientation of the two orbits. These probabilities are then weighted by the proportion of objects in the corresponding cell of the PCO model. By repeating this procedure, we obtain a probability distribution as a function of the relative encounter velocity, u ∞ , and of the inclination of u ∞ with respect to the orbit plane, i ∞ . For convenience, we will simply refer to i ∞ as the "encounter inclination" in the following. We insist on the fact that the encounter conditions account for the orbital velocity of both the planet and planet-crossing object.

The impact probability between an object and a planet is proportional to 1/ sin i mut , where i mut is the inclination between the two orbit planes (see Appendix A). The mutual inclination varies between i 0i and i 0 + i (where i 0 and i are the inclinations of the planet and bolide, respectively) as a result of the precessing orbit planes of the two objects. When both inclinations are significant, the time spent when i mut is zero is small. However, for the π cos(λ). In the opposite extreme where the projectiles encounter the planet perpendicular to the equatorial plane, more impacts are expected at the poles than at the equator. For Γ = 0, it is easily shown that ϕ b (λ) = 2 sin(λ). It can be seen that in comparison with the previous case, the amplitude of the latitudinal variation is larger.

As the gravitational influence of a planet increases (or as the approach velocity decreases), Γ increases, and the bolide's trajectories become more and more deviated by the planet. As a consequence, the impact flux becomes more homogeneous. In the limit where Γ goes to infinity, the impact flux will approach a constant value independent of latitude, and independent of i ∞ .

For similar geometric reasons, the mean impact angle measured with respect to the surface shows the strongest latitudinal variations for Γ 1. For i ∞ = 0 • , the mean impact angle is smaller near the poles than the equator, whereas it is the opposite for i ∞ = 90 • . When Γ increases, these latitudinal variations decrease.

In the limit where Γ goes to infinity, the mean impact angle will be everywhere exactly equal to 45 • . Alternatively, if we assume an isotropic distribution of encounter inclinations (P (i ∞ ) ∝ cos(i ∞ )),

the average impact angle will also be 45 • for all latitudes, irregardless of the value of Gamma. We note that, as shown in Appendix B, the globally averaged impact angle on a planet will always be equal to 45 • , for any Γ or i ∞ .

The common assumption in the crater chronology literature that the impact flux on a planet's surface is everywhere the same could arise from two situations: either the inclination distribution of impacting objects is isotropic, or the average factor Γ for the planet is large. Fig. 1 suggests that the first case is probably not true. Furthermore, using typical approach velocities of 25, 20 and 10 km/s for Venus, the Earth and Mars, the values of Γ lie between 0.09 and 0.16. Thus, as quantified in the following section, we should expect some form of latitudinal variations in impact conditions to exist on the terrestrial planets.

Results

In this section, we describe the latitudinal variations in impact conditions associated with the terrestrial planets that are expected from our model of planet-crossing objects. First, we show the collision probabilities for these bodies in terms of the relative encounter velocity and encounter inclination. Following this, we calculate the latitudinal variations in impact flux, impact velocity and impact angle for Mercury, Venus, the Earth, the Moon and Mars. Finally, using these results, we calculate the expected latitudinal variations in cratering rate and the expected size-frequency distribution of impact craters.

For these calculations, we use the current orbital elements of the planets as listed in [START_REF] Lodders | The Planetary Scientist's Companion[END_REF]. As the orbital elements of Mars are known to vary substantially (e.g., [START_REF] Touma | The chaotic obliquity of Mars[END_REF], we use the results of Laskar et al. (2004a) and consider a simulation where the variations in eccentricity and obliquity are explicitly modeled over the past 3 billion years. Timeaveraged values of these variables are 0.069 for the eccentricity and 37.6 • for the obliquity, in comparison with the current values of 0.093 and 25.2 • . Lacking a model for variations in inclination over this time-period, we assume that their distribution is Gaussian with a mean value and standard deviation of 4.0 • and 1.5 • , respectively. This accounts approximately for the potential range of values that the martian inclination can reach over long time periods (see [START_REF] Armstrong | A 1 Gyr climate model for Mars: New orbital statistics and the importance of seasonally resolved polar processes[END_REF].

As noted earlier, the cratering rate on the Moon is expected to have a longitudinal dependency since it is in a state of synchronous rotation (e.g., [START_REF] Morota | Asymmetrical distribution of rayed craters on the Moon[END_REF][START_REF] Morota | Influence of the asymmetrical cratering rate on the lunar cratering chronology[END_REF]. We ignore this effect here, and treat this body in a ap-proximate way. Following Stuart (2003), we calculate the impact probabilities for the Moon as if it were an isolated body having an Earth-like orbit. This assumption supposes that the Earth does not change substantially the averaged encounter conditions with the Moon. Concerning the encounter velocities, it is clear that the presence of the Earth would give slightly higher values, but this effect is small enough to be neglected. From energy conservation considerations, it can be shown that if the initial velocity at infinity was u ∞ , the object's velocity at the orbit of the Moon (a $ ) would be u = u 2 ∞ + 2G M & /a $ , where M & is the mass of the Earth. For u ∞ = 10 and 20 km s -1 we have u = 10.1 and 20.05 km s -1 , respectively. More detailed simulations for the Moon will be presented in a forthcoming paper.

Planetary collision probabilities

Fig. 5 shows the impact probability distribution for each planet in terms of the relative approach velocity u ∞ and encounter inclination i ∞ . For clarity, these images have been normalized to the maximum value for each planet. The mean encounter velocities and inclinations are tabulated in Table 2 for the cases plotted in Fig. 5, as well as the corresponding mean impact velocities and mean values of Γ .

In general, the approach velocity distributions shows a large range of values, which is dependent not only on the distribution of eccentricities and semi-major axes of the planet crossing objects, but also on the orbital velocity of the planet. For Mars, in contrast, the encounter velocity distribution is considerably more narrow. This is simply related to the fact that the majority of objects that encounter this planet have relatively low eccentricities, and hence average orbital velocities that are comparable to this planet.

Fig. 6 shows the marginalized probability distributions of i ∞ . It is seen that, with respect to the isotropic distribution, where no latitudinal variations are expected, Mars, and to a lesser extent Mercury, present inclination distributions that will potentially enhance the impact flux towards the poles, in contrast with the Earth and the Moon. Given these probability distributions, it is noted that the magnitude of the latitudinal impact rates will depend upon the mass and radius of the planet.

By summing all the collision probabilities calculated in constructing the distributions shown in Fig. 5, dividing by the planet's surface area, and then normalizing by the value obtained for the Moon, we obtain the relative impact flux that each planet is subjected to, R b (see Table 2). If we assume that the bolide size distributions are uncorrelated with their orbital elements [START_REF] Stuart | Bias-corrected population, size distribution, and impact hazard for the near-Earth objects[END_REF], R b would be independent of bolide size (though see [START_REF] Marchi | Flux of meteoroid impacts on Mercury[END_REF]. We note that our calculated value of R b for the Earth of 1.62 is close to the value of 1.68 determined from observations in Ivanov (2006). The calculated R b value of 1.87 for Mercury is close to the value of about 1.8 cited by Ivanov (2006), based on the simulations of [START_REF] Marchi | Flux of meteoroid impacts on Mercury[END_REF], that used the same NEO model. [START_REF] Shoemaker | Asteroid flux and impact cratering rate on Venus[END_REF] estimated from observations of Venus and Earth-crossers that the collision rate per unit area on Venus is 0.95 times the rate on Earth, whereas we find a value of 1.10. The calculated R b value is presently 3.23 for Mars, whereas it is 2.83 when accounting for its secular orbital variations over the past 3 Ga. This latter value is equivalent to the value quoted by [START_REF] Ivanov | The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate[END_REF]. [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] estimated that there are about 960±120 NEOs with magnitudes lower than 18. According to (Morbidelli et al., 2002), who estimated the dark/bright ratio of NEOs, this value translates to 855±110 NEOs larger than 1 km. Using this result, the absolute impact flux on the Moon is 1.83 ±0.23 × 10 -15 km -2 yr -1 . 
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Latitudinal dependence of impact conditions

The latitudinal dependencies of the relative impact flux normalized to the planet's global average, ϕ b (λ), are displayed in Fig. 7 for Mercury, Venus, the Earth, the Moon and Mars. The ratio of the polar to equatorial impact flux is seen to be 1.05, 1.00, 0.96, 0.90 and 1.26, respectively, using the current orbital parameters of these bodies. The primary cause for the differences in these latitudinal impact rates is the different encounter inclination distributions for these bodies. Whereas the encounter inclinations are biased towards low values for the Earth, Moon and Venus, a significant number of high inclination encounters occur for Mercury and Mars. By using the secular variations in the orbital history of Mars over the past 3 Ga, the pole/equator impact ratio is decreased to 1.14, which is almost entirely due to secular variations in this planet's obliquity. In the extreme case where we set the obliquity of Mars to 60 • , the latitudinal effect is found to be negligible. We note that we can exactly reproduce the results of Halliday and Grif- fin (1982) (impact flux lower by 25% at the poles) when using their restricted set of orbits. Fig. 8 shows the latitudinal dependencies of the mean impact angle measured with respect to the surface for the terrestrial planets and Moon. The mean impact angle is about 2.5 • larger at the equator than at the poles for the Earth and the Moon. In contrast, for Mercury, Venus and Mars, the mean impact angle is found to be larger at the poles by about 2 • , 0.5 • and 9 • , respectively. By accounting for the secular orbital variations of Mars, the difference in mean impact angles is reduced by 5 • . The mean impact velocity is relatively constant and varies only by about 0.2-0.5 km s -1 between the pole and the equator for all the objects of this study.

Even though the mean impact angle and impact velocity show well defined trends as a function of latitude, any single impact could have a value that differs significantly from the mean value. In particular, we note that for all cases investigated here, the standard deviation of the impact angle distributions is about 20 • and the standard deviation of the impact velocity is between 35 and 45% of the mean value for all latitudes. The shape of the probability distribution of impact angle and impact velocity vary also with latitude. For example, impact events combining low impact angles and high velocities occur more frequently near the poles on the Moon. As a result, a greater proportion of craters would be expected to form with an impact angle less than 12 • at high latitudes, and this would give rise to a larger number of elliptical craters (e.g., [START_REF] Bottke | Interpreting the elliptical crater populations on Mars, Venus, and the Moon[END_REF]. For our Moon simulation, we found that there should be about 30% more highly oblique craters per unit area at the poles than at the equator. In contrast, the timeaveraged Mars simulation gives the opposite result. As discussed in the following sections, a simple way to quantify the effects of the varying distributions of impact angle and impact velocity on the observed cratering record is by use of crater size-frequency distributions.

Finally, we comment further on the origin of the differences between the probability distributions in encounter inclination and velocity for the planets (Fig. 5), and hence their different latitudinal behavior. As described in Appendix A, the encounter inclination is given by Eqs. (A.6)-(A.8) as

sin i ∞ = v u ∞ sin α sin i mut (4)
where v is the object's velocity, u ∞ is the relative encounter velocity, α is the angle between the object's velocity vector and the Sun-planet vector, and i mut is the mutual inclination. For Mars, whose distance from the Sun can reach 1.8 AU, Fig. 3 shows that a large number of encounters will occur with objects that are close to their perihelion, and for these objects, the probability of a collision is relatively large (see Appendix A). Such encounters naturally have large values of i ∞ for two reasons. First, α is near 90 • and sin α is hence close to 1. Second, the denominator of the prefactor u ∞ is smallest during encounters near perihelion since the angle between the two velocity vectors is minimized. This explanation also accounts, in part, for the slight surplus of high encounter inclinations for Mercury. Another effect for Mercury is that the objects that encounter this planet have higher than average orbital inclinations. Since the mutual inclination i mut is approximately equal to the orbital inclination of the object (the inclination of Mercury is about 7 • ), the encounter inclination i ∞ will be on average larger than for Venus and the Earth.

Latitudinal cratering rates

Up until this point, we have discussed only the number of impacts that occur per unit area and unit time as a function of latitude (i.e., what we called the relative impact flux). However, when attempting to constrain the relative age of a surface, crater chronologists make use of the size-frequency distribution of impact craters. Instead of discussing impact fluxes (i.e., the number of objects that strike a planet per unit time), the relevant quantity to discuss is the cratering rate (i.e., the number of craters of size D that form per unit time).

Let us first consider cumulate distributions, and denote by Ṅ(>d, λ) the number of bolides larger than diameter d that impact the planet per unit time and unit area at a given latitude λ.

If we assume that the size-frequency distribution of impacting objects does not change with time, we can write

Ṅ(>d, λ) = ϕ b (λ)T (t)Φ b (>d), (5) 
where ϕ b is a function that takes into account latitudinal variations in the impact flux with respect to the mean value (see Fig. 

The total cumulate number of craters larger than D that form per unit area and unit time (i.e., the cratering rate) is then simply 

Ṅ(>D, λ) = d Ṅ(>D, λ; u, θ) du dθ, (7) 
(••••) •••-•••
and the cumulate number of craters on a planetary surface is the integral of the this function over time,

N(>D, t, λ) = t 0 Ṅ(>D, λ) dt, ( 8 
)
where t is time before present. The corresponding differential sizefrequency distribution of craters is simply given by the first derivative of its cumulative distribution:

n(D, t, λ) = dN(>D, λ, t) dD . (9) 
In practice, this function is usually determined by counting the number of craters in a diameter bin of width √ 2D, and dividing by the bin width.

Equation ( 8) can be rearranged into a form that separates the time and latitudinal dependencies. By combining Eqs. ( 5)-( 8) it is easily shown that

N(>D, t, λ) = ϕ c (>D, λ) Φ b (>d) t 0 T (t) dt, (10) 
where the latitudinal dependence of the cratering rate is

ϕ c (>D, λ) = ϕ b (λ) Φ b (>d) λ Φ b (>d) , (11) 
and where • • • denotes the expectation of the quantity over u and θ for d expressed as

d = d(D; u, θ), Φ b (>d) = Φ b >d(D; u, θ) P (u, θ) du dθ. (12) 
The subscript λ in Eq. ( 11) indicates that the expectation is to be performed using the velocity and impact angle distributions at a single latitudinal band, whereas the lack of a subscript indicates that the expectation should be performed over the entire planet. Similar expressions are easily derived for the differential size-frequency distribution. The simulations in Section 3.2 give us the impact velocity and impact angle distribution P λ . In order to calculate the size distribution of craters, we thus need to know the temporal variations in the bolide flux T , the size distribution of bolides Φ b (>d), and the relationship between bolide and crater size. We will assume that the flux of impacting objects has been constant with time, and set T equal to 1. The size distribution of bolides is taken from Stuart and Binzel (2004) (J.S. Stuart, private communication). It is assumed that this distribution, estimated for NEOs, is also appropriate for Mercury, Venus, and Mars. As for the crater scaling, we will use equations that have been derived in the framework of π -scaling dimensional analysis (see [START_REF] Holsapple | Point source solutions and coupling parameters in cratering mechanics[END_REF]Holsapple, 1993).

In the gravity regime, where the tensile strength of rock is negligible, the relationship between impact conditions and crater diameter for vertical impacts is of the form

D ⊥ d = K u 2 gd ν 1 ρ ρ 0 ν 2 , ( 13 
)
where D ⊥ is the transient crater diameter for a vertical impact, d is the diameter of the impactor, ρ and ρ 0 are the density of the impactor and target, respectively, g is the surface gravity, and u is the impact velocity, all expressed in SI units. For non porous rocks, the adopted scaling constants are K = 1.17, ν 1 = 0.22 and ν 2 = 0.31, whereas for dry sand K = 1.03, ν 1 = 0.17 and ν 2 = 0.332 [START_REF] Schmidt | Some recent advances in the scaling of impact and explosion cratering[END_REF][START_REF] Holsapple | A crater and its ejecta: An interpretation of Deep Impact[END_REF]. Small craters (less than about a kilometer) that form in the strength regime are simply proportional to the diameter of the bolide. Nevertheless, for simplicity, we will only consider simple and complex craters that form in the gravity regime.

The impact angle θ is known to affect the final crater size, though the functional dependence is not well quantified. Many workers consider that only the vertical component of the impact velocity contributes to the final crater size (e.g. [START_REF] Pierazzo | A reevaluation of impact melt production[END_REF]. In contrast, laboratory experiments of [START_REF] Gault | Experimental studies of oblique impacts[END_REF] suggest that the volume of the crater formed is proportional to sin θ , and if the depth/diameter ratio of the crater does not change with impact angle, the crater diameter would be proportional to (sin θ) 1/3 (see Melosh, 1989). Many studies simply consider that all craters formed with vertical incidence (e.g. Shoemaker, 1983). It is clear from Fig. 8 that the mean impact angle varies as a function of latitude on the terrestrial planets. Thus, the cratering rate (which is dependent on crater size) will be sensitive to the manner in which oblique impacts are parameterized. We will assume that the transient crater diameter D T depends upon incidence angle by the relationship (14) and two cases will be considered. First, the transient diameter will be assumed to be independent of incidence angle by using ν 3 = 0.

D T = D ⊥ (sin θ) ν 3 ,
Second, only the vertical component of the impact velocity will be assumed to influence the crater diameter by using ν 3 = 2ν 1 . Each of the crater scalings described in the previous paragraph will give results between these two end-member cases.

Finally, craters larger than a critical diameter D * are known to be modified by gravitational collapse of the crater walls, and this tends to increase the crater diameter. Such craters are referred to as complex craters, and D * is the simple-complex transition diameter. As a first approximation, D * can be considered to vary inversely proportional to the surface gravitational acceleration (Pike, 1980). For the Earth and Venus, D * is about 3 km, whereas the corresponding diameters are 18 km for the Moon and 8 km for Mercury and Mars. The relationship between simple and complex craters is not well characterized, but the relationship of Croft In order to reconcile the size distribution of bolides with the average lunar crater size-frequency distribution of [START_REF] Neukum | Cratering records in the inner Solar System in relation to the lunar reference system[END_REF], we consider that craters with diameters less than a few kilometers form in the porous regime, as proposed by Ivanov (2006). The shape of the lunar crater size-frequency distribution is acceptably reproduced for crater diameters between 1 and 100 km by considering arbitrarily that porous scaling applies for D < 5 km, whereas craters larger than 25 km formed in non-porous rocks.

The transition between porous and non-porous scaling (5 < D < 25 km) is assumed to be linear. We further consider that the same transition applies to the other bodies of this study. Although the porosity of the lunar crust, and to a greater extent the crustal porosity of Mercury, Venus and Mars, are not well known, this assumption appears reasonable enough for our purposes.

The relative cratering rates normalized to the global average, ϕ c (>D, λ), calculated with the above equations and assumptions, are displayed in Fig. 9 for D > 1 km. It is here considered that only the vertical component of the impact velocity contributes to the crater forming process (ν 3 = 2ν 1 ), which we believe is the most realistic case. As the impact angle is a function of latitude (see Fig. 8) that behaves in a similar manner as the impact flux (a larger flux at a given latitude is associated with a larger impact angle), the amplitude of the latitudinal variation is enhanced in terms of cratering rate (low impact angles create smaller craters). Our obtained pole to equator cratering ratios are summarized in Table 3, and compared to the case where the impacts are considered to be vertical (ν 3 = 0). In this latter case, only the latitudinal variations in the impact velocity tend to increase the latitudinal asymmetry, but this effect is rather small. We note that [START_REF] Gallant | Current bombardment of the Earth-Moon system: Emphasis on cratering asymmetries[END_REF], using four-body numerical simulations and crater scaling only for vertical impacts, report cratering rate ratios of 0.99 for the Earth and 0.91 for the Moon.

Although the latitudinal cratering rate, ϕ c , is rigorously a function of D, we find that variations of less than 2-3% exist between the values reported in Table 3 for D > 1 km and values calculated for other diameters. For most practical purposes, ϕ c (λ) can be considered to be independent of diameter. This is illustrated in Fig. 10 where cumulative size-frequency distributions of craters are shown at the lunar pole and equator. Despite the different probability distributions in impact angle and velocity, the shape of the theoretical lunar size-frequency distributions is insensitive to latitude, and only a vertical offset between the curves is evident. The theoretical martian size-frequency distribution of craters, globally averaged over the planet's surface, is also shown to illustrate how the relative impact flux with respect to the Moon, R b , and the different impact conditions on the two bodies (in particular, the impact velocity distribution), give rise to a differently shaped sizefrequency distribution. Also shown in Fig. 10 is Neukum's size-frequency distribution of lunar craters for a surface age of 3 billion years. In comparison, our calculated curves for a lunar impact flux Φ b (d > 1 km) = 1.83 × 10 -15 km -2 yr -1 are lower by a factor 4. The sizefrequency distributions were calculated using Eqs. ( 10)-( 15) with ρ = 2050 kg m -3 (corresponding to the mean density of lunar impactors estimated by [START_REF] Stuart | Bias-corrected population, size distribution, and impact hazard for the near-Earth objects[END_REF], ρ 0 = 2700 kg m -3 and ν 3 = 2ν 1 . We note that in the crater scaling of Eq. ( 13), some authors consider an additional multiplicative factor of 1.56, accounting for both slumping and uplift during the crater formation process (Melosh, 1989). If we were to include this factor, our spatially averaged lunar SFD and the Neukum's production function would be almost perfectly superimposed over the considered di- ameter range, which would be consistent with a constant projectile flux during the last 3 billion years. Nevertheless, it should be noted that the assumption of a constant cratering rate over the past 3 Ga is debatable (see [START_REF] Hartmann | Possible long-term decline in impact rates[END_REF], and considerable uncertainties exist with the current crater scaling laws and bolide size-frequency distributions.

Finally, while N(>D) is easily obtained for any arbitrary set of the above functions by numerical integration, if the cumulative number of objects greater than diameter d follows a power-law, simple analytic expressions exist that are useful for demonstration purposes. The size distribution of bolides is often assumed to be of the form Φ b (>d) = Φ b (>1)d -m , [START_REF] Le Feuvre | [END_REF] where Φ b (>1) is the average present-day flux of objects greater than 1 meter in size that strike the planet and m is the slope of the cumulative size-frequency distribution.

By inserting Eqs. ( 15)-( 16) into Eq. ( 7), it is straightforward to show that the number of complex craters forming per unit time and unit area greater than diameter D is Ṅ(>D, λ) = ϕ c (λ)Φ c (>1)D -s/(1+ν 4 ) , 

Interplanetary comparison

In order to date the age of a planetary surface using the crater counting method, it is necessary to extrapolate from the lunar cratering record that has been absolutely calibrated. In particular, one needs to take into account the different impact fluxes between the Moon and planet, and compensate for differences in impact conditions, such as the mean impact velocity and surface gravity. In this section, we briefly discuss how one can additionally take into account latitudinal variations in the impact flux and impact conditions.

The relative cratering rate between two planets is easily calculated by taking the ratio of their respective differential or cumulative size-frequency distributions. We use here the differential form and calculate the relative cratering rate as a function of latitude λ on a planet with respect to the average cratering rate of the Moon for a diameter D: 

While the cratering rate of the Moon is expected to vary with both latitude and longitude, we will assume that these effects have been taken into account when calculating the average lunar cratering rate. We next assume that the size-frequency distributions of the bolide fluxes for the two bodies are linearly related 

and it is noted that d implicitly depends upon D, u, and θ . R c (>D) and r c (>D, λ) are easily obtained in a similar manner, by the use of cumulative distributions.

Our R c values are tabulated in Table 4 for craters larger than 1 and 20 km, respectively, along with the relative impact fluxes R b . Note that atmospheric shielding was not included in these estimates. In particular, R c estimates for Venus are tabulated only for comparative purposes and must not be treated as realistic since the dense atmosphere of Venus affects the formation of craters with sizes up to a few tens of kilometers.

The expression for the relative cratering rate is dramatically simplified when the size-frequency distribution of the bolides follows a power law. In this case, the differential distributions are given by Eq. ( 21), and when the craters of diameter D on the planet and Moon are both simple or complex, Eq. ( 22) is .

(27)

Discussion

Isotropic comets

The Bottke et al. model does not include isotropic comets, as no such discoveries with periapses less than 1.3 AU were made by the Spacewatch survey. Nevertheless, some investigators have suggested that these could contribute from 10 to 30% of the observed terrestrial impact flux (see Weissman, 1990;Shoemaker, 1983;[START_REF] Zahnle | Cratering rates on the Galilean satellites[END_REF]. For our purposes, we note that the inclusion of a truly isotropic population of comets would act to minimize any latitudinal variations that might be present. It is simple to show that the relative impact flux at a latitude λ that includes the isotropic comets contribution would be

ϕ ic (λ) = ϕ b (λ) + C ic 1 + C ic , (28) 
where C ic is the fraction of the average impact flux resulting from isotropic comets. For example, for a polar/equatorial ratio of 0.90 (as we calculate for the Moon), the inclusion of an additional 20% of isotropic comets would reduce this factor to 0.92. More recent estimates of the isotropic comet population, however, suggest that these are not as important as once believed. [START_REF] Strokes | Report of the Near-Earth Objects Science Definition Team: A study to determine the feasibility of extending the search for near-Earth objects to smaller limiting diameters[END_REF] estimated that the average impact energy of a long-period comet would be only 30% more than a NEA with a similar size. Using this result, as well as methods described in [START_REF] Marsden | To hit or not to hit[END_REF] and [START_REF] Sekanina | Close encounters and collisions of comets with the Earth[END_REF], they showed that long-period comets represents only about 1% of the NEA cratering.

Observations

We next demonstrate that our calculated latitudinal variations in cratering rate are consistent with the observed cratering records for a few of the planetary objects investigated in this study. A detailed investigation involving the measurement of size-frequency distributions as a function of latitude on similar geologic units is beyond the scope of this article, and we instead analyze the global distribution of craters on the Moon and Venus using publicly available crater databases. We did not attempt to investigate the latitudinal variations of crater density for Mars because both the polar regions and northern hemisphere are geologically young when compared to large portions of the planet, and this would have biassed such a study. For the Earth, there are only a small number of craters, and the spatial distribution of these have been affected by both plate tectonics and true polar wander. Finally, we are not aware of a suitable database of craters for Mercury.

Venus

With the exception of a few ambiguous cases, all craters have been located on the planet Venus using Magellan SAR imagery (see [START_REF] Phillips | Impact craters and Venus resurfacing history[END_REF]. It has previously been shown that the spatial distribution of impact craters cannot be distinguished from a random distribution [START_REF] Strom | The global resurfacing of Venus[END_REF], which is in agreement with our results that predict a near zero latitudinal dependence. However, given the small number of craters, and the large counting statistics uncertainties, it would not be a simple matter to test any hypothesis concerning the latitudinal dependence of the cratering rate on this planet. 

Moon

We use the database 2 of "named" craters compiled by J. Mc-Dowell that is based on the database of [START_REF] Andersson | NASA catalogue of lunar nomenclature[END_REF]. As not all of the craters on the Moon have been named, we restrict ourselves to those that are greater than 25 or 50 km, anticipating that these subsets will be relatively complete. Since the spatial resolution of the farside highlands generally degrades towards the poles (see Plate 2 of [START_REF] Wilhelms | The geologic history of the Moon[END_REF], the difference between the >25 and >50 km datasets should be a relative indication of the completeness of these subsets of the database.

The geologic history of the nearside of the Moon is complicated by the presence of ancient highlands and young maria. We thus restrict this preliminary investigation to the farside highlands, which conceivably could have been affected by the same geologic processes over the past 4.5 Ga. In order to avoid complications with the Orientale and Australe basins, we further restrict this investigation to the longitudinal range 100-250 E. These criteria leave a total of 1349 and 539 craters that are greater than 25 and 50 km, respectively. In order to reduce the uncertainties with these estimates, we have combined craters in the northern and southern hemispheres, and have averaged the number of craters in 30 latitudinal bands. These results are plotted in Fig. 11. We additionally plot the number of Copernican and Eratosthenian craters larger than 25 km on the whole surface of the Moon (127 craters), using data provided by N. Petro, which is a compilation of data from [START_REF] Wilhelms | The geologic history of the Moon[END_REF], [START_REF] Grier | Optical maturity of ejecta from large rayed lunar craters[END_REF]), McEwen et al. (1993) and [START_REF] Mcewen | Mapping of the Moon by Clementine[END_REF]. For comparative purposes, we plot our predicted cratering rate using the same crater scaling laws as in Fig. 9. As is seen, all the observed densities show a tendency to be smaller near the poles than the equator, consistent with the theoretical results. Nevertheless, given the large uncertainties associated with the limited number of craters, and the shortcomings of the employed database, we can only say that the data suggest, but do not require, a latitudinal variation in the cratering rate. Furthermore, it must be noted that the size-frequency distribution of bolides that impacted the Moon prior to about 3.9 Ga could have been different than the current population of objects (see Strom et al., 2005).

2 http://www.planet4589.org/astro/lunar.

Sensitivity to low inclination objects

As noted previously, the Bottke et al. model is discretized in 5 • of inclination. Considering that the impact probability between an object and a planet is inversely proportional to the sine of their mutual inclination i mut (see Appendix A), encounters with very low mutual inclinations will be highly probable. It is thus prudent to determine how sensitive our R b values and impact flux distributions are to the exact form of the NEO model for the lowest inclinations.

We note that the relative impact fluxes of Mercury, Venus, and Mars should not be too sensitive to the form of the NEO model for the lowest inclinations. As the orbit planes of these planets are inclined to the ecliptic and precess, very little time will be spent when the mutual inclination with a planet-crossing object is zero. However, as already noted in Section 2.1, the inclination of the Earth's orbit is always close to zero, and any NEOs that exist with near-zero inclinations will thus have a high probability of impacting the Earth. As a result of this, the NEOs should be depleted at low inclinations, and to first order, one should expect the number to vary as sin i.

We here compare our treatment of the lowest inclinations with other possible approximations. First, we assume that all objects in each (a, e, i) bin have inclinations equal to the cell's mid-point, an approximation that is in general used (e.g., [START_REF] Stuart | Bias-corrected population, size distribution, and impact hazard for the near-Earth objects[END_REF]. Doing this, the absolute lunar impact flux is enhanced by about 3%. We note that the R b values obtained from these two approaches are very similar, and differ by only 1% for Venus, the Earth and time-averaged Mars. In contrast, a slightly greater discrepancy of 3 and 4% exists for Mercury and the present-day Mars, respectively. The calculated latitudinal variations in the impact flux are found to be nearly identical using this approximation. Poleto-equator ratios for the Earth, Moon and Mars are unchanged, whereas those for Mercury and Venus differ by only about 1 and 2%, respectively.

We next consider the case where the number of NEOs are uniformly distributed in each bin. While the latitudinal variations in the impact flux only change by about 1% for Mercury, Venus, and Mars, the results for the Earth and Moon are much different: with respect to the equator, the polar cratering rates are found to be about 10% less for the Earth and 50% for the Moon, in contrast to our previously reported values of 4 and 11%, respectively. The cause of this discrepancy is that this approximation artificially overemphasizes the number of near-zero inclination NEOs, which have a high probability of impacting the Earth and Moon. While the Earth/Moon impact ratio remains the same, their global impact fluxes are enhanced by a factor of about 1.8, and this causes the R b values of the other planets to be decreased by this same factor.

As discussed in Section 2.2, we do not consider the approximation that the number of NEOs are uniformly distributed in each of the lowest inclination bins to be reasonable. Nevertheless it does demonstrate that there is a fundamental uncertainty in such modeling that does not appear to have been fully appreciated in previous studies. Current NEO models are deficient in both the number of observations at low inclinations, as well as the (a, e, i) resolution of debiased models. Future attempts to improve upon the relative impact fluxes between planets will require higher (a, e, i) resolution models than are currently available.

Temporal variations in the cratering rate

All of the terrestrial planets experience some secular variations in their orbital elements, and this will give rise to secular variations in their respective cratering rates. For Mars, long-term statistical analyses of the martian orbit have been performed by Laskar et al. (2004a) 
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only available for smaller time periods. According to Laskar (1994), Mercury experiences very strong eccentricity and inclination variations, up to about 0.4 and 10 • , respectively. The eccentricity and inclination variations of Venus and the Earth are moderate, but still amount to about 0.02 and a few degrees. In addition to Mars, which was previously described in the text, we have also tested how secular variations affect the cratering rates of the Earth-Moon system, Venus and Mercury. The secular variations in inclination, eccentricity and obliquity over 250 Myr for the Earth and Moon were taken from Laskar et al. (2004b), whereas secular variations of Venus and Mercury were roughly reproduced over the past 10 Myr as plotted in Laskar (1988). Our results show that secular variations cause the impact flux and latitudinal effect to vary by less than 2%. Even though the secular variations of Mercury are large, the global impact flux is found to be nearly constant for this planet.

As a consequence of the above tests, the latitudinal variations predicted for the present day should be considered as good estimates for the planets' long-term behavior. Nevertheless, it should be noted that the NEO model of [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] and the observed Mars-crossers population, which are a fundamental input to our simulations, could be affected by secular variations in the planet's orbital parameters, as higher impact probabilities for certain (a, e, i) triads translates into a faster depletion of objects in this region of phase space. However, given the discretization size of the NEO model cells, moderate secular orbital variations of Venus and Earth would not be expected to affect significantly the orbital distribution of planet crossing objects. Nevertheless, as was pointed out by Ivanov (2001), a modulation of the orbital distribution of Mars crossing objects with the evolution of the martian orbit is possible. However, since the timescale for secular variations of the martian orbit (about 2 Ma) is shorter than the typical residence time for most Mars-crossers (about 30 Myr, [START_REF] Migliorini | Origin of multikilometer Earth-and Mars-crossing asteroids: A quantitative simulation[END_REF]Morbidelli, 1999), time variations of the Mars-crossing population would not be expected to be dramatic. Concerning the affects on the NEO population, it is noted that the contribution of the Marscrossing source region in the Bottke et al. model accounts for secular variations of the martian orbit. It is possible, though, that variations of the martian eccentricity may affect more profoundly the whole resonance efficiency within the main belt.

Finally, we note that temporal variations in the absolute impact flux experienced by the planets are possible. Such short-term variations are expected to occur following collisions in the asteroid belt, especially when the collisions occur close to a primary resonance, and longer term variations in the isotropic comet flux are conceivable. In particular, [START_REF] Hartmann | Possible long-term decline in impact rates[END_REF] suggest that the lunar cratering rate might have decreased by a factor of about 3 over the past 3 billion years. [START_REF] Culler | Lunar impact history from 40 Ar/ 39 Ar dating of glass spherules[END_REF] give a similar estimate, and suggest in addition that the cratering rate might have been substantially larger (by a factor 4) during the time of an asteroid breakup event about 500 Myr ago (see also [START_REF] Nesvorný | The Flora family: A case of the dynamically dispersed collisional swarm?[END_REF]. Time variations in the size-frequency distribution of planet crossing objects are also expected to occur following an asteroid breakup [START_REF] Bottke | Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion[END_REF][START_REF] O'brien | Craters on asteroids: Reconciling diverse impact records with a common impacting population[END_REF]. Beyond the past 3 Gyr, the consequences of a putative Late Heavy Bombardment on the orbital distribution of planet crossing objects and their sizefrequency distributions are still unclear. The consequences of these phenomena to our model results are difficult to assess, but the calculated latitudinal variations may be considerably affected. To first-order we might expect that relative quantities between two planets, such as R b and R c , would be unaffected. Certainly, temporal variations in the impact flux, which are difficult to quantify, would hinder the determination of absolute ages of planetary surfaces by the crater chronology method.

Conclusions

In the absence of radiometrically dated samples, the sizefrequency distribution of impact craters superposed on a geologic unit remains one of the few indicators that can be used to estimate both the absolute and relative chronology of geologic events on a given planet. One of the fundamental assumptions in most studies is that both the impact and cratering rates are spatially uniform across the planet's surface. Such a phenomenon would be expected if either the relative velocity distribution of planet-crossing objects were isotropic in space, or if the planet was sufficiently massive to deviate the trajectories of high encounter velocity objects.

By using a model of planet-crossing objects (which is based on a combination of [START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the Near-Earth Objects[END_REF] NEO model and the known asteroids) we have shown that the impact rate, impact angle distribution, and to a lesser extent the impact velocity distributions, are not spatially uniform across the surfaces of the terrestrial planets. Since the terrestrial planets are rotating, this effect gives rise to latitudinal variations in impact conditions. While the impact rates for Venus are nearly isotropic, the pole-to-equator impact rate for Mercury, Earth, the Moon, and Mars (the later of which accounts for secular orbital variations) are predicted to be 1.06, 0.96, 0.90, and 1.14, respectively. Using scaling relationships that relate the impact velocity, impact angle, and impactor size to final crater diameter, along with an estimate of the size-frequency distribution of impacting objects, latitudinal variations in the cratering rate are found to be somewhat larger. Pole-to-equator cratering rates for Mercury, Venus, Earth, the Moon, and Mars, accounting for secular orbital variations, are found to be 1.08, 1.00, 0.90, 0.83, and 1.27, respectively, for craters larger than 1 km. These ratios are nearly constant at all crater diameters between 1 and 100 km (variations are less than 3%), implying that, while the impact conditions vary as a function of latitude on a planet's surface, the size-frequency distributions of impact craters are nearly constant, with the exception of a simple vertical offset that depends on latitude.

If the globally averaged planetary cratering rates were constant in time, ages obtained from the crater chronology method would possess systematic latitudinal biases equal to the magnitude of the latitudinal cratering variations. As an example, a true age of 3 billion years on the Moon would appear to be about 2.6 and 3.2 billion years at the pole and equator, respectively. As the principal workers of the field caution that uncertainties in absolute ages derived by the crater chronology method are at best about a factor 2, these estimated latitudinal variations, though significant, lie within the absolute error bars of the methodology. Yet, they should be taken into account when calculating relative ages between two regions on the same body.

The results of our analysis depends upon several assumptions, though reasonable, that are difficult to assess in the absence of better data. Our calculated cratering rates depend upon the manner in which oblique impact conditions are incorporated into crater scaling laws, which are strictly valid only for vertical incidence conditions. The cratering rates also depends upon the assumed size-frequency distribution of planet-crossing objects, which may or may not be the same for each planet (see [START_REF] Marchi | Flux of meteoroid impacts on Mercury[END_REF]. Perhaps more importantly, though, we have assumed that both the size-frequency and orbital-element distributions of planet-crossing objects are in steady state, and are well described by the presentday distribution. We did not attempt to include planetocentric projectiles in our estimates. These are potentially major contributors to the cratering of the terrestrial bodies about 4 billion years ago (see Pinet, 1985). A higher resolution model of the orbital element distribution of planet-crossing objects, as well as estimates of the magnitude of its temporal variations, will ultimately be necessary in order to obtain more precise age estimates of planetary surfaces using the crater chronology method. According to symmetry considerations, we can consider that all bolides come from a single direction in space. For each (u ∞ , i ∞ ), all projectiles that lie within the cross-section area τ will impact the planet (see Fig. B.1). We choose one such projectile uniformly on the plane perpendicular to the trajectory, by picking randomly the square of its impact parameter b between 0 and τ 2 , and the rotation angle δ between 0 and 2π . Consider the coordinate system (X, Y , Z ) centered on the planet, the Y axis being in the direction of u ∞ and the X axis being chosen so that the XY plane contains the trajectory of the object. The initial position of the object is given by X = b and Y = -∞. The trajectory of the object is hyperbolic, and is described by r = a(e 2 -1) 1 + e cos f ,

(B.1)
where r is the distance of the object from the center of the planet, a is the semi-major axis of the hyperbola, e its eccentricity and f and the corresponding sine is given by

S i = -1 -C 2 i 1/2 , (B.7)
where the sine of S i discriminates between one of the two intersection points between the hyperbola and the planet. S i is negative, as both S ∞ and S i correspond to a time before the periapse, where by definition f = 0. The coordinates of impact in the (X, Y , Z ) frame are

X i = -R 0 cos( f i -f ∞ ) = -R 0 (C i C ∞ + S i S ∞ ), Y i = R 0 sin( f i -f ∞ ) = R 0 (S i C ∞ + C i S ∞ ), Z i = 0. (B.8)
We next obtain the geocentric coordinates of impact using the transformation

r geo = M obl M orb r X Y Z , (B.9)
where M orb is the rotation matrix from (X, Y , Z ) to the coordinate system attached to the orbital plane of the planet, and M obl the Latitudinal cratering rates on the inner planets 15 rotation matrix from this latter to the geocentric coordinate system (attached to the planet's equatorial plane). We have

M orb = C δ 0 -S δ S i S δ C i S i C δ C i S δ -S i C i C δ , (B.10)
where C δ and S δ are the cosine and sine of δ, and C i and S i the cosine and sine of i ∞ , and (B.11) where C and S are the cosine and sine of the obliquity of the planet (angle between the spin axis and the normal to the orbit), and C φ and S φ the cosine and sine of the angle φ. This latter angle is taken randomly between 0 and 2π , and simulates the fact that the spin axis can possess any orientation relative to the incoming direction of the projectile. It is finally straightforward to obtain the latitude of the impact site from the geocentric coordinates of impact.

M obl =   C 2 φ + S 2 φ C C φ S φ (1 -C ) -S φ S C φ S φ (1 -C ) S 2 φ + C 2 φ C C φ S S φ S -C φ S C   ,
The energy conservation gives the impact velocity as (B.12) where v esc = √ 2G M 0 /R 0 is the escape velocity at the surface of the planet.

u 2 = u 2 ∞ + v 2 esc ,
The conservation of the specific angular momentum h = r × v gives the impact angle θ . At the launch point, h = bu ∞ , whereas at the impact point, h = r imp × u = R 0 u sin(θ + π/2). Therefore, cos θ = b/τ . where N(λ) and N tot are the number of impacts at the latitude λ and the total number of impacts on the planet, respectively. The term (sin λ +sin λ -) accounts for the area of the discrete latitudinal band between λ + and λ -, whereas the term 4π accounts for the area of the sphere.

It can be seen from Eq. (B.13) that the impact angle θ can be expressed only as a function of the two dimensionless parameters Γ = G M 0 /R 0 u 2 ∞ and B = b 2 /R 2 0 . When calculating the impact angle distribution for a given disk of impactors, B varies uniformly between 0 and 1 + 2Γ . It is therefore clear that the impact angle distribution depends only on Γ . Moreover, the mean impact angle on the planet is The globally averaged impact angle is thus always equal to 45 • on any planet. Similarly, C i and C ∞ , and thus X i and Y i (Eq. (B.8)), can be easily expressed as functions of only Γ and B. Therefore, for a given obliquity 0 , a disk of impactors with a given encounter inclination i ∞ will generate an impact flux at the surface of the planet that depends only on Γ = G M 0 /R 0 u 2 ∞ .
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  'âge d'une surface est relié à la densité de cratères qui la recouvrent, via une relation empirique bâtie grâce aux échantillons lunaires. En substance, cette relation prédit une accumulation constante de cratères dans les trois derniers milliards d'années, et un accroissement exponentiel au-delà. Nous corrigeons les points de calibration de la méthode, en tenant compte des variations spatiales. Il s'avère que la solution analytique de référence s'en trouve confortée. La position d'une unité géologique en passe d'être datée devrait être prise en compte pour convertir la densité de cratères mesurée en équivalent planétaire global. Si les incertitudes inhérentes à la méthode sont en général plus grandes que les erreurs induites par les variations spatiales, le biais associé peut être de 800 millions d'années dans le pire des cas. La méthode s'exporte aux autres planètes, à condition de connaître le taux de cratérisation relatif à la Lune. Nos résultats impliquent de nouvelles estimations d'âge. Par exemple, nous calculons que la surface de Vénus est vieille d'environ 230 millions d'années. Caloris Mare, sur Mercure, se voit attribuer un âge de 3.7 milliards d'années. Le temps d'accumulation des cratons terrestres est estimé à 380 millions d'années, ce qui est en parfait accord avec les données géologiques.
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Fig. 1

 1 Fig. 1.1 -En haut à gauche. Micro-cratère, d'un diamètre de 30 µm, observé sur un échantillon Apollo 11. En haut à droite. Meteor Crater, cratère simple d'un diamètre de 1 km, observable en Arizona. En bas à gauche. Copernicus, cratère lunaire complexe d'un diamètre de 93 km. En bas à droite. Oriental Basin, bassin d'impact lunaire d'un diamètre de 900 km. Crédits NASA/LPI.

  transition entre cratères simples et complexes est clairement marquée, ces derniers subissant un effondrement plus marqué. La taille du cratère final dépend de nombreux paramètres : la taille du projectile, la vitesse et l'angle d'incidence au moment de l'impact, la densité et la cohésion des matériaux en jeu, la gravité de surface contribuent tous à la création d'une cavité plus ou moins importante. L'analyse adimensionnée des expériences de choc en laboratoire et la modélisation numérique ont permis d'établir des lois, dites lois d'échelle, qui relient ces variables. Nous en donneront la synthèse au chapitre 7. Sur des échelles de temps très variables, allant du mois au milliard d'années, il existe divers processus qui altèrent les cratères d'impact. Sur Terre, la tectonique des plaques les fait disparaître, la croûte terrestre étant renouvelée par cycles de quelques centaines de millions d'années. L'érosion joue également un rôle important. On estime que la durée de vie d'un cratère terrestre de diamètre kilométrique est de l'ordre du million d'années, à cause de l'érosion tant mécanique que chimique. Les impacts eux-mêmes mettent en place une compétition entre la formation de nouveaux cratères et le maintien des plus anciens. Sur les planètes dépourvues d'atmosphère, le bombardement constant remanie la surface et crée ce qu'on appelle le régolithe, mélange de poussière consolidée et de brèches de tailles variables. Par ailleurs, la probabilité pour qu'un nouvel impact détruise un précédent cratère est d'autant plus grande que le nombre de cratères préexistants est important. À un certain stade, chaque impact oblitère en moyenne un cratère. On dit que la surface, en équilibre, est saturée. C'est notamment le cas des plus anciennes régions lunaires, les highlands, vieilles de ∼4.45 Ga.

Figure 9 .Figure 10 .

 910 Figure 9. Comparison of two lunar cratering chronology models byHartmann et al. (1981) and by[START_REF] Neukum | Meteorite bombardment and dating of planetary surfaces[END_REF].

Fig. 1

 1 Fig. 1.2 -Densité de cratères d'impact lunaires d'un diamètre supérieur à 1 km en fonction du temps. Figure extraite de Neukum et al. [2001a].

1. 2

 2 Une mesure du temps écoulé elle n'ont pas accumulé le même nombre de cratères, ce qui se traduit par un décalage vertical de la courbe. Ici, toutes les distributions sont normalisées pour comparaison. G. Neukum en conclut que la forme de la distribution en taille des cratères n'a pas varié depuis 4 milliards d'années, et donne une description polynomiale de la distribution cumulée : log N (> D) = N (> 1, t) + 11 n=1 a n log D n pour 0.01 < D < 300 km , (1.5) où le premier coefficient, a 0 = N (> 1, t), donne la position verticale de la courbe. Les autres coefficients a n sont constants et donnés, dans leur dernière version, par Neukum et al. [2001a]. Hartmann conclut lui aussi à la stabilité de la forme de la SFD dans le même laps de temps, mais donne une estimation différente de celle-ci, qui se décompose en 3 lois de puissances successives. Pour une surface ayant accumulé des cratères d'impact depuis un milliard d'années, Hartmann, W. K. [2005] donne log N (> D) = -2.616 -3.82 log D pour 0.3 < D < 1.41 km (1.6) log N (> D) = -2.920 -1.80 log D pour 1.41 < D < 64 km (1.7) log N (> D) = -2.198 -2.20 log D pour D > 64 km . (1.8) Les outils fournis par les équations (1.5) et (1.1) permettent d'estimer l'âge de n'importe quelle unité géologique lunaire sur laquelle un nombre statistiquement suffisant de cratères est observable. La figure 1.4 donne l'exemple de distributions mesurées sur la Lune par Neukum et al. [2001a], sous forme de distributions cumulées ou relatives. Les termes copernicien, érathosthénien, imbrien et néctarien correspondent, par ordre chronologique croissant, aux principales ères géologiques lunaires (voir le chapitre 4).
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 6734 Figure 6. Left: The SFD for farside rayed craters (McEwen et al., 1997) with crater counts for Copernicus itself in comparison with data for older areas. Right: The crater count for Aristarchus.
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 1 Fig. 1.4 -A gauche. Distributions taille-fréquence cumulées pour (1) le bassin Orientale , (2) les cratères érathosthéniens et (3) les cratères étoilés coperniciens. A droite. Distributions taille-fréquence relatives pour certaines unités géologiques imbrienne, néctariennes et pré-néctariennes. Figures extraite de Neukum et al. [2001a].

  butions, et des différences avec les modèles, des informations sur la vitesse de renouvellement de la surface.) -Le flux d'impact est supposé constant depuis environ 3.3 Ga, dans les limites de l'incertitude observationnelle. Pourtant, plusieurs travaux laissent penser que des événements de disruption catastrophique se produisent dans la ceinture principale d'astéroïdes, lorsqu'un gros astéroïde est détruit et que les débris sont éjectés vers les planètes, accroissant ponctuellement et intensément le bombardement. De plus, certains auteurs avancent que le flux d'impacts aurait décru graduellement depuis 3 milliards d'années. Ainsi,

  Fig. 3. (a)Crater counts for Mercury's highlands and Caloris mare basin compared with the "lunar analog" curves constructed with HPF and NPF. Dashed lines show an approximate saturation level after[START_REF] Hartmann | Planetary cratering I : Lunar highlands and tests of hypotheses on crater populations[END_REF]. Crater counts are digitized from figures inHartmann et al. (1981). (b) R plot for the size-frequency distribution of venusian craters (1) in comparison with the lunar curve recalculated for venusian conditions with the[START_REF] Schmidt | Some recent advances in the scaling of impact and explosion cratering[END_REF] scaling law andCroft's (1985) crater collapse model. Dashed curves 2 and 3 represent two models of how projectiles undergo atmospheric disintegration[START_REF] Mckinnon | Cratering on Venus : models and observations[END_REF]. "Lunar analogs" for an atmosphere-less Venus are shown as HPF and NPF. (c) The R plot for terrestrial craters in comparison with data for cratons (North American + European). To determine the change in the impactor flux over time, the two datasets are divided by factors of 0.115 (115 m.y.) and 0.370 (370 m.y.) in order to put them at the 1-G.y. position. Black dots are crater counts provided by Hughes(2000). (d) R plot for martian craters. The crater SFD for heavily cratered terrain[1, after Hartmann et al. (1981)], "young plains" (2, after[START_REF] Strom | The Martian impact cratering record[END_REF]] and a relatively younger volcanic caldera floor(Hartmann et al., 1999a). Dashed lines show an approximate saturation level after[START_REF] Hartmann | Planetary cratering I : Lunar highlands and tests of hypotheses on crater populations[END_REF].

Fig. 1

 1 Fig. 1.5 -Distributions taille-fréquence planétaires relatives, construites par analogie avec la Lune, et comparées aux données. Les acronymes NPF et HPF correspondent aux distributions données par les équations (1.5) et (1.8), respectivement, recalculées pour les différentes conditions planétaires. (a) Mercure ; highlands et Caloris Basin. (b) Venus ; ensemble des cratères répertoriés. NPF et HPF ne tiennent pas compte de l'atmosphère vénusienne. Les courbes 2 et 3 sont des modèles de désintégration atmosphérique (c) Terre ; distributions normalisées des cratons européens et américains. (d) Mars ; (1) terrains lourdement bombardés,

Fig. 1

 1 Fig. 1.6 -Les alentours du cratère martien Zunil vus par infrarouge. Les rais d'ejecta, en orange, présentent une forte concentration de cratères secondaires.

Figure

  Figure extraite de McEwen et Bierhaus [2006].

  les distances respectives de m 1 et m 2 par rapport au centre de masse.

  Fig. 2.2 -L'orbite dans l'espace.

  Fig. 2.3 -Nombre d'astéroïdes observés, en fonction du demi grand axe. La magnitude absolue H est d'autant plus petite que l'objet est grand. H < 18 correspond approximativement à un diamètre supérieur au kilomètre.

Fig. 3

 3 Fig. 3.1 -Ceinture principale d'astéroïdes. Les disques gris correspondent aux cinq premières planètes. L'astéroïde Adonis est figuré en rouge à titre d'exemple.

Fig. 3

 3 Fig. 3.2 -Objets observés de magnitude H < 15, en fonction du demi grand axe et de l'excentricité. Se référer au texte pour la définition des différents acronymes.

(

  JFC) d'inclinaison nulle (2 < T ≤ 3 et i = 0 • ; Eq. (2.38)). Cependant, l'étendue de cette zone dépend de l'inclinaison des comètes (même si la plupart des JFC ont une inclinaison modérée). Depuis les années 90, les petits corps sont recherchés à l'aide de télescopes automatisés munis de détecteurs CCD. D'énormes progrès ont été réalisés grâce à cette technologie, qui permet en général d'observer des objets jusqu'à des magnitudes de 22 (quelques dizaines de mètres). En particulier, le programme LINEAR du MIT à découvert en quelques années plus de NEO qu'il n' en avait été découvert jusque là. Au mois de novembre 2007, 902 NEO d'une magnitude inférieure à 18 (diamètre environ kilométrique) sont recensés, alors qu'en 2002, seuls 400 avaient été observés. Certains objets étant plus faciles à détecter que d'autres (parce que moins brillants ou moins inclinés par rapport à l'écliptique), les observations souffrent nécessairement de biais. Les météoroïdes étant trop petits pour être directement observés, on estime leur flux (terrestre et lunaire) en détectant les flashs lumineux qu'ils produisent en heurtant la surface lunaire ou en pénétrant dans l'atmosphère terrestre. L'intensité du flash lumineux étant reliée à l'énergie cinétique, on peut estimer la masse du projectile en supposant une certaine vitesse d'impact, et donc son diamètre pour une densité donnée. La section suivante relate les efforts faits pour peindre un tableau global de la population des petits corps, à partir de ces observations.

[

  Fig. 3.3 -Modèles de[START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] etStuart [2001] en comparaison avec le total des objets observés en janvier 2008. En haut à gauche Nombre de NEO de magnitude H < 18 en fonction du demi-grand axe. En haut à droite Nombre de NEO de magnitude H < 18 en fonction de l'excentricité. En bas à gauche Nombre de NEO de magnitude H < 18 en fonction de l'inclinaison. En bas à droite Nombre cumulé de NEO de magnitude < H en fonction de H.
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 2 Fig. 3.4 -Distribution orbitale des NEO d'après Bottke et al. [2002].

5

  Fig. 3.6 -Croiseurs observés en fonction de l'inclinaison, par intervalle de 0.5 • .

  , de la masse, de l'angle d'incidence, de la forme, de la composition et de la porosité du projectile. Pour une valeur d'efficacité lumineuse donnée, les observations sont convertibles en flux d'impact en fonction de l'énergie cinétique, après correction bien sûr de la zone de recherche couverte et du temps d'observation. Pour l'exemple, attardons nous sur les estimationsde Brown et al. [2002].[START_REF] Brown | The flux of small near-Earth objects colliding with the Earth[END_REF] se basent sur l'observation de 300 explosions lumineuses par les satellites militaires pour caractériser le flux d'impacts terrestres pour les projectiles d'un diamètre de quelques mètres. Ils calibrent la relation entre énergie optique observée et efficacité lumineuse à l'aide de 13 événements pour lesquels une estimation de l'énergie cinétique indépendante de l'énergie lumineuse existe (cette estimation étant obtenue principalement par des méthodes infrason). Ils obtiennent ainsi l'énergie cinétique de chaque observation, et donnent le flux d'impacts (nombre d'impacts par an) sous la forme d'une loi de puissance :

  quinzaine d'années, a déterminé la luminosité, la vitesse et l'orbite de plusieurs centaines de météores, les auteurs estiment le flux d'impacts terrestre pour des énergies cinétiques comprises entre 10 -5 et 10 -3 kton. Il faut noter que Ortiz et al. [2006] contestent les résultats de Brown et al. [2002]. En particulier, il affirment que les valeurs d'efficacité lumineuse utilisées par ces derniers sont nettement 3.2 Caractériser la population globale 73 trop élevées. Ils suggèrent que les estimations données plus haut sont au mieux sous estimées d'un facteur 2.

  La vitesse d'impact moyenne calculée pour l'ensemble des observations pour lesquelles la masse de l'objet a été estimée supérieure à 1 kg (d >∼ 10cm) est de 20.7 km.s -1 , en excellent accord avec le modèle. Pour m > 0.1kg, la vitesse moyenne atteint les 22 km.s -1 . Cela est probablement dû, en grande partie, à un biais observationel. Pour de si petits objets, les chocs atmosphériques ne sont observables qu'à de très grandes vitesses, qui seuls peuvent fournir l'énergie optique (via l'énergie cinétique) suffisante. Cela se traduit par le fait que la proportion de comètes détectées (T ≤ 3) s'accroît pour les faibles masses. Ainsi, cette proportion est de 20 % pour m > 10kg, de 24 % pour m > 1kg et de 32 % pour m > 0.1kg[START_REF] Ivanov | Exogenic dynamics, cratering and surface ages[END_REF]. Il n'est pourtant pas exclu que cette tendance reflète une certaine réalité.La méthode décrite ici à titre d'exemple n'est pas la seule à permettre l'estimation du flux de météoroïdes. Certains programmes ont mis en place une surveillance infrason / acoustique[START_REF] Revelle | Bolide dynamics and luminosity modeling : comparisons between uniform bulk density and porous meteoroid models[END_REF]. En particulier, les infrasons émis par une entrée atmosphérique se propagent sur de longues distances. Par ailleurs, le fort champ magnétique terrestre rend possible l'utilisation de techniques radar très basses fréquences[START_REF] Jones | The canadian meteor orbit radar : system overview and preliminary results[END_REF]. Le lecteur est invité à consulter l'article de revue publié par Christou et al[2007].

  Fig. 3.8 -Probabilité annuelle d'impact avec la Terre, pour des objets d'un diamètre plus grand que d, en fonction de d, d'après de multiples auteurs. La courbe grise tiretée, montrée pour comparaison et dont la position verticale est arbitraire, correspond à une estimation de la distribution en taille de la ceinture principale d'astéroïdes.

  3 pour 15 < d < 100 km . (3.11) La fonction S(> d) est définie égale à 1 pour d = 1km, et supposée identique pour toutes les planètes. La figure 3.10 représente la fonction S(> d), accompagnée des données (normalisées ici) qui ont permis de la définir, et qui correspondent aux probabilités d'impact avec la Terre, estimées par de nombreux auteurs et présentées à la section précédente.

)

  Fig. 3.9 -Distribution orbitale estimée des objets susceptibles de croiser l'orbite des planètes telluriques, tenue pour valide à tout diamètre. A gauche. Proportion relative d'objets en fonction du demi grand axe et de l'excentricité. A droite.Inclinaison moyenne des croiseurs en fonction de leur périhélie.

Fig. 1 .

 1 Fig. 1. Comparative chronostratigraphies of theEarth and Moon, based on Harland et al. (1989) andWilhelms (1987). The times of interest in this paper are the Isuan and Hadean Eras for the Earth and the Pre-Nectarian, Nectarian, and Imbrian Periods for the Moon. The Imbrian is divided into the two Epochs of Early Imbrian and Late Imbrian, which have greatly differing styles of geological activity (rock stratigraphic units, i.e, systems, are not used in this paper). Although the chronostratic divisions into these two Epochs (the Nectarian and the pre-Nectarian) are perfectly clear, the correlation with absolute time is less established, although the age of the Fra Mauro Formation (Imbrium ejecta morphology) that defines the division of Early Imbrian and Nectarian is fairly well established at 3.84 or 3.85 Ga (e.g.,Dalrymple and Ryder, 1993).

Fig. 4

 4 Fig. 4.2 -Modélisation des variations à long terme de l'excentricité et de l'inclinaison des planètes telluriques, selon Laskar [2008].

  Fig. 4.3 -Modélisation des variations à long terme de l'obliquité de Mars, selon Laskar et al. [2004].

  Fig. 4.4 -Evolution temporelle présumée de la distance Terre-Lune. Figure empruntée à M. Wieczorek.

  où de manière plus concise P (U ∞ ), qui nous permettra de simuler son bombardement, c'est-à-dire de calculer le flux d'impacts auquel elle est soumise en fonction de la position à sa surface. On estimera également dans ce chapitre le bombardement lunaire pour des projectiles de diamètre supérieur au kilomètre Φ (d > 1km), qui, selon nos hypothèses, donne le flux d'impact à toutes tailles tel que Φ (> d) = Φ (d > 1km) S(> d) (équations (5.1) et (5.3)). Nous calculerons enfin le bombardement relatif entre les planètes et la Lune, R, supposé indépendant de d et du temps, tel que la simulation du bombardment Pendant la phase d'approche, on considère que le projectile se dirige vers la cible sous l'unique influence gravitationnelle de celle-ci. Plus rigoureusement, la phase d'approche devrait débuter à une distance R H du centre de la cible (rayon de la sphère d'influence), et non pas à l'infini mathématique. Cependant, cela ne fait aucune différence significative (les résultats ont été validés numériquement, comme le montre l'annexe C) et permet de simplifier considérablement l'expression des formules développées dans ce chapitre et dans le suivant. D'autre part, le projectile est considéré comme un objet ponctuel de masse négligeable devant celle de la planète. Enfin, puisque la cible est petite comparée à la taille du système solaire, chaque approche décrite par U ∞ génère une nuée de projectiles de vitesse parallèle à U ∞ et de même norme. La nuée de projectiles est initialement positionnée uniformément sur un disque centré sur le radiant, perpendiculaire à celui-ci, et situé à l'infini de la cible. Le rayon de ce disque est tel que les projectiles situés à l'extérieur ne peuvent entrer en collision avec la cible.

  .9) et correspond simplement à l'énergie cinétique. Comme nous l'avons vu au chapitre 2, une énergie positive implique une trajectoire hyperbolique. Pour chaque U ∞ , la cible est donc soumise au bombardement d'une nuée de projectiles qui décrivent une trajectoire hyperbolique. L'expression des éléments orbitaux de chaque hyperbole en fonction de la géométrie du problème est établie en annexe A, et permet (1) la description de la trajectoire du projectile à l'approche d'une planète ou d'une lune afin de déterminer les coordonnées de l'impact (chapitre 6).

  La géométrie du problème est décrite par la figure 5.2. La position initiale sur le disque est caractérisée par le paramètre d'impact, b, et l'angle δ, dont la définition est donnée par la figure 5.3. Comme il est montré en Annexe A, tous les projectiles pour lesquels b ≤ b max = τ entreront en collision avec la cible, avec τ le rayon de la section gravitationnelle donné par

  .10) avec M 0 et R 0 la masse et le rayon de la planète, v e la vitesse d'échappement.

  Fig. 5.2 -Bombardement généré lors d'une phase d'approche décrite par U ∞ . Tous les projectiles distribués uniformément sur le disque σ entreront en collision avec la cible. 5.2 Formalisme d'Opik : probabilité d'impact avec une planète

  Lorsque les astéroïdes ou comètes possèdent une orbite non bornée, l'expression de la probabilité d'Opik reste similaire, à quelques différences près. Typiquement, ce cas de figure survient lorsque l'on s'intéresse au bombardement d'un satellite gravitant autour de sa planète mère. Le rôle du corps primaire (le Soleil dans la section précédente) est alors joué par la planète. Le corps cible (précédemment la planète) devient le satellite. Le projectile, capturé par la sphère d'influence de la planète, décrit une orbite hyperbolique autour de celle-ci, et non plus une orbite elliptique. Sous les mêmes approximations que précédemment, la probabilité d'impact s'exprime exactement comme donnée par l'équation (5.21), à ceci près que les grandeurs affublées de l'indice l font référence au satellite, et que l'indice p se substitue à l'indice s, indiquant que la planète prend ici la place du Soleil. Puisque l'orbite du projectile n'est pas bornée, il convient d'exprimer la probabilité d'impact par orbite, et non plus par unité de temps. On a donc

  v l = GMp a l . Rappelons que la probabilité d'impact donnée par l'équation (5.22) n'est valide que sous l'hypothèse que l'argument du péricentre, ω, varie uniformément.Les travauxde Zahnle et al. [1998] et[START_REF] Zahnle | Differential cratering of synchronously rotating satellites by ecliptic comets[END_REF] utilisent cette formule pour décrire le bombardement des satellites joviens. Pourtant, si l'hypothèse apparaît valide dans le cas d'orbites elliptiques qui précessent autour du soleil, voire de comètes hyperboliques du système solaire externe sous la très forte domination de Jupiter, il n'en est rien dans le cas qui nous occupe principalement dans cette étude, à savoir le bombardement de la Lune. En effet, les orbites elliptiques qui pénètrent dans le système Terre-Lune pour se changer en orbites hyperboliques ne sont plus alors animées d'un mouvement de précession. Faire l'hypothèse de l'uniformité de ω reviendrait à perdre l'information sur les conditions d'approche avec le système Terre-Lune (i ∞ ), calculées plus loin . Or, nous verrons que ces conditions d'approche sont déterminantes, en particulier pour mettre en évidence un effet de variation en latitude du flux d'impacts lunaire.

  Fig. 5.4 -Inclinaison mutuelle et noeud commun.

  Fig. 5.5 -Géométrie du mouvement autour du noeud commun.

  .32) L'expression de la probabilité de collision se base sur le cas r = r 0 , et inclus la distance dans l'espace (C, C 0 ) pour laquelle ||rr 0 || < τ , ainsi que la fraction 5.3 Formules applicables au satellite 103 de temps qui permet à cette condition d'être respectée. En reprenant les mêmes notations que dans le cas circulaire,

  Fig. 5.6 -Bombardement d'un système planète-lune généré lors d'une phase d'approche décrite par U . Les projectiles sont uniformément distribués sur le disque (σ)

  .38) Les orbites ne peuvent s'intersecter qu'au noeud commun. Puisque l'inclinaison du satellite est nulle dans le plan de référence, cela correspond au moment où le projectile coupe ce plan. Pour le noeud descendant, on a θ = π et donc C = cos(πω) =cos ω. En identifiant C l aveccos ω, et en exprimant e, q et cos ω en fonction de b à l'aide des équations (A.19), (A.21) et (A.32), on trouve

  .45) Reste à exprimer ∆(b 2 ). Au noeud, on rappelle que θ = π. En notant max l'écart maximal de r θ=π à a l tel que la distance minimale entre les deux orbites est égale à τ l , ∆(b 2 ) vérifie la relation il est démontré pour un cas similaire dans l'annexe B.

  cos ω en fonction de la géométrie du problème avec les équations (A.19), (A.21) et(A.32). La distance r n'est plus alors fonction que de b, δ, U , i et de l'angle θ. En dérivant par rapport à b 2 , puis en posant b = b l , on obtient

  ainsi que le calcul du flux d'impacts relatif entre celles-ci.Pour les planètes, la démarche est relativement simple. Dans le cas général (orbite planétaire excentrique), on procède comme suit. Les projectiles sont choisis selon une triade (a, e, i) aléatoire. Si le périhélie et l'aphélie de l'orbite correspondante vérifient l'équation (5.25), la collision est possible, et le processus continue en choisissant une valeur aléatoire de l'orientation relative ∆Ω entre 0 et 2π, à partir de laquelle l'inclinaison mutuelle i m est déterminée par l'équation (5.26). L'angle ∆Ω donne également la position du noeud commun sur l'orbite de la cible, Θ 0 , via l'équation (5.27). L'argument du périhélie, ω 0 , est choisi aléatoirement dans le domaine de valeurs permises telles que C 0 = cos(Θ 0ω 0 )

  .55) et se substitue à τ dans l'expression de P ω 0 ,∆Ω (équation (5.36)).Pour chaque couple (U , i ), on tire N fois une valeur de δ entre 0 et 2π, N étant aussi grand que possible. On rappelle que i est positif ou négatif de manière équiprobable, et l'on choisit aléatoirement son signe à chaque itération. On détermine l'inclinaison i de l'hyperbole qui traverse le système via l'équation (5.40), puis la valeur du paramètre d'impact b l selon l'équation (5.41). Si b l n'est pas défini, on pose la probabilité d'impact avec la lune comme nulle. A partir de b l , on calcule les composantes de la vitesse d'approche par l'équation (5.42), où

  Pour traiter le cas du satellite (on parlera du système Terre-Lune ici), une approche plus simpliste est possible, qui consiste à considérer que la Lune se situe en lieu et place de la Terre, et que cette dernière n'existe pas. La pseudoorbite lunaire est donc l'orbite terrestre, tandis que la Lune conserve sa masse et son rayon. On applique alors certains termes correctifs pour reproduire les 5.4 Méthodologie 111 conditions réelles. On suppose donc que le bombardement relatif entre la Terre et la Lune ne dépend que de leur rayon et masse respectifs, et n'est pas sensible à deux effets opposés :

  La vitesse d'approche calculée dans ce cas reste exactement la même que si elle avait été calculée pour la Terre ; notons-la par conséquent U p ∞ (par contre, la probabilité d'impact diffère, car elle dépend de τ , donc de R 0 et M 0 ; la Terre engendre de plus forte probabilité d'impact pour les faibles vitesses que la Lune, car le pouvoir d'attraction terrestre s'exerce alors à plein). Il est possible d'inclure certains termes correctifs. La vitesse d'approche lunaire peut être recalculée pour tenir compte de la distance Terre-Lune : par conservation de l'énergie mécanique, il peut aisément être montré que la vitesse recalculée à une distance correspondant à celle de l'orbite réelle du satellite (a l ) est v l ∞ = U p ∞ 2 + 2GM p /a l . La probabilité d'impact s'en trouve alors modifiée, en substituant v l ∞ à U p ∞ dans l'expression de τ (et uniquement à cet endroit). Cet accroissement de la vitesse reste toutefois très modeste : pour U p ∞ =10 et 20 km.s -1 , on trouve v l ∞ =10.1 and 20.05 km.s -1 , respectivement. Shoemaker et Wolfe [1982] appliquent cette correction dans le cas des satellites galiléens, et ajoutent un terme qui corrige de l'effet de concentration gravitationnelle que Jupiter exerce dans le voisinage de ses satellites, en multipliant l'expression (5.21) par un facteur 1 + 2GMp/a l U p ∞ . Ce facteur corrige la valeur du flux relatif entre la Terre et la Lune, mais pas la distribution des angles d'approche. D'ailleurs, si v l ∞ correspond à une vitesse relative dans le système Terre-Lune, ce n'est plus vrai dans le référentiel lunaire, puisque la vitesse orbitale de celle-ci s'ajoute ou se retranche selon l'orientation de l'approche, pour donner la vraie vitesse relative, U ∞ . Cela se traduit par un accroissement du flux d'impact autour de l'apex du satellite. Bon nombre d'auteurs

  Fig. 5.8 -Distribution des vitesses d'approche avec les planètes telluriques et la Lune.

Fig. 5 .

 5 Fig. 5.10 -Distribution des inclinaisons d'approche avec les planètes telluriques, comparées à l'isotropie.

Fig. 5 .

 5 Fig. 5.11 -Distribution de probabilité des conditions d'approche U ∞ et i ∞ pour les planètes telluriques et la Lune. Eléments orbitaux actuels. Valeurs normalisées par la probabilité maximale pour chaque planète.

  Fig. 5.12 -Distribution de probabilité des conditions d'approche terrestres. A gauche. Probabilité de chaque couple (U ∞ , i ∞ ). Au milieu. Probabilité de chaque couple (U ∞ , j ∞ ). A droite. Probabilité de chaque couple (i ∞ , j ∞ ).

Fig. 4 .

 4 Fig. 4. Radiant distribution of sporadic CMOR orbits, corrected for in-atmosphere observing biases and weighted to a uniform limiting mass.

Fig. 5 .

 5 Fig. 5. Radiant distribution of sporadic CMOR orbits, corrected for in-atmosphere observing biases and weighted to a uniform limiting energy.

  ) did not compute the strength or position of the south toroidal source. Chau et al. (2007) found data dominated by the apex source, but this is due to the severe speed dependence of the radar scatter. The relative strengths of

Fig. 5 .

 5 Fig. 5.13 -Comparaison de la distribution terrestre des coordonnées du radiant (i ∞ , j ∞ ) avec les données radar de Campbell-Brown [2008]. La figure de droite est directement extraite de Campbell-Brown [2008].

Fig. 5 .

 5 Fig. 5.14 -Distribution de probabilité des conditions d'approche lunaires. Distance Terre-Lune actuelle. A gauche. Probabilité de chaque couple (U ∞ , i ∞ ). Au

Fig. 6

 6 Fig. 6.3 -Illustration schématique de l'effet face visible / face cachée.

Fig. 6

 6 Fig. 6.4 -Relation entre le paramètre d'impact, b, et la distance angulaire au radiant, β.

  .5) Il nous faut à présent exprimer b db en fonction de β si l'on veut définir le flux d'impact comme une fonction de la seule position sur la planète. La distance angulaire β est donnée par β

  .10) En l'absence de force gravitationnelle (planète « non-massique »), ∆ = 0 et le flux est simplement φ(β) = 4 cos β. À l'inverse,

. 16 )

 16 Fig. 6.5 -Passage du repère orbital au repère géographique par rotation d'un angle autour de l'axe (A).

  ) où C et S désignent le cosinus et le sinus de la variable indiquée en indice. Dans ces conditions, en notant W = M -1 la matrice inverse, λ 0 (λ, ϕ, , ϕ ) et ϕ 0 (λ, ϕ, , ϕ ) sont données comme sin λ 0 = W 31 cos λ cos ϕ + W 32 cos λ sin ϕ + W 33 sin λ , (6.18) et cos ϕ 0 = W 11 cos λ cos ϕ + W 12 cos λ sin ϕ + W 13 sin λ 1sin 2 λ 0 , sin ϕ 0 = W 21 cos λ cos ϕ + W 22 cos λ sin ϕ + W 23 sin λ 1sin 2 λ 0 . (6.19) Le flux est finalement donné en fonction de la position géographique comme φ(λ, ϕ) = 1 2π 2π 0 φ(λ 0 (λ, ϕ, , ϕ ), ϕ 0 (λ, ϕ, , ϕ )) dϕ . (6.20) Dans le cas des planètes, où la définition de ϕ est artificielle, le flux, 0 (λ, ϕ = 0, , ϕ ), ϕ 0 ) dϕ 0 dϕ . (6.21) Le flux absolu à une position donnée s'exprime à partir du flux total (donné au chapitre 6 par l'équation (5.1)) comme Φ(> d, λ, ϕ) = φ(λ, ϕ)Φ(> d) . (6.22) Puisque φ est le flux d'impacts relatif, on rappelle que 1 2π 2 λ ϕ φ(λ, ϕ) = 1. Notons enfin que, sur une planète, le flux est homogène quand la distribution des inclinaisons par rapport au plan orbital vérifie l'isotropie, indépendamment de la vitesse d'approche. En d'autres termes, φ

  Dans cette section, nous explorons l'influence des paramètres qui gouvernent le bombardement, en particulier la variable ∆ = GM 0 R 0 U 2 ∞ . Nous avons pu observer précédemment que cette grandeur est un outil clef dans la prédiction de possibles variations spatiales du flux d'impacts. Lorsque ∆ est grand, le flux est rendu homogène par la gravité de la planète. Au contraire, lorsque ∆ est petit, les variations spatiales du flux sont gouvernées par les conditions d'approche. La figure 6.6 présente quelques exemples de variations en latitude induites par différentes valeurs de ∆. Nous considérons deux géométries opposées : (1) la planète est soumise à un bombardement d'objets qui s'approchent parallèlement à son plan équatorial (i ∞ = 0) (2) le bombardement est perpendiculaire au plan équatorial (i ∞ = ±π/2). L'obliquité de la cible est nulle. Quand la vitesse d'approche est grande par rapport à la masse de la planète, ∆ est proche de zéro, et la trajectoire des projectiles n'est quasiment pas influencée par la gravité de la planète. Dans ce cas, le flux d'impacts présente ses plus fortes variations : on a vu que dans le cas limite où ∆ = 0, φ = 4 cos β. Cela correspond à φ = 4 π cos λ dans le cas (1), et φ = 2 sin λ dans le cas (2). On note que les variations spatiales provoquées par des projectiles fortement inclinés sont les plus importantes. A

Fig. 6

 6 Fig. 6.6 -Variations latitudinales du flux d'impacts pour différentes valeurs de∆ et i ∞ .mesure que la masse de la planète croît (ou que la vitesse des projectiles décroît), ∆ augmente, et les trajectoires sont de plus en plus déviées par la planète. En conséquence, le flux d'impacts devient de plus en plus homogène. Dans le cas limite où ∆ = ∞, le flux sera identique en tout point de la planète, quelle que soit la valeur de i ∞ . Notons qu'en pratique, il suffit que ∆ vaille environ 5 pour que les variations soient très faibles (inférieures au % sur l'ensemble de la surface.)

  Fig. 6.8 -Variations du flux d'impacts en fonction de la distance angulaire à l'apex, pour différentes valeurs de ∆ et v l . La source de projectiles qui bombarde le système planète-lune est isotrope, et la vitesse d'approche est de 15 km/s.
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 666 Fig. 6.10 -Variations latitudinales du flux d'impacts à la surface des planètes telluriques.

Fig. 6 .Fig. 6 . 16 -

 6616 Fig. 6.14 -Flux d'impacts à la surface de la Lune. Distance Terre-Lune actuelle.

Fig. 6 .Fig. 6 .

 66 Fig.6.18 -Comparaison des observations radars d'entrées atmosphériques terrestres[START_REF] Webster | Canadian meteor orbit radar (cmor)[END_REF]] avec notre simulation.

  Fig. 6.20 -A gauche. Ajustement des paramètres A et Q pour reproduire au mieux (courbe verte) les données. A droite. Exemple de signal généré par un impact synthétique (courbe noire), en comparaison des enregistrements Apollo.

  Fig. 6.21 -Comparaison du modèle avec les impacts enregistrés par la station sismique Apollo 12.

Fig. 6 .

 6 Fig. 6.22 -Bruit sismique (modélisé) généré par le bombardement lunaire.

  transitoire On rappelle que le cratère transitoire est défini comme le cratère qui s'est formé à la fin du processus d'excavation et de relaxation, avant d'éventuelles modifications par effondrement gravitaire qui ne sont pas reproductibles à l'échelle du laboratoire. On note D ⊥ le cratère transitoire formé par un impact purement 7.1 Formation du cratère 147 vertical. Dans le cas le plus général, Holsapple et Housen [2007] donnent la relation

  .3) et deux possibilités seront considérées. Dans un premier cas, on considère que l'angle d'impact n'intervient pas et l'on pose ν 3 = 0. Comme alternative, on suppose que seule la composante verticale de la vitesse intervient et on pose ν 3 = 2ν 1 . Chacune des relations fonctionnelles proposées plus haut donneront des résultats encadrés par ces deux cas limites. 7.1.2 Cratères simples Les cratères simples, typiquement de taille kilométrique, résultent de certaines modifications du cratère transitoire et présentent une taille finale plus importante. D'après Melosh [1989], le glissement vers le bas des bords du cratère augmente le diamètre d'un facteur 1.25. Un autre facteur 1.25 tient compte du fait que la bordure du cratère se forme à une élévation plus grande que la surface initiale. Puisque l'on mesure le diamètre d'un cratère bord à bord, celui-ci est défini plus grand que s'il était mesuré au niveau de la topographie alentour. Le diamètre d'un cratère simple est donc D s = 1.56D T . d'une certaine taille, la gravité provoque un effondrement encore plus important des parois du cratère. On note D * le diamètre de transition au-delà duquel le phénomène se produit. En première (et, jusqu'à présent, meilleure) approximation, D * est inversement proportionnel à la gravité de surface [Pike, 1980]. Sur Terre, D * est relativement bien contraint autour de 3 km. Les valeurs correspondantes sont 18 km pour la Lune, 8 km pour Mercure et Mars, et également 3 km pour Venus. La relation qui lie cratères simples et cratères complexes n'est pas non plus très bien définie, mais on utilise communément celle donnée

7. 2

 2 Distributions taille-fréquence 149 est directement proportionnel à celui du projectile. Plutôt que de chercher à déterminer une valeur représentative de la cohésion des sols lunaires ou martiens, Ivanov [2001] construit la transition cratères de contrainte / cratères simples en créant une fonction continue et lisse donnée par les équations (7.2) et (7.4) quand D >> D • , et proportionnelle à d quand D << D • , où D • est le diamètre de transition observé entre régime de contrainte et régime de gravité.

  .10) Une autre notation, plus claire, pourrait être S(> d(D)) = S (> d(D, u, θ)) p(u, θ) du dθ , (7.11) en supposant que l'on a construit la distribution de probabilité des conditions d'impact p(u, θ) telle que p(u, θ) du dθ = 1. Une approximation qui peut s'avérer utile car facile d'utilisation est S(> d(D)) S > d(D, u, θ = π/4) . (7.12) La distribution taille / fréquence de la densité moyenne des cratères qui recouvrent une planète dont la surface possède un âge A est simplement N (> D, A) = t 0 Φ c (> D, t) dt = Φ c (> D) à A si l'on suppose que le flux d'impact est resté constant durant la période considéré (ï(t) = 1). La distribution taille / fréquence incrémentale est donnée par N (D, A) = dN (> D, A) dD , (7.14) et la distribution relative est r(D, A) = D 3 N (D, A) . (7.15) Le taux de formation des cratères sur une planète donnée comparativement à la Lune s'exprime à travers la grandeur R c telle que
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 16 où l'on rappelle que R est le flux d'impacts relatif à la Lune. Même si Φ c (> D) s'obtient numériquement sans difficulté pour n'importe quelle distribution supposée de la taille des projectiles (c'est d'ailleurs ce qui est 7.2 Distributions taille-fréquence 151 fait dans la section suivante à partir de la distribution établie au chapitre 3), il est utile de supposer que celle-ci suit une simple loi de puissance afin de dégager des équations précédentes un comportement lisible. Considérons donc un moment que S(> d) = d -n , avec n la pente de la distribution, soit Φ(> d) = Φ(d > 1) d -n . (7.17) On fait également l'hypothèse que tous les cratères sont simples. En insérant les équations (7.4)-(7.2) dans l'équation (7.8), on a Φ c (> D) = Φ c (D > 1)D -s . (7.18) où le taux de formation de cratères d'un diamètre supérieur au kilomètre est
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 22 Fig. 7.1 -SFD synthétique en comparaison de la courbe de Neukum, en incluant une transition linéaire du régime d'impact.

  .23) avec D 1 = 5 km et D 2 = 15 km. Dans ces conditions, la grandeur S(> d(D)) se calcule pour la Lune comme S(> d(D)) = 442.5 D -3.5 pour 0.1 ≤ D < 2 km , = 156.3 D -2 pour 2 ≤ D < 8 km , = 19.5 D -1 pour 8 ≤ D < 26 km , = 974.4 D -2.2 pour 26 ≤ D < 58 km , = 11138.1 D -2.8 pour 58 ≤ D < 300 km , = 3.8 D -1.4 pour 300 ≤ D < 1000 km .(7.24) 

Fig

  Fig. 7.2 -Taux de formation des cratères relatif à la Lune, pour des cratères plus grands que D, en fonction de D.

  .6) indépendant de D dans ce cas, mais pas dans le cas général. Notons qu'une approximation raisonnable de φ c peut être obtenue en considérant que s 2 -3, ce qui reproduit approximativement la pente des distributions observables sur l'ensemble des planètes telluriques, et en insérant directement dans l'équation précédente les valeurs moyennes de la vitesse et de l'angle d'impact à une position donnée, telles qu'elles ont été déterminées au chapitre 6, plutôt que de calculer u 2ν 1 s sin ν 3 s θ λ,ϕ sur l'ensemble de la distribution des conditions d'impact à cette position.Sur la Lune, par exemple, nous avons calculé que non seulement le flux d'impacts, mais aussi la vitesse et l'angle d'impact, étaient en moyenne plus faibles au pôle qu'à l'équateur. Un projectile d'une taille donnée produira donc, en moyenne, un cratère plus petit s'il tombe au pôle plutôt qu'à l'équateur. Cela accentue les variations du taux de formation des cratères par rapport à celles du flux d'impacts, comme nous allons le voir.

8. 2 Fig

 2 Fig.8.1 -Taux de formation des cratères de diamètre supérieur à 1 km à la surface des planètes telluriques, en fonction de la latitude.

  Fig. 8.2 -Variations du ratio pôle/équateur de cratérisation selon D.

  Fig. 8.4 -Variations du taux de formation des cratères de diamètre supérieur à 1 km à la surface de la Lune, estimé pour les trois derniers milliards d'années.

  paraison approfondie des distributions taille / fréquence réelles des cratères planétaires recouvrant des unités géologiques d'âges similaires et de positions différentes est en dehors du cadre de ce travail. Nous nous contentons de comparer nos résultats avec les bases de données globales disponibles. Nous ne tentons pas d'utiliser les observations martiennes pour vérifier notre estimation des variations en latitude, car les pôles martiens et l'hémisphère nord, géologiquement jeunes, viendraient fausser la comparaison. La tectonique des plaques et les océans interdisent toute exploitation des données terrestres. La seule comparaison possible est celle du bombardement atmosphérique, et celle-ci a été réalisée (avec succès) au chapitres 5 et 6. Nous n'avons pas connaissance d'une base de données exploitable dans le cas de Mercure. Restent Venus et la Lune.

Fig

  Fig. 8.5 -Comparaison entre les variations en latitude prédites et les observations lunaires.

  Fig. 8.6 -Taux de formation des cratères lunaires en fonction de la distance angulaire à l'apex. Comparaison avec les données récoltées par Morota et Furumoto [2003].

Figure 1 .

 1 Figure 1. Map of the lunar surface showing the location of the investigated basins, the Apollo and Luna landing sites, and the location of selected features mentioned in the text. Latitude, longitude grid is 30°Â 30°wide; simple-cylindrical projection.

  Fig. 9.3 -Correction des points de calibration de la relation âge / densité de cratères, établie sur la Lune.

  a = 5.44 × 10 -14 , b = 6.93, c = 8.38 × 10 -4 .

  .4) où φ c (> D, λ, ϕ) est la variation relative du taux de cratérisation et où l'on s'est ramené à l'équivalent lunaire global par le biais du taux de cratérisation relatif, R c (figure 7.2). Il arrive souvent que, par commodité, seule la densité de cratères de diamètres supérieurs à 1 km, N (D > 1, A, λ, ϕ), soit déterminée par l'observation.

  soient valides dans le cas lunaire -en posant Rc = 1). L'âge est alors simplement donné à partir de N (D > 1, A) par la relation (9.1).Si cette manière de procéder est très commode, elle reste beaucoup moins robuste que la recherche du meilleur accord entre une distribution taille-fréquence prédite et la distribution observée sur un grand intervalle de taille. Cette dernière approche est plus fastidieuse, car elle nécessite de trier avec précision les cratères en fonction de leur diamètre D. Qui plus est, les grandeurs φ c et R c , fonctions de D, doivent être connues à chacun de ces diamètres. Cependant, les observations, localisées, reproduisent rarement la distribution idéalement prédite, pour différentes raisons. Notamment, des variations purement statistiques existent.Certains processus géologiques sont également susceptibles d'avoir modifié (par érosion, recouvrement, etc.) le nombre de cratères visibles dans une gamme de taille préférentielle. Se limiter à D > 1 km revient à ne pas s'assurer que la distribution de cratère se comporte « normalement », et induit le risque de s'appuyer sur une mesure biaisée. Sachant que N (> D, A) = Φ c (> D) A 0 ï(t) dt, on écrit à partir de l'équation (9.4) :N (> D, A, λ, ϕ) = φ c (> D, λ, ϕ) R c (> D) Φ c (> D) a c e b A + A , (9.6) où Φ c (> D) est le taux de cratérisation actuel et absolu, en moyenne sur l'ensemble de la surface lunaire, tel que Φ c (> D) = Φ (d > 1) S(> d(D)). Avec un flux de projectile calculé comme Φ (d > 1) = 2.1 × 10 -15 km -2 an -1 et la grandeur S(> d(D)) donnée par l'équation (7.24), on dispose de toutes les informations nécessaires au tracé de la distribution taille / fréquence, c'est-à-dire N (> D, A, λ, ϕ) en fonction de D. Faire varier l'âge A revient alors à translater verticalement la courbe sur le graphe. On cherche donc A tel que la distribution prédite reproduise au mieux les données.

  Fig. 9.4 -Distribution des cratons terrestres et âge donné par notre modèle.

  Fig. 9.7 -Distribution des cratères de Amazonis Planitia, sur Mars, et âges estimés par notre modèle.

  donnent 700 Ma). Ce résultat procure une certaine confiance dans le modèle. La surface de Vénus est estimée vieille de 230 Ma, un âge plus jeune que l'ensemble des estimations données jusqu'à présent (McKinnon et al. [1997] donnent 700 Ma). Les hautes terres mercuriennes sont d'après nos résultats plus jeunes de 200 millions d'années que ne l'estime Neukum et al. [2001b]. Les résultats obtenus pour Mars sont sensiblement identiques à ceux proposés par Hartmann, W. K. [2005], tant que les zones datées ne sont pas proches du pôle. Les méthodes développées ou reprises dans ce manuscrit permettent de modéliser rapidement le bombardement d'une planète quelconque, et procurent un outil facile d'utilisation. La prolongement de ce travail verra la confrontation plus poussée des estimations obtenues à l'aide de ces méthodes avec les données géologiques et spatiales. Annexe A Trajectoires hyperboliques générées par une phase d'approche Au chapitre 5, nous déterminons la probabilité d'impact avec une cible donnée (planète, lune, voire système planète-lune) en fonction des conditions d'approche U ∞ , i ∞ , j ∞ . Chaque approche décrite par une triade (U ∞ , i ∞ , j ∞ ) génère une nuée de projectiles uniformément distribués sur un disque situé à l'infini de la cible (figures 5.2 et 5.6). La position sur ce disque est donnée par le paramètre d'impact b et l'angle δ (figure 5.3). L'objet de cette annexe est d'exprimer les éléments orbitaux d'un projectile au cours de la phase d'approche, dans le repère orbital (OXY Z) centré sur la cible, en fonction des conditions d'approche et de la position initiale sur le disque. Les relations dérivées ici sont appliquées à deux cas distincts abordés dans cette étude :

1

  3) Il faut noter que l'uniformité sur le disque se traduit par le fait que δ est uniformément distribué entre 0 et 2π, mais non b. C'est b 2 qui est uniformément distribué entre 0 et b 2 max . Dans l'hypothèse où l'on souhaite générer aléatoirement une nuée de projectile, ce qui est un des moyens de simuler le bombardement (une alternative plus coûteuse en temps de calcul que la méthode décrite au chapitre 7), il faut échantillonner δ et b comme   δ = x 1 2π , b 2 = x 2 b 2 max , (A.4) où (x 1 , x 2 ) ∈]0,1[ sont des nombres aléatoires uniformément distribués 1 . A.0.1 Hyperboles d'impact On rappelle que la distance à la cible est donnée par r = p 1 + e cos f . (A.5) La constante des aires s'exprime comme (Éq. (2.4), h = |r ∞ × U ∞ | = b U ∞ . (A.6) Le paramètre de la conique est donc (Éq. (2.6), est la masse de la cible. D'après l'équation (2.22), qui relie l'énergie à l'excentricité, cette dernière s'exprime (avec l'énergie donnée par l'équation (5En effet, échantillonner une grandeur revient à identifier sa distribution cumulée de probabilité avec un nombre aléatoire. En coordonnées cartésiennes, l'uniformité sur le disque se traduit par une probabilité constante, p(x, y) = A. Grâce à la matrice jacobienne qui relie le repère cartésien (x, y) au repère polaire (b, δ), on déduit p(b, δ) = b p(x, y) = b A. La probabiltié (normalisée) d'avoir un angle plus petit que δ pour une valeur quelconque de b est p(< δ) = δ 0 p(b, δ) dδ/ 2π 0 p(b, δ) dδ = δ/2π. De la même façon, p(< b) = b 2 /b 2 max .

  (2.16)) en fonction de b à l'aide des équations (A.7) et (A.8), que cela correspond à b ≤ τ . En d'autres termes, le rayon du disque (σ), b max , est le rayon de la section gravitationnelle de la cible, τ (Eq. (5.10)). Quand les projectiles ont une vitesse relative suffisamment élevée au regard de la masse de la cible, leur trajectoire s'assimile à une ligne droite et τ tend vers R 0 . Dans le cas extrême opposé, la masse de la cible est très élevée par rapport à l'énergie cinétique d'approche, et τ tend vers l'infini, c'est-à-dire que l'hyperbole de la trajectoire peut s'incurver sans limite pour permettre aux projectiles les plus éloignés d'entrer en collision avec la cible.

  qui s'appliquent aux planètes. Comme dans le cas précédent, chaque approche décrite par un U donné génère une nuée de projectiles uniformément distribués sur un disque (σ). Dans le cas précèdent, b max correspond à la limite à laquelle le projectile entre en collision avec la cible, au-delà il se contente de la frôler, en-deça il ne peut que la percuter. Ici, b max correspond à la plus grande valeur de b permettant un impact avec la lune, mais pour b < b max , l'impact n'est pas garanti : il possède une certaine probabilité, et n'est possible que pour certaines valeurs de b ∈ [0, b max ] quand U et δ sont fixés. C'est précisément en vue de déterminer cette probabilité (chapitre 5, section 3) que nous établissons un certain nombre de relations ici. Une fois les probabilités d'impact avec la lune obtenues, on se ramène au cas précèdent, où de nouvelles trajectoires hyperboliques sont générées à l'approche de la lune, qui est alors considérée comme le seul corps massique. Ici, nous décrivons en fonction de U , b et δ les trajectoires hyperboliques générées pendant la phase intermédiaire où la planète domine, après la phase où les orbites sont déterminées par le Soleil, et avant la phase d'approche avec la lune. Commençons par établir b max .Exprimons pour cela l'excentricité de l'hyperbole en faisant intervenir la vitesse orbitale de la lune v l . On considère que v l = GMp a l , où M p est la masse de la planète et a l le rayon de l'orbite lunaire (on néglige donc la masse de la lune ici, et on suppose que son orbite est circulaire). Dans ce cas, l'excentricité s'exprime (Eq. (A.8) avec M 0 = M p ), de la conique est (Eq. (A.7) avec M 0 = M p ),

  collision est possible autour de r = a 0 pour d min < τ , soit ∆ = ∆r = 2 max . Avec ∆r/∆ω |(dr/dω) noeud |, on trouve

  de temps durant lequel la collision est possible (| | < max ) est alors donné par

  Aux premiers stades de cette étude, le bombardement au sein du système Terre-Lune était simulé de manière purement numérique. La méthode semi-analytique, développée aux chapitres 5 et 6 notamment, permet d'obtenir les mêmes résultats en un temps extrêmement plus réduit en se basant sur certaines approximations : une dizaine de minutes contre une ou deux semaines sur un ordinateur récent.Nous présentons néanmoins la méthode numérique ici, essentiellement comme outil de vérification.C.1 PrincipeLes conditions d'approche avec l'ensemble du système Terre-Lune sont calculées à partir des probabilités d'Öpik décrites au chapitre 5. La cible est ici la sphère de Hill terrestre, de rayon R H = 1.5 × 10 6 km et de masse nulle (par définition, la masse terrestre n'influe sur le projectile que lorsqu'il a pénétré dans cette sphère). On définit le repère (OXY Z), centré sur la Terre, tel que (OXY ) définisse le plan de l'écliptique. La rotation de la Lune autour de la Terre rend le problème insensible à la direction d'approche dans le plan de l'écliptique. On choisit (OX) comme direction de référence. L'un après l'autre, des projectiles sont choisis au hasard et leur trajectoire intégrée numériquement jusqu'à l'impact ou l'éjection hors du système. Pour ce faire, on tire au hasard un jeu de conditions d'approche (U ∞ , i ∞ ) selon leur distribution de probabilité. On rappelle que U ∞ est la vitesse relative d'approche avec le système, et i ∞ l'inclinaison de U ∞ par rapport à l'écliptique. La vitesse initiale est alors donnée par ẋ0 = 0, ẏ0 = U ∞ cos i ∞ et ż0 = -U ∞ sin i ∞ . Le projectile est susceptible de pénétrer dans le système en n'importe quel point de la sphère de Hill : on choisit x 0 , y 0 et z 0 au hasard, tels que l'ensemble des projectiles soient initialement distribués uniformément sur l'hémisphère de Hill définit par la direction (OX). La position initiale de la Lune sur son orbite est elle aussi choisie au hasard à chaque tir.

,

  où les indices T et l font respectivement référence à la Terre et à la Lune, et M désigne la masse. Les coordonnées de la Lune sont données par une rotation uniforme (orbite circulaire) dans son plan orbital, de vitesse

Fig. C. 2 -

 2 Fig. C.2 -Détermination d'un impact dans les simulations numériques. Illustration de l'algorithme décrit dans le texte.

Fig

  Fig. C.3 -Résidus entre la méthode analytique et la simulation numérique, pour les résultats présentés en figure 6.14.

Fig. 1 .

 1 Fig. 1. NEO orbital element distribution from Bottke et al. (2002). (Top) Relative number of objects as a function of the eccentricity and semi-major axis. (Bottom)Relative number as a function of the inclination and semi-major axis. Objects with perihelia larger than 1.3 AU (white curve) are not plotted, so this population is not a complete representation of the objects that cross Mars.

  should be also applicable to Mercury and Venus. While Bottke et al. did not explicitly account for Mercury when constructing their NEO model, ARTICLE IN PRESS YICAR:8668 Please cite this article in press as: M. Le Feuvre, M.A. Wieczorek, Nonuniform cratering of the terrestrial planets, Icarus (2008), doi:10.1016/j.icarus.2008.04.011 JID:YICAR AID:8668 /FLA [m5G; v 1.48; Prn:19/06/2008; 10:40] P.3 (1-16)

Fig. 3 .

 3 Fig. 3. Number of planet-crossing objects as a function of perihelion (bins of 0.1 AU). The NEO model (solid line) has been combined with the observed objects with

Fig. 5 .

 5 Fig.5. Estimates of the collision probability for Mercury, Venus, the Earth, the Moon and Mars, as a function of the impactor's relative encounter velocity u ∞ and the inclination of this velocity vector with respect to the planet's orbital plane, i ∞ . For Mars, collision probabilities are shown using both its current and time averaged orbital elements. Each plot is normalized to the maximum probability.

Fig. 6 .

 6 Fig. 6. Probability distribution of the encounter inclination i ∞ (angle of the relative velocity vector with respect to the orbit plane) for the terrestrial planets and Moon, compared to the isotropic case.

Fig. 7 .

 7 Fig. 7. Estimates of the impact flux as a function of geographic latitude on the terrestrial planets and Moon, normalized to the global average. Vertical scale is chosen for direct comparison with Fig. 9.

Fig. 8 .

 8 Fig. 8. Mean impact angle measured from the surface as a function of geographic latitude on the terrestrial planets and the Moon.

  7), T is a dimensionless function that takes into account temporal variations in the impact flux, and Φ b is the present day average flux of objects striking the planet with diameters greater than d. Next, assume that a functional relation exists between crater diameter D and bolide diameter d of the form d = d(D; u, θ), which depends, among others, on the impact velocity and impact angle. If the probability of an impact occurring at a specific latitude is dependent on the impact velocity and impact angle, P λ (u, θ), then the differential contribution to the cratering rate for a given u and θ can be expressed as d Ṅ(>D, λ; u, θ) = ϕ b (λ)T (t)Φ b >d(D; u, θ) P λ (u, θ).

  ν 4 = 0.18, is commonly used.

Fig. 9 .

 9 Fig. 9. Relative cratering rate variations with geographic latitude for crater larger than 1 km, on the terrestrial planets and the Moon. Crater scaling is done with the vertical component of the impact velocity.

Fig. 10 .

 10 Fig. 10. Simulated cumulative size-frequency distributions of craters on the Moon (equator and pole) and Mars (globally averaged) for a surface age of 3 Gyr. The average lunar size-frequency distribution given by Neukum et al. (2001) is shown for comparison.

  of the cratering rate, which is here independent of D, isϕ c (λ) = ϕ b (λ) (u 2ν 1 sin ν 3 θ) s λ (u 2ν 1 sin ν 3 θ) s , -frequency distribution of the cratering rate is simply ṅ(D, λ) = d Ṅ(>D, λ) dD = s 1 + ν 4 ϕ c (λ)Φ c (>1)D

  can be shown that Eqs. (17)-(21) are also valid for simple craters (D < D * ) by setting ν 4 equal to zero. In this case, the slope of the cumulative distribution is simply s. Please cite this article in press as: M. Le Feuvre, M.A. Wieczorek, Nonuniform cratering of the terrestrial planets, Icarus (2008), doi:10.1016/j.icarus.2008.04.011 JID:YICAR AID:8668 /FLA [m5G; v 1.48; Prn:19/06/2008; 10:40] P.10 (1-16) 10 M. Le Feuvre, M.A. Wieczorek / Icarus ••• (••••)•••-•••

  r c (D, λ) = d Ṅ(>D, λ)/dD d Ṅ$ (>D)/dD .

  definitions of Eqs. (8) and (9), Eq. (22) can be written asr c (D, λ) = ϕ c (D, λ)R c (D),(24)where the latitudinal variation in the cratering rate isϕ c (D, λ) = ϕ b (λ) ∂Φ(>d)/∂d∂d/∂ D λ ∂Φ(>d)/∂d∂d/∂ D ,(25)the average relative cratering rate isR c (D) = R b ∂Φ(>d)/∂d∂d/∂ D ∂Φ(>d)/∂d∂d/∂ D $ ,

  R c (D) = R b (u 2ν 1 sin ν 3 θ) s (u 2ν 1 sin ν 3 θ) s $

Fig. 11 .

 11 Fig. 11. Relative density of named craters larger than 25 km (dark gray squares) and 50 km (light gray triangles) on the farside of the Moon, and the relative density of Copernican and Eratosthenian craters larger than 25 km over the whole surface of the Moon (black circles). Our calculated relative cratering rate is shown for comparison.

Fig. B. 1 .

 1 Fig. B.1. Schematic illustration of the bolides that will impact the planet for a given u ∞ and i ∞ . The impact parameter b varies between 0 and τ , and the angle δ between 0 and 2π .the true anomaly. For an initial velocity u ∞ at an infinite radius, with an impact parameter b, the semi-major axis is given bya = G M 0 u 2 ∞

  launched for random values of b, δ and φ. This procedure is repeated until good statistics are obtained. The projectile flux at a latitude λ normalized to the global average is ϕ b (λ) =
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  Au-delà, la relation prend une forme exponentielle, traduisant un bombardement bien plus intense. Cela s'explique par le fait qu'un grand nombre de débris, produits de la compétition agrégation / destruction qui forma les planètes, peu-

	plaient le jeune système solaire. Progressivement, la population d'astéroïdes et
	de comètes atteint apparemment un état d'équilibre, réalimentée en continu par
	les immenses réservoirs que sont notamment la ceinture principale et la ceinture
	de Kuiper (voir le chapitre 3).

où t, le durée d'accumulation des cratères, s'exprime en milliards d'années. On constate que la relation établie est linéaire pour les ∼3.3 derniers milliards d'années, ce qui correspond à un flux de projectiles constant durant cette période. 1.2 Une mesure du temps écoulé

  1 -Géométrie de l'ellipse décrite par m 2 autour de m 1 .

	les équations (2.5) et (2.11), la distance qui sépare l'objet de la masse m 2 , qui implique en particulier que le centre de masse du système objet-Soleil se trouve
	occupe l'un des foyers de l'ellipse, s'écrit donc quasiment localisé au centre du Soleil (Eq. (2.8) avec m 1 >> m 2 ), et que ce
	r = dernier peut être considéré comme fixe. a(1 -e 2 ) 1 + e cos f Dans la majorité des cas, les objets célestes sont piégés par l'attraction du . (2.13)
	Soleil, et possèdent donc une orbite bornée elliptique ou quasi-circulaire, dont Dans le cas de l'hyperbole, le paramètre s'écrit l'étoile occupe l'un des foyers. C'est le cas des planètes et des astéroïdes, ainsi
	(2.14) que de la plupart des comètes. Certaines comètes décrivent cependant une orbite p = a(e 2 -1) ; hyperbolique ou quasi-paraboliques, et leur destin est de quitter le système solaire. la distance au foyer se met alors sous la forme Cela peut se traduire en terme d'énergie : en prenant le produit scalaire de ṙ avec
	r = q = p/(1 + e) = a(e -1) . a(e 2 -1) 1 + e cos f , l'équation (2.3), il vient ṙ • r + µ ṙ r 2 = 0, et donc qui s'intègre en 1 2 v 2 -µ = ξ, r L'apocentre n'est pas défini, puisque l'orbite n'est pas bornée. On écrit plus gé-(2.15) (2.18) (2.16) (2.19) néralement la distance au foyer en faisant intervenir le péricentre (une grandeur où v = |ṙ| est la vitesse de l'objet, et ξ, qui s'avère être l'énergie orbitale par unité de masse, est une constante du mouvement. Il y a conservation de l'énergie. plus intuitive que le demi-grand axe pour une hyperbole), soit La relation entre ξ et e s'obtient comme suit. Dans notre repère polaire, le carré
	r = de la vitesse s'exprime comme	q(1 + e) 1 + e cos f	,	(2.17)
	Notons que, dans le plan, les quatre paramètres a, e, ω et f sont nécessaires et Une ellipse est caractérisée par son demi grand axe a et son demi petit axe a , suffisants à la description du mouvement et de la position de l'objet. Nous allons comme indiqué sur la figure 2.1. Les relations géométriques dans une telle figure voir qu'ils font partie des six paramètres appelés éléments orbitaux qui, grâce a nous donnent le paramètre et l'excentricité de l'ellipse comme p = a 2 a et e = l'outil très précieux que sont les coniques, permettent de décrire et comprendre √ a 2 -a 2 a , (2.10) le mouvement des objets célestes.
	où l'autre de ses foyers. Ces relations nous donnent √ a 2 -a 2 équivaut à la distance qui sépare le centre de l'ellipse de l'un ou 2.2 Eléments orbitaux
	(2.11) Puisque le Soleil représente à lui seul plus de 99.8% de la masse totale du p = a(1 -e 2 ) . système solaire connu, et que la force exercée par un objet est directement pro-
	Sur l'ellipse, la distance minimale au foyer, notée q, est appelée péricentre, et cor-portionnelle à sa masse (Eq. (2.1)), on peut considérer dans une excellente ap-
	respond à θ = ω. Pour cette raison , l'angle ω se nomme argument du péricentre. proximation que le mouvement des planètes et des petits corps est en général
	La distance maximale, l'apocentre Q, correspond à θ = ω + π (Fig. 2.1). D'après uniquement influencé par le Soleil, et se placer dans le cadre du problème à deux
	les équations 2.5 et 2.11, on a corps. Nous aborderons plus tard la question des perturbations engendrées par
	q = a(1 -e) et Q = a(1 + e) , les nombreux autres corps qui peuplent le système solaire. Pour le moment, il (2.12) nous suffit de considérer que seul le Soleil exerce une force sur l'objet dont nous
	De manière générale, il est fait usage de l'angle f , appelé anomalie vraie, telle souhaitons définir l'orbite. Qui plus est, puisque la masse du Soleil, M S , est très
	que f = θ -ω. Le péricentre correspond ainsi à f = 0, l'apogée à f = π. D'après grande devant celle de l'objet, on se trouve dans la situation où µ GM S . Cela

  et Stuart et Binzel [2004] utilisent les données fournies par le programme LINEAR et débiaisent les observations de maniére indépendante.[START_REF] Rabinowitz | A reduced estimate of the number of kilometre-sized near-Earth asteroids[END_REF] se basent sur les observations du programme Spacewatch et NEAT. Les croiseurs martiens représentés correspondent à la totalité des objets observés susceptibles de croiser Mars sur un cycle d'excentricité, tels qu'ils sont référencés dans la base de donnée astorb.dat 3 compilée par E. Bowell. Ils sont normalisés arbitrairement pour comparaison. Pour comparaison encore, l'estimation de la distribution en taille de la ceinture principale d'astéroïdes par O'Brien et Greenberg [2005], est montrée (normalisation arbitraire). Cette estimation se base sur un modèle numérique de collisions qui inclut les effets de résonances et l'effet Yarkovsky. Dans cette représentation, les petits objets (d <∼ 10 m) sont supposés avoir une den-

sité de 2700 kg.m -3 (la valeur la plus communément utilisée dans cette gamme de taille), tandis que les plus grands possèdent la densité moyenne donnée par Stuart et

Binzel [2004] 

à 2050 kg.m -3 . Cette séparation pour le moins arbitraire n'a pas réellement d'incidence sur la valeur absolue du flux estimé. Les estimations qui concernent les objets tels que d >∼ 10 m ne font pas intervenir la densité comme variable, tandis que les autres n'y sont pas très sensibles. En effet, les estimations de

[START_REF] Brown | The flux of small near-Earth objects colliding with the Earth[END_REF]

, par exemple, ne diffèrent que de 10 % selon que l'on considère que la masse volumique moyenne est de 2000 kg.m -3 ou de 3000 kg.m -3 .

On constate la similarité entre les estimations données pour les géocroiseurs et pour la ceinture principale, même si cette dernière est plus ondulée. Les croiseurs martiens tels que d > 1km reproduisent approximativement le comportement des croiseurs terrestres, laissant penser que la distribution en taille est similaire pour l'ensemble des planètes telluriques.

Ivanov [2006] 

propose une tentative de représentation analytique des estimations données par ces différents auteurs, sous la forme d'une succession de lois de puissances. Pour cela, il construit sa solution de telle sorte que celle-ci respecte l'ensemble des données publiées à un facteur 2 près. Cette solution s'écrit

  saturées en cratères, au contraires des mers, qui sont donc a priori plus jeunes. Celles-ci, d'après les échantillons Apollo et Luna, sont ty-
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	piquement âgées de 3 à 4 milliards d'années, même si l'on estime que certaines (une grande minorité) se sont formées seulement 2 voire 1 milliard d'années plus Chapitre 4 tôt [Hiesinger et al., 2003]. Toujours d'après les échantillons rocheux, elles sont
	composées de basaltes fins et riches en fer, magnésium et titanium. Beaucoup de Les cibles : planètes et satellites mers recouvrent les bassins d'impact pré-existants (par exemple Mare Imbrium
	à l'intérieur d'Imbrium Basin) : la croûte superficielle de faible densité, balayée
	Dans ce chapitre, nous décrivons sommairement les principales structures géo-par l'impact, permet au magma de remonter par flottabilité au bout de plusieurs
	logiques observées sur la Lune et les planètes telluriques, en nous concentrant centaines de millions d'années [Wieczorek et al., 2001]. La croûte lunaire a été
	sur les cratères d'impact. Les caractéristiques des surfaces planétaires ont été pulvérisée par de nombreux impacts, et se compose d'une grande quantité de
		La colonne stratigraphique lunaire, empruntée à Stöffler et Ryder [2001] (d'après
	Wilhelms et al. [1987]), est représentée en figure 4.1. Le système pré-néctarien
	inclut les unités géologiques antérieures à Nectaris Basin (∼ 3.85 -3.90 Ga), et comporte 30 bassins d'impact identifiés. Le plus vieux bassin est Ocean Procel-
	larum, mais il n'est pas certain qu'un impact soit à son origine. Le plus ancien
	bassin dont la formation est certainement due à un impact est South Pole-Aitken.

déterminées par le biais de techniques telles que l'imagerie, la photométrie, la polarimétrie, la spectroscopie thermique, le sondage radar, etc. Les images de meilleures qualités proviennent bien évidemment des observations sur site, par l'usage d'orbiteurs ou de robots largués au sol. Citons les missions Mariner 10 pour Mercure, Magellan pour Vénus, les missions Apollo (entre autres) pour la Lune, Viking, Mars Pathfinder, Mars Global Surveyor et Mars Express pour la planète rouge. Dans une deuxième partie, nous listons les propriétés physiques (masse, rayon) et orbitales (demi grand axe, excentricité, inclinaison, obliquité). Dans la mesure où les probabilités d'impact dépendent des propriétés orbitales de la cible, et où nous souhaitons estimer le bombardement produit sur de longues échelles de temps (de l'ordre du milliard d'années), il nous faut prendre en compte d'éventuelles variations de l'orbite des planètes dans le passé. Les orbites planétaires sont soumises à des changements séculaires en raison de la nature chaotique du système. Nous nous appuyons sur les travaux de J. Laskar en particulier pour inclure ces variations dans notre modèle de bombardement.

4.1 Géologie de surface

On peut constater de visu que la Lune présente deux types de structures géologiques qui se distinguent nettement. Il s'agit des highlands, clairs, et des plaines sombres dites maria, appelées ainsi en raison de leur ressemblance (purement visuelle) avec les mers terrestres. Les mers lunaires sont concentrées sur la face visible de la Lune. Elles représentent environ 20 % de la surface du satellite.

La structure la plus répandue sur la Lune est le cratère d'impact. Les high-lands apparaissent brèches. La surface elle-même est recouverte de régolithe, produit d'une pulvérisation encore plus poussée dont les micro-météorites sont à l'origine. Le contraste entre highlands et maria suggère que la Lune, comme la Terre, a subi un processus de différenciation globale. Le scénario le plus communément admis quant à la formation de la Lune repose sur l'impact tangentiel avec la Terre d'un objet de taille comparable à celle de Mars, il y a environ 4.5 milliards d'années

[START_REF] Hartmann | Satellite-sized planetesimals and lunar origin[END_REF][START_REF] Cameron | The origin of the moon[END_REF][START_REF] Benz | The origin of the moon and the single impact hypothesis[END_REF][START_REF] Cameron | The origin of the moon and the single impact hypothesis[END_REF]

. La Lune serait le résultat de l'accrétion de la matière éjectée. Cela requiert que la Lune était à l'origine dans un état de fusion totale ou partielle, une conclusion établie indépendamment à partir de l'observation de la haute teneur en feldspath de la croûte primordiale. Cette dernière est probablement le produit de la cristallisation de l'océan de magma global initial. Le processus finissant de cristallisation (il y a environ 4.4 Ga) conduisit à la formation d'une couche de composition chimique inhabituelle, appelée KREEP (potassium, éléments traces terrestres et phosphore) à l'interface manteau-croûte, et excavée en partie par le bassin Imbrium.

Les terrains pré-néctariens, sur lesquels aucune formation volcanique n'est observée, dominent sur la face cachée de la Lune. Le système néctarien comprend les formations géologiques formées entre Nectaris Basin et Imbrium

Basin (3.85 

  Le cratère Copernicus est évidemment l'exemple typique d'une structure appartenant au système copernicien.Environ la moitié de la surface de Mercure a été imagée par la mission Mariner 10. La planète est très similaire à la Lune. Comme sur le satellite, les cratères prédominent dans le paysage. La plus grande structure observable est, de loin, Caloris Basin (diamètre de 1300 km), similaire dans sa forme aux grands bassins lunaires. Une différence fondamentale existe cependant entre la Lune et Mercure : cette dernière n'exhibe pas de zones sombres comme le fait la Lune avec les mers basaltiques. Les highlands de Mercure, lourdement bombardés, sont entrecoupés de plaines lisses qui, si elles ressemblent d'une certaine façon aux mers lunaires, n'ont pas la composition de laves[START_REF] Wilhelms | Mercurian volcanism questioned[END_REF][START_REF] Spudis | Stratigraphy and geologic history of Mercury[END_REF]. a été, relativement riche en glace. On observe de nombreux canaux, de forme similaire aux ramifications des rivières terrestres. Les plus grands canaux, dits « canaux de débâcle », peuvent atteindre une longueur de plusieurs centaines de kilomètres pour une largeur de plusieurs dizaines de kilomètres. La présence d'îlots surélevés et déformés dans le sens du « courant » suggère (parmi d'autres indices) que les canaux ont été creusés par d'abondantes quantités d'eau liquide, absente aujourd'hui (la faible pression atmosphérique, d'environ 6 mbar, ne permet l'existence de l'eau que sous forme solide ou gazeuse). Les pôles sont géologiquement jeunes. En hiver et à de fortes latitudes, le CO 2 gazeux se solidifie en glace sèche autour de grains de poussière. En été, il se sublime à nouveau, laissant la poussière derrière lui et formant à la longue une succession d'alternances glace / Tab. 4.1 -Propriétés physiques et orbitales des planètes telluriques.

				Planète		Mercure	Venus	Terre	Lune	Mars	Mars
													(moyenne séculaire)
				Rayon R 0 (km)	2440		6052	6371	1737	3390	3390
				Masse M 0 (10 23 kg)	3.302		48.685	59.736	0.7349	6.4185	6.4185
				Demi grand axe a 0 (UA)	0.3871		0.7233	1.000	1.000	1.5236	1.5236
				Excentricité e 0	0.2056		0.0068	0.0167	0.0167	0.0934	0.069
		Inclinaison / écliptique i 0 (degrés)	7.0		3.4	0.0	0.0		1.85	4.0
			Obliquité / orbite 0 (degrés)	0.5		177.4	23.45	1.5		25.2	37.6
								Ga				
								3.6					** = age of oldest Akilia sediment
	Probabilité	15 20 25				Mercure 3 Ga 250 Ma Vénus 3 Ga 250 Ma Terre 3 Ga 250 Ma Mars 3 Ga 250 Ma	3.9 3.8 3.7 **	Probabilité	Late Imbrian Early Imbrian Nectarian 0.4 0.3 0.2	Orientale basin (3.80/3.84?) Imbrium basin (3.85) Nectaris basin (3.90/3.92?) Serenitatis basin (3.89) Crisium basin (3.89) Schrödinger basin Apollo 11 mare lavas Apollo 17 mare lavas Mercure 3 Ga 250 Ma Vénus 3 Ga 250 Ma Terre 3 Ga 250 Ma Mars 3 Ga 250 Ma
		10 5						4.0		0.1			??	Numerous basins South Pole-Aitken basin Procellarum basin?
		0	0	0.1	0.2	0.3	0.4	4.1		Pre-Nectarian 0 0	5	??	10	Apollo 15 Apennine Bench KREEP basalts (3.84) 15
				Excentricité ! 0			4.2					Crustal magmatism Inclinaison i 0 (°)
													and volcanism
								4.3					??
								4.4					Oldest ferroan anorthosites/
													crustal formation
								4.5			??	/Earth	Magma ocean
											??	
			4.2 Propriétés physiques et orbitales. Variations
			Fig. 4.1 -Colonne stratigraphique lunaire empruntée à Stöffler et Ryder [2001]. séculaires
	Les principales grandeurs qui caractérisent les planètes telluriques et la Lune Ga). Onze autres bassins appartiennent à ce système, dont Serenitatis. Le sys-tème imbrien est encadré par Imbrium Basin et ∼ 3.1 Ga. La grande majorité des plaines volcaniques appartient à ce système (Mare Serenitatis,Tranquilitatis, Crisium, Nectaris, Fecunditatis, Humorum, Nubium, Cognitum, Imbrium Est, sont listées en table 4.1. Mercure et la Lune sont de taille comparable, même si surface dans un laps de temps d'une dizaine de millions d'années. D'autre scéna-la masse de la première est nettement plus importante (composition plus riche en rios tout aussi plausibles existent, et l'on pourra consulter Strom et al. [1994] et éléments lourds). Vénus et la Terre sont elles aussi de rayon similaire. Mars pré-les références incluses. Mars présente une forte asymétrie hémisphérique. L'hémisphère sud, très cra-sente une taille intermédiaire. Les planètes décrivent une orbite quasi-circulaire ;

Ocean Procellarum Ouest). Les systèmes ératosthénien et copernicien terminent la pile. Leur frontière, mal contrainte, est approximativement définie comme la limite à laquelle les cratères sont suffisamment récents pour exhiber des éjectas étoilés (<∼ 1 Ga). Quelques mers basaltiques appartiennent au système ératos-thénien.

La surface de Vénus est à l'abri des regards derrière une épaisse couche de nuages. Cependant, certaines longueurs d'onde infrarouges ou fréquences radio traversent cet écran protecteur. La planète a été cartographiée avec une résolution de 100 mètres par l'imagerie radar permise par la mission Magellan. Plusieurs modules Venera ont atteint la surface de la planète. Les analyses in situ révèlent que l'ensemble des roches échantillonnées est de composition basaltique. Environ mille cratères d'impacts ont été identifiés, aucun de diamètre inférieur à 3 kilomètres. Les plus petits cratères sont souvent regroupés en amas, suggérant que les projectiles sont fragmentés par l'atmosphère avant l'impact, du moins les projectiles suffisamment petit pour être affectés, et suffisamment gros pour survivre au passage atmosphérique. La distribution des cratères d'impact, homogène, suggère que l'ensemble de la surface est d'âge similaire. Les structures volcaniques sont légion sur Vénus (domes et couronnes volcaniques notamment), et suggèrent que la surface à été globalement renouvelée par un épisode relativement bref de volcanisme intense.

[START_REF] Turcotte | An episodic hypothesis for venusian tectonics[END_REF] 

soupçonne la lithosphère vénusienne d'être très épaisse (peut-être 200 km), si bien que la chaleur générée par radioactivité ne peut s'échapper aussi rapidement qu'elle est produite. Il est possible qu'à un certain stade, la lithosphère se rompe et subducte, renouvelant la totalité de la térisé, est surélevé de quelques kilomètres par rapport à l'hémisphères nord, plus lisse. Les highlands sont saturés en cratères et entrecoupés de plaines plus jeunes.

Les éjectas de nombreux cratères semblent avoir flué, ce qui suggère que la croûte est, ou poussière observée par les missions Viking et Mars Global Surveyor. Les densités de cratères mesurées suggèrent que les plaines martiennes de l'hémisphère nord sont bien plus jeunes que les highlands

[START_REF] Tanaka | The stratigraphy of mars[END_REF]

. Ces plaines semblent s'être formées par épanchement basaltique quelques trois ou quatre milliards d'années plus tôt. Le volcanisme martien est évident au niveau de l'immense complexe volcanique appelé Tharsis. On y trouve en particulier Olympus Mons, le plus important volcan du système solaire. Les missions martiennes, en particulier Viking et Mars Express (HRSC), de résolutions respectives 450 m / pixel et 12 m / pixel, ont permis d'estimer, à partir de la densité des petits cratères (D ∼ 0.01 -0.1 km) qui recouvrent les minces épanchements de lave de la région, que le volcanisme martien peut être vieux de seulement quelques dizaines de millions d'années

[START_REF] Neukum | Recent and episodic volcanic and glacial activity on mars revealed by the high resolution stereo camera[END_REF]

. seules Mercure et Mars possèdent une excentricité significative. L'inclinaison par rapport à l'écliptique est très modérée pour chacune d'entre elles, avec un maxi-mum de 7 degrés pour Mercure. Seules la Terre et Mars possèdent une obliquité significative.

  , procurent des contraintes sur la durée du jour terrestre et par conséquent sur la distance

Terre-Lune. La figure 4.4 représente les données

de Sonett et Chan [1998] 

et

de Eriksson et Simpson [2000]

, ainsi que la courbe

de Webb [1982] 

mise à l'échelle de telle sorte que l'âge de la Lune soit correct. Cette mise à l'échelle n'a que peu de valeur en soi, mais tend à montrer, appuyée par les données procurées par les dépôts de marée, que la Lune se trouvait à une distance d'environ 40-45 rayons terrestres il y a 3.5 milliards d'années, et qu'elle s'est éloignée de manière grossièrement linéaire depuis.

[START_REF] Ward | Past orientation of the lunar spin axis[END_REF] 

et

[START_REF] Touma | Evolution of the earth-moon system[END_REF] 

prédisent qu'entre 40 et 60 rayons terrestres, l'obliquité de la Terre et de la Lune, ainsi que l'inclinaison de l'orbite lunaire n'ont évoluées que de quelques degrés. Cela ne produira aucune différence visible sur nos résultats.

  Ces condi-tions d'approche sont décrites par le vecteur vitesse relatif entre le projectile et la cible au point où les deux orbites intersectent, noté U ∞ . Le symbole ∞ traduit le fait que, du point de vue de la cible, il s'agit de conditions d'approche à l'« infini », c'est-à-dire avant toute perturbation gravitationnelle de cette dernière. La vitesse relative est calculée de manière purement géométrique selon l'orbite des deux corps et leur point d'intersection, sans tenir compte (à ce stade), de l'accélération provoquée par la masse de la cible. Il est supposé que U ∞ , calculé ponctuellement du point de vue du corps primaire, change suffisamment peu dans le voisinage de l'intersection pour être considéré valide à une distance qui s'apparente à l'infini pour la cible, petite au regard du système global (dans un système Soleil-planète-astéroide, le corps primaire est le Soleil et la cible est la planète, dans un système planète-lune-astéroïde le corps primaire est la planète et la cible est le satellite). représente le plan orbital de la cible, (OX) pointe dans la direction du corps primaire et (OZ) est dirigé vers le haut, comme illustré sur la figure 5.1. Il est commode, pour définir les conditions d'approche, d'utiliser la norme de la vitesse, U ∞ , ainsi que deux angles, i ∞ et j ∞ , plutôt que d'utiliser les composantes cartésiennes de U ∞ . L'angle i ∞ donne l'inclinaison du radiant par rapport au plan orbital, l'angle j ∞ son orientation dans ce plan. On définit ainsi i ∞ et j ∞ comme une « latitude » et une « longitude » orbitales, telles que
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	partir de l'observation des objets suffisamment gros pour être détectés. Aucune
	corrélation n'apparaissant entre la taille des projectiles et leurs paramètres orbi-tion (5.1) doit donc être vue comme une estimation à moyen terme de la capacité
	taux, il est supposé que la distribution orbitale relative est la même à toute taille, d'une certaine répartition orbitale à bombarder une planète, étant entendu que
	et que seul le nombre absolu de projectiles peuplant une région (a, e, i) donnée cette répartition est en état d'équilibre. Si chaque objet, individuellement, n'est
	varie avec d. Le nombre d'impacts de projectiles d'une certaine taille que subit pas fixe dans l'espace (a, e, i), la niche qu'il laisse vacante est réoccupée par un
	une planète de rayon R 0 , par unité de temps et de surface (c'est-à-dire le flux autre objet provenant d'une région adjacente [Milani et al., 1989], et les objets
	d'impacts) peut donc s'écrire sous la forme détruits ou perdus sont, à terme, remplacés par de nouveaux arrivants créés dans	
	Φ(> d) = la ceinture principale [Bottke et al., 2002]. Outre la probabilité totale d'impact avec la planète, nous souhaitons exprimer 1 4πR 2 0 N (> d) P ,	(5.1)
	avec la distribution de probabilité des conditions d'approche générée par l'ensemble de	
	P = la population d'astéroïdes. Ces conditions d'approche sont données par l'expres-	
	a,e,i	
	5.1 Objectifs et méthode générale	
	5.1.1 Conditions d'approche et probabilités	

Cette détermination n'est possible qu'à la condition de connaître la distribution orbitale des impacteurs potentiels. Celle-ci à été estimée au chapitre 3 à n(a, e, i) P (a, e, i) da de di

(5.2)

la

probabilité d'impact moyenne, où P (a, e, i) est la probabilité d'impact pour une triade (a, e, i) donnée, n est la proportion relative d'objets dont l'orbite est décrite par cette triade (figure 3.9), et N est le nombre total d'objets qui possèdent un diamètre supérieur à d dans l'espace (a, e, i). Ce dernier s'exprime N (> d) = N 1 S(> D) , (5.3) avec N 1 le nombre d'objets tels que d > 1 km, et S(> d) est la distribution en taille normalisée, donnée par l'équation (3.11). On suppose également que n(a, e, i) n'a pas changé par le passé, et que seul le nombre absolu d'objets a pu varier, ce qui permet d'écrire Φ(> d, t) = ï(t) Φ(> d) , (5.4) avec ï(t = 0) = 1. La calcul de P (a, e, i) suppose que (1) les trois éléments orbitaux principaux, a, e et i, sont constants dans le temps, et (2) les angles qui définissent l'orientation relative des plans orbitaux de la planète et de l'objet (Ω et ω pour chacune des deux orbites) prennent n'importe quelle valeur de manière équiprobable. Or, ces conditions ne sont pas respectées à l'échelle d'un seul objet. Tout d'abord, les probabilités d'impact typiquement calculées à partir des formules d'Öpik sont de l'ordre de 10 -10 an -1 , alors que la durée de vie typique d'un astéroïde est plutôt de 10 7 ans (sa disparition étant due à la collision avec un autre corps ou à l'éjection du système Solaire). Il est donc peu probable que cet astéroïde entrera jamais en collision avec la planète considérée. Qui plus est, au cours de son existence, l'orbite du petit corps connaîtra, en raison des divers phénomènes d'interactions qui animent le système, de larges variations de ses éléments orbitaux. L'équasion du vecteur vitesse relatif d'approche, noté U ∞ , dans un repère fixe attaché à la cible. Pour chaque planète, nous construirons dans ce chapitre la distribution de probabilité p(U ∞ ) qui permettra (au chapitre suivant) de déterminer le bombardement comme fonction de la position géographique. Dans une première section, nous décrivons le schéma général de l'obtention des probabilités d'impact en fonction des conditions d'approche, et expliquons en quoi ces dernières permettent de simuler le bombardement des planètes et des satellites. Dans un deuxième temps, nous présentons les formules établies par Öpik [1951] et ses successeurs pour calculer les probabilités d'impact sous l'hypothèse que les orbites précessent uniformément. Ces formules sont applicables à la détermination des modalités du bombardement des planètes. Dans un troisième temps, nous établissons une procédure permettant le calcul des probabilités d'impact avec un satellite à partir des conditions d'approche avec le système planète-satellite. Dans ce cas, l'orbite (hyperbolique) du projectile qui pénètre dans le système ne précesse pas, et il est nécessaire d'établir une nouvelle formule. Ensuite, nous résumons la méthodologie employée pour obtenir les résultats, présentés en dernière partie.

Etant donnée la distribution de probabilité des éléments orbitaux des projectiles, n(a, e, i), l'objectif est de calculer la distribution de probabilité des conditions d'approche avec une cible dont l'orbite est décrite par (a 0 , e 0 , i 0 ). Fig. 5.1 -Géométrie de l'approche du projectile. Dans un repère centré sur la cible, U ∞ donne la direction d'approche du projectile, que nous appellerons le radiant. On choisit le repère (OXY Z) tel que (OXY )

  ωn est la probabilité d'impact au voisinage de ω n , égale à P ω pour les quatreω n .Il s'agit maintenant d'exprimer P ω . On peut la décomposer ainsi

	4		
	P orb =	P ωn = 4P ω ,	(5.15)
	n=1		
	où P		

14)

L'hypothèse étant faite que l'argument du périhélie varie uniformément dans le temps, ces quatre configurations sont toujours possibles tant que la condition donnée par l'équation (5.12) est respectée, et elles sont équiprobables (on note que dans le cas où l'orbite de la cible n'est pas circulaire, l'existence d'une intersection est également conditionnée aux valeurs de Ω et Ω 0 ; voir la section 5.2 qui traite du cas général). Un impact, s'il se produit, aura lieu pour une valeur de ω proche de ω 1 , ω 2 , ω 3 ou ω 4 . La probabilité totale d'impact sur une période orbitale du projectile peut s'écrire

  .21) On le voit, la probabilité d'impact est proportionnelle à τ 2 : plus la planète est grande et massique, et plus elle est susceptible de se faire bombarder (pour une géométrie orbitale identique).On note que sur un cycle de précession de l'orbite du projectile, il y a quatre géométries possibles de collision. En effet, celle-ci peut se faire au niveau du noeud ascendant ou descendant, et quand le projectile s'éloigne du Soleil ou s'en approche. Selon que le noeud est ascendant ou descendant, l'inclinaison mutuelle entre les deux objets (ici, simplement l'inclinaison du projectile i), est par convention positive ou négative. U Z est donc donné par l'équation (5.17) comme

  .11) où C i∞ et S i∞ sont le cosinus et le sinus de i ∞ ; C j∞ et S j∞ le cosinus et le sinus de j ∞ . En calculant le produit scalaire du vecteur unitaire correspondant à la position d'un impact quelconque avec rad, on en déduit

  Ces deux relations sont basées sur l'hypothèse que la masse du satellite est nulle, et que le bombardement du système Terre-Lune est isotrope. On constate que la deuxième expression reproduit de manière très satisfaisante notre simulation
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	qui fait l'hypothèse de l'isotropie (courbe noire), mais pas notre simulation plus
	rigoureuse (courbe rouge). Notons enfin que la masse de la Lune ne joue pas un
	rôle significatif à ces vitesses (la courbe rouge, recalculée pour une masse lunaire
	nulle, est quasi identique.)					
	6.5 Résultats						
	1.2							
			Mercure					
			Vénus					
	1.15		Terre Lune					
			Mars					
			Mars (variations séculaires)			
	1.1							
	1.05							
	1							
	0.95							
	0.9	0	15	30	45	60	75	90
								.24)

  .6) Là encore, on peut considérer que D • est inversement proportionnel à la gravité de surface. Sur Terre, on observe que D • 50m. On a donc D • 300 m sur la Lune et sur Mercure, et D • 150m sur Mars.

  16) sont Tab. 7.1 -Taux de cratérisation relatif à la Lune, pour D > 1km et D > 30km , comparés aux bombardement relatifs. Table (7.1), pour D supérieur à 1 et 30 km. La fonction R c (> D) est tracée sur la figure 7.2. Il faut noter que la valeur de R c est assez fortement sensible aux différents paramètres de cette étude, notamment la pente de la distri-

	Planète	Mercure	Venus	Terre	Lune	Mars
						(moyenne séculaire)
	R	1.81	1.73	1.57	1	2.74
	R c (D > 1 km)	2.8	0.86	0.59	1	0.82
	R c (D > 30 km)	3.5	1.7	1.2	1	1.2
	regroupées en					

  Même si φ c (> D, λ)) est en toute rigueur fonction du diamètre D considéré, nous calculons qu'un écart de moins de 5% existe entre les ratios présentés en Table 8.1 pour D > 1km et les ratios correspondant à n'importe quel autre diamètre. Ceci est illustré en figure 8.3, qui montre les distributions taille / fréquence des cratères martiens et lunaires, au pôle et à l'équateur. On constate qu'en dépit des distributions de probabilité différentes en terme de conditions d'impact, seul un décalage vertical est évident entre les courbes produites sur un même corps.

	Ratio	Mercure	Venus	Terre	Lune	Mars	Mars
							(long terme)
	Flux d'impacts	1.05	1.00	0.96	0.90	1.26	1.14
	Production de cratères (1)	1.08	1.00	0.90	0.83	1.56	1.27
	Production de cratères (2)	1.04	0.99	0.95	0.87	1.30	1.16

La figure 8.2 représente les variations en fonction de D du ratio pôle/équateur de cratérisation.

  Tab. 9.2 -Ages estimés. Valeurs comparées à : a Neukum et al. [2001b] ; b Strom et Neukum [1988] ; c McKinnon et al. [1997] ; d Neukum et Ivanov [1994] ; e Strom et al. [1994] ; f Grieve et Dence [1979] ; g Hartmann etNeukum [2001].[START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF] mettent en doute la validité de ce résultat. En effet, le passage des conditions lunaires aux conditions terrestres est fait de manière très approximative : il ne tient pas compte de la gravité de la Terre. En appliquant un traitement plus rigoureux,[START_REF] Neukum | Crater size distributions and impact probabilities on earth from lunar, terrestrial-planet, and asteroid cratering data[END_REF] 

	9.3 Attribution de nouveaux âges	
	Pour finir, nous appliquons la méthode décrite à l'instant pour estimer l'âge de
	diverses unités géologiques lunaires et planétaires. L'ensemble des âges recalculés
	est listé en table 9.2, et comparé avec diverses valeurs publiées au préalable.
	Planète	Unité	Age	Age
			(littérature)	(cette étude)
	Mercure	Mare Caloris	3.77 a , 3.85 b	3.70 Ga
		Highlands	4.18 a , 4.07 b	3.89 Ga
	Vénus	surface globale	750 c , 650 d , 290 e	230 Ma
	Terre	Cratons phanérozoïques	700 d , 375 f	380 Ma
	Mars	Amazonis Planitia D < 1km	100 -200 g	100 -200 Ma
		Amazonis Planitia D > 1km	0.5 -2 g	∼ 1 Ga
	Sur Terre, le temps nécessaire à l'accumulation des cratons Nord américains
	et européens a été estimé géologiquement à environ 375 millions d'années par
	Grieve et Dence [1979]. A partir de la distribution taille / fréquence établie par
	ces auteurs, Neukum, G. [1983], qui établit pour la première fois une relation âge
	/ densité relativement robuste pour la Lune, exporte la méthode de datation sur
	Terre et en déduit un âge relativement proche, qui vient conforter l'hypothèse d'un
	bombardement constant dans les dernières centaines de millions d'années (point 4
	de la figure 9.3). Cependant,		

  Le projectile et la cible possèdent respectivement une vitesse v et v 0 .On suppose que, dans le voisinage du noeud commun, le mouvement des deux objets s'assimile à une ligne droite, et que la vitesse du projectile est constante.Puisque que la collision se fera dans ce voisinage, la vitesse relative d'approche du projectile vers la cible sera calculée directement à partir des vitesses de l'un et de l'autre évaluées au noeud commun. L'angle que fait v avec (-OX) est noté α, tandis que v 0 est selon (-OY ) puisque l'orbite est circulaire. On se trouve sur la figure au niveau du noeud ascendant, et la composante de v sur (OZ) est positive. La distance est donnée par = r noeuda 0 , et = 0 correspond à l'une ou l'autre des quatre valeurs ω n . A un temps donné, projectile et cible se trouvent à une position arbitraire sur leur orbite, ce que l'on traduit par l'usage de la grandeur : on décide qu'à t = 0, le projectile coupe le plan (OXY ), tandis que la cible est éloignée d'une distance de l'origine.

	et	
	sin Ω = -cos δ sin i / sin i .	(A.31)
	L'argument du péricentre se trouve à partir de l'équation (2.33), tel que cos ω = -√ Annexe B e 2 -1 sin i + sin δ cos i , (A.32) e sin i où Etablissement des probabilités
	26) A ce stade, toutes les grandeurs seront exprimées dans (OXY Z). On calcule le vecteur nodal avec l'équation (2.29) comme n =      sin δ -cos δ sin i 0      . (A.27) L'inclinaison par rapport au plan de référence (plan orbital de la planète) est donnée par (Eq. (2.30)), cos i = cos δ cos i , (A.28) et sin i = √ 1 -cos 2 δ cos 2 i . (A.29) ω ∈ [0, π] si √ e 2 -1 sin δ cos i ≥ sin i (A.33) ω ∈]π, 2π[ si √ e 2 -1 sin δ cos i < sin i . d'Öpik (A.34) Cette annexe détaille l'obtention de la probabilité d'impact présentée en sec-tion 5.2.1 dans le cas où la cible est en orbite circulaire . -X -Y v v v v O t t t Fig. B.1 -Géométrie du mouvement autour du noeud commun. Considérons la géométrie du mouvement au voisinage du noeud commun illus-trée par la figure B.1. Les axes (OX) et (OY ) du repère orbital (OXY Z) défini par la figure 5.1 sont ici inversés par souci de cohérence avec les articles traitant cos α = eS √ 1 + 2eC + e 2 et sin α = 1 + eC √ 1 + 2eC + e 2 . (B.1) du sujet. Les relations géométriques sur l'ellipse permettent d'exprimer α comme La vitesse du projectile au noeud s'exprime dans le repère (OXY Z) comme
	La longitude du noeud ascendant, d'après les équations (2.31) et (2.32), s'ex-
	prime	
	cos Ω = sin δ/ sin i ,	(A.30)

  Terre ou de la Lune. Ce type de procédé permet d'économiser un précieux temps de calcul sans pour autant sacrifier à la précision. L'idée clef est la suivante : le calcul effectué dans l'intervalle ∆t est considéré comme une fonction polynomiale de variable ∆t 2 . Un pas de temps initial relativement grand est subdivisé de plus en plus finement, et la convergence des calculs est extrapolée pour donner le résultat à t + ∆t comme s'il avait été calculé par une infinité de sous-pas. La fi-Puisque l'algorithme adapte lui même le pas de temps, et que la Lune est en mouvement dans l'intervalle, il est nécessaire de prendre certaines précautions afin de ne manquer aucun impact. La méthode mise en oeuvre est la suivante : Le calcul reprend à t i-2 dans le cas (i), ou à t i-1 dans le cas (ii). Cette fois, D l = D l /2 et l'on impose à l'algorithme un pas constant ∆t imp = min(t it i-1 , t i-1t i-2 )/2 (ou ∆t imp = ∆t imp /2 si la boucle a déjà été La boucle s'effectue tant que ∆r min < D l , pour D l et ∆t de plus en plus petits, comme illustré par la figure C.2. Si cette condition vient à ne plus être respectée, le calcul de la trajectoire se poursuit et l'algorithme est de nouveau On considère qu'il y a impact lorsque ∆r(t i ) < 0 avec ||ṙ||∆t imp < 30 km, distance qui correspond à 1 degré sur la surface de la Lune. En cas de collision, le moment t imp de l'impact est interpolé pour correspondre à ∆r(t) = 0, en supposant une variation linéaire entre t et t -∆t imp . Toujours de manière linéaire, les vecteurs position et vitesse du projectile et de la Lune sont déterminés à t imp dans le référentiel (OXY Z). On se place alors dans le référentiel géographique lunaire

	C.2 Détermination de l'impact. C.3 Précision et optimisation du code	193 195
	ou			
	(ii) ∆r(t i ) < 0. t 1 = t 4			
	Aller à 3.			
	2. Dans le cas (i) seulement, les trois valeurs de ∆r sont interpolées par un
	polynôme de degré 3, et le minimum ∆r min est obtenu en annulant la dérivée
	∂∆r ∂t . Si ∆r min > D l , avec D l = 4R l , alors le calcul de la trajectoire continue normalement jusqu'à ce que les cas (i) ou (ii) se reproduisent, ou bien jusqu'à ce que le projectile quitte definitivement le système Terre-Lune. r (m) t 5 t 3
	Sinon, aller à 3.	t 2	t 6 = t 8	t 7
	3. effectuée).		t 9	t 10
	Aller à 1.	Temps (s)	
	libre d'adapter le pas de temps à sa guise. L'approximation polynomiale se justifie
	par le fait qu'à proximité de la planète ou du satellite, le mouvement s'apparente
	à la conique d'un problème à deux corps. On peut voir sur la figure C.2 la validité
	de ce choix.			
	Fig. C.1 -Trajectoire numérique du projectile.
	C.2 Détermination de l'impact.	
	(en tenant compte d'une éventuelle obliquité) pour déduire les coordonnées, la Considérons ∆r(t) tel que vitesse et l'angle d'impact. La même méthode est appliquée à la Terre, à ceci
	gure C.1 illustre l'adaptation du pas de temps selon les besoins. La distance entre près qu'elle est fixe dans le référentiel choisi. Le choix de la valeur de D l est fait ∆r(t) = r(t) -r l (t) -R l , les points qui définissent la position du projectile correspond au pas de temps choisi par l'algorithme. On peut voir que plus de points sont évalués à proximité de la Lune. On constate également que, dans certains cas extrêmes, la trajectoire du projectile diverge complètement de l'hyperbole du problème à deux corps. empiriquement : pour une valeur supérieure à 4R l , on ne recense pas plus d'im-où r est la position du projectile, r l la position de la Lune, R l son rayon. pacts. On lance un nouveau projectile lorsque le précédent à quitté le système, 1. On tire un projectile au hasard. Sa trajectoire est calculée jusqu'à ce que : (i) ∆r augmente après avoir décrût, soit r > R H .
	soit ∆r(t Aller à 2.			

i ) > ∆r(t i-1 ) et ∆r(t i-1 ) < ∆r(t i-2 ).

  Comparaison avec la méthode semi-analytique. 197 la validité des résultats de cette dernière. Des résultats similaires sont obtenus pour tous les tests que nous avons pu effectuer. Notamment pour n'importe quel type de distance Terre-Lune comprise entre 10 et 60 rayons terrestres. Afin de s'assurer que d'éventuelles différences systématiques n'étaient pas masquées par la diversité des conditions d'approche susceptibles de se contrebalancer, le bom-

	6, l'intégration purement numérique des trajectoires dans le système Terre-Lune
	possède l'intérêt d'éviter un grand nombre d'approximations. On ne calcule plus
	ici les conditions d'approche lunaires « à l'infini », mais directement les conditions
	de l'impact, sans qu'il soit nécessaire de diviser artificiellement l'espace au sein
	du système Terre-Lune en une zone d'influence purement terrestre et une zone
	d'influence purement lunaire.
	La figure C.3 compare les deux méthodes. Elle représente, en chaque point
	de la surface lunaire, la différence entre le flux d'impacts calculé au chapitre 6
	(figure 6.14) et les résultats obtenus numériquement. La variation des résidus,
	visiblement décorrélée de la position géographique, n'est due qu'au bruit statis-

tique de la simulation numérique (qui se compose de deux millions d'impacts, et a nécessité une semaine de calculs). On note que la simulation numérique prend en compte l'inclinaison du plan orbital lunaire par rapport à l'écliptique (5 • ), à la différence de la méthode semi-analytique, sans que cela n'ait d'incidence sur C.4 bardement généré par un seul couple (U ∞ , j ∞ ) a également été testé avec succès, pour des couples très variés.
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Table 2

 2 Average cratering conditions on the terrestrial planets

	Planet	Mercury	Venus	Earth	Moon	Mars	Mars
							(time-av.)
	Mean approach	42.2	22.4	16.4	19.2	9.1	9.3
	velocity u ∞ (km s -1 )						
	Mean Γ	0.01	0.48	0.94	0.02	0.29	0.29
	Mean impact	42.5	25.2	20.4	19.4	10.6	10.8
	velocity u						
	(km s -1 )						
	Mean encounter	34.1	32.7	30.2	30.0	41.5	41.0
	inclination i ∞ (degrees)						
	R b	1.87	1.79	1.62	1.00	3.23	2.83

Table 3

 3 Pole/equator ratios of impact fluxes and cratering rates for D > 1 km Crater scaling with vertical component of impact velocity. (2) Crater scaling for vertical impacts.

	Ratio	Mercury	Venus	Earth	Moon	Mars	Mars
							(time-av.)
	Impact flux	1.05	1.00	0.96	0.90	1.26	1.14
	Cratering rate (1)	1.08	1.00	0.90	0.83	1.56	1.27
	Cratering rate (2)	1.04	0.99	0.95	0.87	1.30	1.16
	(1)						

Table 4

 4 Relative average impact flux and cratering rates with respect to the Moon

	Planet	Mercury	Venus	Earth	Moon	Mars	Mars
							(time-av.)
	R b	1.87	1.79	1.62	1	3.23	2.83
	R c (>1 km)	2.6	1.0	0.7	1	1.2	1.1
	R c (>20 km)	3.6	1.7	1.2	1	1.4	1.2
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Le modèle ainsi créé donne la distribution orbitale relative des croiseurs de même taille, et ce quelle que soit cette taille.La distribution en taille provient quant à elle de l'estimation des probabilités d'impact avec la Terre, dans une gamme de diamètres allant de la dizaine de centimètres à la centaine de kilomètres, estimations qui se basent sur de multiples observations indépendantes. Pour les petites tailles, le recensement des détonations atmosphériques dans un laps de temps donné, par des méthodes acoustiques[START_REF] Revelle | Bolide dynamics and luminosity modeling : comparisons between uniform bulk density and porous meteoroid models[END_REF] ou photométriques[START_REF] Halliday | Detailed data for 259 fireballs from the canadian camera network and inferences concerning the influx of large meteoroids[END_REF][START_REF] Brown | The flux of small near-Earth objects colliding with the Earth[END_REF], permet d'estimer la fréquence à laquelle des projectiles d'un certain diamètre entrent en collision avec la Terre (par exemple, en convertissant l'énergie optique dégagée en énergie cinétique puis, connaissant la vitesse d'impact, en masse et enfin en diamètre). La probabilité d'impact calculée pour les plus gros objets provient de l'observation des géocroiseurs, corrigée du biais observationel, permise par les programmes Spacewatch[START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF][START_REF] Morbidelli | From magnitudes to diameters: The albedo distribution of near Earth objects and the Earth collision hazard[END_REF][START_REF] Rabinowitz | A reduced estimate of the number of kilometre-sized near-Earth asteroids[END_REF], NEAT[START_REF] Rabinowitz | A reduced estimate of the number of kilometre-sized near-Earth asteroids[END_REF] et LINEAR[Stuart, 2001; Stuart et Binzel, 2004;[START_REF] Harris | A New Estimate of the Population of Small NEAs[END_REF]. Dans le même esprit qu'Ivanov [2006], la distribution en taille des croiseurs est construite comme une succession de lois de puissance qui reproduit au mieux l'ensemble des estimations.Le quatrième chapitre passe en revue les propriétés physiques et orbitales des planètes (masse, rayon, densité, demi grand axe, excentricité, inclinaison, obliquité), et donne une description succincte de la géologie de la Lune[START_REF] Bibliographie Wilhelms | To a rocky moon -A geologist's history of lunar exploration[END_REF], de Mercure[START_REF] Spudis | Stratigraphy and geologic history of Mercury[END_REF][START_REF] Strom | Mercury -an overview[END_REF], de Vénus[START_REF] Schaber | Geology and distribution of impact craters on venus -what are they telling us ?[END_REF][START_REF] Phillips | Impact craters and Venus resurfacing history[END_REF][START_REF] Strom | The global resurfacing of Venus[END_REF] et de Mars[START_REF] Tanaka | The stratigraphy of mars[END_REF].On y évoque la formation de la Lune et des mers de lave qui la recouvrent, les principales ères lunaires, le renouvellement « récent » de la surface de Vénus et le volcanisme plus récent encore de Mars.Dans un deuxième temps, nous nous appuyons en particulier sur les travaux numériques et analytiques de J. Laskar pour modéliser les variations séculaires et chaotiques auxquelles les planètes sont soumises[Laskar, 1988[Laskar, , 1994[START_REF] Laskar | Chaotic diffusion in the solar system[END_REF].
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H < 18 d > 1 kmInclinaison i (°) Nombre d'objets (intervalle 5°) Fig.3.7 -Distribution orbitale des NEO de diamètre d > 1km. Les distributions présentées sont le résultat de la conversion du modèle de[START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] pour une magnitude donnée, à l'aide des albédos moyens selon T estimés parStuart et Binzel [2004]. Le modèle de[START_REF] Bottke | Debiased orbital and absolute magnitude distribution of the near-Earth objects[END_REF] pour H < 18 est montré en comparaison. En haut à gauche Nombre de NEO en fonction du demi-grand axe.En haut à droite Nombre de NEO en fonction de l'excentricité. En bas Nombre de NEO en fonction de l'inclinaison.3.2.3 MétéoroïdesL'observation des flashs provoqués par l'impact de petits corps avec la surface de la Lune ou l'atmosphère terrestre permet d'estimer le flux de météoroïdes auquel le système Terre-Lune est soumis. L'observable étant l'énergie optique dégagée par le choc, il faut, pour retrouver l'énergie cinétique du projectile, connaître en particulier la fraction d'énergie cinétique convertie en énergie optique, c'est-àdire l'efficacité lumineuse. Celle-ci est pauvrement contrainte et dépend a priori

http ://www.astro.sk/ ne/IAUMDC/Ph2003/database.html
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Trajectoires hyperboliques générées par une phase d'approche

En conséquence, les coordonnées de l'impact dans le repère orbital (OXY Z) sont r i(OXY Z) = P × P × r i(On 1 n 2 n 3 ) (A.14) et ne dépendent, par l'utilisation successive des équations (A.7)-(A.11), (A.13), (A.12) et (A.3), que de U ∞ , b et δ. Si nécessaire, on tient compte de l'obliquité de la cible et de sa rotation en faisant intervenir un nouveau repère mobile pour exprimer les coordonnées de l'impact selon la latitude et la longitude géographique.

Il est alors possible de simuler le bombardement en générant un grand nombre de projectiles par tirage aléatoire de b et δ selon l'équation (A.4) pour chaque U ∞ (en pondérant la contribution de chaque nuée de projectiles approchant selon U ∞ par sa probabilité, telle qu'elle à été déterminée au chapitre 5). Cette approche a été utilisée dans la publication figurant en annexe D. Une approche moins coûteuse en temps de calcul, qui exprime le flux d'impact de façon analytique en utilisant les équations (A.7)-(A.11), est présentée au chapitre 6.

La vitesse d'impact u est donnée par la conservation de l'énergie. On a .16) Enfin, il est utile de déterminer l'angle d'incidence de l'impact par rapport à l'horizontale, θ. On déduit de la conservation du moment angulaire spécifique

A.0.2 Hyperboles dans le système planète-satellite 

Earth, whose orbital inclination is currently zero, the probability of an impact occurring rapidly increases as i approaches zero, and one would expect a corresponding depletion of objects in the NEO model. This depletion is not taken into account in the discretized version of the Bottke et al. model as shown in Fig. 1. We model this expected depletion of planet crossing objects only for Earth-crossers with inclinations less than 5 • (i.e., the smallest inclination bin in the Bottke et al. model). To do this, we assume that the change in number of objects at any given set of (a, i, e) is described by the equation dN dt

where P is the probability of an impact occurring, and F is the rate of replenishment of objects into this phase space. By assuming steady state, it is easily shown that the number of objects will asymptotically approach F /P . If we next assume that F is a constant for a small range of values in (a, e, i) space, then the number of objects as a function of inclination should be proportional to 1/P , or explicitly,

where C is determined by setting the total number of objects with i < 5 • equal to the value from the Bottke et al. model. This approximation is found to be in rough agreement with a computation of the residence times between 0 and 5 • for about 10,000 test particles coming out of the inner main belt (W. Bottke, private communication). This is also in excellent agreement with the observations taken from the file astorb.dat. For inclinations greater than 5 • , or for objects that are not crossing the Earth's orbit, the number of objects within an (a, e, i) cell should not vary much, and we use the average values per bin as plotted in Fig. 1.

Analytic determination of the impact conditions

In this section, we semi-analytically calculate the impact flux (number of impacts per unit time and unit area) on a planet's surface in the context of the two body problem. Since all of the terrestrial planets are rotating, if we neglect the possible complications of plate tectonics and true polar wander, the average impact flux should only depend upon latitude. We can therefore assume that all incoming trajectories come from the same direction in space, and subsequently average the number of impacts over longitude. For a synchronously-locked satellite, such as the Moon and the satellites of Jupiter, a superposed longitudinal effect may also be present (e.g., [START_REF] Morota | Asymmetrical distribution of rayed craters on the Moon[END_REF][START_REF] Shoemaker | Cratering time scales for the Galilean satellites[END_REF][START_REF] Horedt | Cratering rate over the surface of a synchronous satellite[END_REF]Zahnle et al., 2001). This effect will not be addressed in this paper, and more detailed calculations for the Earth-Moon system will be presented in a forthcoming paper.

In the previous section, we have described how to determine the relative encounter velocity and encounter inclination probability distributions of the objects that impact the terrestrial planets. These encounter velocities and inclinations (with respect to the planet's orbital plane) have been calculated by assuming that the orbits of the planet and the planet-crosser were only influenced by the Sun. Here, it is assumed that during the encounter phase, the trajectory of the impactor is not influenced by that of the Sun, and that the projectile as seen by the planet approaches from an infinite distance. It is then straightforward to obtain analytic relations describing the latitudes of impact, impact velocities and incidence angles for each encounter inclination and encounter velocity (see Appendix B). As a test of the appropriateness of an initial approach distance set to infinity, we have run simulations using initial approach distances set to the planet's Hill sphere, and half of this value. The results of these tests were found to be nearly identical. The impact flux, impact velocity distribution, and incidence angle distribution are calculated as a function of latitude in the following manner. First, an encounter inclination and velocity are taken from the (u ∞ , i ∞ ) probability distribution as described in the previous section. The corresponding object will impact the planet as long as its impact parameter b is less than the gravitational cross section radius τ (see Fig. B.1), and we launch it within the corresponding area at a random location. To obtain a uniform spatial distribution, it is sufficient to take b 2 = xτ 2 , where x is a random number between 0 and 1, and to assume a random angular position within the disk. Next, using the relative encounter velocity, encounter inclination, launch position, and a random orientation of the planet's precessing spin axis, we determine the impact position and geometry. Finally, by repeating the above steps, and averaging over longitude, we obtain the latitudinal dependency of the impact flux, impact velocity and incidence angle.

Before presenting our results for the terrestrial planets, it will be instructive to demonstrate how latitudinal variations depend upon the encounter velocity and the planet's mass and radius. For illustrative purpose, we will here consider two end-member cases. First, we consider that the relative approach velocity of the projectiles is parallel to the equatorial plane, that is, both the encounter inclination and planet's obliquity are zero (i ∞ = 0 • and 0 = 0 • ).

Second, we consider that the approach velocity is perpendicular to the equatorial plane (i ∞ = 90 • and 0 = 0 • ). For these specific cases, where i ∞ is fixed, the impact flux can be shown to depend only upon a single dimensionless parameter (see Appendix B):

where R 0 and M 0 are the radius and mass of the planet, and G is the gravitational constant. This parameter is simply proportional to the ratio of gravitational potential energy at the surface of the planet to the object's initial kinetic energy.

When the encounter velocity is very large with respect to the mass of the planet, Γ is close to zero, and the trajectories of the impactors are barely influenced by the gravitational field of the planet. As illustrated in Fig. 4, for this case, the impact flux normalized to its global average shows the strongest latitudinal variations. When the projectiles encounter the planet parallel to the equatorial plane, the flux is predicted to be considerably greater at the equator than at the poles, and tends towards a cosine function. This is simply a consequence of the geometric projection of the planet's surface area onto the direction of the unperturbed incoming projectiles. For the case in which Γ = 0, the impact flux Latitudinal cratering rates on the inner planets 5 at latitude λ normalized to the global average is simply ϕ b (λ) =

Appendix A. Calculation of the planetary encounter probabilities and conditions

The methodology that we use to compute the probabilities of planetary encounters, as well as the encounter conditions, is based on the work of Greenberg (1982) and the modifications of [START_REF] Bottke | Velocity distributions among colliding asteroids[END_REF]. The necessary equations and approach are here summarized, and the interested reader is referred to these papers for further details.

Consider a planet (field body) and an asteroid or comet (test body) whose Keplerian orbits are described respectively by the triads (a 0 , e 0 , i 0 ) and (a, e, i), where a, e, and i refer to the semimajor axis, eccentricity, and inclination from the ecliptic of the two orbits. As described in Greenberg (1982), the collision probability represents the fraction of time for which the two bodies are close enough for a collision to occur, after averaging over all possible orbital orientations induced by the precession of the two orbits. This precession is assumed to be uniform, that is, the arguments of pericenter, ω and ω 0 , and the difference between the longitudes of the ascending nodes, ∆Ω, vary uniformly with time. It is also assumed that the collision occurs near the mutual node of the two orbits, where the test body crosses the orbital plane of the field body.

The distance between the test body and the Sun is given by

where C is the cosine of the true anomaly. The radius of the field orbit, r 0 , is given by a similar expression, substituting a, e, i and C by a 0 , e 0 , i 0 and C 0 . The distance between the two orbits is zero when r = r 0 , that is

Consider now the geometry of encounter described in Greenberg (1982) (1

where S is the sine of the true anomaly. The expressions are similar for α 0 . The mutual inclination i mut , which is the angle between the two orbit planes, is cos i mut = cos i cos i 0 + sin i sin i 0 cos ∆Ω.

(A.5)

The sign of i mut is chosen to be positive if the node of encounter is the ascending node, and negative otherwise (from symmetry considerations, the probability of collision at the ascending and descending node are equal). The velocity of the test body at the mutual node is given by 

where G M is the mass of the Sun times the gravitational constant. The velocity of the field body is given by

The relative encounter velocity is then given by u ∞ = vv 0 . The subscript ∞ accounts for the fact that the gravitational attraction of the planet is not included in the expression of the encounter velocity. The angle between the test body's relative velocity and the orbit plane of the planet, i ∞ , is

The sign convention of i ∞ follows that of i mut , and the collision probability is the same whatever the sign of i ∞ .

The expression for the collision probability is derived from the case r = r 0 , and includes the width in the (C, C 0 ) space for which rr 0 < τ , where τ is the radius of the collision cross-section,

given by

with R 0 and M 0 being the radius and mass of the field body, and G the gravitational constant. Encounters with an impact parameter less than τ will lead to a collision. This approach implicitly assumes that the encounter velocity does not change significantly in the neighborhood of the mutual node. For a given ω 0 and ∆Ω, the collision probability per unit time, P g , is finally given by (see Greenberg, 1982, for a complete and meaningful derivation) 

where T and T 0 are the orbital periods of the test and field body.

To get the total probability over all the possible orbital orientations, P g must be evaluated at the four separate geometries corresponding to a single (C, C 0 ) couple [START_REF] Bottke | Asteroidal collision probabilities[END_REF], then integrated over ω 0 and ∆Ω. As noted in [START_REF] Bottke | Velocity distributions among colliding asteroids[END_REF], when the eccentricity and inclination of the field body are not zero, both the encounter velocity and inclination depend upon ω 0 and ∆Ω, and we consequently evaluate P g , u ∞ , and i ∞ for each of the four possible orbital orientations.

To construct the probability distribution of the relative encounter velocity and encounter inclination, P (u ∞ , i ∞ ), we first choose a test body with random values of a, e, and i. If its perihelion is less than the planet's aphelion, and if its aphelion is greater than the planet's perihelion, then a collision is possible and we proceed by choosing a random value of ∆Ω between 0 and 2π , from which we compute i mut from Eq. (A.5). Then, we choose randomly a value of C 0 within the range of permitted value imposed by the resulting value of C given by Eq. (A.2). From C , we obtain S = ± √ 1 -C 2 , and choose the sign with equal probability. S 0 is calculated in a similar manner. The couples (C 0 , S 0 ) and (C, S) give us one of the four possible collision geometries for a given ω 0 , from which we calculate i ∞ , u ∞ and P g . As the value of P g is singular when i mut = 0, we set sin i mut = τ /r 0 when sin i mut < τ /r 0 , which is correct to third order in i mut [START_REF] Dones | Dynamical lifetimes and final fates of small bodies: Orbit integrations vs Öpik calculations[END_REF]. Similarly, when the collision occurs near the periapse or apoapse of the test body, S tends towards zero and P g goes to infinity. Following Greenberg (1982), this is cured by switching the definition of the field and test body. The collision probability P g is finally weighted by the relative number of bodies in the corresponding bin of the Bottke et al. model, as given by Fig. 1. The values of P g , u ∞ , and i ∞ are tabulated, and this procedure is repeated until P (u ∞ , i ∞ ) converges.

Appendix B. Calculation of the impact conditions

In this appendix, we describe how we calculate the impact flux, impact angle, and impact velocity as a function of latitude on a planet for encounters with a given relative approach velocity and a given inclination of this velocity with respect to the planet's orbital plane. It is assumed that during the encounter phase, the trajectory of the impactor is not influenced by that of the Sun, and that the projectile as seen by the planet approaches from an infinite distance. If it is assumed that the spin rate of a planet is unrelated to the dynamics of the asteroidal and cometary orbits, the impact flux on a planet will only depend upon latitude.