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Introduction

The knowledge of state variables of a dynamical system is crucial either to build a controller or
simply to obtain real-time information on the system for decision-making or monitoring. One
way to obtain such variables consists of combining a prior knowledge about physical systems
with experimental data to design an algorithm, called observer, whose role is to process the
incomplete and imperfect information to construct an estimate of the state variables.

The synthesis of such algorithms has attracted great attention from the automatic control com-
munity. Initially, the research was naturally oriented toward estimating the state of linear
systems. An optimal solution was first developed in the early 1960s by Kalman [1] in a stochas-
tic approach and later by Luenberger [2] in a deterministic context. These algorithms are still
widely used nowadays but since linear systems cover a small percentage of processes, nonlinear
solutions were quickly considered. A direct extension of these results to the nonlinear case is
obtained by means of a local linearization of the system dynamics along the estimated trajec-
tories: this is the principle of the extended Kalman filter . However, the overall stability of
this observer in the presence of strong nonlinearities has not been proven and its performance
has been regularly challenged in practice.

Because of the lack of a general design method for nonlinear systems like in the linear case,
several methods have been developed in the literature, where each method corresponds to a
specific class of nonlinear systems. The concept of error linearization was introduced by ,
for a certain class of mono-output nonlinear dynamical systems, then it was extended by @],
to multi-output dynamic systems. From there, several algorithms have been proposed giving
rise to various approaches: algebraic , geometric and direct transformations [14].

A straightforward approach to nonlinear observer design is to use linear feedback. If the non-
linearities are globally Lipschitz, then it is possible to use LMIs (Linear Matrix Inequalities)
combined with Lyapunov or Riccati equations which allow for elegantly treating the Lipschitz
terms in the error dynamics [15/18]. More precisely, the gain of the observer is designed through
the resolution of an LMI problem; consequently, an observer exists only if the considered LMI
problem is feasible , . As pointed out in , the feasibility of the LMI problems consid-
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2 Introduction

ered is generally not known a priori and is to be determined numerically. Several approaches
have been explored in the literature to extend the class of systems considered. Among these,
are sliding mode observers which are based on the theory of variable structure systems [21}24].
Their implementation difficulties have justified on the one hand the appearance of different vari-
ants concerning the choice of the mathematical function used and on the other hand an extension
to higher orders.

Another important technique for nonlinear observer design is the high-gain observer introduced
initially by in 1973. The main idea is to use sufficiently large observer gains so as to
dominate the nonlinearities (more precisely their Lipschitz constant) in the estimation error
dynamics. The synthesis of these observers is carried out either in the initial coordinates (under
certain structural hypotheses of the system) or in the canonical bases associated with uniformly
observable or U-uniformly observable systems. Two key papers, published in 1992 , repre-
sent the beginning of two schools of research on high-gain observers. The work by Gauthier [26)
started a line of work that is exemplified by . This line of research covered a wide class
of nonlinear systems and obtained global results under global growth conditions. Although
high-gain observers are successfully applied in problems of estimation ( or ), output
feedback control and output regulation (see or ), their use in practical applica-
tions is made hard by a certain number of drawbacks related to numerical implementation. To
overcome these drawbacks, several solutions have been advanced in the literature.

The so-called extended high-gain observer is presented in which is composed of an Extended
High Gain Observer (EHGO), for the estimation of the derivatives of the output, augmented
with an Extended Kalman Filter (EKF) for the estimation of the states of the internal dynamics.
Then, to account for the presence of disturbances acting on the system, several methods have
been proposed based on gain adaptation methods [43-47|. The selection of a high gain stems
also from the need to account for the nonlinearities in the error dynamics, which are usually
modeled as Lipschitz functions. In , the gain adaptation allows one to account for the
unknown Lipschitz constant. Resetting rules are proposed in [49]. The use of a time-varying
gain is addressed in , where a Lyapunov functional is used for the purpose of the stability
analysis of the estimation error instead of the classical quadratic Lyapunov function.

A new high-gain observer able to overtake some of the drawbacks of classical structures has been
recently proposed in for a class of nonlinear systems with one output and dimension n > 3.
The cornerstone of this contribution consists in limiting the power of the observer gain to 2
regardless of the dimension of the system, thus improving the performance of the observer with
respect to the measurement noise on the output. Although the new observer structure solves the
problem of numerical implementation, the peaking phenomenon is still present. Along this route,
two similar schemes, which follow the seminal idea presented in , have been recently proposed,
in and , to address the implementation issues and the peaking phenomenon. In , the
author shows how to build a high-gain observer by interconnecting a cascade of reduced-order
high-gain observers of dimension 1. A simpler scheme, without feedback interconnection terms,
that cannot ensure asymptotic estimate, is presented in . It is worth stressing, however, that
even if the dimension of the observers is n, neither scheme improves the sensitivity properties
with respect to standard high-gain observers.

The first objective of this thesis is to tackle the challenging performance issues that arise when
implementing high-gain observers. We develop a new high-gain observer design method for
nonlinear systems that has a lower gain compared to the standard high-gain observer in addition
to reducing the sensitivity to noise measurement. The idea is to augment the dimension of the



system such that the nonlinearity does not depend on the last components of the augmented
system and explore the HG/LMI observer developed in to decompose the nonlinearity of
the system which allows reducing the Lipschitz constant directly and proportionally related to
the high-gain tuning parameter.

The problem of observer design of nonlinear systems has been addressed from a different ap-
proach using moving horizon estimation techniques (MHE) . The objective of these
methods is to provide numerical solutions instead of analytical ones. These solutions are ob-
tained from the resolution, in the sense of least squares, of a system of nonlinear equations
using optimization algorithms. In the second part of the thesis, we study the problem of state
estimation for quasi-LPV systems using a moving horizon estimator, this latter will be used to
estimate both state and variable parameters of the system simultaneously, using the pessimistic
and optimistic approaches.

Thesis Organization

Chapter [1]is essentially devoted to a presentation of some essential preliminaries necessary for
the understanding of this thesis. A reminder of the notions of stability and observability for
nonlinear systems is provided in the first section followed by a state-of-the-art on the different
existing methods concerning the design of observers for nonlinear systems in a non-exhaustive
way.

In chapter [2} the reader can find an overview of the theory of high-gain observers for nonlinear
systems where the main features and the main drawbacks are highlighted. Then, we introduce
a novel methodology for the design of high-gain observers by exploiting the HG/LMI technique
recently developed in and the system state augmentation approach that helps in overcoming
(or improving) some of the main drawbacks of the standard high-gain observers. First, particular
attention is given to the design of the high-gain observer using the state augmentation approach,
where we highlight the benefit of augmenting the state of the system in achieving a desired
(fast) state reconstruction without sacrificing the steady-state performance in the presence of
measurement noise. The obtained results are then combined with HG/LMI technique which gives
us more degrees of freedom in selecting the observer parameter, thus getting a good tradeoff
between fast state reconstruction and measurement noise attenuation. We devote chapter [3]to

the problem of state estimation using the moving horizon estimation technique (MHE). We focus
on estimation for nonlinear systems that can be written under the form of quasi-linear-parameter-
varying systems (quasi-LPV) with bounded unknown parameters. Moving-horizon estimators
are proposed to estimate the state of such systems according to two different formulations, i.e.,
"optimistic" and "pessimistic'. In the former case, we perform estimation by minimizing the least-
squares moving-horizon cost with respect to both state variables and parameters simultaneously.
In the latter, we minimize such a cost with respect to the state variables after picking up the
maximum with respect to the parameters. The analysis of the convergence of the MHE estimator
will be discussed.

Chapter {4 is dedicated to the validation of the obtained results on biological applications,
namely, genetic regulatory network (GRN), SI epidemic model, and dorsal closure of Am-
nioserosa cells. First, a brief presentation of the models under study is given with the motivation
to perform state estimation on these models. Simulation results are reported at the end of the
chapter to demonstrate the applicability of the proposed high-gain observer and MHE.

This dissertation closes with an overall conclusion highlighting the various points raised in the
four chapters and offering a set of perspectives for future work.
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CHAPTER

1

An overview on observer tools
for nonlinear systems

"Measure what is measurable and make it
measurable what is not so."

Galileo Galilei
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6 Chapter 1. An overview on observer tools for nonlinear systems

actions k i t Model
nown inputs state measured outputs

—p - - - - = J— >
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d

OBSERVER

\ 4

Control
T

Figure 1.1: Observer as the heart of control systems

1.1 Intoduction

The problem of observer design naturally arises in a system approach, as soon as one needs some
internal information from external (directly available) measurements. This need for internal
information can be motivated by various purposes: modeling (identification ), monitoring (fault
detection), or driving (control) the system. All those purposes are jointly required when aiming
at keeping a system under control, as summarized by figure hereafter. This makes the
reconstruction -or observer-problem the heart of a general control problem.

The purpose of this chapter is to introduce the problem of observer design for nonlinear systems
and presents some basic notions of observability and stability which will be needed throughout
the thesis. In this framework, section provides a set of definitions concerning stability (in
the Lyapunov sense) and observability of nonlinear dynamic systems. Unlike linear systems, the
observability of nonlinear systems is related to inputs and initial conditions, hence the funda-
mental role played by inputs in the study of the observability of nonlinear models is highlighted,
and the concepts of universal inputs and uniformly observable systems are introduced in sec-
tion Section provides state-of-the-art about different observer design techniques for
nonlinear systems. We will see that there is no universal method for the synthesis of observers,
and the possible approaches are either an approximation of linear algorithms or specific nonlin-
ear algorithms. We present the main approaches developed in this field since the 1970s, a field
which nevertheless remains very open, in particular, because of the multiplicity and diversity of
nonlinear systems.

1.2 On the stability of dynamical systems: Lyapunov stability

In this section, we recall some fundamental concepts on the stability of continuous-time and
discrete-time dynamical systems. By definition, the analysis of the stability of a dynamic system



1.2. On the stability of dynamical systems: Lyapunov stability 7

amounts to studying its behavior (its trajectory) when its initial state is close to a point of
equilibrium . The main notions of stability are presented here, namely the asymptotic
stability, exponential stability, in the sense of Lyapunov’s theory.

1.2.1 Stability of continuous-time systems

Consider a dynamic system that satisfies:
z(t) = f(z,t), x(to) =x0, x(t)€R" (1.1)

We will assume that f(x,t) satisfies the standard conditions for the existence and uniqueness of
solutions. Such conditions are, for instance, that f(z,t) is Lipschitz continuous with respect to
2, uniformly in ¢, and piecewise continuous in ¢t. A point x. is an equilibrium point of if
f(ze,t) =0, Vt > tg, x (tg) and ¢ty are the initial state and initial time, respectively. We denote
by z (t,to, xo) the solution of system at t > tg.

Throughout this thesis, only the stability of the estimation error is studied. For this reason,
we assume that the nonlinear system possesses a unique equilibrium point . = 0. This
assumption leads to representing some definitions of the stability of system (|1.1)) at the origin.

—] Definition 1.1: Stability

The equilibrium point . = 0 (origin) of the system (1.1)) is said to be stable (in the sense
of Lyapunov) at t = to if for any € > 0, there exists a positive scalar J (¢,t9) > 0 such that

|z (to)|| < 0 (e,t0) = ||z (¢, to, o)|| <€, VE>1tg>0 (1.2)

The system (1.1]) is said to be unstable if it is not stable.

Lyapunov stability is a very mild requirement on equilibrium points. In particular, it does not
require that trajectories starting close to the origin tend to the origin asymptotically. Also,
stability is defined at a time instant t5. Uniform stability is a concept that guarantees that the
equilibrium point is not losing stability. We insist that for a uniformly stable equilibrium point
Te, 0 in the Definition [I] not be a function of ¢y, so that equation may hold for all #y as
defined in the following.

Definition 1.2: Uniform stability

The equilibrium point . = 0 of system (|1.1))is said to be uniformly stable (in the sense of
Lyapunov), if for any € > 0, there exists a positive scalar §(e) such that:

2 (to)|| < 8(€) = ||z (£, to, m0)|| < & V¢ >to >0 (1.3)

Definition 1.3: Asymptotic stability

The equilibrium point x, = 0 of system [L.1|is asymptotically stable at t = tg, if

1. z. = 0 is stable, and
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2. x. = 0 is locally attractive, i.e., there exists a positive scalar 0 (t9) such that:

= (to)| < & (to) = Jim ||z (£, to, zo)|| = 0, ¥t >t >0 (1.4)

As in the previous definition, asymptotic stability is defined at tg. Uniform asymptotic stability
requires:

1. z, = 0 is uniformly stable, and

2. o = 0 is uniformly locally attractive, i.e., there exists J independent of ty for which
equation (|1.4]) holds. Further, it is required that the convergence in (|1.4)) is uniform.

Definitions and [J] are local definitions; they describe the behavior of a system near an
equilibrium point. We say an equilibrium point x. is globally stable if it is stable for all initial
conditions xz. € R™. Global stability is very desirable, but in many applications, it can be
difficult to achieve. Notions of uniformity are only important for time-varying systems. Thus,
for time-invariant systems, stability implies uniform stability and asymptotic stability implies
uniform asymptotic stability.

Definition 1.4: Exponential stability

The equilibrium point z. = 0 is an ezponentially stable equilibrium point of of system (|1.1))
if there exist constants m,a > Oande > 0 such that

lz(®)]] < mexp (—a(t—to)) (1.5)

for all ¢t > to, ||z(to)|| < €.. The largest constant o which may be utilized in (|L.5)) is called
the rate of convergence. The system is said to be globally exponentially stable if the bound
in equation (|1.5)) holds for all z, € R™.

Exponential stability is a strong form of stability; in particular, it implies uniform, asymp-
totic stability. Exponential convergence is important in applications because it can be shown
to be robust to perturbations and is essential for the consideration of more advanced control
algorithms.

Finally, we say that an equilibrium point is unstable if it is not stable.

1.2.2 Stability of discrete-time systems

Consider the discrete-time system described by the following difference equation
z(k+1) = f(x(k), k), (ko) = zo (1.6)

where z(k) € R™ is the state vector, f(x(k),k) : R® x Rt — R™ is a continuous vector func-
tion, = (ko) and ko are the initial state vector and the initial time, respectively. We denote by
x (k, ko, zo) the solution of the difference equation (D.2) at k& > k.

The stability definitions for continuous-time systems remain valid for discrete-time sys-
tems , except for the exponential stability which changes.
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—] Definition 1.5: Exponential stability

The equilibrium point z. = 0 of system (1.6) is said to be locally exponentially stable, if
there exists positive scalars m, ¢ > 0, and 0 < p < 1 such that :

lz(k)[| < m |z (ko) | o) (1.7)

for all k > ko, ||z(ko)|| < e.. The largest constant a which may be utilized in (|1.5)) is called
the rate of convergence. The system is said to be globally exponentially stable if the bound
in equation (|1.7) holds for all z. € R™.

1.2.3 Lyapunov direct method

The use of the previous definitions to check the stability of a system of the form (L.1)) (resp.
(1.6))) requires an explicit solution of the differential equation (resp. the difference equation
(1.6)). In most cases, it is not easy to compute the explicit solution of a nonlinear system or even
impossible, which makes these definitions difficult to apply. as an alternative, Lyapunova€™s
direct method (also called the second method of Lyapunov) allows us to determine the stability
of a system without explicitly integrating the differential equation (resp. ) The
method is a generalization of the idea that if there is some "measure of energy" in a system, then
we can study the rate of change of the energy of the system to ascertain stability. To make this
precise, we need to define exactly what one means by a "measure of energy." Let B, be a ball of
size around the origin, B. =x € R": ||z| < € .

—| Definition 1.6: Locally positive definite function (lpdf)

A continuous function V : R" x Ry — R is a locally positive definite function if for some
€ > 0 and some continuous, strictly increasing function o : Ry — R,

V(0,t) =0 and V(z,t) > a(||z||) Vze B.,Vt>O0.

A locally positive definite function is locally like an energy function. Functions that are globally
like energy functions are called positive definite functions:

Definition 1.7: Positive definite function (pdf)

A continuous function V : R® x Ry — R is a positive definite function if it satisfies the
conditions of Deﬁnition@ and, additionally, a(p) — oo as p — oc.

To bound the energy function from above, we define decrescence as follows:

Definition 1.8: Decrescent function

A continuous function V' : R® x R, — R is decrescent if for some € > 0 and some continuous,
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strictly increasing function 5 : Ry — R,

V(a,t) < B(lz]) Vz€ B,Vt>0

Definition 1.9: Lyapunov function

A function V(z,t) of class C! is a local Lyapunov function (resp. global) for system (1.1]),
if it is proper positive definite and if there exists a subset Vy C R" containing the origin,
such that Vo € Vy (resp. z € R" ) :

_ V(1) | OVt

Vie,t) = — 2 f(a(t). 1) < 0.

If V(x,t) < 0, then V(z,t) is called a strict Lyapunov function for system (T.1)).

Using these definitions, the following theorem allows us to determine the stability of a system
by studying an appropriate Lyapunov function. Roughly, this theorem states that when V' (z, )
is a locally positive definite function and V(z,t) < 0 then we can conclude the stability of
the equilibrium point. In what follows, we denote by V the time derivative of V along the

trajectories of the system, V .
i=f(z,t)

—] Theorem 1.1

Let V' (z,t) be a non-negative function with derivative V along the trajectories of the system.

1. If V(x,t) is locally positive definite and V (z,t) < 0 locally in 2 and for all ¢, then the
origin of the system is locally stable (in the sense of Lyapunov).

2. If V(x,t) is locally positive definite and decrescent, and V(z,t) < 0 locally in x and
for all ¢, then the origin of the system is uniformly locally stable (in the sense of
Lyapunov).

3. If V(z,t) is locally positive definite and decrescent, and —V (x,t) is locally positive
definite, then the origin of the system is uniformly locally asymptotically stable.

4. If V(z,t) is positive definite and decrescent, and —V(:c,t) is positive definite, then
the origin of the system is globally uniformly asymptotically stable.

—] Remark 1.1

Theorem (1] gives sufficient conditions for the stability of the origin of a system. It does
not, however, give a prescription for determining the Lyapunov function V' (z,t). Since the
theorem only gives sufficient conditions, the search for a Lyapunov function establishing the
stability of an equilibrium point could be arduous. However, it is a remarkable fact that
the converse of Theorem [1| also exists: if an equilibrium point is stable, then there exists a
function V' (z,t) satisfying the conditions of the theorem. However, the utility of this and
other converse theorems is limited by the lack of a computable technique for generating
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Lyapunov functions.

For the case of exponential stability:

Definition 1.10: Exponential stability

xe = 0 is an exponentially stable equilibrium point of system (1.1} if and only if there exists
an € > 0 and a function V' (z,t) which satisfies

aillz|* < V(z,t) < azlz)?,

< _ 2
Vv b= f(at) — Oé3||17“ )
|5 .0 < el

for some positive constants a, ag, as, ay, and ||z|| < e. The equilibrium point z* = 0 is
globally exponentially stable if the bounds in Theorem 4.5 hold for all x.

—] Remark 1.2

By choosing a quadratic Lyapunov function V (x(t),t) = 27 (t)Pxz(t), P = PT > 0, then the
origin of the linear system &(t) = Axz(t) is globally exponentially stable if P is a solution
for the matrix equation AT P + PA = —Q, for any positive definite matrix Q.

Lyapunov’s direct method can be applied to both continuous-time and discrete-time systems.

The exponential stability of a discrete-time system is expressed as follows:

— Definition 1.11

The origin of system (1.6) is locally exponentially stable if there exists a proper definite
positive Lyapunov function V (zg, k) : B,x RY — RT V(0,k) = 0, scalars aj,as et 0 <
a3 < 1 such that, Vzg € B, et Vk > ko > 0 :

Lo lagl* < V(. t) < az [l
2. The Lyapunov sequence {V (zy, k)},_y,  is strictly decreasing, i.e :

AV (g, k) =V (@p41,k +1) = V (2, k) < —asV (w, k)

where
Tppr =z (k4 1, ko, x0) = f(z(k+ 1),k +1).

—] Remark 1.3

By choosing the Lyapunov quadratic function V (xy, k) = xf Pzy, P = PT > 0, The origin
of the discrete-time linear system xp,1 = Axy is globally asymptotically stable, if and only
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if P is a solution for the matrix equation AT PA— P = —(Q, for any positive definite matrix

Q.

1.2.4 The indirect method of Lyapunov

The indirect method of Lyapunov uses the linearization of a system to determine the local
stability of the original system. Consider the system defined by (l.1) with f(0,¢) = 0 for all
t > 0. Define

Of (x,t)

A(t) = e (1.8)

to be the Jacobian matrix of f(x,t) with respect to x, evaluated at the origin. It follows that
for each fixed t, the remainder

fila.t) = Fla,t) — A (L.9)
approaches zero as x approaches zero. However, the remainder may not approach zero uniformly.
For this to be true, we require the stronger condition that

t
lim sup 11D o (1.10)
lzll=0 ¢>0 [l

If equation (1.10)) holds, then the system
2= A(t)z (1.11)

is referred to as the (uniform) linearization of equation (1.1)) about the origin. When linearization
exists, its stability determines the local stability of the original nonlinear equation.

— Theorem 1.2: Stability by linearization

Consider the system ([1.1) and assume

= 0.

lim su
lzl=0¢>0 |||

Further, let A(:) defined in equation (1.8) be bounded. If 0 is a uniformly asymptoti-
cally stable equilibrium point of (1.11)) then it is a locally uniformly asymptotically stable

equilibrium point of (|L.1]).

This theorem proves that the global uniform asymptotic stability of the linearization implies the
local uniform asymptotic stability of the original nonlinear system. The estimates provided by
the proof of the theorem can be used to give a (conservative) bound on the domain of attraction
of the origin. Systematic techniques for estimating the bounds on the regions of attraction of
equilibrium points of nonlinear systems is an important area of research and involves searching
for the "best" Lyapunov functions.

— Remark 1.4

If the system ((1.1) is time-invariant, then the indirect method says that if the eigenvalues

o o1(2)
o
A B 833 =0
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are in the open left half complex plane, then the origin is asymptotically stable. |

1.2.5 Input-to-state stability

The concept of input-to-state stability was introduced by E. Sontag in his celebrated paper
as a test for the robustness of nonlinear systems to external perturbations, for a concise summary
see . In the framework of Input-to-state stability (ISS), error dynamics are regarded as a
system whose input is the measurement noise which gives rise to disturbance-to-error stable
(DES) observers. As a motivational example, consider the linear system described by

& = Az + Bu, (1.12)

where x(t) € R" is the state, u(t) € R™ the input and A and B constant matrices. The solution
corresponding to the initial condition x(0) can be written as

t
2(t) = exp(At)z(0) + / exp(A(t — s))Bu(s)ds, Vt>0 (1.13)
0
and, if A is Hurwitz, we can dominate the system state with
|z(t)| < c1exp (—cat) |2(0)| + c3 sup |u(s)|, Vt=>0. (1.14)
s€[0,t]

The positive constants c1, cs and cg are such that
|exp(At)| < cpexp (—cat), c3 = cicy'|B]

and, thus, they are independent of x(0) and u. The first term in ((1.14) quantifies the effect of
the initial condition for short times, while the second term accounts for the input impact. These
ideas can be generalized for nonlinear systems by using comparison functions.

—1 Definition 1.12

A function v : R™ — R7is of class K if v(0) = 0 and if it is strictly increasing and continuous.
It is of class K if it is also unbounded. A function 3 : R™ x Rt — RTis of class KL if
B(r, t) is of class K for each ¢t € Rtand if 3(r,t) decreases to zero as t — oo for each r € RY.
We use the notation v € K or v € Ko and g € KL.

For the following, we consider a nonlinear system of the form

where x(t) € R" is the state, u(t) € R™ the input and f : R® x R™ — R™ a continuously
differentiable function such that f(0,0) = 0.

— Definition 1.13

System (|1.15)) is said to be input-to-state practically stable (ISpS) if there exist functions
B € KL and v € K and a constant ¢ > 0 such that for all inputs v € L7 and all initial
conditions z(0) € R™, the solution x is defined on R*and it holds that

[z(t)] < B(lz(0)],8) + v (Juleo) + ¢, VE=0. (1.16)
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The system is input-to-state stable (ISS) if the latter is satisfied with ¢ = 0.

An alternative definition makes use of sup,c(o 4 v(|u(s)]) instead of v (Juls), this is justified
by the causality of the system. In such a case, the space of inputs can be defined by local
boundedness (Lﬁfc’m)

—] Remark 1.5

We can recover a well-known stability property of system if we fix u = 0. Indeed,
the equilibrium point x = 0 is stable if for each ¢ > 0 there exists 6 > 0 such that
|z(0)] < & = |z(t)| < ¢, for all t € RT. If additionally there exists 6 > 0 such that
|2(0)| < § = limy_, o z(t) = 0, we say the point is asymptotically stable. If for such a point
the latter happens for all (0) € R”, then system is called 0-globally asymptotically
stable (0-GAS); which is equivalent to (1.16) with u =0 and ¢ = 0.

The concept of ISS was initially motivated by the problem of disturbances in state feedback
stabilization. In fact, it is of interest to analyze the influence of a time-varying disturbance d in
the closed-loop system

&= f(z, k(z) + d),

where k stabilizes the system for d = 0. The author in shows that, for control-affine systems,
k can be modified in order to achieve ISS when regarding d as the system input. The elegant
formulation of ISS has now become a standard tool in the literature in order to study the
robustness of nonlinear systems with respect to inputs in a wide range of situations.

Showing directly the ISS of a system can be challenging. Therefore, the following definition and
theorem provide a Lyapunov characterization of ISS.

— Definition 1.14

A smooth function V : R” — R7is called an ISpS-Lyapunov function for system (1.15) if
there exist functions aj,as € Ko and ag, x € K, and a constant ¢, > 0 such that for all
r € R" and all v € R™ we have

ai(|z]) < V(z) < az(|z)

and |z| > x(|u|) + ¢z, implies

oV
ox
The function is called ISS-Lyapunov if the latter holds with ¢y, = 0.

(@)f(z,u) < —as(|z)).

—] Theorem 1.3

System (2.32) is ISpS if and only if it has an ISpS-Lyapunov function. The same equivalence
holds for ISS. As an example, the linear system ([1.12]) is ISS precisely when A is Hurwitz.
We can construct the ISS-Lyapunov function as V(z) = 2/ Pz, where AP+ PA < 0.




1.3. On the observability of dynamical systems 15

1.3 On the observability of dynamical systems

This section introduces the problem of observer design for nonlinear systems and presents some
basic notions of observability that will be needed throughout the thesis. Our aim is not to provide
an exhaustive study on nonlinear observability and observer design, but rather to situate our
contribution and introduce the basic tools/notations needed in the rest of this thesis and give a
brief overview on some existing techniques for designing observers for nonlinear systems.

1.3.1 Observation problem

We consider a general system of the form:

&= fz(t),ut)), y=h(x), ut)) (1.17)

where x denotes the state vector, taking values in X a connected manifold of dimension n, u
denotes the vector of known external inputs, taking values in some open subset U/ of R™, and y
denotes the vector of measured outputs taking values in some open subset Y of RP.

Functions f and h will in general be assumed to be C* with respect to their arguments, and
input functions u(.) to be locally essentially bounded and measurable functions in a set U.
Given a model , the purpose of acting on the system, or monitoring it, will in general need
to know x(t), while in practice one has only access to u and y. The observation problem can
then be formulated as follows:

For any input u in U, any initial condition xy in Xy, find an estimate &(t) of x(t) based on
the only knowledge of the input and output up to time t, namely ujo, and yjo 4, such that &(t)
asymptotically approaches x(t), at least when &(t) is defined on [0,400).

Clearly, this problem makes sense when one cannot invert h with respect to z at any time.

In front of this, one can use the idea of explicit feedback in estimating x(¢). More precisely, if one
knows the initial value z(0), then an estimate of z(¢) can be obtained by simply integrating (1.17
from x(0). Hence, if £(0) is unknown, one can try to correct online the integration Z(¢) of (|1.17]
from some erroneous #(0) according to the measurable error h(Z(t)) — y(t), namely to look for
an estimate & of x as the solution of a system:

2(t) = f(2(t), u(t)) + k(t, h(2(t)) — y(t)), with k(t,0) =0 (1.18)

Such an auxiliary system is what will be defined as an observer, and the above equation is the
most common form of an observer for a system (1.17) (as in the case of linear systems [1,2]). A
more rigorous mathematical definition is the following (a sketch is given in Figure|1.2]).

An observer for ([1.17)) is given by an auxiliary system:

() = @(2(8), u(t),y(t),1)

I

such that:
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(ii) ||z(t) — z(t)|| = 0 as t — oo.

If (ii) holds for any x(0), %(0), the observer is global.
If (ii) holds with exponential convergence, the observer is exponential.
If (ii) holds with a convergence rate that can be tuned, the observer is tunable.

Y O T= f(xvu) Y o~
y = h(z,u) 1 oz= D(z,u,y) %
>
Plant v | .%:\P(z,u,y)
Observer

Figure 1.2: Observer: dynamical system estimating the state of a plant from the knowledge of
its output and input only.

1.3.2 Observability for nonlinear systems

The role of an observer is to estimate the system state based on the knowledge of the input
and output. This means that those signals somehow contain enough information to uniquely
determine the system’s whole state. This brings us to the notion of observability. In the case of
nonlinear systems, the notion of observability is related to inputs and initial conditions. In this
section, a more precise definition of observability will be given in the case of continuous-time

systems of the form:
T = f(xv u)7
{ y = h(e.u) (1.19)

where f: R" x R™ — R" and h : R" x R"™ — RP
Observability is characterized by the fact that from an output measurement, one must be able
to distinguish between various initial states, or equivalently, one cannot admit indistinguishable

states (following [66]):

Definition 1.16: Distinguishability and indistinguishability

Two initial states xg, x1 € X such that xo # x1 are said to be distinguishable in X if 9t > 0
and Ju : [0,t] — U an admissible input such that the trajectories of the outputs from zy and
x1, respectively, remain in X on the interval [0,¢], and satisfy y(¢, zo,u(t)) # y(t,x1,u(t)).
In this case, we say that the input u distinguishes zg from z; in X . Conversely, two
initial states xg, 1 € X such that xo # x; are said to be indistinguishable if, V¢ >
and Yu : [0,t] — U for which the trajectories from zp and x; remain in X, we have

y(t, wo, u(t)) = y(t, 21, u(t)).

The notion of observability of a system at a single point derives directly from the previous
definition. By extension, it is possible to define the observability of a system at any point of X.
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—| Definition 1.17: Observability

The system (|1.19]) is observable at x if for any other state o # x1, the two states xg and
x1 are distinguishable in X'. By extension, if this last property is true for any g € X, then
we say that the system is observable.

This last definition leads to the following theorem that can be found in .

— Theorem 1.4:

Let the continuous linear time-invariant system:

(1.20)

& = Ax(t) + Bu(t)
y = Cua(t)

with A € R"™" B € R™ and C' € R™. The system (1.20)) is observable if and only if the
observability matrix associated with this system is given by

C
CA
0, = CA?
can-t

is of full rank. In this case, we say the pair A, C' is observable.

This result, widely used in the linear case, is in fact particularly restrictive in the nonlinear case.
Indeed, the notion of observability as given above is a global result. However, in practice, we
do not need to distinguish each trajectory on the set X and for any time interval [to,to + T'[.

For this, we will recall in the following the notion of weak local observability, given by .
is first necessary to define the notion of local observability .

It

— Definition 1.18: Local observability

The system ([1.19) is said to be locally observable at xg if, for any neighborhood V,,, of x,
the set of indistinguishable states of xo in V;,, reduces to the singleton xy. By extension,
the system (|1.19)) is said to be locally observable if it is locally observable for all zp € X.

The notion of weak local observability given by is then defined as follows.

Definition 1.19: Local weak observability

The system is said to be locally weakly observable at xq if there exists an open
neighborhood V;, of xg such that for any open neighborhood V,; C Vi, the set of indistin-
guishable states of x¢ in V; reduces to the singleton x¢. By extension, the system ([1.19)
is said to be locally weakly observable if it is locally weakly observable for all xg € X.
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Definition[I9) means that a system is locally weakly observable if any state zo can be distinguished
from its neighbors instantaneously. This notion is of more interest in practice and presents the
advantage of admitting some rank condition characterization. Such a condition relies on the
notion of observation space roughly corresponding to the space of all observable states.

Definition 1.20: Observation space

The observation space for a system (|1.19) is defined as the smallest real vector space (de-
noted by O(h)) of C* functions containing the components of h and closed under Lie
derivation along fy,(x) = f(x,u) for any constant u € U.

Note that the Lie derivative of h(¥)(z) along the direction of the field f, at constant u is given
by

On®) (z) T dy™® (t)
*®) () = 2 — (vn® : =Y
Lph® (@) = === ful@) = (VAP (@) - fule) = = (1.21)
and, more generally,
i i— d'y ™ (t)

Ly h® (@) = Ly, (L5, h®) () = Tf (1.22)
Let us now define the observability rank condition .
—| Definition 1.21: Observability rank condition

A system ([1.19) is said to satisfy the observability rank condition at xg € R™ if
dim dO(h) 5, = n (1.23)

where, dO(h)|,, = di (o), € O(h).

Condition is called the observability rank condition.

System (|1.19)) is observable if it satisfied the observability rank condition for any zg € X.
If system satisfied the observability rank condition at xq, then it is locally weakly
observable in xg.

In all the previous definitions, the impact of the input u has not been taken into consideration.
Indeed, in the case of nonlinear systems, the observability of a system strongly depends on the
input applied to the system under consideration. The system may be observable for some
inputs and be not observable for other inputs. With this in mind, we will introduce the notion of
universal input and that of U -uniform observability, a key concept in the contributions presented

in this manuscript .

Definition 1.22: Universal input

An admissible input u : [0,7] — U is said to be universal for the system on (0,77 if,
for any pair of distinct initial states zg, 1, there exists at least one instant of time ¢ € [0, T']
for which the resulting outputs of xp and x; are distinct, i.e. y (¢, zo,u(t)) # y (¢, z1,u(t)).
A non-universal input is called a singular input.

In the case where all admissible inputs of U are universal, then any pair of initial states is dis-
tinguishable. This is called observability for any input, or {/-uniform observability .
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Definition 1.23: {/-uniform observability

A system ([1.19)) for which all admissible inputs with values in ¢/ are universal is said to be
U-uniformly observable.

In the nonlinear case, there are several ways to define the notion of observability. For the concept
of states indistinguishability, a very frequent definition has been established in . Important
results have been established in and for a special class of control-affine systems. For
more details on the different types of definitions of the observability of nonlinear systems, we

refer the reader to 73].

Remark 1.6

The concept of observability mentioned above can be extended directly to the class of
discrete-time systems. Different types of definitions have been discussed in [74].

1.4 Observers for nonlinear systems: a state of the art

A

The problem of state estimation for linear systems was completely solved in the 1960s4"’1970s by
Kalman [1] in a stochastic approach and by Luenberger 2] in a deterministic framework. For the
case of nonlinear systems, which concerns the majority of physical systems, the problem remains
widely open giving rise to a wide range of estimation algorithms. The methods presented in
the literature are either an extension of linear techniques which are based on a linearization of
the model around an operating point or specific nonlinear algorithms . In this section, a
fairly comprehensive, but by no means exhaustive, review of nonlinear state estimation methods
will be given. All methods have their own positive and negative aspects, either as extensions of
linear techniques or as novel nonlinear techniques.

1.4.1 Nonlinear transformation methods

This technique consists in transforming, using a change of coordinates, a nonlinear system into
a linear system modulo an output injection. Once such a change of coordinates is obtained, the
use of a Luenberger-type observer (corrected by output injection) can be used to estimate the
state of the transformed system, and therefore the state of the original nonlinear system using
the inverse change of coordinates. One of the first works in this direction is proposed in ,
where the autonomous system of the form

i = f(x) (1.24a)

y = h(x) (1.24b)

is transformed by, a nonlinear change of coordinates z = ®(z), to a linear system under the
following observer canonical form
z2=Acz+ Ny) (1.25a)

y=Cez (1.25b)



20 Chapter 1. An overview on observer tools for nonlinear systems

where A, and C. are under the Brunovsky dual form, i.e.,

Aczlono—l 52:117 Ccz[l 05_1}-

The Luenberger observer corresponding to is given by
2=Al+ Ny) + K (y— C.2) (1.26)
whose linear error dynamics € = z — 2 is
e=(A.— KC,)e. (1.27)

The gain K is obtained through a pole placement condition.

This method has been extended in ﬂ@] to the case of systems with multiple outputs and the

nonlinear transformation has been generalized as follows
{z = O(x)

5= U(y) (1.28)

where v is the transformation of the output y using the nonlinear change of coordinates ¥(.). The
conditions under which such a transformation exists are established. However, three problems
are related to this approach:

1. The class of systems for which such a transformation exists is very restrictive.
2. The procedure to find such a transformation is complicated.

3. In the case of multi-input systems (controlled systems), the transformed system contains
all the input derivatives.

In , the system

Y = hiz,u) (1.29)

is considered. In this case, the transformed system under the general canonical form is defined
as

i=Acz+ A (y,u) (1.30a)
v="=Cz (1.30b)
T
where v = [ w u ... u® } . The nonlinear transformation used is
2= (z,u)
, (1.31)
v="(z,u)

By assuming that the derivatives of the input u are available, the structure of the proposed
observer is .
2=A2+X(y,u) + K(v— 1)

/

, U
1.32
0= C.2 ( )
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The dynamics of the estimation error are given by .

Other generalizations to multi-output systems have been proposed in and . A simplified
algorithm to compute the suitable transformation, for the case of autonomous systems, has been
designed in [@ Necessary and sufficient conditions for the existence of the transformation for
single-output systems have been given in . These results have been generalized in to
systems with multiple outputs, and an algorithm to find the change of variables has been given.
One reason why the class of systems that can be transformed into linear observable form is
restricted is that the output must be linear as in (1.24b)and (1.30b). This condition is re-
laxed in for the class of single-output autonomous systems. The idea is to transform the
system , using the change of variables z = ®(z), into

2=Az+ Ly (1.33a)

y=n(z) (1.33b)

where 7)(2) = h(z)[,—¢-1(,)- The obtained observer is
2= A2+ Ly, (1.34)

and the error dynamics € = z — 2 is
€ = Ae. (1.35)

The transformation ® is chosen such that the matrix A is obtained with the desired properties.
In order to overcome the difficulty of obtaining the proper transformation, independently of
previous works, a new approach has been presented in for the class of autonomous and
mono-output nonlinear systems. The necessary and sufficient conditions for the existence of
the canonical form have been stated in . Several extensions of this approach to the case of
controlled and multi-output nonlinear systems are given in [81-83].

1.4.2 Extended observers

The observer based on the extended linearization method is another technique that exploits the
useful tools available for linear systems. The gain of the observer is calculated from the linearized
model around an operating point. This is for example the case of the extended Kalman filter
and the extended Luenberger observer that we discuss in what follows.

Extended Kalman filter (EKF)

The extended Kalman filter is one of the most interesting and successful applications of the
Kalman filter in the case of nonlinear systems. This extended filter consists in linearizing the
equations of the standard Klaman filter by a first-order Taylor’s formula.

The extended filter has been successfully applied to different types of nonlinear processes. Un-
fortunately, the proofs of stability and convergence established in the linear case, cannot be
extended in a general way to the case of nonlinear systems. The analysis of the convergence of
this estimator remains, at present, an open problem giving rise to a large number of papers and
books .

Before introducing the extended Kalman filter, we need to introduce the standard Kalman filter
for linear time-varying (LTV) systems.

e Continous time LTV systems: for the case of LTV systems in the form
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&= A(t)x + B(t)u+ v1(t)
y = C(t)z + va(t)
the standard Kalman filter is given by
&= A(t)i + B(t)u + PCT(t)R™(y — C(t)%)
where P is the symmetric positive definite solution of the following Riccati equation
P=AP+ PAT + Q- PCTR'CP.

e Discrete time LTV systems: for LTV systems in the form

Tit1 = Apxr + Brug + vg
yr = Crrg + wi

the standard Kalman filter is given by
1 = Tpyrp + Kita (yk+1 - Ck+15?¢k+1//c>
-1
-1 T p-1
Pey1 = (Pk+1/k + Ck+1Rk+1Ck+1) ;

T T -1
K1 = Pey1/xCitr (Ck+1Pk+1/ka+1 + Rk+1)

where
Tpq1/k = Axlr + Brug

Priayr = ApPeAL + Qy,

(1.36a)
(1.36b)

(1.37)

(1.38)

(1.39)
(1.39b)

(1.40a)
(1.40b)
(1.40c)

(1.41a)
(1.41b)

Py = pl, > 0. Z41 and &34/, are the estimation and prediction of the state 1. The
matrices P41 and Pjyq/; are the covariances of the estimation and prediction errors.. @ and

Ry are weighting matrices depending on the stochastic variables vy and wy.

The extended Kalman filter is a direct extension of the standard Kalman filter by replacing
the state and output matrices A, C' of system ([1.36) or (1.39) by the jacobians of the system

nonlinearities.
Consider the nonlinear system

The EKF is described as follows
& = f(#,u)+ PH(#u)R™ (y — h(%,u))

P = F(z,u)P + PF(&,u)' + Q — PH(2,u)TR™ H(%,u)P

where

0
F(&,u) = a—];(:ﬁ, w)

N Oh
H(z,u) = %(m,u)

(1.42a)
(1.42b)

(1.43a)

(1.43b)
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In the case of discrete-time systems of the form

Try1 = f(Th, uk) + Grog (1.44a)
Yk = h (xk, u) + Dywy, (1.44b)
the EKF is given by
g1 = Tpqr/k + Kpp1€k41 (1.45)
where
Pey1 = (In — Kps1Hp1) Pryayk (1.46a)
Tpy1/ne = f(Ek, ug) (1.46b)
Piy1/k = FuPoFyl + Qy (1.46¢)
T T -1
Ki+1 = Pyt (Hk+1Pk+1/ka+1 + Rk+1) (1.46d)
€k+1 = Yk+1 — h (j;k—l—l/lm Uk+1) (1.46e)
. of .
Fy = F (g, ux) = 91 (T, uk) (1.46f)
xXr
N oh .
Hy = H (2, ur) = 9 (Tg, u) (1.46g)

where Py = pl,, > 0.
In common use, the matrices () and Ry correspond to the process and measurement noise
covariance matrices, respectively.

Qr = GG,  Ryy1= DDl 4.

Extended Luenberger observer

With reference to the extended Kalman filter algorithm, the extended Luenberger observer is
proposed for nonlinear single-input single-output systems. The extended Luenberger observer is
used, either on the original system with a constant gain or through a change of coordinates with
a gain depending on the state to estimate. In the first case, a linearized model is needed, and the
observer gain is calculated by pole placement. This type of observer can only be used when it is
certain that the state will remain in the neighborhood of the equilibrium state. For this reason,
this method is not widely because only local behavior can be guaranteed, i.e., the stability is
guaranteed in a sufficiently small neighborhood of constant operating points. If disturbances
and modeling errors are present, then performance and stability cannot be guaranteed. In the
second case, as we mentioned previously, the methods based on a change of coordinates concern
only a restricted class of nonlinear systems. Indeed, many approaches that use a change of
coordinates require the integration of a set of nonlinear partial differential equations, which is
often very tricky to achieve, therefore, only approximate solutions can be obtained. Some results
and consequences for an extended Luenberger observer design are briefly summarized in [90].
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1.4.3 Generalized Luenberger observer (GLO)

A new observer design technique has been proposed in . The class of systems concerned
by this new design is to add to the Luenberger observer, a second linear output feedback inside
the nonlinear part of the system. This approach concerns systems described by the following
equations:

&= Az + Gy(Hz) + o(y,u) (1.47a)
y = Cx. (1.47b)

The proposed observer has the following structure
=A%+ Gy(Hz + K(y — C#)) + o(y,u) + L(y — C#) (1.48)

Convergence conditions of (|1.48) have been established in [20]. This result concerns systems for
which the nonlinear function ~ satisfies the following assumptions:

1. any component -; is a scalar function with a scalar variable, i.e :

j=n
Yi = Vi (Z HjjfL'j) i=1,...,r (1.49)

3. all components of v are non-decreasing functions, i.e :

0< 20 =% o e (1.50)
v—w
Using (1.47) and ([1.48)), the estimation error dynamics ¢ = x — & are given as
e =(A—-LC)e+ G(y(v) — y(w)) (1.51)

where
v=Hzretw=Hi+ K(y—C&%).

These convergence conditions are illustrated in the following theorem

— Theorem 1.5

The estimation error (1.51) is exponentially stable at the origin if there exists a matrix
P = PT >0, a constant v > 0 and a diagonal matrix A > 0 such that the inequality

(A-LO)'P+P(A-LO)+vI, PG+ (H-KO)TA

GTP+ A(H — KC) 0 =0 (1.52)

is satisfied.

This technique has been extended in and to the case of monotonic multi-variable systems.
Similar convergence conditions were obtained. New sufficient conditions for the synthesis of the
gains K and L have been proposed in for a class of systems whose nonlinearity is a scalar
function with a scalar variable. This result is more general than the previous one since it takes
into account the bounds of the term w when they exist, i.e. when the nonlinearity satisfies
the condition

nggb,Vv;ﬁweR (1.53)
v—w

By exploiting condition (1.53)), the following theorem is derived.
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— Theorem 1.6

The observer ([T.48)) converges exponentially if there exists a matrix P = PT > 0, a constant
v > 0 and a diagonal matrix A > 0 such that the inequality

(A-LC)T'P+P(A—-LC)+vI, PG+ (H-KC)T
GTP+(H - KC) -2 =0 (1.54)

is satisfied.

This last inequality is less restrictive than . In fact, in it is necessary to have
PG + (H — KC)T'A = 0 because of the presence of a zero on the diagonal which makes the
inequality very restrictive. However, in , the zero on the diagonal is replaced by —% which
does not require PG + (H — KC’)T to be null. Note that for b = +oo, inequality is
obtained.

1.4.4 Triangular normal forms: high-gain designs

Triangular forms became of interest when [94] related their structure to uniformly observable
systems, and when [95] introduced the phase-variable form for differentially observable systems.
The celebrated high-gain observer proposed in for phase variable forms and later in
for triangular forms, have been extensively studied ever since.

The two papers are at the origin of these high-gain techniques which use Lyapunov’s
stability theory to adapt the techniques developed in the linear case. The method presented
in [25] gives sufficient conditions for convergence of the estimated state towards the real state,
for the class of nonlinear systems described by

T = Ax + ¢(x,u) (1.55a)
y=~Czx (1.55b)
where z € R",u € R™ and y € RP represent the state vectors, inputs and outputs of the system,
respectively. The pair (A, C) is detectable and the nonlinearity, ¢ is Lipschitz with respect to
T:
|p(z,u) — d(Z,u)|| < ypllz — 2|, Vo, cR" et Vuc R™ (1.56)
where 7,4 is the Lipschitz constant of the function ¢.
The high-gain observer has the following structure

&= Az + ¢(2,u) + K(y — C%) (1.57)
The name "high-gain" comes from the structure of the observer: when the nonlinear function
f has a large Lipschitz constant, the difference between the real state and the estimated state
increases. Therefore, the observer gain L must be large to compensate for this error
amplification.
The dynamics of the estimation error € = x — Z is given by:

¢ =(A— LO)e + ¢(x,u) — (&, u) (1.58)

The objective is to determine under which conditions the gain L guarantees the stability of the
estimation error € at zero.

Thau’s method provides a sufficient condition for the asymptotic stability of the estimation
error ([1.58)). The result of this method is given by the following theorem.
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— Theorem 1.7

Consider system (|1.55)) and the observer (1.57)). If the gain L is chosen such that:

)\min(Q)

2>\max(P) (1‘59)

Ve <
where A\pin(S) and Apax(S) are the minimum and maximum eigenvalues of the matrix S,
respectively, the matrices P = PT > 0 and Q = QT > 0 are solutions to the Lyapunov
equation:

(A-KC)Y'P+P(A-KC)+Q=0 (1.60)
then, the estimation error ([1.58) is exponentially stable.

The proof of this theorem is based on the use of the standard Lyapunov function
V=V()=elPe.

For more details on the proof of Theorem [7| see .

Thau’s approach allows only to verify convergence of the observer , a posteriori. Indeed, the
choice of the matrices P, () and K which satisfy the inequality is not direct. For example,
placing the eigenvalues of (A — LC') in the left half-plane does not imply that condition ([1.59)
is satisfied. There is no specific relationship between the eigenvalues of (A — LC') and Amax(P),
this was proved in by a simple numerical example.

Thau’s method is not constructive, it gives no indication of the choice of a gain satisfying the
condition . This is a verification technique, which guarantees the asymptotic convergence
of the estimated state & towards the real state  when the gain L is already been chosen. The
article extended Thau’s results in the deterministic framework. Among the so-called "high
gain" techniques we can also find the work by , and more recently , which propose to
compensate for nonlinearity, at the level of the dynamics of the estimation error, by a sufficiently
large gain (compared to the Lipschitz constant). An extension of these results to exponential
observers is detailed in . The work presented in is at the origin of a series of articles
describing constructive methods of the gain L of the observer . Indeed, it proposes the
following proposition:

Consider system ([1.55) and the observer (1.57)). If there exists € > 0 such that the Riccati
equation

1
AP + PAT + P (ﬁ,]n — —C’TC> P41, +el, =0 (1.61)
€
admits a symmetric positive definite matrix P as a solution, then the gain can be chosen as
L=2pcT (1.62)
2 )

to ensure the asymptotic convergence of the observer (|1.58]).

However, this algorithm does not work for all observable pairs (A,C') and unfortunately does
not give information on the conditions to be satisfied by the matrix (A — LC') in order to ensure
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the stability of the estimation error. The placement of the eigenvalues of (A — LC) in the left
half-plane is certainly not enough.
In the work by , sufficient conditions on the matrix (A — LC') have been established for the

dynamical system ([1.57)) to be an observer of the system ({1.55)):

System ([1.57) is an observer for system ((1.55)) if the following conditions are satisfied:
(i) the pair (A, C) is observable;
(ii) the gain L is chosen such that (A — LC) is stable and

min opin(A — LC — jwl) > k (1.63)

weR Y

The complete proof of this theorem is given in three steps in .

The work presented in extended the previous results to reduced observers: it has been
shown that the conditions of Proposition |2 also guarantee the existence of an asymptotically
convergent reduced observer for the nonlinear system .

Other high-gain observer techniques have been developed in the literature, especially for the
class of uniformly observable systems . These methods use a change of variables
to transform the system under consideration under the form of . The adaptive case is
addressed in , which proposes an adaptive high-gain observer for nonlinear systems depending
linearly on unknown parameters. The input-state stability theory is used in to study its
robustness to uncertainties. This type of observer has been applied to a class of biological

systems and biotechnological processes in [26][104}[105].

1.4.5 Variable structure observers

Variable structure observers constitute another family of observers. In all the previous methods,
the studied system’s dynamic model was assumed to be perfectly known. Here, it is a question
of developing certain robustness with respect to parametric uncertainties. The method used to
construct these observers is based on the theory of sliding modes . The class of systems

studied is described by:
Z(t) = Ax(t) + f(x(t),u(t
{() (1) + Fa(®) u(t) Lo
y(t) = Cx(t)
The function f represents the nonlinearities and uncertainties of the system. The following
assumptions are made about the system

(i) the pair (C, A) is detectable, hence there exists a matrix K such that the matrix A — KC
is stable;

(ii) the function f is under the form
fx(t),u(t)) = P7CT h(x(t), u(t)) (1.65)

where P is a symmetric positive definite matrix, the solution to the Lyapunov equation
(P exists according to assumption (i))

(A-KC)'P4+P(A-KC)=-Q <0 (1.66)
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the function h is unknown but bounded
[A(z(t), u(®)] < p(u(t)) (1.67)

We can underline that the nonlinearity does not appear in the structure of the observer proposed

by [107]

2(t) = A(t) + K(y(t) — C2(t)) + r(2(1), u(t), y(t)) (1.68)
with
P-1CT (y(1)—Ci(t)) . .
k(2(1), u(t), y(t)) = T @ —Ca0)]] p(u(t)) si(x(t) —2(t) #0 1.69
(@(t), u(t), y(t)) 0 i (2(t) — 3(1)) = 0 (1.69)

The term x(Z(t), u(t),y(t)) in can be considered as a variable gain, which becomes infinite
when the estimation error is small. It is shown in that the observer is an exponential
observer of the system . It should be noted that the exact knowledge of the system is not
necessary, it suffices to know an upper bound p(u) on the nonlinearities or uncertainties. On the
other hand, assumption (ii) imposes a structural constraint on f, which can be difficult to verify
in the presence of model uncertainties. In , the authors propose a slightly different observer,
which does not use this condition, but in return, global convergence is no longer guaranteed.
The discontinuity of the function is another drawback of this method: an oscillatory
behavior can appear in the dynamics of the estimation error at high frequencies. To overcome
this problem, the paper proposes another choice for the function.

1.4.6 State estimation via online optimization

This class of estimation technique involves the formulation of state estimation as a minimization
problem, wherein the state estimates are obtained by solving an online minimization prob-
lem . The optimization is carried out over a horizon (into the past) using a
series of continuously sampled measurements over time leading to a moving horizon state es-
timation. This estimation approach is in principle identical to Kalman filtering, however, the
Kalman filter considers only one set of measurements at a time without taking into consideration
the constraints on the system.

The following discrete-time linear system is considered,

Tpt1 = Axg + Bug + Gy, (1.70a)
yr = Cog + vy, (1.70Db)
for t =0,1,. . . , where x; € R" is the state vector (the initial state z¢ is unknown) and

ur € R™ is the control vector. The vector w, € R" is an additive disturbance affecting the
system dynamics. The state vector is observed through the measurement equation ,
where y; € RP is the observation vector and v, € RP is a measurement noise vector.

In [111] is shown that the Kalman filter is the algebraic solution to the following unconstrained
least-square optimization problem:

T—1 T
. . 2 .2 )
Cmin = [0 — sl + 3 B + 3 foxlhn (1.71)
&0, {w},_ 0 k=0 F k=0 .

where
Tr11 = A%k + Bug + Gg

U = CZTp + g
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and Qi > 0, R > 0, Py > 0 are positive definite matrices and x, is the mean of zy. This opti-
mization problem now opens the possibility to add system knowledge in the form of constraints,
then the optimization problem becomes not equivalent to the Kalman filter anymore. If all
the available past measurements are used for the estimation as in , the estimation problem
grows unbounded with time which is referred to as the full information estimator . In order
to keep the estimation problem computationally tractable it is necessary to limit the processed
data, for example by discarding the oldest measurement once a new one becomes available. This
essentially slides a window over the data, leading to the moving horizon estimator (MHE). The
data that is discarded can be accounted for by the so-called arrival cost so that the information
is not lost. The MHE then considers only a limited amount of data so that the constrained
optimization problem becomes:

2
min HS?IT—N|T—XT—N|THP_ HYTT N — Odp_ N|T—Cb Hw .
Zr_ N W T—N|T—1
T-1
> “wk”Q—l + Z |Uk||R— (1.72)
k=T—N k=T—N

such that,
Tr+1 = A2k + Bug + Gk, g, = C2p +
xkEX {kaRn|Dxi'k§dAx},
2 1.73
i € W2 {iy, € RY | Dy, < dy } (1.73)
ﬁkevé{vkeRT|ka<d}
where 71" is the current time, Qk = 0, Rg > 0, Pr_y7—1 = 0 are the covariances of wg, v, TN
assumed to be symmetric, N is the horizon length of the MHE, i.e. the amount of past data
T
taken into account. YF \ = {y%_ Noo-- 73/%} is a vector containing the past N + 1 measure-

T
ments, UT N = [u%_N, .. .,u%_l} is a vector containing the past N inputs. z,w,v denote

the variables of the system (1.70]). Z,, 9 denote the estimated variables of system (1.73)), and
Lpp_y and Wp = Wi i = {@}?Eﬁ_N* denote the optimizers of problem ([1.72)-(1.73|) where

Wr = = Wiy = {w }T|T y denotes the estimated noise sequence from time 7' — N to time

T — 1. Finall _ HYT—I _ 0% _ aul-2 2 i th val
¥ T—N Tr_NiT — COUp_N w1 is the arriva

Ty N|T — X7 N\THP_l
T—N|T—1

cost. For steady-state MHEQy = Q, Ry, = R, and Pr_pyj7_1 = P are time-invariant.

The current state of the system can be calculated from the initial state zqp_y by forward

programming using the system equations ([1.70al) and (|1.70b) if the deterministic input U;‘C__]{,

and the noise sequence {w}::?:zlv are known. It is thus sufficient to estimate the initial state

Ak . Trs
Trir_N and the noise Wry.

— Remark 1.7

In the case T' < N, the full information estimator is solved using the arrival cost:
. 2
LT-N|T — QT—N|THP71 :
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The horizon "fills up" and no data is discarded [112].

This remark points out that wrongly posed constraints might lead to an infeasible optimization
problem and that hard constraints on 9 could be problematic due to the possibility of outliers
in the measurement. Any constraints posed in should hence be chosen such that the real
system does not violate them [112].

The MHE can only consider a limited amount of past data while remaining computationally
tractable. The information in the discarded data should be preserved and this is achieved
through the arrival cost which captures the older data through forward dynamic programming.
It can hence be seen as equivalent to the cost to go into backward dynamic programming .
In the constrained case, the arrival cost cannot be calculated analytically. Caution needs to
be taken because an ill-chosen arrival cost can lead to an unstable estimator, but in
it is also shown that the steady-state (constant Pp_ N|T_1) constrained estimator is stable if
Pr_njr—1 > P where Py is the solution of the discrete algebraic Riccati equation:

—1
P=ATPA— ATPB (BTPB T R,ml) BTPA + Qpu (1.74)

The arrival cost needs to be updated at each time step. Two different update schemes are
proposed in [113] and [112] for xp_ 7

1. Filtered update scheme: use of the optimal estimate N + 1 time steps in the past:
Xr N = AZp_N_1jr-n-1 + Bur—n-1r-n-1+ GOr_n_yj7_n_
2. Smoothed update scheme: use of the optimal estimate from the last time step:

— K nx
Xp_nr = AZp_y_qp—1 + Bur—y_1r—1 + GOr_n_yjp_y

In , the author demonstrates that either update can give a better estimate than the full-
information estimator if the estimation constraints are not properly posed and the real
system violates them but no general claim about robustness is made. The MHE with the
smoothed update performs best but further research in this direction still remains open. The
main disadvantage of the filtered update is that cycling effects can occur because the filtered
update can be seen as N independent parallel running filters . The use of the smoothed
update however avoids the cycling effect and hence this work only considers the smoothed update.
The smoothed arrival cost is calculated as follows :

2 _ 2
Hii'T_NIT — XT_N|THP*1 — HYYT—_J\lf — O'%T—N|T — Cijj:__?VHW_l (175)
T—N|T—1
where for i,5 < N
o=[cr atct.. aw-ver ]’
0 if j >4,
M;; ={CG if j=i—1, (1.76)

CA;_1A;_o... Aj_|_1G otherwise,
W = diag(R) + M diag(Q)M”
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and Pp_yp_; is calculated by the following backward Riccati equation [114]:

Pur = Pugi + P AT Py (Pesar — Posai) Pry e AP
T 7\~ 1
Prk = Prjp—1 — Prjp—1C (R + CPyp—1C ) CPyjr—1
Pyt = GQGT + APy_y )1 AT

Apart from the MHE formulation stated in equation ([1.70a)), a number of variations in the formu-

lation can be found in the literature. In |115], the authors used the following objective function
N 2

in which the estimates of the noise sequence W are not obtained: J = pu HfT, N|T — X7— N|TH +

S N ly(T)—=Cz(k | T)||?. In this formulation, the scalar p is used to guarantee stability. By
reason of optimality, the formulation will give at least as good a result as the formulation
in [115]. The authors in [116| introduced a nonzero mean wy, j for @y, using the filtered update
of the arrival cost:

2

min HfT—N|T—§T—NTH _ +
ﬁinmT,W;:i,‘T | PT—IN\T—N ( )
1.77
T—1 T
A~ 2 ~
> ok = Wil + D2 19kl7-
k=T-N k=T-N

— Remark 1.8

The unconstrained linear MHE is equivalent to the linear Kalman filter if the solution of
the differential-algebraic Riccati equation ((1.74) is used for Py in the arrival cost of the

MHE and in the Kalman filter [112}|113].

1.5 Conclusion

The purpose of this chapter was to give an overview of fundamental concepts essential in observer
design for nonlinear systems. The presentation follows a particular viewpoint on the problem
and does not claim to be exhaustive. In particular, the most important notions of stability
and observability (from this viewpoint) have been reviewed, and some observer techniques have
been presented for discrete-time and continuous-time nonlinear systems. We have seen that
the designs are driven by specific structures of systems and there is no universal method for the
synthesis of nonlinear observers in the literature. The approaches developed to date are either an
approximation of linear algorithms (linearization around an operating point) or specific nonlinear
algorithms for certain classes of systems.
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2.1 Introduction

High-gain observers play an important role in state estimation and output feedback control
of nonlinear systems. After two seminal works appeared in 1992 the investigation of
high-gain observers in nonlinear theory attracted the attention of many researchers. In the
absence of measurement noise, this technique robustly estimates the derivatives of the output
while achieving convergence of the estimation error that can be imposed arbitrarily fast by

33
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acting on a design parameter, appearing in the observer structure, typically known as the "high-
gain parameter" . Moreover, for a sufficiently high observer gain and a globally bounded
controller, the high-gain observer is able to recover the system performance achieved with the
state feedback control.

Although the effectiveness of such an observer has been nicely demonstrated in , the
standard high-gain observer faces a numerical challenge with high dimensional systems. Indeed,
in the design of a standard high-gain observer, the observer gain is proportional to the powers of
the tuning parameter denoted @ in this work, which is powered to the dimension of the observed
state n. This creates a challenge in the numerical implementation when the state dimension
is high or when the high-gain parameter has to be chosen largely to achieve fast estimation.
Moreover, high-gain observers are known for having high sensitivity to high-frequency measure-
ment noise, which makes state estimates practically unusable, especially for higher dimensional
systems having nonlinearities with large Lipschitz constants.

Some of the earlier research performed in the spirit of high-gain observers can be found in the
literature such as the so-called extended high-gain observer which is composed of an extended
high-gain observer (EHGO), for the estimation of the derivatives of the output, augmented with
an extended Kalman filter (EKF) for the estimation of the states of the internal dynamics.
Then, to account for the presence of disturbances acting on the system, several methods have
been proposed based on gain adaptation methods , , , and .

The selection of a high gain stems also from the need to account for the nonlinearities in the
error dynamics, which are usually modeled as Lipschitz functions. In , the gain adaptation
allows one to account for the unknown Lipschitz constant. Resetting rules are proposed in [49].
The use of a time-varying gain is addressed in , , where a Lyapunov functional is used
for the purpose of the stability analysis of the estimation error instead of the classical quadratic
Lyapunov function.

A new high-gain observer able to overtake some of the drawbacks of classical structures has been
recently proposed in for a class of nonlinear systems with one output and dimension n > 3.
The cornerstone of this contribution consists in limiting the power of the observer gain to 2
regardless of the dimension of the system, thus improving the performance of the observer with
respect to the measurement noise on the output. Although the new observer structure solves the
problem of numerical implementation, the peaking phenomenon is still present. Along this route,
two similar schemes, which follow the seminal idea presented in , have been recently proposed,
in [53] and , to address the implementation issues and the peaking phenomenon. In , the
author shows how to build a high-gain observer by interconnecting a cascade of reduced-order
high-gain observers of dimension 1. A simpler scheme, without feedback interconnection terms,
that cannot ensure an asymptotic estimate, is presented in . It is worth stressing, however,
that even if the dimension of the observers is n, neither scheme improves the sensitivity properties
with respect to standard high-gain observers. Hence, the focus of this chapter is to analyze and
address the issues that arise when implementing high-gain observers in both scenarios: noise-free
and in the presence of measurement noise. In particular, we focus on the trade-off between fast-
state reconstruction, minimizing the bound on the steady-state estimation error, and rejecting
the high-frequency measurement noise.

First, we will present a new observer structure for triangular systems having Lipschitz nonlin-
earities. The proposed observer is based on system state augmentation which transforms the
original system of dimension n into an augmented system of dimension n + js which allows
obtaining a new threshold on the observer parameter 6 that guarantees the exponential con-
vergence of the estimation error and reduces the value of the observer gain. Then, we combine
the HG/LMI technique recently proposed in with the system state augmentation approach
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to obtain a new enhanced high-gain observer. The key idea behind this proposed observer is
based on transforming the original system of dimension n into an augmented system of dimen-
sion m + js, then applying the HG/LMI technique to the resulting system. Such an observer
has more degrees of freedom as compared with the standard high-gain observer, which can be
regarded as a particular case of this improved high-gain observer because of a special choice of
design parameters.

2.2 Highlights on high-gain observers

This section is devoted to presenting an overview of sufficient conditions for the existence of
observability canonical forms for nonlinear systems. These observability forms can be seen as
a special case of a feedback form. As a matter of fact, when the aforementioned sufficient
conditions are verified, the nonlinear system is diffeomorphic to a system for which we know
how to design an observer. For the sake of simplicity, we consider the class of single-input single-
output nonlinear systems. The results presented herein cannot be extended to the multi-output
multi-input case in a trivial way.

Observabilility canonical forms

Single input observability is the practical observability notion that can be used for state and
parameter estimation. A system is single-input observable if there exists an input that distin-
guishes any different initial states (see chapter 1). Such inputs are called universal inputs. For
analytic systems, the observability is equivalent to the single input observability . For non-
linear systems, even if the system is single input observable, it may admit an input that makes
it unobservable. However, for stationary linear systems, the single observability doesna€™1t
depend on the input and can be characterized using a Brunowsky canonical form . The
property that the single input observability does not depend on the input will be called uniform
observability. As for stationary linear systems, canonical forms can be designed in order to
characterize some class of uniformly observable nonlinear systems.

In the observation context, a natural extension of stationary linear systems consists in consid-
ering linear systems up to output injection:

&= Az + ¢((u,y))
{ Y= Cx (2.1)
where the state x = (z1,...,2,) € R" evolves in compact subset X of R", the input u is any

function assumed to be known evolving in compact subset ¢ of R the known input and y € R?
is the measured output.

The observability of (C, A) is equivalent to the fact that system is observable independently
on the input.

An observer for systems is a simple extension of the Luenberger observer:

=A%+ o((u,y)) + L(CZ —y) (2.2)

where L is any constant n X p constant matrix such that A + LC' is stable.

Based on this nice observability property and the fact that the observability is an intrinsic
property (it does not depend on the system of coordinates), the problem of transforming a
nonlinear system to systems of the form by a change of coordinate has been initiated in
and extended to the multi-output case in ﬂ@,
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In the followings, we recall some of the results in .
Consider the single output nonlinear system:

{ ”;: }]:((i)) (2.3)

where, x(t) € R”, u(t) € R™ and y(t) € R?
In the single output case (p = 1), we will recall the necessary and sufficient condition that
systems (2.3)) must satisfy in order to be transformed into the canonical form:

&= Az + o(y)
{y:C:U (2.4)
where,
0 0 0
1 0 0
A= , andcz(a .., 0, 1)
0O ... 10

To do so, consider the family of vector fields X7, ..., X,, defined by:

Lx, L’;(h)) =0, fork=0,...,n—1
Ly, (L} () =1 (2.5)
X,‘ = [Xi_l,f], foriz?,...,n

where L, denotes the Lie derivative along the vector field X; and [,] denotes the symbol of the
Lie bracket operation.

Now, define the following transformation ® = (®1,...,®,) by:

Ly, (®;) (x) = &/, where &/ is the symbol of Kronecker.

— Theorem 2.1

Assuming that the system ([2.3)) is observable in the rank sense at some xg € R™. A necessary
and sufficient condition for which z = ®(x) becomes a local system of coordinates around
xo in which system (2.3) becomes of the form (2.4) is that the vector fields X;,..., X,

commute. Namely, [X;, X;| = 0, for every, i, j.

For the proof (refer to [28]).
In @@, the authors gave an extension of this result to the multi-output systems which can be
transformed into the Brunowsky canonical form:

&= Apz+¢(y)
(1= o
where,
0 0 0 0 0 0
A 0 0 A 0 0
Am = 7Ai =
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ci 0 0
is np X ng matrix with ny +...+np,=nand C,, = | : . Witthz(O, e 1)3

ng vector.

2.2.1 Canonical form and high-gain observer

Consider nonlinear systems of the form:

(12i

where, z(t) € R, u(t) € R™ and y(t) € RP is the measured output.

System is uniformly observable, if for every input u € L (]0,7],R™), where T" > 0
is fixed, u is universal input. Namely, for every initial states xg,x1, the associated outputs
y (o, u,t),y (x1,u,t) are not identically equal on [0,7 (, zo, z1,u) [, where T (, xg, x1,u) < T is
largest time such that the trajectories x(t) and x;(t) are will defined for every ¢t € [0, 7" (, zo, z1,u) |-
Notice that if the linear part of systems is observable then system ({2.3)) is uniformly ob-
servable. Moreover, an observer takes the form observer exponentially converges whenever
the unknown trajectory x(t) is defined for all ¢ > 0. A sufficient condition that guarantees the
completeness of the system (ie. the trajectories are defined on the whole R1) is that ¢ is a
global Lipschitz function. Notice that completeness is necessary for the existence of an observer
which converges as t — oo.

2.2.2 Observability canonical corm for uniformly observable systems

For the sake of simplicity, we consider the control affine nonlinear system:

(2.8)

T = fO(x) + ulfl +...+ umfm(m)
y = h(z)

where, the f; ’s are assumed to be of class C*°.
Given a function ¢ from R"™ into R of class C", the the Lie derivatives of ¢ along the vector fj
are:

0 — .
Lyy(9) = Sy foi. Bor k=1,...,n, L% (¢) = Ly, (Lf (), with LY, () = ¢.
Py ()
Denote by ®(x) = : the transformation defined by:
Py ()
P (z) = Ll;o_l(h)(a:), fork=1,...,n.
Then the following theorem is introduced.

—| Theorem 2.2: ||

If system (2.8) is uniformly observable, then there exists an open dense subset M of R"
such that for every xg € M, there exists a neighborhood V', such that the map ® becomes
a diffeomorphism from V' into its range. Moreover, it transforms system ([2.8]) restricted to
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V into the following canonical form:

2= Az +¢o(2) + X% Yi(2)ui
{ = Co ! (2.9)
1/%1(21)
co : s
A=]" T , 7¢0(Z): , Yo(2) = wkj(zh...,zj) ,C=<1, 0, ..., 0).
0 ... 0 ¥n(2) 5
wkn(zn)

Conversely, if a system ([2.8) can be transformed into the above canonical form using any
diffeomorphism, then the system is uniformly observable on the domain of definition of the
diffeomorphism.

For the proof, we refer the reader to .

High-gain observer design

In this section, we deal with the design of high-gain observers for the class of observer canonical
form systems described as:
2=Az+ p(u,2)
y=0Cx (2.10)
ze€R™ wuweR™

21,
0O 1 0 1/11(.1 )
where, A = P . and C = (1, 0, ..., 0) and ¥(z,u) = | Yr(21,...,25,u)
0 0 :
%(Z,U)

In order to design the high-gain observer, the following assumption is first introduced.

Assumption 2.1

The nonlinear function ¢ is a global Lipschitz function, i.e., for all bounded subset of R™;
3y > 0 such that Vz, 2" € R", we have [|¢(z,u) — ¢(2/,u)|| < ||z — 2’|, where |||| denotes the
euclidian norm of R"™.

— Remark 2.1

This hypothesis guarantees the completeness of the system (for every admissible control,
all trajectories of the system are defined in R™). If the concerned trajectories of the system
lie into a bounded subset €2 of R™, then we can prolong the nonlinear term ¢ to a global
Lipschitz function ¢ outside B, so that trajectories of the new system coincide with those
of the initial system.
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0 0 0 Iy
Now, let § > 0 a parameter and set: Ay = [: ., and L = | : | such that
0 A ln
I 1 0
A+LC = : B becomes a Hurwitz matrix.
lp—1 0 1
by 0...... 0

Then, the candidate observer has the following form:

2=A2+ NgL(C%: —y) (2.11)

Then the following theorem is derived:

Theorem 2.3

Under assumption |1} system forms an exponential observer for system . Let U
be a compact subset of R™, then there exists a constant 6y > 0 such that V0 > 6y; da >
0;38 > 0 such that V2(0), we have ||2(t) — z(t)|| < ae™P!||2(0) — 2(0)||, where z(t) is the
unknown trajectory to be estimated.

Remark 2.2

The high-gain observer is characterized by the nice feature of being extremely easy
to tune. The convergence of the observer can be arbitrarily chosen by selecting a large
high-gain parameter 6 in order to overcome the Lipschitz constant of the nonlinear function
. More precisely, 5 depends on the parameter 6 and lim 5(0) = +oc.

The high-gain observer limitations

The high-gain observer design introduced in Theorem (3| highlights three main drawbacks of this
approach:

1. Implementation issues: the high-gain observer is characterized by having the
gain of the output injection terms which is proportional to 6,62, ...,0". Furthermore,
the minimum value of ¢ which guarantees asymptotic convergence of the observer, is pro-
portional to the Lipschitz constant of the nonlinear function ¢. As a consequence, if the
high-gain parameter 6 or the dimension n of the observed system is large, we need to
implement in the observer a term ‘n which may be very harmful from a numerical point of
view. If we want to avoid implementing powers of 6 in the observer, we need some different
strategies, such as a nonlinear change of coordinates, the use of non-linear functions, or

dynamic extension.

2. "peaking phenomenon": convergence of the observer (2.11)) has been stated in the proof
of Theorem 3] In absence of measurement noise and of model uncertainties, the 2 dynamics
can be bounded as

12(8) = 2()I| < ae™][2(0) — 2(0)]
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During the transient, the decaying term e ?! is closed to one. As a consequence, the
variable Z shows a peak that is proportional to the error in the initial conditions and
multiplied by a term «, producing an estimate completely unreliable and which can be very
large from a numerical point of view when 6 are very large. The interaction of peaking with
nonlinearities can induce finite escape time in output feedback scenarios. In particular,
in the lack of global growth conditions, high-gain observers can destabilize the closed-
loop system as the observer gain is driven sufficiently high. The peaking phenomenon
has been extensively studied in literature and different solutions have been
proposed, based on re-scaling , projections , hybrid re-design or time-varying
gain approaches . Finally, very recent publications based on a nested-saturation
design and based on HG/LMI technique.

3. Sensitivity to measurement noise: one of the main features which questions the use
of a high-gain observer in applications is its sensitivity to measurement noise making their
use practically impossible in a really noisy environment. Indeed, the estimates may become
completely unreliable, imposing some upper bound on the value of the high-gain parameter
0 if estimation in presence of measurement noise is desired. This trade-off between the
speed of the state estimation and the sensitivity to measurement noise is a well-known fact
in the observer theory. In this respect, high-gain observers tuned to obtain fast estimation
dynamics are necessarily very sensitive to high-frequency noise. Some strategies have
been advanced in the literature to achieve fast convergence while reducing the impact of
measurement noise at a steady state such as using a larger # during the transient time and

then decreasing it at steady state [118] and many other schemes [44-4655[123].

In the next section, we propose a new analysis tool to overcome or at least to mitigate the
aforementioned drawbacks.

2.3 Enhancing high-gain observer performances

This section addresses the challenging performance issues that arise when implementing high-
gain observers in noise-free and in the presence of measurement noise. In particular, we focus
on the trade-off between fast-state reconstruction, minimizing the bound on the steady-state
estimation error, and rejecting the model uncertainty. Motivated by these considerations, we
propose a new class of nonlinear high-gain observers, which substantially overtakes the drawbacks
mentioned in the previous section. Our technique follows the standard high-gain methodology
with the same state observer structure of dimension n. However, by exploiting the system state
augmentation approach, we are able to decrease the tuning parameter (then implicitly, the gain
power is decreased). This is achieved by augmenting the state of the system to the dimension
n+ js where js is a design parameter that can take values between 0 and n. Then, the HG/LMI
technique proposed in is combined with this state augmentation approach to avoid the
peaking phenomenon, reduce the sensitivity to high-frequency measurement noise, and enhance
the convergence rate if necessary. To get a good trade-off between all these criteria, the new
observer offers the possibility to play with the values of jg, js, and the tuning parameter 6.

2.3.1 Basic ingredients of the observer construction

In this section, we introduce some background results on high-gain observers essential to the
development of the proposed technique.
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System description

Before describing the high-gain observer form, it is important to lay the foundation for the
types of systems that are considered in this body of work. Namely, We will consider the class
of nonlinear systems in the triangular form described by the following set of equations:

Ty T2
Ty T3
S I (2.12)
Tn—1 Tn
Iy f(x)
Yy=1a

where x € R™ is the system state, z € R is the measured output, and f : R™ — R is a nonlinear
function satisfying the Lipschitz property:

‘f(:cl F AL Tt A) — fz, ,xn)’ <k S|4 (2.13)
j=1

Using a nonlinear transformation, system (2.12)) can be rewritten under the form:

(szpeentn o

where the system matrices take the form

01 ... ... 0
00 1 ...0 L
. . . . o it j=14i+
A=|: o], e, (A)m—{0 Al (2.15)
0 . ... 0 1
00 ... ... 0
T
B:(o .0 1) , C:(1 0 ... o) (2.16)

where A € R™*" B € R™*! and C € R'*"

It should be noticed that as demonstrated in , all uniformly observable systems can be
transformed into system . Several real-world models are or can be transformed into the
triangular form . The following references give more details about this family of systems
and their practical importance .

Standard high-gain methodology

Here, we recall the basic standard high-gain observer as in . For the class of nonlinear systems
written in the triangular form as given in by equation ([2.14]), a candidate observer system is (as
in [26]) just the "high-gain extended Luenberger observer":

= Az + Bf(#)+ L(y - C#). (2.17)
The dynamics of the estimation error £ = x — & is then given by:

= (A—-LC)%+ B[f(x) — f(2)], (2.18)
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in which the observer gain L is rewritten under the following form:
L:=TO)K, 0>1. (2.19)

where

T(0) = diag(0,...,0") and K € R"™.
In addition, the high-gain methodology focuses on the transformed estimation error
T:=T7Y0)z, (2.20)

where T~1(0) is the inverse of T(f) given by

T-1(0) :diag(%,...,oin).

It is well-known that the dynamics of the error Z is given by

F=0(A— KC)i+ . BAS. (2.21)

with
Af = f(x) = f(z—T(O)3).

From the Lipschitz condition (2.13) and the fact that # > 1, we can show as in that there
always exists a positive scalar constant ks, independent of 0, such that

IT=H(O)BAFI| < kyllz])- (2.22)

then, the following theorem is derived,

—| Theorem 2.4: ||

If there exist P > 0, A > 0, Y of appropriate dimensions, such that
ATP+ PA-CTYy —YTC+ M <0, (2.23)

then the observer converges exponentially to zero for

2k t Amax (P
0 > max{1, ff()}, (2.24)
and
K=pryT

where Apax(P) is the largest eigenvalue of the matrix P.

Proof. For more details about the proof of this theorem, we refer the reader to , , .
O
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2.3.2 LPV-based approach

We consider a class of nonlinear systems without the linear state part which is not necessary
for this design technique. For simplicity of presentation, we consider, without loss of generality,
that the nonlinear function depends only on the system state, and the output is linear. The
extension to nonlinear output is straightforward. Hence, the class of systems we treat in this
section is given as

o

where the nonlinear function ¥ : R®™ — R" is assumed to be ~yg-Lipschitz, i.e.:

, Vz,yeR" (2.26)

[v@) — )| < 7ufjz —]

Hereafter, we introduce some definitions and preliminaries which will be of crucial use in the
developed LPV-approach for Lipschitz and not necessarily differentiable systems.

— Definition 2.1

Consider two vectors

T U1
X=|[:]€eR" and Y=| : | eR™
Tn Yn

For all i = 0,...,n, we define an auxiliary vector XY € R” corresponding to X and Y as
follows:

Y1
xVi=| ¥ fori=1,....,n
Ti+1 (2.27)
Tn
XY =X

Lemmaand introduced in the following are crucial for the HG/LMI observer design.

—] Lemma 2.1:

Consider a continuous function ¥ : R™ — R. Then, for all

1 Z1
X=|:]1€eR" and Z=| : | €R",

T, Zn
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there exist functions ¢; : R" x R" — R, j =1,...,n such that
j=n
W(X) - W(2) = Y (XD, X5 )er () (X - Z), (2.28)

=1

where X% € R™ is an auxiliary vector corresponding to X and Z as follows:

21
X% =| % forj=1,...n
Zi J (2.29)
T
X% =X

where, e,,(j) is the j* vector of the canonical basis of R".

Proof. The proof consists of rewriting (X

)_ U(Y) as
o) - ) =55 o) -9 (x7)

Now, defining the functions v; by

0 if Tj=1Yj
%‘ (XYJ*l,XYJ) = q/(XYj—l)_q;(XYj) (230)
ry— if SCj ;é yj
i TYj
we can write
j=n
W(X) = w(Y) =3 [ (X5, X9)] (@5 - )
j:i (2.31)
= 3 [ (x5 X)) (X -Y)
j=1
d
—] Lemma 2.2: \|
Consider a function ¥ : R™ — R", then, the two following items are equivalent:
e WU is yy-Lipschitz with respect to its argument, i.e.:
|w(x) - w(2)|| < v V X,Z € R™; (2.32)

e forall i,j =1,...,n, there exist functions

Q[)i]’ R xR" — R
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and constants Yipis <0, y,;; = 0, s0 that V X, Z € R",

i=nj=n

U(X) = W(Z) = Y] Y wiHy (X - Z), (2.33)
i=1j=1
and
v = Yy < Yij < Yy < Vv (2.34)
where

bij 2 bij (XZ]'—17XZj> and H;j = en(i)er—zr(j)'

Proof.

1. Sufficiency: we start by proving sufficiency. Assume that for all 4,7 = 1, ...,n, there exist
functions
¢ij t R"xR" — R
and constants y iy and 7y, so that (2.33) and (2.34)) hold for all X,Y € R™. Then, we

have

v - w0 < 5 1ol
i=1 j=1

x -]
(2.35)

<(Z50) v

i=1 j=1
where \;; = max (|’yw, 15 [ \) Hence, the function W is yy-Lipschitz with
Loy

i=nj=n

o <3037 max (|, | )

i=1 j=1
2. Necessity: We know that for all X, we can write

Uy (X) i—n
U(X) = : = en(i)¥i(X)
\I’n(X) i=1
Consequently, if ¥ is yg-Lipschitz, then we deduce that there are constants 0 < vy, < yg
for all « = 1,...,n so that each component W; is yy,-Lipschitz. Indeed, we have
2 i=n 2
[w) —wm)|" =3 |wix) - wi()|
i=1 (2.36)
) 2
<aifx v

Inequality ([2.36)) leads to

o) 0] <l
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which means that ¥; is vyy,-Lipschitz with vy, < 7y. From lemma [} there are functions
Vij ¢+ R xR" — R, j=1,...,n so that

W)~ B(Y) = 3 gy (X074 X)) (X ) 237)
j=1

where ;5 is given as in equation (2.30) of Lemma (1| by replacing ¥ by ¥;. Since U, is
~yw,-Lipschitz, then we have

i) — w(X7)

<y, | X - XY

=y,

xj— yj‘
which means that
vy, < Yij <y,

This ends the proof.
d

Lemmaprovides a best less conservative Lipschitz condition. Indeed, the reformulation (2.33])-
(2.34) allows to treat the nonlinearity with the best precision and exploits all the interesting
properties of the system’s nonlinearity.

LPV /LMI based observer

Consider the following Luenberger observer:

b=w(@)+L(y - C) (2.38)

The dynamic of the estimation error e = x — & is given by:

¢ = [W(z) - W(7)| - LCe (2.39)

Since U(.) is yy-Lipschitz, then following Lemma [2[ there are functions

1[)1']' : R"xR" — R

and constants y i and 7y,;, such that
Ly,

i=nj=n

V() —¥(2) = [Z > ﬂJinz‘j}e (2.40)
i=1 j=1
and
Yy = Vid < Vo (2.41)
where

T oy
bij £ Yy (%] 1756“”)

is defined as in (2.30)),then replacing ¥ by ¥; (the it* component of v).

For the sake of shortness, we use v;; instead of 1;; (:U“A’ifl,a:ji) in what follows.
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Now, define the matrices

0= (1/JZJ>ZJ (2.42)

and o in
A(0) =33 vyHy (2.43)

i=1j=1

Consequently, the dynamics (2.39) can be rewritten as
¢=|A(8) —LC]e (2.44)

According to (2.41)), the matrix parameter © belongs to a bounded convex set #,, for which the
set of vertices is defined by:

Vi, = {@ R @y € {lwij,%j}}. (2.45)

The following theorem is derived, it provides LMI conditions for the observer design of Lipschitz
systems.

— Theorem 2.5: [124]

The observer ([2.38]) is asymptotically convergent if there exist a positive definite matrix P,
a matrix R of appropriate dimension such that the following LMI conditions hold:

A(@)TP +PA(Q) ~ CTR = RTC <0, ¥ @ €y, (2.46)

Hence, the observer gain is given by

L=P'RT.

For the proof (refer to |124]).

—] Remark 2.3

The LPV/LMI-based approach is the best LMI technique which avoids high-gain, however,
from the complexity point of view it is less interesting. Indeed, to synthesize the observer
gain, the LPV/LMI-based approach typically needs to solve 27" LMIs. In addition, this
technique, as is the case for all LMI techniques, contrary to the high-gain method, provides
sufficient LMI conditions from which we cannot guarantee the existence of a stable ob-
server before solving the LMIs. On the other hand, the high-gain methodology guarantees
convergence at the cost of a larger gain even for small values of the Lipschitz constants.

2.3.3 HG/LMI approach

To improve the design strategy based on the LPV approach, a combination of the high-gain
methodology and the LPV-based technique is given in this section. The advantages of each
method are exploited to get an improved observer design method. This latter is called "HG/LMI
observer which proved a smaller gain in addition to a reduced number of LMIs conditions to be
satisfied.
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Motivating example

The fact that k; in inequality is independent of # is not necessarily an advantage. Indeed,
this depends on how 6 would be involved in k;. Also, the fact that k; is independent of 6 does
not come only from the condition 6 > 1, but essentially from the presence of the last component
of x in f. Because of this last component, the parameter 6 vanishes from the term G%A f for
@ > 1. In this brief and simple example, we present the motivation and the key idea of the
HG/LMI technique. Consider a simple three-dimensional system.

If we take a nonlinear function

f(x) = 7y sin(zs),
then, from (2.13) we get

1 Y S 2 2
IO < g5x 6% |= s | &5 1< kyl13])
where ky = 7 in this case. However, if we take

f(x) =~y sin(z2),

then we get
1 V(o251 Y a2 Frys
@HAJCH < ERS | 0% [= 0 | 2 |< 7“55”-

Hence, by replacing in (2.24)) k; by %f, 0y will be reduced to v/fy, which will reduce significantly
the values of the observer gain.

HG/LMI based observer

This observer design technique follows the standard high-gain methodology with the same state
observer structure of dimension n. However, by exploiting the LPV/LMI presented in the
previous section, the values of the tuning parameter and observer gain are decreased. Indeed,
by introducing a "compromise index" jg, with 0 < jo < n, the power of the proposed high-gain is
limited to jo with 270 LMIs to solve instead of one single LMI as in standard high-gain observer.
We consider the standard high-gain observer structure:

b= Ai+ f(2)+ L(y - C2), (2.47)

where L is defined as in (2.19).
The dynamics of the transformed error Z, defined in ([2.21)), is then given by:
F=0(A—KC)i+T L(0)Af (2.48)

with

Af = f(z) - fl — T(0)3).

Each nonlinear component f; can be written under the form

i—Ji Ji
Afi=3" 0k + 3 0% D)), (2.49)
j=1 j=1

where
ki(j) =i~ (Jo— ),
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0<jo<t.
It follows that Af is written as
for HG for LPV/LMI
n 1—jo n  Jjo
= Z1 Z1 Higenli)as + Z; Z; 05D g, yen (D)) (2.50)
i=1 j= i=1j=

Afi

Hence, the error dynamics (2.21)) is rewritten as follows:

7= 0(AW) - KC)i+ T (0)Af, (2.51)
where .
n Ji
A(W’) = A+ BY Y dlenli)er (ki) (2.52)
i=1j=1
v
wi‘jl n
0 21 Z ]z
AGE . € Ri=1 | (2.53)
1/]33'2
Ui
ik, (j
Wl = 914:(—10—)]) (2.54)
Now define the convex bounded set
Z":ji Do s Ny o
o _ iz . ik (4) . Viki(4)
H =P eER= T g} <9 < 5 Gi-7) (2.55)
for which the set of vertices is defined by
f:ji Vi i Novir s
_ = . B ik; () Yik;(5)
VH;’min B @ € R ' ’ ¢Z] € {o—l"‘(]z_])’ Ul+(]1_.7)} ’ (256)
where y < 0 and Wik () = 0 are respectively, the lower and upper bounds of the bounded

—Yik; ()
parameter ¥, (j). Since Yy = 0 and 1%(]_) < 0, then it is obvious that for two positive scalars

01,09, we have the following implication

o1 < 09 — ’H;Ol D) ’H‘;OQ. (2.57)
Moreover,
. o\ ,
Am (#4) = {0 ) (258
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On the other hand, we can show that there exists a positive real number kj;, < ky such that A f;
satisfies

_ ki
ITH @) BAAI < Z2 el (2.59)

Hence, the following theorem is obtained.

—| Theorem 2.6: ||

If there exist P > 0, A > 0, Y, and ¢ > 0 such that
AWNTP + PAWY) - CTy
—YTC+ M <0,V ¢ Vi | (2.60)

2k jy Amax (P)

1
1+j0 __
0 > Hjo = 3 ,

(2.61)

then the estimation error  is asymptotically stable with
K

L=T0)P YT, 6> max (0 9-1+J0>.

?7Jo

Proof. For the proof, we refer the reader to . ]

2.3.4 New solution using system state augmentation approach

This section is devoted to the main result of this paper. The motivation of this work is inspired
by the HG/LMI design presented in the previous section. We will show that by augmenting
the state of the system, we can reduce the value of the tuning parameter and the power of the
observer gain.

Mbotivation

The motivation for developing the new solution comes from work in . Indeed, as demonstrated
in [55], if the nonlinear function f(.) satisfies the condition

g—aé(az) =0,Vji>n—js (2.62)
for a given js > 0, then the Lipschitz inequality becomes
1T 0)BATI < L. (263)
It follows that the high-gain inequality becomes
0> (—QWT‘X(P)>ﬁ = 05%] (2.64)

This new threshold on 6 which guarantee exponential convergence of the estimation error is

1
significantly reduced due to the power ﬁ Indeed, instead of T(0) in L, we have T(0)T+is.
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u .
> &= Az + Bf(x) , ¥R — R
b — Ok x— z=V(x)
v JV
High-gain W¢ Y 2= Ay z+ By fu(z,u)
observer y=Cy 2 :
1
. 1
z !
|
A 4 v
& RPHs 5 R G =0,Vji>n
253=9(3)

Figure 2.1: Block diagram of the high-gain observer design procedure based on system state
augmentation approach.

Hence it is important to exploit condition for systems satisfying it since it allows decreasing
considerably the values of the high-gain observer. A solution is proposed in by using a
decomposition of the nonlinearity into two parts by using the HG/LMI technique presented in
the previous section. Such a solution improves highly the standard high-gain observer, however,
the decomposition of the nonlinearity affects the design of the matrices P and K subject to a set
of 275 LMISs to be solved. Hence, in this section, we propose a new design procedure technique in
which we have one LMI as in the standard high-gain observer in addition to a new threshold on
the design parameter 6 which will result in a smaller gain as compared to the standard high-gain
observer.

System state augmentation approach

In this section, we present the main idea of the design procedure based on the system state
augmentation approach. Basically, the idea relies on transforming the original system of dimen-
sion n into a new one with augmented dimension n + js, where the new nonlinear function does
not depend on j, last components of the new state, we then construct a high-gain observer for
the augmented system which yields a new threshold on # attenuated to the power (1+—1]S) This
design procedure is summarized in Figure [2.1

The following theorem summarizes the design procedure of the proposed high-gain observer
based on the system state augmentation approach.
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— Theorem 2.7

Let us consider the uniformly observable system

=1y (x,u)
{ o) (2.65)

Assume there exists a state transformation (an embedding)

U R" — R
x— z=V(x) (2.66)

which transforms the system ([2.65)) into the following one

2= Ayz+ By fu(z)
{ Y= Cyz (2.67)

where Ay, By, and Cy have the same structure as A, B, and C, respectively, but with
dimension n + js. We also have

fo(2) 2 fo(zr,...,2n) < gﬂ z2)=0,Yj>n. (2.68)
<j

Consider the state observer described by ([2.69)).

{é

where ® is a continuous left inverse of the embedding ¥ satisfying z = ®(z) and Ly =
Ty (0) Ky, with Ty (0) £ diag(d, ...,0m" ). If there exist P >0, A > 0, Y, and 6 > 1 such
that

Awi + Bufu(2) + Lu(y — Cu?)

2.69
() (2.69)

>
Il

AP+ PAy — CJY —Y "Cy + M\ <0, (2.70)
Ky 2P lyT, (2.71)

2k o Amax (P
0> 0y & ) fulmax)t ) : (P) (2.72)

then the estimation error £ = x — & converges exponentially to zero.

Proof. The proof is straightforward. Indeed, from Theoremﬁl7 if the conditions — are
satisfied, then the error 2 = z — 2 converges exponentially to zero. The presence of (1 + j,)*™®
root in , as also mentioned in , is due to the fact that fy does not depends on the
js last components of z, which leads to

_ Epy 2
I3 (0) By full < ZEIZ. (2.73)

where z = Tgl(ﬁ)é. Hence, the exponential stability of & towards zero is then preserved due to
the invertibility of the mapping ®. ]
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Particular transformation: adding a chain of integrators

This section is devoted to a special case of transforming the system into a higher dimen-
sional system by adding j, integrators. The aim of this section is to show that there exists a
transformation satisfying the properties stated in Theorem [7]

Let us consider the following transformation

€1
21 T
= ¢+ | =v@e| fE@) |. (2.74)
’ df(z(t))
Zn+js dt
dGe ) f(a(t)
dt(Us—1)
It is obvious to see that
Zi = zig1, fori=1,... . n+js— 1, (2.75)
. dJs f(x(t
Zntjs = % = fo(z1, -y 2n), (2.76)
o
21 PN
r=|1|= [Hn ORnxj5:| z (2.77)
Zn

where I, is the identity matrix of dimension n.
Then following the previous section, the corresponding observer is

{ = Ay + Bufu(2) + Ly (y - Cu?) 0.18)
3 '

=L, Ogocs]

. . s 2k /\rnax P
The advantage of the proposed augmentation system is the presence of the fy £ 1”\/ ’[‘I’f(),

2k ¢q, Amax (P) . . . . .
instead of Jc‘l’f() if the standard high-gain observer is applied on the augmented system. We

are aware that if the standard high-gain observer is applied directly on the original system ([2.14)),

the obtained value of 6y in (2.24) will be smaller than M
power will reduce significantly the values of the observer gains.

. However, the presence of
1
1+7s
ISS with respect to measurement noise

In this section, we compare the properties of the standard high-gain observer (2.17)) and the
proposed observer (2.69) with respect to measurement noises. To this end, we consider the
following system where a bounded disturbance corrupts the measurement:

t = Ax+ Bf(x)

Y — Cotv (2.79)

where v represents the disturbance affecting the measurement y. We will show that an upper
bound on the estimation error, in an ISS sens with appropriate norms, can be ensured by the
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observers (2.17) and ([2.69)), respectively. However, we will demonstrate that using the state
augmentation approach can lead to a smaller bound on the estimation error, compared to the
one we get using the standard high-gain observer.

1. ISS property with Standard high-gain observer

Consider system (2.79)) and the standard high-gain observer (2.17)), then the transformed error
dynamics system is given as

F=0(A-KC)&+ inBAf — Kv. (2.80)
D 0
K

Therefore, as introduced in the following proposition, the observer parameters designed by
Theorem [7] ensure an ISS property.

Assume that there exists a symmetric positive definite matrix P, a positive constant A, and
a matrix Y of appropriate dimensions such that the inequalities — hold. Then
with the observer gain L given in , there exists a positive constant a such that the
estimation error Z(t) verifies the following ISS conditions:

~ — )\max(P) ~ _8 7(1 * e_ﬁt)
F)| < O 22 golle” 2t + 07 B——2 sup |[v(s)], 2.81a
2] e ol gy S W (281a)

. ~ g
lim ||[z()|| < 0", |———= sup |v(9)], 2.81b
i 1EON <0 [T o) (2:811)
where O — 2k Amax (P) Y

— 2 fAmax(P) — o Y
= = —. 2.82
B o (P) Y= (2.82)

Proof. The stability analysis is performed using the following Lyapunov function candidate

V=3 P (2.83)
The derivative of V along the trajectory of (2.80)) is given by
. 2 2 2 2o A
V=03 [AxP+ PAg]3 + e—nf:TPBAf —22'yTy
N " sz, Y12,
< =027 + 2k Amax (P)|Z]7 + af|z]|” + = |[v]
OX — 2k fAmax(P) — Y|?
S o ( )\f ma;( ) Oé) V+ || || ||V||2 (284)
max( ) (&}

B Y
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Therefore, from the comparison theorem [117], we deduce that
t
V() < VO e [ e u(s) s
0
t
< V(0)e "'+~ sup ||1/(s)||2e_5t/ ePsds
0

s€[0,t]

<V(0)e P + 11— e B sup |u(s)|> (2.85)
B s€[0,t]

Using the fact that
Amin(P)|Z]? < V(t) < Amax(P) 2],

we obtain
1Z(6))1? < %Hé(mn?e—ﬂt
g (L) 2 I .56)
which leads to
(1) < ir;((]f)) 15(0) =3
=) up ol 2.87)

ﬁAmin(P) s€[0,t]
Finally, from (2.20) we get
2 L - nilA
Izl < 2@l and [lZ@)] < 0" [l2(®)]

and then the relation (2.81a)) is inferred.

As for (2.81b)), we use lim;_s oo e = 0 and limy_, 4 o suPsefo 1V(8)Il = supsepo, 4o ¥(3)l5
which ends the proof. O

2. State augmentation approach vs standard high-gain

By a straightforward analogy, we know that we can apply the results of Proposition [I| on the

augmented system defined by (2.74)-(2.77). That is the observer (2.78)) designed by (2.70)-(2.72)
ensures a similar ISS property than that in (2.81a))- 1} However, the presence of the power

ﬁ in the case of augmented state-based observer , especially in the high-gain threshold

condition , allows reducing significantly the values of the observer gain. For instance, for
an € > 0, 1f we take 0 = 0y + € in the standard high-gain, then according to (2.81b}), the upper
bound of the estimation error satisfies:

lim ||z < (6p +¢) su v 2.88
Jm FOIS 00+ [l s o)) (2:88)

while with the augmented approach for 8 = 65, £ Oy + €, we get

lim ||z(t)] < (6y) T sup ||v(9)]- (2.89)
t—too Amin se[O +o0]
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It is quite clear from — that even for Oy greater than 0y, the presence of T"Jg will
reduce the effect of the measurement noise v(t) in case of high-gain observer based on state
augmentation technique. Analytically speaking, we cannot provide an explicit relation between
fp and Oy, however, from a numerical viewpoint, the value of the tuning parameter obtained
by the proposed state augmentation-based observer is clearly smaller than that we get with the
standard high-gain strategy. The inverse holds only if 6y > Géﬂs, which is hard to reach in
practice.

2.3.5 Observer based on a combination of HG/LMI technique and system
state augmentation approach

In this section, we investigate another strategy of high-gain observer design by combining the
HG/LMI technique given in sectionwith the system state augmentation approach presented
in section to get an improved high-gain observer with more degrees on freedom as it offers
the choice to select the values of two compromise indices jg and js. Furthermore, the gain of this
proposed observer is significantly reduced compared to the standard high-gain observer. This
gain attenuation is due to the presence of the power WM in the observer tuning parameter
6 which evidently results in better observer performances (less sensitivity to measurement noise
and removal of the peaking).

Observer design

The design procedure is illustrated in Figure which consists in transforming the original
system of dimension n into a system of dimension n + js, where the new nonlinear function does
not depend on j, last components of the new state, we then construct a HG/LMI observer for
the obtained.

Consider the system defined as

2= Ax+ Bf(x)
{ Y (2.90)

Using a nonlinear transformation I'(.), system (2.90)) is transformed into the following augmented
form

z=Arz+ Bpfr(z,u)
{ Y= Crz (2.91)
where of
r . .
LS = — s 2.92
5 (@) =0,V j>n] (292)

As stated in the previous section, one natural solution to obtain a new system satisfying ([2.92)
is by adding a chain of integrators leading to the following transformation

€1
21 Tn
z=| | =r@&]| [fl@) |. (2.93)
: df (z(t))
Zn+js dt
4 f(a(t)

dt(is—1)
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| fime+Br@ || 1iRr R
y=Cx x— z="T(x)

Y

\ 4
HG/LMI |_ Y ({z = Ar z + Br fr(z,u)

|
I
1
|
|
|
v

<

observer y=Cr 2

A

ofr .
P : RPHIs sR™ 8_;;:07VJ>71

2o i =d(3)

z

Figure 2.2: High-gain observer based on HG/LMI technique and the system state augmentation
approach.

It is easy to see that z obeys the following dynamics:

Zi = zjp1, fori=1,....n+js— 1, (2.94)

Zntj. = w £ fr(z,- -0, 2n), (2.95)
2\ 2

z=|:]= [ﬂn oan} 2 (2.96)
Zn

where [, is the identity matrix of dimension n. The new system (2.94)-(2.95|) satisfies the
condition (2.92)); <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>