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Benjamin,
Certains te disent

Imaginaire, fais leur la bise
Alors ils comprendront

Par tout ce pouvoir
Qu’ils ne peuvent pas voir
Qu’ils sont des ronchons
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ABSTRACT

This work investigates path planning optimization for powder bed fusion additive manufacturing
processes, and relates them to the design of the built part. The state of the art mainly studies trajectories
based on existing patterns and, besides their mechanical evaluation, their relevance has not been related
to the object’s shape. We propose in this work a systematic approach to optimize the path without any
a priori restriction. The typical optimization problem is to melt the desired structure, without over-
heating (to avoid thermally induced residual stresses) and possibly with a minimal path length. The
state equation is the heat equation with a source term depending on the scanning path. Two physical
2-d models are proposed, involving temperature constraint: a transient and a steady state one (in which
time dependence is removed). Based on shape optimization for the steady state model and control for
the transient model, path optimization algorithms are developed. Numerical results are then performed
allowing a critical assessment of the choices we made. To increase the path design freedom, we modify the
steady state algorithm to introduce path splits. Two methods are compared. In the first one, the source
power is added to the optimization variables and an algorithm mixing relaxation-penalization techniques
and the control of the total variation is set. In a second method, notion of topological derivative are
applied to the path to cleverly remove and add pieces. eventually, in the steady state, we conduct a
concurrent optimization of the part’s shape and of the scanning path. This multiphysics optimization
problem raises perspectives gathering direct applications and future generalizations.

Keywords: Path planning and control, additive manufacturing, metallic powder bed fusion, struc-
tural optimization.

RÉSUMÉ

Cette thèse porte sur l’optimisation des trajectoires de lasage pour la fabrication additive sur lit de
poudre, ainsi que leur lien avec la géométrie de la pièce à construire. L’état de l’art est principalement
constitué par des trajectoires basées sur des motifs, dont l’impact sur les propriétés mécaniques des objets
finaux est quantifié. Cependant, peu d’analyses permettent de relier leur pertinence à la forme de la pièce
elle-même. Nous proposons dans ce travail une approche systématique visant à optimiser la trajectoire
sans restriction a priori. Le problème d’optimisation consiste à fusionner la structure en évitant de
surchauffer (ce qui induirait des contraintes résiduelles) tout en minimisant le temps de fabrication.
L’équation d’état est donc l’équation de la chaleur, dont le terme source dépend de la trajectoire. Deux
modèles 2-d sont proposés pour contrôler la température : l’un transitoire et le second stationnaire (pas
de dépendance en temps). Basés sur des techniques d’optimisation de forme pour le stationnaire et sur
des outils de contrôle pour le transitoire, des algorithmes d’optimisation sont développés. Les applications
numériques qui en découlent permettent une analyse critique des différents choix effectués. Afin de laisser
plus de liberté dans la conception, l’algorithme stationnaire est adapté à la modification du nombre de
composantes connexes de la trajectoire lors de l’optimisation. Deux méthodes sont comparées. Dans la
première, la puissance de la source est ajoutée aux variables d’optimisation et un algorithme impliquant
une relaxation-pénalisation et un contrôle de la variation totale est proposé. Dans la seconde, la notion
de dérivation topologique est adaptée à la source. Enfin, dans le cadre stationnaire, nous détaillons
le couplage de l’optimisation de la forme de la pièce, pour améliorer ses performances mécaniques, et
de la trajectoire de lasage. Ce problème multiphysique ouvre des perspectives d’applications et de
généralisations futures.

Mots clés : Génération et contrôle de trajectoires, fabrication additive, fusion sur lit de poudre
métallique, optimisation de forme.
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TITANIUM

Physical parameters

density ρ = 4420kgm−3

specific heat cp = 800JK−1kg−1

conductivity λ = 15Wm−1K−1

change of phase temperature yφ = 1900K

Process parameters

source power P = 300W

source radius r = 5.0 10−5m

initial temperature yini = 773K

ALUMINUM

Physical parameters

density ρ = 2680kgm−3

specific heat cp = 800JK−1kg−1

conductivity λ = 130Wm−1K−1

change of phase temperature yφ = 870K

Process parameters

source power P = 400W

source radius r = 5.0 10−5m

initial temperature yini = 773K
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INTRODUCTION

La fabrication additive par fusion sur lit de poudre métallique est une technologie prometteuse, consistant
à construire une pièce métallique couche par couche [87]. Pour chacune d’entre elles, un lit de poudre
est déposé sur la surface supérieure de l’objet en cours d’impression. Cette poudre est alors fusionnée au
passage d’une source d’énergie déplacée le long d’une trajectoire spécifique (trajectoire de lasage). Une
phase de refroidissement permet finalement la solidification du métal (Figure 1). Les avantages liés à cet
outil de production sont multiples avec, entre autres, la fabrication de pièces trop complexes pour les
technologies traditionnelles ou encore la rentabilité de la fabrication de pièces uniques sans nécessité de
production en série. Ces atouts rendent majeurs les enjeux d’amélioration de ce procédé [68, 142]. On
distingue deux problématiques principales. La première concerne l’efficacité de la fabrication. Chaque
couche requiert un temps de traitement qui, s’il est restreint, entraîne une nette réduction du temps total
de construction. La seconde concerne la qualité de la pièce finale. De multiples phénomènes physiques
et mécaniques sont impliqués par le processus de fabrication, du changement de phase de la poudre à
des mouvements de fluide complexes. Mal contrôlés, ces phénomènes sont à l’origine de fragilités qui
peuvent provoquer l’invalidité de la pièce (Figure 2).

Figure 1: Fabrication d’une pièce

Figure 2: Invalidité de la pièce : quand on
coupe le support, les extrémités de la pièce

remontent au lieu de rester dans l’axe à cause
des contraintes résiduelles.

Si de multiples paramètres peuvent permettre l’amélioration de ces enjeux [172], nous choisissons dans
cette thèse de considérer en particulier la trajectoire de lasage, correspondant au chemin parcouru par la
source afin de fusionner chaque couche de poudre. Le choix de trajectoire des outils est un enjeu récurrent
de la production automatisée, que l’on retrouve notamment en usinage ou en soudure. Ce choix joue à la
fois sur la productivité et sur la qualité du produit final. Si la puissance de la source l’impacte, le temps
de construction est principalement relié aux propriétés cinématiques du système et notamment par la
capacité des différents actionneurs à parcourir précisément et rapidement la trajectoire choisie [92]. La
qualité, en fabrication additive sur lit de poudre, est quant à elle dictée par les phénomènes mécaniques
et physiques engendrés par les multiples changements de phase [68]. La planification du passage de la
source est donc cruciale [77]. Elle détermine la quantité d’énergie fournie à la poudre à chaque instant
et en chaque point. Une mauvaise répartition de la chaleur entraine de la porosité, de l’évaporation de
matière ou encore l’introduction de contraintes résiduelles qui fragilisent la pièce [52, 104] (Figure 3).

Nous décidons dans cette thèse d’ajouter au travail sur la technologie elle-même un travail sur la pièce à
construire. En effet, si le procédé de fabrication est l’un des acteurs de la fabrication, l’objet et en partic-
ulier sa géométrie, en est un second. L’optimisation de forme, initiée par Hadamard en 1908 [95], consiste
à concevoir des pièces optimisées selon des critères physiques, mécaniques ou géométriques, mêlant ainsi
de multiples domaines théoriques (contrôle, calcul des variations, optimisation) et numériques (résolution
d’équation différentielles, représentation numérique des objets, application d’algorithmes d’optimisation)
des mathématiques appliquées [9, 15, 97]. Ce domaine a trouvé un nouvel essor avec le développement
de l’impression 3D. En effet, l’optimisation induit dans la majeure partie des cas des géométries trop
complexes pour être construites par des procédés traditionnels (fonderie, usinage). Les nouvelles possi-
bilités apportées par la fabrication additive rendent accessible la réalisation de pièces "plus optimales"
que ce qui pouvait être fait dans le passé. A l’inverse, l’optimisation de forme est aussi souvent au service
du moyen de production. En effet, les développements récents prennent de plus en plus en compte des
contraintes de "fabricabilité" dans l’optimisation. Parmi les récents travaux à ce sujet, on citera par
exemple l’optimisation de la pièce et des supports pour répondre aux contraintes de supportage lors de
la fabrication [11, 12, 13, 14] (Figure 4) ou encore l’optimisation de la pièce pour limiter les défauts
mécaniques après fabrication [16] (Figure 5).
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(a) Trajectoire en
zigzag [52]

(b) Effort induits dans la direction
(Ox) de la pièce [52]

(c) Effort induits dans la direction
(Oy) de la pièce [52]

(d) Trajectoire en
spirale [52]

(e) Effort induits dans la direction
(Ox) de la pièce [52]

(f) Effort induits dans la direction
(Oy) de la pièce offsets[52]

Figure 3: Trajectoires en zigzag et spirale et efforts résiduels induits

Figure 4: Support de fabrication (bleu) pour
la pièce (rouge) [11]

Figure 5: Minimisation de l’effort élastique
maximal sans thermique (haut) et avec

thermique (bas) [16]

Dans cette thèse, nous défendons la possibilité d’intégrer les contraintes de productivité et de qualité
liées aux trajectoires de lasage dans la conception de la pièce elle-même. L’optimisation de sa forme
permettrait alors à l’utilisateur de choisir un compromis entre l’efficacité de l’objet final et la qualité et
rapidité de sa fabrication. Il s’agit donc de formuler les contraintes de pilotage du système et de physique
du procédé en une contrainte mathématique intégrable dans un problème d’optimisation de formes.
Avant l’optimisation de la forme en elle-même, les contraintes que la trajectoire impose sur la forme
doivent être décrites et formulées de façon à être intégrées à un code d’optimisation. Une première ques-
tion implique une étude approfondie afin de développer une notion de "bonne trajectoire". On trouve
dans la littérature de multiples travaux évaluant les trajectoires actuellement utilisées. Basées sur des
stratégies précises (zigzag, offset du bord de la pièce, fractales), des études expérimentales et numériques
permettent de déterminer leurs points forts et leurs points faibles. Cependant, évaluer a priori l’effet de
cette trajectoire reste une question peu abordée. Une seconde question concerne l’impact de la géométrie
de la pièce à construire sur la trajectoire. Dans les applications industrielles actuelles, la stratégie de
lasage est dans la majeure partie des cas déterminée indépendamment de l’objet et on peut donc évaluer
la pertinence d’une trajectoire pour un objet en particulier. En revanche, seuls quelques très récents
travaux considèrent un couplage entre forme et trajectoire [6, 7, 51].

Afin de pallier le manque d’information sur la notion de bonne trajectoire et sur son évolution avec les
changements de géométries des pièces, nous avons choisi dans cette thèse de développer un algorithme
d’optimisation de la trajectoire basé sur des outils mathématiques, sans choix de stratégie a priori. Les
résultats obtenus dans de multiples situations et en particulier pour différentes géométries ou par couplage
avec un algorithme d’optimisation de forme sont dans un second temps exploités pour la formulation de
contraintes de conception.
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Ce type d’étude est encore peu présent dans la littérature (à notre connaissance, seuls [6, 7, 51] se sont
intéressés à cette problématique) nous forçant à faire un certain nombre de choix tout au long de ce
travail. Il s’agit tout d’abord de poser un cadre physique et de construire un problème d’optimisation de
trajectoire. Ce cadre requiert de multiples hypothèses, afin de permettre une résolution à la fois perti-
nente et d’un coût de calcul faible. Limiter les phénomènes facilite de plus l’analyse des résultats et donc
la prise de recul. Nous avons ensuite construit une représentation numérique du problème ce qui nous a
permis de développer différents algorithmes d’optimisation de la trajectoire. Grâce aux résultats obtenus,
nous avons analysé les différents choix de modélisation, discrétisation ou encore algorithme faits tout au
long de ce travail. Nous complexifions ensuite le modèle pour autoriser les changements de topologie de
la trajectoire avant, enfin, de coupler l’algorithme d’optimisation de trajectoires à l’optimisation de la
forme à construire.

Ce travail mêlant production automatisée et mathématiques appliquées a été réalisé dans le cadre du
projet SOFIA (SOlution pour la Fabrication Industrielle Additive métallique), programme initié en 2016
par la co-entreprise AddUp visant à proposer une solution de fabrication additive métallique par procédé
de type lit de poudre. Ce projet a pour objectif l’amélioration des technologies existantes au moyen
d’une étude poussée de l’intégralité du processus de fabrication des pièces. Afin de réunir une diversité
de compétence, un consortium a été créé (Figure 6) réunissant des partenaires industriels (Aubert &
Duval, ESI Group, FUSIA, Michelin, Safran, Volum-e, Zodiac Aerospace) et académiques (CNRS et
établissements de recherche et d’enseignement avec en particulier CentraleSupelec, Centrale Nantes, École
Polytechnique, ENS Paris-Saclay, ainsi que l’Université Paris Diderot, l’Université Paris-Sud, Université
Pierre et Marie Curie – Paris Sorbonne Université).

Figure 6: SOFIA project consortium

Cette thèse, portée par le CMAP et le LURPA, se situe pleinement dans l’axe numérique de ce projet,
et plus particulièrement à la frontière entre optimisation du design des pièces et trajectoires de lasage.

Structure du manuscrit

Ce manuscrit s’articule en deux parties. Dans la première, nous introduisons le contexte de la thèse
avec trois chapitres d’état de l’art respectivement sur la fabrication additive par fusion sur lit de poudre
(Chapitre 1), l’optimisation sous contrainte (Chapitre 2) et l’optimisation de forme (Chapitre 3). La
deuxième partie est consacrée aux contributions de cette thèse.

Partie 1

Nous introduisons au Chapitre 1, la fabrication additive par fusion sur lit de poudre. Après une brève
description du procédé, les enjeux majeurs sont exposés en deux problématiques majeures : compren-
dre les phénomènes que ce soit par des caractérisations expérimentales ou une modélisation précise du
procédé de fabrication, et améliorer la technologie. Nous détaillons ensuite la littérature relative aux
trajectoires de lasage. Cette mise en contexte appuie la problématique de ce travail et le besoin de
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développer l’optimisation de la trajectoire de lasage.

Cette thèse ayant pour objet l’optimisation de la trajectoire et de la forme de la pièce, il est nécessaire
d’introduire différents algorithmes d’optimisation sous contrainte. Ce domaine est extrêmement large :
chaque application requiert des spécificités. Loin d’être exhaustifs, nous nous limitons dans le Chapitre
2 à l’introduction des méthodes de descente qui seront utilisés dans ce travail, ainsi que de la théorie sur
lesquels ils sont basés.

Au Chapitre 3, nous détaillons la théorie d’optimisation de forme, en précisant la notion de dérivée
par rapport à une courbe et la notion de gradient correspondant. Pour terminer, un exemple classique
d’optimisation d’une structure dans le cadre de l’élasticité linéaire est développé avec l’introduction de
la représentation de forme par lignes de niveaux et une illustration par quelques résultats numériques.
Cette théorie nous sera utile à plusieurs reprises par la suite : pour l’optimisation de la trajectoire dans
un cadre spécifique et pour le couplage entre optimisation de forme et de trajectoire mentionné dans les
objectifs de cette thèse.

Le contexte dressé dans le Chapitre 1 et les notions introduites dans les Chapitres 2 et 3 sont présents
tout au long des contributions que nous détaillons dans la seconde partie.

Partie 2

Le Chapitre 4 est consacré au modèle utilisé dans le reste de ce travail et au problème d’optimisation de
trajectoire choisi. Il nous est impossible de considérer ici une modélisation précise de toute la physique
impliquée dans le processus de fabrication: les phénomènes trop complexes induisent un coût de calcul
important. Nous présentons dans ce chapitre le compromis utilisé.
Nous choisissons une focalisation sur la thermique uniquement, caractérisée par une équation de la
chaleur en deux dimensions n’impliquant que la conduction, dont le terme source parcourt la trajectoire
à vitesse constante. Les contraintes de trajectoire sont prises en compte par la minimisation du temps de
parcours de la trajectoire (minimisation du temps de fabrication) et des contraintes sur la température
(pour maîtriser la qualité finale de la pièce). Afin de pallier ces simplifications et de permettre malgré
tout une analyse physique pertinente des résultats, nous calibrons le modèle obtenu avec des données
provenant de modèles plus complets.
Un second modèle est enfin décrit, dans lequel la dépendance en temps est abandonnée. On ne considère
plus de mouvement le long de la trajectoire mais au contraire que la source est appliquée brutalement
sur l’intégralité de la ligne. Nous calibrons ce second modèle de manière à ce que la température simulée
corresponde au maximum de température obtenue lors de la simulation du modèle transitoire. Ce mod-
èle stationnaire est évidemment un modèle jouet. Il permet néanmoins la mise en place d’algorithmes
d’optimisation et un premier recul à moindre coût sur les difficultés qui seront rencontrées pour le modèle
transitoire.

Le modèle proposé dans le Chapitre 4 nécessite d’être discrétisé pour pouvoir être numériquement résolu.
Nous présentons dans le Chapitre 5 les choix numériques pour permettre la simulation. Nous optons
pour une méthode de "front-tracking", dans laquelle un maillage du domaine de calcul est fixé pendant
toutes l’optimisation et la trajectoire est discrétisée par une ligne brisée, modifiée à chaque itération.
Dans le cadre stationnaire, les noeuds de cette ligne brisée sont les variables d’optimisation: ils sont
donc modifiés à chaque itération. Cette stratégie nécessite des adaptations numériques : la distance
entre chaque noeud doit être maîtrisée et une étape de rediscrétisation de la ligne à chaque itération est
nécessaire, le calcul de la normale et de la courbure le long de la ligne doit être précisé, un transfert
d’informations entre la ligne brisée et le maillage physique doit être instauré et la différentiation et
intégration le long de la ligne doivent être décrits.
Dans le cadre transitoire, nous détaillons deux choix différents de contrôle de cette ligne. Dans le premier
cas, on considère la distance entre les noeuds fixe. Les variables d’optimisation sont alors la position du
premier point, le nombre de points total ainsi que l’angle formé par chaque segment de la ligne brisée
avec l’axe horizontal. Dans le second cas, l’approche correspond au cas stationnaire avec contrôle par les
points eux-mêmes. La distance entre deux noeuds consécutifs n’est plus fixe et une rediscrétisation de la
ligne est nécessaire à chaque itération.

Dans le Chapitre 6, nous entrons dans le vif du sujet avec l’optimisation de la trajectoire dans le cas
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stationnaire. Le modèle proposé par le Chapitre 4 suivi des choix numériques détaillés par le Chapitre 5
nous permettent la mise en place d’un algorithme d’optimisation. Dans le contexte stationnaire, optimiser
la trajectoire consiste à optimiser la forme d’une courbe qui porte la source de chaleur. Nous pouvons
donc utiliser les outils d’optimisation de forme présentés au Chapitre 3. Une première partie consiste
à déterminer la dérivée de forme du problème avant de la transformer en un gradient discret, défini en
chaque noeud de la ligne brisée. De là, deux algorithmes d’optimisation sous contrainte d’ordre 1, décrits
dans le Chapitre 2 peuvent être mis en place.
Les premiers résultats numériques permettant d’acter le bon comportement de l’algorithme, nous menons
une analyse critique des différents choix pris au cours des étapes successives: choix de discrétisation,
d’optimisation, de modèle physique. Enfin, nous lançons une série de tests partant de multiples initial-
isations pour la fabrication de différentes géométries. Les nombreux résultats obtenus permettent une
première prise de recul sur la pertinence de la méthode d’optimisation mise en place tout en alimentant
l’intuition de la notion de "bonne trajectoire" (Figures 7 and 8).

(a) Trajectoire initiale (b) Trajectoire finale

Figure 7: Trajectoire pour la fusion d’un objet
en aluminium, modèle stationnaire (bleu: pas
de fusion, rouge: température trop élevée)

(a) Trajectoire initiale (b) Trajectoire finale

Figure 8: Trajectoire pour la fusion d’un objet
en titane, modèle stationnaire (bleu: pas de

fusion, rouge: température trop élevée)

Délaissant le modèle jouet stationnaire, on se concentre dans le Chapitre 7 sur l’optimisation de la
trajectoire pour le modèle transitoire. Nous considérons dans un premier temps la paramétrisation de la
courbe par les angles. La dérivation par rapport aux variables d’optimisation permet la mise en place
d’un algorithme d’optimisation. Cependant, les premiers résultats mettent en avant les défauts de cette
paramétrisation. La gestion du temps nécessaire pour que la source parcoure la trajectoire (correspondant
à la longueur de la trajectoire sous hypothèse de vitesse de parcours constante) est compliquée.
Nous testons alors la seconde paramétrisation, dans laquelle les noeuds eux-mêmes sont la variable
d’optimisation. La distance entre les noeuds étant maintenant autorisée à varier, le temps de calcul est
fortement augmenté. Cependant, les résultats sont bien meilleurs. Tout comme dans le cas stationnaire,
une analyse des paramètres de discrétisation et des algorithmes d’optimisation est menée. Nous lançons
enfin une batterie de tests pour tester l’impact des initialisations et de la géométrie à construire sur la
trajectoire finale (Figures 9 and 10).

(a) Trajectoire initiale (b) Trajectoire finale

Figure 9: Trajectoire pour la fusion d’un objet
en aluminium, modèle transitoire (bleu: pas
de fusion, rouge: température trop élevée)

(a) Trajectoire initiale (b) Trajectoire finale

Figure 10: Trajectoire pour la fusion d’un
objet en titane, modèle transitoire (bleu: pas
de fusion, rouge: température trop élevée)

Nous cherchons dans le Chapitre 8 à complexifier le modèle. Afin de laisser plus de liberté dans la
détermination de la trajectoire, on autorise la modification du nombre de composantes connexes la
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constituant. Deux méthodes sont mises en place et testées dans le cadre stationnaire.
La première est basée sur la physique du procédé et fait l’objet d’une collaboration avec Tonia Maria
ALAM (LAMAV, UPHF). Couper la trajectoire correspond physiquement à éteindre puis rallumer la
source d’énergie. La puissance devient une variable d’optimisation supplémentaire, autorisée uniquement
à prendre les valeurs extrêmes 0 et Pmax, où Pmax est la puissance de la source lorsqu’elle est allumée
(les technologies actuelles ne permettent pas de variations continues de puissance; il faudrait pour cela
modifier la vitesse de parcours ce qui reste une perspective de ce travail). Afin de permettre une telle
optimisation, nous utilisons une méthode de relaxation-pénalisation. Enfin, pour éviter l’obtention de
trajectoires dégénérées qui nécessiteraient un nombre trop important d’allumage de la source, un contrôle
des sauts de puissance est ajouté. Cette technique permet l’obtention de nouveaux résultats numériques.
Si le chapitre est restreint au cadre stationnaire, cette technique pourrait être adaptée au cadre transitoire.
La seconde méthode est spécifique au stationnaire. Elle consiste à utiliser la notion de dérivée topologique
[54, 153, 164, 175]. Principalement développée en deux ou trois dimensions pour changer la topologie
du domaine optimisé, cette notion existe aussi en une dimension, notamment pour la caractérisation
de fissures. On l’adapte ici à la trajectoire stationnaire. Nous modifions l’algorithme d’optimisation du
Chapitre 6 pour inclure la séparation de composantes connexes de la trajectoire ou l’ajout d’une nouvelle.
Des résultats numériques complètent cette étude, dont une comparaison pour différentes géométries des
deux approches détaillées (Figures 11 and 12).

(a) Méthode basée sur
la puissance

(b) Utilisation du
gradient topologique

Figure 11: Trajectoire pour la fusion d’un
objet en aluminium, modèle stationnaire -
modification du nombre de composantes
connexes (bleu : pas de fusion, rouge :

température trop élevée)

(a) Méthode basée sur
la puissance

(b) Utilisation du
gradient topologique

Figure 12: Trajectoire pour la fusion d’un
objet en titane, modèle stationnaire -

modification du nombre de composantes
connexes (bleu : pas de fusion, rouge :

température trop élevée)

Enfin, afin d’étudier plus précisément l’impact des formes sur les trajectoires, le Chapitre 9 est consacré à
l’optimisation couplée de la pièce à construire et de la trajectoire de lasage. On considère le design d’une
pièce dont on veut minimiser la compliance sous contrainte de volume maximal. Cette optimisation
de forme dans le cadre de l’élasticité linéaire est classique. On ajoute ici, dans le cadre stationnaire
uniquement, la détermination de la trajectoire de lasage correspondante. Les résultats obtenus dans
ce chapitre restent préliminaires. Néanmoins, ils permettent de mettre en avant la modification de la
géométrie lors de l’ajout des contraintes de trajectoires (Figures 13 et 14). L’analyse de ces modifications
permet finalement d’obtenir de l’intuition sur les contraintes de conception et confirment la pertinence
de l’approche choisie pour pousser plus loin cette étude.

Communications et publications scientifiques : ce travail a donné lieu aux communications suiv-
antes:

Articles de journaux

• Scanning path optimization using shape optimization tools, M. Boissier, G. Allaire, C.
Tournier, Structural and Multidisciplinary Optimization, 61:6, pp. 2437-2466, 2020 (récompensé
par le prix ISSMO/Springer 2019)

• futures publications en préparation
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(a) Optimisation de la forme sans
trajectoire

(b) Optimisation de la forme et
de la trajectoire

Figure 13: Comparaison des résultats d’optimisation de forme seule et de forme et de trajectoire pour
le design d’une pièce en aluminium, modèle stationnaire (pièce hachurée, en blanc : pas de fusion,

rouge : température trop élevée)

(a) Optimisation de la forme sans
trajectoire

(b) Optimisation de la forme et
de la trajectoire

Figure 14: Comparaison des résultats d’optimisation de forme seule et de forme et de trajectoire pour
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INTRODUCTION

Powder bed fusion additive manufacturing is a very promising process, in which a metallic part is built
layer by layer [87]. For each of these layers, powder is spread on the top of the already built part.
An energy source is then traveled along a prescribed path to melt the powder in a specific domain.
The metal solidifies when cooling down (Figure 15). Several advantages come with this technology:
among them the ability to manufacture new part designs too complex for traditional machining, or the
cost effectiveness of building one part without requiring mass production. These advantages make any
technological improvement crucial which stakes are split into two main issues [68, 142]. First, the process
must be efficient: reducing the processing time of each layer decreases drastically the total building time.
Then, the quality of the part must be insured. Several physical and mechanical phenomena are involved
such as change of state or fluid mechanics computations. If ill-controlled, these phenomena may weaken
the final part (Figure 16).

Figure 15: Part building

Figure 16: Invalid final part: when removed
from the base plate, instead of staying still,

both ends of the part go up because of
residual stresses.

Several different building parameters can be worked on to improve the final result [172]. We choose in
this work to focus on the scanning path, the trajectory the source goes along to melt the powder on each
layer. Improving the path is a classic issue in automated production such as milling and welding for
example. Indeed, the path is an important factor for both the building time and final part quality. As
for the first one, whether impacted by the source power, it is mainly related to the system’s kinematics
and especially the ability of the actuators to accurately and rapidly travel along the path [92]. The
quality of the final part is on the contrary related to the physical and mechanical phenomena caused
by the many changes of state [68]. Path planning is thus a crucial step since it determines the heat
distribution evolution over time and space [77]. Badly controlled, it may cause porosity, element loss or
residual stresses weakening the part [52, 104] (Figure 17).

(a) Zigzag path [52] (b) Resulting stress in the (Ox)
direction [52]

(c) Resulting stress in the (Oy)
direction [52]

(d) Spiral path [52] (e) Resulting stress in the (Ox)
direction [52]

(f) Resulting stress in the (Oy)
direction [52]

Figure 17: Zigzag and spiral paths with the residual stresses induced

We choose in this work to involve not only the scanning path but also the part’s design. Indeed, if the
process is of course one main component of the building, the part to build constitutes another one. Struc-
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tural optimization has been initiated by Hadamard in 1908 [95] and consists in designing optimal shapes
with respect to physical, mechanical or geometrical constraints. Mixing several theoretical (control, op-
timization) and numerical (differential equation resolutions, numerical representation, algorithms) fields
of applied mathematics [9, 15, 97], it goes especially well with additive manufacturing. Indeed, structural
optimization usually results in complex designs that cannot be built with traditional machining. Addi-
tive manufacturing allows for the building of "more optimal" parts. Conversely, structural optimization
is also a tool for the building technology. Many recent developments take into account production con-
straints. On supporting issues, this is for example the object of [11, 12, 13, 14] (Figure 18). Another
example is [16] in which the design includes the limitation of mechanical defects after building (Figure
19).

Figure 18: Part (red) and building support
(blue) [11]

Figure 19: Minimization of the elastic stress
without thermal considerations (up) and with

thermal considerations (bottom) [16]

In this work, we argue that it is possible to involve the efficiency and quality constraints related to the
scanning path in the part’s design itself. Then, shape optimization would allow the user to compromise
between the optimality of the part’s design and the efficiency of the building process. To this purpose,
process control and physical constraints must be transformed into a mathematical formulation then
involved in a shape optimization algorithm.
Before performing the shape optimization step, a first question consists in further studying the path
to detail a notion of "good path". Many works in the literature experimentally and numerically eval-
uate the paths already in use, mainly based on specific strategies (zigzag, offsets, fractals). For each
strategy, the strengths and weaknesses are detailed but no a priori evaluations have been developed. A
second question focuses on the impact of the part geometry on the scanning path. In most industrial
applications, the scanning path is chosen independently from the part to build: each strategy can be
evaluated for each object. On the other hand, only very few works consider coupling the path and the
part optimization [6, 7, 51].

In order to answer both questions, we have chosen to work on a scanning path optimization algorithm,
using mathematical tools and without any a priori fixed strategy. Then, we analyze the results from
several different situations and in particular for different parts geometries as well as from the coupling
between shape and path optimization.
Such a study is not widely considered in the literature (to our knowledge, only [6, 7, 51]) urging us to
make several choices. First, we set a physical framework and a corresponding optimization problem.
This framework rests upon many modeling assumptions required for decreasing the computational costs.
Moreover, because of the rare literature, the settings must be kept simple at first to ease the production
of the first results and allow for a relevant analysis. Then, we propose a numerical representation of this
framework then leading to the development of optimization algorithms. Using the results, we analyze
the different modeling, discretizing and optimization choices. We then make the problem more complex
by the allowing topology modifications of the path. We finally couple both the path and part shape
optimization.

This work mixing automated production and applied mathematics has been realized in the framework of
the SOFIA (SOlution pour la Fabrication Industrielle Additive métallique) project, initiated in 2016 by
the company AddUp and aimed at developing an industrial powder bed fusion additive manufacturing
solution. The goal of this project is the improvement of the existing technologies through research at each
of the process scales. To gather various competences, a consortium has been created (Figure 20) with
industrial actors (Aubert & Duval, ESI Group, FUSIA, Michelin, Safran, Volum-e, Zodiac Aerospace)
and academics (CNRS and especially CentraleSupelec, Centrale Nantes, École Polytechnique, ENS Paris-
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Saclay, Université Paris Diderot, Université Paris-Sud, Université Pierre et Marie Curie - Paris Sorbone
Université) .

Figure 20: SOFIA project consortium

This work, collaboration between the CMAP (Ecole Polytechnique) and LURPA (ENS Paris-Saclay),
comes within the numerical aspects of this project, at the boundary between shape optimization and
scanning path planning.

Manuscript structure

This work is divided into two different parts. In the first one, we introduce the context with three chapters
detailing the state of the art: Chapter 1 focuses on the powder bed fusion additive manufacturing,
Chapter 2 on constrained optimization and Chapter 3 on structural optimization. The second part
details the PhD contributions.

Part 1

In Chapter 1, we describe the powder bed fusion additive manufacturing process. The process is first
described and two main stakes of the technology are further detailed: better understanding the phenom-
ena through experimental works or numerical simulation and improving the technology. The literature
related to scanning paths is then discussed.

This PhD being aimed at optimizing the path and the shape, constrained optimization algorithms must be
introduced. This domain is widely developed: each application requires its own specificity. We limit here
the study to the descent methods used in the remaining of this work and on the theory they are based on.

In Chapter 3, we detail structural optimization theory, defining the differentiation and gradient with
respect to curves. To end with, a classic example of shape optimization in the context of linear elasticity
is performed, the shape being represented by a level set. Numerical results illustrate the process. We use
the shape optimization theory at several places in this work: to optimize the path itself and to couple
path and shape optimization, as mentioned in this work’s objective.

The context set in Chapter 1 and the theoretical notions introduced in Chapters 2 and 3 are useful all
along the contributions presented in Part 2.

Part 2

Chapter 4 is dedicated to the physical model set and the path optimization problem chosen. An exact
model involving all the physical phenomena cannot be considered in this work: the complexity of the
phenomena causes a far too high computational cost. We detail the compromises made.
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We focus on the thermal problem only, represented by a two dimensional heat equation involving con-
duction only, in which the source travels along the path with constant velocity. The path constraints
are taken into account by the traveling time (called final time) minimization and by bounds on the
temperature (to constraint the part’s quality). This model being very simple, we apply a calibration
process to adapt the coefficients involved and allow for physical interpretation of the results.
A second model is then introduced. Called the steady state, it does not involve any source movement
anymore but on the contrary that the source is applied brutally on the whole path. We calibrate this
model in order to fit the maximum temperature over time simulated in the transient context. Although
a toy model, this framework eases the adaptation of the optimization algorithms and thus provides a
first cheap analysis on the difficulties we may bump into working on the transient model.

The model proposed in Chapter 4 must be discretized to numerically solve the problem. We present in
Chapter 5 the choices we make: a front tracking method is used, in which a physical mesh is created and
fixed for the whole optimization process. The path is discretized as a broken line and modified at each
optimization iteration.
In the steady state case, the broken line nodes are the optimization variables. To maintain the discretiza-
tion coherence, the distance between two consecutive nodes is controlled by a re-discretization process
after each iteration. The normal and curvature computations are detailed as well as the methods to
carry the information from the broken line to the physical mesh and the way back, and the integration
and differentiation processes along the path.
In the transient case, we present two different line control choices. In the first one, the distance between
two consecutive nodes is fixed and the optimization variables are the first node position, the final time
and the angles between the tangent to the path and the (Ox)−axis. In the second one, as in the steady
state approach, the nodal points are the optimization variables which requires a rediscretization process
and induces non constant distances between consecutive points.

Chapter 6 is the first optimization chapter, focusing on the steady state. The model detailed in Chapter
4 and the numerical choices given in Chapter 5 lead to setting an optimization algorithm. In the
steady state context, optimizing the path amounts to optimizing a curve carrying the source. Shape
optimization theory, presented in Chapter 3, can be applied to determine the derivative and the gradient
to the problem with respect to the path. Then, the gradient is discretized to numerically modify the
path. Two different order one algorithms, presented in Chapter 2 are then tested.
The first tests confirm the correct behaviour of the algorithm. We analyze the different choices made
all along this work: modeling, discretization, optimization algorithm. Then, several tests starting from
different initializations aimed at scanning different geometries are run. The results lead us to a first step
back on the optimization method and on the notion of "good path". (Figures 21 and 22).

(a) Initial path (b) Final path

Figure 21: Path to build a part in aluminium,
steady state model (blue: not melted, red:

temperature too high)

(a) Initial path (b) Final path

Figure 22: Path to build a part in titanium,
steady state model (blue: not melted, red:

temperature too high)

We focus in Chapter 7 on the transient model. We first consider the angle based path discretization. Dif-
ferentiating with respect to the corresponding variables allow for setting a first optimization algorithm.
However, the results highlight the drawbacks of this method: the final time management is complicated.
The point based path discretization is then chosen . The distance between two consecutive nodes being
unfixed, the computational time increases a lot. However, the results are from far better and, as in the
steady state case, allow for an analysis of the different choices made. Finally, several tests are run to
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increase the intuition on the "good path" notion (Figures 23 and 24).

(a) Initial path (b) Final path

Figure 23: Path to build a part in aluminium,
transient model (blue: not melted, red:

temperature too high)

(a) Initial path (b) Final path

Figure 24: Path to build a part in titanium,
transient model (blue: not melted, red:

temperature too high)

We intend in Chapter 8 to increase the admissible paths domain: to give more freedom to the path
design, we allow the modification of the number of path connected components. Two methods are set
and tested in the steady state case.
The first method is based on the physic of the process and corresponds to a collaborative work with Tonia
Maria ALAM and Serge NICAISE (LAMAV, UPHF). Cutting the path physically amounts to switching
off and on the source. The power is added to the optimization variables and allowed to be either 0 or
Pmax, with Pmax the source power when the source is switched on (industrial solutions do not allow for
continuously modifying the source power; to add such a feature, the velocity should be modified and
remains a perspective of this work). To deal with this new variable, we choose a relaxation-penalization
technique. A constraint on the power jumps is added to prescribe degenerated solutions in which the
source would be switched off and on an infinite number of times. Numerical results are then given. If
not presented in this work, this method could be adapted to the transient case.
The second method is specific to the steady state and consists in using the topological derivative
[54, 153, 164, 175]. Mainly developed in the literature to modify the topology of a two or three di-
mensional domain, this notion also exists in one dimension for cracks characterization. It is here adapted
to the steady state case with a modification of the algorithm developed in Chapter 6: the cut or addition
of new connected components is now possible. Numerical results illustrate this study and both methods
are compared for different geometries (Figures 25 and 26).

(a) Power based
method

(b) Topological
gradient based method

Figure 25: Path to build a part in aluminium,
steady state model - number of path

connected components modified (blue: not
melted, red: temperature too high)

(a) Power based
method

(b) Topological
gradient based method

Figure 26: Path to build a part in titanium,
steady state model - number of path

connected components modified (blue: not
melted, red: temperature too high)

Finally, to further study the impact of the part’s shape on the path, we present in Chapter 9 an algorithm
of coupled optimization between the shape and the scanning path. The shape optimization problem is
a classic compliance minimization under a volume constraint. In the steady state case only, we add
the path constraints. The results obtained in this Chapter remain preliminary but already highlight the
shape modification when adding the path constraints (Figures 27 and 28). Analyzing these modifications
finally give intuition of the design requirements and confirm the relevance of the approach developed to
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further study this problem.

(a) Shape optimization without
path constraints

(b) Concurrent shape and path
optimization

Figure 27: Results comparison when the shape is optimized without path constraints and when a
concurrent path and shape optimization is run, to design an aluminium part, steady state model(part

geometry hatched, white: not melted, red: temperature too high)

(a) Shape optimization without
path constraints

(b) Concurrent shape and path
optimization

Figure 28: Results comparison when the shape is optimized without path constraints and when a
concurrent path and shape optimization is run, to design a titanium part, steady state model(part

geometry hashed, white: not melted, red: temperature too high)
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CHAPTER 1

POWDER BED FUSION ADDITIVE MANUFACTURING CONTEXT
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1.1 Introduction

Additive manufacturing (AM) [33, 87, 180] is a technology that consists in, according to the standard
ISO/ASTM 52900 [101], "joining materials to make parts from 3D model data usually layer upon layer”
(Figure 1.1). Widely developed during the past few decades, it can be derived into many different
processes usually gathered into 7 categories. Each of them has specific advantages, costs, manufacturing
scales and compatible materials. This diversity justifies the large range of domains in which this method is
used or at least seriously investigated: biomedical [4, 174], construction [69, 179], aerospace [100, 116, 184]
are part of this non exhaustive list.

Figure 1.1: Example of a part built by metallic additive manufacturing [2]

Now in rapid expansion, this technology presents many advantages [87, 180]. The first benefit, and maybe
the most obvious, affects the freedom in the part design: this technology allows for more complicated
shapes which is a crucial feature. Indeed, at the part scale, not only it impacts the aesthetics but also
the inner structure, improving the performance, allowing for lighter objects thus saving material and
facilitating the inclusion of embedded items. At a microscopic scale, the ability to manufacture convo-
luted structures impacts the material organization (such as metallurgy for metals), its composition and
porosity, modifying the macroscopic properties of the final item. Finally, this freedom might simplify
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the design by decreasing the number of objects to assemble, thus improving the final resistance of the part.

A second benefit consists in the ease to successively build different items. Indeed, once the part’s
CAD and the building path are set, the data are read and the manufacturing process starts: building
a new part induces a computational cost but requires no material investment, unlike traditional tools
such as molding. Among several fields, prototyping, objects repairing, personalized medical implants or
prostheses illustrate quite well the profit this induces [4, 116, 130].
If already in use, this technology is still under study to reduce its drawbacks [87, 180]. First, the final
quality of the part must be quantified and controlled. This implies experimental work as well as modeling
research to be able to provide a priori insurance of the part resistance and ability to achieve its goals.
These quality limitations must then be translated into manufacturing constraints split into two different
stakes. The first one consists in improving the technology, in order to prevent the damage to occur
whereas the second one involves the formulation of design constraints to avoid these issues. A huge part
of additive manufacturing research concentrates on solving these drawbacks and this work comes within
this scope.
In this chapter, the context of this work is introduced. Dealing on metal additive manufacturing and
especially in powder bed fusion technologies, Section 1.2 describes the different processes and depicts
the main stakes under actual research. In Section 1.3, the scanning path literature is further expanded
with the stakes involved and the existing scanning strategies. In Section 1.4, following the problematic
described in the Introduction, structural optimization in the context of metal additive manufacturing is
detailed. Section 1.5 restates the objective of this work given the detailed context.

1.2 Powder Bed Fusion (PBF) additive manufacturing process

Among the materials available in AM, this work focuses only on metal which can be used with four dif-
ferent processes. Binder jetting, powder bed fusion and directed energy deposition all work with metallic
powder. In binder jetting, the building is realized in two steps. The first step is a layer by layer process in
which, iteratively, some powder is spread before binder deposition at specific places. A sintering step is
then applied to the assembled part to slightly melt the metallic powder and achieve the building. Powder
bed fusion (PBF), further detailed below, is also a layer by layer technique in which energy instead of
binder is deposed, to directly melt the powder and thus avoid the sintering step. Direct energy deposition
differs from layer by layer processes since the energy and the metallic powder are deposed at the same
time, getting closer to welding processes. Finally, sheet lamination consists in deposing a metallic sheet
before cutting and bonding it to the previous layers (again a layer by layer process). If each method has
its advantages and drawbacks as well as its specific fields of application [68, 98, 142], only powder bed
fusion processes are considered in this work.

This section further details the PBF technology and present its main stakes: characterizing and modeling
the process in a first time to then perform improvements.

1.2.1 Process presentation

The PBF manufacturing technology is a layer by layer process [35, 68, 98, 142, 144]. Starting from a
metallic build platform, for each layer, a metal powder layer is spread with a recoater blade on top of the
part in construction. Then, energy is deposited along a scanning path. The metal heats until melting
or at least coagulating, while the cooling leads to solidification (Figure 1.2). Two main categories are
set apart, depending on the energy source: laser or electron beam. Powder bed fusion processes using
lasers are referred to as Laser Power Bed Fusion (L-PBF) whereas the ones using electron beams come
as Electron Beam Powder Bed Fusion (EB-PBF). Each of them involves specifications and requirements.

Comparison between L-PBF and EB-PBF

In L-PBF, the source is a high power-density laser, which power can be of some hundreds of watts. The
energy comes from photons first focused by lenses and then moved along a prescribed path. This motion
is carried out by mirrors controlled by galvanometers (Figure 1.3). The inertia of the latter bounds the
available scanning speed. Part of the energy is lost by reflection, which parameter is related to the metal
powder used (specific absorption coefficient depending on the wavelength) [142]. This process does not
require high temperature preheating (though it is a crucial building parameter (see Section 1.2.3)) nor a
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Figure 1.2: Powder bed fusion technology [35]

partial vacuum environment. However, the building chamber is actually filled with an inert gas to avoid
any reaction between the metal fused and the environment [142, 199].
In the EB-PBF, electrons, controlled by magnetic fields, are the energy source (Figures 1.4). The resulting
power can be a lot higher than in the laser case (Figure 1.1). On the contrary to the galvanometers,
no inertia problems are involved in magnetic fields control and the scanning speeds can be ten times
larger. However, the preheating temperature must be higher than using lasers: using electrons implies
electrostatic repulsion that must be avoided by heating the metal to increase its conductivity. Finally,
to avoid any reaction of the electrons before they get to the powder, the chamber environment must be
as close as possible to vacuum [142, 166, 199]. This last point, quite restrictive, is actually one of the
main issues of this energy source.

Figure 1.3: L-PBF process [35]

Figure 1.4: EB-PBF process [35]

The different characteristics are summed up by Figure 1.1.
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Parameters Form Up machines [1] EBM S12 [199]

AddUp (L-PBF) Arcam (EB-PBF)

Environment argon and nitrogen vacuum (10−4 − 10−5mbar)

Preheating ( ◦C) 200− 500 700

Maximum beam power (W ) 500 3500

Average powder layer thickness (µm) 20− 100 50− 200

Beam scan speed (m · s−1) 10 > 1000

Table 1.1: Quantitative results of the power optimization for the aluminium

Feedstocks material

Two main features characterize the feedstock: the powder geometry and the powder material.

The first characteristic is deeply related to the means of powder production. Among the different ex-
isting techniques, three main ones are mentioned: water jet atomization, gas atomization and plasma
atomization. In the three of them, the objective is to melt metal at the top of the atomization tower
and let the drops fall down. During this fall, cooling effects are introduced changing the liquid drop
into a powder grain. In the three processes, the metal comes as a spool which end is melted. Then, in
water jet atomization, the cooling comes from water whereas in both gaz and plasma atomizations, this
cooling comes from gaz jets [98, 142, 144]. The process impacts the final geometry and density of the
powder, thus influencing the building process (the geometry is directly related to the energy absorption)
[68, 86, 113, 198, 213].

The second characteristic is the powder material. The most common ones in the L-PBF process are steel,
aluminium, nickel and titanium alloys [98]. The choices in the EB-PBF context are a bit more limited.
References related to researches regarding different metals and different technologies can be found in
[121]. In this work, we focus on titanium and aluminium only, although the techniques developed can
naturally be applied to other materials.

Post-treatments

To finalize the item, post processes are applied. A first one is the removal of any part that does not
belong to the expected geometry: the un-melted powder, the basis platform, the building supports (see
1.2.3) used to hold the part against gravity or to limit thermal stresses during the building. To end with,
surface treatment, such as blasting, polishing or chemical, are also applied to limit the roughness. Heat
and pressure treatments are the last ones, to get the engineering and mechanical requirements by dealing
with residual stresses, porosity or microstructural issues [142].

As promising as this process seems, some issues yet need to be solved. Many thermal, mechanical and
metallurgical phenomena occur, affecting the part’s quality [68, 98, 130] and among them: residual
stresses, anisotropy related to the microstructure, porosity, surface roughness and loss of alloy elements.
Moreover, especially in the L-PBF context, industries are willing to decrease manufacturing times. These
different issues are the actual technology’s stakes and are further developed.

1.2.2 Characterizing and modeling the process

To begin with, we consider the process’ modeling. This issue is crucial: it is mandatory to compute and
quantify the occurring phenomena to guarantee the final quality of the part and thus its efficiency. It
is also essential to improve the understanding of the process to allow for its enhancement and for the
formulation of corresponding design constraints. However, this task is challenging and is a current field of
research: the high energy deposition inducing at least melting and even evaporation, drags down many
nonlinear phenomena [68, 130, 142, 143, 154]. Three physics, thermal, mechanical and metallurgical,
interweave (Figure 1.5) and, with four physical states involved (solid, powder, liquid, gas), there is a
real challenge in fully understanding the building process and an even harder one to realize high-fidelity
simulations satisfying both accurate predictability and low computational cost requirements.
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Figure 1.5: Three physics interweaving [79]

Figure 1.6: Modeling scales [139]

In order to handle both precise modeling and fast computing issues, the study of the process is split into
physical scales resulting from the chosen compromise. Most commonly in the literature, the microscopic
and macroscopic scales are set apart [85, 139] (Figure 1.6).

Microscopic scale

The phenomena taken into accounts by this scale involve the interaction between the heat source and
the feedstock and a full model of the melting pool including the liquid and gaseous states (Figure 1.7).
A careful model of the powder-source interaction requires characterizing the feedstock geometry as well
as the energy deposition. Different simulation techniques have been developed, among then discrete
particles, finite element or Lattice-Boltzman models [86, 94, 113, 198].
Then, an advanced study of the fluid mechanics phenomena is realized, taking into account the non
linearity dependence of the material properties with respect to the temperature. The metal evaporation
and the surface tension, including normal and tangential Marangoni stresses, are considered. The shape
and size of the melting pool are then determined, highlighting defects’ formation [68, 139]. Involving
Navier Stokes equations, computational fluid mechanics methods are used for simulations, combined
with different numerical techniques (see [59] for a review) such as for example adaptive grids, level set
methods or simulations of the thermics only [59, 88, 112, 139, 147, 148, 202, 209, 211]. However, the huge
number of variables, equations, as well as their non linearity make the use of optimization algorithms at
this scale computationally too expensive.

Figure 1.7: Phenomena happening at a microscopic scale [59]

Macroscopic scale

In order to reduce the computations, the macroscopic scale does not consider a full fluid mechanics model.
Through approximations coming from the microscopic scale’s results, it mostly focuses on two states,
powder and solid, and the change of phase is considered as an abrupt change in the material properties.
Only three thermal phenomena are taken into accounts: conduction, convection and radiation whereas
the interaction between the heat source and the powder is simplified [139]. This approach does not
allow for an accurate quantification of the different phenomena. However, it is enough to highlight
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thermal expansion and the appearance of residual stresses during the manufacturing, both of them
implying important defects resulting into early damage and fatigue. Focusing on thermo-mechanical
effects, this scale allows for coarser meshes. Many numerical methods have been developed depending on
the assumptions and the phenomena emphasized (related to residual stresses and thermal expansions in
most cases), among them birth and death of elements techniques, adaptive grids or level set methods to
follow the evolution of the powder area [50, 70, 124, 139, 167, 187, 204, 210]. All these approximations
result in computational costs from far lower than in the microscopic scale, compatible with optimization
algorithms.

1.2.3 Improving the process

The progresses in experimental and modeling researches improve the understanding and facilitate the
computations. This leads to a second class of ongoing research topics: improving the process. Indeed,
the experimental and modeling studies point out the defects related to one or more process’ parameters.
Some studies actually count 150 different ones [172] (such as the powder characteristics, scanning path
criteria or building chamber environment for example), which, carefully chosen and even optimized, could
drastically improve the final item’s quality. In the following, a review of the main defects emphasizes
some of them.

Loss of an alloy element

To start with (and following the ordering given by [68]), the loss of an alloy element. Going beyond the
change of phase temperature (which depends on the material) causes the melting and even the evaporation
of the metal powder. In case of an alloy material, this may lead to an unbalance proportion of the different
elements in the final part. Modeling this phenomenon requires microscopic scales’ techniques, to relate
the energy given by the heat source to the evaporation depending on the building chamber parameters
[68, 138, 154].

Porosity

The porosity increases the final ductility and might be the starting points of microcracks [130]. Three
main reasons entail it: keyhole phenomena, lack of fusion, and balling effects. Keyhole effects are directly
related to the melt pool dynamics: if high enough, the energy might create a deep melting pool. Some
gas (might they come from the environment chamber or from metal evaporation) gets trapped in there
during the cooling. Lack of fusion, on the contrary, results from lack of deposed energy. Finally, balling
effects come out from melt pool instabilities, creating both metal aggregation that increases the surface
roughness and porosity.
These phenomena deeply involve the melting pool and the powder quality. Characterizing them requires
computations at a microscopic scale that may then be turned into building constraints. Indeed, each of
them seems to involve the scanning parameters and studies have especially featured correlations with
the source velocity and power (Figure 1.8) [68, 110, 130, 154, 193]. Moreover the impact of the powder
quality is also under study and improvements [19, 161, 213].

Figure 1.8: Schematic influence of the scanning velocity and power on the porosity, the limit depending
on the material used [154]

Post processes and especially hot isostatic pressing (HIP) can close the pores thus reducing the porosity
[68, 142]. Still an essential step, it remains time consuming, expensive and does not help with the micro
cracks.
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Surface roughness

Surface roughness is also a defect. Indeed, might it be for aesthetics or for a correct functioning when
assembled to other components, the final item must have a correct surface quality. This is actually also
required during the building: each layer starts by powder spreading. Too much roughness could prevent
the tool’s crossing and even break the spreading mechanism. Among the different causes that step in,
the layer by layer process entails a staircase effect on the item boundary. This process also requires
the building of supports to balance gravity and to improve the thermal distribution (further developed
below). Removing these supports damage the surface smoothness. The contact surface can be reduced
by an optimization of the part building orientation as well as the support [11, 126, 160]. Finally, thermal
studies point out that heat accumulation [103] or balling effects also damage the surface. To control
them, the material and scanning parameters must be chosen with care [61]. Post processes are obviously
available and include machining polishing, peening, tumbling or chemical treatments. They nevertheless
are time consuming and increase the manufacturing costs [68].

Residual stresses and thermal expansion

During the manufacturing, the metallic powder is subjected to cyclic heating and cooling. This creates
strains within the part that might end up as residual stresses. These residual stresses correspond to
the stresses remaining in the material after it has reached the equilibrium with its environment. They
affect strongly the mechanical properties of the part. If sometimes strengthening it (tensile stresses for
example or shakedown behaviour which introduces them to then get back in an elastic state [38, 190]),
it might also accelerate fatigue and plastification, leading to earlier cracks and damage [68, 154] (Figure
1.9). If these stresses occur at different scales, the macroscopic ones constitute the main issue and are
mainly focused on [27, 140].

Figure 1.9: Illustration of the residual stresses effect on
the final part. (a)Building strategy, (b)Removing the
basis plate, (c)Effect of the residual stresses [122]

(a) Part before support removal

(b) Part after support removal

Figure 1.10: Photographs of heating
and cooling effects on thermal

expansion

Two main phenomena cause these residual stresses [27, 140], both related to the thermal expansion of
the material. The first one is due to the spatial temperature gradients in the layer. Indeed, because
of the energy deposed by the source, the layer surface tends to expand fast whereas the conduction, on
the contrary, is slower and prevents a rapid expansion of the area surrounding the energy spot. This
temperature gradient thus results in a difference of expansion which brings distortion and residual stresses
(Figure 1.11) [27, 68, 139, 140]. A second phenomenon is related to the cooling. Indeed, the solidification
tends to contract the zone deeper than its surroundings (Figures 1.11 and 1.10).
Computing these residual stresses is a challenge. Even if involving macroscopic effects only, it still requires
the resolution of a full thermo-mechanical system. This issue has been widely addressed would it be
through classic Finite Element Methods (FEM) or alternative techniques [16, 70, 124, 139, 167, 187, 189].
A fast computation is indeed essential. Being critical points in the fatigue characteristics of the final item,
the process must be improved to prevent them. An algorithm allowing for a rapid evaluation hence allows
for several parameters tests and even optimization. Among the main parameters, the scanning path is
once again crucial [27, 51, 68, 154, 159, 172, 189] as well as the preheating temperature [27, 68, 154, 172]
and the cooling time between each layer [187]. In addition to the parameters choice, the design of the
part to build itself could help with improving the process. To begin with, supports can be added to
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Figure 1.11: Heating and cooling effects on thermal expansion [140]

facilitate heat conduction during the building [11, 28, 53, 185]. Then, the part itself can be designed as
an optimized compromise between its purpose and its ability to being built limiting the residual stresses
[16].
Post processes can in this case again help to reduce these stresses and especially heat treatments and
hot isostatic pressing [68, 79].

Control of the microstructure and anisotropy

The metallic microstructure is a key factor in the mechanical properties of the part. Not only do the
grain size and shape affect the fatigue properties and the cracks propagation [68, 128, 154] but they
also determine the solid’s anisotropy. In the PBF technologies, the microstructure can be predicted.
Indeed, it is deeply related to the thermal history, to the depth and shape of the melt pool. In this
way, it is correlated with the layer by layer process, the scanning path chosen and of course the powder
characteristics. Modeling the microstructure requires both the macroscopic and the microscopic scales.
Based on thermal equations only, a specific scale has thus been developed: the mesoscopic scale. Then,
many different models based on experiments and sample’s characterizations have been formulated as well
as computational techniques to predict the microstructure [3, 31, 88, 114, 128].
Some characteristics seem to be key factors of the possible improvements: the temperature gradient, the
cooling rate and the metal liquid properties [154]. In terms of control parameters, this coincides with
the material and the powder geometry [68, 154, 161], with the scanning paths on the different layers
[118, 128, 154, 172], with finally the shape of the part itself which could, like in the residual stresses
control, master the final anisotropy [127, 208].
Once again, heat treatment, as well as hot isostatic pressing can modify the microstructure [68, 142].

Support issues

Finally, supporting issues are a crucial point. If not related to a specific defect, they must be carefully
considered for two reasons.
First, considering gravity issues: assume that you want to build a part with overhang (let say a T-shape
part). Layer after layer, the part is grown and the unused powder left. When the first layer in overhang
comes, some powder under which the metal is not solid is melted. However, the solid’s density is higher
than the powder’s. Without any supporting structure, the overhang newly built may fall down. Overhang
supports literature has thus been developed: experimental and modeling studies have quantified their
impacts and topology optimization has been widely used to design these supports, to reduce the objects’
overhang areas and even to design self-supporting items [11, 12, 13, 14, 117, 126, 127, 145].
Then, supports can also be added for thermo-mechanics reasons. Indeed, many defects and especially
residual stresses come from heat accumulation and high temperature gradients. Thus, to even out the
temperature, thermal supports are added, bringing out some of the part’s heat [11, 28, 53, 185].
In both cases, the support’s building requires both energy and material. Thus, their design must be
carefully elaborated to spare metallic powder and building time. Finally, their attachment to the structure
must also be well thought to ease their withdrawal still preserving the surface quality.

1.3 Path optimization in the PBF context

The PBF processes can be controlled through several different parameters [172], some of the most crucial
related to the scanning strategy. Indeed, the scanning velocity and source power impact the porosity,
the surface roughness, the residual stresses and the microstructure. Moreover, many of these defects
being tightly related with the temperature distribution, the scanning path itself is essential. This section
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reviews the existing scanning paths’ strategies for PBF process. It starts by a brief presentation of the
scanning strategy issue for traditional manufacturing techniques, additive manufacturing’s precursors.
Then, the main constraints involved in a scanning path choice are developed. Finally, two types of
strategies optimizations are described: first, the path shape being fixed, the velocity and power are
optimized, and then, different path shapes are designed to better satisfy the objectives.

1.3.1 A brief history of path optimization for manufacturing tools

Additive manufacturing processes remain relatively new with first studies related to the scanning strate-
gies started in the 2000’s. However, other manufacturing processes also involving paths, such as milling
or welding, have been used for years. With the development of Computer Numerical Controlled (CNC)
technologies, the research on scanning strategies have increased. These strategies constitute an interest-
ing basis for powder bed processes and additive manufacturing in general. Indeed, various challenges
considered in PBF processes are also addressed by these technologies such as build time control or, in
welding for example, surface quality, metallurgical and mechanical constraints. If several approaches
have been considered, two main path categories have mainly been worked on: parallel and offsets.
The parallel category gathers raster, zigzags and any scanning strategy based on parallel straight lines.
If they were first optimized to fulfill filling and geometrical requirements, physical constraints have then
been added, with the consideration of the hatch distance, the lines orientation, the starting points and
part decomposition in cells [20, 62, 123, 158].
The offset category focuses on any strategy based on the part contour. In this case too, geometrical as
well as physical requirements were considered and controlled through the hatch distance, starting points,
part decomposition as well as smoothing path processes limiting the curvature [39, 62, 80, 123, 203, 212].
These scanning strategies (the two main categories supplemented by various others such as skeleton
based [108] for example) have deeply inspired the scanning paths in the additive manufacturing context.

1.3.2 Stakes and path constraints

Before getting in any further in the consideration of the different paths, the main parameters regarding
their optimization are developed. Then, follows the issues involved in PBF processes scanning strategies,
gathered around two main goals: the part quality and the manufacturing time. Both involve specific
constraints, in many cases concurrent and thus forcing to compromise.

Scanning path parameters

If many criteria are involved in the scanning path, five of them mainly impact the process. First, the
path’s shape itself, that determines the location of the energy deposition and thus highly impacts the
temperature distribution. Then, the power and the velocity determine the amount of energy at each of
the scanning path points, as well as the scanning time. Finally, the layer’s thickness impacts the effect
of the energy deposed: melting of the powder or remelting of an already solid part. Combining these
parameters give the volumetric energy along the scanning and are related to keyholes phenomena, balling
effects or lack of fusion. This volumetric energy is a very interesting parameter, still under examination
[43, 48, 83] (and references therein). Indeed, it gathers the source power and velocity but also the material
properties and could be a precious tool to optimize the building process.

Object quality constraints

As already mentioned, PBF processes must be carefully run to meet the quality requirements. Else,
some of the defects listed above (porosity, surface roughness, residual stresses, microstructure issues or
loss of alloy elements) might occur, affecting the usefulness and efficiency of the final part [68, 154]. The
scanning strategy is crucial. Controlling the source power and the scanning velocity is proved numerically
and experimentally to be essential parameters in the porosity, the microstructure and in residual stresses
issues [93, 119, 154]. Moreover, the scanning path affects the temperature distribution along time and
is thus related to the solid’s thermal expansion leading to residual stresses formation [52, 104] as well as
to the introduction of anisotropy [127].

Manufacturing time

Like traditional machining tools, one of the objective of additive manufacturing is a minimal building
time. In a layer by layer process, this time is first related to the slicing, which determine the layers’ num-
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ber, thickness and manufacturability. Also involved in the support generation issue, slicing is actually a
field in itself [11, 40, 160, 177, 201]. Then the scanning strategy comes, determining how long does each
layer take and being thus an essential parameter in the total building time. This strategy must take into
account the machine possibilities.

To illustrate them, we now focus on the L-PBF process and especially on the scanning of one layer only.
The scanning strategy, namely pattern, speed and power, being chosen, it is then sent to the machine
to be realized. A first step in this process is the transformation of this scanning path into a point wise
signal. The laser power source is then moved from point to point thanks to mirrors controlled by gal-
vanometer (Figure 1.3). The mirrors having inertia, it is thus a real challenge to perfectly control both
their position and their scanning speed [92, 165, 205]. If straight lines do not require that much difficulty,
the higher the curvature gets, the more complicated is the scanning and any lack of smoothness results
in an issue. Indeed, to accurately go along this path, the velocity must be reduced, and thus the building
time increased. The manufacturing time requirement is in this way more complex than simply reducing
the path length and implies curvature and jumps control, as well as uncertainty issues.

Moreover, in addition to being involved in the scanning time, any speed modification impacts the tem-
perature distribution. For example, to be well executed, a corner requires a speed decrease. This leads to
an augmentation of the temperature and thus to porosity defects. A first solution consists in controlling
the power. However, the actual technologies do not allow a full mastering of the source energy. Else,
one could think about switching the laser on and off (Figure 1.12). However, any "jump" in the path is
time consuming: in addition to the mirrors inertia, the laser has a thermal inertia that fix a "jumping
delay" [200].

(a) Scanning path to take into account to "build" the word "FM"
(movement called "jump" when the laser is OFF and "mark" when ON)

[200]

(b) Scanning strategy to build a
corner: the laser is switched off before
turning, to create an accurate right

angle [134]

Figure 1.12: Building constraints related to the energy spot control

In EB-PBF, the movement of the energy source is controlled by magnetic fields, leading to different
constraints, which, to the author’s knowledge, have not been gathered into specific research papers.

1.3.3 Optimizing the laser properties along a fixed path

A first way to optimize the scanning strategy is to first fix a pattern and then optimize the source power
and the velocity [191, 192]. Straight from the traditional machining processes, these strategies are mainly
applied to parallel lines, offsets and spiral patterns. These source power and velocity control studies can
be split into two different categories. The first one is based on numerical computations and experiments,
to understand the sensitivity of the building defects to the power and velocity. These studies generate
value tables guiding choices [26, 44, 60, 119, 154, 189]. The second ones run optimization algorithms
on simplified models to find the best parameters fitting their requirements. Among the strategies in
development, control and inverse problems get attention [23, 75] as well as machine learning approaches
and neural networks [29, 137].

1.3.4 Existing scanning paths

A second way to optimize the scanning strategy is to optimize the path itself. This path development,
started with traditional machining, has evolved to adapt to new manufacturing processes. This paragraph
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is not restricted to PBF but covers the main approaches in any additive manufacturing techniques. The
scanning path classification used here is mainly taken from [73]. It covers the three main traditional
machining paths: parallel lines, offsets and spirals, followed by their combination into hybrid paths.
Then, fractals and skeleton-based paths and, more recently in the additive manufacturing context, level
set optimization paths.

Parallel lines

The first strategy type is parallel lines (Figure 1.13(a)). Developed first for machining, it consists
in a set of straight lines, from simple raster to zigzags, their continuous version. Filling spaces with
this strategy class is very intuitive and optimization based on geometric criteria is easy through the
modification of the lines orientation (Figure 1.13(b-c)), the hatch distance and even, in case of zigzags,
the number of connected components they are composed of [20, 123, 131, 158, 163, 168]. Optimizing
these is actually really important in terms of productivity: if a straight line is easy to scan, raster paths
also imply stopping the source and zigzags include sharp corners both slowing down the process. As for
the physical properties, they have been widely studied in the case of metal processes. They appear to
generate some defects. The scanning vectors being unidirectional, the microstructure of the final part is
severely anisotropic. As for the residual stresses, since they are related to the temperature gradients, they
are mainly generated perpendicular to the scanning direction (Figure 1.13(d-e)). Getting all the same
orientation, they are expected to induce cracks [52, 62, 84, 104, 115, 119, 159]. Moreover, managing
to produce a good quality surface is a challenge [106]. To control these, islands strategies have been
developed to increase the design possibilities [77, 115, 133, 146], getting some cracks and anisotropy
reductions (further developed in the following).

(a) Raster path [52] (b) Optimization of the number of
jumps thanks to line orientation -

direction a [158]

(c) Optimization of the number of
jumps thanks to line orientation -

direction b [158]

(d) Residual stresses in the X-axis [52] (e) Residual stresses in the Y-axis [52]

Figure 1.13: Parallel lines. (a)Exemple of raster line, (b-c)Illustration of the impact of the zigzags
orientation on the number of jumps, (d-e)Impact of parallel lines on the apparition of residual stresses

Offsets

This strategy, also called contour strategy, has also widely been considered by traditional machining
processes. It consists in offsets from the contour, which hatch distance can be controlled (Figure 1.14(a)).
As for the parallel lines category, continuous versions have been developed linking the different offsets
together and resulting in spiral scanning paths [39, 105] (Figure 1.14(b)). The filling properties of these
strategies is not straightforward. The curvature of the path is not controlled and might be quite high
whereas, on the other hand, some of the layer may not be covered [105, 108, 212] (Figure 1.14(c)). The
curvature also impacts the productivity. Indeed, the higher it is, the slower the laser can go. As for the
PBF applications, this path category leads to a crucial choice: should the heating be started from the
inside, pushing the heat out of the part, or from the outside, keeping it inside. Both cases introduce
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defects. Indeed, residual stresses still occur within the solid, while overheating must be taken care of by
limiting the curvature [52, 62, 84, 104, 162]

(a) Offset path [108] (b) Spiral path [52]

(c) Covering issue [105] (d) Residual stresses in the X-axis for
in-out offsets [52]

(e) Residual stresses in the Y-axis for
in-out offsets[52]

Figure 1.14: Offset lines. (a)Offset, (b)Spiral, (c)Covering issues, (d-e)Impact of offsets on the
apparition of residual stresses with the laser starting from inside to go outside

Medial Axis Transform (MAT)

The Medial Axis Transform has been mainly developed for welding and material deposition additive
manufacturing techniques [71, 72]. This method is actually included in the offsets strategies. Yet,
instead of the part’s boundary, the offsets are here based on the part’s skeleton (medial axis). The
method consists first to determine the medial axis of the part, that is to say, ”the loci of centers of locally
maximal balls inside a part” [71], before generating the offsets (Figure 1.15). On the contrary to contour
paths, the resulting strategy is quite smooth, thus avoiding over and under heating/ filling. However,
the path is stopped each time it meets the part boundary which results in poor surface quality or in
post processes [71, 108]. To deal with this, other scanning parameters have been optimized in order to
vary the size of the offsets [74]. To the authors’ knowledge, no tests of this scanning method have been
realized in PBF context. Note that such a strategy has also been developed in structural optimization
and especially for design under thickness constraints [141].

Fractal

In order to break with classic parallel lines and offsets strategies, and to provide a new type of continuous
path, fractal paths were developed (Figure 1.16). First using Hilbert curves to be then extended [34, 45],
they have been evaluated in the PBF context. These shapes induce several modifications of the scanning
direction. If such a path can reduce the residual stresses, its design must be carefully chosen to avoid
excessive temperature gradients[45, 135]. As for kinematics considerations, this strategy involves an
excessively high number of sharp corners which extremely increases the scanning time [73].
Getting rid of the non intersection constraint, strategies have also been developed based on points linking
[150, 194]. Different discrete optimization and graphs strategies were then run to get new continuous
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(a) Medial axis of the shape (b) Scanning path induced

Figure 1.15: Medial Axis Transform lines [71]

paths. These methods have been mostly developed for welding or metal deposition and no physical
conclusions have been given regarding the PBF context.

(a) Hilbert curve [34] (b) Discrete points linking [194]

Figure 1.16: Continuous fractal lines

Hybrid

Each of the proposed strategies have different advantages regarding the part quality or the ease of
scanning. Hence, mixing them might result in a better efficiency (Figure 1.17). Indeed for example, the
straight lines are very easy to scan but give a poor surface quality. Keeping this strategy for the inner
part of the part and using offsets around the boundary leads to a quality improvement without much
change in the scanning time. First tested with parallel lines and offsets [73, 80, 105, 106, 123, 129], the
strategy has been optimized to get the best ratio between both path patterns [129]. Then, it has been
extended to the other categories [109].

(a) Hybrid path with offsets and
zigzags [129]

(b) Hybrid path with fractals and
zigzags [109]

Figure 1.17: Hybrid lines
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Level-set

First developed in the context of steered fiber composites, scanning paths optimization based on level set
methods have been newly adapted to the additive manufacturing context [51]. The strategy consists in
matching the scanning path to the level sets of an arbitrarily fixed function called the level set function.
Adapted to scanning strategies, it has been combined to mechanical computations (with the inherent
strain method) to optimize the level set function and meet the quality requirements [51]. Finally, thanks
to multi level sets techniques, concurrent optimization of the part shape and scanning path can be carried
out [51] (Figure 1.18). However, the kinematics is not explicitly involved. Indeed, the inherent strains
method the path optimization is based upon is based on steady state considerations. To the authors
knowledge, this promising strategy has not been experimentally tested.

Figure 1.18: Optimized scanning strategy for four consecutive layers regarding residual stresses, based
on level set optimization [51]

1.3.5 Islands scanning path strategies

Each of the previous strategies has been discussed considering that the whole part was to be built "in
a row". However, many researches have developed islands or checkerboard strategies, authorizing the
path to differ from one zone to another (Figure 1.19). Thus, the layer to build is split into many dis-
tinct zones to which are affected different strategies: from different orientations [104, 162, 168, 173] to
different strategy types chosen thanks to genetic algorithms matching cell and path [5, 146]. The islands
themselves have finally been optimized (Figure 1.17)

(a) Splitting of the part’s mesh into 6
zones [5]

(b) Strategies to be put in the
different zones [5]

(c) Checkerboard strategy [104]

Figure 1.19: Checkerboard strategy

To end with path optimization, additional topics must be mentioned. PBF processes require a scanning
path for each layer and methods have been looked for to deal with this, would it be through a full
optimization (Figure 1.18) or simply by strategy rotation. Finally, online path control is currently under
study, with the development of several captors to characterize the part in building[178, 206]. Using data
and models to store most of the physical computations and especially the time consuming ones, data
acquisition can then be realized during the process to then proceed to online computations and provide
a feedback control of the scanning process.
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1.4 Design to manufacturing

Additive manufacturing allows for far more complicated designs than traditional machining. It is thus a
building process matching well topology and shape optimization fields which results might be intricate.
However, this new process still induces manufacturing constraints that must be included in the design
process. Among them, the overhanging, the mechanical quality and the infill design issues have mostly
drawn the attention [57, 66, 126].

Overhanging design

Already developed (see Section 1.2.3), this first issue is intimately related to topology optimization.
Indeed, to allow for a non collapsing manufacturing, two solutions are considered: adding a support to
be removed afterwards or modifying the part’s design to avoid any overhangs.

Built part quality constraint

In addition to overhang issues, the quality constraints mentioned in Section 1.2 can be considered. In-
deed, it is quite clear that, depending on the technology, some shapes get built easily whereas others
might end up tending to crack. Due to different physical phenomena, this issue is hard to be tackled all
in once and is usually split. A brief overview of the different works is now given.

The anisotropy has been considered in different studies. As mentioned (see Section 1.2.3), it has been
considered by [127], using a concurrent optimization of the path and shape. This work has been followed
by [66] with the additional possibility to choose the infill shapes.

The residual stresses have also been studied, and different solutions have been thought about. The first
one consists in adding thermal support to the structure. Indeed, this would help the heat to spread and
control high temperature gradients [11, 28, 53, 185]. A second technique consists in optimizing the shape
itself to minimize, layer after layer, these stresses [16]. The third one, already pointed out, consists in a
concurrent optimization of the scanning path and the layer shape [51].

As for the other defects, they mainly occur at a microscopic scale. This makes them quite hard to control
through the global part’s shape, which is a macroscopic parameter. However, the part to build can be
designed with a porous structure and many works focus on lattice structures optimization[89].

The path as an additional optimization variable

If many works focus on the influence of the scanning strategy on the final part’s properties whereas
many others consider using topology optimization, very few exist interweaving them. To the authors
knowledge, [127, 51] are the only existing works regarding this issue.

1.5 Problematic of this work

This overall view of the powder bed fusion works leads to a first assessment: if many parameters are
involved in the different issues related to this manufacturing process, the scanning strategy strongly
affects both the final quality and the manufacturing time. This analysis has lead to several studies aimed
at evaluating the scanning patterns’ efficiency and at controlling the spot speed and power.

These studies come out on scanning parameters optimization. New works, mostly experimental, learn
and quantify from data the impact of the scanning speed, source power and energy deposition rates. As
for optimization of the path itself, many works focus on optimizing parameters to improve the existing
patterns (modifications of the hatch space, starting point or scanning orientation for example). Finally,
researches focus layer decomposition with optimal matching between cells and patterns.

However, most of these studies rely on already existing patterns and very few works consider optimizing
the path shape itself. Two recent works must be mentioned here. The first one [6, 7] focuses on scanning
path control and aims at building different geometries while limiting the residual stresses. To this end, a
thermal model only is considered supplemented by the assumption that the residual stresses mainly come
from temperature gradients that must be limited. A second assumption consists in considering that the
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melted surface around the source remains keeps the same dimensions along the scanning. Thus, to insure
that the chosen path correctly melt the path’s geometry, a geometric covering constraint is introduced.
An analysis of the system’s controllability is provided in [7] supplemented by promising numerical tests
in [6].
The second work [51], has been already mentioned and is based on the level set method. The scanning
path is given by a function’s level sets. This function is optimized to meet residual stresses objective
computed thanks to the inherent strain method. On the contrary to [6, 7], the full thermo-mechanical
problem is taken into account, but based on a steady state model [124]. Using multi-level sets techniques
and topology optimization theory, a concurrent optimization between the shape and the path is then
performed.

As for topological optimization, if many researches have been conducted to deal with new manufacturing
issues, very few focus on including the scanning path as a parameter affecting the design ([51, 127]). Yet,
it is quite clear that both are strongly related. Indeed, without any physical consideration and whatever
pattern is chosen, the path length, curvature and thus the scanning time already depend on the shape.
As for the part quality, it is quite clear that both are related.

These issues being quite substantial, why aren’t there more studies regarding them? The first answer
lies in the actual available technologies. An accurate control of the energy source remains complicated
leading the printers makers to favor traditional patterns. Most of the PBF machines can only follow the
main scanning paths categories. A second answer lies in the lack of information on the process. Indeed,
the sensitivity of the design to the path shape has not been studied, nor the sensitivity of the path shape
to the design. If different patterns have been focused on, it did not bring any knowledge on how their
performance could be related to the shape to build. Would a pattern applied to the scanning of a specific
part be still efficient in the scanning of a different part? How to define a good scanning path? And how
characterizing an "easily built shape"?

This analysis strengthen the objectives of this work. The first objective consists in optimizing the
path itself, especially its shape and source’s power. Using a thermal model, the goal is to develop an
optimization framework to deduce new scanning strategies. The results can yield some intuitions on the
problem and hints at good scanning patterns. The second objective consists in concurrent optimization
of the structural shape and the scanning path. The goal is, once again, to have a better understanding
of the relationship between shapes and paths, leading to possible new design constraints.
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2.1 Introduction

This chapter is a review of some algorithms in continuous optimization. Consider a Hilbert space
(X, ‖.‖X , (., .)X) where (., .)X is a scalar product on X and ‖.‖X the associated norm (X could also
be a Banach space yet complicating the resolution). Let K ⊂ X be a subset and f : X → R+ ∪ {+∞}.
Optimizing the function f on the subset K consists in solving the optimization problem (2.1.1).

min
x∈K

f(x). (2.1.1)

The subset K ⊂ X is called the admissible domain and is defined by the constraints the solution must
fulfill. The function f is the objective function, the cost that must be decreased.

This general optimization problem raises two main questions:

• does the solution exist and is it unique? Among the several problem-dependent conditions, con-
vexity of the admissible domain and a lower bound on the objective function seem to be the easiest
[10, 170]. We do not address this issue in this work. The interested reader can refer to [7] for exis-
tence and uniqueness of optimal path in the optimal control context. As for shape optimization, a
general theory is given in [9, 97].

45
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• How, from an initial guess x0, can we improve our choice and get as close as possible to a hypo-
thetical solution? This question is crucial in applied fields. Indeed, many industrial issues focus
on improving solutions and thus on minimization algorithms. The challenges lie in matching opti-
mization problems and algorithms, in ensuring the low computational costs and convergence of the
guess sequence, in controlling the accuracy of the final guess and its satisfaction of the constraints.

In this work, we aim at proposing scanning path optimization algorithms and at using the obtained
results to better understand their sensitivity to the modeling assumptions and to the part’s shape. In
order to efficiently determine optimizing sequences, the choice of adapted optimization algorithms is
crucial. Along the manuscript, varying problems are run into, resulting in the use of different methods.
This chapter aims at giving some background and to ease the understanding. To begin with, Section 2.2
introduces the concept of descent algorithms, intended to generate optimizing sequences converging to
one of the minima. These methods are especially relevant in this work which objective is not to find the
exact minimum but to improve the initial guess. The remaining is a presentation of the different descent
algorithms. In Sections 2.3 and 2.4 any function involved in the cost or constrained is assumed to be
differentiable, constituting first order algorithms. Whereas the problem is unconstrained in Section 2.3
(the admissible domain K corresponds to the whole Hilbert space X), it is more restrictive in Section 2.4
and the satisfaction of the constraints must be taken into account. In Section 2.5, an order of regularity is
added and second order algorithms, focusing on twice differentiable functions, are given. Finally, Section
2.6 presents algorithms developed in case of convex non differentiable functions.

2.2 Descent methods

Optimization algorithms intend to, starting from an initial point x0, build minimizing sequences. In the
particular case of descent methods, these sequences must be decreasing the objective function [170]. The
objective is thus to build a sequence (xk)k∈N, initialized at x0 ∈ K such that ∀k ∈ N,

xk+1 = xk + skdk, (2.2.1)

where sk ∈ R a step, dk ∈ X an update direction, satisfying, ∀k ∈ N, f(xk+1) ≤ f(xk),

xk+1 ∈ K.
(2.2.2)

Algorithm 2.1 gives the general formulation of descent algorithms.

1 initialize k = 0, s0, x0

2 compute the objective function f(x0) and the descent direction d0

3 while the stopping criteria is not reached do
4 compute xk+1 = xk + skdk

5 compute the new descent direction dk+1

6 k = k + 1

7 end
Algorithm 2.1: Descent algorithm

To run this very general algorithm, three main issues must be considered: the determination of a direction
dk to ensure the descent and the constraints satisfaction, the stopping criterion and the step sk. Before
detailing each of them, Definition 2.1 recalls the notion of differentiability.

Definition 2.1. Let X be a Hilbert space, x ∈ X and f defined on a neighboring of x with values in R.
The function f is Fréchet differentiable at x if there exists Dfx : X → R linear form (linear, continuous,
taking values in R) such that

f(x+ w) = f(x) +Dfx(w) + o(w), lim
w→0

|o(w)|
‖w‖X

= 0. (2.2.3)

Note that this linear form depends on the point x. If this property holds for any point x ∈ X, the
function f is Fréchet differentiable. Since the space X is a Hilbert space, the gradient of the function
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can then be defined such that

∇f :

 X → X

x 7→ ∇f(x)
(2.2.4)

where, ∀x ∈ X, the element ∇f(x) is uniquely defined by Riesz theorem as satisfying

∀w ∈ X, Dfx(w) = (∇f(x), w)X . (2.2.5)

If there exists other notions of differentiability (and especially Gâteau differentiability), in the following
a function is said differentiable if it is Fréchet differentiable.

2.2.1 Direction

In descent algorithms, the minimizing sequence is built iteratively through the repeated determination
of update directions. From point to point, the guess solution is improved. In order to correctly build
these directions, two main properties must be taken into account: the descent condition (2.2.2) and the
constraints satisfaction, requiring that the guess belongs to the admissible domain K [170].

Descent direction

The first property to fulfill is the descent condition: it must induce a decrease of the objective function
f (Definition 2.2).

Definition 2.2. Let x ∈ X. A direction d ∈ X is called descent direction at x if there exists η > 0 such
that, ∀s ∈]0, η], f(x+ sd) ≤ f(x).

This definition can be translated in terms of directional derivative: in case of infinitesimal variations in a
descent direction, the function will decrease. Considering that the function f is differentiable, this leads
to a new characterization, illustrated by Figure 2.1 (b):

Proposition 2.1. Let f : X → R be a differentiable function, x ∈ K. The direction d is a descent
direction at x if and only if

(∇f(x), d)X ≤ 0. (2.2.6)

Of course, at a point x, choosing d = −∇f(x) leads to the highest decrease (assuming a well chosen
step). However, other options are available and might, depending on the problem, prove to make the
sequence converge more efficiently.

Admissible direction

The direction must also fulfill another condition. Indeed, choosing the best descent direction leads to the
minimization of the objective function over the Hilbert space X. Yet, in case of constrained problems
(K 6= X), the optimizing sequence and especially the minimum must belong to the admissible domain
K. Thus, a second notion of direction is given (Definition 2.3): the admissible direction.

Definition 2.3. Let x ∈ K. A direction d ∈ X is called admissible direction at x if there exists η > 0
such that, ∀s ∈]0, η], x+ sd ∈ K.

This definition actually corresponds to a "descent direction" related to the constraints. If considering
infinitesimal variations, this definition corresponds to the tangential cone to the constraints (Definition
2.4).

Definition 2.4. Let x ∈ K. The tangent cone to the subset K at x is

Tx(K) =

{
v ∈ X : ∃(vn)n∈N ∈ XN, (εn)n∈N ∈ (R∗+)N, lim

+∞
vn = v, lim

+∞
εn = 0,

∀n ∈ N, x+ εnvn ∈ X.

}
(2.2.7)

This cone can be seen as the closure of the admissible directions space, containing any vector such that an
infinitesimal move in its direction is still in the admissible domain K. From Definition 2.4, the tangential

cone is closed and, if the point x belongs to the interior of the admissible space x ∈
◦
K, Tx(K) = X. An

illustration of this object is given by Figure 2.1 (c)

Note that the descent and admissible directions spaces are different (see Figure 2.1) and might even not
intersect (Figure 2.1 (e)). These conditions and their impact on the implications on the optimization
algorithms are further developed.
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Optimality condition

In case of differentiability, these definitions lead to a first general optimality condition, helpful to char-
acterize a potential solution, to determine the good update directions and a relevant stopping criterion.
This condition is illustrated by Figure 2.1 (d) and (e).

Proposition 2.2. Let f : X → R differentiable and x∗ a solution of the minimization of f on an
admissible domain K. Then,

∀v ∈ Tx∗(K), (∇f(x∗), v)X ≥ 0. (2.2.8)

(a) Settings (b) Descent directions at point x (c) Tangential cone at point x

(d) Existence of v ∈ Tx(K) such
that (∇f(x), v)X < 0 - optimality

condition unsatisfied

(e) Non existence of v ∈ Tx∗ (K)
such that (∇f(x∗), v)X < 0 -
optimality condition satisfied

Figure 2.1: Illustration of the optimality condition in R2

2.2.2 Descent step

In addition to a direction d, the magnitude of the update along this direction must be chosen. This
parameter, called the step s is crucial [170]. If too big, the optimizing sequence could not converge. If
too small, the number of required iterations might explode as well as the computational time or even
generate a sequence converging to a non optimal value. Theoretical bounds on the step, called Wolfe
conditions [152, 170], are a first tool to address this issue. A second approach consists in looking for the
optimal step s∗ at each iteration k:

s∗ = arg min
s∈R

f(x+ sd).

Yet, both techniques require differentiating the objective functions, which easily get expensive. In this
work, none of these methods is used in aid of a line search approach. At each iteration, the step sk

depends on the direction dk and on a coefficient Cks such that, ∀k ∈ N,

sk = CksFstep(d
k), (2.2.9)

with Fstep fixed. The coefficient Cs is initialized to C0
s and updated depending on the success of each

iteration. If, up to a tolerance tol, the new optimization variable guess improves the objective function
then the coefficient Cs is increased and the iteration is accepted. Else, it is decreased (and so is the
step) and the iteration rejected (no update of the optimization variable). The increase and decrease
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respectively correspond to Ck+1
s = max

(
C0
s , η

s
accC

k
s

)
and Ck+1

s = ηsrefC
k
s with ηsacc = 1.2 and ηsref = 0.6.

The tolerance is initialized to 2 and multiplied by 0.9 every 50 iterations. Algorithm 2.2 illustrates this
line-search algorithm. As for the function Fstep, it is problem dependent and will be made precise in
Chapters 6, 7, 8 and 9.

2.2.3 Stopping criteria

Although the minimizing sequence is built to converge, it is very unlikely to reach the potential minimum
in a reasonable number of iterations. To choose an approximation, a stopping criterion must be designed
in consistence with the guess’ relevance. Three main strategies exist:

• based on the stagnation of the iterate x, with ε a fixed threshold: ‖xk+1 − xk‖X ≤ ε.

• based on the stagnation of the objective function f , with ε a fixed threshold: |f(xk+1)−f(x)k| ≤ ε.

• based on the gradient smallness at the iterate x (in case of differentiability), with ε a fixed threshold:
‖∇f(xk)‖ ≤ ε. In case of a constrained problem (K 6= X), the gradient is replaced by its projection
on the admissible space.

• based on a maximum number of authorized iterations.

In this work, the number of iteration is bounded by NMAX supplemented by a condition on the step
coefficient Cs: if the step coefficient gets to small (Cs < ε), the optimization is stopped (see Algorithm
2.2). This criterion actually corresponds to the stagnation of the iterate. Indeed, the step adaptation
process approximately corresponds to an optimal step strategy. A strong decrease of the step coefficient
means that the next guess is close to the actual one and that the iterates stagnate.

1 initialize k = 0, C0
s , x0 and a tolerance tol

2 compute the objective function f(x0) and the descent direction d0

3 while Cks ≥ ε and k ≤ NMAX do
4 compute sk = CksF (‖dk‖)
5 compute xk+1 = xk + skdk

6 compute the new objective function f(xk+1)

7 if f(xk+1) < f(xk) ∗ tol then
8 iteration accepted
9 compute the descent direction dk+1

10 Ck+1
s = max(ηsaccC

k
s , C

0
s )

11 end
12 else
13 iteration rejected
14 xk+1 = xk

15 dk+1 = dk

16 Ck+1
s = ηsrefC

k
s

17 end
18 k = k + 1

19 end
Algorithm 2.2: Descent algorithm with line search

2.2.4 Choosing the optimization algorithm

As mentioned, optimizing a problem under constraints finally amounts to compromising between both
admissible and descent directions, leading to several specific algorithms. Choosing one requires an
analysis of the problem, with a special focus on three main features.

Objective function’s regularity

A first feature is in the regularity of the objective function. To start with, continuity, which has a
huge impact on existence conditions. Then, the Fréchet differentiability given by Definition 2.1, which
gives the existence of the gradient (working with Hilbert spaces). However, this might not be enough to
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ensure the convergence of the algorithms. The stronger notion of Lipschitz gradient functions is given
by Definition 2.5 [170]. If this notion is not strong enough to certify the convergence of any optimization
algorithm, it is enough for this work.

Definition 2.5. Let f : X → R be a differentiable function. Its gradient ∇f is Lipschitz if there exists
L ≥ 0 such that

∀u, v ∈ X, ‖∇f(u)−∇f(v)‖X ≤ L‖u− v‖X . (2.2.10)

Note that a function with a Lipschitz gradient belongs to C1 functions.

Objective function’s convexity

A second feature is the objective function convexity, simplifying the existence and uniqueness conditions
as well as convergence results. Proposition 2.3 recalls some properties of convex functions [10, 170].

Proposition 2.3. Let X be a Hilbert space and f : X → R. If f is differentiable, then, the following
assertions are equivalent:

1. f is convex on X,

2. ∀u, v ∈ X, f(v) ≥ f(u) + (∇f(u), v − u)X ,

3. ∀u, v ∈ X, (∇f(u)−∇f(v), u− v)X ≥ 0.

If f is twice differentiable, with H[f ](x) the Hessian matrix of f at x, the previous assertions are
equivalent to

∀u, v ∈ X, (H[f ](u)v, v)X ≥ 0.

Constraints definition

Finally, a careful analysis of the constraint space is essential [170]. Two main cases are considered in this
work. The first one consists of an unconstrained problem, where K = X. The second type is defined by
equality and inequality constraints: ∃neq, nineq ∈ N, ∃h : X → Rneq , g : X → Rnineq such that

K = {x ∈ X : h(x) = 0, g(x) ≤ 0}. (2.2.11)

Of course, the regularity and convexity of the functions h and g must also be taken into account.

2.3 Unconstrained first order algorithms

The first class of algorithms focus on unconstrained problems, in which the admissible space K matches
the whole Hilbert space X, with a differentiable objective function f . The descent directions are thus
related to the objective function’s gradient.

2.3.1 Optimality conditions

In this context, the optimality conditions given by (2.2.8) can be made precise. Indeed, the problem
being unconstrained, the admissible space K actually corresponds to the entire Hilbert space X. The
tangent cone definition given by Definition 2.4 becomes:

∀x ∈ K = X, Tx(X) = X. (2.3.1)

This simplified description leads to new optimality conditions, called first order local necessary conditions
[10, 170].

Proposition 2.4. Assume that K = X and that f is differentiable on X. Then, if x∗ is a minimum, it
satisfies

∇f(x∗) = 0. (2.3.2)

If the objective function is convex, this condition is sufficient to be a global minimum.
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2.3.2 Gradient descent method

Among the first order algorithms, the gradient descent method consists of choosing the descent direction
as the opposite of the objective function gradient:

d = −∇f(x). (2.3.3)

Since the gradient corresponds to the steepest increase direction, the opposite direction ensures the
minimization of the objective function (given a small enough step s). Note that this problem being
unconstrained, this direction is also admissible. Under correct step conditions, the algorithm converges
[151, 170].

Proposition 2.5. Let f be a lower bounded function with a Lipschitz gradient of constant L > 0. If
∀k ∈ N, the step at iteration k, sk, satisfies sk < 2

L , then the gradient algorithm is a descent algorithm
and it converges to a critical point (at which the gradient vanishes).

2.3.3 Projected gradient descent algorithm

There exists one type of constraint for which the algorithm is very close to the unconstrained gradient
descent: if the subset K 6= X is convex and the corresponding orthogonal projection PK is easy to
compute. The projected gradient algorithm involves updating the optimization variable through

xk+1 = PK
(
xk − sk∇f(xk)

)
. (2.3.4)

Proposition 2.6. Let f be a lower bounded with a Lipschitz gradient of constant L > 0. If ∀k ∈ N, the
step at iteration k, sk, satisfies sk < 2

L , then the projected gradient algorithm is a descent algorithm and
it converges towards a critical point (at which the gradient vanishes).

The use of this constrained algorithm is possible only if the projection is easy to compute. In this work,
only box constraints are considered this way (if x ∈ R2, box constraints consist in K = [xinf , xsup] ×
[yinf , ysup]).

Remark 2.1. Note that in Algorithm 2.2, none of these step guarantees are given. Indeed, the step could
get out of the converging values. However, a careful setting of the tolerance tol and of the coefficient
ηsacc and ηsref allows to control this.

2.4 Constrained first order algorithms

This section focuses on constrained problems solved by first order algorithms. We consider here the
admissible space

K = {x ∈ X : h(x) = 0, g(x) ≤ 0}, (2.4.1)

with neq, nineq ∈ N, h : X → Rneq , g : X → Rnineq . Each function (f , h, g) is differentiable.

This section is organized as follows: first of all, the very general optimality condition stated by Proposition
2.2 are simplified thanks to the constraints formulation. These conditions lead to the presentation of the
Lagrangian duality theory. Based on this, three algorithms are developed.

2.4.1 Optimality conditions

Let us first recall the optimality conditions.

Tangential cone computation

To account for the constraints, a characterization of the tangential cone must be derived, adapting Def-
inition 2.4 to the admissible space description given by (2.4.1). This characterization depends on the
functions h and g. These are not unique and it might exist other equality and inequality functions result-
ing in the same admissible subset K. The first notion to introduce is the qualification of the constraints,
aimed at evaluating the relevance of functions h and g in the admissible domain and tangential cone
descriptions. This property corresponds to the fact that the tangential cone can be expressed through
the gradient of the constraints [170].
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Before any formalization, assume that the admissible domain is defined by an equality constraint h (with
neq = 1). Starting from a point satisfying this constraint, in order to remain in this admissible domain,
this constraint should not be modified. The tangent domain is given by any direction orthogonal to the
gradient of h. Assume now that the admissible domain is defined by an inequality constraint g (with
nineq = 1) and that the starting point x satisfies this constraint. Then, g(x) ≤ 0. If the point satisfies
g(x) < 0, any infinitesimal modification of the point keeps the constraint satisfied and the tangential
cone is constituted of the whole Hilbert space X. On the other hand, if g(x) = 0, any element v of the
tangential cone must satisfy (∇g(x), v)X ≤ 0.
The set of active (inequality) constraints I(x) is defined at a point x as the constraints restraining the
tangential cone, i.e.

I(x) = {i ∈ J1, nineqK : gi(x) = 0}. (2.4.2)

The analysis would thus lead to the condition

Tx(K) = {v ∈ R : ∀i ∈ J1, neqK, (∇hi(x), v)X = 0 and ∀j ∈ I(x), (∇gj(x), v)X ≤ 0}. (2.4.3)

The formal qualification condition chosen here and given by Definition 2.6 is called Mangasarian-
Fromowitz. The satisfaction of this condition implies (2.4.3) [30]. Definition 2.6 is however easier to
handle and avoid handling degenerated cases.

Definition 2.6. The constraints are qualified at a point x ∈ X if h and g are differentiable at x and if
(∇h)i∈J1,neqK is linearly independent and if ∃v ∈ X such that

1. ∀i ∈ J1, neqK, (∇hi(x), v)X = 0,

2. ∀j ∈ I(x), (∇gj(x), v)X < 0.

A sufficient condition to certify the constraints’ qualification is given by Proposition 2.7 [9, 170].

Proposition 2.7. The constraints are qualified at a point x if, at this point, the gradients of the equality
and of the inequality active constraints

{∇hi(x), i ∈ J1, neqK} ∪ {∇gj(x), j ∈ I(x)}

are linearly independent.

Necessary optimality conditions

From the definition of the tangential cone are made precise the optimality conditions given by (2.2.8).
To explicit their formulation, we consider the Lagrangian function,

L

 X × Rneq × Rnineq

+ → R

(x;λ, µ) 7→ L(x;λ, µ) = f(x) + λTh(x) + µT g(x).
(2.4.4)

Proposition 2.8. Let x ∈ X admissible (x ∈ K) and assume that f , h and g differentiable at x, with the
constraints qualified. If x∗ is a local minimum of f on K, then, there exists λ∗ ∈ Rneq and µ∗ ∈ Rnineq

+

such that

∇xL(x∗;λ∗, µ∗) = ∇xf(x∗) + (λ∗)T ∇xh(x∗) + (µ∗)T ∇xg(x∗) = 0

hi(x
∗) = 0 ∀i ∈ J1, neqK,(

µ∗j
)T
gj(x

∗) = 0 ∀j ∈ J1, nineqK,

µ∗j ≥ 0 ∀j ∈ J1, nineqK.

(2.4.5)

If the problem is convex (h affine, g convex and f convex), this condition is also sufficient.

The proof of this theorem is given in [10, 30].

Let’s give some intuition on this condition. Assume that the domain X is a two dimensional space and
that there is only one constraint. In the equality case, if the gradient of the objective function is not
aligned with the gradient of the constraint, this means that it is still possible to find a direction such
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(a) Equality constraint: x0 and x2 satisfies
the necessary conditions

(b) Inequality constraint: x2 satisfies the
necessary conditions

Figure 2.2: Necessary conditions illustrated for an equality and an inequality constraints, in a two
dimensional domain. For equality constraints, collinear gradients of −f and h is the necessary

condition whereas in the inequality constraints, not only the gradients must be collinear but the scalar
relating one to another must be positive

that the objective function could be decreased without modifying the constraint: the tangential cone
and the vector space generated by the objective function gradient are not orthogonal (see Figure 2.2(a)).
The same explanation holds in the inequality constraint case with, in addition, the requirement that the
multiplier is positive (see Figure 2.2(b)).

Finally, geometrical considerations also bring intuition on the multipliers (see [58]). Indeed, following
Figure 2.3, consider an equality (h) and an inequality (g) constraints and x a point satisfying the necessary
condition (2.4.5) (this point is not necessarily a minimum). Let v be such that (∇h(x), v)X = 0 and
(∇g(x), v)X = ε, with ε ≥ 0 small and fixed. This direction corresponds to the modification of the
inequality constraint only. Then,

(∇f(x), v)X = −µε.

Thus, the multipliers represent the sensibility of the objective function to the modification of each
constraint (the sign of this multiplier is not included in this explanation, see [58]).

Figure 2.3: Multiplier µ giving the sensibility of the objective function f with respect of variations of
the inequality constraint g, see [58]

2.4.2 Lagrangian duality

The optimality necessary conditions introduce new variables λ and µ, as well as a new function, the
Lagrangian. This function is of high interest. Indeed, it includes the constraints in an explicit way,
transforming the optimization problem (2.1.1) into the study of only one function defined by (2.4.4).
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Primal problem

The primal function is defined from the Lagrangian function by:

∀x ∈ X, P(x) = sup
λ∈Rneq ,µ∈Rnineq

+

L(x;λ, µ). (2.4.6)

Finding the minimum of this primal function amounts to solving the constrained optimization problem.
Indeed, assume that the point x /∈ K. Then, either there exists i ∈ J1, neqK such that hi(x) 6= 0 or
j ∈ J1, nineqK such that gj(x) > 0 implying, since the objective function f is lower bounded, that the
primal function is infinite. The minimization of the primal function is called the primal problem.

Dual problem

Instead of first maximizing the multipliers, the minimization with respect to the optimization variables
could be realized, leading to the definition of the dual function.

∀ (λ, µ) ∈ Rneq × Rnineq

+ , D(λ, µ) = inf
x∈X
L(x;λ, µ). (2.4.7)

The dual problem involves finding

(λ∗, µ∗) = arg max
λ∈Rneq ,µ∈Rnineq

+

D(λ, µ). (2.4.8)

This dual function presents two advantages. First of all, if its computation requires a minimization, this
one is unconstrained. Thus, the resolution is possible through simple descent algorithms and might even
be explicit. The second advantage is that this new function is concave with respect to the multipliers,
simplifying the resolution of the dual problem.

Figures 2.4, 2.5 and 2.6 illustrate the resolution of each problem in three different cases. In each of these
figures, the optimization problem is

min f(x), such that g(x) ≤ 0,

with g(x) : X → R. In the graphs, the abscissa z1 represents the constraint with z1 = g(x) and the
ordinate is z2 = f(x). In each Figure, the first image shows the resolution of the primal problem. On
the second one, the dual function is computed: the objective is to minimize, µ ∈ R+ being fixed, the
quantity z2 + µz1 with (z1, z2) on the curve. The objective is thus to find the straight line of slope −µ
crossing the curve and minimizing the value of the intercept at the origin (min

a∈R+
a = z2 + µz1, (z1, z2)

on the curve). The maximization of the dual function then entails modifying the slope −µ (recall that
µ ≥ 0) so that this minimal value of the intercept at the origin is the highest. This is illustrated by the
third image. In Figures 2.4 and 2.5, the solutions to the primal and dual problems correspond. Note that
in Figure 2.5, the optimal multiplier found by the dual problem is 0, acknowledging the fact that the
constraint is not active at the minimum. In Figure 2.6 however, one can notice the difference between
the final values of the primal and dual problems.

(a) Primal problem (b) Characterization of the dual
function

(c) Minimization of the dual function

Figure 2.4: Comparison of the primal and dual problems, z1 = g(x) and z2 = f(x). The solutions to
each problem correspond.
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(a) Primal problem (b) Characterization of the dual
function

(c) Minimization of the dual function

Figure 2.5: Comparison of the primal and dual problems, z1 = g(x) and z2 = f(x). The solutions to
each problem correspond.

(a) Primal problem (b) Characterization of the dual
function

(c) Minimization of the dual function

Figure 2.6: Comparison of the primal and dual problems, z1 = g(x) and z2 = f(x). The solutions to
each problem DO NOT correspond.

Duality principle

Because they have different characteristics and since the dual problem seems easier than the primal one,
it would be convenient if they shared the same solutions. In the general case, the only result, given by
Proposition 2.9 is that the value of the dual problem is smaller than the value of the primal one (see
Figures 2.4 and 2.5 in case of equality and 2.6 for strict inequality).

Proposition 2.9. ∀x ∈ X,

sup
λ∈Rneq ,µ∈Rnineq

+

(
inf
x∈X
L(x;λ, µ)

)
≤ inf
x∈X

 sup
λ∈Rneq ,µ∈Rnineq

+

L(x;λ, µ)

 . (2.4.9)

Under conditions, it might exist points
(
x;λ, µ

)
at which (2.4.9) is an equality: the saddle-points, defined

by Definition 2.7.

Definition 2.7. A point
(
x, λ, µ

)
∈ X × Rneq × Rnineq

+ is a saddle-point if

∀(λ, µ) ∈ Rneq × Rnineq

+ , L(x;λ, µ) ≤ L(x, λ, µ) ≤ L(x;λ, µ), ∀x ∈ X. (2.4.10)

Proposition 2.10. The point (x;λ, µ) is a saddle-point of the Lagrangian function if and only if

sup
λ∈Rneq ,µ∈Rnineq

+

(
inf
x∈X
L(x;λ, µ)

)
= inf
x∈X

 sup
λ∈Rneq ,µ∈Rnineq

+

L(x;λ, µ)

 . (2.4.11)

This implies that x is a solution of the primal problem and
(
λ, µ

)
solution of the dual problem and that(

x;λ, µ
)
satisfies the conditions given by Proposition 2.8.

Without any convexity assumptions, Proposition 2.10 states that the first coordinates of saddle-points
constitute a subset of the minima to the primal problem. Since no information is given on the existence
of these saddle-points, this subset can be empty. This is very clear in Figure 2.6: there exists a minimum
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which is not a saddle-point.

In case of an admissible space reduced to convex inequality constraints only and of a convex objective
function, the matching between saddle-points and minima is exact. Because the duality problem is often
easier to solve, this context has led to develop optimization algorithms based on the dual. Convergence
studies on some of them presented below have been mostly conducted in this specific context.

Yet, these algorithms are also used for non convex problems. Even if ensuring that the solution solves
the dual problem is hard, they still generate sequences iteratively improving the guesses. Two of the
main ones are now given.

2.4.3 Lagrangian algorithm

In the dual problem, the constraints have been removed at the expense of additional variables, the La-
grange multipliers, and a new maximization problem to solve.

The most natural algorithm coming out from this dual formulation is Uzawa’s (Algorithm 2.3). It
consists in maximizing the dual function by successive updates. This algorithm can be applied using two
gradient descent algorithms: a projected one maximizing the multipliers and, in an inner loop, a second
one minimizing the Lagrangian with respect to the primal variable x to compute the dual function.
With sλ ∈ Rneq

+ and sµ ∈ Rnineq

+ the steps related to the Lagrange multipliers, the algorithm finally is
Algorithm 2.3. The choice of the steps is not made precise. As for the computation of the dual function,
Algorithm 2.2 can be applied.

1 initialize λ0, µ0

2 initialize x0

3 while the stopping criterion is not reached do
4 starting from xk, compute xk+1 as the minimizer of the function x 7→ L(x;λk+1, µk+1)

5 computation of the steps skλ and skµ
6 ∀i ∈ J1, neqK, λk+1

i = λki + skλ,ihi(x
k+1)

7 ∀j ∈ J1, nineqK, µk+1
j = PR+

(
µkj + skµ,jgj(x

k+1)
)

8 end
Algorithm 2.3: Uzawa algorithm

This first algorithm remains quite expensive in terms of computations. Indeed, it requires a full mini-
mization of the unconstrained Lagrangian problem for each update of the multipliers. Simplified versions
exist in which the dual function is approximated: instead of a full optimization related to the variable x,
a fixed number of iterations is realized. In case the minimization over x is reduced to only one update
iteration (presented in Algorithm 2.4), the algorithm is called Arrow-Hurwicz. The step management is
kept general but a line search could be adapted.

1 initialize λ0, µ0

2 initialize x0

3 while the stopping criterion is not reached do
4 compute the step sk

5 compute xk+1 = xk − sk∇
(
f + λkh+ µkg

)
(xk)

6 computation of the steps skλ and skµ
7 ∀i ∈ J1, neqK, λk+1

i = λki + skλ,ihi(x
k+1)

8 ∀j ∈ J1, nineqK, µk+1
j = PR+

(
µkj + skµ,jgj(x

k+1)
)

9 end
Algorithm 2.4: Alternate directions algorithm

The convergence of both Uzawa and Arrow-Hurwicz algorithms requires conditions that are not fulfilled
in this work. Yet, they appear to a have good numerical behaviors with limited computational costs.

Remark 2.2. In Algorithm 2.3, each guess x does not necessarily belong to the admissible space. Indeed,
if Proposition 2.10 states that the constraints are satisfied at convergence (in case the resolution of the
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dual problem indeed leads to a saddle-point), it does not ensure that they are for all the minimizing
sequence.

Remark 2.3. Note that in case of equality constraints only, we could also consider a new unconstrained
problem involving the function f+λTh with λT fixed. If easy, this method does not ensure the satisfaction
of the constraints at convergence.

2.4.4 Penalization algorithm - Augmented Lagrangian method

In order to reinforce the importance of the constraints, a penalization π can be added to the objective
function f leading to a modified cost f̃ = f + π. In the Augmented Lagrangian method (AL method),
the penalization corresponds to the square norm of the constraints.

Equality constraints

First consider that the problem only involves equality constraints. The penalization chosen is π : x 7→
c
2‖h(x)‖2, with c fixed penalization coefficient, leading to (2.4.12). Under conditions on the penalizing
coefficients c, this new optimization problem has the same minimum than the non penalized problem
[170].

min
x∈K

fALM(x) = f(x) +
c

2
‖h(x)‖2. (2.4.12)

The Lagrangian function of this new problem is

LALM :

 X × Rneq → R

(x;λ) 7→ f(x) + λTh(x) + c
2‖h(x)‖2

(2.4.13)

and the derivatives with respect to the primal and dual variables are ∇xLALM(x;λ) = ∇f(x) + (λ+ c · h(x))∇h(x),

∇λLALM(x;λ) = h(x).
(2.4.14)

The AL algorithm finally involves optimizing the penalized Lagrangian function LALM updating the
multiplier at each iteration following [152]

λk+1 = λk + c · h(xk).

Inequality constraints

Consider a problem which only involves inequality constraints. In order to get back to equality con-
straints, slack variables are introduced [152]. Let x ∈ X. For all active constraints (j ∈ I(x)),

gj(x)− sj = 0, sj ≤ 0.

The new optimization problem consists in

min
x∈X,s∈R|I(x)|

f(x), such that ∀j ∈ I(x), gj(x)− sj = 0, sj ≤ 0.

Considering the Augmented Lagrangian method under equality constraints and optimizing with respect
to s gives sj = min

(
gj(x) +

µj
c , 0

)
, j ∈ I(x). The new Lagrangian function on which working is given

by LALM(x;µ) = f(x) + ψALM(x;µ; c) with

ψALM : (x;µ; c) 7→

 − 1
2
µ2

c g(x) + µ
c ≤ 0

µg(x) + c
2g(x)2 else.

(2.4.15)

The update of the multiplier is in this case slightly different. Indeed, it corresponds to µk+1 =
max(µk + c · g(xk), 0) which is not the exact derivative of LALM with respect to µ.

Note that, in this new Lagrangian function, only the active constraints must be taken into account. Each
derivative computation requires the additional preliminary step to compute the active set.
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Projected Augmented Lagrangian method

Assume that the admissible space K is defined by equality and inequality constraints as well as box
constraints :

K = {x ∈ X : h(x) = 0, g(x) ≤ 0} ∪Kbox, (2.4.16)

and PKbox the orthogonal projection on the box space Kbox. Algorithm 2.5 gives the effective projected
Augmented Lagrangian method used in this work.

1 initialize λ0 ∈ Rneq , µ0 ∈ Rnineq

+

2 initialize x0 and C0
s

3 set k = 0
4 while the stopping criterion is not reached do
5 compute the step sk with respect to the coefficient Cks
6 compute xk+1 = PKbox

(
xk − sk∇

(
f + λkh+ µkg

)
(xk)

)
7 if LALM

(
xk+1;λk, µk

)
≤ tolLALM

(
xk;λk, µk

)
then

8 iteration accepted
9 ∀i ∈ J1, neqK, λk+1

i = λki + c · hi(xk)

10 ∀j ∈ J1, nineqK, µk+1
j = PR+

(
µkj + c · gj(xk)

)
11 Ck+1

s = min
(
ηsaccC

k
s , C

0
s

)
12 end
13 else
14 iteration rejected
15 Ck+1

s = ηsrefC
k
s

16 end
17 end

Algorithm 2.5: Projected Augmented Lagrangian algorithm

2.4.5 Null space gradient flow

This second algorithm favors the constraints’ decrease with an exact matching of the Lagrange multipliers
at each iteration. In this subsection, we describe its application to equality constraints. The explanations
are fully based on [82] in which this method is expanded to inequality constraints.

Intuition on the method

We set X = RN (N ∈ N∗) and we consider K = {x ∈ X : h(x) = 0}. The approach entails iterative
updates of the variable x following

xk+1 = xk −∆t
(
αfξ

k
f + αhξ

k
h

)
,

with ∆t ∈ R+ a step, αf , αh ∈ R+ arbitrary parameters and ξf , ξh ∈ X two directions such that ξf
decreases the objective function without impacting the constraints and ξh decreases the violation of the
constraints.

The choice is  ξkf =
(
Id −∇h(xk)

(
∇h(xk)T∇h(xk)

)−1∇h(xk)T
)
∇f(xk),

ξkh = ∇h(xk)
(
∇h(xk)T∇h(xk)

)−1
h(xk).

Two points must be highlighted:

• the direction ξf is designed to leave the constraints unmodified. Indeed, for any point x ∈ X, it
satisfies ∇h(x)T ξf (x) = 0. It thus belongs to the tangent space at x to the manifold {y ∈ X :
h(y) = h(x)}.

• unlike the Lagrange algorithms previously presented, the Lagrange multiplier is not sought after
by a gradient descent. At each iteration, it is perfectly adapted so that the constraints decrease at
the rate (1− αh).
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Algorithm

Every implementation details are given in [81, 82] supplemented by the corresponding python library.
Note that box constraints cannot be dealt with an orthogonal projection and must be added as classic
inequality constraints to fulfill the decrease requirements. Yet, for simplicity reasons, this "projection
approach" is nevertheless chosen here.

Algorithm 2.6 describes the numerical process. It involves the merit function M defined at iteration k
by

Mk(x) = αf
(
f(x) + λ∗(xk)Th(x)

)
+
αh
2
h(x)T

(
∇h(xk)∇h(xk)T

)−1
h(x), (2.4.17)

where λ∗(xk) = arg min
s∈R

λ ∈ Rnineq‖∇f(xk) +∇h(xk)Tλ‖.

1 for k ∈ J0, NitK do
2 compute the directions ξkf and ξkh
3 for l ∈ J1, NtrialsK do

4 update the variable: x̃k+1 = xk − ∆t

2l−1

(
αfξ

k
f + αhξ

k
h

)
5 project the result: xk+1 = PK(x̃k+1)

6 if Mk(xk+1) < Mk(xk) then
7 break
8 end
9 end

10 end
Algorithm 2.6: Projected null space gradient flow algorithm

Formalization and extension to inequality constraints

For further explanations, formalization and convergence proofs, the reader is referred to [82]. If this
algorithm already existed for equality constraints, [82] proposes an extension to inequality constraints.
It involves the resolution of the dual problem to characterize the constraints which might get violated at
the following iteration.

2.5 Unconstrained second order algorithms

In case of smoother functions, the Hessian can be computed allowing second order algorithms. We
consider in this section those adapted to unconstrained problems.

2.5.1 Newton descent algorithm

In the unconstrained context and assuming the function f twice differentiable, the optimality condition is
∇f(x) = 0. Thus, applying a root search on the gradient (Algorithm 2.7) should allow the determination
of the points satisfying the necessary optimality condition [10, 170].

1 choose the initialization point x0

2 while the stopping criterion is not reached do
3 compute xk+1 = xk −H[f ](xk)−1∇f(xk)
4 end

Algorithm 2.7: Newton root finding algorithm

This method can be very efficient. Indeed, it ensures a quadratic convergence as long as the initialization
is not too far from the solution [170]. However, it requires regularity and computations to get a Hessian
and to invert it. To remedy this second problem, alternative algorithms have been derived from Newton’s,
very often by approximating the Hessian. This approximation choice leads to different algorithms (among
them quasi Newton, BFGS or DFP).
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2.5.2 Algorithms adapted to least-square problems

The least square problems constitute a specific class for which Newton type algorithms are very useful.
Indeed, the specific formulation of the objective function eases the computation of the gradient and the
approximation of the Hessian [21, 107, 170].

Consider now that the objective is to minimize a least-square function f defined on RM , with ∀v ∈
RM , F (v) = (Fi(v))0≤i≤N and

f(v) =

N∑
i=0

F 2
i (v) = F (v) · F (v). (2.5.1)

The gradient and Hessian of this objective function are:

∇f(v) =
(
∂vjf(v)

)
0≤j≤M =

(
N∑
i=0

2Fi(v)∂vjFi(v)

)
0≤j≤M

= 2J [F ]TF,

∀(j1, j2) ∈ J1,MK2, [H[f ](v)]j1,j2 = 2
[
J [F ]TJ [F ]

]
j1,j2

+ 2

N∑
i=0

Fi(v)∂vj1∂vj2Fi(v),

where J [F ] is the Jacobian matrix so that

∀j ∈ J1,MK,∀i ∈ J1, NK, J [F ]i,j = ∂vjFi.

Following a Newton algorithm, the descent direction dkv is chosen so that ∇f(vk) + H[f ](vk) · dkv = 0.
Approximating the Hessian by its first term J [F ]TJ [F ], this leads to choosing a Gauss Newton direction

J [F ]TJ [F ]dkv = −J [F ]TF.

Remark 2.4. This approach actually amounts to looking for the iterate xk+1 as the minimizer of the
least square problem applied to the linearization of F :

min
y
‖F (xk) + J [F ](xk)

(
y − xk

)
‖. (2.5.2)

This algorithm presents one main drawback: far from the solution, the matrix J [F ]TJ [F ] does not cor-
rectly approximate the Hessian and might be ill-conditioned. In order to solve this problem, a Levenberg-
Marquardt algorithm is preferred [21, 107, 170] and the descent direction chosen is, with µ ∈ R fixed by
the user, (

J [F ]TJ [F ] + µId
)
dkv = −J [F ]TF. (2.5.3)

The intuition given by the ill-conditioned issue can be supplemented by a trust region interpretation.
Indeed, a Levenberg-Maquardt iteration amounts to solving (2.5.2) while constraining the variable y to
remain in a trust domain, the parameter µ corresponding to this constraint’s multiplier [170].

2.6 Non differentiable optimization

In first and second order algorithms, the descent choices are based on the derivatives, which are not always
calculable. Consider for example box constraints. They could be dealt with using differentiable inequality
constraints but also as the indicator function of a convex space. This second option leads to a non
differentiable function. Yet, the projection solution can be used. If involving non differentiable functions
leads usually to complicated resolutions, their convexity simplifies their management. While all the
theories presented above do not involve convexity, we consider in this section the following optimization
problem

min
x∈K

f(x) = fD(x) + fND(x), K ⊂ X. (2.6.1)

The function fD is differentiable with a Lipschitz gradient of constant L and fND is convex non differen-
tiable. The study of non differentiable optimization is here limited to the case of fND convex.
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2.6.1 Optimality conditions regarding non differentiable convex functions

It is essential to quantify the sensibility of each function to small perturbations. Definition 2.8 first
introduces the domain of a function.

Definition 2.8. Let f : X → R ∪ {∞}. Its domain dom(f) is defined as

dom(f) = {x ∈ X : f(x) <∞}. (2.6.2)

Subgradient

The gradient being unavailable, the more general notion of subgradient is intended to represent the
variations of fND at a point [58, 170].

Definition 2.9. Let fND : X → R ∪ {∞} be a convex function and x0 ∈ dom(fND). A vector η ∈ X is
a subgradient of fND at point x0 if

∀x ∈ dom(fND), fND(x) ≥ fND(x0) + (η, x− x0)X . (2.6.3)

The subdifferential of fND at point x0 is constituted of every subgradients of fND at point x0 and is
written ∂fND(x0).

In one dimension, the subgradient consists in all the straight lines going through the point (x0, fND(x0))
which do not cross the graph of fND. The straight line is replaced by an hyperplane in higher dimensions.
To illustrate this, consider the Hilbert space R and the indicator function of R+

χ≥0 : x ∈ R 7→

 0 x ≥ 0

∞ else.
(2.6.4)

The domain of this function is dom(χ≥0) = R+. Consider η ∈ ∂χ≥0(0). Then, ∀x ∈ R+, χ≥0(x) ≥
χ≥0(0) + ηx and thus, η ≤ 0. This leads to ∂χ≥0(0) = R− (Figure 2.7). A second example is given,
considering the Hilbert space R and the absolute value function

va : x ∈ R 7→ |x| ∈ R+. (2.6.5)

Set η ∈ ∂va(0). Then, ∀x ∈ R, |x| ≥ |0|+ ηx and thus, η ∈ [−1, 1] (Figure 2.8).

Figure 2.7: Subgradients at x = 0 of χ≥0 Figure 2.8: Subgradients at x = 0 of va

A second interpretation links this notion with the classic gradient. Indeed, the subdifferential of a
function fND at point x gathers all the "steepest directions" at x: extending the range of fND to +∞, any
infinitesimal movement in these directions increases the function. It is worth noticing that, in case fND

is differentiable at a point x0, the subdifferential only contains the gradient: ∂fND(x0) = {∇fND(x0)}.

Optimality condition

Consider the unconstrained problem
min
x∈X

fND(x).

The corresponding optimality condition involves the subgradient.
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Proposition 2.11. Let fND : X → R ∪ {∞} be a convex function. Then, x∗ ∈ X is a global minimum
of fND if and only if 0 ∈ ∂fND(x∗).

PROOF.
Assume that the condition is satisfied. Then, ∀x ∈ X, fND(x) ≥ fND(x∗) which gives the minimum
property. The reciprocal property comes from the minimum definition.

2.6.2 Proximal operator

A second tool to deal with non differentiable convex functions is the proximal operator, defined as follows.

Definition 2.10. Let fND : X → R ∪ {∞} and let λP ∈ R+. The proximal operator proxλPfND
is

∀x ∈ X, proxλPfND
(x) = arg min

v∈X
fND(v) +

1

2λP
‖v − x‖2X . (2.6.6)

The role of this operator is to optimize fND while controlling the distance between two consecutive
iterates. Indeed, if the function fND is minimized by the proximal operator computation, the second
term prevents the proximal operator value to get far from the point at which it is computed. Among the
different interpretations that can be given, a few are detailed in the following. For further information,
the reader can refer to [157].

Projection

A very simple interpretation is illustrated by Figure 2.9 from [157]. This Figure represents the level set
of a function (thin black lines) as well as its domain (thick black line). Each blue dot point in the domain
is moved so that the function decreases whereas the blue dot points out of the domain are brought back
at the boundary. The role of this operator is thus to minimize the function fND while staying within its
domain dom(fND).

Figure 2.9: Illustration of the proximal operator effects [157]

This first interpretation can be supplemented by considering the indicator function of R+, χ≥0. Let’s
compute the proximal operator of χ. Let x ∈ dom(χ≥0) = R+, λP ∈ R+.

proxλPχ≥0
(x) = arg min

v∈R
χ≥0(v) +

1

2λP
‖x− v‖2R = arg min

v∈R+

‖x− v‖2 = PR+(x). (2.6.7)

In the context of an indicator function, the proximal operator exactly corresponds to an orthogonal
projection. The proximal operator can then be seen as a sort of projection of the point it is computed
at onto a "space of decreasing fND".

Resolvent of the subdifferential operator

The proximal operator, following Proposition 2.12, can also be seen as the resolvent of the subdifferential
operator.

Proposition 2.12. Let fND : X → R ∪ {∞} be a convex function and λP ∈ R+. Then, proxλPfND
=

(Id + ∂fND)
−1.
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PROOF.
Let x ∈ X. Then,

z = (Id + ∂fND)
−1

(x) ⇐⇒ x ∈ {z + ∂fND(z)} ⇐⇒ 0 ∈ z−x
λP

+ ∂fND(z)

⇐⇒ 0 ∈ ∂
(
fND(z) + 1

2λP
‖x− z‖2X

)
,

which, according to the optimality conditions given by Proposition 2.11 gives the result.

This characterization leads, in a differentiable context, to proxλPfND
(x) = (Id +∇fND)

−1
(x) ≈ x −

λP∇fND(x) + o(λP). Finding the proximal operator can thus be related to gradient descent. Yet, the
scheme is implicit and the direction chosen is the gradient at the updated point xk+1 instead of xk as in
the classic gradient descent.

Fixed point

To conclude this brief introduction to this very powerful notion, a last property states the equivalence
between satisfying the optimality conditions and being a fixed point of the proximal operator.

Proposition 2.13. Let fND : X → R ∪ {∞} be a convex function. Then,

0 ∈ ∂fND(x) ⇐⇒ x = proxfND
(x). (2.6.8)

PROOF.
See [157].

2.6.3 Proximal algorithm

The proximal operator is a useful tool to deal with non differentiable convex functions: if it requires
solving a minimization problem, the convexity property eases this process and depending on the function,
the proximal operator can even be explicitly computed. Consider here the unconstrained minimization
problem

min
x∈X

fND(x).

Algorithm 2.8 is designed to minimize this problem. Convergence properties exist under conditions on
the step λP (see [157] for further details).

1 choose the initialization x0

2 while the convergence criteria is not reached do
3 compute the step λP,k

4 compute xk+1 = proxλP,kfND
(xk)

5 end
Algorithm 2.8: Proximal algorithm

Following the mentioned interpretations, this algorithm can be read in terms of fixed point or in terms of
gradient descent while controlling the distance between two iteration points [157]. A last interpretation,
coming from gradient flows, is given. Assume that the function fND is differentiable and consider the
equation

dx

dt
(t) = −∇fND(x(t)). (2.6.9)

In order to numerically solve this equation, time discretization schemes are used. We consider here two
different choices:

• Euler explicit scheme: leading to a gradient descent algorithm

xk+1 − xk
∆t

= −∇fND(xk) =⇒ xk+1 = xk − δt∇fND(xk). (2.6.10)

• Euler implicit scheme: leading to the proximal algorithm

xk+1 − xk
∆t

= −∇fND(xk+1) =⇒ xk+1 = (Id + ∆t∇fND)
−1

(xk). (2.6.11)



64 Chapter 2. Algorithms for constrained optimization

Remark 2.5. Note that the Augmented Lagrangian method can be considered as a proximal algorithm
on the dual [18]. For each iteration k,

(λk, µk) ∈ arg max
λ∈Rneq ,µ∈Rnineq

+

D(λ, µ)− 1

2c
‖λ− λk‖2 − 1

2c
‖µ− µk‖2.

2.6.4 Proximal gradient algorithm

The objective of this section is to minimize a function f = fD + fND, with fD differentiable non convex,
with a Lipschitz gradient of constant L and fND non differentiable convex. The proximal gradient
algorithm (Algorithm 2.9), combining the gradient and the proximal algorithms, ensures the convergence
providing restrictions on the step λP,k > 0. In numerical applications, a line search is performed and the
step λP,K is chosen accordingly to the gradient step (Subsection 2.2.2). Note that in this algorithm, the
gradient and proximal steps match.

1 choose the initialization x0

2 while the convergence criteria is not reached do
3 compute the step λP,k

4 compute xk+1,aux = xk − λP,k∇fD(xk)
5 compute xk+1 = proxλP,kfND

(xk+1,aux)

6 end
Algorithm 2.9: Proximal gradient algorithm

Proposition 2.14. Let (xk)k∈N be the sequence generated by the algorithm. Then,

• ∑∞k=0 ‖xk+1 − xk‖2 <∞,

• any accumulation point of (xk) is a stationary point of f ,

• there exists f such that limk∈∞ f(xk) = f and, writing Ω the set of accumulation points of (xk),
f = f on Ω.

PROOF.
The proof can be found in [195].

Note that if the function fND corresponds to an indicator function of a convex set, the algorithm simply
amounts to a projected gradient algorithm.

2.6.5 Combining the Augmented Lagrangian and proximal gradient methods

We now focus on the full problem

min
x∈K

f(x) = fD(x) + f(x), K = {v ∈ X, h(v) = 0}, (2.6.12)

where the equality constraint h is differentiable with Lipschitz gradient but might be non convex. The
constraints are dealt with an Augmented Lagrangian method, involving the Lagrangian function:

L(x, λ; c) = fND(x) + f(x) + λT · h(x) +
c

2
‖h(x)‖2︸ ︷︷ ︸

fD(x)

. (2.6.13)

In the classic Augmented Lagrangian algorithm, gradient steps on the primal and dual variables were
alternating. In this new algorithm, the same method is used, replacing the primal variable update by
a gradient-proximal step. The algorithm corresponds to the algorithms presented in Section 2.4.4 with
the computation of the dual problem realized using a proximal gradient method: the update xk+1 =
xk−sk∇

(
fD + λkh

)
(or xk+1 = PKbox

(
xk − sk∇

(
fD + λkh

))
in case of box constraints) is now replaced

by
xk+1 = proxskfND

(
xk − sk∇

(
fD + λkh

)
(xk)

)
.

A line search is used to manage the step. Note that if the non differentiable convex function is reduced
to the indicator of a box, the combined algorithm exactly corresponds to Algorithm 2.5.
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2.7 Conclusion

The choice of an optimization algorithm is deeply related to the properties of the objective function and
constraints involved in the problem. In this chapter the algorithms are built upon optimality conditions.
Depending on the regularity of each of the functions and on their convexity, these optimality conditions
can be specified. Characterization of the minima are derived as necessary (and even sufficient depending
on the convexity) conditions. The algorithms are then designed to look for the points satisfying these
conditions.

The objective of this work is to optimize the path. Because the kinematics and the physics must be
controlled, objective functions and constraints are designed accordingly. Yet, to keep the computational
cost low, a simplified model of the phenomena is built in Chapter 4 and used then. To remain close
to significant physical values, this model is calibrated with existing data, by minimizing a least square
function. The adaptation of the Levenberg-Marquardt algorithm presented in Section 2.5.2 is detailed
in Chapter 4. From this model, the path optimization itself can be conducted. If the functions involved
are chosen differentiable, second derivatives may not exist or be highly difficult to compute. Thus, path
optimization is dealt with using constrained first order algorithms (Section 2.4) and especially with the
Augmented Lagrangian method. The null space gradient flow algorithm is also used in Chapters 6 and
7 for comparison but has not yet been implemented for the projects described in the other chapters. In
Chapter 8, the power along the path is added as an optimization variable. In order to avoid degenerated
results with rapid oscillations of this second variable, its total variation is considered as a constraint.
Corresponding to a L1-norm on the gradient of the variable, this function is convex but not differen-
tiable. A combination between the Augmented Lagrangian method and the proximal gradient algorithm
is thus used. Finally, for the concurrent optimization explained in Chapter 9, the Augmented Lagrangian
method is once again applied.

This study of optimization algorithm is not exhaustive and several other possibilities exist. Among the
different perspectives this work calls for, the test of alternative optimization methods to design the path
would be interesting, as well as a wider use of the null space gradient flow algorithm. It would also be
of great interest to adapt this latter to projection on box constraints and ensure the convergence of such
a mixed algorithm (see Section 2.4.5).
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3.1 Introduction

This chapter focuses on structural optimization which is a specific case of the general minimization prob-
lems presented in Chapter 2. The optimization variable is now the structure which must be designed
to decrease a cost f and to belong to an admissible subset K ⊂ Z, where Z is a Banach space. The
constraints and objective function usually depend on the structure’s behavior given as the solution to
a partial differential equation. This type of "PDE-constrained optimization problems" arises in various
applications (see [15] for more details).

Structural optimization is often divided into three categories. In parametric optimization, the structure
is represented by a finite number of specific parameters (thickness of a membrane, elasticity coefficients
or even a parametrization of the shape boundary) which are determined during the optimization pro-
cess. In shape optimization, the structure’s shape itself is modified using infinite dimensional models.
In topology optimization, the sensitivity of the problem to the topology is added to classic shape variations.

Shape variations can be computed through different techniques. In boundary variation methods, the
focus is on the structure’s geometry itself. Its boundary is advected with respect to the sensitivity of the
problem to its variations [9, 15, 97]. These techniques, based on Hadamard’s variation method, include
Lagrangian methods with re-meshing processes as well as level set methods. In homogenization methods
[8, 32], the shape is optimized through a density variable, defined on the whole working domain. The
sensitivity of this function with respect to the optimization problem is computed and the density is
modified. Among the topology optimization methods resulting from this technique, the most famous is
the SIMP method, in which the density is first optimized and then filtered in order to get a clear black
and white final structure. A complete review of this domain is provided by [15].

This chapter presents shape optimization with a focus on sensitivity computations and numerical issues.
In particular, existence and uniqueness issues are not mentioned and further details can be found in
[10, 97]. In Section 3.2, we detail the notion of shape variation and give classic derivative formulations.
Since not only the boundary of the part but also the path are seen as structures, these formulations
are first given for general curves and then adapted to the boundaries of bounded sets. This section
finally explains the transformation of these derivatives into gradients. In Section 3.3, we focus on parts
optimization, and especially on the level set method for shape representation. A numerical test case
illustrates these concepts on a classic example of shape optimization for elastic materials.

3.2 Shape differentiation

First introduced by Hadamard [95], shape differentiation theory has been widely developed [9, 15, 97].
It is often applied to open bounded set optimization, in order to measure the sensitivity of the problem

67
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with respect to infinitesimal boundary variations. This theory can of course be expanded to more general
shapes, and especially to one dimensional curves in a two dimensional domain. In this work, we consider
two different types of structures: on the one hand the part to build which can be represented by an open
bounded set, and on the other hand, in the steady context, the path itself represented by a simple curve.

In this section, shape differentiation theory is detailed for both applications. The adaptation of Fréchet-
differentiability is first presented along with general settings. Then, the computation of classic derivatives
is given as well as differentiation of solutions to partial differential equations. Finally, the regularization
process that transforms the derivative into a gradient is detailed.

3.2.1 Shape differentiability

We shall use in this section the analysis of Murat and Simon [9, 15, 97, 149]. The curves considered in
this chapter belong to the set G given by Definition 3.1, with D ⊂ R2 a bounded working domain.

Definition 3.1. Let G be the set made of all the C2 oriented curves Γ ⊂ D, with tangent τ , starting
at point A and ending at point B. The normal is defined such that, ∀x ∈ Γ, the couple (τ(x), n(x)) is
a direct orthonormal basis. The (mean) curvature is given at each point by κ(x) = divn(x) where the
normal has been extended to a neighborhood of Γ.

The set G contains in particular the boundaries of C2 open sets included in D. Indeed, let Ω be such a
domain. The unit vector n is defined on the boundary ∂Ω as the normal pointing outwards. From this
normal, a tangent vector can be defined at each boundary point so that (τ, n) is an orthonormal basis.
Finally, there exists a point A at which the normal and tangent are continuous. This point can be set
as starting point and end point of the domain boundary which thus belongs to G (Figure 3.1).

Consider a smooth reference curve Γ0 ∈ G. Any admissible curve is assumed to be related to the reference
one through a perturbation θ such that (Figure 3.1)

Γ = {x+ θ(x) such that x ∈ Γ0}.
The curve’s deformation is limited by the vector field’s regularity. To keep the C2 property of the curves,
we choose here θ ∈ C2

(
D,R2

)
. Note that since the working domainD is bounded, each element belonging

to C2
(
D,R2

)
is also bounded.

Remark 3.1. Choosing C2 curves provides the existence of the curvature κ. Yet, part of the theory
developed below can be adapted to domains with less regularity. For example, the set G could be extended
to piecewise C2 curves [9, 15, 97].

Remark 3.2. Non-optimizable zones can be included in the definition of general curves. The corre-
sponding restrictions are applied to the vector field set, leaving the theory unchanged.

(a) Curve (Id+ θ) (Γ) obtained from the reference
curve Γ

(b) Domain (Id+ θ) (Ω) obtained from the
reference domain Ω

Figure 3.1: Deformation of two elements of G: (a)Γ and (b)∂Ω

A notion of differentiability with respect to the curve Γ is derived [9, 15, 97]:
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Definition 3.2. A functional J : R2 → R is said to be shape differentiable at Γ0 ⊂ G if the application
θ → J ((Id+ θ) (Γ0)) is Fréchet-differentiable at 0 in the Banach space C2

(
D,R2

)
, i.e.

J ((Id+ θ) (Γ0)) = J(Γ0) +DJ(Γ0)(θ) + o(θ) with lim
θ→0

|o(θ)|
‖θ‖C2(D,R2)

= 0, (3.2.1)

where DJ(Γ0) is a continuous linear form on C2
(
D,R2

)
and ‖.‖C2(D,R2) =

∑
|α|≤2

‖∂α.‖L∞(D).

3.2.2 Usual derivatives

The goal is now to compute shape derivatives. Before getting any further, we give the notions of tangential
gradient and tangential divergence along the curve [15, 97].

Definition 3.3. Let Γ ∈ G.

• Let f ∈ C1 (Γ,R) be a real-valued function. Its tangential gradient ∇τf : Γ→ R2 is defined by

∇τf = ∇f̃ −∇nf̃ = ∇f̃ − ∂nf̃n (= ∂τfτ),

with f̃ any extension of f to an open neighborhood of Γ (the definition is independent from the
extension). Note that since f takes values in R, ∇τf , ∇f̃ and ∇nf̃ are vectors whereas ∂nf̃ and
∂τf are scalars.

• Let W ∈ C1
(
Γ,R2

)
be a vector field. Its tangential divergence divτW : Γ→ R is defined by

divτW = divW̃ −∇W̃n · n,

where W̃ is any extension of W to an open neighborhood of Γ.

Finally, Proposition 3.1 gives the formula of integration by part along a curve (adapted from [97, 149]).

Proposition 3.1. [97, 149] Let Γ ∈ G. Let f ∈ C1(Γ,R) and θ ∈ C2
(
D,R2

)
. Then

ˆ
Γ

f (divθ − (∇θn) · n) ds =

ˆ
Γ

(κfθ · n− ∂τfτ · θ) ds+ f(B)θ(B) · τ(B)− f(A)θ(A) · τ(A). (3.2.2)

Remark 3.3. Note that in (3.2.2), the knowledge of f out of the curve Γ is not required. In case f is
defined and known on a neighborhood of the curve Γ, the tangential gradient decomposition holds:

∇τ = ∇−∇n = ∇− (∂n.)n

leading to the classic integration by part formula:
ˆ

Γ

f (divθ − (∇θn) · n)+∇f ·θds =

ˆ
Γ

(κfθ · n+ ∂nfn · θ) ds+f(B)θ(B)·τ(B)−f(A)θ(A)τ(A). (3.2.3)

Derivatives in the general curves set G
From Proposition 3.1, the shape derivatives of classic functions with respect to curves in G can then be
provided.

Proposition 3.2. Let Γ0 ∈ G. Let g ∈W 2,1(D,R) and h ∈ C1(Γ0,R). Then, the functions

• J1(Γ) = J2 ((Id+ θ) (Γ0)) =

ˆ
Γ

g(s)ds,

• J2(Γ) = J1 ((Id+ θ) (Γ0)) =

ˆ
Γ

h ◦ (Id+ θ)
−1

(s)ds,

• J3(Γ) = J1 ((Id+ θ) (Γ0)) =

ˆ
Γ

g(s)h ◦ (Id+ θ)
−1

(s)ds

are shape differentiable at Γ0 (i.e. θ = 0) and ∀θ ∈ C2
(
D,R2

)
,
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• DJ1(Γ0)(θ) =

ˆ
Γ0

(g(s)κ(s) + ∂ng(s)) θ(s) · n(s)ds+ g(B)θ(B) · τ(B)− g(A)θ(A) · τ(A),

• DJ2(Γ0)(θ) =

ˆ
Γ0

(h(s)κ(s)θ(s) · n(s)− ∂τh(s)θ(s) · τ(s)) ds+ h(B)θ(B) · τ(B)− h(A)θ(A) · τ(A),

• DJ3(Γ0)(θ) =

ˆ
Γ0

(g(s)h(s)κ(s) + h(s)∂ng(s)) θ(s) · n(s)− g(s)∂τh(s)θ(s) · τ(s)ds

+h(B)g(B)θ(B) · τ(B)− h(A)g(A)θ(A) · τ(A).

PROOF.
To begin with, Lemma 3.1 states the change of variable formula for a surfacic integral.

Lemma 3.1. [9, 97] Let Γ0 ∈ G, θ ∈ C2
(
D,R2

)
be such that (Id+ θ) is a diffeomorphism. Let

f ∈ L1
(

(Id+ θ) (Γ0)
)
. Then, f ◦ (Id+ θ) ∈ L1(Γ0) and

ˆ
(Id+θ)(Γ0)

fds =

ˆ
Γ0

f ◦ (Id+ θ) |det (Id+∇θ)|
∥∥∥∥((Id+∇θ)−1

)T
n

∥∥∥∥
R2

ds. (3.2.4)

We then determine the formula for the function J2. Let θ ∈ C2
(
D,R2

)
and Γ0 ∈ G.

• Let h ∈ C1(Γ0,R). Then, Lemma 3.1 holds and

J2(Γ) =

ˆ
Γ0

h |det (Id+∇θ)|
∥∥∥∥((Id+∇θ)−1

)t
n

∥∥∥∥
R2

ds.

Moreover, following [9, 15, 97],

∥∥∥∥((Id+∇θ)−1
)T

n

∥∥∥∥
R2

= 1− (∇θ)T n · n+ o(θ), lim
θ→0

‖o(θ)‖L∞(Γ)

‖θ‖C2(D,R2)
= 0,

det (Id+∇θ) = 1 + divθ + o(θ), lim
θ→0

‖o(θ)‖L∞(Γ)

‖θ‖C2(D,R2)
= 0.

Then,

J2 (Γ) =

ˆ
Γ0

hds+

ˆ
Γ0

h (div(θ)− (∇θn) · n) ds+ o(θ).

Proposition 3.1 finally leads to the result.
• Let g ∈W 2,1 (D,R). Then,

J1(Γ) =

ˆ
Γ0

g ◦ (Id+ θ) |det (Id+∇θ)|
∥∥∥∥((Id+∇θ)−1

)t
n

∥∥∥∥
R2

ds,

and g ◦ (Id+ θ) = g +∇g · θ + o(θ), with lim
θ→0

‖o(θ)‖L∞(Γ)

‖θ‖C1(R2,R2)

= 0. Thus,

J1 (Γ) =

ˆ
Γ0

gds+

ˆ
Γ0

∇g · θ + g (div(θ)− (∇θn) · n) ds+ o(θ).

Since g is defined on a neighborhood of Γ0, (3.2.3) applies and gives the result.
• The final formula simply derives from a combination of the two first proofs.

Remark 3.4. In Proposition 3.2, function J1 corresponds to the case usually found in literature. Yet,
especially in Chapter 8, we use some functions defined on the curve Γ only. These functions must be
transported by the vector field θ, resulting in the derivatives DJ2 and DJ3 that involve the tangential
gradient ∂τ .

In all these cases and under some regularity conditions, it exists vn, vτ ∈ C0 (Γ0,R) such that the
derivative is given ∀θ ∈ C2

(
D,R2

)
by the general formulation

DJ(Γ0)(θ) =

ˆ
Γ0

(vnθ · n+ vτθ · τ) ds+ vτ (B)θ(B) · τ(B) + vτ (A)θ(A) · τ(A). (3.2.5)
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Open bounded set

We now focus on the particular case of curves corresponding to the boundary to open bounded sets ∂Ω,
i.e. curves ∂Ω ∈ G such that the endpoints A and B satisfy A = B (and τ(A) = τ(B)). In this specific
context [9, 97], Proposition 3.1 can be simplified.

Proposition 3.3. Let Ω be a C2 an open bounded set, f ∈W 2,1(D,R) and θ ∈ C2
(
D,R2

)
. Thenˆ

∂Ω

(∇f · θ + f (divθ − (∇θn) · n)) ds =

ˆ
∂Ω

(∂nf + κf) θ · nds. (3.2.6)

PROOF.
The function f existing on a neighboring of ∂Ω, (3.2.3) applies. Since the starting point is also the
end point and because the tangent is continuous at this point, f(B)θ(B) · τ(B)− f(A)θ(A) · τ(A) = 0
leading to the result.

Proposition 3.4 states the usual derivatives when the curve is the boundary to an open bounded set.

Proposition 3.4. [9, 15, 97] Let Ω ⊂ R2 be a C2 open bounded set. Let f ∈W 1,1(D,R). The function

J(Ω) =

ˆ
Ω

f(x)dx is differentiable at Ω and, ∀θ ∈ C2
(
D,R2

)
,

DJ(Ω)(θ) =

ˆ
∂Ω

f(s)θ(s) · n(s)ds. (3.2.7)

Let g ∈W 2,1(D,R). Then, the function J(Ω) =

ˆ
∂Ω

g(s)ds is differentiable at Ω and, ∀θ ∈ C2
(
D,R2

)
,

DJ(Ω)(θ) =

ˆ
∂Ω

(∂ng(s) + g(s)κ(s)) θ(s) · n(s)ds. (3.2.8)

In the specific case of curves corresponding to boundaries to open bounded sets, and under some regularity
conditions, it exists vn, vτ ∈ L2(∂Ω,R) such that the derivative is given by the general formulation

DJ(Ω)(θ) =

ˆ
∂Ω

(vnθ · n+ vτθ · τ) ds. (3.2.9)

Usually, Proposition 3.4 applies and vτ = 0.

3.2.3 Case of a function depending on a PDE

To evaluate the structure, shape optimization often involves solving a partial differential equation. Since
it affects the optimization functions (objective and constraints), this solution must be taken into account
while differentiating,. We present here a formal but easy strategy: the method of Céa [9, 15, 46].

Consider the variational formulation of a partial differential equation: find u ∈ H1(D) such that,

F (Γ, u, φ) = 0, ∀φ ∈ H1(D). (3.2.10)

Consider the optimization problem

min
Γ
f (Γ, u) , such that ∀φ ∈ H1(D), F (Γ, u, φ) = 0. (3.2.11)

Getting the shape derivative of this problem is not straightforward because of the dependence of the
variable u to the shape Γ. The method of Céa [9, 15, 17, 46] consists in introducing a Lagrangian
function

L :

 G ×H1(D)×H1(D) → R

(Γ, v, q) 7→ f(Γ, v) + F (Γ, v, q).
(3.2.12)

Then, for u solution of the PDE, we know that ∀q ∈ H1(D), L(Γ, u, q) = f(Γ, u). Thus

Df(Γ, u)(θ) = DL(Γ, u, q)(θ) = ∂ΓL(Γ, u, q)(θ) + ∂vL(Γ, u, q) (∂θu(Γ)(θ))) (3.2.13)

Choosing p such that, ∀φ ∈ H1(D), ∂vL(Γ, u, p)(φ) = 0 spares the computation of the derivative of the
solution u with respect to the shape. The function p is called the adjoint to the problem. To compute
the derivative, we finally need to determine this adjoint and to partially differentiate the Lagrangian L
with respect to the shape variable Γ.
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Remark 3.5. The method of Céa can be understood as a saddle-point computation [9, 15].

This method is very simple and thus convenient. Yet, it must be applied with care: indeed, it is only
formal and assumes the differentiability of the PDE solution with respect to the shape. Else, (3.2.13)
could not be satisfied and another process should then be used, involving the differentiation of the PDE
solution with respect to the curve Γ. Since the method of Céa can be used in each of the optimization
problems described in this work, PDE differentiation is not detailed here. The interested reader can refer
to [15] for very clear and detailed explanations.

Remark 3.6. The notion of adjoint introduced here can be related to the object used in optimal control
[9, 15].

3.2.4 From the derivative to the descent direction

In both the Augmented Lagrangian and null space gradient flow methods presented in Chapter 2, the
update direction is defined based on the gradients. The shape derivative of a function J must thus
be transformed into a shape gradient J ′. To apply Riesz representation theorem, a Hilbert structure
(H, (, )H) must be chosen so that H ⊂ C2

(
D,R2

)
, and for any Γ ∈ G, J ′(Γ) is chosen as

∀θ ∈ H, DJ(Γ)(θ) = (J ′(Γ), θ)H . (3.2.14)

We analyze here three Hilbert structures. More information on this topic can be found in [15, 42, 67].
From Propositions 3.2 and 3.4 and under regularity assumptions, the derivative of a differentiable function
J can be characterized by v = (vτ , vn) ∈ C0(D,R) following

DJ(Γ)(θ) =

ˆ
Γ

(vnθ · n+ vτθ · τ) ds+ v(B)θ(B) · τ(B) + v(A)θ(A) · τ(A). (3.2.15)

The first Hilbert space is L2(Γ,R2). This is obviously a naive idea since L2(Γ,R2) 6⊂ C2
(
D,R2

)
. Very

formally (but nevertheless often used in numerical applications), without considering any regularity
issues, we could then choose J ′ ∈ L2(Γ,R2) such that

∀θ ∈ L2(Γ,R2), DJ(Γ)(θ) = (J ′, θ)L2(Γ,R2) =

ˆ
Γ

J ′ · θds, (3.2.16)

and thus
J ′(s) = vττ + vnn, s ∈ Γ, J ′(A) = vτ (A)τ(A), J ′(B) = vτ (B)τ(B).

However, the Hilbert space L2(Γ,R2) does not provide enough regularity to ensure that the gradient J ′
is defined at the endpoints, nor that DJ(Γ) is defined on L2(Γ,R2).
Another possibility, corresponding to the Laplace-Beltrami operator, consists in choosing the Hilbert
space H1(Γ,R2) and thus

∀θ ∈ H1(Γ,R2), DJ(Γ)(θ) = (J ′, θ)H1(Γ,R2) =

ˆ
Γ

ν2
Γ∇τJ ′ · ∇τθ + J ′ · θds, (3.2.17)

with νΓ > 0. This Hilbert space is still not included in C2
(
D,R2

)
. However, the derivative of J can

now be applied to functions θ ∈ H1(Γ,R2) since it provides the existence of θ at the curve endpoints.
Choosing a Hilbert space Hk(Γ,R2) with k > 1 drastically increases the computational cost of the
gradient determination [15] and is not considered in this work. The Laplace-Beltrami operator involves
differentiation along the path. The gradient J ′ is decomposed as J ′ = J ′ττ+J ′nn with, ∀W = Wττ+Wnn,
Wτ ,Wn ∈ H1(Γ,R),

DJ(Γ)(W ) =

ˆ
Γ

(vnWn + vτWτ ) ds+ v(B)Wτ (B) + v(A)Wτ (A),

=

ˆ
Γ

[
ν2

Γ (∇τJ ′τ · ∇τWτ +∇τJ ′n · ∇τWn) + J ′τWτ + J ′nWn

]
ds

(3.2.18)

Solving this equation finally amounts to solving two minimization problems and to determine J ′τ , J ′n ∈
H1 (Γ,R) such that
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

J ′τ = arg min
W∈H1(Γ,R)

ˆ
Γ

(
ν2

Γ

2
(∂τW )

2
+

1

2
W 2 − vτW

)
ds− v(A)W (A)− v(B)W (B),

J ′n = arg min
W∈H1(Γ,R)

ˆ
Γ

(
ν2

Γ

2
(∂τW )

2
+

1

2
W 2 − vnW

)
ds.

(3.2.19)

When the set of curves is reduced to the boundary of open bounded sets Ω, no pointwise value is involved
in the shape derivative (see (3.2.9)) and the scalar products on L2(∂Ω,R2) or H1(∂Ω,R2) can be used. A
third choice consists in choosing the scalar product corresponding to H1(D,R2). This choice regularizes
the problem and actually is an extension process. Indeed, this scalar product defines the gradient J ′ on
the whole working domain D. The computation of this gradient amounts to solving, ∀W ∈ H1(D,R2),

ˆ
D

(
ν2

Γ∇J ′ : ∇W + J ′ ·W
)
dx = DJ(Γ)(W )

=

ˆ
∂Ω

(vnW · n+ vτW · τ) ds.
(3.2.20)

Under the assumptions that each integrand involved in the optimization problem is defined on a neigh-
borhood to the boundary ∂Ω to the open bounded set Ω (assumption used in Proposition 3.4), the
component vτ vanishes and the gradient J ′ is reduced to J ′ = J ′nn with ∀Q ∈ H1(D,R) ,

ˆ
D

(
ν2

Ω∇ (J ′n) · ∇Q+ J ′nQ
)
dx =

ˆ
∂Ω

vnQds. (3.2.21)

These regularization equations allow to compute the shape gradient, which must then be discretized to
get the numerical direction. This discretization depends on the optimization problem and will be fully
detailed in Chapters 6, 7, 8, 9.

Remark 3.7. Note that the Hilbert space H1(D,R2) cannot be used for any curve Γ ∈ G since any
function in H1(D,R2) is not necessarily defined at point A and B.

3.3 Shape optimization of a domain

The main tools used to compute shape derivatives have been reviewed in the previous section. We now
focus on the specific problem of optimizing an open bounded set. To this end, we first detail domain
representation, which is a key ingredient of shape optimization. We focus here on the level set strategy.
Other existing representations are further introduced in Section 5.2.1 and [9, 15]. To end this chapter,
an example of the compliance optimization is presented.

3.3.1 Level set method

Among the many different techniques used to optimize the boundary of an open set Ω, we choose to focus
on the level set method which does not require re-meshing and easily handles topology modifications.
Introduced by [156] for tracking surfaces (see [15, 17] for its application in structural optimization), it
relies upon a function ψ defined on the whole working domain D such that

ψ(x) = 0 ⇐⇒ x ∈ ∂Ω ∩D
ψ(x) < 0 ⇐⇒ x ∈ Ω

ψ(x) > 0 ⇐⇒ x ∈ D \ Ω.

(3.3.1)

Considering the optimization process as a time evolution process, where each iteration is a time step,
the level set function ψ now depends on two variables: x ∈ D and t a pseudo-time representing the
iteration count. At each iteration, the function follows the domain Ω(t) and thus, on any constant level
set ψ(t, x(t)) = C, one has

∀t, dtψ(t, x(t)) = 0,

leading to
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∂tψ(t, x) + ẋ · ∇ψ(t, x) = 0, ∀t, ∀x ∈ D. (3.3.2)

On the boundary ∂Ω(t) (and in the whole domain D if the gradient chosen results from a regularization-
extension scalar product), the velocity ẋ(t) is given by the descent direction θ computed by shape
differentiation:

ẋ(t) = θ (t, x(t)) , ∀t, ∀x ∈ ∂Ω(t). (3.3.3)

Extending the normal to the boundary ∂Ω to the whole working domain D by n(x) = ∇ψ(x)
|∇ψ(x)| and

writing dnΩ(t, x) = θ (t, x) · n(t, x) the update direction on the normal (and dΩ = dnΩ(t, x)n(t, x) the
update direction), the update of the level set is finally given y the Hamilton Jacobi equation

∂tψ(t, x) + dnΩ(t, x)|∇ψ(t, x)| = 0, ∀t, ∀x ∈ D. (3.3.4)

In numerical applications, the processes described in [41, 181] are used. Along the iterations, the advec-
tion equation tends to flatten the level set function values thus "blurring" the results. A re-distanciation
algorithm is thus applied based on the signed distance equation [9, 15, 63, 141]. In numerical applications,
this function is provided by Freefem++[96].

3.3.2 Application: minimization of the volume and compliance

In order to illustrate the notions introduced in this chapter, we consider the following optimization
problem.

Problem setting

Consider a design domain D ⊂ R2 and a space of admissible shapes U , open bounded subsets of D with
Lipschitz boundary. Let Ω ∈ U . Its boundary, ∂Ω, with exterior unit normal vector, n, is composed of
three disjoints parts (Fig. 3.2): ∂ΩD on which displacement is imposed (Dirichlet boundary condition),
∂ΩN on which any load could be applied, and ∂ΩF which is traction-free. Only the boundary ∂ΩF is
optimizable and the boundary ∂ΩD is not reduced to the empty set (∂ΩD 6= ∅).

Figure 3.2: Open set Ω

The solid (and corresponding shape Ω) is comprised of an elastic material with a Hooke’s tensor A
relating the elastic stress and strain. Recall that for any symmetric matrix ξ, A is defined by:

Aξ = 2µeξ + λeTr(ξ)Id, (3.3.5)

where λe and µe are the Lamé coefficients and Id is the identity tensor in two dimensions. In particular,
with linearized elasticity, the elastic stress σe, elastic strain ε, and the elastic displacement u are defined
such that:

ε(u) =
1

2

(
∇u+∇uT

)
, σe = Aε(u). (3.3.6)

The surface loading applied to the Neumann boundary, ∂ΩN, is denoted g ∈ L2 (∂ΩN). The elastic
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displacement u ∈ H1(Ω,R2) is the solution of the partial differential equation given by eq. (3.3.7):

−div (Aε(u)) = 0 in Ω

Aε(u).n = g on ∂ΩN

Aε(u).n = 0 on ∂ΩF

u = 0 on ∂ΩD.

(3.3.7)

Setting H1
D(Ω,R2) = {v ∈ H1(Ω,R2), such that v = 0 on ∂ΩD} the set of functions in H1(Ω,R2)

cancelling on ∂ΩD, the elastic variational problem states that, ∀ϕ ∈ H1
D(Ω,R2),ˆ

Ω

Aε(u) : e(ϕ)dx−
ˆ
∂ΩN

gϕds = 0. (3.3.8)

It is well known that the elastic problem, (3.3.7), is well-posed if ∂ΩD 6= ∅, and that the equation admits
a unique weak solution u ∈ H1(Ω,R2) [78].

The objective function is the normalized shape compliance

f(Ω) =
1

C0
ply

ˆ
Ω

Aε(u) : ε(u)dx =
Cply(Ω)

C0
ply

,

with C0
ply = Cply(Ω0) the initial compliance. A volume constraint is added as

1

V 0

ˆ
Ω

dx =
V

V 0
≤ Vmax

V 0
,

with Vmax fixed by the user and V 0 =

ˆ
Ω0

dx the initial volume. An Augmented Lagrangian method is

applied, with cV the penalization, lV the multiplier and the penalized Lagrangian function

LALM(Ω, lV , cV ) =
Cply

C0
ply

+ ψALM

(
V − Vmax
V ol0

, lV , cV

)
, (3.3.9)

with ψALM defined by (2.4.15).

Differentiation

Using the method of Céa (see Section 3.2.3, [17, 46]), a Lagrangian function is introduced such that,
∀ (Ω, v, q) ∈ U ×H1

D(D,R2)×H1
D(D,R2),

L = LALM(Ω, lV , cV ) +

ˆ
Ω

Aε(v) : ε(q)dx−
ˆ
∂ΩN

g · qds. (3.3.10)

The differentiation of the Lagrangian with respect to v and evaluated at (Ω, u, q) leads to, ∀φ ∈
H1
D(Ω,R2), ˆ

Ω

(
2

C0
ply

Aε(u) +Aε(q)

)
: ε(φ)dx = 0.

Choosing p = − 2

C0
ply

u gives the required adjoint property. The derivative of the objective function with

respect to the shape is then (following Proposition 3.4), ∀θ ∈ C2
(
D,R2

)
such tha θ ·n = 0 on ∂ΩD∪∂ΩN,

Df(Ω)(θ) =

ˆ
∂ΩF

(
1

V 0
ψ′ALM

(
V − Vmax

V 0
, lV , cV

)
− 1

C0
ply

Aε(u) : Aε(u)

)
θ · nds. (3.3.11)

A H1(D)−regularization is finally applied (with νΩ > 0) and the gradient chosen satisfies f ′(Ω) = −Qn
with Q ∈ H1(D,R) such that Q = 0 on ∂ΩN∪∂ΩD and, ∀W ∈ H1(D,R) such thatW = 0 on ∂ΩN∪∂ΩD,ˆ

D

(
ν2

Ω∇Q · ∇W +QW
)
dx = Df(Ω)(Wn). (3.3.12)

Remark 3.8. The vector field chosen here could be less regular than C2
(
D,R2

)
. Indeed, the curvature

is not required.
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Resolution algorithm

To solve the algorithm, a classic Augmented Lagrangian method (see Chapter 2, Section 2.4.4) is applied.
To update the shape at each iteration k, an advection step skΩ is defined as

skΩ = Cks,Ω
∆x

‖dkΩ‖L∞
. (3.3.13)

with ∆x the characteristic element mesh size. The coefficient Cs,Ω is initialized to Cs,0 = 5 and modified
at each iteration through

Ck+1
s,Ω = max

(
ηsaccC

k
s,Ω, Cs,0

)
(3.3.14)

if the iteration is accepted and
Ck+1
s,Ω = ηsrefC

k
s,Ω (3.3.15)

if rejected. The algorithm is finally recapped by Algorithm 3.1:

1 Choose the initialization Ω0 and the corresponding level set function ψ
2 Solve the elastic problem and compute the objective function
3 Solve the adjoint problem and compute the derivative
4 for N iterations do
5 Compute the gradient step corresponding to Cs,k∆x

6 Update the level set function and thus the shape, Ωk+1 and ψk+1

7 Compute the new objective function
8 if f(Ωk+1) ≤ tolf(Ωk) then
9 Accept the iteration

10 Update the multiplier lk+1
V = max

(
lkV + cV

V k+1−Vmax
V 0 , 0

)
11 Solve the adjoint problem and compute the derivative
12 Ck+1

s = max(ηsaccC
k
s , Cs,0)

13 end
14 else
15 Iteration refused
16 Ck+1

s = ηsrefC
k
s

17 end
18 end

Algorithm 3.1: Algorithm for classic shape optimization problems

Numerical results

We consider the classic cantilever problem. The working domain is a square with a characteristic length of
size 1.4mm, discretized into 12.800 triangular elements (Figure 3.3). The loading is applied on the middle
of the right side (centered segment of size 0.28mm). The left side constitutes the Dirichlet boundary,
ΓD. The relevant material properties and design parameters (non-dimensional) are the following: Lamé
coefficients λe = 1 and µe = 8, and loading g = (0,−5). The regularization coefficient is set to νΩ = 5∆x
(see (3.2.21)).

Figure 3.3: Cantilever test case
Figure 3.4: Initial shape,

V 0 = 1.15e− 06, C0
ply = 8.13 10−7
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The optimization process is run with a tolerance tol (see Algorithm 3.1) initialized at 1.6 and multiplied
by 0.9 every 50 iterations. The initial step coefficient is Cs,0 = 5 and the update coefficients are ηsacc = 1.2
and ηsref = 0.6. A first test case is run with Vmax = 0.8V 0. Figure 3.5 presents the evolution of the shape
as well as the compliance and volume with respect to the iterations. The evolution of the shape shows
that the solid part is re-organized to strengthen some specific zones and allow for mass reduction. After
300 iterations, the optimization has converged and both the volume and the compliance have reached
final values.

(a) Iteration 10 (b) Iteration 20 (c) Iteration 50 (d) Final iteration (300)

(e) Evolution of Cply/C
0
ply (f) Evolution of V/V 0

Figure 3.5: Shape, compliance and volume evolution with respect to the iterations, for Vmax = 0.8V 0

From this optimization problem, three different shapes are generated and are used as complex geometry
test cases for path optimization (Chapter 6, 7, 8). They correspond to optimizations with Vmax = 1.3V 0,
Vmax = 0.95V 0 and Vmax = 0.85V 0 and are respectively shown in Figures 3.6, 3.7 and 3.8.

Figure 3.6: Resulting shape
Vmax = 1.3V 0

V/V 0 = 1.32203

Figure 3.7: Resulting shape
Vmax = V 0

V/V 0 = 1.02973

Figure 3.8: Resulting shape
Vmax = 0.95V 0

V/V 0 = 0.982655

3.4 Conclusion

This chapter reviewed the shape optimization tools that will be used in the remainder of this thesis.
These general tools are applied to two main problems. In Chapters 6 and 8 these tools are first used to
optimize the path itself. Then, in Chapter 9, these tools are applied to domain’s optimization, in order
to design the part to be built.
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4.1 Introduction

The Powder Bed Fusion (PBF) process presented in Chapter 1 is far too complex and computationally
demanding to be combined to any of the optimization algorithms detailed in Chapter 2. Assumptions
are thus required. Yet, scanning path optimization for PBF processes has not been studied much, let-
ting freedom in the frame design and very few insights on the pertinence of each choice. This chapter
describes the different modeling assumptions that we have used in this work and sets the framework of
the different optimization problems we have considered.

In Section 4.2, we state the chosen simplifications. This leads to a first macroscopic three dimensional
model focusing on thermal aspects only. To accelerate further the simulation, we have reduced this
model to two dimensions and referred to in the following as the transient model. This Section finally
sets the optimization problem. In Section 4.3, we calibrate this model to better fit the real process.
Using a Levenberg-Marquardt algorithm, the coefficients involved in the temperature simulation are
modified. Thanks to this process, the optimization results from the following chapters have a physical
interpretation. Finally, Section 4.4 proposed a steady state model. To accelerate further the computations,
the time dependence is neglected: the scanning path becomes a hot thread set down on the metallic
powder. Even if this steady state model is obviously a toy model, it gives hints on the algorithmic issues,
allowing for facilitated resolutions. Moreover, assuming that the energy source velocity tends to infinity
(an assumption that could be reasonably made in EBM technology, given that the source is quite fast),
it still enables physical interpretation.

4.2 Transient model presentation: hypothesis, description and opti-
mization problem

The objective of this work is to optimize the scanning path in order to improve the quality of the final
part, while keeping a relevant manufacturing time. Because optimization requires several simulations
and sensitivity computations, this model must carefully balance the accuracy of physical results and the
economy of the computational costs. A full simulation of the PBF process is hence prohibited and a
simplified model must be chosen.

79
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4.2.1 Hypothesis leading to a three dimensional model

Following Chapter 1, a macroscopic approach is chosen, involving powder and solid only, with material
characteristics remaining independent from the temperature. This approach still provides the control
of the manufacturing time and the thermo-mechanical effects, especially thermal expansion and resid-
ual stresses. Computing the latter involves plasticity models. These are hard to solve and their full
resolution is most frequently avoided in optimization in aid of alternate approaches [16, 36, 51]. For
example, the scanning path optimization work, developed in [51] focuses on the inherent strain method
allowing for a residual stresses’ quantification without involving the process’s time dependency: indeed
the inherent strain method developed in [124] and on which [51] is based considers a steady state model.
On the contrary in this work, the time dependence is kept whereas the process efficiency is character-
ized through temperature considerations only. Indeed, residual stresses are mainly due to the spatial
temperature gradient and to thermal expansion (see Chapter 1 and [68, 140]). The focus is thus on the
thermal problem and on the control of the temperatures occurring during the building process. This
choice is obviously a huge approximation. Yet, it also simplifies tremendously the physical resolution
and, since very few references related to scanning path optimization exist, offers a relevant first step to
the algorithm development. Expanding the results to inherent strain methods or full thermo-mechanical
considerations is part of the perspectives.

In a thermal context, the phenomena involved in the building process are the source absorption by the
top layer, conduction within the object, convection and radiation. Once a few layers have been built,
the effects between conduction on the one hand and convection and radiation on the other hand get
unbalanced [186]. In this model, for linearity reasons, convection and radiation are ignored. Yet, the
model calibration process presented in Section 4.3 indirectly involve them in the resolution. Adding them
to the model would require advanced computational methods and is part of the perspectives.

These first assumptions lead to a three dimensional model. Let (eX , eY , eZ) be an orthonormal basis
of R3, and let eZ be the building direction. The model focuses on the scanning of the top layer in the
plane {z = 0} (Figure 4.1). The basis plate is in the plane {z = −H} (the part building has already
been started). We set D the horizontal square cross section of the build chamber (an open bounded set
in R2) and D̃ the three dimensional working domain such that D̃ = D × [−H, 0].

At time t0 = 0, the source q̃ is switched on for the building of the top layer. At t = tF > 0, once the
path has been traveled along, the source is switched off. Note that the computation can be carried on
for tFinal > tF, with q̃(t > tF) = 0 in order to take into account the cooling down before a new layer
of powder is coated. Let ρ, cp, λ ∈ R be the material density, heat capacity and conductivity. Further
modeling them and especially considering them time and space dependent is part of the perspectives.
Before switching on the source, the part is assumed to be at constant temperature yini, which is also
the base plate temperature (a Dirichlet boundary condition is thus set on D × {z = −H}). This
approximation is related to the relaxation time allowed between each layer’s building. Finally, the three
dimensional working domain is assumed to be surrounded by adiabatic powder, leading to the setting
of Neumann boundary conditions on ∂D × [−H, 0]. These settings result in (4.2.1), where y is the
temperature. 

ρcp∂ty(t, x)−∇ · (λ∇y(t, x)) = 0, (t, x) ∈ (0, tF)× D̃,
λ∂ny(t, x) = q̃(t, x), (t, x) ∈ (0, tF)× (D × {0}),
λ∂ny(t, x) = 0, (t, x) ∈ (0, tF)× (∂D × [−H, 0]),

y(t, x) = yini, (t, x) ∈ (0, tF)× (D × {−H}),
y(0, x) = yini, x ∈ D̃,

(4.2.1)

In this model, the distinction between powder and solid appears only in the temperature history of the
building process: the material goes from powder to solid at a point x if there exists a time t at which
the temperature at x goes beyond a change of phase temperature yφ. On the top layer, the solid part at
each time t is characterized by {x ∈ D × {0} : such that y(t, x) ≥ yφ}.

Following most macroscopic models [68, 139], the energy source is modeled as a Gaussian beam, given
by (4.2.2), with P̃ > 0 the source power, A an absorption coefficient and r > 0, the parameter related
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to the focus of the beam:

q̃(t, x) =
AP̃

πr2
exp

(
− (x− u(t))

2

r2

)
, 0 ≤ t ≤ tF. (4.2.2)

The source center u is defined as the solution of the trajectory ordinary differential equation: u̇(t) = V τ(t), 0 ≤ t ≤ tF,
u(0) = ũ,

(4.2.3)

with a constant velocity V > 0 and a tangent unit vector τ(t) to the path Γ. The initial condition ũ is the
starting point of the path. The family of points u(t) for 0 ≤ t ≤ tF defines the scanning path Γ. Usually,
the solution u(t) of (4.2.3) is defined in the space C1([0, tF],R2) or in the space of absolutely continuous
functions AC

(
[0, tF],R2

)
, depending on the smoothness of the path Γ [10] (recall that an absolutely

continuous function is a continuous function which is the primitive of a function in L1(0, tF)). Since the
right hand side of (4.2.3) does not depend on u, it is enough in the sequel to consider solutions u which
belong to the simpler Hilbert space H1([0, tF];R2) which is a subspace of the continuous functions. This
induces that the source q ∈ C0 ([0, tF], C∞ (D)). Finally choosing yini ∈ L2(D,R), there exists a unique
solution y to the problem (4.2.1) and y ∈ C0

(
[0, tF], L2(D̃)

)
∩ L2

(
[0, tF], H1(D̃)

)
[10].

Figure 4.1: Three dimensional model Figure 4.2: Towards a two dimensional model
through Fourier boundary condition

4.2.2 Two dimensional model

In PBF processes, the path actually belongs to the two dimensional plane {z = 0}. Reducing the work-
ing domain dimensions would greatly fasten the computations and ease the optimization. Yet, such a
modification involves new modeling assumptions.

The focus is now on the plane {z = 0}. The new working domain is the top layer D. The energy
source, previously applied on the top layer surface, is now "volumetric" in two dimensions, whereas
the working domain’s boundary ∂D is chosen adiabatic (Neumann boundary condition). As for the
conduction phenomenon, it is now modeled by a classic two-dimensional heat equation supplemented
by an absorption term representing the vertical conduction. The introduction of this additional term is
achieved in two steps.
The first one consists in truncating the working domain to focus on the last layer (Figure 4.2). We
consider a new working domain D̃trunc with thickness L (0 < L < H and D̃trunc = D × (−L, 0)).
Recalling that the physical parameters ρ, c and λ are constant with respect to time and to the vertical
axis, a Fourier boundary condition, with a transmission coefficient β̃ is set on the bottom boundary such
that, ∀(t, x) ∈ (0, tF)× (D × {z = −L}),

λ∂ny = −β̃ (y(t, x)− yini).

This models the heat loss by conduction from the domain D̃trunc to the domain D̃ \ D̃trunc. The
coefficient β̃ measures this heat transmission and must be related to the conduction at the surface and
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to a characteristic thickness ∆Z. We choose β̃ = λ
∆Z , leading to the modified heat equation (4.2.4)

ρcp∂ty(t, x)−∇ · (λ∇y(t, x)) = 0, (t, x) ∈ (0, tF)× D̃trunc,

λ∂ny(t, x) = q̃(t, x), (t, x) ∈ (0, tF)× (D × {z = 0}) ,
λ∂ny(t, x) = 0, (t, x) ∈ (0, tF)× (∂D × [−L, 0]) ,

λ∂ny(t, x) = −β̃ (y(t, x)− yini) , (t, x) ∈ (0, tF)× (∂D × {z = −L}) ,
y(0, x) = yini, x ∈ D̃trunc.

(4.2.4)

In a second step, we average 4.2.4 in the vertical direction in order to deduce a two dimensional model.
Whereas we had x = (X,Y, Z) and ∇ the 3-d gradient operator in 4.2.1, we now consider x′ = (X,Y ) and
∇′ a plane gradient operator. The source term, previously applied on the top layer, is now a volumetric
source of heat on the surface D. An integration along the (Oz)-axis, between (−L) and 0 gives:

ˆ 0

−L
ρcp∂ty −∇ · (λ∇y) dZ = ρcp∂t

(ˆ 0

−L
ydZ

)
−∇′ ·

(
λ∇′

(ˆ 0

−L
ydZ

))
−
ˆ 0

−L
λ∂2

ZydZ

= ρcpL∂tỹ − L∇′ · (λ∇′ỹ)− λ [∂Zy]
0
−L ,

= ρcpL∂tỹ − L∇′ · (λ∇′ỹ)− q̃ + β̃ (y(−L)− yini) .

(4.2.5)

with ỹ =
1

L

ˆ 0

−L
ydz the temperature averaged along the vertical axis. Finally approximating y(−L) by

ỹ and, dividing the equation by L gives (4.2.6):


ρcp∂ty(t, x′)−∇′ · (λ∇′y(t, x′)) +

β̃

L
(y(t, x′)− yini) =

q̃(t, x′)
L

in (0, tF)×D,

λ∂ny(t, x′) = 0 on (0, tF)× ∂D,
y(0, x′) = yini(x

′) in D.

(4.2.6)

To ease the notations, in the following we set β = β̃
L , q = q̃

L , x = (X,Y ) a point in two dimensions and
∇ the plane gradient operator.

In addition to the approximation of the thermal model, this lost of dimension only authorizes the control
of the temperature on the top layer. Information on the other layers is not available and the remelting
process must be controlled by the top temperatures only.

4.2.3 Scanning path optimization problem

The heat equation used in the following is finally given by
ρcp∂ty(t, x)−∇ · (λ∇y(t, x)) + β (y(t, x)− yini) = q(t, x) in (0, tF)×D,
λ∂ny(t, x) = 0 on (0, tF)× ∂D,
y(0, x) = yini(x) in D,

(4.2.7)

with β =
λ

∆Z · L , P = AP̃
Lπr2 and ∀(t, x) ∈ [0, tF]×D,

q(x, t) = P exp

(
− (x− u(t))

2

r2

)
. (4.2.8)

Note that, as mentioned in the three dimensional model, u ∈ H1([0, tF], D), q ∈ C0 ([0, tF], C∞(D)) and
y ∈ L2

(
[0, tF], H1(D)

)
∩ C0

(
[0, tF], L2(D)

)
. This physical model is the basis of a path optimization

problem. The working domain D is split into two different zones: DS part of the layer that must be
built during the scanning, and D \DS part of the layer that must remain powder (see Figure 4.3).
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Figure 4.3: Working domain D composed of the part to built DS and the exterior D \DS

• Constraint on the solid region. Assume that DS ⊂ D is the part of the layer that must solidify (see
Figure 4.3). Then, ∀x ∈ DS , there must be a time t ∈ (0, tF) such that the temperature is above
the phase change (or fusion) temperature yφ, namely y(t, x) > yφ.
Therefore, the following constraint, with the notation (.)+ = max(0, .),

Cφ(tF, y) =

ˆ
DS

[(
yφ − max

t∈(0,tF)
y(t, x)

)+
]2

dx,

has to vanish to ensure that the desired solid region is built with a given path Γ. In the following,
we need to differentiate this function with respect to the final time tF and to the temperature y.
Since the maximum function in time is not differentiable, it is approximated by a Lp-norm in time.
The effective version of the constraint is given by:

Cφ(tF, y) =

ˆ
DS

[
(yφ −Np(tF, y)(x))

+
]2
dx, Np(tF, y)(x) =

(
1

tF

ˆ tF

0

|y(t, x)]pdt

)1/p

. (4.2.9)

The integer p ∈ N, p > 1 has a real impact on the constraint and the higher p is chosen, the
more accurate the norm Np will approximate the maximum in time. However, this will also make
the variations of this same norm steepest, complicating the optimization process. In numerical
applications, this coefficient is fixed to p = 64.

• Constraint on the maximal temperature. We limit the temperature in the whole working domain
D:

– in the region D \ DS , the powder must not melt and the temperature has to remain under
yM,D\DS

≤ yφ. We could fix yM,D\DS
= yφ. However, to urge the temperature to remain under

the limit, we usually choose yM,D\DS
< yφ.

– in the region DS , the powder must solidify. Yet, thermal stresses must be avoided. Recall that
thermal stresses are typically computed like σth = C (y − yini) Id with C a material parameter
related to thermal expansion, yini the initial temperature and Id the identity matrix. Hence, to
minimize the thermal stresses induced by the source, one can impose a maximum temperature
yM,DS > yφ in the region DS . Since this constraint comes from modeling simplifications, we
fix the temperature yM,DS arbitrarily. The impact of this temperature on the optimized path
in the steady state context is assessed in Section 6.5.3 (Chapter 6).

These limited temperature conditions must be satisfied at any time and any point in the domain.
This leads to two distinct constraints

CM,DS
(tF, y) =

1

tF

ˆ
D

ˆ tF

0

[
(y(t, x)− yM,DS)

+
]2
1DS (x)dtdx

=
1

tF

ˆ
DS

ˆ tF

0

[
(y(t, x)− yM,DS)

+
]2
dtdx,

CM,D\DS
(tF, y) =

1

tF

ˆ
D

ˆ tF

0

[(
y(t, x)− yM,D\DS

)+]2
1D\DS (x)dtdx

=
1

tF

ˆ
D\DS

ˆ tF

0

[(
y(t, x)− yM,D\DS

)+]2
dtdx.

(4.2.10)
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Both constraints can be gathered in a unique one by defining the space dependent maximum
temperature yM as

yM(x) =

 yM,DS x ∈ DS ,

yM,D\DS
x ∈ D \DS .

(4.2.11)

The resulting constraint is then:

CM(tF, y) =
1

tF

ˆ
D

ˆ tF

0

[
(y(t, x)− yM(x))

+
]2
dxdt. (4.2.12)

• The objective consists in minimizing the execution time tF or equivalently the path length LF

(since the velocity V is constant):

tF =
LF

V
.

Recall that in the real process, the velocity is not constant and especially curvature dependent.
This model should be supplemented by a kinematic model or constraints on the curvature. These
features are part of the perspectives.

Remark 4.1. The function z+ = max(0, z) is not differentiable at 0. However, its square z → (z+)2

is indeed differentiable at 0 and is thus amenable to gradient-based optimization. The square function
has been chosen here but it could have been any smooth increasing function f , positive on R+ such that
f(0) = f ′(0) = 0. Other choices are possible for replacing a pointwise constraint with an integral one.

Remark 4.2. In this model, the phase change is instantaneous. This is inaccurate since, in reality, the
temperature must stand above the change of phase temperature for a small amount of time δtφ, which
would need to be modeled. This issue could be addressed in a simpler way by stating an effective change
of state temperature ỹφ such that ỹφ > yφ. Thus, since the temperature varies continuously in time, it
would remain above yφ a bit longer.

The following optimization problem finally holds:

min
Γ
J (Γ) = tF such that


Cφ = CM = 0,

y solution of (4.2.7) depending onΓ through the functionu(t)

involved in the source q by (4.2.8).

(4.2.13)

4.3 Model calibration

The two dimensional model on which the optimization problem is built is based on several approxima-
tions and especially a dimension reduction. In order to physically interpret the numerical results, this
resulting model is calibrated to better fit the real process.

Calibration is widely used in applied mathematics with the resolution of an inverse problem on the
model parameters to fit reference data. To do so, specific algorithms have been developed. Usually
modeling the distance to the data through least square criteria, most approaches involve Gauss Newton
and Levenberg-Marquardt methods presented in Chapter 2 (Section 2.5.2).

4.3.1 Settings of the calibration problem

The model calibration focuses in this work on five specific parameters: the material coefficients ρcp (since
the density and heat capacity always appear together, they are considered as a unique parameter), the
conductivity λ, the source radius r as well as the parameters β̃ and L, characterizing the two dimensional
approximation. This arbitrary choice comes from the will to keep the source parameters constant, but
for the radius. Indeed, this latter being deeply related to the mesh precision, it is essential to adapt it
to the working domain discretization chosen in this work (see Remark 4.4).

In order to ease the calibration process, the parameters to fit are scaled so that
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ρcp = ρcp,0vρcp , λ = λ0vλ, r = r0vr, β̃ = β̃0vβ̃ , L = L0vL. (4.3.1)

The quantities ρcp,0, λ0, r0, β̃0, L0 are fixed and the optimization parameters are gathered in an opti-
mization vector v ∈ R5 so that v = (v0, v1, v2, v3, v4) =

(
vρcp , vλ, vr, vβ̃ , vL

)
. The heat equation (4.3.2)

finally holds.



vρcpρcp,0∂ty(x, t)−∇ (vλλ0∇y(t, x)) +
vβ̃ β̃0

vLL0
(y(t, x)− yini(x))

= AP̃
π(vrr0)2vLL0

exp
(
− (x−u(t))2

(vrr0)2

)
1t<tF(t) (t, x) ∈ [0, tFinal]×D

vλλ0∂ny(t, x) = 0 (t, x) ∈ [0, tFinal]× ∂D
y(0, x) = yini(x) x ∈ D.

(4.3.2)

Note that this equation is simulated until tFinal whereas the source is switched off for t > tF: the
relaxation process is taken into account. In order to fit the target temperature ŷ, a least square function
fCAL is built as

fCAL(v) =

ˆ tFinal

0

ˆ
D

(
y − ŷ
ŷ

)2

(t, x)dxdt. (4.3.3)

An Euler implicit resolution scheme is used for the resolution. The time is discretized into N time steps
of constant length ∆t (t = (0, ..., tN ), tN = tFinal). The path Γ on which travels the energy source center
u is approximated by a broken line with constant length segments (more details on the path discretization
are provided in Chapter 5), with the segment size ∆u = V∆t. The source is thus applied on a sequence
of points (ui)i∈J1,NuK belonging to the path Γ and corresponding to the times (t1, ..., tNu) (the final time
corresponds to tF = ∆tNu). For i ∈ JNu + 1, NK, the source is switched off. This leads to a sequence of
temperatures (yi)i∈J0,NK so that y0 = yini and, ∀i ∈ J0, N − 1K,

vρcpρcp,0
yi+1 − yi

∆t
−∇ (vλλ0∇yi+1) +

vβ̃ β̃0

vLL0
(yi+1 − yini)

= AP̃
π(vrr0)2vLL0

exp
(
− (x−ui+1)2

(vrr0)2

)
1i+1≤Nu x ∈ D

vλλ0∂nyi+1 = 0 x ∈ ∂D
y0 = yini x ∈ D.

(4.3.4)

To the sequence of temperatures (yi)i∈J0,NK corresponds a sequence of target temperatures (ŷi)i∈J0,NK
and the discretized least square function

fCAL(v) =

N∑
i=0

∆t

ˆ
D

(
yi − ŷi
ŷi

)2

(x)dx. (4.3.5)

Note that, if more than one path is used for the calibration, the sum of the least square functions
corresponding to each simulation gives the final objective.

Remark 4.3. We recall that the absorption coefficient holds as β̃ = λ
∆Z and optimizing this coefficient

actually amounts to optimizing the characteristic length ∆Z.

4.3.2 Adaptation to Levenberg Marquardt algorithm

In order to minimize the least square function, a Levenberg-Marquardt strategy, presented in Chapter
2 (Section 2.5.2) is used. To compute the Jacobian and Hessian approximation, we first set FCAL(v) =(
FCAL
i (v)

)
i∈J0,NK with ∀x ∈ D,

FCAL
i (v)(x) =

√
∆t

(
yi − ŷi
ŷi

)
(x). (4.3.6)

Then, following (4.3.5), the least square function fCAL corresponds to the L2(D)N+1 norm of this vector:

fCAL(v) = ‖FCAL(v)‖2H1(D)N+1 =

N+1∑
i=0

ˆ
D

FCAL
i (v)2(x)dx.
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The Jacobien matrix J CAL is defined by, ∀i ∈ J0, NK (time steps), ∀j ∈ J0, 4K (number of calibration
parameters), ∀x ∈ D

J [FCAL]i,j(v)(x) =

√
∆t

ŷi(v)(x)
∂vjyi(v)(x). (4.3.7)

The gradient of fCAL is then given, ∀x ∈ D, by ∇fCAL(v)(x) = 2
(
J [FCAL](v)T · FCAL(v)

)
, with,

∀j ∈ J0, 4K, (
J [FCAL](v)T · FCAL(v)

)
j

=

N∑
k=0

∆t

ˆ
D

∂vjyk(v) (yk(v)− ŷk(v))

ŷk(v)2
(x)dx. (4.3.8)

Finally, the simplified Hessian H[FCAL] = J [FCAL](v)T · J [FCAL](v) is defined, ∀i, j ∈ J0, 4K, by

H[FCAL]i,j =

N∑
k=0

∆t

ˆ
D

∂vjyk(v)∂viyk(v)

ŷk(v)2
(x)dx. (4.3.9)

To compute the descent direction, the remaining task is to get the sensitivity of the temperature with
respect to the calibration vector v. A simple differentiation of the partial differential equation (4.3.4)
gives,

• with respect to vρcp :
vρcpρcp,0∂t∂vρcp y −∇

(
vλλ0∇∂vρcp y

)
+

vβ̃ β̃0

vLL0
∂vρcp y = −ρcp,0∂ty in (0, tFinal)×D

vλλ0∂n∂vρcp y = 0 on (0, tFinal)× ∂D
∂vρcp y(t = 0) = 0 inD.

• with respect to vλ:
vρcpρcp,0∂t∂vλy −∇ (vλλ0∇∂vλy) +

vβ̃ β̃0

vLL0
∂vλy = ∇ (λ0∇y) in (0, tFinal)×D

vλλ0∂n∂vλy + λ0∂ny = 0 on (0, tFinal)× ∂D
∂vλy(t = 0) = 0 inD.

• with respect to vr:

vρcpρcp,0∂t∂vry −∇ (vλλ0∇∂vry) +
vβ̃ β̃0

vLL0
∂vry

=


2AP̃

πvLL0v2
rr

2
0

exp
(
− (X−u)2

v2
rr

2
0

) [
(X−u)2

v3
rr

2
0
− 1

vr

]
t ≤ tF

0 t > tF
in (0, tFinal)×D

vλλ0∂n∂vry = 0 on (0, tFinal)× ∂D
∂vry(t = 0) = 0 inD.

• with respect to vβ̃ :
vρcpρcp,0∂t∂vβ̃y −∇

(
vλλ0∇∂vβ̃y

)
+
vβ̃ β̃0

vLL0
∂vβ̃y =

β̃0

vLL0
(yini − y) in (0, tFinal)×D

vλλ0∂n∂vβ̃y = 0 on (0, tFinal)× ∂D
∂vβ̃y(t = 0) = 0 inD.

• with respect to vL:

vρcpρcp,0∂t∂vLy −∇ (vλλ0∇∂vLy) +
vβ̃ β̃0

vLL0
∂vLy

=
vβ̃ β̃0

v2
LL0

(y − yini)−


AP̃

πv2
LL0v2

rr
2
0

exp
(
− (X−u)2

v2
rr

2
0

)
t ≤ tF,

0 t > tF,
in (0, tFinal)×D

vλλ0∂n∂vLy = 0 on (0, tFinal)× ∂D
∂vLy(t = 0) = 0 inD.
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They are then discretized following the same Euler implicit scheme than for the heat equation. Finally,
since the coefficients represent physical quantities, each element of the vector v must remain positive.
Thus, each iteration is ended by a projection P+ of the vector v on the positive values. The projected
Levenberg-Maquardt algorithm (see Algorithm 4.1) has been chosen accordingly to [107]:

µCAL = 1, γCAL = 0.99995, σCAL = 10−4, αCAL = 0.9, εCAL = 10−5, εCAL,2 = 10−12.
(4.3.10)

1 Choose an initialization v0 as well as µCAL > 0, γCAL, σCAL, αCAL ∈ (0, 1), εCAL, εCAL,2 > 0
and k := 0

2 if
√
fCAL(vk) = ‖FCAL(vk)‖ ≤ εCAL then

3 STOP
4 end
5 else
6 Compute the direction dkv such that(

H[FCAL](vk) + µCALf
CAL(vk)Id

)
dkv = −

(
J [FCAL](vk)T · FCAL(vk)

)
7 if

√
fCAL (P+ (vk + dkv)) ≤ γCAL‖FCAL(vk)‖ = γCAL

√
fCAL(vk) then

8 Levenberg-Marquardt iteration accepted
9 vk+1 = P+

(
vk + dkv

)
10 end
11 else
12 Compute a stepsize tk = max{αlCAL, l = 0, 1, 2, ..} such that

fCAL
(
P+

(
vk − tk∇fCAL(vk)

))
≤ fCAL(vk)+σCAL∇fCAL(vk)T ·

(
P+

(
vk − tk∇fCAL(vk)

)
− vk

)
13 if tk ≤ εCAL,2 then
14 STOP
15 end
16 else
17 vk+1 = P+

(
vk − tk∇fCAL(vk)

)
18 end
19 end
20 end

Algorithm 4.1: Projected Levenberg Marquardt.

4.3.3 Target data

This calibration work has been initiated thanks to the data provided by Giovanni MAGNO, Centre de
Nanosciences et de Nanotechnologies, Université Paris Saclay, laboratory part of the SOFIA project [2].
The final target data have been provided by the code developed by Kamel ETTAIEB, LURPA. This
codes uses a convolution method to simulate a three dimensional conduction heat equation. This model
had itself been calibrated using ESI codes and is fully presented in [77].

These data are given for a working domain Ddata = [0, 1.0 10−3m] × [0, 1.0 10−3m] meshed with 10000
quadrangle elements. Four simulation sets are used: two paths combined to two different initial tem-
peratures (293K and 773K). The source speed is fixed to V = 1ms−1 and the computational time step
is ∆t = 1.0 10−5s. The paths are discretized with equidistant points (with a distance ∆u = V∆t) and
correspond to (Figures 4.4 and 4.5):

• 2 lines zigzag, starting at
(
0.2 10−3m, 0.25 10−3m

)
, with horizontal length 0.6 10−3m and vertical

length 0.5 10−3m.

• 3 lines zigzag, starting at
(
0.2 10−3m, 0.17 10−3m

)
, with horizontal length 0.6 10−3m and vertical

length 0.33 10−3m.

The source power is also a Gaussian source (see (4.2.2)). However, the absorption A is coefficiented by
0.4 coming from the data model calibration. This absorption being fixed to A = 0.3, we will consider in
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the following A = 0.3 ∗ 0.4 = 0.12. The source power is P̃ = 300W and its radius r = 5.0 10−5m. As
for the physical coefficients used, they correspond to the Ti6Al4V alloy with ρcp = 4420 ∗ 800m−3JK−1

and λ = 15Wm−1K−1. Note that these values correspond to the powder’s.

The data provided gives more information than the Nu target temperatures corresponding to the source
travel along the scanning path. Indeed, 100 additional temperatures are given, corresponding to the
evolution of the temperature straight after the source is switched off (in each case, N = Nu + 100).

Further introduced in the next chapters, the working domain used in this work is different from the one
used to simulate the data. We consider D = [−0.7, 0.7] × [−0.7, 0.7] given in mm meshed with 12800
isosceles right-angled triangular elements (characteristic mesh size of 02.47 10−5m). The data being
provided for Ddata = [0, 1.0] × [0, 1.0] given in mm, the calibration mesh is composed of 6498 isosceles
right-angled triangular elements (characteristic mesh size of 2.48 10−5m, close to the mesh size that will
be used in the remain of this work). The target temperatures are interpolated on this new mesh thanks
to the algorithms developed by FreeFem++ [96]. The temperature maps after N time steps on the new
working domain are given by Figures 4.4 and 4.5.

(a) Two lines zigzag (b) Temperature 100 time steps after
switching off the source, yini = 293K

(c) Temperature 100 time steps after
switching off the source, yini = 773K

Figure 4.4: Two lines zigzag path and corresponding temperature 100 iterations after switching off the
source, with yini = 293K (center) and yini = 773K(right)

(a) Three lines zigzag (b) Temperature 100 time steps after
switching off the source, yini = 293K

(c) Temperature 100 time steps after
switching off the source, yini = 773K

Figure 4.5: Three lines zigzag path and corresponding temperature 100 iterations after switching off
the source, with yini = 293K (center) and yini = 773K(right)

4.3.4 Numerical results

Algorithm 4.1 is run with

ρcp,0 = 4420 ∗ 800m−3JK−1, λ0 = 15Wm−1K−1, r0 = 5.0 10−5m

β̃0 =
λ0

∆Z
=

15

0.5 10−3
Wm−2K−1, L0 = 0.1 10−3m.

(4.3.11)



4.3.4. Numerical results 89

If the values ρcp,0, λ0 and r0 are chosen from the data (values corresponding to the titanium, see the
Nomenclature), the coefficients βLZ and L0 come from successive guesses. As for the initial optimization
vector, v, each of its elements is initialized to 1 (v0 = (1, 1, 1, 1, 1)).

Remark 4.4. The source radius is strongly related to the mesh accuracy. Indeed, to be well captured,
the mesh must be thin enough around the source. In our case, the mesh is thinner than the one used
to provide the data temperatures. Thus, there should not be any source capture issue. The radius is
nevertheless kept as an optimization parameter.

Results

The code is run using a combination of FreeFem++ (FreeFem++ 3.56) for the finite element computations
and Python (Python 3.6.7). On a MacBook laptop equipped with 2,3 GHz Intel Core i5 and a RAM
of 16GB, a mean Levenberg-Marquardt iteration takes 30s whereas a gradient type one takes 70s. The
code is stopped after 60 iterations. Figures 4.6 and 4.7 give the temperature 100 iterations after the
source’s switching off for the initial and final parameters for both the 2 lines zigzag and 3 lines zigzag
paths with yini = 293K. The calibration process mainly increases the absorption. This is very clear
looking the evolution of vβ̃ with respect to the iterations. In the temperature maps, this comes out by
the decrease of the global temperature during the calibration. The results corresponding to yini = 793K
show the same evolution tendency. Figure 4.8 shows the evolution of the optimization variable elements
vρcp , vλ, vr, vβ̃ , vL and the evolution of the least square function fCAL.
The final coefficients are:

vρcp = 0.865692, vλ = 0.838116, vr = 1.062719, vβ̃ = 4.293009, vL = 0.675627.

leading to the effective coefficients:

ρcp = 3061086.91m−3JK−1, λ = 12.57Wm−1K−1, r = 5.31 10−5m

β̃ =
λ

∆Z
=

12.57

9.76 10−5
Wm−2K−1, L = 6.76 10−5m.

To quantify these calibration results in terms of mean temperature difference to the data, we introduce
∆(t, x) =

(
y(t,x)−ŷ(x)

ŷ(x)

)
the pointwise difference as wall as its "mean value" over space and time:

∆ =
1

N |D|
N∑
i=0

ˆ
D

|∆(ti, x)|.

This value went from 0.0498 to 0.0217 during this calibration process. The results are here quoted
several significant figures. This choice only consists to avoid accuracy losses from the calibration process
to further numerical tests, and is in no way dictated by the model’s accuracy which obviously remains
low.

Artificial parameters β̃ and L optimization

To keep the parameters ρcp, λ, r unchanged, the calibration can be run to optimize only the artificial
coefficients β̃ and L. Using the previous initialization and running 60 iterations, the final values are

vβ̃ = 4.286761, vL = 0.585071,

leading to the effective parameters

β̃ =
λ

∆Z
=

15

1.16638 10−4
Wm−2 ·K−1, L = 5.85071 10−5m,

and to a final mean temperature difference ∆ = 0.0220. The temperature obtained 100 iterations after
the source’s switching off for the final iteration in the different path cases with yini = 293K is shown
by Figure 4.9 whereas the evolution of the parameters vβ̃ and vL, of the least square function fCAL are
given by Figure 4.10.
It is worth noticing that the final temperatures are very close to the previous results and the final
least square function value is almost as small as the previous one. Thus, without any modification of
the material nor the process parameters, two lengths L and ∆Z (∆Z being related to the absorption
parameter β̃) can be found making the two dimensional model a correct approximation of the three
dimensional one.
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(a) Computed with the initial vector
v0

(b) Computed with the final vector v (c) Target

Figure 4.6: Temperature, 100 iterations after the source switching off, 2 lines zigzag and yini = 293K

(a) Computed with the initial vector
v0

(b) Computed with the final vector v (c) Target

Figure 4.7: Temperature, 100 iterations after the source switching off, 3 lines zigzag and yini = 293K

(a) Evolution of fCAL (b) Evolution of vρcp (c) Evolution of vλ

(d) Evolution of vr (e) Evolution of vβ̃ (f) Evolution of vL

Figure 4.8: Evolution of the least square function fCAL as well as the optimization variable v with
respect to the iterations

Parameters choice for the numerical applications

We finally choose this second set of parameters with β̃ = λ
∆Z and

∆Z = 1.16638 10−4m, L = 5.85071 10−5m. (4.3.12)
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(a) 2 lines zigzag, yini = 293K (b) 3 lines zigzag, yini = 293K

Figure 4.9: Temperature, 100 iterations after the source switching off, with the optimized artificial
parameters β̃ and L

(a) Evolution of fCAL (b) Evolution of vβ̃ (c) Evolution of vL

Figure 4.10: Evolution of the least square function fCAL as well as the optimization variables β̃ and L
with respect to the iterations

As for the source values, the source radius is fixed to 5.0 10−5m whereas the source power P̃ depends on
the test cases.
The model’s influence on the path optimization results will be conducted in the steady state context in
Chapter 6.

4.4 Steady model presentation

To further simplify the computations, a new model is derived in which each point instantaneously reaches
its maximum value when the source is switched on. This leads to steady state considerations, neglecting
any time dependence. Instead of optimizing the path with respect to time, we now consider that the
optimization variable is a hot thread to be dropped on the working domain. This model is of course
not realistic and must be considered as a toy model. However it gives, at a very low computational
cost, insights and intuition on the time dependent problem, especially in case of processes allowing high
scanning velocity such as EB-PBF. Indeed, this new model can be seen as a transient model with an
infinite scanning velocity.

4.4.1 Model derivation

From the time-dependent to the steady state model

To derive the steady state model from the previous one, the heat equation is first averaged in time.
Consider the implicit Euler scheme corresponding to (4.3.4), with the time step ∆t constant (and Nu
time steps, the final computation time being now the source’s switching off time). Averaging this equation
in time and dividing it by ρcp leads to
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

1

tF

Nu∑
i=0

(
yi+1 − yi −∇

(
λ

∆t

ρcp
∇yi+1

)
+
β̃

L

∆t

ρcp
(yi+1 − yini)

)

=
∆t

ρcp

AP̃

π

1

LtF

Nu∑
i=0

1

r2
exp

(
− (x− ui+1)

2

r2

)
in D,

∆t

ρcp
λ∂nyi+1 = 0 on ∂D.

Let y be the average temperature in time and assume that

y =
1

tF

Nu−1∑
i=0

yi+1 =
1

tF

Nu−1∑
i=0

yi. (4.4.1)

Then,
1

tF

Nu−1∑
i=0

yi+1 − yi = y − y = 0 and, dividing the heat equation by
∆t

ρcp
leads to,


−∇ (λ∇y) +

β̃

L
(y − yini) =

AP̃

π

1

LtF

Nu−1∑
i=0

1

r2
exp

(
− (x− ui+1)

2

r2

)
in D,

λ∂ny = 0 on ∂D.

(4.4.2)

The second approximation involves modifying the source. Instead of considering a Gaussian distribution,
the source is assumed to be concentrated on the application point. A new heat equation holds, where
χu is the Dirac function related to the point u:



−∇ (λ∇y) +
β̃

L
(y − yini) = AP̃

1

LtF

Nu−1∑
i=0

ˆ
D

1

π

1

r2
exp

(
− (x− ui+1)

2

r2

)
dx

= AP̃
1

LtF

Nu−1∑
i=0

χui+1
in D,

λ∂ny = 0 on ∂D.

(4.4.3)

With Γ the scanning path, the final assumption is then that χΓ =

Nu−1∑
i=0

χui+1
, where χΓ is the lineic

Dirac mass along the path Γ such that, ∀φ ∈ H1(D),
´
D
χΓφds =

´
Γ
φds. This leads to the steady state

heat equation (4.4.4).  −∇ (λ∇y) +
β̃

L
(y − yini) =

AP̃

LtF
χΓ in D,

λ∂ny = 0 on ∂D.

(4.4.4)

To simplify the writting, we set

β =
β̃

L
, P =

AP̃

LtF
(4.4.5)

Steady path optimization problem

In the following, the bar notation is given up (keeping in mind that the coefficients involved in the steady
heat equation are different from the coefficients involved in the transient heat equation) and the steady
state problem is finally given by: −∇ (λ∇y) + β (y − yini) = PχΓ in D,

λ∂ny = 0 on ∂D,
(4.4.6)

with λ the conductivity in the steady state context. Following [10], this leads to y ∈ H1(D) uniquely
defined. Equivalently to (4.4.6), the temperature y ∈ H1(D) is the solution of the variational formulation:
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∀φ ∈ H1(D),
ˆ
D

(λ∇y · ∇φ+ β (y − yini)φ) dx−
ˆ

Γ

Pφds = 0. (4.4.7)

The corresponding steady state objective function and constraints are:

• Constraint on the solid region: the phase-change constraint becomes ∀x ∈ DS , y(x) ≥ yφ resulting
in

Cφ(y) =

ˆ
DS

[
(yφ − y(x))

+
]2
dx. (4.4.8)

• Constraint on the maximum temperature: the constraint becomes ∀x ∈ D, y(x) ≤ yM(x), resulting
in

CM(y) =

ˆ
D

[
(y(x)− yM(x))

+
]2
dx. (4.4.9)

Like in the transient case, this constraint can be split into two different constraints: the constraint
CM,DS

related to the domain DS and CM,D\DS
for the domain D \DS .

• Objective of minimizing the path length: the final time does not mean much while considering the
steady state. The length of the path is considered instead, given by:

LF =

ˆ
Γ

ds. (4.4.10)

Note that to involve the kinematics, the length could be replaced by the integral of curvatures on
the path. This however complicates the resolution and remains part of perspectives.

The optimization problem is finally the same than for the time dependent one given by (4.2.13), but for
a slight difference on the objective function: in the steady state case, the objective function considered
is directly the path length LF whereas in the unsteady case, the final time tF is chosen. Because the
velocity V is constant in a first approach, both choices actually amount to the same.

4.4.2 Calibration of the steady state model

The data provided have been simulated with the same parameters than in Section 4.3 and correspond
to the maximum values of the temperature at each point. The computational mesh remains the same
whereas the path discretization in this steady state case is fully detailed in Chapter 5.

The objective is now to calibrate the model in order to make the steady state temperature fits the
maximum temperature obtained during the time dependent simulations given in Section 4.3. In this
calibration, two parameters can be modified: the modified absorption β and the modified power P . This
is an arbitrary choice and the conductivity λ could also be considered. Yet to ease the change of material
without any new calibration, this parameter is kept unmodified (λ = 15Wm−1K−1 for the calibration).
Like in the transient case, these parameters are normalized and two reference values are introduced
(following (4.4.5) with the parameters found in Section 4.3 and (4.4.4), the final time corresponding to
the time required to execute all the paths):

β0 =
15

1.16638 10−4

1

5.85071 10−5
Wm−3K−1, P 0 =

0.3 · 0.4 · 300

8.32 10−3 · 5.85071 10−5
Ws−1m−1, (4.4.11)

Finally the optimization variables are gathered into v = (v0, v1) =
(
vβ , vP

)
, such that

β = vββ0, P = vPP 0. (4.4.12)
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The calibration process is run for the reduced least square function fCAL =

ˆ
D

(
y − ŷ
ŷ

)2

dx (the total

objective function is the sum on each path considered of the specific least square function) and the
sensitivity of the heat equation with respect to each parameter is

 −∇ ·
(
λ∇∂vβy(x)

)
+ vββ0∂vβy(x) = β0 (yini − y(x)) in D,

λ∂n∂vβy(x) = 0 on ∂D,
(4.4.13)

 −∇ ·
(
λ∇∂vP y(x)

)
+ vββ0∂vP y(x) = P 0χΓ(x) in D,

λ∂n∂vP y(x) = 0 on ∂D.
(4.4.14)

Finally, the algorithm is run for 1000 iterations. Figures 4.11 and 4.12 gives the results. The two first
lines show three temperature maps: the target one, the temperature map at calibration initialization and
the temperature map after calibration. The first line corresponds to the 2 lines zigzag with yini = 293k
whereas the second shows the 3 lines zigzag with yini = 293K. The result tendency is the similar for
yini = 793K. Finally, the objective function and optimization variables are displayed. In the transient
context, the time dependency results in preheating the neighborhood of the source. In the steady state
model, the time dependency and thus this preheating are removed. As a consequence, the conduction
seems lower. To compensate this effect, the power is increased (vP = 22.1) as well as the absorption
coefficient β.
The final coefficients are

vβ = 3.084650, vP = 22.099501, (4.4.15)

leading to

β =
15

2.212293 10−9
Wm−3 ·K−1, P = 300 ∗ 5.447934 106Ws−1 ·m−1. (4.4.16)

(a) Target temperature, 2 lines
zigzag, yini = 293K

(b) Initial temperature, 2 lines
zigzag, yini = 293K

(c) Result, 2 lines zigzag,
yini = 293K

(d) Target temperature, 3 lines
zigzag, yini = 293K

(e) Initial temperature, 3 lines
zigzag, yini = 293K

(f) Result, 3 lines zigzag,
yini = 293K

Figure 4.11: Result from the calibration of the steady state model
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(a) Evolution of fCAL (b) Evolution of vβ (c) Evolution of vP

Figure 4.12: Objective function and variables evolution from the calibration of the steady state model

It is clear that the results before calibration are very different from the target values.

Parameters choice for the steady state numerical applications

The coefficients finally chosen are

β =
λ

2.212293 10−9
Wm−3, P = P̃ ∗ 5.447934 106Ws−1 ·m−1, (4.4.17)

where P̃ is a process choice. As for the conductivity λ, it is related to the material. All the chosen values
are given in the Nomenclature.

4.5 Conclusion

In this chapter two different models have been introduced. The transient one aims at modeling the
process in two dimensions. The resulting optimization problem is based on thermal considerations only
and especially on a temperature control. Resulting from several assumptions, a calibration has been
run to enable physical interpretations of the results in the remaining of this work. Two physical cases
have been specifically highlighted: the titanium material and the aluminium material, both showing very
different conductivities. It is reminded that the model chosen is based on several assumptions which may
involve several other problem parameters (related to the source for example) in the calibration process.
Improving the model and its calibration is part of the perspectives with, in particular, comparison of the
resulting coefficients found for calibrations run on different materials or different heat source properties.
Based on the transient model, we have also defined a steady state model that does not involve time de-
pendence. This toy model highly reduces the computational time and leads to a simplified optimization
resolution.
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5.1 Introduction

To allow for numerical computations, the continuous optimization problem detailed in Chapter 4 must
be adapted to a discrete setting. Two main approximations are required: the working domain D must
be meshed and the path Γ given by a finite number of parameters. Both choices are crucial in terms
of computational cost and accuracy of the results. They are also tightly related: the path carries the
source center in the transient context and the source itself in the steady state context. Thus, its discrete
representation directly impacts the resulting temperatures that must be controlled. On the other hand,
the working domain mesh also impacts these temperatures and thus the path modification.

This "moving interface" issue is well-known in the literature [91, 155]. For example computational fluid
mechanics and especially multiphase flow modeling must accurately compute the interface between two
flows. The motion of this interface along the simulation led the development of different techniques
allowing for accurate and cheap enough computations [136, 155, 171, 183]. This issue is also considered
in topology and shape optimization: the interface is the optimization variable itself and is thus moved
along the iterations [15, 17]. One can finally mention computer vision and image processing [155].

This chapter presents the discretization choices used in this work. Starting by a brief review of inter-
face motions modeling, Section 5.2 motivates the numerical choices and especially the adoption of a
Lagrangian-Eulerian method involving two different meshes: the working domain mesh, called physical
mesh, is first developed whereas the path mesh, called path discretization, depends on the context and
is detailed in Sections 5.3, 5.4 and 5.5. Section 5.3 expands the path discretization in the steady state
context. To keep the representation simple, a broken line is selected, its node points being the optimiza-
tion variables. Section 5.4 gives a first discretization choice in the transient context. Also based on a
broken line, each element has the same length. The control is then on the first point, the number of
elements and the angles between each element and the horizontal axis. Finally, Section 5.5 presents a
second choice in the transient context, where the broken line is once again defined by its node points.
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98 Chapter 5. Path discretization

5.2 Working domain and path meshing

In this work, the objective is to optimize the source path Γ to control the temperature occurring in a
working domain D. While the heat equation is solved in a finite element setting (using FreeFem++ 3.56
[96]), the path must be represented to enable the source computation (4.2.8). We thus focus on a moving
interface problem in which the path and working domain discretizations must be chosen.

5.2.1 State of the art

The path Γ is brought to evolve along the optimization process and the representation issue can be com-
pared with free interfaces motions. As previously mentioned, this problematic arises in several domains
and is thus widely developed. Based on [102, 136] and references therein, a brief overview is given.

Two main approaches, the Eulerian and the Lagrangian, have been developed to compute the evolution
of an interface in time and space.

Lagrangian approaches

In Lagrangian methods, the interface is followed point-wisely. To do so, it is in most cases included into
the computational mesh, requiring re-meshing all along the motion (see Figure 5.1). The techniques based
on this approach (interface or boundary integrals) provide accurate results. However, the computational
costs are high and the topology modifications difficult to handle.

Eulerian approaches

In Eulerian methods, the interface is not point-wisely followed but tracked or captured. The working
domain mesh is fixed (or slightly adapted at each interface modification) and an additional variable
representing the interface is created. Two main categories of interface variable exist (Figure 5.1):

• interface tracking: this first technique brings back the Lagrangian spirit. Indeed, the interface is
fully discretized and, if not modifying the working domain mesh, this discretization follows the
interface modifications along the process. Among the several references given in [136, 102], the
approach from Tryggvason and al. [183] is specifically of interest in this work.

• interface capturing: in this second technique, the interface is not discretized but reproduced. In
marker and cell techniques for example, a marker quantity is introduced and convected in each
cell of the working domain mesh. Finding the interface thus amounts to considering this marker
function (see SIMP methods in topology optimization [32]). Another example is given by level set
methods, that consist in introducing a finite element function related to the working domain mesh,
the interface being given by its zero level ([17, 156]). The Marching Cubes method is also widely
used and intends to find the interface by characterizing the mesh cells on one side or another [132].

If losing simulation accuracy, both dicretization categories highly reduce the computational costs by
sparing re-meshing. Yet, their handlings of the interface topology are distinct. On the one hand,
interface capturing naturally allows topology modifications: the markers evolve "on their own" following
transports equations and the user only steps in to "capture" the result. On the other hand, in interface
tracking, topology modifications imply discretization adaptation and are thus fully controlled.

5.2.2 Adaptation of a front tracking approach

Because of the complexity of Powder Bed Fusion (PBF) processes, the computational costs are a real
issue in path optimization. If the several modeling assumptions proposed in Chapter 4 allow for simula-
tions, the numerical representations must be chosen carefully. In particular, Lagrangian approaches are
prescribed: re-meshing processes are far too expensive to be included in the optimization algorithms. An
Eulerian strategy is thus selected with the introduction of a unique fixed mesh for the working domain
(called physical mesh in the following) and a numerical path variable (called discretized path).

Working domain mesh

As mentioned in Chapter 4, the working domain D is chosen in this work to be a square domain of size
1.4mm× 1.4mm. The corresponding fixed mesh (called physical mesh in the following) is structured



5.2.2. Adaptation of a front tracking approach 99

(a) Lagrangian approach (b) Eulerian approach - front
tracking

(c) Eulerian approach - front
capturing

Figure 5.1: Main categories in free interface representation for numerical computations [102]

and composed of 12800 squared isosceles triangular elements (mean element size of 2.47e−5m, Figure
5.2). This working domain is deliberately tiny. Indeed, the metal conductivities mentioned in Chapter
4 are small, resulting in very long scanning paths (around 20mm for the considered working domain in
the case of the titanium). Considering a small working domain reduces the path possibilities and thus
the number of local minima, easing the optimization process. Applying the developed algorithms or
testing the obtained results on larger domains is part of the perspectives. This approach could also help
designing new scanning patterns.

On this mesh, the different partial differential equations are computed using P1 and P0 finite elements.
These finite elements are created using Freefem++ 3.56 [96]: the mesh being fixed, the classic rigidity
matrices involved in the different variational problems are computed and exported. The optimization
algorithm is then run into Python (3.6.0), which great flexibility in arrays management and objects
creation facilitates the coding. This software mix, developed by Florian Feppon [81], in an additional
argument pleading for Eulerian techniques: re-meshing would have required multiple communications
between Freefem++ and Python, slowing down the computational process. Besides its convenience, this
software mix has also brought slight inaccuracies in the finite element formulations. Indeed, the P1-
functions are stored in Python using one dimensional arrays that contain the value at each node. The
multiplication of P1−functions is then approximated by an element by element computation in Python.
These inaccuracies have been quantified in the steady state context and appeared to be small enough to
be neglected in this work.

Figure 5.2: Triangular elements meshing elements

Path variable

In addition to the non re-meshing process, path optimization requires a full control of the path topology
that must remain an oriented curve. Moreover, in the transient context, the source is applied at points
along the path. Both reasons lead to choosing front-tracking methods.
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The path mesh, called path discretization in the following, depends on the context. Indeed, consid-
ering the steady state or transient cases leads to different source representations and thus to different
modelings. In any case, three issues must be drawn to attention [183]. A first issue, common in front
tracking methods, is related to the evolution of the path discretization’s accuracy along the optimization
process. Indeed, at each iteration, the path discretization nodes are advected, with potential modifica-
tion of each element’s length. To keep a relevant representation, the discretization must be adapted at
each iteration [102, 136, 183]. The resulting line is re-discretized to control each segment’s size of the
discretized path, removing and adding points to ensure each segment length to be in a chosen range
[dl, du]. In addition to accurate description issues leading to add points, this re-discretization is essen-
tial to control the computer memory required by this representation. A second issue corresponds to
discretizing functions defined on the path. Some approximation work is hence required to get a correct
description of the geometrical functions (normal and curvature for exemple) held by the line. The third
point of attention finally consists in the relation between both meshes. Indeed, each carries information
that must be shared by the other.

First in the steady state context and then in the transient one with two different discretization choices,
a description of the method and of the solutions to the different issues is presented.

Remark 5.1. Choosing front-capturing methods is also possible. Actually, this approach and especially
level sets have been used in [51]. Considering them in the thermal steady state context and studying
their pertinence in the transient one are part of the perspectives.

5.3 Path discretization in the steady state context

In this section, we focus on the steady state case. The discretization must fulfill the already mentioned
requirements. Because there is only little literature on scanning path optimization, the discretization
must also remain simple enough to allow for an easy coding and a numerical analysis of the choices
taken. In a second time, this model could be made more complex. After setting the parametrization,
we detail how to keep its coherence. During the optimization, each discretization element is modified.
A redescretization process is defined to ensure the preservation of the description accuracy. We then
concentrate on the approximations required to compute the gradients. First, numerical normals and
curvatures must be defined. Then, a linking between the path and mesh must be made explicit. Finally,
the gradients computation involves differentiating and integrating along the path.

5.3.1 Path description

To satisfy both the Eulerian fixed mesh requirement and the control of the path topology, a represen-
tation based on points is chosen. Among the several possibilities, two main ones: the broken lines,
corresponding to the actual movement of the source, and the splines, enabling an easier control of the
curvature and thus of the kinematics. In this work, the broken line approach has been elected. Yet, this
choice remains arbitrary and no comparison between both techniques exist (see [6] for an approach using
splines). Such a comparison is part of the perspectives.

In the following, the broken line discretization control points are referred to as "nodes" or simply "points"
whereas the segments delimited by two successive points are called "elements" or simply "segments".
The path is discretized by Nu nodes, referred to as (ui)i∈J1,NuK, and = Nu − 1 elements, referred to as
(Si)i∈J1,Nu−1K. Each segment Si is of length li = ‖ui+1 − ui‖ (Figure 5.3). This discretization leads to
different technical issues.

5.3.2 Discretization coherence

At each iteration, the path must be re-discretized to control each segment size, allowing as much design
freedom as possible without saturating the computer’s memory. This step consists in removing and
adding points to ensure each segment length to be in the range [dl, du]. In the steady state context,
these bounds are chosen so that du = 2dl = 0.7∆x, with ∆x the mean physical mesh element size. The
coefficient 0.7 is arbitrarily chosen (for fluid mechanics, the ratio must be around 0.5 [183]) to provide a
correct balance between accuracy and computational costs. This coefficient is numerically evaluated in
Section 6.5.2 (Chapter 6). A deeper study on its impact on kinematics is also part of the perspectives.
Indeed, it is directly related to the points number and thus to the slight path design oscillations.
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Figure 5.3: Path discretization in the steady state case

Adding process

Consider a segment with length l such that l > du. The adding process consists in adding equidistant
points so that each new element satisfies l < du. To minimize the number of added elements, this

amounts to dividing the segment into
[
l

du

]
+ 1 elements of size l̃ =

l[
l
du

]
+ 1

(which gives du

2 ≤ l̃ ≤ du).

Figure 5.4: Adding process

Remark 5.2. The equidistant approach could be replaced by others such as Legendre methods for
example (to increase the accuracy of the approximation [183]).

Deleting process

Consider a segment with length l such that l < dl, not long enough for the discretization. Then, one
of the endpoints of the segment is simply removed. The process is the following: starting from the last
point of the line uNu and going backward, the first point ui (i ∈ J1, Nu − 1K) for which ‖uNu − ui‖ ≥ dl

is found (Figure 5.5 (a-b)). The line is modified removing the intermediary points and updating the
segments’ length before running the same process starting from the point ui (Figure 5.5 (c)). Once the
starting point u1 is reached (Figure 5.5 (d)), the process is stopped (u1 cannot be deleted) and run again
forward, starting from u1 and stopped when the last point is reached (Figure 5.5 (e-f)). Note that this
algorithm always keep at least two points in the path, even if the distance between them is smaller than
the threshold (Figure 5.5).

Remark 5.3. Starting the process from the last point and going backward is an arbitrary choice, coming
from coding simplifications.

Remark 5.4. This algorithm is used if the path does not carry any physical value. In Chapter 8, each
element of the path carries a power value ζ. Removing the elements thus gets more complicated and a
second process is given in section 8.3.1 (Chapter 8).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Deleting process: (a) Starting from the end point, the last segment is too small. The
segment from the last point to u7 is also too small. (b) The point u6 is the first point enabling a long
enough segment: u7, u8 are removed and the point numbering modified. (c) The length l5 is too small.
Starting from u6, the next point allowing a long enough segment is looked for. (d) The length l2 and

the length between u1 and u3 are too small. The point u2 is removed. The point u1 is kept. (e)
Starting from u1, the process is run again. (f) Resulting line.

Case of two-points path

The re-discretization process does not remove the first and last points. Thus, paths discretized with only
two points can exist. In case the distance between these two points is smaller than the threshold dl,
the path is deleted. This issue does not happen often but in path topology optimization presented in
Chapter 8.

Re-discretization algorithm

The discretization algorithm is finally the following: to keep as mush freedom as possible, the adding
process is first run. Indeed, starting by deleting points could erase inflections (illustrated by Figure 5.6).
Then, the deleting process is applied. Finally, to make sure that each element’s length is in [dl, du] the
adding process is run again. The algorithm follows Algorithm 5.1.

Remark 5.5. This rediscretization process could be used to control the curvature. Indeed, Figure 5.6
(b) would be better if the curvature must be reduced. An adapted choice of du and dl could also provide
such a control.

Remark 5.6. Note that during this process, the number of nodes vary and Nu in Algorithm 5.1 is not
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1 Add points so that ∀i ∈ J1, NuK, li ≤ du

2 Delete points so that ∀i ∈ J1, NuK, li ≥ dl

3 Delete two points lines
4 Add points so that ∀i ∈ J1, NuK, li ≤ du

Algorithm 5.1: Rediscretization algorithm

(a) Line before discretization (b) Discretization process starting by
the deleting step

(c) Discretization process starting by
a first adding process

Figure 5.6: Difference in the process in case of an additional first adding step. In (c), the inflection of
the path is kept whereas it has disappeared in (b).

constant.

5.3.3 Discretizing the continuous characteristics of the path

During the optimization process, the tangent, normal and curvature of the path at each node point are
required, which, considering a broken line, involves approximations. To begin with, the oriented sequence
of tangent vectors (τ0, ..., τNu−1) is modeled with

∀i ∈ J1, Nu − 1K, τi =
ui+1 − ui

li
. (5.3.1)

Consider a path Γ in the steady state context. Following the broken line representation with Nu nodes,
this path is fully described by the oriented sequence of points (u1, ..., uNu), or equivalently by the starting
point u1, a sequence of length (l1, ..., lNu−1) and an oriented sequence of tangent vectors (τ0, ..., τNu−1)
with

∀i ∈ J1, Nu − 1K, τi = (ui+1 − ui) /li.
The normal to a segment nS

i is naturally defined as the normalized vector so that the basis (τi, n
S
i ) is

orthonormal and positively oriented. The normal to a point, nui , is then defined by the average between
the normals to both neighboring segments, weighted by their length:

nu1 = nS
1

nui =
li−1n

u
i−1 + lin

u
i

li−1 + li
i ∈ J2, Nu − 1K

nuNu = nS
Nu−1.

(5.3.2)

As for the curvature κ, Gauss approach has been chosen [37, 169] (osculating circles and length variations
methods turn out to give similar results). Let ai be the angle between the horizontal (eX vector) and
the tangent vector τi and let ψi be the angle between the vectors τi and τi+1 (see Figure 5.7). Then,
∀2 ∈ 1, .., Nu − 1,

ψi = ai − ai−1 =

ˆ ui

ui−1

κ(s)ds.

Choosing a linear interpolation for the curvature (for the segment i, κ(t) = (1−t)κi−1 +tκi with (κi)J,NuK
the curvature at each point), one gets that, ∀i ∈ 1, .., Nu − 1,

ψi = li

ˆ 1

0

((1− t)κi−1 + tκi) dt = li
κi−1 + κi

2

Finally, from the closing property of curvature,
ˆ
κdl =

Nu−1∑
2

ψi, one can deduce the curvature ∀i ∈

2, .., Nu − 1 [169]

κi =
2

li + li−1
ψi. (5.3.3)
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As for the values at the end points, they are set to 0 and κ1 = κNu = 0.

Figure 5.7: Computation of a discrete curvature

5.3.4 Linking the physical mesh and line discretization

Both the physical mesh and the path discretization hold information that must be shared. The path Γ
defined by its discretization, carries the heat source. In order to solve the heat equation on the physical
mesh, this heat source must be expressed in the physical mesh. On the contrary, many quantities exist
on the physical mesh (the temperature or its derivatives for example) and their values along the path
may be required [183].

From the path discretization to a P0-heat source function

From the path Γ, a function defined on the mesh must be created to solve the finite element formulation
of the heat equation. For coding reasons, we chose to build a P0-function such that for each cell of the
mesh, the source energy carried by this cell is computed. To do so, each mesh cell crossed by the path is
identified and the length included in this cell computed. The value in each cell is finally normalized by
the cell area, leading to a P0−source function shown by Figure 5.11. Note that if the path follows an
edge, both cells involved are identified and half of the corresponding length is attributed to each.

The algorithm is the following: for each segment Si = [ui, ui+1], we start from the end point ui = u0
i ,

identify the cell T0
i to which it belongs (Figure 5.8 (a)), and look for the next intersection u1

i between
the path and edge or summit of the mesh (Figure 5.8 (b)). The length of the subsegment [u0

i , u
1
i ] is then

computed and related to the identified cell. From the intersection, the next cells crossed by the segment
are identified, followed by the sought for the next intersection (Figure 5.8 (b)). This process is repeated
until the second endpoint of the segment is reached. In case of a subsegment following an edge, both
cells involved are identified (Figure 5.8 (e))

The algorithm iteratively realizes two steps: identifying the triangles involved and computing the next
intersection. Both process are detailed for a segment [ui, ui+1], which tangent τ is the unitary vector
oriented from ui towards ui+1.

Identifying the list of triangles Tki : consider that the list of triangles is found until a point uki .
Three different cases can hold:

• the point uki is in the middle of a triangle T . Then, the next intersection between the segment and
an edge or summit of the physical mesh belongs to this same triangle and the list Tki is reduced to
T . This situation might happen for k = 0 and uki = ui only.

• the point uki belongs to an edge of the physical mesh (but not to a summit). The segment can go
into two different triangles T1 and T2 (Figure 5.9 (a-b)). The scalar product between the tangent to
the segment and the normal to the edge pointing towards T1 is realized. If the result is positive, the
list Tki is reduced to T1. If the result is negative, the Tki is reduced to T2 (Figure 5.9 (a)). In case
the scalar product is small (the threshold 5.0e−7 is fixed), the segment follows the edge and both
triangles are added to the list (Figure 5.9 (b)). Note that the last situation can occur for k = 0
and uki = ui only. Else, the point uki would be a summit. Note also that for any point but the first
one, finding the next triangle is trivial: the segment came from a cell and goes to another. Yet, for
the first point, this is not easy and we have chosen to apply the same process in any situation.
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Transforming the path Γ into a P0-heat source function

• the point uki belongs to a summit of the physical mesh. The segment can go in all the triangles
Ti∈J1,MK to which this summit belongs. The tangent to each of the edges involved τedgei∈J1,MK, oriented
from the summit towards the second endpoint of the edge, is computed. We find the closest edge
to the segment, i.e. i = arg min

i∈J1,MK
〈τ, τedgei 〉 (Figure 5.9 (c)). This edge belongs to the next triangles

involved and the process applied for a point belonging to an edge is then applied.

(a) Point on the edge: the triangle
involved is T2

(b) Point on the edge: to triangles
involved

(c) Point on the summit

Figure 5.9: Process to find the triangles involved. (a-b) From a point on the edge, (c) From a point on
the summit

Computing the next intersection uk+1
i : consider that point uki as well as the list of triangle into

which looking for the next intersection Tki known, and assume that the point ui+1 does not belong to
any triangle of the list (else this is over). Three different situations can occur:

• if there is more than one element in the triangle list Tki , the segment follows an edge and the next
intersection if thus one of the edge end point. Determining which one is easy using the direction
of the segment tangent.

• if there is only one element T in the triangle list Tki and if uki is a summit, the next intersection is
on the edge of T that does not include uki as an endpoint.

• if there is only one element in the triangle list Tki and if uki is not at a summit, we need to find the
edge to which the next point belongs. Consider that the triangle is characterized by its summits
P1, P2 and P3.
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Proposition 5.1. There exists j ∈ J1, 3K such that the ray starting from ukj with direction τ
crosses with the straight line going through this summit and oriented as the opposite edge, i.e
∃j ∈ J1, 3K, tj > 0, Ai ∈ R2 such that, ukiAj = tjd

PjAj ∧ Pj+1 mod 3Pj+2 mod 3 = 0,

The point Pj belongs to the edge cut by the half straight line {uki + xτ, x ∈ R+}.

PROOF.
The easy step to prove is the existence of a point such that ti is strictly positive. Indeed, the
parallel to each side going through the opposite summit define a triangle and any ray starting
in the triangle must cut one of the sides of the bigger triangle (Figure 5.10 (a)). Then, the
point Pj for which the property holds belongs to the next edge cut. Indeed, the starting point
uki is situated between the straight line generated by the edge Pj+1 mod 3Pj+2 mod 3 and parallel
straight line going through Pj . Since tj is positive, the segment is oriented towards the summit
Pj and the next intersection cannot belong to the edge Pj+1 mod 3Pj+2 mod 3. It thus belongs to
one the two edges involving Pj (Figure 5.10).

Renaming the points if needed, we consider that the point found by the step is P2 (whereas the
others are P0 and P1). To find the second end point of the edge, we consider the scalar product
P2A2 · P0P1 and we conclude by the following statement, illustrated by Figure 5.10 (b):

P2A2 · P0P1 > 0 =⇒ the edge is {P1, P2}
P2A2 · P0P1 < 0 =⇒ the edge is {P0, P2}
P2A2 · P0P1 = 0 =⇒ the segment gets out of the triangle through the summitP2

Note that this requires the computation of A2. However, this has already been done to characterize
the summit P2.

(a) P2 belongs to the edge cut by the segment (b) {P0, P2} is the edge cut by the segment

Figure 5.10: Process to find the next intersection

Creation of the P0-function: once the list of triangles has been found, it is possible to compute, for
each triangle of the physical mesh, the "amount of path" crossing them (for each triangle, the length of
each segment crossing it is added and in case of a segment following an edge, each of the triangle affected
get half of the length). Finally, this is normalized by the area of the triangle, leading to a heat source
which thickness should thus not exceed one element. The function is finally multiplied to the source
power given the path shown in Figure 5.11.
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(a) (b)

Figure 5.11: Path Γ on the left and P0-heat source on the right, the color scale corresponding to the
power in each cell

From P0 and P1-functions defined on the physical mesh to functions defined on the path

To optimize the path, an advection vector must be computed, involving the functions defined on the
physical mesh and especially the temperature and the adjoint used for the derivatives computation (see
Section 3.2.3 in Chapter 3 and Section 6.3.1 in Chapter 6). These functions must be known on the path
Γ which implies approximations. Let F be a P1-function and G a P0-function defined on the physical
mesh. At each point u of the path discretization must be associated a value. As for the P0-function G,
this is quite easy: indeed, the physical mesh elements to which belongs the point u are computed and
the mean value of G on these triangles is associated to the point u (the mean value is required since the
point u might belong to an edge or coincide with a node of the physical mesh). As for the function F ,
it is first turned into a P0-function: for each element of the physical mesh, the average of the values of
F at the summits is computed. Then, the same process that for a P0-function is applied.

5.3.5 Differentiation and integration along the line

To compute the derivatives, differentiation and integration along the path are required. For example,
the regularization process described in Section 3.2.4 (Chapter 3) involves the resolution of a PDE along
the path. Both integration and differentiation must be discretized .

As for finite element functions on a classic mesh, numerically differentiating and integrating variables
depend on their formulation along the path. First assume that the continuous function f ∈ H1(Γ) is easy
to characterize on the nodes. Then, a P1−formulation is matched to this function with the definition of
F = (Fui )J1,NuK, the vector of the values at each node. This is for example the way of representing the
temperature (and any function defined on the mesh) along the path. Then assume that the continuous
function g ∈ H1(Γ) is easy to characterize on the segments. Then, a P0−formulation is matched to this
function with the definition of G =

(
GSi
)
J1,Nu−1K, the vector of the values at each segment. For example,

the derivative of a P1−function along the curve (such as ∂τy) satisfies this definition. In Chapter 8, each
segment will also be given a power value ζ.

Integration

Assume that the function to integrate is fg. Then,

ˆ
Γ

fgds =

Nu−1∑
i=1

liG
S
i

Fui+1 + Fui
2

.
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Set f̃ another function defined on the path and known at each node. Then,

ˆ
Γ

ff̃gds =

Nu−1∑
i=1

liG
S
i

Fui+1F̃
u
i+1 + Fui F̃

u
i

2
.

Differentiation

First consider the function F known at points. Then, the derivative is known at each segment (P0-
function) and one has, ∀i ∈ J1, Nu − 1K:

∂τF
S
i =

Fui+1 − Fui
li

.

Integrating a derivative finally leads to:

ˆ
Γ

∂τfds =

Nu−1∑
i=1

li∂τF
S
i =

Nu−1∑
i=1

(
Fui+1 − Fui

)
= FuNu − Fu1 .

Consider now function G known at each segment. The derivative corresponds to a differentiation with
respect to the segment.

∂τG
u
1 = −GS1 , ∀i ∈ J2, Nu − 1K, ∂τGui =

liG
S
i − li−1G

S
i−1

li + li−1
, ∂τG

u
Nu = GSNu−1,

The values given to the end points are arbitrarily chosen so that:

ˆ
Γ

∂τgds =

Nu−1∑
i=1

li
∂τG

u
i + ∂τG

u
i+1

2
= lNu−1G

S
Nu−1 − l1GS1 .

Remark 5.7. These approximations almost consist in considering the functions known on segments as
P0-functions and the one defined at each point as P1-functions. Yet, two differences are to be noted.
First, the differentiation of a function known at segments can be done and result in a function known
at points. Then, the product of two functions defined at points is modeled by a function characterized
by the value at each point. This value is the product of the values of each of the two functions at each
point. Hence, this product does not fully respect the multiplication rules of P1-functions.

5.4 Path discretization in the transient context - using angles

In the steady state context, the path is independent in time, simplifying the relations between the points it
is composed of. In the transient context, however, the problematic is different and the discretization must
be chosen accordingly. A first idea consists in following the optimal control literature [56, 111, 196, 197],
choosing acceleration or velocity vectors as optimization variables. The velocity V of the source assumed
constant in this work (v = 1ms−1), the path is characterized by the starting point ũ, the final time tF
and the tangent of the path τ . The source center follows the ordinary equation (4.2.3), recalled here: ∂tu = V τ(t) t ∈ [0, tF]

u(0) = ũ.
(5.4.1)

5.4.1 Path description

Following the steady state choices, a broken line description is used. Yet, if this line was defined by its
nodal points, we now choose to control it through the tangent direction, modeled by the angle a it makes
with the horizontal at each point (a = (a1, ..., aNu−1)). Every segment element has the same fixed length
l, which highly simplifies the heat equation’s resolution (see Figure 5.12). Indeed, fixing the computation
time step ∆t = l/V and keeping a fixed physical mesh, the rigidity matrix corresponding to the heat
equation remains the same along the whole optimization process and only needs to be inverted once. To
complete the path description, the starting point ũ is added to the optimization variables as well as the
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final time tF, given by the number of segments Nu − 1 (and thus the number of broken line nodes Nu).
The sequence of discrete centers of the source point is finally given by u1 = ũ

ui+1 = ui + V (cos(ai), sin(ai)) i ∈ J1, Nu − 1K.
(5.4.2)

The interest of this method has been pointed out: the resolution of the physical equations is eased
and faster. Moreover, the segments’ length being completely controlled, there is no need for any re-
discretization at each iteration. On the other hand, the final time is only controlled in a discrete way.
Indeed, as an optimization variable, it might be increased or decreased depending on the gradient of
the optimization problem. In both cases, to keep the elements’ length l fixed, a finite integer number of
segments is added or removed to the path (process fully explained along the development of the path
optimization in Chapter 7).

Figure 5.12: Angle based path discretization in the transient context

If no discretization is required, computing numerical normals and curvatures, linking the path and the
mesh and discretizing and integrating along the path are still required.

5.4.2 Discretizing the continuous characteristics of the path

The computation of the normal to segments and points correspond to the process described in Section
5.3.3. As for the curvature, Gauss approximation is also chosen, with the angle ψi still satisfying
∀i ∈ J1, Nu − 1K, ψi = ai − ai−1.

5.4.3 Linking the physical mesh and the line discretization

In the transient context, this issue gets very simple. Indeed, the laser beam is now modeled by a Gaussian
at each time step. The source term directly is given by (4.2.8) as a P1− function on the physical mesh.

5.4.4 Differentiation and integration along the line

In the transient context, integrating and differentiating along the path now correspond to integrating
and differentiating with respect to time. The process given in the steady state case is still used, replacing
the length li by ∆ti = li/V (= ∆t since the time step is fixed in the angle based representation).

5.5 Path discretization in the transient context - using points

If efficient in terms of computational cost, the angle-based formulation presents some drawbacks. Indeed,
the final time is dealt with in a very artificial way, preventing smooth lengthening and shrinking of the
path. Assume for example that the beginning of path must be lengthened but the end should not be
modified. Then, the algorithm must first add elements at the end to increase the path length, then
modify the first angles to lengthen the path where it is needed, to finally change the angles at the end of
the path to bring this end of the path as it were. These drawbacks are further illustrated when optimizing
the path, in Chapter 7. A second approach, point-based approach, is thus developed.

5.5.1 Path description

This new approach still consists in describing the path by a broken line. Alike the steady state case,
the control points are the optimization variables while the constant segment length property is given up.
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The notations introduced in the steady state context are kept in this section. The heat equation is here
again solved at each node point but the computation time step ∆t is not constant (Figure 5.13). Indeed,
the discretized heat equation is now given by, ∀i ∈ J1, NuK,

ρcp
yi+1 − yi

∆ti
−∇ (λ∇yi+1) + β (yi+1 − yini) = P exp

(
− (x− ui)2

r2

)
inD,

λ∂nyi+1 = 0 on ∂D,

y0 = yini,

(5.5.1)

with ∆ti = ‖ui+1 − ui‖, i ∈ J1, Nu − 1K and ∆t0 fixed.

Figure 5.13: Points based path discretization in the transient context

In this new context, the discretization of the continuous properties of the line and the differentiation and
integration along follow the method proposed in Section 5.3. As for linking the physical mesh with the
path discretization, the method is the same as presented in Section 5.4.3.

5.6 Conclusion

While Chapter 4 described the model considered and the assumptions it is based upon, this chapter
focuses on the numerical adaptation of this model for efficient and accurate optimization. Both of them
present choices made along this PhD to allow for numerical optimization.

If it seemed very natural to consider an Eulerian approach and thus to uncouple the path and physics
related representations, a first choice consists in using front tracking methods. Instead of working with
continuous functions capturing the path, it discretization elements constitute the new variable optimiza-
tion. A second choice is the discretization itself. Indeed, in any case, a broken line is used but other
representations and especially splines could be considered. Adapting the presented algorithms to splines
and results comparison is part of the perspectives. Inside the broken line category, the optimization
variables must be defined. Two possibilities have been given in the transient case but many more could
be used and might result in improved results. Finally, all these discretizations rest on several coefficients
(number of physical mesh elements, size of discrete line elements, ...). Chapters 6 and 7 further consider
the impact of some of them on the optimization. Yet, a deeper study would be of high interest to better
understand their role and choose them to reach efficient compromises between accuracy and computa-
tional costs.



CHAPTER 6

PATH OPTIMIZATION IN THE STEADY STATE CONTEXT

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Steady path optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Shape derivative computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Computation in the continuous settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Numerical algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Numerical Augmented Lagrangian algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.2 Numerical null space gradient flow algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.1 First results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5.2 Impact of the numerical choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5.3 Impact of the physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5.4 Building the whole working domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Initialization and geometry to build impact for the aluminium . . . . . . . . . . . . . 130

6.7 Initialization and geometry to build impact for the titanium . . . . . . . . . . . . . . 137

6.7.1 Scanning a square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.7.2 Scanning complex geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1 Introduction

The previous chapters have given all the settings required for path optimization. We have defined two
simulation models (transient and steady state) and set for each of them an optimization problem (Chap-
ter 4). We have then adapted each framework to numerical computations (Chapter 5). The optimization
tools presented in Chapter 2 can now be applied to path generation.

We focus on the steady state model. Getting rid of time considerations, this model is more simplified
than the transient one. However, it still holds some physical meaning as the limit case of infinite velocity
source. In the literature, many mechanical simulations actually model the scanning of each layer using
a steady state assumption, involving time for switching from one layer to another only (for example in
inherent strain methods [51, 124]). Most importantly, it provides cheap simulations and thus helps to
point out and solve algorithmic issues that will be raised in the transient case. Because of the steadi-
ness assumption, classical shape optimization theory can be used. Indeed, there is no time dependency
between the different nodal points that compose the path and the boundary variation method given in
Chapter 3 perfectly fits this specific case.

In Section 6.2 we briefly recall the steady state optimization problem introduced in Chapter 4. Then,
in Section 6.3, we differentiate the functions involved and obtain their numerical gradient. Section 6.4
details the adaptation of the Augmented Lagrangian method and of the null space gradient algorithm
to this applied context. Numerical results are finally provided in Section 6.5: the different algorithms,
the discretization choices, the impact of the different physical coefficients on the optimized path are
analyzed. Finally, in the aluminium context in Section 6.6 and in the titanium context in Section 6.7,
several patterns are chosen as initialization to study both their efficiency and how they are modified,
increasing the insight of the "good path" notion. The geometry of the part to build is also modified.
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6.2 Steady path optimization problem

This section recalls the steady state model defined in Section 4.4, which must be completed by the
numerical tools given in Section 5.3. In the steady state context, the path Γ corresponds to a hot thread
laid on the powder layer. The working domain D is split into the part to build DS ⊂ D and the domain
that must remain powder D \DS (Section 4.2.3, Chapter 4). The problem is

min
Γ∈G

LF =

ˆ
Γ

ds, such that


Cφ(Γ) =

ˆ
DS

[
(yφ − y)

+
]2
dx = 0,

CM(Γ) =

ˆ
D

[
(y − yM)

+
]2
dx = 0,

(6.2.1)

with y ∈ H1(D) solution of −∇ (λ∇y) + β (y − yini) = PχΓ inD,

λ∂ny = 0 on ∂D,
(6.2.2)

or, in its variational form, y ∈ H1(D) such that ∀φ ∈ H1(D),
ˆ
D

λ∇y · ∇φ+ β (y − yini)φdx−
ˆ

Γ

Pφds = 0. (6.2.3)

In this steady state model four constraints are considered: the phase constraint, the maximum temper-
ature constraint, the partial differential heat equation that the temperature must satisfy and finally the
box constraint Γ ⊂ D. Note that the latter could be transformed into inequality constraints. However,
their formulation would not be straightforward. For the partial differential equation constraint, we will
use the adjoint method presented in section 3.2.3.

To optimize the steady state path, the sensitivity of the cost and constraints are required: the shape op-
timization tools and especially the boundary variations differentiation propositions presented in Chapter
3 will be used.

Remark 6.1. On the contrary to the example of domain optimization performed in section 3.3.2, the
curve to optimize is not represented by a level set anymore, but by a discrete broken line. Indeed, as
stated in Chapter 5, this facilitates the control of the path topology. As in section 3.3.2, the shape
derivative and gradient are computed, leading to an update velocity. However, instead of applying
the advection equation (3.3.2) from section 3.3.2, the velocity is discretized and each nodal points of
the broken line moved accordingly. In the approach chosen, the derivative is thus computed for the
continuous path (before discretization) and then discretized. In this broken line context, we could also
have applied simple parametric optimization instead of shape optimization. Indeed, the problem could
have been differentiated with respect to the position of each nodal point. In this second approach, the
path is discretized and only then, the derivative is computed [15].

6.3 Shape derivative computation

In this section, we compute the derivative of the functions involved in the optimization problem. Then,
their transformation into numerical gradients is detailed. Let’s first define the admissible path set G.

Definition 6.1. The space of admissible paths G is composed by the curves Γ ⊂ D satisfying the
Definition 3.1. Their tangent is denoted by τ , their normal by n and their end points by A and B.

6.3.1 Computation in the continuous settings

Using the method of Céa, already presented in Chapter 3 [17, 46, 15], each function is differentiated and
presented in the following Proposition 6.1.

Proposition 6.1. Let Γ ∈ G. Then, LF, Cφ and CM (respectively defined by (4.4.10), (4.4.8) and
(4.4.9)) are differentiable at Γ, and for any perturbation θ ∈ C2

(
D,R2

)
, their derivatives are as follows:

DLF(Γ)(θ) =

ˆ
Γ

κ(s)θ(s) · n(s)ds+ θ(B) · τ(B)− θ(A) · τ(A), (6.3.1)
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DCφ(Γ)(θ) = −
ˆ

Γ

P (∂npφ(s) + κ(s)pφ(s)) θ(s) · n(s)ds

−Ppφ(B)θ(B) · τ(B) + Ppφ(A)θ(A) · τ(A),
(6.3.2)

DCM(Γ)(θ) = −
ˆ

Γ

P (∂npM(s) + κ(s)pM(s)) θ(s) · n(s)ds

−PpM(B)θ(B) · τ(B) + PpM(A)θ(A) · τ(A),
(6.3.3)

with pφ ∈ H1(D) solution of −∇ (λ∇pφ) + βpφ = 2 (yφ − y)
+ in D

λ∂npφ = 0 on ∂D
(6.3.4)

and pM ∈ H1(D) solution of −∇ (λ∇pM) + βpM = −2 (y − yM)
+ in D

λ∂npM = 0 on ∂D
(6.3.5)

PROOF.
First of all, the derivative of LF is obtained by simply applying Proposition 3.2.

Both the phase and maximum constraints are modeled by the function CX(y) =

ˆ
D

f(y)dx, with

f : x ∈ R 7→ f(x) ∈ R differentiable. For the phase, ∀x ∈ D, f(y(x)) =
[
(yφ − y(x))

+
]2
1DS

and f ′(y(x)) = −2 (yφ − y(x))
+
1DS . For the maximum constraint, f(y(x)) =

[
(y(x)− yM)

+
]2

and

f ′(y(x)) = 2 (y(x)− yM)
+.

To compute the shape derivative of this problem, from the method of Céa [17, 46, 15], the Lagrangian
function L : G ×H1(D)×H1(D) is introduced:

L(Γ,Φ, q) =CX(Φ) +

ˆ
D

(λΦ · ∇q + β(Φ− yini)q) dx−
ˆ

Γ

Pqds.

Differentiating this Lagrangian with respect to Φ gives

∂L
∂Φ

(Γ,Φ, q)(ψ) =

ˆ
D

f ′(Φ)ψdx+

ˆ
D

(−∇ · (λ∇q) + βq)ψdx−
ˆ
∂D

λ∂nqψds, ∀ψ ∈ H1(D).

The adjoint equations (6.3.4) and (6.3.5) are obtained by finding p such that, ∀ψ ∈ H1(D),

∂L
∂Φ

(Γ, y, p)(ψ) = 0.

Moreover, ∀θ ∈ C2
(
D,R2

)
, ∀q ∈ H1(D):

DCX(Γ)(θ) =
∂L
∂Γ

(Γ, y, p)(θ)+ <
∂L
∂Φ

(Γ, y, p),
∂y

∂Γ
(θ) >=

∂L
∂Γ

(Γ, y, p)(θ).

Thus, differentiating the constraint finally amounts to partially differentiating the Lagrangian with

respect to the shape. The only term that must finally be considered is −
ˆ

Γ

Ppds. Since Pp ∈W 2,1(Γ),

Proposition 3.2 can be applied (function J2).
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6.3.2 Regularization

To apply first order optimization algorithms, the derivatives must be transformed into update directions.
Following Section 3.2.4, a H1(Γ,R2)−scalar product is chosen, which consists in computing the gradient
by solving the system of minimization problems (3.2.19).
Since the path is numerically known by its nodes, the shape gradient must be known at each point.
Thus, the regularization problems must be discretized and the variable W be considered as a vector
(Wi)i∈J1,NuK known at the path discretization nodal points (P1−function, see Section 5.3.5). However,
its derivative ∂τW is defined in each segment (P0−functions, see Section 5.3).

The left hand side of the regularization problems is given by

LHS =

ˆ
Γ

(
ν2

Γ

2
(∂τW )

2
+

1

2
W 2

)
ds ≈

Nu−1∑
i=1

li

[
ν2

Γ

2

(
Wi+1 −Wi

li

)2

+
1

2

W 2
i+1 +W 2

i

2

]
. (6.3.6)

The differentiation of LHS with respect to the variable W is written ∂WLHS(W ) = ˜LHS ·W with
LHS ∈MNu,Nu(R).

The right hand side RHS depends on the function (LF, Cφ, CM) considered. For the length, one has
RHSτLF

= −W (B) +W (A) ≈ −WNu +W1

RHSnLF
=

ˆ
Γ

κθ(s) · n(s)ds ≈
Nu−1∑
i=1

li
κiWi + κi+1Wi+1

2
.

(6.3.7)

For the constraints, computing the right hand side requires the computation of the adjoint and its
gradient at each discretization node of the path. They are obtained using the process given in in Section
5.3.4. For both constraints (written as X with X ∈ {Cφ, CM}), one has

RHSτX = −PpX(B)W (B) + PpX(A)W (A) ≈ −PpX,NuWNu + PpX,1W1

RHSnX = −
ˆ

Γ

P (∂npX + κpX)Wds

≈
Nu−1∑
i=1

−liP
(∂npX,i + κipX,i)Wi + (∂npX,i+1 + κi+1pX,i+1)Wi+1

2

(6.3.8)

The differentiation of each right hand side RHS with respect to W , ∂WRHS ∈ RNu .

Note that these discretizations have been obtained by a P1−quadrature rule: the multiplication of two
P1−functions on the path is considered to be a P1−function defined by its nodal values resulting from
"node by node" multiplication of these P1−functions at each node (see Remark 5.7).

The final discrete gradients are L′F = (L′F)τ τ + (L′F)n n, C
′
φ =

(
C ′φ
)
τ
τ +

(
C ′φ
)
n
n, C ′M = (C ′M)τ τ +

(C ′M)n n, with

(L′F)τ = LHS
−1 · ∂WRHSτLF

∈ RNu , (L′F)n = LHS
−1 · ∂WRHSnLF

∈ RNu ,

(
C ′φ
)
τ

= LHS
−1 · ∂WRHSτCφ ∈ RNu ,

(
C ′φ
)
n

= LHS
−1 · ∂WRHSnCφ ∈ RNu ,

(C ′M)τ = LHS
−1 · ∂WRHSτCM

∈ RNu , (C ′M)n = LHS
−1 · ∂WRHSnCM

∈ RNu .

6.4 Numerical algorithms

Since we have obtained the gradients of the cost and constraints, we can apply the first-order algorithms
for constrained optimization presented in Section 2.4, adapted to the steady state problem.

6.4.1 Numerical Augmented Lagrangian algorithm

The Augmented Lagrangian method, presented in Section 2.4, is first used.
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Augmented Lagrangian method and corresponding derivatives

In the steady state context, we notice that the phase and maximum temperature constraints are very
similar and can easily be compared. In order to simplify the optimization process, they are aggregated
in one unique constraint

C = Cφ + CM

(
= Cφ + CM,DS

+ CM,D\DS

)
. (6.4.1)

The penalized problem consists in

min
Γ∈G

fALM(Γ) = LF +
c

2
C2 such that C = 0, and (6.2.2) holds, (6.4.2)

with c > 0 the penalization coefficient (Section 2.4.4). The projected Augmented Lagrangian Algorithm
2.5 can be used. The condition Γ ⊂ D is addressed with a projection and the (normalized) Lagrangian
function is

LALM(Γ, lC) =
LF

L0
F

+ lC
C

C0
+
c

2

(
C

C0

)2

. (6.4.3)

Numerical descent direction

In Algorithm 2.5, the Lagrange multiplier and the path are updated following lk+1
C = lkC + cCk+1,

Γk+1 = Γk − skΓL′ALM

(
Γk, lkC

)
,

(6.4.4)

with the numerical gradient L′ALM given by

L′ALM(Γ, lC) =
1

L0
F

L′F +
1

C0

(
lC + c

C

C0

)(
C ′φ + C ′M

)
, (6.4.5)

with L′F, C
′
φ, C

′
M defined in Section 6.3.2.

Step and projection

For each iteration k > 0, the advection velocity dkΓ =
(
dkΓ,i

)
i∈J1,NuK

= −L′ALM(Γk, lkC) is determined at
each point and the path is updated by:

∀i ∈ J1, NuK, uk+1
i =

(
xk+1
i , yk+1

i

)
= uki + skΓd

k
Γ,i.

The step skΓ is given by:

skΓ =
Cks∆x

maxi(‖dkΓ,i‖)
,

with Cks a coefficient initialized to 1 and updated at each iteration so that, if the objective function de-
creases enough, namely LALM(Γk+1) < tolk ∗ LALM(Γk), Ck+1

s = min (1.2Cks , 1) and else Ck+1
s = 0.6Cks .

This corresponds to the line search strategy given in Chapter 2. The tolerance is set to tol0 = 2 at the
beginning and is multiplied by 0.9 every 50 iterations. The coefficients 1.2 and 0.6 and the tolerance
values are arbitrarily fixed following experimental tests.

After this update, if some points are outside from the domain D they are orthogonally projected back
to D. The algorithm is thus a projected Augmented Lagrangian.

Remark 6.2. As stated in section 2.4.3, the convergence of this algorithm has not been proved. However,
the descent properties are being controlled through the tolerance process.

Algorithm

The numerical process for solving problem (6.2.1) is presented in Algorithm 6.1. In this algorithm, the
iterations are stopped if the step coefficient Cs is smaller that 10−8. An additional maximum number of
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iteration NMAX is also considered in the stopping criterion (NMAX = 500).
1 k = 0 and initialization of the path Γ0 and multiplier l0C
2 resolution of the heat equation and computation of the objective function and constraints
3 computation of the derivatives
4 while Cks ≥ 10−8 and k ≤ NMAX do
5 update of the tolerance
6 path variation such that Γk+1 = Γk − skΓL′ALM(Γk, lkC)

7 re-discretization of the path Γk+1

8 resolution of the heat equation, computation of the objective function and constraint
9 if LALM(Γk+1) < LALM(Γk) ∗ tolk then

10 iteration accepted
11 Lagrange multiplier lC updated: lk+1

C = lkC + cCk+1

12 step increased
13 update of the variables
14 computation of the derivatives
15 end
16 else
17 iteration rejected
18 step decreased
19 end
20 end

Algorithm 6.1: Iterative algorithm to optimize the steady state problem.

6.4.2 Numerical null space gradient flow algorithm

The null space gradient flow algorithm is also tested. In order to compute the directions ξLF
and ξC , the

derivative with respect to each function and a scalar product are required. The derivatives are given by
Proposition 6.1 and their discretization and scalar product by the regularization process. Then, the code
provided by [82] is used with the time step ∆t (related to the path discretization) fixed to dl (minimum
distance between two nodal points in the path discretization) with a slight modification: after each
advection of the path nodes, they are projected within the working domain.

6.5 Numerical results

As mentioned in Chapter 5, we consider a working domain D = [−0.7, 0.7]× [−0.7, 0.7] (given in mm).
The accuracy of the discretized path is given by the distance ∆u between two nodes (dl = 0.35∆x ≤
∆u ≤ 0.7∆x = du).

For each material, the physical properties (conductivity and change of phase temperature) and the process
parameters chosen (power and initial temperature) are given in the Nomenclature. The absorption
coefficient and effective power correspond to the results from the calibration tests (4.4.17). The maximum
temperature in the domainDS is yM,DS = 1670K for the aluminium and yM,DS = 3400K for the titanium.
Out of the domain, to make sure that the temperature does not overcome the change of phase temperature
yφ, we choose yM,D\DS

= yM,DS
−100. However, applying this rule for the aluminium makes the maximum

temperature out of the domain smaller than the initial temperature. We finally set yM,D\DS
= yφ = 870K

for the aluminium and yM,D\DS
= yφ − 100 = 1800K for the titanium. This choice is arbitrary and the

temperature could also be chosen smaller.
The finite element computations are performed with Freefem 3.56 [96] whereas the descent algorithm is
coded in Python 3.6.0. This problem is run on a MacBook laptop equipped with 2,3 GHz Intel Core
i5 and a RAM of 16GB. No specific efforts for optimizing the Python code have been made but for a
Cholesky decomposition of the stiffness matrix involved in the heat and adjoint equations. The compu-
tational time per iteration is provided for two tests in Figures 6.3 and 6.5.

After a brief illustration of the optimization process, the numerical choices such as the regularization
parameter, the path discretization or the optimization algorithms are studied. Then, the physical pa-
rameters are analyzed, to characterize the impact of each coefficient on the optimal path. Finally, some
tests are conducted to highlight how the projection process modifies the results.
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In all these first tests, the building domain is a square object, homothety of the working domain with
coefficient 0.9 (see Figure 6.1).

Figure 6.1: Square object to build (in black) in the working domain D

In the following, the numerical results are presented in Figures, showing the temperature map and the
path, and in Tables. The phase and maximum temperature constraints are adimensionalized in these
Tables as follows:

Cφ =
Cφ
|DS |y2

φ

, CM,DS
=

CM,DS

|DS |y2
M,DS

, CM,D\DS
=

CM,D\DS

|D \DS |y2
M,D\DS

. (6.5.1)

6.5.1 First results

To illustrate the optimization process, two preliminary cases are run, both using an Augmented La-
grangian method with a fixed penalization multiplier c = 10 and the Lagrange multiplier initialized
to 1 (this choice is arbitrary and different algorithms are tested in the following). The regularization
coefficient is fixed to νΓ = 15dl and the part to build is shown in Figure 6.1. The objective of these
results is to illustrate, in the aluminium and titanium cases, the effect of the optimization process. Both
zigzag initializations are chosen to be well adapted to the shape to build DS . The distance between two
horizontal lines is 1.40e−4m for the aluminium and 1.05e−4m for the titanium.

Consider first aluminium powder. The path shape at different iterations is shown in Figure 6.2. The
evolution of the path length and the constraints is given in Figure 6.3. The maximum constraint is
split into two different plots: the first one represents the over temperature within the part DS and the
second one out of the part. Finally, the computational time per iteration is provided. In all the Figures,
the color bar indicates the temperature values. To satisfy the constraints, the temperature must be in
between [870K, 1670K], (green to yellow colors). The overheated areas are represented in red whereas
underheated ones are represented in blue. Out of the object, the temperature must remain under 870K
and thus blue. These conditions appear to be quite well fulfilled in Figure 6.2. Indeed, if the path is
not covering the square at the initial iteration, it then expands while managing to keep the heat within
the domain. Regarding the objective function and constraint evolution, they confirm this trend. The
length increases whereas the phase constraint decreases: if the objective function is worsened, the phase
constraint is better satisfied. The maximum temperature within the domain DS is not reached and does
not influence the results. As for the maximum temperature out of the domain, it slightly increases. Note
that the initialization is especially well adapted in this example. The final results hint that zigzag paths
could be improved by slightly tilting the horizontal segments. This result is thus very promising since it
corroborates results obtained in the literature [77].
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(a) Iteration 0 (distance
between horizontal lines:

1.40e−4m)

(b) Iteration 10 (c) Iteration 20 (d) Final iteration (385)

Temperature color bar (K)

Figure 6.2: Evolution of the path with respect to the iterations and corresponding temperature
(aluminium).

(a) Length LF (b) Phase constraint Cφ (c) Maximum temperature constraint
inside CM,DS

(d) Maximum temperature constraint
outside CM,D\DS

(e) Computational time per iteration
(s)

Figure 6.3: Evolution of the different values with respect to the iterations (aluminium).

Consider the titanium powder, the conductivity of which is far lower than the aluminium (15Wm−1K−1

for the titanium and 130Wm−1K−1 for the aluminium). The path shape during iterations is shown in
Figure 6.4. The evolution of the path length and the constraints are given in Figure 6.5. To satisfy the
constraints, the temperature must be in between [1900K, 3400K] (green to yellow colors). Out of the
object, the temperature must remain under 1800K (deep blue). These conditions are not satisfied at the
initial iteration. Indeed, the path seems to be too long and not well spread since it does not cover the left
and right sides. The first iterations focus on the second point: an increase of the length to cover the whole
domain DS results in a decrease in the phase constraint (zone 1 on Figure 6.5 and from (a) to (b) on
Figure 6.4). In a second step, the length is reduced inducing sharp angles and an increase of the maximal
temperature constraint (zone 2 on Figure 6.5 and from (b) to (c) on Figure 6.4). The angles are then
smoothed and the length still reduced until a second increase to reconsider the phase constraint(zone 3
on Figure 6.5 and from (c) to (d) on Figure 6.4). The length is then increased again (zones 4 and 5 on
Figure 6.5 and from (d) to (f) on Figure 6.4 ) leading to a decrease of the phase constraint (zone 5 on
Figure 6.5 and from (e) to (f) on Figure 6.4). The final path does not fulfill the constraints. Indeed, the
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temperature remains too high at some points within the domain (sharp angles remaining) and outside.
Moreover, there are still some holes where the powder has not solidified. However, the path has adapted
and we recall that, since the problem lacks convexity, we cannot ensure the convergence of the algorithm
but only control the constraints and cost decreases.

(a) Iteration 0 (distance
between horizontal lines

1.05e−4m)

(b) Iteration 20 (c) Iteration 50 (d) Iteration 80

(e) Iteration 90 (f) Iteration 120 (g) Iteration 200 (h) Final iteration (380)

Temperature color bar (K)

Figure 6.4: Evolution of the path with respect to the iterations and corresponding temperature
(titanium).

(a) Length LF (b) Phase constraint Cφ (c) Maximum temperature constraint
inside CM,DS

(d) Maximum temperature constraint
outside CM,D\DS

(e) Computational time per iteration
(s)

Figure 6.5: Evolution of the different values with respect to the iterations (titanium). The red lines
correspond to iterations 1, 20, 50, 80, 90, 120, 200 (see Figure 6.4)
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These first tests appear promising to optimize the path in the steady state context and tend to confirm
the intuition that a bounded curvature is an important feature of a good path, to prevent localized high
temperatures.

6.5.2 Impact of the numerical choices

Along the settings of this path optimization, many choices on the model and its numerical discretization
have been made. Some of them are now tested to evaluate their influence on the results.

Impact of the path discretization and of the regularization coefficient

Among the several parameters influencing the process, we first focus on those determining the freedom
left to the algorithm to design small patterns: the path discretization which is directly related to the
detail characteristic size that the path can achieve, and the regularization coefficient νΓ that fixes the
dependence between the evolution of a point with respect to the evolution of its neighbors. Two charac-
teristic sizes have been tested: the regular one, with dl = 0.35∆x ≤ ∆u ≤ 0.7∆x = du and a coarser one,
dl = 0.7∆x ≤ ∆u ≤ 1.4∆x = du. Concerning the regularization, the choices are νΓ/dl ∈ {5, 10, 15, 20}.
The eight tests have been realized with an Augmented Lagrangian method with c = 10 and l0C = 1.

The results in the aluminium case are given in Figure 6.6, the initialization corresponds to the previous
one (zigzag with 9 horizontal lines, see Figure 6.2(a)). Table 6.1 compares the final values in each case.
For the titanium case, the initialization corresponds to a zigzag with 12 horizontal lines (see Figure
6.4(a)) and the final paths are displayed in Figure 6.7 and Table 6.2.

(a) 0.7∆x = du,
νΓ = 5dl

(b) 0.7∆x = du,
νΓ = 10dl

(c) 0.7∆x = du,
νΓ = 15dl

(d) 0.7∆x = du,
νΓ = 20dl

(e) 1.4∆x = du, νΓ = 5dl (f) 1.4∆x = du,
νΓ = 10dl

(g) 1.4∆x = du,
νΓ = 15dl

(h) 1.4∆x = du,
νΓ = 20dl

Temperature color bar (K)

Figure 6.6: Final temperature and path depending on the discretization accuracy and on the chosen
regularization (aluminium).
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Case Length (m) Cφ CM,DS CM,D\DS

Initialization (Figure 6.3(a)) 1.020e−2 3.31e−4 0.00 3.09e−7

0.7∆x = du, νΓ = 5dl 1.170e−2 3.15e−7 0.00 1.97e−5

0.7∆x = du, νΓ = 10dl 1.160e−2 4.05e−7 0.00 2.69e−5

0.7∆x = du, νΓ = 15dl 1.160e−2 4.19e−7 0.00 2.83e−5

0.7∆x = du, νΓ = 20dl 1.160e−2 5.52e−7 0.00 2.87e−5

1.4∆x = du, νΓ = 5dl 1.160e−2 3.20e−7 0.00 3.13e−5

1.4∆x = du, νΓ = 10dl 1.160e−2 4.52e−7 0.00 3.20e−5

1.4∆x = du, νΓ = 15dl 1.160e−2 4.93e−7 0.00 2.97e−5

1.4∆x = du, νΓ = 20dl 1.160e−2 7.88e−7 0.00 3.44e−5

Table 6.1: Comparison of the cost and the constraints of the final results (aluminium).

(a) 0.7∆x = du,
νΓ = 5dl

(b) 0.7∆x = du,
νΓ = 10dl

(c) 0.7∆x = du,
νΓ = 15dl

(d) 0.7∆x = du,
νΓ = 20dl

(e) 1.4∆x = du, νΓ = 5dl (f) 1.4∆x = du,
νΓ = 10dl

(g) 1.4∆x = du,
νΓ = 15dl

(h) 1.4∆x = du,
νΓ = 20dl

Temperature color bar (K)

Figure 6.7: Final temperature and path depending on the discretization accuracy and on the chosen
regularization (titanium).
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Case Length (m) Cφ CM,DS CM,D\DS

Initialization (Figure 6.5(a)) 1.330e−2 1.55e−2 5.11e−4 0.00

0.7∆x = du, νΓ = 5dl 1.240e−2 1.62e−3 2.11e−4 1.78e−3

0.7∆x = du, νΓ = 10dl 1.250e−2 5.04e−4 3.36e−5 1.90e−4

0.7∆x = du, νΓ = 15dl 1.250e−2 3.26e−3 3.37e−4 2.95e−3

0.7∆x = du, νΓ = 20dl 1.270e−2 6.37e−3 4.82e−4 5.07e−3

1.4∆x = du, νΓ = 5dl 1.260e−2 3.32e−4 2.09e−5 3.08e−4

1.4∆x = du, νΓ = 10dl 1.330e−2 7.47e−4 8.39e−5 6.17e−4

1.4∆x = du, νΓ = 15dl 1.320e−2 4.80e−4 5.36e−5 6.78e−4

1.4∆x = du, νΓ = 20dl 1.330e−2 1.80e−3 1.72e−4 7.08e−4

Table 6.2: Comparison of the cost and the constraints of the final results (titanium)

The conductivity being high in the aluminium case, the results are not extremely different from one test
to another. Yet, they endorse the regularization effect of the H1 scalar product. Indeed, small coeffi-
cients νΓ authorize the points to move in different directions than their neighbors. With the increase of
νΓ, these directions get smoother to end up with Figure 6.6(d) which almost consists of straight lines.
Increasing the discretization coefficient has also a regularizing effect: from one line to another, the slight
variations are erased.

The impact of the regularization coefficient νΓ and the discretization is on the contrary very clear for
the titanium. The conductivity being smaller, the number of local minima increases and any difference
in the optimization parameters leads to drastically different scanning path shapes. These results confirm
the previous observations. From left to right, the path gets smoother, as well as from one line to another.
In addition to the previous analysis, one can notice on these new results that some configurations better
fulfill the constraints than others: a small regularization allows for a significant freedom to the path
however not smooth, and a high regularization decreases the freedom in the design to the advantage of
smoothness.
In the following, a compromise must be chosen between freedom and smoothness. On the one hand,
freedom enlarges the number of admissible path and thus facilitates the fulfillment of the constraints.
On the other hand, in industrial applications, the source is better controlled in case of smooth patterns.
Indeed, to achieve sharp corners, the source must slow down requiring a decrease in its power which is
not available in all technologies. Time may not be considered in this steady state case but this issue can
still be taken into account by demanding a relative path regularity. The parameters in the remaining of
this work are finally dl = 0.35∆x ≤ ∆u ≤ 0.7∆x = du and νΓ = 15dl, values already in use in the first
tests (Figures 6.3 and 6.5).

Impact of the optimization algorithm

The second choice to consider is the optimization algorithm. In the Lagrangian method, the initial
multiplier lC and the penalization coefficient c must be set. Five tests have been run:

(
l0C = 1, c = 0

)
(fixed Lagrange multiplier),

(
l0C = 0, c = 1

)
,
(
l0C = 1, c = 1

)
,
(
l0C = 0, c = 10

)
,
(
l0C = 1, c = 10

)
. Finally

the second algorithm with null flows gradient has been run with (αLF
, αC) = (1, 1), (αLF

, αC) = (1, 0.1),
(αLF

, αC) = (0.1, 1). The results in the aluminium case initialized with a zigzag with 9 lines (Figure
6.2(a)) are given in Figure 6.8 and Table 6.3 whereas the results in the titanium case initialized with a
zigzag with 12 lines (Figure 6.4(a)) are given in Figure 6.9 and Table 6.4.
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(a) AL method(
l0C = 1, c = 0

) (b) AL method(
l0C = 0, c = 1

) (c) AL method(
l0C = 1, c = 1

) (d) AL method(
l0C = 0, c = 10

)

(e) AL method(
l0C = 1, c = 10

) (f) Null space method
(αLF

= 1, αC = 1)
(g) Null space method
(αLF

= 0.1, αC = 1)
(h) Null space method
(αLF

= 1, αC = 0.1)

Temperature color bar (K)

Figure 6.8: Final temperature and path depending on the algorithm (aluminium).

Case Length (m) Cφ CM,DS
CM,D\DS

Initialization (Figure 6.3(a)) 1.019e−2 3.31e−4 0.00 3.09e−7

Aug. Lagrangian
(
l0C = 1, c = 0

)
1.119e−2 7.18e−6 0.00 2.38e−5

Aug. Lagrangian
(
l0C = 0, c = 1

)
1.150e−2 5.61e−7 0.00 2.89e−5

Aug. Lagrangian
(
l0C = 1, c = 1

)
1.152e−2 5.11e−7 0.00 2.76e−5

Aug. Lagrangian
(
l0C = 0, c = 10

)
1.159e−2 5.07e−7 0.00 2.72e−5

Aug. Lagrangian
(
l0C = 1, c = 10

)
1.159e−2 4.20e−7 0.00 2.84e−5

Null space method (αLF = 1, αC = 1) 1.130e−2 2.73e−6 0.00 6.42e−6

Null space method (αLF = 0.1, αC = 1) 1.150e−2 7.31e−7 0.00 6.81e−6

Null space method (αLF
= 1, αC = 0.1) 1.130e−2 2.65e−6 0.00 1.67e−5

Table 6.3: Comparison of the cost and the constraints of the final results (aluminium).
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(a) AL method(
l0C = 1, c = 0

) (b) AL method(
l0C = 0, c = 1

) (c) AL method(
l0C = 1, c = 1

) (d) AL method(
l0C = 0, c = 10

)

(e) AL method(
l0C = 1, c = 10

) (f) Null space method
(αLF

= 1, αC = 1)
(g) Null space method
(αLF

= 0.1, αC = 1)
(h) Null space method
(αLF

= 1, αC = 0.1)

Temperature colorbar (K)

Figure 6.9: Final temperature and path depending on the algorithm (titanium).

Case Length (m) Cφ CM,DS
CM,D\DS

Initialization (Figure 6.5(a)) 1.325e−2 1.55e−2 5.11e−4 0.00

Aug. Lagrangian
(
l0C = 1, c = 0

)
1.177e−2 1.51e−3 2.33e−5 8.79e−5

Aug. Lagrangian
(
l0C = 0, c = 1

)
1.245e−2 1.58e−3 1.44e−4 1.98e−3

Aug. Lagrangian
(
l0C = 1, c = 1

)
1.274e−2 2.45e−3 2.69e−4 2.64e−3

Aug. Lagrangian
(
l0C = 0, c = 10

)
1.269e−2 1.23e−3 1.49e−4 7.35e−4

Aug. Lagrangian
(
l0C = 1, c = 10

)
1.247e−2 3.26e−3 3.37e−4 2.95e−3

Null space method (αLF
= 1, αC = 1) 1.220e−2 6.47e−4 3.51e−4 1.60e−4

Null space method (αLF = 0.1, αC = 1) 1.280e−2 4.33e−4 1.62e−4 1.38e−4

Null space method (αLF = 1, αC = 0.1) 1.230e−2 5.85e−3 5.04e−3 3.50e−6

Table 6.4: Comparison of the cost and the constraints of the final results (titanium).

First of all, these tests demonstrate the existence of many different local minima. The dependence of the
result with respect to the optimization parameters is significant. From one choice to another, the path
can be completely different. This can be clearly observed in the titanium case which confirms that the
optimization is significantly more complicated for lower conduction cases.
In the Augmented Lagrangian approach, if the final patterns are different, the quantitative results are
similar (see Tables 6.3 and 6.4). Note that the choice lC = 1, c = 0 is called "Augmented Lagrangian"
but is actually an unconstrained problem. Indeed, the objective function has just been transformed
to be the sum of the length and the constraint, without an effective penalization process. With the
null space gradient algorithm, the impact of the coefficients αLF and αC is well illustrated. The test
(αLF = 1, αC = 0.1) (Figures 6.8 (f) and 6.9 (f)), focusing more on decreasing the length than satisfying
the constraints, result in both material cases to final phase and maximal temperature in DS higher than
in the other tests. On the contrary, at least for the titanium, the choice (αLF

= 0.1, αC = 1) satisfy them
better. In the following, the Augmented Lagrangian method with

(
l0C = 1, c = 10

)
is used.
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6.5.3 Impact of the physical model

The physical model results from several assumptions. Even if it has been calibrated, it is still relevant to
understand the dependence of the results on the conductivity, the absorption, the source power as well
as the maximal temperature. For each of them, the aluminium case and the titanium case are tested
respectively initialized with a zigzag with 9 lines and a zigzag with 12 lines (Figures 6.2 (a) and 6.4 (a)).

Impact of the conductivity

The first test consists in modifying the conductivity λ by multiplying the reference λ = 130WK−1m−1 by
a factor Cλ. Note that modifying this coefficient also impacts the absorption coefficient β = λ∆Z. Fig-
ures 6.10 and 6.11 present five different results respectively in the aluminium and in the titanium cases,
with Cλ ∈ {0.2, 0.5, 1, 2, 10}. The initialization is displayed on the first line and the result on the second.

(a) Cλ = 0.2 (b) Cλ = 0.5 (c) Cλ = 1 (Fig. 6.2) (d) Cλ = 2 (e) Cλ = 10

(f) Cλ = 0.2 (g) Cλ = 0.5 (h) Cλ = 1 (Fig. 6.2) (i) Cλ = 2 (j) Cλ = 10

Figure 6.10: Initial (first line) and final (second line) temperature and path depending on the
conductivity factor Cλ (aluminium)

(a) Cλ = 0.2 (b) Cλ = 0.5 (c) Cλ = 1 (Fig. 6.4) (d) Cλ = 2 (e) Cλ = 10

(f) Cλ = 0.2 (g) Cλ = 0.5 (h) Cλ = 1 (Fig. 6.4) (i) Cλ = 2 (j) Cλ = 10

Figure 6.11: Initial (first line) and final (second line) temperature and path depending on the
conductivity factor Cλ (titanium)
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The objective is to better understand the impact of the conductivity λ. We can conclude similarly for
both materials: when the conductivity is decreased, the material is insulating. Thus, the temperature
gets high and localized. To satisfy the maximum temperature constraint, the path length must be
reduced. On the contrary, when the conductivity is increased, a source point impacts a large domain
but the increase of temperature is limited. The energy does not only go in the rest of the domain but
the absorption coefficient is also increased (β = λ/∆Z). This induces the stretching of the path.

Impact of the absorption

The second test consists in modifying the absorption β by multiplying the reference one β = λ
2.21229310−9

by a factor Cβ . Figure 6.12 presents the five different results in the aluminium case, with Cβ ∈
{0.1, 0.5, 1, 1.25, 2}. On the first line, the initialization is displayed and on the second line the re-
sult. Figure 6.13 presents the titanium case.

(a) Cβ = 0.1 (b) Cβ = 0.5 (c) Cβ = 1 (Figure
6.2)

(d) Cβ = 1.25 (e) Cβ = 2

(f) Cβ = 0.1 (g) Cβ = 0.5 (h) Cβ = 1 (Fig. 6.4) (i) Cβ = 1.25 (j) Cβ = 2

Figure 6.12: Initial (first line) and final (second line) temperature and path depending on the
conductivity factor Cβ (aluminium)

(a) Cβ = 0.1 (b) Cβ = 0.5 (c) Cβ = 1 (Fig. 6.4) (d) Cβ = 1.25 (e) Cβ = 2

(f) Cβ = 0.1 (g) Cβ = 0.5 (h) Cβ = 1 (Figure
6.4)

(i) Cβ = 1.25 (j) Cβ = 2

Figure 6.13: Initial (first line) and final (second line) temperature and path depending on the
conductivity factor Cβ (titanium)
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From the energy deposed by the source, only part of it actually favors the change of phase on the top
layer. Indeed, the rest is conducted in the already built layers. These tests aim at considering the impact
of this absorption coefficient β. When the absorption is decreased, a larger part of the source energy
remains in the top layer, increasing the temperatures. Thus, the path tends to be smaller on the two first
columns of Figures 6.12 and 6.13. Actually, this temperature becomes high enough so that the maximum
temperature constraint becomes impossible to fulfill, leading to a drastic reduction of the path length
without taking into account the phase constraint. On the other hand, if the absorption is increased, less
energy is available for the top layer, leading to an increase of the path length.

This absorption coefficient has been artificially introduced to create a two dimensional model. It appears
to strongly impact the results, completely accounting for the importance of a calibration process. Yet,
considering the three dimensional model improve the computations accuracy and allow for the evaluation
of the scanning path’s impact on the already built layers (crucial for porosity and residual stresses
quantification, see Chapter 1).

Impact of the power

The third test consists in modifying the power P . Figure 6.14 presents five different results in the
aluminium case, with P/5.447934 ∈ {200, 300, 400, 500, 600}. On the first line, the initialization is
displayed and on the second line the result. Figure 6.15 presents the titanium case with P/5.447934 ∈
{100, 200, 300, 400, 500}.

(a)
P/5.447934 = 200

(b)
P/5.447934 = 300

(c)
P/5.447934 = 400

(Fig. 6.2)

(d)
P/5.447934 = 500

(e)
P/5.447934 = 600

(f) P/5.447934 = 200 (g)
P/5.447934 = 300

(h)
P/5.447934 = 400

(Fig. 6.4)

(i) P/5.447934 = 500 (j) P/5.447934 = 600

Figure 6.14: Initial (first line) and final (second line) temperature and path depending on the power
(aluminium)

In most industrial applications, the laser power is adapted to the material used (or equivalently, the veloc-
ity could be modified). The values chosen are P/5.447934 = 400W for the aluminium and P/5.447934 =
300W for the titanium (see the Nomenclature). The study of the source power leads to similar con-
clusions than for the two previous tests: depending on the amount of energy deposed on the top layer,
the path is shrunken or stretched. From this analysis of the parameters, it seems than the amount of
deposed energy is a critical parameter in the scanning path design.

On the contrary to the conduction or absorption, which depend on the material, the power is a scanning
parameter: different powers can be chosen before the scanning, the source can be switched on and off
during the scanning and, in the future, this power might even be continuously modulated during the
scanning. The tests have been realized for a reasonable range of powers but still lead to important results
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(a)
P/5.447934 = 100

(b)
P/5.447934 = 200

(c)
P/5.447934 = 300

(Fig. 6.4)

(d)
P/5.447934 = 400

(e)
P/5.447934 = 500

(f) P/5.447934 = 100 (g)
P/5.447934 = 200

(h)
P/5.447934 = 300

(Fig. 6.4)

(i) P/5.447934 = 400 (j) P/5.447934 = 500

Figure 6.15: Initial (first line) and final (second line) temperature and path depending on the power
(aluminium)

variations. The study of coupled control of the scanning path and the power is developed in Chapter 8.

Impact of the maximum temperature

The fourth test consists in modifying the maximum temperature inside the object yM,DS
. Figure 6.16

presents five different results in the aluminium case, with yM,DS
∈ {1070, 1370, 1670, 1820, 1970},

initialized with a zigzag with 9 lines (Figure 6.2(a)). Figure 6.17 presents the titanium case with
yM ∈ {2800, 3100, 3400, 3700, 4000}, initialized with a zigzag with 12 lines (Figure 6.4(a)). The color
scales are not modified: the objective is to intuitively observe the design differences in a qualitative way.

(a) yM,DS
= 1070 (b) yM,DS

= 1370 (c) yM,DS
= 1670

(Fig. 6.2)
(d) yM,DS

= 1820 (e) yM,DS
= 1970

Figure 6.16: Initial (first line) and final (second line) temperature and path depending on the
maximum temperature authorized within the solid yM (aluminium)

The maximum temperature constraint aims at controlling thermal expansion and residual stresses cre-
ation during the building process. It is clear that the model is far too simple to constraint such compli-
cated phenomena. However, although the results are preliminary, it allows for first computations and an
algorithm that could be adapted to more realistic problems. These tests aim at assessing the impact of
the maximal temperature yM,DS on the results. In the aluminium case, the temperature remains low be-
cause of the high conduction (and thus absorption). High maximum temperatures lead to similar results.
On the contrary, a lower maximal temperature leads to adaptations of the path. In the titanium case,
the impact of this choice is clear. Indeed, the final path clearly adapts more for smaller temperatures,
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(a) yM = 2800K (b) yM = 3100K (c) yM = 3400K
(Fig. 6.4)

(d) yM = 3700K (e) yM = 4000K

Figure 6.17: Initial (first line) and final (second line) temperature and path depending on the
maximum temperature authorized within the solid yM (titanium)

drastically reducing its length.

For the titanium, the value chosen in the following (yM,DS
= 3400K, see the Nomenclature) is close to

the boiling temperature for the titanium. As for the aluminium (yM,DS
= 1670K, see the Nomenclature)

it has been arbitrarily chosen.

6.5.4 Building the whole working domain

A last feature to consider is the projection step in the algorithms presented (see Section 6.4.1 and 6.4.2).
The convergence of the projected AL method and projected null space method have not been proved
and may impact the results. To illustrate this, the AL algorithm with

(
l0C = 1, c = 10

)
has been run in

the same conditions that in Section 6.5.1 and we have applied an homothety (ratio 1.1) to adapt the
zigzag initializations to the initializations used for the square part. Figure 6.18 displays the comparison
between both results in the aluminium case whereas Figure 6.19 gives the titanium results.

(a) Building a square
(Figure 6.2)

(b) Building the whole
working domain

Figure 6.18: Comparison between building a
square and the whole working domain,

computed using an augmented Lagrangian
algorithm (aluminium).

(a) Building a square
(Figure 6.4)

(b) Building the whole
working domain

Figure 6.19: Comparison between building a
square and the whole working domain,

computed using an augmented Lagrangian
algorithm (titanium).

The same tests have been run with the null space gradient algorithm with (αLF , αC) = (1, 1), to be
compared to the results presented in Figures 6.8 (f) and 6.9 (f). Figure 6.20 shows the comparison
between both results in the aluminium case whereas the titanium case is shown in Figure 6.21.
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(a) Building a square
(Figure 6.2)

(b) Building the whole
working domain

Figure 6.20: Comparison between building a
square and the whole working domain,

computed using a null space gradient algorithm
(aluminium).

(a) Building a square
(Figure 6.4)

(b) Building the whole
working domain

Figure 6.21: Comparison between building a
square and the whole working domain,

computed using a null space gradient algorithm
(titanium).

For the aluminium material, in both the Augmented Lagrangian and null space gradient methods, the
results for the square or the whole box are similar and the impact of the projection is not clear. For the
titanium, the differences are stronger but it is not clear if this is because of the projection or because of
the strong non convex phenomena.

6.6 Initialization and geometry to build impact for the aluminium

The analysis of the optimization and physical parameters has provided a better understanding on the
various choices we made in this work. We now further study the optimal path, first running the process
from several different initializations and then modifying the part to build from the square shown in
Figure 6.1 to the three geometries shown in Figures 3.6, 3.7 and 3.8.

Scanning a square

The first test consists in running the code starting from several different initializations, to scan the square
presented in Figure 6.1. The optimization problem is not convex and, as noticed while testing different
algorithms, many local minima exist. To better understand these minima, ten different initializations
are tested, including some composed of several disconnected curves. The initializations and results are
presented in Figure 6.22 and the final values summed up in Table 6.5.
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(a) Zigzag with 3 lines (b) Zigzag with 6 lines (c) Zigzag with 9 lines

(d) Zigzag with 12 lines (e) Zigzag with 15 lines (f) Spiral

(g) Contour with 1 line (h) Contour with 2 lines (i) Contour with 3 lines

(j) Contour with 4 lines (k) 2 lines contour (l) 9 lines

Figure 6.22: Initialization and final results depending on the initialization (aluminium).

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

zigzag 3 lines 3.864e−3 1.119e−2 4.15e−3 6.40e−7 0.00 0.00 0.00 1.11e−6

zigzag 6 lines 7.098e−3 1.265e−2 5.85e−4 4.92e−7 0.00 0.00 0.00 2.17e−6

zigzag 9 lines 1.019e−2 1.159e−2 3.31e−4 4.20e−7 0.00 0.00 3.09e−7 2.84e−5

zigzag 12 lines 1.325e−2 1.479e−2 2.34e−4 5.46e−7 0.00 0.00 2.70e−4 7.63e−5

zigzag 15 lines 1.630e−2 1.727e−2 1.78e−4 9.91e−7 0.00 0.00 1.12e−3 3.53e−5

spiral 5.635e−3 1.060e−2 4.60e−3 1.37e−6 0.00 0.00 0.00 1.61e−5

contour 1 line 2.520e−3 9.670e−3 6.83e−3 2.93e−6 0.00 0.00 0.00 1.28e−5

contour 2 lines 5.040e−3 1.080e−2 2.85e−3 1.27e−6 0.00 0.00 0.00 4.16e−6

contour 3 lines 7.560e−3 1.190e−2 1.11e−3 6.40e−7 0.00 0.00 0.00 3.59e−6

contour 4 lines 1.008e−2 1.334e−2 4.25e−4 2.20e−7 0.00 0.00 0.00 2.80e−7

2 lines contour 3.780e−3 1.214e−2 4.81e−3 6.44e−7 0.00 0.00 0.00 5.82e−7

9 lines 9.072e−3 1.093e−2 7.99e−4 4.17e−7 0.00 0.00 2.17e−7 2.02e−6

Table 6.5: Comparison of the cost and the constraints of the final results (aluminium).
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The graph of the final length with respect to the aggregated constraint C = Cφ + CM,DS
+ CM,D\DS

in
each case is given in Figure 6.23, facilitating the comparison between the different initializations.

Figure 6.23: Constraint C = Cφ + CM,DS
+ CM,D\DS

with respect to the length LF (aluminium).

First note that, whatever initialization is chosen, the optimization algorithm seems to work since the
path is adapted to the objective and constraints. If these latter do not vanish at the end of the process,
they have still decreased since the starting guess. Two results are further discussed. The initialization
with 9 disconnected lines leads to 9 straight lines. Then the initialization with a zigzag with 9 lines
confirms recent studies [77] and can already be used in industrial applications.

A second consideration is relative to the final lengths. Indeed, starting from different initializations, it
appears that most of the results belong to the same length range [0.010, 0.014]. Two exceptions must
be pointed out: the zigzag with 15 lines and the zigzag with 12 lines. Indeed, the initialization paths
were already quite long and the optimization process had to shrink them. However, shrinking is not an
easy process. Indeed, it often induces sharp corners that drastically increase the maximal temperature
constraint and the process must go through local maxima to reach better results. This might be blocked
by a low tolerance in the iteration acceptation.

This common length range steers the notion of optimal amount of energy for the layer. For this design,
the energy PLF ≈ 0.012 ∗P is enough to melt the whole required powder. This observation matches the
existing assessments on optimal energy deposition rates [43, 48, 83] and is an interesting perspective to
ease the path design.

Scanning complex geometries

The final objective of this work being to couple shape and path optimization, the test now consists in
designing a path adapted to the different shapes in Chapter 3, obtained for volume and compliance
optimization. One of the objective of this work is indeed to determine new design criteria adapted to
scanning constraints. Three reference shapes have been generated by the shape optimization problem
presented in Section 3.3.2 and are presented in Figures 3.6, 3.7 and 3.8. For each of them, four initial-
izations have been tested and the results are respectively presented in Figures 6.24, 6.26, 6.28, Tables
6.6, 6.7, 6.8. We recall that the values presented in the Tables follow (6.5.1). In this context, we have:

• for the zero hole object: |DS | = 1.53e−6m2 and |D \DS | = 4.34e−7m2

• for the one hole object: |DS | = 1.13e−6m2 and |D \DS | = 8.31e−7m2,
• for the three holes object: |DS | = 1.02e−6m2 and |D \DS | = 9.40e−7m2.
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Figures 6.25, 6.27, 6.29 represent the graphs of the length versus the aggregated constraint.

(a) 2 lines contour (b) Initialization 1

(c) Initialization 2 (d) Initialization 3

Figure 6.24: Initialization and final results depending on the initialization for the zero hole object
shown in Figure 3.6 (aluminium).

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

2 lines contour 4.826e−3 1.042e−2 4.76e−3 1.85e−7 0.00 0.00 0.00 5.79e−7

initialization 1 4.687e−3 9.961e−3 2.95e−3 3.69e−7 0.00 0.00 0.00 1.81e−7

initialization 2 4.555e−3 1.041e−2 3.01e−3 3.48e−7 0.00 0.00 0.00 1.48e−7

initialization 3 4.511e−3 1.111e−2 3.29e−3 4.63e−7 0.00 0.00 0.00 1.41e−6

Table 6.6: Comparison of the cost and the constraints of the final results for the zero hole object
(Figure 3.6) (aluminium).

In spite of the volume difference, this first object is built as simply as the square object and the same
conclusions hold: all the computations result in similar path length with a comparable satisfaction of
the aggregated constraint C (slightly above for Initialization 3, see Figure 6.24(d))). Note that although
all initializations are symmetric, the results are not. Indeed, even if the conductivity is large, the
optimization process remains unstable and any small perturbation can lead to a different solution.
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Figure 6.25: Constraint C = Cφ + CM,DS + CM,D\DS
with respect to the length LF for the final results

for the zero hole object (Figure 3.6) (aluminium).

(a) 2 lines contour (b) Initialization 1

(c) Initialization 2 (d) Initialization 3

Figure 6.26: Initialization and final results depending on the initialization for the one hole object
shown in Figure 3.7 (aluminium).

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

2 lines contour 4.826e−3 8.861e−3 4.12e−3 1.08e−6 0.00 0.00 3.83e−3 2.85e−6

initialization 1 4.687e−3 9.335e−3 1.74e−3 3.64e−7 0.00 0.00 6.33e−7 3.95e−7

initialization 2 4.555e−3 8.977e−3 1.90e−3 5.59e−7 0.00 0.00 1.32e−5 2.84e−6

initialization 3 4.511e−3 9.434e−3 1.92e−3 1.56e−7 0.00 0.00 4.75e−6 1.01e−7

Table 6.7: Comparison of the cost and the constraints of the final results for the one hole object
(Figure 3.7) (aluminium).
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Figure 6.27: Constraint C = Cφ + CM,DS + CM,D\DS
with respect to the length LF for the final results

for the one hole object (Figure 3.7) (aluminium).

The second object is slightly more complicated to build: the hole introduced at the center must be
avoided. Once again, the optimization algorithm seems to work: even when the initial path crosses a
hole, it manages to generate a correct final path (Figure 6.26(a)).

(a) 2 lines contour (b) Initialization 1

(c) Initialization 2 (d) Initialization 3

Figure 6.28: Initialization and final results depending on the initialization for the three holes object
shown in Figure 3.8 (aluminium).
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Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

2 lines contour 4.826e−3 8.735e−3 4.80e−3 2.68e−5 0.00 0.00 1.02e−2 8.22e−5

initialization 1 4.687e−3 8.880e−3 1.45e−3 1.80e−4 0.00 0.00 7.03e−4 1.24e−3

initialization 2 4.555e−3 8.646e−3 1.57e−3 2.44e−4 0.00 0.00 7.06e−4 1.17e−3

initialization 3 4.511e−3 8.794e−3 1.86e−3 4.71e−5 0.00 0.00 1.31e−3 1.75e−4

Table 6.8: Comparison of the cost and the constraints of the final results for the three holes object
(Figure 3.8) (aluminium).
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Figure 6.29: Constraint C = Cφ + CM,DS
+ CM,D\DS

with respect to the length LF for the final results
for the three holes object (Figure 3.8) (aluminium).

The final object is the hardest case because of the three holes. The tests starting from the 2 lines contour
initialization, Initialization 1 and Initialization 2 do not manage to satisfy the constraints and remain out
of the admissible domain. The last one, however, gives correct results. The initialization thus matters
and, in order to get to reasonable solutions, should be carefully chosen.

The non-symmetry of the results can be explained by two different reasons. First, each of the considered
objects are not symmetric. In Chapter 3, they have been generated by shape optimization of volume and
compliance. However, no symmetry condition had been enforced. Then, even if the shape was symmetric,
because of small numerical errors along the iterations, the resulting path might not be symmetric. To
remedy this problem and enforce the symmetry, the shape optimization process detailed in Section
3.3.2 has been run on half the object only, with two possibilities: first, one end of the path connected
component must belong to the symmetry axis (Ox) to connect the components with the second half, and
then, no connecting condition. Two initializations are starting from: the 2 lines contour and Initialization
1. The initializations and results are given by Figure 6.30 and the final values by Table 6.9 (for the whole
domain D, results comparable to Table 6.8).
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Initialization Result without junction Result with junction

(a) Initialization 1

Initialization Result without junction Result with junction

(b) 2 lines contour

Figure 6.30: Final results in the aluminium case depending on the initialization for the three holes
object with symmetry

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

Initialization 1

without junction 4.687e−3 7.345e−3 1.50e−3 1.36e−3 0.00 0.00 5.87e−2 5.15e−2

with junction 4.687e−3 7.452e−3 1.50e−3 1.40e−3 0.00 0.00 5.87e−2 5.23e−2

2 lines contour

without junction 4.826e−3 8.569e−3 4.72e−3 8.50e−4 0.00 0.00 4.98e−1 1.46e−2

with junction 4.826e−3 8.399e−3 4.72e−3 3.86e−5 0.00 0.00 4.98e−1 5.86e−3

Table 6.9: Comparison of the cost and the constraints of the final results for the three holes object with
symmetry (aluminium).

The results confirm that this geometry is not easily scanned for aluminium powder. The result from
Initialization 1, in both tests, does not build the lower bar of the object: it seems that this bar is to
thin to be correctly realized. The result from the 2 lines contour is slightly better. Indeed, allowing two
connected components let one of them to be well adjusted to the thin bar.

6.7 Initialization and geometry to build impact for the titanium

The conclusions brought by the analysis in the aluminium case are now evaluated with the titanium,
which conductivity is much lower.

6.7.1 Scanning a square

The first tests consider the building of the square object (Figure 6.1). The initializations and results are
summed up in Figure 6.31 and the final values summed up in Table 6.10.
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(a) Zigzag with 6 lines (b) Zigzag with 9 lines (c) Zigzag with 12 lines

(d) Zigzag with 18 lines (e) Zigzag with 21 lines (f) Spiral

(g) Contour with 1 line (h) Contour with 2 lines (i) Contour with 4 lines

(j) Contour with 5 lines (k) 2 lines contour (l) 9 lines

Figure 6.31: Initialization and final results depending on the initialization (titanium).

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

ini

M,D\DS

zigzag 6 lines 7.098e−3 1.231e−2 4.81e−2 2.80e−3 3.48e−6 1.11e−4 0.00 3.25e−3

zigzag 9 lines 1.019e−2 1.232e−2 1.96e−2 8.99e−4 1.96e−5 1.19e−4 0.00 4.35e−4

zigzag 12 lines 1.325e−2 1.247e−2 1.55e−2 3.26e−3 5.11e−4 3.37e−4 0.00 2.95e−3

zigzag 18 lines 1.933e−2 1.286e−2 1.14e−2 3.21e−3 3.83e−2 9.34e−4 8.34e−3 3.77e−3

zigzag 21 lines 2.237e−2 1.284e−2 9.82e−3 2.39e−3 1.10e−1 2.63e−4 2.45e−2 2.64e−3

spiral 5.635e−3 1.286e−2 1.50e−1 5.40e−4 4.71e−5 4.21e−5 0.00 4.97e−4

contour 1 line 2.520e−3 1.249e−2 2.21e−1 1.20e−3 0.00 1.05e−4 0.00 1.24e−3

contour 2 lines 5.040e−3 1.270e−2 1.17e−1 1.13e−3 0.00 8.00e−5 0.00 1.07e−3

contour 4 lines 1.008e−2 1.234e−2 2.74e−2 1.01e−3 2.43e−5 2.34e−4 0.00 1.39e−3

contour 5 lines 1.260e−2 1.269e−2 1.14e−2 1.06e−5 4.54e−4 1.12e−7 0.00 4.27e−5

2 lines contour 3.780e−3 1.243e−2 1.71e−1 2.87e−3 0.00 1.56e−4 0.00 1.52e−3

9 lines 9.072e−3 1.148e−2 3.60e−2 5.67e−4 0.00 7.90e−7 0.00 3.40e−4

Table 6.10: Comparison of the cost and the constraints of the final results (titanium).
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The graph of the final length with respect to the aggregated constraint C = Cφ + CM,DS
+ CM,D\DS

in
each case is given in Figure 6.32, facilitating the comparison between the different initializations.
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Figure 6.32: Constraint C = Cφ + CM,DS
+ CM,D\DS

with respect to the length LF (titanium).

The results in the titanium context coincide with the conclusion obtained in the aluminium case. First
of all, even with a lower conductivity, the algorithm still manages to compute optimized path while
satisfying the constraints. Moreover, all these final paths have very similar lengths: the range width
is even smaller than for the aluminium. One case is to be noticed: the zigzag with 18 lines. Indeed,
the algorithm could not manage to remove some length and crossing have been introduced breaking the
maximum temperature requirements. One could think that any too long initialization would lead to the
same kind of results. However, the zigzag with 21 lines initialization leads to a correct path, with final
values even better than for the initialization with a zigzag with 12 lines (Table 6.10). It thus seems easier
for the algorithm to increase the path length (Figure 6.31(f, g, h, i, k)) than reducing it even if good
results can be obtained in both cases.

Two other results must be pointed out. The first one is the contour with 4 lines, leading to very low
final constraints. One can notice that the initialization was already a good guess and the algorithm has
not completely transformed the path. It has simply slightly adapted it to fully satisfy the objectives. A
second result is the initialization with 9 lines. Indeed, it led to the smallest final path and, once again,
very few modifications have been done on the initial guess. However, the result found is not as clear as
it was in the aluminium case (Figure 6.22(l)), once again pointing out the influence of the conductivity
on the final path. These observations confirm the strong influence of the initialization.

6.7.2 Scanning complex geometries

The building objects tests are now run for the titanium. For each object, four initializations have been
tested and the results are respectively presented in Figures 6.33, 6.35, 6.37, Tables 6.11, 6.12, 6.13 and
the graphs representing the length versus the aggregated constraint are shown in Figures 6.34, 6.36, 6.38.
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(a) 2 lines contour (b) Initialization 1

(c) Initialization 2 (d) Initialization 3

Figure 6.33: Initialization and final results depending on the initialization for the zero hole object
shown in Figure 3.6 (titanium).

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

2 lines contour 4.826e−3 1.159e−2 1.60e−1 6.87e−3 5.23e−5 1.34e−3 0.00 1.95e−3

initialization 1 4.687e−3 1.217e−2 1.28e−1 2.21e−3 7.79e−6 8.89e−5 0.00 1.55e−2

initialization 2 4.555e−3 1.187e−2 1.31e−1 1.24e−3 1.96e−6 1.07e−4 0.00 4.32e−3

initialization 3 4.511e−3 1.193e−2 1.36e−1 1.43e−3 9.17e−6 7.28e−5 0.00 1.02e−3

Table 6.11: Comparison of the cost and the constraints of the final results for the zero hole object
(Figure 3.6) (titanium).
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Figure 6.34: Constraint C = Cφ + CM,DS
+ CM,D\DS

with respect to the length LF for the final results
for the zero hole object (Figure 3.6) (titanium).
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The path adapts well to the object, similarly to the aluminium case. However, the accuracy of this
adaptation remains dependent on the initialization. Indeed, if the final path lengths are very similar,
the fulfillment of the constraints is not: the results are far more precise on the second line of Figure 6.33
(Initialization 2 and Initialization 3) than on the first.

(a) 2 lines contour (b) Initialization 1

(c) Initialization 2 (d) Initialization 3

Figure 6.35: Initialization and final results depending on the initialization for the one hole object
shown in Figure 3.7 (titanium).

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

2 lines contour 4.826e−3 9.684e−3 1.42e−1 2.88e−3 1.25e−5 2.96e−4 2.06e−2 5.35e−3

initialization 1 4.687e−3 9.848e−3 9.04e−2 1.51e−3 1.00e−5 1.64e−4 0.00 7.86e−3

initialization 2 4.555e−3 9.961e−3 9.72e−2 1.72e−3 2.51e−6 2.66e−4 3.96e−7 1.63e−2

initialization 3 4.511e−3 9.653e−3 9.61e−2 4.50e−4 1.18e−5 3.17e−5 2.06e−7 1.63e−4

Table 6.12: Comparison of the cost and the constraints of the final results for the one hole object
(Figure 3.7) (titanium).
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Figure 6.36: Constraint C = Cφ + CM,DS + CM,D\DS
with respect to the length LF for the final results

for the one hole object (Figure 3.7) (titanium).

The analysis for this second object is the same than in the first object with the different points forming
a straight line in Figure 6.36: if the final length is the same, the constraints are not always well fitted
and the algorithm seems to struggle to correctly avoid the holes.

(a) 2 lines contour (b) Initialization 1

(c) Initialization 2 (d) Initialization 3

Figure 6.37: Initialization and final results depending on the initialization for the three holes object
shown in Figure 3.8 (titanium).
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Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

2 lines contour 4.826e−3 9.720e−3 1.65e−1 4.91e−3 1.31e−5 2.02e−4 5.16e−2 1.88e−2

initialization 1 4.687e−3 9.580e−3 8.38e−2 1.62e−3 1.05e−5 1.15e−4 2.79e−3 1.88e−3

initialization 2 4.555e−3 9.508e−3 8.87e−2 3.24e−3 2.63e−6 1.99e−4 2.82e−3 9.62e−3

initialization 3 4.511e−3 9.434e−3 9.61e−2 2.17e−3 1.23e−5 1.43e−4 5.64e−3 1.06e−3

Table 6.13: Comparison of the cost and the constraints of the final results for the three holes object
(Figure 3.8) (titanium).
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Figure 6.38: Constraint C = Cφ + CM,DS + CM,D\DS
with respect to the length LF for the final results

for the three holes object (Figure 3.8) (titanium).

The final object once again leads to the same conclusions. This third object however also points out
that a lower conductivity could be an advantage. Indeed, it seems a lot easier for the path to respect
the geometry for the titanium than for the aluminium since the low conductivity facilitates the building
of the thin bars.

To remedy once again to the non symmetry of the results, the same tests than for the aluminium (see
Figure 6.30) are run. The results are given by Figure 6.39 and Table 6.14 (for the whole domain D,
results comparable to Table 6.13)

Case Lini
F (m) Lfin

F (m) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

Initialization 1

no junction 4.687e−3 9.527e−3 8.55e−2 1.54e−3 1.05e−5 6.33e−5 2.33e−1 9.45e−2

with junction 4.687e−3 9.376e−3 8.55e−2 2.22e−3 1.05e−5 1.65e−4 2.33e−1 1.27e−1

2 lines contour

no junction 4.826e−3 9.019e−3 1.64e−1 8.55e−3 1.31e−5 8.01e−5 2.48 1.06

with junction 4.826e−3 9.622e−3 1.64e−1 1.09e−2 1.31e−5 3.53e−4 2.48 1.48

Table 6.14: Comparison of the cost and the constraints of the final results for the three holes object
with symmetry (titanium).

It appears in the titanium case that the test with one connected component leads to better results, which
actually corroborates the results found without symmetry.
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Initialization Result without junction Result with junction

(a) Initialization 1

Initialization Result without junction Result with junction

(b) 2 lines contour

Figure 6.39: Final results in the titanium case depending on the initialization for the three holes object
with symmetry

6.8 Conclusion

The numerical applications resulting from the optimization algorithm developed in the steady state con-
text give interesting results. In the aluminium case first, the path adapts well to the object to build, with
a decrease of the constraints until fulfillment and a length adaptation similar from one test to another.
Yet, if the final values are similar, the initialization and algorithm choices seem to deeply impact the
final shape of the path. The model and constraints provide a non convex optimization problem and thus
the minimum is not unique. Finally, the building of complex geometries could still be improved. We
could imagine for example choosing different optimization algorithms to better balance the constraints.
We could also modify the constraints formulation: for example, further work could be done on changing
the maximum temperature out of the domain constraint into a projection on the geometry to build.

If the optimization in the titanium context seems more complicated, the results confirm the observations
made for the aluminium tests: the path adapts to the shape and, even if it may not fully satisfy the
constraints at convergence, it decreases them. The final path shapes, widely varying from one test to
another, lead to similar final values. This second physical test case highlights the difficulty of an even
temperature spreading when the material conductivity is low. Indeed, the points at which the source is
applied get very hot compared to their neighbors. This emphasizes the interest of the maximum tempera-
ture constraint, that enforces the path to remain smooth. This constraint should thus reduce the number
of local minima. However, on the other hand, decreasing the temperature requires increasing the path
length to fulfill the phase constraint thus increasing the final number of local minima. These conclusions
should be further tested, especially in the transient context, which remain part of perspectives.
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7.1 Introduction

In chapter 6, the optimization has been set in the steady state context. In addition to encouraging
results, it has highlighted the importance of optimization parameters such as the path discretization and
the algorithm chosen, and of the physical coefficients. Aware of these difficulties, this chapter proposes
a numerical algorithm for path optimization in the transient context.

If shape optimization is really convenient in the steady state case, it cannot be used anymore. Indeed,
the introduction of time dependent geometric variables prevent the use of classic shape differentiation
formula. A more convenient approach would be to use optimal control theory. Thus, a direct optimiza-
tion with respect to the discretization variables must be applied, leading to two different experiments.
First, Section 7.2 focuses on the angle based discretization described in Section 5.4. In these settings, a
differentiation of the objective function and constraints is given, as well as an optimization algorithm.
Numerical results are finally presented. Section 7.3 corresponds to the point based discretization pro-
posed in Section 5.5, supplemented by the differentiation of the different functions and the design of
an optimization algorithm. Numerical results are finally provided and an analysis of the impact of the
optimization choices on the final results is conducted.

7.2 Path optimization based on an angle parametrization

The encouraging results in the simplified steady state model allow for the adaptation of the gradient
descent algorithm to the transient case. In this new context, the time dependence induces a hierarchy
between the different points of the path, which must be translated into the sensitivity computation.
Thus, the shape optimization used in the steady state case cannot be kept anymore and parametric
optimization is set up. Chapter 5 described two different discretization methods (see Section 5.4 and
5.5). The angle based approach is considered in this section (Section 5.4).
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7.2.1 Problem settings

The objective of this work is to look for the shortest path. The optimization problem thus belongs to
optimal control involving a partial differential equation. If there exist well developed theories about both
the optimal control of ordinary differential equations [90, 182] and optimal control of partial differential
equations [111, 125], only a few focus on mixing both [56, 99, 196, 197]. Following these works, the path
is defined through its tangent direction. This latter is usually controlled by the path curvature but, since
no information is given about the first point nor the first direction, we choose here to control directly
the tangent direction itself (or the velocity vector which norm is constant) thus reducing the number of
initial condition unknowns.
In this new context, and following [196, 197], the path Γ is fully described by the angle a ∈ A =
L2((0, tF),R), the starting point ũ ∈ D and the final time tF ∈ (0, tFinal). These three variables constitute
the new optimization parameters leading to an effective optimization problem:

min
tF,a,ũ

= tF such that



Cφ =

ˆ
DS

[
(yφ −Np)

+
]2
dx = 0, Np =

(
1

tF

ˆ tF

0

|y|pdt
)1/p

CM,DS =
1

tF

ˆ
DS

ˆ tF

0

[
(y − yM,DS)

+
]2
dtdx = 0,

CM,D\DS
=

1

tF

ˆ
D\DS

ˆ tF

0

[(
y − yM,D\DS

)+]2
dtdx = 0,

(7.2.1)

with y ∈ L2([0, tF], H1(D,R2)) ∩ C0
(
[0, tF], L2(D)

)
solution of

ρcp∂ty(t, x)−∇ · (λ∇y(t, x)) + β (y(t, x)− yini) = q(t, x) in (0, tF)×D,
λ∂ny(t, x) = 0 on (0, tF)× ∂D,
y(0, x) = yini(x) inD,

(7.2.2)

where yini ∈ L2(D) [10] and the source term given by

q(t, x) = P exp

(
− (x− u(t))

2

r2

)
, (7.2.3)

where u ∈ H1([0, tFinal],R) solution of the ordinary equation u̇(t) = V τ (a(t)) , 0 ≤ t ≤ tF,
u(0) = ũ.

(7.2.4)

The tangent is related to the angle through, ∀0 ≤ t ≤ tF,
τ(t) = τ (a(t)) = (cos (a(t)) , sin (a(t))) . (7.2.5)

Note that in the transient case, not only the phase and maximum constraints are not aggregated but
the maximum temperature constraint is split into two different ones, respectively focusing on inside and
outside the domain to build. This complicates the choice of the optimization coefficients and especially
the multiplier and penalization in the Augmented Lagrangian method. On the other hand, this can
improve the accuracy of the updates.

To deal with the constraints, an Augmented Lagrangian method is used and a penalized function is
introduced:

LALM :

 R+ ×A×D → R

(tF, a, ũ) 7→ tF + lφCφ +
µφ
2
C2
φ + lM,sCM,DS

+
µM,s

2
C2

M,DS
+ lM,eCM,D\DS

+
µM,e

2
C2

M,D\DS
.

(7.2.6)

Remark 7.1. As stated in Chapter 4, the phase constraint is an approximation. Indeed, the maximum
over time is approximated by a Lp−norm. Since for any p ≤ 1 and for any function f ∈ Lp([0, tF],R),(

1

tF

ˆ tF

0

|f |∞dt
)1/p

≤ ‖f‖L∞([0,tF],R) the approximation of the phase constraint will be greater than the

real phase constraint in the numerical applications.
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Remark 7.2. Unlike the steady state case, the different functions are not normalized in the Augmented
Lagrangian function LALM.

7.2.2 Theoretical descent in a continuous setting

In the continuous settings, the update of the dual step is given by:
lk+1
φ = lkφ + µφC

k
φ,

lk+1
M,s = lkM,s + µM,sC

k
M,DS

,

lk+1
M,e = lkM,e + µM,eC

k
M,D\DS

.

(7.2.7)

As for the differentiation with respect to the optimization variables, it is given by Proposition7.1

Proposition 7.1. The derivatives of the function LALM with respect to tF ∈ R+, a ∈ A and ũ ∈ D are,
∀δa ∈ A angle differentiation direction, ∀δũ ∈ R2 first point differentiation direction, and ∀δt ∈ R,

DaLALM(tF, a, ũ)(δa) = −
ˆ tF

0

V τ ′(a(t)) · w(t)δa(t)dt,

DũLALM(tF, a, ũ)(δũ) = −w(0) · δũ,
DtFLALM(tF, a, ũ) = 1

+ (lφ + µφCφ)
2

tFp

ˆ
DS

(yφ −Np(tF, y))
+
Np(tF, y)1−p (Np(tF , y)p − y(tF )p) dx

+
lM,s + µM,sCM,DS

tF

(ˆ
DS

[
(y(tF, x)− yM)

+
]2
dx− CM,DS

)
+
lM,e + µM,eCM,D\DS

tF

(ˆ
D\DS

[
(y(tF, x)− yM)

+
]2
dx− CM,D\DS

)
.

(7.2.8)

In the above formulas, w ∈ H1([0, tFinal],R) is the adjoint for the ODE (7.2.4), solution of
ẇ(t) =

2

r2

ˆ
D

q(u(t), x)p(t, x) (u(t)− x) dx t ∈ (0, tF),

w(tF) = 0,
(7.2.9)

and p ∈ L2([0, tF], H1(D,R2)) is the adjoint of the heat equation, solution of

−ρcp∂tp−∇ · (λ∇p) + βp =
2 (lφ + µφCφ)

tF
(yφ −Np(tF, y))

+
Np(tF, y)1−pyp−11DS

−2 (lM,s + µM,sCM,DS
)

tF
(y − yM,DS)

+
1DS

−2
(
lM,e + µM,eCM,D\DS

)
tF

(
y − yM,D\DS

)+
1D\DS

in (0, tF)×D,

λ∂np = 0 on (0, tF)× ∂D,
p(tF, x) = 0 inD.

(7.2.10)

PROOF.
As in the steady state context, we rely on the method of Céa to compute the derivatives by introducing
an adjoint [46]. A Lagrangian function L : [0, tFinal]×A×D ×H1([0, tFinal],R)×H1([0, tFinal],R)×
L2([0, tF], H1(D,R2))×L2([0, tF], H1(D,R2))→ R, involving the variational formulations of both the
heat and trajectory equations, is introduced:

L (tF, a, ũ, v, w,Φ, p) = LALM(tF, a, ũ) + L̃(tF, a, ũ, v, w,Φ, p)
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with

L̃ (tF, a, ũ, v, w,Φ, p) =

ˆ tF

0

(v̇ − V τ (a (t))) · w(t)dt+ (v(0)− ũ) · w(0)

+

ˆ tF

0

ˆ
D

((ρcp∂tΦ + βΦ− βyini − q (v(t))) p+ λ∇Φ · ∇p) dxdt

+

ˆ
D

ρcp (Φ(0, x)− yini(x)) p(0, x)dx.

Then, ∀ (tF, a, ũ) ∈ [0, tFinal] × A × D, ∀(w, p) ∈ H1([0, tFinal],R) × L2([0, tF], H1(D,R2)), with u ∈
H1([0, tFinal],R) and y ∈ L2([0, tF], H1(D,R2)) respectively solutions of (7.2.4) and (7.2.2):

L̃ (tF, a, ũ, u, w, y, p) = 0 =⇒ L (tF, a, ũ, u, w, y, p) = LALM(tF, a, ũ).

Differentiating with respect to the control parameters X = (tF, a, ũ) ∈ [0, TF ] × A × D, for any
differentiation direction δX,

dL
dX

(X,u,w, T, p)(δX) = ∂XL(X,u,w, T, p)(δX)

+ < ∂vL(X,u,w, T, p), ∂Xu (δX) > + < ∂ΦL(X,u,w, T, p), ∂XT (δX) > .
(7.2.11)

Setting to 0 the derivatives of the Lagragian function L with respect to v and Φ, evaluated at Φ = y
(solution of (7.2.2)) and v = u (solution of (7.2.4)), comes down to solving the adjoint equations (7.2.9)
and (7.2.10). Particularizing w to be solution of (7.2.9) and p solution of (7.2.10), the differentiation
finally results in

dXfALM(X) = ∂XL (X,u,w, y, p) . (7.2.12)
Classically, (7.2.11) yields the derivatives with respect to a and ũ. As for the differentiation with
respect to the final time tF, one gets:

∂tFL (tF, a, ũ, u, w, y, p) = 1

+ (lφ + µφCφ)

ˆ
DS

−2 (yφ −Np(tF, y))
+
Np(tF, y)1−p

(−1

pt2F

ˆ tF

0

|y|pdt+
1

ptF
y(tF)p

)
dx

+
lM,s + µM,sCM,DS

tF

(ˆ
DS

[
(y(tF, x)− yM,DS)

+
]2
dx− CM,DS

)

+
lM,e + µM,eCM,D\DS

tF

(ˆ
D\DS

[(
y(tF, x)− yM,D\DS

)+]2
dx− CM,D\DS

)

+ (u̇(tF)− V τ (a (tF))) · w(tF)

+

ˆ
D

((ρcp∂ty(tF , x) + βy(tF, x)− q (u(tF), x)) p(tF, x) + λ∇y(tF, x) · ∇p(tF, x)) dx.

(7.2.13)

For smooth solutions in time, the variational formulation of (7.2.2) and (7.2.4) are satisfied at the final
time tF. Thus, the two last terms of (7.2.13) cancel and we get the result (7.2.8).

7.2.3 Numerical descent direction

To discretize these equations and compute an effective numerical descent direction, the path is split into
Nu equidistant points defining Nu − 1 elements of size l. This corresponds to the discretization of the
time by a sequence {0 = t0, ..., tNu = tF} and ∀i ∈ J1, NuK, ti = ti−1 +∆t

(
∆t = l

V

)
. To this time vector

(ti)i∈J0,NuK are associated an angle vector (ai)i∈J1,Nu−1K, a point vector (ui)i∈J1,NuK and a temperature
vector (yi)i∈J0,NuK. The heat equation (7.2.2) is discretized with respect to time by an implicit Euler
scheme whereas an Euler forward scheme is used for the trajectory equation (7.2.4):

ui − ui−1

∆t
= τ (ai−1) ∀i ∈ {2, .., Nu}

u1 = ũ .
(7.2.14)



7.2.3. Numerical descent direction 149

and for i ∈ {1, .., Nu},
ρcp

yi(x)− yi−1(x)

∆t
−∇ · (λ∇yi(x)) + β(yi(x)− yini) = q (ui, x, ) ∀x ∈ D

λ∂nyi(x) = 0 ∀x ∈ ∂D
y0(x) = yini(x) ∀x ∈ D,

(7.2.15)

The constraints are discretized through an implicit scheme corresponding to the heat equation scheme:

Cφ =

ˆ
DS

[
(yφ −Np)

+
]2
dx =

ˆ
DS


yφ −( 1

tF

Nu−1∑
i=0

∆typi+1

)1/p
+


2

dx. (7.2.16)

and 
CM,DS =

ˆ
DS

Nu−1∑
i=0

∆t

tF

[
(yi+1 − yM,DS)

+
]2
dx,

CM,D\DS
=

ˆ
D\DS

Nu−1∑
i=0

∆t

tF

[(
yi+1 − yM,D\DS

)+]2
dx.

(7.2.17)

Remark 7.3. Note that the constraints could also be discretized by a "centered scheme way" as

Cφ =

ˆ
DS

[
(yφ −Np)

+
]2
dx =

ˆ
DS


yφ −( 1

tF

Nu−1∑
i=1

∆t
ypi + ypi+1

2

)1/p
+


2

dx. (7.2.18)

and

CM =

ˆ
D

Nu−1∑
i=1

∆t

tF

[(
yi + yi+1

2
− yM

)+
]2

dx. (7.2.19)

In numerical applications, to compute the state variables u and y, the ODE (7.2.14) is first solved for
index i followed by the resolution of the PDE (7.2.15) also for the index i.

The differentiation process described in the continuous case (Section 7.2.2) can be also be applied in the
discrete case (see [16] for a similar approach in shape optimization). The corresponding adjoint equations
are backward. The discrete equations for the heat adjoint p = (p0, ..., pNu) are, ∀i ∈ 0, ... Nu − 1:

ρcp
pi − pi+1

∆t
−∇ · (λ∇pi) + βpi =

2 (lφ + cCφ)

tF
(yφ −Np(tF, y))

+
Np(tF, y)1−pyp−1

i 1DS

− 2 (lM,s + µM,sCM,DS
)

tF
(yi − yM,DS)

+
1DS

− 2
(
lM,e + µM,eCM,D\DS

)
tF

(
yi − yM,D\DS

)+
1D\DS

inD

λ∂npi = 0 on ∂D.



ρcp
∆t

pNu −∇ · (λ∇pNu) + βpNu =
2 (lφ + cCφ)

tF
(yφ −Np(tF, y))

+
Np(tF, y)1−pyp−1

Nu
1DS

− 2 (lM,s + µM,sCM,DS
)

tF
(yNu − yM,DS

)
+
1DS

− 2
(
lM,e + µM,eCM,D\DS

)
tF

(
yNu − yM,D\DS

)+
1D\DS

inD

λ∂npNu = 0 on ∂D.

(7.2.20)

The discrete equations for the ODE adjoint w = (w1, ..., wNu−1) are ∀i ∈ {2, .., Nu − 1}
wi − wi−1

∆t
=

2

r2

ˆ
D

q(ui)pi(ui − x)dx,

wNu−1

∆t
= − 2

r2

ˆ
D

q(uNu)pNu(uNu − x)dx.
(7.2.21)
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The discrete derivatives with respect to the angle and first point are thus classically obtained. As for the
differentiation with respect to the final time, the formula obtained in the continuous settings is kept.

Remark 7.4. Note that, in the discrete context, the "final time" condition on the adjoints is not equal
to 0 anymore.

Update of the angle α

The discrete derivative with respect to the angle a is given by

DaLALM(da) =

Nu−1∑
i=1

−∆tτ (ai)widai. (7.2.22)

To compute the gradient from this derivative, different choices exist. The first one consists into not
regularizing the angle and using the scalar product related to the Hilbert space A. In the discrete
formulation, this amounts to choosing, ∀i ∈ J1, Nu − 1K,

(∇aLALM)i = −τ (ai)wi. (7.2.23)

We propose here a second choice related to a H1 regularization, which consists in solving the following
minimization problem:

∇aLALM = arg min
Q∈RNu−1

Nu−2∑
i=1

∆t

2

(
ν2

Γ

(
ai+1 − ai

∆t

)2

+
a2
i + a2

i+1

2

)
−∆t

τ (ai)wi + τ (ai+1)wi+1

2
. (7.2.24)

Of course, setting νΓ = 0 amounts to applying (7.2.23).

Remark 7.5. Note that the H1 formulation proposed actually corresponds to the discrete equation

∆tν2
Γ

−Qi+1 + 2Qi −Qi−1

∆t2
+ ∆tQi = τ (ai)wi i ∈ J2, Nu − 2K. (7.2.25)

Unlike the heat equation and the point equation, this formulation has been chosen centered to regularize
"equally" each angle.

Following a gradient descent algorithm for the optimization variables, the angle is updated by, ∀i ∈
{1, ..., Nu − 1}

ak+1
i = aki − ska (∇aLALM) i,

with a positive step ska > 0. To ensure the decrease of the objective function, the angles’ variations must
be kept small and the step ska is chosen so that

‖ak+1 − ak‖∞ = akref . (7.2.26)

The reference angle akref is initialized to a0
ref = 3◦. At each iteration k, if the objective function satisfies

LALM(ak+1) < tolk ∗ LALM(ak), then,

ak+1
ref = min

(
a0
ref , 1.2a

k
ref

)
,

else,
ak+1
ref = 0.6akref ,

where tolk ≥ 1 is a tolerance which is initialized as 2 and multiplied by 0.9 every 50 iterations. The
reference angle plays here the role of the step coefficient.

Update of the starting point ũ

Once the angles have been updated, the point equation is solved: from the point ũk and following
the angle vector

(
ak+1
i

)
, the points

(
ũk
)
i
are computed and the average displacement of those nodes

corresponds to

δuk =
1

Nu − 1

Nu−1∑
i=1

|ũki − uki |,
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where |.| is the Euclidian distance in R2. The gradient with respect to the first point is ∇ũLALM = w1 .
At each iteration k,

ũk+1 = ũk + skũδu
k w1

‖w1‖
,

with a positive step skũ > 0. This descent step is updated as follows: at each iteration k, if the objective
function satisfies LALM(ũk+1) < tolk ∗ LALM(ũk) (same tolerance than for the angles),

sk+1
ũ = min

(
s0
ũ, 1.2s

k
ũ

)
,

else,

sk+1
ũ = 0.6skũ.

This update of the starting point is not done at each iteration but only every 3 iterations.

Once the updated first point ũk+1 has been computed, the trajectory equation is once again solved
(actually, translating the points ũ in the direction

(
ũk+1 − ũk

)
is enough).

Update of the final time tF

Recall that the final time tF is not continuous anymore but a discrete variable linked to the number of
segments of the path. We define a discrete descent step sktF which is a positive integer number initialized
at 5. This number sktF determines the number of segments which are added or removed at the end of
the discretized path for each iteration k. If the time derivative given by Proposition 7.1 is negative
or if any nodal point of the line is out of the domain D, sktF segments are removed. Else a straight
line of sktF segments (of size l) are added. The direction of the added segments can be chosen within
8 values which are in addition of akNu−1 (the direction of the last segment of the path at iteration n):
0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦. The best one to optimize the problem is chosen (see Figure
7.1). The descent step SktF is updated as follows: if after iteration n, the objective function satisfies
LALM(ũk+1) < tolk ∗ LALM(ũk) (same tolerance than for the angles), then

sk+1
tF = min(sktF + 1, 5),

otherwise,

sk+1
tF = max(sktF − 1, 0).

The final time tF is not updated at each iteration but every 5 iterations. When the final time is updated,
the angles and the starting point are kept unchanged.

(a) Removing a segment if one nodal point is out of the
working domain

(b) Adding a segment

Figure 7.1: Final time tF update process

7.2.4 Algorithmic details

For our numerical simulations, we use Algorithm 7.1. As in the steady state case, for simplicity, no
stopping criterion has been implemented in this algorithm, except a prescribed maximal number of
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iterations.
1 initialization of the line
2 resolution of the heat equation along the line and computation of the objective function and

constraints
3 computation of the derivatives
4 for each iteration do
5 update the tolerance
6 update the line (angle, first point and final time modified depending on the iteration number)
7 resolution of the heat equation, computation of the objective function and constraint
8 if improvement

(
Lk+1

ALM < tolkLkALM

)
then

9 iteration accepted
10 step coefficients increased (ak+1

ref = min
(
a0

ref , 1.2a
k
ref

)
, sk+1

ũ = min
(
s0
ũ, 1.2s

k
ũ

)
if update of

the starting point and sk+1
tF = min(sktF + 1, 5) if update of the final time)

11 update of the variables
12 computation of the derivatives
13 end
14 else
15 iteration refused
16 step coefficient refused (ak+1

ref = 0.6akref , s
k+1
ũ = 0.6skũ if update of the starting point and

sk+1
tF = max(sktF − 1, 0) if update of the final time)

17 end
18 end

Algorithm 7.1: Iterative algorithm to optimize the unsteady problem

7.2.5 Numerical results

The working domain for the transient case remains D = [−0.7, 0.7]× [−0.7, 0.7] (given in mm), with the
physical mesh used in the calibration (Chapter 4) and described in Chapter 5. The path discretization
is based on angles with l = 1.4∆x. This value is twice greater than in the steady state case and thus
induces a loss of accuracy. However, it allows for computational time gains, crucial in the transient case.

For each material, the physical properties (density, specific heat, conductivity and change of phase
temperature) are given in the Nomenclature, as well as the source radius r, the source power P and the
initial temperature yini. The absorption coefficient and the scaling parameters given by the calibration
process are then applied. As in the steady state case, the maximum temperature inside the object is
1670K for the aluminum and 3400K for the titanium. Outside the object, the maximum temperature
is fixed to 870K for the aluminum and 1800K for the titanium. The integer p related to the phase
constraint approximation is fixed to 64.
The tests run in section 7.2 remain simple tests without any further analysis such as in the steady state
case (Chapter 6). If the angle regularization is tested, the path discretization remains fixed. The algo-
rithm chosen is an Augmented Lagrangian method with l0φ = 1, µφ = 10, l0M,s = 1, µM,s = 10, l0M,e = 1
and µM,e = 10. Classic iterations consist in updating the angles. Every three iterations, the first point
is also updated. Every five iterations, the final time is modified. The tolerance is initialized to 2 and
multiplied by 0.9 every 50 iterations. The update coefficients are given by Algorithm 7.1. The code is
stopped after the reference angle aref defined by (7.2.26) gets smaller than 3e−8 ◦ and the number of
iterations is bounded to 1000. The finite element computations are run with Freefem 3.56 [96] whereas
the descent algorithm is run by Python 3.6.0. This problem is run on a MacBook laptop equipped with
2,3 GHz Intel Core i5 and a RAM of 16GB. No specific efforts for optimizing the Python code have been
made but for a Cholesky decomposition of the rigidity matrix involved in the heat and adjoint equations.

For each of the aluminum and titanium cases, the building of a square is considered with four different
algorithm initializations.

Remark 7.6. Since it is involved in the right hand side of the linear problems to solve, the Holder norm
coefficient p does not impact the computational time and can thus be chosen high. However, it impact
the accuracy of the computations. No quantitative studies have been run but p = 64 seems to lead to
accurate enough results.



7.2.5. Numerical results 153

Aluminium test case

We first test this algorithm starting from a 6 lines zigzag. Figure 7.2 shows the evolution of the path and
of the maximum temperature during the process with respect to iterations. The temperature colorbar
used in the steady state context is kept here: the maximum temperature at each point within the square
must belong to the segment [870K, 1670K], avoiding the blue and red colors. Out of the domain, the
maximum temperature should not overcome 870K and thus remain blue. Figure 7.3 gives the evolution
of the final time, the phase constraint, the maximum temperature constraint within and without the
square object with respect to iterations.

(a) Initialization (b) Iteration 20 (c) Iteration 100 (d) Final iteration
(iteration 662)

(e) Temperature colorbar (K)

Figure 7.2: Path and maximum temperature ( max
t∈(0,tF)

y(t)) during the building with respect to the

iterations, starting from a zigzag with 6 lines and using an angle-based path discretization (aluminum)

(a) Final time evolution with respect
to the iterations (s)

(b) Phase constraint Cφ evolution
with respect to the iterations

(c) Maximum temperature in the
object CM,DS

evolution with respect
to the iterations

(d) Maximum temperature out of the
object CM,D\DS

evolution with
respect to the iterations

(e) Computational time per iteration
(s)

Figure 7.3: Evolution of the final time, the phase constraint, the maximum temperature constraints
with respect to the iterations, starting from a zigzag with 6 lines and using an angle-based path

discretization (aluminum)
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This first test for the aluminum initialized with a zigzag with 6 lines is very representative of the algorithm
effects. The path is too long at initialization. In order to reduce the heat, the corner angles are amplified
and the length reduced, leading the path to get out of the working domain. Because projecting is not
possible in the angle based discretization, the final time reducing process proposed is applied until the
path is included in the working domain. Thanks to this reduction, the path can finally adapt to the
shape. This first results highlight once again the idea of a specific length adapted to the object to build.
It also underlines the shrinking and lengthening process induced by the angle based discretization: the
element must be added or removed at the end of the path before an adaptation of the angles to bring
the source where required. Note that the final phase constraint is worst than the initial one. Further
tests should favor this constraint to make sure to fulfill industrial requirements.
To illustrate the impact of the regularization, two additional tests have been run starting from the zigzag
with 6 lines, respectively with νΓ = 5 and νΓ = 10. The resulting paths and temperatures are shown by
Figure 7.4

(a) Result for νΓ = 0
(see Figure 7.2d)

(b) Result for νΓ = 5 (c) Result for νΓ = 10

Figure 7.4: Path and maximum temperature ( max
t∈(0,tF)

y(t)) during the building depending on the

regularization νΓ, starting from a zigzag with 6 lines and using an angle-based path discretization
(aluminum)

The regularization of the angle derivatives seems to have a poor impact on the final result. Indeed, the
angles modification must, at least for the first iterations, impact mainly the zigzag corners. Regularizing
decreases this derivative and mitigate the updates, preventing a correct minimization of the objective
function. In the following, we choose νΓ = 0.

To strengthen the analysis, three more initializations are tested: a 3 lines zigzag, a 9 lines zigzag and a
contour with 3 lines. The initial and resulting paths and maximum temperatures are given by Figure
7.5. The resulting quantitative results are adimensionalized and summed up in Table 7.1:

Cφ =
Cφ
|D|y2

φ

, CM,DS
=

CM,DS

|D|y2
M,DS

, CM,D\DS
=

CM,D\DS

|D \DS |y2
M,D\DS

. (7.2.27)
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(a) Zigzag with 3 lines
initialization

(b) Zigzag with 9 lines
initialization

(c) Contour with 3 lines
initialization

(d) Zigzag with 3 lines
result (iteration 1000)

(e) Zigzag with 9 lines
result (iteration 1000)

(f) Contour with 3 lines
result (iteration 1000)

(g) Temperature colorbar (K)

Figure 7.5: Path and maximum temperature ( max
t∈(0,tF)

y(t)) during the building for the initial path (first

line) and final path (second line), starting from three different initializations and using an angle-based
path discretization (aluminum)

Initialization tini
F (s) tfin

F (s) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

zigzag 3 lines 3.881e−3 5.267e−3 1.32e−3 2.21e−4 5.91e−10 5.58e−9 2.26e−5 1.03e−5

zigzag 6 lines 7.103e−3 4.781e−3 4.46e−5 3.70e−4 1.55e−9 4.62e−10 1.55e−4 2.99e−6

zigzag 9 lines 1.019e−2 4.262e−3 1.15e−5 1.16e−3 3.49e−9 2.30e−9 6.00e−4 1.41e−5

contour 3 lines 7.865e−3 6.514e−3 1.39e−4 7.98e−5 1.71e−9 1.16e−9 8.57e−7 1.21e−5

Table 7.1: Comparison of the final results for the cost and the constraints of the final results
(aluminum).

The zigzag with 3 lines is not long enough. The main modifications consist in adding path elements to
satisfy the phase constraint. However, this addition leads to sharp angles decreasing the path regularity,
which is a drawback for industrial applications. The two other cases seem to have encountered difficulties
in the optimization. When starting from the zigzag with 9 lines, the algorithm seems to have decreased
the length before increasing it again. The final path presents the irregularities coming from the final time
management and does not satisfy the phase constraint. On the contrary, when starting from a contour
with 3 lines, the algorithm has not managed to reduce enough the final time after the 1000 iterations
allowed.

Titanium test case

We first test this algorithm starting from a 12 lines zigzag. Figure 7.6 shows the evolution of the path
and of the maximum temperature during the process with respect to iterations. In the titanium context,
the maximum temperature at each point within the square must belong to the segment [1900K, 3400K],
avoiding the blue and red colors. Figure 7.7 gives the evolution of the final time, the phase constraint,
the maximum temperature constraint within and without the square object with respect to iterations.
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(a) Initialization (b) Iteration 200 (c) Iteration 400 (d) Final iteration
(iteration 997)

(e) Temperature colorbar (K)

Figure 7.6: Path and maximum temperature (maxt∈(0,tF) y(t)) during the building with respect to the
iterations, starting from a zigzag with 12 lines and using an angle-based path discretization (titanium)

(a) Final time evolution with respect
to the iterations (s)

(b) Phase constraint Cφ evolution
with respect to the iterations

(c) Maximum temperature in the
object CM,DS

evolution with respect
to the iterations

(d) Maximum temperature out of the
object CM,D\DS

evolution with
respect to the iterations

(e) Computational time per iteration
(s)

Figure 7.7: Evolution of the final time, the phase constraint, the maximum temperature constraints
with respect to the iterations, starting from a zigzag with 12 lines and using an angle-based path

discretization (titanium).

In this new physical context, the conductivity is a lot lower and the final time is a lot higher than for
the aluminum case. The initialization with a zigzag with 12 lines seems to cover most of the square
but its left and right sides. On the other hand, the sharp corners related to the zigzag structure induce
high temperatures. Thus, the first iterations aim at smoothing the path, getting it out of the working
domain. This implies a length reduction and thus on the final iterations, the need for the increase of the
final time. This optimization test highlights very well the main drawback of the algorithm: final time
management.

To strengthen the analysis, three more iterations are tested: a 9 lines zigzag, a 15 lines zigzag and a
contour with 4 lines. The initial and resulting paths and maximum temperatures are given by Figure
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7.8. The resulting quantitative results are summed up in Table 7.2.

(a) Zigzag with 9 lines
initialization

(b) Zigzag with 15 lines
initialization

(c) Contour with 4 lines
initialization

(d) Zigzag with 9 lines
result (iteration 1000)

(e) Zigzag with 15 lines
result (iteration 46)

(f) Contour with 4 lines
result (iteration 1000)

(g) Temperature colorbar (K)

Figure 7.8: Path and maximum temperature ( max
t∈(0,tF)

y(t)) during the building for the initial path (first

line) and final path (second line), starting from three different initializations and using an angle-based
path discretization (titanium).

Initialization tini
F (s) tfin

F (s) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

zigzag 9 lines 1.019e−2 8.974e−3 4.12e−2 5.72e−2 0.00 2.02e−8 0.00 1.37e−6

zigzag 12 lines 1.324e−2 1.330e−2 2.73e−2 2.07e−2 0.00 6.99e−8 0.00 2.16e−6

zigzag 15 lines 1.608e−2 1.608e−2 2.57e−2 2.57e−2 0.00 0.00 4.69e−7 4.69e−7

contour 4 lines 1.019e−2 1.133e−2 5.01e−2 3.49e−2 0.00 4.76e−7 0.00 7.17e−8

Table 7.2: Comparison of the final results for the cost and the constraints of the final results (titanium).

But for the zigzag with 15 lines, each of the different initializations does not lead to an acceptable
result. Indeed, the conductivity being much lower in the titanium case, the shrinking and lengthening
processes are crucial in the path optimization. In addition to providing irregular paths, the angle based
discretization used here does not manage to fulfill the constraints. It is obviously not adapted and must
be modified.

7.2.6 Conclusion

The angle based discretization, if leading to an adaptation of the path to the shape, does not work
correctly. Given the correct length, the path may be optimized. However, the optimization of the final
time is not sufficient. The test of the square building starting from a zigzag with 12 lines in the titanium
context illustrates very well the issue: intuitively, to improve the path, the horizontal lines of the zigzags
should have been extended. In order to do so, the algorithm has first to add some elements at the end
of the path and to then modify each angle to bring the source at the correct place. This makes the
getting of admissible results either impossible or very long to converge. The lack of improved results
in a few iterations prevent this method to be coupled with a shape optimization process and must be
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modified. A first track consists in changing the final time update. In topology optimization processes
(further developed in Chapter 8), the sensitivity to a topology change is computed so that the topology
can be modified by adding or removing part of the object at the correct place. One could imagine the
same kind of techniques to compute the sensitivity to the path to the addition of "beak" between two
points instead of the classic segment (see Figure 7.9). This would allow the lengthening of the path
to be done at the correct place while keeping the constant length segments properties that allows for
computation time reductions. This technique has however not been further considered and remains part
of the perspectives. A second idea, consisting in changing the path discretization from angle based to
point based, is developed in Section 7.3.

Figure 7.9: Lengthening the path at specific locations

7.3 Path optimization based on a points parametrization

If the angle based path discretization allows for the optimization, it highly complicates the final time
management. To deal with this issue, a second discretization is chosen, based on points. Very close to the
steady state case, the discretization nodes are now the optimization variables and the line is rediscretized
along the process. This increases the freedom in the design. Yet, it removes the constant element length
property leading to heavier resolutions of the partial differential problem involved (see Chapter 5, Section
5.5).

Equation (7.3.1) gives the optimization problem in its discretized formulation. Because of the re-
discretization process, note that the number of path nodes (and thus of optimization variables) is not fixed
along the resolution. At each iteration, we consider the path as a sequence of Nu points u = (u1, ..., uNu).
The heat equation is discretized with an implicit Euler scheme following these points with the time step
defined by ∀i ∈ J1, Nu− 1K, ∆ti = ‖ui+1− ui‖/V (and V fixed to 1ms−1 in this work). A first time step
∆t0 is fixed. The heat equation then becomes ∀i ∈ J1, NuK,


ρcp

yi+1 − yi
∆ti

−∇ (λ∇yi+1) + β (yi+1 − yini) = P exp

(
− (x− ui+1)

2

r2

)
= qi+1 x ∈ D,

λ∂nyi+1 = 0 x ∈ ∂D,
y0 = yini.

(7.3.1)

The final time conforms to (the fixed first time step ∆t0 is not considered in the function)

tF =

Nu−1∑
i=1

∆ti. (7.3.2)

The constraints are discretized through an implicit scheme corresponding to the heat equation scheme:

Cφ =

ˆ
DS

[
(yφ −Np)

+
]2
dx =

ˆ
DS


yφ −( 1

tF

Nu−1∑
i=0

∆tiy
p
i+1

)1/p
+


2

dx. (7.3.3)

and
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
CM,DS

=
1

tF

ˆ
DS

Nu−1∑
i=0

∆ti

[
(yi+1 − yM,DS

)
+
]2
dx,

CM,D\DS
=

1

tF

ˆ
D\DS

Nu−1∑
i=0

∆ti

[(
yi+1 − yM,D\DS

)+]2
dx.

(7.3.4)

The maximum constraints being split into a constraint in the object and a constraint out of the object,
the optimization problem finally amounts to

min
Γ
tF, such that



Cφ = 0,

CM,DS = 0,

CM,D\DS
= 0,

y ∈ H1(D) solution of (7.3.2).

(7.3.5)

Remark 7.7. Remark 7.3, given in the angle based discretization, is still valid: centered schemes could
be used for the constraints discretization.

7.3.1 Descent direction computation

Derivatives computation

We compute for each function the derivative with respect to points. To set the dependence of the steps
∆t with respect to the points u, the definition of the discrete tangents is recalled:

∀i ∈ J1, Nu − 1K, τi =
(ui+1 − ui)
‖ui+1 − ui‖

. (7.3.6)

Proposition 7.2. Let u = (ui)i∈J1,NuK ∈ DNu the nodal points of the path Γ. We have, ∀v ∈ RNu×2, D(∆ti)(u)(v) = τi · (vi+1 − vi) ∀i ∈ J1, Nu − 1K,

D(∆t0)(u)(v) = 0
(7.3.7)

PROOF.
This comes from the definition of ∆t: ∀i ∈ J1, Nu − 1K, ∆ti = ‖ui+1 − ui‖ and ∆t0 is fixed.

Proposition 7.3 gives the derivatives of each function with respect to the points.

Proposition 7.3. Let u = (ui)i∈J1,Nu ∈ DNu the nodal points of the path Γ. Then, the final time and
both constraints are differentiable at u and, ∀ v ∈ RNu×2,

DtF(u)(v) = τNu−1vNu +

Nu−1∑
i=2

((τi−1 − τi) · vi)− τ1 · v1, (7.3.8)

with τ · v = τxvx + τyvy. For the phase constraint Cφ,

DCφ(u)(v) =

[
− (HEφ,2 + Cφ,2) τ1 −∆t0

ˆ
D

2

r2
pφ,1q1 (x− u1) dx

]
· v1

+

Nu−1∑
i=2

[
(HEφ,i + Cφ,i) τi−1 − (HEφ,i+1 + Cφ,i+1) τi −∆ti−1

ˆ
D

2

r2
pφ,iqi (x− ui) dx

]
· vi

+

[
(HEφ,Nu + Cφ,Nu) τNu−1 −∆tNu−1

ˆ
D

2

r2
pφ,NuqNu (x− uNu) dx

]
· vNu

(7.3.9)

with ∀i ∈ J2, NuK,
HEφ,i =

ˆ
D

λ∇yi∇pφ,i + β (yi − yini) pφ,i − P exp

(
− (x− ui)

2

r2

)
pφ,idx,

Cφ,i =

ˆ
D

2

ptF
(yφ −Np)

+ [
Np −N1−p

p ypi
]
1DSdx,

(7.3.10)
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and with


ρcp

pφ,Nu
∆tNu−1

−∇ (λ∇pφ,Nu) + βpφ,Nu =
2

tF
(yφ −Np)

+
N1−p

p yp−1
Nu

1DS inD

λ∂npφ,Nu = 0 on ∂D,
ρcp

pφ,i − pφ,i+1

∆ti−1
−∇ (λ∇pφ,i) + βpφ,i =

2

tF
(yφ −Np)

+
N1−p

p yp−1
i 1DS inD,

λ∂npφ,i = 0 on ∂D.

(7.3.11)

Both maximum temperature constraints gets the same type of derivatives and we consider here CM,X with
X = DS or X = D \DS. depending on within the object derivative is given by

DCM,X(u)(v) =

[
− (HEMX,2 + CMX,2) τ1 −∆t0

ˆ
D

2

r2
pMX,1q1(x− u1)dx

]
· v1

+

Nu−1∑
i=2

[
(HEMX,i + CMX,i) τi−1 − (HEMX,i+1 + CMX,i+1) τi −∆ti−1

ˆ
D

2

r2
pMX,iqi(x− ui)dx

]
· vi

+

[
(HEMX,Nu

+ CMX,Nu
) τNu−1 −∆tNu−1

ˆ
D

2

r2
pMX,Nu

qNu(x− uNu)dx

]
· vNu

(7.3.12)
with ∀i ∈ J2, NuK,

HEMX,i =

ˆ
D

λ∇yi∇pMX,i + β (yi − yini) pMX,i − P exp

(
− (x− ui)

2

r2

)
pMX,idx,

CMX,i =
1

tF

[ˆ
D

[
(yi − yM)

+
]2
1Xdx− CM,X

] (7.3.13)

and with


ρcp

pMX,Nu

∆tNu−1
−∇ (λ∇pMX,Nu

) + βpMX,Nu
= − 2

tF
(yNu − yM)

+
1X inD

λ∂npMX,Nu = 0 on ∂D,
ρcp

pMX,i − pMX,i+1

∆ti−1
−∇ (λ∇pMX,i) + βpMX,i −

2

tF
(yi − yM)

+
1X inD

λ∂npMX,i = 0 on ∂D.

(7.3.14)

PROOF.
The differentiation of tF is naturally derived from Proposition 7.2. Following the method of Céa, three
Lagrangian functions, Lφ related to the phase constraint, LMDS

to the maximum temperature inside
the object and LMD\DS

to the maximum temperature outside the object, are introduced as
Lφ (Γ, y, p) = Cφ(Γ, y) + HE(Γ, y,p),

LMDS
(Γ, y, p) = CM,DS(Γ, y) + HE(Γ, y,p),

LMD\DS
(Γ, y, p) = CM,D\DS

(Γ, y) + HE(Γ, y,p),

(7.3.15)

with

HE =

Nu−1∑
i=0

ˆ
D

[
ρcp (yi+1 − yi) pi+1 + λ∆ti∇yi+1∇pi+1 + β∆ti (yi+1 − yini) pi+1

−P∆ti exp

(
− (x− ui+1)

2

r2

)
pi+1

]
dx.

(7.3.16)

This quantity can be differentiated with respect to the temperature leading to, ∀i ∈ J1, NuK, ∀Φ ∈
H1(D),


∂yNu (HE)(Γ, y,p)(Φ) =

ˆ
D

ρcppNu
Φ + λ∆tNu−1∇pNu

∇Φ + β∆tNu−1pNu
Φdx,

∂yi(HE)(Γ, y,p)(Φ) =

ˆ
D

ρcp (pi − pi+1) Φ + λ∆ti−1∇pi∇Φ + β∆ti−1piΦdx, ∀i ∈ J1, Nu − 1K.

(7.3.17)
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as well as the phase constraint:

∂yiCφ(y)(Φ) =

ˆ
D

−2 (yφ −Np)
+
N1−p

p

∆ti−1

tF
yp−1
i 1DSdx, (7.3.18)

and the maximum temperature constraint:

∂yiCM,DS(y)(Φ) =

ˆ
D

2∆ti−1

tF
(yi − yM,DS)

+
1DSdx,

∂yiCM,D\DS
(y)(Φ) =

ˆ
D

2∆ti−1

tF

(
yi − yM,D\DS

)+
1D\DSdx.

(7.3.19)

The phase adjoint pφ and the maximum constraint adjoints pMDS
and pMD\DS

respectively satisfy,
∀i ∈ J1, NuK, ∀φ ∈ H1(D),

∂yiHE(Γ, y,pφ)(Φ) + ∂yi
Cφ(y)(Φ) = 0,

∂yiHE(Γ, y,pMDS
)(Φ) + ∂yiCM,DS(y)(Φ) = 0,

∂yiHE(Γ, y,pMD\DS
)(Φ) + ∂yiCM,D\DS

(y)(Φ) = 0.

(7.3.20)

This leads to the adjoint functions.

The derivatives with respect to the points come from the differentiation of Lφ and Lmax with respect
to the points. On the one hand, the heat equation function HE gives, ∀v ∈ RNu×2:

∂uHE(u)(v) =

Nu−1∑
i=0

(∂∆tiHE)D(∆ti)(u)(v)−
Nu−1∑
i=0

vi+1

ˆ
D

∆ti
2

r2
qi+1 (x− ui+1) pi+1dx

=

Nu−1∑
i=1

(∂∆tiHE)D(∆ti)(u)(v)−
Nu−1∑
i=0

vi+1

ˆ
D

∆ti
2

r2
qi+1 (x− ui+1) pi+1dx.

(7.3.21)
We set (HE)i∈J2,NuK such that ∀i ∈ J2, NuK,

HEi = ∂∆ti−1
HE =

ˆ
D

(λ∇yi∇pi + β (yi − yini) pi − qipi) dx. (7.3.22)

This finally leads to

∂uHE(u)(v) = HENuτNu−1 · vNu +

Nu−1∑
i=2

(HEiτi−1 −HEi+1τi) · vi −HE2τ1v1

−
Nu∑
i=1

vi∆ti−1

ˆ
D

2

r2
qi (x− ui) pidx

(7.3.23)

Of course, the adjoint p must be chosen related to the phase (pφ) or to the maximum temperature
constraint (pM)

The partial derivative of the phase constraint is

∂uCφ(u)(v) =

ˆ
D

2 (yφ −Np)
+ N1−p

p

ptF

[
Np

pD(tF)(u)(v)−
Nu−1∑
i=0

D(∆ti)(u)(v)ypi+1

]
1DSdx

=

ˆ
D

2 (yφ −Np)
+ N1−p

p

ptF

Nu−1∑
i=1

[
Np

p − ypi+1

]
1DSD(∆ti)(u)(v)dx

=

Nu−1∑
i=1

ˆ
D

2 (yφ −Np)
+ N1−p

p

ptF

[
Np

p − ypi+1

]
1DSdx︸ ︷︷ ︸

Cφ,i+1

D(∆ti)(u)(v)

= Cφ,NuτNu−1 · vNu +

Nu−1∑
i=2

(Cφ,iτi−1 − Cφ,i+1τi) · vi − Cφ,2τ1 · v1

(7.3.24)
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This finally leads to the result. The partial derivative of the maximum constraint in the object is

∂CM,DS(u)(v) =

Nu−1∑
i=1

1

tF

(ˆ
D

[
(yi+1 − yM)

+
]2
1DSdx− CM,DS

)
︸ ︷︷ ︸

CMDS
,i+1

D(∆ti)(u)(v)

= CMDS
,Nu
τNu−1 · vNu +

Nu−1∑
i=2

(
CMDS

,iτi−1 − CMDS
,i+1τi

)
· vi − CMDS

,2τ1 · v1,

(7.3.25)

and outside the object,

∂CM,D\DS
(u)(v) =

Nu−1∑
i=1

1

tF

(ˆ
D

[
(yi+1 − yM)

+
]2
1D\DSdx− CM,D\DS

)
︸ ︷︷ ︸

CMD\DS
,i+1

D(∆ti)(u)(v)

= CMD\DS
,Nu
τNu−1 · vNu +

Nu−1∑
i=2

(
CMD\DS

,iτi−1 − CMD\DS
,i+1τi

)
· vi − CMD\DS

,2τ1 · v1,

(7.3.26)

Regularization

Alike the steady state case, a scalar product must be chosen to compute the gradients from the derivatives.
A H1(Γ) scalar product is once again elected (see (7.2.24) and Remark 7.5). Each derivative can be
written under the form

Df(u)(v) =

Nu∑
i=1

Gi · vi, (7.3.27)

and the gradient computation amounts to solving the following minimization problem:

∇uf = arg min
Q∈RNu×2

Nu−1∑
i=1

∆ti
2

(
ν2

Γ

(
Qi+1 −Qi

∆ti

)2

+
Q2
i +Q2

i+1

2

)
−
Nu−1∑
i=1

∆ti
GiQi +Gi+1Qi+1

2
. (7.3.28)

7.3.2 Numerical Augmented Lagrangian algorithm

Like in the steady state case, the Augmented Lagrangian method can be used. Introducing the multipliers
lφ, lM,s and lM,e as well as the multipliers µφ, µM,s and µM,e, the new objective function is

LALM(u, lφ, lM,s, lM,e) = tF + lφCφ +
µφ
2
C2
φ +lM,sCM,DS

+
µM,s

2
C2

M,DS

+lM,eCM,D\DS
+
µM,e

2
C2

M,D\DS
.

(7.3.29)

The update of the multipliers are 
lk+1
φ = lkφ + ckCkφ

lk+1
M,s = lkM,s + µkM,sC

k
M,DS

lk+1
M,e = lkM,e + µkM,eC

k
M,D\DS

(7.3.30)

As for the derivative with respect to the points, it is given by

DuLALM(u)(v) = DutF(u)(v) + (lφ + µφCφ)DuCφ(u)(v)

+ (lM,s + µM,sCM,DS)DuCM,DS(u)(v)

+
(
lM,e + µM,eCM,D\DS

)
DuCM,D\DS

(u)(v).

(7.3.31)

Remark 7.8. Note that, as Section 7.2 and unlike the steady state context, the functions are not
normalized in the definition of LALM (see Remark 7.2).
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7.3.3 First results

As before, the domain considered is D = [−0.7, 0.7] × [−0.7, 0.7] (given in mm). The accuracy of the
discretized path is chosen such that dl = 0.7∆x ≤ ∆u ≤ 1.4∆x = du. This distance is chosen bigger than
in the steady state context to decrease the computational time. Indeed, because in this discretization
choice, a linear problem must be inverted at each time step, at each iteration, the computational time
is much higher than in the steady state case and in the angle-based discretization. Finally, the regu-
larization coefficient is chosen as νΓ = 20dl. The physical coefficients are the same than in Section 7.2.
As for the coefficient ∆t0, it is fixed to du. The finite element analysis is once again run with Freefem
3.56 and Python 3.6.0. The resolution of the different linear problems is done using conjugate gradient
methods (library scipy.sparse.linalg.cg in Python, with a tolerance set to 10−10 for the convergence of
the iteration method used for the linear system resolution).

The first results correspond to the building of the square object (see Figure 6.1). In order to understand
how the algorithm modifies the path, the optimization has been run with the Augmented Lagrangian
method with l0φ = l0M,s = l0M,e = 0 and µφ = 10, µM,s = 10 and µM,e = 10. The regularization coefficient
is fixed to 20. First in the aluminum context, the optimization is run starting from a zigzag with 6 lines
(distance between two horizontal lines 2.10e−4m). The maximum temperature over the scanning as well
as the path are displayed for different iterations in Figure 7.10. This maximum temperature must remain
within [870K, 1670K] in the object, corresponding to green to orange colors. The evolution of the final
time tF, of the phase, of the maximum temperature constraints and the mean time per iteration are
displayed in Figure 7.11.

(a) Iteration 0 (b) Iteration 20 (c) Iteration 40 (d) Final iteration (389)

(e) Temperature colorbar (K)

Figure 7.10: Path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building with respect to the

iterations, starting from a zigzag with 6 lines and using an point-based path discretization (aluminum)
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(a) Length tF (s) (b) Phase constraint Cφ (c) Maximum temperature constraint
inside CM,DS

(d) Maximum temperature constraint
outside CM,D\DS

(e) Computational time per iteration
(s)

Figure 7.11: Evolution of the final time, the phase constraint, the maximum temperature constraints
with respect to the iterations, starting from a zigzag with 6 lines and using an point-based path

discretization (aluminum)

First of all, the final path is very similar to the path found using an angle-based discretization (Figure
7.2). Since both algorithms converge to the same result, we can reasonably assume that the techniques
used are relevant to address the optimization problem. However, the optimization iterations to get there
are very different. Indeed, in this point-based case, the final time is first drastically reduced and then
increased again, setting the new source points in accordance with the problem requirements. Unlike in
the angle-based algorithm, the final time is modified in a smooth way which infers that the optimization
process is smoother. The resolution time is however higher than for the angle based discretization, going
from a mean time per iteration of 4s to a mean time per iteration of 8s. Indeed, the distance between
points being fixed for the angle-based discretization, only one linear system must be inverted. Solving
the heat equation then simply amounts to a matrix product. In the point based discretization, this is
not possible anymore which increases the computational time. The conjugate gradient method used in
the point-based problem to solve linear problems could be accelerated by adding a preconditioner. This
remains part of the perspectives.

This first result must be supplemented by a test with the titanium. Indeed, in the angle based discretiza-
tion, the optimization was complicated by the decrease of the conductivity. Thus, the titanium case is
considered with an optimization process starting from a zigzag with 12 lines. Figure 7.12 shows the path
and the resulting maximal temperature that must remain in [1900K, 3400K] (green to orange again).
The different quantities evolution are given by Figure 7.13.
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(a) Iteration 0 (Initial
path)

(b) Iteration 100 (c) Iteration 350 (d) Final iteration (800)

(e) Temperature colorbar (K)

Figure 7.12: Path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building with respect to the

iterations, starting from a zigzag with 12 lines and using an point-based path discretization (titanium).

(a) Length tF (s) (b) Phase constraint Cφ (c) Maximum temperature constraint
inside CM,DS

(d) Maximum temperature constraint
outside CM,D\DS

(e) Computational time per iteration
(s)

Figure 7.13: Evolution of the final time, the phase constraint, the maximum temperature constraints
with respect to the iterations, starting from a zigzag with 12 lines and using an point-based path

discretization (titanium).

Unlike the angle based discretization, the algorithm is able to lengthen the path (and thus the final
time since the source velocity is constant) on the left and right sides (Figure 7.12(b)). Then, to remove
the unmelted parts between the horizontal lines, perturbations are introduced to fill the holes (Figure
7.12(c)). These perturbations are deeply related with the regularization process. Even though it is much
more expensive in terms of computational cost (mean time per iteration of 27s versus 10s for the angle
based discretization), this point based discretization is clearly more efficient.

7.3.4 Impact of the numerical choices

As in the steady state context, numerical and algorithm choices impact the result. This paragraph
analyzes three of them: the path discretization accuracy, the regularization process and the algorithm
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choices.

Impact of the path discretization and of the regularization

As mentioned in the first results analysis, the regularization process seems to be crucial. Indeed, especially
for low conductivity, small path variations are required. Yet, industrial constraints prevent them to be too
sharp. The accuracy of the discretization (and thus the size of path elements) as well as the regularization
impact these variations. Four different regularizations are considered: νΓ/dl ∈ {10, 15, 20, 30} and two
discretization coefficients dl = 0.7∆x ≤ ∆u ≤ 1.4∆x = du and dl = 1.4∆x ≤ ∆u ≤ 2.8∆x = du. In
the aluminum case, the final iteration path and maximal temperature are given by Figure 7.14 and the
adimensionalized final values defined by (7.2.27) are summed up in Table 7.3. As for the titanium, the
results are given by Figure 7.15 and Table 7.4.

(a) 1.4∆x = du,
νΓ = 10dl

(b) 1.4∆x = du,
νΓ = 15dl

(c) 1.4∆x = du,
νΓ = 20dl

(d) 1.4∆x = du,
νΓ = 30dl

(e) 2.8∆x = du,
νΓ = 10dl

(f) 2.8∆x = du,
νΓ = 15dl

(g) 2.8∆x = du,
νΓ = 20dl

(h) 2.8∆x = du,
νΓ = 30dl

Figure 7.14: Final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building depending on

the discretization accuracy and on the regularization chosen (aluminum)

Case tF (s) Cφ CM,DS
CM,D\DS

Initialization 7.098e−3 3.99e−5 3.02e−9 1.58e−4

1.4∆x = du, νΓ = 10dl 4.994e−3 1.25e−4 2.57e−9 1.33e−5

1.4∆x = du, νΓ = 15dl 4.987e−3 1.27e−4 2.68e−9 1.38e−5

1.4∆x = du, νΓ = 20dl 4.986e−3 1.28e−4 2.43e−9 1.25e−5

1.4∆x = du, νΓ = 30dl 5.002e−3 1.24e−4 2.99e−9 1.47e−5

2.8∆x = du, νΓ = 10dl 4.999e−3 1.43e−4 3.65e−11 8.38e−6

2.8∆x = du, νΓ = 15dl 4.999e−3 1.42e−4 2.95e−11 8.65e−6

2.8∆x = du, νΓ = 20dl 5.027e−3 1.33e−4 1.81e−11 1.06e−5

2.8∆x = du, νΓ = 30dl 5.083e−3 1.27e−4 5.03e−11 1.08e−5

Table 7.3: Comparison of the final cost and the constraints of the final results (aluminum).
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(a) 1.4∆x = du,
νΓ = 10dl

(b) 1.4∆x = du,
νΓ = 15dl

(c) 1.4∆x = du,
νΓ = 20dl

(d) 1.4∆x = du,
νΓ = 30dl

(e) 2.8∆x = du,
νΓ = 10dl

(f) 2.8∆x = du,
νΓ = 15dl

(g) 2.8∆x = du,
νΓ = 20dl

(h) 2.8∆x = du,
νΓ = 30dl

Figure 7.15: Final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building depending on

the discretization accuracy and on the regularization chosen (titanium)

Case tF (s) Cφ CM,DS
CM,D\DS

Initialization 1.325e−2 2.66e−2 0.00 0.00

1.4∆x = du, νΓ = 10dl 2.158e−2 3.99e−7 0.00 1.27e−6

1.4∆x = du, νΓ = 15dl 2.075e−2 5.08e−5 0.00 2.73e−6

1.4∆x = du, νΓ = 20dl 2.047e−2 6.31e−5 0.00 1.62e−6

1.4∆x = du, νΓ = 30dl 1.632e−2 1.89e−3 0.00 1.12e−6

2.8∆x = du, νΓ = 10dl 1.842e−2 6.28e−4 0.00 6.47e−7

2.8∆x = du, νΓ = 15dl 1.632e−2 2.01e−3 0.00 6.77e−7

2.8∆x = du, νΓ = 20dl 1.624e−2 2.04e−3 0.00 9.74e−7

2.8∆x = du, νΓ = 30dl 1.612e−2 2.21e−3 0.00 2.09e−6

Table 7.4: Comparison of the final cost and the constraints of the final results (titanium).

We start by commenting the results in the titanium context. The comments are close to the steady state
case ones. Indeed, from the left to the right, the regularization is increased. Thus the path is required
to be smoother and the slight and rapid path variations present on the left columns disappear with the
increase of νΓ. These also disappear when increasing the mean distance between discretization nodes.
Indeed, loosening the path description accuracy leads to loosing freedom and thus getting rid of the small
variations. These analysis are translated in terms of quantitative results: less regularization and more
accuracy leads to bigger final times and smaller constraints. For the aluminum, whatever regularization
is chosen, the results seem to be similar (but for a small variations for Figure 7.14(h)). Indeed, the
conductivity being bigger, small path variations are not required.

In the following, the regularization is fixed to νΓ = 20dl and the accuracy to du = 1.4∆x.



168 Chapter 7. Path optimization in the transient context

Impact of the optimization algorithm

As in the steady state case, the optimization algorithm is then considered, with height tests. Five of them
consist in Augmented Lagrangian methods with different coefficients: the first one does not penalize (c =
µM,s = µM,e = 0) and the Lagrange multipliers remain fixed during the process (lφ = lM,s = lM,e = 1).
In the second and third tests, the penalization is increased to c = µM,s = µM,e = 1. In the third test,
the Lagrange multipliers are initialized to 0 (lφ = lM,s = lM,e = 0) whereas they are initialized to 1 in
the third test. The second test should thus lead to a larger time reduction since the constraints are not
taken into account straight at the beginning of the process. In the fourth and fifth test, the penalization
is again increased to c = µM,s = µM,e = 10. Once again, the multipliers in the fourth test are initialized
to 0 whereas they are initialized to 1 in the fifth test with the same consequences. The different tests
are recapped as

• Augmented Lagrangian method with l0 = 1, c = 0,

• Augmented Lagrangian method with l0 = 0, c = 1,

• Augmented Lagrangian method with l0 = 1, c = 1,

• Augmented Lagrangian method with l0 = 0, c = 10,

• Augmented Lagrangian method with l0 = 1, c = 10,

The results in the aluminum case initialized by a zigzag with 6 lines (Figure 7.10(a)) are given by Figure
7.16 and the adimensionalized constraints in Table 7.5 whereas the results in the titanium case initialized
by a zigzag with 12 lines (Figure 7.12) are given by Figure 7.17 and Table 7.6.

(a) Final temperature
and path, AL method(

l0 = 1, c = 0
) (b) Final temperature

and path, AL method(
l0 = 0, c = 1

) (c) Final temperature
and path, AL method(

l0 = 1, c = 1
)

(d) Final temperature
and path, AL method(

l0 = 0, c = 10
) (e) Final temperature

and path, AL method(
l0 = 1, c = 10

)

(f) Temperature colorbar (K)

Figure 7.16: Path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building depending on the

iterations (aluminum)
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Case tF (s) Cφ CM,DS CM,D\DS

Initialization 7.098e−3 3.99e−5 3.02e−9 1.58e−4

AL met. test 1 (l0 = 1, c = 0) 6.138e−3 3.39e−4 8.21e−9 1.85e−6

AL met. test 2 (l0 = 0, c = 1) 4.321e−3 4.98e−4 2.24e−9 4.48e−7

AL met. test 3 (l0 = 1, c = 1) 6.214e−3 2.82e−4 8.81e−9 2.28e−6

AL met. test 4 (l0 = 0, c = 10) 4.986e−3 1.28e−4 2.43e−9 1.25e−5

AL met. test 5 (l0 = 1, c = 10) 6.475e−3 1.38e−4 7.27e−9 6.46e−6

Table 7.5: Comparison of the cost and the constraints of the final results (aluminum)

(a) Final temperature
and path, AL method(

l0 = 1, c = 0
) (b) Final temperature

and path, AL method(
l0 = 0, c = 1

) (c) Final temperature
and path, AL method(

l0 = 1, c = 1
)

(d) Final temperature
and path, AL method(

l0 = 0, c = 10
) (e) Final temperature

and path, AL method(
m0 = 1, c = 10

)

(f) Temperature colorbar (K)

Figure 7.17: Path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building depending on the

iterations (titanium)

Case tF (s) Cφ CM,DS
CM,D\DS

Initialization 1.325e−2 2.66e−2 0.00 0.00

AL met. test 1 (l0 = 1, c = 0) 1.643e−2 1.64e−3 0.00 3.62e−8

AL met. test 2 (l0 = 0, c = 1) 1.657e−2 1.60e−3 0.00 1.20e−7

AL met. test 3 (l0 = 1, c = 1) 1.836e−2 5.44e−4 0.00 3.55e−7

AL met. test 4 (l0 = 0, c = 10) 2.047e−2 6.31e−5 0.00 1.62e−6

AL met. test 5 (l0 = 1, c = 10) 2.065e−2 4.85e−5 0.00 1.71e−6

Table 7.6: Comparison of the cost and the constraints of the final results (titanium)



170 Chapter 7. Path optimization in the transient context

As in the steady state case, the algorithm highly impact the results. In the aluminum case first, three
of the Augmented Lagrangian results are very similar. They correspond to initial Lagrange multiplier
l0 = 1, algorithms for which the constraints are taken into account since the very first iterations. Con-
sequently, the final time for these paths are higher than the two others whereas the final constraints are
similar. The diversity in the results is thus more restrained than in the steady state case: there might
be less local minima in the transient case than in the steady state case. Testing different initializations
should give more information about this. In the titanium case, the conclusions are slightly different. In-
deed, whereas the important parameters seemed to be the initial Lagrange multiplier for the aluminum,
the penalization coefficient c appears to have more impact for the titanium. Once again, three of the
results seem to be quite similar, leading to the same assumption about local minima in the case of low
conductivity material. The null space gradient could also be adapted here but this remains part of the
perspectives.

In the following, the Augmented Lagrangian method with the multipliers initialized to 0 and the penal-
ization set to 10 is chosen (Figures 7.10(d) and 7.12(d)).

7.3.5 Aluminium material test case

As in the steady state case, different initializations are now tested in the aluminum physical test case.
The initializations and results are presented in Figure 7.18, the final adimensionalized values summed up
in Table 7.7 and the graph of the final time with respect to the aggregated adimensionalized constraint
(see (7.2.27)) C = Cφ + CM,DS

+ CM,D\DS
in each case is given in Figure 7.19.

(a) Zigzag with 3 lines (it. 391) (b) Zigzag with 6 lines(it. 390) (c) Zigzag with 9 lines (it. 397)

(d) Zigzag with 12 lines (it. 391) (e) Zigzag with 15 lines (it. 391) (f) Spiral (it. 386)

(g) Contour with 1 line (it.397) (h) Contour with 2 lines (it.383) (i) Contour with 3 lines (it.385)

(j) Contour with 4 lines (it.381)

(k) Temperature colorbar (K)

Figure 7.18: Initial and final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building

depending on the initialization (aluminum)
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Case tini
F (s) tfin

F (s) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

zigzag 3 lines 3.864e−3 4.958e−3 1.30e−3 1.71e−4 1.07e−9 3.18e−9 2.39e−5 1.05e−5

zigzag 6 lines 7.098e−3 4.986e−3 3.99e−5 1.28e−4 3.02e−9 2.43e−9 1.58e−4 1.25e−5

zigzag 9 lines 1.019e−2 5.030e−3 9.85e−6 1.53e−4 6.24e−9 4.59e−9 6.06e−4 8.70e−6

zigzag 12 lines 1.325e−2 5.025e−3 4.18e−6 1.15e−4 1.22e−8 2.63e−9 9.34e−4 1.64e−5

zigzag 15 lines 1.630e−2 5.765e−3 1.99e−6 1.06e−4 1.59e−8 3.06e−9 1.12e−3 1.95e−5

spiral 5.635e−3 4.930e−3 3.16e−3 1.75e−4 4.51e−9 4.95e−9 0.00 3.98e−6

contour 1 line 2.835e−3 4.981e−3 4.31e−3 1.48e−4 4.74e−9 3.68e−9 0.00 1.44e−5

contour 2 lines 5.460e−3 4.916e−3 1.02e−3 1.80e−4 5.57e−9 4.35e−9 0.00 3.83e−6

contour 3 lines 8.033e−3 4.910e−3 1.12e−4 1.83e−4 5.43e−9 3.86e−9 9.30e−7 4.20e−6

contour 4 lines 1.058e−2 4.909e−3 1.06e−5 1.82e−4 4.58e−9 4.10e−9 4.46e−5 4.36e−6

Table 7.7: Comparison of the final cost and constraints of the final results (aluminum)

0.000 0.002 0.004 0.006 0.008 0.010
tF (s)

0.00045

0.00050

0.00055

0.00060
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0.00080
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C̄
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+
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M
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+
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M
,D

\D
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zigzag9

zigzag12

zigzag15

spiral

contour1

contour2

contour3

contour4

Figure 7.19: Constraint C = Cφ + CM,DS + CM,D\DS
with respect to the final time tF (s) for the final

results (aluminum)

The first conclusion to these different tests is that the algorithm point based gives quite good results,
far better than the angle based algorithm. Indeed, but for the result coming out from the zigzag with
15 lines, which final time is higher, each of the others appear quite intuitive and the final quantities are
quite alike. In particular, the final time belongs mostly to [4.9ms, 5.1ms]. Thus, in the transient case
again, the notion of specific final time or energy can be introduced. On the contrary to the steady state
case, the final shapes are not all different. Indeed, the contour with 2, 3 and 4 lines lead to the same
final path, which can be compared the result from the spiral to which a rotation of π/2 would have been
applied. The results from the zigzag with 6 and 12 lines also appear the same. Finally, the results from
the contour with 1 line, the zigzag with 3 lines and the zigzag 9 lines lead to different results however
in line with the ones found with the other initializations (see Figure 7.19). The number of local minima
seems to be smaller than in the steady state case but still well reached by the algorithm.

In each of these cases, the phase constraint appears not fully satisfied: for all the paths found, it remains
unmelted zones. This is proscribed by industrial applications which would rather increase the maximum
temperature inside the part to build than leave powder unmelted. Thus the algorithm chosen should
favor the phase constraint. Yet, this must be done carefully. Indeed, the phase constraint is only
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approximated and undervalued: it is already slightly favored. Unbalancing the different constraints
could then result in large increase of the maximum temperature constraints. This could be improved
by using another optimization algorithm than the Augmented Lagrangian method (null space gradient
algorithm for example) but this further study remains part of the perspectives.

Scanning complex geometries

Finally, to get intuition on design criteria adapted to scanning constraints, for each of the object re-
sulting from the shape optimization detailed in Section 3.3.2 and given in Figures 3.6, 3.7 and 3.8, the
optimization is run for two different initializations. The results for each object are presented by Figures
7.20, 7.21, 7.22, the graph shown in Figure 7.23 and Table 7.8.

(a) Initialization 1 (it. 379) (b) Initialization 2 (it. 395)

Figure 7.20: Initial and final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building

depending on the initialization for the zero hole object (aluminum)

(a) Initialization 1 (it. 409) (b) Initialization 2 (it. 410)

Figure 7.21: Initial and final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building

depending on the initialization for the one hole object (aluminum)

(a) Initialization 1 (it. 386) (b) Initialization 2 (it. 397)

Figure 7.22: Initial and final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building

depending on the initialization for the three holes object (aluminum)

Temperature colobar



7.3.6. Titanium material test case 173

Case tini
F (s) tfin

F (s) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

Zero hole

initialization 1 4.687e−3 4.449e−3 6.75e−4 1.40e−4 1.46e−8 3.61e−9 1.34e−6 1.68e−7

initialization 2 7.433e−3 4.664e−3 4.23e−4 1.62e−4 4.63e−6 5.24e−9 1.59e−5 1.17e−5

One hole

initialization 1 4.687e−3 3.534e−3 1.47e−4 2.54e−4 1.88e−8 7.32e−9 2.45e−4 6.52e−7

initialization 2 7.433e−3 3.510e−3 4.50e−6 2.65e−4 5.95e−6 6.90e−9 3.39e−4 5.04e−7

Three holes

initialization 1 4.687e−3 3.787e−3 2.48e−5 1.48e−4 1.97e−8 8.21e−9 5.51e−4 9.47e−5

initialization 2 7.433e−3 3.918e−3 2.81e−5 2.17e−4 6.23e−6 1.90e−8 7.97e−4 2.80e−4

Table 7.8: Comparison of the final cost and constraints of the final results for the zero, one and three
holes objects (aluminum)
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Figure 7.23: Constraint C = Cφ + CM,DS
+ CM,D\DS

with respect to the final time tF (s) for the final
results for the zero, one and three hole objects (aluminum)

The results from path optimization for a specific geometry confirm the previous remarks. First of all,
at least for the two first objects, the algorithm leads to correct results and the final time values for the
different initializations are similar. As for the third object, the optimization is very hard: the aluminum
conductivity is high and the shape appears very difficult to build while not melting the holes. In the
steady state case, this optimization was possible (see Figure 6.28). This steady state case is calibrated
to be the maximal temperature over the building. Since the optimization is possible in this steady state
case and not in the transient one, the calibration process should be improved. Indeed, if leading to results
that can be interpreted in a physical way, it remains not perfect and based on model full of assumptions.
This algorithm could then be applied to an improved model. The development of this model as well as
the acceleration of the algorithm this will require are part of the perspectives.

7.3.6 Titanium material test case

We now consider the titanium test case, which lower conductivity complicates the optimization process.
The initializations and results are presented in Figure 7.24, the final values summed up in Table 7.9 and
the graph of the final time with respect to the aggregated adimensionalized constraint C shown in Figure
7.25.
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(a) Zigzag with 6 lines (it. 405) (b) Zigzag with 9 lines (it. 447) (c) Zigzag with 12 lines (it. 799)

(d) Zigzag with 18 lines (it.497) (e) Zigzag with 21 lines (it. 425) (f) Spiral (it.401)

(g) Contour with 1 line (it. 415) (h) Contour with 2 lines (it. 393) (i) Contour with 4 lines (it. 547)

(j) Contour with 5 lines (it. 575)

(k) Temperature colorbar (K)

Figure 7.24: Initial and final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building

depending on the initialization (titanium)

Case tini
F (s) tfin

F (s) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

zigzag 6 lines 7.098e−3 2.235e−2 8.37e−2 2.06e−8 0.00 0.00 0.00 1.48e−5

zigzag 9 lines 1.019e−2 2.277e−2 4.06e−2 9.17e−7 0.00 0.00 0.00 1.60e−5

zigzag 12 lines 1.325e−2 2.047e−2 2.66e−2 6.31e−5 0.00 0.00 0.00 1.62e−6

zigzag 18 lines 1.933e−2 2.254e−2 2.24e−2 3.80e−6 0.00 0.00 6.30e−6 1.53e−5

zigzag 21 lines 2.237e−2 2.530e−2 2.20e−2 3.29e−6 0.00 0.00 1.80e−5 9.75e−6

spiral 5.635e−3 2.317e−2 1.65e−1 3.46e−5 0.00 0.00 0.00 3.25e−6

contour 1 line 2.835e−3 2.329e−2 2.25e−1 1.41e−8 0.00 0.00 0.00 1.11e−5

contour 2 lines 5.460e−3 2.332e−2 1.41e−1 7.44e−6 0.00 0.00 0.00 1.33e−5

contour 4 lines 1.058e−2 2.353e−2 4.80e−2 8.40e−5 0.00 0.00 0.00 2.86e−6

contour 5 lines 1.312e−2 2.316e−2 2.72e−2 1.40e−4 0.00 0.00 0.00 1.31e−6

Table 7.9: Comparison of the final cost and constraints of the final results (titanium)
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Figure 7.25: Constraint C = Cφ + CM,DS + CM,D\DS
with respect to the final time tF (s) for the final

results (titanium)

The results in the titanium test case are a lot more intricate than in the aluminum case, and the de-
crease of the number of local minima can not be concluded here. Yet, the optimization process seems
to work pretty well with constraints satisfied and final times that get quite close to one another even
if starting from very different initializations. Indeed, but for 2 of them, the final final times all belong
to [22.3ms, 23.5ms]. The two exceptions are for the zigzag with 21 lines and the zigzag with 12 lines.
The first one has a very high initial final time and the algorithm does not manage to reduce enough the
path length. The second initialization seems quite close to a good optimum and does not require much
path modifications. Thus, the idea of specific energy is still valid when considering a material with lower
conductivity.

In order to facilitate the optimization and obtain results that could be applied in the industry, the
optimization should be run on smaller zones, thus reducing the number of local minima. We could then
work on the expansion of these results for small domains to larger by concurrent optimization between
several domains or symmetry conditions. These developments are part of the perspectives.

Scanning complex geometries

Finally, as for the aluminum, for each of the objects given in Figures 3.6, 3.7 and 3.8, the optimization
is run for two different initializations. The results for each object are presented by Figures 7.26, 7.27,
7.28, by the graph shown in Figure 7.29 and Table 7.10.
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(a) Initialization 1 (it. 499) (b) Initialization 2 (it. 458)

Figure 7.26: Path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building depending on the

initialization for the zero hole object (titanium)

(a) Initialization 1 (it. 419) (b) Initialization 2 (it. 466)

Figure 7.27: Path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building depending on the

initialization for the one hole object (titanium)

(a) Initialization 1 (it. 417) (b) Initialization 2 (it. 459)

Figure 7.28: Initial and final path and maximum temperature
(

max
t∈(0,tF)

y(t)

)
during the building

depending on the initialization for the three holes object (titanium)

Temperature colobar
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Case tini
F (s) tfin

F (s) C
ini

φ C
fin

φ C
ini

M,DS
C

fin

M,DS
C

ini

M,D\DS
C

fin

M,D\DS

Zero hole

initialization 1 4.687e−3 2.213e−2 1.55e−1 1.06e−9 0.00 0.00 0.00 1.12e−5

initialization 2 7.433e−3 2.046e−2 1.00e−1 2.14e−8 0.00 0.00 0.00 1.36e−5

One hole

initialization 1 4.687e−3 1.650e−2 1.19e−1 1.03e−8 0.00 0.00 0.00 1.01e−5

initialization 2 7.433e−3 1.540e−2 5.59e−2 2.99e−7 0.00 0.00 2.74e−7 1.47e−5

Three holes

initialization 1 4.687e−3 1.658e−2 1.13e−1 3.73e−9 0.00 0.00 7.17e−6 4.38e−5

initialization 2 7.433e−3 1.545e−2 5.84e−2 3.40e−7 0.00 0.00 2.08e−5 5.45e−5

Table 7.10: Comparison of the final cost and constraints of the final results for the zero, one and three
holes objects (titanium)
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Figure 7.29: Constraint C = Cφ + CM,DS
+ CM,D\DS

with respect to the final time tF (s) for the final
results (titanium)

The results for each of the objects are better than for the aluminum. Indeed, the shape is better
respected while keeping the maximum temperature constraint low. This conclusion was expected. Since
the titanium’s conduction is lower than the aluminum’s, building thin bars is easier which explains the
results obtained for the object with three holes. However, the final paths are once again too complicated
to be directly applied in the industry: the curvature should be controlled and we could split the object
to work on smaller domains thus reducing the number of local minima. These adaptations to further
industrial requirements are part of the perspectives.

7.3.7 Conclusion

The modification of the path discretization leads to better results. Indeed, the issue of final time is easier
to deal with: because the path elements can have different lengths, the points can simply move in the
working domain, allowing for the line lengthening and shrinking at correct locations. The information
is fully contained by the derivatives which constitutes a huge improvement compared to the element
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addition in the angle based formulation. The code thus converges in a reasonable number of iterations
(usually less than 500). Yet, the main drawback is the computational time (Figures 7.11(e) and 7.13(e)).
Indeed, this process is close to brute force algorithms, requiring the inversion of as many linear problems
than points in the path discretization.

7.4 Conclusion

Among the two discretizations, the point based one seems to give results far better than the angle based
one. Indeed, the final time issue is naturally dealt with and no artificial methods are required to lengthen
or shrink the path. Yet, the method then gets closer to a brute force process, increasing the compu-
tational costs. Indeed, the constant element size property cannot be kept and the simulation of the
building requires the inversion of the number of discretization elements linear systems.

Besides the computational costs, the point based discretization optimization gives interesting results. In
the aluminum case first, the path adapts very well to the shape to build. The final paths all induce the
same final times and constraints, expanding the notion of optimal energy to the transient case. As for the
diversity of the optimized path, it seems reduced with respect to the steady state case. Yet, no conclusion
can be taken regarding a potential decrease of the number of local minima in the transient case. The
model has been calibrated for the titanium and might require some further modifications in the aluminum
case. Indeed, less energy seems to be required in the transient case than in the steady state case even
though the steady state case considers the maximum temperature over the building. As for the titanium
context, the point based discretization seems quite efficient. Unlike the angle based discretization, the
final algorithm managed to adapt the path in order to build the square with final quantitative values
confirming the notion of optimal energy. Yet, the results could be improved for the building of more
complicated objects with a deeper study of the different optimization algorithms available. Finally, the
model once again seems to impact the results. Yet, on the contrary to the aluminum, more energy seems
to be required in the transient case than in the steady state one. The results obtained remain dependent
on the initialization but the modifications induced by the optimization are large enough to make the
results really different from the initialing pattern. This method is thus interesting to produce new path
shapes and get intuition on the notion of "good path".
Besides the improvements of the optimization algorithms and of the model, these first results lead to
different perspectives. Following the remarks stated in the steady state case, it would be very interesting
to allow several path connected components. Indeed, especially for intricate objects, this could help the
path design to remain within the part without overheating. Then, this study could be carried on to
better understand the link between the part shape and the path.
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8.1 Introduction

As shown in the steady state framework, the efficiency of the optimal path depends on the number of
curves composing the path, and allowing points at which the source is switched off could improve the
scanning. Even though its slows down the process (see Chapter 1), this option is already involved in
many scanning strategies (raster paths for example, see Chapter 1). This feature is clearly relevant at
an industrial level and extends the set of admissible paths. In this chapter, we propose strategies to vary
both the path shape and topology, that is its number of connected components. Based on the algorithms
already developed, two different ideas are presented.

The first one is based on the real process modeling. A new optimization variable, written as power
variable, is added. Multiplied to the power, it can take only two values: 0 when the source is off and 1
otherwise. Section 8.3 presents the theoretical tools required to include this feature to the algorithms
we developed. First, a modified optimization problem is stated to include the additional power variable.
However, the set {0, 1} is discrete which complicates the optimization. To address this issue, a relaxation
penalization method (very similar to the SIMP method in topology optimization [32]) is proposed leading
to a new optimization algorithm. If these settings allow for switching off the source, they do not control
the number of switching points at which this must be done. To prevent degenerated paths with an very
large number of switching, we complement this algorithm by a control of the power variable oscillation.
To this end, a total variation constraint, inspired from image segmentation issues, is added. In Sec-
tion 8.3, we apply these tools to the path optimization algorithm proposed in the steady state context
(Chapter 6). We conduct numerical computations that enable for a critical analysis of the approach.
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The work presented in these sections results from a joined work with Tonia-Maria ALAM and Serge
NICAISE, from the Laboratoire de Mathématiques et leurs Applications de Valenciennes (LAMAV), in
Valenciennes, France. Based on two different path optimization approaches, a common work has been
conducted on the different available techniques to optimize the power, force its bang-bang properties and
control its number of variations. A theoretical study of these tools’ ability to provide an efficient control
has then been kept on developing by the LAMAV team, which results can be found in [6]. The work
presented here focuses on the numerical implementation. For further information about the theory and
to consider a second numerical approach for path optimization, the reader is warmly invited to further
look into the LAMAV’s work and especially [7] and [6].

The second idea consists in modifying the path topology itself, in the steady state context. Topology
optimization, mentioned in Chapter 3, aims at modifying the topology of the optimized structure. As for
shape differentiation, the sensitivity of the problem to the creation of an infinitesimal hole is computed.
This sensitivity is then transformed into a descent direction and the structure is modified. In Section
8.4, we apply this to path optimization.

8.2 Controlling the power

The objective is to include in the optimization the ability to switch the source on and off. To this aim,
an additional optimization variable ζ : [0, tF] → {0, 1} is introduced. The source is off whenever ζ = 0,
on for ζ = 1.

The optimization problem now involves two different variables: the path Γ ∈ G, and a power variable
ζ ∈ L2([0, tF], {0, 1}). Thus, we can rewrite the heat equation (4.2.6) as:

ρcp∂ty −∇ (λ∇y) + β (y − yini) = ζP exp

(
− (x− u)

2

r2

)
(t, x) ∈ [0, tF]×D

λ∂ny = 0 (t, x) ∈ [0, tF]× ∂D
y(0, x) = yini(x) x ∈ D,

(8.2.1)

where u describes the path Γ on [0, tF]. The new optimization problem is then (see Chapters 4 and 6),

min
Γ∈G,ζ∈L2([0,tF],{0,1})

LF = V tF, such that


Cφ(Γ, ζ) = CM(Γ, ζ) = 0,

y ∈ L2
(
[0, tF], H1(D)

)
solution of (8.2.1)

dependence onΓ and ζ in the source term

(8.2.2)

Remark 8.1. Note that both optimization variables are independent. Indeed, the power variable ζ is
actually a one dimensional function than can be defined on the segment [0, tFinal], with tFinal > tF. This
function only depends on time and not on the path point. Because the source q(t > tF) = 0, ζ(t > tF) is
not involved in the optimization process. This independence is crucial for differentiation properties and
the introduction of total variation constraints into the optimization problem (see Section 8.2.2).

8.2.1 Relaxation penalization methods

Because the variable ζ cannot vary continuously (ζ ∈ {0, 1}), differentiating is complicated. In order
to deal with this, a relaxation-penalization approach is chosen. The relaxation process corresponds to
enlarging the admissible values for the variable ζ through the replacement of the set {0, 1} by the seg-
ment [0, 1]. To force the variable ζ(t) to its extremal values 0 and 1 during the optimization process,
intermediate values are penalized.

Relaxation-penalization processes arise in many different fields. In shape and topology optimization, the
domain can be represented by a density variable ρ where ρ(x) = 0 in case of void and ρ(x) = 1 if solid
(this domain representation is an alternative choice to the level set method detailed in Chapter 3). A
relaxation-penalization method is applied. In a first approach, the density is first relaxed to the interval
[0, 1] until convergence is reached. A filter is then applied to penalize the intermediate densities (for
example, one could take ρfiltered =

1−cos(πρopt)
2 [9]). This technique is well described and documented in
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[8, 9].

In a second approach, called the SIMP method, the density ρ is still the optimization variable. However,
the actual density involved in the state partial differential equation is ρq (q > 1), squeezing any density
smaller than 1 to 0. A volume constraint is added to the problem and usually, to ease the optimization,
continuation algorithms, where the power q is increased along the process are used. The SIMP method
is fully detailed in [32].

To keep it simple, we choose here to penalize the intermediate values by adding to the optimization
problem the following constraint P on the variable ζ (equality constraint P = 0):

P =
1

tF

ˆ tF

0

fpen(ζ(t))dt. (8.2.3)

The function fpen must penalize the intermediate values of ζ. The most natural choice is:

fpen,qP :

 [0, 1] → R

ζ 7→ (ζ (1− ζ))
1
qP ,

(8.2.4)

with qP ≥ 1 (Figure 8.1). To ensure the differentiability at 0 and 1 (when qP > 1), this function is
replaced by fpen,qP (ζ) = ((ζ + εP) (1 + εP − ζ))

1
qP , with εP arbitrarily fixed to εP = 1e−6. Such a

function however presents two main drawbacks. First, the derivative of the integrand at 1
2 equals 0 and

the algorithm can be stuck there. Then, the derivative tends to push any value under 0.5 to 0 whereas
any value above 0.5 goes to 1. The first iterations of the algorithm are then crucial since alternating
between both zones is complicated. A continuation method could be used to limit this drawback.

To address these issues, a second function, inspired by the SIMP method [32], is considered:

fSIMP :

 [0, 1] → R

ζ 7→ ζ
1
qP ,

(8.2.5)

with qP ≥ 1 (Figure 8.2). Again, this function is modified to (ζ + εP)
1
qP to insure the differentiability

at 0. This function is very steep at 0 and almost flat at 1. The penalization cost is thus similar at x = 1
or at intermediate value. Assume that the problem only involves a phase constraint and no maximum
temperature constraints. Then, if energy has to be introduced at a point x, it is worth setting the power
variable to 1. Indeed, the penalization function is almost the same for any power variable above 0 and it
is more efficient to set the power variable at its maximum to decrease the phase constraint as much as
possible. Yet, in the problem we consider here, there is a maximum temperature constraint that could
act against this penalization.

Both functions have been numerically evaluated in the steady state context. However, it appears that
the second one does not provide interesting result and in all the numerical tests presented in this chapter,
the penalization amounts to add the constraint

P =
1

tF

ˆ tF

0

fpen(ζ(t))dt = 0. (8.2.6)

Remark 8.2. Note that this new penalization constraint is "artificial", namely a purely numerical trick
that is not related to the physics of the problem. Correctly involving it in the optimization process
requires a careful choice of the optimization parameters.

8.2.2 Controlling the jumps

If switching off and on the source may improve the scanning strategy, it is also time consuming and the
number of times it happens (written as power jumps in the following) must be limited. To prevent these
oscillations, the variations of ζ must be properly defined and controlled.
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Figure 8.1: Symmetric penalization
fpen : ζ → ((ζ + εP) (1 + εP − ζ))

1/qP

Figure 8.2: SIMP penalization
fSIMP : ζ → (ζ + εP)

1/qP

This switchings control issue is close to the denoising or segmentation problem in image processing.
Consider indeed a black and white image characterized by each pixel’s grey level ρ: black if ρ = 1 and
white if ρ = 0. A clear image, called the target, must be recovered from a noisy image, called the data,
by denoising processes: the variations of the pixels must be controlled to recover clear black and white
zones. In this work, the target image term plays the role of the temperature constraints. The variation
control remains the same and the techniques applied in image analysis are adapted to the power context.

Denoising methods

Fully based on [49], we introduce in this paragraph the denoising problem in the image analysis context.
Let’s recall the denoising problem. Consider a target and a data images, defined on a square D by their
pixel value gtarget, gdata : D → [0, 1] (in the continuous version). Based on the data image, the goal is the
image guess gguess the closest to the target. This problem is composed of two different objectives. First,
the recovered image must remain close from the data image (least square term). Then, a penalization F
is added to limit the pixels variations, leading to the following problem:

find gguess = arg min
u∈L2

λF (u) + ‖u− gdata‖2L2([0,1]2). (8.2.7)

In image analysis, this penalization chosen is the function TV , called the total variation of the function
and defined as

TV : u 7→
ˆ

[0,1]2
|∇u|dx. (8.2.8)

This seems to require the function u to belong to W 1,1 (or even more C1) but it turns out not to be
the case and u can be discontinuous (the correct space to consider is the bounded variation space, no
theoretical details are given here). The total variation exactly corresponds to the number of jumps for
a piecewise constant function.

Remark 8.3. Other penalizations could have been thought of. The most intuitive are

F1(u) = ‖u‖L2([0,1]2) =

ˆ
[0,1]2

|u|2dx, F2(u) = ‖u‖H1([0,1]2) =

ˆ
[0,1]2

|∇u|2dx,

respectively corresponding to a L2 and H1 norm. The first function F1 does not reduce the noise. Indeed,
it only requires the function u to belong to L2 without any impact on its variations. On the other hand,
the function F2 requires the variable u to belong to H1 which implies its continuity. As a consequence,
such a function cannot represent sharp discontinuous variations leaving the recovered image still blurred.
In the powder bed fusion context of this work, these penalizations correspond to the scalar product choices
to determine the optimization problem gradient from the derivatives (this process has been detailed in
Section 3.2.4 for a shape variable and can be extended to the power variable).

Application to the power optimization

In the path optimization context this work focuses on, the least square function from image analysis
corresponds to the minimization of the final time subjected to temperature constraints. Inspired by
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image analysis problems, the new optimization problem gathering the relaxation penalization (addition
of the constraint P = 0, see (8.2.6)) and the jump control is now rewritten as

min
Γ∈G,ζ∈L2([0,tF],[0,1])

LF = V tF + lTV

ˆ tF

0

|dtζ|dt,

such that



Cφ(Γ, ζ) = CM(Γ, ζ) = 0,

P(ζ) = 0,

y ∈ L2
(
[0, tF], H1(D)

)
solution of (8.2.1)

that depends onΓ and ζ.

(8.2.9)

8.2.3 Optimization algorithm

The new optimization problem must now be solved with an appropriate numerical algorithm. However,
the total variation function is not differentiable and the gradient based approach previously developed
must be replaced by a proximal gradient algorithm as studied in Section 2.6. The total variation function
is indeed convex and the problem thus fits the requirements presented in Section 2.6.

The constraints related to indicator functions are added in problem (8.2.9) as follows

min
Γ,ζ∈L2([0,tF],R)

LF = V tF + lTV

ˆ tF

0

|∂tζ|dt+ χΓ⊂D + χζ∈[0,1],

such that


Cφ(Γ, ζ) = CM(Γ, ζ) = 0,

P(ζ) = 0,

y ∈ L2
(
[0, tF], H1(D)

)
solution of (8.2.1).

(8.2.10)

where χΓ⊂D is the indicator function of Γ ⊂ D and χζ∈[0,1] the indicator function that the variable ζ
remains in [0, 1]. To solve this problem, we combine the Augmented Lagrangian and proximal gradient
methods (see Section 2.6.5) with µφ, µM, cζ penalization coefficients and

LALM(Γ, ζ, lφ, lM, λζ) = V tF + lφCφ +
µφ
2
C2
φ + lMCM +

µM

2
C2

M + λζP +
cζ
2
P2︸ ︷︷ ︸

fD

+ lTV
1

tF

ˆ tF

0

|∂tζ|dt+ χΓ⊂D + χζ∈[0,1]︸ ︷︷ ︸
fND

.
(8.2.11)

Recall that the constraints Cφ and CM depends on the temperature y solution of (8.2.1). The function
fD correspond to the differentiable terms for which a gradient can be determined. The function fND is
non differentiable but convex. The update of the Lagrange multipliers follows:

lk+1
φ = lkφ + µφC

k
φ, lk+1

M = lkM + µMC
k
M, λk+1

ζ = λkζ + cζPk. (8.2.12)

The proximal of the non differentiable function must be made explicit. Since the variable ζ is independent
from the path Γ (see Remark 8.1, the function fND is the sum fζND depending on the variable ζ only and
fΓ

ND depending on the path Γ:  fζND = lTV
1

tF

ˆ tF

0

|∂tζ|dt+ χζ∈[0,1],

fΓ
ND = χΓ⊂D.

(8.2.13)

The proximal operators corresponding to each function are then independently applied to each variable.
For the path, we have:

proxλfΓ
ND

(Γ̃) = PD
(

Γ̃
)
, (8.2.14)

where PD is the orthogonal projection on the domain D. Because the variable ζ is a one dimensional
variable and since fζND is the sum of a convex function and a characteristic function, the corresponding
proximal is the composition of the proximal to each function (see [207]):

proxλfζND
(ζ̃) = Pζ∈[0,1]

(
proxλTV (ζ̃)

)
. (8.2.15)
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The proximal of the total variation function is computed using toolbox "proxTV" of Python [24, 25].
The proximal steps are chosen equal to the gradient steps. The process follows a line search and is further
detailed in the application to the steady state context. Finally, Algorithm 8.1 is applied.

1 Initialize (Γ0, ζ0) and l0φ, l
0
M, λ

0
ζ

2 Compute the objective function
3 Compute the gradient with respect to the path ∇ΓLALM(Γ0, ζ0, l0φ, l

0
M, λ

0
ζ)

4 Compute the gradient with respect to the power variable ∇ζLALM(Γ0, ζ0, l0φ, l
0
M, λ

0
ζ)

5 while the stopping criterion is not reached do
6 Compute the update steps snΓ and snζ
7 Compute Γ̃n+1 = Γn − snΓ∇ΓfD(Γn, ζn, lnφ, l

n
M, λ

n
ζ )

8 Compute ζ̃n+1 = ζn − snζ∇ζfD(Γ0, ζn, lnφ, l
n
M, λ

n
ζ )

9 Path projection Γn+1 = PD (Γn)

10 Application of the proximal related to ζ: ζn+1 = Pζ∈[0,1]

(
proxsnζ lTVTV (ζ̃n)

)
11 Compute the new objective function
12 if the new objective function is smaller than before (up to a tolerance) then
13 Iteration accepted
14 Update of the Lagrange multipliers and recompute the objective function
15 Compute the shape and power derivatives
16 Increase the step coefficients (line search)
17 end
18 else
19 Reject the iteration
20 Decrease the coefficients: line only for a line iteration, power only for a power iteration

and both if both
21 end
22 end

Algorithm 8.1: Power and shape optimization algorithm

Remark 8.4. Note that if the temperature constraints are split into a phase constraint and a maximum
temperature constraints, they could also be split into three different ones (phase, maximum temperature
in the object and maximum temperature out of the object) or aggregated into an only one (like in the
steady case).

8.3 Application of the power control in the steady state context

The numerical computations are conducted in the steady case. Indeed, the faster computations and the
availability of shape differentiation simplify the optimization. We then can use the algorithm analysis it
provides to spare tests in the transient case. In this Section, after specifying the optimization problem
in the steady state context, the different gradients and proximal operators are computed. Then, the
optimization algorithm is made precise by detailing the update step choices. Finally numerical results
are provided: the impact of the power variable is first tested by fixing the path and running the relaxed
problem, the relaxation-penalization method is then analyzed to elect one penalization function and the
jump control strategy is finally applied.

In this steady state context, the Augmented Lagrangian function (8.2.11) becomes, with L ≥ LF fixed
(see Remarque 8.1):

LALM = LF + C +
c

2
C2 + λζP +

cζ
2
P2︸ ︷︷ ︸

fD

+ lTV

ˆ
Γ

|dsζ|ds+ χΓ⊂D + χζ∈[0,1]︸ ︷︷ ︸
fND

, (8.3.1)

with C = Cφ+CM, P =
1

LF

ˆ
Γ

fpen (ζ(s)) ds and the temperature y stepping in the constraint C is given

as y ∈ H1(D) solution of, ∀φ ∈ H1(D),ˆ
D

λ∇y · ∇φ+ β (y − yini)φdx−
ˆ

Γ

Pζφds = 0. (8.3.2)
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Remark 8.5. Note that in the steady case, the total variation function depends on both the path Γ
and the power variable ζ. This complicates the proximal computation further detailed in the following.

8.3.1 Path discretization

The path discretization must now carry the variable ζ(s) and the broken line approach detailed in Section
5.3 must be adapted.

The broken line approach is kept and the variable ζ is defined on the segments, leading to the numerical
variable (ζi)i∈J1,Nu−1K. If the computation of the normal, tangent and curvature (Section 5.3.3) and
the differentiation and integration of P0−functions can be applied to the variable ζ (Section 5.3.5), the
discretization coherence process and the source computation must be modified.

Discretization coherence

If is was previously possible to delete and add segments, it is not anymore. Imagine for example that
a segment Si must be deleted. However, the value ζi is high whereas the values on the neighboring
segments are not. A simple delete would thus remove most of the energy of this part of the path. To
remedy this problem, all the addition and deletion must keep

´
Γ
ζ constant.

Let’s first consider the adding process. Let S be a segment carrying the value ζS , with length l such that

l > du. This segment is split into
[
l

du

]
+ 1 elements of size l̃ =

l[
l
du

]
+ 1

, each of them carrying ζ̃ = ζS .

Thus,

lζ =

[ l
du

]+1∑
i=1

l̃ζ̃ . (8.3.3)

The deleting process follows the same structure than in Section 5.3.2, yet not simply removing the points.
Assume that ‖ui − ui−1‖ ≤ dl and carries ζi−1. In the backward process previously defined, the new
segment to consider was ui−ui−2 and point ui−1 was removed. In this new process, the function ζ must
be defined on the resulting segment (introducing the corresponding variable ζ̃). To do so, a quantity E
is defined in relation to the three points (ui, ui−1, ui−2) as well as a second one Ẽ related to the two
points (ui, ui−2):

E = ‖ui−1 − ui−2‖ζi−1 + ‖ui − ui−1‖ζi, Ẽ = ‖ui − ui−2‖ζ̃.
To keep the Ẽ = E, one should choose

ζ̃ =
‖ui−1 − ui−2‖ζi−1 + ‖ui − ui−1‖ζi

‖ui − ui−2‖
.

However, ζ is bounded and must remain with [0, 1]. If the new function value ζ̃ ≤ 1, then the process
can go on (Figure 8.3 (a-b)). Else, the point ui−1 can not be removed and is simply moved (Figure 8.3
(c)). This point must be pushed away from ui and should not be brought closer to ui−2 (in the backward
process), leading to an optimization problem:

min
u∈R2
‖ui−1 − u‖ such that

 ‖u− ui‖ − dl ≥ 0

‖u− ui−2‖ − ‖ui−1ui−2‖ ≥ 0

If the point u found is in the working domain D, ui−1 is replaced by u and the function ζ is adjusted to
maintain the same quantity E (Figure 8.3 (d-e)). Else, a set of points v is defined as

V = {v ∈ D; ‖v − ui‖ = dl and ‖v − ui−2‖ = ‖ui−1ui−2‖} ∪ {v ∈ D; ‖v − ui‖ = dl and v ∈ ∂D}.
and u is taken as min

G∈G
‖v − ui−1‖, with adaptation of the function ζ (Figure 8.4).

Source computation

The process creating the P0−source from the path is also slightly modified from the one presented in
Section 5.3.4. Indeed, when a segment S carrying the value ζS crosses a physical mesh cell, the value
attributed to the mesh is not the classic length but the length multiplied by ζ.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8.3: Deleting process: (a)Starting from the end point, the last segment is too small but
removing it does not make ζ overcome 1 and the segment can be deleted. (b)The segment resulting
from the delete is large enough as well as the one starting form u5. (c)The length of element 4 is too

small. Yet, the segment cannot be deleted because the resulting function ζ would overcome 1. (d-e)The
closest point to u4 is found so that ‖ũ4 − u5‖ = dl and ‖ũ4 − u3‖ ≥ ‖u4 − u3‖. The corresponding

length and function value are updated. (f)Each segment but the first is large enough. The first point
cannot be removed. (g)Process started from u1. (h)Resulting path.

8.3.2 Derivative computations

The differentiation with respect to the multipliers gives, at iteration k, the following update steps: lk+1
C = lkC + cCk

λk+1
ζ = λkζ + cζPk.

(8.3.4)

Proposition 8.1 gives the derivatives of the derivative of fD with respect to both variables.

Proposition 8.1. Let Γ ∈ G and ζ ∈ L2([0, L],R). Then, the function fD is differentiable at (Γ, ζ).
With respect to the path, ∀θ ∈ C2

(
D,R2

)
,
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(a) The closest point to ub out of the
circles is out of the box

(b) Intersection between the circle of
center ub with the other circle and the

box

Figure 8.4: Deleting process with ζ̃ > 1, choosing the new point: the point ub is not in the working
domain D. The intersection between both circles and the circle centered in uc with the boundary ∂D

are computed. The closest to ub belonging to D and out of the circle centered in ua is chosen.

DΓfD(Γ, ζ)(θ) =

ˆ
Γ

κθ · nds+ (θ · τ) (B)− (θ · τ) (A)

+
λζ + cζP

LF

[(ˆ
Γ

(f(ζ)− P)κθ · n− f ′(ζ)∂τζθ · τds
)

+ ((f(ζ)− P) θ · τ) (B)− ((f(ζ)− P) θ · τ) (A)

]
−
ˆ

Γ

[Pζ (pκ+ ∂np) θ · n− Pp∂τζθ · τ ] ds− (Pζpθ · τ) (B) + (Pζpθ · τ) (A)

(8.3.5)
and with respect to the power variable ζ, ∀δζ ∈ L2([0, L],R),

DζfD(Γ, ζ)(dζ) =

ˆ
Γ

(
−Pp+

λζ + cζP
LF

f ′pen(ζ)

)
δζds. (8.3.6)

The function p ∈ H1(D,R) is solution of (8.3.7) (actually corresponding to the adjoint in Proposition
6.1 in Chapter 6):

 −∇ (λp) + βp = (lC + cC)
(

2lφ (yφ − y)
+ − 2lM (y − yM)

+
)

inD

λ∂np = 0 on ∂D.
(8.3.7)

PROOF.
The proof of this proposition consists in applying the method of Céa to the function fD. Note that
this derivative includes the transport of the power variable. Indeed, since the power variable ζ is only
defined on the path Γ, we must apply the formula related to J2 and J3 in Proposition 3.4 (see Remark
3.4).

For numerical applications, these derivatives must be transformed into discrete gradients. Following
Section 3.2.4 (Chapter 3) and Section 6.3.2 (Chapter 6), the following subsections give the gradients
with respect to the path and the power variable. In the discretization process the discretization of the
functions ζ and ζ matches. Indeed, they are given one value per path discretization element (P0−function
along the path, see Chapter 5, Section 5.3.5), that can be related to the corresponding element or to the
length crossed from the beginning of the path to this element. Since the path is discretized with Nu nodes
(ui)i∈J1,NuK, the power variable vector is constituted of Nu − 1 elements: (ζ)i∈J1,Nu−1K = (ζ)i∈J1,Nu−1K.
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Discrete gradient related to the path

Following (3.2.19), the gradient with respect to the path is given by ∇ΓfD = ∂Γ
τ fDτ + ∂Γ

nfDnH
1(Γ,R2),

with

∂Γ
τ fD(Γ) = arg min

W∈H1(Γ,R)

LHS︷ ︸︸ ︷ˆ
Γ

(
ν2

Γ

2
(∂τW )

2
+

1

2
W 2

)
ds−

RHSτ︷ ︸︸ ︷ˆ
Γ

vτWds− v(B)W (B) + v(A)W (A),

∂Γ
nfD(Γ) = arg min

W∈H1(Γ,R)

ˆ
Γ

(
ν2

Γ

2
(∂τW )

2
+

1

2
W 2

)
ds︸ ︷︷ ︸−

ˆ
Γ

vnWds︸ ︷︷ ︸
RHSn

,

(8.3.8)
and 

vτ (s) = Pp∂τζ −
λζ + cζP

LF
f ′(ζ)∂τζ

vτ (B) = 1− Pζ(B)p(B) +
λζ + cζP

LF
(f(ζ(B))− P)

vτ (A) = −1 + Pζ(A)p(A)− λζ + cζP
LF

(f(ζ(A))− P)

vn(s) = κ− Pζ (pκ+ ∂np) +
λζ + cζP

LF
κ (f(ζ)− P)

(8.3.9)

The discretization of the left hand side of each equation is given by (6.3.6) (Chapter 6). As for the right
hand side it holds:

RHSτ =

ˆ
Γ

vτWτds+ vτ (B)Wτ (B)− vτ (A)Wτ (A)

≈ −
[
1− Pζ1p1 +

λζ + cζP
LF

(f(ζ1 − P))

]
Wτ,1

+

Nu−1∑
i=1

[
Pli

pi∂τζiWτ,i + pi+1∂τζi+1Wτ,i+1

2
− λζ + cζP

LF
lif
′(ζi)

∂τζiWτ,i + ∂τζi+1Wτ,i+1

2

]
+

[
1− PζNu−1pNu +

λζ + cζP
LF

(f(ζNu−1)− P)

]
Wτ,Nu

(8.3.10)

RHSn =

ˆ
Γ

vnWnds

≈
Nu−1∑
i=1

[
li
κiWn,i + κi+1Wn,i+1

2
− liζiP

(piκi + ∂npi)Wn,i + (pi+1κi+1 + ∂npi+1Wn,i+1)

2

+
λζ + cζP

LF
li

(
f(ζi)− P̃

) κiWn,i + κi+1Wn,i+1

2

]
(8.3.11)

Discrete gradient related to the power variable

As stated in Section 8.2, the power variable is expected to be only in L2. Nevertheless, it is interesting
to compare the H1 regularization effect to the total variation penalization and both scalar products are
given (see Remark 8.3).

First the classic L2 scalar product requires ζ ∈ L2([0, L]) and ∇ζfD ∈ L2([0, L]) to satisfy,
ˆ

Γ

∇ζfDWds = DζLALM(W ) =

ˆ
Γ

vζWds. (8.3.12)

This leads to ∀i ∈ J1, Nu − 1K

(∇ζfD)i = −P pi + pi+1

2
+
λζ + cζP

LF
f ′(ζi). (8.3.13)
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In case of a H1 scalar product, ζ ∈ H1([0, L]) and ∇ζfD ∈ H1([0, L]) must satisfy ∀W ∈ H1([0, L]),
ˆ

Γ

ν2
ζ∂s (∇ζfD) · ∂sW + (∇ζfD)Wds = DζLALM(W ) =

ˆ
Γ

vζWds. (8.3.14)

This leads to minimizing the following discrete function:

Nu−1∑
i=1

[
li
2

ν2
ζ

2

((
li (∇ζfD)i − li−1 (∇ζfD)i−1

li + li−1

)2

+

(
li+1 (∇ζfD)i+1 − li (∇ζfD)i

li+1 + li

)2
)

+
li
2

(∇ζfD)
2
i

+

(
−P pi + pi+1

2
+
λζ + cζP

LF
f ′(ζi)

)
(∇ζfD)i

]
(8.3.15)

Proximal computation

The proximal operator of the non differentiable function involves both the path Γ and the power variable
ζ. To simplify the problem we approximate this proximal considering that the total variation function
does not depend on the path and that:

proxλfND
= proxλ1ζ∈[0,1]

◦ proxλTV ◦ proxλ1Γ⊂D
. (8.3.16)

Since the proximal operator of a characteristic function is the orthogonal projection, this leads to

• first projecting the path Γ in the working domain D. This involves an approximation: what-
ever modification on the path discretization segments length this modification induces, the power
variable on this segment remains unmodified).

• then applying the proximal operator related to the TV function. The discrete formulation of this
function is

TV =

Nu−2∑
i=1

|ζi+1 − ζi|, (8.3.17)

proximal operator is computed using the toolbox "proxTV" in Python (see [24, 25]. The path is
not taken into account in this proximal operator. The step chosen for the proximal step is the same
than for the gradient step related to the variable ζ.

• finally project the resulting power variable ζ in the domain [0, 1].

8.3.3 Optimization algorithm

Algorithm 8.1 can finally be applied, providing that the steps sΓ and sζ are given. The step with respect
to the shape follows the choices of Chapter 6:

snΓ =
Cs,n∆x

maxi ‖ (∇ΓfD)i ‖
, (8.3.18)

where Cs,0 fixed to 1, updated by max(Cs,0, η
s
accCs,n) when the iteration is accepted (ηsacc = 1.2) and by

ηsrefCs,n when refused (ηsref = 0.6).

The same technique is used for the power, with

snζ =
Csζ ,n

maxi | (∇ζfD)i |
, (8.3.19)

and Csζ ,0 = 0.1 and the same coefficient updates.

To get the numerical results, the normalization technique presented in Chapter 6 (Section 6.4.1) has
been applied here and each of the optimization function and constraints have been normalized by their
initial value. The total variation at the initial state often being equal to 0, the normalization is realized
with the first iteration different from 0.
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8.3.4 Numerical results: optimization of the power

In the first tests, we focus on the power variable only. The objective is to understand its ability to
improve the constraints fulfillment. The path being fixed, the relaxed optimization problem is run with
the same physical and discretization settings than for the numerical tests in Chapter 6.

Four different test cases are studied:

• in the aluminium case, the path consists in a zigzag with 9 lines and the power is initialized to
ζ0 = 0.5 all along the path (Figure 8.5 (a)), referred to as "zigzag9-ALU",

• in the aluminium case, the path consists in the result from path optimization starting from a zigzag
with 9 lines and the power is initialized to ζ0 = 1 all along the path (Figure 8.5 (b)), referred to
as "zigzag9BIS-ALU"

• in the titanium case, the path consists in a zigzag with 12 lines and the power is initialized to
ζ0 = 0.5 all along the path (Figure 8.5 (c)), referred to as "zigzag12-TI",

• in the titanium case, the path consists in the result from path optimization starting from a zigzag
with 12 lines and the power is initialized to ζ0 = 1 all along the path (Figure 8.5 (d)), referred to
as "zigzag12BIS-TI".

(a) zigzag9-ALU (b) zigzag9BIS-ALU (c) zigzag12-TI (d) zigzag12BIS-TI

Temperature colorbar (K) - aluminium Temperature colorbar (K) - titanium

Power colorbar

Figure 8.5: Temperature map for each initialization

For each of these four tests, the results are presented in a Figure showing the resulting path, the power
variable along the path at the final iteration as well as the constraint evolution (Figure 8.6, Figure 8.7,
8.8, 8.9). The numerical values are stored in two different tables: Table 8.1 for the aluminium and Table
8.2 for the titanium.

Case Cφ CM,DS CM,D\DS

zigzag9-ALU - initialization 7.84e− 4 0.0 0.0

zigzag9-ALU - result 3.32e− 4 0.0 3.43e− 9

zigzag9BIS-ALU - initialization 4.19e− 7 0.0 2.83e− 5

zigzag9BIS-ALU - result 4.93e− 7 0.0 6.42e− 8

Table 8.1: Comparison of the cost and constraints for the power optimization (aluminium)
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(a) Result (path and
temperature)

(b) Power variable ζ along the path (c) Evolution of the constraint C with
respect to the iterations

Temperature colorbar (K) Power colorbar

Figure 8.6: Power optimization starting from zigzag9-ALU (aluminium)

(a) Result (path and
temperature)

(b) Power variabl ζ along the path (c) Evolution of the constraint C with
respect to the iterations

Temperature colorbar (K) Power colorbar

Figure 8.7: Power optimization starting from zigzag9BIS-ALU (aluminium)

(a) Result (path and
temperature)

(b) Power variabl ζ along the path (c) Evolution of the constraint C with
respect to the iterations

Temperature colorbar (K) Power colorbar

Figure 8.8: Power optimization starting from zigzag12-TI (titanium)

Case Cφ CM,DS CM,D\DS

zigzag12-TI - initialization 3.25e− 2 0.0 0.0

zigzag12-TI - result 1.58e− 2 6.27e− 5 0.0

zigzag12BIS-TI - initialization 3.26e− 3 3.37e− 4 2.95e− 3

zigzag12BIS-TI - result 3.66e− 3 2.41e− 5 5.46e− 4

Table 8.2: Comparison of the cost and constraints for the power optimization (titanium)
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(a) Result (path and
temperature)

(b) Power variable ζ along the path (c) Evolution of the constraint C with
respect to the iterations

Temperature colorbar (K) Power colorbar

Figure 8.9: Power optimization starting from zigzag12BIS-TI (titanium)

We first consider the initialization with the non optimized zigzags (Figures 8.6 and 8.8). In both the
aluminium and titanium cases, the power is increased in the corners of the zigzag, leading to a reduction
of the phase constraint and an increase, in the titanium case, of the maximum temperature constraint.
Note first that this result might be dependent on the optimization algorithm chosen. Then, in both
results, the power is increased in the corners and decreased in the middle of the straight lines. Indeed,
to melt the left and right sides of the square, the mower must be increased in the corners. However to
remain under the maximum temperature, the power is reduced where the phase constraint is not critical.
The results on the optimized zigzags (Figures 8.7 and 8.9) show that coupling the power and the path
might improve the results. Indeed, the path optimization had converged to a result that did not fully
satisfied the constraints. Running this power optimization afterwards improve the previous results by
decreasing the maximum temperature constraints.

8.3.5 Numerical results of the relaxation penalization problem with jump control

The coupled optimization is now considered, aimed at optimizing the path and the power to allow for
path splittings. These first results aim at choosing an efficient penalization as well as comparing these
results to the Chapter 6. From each initialization (Figure 8.5), the optimization is:

• without any penalization function. This test is called the "relaxed test".

• with the penalization function related to fpen, where qP = 1 fixed. This test is called the "penal-
ization test".

• with the penalization function related to fpen, where qP initialized to 1 and multiplied by 1.1 every
40 iterations. This test is called the "penalization with continuation test".

In these three first tests, the coefficient lTV remains 0 during the whole optimization. To add the control
of the number of jumps, two additional tests are run:

• "penalization test" in which the coefficient lTV is initialized to 100 and multiplied by 1.25 every 40
iteration. This test is called "penalization test, lTV = 100+".

• "penalization test" in which the coefficient lTV is set to 0 but a H1 regularization of the power
derivative is introduced and νζ = 100 (in the other tests, a simple L2 gradient is chosen). This test
is called "penalization test, H1-regularization".

For each of the initializations proposed in Figure 8.5, each of these tests is run. Note that for all of
them, the path is computed with a regularization coefficient νΓ = 15 (see (8.3.8)). These results are to
be compared to the ones found in Chapter 6 in which the path only was optimized. For each of the
initialization cases, a Figure presenting all the results is given as well as a Table gathering the numerical
values. Also note that the rediscretization of the path is different in this section than it was in Chapter
6. Indeed, the coherence of the power must be kept. Note also that, in all the length computations,
the path at which the source is off is counted in the length. Controlling it another way is part of the
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(a) Initialization (b) Result from path
optimization

Final path Final power

(c) "Relaxed test"

Final path Final power

(d) "Penalization test"

Final path Final power

(e) "Penalization with continuation test"

Final path Final power

(f) "Penalization test, lTV = 100+"

Final path Final power

(g) "Penalization test, H1-regularization"

(h) Temperature colorbar (K) (i) Power colorbar

Figure 8.10: Coupled power and path optimization starting from zigzag9-ALU (aluminium)

perspectives (in the transient case especially, the velocity of the source is higher when the laser is off,
which must be taken into account in the final time computation).

Case LF (m) Cφ CM,DS
CM,D\DS

TV

initialization (ζ = 0.5) 1.019e−2 7.84e−4 0.00 0.00 0

path optimization 1.159e−2 4.20e−7 0.00 2.84e−5 0

relaxed test 1.163e−2 7.65e−7 0.00 7.65e−7 12.9

penalization test 1.172e−2 1.58e−7 0.00 1.86e−7 57.3

penalization with continuation test 1.171e−2 2.55e−7 0.00 9.24e−7 28.0

penalization test, lTV = 100+ 1.173e−2 7.80e−8 0.00 5.23e−7 10.1

penalization test, H1-reg 1.169e−2 1.78e−7 0.00 1.61e−7 57.0

Table 8.3: Comparison of the cost and constraints of the coupled optimization for the final path
starting from zigzag9-ALU (aluminium)



194 Chapter 8. Modification of the path’s topology

First of all, a comparison between the path optimization result and the relaxed test shows that adding
the power as an optimization variable does not necessarily decrease the final path length (Figure 8.10
(b) and (c). However, the constraints are better satisfied: allowing the power to be smaller than its
maximum value leads to an easier decrease of the maximum temperature constraints but, on the other
hand, the length must be increased to fulfill the phase constraint. In the real process, the important
parameter is actually the volumic energy. It would be thus interesting to run these tests for this quantity
in the transient test case. Then, comparing the penalization tests with the relaxed test, it seems that the
penalization chosen is efficient, yet better in the non continuation formulation. If latter confirmed, this
could lead to definitely choosing the classical penalization. Note that in both penalized results (Figures
8.10 (d) and (e)), the power is only modified on the top lines of the path. It indeed seems that adapting
the path is easier than modifying the power, which is kept whenever the modification of the path gets too
complicated: at the top and bottom of the square. When it comes to controlling the jumps, it appears
that the total variation control acts against the penalization of intermediate power values. Yet, it still
allows a correct bang-bang control while drastically reducing the number of jumps (TV from 57 to 10).
On the other hand, in accordance to Remark 8.3, the H1 regularization has a very limited impact on
the power oscillations.

(a) Initialization (b) Result from path
optimization (same Figure

than (a))

Final path Final power

(c) "Relaxed test"

Final path Final power

(d) "Penalization test"

Final path Final power

(e) "Penalization with continuation test"

Final path Final power

(f) "Penalization test, lTV = 100+"

Final path Final power

(g) "Penalization test, H1-regularization"

(h) Temperature colorbar (K) (i) Power colorbar

Figure 8.11: Coupled power and path optimization starting from zigzag9BIS-ALU (aluminium)
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Case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (ζ = 0.5) 1.159e−2 4.20e−7 0.00 2.84e−5 0

path optimization 1.159e−2 4.20e−7 0.00 2.84e−5 0

relaxed test 1.179e−2 2.63e−8 0.00 4.13e−8 11.4

penalization test 1.154e−2 2.60e−4 7.06e−10 1.61e−5 12.8

penalization with continuation test 1.249e−2 7.91e−8 0.00 2.08e−7 40.1

penalization test, lTV = 100+ 1.138e−2 2.40e−4 0.00 1.25e−5 12.6

penalization test, H1-reg 1.154e−2 2.60e−4 7.37e−10 1.61e−5 12.8

Table 8.4: Comparison of the cost and constraints of the coupled optimization for the final path
starting from zigzag9BIS-ALU (aluminium)

This test starting from zigzag9bis-ALU (Figure 8.11 and Table 8.4) is not easy for the optimization
process: the initialization is already very good. An improvement would then correspond to a slight
modification of the power variable. This is indeed what can be observed in Figure 8.11(c). Adding the
penalization of the intermediate values, deteriorates the results: on the first iterations, modifications
are made to improve the path. In the meantime, the penalization constraint is activated, leading the
minimizing sequence towards a different local minimum than the initialization was. Despite the non
fulfillment of the constraints, it seems that the classical penalization test gives better results in terms of
bang bang properties than the penalization with continuation test (and of course than the relaxed test).
As for the total variation control, this test does not allow any clear conclusion.

Case LF (m) Cφ CM,DS
CM,D\DS

TV

initialization (ζ = 0.5) 1.325e−2 3.25e−2 0.00 0.00 0

path optimization 1.247e−2 3.26e−3 3.37e−4 2.95e−3 0

relaxed test 1.579e−2 6.53e−6 3.04e−7 3.12e−6 56.7

penalization test 1.592e−2 1.39e−4 8.80e−6 3.10e−5 196

penalization with continuation test 1.615e−2 2.12e−4 1.10e−5 2.82e−5 131

penalization test, lTV = 100+ 1.596e−2 3.38e−5 3.78e−6 2.81e−5 46.0

penalization test, H1-reg 1.583e−2 8.70e−5 4.36e−6 3.39e−5 212

Table 8.5: Comparison of the cost and constraints of the coupled optimization for the final path
starting from zigzag12-TI (titanium)

As in the path only optimization, the titanium test case is more difficult to optimize (see Figure 8.12
and Table 8.5). Indeed, the lower conductivity induces rapid power oscillations. This leads to a less
satisfied penalization of the intermediate powers. Yet, its effect is very clear when comparing the final
power of the penalization tests to the one resulting from the relaxed test. As for the length minimization
and satisfaction of the constraints, it seems that, in this physical context too, the addition of the power
variable helps the constraints. Indeed, if the relaxed test result has a higher length than the optimized
path result, the constraints are smaller. Moreover, the final path is a lot closer to the initialization. As
for the addition of the total variation control, the conclusions are very close to the aluminium ones.
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(a) Initialization (b) Result from path
optimization

Final path Final power

(c) "Relaxed test"

Final path Final power

(d) "Penalization test"

Final path Final power

(e) "Penalization with continuation test"

Final path Final power

(f) "Penalization test, lTV = 100+"

Final path Final power

(g) "Penalization test, H1-regularization"

(h) Temperature colorbar (K) (i) Power colorbar

Figure 8.12: Coupled power and path optimization starting from zigzag12-TI (titanium)

Case LF (m) Cφ CM,DS
CM,D\DS

TV

initialization (ζ = 0.5) 1.247e−2 3.26e−3 3.37e−4 2.95e−3 0

path optimization 1.247e−2 3.26e−3 3.37e−4 2.95e−3 0

relaxed test 1.586e−2 2.57e−6 6.11e−8 1.54e−6 63.5

penalization test 1.201e−2 1.31e−2 7.78e−4 3.06e−3 10.0

penalization with continuation test 1.276e−2 3.50e−3 1.12e−4 4.05e−3 26.9

penalization test, lTV = 100+ 1.210e−2 1.29e−2 1.12e−3 3.47e−3 10.6

penalization test, H1-reg 1.201e−2 1.31e−2 7.78e−4 3.06e−3 10.0

Table 8.6: Comparison of the cost and constraints of the coupled optimization for the final path
starting from zigzag12BIS-TI (titanium)

The final test, starting from zigzag12bis-TI (see Figure 8.13 and Table 8.6) leads to the same conclusion
than the test in the aluminium test case, starting from zigzag9bis-ALU. Indeed, the optimization starts
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(a) Initialization (b) Result from path
optimization (same Figure

than (a))

Final path Final power

(c) "Relaxed test"

Final path Final power

(d) "Penalization test"

Final path Final power

(e) "Penalization with continuation test"

Final path Final power

(f) "Penalization test, lTV = 100+"

Final path Final power

(g) "Penalization test, H1-regularization"

(h) Temperature colorbar (K) (i) Power colorbar

Figure 8.13: Coupled power and path optimization starting from zigzag12BIS-TI (titanium)

from an already quite good path. If adding the power optimization improves the results (Figure 8.13(c)),
the penalization of the intermediate power values brings the minimizing sequence to a new local minimum
not as good as the initialization.

8.3.6 Conclusion

The path optimization in the steady state context proposed in Chapter 6 led to the assumption that
the number of connected components available to optimize the path impacts the results. The algorithm
developed in this section, based on physical considerations, seems to allow for the addition of this feature
as an optimization variable. Indeed, especially in the aluminium case where the conductivity is higher, the
relaxation penalization technique chosen allows for the clear splitting of the path into different portions.
If this optimization is complicated by the decrease of the conductivity, the results in the titanium case
still allow for telling the difference between different parts. As expected, the resulting paths can be quite
degenerated with the introduction of several variations to perfectly match the constraints. The total
variation algorithm proposed is efficient in controlling this. Yet, it does not allow for mastering a precise
number of jumps and its improvements are part of the perspectives.
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8.4 Topology optimization of the path (steady state context)

Besides the very physical interpretation developed above, the source’s switching on and off can be dealt
with geometrical considerations. Indeed, it corresponds to changing the path topology, modifying its
number of connected components. This section aims, in the steady state context only, at exploring this
second point of view.

Topological differentiation has been widely developed to complement geometric shape optimization tech-
niques [47, 153, 175] (for further information, see [164] and references therein). Mainly used to create
holes or inclusions in an object modifying its mechanical properties, it has also been adapted to the
modification of source terms in partial differential equation [54, 55]. Most of the time the hole or inclu-
sion is a volumic set, namely a small bounded open set, but it can also be a lower dimensional set like a
segment as for cracks detection for example [22, 120, 176, 188].
The aim of this section is to adapt the notion of topological derivative to the one dimensional steady
path in a two dimensional working space. Note that the object which topology is modified is involved
in the source term of the physical problem and the theory developed in this section is mainly based on [54].

The Augmented Lagrangian steady optimization problem considered is recalled

min
Γ⊂D

LF(Γ) =

ˆ
Γ

ds+ lCC +
c

2
C2

such that


C(Γ) = lφ

ˆ
D

[
(yφ − y)

+
]2
dx+ lM

ˆ
D

[
(y − yM)

+
]2
dx

∀φ ∈ H1(D),

ˆ
D

(λ∇y∇φ+ β (y − yini)φ) dx− P
ˆ

Γ

φds = 0.

(8.4.1)

Remark 8.6. We recall that the maximum temperature constraint CM gathers both the maximum tem-
perature out of the domain constraint CM,D\DS

and the maximum temperature in the domain constraint
CM,DS

.

8.4.1 A notion of topological derivative for lines in the plane

We now introduce a notion of topological derivative for lines in the plane. We consider a simplified
optimization problem, in which the objective function is

J(Γ) =

ˆ
Γ

ds+

ˆ
D

j(y)dx, (8.4.2)

with j : R → R, such that it exists a constant C ≥ 0 satisfying ∀u ∈ R, |j′′(u)| ≤ C, |j′(u)| ≤
C(1 + |u|), |j(u)| ≤ C(1 + |u|2).

Consider two different perturbations of the path: one consisting in removing part of the existing path,
defined by Definition 8.1 and illustrated by Figure 8.14. The second one consists in adding a new
connected component to the existing path, defined by Definition 8.2 and illustrated by Figure 8.15.

Definition 8.1. Let ε > 0. A path perturbation for a path Γ is of type R when it is a curvilinear section
Cεx0

of the path Γ such that
Cεx0

= {γx0
(t), t ∈ [0, ε]}, (8.4.3)

with γx0
a restriction of the path parametrization starting at x0 ∈ Γ (γx0

(0) = x0). The perturbed path
Γεx0

is then defined as Γεx0
= Γ \ Cεx0

and its number of connected components if increased by one with
respect to the number for the path Γ.

Remark 8.7. We define the set of generic points of Γ as the points at which the curvature is different
from 0 and the set of exceptional points those such that the curvature is 0. Assuming that the measure of
the set of exceptional points is 0, we can consider that, for any path perturbation of type R, the starting
point x0 is a generic point. Thus, for ε small enough, the curve Cεx0

does not include any inflexion point.

Definition 8.2. Let ε > 0. A path perturbation for a path Γ is of type A when it is a segment Sεx1
such

that
Sεx1

= {γx1
(t) = x1 + tτ εx1

, t ∈ [0, ε]}, (8.4.4)
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with x1 ∈ D and τ εx1
any normalized direction. The perturbed path is then defined as Γεx1

= Γ∪Sεx1
and

its number of connected components if increased by one with respect to the number for the path Γ.

Remark 8.8. A path perturbation of type A can be added anywhere in the working domain D provided
that Sεx1

⊂ D. In particular, it can cross or even follow the path Γ.

(a) Path Γ (b) Perturbed path Γεx0
(2

connected components)
(c) Path Cεx0

Figure 8.14: Removing a small part of the path

(a) Path Γ (b) Perturbed path Γεx1
(2

connected components)
(c) Path Sεx1

Figure 8.15: Adding a small segment to the path

Considering that ε is very small, the objective is to determine the sensibility of the optimization problem
to infinitesimal perturbations.

Proposition 8.2. Let Γ be a curve satisfying Definition 3.1. Consider J(Γ) satisfying (8.4.2). Then,
the following asymptotic development holds for a perturbation of type R

J(Γεx0
) = J(Γ)− (1− Pp(x0)) ε+ o(ε), (8.4.5)

and for a perturbation of type A

J(Γεx1
) = J(Γ) + (1− Pp(x1)) ε+ o(ε), (8.4.6)

with p ∈ H1(D) solution the adjoint function −λ∆p+ βp = −j′(y) inD

λ∂np = 0 on ∂D.
(8.4.7)

The term in ε in the derivatives given in (8.4.5) and (8.4.6) is called the topological gradient.

Preliminary to the proof, we define the Hilbert space D1,2(R2), called the Beppo-Levi or Deny-Lions
space:

Definition 8.3. The Beppo-Levi space is defined as the closure of the space D
(
R2
)
of infinitely smooth

functions with compact support, closure with respect to the L2−norm of the gradient.

D1,2(R2) = D(R2)
‖∇·‖L2(R2) .
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The following lemma supplement this definition [54, 55].

Lemma 8.1.
D1,2(R2) =

{
φ ∈ H1

loc

(
R2
)

;∇φ ∈ L2(R2)2
}

=

{
φ;

φ

(r + 1) log(r + 2)
∈ L2(R2);∇φ ∈ L2(R2)2

}
.

The scalar product associated to this space is ∀φ, ψ ∈ D1,2(R2), (ψ, φ)D1,2(R2) =

ˆ
R2

∇φ · ∇ψdx. A final

Lemma is defined.

Lemma 8.2. Consider the problem  −λ∆w = PχS inR2

|∇w| → 0 x→∞.
(8.4.8)

It admits a unique solution w ∈ D1,2(R2) and there exists a constant C ≥ 0 such that, ∀x ∈ R2,

|∇w(x)| ≤ C

1 + |x| .

PROOF. (LEMMA 8.2).
let Φ ∈ D1,2(R2) and let B a closed ball such that S ⊂ B. Then, Φ ∈ H1(B) and the trace theorem
can be applied on the segment S leading to∣∣∣∣ˆ

R2

PχSΦdx

∣∣∣∣ ≤ CP‖Φ‖H1(B) ≤ C
(
‖∇Φ‖L2(R2) + ‖Φ1B‖L2(R2)

)
.

Finally, following the characterization given in Lemma 8.1,

‖Φ1B‖L2(R2) =

ˆ
R2

1B (|x|+ 1) log (|x|+ 2)
Φ

(|x|+ 1) log (|x|+ 2)
dx

≤ C‖ (|x|+ 1) log (|x|+ 2) ‖L2(B)‖∇Φ‖L2(R2).

Since the function x 7→ (|x|+ 1) log (|x|+ 2) ∈ L2(B), the linear form Φ 7→
ˆ
R2

PχSΦdx is continuous

on the Beppo Levi space and an application of Lax-Milgram finally shows that w ∈ D1,2(R2).

The proof related to the bounds on the gradient is given in [54, 55].

PROOF. (PROPOSITION 8.2).
We first focus on perturbations of type R. The perturbed temperature yε is defined as the solution of
the perturbed problem:  −λ∆yε + β (yε − yini) = PχΓεx0

inD

λ∂nyε = 0 on ∂D,
(8.4.9)

and we set vε = y − yε, satisfying −λ∆vε + βvε = P
(
χΓ − χΓεx0

)
= PχCεx0

inD

λ∂nvε = 0 on ∂D.
(8.4.10)

Then, it exists ỹ such that ∀x ∈ D, ỹ(x) ∈ [y(x), yε(x)] (non ordered) and

J(Γεx0
) =

ˆ
Γ

ds−
ˆ
Cεx0

ds+

ˆ
D

j (y − vε) dx =

ˆ
Γ

ds−
ˆ
Cεx0

ds+

ˆ
D

(
j(y)− vεj′(y) +

1

2
j′′(ỹ)vε · vε

)
dx

= J(Γ)−
ˆ
Cεx0

ds−
ˆ
D

j′(y)vεdx︸ ︷︷ ︸
A

+
1

2

ˆ
D

j′′(ỹ)vε · vεdx︸ ︷︷ ︸
B

.
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Computation of A :
First of all,

ˆ
Cεx0

ds =

ˆ ε

0

‖γ′x0
(t)‖dt =

ˆ ε

0

‖τ εx0
+O(t)‖dt =

ˆ ε

0

(1 + o(1)) dt = ε+ o(ε). (8.4.11)

If the adjoint function p ∈ H1(D) satisfies (8.4.7) and since vε ∈ H1(D) solution of (8.4.10),

−
ˆ
D

j′(y)vεdx =

ˆ
D

λ∇p∇vε + βpvεdx =

ˆ
D

PχCεx0
pdx =

ˆ
Cεx0

Pp(s)ds.

Thus,

−
ˆ
D

j′(y)vdx =

ˆ
Cεx0

Pp(s)ds = P

ˆ ε

0

p
(
x0 + sτ εx0

+ o(t)
)
ds

= P
´ ε

0

(
p(x0) + s∇p(x0) · τ εx0

+ o(s)
)
ds = Pp(x0)ε+ o(ε).

(8.4.12)

Finally,
A = (−1 + Pp(x0)) ε+ o(ε). (8.4.13)

In case of a perturbation of type A, the signs are simply modified.

Computation of B : The objective here is to show that B = o(ε). Because on the boundeness
assumption on j, it exists C ≥ 0 such that

B ≤ C‖vε‖2L2(D). (8.4.14)

The function to control is finally vε. As usual, C denotes a positive constant, the precise value of
which changes from one place to the other. For simplicity we assume that x0 is a generic point on the
curve, namely its curvature is not 0 (Remark 8.7). Then, for sufficiently small ε, there is no inflexion
point on the curve. We define in the following Sε̃ the chord segment with the same endpoints as Cεx0

.
The length of this segment is written ε̃ = |Sε̃|, which is of order ε, and the combination of the segment
Sε̃ and Cεx0

encloses a bounded open set, denoted by Vε (Figure 8.16).

Figure 8.16: Chord to the segment removed

Finally, we define S the segment starting from 0, of length 1 with the same tangent vector than the
segment Sε̃. Then,

χSε̃(x) = χS

(
x− x0

ε̃

)
.

We define w solution to (8.4.8). Then, w ∈ D1,2(R2) and ∀x ∈ R2, |∇w(x)| ≤ C
1+|x| .

We then set

wε̃(x) = ε̃2w

(
x− x0

ε̃

)
.

Then, ∇wε̃(x) = ε̃∇w
(
x− x0

ε̃

)
and ∆wε̃(x) = ∆w

(
x− x0

ε̃

)
= −PχSε̃ ,∀x ∈ R2. Then, −λ∆vε + βvε = P

(
χCεx0

− χSε̃
)
− λ∆wε̃ inD

λ∂nvε = 0 on ∂D,
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which gives (C ≥ 0):

‖vε‖2H1(D) ≤ C
(∣∣∣∣ˆ

D

(
χCεx0

− χSε̃
)
vεdx

∣∣∣∣+

∣∣∣∣ˆ
D

∇vε∇wε̃dx
∣∣∣∣+

∣∣∣∣ˆ
∂D

∂nwε̃vεds

∣∣∣∣) . (8.4.15)

By Cauchy-Schwarz, controlling the second term amounts to controlling ‖∇wε̃‖L2(D) and, using Lemma
8.2,

‖∇wε̃‖2L2(D) =

ˆ
D

|∇wε̃|2dx = ε̃4
ˆ
D/ε̃

|∇w(x)|2dx ≤ Cε̃4
ˆ |D|/ε̃

0

r

(1 + r)
2 dr

≤ Cε̃4
(ˆ 1

0

dr +

ˆ |D|/ε̃
1

dr

r

)
= O

(
ε̃3
)

= O
(
ε3
)
.

As for the term on the boundary, from Cauchy-Schwarz and the trace theorem,∣∣∣∣ˆ
∂D

∂nwε̃vεds

∣∣∣∣ ≤ C‖∇wε̃‖L2(∂D)‖vε‖H1(D).

Then, since x0 belongs to the open set D, there exists C > 0 such that ∀x ∈ ∂D, |x− x0| ≥ C, since

∇wε̃(x) = ε̃∇w
(
x− x0

ε̃

)
,

‖∇wε̃‖L∞(∂D) ≤ Cε̃2 = O(ε2). (8.4.16)

The final term to control is
∣∣∣∣ˆ
D

(
χCεx0

− χSε̃
)
vεdx

∣∣∣∣. Let e be the normal to the segment Sε̃ oriented

towards out of the set Vε and nε the normal to Vε pointing outwards (on Sε̃, e = nε). Then,∣∣∣∣ˆ
D

(
χCεx0

− χSε̃
)
vεdx

∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Sε̃

vεe · nεds+

ˆ
Cεx0

vεe · nε
∣∣∣∣∣+

∣∣∣∣∣
ˆ
Cεx0

vε (−e · nε − 1) ds

∣∣∣∣∣ .
From Green formula,∣∣∣∣∣

ˆ
Sε̃

vεe · nεds+

ˆ
Cεx0

vεe · nε
∣∣∣∣∣ =

∣∣∣∣ˆ
∂Vε

vεe · nεdx
∣∣∣∣ =

∣∣∣∣ˆ
Vε

∇vε · edx
∣∣∣∣ ≤ ‖∇vε‖L2(D)|Vε|.

Moreover, since |Vε| ≤ ε̃2 = O(ε2). Finally, because the curve Cεx0
is smooth, it exists s̃ ∈ [0, ε] such

that nε (γ(s)) = −e. Thus, ∀s ∈ [0, ε],

nε (γ(s)) = nε (γ(s̃)) +O(s− s̃) = −e+O(ε).

This finally leads to, using the trace theorem on vε,∣∣∣∣∣
ˆ
Cεx0

vε (−e · nε − 1) ds

∣∣∣∣∣ ≤ ‖vε‖L2(Cεx0
)

√ˆ ε

0

((−e) · (−e+O(ε))− 1)
2
ds

≤ C‖∇vε‖L2(D)

√
O(εε2)

≤ ‖vε‖H1(D)O(ε3/2).

Following (8.4.15), this finally leads to ‖vε‖L2(D) = O(ε2) which gives the result. As for a perturbation
of type A, the proof is exactly the same with an inversion of the signs for the computation of A.

8.4.2 Numerical algorithm to introduce path splittings

To start with, we restrict the goal to splitting the path only, without any length nor objective function
modification. A point x ∈ Γ is chosen to be the cutting point, i.e. the new end point of one connected
component and the new starting point of a second one. Using the development of the objective function
(Proposition 8.2), to force its decrease, the point x must be chosen so that

1− Pp(x) > 0 =⇒ p(x) <
1

P
.

We now detail two different processes required for path splitting using the topological derivative. First,
the cutting process itself must be designed. Then, a fusion process must be added. Indeed, to prevent
the path from degenerating, we deliberately choose to gather two connected components in one if their
endpoints are close enough.
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Cutting process

The cutting process consists in splitting the path at specific points chosen with respect to (8.4.2). To do
so, a first step consists in finding all the path discretization nodes u∗ on the path Γ such that

u∗ ∈ Cut = arg min
u∈Γ

p(u), (8.4.17)

and the corresponding minimum p∗. Note that, if an end points uep of a connected component of the
path satisfies p(uep) = p∗, it is NOT added in Cut. Indeed, since the length must remain fixed during
the process, cutting at an endpoint does not modify the path. The space Cut can thus be empty. If
p∗ < 1

P , the path is cut at ncut nodes, ncut being fixed by the user to control the number of splits at
one iteration (or related to the total number of connected components of the path). If the number ncut

is greater than the cardinal number of Cut the path is split at each node belonging to Cut (and the
number of connected components is increased by card (Cut)). Else, ncut points are randomly chosen
within Cut to be the splitting points (and the number of connected components is increased by ncut).
Figure 8.17 illustrates this process with Figure 8.17(a) the initial path, Figures 8.17(b) and 8.17(c) the
computation of Cut: in Figure 8.17, the endpoints of each connected component are removed from Cut.
Finally, Figures 8.17(d) gives the final result in case of unlimited number of cuts per iteration or unlimited
number of connected components whereas Figure 8.17(e) limits the number of cuts to 1 (or the number
of connected components to 4) and Figure 8.17(f) limits the number of connected components to 3.

(a) Initial path (b) Minimizing points (c) Computation of Cut (removal of
end points)

(d) Result in case of ilimited cuts (e) Result in case of maximum 4 path
connected components (cutting points

chosen randomly in Cut)

(f) Result in case of maximum 3 path
connected components (cutting points

chosen randomly in Cut)

Figure 8.17: Cutting algorithm

Remark 8.9. With this process, cutting at a path crossing is not a problem. Indeed, if two different
nodes coincide, their adjoint value are the same and both belong to the space Cut. Yet, the cutting
process can be applied all the same.

Remark 8.10. Note that there might be no cutting even if p∗ < 1
P . Indeed, if this minimum is reached

at end points of the connected components of the path Γ only, they are not added to Cut which remains
empty.

Fusion process

In order to limit the number of paths, a fusion process is designed so that, if the end points of two
different path connected components are closer than the minimum distance between points dl, they are
connected and the resulting connected component is rediscretized. Figure 8.18 illustrates this process:
(a) presents the initial path, on which one can notice that the connected components Γ1, Γ2, Γ4 have
close endpoints as well as Γ1 and Γ3. The closest being between Γ1 and Γ2, both connected components
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are "gathered", reducing the number of connected components to 4 (Figure 8.18). If the endpoint of Γ4

was close to the endpoints of Γ1 and Γ2 in Figure 8.18 (a), it is not anymore to the path Γ1,2 (Figure
8.18(b)) and no path connection at this point will be made. Finally, Γ1,2 and Γ3 are gathered (Figure
8.18(c)).

(a) Initial path (b) First "fusion" (c) Second "fusion"

Figure 8.18: Melting algorithm

Numerical algorithm

The following algorithm is proposed: with F arbitrarily fixed by the user, every F iterations, the topo-
logical derivative is computed and the path points at which it is minimum are stored. If this minimum
satisfies p∗ < 1

P , then the connected component is cut. The rest of the iterations consist in classic
path advection but for each iteration straight before a cutting one at which the fusion process is done.
Every cutting and fusion iterations are automatically accepted. As for the path connected components
composed of two points connected components, if their length gets smaller than the distance dl they
are automatically deleted. Finally, the maximum number of cuts at each iteration is fixed to 10. Two
different parameters can then be tested:

• the periodFtop at which happens a cutting iteration,

• the maximum number of connected components allowed (meaning that if the number of authorized
cuts brings the number of connected components higher than the maximum allowed, not all the
cuts are realized and a random choice will be made among them).

The algorithm is the following:

Illustration

The algorithm is applied using an Augmented Lagrangian method with l0C = 1,c = 10, νΓ = 15. The
pology of the path is modified every Ftop iterations and the maximum number of connected components
allowed in 15. The evolution of the path as well as the evolution of the different quantities (length,
constraint, number of connected components composing the path) are shown in Figure 8.19 for the
aluminium and Figure 8.20 for the titanium, respectively initialized by a zigzag with 9 lines and a zigzag
with 12 lines.



8.4.2. Numerical algorithm to introduce path splittings 205

1 Initialize the path Γ
2 Solve the heat equation and compute the objective functions and constraints
3 Compute the shape derivatives
4 for iteration<number of iteration do
5 if cutting iteration (iteration mod Ftop = 0) then
6 Apply the cutting procedure: the number of cutting can be controlled to avoid too many

per iteration or to limit the total number of connected components
7 Re-discretize the path in order to keep coherence in term of powers
8 end
9 if fusion (iteration mod Ftop = Ftop − 1) then

10 Gather together the connected components which endpoints are closer than dl)
11 Re-discretize the path in order to keep coherence in term of powers
12 end
13 if advection iteration (rest of the iterations) then
14 Update the path in the classic way
15 Re-discretize the path in order to keep coherence in term of powers
16 end
17 Compute the new objective function
18 if the new objective function is smaller than before (up to a tolerance) or if this was a fusion

or cutting iteration then
19 Iteration accepted
20 Update of the Lagrange multipliers and recompute the objective function
21 Compute the shape and power derivatives
22 Increase the step coefficient (∗1.2) if the iteration was an advection one
23 end
24 else
25 Reject the iteration
26 Decrease the step coefficients (∗0.6) if the iteration was an advection one
27 end
28 end

Algorithm 8.2: Shape optimization and cutting path algorithm

(a) Initial path (b) Iteration 50 (c) Iteration 100 (d) Result (386)

(e) Temperature colorbar (K)

(f) Length LF evolution (g) Constraint C evolution (h) Number of connected
components (to be related to

TV ) evolution

Figure 8.19: Path and temperature as well as length, constraint and number of connected components
evolution with respect to iterations, starting from zigzag9-ALU (aluminium)
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(a) Initial path (b) Iteration 50 (c) Iteration 100 (d) Result (390)

(e) Temperature colorbar (K)

(f) Length LF evolution (g) Constraint C evolution (h) Number of connected
components (to be related to

TV ) evolution

Figure 8.20: Path and temperature as well as length, constraint and number of connected components
evolution with respect to iterations, starting from zigzag12-TI (titanium)

These first results highlight once again the interest of splitting the path in the steady state context.
Indeed, as for the power source control, it is clear that the algorithm takes advantage to optimizing more
than one connected component. The number of connected components was actually limited to 15 and, in
both cases, this number is saturated. With no restriction on the number of path connected components,
the result would likely have been degenerated with many more pieces of the path. In the aluminium
case, the result can be compared to the coupled power and path optimization. Indeed, as in Figure
8.10 (d) and (f), the cuttings happen on the top and bottom horizontal lines. These cuts reduce the
maximum temperature constraint out of the square but also increase the phase constraint. As for the
titanium case, because the number of connected components authorized is much lower in the topology
optimization tests, the results are different (to compare with Figure 8.12 (d) and (f)). The number of
connected components is better limited but the phase constraint is not fully satisfied. We also observe
that the maximum temperature constraint out of the domain is not well satisfied either. This could
be improved by modifying the Lagrangian initial coefficients of decreasing the maximum temperature
allowed out of the domain. Such modifications remain part of the perspectives.

If this new technique is less physical than the previous one, it allows an easier control of the exact number
of connected components. Yet, while the path length on which the source is off was taken into account
in the power settings, this new technique does not give any information about the linking between the
different pieces of the path.

8.4.3 Numerical algorithm to add paths connected components

If cutting is a good first step, the objective is also to add connected components to the path. In order to
keep the same length while modifying the path topology, we now aim at "moving" part of the path. To
do so, part of the existing path, of length L, is removed whereas a path of size L is added in the working
domain D. To make sure that the objective function decreases, like in the cutting only case, we need to
find:

• x0 ∈ Γ such that p(x0) < 1
P (cutting inequality).

• x1 ∈ D such that p(x1) > 1
P (adding inequality).

If many cuts could previously be performed during one iteration, the transformation must now be better
controlled and only one part is moved at each iteration. Note that the length is kept constant during
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the topology modification iterations only. For the other iterations, the classic advection of the path is
run and each connected component can lengthen or shrink.

Cutting process

The cutting process is a bit different than previously. Indeed, instead of only splitting, we now remove
part of the path. Once the node point of the path discretization at which the cutting must be done
is found, the path segment following this point is removed, creating two connected components. The
length d of this element is stored. In order to really change the topology of the path, the first point as
well as the last and one before last points of the path are removed from the points possibilities. Indeed,
considering them would only mean decreasing the path length and not changing the topology (Figure
8.21). If the minimum of the adjoint was reached at these points only, then, the topology change process
is aborted. Else, a random choice is made within the other points at which the minimum is reached (see
Figure 8.21).

(a) Initial path (b) Minimizing points

(c) Computation of Cut (d) Choice of one random part to
remove

Figure 8.21: Cutting algorithm for the add-removal process. (a)Initial path, (b)The points minimizing
the adjoint and satisfying the cutting inequality on the path are found, the segment following them
might be removed. (c)The points corresponding to endpoints or one before last point of the path

components are removed from the list, since removing the corresponding segment would not modify the
topology of the path but only decrease the length of one of the connected components. (d)Within the

still available cutting points, one is randomly chosen. The corresponding segment is removed.

Addition process

The cutting process being defined, a segment must now be added. Its starting point is a point chosen
randomly within the points of the working domain reaching the maximum of the adjoint. To keep constant
path length, the segment added is of length d, corresponding to the length of the element removed from
the existing path. As for the direction, since no information can be found in the topological derivative,
it is arbitrarily fixed to ex ( or −ex in case the segment gets out of the working domain). This process
is summed up in Figure 8.22.
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(a) Adding a segment of size L
starting from a point for which the

direction ex is available

(b) Adding a segment of size L
starting from a point for which the
direction ex is not available (−ex is

chosen)

Figure 8.22: Adding algorithm for the add-removal process

Algorithm 8.3 recaps the whole cutting-adding process. Note that in this algorithm, the added parts of
path are composed of two points. Thus, if the advection make their length decrease in the iterations
following their creation, they might simply disappear.

1 Find the set Cut = {x ∈ Γ, s.t. ∀y ∈ Γ,p(x) ≤ p(y)} and the minimum value of p reached by
these points. The points are of course looked for in the path discretization nodes.

2 Find the set Add = {x ∈ D, s.t. ∀y ∈ D,p(x) ≥ p(y)} and the maximum value corresponding.
The points are in practice looked for within the physical mesh nodes.

3 if p(x0) < 1
P and p(x1) > 1

P then
4 Remove the starting point, last and one before last points of each connected components of

the path from the set Cut
5 if Cut = ∅ then
6 Abort the topology changes and leave the path unmodified
7 end
8 else
9 Choose one point randomly in Cut, remove the element el starting from this point (thus

creating two connected components) and store its length d
10 Choose one point x1 randomly in Add
11 if ∀t ∈ [0, d], s = x1 + tex ∈ D then
12 Add the segment {x1 + tex, t ∈ [0, d]} to the path Γ
13 end
14 else
15 Add the segment {x1 − tex, t ∈ [0, d]} to the path Γ
16 end
17 end
18 end
19 else
20 Abort the topology changes and leave the path unmodified
21 end

Algorithm 8.3: Add and remove algorithm

Illustration

To illustrate the process, as in the previous case, the algorithm is applied using an Augmented Lagrangian
method with l0C = 1 and c = 10, νΓ = 15. The topology of the path is modified every Ftop iterations and
the maximum number of connected components allowed is 15. The evolution of the path as well as the
evolution of the different quantities (length, constraint, number of connected components composing the
path) is given by Figure 8.23 for the aluminium (initialized by a zigzag with 9 lines) and Figure 8.24 for
the titanium (initialized by a zigzag with 12 lines).
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(a) Initial path (b) Iteration 50 (c) Iteration 100 (d) Result (iteration
425)

(e) Temperature colorbar (K)

(f) Length LF evolution (g) Constraint C evolution (h) Number of connected
components (to be related to

TV ) evolution

Figure 8.23: Path and temperature as well as length, constraint and number of connected components
evolution with respect to iterations, starting from zigzag9-ALU (aluminium)

(a) Initial path (b) Iteration 50 (c) Iteration 100 (d) Result (iteration
391)

(e) Temperature colorbar (K)

(f) Length LF evolution (g) Constraint C evolution (h) Number of connected
components (to be related to

TV ) evolution

Figure 8.24: Path and temperature as well as length, constraint and number of connected components
evolution with respect to iterations, starting from zigzag12-TI (titanium)

In this context again, the number of authorized connected components is saturated. Note that the
connected components are mostly created on the sides of the square or where the phase constraint is not
satisfied (Figure 8.24(c)). The aluminium results are very similar to the ones previously obtained (Figure
8.19) with path splitting on the top and bottom horizontal lines. The adding of paths also happens in
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the bottom and upper parts of the working domain. The new result in the titanium context is different
from the previous one. Once again, the pattern does not change much but the constraints seem to be
better satisfied.

8.4.4 Numerical results

To further test the algorithm, for each of the initializations tested in the power context (zigzag with
9 lines, optimized path starting from a zigzag with 9 lines for the aluminium; zigzag with 12 lines,
optimized path from a zigzag with 12 lines for the titanium), four optimizations are run, with the
topology modifications performed every Ftop iterations:

• "cut, Ftop = 15, TV ≤ 14": cutting process only, with the topology modification every 15 iterations
and 15 connected components possible,

• "cut, Ftop = 15, TV ≤ 4": cutting process only, with the topology modification every 15 iterations
and 5 connected components possible,

• "add-remove, Ftop = 15, TV ≤ 14" cutting and adding process, with the topology modification
every 15 iterations and 15 connected components possible,

• "add-remove, Ftop = 15, TV ≤ 4": cutting and adding process, with the topology modification
every 15 iterations and 5 connected components possible.

For each of the initializations (zigzag 9 lines and result from the path optimization starting from a zigzag
with 9 lines in the aluminium case and zigzag with 12 lines and result from the path optimization starting
from a zigzag with 12 lines in the titanium case), a Figure gives the 4 results and the numerical values
are summed up in a Table. The first initialization is the zigzag with 9 lines. The resulting path shapes
and temperatures are given by Figure 8.25 and Table 8.7.

(a) Initial path (b) Result from path
optimization

(c) Result from "cut,
Ftop = 15, TV ≤ 14"

(430)

(d) Result from "cut,
Ftop = 15, TV ≤ 4"

(392)

(e) Result from
"add-remove,

Ftop = 15, TV ≤ 14"
(425)

(f) Result from
"add-remove,

Ftop = 15, TV ≤ 4"
(411)

(g) Temperature colorbar (K)

Figure 8.25: Path and temperature resulting from topology optimization, starting from zigzag9-ALU
(aluminium)
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Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 1.019e−2 3.31e−4 0.00 3.09e−7 0.0

path optimization 1.159e−2 4.20e−7 0.00 2.84e−5 0.0

cut, Ftop=15, TV ≤ 14 1.088e−2 5.14e−8 0.00 8.73e−8 14.0

cut, Ftop=15, TV ≤ 4 1.163e−2 1.70e−5 0.00 2.62e−5 4.0

add-remove, Ftop = 15, TV ≤ 14 1.110e−2 8.21e−9 0.00 6.78e−10 14.0

add-remove, Ftop = 15, TV ≤ 4 1.155e−2 1.59e−7 0.00 1.18e−5 4.0

Table 8.7: Comparison of the cost and the constraints, topology optimization, starting from
zigzag9-ALU (aluminium)

Even allowing only 5 connected components, the results shown in Figure 8.25 and Table 8.7 seem to be
better than when optimizing the path without any variation of the number of connected components.
Yet, it appears that the cutting-adding process is better than the cutting only, even if the randomness
is higher. These results also allow for a first comparison with the algorithm using power (Figure 8.10
and Table 8.3). If it is irrelevant to compare the lengths (since the off path is taken into account in the
power process and not in the topology optimization one), the final constraints are slightly better with the
power process whereas the total variations are from far better controlled (since imposed) with topology
optimization.

The second optimization process is initialized by the optimal path starting from zigzag9bis-ALU. The
results are given by Figure 8.26 and Table 8.8.

(a) Initial path (b) Result from path
optimization (same as

initialization)

(c) Result from "cut,
Ftop = 15, TV ≤ 14"

(396)

(d) Result from "cut,
Ftop = 15, TV ≤ 4"

(394)

(e) Result from
"add-remove,

Ftop = 15, TV ≤ 14"
(392)

(f) Result from
"add-remove,

Ftop = 15, TV ≤ 4"
(409)

(g) Temperature colorbar (K)

Figure 8.26: Path and temperature resulting from topology optimization, starting from
zigzag9BIS-ALU (aluminium)
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Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 1.159e−2 4.20e−7 0.00 2.84e−5 0.0

path optimization 1.159e−2 4.20e−7 0.00 2.84e−5 0.0

cut, Ftop = 15, TV ≤ 14 1.105e−2 1.11e−7 0.00 2.17e−7 14.0

cut, Ftop = 15, TV ≤ 5 1.133e−2 3.88e−7 0.00 1.29e−5 4.0

add-remove, Ftop = 15, TV ≤ 14 1.111e−2 4.60e−8 0.00 5.51e−7 14.0

add-remove, Ftop = 15, TV ≤ 5 1.150e−2 1.43e−7 0.00 2.25e−5 4.0

Table 8.8: Comparison of the cost and the constraints, topology optimization, starting from
zigzag9BIS-ALU (aluminium)

In this specific case (Figure 8.26 and Table 8.8), the results with topology optimization are better than
in the classic path optimization (Figure 8.26 (a) and (b)): increasing the number of path connected
components helps improving the path. Then, they are better than the results of the power process (Fig-
ure 8.11). The power based algorithm starts with a power variable at 1 and bringing this variable to 0
requires violating the penalization constraint. On the contrary with topology optimization, this process
is realized abruptly and does not increase any function.

The titanium test case is now considered, with the initialization corresponding to a zigzag with 12 lines.

(a) Initial path (b) Result from path
optimization

(c) Result from "cut,
Ftop = 15, TV ≤ 14"

(391)

(d) Result from "cut,
Ftop = 15, TV ≤ 4"

(392)

(e) Result from
"add-remove,

Ftop = 15, TV ≤ 14"
(391)

(f) Result from
"add-remove,

Ftop = 15, TV ≤ 4"
(391)

(g) Temperature colorbar (K)

Figure 8.27: Path and temperature resulting from topology optimization, starting from zigzag12-TI
(titanium)
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Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 1.325e−2 1.55e−2 5.11e−4 0.00 0.0

path optimization 1.247e−2 3.26e−3 3.37e−4 2.95e−3 0.0

cut, Ftop = 15, TV ≤ 14 1.259e−2 7.48e−4 1.22e−4 1.10e−3 14.0

cut, Ftop = 15, TV ≤ 4 1.219e−2 5.46e−3 4.91e−4 2.61e−3 4.0

add-remove, Ftop = 15, TV ≤ 14 1.256e−2 3.86e−4 2.44e−5 2.38e−4 14.0

add-remove, Ftop = 15, TV ≤ 4 1.234e−2 2.78e−3 3.07e−4 2.27e−3 4.0

Table 8.9: Comparison of the cost and the constraints, topology optimization, starting from
zigzag12-TI (titanium)
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Figure 8.28: Path and temperature resulting from topology optimization, starting from zigzag12BIS-TI
(titanium)

Optimization case LF (m) Cφ CM,DS
CM,D\DS

TV

initialization (classic) 1.247e−2 3.26e−3 3.37e−4 2.95e−3 0.0

path optimization 1.247e−2 3.26e−3 3.37e−4 2.95e−3 0.0

cut, Ftop = 15, TV ≤ 14 1.263e−2 3.06e−4 1.78e−5 1.57e−4 14.0

cut, Ftop = 15, TV ≤ 4 1.261e−2 4.30e−4 2.20e−5 2.69e−4 4.0

add-remove, Ftop = 15, TV ≤ 14 1.275e−2 6.48e−4 2.49e−4 5.13e−4 14.0

add-remove, Ftop = 15, TV ≤ 4 1.265e−2 8.84e−4 6.93e−5 5.61e−4 4.0

Table 8.10: Comparison of the cost and the constraints, topology optimization, starting from
zigzag12BIS-TI (titanium)

The conclusions are similar to the results obtained for the aluminium. In both cases, the final path is
better when allowing modifications of the number of path connected components. We can even conclude
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that the more components are allowed, the better the path is and we could imagine that without any
limitations, the algorithm could ass a large number of small components. This idea is even stronger in the
titanium case since the conductivity is lower and thus each path point induces a high temperature. For
example in Figure 8.28(e), the algorithm should add a component in the "blue central zone". However,
since the maximum number of connected components is reached, this cannot be done. Thus, since
the total variation is only penalized in the power based algorithm and not imposed as in the topology
optimization based one, the constraints are better satisfied in Figures 8.12 and 8.13. Yet, the number of
maximum connected components is not imposed and can thus get high. Finally, note that the algorithm
does not easily modify the "shape" of the added connected components which remain segments. A
perspective would then be to add connected components with a non zero curvature but with a randomly
chosen one (indeed the topological gradient does not provide any information on this).

8.5 Further comparisons between the coupled power and path optimiza-
tion and the topology optimization methods

To further compare the algorithms, the results from different initializations are now compared. After
running three different initializations for aluminium and titanium for a square geometry, the shape of
the part to build is modified. In each case, 8 tests are run:

• simple path optimization (see Chapter 6),

• "cut, Ftop = 15, TV ≤ 14": cutting process only, with the topology modification every 15 iterations
and 15 connected components possible,

• "cut, Ftop = 15, TV ≤ 4": cutting process only, with the topology modification every 15 iterations
and 5 connected components possible,

• "add-remove, Ftop = 15, TV ≤ 14": cutting and adding process, with the topology modification
every 15 iterations and 15 connected components possible,

• "add-remove, Ftop = 15, TV ≤ 4": cutting and adding process, with the topology modification
every 15 iterations and 5 connected components possible,

• "relaxed test" (coupled power and shape optimization with lTV = 0),

• "penalization test, lTV = 0" (coupled power and path optimization with intermediate power values
penalization with no restriction on the total variations),

• "penalization test, lTV = 100+" (coupled power and path optimization with intermediate power
values penalization and lTV = 100 increased along the iterations).

8.5.1 Square geometry, aluminium context

In the aluminium context first, three initializations are considered: the zigzag with 6 lines (results in
Figure 8.29 and Table 8.11), the spiral (Figure 8.30 and Table 8.12) and the contour with 4 lines (Figure
8.31 and Table 8.13). For the coupled power and shape optimization, the power value ζ is initialized to
0.5 in each case.
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Figure 8.29: Path and temperature results for the splitting tests starting from a zigzag with 6 lines
(aluminium)

Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 7.098e−3 5.85e−4 0.00 0.00 0.0

path optimization 1.265e−2 4.92e−7 0.00 2.17e−6 0.0

cut, Ftop = 15, TV ≤ 14 1.246e−2 6.01e−8 0.00 2.28e−7 14.0

cut, Ftop = 15, TV ≤ 4 1.254e−2 3.00e−7 0.00 1.62e−6 4.0

add-remove, Ftop = 15, TV ≤ 14 1.145e−2 8.80e−7 0.00 2.89e−6 13.0

add-remove, Ftop = 15, TV ≤ 4 1.272e−2 4.56e−7 0.00 1.27e−6 4.0

initialization (ζ = 0.5) 7.098e−3 2.03e−3 0.00 0.00 0.0

relaxed test 1.160e−2 5.08e−7 0.00 1.26e−7 65

penalization test 1.264e−2 5.54e−7 2.84e−10 3.91e−7 54

penalization test, lTV = 100+ 1.316e−2 4.45e−7 0.00 1.49e−7 29

Table 8.11: Comparison of the cost and constraints for the splitting tests from a zigzag with 6 lines
(aluminium)
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Figure 8.30: Path and temperature results for the splitting tests starting from a spiral (aluminium)

Optimization case LF (m) Cφ CM,DS
CM,D\DS

TV

initialization (classic) 5.635e−3 4.60e−3 0.00 0.00 0.0

path optimization 1.060e−2 1.37e−6 0.00 1.61e−5 0.0

cut, Ftop = 15, TV ≤ 14 1.106e−2 1.61e−6 0.00 6.72e−6 14.0

cut, Ftop = 15, TV ≤ 4 1.084e−2 1.25e−6 0.00 1.56e−5 4.0

add-remove, Ftop = 15, TV ≤ 14 1.033e−2 6.03e−7 0.00 1.21e−6 14.0

add-remove, Ftop = 15, TV ≤ 4 1.081e−2 1.07e−6 0.00 1.24e−5 4.0

initialization (ζ = 0.5) 5.635e−3 5.45e−3 0.00 0.00 0.0

relaxed test 1.209e−2 4.19e−7 0.00 1.35e−7 53

penalization test 1.244e−2 2.78e−7 0.00 2.27e−7 110

penalization test, lTV = 100+ 1.256e−2 2.76e−7 0.00 2.62e−7 43

Table 8.12: Comparison of the cost and constraints for the splitting tests from a spiral (aluminium)
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Figure 8.31: Path and temperature results for the splitting tests starting from a contour with 4 lines
(aluminium)

Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 1.008e−2 4.25e−4 0.00 0.00 3.0

path optimization 1.334e−2 2.20e−7 0.00 2.80e−7 0.0

cut, Ftop = 15, TV = 14 1.333e−2 1.03e−7 0.00 1.74e−7 13.0

cut, Ftop = 15, TV = 4 1.381e−2 1.86e−7 0.00 2.20e−7 4.0

add-remove, Ftop = 15, TV = 14 1.338e−2 2.02e−7 0.00 2.84e−7 13.0

add-remove, Ftop = 15, TV = 4 1.359e−2 2.54e−7 0.00 3.64e−7 3.0

initialization (ζ = 0.5) 1.008e−2 1.10e−3 0.00 0.00 0.0

relaxed test 1.395e−2 3.67e−8 0.00 1.57e−8 108

penalization test 1.550e−2 7.31e−8 0.00 5.68e−8 96

penalization test, lTV = 100+ 1.543e−2 8.51e−9 0.00 6.74e−8 47

Table 8.13: Comparison of the cost and constraints for the splitting tests from a contour with 4 lines
(aluminium)
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In all these cases, the first observation is that, compared to the initializations, the length is increased but
the constraints are globally decreased. The constraints results are better for the power based algorithm.
On the other hand, the intermediate power variables and the number of jumps are only penalized while
they are imposed by the topology optimization algorithm. It thus seems normal to get better fulfilled
constraints in the power based settings since the freedom in the optimization is larger.

Despite the different final values, the global shape of the path remains the same. In Figure 8.29, the cuts
appear on the bottom and top lines (same behavior than for the zigzag with 9 lines). In Figure 8.30, the
cuts mostly appear on the square sides. Note that in both the topology optimization and power based
algorithms, the path intersections are not removed. However, it intuitively seems that they should since
in industrial applications, these intersections are prohibited. Further investigating these issues is part
of the perspectives. Finally, the results are not that clear in Figure 8.31. The topology optimization
codes seem to add connected components on the sides of the square. However, the initialization already
starting with 4 connected components (and thus TV = 3), both tests limiting the number of connected
components to 5 do not provide much information. As for the power based algorithm, it confirms the in-
terest of a high number of connected components to adjust the constraint on the object boundary mostly.

To further compare the results, the number of connected components should not be restricted. However,
the computational time of this algorithm dealing with more than 20 connected components is high and
cannot be reasonably considered.

8.5.2 Square geometry, titanium context

In the titanium context, three initializations are considered: the zigzag with 9 lines (results in Figure
8.32 and Table 8.14), the spiral (Figure 8.33 and Table 8.15) and the contour with 4 lines (Figure 8.34
and Table 8.16). For the coupled power and shape optimization, the power value ζ is initialized to 0.5
in each case.

Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 1.019e−2 1.96e−2 1.96e−5 0.00 0.0

path optimization 1.232e−2 8.99e−4 1.19e−4 4.35e−4 0.0

cut, Ftop = 15, TV ≤ 14 1.241e−2 8.50e−4 9.49e−5 4.84e−4 14.0

cut, Ftop = 15, TV ≤ 4 1.230e−2 8.44e−4 1.92e−5 2.52e−4 4.0

add-remove, Ftop = 15, TV ≤ 14 1.224e−2 4.69e−4 3.27e−5 2.22e−4 13.0

add-remove, Ftop = 15, TV ≤ 4 1.226e−2 9.16e−4 2.93e−5 3.93e−4 3.0

initialization (ζ = 0.5) 1.019e−2 5.88e−2 0.00 0.00 0.0

relaxed test 1.284e−2 5.43e−5 1.37e−6 1.10e−5 39

penalization test 1.245e−2 1.27e−4 5.65e−6 1.66e−5 37

penalization test, lTV = 100+ 1.274e−2 4.94e−5 2.79e−6 7.67e−6 24

Table 8.14: Comparison of the cost and constraints for the splitting tests from a zigzag with 9 lines
(titanium)
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Figure 8.32: Path and temperature results for the splitting tests starting from a zigzag with 9 lines
(titanium)

Optimization case LF (m) Cφ CM,DS
CM,D\DS

TV

initialization (classic) 5.635e−3 1.50e−1 4.71e−5 0.00 0.0

path optimization 1.286e−2 5.40e−4 4.21e−5 4.97e−4 0.0

cut, Ftop = 15, TV ≤ 14 1.248e−2 2.41e−3 2.77e−4 9.53e−4 14.0

cut, Ftop = 15, TV ≤ 4 1.264e−2 1.34e−3 7.95e−5 1.77e−3 4.0

add-remove, Ftop = 15, TV ≤ 14 1.210e−2 2.62e−3 3.18e−5 1.14e−4 13.0

add-remove, Ftop = 15, TV ≤ 4 1.230e−2 2.01e−3 3.51e−5 4.70e−4 4.0

initialization (ζ = 0.5) 5.635e−3 1.79e−1 0.00 0.00 0.0

relaxed test 1.644e−2 8.40e−5 2.87e−6 2.44e−5 106

penalization test 1.622e−2 3.51e−4 7.90e−6 2.17e−4 93

penalization test, lTV = 100+ 1.729e−2 1.90e−4 5.24e−6 9.63e−5 72

Table 8.15: Comparison of the cost and constraints for the splitting tests from a spiral (titanium)
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Figure 8.33: Path and temperature results for the splitting tests starting from a spiral (titanium)

Optimization case LF (m) Cφ CM,DS
CM,D\DS

TV

initialization (classic) 1.008e−2 2.74e−2 2.43e−5 0.00 3.0

path optimization 1.234e−2 1.01e−3 2.34e−4 1.39e−3 0.0

cut, Ftop = 15, TV ≤ 14 1.242e−2 2.34e−4 1.59e−5 1.26e−4 14.0

cut, Ftop = 15, TV ≤ 4 1.238e−2 4.12e−4 2.19e−5 2.72e−4 4.0

add-remove, Ftop = 15, TV ≤ 14 1.274e−2 3.34e−4 1.35e−5 6.67e−4 14.0

add-remove, Ftop = 15, TV ≤ 4 1.230e−2 1.02e−3 5.82e−5 5.02e−4 3.0

initialization (ζ = 0.5) 1.008e−2 6.40e−2 0.00 0.00 0.0

relaxed test 1.640e−2 2.18e−5 5.71e−7 1.05e−5 142

penalization test 1.641e−2 3.27e−5 1.63e−6 2.63e−5 170

penalization test, lTV = 100+ 1.573e−2 5.33e−5 2.87e−5 5.40e−5 83

Table 8.16: Comparison of the cost and constraints for the splitting tests from a contour with 4 lines
(titanium)

The results in the titanium context are not as clear. Indeed, once again, the low conductivity leads to
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Figure 8.34: Path and temperature results for the splitting tests starting from a contour with 4 lines
(titanium)

more intricate results. Yet, we observe once again how interesting it is to allow more than one connected
component: in all the cases considered, the constraints have been decreased by allowing splits in the path.
It also appears that most of these additional parts of the path are small (see especially Figures 8.32 (c)
and (e), 8.33 (c) and (e), 8.34(c) and (e)). They adapt to the zones in which the phase constraint is not
satisfied. Finally, if this is not as clear than in the aluminium case (since the path optimization only does
not lead to as good results), it also seems that the path pieces appear mainly on the sides of the square.
Shared by both physical test case, this feature leads to interesting perspectives: in industrial applications,
the contour of the geometry is usually scanned apart. Including this process in the simulation would it
decrease the number of connected components? Which process is the most accurate? Which allows the
largest residual stresses decrease?

8.5.3 Comparison between the coupled power and path optimization and the topology
optimization methods for complex geometries

To end this comparison, the zero hole, one hole and three holes objects are now chosen as the parts to
build, with only one path initialization considered. The results are summed in six Figures and Tables:

• Figure 8.35 and Table 8.35 for the zero hole object made in aluminium,

• Figure 8.36 and Table 8.36 for the one hole object made in aluminium,

• Figure 8.37 and Table 8.37 for the three holes object made in aluminium,
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• Figure 8.38 and Table 8.38 for the zero hole object made in titanium,

• Figure 8.39 and Table 8.39 for the one hole object made in titanium,

• Figure 8.40 and Table 8.40 for the three holes object made in titanium.
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Figure 8.35: Path and temperature results for the splitting tests for the zero hole object (aluminium)
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Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 4.687e−3 2.95e−3 0.00 0.00 0.0

path optimization 9.961e−3 3.69e−7 0.00 1.81e−7 0.0

cut, Ftop = 15, TV ≤ 14 1.029e−2 3.64e−7 0.00 1.69e−7 14.0

cut, Ftop = 15, TV ≤ 4 1.085e−2 6.00e−7 0.00 6.41e−7 4.0

add-remove, Ftop = 15, TV ≤ 14 1.056e−2 1.24e−6 0.00 1.14e−6 14.0

add-remove, Ftop = 15, TV ≤ 4 1.033e−2 3.00e−7 0.00 1.93e−7 4.0

initialization (ζ = 0.5) 4.687e−3 4.85e−3 0.00 0.00 0.0

relaxed test 1.028e−2 8.37e−7 0.00 1.56e−7 25

penalization test 1.069e−2 7.16e−7 0.00 1.76e−7 64

penalization test, lTV = 100+ 1.094e−2 7.19e−7 0.00 2.22e−7 29

Table 8.17: Comparison of the cost and constraints for the splitting tests for the zero hole object
(aluminium)
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Figure 8.36: Path and temperature results for the splitting tests for the one hole object (aluminium)
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Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 4.687e−3 1.74e−3 0.00 6.33e−7 0.0

path optimization 9.335e−3 3.64e−7 0.00 3.95e−7 0.0

cut, Ftop = 15, TV ≤ 14 9.617e−3 9.83e−7 0.00 6.69e−7 14.0

cut, Ftop = 15, TV ≤ 4 9.614e−3 3.55e−7 0.00 3.11e−7 4.0

add-remove, Ftop = 15, TV ≤ 14 9.888e−3 4.22e−6 0.00 5.07e−6 13.0

add-remove, Ftop = 15, TV ≤ 4 9.516e−3 6.49e−7 0.00 9.87e−7 3.0

initialization (ζ = 0.5) 4.687e−3 3.53e−3 0.00 0.00 0.0

relaxed test 8.894e−3 8.54e−7 0.00 1.25e−7 47

penalization test 9.553e−3 5.50e−7 0.00 1.22e−7 42

penalization test, lTV = 100+ 9.852e−3 6.23e−7 0.00 1.83e−7 43

Table 8.18: Comparison of the cost and constraints for the splitting tests for the one hole object
(aluminium)
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(j) "Penalization test",
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Figure 8.37: Path and temperature results for the splitting tests for the three holes object (aluminium)
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Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 4.687e−3 1.45e−3 0.00 7.03e−4 0.0

path optimization 8.880e−3 1.80e−4 0.00 1.24e−3 0.0

cut, Ftop = 15, TV ≤ 14 8.902e−3 1.19e−4 4.69e−9 1.31e−4 14.0

cut, Ftop = 15, TV ≤ 4 9.268e−3 1.05e−4 4.15e−12 2.19e−4 4.0

add-remove, Ftop = 15, TV ≤ 14 8.745e−3 1.32e−4 8.98e−9 5.80e−5 13.0

add-remove, Ftop = 15, TV ≤ 4 9.019e−3 1.10e−4 1.96e−9 1.06e−4 4.0

initialization (ζ = 0.5) 4.687e−3 3.31e−3 0.00 3.74e−5 0.0

relaxed test 1.039e−2 8.90e−7 0.00 3.62e−7 78

penalization test 1.030e−2 7.58e−7 0.00 2.80e−7 74

penalization test, lTV = 100+ 1.158e−2 7.10e−7 0.00 4.57e−7 58

Table 8.19: Comparison of the cost and constraints for the splitting tests for the three holes object
(aluminium)

The first geometry (Figure 8.35 and Table 8.35) does not include any hole and is thus the easiest to
scan. The simple path optimization shown in Figure 8.35 (b) is already well fulfilling the temperature
constraints. Increasing the number of connected components does not drastically improve the results.
Actually, but for Figure 8.35(e), the final constraints are very close to the classic optimization results
(Table 8.17). This confirms once again the concept of optimal scanning energy. To really compare both
techniques, for the aluminium, the geometry must be more complex. The observations related to the
zero hole object still apply for the one hole part (Figure 8.36 and Table 8.36). Indeed, once again,
the classic path optimization leads to very good results, that are not improved by allowing more than
one connected component in the path. The third object is far more interesting (Figure 8.37 and Table
8.19). Indeed, because of the complex geometry, the classic path optimization could not fulfill the phase
and maximal temperature out of the domain constraints (Figure 8.37(b)). All the tests result in better
final paths. The power optimization method decreases most of the constraints. Yet, even with a jump
control, the final total variation is high. Note that the tests resulting from topology optimization create
path pieces in the holes and further investigations should be conducted to determine whether this is
an optimization artifact or not. If yes, this raises the perspective of better preventing these issues:
decreasing the maximum temperature out of the geometry or working on a projection on the object are
part of them.

Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 4.687e−3 1.28e−1 7.79e−6 0.00 0.0

path optimization 1.217e−2 2.21e−3 8.89e−5 1.55e−2 0.0

cut, Ftop = 15, TV ≤ 14 1.195e−2 5.24e−4 2.80e−5 3.03e−4 14.0

cut, Ftop = 15, TV ≤ 4 1.204e−2 7.35e−4 4.92e−5 2.02e−4 4.0

add-remove, Ftop = 15, TV ≤ 14 1.172e−2 8.65e−4 3.47e−5 2.19e−4 14.0

add-remove, Ftop = 15, TV ≤ 4 1.195e−2 4.78e−4 2.66e−5 6.44e−4 4.0

initialization (ζ = 0.5) 4.687e−3 1.89e−1 0.00 0.00 0.0

relaxed test 1.464e−2 1.43e−4 4.01e−6 4.61e−5 102

penalization test 1.465e−2 1.94e−4 7.47e−6 8.01e−5 172

penalization test, lTV = 100+ 1.510e−2 2.39e−4 1.02e−5 1.97e−4 84

Table 8.20: Comparison of the cost and constraints for the splitting tests for the zero hole object
(titanium)
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(j) "Penalization test",
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Figure 8.38: Path and temperature results for the splitting tests for the zero hole object (titanium)

Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 4.687e−3 9.04e−2 1.00e−5 0.00 0.0

path optimization 9.848e−3 1.51e−3 1.64e−4 7.86e−3 0.0

cut, Ftop = 15, TV ≤ 14 9.638e−3 9.98e−4 8.95e−5 2.10e−4 14.0

cut, Ftop = 15, TV ≤ 4 9.700e−3 3.01e−4 1.35e−5 2.76e−3 4.0

add-remove, Ftop = 15, TV ≤ 14 9.647e−3 1.02e−3 3.80e−5 4.04e−4 14.0

add-remove, Ftop = 15, TV ≤ 4 9.668e−3 8.29e−4 3.74e−5 4.79e−4 4.0

initialization (ζ = 0.5) 4.687e−3 1.56e−1 0.00 0.00 0.0

relaxed test 1.168e−2 1.54e−4 4.37e−6 2.85e−5 82

penalization test 1.130e−2 1.78e−4 6.80e−6 3.69e−5 144

penalization test, lTV = 100+ 1.110e−2 1.22e−4 1.20e−5 4.93e−5 67

Table 8.21: Comparison of the cost and constraints for the splitting tests for the one hole object
(titanium)
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Figure 8.39: Path and temperature results for the splitting tests for the one hole object (titanium)

Optimization case LF (m) Cφ CM,DS CM,D\DS
TV

initialization (classic) 4.687e−3 8.38e−2 1.05e−5 2.79e−3 0.0

path optimization 9.580e−3 1.62e−3 1.15e−4 1.88e−3 0.0

cut, Ftop = 15, TV ≤ 14 9.467e−3 6.55e−4 4.65e−5 2.11e−4 14.0

cut, Ftop = 15, TV ≤ 4 9.568e−3 1.40e−3 5.66e−5 4.61e−3 4.0

add-remove, Ftop = 15, TV ≤ 14 9.405e−3 1.53e−3 5.66e−5 6.31e−4 13.0

add-remove, Ftop = 15, TV ≤ 4 9.445e−3 1.67e−3 6.45e−5 2.48e−3 4.0

initialization (ζ = 0.5) 4.687e−3 1.51e−1 0.00 9.09e−6 0.0

relaxed test 1.218e−2 1.66e−4 3.29e−6 6.43e−5 103

penalization test 1.198e−2 2.12e−4 6.01e−6 6.27e−5 167

penalization test, lTV = 100+ 1.163e−2 1.48e−4 1.59e−5 5.64e−5 81

Table 8.22: Comparison of the cost and constraints for the splitting tests for the three holes object
(titanium)
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Figure 8.40: Path and temperature results for the splitting tests for the three holes object (titanium)

All along this work, it has been made clear that path optimization is harder for low conductivity mate-
rials. Thus, the classic path optimization for the first "simpler" object leads to unsatisfied constraints
(Figures 8.38(b), 8.39(b), 8.40(b)). In each of the considered cases, the new tests lead to improved
paths. Once again the temperature constraints are lower using the power method. Yet, the same order
of magnitude is shared by the results from topology optimization while the total variation is drasti-
cally decreased. Note that, once again, the path does not necessarily remains in the geometry (Figures
8.38(b,i,j), 8.39(b,d,h,i)). Yet, this is not always an issue: in Figure 8.39(h,i) for example, the path
crossing the hole does not induce enough heat to melt the powder. If a filter was applied after the power
based optimization, this source on this part of the path would probably be off. Finally, in Figure 8.40,
the interest of allowing small path pieces is clear. Indeed, the geometry is intricate and cutting the source
gives more flexibility in the scanning design. This is made especially clear comparing the results from
power optimization and from topology optimization. Indeed, a higher total variation allows for lower
temperature constraints.

8.6 Conclusion

In path optimization in the steady state context (Chapter 6), some tests allowing cuts in the path have
led to interesting results, calling for further studying this possibility. This chapter aims at answering the
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question.

To do so, two different methods have been proposed: a coupled optimization of the path and the source
power and a topology optimization of the path. From the results tested in both cases, it seems quite
clear that adding this "cutting" feature to the path design improves the fulfillment of the temperature
constraints. Especially for low conductivity material, it reduces the maximum temperature and better
fit the geometry to scan. It even appears in most of the results that the higher the number of connected
components of the path, the better is the path.

However, to be efficiently used in industry, the number of power jumps must be limited. Indeed, the
source cannot be instantaneously switched on and off: each jump increases the scanning time. Each of
the developed methods proposes a different control. In power optimization, this control appears as an
optimization constraint. It is thus difficult to accurately limit the number of jumps. On the contrary,
since the number of jumps is fixed by the user and integrated in the algorithm, this control is a lot easier
using topology optimization. However, the computational time is higher: the number of total variation
obtained in the power case cannot be reasonably dealt with topology optimization. Indeed, since the
topology modification is geometric and impacts the path discretization itself, increasing the number of
path connected components drastically increases the computations. Finally, since a path generated with
topology optimization is split into different connected components, a post-treatment algorithm must be
run to efficiently link each part of the path.

Adapting this feature in the transient context is part of the perspectives. The settings proposed by the
coupled path and power optimization can be transferred. Indeed, using the point based discretization for
the path, a description of the power variable very similar to the steady case can be introduced. On the
contrary, the settings related to topology optimization perfectly suit the steady state case and adapting
them to the transient context is a long-term perspective.
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9.1 Introduction

9.2 Settings of the optimization problem and differentiation

9.2.1 Problem settings

In this chapter, we add a shape optimization problem in linearized elasticity to the path optimization
problem described in Chapter 6. The new optimization problem thus depends on two variables: the
bounded domain Ω ⊂ D to scan (previously corresponding to DS), and the scanning path Γ.

Alike the problem proposed in Section 3.3, we consider the domain Ω ⊂ D an open bounded set with
Lipschitz boundary ∂Ω. This boundary, with exterior unit normal vector nΩ is composed of three
disjoints parts (Figure 3.2): ∂ΩD on which the displacement is imposed (Dirichlet boundary condition),
∂ΩN on which a load g ∈ L2 (∂ΩN) is applied, and ∂ΩF which is traction-free. Only the boundary
∂ΩF is optimizable and the boundary ∂ΩD is not reduced to the empty set (∂ΩD 6= ∅). The solid (and
corresponding shape Ω) is comprised of an elastic material with a Hooke’s tensor A relating the elastic
stress and strain defined following (3.3.5). The elastic displacement u ∈ H1(Ω,R2) is solution to the
elasticity partial differential equation recalled here

−div (Aε(u)) = 0 in Ω

Aε(u).n = g on ∂ΩN

Aε(u).n = 0 on ∂ΩF

u = 0 on ∂ΩD,

(9.2.1)

where

ε(u) =
1

2

(
∇u+∇uT

)
. (9.2.2)

Setting H1
D(Ω,R2) = {v ∈ H1(Ω,R2), such that v = 0 on ∂ΩD} the set of functions in H1(Ω,R2)

canceling on ∂ΩD, the elastic variational problem states that,
ˆ

Ω

Aε(u) : e(ϕ)dx−
ˆ
∂ΩN

gϕds = 0, ∀ϕ ∈ H1
D(Ω,R2). (9.2.3)

231



232 Chapter 9. Shape and path optimization in the steady state context

Alike in Chapter 6, we consider in the domain D a path Γ ∈ G with tangent τΓ, normal nΓ and curvature
κΓ. It carries an energy source inducing a temperature y in the whole domain D. This temperature
y ∈ H1(D,R) is solution of the classic heat equation −∇ (λ∇y) + β (y − yini) = PχΓ inD,

λ∂ny = 0 on ∂D,
(9.2.4)

and the variational formulationˆ
D

λ∇y∇φ+ β (y − yini)φdx−
ˆ

Γ

Pφds = 0, ∀ϕ ∈ H1(D,R). (9.2.5)

The objective is to minimize the normalized shape compliance and the path length. The objective
function J(Ω,Γ) is thus defined by

J(Ω,Γ) =
1

C0
ply

ˆ
Ω

Aε(u) : ε(u)dx+
1

Γ0

ˆ
Γ

ds =
Cply(Ω)

C0
ply

+
LF

L0
F

,

with C0
ply = Cply(Ω0) the initial compliance and L0

F = LF(Γ0) the initial length. No balancing is chosen
between both functions. It is of course part of perspectives to compromise between the compliance and
the path length depending on the industrial requirements.
In this first approach, we aim at characterizing the impact of the scanning path consideration on shape
optimization. To do so, we choose a comparison with fixed volume: the differences in the designs are
only a matter of material redistribution, facilitating the interpretation. The volume constraint applied
is thus

1

V 0

ˆ
Ω

dx =
V

V 0
=
Vtar
V 0

,

with Vtar fixed by the user and V 0 =

ˆ
Ω0

dx the initial volume. The temperature constraints introduced

in Section 4.4.1 (and used in Chapters 6 and 8) are also considered, gathered as one:

C(Ω,Γ) =

ˆ
Ω

[
(yφ − y)

+
]2
dx︸ ︷︷ ︸

Cφ(Ω,Γ)

+

ˆ
Ω

[
(y − yM,DS

)
+
]2
dx︸ ︷︷ ︸

CM,DS
(Ω,Γ)

+

ˆ
D\Ω

[(
y − yM,D\DS

)+]2
dx︸ ︷︷ ︸

CM,D\DS
(Ω,Γ)

. (9.2.6)

The effective constraint is
C

C0
= 0 with C0 the initial constraint. This optimization problem is finally

summed up as

min
Ω,Γ

J(Ω,Γ) such that


V

V 0
=
Vtar
V 0

,

C

C0
= 0.

(9.2.7)

9.2.2 Differentiation

The derivative with respect to each variable must now be found.

Proposition 9.1. Let Γ ∈ G and Ω ⊂ D an open bounded set such that ∂Ω ∈ G. Then, each of
the functions involved in the optimization problem (compliance, volume, path length and temperature
constraint) are differentiable at Ω and ∀θΩ ∈ C2

(
D,R2

)
such that ∀x ∈ ∂ΩD ∪ ∂ΩN, θΩ(x) · n(x) = 0,



DΩCply(Ω,Γ)(θΩ) =

ˆ
∂ΩF

(−Ae(u) : e(u)) θΩ · nΩds,

DΩLF(Ω,Γ)(θΩ) = 0,

DΩV (Ω,Γ)(θΩ) =

ˆ
∂ΩF

θΩ · nΩds,

DΩC(Ω,Γ)(θΩ) =

ˆ
∂ΩF

(
(yφ − y)

+
+ (y − yM,DS

)
+ −

(
y − yM,D\DS

)+)
θΩ · nΩds,

(9.2.8)

and differentiable at Γ such that
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

DΓCply(Ω,Γ)(θΓ) = 0,

DΓV (Ω,Γ)(θΓ) = 0,

DΓLF(Ω,Γ)(θΓ) =

ˆ
Γ

κΓθΓ · nΓds+ θΓ(B) · τΓ(B)− θΓ(A) · τΓ(A),

DΓC(Ω,Γ)(θΓ) =

ˆ
Γ

(−PpκΓ − P∂np) θΓ · nΓds

(9.2.9)

where the adjoint function p ∈ H1(D,R) is solution of −∇ (λ∇p) + βp = 2 (lC + cCC)
(

(yφ − y)
+
1Ω − (y − yM,DS)

+
1Ω −

(
y − yM,D\DS

)+
1D\Ω

)
inD,

λ∂np = 0 on ∂D.
(9.2.10)

PROOF.
The method of Céa is applied for each function, involving the variational formulation of linear elasticity
and the variational formulation of the heat equation. As in section 3.3, the compliance problem is
self-adjoint and Proposition 3.4 is applied. The only point of attention is on the differentiation of the
constraint CM,D\DS

:

CM,D\DS
=
´
D

((
y − yM,D\DS

)+)2

1D\Ωds

=
´
D

((
y − yM,D\DS

)+)2

dx−
´

Ω

((
y − yM,D\DS

)+)2

dx.

Thus,

DΩCM,D\DS
(θΩ) = 0−

ˆ
∂Ω

((
y − yM,D\DS

)+)2

θΩ · nΩds.

Since the temperature and the path are not involved in the elastic problem nor in the volume and
compliance, the differentiation with respect to the path corresponds to the computations provided in
section 6.3.1 (Chapter 6).

To represent and update the shape, a level set method, presented in Section 3.3.1 is chosen. To compute
the update direction, the gradients of the functions involved (C ′ply, L

′
F = 0, V ′, C ′) are required and

are computed using the regularization-extension equation (3.2.21) (Section 3.2.4). The advection step is
given by (3.3.13) (Section 3.3.2). As for the path update, it follows the process detailed in Chapter 6
with the determination of gradients with respect to the path (∇ΓCply = 0, ∇ΓLF, ∇ΓV = 0, ∇ΓC).

9.3 Numerical algorithm

The optimization method chosen is a double loop algorithm. The outer loop is related to the shape Ω
whereas the inner loop focuses on the path Γ. The number of iterations in each loop determines the
balance between the optimization of both variables. The following subsections describe each of them.

9.3.1 Path update: inner loop

The inner loop consists in optimizing the path. Assume that the shape Ωn has been updated into Ωn+1.
The path Γn must now be updated. The inner loop consists in performing NΓ iterations (nΓ ∈ J1, NΓK)
on the path starting from Γn assuming that the shape to build is Ωn+1. This inner loop optimization
problem is closed from what has been done in Chapter 6. Indeed, both the compliance and volume do
not depend on the path. The inner loop thus consists in minimizing the length LF under the constraint
C = 0. An augmented Lagrangian method is used with the effective inner loop objective function

LALM,in(Γ) = LF + lC,inC +
cC,in

2
C2. (9.3.1)

The Lagrangian multiplier is initialized by 1 (l0C,in = 1) and the penalizer is fixed to 1 (cC,in = 1). A
step coefficient CsΓ is introduced to determine the path advection step. Initialized to 1, it is updated by
min(1.2CsΓ , 1) if the effective objective function decreases (iteration accepted) and by 0.6CsΓ else. Note
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that in the inner loop, the tolerance classically defined to allow for the function to increase is set to 1.
In case the iteration nΓ is accepted, the multiplier is updated as

lnΓ+1
C,in = lnΓ

C,in + cC,inC
nΓ . (9.3.2)

In the following, the inner loop is written innerLoop(Ω,ΓnΓ=0, NΓ).

9.3.2 Shape update: outer loop

The outer loop consists in optimizing the shape. Let n be an outer loop iteration with Ωn and Γn the
variables at this iteration. This outer loop consists in determining the new shape Ωn+1, running the
inner loop to determine the corresponding path Γn+1 and accepting or rejecting the iteration.

Augmented Lagrangian method

To deal with both the volume and temperature constraints, an augmented Lagrangian method is used.
Introducing the multipliers lV and lC , the penalizers cV and cC , the effective objective function is then

LALM(Ω,Γ, lV , lC ; cV , cC) =
Cply

C0
ply

+
LF

L0
F

+ lV
V − Vtar
V 0

+
cV
2

(
V − Vtar
V 0

)2

+ lC
C

C0
+
cC
2

(
C

C0

)2

. (9.3.3)

The gradient to this effective objective function is then computed. The advection step is given by (3.3.13)
(Section 3.3.2) with C0

s,Ω = 5, ηsacc = 1.2, ηsref = 0.6 and the tolerance tol initialized to 1.6 and multiplied
by 0.9 every 50 iterations. This advection process is numerical run following the algorithm described in
[41, 181] and the redistanciation process is provided by Freefem++[96]. The path is then updated by
application of the inner loop.
1 initialization: Ω0, Γ−1, C0

s,Ω = 5, lV = 1, cV = 1, l0C = 1, cC = 1

2 computation of the initial compliance C0
ply, volume V 0, length L−1

F , constraint C−1

3 determination of Γ0 (and L0
F, C

0) by application of innerLoop(Ω0,Γ−1, N0
Γ)

4 computation of the shape derivative
5 for itΩ ∈ J0, NΩK do
6 update the shape: Ω = ΩitΩ − sitΩΩ L′itΩALM

7 compute the new compliance Cply and volume V
8 determination of Γ (and LF, C) by application of innerLoop(Ω,ΓitΩ , N itΩ

Γ )

9 if LALM(Ω,Γ, litΩV , litΩC ) ≤ tolLALM(ΩitΩ ,ΓitΩ , litΩV , litΩC ) then
10 iteration accepted: ΩitΩ+1 = Ω, ΓitΩ+1 = Γ

11 update the lagrange multiplier litΩ+1
V = litΩV + cV V

itΩ+1

12 update the lagrange multiplier litΩC + cCC
itΩ+1

13 compute the new objective function and the shape derivative
14 increase the step coefficient related to the shape: Cs,Ω = min (1.2Cs,Ω, 5)

15 end
16 else
17 iteration rejected (shape and path rejected)
18 decrease the step coefficient related to the shape: Cs,Ω = 0.6Cs,Ω
19 end
20 end

Algorithm 9.1: Iterative double loop algorithm to optimize the shape and the path.

Dichotomy of the volume Lagrange multiplier

If the augmented Lagrangian method is the simplest way to include the constraints to the optimization
problem, it guaranties their fulfillment at convergence only. However, in most numerical applications, we
must stop the algorithm after a fixed number of iterations NΩ. This is an issue for the volume constraint.
Indeed, the objective of this chapter is to determine the impact of the path determination on the design.
To facilitate the interpretation, we decide to fix the volume allowed: the impact of the path corresponds
to a material redistribution without any addition or removal of volume. The augmented Lagrangian
method is not strong enough to force the volume constraint to be satisfied. This could be easier with the
null space algorithm but another technique is a lot more efficient for this: perfectly adapting the volume
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at each iteration by choosing adequately the volume Lagrange multiplier lV . The effective augmented
Lagrangian function (9.3.3) is now split into two different functions with LALM = LALM + lV LV and

LALM =
Cply

C0
ply

+
LF

L0
F

+
cV
2

(
V − Vtar
V 0

)2

+ lC
C

C0
+
cC
2

(
C

C0

)2

LV =
V − Vtar
V 0

.

(9.3.4)

This leads to a new function gradient (and thus a new descent direction) L′ALM = LALM
′
+ lV L′V .

This algorithm modifies the step computation and the shape advection. Algorithm 9.2 details this
process. If the Lagrange multiplier for the temperature constraint lC is still initialized to 1, the volume
multiplier is initialized to

l0V = −DΩLALM (nΩ)

DΩLV (nΩ)
. (9.3.5)

1 initialization: Ω0, Γ−1, C0
s,Ω = 5, cV = 1, l0C = 1, cC = 1

2 computation of the initial compliance C0
ply, volume V 0, length L−1

F , constraint C−1

3 determination of Γ0 (and L0
F, C

0) by application of innerLoop(Ω0,Γ−1, N0
Γ)

4 computation of the gradients
(
LALM

′)0

and (L′V )
0

5 initialization of lV : l0V = −DΩLALM (nΩ)

DΩLV (nΩ)
for itΩ ∈ J0, NΩK do

6 advection step sitΩΩ defined following (3.3.13) (Section 3.3.2) for
(
LALM

′)itΩ
+ litΩV (L′V )

itΩ

7 update the shape: Ωtest = ΩitΩ − sitΩΩ

((
LALM

′)itΩ
+ litΩV (L′V )

itΩ

)
8 ltestV = litΩV , lMIN

V = litΩV − 10, lMAX
V = litΩV + 10, V test = V

(
Ωtest), k = 0

9 while V test /∈ Vtar + [−εdicho, εdicho] and k ≤ 30 do
10 if V test ≤ Vtar − εdicho then
11 lMAX

V = ltestV

12 ltestV =
lMIN
V + lMAX

V

2
13 end
14 if V test ≥ Vtar + εdicho then
15 lMIN

V = ltestV

16 ltestV =
lMIN
V + lMAX

V

2
17 end

18 Ωtest = ΩitΩ − sitΩΩ

((
LALM

′)itΩ
+ ltestV (L′V )

itΩ

)
, V test = V (Ωtest) and k = k + 1.

19 end
20 Ω = Ωtest: compute the new compliance Cply and volume V
21 determination of Γ (and LF, C) by application of innerLoop(Ω,ΓitΩ , N itΩ

Γ )

22 if LALM(Ω,Γ, litΩV , litΩC ) ≤ LALM(ΩitΩ ,ΓitΩ , litΩV , litΩC )tol then
23 iteration accepted: ΩitΩ+1 = Ω, ΓitΩ+1 = Γ

24 update the lagrange multiplier litΩ+1
V = ltestV + cV V

itΩ+1

25 update the lagrange multiplier litΩC + cCC
itΩ+1

26 compute the new objective function and the gradients
(
LALM

′)itΩ+1

and (L′V )
itΩ+1

27 increase the step coefficient related to the shape: Cs,Ω = min (1.2Cs,Ω, 5)

28 end
29 else
30 iteration rejected (shape and path rejected)
31 decrease the step coefficient related to the shape: Cs,Ω = 0.6Cs,Ω
32 end
33 end

Algorithm 9.2: Iterative double loop algorithm to optimize the shape and the path.
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The coefficient εdicho is initialized to 0.05 and multiplied by 0.95 at each iteration during the 120 first
ones. The volume tolerance is then fixed to εdicho = 1.1 10−4.

9.4 Numerical results

An initialization state INI is defined with a shape ΩINI and a path ΓINI (subfigure (a) in each Figure).
From Algorithm 9.2, different tests are run, summed up in Figure 9.1:

• SONLY: shape optimized - path fixed, without any consideration of the temperature con-
straints (lC = 0 and cC = 0). This test is initialized with Ω0 = ΩINI.

• STEMP: shape optimized - path fixed, taking into consideration the temperature constraints
(l0C = 1, cC = 1, ∀itΩ ∈ J0, NΩK, N itΩ

Γ = 0). This test is initialized with Ω0 = ΩINI and the fixed
path used for the temperature computations is ΓINI.

• SP-fromINI: shape optimized - path optimized. This test optimizes both variables taking into
account temperature constraints (l0C = 1, cC = 1). The number of inner loop iterations follows
Table 9.1. Recall that the inner loop is also broken when the inner loop step coefficient is smaller
than 10−8. This test is initialized with Ω0 = ΩINI and Γ0 = ΓINI.

itΩ J0, 24K 25 J26, 44K 45 J46, 49K 50 J51, 54K 55 56 57 58 59 J60, 300K

N itΩ
Γ 0 50 0 45 0 40 0 35 30 25 20 15 10

Table 9.1: Number of inner loop maximum number of iterations NΓ depending on the outer loop
iteration itΩ.

• PONLY: shape fixed - path optimized. This test is initialized by Γ0 = ΓINI and the fixed
shape to build is ΩSONLY resulting from the optimization test SONLY.

• SP-fromPONLY: shape optimized - path optimized. This test optimizes both variables taking
into account temperature constraints (l0C = 1, cC = 1). The number of inner loop iterations follows
Table 9.1. Recall that the inner loop is also broken when the inner loop step coefficient is smaller
than 10−8. This test is initialized with the shape Ω0 = ΩSONLY resulting from the optimization
test SONLY and with the path Γ0 = ΓPONLY resulting from the optimization test PONLY.

Figure 9.1: Recap scheme of the different tests

For each of these tests, the final shape, path and temperature are given. A Table sums up the final
compliance, volume, path length and adimensionalized temperature constraints (7.2.27). A final radar
chart sums up the quantitative results. Note that in these graphs, for each of the functions represented
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(compliance and temperature constraints), the axes are reversed so that the best solutions correspond
to the curve with the biggest area.

9.4.1 Cantilever test case

The first test case is a cantilever. A symmetry condition is applied and the working domain is D =
[−1.4, 1.4]× [0, 0.7] given in mm. This working domain is meshed with 12800 triangular elements. The
corresponding mechanical settings for the non symmetric and symmetric cases are shown in Figure 9.2.
For both the titanium and aluminium, the Poisson ratio is fixed to ν = 0.3 and the Young coefficient is
E = 1. This assumption comes from the linear relation between the displacement and Young coefficient.
The loading is g = (0,−2). The temperature settings remain the same than in Chapters 6 and 8 (see
Section 6.6 and 6.7). To simplify the problem, the path is composed of only one connected component.
Thus, as in Chapter 6 for symmetric tests, the point of the path initially belonging to the (Ox) must
remain on this axis.

(a) Non symmetric test case (b) Symmetric test case

Figure 9.2: Cantilever test case with the symmetry conditions for the mechanical and heat problems

For each of the aluminium and titanium test cases, two different volume ratios are tested: Vtar = 0.9V 0

and Vtar = 1.1V 0.

Aluminium test case

For the aluminium, the results of the five tests for each volume ratio are respectively presented in Figures
9.3, 9.5, by Tables 9.2, 9.3 and by the quantitative results visualization Figures 9.4 and 9.6. The initial
volume is V0 = 1.15722e− 06m2.

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.3: Initialization and shape optimization for different tests, aluminium, cantilever, Vtar = 0.9V0

These first results show that coupling a classic shape optimization algorithm to the path optimization
technique developed in this work leads to an adaptation of both the shape and the path. It is clear that
the temperature constraints impact the shape since, the results in Figures 9.3(c), 9.5(c) are different
from 9.3(b), 9.5(b) whereas the only difference is the fact that the temperature constraints are taken
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case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 5.666e−6 4.383e−3 4.879e−3 0.000 7.296e−3

SONLY 0.900 2.245e−6 4.383e−3 1.696e−3 0.000 1.473e−3

STEMP 0.900 2.349e−6 4.383e−3 1.272e−3 0.000 1.219e−7

SP-fromINI 0.900 2.377e−6 5.396e−3 4.932e−4 0.000 3.698e−7

PONLY 0.900 2.245e−6 7.353e−3 1.291e−3 9.914e−10 2.823e−3

SP-fromPONLY 0.900 2.262e−6 8.316e−3 1.899e−5 0.000 2.717e−5

Table 9.2: Quantitative results for the different tests, aluminium, cantilever, Vtar = 0.9V0

Figure 9.4: Quantitative values visualization, aluminium, cantilever, Vtar = 0.9V0

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.5: Initialization and shape optimization for different tests, aluminium, cantilever, Vtar = 1.1V0

into account in (c). Indeed, in both cases, the lower right bars is thickened to reduce the maximum
temperature constraint out of the shape to build whereas other bars (upper right in Figure 9.3 and lower
left in 9.5) are made thinner. Figures 9.3(c), 9.5(c) also make really clear how fixing the volume impacts
the optimization: the shape cannot exactly adapt to the path and reduce the phase constraint without
decreasing the volume. The dichotomy prevents this.
In Figures 9.3(e), 9.5(e), the shape is fixed to the result from SONLY and the path is optimized. In
Figure 9.3(e), this optimization fails: the phase constraint is not satisfied and the path crosses a zone
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case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 5.666e−6 4.383e−3 4.879e−3 0.000 7.296e−3

SONLY 1.100 1.917e−6 4.383e−3 2.465e−3 0.000 1.396e−5

STEMP 1.100 2.001e−6 4.383e−3 2.215e−3 0.000 0.000

SP-fromINI 1.100 1.920e−6 9.572e−3 9.979e−6 0.000 1.393e−5

PONLY 1.100 1.917e−6 8.848e−3 1.659e−5 0.000 1.993e−5

SP-fromPONLY 1.100 1.918e−6 9.337e−3 1.098e−5 0.000 1.477e−5

Table 9.3: Quantitative results for the different tests, aluminium, cantilever, Vtar = 1.1V0

Figure 9.6: Quantitative values visualization, aluminium, cantilever, Vtar = 1.1V0

out of the shape to build. Indeed, it seems complicated for the path to build the right lower bar: the
conductivity is high and the path cannot cross this bar without violating the maximum temperature
constraint out of the domain. Struggling to remedy to this problem, the optimization ends up by being
stuck into a local minimum that does not satisfy the temperature constraints. On the contrary in Figure
9.5(e), the bar is thicker and the path optimization satisfies well the constraints. A first criterion could
thus be the thickness of the bars to build and an interesting perspective would be to compare the results
obtained for design under thickness constraints (see [141]) to the concurrent design of shape and scanning
path. In both cases, an interesting pattern must be noted in the upper right bar. The conductivity is
not high enough to melt the powder in this bar with a straight line. In both cases, the algorithm designs
an Omega-pattern. Note that these patterns could be different if allowing for the modification of the
number of path connected components.
Coupled optimizations are run in each case starting from two different initializations: from Figure (a)
to Figure (d) and from Figure (e) to Figure (f). In Figure 9.3, the strategies are different from one
initialization to another. Starting from (c), the shape is slightly modified with simple bars thickness
reduction or increase and the path is adapted to correctly melt the upper left corner. Starting from (e),
the bars thickness are not modified much. The modifications simply allow the path to get out of the
local minimum and ends the optimization process. Note that in this case, the path does not cross the
lower right bar. In Figure 9.5, the results are quite similar. It can be especially noted that concurrent
optimization starting from (c) leads to the same Omega-patterns than obtained in (e) and (f).
These first results underline two main points. Once again, the initialization of the path is crucial. Indeed,
not only the final path is influenced by this choice, but the shape might also be modified. Choosing this
initialization is not intuitive and must be coherent with the optimal design. However, running first shape
optimization and then path optimization to get the initializations of the concurrent optimization might
lead to results very different from the expectations. The second point is the importance of the bars
thickness in the design. Indeed, in both concurrent optimization tests, the thin bars have been thick-
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ened until they almost correspond to the thickness of the melted powder domain generated by the source.

We finally run the optimization on the whole working domain to evaluate the impact of the symmetry.
For Vtar = 0.9V0, the results are shown in Figure 9.7 and Table 9.4.

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.7: Initialization and shape optimization for different tests, aluminium, full cantilever,
Vtar = 0.9V0

case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 1.133e−5 8.765e−3 4.879e−3 0.000 7.296e−3

SONLY 0.900 4.493e−6 8.765e−3 1.628e−3 0.000 1.105e−3

STEMP 0.900 4.715e−6 8.765e−3 1.159e−3 0.000 4.452e−8

SP-fromINI 0.900 4.667e−6 1.024e−2 5.224e−4 0.000 3.769e−8

PONLY 0.900 4.493e−6 1.594e−2 1.437e−4 0.000 1.849e−3

SP-fromPONLY 0.900 4.558e−6 1.604e−2 1.768e−5 0.000 3.045e−5

Table 9.4: Quantitative results for the different tests, aluminium, full cantilever, Vtar = 0.9V0

If the results from Figure 9.7(a-b-c-d) are very similar to Figure 9.3(a-b-c-d), it seems in the optimization
(of the path only) that the path symmetry has been broken. In Figure 9.3(e), the path has already
difficulties to cross the right lower bar. In Figure 9.7(e), it manages to cross it yet encroaching on the
lower half of the Figure thus preventing the same method for the symmetric to this right loser bar. Note
also that on the right and middle of the Figure (junction location in Figure 9.3(e)), the path is not
horizontal anymore but introduces an intersection. As for Figure 9.7(f), it cannot be symmetric because
starting from a non symmetric initialization, and induces the loss of the lower hole. Yet, the shape
evolution allows for a correct satisfaction of the constraints.

Titanium test case

For the titanium, the results of the five tests for each volume ratio are respectively presented in Figures
9.8, 9.10, by Tables 9.5, 9.6 and by the quantitative results visualization Figures 9.9 and 9.11.
Before getting further in the comments, note that the Young modulus for the titanium is higher than
for the aluminium. Thus, with the real values of the Young modulus, the Poisson ratio and for the same
loading, the bars obtained for the titanium could be thinner than shown in the Figures 9.8 and 9.10.
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(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.8: Initialization and shape optimization for different tests, titanium, cantilever, Vtar = 0.9V0

case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 5.666e−6 4.383e−3 1.692e−1 2.792e−5 2.286e−2

SONLY 0.900 2.245e−6 4.383e−3 8.909e−2 1.545e−4 3.934e−3

STEMP 0.900 2.364e−6 4.383e−3 7.561e−2 1.545e−4 0.000

SP-fromINI 0.900 3.374e−6 7.401e−3 1.910e−2 3.776e−4 1.342e−4

PONLY 0.900 2.245e−6 8.628e−3 2.138e−3 1.096e−4 2.245e−4

SP-fromPONLY 0.900 2.250e−6 8.632e−3 1.656e−3 1.242e−4 1.450e−4

Table 9.5: Quantitative results for the different tests, titanium, cantilever, Vtar = 0.9V0

Figure 9.9: Quantitative values visualization, titanium, cantilever, Vtar = 0.9V0

First of all, the results obtained corroborate the remarks in the aluminium test case. The thickness
of the bars matters. The conductivity of the titanium is lower. If this makes easier for the path to
cross thin lines, it complicates the filling of thick ones. In both Figures 9.8 and 9.10, this is clear when
running concurrent optimization from (a) to (d). In (d), the shape’s boundary really adapts to the
path: thickness and curvatures are modified to fit the phase constraint at the cost of the compliance.
Another observation is once again the design of an Omega-pattern to fill thick bars. This confirms the
interest of this pattern, that had already pointed out for the aluminium in Figure 6.22 in Chapter 6.
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(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.10: Initialization and shape optimization for different tests, titanium, cantilever, Vtar = 1.1V0

case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 5.666e−6 4.383e−3 1.692e−1 2.792e−5 2.286e−2

SONLY 1.100 1.917e−6 4.383e−3 1.125e−1 1.264e−4 0.000

STEMP 1.100 2.115e−6 4.383e−3 1.080e−1 1.264e−4 0.000

SP-fromINI 1.100 2.140e−6 1.021e−2 3.050e−3 1.405e−4 6.077e−5

PONLY 1.100 1.917e−6 1.003e−2 1.394e−3 9.727e−5 3.666e−4

SP-fromPONLY 1.100 1.921e−6 1.004e−2 1.203e−3 9.742e−5 5.010e−5

Table 9.6: Quantitative results for the different tests, titanium, cantilever, Vtar = 1.1V0

Figure 9.11: Quantitative values visualization, titanium, cantilever, Vtar = 1.1V0

In the titanium test case, because the conductivity is small, the shape is highly modified in concurrent
optimization starting from (c): the phase constraint is far from being fulfilled at initialization. On the
contrary, the shape slightly adapts when starting from PONLY (e) since the phase constraint is well
satisfied. The path and shape are only adapted to fit the remaining zones that remain unmelted.

We finally run the optimization on the whole working domain to evaluate the impact of the symmetry.
For Vtar = 0.9V0, the results are shown in Figure 9.12 and Table 9.7.
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(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.12: Initialization and shape optimization for different tests, titanium, full cantilever,
Vtar = 0.9V0

case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 1.133e−5 8.765e−3 1.692e−1 2.792e−5 2.286e−2

SONLY 0.900 4.493e−6 8.765e−3 8.696e−2 1.545e−4 2.765e−3

STEMP 0.900 4.960e−6 8.765e−3 7.285e−2 1.545e−4 0.000

SP-fromINI 0.900 4.915e−6 1.756e−2 1.917e−3 1.461e−4 6.759e−5

PONLY 0.900 4.493e−6 1.730e−2 2.682e−3 1.119e−4 8.196e−4

SP-fromPONLY 0.900 4.500e−6 1.735e−2 2.017e−3 1.608e−4 1.446e−4

Table 9.7: Quantitative results for the different tests, titanium, full cantilever, Vtar = 0.9V0

As for the aluminium, dealing with the entire geometry induces slight unsymmetries especially to correclty
melt the middle zone. Yet, the results remain quite similar with the use of the Omega-pattern and the
boundary adaptations to the temperature constraints.

9.4.2 Large cantilever test case

The second test case remains a cantilever yet in bigger working domain which, with the symmetry con-
dition, amounts to D = [−2.8, 2.8] × [0, 1.4] given in mm. To keep the same accuracy in the source
description and the temperature computation, the mesh of this new working domain should be as thin as
the previous mesh and thus be composed of 51200 triangular elements. However, with such a number of
elements, the computational costs coming from the resolution of the mechanical problem at each outer
loop iteration would be far too high. In the inner loop however, the rigidity matrix related to the heat
equation remains the same during the whole optimization process and must be inverted only once. We
thus use two different meshes: the outer loop and the mechanical computations are run using a mesh
with 12800 elements, the inner loop is run with the thin mesh. Then, to allow for the computation of the
shape derivatives, the temperature computed on the thin mesh is interpolated (classic interpolation in
FreeFem++ [96]) on the outer loop mesh. The mechanical settings remain the same (see Figure 9.2): for
both the titanium and aluminium, the Poisson ratio is fixed to ν = 0.3, the Young coefficient is E = 1
and the loading g = (0,−2). For both the aluminium and the titanium test cases, two path initializations
are tested. In both cases, the initial volume is V0 = 4.6289e− 06m2.
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The interest of this second test case lies in the increasing thickness of the shape bars. Indeed, working on
a bigger part, the bars are expected thicker and thus the path longer and adapted to this new thickness.

Aluminium test case

The results for the volume constraint Vtar = 0.9V0 are given by Figure 9.13, Table 9.8 and Figure 9.14
for the first initialization and Figure 9.15, Table 9.9 and Figure 9.16 for the second.

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.13: Initialization and shape optimization for different tests, initialization 1, aluminium, large
cantilever, Vtar = 0.9V0

case V
V 0 Cply LF Cφ CM,DS CM,D\DS

INI 1.000 2.266e−5 8.765e−3 8.066e−3 0.000 3.544e−3

SONLY 0.900 9.052e−6 8.765e−3 6.014e−3 0.000 9.194e−4

STEMP 0.900 9.440e−6 8.765e−3 5.453e−3 0.000 0.000

SP-fromINI 0.900 9.006e−6 2.992e−2 7.067e−6 0.000 1.204e−5

PONLY 0.900 9.052e−6 2.630e−2 6.024e−5 0.000 1.279e−4

SP-fromPONLY 0.900 9.369e−6 2.980e−2 5.564e−6 0.000 7.554e−6

Table 9.8: Quantitative results for the different tests, initialization 1, aluminium, large cantilever,
Vtar = 0.9V0

case V
V 0 Cply LF Cφ CM,DS CM,D\DS

INI 1.000 2.266e−5 1.678e−2 5.965e−3 0.000 8.490e−3

SONLY 0.900 9.052e−6 1.678e−2 2.919e−3 0.000 2.718e−3

STEMP 0.900 9.897e−6 1.678e−2 2.029e−3 0.000 8.501e−7

SP-fromINI 0.900 8.987e−6 3.015e−2 8.434e−6 0.000 1.038e−5

PONLY 0.900 9.052e−6 2.586e−2 2.661e−5 0.000 1.808e−5

SP-fromPONLY 0.898 9.310e−6 2.907e−2 6.099e−6 0.000 7.892e−6

Table 9.9: Quantitative results for the different tests, initialization 2, aluminium, large cantilever,
Vtar = 0.9V0
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Figure 9.14: Quantitative values visualization, initialization 1, aluminium, large cantilever, Vtar = 0.9V0

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.15: Initialization and shape optimization for different tests, initialization 2, aluminium, large
cantilever, Vtar = 0.9V0

Figure 9.16: Quantitative values visualization, initialization 2, aluminium, large cantilever, Vtar = 0.9V0
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Increasing the size of the working domain can be intuitively understood as a decrease of the conductivity.
Indeed, compared to the working domain, the zone melted by the initialization in Figure 9.13 is thinner
than in Figure 9.3. The path and shape must thus adapt more. The results obtained for Vtar = 0.9V0

lead to similar conclusions than for the results for the titanium in a small working domain. The bars
thickness is once again very important and to cover thick bars, specific patterns appear . In Figure 9.13,
the initialization of the path is composed of straight lines. Yet, it seems that once again Omega-patterns
are designed (especially in Figure 9.13(d)). The paths resulting from PONLY (Figure 9.13(e)) and con-
current optimization starting from the result of PONLY (Figure 9.13(f)) still present the Omega-pattern
especially in the left lower bar. They also seem to introduce a second pattern referred to as "Wave-
pattern" in the following. The second initialization (Figure 9.15(a)) is chosen to widen the melted zone
at the initial state. It clearly impacts the results by preventing the creation of these Wave-patterns but
still deforming the zigzag to introduce once again Omega-patterns or Heart-patterns. In both cases, it
is very clear that improvements to a zigzag strategy can be thought of and that the algorithm seem to
naturally introduce repetitive patterns which is very interesting for industrial applications and should
be further studied. A final observation, a lot clearer in this large domain context than in the classic one,
is that adapting the shape improves the results. Completely straightforward in Figure 9.15(c) but also
in the different concurrent optimizations and especially Figures 9.13(f) and 9.15(f), the shape boundary
fits the melted domain introducing slight oscillations. The damages on the compliance remaining small,
this observation confirms the importance of introducing shape constraints to facilitate path designs.

As for Vtar = 1.1V0, the results are given by Figure 9.17, Table 9.10 and Figure 9.18 for the first
initialization and Figure 9.19, Table 9.11 and Figure 9.20 for the second.

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.17: Initialization and shape optimization for different tests, initialization 1, aluminium, large
cantilever, Vtar = 1.1V0

case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 2.266e−5 8.765e−3 8.066e−3 0.000 3.544e−3

SONLY 1.100 7.666e−6 8.765e−3 6.742e−3 0.000 0.000

STEMP 1.100 8.031e−6 8.765e−3 6.679e−3 0.000 0.000

SP-fromINI 1.100 7.692e−6 3.840e−2 4.410e−6 0.000 5.156e−6

PONLY 1.100 7.666e−6 3.109e−2 1.378e−5 0.000 1.099e−5

SP-fromPONLY 1.101 7.769e−6 3.521e−2 4.306e−6 0.000 4.430e−6

Table 9.10: Quantitative results for the different tests, initialization 1, aluminium, large cantilever,
Vtar = 1.1V0

With Vtar = 1.1V0, the conclusions are quite similar. Since the bars to melt are larger, the patterns are
now closer to the Wave-pattern in Figure 9.17(d-e-f) and to hearts in Figure 9.19 (d-e-f). In is once again
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Figure 9.18: Quantitative values visualization, initialization 1, aluminium, large cantilever, Vtar = 1.1V0

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.19: Initialization and shape optimization for different tests, initialization 2, aluminium, large
cantilever, Vtar = 1.1V0

case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 2.266e−5 1.678e−2 5.965e−3 0.000 8.490e−3

SONLY 1.100 7.666e−6 1.678e−2 3.636e−3 0.000 2.901e−4

STEMP 1.100 8.049e−6 1.678e−2 3.422e−3 0.000 0.000

SP-fromINI 1.100 7.667e−6 3.563e−2 4.714e−6 0.000 5.736e−6

PONLY 1.100 7.666e−6 3.091e−2 2.349e−5 0.000 6.289e−6

SP-fromPONLY 1.100 8.041e−6 3.647e−2 2.987e−6 0.000 3.525e−6

Table 9.11: Quantitative results for the different tests, initialization 2, aluminium, large cantilever,
Vtar = 1.1V0

very clear that the shape adapt to the melted zones with the modification of the inner hole size in Figures
9.17 and 9.19 (d) and (f) (the hole even disappears in Figure 9.19(f)) and with stronger oscillations in
the boundary, especially when running concurrent optimization starting from PONLY (Figures 9.17 and
9.19(f)).
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Figure 9.20: Quantitative values visualization, initialization 2, aluminium, large cantilever, Vtar = 1.1V0

Titanium test case

To further complicate the optimization, these tests with a larger domain are now run with the titanium.
The Figures presenting the results for Vtar = 0.9V0 are given by Figure 9.21, Table 9.12 and Figure 9.22
for the first initialization and Figure 9.23, Table 9.13 and Figure 9.24for the second initialization. As
for the tests for Vtar = 1.1V0, they are given by Figure 9.25, Table 9.14 and Figure 9.26 for the first
initialization and Figure 9.27, Table 9.15 and Figure 9.28 for the second initialization.

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.21: Initialization and shape optimization for different tests, initialization 1, titanium, large
cantilever, Vtar = 0.9V0

Filling the volume is very hard for the path and the results hint between a relation between the filling
pattern and the thickness of the bar. In Figure 9.21(d-e), it seems that thin bars are filled in with a
Omega-pattern whereas thicker bars at the upper left corner are filled in with a strong Wave-pattern.
On Figure 9.21(f), it also seems that the algorithm can take advantage of the low conductivity to build
bars that only require a straight line to be melted. Very thin, they still maintain a correct compliance.
These observations can be spread to Figures 9.25. As for zigzag initializations, they lead to slightly
different patterns corresponding to a mix between Omega- and Heart-patterns. Yet, the relation between
thickness and pattern happens in these tests too with the presence of Wave-patterns especially in the top
left corners of Figures 9.23(d-e-f) and 9.27(d-e-f). As in the small working domain, the low conductivity
of the titanium emphasizes the adaptation of the shape to the temperature. At the cost of compliance,
this is very well illustrated by Figure 9.21(f) in which the inner whole corresponds to a non intuitive
shape fitting the path. If this is less explicit in the other results, the algorithm still created boundary
oscillations.
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case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 2.266e−5 8.765e−3 8.066e−3 0.000 3.544e−3

SONLY 0.900 9.052e−6 8.765e−3 6.014e−3 0.000 9.194e−4

STEMP 0.900 9.440e−6 8.765e−3 5.453e−3 0.000 0.000

SP-fromINI 0.900 9.006e−6 2.992e−2 7.067e−6 0.000 1.204e−5

PONLY 0.900 9.052e−6 2.630e−2 6.024e−5 0.000 1.279e−4

SP-fromPONLY 0.900 9.369e−6 2.980e−2 5.564e−6 0.000 7.554e−6

Table 9.12: Quantitative results for the different tests, initialization 1, titanium, large cantilever,
Vtar = 0.9V0

Figure 9.22: Quantitative values visualization, initialization 1, titanium, large cantilever, Vtar = 0.9V0

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.23: Initialization and shape optimization for different tests, initialization 2, titanium, large
cantilever, Vtar = 0.9V0

9.5 Conclusion

In this chapter, we have adapted the path optimization algorithm developed in this work to handle
concurrent optimization of path and design in the steady state. The resulting concurrent algorithm is
quite basic: it relies on alternate optimization of the shape and the path at each iteration. Yet, this
simple algorithm has interesting features and yields promising results. First of all, the algorithm allows
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case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 2.266e−5 1.678e−2 5.965e−3 0.000 8.490e−3

SONLY 0.900 9.052e−6 1.678e−2 2.919e−3 0.000 2.718e−3

STEMP 0.900 9.897e−6 1.678e−2 2.029e−3 0.000 8.501e−7

SP-fromINI 0.900 8.987e−6 3.015e−2 8.434e−6 0.000 1.038e−5

PONLY 0.900 9.052e−6 2.586e−2 2.661e−5 0.000 1.808e−5

SP-fromPONLY 0.898 9.310e−6 2.907e−2 6.099e−6 0.000 7.892e−6

Table 9.13: Quantitative results for the different tests, initialization 2, titanium, large cantilever,
Vtar = 0.9V0

Figure 9.24: Quantitative values visualization, initialization 2, titanium, large cantilever, Vtar = 0.9V0

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Colorbar (K)

Figure 9.25: Initialization and shape optimization for different tests, initialization 1, titanium, large
cantilever, Vtar = 1.1V0

for a modification of the part design to facilitate the scanning, which in our case is mainly visible on
the bars thickness. Indeed, depending on the material’s properties and on the scanning parameters, a
specific width of melted powder can be characterized. This width must be related to the bars thickness:
too thin, the bar cannot be accurately built and too large, it might be slimmed to prevent any ill-melted
powder. The second main feature influencing the algorithm is the initialization, which now influences
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case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 2.266e−5 8.765e−3 8.066e−3 0.000 3.544e−3

SONLY 1.100 7.666e−6 8.765e−3 6.742e−3 0.000 0.000

STEMP 1.100 8.031e−6 8.765e−3 6.679e−3 0.000 0.000

SP-fromINI 1.100 7.692e−6 3.840e−2 4.410e−6 0.000 5.156e−6

PONLY 1.100 7.666e−6 3.109e−2 1.378e−5 0.000 1.099e−5

SP-fromPONLY 1.101 7.769e−6 3.521e−2 4.306e−6 0.000 4.430e−6

Table 9.14: Quantitative results for the different tests, initialization 1, titanium, large cantilever,
Vtar = 1.1V0

Figure 9.26: Quantitative values visualization, initialization 1, titanium, large cantilever, Vtar = 1.1V0

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromTEMP)

(g) Colorbar (K)

Figure 9.27: Initialization and shape optimization for different tests, initialization 2, titanium, large
cantilever, Vtar = 1.1V0

the part design itself instead of just the scanning path as in the previous chapters. This feature must be
further assessed. Indeed, from the preliminary results obtained, it seems that no easy solution exists and
that algorithms should be worked on to allow for a computationally efficient initialization algorithm.

These promising results open up perspectives. First of all, the problem could be considered with other
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case V
V 0 Cply LF Cφ CM,DS

CM,D\DS

INI 1.000 2.266e−5 1.678e−2 5.965e−3 0.000 8.490e−3

SONLY 1.100 7.666e−6 1.678e−2 3.636e−3 0.000 2.901e−4

STEMP 1.100 8.049e−6 1.678e−2 3.422e−3 0.000 0.000

SP-fromINI 1.100 7.667e−6 3.563e−2 4.714e−6 0.000 5.736e−6

PONLY 1.100 7.666e−6 3.091e−2 2.349e−5 0.000 6.289e−6

SP-fromPONLY 1.100 8.041e−6 3.647e−2 2.987e−6 0.000 3.525e−6

Table 9.15: Quantitative results for the different tests, initialization 2, titanium, large cantilever,
Vtar = 1.1V0

Figure 9.28: Quantitative values visualization, initialization 2, titanium, large cantilever, Vtar = 1.1V0

optimization algorithms. Indeed, finding the perfect balance between the many constraints is compli-
cated and replacing the Augmented Lagrangian method by the null space gradient one could increase
the accuracy of this balance. Then, an in-depth study of the impact of thickness on the scanning path
should be conducted to answer the following questions: is there an optimal bar thickness? Should it
belong to a specific range? Do the good thicknesses constitute a discrete set (for example if "good"
thicknesses were a multiple of a specific thickness)? Further tests should also be run to test the impact
of the object boundary’s curvature on the scanning design. Then, as mentioned, a deeper consideration
of the initialization might lead to the development of a systematic technique: further tests could be run
or a scanning of the contour could be included to the paths to copy the industrial process. Finally, this
algorithm should be run with a more complex model and, to start with, using the transient algorithm
detailed in Chapter 7. No specific difficulties should arise of this adaptation, but for the extra computa-
tional time required for path optimization. It would also be very interesting to optimize the compliance
under temperature and volume constraints without any level set anymore but through the path only,
considering that mechanical stresses arise in the melted part only.



CONCLUSION AND PERSPECTIVES

We argue in this thesis that parts conception can include criteria to ease each layer’s scanning, which is
part of the "Design for Additive Manufacturing" approach. This requires the definition of design con-
straints representative of the generated path’s quality for the part. It however appears that the notion of
"good path" is complicated, still under study and almost never related in the literature to the geometry
to build. We have thus decided to develop a mathematical optimization of the scanning path: without
any a priori fixed scanning pattern, the results from such an algorithm increase the intuition on the
"good path" notion, propose new scanning solutions and link the path results to the geometry to build.

To do so, we have first develop a simulation model and set an optimization problem. Since the literature
focusing on systematic path optimization is rare and recent (only [6, 7, 51]), assumptions have been
made to simplify the simulations. We decided to focus on conduction effects only, in two dimensions. In
the corresponding heat equation, the material characteristics are constant and the source is modeled by
a Gaussian beam traveling along the path at constant speed. The mechanical and thermal phenomena
are controlled by bounds on the temperatures. A second steady state model has also been developed to
further simplify the problem (the steady state assumption is also present in [51]). Both models have been
calibrated to fit data temperatures for the transient one and maximum temperature during the scanning
for the steady state. The adaptation of these models to numerical computations has also required choices.
Base on a front tracking method, the discrete path is a broken line which characteristic element size is
controlled.
We have first developed a path optimization algorithm in the steady state context. Using shape differ-
entiation theory, descent directions, corresponding to different first order optimization algorithms have
been computed. Besides the usefulness of the numerical results to analyze the discretization, algorithmic
and even modeling choices made all along this work, these results appeared interesting and promising.
For example, the results obtained in Figure 6.2 corroborate existing literature [77] and could be used in
industrial applications, whereas others which have not been studied yet could be experimentally tested.
Moreover, they point out the interest of further considering the volumetric energy, already defined in
experimental and simulation works (see [43, 48, 83] and references therein).
We then adapted the algorithms to the transient model giving up shape optimization in aid for control
based techniques. If the first tests in which the optimization variables were the path tangent direction,
the first path point and the final time, were not conclusive and should be further worked on, the point
based optimization gave interesting results. In addition to a rapid analysis of the discretization and
algorithmic choices, we have tested several initializations to build different geometries. In the aluminium
test case (which can be extended for high conductivity materials), the number of local minima seemed
quite restrained with some patterns appearing several times. These patterns should be experimentally
tested and analyzed to further understand in what way their characteristics are optimal. As for the
titanium, the results do not provide perfect patterns but the path adapts well to the geometries which is
very encouraging for future works. Once again, these results confirm that a very interesting perspective
could be to focus on volumetrical energy.
In the steady state case, we have added the number of connected components as an optimization feature.
A first technique, following discussions with Tonia Maria ALAM and Serge NICAISE (from the LAMAV,
Université Polytechnique des Hauts de France), consists in adding a power variable to the optimization
variables: this variable is 1 when the laser in on and 0 else. We then used a relaxation-penalization
algorithm as well as a total variation constraint on the power variable. The numerical results are in
agreement with the literature [191, 192] and are promising for further work, starting from an adaptation
to the transient model to then include the velocity in the optimization. A second method, based on
topological gradient notions, has also been set: topological gradients have been computed to determine
where cutting the path and where adding a new connected component. This method fixes the maximum
number of connected components as an optimization parameter facilitating the control of the source
jumps. Adapting this method to the transient case is a natural perspective that will require further
investigations in optimal control techniques.
Finally, again in the steady state case, a concurrent optimization of the path and the shape has been set.
Involving mechanical and thermal effects, the objective was to minimize the shape’s compliance and the
path length while satisfying volume and temperature constraints. The results are preliminary and the
double loop algorithm set could be improved. However, they already point out very interesting features.
First of all, the algorithm adapts the shape to the heat problem and it is very clear that the design is
modified when taking the path into account. Then, the notion of volumetric energy once again appears.
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However, it is now a localized notion. Indeed, the temperature constraints impact the thickness of the
structure and sometimes force the boundary to oscillate to adapt to the melting.

A step back on the results obtained open up further work. First of all, the final time of a PhD is bounded
and the work asks for further developments. Among them, some technical issues must be dealt with. In-
dustrial applications involve a hierarchy in the temperature constraints: respecting the geometry is more
important than mechanical defects: the phase and maximum temperature constraint out of the domain,
determining the built shape, must be satisfied at the cost of the maximum temperature in the domain,
related to the mechanical defects, that can remain approached at convergence. To do so, we could dif-
ferently choose the Lagrange multipliers, we could further adapt the null space gradient algorithm or
we could think of different constraints (for example by working on the formulation of a projection on
the geometry to build for the maximum temperature out of the domain constraint). This algorithmic
study could be extended to the concurrent optimization in which the volume constraint should never be
violated. A second issue consists in developing more the transient model. Indeed, the power optimiza-
tion work, the topological optimization work and the concurrent optimization for now only apply to the
steady state model. The results being already interesting and encouraging, numerical applications in the
transient case could be even more informative. Further studying optimal control literature could also
help improving the current algorithm and speed up the optimization.

Beyond these direct work continuation ideas, the results obtained also raise several perspectives. Among
the short term ones, it would be relevant to compare the different path discretization possibilities. We
chose in this work a broken line representation to remain close to the source movement. However, we
could also use splines (as in [6]) inducing smoother trajectories or level sets (as in [51]). Comparisons
between the different approaches would help understanding their advantages and drawbacks and allow
for informed representation choices.

The model could then be made more complex. The first feature to add, and maybe the most crucial,
consists in involving the kinematics into the path considerations: in this work, the velocity is considered
constant on the whole path, which is of course a simplification. The source movements depend on the
path geometry and especially on the curvature: the higher this curvature is, the slower goes the path
and, if the power cannot be regulated, the higher locally is the temperature. To first include the ve-
locity without modifying the simulations, the curvature could be included in the optimization: instead
of optimizing the path length (in the steady state case) or the final time (in the transient case), we
could minimize the integral of the curvature on the path. This could be supplemented by curvature
constraints that might require replacing the broken line path discretization by splines. The model could
also be modified by choosing a non constant velocity. The actual heat equation simulation with the point
based path discretization could easily be modified to allow such simulations. We could then model the
velocity depending on the kinematics constraints or add it as an optimization variable. Among the many
possibilities, we could imagine directly expressing the velocity as a function of the curvature resulting
in, in broken lines, attributing a velocity to each segment depending on the angle between this segment
and the previous one [76].

To be confirmed by tests including kinematics but already pointed out by this work, a second promising
lead consists in studying the volumetric energy. This notion has been defined by experimental and
numerical studies (see [43, 48, 83] and references therein) and gathers the kinematics, the source and
material properties to sum it up into a single parameter corresponding to an amount of energy passed
to the powder. Such a notion seems to appear in many results: in the steady and transient cases with
constant final length and time whatever path initialization is chosen, in the concurrent optimization with
the structure thickness and boundary locally impacted by the temperature. An energy could be related
to the geometry first at a global scale (energy for the part) and then at a local scale with the elaboration
of a "thermal skeleton". Then, the path could be optimized at constant energy. This could also make
already existing approaches available for this application (further considering [64, 65] would for example
be very interesting).
Then of course, the limitations related to the physical model must be relaxed: the temperature constraints
could be made more realistic by for example taking into account temperature gradients, the material
coefficients could depend on space and time at first by simply depending on the phase and then depending
on the temperature (which will require their differentiation in the optimization problems), convection
and radiation could be included. Going back to a three dimensional model would also helps the physical
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interpretation of the results with an analysis of the temperature effects on the vertical axis too and an
understanding of the optimal scanning paths evolution from one layer to another. Finally, a mechanical
model could be introduced with a full thermo-mechanical resolution or alternative methods such as
inherent strain for example [51, 124].
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Titre : Couplage de méthodes d’optimisation de formes et d’optimisation de trajectoires en fabrication additive

Mots clés : Génération et contrôle de trajectoires, fabrication additive, fusion sur lit de poudre métallique,
optimisation de forme

Résumé : Cette thèse porte sur l’optimisation des
trajectoires de lasage pour la fabrication additive sur
lit de poudre, ainsi que leur lien avec la géométrie
de la pièce à construire. L’état de l’art est principa-
lement constitué par des trajectoires basées sur des
motifs, dont l’impact sur les propriétés mécaniques
des objets finaux est quantifié. Cependant, peu d’ana-
lyses permettent de relier leur pertinence à la forme
de la pièce elle-même. Nous proposons dans ce tra-
vail une approche systématique visant à optimiser
la trajectoire sans restriction a priori. Le problème
d’optimisation consiste à fusionner la structure en
évitant de surchauffer (ce qui induirait des contraintes
résiduelles) tout en minimisant le temps de fabrica-
tion. L’équation d’état est donc l’équation de la cha-
leur, dont le terme source dépend de la trajectoire.
Deux modèles 2-d sont proposés pour contrôler la
température : l’un transitoire et le second stationnaire
(pas de dépendance en temps). Basés sur des tech-
niques d’optimisation de forme pour le stationnaire et

sur des outils de contrôle pour le transitoire, des al-
gorithmes d’optimisation sont développés. Les appli-
cations numériques qui en découlent permettent une
analyse critique des différents choix effectués. Afin de
laisser plus de liberté dans la conception, l’algorithme
stationnaire est adapté à la modification du nombre de
composantes connexes de la trajectoire lors de l’op-
timisation. Deux méthodes sont comparées. Dans la
première, la puissance de la source est ajoutée aux
variables d’optimisation et un algorithme impliquant
une relaxation-pénalisation et un contrôle de la varia-
tion totale est proposé. Dans la seconde, la notion de
dérivation topologique sont adaptés à la source. En-
fin, dans le cadre stationnaire, nous détaillons le cou-
plage de l’optimisation de la forme de la pièce pour
améliorer ses performances mécaniques et de la tra-
jectoire de lasage. Ce problème multiphysique ouvre
des perspectives d’applications et de généralisations
futures.

Title : Coupling structural optimization and trajectory optimization methods in additive manufacturing

Keywords : Path planning and control, additive manufacturing, metallic powder bed fusion, structural optimi-
zation

Abstract : This work investigates path planning opti-
mization for powder bed fusion additive manufacturing
processes, and relates them to the design of the built
part. The state of the art mainly studies trajectories
based on existing patterns and, besides their mecha-
nical evaluation, their relevance has not been related
to the object’s shape. We propose in this work a sys-
tematic approach to optimize the path without any a
priori restriction. The typical optimization problem is
to melt the desired structure, without over-heating (to
avoid thermally induced residual stresses) and possi-
bly with a minimal path length. The state equation is
the heat equation with a source term depending on
the scanning path. Two physical 2-d models are pro-
posed, involving temperature constraint: a transient
and a steady state one (in which time dependence is
removed). Based on shape optimization for the steady

state model and control for the transient model, path
optimization algorithms are developed. Numerical re-
sults are then performed allowing a critical assess-
ment of the choices we made. To increase the path
design freedom, we modify the steady state algorithm
to introduce path splits. Two methods are compared.
In the first one, the source power is added to the opti-
mization variables and an algorithm mixing relaxation-
penalization techniques and the control of the total va-
riation is set. In a second method, notion of topological
derivative are applied to the path to cleverly remove
and add pieces. eventually, in the steady state, we
conduct a concurrent optimization of the part’s shape
and of the scanning path. This multiphysics optimiza-
tion problem raises perspectives gathering direct ap-
plications and future generalizations.
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