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Abstract

Pictorial composition, understood as the arrangement of graphical elements on
the plane, is typically associated with qualitative rules and heuristics. Although
informative for artists and their practice, these norms and guidelines only act as
external constraints on the canvas. We believe that artworks are able to fix more
fundamental compositional features in their pictorial matter. We therefore develop
a paradigm in which every artwork of an artist represents a partial view of a higher-
dimensional representation, aggregating intrinsic compositional regularities. We
choose to materialize this theoretical hyper-compositional object as a continuous,
vectorial and probabilistic space. Our objective is to make regularities explicit for
artistic purposes, and to build quantitative metrics for scientific scrutiny. Our
research is therefore articulated around a reflexive research-creation agenda: it
is grounded in personal artistic material drawing from more than 10 years of
practice in abstract composition, it expands along a projective interdisciplinary
framework that combines iterative modeling with machine learning, and it engages
in perceptual validation using psychophysical techniques.

The sequential non-stationary nature of the compositional process, together with
the complex and evolving definitions of its underlying functional units, coalesce into
a perceptual phenomenon that cannot be readily modeled through pixel-based deep
learning models, such as CNNs. We adopt a different strategy, constructed around
a parametric definition of stroke execution and hierarchically nested RNN-VAEs
(Recurrent Variational Auto-Encoders), enabling our network to tackle pictorial
material by aligning its behavior with the artistic gesture. More specifically, this
network architecture extracts compositional regularities by compressing inputs
into a reduced number of independent dimensions, ultimately aligned with the
representation entertained by artists and observers. These artificial neural networks
are trained on >5k personal abstract compositions vectorized as Bézier curves.
Although this dataset is large for a single artist, its scale remains relatively small
for training large networks. We address this issue by introducing new constraints
that support a compact latent space that is both cohesive and expressive.

We then study the resulting compositional space through perceptual judgments of
interpolated trajectories spanning targeted locations within this space. In particular,
we characterize latent density homogeneity by measuring the perceptual scale
adopted by human participants when judging sample similarity. We limit our
exploration to circular slices of hyperspheres, along which latent density can be
regarded as reasonably stable, and orthogonal linear progressions along the norm,
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which imply larger perceptual distortions. We employ a variant of the MLDS
method, which we have restricted to local triplets and extended to periodic physical
spaces. The empirically measured perceptual scales present regularities that are
satisfactorily captured by the notion of Fisher information computed on metrics
provided by the model. The resulting algorithms enable artists to explore the
dynamical interaction of graphical elements in accordance not only with their own
compositional regularities, but also with the perceptual regularities intrinsic to those
who view their art. We then come full circle by revealing the hidden compositional
dimensions with ink and paper through digitally pen-plotted creations.

Keywords Pictorial Art, Composition, Abstraction, Research-Creation, Modeling,
Machine Learning, Neural Networks, Deep Learning, RNN, VAE, Perception,
Psychophysics, MLDS
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Résumé

La composition picturale, entendue comme la disposition des éléments graphiques
sur le plan, est généralement associée à des règles qualitatives et des heuristiques.
Bien qu’instructives pour les artistes et leur pratique, ces normes n’agissent que
comme des contraintes externes sur le plan. Nous pensons que les œuvres d’art
sont capables de fixer des caractéristiques de composition plus fondamentales dans
leur matière picturale même. Nous développons donc un paradigme supposant
toutes les œuvres d’un·e artiste comme les vues partielles d’une représentation en
plus grandes dimensions, agrégeant des régularités compositionnelles intrinsèques.
Nous choisissons de matérialiser cet objet hyper-compositionnel théorique par
un espace continu, vectoriel et probabiliste. Notre objectif est de rendre ces
régularités explicites pour un usage artistique et d’établir des mesures quantitatives
pour des études scientifiques. Notre recherche s’inscrit donc pleinement dans un
programme réflexif de recherche-création; fondé à la fois sur un matériau artistique
personnel, riche d’une pratique de plus de 10 ans de la composition abstraite;
et sur une approche interdisciplinaire projective, combinant une modélisation
itérative par apprentissage automatique et des vérifications perceptives avec de la
psychophysique.

La nature séquentielle et non stationnaire du processus de composition, ainsi
que la définition complexe et évolutive de ses unités fonctionnelles sous-jacentes,
se combinent en un phénomène perceptif qui ne se modélise pas facilement
par les modèles d’apprentissage profond basés sur des pixels, e.g. CNNs. Nous
adoptons une stratégie différente, construite autour d’une définition paramétrique
de l’exécution des traits, et de RNN-VAEs (Recurrent Variational Auto-Encoders)
imbriqués hiérarchiquement, permettant à notre modèle d’aborder la matière
picturale en alignant son comportement sur le geste artistique. Plus précisément,
cette architecture extrait les régularités compositionnelles en compressant les
dessins en un nombre réduit de dimensions indépendantes, alignées dans l’idéal
sur la représentation intérieure construite par les artistes et les observateurs. Ces
réseaux neuronaux artificiels sont entraînés sur plus de 5000 compositions abstraites
personnelles et vectorisées par des courbes de Bézier. Bien que cet ensemble de
données soit important pour un seul artiste, son échelle reste relativement réduite
pour l’entraînement de réseaux profonds. Nous abordons cette problématique en
introduisant de nouvelles contraintes qui encouragent un espace latent à la fois
compact, cohésif et expressif.
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Nous étudions ensuite l’espace compositionnel résultant à travers des jugements
perceptifs de trajectoires interpolées entre des points précis de cet espace. Nous
vérifions particulièrement l’homogénéité de la densité latente en mesurant l’échelle
perceptive produite par des participants humains jugeant la similarité entre des
compositions. Nous limitons notre exploration à des coupes circulaires d’hyper-
sphères, dont la densité latente est relativement stable, et des progressions linéaires
orthogonales le long de la norme, provoquant des distorsions perceptives plus im-
portantes. Nous utilisons une variante de la méthode MLDS, que nous avons
restreinte à des triplets locaux et étendue aux espaces physiques périodiques. Les
échelles perceptives mesurées empiriquement présentent des régularités qui sont
capturées de manière satisfaisante par la notion d’information de Fisher calculée
à partir des métriques fournies par le modèle. Les algorithmes qui en résultent
permettent aux artistes d’explorer l’interaction dynamique des éléments graphiques
en fonction non seulement de leurs propres régularités de composition, mais aussi
des régularités perceptives intrinsèques de ceux qui voient leur art. Nous terminons
enfin ce cycle en révélant les dimensions compositionnelles cachées avec de l’encre
et du papier, via des créations par traceur numérique.

Mots-clés Art Pictural, Composition, Abstraction, Recherche-Création, Mod-
élisation, Apprentissage Machine, Réseaux de Neurones, Apprentissage Profond,
RNN, VAE, Perception, Psychophysique, MLDS
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Notice to readers

The work described in this document is funded by an unconventional PhD program
called SACRe (Science Arts Création Recherche), which was specifically instituted
to support research at the interface between art and science. As a consequence,
this thesis is written in an unconventional style that may come across as off-putting
to some readers, especially those who are more familiar with scientific reports.
The document of the thesis is intended as an artifact in and of itself, in addition
to being a document that records certain scientific contributions and results. It is
also a story, a reflection, an account of my experience. As such, it is often written
in an introspective style that should invite readers to share my experience and
see my research from a more intimate perspective, and one that involves multiple
dimensions beyond the strictly scientific one. This deliberate effort is in keeping
with the remit of the SACRe program. I apologize in advance to readers who may
not resonate with the style, and ask for their understanding in accommodating
this unusual reading exercise.
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Introduction

Animating the painting

In 2010, at the beginning of my cinematographic studies at the ENS Louis Lumière,
one of our first projects was Animating the painting. Students typically animate
pictorial material from famous masterpieces in the form of a stop-motion sequence
of cut-out photographs. Digital tools allow them to stretch and compress the
surface of the painting while disregarding the grain, the touch, or the fundamental
material nature of the initial work. Their exclusive goal is to tell a story. For
me, Animating the painting could only make sense in the dynamic revelation of
abstract structures. I wanted to make tangible an immaterial displacement over
a material surface. If lines could miraculously gain the ability to slide over the
surface of the plane, they may not simply do that along their dimensions of width
or height, but along a dimension of which we are not aware. If the spectator were
able to project himself/herself onto the dimension of plastic depth, perspective
would have nothing to do with it. Magic can only operate through a compositional
dimension transposed into a temporal dimension.

This short animation, revisiting Acht Mal by Wassily Kandinsky, is the story of
a morphogenesis. A selection of photograms is reproduced in Fig.0.1. A first
phase is virtually operated by the spectator with an input movement towards the
canvas. This external dynamic gives the primary momentum to a transversal
displacement in the space of the painting, and our trajectory transforms graphical
elements. In a second step, a celestial slit appears at the top of the frame, explicitly
standing for mother-like generative organs. An eruption of lines completes the
metamorphosis of the entire pictorial surface into a panspermia. Once hatching
has been completed, we observe a return to the initial state, in negative contrast.
In this cycle, the predominance of music acts as a clock. Its rhythmic logic imposes
itself as an abstract rule, specific to the metabolism of the forms placed on the
canvas. Rhythm confers to the composition its dynamic truth, like an inner logic
that resonates outside.

Of course, my view on this project has evolved over time and has now become
partially retrospective. However, during the writing of this manuscript, this
animation seemed surprisingly significant to me, as if it was the seed of deeper
questions, which took me nearly ten years to formulate completely.
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Introduction

Figure 0.1: Photograms from a short animation of Acht Mal by Wassily Kandinsky (1929). Film directed
by Pierre Lelièvre (2010, https://plelievre.com/projects/acht-mal).
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From practice to questioning

The first scribbles of a child are not intended as representation. They are
a form of the enjoyable motor activity. […] It is an exciting experience to
bring about something visible that was not there before.1

The practice of drawing is originally exploratory. Children draw aimlessly, for the
pure pleasure of filling the paper sheet. Representing familiar people, animals,
or objects only comes later. For me, there was initially something of the same
graphical joy, resulting from an intuitive and unconscious assembly of simple lines.
It should also be noted that my drawing activity has often accompanied moments of
physical constraints. I would not say boredom, but a certain need for concentration
without being able to move other than within the free few square centimeters of
draft papers, during a class, a meeting, a conference, or a phone call. I surmise
that the act of focusing attention on listening made it possible for the visuomotor
loop to free itself from a figurative objective. I was then probably freer to explore
different abstract building mechanics (Fig.0.2). Subsequently, geometric logic has
gradually given way to finer sensitivity for the line and more delicate arrangements
(Fig.0.3).

It may have been only in the last five years that these structures have become
truly compositional (Fig.0.4). I now feel able to articulate graphical elements of
greater diversity and to judge combinations of a higher complexity. The practice
has also gradually shifted to dedicated moments of creation. At the same time,
the physical size of these propositions has not changed. I continue to draw small
figures, approximately contained within a circle of 4cm in diameter. I believe
that what fascinates me at this scale – by getting so close to the sheet of paper
– is that I can better discern the contact of ink and paper. Around me, the
world moves further away, and I have the impression of witnessing the life of a
microcosm, to be the eye a little demiurge. It is also a fruitful method for focusing
on elementary structural phenomena. The size of the pen or brush, restricted
to such a small space, becomes an ad hoc limiting factor for the level of detail
that can be explored. Indeed, I consider my collection as barely sprouted seeds
of hypothetical more complete works. That may be one reason why I started to
collect all these fragments, which now count in the excess of 5k.

My artistic practice is therefore initially more introspective than directed towards
others. If the practice of composition is an act of knowledge in itself, then, the
act of testifying to the evolution of this process, its associated questions and its
discoveries is at least as important as the presentation of the corpus itself. Because
the interrogations posed by the final drawings are only implicit, I think that viewers
are more likely to grasp my point by reading my publications and carrying out
their own compositions inspired by the principles exposed in those publications,
rather than by merely standing in front of my drawings. Artworks may only provide
1Arnheim, 1954/2004, p. 171.
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Figure 0.2: Drawings of low complexity.

Figure 0.3: Drawings of medium complexity.
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Figure 0.4: Drawings of high complexity.

suggestions. I am always happy to show my work and share it with others, but I
believe that, under those circumstances, primal enjoyment supersedes theory. I
regard being exhibited as a secondary objective of my artistic trajectory. Above all,
I conceive my artistic practice as a motor for personal questioning.

Those that show the thought process of the artist are sometimes more inter-
esting than the final product.2

The initial question was rooted in practical necessity: explaining the indescribable
need to put one line in one specific place rather than at another location, under-
standing what factors impose such a graphical element instead of other possibilities
from an infinite variety. As the resolution of situations seems both obvious and
without an objective logic, I began to feel a real tension in my practice and a
certain anxiety about doing things randomly. I wanted to understand the laws
governing my own practice and make sure I was consistent with myself.

You who speculate on the nature of things, I praise you not for knowing the
processes which nature ordinarily effects of herself, but rejoice if so be that
you know the issue of such things as your mind conceives.3

The real catalyst for a scientific reformulation of these personal questions was
my encounter with theoretical writings by artists, in particular Paul Klee’s On
Modern Art and Wassily Kandinsky’s Concerning the Spiritual in Art. Their work
2LeWitt, 1967.
3Da Vinci, 1955, p. 70. (G 47 r).

5



Introduction

echoed sensations and intuitions which I had perceived during my own practice of
composition, and they opened my imagination to a scientific approach to the field
of art, beyond a pure historical vision. Their thought will be abundantly represented
in the following pages. Despite broader research along my thesis project, this
original corpus remains to me most relevant with relation to the compositional
paradigm I will develop in this manuscript. Ideally, I would like to be able to join
this family of artists whose research has been mainly self-reflective, while at the
same time striving to share an experimental method aiming at an objective and
inclusive knowledge of art.

For my part, I am now specifically interested in understanding the dynamical
dimension of forms. This dimension is implicitly reflected by the constraints
between different graphical elements of the plane, and by the regularities that
unite all compositions of a given artist. I have the intuition of a pictorial continuity
that makes each drawing an approximate artifact of a more complete and coherent
whole. Compositional structures belong to a single system, a hyper-compositional
object. This view is driven by a fundamental desire to see pictorial forms as living
forms, as occurrences of the same complex organism. This highly dimensional
object is of course difficult to visualize in our mind, or to represent explicitly as
an explorable object. By means of computer simulations I would like to unveil,
even slightly, those dimensions that are still hidden from us. Indirectly, this implies
being able to measure and quantify compositional regularities, and possibly make
them available to artists so that they can make more conscious choices (if they
so desire). Concretely, I dream of moving lines, animated by their internal forces,
and tools for traveling across the continuous space defined by compositions.

Method

Traditional analytical methodology is essentially reductionist. The idea is to break
down a problem into as many small pieces as necessary. Then, evidence after
evidence, scientists go back up the causal chain and synthesize the discoveries.
By nature, the composition is an object with a blurred delimitation, the nexus of
perceptual and aesthetic considerations. It is also a concept covering both artistic
practice and the state of macroscopic spatial organization of sub-elements, where
each of them seems essential a priori. Therefore, how to segment a composition
without alteration? Segmenting a problem in wrong sub-elements can quickly
increase its difficulty4. We will therefore use a more projective and comprehensive
scientific approach: modeling. This method mainly consists in building a tool to
simulate complex phenomena, without necessarily partitioning the phenomenon of
interest into sub-elements.

4Le Moigne, 1977/2006, p. 34.
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Composition is an essential aspect of pictorial art. However, each epoch and
artistic current have developed a set of different methods and appreciation criteria
to address their underlying problematics. This makes it inherently difficult to
achieve a modeling of the composition that will be universal enough to cover all
its manifestations. But is this really necessary? Art, like modeling, are practices
requiring to take a position on reality and the studied material. The requirement of
universality is then replaced by a commitment to clarity of the adopted approach.
This requirement will be concretized by the definition of a compositional paradigm.
Modeling is thus perfectly articulated with a research-creation endeavor, which
also requires transparency as the only means of legitimizing the general character
that is reflected by the particular nature of an individual practice.

In the compositional context, the difficulty for the artist is not so much to free
himself/herself of the subjective nature of his/her own vision, but rather to have
the necessary hindsight to extract its regularities. This complex problem arises
with equal difficulty for the spectator, even if he/she has an external point of view.
This issue may be less problematic when artists and spectators live at different
times. We therefore require the help of a third party capable of automatic analysis:
machine learning and in particular deep learning, which relies on artificial neural
networks. On the one hand, deep learning may be viewed as a coldly objective
statistical tool, since it is able to extract patterns from data in unsupervised manner.
On the other hand, this approach often takes inspiration from the architecture of
biological brains, making it particularly relevant to human pictorial composition.

It must be emphasized that objective should not be intended in the sense of
universal. The resulting scope of application is initially and essentially the one
pertaining to the dataset itself. In addition, observed regularities may not be
related to human perceptual reality. To this end, the cognitive sciences become
essential, particularly psychophysics. The latter approach involves quantitative
analysis of the connection between a physical stimulus, real or simulated, and its
perception. To determine the range of validity for a given model and its potential
for generalization, these factors must be assessed by means of an experimental
procedure aimed at human participants. While some researchers attempt to
explicitly model brain mechanisms, our project developed under looser constraints.
Our model is primarily intended as a generative and simulation tool, serving as a
basis for perception experiments, and an instrument for statistical measurements
on composition.

Our research program will be structured around the following elements: active
creation, compositional paradigm, computational implementation and experimental
verification. The horizon of application for this work lies at the intersection between
the legacy of artists who have made compositional practice the core subject of
their work, and the needs arising from a personal practice. This project is then
at the crossroads of many fields: research-creation, image processing, machine
learning and psychophysics. The interdisciplinary nature of this effort necessarily

7



Introduction

involves some difficulties when material from different specialties is incorporated
into one document, as each specialty uses its own vocabulary and processes. This,
in turn, entails a complex balance between explanation and detail. I hope that the
trade-off between these two factors adopted in the rest of this document will be
well-matched to the interests of each audience.

Despite a certain proximity of content, this project is not a research effort in
aesthetic theory or art history. Even when referring to significant artistic movements
or quoting essays written by artists, my goal is not to produce a historical review
of compositional evolution. I do not possess the necessary tools and required
advanced knowledge for such an endeavor. In addition, I would like to distance the
proposed methodology from the field of empirical aesthetics, and more precisely
from quantitative approaches using direct aesthetic judgments, such as those
relying on beauty. Those approaches lead to the discovery of extremely general
preferences, e.g. for symmetry rather than asymmetry, for curves rather than angles.
These average trends sometimes mask high interpersonal variability. I prefer to
address aesthetics from artistic artifacts themselves. Human judgment can relate
to artistic material, but we must limit ourselves to judgments with a very specific
objective, e.g. similarity. Preference must be evaluated with a specific purpose.
For instance, in our study on the orientation of abstract paintings5, participants
were asked to determine the optimal orientation of abstract compositions. Thus,
it was not an aesthetic preference in general, but a preference constrained to an
unambiguous situation.

We conclude this Introduction by outlining the backbone of this manuscript. It is
articulated around two main parts. We begin by focusing on the development of
the compositional model (Part.I). Chapter.1 discusses the compositional paradigm
adopted here, with the purpose of clarifying our position on this concept and
delimiting its scope. Chapter.2 describes the processing steps involved in digitizing
my personal dataset of compositions, and the chosen representation – structural
specifications – that are suitable for algorithmic consumption. Before obtaining a
functional tool, the final required step is an effective implementation using artificial
neural networks. Chapter.3 details the different architectural choices that were
involved in developing the network, and the numerous optimization strategies that
were necessary to make model training feasible.

The second part of this thesis is dedicated to exploration (Part.II). Chapter.4 draws
an inventory of the raw results and features offered by the model, in particular those
available for quantitative measurement. Chapter.5 focuses on verifying continuity
of the hyper-compositional object instantiated by the main model. In this chapter,
we present the methods and results of psychophysical experiments deployed online
5Lelièvre and Neri, 2021 describes work conducted during the first year of this PhD. It can be seen
as a proof of concept for the method presented above, i.e. deep learning models combined with
psychophysical investigations in humans. Nonetheless, it tackles composition through the proxy of
painting orientation, and we could not identify a natural place for this research within the main
narrative of this thesis. The whole paper is therefore reproduced in the Appendix.A.1.
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to quantify the perceptual scale of local similarities along interpolation paths in
this novel object. The last chapter (6) is devoted to artistic investigations of the
compositional model. Here I explore how to reveal hidden dimensions and how to
effectively render their fundamental dynamical character. I also relate the story of
a return to the material space, where the unique contact between ink and paper
takes place.
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Part I

Composition modeling
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1 Compositional paradigm

The main goal of this first chapter is to clearly delineate a definition of composition,
and to develop this concept into an object that can be modeled. Composition can
be understood generically as the arrangement of forms. However, this definition
does not specify the objectives pursued by artists when they organize graphical
elements, nor the means by which they achieve those goals. A statement such
as: “follow your instinct to obtain a harmonious whole” is not sufficiently specified
to support a compositional model. In addition, modeling is a scientific method
that is just as demanding and engaging as artistic practice. These two approaches
must position themselves in relation to the world at large in a manner that
is inseparable from the person who formulates them. Historical observations,
perceptual limitations, intrinsic complexity and axioms are therefore all aspects of
the same operational necessity, and are brought together to bear on the world via
the formulation of a compositional paradigm.

Paradigm refers to a set of fundamental and critical assumptions on the
basis of which theories andmodels are developed. Both theories andmodels
are more completely specified. […] A number of different models can be
generated which have significant differences despite the fact that they all
depend upon the same paradigm assumptions.1

John Steinbruner defines a paradigm as a set of observations and assumptions
from which a whole family of models or theories can follow, without violating the
foundational insights from which they originate. This thesis seems better aligned
with modeling approaches rather than theoretical frameworks, as modeling is an
iterative process, “an attempt to fix loose ends, a partial effort that undergoes
continuous rearrangements.”2 A theory is characterized by a more definitive stance,
often to the explicit exclusion of alternative positions. In this sense, the research
presented here is intended as a proposal under construction, in constant need of
empirical verification. In addition, a unique paradigm has the ability to generate
several functional models. Only one of them will be detailed in the next chapters,
and later deployed through multiple implementations, i.e. operational models that
run on a computer. In its transition towards functional implementation, the original
paradigm necessarily loses its generality. The modeler is forced to make design
choices that are increasingly driven by practical considerations and constrained by
experimental limitations.
1Steinbruner, 1974/2021, p. 11.
2Extract from the CNRS strategic project 2002 reproduced in Le Moigne, 1977/2006, p. xii: “un travail
de mise en ordre, partiel et continuellement remaniable.”
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1 Compositional paradigm

In the field of machine learning, a model is almost exclusively understood as
an implemented algorithmic process. The underlying theoretical framework is
often stated only implicitly, because the functional objective is clearly defined (e.g.
automated recognition of handwritten postal addresses). Whether the model offers
a relevant understanding of the represented phenomenon does not really matter, as
long as its practical effectiveness is demonstrated. In our case, pictorial composition
is a phenomenon with fuzzy characteristics and often unstated motivations. In
this thesis, a complete theoretical specification is therefore required.

Modeling […] primarily means trying to identify and formulate the prob-
lem posed by modelers (a project), by implementing a modeling procedure
whose rules are intelligible and accepted. This notion implies a conception
of knowledge that is more projective than objective; it solicits the explana-
tion of the postulated axioms - hic et nunc - on the part of the modeler, it
calls for a recognition of the creative mind that knows it is formed by the
reason it forms.3

Thus, modeling means choosing a point of view, and even designing a particular
view on a phenomenon, before verifying it. This methodology necessarily engages
the responsibility of the modeler in order to acquire scientific legitimacy. By
describing his/her motivations and assumptions, as well argued as possible, the
modeler develops a kind of ethical contract with the scientific community. Similarly,
the artist has freedom only within the limits of the tacit contract of sincerity he/she
subscribes to when engaging with spectators. To me, modeling is therefore perfectly
aligned with a research-creation project, since it also uses a highly reflective
methodological process on its own practice. I personally consider modeling as one
of the most humble approaches to art and science.

Modeling initially comes from a reaction to the Cartesian dogma according to
which phenomena cannot be fully grasped in their entire complexity. As a result,
modeling proposes to simulate, even partially, a phenomenon with an artificial
system. Of course, such system is now predominantly computational.

Instead of trying to analyze the mechanisms, we only analyze the functions,
which we try to formally describe in the most precise possible manner; it is
then a question of realizing - at least on paper, and if possible, concretely -
a machine that performs the same functions under identical conditions.4

3Le Moigne, 1977/2006, p. 271: “Modéliser […] c’est d’abord chercher à formuler – à identifier –
le problème que se posent les modélisateurs (un projet), en mettant en œuvre une procédure de
modélisation dont les règles sont intelligibles et acceptées. Cette conception de la conception implique,
il est vrai, une conception de la connaissance plus projective qu’objective ; elle sollicite davantage
l’explicitation des axiomes que postule – hic et nunc – le modélisateur, elle appelle une reconnaissance
de l’esprit créateur qui se sait formé par la raison qu’il forme.”

4Atlan, 1972/2006: “Au lieu d’essayer d’analyser les mécanismes, on analyse seulement les fonctions,
qu’on essaie de décrire formellement de la façon la plus précise possible ; il s’agit ensuite de réaliser
– au moins sur le papier, et si possible, concrètement – une machine qui accomplisse les mêmes
fonctions dans des conditions identiques.”
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1.1 Compositional metrics

Modeling is therefore not decomposing, but composing. A model is a representation
that accounts for past observations to predict future observations, or to expand
its capabilities under more varied, but similar conditions. Despite being inspired
by the reality of a phenomenon, this imitation may present discrepancies with the
natural system. The relationship to a physiological truth is not mandatory5. A
model of this kind would still be interesting as a simulation tool, and would aid
our understanding of an otherwise unimaginably complex reality. It just requires
more meticulous behavioral verification.

Importantly, modeling requires a measurable analysis of the functions of the
object under scrutiny. Despite being a core aesthetic dimension of pictorial art,
composition remains difficult to evaluate quantitatively. We would like to reiterate
our concerns about empirical aesthetics, taking primary aesthetic judgments as
metrics. We do not believe in straightforward quantitative approaches to beauty. To
be relevant, we prefer to develop measuring tools that address aesthetic concepts
more indirectly. In this chapter, we will therefore discuss the notion of measure in
the context of compositional practices from different periods. We will then try to
characterize composition in all its complexity, by highlighting compositional aspects
preventing any traditional analytical investigation. Finally, we will discuss the
specific axiomatic framework that underlies the proposed paradigm. We hope that
the sincerity of the approach and the transparency of its objectives will promote
composition as a legitimate and operational area for scientific research.

1.1 Compositional metrics

Artwork is ameasure of space, it is form, and this is whatmust be considered
first.6

For art historian Henri Focillon, art is naturally familiar with metrics, since art
would itself be a measuring instrument. By virtue of its physicality, a work of art
crystallizes its own rules into matter. The invoked type of measure thus appears
as a potential means of achieving knowledge about the world. However, in the
absence of a more precise definition, this measure remains theoretical, since it has
no objective scale, nor a universal frame of reference. If measuring is the basis of
many sciences, it is not only because it enables quantitative evaluation of a given
aspect of reality: above all, it is because it provides instruments for comparing
different aspects of reality, and for verifying their compliance with a specified
standard or project. Under these conditions, a metric can become an instrument
5Nonetheless, let us mention a few examples where analogies have been demonstrated. Computer vision
based on convolutional artificial neural networks presents similarities with human vision and its neural
architecture (Rajalingham et al., 2018; Yamins & DiCarlo, 2016). Our own work on the orientation of
abstract paintings (Lelièvre & Neri, 2021) is also relevant in this context.

6Focillon, 1934, p. 6: “L’œuvre d’art est mesure de l’espace, elle est forme, et c’est ce qu’il faut d’abord
considérer.”
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1 Compositional paradigm

of creation. But actual implementation requires clear answers to the following
questions: what to measure, and how to measure it? This section will describe
the use of metrics in different compositional practices, and highlight associated
questions. We emphasize that this effort should not be intended as an exhaustive
historical analysis. Instead, we focus on a selection of topics that are directly
relevant to the paradigm we will introduce in later sections.

Building the space

The first use of measurement in pictorial art is probably visible in the transposition
of various rhythms onto the spatial domain7. These extremely varied ornaments and
patterns span history and culture, but they are largely tangential to compositional
issues. We have decided to omit them from the present discussion.

Composition in the Western tradition is intimately connected with numbers, which
play both practical and symbolic roles. A number system serves primarily a practical
role. Like the famous golden number, certain measures, ratios, and other elected
values (see Fig.1.1a,b) impart dimensions to the canvas and its constituent parts,
relatively to the whole and between them. Numbers are also symbolic. The golden
number, sometimes called the divine section, carries the idea of natural perfection,
which cannot be questioned as it is directly handed down by the Creator. Before the
Renaissance, proportions also dictated the importance of different human figures in
religious art. Large imposing spaces are associated with moral or spiritual greatness.
These measures and heuristics contribute to the communicative effectiveness of
the religious message, while relieving artists from the need to make decisions or
personal judgments.

During the Renaissance, mathematics and geometry (the latter conceived as a
variation of the former specifically dedicated to spatial construction) became
integral to the pictorial arts. The use of rulers, compasses and learned procedures
made it possible to determine the main points of interest on a canvas. As a result,
composition is reduced to a rigid mechanic of construction, with perspective as its
culmination (see Fig.1.1c). Alongside an obsession for realism, painting enters into
a practice that was ultimately more architectural than truly plastic. Perspective also
reinforces the idea that the space of the canvas is only an extension of real space:
equivalent metrics are applied with comparable relevance. The painting becomes
both a window onto the world, and the illusion of a 3-dimensional box. Thus,
composition can be understood as the construction of space, the arrangement of
forms as an architecture of images, in its literal sense.

At that time, the idea that forms may be dominated by reason appears to take
hold, as if all forms should derive from the same mathematical logic. For example,
the emblematic Vitruvian Man designed by Da Vinci goes beyond a practical
7Focillon, 1934, p. 22.
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1.1 Compositional metrics

a b c

Figure 1.1: Standard ratios and construction lines. In panel a, the rule of thirds. In panel b, golden ratio
and associated spiral. In panel c, 2-point perspective.

prescription for the representation of the human figure. Rather, this diagram
testifies to the conviction that forms should conform to theoretical measures
imposed by external sources. While human is placed at the center of the world,
this top-down standardization of the human body seems to break with traditional
spatial measurements, based on customary metrics that were flexible and rich
of the diversity of working hands. Craftsmen, like artists, could find all relevant
measures on themselves, e.g. by looking at their thumbs, feet, elbows. These
types of metrics were therefore intrinsically legitimizing forms in a bottom-up
non-normative fashion: embodied, they were carrying inherent coherence.

This rigid and universalist trend intensified up to the Age of Enlightenment.
Impressionists finally abandoned this vision to exclusively rely on their raw perception
of natural phenomena. Art then seemed to allow some degree of subjugation to
reality, rather than serving as an independent instrument of form exploration. Color
theory greatly benefited from this artistic current, not so much compositional
theory.

Later, the nabi painter Paul Sérusier wrote the following about the right propor-
tions:

1 is not a number: it contains and generates all numbers. 2 expresses the
struggle between two principles. The fight is sterile, if it does not produce a
result, which, togetherwith both principles, constitutes the number 3. From
there the idea of a Trinity in several religions. […] Thenumber 3means: God
or the Creator. The number 4 is no longer a prime number; it is the square
of 2. The square means balance in matter.8

8Sérusier, 1921, pp. 15–16: “1 n’est pas un nombre: il contient et engendre tous les nombres. 2 exprime
la lutte entre deux principes. La lutte est stérile, si elle ne produit un résultat, qui, joint aux deux
principes, constitue le nombre 3. De là l’idée d’une Trinité dans plusieurs religions. […] Le nombre 3
signifie : Dieu ou le Créateur. Le nombre 4 n’est plus un nombre premier; il est le carré de 2. Le carré
signifie l’équilibre dans la matière.”
On page 29, there is another example of confused mathematical language concerning color: “No
matter how clean the powdered colors are, there always remains a little impurity that I will call 𝜖. So
if I mix 2 complementary colors for example: red + 𝜖 and green + 𝜖, red and green neutralizing each
other, there remains 2𝜖, i.e. impurity.” (Si propres qui soient les couleurs en poudre, en effet, il y reste
toujours un peu d’impureté que j’appellerai 𝜖. Si donc je mélange 2 complémentaires par exemple :
rouge + 𝜖 à vert + 𝜖, le rouge et le vert se neutralisant, il reste 2𝜖, c’est-à-dire de l’impureté.)
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1 Compositional paradigm

Despite the apparent mathematical vocabulary and a certain logic of demonstration,
this approach to number is only vaguely scientific. It is all the more surprising since
these concepts do not seem to have any direct connection with Sérusier’s pictorial
practice, as if he himself was not convinced by his own argumentation, as if he felt
he had to bridge some theoretical gap. It may also be symptomatic of confusion
between numbers and metrics. Numbers are values without dimensions or hidden
meanings. They have no value in themselves. A metric, on the other hand, uses
numbers to establish a unit of measurement, using a comparison standard that
gives meaning to the values. Modernity approaching, it may have brought forward
the ambition to apply the universal language of mathematics to art, in the hope
of finding objective laws, similarly universal.

In parallel, the East did not seem to suffer from this rational deference to math-
ematics. For instance, the Chinese painter Chang Yen-yuan thinks that “a line
drawn with a ruler is a dead line.”9 Of course, Chinese painting has not been
exempt from certain heuristics, but the validity of these laws seems to have been
instantly questioned. The painter Shih Tao wrote in the Ming dynasty:

For a rolled vertical landscape painting, tradition proposes the division into
three planes, the bottom one for the ground, the middle one for trees and
the top one for themountain. In front of such an obviously divided painting,
how will the spectator enjoy a real perspective? If we mechanically follow
this method of the three planes, we only obtain a result close to an engraved
plate.10

Building forms

Composition finally adopted a new paradigm with the expressionists. Paul Klee
wants to “elevate construction to the rank of a means of expression.” For him,
“some earlier eras had already distinguished themselves […] by the predominance of
construction, but as a scaffoldage: a method and not an objective.”11 This concept
is perhaps even more radical than the abandonment of figurative representation,
which is a mere consequence of matching form against the newly introduced
paradigm. Thus, various pioneering currents of abstraction gradually introduced
the idea of a mathematical structure, not only organizing space, but creating forms
themselves. In On Modern Art, Klee clearly summarizes this notion:
9Cheng, 2006, p. 79: “un trait tracé à la règle est un trait mort.”

10Cheng, 1989, p. 131: “Pour un tableau de paysage en rouleau vertical, la tradition propose la division en
trois plans, celui du bas pour le sol, celui du milieu pour les arbres et celui du haut pour la montagne.
Devant un tableau divisé de façon aussi évidente, comment le spectateur pourra-t-il jouir d’une vraie
perspective ? Si l’on suit mécaniquement cette méthode des trois plans, on n’obtient guère qu’un
résultat proche de celui d’une planche gravée.”

11Klee, 1924/1998, p. 10: “élever la construction au rang d’un moyen d’expression.” and “certaines
époques antérieures s’étaient déjà distinguées […] par la prédominance de la construction, mais comme
un échafaudage : moyen et non pas fin.”
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1.1 Compositional metrics

However, it is not absolutely new to think of the form in precise measures
as capable of numerical expression. […] The only difference is that now the
ultimate consequences are drawn from the Number up to the pictorial ele-
ments, while formermasterswere satisfied tometrically determine themain
lines of a compositional scheme.12

Nonetheless, the void left by the abandonment of the figurative approach may
have conferred disproportionate hope in the mechanical logic of geometry. In
support of a revolutionary ideology and an intransigent industrial imagination, the
naked number perfectly suited Russian constructivist movement for its apparent
objectivity. Evoking constructivism, Philippe Sers observes that “constructing
is to set up in space a coherent whole that is understandable and, of course,
reproducible or repeatable.”13 Therefore, numbers, by virtue of the experimental
validation which they enable, represent ideal instruments for a modernity that goes
beyond popular beliefs, as if they carried, by nature, structuring legitimacy.

This faith in numbers still appears to me as yet another avoidance of the search
for purely pictorial measures. Indeed, it was questioned by Wassily Kandinsky in
Der Blaue Reiter :

In the search for abstract ratios that manifests itself today, numbers play a
crucial role. Any digital formula is cold as a summit covered with ice and,
by its absolute regularity, firm as a block of marble. […] Everything can be
translated into a mathematical formula, or simply into a number. But there
are many numbers: 1 and 0.3333… are equally legitimate beings, endowed
with equal inner resonance. Why would we be satisfied with 1? Why would
we exclude 0.3333…?14

Geometric shapes and the rudimentary use of numbers are defined with respect
to an inconsistent symbolic structure. Because of their contingency, numbers by
themselves cannot represent an end. Such a basic vision of the compositional
metric would still not be freed of practical constraints. To satisfy the desire for a
deeper understanding of the perceptual phenomena involved in relating to pictorial
materials, it seems necessary to rethink measure as a non-spatial measure.

12Klee, 1924/1998, p. 11: “Il n’est pourtant pas absolument nouveau de penser la forme en mesures
précises susceptibles d’une expression numérique. […] La seule différence est que maintenant on tire
du Nombre les conséquences ultimes jusqu’aux éléments de forme, tandis que les anciens maîtres se
contentaient de déterminer métriquement les grandes lignes d’un schéma de composition.”

13Kandinsky, 1926/1991, pp. xxiv–xxv: “construire, c’est mettre en place dans l’espace un ensemble
cohérent compréhensible et, bien sûr, reproductible ou répétable.”

14Kandinsky, 1974/2014, p. 163: “Dans la recherche des rapports abstraits qui se manifeste de nos jours,
le nombre joue un rôle capital. Toute formule numérique est froide comme un sommet couvert de
glaces et, par sa régularité absolue, ferme comme un bloc de marbre. […] Tout peut être traduit par
une formule mathématique, ou simplement par un nombre. Mais il existe bien des nombres: 1 et
0,3333… sont des êtres pareillement légitimes, doués d’une égale résonance intérieure. Pourquoi se
contenterait-on de 1? Pourquoi exclurait-on 0,3333… ?”
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1 Compositional paradigm

a b

Figure 1.2: Terrestrial (panel a) and celestial (panel b) compositions.

Cinematic of forms

After the neutralization of the figurative logic, the use of abstract forms imposes
a new way of evaluating and legitimizing space. Consequently, what is left to
the artists that may help them with their task? For Kandinsky, the horizontal
line forms the primordial contrast with the vertical line15. These lines frame the
empty canvas and ideally form mathematical axes. Kandinsky further emphasizes
their physical referential aspect with qualifiers such as cold and hot, stable and
unstable, whose logic could be associated with thermodynamic or terrestrial gravity.
In this context, each graphical element can become a corpuscular entity with some
assigned mass.

Thus, a composition is nothing other than an exact law-abiding organiza-
tion of the vital forces which, in the form of tensions, are contained within
the elements.16

Tensions must be understood here as potential movements. Passively immersed in
a force field or actively radiating, graphical elements interact with each other and
with the canvas. For Kandinsky, the upper part of the canvas evokes flexibility and
freedom: light elements become lighter, while heavy elements become heavier.
Conversely, the lower part of the canvas inspires density, gravity and constraint17.
However, forms are set in motion also by factors beyond terrestrial logic. For Klee,
forces housed inside elements can also behave in accordance with “the purest of
all mobile forms, the cosmic one, [which] is only created through the suppression
of gravity” or within intermediate domains “particularly represented by water and
the atmosphere”18 (see Fig.1.2). These different systems initiate the idea of
an interrelationship between forms, but still immutable. Each element is well
circumscribed, with a known mass, constituting what could be called a cinematic
of forms.
15Kandinsky, 1926/1991, p. 69.
16Kandinsky, 1926/1991, p. 111: “La composition n’est donc qu’une organisation precise et logique des

forces vives contenues dans les éléments sous forme de tensions.”
17Kandinsky, 1926/1991, pp. 146–147.
18Klee, 1924/1998, pp. 126, 114: “la plus pure des formes en mouvement, la forme cosmique, n’apparaît

qu’avec la suppression de la pesanteur” and “représenté notamment par l’eau et l’atmosphère”
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1.1 Compositional metrics

Figure 1.3: Based on drawings by Klee21. From disturbed balance to restored balance. On the first line,
measure; on the second line, weight. Clair means light, obscur dark and noir black.

This new brick is a little too heavy and to my mind puts too much weight
on the left; I must add a good-sized counterweight on the right to restore
equilibrium.19

Although artists commonly use a vocabulary related to the weight of graphical
elements, the way in which they measure this quantity often remains logically
flawed. What perceptual mechanisms or pictorial aspects do creators rely upon
to produce a coherent system, to achieve harmonious dynamics? A popular idea
is that surface luminance and color density confer pictorial weight. Variations
between light and dark areas seem to determine the perceptual weight of each
image fragment20. Fig.1.3, taken from Klee’s Pedagogical Sketchbook, illustrates
the theoretical balance adopted by artists. The objective is to keep both sides in
alignment by successive adjustments. When qualifying his/her composition, the
artist may completely abandon terms like harmony in favor of balance. In the
figure, we also notice that individual lines possess a mass that Klee prefers to
simply call measure. Such line weights correspond to the space they circumscribe.
Thus, we realize that under its apparent and intuitive simplicity, this conception of
a compositional metric is actually based on various perceptual mechanisms acting
as a whole.

Inner metrics

For Kandinsky, it is obvious that art “is a domain in itself, governed by its own
laws”22. In his treatise on composition, Point and Line to Plan, he specifies that
even if these notions seem “derived from the material world”, pictorially, “they

19Klee, 1924/1998, p. 23: “Cette nouvelle pierre, se dit [l’artiste], semble bien un peu lourde et tire mon
affaire trop à gauche ; il me faudra un sérieux contre-poids à droite pour rétablir l’équilibre.”

20In this chapter we focus on artist’s views, but the study of visual weight has a long history in psychophysics
too. The psychophysical literature will be further discussed in Subsection.2.3.Spatial standardization.

21Klee, 1924/1998, p. 110
22Kandinsky, 1974/2014, p. 123: “est un domaine en soi, régi par des lois propres”
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1 Compositional paradigm

must be understood as tensions living within the elements”23. To achieve true
composition, it seems necessary to overcome ordinary submission to spatial logic.

The means of measurement available to us are, however, exceedingly prim-
itive. It is at present almost impossible for us to imagine how, for example,
theweight of a scarcely visible point could be expressed by an exact number.
The reason for this is that the concept "weight" does not represent amaterial
weight.24

In other words, “proportions and balances are not outside the artist, but inside
him”25. For Focillon:

Is it not the case that these forms, which live in space and matter, first live
in the mind? Or rather, is it not really and even exclusively in the mind that
they live, their external activity being only the trace of an internal process?26

With the same spirit, Apollinaire writes in an article about Matisse:

Ordering chaos here is the creation. And if the artist's goal is to create, we
need a type of order that adopts instinct as its measure.27

Despite the apparent arbitrariness of possible arrangements offered by abstract
graphical elements, they seem to follow intrinsic forces that demand extreme
rigor and attention on the part of artists. The principle of an inner necessity in
composition is therefore more flexible than the cinematic of forms described earlier.
At the same time, it is more demanding for the artist in that it requires deep
understanding of his/her pictorial material. Even if Kandinsky adds a spiritual
dimension to the intuition that supports his judgment, in essence this metric could
be consistent with quantifiable perceptual phenomena.

Inner experience is however only partially communicable through language. In
the preface of Concerning the Spiritual in Art, Philippe Sers reminds us that
Kandinsky tries hard to describe his method so that every artist can experience
the inner metric for themselves, and then further advance our common knowledge
about composition28. Knowledge then appears to be potentially acquired at each
iteration, by an active practice, by the repetition of measurements and gestures.
This conception of art is ultimately connected with oriental painting principles. In
23Kandinsky, 1926/1991, pp. 146–147: “empruntées au monde matériel” and “elles s’entendent comme

tensions intérieures”
24Kandinsky, 1926/1991, pp. 148–149: “Les moyens numériques dont nous disposons actuellement sont

très primitifs. On peut difficilement imaginer aujourd’hui comment pourrait s’exprimer en chiffres
précis le poids d’un point à peine visible, d’autant plus que la notion « poids » ne correspond pas à un
poids matériel.”

25Kandinsky, 1912/1989, p. 140.
26Focillon, 1934, p. 47: “Ces formes qui vivent dans l’espace et dans la matière ne vivent-elles pas d’abord

dans l’esprit ? Ou plutôt n’est-ce pas vraiment et même uniquement dans l’esprit qu’elles vivent, leur
activité extérieure n’étant que la trace d’un processus interne ?”

27Matisse, 2014, p. 56: “Ordonner un chaos voilà la création. Et si le but de l’artiste est de créer, il faut
un ordre dont l’instinct sera la mesure.”

28Kandinsky, 1912/1989, pp. 16–17.
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the Tao Te King (Dao De Jing), Lao Tzu, a pillar of Chinese philosophy, writes
that the right action is the non-action, the one that by repeated gesture becomes
innate and whose accuracy no longer mobilizes the mind.

A good artist leaves his intuition
Taking him where it wants.
A good scientist has freed himself from the concepts
And keeps an open mind to what is.29

At that time, the painter was also a scholar and he/she must represent the point of
contact between good artist and good scientist. François Cheng explains that it “is
for [the painter] less about describing the external aspects of the world than about
grasping the internal principles [(the li)] that structure all things and connect them
to each other.”30 The artist thus seeks to capture the right measure of the world,
and then to inscribe it in the right gesture. The painter Li Jih-hua writes in the
Ming dynasty:

More than the hsing [external shape], it is important to grasp the shih [lines
of force]; more than the shih, it is important to grasp the yun [rhythm or
resonance]; more than the yun, it is important to grasp the hsing [nature or
essence].31

With Suprematism, part of the Russian avant-garde categorically refuses the
influence of the natural order. For its initiator Malevich, art must not serve
religious or political purposes either. Thus, Malevich distances himself from the
strict constructivist logic. For him, this absolute conception can only be achieved
in one way:

The artistic (pictorial) conception, based upon feeling, of linear, two-dimen-
sional and spatial phenomena is not supported by an intellectual under-
standing and the utilitarian relationships of these phenomena; it is non-
objective and subconscious and, viewed froman intellectual standpoint, con-
stitutes, as it were, a blind, uncontrollable norm.32

Malevich relies on a subconscious, coherent and regular compositional measure,
but one which will be forever hidden from him. In contrast to the surrealist
movement, painting for him does not represent the subconscious of the artist, but
the unconscious use of a pictorial norm, to which abstract artwork would ultimately
be the only possible witness. It therefore seems that a relevant compositional
measure is not identifiable a priori. Whatever the presumed origin of the judgments
made by the artist – spiritual, natural, or subconscious – these judgments are inner,
and only the work of art would be able to fix these metrics in their entirety.
29Lao Tseu, 2008, chap. 27: “Un bon artiste laisse son intuition ; le mener là où elle le souhaite. ; Un

bon scientifique s’est libéré des concepts ; et garde l’esprit ouvert à ce qui est.”
30Cheng, 1989, p. 155: “s’agit pour [le peintre] moins de décrire les aspects extérieurs du monde que de

saisir les principes internes [(le li)] qui structurent toutes choses et qui les relient les unes aux autres.”
31Cheng, 1989, p. 40: “Plus que le hsing [forme extérieure], il importe de saisir le shih [lignes de force] ;

plus que le shih, il importe de saisir le yun [rythme ou résonance] ; plus que le yun, il importe de saisir
le hsing [nature ou essence].”

32Malevich, 1927/2003, p. 20.
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1 Compositional paradigm

Decomposing

The science of art advocated by Malevich “must explain the character of the new
additional element which has forced its way into the creative organism of the artist
and brought about an alteration in our conception of art.”33 Thus, in order to
understand the plastic uniqueness of artworks, Malevich favors an analysis of their
environmental and historical context. It is indeed a classical historical approach.

For his part, Kandinsky supports a more autonomous reading of artworks. Research
on art must be independent of any moral and aesthetic judgment. “The methods of
art analysis have been, until now, far too haphazard and, frequently, too personal
in nature.” The observer should ideally occupy a position that is both active (inner
analysis) and objective, making “collective work in the science of art possible.”34
In the background, one can sense the hope of revealing common and universal
principles from the pictorial material itself. In this regard, Focillon writes:

The life of forms establishes close relations betweenmasters who have never
had the slightest connection between them andwho are separated by nature,
distance, centuries.35

Kandinsky’s approach is therefore fundamentally inclusive. It does not exclude the
possibility of finding new metrics consistent with heuristics of the past. Kandinsky
summarizes his ambitions as follows:

The research efforts that must become the cornerstone of the new science
— the science of art — have two goals and proceed out of two necessities: 1.
the need for science in general which grows spontaneously out of a non- or
extra-utilitarian urge to know: the pure science, and 2. the need for balance
in the creative powers that can be grouped under two schematic heads —
intuition and calculation: the practical science.36

Despite the support of important figures such as Kandinsky, the scientific explo-
ration of art always raises fears. For instance, the decomposition of artwork would
somehow contribute to its desacralization, to the deconstruction of its genius.
There is also a certain dread of standardization. However, “dictionaries do not
petrify living languages, which are constantly undergoing changes.”37 In addition:
33Malevich, 1927/2003, p. 12.
34Kandinsky, 1926/1991, p. 91: “Les méthodes de l’analyse de l’art ont toujours été bien trop arbitraires

et souvent trop subjectives.” and “possible un travail collectif dans le domaine de l’esthétique
expérimentale.”

35Focillon, 1934, p. 55: “Entre des maîtres qui n’ont jamais eu entre eux la moindre liaison et que tout
sépare, la nature, la distance, les siècles, la vie des formes établit d’étroits rapports.”

36Kandinsky, 1926/1991, pp. 19–20: “Les recherches, qui doivent être la base de cette nouvelle science
– la science de l’art – ont deux buts et découlent de deux impératifs : 1. du simple désir de savoir,
spontanément issu d’un besoin de connaître, sans aucun but pratique, la science « pure » et 2. de
la nécessité d’un équilibre des forces créatrices, classées schématiquement en deux composantes –
intuition et calcul : la science « appliquée ».”

37Kandinsky, 1926/1991, p. 101: “un dictionnaire ne pétrifie pas une langue vivante, qui subit continuelle-
ment des changements.”
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1.2 Sources of complexity

The general viewpoint of our day, that it would be dangerous to dissect art
since such dissection would inevitably lead to the abolition of art, originated
from an ignorant depreciation of the elements laid bare and of their primary
strength.38

The fear of unraveling the mystery behind certain aspects of art therefore originates
from lack of faith in art, and in the richness of its pictorial material. The search
for a metric in art thus cannot be criticized on the basis that it would make
the magic of creation disappear. Rather, the critical and legitimate question is
whether a scientific approach to art39 can possibly allow us to understand pictorial
phenomena in their full complexity.

1.2 Sources of complexity

Art or nature, it is difficult to grasp phenomena of this kind in their entirety
as wholes, and even more difficult to make this understanding accessible
to others. This is a consequence of the sequential nature that characterizes
ourmethods for studying spatial constructions to obtain a clear and distinct
mental representation. It is a consequence of the temporal deficiency of
language.40

Complexity [is] only the name given to complicated things when the size of
the system increases, exceeding the cognitive capacity of the modeler.41

For Paul Klee, the temporal dimension of the pictorial work arises as a direct
consequence of the limitation of our spatial perception, our inability to grasp spatial
concepts all at once simultaneously. For Jean-Louis Le Moigne, this difficulty,
introduced as the complexity of a system, must be understood more precisely
as an exhaustion of our cognitive abilities in comprehending a phenomenon. In
both cases, this means that we struggle to extract the underlying meaning of
the phenomenon, to consciously analyze its details, to grasp its mechanisms
or to memorize its different aspects before representing a coherent whole to
our imagination. On the other hand, we have just seen how measurement in
composition is essential in practice, and at the same time, how metric evaluation
remains beyond formalization: so much so, that the concept of inner necessity
introduced by Kandinsky appears well formalized despite its rather unspecified
nature. This section is concerned with identifying the specific factors that prevent
38Kandinsky, 1926/1991, p. 16: “L’opinion, répandue aujourd’hui encore, qu’il serait fatal de « disséquer »

l’art, et que cette autopsie mènerait inévitablement à la mort de l’art, résulte de l’ignorante dépréciation
des éléments mis à nu et de leurs forces primaires.”

39Which at that time was mainly Cartesian and positivist.
40Klee, 1924/1998, pp. 17–18: “Art ou nature, il est difficile d’embrasser du regard un ensemble de ce

genre et encore plus d’en faciliter la vue à autrui. Cela tient aux méthodes échelonnées dans le temps
dont nous disposons pour étudier un ensemble spatial afin d’en obtenir une représentation mentale
claire et distincte. Cela tient a l’infirmité temporelle du langage.”

41Le Moigne, 1977/2006, p. 232: “La complexité [n’est] que le nom donné au compliqué lorsque la taille
du système augmente, dépassant la capacité cognitive du modélisateur.”
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1 Compositional paradigm

an accurate and objective definition of a compositional metric: what are the
sources of complexity inherent to a composition that hinder its metrization?

Temporal complexity

The notion of attributing a temporal dimension to pictorial composition may appear
counterintuitive. This idea was not accepted for a long time, and Kandinsky in
particular deplored its absence from most artistic theories42. Focillon explains
that “the work of art is only apparently immobile. […] In reality, it is born out
of a change, and it sets the stage for another change.”43 He thus suggests that
paintings incorporate two distinct temporal moments.

The second of them, which is perhaps the least obvious, is the one already
mentioned by Klee in his quote at the beginning of this section. The act of
perceiving a composition takes place over time. A cognitive limitation prevents
us from accessing the entire work instantly. A priori, this may be regarded as a
limitation, however the artist can actively exploit this constraint in the pictorial
experience. This is what Kandinsky observes in Rückblicke with regard to his first
contact with time in Rembrandt’s painting:

I had the impression that his paintings were lasting a long time, and I ex-
plained this experience as reflecting the fact that it took me some time to
exhaust exploration of a given part of the painting, before I could move on
to a different part. Upon further reflection, I realized that this separation [of
the chiaroscuro]magically fixes on the canvas an element initially foreign to
painting and which seems difficult to grasp: Time.44

In the view expressed above, sequential perception acquires a narrative character.
In addition, Kandinsky’s shift towards abstraction led him to concepts related to
the perception of music. For him, “a musical piece lives in our memory in the
manner of a painting, i.e. simultaneously via a combination of all its essential
parts.”45 Time in paintings is therefore not a passive experience, but the source
of real freedom in movement and exploration. Its illusion of totality gives rise to
multiple interpretations for the composition. Being this the case, why does Klee
speak of deficiency with reference to the necessity for temporal integration in
visual perception?
42Kandinsky, 1926/1991, p. 39.
43Focillon, 1934, p. 10: “l’œuvre d’art n’est qu’apparemment immobile. […] En réalité elle naît d’un

changement et elle en prépare un autre.”
44Kandinsky, 1974/2014, pp. 102–103: “J’avais l’impression que ses tableaux « duraient longtemps » et

je me l’expliquais par le fait qu’il fallait que je commence par prendre le temps d’en épuiser une partie
avant de passer à l’autre. Plus tard je compris que cette séparation [du clair-obscur] fixe comme par
enchantement sur la toile un élément initialement étranger à la peinture et qui paraît difficilement
saisissable : le Temps.”

45Kandinsky, 1912/1989, p. 99: “une œuvre musicale vit dans notre souvenir et comme un tableau,
c’est-à-dire simultanément par toutes ses parties essentielles.”
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1.2 Sources of complexity

The main handicap of those who contemplate or reproduce [an artwork] is
that they find themselves in front of the final result all at once, and that they
can only go backwards through the genesis of the work.46

The genesis of the artwork directly refers to the iterative creative process of
composition that the artist pursues “until the balance stabilizes.” “A work of art
is born of movement.” Creation is the moment when the artist listens to matter
set in motion to capture the first breath of forms. “The form is the end, the
death. Formation is Life.”47 The initial instants of the composition are thus of
a completely different nature compared with perceptual time. It is a time that
generates diversity. However, spectators are only in contact with this process in
very rare cases. Generally, they can only contemplate the resulting artwork where
the primordial temporal dimension is flattened.

Morphogenesis is a particular consequence of implemented pictorial instruments.
Tools such as pencils and brushes imply a creative work in positive. The material
contact reveals the form. In opposition, wood engraving is executed in negative,
as the artist empties spaces between graphical elements. Therefore, each medium
gives an extremely specific meaning to pictorial dynamics and gesture.

The geometric point is, according to our conception, the ultimate and only
union of silence and speech. […] A point is the result of the initial collision
of the tool with the material surface, with the basic plane. […] By this first
collision, the original plane is impregnated [(fertilized)].48

The sudden emergence of a point brings about a change that carries extreme
tension. Nothing has happened yet, but everything is potential. There is no
possible turning back.

Every point has its ownexistence; it promisesmultiple transformations. The
act of setting down a point, is equivalent to the act of sowing a seed; it must
grow and become…49

For the Chinese painter Huang Pin-Hung, a point on a canvas calls for a necessary
transformation, which Kandinsky describes in the following way.

There exists still another force which develops not within the point, but out-
side of it. This force hurls itself upon the point which is digging its way into
the surface, tears it out and pushes it about the surface in one direction or

46Klee, 1924/1998, p. 38: “Le principal handicap de celui qui la contemple ou la reproduit est qu’il est
mis d’emblée devant un aboutissement et qu’il ne peut parcourir qu’à rebours la genèse de l’œuvre.”

47Klee, 1924/1998, pp. 23, 38, 60: “jusqu’à ce que la balance se stabilise.”, “L’œuvre d’art naît du
mouvement.” and “La forme est fin, mort. La formation est Vie.”

48Kandinsky, 1926/1991, pp. 25, 29–30: “Le point géométrique est, selon notre conception, l’ultime et
unique union du silence et de la parole. […] Le point est le résultat de la première rencontre de l’outil
avec la surface matérielle, le plan originel. […] Par ce premier choc le plan originel est fécondé.”

49Cheng, 2006, p. 79: “Chacun des points a une existence propre; il promet de multiples transformations.
Poser un point, c’est semer un grain; celui-ci doit pousser et devenir…”

27



1 Compositional paradigm

a b

Figure 1.4: In panel a, morphogenesis of the line based on drawings by Kandinsky54. In panel b, morpho-
genesis of the surface based on drawings by Klee55.

another. [The point] perishes and a new being arises out of it which leads a
new, independent life in accordance with its own laws. This is the Line.50

The point-line couple is then loaded with a unique generative symbolism. From a
given point, similar to any other, all lines are born. This is one of the reasons why
the brush-ink technique is central to the Chinese tradition. Hua generally refers
to what we call painting in the West, because we put colors on the canvas, while
this word originally evokes the drawing of boundaries, i.e. lines. It embodies the
philosophical principle of One and Multiple, which Francois Cheng summarizes as
follows:

The Line, by its internal unity and its ability to vary, is One and Multiple. It
embodies the process by which the artist rejoins the gestures of Creation.51

More prosaically, graphical elements seem to be generated by a successive elevation
of their dimensional order. The point is the primary unit, then “the line can be
considered a secondary element”52, but the complexity does not stop there. “The
time factor intervenes […] the same way when a line generates a surface while
moving.”53 Kandinsky speaks of a densification of lines. Fig.1.4 illustrates the
successive phenomena of emergence of lines and planes.

The theoretical framework for morphogenesis takes its inspiration from an obvious
analogy with living beings. Later, it is echoed by scientific discoveries on DNA.
50Kandinsky, 1926/1991, pp. 62–63: “Il existe une autre force, prenant naissance non pas dans le point

mais à l’extérieur. Cette force se précipite sur le point ancré dans le plan, l’en arrache et le pousse
dans une quelconque direction. […] Le point disparaît et il en résulte un être nouveau, vivant une vie
autonome et soumis à d’autres lois. C’est la ligne.”

51Cheng, 2006, p. 73: “Le Trait, par son unité interne et sa capacité de variation, est Un et Multiple. Il
incarne le processus par lequel l’homme dessinant rejoint les gestes de la Création.”

52Kandinsky, 1926/1991, p. 67: “la ligne peut être considérée comme un élément secondaire”
53Klee, 1924/1998, p. 37: “Le facteur temps intervient […] de même lorsqu’une ligne engendre une

surface en se déplaçant.”
54Kandinsky, 1926/1991, pp. 82, 104
55Klee, 1924/1998, p. 76
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1.2 Sources of complexity

Together with the development of computer algorithms, some artists56 consider
coding and associated programs as a simulation of genetic determinism. We will
see at the end of this section how this vision of the composition cannot embrace
all the complexity of compositional practice.

To conclude our discussion of the temporal dimension, I would like to further empha-
size how its deployment is articulated in a dual and complex way. In particular, the
very term composition is ambivalent. This word represents both finished artworks
and the practice supporting their elaboration. We can thus conceive composition
as diachronic (compositional process) and synchronic (resulting composition). In
addition, this transitional process seems to happen twice. In the viewer’s eye, the
perception of the painting offers a new sequential episode, eventually crystallizing
in its memory and imagination as a paradoxically unified whole. It should be noted
that, during the two major periods of the composition, the first segment can be
considered as absolute, while the second is fundamentally a nonlinear exploration.
Therefore, any attempt to model composition must address its temporal complexity
by allowing a simultaneous, diachronic and synchronic, dual representation with a
non-absolute sequential aspect.

Structural and functional complexity

Exposed morphogenesis lets us basically imagine elementary graphical elements,
such as points, lines, circles. Without additional constraints imposed by the
artist, this approach even leads to an infinite space of forms. Furthermore, each
graphical element can take infinite configurations on canvas by varying its position,
orientation, and scale. However, these sources of variation do not represent sources
of complexity per se. They merely reflect different degrees of freedom.

Let us now tackle complexity within an established theoretical framework. First, we
should check whether composition can be represented as a system. A system is, in
its most general conception, an enclosing entity of substructures or modules. These
constituent elements do not need to be perfectly defined, but they are supposed to
interact with each other. For Kandinsky, even “forms with [objectively] unspecified
relations will nevertheless engage in fundamental and precise interactions.”57
Without detailing the nature of these relations for the moment, composition seems
to fulfill this first condition.

A system also requires precisely defined borders separating it from its environment.
For pictorial composition, the canvas seems a trivial, but acceptable delimitation.
The environment would then begin from the frame outwards, could include the
exhibition scenography, and more importantly would welcome artists and spectators.
56Verostko, 1990.
57Kandinsky, 1912/1989, p. 194: “formes ayant entre elles un rapport [objectif] « quelconque » ont

malgré tout, finalement, des relations importantes et précises.”
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1 Compositional paradigm

This limit essentially allows for exchanges at the interface to be formalized, and
for potential functions of the system to be identified. Concerning composition,
artists and observers are obviously privileged actors for interaction with the system.
Indeed, it is on this basis that the cognitive abilities of artists and viewers can take
part in the process of compositional complexity.

However, there is no transfer of matter at the composition-observer interface
as usually happens with physical systems. The nature of this relation appears
purely informational. Thus, from system theory to Shannon’s information theory,
there is only a small gap which many authors have tried to interpret58. More
specifically, the notion of amount of information associated with a system is
not straightforward and is possibly ambiguous. Information was initially defined
quantitatively for a message in a communication channel. It is a quantification of
the minimum number of signs, in a chosen language, necessary for the transcription
of this message. Another way to think about information is in connection with the
uncertainty associated with receiving a certain message. The more unexpected a
code is, the more information it conveys to the receiver. For example, receiving a
yes-no binary response intuitively contains less information than a message about
Which day of the week?, which spans seven possibilities. Shannon expresses the
amount of information via the entropy function ℍ = − 𝗅𝗈𝗀2 𝑝, with 𝑝 the probability
of the expected code. For the binary answer, we then have ℍ = − 𝗅𝗈𝗀2(1/2) = 1
and for a day of the week ℍ = − 𝗅𝗈𝗀2(1/7) ≈ 2.8. We therefore understand
that the amount of information depends on the realization of one event among
possible ones. Assuming that the relation between a system and an observer is
a communication channel, and that a system can exist in different states, the
amount of information is then reflected by the uncertainty associated with the
observation of a particular state for this system. We can thus imagine that a
system with more elements will potentially exist in a larger number of different
states, and that full characterization of such a system will be more challenging.
Therefore, the amount of information carried by a system represents a possible
measure of complexity. Depending on the point of view, this quantity can be
interpreted as lack of knowledge in the eyes of the observer. This situation is
particularly true in physics.

This lack of information implies the possibility of a wide variety of distinct
microscopic structures that are, in practice, impossible to distinguish from
each other. Since any of these various microstructures can actually exist at
a given time, the lack of information corresponds to a real disorder in the
hidden degrees of freedom.59

58Atlan, 1972/2006; Brillouin, 1959/1988; Le Moigne, 1977/2006; Moreno, 1998; Schrödinger, 1944/
2013; von Foerster, 1960/2003.

59Brillouin, 1959/1988, p. 155: “Ce manque d’information implique la possibilité d’une grande variété de
structures microscopiques distinctes qui sont, en pratique, impossibles à distinguer les unes des autres.
Puisque l’une quelconque de ces diverses microstructures peut exister réellement à un moment donné,
le manque d’information correspond à un désordre réel dans les degrés de liberté cachés.”
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1.2 Sources of complexity

Let us now transfer these concepts to the study of composition. We assume that
there is a channel of communication between compositions and artists/viewers.
We also assume that a composition is a particular state of all possible compositions
constituting a single system. But intuitively, a composition does not objectively
present indeterminacy concerning its state. Without time constraints, spectators
have access to all graphical elements arranged on the plane. Forms are physically
immutable. Perhaps a more relevant way to approach the problem could be to
determine to which extent a spectator is able to perceive alterations in a given
composition. The observer’s perception is then probably not as unambiguous
as we sometimes imagine. Fig.1.5 allows us to briefly experience this idea. At
first glance, the two altered proposals (Fig.1.5b,c) seem to have a composition
similar to the original (Fig.1.5a). In particular, identifying compositional differences
or weaknesses in Fig.1.5b seems to require significant cognitive efforts. Affine
transformations60 of some elements only make subtle perceptual changes. In
comparison, the removal of graphical elements (Fig.1.5c) is much more visible via
the strange void that is left in the painting.

This naive examination allows us to assume some uncertainty, nonoptimality, in
the perception of artworks. However, this is not enough to encompass the full
extent of compositional complexity. Paintings appear to be flexible systems, given
that reasonable affine transformations of some graphical elements produce hardly
any impact on the compositional system. Some resilience happens in visible and
spatial dimensions of the painting, across the degrees of freedom mentioned at the
beginning of this subsection. The resilience results from a logic of non-absolute
positioning of elements, of continuous ambiguity. Deletion of elements seems to
further destroy local arrangements. Let us then consider more carefully Brillouin’s
quote. He writes that information unavailable to the observer can be located at
the level of hidden degrees of freedom. As a result, the space of alternatives of
a graphical element, whose absence would ultimately be the most radical state,
could prove to be a transversal and unknown dimension to the spectator.

While alterations in Fig.1.5 have been produced randomly, it would be interesting
to study alternatives of the same composition performed by the artist himself.
Preparatory drawings and preliminary studies for paintings constitute a large corpus,
but it might be objected that they are usually rough versions only, less definite than
the final versions, only concerned with distributing main masses in a schematic
way. Although ideally we should only compare alternatives produced with the
same pictorial material, Kandinsky proposed several linear versions (only made of
lines) of his own compositions. Fig.1.6 presents two pairs of compositions, where

60Examples of affine transformations: translation, scaling, symmetry, rotation.
61Guggenheim Bilbao: https://www.guggenheim-bilbao.eus
62Kandinsky, 1926/1991, pp. 235, –
63Centre Pompidou: https://www.centrepompidou.fr
64Miyagi Museum of Art: https://www.pref.miyagi.jp
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a

b

c

Figure 1.5: Compositional alterations of Komposition VIII (1923) by Wassily Kandinsky61. Panel a,
original composition. Panel b, with affine transformations. Panel c, with deletions.
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a b

c d

e f g

h i i

Figure 1.6: Linear and final compositions by Wassily Kandinsky. Panels a and b, Small Dream in Red,
linear version (1924), final version (1925)62. Panels c and d, Animated Stability, linear version
(1938)63, final version (1937)64. Panels e-j, comparison of selected graphical elements.
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Fig.1.6a,c are respectively the linear versions of Fig.1.6b,d65. For the first pair,
the transposition seems straightforward as it only appears to involve removal of
the pictorial matter. But the more detailed comparison in Fig.1.6e,f,g shows clear
differences. In Fig.1.6e, the general structure is respected, but the proportion of
each element is altered. In the lower left corner, a wide black dot is even substituted
by two curved triangles. In Fig.1.6f, the overall composition looks similar, but the
structure is not respected, especially for the right leg. Little dots filling the main
surface are replaced by an indeterminate spot of paint. Finally, Fig.1.6g shows
an unrelated texture, despite having similar morphology. Concerning the second
pair of images (Fig.1.6c,d), the transformational effect is even more striking. The
linear version undoubtedly offers the same compositional presence as the original,
but the two versions are visually foreign. There is a flagrant simplification in
the linear variant. The number of graphical elements is much smaller, but this
fact alone is insufficient to establish compositional equivalence (Fig.1.6h,i,j): a
cross corresponds to a square underlined twice, a straight line corresponds to two
concentric ovoids.

We are therefore well aware of the volatility of graphical elements and their
functions. It seems possible to effortlessly interchange different forms as long as
they fulfill the same compositional purpose. In other words, identical graphical
elements may have different uses depending on the context. Indeed, it is only on
this condition that forms derive their legitimacy. For Kandinsky:

The same form in the same circumstances will always have the same inner
appeal. However, circumstances are constantly varying. […] Nothing is ab-
solute. Form composition rests on a relative basis, depending on 1. alter-
ations in the mutual relations of one form to another, 2. alterations in each
individual form, down to the very smallest.66

Contextual informational uncertainty is formalized in system theory as follows:

The amount of information [(defined as entropy)] can only measure one
kind of complexity: the one related to the large number of components ar-
ranged in a certain way in space. [There] is another kind of complexity […]:
the one related to the wide variety of interrelations between components.
The first kind is called […] structural complexity, the second, functional com-
plexity.67

65These two artworks have been converted to black and white in order to reduce distracting effects of
color, and to highlight compositional lines.

66Kandinsky, 1912/1989, pp. 127–128: “La même forme a toujours la même résonance sous des conditions
inchangées. Cependant les conditions sont toujours différentes. […] Il n’y a rien d’absolu. C’est
pourquoi la composition des formes, qui repose sur cette relativité, dépend – de la variabilité de
l’assemblage des formes et – de la variabilité de chaque forme jusqu’au plus petit détail.”

67Atlan, 1972/2006: “La quantité d’information [(définie par l’entropie)] ne peut mesurer qu’une seule
sorte de complexité : celle liée au grand nombre de composants disposés d’une certaine façon dans
l’espace. [Il] est une autre sorte de complexité […] : celle liée à la grande variété des interrelations
entre les composants. La première sorte est appelée […] complexité structurale, la seconde, complexité
fonctionnelle.”
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In practice, it seems that functional complexity is even predominant, as it can
already happen in situations of low structural complexity. In Point and Line to
Plan, Kandinsky proposes to start the analysis of basic elements by studying each
“individual phenomenon in isolation” and then the “reciprocal effect of phenomena”.
However, he warns the reader about the conclusive third step: “I not only lack the
strength to carry out the initial work with sufficient exactitude, but lack space,
as well.”68 Indeed, the catalog of all phenomena produced by few basic elements
already implies an insurmountable combinatorial explosion. Unlike gravitational
systems, for which the interaction among several elements can be predicted by
knowledge of their individual characteristics, it appears that the combined effect of
a group of graphical elements exceeds the sum of their fundamental properties. In
cognitive sciences, Gestalt theory is precisely about the representation of a whole
as being different and greater than the sum of its parts. In Kandinsky’s theoretical
language, this notion is called double-resonance or even triple-resonance. Philippe
Sers explains these neologisms with the desire to describe a “harmony based on a
resonance not unified, but contrasted or at least disparate.”69 The idea is that
there is no hierarchical functional simplification occurring within the composition.
A group of interacting elements does not cancel, or at least not completely, the
individual capabilities of each unit.

As a result, speaking of complex system analysis is somehow improper. A system is
not reducible to the enumeration of its elements and interactions. A system remains
an experimental object, and that is why we will prefer to use system exploration
in the second part of this manuscript. The notion of functional complexity also
allows us to reinterpret the resilience aspect found in compositions, which we
introduced earlier. Resilience may be a form of complicated and silent mechanism
(hidden from many spectators) of functional equivalences that go beyond the purely
morphological aspects of visual stimuli. More generally, presenting composition
as a complex system in structure and functions gives theoretical grounding to
many observations by artists. This research field helps to clarify the difficulties
encountered when studying the compositional approach, difficulties that were not
successfully addressed by analytical enumerations and Cartesian causal synthesis.
The systemic view on composition is therefore a cornerstone toward modeling.

System complexity and system organization

The amount of information – or lack of it, in the eyes of the observer – has been
so far symbolized by the entropy function. This linguistic choice, referring to the
idea of a chaotic disorder, may not be optimal to describe our simple ignorance of
68Kandinsky, 1926/1991, p. 21: “chaque phénomène isolé”, “effet réciproque des phénomènes” and “ce

n’est pas seulement la force qui me manque, mais aussi la place, pour assurer au moins l’exactitude
initiale.”

69Kandinsky, 1926/1991, p. 241: “harmonie fondée sur une résonance non pas unifiée, mais contrastée
ou au moins disparate.”
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the current state of a complex system. Orderliness is not an intrinsic quality of a
system, but rather a reflection of our inadequacy70. Viewed from this perspective,
the qualifiers order and disorder confer rather unenviable objectives to pictorial
composition. Implicitly, this vocabulary depreciates non-ordered systems for their
chaotic aspect, and ordered systems for their cold or boring low informational level.
In both cases, it is not possible to assign satisfactory meaning to the amount of
information with regard to composition. These concepts do not offer a pertinent
quantitative goal for compositional practice.

In the previous subsection, we have described the complexity of a system as relying
on two components. However, so far we have only taken into account the structural
complexity directly related to the system-observer channel of communication. By
further taking into account functional information, it is possible to extend the
notion of order to that of system organization. Henri Atlan introduces this concept
in the following way:

The essential point is that each element possesses a set of alternatives asso-
ciated with it, and that the choices in each set are not independent of those
made in the others. […] Organization is simply the informational amount
associated with a set of constraints or correlations.71

Behind this formulation, there is a notion of conditional probabilities between
graphical elements. In other words, the uncertainty associated with the global
compositional structure can be extended by the virtual probability of encountering
a graphical element at a position knowing the properties of the other elements. In
the compositional processes engaged by artists, this scheme is easily applicable.
Artists make successive choices depending on the elements already present (and/or
planned according to their individual practice). Conditional probabilities thus
establish an obvious link with the temporal dimension of the composition. It is also
possible to imagine all compositional tensions interacting in the eye of the spectator
as probabilistic constraints between the expected and present arrangements. This
conception of the composition, as the organization of a system, also sets boundaries
guiding possible objectives of compositional practice.

Total absence of constraints and total constraints between substructures,
both correspond to the absence of organization of the system: in the first
case we have only a juxtaposition of structures completely independent of
each other, and in the second, we have only one structure replicatedN times.
[…] In other words, organization involves a transmission between substruc-
tures but with ambiguity or equivocation. Thus, we come to this seemingly
paradoxical idea that the organization is better as ambiguity increases, up

70“Is there any real randomness, apart from our ignorance?” Atlan, 1972/2006 (“Existe-t-il un hasard
réel, en dehors de notre ignorance ?)”

71Atlan, 1972/2006: “Le point essentiel est que chaque élément a un ensemble d’alternatives qui lui est
associé, et que les choix dans chaque ensemble ne sont pas indépendants de ceux effectués dans les
autres. […] L’organisation est simplement la valeur informationnelle d’un ensemble de contraintes ou
corrélations.”
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1.2 Sources of complexity

to a certain limit where there is no more transmission at all and the organi-
zation disappears.72

Beyond statistical vocabulary, we can reformulate relevant notions as follows. If
two groups of graphical elements have absolutely nothing in common, if they
are neither metonymic nor antithetical, then there is no organization. We could
cut the picture in two halves without disrupting anything. Conversely, if one
graphical element necessarily involves another one, then the effect produced is
as if the same information was reproduced twice. Ambiguity is certainly reduced,
but nothing has changed from an organizational point of view for the system.
At least, compositional motivations of this repetition should be questioned. In
order to better understand the nature of the constraints between elements of a
system, Atlan also proposes an analogy with books in a library. In this context, any
reference, quotation, or commentary about the content of one book in another,
constitutes a form of conditional relation allowing the library, as a whole, to express
transversal knowledge. Concerning redundancy on the canvas, it can be naturally
executed by an exact or partial repetition of elements and contrasts. However, we
must not forget to extend the concept of redundancy to functionally equivalent
clusters. One could even imagine a temporal redundancy, at the scale of a set
of compositions by the same artist, as a form of expected regularity of certain
groups of forms.

The organization of a system therefore involves a double counter-movement
towards redundancy and variety. For the artist, composing entails a fight against
both maximum entropy and uniformity. His/her task is delicate because he/she
must neither order the elements on the plane in a too efficient and unequivocal
manner for the spectator, nor abandon himself/herself to the dull and random
placement of graphical elements. The compositional measurements at stake during
the creation are therefore complex since they mobilize the evaluation of the impact
of new elements on and with all others. Through moderate choices, which go
beyond the most anticipated, automation and logic, he must seek heterogeneity
of the parts, while preserving richness of interaction. The notion of system
organization thus proposes a clear objective to the composition, that is artistically
coherent, and with an associated metric, i.e. the amount of conditional information
between graphical elements.

With the words of an artist like Klee, the transition from a purely structural
understanding of the compositional practice to an expanded functional vision, is
expressed as follows:
72Atlan, 1972/2006: “Absence totale de contrainte et contrainte totale entre les substructures, corre-

spondent tous les deux à l’absence d’organisation du système : dans le premier cas on n’a qu’une
juxtaposition de structures complètement indépendantes les unes des autres, et dans le deuxième, on
n’a qu’une structure figurée N fois. […] Autrement dit, l’organisation implique une transmission entre
les substructures mais avec ambiguïté ou équivocation. Nous arrivons donc à cette idée en apparence
paradoxale que l’organisation est d’autant meilleure que l’ambiguïté augmente, jusqu’à une certaine
limite où il n’y a plus de transmission du tout et où l’organisation disparaît.”
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Previously anatomical, the point of view is now becoming more physiologi-
cal.73

We can also illustrate this concept with the words of two Chinese painters of the
Tsing dynasty, Chin Tsu-yung and Shen Tsung-chien:

To represent a group of trees, make sure that there is not only balance be-
tween the trees, but also contrast; otherwise we fall into platitude and uni-
formity.74

The painting is populated with multiple elements that intersect or respond
to each other. The important thing is that, in the middle of the tangled me-
anders, we can grasp an organic structure and that, within themost compact
presence, we still breathe ease.75

In their own words, each author clearly evokes the duality of the concept of organi-
zation. Despite the figurative nature of their painting and a vocabulary borrowed
from living beings, for these authors, forms seem inhabited by a fundamental
organizational principle rather than by a purely representative logic.

I would like to mention here pictorial practices that appear to me outside the domain
of this proposition, i.e. compositional practice as the organization of a complex
system. At the same time, this allows me to justify the under-representation of
theoretical thoughts from more contemporary abstract artists. I am particularly
thinking to Sol Lewitt who wrote in Paragraphs on Conceptual Art:

The form itself is of very limited importance; it becomes the grammar for
the total work. In fact, it is best that the basic unit be deliberately uninter-
esting so that it may more easily become an intrinsic part of the entire work.
[…] Using a simple form repeatedly narrows the field of the work and con-
centrates the intensity to the arrangement of the form.76

The compositional aspect of his works is intentionally stifled by a higher principle, a
concept, which reduces the functional strength of the graphical elements and lets
them dominate the structure. Sol Lewitt is therefore less interested in organizing
forms than in constructing them. At the opposite side of the spectrum, we should
evoke Jackson Pollock’s work, deliberately seeking to escape any organization and
structure. His work proposes a graphical magma with its own qualities, but one
that goes beyond the present definition of composition.

Finally, we would like to open a reflection on conceptual proximity with the idea
of self-organization. The main characteristic of this particular type of system
is to theorize the phenomenon of emergence77. It must be understood as the
73Klee, 1924/1998, p. 45: “Anatomique auparavant, le point de vue se fait maintenant plus physiologique.”
74Cheng, 1989, p. 83: “Pour représenter un groupe d’arbres, veillez à ce qu’il y ait entre les arbres non

seulement équilibre, mais aussi contraste ; sinon on tombe dans la platitude et l’uniformité.”
75Cheng, 1989, p. 139: “Le tableau est peuplé de multiples éléments qui se croisent ou se répondent.

L’important est que, au milieu des méandres enchevêtrés, on puisse saisir une structure organique et
que, au sein de la présence la plus compacte, on respire cependant l’aisance.”

76LeWitt, 1967.
77See in particular Moreno, 2004.
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spontaneous appearance of a global constraint, a pattern, or a macrostructure,
that was not predictable from the individual knowledge of sub-elements in a system.
Emergence occurs everywhere in our physical world: from the wrinkles on the
surface of dunes, to crowd dynamics, to every living organism being partially
self-organized. For instance, this concept explains how brain complexity can exceed
the amount of genetic information that permits its development. Indeed, DNA
cannot materially encode all connections of a human brain, but it provides sufficient
organization to brain cells so as to enable effective connections that are almost
autonomously produced with the help of the environment (e.g. through learning).
Self-organization reflects somehow every epigenetic phenomenon that favorably
amends genetic determinism.

In the case of artistic composition, this concept may explain how an artist manages
to overcome both structural and functional complexity during creation. For
me, organizing graphical elements in a totally precise and conscious way seems
cognitively out of reach. But artworks do exist, so artists may only need to create
a macro specification of the composition, and then trust themselves, or trust the
pictorial matter, to bring out the full composition during realization. In addition,
the idea of compositional self-organization may be connected with, and expand
upon, Klee’s beloved concept of painting organism. Although exciting, these
novel insights will not be explored in this thesis as they are not presently deemed
mandatory for modeling composition. Nonetheless, I hope to investigate this idea
further in future work.

1.3 Axioms

The only thing to ask a painter is to clearly express his intentions. His think-
ing will gain from this effort.78

The onlymoral constraint that theory therefore imposes on themodeler is to
conduct a priori verification: has he explained the few axioms upon which
he will gradually support his inferences and create his design?79

The essential characteristic of an axiom is to be a supposedly true proposition
without a real demonstration. However, propositions must be acceptable to the
extent that they support the reasoning that requires them, i.e. our compositional
paradigm. This section will therefore seek to introduce two essential concepts
needed to develop our modeling framework for composition. We will first look at
the idea of an artist’s works80 as a hyper-compositional object. This implies that
78Matisse, 2014, p. 99: “La seule chose qu’on doit demander au peintre c’est d’exprimer clairement ses

intentions. Sa pensée y gagnera.”
79Le Moigne, 1977/2006, p. 21: “La seule contrainte morale que la théorie impose dès lors au mod-

élisateur est celle d’une vérification a priori : a-t-il explicité les quelques axiomes sur lesquels il va,
progressivement, appuyer ses inférences et graver son dessin ?”

80Referring to the complete works of an artist, and corresponding to l’œuvre d’un artiste in French.
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all the artifacts produced by an artist weave a continuous hyper-object, in which
the compositional regularities, specific to that artist, are revealed and accessible.
Secondly, the hyperspace covering the works, and the hyperspace hierarchically
included of graphical elements within the composition, are considered as vectorial
and probabilistic spaces.

Continuous space

Continuity is generally understood as the permanence of a phenomenon over time.
In mathematics, this notion is extended to any 𝑓 function whose infinitesimal
variation of 𝑥 inputs (e.g. time) is accompanied by an infinitesimal variation of
outputs 𝑓(𝑥). There is no location where a phenomenon, an object or 𝑓(𝑥), can
change in nature instantly (see Fig.1.7a, solid line). Continuity is therefore opposed
to the notion of discrete structure, where the space of possibilities is filled with
distinct states, such as the notes of a piano (see Fig.1.7a, dotted lines).

Let us now consider linear graphical elements only, regardless of their presence in
a composition. In previous sections, we have detailed how these elements all arise
from the point, from a material contact with the plane and the execution of free
movements. Without any other constraint (from the artist or the modeler), this
morphogenetic proposal allows the generation of an infinity of forms, and therefore
implicitly, of all possible linear forms. This set of lines then constitutes a single
and new continuous object, which completely determines the limits of the space
that hosts it. By extension, we can talk about a continuous space of lines. At any
point in this space, there is a line. At any infinitesimal neighborhood around this
line, there is an infinity of other lines, all slightly different. Fig.1.7b illustrates this
idea by displaying a portion of what a two-dimensional space of lines could look
like81.

The generative principle at stake forces us not to reduce a phenomenon to existing
or observed occurrences only. It intrinsically guarantees a potential, complete and
continuous space. Let us particularly recall the One and Multiple Chinese principle
mentioned previously (see Subsection.1.2.Temporal complexity). In this sense, the
composition also has its own genesis and follows a particular generative process.
Then, why not consider all compositions of an artist as belonging to the same
entity? An entity ultimately close to what is commonly called his/her works. We
are indeed able to imagine intermediaries between any two compositions. Of
course, we could question the relevance or the interest of such intermediaries,
but we cannot invalidate their theoretical existence82. Thus, we assume that all
compositions and graphical elements can be represented as infinite and continuous
spaces.
81Illustration is sadly discrete for legibility purposes. Representing continuity is actually an artistic

challenge, and we will address this question in Chapter.6.
82This discussion will happen later in this section.
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ba

Figure 1.7: Continuous space. In panel a, solid line represents a continuous function, while the dotted
lines show its discrete version. Panel b is an illustration of a portion of what could be a
two-dimensional space of lines.

Hyper-composition

Meaning beyond, the prefix hyper basically refers to theoretical objects in 𝑛
dimensions with 𝑛 typically >3. The hypercube is, for example, the 𝑛-dimensional
cousin (𝑛 > 3) of the cube (𝑛 = 3) and the square (𝑛 = 2). It then becomes
obvious that hyper and higher do relate to any aesthetic values about the objects
in question. An additional dimension is a mathematical property which, even
abstractly manipulated, pragmatically offers new possibilities.

Then, what is the relationship between hyper-forms, hyperspaces and the presumed
continuity of compositions? It should be noted that in weaving continuity between
objects, we implicitly create a higher-order set-object, which is necessarily inscribed
into a higher-dimensional space. This encompassing space must be increased
by at least one dimension in order to allow that a point on this new dimension
corresponds to an initial object of a lower-order. The ability to move from one
object to another continuously must be considered as a new degree of freedom
for this object, hitherto implicit.

However, our cognitive system is so inscribed and continuously immersed in a
3-dimensional universe, that imagining an object in 𝑛 dimensions is a cognitively
complicated task. Our perception limits somehow our ability to think in the
abstraction of hidden dimensions. Referring to the dimensions of the painting,
Klee highlights this problem and gives us some advice.

The instrument is lacking that would make it possible to synthetically dis-
cuss amultidimensional simultaneity. […] It seems that the ever-increasing
number of dimensions requires ever more difficult efforts […], we must ex-
ercise great patience.83

In his famous book Flatland: A Romance of Many Dimensions, Edwin A. Abbott
tries to express the vertigo caused by dimensions exceeding us. To do this, he
83Klee, 1924/1998, p. 18: “L’instrument manque qui permettrait de discuter synthétiquement une

simultanéité à plusieurs dimensions. […] Il semble que le nombre sans cesse croissant des dimensions
demande des efforts toujours plus ardus […], il s’agira d’avoir beaucoup de patience.”
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takes the viewpoint of a square living in a 2-d world, once having the chance to
glimpse into the third dimension. The author also likes to describe the perception
of lower-dimensional object, such as a point in 0-d.

That Point is a Being like ourselves, but conned to the non-dimensional Gulf.
He is himself his own World […]; he has no cognizance even of the number
Two.84

However, Focillon maybe gives a more informative insight on higher hidden dimen-
sions in The Life of Forms:

The inhabitant of a two-dimensional world could own the whole series of
profiles of a given statue andmarvel at the diversity of these figures, without
ever understanding that it is one, in relief.85

We must object that, in theory, a two-dimensional inhabitant of Flatland could
not even see the different profiles as solid shapes on a plane (as presented in
Fig.1.8a). He could only touch the contours and mentally build up an image.
Nevertheless, we do hope that this inhabitant is indeed able to imagine that all
these profiles belong to a single volume (e.g. Fig.1.8b), because this is precisely
what our research project attempts to achieve for a collection of compositions
from the works of an artist.

Continuity therefore implies hidden dimensions, which require a certain effort
to be convinced of. In reality, it requires even more work to reconstruct them
in a relevant way. Rebuilding a whole according to fragments has its share of
indeterminacy. Profiles shown in Fig.1.8a comes from the same 3-d object, a
Moaï from Easter Island, shown in Fig.1.8b. In this object, each section along
a plane (e.g. 𝑎) produces two symmetrical profiles (e.g. 𝑎, 𝑎−1) that can appear
independent to a viewer not aware of the complete object. Assuming that this
ground truth is inaccessible, there are many ways to reconstruct a higher-order
object. For instance, assuming a cylindrical 3-d object, it is possible to arrange
profiles uniformly every 𝜃 = 60∘ (see Fig.1.8c). Missing information is simply
interpolated. The 3-d result is different from the ground truth, but similar in
nature. From this hyper-object, we can then make new slices. For example, the
section of Fig.1.8d produces the profile of Fig.1.8e, which is consistent with original
profiles. Nonetheless, another possible reconstruction is to consider the different
profiles as photographs over time (see Fig.1.8f). The true morphology of the
3-d object is completely lost, but a new cut at another moment 𝑡 gives a rather
convincing profile. The temporal aspect is actually artificial, and no dimension is
a priori preferred to operate a new section. Produced crosswise (see Fig.1.8h),
the resulting profile shown in Fig.1.8i has then nothing in common with initial
fragments. Thus, we realize that this 𝑛-dimensional reconstruction process does
84Abbott, 1884, p. 81.
85Focillon, 1934, p. 28: “L’habitant d’un monde à deux dimensions pourrait posséder toute la série des

profils d’une statue donnée et s’émerveiller de la diversité de ces figures, sans se représenter jamais
que c’est une seule, en relief.”
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Figure 1.8: Hyper-dimensional reconstruction. Panel a shows 2-d profiles, which are slices along planes
(𝑎, 𝑏, and 𝑐) of a ground truth object, a Moaï, displayed in panel b. Supposing this true
object inaccessible, there are several ways to reconstruct a 3-d object from panel a profiles.
With the assumption of a cylindrical object (panel c), profiles are arranged every 𝜃 = 60∘.
Missing information is then interpolated. From this 3-d object, we can now make a new slice
(panel d), resulting in a new profile (panel e) coherent with the original ones. Another possible
reconstruction is a sequential arrangement of profiles along a temporal dimension 𝑡 (panel f).
The 3-d object have nothing in common with the true object, however slices along 𝑡 produces
good new profiles (e.g. panel g). On the contrary, a transversal slice like in panel h, provides
a spurious result (panel i).
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not have a single solution. When a ground truth is not accessible, this approach
requires a conscientious experimental control to be relevant.

Let us return to hyper-composition. In our proposition, a composition is considered
as an incomplete view from a richer space. However, unlike perspective in figurative
paintings, where an image is a 2-d flattening of a 3-d space, a composition is not a
projection in fewer dimensions of a hyper-composition. A composition must rather
be understood as a planar section of a space in 𝑛 dimensions, whose additional
dimensions are basically not spatial, nor temporal, but specifically compositional.
Nevertheless, to imagine these hidden dimensions, to visualize them for ourselves
or to show them to spectators, it is possible to render them as spatial and/or
temporal. This representational question is obviously artistic. It is both a source
of wonder and a visual challenge for the artist. We will further explore this aspect
in Chapter.6.

Vectorial space

Although it is conceivable that a composition may be viewed as a planar section
of a hyper-object, this conception is not practical from a mathematical and
computational point of view. Indeed, a theoretical proposition is all the more
relevant as tools for manipulating this new object exist. This is why we assume
that compositions can be represented as a point, and more precisely as a vector,
in a vectorial space.

To grasp associated advantages, we will set compositions aside for now and focus
instead on colors. Individually, light waves can be considered as colored according
to their wavelength. Evidently restricted to the visible light spectrum, the resulting
range of possible colors would be rainbow colors (see Fig.1.9a). But it does not
reflect all the perceptual color domain. For instance, magenta and white do not
exist as single light rays. Colors are therefore the result of complex combinations
of wavelengths. Colors necessarily involve energy weighting of light rays that are
present in the observed beams. Despite being accurate, this physical representation
is difficult to manipulate. Communicating a color to another person would be
extremely challenging. We should transmit measurements of hundreds (actually an
infinity) of numerical values (see the 3 complicated spectra plotted in Fig.1.9a).

We should then prefer a color definition that makes more sense to human perception.
In our eye, light beams are integrated (filtered) by three types of photoreceptors
(i.e. cone cells). The brain is therefore able to interpret colors from a tri-stimulus
only. Moving a little away from biological truth, we could say that it is possible to
represent any color by three coordinates in a 3-dimensional vectorial space with e.g.
red, green, and blue primary colors/dimensions. In other words, a color spectrum,
which is a complex set of light rays, can be encoded by an artificial system (e.g. a
digital camera) into a 3-dimensional vector (see Fig.1.9b, where the three spectra
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Figure 1.9: Color spaces. Three colors, denoted (1), (2) and (3), are represented in different ways. Panel
a shows their light spectra, limited to the visible wavelengths in nanometers. Panel b is a
vectorial 3-d (RGB) representation of color space. Panel c is the traditional color wheel, which
can be considered as a 2-d color space, restricted to chromaticity (luminance excluded). In
other words, panel c is a flattened version of panel b along the gray scale axis.

from Fig.1.9a correspond to three individual points). Thus, this representation is a
compact abstraction of the initial object, while guaranteeing a certain correlation
between its physical reality and its digital transposition.

A vector space is also functional, because it presupposes that some mathematical
operations are allowed in this space. For instance, it is possible to obtain the mix
of two colors by adding their vectors, i.e. by adding the numerical values in each
dimension (e.g. 𝑟[1, 0, 0] + 𝑏[0, 0, 1] = 𝑚[1, 0, 1]). Fig.1.9c presents the traditional
color wheel that can be considered as a two-dimensional version of an RGB space,
flattened along the luminance axis. In this representation, it becomes apparent
how the addition of complementary colors converges towards gray. However, a
general caveat of vectorial representations is that there is no guarantee that a
vectorial summation is consistent with perceptual reality. Dimensions may not
be independent, and may not be relevant. These issues can only be addressed
adequately through experimental verification.

Unlike the color domain, the form domain lacks a well-defined inventory of
reference points. Thus, the circle of colors, well-defined at the beginning, is
radically different from the unfathomable blur of the infinity of forms.86

Philippe Sers’ remarks should be qualified to emphasize that color space is just as
infinite as form space. However, this author implicitly (and correctly) assumes that
the infinity of shapes is greater than the infinity of colors because of the greater
86Kandinsky, 1926/1991, pp. xiii–xiv: “Contrairement au domaine des couleurs, dans le domaine des

formes, l’inventaire n’est pas donné. Ainsi le cercle des couleurs, bien défini au départ, se distingue-t-il
radicalement de l’insondable flou de l’infini des formes.”
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number of dimensions, and is thus more difficult to conceive rationally. In addition,
no physical reality (like the three types of diurnal receptors of the eye) provides
an objective vectorial representation of forms and compositions. There is for
instance a great indeterminacy about the minimal number of dimensions to cover
all possible phenomena. Nevertheless, we will assume that it is possible to represent
a composition, as well as its graphical sub-elements, with 𝑛-dimensional vectors.
The following chapters of this manuscript will basically describe how to build tools
operating this conversion between the different domains (physical/vectorial) and
show the legitimacy of this axiom through practical experiments.

Probabilistic space

From the beginning of this chapter, we have hypothesized an infinity of possible
compositions and their continuity in a vectorial space. However, without additional
constraints, the resulting hyper-compositional object does not really enrich our
knowledge about composition. As already mentioned, there exists an infinity of
possible hyperspaces, all describing the same reality, so the reconstructed spaces
would still be unspecified.

Travelling across such spaces randomly, many locations would appear uninteresting.
We would be surprised by the qualitative heterogeneity of this space. Indeed, even
if all arrangements of graphical elements are theoretically possible, composition
arises from precise choices made by the artist. Some of these choices are taken to
the detriment of others. This principle, at best described as the inner necessity,
mechanically reduces true compositions to a subset of the complete space. How-
ever, we have forbidden ourselves from making any direct aesthetic judgment on
compositions, so we must seek for a more satisfactory formulation.

Perhaps, by the term uninteresting we essentially designate arrangements of forms
that do not globally resemble other compositions – their characteristics are not
identifiable, or they do not belong to a certain standard. So, these intermediate
compositions may not present a minimal amount of references to some implicit
compositional regularities. For Kandinsky, there is no in-between, a painting is
alive or it is not. A less polarizing viewpoint would refer back to the variability of
human perception. A quantitative metric of the deviation from a compositional
norm cannot therefore be binary, nor uni-dimensional. The compositional norm
must be a rich norm, proposing many ways to comply with it.

This way, we finally draw the contours of a probabilistic constraint of the space,
where each dimension would reflect different expressive regularities, and follow
their own law of probability. Concretely, it means that each value of a given
dimension is assigned a probability for this characteristic to be expressed in a
composition. As a result, hyper-composition could take shape, and meaning, by
an objective densification interplay, freed from any personal judgment. It would
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involve transposing the inner metric to a measure of density in hyperspace. The
relevance of a graphical proposition would be executed against an ensemble, as
the evaluation of the sincerity of a composition in relation to the implicit rules set
by the artist himself/herself through his/her complete works.

Nevertheless, let us immediately clarify that the probabilistic nature of composi-
tional space must not be confused with, or interpreted as, a creative objective.
There is no interest, nor optimality in producing the most likely composition87. In
this sense, my vision does not align with that advanced by scientists who have
already realized this type of connection between art, aesthetics, probabilities, and
information theory.

To efficiently encode previously viewed human faces, […] it is useful to gen-
erate the internal representation of a prototype face. To encode a new face,
it must only encode the deviations from the prototype. Thus, a new face that
does not deviate much from the prototype will be subjectively more beauti-
ful than others.88

For Juergen Schmidhuber, beauty therefore lies in the average object, in the
most expected one. The problem is that beauty is then reduced to the most
immediate and easiest cognitive action, with extremely poor informational content.
Schmidhuber also thinks that the creation of this mental prototype is what supports
our interest. Once known, beauty becomes boring. Despite being an accurate
description of visual pattern learning as a cognitive phenomenon, the aesthetic
implications of this conception are too narrow and limited to be artistically com-
pelling. In addition, this theory only applies to uni-dimensional representations of
the object under scrutiny. Such representations may be applicable to faces under
some conditions, but they are certainly inadequate for pictorial compositions. The
more an object relies on numerous independent dimensions of potential regularities,
the more the very existence of a single global optimum is questionable.89

With their own vocabulary, each successive artist expresses the same subtle and
intermediate position regarding compositional laws and norms:

Dissonances, sometimes even false notes, are possible, but they must be
used with great caution; otherwise, harmony risks to be destroyed.90

Precious is the knowledge of laws, provided you beware of schema that con-
fuse simple laws with living reality.91

87This is a common pitfall of some computational approaches to art, as emphasized by Audry, 2021 in
his book Art in the Age of Machine Learning.

88Schmidhuber, 2009.
89We will detail this affirmation in Subsection.4.2.Hyperspace density.
90Sérusier, 1921, p. 34: “Les dissonances, parfois même les fausses notes, sont possibles, mais il faut

s’en servir avec beaucoup de prudence; sans cela, l’harmonie risque d’être détruite.”
91Klee, 1924/1998, p. 51: “Précieuse est la connaissance des lois, à condition de se garder d’un

schématisme confondant loi nue et réalité vivante.”
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Figure 1.10: Two-dimensional probabilistic space of independent random variables x1 and x2. The
individual (marginal) probability density functions are plotted in panel a. Panel b shows the
joint distribution of x1 and x2. Points 𝑎, 𝑏 and 𝑐 are plotted in both representations.

Blind following of scientific precept is less blameworthy than its blind and
purposeless rejection.92

These observations are indeed similar to the one associated with the organization
of a system. Artistic attitudes towards regularities typically compromise between
the very probable and the improbable, between the total constraint and absence of
constraint. The hyper-compositional object is in fact itself a system. Compositions
within the artist’s works need to maintain a certain level of connections, i.e. to
share regularities, while avoiding repetition, which would impoverish the overall
amount of information, i.e. the richness of the resulting works.

Let us try to illustrate this idea concretely. For simplicity, we assume a two-
dimensional compositional space only, with x1 and x2 as its independent dimensions.
Fig.1.10a shows density functions for each dimension. We also assume these
distributions to be normal. This assumption is reasonable (based on the central
limit theorem93) and can be found in many everyday life phenomena. Normal
distributions are symmetrical with greater central density. In Fig.1.10a, x1 is more
tightly distributed around zero than x2. Fig.1.10b displays the joint probability
of the two dimensions. On this surface, a black circle defines the location of
compositions with the same probability at the scale of the hyper-composition.
We are particularly interested in two compositions 𝑎 and 𝑏 located on this circle
of equiprobability. Detailed analysis of marginal probabilities (Fig.1.10a) shows
that 𝑎 and 𝑏 are averages for one dimension, but not for the other. In particular,
𝑎 frees itself from the norm on x2. The risk taken in this dimension by the
artist can be considered as particularly informative since, in information theory,
the unexpected produces meaning. However, as 𝑎 is excessively banal on x1,
at the hyper-compositional level this composition is still relevant. 𝑏 is also just
as relevant as 𝑎, but for different reasons, in another dimension. It therefore
92Kandinsky, 1912/1989, p. 199: “L’observance sans but des règles scientifiques n’est jamais aussi nuisible

qu’un inutile renversement de celles-ci.”
93The central limit theorem proves that the sum of various noises with unspecified distributions converges

to a normal distribution.
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seems incorrect to believe that a probabilistic vision of art would necessarily be
normative or limiting. Our proposition in fact gives meaning to certain regularities,
while allowing many degrees of freedom. It ultimately allows artists to make
choices with a clear conscience. The global low density of composition 𝑐 finally
echoes Kandinsky’s warning reported above. When an artist rejects laws across
all dimensions simultaneously, his/her actions seem purposeless and erroneous, as
they reject their own higher-level coherence.

Finally, we must not forget that this illustration is two-dimensional only. The
concept of hyper-composition must be imagined in 𝑛 dimensions. A complete
demonstration will be produced in the Subsection.4.2.Hyperspace density, but in short
we can say that the more dimensions there are, the more statistically unlikely it
is to have a composition in the average for all dimensions. Therefore, the fear
of normalizing compositional objects by revealing their regularities does not find
theoretical justification.

Probabilistic plane

The temporal dimension of the composition, particularly in relation to graphical
elements considered as individual entities, has not been addressed yet. At the
level of the hyper-compositional object, we only explicitly addressed completed
artworks. However, inner compositional properties on the plane are necessarily
related to higher level regularities. We must discuss how.

We have seen that directly studying interactions between pictorial elements is not
analytically feasible. The combinatorial complexity of the task prevents us from
an exhaustive approach. In addition, the functional complexity exposed earlier
makes these interactions highly contextual. In practice, the main difficulty with
capturing probabilistic constraints at the scale of one compositional plane derives
from the fact that only a reduced number of graphical elements are presented for
a given composition, and only in a limited number of configurations. Under these
conditions, we are not able to capture local regularities. As Klee rightly says, “the
typical will come automatically from series of examples.”94 In other words, a pattern
can only be studied if it is repeated in many different contexts. Reciprocally, we
only build up a distribution corresponding to a set of elements, if this context gives
rise to enough alternatives at the hyper-compositional level. Indeed, only series of
completed compositions can carry objective information about local interactions.
In isolation, no subset of graphical arrangements can claim to be legitimate, but
in comparison to the norm of a coherent whole, a specific choice can be measured
and make sense. Captured hidden dimensions of the hyper-dimensional object then
reflect inter and intra compositional regularities.

94Klee, 1961, p. 22.
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Let us rephrase this idea from the artist’s perspective. When he composes, he is
confronted with a series of choices among many possibilities, and the measurement
of the pertinence of a particular graphical element results from an inner assessment.
This judgment is not only based on current context, but also constrained by some
global knowledge: all compositional laws are supported by his/her own unconscious
regularities. It is as though local probability fields of possible next elements were
redistributed according to a final mental objective, incorporating this implicit
knowledge in the process. Through an initial choice of a global location in the
hyper-compositional space, the artist actively reconfigures the possibilities offered
on the plane of the painting. Therefore, this plane must be understood as a
complex field of conditional probabilities, knowing a global position in the artist’s
works and a local context on the plane.95

Active emptiness

We have so far only developed a vision in positive of artistic actions. Compositional
activity is usually understood as filling space, so discussing the concept of emptiness
may seem paradoxical. For instance, it appears fundamentally impossible to
represent the absence of pictorial matter within a modeling framework: how can
emptiness fit the probabilistic view described above?

We model clay to make a vase, but it is the emptiness within; which retains
what we pour into it. […] We work with the being; but it is the non-being
that we use.96

Lao Tzu observes that actions, necessarily defined as positive operations, may lead
to functions operating in negative. In the pictorial domain, Fan Chi of the Tsing
dynasty, specifies:

It is generally believed that it is enough to save a lot of unpainted space to
create emptiness. What is the point of this void if it is an inert space? In a
way, the true Void must be more fully inhabited than the Full.97

To become useful, emptiness must be active. But how? Fan Chi subtly indicates
that an empty space is not empty because of being unpainted, but rather because it
should/could have been painted. It therefore seems relevant to imagine emptiness
as a place of high probability for the presence of one or even multiple graphical
elements. However, this potential must remain unfulfilled, so that plane emptiness
95We are aware that the presented idea is difficult to grasp. This concept will be clarified via direct

implementation (Section.3.4) and associated practical measurements (Section.4.3, in particular
Fig.4.32 and Fig.4.33).

96Lao Tseu, 2008, chap. 11: “Nous modelons de l’argile pour en faire un vase,; mais c’est le vide
au-dedans; qui retient ce que nous y versons. […] Nous travaillons avec l’être.; mais c’est du non-être
dont nous avons l’usage.”

97Cheng, 1989, pp. 45–46: “On croit en général qu’il suffit de ménager beaucoup d’espace non peint
pour créer du vide. Quel intérêt présente ce vide s’il s’agit d’un espace inerte ? Il faut en quelque
sorte que le vrai Vide soit plus pleinement habité que le Plein.”
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is not an inert place. It is the location of a probable pictorial emergence, fully in
tension by the lack it produces, or by a deliberate deviation from the norm chosen
by the artist. For Klee, some over-neutral pictorial elements, such as the gray
point, can possess an equally paradoxical nature.

This point is gray because it is neither white nor black or because it is white
and black at the same time. […] Gray because it is a non-dimensional point,
a point between the dimensions and at their intersection, at the junction of
paths. […] It is the Center of Everything, virtually containing any color, any
value, any line.98

Gray is for Klee the master of all averages. It embodies the most expected, but at
the same time a potential generative magma of all possibilities. We could therefore
consider the gray point as some kind of informational emptiness.

In conclusion, emptiness and its complementary inherent active potential, is actually
another peripheral insight in favor of a probabilistic approach to art materials and a
demonstration of the relevance of the associated concept of hyper-composition.

This pure canvas […] is itself as beautiful as a painting.99

Nonetheless, beyond the poetry of Kandinsky’s words, for potential to exist in
emptiness, the hyper-compositional object and its complex projection on the plane
must be filled and nourished with real artistic matter, such as a personal practice.

98Klee, 1924/1998, pp. 56, 51; “Ce point est gris, parce qu’il n’est ni blanc ni noir ou parce qu’il est
blanc tout autant que noir. […] Gris parce que point non-dimensionnel, point entre les dimensions et
à leur intersection, au croisement des chemins. […] Il est le Centre de Tout, contenant virtuellement
toute couleur, toute valeur, toute ligne.”

99Kandinsky, 1974/2014, p. 115: “Cette toile pure […] est elle-même aussi belle qu’un tableau.”
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In the previous chapter, I have described the overarching paradigm supporting my
research. In principle, I wish for those propositions to be as general as theoretically
possible. In practice, they are necessarily tailored to my personal practice and
experience of composition. For instance, the feasibility of any modeling strategy
must rely on the existence of compositional regularities among artworks that are
sufficiently consistent to cohere into a unified object, however this requirement
is not a universal artistic intention: artists may not create new works with the
intention of complying with regularities set out by previous work. In order for my
research program to retain any degree of feasibility, it is therefore necessary to
restrict its applicability to a specific kind and range of composition. This chapter
will detail the specific choices that have gone into the process of delineating
and contextualizing my approach through the description of my personal corpus,
alongside the processing steps that were necessary in order to make it available to
quantitative analysis.

Data requirements and my personal work are in theory two different issues, but in
practice they are intimately intertwined. My artistic approach has directly shaped
the proposed method of research, and current limitations of existing computational
tools have constrained the scope of inclusion for external artistic materials. If
one were to challenge the scientific legitimacy of a dataset arising from my own
personal experience on the basis that it is not representative of composition in
general, the main argument in its defense would be that this is a necessary point of
departure: without it, the entire research program becomes a practical impossibility,
despite its theoretical existence beyond my own personal experience. A minima,
we must regard my own personal dataset as a starting point, a proof of concept, a
stepping stone towards future generalization of this research approach to a greater
range of compositional efforts.

The first limitation imposed by state-of-the-art computational tools is their data
hungriness. Machine learning, and especially deep learning, requires a large number
of samples from the same data family in order to make pertinent discoveries.
Trivially, this means that we must acquire thousands of inputs from the same
artist. To start with, it is unlikely that any artist would dedicate such a huge
amount of time and effort to produce material of this kind. Even if such a
devoted artist were to be found, the end result would be an artificial representation
of the artist’s creative work, not rooted in his/her own practice. Some deep
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learning models aggregate paintings from several centuries1 to generate novel
images, but what does this tell us about composition? All those artists may
only have in common basic ratios and simple symmetries. Furthermore, trends
arising from these approaches hide inherent bias associated with the process of
selecting datasets, which mainly consist of occidental paintings and largely ignore
non-Western traditions.2

Besides the necessity to restrict inquiry to a consistent and sizeable compositional
corpus, there is an additional characteristic that makes it necessary to focus on
my own personal corpus. The practical feasibility of the novel research program
presented in this thesis calls for a minimal artistic grammar, where minimal should
not be interpreted to mean limited. Our intention is to address composition in all
its complexity. For Le Moigne:

It is now necessary to consider the modeling of any phenomenon perceived
and conceived as complex by the refusal of its simplification, of its mutila-
tion.3

In the same vein, modern artists have turned to abstraction to avoid representational
issues or, like Kandinsky, they have adopted simple geometrical forms. This was
not an imposed simplification, but rather the appropriate vocabulary for addressing
their pictorial questions at a deeper level. We wish to adopt a similar vocabulary
for our own research program, a symbolic structure within which to discover and
express the compositional process. Where is such a material to be found?

We cannot – at least for now – take an existing masterpiece and automatically
extract its compositional structure to any acceptable degree. To express this
naively, we cannot reduce the complexity of art material by applying an edge
detection algorithm to its luminance pattern4. A more sensible start would involve
the analysis of preparatory sketches and studies from a given artist, however
current availability of such material is hopelessly insufficient for the purposes of
our research program: even a relatively large corpus of this kind, such as Picasso’s
Meninas series involving nearly 60 exemplars, is infinitely smaller than the size
required to successfully support machine learning.

In a different approach, we may take the reductionist view to its extreme, until we
encounter psychophysics. In this discipline, elementary visual stimuli are regarded
as adequate stimuli for the investigation of low-level visual phenomena in the brain5.
It is, for example, legitimate to work with very simple polygons6 to study the early
mechanisms of shape perception. When this approach is translated to art, however,
1A. Elgammal et al., 2017.
2Most of the time, datasets are chosen to be subsets of WikiArt, n.d.
3Le Moigne, 1977/2006, p. 16: “[Il faut] entendre désormais la modélisation de tout phénomène perçu
et conçu complexe par le refus de sa simplification, de sa mutilation.”

4Y. J. Lee et al., 2011; Redies et al., 2017.
5Neri, 2014.
6Behrman and Brown, 1968.
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it appears lacking. It is true that some art works only involve a few straight
lines and even sometimes an empty canvas, but in general this characterization
does not seem expressive enough to study composition on a wider scale, in its
more commonly accepted meaning. With a too simple structural complexity, any
arrangement is likely to be pictorially functional.

With the above in mind, it appears once again that the only feasible option is
to restrict inquiry to a corpus that was intentionally and deliberately embedded
within a common minimal grammar, such as my own personal work. This dataset
is therefore attractive not only because of its size, but also thanks to its cohesive
symbolic structure that makes it amenable to quantitative inquiry.

Finally, I understand that using one’s own artwork for scientific purposes may
be controversial. For an existing example that appears accepted by the wider
community, I may refer readers to the work of Christoph Redies, who employs his
own creations in the field of empirical aesthetics7. In my mind, and in light of
the considerations made throughout this chapter, a more important question is
whether one’s own artworks and artistic practice are coherent with one’s modeling
intentions. When it comes to my own personal trajectory, I believe a strong case
can be made in the affirmative. Beyond that, I can only hope that my sincere,
yet personal artistic effort will serve as a good scientific tool for prompting and
guiding future research. If there is meaning to the point of contact between
creative endeavors and the methods of scientific research, it is especially on how
the particular can bring insights to some more universal knowledge.

2.1 Floating compositional structures

Before detailing the processing tools developed to transpose my artworks into a
formatted dataset ready for modeling, it is important to precisely describe the
nature of the drawings.

Years of drawing small

When we think about small drawings erratically spread among notes and draft
papers, as it is my case (Fig.2.1), we may naturally regard this practice as doodling.
Mostly associated with childish scribbles or a lazy-bored attitude, doodling remained
until the surrealism movement an undervalued activity. In the early 20th century,
with the development of psychoanalysis, people began to appreciate the value
of these uncontrolled free-forms for their supposed hidden meaning. Raised to
the status of a legitimate artistic practice, doodling is now a popular means of
7Redies et al., 2015; Schwabe et al., 2018. He claims to address composition with his work, but it
appears to me more related to texture and homogeneity perception.
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Figure 2.1: Raw drawings among notes.

expression with diverse approaches. The following comments will therefore present
my view on this interesting practice.

I would like to emphasize that, even if this activity is not targeted to a predefined
result or objective, it should be distinguished from randomness. In my case, only
the first stroke may be random or totally free. Then, some kind of detached
concentration drives the logic of the next strokes. My main focus of attention may
be captured by some other auditory stimuli, but my hand and vision are dedicated
to the task. To proceed, this activity requires active and careful evaluation of each
line. Concurrently, there is an increasing fear of ruining the generated structure.
Any new stroke involves more hesitation than the former. My drawings are small
(∼4cm) and can happen everywhere; but at the same time, creation moments are
now, after 10 years of practice, more relaxing and meditative moments. Then, is
it still doodling?

56



2.1 Floating compositional structures

Increasing complexity

As already stated in the introduction, the complexity of the compositional structures
increased over the years (see Fig.0.2, Fig.0.3, Fig.0.4). This observation is not
supported by any quantitative metric proposed in previous studies8, possibly because
complexity is not merely a function of the number of strokes or graphical elements
present in the structure. Rather, complexity is driven by the quality and the
diversity of the plastic interactions between elements. It is connected with the
difference, expressed in the previous chapter, between the structural and functional
properties of a system. Building a tool for quantifying complexity is central to the
present research program, so how to define beforehand if my artistic work fulfills
the right amount of complexity? On which basis, for example, may one exclude
compositions with an excessive level of element interactions?

Without an objective metric, we can only rely on our own estimate. Subjective
judgments are highly variable, but they can be constrained via, for instance, a
requirement on viewing duration. Then, to make our analysis feasible, it is advisable
to remove compositional structures that exceed our cognitive abilities. For example,
we can exclude drawings for which any individual element is not easily comparable
to other elements. This occurs in accordance with two main configurations:

1. In preparatory sketches of final art pieces (e.g. Fig.2.2a), compositions are
designed on bigger surfaces, letting empty areas and voids play a more important
role in grouping autonomous sets of elements and adding a second layer of
interactions. Together with scaling differences and distances between individual
elements, maintaining a clear mental image of the compositional structure quickly
becomes onerous.

2. In Fig.2.2b, strokes are arranged so that the finer grain elements of the
composition prove difficult to memorize. The exploration of such texture and
nature-inspired patterns induces a feeling of pleasure more related to the sublime
than to composition. Summarizing Kant:

In front of the mathematical sublime (the celestial vault, the ocean), which
impresses by the immensity of its grandeur, as in the face of the dynamic
sublime (the storm on the raging ocean), which impresses by the immensity
of its power or of its strength, one is not fascinated by a form, but by the
formless, by the absence of form, and the spectacle first appears as doing vi-
olence to the subject, as infinitely exceeding what the imagination can grasp
in a unified way.9

8Redies et al., 2015.
9Lories and Lenain, 2002, p. 112: “Devant le sublime mathématique (la voûte céleste, l’océan), qui
impressionne par l’immensité de sa grandeur, comme devant le sublime dynamique (la tempête sur
l’océan déchaîné), qui impressionne par l’immensité de sa puissance ou de sa force, l’on n’est pas
fasciné par une forme, mais par l’informe, par l’absence de forme, et le spectacle apparaît d’abord
comme faisant violence au sujet, comme dépassant infiniment ce que l’imagination peut saisir de
manière unifiée.”
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a b

Figure 2.2: Two samples of excluded drawings.

I do not totally agree with this formless nature of the sublime, because sublime
typically represents for me the emergence of a form, a new form from globally
smaller indistinguishable ones. Sublime occurs exactly in the conflict between
known unorganized elements and an unidentified higher-level pattern. At any rate,
this perceptual confusion is far beyond the objective of this study.

In practice, the aforementioned rules keep some ambiguous boundaries, but they
guarantee a minimal level of complexity for the compositional phenomena we are
trying to model.

Figurative drawings

Another question that emerges in the selection of drawings for the dataset relates
to the inclusion of figurative drawings (Fig.2.3). We can obviously project upon
them the appearance of some animal or vegetation. Nonetheless, if we could
prevent our brain from desperately matching familiar patterns, we would notice
that their figurative attributes are only roughly suggested. If we pay more attention
to these sets of lines, their compositional arrangements are not very different
from abstract drawings. I have therefore decided to retain them as part of the
dataset.
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Figure 2.3: Figurative drawings of vaguely defined creature, human, and tree entities.

Figure 2.4: Interaction of a line with the B.P. Based on drawings by Kandinsky11.

For Klee, such emergence of the figurative is actually a non-event, not mandatory,
neither an issue for the composition.

An association of ideas can sooner or later occur in him and nothing will
prevent the artist from accepting it anymore if it presents itself under a re-
ally appropriate manner. This acquiescence to the object can then inspire
one or another addition that a given object, once its nature has been spec-
ified, is necessarily calling for. […] The debate therefore bears less on the
presence of the object as such than on its particular mode of existence, on
its presentation.10

Floating structures

The Basic Plane, B.P., as denominated by Kandinsky, is the material surface
hosting the art piece. Even if it is usually blank, the canvas does not passively
support strokes. The B.P. introduces forces in the composition by virtue of its
boundaries (Fig.2.4).

On approaching the boundary of the B.P., a form increases in tension until,
at the moment of contact with the boundary, the tension suddenly ceases.

10Klee, 1924/1998, p. 24: “Une association d’idées peut tôt ou tard se produire en lui et rien n’empêchera
plus l’artiste de l’accepter si elle se présente sous un nom vraiment approprié. Cet acquiescement à
l’objet peut alors inspirer telle ou telle adjonction qu’un objet donné, une fois précisée sa nature, se
trouve nécessairement appeler. […] Le débat porte dès lors moins sur la présence de l’objet comme
tel que sur son mode d’existence particulier, sur sa présentation.”

11Kandinsky, 1926/1991, p. 172
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Furthermore: the farther a form lies from the edge of the B.P., the weaker
becomes the attraction of the form to the edge.12

The frame and the shape of the frame is therefore a key element of the composition.
This point is mainly admitted and shared among artists, nonetheless it is never
precisely addressed in models. Only implicit boundaries, like a closed interval [0, 1],
is usually chosen for every stroke, but this choice is arbitrary. The upper limit is
for instance of 109 in a dataset of vectorial kanji13. With pixel-based classification
models trained on ImageNET14 like VGG15, the B.P. remains an implicit discrete
square area of 224px. None of these models actually materializes the boundaries,
and how this may be achieved in practice remains an open question. Luckily, my
artistic practice bypasses this issue entirely: all compositional structures are drawn
without regard for the borders of the canvas, or for surrounding drawings. In this
case:

They [the elements] are so loosely knit with the B.P. that the latter's ac-
companiment is scarcely audible; it disappears, so to speak, and the ele-
ments hover in space which, however, knows no precise limits (especially
in depth).16

Then, the central point of the composition becomes the main locus of tension
created with the B.P. Even if top and bottom concepts are still occasionally
present, the centroid of all the strokes is where the composition becomes fixed.
Lines evolve around the centroid with a concentric quality.

A simple complex of lines can finally be treated in two ways — either it has
become one with the B.P. or it lies free in space. The point clawing its way
into the plane is also able to free itself from the plane and to float in space.17

The cosmic form is only created through the suppression of gravity (through
elimination of material ties).18

In the compositional process, this central point is therefore not firmly imposed from
the beginning as for compositions in a frame. The center is slightly rebalanced
along the composition, depending on its constituent strokes (see Fig.2.5).
12Kandinsky, 1926/1991, pp. 171–172: “Une forme gagne en tension autant qu’elle s’approche des limites

du P.O. [Plan Originel], jusqu’au moment où la tension cesse subitement quand cette forme atteint
cette même limite. Et autant que cette forme s’éloigne des limites du P.O., autant la tension entre la
forme et les limites diminue.”

13Apel, 2009.
14Russakovsky et al., 2015.
15Simonyan and Zisserman, 2014.
16Kandinsky, 1926/1991, p. 156: “Leur rapport [des éléments] avec le P.O. est si relâché que celui-ci ne

résonne pour ainsi dire plus, disparaît presque, et que les éléments « planent » dans un espace sans
limites précises (surtout en profondeur).”

17Kandinsky, 1926/1991, p. 182: “Une simple composition linéaire peut être traitée de deux façons – ou
bien elle est intégrée au plan originel, ou elle flotte librement dans l’espace. Le point, qui s’incruste
dans le plan, peut lui aussi, se libérer de la surface et « planer » dans l’espace.”

18Klee, 1924/1998, p. 126: “La forme cosmique, n’apparaît qu’avec la suppression de la pesanteur. (Avec
la disparition des amarres terrestres.)”

60



2.2 Vectorial decomposition

a

b

Figure 2.5: Central composition. My graphical structures evolve around a center slightly rebalanced along
the compositional process. Shading in panel b is illustrating this idea for the original drawing
shown in panel a.

In this setup, an empty artwork cannot theoretically exist; no tension comes from
strokes, nor from the B.P. On the other hand, this initial state is easy to model
because it is closer to the mathematical definition of 𝟎.

2.2 Vectorial decomposition

This research program relies on computational tools that only accept numbers as
input. In this section, I will therefore detail the process of digitizing and vectorizing
my drawings. This transposition is critical because it defines what information will
be accessible to the model and how. There is no standard procedure, and each
step is tailored to specific modeling objectives and artistic expectations. Because
of the large number of elements (>5k) and the associated cost of manual work, it
is imperative to look beyond the present project and be minimally destructive, so
that the database may be used for other purposes in the future. If information
must be trimmed, this should happen as late as possible in the data-processing
pipeline.

Digitizing

Some drawing datasets19 like Google’s Quick, Draw! have been collected directly
on computers with simple drawing interfaces that record sequences of points at
19Eitz et al., 2012; Jongejan et al., 2016.
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regular time steps. Users could use their mouse or a stylus. The SUSIG signature
dataset20 has been recorded with pressure-sensitive tablets at high frame-rate.
Such tools would be extremely pertinent to study composition in the creative
process, as they could provide an absolute (non-ambiguous) and accurate stroke
definition. However, this type of interface represents a huge artistic constraint.
One may not like this medium as it does not provide nice stroke effects or the
right surface feeling. This setup may also be incompatible with the inspirational
atmosphere that is required for creative efforts to succeed. At least for me and this
dataset, the very small amount of compositional structures realized on a computer
or a tablet reflects these uncomfortable constraints.

Moreover, because this collection started 10 years ago, before any specification
of the present research project, most of my drawings had already been produced
on paper. The first processing action therefore involved a digitizing step. Each
drawing was individually digitized with an Epson Perfection V550 Photo scanner
at 1200 dpi and with a low sharpening correction. Files were saved in sRGB,
8bit per channel (gray or RGB) tiff with the LZW (Lempel-Ziv-Welch) lossless
compression. Fig.2.6a-k show raw scanned drawings at their actual size. This
selection is representative of the diversity of ink and paper used throughout the
dataset. Paper is mainly solid white, but there are also several ruled-paper examples
(Fig.2.6b,c), recycled paper examples printed on the other side (Fig.2.6d), and
darker yellowish draft paper (Fig.2.6f). Black ink with roller pens is the norm, but
there are also examples of colored ink (Fig.2.6d; if a single colored ink was used
throughout the drawing, it was scanned in gray), felt-tip pen (Fig.2.6f), brush
pen (Fig.2.6g), pencil (Fig.2.6h,i), and colored pencils (Fig.2.6a). Finally, the few
drawings produced digitally (Fig.2.6l) involved various formats (jpg, png, psd) and
qualities (compressed, uncompressed).

For the remaining processing steps, we will consider digitized images as linear
(converted from sRGB) float (double) arrays of values in the range [0, 1].

Inverted Scale drawings

The first processing step involves standardizing the definition of canvas versus
strokes for digitized images. For instance, in opposition with other drawings,
Fig.2.6l presents a dark background and white lines. This is the negative of the
expected scale of intensities. So, a contrast inversion or color inversion is required
(this step involved the simple operation 𝑖𝑚𝑔𝑜𝑢𝑡 = 1 − 𝑖𝑚𝑔𝑖𝑛). Fig.2.7b shows
the outcome of applying this transformation to Fig.2.7a. Supposing there are
more background pixels than stroke pixels, the inverted status of an image can be
initialized to true if its median value is below 0.5.
20Kholmatov and Yanikoglu, 2009.
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Figure 2.6: Diversity of pen, paper, and support found in the dataset. Scanned drawings are at their
actual size, except for panel l which is natively digital.
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Figure 2.7: Conversion of colored drawings to grayscale images. Panels a and e show two examples of
colored drawings. Panel b is the color-inverted version of a. Panels c and f are grayscale
versions using the standard luminance definition from the CIE 1931. Panels d and g use
𝑔𝑟𝑎𝑦 = 𝗆𝗂𝗇(𝑟, 𝑔, 𝑏) for grayscale conversion.

Colors

Because the large majority of drawings is monochromatic, removing colors repre-
sents a major means of simplification. Color is important to the composition but,
as Kandinsky stated:

Form can stand alone […]. Color cannot […]; it cannot dispense with bound-
aries of some kind.21

Similarly, Klee22 gave pictorial elements three nested dimensions, (color-quality
(grayscale-weight (line-measure))). It means that a given color is first and foremost
a quality, but at the same time it is weight and measure. A line, on the other
hand, only involves measure. Thus, simplification of the compositional vocabulary
can only be directed towards the line, a binary line. There is no color without an
outline and strokes represent minimal compositional words. In addition, if we think
about traditional Chinese painting23, lines represent ideal tools for creation.

If Chinese painting […] has privileged ink to the detriment of the colors, it
is because ink, on the one hand, by virtue of its internal contrasts, seems
sufficiently rich to express the infinite shades of nature and, on the other
hand, combining with the art of the line, it offers this unity which […] solves
the contradiction between drawing and color […]. By virtue of its double
quality of being both one and multiple, ink, like the brush, is considered a
direct manifestation of the original universe.24

21Kandinsky, 1912/1989, p. 115: “La forme seule, […] peut exister indépendamment. La couleur non. La
couleur ne se laisse pas étendre sans limite.”

22Klee, 1924/1998, pp. 19–20.
23Cheng, 1989, 2006.
24Cheng, 2006, p. 88: “Si la peinture chinoise […] a privilégié l’Encre au détriment des couleurs c’est

parce que l’Encre, d’une part, par ses contrastes internes, semble suffisamment riche pour exprimer
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Without invoking such mystical concepts, we may accept that excluding colors
from our modeling represents a reasonable choice. Images are usually converted
to grayscale by extracting luminance as defined by the 𝑌 component of the CIE
1931. For linear images with sRGB color components, luminance is given by
𝑌 = 0.2126729 𝑟 + 0.7151522 𝑔 + 0.0721750 𝑏.25 The result of this operation
is shown in Fig.2.7c,f. In both cases, yellow strokes almost disappear in the
background, which is problematic. The choice of black and white is purely
conventional. The presence or absence of ink, more than the colors of the couple
ink/paper, is what matters. Therefore, we are not merely turning images to
grayscale, we need to apply a more elementary transformation. We want to
convert drawings to binary maps of being and not being, of the mark of a tool
or the absence of a gesture. Remembering our childhood, we want to record the
regressive pleasure of seeing something where there was nothing26. With this
premise, we should extract any information that is far from white, i.e. far from 1
along each component. To do so, we can simply define 𝑔𝑟𝑎𝑦 = 𝗆𝗂𝗇(𝑟, 𝑔, 𝑏) (see
Fig.2.7d,g).

Binary maps

In Fig.2.8, close inspection of example drawings from Fig.2.6 highlights the
difficulties associated with binarization of the dataset: Fig.2.8b,c present light
gray rulers in the background; Fig.2.8c contains shadowing sketches; the lines in
Fig.2.8d have some inner white scratches; the paper in Fig.2.8f is darker than other
examples and presents ink soaking into its fibers; Fig.2.8g presents involuntary ink
dots on the right; Fig.2.8h,i contain very light pencil strokes with grainy shadowing;
Fig.2.8j,k use better quality pen and paper, but still display unwanted smudges.

The basic approach to binarization is to set a threshold: values below this threshold
are set to 0, those above to 1. Because of the changing intensities of ink and
paper, the threshold is initialized as the midpoint between the 5-percentile and
the 95-percentile of image values. Fig.2.9a,d,g,j show results from this automatic
thresholding procedure. This heuristic generally produces good results, however
some manual adjustment is usually required.

To limit ink soaking (Fig.2.9g) and grainy shadowing (Fig.2.9j), a Gaussian filter is
applied on the image which is then re-thresholded using a value of 0.5. The default
Gaussian kernel standard deviation is 2.0, and is manually adjusted afterwards on
a per-drawing basis. Fig.2.9b,e,h,k show example results.

les infinies nuances de la nature et, d’autre part, se combinant avec l’art du Trait, elle offre cette
unité qui […] résout la contradiction entre dessin et couleur […]. Par sa double qualité à la fois une et
multiple, l’Encre, comme le Pinceau, est considérée comme une manifestation directe de l’Univers
originel.”

25Lindbloom, 2017.
26Arnheim, 1954/2004, p. 171.
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Figure 2.8: Close-up (x5) of scanned drawings. Panel letters correspond to the same compositional
structures of Fig.2.6.
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Figure 2.9: Binary map processing. Panels a, d, g, j are binarized with automatically determined thresholds.
Panels b, e, h, k show binary maps smoothed with a Gaussian filter. Panels c, f, i, l are
corrected with hand-drawn masks (highlighted in gray).
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a b

Figure 2.10: Binary maps are automatically cleaned of small black and white unwanted dots/stains
(indicated by dotted circles in a). Panel b shows the final result.

Lines become more distinguishable, but many stains remain (Fig.2.9b,k) and some
tangential strokes are merged (Fig.2.9e,h,k). A manual cleaning operation is
therefore required. A mask is hand-drawn on unwanted regions. This mask is
multiplied with the binary image before the smoothing step. This way the masking
operation does not introduce sharper edges. Fig.2.9c,f,i,l present example results
(masks are highlighted in gray).

In some cases (Fig.2.10a), black or white dots are still scattered randomly. They
usually occupy only a few pixels and are difficult to identify. To get rid of
them automatically (Fig.2.10b), we compute all contours on the binary map, i.e.
the boundaries between black and white pixels, and then extract the associated
hierarchical tree27. For instance, contours of white dots at the bottom of Fig.2.10a
can be considered as children of the surrounding black area. As a result, it is possible
to filter out all contours that do not correspond to leaves in the hierarchical tree and
that are bigger than a manually defined area in pixels (default is 4). Furthermore,
if we add 1 background pixel around the image before contour extraction, we can
assign a value (0 or 1) to the interior of a contour based on its depth within the
tree structure (even or odd). We then fill selected spurious surfaces with the
computed value to obtain a clean binary map from a digitized drawing. The whole
process is summarized in Algorithm.2.1 (Algorithms are grouped at the end of this
chapter).

Surfaces to lines

As we target a model of the composition considering artworks as a sequence of
strokes, we need to recover from binary maps the generating trajectories of the
forms. We want to extract the skeleton inside surfaces, the centerline of strokes.
The application of this idea to Fig.2.11a produces sensible results (Fig.2.11d). If
27We used the function findContours from OpenCV (https://opencv.org). Please check their documen-

tation for further details.
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Figure 2.11: Practical issues arise when transposing surfaces to lines. Panels a, b, c are binary maps.
Panel d shows the nominal case. In panel e, extracted skeleton does not reflect original
stroke widths. Panels f and g explore possible line definitions of large dots and circles.

we thicken the skeleton to match the original pen size, we perfectly recover the
drawing. But this procedure only works because the different lines have similar
width. If we consider Fig.2.11b,e, the extracted skeleton seems lost over wider
surfaces. In order to make this approach practicable, we must extract centerline
and stroke width at the same time. Strokes then become 3-dimensional objects.
They may result from 3-d gestures by the artist. The third axis is virtually like
the vertical varying pressure of a calligraphic pen brush28. To retain the original
number of strokes and trajectories as closely as possible, centerlines should be
broken in correspondence with sudden width changes, e.g. by discarding dotted
portions of the skeleton in Fig.2.11e.

The extraction, storage and visual representation of stroke width are difficult tasks.
Available vectorization algorithms are not designed to record width. Additionally,
the main open source vectorial graphics format, SVG (Scalable Vector Graphics),
does not propose an implementation of varying stroke width or stroke profile29. The
most popular commercial solution is Adobe’s Illustrator30. Its .ai files carry a width
feature, but their format is proprietary and is not easily modified computationally
28Introduction à la calligraphie chinoise. 1997; Yee, 1974.
29Official documentation at https://www.w3.org/TR/SVG2/
30More details at https://www.adobe.com/products/illustrator.html
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as with SVG (which is XML31 based). Width data could be stored outside the SVG
file, but the complexities and costs associated with implementing this strategy and
subsequently visualizing the results pose numerous difficulties. The development
of a versatile SVG library to precisely manipulate 2-d graphics programmatically
already required a large investment of time32. For all these reasons, I have decided
to bypass the width issues temporarily and postpone 3-d representation of strokes
to future efforts.

The above simplification, although necessary to allow smooth progress of my
research program, does introduce compositional losses that must be addressed.
A very noticeable loss concerns dots, disks, and rings. In Fig.2.11b, we have for
instance two dots that are skeletonized as a short line in their center (Fig.2.11e).
This result appears coherent because the size of these elements is obviously on
the scale of a dot when compared with the rest of the drawing. But what about
the bottom round area of Fig.2.11c? In this case, an outline (Fig.2.11g) would be
a better representation of the form and its compositional impact/expressiveness,
rather than the short centerline in Fig.2.11f.

The point can grow and cover the entire ground plane unnoticed — then,
where would the boundary between point and plane be?33

The limit between a dot and a disk or, similarly, between a line and a filled square34,
is already difficult to establish perceptually. Then, how can we define a simple
heuristic to discriminate those instances? For example, the thick annular form in
the center-right of Fig.2.11c is not better defined by its double outlines as opposed
to its centerline (Fig.2.11f,g). We considered manually fixing such configurations,
but the ratio cost/modeling improvement seemed to low to further investigate the
issue.

Concerning the implementation of the algorithm, skeletonization is a procedure
that attempts to iteratively thin surfaces to centerlines by using morphological
operations (erosion) together with local connectivity heuristics.35 Two classical
algorithms36 are already implemented in libraries like scikit-image37 and are easily
accessible. Fig.2.12a,b show the differences between these algorithms. The most
recent alternative in Fig.2.12b has been preferred for its clearer outputs. The
end of squarish strokes is clean, without small branch-like line segments. The big
round area is also skeletonized as a proper dot rather than a messy angular line.
31XML (Extensible Markup Language): https://www.w3.org/TR/xml/
32It will be detailed in Chapter.6 when discussing art production from the model.
33Kandinsky, 1926/1991, p. 30: “Le point peut grandir, devenir surface et remplir imperceptiblement

toute la surface de base – où serait alors la limite entre point et surface ?”
34Kandinsky, 1926/1991, p. 108.
35There are some exceptions to this scheme. Noris et al., 2013 proposes a gradient-based clustering

algorithm on images that do not require binarization, and Feldman and Singh, 2006 addresses the
problem with a Bayesian probabilistic approach.

36T. Lee et al., 1994; T. Y. Zhang and Suen, 1984.
37van der Walt et al., 2014. Find more information at: https://scikit-image.org
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Figure 2.12: Skeletonization. Panels a and b show the differences between two skeletonization algorithms
(a: T. Y. Zhang and Suen, 1984, b: T. Lee et al., 1994). Panels c and d depict the
importance of manual masking to disentangle messy skeleton structures.

However, the selected algorithm still produces complex structures in ambiguous
situations (Fig.2.12c). Fig.2.12d demonstrates the critical role of manual masking
(in gray) to unravel intricate graphical elements.

Besides the centerline utilized for modeling, an outline vectorization is useful for
illustration purposes and some reproductions on paper. Specific algorithms exist38,
but we do not require precise control of the level of simplification applied to curves,
so we relied on the open source software Potrace39, which produces SVG files of
sufficient quality.

Skeleton disentanglement

It is necessary to handle individualization of lines. The skeleton structures intro-
duced so far do not incorporate functional features. In other words, we need to
decompose each skeleton into appropriate sub-elements. This processing step is
typically difficult at intersections, where joining lines may be converging or overlap-
ping. We first cut all lines between intersections, and then find smart ways to group
the right line segments in order to preserve stroke continuity. This issue is central
to vectorization of line drawings, and has a long history in computer vision40. Each
paper proposes its own heuristics and claims the best general results. Depending
on the targeted application (font or kanji/hànzì vectorization, design sketches,
artistic drawings), there are different trade-offs between fidelity to the original and
simplicity of the result (e.g. geometrical correctness in the case of architectural
drawings). Furthermore, when tools are publicly available (for instance, it is not
the case for the excellent paper from Disney41 dedicated to animation drawings),
they provide an integrated solution, from file to file. Individual processing steps
38Hurtut et al., 2011.
39Selinger, 2019.
40Among others: Favreau et al., 2016; Hilaire and Tombre, 2006; Janssen and Vossepoel, 1997; Liao and

Huang, 1990; Noris et al., 2013.
41Noris et al., 2013.
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are not accessible and adaptation to a particular purpose is difficult. Results from
recent approaches42 are smooth and clean, but I was unable to integrate these
algorithms into my processing pipeline with sufficient control. On the other hand,
open-source projects like Autotrace43 are easy to use, but produce unsatisfactory
results. This issue has recently been tackled using machine learning. One study44
proposed an approach to isolate strokes in a drawing based on a learning procedure.
The results are promising, but each trained network is dedicated to a stereotyped
class of drawings, e.g. stroked or constant-width kanji, which is problematic for
application to a diverse dataset such as mine.

With the goal of precisely controlling each aspect of vectorization, I ended up
implementing a simple, yet qualitative algorithm of skeleton disentanglement.
Fig.2.13b demonstrates good connection of strokes under different configurations
of line style and width variation. I will describe the method using the three example
intersections highlighted by gray disks in Fig.2.13a. Labels for these intersections
correspond to the close-ups shown in Fig.2.13c,g,k. The results (Fig.2.13f,j,n) are
compared with Autotrace (Fig.2.13e,i,m).

We define the neighbor of a pixel as its 8 directly adjacent surrounding units. In
Fig.2.13d, we can then disambiguate line-pixels (light gray, 2 neighbors) from one
intersection-pixel (dark gray, 3 neighbors). To know which lines to connect, we
need to focus on the intersection point and compute orientation vectors for each
line-end. We know from the general context (Fig.2.13a) that the two horizontal
lines should be connected. Autotrace fails here (Fig2.13e) because it computes
these vectors from the local neighbor only (dotted vectors). The angle between
horizontal lines is smaller than the angle formed by each of them with the vertical
line. The algorithm then picks one of two equally satisfactory possibilities. Our
method works because we compute the orientation vector from a larger distance
along the line. This distance is set to an estimate of the mean stroke width
used in the drawing. This approach incorporates contextual information and helps
overcome the skeletonization artifacts typically found at intersections. Under
these conditions, a connection between the two horizontal lines is favored (see
Fig2.13f).

Intersection 𝑔, with two crossing lines (four ends), presents a different challenge
to Autotrace. In Fig2.13h, we notice that there are four intersection-pixels. In
Autotrace, this situation is handled by iteratively applying its policy four times.
First, it addresses the top intersection pixel and connects the top and right lines
because of the local configuration. It is the same inverted Y, and the same
incorrect choice as in the previous example. Then, other ends are excluded from
possible connections (Fig.2.13i). Moreover, they are locally orthogonal and remain

42Favreau et al., 2016.
43Weber, 2016.
44B. Kim et al., 2018.
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Figure 2.13: Skeleton disentanglement. Panel a shows the skeleton extracted from a drawing. Three
intersections are highlighted in gray and named after panels c, g and k, being close-ups
of these intersections. Panel b is the result of our skeleton disentanglement algorithm.
Continuous strokes are represented by different line styles and width variations. Close-ups of
this result are given by panels f, j, n and compared with Autotrace in e, i, m. Panels d, h, l
show explanatory diagrams of our method.

73



2 Personal practice

split. Inspired by previous work45, our method clusterizes intersections so that all
line-ends belong to the same problem. Fig.2.13j shows how opposing segments
are successfully joined.

Concerning case 𝑘, the issue here is that a very short line separates the intersection
into two groups (see Fig.2.13l). This artifact often happens with larger stroke
width. Four line-ends do not belong to the same problem and cannot be addressed
all at once. Unsurprisingly, Autotrace fails (Fig.2.13m), but our method overcomes
this issue (Fig.2.13n). We consider all lines between two intersections and smaller
than some length (set by default to 75% of the estimated stroke width) as
connection lines. Intersections are then clustered and resolved in the same manner
as described above. If all lines in contact are connected, the small connection line
is discarded. Otherwise, it can be re-evaluated as a normal line during a second
run. Our complete procedure for converting a binary map to individual lines is
detailed in Algorithm.2.2.

Parametric curves

Strokes are now defined as sequences of 2-d points separated by ∼1 pixel. Further-
more, a stroke is by definition a continuous event, i.e. the pen is not lifted from
the paper. It implies that these points should be connected to build the curve. So,
we need to repair the discretization introduced by the digitization of the drawing
as an array of pixels. The most simple parametric formulation to join two points
is the linear interpolation i.e. a line segment. Let us call these two points 𝒑0 and
𝒑1. The newly created line 𝒍 will be parameterized by 𝑢, so that:

𝒍(𝑢) = (1 − 𝑢)𝒑0 + 𝑢𝒑1 = 𝒑0 + 𝑢(𝒑1 − 𝒑0) , 𝑢 ∈ [0, 1] (2.1)

Joining linearly all consecutive pairs of points, the whole curve is called a polygonal
line or a polyline. Although accurate, this definition is far from optimal (Fig.2.14a).
We are looking for a parametric definition that makes sense for artists. With
pixel-polylines, the granularity of information is very unlikely to match the rate
of conscious actions displayed by artists. Simplification is therefore required. For
instance, aligned points could be easily simplified using their extremities without
any loss. The idea is then to remove points that lie almost on the same line
produced by their neighbors. The Ramer-Douglas-Peucker (RDP) algorithm46

applies this idea recursively. It first draws a new line between the first and the last
points. If no middle points exceed a certain user-defined distance to the new line,
then all these points can be discarded. Otherwise, if at least one of them is too far
from the new line, the furthest point is kept and the procedure is repeated on both
sides around this point. Results of the RDP procedure are shown for increasing
tolerance distances in Fig.2.14b,c,d. This algorithm has been used in previous
45Favreau et al., 2016; Noris et al., 2013.
46Douglas and Peucker, 1973; Ramer, 1972.
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Figure 2.14: Polylines from RDP algorithm. Panel a shows initial pixel-polylines. Panels b, c, and d show
simplified versions generated by the RDP algorithm for increasing tolerance distances (2, 10,
20).

work47. It is interesting because it is easy to implement, and because model inputs
remain sequences of 2-d points. However, it introduces over-sampling near curved
regions (see circle in Fig.2.14b). In addition, it is still quite dissimilar from the
definition of stroke that would be provided by an artist.

Among physiologically plausible models of drawing movements48, the Sigma Lognor-
mal model has proved effective in multiple contexts. It has successfully described
signature, handwriting, and simple sketching phenomena49. The model provides
a parametric definition of curves produced by human rapid movements50. It de-
composes a stroke as the sum of its neuromuscular actions. A curve 𝒔 is then
represented by the combination of 𝑛 independent components suitable for describ-
ing wrist rotations via circular arcs, and muscular accelerations/decelerations via
lognormal velocity profiles. Time 𝑡 becomes the driving parameter and evolves
over an open interval [0, 𝑡𝑒𝑛𝑑]. With 𝒔0 the initial point of the curve, and 𝑝𝑖 the
shape parameters of each component:

𝒔(𝑡) = 𝒔0 + ∫
𝑡

𝜏=0
𝒗(𝜏)𝑑𝜏 = 𝒔0 + ∫

𝑡

𝜏=0

𝑛
∑
𝑖=1

𝒗𝑖(𝜏, 𝑝𝑖)𝑑𝜏 (2.2)

We will now consider only one component and omit subscript 𝑖 for legibility. 𝒗(𝑡, 𝑝)
can be decomposed into polar coordinates via its norm 𝑣(𝑡, 𝑝) = ‖𝒗(𝑡, 𝑝)‖ and angle
𝜙(𝑡, 𝑝), where 𝑝 = [𝐷, 𝑡0, 𝜇, 𝜎, 𝜃0, 𝜃1] : 𝐷 (intensity of the neuromuscular action),
𝑡0 (time occurrence of this action), 𝜇, 𝜎 (lognormal distribution parameters), 𝜃0,
𝜃1 (starting and ending angles of the action arc).

47Clanuwat et al., 2018; Ha and Eck, 2017.
48Flash and Hogan, 1985.
49Berio et al., 2017; Fischer and Plamondon, 2015; Leiva et al., 2015; O’Reilly and Plamondon, 2008.
50Plamondon, 1995a, 1995b.
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Figure 2.15: Sigma Lognormal parameterization (figure based on Berio et al., 2017). A Sigma Lognormal
curve 𝒔(𝑡) (black line, panel b) is a sequence of circular arcs (𝒗1(𝑡), 𝒗2(𝑡), 𝒗3(𝑡) in panel
a). As the velocity profiles of these components usually overlap over time (panel c, especially
at intervals a and b), the real path of the curve blends smoothly between arcs (highlighted
by gray circles in panel b).

𝑣(𝑡, 𝑝) = 𝐷
𝜎(𝑡 − 𝑡0)

√
2𝜋

𝖾𝗑𝗉(−(𝗅𝗇(𝑡 − 𝑡0) − 𝜇)2

2𝜎2 ) , 𝑡 > 𝑡0

𝜙(𝑡, 𝑝) = 𝜃0 + 𝜃1 − 𝜃0
𝐷

∫
𝑡

𝜏=𝑡0

𝑣(𝜏, 𝑝)𝑑𝜏
(2.3)

In short, to rephrase the whole Sigma Lognormal parametric definition, consider a
stroke as a sequence of circular arcs (e.g. 𝒗1, 𝒗2, 𝒗3 in Fig.2.15a). These different
components do not happen exactly one after the other: their velocity profiles
usually overlap over time (see Fig.2.15c, especially at intervals a and b). As
a result, the real path of the curve blends smoothly between arcs (Fig.2.15b).
Endpoints of components actually only constitute visual targets (represented by
gray points in Fig.2.15a,b), where the amount of smoothing is directly driven by
the velocity norm ratio of each component along the path (see gray circles in
Fig.2.15b corresponding to aforementioned intervals a and b).

At this stage, we must consider whether a physiologically plausible definition of curve
decomposition is actually necessary, or even desirable, for the specific application of
our research program. For instance, when the true velocity of a stroke is recorded,
this model is legitimate enough to enable biometric signature validation by the
analysis of neuromuscular constants and other shape parameters51. Even for cases
in which tracing dynamics is not available (as in our case), an approximate procedure
has been proposed52 that produces plausible data augmentation of handwriting
datasets, conserving individual stylistic characteristics. Notwithstanding its benefits,
this parametric definition relies on stroke executions faster than those associated
51Fischer and Plamondon, 2015.
52Berio et al., 2017.
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Figure 2.16: Tensions of the line and the curve. Based on drawings by Kandinsky55.

with lines in my dataset. The structure of curves in my drawings is primarily
dictated by compositional factors and less so by neuromuscular events. In addition,
my modeling intentions are more focused on shapes than on their generating
dynamics. Stroke widths are discarded and cannot be used as proxy for drawing
velocity. Given the above, extraction of relevant physiological parameters from
the final shape becomes too expensive. Having said that, the idea of smooth
curve interpolation between visual targets is definitely interesting, provided we
find simpler motivations/interpretations for these targets and their associated
parameters. We can probably get some insights from modern artists who have
evoked a vectorial definition of curves.

The external forces which transform the point into a line can be diverse. The
variation in lines depends upon the number of these forces and upon their
combinations.53

For Kandinsky, as a line results from the movement of a point, a natural way to
materialize its active forces is by the use of tangential arrows (Fig.2.16a). However,
his pedagogical drawings in Fig.2.16b show a conflict with arrows normal to curves.
They seem related to a different phenomenon, as forces specifically implied by the
curve, like perceptual tensions.

The inner difference [of the curved line] from the straight line consists in
the number and kind of tensions: the straight line has two distinct primitive
tensionswhich play anunimportant role in the case of the curved line, whose
chief tension resides in the arc.54

This notion of tensions housed in arcs could be the right way to decompose
complex curves: one tension per component. Mathematically, it could be related
to locations of curvature inversion.
53Kandinsky, 1926/1991, p. 67: “Les forces extérieures qui transforment le point en ligne peuvent être de

nature très différente. La diversité des lignes dépend du nombre de ces forces et de leurs combinaisons.”
54Kandinsky, 1926/1991, p. 96: “La différence intérieure entre les lignes courbes et droites consiste dans

le nombre et la nature des tensions : la ligne droite subit deux tensions primitives définies qui ne jouent
qu’un rôle insignifiant pour la ligne courbe – dont la tension essentielle se situe dans l’arc.”

55Kandinsky, 1926/1991, pp. 96, 97, 103
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Figure 2.17: Imaginary trajectories associated with arrows for Klee. Uneven lengths [𝑎, 𝑏] and uneven
angles [𝛼, 𝛽] result in a deviating course58.

Klee also considers lines as points in movement, but his vectorial thinking takes
even more materiality in arrows, present in many of his final works56. This
graphical element enters the composition like any others, but possesses a unique
expression: “the father of the arrow is the thought.”57 Arrows embody the physically
unachievable will. An arrow head even confers to a line a hypothetical target. Even
the subtle arrangement of its head can inflect an imaginary trajectory (Fig.2.17)

What seems important to artists is therefore physical properties of the line reflecting
its genesis, as well as hidden intentions, or more pragmatically, the suggestion of
inflecting targets. In other words, a curve seems representable by specific landmarks
lying on its path, together with tangential inputs guiding the trajectory. This
description is not so far from popular Bézier curves, which are precisely popular for
the legibility of their parameters. An artist without any mathematical background
can easily handle multiple control points to shape a specific design. Their low
computational cost and optimized rendering algorithm are also key elements of
their success. Bézier curves are implemented in computer typography technologies,
in web browser graphics and particularly in the SVG format. For these reasons,
Bézier curves represent a reasonable choice for parameterization. Nonetheless, this
choice must be appropriately justified. I will try to detail its benefit and suitability
for artistic interpretations and modeling purposes.

Bézier curves

Bézier curves have been independently invented by two french automobile engineers
in the late 50s. De Casteljau has been the first to use it at Citroën, but he did
not publish his work due to patent restrictions. At roughly the same time Bézier,
who worked at the competing company Renault, shared his work widely and the
curves were therefore named after him. Let us begin with their mathematical
definition. Given 𝑛 + 1 control points [𝒑0, 𝒑1, … , 𝒑𝑛], a Bézier curve 𝒄 of degree
𝑛, parameterized by 𝑢, is defined by:
56To cite a few: Affected Place (1922), Wavering Balance (1922), Mural from the Temple of Longing

↖Thither↗ (1922), Eros (1923), Arrow in the garden (1929)
57Klee, 1924/1998, p. 128: “Père de la flèche est la pensée.”
58Klee, 1924/1998, p. 131
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Figure 2.18: Panel a shows a Bézier curve 𝒄(𝑢) of degree 𝑛 = 8 and its 9 𝒑𝑖 control points. The thin
gray line is the control polyline. Dotted arrows are tangents at 𝒄′(0) and 𝒄′(1). Panel b
shows associated Bernstein polynomials.

𝒄(𝑢) =
𝑛

∑
𝑖=0

𝑏𝑛,𝑖(𝑢)𝒑𝑖 , 𝑢 ∈ [0, 1] (2.4)

A Bézier curve (e.g. Fig.2.18a) can therefore be considered as a weighted average
of its control points by 𝑏𝑛,𝑖(𝑢), called the basis functions. These coefficients
correspond to Bernstein polynomials (see examples in Fig.2.18b), defined as:

𝑏𝑛,𝑖(𝑢) = (𝑛
𝑖
)𝑢𝑖(1 − 𝑢)𝑛−𝑖 = 𝑛!

𝑖!(𝑛 − 𝑖)!
𝑢𝑖(1 − 𝑢)𝑛−𝑖 (2.5)

This simple definition carries several interesting properties, such as the behavior of
𝒄 at its extremity, i.e. when 𝑢 = 0 and 𝑢 = 1. With the convention of 00 = 1:

𝑏𝑛,𝑖(0) = (𝑛
𝑖
)0𝑖 = {

1 if 𝑖 = 0
0 otherwise

⟹ 𝒄(0) = 𝒑0

𝑏𝑛,𝑖(1) = (𝑛
𝑖
)0𝑛−𝑖 = {

1 if 𝑖 = 𝑛
0 otherwise

⟹ 𝒄(1) = 𝒑𝑛

(2.6)

This result shows that any Bézier curve passes through its first and last control
points (see Fig.2.18a). Another important aspect of the desired parameterization
relates to tangents and curvature along the path. Let us compute derivatives for
𝑏𝑛,𝑖 and 𝒄 w.r.t 𝑢.
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𝑏′
𝑛,𝑖(𝑢) = 𝑛!

𝑖!(𝑛 − 𝑖)!
𝑖𝑢𝑖−1(1 − 𝑢)𝑛−𝑖 − 𝑛!

𝑖!(𝑛 − 𝑖)!
𝑢𝑖(𝑛 − 𝑖)(1 − 𝑢)𝑛−𝑖−1

= 𝑛 (𝑛 − 1)!
(𝑖 − 1)!(𝑛 − 𝑖)!

𝑢𝑖−1(1 − 𝑢)𝑛−𝑖 − 𝑛 (𝑛 − 1)!
𝑖!(𝑛 − 1 − 𝑖)!

𝑢𝑖(1 − 𝑢)𝑛−1−𝑖

= 𝑛(𝑏𝑛−1,𝑖−1(𝑢) − 𝑏𝑛−1,𝑖(𝑢))
(2.7)

and,

𝒄′(𝑢) =
𝑛

∑
𝑖=0

𝑏′
𝑛,𝑖(𝑢)𝒑𝑖

=
𝑛

∑
𝑖=1

𝑏𝑛−1,𝑖−1(𝑢)(𝑛𝒑𝑖) −
𝑛−1
∑
𝑖=0

𝑏𝑛−1,𝑖(𝑢)(𝑛𝒑𝑖)

=
𝑛−1
∑
𝑖=0

𝑏𝑛−1,𝑖(𝑢)(𝑛(𝒑𝑖+1 − 𝒑𝑖))

(2.8)

By recursion, we can obtain the second derivative of 𝒄:

𝑏″
𝑛,𝑖(𝑢) = 𝑛(𝑛 − 1)(𝑏𝑛−2,𝑖−2(𝑢) − 2𝑏𝑛−2,𝑖−1(𝑢) + 𝑏𝑛−2,𝑖(𝑢))

𝒄″(𝑢) =
𝑛−2
∑
𝑖=0

𝑏𝑛−2,𝑖(𝑢)(𝑛(𝑛 − 1)(𝒑𝑖+2 − 2𝒑𝑖+1 + 𝒑𝑖))
(2.9)

Let us observe once again the behavior of 𝒄′ and 𝒄″ at extremities 𝑢 = 0 and
𝑢 = 1. Reusing results form Eq.2.6:

𝒄′(0) =
𝑛−1
∑
𝑖=0

𝑏𝑛−1,𝑖(0)(𝑛(𝒑𝑖+1 − 𝒑𝑖)) = 𝑛(𝒑1 − 𝒑0)

𝒄′(1) =
𝑛−1
∑
𝑖=0

𝑏𝑛−1,𝑖(1)(𝑛(𝒑𝑖+1 − 𝒑𝑖)) = 𝑛(𝒑𝑛 − 𝒑𝑛−1)

𝒄″(0) = 𝑛(𝑛 − 1)(𝒑2 − 2𝒑1 + 𝒑0)
𝒄″(1) = 𝑛(𝑛 − 1)(𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2)

(2.10)

As a result, the vector produced by the first two control points is tangential to
the starting point of the curve. The last two points operate similarly with respect
to the end point of the curve (see dotted arrows in Fig.2.18a). In addition, it
can be shown that other intermediary control points would also have a global
impact on the curve, but without a direct interpretation, as a point lying on
the curve or a tangent. If we want to maintain an artistic meaning for every
control point, the upper limit on curve degree is 3. These curves are called cubic
Bézier and correspond to 4 control points. Higher degrees present more powerful
characteristics and abilities to model complex strokes, but the impact of each
control point reduces proportionally to the number of points (see for instance 𝒑4
in Fig.2.18a which does not inflect the whole curve as we may expect).
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Another approach to the approximation of real strokes of arbitrary complexity
is to join multiple Bézier curves. The resulting curve is then called composite
Bézier curve or polybezier (see Fig.2.19). A condition of 𝐶0 continuity is naturally
required, i.e. successive endpoints must be joined, but we can add other constraints
to ensure higher degrees of continuity and to produce smooth curves, i.e. without
sharp angles59. For a minimal example, let us consider two Bézier curves 𝒄 and 𝒅
(with degree 𝑚 and 𝒒𝑗 control points). Enforcing 𝐶0, 𝐶1 and 𝐶2 implies:

𝐶0 ⟹ 𝒄(1) = 𝒅(0)
𝒒0 = 𝒑𝑛

𝐶1 ⟹ 𝒄′(1) = 𝒅′(0)
𝑛(𝒑𝑛 − 𝒑𝑛−1) = 𝑚(𝒒1 − 𝒒0)

𝒒1 = 𝒑𝑛 + 𝑛
𝑚

(𝒑𝑛 − 𝒑𝑛−1)

𝐶2 ⟹ 𝒄″(1) = 𝒅″(0)
𝑛(𝑛 − 1)(𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2) = 𝑚(𝑚 − 1)(𝒒2 − 2𝒒1 + 𝒒0)

𝒒2 = 𝒑𝑛 + 2𝑛
𝑚

(𝒑𝑛 − 𝒑𝑛−1) + 𝑛(𝑛 − 1)
𝑚(𝑚 − 1)

(𝒑𝑛 − 2𝒑𝑛−1 + 𝒑𝑛−2)

(2.11)

Therefore, if 𝒄 is fixed, 𝒒0, 𝒒1 and 𝒒2 do not have any degree of freedom. Their
positions are completely constrained by 𝒑𝑛−2, 𝒑𝑛−1, 𝒑𝑛 and curve degrees 𝑛,
𝑚. Intuitively, tangent orientation and direction should be sufficient to ensure
first-order continuity between 𝒄 and 𝒅, but here 𝒒1 has to be placed at a specific
distance. So, to better fit our intuitive idea of continuity, the concept of geometric
continuity 𝐺 has been introduced. The mathematical ground is that the “traditional
measure of continuity [ 𝐶 ] is affected by reparameterization.”60 For this reason, the
introduction of free parameters 𝛽 partially release the constraints of 𝐶 continuity.

𝐺0 ⟹ 𝒒0 = 𝒑𝑛

𝐺1 ⟹ 𝒒1 = (1 + 𝛽1)𝒑𝑛 − 𝛽1𝒑𝑛−1

= 𝒑𝑛 + 𝛽1(𝒑𝑛 − 𝒑𝑛−1)
𝐺2 ⟹ 𝒒2 = (𝛽2

1 + 2𝛽1 + 1 + 0.5𝛽2)𝒑𝑛 − (2𝛽2
1 + 2𝛽1 + 0.5𝛽2)𝒑𝑛−1 + 𝛽2

1𝒑𝑛−2
(2.12)

To retain 𝐺1, 𝒒1 can be at any positive distance 𝛽1‖𝒑𝑛 − 𝒑𝑛−1‖ from 𝒑𝑛 on the
tangent line defined by 𝒑𝑛 − 𝒑𝑛−1. So, while fitting the curve 𝒅 to a pixel-line, 𝛽1
can be adjusted to any positive real. Optimization of 𝛽2 would behave similarly.
Fig.2.19 illustrates 𝐺0, 𝐺1 and 𝐺2 continuity with two cubic Bézier curves.

Even if we do not consider strokes of the dataset as rapid movements (in the Sigma
Lognormal definition), a stroke is, in principle, the result of an uninterrupted gesture.
59𝐶 stands for mathematical parametric continuity, sometimes called the smoothness of a function.
60Fournier and Barsky, 1985a, 1985b.
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Figure 2.19: Illustration of geometric continuity with two cubic Bézier curves 𝒄 (𝒑𝑖 control points, dotted
black line) and 𝒅 (𝒒𝑖 control points, black line). In panel a, 𝐺0 is not violated because
𝒑3 = 𝒒0. Panel b shows 𝐺1 continuity by enforcing 𝒒1 to lie on the tangent line passing by
𝒒0 (gray dotted line, 𝛽1 = 0.5). 𝐺2 is depicted in panel c, where 𝒒1 and 𝒒2 are computed
from Eq.2.12 (𝛽1 = 0.5, 𝛽2 = 1.0). As a result, an arc can be drawn to follow the
curvature of the composite Bézier curve on each side of 𝒒0 (gray dotted line).

Therefore, the presence of a sharp angle along a curve (breaking 𝐺1) would imply
two different strokes (Fig.2.19a). Nonetheless, a quick change of direction can still
satisfy the 𝐺1 constraint. Tangents at a point can take different magnitudes (e.g.
a very small 𝛽1) and remain aligned, allowing local, yet smooth, inflection. On the
other hand, breaking 𝐺2 would only provoke unbalanced curvatures at junctions.
In other words, the center of the circle that would fit inside the curve would be
different on each side. Conforming to 𝐺2 could enforce the natural aspect of true
dynamic strokes (see Fig.2.19c), but this requirement is too restrictive for our
dataset. 𝐺1 seems intuitively sufficient for good visual continuity (Fig.2.19b).

However, is this choice practical? For modeling purposes, the degree of Bézier
curves must remain constant for every component of a composite curve and for
every stroke of the dataset. Therefore, what degree corresponds to a feasible
fitting scenario? Let us consider three consecutive Bézier curves 𝒄 (𝒑𝑖 control
points), 𝒅 (𝒒𝑖 control points) and 𝒆 (𝒓𝑖 control points) of degree 𝑛. The fitting
procedure will focus on 𝒅 only. Adjacent 𝒄 and 𝒆 will be considered as already
fitted and fixed. If 𝑛 = 1, a Bézier curve is equivalent to a linear interpolation
(Eq.2.1) and possesses only two control points. In this condition:

𝐺0 ⟹ 𝒒0 = 𝒑1 𝒒1 = 𝒓0 (2.13)

Linear Bézier curves are already problematic for a fitting procedure with 𝐺0

continuity, because there is no degree of freedom. If the line segment 𝒒 is not a
good approximation of its curve portion, there is no alternative to subdividing the
problem. This configuration is actually similar to the RDP algorithm described
earlier. Then, let us look at quadratic Bézier curves with 𝑛 = 2 (3 control
points):
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Figure 2.20: Fitting difficulties associated with quadratic Bézier curves. Panels a and c show two scenarios
for which extremity tangents (gray dotted vectors) join at an impossible location for an
approximation by one quadratic Bézier curve (black empty circles). In a, 𝛽1 = 𝛽′

1 = 0 and
in c, 𝛽′

1 < 0. At least one subdivision is required, and panels b, d present the resulting fit by
two quadratic Bézier curves (dotted and solid dark lines). Panel e demonstrates this issue in
a real-world case. Even if the line to fit is simple, its alternating concave and convex parts
produce a large number of components.

𝐺0 ⟹ 𝒒0 = 𝒑2 𝒒2 = 𝒓0

𝐺1 ⟹ 𝒒1 = 𝒑2 + 𝛽1(𝒑2 − 𝒑1) 𝒒1 = 𝒓0 + 𝛽′
1(𝒓0 − 𝒓1)

𝛽1 = 𝖽𝖾𝗍(𝒓0 − 𝒑2, 𝒓0 − 𝒓1)
𝖽𝖾𝗍(𝒑2 − 𝒑1, 𝒓0 − 𝒓1)

𝛽′
1 = 𝖽𝖾𝗍(𝒑2 − 𝒑1, 𝒑2 − 𝒓0)

𝖽𝖾𝗍(𝒑2 − 𝒑1, 𝒓0 − 𝒓1)

(2.14)

To satisfy the 𝐺1 requirement, we notice that 𝒒1 becomes the intersection of the
tangents from both sides. As a result, 𝛽1 and 𝛽′

1 are deterministically computed.
When specified this way, 𝒅 may represent its curve portion poorly, and we face
the same problem described earlier: we require a subdivision. However, this is
a manageable problem. Tangents at extremities can converge onto impossible
locations (i.e. 𝛽1 ≤ 0 or 𝛽′

1 ≤ 0), also requiring at least one subdivision (see
examples of Fig.2.20a,b,c,d). Depending on the configuration (e.g. a line with
many alternating concave and convex parts), this issue can occur recursively
and may artificially increase the number of components for a given curve to fit
(Fig.2.20e). Ultimately, when 𝒅 is required to fit a region between two adjacent
pixels, we have no choice but to violate the 𝐺1 constraint and fit linearly.

To ease interpretation of control points, we have fixed the upper limit to cubic
(𝑛 = 3) Bézier curves and their 4 control points.

𝐺0 ⟹ 𝒒0 = 𝒑3 𝒒3 = 𝒓0

𝐺1 ⟹ 𝒒1 = 𝒑3 + 𝛽1(𝒑3 − 𝒑2) 𝒒2 = 𝒓0 + 𝛽′
1(𝒓0 − 𝒓1)

𝐺2 ⟹ 𝒒1 = 𝒓0 + 2𝛽′
1(𝒓0 − 𝒓1) + 𝛽′

1
2(𝒓0 − 2𝒓1 + 𝒓2) + 0.5𝛽′

2(𝒓0 − 𝒓1)
𝒒2 = 𝒑3 + 2𝛽1(𝒑3 − 𝒑2) + 𝛽2

1(𝒑3 − 2𝒑2 + 𝒑1) + 0.5𝛽2(𝒑3 − 𝒑2)

(2.15)

As expected, cubic Bézier curves easily conform to 𝐺1 continuity. Extremity
tangents do not have to meet, so the fitting procedure can adjust 𝛽1 and 𝛽′

1
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Figure 2.21: Panels a and b show how cubic Bézier curves can successfully handle the problematic scenario
depicted in Fig.2.20a-d i.e. only one component is required. Panels c and d show fit and
simplification of the polyline from Fig.2.14a by cubic Bézier curves with tolerance values of
1.0 and 4.0. Notice that the result of panel d remains faithful to the original despite using
only a few control points (5 cubic Bézier curves components only).

independently to best match the stroke portion of interest. Problematic configura-
tions for quadratic curves are well handled using cubic Bézier (see Fig.2.21a,b).
Even if a solution is not provided here, notice that 𝛽 parameters would have to be
deterministically computed if 𝐺2 were required, leading to the same issue depicted
with quadratic curves for 𝐺1. Composite cubic Bézier curves therefore represent
the most reasonable choice for a parametric definition of strokes. This decision is
also supported theoretically by the fact that higher degree curves require fewer
data than lower ones. Even if each component has more parameters (control
points), it should be compensated by fewer components for the same visual result.
The only drawback of using Bézier curves is their inability to perfectly reproduce
circles and arcs: these can only be approximated. However, perfect circles are
unlikely to be present within my hand-drawn dataset.

Fitting cubic Bézier curves

The last step in the vectorial decomposition of my drawings involves actual fitting
of strokes with cubic Bézier curves, 𝐺1 continuity, and some chosen accuracy level.
Two different levels of fitting accuracy are required. A first fitting procedure should
maintain maximum fidelity to the original curves, while ironing out processing
artifacts (mostly at intersections). These vectorial compositions are suitable for
art production (e.g. Fig.2.21c with a 1.0 tolerance), but the modeling dataset
needs to target fewer components per stroke. This can be achieved by increasing
fitting tolerance (e.g. Fig.2.21d with a 4.0 tolerance).
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Our vectorization procedure is mostly a customized version of an algorithm pub-
lished in Graphics Gems61 in the 90s. Implementation details can be found in
Algorithm.2.3. The basic idea is very close to the RDP algorithm. A fit of the
whole curve is first attempted and, if the approximation error exceeds some toler-
ance value, the fitting procedure is recursively applied on subdivisions. The main
difference is that adjacent tangents of the curve portion of interest are required to
satisfy 𝐺1 continuity. In Eq.2.15, these tangents are specified by the control points
of neighboring curves, but they are unavailable during the first fitting attempt
on the whole curve. This is also the case after subdivision, because adjacent
Bézier curves may not be already fitted. Nevertheless, these tangents can be
approximated from the sequence of 2-d points we are trying to fit. We can compare
the position of an endpoint with another point at some distance along the path,
and estimate the tangent. Once these tangents are specified, the fitting procedure
must only search for optimal 𝛽1 and 𝛽′

1 values. Our modifications of the original
algorithm provide better qualitative control. First, different parameters define the
way tangents are approximated. Then, for closed curves (loops), we have added a
procedure to improve 𝐺1 at endpoints. Finally, the distance error between original
points and fitted curve is not computed as maximum error along the path, but
as average of all errors. In this manner, the longer the curve, the more subtle
vibrations are smoothed out by a fixed tolerance level. The underlying idea is to
retain the dynamic aspects of a gesture, the essential shape of a stroke.

2.3 Dataset formatting

The processing steps described in the previous section must be applied individually
to each one of the >5k drawings with some manual intervention via custom
interactive software (which we wrote for this specific purpose). Furthermore, to be
ready for modeling, a dataset needs to be adequately standardized e.g. different
compositions must be uniformly centered and scaled. We also limited quantitative
discrepancies between individual elements i.e. by constraining the number of strokes
per composition, as well as the number of cubic components per stroke. All these
different aspects are described in this section.

Manual work

A custom app (see Fig.2.22) has been designed and developed in Python (interface
with PyQt62). It gives the ability to adjust the variables described in Algorithm.2.1
(𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑, if a drawing has an inverted scale; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the maximum pixel
61Schneider, 1990.
62PyQt is a Python binding of Qt application framework. See details at: https://riverbankcomput-

ing.com/software/pyqt/intro
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intensity of stroke-pixel; 𝑘𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒, the standard deviation of the Gaussian kernel
that smooths contours; 𝑚𝑖𝑛𝐴𝑟𝑒𝑎, the minimum area of black or white surfaces
to keep). The user can also label each drawing as figurative, element (first class
composition, non-element are still included in the dataset, but are subjectively
judged as less accomplished) or excluded63. Finally, the main purpose of this
app is to interactively draw cleaning masks. They are overlaid on original images
(left side), and another panel (right side) helps the user to check the resulting
cleaned binary map, as well as its skeleton and three framing guides (2 circles and
1 rectangle, which will be discussed in the next subsection).

All parameters and masks are stored separately from original files, so that each
action is non-destructive. To be functional, each drawing needs to be uniquely
identified with a naming convention. This identifier will also be useful for artistic
reproduction purposes, as a specific set of drawings can be selected. The chosen
convention is yymm-ppp-ddd with yy:year, mm:month, ppp:page index, ddd:drawing
index. When date information is not available, 00 is used. For example, the drawing
shown in Fig.2.22 is assigned the identifier 1600-006-10: this means that it was
drawn in 2016, but the precise month is unknown.

In the masking operation, some inputs require not only local cleaning of strokes,
but also simplification actions. For instance, I could decide to simplify the global
composition or the structural skeleton. When intricate lines must be disambiguated,
these choices carry an artistic value. Despite the aid of the app, manual editing of
the entire dataset required ∼ one month. The processing algorithms also required
refinement as new model requirements came along, thus involving iterative manual
labor. Every minor change on >5k elements took days to implement.

Spatial standardization

As shown in Fig.2.6, drawings have been produced at very different sizes. In
addition, during the scanning operation, they were framed unevenly to capture the
whole drawing. No centering was intended. For modeling purposes, it is necessary
to center and scale each drawing to standardize the dataset. Then, different policy
can be imagined for very different purposes. For instance, if we search for the
minimal enclosing rectangle (dotted rectangle in Fig.2.23c), computed extents are
optimal to fit the drawing in rectangular frame of any ratio. On the other hand,
if we want to fit multiple compositions within a grid (regular or honeycomb, see
Fig.6.12), the computation of the minimum enclosing circle is preferable (dotted
circle in Fig.2.23c). Although enforcing the filling of a surface is interesting for
artwork reproduction, this is not optimal for composition modeling. Imagine the
drawing in Fig.2.23c without its top and bottom vertical lines. The smallest
63Concerning drawing labels, in order to guarantee coherent judgments over the entire dataset (especially

for element/non-element), a second app has been developed. It offers an overview of multiple drawings
of a specific category, and enables individual/batch exclusion of misclassified compositions.
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enclosing circle would nearly double the size of the remaining central part. So,
small changes in compositions would produce dramatic encoding effects at the
dataset level. Furthermore, as we have already explained in the fist section of
this chapter, my compositional structures evolve around a center in an open field
(under cosmic gravitational rules, in Klee’s words). We are therefore looking for
some statistical distribution of pictorial masses, rather than absolute boundaries.

The concept of balance, through a physical interpretation of visual element weights,
has long been discussed64 and the Center of Mass theory has not been proved in
the general case. However, this approach is at least well correlated with human
judgments of balance for simple binary images. Without better insights into the
perceptual importance of real strokes and their mutual interactions (which we are
actually trying to model), we will therefore consider stroke-pixels of a drawing to
have equal mass, and then attempt to fit this two-dimensional density to a 2-d
standard normal distribution.

To do so, we estimate first- and second-order moments, i.e. the mean and
covariance of the pixel coordinates 𝒑𝑖 = [𝑝𝑥,𝑖, 𝑝𝑦,𝑖] associated with strokes65. With
𝑛 being the number of stroke pixels, the mean/center is simply computed as
𝝁 = 𝔼𝑛[𝒑𝑖]. Concerning covariance, we initially assume the 𝑥 and 𝑦 components
to be independent. In addition, we want to keep the scaling of these dimensions
homogeneous. The covariance is therefore of the form 𝖢𝗈𝗏𝑛[𝒑𝑖] = 𝜎2𝑰, implying:

𝜎2 = 1
2

∑
𝑘∈[𝑥,𝑦]

𝔼𝑛[(𝑝𝑘,𝑖 − 𝜇𝑘,𝑖)2] = 1
2

𝔼𝑛[ ∑
𝑘∈[𝑥,𝑦]

(𝑝𝑘,𝑖 − 𝜇𝑘,𝑖)2] = 1
2

𝔼𝑛[𝑑2
𝑖 ] (2.16)

with 𝑑𝑖 being radial distance from the center66. Once stroke pixel density is
standardized as described, the radial distances 𝑑𝑖 are supposed to follow a 𝜒2
distribution. The rescaled density of the drawing in Fig.2.23c is presented in
Fig.2.23a. We notice that, individually, a composition can be quite far form
the theoretical 𝜒2 distribution. However, at the dataset level (Fig.2.23b), our
procedure produces a distribution of radial distances coherent with the theoretical
distribution.

Finally, we would like all drawings to be inscribed within a circle of unit radius. The
𝜒2 distribution is defined for any positive real, so in order to set an absolute bound
we have chosen that the unit radius must contain 99% of the distribution. This
unit circle is materialized by a black line in Fig.2.23c. Some parts of the vertical
stroke exceed the unit circle, but it is expected. They represent marginal pixels
64Among others: Arnheim, 1954/2004; Hübner and Fillinger, 2016; McManus et al., 2011; Ross, 1907;

Wilson and Chatterjee, 2005.
65In the MNIST Database (LeCun et al., 1998), the Center of Mass has also been used to position digits

in the center of their 28px square frame. However, the scaling was operated with a minimum enclosure
strategy.

66This is actually equivalent to fitting the mean of the squared radial distances 𝑑2
𝑖 to the mean of a 𝜒2

2
distribution equal to 2.
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0-1 1

a

b

c

d

Figure 2.23: Panels a and b show the standardized density of the radial distance of stroke-pixels (a, of the
drawing from panel c ; b, of the whole dataset). In panel c, a composition is displayed with
its smallest enclosing rectangle, its smallest enclosing circle (dotted line) and its statistical
unit circle (solid line). Panel d is the rescaled 2-d density of the whole dataset.

Figure 2.24: Spatial standardization. Compositions are fitted to a statistical unit circle.
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compared to the compact center. Fig.2.23d shows the rescaled 2-d density of
stroke pixels for the whole dataset, which appears homogeneous in all directions.
Sample results from this procedure are shown in Fig.2.24. To summarize, the
scaling radius 𝑟 of a drawing is computed as:

𝑟 = 𝖢𝖣𝖥−1
𝜒2

(0.99)√1
2

𝔼𝑛[𝑑2
𝑖 ] (2.17)

Two distinct datasets

Previous approaches to simple sketches and kanji67 have considered their inputs
as a continuous sequence of positions. The pen could possibly be raised between
strokes to give an impression of discontinuity, but the overall sequence of lines was
fixed. In Subsection.1.2.Temporal complexity, we have expressed the requirement to
model the natural ability to travel within a composition in different orders. Please
refer to this subsection for details on the temporal duality of the composition.
While the ability to shuffle efficiently the order of strokes within a composition
is crucial, it is very unlikely that an artist would draw a line randomly by part.
Strokes and compositions are therefore intrinsically of a different temporal nature,
respectively continuous and discontinuous. With a unique sequence of points, it
is still possible to shuffle this sequence by part, keeping stroke integrity, but it
would not respect the essential temporal difference. It would produce semantic
discrepancies and uneven information granularities in the model inputs. Strokes
represent our unit of artistic intention, and at the same time an acceptable minimal
definition of graphical element. Our idea is to then decompose our modeling
approach into a stroke model and a composition model.

As a result, we will now consider a composition as an unordered arrangement of
strokes, and a stroke as an absolute sequence of ordered points. From a more
practical standpoint, it means that each stroke will start from the origin (0, 0)
and its initial point 𝒑0,0 will be stored at the composition dataset level. This way,
we will be able to address each temporal specificity independently for each model.
Finally, as strokes can be initiated from both extremities, we must introduce the
additional convention that strokes are centrifugal, i.e. the initial point will always
be the one closer to the center.

Stroke simplification

In this subsection, we examine the dataset dedicated to strokes and study its
statistical characteristics. Our main concern relates length, i.e. the number of cubic
Bézier components per complete curve. If we collect strokes from all compositions,
67Clanuwat et al., 2018; Ha and Eck, 2017.
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a

b c

Figure 2.25: Stroke simplification. Panel a illustrates how the curve fitting algorithm adds components
to achieve some target error. It places intermediary control points on the curve where the
error was maximal at the previous optimization step (highlighted by dotted circles). Panel
b depicts how our simplification algorithm can merge adjacent components, while keeping
the same visual shape. Results of similar procedure on real compositions is shown in panel
c. Note that only the extremity control points of components (2 on 4) are materialized by
small black dots.

this gives a mean length of 4.2 and a maximum length of 138. These numbers
refer to the fitting procedure with a fixed tolerance of 1.0, corresponding to a
mean error of 1 pixel per component. Even if this seems reasonable, because all
compositions are now centered and scaled to fit the unit circle, the actual tolerance
expressed in pixels becomes uninterpretable. The fitting tolerance needs to be,
somehow, adaptive. Originally larger compositions should call for greater tolerance.
We therefore defined 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 𝑟 ∗ 𝑢𝑛𝑖𝑡𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 with 𝑟 the scaling radius,
and 𝑢𝑛𝑖𝑡𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 0.01 (1% of the unit circle). We also found it necessary to
set a lower bound to this adaptive 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝑚𝑖𝑛𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 4.0, i.e. for any
drawing with 𝑟 ≤ 400px).

In addition, we wanted to address an important issue associated with the curve
fitting algorithm. During the recursive procedure, the algorithm can only add new
components to meet the expected error threshold (see Fig.2.25a). However, in
some situations, two adjacent components could possibly be merged and simplify
the overall curve afterwards. In Fig.2.25b, two components have been joined at the
dotted region without any shape loss. For this purpose, on top the original fitting
algorithm, a simplification step has been introduced with the adaptive tolerance
described above. All details can be found in Algorithm.2.4. Example results of this
procedure are displayed in Fig.2.25c. There are only a few components per cubic
Bézier curve, yet the main compositional expressiveness is retained.

Splitting of long strokes

After simplification, the raw distribution of stroke lengths takes an exponential
shape (see Fig.2.26c, light gray). We notice that, beyond 4 components, the
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density is almost negligible. However, looking at Fig.2.26a, longer strokes (in
terms of components) are also the longest (in distance) and the most complicated
ones. In this plot, we measure complexity by the cumulative curvature along the
path. The two stroke samples of length 24 and 26 have respectively a cumulative
curvature of 17𝜋 and 13𝜋. In addition, they are likely to be the most important
part of the composition they belong to. As a result, we cannot simply discard
longer strokes or truncate their length, as this would not make sense with regard
to the composition. As a first step, we have decided to discard strokes with a
linear distance smaller than 0.01, corresponding to a length along its path of 1%
of the unit circle. This approach reduces the number of strokes of length 1, but it
is not sufficient. Longer strokes are still too few compared to the shorter ones.
Therefore, a second step involves splitting longer strokes into multiple sub-strokes
(see Algorithm.2.5)68. Fig.2.26b shows the resulting spread of stroke lengths
compared to their cumulative curvature. Maximum stroke length is 8 and the
maximum curvature is equivalent to two complete circles. However, strokes of
length 1 remain preponderant (see distribution in Fig.2.26c, dark gray) and will
require additional handling during modeling. The final dataset contains 52370
strokes with a mean length of 1.49.

Stroke encoding details

As a reminder, a composite cubic Bézier curve is a sequence of 𝑛 components 𝒄𝑖
of 2-d control points [𝒑𝑖,0, 𝒑𝑖,1, 𝒑𝑖,2, 𝒑𝑖,3]. The last control point of a component
is also the same as the first of the following component, and as each stroke begins
at the origin, we can limit required information per component to three 2-d points.
Furthermore, because tracing a stroke is a continuous action, we can describe its
inflections more efficiently using a differential approach. As shown in Fig.2.27a,
each control point can be characterized as the difference from previous ones or
local neighbors. More precisely, each component 𝒄𝑖 becomes:

𝜟𝑖 = [𝜹𝑖, 𝜹′

𝑖, 𝜹″

𝑖 ] = [𝒑𝑖,3 − 𝒑𝑖,0, 𝒑𝑖,1 − 𝒑𝑖,0, 𝒑𝑖,2 − 𝒑𝑖,3] (2.18)

For modeling purposes, the dataset must be split into training and validation
sets. We have chosen a splitting ratio of 0.1, meaning that 10% of the total
dataset is kept for model validation. Partitioning is carried out randomly with the
constraint of similar stroke length distribution for the two sub-datasets. Concerning
data augmentation, at training time, strokes can be vertically and horizontally
mirrored or specified in reverse order (see Fig.2.27b). Finally, model inputs
have to be standardized before training. As we are mirroring strokes, input
values are already centered. We only have to compute a standard deviation for
𝛿𝑖,𝑥, 𝛿𝑖,𝑦, 𝛿′

𝑖,𝑥, 𝛿′

𝑖,𝑦, 𝛿″

𝑖,𝑥, 𝛿″

𝑖,𝑦. To keep spatial homogeneity, we take the average of
the standard deviation of 𝛿𝑖,𝑥, 𝛿𝑖,𝑦 and similarly for the group of tangent values.
68We also apply the procedure described in Subsection.2.3.Composition lengths that limits the number of

strokes per composition by discarding the shortest ones when they are too numerous.
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a b c

Figure 2.26: Panels a and b show the spread of stroke length compared with corresponding cumulative
curvature: before the splitting procedure is applied to long strokes in a, and after in b. Panel
a also presents two complex stroke samples. Panel c plots the distribution of stroke length:
before the splitting procedure is applied to long strokes in light gray, and after in dark gray.

p2

p3

p0

p1

c

�′

�″

�
a b

Figure 2.27: Strokes are encoded as sequences of components 𝒄 defined by the differential vectors
𝜹, 𝜹′, 𝜹″ , as depicted in panel a. Panel b shows the 8 possible training strokes that can
be obtained through data augmentation. A given stroke can be vertically and horizontally
mirrored, or specified in reverse order (initial point is circled).

a b

c d

Figure 2.28: Composition length limitation. The raw density of composition lengths is shown in panel a
(range limited to [1, 50]). Discarding smaller strokes after 16 produces a problematic over
representation of compositions of length 16 (panel b). The panel c presents the smoother
adaptive limitation of Eq.2.19 (black line) compared to the basic approach (dark gray line).
Panel d is the resulting density of this procedure.
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Composition lengths

The distribution of composition lengths takes a lognormal shape with a mode at
6 strokes (Fig.2.28a). Maximum length is 209 and the density is low beyond 30.
To help the model, it is a good idea to constrain composition lengths to a tighter
range. Empirically, we have decided to set the maximum length to 16. To apply
such limitation, a basic approach would be to order all strokes of a composition
by length (linear distance along the path) and discard the smaller ones. This
procedure logically produces an over representation of compositions of length 16
(see Fig.2.28b). This behavior is then likely to push the model to only generate
compositions of this fixed length. To avoid this behavior, we adopted an adaptive
maximum length. Given a composition length 𝑙𝑖𝑛, a target maximum length 𝑙𝑚𝑎𝑥
and a protected length 𝑙𝑝𝑟𝑜 (under which no stroke can be discarded), the length
limit 𝑙𝑙𝑖𝑚𝑖𝑡 is set by:

𝑙𝑙𝑖𝑚 =
⎧{
⎨{⎩

𝑙𝑖𝑛 if 𝑙𝑖𝑛 ≤ 𝑙𝑝𝑟𝑜

𝗋𝗈𝗎𝗇𝖽(𝑙𝑚𝑎𝑥 − (𝑙𝑚𝑎𝑥 − 𝑙𝑝𝑟𝑜) 𝖾𝗑𝗉(
𝑙𝑝𝑟𝑜 − 𝑙𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝑝𝑟𝑜
)) otherwise

(2.19)

In Fig.2.28c, this adaptive maximum length corresponds to the black curve, which
is smoother than the basic approach is in gray. The resulting density (Fig.2.28d)
is then compact and well-balanced. The optimal 𝑙𝑝𝑟𝑜 has been empirically set to
7. From Fig.2.28c, we notice that the actual protected length is 10, due to the
rounding operation (𝑙𝑙𝑖𝑚 can only be an integer). The final count is a dataset of
5238 compositions and a mean length of 10.00.

Composition permutations

As stated before, a composition is a sequence of strokes without any pre-defined
order. Modeling details will be given later in Section.3.3 and Section.3.4, but a
minima, we need to define a procedure that shuffles compositions in a coherent
manner. Strokes within a composition are not equivalent and may be organized
hierarchically. A first level can be defined by group of strokes that are in contact.
For instance, in Fig.2.29a, there are 3 different groups. This split is actually
operated at the binary map level, before vectorization, so that stroke widths can
be taken into account in the skeleton disentanglement process. The second level
in the hierarchy is the identification of individual strokes. In Fig.2.29b, group 1 is
then broken in 3. Finally, too complex (curvy) strokes that have been split into
multiple shorter ones, constitute a third hierarchical level (group 0 in Fig.2.29c).

Continuing our example, without any hierarchy, permutation of 6 strokes would
lead to 720 possibilities. It is possible that an artist could begin with strokes 1-0
and 1-1, then decides to produce 0, and finally adjust group 1 with 1-2. But from
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Figure 2.29: Composition permutations are operated on the branches of a 3-level hierarchical tree (panel
a: groups of connected lines, panel b: individual strokes, panel c: split of longer strokes).
Panel d shows the resulting tree.

the point of view of a spectator, his/her perceptual mechanism involves grouping
effects, pushing strokes in connection to appear as one entity. For this reason,
we assume that permutations preferably happen down a tree. A representation
of this tree is given in Fig.2.29d, where permutations can be made at nodes 𝑎, 𝑏
and 𝑐. This reduces the number of possible permutations to 72 (𝑎:6 x 𝑏:6 x 𝑐:2).
However, it is quite unlikely that an artist or a viewer will think about strokes 0-0-0
and 0-0-1 independently. So, our permutation algorithm should be able to set a
maximal depth of permutation. For the composition dataset, it has been set to
level-2.69 For our example, the count of possible permutation is then reduced to
36 (𝑎:6 x 𝑏:6).

Ideally, we would permute compositions at training time, like in any other data
augmentation technique. The validation set would then consist of totally unseen
drawings. However, our modeling objectives are overly ambitious compared with
the proposed dataset statistics, i.e. my compositions are not stereotyped enough
for its limited number of inputs (∼ 5k). This variety carries artistic richness, but
poses practical challenges for our modeling efforts. Previous work on drawings70
had, for instance, 15 times more elements per specific categories (e.g. cars, cats,
…). As a result, we have decided to pre-compute permutations at the dataset
level and to operate the training/validation split per group of shuffled versions of
the same drawing.

The main drawback of this choice is the risk of overfitting. In practice, this is unlikely
because our model is trained on incomplete compositions (see modeling details of
Section.3.3 and Section.3.4, as well as corresponding results in Section.4.1). The
second issue is that different compositions will be associated with different numbers
of permutations depending on their hierarchical structure. Therefore, a maximum
number of permutations has been set to 32. This limitation is operated down the
69In experiments with kanji, which are outside the scope of this manuscript, maximum depth has been

set to -1. This negative value means that nodes only connected to tree leaves are protected from
permutations. In our example, only node 𝑎 would be able to produce permutations, i.e. 6 possibilities.
It is a coherent behavior for kanji, because we want to shuffle composition of character roots, but not
roots themselves.

70Ha and Eck, 2017.
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Figure 2.30: 30 permutations of the same composition. The permutation algorithm tries to optimally
balance the remaining allowed permutations at every branch but, due to rounding operations,
the maximum number of 32 is not always attained.

tree and tries to optimally balance the remaining allowed permutations at every
branch. All implementation details can be found in Algorithm.2.6 and a whole
set of permutations from the same drawing is presented in Fig.2.30. The final
count is a dataset of 143190 compositions with mean length 10.60. This dataset
has a larger mean length than the dataset without permutations (10.00), because
compositions with fewer strokes do not usually reach the maximum number of 32
permutations.

Composition encoding details

As compositions will be fed to the model in multiple orders, it would be unwarranted
to encode the initial points 𝒑0,0 of successive strokes in a differential way, like for
the stroke dataset. The original absolute positioning from the center has been
preferred. Then, all 𝒑0,0 need to be standardized. We should first recenter all
2-d points by suppressing the mean, but this procedure would disrupt our specific
positioning within the unit circle. We have chosen to scale all 𝒑0,0 by the square
root of the second non-central moments given by 𝔼[𝒑2

0,0] 1
2 . Again, to keep spatial

homogeneity, we averaged 𝑥 and 𝑦 dimensions. Finally, the dataset is split into a
training set and a validation set with a similar validation ratio of 0.1. However,
compositions labelled as non-element (subjective second class compositions, see
Subsection.2.3.Manual work) are reserved for the training set only. Validation ratio is
therefore corrected accordingly to match the target ratio of 0.1.
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Algorithm 2.1: Drawing to binary map
In: ⋅ 𝑖𝑚𝑔, a linear image in the range [0, 1]

⋅ 𝑚𝑎𝑠𝑘, a binary cleaning mask
⋅ 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑, a bool stating if 𝑖𝑚𝑔 has an inverted scale (None)
⋅ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, maximum intensity of pixels considered as strokes (None)
⋅ 𝑘𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒, standard deviation of the Gaussian kernel (2.0)
⋅ 𝑚𝑖𝑛𝐴𝑟𝑒𝑎, minimum area of black or white surfaces to keep (4)

Out: ⋅ 𝑏𝑖𝑛𝑀𝑎𝑝, a binary map

if 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑 is None then
𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑 ← 𝗆𝖾𝖽𝗂𝖺𝗇(𝑖𝑚𝑔) < 0.5

if 𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑 then
𝑖𝑚𝑔 ← 1 − 𝑖𝑚𝑔

if 𝑖𝑚𝑔 is colored then
𝑖𝑚𝑔 ← 𝗆𝗂𝗇(𝑖𝑚𝑔𝑟, 𝑖𝑚𝑔𝑔, 𝑖𝑚𝑔𝑏)

if 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is None then
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.5 𝗉𝖾𝗋𝖼𝖾𝗇𝗍𝗂𝗅𝖾(𝑖𝑚𝑔, 5) + 0.5 𝗉𝖾𝗋𝖼𝖾𝗇𝗍𝗂𝗅𝖾(𝑖𝑚𝑔, 95)

𝑏𝑖𝑛𝑀𝑎𝑝 ← 𝑖𝑚𝑔 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑏𝑖𝑛𝑀𝑎𝑝 ← 𝑏𝑖𝑛𝑀𝑎𝑝 ∗ 𝑚𝑎𝑠𝑘
𝑏𝑖𝑛𝑀𝑎𝑝 ← 𝗀𝖺𝗎𝗌𝗌𝗂𝖺𝗇𝖥𝗂𝗅𝗍𝖾𝗋(𝑏𝑖𝑛𝑀𝑎𝑝, 𝑘𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒) > 0.5
→ clean 𝑏𝑖𝑛𝑀𝑎𝑝 from black and white dots smaller than 𝑚𝑖𝑛𝐴𝑟𝑒𝑎
return 𝑏𝑖𝑛𝑀𝑎𝑝

Function processIntersection(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝐶𝑜𝑛𝐿𝑖𝑛𝑒𝑠, 𝑚𝑒𝑎𝑛𝑆𝑡𝑘𝑊,
𝑚𝑖𝑛𝐴𝑛𝑔𝑙𝑒):
if 𝗅𝖾𝗇(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) == 0 then

return discard 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 and break upper loop
if 𝗅𝖾𝗇(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛) == 1 then

→ add closest intersection-𝑝𝑜𝑖𝑛𝑡 to the last unconnected 𝑙𝑖𝑛𝑒 extremity
return discard 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 and break upper loop

for each 𝑙𝑖𝑛𝑒 connected to the 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 do
if 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝐶𝑜𝑛𝐿𝑖𝑛𝑒𝑠 and 𝑙𝑖𝑛𝑒 in 𝑐𝑜𝑛𝐿𝑖𝑛𝑒𝑠 then

→ bypass 𝑙𝑖𝑛𝑒
⃗𝑣 ← compute orientation vector of the 𝑙𝑖𝑛𝑒 from its end to the

𝗆𝗂𝗇(𝑚𝑒𝑎𝑛𝑆𝑡𝑘𝑊, 𝗅𝖾𝗇(𝑙𝑖𝑛𝑒) − 1) 𝑝𝑜𝑖𝑛𝑡 along the 𝑙𝑖𝑛𝑒
for each 𝑙𝑖𝑛𝑒𝑃𝑎𝑖𝑟 of the 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 do

𝛼 ← compute angle between lines ⃗𝑣
if 𝛼 ≥ 𝑚𝑖𝑛𝐴𝑛𝑔𝑙𝑒 and 𝛼 > 𝑚𝑎𝑡𝑐ℎ𝐴𝑛𝑔𝑙𝑒 then

𝑚𝑎𝑡𝑐ℎ ← 𝑙𝑖𝑛𝑒𝑃𝑎𝑖𝑟
𝑚𝑎𝑡𝑐ℎ𝐴𝑛𝑔𝑙𝑒 ← 𝛼

if no 𝑚𝑎𝑡𝑐ℎ then
return break upper loop

→ connect 𝑙𝑖𝑛𝑒𝑃𝑎𝑖𝑟 of 𝑚𝑎𝑡𝑐ℎ
return continue upper loop
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Algorithm 2.2: Binary map to individual lines
In: ⋅ 𝑏𝑖𝑛𝑀𝑎𝑝, a binary map

⋅ 𝑚𝑖𝑛𝐴𝑛𝑔𝑙𝑒, minimal angle between mergeable lines at intersections (0.8𝜋)
⋅ 𝑐𝑜𝑛𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑖𝑜, maximum connection-line length as a ratio of the estimated mean
stroke width of the drawing (0.75)

Out: ⋅ 𝑙𝑖𝑛𝑒𝑠, a list of individual lines (being sequences of 2-d points)

▽ extract skeleton and corresponding 2-d points
𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 ← skeletonize strokes of 𝑏𝑖𝑛𝑀𝑎𝑝 to 1-pixel centerlines
𝑚𝑒𝑎𝑛𝑆𝑡𝑘𝑊 ← ⌊𝑠𝑢𝑚(𝑏𝑖𝑛𝑀𝑎𝑝)/𝑠𝑢𝑚(𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛)⌋ ◁ mean stroke width is estimated by

dividing the total number of stroke-pixels by the number of skeleton-pixels
𝑝𝑜𝑖𝑛𝑡𝑠 ← build a list of 2-d coordinates of every line-pixel from 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛
for each 𝑝𝑜𝑖𝑛𝑡 in 𝑝𝑜𝑖𝑛𝑡𝑠 do

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑝𝑜𝑖𝑛𝑡] ← list of adjacent line-𝑝𝑜𝑖𝑛𝑡 (8 at most)
▽ build lines
for each 𝑝𝑜𝑖𝑛𝑡 in 𝑝𝑜𝑖𝑛𝑡𝑠 do

if 𝗅𝖾𝗇(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑝𝑜𝑖𝑛𝑡]) in (1, 2) then ◁ line-𝑝𝑜𝑖𝑛𝑡 and extremity-𝑝𝑜𝑖𝑛𝑡
𝑙𝑖𝑛𝑒𝑠[𝑙𝑖𝑛𝑒] +← 𝑝𝑜𝑖𝑛𝑡

▽ build intersections
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ← clusterize all connected intersection-𝑝𝑜𝑖𝑛𝑡 (𝗅𝖾𝗇(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑝𝑜𝑖𝑛𝑡]) > 2)

and collect every adjacent 𝑙𝑖𝑛𝑒
→ discard any 𝑙𝑖𝑛𝑒 of length 1 and merge every associated 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛.
𝑐𝑜𝑛𝐿𝑖𝑛𝑒𝑠 ← any 𝑙𝑖𝑛𝑒 with length < 𝑐𝑜𝑛𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑖𝑜 ∗ 𝑚𝑒𝑎𝑛𝑆𝑡𝑘𝑊
→ merge 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 linked by a 𝑐𝑜𝑛𝐿𝑖𝑛𝑒
▽ process intersections excluding connection lines
for each 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 in 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 do

while 2 𝑙𝑖𝑛𝑒 have been connected at 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 do
→ processIntersection(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝐶𝑜𝑛𝐿𝑖𝑛𝑒𝑠 = 𝑇 𝑟𝑢𝑒, … )

▽ process intersections including connection lines
for each 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 in 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 do

→ discard any 𝑐𝑜𝑛𝐿𝑖𝑛𝑒 being the last unconnected 𝑙𝑖𝑛𝑒 at 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
while 2 𝑙𝑖𝑛𝑒 have been connected at 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 do

→ processIntersection(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝐶𝑜𝑛𝐿𝑖𝑛𝑒𝑠 = 𝐹𝑎𝑙𝑠𝑒, … )

▽ final processing
→ discard all remaining 𝑐𝑜𝑛𝐿𝑖𝑛𝑒 from 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
→ add closest intersection-𝑝𝑜𝑖𝑛𝑡 to all unconnected 𝑙𝑖𝑛𝑒 extremities remaining at each

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛
→ close (if not closed yet) any loop-𝑙𝑖𝑛𝑒 by duplicating its first 𝑝𝑜𝑖𝑛𝑡 at the end
return 𝑙𝑖𝑛𝑒𝑠
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Algorithm 2.3: Composite cubic Bézier curves fitting
In: ⋅ 𝑝𝑜𝑖𝑛𝑡𝑠, a sequence of 2-d points

⋅ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, maximum distance between original points and fitted curve (1.0)
⋅ 𝑡𝑔𝑡𝐷𝑖𝑠𝑡, distance (in index) along 𝑝𝑜𝑖𝑛𝑡𝑠 to compute tangents (10)
⋅ 𝑡𝑔𝑡𝐷𝑖𝑠𝑡𝐷𝑖𝑣, dividing value of 𝑝𝑜𝑖𝑛𝑡𝑠 length to set a maximum distance (in index) to
compute tangents (10)
⋅ 𝑙𝑜𝑜𝑝𝐷𝑖𝑠𝑡, distance between 𝑝𝑜𝑖𝑛𝑡𝑠 extremities to consider it as a loop (2.0)
⋅ 𝑜𝑝𝑡𝑖𝑚𝑆𝑡𝑒𝑝𝑠, maximum number of optimization steps (100)

Out: ⋅ 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒, a composite cubic Bézier curve

𝑡𝑔𝑡𝐷𝑖𝑠𝑡 ← 𝗆𝖺𝗑(1, 𝗆𝗂𝗇(𝑡𝑔𝑡𝐷𝑖𝑠𝑡, 𝗅𝖾𝗇(𝑝𝑜𝑖𝑛𝑡𝑠)//𝑡𝑔𝑡𝐷𝑖𝑠𝑡𝐷𝑖𝑣, 𝗅𝖾𝗇(𝑝𝑜𝑖𝑛𝑡𝑠) − 2))
𝑡𝑔𝑡𝑎 ← 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾(𝑝𝑜𝑖𝑛𝑡𝑠[𝑡𝑔𝑡𝐷𝑖𝑠𝑡] − 𝑝𝑜𝑖𝑛𝑡𝑠[0]) ◁ starting tangent
𝑡𝑔𝑡𝑏 ← 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾(𝑝𝑜𝑖𝑛𝑡𝑠[−1] − 𝑝𝑜𝑖𝑛𝑡𝑠[−𝑡𝑔𝑡𝐷𝑖𝑠𝑡 − 1]) ◁ ending tangent
▽ improve closed curve tangents, if loop extremities are in opposition
if ‖𝑝𝑜𝑖𝑛𝑡𝑠[−1] − 𝑝𝑜𝑖𝑛𝑡𝑠[0]‖ < 𝑙𝑜𝑜𝑝𝐷𝑖𝑠𝑡 and 𝑡𝑔𝑡𝑎 ⋅ 𝑡𝑔𝑡𝑏 < 0 then

𝑡𝑔𝑡𝑎 ← 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾(𝑡𝑔𝑡𝑎 − 0.5𝑡𝑔𝑡𝑏)
𝑡𝑔𝑡𝑏 ← 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾(𝑡𝑔𝑡𝑏 − 0.5𝑡𝑔𝑡𝑎)

return fitCubicBezier(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑏, … )

Function fitCubicBezier(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑏, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, 𝑡𝑔𝑡𝐷𝑖𝑠𝑡, 𝑡𝑔𝑡𝐷𝑖𝑠𝑡𝐷𝑖𝑣, 𝑙𝑜𝑜𝑝𝐷𝑖𝑠𝑡,
𝑜𝑝𝑡𝑖𝑚𝑆𝑡𝑒𝑝𝑠):

▽ with 2 points, return a straight line
if 𝗅𝖾𝗇(𝑝𝑜𝑖𝑛𝑡𝑠) = 2 then

𝛽 ← 1
3 ‖𝑝𝑜𝑖𝑛𝑡𝑠[−1] − 𝑝𝑜𝑖𝑛𝑡[0]‖

return [[𝑝𝑜𝑖𝑛𝑡𝑠[0], 𝑝𝑜𝑖𝑛𝑡𝑠[0] + 𝛽 𝑡𝑔𝑡𝑎, 𝑝𝑜𝑖𝑛𝑡𝑠[−1] + 𝛽 𝑡𝑔𝑡𝑏, 𝑝𝑜𝑖𝑛𝑡𝑠[−1]]]
▽ initial attempt to fit the curve
𝑢 ← chordLengthParam(𝑝𝑜𝑖𝑛𝑡𝑠)
𝑛𝑜𝑑𝑒𝑠 ← computeNodes(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑢, 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑏)
𝑒𝑟𝑟𝑜𝑟 ← computeMeanError(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑜𝑑𝑒𝑠, 𝑢)
if 𝑒𝑟𝑟𝑜𝑟 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then

return [𝑛𝑜𝑑𝑒𝑠]
▽ if error is not too high, try reparameterization
if 𝑒𝑟𝑟𝑜𝑟 < 4 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then

for each 𝑜𝑝𝑡𝑖𝑚𝑆𝑡𝑒𝑝𝑠 do
𝑢 ← paramOptim(𝑛𝑜𝑑𝑒𝑠, 𝑝𝑜𝑖𝑛𝑡𝑠, 𝑢)
𝑛𝑜𝑑𝑒𝑠 ← computeNodes(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑢, 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑏)
𝑒𝑟𝑟𝑜𝑟, 𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥 ← computeMeanError(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛𝑜𝑑𝑒𝑠, 𝑢)
if 𝑒𝑟𝑟𝑜𝑟 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then

return [𝑛𝑜𝑑𝑒𝑠]

▽ fitting failed, so split and fit recursively
𝑡𝑔𝑡𝐷𝑖𝑠𝑡 ← 𝗆𝖺𝗑(1, 𝗆𝗂𝗇(𝑡𝑔𝑡𝐷𝑖𝑠𝑡, 𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥, 𝗅𝖾𝗇(𝑝𝑜𝑖𝑛𝑡𝑠) − 1 − 𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥,

𝗅𝖾𝗇(𝑝𝑜𝑖𝑛𝑡𝑠)//𝑡𝑔𝑡𝐷𝑖𝑠𝑡𝐷𝑖𝑣//2))
𝑡𝑔𝑡𝑚𝑖𝑑 ← 𝗇𝗈𝗋𝗆𝖺𝗅𝗂𝗓𝖾(𝑝𝑜𝑖𝑛𝑡𝑠[𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥 − 𝑡𝑔𝑡𝐷𝑖𝑠𝑡] − 𝑝𝑜𝑖𝑛𝑡𝑠[𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥 + 𝑡𝑔𝑡𝐷𝑖𝑠𝑡])
𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒 ← fitCubicBezier(𝑝𝑜𝑖𝑛𝑡𝑠[∶ 𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥 + 1], 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑚𝑖𝑑, … )
𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒 +← fitCubicBezier(𝑝𝑜𝑖𝑛𝑡𝑠[𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥 ∶], −𝑡𝑔𝑡𝑚𝑖𝑑, 𝑡𝑔𝑡𝑏, … )
return 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒
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Function chordLengthParam(𝑝𝑜𝑖𝑛𝑡𝑠):
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑁𝑜𝑟𝑚𝑠 ← norm of local difference of 𝑝𝑜𝑖𝑛𝑡𝑠
𝑢 ← 𝖼𝗎𝗆𝗌𝗎𝗆(𝖼𝗈𝗇𝖼𝖺𝗍𝖾𝗇𝖺𝗍𝖾([0], 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑁𝑜𝑟𝑚𝑠))
𝑢 ← 𝑢/𝑢[−1]
return 𝑢

Function computeNodes(𝑝𝑜𝑖𝑛𝑡𝑠, 𝑢, 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑏):
▽ We try to minimize the distance between a Bézier curve 𝒄(𝑢) and its corresponding

original 𝑝𝑜𝑖𝑛𝑡𝑠. 𝒄 control points are
[𝑝𝑜𝑖𝑛𝑡𝑠[0], 𝑝𝑜𝑖𝑛𝑡𝑠[0] + 𝛽𝑎 𝑡𝑔𝑡𝑎, 𝑝𝑜𝑖𝑛𝑡𝑠[−1] + 𝛽𝑏 𝑡𝑔𝑡𝑏, 𝑝𝑜𝑖𝑛𝑡𝑠[−1]].

𝛽𝑎, 𝛽𝑏 ← solve or find the best solution of the linear system 𝒄(𝑢) − 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝟎
◁ please find details in the original paper appendices (Schneider, 1990)

return [𝑝𝑜𝑖𝑛𝑡𝑠[0], 𝑝𝑜𝑖𝑛𝑡𝑠[0] + 𝛽𝑎 𝑡𝑔𝑡𝑎, 𝑝𝑜𝑖𝑛𝑡𝑠[−1] + 𝛽𝑏 𝑡𝑔𝑡𝑏, 𝑝𝑜𝑖𝑛𝑡𝑠[−1]]

Function computeMeanError(𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚, 𝑢):
𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑝𝑡𝑖𝑚 ← 𝖾𝗏𝖺𝗅𝖡𝖾𝗓𝗂𝖾𝗋(𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚, 𝑢)
𝑒𝑟𝑟𝑜𝑟𝑠 ← point-wise l2-norm between 𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑝𝑡𝑖𝑚
𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥 ← index of 𝗆𝖺𝗑(𝑒𝑟𝑟𝑜𝑟𝑠)
return 𝗆𝖾𝖺𝗇(𝑒𝑟𝑟𝑜𝑟𝑠), 𝑠𝑝𝑙𝑖𝑡𝐼𝑑𝑥

Function paramOptim(𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚, 𝑢):
▽ We try to find a better parameterization of 𝑢 that pushes points of the fitted Bézier

curve closer to their corresponding original points.
𝒄(𝑢), 𝒄′(𝑢), 𝒄″(𝑢) ← 𝖾𝗏𝖺𝗅𝖡𝖾𝗓𝗂𝖾𝗋(𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚, 𝑢) and derivatives
for each 𝑖, 𝑝 in 𝑢, 𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 do

▽ distance is minimal when 𝑝 is perpendicular to 𝒄(𝑖), so we apply one step of
Newton-Raphson’s method to solve 𝑓(𝑖) = (𝒄(𝑖) − 𝑝) ⋅ 𝒄′(𝑖) = 0 with
𝑓′(𝑖) = 𝒄′(𝑖) ⋅ 𝒄′(𝑖) + (𝒄(𝑖) − 𝑝) ⋅ 𝒄″(𝑖)

𝑖 ← 𝑖 − 𝑓(𝑖)/𝑓′(𝑖) = 𝑖 − ((𝒄(𝑖) − 𝑝) ⋅ 𝒄′(𝑖))/(𝒄′(𝑖) ⋅ 𝒄′(𝑖) + (𝒄(𝑖) − 𝑝) ⋅ 𝒄″(𝑖))
return 𝑢

100



2.3 Dataset formatting

Algorithm 2.4: Composite cubic Bézier curves simplification
In: ⋅ 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒, a composite cubic Bézier curve

⋅ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, maximum distance between original and simplified curves (1.0)
⋅ 𝑜𝑝𝑡𝑖𝑚𝑆𝑡𝑒𝑝𝑠, maximum number of optimization steps (100)

Out: ⋅ 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒, simplified composite cubic Bézier curve

for each 𝑛𝑜𝑑𝑒𝑠 in 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒 do
𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 +← 𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝖾𝗏𝖺𝗅𝖡𝖾𝗓𝗂𝖾𝗋(𝑛𝑜𝑑𝑒𝑠)

𝑐𝑜𝑚𝑝𝐶𝑜𝑢𝑛𝑡 ← 𝗅𝖾𝗇(𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒) + 1
while 𝗅𝖾𝗇(𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒) < 𝑐𝑜𝑚𝑝𝐶𝑜𝑢𝑛𝑡 do

𝑐𝑜𝑚𝑝𝐶𝑜𝑢𝑛𝑡 ← 𝗅𝖾𝗇(𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒)
for each consecutive pair of 𝑛𝑜𝑑𝑒𝑠 and 𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 do

𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑜𝑝𝑡𝑖𝑚, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑝𝑡𝑖𝑚 +←
simplifyNodePair(𝑛𝑜𝑑𝑒𝑠𝑎, 𝑛𝑜𝑑𝑒𝑠𝑏, 𝑝𝑡𝑠𝑎,𝑜𝑟𝑖𝑔𝑖𝑛, 𝑝𝑡𝑠𝑏,𝑜𝑟𝑖𝑔𝑖𝑛, … )

if 𝗅𝖾𝗇(𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒) is odd then
𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑜𝑝𝑡𝑖𝑚, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑝𝑡𝑖𝑚 +← last 𝑛𝑜𝑑𝑒𝑠 and last 𝑝𝑜𝑖𝑛𝑡𝑠

𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑜𝑝𝑡𝑖𝑚, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑝𝑡𝑖𝑚
if 𝗅𝖾𝗇(𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒) is odd then

𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑜𝑝𝑡𝑖𝑚, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑝𝑡𝑖𝑚 ← first 𝑛𝑜𝑑𝑒𝑠 and first 𝑝𝑜𝑖𝑛𝑡𝑠
for each next consecutive pair of 𝑛𝑜𝑑𝑒𝑠 and 𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 do

𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑜𝑝𝑡𝑖𝑚, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑝𝑡𝑖𝑚 +←
simplifyNodePair(𝑛𝑜𝑑𝑒𝑠𝑎, 𝑛𝑜𝑑𝑒𝑠𝑏, 𝑝𝑡𝑠𝑎,𝑜𝑟𝑖𝑔𝑖𝑛, 𝑝𝑡𝑠𝑏,𝑜𝑟𝑖𝑔𝑖𝑛, … )

𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑜𝑝𝑡𝑖𝑚, 𝑐𝑜𝑚𝑝𝑃𝑡𝑠𝑜𝑝𝑡𝑖𝑚

return 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒

Function simplifyNodePair(𝑛𝑜𝑑𝑒𝑠𝑎, 𝑛𝑜𝑑𝑒𝑠𝑏, 𝑝𝑡𝑠𝑎,𝑜𝑟𝑖𝑔𝑖𝑛, 𝑝𝑡𝑠𝑏,𝑜𝑟𝑖𝑔𝑖𝑛, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒,
𝑜𝑝𝑡𝑖𝑚𝑆𝑡𝑒𝑝𝑠):

𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛 ← 𝖼𝗈𝗇𝖼𝖺𝗍𝖾𝗇𝖺𝗍𝖾(𝑝𝑡𝑠𝑎,𝑜𝑟𝑖𝑔𝑖𝑛, 𝑝𝑡𝑠𝑏,𝑜𝑟𝑖𝑔𝑖𝑛)
𝑢 ← chordLengthParam(𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛)
𝑡𝑔𝑡𝑎 ← normalized input tangent from 𝑛𝑜𝑑𝑒𝑠𝑎
𝑡𝑔𝑡𝑏 ← normalized output tangent from 𝑛𝑜𝑑𝑒𝑠𝑏
𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚 ← computeNodes(𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑢, 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑏)
𝑒𝑟𝑟𝑜𝑟 ← computeMeanError(𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚, 𝑢)
if 𝑒𝑟𝑟𝑜𝑟 < 4 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then

for each 𝑜𝑝𝑡𝑖𝑚𝑆𝑡𝑒𝑝𝑠 do
𝑢 ← paramOptim(𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚, 𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑢)
𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚 ← computeNodes(𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑢, 𝑡𝑔𝑡𝑎, 𝑡𝑔𝑡𝑏)
𝑒𝑟𝑟𝑜𝑟 ← computeMeanError(𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛, 𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚, 𝑢)
if 𝑒𝑟𝑟𝑜𝑟 < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then

return [𝑛𝑜𝑑𝑒𝑠𝑜𝑝𝑡𝑖𝑚], [𝑝𝑜𝑖𝑛𝑡𝑠𝑜𝑟𝑖𝑔𝑖𝑛]

return [𝑛𝑜𝑑𝑒𝑠𝑎, 𝑛𝑜𝑑𝑒𝑠𝑏], [𝑝𝑡𝑠𝑎,𝑜𝑟𝑖𝑔𝑖𝑛, 𝑝𝑡𝑠𝑏,𝑜𝑟𝑖𝑔𝑖𝑛]
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Algorithm 2.5: Splitting of long strokes
In: ⋅ 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒, a composite cubic Bézier curve, i.e. a stroke

⋅ 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ, upper bound of the protected number of components (3)
⋅ 𝑚𝑎𝑥𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒, maximum cumulative curvature of a stroke (2.5𝜋)

Out: ⋅ 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑠, a list of smaller composite cubic Bézier curves

if 𝗅𝖾𝗇(𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒) ≤ 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑𝐿𝑒𝑛𝑔𝑡ℎ then
return [𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒]

for each 𝑛𝑜𝑑𝑒𝑠 in 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒 do
𝑐𝑜𝑚𝑝𝐶𝑢𝑚𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 +← 𝖾𝗏𝖺𝗅𝖢𝗎𝗆𝗎𝗅𝖺𝗍𝗂𝗏𝖾𝖢𝗎𝗋𝗏𝖺𝗍𝗎𝗋𝖾(𝑛𝑜𝑑𝑒𝑠)

if 𝑐𝑜𝑚𝑝𝐶𝑢𝑚𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 ≤ 𝑚𝑎𝑥𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 then
return [𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒]

𝑛 ← ⌈𝑐𝑜𝑚𝑝𝐶𝑢𝑚𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒/𝑚𝑎𝑥𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒⌉
𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑠 ← find 𝑛 groups of curve components that best equalize their respective

cumulative curvature (groups can eventually be > 𝑚𝑎𝑥𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)
return 𝑐𝑜𝑚𝑝𝐶𝑢𝑟𝑣𝑒𝑠

Algorithm 2.6: Composition permutations
In: ⋅ 𝑐𝑜𝑑𝑒𝑠, stroke hierarchical codes of a composition, e.g. [(0,0,0), (0,0,1), (1,0), (1,1),

(1,2), (2)]
⋅ 𝑚𝑎𝑥𝑃 𝑒𝑟𝑚𝑠, maximal number of permutation, if 0 no limitation (32)
⋅ 𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡, depth where permutations begin to be fixed (2)
⋅ 𝑠𝑒𝑒𝑑, seed of the random number generator

Out: ⋅ 𝑝𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠, a list of permutation indices

𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← 𝗋𝖺𝗇𝗀𝖾(𝗅𝖾𝗇(𝑐𝑜𝑑𝑒𝑠))
𝑝𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ← treePermutations(𝑐𝑜𝑑𝑒𝑠, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠, 𝑑𝑒𝑝𝑡ℎ = 0, … )
return 𝑝𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠

Function permutationsCount(𝑐𝑜𝑑𝑒𝑠, 𝑐𝑜𝑢𝑛𝑡𝐿𝑖𝑚𝑖𝑡, 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡):
▽ This function is recursive and early stops when 𝑐𝑜𝑢𝑛𝑡𝐿𝑖𝑚𝑖𝑡 is reached.
𝑐𝑜𝑢𝑛𝑡𝐿𝑖𝑚𝑖𝑡 ← 𝗆𝗂𝗇(𝑐𝑜𝑢𝑛𝑡𝐿𝑖𝑚𝑖𝑡, 8! = 40300)
𝑐𝑜𝑢𝑛𝑡 ← number of possible permutations for the tree defined by 𝑐𝑜𝑑𝑒𝑠 and respecting

𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡
return 𝑐𝑜𝑢𝑛𝑡

Function productNormalize(𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡):
if 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 ≤ 1.0 then

return vector having the shape of 𝑥 and filled with ones
if ∑ 𝗅𝗈𝗀(𝑥) ≤ 𝗅𝗈𝗀(𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡) then

return 𝑥
return 𝖾𝗑𝗉 ( 𝗅𝗈𝗀(𝑥)

∑ 𝗅𝗈𝗀(𝑥) 𝗅𝗈𝗀(𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡))
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Function permutationGivenIdx(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑖):
▽ This function is designed to avoid the computation of all permutations before

selecting the 𝑖𝑡ℎ one.
return 𝑖𝑡ℎ permutation of 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

Function treePermutations(𝑐𝑜𝑑𝑒𝑠, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠, 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡, 𝑠𝑒𝑒𝑑):
𝑐𝑜𝑑𝑒𝑠𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ ← maximum depth in 𝑐𝑜𝑑𝑒𝑠
if 𝑐𝑜𝑑𝑒𝑠𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ > 0 and ((𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡 > 0 and 𝑑𝑒𝑝𝑡ℎ < 𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡) or

(𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡 ≤ 0 and 𝑐𝑜𝑑𝑒𝑠𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ > −𝑑𝑒𝑝𝑡ℎ𝐿𝑖𝑚𝑖𝑡)) then
▽ build tree at current level
𝑡𝑟𝑒𝑒𝐶𝑜𝑑𝑒𝑠, 𝑡𝑟𝑒𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ← split 𝑐𝑜𝑑𝑒𝑠 and 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 in groups having the same first

code digit and remove this digit, e.g. 𝑡𝑟𝑒𝑒𝐶𝑜𝑑𝑒𝑠 = [[(0,0), (0,1)], [(0), (1),
(2)], []]

▽ compute remaining 𝑚𝑎𝑥𝑃𝑒𝑟𝑚 per branch of the tree
𝑛𝑜𝑑𝑒𝑃𝑒𝑟𝑚𝑠𝐶𝑜𝑢𝑛𝑡 = 𝗅𝖾𝗇(𝑡𝑟𝑒𝑒𝐶𝑜𝑑𝑒𝑠)!
for each 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑑𝑒𝑠 in 𝑡𝑟𝑒𝑒𝐶𝑜𝑑𝑒𝑠 do

𝑡𝑟𝑒𝑒𝑃𝑒𝑟𝑚𝑠𝐶𝑜𝑢𝑛𝑡 +← 𝑏𝑟𝑎𝑛𝑐ℎ𝑃𝑒𝑟𝑚𝑠𝐶𝑜𝑢𝑛𝑡 ←
permutationsCount(𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑑𝑒𝑠, 𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠, 𝑑𝑒𝑝𝑡ℎ, … )

𝑡𝑟𝑒𝑒𝑀𝑎𝑥𝑃𝑒𝑟𝑚𝑠 ← productNormalize(𝑡𝑟𝑒𝑒𝑃𝑒𝑟𝑚𝑠𝐶𝑜𝑢𝑛𝑡,
𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠/𝑛𝑜𝑑𝑒𝑃𝑒𝑟𝑚𝑠𝐶𝑜𝑢𝑛𝑡)

▽ recursion in deeper levels
for each 𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑑𝑒𝑠, 𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝑛𝑑𝑖𝑐𝑒𝑠, 𝑏𝑟𝑎𝑛𝑐ℎ𝑀𝑎𝑥𝑃𝑒𝑟𝑚𝑠 in

𝑡𝑟𝑒𝑒𝐶𝑜𝑑𝑒𝑠, 𝑡𝑟𝑒𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠, 𝑡𝑟𝑒𝑒𝑀𝑎𝑥𝑃𝑒𝑟𝑚𝑠 do
𝑡𝑟𝑒𝑒𝑃𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠 +← 𝑏𝑟𝑎𝑛𝑐ℎ𝑃𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ← treePermutations(

𝑏𝑟𝑎𝑛𝑐ℎ𝐶𝑜𝑑𝑒𝑠, 𝑏𝑟𝑎𝑛𝑐ℎ𝐼𝑛𝑑𝑖𝑐𝑒𝑠, 𝑏𝑟𝑎𝑛𝑐ℎ𝑀𝑎𝑥𝑃𝑒𝑟𝑚𝑠, 𝑑𝑒𝑝𝑡ℎ + 1, … )
▽ apply permutations
𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠 ← 𝗆𝗂𝗇(𝑛𝑜𝑑𝑒𝑃𝑒𝑟𝑚𝑠𝐶𝑜𝑢𝑛𝑡, ⌊𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠⌋)
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 = 𝗋𝖺𝗇𝗀𝖾(𝗆𝖺𝗑𝖯𝖾𝗋𝗆𝗌)
if 𝑛𝑜𝑑𝑒𝑃𝑒𝑟𝑚𝑠𝐶𝑜𝑢𝑛𝑡 > 𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠 then

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ← randomly choose 𝑚𝑎𝑥𝑃𝑒𝑟𝑚𝑠 elements from
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 using 𝑠𝑒𝑒𝑑.

for each 𝑖 in 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 do
𝑝𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠 +← permutationGivenIdx(𝑡𝑟𝑒𝑒𝑃𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠, 𝑖)

return 𝑝𝑒𝑟𝑚𝐼𝑛𝑑𝑖𝑐𝑒𝑠
return [𝑖𝑛𝑑𝑖𝑐𝑒𝑠]
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3 Model implementation

Model implementation is a critical step for transposing theoretical ideas into
practical objects, i.e. computational tools, which in turn make it possible to
carry out concrete experiments. As our stroke and composition datasets are now
operational, this chapter focuses on the mathematical background underpinning
our computational tools, and describes how they are articulated to materialize the
paradigm detailed in Chapter.1. We also explain how artificial neural networks
implement suitable probabilistic models, and how our chosen architectural designs
address specific compositional questions. The resulting models are then treated
in the order of their hierarchical nesting. As detailed earlier, my datasets are
characterized by a rich compositional diversity that is actualized over a necessarily
limited number of inputs. This limitation poses important functional challenges
for neural networks, which required extra care during implementation. We finally
endeavor to rationalize the meaning/significance of different hyperparameters,
and to simplify the training procedure. However, the presentation of the results
from these models is postponed to the second part of the manuscript (Part.II),
alongside relevant perceptual experiments and artistic explorations.

3.1 Probabilistic models

A probabilistic model 𝑃, also called a statistical model, is the definition of a
probability law over a set of possible observations e.g. every possible stroke or
composition. These possible observations constitute the sample space, which will
be represented by a continuous random vector 𝐱 in a potentially high-dimensional
space 𝒳. A probability law associates a probability 𝑝(𝐱 = 𝒙) ≥ 0 to any sample
𝒙, and the probability over the entire space 𝒳 fulfills 𝑝(𝐱 ∈ 𝒳) = ∫

𝒳
𝑝(𝒙)𝑑𝒙 = 1.

The model 𝑃 specifying law 𝑝 is a good model if it captures a coherent organization
for 𝐱, and confers an informative shape to the distribution of 𝐱.

To control the shape of our model, 𝑃 is parameterized by a vector 𝜽 in some space
𝛩. Because 𝐱 is continuous, 𝑝(𝐱; 𝜽) denotes the probability density function of
𝐱. Depending on the modeled phenomenon, it is usually not possible to compute
the true 𝜽 numerically: the best we can do is obtain an approximation. We
can learn this approximation from a dataset 𝒟 = {𝒙𝑛}𝑁

𝑛=1, consisting of 𝑁 i.i.d
(independent and identically distributed) real samples of 𝐱. We regard 𝑝𝒟(𝐱) as
the true distribution of the data we are trying to model.
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3 Model implementation

Maximum likelihood

We must define a procedure for computing the approximated parameters 𝜽∗. In
machine learning, a popular choice is maximum likelihood. “The intuition behind
this framework, is that if the model is likely to produce training set samples 𝒙𝑛,
then it is also likely to produce similar samples 𝒙, and unlikely to produce dissimilar
ones.”1 Under this assumption, our probabilistic model 𝑃 also becomes a generative
model. The objective of generative modeling is twofold: description of a given
phenomenon, and construction of a tool that is able to produce new unseen
coherent occurrences of said phenomenon. “A generative model simulates how the
data is generated in the real world.”2 This goal can be expressed as:3

𝜽∗ = 𝖺𝗋𝗀 𝗆𝖺𝗑
𝜽

𝑁
∏
𝑛=1

𝑝(𝒙𝑛; 𝜽)

= 𝖺𝗋𝗀 𝗆𝖺𝗑
𝜽

𝗅𝗈𝗀
𝑁

∏
𝑛=1

𝑝(𝒙𝑛; 𝜽)

= 𝖺𝗋𝗀 𝗆𝖺𝗑
𝜽

𝑁
∑
𝑛=1

𝗅𝗈𝗀 𝑝(𝒙𝑛; 𝜽)

(3.1)

To avoid the multiplication of probabilities, which leads to smaller and smaller
values thus causing numerical problems, we convert product to summation via the
logarithmic function. This is possible because the derivative of the logarithm is
strictly positive, so that 𝖺𝗋𝗀 𝗆𝖺𝗑𝑢 𝑓(𝑢) = 𝖺𝗋𝗀 𝗆𝖺𝗑𝑢 𝗅𝗈𝗀 𝑓(𝑢).

Maximum likelihood can be thought of as a procedure that minimizes the distance
between 𝑝(𝐱; 𝜽) and 𝑝𝒟(𝐱) as measured by the Kullback-Leibler divergence metric
𝐷𝖪𝖫.

𝜽∗ = 𝖺𝗋𝗀 𝗆𝗂𝗇
𝜽

𝐷𝖪𝖫(𝑝𝒟(𝐱) ∥ 𝑝(𝐱; 𝜽))

= 𝖺𝗋𝗀 𝗆𝗂𝗇
𝜽

𝔼𝐱∼𝑝𝒟
[𝗅𝗈𝗀 𝑝𝒟(𝒙𝑛) − 𝗅𝗈𝗀 𝑝(𝒙𝑛; 𝜽)]

= 𝖺𝗋𝗀 𝗆𝗂𝗇
𝜽

𝔼𝐱∼𝑝𝒟
[𝗅𝗈𝗀 𝑝𝒟(𝒙𝑛)] − 𝔼𝐱∼𝑝𝒟

[𝗅𝗈𝗀 𝑝(𝒙𝑛; 𝜽)]

= 𝖺𝗋𝗀 𝗆𝖺𝗑
𝜽

𝔼𝐱∼𝑝𝒟
[𝗅𝗈𝗀 𝑝(𝒙𝑛; 𝜃)]

= 𝖺𝗋𝗀 𝗆𝖺𝗑
𝜽

𝑁
∑
𝑛=1

𝑝𝒟(𝒙𝑛) 𝗅𝗈𝗀 𝑝(𝒙𝑛; 𝜽)

= 𝖺𝗋𝗀 𝗆𝖺𝗑
𝜽

1
𝑁

𝑁
∑
𝑛=1

𝗅𝗈𝗀 𝑝(𝒙𝑛; 𝜽)

(3.2)

1Doersch, 2016.
2Kingma and Welling, 2019.
3I. Goodfellow et al., 2016, pp. 131–132.
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3.1 Probabilistic models

We can remove 𝔼𝐱∼𝑝𝒟
[𝗅𝗈𝗀 𝑝𝒟(𝒙𝑛)] as it does not depend on 𝜽. In addition,

𝑝𝒟(𝒙𝑛) = 1
𝑁 by definition. So, up to a constant, the result is similar to Eq.3.1.

In order to simplify the formulation of this objective, we define the maximization
function ℒ(𝐱, 𝜽) = 𝗅𝗈𝗀 𝑝(𝐱; 𝜽).

Time series

Strokes and compositions can be considered as time series of 𝑇 movements
or events. Within this framework, the random vector 𝐱 is also defined as a
temporal sequence: 𝐱 = 𝐱1∶𝑇 = (𝐱1, … , 𝐱𝑡, … , 𝐱𝑇). Because time is irreversible,
an event at instant 𝑡 is a consequence of all preceding events: any 𝐱𝑡 from a
sequence cannot be considered as independent of 𝐱1∶𝑡−1. As a result, 𝑝(𝐱1∶𝑇) is
as an ordered product of conditional distributions. For example, if 𝑇 = 3, then
𝑝(𝐱1∶3) = 𝑝(𝐱1)𝑝(𝐱2 ∣ 𝐱1)𝑝(𝐱3 ∣ 𝐱1, 𝐱2). More generally:

𝑝(𝐱1∶𝑇) = 𝑝(𝐱1, … , 𝐱𝑇) = 𝑝(𝐱1)
𝑇

∏
𝑡=2

𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1) =
𝑇

∏
𝑡=1

𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1) , 𝐱1∶0 = ∅

(3.3)
The maximization function for the time series becomes:

ℒ(𝐱1∶𝑇, 𝜽) = 𝗅𝗈𝗀 𝑝(𝐱1∶𝑇; 𝜽)

= 𝗅𝗈𝗀
𝑇

∏
𝑡=1

𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1; 𝜽) , 𝐱1∶0 = ∅

=
𝑇

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1; 𝜽) , 𝐱1∶0 = ∅

(3.4)

Neural networks

Probabilistic models based on maximum likelihood do not imply the adoption of
neural networks. In the family of bio-inspired machine learning tools, artificial
evolution (genetic algorithms) and cellular automata are other forms of Artificial
Intelligence4. Frameworks such as Bayesian networks or Support Vector Machines
(SVMs) are also popular, and have been widely used before the recent popularity of
deep learning5. Neural networks were also introduced early, and have been around
since the early days of computers. However, it took five decades of developing
more and more powerful computational resources before the ideas proposed by
McCulloch and Pitts in 19436 could be used to solve real-life problems. Zip Code
recognition, i.e. the automatic processing of handwritten digits, represented a
4Floreano and Mattiussi, 2008.
5Bishop, 2006.
6Rojas, 1996.

107



3 Model implementation

milestone in the rebirth of neural networks7. The related MNIST Database8
created in 1998 remains an essential sandbox to experiment with neural networks.
The contemporary widespread use of deep learning, supported by neural networks
with a large and complex accumulation of layers, capitalizes upon the development
of computing frameworks based on GPU (Graphic Cards) rather than CPU. These
technological innovations have reduced training time by more than 10 folds,
making it possible to handle larger datasets. A second factor in the development
of deep learning is the rise of the internet and its huge pool of data. The
ImageNet dataset9 and its associated competition have driven the development
of different architectures dedicated to image content classification, and more
generally object recognition10. Some models of artificial vision have achieved
super-human performance, and have triggered substantial interest in the cognitive
sciences community. Connections with biological early brain processing have even
been demonstrated11. We also have found similarities between deep convolutional
neural networks and human judgments of the orientation of abstract paintings12
(see Appendix.A.1).

Over a period of only ten years, deep learning has become an efficient and versatile
computational tool. Driven by leaders of the digital industry like Google and
Facebook, open source libraries such as TensorFlow13 and PyTorch14 provide high-
level frameworks with automatic differentiation for the gradient computation and
a transparent switch from CPU to GPU backends. Developers and researchers can
then focus on network architecture rather than low-level considerations. A negative
side effect of this success is that deep learning has become a field with an extremely
high publication rate, difficult to track. Source codes of new models are usually
freely available online, allowing the resolution of specific problems with reduced
development efforts. However, if the main objective is not to solve a specific
problem or fulfill a specific task with high accuracy, but rather to gain insights
into a complex phenomenon and to understand the meaning of each architectural
detail, it can be wise to take a step back: amidst yearly new architectures and
dozens of variants, we have decided to stay with concepts that have a longer
history in neural network research.

There is no space for an extensive introduction to neural networks, however we
need to make the link with the maximization function in Eq.3.4. A simple neuron
is a processing unit collecting a finite number of inputs. These inputs are linearly
combined with individual weighting values. These weights are precisely the learned
parameters, corresponding to fragments of 𝜽. Nonetheless, if a neuron were
7LeCun et al., 1989.
8LeCun et al., 1998.
9Russakovsky et al., 2015.

10He et al., 2015; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014.
11DiCarlo et al., 2012; Rajalingham et al., 2018; Yamins and DiCarlo, 2016.
12Lelièvre and Neri, 2019, 2021.
13Abadi et al., 2015.
14Paszke et al., 2019.
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solely a linear combination of inputs, neural networks would not be far from
linear regression algorithms. A neuron is therefore associated with a nonlinear
function, e.g. an exponential or a sigmoid function. Alone, a neuron would not
be sufficient to model complex functions and systems. When arranged over an
array, neurons form a layer. If multiple layers are stacked and interconnected, we
obtain a complete network. The size of each layer can be adjusted to match the
requirements of input/output dimensionalities and the expected modeling power.
Neural weights are randomly initialized and then information is fed forward to
produce an output. Through Eq.3.4, this output provides an error estimation that
can be exploited within the context of traditional gradient descent (or ascent)
algorithms, thus optimizing 𝜽 iteratively. In neural networks, this optimization step
is denominated as error back-propagation, in opposition to the forward pass that
produces the output. Error back-propagation corresponds to computing the partial
derivatives of the error w.r.t. each weight by using the chain rule back to the input.
As a result, the exact behavior of intermediary layers is shaped during the training
without explicit control on the part of the modeler. In addition, intermediary layers
remain unavailable to scrutiny based on the output alone. For this reason, these
layers are usually called hidden layers.

Recurrent neural networks

The neural network architectures dedicated to vision outlined above belong to the
Convolutional Neural Networks family (CNNs), i.e. approximately models which
deal with discrete images of a fixed number of pixels. Because input and output
dimensionalities are pre-defined, these approaches do not lend naturally to the
handling of time series: even if we could standardize the length of input sequences
beforehand, feeding them to a CNN would lead to the unwieldy expansion of first
layers by the length of the series. A better idea is to reuse the same layers multiple
times, with a recurrent connection, i.e. the output of a unit being fed to the same
unit, a step in time further. This particular connection gives its name to a whole
class of neural networks, the recurrent neural networks (RNNs). The difficulty
is then to keep track of the gradient for error back-propagation. The problem
can be formalized as a directed graph by unfolding/unrolling the network along its
time dimension. Helpfully, this job is carried transparently by PyTorch, our deep
learning toolbox of choice.

Early successful applications of RNNs to text and handwriting generation15 relied on
a special type of recurrent unit called Long Short-Term Memory (LSTM)16. This
unit aims at improving model performance on long-term dependencies in sequential
data (i.e. avoiding a vanishing gradient → 0, or an exploding gradient → ∞). For
this purpose, a memory cell is introduced in the recurrent unit to store important
15Graves, 2013.
16Gers et al., 2000; Hochreiter and Schmidhuber, 1997.
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information. Over time, this memory cell is updated with new information provided
by the input and the previous state. Elimination of unnecessary data is also driven
by a forget gate. The memory cell finally influences the current state of the unit,
its output. Another type of recurrent unit, the Gated Recurrent Unit (GRU)17,
claims similar results in a variety of applications with fewer parameters. However,
the LSTM unit remains a more versatile choice.

The simplest way to address time series is the pure generative RNN architecture
presented in Fig.3.1a. It naturally involves a layer with a recurrent unit supported
by a random vector denoted 𝐡. A second random vector 𝐲 materializes a basic
linear layer (fully connected), from which it is possible to draw some 𝒙′. 𝐱 and
𝐱′ actually refer to the same random variable. The ′ notation emphasizes the
generative action of the model. In opposition to any 𝒙, 𝒙′ is specifically not a real
item 𝒙𝑛 from the dataset 𝒟. Fig.3.1b is an unfolded representation of Fig.3.1a
along the time dimension. This graph gives a clearer overview of the computational
dependencies. For instance, gray arrows show that 𝐱′

𝑡 are used in place of normal
𝐱𝑡 inputs at evaluation, for the generation of new sequences. It also gives useful
insight into the definition of the following deterministic functions:

𝐡𝑡 = 𝑓𝐡(𝐱𝑡, 𝐡𝑡−1; 𝜽𝐡) , 𝒙0 = 𝟎 , 𝒉−1 = 𝟎 (3.5)
𝐲𝑡 = 𝑓𝐲(𝐡𝑡; 𝜽𝐲) (3.6)

where 𝜽𝐡 and 𝜽𝐲 are two parts of the model parameter 𝜽. 𝜽𝐡 is a vector of
weights specifying the behavior of the LSTM unit, and 𝜽𝒚 is a vector of weights
of the linear layer. Functions 𝑓𝐡 and 𝑓𝐲 also include nonlinearities, such as the
ReLU activation function18. To introduce the dependency of model 𝑃 on 𝐡 and 𝐲,
𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1) can be marginalized against those random vectors. Beginning with
𝐡:

𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1) = ∫
𝐡𝑡−1

𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1, 𝒉𝑡−1)𝑝(𝒉𝑡−1 ∣ 𝐱1∶𝑡−1)𝑑𝒉𝑡−1

= 𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1, 𝐡𝑡−1)
= 𝑝(𝐱𝑡 ∣ 𝐡𝑡−1(𝐱1∶𝑡−1))
= 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1(𝐡𝑡−1(𝐱1∶𝑡−1)))

(3.7)

As 𝐡𝑡 is the result of the deterministic function 𝑓𝐡(𝐱𝑡, 𝐡𝑡−1), where 𝐡𝑡−1 can be
recursively and deterministically defined given 𝐱1∶𝑡−1, then 𝑝(𝒉𝑡−1 ∣ 𝐱1∶𝑡−1) follows
a Dirac distribution, with its mode given by Eq.3.5. As a result, the integral over
the hidden states can be replaced by a single point. Then, we make the dependency
of 𝐡𝑡−1 on 𝐱1∶𝑡−1 explicit. 𝐲𝑡−1 is introduced using the same procedure19. Finally,
our maximization function can be expressed as:

17Cho et al., 2014.
18Clevert et al., 2015; Nair and Hinton, 2010.
19Parts of this demonstration come from Bayer and Osendorfer, 2015
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3 Model implementation

ℒ(𝐱1∶𝑇, 𝜽) =
𝑇

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1(𝐡𝑡−1(𝐱1∶𝑡−1; 𝜽𝐡); 𝜽𝐲)) (3.8)

This generative RNN architecture has been stated as the simplest way to address
time series. Indeed, our experiments with compositions highlight one fundamental
issue, rendering this model inapplicable in practice. Designed at first to extend
handwriting materials, texts, or sounds with a coherent style, new outputs are
actually conditioned on several previous time samples. There is no real need for the
generation of the first line or word. But in our case, the generation of the first stroke
is mandatory to produce completely new compositions. With this architecture,
possibilities on the first stroke are too high and provoke a hazardous initialization
of the composition. This causes difficulties when the network attempts to recover
expressiveness and propose satisfactory outputs. Therefore, the recurrent unit
needs to be conditioned on some information of the targeted composition. From
an artistic point of view, we could call this target an inspiring mental image.

Variational Auto-Encoder

To ease introduction of Variational Auto-Encoders (VAEs), we will momentarily
silence the temporal nature of 𝐱. In order to mathematically express the idea of
conditioning expressed above, we assume that 𝐱 is generated by some random
process involving another continuous random variable 𝐳. 𝐳 is defined over a high-
dimensional space 𝒵 and is connected to 𝐱 through the deterministic function
𝐱 = 𝑓𝑝(𝐳; 𝜽), where 𝑓𝑝 ∶ 𝒵 × 𝛩 → 𝒳. Then, 𝑝(𝐱; 𝜽) can be considered as a
marginal distribution against 𝐳, with 𝑝(𝐳) the prior distribution of 𝐳.

𝑝(𝐱; 𝜽) = ∫
𝐳

𝑝(𝐱 ∣ 𝒛; 𝜽)𝑝(𝒛)𝑑𝒛

= 𝔼𝐳∼𝑝(𝐳)[𝑝(𝐱 ∣ 𝒛; 𝜽)]
(3.9)

The space covered by 𝐳 is “called latent because given just an output 𝒙 produced
by the model, we do not necessarily know which settings of the latent variable 𝒛
have generated it.”20 In other words, the latent space is at this stage a different,
but inaccessible representation of 𝐱. Then, we can design the latent space as
a simplified and less intricate parameterization of 𝐱. If 𝐳 were a compressed
representation of 𝐱 with reduced dimensionality, it would force the model to
extract essential aspects of 𝐱, and could provide us with the opportunity to
discover hidden intrinsic regularities. “This quest for disentangled, semantically
meaningful, statistically independent and causal factors of variation in data is
generally known as unsupervised representation learning.”21

20Doersch, 2016.
21Kingma and Welling, 2019.
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Figure 3.2: Simple VAE architecture.

As a result, we should impose as few a priori constraints on 𝐳 as possible, and
only make minimal assumptions on its distribution. A simple choice is to set
𝑝(𝐳) = 𝒩(𝐳 ∣ 𝟎, 𝑰), with 𝑰 the identity matrix. Despite its generic nature, a
normal distribution may not be optimal. Nonetheless, the model 𝑃 is implemented
using deep neural networks, so we suppose that it will have enough power to adapt
the prior to whatever necessary internal distribution required by the model.

The efficiency of this model and its highly nonlinear hidden layers are associated
with the downside that it becomes intractable for direct optimization using Eq.3.9.
During the optimization procedure, if we naively sample some 𝒛 from 𝑝(𝐳), 𝑝(𝐱 ∣ 𝒛)
will be nearly 0 for most 𝒛, and it will not help in training the model i.e. producing
an efficient gradient for back-propagation. The idea is therefore to find a way to
sample some 𝒛 that are likely to have produced a particular 𝒙. To do so, let us
introduce a second model 𝑄 with a conditional distribution 𝑞(𝐳 ∣ 𝐱). This pdf is
based on a deterministic function 𝐳 = 𝑓𝑞(𝐱; 𝝓), parameterized by a vector 𝝓 in
some high-dimensional space 𝛷, where 𝑓𝑞 ∶ 𝒳 × 𝛷 → 𝒵. 𝑞(𝐳 ∣ 𝐱; 𝝓) will be an
approximation of the intractable true posterior 𝑝(𝐳 ∣ 𝐱).

In Fig.3.2, we notice that the proposed architecture is now structured like an
auto-encoder. On the one hand, model 𝑄 encodes 𝐱 into 𝐳, and on the other hand
model 𝑃 decodes 𝐳 to reconstruct 𝐱. We will therefore refer to these models as
the probabilistic encoder 𝑄 and decoder 𝑃. 𝑄 and 𝑃 are also sometimes referred
as recognition and generative models respectively. In addition, this framework is
specified as variational because 𝐳 is enforced to follow a probability distribution.
Even with a trained basic auto-encoder, sampling a 𝒛 to produce a new 𝒙′ is not
possible: an existing 𝒙 has to be encoded to produce a functional 𝒛. That is why
basic auto-encoders are mostly used for compression purposes, that do not require
the generative ability.

Concerning the optimization, besides the maximum likelihood on model 𝑃, we
need to guarantee that the approximation of 𝑝(𝐳 ∣ 𝐱) by 𝑞(𝐳 ∣ 𝐱) is sufficient. In
other words, 𝐷𝖪𝖫(𝑝(𝐳 ∣ 𝐱) ∥ 𝑞(𝐳 ∣ 𝐱)) has to be minimal. But this 𝐷𝖪𝖫, seen
as the expectation 𝔼𝐳∼𝑝(𝐳∣𝐱)[𝗅𝗈𝗀 𝑝(𝒛 ∣ 𝐱) − 𝗅𝗈𝗀 𝑞(𝒛 ∣ 𝐱)], is computed with some
𝒛 sampled from 𝑝(𝐳 ∣ 𝐱), which is intractable. We will therefore consider the
Kullback-Leibler divergence in the opposite direction, 𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱) ∥ 𝑝(𝐳 ∣ 𝐱)).
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If 𝑞(𝐳 ∣ 𝐱) were a perfect approximation of 𝑝(𝐳 ∣ 𝐱), there would not be any
difference, however 𝐷𝖪𝖫 is generally not symmetric between two distributions, and
it has practical implications for model behavior22. Nonetheless, we define the
following new maximization function:

ℒ(𝐱, 𝜽, 𝝓) = 𝗅𝗈𝗀 𝑝(𝐱; 𝜽) − 𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱; 𝝓) ∥ 𝑝(𝐳 ∣ 𝐱; 𝜽)) (3.10)

Variational lower bound

ℒ(𝐱, 𝜽, 𝝓) is then called the variational lower bound, or the evidence lower bound
(ELBO), because the 𝐷𝖪𝖫 term is non-negative and will be very close to zero
as 𝑞(𝐳 ∣ 𝐱) becomes efficient, meaning that ℒ(𝐱, 𝜽, 𝝓) ≤ ℒ(𝐱, 𝜽). ℒ(𝐱, 𝜽, 𝝓)
therefore places a lower bound on the original maximum likelihood (remember
ℒ(𝐱, 𝜽) = 𝗅𝗈𝗀 𝑝(𝐱; 𝜽)). We render Eq.3.10 practically actionable by expressing 𝐷𝖪𝖫
as an expectation and applying Bayes rule.

ℒ(𝐱, 𝜽,𝝓) = 𝗅𝗈𝗀 𝑝(𝐱; 𝜽) − 𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑞(𝒛 ∣ 𝐱; 𝝓) − 𝗅𝗈𝗀 𝑝(𝒛 ∣ 𝐱; 𝜽)]

= 𝗅𝗈𝗀 𝑝(𝐱; 𝜽) − 𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑞(𝒛 ∣ 𝐱) − 𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝒛) − 𝗅𝗈𝗀 𝑝(𝒛) + 𝗅𝗈𝗀 𝑝(𝐱)]
(3.11)

But 𝑝(𝐱) does not depend on 𝐳. So, it can be moved outside the expectation and
eliminated:

ℒ(𝐱, 𝜽, 𝝓) = −𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑞(𝒛 ∣ 𝐱; 𝝓) − 𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝒛; 𝜽) − 𝗅𝗈𝗀 𝑝(𝒛; 𝜽)] (3.12)

Then, contracting parts of 𝔼𝐳∼𝑞(𝐳∣𝐱) into a 𝐷𝖪𝖫:

ℒ(𝐱, 𝜽, 𝝓) = 𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝒛; 𝜽)] − 𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱; 𝝓) ∥ 𝑝(𝐳; 𝜽)) (3.13)

Reparameterization trick

ℒ(𝐱, 𝜽, 𝝓) will be optimized using stochastic gradient ascent/descent. This implies
that every operation must be differentiable in the model. “Stochastic gradient
descent can handle stochastic inputs, but not stochastic units within the network!”23
On this point, 𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝒛; 𝜽)] is problematic. During the forward pass,
we can average as many samples as needed to obtain a good estimate of the
expectation, but the error cannot be back-propagated through the sampling
operation of 𝐳. To overcome this issue, we use the reparameterization trick24.
22 Huszár, 2015 exposed this issue on a larger scale about maximum likelihood: “Minimizing 𝐷𝖪𝖫(𝑃𝒟 ∣ 𝑃 )

corresponds to moment matching and has a tendency to find models 𝑃 that cover all the modes of
𝑃𝒟, at the cost of placing probability mass where 𝑃𝒟 has none. Minimizing 𝐷𝖪𝖫(𝑃 ∣ 𝑃𝒟) in this
case leads to a mode-seeking behavior: the optimal 𝑃 will typically concentrate around the largest
mode of 𝑃𝒟, at the cost of completely ignoring smaller modes.”

23Doersch, 2016.
24Kingma and Welling, 2013; Rezende et al., 2014.
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First, we assert that 𝑞(𝐳 ∣ 𝐱) follows a normal distribution. Then, the family of
normal distributions is closed under linear transformations. It means that we can
decouple the sampling operation from the specific transformation operated by
𝑞(𝐳 ∣ 𝐱). To be precise, we define 𝑞(𝐳 ∣ 𝐱; 𝝓) = 𝒩(𝐳 ∣ 𝝁𝝓(𝐱), 𝖽𝗂𝖺𝗀(𝝈2

𝝓)(𝐱)), with
vectors 𝝁𝝓(𝐱) and 𝝈2

𝝓(𝐱) directly derived from 𝐲𝑞. This way, we can first sample
an 𝝐 from a distribution 𝑝(𝛜) = 𝒩(𝛜 ∣ 𝟎, 𝑰) with 𝑰 the identity matrix, and then
compute 𝐳 = 𝝁𝝓(𝐱) + 𝝈𝝓(𝐱) ⊙ 𝛜. As a result, 𝛜 becomes an auxiliary variable
with the independent marginal 𝑝(𝛜), which does not need to be learned. So:

𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝒛; 𝜽)] = 𝔼𝛜∼𝒩(𝟎,𝑰)[𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝝁𝝓(𝐱) + 𝝈𝝓(𝐱) ⊙ 𝝐; 𝜽)] (3.14)

During optimization, a complete iteration over the dataset 𝒟 is called an epoch.
Multiple epochs are necessary to obtain a good approximation of 𝜽 and 𝝓. So, at
the tiny scale of an individual 𝒙𝑛 from 𝒟, we can sample 𝛜 only a limited number
of times 𝑛𝛜 and still get a good estimation of the expectation. 𝑛𝛜 = 1 is usually
considered as sufficient but, in practice, we have preferred 𝑛𝛜 = 8.25 However, in
order to simplify our notation, in the following we consider 𝑛𝛜 = 1 and discard
expectation, so that:

𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝒛; 𝜽)] ≈ 𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝝁𝝓(𝐱) + 𝝈𝝓(𝐱) ⊙ 𝛜; 𝜽) (3.15)

Then, the practical maximization function from Eq.3.13 can be simplified to:

ℒ(𝐱, 𝜽, 𝝓) ≈ 𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝐳; 𝜽) − 𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱; 𝝓) ∥ 𝑝(𝐳; 𝜽)) (3.16)

Kullback-Leibler divergence of normal distributions

The second term of ℒ(𝐱, 𝜽, 𝝓) in Eq.3.16 is a 𝐷𝖪𝖫 between two multivariate normal
distributions. It can be computed in closed form with:

𝐷𝖪𝖫(𝒩0(𝝁0,𝜮0) ∥ 𝒩1(𝝁1, 𝜮1)) =
1
2

( 𝖳𝗋(𝜮−1
1 𝜮0) + (𝝁1 − 𝝁0)⊤𝜮−1

1 (𝝁1 − 𝝁0) − 𝐾 + 𝗅𝗈𝗀(𝖽𝖾𝗍 𝜮1
𝖽𝖾𝗍 𝜮0

))

(3.17)
where 𝐾 is the dimensionality of the random variable of interest, i.e. 𝐳. In the
case of VAEs, it simplifies to:

𝐷𝖪𝖫(𝒩(𝝁𝝓, 𝖽𝗂𝖺𝗀(𝝈2
𝝓) ∥ 𝒩(𝟎, 𝑰))

= 1
2

(𝖳𝗋(𝖽𝗂𝖺𝗀(𝝈2
𝝓)) + 𝝁⊤

𝝓𝝁𝝓 − 𝐾 − 𝗅𝗈𝗀(𝖽𝖾𝗍(𝖽𝗂𝖺𝗀(𝝈2
𝝓))))

= 1
2

(
𝐾

∑
𝑘=1

𝜎2
𝝓𝑘 +

𝐾
∑
𝑘=1

𝜇2
𝝓𝑘 − 𝐾 − 𝗅𝗈𝗀(

𝐾
∏
𝑘=1

𝜎2
𝝓𝑘))

(3.18)
25This multiple sampling of 𝛜 to get a better estimate of 𝔼𝐳∼𝑞(𝐳∣𝐱)[𝗅𝗈𝗀 𝑝(𝐱 ∣ 𝒛; 𝜽)] is related to importance

weighted auto-encoders (IWAE), which claim to produce a tighter lower bound (Burda et al., 2016).
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leading to,

𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱; 𝝓) ∥ 𝑝(𝐳; 𝜽)) = 1
2

𝐾
∑
𝑘=1

𝜎2
𝝓𝑘(𝐱) + 𝜇2

𝝓𝑘(𝐱) − 1 − 𝗅𝗈𝗀(𝜎2
𝝓𝑘(𝐱)) (3.19)

3.2 Stroke model

Strokes are sequences of 𝑇 components of cubic Bézier curves 𝒄𝑡, and each
component is a fixed vector of 6 values 𝜟𝑡 = [𝛿𝑡,𝑥, 𝛿𝑡,𝑦, 𝛿′

𝑡,𝑥, 𝛿′

𝑡,𝑦, 𝛿″

𝑡,𝑥, 𝛿″

𝑡,𝑦] (see
Subsection.2.3.Stroke encoding details). Strokes are then the basic elements of com-
positions, and it implies an additional constraint. RNN architecture supports
compositions of variable length, i.e. stroke number, but each stroke must be de-
fined as a vector of a constant dimensionality, no matter the complexity or length
of the stroke. The main purpose of the stroke model is therefore to compress
the representation of any stroke into a standardized format. Ideally, the entire
expressive space of strokes should be captured and organized into a finite and
reduced number of dimensions. This job is typically carried out by VAEs. In this
section, we will thus explain how to combine RNNs with VAEs.

Architecture

The stroke model architecture is presented in Fig.3.3. It is essentially based on a
previous work26 dedicated to figurative sketches collected by Google through the
Quick, Draw! mini-game27. This model aims at reconstructing and generating
drawings per class, e.g. cat or car only, and has then been extended to kanji28.

In Fig.3.3, we notice that the output of the recurrent unit 𝐡𝑞 is only used at 𝑡 = 𝑇.
It means that the latent random vector 𝐳 is dependent on the whole sequence of
𝐱 = 𝐱1∶𝑇. Even if the latent space is continuous and covers an infinite number of
possible strokes, it does not care about incomplete strokes. This architecture is
thus a space with circumscribed morphological possibilities, which is coherent with
the idea of strokes as a minimal vocabulary for creative endeavors.

Concerning decoder 𝑃, the main difference from the simple generative RNN (see
Fig.3.1) is that 𝐡 is also conditioned on 𝐳. The previous state of 𝐡0 is specifically
computed by a dedicated layer represented by the random vector 𝐠. The idea is to
increase network power by overcoming the initial stroke issue at generation (see
Subsection.3.1.Recurrent neural networks).
26The work of Ha and Eck, 2017 is seminal and has profoundly impacted our project. We should

also mention Cho et al., 2014 (basic Auto-Encoder) and Bowman et al., 2016 for their work on
representation and generation of sentences.

27Jongejan et al., 2016.
28Clanuwat et al., 2018.
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3 Model implementation

Optimization function

Like a typical VAE, the maximization function of the stroke model is the ELBO
defined in Eq.3.16, but extended to time series (see Eq.3.3):

ℒ(𝐱1∶𝑇, 𝜽, 𝝓) = 𝗅𝗈𝗀 𝑝(𝐱1∶𝑇 ∣ 𝐳; 𝜽) − 𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱1∶𝑇; 𝝓) ∥ 𝑝(𝐳; 𝜽))

=
𝑇

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐱1∶𝑡−1, 𝐳; 𝜽) − 𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱1∶𝑇; 𝝓) ∥ 𝑝(𝐳; 𝜽))
(3.20)

In order to implement encoder 𝑄 and decoder 𝑃 with neural networks, respectively
parameterized by 𝝓 and 𝜽, we define the following deterministic functions:

𝐡𝑞
𝑡 = 𝑓𝐡𝑞(𝐱𝑡, 𝐡𝑞

𝑡−1; 𝝓𝐡) , 𝒉𝑞
0 = 𝟎 (3.21)

𝐲𝑞 = 𝑓𝐲𝑞(𝐡𝑞
𝑇; 𝝓𝐲) (3.22)

𝐠 = 𝑓𝐠(𝐳; 𝜽𝐠) (3.23)
𝐡𝑡 = 𝑓𝐡(𝐱𝑡, 𝐳, 𝐡𝑡−1; 𝜽𝐡) , 𝒙0 = 𝟎 , 𝐡−1 = 𝐠 (3.24)
𝐲𝑡 = 𝑓𝐲(𝐡𝑡; 𝜽𝐲) (3.25)

By default, 𝒙0 = 𝟎. We can think of this initialization vector as an empty canvas,
an implicit part of any stroke (and later, any composition). Following a similar
development as in Eq.3.7, our maximization function can be expressed as follows
(parameters 𝜽 and 𝝓 are omitted on the r.h.s. for legibility):

ℒ(𝐱1∶𝑇, 𝜽, 𝝓) =
𝑇

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1(𝐡𝑡−1(𝐱1∶𝑡−1, 𝛜, 𝐲𝑞(𝐡𝑞
𝑇(𝐱1∶𝑇)))))

−𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱1∶𝑇) ∥ 𝑝(𝐳))
(3.26)

with 𝐾 the dimensionality of 𝐳 (see Eq.3.19),

𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱1∶𝑇) ∥ 𝑝(𝐳)) = 1
2

𝐾
∑
𝑘=1

𝜎2
𝝓𝑘(𝐱1∶𝑇)+𝜇2

𝝓𝑘(𝐱1∶𝑇)−1−𝗅𝗈𝗀(𝜎2
𝝓𝑘(𝐱1∶𝑇)) (3.27)

Choice of 𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1)

The choice of 𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1) is critical, because it precisely shapes the capability of
model 𝑃. 𝐱𝑡 is a random vector, so each of its components has to be materialized
as such. As recalled at the beginning of this section, 𝐱𝑡 contains random vectors
𝚫𝑡 = [𝛅𝑡, 𝛅′

𝑡, 𝛅″

𝑡 ], which describe the movement of the pen from 𝑡 − 1. In addition,
the model needs to signal when the generation of a stroke is ended. The model
should be able to produce strokes of length 1, as well as strokes of length 8. We
therefore introduce a new binary random variable β𝑡, controlling the state of the
pen during the movement from 𝑡 − 1 to 𝑡. If β𝑡 = 1, the curve component is
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3.2 Stroke model

visible, otherwise not, and the stroke is completed. In 𝐱𝑡, β𝑡 will be materialized
as a one-hot vector [β𝑡,1, β𝑡,0]. As a result:

𝐱𝑡 = [δ𝑡,𝑥, δ𝑡,𝑦, δ′

𝑡,𝑥, δ′

𝑡,𝑦, δ″

𝑡,𝑥, δ″

𝑡,𝑦, β𝑡,1, β𝑡,0] (3.28)

Before assigning a shape to 𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1), we must verify the independence
of the 𝐱 components. Pen movements 𝚫𝑡 do not carry any meaning when they
are invisible i.e. β𝑡 = 0 or [β𝑡,1, β𝑡,0] = [0, 1]. Probabilities associated with pen
movements are therefore conditioned on β𝑡, so that:

𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1) = 𝗅𝗈𝗀 𝑝(β𝑡 ∣ 𝐲𝑡−1) + 𝗅𝗈𝗀 𝑝(𝚫𝑡 ∣ 𝐲𝑡−1, β𝑡) (3.29)

𝑝(β𝑡 ∣ 𝐲𝑡−1) is chosen to be a Bernoulli distribution with 𝒋𝜽𝑡 probabilities. However,
the model outputs raw logits, i.e. unnormalized log probabilities ̃𝗅𝗈𝗀(𝒋𝜽𝑡), which
have to be normalized with a softmax function.

𝗅𝗈𝗀 𝑗𝜽𝑡,𝑖 = 𝗅𝗈𝗀
𝖾𝗑𝗉 ̃𝗅𝗈𝗀(𝑗𝜽𝑡,𝑖)

∑1
𝑘=0 𝖾𝗑𝗉 ̃𝗅𝗈𝗀(𝑗𝜽𝑡,𝑘)

= ̃𝗅𝗈𝗀(𝑗𝜽𝑡,𝑖) − 𝗅𝗈𝗀
1

∑
𝑘=0

𝖾𝗑𝗉 ̃𝗅𝗈𝗀(𝑗𝜽𝑡,𝑘) (3.30)

then,

𝗅𝗈𝗀 𝑝(β𝑡 ∣ 𝐲𝑡−1) = 𝗅𝗈𝗀
1

∏
𝑖=0

𝑗β𝑡,𝑖
𝜽𝑡,𝑖 =

1
∑
𝑖=0

β𝑡,𝑖 𝗅𝗈𝗀 𝑗𝜽𝑡,𝑖 (3.31)

When β𝑡 = 0, the stroke is ended, and we set 𝚫𝑡 = 𝟎. Consequently, 𝑝(𝚫𝑡 ∣
𝐲𝑡−1, β𝑡,0) = 1. Otherwise, 𝑝(𝚫𝑡 ∣ 𝐲𝑡−1, β𝑡,1) is chosen to be a multivariate
normal distribution with a diagonal covariance matrix. We set 𝐶 = 6 to be the
dimensionality of 𝚫𝑡.

𝗅𝗈𝗀 𝑝(𝚫𝑡 ∣ 𝐲𝑡−1, β𝑡,1) = 𝗅𝗈𝗀 𝒩(𝚫𝑡 ∣ 𝝁𝜽(𝐲𝑡−1), 𝖽𝗂𝖺𝗀(𝝈2
𝜽(𝐲𝑡−1)))

= 𝗅𝗈𝗀
𝖾𝗑𝗉 (− 1

2 ∑𝐶
𝑖=1

(Δ𝑡,𝑖−𝜇𝜽𝑖)2

𝜎2
𝜽𝑖

)

√(2𝜋)𝐶 ∏𝐶
𝑖=1 𝜎2

𝜽𝑖

= −1
2

𝐶
∑
𝑖=1

(
(Δ𝑡,𝑖 − 𝜇𝜽𝑖)2

𝜎2
𝜽𝑖

) − 1
2

𝗅𝗈𝗀(2𝜋)𝐶 − 1
2

𝗅𝗈𝗀
𝐶

∏
𝑖=1

𝜎2
𝜽𝑖

= −1
2

𝐶
∑
𝑖=1

(Δ𝑡,𝑖 − 𝜇𝜽𝑖)2

𝜎2
𝜽𝑖

+ 𝗅𝗈𝗀 𝜎2
𝜽𝑖 + 𝗅𝗈𝗀 2𝜋

(3.32)
In the original RNN-VAE implementation for simple sketches29, 𝑝(𝚫𝑡 ∣ 𝐲𝑡−1, β𝑡,1)
is chosen to be a mixture of multivariate normal distributions instead of a single
multivariate normal distribution. This additional source of stochasticity in the
model undoubtedly confers greater capability, and thus accuracy, however in
practice we found that it acts primarily as a source of confusion. Even if our
29Clanuwat et al., 2018; Ha and Eck, 2017.
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3 Model implementation

stroke model outputs are probabilistic (i.e. target points for the next portion of
the curve are spread over a 2-d normal distribution), the variance/spread of these
areas reflects uncertainty for a given 𝒛 at this time step, rather than different
possible stroke endings. Theoretically, using a mixture distribution would confer
the ability for a given 𝒛 to sprout different stroke alternatives, but we want 𝐳
to be a compressed and non-ambiguous version of 𝐱. In fact, despite adopting
probabilistic outputs, we expect our model to become nearly deterministic during
training, i.e. we want the variance to be as small as possible. In Section.3.5, we
will detail this strategy and several other training tricks.

3.3 Composition model

Compositions are sequences of 𝑇 strokes, and they will also be symbolized by
random vectors 𝐱1∶𝑇 for simplicity. In addition, compositions do not have a
specific order. Original compositions particularly exist in the dataset in multiple
arrangements (see Subsection.2.3.Composition permutations). However, one objective
of the composition model is to project every visually similar composition to the
same location into the latent space. To achieve this goal with a regular RNN-VAE
architecture, we can constrain the decoder 𝑃 to reconstruct a given composition
in an absolute order, no matter the input sequence. So, let us define a target
sequence 𝐮1∶𝑇 that corresponds to any unordered version 𝐱1∶𝑇 of it. This absolute
ordering is completely arbitrary, and we have chosen to sort strokes by decreasing
linear length (length along the path).30 Strokes that are too long and that are
split during dataset formatting (see Subsection.2.3.Splitting of long strokes) are kept
continuous, and reordered as a group.

Our composition model is primarily designed to implement the hyper-compositional
object, addressing complete compositions only (see Section.1.3). However, we
should anticipate the requirements of the model dedicated to the compositional
plane (see Section.3.4). This model specifically uses a mental image, a target 𝒛
to constrain interrelations between strokes, i.e. conditional probabilities on the
plane (see particularly Subsection.1.3.Probabilistic plane for details). To this end, the
compositional objective of the artist may only be vaguely defined. One strategy
to implement this idea is to encode 𝐳 from partial compositions, i.e. the first few
strokes the artist already has in mind, or he/she has already drawn on the canvas.
As a result, we define a secondary goal for our current composition model, i.e. the
ability to project into latent space any incomplete version of 𝐱 to the same location

30An alternative ordering logic for strokes could have involved their starting position: going from top to
bottom, and secondarily from left to right. This rule makes sense for kanji/hànzì, as it is close to
their natural order. However, early experimental results showed that the decoder 𝑃 is more accurate
for the first strokes. An absolute order based on visual importance, i.e. linear length of strokes, is
therefore more efficient.

120



3.3 Composition model

Figure 3.4: Conditioning length ratio, exponential decay. The solid line corresponds to the function of
Eq.3.33 with 𝐶𝑚𝑖𝑛 = 0.5 and 𝑒𝑝𝑜𝑐ℎ𝑚𝑖𝑛 = 300. The dotted line is the actual discrete
ratio for a composition of length 16.

as the complete one. For this purpose, we define 𝐶 ∈ [1, 𝑇 ], a conditioning length
on 𝐱, so that inputs become 𝐱1∶𝐶 (𝐮1∶𝑇 remains unchanged).

Conditioning length, 𝐶

Conditioning length 𝐶 can be considered as a data-augmentation technique because
it adds some randomness to the input. At training, 𝐶 is sampled from a discrete
uniform distribution. Ideally, it should be in the range [1, 𝑇 ], but such variability
produces unreliable inputs, pushing the model to bypass the encoder 𝑄. Therefore,
we must specify a lower bound for sampling 𝐶. This minimal value 𝐶𝑚𝑖𝑛 is defined
as a ratio of 𝑇. In practice, we have chosen 𝐶𝑚𝑖𝑛 = 0.5, so that the model receives
at least half of the strokes. Of course, the model can still make predictions for
shorter sequences, but at the price of an increased uncertainty on 𝐳 encodings.
Nonetheless, even with the use of 𝐶𝑚𝑖𝑛, the encoder (and the whole model) faces
difficulties during training with a low rate of improvement. Empirically, we found
it more efficient to slowly decrease the lower bound ratio 𝐶𝑟𝑎𝑡𝑖𝑜, from 1 to 𝐶𝑚𝑖𝑛.
This decay must not be too fast, nor too slow; when too fast, this extra-procedure
is not helpful; when too slow, the network learns a representation too optimized
for the current state of 𝐶𝑟𝑎𝑡𝑖𝑜. As the problem keeps evolving, the model suffers
from a lack of plasticity. As a result, we have defined the lower bound ratio as an
exponential decay, driven by the current 𝑒𝑝𝑜𝑐ℎ value (see Fig.3.4).

𝐶𝑟𝑎𝑡𝑖𝑜 = 𝐶𝑚𝑖𝑛 + (1 − 𝐶𝑚𝑖𝑛) 𝖾𝗑𝗉(−𝑒𝑝𝑜𝑐ℎ 𝗅𝗈𝗀 100
𝑒𝑝𝑜𝑐ℎ𝑚𝑖𝑛

) (3.33)

where 𝑒𝑝𝑜𝑐ℎ𝑚𝑖𝑛 is the target epoch when 𝐶𝑟𝑎𝑡𝑖𝑜 approximately reaches 𝐶𝑚𝑖𝑛 (i.e.
𝐶𝑟𝑎𝑡𝑖𝑜 = 𝐶𝑚𝑖𝑛 + 0.01). We used 𝑒𝑝𝑜𝑐ℎ𝑚𝑖𝑛 = 300, which showed good results. 𝐶
can only be an integer so, because of rounding effects, 𝐶𝑚𝑖𝑛 is actually reached
before 𝑒𝑝𝑜𝑐ℎ𝑚𝑖𝑛, 181 in our case (see dotted line in Fig.3.4).
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3 Model implementation

Architecture

In Fig.3.5, we see that the architecture is similar to the stroke model. The two
exceptions are on the input, limited to 𝐱1∶𝐶, and on the output, replaced by 𝐮1∶𝑇.

Concerning the encoder 𝑄, one architectural point is not illustrated in Fig.3.5.
The LSTM unit 𝐡𝑞 is actually bidirectional31. Basically, this means that 𝐡𝑞

𝐶 is
the concatenation of two random vectors 𝐡𝑞→

𝐶 and 𝐡𝑞←
1 . For 𝐡𝑞→

𝑡 , time flows
normally from 1 to 𝐶 and we keep the last hidden state 𝐶. On the other hand,
for 𝐡𝑞←

𝑡 , time is reversed, i.e. 𝑡 = 𝐶 ∶ 1 and the last hidden state is 1. We can
view this procedure as a way to emphasize the unordered nature of 𝐱. In practice,
bidirectional LSTM units generally provide better performance, and it has been
positively validated for the composition model. This architectural detail is also
used in the stroke model, but we omitted it from our earlier description because it
is essentially a training trick (it is transparent from an implementation point of
view, and it is easily available in PyTorch).

Optimization function

As for the stroke model, 𝑃 and 𝑄 are implemented with neural networks through
the following deterministic functions:

𝐡𝑞
𝑡 = 𝑓𝐡𝑞(𝐱𝑡, 𝐡𝑞

𝑡−1; 𝝓𝐡) , 𝒉𝑞
0 = 𝟎 (3.34)

𝐲𝑞 = 𝑓𝐲𝑞(𝐡𝑞
𝐶; 𝝓𝐲) (3.35)

𝐠 = 𝑓𝐠(𝐳; 𝜽𝐠) (3.36)
𝐡𝑡 = 𝑓𝐡(𝐮𝑡, 𝐳, 𝐡𝑡−1; 𝜽𝐡) , 𝒖0 = 𝟎 , 𝐡−1 = 𝐠 (3.37)
𝐲𝑡 = 𝑓𝐲(𝐡𝑡; 𝜽𝐲) (3.38)

Following a similar development to that adopted for Eq.3.7, our maximization
function can be expressed as follows (parameters 𝜽 and 𝝓 are omitted on the r.h.s.
for legibility):

ℒ(𝐱1∶𝑇, 𝜽, 𝝓) =
𝑇

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝐮𝑡 ∣ 𝐲𝑡−1(𝐡𝑡−1(𝐮1∶𝑡−1, 𝛜, 𝐲𝑞(𝐡𝑞
𝐶(𝐱1∶𝐶)))))

−𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱1∶𝐶) ∥ 𝑝(𝐳))
(3.39)

Even if only 𝐱1∶𝐶 is used by the encoder 𝑄, ℒ is defined on the l.h.s. over 𝐱1∶𝑇
because 𝐱𝐶+1∶𝑇 is still required to produce 𝐮1∶𝑇. In addition, 𝐮1∶𝑇 does not appear
in ℒ, as it is a reformulation of 𝐱1∶𝑇.

31Ha and Eck, 2017; Schuster and Paliwal, 1997.
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3 Model implementation

Choice of 𝗅𝗈𝗀 𝑝(𝐮𝑡 ∣ 𝐲𝑡−1)

𝐮𝑡 and 𝐱𝑡 are random vectors describing a stroke. The first required piece of
information is therefore represented by the initial position 𝐩𝑡 of the stroke (termed
𝒑0,0 in Subsection.2.3.Composition encoding details). The shape of the stroke is then
defined by the latent vector 𝐳𝑠𝑡𝑟𝑜𝑘𝑒 greedily encoded by the stroke model (i.e.
𝝁𝝓). For legibility, we represent this fixed-length random vector by 𝐬𝑡. Finally, the
random variable β𝑡 is controlling the pen state. In similar fashion to the stroke
model, when β𝑡 = 0, no more stroke is visible and the composition is ended.

𝐮𝑡 = 𝐱𝑡 = [p𝑡,𝑥, p𝑡,𝑦, 𝐬𝑡, β𝑡,1, β𝑡,0] (3.40)

Strokes do not have any meaning when β𝑡 = 0, i.e. [β𝑡,1, β𝑡,0] = [0, 1]. Probabilities
associated with 𝐩𝑡 and 𝐬𝑡 are thus conditioned on β𝑡, but mutually independent:

𝗅𝗈𝗀 𝑝(𝐮𝑡 ∣ 𝐲𝑡−1) = 𝗅𝗈𝗀 𝑝(β𝑡 ∣ 𝐲𝑡−1) + 𝗅𝗈𝗀 𝑝(𝐩𝑡 ∣ 𝐲𝑡−1, β𝑡) + 𝗅𝗈𝗀 𝑝(𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡)
(3.41)

𝑝(β𝑡 ∣ 𝒚𝑡−1) follows a Bernoulli distribution like in the stroke model (see Eq.3.31
for details). When β𝑡 = 0, we set 𝐩𝑡 = 𝐬𝑡 = 𝟎. Consequently, 𝑝(𝐩𝑡 ∣ 𝐲𝑡−1, β𝑡,0) =
𝑝(𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,0) = 1. Otherwise, 𝑝(𝐩𝑡 ∣ 𝐲𝑡−1, β𝑡,1) and 𝑝(𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1) are
multivariate normal distributions with diagonal covariance matrices (see Eq.3.32).

Once again, the adoption of a mixture distribution to characterize outputs from
the composition model could have been an option. Composition modeling is
more complex than stroke modeling, and may require more capability. In addition,
compared with strokes, it is likely that, at some point in the generative process,
an artist is forced to choose among several options constrained by what is already
present on the paper. A mixture distribution would precisely fit this idea. However,
it is not the desired aspect of composition targeted by the current model. For
now, we do not want to quantify the probabilities associated with alternatives
offered at some time step. This task will be carried out by the next model (see
below). The main purpose of the present model is to position compositions within
a suitable space. We try to organize the set of compositions as a whole, as a
hyper-compositional object. Stochasticity must therefore be associated with the
encoding of 𝐳 by 𝑄 only. Depending on the completeness of this composition,
the encoder projects it to a specific location of the latent space with more or
less uncertainty. As soon as some 𝒛 is sampled, the reconstruction should be as
deterministic as possible. A single multivariate normal distribution is thus sufficient,
and we expect that during training the output variance becomes negligible.

3.4 Compositional plane model

The goal of this model is to study and predict variabilities at the scale of an
individual drawing, at the scale of the compositional plane. We now consider
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3.4 Compositional plane model

that an artist can face multiple alternatives at an instant 𝑡 of the compositional
process. The set of possible strokes that may be enacted to complete the
drawing are naturally conditioned on previous choices, i.e. existing strokes on the
canvas. Additionally, they are constrained by a target location in the space of
regularities learned at the scale of his/her complete works, the hyper-composition
(see Subsection.1.3.Probabilistic plane). This target mental image is represented by
the latent random variable 𝐳 encoded by the composition model depicted in the
previous section. The compositional plane model is thus a complementary model
primarily designed to provide a spatial metric of individual stroke probabilities
(experimental tools will be detailed in Section.4.3).

Architecture

In Fig.3.6, encoder 𝑄 is grayed out because it is reused from the composition model.
At training, its parameter 𝝓 is fixed, and do not need to be optimized. Input
sequences 𝐱 are again possibly incomplete, with a conditioning length 𝐶 ∈ [1, 𝑇 ].
𝑄 is already used to address incomplete compositions, so an exponential decay of
𝐶𝑟𝑎𝑡𝑖𝑜 from 1 to 𝐶𝑚𝑖𝑛 is not necessary. 𝐶𝑟𝑎𝑡𝑖𝑜 is fixed to 𝐶𝑚𝑖𝑛 = 0.5. Incomplete
compositions typically produce more uncertain outputs from 𝑄 than complete ones,
and 𝐳 is not greedily sampled to reflect this information. It can be thought as the
uncertainty of the artist about his/her compositional objective. In practice, we
reverse this scheme, and force the model to learn the reconstruction of a specific
final composition 𝒙 from a wide range of mental images 𝒛 (8 in our case). We also
notice that absolute sequences 𝐮 are no longer required as an optimization target
because compositions must be created and explored in any order. In addition, once
a 𝒛 is chosen, learned stochasticity can only be associated with model outputs.
We therefore assign more generative power to 𝐲 with a mixture distribution. We
can also drop the denomination of decoder for 𝑃 and simply use model 𝑃.

Optimization function

Encoder 𝑄 is frozen, so the model 𝑃 only requires the following new deterministic
functions:

𝐠 = 𝑓𝐠(𝐳; 𝜽𝐠) (3.42)
𝐡𝑡 = 𝑓𝐡(𝐱𝑡, 𝐳, 𝐡𝑡−1; 𝜽𝐡) , 𝒙0 = 𝟎 , 𝐡−1 = 𝐠 (3.43)
𝐲𝑡 = 𝑓𝐲(𝐡𝑡; 𝜽𝐲) (3.44)

Following a similar development to that adopted for Eq.3.7, the maximization
function can be expressed as follows (𝜽 is omitted on the r.h.s. for legibility):

ℒ(𝐱1∶𝑇, 𝜽) =
𝑇

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1(𝐡𝑡−1(𝐱1∶𝑡−1, 𝐳))) (3.45)
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3.5 Practical model training

Choice of 𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1)

Similarly to the definition of 𝐱𝑡 given in the composition model, 𝐱𝑡 = [p𝑡,𝑥, p𝑡,𝑦, 𝐬𝑡,
β𝑡,1, β𝑡,0] (see details in Subsection.3.3.Choice of 𝗅𝗈𝗀 𝑝(𝐮𝑡 ∣ 𝐲𝑡−1)). In addition, 𝐩𝑡 and
𝐬𝑡 are kept conditioned on β𝑡, so that:

𝗅𝗈𝗀 𝑝(𝐱𝑡 ∣ 𝐲𝑡−1) = 𝗅𝗈𝗀 𝑝(β𝑡 ∣ 𝐲𝑡−1) + 𝗅𝗈𝗀 𝑝(𝐩𝑡, 𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡) (3.46)

𝑝(β𝑡 ∣ 𝒚𝑡−1) is still chosen to follow a Bernoulli distribution (see Eq.3.31 for details).
When β𝑡 = 0, 𝐩𝑡 = 𝐬𝑡 = 𝟎 and 𝑝(𝐩𝑡, 𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,0) = 1.

Otherwise, 𝑝(𝐩𝑡, 𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1) is now a mixture distribution. At each time step,
the artist is confronted with multiple alternatives. In addition, if strokes of shape 𝑎
and 𝑏 are possible, each of them is expected at its dedicated position; shape 𝑎 at
location 𝑎, shape 𝑏 at location 𝑏, and not shape 𝑎 at location 𝑏. As a result, 𝐩𝑡 and 𝐬𝑡
are not directly independent. They are independent, only given an alternative index.
We therefore introduce a random variable m following a categorical distribution.
Naturally, ∑𝑀

𝑚=1 𝑝(𝑚) = 1, with 𝑀 the number of alternatives, i.e. the number of
mixtures (in practice, 𝑀 = 8). Then, 𝑝(𝐩𝑡, 𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1) can then be considered
as the marginal distribution against m.

𝗅𝗈𝗀 𝑝(𝐩𝑡, 𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1) = 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝑝(𝑚)𝑝(𝐩𝑡, 𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1, 𝑚)

= 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝑝(𝑚)𝑝(𝐩𝑡 ∣ 𝐲𝑡−1, β𝑡,1, 𝑚)𝑝(𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1, 𝑚)

= 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝖾𝗑𝗉 ( 𝗅𝗈𝗀 𝑝(𝑚) + 𝗅𝗈𝗀 𝑝(𝐩𝑡 ∣ 𝐲𝑡−1, β𝑡,1, 𝑚)

+ 𝗅𝗈𝗀 𝑝(𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1, 𝑚))
(3.47)

𝑝(𝐩𝑡 ∣ 𝐲𝑡−1, β𝑡,1, m) and 𝑝(𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1, m) are finally chosen to be multivariate
normal distributions with diagonal covariance matrices (see Eq.3.32).

3.5 Practical model training

Previous sections of this chapter have covered theoretical designs of stroke and
composition models. These models need to be trained, and this aspect of model
development represents a whole different problem in itself: even if a neural
network architecture is ideal for solving a specific problem, small details of how
training is implemented can dramatically change the results. Some of these
training tricks are demonstrably efficient through experimentation. However, they
remain poorly justified in the associated publications and/or they are difficult to
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3 Model implementation

generalize to different datasets. In addition to these difficulties, the accumulation
of hyperparameters represents another important issue that is caused by the
multiplication of heuristics, hacks, and regularizers. These parameters are termed
hyper because they are tweaked outside the main training procedure. They
should be adjusted until an optimal combination is found. Such procedure is time-
consuming, so we try to limit their number, and to give them tangible meanings
when necessary. The other important goal is to obtain a continuous and expressive
latent space, i.e. with qualitative homogeneity. How to judge and control this
aspect objectively is a particularly difficult question. This section describes our
efforts to ease the training protocol, and to better understand and justify the
insights provided by our models.

Disentanglement of latent space

The procedure of disentangling the latent space involves obtaining a space of
𝐳 that decomposes 𝐱 into its true independent components. For instance, if 𝐱
consisted of centered pictures of colored dices, the natural components would be
dice rotation angles and RGB channel intensities. These 6 independent dimensions
would be sufficient to describe any 𝒙. But what if 𝐱 cannot be trivially decomposed
into adequate components? How do we decide whether our model has achieved
an acceptable level of disentanglement?

The commonly assumed notion of disentanglement is quite restrictive for
complexmodels where the true generative factors are not independent, very
large in number, or where it cannot be reasonably assumed that there is a
well-defined set of true generative factors […]. To this end, we introduce a
generalization of disentanglement, decomposition, which at a high-level can
be thought of as imposing a desired structure on the learned representations.
[…] We characterize the decomposition of latent spaces in VAEs to be the
fulfillment of two factors:
a. An appropriate level of overlap in the latent space, ensuring that the
range of latent values capable of encoding a particular data point is neither
too small, nor too large. […]
b. The aggregate encoding 𝑞(𝐳) matching the prior 𝑝(𝐳), where the latter
expresses the desired dependency structure between latents.32

This extended definition of disentanglement is interesting because it translates a
fuzzy objective into two concrete sub-goals. However, in order to incorporate this
definition into our framework, we must link points a. and b. to our maximization
function. To do so, we will investigate ℒ(𝐱, 𝜽, 𝝓) under training conditions with
𝐱 ∼ 𝑝𝒟, i.e. all 𝒙𝑛 from 𝒟, and transformed into a minimization objective.
Parameters 𝜽 and 𝝓 will now be omitted for legibility on the r.h.s. of equations.
In the most general form, we have:
32Mathieu et al., 2019.
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3.5 Practical model training

−𝔼𝐱∼𝑝𝒟
ℒ(𝒙𝑛, 𝜽, 𝝓) = − 1

𝑁

𝑁
∑
𝑛=1

𝑇𝑛

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝒙𝑛,𝑡 ∣ 𝒙𝑛,1∶𝑡−1, 𝐳) }ℒ𝐱

+ 1
𝑁

𝑁
∑
𝑛=1

𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝒙𝑛,1∶𝑇𝑛
) ∥ 𝑝(𝐳)) }ℒ𝐷𝖪𝖫

(3.48)

We notice that 𝑇, the abstract maximum length of 𝐱, must be separately specified
for each 𝒙𝑛 as 𝑇𝑛. For ease of following developments, we have also split the
minimization objective into sub-terms ℒ𝐱 and ℒ𝐷𝖪𝖫

.

Paradoxical ℒ𝐷𝖪𝖫

First, there is at training a conflict between the two terms of ℒ(𝐱, 𝜽, 𝝓). Basically,
ℒ𝐱 enforces a good reconstruction of the samples, while ℒ𝐷𝖪𝖫

is supposed to
guarantee a good generative model, i.e. to force the latent space 𝐳 to follow the
chosen prior distribution. However, when ℒ𝐱 becomes efficient, we usually observe
a negative impact on ℒ𝐷𝖪𝖫

. In some situations, the opposite happens. So, it
appears impossible to minimize both ℒ𝐱 and ℒ𝐷𝖪𝖫

simultaneously. Secondly, if ℒ𝐷𝖪𝖫
were exactly 0, the encoder 𝑄 would be ignored by the decoder 𝑃, rendering the
training procedure partially pointless. In order to better understand the paradoxical
behavior of ℒ𝐷𝖪𝖫

, we will decompose this term33.

First, we make the subscript 𝑛, representing the index of inputs 𝒙𝑛,1∶𝑇𝑛
, as an

explicit random variable n. For ease of notation, we will omit time subscripts. By
definition, we have 𝑝(n) = 𝑞(n) = 1

𝑁 and 𝑞(𝐳 ∣ 𝒙n) = 𝑞(𝐳 ∣ n). Then, we can think
of 𝑞(𝐳) as marginalizing against n, so that 𝑞(𝐳) = ∑𝑁

𝑛=1 𝑞(𝐳, 𝑛). As a result:

ℒ𝐷𝖪𝖫
= 1

𝑁

𝑁
∑
𝑛=1

∫
𝐳

𝑞(𝒛 ∣ 𝒙𝑛) 𝗅𝗈𝗀 𝑞(𝒛 ∣ 𝒙𝑛)
𝑝(𝒛)

𝑑𝒛

= ∫
𝐳

1
𝑁

𝑁
∑
𝑛=1

𝑞(𝒛 ∣ 𝑛) 𝗅𝗈𝗀 𝑞(𝒛 ∣ 𝑛)
𝑝(𝒛)

𝑑𝒛

= ∫
𝐳

1
𝑁

𝑁
∑
𝑛=1

𝑞(𝒛, 𝑛)
𝑞(𝑛)

𝗅𝗈𝗀 𝑞(𝒛)𝑞(𝒛 ∣ 𝑛)
𝑞(𝒛)𝑝(𝒛)

𝑑𝒛

= ∫
𝐳

𝗅𝗈𝗀( 𝑞(𝒛)
𝑝(𝒛)

)
𝑁

∑
𝑛=1

𝑞(𝒛, 𝑛)𝑑𝒛 + ∫
𝐳

𝑁
∑
𝑛=1

𝑞(𝒛, 𝑛) 𝗅𝗈𝗀 𝑞(𝒛 ∣ 𝑛)
𝑞(𝒛)

𝑑𝒛

= ∫
𝐳

𝑞(𝒛) 𝗅𝗈𝗀 𝑞(𝒛)
𝑝(𝒛)

𝑑𝒛 + ∫
𝐳

𝑁
∑
𝑛=1

𝑞(𝒛, 𝑛) 𝗅𝗈𝗀 𝑞(𝒛, 𝑛)
𝑞(𝒛)𝑞(𝑛)

𝑑𝒛

= 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) + 𝕀𝑞(𝐳,n)[𝐳, n]

(3.49)

33Demonstration is adapted from Hoffman and Johnson, 2016.
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where 𝕀𝑞(𝐳,n)[𝐳, n] is the mutual information between an index 𝑛 and its corre-
sponding code 𝒛. In other words, it indicates how much uncertainty can be
eliminated about one of the random variable, knowing the other. In our case, it
indicates the extent to which 𝐳 is deterministically defined by n, i.e. any known
𝒙𝑛. If encoding by 𝑄 is fully deterministic, 𝐳 and n can be used indifferently
and 𝕀𝑞(𝐳,n)[𝐳, n] = − ∑𝑁

𝑛=1 𝑞(𝑛) 𝗅𝗈𝗀 𝑞(𝑛) = ℍ𝑞(n)[n]. In this scenario, the maxi-
mal information carried by n corresponds to its entropy, 𝗅𝗈𝗀 𝑁. In the opposite
scenario when 𝐳 and n are independent, 𝑄 is completely ignored because uninfor-
mative, and mutual information is 0. Mutual information is therefore bounded by
0 ≤ 𝕀𝑞(𝐳,n)[𝐳, n] ≤ 𝗅𝗈𝗀 𝑁.

As a result, ℒ𝐷𝖪𝖫
combines two independent elements. Interestingly, these elements

correspond to the disentanglement objectives expressed earlier: a. “an appropriate
level of overlap in the latent space” is guaranteed if the mutual information
𝕀𝑞(𝐳,n)[𝐳, n] lies somewhere between its two bounds (at least distinct from 0). An
appropriate level of ambiguity in the encoding by 𝑄 allows the latent space to
smoothly map from one data point to another. b. “𝑞(𝐳) matching the prior 𝑝(𝐳)”
is achieved if 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) becomes as small as possible. This is why ℒ𝐷𝖪𝖫
targets a paradoxical objective: the first part does not have to be 0, while the
second part must be 0.

The second problem is that none of these terms are directly tractable at training.
Indeed, 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) requires the marginalization of 𝑞(𝐳 ∣ n) over the whole
dataset. It would be inefficient, if not impossible, to compute a gradient step with
an entire dataset as input. It would require storage of large vectors exceeding
GPU/CPU memory capacities. That is actually why all implemented training
procedures are by mini-batch, i.e. randomly chosen subsets of 𝒟.

Nevertheless, 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) can be computed at the end of each epoch (i.e.
a training session over all mini-batches). Then, by difference with ℒ𝐷𝖪𝖫

, we can
obtain a value of the mutual information 𝕀𝑞(𝐳,n)[𝐳, n]. So, despite being direct
training tools, these two components are informative metrics for monitoring model
behavior during optimization. For this purpose, we will express mutual information
as a ratio ̂𝕀, independently of 𝒟 size:

̂𝕀 =
𝕀𝑞(𝐳,n)[𝐳, n]

𝗅𝗈𝗀 𝑁
(3.50)

As we cannot directly control 𝕀𝑞(𝐳,n)[𝐳, n] or ̂𝕀, our best strategy is to leverage
the whole ℒ𝐷𝖪𝖫

as a proxy for ̂𝕀, while finding some additional regularizers on
𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) that are accessible at mini-batch level.34

34This general idea is supported by Mathieu et al., 2019 and Kumar et al., 2018. Nonetheless, we would
like to mention some other approaches.
T. Q. Chen et al., 2018 further split 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) into two terms: the total correlation 𝐷𝖪𝖫(𝑞(𝐳) ∥
∏𝐾 𝑞(z𝑘)), and a dimension-wise 𝐷𝖪𝖫, ∑𝐾 𝐷𝖪𝖫(𝑞(z𝑘) ∥ 𝑝(z𝑘)). Scaling hyperparameters are then
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3.5 Practical model training

Leveraging ℒ𝐷𝖪𝖫

Let us introduce a parameter 𝜆 to modulate the 𝐷𝖪𝖫 term of the ELBO35.

−𝔼𝐱∼𝑝𝒟
ℒ(𝐱, 𝜽, 𝝓) = ℒ𝐱 + 𝜆 ℒ𝐷𝖪𝖫

(3.51)

In the literature, factor 𝜆 was first introduced to prevent the model from being
stuck in a trivial initial state36. ℒ𝐷𝖪𝖫

can actually be made artificially close to
zero. 𝑞(𝐳 ∣ 𝒙𝑛,1∶𝑇𝑛

) can perfectly match 𝑝(𝐳), if 𝐳 is not forced to give meaningful
information to the decoder 𝑃. In very ill-posed situations, most of the correcting
gradient from ℒ(𝐱, 𝜽, 𝝓) can be directed to ℒ𝐷𝖪𝖫

, which converge rapidly to
zero. Then, both reconstruction and generative performance stay stationary to
an extremely low level. The basic idea to overcome this issue is to anneal ℒ𝐷𝖪𝖫
during the first steps, and then, when the decoder 𝑃 becomes efficient enough,
to slowly set 𝜆 back to 1. Such training procedure is illustrated in Fig.3.7a. 𝜆
is usually chosen to follow a sigmoid-like shape over training steps. Another
reported option37 is to stop the optimization of ℒ𝐷𝖪𝖫

when it becomes too low. By
clamping this term below a certain threshold, no gradient is then back-propagated
to improve it. The downside of both approaches is the addition of yet another
hyperparameter in the form of a temporal increasing rate or a clipping value.

A more efficient use of the 𝜆 parameter38 is to leverage between a good recon-
struction and an expressive latent space (see Fig.3.7b). In the extreme case,
when 𝜆 = 0, the model actually becomes a simple auto-encoder with the best
possible reconstruction accuracy, but no generative abilities. 𝜆 is then left as a

assigned to each component (including 𝕀𝑞(𝐳,n)[𝐳, n]). As a result, it is possible to independently control
each contradictory aspect of ℒ𝐷𝖪𝖫

. However, all these terms are still not accessible at mini-batch
level, and the authors rely on biased estimates. For Mathieu et al., 2019, this approximation is not
sufficiently qualitative, unless batch-size becomes ridiculously big.
With InfoVAE, S. Zhao et al., 2017 even proposed to completely exclude 𝕀𝑞(𝐳,n)[𝐳, n] from the
optimization function. For these authors, it is not a problem if the encoder 𝑄 becomes fully
deterministic, as long as 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) → 0. In a dataset with a relative limited number of inputs
(like ours), the lack of overlap between latents would be problematic for obtaining a smooth generative
space. Besides, the authors use Maximum-Mean Discrepancy (MMD) with a kernel trick to minimize
𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) at mini-batch level. This is an alternative metric to the Kullback-Leibler divergence
and its asymmetric issues. We plan to investigate this tool in future work.
An alternative strategy, proposed by Rezende and Viola, 2018, involves constraining the model 𝑃 with
ℒ𝐱. The authors argue that “in many practical cases it is much easier to decide on useful constraints
in the data-domain, such as a desired reconstruction accuracy, rather than information constraints”. It
is true that deciding an appropriate value for ̂𝕀 is difficult and abstract, with no direct or qualitative
visual impact on model outputs (despite extended investigations by Alemi et al., 2018). However, in
our case, the expected accuracy of the data-space is particularly subject to artistic and subjective
evaluations. Therefore, we have decided to keep a strategy that involves manipulating information
within the model.

35We remark that, as soon as 𝜆 ≠ 1, our optimization function deviates from the true ELBO. Nonetheless,
it is of little concern if the general capacity of the model is improved.

36Bowman et al., 2016.
37In Ha and Eck, 2017, clamping of ℒ𝐷𝖪𝖫

is actually used together with initial annealing.
38Actually, the control parameter is denominated 𝛽 in the 𝛽-VAE architecture from (Higgins et al., 2016;

Higgins et al., 2017).
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a b

Figure 3.7: Illustration of ℒ𝐱 and ℒ𝐷𝖪𝖫
training errors, with the variation of 𝜆. In panel a, 𝜆 follows

a sigmoid-like function, annealing ℒ𝐷𝖪𝖫
during the initial training steps. Meanwhile, ℒ𝐱 is

minimized with eased constraints. Panel b presents three optimization scenarios with different
constant values of 𝜆, and emphasizes the contradictory influences of the two ELBO terms.

hyperparameter, and determining its appropriate value is very difficult in practice.
The desired tradeoff is a subjective appreciation, where 𝜆 can take extremely
different values depending on the dataset (e.g. 1, 5, 20 or 250)39.

While prototyping experiments, we found that 𝜆 is actually very dependent on the
dimensionalities involved in the network. A simple workaround is thus to normalize
the different sources of contingent variability between models. On the one hand,
we can normalize ℒ𝐱 by ̂𝑇 = 1

𝑁 ∑𝑁
𝑛=1 𝑇𝑛, the averaged length of 𝑇𝑛 in the dataset.

On the other hand, ℒ𝐷𝖪𝖫
can be divided by the dimensionality 𝐾 of 𝐳.

−𝔼𝐱∼𝑝𝒟
ℒ(𝐱, 𝜽, 𝝓) = 1

̂𝑇
ℒ𝐱 + 𝜆

𝐾
ℒ𝐷𝖪𝖫

(3.52)

Adaptive constraint on ℒ𝐷𝖪𝖫

In Eq.3.52, we have normalized the ELBO terms to reduce the variability of 𝜆
when we modify model parameters. However, it does not address the first scenario
described above (trivial initial state), neither provides a comprehensive parameter
to control ̂𝕀. Therefore, we propose a method to adaptively constrain ℒ𝐷𝖪𝖫

via a
parameter 𝜆′. In order to apply this constraint as uniformly as possible across all
dimensions of 𝐳, i.e. to encourage the balance of information across dimensions of
the latent space, 𝜆′ is defined separately for each dimension. This redefinition of
the term ℒ𝐷𝖪𝖫

also includes the normalizing value 𝐾, so that:

ℒ′
𝐷𝖪𝖫

= 1
𝑁 𝐾

𝑁
∑
𝑛=1

𝐾
∑
𝑘=1

𝜆′
𝑘𝐷𝖪𝖫(𝑞(z𝑘 ∣ 𝒙𝑛,1∶𝑇𝑛

) ∥ 𝑝(z𝑘)) (3.53)

39Higgins et al., 2017.

132



3.5 Practical model training

with
𝜆′

𝑘 = ⟨𝐷𝖪𝖫(𝑞(z𝑘 ∣ 𝒙𝑛,1∶𝑇𝑛
) ∥ 𝑝(z𝑘))⟩

𝛾
(3.54)

The decorator ⟨𝑢⟩ represents the value of 𝑢, but detached from the optimization
tree of the neural network. The gradient is not back-propagated through it. In
other words, ⟨𝐷𝖪𝖫(𝑞(𝐳𝑘 ∣ 𝒙𝑛,1∶𝑇𝑛

) ∥ 𝑝(𝐳𝑘))⟩ is no longer an optimizable parameter,
but becomes a simple scalar with fixed numerical value. In addition, the strength
of this adaptive constraint is controlled by the exponent 𝛾 ≥ 0.

The logic behind this procedure is to add some nonlinearity to the 𝐷𝖪𝖫 values, by
virtually bringing them to a power ≥ 1. As a result, when 𝐷𝖪𝖫 values are small, the
importance of ℒ′

𝐷𝖪𝖫
is lowered in the minimization objective. The reconstruction

part of the ELBO ℒ𝐱 takes the lead and forces the encoding of 𝐳 to be more
deterministic. Reconstruction improves and the mutual information ratio ̂𝕀 → 1.
As a consequence, 𝐷𝖪𝖫 and ℒ′

𝐷𝖪𝖫
values increase in the ELBO. The gradient

corrects the encoder to support better overlap within the latent space and ̂𝕀 → 0.
These scenarios alternate and the training procedure finally reaches a steady state.
We have explored stronger nonlinearities with higher 𝛾 values. They allow ℒ′

𝐷𝖪𝖫
to

asymptote more quickly, but do not improve the results. Therefore, we adopted a
default value of 𝛾 = 1 for all models.

Despite still requiring a 𝜆 hyperparameter, we believe that our method makes the
training protocol easier. Compared with the original procedure, 𝜆 has a stronger
effect on the value of the steady state of ℒ′

𝐷𝖪𝖫
. Actually, it directly controls the

final value of ̂𝕀. In addition, thanks to the adopted normalization of terms, the
same 𝜆 value produces nearly equivalent ̂𝕀 with different models. For instance,
concerning our stroke and composition models, which have different 𝐾 and ̂𝑇,
setting 𝜆 = 4 guaranteed ̂𝕀 ≈ 0.14 in both case. Nevertheless, this approach only
works because we also regularize 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)).

Regularizing 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳))

A regularizer is an additional function that is optimized together with the main max-
imization function. It does not have any natural justification like the ELBO devel-
opment (see Section.3.1), but it empirically helps the back-propagated gradient to
fulfill particular objectives. In our case, we introduce a regularizer 𝐷𝖢𝗈𝗏(𝑞(𝐳), 𝑝(𝐳)),
enforcing 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) → 0. This regularizer is added to the optimization
function with a scaling parameter 𝜆𝐷𝖢𝗈𝗏

.

−𝔼𝐱∼𝑝𝒟
ℒ(𝒙𝑛, 𝜽, 𝝓) = 1

̂𝑇
ℒ𝐱 + 𝜆 ℒ′

𝐷𝖪𝖫
+ 𝜆𝐷𝖢𝗈𝗏

𝐷𝖢𝗈𝗏 (3.55)

Despite multiple propositions40, the simplest and most robust way to push
𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) → 0 at mini-batch level is to match the moments of the
40Among others: T. Q. Chen et al., 2018; S. Zhao et al., 2017
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two distributions. The first moment of 𝑞(𝐳) is 𝔼𝐳∼𝑞(𝐳)[𝒛] and must be optimized
to 𝔼𝐳∼𝑝(𝐳)[𝒛] = 0. However, 𝔼𝐳∼𝑞(𝐳) is not accessible within a mini-batch. We
cannot sample over the entire 𝐳. So, let us introduce a sampling on 𝐱 ∼ 𝑝𝒟 by
the law of total expectation:

𝔼𝐳∼𝑞(𝐳)[𝒛] = 𝔼𝐱∼𝑝𝒟
[𝔼𝐳∼𝑞(𝐳∣𝒙𝑛)[𝒛]] = 𝔼𝐱∼𝑝𝒟

[𝝁𝝓(𝒙𝑛)] (3.56)

Minimizing the element-wise mean squared error of 𝔼𝐱∼𝑝𝒟
[𝝁𝝓(𝒙𝑛)] would be a

bad regularizer. It would essentially push every 𝝁𝝓(𝒙𝑛) towards 0, effectively
centering 𝑞(𝐳) but rendering 𝐳 completely uninformative, no matter the variance.
A solution is therefore to look at higher-order moments41. Our regularizer focuses
on the covariance of 𝑞(𝐳) (second-order central moment). Using the law of total
covariance:

𝖢𝗈𝗏𝐳∼𝑞(𝐳)[𝒛] = 𝔼𝐱∼𝑝𝒟
[𝖢𝗈𝗏𝐳∼𝑞(𝐳∣𝒙𝑛)[𝒛]] + 𝖢𝗈𝗏𝐱∼𝑝𝒟

[𝔼𝐳∼𝑞(𝐳∣𝒙𝑛)[𝒛]]

= 𝔼𝐱∼𝑝𝒟
[𝖽𝗂𝖺𝗀(𝝈2

𝝓(𝒙𝑛))] + 𝖢𝗈𝗏𝐱∼𝑝𝒟
[𝝁𝝓(𝒙𝑛)]

(3.57)

with

𝖢𝗈𝗏𝐱∼𝑝𝒟
[𝝁𝝓(𝒙𝑛)] = 𝔼𝐱∼𝑝𝒟

[𝝁𝝓(𝒙𝑛)𝝁𝝓(𝒙𝑛)⊤] − 𝔼𝐱∼𝑝𝒟
[𝝁𝝓(𝒙𝑛)]𝔼𝐱∼𝑝𝒟

[𝝁𝝓(𝒙𝑛)]⊤

(3.58)
As 𝖢𝗈𝗏𝐳∼𝑝(𝐳)[𝒛] = 𝑰, we also expect 𝖢𝗈𝗏𝐳∼𝑞(𝐳)[𝒛] to converge to the identity matrix.
We notice that off-diagonal values of 𝖢𝗈𝗏𝐳∼𝑞(𝐳)[𝒛] are only caused by 𝝁𝝓(𝒙𝑛). From
Eq.3.58, we see that pushing off-diagonal values to 0 would reproduce the issue
emphasized above in relation to optimization of the fist moment, i.e. pushing every
𝝁𝝓(𝒙𝑛) → 𝟎. Here, it can be avoided if the diagonal values of 𝖢𝗈𝗏𝐳∼𝑞(𝐳)[𝒛] are
enforced to be 1. But this goal is shared with the optimization of 𝝈2

𝝓(𝒙𝑛). In other
words, if 𝝈2

𝝓(𝒙𝑛) = 𝟏, then the encoder 𝑄 becomes uninformative, even though
𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) = 0.42 Thanks to our ℒ′

𝐷𝖪𝖫
optimization function, 𝝈2

𝝓(𝒙𝑛)
is in practice maintained to reasonable values, neither too small nor too high.
Nonetheless, it is not pertinent to allow 𝔼𝐱∼𝑝𝒟

[𝖽𝗂𝖺𝗀(𝝈2
𝝓(𝒙𝑛))] to compensate for

an incomplete decorrelation of 𝖢𝗈𝗏𝐱∼𝑝𝒟
[𝝁𝝓(𝒙𝑛)]. We therefore directly optimize

𝖢𝗈𝗏𝐱∼𝑝𝒟
[𝝁𝝓(𝒙𝑛)], and let ℒ′

𝐷𝖪𝖫
prevent 𝝈2

𝝓(𝒙𝑛) from being 𝟎. For instance,
trained stroke and composition models converged with this method to a value of
𝔼𝐱∼𝑝𝒟

[𝖽𝗂𝖺𝗀(𝝈2
𝝓(𝒙𝑛))] ≈ 0.05𝑰, which renders this term negligible in 𝖢𝗈𝗏𝐳∼𝑞(𝐳)[𝒛]

while still guaranteeing good overlap of the encoded 𝒙𝑛 within latent space.

Finally, we can define our regularizer 𝐷𝖢𝗈𝗏(𝑞(𝐳), 𝑝(𝐳)) as the element-wise mean
squared error between the truncated 𝖢𝗈𝗏𝐳∼𝑞(𝐳)[𝒛] and 𝖢𝗈𝗏𝐳∼𝑝(𝐳)[𝒛] = 𝑰:
41A covariance regularizer is proposed and demonstrated in Kumar et al., 2018. The authors also raise

the possibility of using third and higher moments. We hope to explore this approach in future work.
42This possibility is highlighted in Kumar et al., 2018. The authors advise the use of this raw definition

of 𝖢𝗈𝗏𝐳∼𝑞(𝐳)[𝒛] in situations where the dimensionality of 𝐳 is higher than the true number of data
components, because it does not force the latent space to use all its available dimensions. In our case,
this scenario is very unlikely. Our stroke and composition latent spaces are over-constrained to retain
good model interpretability and practical application to psychophysical experiments.
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𝐷𝖢𝗈𝗏(𝑞(𝐳), 𝑝(𝐳)) = 1
𝐾2

𝐾
∑
𝑘=1

𝐾
∑
𝑘′=1

(𝖢𝗈𝗏𝐱∼𝑝𝒟
[𝝁𝝓(𝒙𝑛)] − 𝑰)

2

𝑘𝑘′
(3.59)

In summary, this regularizer enforces decorrelation between the different dimensions
of 𝐳 and a good match between 𝑞(𝐳) and the prior 𝑝(𝐳), while being accessible
within a mini-batch procedure. Nonetheless, its computation still requires a descent
batch-size to provide a useful gradient. Even though batch-sizes between 2 and 32
have been reported to give consistent optimal results for multiple architectures43,
we set our batch-size to 64 as a compromise. Finally, 𝐷𝖢𝗈𝗏(𝑞(𝐳), 𝑝(𝐳)) is in practice
very small, so we set 𝜆𝐷𝖢𝗈𝗏

= 2 × 103.

Issue with the optimization of 𝑝(β𝑡 ∣ 𝐱1∶𝑡−1, 𝐳)

ℒ′
𝐷𝖪𝖫

and 𝐷𝖢𝗈𝗏(𝑞(𝐳), 𝑝(𝐳)) are the result of several necessary improvements on
the original ELBO. However, the reconstruction term ℒ𝐱 also presents issues that
need to be addressed. We first decompose 𝐱𝑡 into the pen state β𝑡 and other
dependent variables, generically indicated by 𝚿𝑡. For instance, 𝚿𝑡 refers to 𝚫𝑡
for the stroke model, while being [𝐩𝑡, 𝐬𝑡] for the composition models.

1
̂𝑇
ℒ𝐱 = − 1

𝑁 ̂𝑇

𝑁
∑
𝑛=1

𝑇𝑛

∑
𝑡=1

𝗅𝗈𝗀 𝑝(β𝑛,𝑡 ∣ 𝒙𝑛,1∶𝑡−1, 𝐳) }ℒβ

− 1
𝑁 ̂𝑇

𝑁
∑
𝑛=1

𝑇𝑛

∑
𝑡=1

𝗅𝗈𝗀 𝑝(𝚿𝑛,𝑡 ∣ 𝒙𝑛,1∶𝑡−1, 𝐳, β𝑛,𝑡) }ℒ𝚿

(3.60)

With 𝑡 ranging from 1 to 𝑇𝑛, β𝑛,𝑡 is always 1 for all dataset samples. In this
context, the model 𝑃 simply learns to output 1 without specifying when the
generation of a stroke or a composition should be terminated. To overcome this
issue, 𝑝(β𝑛,𝑡 ∣ 𝒙𝑛,1∶𝑡−1, 𝐳) must be evaluated after 𝑡 = 𝑇𝑛. We define an upper
bound 𝑇𝑚𝑎𝑥, being the maximum 𝑇𝑛 within the dataset 𝒟 (or in the current
mini-batch +1). Normalization of this term is then modified accordingly.

ℒβ = −
𝜆β

𝑁𝑇𝑚𝑎𝑥

𝑁
∑
𝑛=1

𝑇𝑚𝑎𝑥

∑
𝑡=1

𝗅𝗈𝗀 𝑝(β𝑛,𝑡 ∣ 𝒙𝑛,1∶𝑡−1, 𝐳) (3.61)

At training, we observed that ℒβ was small compared with ℒ𝚿. To correct this
discrepancy, a scalar 𝜆β has been added to ℒβ and empirically set to 10.

Balancing model resources for the optimization of 𝑝(𝚿𝑡 ∣ 𝐱1∶𝑡−1, 𝐳, β𝑡)

ℒ𝚿, the second part of the reconstruction term concerning 𝑝(𝚿𝑡 ∣ 𝐱1∶𝑡−1, 𝐳, β𝑡), is
normalized by 𝑁 ̂𝑇. In so doing, we implicitly assign to each sample instant the same
43Masters and Luschi, 2018.
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weight within the optimization process. However, our stroke model is for instance
quite unbalanced in terms of length 𝑇 (see Fig.2.26c in Subsection.2.3.Splitting of
long strokes). So, before re-allocating our model resources differently, we explicitly
defined the weight assigned to each sample instant with the matrix 𝑾.

ℒ𝚿 = −
𝑁

∑
𝑛=1

𝑇𝑛

∑
𝑡=1

𝑊𝑛,𝑡 𝗅𝗈𝗀 𝑝(𝚿𝑛,𝑡 ∣ 𝒙𝑛,1∶𝑡−1, 𝐳, β𝑛,𝑡) (3.62)

Naturally, 𝑾 sums to 1 and is a sparse matrix, with zeros where 𝑡 > 𝑇𝑛 and
1

𝑁 ̂𝑇
otherwise. Because this matrix is difficult to represent and manipulate, we

aggregate the weights of elements of the same length within a lower triangular
matrix 𝒘. With 𝜂𝑇 being the number of samples 𝒙𝑛 of length 𝑇 within our dataset
𝒟, the even weighting procedure described above is formalized by:

𝑤𝑇 ,𝑡 =
⎧{
⎨{⎩

𝜂𝑇

𝑁 ̂𝑇
for 𝑇 ∈ [1, 𝑇𝑚𝑎𝑥] and 𝑡 ∈ [1, 𝑇 ]

0 otherwise
(3.63)

Fig.3.8a,b display matrix 𝒘 of the original even balancing and its marginalization
against 𝑇 and 𝑡 (stroke dataset in panel a, composition dataset in panel b). We
remark that the distribution of the length of elements in each dataset, imposed by
𝜂𝑇, primarily affects lines of 𝒘. Then, 𝒘𝑇 approximately reflects this distribution,
going in opposite directions for strokes and compositions. On the contrary, 𝒘𝑡
is only decreasing (this is necessarily the case because it results from column
summation). 𝒘𝑇 and 𝒘𝑡 represent the importance of each variable in the final
error computation. By extension, these distributions correlate with the dedicated
model resources. For instance, in the stroke model, strokes of length 𝑇 ≥ 5 are
under-represented. On this point, we do not really want to push the model to learn
to generate these strokes more often than in the dataset 𝒟; however, we definitely
expect the generation of such strokes to present equal quality w.r.t strokes of
length 1. In the equal weighting condition, we can imagine that the model will
mostly fail to represent longer strokes on their last stroke steps 𝑡 (indeed it does
so experimentally). There is no reason that the model would miss reproductions at
𝑡 = 1 and 𝑡 = 2, as they are prominently represented within the dataset because of
shorter strokes. Thus, our objective in re-allocating model resources is to assign
more weight to later stroke steps 𝑡, rather than to entire strokes of longer 𝑇.

If element lengths 𝑇 were uniformly distributed (i.e. equal 𝜂𝑇, uniform 𝒘), 𝒘𝑡
would then be an equally spaced decreasing staircase (increasing for 𝒘𝑇). For the
composition dataset in Fig.3.8b, we are actually close to this ideal scenario. We
will therefore try to impose such theoretical 𝒘𝑡, while retaining the original 𝒘𝑇
(𝒘𝑇 ∣𝑡 to be precise) as much as possible. We define 𝒘′ as the weighting matrix
corresponding to this goal.
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a b

c d

Figure 3.8: Panels a, c (strokes) and b, d (compositions) show the weighting matrices 𝒘 and their
marginalization against 𝑇 and 𝑡. Giving each sample instant an equal weighting in the model
(a, b) produces very unbalanced marginals. In order to better allocate model resources for the
optimization of 𝑝(𝚿𝑡 ∣ 𝐱1∶𝑡−1, 𝐳, β𝑡), we have designed an improved weighting matrix 𝒘′

(c, d) and a smoothed version 𝒘″ (c). See Eq.3.64 and Eq.3.65 for details. In legends,
𝑢𝑚𝑖𝑛 ∣ 𝑢𝑚𝑎𝑥 values indicate the ranges of distribution ratios against the baseline, indicated
by light gray bars.

Figure 3.9: Examples of the smoothing function defined in Eq.3.66, for different parameters 𝑎 and 𝑏.
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𝒘′ = 𝒘𝑇 ∣𝑡 𝒘′

𝑡 = 𝒘
𝒘𝑡

𝒘′

𝑡 = 𝒘
∑𝑇 𝒘

𝒘′

𝑡

= 𝜂𝑇

𝑁 ̂𝑇 ∑𝑇
𝑢=1

𝜂𝑇𝑚𝑎𝑥+1−𝑢

𝑁 ̂𝑇

𝑇𝑚𝑎𝑥 + 1 − 𝑡
∑𝑇𝑚𝑎𝑥

𝑢=1 𝑢

= 2 𝜂𝑇

∑𝑇
𝑢=1 𝜂𝑇𝑚𝑎𝑥+1−𝑢

𝑇𝑚𝑎𝑥 + 1 − 𝑡
𝑇 2

𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥

(3.64)

Distributions resulting from this procedure are illustrated in Fig.3.8c,d (continuous
black line in 𝒘𝑇 and 𝒘𝑡 sub-plots). For the composition dataset (Fig.3.8d), 𝒘′

is close to the baseline 𝒘. Density ratios of 𝒘′

𝑡 compared with 𝒘𝑡 are in the
range [0.83, 1.25]. This range is even smaller for 𝒘′

𝑇, which retains the shape of
its original distribution. On the opposite end, for the stroke dataset shown in
Fig.3.8c, the baseline distribution is so far from the theoretical one that 𝒘′

𝑡 ratios
range between 0.33 and 271.70. The shape of 𝒘′

𝑇 is also drastically modified. In
fact, multiplying a weight by 217.70 is counter-productive, and penalizes model
faithfulness to the dataset. A maximum magnitude of 2 (i.e. ratios in the range
[0.5, 2.0]) is in practice sufficient to make last steps 𝑡 of longer strokes minimally
represented within the model, particularly in latent space. We therefore introduce
a smoothing function 𝑓 that produces a new corrected weighting matrix 𝒘″ :

𝒘″ ∝ 𝒘 𝑓(𝒘′

𝑡
𝒘𝑡

) (3.65)

where the actual 𝒘″ must be normalized afterwards because of nonlinearities
introduced by 𝑓, defined as:

𝑓(𝑢) = 𝖾𝗑𝗉 (𝗅𝗈𝗀(𝑎) 𝗍𝖺𝗇𝗁 ( 𝗅𝗈𝗀(𝑢) 𝖺𝗋𝖼𝗍𝖺𝗇𝗁(𝑏)
𝗅𝗈𝗀(𝑎)

)) (3.66)

where 𝑎 is the output ratio upper bound (1/𝑎 for the lower bound), and 𝑏 is a
smoothing parameter. For instance, if we look at the solid line in Fig.3.9, where
𝑎 = 4 and 𝑏 = 0.5, an original ratio of 4 produces an output ratio of 2. With
𝑏 = 0.99 (short dotted lines), the upper bound 𝑎 is already almost reached when
input ratio is equal to 𝑎. By default, 𝑏 is set to 0.5 and, for the stroke model,
we have used 𝑎 = 1.5. From Fig.3.8c, we notice that 𝒘″ produces an effective
multiplication range of [0.84, 1.81] on 𝒘″

𝑡 . Accordingly, 𝒘″

𝑇 presents minimal
changes in its distribution. Concerning the composition model, 𝒘′ is already
appropriate, so no smoothing was necessary.

Balancing 𝚫𝑡 components in the stroke model

For the stroke model, we have 𝚿𝑡 = 𝚫𝑡 = [𝛅𝑡, 𝛅′

𝑡, 𝛅″

𝑡 ]. Each component is
independent, so that ℒ𝚿 can be decomposed as ℒ𝚿 = ℒ𝛅 + ℒ𝛅′ + ℒ𝛅″ . In
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so doing, we assign equal weighting to each component (the target point of
this portion of the curve, and the two associated tangents). However, even
if tangents represent an important aspect of strokes (e.g. for continuity, see
Subsection.2.2.Bézier curves), they can be less accurate than target points without
causing substantial degradation of visual appearance. Target points, lying on the
stroke, are more determinant of general size and shape. We therefore choose to
give an equivalent weight to 𝛅 (2 dimensions) and 𝛅′ + 𝛅″ (4 dimensions). In other
words, we assign an equal amount of model resources to 𝛅 and the combination of
the two tangents that must share. This empirical adjustment dramatically improves
perceived stroke model accuracy, and corresponds to the following balance:

ℒ𝚿 = 3
2

ℒ𝛅 + 3
4

ℒ𝛅′ + 3
4

ℒ𝛅″ (3.67)

Probabilistic training and deterministic validation

Unlike the compositional plane model, the key feature of which is to produce a
predictive field of next possible strokes given the previous ones and a latent code
𝒛, for the other two true auto-encoders (stroke and composition models), a point
𝒛 in latent space must correspond to a unique reconstruction 𝒙′. The model can
express some recognition uncertainty in the variance of 𝑝(𝐳 ∣ 𝐱), but it should
not do so in the generation of 𝐱′. At this stage, it seems legitimate to ask the
following question: why not make the decoder 𝑃 fully deterministic?

For demonstration purposes, we focus on ℒ𝚿. If the decoder 𝑃 were deterministic,
output normal distributions should be replaced by Dirac distributions with modes
being 𝝁𝜽. This approach would require fewer parameters to be optimized, as we
could discard all 𝝈2

𝜽. The alternative to maximum likelihood would then be a
𝐿2 norm between 𝝁𝜽 and 𝚿. The training behavior associated with such a loss
function is illustrated in Fig.3.10. We observe that it rapidly decreases to 0 (dotted
line). After a few epochs, the 𝐿2 norm would effectively stop driving the system
to improve. Typically, a more constantly decreasing error is preferable. Some kind
of adaptive scaling would be helpful, and this is precisely achieved by a probabilistic
approach with ℒ𝚿 (solid line). Combining Eq.3.32 and Eq.3.62, we have:

ℒ𝚿 =
𝑁

∑
𝑛=1

𝑇𝑛

∑
𝑡=1

𝑊𝑛,𝑡

2

𝐶
∑
𝑖=1

(Ψ𝑛,𝑡,𝑖 − 𝜇𝜽𝑖)2

𝜎2
𝜽𝑖

+ 𝗅𝗈𝗀 𝜎2
𝜽𝑖 + 𝗅𝗈𝗀 2𝜋 (3.68)

In this equation, 1
𝝈2

𝜽
acts as a scaling value for (𝚿−𝝁𝜽)2, actually being 𝐿2(𝝁𝜽, 𝚿).

The term 𝗅𝗈𝗀 𝝈2
𝜽 decreases (thin dotted line), drives 𝝈2

𝜽 → 0 and inversely increases
the importance of 𝐿2(𝝁𝜽, 𝚿). In other words, the more confident the network
becomes about its outputs, the higher the expected precision on 𝐿2(𝝁𝜽, 𝚿). Using
a probabilistic output instead of a deterministic design can be considered as an
optimization trick that produces better training gradients.
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3 Model implementation

Figure 3.10: Probabilistic vs. deterministic optimization scenarios.

Nonetheless, monitoring 𝐿2(𝝁𝜽, 𝚿) at training provides a good estimate of the true
reconstruction improvements, because it corresponds to the model at evaluation
time, where 𝐱′ is greedily sampled. In this case, output values are simply 𝝁𝜽 for
normal distributions, and the pen state, being a categorical distribution, is given
by 𝖺𝗋𝗀 𝗆𝖺𝗑 𝗅𝗈𝗀(𝒋𝜽).

There is a final argument in favor of probabilistic outputs at training: the captured
uncertainty is an additional type of information about strokes or compositions
that the model can provide at low cost (see Section.4.3). These measurements
have already proved useful for predicting some human perceptual behaviors (see
Subsection.5.3.Perceptual scale prediction from Fisher information).

Limiting output variance 𝗅𝗈𝗀 𝝈2
𝜽

In theory, 𝗅𝗈𝗀 𝝈2
𝜽 can be any real number. Nonetheless, from Eq.3.68 we have

seen that 𝗅𝗈𝗀 𝝈2
𝜽 strongly modulates the magnitude of 𝐿2 reconstruction error. In

practice, we observe that the model pushes all 𝗅𝗈𝗀 𝝈2
𝜽 to high values during the very

first epoch. This way, the model attempts to minimize risk in its prediction. During
optimization, 𝗅𝗈𝗀 𝝈2

𝜽 then decreases proportionally to the increasing precision of
𝝁𝜽 estimation. While this behavior applies on average, it hides huge discrepancies
at the scale of individual predictions. Indeed, some output variance remains
uninformative, while most modeling power is directed toward easier (more likely)
arrangements of the dataset. As a result, we want to guarantee a minimal level of
output selectivity by defining an upper bound to 𝗅𝗈𝗀 𝝈2

𝜽.

We know that data are standardized, so that 𝝈𝜽 = 1 is a coherent upper bound.
However, we empirically find this limit too permissive, as it does not really constrain
the latent space to take minimal account of every data point. We therefore chose
𝝈𝜽 < 1

2 , leading to 𝗅𝗈𝗀 𝝈2
𝜽 < −2 𝗅𝗈𝗀 2. Naively clamping model outputs would be a

bad idea for gradient back-propagation. We prefer to pass it through a negative
softplus function, vertically shifted according to the upper bound, such as:

𝗅𝗈𝗀 𝝈2
𝜽 = − 𝗅𝗈𝗀(1 + 𝖾𝗑𝗉(𝑖𝑛𝑝𝑢𝑡 + 𝑎)) − 2 𝗅𝗈𝗀 2 (3.69)
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3.5 Practical model training

Algorithm 3.1: Backward Clamp
In: ⋅ 𝑐𝑙𝑎𝑚𝑝𝑀𝑖𝑛, lower bound clamping value (-8)

⋅ 𝑐𝑙𝑎𝑚𝑝𝑀𝑎𝑥, upper bound clamping value (None)

Function forward(𝑡𝑒𝑛𝑠𝑜𝑟):
→ save 𝑡𝑒𝑛𝑠𝑜𝑟 for backward pass
return 𝑡𝑒𝑛𝑠𝑜𝑟

Function backward(𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡):
if 𝑐𝑙𝑎𝑚𝑝𝑀𝑖𝑛 is not None then

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡[(𝑡𝑒𝑛𝑠𝑜𝑟 < 𝑐𝑙𝑎𝑚𝑝𝑀𝑖𝑛) and (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 > 0)] = 0
if 𝑐𝑙𝑎𝑚𝑝𝑀𝑎𝑥 is not None then

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡[(𝑡𝑒𝑛𝑠𝑜𝑟 > 𝑐𝑙𝑎𝑚𝑝𝑀𝑎𝑥) and (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 < 0)] = 0
return 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

Figure 3.11: Limiting function of output variance 𝝈𝜽 is plotted with solid line, and the horizontally
unshifted function is represented by the dotted line.

with 𝑎 = 𝗅𝗈𝗀 24. It is good practice to keep raw layer outputs centered around
0. For this purpose, the negative softplus function is also shifted horizontally, so
that 𝑖𝑛𝑝𝑢𝑡 = 0 corresponds to 𝝈𝜽 = 1

10 , and 𝗅𝗈𝗀 𝝈2
𝜽 = −2 𝗅𝗈𝗀 10. In Fig.3.11, the

final function is plotted with a solid line, and the horizontally unshifted version is
represented by the dotted line.

This procedure is very efficient and produces a significant positive effect on the
model 𝐿2 accuracy. However, we added one last improvement. As stated earlier,
during the first training epoch the model output variance is pushed to the upper
bound. This behavior is smoothed by the negative softplus function, but in some
cases the model tries hard to make values stick to the bound, with 𝑖𝑛𝑝𝑢𝑡 ≈ −30.
It then takes a long time to get these values back to around 0. We speculate
that this happens because all available modeling power has already been allocated
to easier data points. We therefore designed a new neural network unit, called
Backward Clamp. A complete description is reported in Algorithm.3.1.

A normal Clamp clips 𝑡𝑒𝑛𝑠𝑜𝑟 within the range [𝑐𝑙𝑎𝑚𝑝𝑀𝑖𝑛, 𝑐𝑙𝑎𝑚𝑝𝑀𝑎𝑥], and sets
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 0 for any value of 𝑡𝑒𝑛𝑠𝑜𝑟 outside the bounds. Our unit differs by
being the identity in the forward pass, and by adding a requirement during the
backward pass: that the gradient does not point in a direction that would push
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3 Model implementation

values beyond the bounds. This procedure restricts occurrences of 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = 0
to required situations only, while offering an easier way back into the bounds for
extreme values.

Exposure bias

In all models with recurrent units (Fig.3.1, Fig.3.3, Fig.3.5, Fig.3.6), gray arrows
in 𝑃 highlight that 𝐱′

𝑡 is used instead of 𝐱𝑡 to feed 𝐡𝑡 at evaluation. During
inference, the model is therefore challenged not only with inputs it has never seen
(like those within the validation set), but also possibly with inputs sampled from
its own predictions. The approximated distribution of 𝐱 implemented by model
𝑃 is by definition not guaranteed to effectively match dataset properties. There
may be significant discrepancies, producing a model with poor generative abilities,
especially on long sequences. Early mistakes seriously affect model stability. 𝑃 faces
difficulties recovering to known distributions, usually resulting in the generation of
low-quality and unlikely sequences. This phenomenon is known as the exposure
bias.

Naively, we could only rely on sampled 𝐱′ at training, and never show true 𝐱. This
procedure is feasible, but gives insufficient results in practice or, at best, a very
slow learning rate. During the first epochs, 𝐱′ is mostly uninformative and pushes
the model to bypass previous elements of the sequence. In VAEs, emphasis is then
put on 𝐳 and the initialization of 𝐡−1 by 𝐠. That is why the standard method of
training models on time series still involves ground truth 𝒙𝑛. This is sometimes
called teacher forcing.

Several complicated methods have been explored to address exposure bias. Among
them, we find reinforcement learning44 and adversarial discrimination45. This
last one, called professor forcing, introduces a discriminator similar to the GAN
architecture46, which is conjointly trained to distinguish true from sampled 𝐱. The
model 𝑃 is therefore pushed to fool the discriminator by producing 𝐱′ closer to 𝐱.
This approach is promising, however this complex architecture comes with new
issues. For instance, finding the right alternation rate between the training of the
main model and the discriminator is not trivial.

A simpler and more comprehensive method is schedule sampling47. This approach
uses either a true or a sampled 𝐱 depending on a Bernoulli distribution with
probability 𝑝. The method is said scheduled, because 𝑝 is decreased from 1 to
0 based on an exponential decay or similar function: the model slowly changes
from training on ground truth inputs toward sampled inputs. Despite reported
44Ranzato et al., 2016.
45Lamb et al., 2016.
46Generative Adversarial Networks (GANs) have been introduced by I. Goodfellow, 2016; I. J. Goodfellow

et al., 2014.
47S. Bengio et al., 2015.
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performance improvements, this technique has received critical remarks. One paper
demonstrates the theoretical difference between the two distributions optimized in
schedule sampling (when 𝑝 is 1 or 0), and thus exposes an inconsistent training
objective:

We suggest that scheduled sampling works by pushing models towards a
trivial solution of memorizing distribution of symbols conditioned on their
position in the sequence, rather than on the prefix of preceding symbols.
In RNN terminology, this would mean that the optimal architecture under
[schedule sampling] uses its hidden states merely to implement a simple
counter, and learns to pay no attention whatsoever to the content of the
sequence prefix.48

We would like to moderate this criticism. Experimentally, we do see a change
of regime along epochs, especially when the chosen decay function is not well
adapted to the situation, but regime differences are not as extreme as expressed
theoretically. We believe that the convergence to a middle point is possible, and
helps to produce models more resilient to both regimes. Experimentally setting the
probability of the Bernoulli to a fixed value 𝑝 = 0.5 consistently produces better
results at evaluation: better than the original teacher forcing, and better than a
pure self-sampling approach. We speculate that this procedure works by helping
the model to take into equal account 𝐳 and previous inputs.

In the original article on scheduled sampling, the authors do not back-propagate
gradients through sampled 𝐱′. Working on language modeling, their input word
space was discrete. Without an easy reparameterization trick for categorical
distribution, the issue had been left unresolved. It was subsequently addressed
with a trick called Gumbel softmax49. Similarly to the reparameterization trick for
normal distributions (see details in Subsection.3.1.Reparameterization trick), Gumbel
softmax makes use of an external source of stochasticity which does not have
to be learned, i.e. does not require back-propagation. This auxiliary variable
is sampled from a Gumbel distribution, corresponding to 𝐆 = − 𝗅𝗈𝗀(− 𝗅𝗈𝗀 𝐮),
with 𝐮 ∼ 𝗎𝗇𝗂𝖿𝗈𝗋𝗆(0, 1). Combined with log probabilities 𝗅𝗈𝗀(𝒋𝜽𝑡) of categorical
distributions, samples can be computed as follows:

β𝑡,𝑖 =
𝖾𝗑𝗉((𝗅𝗈𝗀(𝑗𝜽𝑡,𝑖) + G𝑡,𝑖)/𝜏)

∑1
𝑘=0 𝖾𝗑𝗉((𝗅𝗈𝗀(𝑗𝜽𝑡,𝑘) + G𝑡,𝑘)/𝜏)

(3.70)

We remark that this is basically a softmax function modulated by a 𝜏 parameter.
As 𝜏 → 0, this function tends to the argmax function providing the primarily
expected one hot vector definition of samples from a categorical distribution. In
the literature, it is proposed to progressively decrease 𝜏 as a function of epochs
from 1 toward a small non-zero value. We have chosen not to modulate 𝜏 and
fixed it to 1, with no significant loss.
48Huszár, 2015.
49Goyal et al., 2017; Jang et al., 2017; Maddison et al., 2017.
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The equation above is defined for pen states β, but it can be used similarly on
mixture weights m. However, in both cases, we still need one hot outputs at
inference, or during the sampling of 𝐱′. There exists a variant termed straight
through Gumbel softmax, where a greedy argmax function is used in the forward
pass, while the Gumbel softmax is utilized for back-propagation only. We point
out that this procedure is biased because the original distribution is not completely
guaranteed. Nevertheless, the continuous gradient offered by this method remains
highly beneficial.

Miscellaneous

We detail a few more remaining implementation details. First, neural network
units such as 𝐡, 𝐲, 𝐠, and their encoder counterparts are generic denominations.
In practice, they can be materialized by one or more successive layers of different
sizes. This is summed up in Fig.3.12.

In particular, all LSTM units are double layered. Although other strategies exist
to make RNNs deeper50, this solution is effective and easy to implement.

When two layers are stacked, such as in 𝐡𝑞, 𝐡 and 𝐠, we add dropout units in
between these layers. Dropout is a technique to limit overfitting in the model,
and therefore to improve its generalization51. The idea is to randomly zero some
connections between layers at training. Each connection has 𝑝 chance to be
canceled from a Bernoulli distribution. In so doing, the average magnitude of the
outputs generated by dropout units is scaled by 1 − 𝑝. Because the units act as
an identity function at evaluation, we need to compensate for the loss by 1

1−𝑝 at
training. We globally chose 𝑝 = 0.1.

ReLU activation function is used by default for all intermediary linear layers (fully
connected). Output layers are left without activation function, except for 𝐠 using
a 𝗍𝖺𝗇𝗁 function, and some part of 𝐲 concerning β, m and 𝝈2

𝜽, using respectively
softmax functions (see Eq.3.30) and a shifted negative softplus function (see
Subsection.3.5.Limiting output variance 𝗅𝗈𝗀 𝝈2

𝜽).

Neural network weights are initialized randomly before the first training iteration.
For instance, linear layers parameters are usually sampled from a normal distribution.
Results can be improved when 𝜎 = 𝑔𝑎𝑖𝑛√ 2

𝑠𝑖𝑧𝑒𝑖𝑛+𝑠𝑖𝑧𝑒𝑜𝑢𝑡
. 𝑔𝑎𝑖𝑛 is chosen depending

on the associated activation function (𝑔𝑎𝑖𝑛 =
√

2 for ReLU activation, 𝑔𝑎𝑖𝑛 = 5
3

for 𝗍𝖺𝗇𝗁, and 𝑔𝑎𝑖𝑛 = 1 otherwise)52. Concerning LSTM units, the initialization

50Pascanu et al., 2014.
51Hinton et al., 2012.
52Glorot and Bengio, 2010.
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x e d 𝐡𝑞 𝐲𝑞 𝐠 𝐡 𝐲
stroke model 𝛥+𝛽 64 128 x|eb|eb g(ebn|z) s(z|dn|dn) x+z|d|d d|g𝛥+𝛽
comp. model p+z+𝛽 256 512 x|eb|eb g(ebn|Z) s(Z|dn|dn) x+Z|d|d d|g(p+z)+𝛽
comp. plane p+z+𝛽 512 s(Z|dn|dn) x+Z|d|d d|m+mg(p+z)+𝛽

𝛥 6 differential cubic Bézier parameters
p 2 stroke initial position
𝛽 2 pen states, Bernoulli distribution
z 6 stroke latent space 𝐾
Z 16 composition latent space 𝐾

b 2 multiplier for bidirectional LSTM
g 2 normal distribution parameters 𝜇 and 𝜎
n 2 number of layers of recurrent units
s 2 hidden and cell states of the LSTM unit
m 8 number of mixtures

Figure 3.12: Table of layer sizes. i|o materializes a layer, with its input and output sizes.

procedure is replicated from the sketch-rnn model implemented in the Magenta
Project53. Finally, bias parameters for linear layers are initialized to 0.

Gradient descent optimization is performed with the Adam algorithm54. The initial
learning rate is 10−4, and a scheduler reduces this learning rate by a factor of
0.9 when the network validation accuracy stays stable across 10 epochs. When a
reconstruction 𝐿2 error is available (stroke model and composition model), this is
the value tracked by the scheduler. A minimal learning rate is set to 10−5.

To improve back-propagation in recurrent neural networks, and limit their associated
vanishing or exploding gradient issues, it has been proposed to clip these gradients55.
Such procedure can be operated by clamping the gradient at some threshold, or on
the norm of all parameters taken as a single vector. The gradient is then scaled by
𝗆𝗂𝗇 ( 𝑐𝑙𝑖𝑝𝑉 𝑎𝑙

‖𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡‖ , 1.0). We opted for the latter option with a clipping value of 1.0.

Finally, every random process in Python and its scientific libraries (Numpy/Scipy56)
were seeded, so that the different outcomes are reproducible, i.e. reproducible
training sessions and results. In addition, PyTorch and CUDA57 were set up to
choose deterministic algorithms instead of faster optimized ones. Despite these
efforts and the use of the same exact parameters and computing devices, there is
still a minor source of randomness across different runs of the training procedure.
This is due to a bug in the implementation of some components of the RNN unit
in CUDA. Nonetheless, the magnitude of this issue is negligible compared with
the trends found in the results.

53Sketch-rnn is the model developed by Ha and Eck, 2017. For more details on the Magenta Project:
https://magenta.tensorflow.org

54Kingma and Ba, 2017.
55Y. Bengio et al., 2012; Pascanu et al., 2012.
56Please find more information at: https://numpy.org and https://scipy.org
57CUDA is the GPU computing library underlying PyTorch functionalities, and developed by NVIDIA.

Please find more information at: https://developer.nvidia.com/cuda-toolkit
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Part II

Composition exploration
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4 Model results and tools

The second part of this manuscript is dedicated to the exploration of the functional
models. We will cover raw results, psychophysical experiments investigating the
homogeneity of the latent space, and finally artistic inquiries.

In this chapter, we primarily focus on models training logs, straightforward recon-
structive accuracy, and generative abilities of the models. In a second time, we
discuss the optimal way to travel in the latent space, i.e. interpolations between 𝐳
samples. Finally, the different models have several sources of stochasticity, so we
detail how each probabilistic aspect can represent a quantitative tool to conduct
measurements, and ultimately study composition.

4.1 Reconstruction and generation

Controlling the performance of our models is not an easy task. On the contrary to
usual machine learning procedures, we are not solely focused on the reconstruction
accuracy. The artistic relevance and expressiveness of the latent space are the
most expected qualities of the model. As a result, there are frictions between
quantitative and qualitative evaluations. However, even if the artistic feeling of
model outputs are maybe more important for me as the modeler, checking a
limited number of generated outputs can be misleading. The constructed space
is very large, and a few samples may not be representative. In addition, different
visual representations of the same data, e.g. with or without dynamic, can provoke
very different artistic judgments. Therefore, we searched for the best monitoring
values, while at the same time we tried to find the best model architectures and
hyperparameters. There is no space here to make the history of changes in training
monitoring values, and the evolution of ways to interpret them. We will only
describe the current state of our training method.

Training logs

During prototyping and training phases of a model, it is important to have access
to quantitative values to monitor the improvements given by different designs or
changes in hyperparameters. So, besides the raw optimized values (Fig.4.1c,d,e,h,
Fig.4.2c,d,e,h and Fig.4.3b,c), we track other important values, as defined in the
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a b

c d

e f

g h

Figure 4.1: Training logs of the stroke model. Only values from panels c, d, e and h are directly optimized.
Other values are only controlling measurements. The best epoch, considered as the fully
trained state of the model, is highlighted with a gray vertical line.
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a b

c d

e f

g h

Figure 4.2: Training logs of the composition model. Only values from panels c, d, e and h are directly
optimized. Other values are only controlling measurements. The best epoch, considered as
the fully trained state of the model, is highlighted with a gray vertical line.
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a b

c d e

Figure 4.3: Training logs of the compositional plane model are presented in panels a, b and c. The best
epoch, considered as the fully trained state of the model, is highlighted with a gray vertical line.
Panels d and e show compositional plane model score distributions. The selected instance is
marked with a cross.

previous chapter (Fig.4.1a,b,f,g, Fig.4.2a,b,f,g and Fig.4.3a). Of course, all these
measurements are done on the validation dataset.

The main use of these training logs is to check the stability of the training procedure.
Inter-epoch variability of the model state should be as smooth as possible, while
still improving. The optimization process is highly nonlinear, and the solution space
may be far from perfectly convex. Therefore, a high variability can be a sign of
a too high learning rate, and can eventually lead to exploding gradients. On the
opposite, a too low learning rate may keep the model state in a local minimum with
poor performance. Another source of high variability could be a too small batch
size. In this case, the random ordering of data could influence too dramatically the
optimization. However, this is unlikely to happen in our case as the batch size is 64
for stroke and composition models to guarantee good estimates of 𝐷𝖢𝗈𝗏. In logs
presented in Fig.4.1, Fig.4.2 and Fig.4.3, variables appear very stable, except for
𝐷𝖢𝗈𝗏 and ℒβ. In fact, ℒβ apparent fuzziness is more likely the result of a scaling
effect, as this variable is quickly converging after a few epochs. Then, even if
the plotted 𝐷𝖢𝗈𝗏 is estimated on the whole batch at validation, its behavior is the
result of a less reliable estimate per mini-batch at training. Nevertheless, it does
not prevent the variable from showing a long term convergence (see Fig.4.1h).
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The second use of these logs is to check whether the training procedure does not
overfit, and is really trained until full convergence. Overfitting is typically observed
when a variable presents a U shape. It means that the model still improved its
accuracy on the training set, but did not generalize discoveries on the validation
set. It has to be particularly monitored for the reconstruction loss. In our case, it
concerns ℒ𝚿, ℒβ and 𝐿2

𝚿. On stroke and composition models, the main variable,
driving the learning rate scheduling and the best epoch selection is 𝐿2

𝚿. From
Fig.4.1a,b and Fig.4.2a,b, we observe that the best epochs, highlighted with gray
vertical bars, are in both cases selected after that the learning rate reached the
chosen lower bound, and are located in a nearly flat regions of 𝐿2

𝚿. Other variables
also appear quite stable, demonstrating that models are trained to full convergence.
Concerning the compositional plane model (Fig.4.3a,b,c), 𝐿2

𝚿 is not accessible
as the output is a mixture distribution. ℒ𝚿 is then the driving variable. The log
behavior is also acting as expected. Note that no value is monitored concerning
the latent space for this model, as the encoding of 𝐳 is inherited and fixed from
the composition model.

Score distributions

For legibility in previous logs, we have only plotted the best training run of each
model. Indeed, with the exact same hyperparameters, model performance can
significantly vary. This is due to the stochasticity in the neural networks weights
initialization, in the mini-batch selection, and in the different data augmentation
processes. Thus, in order to attest of the robustness of the results, it is customary
to run the whole training procedure with different seeds. These seeds are some
sort of keys, generating reproducible sequences of random numbers. In Fig4.4,
Fig.4.5 and Fig.4.3d,e, we plot the distribution of monitored values at best epochs
for each seed. The violin plots are constructed over 6 seeds and the location
of the selected one (shown in previous logs) is marked with a cross. First, we
remark that results are in general similar across seeds. The shape of the different
distributions are not showing problematic outliers. The most uneven distribution
concerns the 𝐷𝖢𝗈𝗏 value of the composition model (Fig.4.5g). Nonetheless, the
selected seed is in the denser part. Globally, these plots guarantee that our trained
models are not outliers, resulting from very lucky situations.

The second interesting aspect of these distributions is to highlight the rules guiding
our selection of the most successful seed. A simple logic would be to choose the
seed producing the best value for the driving variable, involved in the selection
of the best epoch. This logic applies for the compositional plane model, but
concerning stroke and composition models, our main interest is on constructing
a good latent space, i.e. with independent dimensions and a density close to the
chosen prior. These concerns correspond to Fig4.4e,g and Fig.4.5e,g. We remark
that for both models we chose the best compromise between the smallest 𝐷𝖢𝗈𝗏
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Figure 4.4: Score distributions of the stroke model. The selected instance is marked with a cross.
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f g

Figure 4.5: Score distributions of the composition model. The selected instance is marked with a cross.

and the smallest 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)), even if these seeds do not correspond to the
best reconstruction score 𝐿2

𝚿 (see Fig4.4a and Fig4.5a). Then, why not directly
choosing 𝐷𝖢𝗈𝗏 or 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) for the best epoch selection? The answer is
that 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) is pushed toward a small value, but still increase over the
training (e.g. Fig.4.2f). In addition, 𝐷𝖢𝗈𝗏 has an unpredictable general behavior
(e.g. non-monotonic in Fig.4.2h), that is difficult to handle as a driving variable.

Latent space dimensionality

Another difficult hyperparameter to adjust is the dimensionality 𝐾 of 𝐳. We have
not found an objective way to determine a right value. Fig.4.6 and Fig.4.7 show
the influence of 𝐾 on the monitoring variables. For the stroke model, we have
investigated 𝐾 = [5, 6, 7, 8, 10] and for the composition model, 𝐾 = [12, 16, 20].
The main issue is that the reconstruction error, e.g. 𝐿2

𝚿, expectedly improves
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Figure 4.6: Scores w.r.t the dimensionality 𝐾 of 𝐳 for the stroke model. The selected 𝐾 is highlighted
with a gray vertical line.

a b c

d e f g

Figure 4.7: Scores w.r.t the dimensionality 𝐾 of 𝐳 for the composition model. The selected 𝐾 is
highlighted with a gray vertical line.

with more dimensions, while more dimensions increases the difficulty to understand
the latent space. So, in both cases, the choice of 𝐾 results from a complicated
tradeoff.

Concerning the stroke model, we will see in the next subsection that 𝐾 = 10
would be very beneficial for the reconstruction accuracy of longer strokes (see
Fig.4.9). But, this improvement seems to result from some sort of overfitting.
Qualitatively, we observed that it also produced unstable and fuzzy transitions (i.e.
interpolations). We actually face another aspect of the very unbalanced length
distribution in the stroke dataset (see Fig.2.26c), which may explain Fig.4.6e,g,
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where minimal values of 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) and 𝐷𝖢𝗈𝗏 indicate an optimal 𝐾 = 6.
Even if 𝐾 = 6 does not capture all the expected expressiveness of strokes, the
dataset imposes this limit for a smooth and coherent latent space. The only
alternative would be to increase the diversity of long stroke in the dataset with
new drawings, but it is possible in future works only.

However, the above logic does not stand for the composition model. In Fig.4.7e,g,
we see that 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) decreases with 𝐾, while 𝐷𝖢𝗈𝗏 increases. 𝐾 = 16 is
therefore not optimal, but a subjective compromise. A higher number of dimensions
would also have rendered the exploration of the latent space even more difficult
with psychophysical experiments1.

Reconstruction and prediction

The most immediate visual evaluation of the model is the reconstruction of
some ground truth data. We encode/decode some 𝒙𝑛, and compare the result
with the original. To avoid the variability of the encoding, we greedily sample
𝐳 from 𝑞(𝐳 ∣ 𝐱). It basically corresponds to 𝝁𝝓 given by the encoder 𝑄. Some
reconstructions of strokes are shown in Fig.4.8. Reconstructions are in black over
their ground truth in gray. The result is generally good. Unsurprisingly, the biggest
errors happen on longer and more complicated strokes. Fig.4.9 also displays
some reconstructions of strokes, but in a compositional context. Fig.4.9a is using
the selected 𝐳 dimensionality 𝐾 = 6. We observe that the lack of precision on
longer strokes is really obvious and can, in some situations, completely disrupt the
composition. As a result, even if the composition model were perfect, the stroke
embedding would limit the possible visual reconstruction anyhow. However, we
repeat that the choice of a lower 𝐾 is made consciously to preserve a smooth
latent space. A dimensionality 𝐾 = 10, as presented in Fig.4.9b, is tempting for
its far better results on longer strokes, but it would lead to interpolation issues at
the compositional level.

Fig.4.10a displays reconstructions from the composition model. Resulting examples
do not seem very accurate, but it is difficult to unravel errors from the composition
model and intrinsic limitations of the stroke model. To overcome this issue, we can
replace the ground truth underlay by the best possible reconstruction as depicted in
Fig.4.9a. This is plotted in Fig.4.10b and the composition model accuracy is then
very satisfactory. Only the two lower right compositions present noticeable errors.
They possess a smaller number of strokes, and it may reflect a comparable issue as
for the stroke dataset, i.e. compositions with fewer strokes are under-represented
at the dataset level (see Fig.2.28d).
1In comparison, the paper associated with sketch-rnn (Ha & Eck, 2017) used 𝐾 = 128. Even if their
motivation is mostly driven by the reconstruction accuracy, we find this dimensionality impractical for
latent space investigations. In addition, we believe that such very high 𝐾 is very likely to produce
models overfitting the dataset.
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4.1 Reconstruction and generation

Figure 4.8: Reconstruction of strokes. Ground truth and reconstructed strokes are respectively in gray
and black.

a

b

Figure 4.9: Panels a and b show reconstructions of strokes in a compositional context with 𝐾 ∈ [6, 10].
Ground truth and reconstructed strokes are respectively in gray and black.
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Figure 4.10: Reconstruction of compositions. In panel a, ground truth and reconstructed compositions are
respectively in gray and black. In panel b, the ground truth is replaced by the best possible
reconstruction, including stroke model limitations, as reproduced in Fig.4.9a.

Concerning the compositional plane model, an input 𝒙𝑛 does not have a unique
reconstruction. Model output is a mixture distribution, designed to investigate
different next stroke alternatives given a context, i.e. previous strokes and a 𝒛
encoded by the composition model (symbolizing a target mental image of the final
work). Therefore, instead of showing reconstructions of complete input sequences
𝒙𝑛,1∶𝑇𝑛

, we display the prediction of two strokes conditioned on an input sequence
𝒙𝑛,1∶𝐶𝑛

, with 𝐶𝑛 = 𝑇𝑛 − 2 (see Fig.4.11a). Fig.4.11b shows different alternatives
of such last strokes predictions. Most results seem pertinent, ranging from unusual
to interesting. Nonetheless, the model is sometimes failing to propose good ending
strokes. The biggest issue (very noticeable in Fig.4.11b top row) is a tendency to
nearly repeat previous strokes. Despite multiple adjustments during the prototyping
phase, this artifact is still present. It is probably an architectural problem, which
will require in depth future investigations.

Latent space

Generative abilities of the different models are more important to us than their
reconstructive accuracy. One aspect to guarantee coherent, diverse and interesting
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b

Figure 4.11: Compositional plane model predictions of some alternatives of ending strokes (in black).
These predictions are based on the conditioning strokes shown in gray. Panel a displays
one example for different compositions, and panel b different alternatives for the same
composition.

Figure 4.12: Stroke latent space distribution per dimension (in gray) and corresponding expected standard
normal distribution (black line).

new samples is the fitting accuracy of the latent space to the expected prior,
i.e. a multivariate standard normal distribution. 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳)) is a good
general quantitative measure, but we can also investigate actual densities per
dimension. For strokes in Fig.4.12, we notice that the matching of the prior is
excellent. On the contrary, concerning the compositions, some dimensions present
in Fig.4.13 bimodal distributions. A trivial explanation could be that there is not
enough dimensions to capture all compositional regularities, and that some of
them have to be joined together. However, this effect still appears with higher
𝐾. A better interpretation could be the existence of binary regularities, e.g.
features which could be either horizontal or vertical, but not in an intermediary
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Figure 4.13: Composition latent space distribution per dimension (in gray) and corresponding expected
standard normal distribution (black line).

orientation. The empirical demonstration of this statement is difficult. As we only
matched the first two moments of 𝑞(𝐳) and 𝑝(𝐳) with the 𝐷𝖢𝗈𝗏 regularizer (see
Subsection.3.5.Regularizing 𝐷𝖪𝖫(𝑞(𝐳) ∥ 𝑝(𝐳))), bimodal distributions can still be well
centered around zero and present a reasonable unit variance. Only the optimization
of higher moments could improve this issue, and validate (or not) the existence of
binary regularities. This investigation is left for future works.

Generation

Judging qualitative aspects of generated strokes and compositions is challenging.
Whether it fits or not my compositional expectations is very subjective. From
this perspective, I am generally very satisfied with the results. While randomly
sampling in the latent space, there is still few areas producing fuzzy outputs, but
given the relatively small size of my personal dataset, it can be considered as a
good achievement. Examples displayed on the next pages may help you to build
your own opinion.

For each model, there are two types of figure. A first set shows independent
random samples, while a second set presents improvisations around a given sample.
For stroke and composition models, we randomly explore the neighboring latent
space of a given sample, i.e. 𝒛 + 𝒩(𝐳𝑛𝑜𝑖𝑠𝑒 ∣ 𝟎, 𝜎𝑰) with 𝜎 = 𝖾𝗑𝗉(−2). For the
compositional plane model, the variability comes directly from different output
alternatives, given the same sample 𝒛.

Generated of strokes in Fig.4.14 and Fig.4.15, particularly present a rich variability
and expressiveness. They produce a feeling of simplicity compared to real strokes
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Figure 4.14: Generation of strokes.

a b c

Figure 4.15: Generation of strokes, local explorations.
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Figure 4.16: Generation of compositions.
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Figure 4.17: Generation of compositions, local explorations.
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Figure 4.18: Generation of compositions from the compositional plane model.
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Figure 4.19: Generation of compositions from the compositional plane model, family explorations.
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from the dataset, but they are still pertinent to me. The only detail that could
be perceived as an issue is the discrete nature of the number of components per
cubic Bézier curves. In some location of the latent space, sharp frontiers then
necessarily arise and provoke dramatic visual changes. For instance, in Fig.4.15c
exploring local samples around a chosen 𝒛, strokes with a second component seem
to belong to a different family, even if the first component of each stroke is similar.
This is an open issue, mainly dependent on the chosen stroke parameterization.

The compositional latent space also appears rich and expressive (see Fig.4.16
and Fig.4.17). Nonetheless, smaller strokes of these compositions are sometimes
grouped in little regions, and look messy. This is presumably an artifact of model
indecision. It resembles to the infamous blurry outputs of most pixel-based VAEs.
This effect is said to be due to the asymmetry in the 𝐷𝖪𝖫, as described in the
previous chapter. The maximum likelihood objective chosen in VAEs tends to
over-generalize data density, rather than to focus on regions of maximum intensity
(see Footnote.22, p.114).

Finally, generated compositions from the compositional plane model generally
present sharper compositional patterns (see Fig.4.18). They seem to offer more
pronounced compositional targets. At the same time, novel compositions appear
more surprising to me than examples obtained with the composition model. This is
particularly the case for the family explorations in Fig.4.19. Improvisations around
a given 𝒛 seem more diverse, with looser constraints. The additional degrees
of freedom allowed by the mixture distribution enable arrangements beyond my
compositional habits, while remaining weirdly familiar. Nonetheless, the stroke
repetition artifact (particularly in Fig.4.19b) and some extravagance in longer
strokes (see Fig.4.19c) provoke qualitative interferences, rendering this model
somehow deceptive. As already stated, these concerns leave room for interesting
future works.

4.2 Interpolation

In order to explore the latent space and experience the newly created continuity
between strokes and compositions, we need to find a correct way to travel through
these dimensions. A path is usually defined as the displacement from a point 𝑎 to a
point 𝑏. In a vectorial space, we designate such trajectory as an interpolation. We
are manipulating spaces with a high number of dimensions, so the shortest path
between 𝑎 and 𝑏 may not be optimal. High-dimensionality implies counter-intuitive
effects on distances, areas, and volumes. So, this section describes some situations
to manipulate with caution, and tries to make them visually understandable. Real
practical issues due to high-dimensionality, and the so-called curse of dimensionality,
will be tackled in the next chapter (see Section.5.1).
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Figure 4.20: Hyperspace density. Panel a, shows 1600 𝒛 samples from a 3-d standard normal distribution.
Clusters 𝑎, 𝑏, 𝑐, 𝑑 are composed of an equal number of points ordered by their norm. Panel
b plots the 𝜒3 distribution of ‖𝐳‖. Panel c displays 𝜒𝐾 distributions for multiple 𝐾 values.

Hyperspace density

Before introducing specific characteristics of hyperspaces, we begin with a 3-
dimensional space, easier to represent visually. Fig.4.20a shows 1600 dots randomly
sampled from a 3-d standard normal distribution, and the point cloud seems denser
around 𝟎. Each component is independent, so it is expected that most of the
points are located in the center of the space. However, if we make four clusters
(𝑎, 𝑏, 𝑐, 𝑑) with an equal number of points ordered by their norm, i.e. the distance
from the center, we observe that these 3-d rings are of varying thickness. Clusters
𝑎 and 𝑑 are wider than 𝑏 and 𝑐. It therefore indicates that the space must be
denser at some periphery from the center. The distribution of the norm ‖𝐳‖ of a
𝐾-dimensional standard normal distribution follows a 𝜒𝐾 distribution. In Fig.4.20b,
the probability density function of 𝜒3 is plotted with the boundaries of the four
clusters. The maximum density, i.e. the mode, is close to the limit between 𝑏 and
𝑐. This mode is actually easy to compute by 𝗆𝗈𝖽𝖾(𝜒𝐾) =

√
𝐾 − 1, with 𝐾 the

dimensionality of 𝐳. Then, it is expected that the maximum density shifts outward
as 𝐾 increases (see Fig.4.20c).

This observation seems paradoxical. On the one hand, the densest location of the
space is at the center because in each dimension z𝑖 the standard normal distribution
is concentrated around 0. On the other hand, if we look at ‖𝐳‖, the densest region
appears to be located on a sphere of radius 𝗆𝗈𝖽𝖾(𝜒𝐾). How to reconcile these
two realities? Which one is more pertinent to characterize the latent space?

One thing to know about continuous probability density functions is that they
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Figure 4.21: Counter-intuitive hyperspace characteristics. Panel a shows the probability of 𝑝(‖𝐳‖ ≤ 1.0)
for different 𝐾, i.e. the probability of the unit centered 𝐾-ball. Panel b shows the surface
of the 𝐾-sphere of radius 𝗆𝗈𝖽𝖾(𝜒𝐾) in log-scale for different 𝐾. The dotted line is an
illustration of the same curve in non log-scale.

should not be evaluated in one point. For instance, looking back at Fig.4.20b, the
probability that 𝑝(‖𝐳‖ = 1.0) is actually null. The probability is zero, because it
is very unlikely that ‖𝐳‖ would be exactly 1.000 … 000. So, probabilities have to
be evaluated in some interval, e.g. 𝑝(‖𝐳‖ ∈ [0.99, 1.01]). With this in mind, let
us compute the probability of 𝑝(‖𝐳‖ ≤ 1.0). Fig.4.21a plots this probability for
different 𝐾. Even if this range of value seems to include samples quite far from
the center, we remark that with 𝑘 = 3, the probability is already of only ≈ 0.2.
With 𝐾 = 8, the probability that a sample 𝒛 appears in the unit 𝐾-ball is almost
null. As a result, even if the center of the space is the most likely location to be
sampled, as the dimensionality increases, the local neighboring volume around it
becomes exponentially insignificant at the scale of the whole space.

Furthermore, in Section.1.3 introducing the probabilistic space (see particularly
Fig.1.10), we have seen that different compositions may globally have the same
probability, the same relevance in the compositional space, but for different reasons.
Individual dimensions can be alternatively close to the dull average, or explore more
unlikely/expressive aspects. Thus, ‖𝐳‖, in its quality of distance from the center,
appears to be a good summary of the global informational content of a composition,
no matter the exact expressed regularities. Then, the shape of the distribution of
‖𝐳‖ is telling us that compositional attributes cannot be simultaneously all close to
the mean or very far from it (see Fig.4.20b). A composition is therefore, most of
the time, a balanced mix of regularity and surprise.

In high dimensions, we therefore believe that the concept of most likely location
should disappear in favor of most likely surface. Once a ‖𝒛‖ is fixed, we can draw
a hypersphere (a circle if 𝐾 = 2 and a sphere if 𝐾 = 3), where compositions on
this surface are equiprobable. Since the central volume shrinks as 𝐾 increases, the
most likely surface grows exponentially (see dotted line of Fig.4.21b). Visualizing
these values in a log-scale (solid line), we notice that the surface goes from ≈ 10
to 1010 as 𝐾 ranges from 2 to 16. The probabilistic space offered by a model in
high dimensions is therefore far from being normative. There are many (many)
ways to be expressive, while still fulfilling standard statistics.
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Figure 4.22: Panel a (for the stroke model) and panel b (for the composition model) show ‖𝐳‖ distributions
with gray histograms. Expected 𝜒6 (stroke) and 𝜒16 (composition) are plotted with a black
line. Vertical lines compare the estimated mean (dotted line) with the theoretical mean
(solid line).

We have checked the actual distribution of stroke and composition latent space
individual dimensions in Fig.4.12 and Fig.4.13. In Fig.4.22, we verify if the norm
of each 𝐳 fits their respective 𝜒𝐾 distribution. For the stroke model, the variance
is slightly tighter than the expected density. Nonetheless, both mean values are
very close from each other (see Fig.4.22a). Concerning the composition model
(Fig.4.22b), mean values are also well aligned, but the peak is mush higher than
expected. It indicates that compositions are even more squeezed around the mode
hypersphere described above. This behavior may be explained by the bimodal
distributions of some individual dimensions presented in the previous section.
However, despite this deviation from the expected prior, the model remains highly
functional.

Linear interpolation

The objective of any type of interpolation is to define intermediary positions
between a starting point 𝒛𝑎 and an ending point 𝒛𝑏. A straight line is for instance
the shortest path between two points, no matter the number of dimensions.
Beyond its simplicity, it remains a customary choice. Mathematically speaking,
linear interpolation, 𝑙𝑒𝑟𝑝, is supported by:

𝑙𝑒𝑟𝑝(𝒛𝑎, 𝒛𝑏, 𝑢) = (1 − 𝑢)𝒛𝑎 + 𝑢 𝒛𝑏 , 𝑢 ∈ [0, 1] (4.1)

with 𝑢 the interpolation parameter. 𝑢 is ranging from 0 to 1 and the 𝑙𝑒𝑟𝑝
corresponds to 𝒛𝑎 at 𝑢 = 0 and 𝒛𝑏 at 𝑢 = 1. In most cases, we choose 𝑢 as a
ramp of equally spaced values. However, this constant speed in the parameter
space 𝑢 does not guarantee a constant perceptual change of model outputs. This
is particularly true in our probabilistic latent space. In Fig.4.23a, we see the
straight line constructed between two points in a 3-d space. The trajectory is
visualized through the 3 planar projections. In the second panel, we notice that
the interpolation is also straight in each dimension of 𝐳. Intermediary points go
through the density contained in between 𝒛𝑎 and 𝒛𝑏. However, concerning the
norm, the trajectory is bent toward 0, toward the center, i.e. through a very
low density area. In generative models, this transit close to the center results in
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Figure 4.23: Linear interpolation between two points in a 3-d space. In panel a, the trajectory is visualized
through the 3 planar orthogonal projections. The dotted circles indicate the sphere of radius
𝗆𝗈𝖽𝖾(𝜒3). Panel b shows the same trajectory per dimension and for the norm, with 𝑢 as
the y-axis. Dotted lines indicate respective densities the interpolation passes through.

z1

z2

z3

z4

z5

z6

Figure 4.24: Linear interpolations per dimension of the stroke model. Each interpolation is computed
from − 𝗆𝗈𝖽𝖾(𝜒6) to 𝗆𝗈𝖽𝖾(𝜒6) for the concerned dimension, while others are fixed to
zero. The gray line highlights the stroke 𝒛 = 𝟎, and dotted lines indicate strokes where
‖𝐳‖ = 𝗆𝗈𝖽𝖾(𝜒6).

poorly qualitative intermediary samples. This phenomenon is particularly visible in
high-dimensional latent space, and it has been frequently observed empirically.

To illustrate this effect in Fig.4.24 for the stroke model, we compute linear
interpolations along each dimension individually, others set to zero. The generated
sequences then cover the expressiveness of each dimension from negative to positive
values. While extremities are presenting some sort of visual opposition2 (vertical
dotted lines), all dimensions meet around zero with the same stroke (vertical gray
2We could describe z1 and z5 as controlling the stroke direction as a mix of 4 cardinal points. z6 seems
to encode the length of the strokes, while other dimensions could express different curling attributes.
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line). This curly stroke seems too complex to be the most probable one. Strokes
from the extremities, with a norm close to 𝗆𝗈𝖽𝖾(𝜒6), look more standard or more
likely. Therefore, in order to improve interpolations and trajectories in the latent
space, we need to keep a more constant norm, around the mode hypersphere.

Spherical linear interpolation

Even if the linear interpolation issue has been reported several times in the machine
learning community, alternative techniques are not very popular. For instance,
the use of spherical linear interpolation, 𝑠𝑙𝑒𝑟𝑝, has been lately formalized3, and
is still not recognized as a best practice. Spherical linear interpolation is though
an old and well-known tool in the computer graphics field4. It has been employed
together with quaternions in 3-d animation to guarantee a constant angular speed
during interpolation of rotations. By interpolating along the great arc, i.e. the
shortest path on a sphere between two points, it helps to render natural rotations
between body poses.

In the case of generative models, this type of interpolation on a sphere is interesting
to keep ‖𝐳‖ density as constant as possible along the path. Staying on the surface of
the hypersphere of a radius in between ‖𝒛𝑎‖ and ‖𝒛𝑏‖ should guarantee perceptually
smooth interpolations. Nonetheless, spherical linear interpolation has been initially
designed in a unit 3-d space. So, let us consider 𝐳 norm separately. Defining

̂𝒛𝑎 = 𝒛𝑎
‖𝒛𝑎‖ and the angle between two vectors as 𝜃 = 𝖼𝗈𝗌−1( ̂𝒛𝑎 ⋅ ̂𝒛𝑏), we have:

̂𝒛(𝑢) = 𝑠𝑙𝑒𝑟𝑝(𝒛𝑎, 𝒛𝑏, 𝑢) = 𝗌𝗂𝗇 ((1 − 𝑢)𝜃)
𝗌𝗂𝗇(𝜃)

̂𝒛𝑎 + 𝗌𝗂𝗇(𝑢𝜃)
𝗌𝗂𝗇(𝜃)

̂𝒛𝑏 , 𝑢 ∈ [0, 1] (4.2)

with 𝗌𝗂𝗇(𝜃) ≠ 0 implying that ‖𝒛𝑎‖ and ‖𝒛𝑏‖ cannot be collinear.

Even if 𝒛𝑎 and 𝒛𝑏 have norms around 𝗆𝗈𝖽𝖾(𝜒𝐾), they are usually different. We
could simply operate a linear interpolation, but a better objective is to ensure
constant density changes of the norm along the interpolation. We argue that this
should theoretically produce a better perceptual continuity of the generated samples.
We will experimentally explore this hypothesis in the next chapter. Concretely, the
interpolation of the norm must be linear in the cumulative density function space.

‖𝒛(𝑢)‖ = 𝖢𝖣𝖥−1
𝜒𝐾

(𝑙𝑒𝑟𝑝(𝖢𝖣𝖥𝜒𝐾
(‖𝒛𝑎‖), 𝖢𝖣𝖥𝜒𝐾

(‖𝒛𝑏‖), 𝑢)) (4.3)

Finally, 𝒛(𝑢) = ‖𝒛(𝑢)‖ ̂𝒛(𝑢). The result of this procedure is presented in Fig.4.25.
In the first panel, we can see that trajectories are curved around the circles.
Looking at individual dimensions in the second panel, paths are now bent, and
can locally pass through a lower/higher density than the extremities 𝒛𝑎, 𝒛𝑏 (see
3White, 2016.
4Shoemake, 1985.
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Figure 4.25: Spherical linear interpolation between two points in a 3-d space. In panel a, the trajectory
is visualized through the 3 planar orthogonal projections. The dotted circles indicate the
sphere of radius 𝗆𝗈𝖽𝖾(𝜒3). Panel b shows the same trajectory per dimension and for the
norm, with 𝑢 as the y-axis. Dotted lines indicate respective densities the interpolation is
passing through. On the right of the sub-plot dedicated to ‖𝐳‖, the spread of the horizontal
lines depicts the non-uniformity of the spacing of the points along the path.

Figure 4.26: 𝑙𝑒𝑟𝑝 vs 𝑠𝑙𝑒𝑟𝑝 stroke interpolations. Three series of interpolation are presented for either
a linear interpolation (rows beginning with a dash) or a spherical linear interpolation (rows
beginning with a dot).

particularly the path of z3). Nonetheless, and more importantly, the norm of 𝐳 is
now contained in between ‖𝒛𝑎‖ and ‖𝒛𝑏‖, with an almost linear trajectory. On the
right of this plot, the spread of the horizontal lines depicts the non-uniformity of
the spacing of the points along the path, that guarantee a constant change of
density.

Besides this theoretical illustration, we can display the differences between 𝑙𝑒𝑟𝑝 and
𝑠𝑙𝑒𝑟𝑝 interpolations on real data. With strokes in Fig.4.26, improvements seems
limited. 𝑠𝑙𝑒𝑟𝑝 sequences (rows indicated by a dot) just present a better preservation
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4.2 Interpolation

Figure 4.27: 𝑙𝑒𝑟𝑝 vs 𝑠𝑙𝑒𝑟𝑝 composition interpolations. Three series of interpolation are presented for
either a linear interpolation (rows beginning with a dash) or a spherical linear interpolation
(rows beginning with a dot).

of the length of the strokes in the middle region than 𝑙𝑒𝑟𝑝 sequences (rows indicated
by a dash). Concerning the composition model in Fig.4.27, interpolations between
random samples would require more intermediary positions to display very smooth
transitions. Indeed, we will demonstrate in the next chapter that two random
samples in high dimensions are almost always orthogonal, i.e. far from each other.
The 𝑠𝑙𝑒𝑟𝑝 sequences are therefore passing through diverse compositions, without
an obvious logic. Nevertheless, 𝑠𝑙𝑒𝑟𝑝 sequences are more coherent in the central
region compared to 𝑙𝑒𝑟𝑝 sequences, where intermediary compositions almost look
alike.

Quad-interpolation

In order to make the diversity and the complexity of the latent space more tangible,
we propose a quad-interpolation representation between 4 samples in Fig.4.28 and
Fig.4.29. We believe that the generated surfaces of transformation reproduce
the more familiar representation of a map, and how we usually describe a space.
The underlying procedure is simple. Two 𝑠𝑙𝑒𝑟𝑝 are computed between the corners
of opposite sides of a square. Then, multiple 𝑠𝑙𝑒𝑟𝑝 are operated in between
corresponding intermediary samples of each side. However, depending on the
ordering of the four initial points, the resulting surface can correspond to a twisted
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Figure 4.28: 𝑠𝑙𝑒𝑟𝑝 quad-interpolation of strokes.

area in the latent space, resembling to a bow tie. Such arrangement would produce
visually spurious folded quad-interpolations. As a result, we have built a procedure
that reorder corners, so that the sum of the four external angles/arcs is minimal.

In the previous section, we have evoked the existence of some discrete frontiers in
the stroke latent space due to changes in the number components per cubic Bézier
curves. In top left corner of the Fig.4.28, this phenomenon is particularly noticeable.
In Fig.4.29, the quad-interpolation representation helps to grasp the smooth nature
of the compositional latent space, and to find a logic in the transitions. The
selected instance may also be particularly lucky, with corners not too far from
each other.
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4.3 Measurements

Figure 4.29: 𝑠𝑙𝑒𝑟𝑝 quad-interpolation of compositions.

4.3 Measurements

One goal of composition modeling is to permit objective measurements of associ-
ated artistic perceptual characteristics. We want to go beyond expert/non-expert
qualitative judgments, and further simple spatial metrics. Several image statistics
exist, such as the amplitude spectrum slope: they may be informative, yet they are
not specifically crafted for artistic or compositional purposes. This inquiry does
not sound modest, but we actually consider measurement in its simplest sense, i.e.
a quantitative value enabling comparison to a norm, or to other measurements.
Establishing a meaning for this value, or finding an explanation coherent with a
physical scale, is a different issue that can be addressed independently. We also
claim that our proposed measurements are objective because the measuring tools
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are extracted autonomously, with machine learning procedures from the studied
material itself. Objective is therefore different from being universal. Our findings
are certainly not applicable to every sort of art, but express at least an objective
vision of the chosen dataset, i.e. my personal drawings.

Our models propose several quantitative possibilities, located in the encoded latent
space and the probabilistic outputs. They rely on two kinds of measurements:
relative positions in multidimensional spaces, and likelihoods of individual or global
pictorial events. This scrutiny can finally be applied at different scales, from
components of a stroke, strokes in a context, to whole compositions.

Nevertheless, this section is still a showcase of different opportunities given by
the different models. The main efforts of this research project were focused on
producing theoretical groundings for these models and making them functional.
So, even if some aspects of the compositional latent space will be discussed in
the next chapter – particularly a successful use of some available measurements
to predict human perceptual behaviors – a huge amount of possible researches
and investigations of the proposed tools are left for future works. We have to
acknowledge that the presented framework is still at its early stage.

Latent space measurements

When a stroke or a composition is encoded by 𝑄, we obtain two vectors 𝝁𝝓 and
𝝈2

𝝓. These parameters define a normal distribution for each of the 𝐾 dimensions.
Three examples (𝑎, 𝑏 and 𝑐) are plotted for each model in Fig.4.30a and Fig.4.31a.
In both case, the selected strokes and compositions display a large diversity of
distributions, in terms of spread and location.

The most interesting aspect of the available measurements is maybe supported by
𝝁𝝓 and its position among the global latent space distribution. We have set the
prior 𝑝(𝐳) to follow a multivariate standard normal, so we can study the likelihood
of a given stroke embedding 𝒛 in each dimension. As already explained, a more
probable stroke is not better than others. There is no esthetic judgment, or
claim of a higher value. This scrutiny is just a way to identify the expressive
characteristics of a stroke. The distance from the norm, in a positive or negative
numerical manner is precisely a sign of uniqueness. In addition, examples from
Fig.4.30a and Fig.4.31a behave as predicted. Each stroke or composition is in
the norm for some dimensions and unlikely in others, but none of these inputs are
completely close to zero or far from it in every dimension.

This procedure tends to position a stroke or a composition among the whole
space, but we can also compare entries one another. We should be able to answer
quantitatively: to what extent inputs are similar? and in what aspect they are
different? We focus on strokes examples as they are more directly interpretable.
For instance, there is a clear ordering of strokes along fourth and sixth dimensions
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Figure 4.30: Stroke model available measurements through 3 examples 𝑎, 𝑏 and 𝑐. Panel a shows latent
space individual densities encoded by 𝑄 (in gray) over the prior standard normal distributions
(black lines). Panel b plots ‖𝐳‖ densities of each stroke over the prior 𝜒6. For visualization
purposes, vertical scales are adjusted per stroke. Panel c displays the spatial prediction of
the control points of each component of the cubic Bézier curves (for target points in gray
and tangents with a black outline). Delimited areas enclose 50% of each cumulative density.
Crosses indicate the origin and the relative scale of each stroke.

(Fig.4.30a). If we look back at Fig.4.24 showing individual dimension characteristics,
we notice that z4 encodes what appears to be two types of curve closure. The
straight stroke 𝑐 thus lies in between the other two (Fig.4.30c). We have also
qualified z6 as coherent with stroke length. This dimension presents strokes 𝑏 and
𝑐 closer to each other, and 𝑎 with an opposite polarity (thin crosses in Fig.4.30c
indicate the origin and the relative scale of each stroke). On the other hand, z5
seems irrelevant to discriminate between the 3 strokes.

However, the relative measure of similarity between entries is for now only related
to the model recognition space. Even if we hope that there are connections with
human perceptual system and inner metrics, there is no evidence at this stage.
Compositional latent space relative similarity measurements is precisely what we
will investigate in the next chapter. We will define the smoothness of a latent
representation as a local perceptual homogeneity of similarity judgments (see
Chapter.5 for further discussions).

Mean 𝝁𝝓 is usually interpreted as the real location of an entry in the latent
space. It is for instance this embedding that is given by the stroke model to the
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Figure 4.31: Composition model available measurements through 3 examples 𝑎, 𝑏 and 𝑐. Panel a shows
latent space individual densities encoded by 𝑄 (in gray) over the prior standard normal
distributions (black lines). Panel b plots ‖𝐳‖ densities of each composition over the prior 𝜒16.
For visualization purposes, vertical scales are adjusted per composition. Panel c displays the
spatial prediction of stroke initial points (gray surfaces). Delimited areas enclose 50% of
each cumulative density. Panel d illustrates the densities of predicted stroke shapes. The
variance is reduced by 4 for legibility.
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4.3 Measurements

composition model. On the other hand, the variance 𝝈2
𝝓 could be interpreted

as model 𝑄 uncertainty on its encoding per dimension. For instance, in stroke
examples of Fig.4.30a, we remark that stroke 𝑐 globally shows a larger variance
than stroke 𝑎. It seems somehow counter-intuitive as shape 𝑐 is more common
than 𝑎 (see Fig.4.30c). We could expect 𝑄 to have more difficulties in identifying
stroke 𝑎, but the opposite is happening. In fact, if the nature of stroke 𝑐 is more
likely, then shape family 𝑐 is certainly occupying a larger portion of the latent
space. In other words, the encoder 𝑄 may have learned to discriminate more
subtle morphological characteristics, and possibly with less confidence.

‖𝐳‖ norm measurements

There is no closed form of the distribution of the norm of 𝐳 given 𝝁𝝓 and 𝝈2
𝝓.

Nevertheless, it is possible to compute it by simulation. Fig.4.30b and Fig.4.31b
present the resulting densities for stroke and composition examples 𝑎, 𝑏 and 𝑐.
The spread of the distributions are mostly related to 𝝈2

𝝓, so it could be interpreted
as an averaged measurement of the global uncertainty of 𝑄 on its encoding. In
Fig.4.30b, the variance of stroke 𝑎 is tighter than the one of stroke 𝑐, which is
coherent with our former observation. Other than the spread of these distributions,
it is difficult to interpret the location of their mode. All compositions in Fig.4.31b
are for instance quite close from each other. A smaller norm is perhaps indicating
a less confident (messier) output, such as composition 𝑎 in Fig.4.31c. However,
these observations may be more interesting than our current understanding of it,
and require further investigations.

Visualizing position probability maps

Other sources of measurement are located in model 𝑃 outputs. Based on single
multivariate normal distributions or mixture distributions, these measurements
cover the positions of stroke Bézier control points, stroke initial points, and stroke
shape embeddings.

Let us first detail how to visualize probabilities related to position, i.e. 𝛅𝑡, 𝛅′

𝑡,
𝛅″

𝑡 for the stroke model, and 𝐩𝑡 for composition models. We basically evaluate
output densities over a square and discrete map of uniformly spread 𝑁 samples
per dimension. It is in two dimensions, so it is reasonable to construct a grid with
a decent precision: we used 𝑁 = 103 producing 𝑁2 = 106 evaluated positions.
Predicted outputs are normal distributions, and they theoretically spread over an
infinite area. Nonetheless, the visualization grid has to be bounded. We know
that in average, over the whole dataset, model inputs are standardized. We can
therefore expect that the overall output aggregate would also fit a 2-d standard
normal distribution. As a result, we chose a covering range per dimension of
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[𝖢𝖣𝖥−1
𝒩 (10−8), 𝖢𝖣𝖥−1

𝒩 (1 − 10−8)]. We can then compute the area 𝕕2 covered by
each sample as (we use 𝗅𝗈𝗀 probabilities for computational accuracy):

𝗅𝗈𝗀 𝕕2 = 𝗅𝗈𝗀 (𝖢𝖣𝖥−1
𝒩 (1 − 10−8) − 𝖢𝖣𝖥−1

𝒩 (10−8)
𝑁 − 1

)
2

= 2 𝗅𝗈𝗀(−2 𝖢𝖣𝖥−1
𝒩 (10−8)) − 2 𝗅𝗈𝗀(𝑁 − 1)

(4.4)

𝑁 − 1 is used instead of 𝑁 because we consider each sample as the center of their
tiny square. The actual extents of the complete visualization map is therefore
of one supplementary 𝕕 in each dimension. Then, the probability of the area
associated with a position, e.g. 𝐩𝑡, can be approximated by:

𝗅𝗈𝗀 ∫
𝕕2

𝑝(𝐩𝑡)𝑑𝕕2 ≈ 𝗅𝗈𝗀 𝑝(p𝑡,𝑥) + 𝗅𝗈𝗀 𝑝(p𝑡,𝑦) + 𝗅𝗈𝗀 𝕕2 (4.5)

Concerning the compositional plane model, outputs are based on a mixture distri-
bution, so that stroke positions 𝐩𝑡 and shape embeddings 𝐬𝑡 are independent only
knowing the mixture index m. To study 𝐩𝑡 individually, it must be marginalized as
follows:

𝗅𝗈𝗀 𝑝(𝐩𝑡) = 𝗅𝗈𝗀 ∫
𝐬𝑡

𝑝(𝐩𝑡, 𝒔𝑡)𝑑𝒔𝑡
= 𝗅𝗈𝗀 ∫

𝐬𝑡

𝑀
∑
𝑚=1

𝑝(𝑚)𝑝(𝐩𝑡 ∣ 𝑚)𝑝(𝒔𝑡 ∣ 𝑚)𝑑𝒔𝑡

= 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝑝(𝑚)𝑝(𝐩𝑡 ∣ 𝑚) ∫
𝐬𝑡

𝑝(𝒔𝑡 ∣ 𝑚)𝑑𝒔𝑡

= 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝖾𝗑𝗉 ( 𝗅𝗈𝗀 𝑝(𝑚) + 𝗅𝗈𝗀 𝑝(𝐩𝑡 ∣ 𝑚))

(4.6)

leading to,

𝗅𝗈𝗀 ∫
𝕕2

𝑝(𝐩𝑡)𝑑𝕕2 ≈ 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝖾𝗑𝗉 ( 𝗅𝗈𝗀 𝑝(𝑚) + 𝗅𝗈𝗀 𝑝(𝐩𝑡 ∣ 𝑚) + 𝗅𝗈𝗀 𝕕2) (4.7)

This information is nonetheless only partially informative. It indicates probable
areas of next strokes, but no matter these stroke shapes. A more constrained
question is: where should be positioned the next stroke, knowing its shape? It is
basically computed as the following conditional probability.

𝗅𝗈𝗀 𝑝(𝐩𝑡 ∣ 𝐬𝑡) = 𝗅𝗈𝗀 𝑝(𝐩𝑡, 𝐬𝑡)
𝑝(𝐬𝑡)

= 𝗅𝗈𝗀 𝑝(𝐩𝑡, 𝐬𝑡) − 𝗅𝗈𝗀 𝑝(𝐬𝑡) (4.8)

where 𝗅𝗈𝗀 𝑝(𝐬𝑡) follows a similar development as in Eq.4.6, so that:

𝗅𝗈𝗀 ∫
𝕕2

𝑝(𝐩𝑡 ∣ 𝐬𝑡)𝑑𝕕2 ≈ 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝖾𝗑𝗉 ( 𝗅𝗈𝗀 𝑝(𝑚) + 𝗅𝗈𝗀 𝑝(𝐩𝑡 ∣ 𝑚) + 𝗅𝗈𝗀 𝑝(𝐬𝑡 ∣ 𝑚)

+ 𝗅𝗈𝗀 𝕕2) − 𝗅𝗈𝗀
𝑀

∑
𝑚=1

𝖾𝗑𝗉 ( 𝗅𝗈𝗀 𝑝(𝑚) + 𝗅𝗈𝗀 𝑝(𝐬𝑡 ∣ 𝑚))

(4.9)
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In Fig.4.30c and Fig.4.31c, the visualization of these probabilities is operated by
a contour map, because it is easier to display with vectorial graphics. We also
decided to plot a unique isoline of 𝖢𝖣𝖥 = 0.5 for legibility. In Fig.4.32a,b and
Fig.4.33a,b, more isolines are plotted and represent 𝖢𝖣𝖥 ∈ [0.25, 0.5, 0.75].

Probability maps of the stroke model (Fig.4.30c), are divided into target control
points (gray areas) and tangent control points (black outlines). It appears that
longer the stroke is and larger the predicted areas are. This observation is probably
related to the lower likelihood of longer strokes (in terms of number of components),
but it is also coherent with a strategic behavior for 𝑃, adapting its uncertainty to
the scale of its actions. Another striking detail is the circular nature of almost
all predictions. Only the last target point of 𝑎 presents a spatial directionality,
coherent with the main stroke movement. In fact, probability circles can only be
squeezed vertically or horizontally, as output covariance matrices have been chosen
diagonal with 𝜮𝜽 = 𝖽𝗂𝖺𝗀(𝜎2

𝜽).

Concerning the composition model (Fig.4.31c), we remark that output variances
are highly related to the latent uncertainty of the model and the associated global
visual accuracy. Strokes are also reproduced from longer to shorter ones, which is
reflected in the spread of the predicted areas, decreasing over time (particularly
for composition 𝑐).

For 𝑝(𝐩𝑡) of the compositional plane model (see Fig.4.32a and Fig.4.33a), it seems
that the density gets more specified over time, with a greater shape complexity. It
also changes slowly. Most probable areas are influenced by former strokes, but
main spots appear quite constant. This behavior is completely different when a
specific stroke shape conditions the prediction. With 𝑝(𝐩𝑡 ∣ 𝐬𝑡) in Fig.4.32b and
Fig.4.33b, only a subset of 𝑝(𝐩𝑡) is kept. Predicted strokes are almost restricted to
one location, and probable position radically changes between time steps. However,
predicted areas present a large variance, and the model seems to fail at really
decreasing its output uncertainty over the training procedure.

Visualizing stroke shape densities

The visualization of stroke shape densities is more challenging. Compared to
spatial positions, stroke embeddings are not directly tangible. They have to be
decoded to render visible strokes. Our idea is thus to use stroke opacity as a
proxy for density. This way, overlapping strokes could naturally densify on common
portions. Secondly, the number of samples to cover a 𝐾-dimensional space with a
sufficient accuracy is growing exponentially with 𝐾 (if 𝑁 = 103, the number of
evaluated samples is 1018). A more efficient way to cover the space is therefore to
directly pick 𝑁 samples from the studied distribution instead of a uniform sampling
of the space. As a result, each sample has an equal probability, and can be given
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the same opacity. In order to make all opacities sum to 1, we set each stroke
opacity to 1

𝑁 .

Concerning the composition model, we directly have access to 𝑝(𝐬𝑡 ∣ 𝐲𝑡−1, β𝑡,1)
which is a normal distribution. However, for the compositional plane model,
output distribution is a mixture and the sampling operation has to be operated
in two steps. To be more explicit, let us recall the definition of the marginal
𝑝(𝐬𝑡) = ∑𝑀

𝑚=1 𝑝(𝑚)𝑝(𝐬𝑡 ∣ 𝑚). As we only know how to sample strokes from
𝑝(𝐬𝑡 ∣ 𝑚), we first have to sample an index 𝑚 from 𝑝(m), that is a categorical
distribution. Once an 𝑚 is chosen, then we just have to sample one stroke from
𝑝(𝐬𝑡 ∣ 𝑚). This procedure is repeated 𝑁 times.

Nonetheless, the visualization of marginals are only partially informative. As stated
previously, such measurement indicates probable next strokes, but no matter the
location to draw it. Sampling strokes knowing a chosen spatial location is more
interesting. Let us rearrange the definition of 𝑝(𝐬𝑡 ∣ 𝐩𝑡).

𝑝(𝐬𝑡 ∣ 𝐩𝑡) = 𝑝(𝐩𝑡, 𝐬𝑡)
𝑝(𝐩𝑡)

=
∑𝑀

𝑚=1 𝑝(𝑚)𝑝(𝐩𝑡 ∣ 𝑚)𝑝(𝐬𝑡 ∣ 𝑚)

∑𝑀
𝑔=1 𝑝(𝑔)𝑝(𝐩𝑡 ∣ 𝑔)

=
𝑀

∑
𝑚=1

𝑝(𝑚)𝑝(𝐩𝑡 ∣ 𝑚)
∑𝑀

𝑔=1 𝑝(𝑔)𝑝(𝐩𝑡 ∣ 𝑔)
𝑝(𝐬𝑡 ∣ 𝑚)

(4.10)

We can then consider that 𝑝(𝐩𝑡 ∣ 𝑚) acts as a fixed modifier of the weights of
the initial 𝑝(𝑚) categorical distribution, where ∑𝑀

𝑔=1 𝑝(𝑔)𝑝(𝐩𝑡 ∣ 𝑔) just normalizes
category probabilities to 1.

Concerning the results for the composition model (Fig.4.31d), the variance asso-
ciated with stroke shapes is closely related to the location variance (Fig.4.31c).
With this visualization, we also observe the cumulative effect of uncertainty along
strokes. Long strokes (in linear length and number of components) possibly present
dramatic changes in their visual appearance. Nonetheless, outputs are greedily
sampled for this model, and they are usually well centered, so that overall results
are satisfying.

For 𝑝(𝐬𝑡) of the compositional plane model (see Fig.4.32e and Fig.4.33e), predicted
stroke densities are really fuzzy and difficult to interpret. Output variance is large,
and the stroke spectrum to represent is too diverse for our visualization technique.
We should therefore focus on 𝑝(𝐬𝑡 ∣ 𝐩𝑡) in Fig.4.32d and Fig.4.33d. Conditioning
the prediction on a specific location makes the measurement more readable.
Nonetheless, large visual variability of longer strokes is still problematic, prompting
us again to address the dataset lack of long stroke diversity in future works.
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p(pt) p(pt|st) p(st)p(st|pt)a b c d e

Figure 4.32: Compositional plane model measurements. Panel c vertical line shows successive states of a
randomly generated composition. Panels a and b display the spatial prediction 𝑝(𝐩𝑡) and
𝑝(𝐩𝑡 ∣ 𝐬𝑡) of stroke initial points (gray surfaces). Delimited areas enclose 25%, 50% or
75% of the cumulative density. Panel d and e illustrate the densities 𝑝(𝐬𝑡) and 𝑝(𝐬𝑡 ∣ 𝐩𝑡)
of predicted stroke shapes. The variance is reduced by 2 for legibility.
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p(pt) p(pt|st) p(st)p(st|pt)a b c d e

Figure 4.33: Compositional plane model measurements. Panel c vertical line shows successive states of a
randomly generated composition. Panels a and b display the spatial prediction 𝑝(𝐩𝑡) and
𝑝(𝐩𝑡 ∣ 𝐬𝑡) of stroke initial points (gray surfaces). Delimited areas enclose 25%, 50% or
75% of the cumulative density. Panel d and e illustrate the densities 𝑝(𝐬𝑡) and 𝑝(𝐬𝑡 ∣ 𝐩𝑡)
of predicted stroke shapes. The variance is reduced by 2 for legibility.
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5 Composition perception

A generative model is a sandbox for experiments. The latent space and the
associated decoder act as a controlled source of stimuli. The objective is then
to study whether regularities captured by the model are in alignment with human
perception. For instance, does the latent space present biases similar to those found
in natural vision, e.g. preference for horizontal/vertical orientations or symmetries?
If so, the following question is what does the model functional mechanisms tell us
about pictorial composition in general? By simulation of a creative gesture, we
can gain insights on our own internal compositional process. Nonetheless, at the
timescale of this thesis project, we have to focus our effort on one simpler, yet
meaningful aspect of the latent space, and demonstrate the scientific pertinence
of our framework1.

As a representative, but preliminary experiment, we have decided to attest of a
functional aspect of the model. Despite the monitoring of ̂𝕀, enforcing an even and
optimal overlap of 𝒛 encodings of real dataset entries (see Section.3.5), we should
investigate the perceptual efficiency of our custom training procedure. Basically, we
want to address the idea of latent space smoothness. Conjointly, we would like to
verify an assumption exposed in the previous chapter: that moving on trajectories
of constant density in the latent space, e.g. on hyperspheres, permits more
perceptually qualitative interpolations (and the dual idea that travelling along the
norm causes significant perceptual distortions because of the density variations). In
the machine learning community, interpolations in generative models is actually an
aspect qualitatively commented very often, but rarely verified quantitatively. Our
proposed method could therefore be generalizable outside the frame of our study
on composition. Finally, interpolation is an essential tool to artistically experience
continuity of the compositional space. Perceptually improving interpolations is
thus simultaneously a creative objective.

Initially, we also wanted to study possible lower frequency distortions in the
latent space. The question was whether there were silent dimensions which do
have an effect on compositions from a structural point of view (necessary to
describe/reconstruct drawings with a sufficient accuracy), but barely discriminated
by viewers. However, such global coherence investigation requires an experimental
design spanning the whole compositional space. In this search, we harshly faced
the curse of dimensionality. Even if this objective has been finally discarded for
1This overall framework is indeed similar to our study on abstract composition orientation judgment
(Lelièvre & Neri, 2021). See Appendix.A.1 for details.
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practical reasons, we found it interesting to be described in the first section of
this chapter. The second section is then dedicated to the theoretical background
of perceptual scaling. We discuss chosen methods and detail our contributions.
Finally, experimental results obtained with this psychophysical tool, and associated
discussion, end this chapter on composition perception.

5.1 Dimensionality issues

In the previous chapter, we have described counter-intuitive phenomena in high-
dimensional spaces. While prototyping experiments, we have been confronted
to situations raising more practical issues. We consider these problems as an
important drawback for an immediate and simple use of deep generative models.
This inherent characteristic should be addressed and may be resolved in future
work. Nonetheless, instead of jumping directly to operational protocols and their
results, we have decided to detail the encountered limitations. We therefore
review investigated methods and rely on simulations to demonstrate the current
infeasibility of studies on the latent space at a global/complete scale. This
exposition is also the occasion to introduce fundamental psychophysical concepts,
such as comparative judgments and thresholds.

Comparative judgments and angular distances

Whether it is at a local scale, to check the perceptual quality of interpolations
in the latent space, or at a global scale, to determine the visual effectiveness of
the captured dimensions, we could sum up our experimental goal as quantifying
distortions between the space discovered through machine learning, and our per-
ceptual representation of corresponding compositions. The idea is basically to
measure the perceptual dilations and compressions regarding the metric provided
by the latent space. Our experimental tasks then turn out to rely on a simple
appreciation of distances, i.e. a qualitative or quantitative comparative judgment
between two positions. In particular, we investigate our ability to perceive differ-
ences between compositions, rather than our personal interest about compositional
values. We find this type of judgment more objective and more easily interpretable
for viewers compared to esthetic judgments, as it should involve less knowledge
and culture-specific skills of art materials.

To conform to psychophysical concepts, we first need to define our studied physical
space and a practical metric. Initially elaborated for elementary stimuli magnitudes,
such as light intensity or sound pitch through air vibration wavelengths, we must
understand physical in opposition to the psychological dimension under scrutiny.
Therefore, even if our model latent space generates complex stimuli through a
highly nonlinear process, it can still be considered as a physical space. However,
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even if 𝒛 values directly shape stimuli, Euclidean distances (the shortest line in
between) are not an optimal metric. In Section.4.2, we have stated that travelling
in the latent space, e.g. interpolations, has to be operated on hyperspheres. To
go through the denser region of the latent space, this hypersphere even has to be
of radius 𝗆𝗈𝖽𝖾(𝜒16). So, physical distances between samples should be defined as
vectorial angles. It naturally implies to be able to make controlled rotations in a
high-dimensional space.

Rotation matrices are only well-defined in 2-d planes. In higher dimensions, we
usually build compositions of rotation matrices operating alternatively on planar
sub-spaces. A rotation matrix is an identity matrix except for the two selected
dimension in rotation. For example, in a 3-d space, a rotation of angle 𝜙 in the
𝑥𝑦 plane and along 𝑧 axis, gives:

𝑅𝑧(𝜙) = ∣
𝖼𝗈𝗌 𝜙 − 𝗌𝗂𝗇 𝜙 0
𝗌𝗂𝗇 𝜙 𝖼𝗈𝗌 𝜙 0

0 0 1
∣ , 𝑅𝑧(90∘) ∣

1
0
0
∣ = ∣

0 −1 0
1 0 0
0 0 1

∣ ∣
1
0
0
∣ = ∣

0
1
0
∣ (5.1)

The problem is that if we want to execute a rotation in an arbitrary plane, we have
to first apply a change of basis. Then, when desired rotations are completed, an
inverse basis transformation is required to recover the original coordinate system.
These steps are not straightforward in 𝑛 dimensions, so we dropped the matrix
transformation method and preferred an adaptation of the 𝑠𝑙𝑒𝑟𝑝 equation (see
Eq.4.2).

We define 𝒛𝑎 as a reference sample on a hypersphere of radius ‖𝒛𝑎‖. 𝒛𝑎 also sets
the origin of angles 𝜙, controlling the applied rotations. Then, 𝒛𝑏 is another sample,
defining with 𝒛𝑎, the hyperplane of the rotation. Of course, 𝒛𝑎 and 𝒛𝑏 cannot be
collinear. With ̂𝒛𝑎 = 𝒛𝑎

‖𝒛𝑎‖ and 𝜃 = 𝖼𝗈𝗌−1( ̂𝒛𝑎 ⋅ ̂𝒛𝑏) being the angle between the two
vectors, we have:

̂𝒛(𝜙) = 𝗌𝗂𝗇 (𝜃 − 𝜙)
𝗌𝗂𝗇(𝜃)

̂𝒛𝑎 + 𝗌𝗂𝗇(𝜙)
𝗌𝗂𝗇(𝜃)

̂𝒛𝑏 (5.2)

By default, we set 𝒛(𝜙) = ‖𝒛𝑎‖ ̂𝒛(𝜙), but any norm definition could be applied,
e.g. the procedure described in Eq.4.3.

Fig.5.1 shows two examples of such procedure along two orthogonal axes. Rotations
are applied successively and construct a surface of transformation. In these 2-d
maps, each sample is separated from its neighbors by 2∘. As a result, the field of
changes appears very smooth, so that it is rather difficult to spot local differences.
Only travelling across illustration corners emphasizes morphological evolutions.
This perceptual discriminative difficulty is precisely connected to the notion of
threshold.
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5 Composition perception

Figure 5.1: Successive rotations in the latent space along two orthogonal axes. For these two examples,
each composition is separated from its neighbors by 2∘.
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Threshold estimation

In broad lines, we know that we will ask participants to judge distances between
compositions. But then, how to choose the appropriate angular distance between
inspected compositions? To designed successful perceptual experiments, we should
have an estimation of the default human abilities and cognitive limitations. Known
as thresholds, these boundaries are defined as the sufficient intensity (for absolute
threshold of detection tasks), or change in a stimulus characteristic (for difference
threshold of discriminative tasks), to cause a significant perceptual response. In the
discriminative case, the difference threshold is called the just noticeable difference
or JND. This notion has been introduced by Weber and Fechner during the 19th
century2. It was initially considered as an elementary psychological unit, and
perception was interpreted as a succession of JND increments. However, repeated
human judgments of the same stimuli vary time to time. Some random process
seems to alter our perception and the discrete conception described above does
not support satisfactorily intraindividual variabilities. Formulated under signal
detection theory, it has been later proposed that “the presence of internal noise,
or uncertainty, led to stimuli being represented in the brain not by a single point
along a sensory continuum, but as a random sample drawn from a distribution.”3 It
implies that JND, as a unit, or an exact quantity, does not really exist. It has to be
considered as an arbitrarily defined probabilistic value of a continuous process.

To illustrate this idea, it may be easier to describe a typical experiment designed
to measure thresholds. For the ease of development, we will momentarily leave
compositional angular difference aside, and consider a stimuli variable 𝑠 with an
arbitrary physical metric, for which we have an objective idea of what is more. In
addition, thresholds are not supposed to be equivalent everywhere on this metric.
So, we choose a reference stimuli 𝑠0 = 0, for which the threshold is estimated.

The following procedure belongs to the 2AFC family (two-alternative forced choice).
It means that participants are presented with two stimuli per trial and that, if we
ask which stimulus is more something, the participant is requested to pick one
or the other stimulus: I don’t know is not an option. Then, two experimental
strategies are possible. First, we can ask participants to compare 𝑠0 only once
with a large number of different 𝑠. Responses are therefore only binary: 0 if 𝑠0 was
chosen as more, and 1 otherwise. This is represented by small dots in Fig.5.2b.
An alternative is to compare multiple times a reduced number of specific stimuli
𝑠𝑎. This way, we obtain the probability of each 𝑠𝑎 to be perceived as more. It
corresponds to empty circles in Fig.5.2b. Based on either data, we can fit a
sigmoidal curve called a psychometric function4. The JND can then be defined
2Fechner, 1860.
3Kingdom and Prins, 2010, p. 154.
4Fitting is usually done by logistic regression, but it can be computed for several other sigmoidal
parametric functions by Generalized Linear Model (GLM) or Maximum Likelihood Estimation (MLE).
We will come back on these fitting procedures in the next section.
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a

b

Figure 5.2: With 𝑠0 = 0 chosen as our reference for threshold measurement, panel b shows simulated
responses of a participant performing a 2AFC task with a single (small dots) or multiple
(empty circles) pair repetitions. The black line then depicts the fitted psychometric function.
The corresponding difference threshold or 75% JND is plotted in dark gray. Adjacent light
gray area materializes the possible comparative judgment range, with an upper limit set to
99.9% of the psychometric function. Finally, panel a illustrates the underlying stochastic
process explaining the sigmoidal shape of psychometric function.

as a value expressed in physical unit, corresponding to a certain percentage of
time that this value is seen as more. It is usually arbitrarily set to 75%, and in our
example, the JND would be about 2.

Earlier, we have evoked the stochasticity associated with each stimulus, but at the
psychometric function level, the underlying perceptual procedure is masked. So,
let us explicitly add some noise to a stimulus 𝑠𝑎 to obtain a random variable of
the perceived stimulus such as:

̂s𝑎 = 𝑠𝑎 + n𝑠𝑎
with n𝑠𝑎

∼ 𝒩(0, 𝜎2
𝑠𝑎

) (5.3)

Added noise is likely to be the result of many independent internal and external
sources. Due to the central limit theorem, we can safely assume that this noise
is normally distributed. In Fig.5.2a, we plot the density of two stimuli, 𝑝( ̂s0) and
𝑝( ̂s4) (dotted lines). Then, we want to know the proportion of time that ̂s4 is
perceived as more than ̂s0. We remark that distributions are largely overlapping,
so this judgment is not binary. It corresponds to 𝑝( ̂s4 > ̂s0), equivalent to
𝑝( ̂s4 − ̂s0 > 0). Graphically, it can be represented by the gray area under the curve
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of 𝑝( ̂s4 − ̂s0), which is also normally distributed. In our example, this value is
around 0.91. Reporting such value in the panel below for every possible stimulus
finally reconstructs the psychometric function (see Fig.5.2b).

The transposition to our compositional angular differences is not straightforward.
The first difficulty is that there is no objective more or less direction of angular
changes. An alternative would be to use the same-different procedure, but it is
subject to various kind of biases5. Secondly, with an indirect physical metric related
to complex stimuli, it is likely that every composition will lead to slightly different
thresholds. Then, we cannot parse the whole dataset to precisely measure every
threshold. In addition, thresholds are very dependent on environmental conditions
and chosen experimental variables, e.g. the duration of the stimuli presentation.
In our case, longer you have access to pairs of composition and easier it is to
spot subtle differences (e.g. for immediate neighbors in Fig.5.1). So, despite the
existence of psychophysical methods, threshold measuring is too costly for our
study. An empirical estimate of our ability to discriminate between compositional
samples is sufficient to evaluate the feasibility of experimental designs beforehand.
Even with a twofold error, our estimation would remain useful.

Compared pairs of compositions have to be significantly different to trigger a
perceptual change. But at the same time, they should present a sufficient amount
of common features to permit an informed judgment. We are therefore searching
for a minimum and a maximum angle. As the JND for the lower bound, an upper
limit can be arbitrarily set to a stimulus producing 99.9% positive responses. In
Fig.5.2b, such range is materialized by the light gray area, with an upper bound in
the physical space around 9.

We can roughly determine this range with Fig.5.3. Central elements of horizontal
triplets stay unchanged, while lateral samples are rotated by the indicated angle
𝜙 ∈ [1∘, 2∘, 4∘, 8∘, 16∘, 32∘]. Looking at these triplets quickly (∼ 2sec), we could
agree on the following operational values [a:(2,16), b:(2,8), c:(8,16), d:(1,4)].
As a result, we can coarsely state that possible judgments range from 2∘ to 8∘

with an optimal angular difference around 4∘. Even if Fig.5.2 was intended to be
illustrative only, values have been chosen in alignment with this estimation.

Finally, with this in mind, it is useful to know the distribution of angles between
two random samples. Fig.5.4 shows the unsigned angle densities for different
dimensionalities 𝐾. On a two-dimensional plane, all angles are equiprobable.
With 𝐾 = 16, any couples of random points are likely to be nearly orthogonal
(90∘). So, any naive experiment based on randomly selected samples is likely
to fail. Such judgments would be mostly uninformative because of their very
supra-threshold nature. Compared compositions would have, most of the time,
nothing in common.
5A bias is basically a deviation from the expected theoretically balanced behavior by a participant. This
bias may be specific to individual strategies, or widely shared among participants. In this latter case,
the bias is likely to represent an optimal adaptation to the environmental prior.
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Figure 5.3: Similarity judgment threshold estimation with an angular metric. Each sample is separated
from its neighbors by the angle indicated along the vertical line (in degree).
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Figure 5.4: Unsigned angle distribution between random samples for different 𝐾 dimensionalities (in
degree).

Multidimensional scaling

Multidimensional scaling (MDS) is originally a method to reduce the number
of dimension of a dataset for visualization purposes. Compared to Principal
Component Analysis6, MDS does not search for a linear transformation matrix
into a lower dimensional subspace. MDS is designed to directly find new data-
points coordinates in a possibly nonlinear manner. The idea is to construct a
pairwise distance matrix between every data-points, and to find new coordinates
optimally respecting these pairwise distances. In our case, it could be to find
a 2-d cartography of our 16-d composition embeddings. However, our latent
space is quite compact and homogeneous in all dimensions. It is supposed to be a
16-d standard normal distribution with independent components. So, there is no
particular way to find a lower dimensional subspace.

The distance matrix is usually computed with Euclidean distances, but it can
be constructed upon any type of metric. If distances are perceptually measured,
MDS actually becomes a psychophysical tool. We can ask participants to directly
rate all pairs of stimuli on an abstract psychological scale, e.g. categorical such
as very similar, similar, dissimilar, very dissimilar. So, MDS is a very versatile
tool dealing with metric and non-metric distance matrices, and accepting dataset
of elements with known or unknown intrinsic dimensions. For instance, in the
industry, MDS helps to interpret most significant aspects of objects that influence
buying decisions, from ketchup to cars. Concerning our study on compositions,
dimensional reduction is not an objective. We are looking for global perceptual
distortions of the latent space, and we just want to reconstruct the best geometry
that respect the perceptual pairwise distances collected with participants.

Original MDS relies on classical minimization algorithms, but a link has been
highlighted with Kernel-PCA7. This method is much quicker and presents more
robust resolutions. Already available in scikit-learn8, we have based our Kernel-
6PCA is a procedure searching for new dimensions with maximized variance, reordered by decreasing
magnitude. We can then keep the few first dimensions only, which are supposed to be the most
informative.

7C. K. Williams, 2002.
8Pedregosa et al., 2011. Find more information at: https://scikit-learn.org
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a

b

c

Figure 5.5: Multidimensional scaling. In panel a, we plot original points with small dots, and Kernel-MDS
reconstruction error with short line segments. This simulation is based on 200 randomly
sampled points on a unit sphere in 3-d. Their uniform spreading on the sphere is enforced by
an over-sampling and a clustering by 𝑘-means. The distance matrix is clusterized to 3 discrete
levels. In panel b, we plot the reconstruction error of Kernel-MDS on 200 points (16-d, 7
discrete levels distance matrices) for different ratios of evaluated pairwise distances. Missing
entries of the distance matrices are estimated by low-rank distance matrix completion. The
error is expressed in angles (±1 SD in light gray). In panel c, we show the angular distance
distribution between all pairs (light gray) and after a 0.5 reduction of further pairs (dark gray).
The resulting mean angular distance is 78° (black line).

MDS solver on this algorithm. A simulated result in 3-d is displayed in Fig.5.5a with
200 points randomly sampled on a unit sphere. The distance matrix is computed
using Euclidean distances, and clusterized into 3 discrete levels. Original points are
indicated by a small dot and the Kernel-MDS reconstruction error is materialized
by short line segments. Resulting geometry is satisfactory, but even with a dataset
of 200 elements only, the distance matrix required to complete the MDS is already
of shape (200, 200). Lower triangle of this matrix is of course a mirror of the upper
triangle, and the diagonal is necessarily filled with zeros, but it still constitutes
19900 pairs. This procedure is therefore not feasible with real participants.

In addition, previous subsection highlighted the necessity to reduce the average
angular distance between stimuli of evaluated pairs. As a result, we can imagine
to present to participants the closest pairs only. Then, missing matrix entries
can be estimated by low-rank distance matrix completion9. Fig.5.5b explores the
feasibility of this scenario. We plot the reconstruction error of Kernel-MDS on 200
points (16-d, 7 discrete levels distance matrices) for different ratios of evaluated
pairwise distances. Error is expressed in angle (±1 SD in light gray). We remark
that a completion ratio of 0.5 is the lower limit for an acceptable reconstruction
accuracy. In Fig.5.5c, we show the resulting angular distance distribution between
9We have ported form Matlab to Python the code associated with Mishra et al., 2011.
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Figure 5.6: Isomap. Panels a and b presents the graph of 100 3-d points connected to 3 nearest neighbors,
respectively in volume and unwrapped in 2-d (regions a and b correspond in both views). Panel
c plots the reconstruction error, expressed in angle for different 𝑘-neighbors (black line). The
simulation is based on 1000 16-d points, and evaluated distances are clusterized to 7 discrete
levels. We also display the implied number of evaluated edges per 𝑘-neighbors (gray line).
Panel d presents the distribution of angular distances between stimuli for different number of
points with 15 neighbors. The legend shows the mean angular distance for each condition.

all evaluated pairs in dark gray. Despite these efforts, the mean angular distance
is still high, around 78∘, and far above threshold.

Isomap

The isomap algorithm is grounded on MDS, and proposes to take advantage of
an existing representation when it is available. The main idea is to rely on the
computation of the nearest neighbors to reduce the number of required evaluated
pairs. These nearest neighbors can be represented as a graph, where each point
is at least connected to 𝑘-neighbors. In Fig.5.6a,b, we show the graph of 100
3-d points connected to their 3 nearest neighbors, respectively in volume and
unwrapped in 2-d. From this graph, being a subset of all possible pairwise distances,
we can compute a complete distance matrix by propagating distances to neighbors,
and take advantage of geodesics10. Popular algorithms to accomplish this task are
Floyd-Warshall algorithm and Dijkstra algorithm. Both options are implemented
10A geodesic is the shortest path between two points on a surface, which is in our case on a hypersphere.
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in Scipy, and the second is usually preferred when the number of data-points is
large. Nonetheless, a requirement for these algorithms to work is that the nearest
neighbor routine ends up in a unique graph. With a very small number of neighbors,
multiple clusters are likely to happen, and to make filling algorithms fail. Once
the full distance matrix is computed, Kernel-MDS can be used to reconstruct the
geometry.

In Fig.5.6c, we plot the reconstruction error, expressed in angle, for different
numbers of neighbors (black line). The simulation is based on 1000 16-d points
and evaluated distances are clusterized to 7 discrete levels. We remark that even
with 15 nearest neighbors, the angular error is still high. In gray, we show the
corresponding number of edges to evaluate. With 𝑘 = 15, the figure is around
8500 pairs of stimuli. It is already a lot, but much smaller than original 499500
possible pairs. In Fig.5.6d, we then look at the corresponding distribution of
angular distance between stimuli. With 1000 points and 𝑘 = 15, the mean angle
is around 54∘. Even if we could scale the number of evaluated stimuli to 10000
(around 85000 edges/pairs), it would only reduce the mean angle to 44∘. As a
reminder, a comparative judgment between compositions seems possible until 8∘ to
16∘ (see Fig.5.3). In conclusion, any attempt to completely characterize a latent
space in 16-d is not feasible under the constraint of a realistic number of pairs to
be evaluated with participants.

5.2 Perceptual scaling

Dimensionality involved in our compositional latent space forces us to modify our
experimental strategy. Distortions need to be investigated at a more local scale.
As a result, we renounce to capture a perceptual multidimensional geometry of
the space, and concentrate on specific trajectories, i.e. univariate interpolations
mapped in our high-dimensional space. This scheme actually gets back to a more
customary psychophysical domain, known as perceptual scaling. In this section, we
first go through the theoretical background of the method used in our experiments,
i.e. MLDS, and then we detail our contributions to this method, such as the
reduction of the required number of evaluated pairs, and the extension to periodic
physical spaces.

Perceptual scaling

Perceptual scaling is basically measuring the relationship between a physical metric
and its induced psychological response. It is not only studying perceptual charac-
teristics of a particular stimulus like in threshold estimation, but finding a transfer
function covering a whole range of stimuli (see Fig.5.7).
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a b

Figure 5.7: Perceptual Scaling. Panel a is an illustration of the Fechner’s law with stimuli varying in
intensity of a physical medium. A stimuli 3𝑠 requires a difference 3 times more important to
produce the same perceptual change as a stimulus 𝑠. In panel b, we show that perceptual
scales can be linearly transform in their physical and psychological domains without loss of
significance. They can be bounded in the range [0, 1] for the ease of manipulation.

A naive question is then why sensory modalities do not simply react linearly
to physical magnitudes of stimuli? First, our biological sensors have physical
limitations in terms of spectrum and signal intensities. For instance, our vision is
restricted to specific electromagnetic wavelengths, and direct sunlight is quickly
harmful. Secondly, a linear scaling is not generally a very efficient strategy. We
could imagine that our brain has limited computing abilities. In this case, it would
be better to selectively allocate its power, e.g. to a wide range of stimuli with
little attention, or to a restricted portion of possible stimuli with a higher accuracy.
Finally, the environment does not provide an equiprobable physical space. Some
colors and sounds are more likely than others, and may interact with our sensory
system depending on our physical needs. The brain plasticity is precisely designed
to adapt over time, life, and circumstances. As a result, it seems very likely that
transfer functions between physical stimuli and our psychological representation
are non-trivial. Perceptual scaling is therefore at the core of cognitive sciences
and psychophysics in particular.

Let us now formalize our sensory model. First, let the random variable s be physical
stimuli over a uni-dimensional space 𝒮. s is a random variable because we assume
that stimuli are distributed in the world according to some prior 𝑝(s). Then, we
assume that physical stimuli are mapped to a perceptual representation ψ, itself a
random variable with the distribution 𝑝(ψ). Perceptual scaling is then searching
for the transfer function 𝛹, so that:

ψ = 𝛹(s) (5.4)

We also constrained 𝛹 to be strictly monotonically increasing. A specific repre-
sentation 𝜓 should correspond to one stimulus 𝑠 only. In addition, as the first
derivative of 𝛹 is strictly positive, respective ordering of stimuli and representations
is guaranteed.
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In Fig.5.7a, we depict the most well known perceptual scale, as it relies on Fechner’s
law. This pioneer of psychophysics stated that the intensity of our sensation evolves
logarithmically with the intensity of the stimuli, so that 𝜓 = 𝑘 𝗅𝗈𝗀(𝑠). It suggests
that 𝛥𝜓 = 𝑘

𝑠 𝛥𝑠. Thus, to obtain an equivalent perceptual difference at 3𝑠, it
requires a stimuli difference of 3𝛥𝑠. In short, for low intensities, when the slope is
steep, we are more discriminative, and when the perceptual scale is flatter for high
intensities, where are less accurate at discriminating stimuli variations. This relation
has been experimentally demonstrated for some immediate metrics of sensory
modalities, e.g. light intensity for vision, but Fechner’s Law is far from universal.
In addition, this explicit mapping of a perceptual representation from a stimulus
expressed in physical units leads to interpretation confusion. For Thurstone, we
have to “deny that it [the psychological continuum] measures sensation intensity
or any other quantitative characteristic of sensation. […] The sense quality is
not itself an intensity or magnitude of any sort”11. The perceptual scale should
rather be interpreted as purely abstract and arbitrary with its own mental unit.
The perceptual scale can therefore be linearly transformed without any loss of
information, since it will keep relative distances. The same apply on the stimuli
dimension. We can think of s as an intermediary variable to a real physical metric.
Then, without loss of generality, we can assume the space 𝒮 as bounded in the
range [0, 1]. As a result, we can set 𝛹(0) = 0 and 𝛹(1) = 1 to constrain the
perceptual scale to be also bounded in the range [0, 1]. This convention is plotted
in Fig.5.7b and will greatly simplify further developments.

Thurstonian scaling

We should now describe methods to construct perceptual scales. As evoked earlier,
the initial procedure to build some sort of psychological representation was by
integrating successive JND. But Thurstone remarked that:

The just noticeable difference is in every case a stimulus measurement. […]
Hence, it is in reality a physical unit which in some situations can serve in-
directly the purposes of mental measurement.12

For him, judgment distribution along the psychological continuum is a more
interesting unit, as it makes explicit stochastic relations attached to stimuli and
our perception.

It is reasonable to assume that two perceptual sense qualities or processes
which are close together on the psychological continuum are qualitatively
similar and that therefore either one of them may more or less readily be
perceived in the same stimulus.13

11Thurstone, 1927b.
12Thurstone, 1927a.
13Thurstone, 1927b.
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Formally, it led Thurstone to introduce a third law of perception, the law of
comparative judgments, expressed as:

𝜓1 − 𝜓2 = 𝑥1,2√𝜎2
1 + 𝜎2

2 − 2𝜌𝜎1𝜎2 with 𝑥1,2 = 𝛷−1(𝑝𝑠1>𝑠2
) (5.5)

However, this canonical formulation is not easy to handle. Let us show how to
derive it from a more theoretical view. First, we assume that our sensory system
can only rely on some noisy measurements m𝑎 of world stimuli 𝑠𝑎. It can be
written as:

m𝑎 = 𝛹(𝑠𝑎) + n𝜓𝑎
= 𝜓𝑎 + n𝜓𝑎

with n𝜓𝑎
∼ 𝒩(0, 𝜎2

𝜓𝑎
) (5.6)

Again, n𝜓𝑎
is assumed to be normal, as the result of many independent sources of

noise. Then, in an experimental design, e.g. 2AFC, we will ask a participant to
judge multiple times the difference between two stimuli 𝑠𝑖 and 𝑠𝑗

14. In practice,
the question is Which one is more?, so that we actually measure 𝑝(m𝑗 > m𝑖) (not
𝑝(𝑠𝑗 > 𝑠𝑖) as the participant only has access to measurements of given stimuli).

𝑝(m𝑗 > m𝑖) = 𝑝(𝜓𝑗 + n𝜓𝑗
> 𝜓𝑖 + n𝜓𝑖

)

= 𝑝(n𝜓𝑖
− n𝜓𝑗

< 𝜓𝑗 − 𝜓𝑖)
(5.7)

where n𝜓𝑖
− n𝜓𝑗

is a difference of normally distributed variables. The result is a
random variable n𝜓𝑖,𝜓𝑗

∼ 𝒩(0, 𝜎2
𝜓𝑖

+𝜎2
𝜓𝑗

−2𝜌𝑖,𝑗𝜎𝜓𝑖
𝜎𝜓𝑗

), itself normally distributed,
with 𝜌𝑖,𝑗 the correlation between n𝜓𝑖

and n𝜓𝑗
. Then:

𝑝(m𝑗 > m𝑖) = 𝑝 (n̄√𝜎2
𝜓𝑖

+ 𝜎2
𝜓𝑗

− 2𝜌𝑖,𝑗𝜎𝜓𝑖
𝜎𝜓𝑗

< 𝜓𝑗 − 𝜓𝑖) with n̄ ∼ 𝒩(0, 1)

= 𝑝 ⎛⎜⎜
⎝

n̄ <
𝜓𝑗 − 𝜓𝑖

√𝜎2
𝜓𝑖

+ 𝜎2
𝜓𝑗

− 2𝜌𝑖,𝑗𝜎𝜓𝑖
𝜎𝜓𝑗

⎞⎟⎟
⎠

= 𝛷 ⎛⎜⎜
⎝

𝜓𝑗 − 𝜓𝑖

√𝜎2
𝜓𝑖

+ 𝜎2
𝜓𝑗

− 2𝜌𝑖,𝑗𝜎𝜓𝑖
𝜎𝜓𝑗

⎞⎟⎟
⎠

𝜓𝑗 − 𝜓𝑖 = 𝛷−1(𝑝(m𝑗 > m𝑖))√𝜎2
𝜓𝑖

+ 𝜎2
𝜓𝑗

− 2𝜌𝑖,𝑗𝜎𝜓𝑖
𝜎𝜓𝑗

(5.8)
where 𝛷 is the cumulative distribution function of a standard normal random
variable, and 𝛷−1 its inverse. Replacing 𝑗 → 1 and 𝑖 → 2 gives a result coherent
with the canonical formulation (see Eq.5.5). We have just reversed subscripts
order because intuitively we imagine 𝑠𝑗 > 𝑠𝑖, and that it implies a positive distance
between 𝜓𝑖 and 𝜓𝑗, only if we consider 𝜓𝑗 − 𝜓𝑖.

14It could also be conducted on multiple participants producing only one judgment, and pooled together.
These two scenarios constitute cases I and II described in Thurstone, 1927a.
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5 Composition perception

In practice, we will make further assumptions, as anticipated by Thurstone in his
case V. First, we will assume there is no correlation between stochastic aspects
of each measurement made by participants, i.e. 𝜌𝑖,𝑗 = 0. In addition, we will
hypothesize that these internal noises occurring at the representation level are
constant, no matter the triggering stimulus. As a result, 𝜎 = 𝜎𝜓𝑖

= 𝜎𝜓𝑗
and we

can reformulate Eq.5.6 as:

m𝑎 = 𝛹(𝑠𝑎) + n = 𝜓𝑎 + n with n ∼ 𝒩(0, 𝜎2) (5.9)

then Eq.5.8 becomes,

𝜓𝑗 − 𝜓𝑖 = 𝛷−1(𝑝(m𝑗 > m𝑖))𝜎
√

2 (5.10)

Assuming a constant internal noise is actually an important choice concerning our
sensory model because it provides a goal for the perceptual scaling operated in our
brain, i.e. noise uniformization. In particular, we can think of our measurements
m𝑎 as the processing by 𝛹 of stimuli ̂s𝑎, of which stochasticity is considered in the
physical domain (remember Eq.5.3). As n𝑠𝑎

explores a locality around 𝑠𝑎, we can
apply the Taylor series, so that:

m𝑎 = 𝛹( ̂s𝑎) = 𝛹(𝑠𝑎 + n𝑠𝑎
) = 𝛹(𝑠𝑎) + 𝛹 ′(𝑠𝑎) n𝑠𝑎

+ 𝜊(n𝑠𝑎
) (5.11)

comparing with Eq.5.9, we have:

n ≃ 𝛹 ′(s𝑎) n𝑠𝑎
and 𝜎 ≃ 𝛹 ′(s𝑎) 𝜎𝑠𝑎

(5.12)

In other words, 𝛹 derivative is tuning our sensitivity w.r.t physical stimuli, and
uniformizes the uncertainty of our internal representation. We can actually see
this process as an uniformization in the sensory domain of psychometric functions
and thresholds (see Fig.5.8).

Maximum Likelihood Difference Scaling

Before addressing practical computations of perceptual scales from data collected
with participants, we introduce a second perceptual scaling framework, the Max-
imum Likelihood Difference Scaling (MLDS)15. Thurstonian scaling (TS) and
MLDS are considered in the literature as more different from what they really
are, and we will hypothesize some explanations later in this chapter. Nonetheless,
the only fundamental difference between TS and MLDS is the type of judgment
asked to participants. With TS, an absolute understanding of the physical scale is
required. This is for instance applicable while studying light intensity, or image
degradation due to compression16. Participants directly understand What is more?
So, given a pair of stimuli 𝑠𝑖, 𝑠𝑗 in a 2AFC task, they have an objective reference
15Knoblauch and Maloney, 2008; Maloney and Yang, 2003.
16Watson and Kreslake, 2001.
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5.2 Perceptual scaling

Figure 5.8: Perceptual scale tunes sensitivity associated with stimuli by uniformizing the uncertainty of
our internal representation i.e. n ≃ 𝛹′(s𝑎) n𝑠𝑎 . The same apply on psychometric functions
and JND, becoming equivalent in the psychological domain.

a b

si

si

sjsj

sksk sl

Figure 5.9: MLDS task setups for the quadruplet case in panel a and the triplet case in panel b.

to base their judgment on. On the contrary, with compositions, there is no such
intuitive directional metric. MLDS basically addresses this issue by proposing to
judge differences of differences of stimuli. Given two pairs of stimuli, the task can
be rephrased as: Which pair shows the largest interval? (Fig.5.9a). Alternatively,
if one stimulus of each pair is shared and taken for reference, we obtain a triplet for
which the task is: Which stimulus is more different to the reference? (Fig.5.9b).

Let us concentrate on the quadruplet case. Participants are presented with four
stimuli 𝑠𝑖, 𝑠𝑗, 𝑠𝑘, 𝑠𝑙, presented as pair (𝑠𝑖, 𝑠𝑗) and pair (𝑠𝑘, 𝑠𝑙). In the process,
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5 Composition perception

they have to measure distances m𝑖,𝑗 and m𝑘,𝑙, before comparing the two. The
particularity of estimating m𝑖,𝑗 and m𝑘,𝑙 is that the orientation/sign of these
distances is ignored (because usually unknown or irrelevant). As a result, we must
write:

m𝑎,𝑏 = |m𝑏 − m𝑎|
= |𝜓𝑏 + n𝜓𝑏

− 𝜓𝑎 − n𝜓𝑎
|

(5.13)

But this formulation does not guarantee the normality of the distribution of
m𝑎,𝑏. Consequently, the comparison between m𝑖,𝑗 and m𝑘,𝑙 would not be normally
distributed either, and the MLDS framework would be impracticable to measure
perceptual scales. We illustrate this observation for two neighboring stimuli in
Fig.5.10a. We plot the distribution of m𝑎,𝑎+1 for various 𝜏 (see Definition.1).
The distribution of m𝑎,𝑎+1 is compared with a classical comparative judgment
as defined in Eq.5.10 (TS case V). We remark that the issue is negligible for
𝜏 = 0.5 and severe with 𝜏 = 2. In Fig.5.10b, we provide a quantitative measure
of this discrepancy by computing the Kullback-Leibler divergence between the
two distributions. In short, if the noise (∼ 𝜎) associated with the perception of
individual stimuli 𝜓𝑎 and 𝜓𝑏 is small compared to the distance between them, the
normality assumption can hold. We will therefore assume 𝑝(n𝜓𝑎

−n𝜓𝑏
< |𝜓𝑏 −𝜓𝑎|)

to be high, so that 𝑝(m𝑎,𝑏 > 0) is also high with:

m𝑎,𝑏 = |𝜓𝑏 − 𝜓𝑎| + n𝜓𝑏
− n𝜓𝑎

(5.14)

Then, making similar assumptions as for the TS case V, we have:

𝑝(m𝑘,𝑙 > m𝑖,𝑗) = 𝑝(|𝜓𝑙 − 𝜓𝑘| + n𝜓𝑙
− n𝜓𝑘

> |𝜓𝑗 − 𝜓𝑖| + n𝜓𝑗
− n𝜓𝑖

)

= 𝑝(−n𝜓𝑖
+ n𝜓𝑗

+ n𝜓𝑘
− n𝜓𝑙

< |𝜓𝑙 − 𝜓𝑘| − |𝜓𝑗 − 𝜓𝑖|)

= 𝑝(2𝜎 n̄ < |𝜓𝑙 − 𝜓𝑘| − |𝜓𝑗 − 𝜓𝑖|)

= 𝛷 (
|𝜓𝑙 − 𝜓𝑘| − |𝜓𝑗 − 𝜓𝑖|

2𝜎
)

|𝜓𝑙 − 𝜓𝑘| − |𝜓𝑗 − 𝜓𝑖| = 𝛷−1(𝑝(m𝑘,𝑙 > m𝑖,𝑗))2𝜎
(5.15)

As a reminder, function 𝛹 is strictly monotonically increasing, so if 𝑠𝑖 < 𝑠𝑗 and
𝑠𝑘 < 𝑠𝑙, then 𝜓𝑖 < 𝜓𝑗 and 𝜓𝑘 < 𝜓𝑙. To simplify the notation, we can finally
reorder stimuli and remove absolute values.

𝜓𝑙 − 𝜓𝑘 − 𝜓𝑗 + 𝜓𝑖 = 𝛷−1(𝑝(m𝑘,𝑙 > m𝑖,𝑗))2𝜎 (5.16)

In the triplet case, we set 𝑠𝑘 → 𝑠𝑗 and 𝑠𝑙 → 𝑠𝑘, leading to:

𝜓𝑘 − 2𝜓𝑗 + 𝜓𝑖 = 𝛷−1(𝑝(m𝑗,𝑘 > m𝑖,𝑗))2𝜎 (5.17)
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a b

Figure 5.10: MLDS pair measurement normality verification. Gray areas in panel a shows m𝑎,𝑎+1
distributions for various 𝜏 (see Definition.1 for details about 𝜏). Pair measurements are
compared with the distribution of a classical comparative judgment (TS case V, black line).
Panel b plots the 𝐷𝖪𝖫 divergence between the two distributions as a function of 𝜏.

Definition 1 We define 𝜏 as the standard deviation of an MLDS comparative
judgment, expressed in step size units between 𝜂 equally spaced stimuli. In the
specific context of a physical range of stimuli rescaled in the interval [0, 1], we
have 𝜏 = 2𝜎

1/(𝜂−1) = 2𝜎(𝜂 − 1), where 2𝜎 corresponds to the expected spread of an
MLDS comparative judgment (see the demonstration provided in this subsection).
Nonetheless, we would like to repeat that 𝜏 and 𝜎 are by definition related to the
noise associated with our psychological representation only. It does not have any
direct meaning in the physical space. 𝜎 is related to the noise associated with
each stimulus 𝜎𝑠, and has implications in terms of thresholds or JND, only if 𝛹 is
fully characterized or assumed linear (see Eq.5.12). The primary idea behind 𝜏 is
to study the behavior of comparative judgments, independently of the chosen 𝜂
number of stimuli and 𝜎 imposed by the task.

Fitting methods

Let us first rephrase the problem. We have 𝜂 stimuli, and we want to know their
𝜂 scaled values 𝜓𝑎, as well as 𝜎 of the associated perceptual noise. Although, as
proposed earlier, the perceptual scale will be rescaled in the range [0, 1] in both
physical and perceptual domains, leading to 𝜓0 = 0 and 𝜓𝜂−1 = 1. As a result, we
have 𝜂 − 1 parameters to estimate.

In a second time, we need to determine the number of experimental sets (pairs,
triplets, or quadruplets) we can produce with 𝜂 stimuli. With TS, we just have
to find pairs of different stimuli, which gives 𝜂(𝜂 − 1) pairs. However, if we
experimentally measure 𝑝(m𝑗 > m𝑖), we can compute 𝑝(m𝑖 > m𝑗) = 1 − 𝑝(m𝑗 >
m𝑖). So, measuring both configurations is not necessary. Then, expected pairs
correspond to the well-known combinations without replacement, giving a number
of combinations 𝑇 = (𝜂

2). So, if 𝜂 ≥ 2, the problem is solvable.
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5 Composition perception

Concerning the quadruplet version of MLDS, we have two stimuli ordering con-
straints, 𝑠𝑖 < 𝑠𝑗 and 𝑠𝑘 < 𝑠𝑙. So, overlapping pairs 𝑠𝑖 < 𝑠𝑘 < 𝑠𝑗 < 𝑠𝑙 is
theoretically possible. One stimulus of each pair could also be identical, as in the
triplet version. In practice, these two conditions may be confusing for participants
and introduce uncontrolled bias. Thus, we impose 𝑠𝑖 < 𝑠𝑗 < 𝑠𝑘 < 𝑠𝑙 as in the
original paper17. It limits the number of possible sets of stimuli, but this is not
problematic to make the problem solvable. The second positive aspect is that
quadruplets can again be computed as combinations without replacement, giving
𝑇 = (𝜂

4) quadruplets. The problem is now solvable if 𝜂 ≥ 5. For the triplet case,
we impose 𝑠𝑖 < 𝑠𝑗 < 𝑠𝑘, and the number combinations is 𝑇 = (𝜂

3). If 𝜂 ≥ 4, the
problem is solvable.

We now focus on the MLDS quadruplet version to detail the two implemented
fitting procedures18, i.e. Generalized Linear Model (GLM) and Maximum Likelihood
Estimation (MLE). Adaptation to TS and the triplet MLDS is then straightforward.
We have 𝑇 combinations 𝒙𝑡 = [𝑖𝑡, 𝑗𝑡, 𝑘𝑡, 𝑙𝑡], so that we can build a system of 𝑇
equations like Eq.5.16. For instance, with 𝜂 = 5, 𝑇 = 5, we have:

⎧{{{{
⎨{{{{⎩

𝜓0 − 𝜓1 − 𝜓2 + 𝜓3 = 𝛷−1(𝑝(m2,3 > m0,1))2𝜎
𝜓0 − 𝜓1 − 𝜓2 + 𝜓4 = 𝛷−1(𝑝(m2,4 > m0,1))2𝜎
𝜓0 − 𝜓1 − 𝜓3 + 𝜓4 = 𝛷−1(𝑝(m3,4 > m0,1))2𝜎
𝜓0 − 𝜓2 − 𝜓3 + 𝜓4 = 𝛷−1(𝑝(m3,4 > m0,2))2𝜎
𝜓1 − 𝜓2 − 𝜓3 + 𝜓4 = 𝛷−1(𝑝(m3,4 > m1,2))2𝜎

(5.18)

To simplify the representation, we can rewrite this system with vectors. First,
we define the perceptual representation of our selection of stimuli as 𝝍 =
[𝜓0, … , 𝜓𝑎, … , 𝜓𝜂−1]. Secondly, we can build a matrix 𝑿 of size (𝑇 × 𝜂), where
each value 𝑋𝑡,𝑎 corresponds to the weight of 𝜓𝑎 for this particular 𝒙𝑡 combination.
Applied to our example:

𝑿 =

∣
∣
∣
∣
∣

1 −1 −1 1 0
1 −1 −1 0 1
1 −1 0 −1 1
1 0 −1 −1 1
0 1 −1 −1 1

∣
∣
∣
∣
∣

and 𝑿𝝍 =

∣
∣
∣
∣
∣

𝜓0 − 𝜓1 − 𝜓2 + 𝜓3
𝜓0 − 𝜓1 − 𝜓2 + 𝜓4
𝜓0 − 𝜓1 − 𝜓3 + 𝜓4
𝜓0 − 𝜓2 − 𝜓3 + 𝜓4
𝜓1 − 𝜓2 − 𝜓3 + 𝜓4

∣
∣
∣
∣
∣

(5.19)

Finally, we combine all participant responses as a vector 𝒓 = [𝑝(m𝑘0,𝑙0
> m𝑖0,𝑗0

), ⋯ ,
𝑝(m𝑘𝜂−1,𝑙𝜂−1

> m𝑖𝜂−1,𝑗𝜂−1
)], and rearrange so that:

𝑿 𝝍
2𝜎

= 𝛷−1(𝒓) (5.20)

17Maloney and Yang, 2003.
18With Jonathan Vacher, we have developed a Python package dedicated to TS and MLDS. It includes

improvements described in this section, and we hope to make it open source as soon as possible.
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This system has now the form of a Generalized Linear Model, with 𝛷−1 as a link
function. Defining unknowns as 𝜷 = 𝝍

2𝜎 , they can be solved by least squares. It
consists of iteratively minimizing the following loss function:

ℒ𝐺𝐿𝑀 =
𝑇

∑ (𝑿𝜷 − 𝛷−1(𝒓))2 (5.21)

In practice, we drop the first column of 𝑿 and the first value of 𝜷, because
𝛽0 = 𝜓0

2𝜎 = 0 does not have to be solved. Then, once 𝜷 is known:

𝜎 =
𝜓𝜂−1

2𝛽𝜂−1
= 1

2𝛽𝜂−1
and 𝝍 = 2𝜎𝜷 (5.22)

Despite its simplicity, regular least squares algorithm does not accept additional
fitting constraints. Indeed, we know that 𝜷 > 0, and that 𝛹 is strictly monotonically
increasing. Therefore, if stimuli are ordered, we should have 𝜓𝑎 < 𝜓𝑎+1, i.e.
𝛽𝑎+1 − 𝛽𝑎 > 0. To take advantage of these constraints, we use the SLSQP
algorithm19, which accepts inequalities.

Another important implementation detail is about 𝛷−1. This function, also called
probit is going to infinity in 0 and 1 (𝛷−1(0) → −∞ and 𝛷−1(1) → ∞). It causes
numerical problem, so it is customary to clip participant responses by a small
amount 𝛼. By default, we set 𝛼 = 10−16, but we found that this value has a huge
impact on the fitting accuracy, especially for 𝜎. We do not have good explanations
for this phenomenon, and it should be addressed in future works. Nonetheless, we
provide a simulation in Fig.5.11. Simulation details are chosen to be as close as
possible from our experimental setup (see Footnote.27). It appears that 𝛼 = 10−4

gives the lowest error on 𝜎 and a good accuracy for 𝝍. This 𝛼 value is therefore far
from a machine precision limitation value. It is closer to a lapse rate, referring in
psychophysics to the probability of unintentional responses due to some inattention
of the participants, or some noise in their motor actions when pressing response
buttons. Then, this lapse rate acts as a ceiling performance for supra-threshold
choices20.

In Fig.5.11, we also remark that MLE (dotted lines) is better GLM for both
optimizations of 𝝍 and 𝜎. To describe the MLE algorithm, let us recall that
to estimate 𝑝(m𝑘𝑡,𝑙𝑡

> m𝑖𝑡,𝑗𝑡
), we average multiple binary responses 𝑏𝑡 from

participants, so that 𝑝(m𝑘𝑡,𝑙𝑡
> m𝑖𝑡,𝑗𝑡

) = 1
𝑈 ∑𝑈

𝑢=1 𝑏𝑡,𝑢, with 𝑈 the number of
repetitions. Then, we can build a matrix 𝑩 of size (𝑇 × 𝑈) as 𝒓 = 1

𝑈 ∑𝑈 𝑩. As a
result, the MLE minimization function is basically the negative log-likelihood of a
Bernoulli random variable:
19Sequential Least SQuares Programming (SLSQP), developed by Kraft, 1988 is conveniently available

in Scipy.
20Even if not elaborated to get rid of the 𝛼 issue, an alternative experimental design proposed by Boschman,

2001 asks participants to directly operate a categorical rating, corresponding to 𝛷−1(𝑝(m𝑗 > m𝑖). It
may be suitable with very specific stimuli, but repeated binary selections is usually easier for participants
than having an abstract categorical response scale such as: much less, less, more, much more
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a b

Figure 5.11: Fitting methods comparison for 𝝍 (panel a) and 𝜎 (panel b). It is based on simulations with
𝜏 = 1 (see Footnote.27 for other simulation details). MLE errors are shown with dotted
lines. GLM errors are plotted for different 𝛼 values, that clip participant responses before
the application of 𝛷−1 (solid lines).

ℒ𝑀𝐿𝐸 = − 1
𝑈

𝑇
∑

𝑈
∑ 𝗅𝗈𝗀 𝛷(𝑿𝜷)𝑩(1 − 𝛷(𝑿𝜷))1−𝑩

= − 1
𝑈

𝑇
∑

𝑈
∑ (𝑩 𝗅𝗈𝗀(𝛷(𝑿𝜷)) + (1 − 𝑩) 𝗅𝗈𝗀(1 − 𝛷(𝑿𝜷)))

= −
𝑇

∑ ( 𝗅𝗈𝗀(𝛷(𝑿𝜷)) 1
𝑈

𝑈
∑ 𝑩 + 𝗅𝗈𝗀(1 − 𝛷(𝑿𝜷)) 1

𝑈

𝑈
∑(1 − 𝑩))

= −
𝑇

∑ (𝒓 𝗅𝗈𝗀(𝛷(𝑿𝜷)) + (1 − 𝒓) 𝗅𝗈𝗀(1 − 𝛷(𝑿𝜷)))

(5.23)

with 𝑈 introduced as a dividing constant to simplify notations. In practice, we also
drop the first column of 𝑿 and the first value of 𝜷, because 𝛽0 = 0. SLSQP is
used as the minimizing algorithm with similar constraints as for GLM. Concerning
outputs 𝝍 and 𝜎, Eq.5.22 is still valid to extract them from 𝜷. Finally, MLE
requires 𝜷 to be initialized. So, 𝜷𝑖𝑛𝑖𝑡 is chosen to be a linear progression in the
range [0, 𝜂 − 1].21

GLM should be theoretically preferred as it provides an easier problem to solve
(linear). It is also guaranteed to converge on a single solution, compared to MLE
that can fail during minimization. However, failures did not happen on our data,
and rarely occurred on simulations. In addition, the 𝛼 issue seems to make GLM
less accurate. We have therefore chosen MLE in all the following results.

TF vs MLDS

We have seen that the sensory model and fitting procedures behind TS and MLDS
are similar. In the specific case of an objective perceptual ordering of stimuli, both
21See Subsection.5.2.Combinations optimization for more details on this choice.
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methods could even be used indifferently. However, TS and MLDS have usually
been employed in different experimental setups, letting their claimed advantages
and limitations wiping out common features with a certain confusion.

MLDS was primarily developed to enable experiments for which an objective
perceptual ordering of stimuli is inaccessible to participants. The counterpart
is the requirement of a physical metric to pre-order the stimuli, even if this
metric is meaningless to the participants. So, MLDS has been mostly employed
in experiments conducted on synthetic stimuli, where appropriate sets can be
freely generated. They are generally constant, but between sessions, it would be
possible to adapt the number of stimuli for a given physical range, and optimally
fit observers’ performances and thresholds. By opposition, TS has been associated
with uncontrolled stimuli. For instance, with pre-existing, natural or ready-made
stimuli, it may be difficult to measure their corresponding value along the chosen
physical metric. For this reason, a study scaling the translucency of ocean waves in
paintings used TS instead of MLDS22. In this situation, there is no physical metric
to order stimuli, but participants do have an idea of what is more translucent23.
With this picture in mind, let us now review MLDS claims against TS, as formulated
by its authors.

TS have three major drawbacks. First, the scale depends crucially on the
assumed distribution of judgment errors (it is not robust) while MLDS is
remarkably robust […]. Second, stimuli must be spaced closely enough so
that the observer's judgments will frequently be inconsistent. This typically
means that many closely-spaced stimuli must be scaled, and the number
of trials needed to estimate the scale is much greater than in MLDS. The
third drawback is the most serious. It is not obvious what the TS measures,
at least not without further assumptions about how JND add up to produce
perceptual differences. TheMLDS scale based onquadruples is immediately
interpretable in terms of perceived differences in interval lengths since that
is exactly what the observer is judging.24

First, MLDS is supposed to be more reliable than TS, because it would be less
dependent on the real distribution of the perceptual noise, if deviating from nor-
mality. However, both methods are grounded on the same assumptions concerning
the sensory model. Ironically, we have shown that MLDS presents a theoretical
issue of non-normality (see Fig.5.10), from which TS does not suffer. On the
other hand, MLDS is a summation of 4 different sources of noise while TS only
2. By the central limit theorem, it is indicating a higher likelihood of normality in
favor of MLDS, but is this significant? We believe, that except the higher number
22Wijntjes et al., 2020.
23This scenario is addressed in our Python toolbox. We use the fitting procedures described in Subsec-

tion.5.2.Fitting methods, and just remove the constraints on 𝜷 positivity and monotonicity. For MLE,
𝜷0 is initialized to 𝟎, and for GLM, SLSQP is replaced by a simple least squares. Finally, despite
the unknown ordering of 𝛽 values, we still consider 𝛽0 = 0, that it is not optimized. We finally just
add an extra step before the computation of 𝝍 and 𝜎 from 𝜷, i.e. 𝜷 elements are reordered, and we
subtract the minimal first value (which may be negative).

24Knoblauch and Maloney, 2008.

207



5 Composition perception

of possible combinations allowed by MLDS, there is no strong justification making
it more robust than TS.

The second comment is targeted toward the supposed limitation of TS for around-
threshold pairs of stimuli. This observation comes from the fact that in the
unordered stimuli scenario (stimuli picked in the wild), all possible pairs must be
evaluated to obtain a reliable scaling. Then, even most distant stimuli should be
in the participant confusion range, but this scenario is really specific. In a more
general case of ordered stimuli, only neighboring pairs may be evaluated. Being
only locally around-threshold, the complete physical range would then be much
larger. So, the MLDS claim to be the only alternative to explore wider physical
ranges is unfair. A related interrogation is about the supposed supra-threshold
nature of MLDS. It is true that for participants looking at pairs such as (𝑠0, 𝑠5)
and (𝑠10, 𝑠16), 𝑠0 may not be confused with 𝑠5, and (𝑠10, 𝑠16) similarly. Within
pairs, we do have supra-threshold stimuli differences, but participants are judging
difference of difference. In our example this value is still of one step only. On the
contrary, comparing pairs (𝑠0, 𝑠5) and (𝑠6, 𝑠7) would be very easy and therefore
useless for reconstructing the perceptual scale25. Longer distances require a lot of
repetition to be accurate due to the shape of 𝛷−1. Both techniques are therefore
around-threshold because perceptual confusion is driving perceptual scaling in both
cases. Finally, does MLDS really require fewer trials than TS? Without specific
constraints, MLDS combinatorial (𝜂

4), is actually mechanically higher than TS with
(𝜂

2).

The last supposed issue concerning TS is about the interpretation of measured 𝝍.
This is true, but again for the unordered stimuli scenario only. Not knowing physical
positions of stimuli s prevents from plotting any 𝛹 function. For instance, assuming
a lower density of 𝜓 values around 𝜓0 than around 𝜓𝜂−1, may be explained by equally
spaced stimuli and a compressive function 𝛹, e.g. 𝛹 =

√
s, or a linear function

𝛹 = s with an uneven spread of stimuli, denser around 𝑠𝜂−1. Another explanation
for this remark may be about TS conducted without case V assumptions. But
MLDS is only case V in practice, so it would be like comparing different sensory
models.

Combinations optimization

The number of experimental combinations is directly influencing the task duration
for participants. Randomly subsampling combinations has been proposed26, but as
we consider MLDS as an around-threshold method, localized discrimination may
certainly be a more efficient selection strategy.
25In the next subsection, we will further discuss this aspect. We believe that pairs intra-distance must be

also limited to around-threshold differences.
26Maloney and Yang, 2003.
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5.2 Perceptual scaling

Figure 5.12: Theoretical local discriminative probabilities within pairs (gray lines) and between pairs (black
lines) for various 𝜏 (see Definition.1 for details about 𝜏). Probabilities are shown for stimuli
distances, or difference of stimuli distances, respectively expressed in steps by 𝛿𝑎 and 𝛥𝑎.
A linear perceptual scale is assumed.

Supra-threshold situations are generally less demanding for participants as we
are not probing the limit of their perceptual abilities. On the other hand, supra-
threshold tasks are barely informative, and erroneous to some extent. The reason
is practical: they cannot be measured with enough accuracy. Fig.5.12 illustrates
this idea. We assume 𝜂 equally spaced stimuli, a linear perceptual scale, and no
non-normality issue. Then, we can plot discriminative probabilities within pairs
(gray lines) and between pairs (black lines) for various 𝜏 (see Definition.1 for
details about 𝜏). Secondly, these discriminative probabilities are shown for stimuli
distances, or difference of stimuli distances, respectively expressed in step numbers
by 𝛿𝑎 and 𝛥𝑎. For instance, for an MLDS judgment separated by two steps (black
dotted line) with 𝜏 = 1, the expected probability 𝑝(m𝑎+2,𝑎+5 > m𝑎,𝑎+1) ≈ 0.977.
This would require almost 44 repetitions of the same judgment to be accurate,
which is not plausible unless we pool participants.

A solution seems to increase 𝜏, but 𝜎 is a given variable, so a higher 𝜏 implies a
higher number of stimuli, corresponding to more combinations around-threshold,
and a longer task. In addition, we have seen that a higher 𝜏 also increases the
non-normality of the perceptual noise (see Fig.5.10b). A higher 𝜏 is therefore
not the best option. Defining 𝛿 and 𝛥 as the maximum difference and difference
of difference values between combination indices, i.e. 𝛿𝑎 ≤ 𝛿 and 𝛥𝑎 ≤ 𝛥, the
question is then to find the right 𝜏 for a given set of combination constraints. In
Fig.5.13, we plot the simulated squared errors of 𝝍 and 𝜎 fits for two conditions:
(𝛥 = 1, 𝛿 = 2, solid line) and (𝛥 = 2, 𝛿 = 3, dotted line)27.

27 Simulation details: we use the triplet MLDS with the MLE fitting procedure. Squared errors are
averaged across 10 fits of sub-conditions parameterized by 𝜂 ∈ [6, 11, 16, 21, 26] and 𝛹(s) = s𝛾,
with 𝛾 ∈ [ 1

4 , 1
2

√
2 , 1

2 , 1√
2 , 1,

√
2, 2, 2

√
2, 4]. This way, we cover the usual range of stimuli number

and several 𝛹 shapes. We use a high number of repetitions per combination, i.e. 100, giving a good
precision of simulated response. In real experiments, repetitions per participant is at least 10 folds
smaller, but we anticipate the pooling of all participants.
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5 Composition perception

a b

Figure 5.13: Simulation of optimal 𝜏 (see Definition.1 for details about 𝜏) for two conditions (𝛥 = 1, 𝛿 =
2, solid line) and (𝛥 = 2, 𝛿 = 3, dotted line) (see Footnote.27 for simulation details). We
plot squared fitting errors of 𝝍 in panel a and 𝜎 in panel b.

For the first condition, we remark that an acceptable range for 𝜏 is [ 1√
2 ,

√
2], leading

to an optimal 𝜎∗ = 1
2(𝜂−1) . Consequently, from Fig.5.12 we notice that every pair

will be supra-threshold (for 𝜏 = 1, 𝑝(𝛿1) ≈ 0.921, 𝑝(𝛿2) ≈ 0.998). In the precedent
section, we arbitrarily defined a possible comparative judgment range, from the
JND to an upper limit set to 99.9% of the psychometric function. So, pairs with
a 2 steps difference are still inside the confusion range (with the assumption of a
linear perceptual scale). We repeat that when participants evaluate the distance
between stimuli, or their degree of similarity, stimuli still have to present common
features, a tiny possibility for confusion. For instance, in the second scenario, with
𝜏 = 1, combinations with pairs separated by 3 steps may be useless, if not harmful.
Indeed, the optimal 𝜏 value is shifted toward the right, around

√
2 (see Fig.5.13a).

From Fig.5.12, it seems to correspond to 𝑝(𝛥1) at threshold and 𝑝(𝛿3) < 0.999,
which is in line with our heuristic of possible comparative judgment range.

With 𝜂 = 16, the number of evaluated combinations without constraint is 560.
Thanks to our optimization scheme, we dramatically reduce this figure to 52 and
108 combinations for scenarios 1 and 2 respectively. This is about ten folds lower,
while keeping reasonable fitting errors in both cases. We have therefore selected
the first alternative (𝛥 = 1, 𝛿 = 2) to conduct our experiments.

Then, the optimal 𝜎∗ = 1
2(𝜂−1) justifies the initialization of 𝜷 in MLE, as a linear

progression in the range [0, 𝜂 − 1]. It is basically assuming equally spaced stimuli
perceived through a linear perceptual scale, giving 𝝍𝑖𝑛𝑖𝑡 to be a linear progression
in the range [0, 1], and 𝜷𝑖𝑛𝑖𝑡 = 𝝍𝑖𝑛𝑖𝑡

2𝜎∗ = 𝝍𝑖𝑛𝑖𝑡(𝜂 − 1).

Finally, experimenters may decide very different combination constraints depending
on the tasks and their needs. So, to be as generic as possible, we should determine
acceptable ranges for 𝛥 and 𝛿, that ensure solvable perceptual scales. The TS
case is simple: 𝛿 is logically bounded in the range (1, 𝜂 − 1). For MLDS, we first
want to select a 𝛥, and then limit 𝛿 accordingly. Indeed, 𝛿 boundaries are just
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5.2 Perceptual scaling

𝜂 𝛥 𝛿
TS ≥ 2 — (1, 𝜂 − 1)
MLDS3 ≥ 4 (1, 𝜂 − 3) (2, 𝛥 + 1)
MLDS4 ≥ 5 (1, 𝜂 − 4) (2, 𝛥 + 1)

Figure 5.14: TS and MLDS combination constraints to guarantee solvable perceptual scales.

one over 𝛥 boundaries28. Concerning 𝛥, setting a lower bound to zero would
imply too few combinations in the triplet case (MLDS3), and for small 𝜂 in the
quadruplet case (MLDS4). So, we have set 𝛥 lower bound to 1. The upper bound
is then logically defined. Fig.5.14 summarizes all combination constraints.

Difference scaling with periodic physical spaces

We have shown that measuring all combinations is not necessary, and that it could
even introduce scaling inaccuracy for large supra-threshold judgments, especially
with GLM fits. Then, by reducing measurements to local pairs/combinations,
we can extend MLDS to periodic physical spaces, such as the circular slices of
hypersphere of our compositional latent space. Classical MLDS can already partially
address such periodic variables. For instance, with 𝜙 an angle in the range [0, 2𝜋[,
we would be able to construct the perceptual scale, but there would not be any
combinations across 0 ≡ 2𝜋, e.g. [𝑠𝑖, 𝑠𝑗, 𝑠𝑘, 𝑠𝑙] = [1.8𝜋, 1.9𝜋, 0, 0.1𝜋]. The lack of
these combinations could then possibly bias the perceptual scale around 0 ≡ 2𝜋.
As a result, we introduce a new MLDS variant, the Periodic MLDS (PMLDS).

In MLDS, 𝜂 characterizes a set of stimuli like [𝑠0, ⋯ , 𝑠𝜂−1], but in PMLDS, we
have 𝑠𝜂−1 ≡ 𝑠0. Therefore, 𝜂 is not the number of unique stimuli anymore, being
𝜂 − 1. However, we will keep the original definition of 𝜂 for simplicity, as 𝑠𝜂−1 and
𝜓𝜂−1 are useful to plot the perceptual scale physical and psychological bounds. In
addition, even if (𝜓𝜂−1 ≡ 𝜓0 𝗆𝗈𝖽 1), implying (𝛽𝜂−1 ≡ 𝛽0 𝗆𝗈𝖽 2𝜎), 𝛽𝜂−1 is still
required to estimate 𝜎 = 1

2𝛽𝜂−1
(see Eq.5.22). This way, the number of unknowns

also remains 𝜂 − 1.

The intended periodicity implies tighter constraints on 𝛿 and 𝛥 to limit combinations
to more local pairs. With 𝜆 the maximum distance between indices 𝑗 and 𝑘 for
PMLDS4, and 𝜆 = 0 for PMLDS3, we can set up the following rule:

(𝜂 − 1) − (2𝛿 + 𝜆) ≥ 𝛿 + 1
3𝛿 ≤ 𝜂 − 2 − 𝜆

𝛿 ≤ ⌊𝜂 − 2 − 𝜆
3

⌋
(5.24)

28In our toolbox, when 𝛿 is undefined by the user, 𝛿 is set by default to 𝛥 + 1.
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𝜂 𝛥 𝛿
PMLDS3 ≥ 8 (1, ⌊ 𝜂−5

3 ⌋) (2, 𝛥 + 1)
PMLDS4 ≥ 8 + 𝜆 (1, ⌊ 𝜂−5−𝜆

3 ⌋) (2, 𝛥 + 1)

Figure 5.15: PMLDS combination constraints. 𝜆 is the maximum distance between indices 𝑗 and 𝑘 for
PMLDS4.

Fig.5.15 summarizes all new constraints. The priority is still given to the selection
of 𝛥, which has a lower bound of 1. We can then compute the minimal 𝜂 to have
a solvable system with:

⌊𝜂 − 5 − 𝜆
3

⌋ ≥ 1

𝜂 − 5 − 𝜆 ≥ 3
𝜂 ≥ 8 + 𝜆

(5.25)

We remark that 𝜆 excessively drives PMLDS4 constraints. We believe it makes this
alternative almost impractical. In addition, for our experiment on compositions, we
only use the triplet version, which appears more natural and easier to understand
for participants. So, we will now focus on the implementation of PMLDS3 only.

To generate PMLDS3 combinations, the idea is to use the conventional algorithm
for combinations without replacement, but with a virtually larger 𝜂. Then, we just
have to filter combinations where the first index is ≥ 𝜂 − 1, and combinations
violating 𝛥 and 𝛿 constraints. Finally, applying the modulo operator with 𝜂 − 1 on
indices produces the expected set of combinations.

However, we cannot build the useful matrix 𝑿 similarly as for the MLDS. First,
based on combinations indices, we can only construct an 𝑿′ of shape (𝑇 × 𝜂 − 1).
Matrix multiplication is then only possible with a fitting vector 𝜷′ = [𝛽0, ⋯ , 𝛽𝜂−2],
excluding 𝛽𝜂−1. In addition, valid combinations in the PMLDS3 context, such as
[𝑠𝜂−3, 𝑠𝜂−2, 𝑠0] and [𝑠𝜂−3, 𝑠0, 𝑠2], would not produce the right difference values by
computing 𝑿′𝜷′ , because of the ordering violation. As an illustration:

𝛽𝜂−3 − 2𝛽𝜂−2 + 𝛽0 = (𝛽𝜂−3 − 2𝛽𝜂−2 + 𝛽𝜂−1) − 𝛽𝜂−1

𝛽𝜂−3 − 2𝛽0 + 𝛽2 = (𝛽−2 − 2𝛽0 + 𝛽2) + 𝛽𝜂−1
(5.26)

So, for the first combination, the resulting difference would lack one 𝛽𝜂−1, and
in the second case, it would have one extra 𝛽𝜂−1. We should therefore compute
a vector 𝒚 correcting the periodicity, and corresponding to coefficients of 𝛽𝜂−1.
Then, a very smart way to implement this correction is to concatenate 𝒚 with 𝑿′ ,
as the last column of a new matrix 𝑿. Finally, 𝑿𝜷 is working as expected, and it
can be used with the fitting procedures of MLDS described in Subsection.5.2.Fitting
methods. Algorithm.5.1 details the complete method to generate the experimental
combinations and the periodicity correction vector.
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5.3 Interpolation — Experimental results

Algorithm 5.1: PMLDS3 combinations and periodicity correction vector
In: ⋅ 𝜂, the number of unique stimuli + 1 (≥ 8)

⋅ 𝛥, combination indices maximum difference of difference
⋅ 𝛿, combination indices maximum difference

Out: ⋅ 𝑐𝑜𝑚𝑏𝑠, list of combination indices
⋅ 𝑝𝑒𝑟𝑖𝑜𝑑, a periodicity correction vector

𝑐𝑜𝑚𝑏𝑠 ← compute combinations without replacement with (𝜂−1+2𝛿
3 )

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← a binary vector of the length of 𝑐𝑜𝑚𝑏𝑠
for each 𝑠, 𝑐𝑜𝑚𝑏 in 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑐𝑜𝑚𝑏𝑠 do

𝑠 ← 𝑐𝑜𝑚𝑏[0] < 𝜂 − 1
𝑠 ×← | 𝖽𝗂𝖿𝖿(𝖽𝗂𝖿𝖿(𝑐𝑜𝑚𝑏))| ≤ 𝛥
𝑠 ×← ∏ ( 𝖽𝗂𝖿𝖿(𝑐𝑜𝑚𝑏) ≤ 𝛿)

𝑐𝑜𝑚𝑏𝑠 ← 𝑐𝑜𝑚𝑏𝑠[𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛]
𝑝𝑒𝑟𝑖𝑜𝑑 ← a vector of the length of 𝑐𝑜𝑚𝑏𝑠
for each 𝑝, 𝑐𝑜𝑚𝑏 in 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑐𝑜𝑚𝑏𝑠 do

𝑝 ← 𝖽𝗂𝖿𝖿(𝖽𝗂𝖿𝖿(𝑐𝑜𝑚𝑏 ≥ 𝜂 − 1))
𝑐𝑜𝑚𝑏𝑠 ← 𝑐𝑜𝑚𝑏𝑠 𝗆𝗈𝖽 𝜂 − 1
return 𝑐𝑜𝑚𝑏𝑠, 𝑝𝑒𝑟𝑖𝑜𝑑

5.3 Interpolation — Experimental results

We have now the right framework to explore the latent space smoothness, which
is a perceptual characteristic accessible locally. We hypothesized that density
homogeneity in the latent space is essential to the perceptual quality of interpo-
lations in this representation. This aspect of generative model has been often
qualitatively commented, but rarely verified quantitatively. We also remarked that
constant densities can only be found on hyperspheres, with a maximum density at
𝗆𝗈𝖽𝖾(𝜒16). Circular slices of this mode hypersphere will therefore constitute our
first condition. The second condition will be orthogonal, i.e. traveling along the
norm, and should cause significant perceptual distortions because of the density
variations.

Theoretical perceptual scale

We can easily hypothesize the theoretical perceptual scale along a circular slice of
the mode hypersphere. If there is no distortion, the perceptual scale must be linear.
But what happens along the norm? How to compute theoretical perceptual scales
in general? First, we have seen that our sensory model is supposed to uniformize
the uncertainty of our internal representation (see Subsection.5.2.Thurstonian scaling).
Alternatively, we could say that we want our psychological representation to encode
the maximum information about stimuli s. In Subsection.1.2.Structural and functional
complexity, we have quantified information as the entropy of a random variable: the
more unexpected an event is, the more informative about the situation it is. So,
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our sensory model aims at maximizing the entropy of ψ. As ψ is defined over a
bounded space [0, 1] (see Subsection.5.2.Perceptual scaling), we know that ψ will have
maximum entropy if ψ is uniformly distributed. It can be formally written as:

𝐹ψ(ψ) = ∫
ψ

0
𝑝ψ(u)𝑑u = ψ (5.27)

with 𝐹ψ(ψ) the cumulative density function of ψ. Then, we know that ψ = 𝛹(s),
but to relate 𝑝ψ(ψ) and 𝑝s(s), we have to use the formula of change of variables
in a probability density function.

𝑝ψ(ψ) = 𝑝s(𝛹−1(ψ)) ∣ 𝑑
𝑑ψ

𝛹−1(ψ)∣ = 𝑝s(𝛹−1(ψ)) ∣ 1
𝛹 ′(𝛹−1(ψ)

∣ = 𝑝s(𝛹−1(ψ))
𝛹 ′(𝛹−1(ψ))

(5.28)
with 𝛹 a strictly monotonically increasing function, making 𝛹 ′ > 0. Next, we
combine this result with Eq.5.27, so that:

𝐹ψ(ψ) = ∫
ψ

0

𝑝s(𝛹−1(u))
𝛹 ′(𝛹−1(u))

𝑑u = ∫
𝛹−1(ψ)

0
𝑝s(v)𝑑v = 𝐹s(𝛹−1(ψ)) = ψ (5.29)

and,
𝛹 = 𝐹s ⇔ 𝛹 ′ = 𝑝(s) (5.30)

In other words, 𝛹 is the integration of the prior stimuli distribution 𝑝(s).

What does 𝑝(s) represent in our two experimental conditions (namely circle and
norm conditions, with subscripts 𝑐 and 𝑛 for short)? s is a scalar driving the
definition of some latent variables 𝐳s, finally generating compositions 𝐱s through
the decoder 𝑃. Fig.5.16a plots 𝑝(s) distributions for our two conditions. On the
hypersphere, the distribution is uniform, no matter the real trajectory on this
surface. With s𝑐 in the range [0, 1], we have therefore 𝑝(s𝑐) = 1. Concerning
the norm condition, we know that 𝑝(‖𝐳s‖) = 𝜒16. To span a pertinent range of
‖𝐳s‖ values, we set ‖𝐳s‖ ∈ [𝖢𝖣𝖥−1

𝜒16
(0.01), 𝖢𝖣𝖥−1

𝜒16
(0.99)] for s ∈ [0, 1]. So, 𝑝(s𝑛)

is simply a rescaled version of a 𝜒16. Theoretical perceptual scales are then the
corresponding rescaled cumulative density functions, as shown in Fig.5.16b. 𝛹𝑐 is
linear and 𝛹𝑛 appears to be s-shaped.

Stimuli generation

In the following subsection, we will consider unrescaled physical and psychological
spaces and assume a linear perceptual scale, so that we can use original physical
units in both domains. In Subsection.5.1.Threshold estimation, we have estimated
the compositional angular JND as 2∘ for spherical interpolations. For two stimuli
separated by one JND, we can write Eq.5.10 as:
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5.3 Interpolation — Experimental results

a b

Figure 5.16: Theoretical perceptual scale for circle and norm conditions (panel b). Panel a shows 𝑝(s)
prior densities.

𝜓𝑎+1 − 𝜓𝑎 = 𝛷−1(𝑝(m𝑎+1 > m𝑎))𝜎
√

2

𝑠𝑎+1 − 𝑠𝑎 = 𝛷−1(0.75)𝜎
√

2

𝜎 = 𝐽𝑁𝐷
𝛷−1(0.75)

√
2

𝜎 ≈ 2.10

(5.31)

We have also selected MLDS combination constraints 𝛥 = 1, 𝛿 = 2 to shorten
task durations with participants. The optimal ratio between 2𝜎 and the step size
expressed in angle (𝜙) is for 𝜏 = 1 (see Subsection.5.2.Combinations optimization).

𝜏 = 2𝜎
𝜙

= 1 and 𝜙 = 2𝜎 ≈ 4.19∘ (5.32)

In practice, we rounded this value to 𝜙 = 4∘. The next question is how to compute
the number of stimuli 𝜂 for each condition (𝜂 − 1 unique stimuli in the circle
condition). First, concerning the circle condition, a full rotation is 360∘, and
it would basically imply 𝜂 − 1 = 90, which would be too long for a PMLDS3
experiment (360 combinations with the chosen constraints). We need to reduce
this picture, while keeping a 4∘ angular distance between samples. Actually, circular
slices of the mode hypersphere do not have to pass through the center of the
latent space to guarantee that the norm of each stimulus is 𝗆𝗈𝖽𝖾(𝜒16). We can
offset the slicing plane in any orthogonal direction to reduce the circumference
of the resulting circle until we obtain a chosen 𝜂 − 1 number of unique stimuli
separated by 4∘. Fig.5.17 illustrates this strategy. The procedure is therefore to
first sample three 𝒛 defining a 3-d orthogonal subspace, with basis [ ̄𝒛0, ̄𝒛1, ̄𝒛2]
(large empty dots). We generate 𝜂 − 1 equally spaced stimuli by a 360∘ spherical
interpolation according to ̄𝒛1 and ̄𝒛2 with radius 𝗆𝗈𝖽𝖾(𝜒16) (small empty dots).
Then, we just have to rotate each stimulus of an angle 𝛼 toward ̄𝒛0, in order to
obtain final stimuli (black dots). These stimuli 𝒛 finally generate compositions
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z0

z2
z1

z

Figure 5.17: Stimuli generation, circle condition. In the center, we illustrate the procedure to sample a
chosen 𝜂−1 number of unique stimuli 𝒛, of norm ‖𝒛‖ = 𝗆𝗈𝖽𝖾(𝜒16), and uniformly separated
by an angle 𝜙. In the periphery, the experimental set circle 𝑏 is displayed circularly.

through the decoder 𝑃 29. The chord materialized by the thick dotted line is shared
by two angles from different circles (thick black lines). A chord length can be
computed by 2𝑟 𝗌𝗂𝗇( 𝜃

2 ), with 𝑟 the radius, and 𝜃 the angle defining the chord. 𝛼
angle is therefore expressed as follows (𝜙 in radian):

2 𝗌𝗂𝗇(𝛼) 𝗆𝗈𝖽𝖾(𝜒16) 𝗌𝗂𝗇( 𝜋
𝜂 − 1

) = 2 𝗆𝗈𝖽𝖾(𝜒16) 𝗌𝗂𝗇(𝜙
2

)

𝛼 = 𝖺𝗋𝖼𝗌𝗂𝗇 (𝗌𝗂𝗇(𝜙
2

)/ 𝗌𝗂𝗇( 𝜋
𝜂 − 1

))
(5.33)

We are now able to freely choose 𝜂𝑐 −1 = 16, corresponding to 64 combinations.

Concerning the norm condition, distance between stimuli cannot be expressed
in angles. However, we can transpose an angle to a chord length at the chosen
29Lines of generated compositions are slightly stroked for a better visual result. The method will be

detailed in Section.6.2 (Algorithm.6.3), and the chosen stroke profile will be described in Algorithm.6.1.
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radius. Then, we can compute the required number of stimuli 𝜂𝑛 to span selected
‖𝐳s‖ range with:

𝜂𝑛 =
‖𝐳s‖𝑟𝑎𝑛𝑔𝑒

2𝑟 𝗌𝗂𝗇( 𝜙
2 )

+ 1 =
𝖢𝖣𝖥−1

𝜒16
(0.99) − 𝖢𝖣𝖥−1

𝜒16
(0.01)

2 𝗆𝗈𝖽𝖾(𝜒16) 𝗌𝗂𝗇( 𝜙
2 )

+ 1 ≈ 13.01 (5.34)

𝜂𝑛 must be an integer, so we chose 𝜂𝑛 = 13, producing 40 combinations.

Finally, for each condition, we randomly30 sampled 3 locations in the latent space.
Fig.5.18 shows the resulting 6 conditions. The set, denominated circle 𝑏, is also
presented circularly in Fig.5.17.

Online experiment details

With the uncertainty conveyed by the Covid-19 pandemic, we decided to move
our experiment online. It was possible because our study does not require an
extreme control of timings and display hardware. So, data were collected on an
online experimental platform, hosted on my website31. It has been developed by
myself, mainly in Python and JavaScript. These tools require more serious web
development skills compared to toolboxes such as jsPsych32, but the advantage of
such custom platform is to possess a dedicated SQL database. It means that data
recording is not operated in the web browser of the user, but instantly posted to
the website database. There is therefore less possibility of data loss if the user
browser quits unexpectedly for technical reasons, or mishandling of the participant.
In addition, data do not have to be sent by mail at the end of the session, they are
already centralized, structured and secured. Local copies can be done instantly,
and then the analysis is straightforwardly conducted in python. Finally, being able
to build your own platform gives you the full control on task implementations.

Most participants were recruited on Prolific33. We prefiltered participants to be
fluent in English, located in UK/USA, and to have a vision corrected to normal.
Before accessing the experimental platform, participants were asked to specify their
age, as well as their general knowledge of art material. On the final selection (after
attention checks), the age range is from 19 to 60, with a mean at 36 y.o. Reported
art knowledge is mostly little (level 2 on 4, for 10 of the participants). The second
step of the experiment was a calibration of the physical size of displayed elements.
30We actually sampled a larger number of sets, and I personally refined the selection with artistic criterion.
31Experiments are still available on my website: https://plelievre.com/experiments. This online platform

is powered by the Python web development framework Django. It enables the creation of dynamical
content, e.g. user logging and database reading/recording with PostgreSQL. The visual interface
is based on Bootstrap and usual html, css, js web programming languages. Finally, the web app is
deployed with Dokku.

32jsPsych is a JavaScript framework for creating behavioral experiments. Please find more information at:
https://www.jspsych.org

33Please find details on this platform at https://www.prolific.co. Some supplementary participants were
directly recruited in France. Nonetheless, they used the same remote platform as Prolific participants.
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circle a circle b circle cnorm a norm b norm c
Figure 5.18: Experimental stimuli.
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a

b

c

Figure 5.19: Online experiment interface. We present the physical size calibration step (a), the instructions
(b), and the main experiment interface (c).

219
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As shown in Fig.5.19a, we used the credit card procedure. Inspired from jsPsych,
the idea is to manually adjust a frame to fit the size of a real credit card held on
the screen. This way, we can guarantee that stimuli fit a 4cm2 area. Inside each
unit, individual compositions were centered to limit the distraction of drawings
positioning noise. However, they were not rescaled. Otherwise, we would have
disrupted the direct link between compositions and their 𝐳 representation in the
latent space. Next, participants were presented the following instructions:

In this experiment youwill have to selectmost similar pairs of compositions.
Based on quick perception, some choices could be difficult. There is no ab-
solute truth, so just try your best.
You will be shown three drawings: a reference drawing at the top, and two
test drawings immediately below. Your task is to choose which of the two
test drawings appears more similar to the reference drawing, by pressing
Left or Right. The three drawings stay on the screen for a few seconds, af-
ter which they disappear. You should respond before the drawings disap-
pear. You still have another few seconds to answer before a new triplet is
displayed, but the task will be longer and more tiring. We advise you to try
to keep up the pace, though you can take very short pauses when needed by
not responding and letting triplets being updated.

We find it useful to explain/warn participants that there were no true responses.
During preliminary trials, some participants almost took twice as long as expected.
They reported that they were actually waiting for stimuli to reappear, not tomistake.
Instructions were accompanied by the illustration replicated in Fig.5.19b.

Main task interface is displayed in Fig.5.19c. We used the triplet versions of
MLDS and PMLDS, where the reference stimulus 𝑠𝑗 is the stimulus shared by
both evaluated pairs (𝑠𝑖, 𝑠𝑗) and (𝑠𝑗, 𝑠𝑘). In total, one block corresponds to 312
combinations (3x(c:64 + n:40)). Each block was then repeated 4 times. This figure
sounds small, but with such complex stimuli, our memory seems to be more involved
than with elementary stimuli. Preliminary experiments showed too stereotyped
responses with more repetitions. In practice, when observers remembered a
triplet, or the rule that triggered their initial judgment, they reported preferring to
stay coherent with themselves, rather than judging these stimuli again without
a priori. It was certainly biasing the confusion rate under scrutiny. Beyond the
number of repetitions, it is also important to intertwine these repetitions. Of
course, combinations and stimuli left/right positions were also fully randomized.
Concerning timings, each triplet was at most visible during 2.5sec. Participants
could respond before the triplet disappears and up to 2.5sec after. A new triplet
was triggered directly after a response or after the timeout, but in this case the
current combination was put back in the to-do pile. The whole experiment was
around 45min long. Participants could make short pauses whenever needed by not
responding, and letting triplets being updated, but they were also invited to have
breaks between block repetitions. A bar at the top of the interface could finally
help them to monitor their progression.
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At the beginning of each block, we also added attentional checks, as advised for
online experiments. We need to be able to filter out participants poorly involving
in the task. So, we introduced 4 triplets with simple vertical and horizontal lines.
Answers could be made without ambiguity, but the pace of the task was making
some observers surprised by the change in the stimuli nature34, and possibly failing
attentional checks on a few trials. They had obviously non-random behaviors in
alignment with other participants, but still could fail on these simple stimuli. So,
we have set a tolerance on the attentional check to be over 75% correct. In our
case, there were 16 attentional trials throughout the task, so they could fail up
to 3 times. This way, we excluded 6 participants, obviously randomly responding.
The following results are thus based on 15 participants.

Results

In Fig.5.20a-c and Fig.5.21a-c, we first look at inter-participant variability35. In
these figures, gray lines show individual perceptual scales. They are ordered by
increasing 𝜓 values of the middle stimulus of each series. We remark that the
general agreement on locations of scaling distortions is surprisingly good. We
mean that the local changes in the perceptual scale are mostly shared even if the
magnitude between inflection points may vary. As a result, we obtain a mean
observer with a relatively small variance (dark lines on the right, with ±1 SD
within gray areas). Despite the small number of repetitions (4), a simple averaging
already captures the general trend of perceptual scales. Secondly, we observe that
the circle condition demonstrates a tighter variance than the norm condition.

However, a greater number of repetitions per combination is recommended for
more accurate perceptual scales. As suggested by Thurstone in its case II of
the law of comparative judgments36, we decided to pool participants. This way,
we believe to capture more objective features, the common ground that drives
artistic perception beyond personal judgments. These pooled fits are displayed in
Fig.5.20d and Fig.5.21d. Results are very similar to the mean observer. We also
estimate the goodness of the fit by bootstrapping pooled probabilities obtained for
each combination. The 99% confidence intervals are materialized by gray areas.

The theoretical perceptual scales, defined at the beginning of this section, are
reproduced with dotted lines. Initial projections appear quite far from actual
perceptual scales. In both conditions, there are significant distortions. Nonetheless,
along the norm, the general shape is compressive toward the end, i.e. bow shaped
over the linear reference, even if the initial theoretical inflection in the opposite
direction is missing. The circle condition also presents several distortions, but
34As reported by participants on preliminary recordings.
35The following results have been presented in a poster at VSS2022 in Florida (Lelièvre & Neri, 2022a)

and in a talk at VSAC2022 in Amsterdam (Lelièvre & Neri, 2022b).
36Thurstone, 1927a.
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a

b

c

d

Figure 5.20: Perceptual scaling results for the norm condition. Panels a, b and c show inter-participant
variability per sub-condition. Individual perceptual scales are plotted in light gray, and the
mean observer ±1 SD, in dark gray. Panel d displays the perceptual scales of all participants
pooled together and the 99% bootstrapped confidence intervals of the fits (dark gray lines
and areas). Theoretical perceptual scale is materialized by black dotted lines.
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a

b

c

d

Figure 5.21: Perceptual scaling results for the circle condition. Panels a, b and c show inter-participant
variability per sub-condition. Individual perceptual scales are plotted in light gray, and the
mean observer ±1 SD, in dark gray. Panel d displays the perceptual scales of all participants
pooled together and the 99% bootstrapped confidence intervals of the fits (dark gray lines
and areas). Theoretical perceptual scale is materialized by black dotted lines.
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norm a norm b norm c
Figure 5.22: Perceptual distortions (left) and resampled inverted scales (right) for the norm condition.
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circle a circle b circle c
Figure 5.23: Perceptual distortions (left) and resampled inverted scales (right) for the circle condition.
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they seem to evolve around the expected linear scale. Actually, plotted functions
are periodic and could be represented with different initial points. We could then
find similar scales distorted on the opposite side of the dotted line, or optimally
centered. In addition, circle perceptual scales confirm tighter confidence intervals
than the norm condition. It seems that perceptual distortions are more easily
identifiable in higher density regions of the latent space.

Nevertheless, observed distortions are more intense than expected. Our constraints
on the model at training, designed to guarantee the homogeneity of the latent
space, and its compliance to the prior, seem to partially fail. Once again, we repeat
that the relatively small size of our dataset is unfavorable to achieve this goal. But
is this an optimization limitation only, or a more serious discrepancy between model
latent representation of compositions and human internal representation? Does
the model captures regularities different from those essential to our perception?
It is maybe too early to take a strong position. Indeed, we have seen that the
model extract several types of information and measurements beyond 𝐳 locations
in the latent space (see Chapter.4.3). We should find a way to exploit encoding
and decoding uncertainties and this opportunity will be explored in the next
subsection.

Left vertical lines of Fig.5.22 and Fig.5.23 show a direct interpretation of distortions
measured with perceptual scaling. Stronger derivatives on 𝛹 present in Fig.5.20d
and Fig.5.21d produce dilation of distances between stimuli, while smaller slopes
imply contractions. Based on this simple illustration, it is generally possible to
agree on discovered warpings. Compositional similarity judgments seem therefore
to rely on quite objective mechanisms.

Measuring distortions also provide the necessary information to correct them.
Inverted perceptual scales 𝛹−1 can be easily computed. However, with the objective
to smoothen interpolations, we need to enforce a 𝐶1 continuity around measured
stimuli/representation couples (𝜓, 𝑠). To do so, a linear interpolation between
values is followed by a Gaussian filtering, i.e. a convolution with a Gaussian kernel.
For the circle condition, we especially take care of the periodicity to obtain the right
derivatives at 𝑠0 ≡ 𝑠𝜂−1. Results of this procedure are displayed on the vertical
lines on the right of each condition in Fig.5.22 and Fig.5.23. The granularity of the
presented resampled sequences is limited for legibility, but corrected interpolations
at higher frame rates is possible to generate smooth animations. Indeed, beyond
scientific usages, the MLDS framework will become an important material for
artistic explorations (see Chapter.6).

Let us now investigate fitted 𝜎 values. In both norm and circle conditions, step
sizes have been set to 4∘. But rescaled with different 𝜂 number of stimuli, fitted
𝜎 are not directly comparable anymore. This is one of the reason we introduced
𝜏 = 2𝜎(𝜂−1) in the previous section (see Definition.1). Therefore, Fig.5.24 plots 𝜏
values for the pooled participant, and the associated 99% bootstrapped confidence
intervals for all conditions. Confidence intervals are large, so observed relative
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Figure 5.24: Fitted perceptual noise standard deviation of all participants pooled together, and expressed
as 𝜏 (see Definition.1 for details about 𝜏). The 99% bootstrapped confidence intervals of
the fits is indicated in gray.

differences may not be significant. However, norm 𝑏, which is sampled along a
norm passing through the center of circle 𝑏, presents coherent 𝜏 values. Relative 𝜏
may be therefore interpreted as compression/dilation from the center of the latent
space, and to some extent reflect lower frequency distortions of the latent space,
close to what we intended to measure in Subsection.5.1.Multidimensional scaling, and
Subsection.5.1.Isomap. At the scale of an interpolation, with a bounded stimuli
range, smaller is 𝜏, smaller is the confusion, and higher must be the perceptual
amplitude of changes. In other words, relative 𝜏 values give an idea of the rate of
changes, the speed, of perceived interpolations. Smaller is 𝜏 and quicker, more
intense is the interpolation.

This observation may be related to the notion of NDL (Number of Discriminative
Levels) introduced with TS on unordered stimuli37. For the authors, the measured
perceptual range can be interpreted in terms of number of JND, rendering NDL
some sort of absolute psychological unit. However, as we said multiple times,
𝜎 is only relevant in the psychological space, unless 𝛹 is fully characterized. In
the specific case of stimuli with unknown positions in the physical space, 𝛹 is
necessarily undetermined. At best, we can only assume it linear to transpose JND
in the psychological space. For MLDS with rescaled metrics, we could write38:

𝑁𝐷𝐿 = 1
𝐽𝑁𝐷

= 1
2𝜎𝛷−1(0.75)

(5.35)

Nonetheless, the NDL definition is theoretically confusing. When controlled stimuli
are available, we think that 𝜏 is a more straightforward comparative indicator.

A second remark concerns confidences intervals. They are tighter for the circle
condition, as it was the case for the optimization of 𝛹. We believe it emphasizes
the importance of sampling higher density regions of the latent space to produce
compositions conveying more reliable and distinctive features.
37Wijntjes et al., 2020.
38In the original paper, the authors use an 84% JND, leading to 𝛷−1(0.84) = 1.
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Figure 5.25: The distribution of response probabilities is plotted for all participants and conditions pooled
together (black line). We compare this distribution with simulations for different 𝜏 and a
similar number of repetitions, i.e. 4 (gray lines). A linear perceptual scale is assumed for
these simulations.

We should also comment the general level of 𝜏, which is somewhere between
√

2
and 2. Let us round it to 𝜏 = 2. This is over the optimal range [ 1√

2 ,
√

2] found by
simulation (see Fig.5.13a). As result, we should consider adjusting the number
of stimuli. We do not change the physical range of stimuli, and 𝜎 remains fixed.
So, to obtain 𝜏 = 1, we need a step size twice longer, i.e. 𝜂′ = 𝜂−1

2 + 1. It
would also mean that our estimation of the compositional angular JND of a simple
comparative judgment would rather be around 4∘. We believe that this figure
is over-estimated. If we really had 𝜏 = 2, the task would be quite challenging,
with more responses closer to chance (see Fig.5.12). To verify this supposition,
we simulate in Fig.5.25 the distribution of response probabilities for different 𝜏,
and a limited number of repetitions, i.e. 4, as in the real experiment (gray lines).
We assume a linear perceptual scale. Then, we pool response probabilities of all
participants and conditions (black line). The result is barely flat39 and corresponds
to a value of 𝜏 closer to 𝜏 = 1√

2 , in the opposite direction from the direct estimation
from fitted 𝜎. This second estimation may be taken with caution too, as our
experiment deals with complex 𝛹 functions, and variable participant behaviors.
Looking back at Fig.5.13b, we observe that 𝜎 fitting error is higher for higher 𝜏.
Our hypothesis is thus that the estimation of 𝜏 suffers from an error amplification
as soon as 𝜏 > 1. In summary, our 𝜏 is probably slightly above 1, but much smaller
than 2. The step size optimization, and the associated verification procedures, are
still open questions which would require further investigations and simulations to
evolve from heuristics to proper methods. A good start for future works would
be to address simpler and well known stimuli, already validated with traditional
methods such as 2AFC for psychometric functions extraction.

39The distribution is actually slightly higher toward 1. This can be easily explained by the average nature
of the fitted perceptual scaling functions 𝛹. Most of them are bowed over the linear function, meaning
that right pairs (𝑠𝑗, 𝑠𝑘) are usually more similar than left pairs (𝑠𝑖, 𝑠𝑗), biasing 𝑝(m𝑗,𝑘 < m𝑖,𝑗)
toward 1. (Note that our convention, more similar, is the opposite to the canonical MLDS definition
in Eq.5.17.)
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Perceptual scale prediction from Fisher information

We have seen how to measure and correct distortions in the latent space. This
procedure is simple and well suited for an artistic use, but it is still too long and
expensive to be applicable at a larger scale, i.e. to characterize the whole latent
space. In addition, at each model iteration, the experimental work would have to
be done again. This is actually a reason why we collected 15 participants only. This
figure is sufficient, knowing that it constitutes a proof of concept, a verification
circumstantial to a specific model state. As a result, we should find some ways to
predict perceptual distortions from information contained in the model itself. We
could then automatically improve interpolations, and even use this prediction tool
at an earlier stage during training, in the form of a regularizer. The following work
is therefore essential, promising, but also really preliminary. Initial insights on the
method should be credited to our colleague Jonathan Vacher. We would like to
warmly thank him for sharing its mathematical development on Fisher information
for sensory models40.

Fisher information is a method to quantify the amount of information that a
random variable conveys about a parameter upon which its distribution depends.
Transposed to our sensory system, Fisher information may be interesting to
estimate how much information a measurement m carries about its triggering
stimulus 𝑠. Formally, Fisher information ℐ is expressed as the variance of the score
of a distribution 𝑝(m|𝑠):

ℐ(𝑠) = 𝔼m∼𝑝(m|𝑠) [( 𝜕
𝜕𝑠

𝗅𝗈𝗀(𝑝(𝑚|𝑠)))
2
] (5.36)

Remembering that ψ is deterministically defined by ψ = 𝛹(s), we can write:

𝑝(m|𝑠) = 𝑝(m|𝛹(𝑠))
𝗅𝗈𝗀(𝑝(m|𝑠)) = 𝗅𝗈𝗀(𝑝(m|𝛹(𝑠)))

𝜕
𝜕𝑠

𝗅𝗈𝗀(𝑝(m|𝑠)) = 𝛹 ′(𝑠) 𝜕
𝜕𝑠

𝗅𝗈𝗀(𝑝(m|𝛹(𝑠)))

𝔼m∼𝑝(m|𝑠) [( 𝜕
𝜕𝑠

𝗅𝗈𝗀(𝑝(𝑚|𝑠)))
2
] = 𝛹 ′(𝑠)

2
𝔼m∼𝑝(m|𝑠) [( 𝜕

𝜕𝑠
𝗅𝗈𝗀(𝑝(𝑚|𝛹(𝑠))))

2
]

ℐ(𝑠) = 𝛹 ′(𝑠)
2
ℐ(𝛹(𝑠))

(5.37)
In Subsection.5.2.Thurstonian scaling, we have seen that assuming Thurstonian case V
makes 𝛹 derivatives tuning our sensitivity to physical stimuli in order to uniformize
the uncertainty of our internal representation. In Section.1.2, we have defined
information as the amount of uncertainty raised by the observation of a particular
40Publications on this theoretical work, associated proofs and experimental demonstrations are ongoing.
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state of a random variable. In other words, our sensory model aims at keeping a
constant amount of information about stimuli in our representation, no matter
the stimulus, i.e. making ℐ(𝛹(s)) constant for all s. This condition is fulfilled, if
and only if:

𝛹(s) ≡ ∫
s

0
√ℐ(𝑢)𝑑𝑢 (5.38)

Perceptual scale can therefore be predicted from the Fisher information computed
on stimuli. The relation is only an equivalence up to a linear transformation, because
of the integration and the rescaling of 𝛹 in the range [0, 1], set by convention.

In order to predict perceptual scales from our composition model, we need to find
some substitutes for 𝑝(m|𝑠). A stimulus 𝑠 primarily drives the definition of a latent
variable 𝒛𝑠, deterministically decoded as a composition 𝒙𝑠. m is the distribution of
the psychological representation given 𝑠, so it corresponds almost straightforwardly
to the encoding distribution by 𝑄 of 𝐳 knowing 𝒙𝑠, i.e. 𝑞(𝐳|𝒙𝑠), which can be
rewritten as 𝑞(𝐳|𝒛𝑠). We are actually using the model with inverted encoder and
decoder, as a decoder-encoder. In summary, we select a stimulus 𝑠 producing a
latent variable 𝒛𝑠, decoded into a 𝒙𝑠 and finally re-encoded in the latent space
as a random variable with some distribution 𝑞(𝐳|𝒛𝑠), being a multivariate normal
distribution. We call this version, the encoder version.

A decoder version is also possible. We have just said that decoder 𝑃 is usually used
deterministically to generate compositions 𝒙𝑠 from any 𝒛𝑠. However, in Section.4.3,
we have shown that the model captures uncertainty of stroke positions and shapes
at each time step (see specifically Fig.4.31c,d). Uncertainty in 𝑃 is therefore
the uncertainty to produce a physical representation form an internal variable.
From this perspective, it seems fundamentally in opposition with 𝑝(m|𝑠). Indeed,
we believe that if 𝑃 is uncertain in producing an 𝒙 form a 𝒛, it is because 𝒛 is
usually poorly determined by the encoder 𝑄. Then, 𝑝(𝐱|𝒛𝑠) is probably echoing
the targeted distribution 𝑝(m|𝑠). On practical concerns, 𝑝(𝐱|𝒛𝑠) is a very complex
combination of different components. Decoder output is a sequence of 𝑡 instants
of the form 𝐱𝑡 = [𝐩𝑡, 𝐬𝑡, β𝑡] (see Section.3.3 for details). So, in order to compute
its associated Fisher information, we need to simplify 𝑝(𝐱|𝒛𝑠). The main idea is
to concatenate distribution parameters (i.e. 𝝁 and 𝝈) of strokes initial position
𝐩𝑡 and shape 𝐬𝑡, since they are both multivariate normal random variables. In a
second time, we concatenate parameters along 𝑡 to obtain a unique, but highly
dimensional, multivariate normal random variables. Nonetheless, we should consider
pen-down strokes only, i.e. when β𝑡 = 1. But 𝑝(𝐱|𝒛𝑠) must be differentiable in
𝑠. Removing pen-up entries would produce final random variables of different
dimensionalities for each interpolation step, making them impractical to compute
the Fisher information. We could nullify distribution parameters when β𝑡 = 0, but
differentiation would be erroneous when a stroke appears or disappears in the series
of compositions. To address this issue, we have decided to only include strokes
that are always visible across the whole interpolation, and discard the others.
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We have now two alternatives to compute the Fisher information from the model.
Luckily, in both case, we have distributions of the form 𝒩(𝝁(𝑠), 𝜮(𝑠)), of which
the Fisher information has a closed form given by:

ℐ(𝑠) = 𝜕𝝁(𝑠)⊤

𝜕𝑠
𝜮−1(𝑠)𝜕𝝁(𝑠)

𝜕𝑠
+ 1

2
𝖳𝗋 (𝜮−1(𝑠)𝜕𝜮(𝑠)

𝜕𝑠
𝜮−1(𝑠)𝜕𝜮(𝑠)

𝜕𝑠
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In our case, all components of the studied multivariate normal random variable are
supposed independent, so that 𝜮(𝑠) = 𝖽𝗂𝖺𝗀(𝝈2(𝑠)). Then:
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For practical reasons, especially tasks duration with participants, we have restricted
perceptual scaling experiments to a subset of stimuli per interpolation. However,
it is completely possible to infinitely sample interpolation trajectories. In Fig.5.26,
we therefore present perceptual scales predicted from Fisher information with a
32-fold stimuli granularity. The encoder version is plotted with dotted lines and
the decoder version with solid lines.

The first remark is that the decoder version produces surprisingly good results. It
is not capturing all ground truth distortions, but the general trend is present, as
well as non-trivial local inflections. On the contrary, the encoder version is more
irregular in matching pooled participants. We only find an improvement compared
to the decoder version for circle 𝑐. Otherwise, there are serious spurious artifacts.
Our hypothesis is that there is a re-mapping issue. 𝒛𝑠, deterministically decoded
to 𝒙𝑠, should be mainly re-encoded around 𝒛𝑠, but it is not guaranteed. It should
be an inherent characteristic of the model, but this feedback loop is not enforced
at training, and seems to suffer from serious flaws. For instance, we think that
the large jump around 0.2 in norm 𝑏 is typically a re-encoding issue, possibly due
to the apparition of a small stroke (see drawings 4 and 5 from the top of norm 𝑏
in Fig.5.18). Implementation of a re-encoding regularizer could be investigated in
future works. Naturally, this problem is absent from the decoder version, making it
certainly more reliable. Nonetheless, there is room for improvements, especially in
the computation of the Fisher information on series of compositions with changing
stroke numbers. Discrepancies between predictions and ground truths is certainly
contained in the discarded tailing small strokes. In addition, necessary derivative
along 𝑠 are for now implemented by a simple neighboring differentiation. We could
investigate more accurate computations. In summary, perceptual scale prediction
is possible from the Fisher information based on decoder output parameters.
Secondly, the development of this procedure as a regularizer, should be placed
among our top priorities for future works.
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5 Composition perception

Figure 5.26: Perceptual scale prediction from Fisher information. The encoder version, using encoder
output parameters, is plotted with a dotted line. The decoder version is presented with a
solid line. These predictions are compared with pooled participants in gray.

Finally, we can formulate an intermediary answer to whether perceptual scale
distortions are real human-model representational discrepancies, or model artifacts.
The presented prediction ability of the model based on secondary information seems
to show that the model captured important compositional regularities, at least
coarsely in alignment with human perception. However, only the next iteration of
the model, with an improved latent space thanks to a Fisher regularizer may reveal
finer grain representational differences, and establish a more definitive answer. The
model and the experimental framework are still in their early stage. They show
some drawbacks, but overall, the presented results make this research definitely
encouraging and promising to study complex stimuli such as artistic composition.
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6 Ink and paper

This last chapter is finally dedicated to the artistic investigation of compositional
models. This exploration aims at developing visual propositions to convey the
expressiveness of the compositional space and communicate the inner dynamics
of generated graphical elements. A first difficulty relates to the transposition
of captured hidden dimensions. I have already indicated the possibility to make
them spatial and temporal, but this chapter is above all the story of a return to
the material space, to the humble ink and paper. The temporal ability of digital
screens is therefore discarded, and dynamics have to be suggested by other means.
In addition, this creative moment is of a completely different nature from the
compositional practice of the initial drawings of my dataset. I cannot simply print
or redraw by hand compositions generated by the model. I prefer to explore more
intensive drawing potentials, only possible with a mechanical pen-plotter. The
chapter is thus the convergence of several types of considerations to be addressed
simultaneously.

However, at the time of writing this manuscript, this practical research is not
finalized yet. Investigations described in previous chapters have monopolized
my time, and certainly too much. The following sections are therefore a work
in progress: not guaranteed to cohere into satisfactory artworks regarding the
objective of communicating my compositional paradigm. Sol LeWitt is somehow
comforting when he writes:

The idea itself, even if not made visual, is as much a work of art as any fin-
ished product.1

Nevertheless, I do not really belong to conceptual art. I am obviously driven by
simpler perceptual objectives, i.e. pictorial composition. Similarly, the long and rich
history of computer art, together with a proximity of tools and/or visual outcomes
can be misleading about my approach. Like in Chapter.1, it will not be the place
for a historical review of art made with computers, but a minima, I should try
to situate my intentions. With the presentation of technical bricks and creation
principles, it could finally compensate the lack of hindsight to provide an extended
discussion about my upcoming artworks.

1LeWitt, 1967.
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6 Ink and paper

6.1 Returning to the material space

Even if I exhibit artworks made of ink on paper, a computer is generating the
drawings anyway, or is at least controlling a mechanical pen-plotter. My work
will therefore be undoubtedly associated with the wide family of computer art.
No matter the exact nature of what is shown, it will be compared to former
approaches and visual propositions. Computer art has already a long history, and
showing something completely new is challenging. In this section, I thus try to
clarify my creative intentions by highlighting steps made aside existing trends, such
as generative art or AI art. In a second time, I detail the reasons for using a
pen-plotter and fundamentally for returning to the material space.

Somewhere in computer art

Situating one’s intention in former practices is not a question specific to computer
art. A computer can ultimately be considered as a tool like any other. Similarly
to oil painting used across a wide range of style and epochs, computers do not
imply a unique type of artistic preoccupation. The following review is not intended
as an exhaustive span of the computer art history, so definitions of the different
movements will be partial, as well as the list of associated protagonists.

Generative art is maybe the broader and oldest category of computer arts. Beyond
the richness of their works, pioneers of the sixties such as Vera Molnàr, Manfred
Mohr or Harold Cohen should be appreciated for the very demonstration that
computers could be used in non-utilitarian contexts. Access to technologies and
development environments were particularly unfavorable. The democratization of
computational units and the accessibility of open-source tools make now generative
art more popular than ever.

Under generative art, I consider any approach relying on parametric algorithms,
where allowed degrees of freedom are disturbed by an additional randomness to
generate the diversity of the final artworks. In other words, precisely controlled
procedures are given the ability to produce uncontrolled results, with the help of
controlled types and amounts of noise.

If we can describe the procedures for expressing an art concept, then we can
code those procedures and work with them arithmetically. The description
of an art concept is essentially an outline of the decision system that governs
the art-making procedures.2

For me, the first intrinsic limitation of the approach, as stated by Roman Verostko,
is a tendency to limit your art expectations to procedure that you can actually
formalize and code. For instance, external randomness will not be able to replicate
2Verostko, 1990.
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6.1 Returning to the material space

the unfathomable regularities you could have expressed freely otherwise, without a
computer. Thus, generative art outlines an artist closer to a mechanical designer,
whose organic creativity is located in the execution uncertainty. On the contrary, I
prefer to see artists as simulators of an internal model, hidden to them, and that
an external source of noise on pre-defined rules can only barely replace the intrinsic
inner stochasticity. To overcome this aspect, generative artists usually produce
large amounts of outputs, and subjectively choose specific outcomes. It therefore
adds perceptual mechanisms, enriching the original coded/intended procedure.

Generative art is also sometimes theorized as an epigenesis. We have already
evoked this idea in Section.1.2. Computer programs are then considered as
simulations of a genetic determinism, where added noises acts as environmental
contributions to the development of the artwork organism. However, I still believe
that implemented randomness can only give the illusion of a structuring effect,
particularly regarding order from order and order from disorder principles of life
organization3. Even if my models, and their associated compositional space and
compositional plane, are indeed probabilistic, the nature of the stochasticity is
extremely different. Generative modeling must not be mistaken with primitive
aspects of generative art. They are somehow antithetical. In generative art, the
noise alters a unique structure, and in generative modeling, the noise initiates a
diversity of different structures, measured and learned beforehand. In generative
modeling, the diversity is already in the model, not in the noise.

However, generative modeling is now at the core of many Artificial Intelligence
powered generative art. The elaboration of the visual vocabulary can be relegated
to the selection of a dataset, and the use of pre-existing deep learning architectures,
which are for now essentially based on the GAN architecture4. Among leading
artists of this trend, we find Mario Klingemann and Robbie Barrat. Despite
undeniable talents to tweak and alter visual results, produced artworks present a
high level of similarity, and especially of glitches. In fact, these artifacts constitutes
a unique style, but to which the chosen datasets do not really contribute. In the
art history, new techniques have always stimulated artists to build new means
of expression. Nevertheless, there is also a risk for intrinsic characteristics of a
technique to be mis-taken for new forms. Sol LeWitt would say:

Some artists confuse new materials with new ideas.5

Novelty is then quickly outdated. I am not saying that current GAN artists fall
in this category, but the use of loosely defined datasets, is somehow blurring the
3For more details, see Atlan, 1972/2006; Schrödinger, 1944/2013
4Generative Adversarial Networks (GANs) have been introduced by I. Goodfellow, 2016; I. J. Goodfellow
et al., 2014. It consists of a generator network trying to produce images similar to inputs from a
dataset, and a discriminator network trying to determine if images presented to it, are true or not, i.e.
from the generator or the dataset. Both networks are trained alternatively, so that each network task
becomes more difficult as the adversarial game progresses.

5LeWitt, 1967.
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fundamental plastic approach. In the specific case of cited artists, it is not really
an issue, as central questions of their work are the place of the machine and the
role of the artist. Gregory Chatonsky pertinently points out that AI should stand
for Artificial Imagination6 instead of Artificial Intelligence. He means that artists
consciously delegate their imagination to machines, which become a neutral box of
surprises. Neural networks provide an infinite flux of images, among which artists
select and organize a few instances to articulate a particular concept. The artist’s
role then switches from a creator to a curator. Thanks to his/her sharp sense
of selection, the artist works in the manner of a photographer in front of nature,
capturing key instants of life. However, this scheme is of little interest to me.
My approach to art and composition is through an active creation of the form.
The compositional paradigm actually makes me more a biologist studying his own
body.

Latest deep generative neural networks, such as incredible DALL-E and MidJour-
ney7, are now able to create images from a text description with an extremely
fascinating precision in terms of content and style. The question of artistic au-
thorship of produced artworks is then more relevant than ever. This subject drives
active discussions among artists and researchers: Can computer create Art?8 Can
Artificial Intelligence Make Art without Artists?9 However, do we simply know
what is art in the first place? The definition dramatically evolved and extended
since Marcel Duchamp. For Sofian Audry & Ippolito:

Can machines be artists? is the wrong question. We should instead be ask-
ing, what roles does machine-made art leave for artists—imagined or real,
flesh or silicon—and the viewers who imagine them.10

What arises in the mind of the viewer, and what he/she projects on an artist’s
work is thus what really matters. The difficulty is then to convey the desired
representation (see details at the end of this section). I cherish my code and
models, because I have built them step by step. They are a complex object I
became familiar with. However, if it disappears, my capacity to draw and compose
remains unchanged. Throughout the manuscript, even if I may have objectified
the model as an entity, it is a misuse of language. As far as I am concerned, AI is a
statistical tool, and nothing more. I am thus closer to older generation of computer
artist, such as emblematic Harold Cohen and his art-making robot AARON. For
him, robots are interesting as collaborators, but they are not artists. In addition, I
have never been convinced, compositionally speaking, by artworks from machines
designed to be autonomous artists, e.g. Leonel Moura’s artist-robots.
6Chatonsky et al., 2017.
7More information at: https://openai.com/dall-e-2/ and https://www.midjourney.com
8Hertzmann, 2018.
9Audry and Ippolito, 2019.

10Audry and Ippolito, 2019. For a more complete review of questions raised by the use of AI in art, please
refer to the comprehensive book from one of the authors, Art in the Age of Machine Learning (Audry,
2021).
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6.1 Returning to the material space

In between generative art and AI powered creations, artificial life is also interested
in a certain form of autonomy. For artists like Alain Lioret, Chu-Yin Chen or
the pioneer Yoichiro Kawaguchi, the idea is to consider pictorial elements as
living beings. Artworks are then generated by the simulation of these entities’
interactions:

These creatures do not paint themselves on a canvas. Instead, they use their
bodies to compose new paintings, in ballets of autonomous movements.11

This idea resonates with the composition seen as the organization of a system, i.e.
as conditional constraints between sub-elements on the canvas (see Section.1.2).
Then, if graphical beings are able to compose, it is also related to the phenomenon
of emergence, which I would like to explore in future works. However, I do not
understand the fundamental necessity to have actual organic forms mimicking life
to address the organic creation of pictorial forms. In addition, if I am interested in
the dynamic of graphical elements, it is of hidden compositional dynamics, not of
approximated bio-inspired functional interactions.

Another branch of AI art explores a concept closer to my own practice. The
idea is to build a system imitating the work of an existing artist, while exhibiting
the process. I can evoke the collaboration between Robbie Barrat and Ronan
Barrot, where the first trained a GAN to mimic the few hundreds oil-painted skull
still-lifes of the second. Resulting pixel-maps are very convincing thanks to the
great homogeneity of the dataset. In Mind the Machine, Sarah Schwettmann also
developed a model to imitate the work of the Shantell Martin. This time, an RNN
and a pen-plotter were reproducing her drawing style. I think that style, rather
than composition, is the right wording. The machine is actually initialized with a
structuring line, imposing the large arrangement of smaller elements. Also, the
artist adapted her graphical language with highly stereotyped details to help the
model. The result is interesting for 300 input drawings only, but found regularities
were already obvious for the artist, and spectators as well. I personally think that
such endeavor is more instructive if something hidden is revealed in the process.
Otherwise, the machine becomes accessory.

A derivative use of AI emerges as a support for co-creation. I particularly think
about Sougwen Chung, who paints with an AI pre-trained on her own work.
However, from the final artworks, which explore fuzzy intricate arrangements
of lines, it is difficult to evaluate how much the robot arm is able to perform
further than an external source of noise, as a creative constraint. Her approach
is relevant in questioning human/machine creative relationship, but I am dubious
about this kind of proposal concerning compositional aspects. I believe that the
artist’s compositional abilities can compensate any strange action of the robot.
Composition is intrinsically resilient enough when reaching this level of visual
complexity.
11Lioret, 2005.
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Similarly, Chu Hsiang-hsien liked to start a painting by randomly putting
ink on silk; then he was fading it halfway and was finding the basic figures
of a landscape.12

From compositional perspectives, this type of AI is still a manner to overcome the
first stroke issue, when the empty canvas presents an overwhelming equiprobable
number of alternatives. To this end, I hope that my compositional paradigm could
push forward compositional questions in computer art, and find a place somewhere
in this fertile family.

Here with ink on paper

They are several reasons leading to my wish to project back my ideas on paper.
Let me begin with perhaps the most subjective one. My creative journey begins
on paper. It may sound silly, but it is where emotions and magic originally happen.
Despite having the chance to see my regularities as a hyper-compositional object,
from some sort of third person viewpoint, I believe that the benefit of this hindsight
must return on paper. Even theoretical ideas must profit to their initial medium.
If final artworks were not produced on paper, it would be like relegating original
drawings to a byproduct of a more advanced creative process. Returning to ink
and paper is therefore a humble tribute to the matter.

A similar shape retains its measure, but changes of quality depending on
the material, tool and hand. It is not like the same text drawn on different
papers, because paper is only the support of the text: in a drawing, it is an
element of life, it is at the heart. A form without its medium is not a form,
and the medium is a form itself.13

What Focillon expresses perfectly is that phenomena occurring with a medium,
only happen with this medium. For instance, during the dataset digitization, we
argued that interpreting a line as a series of contrasts in the middle of a matrix of
pixels could not be relevant regarding the artistic gesture having generated it (see
Section.2.2). This remark still holds at the reproduction level. Digital screens,
made of pixel arrays, do not support the continuity of strokes, born from unique
tensions. It also means that digitally printed images are not an option either. More
importantly, computer screens are freed from the constraint of fixity, and opens up
to immediate dynamism. I think that, as basic and neutral a surface of paper can
be, it is actually a central property of final compositions, where choices and scales
are definitive. On screens, images are temporary, modifiable, interchangeable. On
12From Tang Hou, Yuan dynasty, and reported by Cheng, 1989, p. 63: “De même Chu Hsiang-hsien

aimait à commencer un tableau en mettant au hasard de l’encre sur la soie ; ensuite il l’effaçait à
moitié et trouvait les figures de base d’un paysage.”

13Focillon, 1934, p. 19: “La même forme conserve sa mesure, mais change de qualité selon la matière,
l’outil et la main. Elle n’est pas le même texte tiré sur des papiers différents, car le papier n’est que le
support du texte : dans un dessin, il est élément de vie, il est au cœur. Une forme sans son support
n’est pas forme, et le support est forme lui-même.”
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6.1 Returning to the material space

paper, it is done, once for all. The idea is fixed in the matter. A risk is taken. It is
a manner to stop frenzy image flux, and to slow down the consummation.

In the same vein, with the risk of appearing a bit conservative, I would like to
re-invest the idea of a long-lasting art. Computer becomes obsolescent in no
time. For instance, we already have difficulties to display early video art and some
interactive installations. I prefer rudimentary simple and free of maintenance final
artworks. It may sound contradictory with the whole technological apparatus set up
for this PhD project, and also against my fascination for coding, but fundamentally,
I do not believe in computer permanence. If I could (and deserve to) engrave
compositions in stones, so that everybody could rub a copy on paper centuries
later, like some unique calligraphies of Chinese masters, it would be the ultimate
of this logic. In a way, an art which is too inscribed in contemporary tools and
preoccupations, will not be resilient to the fluctuations of time. Malevich writes in
his manifesto:

With themost primitive ofmeans […] the artist creates somethingwhich the
most ingenious and efficient technology will never be able to create.14

Nonetheless, as long as final artworks are materialized with ink and paper, a
mechanical pen-plotting is not illegitimate. The first reason of this choice is also
subjectively biased. As I said in the Introduction, I do not consider the drawings
constituting my dataset as real artworks. It is as if they were too intimate to be
given/sold, or even directly exhibited. I like the idea of hiding my secret garden,
and only sharing transpositions of it. Consequently, the return on paper must be a
different creative moment from the dataset elaboration. For instance, I cannot
draw myself or intervene directly in the drawing process. My hand must only
appear through the hyper-compositional object, and I do not want to fake the
expressiveness captured by the model. That is why, returning to ink and paper,
became inseparable from mechanical reproductions with a pen-plotter.

This position is perhaps partially contradicting a previous idea, set up for an
exhibition which happened the first year of this PhD, and thus before the completion
of the compositional models (see Appendix.A.2). I wanted to initiate a creative loop
exploring alternatives of a chosen composition. The initial seed was mechanically
plotted several times on paper, and I continued/altered these copies with the same
original pen. Digitized again, this new family of drawings were rearranged and
plotted back on paper. In Fig.A.6, this creative loop has been executed twice. So,
even if I intervened in the process by drawing myself, it was not directly the case
of the final artwork.

The second important reason to use a pen-plotter is the inherent multitude
associated with the hyper-composition concept. Any attempt to extract visual
propositions from the models is confronted to continuity, diversity, and thus infinity.
In addition, captured graphical element dynamics are located in transitions, in
14Malevich, 1927/2003, p. 78.
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Figure 6.1: Pen-plotter.
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6.2 Stroking the line

interpolations and series. Only a machine can have such intensive drawing ability.
A pen-plotter is specifically designed to tirelessly fulfill its duty. I specifically used
an Axidraw pen-plotter15 (see Fig.6.1). It is a popular choice among plotter artists
for its precision and robustness. The unique ballet of the drawing head on the
canvas and associated characteristic sound modulations make each plotting of
artworks a mix of anxiety and fascination.

However, just as figuration complexifies the reception of compositions, machines
also blur the plastic proposal and the focus on compositional aspects. During my
first exhibition (see Appendix.A.2), I noticed that the presence of the pen-plotter
in the exhibition space, was provoking a certain confusion and invisibilization of
the personal creative process. If AI is suggested during the presentation of the
work, in people’s view the moving machine immediately embodies the creative
mind and hand. It is related to the question of AI authorship evoked earlier, but
it was often reformulated as a social issue: “Will AI replace artists? Replace my
job?” Therefore, autonomous machines seem to grab too much attention, and
it is difficult to desacralize this fascination. This observation really made me
wonder about the necessity to show the pen plotter besides artworks. It is an
efficient manner to question the role of the machine and/or to highlight a creative
approach in the making, but the central compositional question is not located in
the machine, nor in the process itself. Despite a theoretical abstraction of what is
composition with intermediary computational tools, I believe that composition only
visually expand in the final object. This interesting issue is still unresolved, and for
now, I am too afraid of the possible spectators’ misconceptions. In a way, it is
coherent with my attachment to the basic materiality of artworks, as it eliminates
part of viewers’ technical questionings.

6.2 Stroking the line

On the artist side, using a pen plotter is however not straightforward. Depending
on the objectives, technical issues arise, and particularly about surfaces, i.e. thick
lines. For instance, to reproduce original drawings, it is required to fill outlines and
compensate for stroke widths. Concerning generated compositions, output lines
from the model are theoretically non-dimensional along their width. Stroking lines
is thus a first challenge to tackle, as well as a first step towards the dynamic of
graphical elements.

Scaling original compositions

For my first exhibition, I wanted to reproduce a few hundred drawings sampled
from my dataset (see Accumulation in Fig.A.3). The exploration of a family of
15Please find more details at: https://axidraw.com
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compositions, derived from the same original instance, also requested to be able
to plot back on paper any scanned/vectorized drawings (see Fig.A.6). However,
both conditions were reproductions of units at a different scale. In Section.2.2, we
have seen that the vectorization procedure outputs an outlined and a skeletonized
version of each composition. In Fig.6.2, we explore these two options. We first
plot the outline version at three scales (x2, x1, x0.5) with a roller pen of thickness
0.2mm. Drawings are displayed in actual size in Fig.6.2a-c. They are then digitally
filled and rescaled to x1 in Fig.6.2f-h. Fig.6.2d is the skeleton version plotted
at x0.5 and digitally rescaled to x1 in Fig.6.2i. Finally, Fig.6.2e is the original
vectorial drawing, serving as a reference. Despite a very precise roller pen, the ball
center exactly passes on true boundaries, and thus broaden graphical elements of
0.1mm. It seems negligible, but it changes perceptual masses of elements, visual
distances, and the overall compositional feeling (see particularly Fig.6.2h). At
double scale, the result is acceptable, but still noticeably thicker than the reference
(Fig.6.2e,f). At a smaller scale, plotting the skeleton appears to be a better
alternative (Fig.6.2d,i). This trick has been used in Accumulation (Fig.A.3), but a
proper correction procedure will be proposed in the next subsection.

Changing the scale of a composition thus raises a fundamental compositional
question. In both artworks evoked above, the change of scale did not exceed a
few folds, which is reasonable if corrected. However, this is not the case of a
third artwork called Individuality, where a composition was plotted alone on a A3
canvas (see Fig.A.4). In this context, each stroke width must be redefined, and
the overall work requires additional details to be effective. In Matisse’s words:

The artist who wants to transfer a composition from a canvas to a larger one
must, in order to preserve its expression, conceive it again, modify it in its
appearances, and not simply lay it down a grid.16

Offsetting lines and filling surfaces

In order to correct for the extra thickness provoked by the plotting operation, it
is necessary to shrink outlines beforehand. A similar issue happens in the field
of computer-aided design and manufacturing, where the correcting operation is
known as line offsetting. Such procedure seems trivial; a point on a line just has
to be translated along the normal vector to this line. In Fig.6.3a, the dotted line
is the offset version of the solid line, thanks to the gray normal vectors. However,
this naive algorithm produces a spurious loop/area, highlighted in gray. More
generally, it generates several geometrical issues in concave regions. In Fig.6.3b,
we show real artifacts happening while offsetting a skeleton line on both sides.
16“Lay it down a grid” is a traditional and manual scaling procedure. Matisse, 2014, p. 43: “L’artiste qui

veut reporter une composition d’une toile vers un toile plus grande doit, pour en conserver l’expression,
la concevoir à nouveau, la modifier dans ses apparences, et non pas simplement la mettre au carreau.”
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x2x1
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a b c d
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Figure 6.2: Reproducing a drawing at different scales. In panels a, b, c, the outline of a drawing is plotted
at three scales (x2, x1, x0.5) with a roller pen of thickness 0.2mm (drawings are displayed in
actual size). In panels f, g, h, these plots are digitally filled and rescaled to x1. Panel d is the
skeleton version of the same drawing plotted at x0.5, and digitally rescaled to x1 in panel i.
Panel e is the original vectorial drawing, serving as a reference.

a

b c

Figure 6.3: Offsetting lines and filling surfaces. Panel a shows the issue of a naive offsetting procedure in
concave regions. The dotted line is the offset version of the solid line, gray arrows are normal
vectors to the line, and the gray area is the resulting spurious artifact. Panel b shows real
glitches happening while offsetting a skeleton line on both sides. Panel c finally displays a
successful offsetting operated with the chosen open source library (dotted lines). Gray inner
lines are a recursive negative line offsetting, designed to fill closed surfaces.
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a b c d

e f g h

Figure 6.4: Pen thickness correction and different filling intervals. Panel a is the original closed surface
and its inner skeleton (white lines). Panel b, c, d are plotted results in actual size for three
filling intervals (0.4mm, 0.3mm, 0.2mm), and panels f, g, h show corresponding close-ups.
Panel e finally displays the comparison between the original outline (black) and the actual
plotted version (grayed out).

As a result, the industry drove more advanced scientific developments17, and we
chose to use the open source library called Clipper18. Dotted lines in Fig.6.3c,
show the resulting successful positive offsetting of concave areas (largely dotted
arrows). In addition, we remark that separated ends of the lower right curve
correctly becomes connected (thinly dotted arrow). Concerning negative offsetting
(first gray inner line), particularly when trying to correct for the plotting thickening
issue, it is advised to plot the skeleton centerline as holes may appear in thin
regions (see solid arrows). Consequently, filling a surface is simply applying the
negative offsetting procedure recursively (all gray inner lines).

In Fig.6.4, we experiment the whole procedure with the pen-plotter, i.e. outline
shrinking of half a pen thickness (0.1mm), followed by surface filling. Fig.6.4a
shows the original closed surface and its inner skeleton (white line). Fig.6.4b-d are
plotted results in actual size for three filling intervals (0.4mm, 0.3mm, 0.2mm).
From Fig.6.4f-h close-ups, we notice that only the 0.2mm interval, corresponding
to the pen thickness, gives the expected result. It also confirms that the skeleton
line is important is thin regions. Finally, the close-up from Fig.6.4e verifies the
thickness correction by comparing the original outline in black with the grayed out
actual plotted version. The result is really satisfactory.

An important technical detail of the Clipper library is that it only processes polylines,
17X. Chen and McMains, 2005.
18We actually use pyclipper, a Python binding of the C version of Clipper. This library does polyline

offsetting and more generally boolean operations on polylines. It is mainly an implementation of Vatti,
1992. More information on the project can be found at: http://www.angusj.com/clipper2
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a b

Figure 6.5: Calligraphic strokes19. Panel a is an illustration of brush vertical movements inducing varying
stroke thicknesses. Panel b shows the inner trajectories required to render specific stroke
styles: small loops at extremities are particularly important to achieve clean stroke ends.

i.e. sequences of linear line segments. This is actually the case of the pen-plotter
too. There is therefore the necessity to transform all parametric curves, such as
cubic Béziers, to polylines. To do so, we evaluate each curve components at 100
points (see the curve in Fig.6.6a for an illustration with 5 points per component).
A second aspect to take into account is concerning compound polylines, i.e. forms
with inner holes in larger surfaces. For instance, an expansion for the outer
boundary corresponds to a shrinkage of the inner ones. Finally, a particularity
of our implementation is to operate all computations at the global scale, by
applying all pending transformation matrices on the polyline beforehand, so that
the offsetting width is expressed in global units. Of course, inverse transformations
are applied when values are written back in the final svg file structure.

Stroke profiles

In Section.2.2, we have already evoked the idea of a third dimension of lines. This
additional degree of freedom and associated perceptual phenomena, originate in
the practice of calligraphy with brushes and fountain pens. In Fig.6.5a, we see
how varying vertical pressures affect stroke expressiveness along the path. Stroke
profiles are thus an inherent aspect of line dynamics. However, it does not really
matter that this third dimension is physically produced with a brush and real body
movements. Any variation of thickness along the path produces potential tensions.
For Kandinsky:

This means of expression creates a certain vibration of the elements in the
case of an acute dryness of the main elements of a composition. It brings a

19Illustrations adapted from Yee, 1974, pp. 145, 147
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softening of the rigid atmosphere of the whole, but used to an exaggerated
extent, it leads to an almost repulsive preciousness.20

The idea is therefore not to emphasize too fake dynamics, but at least to recover
a natural stroking of lines, since we had to discard this information during the
dataset formatting (see Subsection.2.2.Surfaces to lines). We define a stroke profile
as a function producing a value in the range [0, 1] for each point of an input polyline
(0: no thickness, 1: maximum thickness). We will explain in the next subsection
how to use profile functions for visualization and plotting, but first, we need to
expose a prerequisite on polylines. Fig.6.6a shows a curve and a straight line.
The horizontal line is already a polyline, but as explained earlier, Bézier curves are
usually transposed by evaluating a fixed number of point per component (here 5),
uniformly spaced in the parameter space 𝑢 (see Eq.2.4). Applying a profile function
on these lines, a thickness could only be added at each point. So, despite a fancy
profile, the straight line could only become a trapezoid, and the curve would suffer
from an uneven stroking definition. As a result, we should rather uniformly sample
polylines in length space along their path (see Fig.6.6b). In practice, we define a
resolution value in physical units, specifying the distance between polylines points,
empirically set to 0.01mm.

Let us now concentrate on the design of the profiles. Among several attempts, on a
trial and error basis, I decided to select the two most successful ones. I particularly
discarded a lead incorporating randomness in stroke alterations, because it was
a type of stochasticity, I have expressed concerns about in the previous section.
Stroke profile I is first designed to be simple with a small asymmetry. In Fig.6.6c,
we notice a slightly larger onset breaking the central regularity. Extremities are also
nicely rounded. This profile function is a simple mix of sine/cosine functions without
free parameters, nor geometry specific adaptation. The precise computation can
be found in Algorithm.6.1. In Fig.6.7, we apply this stroke profile on generated
compositions, first shown in Fig.4.16. I think, that the stroking effect brings subtle
variations and an effective presence to lines, while preserving a good homogeneity.
That is why, this neutral approach has been used in stimuli generation for the
perceptual experiment reported in Section.5.3 (see particularly Fig.5.18).

Stroke profile II explores a more expressive proposal. I remarked that straight lines
are usually executed quicker than curvy ones. It is like a physical tension had to
be inscribed in curves to echo a directional uncertainty, a mental creative tension.
Therefore, I had the idea to use the line curvature to positively drives the stroke
thickness. Some results are shown in Fig.6.6d and on generated compositions in
Fig.6.8. I think that the result is bringing dynamics and depth to each composition.
Despite its genericity, the rule seems well-defined in many non-trivial situations. So,
20Kandinsky, 1926/1991, p. 109: “Ce moyen d’expression crée une certaine vibration des éléments

dans le cas d’une sécheresse flagrante des éléments principaux d’une composition. Il apporte un
assouplissement de l’atmosphère rigide de l’ensemble, mais, employé exagérément, il mène à une
préciosité presque rebutante.”
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Figure 6.6: Stroke profiles. Panel a, show how Bézier curves are evaluated as polyline with a fixed number
of point per component; here 5, uniformly spaced in the parameter space 𝑢 (see Eq.2.4).
Panel b illustrates how polylines should rather be uniformly sampled along their path with a
fixed resolution. Black arrows are tangent to the curve and 𝜙 is the angle in between, required
to compute the stroke profile II (see Algorithm.6.2). Panels c and d display stroke profiles
I and II applied on a straight line and a curve. Panels e finally shows the plotting order of
outlines and interlines to render stroke profiles with a roller pen.

Algorithm 6.1: Stroke profile I
Function strokeProfileI(𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒):

𝑥 ← 𝗅𝗂𝗇𝖾𝖺𝗋𝖲𝗉𝖺𝖼𝖾 (0, 1, 𝗅𝖾𝗇(𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒))
return 𝗆𝗂𝗇 (𝗌𝗂𝗇(𝑥 × 𝜋)0.4, 0.6 + 0.4 𝖼𝗈𝗌(𝑥 × 𝜋

2 )4)

Algorithm 6.2: Stroke profile II
Function strokeProfileII(𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒, 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑔𝑎𝑚𝑚𝑎, 𝑟𝑎𝑡𝑖𝑜):

𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒 ← 𝗀𝖺𝗎𝗌𝗌𝗂𝖺𝗇𝖥𝗂𝗅𝗍𝖾𝗋(𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒, 𝑘𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒) ◁ nearest-value boundaries
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑠 ← local difference of 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒 points
𝜙 ← angle between local 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑠 ◁ see Fig.6.6b
𝑦 ← ( 𝖼𝗅𝖺𝗆𝗉(‖𝜙‖ × 𝑎𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 0, 1))𝑔𝑎𝑚𝑚𝑎

𝑦 ← 𝗀𝖺𝗎𝗌𝗌𝗂𝖺𝗇𝖥𝗂𝗅𝗍𝖾𝗋(𝑦, 0.1 × 𝑘𝑒𝑟𝑛𝑒𝑙𝑆𝑖𝑧𝑒) ◁ boundaries extended with 0
𝑦 ← 𝖼𝗈𝗇𝖼𝖺𝗍𝖾𝗇𝖺𝗍𝖾([0], 𝑦, [0])
𝑥 ← 𝗅𝗂𝗇𝖾𝖺𝗋𝖲𝗉𝖺𝖼𝖾 (0, 1, 𝗅𝖾𝗇(𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒))
return 1 − ((1 − 𝑟𝑎𝑡𝑖𝑜 × 𝗌𝗂𝗇(𝑥 × 𝜋)0.4) × (1 − 𝑦))
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6 Ink and paper

Figure 6.7: Stroke profile I on generated compositions.
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Figure 6.8: Stroke profile II on generated compositions.
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6.2 Stroking the line

Figure 6.10: Constant depth brush plot (3 levels).

a

b

c

Figure 6.11: Trial and error with brush plots.

it represents a satisfactory replacement to the discarded true original information.
Nonetheless, implementation and parameterization of this profile function are not
easy. Algorithm.6.2 summarizes all required computations.

Plotting strokes

In order to render stroke profiles on paper, we designed two different methods.
A first scenario addresses large scale compositions with brushes, and a second is
dedicated to small scale drawings with roller pens. Ideally, using a brush should be
the preferred method for all scales because of its natural expressiveness, but there
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Algorithm 6.3: Line stroking
In: ⋅ 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒, input polyline at physical scale, e.g. mm

⋅ 𝑠𝑡𝑘𝑊𝑖𝑑𝑡ℎ, maximum stroke width, i.e. where 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 1
⋅ 𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒, interline width to fill the stroke, if 𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 is negative the original
centerline is discarded, and the algorithm outputs a polygon, (None)
⋅ 𝑝𝑟𝑜𝑓𝑖𝑙𝑒, stroke profile function (strokeProfileI)
⋅ 𝑝𝑎𝑟𝑎𝑚𝑠, parameters of 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 (for strokeProfileII: 100, 100, 0.5, 0.3)
⋅ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, resolution to uniformly resample 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒, (0.01)
⋅ 𝑟𝑑𝑝𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, path simplification tolerance for the RDP algorithm, (0.001) [see
description in Subsection.2.2.Parametric curves]

Out: ⋅ 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠, list of polylines in an efficient order and orientation for plotting

𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒 ← uniform resampling along the path of 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒 at 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
▽ compute outline polylines
𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑠 ← compute normalized local difference of 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒 points
𝑛𝑜𝑟𝑚𝑎𝑙𝑠 ← rotate 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑠 by 90∘

𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒1 ← 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒 + 𝑠𝑡𝑘𝑊𝑖𝑑𝑡ℎ × 𝑛𝑜𝑟𝑚𝑎𝑙𝑠
𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒2 ← 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒 − 𝑠𝑡𝑘𝑊𝑖𝑑𝑡ℎ × 𝑛𝑜𝑟𝑚𝑎𝑙𝑠
▽ apply stroke profile
𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑝𝑟𝑜𝑓𝑖𝑙𝑒(𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒, 𝑝𝑎𝑟𝑎𝑚𝑠)
𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒1 ← 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒1 + (1 − 𝑤𝑒𝑖𝑔ℎ𝑡) × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒
𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒2 ← 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒2 + (1 − 𝑤𝑒𝑖𝑔ℎ𝑡) × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒
▽ compute interline polylines
𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠 ← [𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒, 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒1, 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒2])
if 𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 is not None and 0 < 𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 < 𝑠𝑡𝑘𝑊𝑖𝑑𝑡ℎ then

𝑛 ← ⌊𝑠𝑡𝑘𝑊𝑖𝑑𝑡ℎ/𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒⌋
for each 𝑖 in 𝗋𝖺𝗇𝗀𝖾(1, 𝑛) do

𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠 +← 𝑖
𝑛 × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒1 + (1 − 𝑖

𝑛 ) × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒
𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠 +← 𝑖

𝑛 × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒2 + (1 − 𝑖
𝑛 ) × 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒

else if 𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 is not None and 𝑖𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 < 0 then
𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠 ← [𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒1, 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒2])

▽ simplify and orient polylines
for each 𝑖 in 𝗋𝖺𝗇𝗀𝖾(0, 𝗅𝖾𝗇(𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠)) do

𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠[𝑖] ← RDP simplification of 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠[𝑖] with 𝑟𝑑𝑝𝑇 𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
if 𝑖 is odd then

𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠[𝑖] ← reverse points order of 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠[𝑖]

return 𝑝𝑜𝑙𝑦𝑙𝑖𝑛𝑒𝑠

are several technical issues. First, the pen-plotter does not have the default ability
to change the pen height (depth) over the paper in the middle of a path. Before
tweaking the official API of the plotter, we tried to limit the depth to few constant
levels and a tilted brush. In Fig.6.10, we see that the slanted brush produces some
thickness variations, but that was not fully satisfactory. In addition, the height
precision of the servomotor is not accurate enough with a tilted brush to produce
many different thicknesses. A vertical positioning of the brush is thus required, but
it generates spurious stains on stroke onsets (see Fig.6.11a). This is why Chinese
calligraphers make little loops at stroke extremities (see Fig.6.5b). This procedure
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6.3 Diversity, continuity, and dynamics

is not easy to implement, so we preferred to operate the initial contact with the
paper in movement. This implied to modify the core API of the plotter to enable
the application of a stroke profile on the fly. In Fig.6.11b,c, we show that the
complete calibration of the system was not easy. Nonetheless, Fig.6.9 presents
successful results with the stroke profile II.

This first scenario is optimal for large compositions, since rendering thin strokes is
challenging with a brush. The line quality produced with the very top of the brush
is too inconsistent. Therefore, for small compositions, or when a high precision is
required, we developed a second method to mimic stroke profiles with roller pens.
The approach is actually close to the previously described recursive surface filling
method. The complete procedure is reported in Algorithm.6.3. Basically, we offset
a polyline by the intended stroke width on both sides. Then, we linearly interpolate
each side between the new boundary and the original polyline, weighted by the
stroke profile. The subtlety of this approach is to require an identical number of
points between interpolated polylines. The Clipper library is not intended to do
so, and especially does not, in order to produce accurate results. Thus, we use
the naive approach described earlier, despite its known artifacts in concave regions
(remember Fig.6.3a,b). In practice, these glitches happen inside strokes and are
not visible. Fig.6.7 and Fig.6.8 actually used this method without noticeable issue.
Nonetheless, it could be improved in future works.

6.3 Diversity, continuity, and dynamics

This last section introduces the main creation principles, that will contribute to
the creation of the final artworks of this project. The goal is to find visual ideas to
convey key concepts of the hyper-compositional object, such as diversity, continuity
of hidden dimensions, and graphical element dynamics. However, the didactic
characteristics of these productions must not supersede elementary compositional,
and basically pleasing, attributes.

Representing diversity and continuity

Both diversity and continuity concepts are related to infinity. Diversity stands for
the infinite expressive differences in the generative space, while continuity implies
coherent and subtle compositional transitions in the infinitesimal neighborhood of
a chosen sample. We could rephrase both ideas as large and small scale infinities.
Nonetheless, those infinities are not materially feasible; only incomplete views of
the hyper-compositional object are realizable. So, the reasonable accumulation
of samples, original or generated, is our proxy for unlimitedness. To this end,
the representational question is mostly confined to the choice of the appropriate
disposition of composition ensembles. Individual positions on the canvas may be
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derived from their true coordinates in the compositional space, or constrained on
any arbitrary grid.

Using original coordinates is an interesting idea, but we must obtain 2-d mappings
of original 16-d coordinates. For instance, PCA decomposition cannot be employed
since the model enforces a unit variance in each dimension. We can arbitrarily
select two dimensions, and project every sample on the chosen plane, but the
compositional logic of the chosen dimensions is unlikely to be obvious. In Sub-
section.5.1.Threshold estimation, we have seen that the perception of compositional
transitions is noticeable for angular distances from 2∘ to 8∘. Then, resulting
artworks of randomly picked compositions would not appear more organized than
a pure random arrangement on the canvas. More complex unwrapping procedures
from 16-d to 2-d, such as MDS and Isomap exist (see Fig.5.6a,b), but the general
compositional logic of sub-elements would still seem arbitrary21.

The disposition of compositions along regular arrays is then an obvious, but efficient
way to reveal the model diversity. Besides scientific papers on generative models,
grids have actually been used for a long time in generative art. It is somehow the
default choice to show random variations of any generative procedure. Our type of
diversity is different, i.e. occurrences of a learned hyper-compositional object, but
it can be investigated with similar principles. We thus explore two types of grids;
regular and honeycomb with horizontal or vertical orientations (see Fig.6.12a-c).
They are the most neutral forms of organization, as no sub-element is favored.
Honeycomb structure is used in nature and material design for its equal distribution
of tensions, so by extension, it offers an interesting distributed attention on every
unit. We employed the regular grid to display raw generated compositions in
Fig.4.16 and Fig.4.18, as well as with stroke profile II in Fig.6.8. On the other
hand, Accumulation artwork in Fig.A.3 adopts the vertical honeycomb grid. The
enforced equidistance of neighbors makes the overall structure more pleasing,
while not superseding individual compositions. It quietly induces the feeling of
a viewpoint on the life of microorganisms. Nonetheless, the choice of the grid
remains highly arbitrary. It mostly depends on the nature of the content, and the
number of elements to represent.

Unlike diversity, continuity emerge from an accumulation, where the local connec-
tivity of samples respect their relative distance in the latent space. In order to
reveal visual regularities, the chosen arrangement on the canvas must be barely
homothetic to the sampling grid. For instance, the local diversity of generated
compositions around a target in Fig.4.17 does not produce the same effect of
continuity as with two-dimensional interpolations, like in Fig.4.29 or Fig.5.1. In
both cases, families of samples are presented, but the preservation of the original
21The only exception is maybe an artwork made for the VSAC exhibition, where I used a very naive

CNN (a model relying on pixel maps) and PCA to obtain 2-d coordinates (see Fig.A.7). The result is
satisfying, but does not reveal a cartography more elaborated than an obvious distribution of drawings
in function of the stroke thickness and the horizontal/vertical dominance. In addition, to prevent a
confusing superposition, overlapping compositions had to be randomly pruned.
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a b c

d e

Figure 6.12: Grids. Panel a, regular. Panel b and c, honeycomb with horizontal and vertical orientations
respectively. Panel d, circular. Panel e, circular homogeneous.

sampling topography of the latter transforms the perceptual visual effect from
diversity to continuity. This phenomenon is actually already effective with simple
line interpolations (see Fig.5.18). If the sampling is circular, then a circle is an ap-
propriate alternative (see Fig.5.17). Following this concept, we explore in Fig.6.13
the idea of a composition wheel. It is inspired by the traditional color wheel,
representing the continuity of color hues around a circle, and converging to gray in
the center. This design smartly highlights complementary combinations of color.
In the compositional case, such grid shows transitions in different directions around
a well identified target composition. All radial lines do not show the same number
of elements, but we prefer this resulting spatial homogeneity compared to a vanilla
circular grid (see Fig.6.12d,e). Finally, we could imagine more elaborated sampling
grids, such as intersections of orthogonal 3-d planes projected into 2-d, but we
believe it would only introduce confusion. The complexification of supporting grids
automatically diminishes individual compositional effects. An appropriate grid is
therefore necessarily discreet and simple.

Witnessing dynamics

In Subsection.1.1.Cinematic of forms, we have described how the concept of weight
given to graphical elements with a fixed delimitation was constructing a cinematic
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6 Ink and paper

Figure 6.13: Generated compositions over a homogeneous circular grid. Concentric rings correspond to
successive circular slices of the mode hypersphere, which respect the necessary number of
sample per ring and the chosen angular distance between samples (2∘).
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6.3 Diversity, continuity, and dynamics

of forms. Then, how a dynamic of forms would singularize from this idea? The
essential difference is that the concept of dynamic allows compositions to go beyond
positional and scaling arrangements of absolute forms. It enables the modification
of the graphical elements themselves, as a function of tensions resulting from
mutual interactions. The purpose of making viewers witnessing dynamics is thus to
let them have a glimpse on the pictorial formation, on the morphogenetic aspect
of the composition producing de-formations.

An apparent way of rendering dynamics is thus to directly transpose morphological
changes along the time, as an animation. For instance, in Fig.5.22 and Fig.5.23, we
inverted the perceptual scale, that was experimentally measured with participants,
and proposed perceptually smooth interpolations. But, the necessary resampling
can actually be operated at any granularity, until obtaining animations with a suffi-
cient temporal definition to give the illusion of continuity22. Resulting animations
seem very organic and visually satisfying. They provide an efficient tool to directly
study compositional forces. In future works, I could even try to build real-time and
interactive applications exploring the latent space. However, it would remain a
personal creative tool rather than artworks addressed to spectators. In addition,
even if seeing real dynamics of shapes is enjoyable, it hides the essential. Dynamical
aspects must remain potential to trigger tensions. With real movements, tensions
are satisfied, and thus resolved. In other words, compositional dynamics primarily
live on paper.

Italian Futurism directly tackled the representation of movements by integrating on
the same canvas the past, present, and future of the depicted subjects. In a way,
they extended the idea of Cubism trying to multiply the points of view on the same
object. In spite of searching for objectivity through the simultaneity of viewing
angles, Futurists wanted to express the force of movements, and their fascination
for speed and acceleration. However, notions of time and viewpoint are artificial
in the context of the compositional space. If we explore a type of simultaneity on
the canvas with our model, it must be by highlighting compositional uncertainties,
and accumulating possible alternatives of a neighborhood in the generative space,
or exploring transitions from one another.

In Fig.6.14, we superimpose samples from a locality around a chosen position in
the compositional space. Little moves along different hidden dimensions reveal
most uncertain graphical elements. Consequently, using thin lines, results produce
a sketching effect, as if the model was searching for the right stroke to draw its
objective. Some important elements are reinforced, while others seem difficult to
position or to give the right curvature. The same principle is applied to the com-
positional plane model (see Fig.6.15). This time, we show the uncertainty located
22Technically speaking, I have developed a piece of software generating animated svg files powered by

embedded JavaScript, and functioning as an old-school flip book. Individual frames are horizontally
shifted in a view box at a chosen frame rate, e.g. 25 i/s. Animations produced from the 6 conditions
of the experiment described in Section.5.3 are available on my website on the page dedicated to my
poster at VSS2022: https://plelievre.com/projects/vss-2022#anim
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6 Ink and paper

in outputs of the model, produced from a unique location in the compositional
space. Resulting drawings are more fuzzy and crisp at the same time. Sampled
alternatives integrate more different propositions, for which the model is however
individually more confident. It gives a feeling of hurry, like the necessity to rush to
capture a visual idea, precariously floating in the mind.

In the previous section, strokes thickness have been postulated to be the result of
motor accelerations and decelerations, specifically highlighting curvy regions. This
choice was motivated by the practical experience, but it is somehow arbitrary. In
addition, the uncertainty principle presented above provokes vibrations of lines with
diverse strength. It is basically as if information concerning stroke thicknesses were
already contained in the model stochasticity. Indeterminacy about a specific line
can therefore be considered as a proxy of inherent dynamics, and induces varying
widths along strokes. In Fig.6.16 and Fig.6.17, we explore this idea by creating a
surface in between corresponding lines of two local samples in the compositional
space. This principle is theoretically close to the former proposition, but the
visual result is dramatically more expressive. It highlights uncertainty of individual
elements with a neat graphical language. Resulting compositions seem more fluid,
as more empty space brings deeper contrast, and bolder gesture impressions. A
possible issue arises where boundary lines of strokes cross along the path, and
look like twisted ribbons (see the bottom stroke of the lower left composition in
Fig.6.16). This graphical feature is not really problematic, and actually evokes
stroking effects produced with large fountain pens.

Filling the surface in between two close samples was a manner to clear the fuzzy
accumulation of uncertainty into a more identifiable intention. However, under the
black surface of these two boundaries, we do not know the inner transition from one
another. In Fig.6.18, Fig.6.19 and Fig.6.20, we operate a spherical interpolation
in between two local samples, and plot intermediary lines. Transitional samples are
supposed constant in latent distances, so compressions and dilations within each
graphical element visually add an expressive density to stroke thicknesses. Implied
grayscale gradations also provide the illusion of different ink dilutions, and the
feeling a delicate superstition of layers. Resulting effects may as well be perceived
as depth cues, giving a shallow relief to strokes, or the feeling of soft enfolding
surfaces.

Finally, in Fig.6.21 and Fig.6.22, we explore a very different visual principle. First,
we select interpolation sequences perceptually corrected for continuity thanks
to the MLDS experiment described in Section.5.3. We then sample each path
with a very high granularity, and record the trace along horizontal or vertical
constant shifts. This way, original compositions are completely disrupted, but a
calm and natural volume appears, evoking the passage of vanished forms, where
only dynamics remain.
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6.3 Diversity, continuity, and dynamics

Figure 6.14: Dynamics – Uncertainty – 1.
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6 Ink and paper

Figure 6.15: Dynamics – Uncertainty – 2 (compositional plane model).
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Figure 6.16: Dynamics – Thickness – 1.
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Figure 6.17: Dynamics – Thickness – 2.
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Figure 6.19: Dynamics – Transition – 2.
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6.3 Diversity, continuity, and dynamics

Figure 6.22: Dynamics – Trace – 2.
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Conclusion

It is somewhat difficult to formulate conclusions for a research agenda that is
still at its very beginning. In the preceding chapters, we only had the opportunity
to introduce a first iteration of the difficult process involved in laying out each
necessary brick of the construction that represents a preliminary result. There
were so many unavoidable steps along the path towards securing a functional tool,
that those monopolized all my efforts. It could have been expected to contribute
more practical findings on the perception of composition, and more advanced
discussions on relevant artistic questions, but I am already proud of what I have
been able to accomplish so far. The whole framework has been validated, and
its utility demonstrated, up to the point of conducting a real experiment with
human participants, together with the realization of artworks back on paper. The
realization of these ambitious goals has exceeded my initial expectations. In
addition, as stated in the Introduction, the projective modeling approach we have
favored in this thesis must be constantly reevaluated, ready for the next iteration
as soon the previous one has come to an end.

During the course of my PhD program, I naturally engaged in considerations about
my legitimacy and competence with relation to the different fields I encountered,
and I raised doubts about my ability to reach the end goal. For instance, when my
first modeling attempts failed, I did not know whether to attribute this outcome to
conceptual issues, technical problems, or to the possibility that my compositions
may not carry sufficient regularity. This is possibly the most difficult aspect of
working on your own artistic material. In addition, the relatively small size of the
dataset required seemingly endless additional layers of complexity, and accentuated
the aforementioned uncertainty about the source of my modeling failures. Writing
the manuscript also took me longer than expected, but this was an inevitable
consequence of recording all implementation details and diverse contributions
in order to construct a coherent global picture of my research. However, even
though this manuscript is almost 300 pages long, it remains shorter to browse than
the associated programming code. This hidden part of the iceberg has probably
exceeded 30000 lines. The amount of time spent behind a computer was perhaps
the second major downside of the overall process. Other than that, this adventure
has been enriching at every level: whether it was about new connections made
at laboratories and conferences, learned scientific skills, gained code development
consistency, or a matured artistic vision.
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Conclusion

In this conclusion, we will try to summarize our contributions spanning theoretical
ideas, scientific findings, computational tools, pieces of software and artistic
propositions. In the preceding chapters, we have also put forward several leads for
future work. We will restate them here, and try to articulate them with longer-term
objectives, delineating a bigger picture of what a possible research program may
look like in the future.

Contributions

Chronologically, our first contribution was in the perceptual domain with a scientific
paper on the perceived orientation of abstract paintings (see Appendix.A.1). It was
a smaller scale project, conceived as a preliminary proof-of-concept for the main
framework of this thesis, i.e. deep learning modeling combined with psychophysical
investigations in humans. Our deep learning model, characterized by custom
classifiers inserted after each convolutional block of a pre-trained VGG1, was
designed to study orientation perception at different depths in the processing
pipeline. In the article, we demonstrate that the model captures several human
characteristics of orientation perception across granularities and styles. Indeed,
abstract art, more than other styles, requires spatially extended integration of
orientation cues for these to cohere into a reliable orientation estimate. We also
tested fragmented stimuli in our experiments with humans, and we found that
the detailed operations of the human mechanism are not identical to the modeled
counterparts for small fragments, corresponding to superficial layers.

Concerning the core of this manuscript, its main theoretical contribution is the
definition of a compositional paradigm (see Chapter.1). We regard this as a
foundational step for any serious modeling approach, i.e. the stage at which
the modeler attempts to understand something fundamental about the modeled
phenomenon. In the machine learning field, the nature of inputs 𝐱 does not really
matter as long as the model fulfills its practical requirements. The versatility of deep
learning architectures and their associated power support generative latent spaces
that can produce art-like artifacts, without explicitly questioning whether those
spaces make sense with regard to the wider conceptual framework surrounding
the learned data, e.g. the collective history of western painting. It is possible
to build a latent space or a representation of any source of graphics, but the
possibility of achieving this goal does not in itself guarantee pertinence of the final
result, neither with regard to the pictorial material in question, nor with regard
to the original approach of the artist to art. In our case, we wanted to answer
the fundamental question of whether a space of compositions, in the form of a
hyper-compositional object, would be artistically relevant. We have demonstrated
that this goal is within reach, provided we accept that artworks may be regarded
as the recording matter of compositional regularities, that the specific artistic
1The VGG is a standard model used in vision and image classification (Simonyan & Zisserman, 2014).
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practice under scrutiny is serial and focused on dynamical interaction of graphical
elements, and that strokes and compositions are the result of some morphogenetic
process, intrinsically defining a continuous space of possibilities. Our approach is
not fully consolidated yet, but it already constitutes a strong anchor point for my
own artistic work.

A related contribution is to consider compositional practice as the organization
of a system (see Subsection.1.2.System complexity and system organization). This idea
is appealing in that it provides a clear and rich optimization objective for the
arrangement of graphical elements on the plane. Composition becomes a creative
in-between, where the artist intuitively creates conditional constraints between
forms that are neither too weak, nor too strong. Thus, we attribute to our
probabilistic approach a deeper implication than determining the best or optimal art.
We also present both compositional space and compositional plane as probabilistic
spaces with inherent diversity and richness of alternatives (see Section.1.3). We
believe this framework presents an attractive view of machine learning algorithms
and their associated optimization objectives. We finally put some effort into the
description of the implications associated with high dimensionality in relation to
potential fears about normalizing art, and corresponding misconceptions about
probabilistic maxima.

Even though at present I do not intend for my personal dataset of compositions to
become publicly available, I consider this fundamental resource as a contribution.
It represents an implicit huge amount of manual work, from its creation to its
processing into a dataset. To this end, we have developed custom software to
ease operations. Concerning the processing pipeline, we have mostly mobilized
existing image processing libraries and reimplemented some algorithms, such as
the vectorization routine to cubic Bézier. Nonetheless, this procedure aggregates
several small contributions, giving for instance more control over skeleton disentan-
glement at intersections, and over parameterization and simplification of curved
elements (see Section.2.2). Finally, I am particularly proud of the algorithmic block
that shuffles graphical elements within a composition down a hierarchical tree,
with an option to limit the number of permutations (see Subsection.2.3.Composition
permutations).

Compared with previous deep learning models applied to simple line drawings,
our work contributes several innovations. The first essential innovation concerns
the parameterization of curves. Our approach goes beyond mere encoding as a
sequence of line segments and, in doing so, remains closer to motor intentions
and artistic gesture of artists. It also offers more flexibility and precision in
matching the original curves (see Subsection.2.2.Parametric curves). Secondly, we
propose hierarchically nested stroke and composition models (see Section.3.2 and
Section.3.3). The primary drive behind this choice of methodology is to capture
and capitalize upon the fundamental temporal difference in the nature of these
two action sequences: strokes are ordered sequences of Bézier components, while

271



Conclusion

compositions can arise from stroke series in no particular order, possibly even
incomplete. We specifically attempt to project each family of partially defined
compositions onto a unique location in latent space, thus equipping this space
with richer encoding power. Finally, we complete our journey by introducing
a compositional plane model dedicated to the characterization of conditional
constraints associated with graphical elements on the canvas. To create its
predictions, this model relies on the two pre-trained nested models: the stroke
model and the composition model (see Section.3.4).

In our project, there is no obvious metric to assess model efficiency. We therefore
regard our training procedure with associated monitoring metrics as tools for aiding
architectural design and hyperparameter selection (see Section.4.1). However, our
contribution to the field of neural networks and representation learning is precisely
realized through the many training tricks implemented by our procedures, which
we have attempted to compile in a comprehensive and cohesive manner with this
thesis (see Section.3.5). For instance, we introduced adaptive constraints on
𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱) ∥ 𝑝(𝐳)) by adding a nonlinearity per dimension. We also formulated a
procedure to optimally re-balance model resources and partially overcome uneven
dataset statistics, e.g. sequence lengths. Another significant contribution is
represented by the limitation imposed on output variance, and the involvement
of a new unit called BackwardClamp. Collectively, these technical innovations
help to handle small datasets that nonetheless span a (too) diverse native space.
They support the construction of a continuous and expressive representation
despite operating within the low dimensionality of the chosen format. Our selected
dimensionality is indeed smaller than previous works by several folds. This constraint
is adopted primarily for easier manipulation and interpretation of model parameters,
and with a view towards the perceptual experiments.

Another important contribution relates to the compositional metrics offered by
the different models (see Section.4.3). For the composition model, these mea-
surements are elaborated around encoder and decoder distributions. They specify
not only position in latent space or on the plane, but also the associated degree of
uncertainty, individually for every latent dimension and stroke. In the compositional
plane model, we even have access to conditional probabilities on the plane, as a
complex field of possible next strokes (location and shapes) given existing graphical
elements, and a target position in the compositional space. For the purposes
of this thesis, we restrict the presentation to visualization methods and insights
from the different metrics. However, we are encouraged in pursuing this line of
research further in the future by our first successful attempt at predicting percep-
tual scales from Fisher information computed on these compositional metrics (see
Subsection.5.3.Perceptual scale prediction from Fisher information).

We have subsequently verified some qualitative aspects of the latent space. We
were particularly interested in whether the model had captured regularities that align
with important structural features of human perceptual space. The main difficulty
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arises in connection with the dimensionality of the latent space: although relatively
low (16 dimensions), it does not lend itself to feasible exhaustive experimental
exploration. We have run several simulations with different methods before
reaching this conclusion (see Section.5.1). Having taken stock of this limitation,
we searched for alternative approaches that would allow us to tackle the issue at
least indirectly. In the machine learning community, it has often been reported
(but never adequately quantified) that a qualitative drawback of generative models
is the existence of low-density regions within their latent space. These regions are
often encountered during interpolation. It is therefore reasonable to posit that
homogeneous density in latent space should be essential to the perceptual quality
of interpolations. We performed perceptual scaling experiments involving similarity
judgments with a triplet variant of the MLDS protocol (see Section.5.3). We found
unexpected distortions, possibly reflecting discrepancies between human and model
representations. Nevertheless, we were able to predict some non-trivial alterations
of the perceptual scale using the auxiliary compositional metrics provided by the
model (described above). Despite flaws in its representation, the model is thus
able to incorporate information that is useful to predict and correct homogeneity in
latent space. In short, our results indicate that the model has captured important
compositional regularities that are, at least coarsely, aligned with human perception.
However, only further iterations on this framework will provide us with a more
definitive answer.

One last, but not least, interesting scientific contribution concerns the MLDS
methodology itself. To incorporate circular trajectories through latent space, we
have extended MLDS to periodic physical spaces (see Section.5.2). This variant
is actually possible because most triplets, as defined in the canonical method,
are barely informative and can be discarded. As a result, we can also drastically
reduce the number of combinations per condition, directly influencing task duration.
However, to understand and prove this insight, it was necessary to conduct more
theoretical work that had not been originally planned. We were able to derive
tighter bounds between Thurstonian scaling and MLDS, and provide an explanation
for the variously reported discrepancies between the two methods. This fascinating
work exposed theoretical issues associated with MLDS, in particular concerning
the non-normal character of the distance metric between compared pairs.

Concerning the reproduction of generated drawings on paper with a pen-plotter, I
developed different techniques to render expressive and dynamic stroking of lines.
I adopted a strategy that adapts to the scale of the drawing and to the nature
of the tool – pen or brush (see Section.6.2). Finally, I proposed different visual
principles for representing the diversity and the continuity of compositional space,
and for revealing the dynamics of graphical elements (see Section.6.3).

To summarize the whole project, our approach serves to validate a novel modeling
framework for pictorial composition. We first introduce a compositional paradigm
that supports a working deep learning model, and attests that composition can be
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modeled as a continuous hyper-dimensional object. We then demonstrate that
captured compositional regularities and associated metrics present similarities with
human perception. The adopted models and experimental protocols are still in
their early stage of development and therefore present some limitations. However,
our overall results are encouraging and point to the real possibility that complex
perceptual phenomena such as art and composition, which are not easily reducible
to elementary components, may be studied with some degree of quantitative
scrutiny.

At the beginning of this manuscript, I asked whether my artistic practice and
the proposed modeling approach could serve as meaningful points of contact
between creative endeavors and the methods of scientific research. I hope that
the presented work and associated contributions make a compelling case for how
the particular can bring insights to more universal knowledge.

Future works

We have presented most of our contributions at conferences. However, except
for the work on orientation perception of paintings2, none of this research has
been published yet. After my PhD, I plan to focus on writing up the unpublished
material. More specifically, I hope to complete an interdisciplinary paper on the use
of MLDS to study latent spaces, and Fisher information to correct for resulting
distortions. It could be beneficial to scientific communities interested in generative
models, such as those operating in visual perception and machine learning. I
also plan to make all associated code publicly accessible, which will require some
polishing, refactoring and additional commenting. This could be an opportunity
for me to contribute back to the open-source community, which gave me so much
during this project.

Beyond publishing this research and making it available to the wider community,
we can identify a number of future projects at both artistic and scientific levels,
ranging from the development of technical tools to the introduction of fundamental
new ideas. However, it is not clear what timescale would be involved with these
projects and ideas, whether short or long term. For instance, we may find that it
is not a priority to improve some major conceptual innovations, as they are already
sufficiently developed to support further research. Below, we review a number
of technical details that arose during the project, and which we plan to pursue
further in the future.

When matching distributions, e.g. 𝑞(𝐳 ∣ 𝐱) to 𝑝(𝐳), we found that using Maximum-
Mean Discrepancy could be a useful alternative to Kullback-Leibler divergence.
This metric may improve qualitative issues connected with the non-symmetric
nature of 𝐷𝖪𝖫, which leads to over-generalization of modes within the target
2Lelièvre and Neri, 2021.
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distribution. With relation to the optimization function, we plan to investigate
the possibility of matching higher moments for the regularizer 𝐷𝖢𝗈𝗏(𝑞(𝐳), 𝑝(𝐳)),
enforcing 𝑞(𝐳) to match the prior and present a good separation of 𝐳 dimensions.
We believe that an approach of this kind could also address issues associated
with the bimodality of distributions along some dimensions of the latent space.
Finally, on this topic, during our project we found that prediction of the perceptual
scale from Fisher information using our encoder presented some re-mapping issues.
A given 𝒛, deterministically decoded to the corresponding 𝒙, should be mainly
re-encoded around 𝒛, but this is not always the case, especially when an additional
stroke pops in or out during interpolation. The introduction of a feedback loop
at training could reduce this class of failures. Another, possibly more effective
approach to solve this problem may involve a regularizer directly incorporating
human perceptual behavior through Fisher information from the decoder. Instead
of repeated sampling of encoded 𝐳 at training, we could consider a local region
around those 𝐳 as involving a small interpolation on a hypersphere that must
correspond to a linear perceptual scale.

We can also identify several future directions for our research on human perception.
First, we want to better understand why GLM fits are less accurate than their MLE
counterparts, especially concerning the 𝜎 value of perceptual noise. This quantity
is related to the 𝛼 clipping value, but the causal implication is unclear. For MLDS
and PMLDS, we pragmatically defined a value for 𝜏 (related to step size) because
this seemed optimal based on pilot simulations, however the validation of this
choice with real data is more challenging. Further research will be necessary to turn
our heuristics into a proper method. As we said in the manuscript, a good start for
future works should involve simpler and well-known stimuli, already validated with
traditional methods such as 2AFC for the derivation of psychometric functions.
We also hope to improve our method for computing Fisher information from the
decoder, especially for series of compositions with different stroke numbers.

With regard to more general ideas for future work, we could explore new ways of
exploiting different compositional metrics, or identify viable methods to experimen-
tally measure low frequency distortions in latent space. We could also improve
the compositional plane model, particularly concerning its tendency toward stroke
repetition.

An obvious direction of future work at an artistic level would involve extending
and enriching my personal composition dataset. An effort of this kind may also
be beneficial to the associated scientific research. Model development critically
depends on the amount of input data and density of intermediary exemplars. Even
without improving the balance of general sequence length in the dataset, more
inputs should increase the diversity of longer strokes. During my PhD, I found
that I had less time to draw, but I never really stopped. Thus, I have already
accumulated a good amount of new material. Having said all the above, we may
decide that it is not advisable to embark on another iteration of the project, and
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that we should instead focus on exhausting the creative possibility of the current
trained model, and fully explore the associated visual principles aiming at rendering
dynamics.

The artistic questions that sit at the core of this project also call for longer-term
developments. First, we would like to define intermediary levels of graphical
elements between strokes and composition. In an effort to identify common
groups of strokes (e.g. squares and other simple graphical structures), we could
benefit from the statistical constraints and regularities discovered by the current
compositional plane model. It would also be exciting to implement support for stroke
widths. At the model level, this upgrade would only imply marginal modifications
of layer dimensionalities. However, it would be very costly at the level of dataset
processing, because current vectorization tools do not take this aspect into account
(see Subsection.2.2.Surfaces to lines). Furthermore, vector graphic standards and file
structures are not currently designed to incorporate this information. For these
reasons, it would be difficult to achieve good storage, visualization, and artistic
usage without the introduction of significant technological developments. Finally,
in relation to these topics, we are fascinated by the possibility of exploring the
diversity of the latent space with real-time interactive applications, and we think it
would be worth investing time into possible interfaces.

I would also very much like to pursue a more theoretical aspect of my work: the
concept of self-organization applied to composition. In particular, I would like
to understand how artists manage to overcome the structural and functional
complexities that they encounter during the creation phase. I believe there is
a lot to explore and learn from the notion of emergence, i.e. the spontaneous
appearance of a macrostructure that was not predictable from individual knowledge
of its sub-elements. In parallel with this line of inquiry, I would like to investigate
traditional Chinese painting. Masters of this art form were able to tightly integrate
their art with knowledge about the world, unifying the two using the regularities of
a single gesture. These different ideas for future research may be re-articulated
using more contemporary concepts.

Along a different direction, I can identify another possible strategy for future work
on topics of theoretical importance. I have always regarded work on my personal
compositions as a proof of concept, a starting point for future generalizations. Thus,
instead of consolidating the current model, I could begin to address applications
of the model to different problems, e.g. kanji/hànzì calligraphy. I have already
used kanji to experiment with some deep learning architectures, thinking it would
be easier and/or more objective to determinate if a generated character was
meaningful or not. However, the lack of real continuity in character space presented
serious challenges, motivating me to consider material of a different kind. Similar
challenges also apply to compositions, e.g. concerning the stroke number per
drawing, but they are less problematic. This line of future work is interesting
and appealing, as it would certainly benefit the study of other compositions,
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and may serve to demonstrate the general applicability of the whole framework.
Furthermore, it could provide me with useful hindsight into some architectural
points that may need reconsideration, without coming into too close contact with
the manipulated material (I am not a fluent reader of kanji/hànzì yet). Finally, it
could offer the chance to start collaborative work, and possibly form the basis of
an interesting postdoctoral proposal.

Alongside the above projects, and outside the connection between scientific and
artistic activities, I could invest some effort into making the transition from what
is currently an introspective practice, to an artistic activity that is identified as
such by the community. For instance, I could prepare an exhibition without the
constraint of establishing scientifically relevant connections. The change of scale
that would go with such an endeavor would probably prompt me to reformulate
some questions, and trigger new ones. In addition, I could attempt to sell my
artworks, not so much for financial reasons but because this is an important step
toward art as it is organized and recognized nowadays. It would be important for
me to tackle the task of understanding cultural institutions, and how to use them
as stepping stones.

After finishing the writing of this manuscript, which collects and summarizes the
work done during my PhD, I have finally come to realize and understand what
is coming next. The above paragraphs are characterized by a certain degree of
strategic indecision concerning the organization of my future research agenda over
the longer term. I believe that this lack of a rigid plan is a source of potential
difficulty, but also an opportunity: as a postdoc, I should be able to explore
different research directions, as this is an inevitable and necessary path towards
becoming a senior scientist. The maturity that would come from this process may
simultaneously extend my artistic practice, and allow it to flourish at the same
time. A mesmerizing and thrilling horizon of possibilities opens before me.
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Appendices

A.1 A deep learning framework for human perception of
composition

Beyond contributions to the understanding of the orientation judgment of abstract
paintings, this initial research, conducted during the first year of my PhD, can be
seen as a proof of concept of the method presented in this manuscript, i.e. deep
learning modeling combined with psychophysical investigations in humans. It helped
me to familiarize with the deep learning library PyTorch, and more importantly
with the field of psychophysics. Online experiments also pushed me to implement
my own platform for data collection1.

Preliminary results have been presented during a talk session at ECVP 2019, the
European Conference on Visual Perception2. The final paper (Lelièvre & Neri,
2021), published in May 2021, is reproduced as it can be found in Journal of
Vision3. We also include associated supplementary materials.

1Experiments are still available on my website: https://plelievre.com/experiments
2Lelièvre and Neri, 2019.
3DOI: https://doi.org/10.1167/jov.21.5.9
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Artistic composition (the structural organization of
pictorial elements) is often characterized by some basic
rules and heuristics, but art history does not offer
quantitative tools for segmenting individual elements,
measuring their interactions and related operations. To
discover whether a metric description of this kind is
even possible, we exploit a deep-learning algorithm that
attempts to capture the perceptual mechanism
underlying composition in humans. We rely on a robust
behavioral marker with known relevance to higher-level
vision: orientation judgements, that is, telling whether a
painting is hung “right-side up.” Humans can perform
this task, even for abstract paintings. To account for this
finding, existing models rely on “meaningful” content or
specific image statistics, often in accordance with
explicit rules from art theory. Our approach does not
commit to any such assumptions/schemes, yet it
outperforms previous models and for a larger database,
encompassing a wide range of painting styles. Moreover,
our model correctly reproduces human performance
across several measurements from a new web-based
experiment designed to test whole paintings, as well as
painting fragments matched to the receptive-field size of
different depths in the model. By exploiting this
approach, we show that our deep learning model
captures relevant characteristics of human orientation
perception across styles and granularities. Interestingly,
the more abstract the painting, the more our model
relies on extended spatial integration of cues, a property
supported by deeper layers.

Introduction

Artistic graphical composition can be roughly
defined as the structural organization of pictorial

elements on a canvas. Art history offers some basic
rules and heuristics for understanding the qualitative
characteristics of this phenomenon; however, it does
not codify processes such as segmentation/interaction
of pictorial elements to the degree of specification
required by quantitative analysis. Modern artists such
as Kandinsky or Klee initiated some systematic and
almost scientific studies on this topic (Kandinsky,
1989, 1991; Klee, 1961, 1973, 1998), but they struggled
with the combinatorial complexity afforded by
compositional questions. Despite more recent progress
in this area (Arnheim, 2004), composition remains a
complex amalgam of different phenomenona, highly
dependent on context and other aspects that are
not easily quantified. Composition also represents a
versatile experimental tool for empirical aesthetics
(Locher et al., 1999; McManus et al., 1993; Schwabe
et al., 2018); however, this approach focuses primarily
on aesthetic judgements, rather than the compositional
processes associated with those judgments.

Recent advances in machine learning, and
particularly deep architectures, have demonstrated
the ability of artificial neural networks to extract
hidden structure from high-dimensional data and solve
complex problems with human-level performance
(Dodge & Karam, 2017; Serre, 2019). Our goal is to
discover whether deep learning tools can advance our
understanding of composition and whether, by relying
on those tools, we may define a partial, yet relevant,
metric description of this phenomenon that is available
for quantitative scrutiny (see Iigaya et al., 2020 for
related methodology). To achieve this goal, we rely
on a well-defined and robust perceptual judgment of
visual orientation that is related to composition: telling
whether a painting is hung “right-side up.”
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Under the assumption that the orientation of
reference for a painting is that selected by the artist,
previous work has demonstrated that humans can
perform this task well above chance, even for abstract
paintings, and regardless of their level of familiarity
with painting material (Lindauer, 1969; Mather, 2012).
Therefore, it seems that orientation judgments represent
a robust behavioral metric, even for material with
no recognizable content. Orientations other than
the reference orientation may elicit equally valuable
subjective interpretations and/or aesthetic experiences
in the viewer; however, existing empirical evidence
indicates that part of the orientation judgment is
consistent across observers: not necessarily directed
toward the orientation of reference, but at least
directed away from some of the alternative options.
Furthermore, orientation judgments are of immediate
relevance to the study of visual perception, an area
where image orientation is often manipulated to
selectively target higher level processing (see for example
the well-known inversion effect (Neri, 2014; Valentine,
1988) and its numerous applications (Cusack et al.,
2015; Gaspar et al., 2008; Kelley et al., 2003; Neri et al.,
2006, 2007 Yovel & Kanwisher, 2005)).

The exact mechanisms underlying orientation
judgements are not fully understood. Some authors
have suggested that the perception of orientation
depends more on low-level stimulus properties
than higher level object recognition and/or image
interpretation (Lindauer, 1987), prompting others to
investigate the potential role of relatively simple cues,
such as Fourier amplitude spectrum slope (Mather,
2012), or image statistics based on explicit rules
gathered from several art theories incorporated into
a machine learning algorithm (Liu et al., 2017) (see
Elgammal et al., 2018; Rodriguez et al., 2018 for related
applications).

In approaching these issues, we do not commit
to restrictive assumptions or purpose-built schemes.
Our model is structured around a general architecture
not originally devised for application to art material.
We exploit a large database of paintings to train the
model, and in so doing we automatically approximate
the perceptual mechanisms underlying composition.
Despite not being hand-engineered to tailor our specific
problem of interest, the trained model outperforms
previous applications and extends to a greater variety
of painting styles.

It is generally believed that orientation judgments
are supported by global analysis of the scene (Oliva
& Torralba, 2006). The role of local cues has
been relatively unexplored, and more generally the
granularity of this phenomenon is not well-understood
(Gong et al., 2018). Within the context of our approach,
we can naturally probe the issue of granularity and
identify the appropriate scale for understanding
pictorial elements. More specifically, by exploiting

the hierarchical architecture of our model, we can
explore how information is represented at different
depths within the network. We find that the use of
small-scale patterns and deeper level features shows
qualitative differences between abstract paintings and
more realistic pictorial styles.

To validate the applicability of our model to
human visual perception, we carried out a web-based
experiment with human observers. They were asked
to perform the orientation judgment task on whole
paintings as well as fragments of different sizes,
corresponding with the different extent covered by the
receptive field of distinct depth levels in the model.
These experiments were designed with the following
goals in mind: establish whether human performance
on the orientation task can survive a wider range of
stimulus manipulations (painting style, abstraction
level, fragment size) than previously tested in the
literature; and determine whether our model provides
a satisfactory account of the human process. We
find positive answers to both questions, although we
did identify some discrepancies between human and
simulated results, which serve as useful starting points
for us to elaborate on how the proposed model may be
augmented in future work.

Methods

Database

Our image database is derived from the WikiArt web
encyclopedia (WikiArt). The associated API returns
metadata such as artist identification and painting styles
of each image. At the time of this experiment (May
2019), the WikiArt database contained 157,291 entries.
We excluded non-painting styles (e.g., performing
arts) and pictures of painting details, reducing this
figure to 141,892 items. To make our results directly
comparable with those reported by Mather (2012), we
manually added 18 entries and moved all paintings
from this paper in the validation set. Because our
interest is mainly in how model performance varies
with style (e.g. abstract vs. figurative), we ensured that
different styles and artists were comparably distributed
between the training and validation sets. With a target
validation ratio of 0.1, the final split is 126,451/15,459.
We grouped entries into the genres and styles detailed
in Supplementary Tables S1 and S2. Representative
examples from this selection are shown in Figure 1.
Chosen classification is largely unambiguous, but
there are instances for which the specific choice of
genre/style may be disputable from historic and/or
artistic perspectives. For instance, abstract style is
often associated with modern/contemporary Western
movements; from such a viewpoint, our decision to
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Genres

Styles

Portrait

Renaissance

Figurative

Post-Renaissance
(Romanticism, Realism)

Genre Painting Landscape

Impressionism

Nude

Post-Impressionism
(Symbolism)

Expressionism

Sketches

Cubism

Abstract

Abstract Surrealism

Figure 1. Gallery of genres and styles mentioned throughout the paper. Ordering is chronological. (Mona Lisa by Leonardo da Vinci
(1503-1519), Still-Life with Drinking-Horn byWillem Kalf (1653), The Meeting (Bonjour Monsieur Courbet) by Gustave Courbet (1854),
Argenteuil seen from the small arm of the Seine by Claude Monet (1872), Young Girls on the Edge of the Sea by Pierre Puvis de
Chavannes (1879), The Scream by Edvard Munch (1893), Seated man with his arms crossed by Pablo Picasso (1915), Komposition VII
byWassily Kandinsky (1913), A Naturalist’s Study by Pierre Roy (1928)).

include Native art in the abstract category may seem
questionable. This decision, however, is motivated by
our focus on visual abstraction, rather than abstraction
as defined by historical criteria. Furthermore, the
questionable instances represent <1% of the total,
rendering this issue of little concern. A more probable
source of bias is represented by the portrait/landscape
aspect ratio. We address this issue in the Supplementary
Material, where we demonstrate that this bias is
negligible and that the aspect-ratio distribution is
well-balanced for abstract paintings, the class we are
most interested in.

Model architecture

The task of orienting an image can be thought of
as a simple classification problem with four classes,
each class corresponding with one possible orientation
for the painting. Within this family of machine
learning problems, the classification of items from
ImageNet (Russakovsky et al., 2015) has led to the
development of several deep learning models dedicated
to image processing, in particular convolutional neural
networks. There is now extensive evidence highlighting
similarities between convolutional neural networks
and the mammalian visual pathway (Kriegeskorte,
2015; Yamins & DiCarlo, 2016). Among such artificial
neural architectures, the most popular are AlexNet
(Krizhevsky et al., 2012) and VGG (Simonyan &
Zisserman, 2014). Based on its complexity and reported
accuracy on ImageNet, we selected VGG-16 (PyTorch
implementation; Paszke et al., 2019) as an appropriate
starting point for this study.

Figure 2 shows the schematic architecture of our
network. All convolutional blocks in gray (1–5) are
directly ported from VGG. They consist of multiple
convolutional layers with rectified linear units (ReLU)
activation functions followed by max-pooling. Our
implementation does not use batch-normalization and
we removed the original linear layers of the classifier to

be replaced by a custom-designed classifier-5, composed
of a convolutional layer (kernel size = 7, stride = 3) and
linear layers (sizes = [512, 128, 32]). ReLU activation
functions and dropout units are applied to all layers
except for the last one, to which we applied a softmax
function for classification purposes. The dropout rate is
of 0.30, except for units before the last layer with a rate
of 0.15.

The main feature of our network is that its linear
layers are convolutional with kernel size 1. We adopted
this formulation to enable inspection of the spatial
distribution associated with classified outputs. The
consequence on classifier-5 is null because, at this
depth in the network, its output (height = 1, width
= 1, classes = 4) is generated by a receptive field
covering the entire input image. The implication
for the other classifiers (1–4), inserted after each
convolutional block corresponding to earlier visual
areas, is that they have access to small receptive fields.
As a consequence, classifier-1 (earliest level) produces
for example a classification output of shape (36, 36, 4),
as if the network simultaneously judged the orientation
of multiple fragments across the picture. This
architecture makes it possible for us to inspect network
behavior at different depth and for cues of differing
granularity.

Training procedure

Input images conform to the VGG format with
resolution 224 × 224 pixels and color normalization
computed from the ImageNet database. In principle,
all parts of a painting may be relevant to judging its
orientation, making it inappropriate to crop images
into a square shape. We therefore scaled images so
that their largest dimension was 224, and fill the
remaining empty space with the ImageNet mean value
(Figure 3a). These manipulations raise two possible
concerns. First, downsampling to a lower resolution
may leave out useful orientation cues from the original
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Figure 2. Schematic architecture of the multilevel orientation classification model employed in this study. Each of five convolutional
blocks is associated with a classifier (indicated by classifier-n with n = 1 to 5). The output dimensionality of each classifier is indicated
by (x, x, 4), where x is the number of samples across each spatial dimension (see density of circle array within insets overlaying local
filters onto painting), and 4 is the number of orientation labels {up,90,180,270}. The four values within [ ] show one example of the
categorical distribution generated by the network for Komposition VIII byWassily Kandinsky (1923). In the legend, k/s stand for
kernel/stride size.

Figure 3. Effect of median filtering on network attention, visualized through guided error back-propagation. Error map is inverted and
thresholded for legibility. Light gray indicates pixels where attention reaches at least 1% of its maximum (moderate attention); dark
gray indicates pixels where it exceeds 10% (high attention). (a) shows original images used for training. (b) shows directed attention in
the absence of median filtering applied to the borders, (c) in the presence of median filtering. Two examples by Paul Klee are shown:
The Place of the Twins (1929) and After Annealing (1940).

image. This is possible; however, general considerations
about the nature of the images, combined with cursory
inspection of representative examples, indicates that
composition is a global property that is retained at the
adopted resolution. For example, the images shown in
Figure 1 are downsampled using the same algorithm
we used for the experiments: these paintings are still
highly recognizable and understandable. Furthermore,
our study is designed as a comparative behavioral
experiment between humans and a deep learning
model; we expect that the two systems should be
similarly impacted by downsampling. The second

potential concern relates to color normalization of the
paintings. If carried out incorrectly, this procedure may
disrupt the perceptual analysis of color and partially
alter compositional effects. To avoid this undesirable
outcome, we compute mean and standard deviation per
channel at the dataset level, not at the level of individual
images. Therefore, when normalization is carried out
using these mean and standard deviation values, relative
color differences and local contrast are conserved at the
painting level.

We minimized overfitting using simple data-
augmentation techniques: first, we applied random
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color gamma correction outputc = inputγcc where
γc = 20.5a+0.25bc , a a random scalar and b a random
vector sampled from uniform distributions over [−1, 1].
Second, images are randomly rotated by up to 5◦
in either direction and randomly shifted along their
shorter dimension within a range such that the whole
image remains visible. To accelerate training, we
relied on the pretrained model provided by PyTorch.
Parameters for the convolutional blocks are not fixed,
so they are fine tuned for painting material during
training. When filter parameters are fixed, performance
is substantially reduced (see Supplementary Material).
We used cross-entropy loss for optimisation as is
customary in classification problems. Optimization is
performed by an Adam algorithm with learning rate
1e−4 and a scheduler that decreases this learning rate by
a factor of 10 when network accuracy remains stable
across two epochs.

Testing procedure

At the adopted resolution of the input images,
some pictures retained spurious cues to their original
orientation, such as artist signatures or handwritten
titles near the border. We solved this issue as follows.
We initially relied on guided back-propagation to
visualize regions emphasized by the model during a
preliminary training procedure, and found that the
network directed attention to artist signatures and
other written characters usually within the bottom
region of paintings (Figure 3b). These cues can be
trivially exploited to determine picture orientation, but
are not connected with composition, so our goal was
to remove them as effectively as feasible in automated
fashion (manual editing was not an option for such a
large database). We applied a median filter with a ramp
along all borders of each painting (filter of size 5, full
on the outer 5% of the image and with a ramp to zero
up to the 20% point). Median filtering is preferable to
Gaussian filtering because it removes high-frequency
noise while retaining sharp edges. This border-based
median-filtering procedure is only applied during
validation because it is not useful during training:
the network is still able to learn residual artefacts
associated with signatures. Figure 3c demonstrates
that, even though the network has learned to exploit
signatures during training, it successfully reallocates its
attention to other parts of the painting when median
filtering is applied to borders during validation. Results
reported in this article (most importantly validation
scores) are averaged separately for each painting over
four presentations of that painting in every possible
orientation. Model performance refers to average
top-1 scores. Top-1 accuracy is 1 if the most probable
predicted class is the targeted class, 0 otherwise.

Web-based experiments

We developed a dedicated website for human data
collection. Before accessing the experimental platform,
participants registered and specified their age as well
as their general knowledge of art material. In the
first experiment, participants were required to select
the original orientation of randomly picked abstract
paintings successively presented in blocks of 10. Each
painting was presented in isolation and could be
oriented interactively by the user; once the participant
was satisfied with a particular orientation, this was
selected by pressing a button and triggered presentation
of the next painting in the sequence. If any element in
the painting could serve as obvious hint to the correct
orientation, like a word or a signature, people were
asked to report it via a dedicated button. After each
series, a figurative painting of obvious orientation was
inserted into the sequence to check whether participants
were meaningfully engaging with the task. To motivate
their interest and maintain their focus, participants
were provided with feedback at the end of each series
detailing performance scores and information about
the paintings. In the second experiment, participants
saw fragments of both abstract and figurative paintings.
The fragments were sized to span the approximate
size and location of fragments accessible to the
network for each classifier. Under these conditions,
the task was perceived as challenging and sometimes
puzzling owing to the fragments often being small and
blurry; however, it produced interesting results for
understanding compositional perception at different
granularities. Because we sought to randomly sample
paintings from the same style distribution as the model
dataset, we excluded categories with a small number
of entries to avoid unreliable measurements. More
specifically, the abstract category included the following
styles (in decreasing order of representation): Abstract
Expressionism, Abstract Art, Art Informel, Color Field
Painting, Minimalism and Lyrical Abstraction; the
figurative category only included Romanticism. We
collected an average of 50 trials per participant from
71 participants aged between 15 and 67 and coming
from 8 different countries. As an indication that our
sample is representative of those commonly used in
the literature, our measured average accuracy of 47%
(Figure 9b) is highly consistent with values reported
by existing studies (Lindauer, 1969; Mather, 2012).
We excluded eight participants with scores of less
than 0.75 for figurative styles and of less than 0.25 for
abstract styles who had typically collected fewer than
10 trials. The inclusion of these participants lowers
overall accuracy to 46%, but does not alter the general
pattern of the results and their interpretation. We also
recorded reaction time, age and general knowledge
of art material (as self-reported via questionnaire);
these factors are tangential to the present study, so
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Figure 4. Model performance on whole paintings grouped by genre (a) and style (b).

they are only briefly discussed in Supplementary
Material.

Guided back-propagation

This neural network visualization technique consists
of back-propagating the true class/label (binary one-hot
distribution) as an error through the network all the way
back to the input image. Because the network applies
more correction to regions of the input image where
information is most useful for achieving categorization
of the back-propagated class, those regions map
out the equivalent of attentional deployment by the
network (Figure 3c, Figure 5b). The guided variant of
back-propagation was introduced by Springenberg et
al. (2015) to improve back-propagation of the gradient
through ReLU activation units.

Cross-entropy

Given target probability distribution p and estimated
probability distribution q, cross-entropy is defined
as H (p, q) = H (p) + DKL(p ‖ q) where H (p) is the
entropy of the target distribution (i.e., the average
amount of uncertainty/information about p) and
DKL(p ‖ q) is the Kullback–Leibler divergence from
q to p (a measure of the difference between the two
distributions). When target distribution p is the final
classified label (binary one-hot distribution), H (p) = 0
and cross-entropy simplifies to DKL(p ‖ q); to optimize
this function, the model simply pushes the q estimate
to match p as closely as possible. We also compute
cross-entropy for target distributions other than the
final one-hot label; more specifically, we compute
distributions for fragments at level n (q in notation
above) and measure their predictive power for target

distributions of closest fragments at level n + 1 (p in
notation above). The goal of this between-level metric
is to measure redundancy between distributions at
different levels. To produce a more interpretable metric
in Figure 8, redundancy is defined as exp[−H (p, q)].
The maximum redundancy is 1, corresponding with
0 cross-entropy. A chance level can also be defined as
the cross-entropy between equiprobable distributions,
simplifying to a redundancy of 0.25 with four classes.

Results

Model performance on whole paintings

Model performance on whole paintings of
the abstract genre is around 50% (Figure 4a), in
excellent agreement with human measurements from
existing literature (Lindauer, 1969; Mather, 2012).
Performance also progressively improves from abstract
to objects, landscapes through to portraits (Figure 4a).
Qualitatively speaking, this progression seems to be
related to the characteristics of possible orientation
cues, such as their diversity and reliability. For example,
Portraits (e.g., Mona Lisa in Figure 1) contain faces
that are almost exclusively in the upright orientation,
making for highly stereotyped and reliable cues. Genre
Paintings often display people in standing position,
during battles, religious ceremonies or everyday life
(e.g., The Meeting (Bonjour Monsieur Courbet) in
Figure 1); cues are still primarily restricted to human
characters, but are less stereotyped due to different
(potentially conflicting) body poses. Landscapes and
Figurative genres display greater diversity of cues,
more abundant but certainly less reliable: trees and
clouds can be seen via water reflections and objects
may not be associated with specific orientations. Along
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Figure 5. Network attention through guided error back-propagation (see Methods). (a) Five examples of original inputs for validation
(Komposition VII byWassily Kandinsky (1913), Still-Life with Drinking-Horn byWillem Kalf (1653), Argenteuil seen from the small arm
of the Seine by Claude Monet (1872), The Meeting (Bonjour Monsieur Courbet) by Gustave Courbet (1854),Mona Lisa by Leonardo da
Vinci (1503-1519)). (b) Error maps with inverted and thresholded intensity. Light gray indicates pixels where attention reaches at least
1% of its maximum (moderate attention); dark gray indicates pixels where it exceeds 10% (high attention). Numeric values report light
and dark pixel percentages over the entire painting surface. (c) Average surface ratio of high attention, plotted separately for different
genres.

this qualitative scale, Nude is perhaps the only genre
that seems to be misplaced (right before Landscape
in Figure 4a), because one may expect that it should
be similar to Genre Painting. Looking at Young Girls
on the Edge of the Sea in Figure 1, Nude paintings
seem to explore an extended range of body poses,
making body orientation a potentially unreliable
cue.

To investigate this interpretation more quantitatively,
we can visualize the network’s error back-propagation,
a technique that exposes regions where the network
directs its attention during evaluation. The spatial
organization of attentional deployment offers useful
insight into the diversity of available cues. Consider
Mona Lisa in Figure 5b: the most active attentional
areas, indicated by dark gray pixels, are highly
localized and limited to facial details. In comparison,
Kandinsky’s Komposition VII prompts the model to
gather information across the entire image. For Monet’s
landscape and Kalf’s still life, the model operates in
a manner that appears to sit halfway between those
two extremes, in line with the hypothesis described
earlier. We attempt to quantify this trend by simply
measuring the proportion of image pixels where the
back-propagated attentional signal exceeds 10%. When
plotted separately for the different genres (Figure 5c),
this quantity is well aligned with the genre ordering of
Figure 4a. If we adopt pixel area as a proxy for cue
numerosity, the network model uses nearly 3.5 times
more cues for Abstract paintings than Portraits. In this
ranking, Nude is closer to Genre Painting, as expected
from our earlier qualitative considerations. Finally,
Sketches may be expected to occupy a position closer
to the Abstract genre; however, the sparseness of line

content over the flat canvas may explain the lower ratio
reported in Figure 5c.

A related concept for ordering model performance
on different art material is the reliability/interpretability
of available orientation cues, which may reflect the
purported importance of “meaningful” content for
orientation judgements. From this perspective, painting
style (rather than genre) may offer better insight into
the role of image content. For example, portraits
from Leonardo da Vinci and Picasso (see Figure 1)
encompass different degrees of ambiguity. With this
notion in mind, Figure 4b demonstrates a lawful
relationship between performance and abstraction
level (concreteness): from abstract style to Cubism,
Symbolism, and post-Renaissance realism. Therefore,
taken as a genre or a style, abstraction is in both cases
the most difficult material to orientate.

These observations may be summarized by the
notion that, although abstract orientation cues are
widely distributed across the canvas, they seem to
carry limited predictive power. By and large, these
visual features are likely employed by artists regardless
of their orientation; nonetheless, the associated
performance in the orientation judgment task is
well above chance. A recent study (Specker et al.,
2020) reports that human observers share artistic
judgment more effectively in relation to whole abstract
artworks as opposed to isolated elements (lines and
colors). Therefore, it appears that, in the absence
of preferred orientation for individual elements, the
only effective source of information must come from
the combination of the different cues into specific
arrangements that may or may not be represented at the
level of the perceptual/neural process. The progressive
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Figure 6. Model performance across classifiers. Values are grouped by style (as in Figure 4b) and displayed separately for the five
distinct classifiers. (b) plots values from (a) after rescaling between chance and maximum value for given style (corresponding to
performance of classifier-5).

construction/representation of compositional patterns
is a phenomenon of central interest to our study, and
one which we hope to understand further by examining
the role of local image cues/fragments in greater detail
(discussed further in the next Section).

Model performance on fragments

We are in a position to study model behavior for
earlier layers via inspection of classifier-1:4 (Figure 6a).
Model performance shifts toward chance as its spatial
resolution is restricted to smaller receptive fields and
could be rephrased as “more is better.”We interpret this
trend as reflective of the commonly regarded high-level
nature of the orientation judgement (Neri, 2014;
Valentine, 1988). Perhaps related to this observation,
a recent investigation of human aesthetic judgement
viewed from a neural network perspective (Iigaya et al.,
2020) reports that judgments of “concreteness” become
increasingly dominant with neuronal integration.
We also find that, when values are normalized by
the performance level associated with classifier-5
(Figure 6b), the dependence on deeper layers increases
with abstraction level of the painting.

We can gain more insight into the issue of granular
representation within the model by plotting predicted
orientations from individual receptive field units
(Figure 7). The first and most obvious characteristic
of these results is that figurative paintings are more
spatially redundant than abstract paintings: they offer
orientation cues more uniformly spread across the
image down to small scales. Further to this observation,
although the results for figurative paintings at coarser
scales can be roughly predicted from those at finer scales
via simple integration of local cues, this rule does not

seem applicable to abstract paintings: a large fragment
is not reflected by simple averaging of smaller related
fragments.

To quantify redundancy between adjacent classifiers,
we measure how well distributions at level n describe
those at level n + 1 using rescaled cross-entropy (see
Methods). This quantity is plotted in Figure 8; it
ranges between chance (level n + 1 cannot be predicted
by level n) and ceiling performance (level n + 1 can
be fully predicted by level n). First, we notice that
redundancy increases as we transition from the earlier
layers to the later layers, meaning that redundancy
increases along the processing pipeline. For example,
redundancy between classifiers 1-2 and 2-3 remains
near chance across all styles. As we transition to later
levels (description of classifier-5 from classifier-4),
figurative paintings show a strong correlation between
classifiers, while abstract paintings remain close to
chance.

A different (but related) way of thinking about
Figure 8 is to consider the progressively expanding
horizontal bars for figurative paintings as reflecting a
gradual emergence of a structured representation that
is largely shared across layers. Whatever properties
are being represented by the network to support
classification, their representation is constructed
incrementally along the processing hierarchy and
is therefore distributed across layers. In the case of
abstract art, representation of relevant properties does
not appear to emerge gradually along the pathway.
Classifier-5 seems to represent a global property
of abstract art that is not transparently available
from earlier layers, and which we speculate may be
connected with composition. It is true that earlier layers
support an appreciable level of task performance (see
Figure 6a), but our cross-entropy analysis indicates that
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Figure 7. Predicted orientations from individual receptive field units within each classifier. Different classifiers (1–5) are plotted from
left to right. Relative size of the four wedges within each circle reflects prediction strength across the four different orientations.
Examples are shown for three paintings (dates given when known): Argenteuil seen from the small arm of the Seine by Claude Monet
(1872), The Waterfall of Amida behind the Kiso Road by Katsushika Hokusai, After Annealing by Paul Klee (1940).

Figure 8. Redundancy between adjacent classifiers, grouped by style. This metric corresponds to rescaled cross-entropy between
classifier distributions at level n and those at level n + 1 (see Methods). Values are averaged across fragments. Along x axis, c.p.
stands for ceiling performance.

this is achieved via representation of other task-relevant
properties that do not share characteristics with those
represented by classifier-5.

To summarize these results, it appears that abstract
art suffers from higher local variability of compositional
effects, requiring spatially extended integration of
orientation cues for them to cohere into a reliable
orientation estimate. Deeper layers must represent
emergent global properties that are not necessarily
available to previous layers; these properties may be
connected with Gestalt principles associated with
abstract material, for which the whole is more than
the sum of its parts. It is true that we measured
performance levels that are relatively low (albeit well

above chance), and that this observation alone prompts
caution in potentially overstating the universality of
this phenomenon; nonetheless, it also implies the
existence of a mechanism that is clearly structured to
a measurable extent (i.e. stands above chance). Partial,
but systematic, neural integration of image features
has also been described for other aesthetic judgments
(Iigaya et al., 2020). To determine whether these
findings are idiosyncratic to our model or, as we hope,
they reflect real compositional mechanisms of more
general relevance to cognition, we report on human
behavioral experiments designed to retain the closest
possible connection with the above characterization of
the network model.
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Figure 9. Human versus model performance for whole paintings and fragments. In (a), model performance from classifier-5 is plotted
alongside human performance on whole paintings (dark versus light bars, respectively), grouped by style. In (b-c), model performance
from different classifiers (1–5) is plotted alongside human performance on image fragments, separately for abstract (b) and figurative
styles (c).

Human experiments and comparison with
network model

Among abstract styles, human observers have
the most difficulty determining the orientation of
images from Color Field Painting (e.g., Mark Rothko)
and Minimalism (e.g., Francois Morellet), as these
styles provide less pictorial content and more perfect
symmetries. Figure 9a demonstrates that results
from the neural network are well-aligned with the
corresponding human results (except for Color Field
Painting).

The model-human correspondence also exists on a
per-classifier basis (Figures 9b, c). For this analysis, we
compare model performance from different layers with
human performance for different fragment sizes. We
emphasize that values for the model are not obtained
by presenting the model with fragments (as for example
in Rodriguez et al. (2018)): here the model is always
presented with full-size images. Different values refer
to different classifiers at different depths. We can
establish a one-to-one pairing between network layer
and fragment size because, when selecting fragment
size in the human experiments, the different sizes were
tailored to the receptive-field size of different layers
within the model. Other than that, there is no obvious
connection between model and human results, meaning
that it is not trivially expected that values obtained from
different network depths should mirror those obtained
from human measurements at different fragment
sizes.

We find good correspondence between the two
sets of results: abstract and figurative styles show the
same progression of performance across different
fragment/receptive-field sizes (r2 = 0.976 with
p < 0.001). One implication of this result is that,
if we assume that the network model represents an
acceptable approximation to the human visual pathway
(Kriegeskorte, 2015; Yamins & DiCarlo, 2016), we
should be able to probe activity at different levels
within the pathway by simply restricting fragment size
in a behavioral experiment. Although this result may
seem trivial on the surface, it is not to be taken for
granted when the output metric is a relatively complex
perceptual judgment (see Discussion for more in-depth
consideration of these issues). Further experiments
using different behavioral tasks would be necessary to
confirm/disprove the generality of this result.

Our proposed model is not only able to replicate the
extent to which humans produce correct responses,
but also specific patterns according to which humans
produce incorrect responses. Figure 10 plots normalized
frequency of incorrect predictions (three orientations
other than the upright orientation of reference) across
classifiers (for model in a and b) and fragment size
(for humans in c). It is evident that, when incorrect
responses are produced, there is a tendency on the part
of both model and humans to select the orientation
180◦ away from the orientation of reference (painting
in upside-down configuration) more often than those
orthogonal to it. This anisotropic effect applies to all
styles for the model (Figure 10a) and is particularly
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Figure 10. Normalized frequency of incorrectly predicted orientations across classifiers for model, all styles (a) and abstract style (b);
across fragment size for humans, abstract styles (c). eq. stands for equi-frequency. Examples are shown for three paintings: Argenteuil
seen from the small arm of the Seine by Claude Monet (1872), Komposition VII byWassily Kandinsky (1913), Komposition VIII by
Wassily Kandinsky (1923).

pronounced when analysis is restricted to abstract
paintings (Figures 10b, c); for this type of art material,
model and human behavior are well-correlated
across classifiers and fragment sizes (r2 = 0.745 with
p < 0.001).

The correspondence between human and model
behavior for incorrect responses indicates that, in both
cases, some image features present horizontal/vertical
compositional cues that support alignment of the
image along either horizontal or vertical axes, without
providing useful information for determining how the
image should be mirror-flipped around the chosen axis.
Consider, for example, an image containing a mountain
reflected against a lake in front of the mountain; clearly,
a human observer is able to orient this image so that
one mountain is above, and the other one is below.
However, if the observer were asked to determine which
mountain should be on top and which below, he or
she may be unable to make such a determination (in
the assumption that the lake produces a nearly perfect
reflection of the mountain above it). Similarly, if the
observer were asked to determine whether the image
should be flipped left-right or not, he or she may be
unable to produce an informed answer. Our results
indicate that cues of this kind are available from the
image database we constructed, and that both model
and human are able to exploit them in similar fashion.
In Figure 10, the upside-down confusion also seems to
be more pronounced for later/larger layers/fragments,
suggesting that the horizontal/vertical opposition
emerges as a consequence of spatially broad cue
integration. On abstract material, across classifiers and
fragment sizes, a Cuzick’s test (Cuzick, 1985) confirms
this trend with p = 0.012.

Human/model comparison on a per-painting
basis

So far, we have considered the behavior of humans
and model without referring to individual paintings.
For example, when we say that model performance
matches human performance for orienting abstract
art, we mean that out of 100 abstract paintings, the
model responds on average as correctly as the human
observers. This finding does not mean that model
and human responses match at the level of individual
paintings: the model may be correct for 50 out of 100
paintings, and so may be the human observer, but the
50 paintings for which the model is correct may be
those 50 for which the human is incorrect. To address
this possibility, below we consider model versus human
responses on a per-painting basis.

Figure 11 plots the density distribution of joint
orientation choices generated by model and humans
for individual abstract paintings. If model and humans
were to agree on the orientation of every painting,
modulations would only be present within the diagonal
bins; all other values should be zero. Because all values
must sum to 1 in each plot, we can take the sum of
the diagonal values as an indication of model–human
agreement (the sum is 1 when model and humans fully
agree, 0 when they consistently disagree). The diagonal
sum is significantly different from the null prediction
only for whole paintings (Figure 11e); when data
are plotted for humans orienting smaller fragments
and model responses from more superficial layers
(Figures 11a–d), agreement decreases to around chance.
But how do we assess significance in relation to the
statements above?
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Figure 11. Density distribution of joint orientation choices generated by model and humans for individual abstract paintings,
computed separately for different fragment-size/classifier from small/early (a) to large/late (e). Diagonal values correspond with
matching responses (humans and model generate the same response); the diagonal sum (indicated by large white digits) is therefore
termed “mutual agreement.” Its value is z-scored against the null hypothesis of human/model independence of choices (see main
text for clarification). Intensity of white digits and thickness of diagonal orange line scale with corresponding z score. Bottom-left
value reports agreement on target orientation.

There are at least two different ways of defining a
null hypothesis against which to test significance of the
agreement value. The simplest approach is to define the
null hypothesis as one where both humans and network
respond randomly; in this case, the expected value for
each pixel in the 4×4 surface plots of Figure 11 is
simply 1/16, and the expected sum across the diagonal
is 1/4. Although this approach may be appropriate
for evaluating whether humans/models perform above
chance, we find that it is inadequate for the purpose
of addressing the specific issue we formulated at the
beginning of this section. Consider, for example, a
scenario in which humans and the model are always
correct, regardless of the specific painting that is
presented to them; clearly, they are also always in
agreement with each other, merely as a consequence
of being correct: the diagonal sum would be 1 and,
when tested against the null hypothesis as outlined, it
would be highly significant. We would then incorrectly
conclude that humans and model behave similarly on a
per-painting basis. A similar issue arises if, for example,
humans and model are always incorrect by consistently
reporting the upside-down orientation: again, they will
be 100% in agreement, but this outcome does not carry
any specificity for distinct paintings. More generally,
this problem applies to any non-random pattern of
responses on the part of humans/model, including less
extreme versions of the scenarios outlined above; that
is, ones where a given response is not certain but has an
associated probability different than chance. Our goal is
to define the null hypothesis in relation to this class of
scenarios.

To establish a baseline level for agreement, we
calculate expected agreement under the hypothesis that
humans and model act independently with relation
to specific paintings: on any given trial, we assume
that humans produce the four possible responses with

probabilities {p↑, p→, p↓, p←} regardless of the specific
painting that is presented, and the model produces
those responses with probabilities {q↑, q→, q↓, q←};
using the empirical estimates for these quantities, we
calculate the expected value for their agreement a0 and
its standard deviation σ0 on a per-painting basis. We
then assess the experimentally measured agreement
value â in relation to this baseline via (â − a0)/σ0
(z-score); that is, we determine how far the observed
agreement values score over and above their expected
level under the hypothesis that humans and model
present no per-painting association. When we apply this
calculation, we find that the agreement value associated
with the whole-painting/classifier-5 dataset (Figure 11e)
returns a large z-score (>5), whereas the z-scores
associated with the other four datasets (Figure 11a-d)
barely reject the null hypothesis of independence. We
therefore conclude that, although humans and model
perform similarly on average across the entire database
for all fragment-size-versus-classifier comparisons (see
Figure 9), their strategies may differ on a per-painting
basis. More specifically, when humans have access to
fragmentary information about a specific painting, and
the network is restricted to early classifiers, humans
adopt a decision strategy that bears little resemblance to
the strategy adopted by the network. In contrast, when
the whole painting is available to human observers and
the network has access to classifier-5 information, their
strategies present similarities that are specific to the
given painting and extend to both correct and incorrect
classifications.

We propose the following explanation for these
results. Earlier classifiers (corresponding to smaller
receptive fields) only have access to fragment-like
information during training; this constraint may steer
the classifiers towards discovering local statistical
regularities for the purpose of identifying the overall
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Figure 12. Comparison between our model and the results
reported by Mather (2012). (a) The average human and model
performance. The original article reports human mean
performance per painting. This quantity is not directly
comparable to top-1 accuracy of the model, because the latter
does not reflect the level of uncertainty for each painting. We
have therefore chosen to plot the raw prediction value for the
correct orientation as the model metric to plot against human
performance (b).

orientation of the painting. The resulting strategy
may differ from the way in which humans approach
fragments of Abstract art: the human tendency is to
consider sub-parts of an abstract painting as a new
complete painting, rather than as a fragment. An
additional factor that may be relevant in this context
is the well-documented inconsistency of aesthetic
judgments across observers, especially for abstract
material (Leder et al., 2016; Schepman et al., 2015;
Specker et al., 2020; Vessel, 2010; Vessel et al., 2018).
Although the network model does not suffer from
subjective variability in the human sense, it is affected
by the stochastic nature of the training protocol.
Therefore, it is possible to quantify and compare
internal noise between model and humans (Neri, 2010),
an endeavor which we hope to pursue in future research.

We find similar results with human data collected
by others. Our model is better than human observers
for the selection of paintings adopted in Mather
(2012) (Figure 12a), similar to the small difference we
observe for our own data (Figure 9b). When we plot
model-versus-human responses to individual paintings
from this prior study (Figure 12b), we find a measurable
trend (p = 0.002), but the magnitude of the correlation
is relatively small (r2 = 0.231) (see Dodge & Karam,
2017 for related results). Clearly, the detailed behavior

Figure 13. Painting-by-painting human agreement with network
model (top), the artists who painted the images used in our
study (middle), and other humans from our sample of
participants (bottom). This analysis was restricted to abstract
material.

of our model on a per-painting basis presents some
limitations that will require further investigation.

Human agreement with model/artist/other
humans for abstract paintings

Figure 13 reports human overall agreement with
the model (classifier-5), the artist (whose choice is
used as correct reference above) and other humans,
for judgments made on whole paintings (data from
fragments is excluded from this analysis). The model–
human agreement is 42%. Agreement with artists is
the same as human performance (already reported in
Figure 9b) and it is slightly higher at 47%. Because
model performance is close to human performance, this
difference in agreement is due to the discrepancy already
highlighted in Figure 11. Finally, for paintings that
have been evaluated multiple times by humans, we can
compute mutual agreement via average agreement of all
possible pairs of judgements per painting. Defined this
way, inter-human agreement reaches 49%, amusingly
suggesting that artists themselves may not be the most
reliable reference on this task or, more likely, that some
artists deliberately choose non-optimal orientations
(insofar as optimality is defined with reference to the
orientation considered most appropriate by an average
human observer).

Discussion

Relations to art composition

Despite its rich history, the study of pictorial
composition has been hampered by the inherent
combinatorial complexity of how graphical elements
interact on canvas. Our goal was to determine whether
modern computational tools, in particular deep
learning, may help to tackle this difficult problem and
advance our understanding of abstract art composition.
Engaging with a research programme of this kind
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brings up an immediate problem: how do we go about
quantifying the perception of art composition in
humans? It goes without saying that the cognitive
phenomena underlying composition, both those
exploited by the creating artist and those engaged by
the observing spectators, reach far beyond the remit
of one scientific study. Moreover, we would like to
draw a distinction between “objective” description and
“metric” description: a metric description does not
necessarily imply an objective description. Our goal
is not to objectify the meaning or the interpretation
of the composition, neither defining rightness of
compositions, but to build a metric of composition
based on data, that is, existing paintings from a
specified limited spectrum. Objectiveness of the metric
is then transparently constrained by the range of the
dataset itself, rather than its fundamental correctness.
We want to organize composition around measurable
dimensions that are relevant to human perception, so
that perceptual processes may 1) serve as a guide in the
identification of important dimensions for candidate
metric(s) and 2) enable quantitative measurements
of how pertinent those metrics are to composition.
As a consequence, we do not have a definitive answer
concerning whether and how the chosen metric is
connected with the notion of “objective” description.
Possibly, we will never have such an answer because
the very concept of objective description may not
exist. This consideration has forced us to focus on
a relatively simple, yet critical metric of perceptual
judgment relating to art material: determining the
overall orientation of the picture (Lindauer, 1969, 1987;
Liu et al., 2017; Mather, 2012). We view this as a first
humble step in the direction of answering the question
laid out in this article, and therefore recognize that a
satisfactory account of art composition will require
further research. Notwithstanding the simplicity of this
behavioral metric, we discuss below its merits and its
connection with existing literature in vision science.

Anecdotal evidence from the art world provides
some relevant points of contact with the judgment task
used in this study. Upon returning home, still lost in
his thoughts, Kandinsky once noted: “I suddenly saw
a painting of indescribable beauty, impregnated with
great inner ardor. I was at first dumbfounded, then
I quickly reached this mysterious painting on which
I only saw shapes and colors and whose subject was
incomprehensible.” (Kandinsky, 2014). As a matter
of fact, he was looking at one of his own paintings,
but set out in unfamiliar orientation. A mere change
of orientation in the picture was sufficient to spark
a perceptual reaction that would conjure up a novel
composition, serving as a cursory indication that
image orientation and art composition are somehow
connected, albeit in ways that we (or even the artist)
may not fully understand. If we accept that this
connection may be present, we must then ask whether

orientation judgments of art material are supported by
perceptual mechanisms that overlap with those studied
by visual psychophysics; in other words, is vision science
an appropriate tool for understanding this problem
at any meaningful level (Mamassian, 2008)? There is
evidence to support this additional connection: portrait
artists, for example, are more efficient at certain visual
discrimination tasks than non-artists; however, they are
equally subject to the well-known face inversion effect
(Devue & Barsics, 2016), a phenomenon intimately
linked with the perception of overall image orientation.
This brings us to the last connecting element between
art composition and vision science: if we accept
that global orientation judgments are relevant to art
composition, and if we accept that judgments of
this kind may engage similar mechanisms to those
operating in other visual skills, we then ask whether
this task is also important for understanding vision in
general. Existing literature provides clear answers to
this question.

Relations to existing literature in vision science

Prior studies offer numerous demonstrations of
perceptual inversion effects in relation to meaningful
visual material, such as faces (Valentine, 1988) or
moving bodies (Chang & Troje, 2009; Neri et al., 2006,
2007). In these demonstrations, flipping the stimulus
upside-down generally disrupts perceptual analysis by
biological observers (human as well as non-human
Vallortigara et al., 2005; Vallortigara & Regolin, 2006),
even though it is not expected that this manipulation
should impact an artificial system for which up and
down do not necessarily carry any meaning (unless
the system has learnt about gravity). The impact
of stimulus inversion is characterized by a distinct
developmental trajectory (Zhao et al., 2014) and has
been associated with specific regions of visual cortex
(Grossman & Blake, 2002). In short, at least within the
context of contemporary thinking about higher-level
vision, there is no doubt that stimulus orientation
represents a valid topic of enquiry for understanding
visual perception. More specifically, inversion effects
are intimately associated with the notion of holistic
processing, often summarized as “the whole is more
than the sum of its parts,” a concept that has played
a significant role in the study of higher-level vision
(Ullman, 1996). Inversion effects have been exploited
to selectively probe holistic processes in a number of
applications, ranging from natural scene perception
(Neri, 2014) to action processing (Taubert et al., 2011;
Cusack et al., 2015).

Furthermore, and in direct connection with the
present study, previous authors have argued that deep
neural networks should prove useful for the study of
perceptual inversion effects (VanRullen, 2017). In our
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study, perhaps the most pertinent demonstration of
the profitability afforded by this computational tool
is the stratification of relevant effects across layers
(Figure 6a); indeed, it is difficult to imagine how this
type of analysis would have been possible using more
conventional modeling tools. Collectively, our results
indicate that abstract art, more than other styles, relies
on global compositional principles that emerge deeper
into the network (Figure 6b), and that may bear on the
concept of holistic processing outlined above. The term
“global” may not encompass overly complex cognitive
phenomena, and may to some extent overlap with the
notion of ‘spatially extended’ as deeper layers possess
larger receptive fields. Nevertheless, we have also shown
that there is no simple/naive integration of orientation
cues that would explain the observed patterns in our
data (Figure 8). The issue of granularity remains largely
unanswered at this stage, although we do make some
progress in this respect.

Granularity and receptive field structure in
human versus network architectures

By breaking paintings into fragments, our goal
was to venture beyond prior studies and begin to
consider composition as dynamic interaction of
image subelements. As outlined, we find that local
features of abstract art are integrated into a global
representation that remains hidden from transparent
explanation. This may, or may not, conform to artistic
intuition. On the one hand, Abstract art explores
pictorial composition on a level that is not bound
by conventional relationships of experiential space,
so it may be expected that the underlying structure
should not be available at the level of simple spatial
integration. On the other hand, it is often the case
that Abstract art seems to be redundant across
space (e.g., some applications of action painting), so
that it would seem that little should be gained from
incorporating more spatially extended information.
Furthermore, Figurative art often presents complex
spatial relationships on a large scale; indeed, natural
scene perception is by no means a phenomenon that
can be easily reduced to naive spatial integration of
local cues (DiCarlo et al., 2012). We conclude that our
demonstration of emergent global encoding at deeper
layers for abstract art is not trivially expected based
on either conventional ideas about art material, nor
on mainstream considerations about receptive-field
structure in hierarchical models. We discuss the latter
issue further below.

The notion that visual cortex is organized along a
hierarchical pathway of visual areas with progressively
increasing receptive-field size is established (Dumoulin
& Wandell, 2008; Yamins & DiCarlo, 2016); however, it

is not at all understood how information is combined
from one area to the next. At this stage, we are
perhaps nearing adequate characterization and
computational understanding of the transition from
V1 to V2 (Freeman et al., 2013), but subsequent
transformations remain poorly understood. This
picture is further complicated by the known presence
of feedback processes (Lamme et al., 1998), which are
not implemented in any form within our model. With
this in mind, it is somewhat surprising that our model is
able to capture some properties of human orientation
judgments for isolated fragments by simply restricting
its access to more superficial layers. On the face of it,
this result indicates that, by designing experiments with
tailored fragmented stimuli, we may be in a position to
probe human perceptual mechanisms corresponding
to different layers in the model and possibly different
visual areas along the processing hierarchy. We contend
that this result is not trivial, both in consideration
of the unresolved issues associated with inter-aerial
transformations outlined above, and also in light of
the fact that the connection between the notion of
receptive/perceptive field on the one hand, and final
behavioral response on the other hand, is far from
being as straightforward as is often tacitly assumed
(Neri & Levi, 2006; Spillmann, 1971). In humans, we
cannot simply read out of earlier visual areas using
experimental tools; what we can perhaps do is force
observers to rely on signals from those earlier areas for
the production of behavior (which we can measure).
That we may achieve this by tailoring fragment size
is not trivially expected, particularly in relation to a
behavioral judgment that is not explicitly connected
with global integration and that involves higher-level
cognitive processes. We do not know whether the
same result would be obtained for other perceptual
judgments, an issue we hope to address in future
research.

Notwithstanding the correspondence between
human observers and model responses as discussed,
we do find conspicuous differences between the
behavior exhibited by the network and that measured
from humans. Interestingly, those differences become
particularly evident when we consider fragments,
less so with whole paintings (Figure 11). We propose
that this result should be interpreted in light of the
considerations discussed above. As we have already
noted, our model is purely feed-forward, that is, its
architecture fails to incorporate important recurrent
computations that are known to operate in cortex. It
is conceivable that related perceptual processes are
engaged by humans in our task, possibly contributing
to the discrepancy we observe with respect to the model
(see also Doerig et al., 2020 for related considerations).
Furthermore, the nature of the discrepancy may be
specific to the task/protocol we selected for this study
and/or to the resolution of our measurements. We do
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not have definite answers to these and other related
questions, some of which we have highlighted in this
Discussion. At this stage, we view our contribution
as a starting point for more in-depth studies of art
composition adopting a similar framework, namely the
integrated application of deep learning models, data-
driven extraction of regularities and psychophysical
validation in human observers. Our results demonstrate
that this approach is feasible and capable of generating
non-trivial insights and predictions into the mechanisms
underlying art composition in humans.

Keywords: machine learning, psychophysics, receptive
field, pictorial composition, inversion effect
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Supplementary Material

Genre and style categories used for model performance

For the purpose of legibility and ease of exposition, we grouped WikiArt genres and styles into new categories that retained

consistency with the original classification as closely as possible. Categories are described below in Table.S1 and Table.S2

Genre Painting (0.24) Genre Painting (0.58), Religious Painting (0.28), History Painting (0.04), Interior (0.03), Allegorical Painting (0.03),

Literary Painting (0.03), Battle Painting (0.01)

Landscape (0.23) Landscape (0.69), Cityscape (0.24), Marina (0.07), Cloudscape (0.01), Panorama (∼0)

Portrait (0.19) Portrait (0.92), Self-portrait (0.08)

Abstract (0.13) Abstract

Figurative (0.12) Figurative (0.40), Still Life (0.31), Animal Painting (0.14), Flower Painting (0.14)

Sketches (0.07) Sketch and Study (0.63), Design (0.37)

Nude (0.03) Nude painting (Nu)

Table S1: Genre groups used for model performance and corresponding WikiArt genres. Group frequency within the database and genre frequency within
the assigned group are indicated in brackets.

Potential role of portrait/landscape aspect-ratio bias

Portrait/landscape aspect-ratio distribution may represent a source of bias in the database, for example by artificially increasing the

chance level away from 0.25. As a way of illustration, consider the extreme scenario in which all paintings in our database come in

portrait format. Under this scenario, observers may ignore the content of the painting, and simply re-orient the frame to be in portrait

configuration on every trial. This strategy would correspond to a chance level of 0.5. To examine the applicability of this scenario

(or related ones) within the context of our database, Fig.S1 plots aspect-ratio distribution across the entire database (a) and separately

for different genres (b-e), together with the corresponding model performance (orange bars). Aspect ratio is defined as log2(
width
height ):

positive values correspond to landscape configuration, negative values to portrait configuration.

As expected, the Portrait genre contains more vertical paintings (Fig.S1b) and the Landscape genre contains more horizontal ones

(Fig.S1c). Across all genres (Fig.S1a), we find a slight preponderance of portrait paintings. Because model performance is globally

higher for the Portrait genre (Fig.4a), it is legitimate to ask whether this small bias in aspect-ratio may account for the difference in

performance. Under this hypothesis, we expect performance for Figurative and Abstract genres (which are well balanced, see Fig.S1d-

e) to be higher than performance for the Landscape genre, but this is clearly not the case for both positive and negative aspect log-ratios

(orange bars in Fig.S1d-e are shorter than orange bars in Fig.S1c on either side of each plot).
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Post-Renaissance (Romanticism, Real-

ism) (0.36)

Realism (0.35), Romanticism (0.28), Baroque (0.15), Neoclassicism (0.08), Rococo (0.07), Academicism (0.03),

Orientalism (0.01), Luminism (0.01), Tenebrism (0.01), Classicism (0.01), Biedermeier (∼0), Neo-Rococo (∼0),

Costumbrismo (∼0)

Abstract (0.15) Abstract Expressionism (0.25), Abstract Art (0.12), Art Informel (0.11), Color Field Painting (0.09), Minimalism

(0.08), Lyrical Abstraction (0.06), Op Art (0.05), Concretism (0.04), Hard Edge Painting (0.04), Tachisme (0.03),

Symbiotic Art (0.02), Post-Painterly Abstraction (0.02), Nouveau Réalisme (0.01), Spatialism (0.01), Neoplasticism

(0.01), Suprematism (0.01), Action painting (0.01), P&D (Pattern and Decoration) (0.01), Post-Minimalism (0.01),

Neo-Geo (0.01), Neo-Minimalism (0.01), Maximalism (∼0), New Casualism (∼0), Light and Space (∼0), Native

Art (∼0), Neo-Concretism (∼0), Automatic Painting (∼0), Indian Space painting (∼0), Neo-Orthodoxism (∼0),

Perceptism (∼0), Synchromism (∼0), Excessivism (∼0)

Impressionism (0.14) Impressionism

Post-Impressionism (Symbolism) (0.12) Post-Impressionism (0.58), Symbolism (0.36), Pointillism (0.04), Cloisonnism (0.01), Synthetism (∼0)

Expressionism (0.09) Expressionism

Renaissance (0.07) Northern Renaissance (0.38), Mannerism (Late Renaissance) (0.20), High Renaissance (0.19), Early Renaissance

(0.19), Proto Renaissance (0.04), Renaissance (∼0)

Surrealism (0.06) Surrealism

Cubism (0.02) Cubism

Table S2: Style groups used for model performance and corresponding WikiArt styles. Group frequency within the database and style frequency within
the assigned group are indicated in brackets.

-1 0 1
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0.5

0.75

1.0
r2 = 0.001

a

All Genres

−1 0 1
aspect log-ratio

r2 = 0.004

b

Portrait

−1 0 1
aspect log-ratio

r2 = 0.006

c

Landscape

−1 0 1
aspect log-ratio

r2 < 0.001

d

Figurative

−1 0 1
aspect log-ratio

r2 = 0.003

e

Abstract

accuracy (2 bins) density (2 bins) density (40 bins)

Figure S1: Aspect-ratio imbalance does not explain model performance. Left/right orange bars show model performance on whole paintings averaged
across negative/positive (portrait/landscape) aspect log-ratio log2(

width
height

), computed across all genres (a) and separately for 4 genres of specific interest
(b-e). Gray histograms plot aspect log-ratio density across paintings for two sampling resolutions: 40 bins (light gray) and 2 bins (dark gray). r2 correlation
values are computed between model performance and corresponding aspect log-ratio on a painting-by-painting basis.

In addition to the above observation, we can exclude a role for aspect-ratio bias more quantitatively by computing the correlation

value (r2) between aspect log-ratio and model performance on a painting-by-painting basis; this analysis returns tiny values (0.001

across all genres and no larger than 0.01 for each genre). More specifically, the r2 value of 0.003 is insignificant for our specific class

of interest (abstract paintings), rendering the issue of tangential relevance to the main conclusions of this study.

To further exclude a role for aspect ratio, we can compare performance on whole paintings (Fig.4) with performance on the central

fragment accessible from classifier-4. This square fragment is essentially a cropped version of the painting with no aspect-ratio bias.

As expected, overall performance is lower than corresponding performance on whole paintings: consider for example performance for

the abstract genre at 0.43 in Fig.S2a (central fragments) versus 0.51 in Fig.4a (whole paintings). Notwithstanding this expected drop

in model performance, Fig.S2 and Fig.4 demonstrate exactly the same ranking of genres/styles, leading us to conclude that aspect-ratio

bias in our database plays no role in relation to our main results.
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Figure S2: Model performance of classifier-4 on its central fragment for paintings grouped by genre (a) and style (b). Because the central fragment is
square in shape, these results are free of any potential aspect-ratio bias.

Model performance with fixed parameters for convolutional blocks

We attempted transfer learning from a pre-trained model (PyTorch implementation) by freezing the convolutional blocks. Perfor-

mance for this protocol is substantially reduced (Fig.S3) compared to the one reported in Fig.4b. Notwithstanding this overall drop in

classification performance, the overall trend across styles is largely preserved. The only measurable exception applies to Cubism and

Surrealism, for which performance was similar under the transfer-learnt model.
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0.37
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Figure S3: Model performance on whole paintings with frozen convolutional blocks, grouped by style.

Human performance with respect to art knowledge, age and reaction time

Previous studies (Lindauer, 1969) have demonstrated that humans can perform the orientation task regardless of their degree of

familiarity with painting material. During the registration process of our web-based experiment, participants were asked to rate their

general knowledge of art material as none, little, medium or significant. We do not report any substantial difference in performance

across these four categories (Fig.S4a).

Fig.S4b plots performance for different age groups. Within the 15-67 y.o. range (adults and young adults), we do not observe

measurable differences. Prior work (Arnheim, 1954/2004) has reported some differences between adults and children, but our dataset

does not support adequate assessment of the age range that is relevant to those observations.
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Figure S4: Human performance with respect to art knowledge (a), age (b) and reaction time (c).

We report an inverse relationship between performance and reaction time (Meadmore et al., 2014) (Fig.S4c). It appears that

orientation judgement is optimal when produced within 5 seconds of studying the image; decisions associated with longer inspection

times approach chance level. To understand which factors may be implicated in determining this relationship between performance

and time-to-decision, we plot reaction time (RT) distributions separately for abstract and figurative style (Fig.S5a). The mode of the

distribution is clearly shorter for figurative paintings (by >3 seconds), suggesting that lower performance at longer RT’s simply reflects

overwhelming representation of ambiguous image material (primarily abstract) within this performance/RT range.

Although the above interpretation appears reasonable, we report one piece of evidence that is not trivially compatible with it: RT

scales with fragment size, being shorter for smaller fragments and longer for larger fragments (Fig.S5b), a puzzling result given that

small fragments are typically ambiguous in their content. One possible interpretation for this result is that reaction time is dependent

on the number of available orientation cues needed to produce an overall orientation judgement, rather than ambiguity of content in a

semantic sense as suggested by the figurative-vs-abstract analysis from the previous paragraph. Clearly, the latter factor does play a

role when orienting figurative material with highly recognizable content, but it is not the sole factor at play. This factor set aside, the

results in Fig.S5b suggest that abstract art requires more complex and spatially extended integration of orientation cues to produce a

good judgement of overall orientation, in line with our findings (see Results).

Figurative Styles (mode : 2.09s)
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Figure S5: Reaction time density grouped by style (figurative versus abstract in a) and fragment size of abstract paintings (b). Smooth curves show
log-normal best-fits, with vertical line indicating mode of distribution. Only fits are shown in (b) for legibility.
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A.2 ART@VSAC 2019

ART@VSAC was a curated exhibition highlighting established and emerging artists.
It took place in 2019 at BAC Atelier in Leuven, Belgium, and my artworks have
been awarded the audience prize.

This exhibition was part of VSAC, the Visual Science of Art Conference, which
initially spawn as a satellite event from ECVP. Beside the art exhibition, this
conference was also accepting scientific contributions in the form of talks, posters,
and joint poster/artwork discussions. However, my goal was to experience the
setup of a real exhibition, and to meet the public. It was also a chance to convince
myself of being an artist. Therefore, I applied for the main exhibition, without any
direct presentation of my scientific work.

For this occasion, I prepared five A3 artworks. They are reproduced in Fig.A.3,
Fig.A.4, Fig.A.5, Fig.A.6 and Fig.A.7. Achieved in one month, this work was
challenging as I had to process the most recent third of my personnel dataset
of compositions, and to finish many algorithmic developments. The extremely
positive feedbacks from visitors made me more confident about my PhD project.

Nonetheless, even if the public was somehow a selected audience, familiar with
digital approaches to art, as soon as I spoke about AI in the presence of my drawing
machine (see photos in Fig.A.1), there was a certain confusion and invisibilization
of my true creative process. In people’s view, computer art is necessarily generative,
and the moving machine embodies its creative hand and mind. I ultimately believe
that technological aspects generally prevent people from looking at graphical
proposals themselves. Autonomous machines seem to grab the core attention,
and it is difficult to desacralize this fascination. This observation really made me
wonder about the necessity to show the pen plotter besides artworks. Even if
producing postcards in live, that spectators can keep, is an efficient manner to
question the material value of the presented work, there is way to improve the
communication about the conceptual work.

To get more insights about presented artworks, please have a look at the exhibition
catalogue reproduced in Fig.A.2.
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Figure A.1: Photographs of the exhibition venue.
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Pierre Lelièvre

PIERRE LELIÈVRE IS A FRENCH ARTIST 
AND RESEARCHER, BASED IN PARIS. HIS 
WORK FOCUSES ON PICTORIAL COMPO-
SITION AND IS DRIVEN BY AN ITERATIVE 
PROCESS, MIXING TRADITIONAL DRA-
WING AND ADVANCED ALGORITHMS.

AFTER STUDYING CINEMATOGRAPHY 
AT THE ENS LOUIS LUMIÈRE, HE BEGAN 
HIS CAREER AS A R&D ENGINEER FOR 
CINEMA AND VIDEO GAMES, PUSHING 
BOUNDARIES OF DIGITAL HUMAN PHO-
TOREALISM. MEANWHILE, HE STARTED 
TO DRAW AND COLLECT SMALL COM-
POSITIONAL STRUCTURES THAT FLOAT 
WITHOUT FRAMES. THIS PERSONAL DA-
TABASE PROGRESSIVELY REACHED 5000 
ELEMENTS AND BECAME THE STARTING 
POINT, AS WELL AS THE CORE MATERI-
AL OF HIS REFLECTION AND ARTISTIC 
EXPLORATIONS.

AS THESE PICTORIAL ELEMENTS IN-
CREASED IN COMPLEXITY, THE INTER-
NAL HARMONY PRINCIPLES, INTUITIVELY 
SUPPORTED BY A RECURRENCE OF GE-
STURES AND SPECIFIC COMBINATIONS, 
HAVE REMAINED VEILED, LOST BETWEEN 
ARBITRARY RULES AND TOTAL RANDOM-
NESS. THE LACK OF DESCRIPTORS AND 
MEASURING TOOLS TO UNDERSTAND 
THE BASIC MECHANISMS OF THE COM-
POSITION PERCEPTION, FINALLY CRYS-
TALLIZED IN HIS PHD PROJECT.

SINCE LATE 2018, HIS RESEARCH HAS 
BEEN FUNDED BY SACRE (SCIENCES, 
ARTS, CRÉATION, RECHERCHE) AND HO-
STED BY THE ENS (ÉCOLE NORMALE 
SUPÉRIEURE) IN PARIS. THE KEY ASPECT 
OF THIS PROGRAM IS TO PROVIDE AN 
INTERDISCIPLINARY SPACE WHICH EN-
COURAGES RESEARCH BY CREATION. 
IN THIS ECOSYSTEM, THE ARTISTIC AP-
PROACH OF PIERRE LELIÈVRE IS EVOL-
VING AS A SHORTCUT BETWEEN THEORY 
AND PRACTICE, FROM MODELING TO VA-
LIDATION, ENABLING QUICKER ITERATI-
ONS AND DEEPER REFLEXIVE ANALYSIS

VSAC CONSTITUTES A PREMIERE FOR 
HIS RESEARCH::CREATION ARTWORKS IN 
AN EXHIBITION CONTEXT.

 
without clear frontiers. His artistic process 

-

-

The presented artworks are the results of  this 
approach.

fascinating contradictory feelings produced  
-

terns, forgetting they could have their own 
Individuality.

Morphology addresses the issue of  drawings’ 

disentangle contours and structural skeletons?

-

-
-

-

network. The selected architecture can auto-
-

atures in data. Every drawing can therefore be 
-

-
-

derstanding of  our own?

22

Figure A.2: Extract from the exhibition catalogue.
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Figure A.3: Accumulation
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Figure A.4: Individuality
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Figure A.5: Morphology
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Figure A.6: Combinations
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Figure A.7: Cartography
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Figure A.8: Postcards that were plotted and offered to the public during the exhibition.
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A.3 Defense exhibition

The defense exhibition, called Hidden Dynamics took place in the Bibliothèque
Math-Info4 of the École Normale Supérieure in Paris. It was open to the public
from November 21st 2022 to December 2nd 20225, however it has been mainly
designed to be an integrated part of the PhD defense. The idea was to propose a
sensitive approach of my artistic material prior to the scientific summary of my
research. Therefore, jury members had the opportunity to visit the exhibition right
before my presentation and the principal discussion.

The presented artworks are plotted with roller pens on technical papers of format
60 × 80cm, and are essentially based on propositions detailed in Section.6.3.
They are divided into two related series, showing variations around the same five
principles. Fig.A.9 and Fig.A.10 show in order of presentation: Trace Circle,
Trace Line, Transition, Uncertainty, and Surrounding6. Globally, the second series
intends to express more complicated and intense dynamics than the first set.

In the exhibition venue, the two series were arranged on each outer side of the
main stairs of the library lobby. Photographs of Fig.A.11, Fig.A.12, Fig.A.13 and
Fig.A.14 illustrate this scenography. The intention was to invite viewers to focus
on details and use their visual memory to investigate dynamical variations, instead
of relying on a direct comparative viewpoint on alternatives.

Finally, Fig.A.15 reproduces the poster of the exhibition7.

4The library dedicated to mathematics and computer sciences.
5Officially until November 25th 2022.
6More details on these principles are available on my website: https://plelievre.com/projects/phd-
exhibition/

7Graphic design by Yunya Hung (https://yunyahung.com).
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Figure A.9: Digital renderings of series I. In order of presentation: Trace Circle I, Trace Line I, Transition
I, Uncertainty I and Surrounding I.
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Figure A.10: Digital renderings of series II. In order of presentation: Trace Circle II, Trace Line II,
Transition II, Uncertainty II and Surrounding II.
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Figure A.11: Photographs of the exhibition.
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Figure A.12: Photographs of the exhibition.
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Figure A.13: Photographs of the exhibition.
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Figure A.14: Photograph of the exhibition.

321



Appendices

Figure A.15: Exhibition poster (graphic design by Yunya Hung).
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La pratique du dessin est originellement exploratoire. Un enfant dessine sans but,
pour le pur plaisir de remplir la feuille de papier. Sa volonté de représenter des
personnes, des animaux ou des objets familiers n’émerge que plus tard. Pour
ma part, il y avait initialement quelque chose de ce même plaisir graphique
primordial, issu d’un assemblage intuitif et non-conscient de lignes simples. Il
convient également de noter que mon activité de dessin a bien souvent accompagné
des moments de contrainte physique. Je ne dirais pas d’ennui, mais bien d’un
certain besoin d’être concentré, sans pouvoir me déplacer au-delà des quelques
centimètres carrés d’une feuille de note, lors d’un cours, d’une réunion, d’une
conférence ou d’un appel téléphonique. J’imagine que l’attention portée sur
l’écoute a permis dans les premiers temps à la boucle visuomotrice de s’affranchir
d’un objectif figuratif. J’étais alors probablement plus libre d’explorer différentes
mécaniques de construction abstraite (Fig.0.2). Par la suite, la logique géométrique
a progressivement laissé place à une sensibilité plus fine pour les lignes et à des
arrangements plus délicats (Fig.0.3).

Ce n’est peut-être qu’au cours des cinq dernières années que ces structures
sont véritablement devenues compositionnelles (Fig.0.4). Je me sens maintenant
capable d’articuler des éléments graphiques d’une plus grande diversité et de
juger des combinaisons d’une plus haute complexité. La pratique a également
progressivement glissé vers des moments de création dédiés. Ce qui n’a pas changé
en revanche, c’est la taille physique de ces propositions. Je continue à dessiner de
petites figures, approximativement contenues dans un cercle de 4cm de diamètre.
Je crois que ce qui me fascine à cette échelle – en m’approchant si près de la feuille
de papier – c’est de mieux discerner le contact de l’encre et du papier. Autour
de moi, le monde se fait plus lointain et j’ai l’impression d’assister à la vie d’un
microcosme – l’œil un peu démiurge. C’est aussi une méthode féconde pour se
concentrer sur des phénomènes structurels élémentaires. La taille du stylo ou du
pinceau, dans un si petit espace, devient un facteur limitant ad hoc du niveau de
détail pouvant être exploré. En effet, je considère ma collection de compositions
comme des graines à peine germées d’hypothétiques œuvres plus complètes. C’est
d’ailleurs l’une des raisons pour lesquelles j’ai peut-être commencé à collecter tous
ces fragments, dont le compte dépasse maintenant les 5000 unités.

Ma pratique artistique est donc initialement plus introspective que véritablement
orientée vers les autres. Si la pratique de la composition est un acte de connaissance
en soi, alors témoigner de l’évolution de ce processus, de ses questions associées
et de ses découvertes est au moins aussi important que la présentation du corpus
lui-même. Parce que les interrogations posées par les dessins finaux ne sont
qu’implicites, je pense que les visiteurs sont plus susceptibles de saisir mon point de
vue en lisant mes publications et en réalisant leurs propres compositions inspirées
des principes exposés dans ces écrits, plutôt qu’en observant mes dessins. Les
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œuvres d’art sont des suggestions. Je suis toujours heureux de montrer mon
travail et de le partager avec d’autres, mais je crois que, dans ces circonstances,
le plaisir primaire dépasse la théorie. Être exposé m’apparaît comme un objectif
secondaire de ma trajectoire artistique et je conçois principalement la pratique
artistique comme un moteur de questionnements personnels.

Mon interrogation initiale fut donc ancrée dans une nécessité pratique ; celle
d’expliquer le besoin indescriptible de poser telle ligne à tel endroit plutôt qu’un
autre ; celle de comprendre ce qui impose tel élément graphique à la place d’autres
possibles d’une infinie variété. Comme la résolution des situations semble à la fois
évidente et sans logique objective, j’ai commencé à ressentir une réelle tension
dans ma pratique et une certaine angoisse à l’idée de composer au hasard. Je
voulais donc comprendre les lois dirigeant ma propre pratique et m’assurer d’être
cohérent avec moi-même.

Le véritable catalyseur d’une reformulation scientifique de ces questions personnelles
a été ma rencontre avec des écrits théoriques d’artistes, en particulier Théorie
de l’art moderne8 de Paul Klee et Du spirituel dans l’art9 de Wassily Kandinsky.
Leurs travaux faisaient écho à des sensations et des intuitions perçues au cours de
ma propre pratique de la composition. Ils ont également ouvert mon imaginaire
sur une démarche scientifique dans le domaine de l’art, détachée d’une pure
vision historienne. Leur pensée est abondement représentée au fil des pages de
ce manuscrit. Malgré des recherches élargies, ce corpus original reste pour moi
le plus pertinent en ce qui concerne le paradigme compositionnel que j’ai été
amené à développer. Idéalement, j’aimerais pouvoir m’inscrire dans cette famille
d’artistes dont la recherche a été principalement auto-réflexive, tout en s’efforçant
de partager une méthode expérimentale visant une connaissance objective et
inclusive de l’art.

Pour ma part, je m’intéresse désormais plus précisément à recouvrer et comprendre
la dimension dynamique des formes picturales. Cette dimension se loge de manière
implicite dans les contraintes entre les différents éléments graphiques du plan, ainsi
que dans les régularités qui unissent l’ensemble des compositions d’un même artiste.
J’ai l’intuition d’une continuité picturale qui fait de chaque dessin un artefact
approximatif d’un tout plus complet et cohérent. Les structures compositionnelles
appartiennent à un seul et même système, un objet hyper-compositionnel. Ce point
de vue est motivé par le désir fondamental de voir les formes picturales comme
des formes vivantes, comme des occurrences d’un même organisme complexe.
Cet objet hautement dimensionnel est bien sûr difficile à visualiser dans notre
esprit et à représenter explicitement comme un objet explorable. Au moyen de
simulations informatiques, je cherche donc à soulever, même légèrement, le voile
sur ces dimensions qui nous sont encore masquées. Indirectement, cela implique de
pouvoir mesurer et quantifier les régularités compositionnelles, puis possiblement
8Klee, 1924/1998.
9Kandinsky, 1912/1989.
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de les mettre à disposition des artistes pour qu’ils puissent faire des choix plus
conscients (s’ils le souhaitent évidemment). Concrètement, je rêve de lignes en
mouvement, animées par leurs forces internes, et d’outils pour voyager à travers
l’espace continu des compositions.

Méthode

La méthodologie analytique traditionnelle est essentiellement réductionniste. L’idée
est de décomposer un problème en autant de petits morceaux que nécessaire.
Preuve après preuve, le scientifique remonte alors la chaîne causale et en synthétise
les découvertes. Par nature, la composition est un objet avec une délimitation floue,
le nexus de considérations perceptives et esthétiques. Il s’agit également d’un
concept couvrant à la fois une pratique artistique et un état d’organisation spatiale
macroscopique de sous-éléments, dont chacun semble essentiel a priori. Dès lors,
comment segmenter la composition sans la dénaturer ? Découper un problème
en mauvais sous-éléments peut rapidement en augmenter la difficulté10. Nous
utilisons donc une approche scientifique plus globale et projective : la modélisation.
Cette méthode consiste principalement en la construction d’un outil de simulation
d’un phénomène complexe, sans nécessairement le diviser en sous-éléments.

La composition est un aspect essentiel de l’art pictural. Cependant, chaque
époque et courant artistique a su élaborer un ensemble de méthodes et de critères
d’appréciation différents pour en résoudre les problèmes sous-jacents. Cela rend
intrinsèquement difficile la réalisation d’une modélisation de la composition suff-
isamment universelle pour en couvrir toutes les manifestations. Est-ce nécessaire
par ailleurs ? L’art, comme la modélisation, sont des pratiques qui nécessitent
de prendre position sur le réel et le matériau étudié. À l’exigence d’universalité,
se substitue alors un devoir de clarté sur la démarche adoptée. Cette exigence
est concrétisée par la définition d’un paradigme compositionnel. La modélisation
s’articule ainsi parfaitement avec la recherche-création, pour qui la transparence
de la méthode est le seul moyen de légitimer le général logé dans le particulier
d’une pratique individuelle.

Dans le contexte de la composition, la difficulté pour l’artiste n’est pas tant de
se libérer de la nature subjective de sa propre vision, mais plutôt d’avoir le recul
nécessaire pour en extraire les régularités. Ce problème complexe se pose d’ailleurs
pour le spectateur avec la même difficulté, et ce alors qu’il possède un regard tout à
fait extérieur. Ce phénomène s’estompe peut-être seulement lorsque l’artiste et le
visiteur ont vécu à des époques différentes. Nous faisons donc le choix de requérir
l’aide d’un tiers possédant une capacité d’analyse automatique, i.e. l’apprentissage
automatique et en particulier l’apprentissage profond qui s’appuie sur des réseaux
de neurones artificiels. D’une part, l’apprentissage profond peut être considéré
10Le Moigne, 1977/2006, p. 34.
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comme un outil statistique froidement objectif, car il est capable d’extraire des
régularités dans des données de manière complètement non supervisée. D’autre
part, cette approche s’inspire souvent de l’architecture du cerveau biologique, ce
qui la rend particulièrement pertinente pour la composition picturale.

Cependant, objectif ne doit pas s’entendre ici comme universel. Le champ d’appli-
cation qui en résulte est initialement et essentiellement celui relatif à l’ensemble
de données étudié. Par ailleurs, les régularités observées n’ont peut-être aucun
rapport avec la réalité perceptive humaine. À cette fin, les sciences cognitives
deviennent essentielles et particulièrement la psychophysique. Cette approche
consiste précisément à mener une analyse quantitative entre un stimulus physique,
réel ou simulé, et sa perception. Pour déterminer la plage de validité d’un modèle
donné et son potentiel de généralisation, ces facteurs doivent être évalués au
moyen d’une procédure expérimentale conduite avec des participants humains.
Alors que certains chercheurs tentent de modéliser explicitement les mécanismes
cérébraux, notre projet s’est développé sous des contraintes plus souples. Notre
modèle est principalement conçu comme un outil de simulation génératif, servant
de base à des expériences sur la perception, et un instrument de mesure statistique
de la composition.

Notre programme de recherche est structuré autour des éléments suivants : création
active, paradigme compositionnel, implémentation computationnelle et vérification
expérimentale. L’horizon d’application de ce travail se situe à l’intersection entre
l’héritage d’artistes qui ont fait de la pratique de la composition le sujet central de
leur œuvre, et de nécessités issues d’une pratique personnelle. Ce projet se retrouve
alors à la croisée de nombreux domaines : recherche-création, traitement d’images,
apprentissage automatique et psychophysique. La nature interdisciplinaire de ce
programme implique nécessairement des difficultés de rédaction lorsque chaque
spécialité use d’un vocabulaire et d’outils qui lui sont propres. Cela demande un
équilibre difficile entre explication et détails. J’espère que le compromis adopté
dans ce manuscrit est adapté à l’intérêt de chaque public.

Malgré une certaine proximité de contenu, ce projet ne s’inscrit pas dans la
théorie esthétique ou l’histoire de l’art. Même lorsque qu’il est fait référence à
des mouvements artistiques marquants ou que je cite des essais d’artistes, mon
objectif n’est pas de retracer l’histoire de la composition. Je ne possède ni les
outils nécessaires, ni les connaissances requises pour une telle entreprise. Par
ailleurs, je voudrais éloigner la méthodologie proposée du domaine de l’esthétique
empirique, et plus précisément des approches quantitatives utilisant des jugements
esthétiques directs, tels que ceux portant sur la beauté. Ces approches conduisent
à la découverte de préférences extrêmement générales (pour la symétrie plutôt
que l’asymétrie ou pour les courbes plutôt que pour les angles). Ces tendances
moyennes masquent parfois de grandes variabilités interpersonnelles. Je préfère
donc aborder l’esthétique depuis les artefacts artistiques eux-mêmes. Les jugements
humains peuvent porter sur un matériau artistique, mais nous devons nous limiter
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à des jugements ayant un objectif clair, tel que la similarité. Toute préférence doit
être évaluée avec un but précis. Par exemple, dans notre étude sur l’orientation
des peintures abstraites, les participants étaient invités à déterminer l’orientation
optimale de compositions abstraites. Ainsi, il ne s’agissait pas d’une préférence
esthétique en général, mais d’une préférence restreinte à une situation non ambiguë
(voir Annexe.A.1).

La structure générale de ce manuscrit est articulée autour de deux parties principales.
Nous nous concentrons premièrement sur le développement d’un modèle de la
composition (Partie.I). Le Chapitre.1 détaille le paradigme compositionnel adopté,
dans le but de clarifier notre position sur notre objet d’étude et d’en exposer le
champ d’application. Le Chapitre.2 décrit les étapes de traitement nécessaires à la
numérisation de mon dataset personnel de compositions, ainsi que la représentation
choisie – les spécifications structurelles – adaptée à un usage algorithmique. Avant
d’obtenir un outil fonctionnel, la dernière étape nécessaire est une implémentation
efficace avec des réseaux de neurones artificiels. Le Chapitre.3 détaille ainsi
les différents choix architecturaux intervenus dans le développement du réseau
et les nombreuses stratégies d’optimisation qui ont été nécessaires pour rendre
l’entraînement du modèle réalisable.

La deuxième partie de cette thèse est consacrée à l’exploration (Partie.II). Le
Chapitre.4 établit un inventaire des résultats bruts et des caractéristiques offertes
par le modèle, en particulier celles disponibles pour des mesures quantitatives.
Le Chapitre.5 se concentre sur la vérification de la continuité de l’objet hyper-
compositionnel instancié par le modèle principal. Dans ce chapitre, nous présentons
les méthodes et les résultats des expériences de psychophysique déployées en ligne
pour quantifier l’échelle perceptive des similitudes locales le long d’interpolations
dans ce nouvel objet. Le dernier chapitre (6) est consacré aux recherches d’ordre
artistique avec notre modèle de la composition. J’y explore les façons de révéler
les dimensions compositionnelles cachées et la manière de rendre sensible leur
caractère fondamentalement dynamique. J’y fais également le récit d’un retour à
l’espace matériel, lieu de rencontre unique de l’encre et du papier.

Malgré tout, ce programme de recherche ambitieux n’en est encore qu’à ses
débuts. Au fil des chapitres, nous n’avons eu l’occasion d’introduire qu’une
première itération d’un processus complexe – le façonnage de petites briques
nécessaires à la construction d’un résultat préliminaire. Il y a eu tellement d’étapes
inévitables sur le chemin de la sécurisation d’un outil fonctionnel, que celles-ci
ont monopolisé tous mes efforts. On aurait pu s’attendre à des conclusions plus
pratiques sur la perception de la composition, ou à des discussions plus avancées
sur des questions artistiques, mais je suis déjà fier du travail accompli. L’ensemble
de l’approche a été validée et son utilité a été démontrée, au point de mener de
véritables expériences avec des participants humains et la réalisation d’œuvres
pour une exposition. En définitive, la réalisation de ces objectifs, ainsi que la
large palette des contributions – idées théoriques, découvertes scientifiques, outils
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quantitatifs, logiciels et propositions artistiques – ont de loin dépassé mes attentes
initiales.

Contributions

Chronologiquement, notre première contribution se situe dans le domaine perceptif
avec un article scientifique sur l’orientation des peintures abstraites11 (voir An-
nexe.A.1). Il s’agit d’un projet de moins grande envergure, conçu comme une
preuve de concept pour la méthode principale introduite dans cette thèse, i.e. une
modélisation par apprentissage profond, combinée à des vérifications perceptives
chez l’humain. Notre modèle d’apprentissage profond, caractérisé par l’ajout de
classificateurs insérés après chaque bloc convolutif d’un VGG pré-entraîné12, a été
conçu pour étudier la perception de l’orientation à différentes profondeurs du réseau
de neurones. Dans l’article, nous démontrons que le modèle capture plusieurs car-
actéristiques humaines de la perception de l’orientation pour différentes granularités
et pour de multiples styles artistiques. Il apparaît également que l’art abstrait, plus
que les autres mouvements, nécessite une intégration spatialement étendue des
indices d’orientation pour que ceux-ci soient intégrés et fournissent une estimation
fiable de l’orientation. Nous avons aussi testé des stimuli fragmentés dans nos
expériences chez l’humain, et nous avons constaté que les opérations détaillées des
mécanismes perceptifs ne sont pas complètement identiques à leurs homologues
artificiels pour les petits fragments, correspondant aux couches superficielles.

En ce qui concerne le cœur de ce manuscrit, la principale contribution théorique est
la définition d’un paradigme compositionnel (voir Chapitre.1). Nous considérons
cette étape comme essentielle pour toute approche de modélisation sérieuse, i.e.
quand le modélisateur tente de comprendre quelque chose de fondamental sur le
phénomène modélisé. Dans le domaine de l’apprentissage automatique, la nature
des entrées 𝐱 n’a pas vraiment d’importance tant que le modèle répond à ses
exigences pratiques. La polyvalence des architectures d’apprentissage profond et
leur puissance associée, fournissent des espaces génératifs produisant des artefacts
semblables à de l’art, sans se demander explicitement si ces capacités ont un
sens au regard du cadre conceptuel plus large entourant les données utilisées
(par exemple vis-à-vis de l’histoire collective de la peinture occidentale). Il est en
fait possible de construire un espace latent ou une représentation de n’importe
quelle source graphique, mais la possibilité d’atteindre cet objectif ne garantit pas
en soi la pertinence des résultats finaux en ce qui concerne le matériau pictural
en question, ni l’approche initiale de l’artiste. Dans notre cas, nous voulions
répondre à la question fondamentale de savoir si un espace de compositions, sous
la forme d’un objet hyper-compositionnel, était artistiquement pertinent. Nous
11Lelièvre and Neri, 2021.
12Le VGG est un modèle visuel standard, utilisé dans la classification des images en fonction de leur

contenu.
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avons démontré que cet objectif est possible, à la condition d’accepter que chaque
œuvre d’art soit un moyen d’enregistrement de régularités compositionnelles, que
la pratique artistique en question soit sérielle et axée sur l’interaction dynamique
des éléments graphiques, et que traits et compositions soient le résultat d’un
processus morphogénétique, définissant intrinsèquement un espace continu de
possibilités. Notre approche n’est pas encore entièrement consolidée, mais elle
constitue déjà un point d’ancrage fort pour mon travail artistique.

Une contribution apparentée consiste à considérer la pratique compositionnelle
comme l’organisation d’un système (voir Sous-section.1.2.System complexity and system
organization). Cette idée est intéressante parce qu’elle fournit un objectif d’opti-
misation riche et clair à la disposition des éléments graphiques sur le plan. La
composition devient alors un entre-deux créatif, où l’artiste crée intuitivement
des contraintes conditionnelles entre des formes qui ne sont ni trop faibles, ni
trop fortes. Ainsi, nous attribuons à notre approche probabiliste une réalité plus
profonde que la détermination d’un art optimal ou de la plus belle œuvre. Nous
présentons à la fois l’espace des compositions et celui du plan compositionnel
comme des espaces probabilistes intégrant une infinie diversité et une richesse
d’alternatives (voir Section.1.3). Nous pensons que ce cadre théorique propose
une vision attractive des algorithmes d’apprentissage automatique et de leurs
objectifs d’optimisation associés. Nous nous sommes d’ailleurs efforcé de décrire
les implications de la dimensionnalité élevée des espaces créés, que ce soit vis-à-vis
de la crainte potentielle d’une normalisation de l’art, ou des méprises liées aux
maxima probabilistes.

Même si, à l’heure actuelle, je n’ai pas l’intention de mettre mon dataset personnel
de compositions à la disposition du public, je considère cette ressource fondamen-
tale comme une contribution à part entière. Elle représente une énorme quantité
de travail manuel, de sa création à son traitement dans un dataset. Nous avons
d’ailleurs développé nos propres logiciels pour en faciliter les opérations. En ce qui
concerne le pipeline de traitement, nous avons principalement mobilisé des biblio-
thèques de traitement d’images existantes et réimplémenté certains algorithmes,
tels que la routine de vectorisation par courbes de Bézier cubiques. Cette dernière
intègre d’ailleurs plusieurs petites contributions, donnant par exemple plus de
contrôle sur le désenchevêtrement des lignes aux intersections, et la simplification
des éléments courbes (voir Section.2.2). Enfin, je suis particulièrement fier du bloc
algorithmique qui mélange aléatoirement les éléments graphiques au sein d’une
composition. Celui-ci tient compte d’un arbre hiérarchique des éléments et présente
la possibilité de limiter le nombre de permutations (voir Sous-section.2.3.Composition
permutations).

Par rapport aux modèles d’apprentissage profond précédents, appliqués à de petits
dessins figuratifs, notre travail apporte plusieurs innovations. La première est
fondamentale et concerne le paramétrage des traits. Notre approche va au-delà
d’un simple encodage par séquences de segments de lignes et reste ainsi au plus
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proche des intentions motrices de l’artiste. Ce détail offre également plus de
flexibilité et de précision dans l’approximation des courbes d’origine (voir Sous-
section.2.2.Parametric curves). Deuxièmement, nous proposons des modèles de trait
et de composition hiérarchiquement imbriqués (voir Section.3.2 et Section.3.3).
La principale motivation derrière ce choix méthodologique est de capturer et de
capitaliser sur la différence de nature temporelle entre ces deux types de séquences.
Les traits sont des séquences ordonnées de composantes de courbes de Bézier,
tandis que les compositions peuvent être le résultat de séries de traits sans ordre
particulier, voire être des séries incomplètes. Nous essayons en fait de projeter
chaque famille de compositions partiellement définies vers un emplacement unique
dans l’espace latent. Cela fournit ainsi une puissance d’encodage plus riche. Enfin,
nous introduisons un modèle du plan compositionnel dédié à la caractérisation des
contraintes conditionnelles associées à chaque élément graphique. Pour émettre
ses prédictions, ce modèle s’appuie sur les deux modèles précédemment indiqués,
imbriqués et pré-entraînés (voir Section.3.4).

En ce qui concerne la composition, il n’existe pas de mesure évidente de l’efficacité
des modèles. Nous considérons donc notre proposition de procédure d’entraînement
et les métriques de surveillance associées comme des outils facilitant grandement
la conception architecturale des modèles et la sélection des hyperparamètres
(voir Section.4.1). Cependant, nos contributions dans le domaine des réseaux
de neurones et de l’apprentissage de représentation se situe dans les nombreuses
astuces d’entraînement mises en œuvre, et que nous avons tenté de compiler
de manière cohérente et complète (voir Section.3.5). Par exemple, nous avons
introduit des contraintes adaptatives sur 𝐷𝖪𝖫(𝑞(𝐳 ∣ 𝐱) ∥ 𝑝(𝐳)) en ajoutant une
non-linéarité par dimension. Nous avons également implémenté une procédure
rééquilibrant les ressources du modèle de manière optimale afin de surmonter
partiellement les statistiques inégales du dataset (e.g. la longueur des séquences
d’entrée). Une autre contribution significative est caractérisée par la limitation
imposée à la variance de sortie du modèle, par l’intermédiaire d’une nouvelle
unité appelée BackwardClamp. Collectivement, toutes ces innovations techniques
permettent d’adresser les petits datasets témoignant d’une (trop) grande diversité.
Elles soutiennent la construction d’une représentation continue et expressive tout
en fonctionnant en dimensionnalité réduite. La dimensionnalité choisie est en effet
plus petite de plusieurs dizaines de fois que les travaux précédents. Cette contrainte
a été adoptée principalement pour faciliter la manipulation et l’interprétation des
paramètres du modèle, et en vue de conduire des expériences sur la perception.

Une autre contribution importante concerne les mesures compositionnelles offertes
par les différents modèles (voir Section.4.3). Pour le modèle de la composition,
ces mesures sont élaborées autour des distributions de l’encodeur et du décodeur.
Elles spécifient non seulement des positions dans l’espace latent ou sur le plan,
mais aussi le degré d’incertitude associé, individuellement pour chaque dimension
latente et chaque trait. Grâce au modèle dédié au plan compositionnel, nous avons
même accès aux probabilités conditionnelles des éléments graphiques. Cela prend

330



A.4 Long résumé en français

la forme d’un champ de probabilité complexe (position et forme) des prochains
traits, sachant les éléments graphiques existants et une position cible dans l’espace
des compositions. Dans le temps contraint de cette thèse, nous avons dû limiter
notre exploration de ses mesures compositionnelles à la présentation de méthodes
de visualisation et de quelques pistes quant à leur usage. Cependant, nous sommes
encouragés à poursuivre cette ligne de recherche par la réussite de notre première
tentative, i.e. la prédiction des échelles perceptives à partir de l’information de
Fisher calculées sur ces mesures compositionnelles (voir Sous-section.5.3.Perceptual
scale prediction from Fisher information).

Nous avons par la suite vérifié certains aspects qualitatifs de l’espace latent com-
positionnel. Nous souhaitions particulièrement savoir si le modèle avait capturé
des régularités en alignement avec des caractéristiques structurelles perceptives
humaines. La principale difficulté de cette ambition provient de la dimensionnalité
de l’espace latent. Bien que relativement faible, 16 dimensions, celle-ci ne se prête
pas à une exploration expérimentale exhaustive (voir Section.5.1). Après avoir fait
le point sur cette limitation, nous avons cherché des approches alternatives nous
permettant de résoudre la question, au moins indirectement. Dans la communauté
de l’apprentissage automatique, il a souvent été rapporté (mais jamais quantifié
de manière adéquate) qu’un inconvénient qualitatif des modèles génératifs est
l’existence de régions de faible densité dans leur espace latent. Ces régions se ren-
contrent particulièrement lors d’interpolations. Il est donc raisonnable de supposer
qu’une densité homogène dans l’espace latent est essentielle à la qualité perceptive
des interpolations. Nous avons effectué des expériences de caractérisation de
l’échelle perceptive s’appuyant sur des jugements de similarité avec une variante
du protocole MLDS par triplet (voir Section.5.3). Nous avons alors constaté
des distorsions inattendues, indiquant potentiellement des divergences entre la
représentation du modèle et la représentation humaine. Néanmoins, nous avons
pu prédire certaines altérations non triviales de l’échelle perceptive avec l’aide des
mesures compositionnelles auxiliaires fournies par le modèle (décrites ci-dessus).
Ainsi, malgré des défauts dans sa représentation, le modèle est en mesure d’incor-
porer des informations utiles pour prédire et corriger l’homogénéité de son espace
latent. En bref, nos résultats indiquent que le modèle a capturé d’importantes
régularités compositionnelles qui sont, au moins sommairement, alignées sur la
perception humaine. Cependant, seules de futures itérations avec notre approche
fourniront une réponse plus définitive.

Une dernière contribution scientifique, et non la moindre, concerne la méthodologie
MLDS elle-même. Pour investiguer des trajectoires circulaires à travers l’espace
latent, nous avons étendu la MLDS aux espaces physiques périodiques (voir
Section.5.2). Cette variante est en fait possible parce que la plupart des triplets
expérimentaux, tels que définis dans la méthode canonique, ne sont en fait que très
peu informatifs et qu’ils peuvent ainsi être omis. En conséquence, nous pouvons
également réduire considérablement le nombre de combinaisons évaluées par
condition expérimentale et contrôler directement la durée de la tâche. Cependant,
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pour comprendre et prouver cette hypothèse, il a été nécessaire de mener des
travaux théoriques qui n’avaient pas été prévus à l’origine. Nous avons alors
redéfini les contours de la méthode de Thurstone et de la MLDS, et pu fournir une
explication quant aux divergences signalées, mais souvent exagérées, entre les deux
méthodes. Ce travail fascinant a enfin exposé des problèmes théoriques associés à
la MLDS, en particulier concernant le caractère non-normal de la distribution de
la mesure perceptive de distance entre des paires de stimuli.

Dans le but de reproduire des dessins générés par le modèle sur du papier avec
un traceur numérique, j’ai développé différentes techniques recréant une épaisseur
expressive et dynamique des lignes. J’ai adopté une stratégie s’adaptant à l’échelle
du dessin et à la nature de l’outil – stylo ou pinceau (voir Section.6.2). Enfin, j’ai
proposé différents principes visuels pour représenter la diversité et la continuité
de l’espace compositionnel, ainsi que pour révéler la dynamique des éléments
graphiques (voir Section.6.3).

Pour résumer l’ensemble du projet, notre approche sert à valider une nouvelle
approche de la modélisation de la composition picturale. Nous introduisons pour
commencer un paradigme compositionnel qui soutient un modèle d’apprentissage
profond fonctionnel, et qui atteste que la composition peut être modélisée comme
un objet continu et hyper-dimensionnel. Nous démontrons ensuite que les régular-
ités compositionnelles capturées et les mesures associées présentent des similitudes
avec la perception humaine. Les modèles et protocoles expérimentaux adoptés en
sont encore à un stade précoce de développement et présentent donc certaines
limites. Cependant, nos résultats sont encourageants et indiquent la possibilité
réelle que des phénomènes perceptifs complexes tels que l’art et la composition,
qui ne sont pas facilement réductibles à des composantes élémentaires, peuvent
dans une certaine mesure être étudiés de manière quantitative.

Au début de ce manuscrit, je m’interroge sur le fait que ma pratique artistique et
l’approche de modélisation proposée puissent servir de point de contact significatif
entre des efforts créatifs de nature artistique et des méthodes de la recherche
scientifique. J’espère que le travail présenté et les contributions associées plaident
de manière convaincante sur la façon dont le particulier peut apporter des avancées
à des connaissances plus universelles.
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MOTS-CLÉS

Art Pictural, Composition, Abstraction, Recherche-Création, Modélisation, Apprentissage Machine, Réseaux

de Neurones, Apprentissage Profond, RNN, VAE, Perception, Psychophysique, MLDS

RÉSUMÉ

La composition picturale, entendue comme la disposition des éléments graphiques sur le plan, est généralement associée à des règles

qualitatives et des heuristiques. Bien qu'instructives pour les artistes et leur pratique, ces normes n'agissent que comme des contraintes

externes sur le plan. Nous pensons que les œuvres d'art sont capables de fixer des caractéristiques de composition plus fondamentales

dans leur matière picturale même. Nous développons donc un paradigme supposant toutes les œuvres d'un·e artiste comme les vues

partielles d'une représentation en plus grandes dimensions, agrégeant des régularités compositionnelles intrinsèques. Nous choisissons

de matérialiser cet objet hyper-compositionnel théorique par un espace continu, vectoriel et probabiliste. Notre objectif est de rendre

ces régularités explicites pour un usage artistique et d'établir des mesures quantitatives pour des études scientifiques. Notre recherche

s'inscrit donc pleinement dans un programme réflexif de recherche-création; fondé à la fois sur un matériau artistique personnel,

riche d'une pratique de plus de 10 ans de la composition abstraite; et sur une approche interdisciplinaire projective, combinant une

modélisation itérative par apprentissage automatique et des vérifications perceptives avec de la psychophysique.

La nature séquentielle et non stationnaire du processus de composition, ainsi que la définition complexe et évolutive de ses unités fonc-

tionnelles sous-jacentes, se combinent en un phénomène perceptif qui ne se modélise pas facilement par les modèles d'apprentissage

profond basés sur des pixels, e.g. CNNs. Nous adoptons une stratégie différente, construite autour d'une définition paramétrique de

l'exécution des traits, et de RNN-VAEs (Recurrent Variational Auto-Encoders) imbriqués hiérarchiquement, permettant à notre modèle

d'aborder la matière picturale en alignant son comportement sur le geste artistique. Plus précisément, cette architecture extrait les

régularités compositionnelles en compressant les dessins en un nombre réduit de dimensions indépendantes, alignées dans l'idéal

sur la représentation intérieure construite par les artistes et les observateurs. Ces réseaux neuronaux artificiels sont entraînés sur

plus de 5000 compositions abstraites personnelles et vectorisées par des courbes de Bézier. Bien que cet ensemble de données soit

important pour un seul artiste, son échelle reste relativement réduite pour l'entraînement de réseaux profonds. Nous abordons cette

problématique en introduisant de nouvelles contraintes qui encouragent un espace latent à la fois compact, cohésif et expressif.

Nous étudions ensuite l'espace compositionnel résultant à travers des jugements perceptifs de trajectoires interpolées entre des points

précis de cet espace. Nous vérifions particulièrement l'homogénéité de la densité latente en mesurant l'échelle perceptive produite par

des participants humains jugeant la similarité entre des compositions. Nous limitons notre exploration à des coupes circulaires d'hy-

persphères, dont la densité latente est relativement stable, et des progressions linéaires orthogonales le long de la norme, provoquant

des distorsions perceptives plus importantes. Nous utilisons une variante de la méthode MLDS, que nous avons restreinte à des triplets

locaux et étendue aux espaces physiques périodiques. Les échelles perceptives mesurées empiriquement présentent des régularités

qui sont capturées de manière satisfaisante par la notion d'information de Fisher calculée à partir des métriques fournies par le modèle.

Les algorithmes qui en résultent permettent aux artistes d'explorer l'interaction dynamique des éléments graphiques en fonction non

seulement de leurs propres régularités de composition, mais aussi des régularités perceptives intrinsèques de ceux qui voient leur art.

Nous terminons enfin ce cycle en révélant les dimensions compositionnelles cachées avec de l'encre et du papier, via des créations

par traceur numérique.

ABSTRACT

Pictorial composition, understood as the arrangement of graphical elements on the plane, is typically associated with qualitative rules

and heuristics. Although informative for artists and their practice, these norms and guidelines only act as external constraints on

the canvas. We believe that artworks are able to fix more fundamental compositional features in their pictorial matter. We therefore

develop a paradigm in which every artwork of an artist represents a partial view of a higher-dimensional representation, aggregating

intrinsic compositional regularities. We choose to materialize this theoretical hyper-compositional object as a continuous, vectorial and

probabilistic space. Our objective is to make regularities explicit for artistic purposes, and to build quantitative metrics for scientific

scrutiny. Our research is therefore articulated around a reflexive research-creation agenda: it is grounded in personal artistic material

drawing from more than 10 years of practice in abstract composition, it expands along a projective interdisciplinary framework that

combines iterative modeling with machine learning, and it engages in perceptual validation using psychophysical techniques.

The sequential non-stationary nature of the compositional process, together with the complex and evolving definitions of its underlying

functional units, coalesce into a perceptual phenomenon that cannot be readily modeled through pixel-based deep learning models,

such as CNNs. We adopt a different strategy, constructed around a parametric definition of stroke execution and hierarchically nested

RNN-VAEs (Recurrent Variational Auto-Encoders), enabling our network to tackle pictorial material by aligning its behavior with the

artistic gesture. More specifically, this network architecture extracts compositional regularities by compressing inputs into a reduced

number of independent dimensions, ultimately aligned with the representation entertained by artists and observers. These artificial

neural networks are trained on >5k personal abstract compositions vectorized as Bézier curves. Although this dataset is large for a

single artist, its scale remains relatively small for training large networks. We address this issue by introducing new constraints that

support a compact latent space that is both cohesive and expressive.

We then study the resulting compositional space through perceptual judgments of interpolated trajectories spanning targeted locations

within this space. In particular, we characterize latent density homogeneity by measuring the perceptual scale adopted by human

participants when judging sample similarity. We limit our exploration to circular slices of hyperspheres, along which latent density

can be regarded as reasonably stable, and orthogonal linear progressions along the norm, which imply larger perceptual distortions.

We employ a variant of the MLDS method, which we have restricted to local triplets and extended to periodic physical spaces. The

empirically measured perceptual scales present regularities that are satisfactorily captured by the notion of Fisher information computed

on metrics provided by the model. The resulting algorithms enable artists to explore the dynamical interaction of graphical elements

in accordance not only with their own compositional regularities, but also with the perceptual regularities intrinsic to those who view

their art. We then come full circle by revealing the hidden compositional dimensions with ink and paper through digitally pen-plotted

creations.
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