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Résumé

La réflectométrie par système de navigation par satellite, ou GNSS-R, est l’étude des signaux
de géolocalisation réfléchis sur la surface de la Terre. Ces signaux dits d’opportunité, souvent
perçus comme des nuisances pour le bon fonctionnement des récepteurs de navigation, sont
en fait une source d’information sur la nature et la position de la surface de réflexion. Suivant
la plateforme sur laquelle se situe le récepteur (par exemple, station sol, avion) et la surface
de réflexion (par exemple, mer agitée, lac), le signal réfléchi présente des déformations plus ou
moins faciles à modéliser, et les approches pour en estimer les paramètres d’intérêt varient.

Ce travail de thèse repart du problème du multitrajet lors d’une navigation en milieu
contraint. Celui-ci peut être modélisé comme un problème d’estimation à deux sources, où
la source principale est le signal d’intérêt et la source secondaire est une unique réflexion de
ce même signal. En fonction du scénario et des ressources à disposition, il est possible i)
d’estimer les paramètres d’intérêt (retard, Doppler, amplitude et phase) des deux sources, ou
bien ii) de n’estimer que les termes d’une seule source, au risque d’obtenir des estimations
biaisées par la présence du signal parasite. Dans tous les cas il est nécessaire de maîtriser les
performances atteignables pour ces problèmes d’estimation. Pour cela des outils de la théorie
de l’estimation, tels que la borne de Cramér-Rao (BCR) peuvent être utilisés. Dans le cadre
de cette thèse, la BCR a été calculée pour le cas d’un modèle bien spécifié (deux sources) et
d’un modèle mal spécifié (une source). Ces bornes ont été comparées aux performances de
différents estimateurs afin d’obtenir une caractérisation théorique du problème.

Cela a permis d’établir un cadre mathématique qui s’applique au problème du GNSS-R
proche du sol, pour lequel le signal réfléchi est peu déformé par la surface de réflexion. Dans ce
cas, les signaux direct et réfléchi sont très proches en temps, ce qui conduit à des interférences
entre eux et à une dégradation des performances. Les techniques de GNSS-R existantes, mal
adaptées au cas proche du sol, ont alors été comparées à la BCR et à deux approches : i) une
approximation du critère de vraisemblance dans le cas où les deux sources sont temporellement
très proches et ii) une application d’estimateurs à deux sources pour éliminer l’interférence.
Cette partie sur la réflectométrie proche du sol s’appuie sur les données d’une campagne de
mesure organisée par le CNES (Toulouse, France).

Le problème se modifie progressivement lorsque l’élévation du satellite augmente : la
réflexion, jusqu’alors supposée cohérente devient lentement non-cohérente car sensible à la
rugosité de la surface. La détection automatique de cette transition (c’est à dire, de cohérent
à non-cohérent) est capitale pour de futures missions satellite. La cohérence d’une réflexion
s’observe principalement sur la différence de phase entre les signaux réfléchi et direct. Ainsi
une étude statistique de séries temporelles de cette grandeur permet de construire des tests
en fonction de la gaussianité de cette série ou de sa régularité. Les tests proposés ont été
appliqués à des données fournies par l’IEEC (Barcelone, Espagne).

Enfin, pour des cas où la surface de réflexion déforme le signal de manière significative, il
est nécessaire de travailler sur un modèle de signal plus adapté. L’approche envisagée dans
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cette thèse est de considérer le signal réfléchi comme la convolution du signal émis et de la
réponse impulsionnelle de la surface de réflexion. Cette modélisation s’accompagne du calcul
de la BCR correspondante, ainsi que de l’implémentation de l’algorithme du maximum de
vraisemblance. La question de la détermination de la taille de la réponse impulsionnelle, c’est-
à-dire du nombre de points nécessaires pour la décrire est alors traitée à l’aide de différents
tests statistiques. Les résultats obtenus par simulation montrent le potentiel de cette nouvelle
approche.

Mots clés: traitement du signal; GNSS; GNSS-R; télédétection; estimation; Borne de
Cramér-Rao.
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Abstract

Global Navigation Satellite Systems (GNSS) Reflectometry, or GNSS-R, is the study of GNSS
signals reflected from the Earth’s surface. These so-called signals of opportunity, usually seen
as a nuisance in standard navigation applications, contain meaningful information on the
nature and relative position of the reflecting surface. Depending on the receiver platform
(e.g., ground-based, airplane, satellite) and the reflecting surface itself (e.g., rough sea, lake),
the reflected signal, more or less distorted, is difficult to model, and the corresponding methods
to estimate the signal parameters of interest may vary.

This thesis starts from the navigation multipath problem in harsh environments, which
can be seen as a dual source estimation problem where the main source is the signal of
interest, and the secondary one is a single reflection of the main source. Depending on the
scenario and the resources at hand, it is possible i) to estimate the parameters of interest (i.e.,
time-delay, Doppler frequency, amplitude and phase) of both sources, or ii) to estimate only
one source’s parameters, although these estimates may be biased because of the interfering
source. Either way, it is necessary to know the achievable performance for these estimation
problems. For this purpose, tools from the estimation theory, such as the Cramér-Rao bound
(CRB), can be used. In this thesis a CRB expression was derived for the properly specified
case (dual source), and the misspecified one (single source). These bounds were compared to
the performance obtained with different estimators, in order to theoretically characterize the
problem at hand.

This study allowed to establish a clear mathematical framework that also fits the ground-
based GNSS-R problem, for which the reflected signal is little distorted by the reflecting
surface. In this case, the direct and reflected signals are close in time, which inevitably leads
to interference, or crosstalk, and then to a clear performance degradation. Standard GNSS-R
techniques, which do not perform well in this ground-based scenario, were compared to the
CRB and two proposed approaches: i) a Taylor approximation of the dual source likelihood
criterion when both sources are very close in time, and ii) a dual source estimation strategy to
reduce or cancel the crosstalk. This part on ground-based GNSS-R was supported by a real
data set, obtained from a data collection campaign organized by CNES (Toulouse, France).

The problem changes slowly when the satellite elevation increases: the reflection, assumed
coherent so far, turns non-coherent because of the reflecting surface roughness. The automatic
detection of this transition (i.e., from coherent to non-coherent) is of great interest for future
satellite missions. Reflection coherence is mainly observed by looking at the relative phase
between the reflected and direct signals. Consequently, a statistical study of phase difference
time series allowed to build tests that depend on the time series Gaussianity or regularity.
The proposed tests were applied to a data set provided by the IEEC (Barcelona, Spain).

Finally, for scenarios where the reflecting surface distorts the signal significantly, it is
necessary to adapt the signal model. The approach proposed in this thesis is to consider
the received signal as a convolution between the transmitted signal and the reflecting surface
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impulse response. This signal model goes with the derivation of the corresponding CRB
and the implementation of the maximum likelihood estimator. The question of the impulse
response size determination, that is, the determination of the number of pulses required to
describe the impulse response, was also tackled based on hypothesis tests. Simulation results
show the potential of this approach.

Key words: signal processing; GNSS; GNSS-R; remote sensing; estimation; Cramér-Rao
bound.
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Introduction

Context

Global Navigation Satellite Systems (GNSS) have been used for decades as a way to obtain
position, velocity and timing anywhere on Earth. GNSS receivers are now integrated into
many different devices, ranging from smartphones to Low Earth Orbit (LEO) satellites. It is
fascinating how such a system was revisited even before the first GPS constellation was fully
operational. In 1993, researchers from the European Space Agency (ESA) published a first
study on how to exploit GNSS signals as signals of opportunity [Mar93]. The idea was to
collect signals reflected from the Earth’s surface to extract information on the the reflecting
surface geophysical properties, a concept called GNSS reflectometry (GNSS-R). Since then,
GNSS-R has been applied to different GNSS constellations (e.g., GPS, GALILEO, BeiDou),
and from different platforms: from ground-based stations to aircraft or satellites. With
the recent commissioning of GPS Block III in 2019, that broadcast wideband signals over
the L5 band, and the coming commissioning of the last GALILEO satellites in 2024, that
transmit wideband AltBOC signals over the E5 band, GNSS, and therefore GNSS-R, face
new challenges in terms of achievable performance and robustness.

For GNSS applications, these wideband signals were designed to be more robust to multi-
path, that is, to the reception of multiple reflections from the environment such as buildings,
and to provide a better ranging accuracy. As a matter of fact, in ground-based GNSS-R,
the challenges are the same: the presence of a strong reflection affects the use of standard
GNSS-R techniques. Consequently, recent GNSS signals are promising for both navigation
purposes and ground-based reflectometry.

On the other hand, in 2021 ESA gave its go-ahead for the satellite mission HydroGNSS (to
be launched end of 2024) [Unw21], that consists of a pair of LEO satellites that will provide
GNSS-R products to study permafrost, biomass, soil moisture and wetlands. This proves a
clear interest for GNSS-R and its potential applications for climate observation.

Thesis Objectives

In this context, it is of great interest to understand how these recent signals improve existing
techniques performance, and what can be expected from coming experiments. The main
goal of this thesis is to provide comprehensive tools to assess the performance of GNSS-R
techniques in different configurations.

A natural opening is to first focus on the GNSS multipath problem, which has been well
studied ever since the first GNSS were operational. In Chapter 2, multipath, modeled as a
dual source signal, is studied. A set of multipath mitigation strategies are compared using
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the standard multipath metric: the multipath error envelope (MPEE). This first order metric
is completed with a second order one, that comes from estimation theory: the Cramér-Rao
bound (CRB). The derivation of the CRB in the dual source context paves the way to a
better understanding of the effect of multipath on the ranging performance, and allows to
build helpful metrics for future GNSS signal design. This bound is however not achievable
for many low-cost receivers when exposed to multipath. An insight at the exact impact of
multipath on such receivers is also proposed, under the scope of misspecified estimation.

In Chapter 3, the multipath is not seen as a nuisance anymore but a source of information.
The signal model being the same, the goal is now to adapt the results from the previous chapter
to ground-based GNSS-R. Multipath is now referred to as crosstalk and, using the CRB,
standard GNSS-R techniques are compared to proposed algorithms. Two main approaches
are investigated: i) when processing legacy narrowband signals for which standard GNSS-
R techniques do not perform well, and ii) when processing more recent wideband signals
that allow a user to get rid of the crosstalk effect. This work is supported by experimental
data collected during this Ph.D. in collaboration with the Centre National d’Études Spatiales
(CNES).

Finally, in Chapter 4, a geometry at a higher altitude is considered, and the dual source
signal model is left behind, since the effect of the reflecting surface distorts the reflected signal.
This is the case for airborne and spaceborne scenarios. In such scenarios, the signal is less
coherent and tracking the carrier phase is not possible anymore. Tools to characterize the
nature of the reflection are then needed if one wants to perform carrier phase-based GNSS-
R, as in the future HydroGNSS mission for grazing elevation angles. Coherence indicators
are then studied and applied to a data set provided by the Institut d’Estudis Espacials de
Catalunya (IEEC). The reflected signal model, distorted by the reflecting surface, can be
modeled as the convolution between the transmitted signal and the reflecting surface impulse
response, that can be large in the case of a diffuse reflection. The CRB and estimators adapted
to this model are then derived and validated. A final discussion on the determination of the
size of the impulse response is drawn, with proposed hypothesis-based tests to tackle this
detection problem.

In short, this thesis covers three distinct topics: i) GNSS multipath in harsh environments,
ii) ground-based GNSS-R with an application to still water reflections, and iii) non-coherent
reflections and diffuse scattering with an application to sea water reflection. These three
topics and the general outline of this document are graphically displayed in Figure 1.

Chapters just mentioned are referring to tools and concepts from estimation theory, GNSS
principles, multipath particularities and GNSS-R signal processing techniques. These notions
are introduced in Chapter 1, which should be seen as a reference chapter.
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Chapter 2 Chapter 3 Chapter 4

Figure 1: Graphical summary of the thesis.

Contributions

This thesis led to the following contributions:

Chapter 2





GNSS Harsh Environment Performance

→ Derivation of the MSE lower bound (CRB) and implementation of the
corresponding MLE for the dual source conditional signal model.

→ Overview of existing multipath mitigation techniques using both existing
tools (MPEE) and new ones (CRB).

→ Proposition of a new metric based on a ratio between the dual source and
the single source signal model, named CCBR, for future signal design.

→ Derivation and validation of the MCRB for multipath and interference
scenarios, to account for the impact of a mismatched signal model.

Chapter 3





Ground-based GNSS-R Signal Processing

→ Characterization of the crosstalk effect in close-to-ground GNSS-R scenar-
ios.

→ Derivation and implementation of the AMLE, an algorithm adapted to
(very) close in time sources based on a 3rd Taylor expansion.

→ Theoretical and experimental demonstration of the performance improve-
ment using dual source estimators on wideband GNSS signals.
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Chapter 4





Non-Coherent Reflections and Diffuse Scattering

→ Implementation of coherence detection procedure based on hypotheses
tests, applied to real data sets.

→ Derivation of the MSE lower bound (CRB), and implementation of the
corresponding MLE, for the reflected signal modeled as the convolution
with the reflecting surface impulse response.

→ Proposition of different source detection procedures adapted to the impulse
response signal model.

Collaboration

During this thesis, a four-month visit at the IEEC in Barcelona was done to collaborate on
the coherence detection problem exposed in Chapter 4. This stay was the opportunity for two
approaches to finally meet: the theoretical approach from Toulouse and the more practical
approach from Barcelona. Results from this stay: i) a few results on coherence detection that
may help future research, and ii) the conviction that theory and practice are just two sides
of the same coin, and then it is worth working with both.
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Résumé

Ce premier chapitre a pour objectif de présenter les outils et concepts de la littérature sur
lesquels s’appuient les chapitres suivants. En effet, le problème de réflectométrie par signaux
de navigation ne peut être abordé que par la bonne compréhension des systèmes de navigation
par satellites, GNSS, ainsi que de leurs limitations telles que les multitrajets. Ces systèmes qui
permettent de se positionner sur Terre cachent donc un problème d’estimation qui s’appuie
à son tour sur tout une théorie qu’il est bon d’introduire. Tout problème d’estimation repose
sur des hypothèses (par exemple, sur la densité de probabilité du signal, sur les paramètres à
estimer) qui permettent d’établir des bornes théoriques sur la précision de l’estimation. C’est
donc bien en partant des concepts de base de la théorie de l’estimation qu’il faut aborder le
domaine de la réflectométrie par signaux de navigation.

Le chapitre commence donc avec la Section 1.2 par un premier volet sur la théorie de
l’estimation : de la définition d’un problème d’estimation jusqu’à la charactérisation d’un
estimateur et de son lien avec la borne de Cramér-Rao. S’ensuit, dans la Section 1.3, une
présentation générale des systèmes de navigation par satellite avec une attention particulière
sur les systèmes américain (GPS) et européen (GALILEO). Ces systèmes de positionnement
s’accompagnent de leurs challenges, notamment en zones urbaines dans lesquelles un récepteur
GNSS reçoit également des signaux réfléchis sur les éléments urbains. Ces réflexions, connues
sous le nom de multitrajets, viennent détériorer les performances sur le positionnement final
du récepteur. La Section 1.4 développe la problématique du multitrajet et les moyens existants
pour les mesurer et les contrer. Il n’y plus qu’un pas à faire pour voir les multitrajets non pas
comme une interférence mais comme une source d’information. L’étude des signaux GNSS
réfléchis sur la surface de la Terre est connue sous le nom de réflectométrie par GNSS, ou
GNSS-R. Le GNSS-R exploite donc les signaux de navigation comme signaux d’opportunité ce
qui ouvre la porte à de nombreuses applications de télédétection. Ces différentes techniques,
applications et les challenges associés sont présentés dans la Section 1.5.

1.1 Introduction

This chapter proposes a general approach to the main concepts handled in this thesis. Global
Navigation Satellite Systems (GNSS) Reflectometry (GNSS-R) has been a research topic for
the last thirty years. GNSS-R exploits the reflection of GNSS signals on the Earth’s surface,
then using GNSS signals that were originally meant for navigation and timing applications as
signals of opportunity. GNSS reflected signals have not always been of such interest. Indeed,
in the early days of GNSS, and in most of today’s high precision navigation applications,
reflected signals, also referred to as multipath, are seen as a nuisance or interference that
one wants to avoid. For this reason, the understanding of GNSS-R concepts and existing
techniques requires the understanding of GNSS itself, along with its challenges such as the
multipath problem. A GNSS consists of a constellation of satellites broadcasting known
synchronized signals towards the Earth’s surface. A receiver able to collect these signals is
allegedly able to compute its position, velocity and timing on Earth. There are many different
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GNSS, like the Global Positioning System (GPS) or GALILEO, and all of them have their
own characteristics. In particular, they use ranging signals to allow the receiver to determine
its distance to the transmitting satellite. This range determination is an estimation problem
whose performance is limited by the design of the transmitted signal and the resources at
hand. Having a clear idea of estimation theory main results would then help to understand
how good a ranging system is, and what precision can be expected in a given scenario.

In short, this first chapter first aims at providing the very basic tools to approach GNSS-R.
A first Section 1.2 is dedicated to estimation theory applied to signal processing, where the
concept of the estimator and how to characterize it is addressed. Then a general presentation
of GNSS, which hides an estimation problem, is proposed in Section 1.3, in which two main
constellations, GPS and GALILEO, are considered. Section 1.4 reviews the GNSS multipath
problem and its existing metrics and mitigation strategies. Finally, a last Section 1.5 is
dedicated to the GNSS-R field of study with its current techniques and applications.

1.2 Background on Deterministic Estimation Theory

In many signal processing applications, users aim at extracting relevant information from a
signal collected by a sensor. For instance, a radar system evaluates the distance and velocity
of a target, and a communication system estimates bit values in order to demodulate a
transmitted message. In all these examples, the received signal has a number of properties:

• it is a random process, either due to the environment noise (e.g., thermal noise) or the
nature of the signal itself (e.g., speech, images),

• it depends on a vector of unknown parameters θ which contains the information to be
extracted,

• it can be sampled, so that a signal can always be represented as a vector of numbers.

An estimation problem can generally be expressed as follows: a vector of observations x =
[x(1), . . . , x(N)]T whose Probability Density Function (PDF), written as p(x; θ), is parame-
terized by a vector of unknown parameters θ = [θ1, . . . , θL]T that one wants estimate. To do
this, one looks for an estimator θ̂ that is a function of the observed data θ̂ = g(x).

Depending on the nature of the unknown vector of parameters θ, whether it is determinis-
tic or not, and depending on whether the observed data PDF is known or not, the estimation
problem at hand lies on a branch or another of estimation theory. In this thesis, the following
assumption are made:

• the vector of unknown parameters is deterministic, that is, its components are assumed
deterministic (no known prior),
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• unless said otherwise, the observed data true PDF will always be known. In particular,
as it will be mentioned repeatedly in the rest of this thesis, the assumed PDF will
systematically be a multivariate complex Gaussian.

Under these assumptions, all the signal models seen in this thesis can be described as Con-
ditional Signal Models (CSMs). The next section describes this signal model, along with a
series of properties and tools that will be of use for the work presented in the rest of this
document.

1.2.1 Conditional Signal Model

A CSM refers to a model for which the signal of interest is assumed non-random. The vector
of unknown parameters θ is deterministic. On the contrary, Unconditional Signal Model, or
USM describe a model for which the signal of interest is assumed random: θ has a prior
distribution that needs to be taken into account. The link between these two models has
been studied for decades and a number of results can be found in [SN90].
Let one consider the following CSM:

x = A(θ)α + n (1.1)

where A(θ) = [a(θ1), . . . ,a(θL)] is the matrix of the measured signals a that depends on
the components of the unknown parameters θ, αT = (α1, . . . , αL) is the vector of real or
complex amplitudes of the observed signals. Finally, n is the noise vector. It is often assumed
to be an additive complex circular white Gaussian noise vector with unknown variance σ2

n

so that n ∼ CN (0, σ2
nIN ). Consequently the observed data PDF is also Gaussian with

x ∼ CN (A(θ)α, σ2
nIN ) and

p(x; θ) =
1

(πσ2
n)N

e
− 1

σ2
n

‖x−A(θ)α‖2

(1.2)

The CSM described in (1.1) fits a large number of applications such as radar and sonar
[Van01b; Men11], spectral analysis [SM05], direction of arrival estimation [VBC13; VBC14;
ZW88] and navigation [Das19]. It is adapted to multiple sensors systems such as antenna
arrays [Van04] and to multiple sources scenarios as for an extended target [ZH16; Gar22].

1.2.1.1 Estimator Quality

Considering the CSM defined in (1.1) along with its PDF (1.2), the vector that contains
all the unknown parameters can be defined as ǫT = (σ2

n,θ
T ,αT ). Let ǫ̂ be an estimator of

this vector. In order to characterize this estimator and to compare it with other candidate
estimators, a number of notions are needed:

• an estimator is a random variable. It is a function of the data and is consequently a
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function of random variables with its own properties,

• by evaluating the distance between the expectation of the estimator and the true value
of the vector of parameters to be estimated, one gets the bias of the estimator:

b(ǫ̂) , E {ǫ̂} − ǫ, (1.3)

where E{·} is the expectation operator.

A biased estimator is an estimator with b(ǫ̂) 6= 0, which implies a systematic error in
the estimation. Naturally, one would rather work on unbiased estimators.

• The dispersion around the mean value of an estimator is characterized by its variance
defined for a scalar estimator as:

var(ǫ̂) , E
{

(ǫ̂− E{ǫ̂})2
}
. (1.4)

For vectors, one refers to the covariance matrix:

Cǫ̂ , E
{

(ǫ̂ − E{ǫ̂})(ǫ̂ − E{ǫ̂})T
}
. (1.5)

The smaller this variance or covariance matrix is, the better the estimation is in terms
of precision.

• Another metric that includes both bias and variance is the Mean Squared Error
(MSE) defined as:

MSE(ǫi) , E
{

(ǫ̂i − ǫi)
2
}

= b(ǫ̂i)2 + var(ǫ̂i), for i ∈ [1, L]. (1.6)

For unbiased estimators, variance and MSE are the same.

Now let ǫ̂N be an estimator of ǫ based on N signal samples. ǫ̂N is a wide sense consis-
tent estimator if it converges in probability:

lim
N→+∞

P [‖ǫ̂N − ǫ‖ < δ] = 1, ∀δ > 0, ∀ǫ (1.7)

where P [event] denotes the probability of event. Similarly, ǫ̂N is consistent in mean square
if:

lim
N→+∞

E
{

(ǫ̂N − ǫ) (ǫ̂N − ǫ)T
}

= 0, ∀ǫ (1.8)

and if an estimator is consistent in mean square, it is wide sense consistent as well.

Usually, users are more interested in consistency in mean square because it is more
tractable for proofs and it implies the wide sense consistency (Markov-Bienaymé-Chebyshe
inequality) means that the larger the number of samples N , the more the estimator is concen-
trated around the true value. The remaining question is then the convergence speed which
may vary from an estimator to another. An optimal estimator would be a consistent estimator
with a fast convergence, that is a minimum variance.
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A tool that provides a lower bound to the variance of any locally unbiased estimator is the
Cramér-Rao bound (CRB). Such lower bound is a key tool to compare different estimators
and to evaluate how much an estimator can be improved. An unbiased estimator with its
variance equal to the corresponding CRB is called an efficient estimator.

The CRB is defined for cases where the PDF p(x; ǫ) fits the following regularity condition

E

{
∂ ln p(x; ǫ)

∂ǫ

}
= 0 , ∀ǫ. (1.9)

Then, for any unbiased estimator ǫ̂, its covariance matrix Cǫ̂ satisfies

Cǫ̂ − F−1
ǫ|ǫ(ǫ) ≥ 0 , (1.10)

where Fǫ|ǫ(ǫ) is the Fisher Information Matrix (FIM) defined as

Fǫ|ǫ(ǫ) = −E
{
∂2 ln p(x; ǫ)
∂ǫ∂ǫT

}
, (1.11)

and the second derivative is expressed at the true value of ǫ.

As a reminder, let M be an hermitian matrix so that MH = M. M is positive semi-definite
(also noted M ≥ 0) if and only if ∀y, yHMy ≥ 0.

As mentioned before, in a lot of applications, the signal model has a complex circular
Gaussian distribution: x ∼ CN (µ(ǫ),C(ǫ)) where µ(ǫ) is the mean vector and C(ǫ) is the
covariance matrix. The Slepian-Bangs formulas [YB92; Kay93] give a simple expression of
each component of the FIM:

[
Fǫ|ǫ (ǫ)

]
k,l

= 2Re

{
∂µH(ǫ)
∂ǫk

C(ǫ)−1∂µ(ǫ)
∂ǫl

}
+ Tr

{
C(ǫ)−1∂C(ǫ)

∂ǫk
C(ǫ)−1∂C(ǫ)

∂ǫl

}
, (1.12)

where Tr{·} denotes the trace operator.

Knowing the standard tools to characterize an estimator, the goal now is to build one
as good as possible, ideally an efficient estimator. This is not always possible and the next
section aims at defining a family of estimators based on the maximum likelihood principle.

1.2.1.2 Maximum Likelihood-based Estimators

It is not always possible to find an efficient estimator for a given problem. In signal processing
[Ott93], a common alternative is to resort to the Maximum Likelihood Estimator (MLE) which
has a number of asymptotic properties that makes it a relevant choice.

The MLE principle is simply to find the parameter ǫ that maximizes the likelihood function
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p(x; ǫ), which is the PDF when x is fixed and equal to the observed data,

ǫ̂ = arg max
ǫ
p(x; ǫ) (1.13)

In other words the MLE looks for the ǫ that makes the observed data the most likely.

The MLE has a key particularity that makes it worth studying: it is asymptotically
efficient, i.e., when the number of observation gets large [Van01a; SN90] or when the signal-
to-noise ratio (as it will be defined later) gets large [Ren06], the MLE turns unbiased and its
variance is equal to the CRB.

Jumping back to the general CSM (1.1) and its PDF (1.2), the MLE is looking for the
vector ǫ that maximizes the likelihood. One is often tempted to look at the log-likelihood to
get rid of the exponential term

ǫ̂ = arg max
ǫ

{ln p(x; ǫ)} = arg max
ǫ

{
−N ln(π) −N ln(σ2

n) − 1
σ2
n

‖x − A(θ)α‖2
}
. (1.14)

For the estimation of the variance term, σ2
n, one can find the σ2

n that cancels the first
derivative of the log-likelihood,

∂ ln p(x; θ)
∂σ2

n

= −N

σ2
n

+
1
σ4
n

‖x − A(θ)α‖2 , (1.15)

so that that maximum likelihood estimate of the noise variance is simply:

σ̂2
n =

1
N

‖x − A(θ)α‖2 . (1.16)

By replacing this estimate in the log-likelihood (1.14) and omitting the constant terms, the
MLE problem becomes

(
θ̂, α̂

)
= arg max

θ,α

{
− ln(‖x − A(θ)α‖2)

}
= arg min

ǫ

{
‖x − A(θ)α‖2

}
. (1.17)

Let PA = A(θ)
(
A(θ)HA(θ)

)−1
A(θ)H be the orthogonal projector on the vector space

defined by the column of A(θ), also referred as the data vector space. Then P⊥
A = I − PA is

the orthogonal projector on the noise space, and one can decompose the norm to be minimized
as follows:

‖x − A(θ)α‖2 =
∥∥∥
(
PA + P⊥

A

)
(x − A(θ)α)

∥∥∥
2

= ‖PA (x − A(θ)α)‖2+
∥∥∥P⊥

A (x − A(θ)α)
∥∥∥

2
,

(1.18)
and resorting to the definition of the projectors, one gets

‖x − A(θ)α‖2 =
∥∥∥∥A

((
A(θ)HA(θ)

)−1
A(θ)H − α

)∥∥∥∥
2

+
∥∥∥P⊥

Ax
∥∥∥

2
. (1.19)

Remembering (1.17), the goal is to minimize both terms of (1.19). The first term minimization
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yields a closed-form for the estimation of the complex amplitude:

α̂ =
(
A(θ)HA(θ)

)−1
A(θ)H , (1.20)

and the minimization problem reduces to

θ̂ = arg min
θ

{∥∥∥P⊥
Ax
∥∥∥

2
}

= arg max
θ

{
‖PAx‖2

}
. (1.21)

Three interpretations can be proposed for this reduced MLE:

• P
A(θ̂)

x maximizes the projection of the noisy data x on the data vector space defined
by A,

• P
A(θ̂)

x can be seen as a correlation coefficient between the received signal x and the

signal model A(θ),

• the operation PAx can be seen as matched filtering as detailed in Section 1.3.3.

The MLE is then a powerful estimator thanks to its asymptotic properties, but depending
on the signal model and the number of parameters to estimate, it may turn to be a multi-
dimensional, highly non-linear optimization problem, which can make it intractable because
of the computational cost. For this reason, a lot of alternative algorithms that aim at simplify
the MLE were derived in the literature. In particular, for the multiple sources problem, the
joint M sources MLE can be quite long to solve and users apply a sub-optimal processing by
dividing this M -dimensional search into M 1-dimensional search, for instance. Here are two
examples that operate this dimensional reduction:

• the CLEAN-RELAX estimator (CRE) [LS96] which is an extension of the CLEAN
algorithm used in astrophysics. The idea is to iteratively minimize the likelihood term
with regard to a single source: in practice, in order to update the estimation of the
k-th signal, the algorithm subtracts the M − 1 other signals and applies a single source
processing on the remaining data. In a dual source context, the CRE simply estimates
a source with a single source MLE processing and then removes this estimate from the
received signal, in order to estimate the other source in the residue. Then, it subtracts
the secondary source from the received signal and updates the estimate of the first one.
This goes on until the total likelihood value does not change much from an iteration to
the next. Figure 1.1 shows the first and last steps of the CRE in a dual source context.
The displayed curves are the output of each single source processing for the first (blue)
and the secondary (orange) sources. The problem here is a problem of two signals with
an unknown delay.

• the Alternating Projection estimator (APE) introduced in [ZW88] aims at minimizing
the likelihood term iteratively with regard to a single source but considering the am-
plitudes of all the sources: in short, it iteratively minimizes the likelihood criterion by
changing only the parameters of the considered source and keeping fixed the estimates
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of the other sources. In a dual source context, if each source has only one parameter to
be estimated, θT = (θ1, θ2), this minimization can be graphically seen as a stair-shape
optimization process, as shown in Figure 1.2.

(a) (b)

Figure 1.1: Example of the CRE algorithm for the estimation of the time-delay of two sources.
(a) is the single source likelihood term of the first iteration (the expected shapes should be
symmetric). (b) is the three consecutive steps where the blue curves are associated to one
source and the orange curves are associated to the other. The final curves, marked with the
vertical black lines, are symmetric as expected.

(a) (b)

Figure 1.2: Example of the APE algorithm for the estimation of the time-delay of two sources.
(a) is the dual source likelihood function to be maximized and (b) is a contour plot of the
same function with the stair-shaped trajectory of the APE algorithm iterative steps.

Other approaches exists to tackle the problem of the MLE complexity. In some cases,
assumptions on the signal model can lead to simplifications as in [VBC14] with the Approxi-
mate Maximum Likelihood Estimator (AMLE). In different configurations, as in an array of
sensors, powerful algorithms have been studied for decades and are still used as a reference,
like the Multiple Signal Classification (MUSIC) [Sch86] or even the Capon algorithm [Cap69].
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1.2.2 Misspecified Estimation

So far, the estimation problem was assuming a good knowledge of the signal model under
study. With this knowledge, the data PDF can be written, the corresponding CRB evaluated
and the MLE or at least sup-optimal versions of it can be implemented. However, the signal
model is not always well known, or alternatively, the true model leads to too complex estima-
tors and a way to tackle this issue is to assume a simplified signal model. When the assumed
model differs from true data model, it is said to be misspecified. Such a misspecification may
affect the overall estimation performance in terms of bias and variance. This problem has
been studied for a long time [Hub67; Aka74; Whi82].

Let p(x) be the PDF of the true data signal model and f(x; θ) be the PDF of the assumed
data signal model. If one applies the misspecified MLE (MMLE), that is, the MLE that
corresponds to the assumed signal model, to the observed data x, in the limit of large sample
support or at high SNR for the CSM, the estimated θ̂ would be the one that minimizes the
Kullback-Leibler Divergence (KLD) between the PDF of the true and the assumed signal
model:

θ̂ = arg max
θ

{f(x; θ)} = arg min
θ

{D (px||fx)} = arg min
θ

{Ep {ln p(x) − ln f(x; θ)}} (1.22)

Such estimate may vary significantly from the expected value depending on the degree of
misspecification of the considered scenario.

An important result, recalled in [For17], regarding the MMLE is that, asymptotically:

• it converges in probability to a fixed value called pseudo-true parameter, noted θpt,

• it is consistent and the corresponding variance is equal to a lower bound provided by
the so-called Misspecified CRB (MCRB).

In short the MMLE is an efficient estimator of this pseudo-true parameter.

The MCRB is a generalization of the CRB introduced in Section 1.2.1.1, its expression is:

MCRB(θpt) = A(θpt)−1B(θpt)A(θpt)−1 , (1.23)

where,

[A(θpt)]k,l = Ep




∂2 ln f(x; θ)
∂θk∂θl

∣∣∣∣∣
θ=θpt



 , (1.24)

[B(θpt)]k,l = Ep

{
∂ ln f(x; θ)

∂θk

∣∣∣∣
θ=θpt

· ∂ ln f(x; θ)
∂θl

∣∣∣∣
θ=θpt

}
. (1.25)

These expressions highly depend on the model misspecification. Depending on the scenario,
they can be further developed to obtain nicer forms.
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With this section, one is now able to characterize misspecified estimators when the data
model is unknown and a misspecification cannot be avoided. Another way to go around the
problem is naturally to try and change the assumed signal model in order to find a better
specification. For instance, when the number of sources is unknown, it might be worth trying
to add a source in the signal model rather than getting biased estimates. The next section
presents different approaches to determine the number of sources.

1.2.3 The Detection Problem

The detection problem refers to the problem of determining the number of sources that are
contained in the received signal. It applies to radar, sonar [BSK85], navigation [Kap] and
many other applications where the user wants to know if there is a source and how many
there are.

In the literature, many ways were developed to tackle this signal detection problem. In
high resolution arrays, the number of sources is estimated based on the study of the eigenstruc-
ture of the observations covariance matrix with information-theoretic criterion to minimize
[WK85], such as the Akaike Information Criterion (AIC) [Aka74] or the Minimum Descriptive
Length (MDL) [WZ89; Ris78]. These criteria may be simplified considering the relevancy of
the parameters to estimate [Won90]. It can also be done by performing series of hypothesis
tests with bootstrapping [BZP02] or resorting to the Benjamini-Hochberg procedure [Chu07;
BH95]. Other studies propose a solution based on random matrix theory [KN09] or subspace
considerations [Gar19; WA21].

1.2.4 Wrap-Up on Estimation Theory

In this section the main tools of deterministic estimation (and detection) theory were intro-
duced in a rather general case. A focus was however done on the Gaussian CSM that fits
a large number of applications. In the following, one of these applications, namely satellite-
based navigation, will be further detailed.

1.3 Global Navigation Satellite Systems

Navigation refers to the science of monitoring and controlling the movement of an object
from a point to another. It can be a person hiking in the mountain and using a paper map,
a compass and landmarks to find its way to the peak. It can also be any vehicle, on Earth,
sailing or flying, that needs to know its position, its velocity and possibly its orientation. It
is clear that depending on the aids used, there are many ways to navigate. The category of
navigation solutions that exploit RF signals is called radionavigation.

In the late 1970’s the United States (US) launched their very first Navigation System
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with Timing and Ranging (NAVSTAR) satellite. This was the first satellite of the Global
Positioning System (GPS) whose initial application was to obtain an estimate of the position,
velocity and attitude of an object anywhere in the world. Since then, other countries developed
their own navigation satellite system: among them the main ones are the Russian Federation
Global Navigation Satellite System (GLONASS), the Chinese BeiDou system, the European
GALILEO system, India’s Navigation with Indian Constellation (NavIC), and Japan’s Quasi-
Zenith Satellite System (QZSS). The collection of all these systems and their augmentations
is known as GNSS.

1.3.1 Principle

GNSS generally consists of a constellation of Medium Earth Orbit (MEO) satellites, or Space
Vehicles (SV) that are dispatched on three or six orbital planes. The constellation features
are such that from anywhere on the Earth surface a user can see four to eight satellites at
any time.

Each satellite of the constellation is continuously transmitting towards the Earth’s surface
a known ranging signal. A GNSS receiver is then able to collect this signal and to identify the
SV that sent it. It will also be able to estimate the time τ between the transmission and the
reception of the signal. The time traveled in vacuum, τ , multiplied by the speed of light c is a
measure of the radio-electric distance between the SV and the receiver. By doing this range
estimation with three satellites and provided the fact that the receiver knows the position of
all the SVs, it is possible to compute the position of the receiver by trilateration. This is the
basic principle of GNSS as depicted in Figure 1.3.

To the three measurements, one has to add a fourth one to estimate the receiver clock un-
certainty. Receiver clocks are usually standard quality oscillators that need to be continuously
estimated, while SV have highly stable and precise atomic clocks. Solving the trilateration
problem to get an estimate of the receiver position along with its velocity, using the Doppler
effect, and the time, is also referred to as obtaining a Position-Velocity-Time (PVT) solution.

1.3.2 Constellations and Signals

1.3.2.1 General GNSS Signal Structure

The challenge in GNSS signal design is to build a family of signals that allows the receiver not
only to detect them, but also to identify them to their corresponding transmitting SV. Besides,
the chosen signal should guarantee a high ranging precision in order to solve accurately the
PVT solution. For these reasons, a spreading technique, namely the Direct Sequence Spread
Spectrum (DSSS) is applied on GNSS signals. This spreading technique consists of multiplying
a low data rate data signal with a high data rate Pseudo-Random Noise (PRN) sequence. Once
the signal is received, the spreading can be removed by cross-correlating the received signal
with the correct PRN sequence. The choice of the PRN sequence must respect a number of
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Figure 1.3: General Principle of GNSS.

properties: i) the auto-correlation function (ACF) of a given sequence should present a main
peak significantly higher than the others, ideally this peak should be as sharp as possible to
obtain a good estimation performance, and ii) the cross-correlation function (CCF) between
two different sequences, corresponding to two different SVs of the same constellation, should
have very low values. These properties ensure quasi-orthogonality between PRN codes. As
an example, Figure 1.4 presents the ACF of GPS L1 C/A PRN 1 and the CCF between
this sequence and the PRN 2. As it will be seen in the next two sections, depending on the
constellation, various signals exist that present different signal waveforms, sequence length,
etc. All the GNSS signals considered here can be described with three main elements:

• carrier frequency fc which describes the center frequency of the transmitted signal,

• ranging code or PRN sequence c(t), a family of codes that should be quasi-orthogonal.
Each ranging code is a set of Nc discrete values of duration Tc called chips. The ranging
code are often sent at a high rate, e.g., F0 = 1023000 Hz or multiple of F0,

• navigation message d(t) that contains all the data necessary, for instance, to compute
the position of the transmitting satellite, which is in turn needed to get a PVT solution.
This coded message is sent on the GNSS data channels at a slow rate (for GPS L1 C/A,
it is sent at 50 Hz). For modernized signals, only the data channel has a navigation
message.
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(a) (b)

Figure 1.4: Quasi-orthogonality property of a PRN sequence. (a) is the ACF of GPS PRN 1
and (b) is the CCF of the same PRN with GPS PRN 2.

Note that for signals of the BOC family, an extra feature, the sub-carrier sc(t) is also part
of the signal definition. This sub-carrier allows to tune the spectral occupancy and the signal
ranging performance.

The transmitted signal is then a product of all these components, modulated at frequency
fc,

sTx(t) = d(t)c(t) cos(2πfct) (1.26)

This can also be seen as a layered structured signal, as graphically pictured in Figure 1.5 for
a GPS L1 C/A signal, for which there is not sub-carrier signal sc(t) and both the ranging
code and navigation message have a rectangular pulse shape.

Figure 1.5: Layered structure of a GNSS signal.
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1.3.2.2 GPS

The NAVSTAR GPS space segment consists of 24 or more satellites placed and equally spaced
on 6 quasi-circular orbital planes with an inclination of 55◦. With this layout, four or more
satellites are always in view from any point on Earth, which allows a user’s receiver to be
able to get a PVT solution anywhere. The average altitude of the satellites is 20200 km and
they have a revolution period of half a sidereal day. Consequently, taking into account the
rotation of the Earth, the satellite ground tracks are revisited every sidereal day.

There are several GPS signals broadcast by all or part of the satellites on three bands:
L1 with carrier frequency fL1 = 1575.42 MHz, L2 with fL2 = 1227.60 MHz and L5 with
fL5 = 1176.45 MHz. Historically, the first signals sent over L1 were modulated by the Coarse
Acquisition (C/A) code and the Precise (Encrypted) (P(Y)) code. The former being for
civil open-access use, it is by far the most used. It is fully specified in the interface control
document (ICD) [U.S22a]. It consists of a low rate navigation message (50 bits per second,
or bps) spread with a PRN code from the Gold family [Gol67] of length Nc = 1023. The
PRN code is modulated using a rectangular chip pulse shaping known as Binary Phase Shift
Keying (BPSK) modulation at a clock rate of 1.023 MHz, also referred to as BPSK(1), where
the number in parentheses is a multiple of the frequency f0 = 1.023 MHz. Consequently, the
code duration is of 1 ms and the main lobe of its Power Spectral Density (PSD) is 2.046 MHz
wide.

Since the first generation of satellites, the GPS system has been modernized several times
and now includes blocks IIR(M), IIF and more recently blocks III satellites that transmit
military M code, L1C, L2C and L5 codes which have their own time and spectral properties.
For instance the latter, L5 signal, fully described in its corresponding ICD [U.S22b] has the
particularity to be separated into two orthogonal channels: i) the in-phase channel which has
a BPSK(10) modulation and also carries the navigation message (data channel), and ii) the
quadrature channel that also has a BPSK(10) modulation but no navigation message on top
of it (pilot channel). Pilot channels are meant for long integration processing.

All the signals transmitted by the GPS satellites are summarized in Table 1.1 and their
spectrum occupancy is depicted in Figure 1.6.

1.3.2.3 GALILEO

The GALILEO program is a European project to design and operate its own GNSS. The
GALILEO space segment consists of 30 MEO satellites evenly dispatched on three quasi-
circular orbital planes with a 56◦ inclination and at an average altitude of 23222 km. It takes
14 hours for a satellite to orbit the Earth. This yields a satellite ground track revisiting time
of 7 sidereal days.

GALILEO signals are broadcast over three bands: E1 with carrier frequency fE1 = fL1,
E5 with carrier frequency fE5 = 1191.795 MHz and E6 with carrier frequency fE6 = 1278.75
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Table 1.1: List of GPS signals and their characteristics. From [TM17] and Navipedia [Eur].

Band Signal Modulation
Chip Signal Codes Data
Rate Bandwidth Length Rate

[Mbps] [MHz] [chip] [bps]

L1

C/A BPSK(1) 1.023 2.046 1023 50
P(Y) BPSK(10) 10.23 20.46 - 50
L1C TMBOC(6,1) 1.023 14.322 10230 100
M BOCsin(10,5) 5.115 30.69 - -

L2

P(Y) BPSK(10) 10.23 20.46 - -
M BOCsin(10,5) 5.115 30.69 - -

L2C (CM)
BPSK(1)

0.5115 2.046 10230 50
L2C (CL) 0.5115 2.046 767250 -

L5
L5I BPSK(10) 10.23 20.46 10230/10 100
L5Q BPSK(10) 10.23 20.46 10230/20 -

MHz. Moreover the E5 band can be seen as two side-by-side bands: E5A with carrier fre-
quency fE5A = fL5 and E5B with carrier frequency fE5B = 1207.14 MHz. One can then
notice that E1 and E5A bands have the same carrier frequency as GPS L1 and L5 bands.
This ensures interoperability between both constellations: a GPS receiver would only need
an update on the processing stage but not on the RF front-end to become a GALILEO re-
ceiver. For GALILEO E1 Open Service (OS) signals, which are the most common signals, two
channels, i) the data stream E1B and ii) the pilot stream E1C are sent simultaneously. Both
components have a spreading code with 4092 chips during 4 ms and modulated by a Com-
posite Binary Offset Carrier CBOC(6,1) modulation. A CBOC is defined as a combination of
two Binary Offset Carrier BOC modulations [Bet01; HBS04], a BOC(1,1) and a BOC(6,1).
BOC(m,n) is just an alternative to the BPSK pulse shaping. It is described by a sub-carrier
fs = m · f0 and a code chipping rate fc = n · f0 and consists of the product of a rectangular
pulse of frequency fc and a sine or a cosine square wave sub-carrier of frequency fs [TM17].
Depending on n, m and the choice between cosine and sine, the resulting modulation has
different temporal and spectral properties.

The E5 band has a peculiar structure. As mentioned before, it can be seen as two side-by-
side band that are constructed in a similar way: on both E5A and E5B bands, the transmitted
signals are BPSK(10) modulations with an in-phase data channel and a quadrature pilot
channels. If taken together, the resulting signals transmitted over the entire E5 band is then
a complex signal called Alternative BOC or AltBOC [LAI08] that has a very wide band and
allow potential high accuracy measurements.

All the OS GALILEO signals are fully described in the ICD [Eur21]. The different
PRN, signal waveforms and spectral particulars can be found there in order to implement
a GALILEO receiver. Besides, all the signals transmitted by the GALILEO satellites are
summarized in Table 1.2 and their spectrum occupancy is displayed in Figure 1.7.
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Figure 1.6: GPS signals power spectral density for all three bands: (a) is L1 band, (b) is L2
and (c) is L5.

1.3.3 GNSS Signal Processing

Now that an overview of the main GNSS signals has been done, the question of how these
signals are processed to obtain a final position must be addressed. In particular, in this
section, the focus is done on the two very first steps of a standard GNSS signal processing,
namely, the acquisition and the tracking stages whose outputs are the pseudo-ranges between
the receiver and each satellites in view.

Considering the reception of four different satellite signals of the same constellation and
assuming an ideal model (all clocks synchronized, no group delay at transmitters and receiver
level, no group delay from ionosphere and troposphere, no relativistic effect), the baseband
signal, that is, after filtering, down-conversion and sampling, can be written as:

x =
4∑

i=1

αisi(τi, Fd,i) + w (1.27)
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Table 1.2: List of GALILEO signals and their characteristics. From [TM17] and Navipedia
[Eur].

Band Signal Modulation
Chip Signal Codes Data
Rate Bandwidth Length Rate

[Mbps] [MHz] [chip] [sps]

E1
PRS BOCcos(15,2.5) 2.5575 35.8 - -

E1B OS CBOC(6,1) 1.023 14.322 4092 250
E1C OS CBOC(6,1) 1.023 14.322 4092/25 -

E5

E5AI BPSK(10) 10.23 20.46 10230/20 50
E5AQ BPSK(10) 10.23 20.46 10230/100 -
E5BI BPSK(10) 10.23 20.46 10230/4 250
E5BQ BPSK(10) 10.23 20.46 10230/100 -

E5 AltBOC(15,10) 10.23 51.15 10230 -

E6
PRS BOCcos(10,5) 5.115 30.69 - -

E6B CS BPSK(5) 5.115 10.23 5115 1000
E6C CS BPSK(5) 5.115 10.23 5115/100 -

where, w is a complex additive white Gaussian noise so that w ∼ CN (0, σ2
nIN ) and for

n ∈ [1, N ] the sample index,

xT = (. . . , x(nTs), . . .) , (1.28)

si(τi, Fd,i)T =
(
. . . , s(nTs − τi)e−j2πFd,i(nTs−τi), . . .

)
, (1.29)

wT = (. . . , w(nTs), . . .) , (1.30)

Ts the sampling period, for i ∈ [1, 4], αi is the complex amplitude of the i-th signal, τi is the
time-delay and Fd,i is the Doppler frequency. This model or its continuous-time version are
typical models that are used in most of the GNSS literature [Kap; TM17; Mor21].

For the considered CSM (1.27), the acquisition step aims to provide an estimate of (τi, Fd,i)
for each satellite in view. The classical approach is to compute the cross-correlation between
the received signal and each satellite PRN code, and take the set (τ, Fd) that maximizes this
function. This is somehow equivalent to a single source maximum likelihood estimator or
1S-MLE, as predicted in the interpretation of the MLE in Section 1.2.1.2. This CCF, also
known as ambiguity function, can be defined as

Rx,si
(τ, Fd) = Tssi(τ, Fd)Hx (1.31)

Thanks to the quasi-orthogonality of the PRN sequences, if the signal of the i-th SV is in
the received signal, the CCF will present a single peak that is located around the true values
of (τi, Fd,i). Otherwise, the CCF will present only small values that correspond to the noise
floor. As an example, Figure 1.8 present the ambiguity function between a noisy received
signal x containing a single PRN with a given delay and Doppler frequency, say GPS L1 C/A
PRN 1, and two clean replicas to test the presence of PRN 1 and PRN 2.

24
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(c)

Figure 1.7: GALILEO signals power spectral density for all three bands: (a) is E1 band, (b)
is E5 and (c) is E6.

Once a first rough estimation of (τi, Fd,i) is obtained, they initialize the loops used for
tracking the signal. To get an estimation of the position for a long time, this tracking step
is necessary because both the receiver and the transmitting satellite are constantly moving,
the geometry is varying through time. A standard tracking architecture called Early-minus-
Late (E-L) uses a bank of three correlators called early (E = Rx,si

(τi,E , Fd,i)), prompt (P =
Rx,si

(τi,P , Fd,i)) and late (L = Rx,si
(τi,L, Fd,i)). The prompt correlator is centered between

the early and the late correlators: τi,L − τi,P = τi,P − τi,E = d/2, where d is called the
correlator spacing. Knowing that the CCF should be symmetric, by comparing the early and
the late correlators should inform where the peak is relatively to the prompt correlator. As an
illustration, in Figure 1.9, two scenarios are displayed, in Figure 1.9a the prompt correlator
is on the left-hand side of the correlation triangle, it is too early. Equivalently, the early
correlator amplitude is smaller that the late correlator: E − L < 0, in that case the next
iteration should increase the estimated delay and this way shift all three correlators to the
right-hand side. Figure 1.9b is the opposite scenario, the prompt is too late and the difference
E − L > 0, the next iteration will aim at shifting all three correlators towards the left-hand
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(a) (b)

Figure 1.8: Example of ambiguity function in two cases, (a) the PRN tested is present in the
received signal and (b) the PRN tested is not present in the received signal.

side. In short, the sign of the difference E−L provides the direction in which the correlators
should be shifted to place the prompt close to the peak. This is part of the Delay-Locked Loop

(a) (b)

Figure 1.9: Example of the Early-minus-Late tracking architecture. (a) presents a scenario
where the prompt is too early, and (b) presents the opposite scenario where it is too late.

(DLL), equivalently, a Phase-Locked Loop (PLL) is also implemented in order to track the
variation of the phase. From the phase tracking, the Doppler frequency can also be computed.
A standard implementation can be found in GNSS books such as [Kap; TM17] and will not
be further discussed in this thesis.

So far the notion of noise was merely mentioned. In GNSS, as in any estimation problem,
the noise is a fundamental parameter that determines if the estimation is possible or not, and
with what performance. For the sake of clarity, in the following the Doppler frequency will
be assumed compensated and will not appear anymore. Considering the reception of a signal
s with an additive white Gaussian noise, the signal-to-noise ratio (SNR) can be defined at
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the output of the matched filter as follows:

SNR ,
‖α‖2sHs

σ2
n

= (C/N0)TI (1.32)

where σ2
n is the variance of the additive white Gaussian noise. C/N0 is the carrier-to-noise

density ratio and TI is the integration time (proportional to the length of the considered
signal).

With this SNR definition, if one generates 50 times the same 1 ms long signal with
independent noise realizations at SNR= 15 dB, that is, C/N0 = 45 dB.Hz, which is a realistic
value, and then process this signal to estimate the time-delay (i.e., as in the acquisition
processing), one would get Figure 1.10. The dispersion, or variance, observed in Figure 1.10b

(a) (b)

Figure 1.10: 50 realizations of a noisy signal in presence of noise. (a) presents the correspond-
ing cross-correlation functions and (b) presents the histogram of the estimated time-delays
for the 50 realizations and for 5000 realizations.

is induced by the presence of noise. As a matter of fact, this is an illustration of the behavior
of the MLE. In the asymptotic regime, that is for large enough SNR, this variance should
be equal to the CRB. In [Med20; Das20a], closed-form CRB for the navigation problem
were derived and validated with the asymptotic properties of the MLE. Other signal models
considering for instance the acceleration were also studied in [McP21].

1.3.4 Wrap-Up on GNSS

This section covered the main features of a branch of navigation: GNSS, which is based
on constellations of satellites transmitting ranging codes along with navigation data. GNSS
first processing steps are joint time-delay and Doppler frequency estimation problems, which
can be fully characterized by the estimation theory tools introduced in Section 1.2. So far,
GNSS was presented in an ideal way, but in practice, the received signal is not only polluted
by additive noise but also by interfering signals such as multipath. This last concept is
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introduced in the next section.

1.4 The Multipath Problem

In harsh environments such as urban canyons, a GNSS receiver may receive not only the
LOS signal but also several replicas due to reflection and diffraction of the LOS signal upon
reflecting objects, such as buildings, ponds, cars, etc. These allegedly undesired NLOS tend
to degrade the performance of the GNSS receiver. This phenomenon, called multipath for a
short version of multiple paths, is considered a self interference [Dov15] and remains an open
issue in urban navigation, mainly because of its strong impact and its randomness. Being
a great challenge for accurate positioning in urban environments, the multipath problem
has dedicated chapters through several GNSS books as in [Kap, Ch. 9.5], [TM17, Ch. 15]
or [Mor21, Ch. 22]. The following sections aim to summarize the main models used to
characterize multipath, different mitigation strategies that can be found in the literature and
metrics to assess the actual impact of multipath for GNSS signal or receiver architecture
design.

1.4.1 Multipath Models

1.4.1.1 Dual Source Model

A simple way to apprehend the multipath problem is to consider a receiver that would collect
the LOS signal along with a single specular reflection, which may occur on reflecting objects
that span a significant fraction of a cross-section of the first Fresnel zone [BS87]. The first
Fresnel zone is an ellipsoid about the LOS path between a transmitting antenna and a re-
ceiving antenna consisting of all points each with a combined path length to the receiving
and transmitting antennas that is one-half wavelength longer than the LOS distance [TM17].
Under this hypothesis, if thermal noise is ignored and if the Doppler frequency is assumed
perfectly compensated, the LOS signal (indexed 0) corrupted by a single multipath (indexed
1), at the output of the Hilbert’s filter, can be written as:

x(t) = ρ0e
jφ0s(t− τ0) + ρ1e

jφ1s(t− τ1) (1.33)

where for i ∈ {0, 1}, τi is the time-delay, ρi is the positive real amplitude and φi is the phase.
For such a model, one can define several parameters that fully characterize the multipath
scenario:

• the excess time-delay or path separation: ∆τ = τ1 − τ0, which is always positive since
a NLOS path is always longer than the LOS,

• the multipath-to-direct amplitude ratio or MDR: MDR = ρ1/ρ0, which is generally
smaller than 1 since reflection is attenuating the reflected signal,
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• the phase difference ∆φ = φ1 − φ0.

Interestingly, for reflection-induced multipaths, it is possible to predict both the path sepa-
ration and the phase difference thanks to geometry considerations. The reflection obeys the
Snell-Descartes law, and the transmitting satellite is so far compared to the distance between
the receiver and the reflecting point, that the two rays can be considered parallel. These
assumptions naturally lead to the multipath scenario depicted in Figure 1.11. Consequently,

LOS

multipath

c∆τ = 2h sin(e)

h

h

e

Figure 1.11: Ground multipath scenario and path separation prediction thanks to geometry
consideration.

with the knowledge of the satellite elevation angle e and the height between the receiver and
the ground h, one can deduce the path separation between direct and reflected paths.

1.4.1.2 Towards Realistic Models

The two-ray model is useful for multipath impact analysis, as it will be seen further, but it
is very simplistic and other models, more representative, were developed in order to better
understand the multipath effect.

A first and natural extension to the two-ray model is a N -ray model such as in [Kap]:

x(t) = ρ0e
jφ0

(
s(t− τ0) +

N−1∑

n=1

ρn
ρ0
ej∆φns(t− τ0 − ∆τn)

)
(1.34)

where, for the multipath indexed n, ∆τn is its excess time-delay, ρn/ρ0 its MDR and ∆φn
its phase difference. The expression (1.34) can also be displayed under a Power Delay Profile
(PDP) as in Figure 1.12. This model, usually assumed time-invariant compared to the coher-
ent integration time for the correlation, does fit multipaths on aircraft where reflections are
often due to the airplane structure, but is less representative of terrestrial application where
the propagation channel properties can vary significantly. This last example can correspond
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Figure 1.12: Example of PDP with the direct signal, near echoes and far echoes.

to a car driving in a city center for instance. In these cases multipath can be modeled by a
large number of scatterers [BRS98] or by multipath fading channels as in [PS07, Ch. 13.1].

In [JBH96], a statistical model of the propagation channel was proposed, modeling the
shadowing of the direct signal amplitude with a Rice distribution when there is LOS and
Rayleigh when the direct signal is masked by an object. Besides, the number of near and far
echoes are Poisson distributed, and their amplitudes are exponential distributed for the near
echoes and Rayleigh distributed for the far echoes. Such a model allows enough flexibility to
properly cover different environments.

1.4.2 Multipath Effect and Mitigation Solutions

As previously mentioned, multipath is a self-interference that pollutes the LOS signal and
degrades the overall performance of the receiver. An illustration of this effect can be observed
in Figure 1.13, where the cross-correlation of a received signal is displayed for different phase
differences, a GPS L1 C/A signal with the RF front-end bandwidth set to 4 MHz, the excess
time delay set to 0.25 L1 C/A chips and the MDR set to 0.5. From these figures, it is clear
that multipath has a varying effect depending on the relative phase. The reflection can be
constructive of destructive, which would affect the overall SNR and distort the triangular
shape so that if an algorithm is tracking the maximum of this shape, it will necessarily be
biased.

The next two sections list a number of existing strategies to mitigate this multipath
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(a) (b)

(c) (d)

Figure 1.13: Multipath effect on the cross-correlation function between the single-multipath-
corrupted signal and a clean replica of a GPS L1 C/A signal. (a) shows the auto-correlation
function (without multipath), (b) shows the cross-correlation when the single multipath is in-
phase with the LOS (∆φ = 0), (c) is when the single multipath is in quadrature (∆φ = π/2)
and (d) is when it is out-of-phase (∆φ = π). RF front-end bandwidth is equal to 4 MHz in
green and 24 MHz in red, excess delay is equal to 0.25 L1 C/A chips and MDR equal to 0.1.

distortion effect. They are of two sorts:

• Non-estimating techniques: the algorithms of this category are trying to limit the effect
of the multipath on the CCF but they are not trying to estimate the parameters of the
multipath itself.

• Estimating techniques: the multipath is seen as an additional source with deterministic
parameters and the algorithms of this section try to estimate them.

1.4.2.1 Non-Estimating Solutions

A first family of multipath mitigation strategy consists of modifying the bank of correlators
in the receiver, in order to implement an algorithm that is more robust than the simple E-L
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discriminator. A simple and very intuitive solution is the Narrow Correlator (NC) [VFF92] in
which the spacing is reduced to a very small fraction of the width of the correlation triangle.
Another common-sense approach is to add a couple of correlators (very early and very late)
to evaluate the slope on each side of the correlation triangle, as it is done with the Early-Late
Slope [TF94], the High Resolution Correlator (HRC) [MB99] or the Pulse Aperture Correlator
(PAC) [JFS04]. A last group of estimators is directly working on the transmitted signal: it is
either gated [MB99], that is, rearranged in time chunks in order to modify the CCF so that
it is narrower, or averaged to try and reconstruct the transition chip as in [FJ05] with the
Vision Correlator (VC).

1.4.2.2 Estimating Solutions

A second family of multipath mitigation strategy gathers algorithms which see the additional
multipath as a deterministic signal with its own parameters (time-delay, amplitude, phase).
There are many existing tools, but most of them are variants of the dual source MLE. A
pioneer algorithm in multipath mitigation technology is the Multipath Estimating Delay Lock
Loop (MEDLL) introduced by Van Nee in [Van92] and later in [Tow95]. This algorithm can
be seen as a hardware implementation of the CRE seen in Section 1.2.1.2: it assumes a bank
of several correlators which allow to estimate each multipath component using a maximum
likelihood criteria. These estimated multipath signals are then subtracted from the measured
signal. The cleansed signal can then be tracked with a standard E-L DLL. This approach
has later been improved using a Newton method for the time-delay estimation with the
Fast Iterative Maximum Likelihood Algorithm (FIMLA), presented in [SA08], or by coupling
the DLL with an Amplitude Lock Loop (ALL) as in the Coupled Amplitude Delay Lock
Loop (CADLL) introduced in [CDP10], further improved and tested in [CD11] and [Che13].
Other search dimension reduction were proposed for multi-source estimation, as in [Fle99],
where a Space-Alternating Generalized Expectation-maximization (SAGE) was proposed for
the general multipath problem. The SAGE can be related to the existing approach APE
presented in Section 1.2.1.2. Similarly to the MEDLL, the maximization of a criterion of size
P is alternately reduced to P maximization of a criterion of size one.

Naturally, the direct resolution of the multi-source likelihood has also been investigated.
In [Wei02] Weill proposed a simple implementation of the 2S-MLE based on simplifications
on the estimation of the complex amplitudes. This was named the Multipath Mitigation
Technique (MMT). In the same paper, the author compared the MMT performance with the
MMSE estimator [Wei95] that was seen at the moment as the best estimator for multipath,
regardless the computational cost, and was used as a reference in terms of MSE substituting
the CRB. Other contributions [NK13] based on least-squares approaches were also proposed,
such as the Least-squares-based Iterative Multipath Super-resolution technique (LIMS).

As a conclusive remark the estimation of the multipath parameters is a challenging prob-
lem because of the increasing complexity. Starting from the MLE, and similarly to other
fields like in radar, researchers tried to tackle the high dimensional maximization problem by
dividing it into smaller and simpler problems. This is usually done under certain assumptions
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which rarely hold when the relative path separation between consecutive multipath decreases.

1.4.3 Multipath Effect Metrics

As it has been seen so far, multipath is an additional interference term that is strongly cor-
related to the LOS signal. This tends to distort it, which inevitably leads to a performance
degradation. The way to characterize this performance degradation is by looking at the error
induced on the estimation of the LOS time-delay. Based on the multipath model used, dif-
ferent approaches to assess the multipath impact were proposed [HTB04]. These approaches
differ in the multipath model considered and the assumptions on the multipath channel fea-
tures and thermal noise level. The next sections present different metrics for multipath effect
analysis: the first is a widely used tool and the others are variations of it.

1.4.3.1 Multipath Error Envelope

The Multipath Error Envelope (MPEE) aims at providing a rough rather than realistic idea
of how much a signal is affected by a single multipath. Considering the simple two-ray model
presented in Section 1.4.1.1 in a noise-free environment, one can build a first metric that
captures all the possible errors on the LOS signal time-delay estimates in presence of a single
multipath. This error depends on several parameters: the path separation between the LOS
and the NLOS, the relative amplitude, or MDR and the relative phase ∆φ. By fixing the
MDR, one can actually plot the error envelope of this induced error. This envelope is the
MPEE and can be defined as follows [Kap, (9.65)]:

MPEE ,
(
max∆φ {e (MDR,∆τ,∆φ)} ,min∆φ {e (MDR,∆τ,∆φ)}) (1.35)

where e(·) is the induced bias on the estimation of the LOS delay. For most of the receiver
architectures, the min and max of the MPEE definition (1.35) are obtained when LOS and
NLOS signals are in-phase (relative phase ∆φ = 0) and out-of-phase (∆φ = π).

To computes the MPEE, one can simply apply a receiver architecture to a signal composed
with a direct path and a multipath with an excess delay ranging from 0 to whatever. A well-
known method to compute it is to use the estimated PSD of the modulation considered, and
to exploit the Wiener-Lee relation to link the PSD with the ACF. The problem of this method
is that it does not take into account the PRN code which slightly differentiate each signal. It
also supposes a perfect knowledge of the entire PSD (at any frequency) which has no sense
in a time limited world. The result cannot be something else than an estimation of the PSD
convolved with a sine cardinal function because the signal is multiplied by a temporal gate.
In this work, the MPEE are computed numerically by applying the algorithm under study
on simulated signals. The effect of the RF front-end bandwidth along with the PRN code
can then be observed directly. Figure 1.14 shows the MPEE for a GPS L1 C/A signal and
a GALILEO E1B signal using a simple E-L architecture with two different spacing: one is a
typical spacing of 1 C/A chip and the other is 0.1 C/A chip that corresponds to a NC. From
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(a) (b)

Figure 1.14: MPEE applied to a E-L architecture (a) with different spacing for a GPS L1
C/A signal and (b) with a fixed spacing for different signals: GPS L1 C/A and GALILEO
E1B. Front-end filter bandwidth set to 24 MHz, MDR = 0.1 and integration time TI = 4 ms.

these figures, it is possible to either compare the performance of two different architecture
as in Figure 1.14a where the E-L spacing is changed, or to compare the performance of
two different signals as in Figure 1.14b. It is clear that the MPEE is very informative and
quickly provides an idea of the sensitivity of a given signal and a given receiver architecture
to multipath, even though such a model is not realistic. This is the reason why the MPEE is
so widely used for multipath impact analysis [TM17; Mor21; Jov10].

As a last remark, from a statistical point of view, since the study is done in a noise-
free environment, the MPEE can be seen as the bias envelope of the misspecified estimator
considered: for instance, without multipath the NC architecture is perfectly estimating the
LOS time-delay, it is an unbiased estimator when the assumed signal model fits the true
signal model, but when the true signal model includes a single multipath the NC assumed
signal model is not correct anymore and a bias appears. These considerations can be related
to model misspecifications introduced in Section 1.2.2.

1.4.3.2 More Realistic Approaches

MPEE is a very simple metric that can easily be tuned to be more informative. In [IAH05],
the author lists different variants of MPEE with various complexity to take into account
different features. As a first example, one can look at the area enclosed by the MPEE. The
smaller this area is, the better the considered algorithm/signal performance is. Alternatively,
the MPEE and its area can be averaged with or without weights to assess the performance for
specific conditions. Another alternative to the MPEE can be obtained considering thermal
noise and setting a fixed SNR. Then the idea is to evaluate the RMSE of the estimated time-
delay of a considered estimator, as it is used in [BN12]. The multipath impact with a random
relative phase uniformly distributed in (0, 2π) is also studied in [Wei02], where the result is
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linked to the MMSE estimator asymptotic performance. Finally, it is possible to evaluate a
mean multipath error based on statistical channel models, as introduced in Section 1.4.1.2.
These models can be more or less sophisticated depending on the scenario considered. Due
to the complexity to obtain mean values because of the large number of random parameters,
this study is however a little tedious compared to the simple and graphical MPEE.

1.4.4 Wrap-Up on Multipath

Multipath is a challenging problem in GNSS applications because of its randomness and its
large impact in the overall estimation performance. For these reasons, it is often seen as
a nuisance to be avoided or compensated, but reflected GNSS signals also carry their own
information which could be of use in alternative applications. The next section proposes to
dig into one of these alternative applications offered by reflected GNSS signals.

1.5 GNSS Reflectometry

The concept of GNSS reflectometry, or GNSS-R, is roughly 30 years old [Mar93]. Instead of
considering reflected GNSS signals, such as multipath, as a nuisance or interference that the
receiver must mitigate to obtain the best positioning solution, reflected signals are used as an
additional source of information (i.e. signals of opportunity) for a different purpose.

GNSS-R can be seen as a bistatic radar [Sko08]: while most radar systems have the
transmitter and the receiver at the same location (monostatic radar), bistatic systems use
transmitters and receivers separated by a considerable distance. Such systems have been used
for studying certain atmospheric phenomena and for military applications. This bistatic radar
concept can naturally be extended to satellite signals. Since signals transmitted by a satellite
get scattered off the Earth’s surface, detecting these reflections by a separated passive receiver
could provide some information about such surface. While, in principle, any satellite signal
could be used, GNSS signals turn out to be particularly useful. In GNSS-R a single receiver
picks up direct and reflected signals coming from multiple GNSS satellites to retrieve geo-
physical parameters of the scattering surface (multistatic configuration). With the increasing
number of GNSS satellites, a single receiver could potentially get signals from more than 20
emitters at the same time, thus obtaining a high number of independent observations of the
same scene, which could either be used to increase the instrument’s swath, or to reduce the
noise in the estimation of geo-physical parameters.

1.5.1 GNSS-R Geometry

Depending on the nature of the platform that carries the receiver, the GNSS-R geometry
varies significantly. For ground-based receivers [Rod10], reflected signals come from near the
receiver: path separation is very small and the reflecting surface can be assumed flat. It is a
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scenario very close to GNSS multipath. In such configuration, the reflection is often assumed
coherent and specular, that is, since the reflected energy comes from part of the intersection
between the Earth’s surface and the first Fresnel zone around the reflected path [Cam20],
the surface that reflects most of the energy is very small and reduces to a point called the
specular point.

For airborne receivers (e.g., Unmanned Aerial Vehicle (UAV) or aircraft) [Fab19], the
Earth’s curvature must be taken into account. Depending on the surface roughness and
the satellite elevation angle, the reflected signal may come from a small surface defined by
the first Fresnel zone around the reflected path or from a larger surface called glistening
zone [ZV00]. It consists now of a mix of coherent and non-coherent components. Finally,
for spaceborne receivers such as United Kingdom (UK) TechDemoSat-1 (TDS-1) launched in
2013, or National Aeronautics and Space Agency (NASA) Cyclone GNSS (CYGNSS) launched
in 2016, the altitude of the Low Earth Orbit (LEO) satellite is so large that, in the case of non-
coherent reflections, that is when the reflecting surface is rough, this surface can spread over
tens of kilometers and the reflected signal can be significantly distorted. Coherent reflections
may occur over very smooth reflecting surfaces such as inland water bodies or ice. Figure 1.15
presents an example of this spaceborne case geometry with a sketch of the reflecting surface
whose size varies depending on its characteristics (e.g., roughness, moisture level).

sea land

GNSS SV1

GNSS SV2

Receiver

Figure 1.15: Typical spaceborne GNSS-R geometry.

For ground-based scenarios, the reflection is usually assumed mirror-like and the reflected
signal is modeled as a simple attenuated and delayed replica of the direct signal. In the
airborne and spaceborne scenarios the reflecting surface distorts the signal and the mirror-
like model becomes too simplistic. In [ZV00], a fundamental signal model was proposed that
starts from the bistatic radar equation.
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1.5.2 GNSS-R Processing Techniques

In order to perform GNSS-R for all the geometry presented, one can distinguish three main
approaches: i) the GNSS Interferometric Reflectometry (GNSS-IR) [And00] and in particular
the single antenna interference pattern technique (IPT), where the antenna points towards
the horizon and collects the combined direct and reflected signals [Mun20; Rou15], ii) dual
antenna conventional GNSS-R (cGNSS-R), where the reflected signal is correlated with a
clean replica of the direct signal [KG96; Les16] (as done in conventional GNSS to recover the
signal delay and Doppler), and iii) dual antenna interferometric GNSS-R (iGNSS-R), where
the direct and reflected signals are cross-correlated [Mar93].

1.5.2.1 GNSS-IR Processing

This first technique exploits the strong interference between direct and reflected paths when
the receiver is close to the ground, or when the satellite elevation angle is small. In these
cases, the path separation between both signals is so small that they coherently interfere at
the RF front-end level. This results in oscillations of the overall SNR as the signals add up
when they are in-phase, and subtract when they are out-of-phase. A formal analysis of this
technique and the corresponding performance bounds were proposed in [Rib14].

1.5.2.2 Standard GNSS-R Processing

GNSS-R geometry and physics suggest to work with two antennas to collect both signals: an
uplooking antenna, with a Right-Hand Circular Polarization (RHCP) that collects the direct
signal and a downlooking antenna, with either a RHCP or a Left-Hand Circular Polarization
(LHCP) that collects the reflected one. The choice of the polarization depends on the ge-
ometry: for very low elevation angles, below the Brewster angle, the reflected signal has the
same polarization as the transmitted signal but for larger elevation angles, the polarization is
inverted and most of the reflected energy has a LHCP. The processing of these signals may
then vary:

• Conventional GNSS-R or cGNSS-R, relies on the standard GNSS single source pro-
cessing as sketched in Section 1.3.3. The idea is to estimate the parameters of the direct
signal and to generate a clean replica to process the reflected signal. In this case the
user has a full control of the signal processing technique applied to both direct and
reflected signal channels, but the exact knowledge of the received signal is required in
order to generate the replica. This excludes using military codes.

• Interferometric GNSS-R or iGNSS-R, samples the direct signal and uses it directly
to correlate the reflected signal with it. This way, the resulting correlation may be
twice as noisier but it captures all the received signals, whether they are from an open
service or from a restricted service. The challenge is then to identify each peak of the
cross-correlation to each satellites depending on the excess delay and the CCF shape.
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1.5.2.3 Coherent and Non-coherent Processing

Due to the presence of both coherent and non-coherent components in the reflected signal
[Cam16], it is common practice in GNSS-R to perform the non-coherent integration of shorter
coherent correlation outputs up to some tens of seconds [Mar14a; Gle05] as Figure 1.16
illustrates. Indeed, the non-coherent approach is useful to deal with long integration times and

Figure 1.16: Example of non-coherent integration effect with integration time set to (a) 1 ms,
(b) 10 ms, (c) 100 ms and (d) 1 s. Extracted from Gleason et al. 2005 [Gle05].

when the signal itself is non-coherent, which is typically the case when dealing with complex
reflecting surfaces. Considering a total signal duration T = NNCTI with TI the individual
standard processing coherent observation time, one can express coherent, noted (·)C , and

non-coherent, noted (·)NC estimators as follows. First, let yk be yk (ηi) = aH
i

(ηi)xk

aH
i

(ηi)ai(ηi)
, the

output of the coherent matched filter, or equivalently of a 1S-MLE as mentioned in Section
1.2.1.2, at the kth time slot for a coherent observation time TI , then:

η̂Ci = arg max
ηi


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
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; η̂NCi = arg max
ηi
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

NNC∑
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|yk (ηi)|2


 . (1.36)

These definitions apply to any kind of estimator (e.g., single source, dual source). In [Mar14b],
an estimator adapted to non-coherent reflections was proposed based on these coherent and
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non-coherent processing strategies. In particular, the non-coherent Variance Estimator (VE)
is formulated as:

η̂VE
i = arg max

ηi





NNC∑
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|yk (ηi)|2 −
∣∣∣∣∣∣
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yk (ηi)

∣∣∣∣∣∣

2



, (1.37)

where the coherent part of the signal is subtracted from the non-coherently averaged one.

1.5.3 GNSS-R Observables

1.5.3.1 Delay Doppler Maps

Since the first satellite GNSS-R missions with TDS-1, one of the most common product
of reflectometry is the so-called Delay Doppler Map (DDM) [ZV00; Mar09]. This object
can be seen as an image of the scattering coefficient in the delay-Doppler domain. It is
usually associated to a map of the reflecting surface cut into cells following iso-delay and
iso-Doppler lines, as presented in [Mar93]. The link between the reflecting surface and the
DDM is illustrated in Figure 1.17. This figure is the output of a simulated geometry assuming

Figure 1.17: Example of delay-Doppler mapping. On the left, horizontal black lines are iso-
Doppler lines and green ellipses are iso-delay lines. Each cell can be associated to a cell of
the DDM. Extracted from Zavorotny et al. 2014 [Zav14].

the receiver embedded on a LEO satellites. For a spaceborne receiver, and for sea surface
reflections, the relative velocities, the Earth curvature and the sea state are such that the DDM
is often distorted with this horseshoe shape. For other reflecting surface like ice sheet or a
receiver at lower altitude, the DDM may reduce to a single point, which simply corresponds
to the ambiguity function as described in Section 1.3.3.
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1.5.3.2 Complex Waveforms

Another widely-used product of GNSS-R receivers is the complex waveform, which consists
of a cut of the DDM at the center Doppler frequency. These waveforms adopt various shapes
depending on the geometry and the nature of the reflecting surface. For instance, it is possible
to link the waveform trailing edge to the sea surface roughness and to surface wind speed, as
it is suggested in [ZV00; Elf97] and done with the CYGNSS mission. An illustration of the
impact of surface windspeed on the waveform can be found in Figure 1.18.

Figure 1.18: Example of complex waveform and the effect of surface wind speed on the trailing
edge slope. Extracted from Zavorotny et al. 2014 [Zav14].

Another feature to be extracted from complex waveforms is the specular point time-delay,
which is necessary to obtain an altimetric product. Depending on how distorted the waveform
is, it is not straightforward to determine where this time-delay is: it can be at the peak of the
waveform or where the second derivative is maximum [Nog21], as illustrated in Figure 1.19.

Finally, the complex amplitude of the waveform is also of particular interest because
it informs on the Fresnel reflection coefficient. Estimating this parameter is useful for soil
moisture and biomass studies [Egi12]. Besides, the tracking of the phase of this amplitude also
gives an insight of the coherence of the reflection. Indeed, it was shown that the coherence of a
reflected signal can be observed through the time series of the residual phase difference [Liu17;
Roe21], as illustrated in Figure 1.20. By knowing the statistical distribution of this observed
phase [CGH07] a number of coherence detection test or coherence indicators can be thought
of. Other coherence tests were also proposed based on entropy concepts, as in [Rus21]. These
tests would be crucial for the future European Space Agency (ESA) HydroGNSS mission
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Figure 1.19: Example of path separation estimation strategies. Extracted from Nogués i
Cervelló et al. 2021 [Nog21].

Figure 1.20: Residual phase difference between the direct and the reflected path. Extracted
from Roesler et al. 2020 [Roe20].

[Unw21] in order to do high precision altimetry measurements based on the carrier phase
observation.
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1.5.4 Performance Analysis

The precision one can obtain with GNSS-R has been studied for more than 20 years now.
Precision was soon used to justify the GNSS-R approach as in [Tre01; Low02; ZZ01], but
the first reference to the best achievable performance such as the CRB introduced in Section
1.2.1.1 appeared in [GR06]. Then different expressions were proposed depending on the
geometry: [Rib14] for GNSS-IR, [Pas14] for cGNSS-R, [RBF16] for ground-based cGNSS-R
and other approaches for more complex reflected signal models [Cam14; Li18]. More recently,
results on the impact of coherent versus non-coherent processing were also published [OVC22].

1.5.5 Wrap-Up on GNSS-R

GNSS-R is a technique that exploits GNSS signals that reflect from the Earth’s surface. The
reflected signals carry information on the position and the nature of the reflecting surface.
GNSS-R is then a field of study with many remote sensing applications, and with different
challenges depending on the considered geometry. It goes from local sensing, such as field soil
moisture or snow depth and nature, with ground-based receivers, up to airborne and space-
borne receivers, with a global coverage and the study of mesoscale events such as hurricanes.
It is still a very active field of research as suggested by the coming space mission HydroGNSS,
whose launch is expected in 2024 and is soliciting most of the community members.

1.6 Conclusion

In this chapter, an overview of the tools and concepts on which lie the coming chapters
was proposed. For this reason it touches a large number of topics to help the reader better
understand the rest of this document.

It had to start with the fundamentals of the estimation theory: what is an estimation
problem? what is an estimator? how good is an estimator? These questions were covered
with a focus on the notion of the CSM, and in particular for the case of additive complex
circular white Gaussian noise.

One of the numerous applications in which the Gaussian CSM appears is the first stages
of a GNSS receiver. These systems, such as GPS or GALILEO, allow a receiver to determine
its position on Earth thanks to ranging signals broadcasted by a constellation of satellites.
GNSS systems were then properly introduced along with the underlying joint delay-Doppler
estimation problem.

Then, the main challenge of GNSS, namely multipath or the fact of receiving reflections of
the signal of interest along with the LOS signal, was presented with its metrics and mitigation
strategies.

Finally, seeing this multipath as a source of information rather than an interference,
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opened the door to an unsuspected remote sensing application: GNSS-R, which is the study
of reflected GNSS signals, taken as signals of opportunity. In fact, theses signals carry in-
formation on the position and nature of the reflecting surface, and it can be performed from
ground-based stations for local remote sensing (e.g., soil moisture, snow depth) but it can also
be performed from a spacecraft, as in successful past satellite missions TDS-1 or CYGNSS,
but also in the coming HydroGNSS.
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Résumé

Ce chapitre suppose un récepteur GNSS au sol, dans un milieu urbain. Ce type de milieu est
propice aux multitrajets, c’est à dire à la réception de plusieurs répliques due à la réflexion
du signal d’intérêt sur les éléments urbains. L’impact du multitrajet a été abondament étudié
dans la littérature en supposant un modèle très simple dans lequel un seul multitrajet est
reçu en plus du signal en ligne de vue. Cependant, ces études se limitent à des analyses à
l’aide d’outils graphiques qui ne s’intéressent qu’au biais induit sur la mesure du retard ou
de la phase du signal d’intérêt. La limite de cette approche est qu’il devient alors difficile de
comparer des architectures de récepteurs pour lesquelles un multitrajet n’entrainent pas de
biais comme c’est le cas pour les récepteurs qui estiment à la fois les paramètres du signal
d’intérêt et ceux du multitrajet. Il est alors intéressant de regarder comment la présence d’un
multitrajet peut affecter l’erreur quadratique moyenne de ces récepteurs sans biais. La borne
de Cramér-Rao est alors l’outil indiqué pour donner une limite théorique à l’erreur quadratique
moyenne. Cette borne inférieure est un résultat très général qui peut s’étendre sous la forme
d’une métrique utile à la conception de futurs signaux de navigation. Bien entendu, il n’est
pas toujours possible d’implémenter un algorithme sans biais et la plupart des récepteurs bon
marché ne s’adaptent pas à la présence de multitrajets. Pour ces récepteurs, que l’on dit mal
spécifiés, il est tout de même possible de fournir une information sur l’erreur quadratique
moyenne minimum atteignable à l’aide d’une généralisation des bornes de Cramér-Rao pour
le cas mal spécifié.

Ainsi, à travers ce chapitre, la question de l’effet du multitrajet sur la performance de
différents algorithmes qui tiennent compte ou non de la présence du multitrajet, est traitée
sous plusieurs aspects. Partant d’un outil existant, la Multipath Error Envelope (MPEE),
qui informe sur le biais induit par le multitrajet, le besoin d’un outil informant sur l’erreur
quadratique moyenne est mis en avant dans la Section 2.2. Dans la Section 2.3, la borne de
Cramér-Rao pour le cas à deux sources est alors calculée et validée par simulations. S’ensuit,
dans la Section 2.4, une proposition de métrique pour la conception de futurs signaux de
navigation qui s’appuie sur le calcul de la borne de Cramér-Rao. Enfin, dans la Section 2.5,
l’étude des performances limites d’un estimateur mal spécifié à l’aide des borne de Cramér-Rao
pour le cas mal spécifié clôt cette étude de l’impact du multitrajet.

2.1 Introduction

This chapter assumes a GNSS ground-based receiver in a urban environment, as it is illus-
trated in Figure 2.1.

In many GNSS applications in harsh propagation conditions, such as urban environments,
multipath is one of the main challenges impairing navigation capabilities. As simply defined
in [Kap], "multipath is the reception of multiple reflected or diffracted replicas of the desired
signal, along with the direct path signal." Receiving several replicas when only one is ex-
pected inevitably leads to a performance degradation. As presented in Section 1.4, there are
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LOS

multipath

Figure 2.1: Urban scenario considered in Chapter 2.

many ways to tackle the multipath problem, either by hardware implementations (choke ring,
beamforming) or by software implementations with multipath non-estimating techniques (see
Section 1.4.2.1) or estimating techniques (see Section 1.4.2.2). Another path is to think of
new GNSS signals that would be less sensitive to multipath (with larger bandwidth signals,
for instance).

In any case, whatever the architecture or the signal considered, to assess the impact of
possible multipath conditions into the final system performance, accurate metrics are required.
From the literature, it is clear that the de facto metric used to characterize the multipath
effect is the so-called MPEE, which displays for a given receiver architecture and a given
signal, the range of possible multipath-induced errors considering a simple dual source model
without noise. This tool is simple to handle but it becomes less informative when it is a flat
zero-valued line, that is, when the estimator under consideration is unbiased. Based on the
MPEE it becomes hard to compare two unbiased estimators, their performance can no longer
be characterized through such a simple metric. In that case the estimator performance is only
given by its variance, which in turn can only be evaluated in a noisy environment.

A way to characterize a given receiver architecture - provided the fact that it is unbiased
- is to evaluate its MSE in the presence of noise for a set of SNR or path separation values,
and determine the threshold region where the MSE converges, or not, to the CRB that
corresponds to the scenario under study. A reference estimator that is usually compared to
the CRB, due to its asymptotic properties, is the MLE. The CRB provides the best achievable
performance of a locally unbiased estimator in terms of MSE. Then, it is meaningful to
compare different architecture solutions according to their MSE when their corresponding
MPEE is a flat zero, that is, when the estimator is unbiased. The CRB and the MPEE are
complementary approaches.

The generality of the CRB suggests a fundamentally different and, therefore, very general
approach to multipath error characterization. A metric to evaluate the robustness to multi-
path of any band-limited signal candidate can be derived by resorting to the CRB. Such a
tool would turn out to be very useful for future GNSS signal design.

However, having an unbiased estimator implemented in a receiver is not always possible.
For low-cost receiver architectures, multipath directly leads to a ranging/positioning estima-

47



tion performance degradation, induced by an estimation bias that the receiver does not take
into account. Indeed, from a system model perspective, ignoring the possible presence of
multipath implies to consider a LOS single source model instead of the true multi source
signal. Such assumption is known as model misspecification, of interest in several disciplines.

The performance of misspecified estimators was discussed in Section 1.2.2. In particular,
it was shown that the MMLE converges to a fix value that minimizes the KLD between the
true data model and the misspecified PDFs. Moreover, when the number of data points or
the SNR are large enough, its MSE converges to the so-called MCRB. Such lower bound
allows to properly characterize the performance of standard receivers not accounting for the
multipath effect, which was not possible with the results available in the literature.

2.1.1 Chapter Organization

In this chapter, the multipath problem is deeply studied under various angles. Based on
the literature, a first approach in Section 2.2 is to apply the widely used MPEE on different
receiver architectures and signals to better understand its nature and its limits. This first
study will highlight the need of a second order statistics tool to complete the information
provided by the MPEE. This is possible by deriving the CRB for the dual source signal
model considered. This derivation along with a validation procedure and the comparison
with the MSE of the receiver architecture is done in Section 2.3. In Section 2.4, a tool,
the clean-to-composite bound ratio (CCBR), based on the derived CRB, is built and further
studied for different signals. Finally, the question of low-cost receiver performance in presence
of multipath is dealt with through the notion of misspecified estimation and the corresponding
MCRB that is derived, validated and discussed in Section 2.5.

These different sections all gravitate around specific signal models which must be first
detailed. This is the aim the of the next section where the single source and the dual source
signals that will be used for the rest of the chapter are presented.

2.1.2 Signal Models

Let a transmitter T and a receiver R have uniform linear motions such that the positions can
be described as pT (t) = pT + vT t and pR(t) = pR + vRt, where p and v are the position
and velocity vectors, respectively. Under such conditions, the distance between T and R at
instant t can be approximated by a first order distance-velocity model:

‖pTR(t)‖ , ‖pR(t) − pT (t− τ̃(t))‖ = cτ̃(t) ≈ d+ vt,

τ̃(t) ≈ τ + bt, τ =
d

c
, b =

v

c
, (2.1)

where d is the T-to-R absolute distance when t = 0, v is the T-to-R radial velocity, τ is the
time-delay due to the propagation path, (1−b) is the dilatation induced by the Doppler effect,
and c is the speed of light in a vacuum.
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2.1.2.1 Single Source Signal Model

First a nominal transmission is considered, the receiver collects only the LOS signal. Using
(2.1), the single source complex analytic signal at the output of the receiver’s antenna is:

xR(t) = dR(t; η, ρ, φR) + wR(t), (2.2)

dR(t; η, ρ, φR) = ρejφRs((1 − b)(t− τ))ejωc(1−b)te−jωcτ , (2.3)

where wR(t) is a zero-mean white complex circular Gaussian noise, ωc = 2πfc, ηT = (τ, b),
ρ strictly positive. ρ and φR are the amplitude and phase of the complex coefficients in-
duced by the propagation characteristics, polarization mismatches, antenna gains. Under the
narrowband signal hypothesis [Ric03], i.e., the time-frequency product B · TI (with TI the
coherent integration time) is smaller than the inverse Doppler term c/v, the Doppler effect
on the band-limited baseband signal s(t) is usually neglected, s((1 − b)(t − τ)) ≈ s(t − τ).
Therefore, the baseband output of the receiver’s Hilbert filter containing a direct signal and
a single specular reflection can be approximated by

x(t) , xR(t)e−jωct = d(t; θ) + w(t) , (2.4)

d(t; θ) , ρejφs(t− τ)e−jωcb(t−τ) , (2.5)

where θT = (ηT , ρ, φ), φ = φR−ωc(1+b)τ . Now considering the acquisition ofN = N2−N1+1
samples at a sampling frequency Fs = 1/Ts, set equal to the front-end bandwidth of the
receiver BR, the discrete signal model yields to the following single source CSM,

x = a(η)ρejφ + w, w ∼ CN (0, σ2
nIN ) , (2.6)

with, for n ∈ [N1, N2],

aT (η) =
(
. . . , s(nTs − τ)e−jωcb(nTs−τ), . . .

)
, (2.7)

xT = (. . . , x(nTs), . . . ) , (2.8)

wT = (. . . , w(nTs), . . . ) . (2.9)

2.1.2.2 Dual Source Signal Model

Similarly, the dual source complex analytic signal at the output of the receiver’s antenna is

xR(t) = dR(t; η0, ρ0, φR,0) + dR(t; η1, ρ1, φR,1) + wR(t),

dR(t; ηi, ρi, φR,i) = ρie
jφR,is((1 − bi)(t− τi))ejωc(1−bi)te−jωcτi ,

where wR(t) is a zero-mean white complex circular Gaussian noise, ωc = 2πfc, and for
i ∈ {0, 1}, ηTi = (τi, bi), ρi and φR,i the amplitude (strictly positive) and phase of the
complex coefficients induced by the propagation characteristics (fading, reflection, etc.), the
polarization mismatches and the antenna gains.
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Similarly to the single source model, under the narrowband signal hypothesis, s((1−b)(t−
τ)) ≈ s(t − τ). Therefore, the baseband output of the receiver’s Hilbert filter containing a
direct signal and a single multipath can be approximated by

x(t) , xR(t)e−jωct = d(t; θ0) + d(t; θ1) + w(t) , (2.10)

d(t; θi) , ρie
jφis(t− τi)e−jωcbi(t−τi) , (2.11)

where for i ∈ {0, 1}, θTi = (ηTi , ρi, φi), φi = φR,i − ωc(1 + bi)τi. Now if one considers the
acquisition of N = N2 −N1 + 1 samples at a sampling frequency Fs = 1/Ts, set equal to the
front-end bandwidth of the receiver BR, the discrete signal model yields to the following dual
source CSM,

x = A(η0,η1)α + w, w ∼ CN (0, σ2
nIN ) , (2.12)

with, for n ∈ [N1, N2],

xT = (. . . , x(nTs), . . . ) , (2.13)

A(η0,η1) = [a0, a1] , (2.14)

aTi =
(
. . . , s(nTs − τi)e−jωcbi(nTs−τi), . . .

)
, (2.15)

αT =
(
ρ0e

jφ0 , ρ1e
jφ1

)
, (2.16)

wT = (. . . , w(nTs), . . . ) . (2.17)

2.1.2.3 Signal-to-Noise Ratio

Most of the results will be presented with regard to the noise level, represented by the SNR.
Indeed, when it comes to validate the CRB or the MCRB, the way to proceed is to exploit
the asymptotic behavior of the MLE or the MMLE. In the following, asymptotic will mean
when the SNR gets large. For this reason, the SNR needs to be properly defined once and
for all. For the rest of the chapter, SNR, or SNRout will always refer to the SNR of the LOS
at the output of the matched filter such that

SNR ,

∣∣∣
∫
R
s(t− τ0)∗ρ0e

jφ0s(t− τ0)dt
∣∣∣
2

E
{

|∫
R
s(t− τ0)∗w(t)dt|2

} =
ρ2

0sHs
σ2
n

= (C/N0)TI (2.18)

where s is the vector of the baseband samples also defined in (C.29), σ2
n, the variance of the

additive white Gaussian noise. C/N0 is the carrier-to-noise density ratio. Details to obtain
this compact expression can be found as a particular case of the development of (C.20).
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2.2 MPEE for Different Multipath Mitigation Techniques

2.2.1 Estimators and Signals Considered

In order to better understand the multipath problem, it is worth trying to apply it to different
multipath mitigation solutions to have a reference for further studies. This is done in this first
section where the MPEE is applied to both non-estimating (Section 1.4.2.1) and estimating
(Section 1.4.2.2) techniques. In particular, the following existing techniques are considered:

• PAC, which is a non-estimating technique that uses four correlators (very early, early,
late and very late) to estimate the slope at each side of the correlation function peak, and
if there is any asymmetry, the algorithm compensates for it by assuming that a single
multipath is causing this asymmetry. In this implementation, the correlator spacing
was set to 1/12 of L1 C/A chips (Section 1.4.2.2).

• MEDLL, which is a multipath estimating technique and is seen here as a relaxed version
of a dual source CLEAN algorithm, namely the CRE (Section 1.2.1.2).

• MMT, which is also a multipath estimating technique that is an implementation of the
2S-MLE (Section 1.2.1.2).

Along with these existing techniques, another from the array processing community is also
considered:

• APE, which is an estimating technique that alternately maximizes the likelihood crite-
rion with regard to a subset of parameters (Section 1.2.1.2).

These estimators are then applied to two GNSS signals: GPS L1 C/A and GALILEO E1B,
which are fully described in Section 1.3.2. For the numerical simulations presented in Section
2.2.3 and Section 2.3.3, the following parameters were fixed:

• the RF front-end bandwidth B = Fs is equal to 12 Mhz,

• the MDR is set to 0.5,

• the coherent integration time of the GPS L1 C/A signal TGPS
I is set to 1 ms and the

one of the GALILEO E1B signal TGAL
I to 4 ms,

• for the RMSE estimation, 1000 Monte Carlo runs were performed and the relative phase
∆φ was set to 0.

2.2.2 Link with the Signal Model

In this first approach, the dual source signal model considered in this chapter (2.12) is sim-
plified to fit the simple multipath model as described in Section 1.4.1.1. Here, to evaluate the
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MPEE, a noise-free scenario is considered and the Doppler effect is assumed fully compen-
sated.

2.2.3 MPEE for Different Multipath Mitigation Techniques

Evaluating the MPEE can be done numerically by looking at the output of the considered es-
timator, in the presence of a single multipath and without noise, for different path separations
and relative phases. Figure 2.2 shows the resulting MPEE for the considered estimators. A
first result that can be drawn from these figures is that the PAC MPEE (in magenta), however
small, never reduces to zero. Consequently, it can be said of this architecture that the pres-
ence of a multipath will irremediably affect the precision of the LOS time delay estimation.
On the other hand, MEDLL (in blue) and APE (in orange) MPEEs both present interesting
behaviors: there is a path separation threshold above which these algorithms estimate the
LOS time delay with no bias. Note that for GPS L1 C/A (Figure 2.2a), the MEDLL and
APE MPEEs thresholds are around 140m and 40m, respectively. For GALILEO E1B (Figure
2.2b), both algorithms present a similar threshold at 40m. As expected, the MMT does not
present any bias as this method correctly estimates the two sources in a noiseless environment.

(a) (b)

Figure 2.2: MPEE for (a) GPS L1 C/A and (b) GALILEO E1B signals.

2.2.4 Wrap-up on the MPEE Metric

By looking at the MPEE for different algorithms one may be frustrated by the impossibility
to further compare unbiased estimators: in the region where the MEDLL, the APE and the
MMT estimate the LOS time delay with no bias, one cannot tell if there is a solution better
than the others. To allow the user to further compare these algorithms a solution is to look
at what happens in presence of an additive white Gaussian noise. In this case for a given
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noise level, the MSE of each solution can be compared to a lower bound, namely the CRB.

2.3 Joint Delay-Doppler Estimation Performance in a Dual
Source Context

An expression of the CRB is then required to compare the MSE of different solutions. This
section provides details on the derivation of a compact analytic expression of the delay-
Doppler CRB for the dual source model in (2.12) and the estimation of the vector of unknown
parameters:

ǫT = (σ2
n,η

T
0 , ρ0, φ0,η

T
1 , ρ1, φ1) (2.19)

2.3.1 Cramér-Rao Bound for the Joint Delay-Doppler Estimation

From (2.12), one can write x ∼ CN (
A(η0,η1)α, σ2

nIN
)

and express the PDF as,

p(x, ǫ) =
1

(πσ2
n)N

e
− 1

σ2
n

‖x−A(η0,η1)α‖2

. (2.20)

The corresponding CRB for the estimation of ǫ is defined as the inverse of the FIM [Van01a],

CRBǫ|ǫ = F−1
ǫ|ǫ(ǫ), Fǫ|ǫ(ǫ) = −E

[
∂2 ln p(x, ǫ)
∂ǫ∂ǫT

]
. (2.21)

Note that for the Gaussian CSM of interest the Slepian-Bangs formulas recalled in section
1.12 provides the direct evaluation of the FIM terms,

[
Fǫ|ǫ (ǫ)

]
k,l

, Fǫk,ǫl|ǫ (ǫ) =
2
σ2
n

Re

{(
∂Aα

∂ǫk

)H (∂Aα

∂ǫl

)}
+
N

σ4
n

∂σ2
n

∂ǫk

∂σ2
n

∂ǫl
, (2.22)

where the noise power appears to be independent from the other parameters, and the FIM
reduces to

Fǫ|ǫ(ǫ) =



Fσ2

n|ǫ(ǫ) 0 0
0 Fθ0|ǫ(ǫ) Fθ0,θ1|ǫ(ǫ)
0 Fθ1,θ0|ǫ(ǫ) Fθ1|ǫ(ǫ)


 , (2.23)

where

• Fσ2
n|ǫ(ǫ) = N/σ4

n.

• Fθ0|ǫ(ǫ) and Fθ1|ǫ(ǫ) correspond to the FIMs of the signals when they are totally de-
coupled. These matrices have been derived and studied in [Das19] without the Doppler
frequency estimation, and in [Med20] and [Das20a] for the general Gaussian CSM. The
main results of these last references, concerning the single source CSM FIM terms are
summarized in section 2.3.1.1.
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• Fθ0,θ1|ǫ(ǫ) = Fθ1,θ0|ǫ(ǫ)T characterizes the interference between both signals. The
derivation of such FIM terms is given in section 2.3.1.2.

2.3.1.1 Decoupled Fisher Information Matrix Terms

The two last diagonal blocks of the FIM (2.23) were derived for the single source CSM case
in [Med20] and [Das20a]. The main results are recalled in the sequel:

Fθi|ǫ(ǫ) =
2Fs
σ2
n

Re
{

QiWQH
i

}
, (2.24)

where Qi, i ∈ {1, 2} is defined in (C.2) and W is defined as:

W =



w1 w∗

2 w∗
3

w2 W2,2 w∗
4

w3 w4 W3,3


 , (2.25)

with the easy-to-use formulation with regard to the baseband signal samples:

w1 =
1
Fs

sHs, w2 =
1
F 2
s

sHDs, w3 = sHV∆,1(0)s, w4 =
1
Fs

sHDV∆,1(0)s,

W2,2 =
1
F 3
s

sHD2s, W3,3 = FssHV∆,2(0)s, (2.26)

where s, the baseband sample vector, is defined in (C.29), D in (C.32), V∆,1(·) in (C.35)
and V∆,2(·) in (C.37). The inversion of (2.24) proposed in [Med20] and [Das20a] leads to a
closed-form CRB expression for the delay, Doppler, phase and amplitude estimation, where
a noteworthy feature is that the CRBs are expressed with regard to the baseband signal
samples. Such CRBs were studied for different GNSS signals in [Das20b] and [Ort20].

2.3.1.2 Interference Fisher Information Matrix Terms

From the Slepian-Bangs formula the non-diagonal blocks of the FIM, referred to as interference
FIMs, are expressed as follows:

Fθ1,θ0|ǫ (ǫ) =
2Fs
σ2
n

Re
{

Q1W∆QH
0

}
, (2.27)

where Q0, Q1 are defined in (C.2) and W∆ is defined as

W∆ =



W∆

1,1 W∆
1,2 W∆

1,3

W∆
2,1 W∆

2,2 W∆
2,3

W∆
3,1 W∆

3,2 W∆
3,3


 ej∆ψe−jωc∆bτ0 , (2.28)
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where ∆b and ∆ψ are defined in (C.8) and with the different components of the matrix W∆

expressed w.r.t the baseband signal samples given by

W∆
1,1 =

1
Fs

sHU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
s , (2.29)

W∆
1,2 =

1
F 2
s

sHDU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
s , (2.30)

W∆
1,3 = −sHU

(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s +

jωc∆b
Fs

sHU
(
fc∆b
Fs

)
V∆,0s , (2.31)

W∆
2,1 =

1
F 2
s

sHU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
Ds , (2.32)

W∆
2,2 =

1
F 3
s

sHDU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
Ds , (2.33)

W∆
2,3 = − 1

Fs
sHU

(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
Ds +

jωc∆b
F 2
s

sHU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
Ds , (2.34)

W∆
3,1 = sHU

(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s , (2.35)

W∆
3,2 =

1
Fs

sHDU
(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s , (2.36)

W∆
3,3 = FssHU

(
fc∆b
Fs

)
V∆,2

(
∆τ
Ts

)
s + jωc∆bsHU

(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s , (2.37)

where s, the baseband sample vector, is defined in (C.29), D in (C.32), U(·) in (C.31), V∆,0(·)
in (C.33), V∆,1(·) in (C.35) and V∆,2(·) in (C.37).

Proof. refer to Appendix C.

An interesting and reassuring fact is that when the difference between LOS and NLOS
signals (i.e., signal 0 and signal 1) is set to zero: ∆τ = τ1 − τ0 = 0, ∆b = b1 − b0 = 0,
∆φ = φ1 − φ0 = 0, ρ1 = ρ0, then, Q0 = Q1 and W∆ = W. This result could was expected
but the FIM terms equations obtained confirm it. Indeed, if both signals are indistinguishable,
they must have the same FIM and their interference FIM must coincide (total interference
between both signals).

2.3.2 Validation Using the Dual Source Maximum Likelihood Estimator

To validate the CRBs derived in Section 2.3.1, the asymptotic properties of the MLE are
exploited: for a high SNR regime, the MLE behaves as an efficient estimator, that is, all the
estimates are asymptotically unbiased and their MSE is equal to the CRB. This paves the
way to a validation procedure: the CRBs are compared to the MSE of the MLE estimates, if
they coincide, it will validate all the expressions derived.
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2.3.2.1 Estimators Considered

From the dual source CSM (2.12) and its PDF (2.20), the estimator ǫ̂ that maximizes the
likelihood is such that (η̂0, η̂1) maximizes the projection of the received signal onto the sub-
space defined by the mixing matrix A [Ott93]. Its expression is presented in Section 1.2.1.2
and reminded hereafter.

(η̂0, η̂1) = arg max
η0,η1

‖PAx‖2 (2.38)

ρ̂i =
∣∣∣∣
[(

ÂHÂ
)−1

ÂHx
]

i

∣∣∣∣ (2.39)

φ̂i = arg
{[(

ÂHÂ
)−1

ÂHx
]

i

}
(2.40)

σ̂2
n =

1
N

∥∥∥P⊥
Â

x
∥∥∥

2
(2.41)

where the projectors are defined as PA = A
(
AHA

)−1
AH , P⊥

A = I−PA and Â , A (η̂0, η̂1).

In order to deal with the 2S-MLE heavy computational load, alternative estimators can be
used. In this section, the CRE, also introduced in Section 1.2.1.2 is implemented. The CRE
can be seen as a sub-optimal estimator because it works only under certain assumptions: the
sources must not be too close in time or in frequency. Consequently the CRE is not expected
to perform well when the two signals are very close in time. On the other hand, when the
signals are separable, it asymptotically behaves as the 2S-MLE.

2.3.2.2 Signals Considered

Two representative signals are considered: i) a GPS L1 C/A signal as described in Section
1.3.2, and ii) a LFM chirp signal classically defined as follows:

s(t) = ejφ(t), φ(t) = πBT

(
t

T
− 1

2

)2

, T = NTs, (2.42)

with B the chirp bandwidth and N the number of samples. The received signal is built with
two delayed and attenuated replicas with arbitrary values of Doppler frequencies.

2.3.2.3 Scenarios Considered

Three scenarios are considered: scenario (a) presents the simple case where signals are clearly
parted. Scenarios (b) and (c) present the case where the secondary signal is within 1 C/A
chip, in this case, there is a strong interference between both signals. The parameters for
the three scenarios considered are given in Table 2.1. Notice that the L1 C/A chips unit is
1/1023 ms. In this table ρ1/ρ0 is the ratio between the NLOS signal amplitude and the LOS
signal one (also referred to as MDR) and Fdi = bifc refers to the Doppler frequency in Hertz
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corresponding to the Doppler stretch bi, fc is the carrier frequency.

Table 2.1: Simulations scenarios for the CRB validation: (a) two signals totally parted (∆τ =
2 chips), (b) a secondary path very close to the main signal (∆τ = 1/4 chip), and (c)
considered to showcase the difference between the 2S-MLE and CRE (∆τ = 1/8 chip).

Estimator ∆τ (L1 C/A Chips and m) F d0/F d1 (Hz) ρ1/ρ0 ∆φ (◦)

(a) CRE 2 (600) 20/50 0.5 15
(b) CRE 1/4 (75) 20/50 0.5 15
(c1) CRE 1/8 (37.5) 20/50 0.5 15
(c2) CMLE 1/8 (37.5) 20/50 0.5 15

As discussed in Section 2.3.2.1, depending on the time-delay difference between the two
replicas ∆τ , one can apply a sub-optimal estimator such as the CRE, which may behave like
a 2S-MLE in the asymptotic region (high SNR). In this case it is possible to see the estimator
threshold region in a reasonable computation time. However, when it comes to very small
values of ∆τ , meaning less than 1/Fs chip delay, a sub-optimal algorithm is in general not
able to converge to the CRB. Consequently, during the simulations, when the product ∆τFs
is smaller than or equal to 1, the CRE is no longer efficient. In such limit cases, a direct
implementation of the 2S-MLE is preferred. Computational cost soars but at very high SNR
it is possible to limit the search area at 3σ, where σ is the expected variance of the estimated
values, directly provided by the derived CRBs. Therefore the 2S-MLE simulation is valid
only at very high SNR where the estimates are actually concentrated in the considered search
area.

2.3.2.4 Numerical Results

For this section results, the baseband signal is sampled at a sampling frequency set equal to
the front-end RF bandwidth Fs = B = 8 MHz. The RMSE values presented in the figures
were estimated through 1000 runs of Monte Carlo simulation.

Scenario (a) In this scenario, a relative delay of two L1 C/A chips is considered, this
corresponds to a path difference of around 600 m. In this case, the two signals are clearly
parted and the estimation of the main signal could almost be decoupled from the estimation
of the secondary signal. Figure 2.3 (left hand side plots) shows the RMSE for the time-delay
estimation. One can see the threshold for the LFM signal at SNR = 20 dB and for the GPS
L1 C/A signal at SNR = 21 dB. For a SNR larger than this threshold the estimator reaches
the CRB: i) this validates the CRB expression, and ii) provides the receiver conditions to be
in a correct operation region. It is worth pointing out the impact that having two sources have
on the time-delay estimation with regard to the single source case, where the threshold region
for a GPS signal is usually at SNR = 15 dB (refer to [Das20a]). Figure 2.3 (right hand side
plots) show the RMSE for the Doppler frequency estimation. In this case, the performance
for both LOS and NLOS signals is on the CRB in the range of SNR values considered. Again,
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this result validates again the CRB expressions derived in Section 2.3.1.
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Figure 2.3: Scenario (a): Estimation of the delay (left) and the Doppler frequency (right)
for ∆τ = 2 L1 C/A chips with CRE. (top) is for a GPS L1 C/A signal, (bottom) is for an
LFM signal.

Scenario (b) In this scenario, a relative delay of a quarter of a chip is considered, this
corresponds to about 75 m of path difference. In this case, there is a strong interference
between the two signals. The results are shown in Figure 2.4. One can observe that even
with such a strong interference, the time-delay estimation with the CRE is possible. However,
having a close secondary signal has an impact on the estimation threshold, which is now SNR
= 22 dB for the LFM signal, and SNR = 27 dB for the GPS signal. Besides, the proximity
of the sources also rises the time-delay CRB as expected since they are harder to separate.

Scenario (c) In this scenario, a relative delay of an eigth of a L1 C/A chip, which accounts
for a path delay of about 37.5m is considered. In this case, there is such a strong interference
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Figure 2.4: Scenario (b): Estimation of the delay (left) and the Doppler frequency (right)
for ∆τ = 1/4 L1 C/A chips with CRE. (top) is for a GPS L1 C/A signal, (bottom) is for
an LFM signal.

between both signals that the CRE cannot be efficient anymore. This limit is clearly shown in
Figure 2.5. For both signals, the time-delay estimation never reaches the optimal performances
set by the CRB. Interestingly, the LFM signal seems to be more robust for the Doppler
estimation, reaching the CRB for the LOS signal but not for the NLOS one.

Figure 2.6 shows the results for the 2S-MLE. One can observe a good fit between the
RMSE and the root CRB. This result supports the fact that the CRE limitations can be
overcome by the 2S-MLE, and also validates again the CRB expressions for the dual source
estimation problem derived in Section 2.3.1.
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Figure 2.5: Scenario (c1): Estimation of the delay (left) and the Doppler frequency (right)
for ∆τ = 1/8 L1 C/A chips with CRE. (top) is for a GPS L1 C/A signal, (bottom) is for
an LFM signal.

2.3.3 RMSE for Different Multipath Mitigation Techniques

Armed with easy-to-use CRB expressions, it is now possible to compare the RMSE of the esti-
mators considered in Section 2.2.1 in presence of an additive white Gaussian noise. Similarly
to the MPEE approach, the RMSE can be displayed as a function of the path separation, but
it is worth looking at it as a function of the SNR since it provides information on the threshold
region, that is, the minimum SNR required above which a given algorithm is efficient. Section
2.3.3.2 and Section 2.3.3.3 propose the study of the considered estimators RMSE depending
of i) the path separation and ii) the SNR. But first a note on CRB reparameterization should
be added to link the very general CRB expressions derived in Section 2.3.1 to the simple
multipath model.

60



26 27 28 29 30 31 32 33 34 35 36

10
0.2

10
0.3

 10
0.4

 10
0.5

10
0.6

10
0.7

 10
0.8

 10
0.9

10
1

(a)

26 27 28 29 30 31 32 33 34 35 36

10
1.1

10
1.2

10
1.3

10
1.4

10
1.5

10
1.6

10
1.7

10
1.8

10
1.9

(b)

26 27 28 29 30 31 32 33 34 35 36

10
-0.3

10
-0.2

 10
-0.1

 10
0

10
0.1

10
0.2

 10
0.3

 10
0.4

10
0.5

10
0.6

(c)

26 27 28 29 30 31 32 33 34 35 36

10
0.9

10
1

10
1.1

10
1.2

10
1.3

10
1.4

10
1.5

10
1.6

10
1.7

(d)

Figure 2.6: Scenario (c2): Estimation of the delay (left) and the Doppler frequency (right)
for ∆τ = 1/8 L1 C/A chips with 2S-MLE. (top) is for a GPS L1 C/A signal, (bottom) is
for an LFM signal.

2.3.3.1 Reparameterization of the Fisher Information Matrix

It is possible to express the vector of unknown parameters of the simple multipath model
ξT = (τ0, ρ0, φ0, τ1, ρ1, φ1), that assumes the Doppler known and compensated, as a function
of the general vector of unknown parameters ǫ considered to derive the CRB:

ξ = ξ(ǫ) =




τ0

ρ0

φ0

τ1

ρ1

φ1




=




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




ǫ =
∂ξ(ǫ)
∂ǫT

ǫ. (2.43)
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Based on this, the FIM of the vector ξ can be obtain using the reparameterization equation:

Fr
ǫ|ǫ(ǫ) =

(
∂ξ(ǫ)
∂ǫT

)T
Fξ|ξ(ξ)

∂ξ(ǫ)
∂ǫT

(2.44)

where Fr
ǫ|ǫ(ǫ) is the reparameterized FIM from the CRB expression derived in Section 2.3.1

and relation (2.43).

2.3.3.2 RMSE with Regard to the Path Separation

Figure 2.7 illustrates the RMSE of the LOS signal time delay estimate as a function of the
path separation. Moreover, the CRB (black solid line) is also illustrated. When the path
separation is close to zero, the CRB for the estimation of the LOS time delay naturally soars
to infinity since it becomes impossible to identify the LOS signal from the multipath signal.
In this region all the estimators behaves better than the CRB because only one source is
perceived.

(a) (b)

Figure 2.7: Estimation of the LOS time delay τ0 with respect to the path separation for (a)
GPS L1 C/A at SNR = 31 dB and (b) GALILEO E1B at SNR = 34 dB.

Except for the PAC RMSE, which is altered by a non-zero bias, it can be observed that
the other three algorithms satisfyingly reach the root CRB at a given path separation. For
GPS L1 C/A, when the MEDLL is used, the RMSE reaches the root CRB at about 100m
of path separation, which is a little before becoming fully unbiased according to its MPEE.
It is noteworthy to remark that in Figure 2.2a, between 100m and 140m the upper bound of
the MPEE, which corresponds to the in-phase case, is at about 0.2m and in Figure 2.7a the
resulting RMSE around this area is at about 1m. This involves that the bias observed from
the MPEE is masked by a larger value of RMSE. The APE RMSE coherently reaches the
root CRB at about 40m as hinted by its MPEE.

Finally, the MMT estimator was supposed to stick to the CRB at any path separation.
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However, it does not behave so in the range between 0 to 40m due to the small value of SNR or
the practical implementation, i.e., the search area for τ0 and τ1 was limited for computational
load reasons and it did not allow large output values. In short, in this range of path separation,
the estimation of the time delays may have been helped by the limited search area. Similar
comments apply for Figure 2.7b.

2.3.3.3 RMSE with Regard to the SNR

For low SNR, an algorithm might not be able to detect a signal over the thermal noise. Then,
there is a strong interest to understand how the considered algorithms behave when the SNR
varies. The main feature that one might look for is, for a given path separation, the SNR
threshold, i.e., the minimum SNR level necessary to estimate the signal in an efficient way.

Figure 2.8 illustrates the RMSE for each algorithm and for both GNSS signals with respect
to the SNR. Both figures can be divided into three areas: in the left-hand side the SNR is
so small that any estimator is outputting meaningless random estimates; then when the SNR
rises, there is a transition area in which the RMSE is not yet reaching the CRB but is not out
of range. Finally, in the right-hand side, there is a particular operation point where the SNR
is large enough for the estimators to behave efficiently. It is exactly that transition point that
is referred to as the SNR threshold.

(a) (b)

Figure 2.8: Estimation of the LOS time delay τ0 with respect to the path separation for (a)
GPS L1 C/A and (b) GALILEO E1B, at path separation set to 150m.

From Figure 2.8a, the considered estimators can be compared according to their behavior:
the threshold is slightly better for the MMT algorithm (SNR = 21 dB), followed by the APE
(SNR = 22 dB) and the MEDLL (SNR = 24 dB). The RMSE of the PAC algorithm (in
magenta) does not seem to reach the CRB. Note that this is due to the fact that a biased
estimator does not necessarily have a RMSE lower bounded by the computed CRB. This is
particularly visible in the case of the GALILEO signal, in Figure 2.8b, where the PAC RMSE
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converges to a constant value of about 1.5m, which is exactly the value of the PAC upper
bound MPEE for this specific path separation of 150m (refer to Figure 2.2b).

2.3.4 Wrap-up on MSE vs CRB Considerations

By considering the signal polluted by a single multipath in the presence of an additive white
Gaussian noise and by looking at the MSE of the algorithms under study it is now possible
to compare them with one another and with an absolute lower bound. In short, the second
order statistic provided by the MSE, along with the corresponding CRB naturally completes
the information brought by the MPEE which is a first order metric. However, the estimation
of the MSE is a tedious work because of the multiplicity of the parameters. Unfortunately,
for receiver architecture design, there is no way to avoid the computation of the MSE, at
least to compare it to the CRB. On the other hand, since the CRB does not depend on the
receiver architecture, it could be used to build a very general and helpful metric for future
signal design. The next section aims at building such a metric.

2.4 A Metric for Multipath-Robust Signal Design and Analy-
sis

In order to build a relevant metric based on the CRB, one should consider the rearranged
vector of unknown parameters ǫ:

ǫT = (σ2
n,η

T
0 ,η

T
1︸ ︷︷ ︸

ηT
2

, ρ0, φ0, ρ1, φ1) (2.45)

where the parameters of interest η0 and η1, gathered in the concatenated vector η2, have
been put at the beginning of the vector. This formulation will simplify the operations on the
FIM in the next few sections.

2.4.1 Insights and Extension of the Dual Source CRB

From [Ott93, (4.68)], the expression of the CRB for the estimation of the parameters of
interest gathered in the concatenated vector η2 based on a single observation of the signal is:

CRB−1
η2|ǫ (ǫ) =

2
σ2
n

Re

{
Φ (η2) ⊙

(
RT

α ⊗
[

1 1
1 1

])}
, (2.46)

Rα = ααH =

[
ρ2

0 ρ0ρ1e
−j(φ1−φ0)

ρ0ρ1e
j(φ1−φ0) ρ2

1

]
, (2.47)
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Φ (η2) =




∂aH(η0)
∂η0

∂aH(η1)
∂η1


P⊥

A(η2)




∂aH(η0)
∂η0

∂aH(η1)
∂η1



H

, (2.48)

where, again, PA = I−P⊥
A = A

(
AHA

)−1
AH is the orthogonal projector onto the subspace

defined by the set of the column vectors of matrix A, ⊙ denotes the Hadamard product and
⊗ denotes the Kronecker product.

Now, if one notes Γ = |Γ|ejφΓ such that ρ1e
jφ1 = Γρ0e

jφ0 , the CRB defined in (2.46) can
be further developed and written as:

CRB−1
η2|ǫ (ǫ) =

2ρ2
0

σ2
n

Re

{[
Φ1,1 Γ∗ΦH

2,1

ΓΦ2,1 |Γ|2Φ2,2

]}
. (2.49)

Proof. see Appendix C.2 for details on the derivation of submatrices Φi,j , i, j = {1, 2}.

Then, using the block matrix inversion lemma (B.2) on (2.49), the inverse of CRBη0|ǫ

can be expressed as

CRB−1
η0|ǫ (ǫ) =

2ρ2
0

σ2
n

(AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ) , (2.50)

where, with superscript R and I standing for real and imaginary parts, respectively,

AΦ = ΦR
1,1, (2.51)

BΦ =
1
2

(
ΦR

2,1

(
ΦR

2,2

)−1
ΦR

2,1 + ΦI
2,1

(
ΦR

2,2

)−1
ΦI

2,1

)
, (2.52)

CΦ =
1
2

(
ΦR

2,1

(
ΦR

2,2

)−1
ΦR

2,1 − ΦI
2,1

(
ΦR

2,2

)−1
ΦI

2,1

)
, (2.53)

DΦ =
1
2

(
ΦR

2,1

(
ΦR

2,2

)−1
ΦI

2,1 + ΦI
2,1

(
ΦR

2,2

)−1
ΦR

2,1

)
. (2.54)

Proof. In (2.49), the real part of the diagonal elements are directly the real part of the Φ
matrix, denoted ΦR

1,1 and ΦR
2,2. On the other hand, the real part of the non-diagonal elements

are affected by the complex number Γ:

Re {ΓΦ2,1} = Re
{

Γ∗ΦH
2,1

}

= |Γ|
(
cos(φΓ)ΦR

2,1 − sin(φΓ)ΦI
2,1

)
.

where ΦR
2,1 and ΦI

2,1 are the real and imaginary parts of Φ2,1, respectively. Then, in order to
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obtain a closed-form of CRBη0|ǫ(ǫ), the block matrix inversion lemma is used (B.2),

CRB−1
η0|ǫ (ǫ) =

2ρ2
0

σ2
n

(
ΦR

1,1 − |Γ|
(
cos(φΓ)ΦR

2,1 − sin(φΓ)ΦI
2,1

)

× 1
|Γ|2

(
ΦR

2,2

)−1
|Γ|
(
cos(φΓ)ΦR

2,1 − sin(φΓ)ΦI
2,1

))

=
2ρ2

0

σ2
n

(
ΦR

1,1 −
(
cos(φΓ)ΦR

2,1 − sin(φΓ)ΦI
2,1

)

×
(
ΦR

2,2

)−1 (
cos(φΓ)ΦR

2,1 − sin(φΓ)ΦI
2,1

))
.

Then, simply developing the expression and rearranging the matrices in terms of cos(2φΓ)
and sin(2φΓ), the wanted expression (2.50) is obtained.

Note that in (2.50), the CRB does not depend on |Γ|. This means that in the asymptotic
region of operation of the 2S-MLE, the estimation of both the time delay and the Doppler
frequency of the LOS signal is not affected by the relative amplitude of the NLOS but only
by its relative delay, Doppler and phase.

Equation (2.50) being a two-by-two matrix, it is easy to evaluate its inverse and then
extract a closed-form of CRBτ0|ǫ:

CRBτ0|ǫ(ǫ) =
σ2
n

2ρ2
0

[AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ]2,2
det (AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ)

(2.55)

where det(·) is the determinant of the matrix in argument.
Similarly, a closed-form expression of the CRB for the estimation of the LOS Doppler param-
eter b0 can be easily obtained by taking the other diagonal term of the inverse matrix:

CRBb0|ǫ(ǫ) =
σ2
n

2ρ2
0

[AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ]1,1
det (AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ)

(2.56)

As a side note, the derived CRB presented in (2.55) and (2.56) are just alternative for-
mulations of the CRB that were already derived in Section 2.3.1.

2.4.2 A Criterion Based on Cramér-Rao Bounds: Clean-to-Composite Bound
Ratio

2.4.2.1 Definition for the time-delay

The case without signal reflection is equivalent to a known standard single source scenario.
The corresponding closed-form CRB was derived in [Med20]. The resulting CRB is recalled
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here:

CRBτ0|θ0,σ2
n

=
σ2
n

2ρ2
0

[
A−1

Φ|η1=0

]
1,1
. (2.57)

where AΦ|η1=0 is the matrix AΦ defined in (2.51) where all the NLOS components are set
to zero: η1 = 0. This way the interference terms are eliminated and the result is exactly the
closed-form bound from [Med20, (17a)].

Then, by simply dividing the CRB in a single source context (2.57) by the corresponding
CRB in a dual source source context (2.55), a generalized closed-form formulation of a CCBR
for the time-delay estimation is obtained, which is expressed with the baseband signal samples
(i.e., valid for any band-limited signal):

CCBRτ (∆τ, b0, b1, φΓ) ,
CRBτ0|θ0,σ2

n

CRBτ0|ǫ

=

[
A−1

Φ

]
1,1

det (AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ)

[AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ]2,2
(2.58)

where the dependency on ∆τ = τ1 − τ0 was shown in Section 2.3.1.

First, notice that the CCBRτ does not depend on the SNR of the LOS and the NLOS.
Besides, as previously noticed, this ratio does not depend on the relative amplitude of the
reflected signal either but it depends on the relative phase between the LOS and the NLOS
signals. Actually, the CCBRτ is π-periodic w.r.t. φΓ which reduces its study to the interval
(0, π) as shown in the next section.

2.4.2.2 Statistics of the Clean-to-Composite Bound Ratio

The π-periodicity of the CCBR can be used to easily obtain the maximum and minimum
values for each scenario defined by the set of parameters of interest (∆τ, b0, b1). Indeed, by
implementing the different matrices required to compute this ratio, it is quite direct to obtain
these values. If one sets a PDF to the relative phase φΓ, it is then also possible to obtain an
average value of the CCBR. For instance, one can assume the relative phase to be a random
variable uniformly distributed over (0, π), then the average can be numerically obtained as:

EφΓ
{CCBRτ} (∆τ, b0, b1) =

1
π

∫ π

0
CCBRτ (∆τ, b0, b1, φ)dφ, (2.59)

and, similarly for the Doppler CCBR:

EφΓ
{CCBRb} (∆τ, b0, b1) =

1
π

∫ π

0
CCBRb(∆τ, b0, b1, φ)dφ. (2.60)
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2.4.2.3 Definition for the Doppler frequency

Similarly, it is possible to construct a CCBRb that can be defined as the ratio between the
CRB for the estimation of the LOS Doppler parameter b0 in a single source context,

CRBb0|θ0,σ2
n

=
σ2
n

2ρ2
0

[
A−1

Φ|η1=0

]
2,2
, (2.61)

and the corresponding CRB in a dual source context (2.56):

CCBRb(∆τ, b0, b1, φΓ) ,
CRBb0|θ0,σ2

n

CRBb0|ǫ

=

[
A−1

Φ

]
2,2

det (AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ)

[AΦ − BΦ − cos(2φΓ)CΦ + sin(2φΓ)DΦ]1,1
(2.62)

Again, this CCBRb does not depend on the SNR nor the relative amplitude. It is also π-
periodic with regard to φΓ.

2.4.3 Numerical Results

2.4.3.1 Averaged CCBR

The resulting CCBR (either for the delay of for the Doppler) with respect to the path sep-
aration starts from 0 when the LOS and NLOS signals are perfectly superimposed, in this
case both sources are extremely hard to separate and estimating them both properly would
imply a very large variance. Then the CCBR tends towards unity when the path separation
gets large, and it may present local minima in its transition region. Considering a GPS L1
C/A signal, averaged CCBR results are presented in Figure 2.9 for different receivers’ RF
front-ends. For these figures and consistently with the assumptions taken so far, the sam-
pling frequency is assumed equal to the front-end bandwidth: BR = 1 MHz denotes then
a low cost receiver and BR = 8 MHz corresponds to higher quality one. In these figures,
the relative phase is assumed uniformly distributed in (0, π) and, the Doppler frequencies of
both signals are arbitrarily set to 0 Hz, the average expression are taken based on (2.59) and
(2.60). For the delay and Figure 2.9a, one can see the effect of the RF front-end bandwidth
BR: when it gets larger, the main signal is less affected by the multipath. It is interesting to
see how the averaged CCBRτ oscillates when the path separation is below 300 meters (i.e., 1
L1 C/A chip), especially for BR = 8 MHz, where a peak at about 300 meters suggests a strong
sensitivity to multipath of the C/A code for this specific path separation. In other words,
for BPSK(1) modulations, the LOS signal time-delay estimation is particularly affected when
the reflected signal appears at around 1 L1 C/A chip. Regarding the Doppler frequency and
Figure 2.9b, one can remark that when BR increases, the averaged CCBRb tends to reach 1
for smaller path separations but oscillations appear for BR = 4 MHz and BR = 8 MHz that
lead to make smaller BR more robust to multipath that larger BR. As a concrete example,
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(a) (b)

Figure 2.9: Averaged (a) CCBRτ and (b) CCBRb for the GPS L1 C/A signal with BR =
1, 2, 4, 8 MHz, and φΓ uniformly distributed in (0, π).

for path separation between 140m and 250m, signals filtered at 2 MHz are less affected by
the presence of a multipath for the estimation of the Doppler frequency.

2.4.3.2 Min-Max Analysis: CCBR Envelope

In Figure 2.10, the GPS L1 C/A signal is compared to a GALILEO E1B signal at BR =
24 MHz. In these figures, the envelopes between the minimum and maximum values of
the CCBRτ and CCBRb are displayed. These values can easily be obtained numerically by
evaluating the ratio for each value of relative phase. For the delay and the left-hand figures, a
first interesting remark concerning these displays is that the min and max curves occasionally
meet at specific path separations, for which the CCBRτ does not depend on the relative
phase. In Figure 2.10c, one can see that for the GALILEO signal, the CCBRτ might oscillate
more within the 300 meters but it remains above 0.9, while for the GPS signal, Figure 2.10a
presents a depression at around 300m which goes down to 0.75. As of the Doppler frequency
CCBRb, it is worth pointing out that there is a relative phase for which the presence of a
multipath does not affect the estimation performance of the LOS Doppler frequency. This
corresponds to the flat upper bound of the envelopes. Then, considering GPS signal and
Figure 2.10b, the lower bound CCBRb is smooth and slowly increases up to 1 when the path
separation reaches about 300m (or 1 C/A chip). For GALILEO signal and Figure 2.10d, the
upper bound CCBRb slope is steeper but oscillates before finally reaching 1 at about 250m of
path separation. These observations support the fact that when the path separation is large
enough the LOS Doppler frequency estimation is not affected anymore by the multipath.

Figure 2.11 presents two other examples of CCBRτ envelopes for GPS L5-I and GALILEO
E5 signals (defined in Section 1.3.2) when their entire bandwidth is sampled. These figures
focus on the first 50 meters of path separation since the corresponding CCBRτ are close to 1
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(a) (b)

(c) (d)

Figure 2.10: CCBRτ envelope (left) and CCBRb envelope (right) for GPS L1 C/A (top)
and GALILEO E1B (bottom) signal with BR = 24 MHz.

for larger path separation. In Figure 2.11a, the CCBRτ can vary a lot in the range of path
separation between 10 and 20 meters (CCBRτ is in a 0.4 wide range), then for path separation
larger than 30 meters, the multipath does not affect the estimation of the LOS time delay
anymore (CCBRτ larger than 0.9. For the E5 signal, Figure 2.11b, the shape of the envelope
is less smooth, but overall thinner. For a path separation of 10 meters, it presents a large
range of possible CCBRτ values (between 0.6 and 1) but then the CCBRτ goes above 0.9 at
around 20 meters and flattens out. As a conclusive remark for these two figures, the E5 signal
is slightly more resilient than the L5 signal when path separation increases since it is almost
not affected anymore above 20 meters.
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(a) (b)

Figure 2.11: CCBRτ envelope for (a) GPS L5-I with BR = 24 MHz and (b) GALILEO E5
with BR = 60 MHz.

2.4.3.3 Performance Considerations

From the results presented in Figures 2.10a and 2.10c, it is then possible to obtain the average
RMSE of a given scenario, assuming a uniformly distributed relative phase φΓ over (0, π).
The single source CRB in [Med20], recalled in (2.57), is typically shown as a function of the
output SNR, defined in (2.18). Then, for a specific SNR (i.e., a given receiver operation
point), it is simple to use the CCBRτ to obtain an evaluation of the best achievable accuracy
for the time-delay estimation in presence of a single multipath using (2.59), this is not a
bound anymore but it can provide an order of magnitude of the averaged bound:

EφΓ

{
CRBτ0|ǫ

}
=

CRBτ0|θ0,σ2
n

EφΓ
{CCBRτ}

(2.63)

Note that the result will consequently be averaged over the possible phase differences. Figure
2.12 coherently completes the example proposed in [Wei02, Fig. 5], in which the bounds are
replaced by a ML-based estimator, and the results are obtained taking the RMSE of several
Monte Carlo simulations with random secondary path relative phase. Three representative
values of SNR are considered: 15, 25, and 33 dB. Notice that the first value, 15 dB, corresponds
to a nominal C/N0 = 45 dB-Hz and TI = 1ms, the minimum integration time for a GPS L1
C/A signal. The second one, 25 dB, under the same nominal conditions, corresponds to a
standard integration time TI = 10 ms, and the last one, 33 dB, is obtained for instance using
an extended integration around 64ms. Equivalently, as done in high-sensitivity receivers,
these values may correspond to larger non-coherent integration times for lower C/N0 values.

It is worth pointing out that the results in Figure 2.12 differ from the work presented in
[Wei02] when the path separation gets very small (less than 5 meters): where the averaged
CRBτ0|ǫ tends to infinity here, it goes down to a smaller value in [Wei02, Fig. 5]. This is
due to the assumptions on the estimator. In [Wei02], the author presents the results of an
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Figure 2.12: Averaged CRBτ0|ǫ in presence of a single multipath as an application of the
averaged CCBRτ on GPS L1 C/A (continuous lines) and GALILEO E1B (dashed lines)
signals, sampled at BR = 24 MHz for three different representative SNR.

MMSE estimator considering amplitude of the LOS larger than the NLOS and the LOS signal
arriving prior to the NLOS. This estimator appears to be biased and the CRB is a lower
bound for any unbiased estimator. If one considers the estimation of two signals very close
in time, the CCBRτ tells that the variance of an unbiased dual source estimator will tend to
infinity. This was also pointed out by the same author in [Wei95, Sec. IV], or more recently
in [SA08, Sec. VI].

Finally, it is interesting to see how the peak at 300 meter observed in Figure 2.10a is re-
flected: at SNR = 15 dB, a multipath with a path separation around 300m would then induce
an additional 20 cm error compared to a slightly different path separation. Such a behavior
could be observed in Figure 2.7a. As expected, the GALILEO E1B signal performance is
less affected than the GPS C/A signal one, given that the BOC modulation has a narrower
correlation function.

2.4.4 Wrap-up on the CCBR Metric

Using an easy-to-use expression of the CRB it has then been possible to build a metric, the
CCBR that is between 0 and 1 and that does not depend on the noise level nor the relative
amplitude of the multipath signal. As a conclusive illustration, Figure 2.13 shows the averaged
CRBτ0|ǫ resulting from the CCBRτ compared with the information provided by the MPEE in
the case of two signals (GPS L1 C/A and GALILEO E1B) when the MEDLL is applied. From
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(a) (b)

Figure 2.13: (a) Averaged CRBτ0|ǫ in presence of a single multipath as an application of
the averaged CCBRτ on GPS L1 C/A (continuous lines) and GALILEO E1B (dashed lines)
signals, sampled at BR = 24 MHz for three different representative SNR. (b) Corresponding
MPEE when applying the MEDLL on the GPS (blue) and the GALILEO (green) signals.

these figures, it is possible to see that, due to thermal noise, the best achievable performance
of an unbiased estimator may be larger than the actual error predicted by the MPEE. Such a
set of figure gives an insight of the contributions of both the error induced by the multipath
thanks to the MPEE and the error induced by thermal noise thanks to the CCBR approach.
For low SNR it is clear that the latter is more significant than the former.

The CCBR is then a helpful tool for signal design, but it is relevant if it is possible
to implement unbiased dual source estimators, which can result difficult because of high
computational complexity. Low cost receiver architectures are usually simple in order to
comply with real-time constraints. In general, these implementations are not able to detect
the presence of a multipath and keep on working based on a single source signal model. Using
a single source signal model when there are two is known as a misspecified signal model.
This misspecification can be taken into account to derive the misspecified CRB, which would
provide information on the best achievable performance a misspecified estimator can reach.
The next and final section of this chapter aims at deriving this MCRB.

2.5 Misspecified Cramér-Rao Bounds in Multipath Scenarios

The notion of misspecified signal model appears when one applies an algorithm that assumes
the wrong signal model. In case of multipath, it is naturally the fact of applying an algorithm
that ignore the presence of a multipath. As it has been well developed in Section 2.2, the
consequence of such ignorance is a varying bias that can be captured by the MPEE. Inter-
estingly, ignoring the presence of a multipath can also affect the resulting MSE. This effect
is described by the so-called MCRB which will be studied in this section.
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2.5.1 Note on the Signal Models

In this section, the different signal models and definitions are reminded to clarify both the
notation and the wording.

2.5.1.1 True Signal Model

In presence of a single multipath signal, the true signal model is the dual source signal model
defined in Section 2.1.2.1. As a reminder, at the output of the Hilbert filter, it can be written
as:

x = α0a0 + α1a1 + w, w ∼ CN (0, σ2
nIN ). (2.64)

Consequently, the true data model PDF, noted px(x; θ0,θ1), is written as,

px(x; θ0,θ1) = CN (α0a0 + α1a1, σ
2
nIN ). (2.65)

2.5.1.2 Misspecified Signal Model

As previously stated, standard receiver architectures do not account for the presence of pos-
sible multipath conditions, which reduces to consider a single source signal model. The
misspecified signal model is then the one defined in Section 2.1.2.1, which is reminded here-
after:

x = ρpte
jφptapt + w, w ∼ CN (0, σ2

nIN ), (2.66)

with, αpt = ρpte
jφpt and, for n ∈ [N1, N2], aTpt =

(
. . . , s(nTs − τpt)e−jωcbpt(nTs−τpt), . . .

)
and

where the subscript pt refers to pseudo-true, which will necessarily depend on the true values
θ0 and θ1, as discussed in the next section. Then, the misspecified data model PDF, noted
fx(x|θpt) is written as,

fx(x; θpt) = CN (αptapt, σ2
nIN ), (2.67)

where θTpt = (ηTpt, ρpt, φpt) is the vector of pseudo-true parameters. This vector of pseudo-true
parameters is the one that minimizes the KLD between the true (2.65) and the misspecified
(2.67).

2.5.2 Misspecified Maximum Likelihood Estimator

2.5.2.1 Definition of the MMLE

Given the misspecified model (2.67), the MMLE is simply a single source MLE that aims at
estimating the vector of pseudo-true parameters θpt by maximizing the likelihood given the
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set of data x. This maximization problem can be written as follows [Ott93]:

η̂pt = arg max
η

|Rx,a(η)|2 , (2.68)

ρ̂pt =
∣∣∣Rx,a(η̂pt)

∣∣∣ , (2.69)

φ̂pt = arg
(
Rx,a(η̂pt)

)
, (2.70)

Rx,a(η) =
aH(η)x
‖a(η)‖ , (2.71)

with Rx,a(η) the normalized complex cross ambiguity function between the received signal x
and a clean replica a.

2.5.2.2 Properties and Applications

In the case of a misspecified configuration, that is, in presence of a multipath, the estimator’s
outputs can be biased as it is illustrated by the MPEE when the multipath excess delay with
regard to the LOS signal delay (τ0 − τ1) is small. In this case, the interference between both
signals distorts the ambiguity function to be maximized, which in turn results in a biased
LOS time-delay estimate. Similarly, if the difference between LOS and multipath Doppler
frequencies is small, it can also lead to a bias on the estimated frequency.

Even if the MMLE appears to be biased with respect to the true LOS signal parameters,
it has the property to be a misspecified-unbiased estimator of the pseudo-true parameters
vector θpt [For17]. Moreover, its MSE asymptotically tends to the MCRB, which makes it an
asymptotically efficient estimator of the pseudo-true parameters.

Indeed, in [Hub67] and [Whi82], it was shown that the MMLE converges almost surely
to the vector of pseudo-true parameters θpt, that is, for the considered observation models
(2.65) and (2.67):

θpt = arg min
θ

{D(px‖fx)} ⇔




ηpt = arg max
η

{
|Rα0a0+α1a1,a(η)|2

}

αpt = Rα0a0+α1a1,a(η)
(2.72)

Proof.
D(px||fx) = Ep {ln (pǫ(x; θ0,θ1)) − ln (fx(x; θ))} (2.73)

θpt = arg min
θ

{D(px||fx)} = arg min
θ

{Ep {− ln (fx(x; θ))}} , (2.74)

where Ep{·} is the expectation with respect to the true model’s PDF, and

− ln (fx(x; θ)) = −N ln(π) − 2N ln(σn) +
1
σ2
n

‖x − αa(η)‖2 . (2.75)
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The last term of (2.75) can be expanded as follows:

‖x − αa(η)‖2 = ‖x − (α0a0 + α1a1) + (α0a0 + α1a1) − αa(η)‖2 (2.76)

= ‖x − (α0a0 + α1a1)‖2 + ‖α0a0 + α1a1 − αa(η)‖2

+ (x − (α0a0 + α1a1))H (α0a0 + α1a1 − αa(η))

+ (α0a0 + α1a1 − αa(η))H (x − (α0a0 + α1a1)) (2.77)

The expectation of the first term of (2.77) is the noise covariance, which cannot be minimized
and the expectations of the last two terms of (2.77) are null. Consequently, to minimize the
expectation of (2.75) with regard to the argument θ, the equation can be simplified as,

arg min
θ

{Ep {− ln (fx(x; θ))}} = arg min
θ

{
‖α0a0 + α1a1 − αa(η)‖2

}
. (2.78)

Let Pa be the orthogonal projector and Pa
⊥ = IN − Pa with Pa = a(η)a(η)H

‖a(η)‖2 , which leads to

‖α0a0 + α1a1 − αa(η)‖2 =
∥∥∥
(
Pa + Pa

⊥
)

(α0a0 + α1a1 − αa(η))
∥∥∥

2
(2.79)

= ‖Pa (α0a0 + α1a1 − αa(η))‖2 +
∥∥∥Pa

⊥ (α0a0 + α1a1 − αa(η))
∥∥∥

2
(2.80)

=

∥∥∥∥∥a(η)

(
a(η)H

‖a(η)‖2
(α0a0 + α1a1) − α

)∥∥∥∥∥

2

+
∥∥∥Pa

⊥ (α0a0 + α1a1)
∥∥∥

2
, (2.81)

then the parameters that minimize the KLD are,

θpt = arg min
θ

{
‖α0a0 + α1a1 − αa(η)‖2

}
⇔





ηpt = arg max
η

{∥∥∥Pa
⊥ (α0a0 + α1a1)

∥∥∥
2
}

αpt =
a(ηpt)H

‖a(ηpt)‖2 (α0a0 + α1a1)

(2.82)
with αpt = ρpte

jΦpt . This result shows that minimizing the KLD between the true and
the misspecified distribution is equivalent to performing misspecified maximum likelihood
estimation.

Even if there is no closed-form for (2.72), it can be easily evaluated numerically. Then,
once the MCRB expression is obtained, a way to check its exactness is to run Monte Carlo
simulations in order to compute the MSE of the MMLE, and compare it to the MCRB.

2.5.3 Closed-Form MCRBs for Delay/Doppler Estimation under Multi-
path

In [RH15], the MCRB have been described as an extension of the Slepian-Bangs formulas,
which were then expressed as a combination of two information matrices in [For17]: A(θpt)
and B(θpt),

MCRB(θpt) = A(θpt)−1B(θpt)A(θpt)−1 , (2.83)
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where,

[A(θpt)]p,q =
2
σ2
n

Re

{
(δa)H

(
∂2αptapt
∂θp∂θq

)}∣∣∣∣∣
θ=θpt

− [B(θpt)]p,q , (2.84)

[B(θpt)]p,q =
2
σ2
n

Re





(
∂αptapt
∂θp

)H (
∂αptapt
∂θq

)


∣∣∣∣∣∣
θ=θpt

, (2.85)

and δa , α0a0 + α1a1 − αptapt is the difference of the means between the true and the
misspecified data models. The covariance matrices between both models are assumed to be
equal.

2.5.3.1 Single Source Fisher Information Matrix

In the matrix B(θpt), one can recognize the FIM of a single source CSM. A compact expression
of this matrix, that depends only on the baseband signal samples, was derived in [Med20] and
recalled in (2.24),

B(θpt) =
2Fs
σ2
n

Re
{

QWQH
}
, W =



w1 w∗

2 w∗
3

w2 W2,2 w∗
4

w3 w4 W3,3


 , (2.86)

with Q defined in (D.6) and the elements in W are expressed with regard to the baseband
signal samples as recorded in (2.26).

2.5.3.2 Model Mismatch Information Matrix

The matrix A(θpt) accounts for the model misspecification. Its elements can also be expressed
in a compact form as a function of the baseband samples as,

[A(θpt)]p,q =
2Fs
σ2
n

Re
{

[Qq]p,. W
A
}

− [B(θpt)]p,q , (2.87)

where [Qq]p,. is the p-th row of the matrix Qq, WA is defined as WA = α0wA(η0) +
α1wA(η1) − αptwA(ηpt) and, for k ∈ {0, 1, pt}, ∆τk = τk − τpt, ∆bk = bk − bpt, wA(ηk)
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is a six-element column vector whose components are

wA
1 (ηk)

∗ =
1
Fs

sHU
(
fc∆bk
Fs

)
V∆,0

(
∆τk
Ts

)
s ejωcbk∆τk , (2.88)

wA
2 (ηk)

∗ =
1
F 2
s

sHDU
(
fc∆bk
Fs

)
V∆,0

(
∆τk
Ts

)
s ejωcbk∆τk , (2.89)

wA
3 (ηk)

∗ =
1
F 3
s

sHD2U
(
fc∆bk
Fs

)
V∆,0

(
∆τk
Ts

)
s ejωcbk∆τk , (2.90)

wA
4 (ηk)

∗ =
(

−sHU
(
fc∆bk
Fs

)
V∆,1

(
∆τk
Ts

)
s +

jωc∆bk
Fs

sHU
(
fc∆bk
Fs

)
V∆,0

(
∆τk
Ts

)
s
)
ejωcbk∆τk ,

(2.91)

wA
5 (ηk)

∗ =
(

− 1
Fs

sHU
(
fc∆bk
Fs

)
V∆,0

(
∆τk
Ts

)
s − 1

Fs
sHDU

(
fc∆bk
Fs

)
V∆,1

(
∆τk
Ts

)
s

+j
ωc∆bk
F 2
s

sHDU
(
fc∆bk
Fs

)
V∆,0

(
∆τk
Ts

)
s
)
ejωcbk∆τk , (2.92)

wA
6 (ηk)

∗ =
(

−FssHU
(
fc∆bk
Fs

)
V∆,2

(
∆τk
Ts

)
s − j2ωc∆bksHU

(
fc∆bk
Fs

)
V∆,1

(
∆τk
Ts

)
s

−(ωc∆bk)2

Fs
sHU

(
fc∆bk
Fs

)
V∆,0

(
∆τk
Ts

)
s

)
ejωcbk∆τk , (2.93)

where s, the baseband sample vector, is defined in (C.29), D in (C.32), U in (C.31), V∆,0 in
(C.33), V∆,1 in (C.35) and V∆,2 in (C.37).

Proof. refer to Appendix D.

2.5.4 Validation Using the Misspecified Maximum Likelihood Estimator

2.5.4.1 Methodology and Simulation Set-Up

In order to validate the MCRB expressions, the properties of the MMLE (see Section 2.5.2.2)
are exploited. Indeed, the MMLE being an asymptotically efficient misspecified-unbiased
estimator of θpt, its MSE evaluated with regard to the pseudo-true parameters is expected to
asymptotically converge to the corresponding MCRB. Classically two representative GNSS
signals, GPS L1 C/A and GALILEO E1B, are considered, for both signals, the sampling
frequency is set at Fs = 8 MHz, the coherent integration time at TI = 4 ms and a single
multipath is added. The MMLE MSE is obtained from 2000 Monte Carlo runs, for different
SNR values. The SNR is still defined at the output of the matched filter with regard to the
LOS source as in (2.18). The true parameters values are gathered in Table 2.2 and Table
2.3, where the last column was obtained by running a noiseless simulation, since it has been
shown that the MMLE is known to be misspecified-unbiased and converges to the vector
of pseudo-true parameters. Two RMSEs are then computed, one with regard to the true
parameters and the other one with regard to the pseudo-true parameters, which are defined

78



Table 2.2: MCRB simulation settings for GPS L1 C/A signal.

θ0 θ1 θpt

τ [C/A chip] 0 0.25 0.0238
Fd [Hz] 0 100 24
ρ [-] 1 0.5 1.2342
φ [rad] 0 0.2618 0.0351

Table 2.3: MCRB simulation settings for GALILEO E1B signal.

θ0 θ1 θpt

τ [C/A chip] 0 0.125 0.0138
Fd [Hz] 0 100 6
ρ [-] 1 0.5 1.0973
φ [rad] 0 0.2618 -0.041666

for the i-th element of the vector of parameters θ as follows,

RMSE([θ0]i) , E

{(
[θ̂]i − [θ0]i

)2
}
, RMSE([θpt]i) , E

{(
[θ̂]i − [θpt]i

)2
}
, (2.94)

In addition, the bias induced by the model mismatch is also displayed in the results, which is
defined for any element i of the vector of parameters θ as

bias([θ]i) = [θpt]i − [θ0]i. (2.95)

Finally, the MCRBs are compared to the dual source CRBs corresponding to the true signal
model (2.65), which were derived in section 2.3.1.

2.5.4.2 Numerical Results

Figure 2.14 and Figure 2.15 show, for both the GPS and the GALILEO signals, the RMSEs
(2.94) for each of the MMLE estimates: τ , Fd = bFc, ρ and φ, with regard to the true and
pseudo-true parameters, which are displayed along with i) their corresponding square-root
MCRBs (2.83), ii) the bias induced by the multipath (2.95), and iii) the dual source CRB
(2S-

√
CRB) for the corresponding LOS parameter estimation.

First, notice that in all the figures, the MMLE estimators’ RMSE with regard to the
pseudo-true parameters converges to the proposed MCRBs when the SNR gets large enough,
which is in accordance with the theory [DK11]. This proves the validity and exactness of the
compact MCRB expressions derived in this section 2.5.3, and the asymptotic efficiency of the
MMLE estimator with regard to the pseudo-true parameters. Second, the MMLE estimators’
RMSE with regard to the true parameters converges to the corresponding

√
bias2 + MCRB,

that is, there is a clear performance degradation induced by the bias term, which for large
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(a) (b)

(c) (d)

Figure 2.14: Estimation of the delay (a), the Doppler frequency (b), the amplitude (c) and
the phase (d) of the GPS L1 C/A LOS signal in presence of a single multipath using a MMLE
and comparison of the RMSE with the corresponding MCRB, CRB and bias.

SNR values dominates in front of the MCRB (
√

bias2 + MCRB → bias). A typical GNSS
receiver operation point is around SNR = 25 dB at the output of the matched filter. At this
noise level, in the case of the time-delay estimation, that is the main parameter of interest
to solve the positioning problem, the performance degradation induced by the multipath is
around 4.5m (from 3m to 7.5m) for GPS L1 C/A as in Figure 2.14a and around 2.75m (from
1.25m to 4m) for GALILEO E1B as in Figure 2.15a. Also, it is interesting to see that, except
for the time-delay estimation of the GALILEO signal (Figure 2.15a) the 2S-CRB is above the
MCRB for all the estimated parameters: using the MMLE would then allow the user to get a
biased estimate but with a smaller variance. Last point is that for the considered scenarios,
the phase estimate is much less impacted by the multipath.
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(a) (b)

(c) (d)

Figure 2.15: Estimation of the delay (a), the Doppler frequency (b), the amplitude (c) and
the phase (d) of the GALILEO E1B LOS signal in presence of a single multipath using a
MMLE and comparison of the RMSE with the corresponding MCRB, CRB and bias.

2.5.5 Wrap-up on the MCRB

In this last section, the same operations used for the CRB led to the derivation of a closed-form
expression of the MCRB for the study of the impact of a single multipath. These expressions
depend on the signal baseband samples and are easy to implement and to use. The properties
of the so-called MMLE as a misspecified-unbiased estimator as presented in [For17] were used
to validate the MCRB expressions based on the asymptotic behavior of the estimator. The
results show good fitting between theory and simulation.

The study of the MCRB allows the user to better understand the roles of both the bias
and the variance when using a misspecified estimator. This is useful for low-cost receivers,
to assess the sensitivity to a single multipath, and may lead to future metrics as it has been
done for the CCBR is Section 2.4.
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2.6 Conclusion

In this chapter, the reception of a GNSS signal in a harsh environment such as urban canyons
was considered. In such an environment, a receiver collects not only the signal of interest
but also multiple reflections of it from the surrounding buildings, this phenomenon is called
multipath.

Starting from a very simple dual source model and using a graphical tool called MPEE
that provides information on the bias induced by the multipath in a noise-free environment,
the study of the impact of a single multipath was done for several estimators. It was shown
that for the category of estimators that estimate the multipath parameters along with the
LOS ones, the bias induced may reduce to zero, which makes the MPEE a non-informative
tool to compare these estimators with one another.

A way to cope with this lack of information is to look at what happens on the MSE when
there is an additive white Gaussian noise. This way, the first order statistic provided by the
MPEE can be completed by a second order statistic. Since the idea is to compare the MSE of
unbiased estimators, the CRB comes in naturally. A closed-form expression of this bound for
the dual source signal model was then derived which depends on the signal baseband samples.
A validation procedure, based on the properties of the MLE was done to ensure the validity
of the derived expressions through simulations. With the corresponding CRB, it has been
possible to compare unbiased estimators with one another and with the bounds itself.

The great generality of the CRB suggested to used it to build a meaningful metric that
could be useful for future navigation signal design. This metric, called CCBR, is a ratio
between the single source CRB and the dual source CRB. It is contained between 0 and
1 and does not depend on the SNR nor on the ratio of the amplitudes. It comes as a
complementary tool to the MPEE for signal design.

Finally, for the numerous low-cost estimators that cannot account for the presence of
multipath, a closed-form MCRB adapted to the misspecification of the estimator with regard
to the presence of multipath has also been derived, and validated thanks to the properties
of the MMLE. This misspecified bound comes as an extension of the single source CRB
and provides information on both the bias and the variance change due to the presence of
multipath. In short, they allow a good understanding of the impact of the multipath.

82



Chapter 3

Ground-Based GNSS-R

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.1.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Gruissan Data Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.2 Campaign Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2.4 Data Set Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2.5 Example of Processed Data . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2.6 Wrap-up on Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3 Crosstalk Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3.1 Coherent Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3.2 Non-Coherent Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.3 Wrap-Up on Crosstalk Characterization . . . . . . . . . . . . . . . . . . 112

3.4 Approximate Maximum Likelihood for Narrowband GNSS Signals . . . . . . . 112

3.4.1 Close-to-Ground Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4.2 Approximation of the Maximum Likelihood Criterion . . . . . . . . . . . 114

3.4.3 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 116

3.4.4 Discussion on the Approximation Validity . . . . . . . . . . . . . . . . . 118

3.5 Performance on Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.5.1 Simulation Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.5.2 Cramér-Rao Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.5.4 Wrap-Up on the AMLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.6 Altimetry Using Wideband GNSS Signals . . . . . . . . . . . . . . . . . . . . . 122

3.6.1 Crosstalk and Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.6.2 Single Source Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.6.3 Dual Source Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.6.4 Wrap-Up on Wideband Signals Processing . . . . . . . . . . . . . . . . . 128

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

83



Résumé

Ce chapitre suppose à nouveau un récepteur GNSS proche du sol. Cependant, le multitrajet
n’est plus perçu comme une nuisance mais comme une source d’information. En effet, l’étude
de la réflexion des signaux GNSS, connue sous le nom de GNSS-R, permet d’obtenir des
informations sur la hauteur entre le récepteur et la surface de réflexion par exemple. Le GNSS-
R se fait en général au moyen de deux antennes, l’une pointant vers le haut pour recevoir
le trajet direct et l’autre pointant vers le bas pour recevoir le trajet réflechi. Idéalement,
chaque antenne ne reçoit que le signal qui l’intéresse mais lorsque le récepteur est proche du
sol ou que l’élévation du satellite est faible, la différence de chemin entre le trajet direct et
le trajet réfléchi est relativement également faible, ce qui conduit à des interférences au sein
des antennes très similaires à un multitrajet simple. Dans le cas du GNSS-R, ce parasitage
entre les antennes affecte les performances pour l’estimation de la hauteur par exemple. Il
est donc capital de bien comprendre dans quelle mesure ce parasitage pose problème en
fonction du traitement choisi et du signal GNSS considéré. Fort de cette compréhension,
deux cas apparaissent : un premier cas pour lequel la différence de chemin est si faible que le
parasitage ne peut être éviter. Dans de telles conditions où des traitements à deux sources sont
soit impossibles, soit très coûteux, il est alors possible d’approximer le critère du maximum
de vraisemblance par une série de Taylor tronquée. Cette approximation réduit la dimension
du critère à maximiser et rend possible le GNSS-R pour des cas extrêmes. Le deuxième cas
issu de l’étude de l’effet du parasitage est lorsque celui-ci n’est pas trop important. Alors la
mise en place d’un traitement à deux sources sur chacune des voies du récepteur permet de
réduire voire d’annuler complètement l’effet du parasitage.

Pour bien comprendre la problématique du parasitage entre les antennes pour le GNSS-R
proche du sol en vue de lui trouver une solution, une première partie de ce chapitre, Section
3.2, s’intéresse à la campagne de mesure effectuée par le CNES près de Gruissan qui fournit
pour le reste du chapitre un jeu de données à traiter ainsi que des ordres de grandeur réalistes
pour les différentes analyses. S’ensuit dans la Section 3.3 une étude approfondie de l’effet
du parasitage basée sur son effet sur l’erreur quadratique moyenne de différents algorithmes,
comparée à la borne de Cramér-Rao correspondante. De cette étude, deux cas peuvent être
distingués : un premier cas, étudié dans la Section 3.4, où la différence de chemin est si faible
que le parasitage ne peut être évité. Dans ce cas, une approximation de Taylor permet de
réduire la dimension du problème. Dans le second cas, étudié dans la Section 3.6, l’effet du
parasitage est plus faible et un traitement à deux sources sur chaque antenne est envisageable
pour le réduire voire l’annuler.

3.1 Introduction

As seen in Chapter 2, GNSS signals are known to be reflected from various surfaces. The
reception of the direct signal along with these reflections is called multipath, and these reflec-
tions are often seen as a nuisance to be avoided because they tend to degrade the positioning
performance. However, by giving a closer look at the reflected paths, one may realize that
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they carry information, such as the reflecting surface location relatively to the receiver. The
study of the reflected GNSS signal upon the Earth’s surface is called GNSS Reflectometry
or GNSS-R. As presented in Section 1.5, altimetry is not the only GNSS-R application,
and depending on the nature of the platform on which the receiver is located (static station,
airplane, spacecraft), the application may vary. Hereafter, as an extension of the previous
chapter, a static ground-based receiver is considered as it is illustrated in Figure 3.1.

R

S

h
reflected path

direct path

e

Figure 3.1: Typical GNSS-R geometry with the local elevation angle e and receiver height h.

The particular case of ground-based GNSS-R exposes the receiver to collect two signals,
the direct and the reflected, with a very small path separation. Similarly to multipath, when
the path separation is very small, there is a strong interference between both signals and
standard GNSS-R processing may not perform very well. In fact, in a standard configuration,
the receiver has two antennas, one uplooking, dedicated to the direct signal and the other,
downlooking and dedicated to the reflected signal. Ideally, each antenna should collect only
the signal for which it is dedicated.

In order to better understand the challenges of ground-based GNSS-R, a geometrical
analysis of the realistic time difference between reflected and direct paths: ∆τ = τ1 − τ0

is provided here. This path separation, converted in meters is obtained using the classic
geometric relation (3.1).

c∆τ = 2h sin(e) (3.1)

Figure 3.2 presents the path separation for different receiver heights h and satellite local
elevations e. In Figure 3.2 the values equivalent to ∆τ = 1, 1/2, 1/4, 1/8, 1/10 and 1/20 L1
C/A chips are also depicted. Remember that 1/10 L1 C/A chips is equal to 1 L5 chip which
is the same chip length for the GALILEO E5A or E5B. This quick geometry study suggests
that for small receiver height or for low satellite elevation the expected path separation is of
the order or smaller than the considered GNSS signals chip. This means that depending on
the scenario, if an antenna collects both signals, say the downlooking antenna receives part
of the direct signal, a strong interference is to be expected between both signals. Such an
interference is known as signal crosstalk and can be seen as a single multipath.

Knowing this, evaluating the impact of crosstalk on the estimation of each channel signal
time-delay, which is the parameter needed to obtain an estimation of the height h, is of
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(a) (b)

Figure 3.2: Geometrical direct to reflected signal path separation c∆τ for different receiver
height h and satellite elevation e. (b) is a zoom-in for small values of h.

great interest. A way to assess this impact is to study the accuracy performance of different
algorithms for different crosstalk scenarios, that is, study the algorithms MSE and compare
it to the CRB that corresponds to the signal model. Fortunately, this signal model is similar
to the multipath two-ray signal model developed in the previous chapter.

Once the crosstalk effect is better understood, one can identify two configurations:

• A first case is when the crosstalk effect is important as in the very short path separation
case. For such scenarios, classic solutions are either non-tractable or computationally
costly. However it is possible to get around this high resolution problem by formulating
an assumption on the path separation shortness. In fact, the path separation is so small
that one can accurately approximate the dual source likelihood criterion to maximize
with truncated Taylor series. By doing so, the criterion is simplified and the maximum
search becomes affordable.

• A second case is when the crosstalk effect is small because the path separation is of
the order of the considered signal chip rate. In ground-based configuration, this is
something that may happen with wideband GNSS signals for which the chip rate is
small enough (about 30 meters for GPS L5). Then a well chosen dual source algorithm
is able to decouple the signal of interest from the interfering signal and then reduce or
even cancel the crosstalk effect.

3.1.1 Chapter Organization

In this chapter the question of ground-based GNSS-R is explored. In order to set a clear
framework, a first Section 3.2 is dedicated to a data collection campaign done by CNES near
Gruissan in the south of France. This section presents all the parameters and constraints
to take into account for ground-based GNSS-R and will provide not only real data that will
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support the discussion but also relevant orders of magnitude for the rest of this chapter. In
Section 3.3, a thorough study of the impact of crosstalk is done based on algorithms MSE
with regard to their corresponding CRB, and with different GNSS signals. Finally, this
crosstalk study paves the way to two distinct approaches: Section 3.4 tackles the issue when
the crosstalk effect is important, and cannot be avoided, by introducing an algorithm based
on a Taylor approximation of the dual source likelihood criterion; and Section 3.6 presents
a simple dual source processing in the case the crosstalk effect is less important. This last
processing is done on the Gruissan data set.

The entire chapter is based on a signal model which is equivalent to the multipath two-ray
model from Chapter 2. It is quickly reminded in the next section.

3.1.2 Signal Model

If one looks at Figure 3.1, the signal model received by each antenna would ideally be a single
source signal model such as defined in Section 2.1.2.1. However, as mentioned before, since
the receiver is very close to the ground, both antennas collect both signals. For this reason
the only signal model considered in this chapter is the general dual source CSM as defined in
Section 2.1.2.2, and recalled here in its discrete expression,

x = A(η0,η1)α + w, w ∼ CN (0, σ2
nIN ) , (3.2)

with, for n ∈ [N1, N2],

ηTi = (τi, bi) , (3.3)

xT = (. . . , x(nTs), . . . ) , (3.4)

A(η0,η1) = [a0, a1] , (3.5)

aTi =
(
. . . , s(nTs − τi)e−jωcbi(nTs−τi), . . .

)
, (3.6)

αT =
(
ρ0e

jφ0 , ρ1e
jφ1

)
, (3.7)

wT = (. . . , w(nTs), . . . ) , (3.8)

and where for i ∈ {0, 1}, τi is the time-delay, (1 − bi) is the dilatation induced by the Doppler
effect, ρi and φi are the amplitude and phase of the complex coefficient of signal i. Ts is the
sampling period, Fs = 1/Ts the sampling frequency and ωc = 2πfc, fc is the signal carrier
frequency.

3.1.2.1 Signal-to-Noise Ratio

As in the previous chapter, some results will be presented with regard to the noise level,
represented by the SNR. For the rest of the chapter, SNR, or SNRout will always refer to the
SNR of the strongest signal at the output of the matched filter. In a two antenna scenario,
the strongest signal is the direct signal in the uplooking antenna and the reflected signal in
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the downlooking one. This can be written as follows,

SNR ,

∣∣∣
∫
R
s(t− τi)∗ρie

jφis(t− τi)dt
∣∣∣
2

E
{

|∫
R
s(t− τi)∗w(t)dt|2

} =
ρ2
i s
Hs
σ2
n

= (C/N0)TI (3.9)

with i = {0, 1} depending on the antenna considered, s is the vector of the baseband samples
also defined in (C.29), σ2

n, the variance of the additive white Gaussian noise and C/N0 is the
carrier-to-noise density ratio.

3.2 Gruissan Data Campaign

In order to illustrate the work presented in the rest of this chapter, a data collection campaign
is first presented. This campaign, organized by CNES, took place on July 27, 2021 at the
Ayrolle Pond, near Gruissan, France.

3.2.1 Purpose

For this thesis work, the aim of this campaign was to obtain a large and rich data set of GNSS
signals in a close-to-ground configuration where strong interferences would exist between the
direct and the reflected signals. The reflection needed to be close-to-specular so that the
simple two-ray signal model would correctly describe the received signal.

3.2.2 Campaign Preparation

Prior to the campaign day, an important preparatory work had to be done. This involved
the site and day selection to optimize the number of satellites in view during a given time
window.

3.2.2.1 Site Location and Particulars

The site had to verify a number of constraints:

• it should be close to a large and smooth reflecting surface, like a lake, or calm sea water,

• it should be at a relatively small height of the reflecting surface but not too low to avoid
intractable scenarios,

• it should be oriented as southward as possible to maximize the number of satellites in
view,

• it should be located not too far from Toulouse to allow a short mission length.

88



Regarding these many constraints, the elected site was the Ayrolle Pond, a pond located in
the south of France near Gruissan as it can be seen in Figure 3.3. Around the pond, a series

(a)
(b)

Figure 3.3: Location of the Ayrolle Pond in France (a) and relatively to Toulouse (b) (credit:
www.vidiani.com and www.google.com/maps).

of small cliffs can be found that overhang the water. The height of these cliffs can go up to 30
meters. A particular site in the northern part of the pond was selected where a flat enough
platform at 25 meters above the water allowed to install the experiment equipment. Figure
3.4 presents the exact site location. As one can notice in this figure, the receiver will have to
look westward to capture the reflected GNSS signals.

Figure 3.4: Site location at the Ayrolle Pond (credit: www.geoportail.gouv.fr).

Now, looking closer at the site, if the receiver is placed at the marked point in Figure
3.5, there is a large area from which no reflected signals will be received. In particular the
area between the receiver and the pond water will not reflect properly the signals. For this
reason, a mask adapted to the site features needs to be build for the rest of the campaign
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preparation. This mask will allow to automatically discard all the reflections that may come
from the area defined by it when it will come to the satellite-in-view prediction step in Section
3.2.2.2. In Figure 3.5, the corresponding mask has been added in red. This mask can be fully

Figure 3.5: Satellite view of the experiment site with the associated mask (credit: www.

geoportail.gouv.fr).

defined by two azimuth angles and a maximum radius. The minimum radius, noted rmin, is
the minimum horizontal distance between the receiver and the pond water. Thanks to simple
geometry considerations sketched in Figure 3.6, this minimum radius can be converted into a
maximum elevation angle emax using the receiver height h: For the selected scenario, h ≈ 25

(a)

h

rmin

emax

tan(emax) = h/rmin

(b)

Figure 3.6: Picture (a) and Sketch (b) of the experiment site and relation between rmin and
emax.

m, rmin ≈ 30 m and the maximum elevation emax is equal to about 50.2◦. The mask spans
between the azimuth angles 30◦ and 200◦.

Once the site location is fixed, and a first analysis allowed to build a mask meant to
discard any satellite candidate whose elevation angle and azimuth do not fit this constraint,
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the next step is to identify a time window during which a large number of satellites is passing
out of this mask.

3.2.2.2 Satellite-in-View Prediction

Online Prediction Tool In order to predict the position of the satellites for the experi-
ment, a number of open access tools are available online. For illustration, one can use the
Japanese GNSSView [QSS] or the GNSS Planning Online [Tri] tool developed by Trimble.
Examples of the skyplot output of these tools can be found in Figure 3.7. A skyplot is a
polar plot where a concentric circle corresponds to a given elevation angle and radial axis
corresponds to the azimuth angle. Online tools are then very powerful and useful to get a

(a)
(b)

Figure 3.7: Examples of two tools to predict GNSS satellites positions: (a) GNSSView and
(b) GNSS Planning Online.

quick idea of how many satellites will be in the sky at a given time. However it is not possible
to download the time series that generated the provided charts, and it can result tedious to
sort the satellites that are in the masked area defined in the previous section. For this reason
it is interesting to develop a tool that will predict the position of the satellites at a given time.

Orbit Propagation Method GNSS satellites are Earth-orbiting objects like other satel-
lites and debris, and their position prediction can be performed using orbit propagation
algorithms. In particular, one of the most used algorithms is based on the Simplified General
Perturbations (SGP) model [HR80], fed with the Two-Line element (TLE) sets of the con-
sidered satellite. TLE is a compact data format that contains all the orbital elements of an
Earth-orbiting object. It is generated by observatories for each orbiting object, satellite or
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debris, and updated regularly. As presented in Section 1.3.2, the orbital parameters are also
part of the navigation message because they allow the user to compute accurately the position
of each satellite, which is necessary to obtain a PVT solution. TLE are regularly updated by
the North American Aerospace Defense Command (NORAD) and available on websites such
as CelesTrak1. The SGP4 orbit propagator [HR80] is an algorithm that takes an object TLE
at a given time and, based on Kepler laws and a perturbations model, predicts the position of
this object at an other time, past or future. Many libraries have been developed to run SGP4
and in this work, the library [Mah20] was used and adapted to the GNSS application. The
developed tool would allow to compute the position of any GNSS satellite during a chosen
time frame. In short it provides the same information as the online tools but it allows the
user to implement a complex mask in order to select only the satellites of interest. Figure
3.8 is an example of a skyplot for a single GPS satellite during a certain window. The mask
designed in the previous section appears clearly. With this tool, it is then possible to compute

Figure 3.8: Example of a skyplot computed using the GNSS simulator based on the SGP4
propagator.

a constellation visibility with the mask constraint in order to pick an optimal day and optimal
time windows during this day to collect as many GNSS signals as possible. Figures 3.9 and
3.10 are typical outputs that present the visibility of an entire constellation during a 6-hour
window. If, for a given satellite, that is, for a given row, there is a colored line, it means
that the satellite will be visible in the sky, if it is in thick red, it means that it will be out of
the mask, this way it is possible to determine when is the best time to turn on and off the
recorder. Using these figures and iterating for different days and time-window, the selected
day for the experiment was set to July 27, 2021, early in the morning.

1CelesTrak: https://celestrak.org.
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Figure 3.9: Predicted visibility of GPS satellites (block IIF and III only) from the Gruissan
experiment site. Color means visible, thick red means out of the mask.

Figure 3.10: Predicted visibility of GALILEO satellites from the Gruissan experiment site.
Color means visible, thick red means out of the mask.

3.2.3 Data Collection

3.2.3.1 Equipment for Reflectometry

In order to collect GNSS signals and their reflections, some equipment is required. For the
data collection itself, a RF signal recorder connected to an antenna fixed on top of a mast
is used. The mast is 3-meter tall and allows to elevate the antenna far from the ground to
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avoid very small unwanted multipath. Figure 3.11 present the mast with the antenna on top
of it from two points of view to appreciate its size. The antenna used to collect the reflected

(a)

(b)

Figure 3.11: Mast with antenna near the Ayrolle Pond.

signal is a dual polarization RHCP/LHCP L1/L5 antenna developed by CNES for GNSS-R
purposes. In Figure 3.12, one can see the two output connectors, one for each polarization.
This antenna is fixed to a wooden structure that allows the user to orientate it with a chosen

Figure 3.12: CNES dual polarization antenna (credit: CNES).

angle. It can be either downward to capture the LHCP component of the reflected signal or
horizontal to try and capture both direct and reflected signals with both polarization.

The receiver is a recorder developed by Ingespace2 with the following features:

• 4 synchronized RF channels,
2Ingespace: www.ingespace.com.
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• center frequency from 70 MHz to 6000 MHz,

• quantization from 1 to 16 bits I/Q,

• sampling rate from 5 Msps to 205.824 Msps (limited by maximum overall throughput
for all RF channels that should not exceed 370 MB/s), Msps: megasamples per second.

These features will allow, for instance, to record both L1 and L5 band signals for both
polarizations.

3.2.3.2 Equipment for Ground Truth

The data collected may lead to altimetry products that should be compared to a ground truth.
In order to obtain this a set of two additional GNSS receivers is used. A first set is installed
along with the GNSS-R recorder. To this purpose a NovAtel VEXXIS GNSS-850 antenna
is attached to the mast and connected to a Septentrio PolaRx5 receiver. This receiver will
estimate a true position for the top of the mast. On the other hand, the pond water level
true position will be estimated by a receiver attached to a buoy built by CNES that can be
found in Figure 3.13. On top of this buoy, a NovAtel VEXXIS GNSS-850 antenna whose
center phase is fixed at 791 mm above the water level and inside the buoy, and a Septentrio
PolaRx4 is enclosed.

Figure 3.13: Buoy on the Ayrolle Pond.
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3.2.3.3 Experimental Set-Up

The full experimental set-up can be seen in Figure 3.14a. Figure 3.14b gives a closer look of
the set-up around the mast with one GNSS receiver and one RF signal recorder controlled
by two laptops and connected to the antennas fixed on the wooden structure on top of the
mast. Finally the receivers and their laptops are organized near the mast as in Figure 3.15

(a)

(b)

Figure 3.14: (a) Experiment set-up with the buoy on the bottom right corner and the mast
on the cliff on the top left corner and (b) around the mast (credit: CNES).

where one can also see additional RF components (low noise amplifiers or LNA, bias tee and
filters) needed to have the antennas working properly and get a clean signal.

Figure 3.16 is a schematic of the entire experiment.

3.2.4 Data Set Description

During the experiment, six recordings were collected with different configurations for the
receiver and the antenna orientation. For the receiver three settings were used:

• L1: this is the configuration to capture both L1 and E1 signals:

– center frequency: FL1 = 1575.420 MHz,

– sampling frequency: Fs,L1 = 6.144 MHz,

– quantization: 8 bits I/Q,
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Figure 3.15: Experiment set-up of the control table.

• L5: this is used to record L5 and E5A signals.

– center frequency: FL5 = 1176.450 MHz,

– sampling frequency: Fs,L5 = 30.720 MHz,

– quantization: 8 bits I/Q,

• E5: this configuration record the entire E5 band (E5A and E5B):

– center frequency: FE5 = 1191.795 MHz,

– sampling frequency: Fs,E5 = 61.440 MHz,

– quantization: 8 bits I/Q.

Thanks to the four RF channels of the receiver, for each recording, two settings could be used
simultaneously. It was always the L1 configuration for channels ch0 and ch1 and either L5 or
E5 configuration for channels ch2 and ch3.

As previously mentioned, the dual polarization antenna is fixed on a wooden structure
that allows the user to tilt the antenna so that it looks forward or horizontally. Besides, it
was possible to change connections to use only the LHCP output of this antenna or both the
LHCP and the RHCP outputs. This lead to two antenna configurations that are listed below.

• Nominal: NovAtel RHCP antenna looking upward and CNES LHCP antenna looking
downward (tilted of 70◦ from the horizontal line).

• Reflectometry: CNES RHCP/LHCP antenna looking towards the horizon.
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The six recordings are summarized in Table 3.1 along with their duration and receiver/antenna
configurations. Among these recordings, a focus is done on the ones using a reflectometry

Table 3.1: Summary of the Gruissan experiment recordings with corresponding configurations.

rec. # T0 [UTC] length [mn] receiver config. antenna config.

1 05:00:00 40 L1/E5 nominal
2 05:42:00 26 L1/L5 nominal
3 06:18:00 29 L1/E5 reflectometry
4 07:02:00 6 L1/E5 detection
5 07:16:00 3 L1/E5 detection
6 07:37:00 15 L1/E5 reflectometry

antenna configuration, that is, on recordings #3 and #6. For these specific recordings, the
satellite in view out of the masked area are the gathered in Figures 3.17 and 3.18 where the
skyplots for GPS and GALILEO satellites are displayed.

(a) (b)

Figure 3.17: Skyplots for (a) GPS and (b) GALILEO satellites during rec. #3.

(a) (b)

Figure 3.18: Skyplots for (a) GPS and (b) GALILEO satellites during rec. #6.

These figures will support the rest of this chapter for the simulation parameters settings
and the data processing steps.
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3.2.5 Example of Processed Data

3.2.5.1 Ground Truth Processing

In order to have a reference for future processing, the data collected by the buoy antenna
and the zenith RHCP antenna set on the mast were processed using Real-Time Kinematic
(RTK) technique, which is a highly accurate carrier phase-based ranging technique. Figure
3.19a and Figure 3.19b show the estimated height of both antennas during the experiment.
For the mast antenna, the mean value observed is 73.14 m, this height corresponds to the

(a)

(b)

Figure 3.19: Estimated height using RTK technique for (a) the mast antenna and (b) the
buoy antenna.

phase center of the Novatel antenna. During the experiment, this phase center was located
23 cm above the phase center of the dual polarization antenna. Consequently the height of
the reflectometry antenna was zmast = 73.14 − 0.23 = 72.91 m. For the buoy, the mean value
observed is 50.30 m, the antenna was fixed so that its phase center was at 79 cm above the
water level, the height of the water level was then zwater = 50.30 − 0.79 = 49.51 m. The
reference horizontal height between the phase center of the reflectometry antenna and the
pond water level was htrue = zmast − zwater = 23.40 m during the experiment.
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3.2.5.2 GNSS Interferometric Reflectometry

As an example, if one looks closer at recording #6 in Figure 3.18a, the GPS satellite that
transmits PRN 27 has an ideal position in the sky. During the recording, its elevation varies
between 25◦ and 30◦, that is, resorting to the geometry equation (3.1), recalled hereafter,

c∆τ = 2h sin(e), (3.10)

the expected path separation will vary between 21.1 m and 25 m. For L1 signals this corre-
sponds to a excess delay between 0.072 to 0.085 L1 C/A chips or between 0.72 and 0.85 L5
chips. For the L1 case, it is clear that there will be a strong interference between the direct
path and the reflected path in the case where both signals are collected by a single antenna.
This is the typical multipath scenario.

If one applies a standard GNSS processing, that is, a 1S-MLE as defined in Section 1.2.1.2,
on the L1 RHCP channel to track this GPS satellite, and looks at the estimated SNR during
the entire recording, then obtains the Figure 3.20. This figure was obtained with 20 ms of

Figure 3.20: Estimated SNR for GPS satellite 27 during recording #6 on channel ch0 (L1,
RHCP).

coherent integration and by filtering the sampled signals with a rectangular low-pass filter of
bandwidth 4 MHz.

As predicted by the theory recalled in Section 1.5.2.1, the received SNR is oscillating
during the recording. This oscillation is due to the slow evolution of the path separation as
the satellite elevation evolves. It has been shown in [Rib14, (6)] that the apparent amplitude
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of the received composite signal ρcomp, can be modeled as in (3.11).

ρcomp(t) =
√
ρ2

0 + ρ2
1 + 2ρ0ρ1 cos(∆φ(t)) (3.11)

and, thanks to geometry consideration, the phase difference ∆φ(t) is expressed as a function
of the elevation e(t) and the height between the receiver and the reflecting surface h:

∆φ(t) =
4πh
λL1

sin(e(t)). (3.12)

From (3.12), it is simple to link h to ∆e, the satellite elevation variation required to observe
one period of ρcomp. or of the resulting SNR:

λL1

h
= 4 sin

(
∆e
2

)
cos

(
e(t0) +

∆e
2

)
(3.13)

During recording #6, the GPS satellite elevation evolution can be modeled as a linear
function of time: e(t) ≈ de

dt t + e(0) where de
dt is the slope of the time variation of e(t). This

way, ∆e = de
dtTSNR. For recording #6, e(0) = 24.94◦ and de

dt = 0.0058◦/s. Besides, a
spectral analysis using a Welch’s method [Wel67] on Figure 3.20 provides an estimated period
TSNR ≈ 45.60 s.

Wrapping everything up with equation (3.12) for t0 = 400 s, on can obtain an estimated
height of 23.30 meters using the GNSS-IR method. This estimate satisfyingly agrees with the
expected value (23.40 m).

3.2.6 Wrap-up on Data Collection

In this section, the Gruissan data collection was presented. This experiment aimed at provid-
ing data for ground-based GNSS-R purposes. The data collected consist of several recordings
with different antenna and receiver configurations that can be used to perform GNSS-R al-
timetry with standard techniques, as it was illustrated with the GNSS-IR technique in the
previous section, or with other approaches with one or two antennas as it will be shown later
in this chapter.

Regarding standard GNSS-R techniques such as cGNSS-R or iGNSS-R where two anten-
nas are required, ground-based scenarios are still challenging due to the strong interference
between direct and reflected paths because the RHCP antenna let some LHCP component
of the reflected path in, and vice versa. This leakage is also known as signal crosstalk and
should be better understood to apply traditional processing techniques.
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3.3 Crosstalk Characterization

The main issue that occurs when trying to perform ground-based GNSS-R is the strong
interference between the direct and the reflected paths. The GNSS-IR example provided in
the previous section proves that sometimes, some reflected signal manage to get in the direct
antenna, and vice-versa. This phenomenon, called signal crosstalk may lead to performance
degradation if not taken into account. This is very similar to GNSS multipath.

In this section, the focus is made on the downlooking antenna in which part of the direct
signal is also collected. Consequently, signal indexed 0 will always refer to the reflected path,
which is expected to be stronger, and signal indexed 1 will refer to the interfering direct path
that manages to get in the downlooking channel.

In order to better understand the impact of crosstalk for ground-based GNSS-R, a series
of simulations will be performed to acknowledge whether or not the crosstalk affect the esti-
mation of the main signal delay (in this case the delay of the reflected path). Similarly to the
multipath study, the metric used here will be the MSE of the receiver algorithm compared to
the corresponding CRB that was derived in Section 2.3.

The philosophy of this study is to start with a traditional processing technique, here the
1S-MLE, and to check the impact of crosstalk on this specific architecture in terms of MSE
when assuming a coherent processing, as defined in Section 1.5.2.3. Then, a dual source
approach is proposed and verified using the same procedure. The robustness of this dual
source approach is also checked assuming the absence of crosstalk. Finally, a discussion on
non-coherent processing is drawn since non-coherent integration is often performed in GNSS-R
to obtain targeted SNR levels.

Better understanding crosstalk will allow to identify scenarios in which the crosstalk can-
not be avoided and scenarios where the crosstalk is not degrading too much the overall
performance.

3.3.1 Coherent Estimation

In this section, the crosstalk impact on coherent estimation is investigated. To do this, a
prior study on the 1S-MLE is used to estimate the reflected path time-delay in the presence
of crosstalk; this aims at asserting the need for a mitigation technique based on either 2S-MLE
or CRE. The performance of these estimators is then presented in a properly specified scenario
(presence of crosstalk), and then in a misspecified one (no crosstalk).

3.3.1.1 Parameters of Interest and Simulation Set-Up

Exploiting the single source CRB from [Med20] and its dual source extension derived in
Chapter 2, one can properly characterize the impact that the presence of two sources instead
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of one (crosstalk) may have on the reflected or direct signal parameter estimation with regard
to the single source case.

The two parameters investigated in this study are the excess time delay between the
reflected and the direct signal, ∆τ , and the ratio between signal amplitudes, or MDR, |Γ|
where Γ is a complex number such that Γ = ρ1e

jφ1/ρ0e
jφ0 . The first parameter, ∆τ , is

determined by the system geometry, that is, the receiver height and the satellite elevation
as reminded in Section 3.1. The second parameter, |Γ|, depends on the antenna radiation
pattern, the polarization mismatch between the leaking signal and the antenna, and the
incidence angle (again via the system geometry). Given the fact that a two-antenna system
is considered, the modulus |Γ| is assumed smaller than one, that is, the reflected signal has
more energy than the crosstalk signal from the LOS. The other parameters in the signal
definition reminded in Section 3.1.2 are set to a fixed value for the rest of this study: the
Doppler frequency of the reflected signal Fd,0 = fc · b0 = 30 Hz, the Doppler frequency of the
LOS signal Fd,1 = fc · b1 = 50 Hz, the phase of the reflected complex amplitude φ0 = π/3,
and the phase of the LOS complex amplitude φ1 = π/4.

As representative case studies, the following values are considered: |Γ| = {0.01, 0.1, 0.3, 0.5},
∆τ = {1/8, 1/4, 1/2, 1} L1 C/A chips for a GPS L1 C/A signal, and ∆τ = {1/2, 1} L5 chips
for a GPS L5I signal. This way a wide range of possible values is covered. For each pair
{∆τ, |Γ|}, the time-delay estimation performance in term of RMSE for the GPS L1 C/A
signal scenario, as well as for a GPS L5I signal (equivalent to GALILEO E5A or E5B) is
obtained. Note that the GPS L1 C/A chip is 10 times larger than the GPS L5I chip because
of the difference between the BPSK(1) and BPSK(10) modulations.

As mentioned before, three scenarios are now considered:

• Scenario (a) studies sub-optimal single source estimation where there are two sources,
but the corresponding estimator considers only one source.

• Scenario (b) studies optimal dual source estimation where two sources are present and
the corresponding estimator is matched to this model.

• Scenario (c) studies misspecified dual source estimation where there is only one source
but the estimator looks for two.

Scenario (a) aims at emphasizing the effect of crosstalk for receiver architectures that ignore
this phenomenon. Scenario (b) proposes a matched processing, and scenario (c) checks that
this matched processing is robust when there is no crosstalk anymore.

In the sequel, for each scenario, the RMSE for the time-delay estimation of the reflected
signal, is computed through 1000 Monte Carlo runs with respect to the SNR at the output
of the matched filter as defined in (3.9).
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3.3.1.2 Numerical Results for Coherent Processing

Scenario (a) This analysis provides insights into the performance loss when the possible
crosstalk is not taken into account. The 1S-MLE RMSE is compared with the single source
CRB. Note that ∆τ = 1/2 L5I chips = 0.05 L1 C/A chips and ∆τ = 1 L5I chips = 0.1 L1
C/A chips. The results are shown in Figures 3.21.

In the sequel, in all the figures presented, the MLE/CRE behavior can be divided into
three distinct regions: (i) in the a priori region, at a low SNR, the estimate behaves as a
random variable uniformly distributed on the search area and leads to a very large RMSE;
in this case, the estimate is useless for the user; (ii) the threshold (i.e., where the estimator’s
RMSE drops significantly) is useful to know the minimum SNR to be in optimal operation
conditions; and (iii) the asymptotic region is where the estimator behaves correctly, given
that the estimator is asymptotically efficient (i.e., convergence to the CRB).

From the GPS L1 C/A results, one can draw three main conclusions: (i) in a dual source
context, the single source estimators only converge to the bound for very low values of |Γ|
(i.e., 0.01 and 0.1 in the ∆τ = 1, 1/2, 1/4 L1 C/A chips results or only 0.01 in the case of
∆τ = 1/8 L1 C/A chips). In this case, there is no impact of a possible crosstalk. (ii) For higher
values of |Γ|, the 1S-MLE RMSE never converges to the CRB, and therefore, the crosstalk
induces a performance degradation. This significantly impacts the receiver performance for
|Γ| = 0.5 and for ∆τ = 1/8 L1 C/A chips. It is worth pointing out that in such conditions, the
estimator’s RMSE reaches a constant floor, which is typical of a biased estimator (easy to spot
in Figure 3.21d–f) as seen in Section 2.5 of the previous chapter. This is due to the fact that
for a significant value of |Γ|, the crosstalk distorts the CCF and shifts its maximum, similarly
to multipath in a navigation application. Consequently, even if, for larger |Γ|, the threshold
seems to be earlier, the estimated value turns out to be biased. (iii) These results justify
the need for dual source estimators or other robust solutions if a possible strong crosstalk is
expected. For the GPS L5I case, one can see the same behavior for ∆τ = 1 L5I chip and
a performance saturation for ∆τ = 1/2 L5I chips (even for |Γ| = 0.1). This is because the
achievable RMSE with an L5I signal is far below the corresponding one with the L1 C/A
signal (i.e., the L5I CCF is sharper than the L1 C/A CCF); therefore, small deviations on
the CCF have a larger impact on the final performance.

Scenario (b) This analysis provides insights into the optimal achievable performance with
respect to the single source case. Recall that with respect to the previous scenario, the pres-
ence of two sources is known and the parameters associated with both sources are estimated,
either with a CRE or a 2S-MLE when the CRE does not converge because both sources are
too close in time. Similarly to the previous scenario, these dual source estimators RMSE for
the time-delay estimation of the main signal are compared with the single and dual source
CRBs. Results are shown in Figure 3.22.

From the results shown in Figure 3.22, one can draw different conclusions: i) First, at a
sufficiently high SNR, the estimators converge to the CRB, irrespective of the values of ∆τ
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(a) L1 C/A, Fs = 20 MHz, ∆τ = 1 L1 C/A chip (b) L1 C/A, Fs = 20 MHz, ∆τ = 1/2 L1 C/A
chips

(c) L1 C/A, Fs = 8 MHz, ∆τ = 1/4 L1 C/A chips (d) L1 C/A, Fs = 8 MHz, ∆τ = 1/8 L1 C/A chips

Figure 3.21: Cont.

and |Γ|, which is a known result for MLE [Ren06]. This implies that using a dual source
estimator and under certain conditions, it is possible to mitigate the impact of any possible
crosstalk. ii) It is also worth pointing out the difference between the single source and the
dual source CRB, which is limited for most of the range of ∆τ considered in this study.
This implies that once the estimator converges to the bound, the crosstalk impact on the
estimation performance is limited as well (with respect to the optimal single source case).
iii) The third point is the ability of the CRE to converge to the bound for values as low as
∆τ = 1/4 L1 C/A chips (Fs = 8 MHz) for the GPS L1 C/A or 1 L5I chips (Fs = 20 MHz)
for the GPS L5I. For the GPS L1 C/A case with ∆τ = 1/8 L1 C/A chips or the GPS L5I
case with ∆τ = 0.5 L5I chips, the CRE did not converge to the CRB because when the path
separation is too short, this suboptimal implementation of the MLE is biased, this is the
reason why the results were obtained with the 2S-MLE. Note that this CRE limit can be
pushed with a better resolution, that is, a higher signal bandwidth. iv) Note also the strong
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(e) L5I, Fs = 20 MHz, ∆τ = 1 L5-I chip (f) L5I, Fs = 20 MHz, ∆τ = 1/2 L5-I chips

Figure 3.21: RMSE for the estimation of the main signal delay τ with 1S-MLE in the presence
of a secondary signal with relative amplitudes |Γ| = 0.01, 0.1, 0.3, 0.5 and different ∆τ and
Fs, for both GPS L1 C/A and L5I signals.

impact that |Γ| has on the convergence threshold. While for low values such as |Γ| = 0.01 or
0.1, the convergence is very fast, for larger values, the convergence is slower and the optimal
operation point is reached for larger SNR. v) Lastly, the 2S-MLE performance cannot be
below the corresponding CRB, as is the case in the plots. This is because of a reduced
parameter space search in the implementation, to avoid a huge computational burden. For
the same reason (reduced parameter space search), the threshold could not be observed: the
range of possible values did not allow to obtain large RMSE.

In any case, one can conclude from these figures that (i) for low values of |Γ| and using a
dual source estimator, crosstalk has almost no impact, and (ii) for large values of |Γ|, a higher
SNR is required in order to mitigate the crosstalk.

Scenario (c) In the previous scenarios, a time-delay estimation performance analysis in a
dual source context was investigated. First, considering a single source estimator in order
to assess the impact of a possible crosstalk (i.e., not taken into account) with regard to the
optimal single source case, and then, considering dual source estimators to assess the impact
with regard to the single source case in an optimal set-up. A fundamental question of practical
interest remains: what is the performance of dual source estimators when only one source is
present? In other words, what is the robustness of dual source estimators when the number
of sources is misspecified? In practice, this is the case of interest, because the crosstalk is not
always present.

To answer this question let one consider the performance obtained with a CRE looking
for two sources, but a single source is present in the signal. For the simulation, the same
parameters of Doppler frequency and phase as before are set for the reflected signal, and the
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(a) L1 C/A, Fs = 20 MHz, ∆τ = 1 L1 C/A chip. (b) L1 C/A, Fs = 20 MHz, ∆τ = 1/2 L1 C/A
chips.

(c) L1 C/A, Fs = 8 MHz, ∆τ = 1/4 L1 C/A chips. (d) L1 C/A, Fs = 8 MHz, ∆τ = 1/8 L1 C/A
chips.

Figure 3.22: Cont.

modulus |Γ| is set to zero. Results for both GPS L1 C/A and GPS L5I signals are shown
in Figure 3.23, where it is clear that the CRE is robust in the case of a misspecified number
of sources. Indeed, the CRE properly estimates the reflected signal parameters and sees the
rest as noise. This implies that such dual source estimator is a promising option to mitigate
possible crosstalk.

3.3.2 Non-Coherent Estimation

Finally, it is interesting to have a look at non-coherent processing techniques since it often
happens in GNSS-R because of the low SNR levels [OVC22]. As a case study, a focus is
made on the VE estimation performance and how it compares with the CRB and dual source
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(e) L5I, Fs = 20 MHz, ∆τ = 1 L5I chip. (f) L5I, Fs = 20 MHz, ∆τ = 1/2 L5I chips.

Figure 3.22: RMSE for the estimation of the reflected signal delay τ with the CRE (a–
e) and 2S-MLE (d,f) in the presence of a secondary signal with relative amplitudes |Γ| =
0.01, 0.1, 0.3, 0.5 and different excess delay ∆τ , for both GPS L1 C/A and L5I signals.

(a) L1 C/A. (b) L5I.

Figure 3.23: RMSE for the delay τ estimation considering a GPS L1 C/A signal at Fs = 8
MHz in blue and at Fs = 20 MHz in black (a) and a GPS L5I signal at Fs = 20 MHz (b). The
case study with a misspecified number of sources: one source is present, but a dual source
CRE is used.

estimators such as CRE when implemented for non-coherent integration. For the rest of this
section this non-coherent CRE will be referred as NC-CRE.
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3.3.2.1 Simulation Set-Up

Recall that the VE given in [Mar14b] and recalled in Section 1.5.2.3 is designed to eliminate
the contribution of the coherent part of the signal. Therefore, to cover a set of representative
case studies, four different scenarios are considered, where for all of them, there are two
superimposed GPS L1 C/A signals with Fs = 8 MHz, ∆τ = 1/4 L1 C/A chips, |Γ| = 0.5, and
a total signal duration of T = 20 ms, that is 20 GPS PRN code 1 ms long. The LOS signal is
considered to be coherent during the observation time: it has the same phase during T . For
the reflected signal whose delay one wants to estimate the following scenarios are considered.

• Scenario (d1): 20 PRNs, each one with a different random phase.

• Scenario (d2): four blocks of 5 PRNs where (i) the first 5 PRNs have the same phase
as the LOS signal and (ii) the other three blocks of 5 PRNs have three different random
phases.

• Scenario (d3): two blocks of 10 PRNs where (i) the first 10 PRNs have the same phase
as the LOS signal and (ii) the other two blocks of 5 PRNs have two different random
phases.

• Scenario (d4): four blocks of 5 PRNs where (i) the first 15 PRNs have the same phase
as the LOS signal and (ii) the remaining block of 5 PRNs has a random phase.

These scenarios can also be pictures as in Figure 3.24 Note that these four cases cover from

0 5 10 15 20 T [ms]

(d1)

(d2)

(d3)

(d4)

scenario #

Figure 3.24: Non-coherent scenarios illustration each block is either white where the phase
of the reflected path is equal to the phase of the coherent LOS signal, or colored where the
phase is random.

the fully non-coherent reflected signal in scenario (d1) to the almost coherent reflected signal
in scenario (d4).
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3.3.2.2 Numerical Results for Non-Coherent Processing

The RMSE results obtained for the four scenarios with both the VE and NC-CRE are shown
in Figure 3.25.

(a) VE (b) NC-CRE

Figure 3.25: RMSE results for the reflected signal delay estimation considering two GPS L1
C/A signals at Fs = 8 MHz, ∆τ = 1/4, |Γ| = 0.5. (a) presents the VE performance and (b)
presents the NC-CRE performance.

First, notice that the VE performance for the fully non-coherent scenario (d1) reaches
the corresponding dual source CRB, which is almost equivalent to the single source CRB in
these scenarios (refer to Figure 3.22c), at around 17 dB; then, in this case the estimator is
asymptotically efficient and behaves similar to the 1S-MLE without crosstalk. In contrast,
when the coherent part of the reflected signal increases, as in scenarios (d3) and (d4), its
performance drastically degrades, and the VE is not a valid approach anymore, as expected
by construction. Therefore, the VE is only useful if considering reflected signals with a
dominant non-coherent component such as ocean surfaces, but it is not for specular reflections
over ice or for certain land surfaces with a significant coherent signal part. Regarding the
NC-CRE, it is asymptotically efficient irrespective of the signal coherence, therefore being a
very powerful seamless alternative to the VE. Notice that the NC-CRE for the estimation of
the reflected delay does not fully converge to the corresponding dual source CRB until the
convergence of the estimation of the secondary delay (in this case, the LOS delay), at 30 dB,
but the performance degradation between the first threshold and 30 dB is minor. Then, both
methods have their pros and cons, the VE being easier to implement and the NC-CRE being
more robust to the type of surface.
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3.3.3 Wrap-Up on Crosstalk Characterization

In this section, an analysis, from an estimation point of view, of the possible effect of crosstalk
in ground-based and low altitude airborne GNSS-R was proposed. Both the crosstalk impact
on standard architectures and possible mitigation strategies were discussed. First, it was
found that the 1S-MLE performance is not affected by crosstalk if the reflected-to-direct signal
amplitude ratio is low enough; otherwise, there is a performance degradation that must be
accounted for. Second, it was shown that both CRE and 2S-MLE are asymptotically optimal
irrespective of the amplitude ratio, then being a promising crosstalk mitigation strategy. Note
that using the CRE is limited by the time separation between both sources. However, such
analysis was performed in a coherent signal context, and in practice, the reflected signal is
non-coherently averaged over long integration times. That is the reason why a complementary
analysis was provided to assess the performance of a NC-CRE, which was shown to be also
asymptotically efficient irrespective of the signal coherence. In contrast, the VE used in the
literature was shown to be a valid approach only for non-coherent signals, for which this
estimator is asymptotically efficient. Otherwise, for instance in close-to-specular reflections,
the VE suffers a significant performance degradation. Then, one can conclude that both the
NC-CRE and VE are good ways to mitigate the crosstalk impact, with their pros and cons.
Notice that the performance analysis provided here investigated the impact of the LOS signal
on the reflected one, but the results are also valid to analyze the impact of the reflected signal
on the LOS one. The only difference is that the LOS signal is stronger than the reflected
signal, or vice versa. As a side note, the robustness of the CRE for a misspecified number of
sources was also discussed.

From this crosstalk impact overview, two approaches may be of interest for ground-based
GNSS-R depending on how strong the interference is. In the case of a strong crosstalk impact,
that is, for narrowband GNSS signals, the interference is inevitable but so strong that one
may estimate both signals (the main one and the interference) from a single channel. This is
what is done in GNSS-IR as presented in the example in Section 3.2.5.2 and what is further
proposed in Section 3.4. Another approach lays in the case of wideband GNSS signals: as
mentioned before, for larger band signals, the crosstalk is less a problem if one applies dual
source estimators. This is developed in Section 3.6 where single source and dual source
estimators are again compared with one another on the Gruissan data set.

3.4 Approximate Maximum Likelihood for Narrowband GNSS
Signals

Thanks to the crosstalk impact analysis done in the previous section it is now possible to
identify scenarios in which the crosstalk can or cannot be avoided. This section focuses on
scenarios where crosstalk is present. If one refers to the Gruissan experiment presented in
Section 3.2, that will be the case for narrowband GNSS signals such as GPS L1 C/A or
GALILEO E1 signals for which the width of the auto-correlation function (about 300 meters
for GPS L1 C/A) is much larger than the actual path separation (about 40 meters at most).
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In such a harsh configuration, applying conventional GNSS-R techniques will only lead to
highly biased results which will not be exploitable.

Since both signals are actually collected by a single channel, one may be tempted to
apply dual source estimators such as the 2S-MLE. It is known that the 2S-MLE for the joint
time-delay and Doppler frequency estimation of two signals has an important computational
cost. This is the reason why variants of this estimator have been derived, such as the CRE
whose performance has been studied in the previous section. However these variants do not
perform very well when the path separation is very small. However it is possible to build
another variant of the 2S-MLE with the knowledge of the path separation shortness. The
idea of the Approximate Maximum Likelihood Estimator (AMLE) presented in the coming
sections comes from the assumption of a very small path separation which naturally lead
to a Taylor approximation. Indeed, by approximating the likelihood criterion knowing that
the path separation is small, it will be possible to find a closed form expression of the path
separation estimate and, this way, to reduce the complexity of the maximization problem.

3.4.1 Close-to-Ground Assumptions

Based on Gruissan experiment, the receiver R being close to the ground (tens of meters above
the reflecting surface), the expected relative path difference ∆τ = τ1 −τ0 is of the same order.
Based on the equation that links the height with the path separation: c∆τ = 2h sin(e), the
variation of the path separation with the transmitting satellite can be found in Figure 3.26
for the case h = 25m. From Figure 3.26, it is clear that both the direct and the reflected

Figure 3.26: Path separation evolution with regard to the local elevation e of the transmitting
satellite for a receiver height h = 25m.

path are very close in time. For very large band GNSS signals such as GALILEO E5, these
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signals may sometimes be separable but for most of the GNSS signals a strong interference
will exist.

On the other hand, given the geometry and the motionless nature of the reflecting surface,
the Doppler frequencies of both the direct and the reflected signal do not differ from more
than a fraction of Hertz. It can be shown that in a static geometry, the Doppler frequency
difference between the direct signal and its reflection is only due to the receiver height and the
elevation of the satellite: indeed, for very low altitude scenarios, the phase difference between
the direct and the reflected path can be expressed as follows [GK88]:

∆φ = φ1 − φ0 =
2ωch
c

sin(e). (3.14)

Then, as the satellite elevation e varies, the relative phase varies and the first derivative
corresponds to the relative Doppler frequency:

∆Fd = (b1 − b0)fc =
2fch
c

cos(e)
de
dt
. (3.15)

This expression is often used to do altimetry based on the SNR observations [Rib14; Lar08]
in GNSS-IR. A worst-case numerical application yields, for GPS L1 satellites with elevation
rate de/dt = 0.14 mrad/s, e = 0 rad, fc = 1575.42 MHz and a receiver at altitude h = 25 m:
∆Fd ≈ 0.04 Hz. Such a small difference will not be observable for coherent integration time
considered in this study.

In short, two main assumptions are made due to the considered low altitude geometry:

• the Doppler frequencies of the direct and reflected paths are considered equal: b0 =
b1 = b,

• the reflected path delay is very close to the direct delay τ1 = τ0 + ∆τ , ∆τ small.

Consequently, η0 = (τ0, b)T and η1 = (τ0 + ∆τ, b)T . And the final dual source CSM is
given by:

x = A(τ0,∆τ, b)α + w, w ∼ CN (0, σ2
nIN ) , (3.16)

with, for n ∈ [N1, N2], A(τ0,∆τ, b) = [a0, a1], a0 is defined in the the general case for i = 0
in Section 3.1.2 and aT1 =

(
. . . , s(nTs − τ0 − ∆τ)e−jωcb(nTs−τ0−∆τ), . . .

)
.

3.4.2 Approximation of the Maximum Likelihood Criterion

Given the dual source signal model provided in (3.16), the corresponding 2S-MLE of ξ ,
[τ0,∆τ, b, ρ0, φ0, ρ1, φ1]T is given by [SN89; Ott93]:

(
τ̂0, ∆̂τ , b̂

)
= arg max

τ0,∆τ,b
‖PAx‖2 (3.17)
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and, for (τ0,∆τ, b) =
(
τ̂0, ∆̂τ , b̂

)
and i ∈ {0, 1},

ρ̂i =
∣∣∣∣
[(

AHA
)−1

AHx
]

i

∣∣∣∣ , φ̂i = arg
{[(

AH
)−1

AHx
]

i

}
, σ̂2

n =
1
N

∥∥∥P⊥
Ax
∥∥∥

2
(3.18)

where PA = A
(
AHA

)−1
AH is the projection onto the subspace spanned by the columns of

A (signal subspace) and P⊥
A = I − PA is the projection onto the noise subspace.

The aim of this section is to adapt the AMLE presented in [VBC14] to the problem
of time-delay estimation of closely spaced sources which is motivated by the ground-based
GNSS-R application.

Suppose the signal model described in (3.16). The likelihood criterion, noted L(τ0,∆τ, b)
to be maximized is defined by (3.17). It can be written as follows:

L(τ0,∆τ, b) , ‖PAx‖2 = xHPAx =
(
AHx

)H (
AHA

)−1
AHx (3.19)

where the inverse matrix can be explicitly written with regard to the path separation ∆τ :

(
AHA

)−1
∝ 1

1 − |c(∆τ)|2

[
1 −c(∆τ)

−c(∆τ)∗ 1

]
(3.20)

where c(∆τ) ∝ aH0 a1 is the auto-correlation of the signal expressed in ∆τ .

Now if one expands the matrices product, the projector PA results in a finite sum of
similar terms:

PA =
a0aH0 + a1aH1 − c(∆τ)∗a0aH1 − c(∆τ)a1aH0

1 − |c(∆τ)|2 , (3.21)

and, with, for i ∈ {0, 1}, βi = aHi x, the likelihood criterion can be expressed as

L(τ0,∆τ, b) =
β∗

0β0 + β∗
1β1 − c(∆τ)∗β∗

0β1 − c(∆τ)β∗
1β0

1 − |c(∆τ)|2 . (3.22)

Expression (3.22) can be further simplified by exploiting the fact that ∆τ is very small. In
that case both c(∆τ) and β1 can be approximated with a truncation of their Taylor series:

c(∆τ) = 1 +
∑

n∈N∗

cn∆τn , (3.23)

|c(∆τ)|2 = 1 +
∑

n∈N∗

dn∆τn , (3.24)

β1 = β0 +
∑

n∈N∗

β1,n∆τn , (3.25)

where cn, dn and β1,n are the n-th Taylor coefficients of c(∆τ) |c(∆τ)|2 and β1, respectively.

Proof. see Appendix E.1.
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By truncating and expanding theses series, it is possible to obtain a 3rd order Taylor
development of the likelihood criterion:

L(τ0,∆τ, b) ≈ LTaylor(τ0,∆τ, b) =
3∑

n=0

Ln(τ0, b)∆τn (3.26)

with

L0(τ0, b) = −B2

d2
, L1(τ0, b) = −B3

d2
, (3.27)

L2(τ0, b) = − 1
d2

(
B4 − d4

d2
B2

)
, (3.28)

L3(τ0, b) = − 1
d2

(
B5 − d4

d2
B3

)
. (3.29)

and Bn and dn can be expressed with regard to the baseband signal samples thanks to (E.8),
(E.9) and (E.13).

Proof. see Appendix E.2.

3.4.3 Description of the Algorithm

3.4.3.1 Intuition

In expression (3.26), the dependency on the relative delay ∆τ is simplified. To better illustrate
the meaning of this approximation, one can plot the real likelihood criterion L(τ0,∆τ, b) and
compare it to its different order Taylor approximations. In Figure 3.27, A cut at the true
values of τ0 and b of the exact likelihood function is displayed along with the corresponding
Taylor approximations (from order 0 to order 3). These figures are two illustrations without
noise, for a signal GPS L1 C/A with Fs = 4 MHz, b = 0, ρ1/ρ0 = 0.5 and ∆φ = φ1 − φ0 = 0.
The only difference between the two figures is the relative delay which is small in Figure 3.27a
and large in Figure 3.27b.

From these figures, it is clear that the order of the Taylor approximation is important: for
very small ∆τ (Figure 3.27a), the likelihood is well represented at the 2nd order around the
extremum area, which is of interest since the criterion is maximized for the correct value of
∆τ . In the case of a larger ∆τ (Figure 3.27b), the 2nd order is not fitting the true likelihood
function around the extremum anymore. On the other hand, the 3rd order provides a good
approximation. The true likelihood function maximum being approximated by one of the two
extrema of the 3rd order polynomial.

116



(a) ∆τ = 1/16 L1 C/A chips (∼ 18.31m). (b) ∆τ = 1/8 L1 C/A chips (∼ 32.63m).

Figure 3.27: Illustration of the likelihood criterion Taylor approximations at different orders
and relative delay ∆τ .

3.4.3.2 Resolution of the 3rd order polynomial

To obtain an estimation of ∆τ , one wants then to maximize the likelihood criterion. The
observations made from Figure 3.27 suggest to relate the maximum of the likelihood function
to one of the extrema of the 3rd order Taylor approximation. These extrema can be obtained
by zeroing the first derivative of expression (3.26). Then the correct extremum is the one that
has a negative curvature, in other words, the second derivative evaluated a this extremum is
negative. Consequently, to estimate the relative ∆̂τ from the expression (3.26), one can do
as follows:

• Find the two candidates ∆τ1 and ∆τ2 by zeroing the first derivative of (3.26):

∂LTaylor(τ0,∆τ, b)
∂∆τ

= 0 . (3.30)

Using the reduced discriminant δ = L2
2 − 3L1L3, the two candidates can be written as:

∆τ1/2 =
−L2 ±

√
δ

3L3
, (3.31)

where the dependency on τ0 and b has been omitted to lighten the notation.

• Evaluate the second derivative of (3.26) for both candidate and pick the one that has
the minimum curvature:

∂2LTaylor(τ0,∆τ, b)
∂∆τ2

< 0 . (3.32)

• The estimated relative delay is obtained by solving the straightforward minimization
problem:

∆̂τ = arg min
∆τ1,∆τ2

(2L2 + 6L3∆τ) . (3.33)
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This estimated ∆̂τ can be evaluated for all values of τ0 and b.

To sum up, the 3rd order Taylor approximation of the likelihood function allows to find a
closed-form solution for the estimated relative delay ∆̂τ for all τ0 and b. Once the procedure
presented above is done, one can inject ∆̂τ in the Taylor approximation of the likelihood func-
tion (3.26). The maximum likelihood estimation (3.17) turns to an approximate maximum
likelihood estimation defined by

∆̂τ(τ0, b) = arg min
∆τ

(2L2 + 6L3∆τ)

so that





∂LTaylor(τ0,∆τ,b)
∂∆τ = 0,

(τ̂0, b̂) = arg minτ0,b

(
LTaylor(τ0, ∆̂τ(τ0, b), b)

)
.

(3.34)

The reduction to a two-dimensional expression of the AMLE makes it faster to solve than the
original three-dimensional expression presented in (3.17).

3.4.4 Discussion on the Approximation Validity

Based on Appendix E.1, the AMLE cannot be expected to perform well when the path sepa-
ration is too important. Consequently, it is necessary to study the goodness-of-fit between the
ACF c(τ) and its 4th order Taylor approximation involved in the approximation of the likeli-
hood function. Figure 3.28 presents the exact ACF and its 4th order Taylor approximation for
a GPS L1 C/A signal sampled at different values of the sampling frequency Fs. Comparing
different values of Fs here is similar to comparing different qualities of receivers where the
baseband signal has been sampled at a frequency equal to the RF front-end bandwidth. In
this figure, the effect of Fs on the resulting shape of the exact ACF is clearly visible: the
larger the RF front-end bandwidth, the more oscillations one will observe. If one could take
an infinite bandwidth, they would obtain a perfect triangular shape. It is not surprising that
the Taylor approximation is sensitive to these oscillations since they are impossible to model
with a 4th order polynomial. Consequently, the Taylor approximation will be valid for a larger
range of time delays around 0 when the signal will have a smaller bandwidth.

In order to explicit this dependency between Fs and the goodness of fit of the Taylor
approximation, the relative error in percentage between the approximation and the exact
function is defined:

e(τ) , 100
cTaylor(τ) − c(τ)

c(τ)
. (3.35)

Now if one fixes the relative error to a maximum value emax, it is possible to draw an abacus
that gives the relation between Fs and the maximum time delay or path separation below
which the Taylor approximation is fitting the exact auto-correlation with a relative error
smaller than emax. Figure 3.29 is an example of such an abacus. There are two ways to use
Figure 3.29. First, for a given existing hardware, the RF front-end bandwidth is fixed for
instance, to Fs = 4F0. In that case, the ACF will be correctly approximated (emax = 0.01%)
by the 4th order Taylor approximation for ∆τ values smaller than about 0.1 C/A chips. Above
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Figure 3.28: Exact (plain lines) and 4th order Taylor approximation (dashed lines) auto-
correlation function for different sampling frequencies Fs ∈ {4, 8, 24} MHz.

Figure 3.29: Relation between the path separation ∆τ , the sampling frequency Fs (expressed
in number of F0 = 1.023 MHz) and the relative error between the exact auto-correlation
function and its 4th Taylor approximation.

this value, the AMLE cannot be expected to work properly since there is a significant error
induced by the approximation. Secondly, if the geometry is fixed: say the receiver is at about
10 meters above a target reflection surface. From the equation that links the height with the
path separation seen in Section 3.4.1, the largest path separation to be expected is two times
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the actual height: 20m which is about 0.068 C/A chips. From Figure 3.29, the maximum
signal bandwidth to allow a correct approximation of the auto-correlation function for the
AMLE is about Fs = 5F0. If the RF front-end has a larger bandwidth, a numerical filtering
may be necessary to be able to apply the AMLE for this scenario.

As a take-away remark, Figure 3.28 highlights the fact that the AMLE will not perform
well for too large path separation, it is important to be aware of it when electing the appli-
cation.

3.5 Performance on Simulated Data

3.5.1 Simulation Set-Up

To look at the performance of the AMLE, the MSE of the estimated path separation ∆τ is
compared to the MSE of the exact 2S-MLE recalled in (3.17). Similarly the AMLE MSE of
the estimated direct signal time-delay τ0 is compared to the MSE of the 2S-MLE and the
MSE of a standard single source processing 1S-MLE. A GPS L1 C/A signal is considered
with RF front-end bandwidth set to 4 MHz. The path separation considered is set to 0.09
C/A chips, two phase differences are considered: ∆φ = π/3 and ∆φ = 2π/3 and relative
amplitude is set to 0.5. Considering the remark done in Section 3.4.4, the AMLE does not
look at ∆τ candidates greater than 0.25 C/A chips. In order to fairly compare the AMLE
and the 2S-MLE performance, the same restriction has been applied to the latter. Each point
is estimated with 2000 Monte Carlo runs.

3.5.2 Cramér-Rao Bounds

Considering the assumptions and starting from the joint delay-Doppler estimation problem
presented in chapter 2 for the estimation of ǫ = (σ2

n,η0, ρ0, φ0,η1, ρ1, φ1)T and its correspond-
ing FIM Fǫ|ǫ, it is straightforward to obtain an expression of the FIM for the estimation of
the vector of parameters under study ξ = (σ2

n, τ0,∆τ, b, ρ0, φ0, ρ1, φ1)T using the following
reparameterization:

Fξ|ξ =

(
∂ǫ

∂ξT

)T
Fǫ|ǫ

∂ǫ

∂ξT
(3.36)

where ∂ǫ
∂ξT is the jacobian of the application for which the image of ǫ is ξ defined by the

constraints derived from the close-to-ground assumptions enumerated in Section 3.4.1: b0 =
b1 = b and ∆τ = τ1 − τ0. The Cramér-Rao Bound for the estimation of ξ is the inverse of the
resulting FIM.
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3.5.3 Numerical Results

Figure 3.30 presents the RMSE of both the AMLE and the 2S-MLE for the estimation of
the path separation for considered scenarios. For both relative phase ∆φ, the performance
of the proposed algorithm AMLE and the 2S-MLE are similar over a wide range of SNR.
This is true up to a certain SNR point (about 42 dB) where the bias induced by the Taylor
approximation becomes larger than the standard deviation. The AMLE approach seems a
promising solution for scenarios with a SNR that ranges from 30 dB to 42 dB.

(a) (b)

Figure 3.30: RMSE for the estimation of the path separation c∆τ . (a) is with ∆φ = π/3 and
(b) is with ∆φ = 2π/3. ∆τ = 0.09 C/A chips and relative amplitude is 0.5.

Another results from these simulations is proposed in Figure 3.31 where the RMSE of the
AMLE, the 2S-MLE and the 1S-MLE for the estimation of the main signal time-delay are
compared. As expected for the single source processing, the bias induced by the misspecifi-
cation appears at a given SNR level as seen in Section 2.5. Again the the AMLE and the
2S-MLE present very similar performance and one can notice that the bias induced by the
Taylor approximation visible in Figure 3.30 does not appear for the estimation of the direct
signal time-delay. This suggests that the AMLE could be used as a multipath mitigation
technique for robust navigation applications.

3.5.4 Wrap-Up on the AMLE

In this section, the AMLE has been introduced to tackle ground-based GNSS-R scenarios in
which there is signal crosstalk. This reduces to a dual source estimation problem but with
very small path separation. By exploiting the smallness of this path separation and resorting
to a third order Taylor approximation of the likelihood criterion, it is possible to obtain
an estimate of both the path separation and the direct signal time-delay. This promising
algorithm seems a valuable solution for very close-to-ground GNSS-R scenarios even if it
requires very good SNR levels.
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(a) (b)

Figure 3.31: RMSE for the estimation of the main signal time delay cτ0 with AMLE, 2S-MLE
and 1S-MLE. (a) is with ∆φ = π/3 and (b) is with ∆φ = 2π/3.

Now that the case where crosstalk could not be avoided is covered, there is still the case
where crosstalk can actually be avoided by resorting to larger bandwidth signals.

3.6 Altimetry Using Wideband GNSS Signals

In this last part, the crosstalk is still assumed present but the GNSS signals considered are no
longer GPS L1 C/A whose ACF width was of about 300 meters but GPS L5 and GALILEO
E5A or E5B whose ACF width is only 30 meters. With this signals, as suggested in Section
3.3 it is actually possible to apply dual source algorithms such as the CRE on both channels
(direct and reflected) in order to filter out the interfering signal due to crosstalk.

This section proposes a operational illustration of ground-based GNSS-R altimetry based
on the Gruissan data set. The GPS PRN 27 signal of recording #6 is processed here as an
example. Figure 3.32 presents the satellite elevation during the recording with corresponding
expected path separation assuming a true height h of 25 meters.

3.6.1 Crosstalk and Multipath

In order to complete the second order statistics study of crosstalk done in Section 3.3, one can
draw an analogy with GNSS multipath phenomenon as presented in Section 1.4 and studied
in Chapter 2, and resort to metrics that provide insights on such phenomenon. In particular,
by looking, in Figure 3.33, at the MPEE of a GPS L5Q signal sampled at Fs = 20 MHz, in
presence of a secondary source with an amplitude ratio between the interfering source and
the main source set to 0.3 when applying a 1S-MLE and a CRE, all the possible values of
the bias induced by crosstalk can be read. From Figure 3.33a, one can see that applying a
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Figure 3.32: GPS PRN 27 elevation evolution during recording #6 of Gruissan data set.

(a) (b)

Figure 3.33: MPEE of a 1S-MLE (a) and a CRE (b) in presence of crosstalk for GPS L5Q
signal sampled at Fs = 20 MHz.

1S-MLE in presence of crosstalk, even with large bandwidth GNSS signals, exposes the user
to varying biases. In particular at a path separation of 25 meters, which corresponds, for
instance, to the end of Gruissan recording #6 for GPS PRN 27, the bias on the estimated
delay of the main signal, converted in meters can vary from -1 to 1 meter. If one wants to
apply a single source processing algorithm has to wait that the satellite elevation gets large
enough to see a path separation of more that 45 meters, which was not possible in the case of
the Gruissan experiment. An alternative is then to apply a dual source processing algorithm
such as the CRE. In Figure 3.33b, the corresponding MPEE is superimposed to the 1S-MLE
one. The area of this new MPEE is smaller and its boundaries reach zero at smaller path
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separation (about 26 meters). Consequently, one should not be too much affected by crosstalk
by applying the CRE. This coherently supports the results presented in Section 3.3 on CRE
applied to GPS L5Q signals.

The next two sections provide illustrations of the effect of crosstalk on the altimetry
product based on the Gruissan data set.

3.6.2 Single Source Processing

Considering a single source processing (1S-MLE) on each channel of the recording #6 for GPS
L5Q filtered at 20 MHz and coherently integrated during 20 ms. The results can be found
in Figure 3.34 for the measured SNR and Figure 3.35 for the estimated path separation and
corresponding height. Figure 3.34 shows that in each channels the signals are quite powerful.

Figure 3.34: Estimated SNR at the output of the single matched filter processed with a
1S-MLE for channel ch2 (RHCP) and ch3 (LHCP) of recording #6.

At such low elevation, the LHCP component of the reflected signal is indeed dominant.
Regarding the path separation estimate in Figure 3.35a, one can clearly observe oscillations
of the estimate around a slowly varying mean. A linear regression of these estimates is also
displayed, along with the true value. There is a significant gap between the regression and
the true value which is a consequence of the crosstalk, as expected. Figure 3.35b is the same
data converted into height estimation using (3.1). It is clear that ignoring the presence of the
crosstalk lead to biased height estimation with oscillations as the satellite elevation changes.
As a side note, the oscillations observed on the estimated path separation of the order of
2 meters around the mean value are in accordance with the short MPEE analysis done in
Section 3.6.1, where an oscillation of ±1 meter was predicted on one channel. The path
separation being a combination of two channels, the effect has been amplified by a factor two.
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(a)

(b)

Figure 3.35: Estimated path separation (a) and correspond height (b) between the reflected
channel ch3 (LHCP) and the direct channel ch2 (RHCP) using a 1S-MLE.

3.6.3 Dual Source Processing

If one applies a dual source estimator to each channel would get the estimated parameters of
the main or strongest signal on one hand, and noisy estimated parameters of the interfering
signal due to crosstalk on the other hand. By doing this and only keeping the strongest
estimated parameters, one would then simply filter out the crosstalk contribution.

Figure 3.36 presents the measured SNR for each channel and for each signal estimate (the
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strongest and the interfering one). Figure 3.37 presents the estimated path separation and
corresponding height when applying this dual source processing. The estimated height is

(a)

(b)

Figure 3.36: Estimated SNR of the dual source matched filter using a dual source CRE on the
RHCP ch2 channel (a) and the LHCP ch3 channel (b). Results with the 1S-MLE approach
are also displayed for comparison.

closer to the ground truth and the oscillations observed in the single source processing have
been suppressed. This partly supports the dual source processing as a solution for ground-
based altimetry. During the recording, small unidentified events have occurred and have
significantly affected the received power as one can notice in Figure 3.36b between second 400
and second 600 for the orange curves. The consequence of these events is that the estimated
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Figure 3.37: Estimated height between the reflected channel ch3 (LHCP) and the direct
channel ch2 (RHCP) using a CRE.

height has some variations difficult to interpret. However it is possible to identify a subset
during which the estimates are consistent. In particular, this is true during the time window
between second 710 and second 730 summarized in Figure 3.38. During this window, all the

Figure 3.38: Overview of a subsection of recording #6. (Left) is the estimated SNR on ch2,
(Middle) the estimated SNR on ch3 and (Right) the estimated height using a CRE.

estimated parameters are stable and their values are collected in Table 3.2. The parameters
values in this table were used to compute the Cramér-Rao bound for the estimation of the
height based on the expression derived in Section 2.3. To obtain them, the CRB for the
estimation of the main signal in a dual source context for each channel CRBch2

τ0
and CRBch3

τ1

was evaluated and then recombined to obtain the corresponding bound for the estimation of
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Table 3.2: Overview of a subsection of recording #6.

ch2 ch3 height

SNR0 = 38 dB SNR0 = 16 dB mean = 23.46 m
SNR1 = 15 dB SNR1 = 37.5 dB std dev = 0.41 m

the height:

√
CRBh =

c
√

CRBch2
τ0

+ CRBch3
τ1

2 sin(e)
≈ 0.27m. (3.37)

The observed standard deviation, recorded in Table 3.2, is larger than this optimal per-
formance. Reasons to this can be enumerated as follows: i) at this path separation (ground
truth predicted a path separation of about 22 meters at second 700), there is still a small
crosstalk that affects the performance of the CRE as intuited by Figure 3.33b, ii) unidentified
events may have corrupted the data as it was the case at other moments of the recording and
iii) the implementation of the CRE may affect the final performance, in particular the choice
of the grid search resolution might have brought an additional quantization error.

3.6.4 Wrap-Up on Wideband Signals Processing

In this last part, crosstalk issue was tackled exploiting wideband GNSS signals. As suggested
in Section 3.3, a dual source estimator improve significantly conventional GNSS-R processing
in presence of crosstalk. In particular it does reduce the bias and oscillation induced by
crosstalk. This was supported by the Gruissan data set using the CRE. It is clear that more
sophisticated estimators could be applied in order to reduce the bias induced by the crosstalk
for small path separation values. For instance, one may look at existing multipath estimating
techniques to pick an estimator with the smallest MPEE area.

3.7 Conclusion

In this chapter, the multipath is no longer seen as a nuisance but as a source of information.
The study of reflected GNSS signals upon the Earth’s surface is known as GNSS-R. The
scope of the chapter only focuses on ground-based scenarios where the direct and reflected
signals interfere with one another.

This specific ground-based scenario was the object of a data collection campaign near
Gruissan, which has been fully presented and taken as a reference for the rest of the chapter
in terms of geometry, receiver parameters and received signals.

In standard GNSS-R, two antennas are usually used to decouple the direct and the re-
flected paths. The problem in ground-based scenarios is that the direct antenna also collects
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part of the reflected signal and vice-versa. This phenomenon, called signal crosstalk, induces
a bias on the altimetry product similarly to multipath in GNSS. A thorough study of the
impact of crosstalk was first done to identify situations where crosstalk can or cannot be
avoided. One can play on the receiver algorithm or on the processed signal to minimize the
crosstalk effect.

For the cases where crosstalk cannot be avoided because the induced path separation
between the signal of interest and the interfering one is too small, a high resolution AMLE
was proposed. It is based on a third order Taylor approximation of the likelihood ratio to
be maximized and it shows a promising performance for GNSS-R altimetry as well as for
multipath mitigation.

However by processing wideband GNSS signals, applying more classic dual source esti-
mating solutions such as the CRE may get rid of the crosstalk effect. This was illustrated
with the Gruissan data set.
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Towards Diffuse Scattering

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2 Coherence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.1 Mallorca Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2.2 Coherence Transition à l’œil . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2.3 Coherence Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.4 Wrap-Up on Coherence Detection . . . . . . . . . . . . . . . . . . . . . . 145

4.3 Impulse Response Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.3.3 Compact CRB for the Joint Delay-Doppler Estimation with a Discrete
Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.3.4 Validation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.3.5 Wrap-Up on Impulse Response Estimation . . . . . . . . . . . . . . . . . 154

4.4 Impulse Response Size Determination: A Detection Problem . . . . . . . . . . 155

4.4.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4.2 Iterative Procedure: P + next Test . . . . . . . . . . . . . . . . . . . . . 158

4.4.3 Overshoot-and-Decimate Procedures . . . . . . . . . . . . . . . . . . . . 159

4.4.4 Wrap-Up on Impulse Response Size Determination . . . . . . . . . . . . 161

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Résumé

Dans ce chapitre, la géométrie et la nature de la surface de réflexion ne permettent plus de
modéliser le signal réfléchi comme une simple copie retardée et atténuée du signal émis. En
effet, dans le cas où la surface de réflexion est plus rugueuse au sens du critère de Rayleigh (qui
dépend de la rugosité de la surface mais aussi de la longueur d’onde et de l’angle d’incidence du
signal), le signal réfléchi perd en cohérence. Cela s’observe en particulier sur la phase porteuse
du signal réfléchi dont la variation, régulière dans le cas cohérent, devient imprévisible dans
le cas incohérent. L’étude de série temporelle de la mesure de la phase du trajet réflechi
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donne donc les clés pour comprendre le passage de réflexion cohérente à réflexion incohérente.
En observant cette série temporelle, deux indicateurs de cohérence sont étudiés, l’un testant
la régularité de la variation de la phase et l’autre testant la gaussianité des mesures. Ces
indicateurs sont testés sur des données collectées en haut du Puig Major de Majorque par
l’Institut d’Estudis Espacials de Catalunya (IEEC). Dans le cas d’une réflexion tout à fait
diffuse, l’énergie réfléchie ne provient plus d’une petite surface déterminée par la première
zone de Fresnel mais d’une surface éclairante bien plus étendue qui peut s’étendre à des
dizaines de kilomètres autour du point de réflexion spéculaire. Dans de telles conditions, le
signal reçu est la somme de toutes les contributions de cette surface éclairante, ce qui résulte
en un signal potientiellement très déformé. Un modèle plus adapté pour tenir compte de
cette surface étendue est de considérer le signal reçu comme la convolution entre le signal
émis et la réponse impulsionnelle de la surface de réflexion. Il est alors possible d’estimer les
paramètres de cette réponse impulsionnelle à l’aide d’un estimateur comme celui du maximum
de vraisemblance. Les performances associées à cette estimation sont bornées par la borne
de Cramér-Rao qui doivent être calculées. Reste alors le problème de la détermination de la
taille de réponse impulsionnelle. Ce problème revient à déterminer le nombre de coefficients
qui composent la réponse impulsionnelle, ce qui peut se faire à l’aide de tests d’hypothèses
de deux manières différentes : la première en sous-estimant le nombre de coefficients puis en
l’augmentant de manière itérative, la seconde en surestimant ce nombre et en sélectionnant
uniquement les coefficients les plus pertinents. Chacune de ces approches affecte la précision
de la mesure des coefficients.

Ce dernier chapitre commence donc, avec la Section 4.2, par l’étude de la cohérence du
signal réflechi lorsque la géométrie est proche du critère de Rayleigh. Le réflexion est ensuite
considérée diffuse et le modèle convolutif est introduit dans la Section 4.3 avec le calcul de
la borne de Cramér-Rao et sa validation par les propriétés asymptotiques de l’estimateur du
maximum de vraisemblance. Enfin, le problème de la détermination du nombre de coefficients
qui décrivent la réponse impulsionnelle de la surface de réflexion est étudié dans la Section
4.4 où deux approches sont proposées pour obtenir le nombre correct de coefficients.

4.1 Introduction

So far the reflection was assumed coherent and specular: the reflected signal was seen as
a simple additional source with different time-delay, attenuation and sometimes different
Doppler frequency. This assumption can usually be done for smooth enough surfaces.

Surface roughness is a relative feature that depends on the signal wavelength λ, the varia-
tion of height of the surface ∆h, and the elevation angle e. In Figure 4.1a, the elevation angle
is very small and the path separation c∆τ between a trajectory with a reflection at the trough
of the wave and the trajectory with a reflection at the top of a wave is very small. In this case,
the range of delays received by all the possible scatterers is concentrated and one can say that
the reflecting surface is almost mirror-like. On the other hand, in Figure 4.1b, the elevation
angle is much larger. In this case, the path separation c∆τ between both trajectories (one
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through the trough, the other through the top of a wave), is larger as well. Consequently,
the range of delays received by all possible scatterers is more spread. The reflecting surface
cannot be seen as a mirror anymore.

∆h

e

(a)

∆h

e

(b)

Figure 4.1: Derivation of the Rayleigh criterion. (a) for low elevation angle and (b) for large
elevation angle.

This intuition was captured by Rayleigh with the following relation:

∆φ =
2π
λ
c∆τ =

4π∆h
λ

sin(e). (4.1)

If the phase difference ∆φ is very small as in Figure 4.1a, the two rays are almost in phase
which results in a coherent reflection. Then if ∆φ increases, the two rays will interfere until
the worst case ∆φ = π where they cancel. In this case, the surface scatters and is considered
rough. Usually, ∆φ = π/2 is arbitrary to separate rough from smooth surfaces. The so-called
Rayleigh criterion tells that a surface is considered smooth if

∆h <
λ

8 sin(e)
. (4.2)

Consequently, by observing a time series of the carrier phase of the reflected path, as the
elevation angle varies, and with different sea state, a transition from a coherent reflection to
a non-coherent reflection should be observable.

For rough surfaces, the energy reflected comes from an extended zone usually called glis-
tening zone. In [BS87], the glistening zone is defined as that part of the Earth’s surface
which can participate in the reflection of waves for a given position of the transmitter and
the receiver. As an illustration, Figure 4.2 presents the diffuse reflection of sun rays over a
moderately rough sea surface.

To get an idea of the dimensions of this glistening zone, let q denote the scattering vector,
being the difference between the scattered unit vector ns that goes from a reflection point P
to the receiver R, and the incident unit vector ni that goes from the transmitter T to the
reflection point P :

q ,
2π
λ

(ns − ni). (4.3)

133



Figure 4.2: Sunset Reflection over the sea surface (credit: Xavier Lubeigt).

This scattering vector can also be seen graphically in Figure 4.3. The angle between the
vertical axis (noted z) and the scattering vector is the scattering angle noted β. Considering

P
x

z T

ni

R

ns

q

β = 0

(a)

P
x

z

T

ni
R

ns

q

β

(b)

Figure 4.3: Definition of the scattering vector q along with the scattering angle β.

a surface as a random object with a vertical root mean square height noted σv, and with an
horizontal auto-correlation length lh, it was shown in [BS87] that the energy reflected from
a point P with corresponding scattering angle β was attenuated by a coefficient G(β, β0) of
the form

G(β, β0) = cot2 (β0) e
−

tan2(β)

tan2(β0) , (4.4)

where tan(·) and cot(·) denote the tangent and cotangent functions, respectively and β0 is
the mean value of the ratio of the vertical and the horizontal dimensions of the irregularities:

tan (β0) , 2σv/lh. (4.5)
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As an example, from [Car02], β0 = 5◦ correspond to calm sea conditions (wind speed around
4 m/s) and β0 = 8◦ to rough sea conditions (wind speed around 10 m/s). Other models such
as the one described in [Elf97] could be used to link the sea state to the surface wind speeds.

Based on the shape of G(β, β0) in (4.4), the edge of the glistening zone can be defined as
the set of points on the surface for which β = β0.

As suggested by Figure 4.2, the glistening zone can be very large. The reflected signal,
which can be seen as the convolution of the transmitted signal with the impulse response of
the reflecting surface can then be significantly distorted. The study of these distorted signals
requires a more appropriate signal model where the impulse response of the reflecting surface
should appear. With this signal model goes the corresponding MLE and CRB to know the
best achievable performance on the estimation of the impulse response coefficients.

Naturally, the size of the glistening zone, in other words, the number of pulses required
to describe the reflecting surface impulse response, is unknown. The problem of determining
this number, also referred to as the detection problem as introduced in Section 1.2.3, should
then be addressed for the impulse response model at hand.

In this chapter, a deeper look at the nature of the reflection is proposed. First, in Section
4.2, the question of the transition from a coherent to a non-coherent reflection is addressed
for grazing angle reflections. This study, supported by a Mallorca experiment proposes two
coherence indicators meant to automatically detect coherent reflections. In the case of a non-
coherent reflection, the energy reflected may come from an extended surface called glistening
zone. In Section 4.3 the glistening zone that corresponds to the Mallorca experiment is
presented to justify a new signal model that take into account the size of the reflecting surface.
This signal model consists of the convolution between the transmitted signal and the impulse
response of the reflecting surface. Closed form expressions of the CRB for the estimation of
the parameters of this signal model are derived and validated using the asymptotic properties
of the MLE. Finally the question of the impulse response size determination is tackled in
Section 4.4.

The work presented in Section 4.2 and at the beginning of Section 4.3 was done in collab-
oration with the IEEC during a four month visit in their facilities near Barcelona, Spain.

4.2 Coherence Analysis

The question of the coherence of a reflection in GNSS-R is fundamental when high-accuracy
carrier phase-based altimetry is intended. As mentioned before, when the reflection is not
coherent, the reflected path’s carrier phase varies randomly and cannot be tracked. Based on
an experiment done at the Puig Major on Mallorca Island, Spain, reflected path carrier phase
time series are studied in order to highlight the transition from coherent to non-coherent
reflections, as the satellite elevation varies. From the observation of this transition, two
coherence indicators or detectors will be proposed with their associated statistics.
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4.2.1 Mallorca Experiment

This coherence analysis is based on an experiment campaign partially organized by the IEEC
from April to July 2021. One of the objectives of this experiment was to perform GNSS-R
altimetry with the carrier phase measurement.

4.2.1.1 Experimental Set-Up

For this experiment a receiver was placed at the top of the Puig Major which towers the
island at 1436 meters above the sea level (see Figure 4.4). Since it is located at about 4 km
from the nearest shore, only reflections with satellite elevations smaller than 19.74◦ could be
collected by the receiver.

Figure 4.4: Site location at the Puig Major on Mallorca Island, Spain (credit: www.stepmap.

de).

The receiver was the SPIR instrument presented in [Rib17]. It was configured with four
synchronized RF channels with the following settings:

• ch0 (L1-UP): center frequency fc = 1575 MHz (intermediate frequency IF = 420 kHz),
RHCP antenna,

• ch1 (L5-UP): fc = 1176.25 MHz (IF = 200 kHz), RHCP antenna,

• ch2 (L1-DN): fc = 1575 MHz (IF = 420 kHz), LHCP antenna,

• ch3 (L5-DN): fc = 1176.25 MHz (IF = 200 kHz), LHCP antenna.

Each channel is sampled at 80 Msps and each sample is described with its in-phase and
quadrature components over 4 bits.
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4.2.1.2 IEEC Processing

During the experiment, a hundred of satellite tracks were recorded. The satellites tracked
were from GPS, GALILEO and BeiDou constellations with elevations that vary from almost
zero up to 15◦. Since the receiver was installed over months, many different sea states were
observed with different significant wave heights, wind speeds and wind directions.

All the tracks were processed in a similar way at IEEC: the direct path was processed
using a standard GNSS architecture with tracking loops as introduced in Section 1.3.3. Then,
the expected delay of the reflected path was computed based on geometry (position of the
transmitting satellite, the receiver and the assumed reflecting surface), and based on models
to compensate tropospheric extra delay that can be significant at such low elevation angles
[GL03]. The reflected path was then computed at the compute time location using a simple
cross-correlation with a local replica. This is a typical cGNSS-R processing. The output of
this processing is a time series of the successive complex CCF or waveforms, centered on the
direct on one hand and on the assumed reflected delay on the other hand. These waveforms
are computed with an integration time set to 1 ms. Figure 4.5 summarizes a computed track,
which corresponds to a GPS satellite, during about thirty minutes (an averaging over one
second was done to obtain these figures).

4.2.2 Coherence Transition à l’œil

From the complex waveforms obtained by the IEEC processing, one can then obtain time
series of the complex amplitude at the peak for the reflected path. These time series are
usually averaged over a few seconds to smooth them. In particular, if one looks at the carrier
phase time series, Figure 4.6a is obtained. For the processing presented in the previous section,
if all the contributions that affect the path separation, i.e., geometric delay and tropospheric
delay, were perfectly known, the carrier phase for the reflected path should be equal to zero
at all times. However, the location of the reflecting surface, its roughness and the model
simplifications cannot be fully modeled, and this can be observed in either Figure 4.6a or
Figure 4.6b, where a residual phase variation is visible at the beginning of the recording. For
the GPS track, the phase variation turns messy starting from minute 5 and onward. In the
case of the GALILEO E5A, its carrier phase variations are first a little erratic, then smoother
and finally erratic again. In the literature [Roe21], this transition starting at minute 5 is
an expression of the transition from coherent to non-coherent reflections. It can be observed
in different tracks and the transition moments occur at different elevation angles depending
on the sea state and the GNSS signal used (either L1/E1 or L5/E5A signals), which was
expected given the fact that the Rayleigh criterion (4.2) also depends on the elevation angle,
the surface roughness and the signal wavelength.

So far this transition is more or less spotted by looking at the time series and a indicator
could be built in order to automatically detect the transition, or at least provide an opinion
on whether the current reflection is coherent or not. In the next section, two indicators are
proposed to detect or indicate the coherence of the reflected signal.
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Figure 4.5: Example of Mallorca experiment processed data. (Left) are the direct paths,
(Right) are the reflected paths, (Top) are the L1 channels and (Bottom) are the L5 channels.
Horizontal axis is in samples and vertical axis is in seconds (credit: IEEC).

4.2.3 Coherence Indicators

In this section the detection of the coherence of a reflection is addressed. It is set as an
hypothesis test with the following hypothesis:

• null hypothesis H0: the reflection is coherent,

• alternative hypothesis H1: the reflection is non-coherent.

To deal with hypothesis tests, the probability of false alarm (PFA) and probability of detection
(PD) are also used, which are defined as:

PFA = P [reject H0|H0 true] , (4.6)

PD = P [reject H0|H1 true] . (4.7)
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(a)

(b)

Figure 4.6: Example of GPS L5 (a) and GALILEO E5A (b) reflected path carrier phase time
series from complex waveforms averaged over 10 seconds.

4.2.3.1 Simple Difference Indicator

Based on Figure 4.6, the time series of the observed carrier phase {φk} for k = 1..N , N the
number of points, is smooth and regular when the reflection is coherent and erratic when
the reflection is non-coherent. This suggests that evaluating the regularity of the time series
may help determining whether the reflection is coherent or not. As initially proposed by
IEEC, a way to do this is to look at the phase difference between two consecutive points
∆φk = φk+1 − φk, and then look at its cosine. Consequently, a test statistic T SD is built as
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follows:
T SD
k = cos (φk+1 − φk) ≷ thresh. (4.8)

If the reflection is coherent, the phase difference should be locally constant and the cosine
should be equal to 1. Then, if the reflection is not coherent, random variations on the residual
phase difference will decrease the resulting test statistic T SD.

In order to fix the threshold, one needs to consider what happens when the reflection is
fully coherent: in this case, the residual carrier phase difference can be seen as a random
variable with a normal distribution, with a mean equal to a constant µφ, and a variance equal
to the thermal noise variance, noted σ2

φ. The threshold determination is usually done by
fixing the PFA, which is defined by:

PFA = P
[
T SD
k < thresh.|H0

]
(4.9)

= P
[
cos (φk+1 − φk) < thresh.|φk ∼ N (µφ, σ2

φ)
]

= P
[
|φk+1 − φk| > arccos (thresh.) |φk ∼ N (µφ, σ2

φ)
]

Now if φk ∼ N (0, σ2
φ), then the difference of two independent terms is also normally dis-

tributed with the same mean but twice the variance: φk+1 −φk ∼ N (0, 2σ2
φ); and by defining

the variable U = (φk+1 − φk) /
√

2σφ such that U ∼ N (0, 1), the PFA defined in (4.9) can be
written as:

PFA = P

[
|U | > arccos(thresh.)√

2σφ
|U ∼ N (0, 1)

]

= P

[
U >

arccos(thresh.)√
2σφ

|U ∼ N (0, 1)

]
+ P

[
U < −arccos(thresh.)√

2σφ
|U ∼ N (0, 1)

]

= 1 − Φ

(
arccos(thresh.)√

2σφ

)
+ Φ

(
−arccos(thresh.)√

2σφ

)

with Φ(·) the CDF of the standard normal distribution. Then, exploiting the symmetry of
such a distribution,

PFA = 2

(
1 − Φ

(
arccos(thresh.)√

2σφ

))
. (4.10)

By inverting (4.10), the threshold is a simple expression of the desired PFA and the noise
level of the measured phase difference:

thresh. = cos
(√

2σφΦ−1
(

1 − PFA
2

))
. (4.11)

As a remark, the distribution of the carrier phase is usually better described by a Von Mises
distribution, also known as wrapped normal distribution [CGH07] but for small enough σφ,
the wrapped normal and the normal distributions are equivalent.

Now, in the case of a non-coherent reflection, the phase distribution becomes uniformly
random, that is, for non-coherent reflections, φk ∼ U([−π, π]). It is then possible to evaluate
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the PD defined by:

PD = P
[
T SD
k < thresh.|H1

]
(4.12)

= P [cos (∆φk) < thresh.|∆φk ∼ U([−π, π])] (4.13)

= P [|∆φk| > arccos (thresh.) |∆φk ∼ U([−π, π])] (4.14)

= 2P [arccos (thresh.) < |∆φk| < π|∆φk ∼ U([−π, π])] (4.15)

=
2

2π
(π − arccos (thresh.)) (4.16)

Using the expression of the threshold (4.11), the PD can be written as:

PD = 1 −
√

2σφ
π

Φ−1
(

1 − PFA
2

)
. (4.17)

This equation allows to draw Receiver Operator Characteristic (ROC) curves to see the global
performance of the simple difference test, and the impact of the noise parameter σφ. Based
on Figure 4.6, the observed variance of the data in the coherent regime is always less than
10 degrees. Figure 4.7 presents ROC curves for different values of σφ. Provided that the

Figure 4.7: ROC curves for the simple difference coherence test.

assumptions made hold for the considered carrier phase time series, this simple difference test
seems a good candidate as a coherence indicator.
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4.2.3.2 Lilliefors Test

Another way to test the coherence based on the carrier phase observation is to look at his-
tograms of subsets of the time series. Figure 4.8 presents three histograms built with 3000
samples, that is, over 3 seconds, at four instants of the GPS L5 time series displayed in Figure
4.6a. This figure suggests that the distribution of the carrier phase is strongly affected by

(a) (b)

(c) (d)

Figure 4.8: Histograms based on 3000 samples in the coherent regime (a) at minute 1, (b) at
minute 3 and in the non-coherent regime (c) at minute 6 and (d) at minute 9.

the nature of the reflection: in the coherent regime, distributions look Gaussian and in the
non-coherent regime they do not look Gaussian anymore. Based on this a goodness-of-fit
test, such as the Lilliefors test [Lil67], that checks the Gaussianity of a distribution, could be
applied to the subsets of the time series. This test evaluates the hypothesis that the carrier
phase samples have a normal distribution, with unspecified mean and variance, against the
alternative hypothesis that the sample does not have a normal distribution. This test is a
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Kolmogorov–Smirnov test adapted to Gaussian distributions.

The Lilliefors test statistic is the maximum vertical distance between the empirical CDF
built from the samples, and a theoretical normal CDF defined by the mean and the variance
of the tested data set. An illustration of this test statistic can be found in Figure 4.9.
For the Lilliefors test, the Gaussianity hypothesis (therefore the coherence hypothesis) is

Figure 4.9: Example of a comparison between empirical and theoretical CDF.

rejected at the significance level that corresponds to the PFA. It can be set arbitrarily in the
implementation of the test.

4.2.3.3 Results on Mallorca Data

In this section, the tests previously introduced are applied to the two carrier phase sets shown
in Figure 4.6. The implementation of the tests was as follows:

• For the simple difference test,

– the initial carrier phase set, with a sample every 1ms, was first averaged over 1000
points to get a set with samples every second,

– the test statistic was built for every sample-to-sample phase difference and com-
pared to the threshold that corresponds to PFA=0.1 with σφ = 10◦,

– an average of the outputs of the test was done over a 1 minute sliding window.

• For the Lilliefors test,

– the initial carrier phase set was divided into subsets of 1000 samples, representing
1 second,
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– the Lilliefors test was applied to these subsets with a set PFA=0.1,

– an average of the outputs of the test was done over a 1 minute sliding window.

Figure 4.10 presents the results of these procedures. For both tracks, the tests’ global

(a)

(b)

Figure 4.10: Example of GPS L5 (a) and GALILEO E5A (b) reflected path carrier phase
time series from complex waveforms averaged over 10 seconds.

behavior coincide with one another, and with what was expected: in Figure 4.10a, the co-
herence indication rate, slowly decreases, and in Figure 4.10b, there is a first step where the
coherence indication rate is rather small, then quite large and finally it slowly decreases. This
corresponds to the observation done in Figure 4.6b. For the first two minutes of this last track,
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the Lilliefors test indicator is larger than the simple difference test. The score obtained by
the simple difference test might be affected by the important phase variation at the beginning
of this track. Originally, the simple difference test assumes the phase with a constant mean.
This is not true at the very beginning of the track depicted in Figure 4.6b which may be the
reason why this test score is so low.

4.2.4 Wrap-Up on Coherence Detection

The nature of a reflection is a key feature that needs to be properly determined in order to
perform carrier phase-based GNSS-R altimetry. By looking at carrier phase time series, it
is sometimes possible to determine the transition from a coherent to a non-coherent regime.
From these observations, coherence indicators can be thought of as in [Roe21]. In this section,
two indicators, the simple difference test and the Lilliefors test, have been presented along with
theoretical elements. They have then been applied to real data from the Mallorca experiment,
to show how consistent they are with one another.

The next section considers a diffuse reflection that comes from a large glistening zone,
as mentioned in Section 4.1. The reflecting surface considered here significantly distorts the
reflected signal, and a new signal model is required to address this problem.

4.3 Impulse Response Estimation

4.3.1 Motivation

As mentioned before, when the reflection is diffuse, the energy reflected comes from an ex-
tended surface called glistening zone. Figure 4.11 presents a view of the Mallorca experiment
presented in Section 4.2.1, for a scenario where the satellite elevation is set to 8◦. In this
figure, two sets of contour lines are displayed:

• iso-β0 lines in degrees, which correspond to the edge of the glistening zone for a given
sea state,

• iso-delay lines in meters, which correspond to sets of points that lead to the same excess
delay at the receiver.

From this figure, the shape of the glistening zone delimited by the iso-β0 lines matches the
shape for the sun rays reflection previously shown in Figure 4.2. As a consequence, it is clear
that this zone extends to tens of kilometers. By intersecting the glistening zone with the
iso-delay lines, the receiver will receive signals with excess delay that exceeds 300 meters.
The specular signal model is therefore too simplistic to describe such scenario. The rest of
this section proposes a signal model adapted to a surface with an extended impulse response.
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Figure 4.11: Mallorca experiment centered on the specular point with iso-β0 and iso-delay
lines.

4.3.2 Signal Model

In this study, a transmitter T is emitting a band-limited signal s(t) with bandwidth B, over
a carrier frequency fc. This band-limited signal can be expressed as follows,

s(t) =
N ′

2∑

n=N ′
1

s

(
n

Fs

)
sinc

(
πFs

(
t− n

Fs

))
(4.18)

⇌ FT{s(t)}(f) , S(f) =
1
Fs

N ′
2∑

n=N ′
1

s

(
n

Fs

)
e−j2πn f

Fs , −B

2
≤ f ≤ B

2
, (4.19)

where sinc(·) is the sine cardinal function, f the frequency, Fs ≥ B is the sampling frequency,
N ′

1, N
′
2 are in Z with N ′

1 < N ′
2 and ⇌ refers to the time-frequency pair. The signal travels

from T to a reflecting surface and then to the receiver R. An illustration of this scenario is
presented in Figure 4.12.

Let S be the specular point of the reflecting surface, the transmitter T and S have motions
assumed linear and uniform during the duration of observations TI so that the positions can
be described as pT/S(t) = pT/S +vT/S · t where p and v are the position and velocity vectors,
respectively, and t is the time variable. With this assumption, the distance between T and S
is classically approximated by a first order distance-velocity model [Ric03],

‖pTS(t)‖2 , ‖pS(t) − pT (t− τ̃(t))‖2 = cτ̃ ≈ d+ vt (4.20)

τ̃(t) ≈ τS + bt, τS =
d

c
, b =

v

c
, (4.21)
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transmitted signal
composite signal

reflecting surface

Figure 4.12: Illustration of the diffuse reflection.

where d is the absolute distance between T and S at instant t = 0, v is the radial velocity
between T and S, τ is the time delay due to the propagation path, (1 − b) is the dilatation
induced by the Doppler effect and c is the speed of light in vacuum. From (4.21), the complex
analytic signal at the point S can be written as,

xS(t) = ρSe
jφ̃Ss ((1 − bS)(t− τS)) ejωc(1−bS)(t−τS), (4.22)

where ωc = 2πfc, ηTS = (τS , bS), ρS and φ̃S , the amplitude (strictly positive) and the phase of
the complex coefficient induced by propagation characteristics (fading, scintillation, etc). A
simplification of the model can be obtained with the narrowband hypothesis [Ric03]. If one
considers that the product B ·TI (where TI is also called the coherent integration time for the
considered observation model) is smaller than the inverse Doppler term c/v, then the Doppler
effect on the baseband signal s(t) can be neglected: s((1−b)(t−τ)) ≈ s(t−τ) [Van01b, ch.9].
The complex analytic signal at the point S is then written as (with φS = φ̃S −ωc(1 + bS)τS),

xS(t) ≈ x(t)ejωct =
(
ρSe

jφSs (t− τS) e−jωcbS(t−τS)
)
ejωct. (4.23)

The reflecting surface is a complex object that distorts the signal xS(t), and that can be
characterized by its impulse response h(t), as illustrated in Figure 4.13.

h(t)
xS(t) yS(t)

Figure 4.13: Equivalent block diagram of the reflecting surface.

The output of such a reflection, expressed at the specular point S, is the convolution
product (∗) between the input and h(t),

yS(t) = h(t) ∗ xS(t). (4.24)

Similarly to [ZH16], the impulse response is modeled as a series of echoes regularly separated
by a fixed time interval which is the sampling period Ts = 1/Fs (which simply results from the
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Fourier Series of the surface frequency transfer function). Consequently, the impulse response
can be written as a sum of delayed and attenuated Dirac functions,

h(t) =
P∑

p=1

ρ̃pe
jφ̃pδ(t− (p− 1)Ts), (4.25)

where P is the number of consecutive echoes in the impulse response of the reflecting surface.
The resulting signal expressed at the receiver R after the reflection is then written as follows,

yR(t) =
P∑

p=1

ρ̃pe
jφ̃pd(t− (p− 1)Ts; η, ρ, φ)ejωc(t−(p−1)Ts) (4.26)

=




P∑

p=1

ρpe
jφpsp(t; η)


 ejωct, (4.27)

with η = [τ, b]T , τ is the sum of the time delay due to the propagation from T to S and the
one due to the propagation from S to R, b is the resulting Doppler stretch after the reflection,
ρp , ρρ̃p and φp , φ+ φ̃p − ωc(p− 1)Ts, ρejφ being the complex amplitude associated to the
transmission from T to R via a perfect specular reflection in S, and with τp = τ + (p− 1)Ts
yielding,

sp(t; η) , s (t− τp) e−jωcb(t−τp). (4.28)

The baseband signal sampled at sampling frequency Fs containing the reflected signal is then
given by,

y(t) = yR(t)e−jωct =
P∑

p=1

dp(t; η, ρp, φp) + w(t), (4.29)

dp(t; η, ρp, φp) , ρpe
jφpsp(t; η), (4.30)

where w(t) is a zero-mean additive complex Gaussian noise with variance σ2
n. Now if one

considers the acquisition of N = N2 − N1 + 1 (N1 ≪ N ′
1, N2 ≫ N ′

2) samples at a sampling
frequency Fs, the resulting discrete signal appears as a CSM, as introduced in Section 1.2,

y = AP (η)α + w, w ∼ CN (0, σ2
nIN ), (4.31)

with, for n ∈ [N1, N2] and p ∈ [1, P ],

yT = (. . . , y(nTs), . . .) ,

AP (η) = [. . . , sp(η), . . .] ,

sp(η)T =
(
. . . , s(nTs − τp)e−jωcb(nTs−τp), . . .

)
,

αT , (. . . , αp, . . .) =
(
. . . , ρpe

jφp , . . .
)
,

wT = (. . . , w(nTs), . . .) .
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4.3.3 Compact CRB for the Joint Delay-Doppler Estimation with a Dis-
crete Impulse Response

4.3.3.1 Evaluation of the Fisher Information Matrix

The purpose of this section is to present a new compact CRB for the estimation of the
parameters of the CSM (4.31). These parameters can be presented under the form of a vector
ǫT , (σ2

n, ǭ
T ) with ǭT , (ηT , αr1, α

i
1, . . . , α

r
P , α

i
P ) with, for p ∈ [1, P ], αp = αrp+ jαip. From its

expression in (4.31) and from the assumption of a zero-mean complex Gaussian white noise,
the distribution of the sampled received signal is also Gaussian: y ∼ CN (AP (η)α, σ2

nIN ) and
one can apply the Slepian-Bangs formula [YB92] to evaluate the FIM, which is defined as the
inverse of the CRB,

CRBǫ|ǫ ,
(
Fǫ|ǫ

)−1
, (4.32)

and,

[
Fǫ|ǫ

]
k,l

, Fǫk,ǫl|ǫ =
2
σ2
n

Re

{(
∂AP (η)α

∂ǫk

)H (∂AP (η)α
∂ǫl

)}
+
N

σ4
n

∂σ2
n

∂ǫk

∂σ2
n

∂ǫl
, (4.33)

where k and l denotes the row and column index. The noise variance being independent from
the other parameters [Ott93], the FIM is simply,

Fǫ|ǫ =

[
Fσ2

n|ǫ 01,2P+2

02P+2,1 Fǭ|ǫ

]
, (4.34)

where Fσ2
n|ǫ = N/σ4

n, which is a known result, and Fǭ|ǫ is the FIM for the estimation of the
delay-Doppler along with the P echoes of the discrete impulse response. This FIM can be
written as follows,

Fǭ|ǫ(ǫ) =
2Fs
σ2
n

Re
{

QWδQH
}
, (4.35)

with Q defined in (F.3) and Wδ defined as,

Wδ ,




Wδ
1 WδH

2 WδH
3

Wδ
2 Wδ

2,2 WδH
4

Wδ
3 Wδ

4 Wδ
3,3


 , (4.36)

where the different components are P×P hermitian matrices computed through the baseband
signal samples, for p the row index and q the column index in [1, P ],

[
Wδ

1

]
p,q

=
1
Fs

sHV∆,0(p− q)s,
[
Wδ

2

]
p,q

=
1
F 2
s

sHV∆,0(p− q)Ds,

[
Wδ

3

]
p,q

= sHV∆,1(p− q)s,
[
Wδ

4

]
p,q

=
1
Fs

sHDV∆,1(p− q)s,
[
Wδ

2,2

]
p,q

= sHDV∆,0(p− q)Ds,
[
Wδ

3,3

]
p,q

= FssHV∆,2(p− q), (4.37)
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with s the baseband sample vector defined in (F.26), D in (F.29), V∆,0(·) in (F.30), V∆,1(·)
in (F.33) and V∆,2(·) in (F.36).

Proof. see Appendix F.1

Remark that an equivalent expression can be found by considering the vector of unknown
parameters ζT , (σ2

n, ζ̄
T

) and ζ̄
T
, (ηT ,ρT ,φT ) where for p ∈ [1, P ], ρT = (. . . , ρp, . . .) and

φT = (. . . , φp, . . .). The only change in the computation is in the matrix Q but the FIM can
be written as in (4.35) (see Appendix F.2). For the rest of this work, the vector of unknown
parameters may change from ǫ to ζ depending on the need.

4.3.3.2 Comparison with Existing Results

The obtained FIM can be compared to existing formulations for similar problems. First, if
P = 1, then, remarking that V∆,0(0) = IN ,

W δ
1 =

1
Fs

sHs, W δ
2 =

1
F 2
s

sHDs, W δ
3 = sHV∆,1(0)s,

W δ
4 =

1
Fs

sHDV∆,1(0)s, W δ
2,2 = sHD2s, W δ

3,3 = FssHV∆,2(0)s, (4.38)

and the resulting FIM characterizes the estimation of the joint delay-Doppler and complex
amplitude of a signal, for instance, when no multipath is present. This has been studied in
[Das20a; Med20] for the GNSS case.

Secondly, if P = 2, the resulting FIM represents a two-ray model such as the one studied
in Section 2.3. As a reminder, in Chapter 2, the general expression of the dual source CRB
was evaluated for the estimation of following vector of unknowns ξ defined as

ξT = (σ2
n, τ1, b1, ρ1, φ1, τ2, b2, ρ2, φ2), (4.39)

where there is no relation between τ1 and τ2, or between b1 and b2. In that case one can
evaluate the general expression of this dual source CRB for a range ∆τ = τ2 − τ1, known
as the path separation, and apply a reparameterization to constrain the general CRB to the
model used in the this contribution, that is,

τ1 = τ = τ2 − ∆τ and b1 = b2 = b. (4.40)

Note that when ∆τ = 1/Fs, the resulting reparameterized FIM should match the FIM
evaluated in (4.35) when considering the vector of unknown parameters ζ as mentioned at
the end of Section 4.3.3.1. For P = 2, this vector is defined as

ζT = (σ2
n, τ, b, ρ1, ρ2, φ1, φ2), (4.41)
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With the relations in (4.40), the jacobian corresponding to this reparameterization is,

∂ξ(ζ)

∂ζT
=
[

e1 e2 + e6 e3 + e7 e4 e8 e5 e9

]
, (4.42)

where ei is the 9-element column unitary vector with zeros everywhere except at the i-th
index. Then,

Fr
ζ|ζ(ζ) =

(
∂ξ(ζ)

∂ζT

)T
Fξ|ξ(ξ)

∂ξ(ζ)

∂ζT
, (4.43)

where Fr
ζ|ζ(ζ) is the reparameterized FIM, from the CRB expression derived in Section 2.3

and the relations (4.40). To visually validate the consistency between the reparameterized
FIM (4.43) and the work presented in this section, a numerical application is proposed using
a simple GNSS signal: the GPS L1 C/A signal. In the sequel, the C/A chip which is about
1µs will be used as a time unit. Figure 4.14 presents the τ term of the square root of the
inverse of Fr

ζ|ζ , when ∆τ varies, for three values of Fs. The three points at 1/8, 1/4 and 1/2
C/A chips correspond to the τ term of the square root inverse of the FIM defined in (4.35).
These points are located on their corresponding curves which demonstrates that the CRB
expressions derived in this contribution for P = 2 are consistent with the existing expressions
when applying the constraints defined in (4.40).

Figure 4.14: Evolution of the constrained CRB obtained after reparameterization of the gen-
eral dual source CRB for Fs = {2, 4, 8} MHz as a function of the path separation ∆τ expressed
in GPS L1 C/A chips. The three points are the evaluation of the CRB derived in this contri-
bution. This figure was obtained for a GPS L1 C/A signal with a noise level SNRout=33dB,
amplitudes ρT = (1, 0.5) and phases φT = (0, 0). The vertical axis is multiplied by the speed
of light to be converted to meters.

Finally, in order to connect this work to other existing CRB expressions as in [ZH16],
recall that in this reference, the authors had to use a Taylor approximation to obtain tractable
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expressions. Here the expression proposed in (4.35) is easy to handle thanks to its matrix
form and it does not rely on any assumption; it only exploits the Shannon-Nyquist theorem
on the representation of band-limited signals. As a final comment on the existing expressions
proposed in [ZH16], even if the authors proposed a series of simulation in order to compare the
CRB derived in this reference with different estimators performance, they were not relevant
to validate the correctness of the expressions since the estimator used were not adapted to the
signal model, either assuming a single echo whereas many were actually present, or assuming
the amplitudes known. The question of the validation of the CRB expression proposed in
this contribution beyond existing results, is tackled in the next section where it is compared
to the MSE of the MLE that matches the signal model (4.31).

4.3.4 Validation and Discussion

4.3.4.1 Methodology and Considered Scenarios

A way to ensure the validity of the CRB expression derived in Section 4.3.3 is to find an
efficient estimator for the signal model under study and to evaluate its MSE. Indeed, an
efficient estimator is unbiased and with a MSE equal to the CRB. Unfortunately, such an
estimator cannot be found for the nonlinear problem under study, and one can only find an
estimator with an asymptotic efficiency, for instance the conditional MLE. The purpose of
this section is first to present an implementation of the MLE, and then to apply it to two
scenarios in order to obtain an estimate of the MSE, and compare it to the corresponding
CRB. In short, if the MLE MSE fits with the CRB, this implies that the derived expression
is correct.

The two scenarios considered for this validation are presented in Figure 4.15a and Figure
4.15b under the form of amplitude-delay-profiles, similarly to multipath power-delay-profiles
that can be found in [Kap, Fig. 9.14]. Scenario (a) is a simple set of four consecutive
decreasing echoes. Scenario (b) is also a set of four consecutive echoes, but with the second
being of amplitude zero.

4.3.4.2 Maximum Likelihood Estimator

The MLE is a common sense estimator, that is, it consists of selecting the parameters that
are the most likely with respect to the samples available. Knowing the probability density
function of the signal (4.31),

p(y; ǫ) =
1

(πσ2
n)N

e
− 1

σ2
n

‖y−AP α‖2

, (4.44)

maximizing (4.44) is equivalent to minimizing the norm in the exponential function, which
can be split into two orthogonal terms with the introduction of the projector over the space
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(a) Scenario (a) (b) Scenario (b)

Figure 4.15: Amplitude-delay-profiles of the scenarios considered. It consists of (a) a set
of four consecutive echoes with ρT1 = (1, 3/4, 1/2, 1/3) for scenario (a) and (b) ρT2 =
(1, 0, 1/2, 1/3) for scenario (b). For these scenarios, the sampling frequency is set to Fs = 4
MHz.

formed by the columns of the matrix AP : PAP
= AP

(
AH
P AP

)−1
AH
P , P⊥

AP
= I − PAP

.

‖y − APα‖2 = ‖PAP
(y − APα)‖2 +

∥∥∥P⊥
AP

(y − APα)
∥∥∥

2

=
∥∥∥∥AP

((
AH
P AP

)−1
AH
P y − α

)∥∥∥∥
2

+
∥∥∥P⊥

AP
y
∥∥∥

2
. (4.45)

From the decomposition (4.45), the expression of the estimated vector ǫ̂ is simplified; the
estimation of the delay-Doppler vector η̂ is decoupled from the estimation of the complex
amplitudes,

η̂ = arg max
η

∥∥∥PAP (η)y
∥∥∥

2
, α̂p =

[(
AH
P (η̂)AP (η̂)

)−1
AH
P (η̂)y

]

p
, (4.46)

α̂rp = Re{α̂p}, α̂ip = Im{α̂p}, ρ̂p = |α̂p|, φ̂ip = arg{α̂p}, (4.47)

σ̂2
n =

1
N

∥∥∥P⊥
AP (η̂)

y
∥∥∥

2
. (4.48)

For the rest of this section, the MLE of an impulse response, parameterized by the number of
pulses P and the regular interval between each pulse ∆τp, will be denoted IR-MLE(P,∆τp). In
this work, the input of the estimator is the number of consecutive sources to estimate P , which
is assumed to be known in this section, each sources being separated by Ts as it is presented
in the signal model (4.31), that is, the implemented estimator will be IR-MLE(P, Ts).
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4.3.4.3 Numerical Results

The following figures show the root CRB and the root MSE (RMSE) of the MLE for 1000
Monte Carlo realizations, as a function of the SNR at the output of the matched filter. The
deterministic parameters are set as follows: τ = 0, Fd = bfc = 200 Hz, α depends on the
scenario under consideration (see Figure 4.15a and 4.15b for the amplitudes), the phase of
the echoes, φ, is a set of four random phases. The SNRout is defined with respect to the first
echo ρ1,

SNRout ,
ρ2

1sHs
σ2
n

. (4.49)

For all the simulations, a GPS L1 C/A signal, coherently integrated for TI = 1ms at a
sampling frequency Fs = 4 MHz was considered.

Scenario (a) For this first scenario, the true values of the phases were randomly fixed
to φT

1 = (334◦, 37◦, 114◦, 355◦). Figure 4.16a and Figure 4.16b present the RMSE for the
estimation of the delay τ and the Doppler frequency Fd of the IR-MLE(4,Ts). In Figure
4.16a, one can observe the threshold region (where the RMSE reaches the root CRB) at
SNRout = 27 dB. For the Doppler frequency, its RMSE is equal to the corresponding bounds
for the range of SNRout considered here. Figure 4.16c presents the RMSE for the four echoes
complex amplitudes estimations along with their corresponding bounds. From this figure, one
can see that the RMSE follows the root CRB, which validates the proposed CRB expression.

Scenario (b) In this second scenario, the true values of the phases are set to φT
2 =

(45◦,N/A, 184◦, 328◦), the second phase being not applicable because the second amplitude
is equal to 0. Figure 4.17a and Figure 4.17b correspond to the RMSE of the IR-MLE(4,Ts)
for the estimation of the delay and Doppler frequency. For both parameters the RMSE does
reach the root CRB, which, again, is in accordance with theory. Figure 4.17c, presents the
RMSE for the estimation of the four amplitudes. In this figure, one can see a good fit of the
RMSE on the corresponding CRB.

4.3.5 Wrap-Up on Impulse Response Estimation

The strong distortion induced by diffuse scattering of a signal can be modeled as a convolution
between the transmitted signal and the impulse response of the reflecting surface. This
impulse response is band-limited and its coefficients can be estimated using a MLE. A closed
form expression of the CRB has been derived and validated using the asymptotic properties
of the MLE. So far, the number of pulses that describe the impulse response was assumed
known. However this number is often unknown and can vary in time. Next section provides
elements to tackle the question of number of pulses determination.
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(a) τ (b) Fd

(c) α

Figure 4.16: Scenario (a): RMSE for the estimation of the parameters with IR-MLE(4,Ts).

4.4 Impulse Response Size Determination: A Detection Prob-
lem

In this section the question of determining the number of pulses that describe the reflecting
surface impulse response introduced in the signal model (4.31) is addressed. First, a theoreti-
cal analysis of the impact of under- and overestimating the number of pulses is proposed. This
study suggests two different strategies to determine the number of pulses. These strategies
are then further developed.
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(a) τ (b) Fd

(c) α

Figure 4.17: Scenario (b): RMSE for the estimation of the parameters with IR-MLE(4,Ts).

4.4.1 Theoretical Analysis

Let h(t) be a band-limited causal impulse response with a finite number of pulses P . This
impulse response can be written as,

h(t) =
P∑

p=1

αpδ (t− (p− 1)Ts) +
∞∑

q=1

αP+qδ (t− (P + q − 1)Ts) ,





α1 6= 0
αP 6= 0

αP+q = 0
, (4.50)

and its corresponding transfer function,

H(f) =
P∑

p=1

αpe
−j2πf(p−1)Ts +

∞∑

q=1

αP+qe
−j2πf(P+q−1)Ts =

P∑

p=1

αpe
−j2πf(p−1)Ts , (4.51)

which is fully described with the samples αT = (α1, . . . , αP ). One can then distinguish:

• the intermediate zero coefficients, αp = 0, 2 ≤ p ≤ P − 1 which are part of the transfer
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function definition,

• the trailing zero coefficients, αP+q = 0, 1 ≤ q which are not part of the transfer function.

In order to better understand the impact of under- and overshooting, the global MSE of
the impulse response is considered.

MSEH , E

{
1
Fs

∫ Fs
2

− Fs
2

∣∣∣H(f) − Ĥ(f)
∣∣∣
2

df

}
= E

{
1
Fs

∫ ∞

−∞

∣∣∣h(t) − ĥ(t)
∣∣∣
2

dt
}

(4.52)

Three cases can be thought of to evaluate (4.52).

• Undershooting case:

Ĥ(f) =
P−∆P∑

q=1

α̂qe
−j2πf(q−1)Ts , 1 ≤ ∆P ≤ P − 1, (4.53)

In this case, it can be shown that

MSEH =
P−∆P∑

p=1

E
{

|αp − α̂p|2
}

+
P∑

q=P−∆P+1

|αq|2 , (4.54)

This is a case of misspecification which has been studied in [For17; RH15] and in Section
2.5. In misspecified cases, the MSE does not tend to zero because of the second term
of (4.54). Besides the estimates are also affected and biased.

• Overshooting case:

Ĥ(f) =
P+∆P∑

q=1

α̂qe
−j2πf(q−1)Ts , 1 ≤ ∆P, (4.55)

Again, it can be shown that

MSEH =
P∑

p=1

E
{

|αp − α̂p|2
}

︸ ︷︷ ︸
asymptotically: Tr{CRB

α|ǫ}

+
P+∆P∑

q=P+1

E
{

|0 − α̂q|2
}
, (4.56)

Here the case is correctly specified but the estimation of the trailing zero coefficients is
detrimental for two reasons

– the estimation of the trailing zero coefficients degrade the CRB for αp, 1 ≤ p ≤ P

because increasing the number of unknown parameters increases the CRB [MCL12].

– the estimation of the trailing zero coefficients increases the MSEH through the
second term of (4.56).

However the MSEH converges to 0.
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• Correct length case:

Ĥ(f) =
P∑

q=1

α̂qe
−j2πf(q−1)Ts , ∆P ≥ 1. (4.57)

This case corresponds to the overshooting case (4.56) with ∆P = 0:

MSEH =
P∑

p=1

E
{

|αp − α̂p|2
}

︸ ︷︷ ︸
asymptotically: Tr{CRB

α|ǫ}

. (4.58)

Details on the previous results can be found in G.1

From this analysis, the best estimation strategy seems to be by overshooting rather than
undershooting since the MSE asymptotically reduces to 0. The ideal case being having the
correct impulse response length, for which the MSEH has no additional term and the corre-
sponding CRB is minimal.

For these reasons, test mechanisms could be thought of to either iteratively estimate the
impulse response with a growing number of pulses, that is by undershooting, or to estimate it
with an excessive number of pulses, or overshooting, and then evaluate the relevance of each
one of the estimates, in order to see if they carry information or if they are just noise.

In the next two sections two families of procedures are presented to tackle the issue of an
unknown number of pulses. The first category is iterative: it assumes a number of estimated
pulses and tests if there is another pulse in the residue. The second proposed category is
based on first overshooting the number of pulses, and then test how likely each estimated
pulse is to be part of the impulse response.

4.4.2 Iterative Procedure: P + next Test

This first category of test assumes that P consecutive pulses have already been estimated.
Then, the procedure proposed hereafter tests if there is a signal in the residual noise that
results from the difference between the received signal and the estimated impulse response
convolved with a clean replica. In P + next, the test controls the next candidate, that is,
P + 1 whose time location is constrained at Ts after the current estimated impulse response.
This test is then a simple evaluation of the likelihood that there is another source at time
τ̂ + (P + 1)Ts,

TP+next =
∣∣∣∣
(
P⊥

AP (η̂)
y
)H

sP+1(η̂)
∣∣∣∣
2

≷ threshold h. (4.59)

Under the null hypothesis H0, there is no sources except the P sources already detected.
Under the alternative hypothesis H1, there is an extra source at P + 1. Consequently, under
H0, the orthogonal projection of the data vector over the noise subspace, P⊥

AP (η̂)
y, is simply
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noise. However, sP+1(η̂) being a deterministic series of 1 and −1 of average 0 very close
to the P previous signals, the test statistic TP+next is a combination of complex Gaussian
random variables that are dependent. It results that this dependency reduces the variance of
the orthogonal projection of sP+1 over the space of the P previous pulses, defined by AP .
This variance is decreased by a coefficient kσ that depends on the distance between each pulse
(fixed by Fs) and the number of pulses already estimated. See G.2 for more details to evaluate
this coefficient. With kσ evaluated, it is possible to normalize the test statistic TP+next to
obtain a χ2

2 distribution,

(
P⊥

AP (η̂)
y
)H

sP+1(η̂) H0−→
(
P⊥

AP (η̂)
n
)H

sP+1(η̂) ∼ CN (0, Nkσσ2
n) (4.60)

2
Nkσσ2

n

TP+next ∼ χ2
2. (4.61)

From this, one can fix the PFA and determine the corresponding threshold h of this test,

PFA = P

[
2

Nkσσ2
n

TP+next > h |H0

]
= 1 −

(
1 − e−h/2

)
⇔ h = −2 log (PFA) . (4.62)

If the test statistic is smaller than this threshold, the user will decide that there is no signal
at the next time location with a given PFA. This first test is quite simple, however, it has a
few limitations: i) it focuses on one single time location, that is, if there is no energy at the
next three time locations but there is one at the fourth (this is the case of intermediate zeros
coefficient mentioned in Section 4.4.1), the user might not be able to see it, ii) if the threshold
is reached, there is a possibility that the detected item is actually further, and iii) even if the
test itself is simple, the overall procedure results quite time consuming because one has to
re-evaluate the IR-MLE with an increasing number of sources, which can be quite large.

4.4.3 Overshoot-and-Decimate Procedures

As mentioned in the previous section, iterative approaches to determine the number of sources
are known to be time consuming: the user would potentially need to run consecutive and
increasingly complex estimators until reaching a satisfying number of pulses. An alternative
approach is to deliberately overestimate the number of sources and try to differentiate the
estimated pulses to see whether they are actual pulses or simply trailing zero coefficients.
The idea is to fix a maximum number of pulses M and to apply a IR-MLE(M,Ts) for M
pulses. Suppose now that there are only K actual pulses among the M estimated ones, it was
shown in Section 4.4.1 and [CM08] that asymptotically, the K true values are among the M
estimates. Consequently, one only needs to test each of the M pulses and discard the least
relevant with an appropriate criterion.
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4.4.3.1 Overshooting Example

First, the aim is to highlight the presence of the true values in the output of the overshooting
IR-MLE(M,Ts). Figure 4.18 presents the output of the IR-MLE(M,Ts) looking for M = 6
pulses for the two scenarios presented in Figure 4.15a and 4.15b where K = 4. These figures
were obtained by running 1000 Monte Carlo simulations and estimating systematically 6
pulses, the SNRout as defined in (4.49) was set to 39dB. The estimated amplitudes located
at their estimated delay are plotted. In these figures, one can see that for any scenario,
the estimator spots the true pulses among a number of lower amplitude estimates. It then
sounds reasonable to think that an adequate test on the estimated vector would filter out the
non-relevant estimates.

(a) Scenario (a) (b) Scenario (b)

Figure 4.18: Output of the misspecified IR-MLE(M,Ts) (M = 6) : (a) Scenario (a) and (b)
Scenario (b), K = 4.

4.4.3.2 Chung and Mecklenbräuker Test

In order to test the relevance of each estimate with the resulting vector of estimated param-

eters: ζ̂M =
[
τ̂ , F̂d, ρ̂

T
M , φ̂

T

M

]T
, one may consider the following hypothesis to be tested, as

done in [CM08],

• Hm: the m-th pulse is null: ρm = 0 → y =
∑M
p=1,p6=m ρpe

jφpsp + n

• Am: the m-th pulse is not null: ρm 6= 0 → y =
∑M
p=1 ρpe

jφpsp + n

Consequently, one can think of a likelihood ratio (LR) that would compare both hypoth-
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esis,

LRm =

∥∥∥P⊥
AM

y
∥∥∥

2

∥∥∥P⊥
AM−1,m

y
∥∥∥

2 ≷ threshold h, (4.63)

where AM−1,m = AM−1,m(η̂) denotes the matrix AM = AM (η̂) without the m-th column.
It can be shown that, under the null hypothesis Hm, LR has a β distribution with shape
parameters 1 and N − 1. See G.3 for more details on the distribution derivation.

Consequently, from the cumulative distribution function of a β distribution, one can link
the threshold h to a given PFA,

PFA = P [LR > h | LR ∼ β1,N−1] = 1 − Bh(1, N − 1)
B(1, N − 1)

= (1 − h)N−1 ⇔ h = 1 − PFA
1

N−1

(4.64)

where B is the beta function and Bh is the incomplete beta function.

4.4.3.3 Variant: Sorted Amplitudes Decimation

An intuitive extension of the Chung and Mecklenbräuker test is to order the vector of esti-
mated pulses according to their corresponding amplitudes ρ̃, where ρ̃1 < ρ̃2 < . . . < ρ̃M .
The idea is then to test each consecutive pulse from the weakest to the strongest. If the
m-th is tested and tagged non-relevant, it is then removed from the vector of amplitudes ρ̃.
Consequently, as long as the pulses are removed, it is always the first element of the vector
whose relevance is tested and the size of the projector PA is reduced. The test stops whenever
there is a pulse that is considered relevant because this one is strong enough to be an actual
pulse. Because the test is going from the weakest to the strongest pulse, this implies that
the remaining ones will be relevant as well. This might be interesting to limit the number of
tests done.

4.4.4 Wrap-Up on Impulse Response Size Determination

The question of determining the number of received pulses is a detection problem that can be
tackled following two strategies. A first strategy consists of undershooting the true number,
and iteratively increment this number to find the correct value. This strategy exposes the user
to obtain intermediate biased estimates, since the undershooting model used is misspecified.
It can also be quite long if the number of sources is very large. The second strategy overshoots
the number of sources, and potentially filters out the least relevant estimates that are unlikely
part of the impulse response. This approach provides unbiased estimates in the asymptotic
regime, and requires only one iteration, for this reason, this last approach seems more adapted
to the problem at hand.
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4.5 Conclusion

In this last chapter, the nature of the reflection has been called into question. In previous
chapters, the reflection was always assumed to be coherent and specular. This assumption
held for the considered scenarios (urban environment, ground-based stations, reflections over
a pond), but when the surface roughness cannot be neglected anymore, the reflection slowly
turns non-coherent, as predicted by the Rayleigh criterion.

In a first approach, the coherence of the reflection was investigated at the carrier phase
level: based on the IEEC Mallorca experiment data sets, the transition from a coherent to
a non-coherent reflection was observed, and hypothesis tests were proposed to automatically
detect this transition. The proposed tests, namely the Simple Difference test and the Lilliefors
test, showed results in accordance to the expectation. A further step down this road would
be to test them on many other tracks, and on different surfaces. This could help detecting
in-land water bodies or frozen land in future GNSS-R missions.

Then, a diffuse reflection was considered. Depending on the surface roughness, the area
that may reflect energy towards the receiver can be very large. As an illustration, this area,
also known as glistening zone, was computed for the Mallorca experiment example. Results
show that the receiver may receive a composite signal from points at tens of kilometers from
the specular point, then the received signal in the case of diffuse reflections cannot be modeled
as a simple ray anymore. A way to describe it is to see it as the convolution of the simple
ray transmitted signal, and the reflecting surface impulse response. The impulse response
carries the information of the surface roughness, and by estimating its coefficients, it would
be possible to know the sea state just by looking at the composite signal. To this adapted
signal model, the corresponding CRB was derived in a closed form expression and validated
using the MLE.

The question of the impulse response size determination was then addressed, since it is
an unknown to be estimated. Determining the number of pulses that describe the impulse
response is a detection problem that can be tackled with hypothesis tests in two different
ways: the first is by underestimating the number of pulses and iteratively increment it until
finding the correct number. The main drawback of this approach is that as long as the number
is underestimated, the processing will always be misspecified, and the output of the estimator
may be biased. Another issue is that the number of iterations can be large if the surface
size is large as well. The second approach is by overestimating the number of pulses. In this
case, the estimated value will be asymptotically unbiased, although the overall performance
in the MSE sense will not be optimal. A possible second step is then to discard the trailing
zeros measured and re-run a last MLE with the correct number of pulses, to get an optimal
solution.

162



Conclusion and Perspectives

Conclusion

The main objective of this thesis was to give comprehensive tools to assess the achievable
performance of existing and proposed GNSS-R techniques. This was motivated by the recent
commissioning of GNSS satellites: GPS Block III and GALILEO, and the interest shown by
the ESA in GNSS-R, for instance through the HydroGNSS satellite mission.

For this purpose, an overview of the tools and concepts was proposed in Chapter 1, to
provide the fundamental tools of estimation theory with, in particular, the introduction of
a theoretical lower bound in the MSE sense, the CRB. Moreover, an introduction to GNSS
principles, signals and standard processing techniques was provided to better understand
how rich these systems are. The main challenge of GNSS, namely the multipath, was also
presented as it is still an open issue for navigation applications, and it shares a number of
similarities with ground-based GNSS-R. Finally, the main results in GNSS-R along with
existing processing techniques were also presented to give a starting point to this thesis work.

As just mentioned, GNSS multipath presents similarities with ground-based GNSS-R,
and it has been widely studied ever since the first GNSS constellation was commissioned. For
these reasons, Chapter 2 focused on the multipath problem and how the estimation theory
tools can serve to assess the multipath effect on the ranging performance. It started with the
comparison of different multipath mitigation strategies using the MPEE, a widely used first
order metric, and showed how the CRB for the signal model at hand can add information on
the multipath effect. A closed form expression of the CRB for the dual source signal model
was derived and validated using the asymptotic performance of the MLE. Such lower bounds
were then used to build a second order metric, called CCBR, that indicates how much a single
multipath affects the achievable performance of an efficient estimator in terms of MSE. Such
insight completes the information provided by the MPEE. Finally, since low-cost receivers
are not equipped with multipath mitigating architectures, it was worth looking at the effect
of multipath on the MSE for misspecified estimators, that is, for estimators that do not take
into account the potential presence of multipath. This last study led to the derivation of the
MCRB for multipath scenarios, and provided a better understanding of the multipath effect
on both bias and variance of the final range estimate.

In Chapter 3, ground-based GNSS-R was studied based on the results obtained for mul-
tipath. This chapter was supported by a Gruissan data campaign organized by the CNES.
First, this campaign along with the recorded data sets was presented, in order to give a frame-
work for the rest of the chapter. Then, one of the main challenges in ground-based GNSS-R,
namely signal crosstalk, was studied based on the CRB for the dual source signal model
derived in the previous chapter. This crosstalk study showed that two scenarios may occur
in ground-based GNSS-R. First, there is a crosstalk that cannot be avoided (e.g., for GNSS
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legacy signals such as GPS L1 C/A, or for very low altitude and/or elevation angles): in this
first case the path separation is very short, and a possible solution is to exploit this shortness
to approximate optimal but computationally expensive algorithms such as the 2S-MLE. For
this scenario, the AMLE algorithm was proposed to deal with a very short path separation
using a third order Taylor approximation. Such algorithm presents good performance in sim-
ulations, and seems a promising multipath mitigation strategy. In a second scenario, there
is a crosstalk but sub-optimal dual source algorithms are able to reduce or even cancel its
effect. This is the case for wideband signals such as GPS L5 and GALILEO E5 signals. This
was demonstrated on the Gruissan data set using a CRE. Based on a theoretical study of the
crosstalk effect, in this chapter, dual antenna unbiased GNSS-R altimetry was proved to be
doable thanks to recent GNSS signals.

So far, the reflection was assumed coherent and specular. This may apply to a range
of ground-based scenarios but it is generally not true when the elevation angle gets larger
and when the reflecting surface is rough. In Chapter 4, the transition from coherent to non-
coherent reflections was investigated by looking at time series of estimated carrier phase.
The coherence of the reflection can be linked to the regularity of this time series and, using
hypothesis tests on either this regularity or the Gaussianity of the measured points, coherence
indicators were proposed and tested on Mallorca data sets. Part of this work was done in
collaboration with the IEEC. Finally, when the reflection is non-coherent and diffuse as it is
the case for rough surfaces at large enough elevation angle, the reflected energy comes from
an extended reflecting surface called glistening surface and the reflected signal, result of the
convolution between the transmitted signal and the impulse response of the reflecting surface,
can be significantly distorted. A signal model, adapted to this convolution product was then
proposed, and a closed form expression of the corresponding CRB was derived and validated
based on the asymptotic properties of the MLE. With this proposed model raised the question
of the determination of the number of pulses that define the impulse response. This detection
problem was addressed first theoretically and then from a more practical perspective, with
two proposed strategies to converge to the correct number of pulses: i) underestimation and
iterative increase of the number of pulses, and ii) overestimation and decimation of the least
relevant estimates.

Perspectives

The work presented in this thesis can naturally be branched out. Some of the more promising
ideas are detailed hereafter.

Regarding the multipath impact analysis, the last contribution presented in the thesis was
based on the theory of misspecified estimation. In that perspective, the MCRB obtained in
this work seemed to be the good way to characterize most of the receivers. This result could
be extended to build a comprehensive metric that would extend the information provided by
the proposed CCBR. In the case where it is difficult to model the multipath phenomenon,
another approach could be to use semiparametric signal models as in [For19]. Such approaches
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can then be extended to other misspecified signal models of particular interest for the GNSS
community. For instance, in the case of a GNSS signal affected by an interference (e.g.,
jammer), as proposed in [Ort] (under review, Navigation journal), but also in the case of
spoofing. The multipath effect being also the convolution with a channel impulse response,
the detection tests developed in the last chapter of this thesis could also be exploited to
determine the relevant number of multipath contributors. This would allow to adapt the
current multipath mitigation strategies to more complex scenarios, or to develop new multi-
source estimation techniques dedicated to such problem.

In this thesis, only CSMs were studied: both the dual source and the impulse response
signal models were assuming all the unknown parameters being deterministic. This is an
assumption that may be discussed, especially for the impulse response problem where the
object to be estimated is random. A natural extension to the work presented in this thesis
is to formulate an Unconditional Signal Model (USM), and see how this affects the final
estimation performance based on the unconditional CRB and adapted estimators [SN90].
Besides, the prior information on the amplitudes of the impulse response taps could be linked
to the surface properties. This can be of great interest to classify different reflecting surfaces
based on GNSS-R observations. As a matter of fact, the CNES recently did an airborne data
collection campaign over different water surfaces (lakes and sea). The data collected could
help to understand how the reflecting surface nature is captured by the corresponding impulse
response estimate.

For the ground-based GNSS-R case study, the work presented could be better illustrated
with other data sets to cover all possible path separation scenarios and GNSS signals. In
particular, the AltBOC modulation (e.g., GALILEO E5 band signal) with its very wide
bandwidth is expected to provide precise altimetry products based on the time-delay esti-
mation, then maybe avoiding the problems related to carrier phase-based measurements for
non-coherent reflections. In addition, the study of GNSS meta-signals, which are the combi-
nation of two GNSS signals at different frequency bands as a single signal [Ort20], could be
extended to a dual source context in order to assess the potential performance of such signals
for GNSS-R applications.

The proposed approaches focused on time-delay estimation, but another promising tech-
nique is to do altimetry based on the carrier phase. This was mentioned in the last chapter
as a motivation for the coherence analysis, but directly exploiting these observables may lead
to centimeter-level precision on the altimetry product. This is very challenging because the
carrier phase estimation needs to solve a phase ambiguity that is non-trivial. In terms of
performance bounds, the recent work in [Med20] could be extended to the GNSS-R problem.

Finally, the GNSS Direct Positioning Estimation (DPE), an alternative to the standard
two-step approach (i.e., estimation of pseudo-ranges and then PVT solution), that consists
of estimating the receiver position directly from the I/Q samples [CG17] could be applied
to process all the reflected signals at a time, and this way, to characterize a larger reflecting
surface.
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Appendix A

Fourier Transform Relations

In order to deal with most of the derivations of this thesis (mostly FIM components), the
Fourier transform of a set of functions needs to be evaluated. First, remembering that the
signal is band-limited of band B ≤ Fs, one has,

s(t) ⇋ FT {s(t)} (f) , S(f) =


 1
Fs

N2∑

n=N1

s(nTs)e−j2πfnTs


 1[− Fs

2
; Fs

2 ]. (A.1)

To tackle the issue that may come from the spectral shift due to the Doppler effect, one
simply needs to take Fs large enough so that Fs

2 ≥ B
2 + fcmax {|b0|, |b1|, |∆b|} (∆b = b1 − b0).

A first expression is a simple application of the frequency shift relation when using the
Fourier transform of a signal multiplied by a complex time-varying exponential.

s(t)ej2πfcbt ⇋ FT
{
s(t)ej2πfcbt

}
(f) , S(f − fcb) (A.2)

Let s0 be defined by s0(t; τ) = s(t− τ), then we have that,

(t− τ)s0(t; τ) = ts0(t; τ) − τs0(t; τ), (A.3)

and

(t− τ)s(t− τ) ⇌
j

2π
d

df

(
S(f)e−j2πfτ

)
− τS(f)e−j2πfτ

⇌
j

2π
d

df
(S(f))e−j2πfτ . (A.4)

Now let s1 be defined by s1(t; b) = s(t)ej2πfcbt, it is known that

ts1(t; b) ⇌
j

2π
d

df
(FT {s1(t; b)} (f))︸ ︷︷ ︸

(A.2)

(A.5)

therefore

ts(t)ej2πfcbt ⇌
j

2π
d

df
(S(f − fcb)) (A.6)
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Similarly

t2s(t)ej2πfcbt ⇌
(
j

2π

)2 d2

df2
(S(f − fcb)) . (A.7)

Besides, with the superscript (1) referring to the first time derivative,

s
(1)
1 (t; b) ,

d
dt

(s1(t; b)) = s(1)(t)ej2πfcbt + (j2πfcb)s1(t; b)

⇔ s(1)(t)ej2πfcbt = s
(1)
1 (t; b) − (j2πfcb)s1(t; b)

Then, knowing the Fourier transform of the k-th time derivative of a function

FT
{
s(k)(t)

}
(f) = (j2πf)kS(f) (A.8)

one directly gets
s(1)(t)ej2πfcbt ⇋ j2π (f − fcb)S(f − fcb) (A.9)

Now, if s2 is defined as s2(t; b) = ts(t)ej2πfcbt,

s
(1)
2 (t; b) = s1(t; b) + ts(1)(t)ej2πfcbt + (j2πfcb)s2(t; b)

⇔ ts(1)(t)ej2πfcbt = − s1(t; b)︸ ︷︷ ︸
(A.2)

+ s
(1)
2 (t; b)︸ ︷︷ ︸
(A.8)

−(j2πfcb) s2(t; b)︸ ︷︷ ︸
(A.10)

therefore,

ts(1)(t)ej2πfcbt ⇌ −S(f − fcb) − (f − fcb)
d

df
(S(f − fcb)) (A.10)

Finally, by taking again s1 as s1(t; b) = s(t)ej2πfcbt,

s
(2)
1 (t; b) = s(2)(t)ej2πfcbt + 2(j2πfcb)s(1)(t)ej2πfcbt + (j2πfcb)2s1(t; b)

⇔ s(2)(t)ej2πfcbt = s
(2)
1 (t; b)︸ ︷︷ ︸
(A.8)

−(j4πfcb) s(1)(t)ej2πfcbt

︸ ︷︷ ︸
(A.9)

+4π2(fcb)2 s1(t; b)︸ ︷︷ ︸
(A.2)

one obtains,

s(2)(t)ej2πfcbt ⇌ (j2πf)2S(f − fcb) + 8π2fcb(f − fcb)S(f − fc)) + 4π2(fcb)2S(f − fcb)

⇌ −4π2 (f − fcb)
2 S(f − fcb) (A.11)
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Appendix B

Matrices Relations

B.1 Block Matrix inversion Lemma

From [PP12, Sec. 9.1],

[
A1,1 A1,2

A2,1 A2,2

]−1

=

[
C−1

1 −A−1
1,1A1,2C−1

2

−C−1
2 A2,1A−1

1,1 C−1
2

]
(B.1)

with

C1 = A1,1 − A1,2A−1
2,2A2,1, (B.2)

C2 = A2,2 − A2,1A−1
1,1A1,2. (B.3)

B.2 Details on Orthogonal Projectors Upon Subspaces of a
Vector Subspace

Let AM = [. . . ,am, . . .] for m ∈ [1,M ] a full-rank matrix of M vectors. The projector upon

the vector subspace defined by the column of AM is defined by PAM
= AM

(
AH
MAM

)−1
AH
M .

Considering AM = [AM−1,am] where AM−1 is the matrix AM without the m-th column, the
aim of the following developments is to decompose this projector into two projectors: one over
AM−1 and the other over am. A first approach is to simply separate the two components:

PAM
= [AM−1,am]

(
[AM−1,am]H [AM−1,am]

)−1
[AM−1,am]H (B.4)

Developing the inverse term,

(
[AM−1,am]H [AM−1,am]

)−1
=

[
AH
M−1AM−1 AH

M−1am
aHmAM−1 aHmam

]−1

=

[
B11 B12

B21 B22

]
(B.5)
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By resorting to the block matrix inversion lemma (B.1), one gets the submatrices, defined in
(B.5):

B11 =
(

AH
M−1AM−1 − AH

M−1am
(
aHmam

)−1
aHmAM−1

)−1

=
(

AH
M−1

(
I − am

(
aHmam

)−1
aHm

)
AM−1

)−1

=
(
AH
M−1P⊥

am
AM−1

)−1
, (B.6)

B21 = −
(

aHmam − aHmAM−1

(
AH
M−1AM−1

)−1
AH
M−1am

)−1

aHmAM−1

(
AH
M−1AM−1

)−1

= −
(

aHm

(
I − AM−1

(
AH
M−1AM−1

)−1
AH
M−1

)
am

)−1

aHmAM−1

(
AH
M−1AM−1

)−1

= −
(
aHmP⊥

AM−1
am
)−1

aHmAM−1

(
AH
M−1AM−1

)−1
, (B.7)

B12 = −
(
AH
M−1AM−1

)−1
AH
M−1am

(
aHmam − aHmAM−1

(
AH
M−1AM−1

)−1
AH
M−1am

)−1

,

(B.8)

B22 =
(

aHmam − aHmAM−1

(
AH
M−1AM−1

)−1
AH
M−1am

)−1

=
(

aHm

(
I − AM−1

(
AH
M−1AM−1

)−1
AH
M−1

)
am

)−1

=
(
aHmP⊥

AM−1
am
)−1

. (B.9)

Using the PosDef identity [PP12, eq. (185)] for P and R invertible, definite positive matrices
and B:

(
P−1 + BHR−1B

)−1
BHR−1 = PBH

(
BPBH + R

)−1
(B.10)

⇔ −
(
P−1 − BHR−1B

)−1
BHR−1 = −PBH

(
R − BPBH

)−1
, (B.11)

for P =
(
AH
M−1AM−1

)−1
, R = aHmam and B = aHmAM−1, (B.11) allows to rewrite B12 as:

B12 = −
(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1am

(
aHmam

)−1
. (B.12)

Hence, the computation goes on,

(
[AM−1,am]H [AM−1,am]

)−1
[AM−1,am]H

=




(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1 −

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1am

(
aHmam

)−1
aHm

−
(
aHmP⊥

AM−1
am
)−1

aHmAM−1

(
AH
M−1AM−1

)−1
AH
M−1 +

(
aHmP⊥

AM−1
am
)−1

aHm




(B.13)

170



and

PAM
= AM−1

((
AH
M−1P⊥

am
AM−1

)−1
AH
M−1 −

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1am

(
aHmam

)−1
aHm

)

+ am

(
−
(
aHmP⊥

AM−1
am
)−1

aHmAM−1

(
AH
M−1AM−1

)−1
AH
M−1 +

(
aHmP⊥

AM−1
am
)−1

aHm

)
,

(B.14)

that is, PAM
= P̃AM−1 + P̃am where,

P̃AM−1 = AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1 − AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1am

(
aHmam

)−1
aHm

= AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1

(
I − am

(
aHmam

)−1
aHm

)

= AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1P⊥

am
, (B.15)

P̃am = −am
(
aHmP⊥

AM−1
am
)−1

aHmAM−1

(
AH
M−1AM−1

)−1
AH
M−1 + am

(
aHmP⊥

AM−1
am
)−1

aHm

= am
(
aHmP⊥

AM−1
am
)−1

aHm

(
I − AM−1

(
AH
M−1AM−1

)−1
AH
M−1

)

= am
(
aHmP⊥

AM−1
am
)−1

aHmP⊥
AM−1

. (B.16)

This decomposition is not orthogonal, one cannot show that P̃AM−1P̃am = 0. Here, the aim is
to obtain a decomposition including PAM−1 , a first step is to project P̃am over this subspace:

P̃am =
(
PAM−1 + P⊥

AM−1

)
P̃am

= PAM−1P̃am + P⊥
AM−1

am
(
aHmP⊥

AM−1
am
)−1

aHmP⊥
AM−1

= PAM−1P̃am +
(
P⊥

AM−1
am
)((

P⊥
AM−1

am
)H (

P⊥
AM−1

am
))−1 (

P⊥
AM−1

am
)H

= PAM−1P̃am + P(
P⊥

AM−1
am

). (B.17)

Hence, P(
P⊥

AM−1
am

) is orthogonal to the subspace defined by AM−1, the rest (underbraced

in the following expression) should reduce to PAM−1 ,

PAM
= P̃AM−1 + P̃am = P̃AM−1 + PAM−1P̃am︸ ︷︷ ︸

+P(
P⊥

AM−1
am

). (B.18)
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One can verifies this:

P̃AM−1 + PAM−1P̃am

= AM−1



(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1P⊥

am
+
(
AH
M−1AM−1

)−1
AH
M−1am

(
aHmP⊥

AM−1
am
)−1

︸ ︷︷ ︸
(B.11)

aHmP⊥
AM−1




= AM−1



(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1P⊥

am
+

︷ ︸︸ ︷(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1am

(
aHmam

)−1
aHmP⊥

AM−1




= AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1

(
P⊥

am
+ PamP⊥

AM−1

)

︸ ︷︷ ︸
. (B.19)

This last underbraced term can be written as

P⊥
am

+ PamP⊥
AM−1

= I − Pam + Pam

(
I − PAM−1

)

= I − PamPAM−1

= I − PAM−1 + PAM−1 − PamPAM−1

= P⊥
AM−1

+ P⊥
am

PAM−1 , (B.20)

which leads to

P̃AM−1 + PAM−1P̃am

= AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1

(
P⊥

am
+ PamP⊥

AM−1

)

= AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1

(
P⊥

AM−1
+ P⊥

am
PAM−1

)

= AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1P⊥

AM−1︸ ︷︷ ︸
=0

+AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1P⊥

am
PAM−1

= AM−1

(
AH
M−1P⊥

am
AM−1

)−1
AH
M−1P⊥

am
AM−1

(
AH
M−1AM−1

)−1
AH
M−1

= AM−1

(
AH
M−1AM−1

)−1
AH
M−1 = PAM−1 . (B.21)

Finally, one gets the desired orthogonal decomposition,

PAM
= PAM−1 + P(

P⊥
AM−1

am

). (B.22)
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Appendix C

Details on the Derivation of the
Dual Source Model Fisher

Information Matrix

C.1 Derivation Based on the Slepian-Bangs Formulas

Hereafter can be found details on the derivation of the FIM (2.23). Given the signal model
(2.12), the derivatives of the parameters vector excluding the noise variance σ2

n, ǭ, can be
expressed in a matrix form as

∂

∂ǭ
(d(t; θ0) + d(t; θ1)) = Q(ǭ)D(t; ǭ)e(t; ǭ), (C.1)

where

Q(ǭ) =

[
Q0 0
0 Q1

]
, Qi =




jρiwcbi 0 −ρi
0 −jρiwc 0
1 0 0
jρi 0 0


 , (C.2)

D(t; ǭ) =




s(t− τ0) 0
(t− τ0)s(t− τ0) 0
s(1)(t− τ0) 0

0 s(t− τ1)
0 (t− τ1)s(t− τ1)
0 s(1)(t− τ1)




, (C.3)

e(t; ǭ) =

(
ejψ0e−jωcb0t

ejψ1e−jωcb1t

)
, with ψi = φi + ωcbiτi (C.4)

Therefore, the derivative of the vector Aα (when t = nTs) with regard to ǭ is

(
∂Aα

∂ǭ

)T
= Q(ǭ) [. . . , D(nTs; ǭ)e(nTs; ǭ), . . . ]N1≤n≤N2

. (C.5)
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From this result one can write that
(
∂Aα

∂ǭT

)H (∂Aα

∂ǭT

)
=

Q(ǭ)∗




N2∑

n=N1

D(nTs; ǭ)∗ (I2 + ∆θ(nTs; ǭ)∗) D(nTs; ǭ)T

Q(ǭ)T , (C.6)

with ∆θ induced by the difference of delay, Doppler shifts and phase between the two signals,

∆θ(nTs; ǭ) , e(nTs; ǭ)e(nTs; ǭ)H − I2

=

[
0 e−j∆ψej2πfc∆bnTs

ej∆ψe−j2πfc∆bnTs 0

]
, (C.7)

with
∆ψ = ψ1 − ψ0 = ∆φ+ ωc(b1τ1 − b0τ0), ∆b = b1 − b0, ∆φ = φ1 − φ0. (C.8)

Similarly to [Das19], taking the limit of (C.6) when N ′
1 and N ′

2 are very large leads to an
integral form

lim
(N1,N2)→(−∞,+∞)

(
∂Aα

∂ǭT

)H (∂Aα

∂ǭT

)

= Fs


Q(ǭ)


 W0

(
W∆

)H

W∆ W1


Q(ǭ)H




∗

, (C.9)

where W0 and W1 are derived and studied in the single source case in [Med20] and [Das20a]
and

W∆ ,



W∆

1,1 W∆
1,2 W∆

1,3

W∆
2,1 W∆

2,2 W∆
2,3

W∆
3,1 W∆

3,2 W∆
3,3


 ej∆ψe−jωc∆bτ0 , (C.10)
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with

W∆
1,1 = ejωc∆bτ0

∫

R

s(t− τ1)s(t− τ0)∗e−jωc∆btdt, (C.11)

W∆
1,2 = ejωc∆bτ0

∫

R

(t− τ0)s(t− τ1)s(t− τ0)∗e−jωc∆btdt, (C.12)

W∆
1,3 = ejωc∆bτ0

∫

R

s(t− τ1)s(1)(t− τ0)∗e−jωc∆btdt, (C.13)

W∆
2,1 = ejωc∆bτ0

∫

R

(t− τ1)s(t− τ1)s(t− τ0)∗e−jωc∆btdt, (C.14)

W∆
2,2 = ejωc∆bτ0

∫

R

(t− τ1)(t− τ0)s(t− τ1)s(t− τ0)∗e−jωc∆btdt, (C.15)

W∆
2,3 = ejωc∆bτ0

∫

R

(t− τ1)s(t− τ1)s(1)(t− τ0)∗e−jωc∆btdt, (C.16)

W∆
3,1 = ejωc∆bτ0

∫

R

s(1)(t− τ1)s(t− τ0)∗e−jωc∆btdt, (C.17)

W∆
3,2 = ejωc∆bτ0

∫

R

(t− τ0)s(1)(t− τ1)s(t− τ0)∗e−jωc∆btdt, (C.18)

W∆
3,3 = ejωc∆bτ0

∫

R

s(1)(t− τ1)s(1)(t− τ0)∗e−jωc∆btdt. (C.19)

Exploiting the Fourier transform properties over the hermitian product and the relations
recalled in Appendix A, one can work these integral expressions as follows:

W∆
1,1 = ejωc∆bτ0

∫

R

s(t− τ1)s(t− τ0)∗e−j2πfc∆btdt =
∫

R

s(u− ∆τ)s(u)∗e−j2πfc∆budu,

=
∫

R

s(u− ∆τ)
(
s(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.2)

du =
∫ Fs

2

− Fs
2

S(f)e−j2πf∆τS(f − fc∆b)∗df,

and using the sum definition of the Fourier transform (A.1),

W∆
1,1 =

1
Fs

∫ 1
2

− 1
2

(
sTν(f)∗

)
e−j2πf ∆τ

Ts

(
sHU

(
fc∆b
Fs

)
ν(f)

)
df

=
1
Fs

sHU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
s. (C.20)
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Following the same procedure,

W∆
1,2 = ejωc∆bτ0

∫

R

(t− τ0)s(t− τ1)s(t− τ0)∗e−j2πfc∆btdt =
∫

R

us(u− ∆τ)s(u)∗e−j2πfc∆budu

=
∫

R

s(u− ∆τ)
(
us(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.6)

du =
∫ Fs

2

− Fs
2

S(f)e−j2πf∆τ
(
j

2π
d

df
(S(f − fc∆b))

)∗

df

=
1
F 2
s

∫ 1
2

− 1
2

(
sTν(f)∗

)
e−j2πf ∆τ

Ts

(
sHDU

(
fc∆b
Fs

)
ν(f)

)
df

=
1
F 2
s

sHDU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
s, (C.21)

W∆
1,3 = ejωc∆bτ0

∫

R

s(t− τ1)s(1)(t− τ0)∗e−j2πfc∆btdt =
∫

R

s(u− ∆τ)s(1)(u)∗e−j2πfc∆budu,

=
∫

R

s(u− ∆τ)
(
s(1)(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.9)

du

=
∫ Fs

2

− Fs
2

(
S(f)e−j2πf∆τ

)
(j2π(f − fc∆b)S(f − fc∆b))

∗ df

=
1
Fs

∫ 1
2

− 1
2

(
sTν(f)∗

)
e−j2πf ∆τ

Ts

(
−j2πFsfsHU

(
fc∆b
Fs

)
ν(f) + j2πfc∆bsHU

(
fc∆b
Fs

)
ν(f)

)
df

= −sHU
(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s +

jωc∆b
Fs

sHU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
s, (C.22)

W∆
2,1 = ejωc∆bτ0

∫

R

(t− τ1)s(t− τ1)s(t− τ0)∗e−j2πfc∆btdt

=
∫

R

(u− ∆τ)s(u− ∆τ)s(u)∗e−j2πfc∆budu

=
∫

R

(u− ∆τ)s(u− ∆τ)︸ ︷︷ ︸
(A.4)

(
s(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.2)

du

=
∫ Fs

2

− Fs
2

(
j

2π
d

df
(S(f)) e−j2πf∆τ

)
S(f − fc∆b)∗df

=
1
F 2
s

∫ 1
2

− 1
2

(
sTDν(f)∗

)
e−j2πf ∆τ

Ts

(
sHU

(
fc∆b
Fs

)
ν(f)

)
df

=
1
F 2
s

sHU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
Ds, (C.23)
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W∆
2,2 = ejωc∆bτ0

∫

R

(t− τ1)(t− τ0)s(t− τ1)s(t− τ0)∗e−j2πfc∆btdt

=
∫

R

u(u− ∆τ)s(u− ∆τ)s(u)∗e−j2πfc∆budu

=
∫

R

((u− ∆τ)s(u− ∆τ))︸ ︷︷ ︸
(A.4)

(
us(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.6)

du

=
∫ Fs

2

− Fs
2

(
j

2π
d

df
(S(f)) e−j2πf∆τ

)(
j

2π
d

df
(S(f − fc∆b))

)∗

df

=
1
F 3
s

∫ 1
2

− 1
2

(
sTDν(f)∗

)
e−j2πf ∆τ

Ts

(
sHDU

(
fc∆b
Fs

)
ν(f)

)
df

=
1
F 3
s

sHDU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
Ds, (C.24)

W∆
2,3 = ejωc∆bτ0

∫

R

(t− τ1)s(t− τ1)s(1)(t− τ0)∗e−j2πfc∆btdt

=
∫

R

(u− ∆τ)s(u− ∆τ)s(1)(u)∗e−j2πfc∆budu

=
∫

R

((u− ∆τ)s(u− ∆τ))︸ ︷︷ ︸
(A.4)

(
s(1)(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.9)

du

=
∫ Fs

2

− Fs
2

(
j

2π
d

df
(S(f)) e−j2πf∆τ

)
(j2π(f − fc∆b)S(f − fc∆b))

∗ df

=
1
F 2
s

∫ 1
2

− 1
2

(
sTDν(f)∗

)
e−j2πf ∆τ

Ts

(
−j2πFsfsHU

(
fc∆b
Fs

)
ν(f) + j2πfc∆bsHU

(
fc∆b
Fs

)
ν(f)

)
df

= − 1
Fs

sHU
(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
Ds +

jωc∆b
F 2
s

sHU
(
fc∆b
Fs

)
V∆,0

(
∆τ
Ts

)
Ds, (C.25)

W∆
3,1 = ejωc∆bτ0

∫

R

s(1)(t− τ1)s(t− τ0)∗e−j2πfc∆btdt =
∫

R

s(1)(u− ∆τ)s(u)∗e−j2πfc∆budu,

=
∫

R

s(1)(u− ∆τ)
(
s(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.2)

du =
∫ Fs

2

− Fs
2

(
j2πfS(f)e−j2πf∆τ

)
(S(f − fc∆b))

∗ df

=
∫ 1

2

− 1
2

(
j2πfsTν(f)∗

)
e−j2πf ∆τ

Ts

(
sHU

(
fc∆b
Fs

)
ν(f)

)
df

= sHU
(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s, (C.26)
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W∆
3,2 = ejωc∆bτ0

∫

R

(t− τ0)s(1)(t− τ1)s(t− τ0)∗e−j2πfc∆btdt

=
∫

R

s(1)(u− ∆τ)s(u)∗e−j2πfc∆budu

=
∫

R

s(1)(u− ∆τ)
(
us(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.6)

du

=
∫ Fs

2

− Fs
2

(
j2πfS(f)e−j2πf∆τ

)( j

2π
d

df
(S(f − fc∆b))

)∗

df

=
1
Fs

∫ 1
2

− 1
2

(
j2πfsTν(f)∗

)
e−j2πf ∆τ

Ts

(
sHDU

(
fc∆b
Fs

)
ν(f)

)
df

=
1
Fs

sHDU
(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s, (C.27)

W∆
3,3 = ejωc∆bτ0

∫

R

s(1)(t− τ1)s(1)(t− τ0)∗e−j2πfc∆btdt =
∫

R

s(1)(u− ∆τ)s(1)(u)∗e−j2πfc∆budu,

=
∫

R

s(1)(u− ∆τ)
(
s(1)(u)ej2πfc∆bu

)∗

︸ ︷︷ ︸
(A.9)

du

=
∫ Fs

2

− Fs
2

(
j2πfS(f)e−j2πf∆τ

)
(j2π(f − fc∆b)S(f − fc∆b))

∗ df

=
∫ 1

2

− 1
2

(
j2πfsTν(f)∗

)
e−j2πf ∆τ

Ts

(
−j2πFsfsHU

(
fc∆b
Fs

)
ν(f) + j2πfc∆bsHU

(
fc∆b
Fs

)
ν(f)

)
df

= FssHU
(
fc∆b
Fs

)
V∆,2

(
∆τ
Ts

)
s + jωc∆bsHU

(
fc∆b
Fs

)
V∆,1

(
∆τ
Ts

)
s, (C.28)
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where

s =
(
. . . s(nTs) . . .

)T
N1≤n≤N2

, (C.29)

ν(f) =
(
. . . ej2πfn . . .

)T
N1≤n≤N2

, (C.30)

U (p) = diag
(
. . . e−j2πpn . . .

)
N1≤n≤N2

, (C.31)

D =
(
. . . n . . .

)T
N1≤n≤N2

, (C.32)

V∆,0 (q) =
∫ 1

2

− 1
2

ν(f)νH(f)e−j2πfqdf, (C.33)

[
V∆,0 (q)

]
k,l

=
∫ 1

2

− 1
2

ej2πf(k−l−q)df =

[
ej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

=
sin (π(k − l − q))
π(k − l − q)

= sinc (k − l − q) (C.34)

V∆,1 (q) = j2π
∫ 1

2

− 1
2

fν(f)νH(f)e−j2πfqdf, (C.35)

[
V∆,1 (q)

]
k,l

= j2π
∫ 1

2

− 1
2

fej2πf(k−l−q)df

= j2π



[
fej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

−
∫ 1

2

− 1
2

ej2πf(k−l−q)

j2π(k − l − q)
df




=
1

k − l − q
(cos (π(k − l − q)) − sinc (k − l − q)) (C.36)

V∆,2 (q) = 4π2
∫ 1

2

− 1
2

f2ν(f)νH(f)e−j2πfqdf, (C.37)

[
V∆,2 (q)

]
k,l

= 4π2
∫ 1

2

− 1
2

f2ej2πf(k−l−q)df

= 4π2



[
f2ej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

−
∫ + 1

2

− 1
2

2fej2πf(k−l−q)

j2π(k − l − q)
df




=
4π2

j2π(k − l − q)
1
4

[
ejπ(k−l−q) − e−jπ(k−l−q)

]

− 8π2

j2π(k − l − q)



[
fej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

−
∫ + 1

2

− 1
2

ej2πf(k−l−q)

j2π(k − l − q)
df




= π2sinc (k − l − q) + 2
cos (π(k − l − q)) − sinc (k − l − q)

(k − l − q)2 (C.38)
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C.2 Derivation Based on Orthogonal Projection

From (2.48), and omitting the dependency on η2 for the sake of clarity, the matrix Φ is
defined using the projector PA:

Φ =




∂aH(η0)
∂η0

∂aH(η1)
∂η1


P⊥

A




∂aH(η0)
∂η0

∂aH(η1)
∂η1



H

=




∂aH(η0)
∂η0

∂aH(η1)
∂η1






∂aH(η0)
∂η0

∂aH(η1)
∂η1



H

︸ ︷︷ ︸
Appendix C.2.1

−



∂aH(η0)
∂η0

∂aH(η1)
∂η1


A

Appendix C.2.2︷ ︸︸ ︷(
AHA

)−1
AH




∂aH(η0)
∂η0

∂aH(η1)
∂η1



H

︸ ︷︷ ︸
Appendix C.2.3

. (C.39)

C.2.1 First Term of (C.39)

Similarly to the approach in C, the derivative of a(t; ηi) with regard to the parameters of
interest is

∂a(t; ηi)
∂ηi

= QiD(t− τi)e−jωcbi(t−τi) (C.40)

where

Qi =

[
jωcbi 0 −1

0 −jωc 0

]
,D(t) =




s(t)
ts(t)
s(1)(t)


 , (C.41)

with s(1)(t) = ds(t)
dt . Therefore, when t = nTs, one can write




∂aH(η0)
∂η0

∂aH(η1)
∂η1


 = Q∗

[
. . . , D(nTs; η2)e(nTs; η2), . . .

]∗
N1≤n≤N2

(C.42)

where

Q =

[
Q0 0
0 Q1

]
,D(t; η2) =

[
D(t− τ0) 0

0 D(t− τ1)

]
(C.43)

and e(t; η2) =

(
e−jωcb0(t−τ0)

e−jωcb1(t−τ1)

)
. From this result one can write that




∂aH(η0)
∂η0

∂aH(η1)
∂η1






∂aH(η0)
∂η0

∂aH(η1)
∂η1



H

=


Q




N2∑

n=N1

D(nTs; η2) (I2 + ∆θ(nTs; η2)) D(nTs; η2)H

QH




∗

(C.44)
with ∆θ induced by the difference of delay, Doppler shifts between the two signals,

∆θ(nTs; η2) , e(nTs; η2)e(nTs; η2)H − I2. (C.45)

180



Then, taking the limit of (C.44) when N1 and N2 are very large, it leads to an integral form

lim
(N1,N2)→(−∞,+∞)




∂aH(η0)
∂η0

∂aH(η1)
∂η1






∂aH(η0)
∂η0

∂aH(η1)
∂η1



H

= Fs

(
Q

[
(·)1,1 (·)1,2

(·)2,1 (·)2,2

]
QH

)∗

(C.46)

where (·)1,1 = (·)2,2 = W is derived and studied in the single source case in [Med20] and
[Das20a] and reminded in (2.26) and (·)2,1 = (·)H1,2 = W∆ is derived in the dual source
case in C and is defined in (2.28). For the computation of W∆ no phase difference in the
multiplicative complex exponential (2.28) is considered since it appears in the Rα matrix
defined in (2.47).

C.2.2 Inverse in the Second Term of (C.39)

In a similar way, it is possible to evaluate the matrix AHA as follows:

AHA =

[
a(t; η0)Ha(t; η0) a(t; η0)Ha(t; η1)
a(t; η1)Ha(t; η0) a(t; η1)Ha(t; η1)

]
, (C.47)

and, when t = nTs and both N1 and N2 are very large, it leads to an integral form:

lim
(N1,N2)→(−∞,+∞)

AHA = Fs

[
w1

(
W∆

1,1e
jωcb1∆τ

)∗

W∆
1,1e

jωcb1∆τ w1

]∗

, (C.48)

and then,

lim
(N1,N2)→(−∞,+∞)

(
AHA

)−1
=

w1

Fs(w2
1 − |W∆

1,1|2)


 1 −(W∆

1,1e
jωcb1∆τ )∗

w1

−W∆
1,1e

jωcb1∆τ

w1
1




∗

.

(C.49)

C.2.3 Second Term of (C.39)

Again, from (C.42),one can write that




∂aH(η0)
∂η0

∂aH(η1)
∂η1


A = Q∗




N2∑

n=N1

D(nTs; η2) (I2 + ∆θ(nTs; η2))

[
s(nTs − τ0)∗ 0

0 s(nTs − τ1)∗

]


∗

(C.50)

Then, when N1 and N2 are very large, it leads to an integral form

lim
(N1,N2)→(−∞,+∞)




∂aH(η0)
∂η0

∂aH(η1)
∂η1


A = Fs


Q


 w

(
w∆

1,.

)H

w∆
.,1 w






∗

(C.51)
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where w is the first column of W recalled in (2.25), w∆
.,1 is the first column of W∆ recalled

in (2.28) and w∆
1,. is the first row of W∆. Then, combining (C.51) with (C.49), the second

term of (C.39) can be written:




∂aH(η0)
∂η0

∂aH(η1)
∂η1


A

(
AHA

)−1
AH




∂aH(η0)
∂η0

∂aH(η1)
∂η1



H

=
Fsw1

w2
1 − |W∆

1,1|2


Q


 w

(
w∆

1,.

)H

w∆
.,1 w




×

 1 −(W∆

1,1)
∗

w1
e−jωcb1∆τ

−W∆
1,1

w1
ejωcb1∆τ 1




×

 wH

(
w∆
.,1

)H

w∆
1,. wH


QH




∗

=
Fsw1

w2
1 − |W∆

1,1|2

(
Q

[
(·)1,1 (·)1,2

(·)2,1 (·)2,2

]
QH

)∗

(C.52)

with

(·)1,1 = wwH +
(
w∆

1,.

)H
w∆

1,. − 2Re

{
ww∆

1,.

(
W∆

1,1

w1
ejωcb1∆τ

)∗}
, (C.53)

(·)2,1 = (·)H1,2 = ww∆
1,. + w∆

.,1wH − wwHW
∆
1,1

w1
ejωcb1∆τ − w∆

.,1w∆
1,.

(
W∆

1,1

w1
ejωcb1∆τ

)∗

, (C.54)

(·)2,2 = wwH + w∆
.,1

(
w∆
.,1

)H
− 2Re

{
w∆
.,1wH

(
W∆

1,1

w1
ejωcb1∆τ

)∗}
. (C.55)

If one subtracts (C.52) to (C.46), the matrix Φ is obtained and Φi,j with i, j = {1, 2} are the
corresponding submatrices when only the terms (·)i,j are used in (C.46) and (C.52).
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Appendix D

Details on the Derivation of the
Misspecified Cramér Rao Bounds

Here are the details on the derivation of the matrix A(θpt) defined in (2.84). The term to be
derived is

(δa)H
(
∂2αptapt
∂θp∂θq

)
(D.1)

To compute the MCRB, the terms are first considered under their continuous time ex-
pression. If a(t; η) = s(t− τ)e−jωcb(t−τ), then

δa(t) = α0a(t; η0) + α1a(t; η1) − αpta(t; ηpt) = Ã(t)α̃ , (D.2)

Ã(t) =
[
a(t; η0), a(t; η1), a(t; ηpt)

]
, α̃ =

(
ρ0e

jφ0 , ρ1e
jφ1 ,−ρptejφpt

)T
. (D.3)

Therefore, the discrete expression of this model mismatch term is

δa = Ãα̃ = [a0, a1, apt] α̃. (D.4)

Then, keeping the continuous time expression for the computation of the successive deriva-
tives, one can easily obtain the first derivative, which was already used in Appendix C,

∂αa(t; η)
∂θ

= QD(1)(t, τ)e−jωcb(t−τ) (D.5)

with

Q =




jαωcb 0 −α
0 −jαωc 0
ejφ 0 0
α 0 0


 , D(1)(t; τ) =




s(t− τ)
(t− τ)s(t− τ)
s(1)(t− τ)


 . (D.6)

Similarly the second derivative can be written in a matrix form as,

∂2αa(t; η)

∂θ∂θT
=
[

Q1 Q2 Q3 Q4

] (
D(2)(t; η) ⊗ I4

)
e−jωcb(t−τ), (D.7)
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with

Q1 =




−αω2
c b

2 0 0 −j2αωcb 0 α

jαωc αω2
c b 0 0 jαωc 0

jejφωcb 0 0 −ejφ 0 0
−αωcb 0 0 −jα 0 0


 , (D.8)

Q2 =




jαωc αω2
c b 0 0 jαωc 0

0 0 −αω2
c 0 0 0

0 −jejφωc 0 0 0 0
0 αωc 0 0 0 0


 , (D.9)

Q3 =




jejφωcb 0 0 −ejφ 0 0
0 −jejφωc 0 0 0 0
0 0 0 0 0 0
jejφ 0 0 0 0 0


 , (D.10)

Q4 =




−αωcb 0 0 −jα 0 0
0 αωc 0 0 0 0
jejφ 0 0 0 0 0
−α 0 0 0 0 0


 , (D.11)

D(2)(t; τ) =




s(t− τ)
(t− τ)s(t− τ)
(t− τ)2s(t− τ)
s(1)(t− τ)

(t− τ)s(1)(t− τ)
s(2)(t− τ)




,




d1(t)
d2(t)
d3(t)
d4(t)
d5(t)
d6(t)




. (D.12)

A way to write the Hessian matrix components under its discrete form is,
[
∂2αaT

∂θ∂θT

]

p,q

=
∂2αaT

∂θp∂θq
= [Qq]p,.

[
. . . , D(2)(nTs; η)e−jωcb(nTs−τ), . . .

]
N1≤n≤N2

, (D.13)

where [Qq]p,. is the p-th row of the matrix Qq.

The first term of the information matrix A(θpt) is simply the product of the model means
difference term and the Hessian matrix, which can be expressed element-wise as

δaH
[
∂2αa

∂θ∂θT

]

p,q

=
(
Ãα̃

)H (
[Qq]p,.

[
. . . , D(2)(nTs; η)e−jωcb(nTs−τ), . . .

]
N1≤n≤N2

)T
(D.14)

= [Qq]p,.
∑

k∈{0,1,pt}

α̃∗
k

N2∑

n=N1




a(nTs; ηk)
∗d1(nTs)e−jωcb(nTs−τ)

a(nTs; ηk)
∗d2(nTs)e−jωcb(nTs−τ)

a(nTs; ηk)
∗d3(nTs)e−jωcb(nTs−τ)

a(nTs; ηk)
∗d4(nTs)e−jωcb(nTs−τ)

a(nTs; ηk)
∗d5(nTs)e−jωcb(nTs−τ)

a(nTs; ηk)
∗d6(nTs)e−jωcb(nTs−τ)




. (D.15)

Each term of the column vector is then a sum that can be seen as an integral when the number
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of samples tends to infinity. For i ∈ {1, 6},

lim
(N1,N2)→(−∞,+∞)

Ts

N2∑

n=N1

a(nTs; ηk)
∗di(nTs)e−jωcb(nTs−τ) =

∫

R

a(t; ηk)
∗di(t)e−jωcb(t−τ)dt,

(D.16)
therefore,

lim
(N1,N2)→(−∞,+∞)

δaH
[
∂2αa

∂θ∂θT

]

p,q

= Fs [Qq]p,.
∑

k∈{0,1,pt}

α∗
kw

A(ηk). (D.17)

Finally, thanks to the Shannon Theorem for band-limited signals, the computation of the
matrix A(θpt) and then of the MCRB reduces to the six following integrals which are the six
components of the vector wA(ηk), for k ∈ {0, 1, pt},

wA
1 (ηk) =

∫

R

s(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt, (D.18)

wA
2 (ηk) =

∫

R

(t− τpt)s(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt, (D.19)

wA
3 (ηk) =

∫

R

(t− τpt)2s(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt, (D.20)

wA
4 (ηk) =

∫

R

s(1)(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt, (D.21)

wA
5 (ηk) =

∫

R

(t− τpt)s(1)(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt, (D.22)

wA
6 (ηk) =

∫

R

s(2)(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt, (D.23)

One can work these integral expressions as follows:

wA
1 (ηk) =

∫

R

s(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt

= e−jωcbk∆τk

∫

R

s(u)s(u− ∆τk)∗ejωc∆bkudu

with ∆τk , τk − τpt and ∆bk , bk − bpt. Then, using the Fourier transform properties over
the hermitian product and the relations recalled in Appendix A,

wA
1 (ηk)e

jωcbk∆τk =
∫

R

s(u)ejωc∆bku

︸ ︷︷ ︸
(A.2)

(s(u− ∆τk))
∗ du

=
∫ Fs

2

− Fs
2

S(f − fc∆bk)
(
S(f)e−j2πf∆τk

)∗
df

=
1
Fs

∫ 1
2

− 1
2

(
sTU

(
−fc∆bk

Fs

)
ν(f)∗

)
ej2πf

∆τk
Ts

(
sHν(f)

)
df

=
1
Fs

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s
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Hence

wA
1 (ηk) =

1
Fs

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s e−jωcbk∆τk , (D.24)

with ν(·) defined in (C.30), U(·) defined in (C.31) and V∆,0(·) defined in (C.33).

Similarly,

wA
2 (ηk) =

∫

R

(t− τpt)s(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt

= e−jωcbk∆τk

∫

R

us(u)s(u− ∆τk)∗ejωc∆bkudu

Therefore,

wA
2 (ηk)e

jωcbk∆τk =
∫

R

us(u)ejωc∆bku

︸ ︷︷ ︸
(A.6)

(s(u− ∆τk))
∗ du

=
∫ Fs

2

− Fs
2

(
j

2π
d

df
(S(f − fc∆bk))

)(
S(f)e−j2πf∆τk

)∗
df

=
1
F 2
s

∫ 1
2

− 1
2

(
sTDU

(
−fc∆bk

Fs

)
ν(f)∗

)
ej2πf

∆τk
Ts

(
sHν(f)

)
df

=
1
F 2
s

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
Ds

Hence

wA
2 (ηk) =

1
F 2
s

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
Ds e−jωcbk∆τk , (D.25)

with U(·) defined in (C.31), V∆,0(·) defined in (C.33) and D defined in (C.32).

And this goes on...

wA
3 (ηk) =

∫

R

(t− τpt)2s(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt

= e−jωcbk∆τk

∫

R

u2s(u)s(u− ∆τk)∗ejωc∆bkudu

Therefore,

wA
3 (ηk)e

jωcbk∆τk =
∫

R

u2s(u)ejωc∆bku

︸ ︷︷ ︸
(A.7)

(s(u− ∆τk))
∗ du

=
∫ Fs

2

− Fs
2

((
j

2π

)2 d2

df2
(S(f − fc∆bk))

)(
S(f)e−j2πf∆τk

)∗
df

=
1
F 3
s

∫ 1
2

− 1
2

(
sTD2U

(
−fc∆bk

Fs

)
ν(f)∗

)
ej2πf

∆τk
Ts

(
sHν(f)

)
df

=
1
F 3
s

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
D2s
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Hence

wA
3 (ηk) =

1
F 3
s

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
D2s e−jωcbk∆τk , (D.26)

with U(·) defined in (C.31), V∆,0(·) defined in (C.33) and D defined in (C.32).

... and on...

wA
4 (ηk) =

∫

R

s(1)(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt

= e−jωcbk∆τk

∫

R

s(1)(u)s(u− ∆τk)∗ejωc∆bkudu

Therefore,

wA
4 (ηk)e

jωcbk∆τk =
∫

R

s(1)(u)ejωc∆bku

︸ ︷︷ ︸
(A.9)

(s(u− ∆τk))
∗ du

=
∫ Fs

2

− Fs
2

(j2π(f − fc∆bk)S(f − fc∆bk))
(
S(f)e−j2πf∆τk

)∗
df

=
1
Fs

∫ 1
2

− 1
2

(
j2π(fFs − fc∆bk)sTU

(
−fc∆bk

Fs

)
ν(f)∗

)
ej2πf

∆τk
Ts

(
sHν(f)

)
df

= sHV∆,1
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s − j2πfc∆bk

Fs
sHV∆,0

(
−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s

Hence

wA
4 (ηk) =

(
sHV∆,1

(
−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s − jωc∆bk

Fs
sHV∆,0

(
−∆τk
Ts

)

× U
(

−fc∆bk
Fs

)
s
)
e−jωcbk∆τk

(D.27)

with U(·) defined in (C.32), V∆,0(·) defined in (C.33) and V∆,1(·) defined in (C.35).

... and on...

wA
5 (ηk) =

∫

R

(t− τpt)s(1)(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt

= e−jωcbk∆τk

∫

R

us(1)(u)s(u− ∆τk)∗ejωc∆bkudu
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Therefore,

wA
5 (ηk)e

jωcbk∆τk =
∫

R

us(1)(u)ejωc∆bku

︸ ︷︷ ︸
(A.10)

(s(u− ∆τk))
∗ du

=
∫ Fs

2

− Fs
2

(
−S(f − fc∆bk) − (f − fc∆bk)

d
df

(S(f − fc∆bk))
)(

S(f)e−j2πf∆τk

)∗
df

= − 1
Fs

∫ 1
2

− 1
2

(
sTU

(
−fc∆bk

Fs

)
ν(f)∗

)
ej2πf

∆τk
Ts

(
sHν(f)

)
df

+
1
Fs

∫ 1
2

− 1
2

j2πf
(

sTDU
(

−fc∆bk
Fs

)
ν(f)∗

)
ej2πf

∆τk
Ts

(
sHν(f)

)
df

− j2π
fc∆bk
F 2
s

∫ 1
2

− 1
2

(
sTDU

(
−fc∆bk

Fs

)
ν(f)∗

)
ej2πf

∆τk
Ts

(
sHν(f)

)
df

= − 1
Fs

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s +

1
Fs

sHV∆,1
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
Ds

− j2π
fc∆bk
F 2
s

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
Ds

Hence

wA
5 (ηk) =

(
− 1
Fs

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s +

1
Fs

sHV∆,1
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
Ds

−j ωc∆bk
F 2
s

sHV∆,0
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
Ds
)
e−jωcbk∆τk

(D.28)
with U(·) defined in (C.31), V∆,0(·) defined in (C.33), V∆,1(·) defined in (C.35) and D defined
in (C.32).

and the last term being derived in a very similar way,

wA
6 (ηk) =

∫

R

s(2)(t− τpt)s(t− τk)∗e−jωc(bpt(t−τpt)−bk(t−τk))dt

= e−jωcbk∆τk

∫

R

s(2)(u)s(u− ∆τk)∗ejωc∆bkudu
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Therefore,

wA
6 (ηk)e

jωcbk∆τk =
∫

R

s(2)(u)ejωc∆bku

︸ ︷︷ ︸
(A.11)

(s(u− ∆τk))
∗ du

=
∫ Fs

2

− Fs
2

(
−4π2(f − fc∆bk)2S(f − fc∆bk)

) (
S(f)e−j2πf∆τk

)∗
df

=
∫ 1

2

− 1
2

((
−Fs(4π2f2) − j4πfc∆bk(j2πf) − 4π2 (fc∆bk)2

Fs

)(
sTU

(
−fc∆bk

Fs

)
ν(f)∗

))

× ej2πf
∆τk
Ts

(
sHν(f)

)
df

= −FssHV∆,2
(

−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s − j4πfc∆bksHV∆,1

(
−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s

− 4π2 (fc∆bk)2

Fs
sHV∆,0

(
−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s

Hence

wA
6 (ηk) =

(
−FssHV∆,2

(
−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s − j2ωc∆bksHV∆,1

(
−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s

−(ωc∆bk)2

Fs
sHV∆,0

(
−∆τk
Ts

)
U
(

−fc∆bk
Fs

)
s

)
e−jωcbk∆τk

(D.29)
with U(·) defined in (C.31), V∆,0(·) defined in (C.33), V∆,1 defined in (C.35) and V∆,2(·)
defined in (C.37).

Based on the definitions of matrices V∆,0, V∆,1, V∆,2 and U, one can do the following
remarks:

•
(
V∆,0(q)

)H
= V∆,0(−q),

•
(
V∆,1(q)

)H
= −V∆,1(−q),

•
(
V∆,2(q)

)H
= V∆,2(−q),

• (U(p))H = U(−p).

This can simplify the expressions of the components of wA by taking the conjugate and
removing all the minus sign in the matrices parenthesis.
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Appendix E

Details on the Computation of the
Approximate Maximum Likelihood

Estimator

E.1 Details on the Taylor Approximation of c and β1 Functions

In this appendix, the Taylor series of the auto-correlation term c(∆τ) and the cross-correlation
term β1 are derived.

First recall that a band-limited signal s(t) with bandwidth B equal to the sampling fre-
quency Fs, is considered in this work. The baseband signal can be expressed as follows:

s(t) =
N2∑

n=N1

s

(
n

B

)
sinc

(
πB

(
t− n

B

))
⇌ TF {s(t)} (f) , S(f) =

1
B

N2∑

n=N1

s

(
n

B

)
e−j2πn f

B , −B

2
≤ f ≤ B

2
,

(E.1)

E.1.1 Auto-correlation Function

From the signal discrete signal model (E.1), if the number of elements N2 −N1 is very large,
the ACF c(∆τ) can be written as an integral:

c(∆τ) = aH0 a1 = Fs

∫

R

s(t− τ0)∗s(t− τ0 − ∆τ)ejωcb∆τdt (E.2)

= Fse
jωcb∆τ

∫

R

s(u)∗s(u− ∆τ)du. (E.3)
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Then using the Fourier transform properties over the hermitian product and the sum definition
of the Fourier transform recalled in (E.1):

c(∆τ) = Fse
jωcb∆τ

×
∫ Fs/2

−Fs/2


 1
Fs

N2∑

n=N1

s(nTs)e−j2πfnTs




∗
 1
Fs

N2∑

n=N1

s(nTs)e−j2πfnTs


 e−j2πf∆τdf

(E.4)

= sH
(∫ 1/2

−1/2
ν(f)ν(f)He−j2πfFs∆τdf

)
s ejωcb∆τ (E.5)

where, for n ∈ [N1, N2], s = (. . . , s(nTs), . . . )
T , ν(f) =

(
. . . , ej2πfn, . . .

)T
.

Consequently, the Fourier coefficients for the ACF are simply the successive derivatives of
(E.5) evaluated when ∆τ = 0:

cn =
1
n!

∂nc(∆τ)
∂∆τn

∣∣∣∣
∆τ=0

=
1
n!

n∑

k=0

sHDk(0)s(jωcb)n−k, (E.6)

where

Dk(τ) = (−j2πFs)k
∫ 1/2

−1/2
fkν(f)ν(f)He−j2πfτdf. (E.7)

When expressed with τ = 0, Dk(0) is the kth derivative of a sine cardinal function which can
be iteratively computed (see Appendix E.1.3). Then when ∆τ is very small, the Taylor series
for the auto-correlation term is:

c(∆τ) =
∑

n∈N

cn∆τn = 1 +
∑

n∈N∗

cn∆τn (E.8)

|c(∆τ)|2 =
∑

n∈N

(
n∑

k=0

ckc
∗
n−k

)
∆τn = 1 +

∑

n∈N∗

dn∆τn (E.9)

E.1.2 Cross-Correlation Function

Similarly when the number of element is large enough, the cross-correlation between a1 and
the data x can be expressed in as

β1 = aH1 x = Fs

∫

R

(
s(t− τ0 − ∆τ)e−j2πfcb(t−τ0−∆τ)

)∗
x(t)dt (E.10)
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Again, switching to the frequency domain,

β1 = Fs

∫ Fs/2

−Fs/2


 1
Fs

N2∑

n=N1

s(nTs)e−j2π(f+fcb)nTs




∗
 1
Fs

N2∑

n=N1

x(nTs)e−j2πfnTs


 ej2πf(τ0+∆τ)df

(E.11)

= sHUH
(
fcb

Fs

)



1/2∫

−1/2

ν(f)ν(f)Hej2πfFs(τ0+∆τ)df


x (E.12)

where U(b) = diag
(
. . . , e−j2πbn, . . .

)
N1≤n≤N2

.

Then the Taylor series for the cross-correlation term is deduced from the successive deriva-
tives of (E.12):

β1,k =
1
k!

∂kβ1

∂∆τk

∣∣∣∣∣
∆τ=0

=
1
k!

(
Dk

(
τ0

Ts

)
U
(
fcb

Fs

)
s
)H

x =
1
k!
R

(k)
x,Ds(τ0, bfc). (E.13)

The term R
(k)
x,Ds(τ0, bfc) is actually the cross-correlation between the data x and the kth

derivative of the signal s. Similarly to the auto-correlation term, it is expressed with regard
to the successive derivatives of a sine cardinal which can be iteratively computed as detailed
in Appendix E.1.3. Therefore, for small value of ∆τ , the Taylor series for the cross-correlation
term is:

β1 =
∑

n∈N

β1,n∆τn = β0 +
∑

n∈N∗

β1,n∆τn (E.14)

E.1.3 Note on the Sine Cardinal Derivatives

The Taylor coefficients derived in the previous section all depend on the successive derivatives
of a sine cardinal of the form:

sinc(u− δu) =
∫ 1/2

−1/2
ej2πf(u−δu)df (E.15)

If one calculates the kth derivative of (E.15)

∂ksinc(u− δu)
∂δuk

= (−j2π)k
∫ 1/2

−1/2
fkej2πf(u−δu)df, (E.16)

193



a first integration by parts yields

∂ksinc(u− δu)
∂δuk

= (−j2π)k
[
fkej2πf(u−δu)

j2π(u− δu)

]1/2

−1/2

− k(−j2π)k

j2π(u− δu)

∫ 1/2

−1/2
fk−1ej2πf(u−δu)df

(E.17)

=
(−j2π)k

j2π(u− δu)

((
1
2

)k
ejπ(u−δu) −

(
−1

2

)k
e−jπ(u−δu)

)

+
k

u− δu

∂k−1sinc(u− δu)
∂δuk−1

(E.18)

Then, depending on the parity of k, an iterative expression of the sine cardinal derivatives
can be obtained for k = 2n:

∂2nsinc(u− δu)
∂δu2n

=
2n

u− δu

∂2n−1sinc(u− δu)
∂δu2n−1

+ (−1)nπ2nsinc(u− δu) , (E.19)

and for k = 2n+ 1:

∂2n+1sinc(u− δu)
∂δu2n+1

=
2n+ 1
u− δu

∂2nsinc(u− δu)
∂δu2n

+ (−1)n+1π2n+1 cos(π(u− δu))
π(u− δu)

. (E.20)

E.2 Details on the Taylor Approximation of the Likelihood
Criterion

Starting from (3.22), reminded here

L(τ0,∆τ, b) =
β∗

0β0 + β∗
1β1 − c(∆τ)∗β∗

0β1 − c(∆τ)β∗
1β0

1 − |c(∆τ)|2 (E.21)

each term can be expressed as a Taylor series:

β∗
1β1 = β∗

0β0 +
∑

n∈N∗

(
n∑

k=0

β∗
1,kβ1,n−k

)
∆τn , (E.22)

c(∆τ)∗β∗
0β1 = β∗

0β0 +
∑

n∈N∗

(
n∑

k=0

c∗
kβ

∗
0β1,n−k

)
∆τn (E.23)

c(∆τ)β∗
1β0 = β∗

0β0 +
∑

n∈N∗

(
n∑

k=0

ckβ
∗
1,n−kβ0

)
∆τn , (E.24)

1 − |c(∆τ)|2 = −
∑

n∈N∗

dn∆τn. (E.25)

Then, by reordering these terms, the likelihood criterion can be written as follows:

L(τ0,∆τ, b) = −
∑
n∈N∗ Bn∆τn−1

∑
n∈N∗ dn∆τn−1

with Bn ,
n∑

k=0

β∗
1,kβ1,n−k−c∗

kβ
∗
0β1,n−k−ckβ∗

1,n−kβ0 (E.26)
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The ACF Taylor coefficients, expressed with the derivatives of the sine cardinal present a
number of symmetries that simplify the expression of Bn and dn: with c∗

1 = −c1, c∗
3 = −c3,

one can deduce d1 = d3 = 0 and similarly B1 = 0. Consequently, if the Taylor series in (E.26)
are truncated to the 3rd order, the likelihood criterion reduces to

L(τ0,∆τ, b) ≈ −B2 +B3∆τ +B4∆τ2 +B5∆τ3

d2 + d4∆τ2
(E.27)

Finally, using the series representation of the denominator, the criterion can be written as a
3rd order Taylor expansion as in

−1
d2 + d4∆τ2

≈ − 1
d2

(
1 − d4

d2
∆τ2

)
⇒ L(τ0,∆τ, b) ≈ LTaylor(τ0,∆τ, b) =

3∑

n=0

Ln(τ0, b)∆τn

(E.28)
with

L0(τ0, b) = −B2

d2
, L1(τ0, b) = −B3

d2
, (E.29)

L2(τ0, b) = − 1
d2

(
B4 − d4

d2
B2

)
, L3(τ0, b) = − 1

d2

(
B5 − d4

d2
B3

)
. (E.30)
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Appendix F

Details on the Derivation of the
Impulse Response Model Fisher

Information Matrix

F.1 Real and Imaginary Parts Parameterization

Hereafter can be found details on the derivation of the FIM (4.35). From the signal model
(4.26), the derivative of the signal with regard to the vector of unknown parameters excluding
the noise variance ǭT = (ηT , αr1, α

i
1, . . . , α

r
P , α

i
P ) can be expressed in a matrix form,

∂

∂ǭ




P∑

p=1

dp(t; η, ρp, φp)


 = Q(ǭ)D(t; τ)e(t; η), (F.1)

where, with p ∈ [1, P ],

Q(ǭ) =




jωcbα
T 01,P −αT

01,P −jωcαT 01,P

IP ⊗
(

1
j

)
02P,P 02P,P


 , (F.2)

e(t; η) =




ΨP (t; η) 0P,P 0P,P
0P,P ΨP (t; η) 0P,P
0P,P 0P,P ΨP (t; η)


 , (F.3)
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D(t; τ) =




...
s(t− τp)

...

...
(t− τp)s(t− τp)

...

...
s(1)(t− τp)

...




, ΨP (t; η) =




. . . 0 0
0 e−jωcb(t−τp) 0

0 0
. . .


 . (F.4)

where ⊗ denotes the Kronecker product.

Therefore the derivative of the vector (APα)T (t = nTs, with samples N1 ≤ n ≤ N2) with
regard to ǭ is

∂ (APα)T

∂ǭ
=
[
. . . ∂

∂ǭ

(∑P
p=1 dp(nTs; η, ρp, φp)

)
. . .

]
(F.5)

=
[
. . . Q(ǭ)D(nTs; τ)e(nTs; η) . . .

]
(F.6)

= Q(ǭ)
[
. . . D(nTs; τ)e(nTs; η) . . .

]
. (F.7)

Then, remembering the following properties,

∂ (APα)H

∂ǭT
=

(
∂ (APα)T

∂ǭ

)∗

,
∂ (APα)
∂ǭT

=

(
∂ (APα)T

∂ǭ

)T
, (F.8)

one can write that

∂ (APα)H

∂ǭT
∂ (APα)
∂ǭT

=


Q(ǭ)




N2∑

n=N1

D(nTs; τ)D(nTs; τ)H

Q(ǭ)H




∗

. (F.9)

If one evaluates the limit when N1 and N2 tend to infinity:

lim
(N1,N2)→(−∞,+∞)

Ts

N2∑

n=N1

D(nTs; τ)D(nTs; τ)H =
+∞∫

−∞

D(t; τ)D(t; τ)Hdt (F.10)

=




Wδ
1 WδH

2 WδH
3

Wδ
2 Wδ

2,2 WδH
4

Wδ
3 Wδ

4 Wδ
3,3


 , (F.11)
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where, for p and q in [1, P ]

[
Wδ

1

]
p,q

=
∫

R

s(t− τp)s(t− τq)∗dt (F.12)
[
Wδ

2

]
p,q

=
∫

R

(t− τp)s(t− τp)s(t− τq)∗dt (F.13)
[
Wδ

3

]
p,q

=
∫

R

s(1)
p (t− τp)s(t− τq)∗dt (F.14)

[
Wδ

4

]
p,q

=
∫

R

(t− τq)s(1)(t− τp)s(t− τq)∗dt (F.15)
[
Wδ

2,2

]
p,q

=
∫

R

(t− τp)(t− τq)s(t− τp)s(t− τq)dt (F.16)
[
Wδ

3,3

]
p,q

=
∫

R

s(1)(t− τp)s(1)(t− τq)dt (F.17)

These terms are derived in Section F.3.

F.2 Amplitude and Phase Parameterization

In order to obtain the expression of the FIM for the vector of parameters ζ̄
T

= (ηT ,ρT ,φT ),
the only difference is in the derivative of the signal with regard to ζ̄. Again, this derivative
can be expressed in a matrix form,

∂

∂ζ̄




P∑

p=1

dp(t; η, ρp, φp)


 = Q(ζ̄)D(t; τ)e(t; η), (F.18)

where, with p ∈ [1, P ],

Q(ζ̄) =




jωcbα
T 01,P −αT

01,P −jωcαT 01,P

ΦP 0P,P 0P,P
diag(jρ)ΦP 0P,P 0P,P


 ,ΦP =




. . . 0 0
0 ejφp 0

0 0
. . .


 , (F.19)

with e(t; η) defined in (F.3), D(t; τ) defined in (F.4) and diag(jρ) the square diagonal matrix
with its diagonal equal to jρ.

F.3 Derivation of the Integral Terms

In this section, the Wδ terms (F.12)–(F.17) are derived. Exploiting the Fourier transform
properties over the hermitian product and the relations recalled in Appendix A, one can work
these integral expressions as follows:
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[
Wδ

1

]
p,q

=
∫

R

s(t− τp)s(t− τq)∗dt =
∫

R

s(u− (p− q)Ts)s(u)∗du

=
∫ Fs

2

− Fs
2

S(f)e−j2πf(p−q)TsS(f)∗df ,

and, using the sum definition of the Fourier transform (A.1) as a matrices product,

[
Wδ

1

]
p,q

=
1
Fs

∫ 1
2

− 1
2

(
sTν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df =

1
Fs

sHV∆,0(p− q)s. (F.20)

[
Wδ

2

]
p,q

=
∫

R

(t− τp)s(t− τp)s(t− τq)∗dt =
∫

R

(u− (p− q)Ts)s(u− (p− q)Ts)︸ ︷︷ ︸
(A.4)

s(u)∗du

=
∫ Fs

2

− Fs
2

j

2π
d

df
(S(f)) e−j2πfp−q)TsS(f)∗df =

∫ 1
2

− 1
2

(
sTDν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df

=
1
F 2
s

sHV∆,0(p− q)Ds. (F.21)

[
Wδ

3

]
p,q

=
∫

R

s(1)(t− τp)s(t− τq)∗dt =
∫

R

s(1)(u− (p− q)Ts)︸ ︷︷ ︸
(A.8)

s(u)∗du

=
∫ Fs

2

− Fs
2

j2πfS(f)e−j2πf(p−q)TsS(f)∗df =
∫ 1

2

− 1
2

j2πf
(
sTν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df

= sHV∆,1(p− q)s. (F.22)

[
Wδ

4

]
p,q

=
∫

R

(t− τq)s(1)(t− τp)s(t− τq)∗dt =
∫

R

s(1)(u− (p− q)Ts)︸ ︷︷ ︸
(A.8)

(us(u))∗ du

=
∫ Fs

2

− Fs
2

j2πfS(f)e−j2πf(p−q)Ts

(
j

2π
d

df
(S(f))

)∗

df

=
1
Fs

∫ 1
2

− 1
2

j2πf
(
sTν(f)∗

)
e−j2πf(p−q)

(
sHDν(f)

)
df

=
1
Fs

sHDV∆,1(p− q)s. (F.23)
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[
Wδ

2,2

]
p,q

=
∫

R

(t− τp)(t− τq)s(t− τp)s(t− τq)dt =
∫

R

(u− (p− q)Ts)s(u− ∆τ)︸ ︷︷ ︸
(A.4)

(us(u))∗ du

=
∫ Fs

2

− Fs
2

j

2π
d

df
(S(f)) e−j2πf(p−q)Ts

(
j

2π
d

df
(S(f))

)∗

df

=
1
F 3
s

∫ 1
2

− 1
2

(
sTDν(f)∗

)
e−j2πf(p−q)

(
sHDν(f)

)
df

= sHDV∆,0(p− q)Ds. (F.24)

[
Wδ

3,3

]
p,q

=
∫

R

s(1)(t− τp)s(1)(t− τq)dt =
∫

R

s(1)(u− (p− q)Ts)︸ ︷︷ ︸
(A.8)

s(1)(u)∗du

=
∫ Fs

2

− Fs
2

(
j2πfS(f)e−j2πf(p−q)Ts

)
(j2πfS(f))∗ df

= Fs

∫ 1
2

− 1
2

4π2f2
(
sTν(f)∗

)
e−j2πf(p−q)

(
sHν(f)

)
df

= FssHV∆,2(p− q)s. (F.25)

where

s =
(
. . . s(nTs) . . .

)T
N1≤n≤N2

, (F.26)

ν(f) =
(
. . . ej2πfn . . .

)T
N1≤n≤N2

, (F.27)

U (p) = diag
(
. . . e−j2πpn . . .

)
N1≤n≤N2

, (F.28)

D =
(
. . . n . . .

)T
N1≤n≤N2

, (F.29)

V∆,0 (q) =
∫ 1

2

− 1
2

ν(f)νH(f)e−j2πfqdf, (F.30)

[
V∆,0 (q)

]
k,l

=
∫ 1

2

− 1
2

ej2πf(k−l−q)df =

[
ej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

=
sin (π(k − l − q))
π(k − l − q)

= sinc (k − l − q) (F.31)

(F.32)
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V∆,1 (q) = j2π
∫ 1

2

− 1
2

fν(f)νH(f)e−j2πfqdf, (F.33)

[
V∆,1 (q)

]
k,l

= j2π
∫ 1

2

− 1
2

fej2πf(k−l−q)df

= j2π



[
fej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

−
∫ 1

2

− 1
2

ej2πf(k−l−q)

j2π(k − l − q)
df




=
1

k − l − q
(cos (π(k − l − q)) − sinc (k − l − q)) (F.34)

(F.35)

V∆,2 (q) = 4π2
∫ 1

2

− 1
2

f2ν(f)νH(f)e−j2πfqdf, (F.36)

[
V∆,2 (q)

]
k,l

= 4π2
∫ 1

2

− 1
2

f2ej2πf(k−l−q)df

= 4π2



[
f2ej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

−
∫ + 1

2

− 1
2

2fej2πf(k−l−q)

j2π(k − l − q)
df




=
4π2

j2π(k − l − q)
1
4

[
ejπ(k−l−q) − e−jπ(k−l−q)

]

− 8π2

j2π(k − l − q)



[
fej2πf(k−l−q)

j2π(k − l − q)

] 1
2

− 1
2

−
∫ + 1

2

− 1
2

ej2πf(k−l−q)

j2π(k − l − q)
df




= π2sinc (k − l − q) + 2
cos (π(k − l − q)) − sinc (k − l − q)

(k − l − q)2 (F.37)
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Appendix G

Details on the Impulse Response
Size Determination Problem

G.1 Details on the Global MSE for Under- and Overshooting
Cases

This section gives an insight of how the MSE defined in (4.52) varies whether the number of
pulses considered is underestimated or overestimated. First recall that

∫ Fs
2

− Fs
2

e−j2πfpTs

(
e−j2πfqTs

)∗
df = δqpFs. (G.1)

For the undershooting case:

∫ Fs
2

− Fs
2

∣∣∣H(f) − Ĥ(f)
∣∣∣
2

df =
∫ Fs

2

− Fs
2

∣∣∣∣∣∣

P∑

p=1

αpe
−j2πf(p−1)Ts −

P−∆P∑

q=1

α̂qe
−j2πf(q−1)Ts

∣∣∣∣∣∣

2

df (G.2)

=
∫ Fs

2

− Fs
2

∣∣∣∣∣∣

P−∆P∑

p=1

(αp − α̂p) e−j2πf(p−1)Ts +
P∑

q=P−∆P+1

αqe
−j2πf(q−1)Ts

∣∣∣∣∣∣

2

df

(G.3)

=
P−∆P∑

p=1

|αp − α̂p|2 +
P∑

q=P−∆P+1

|αq|2 using (G.1), (G.4)

which leads to (4.54).

Now regarding the overshooting case,

∫ Fs
2

− Fs
2

∣∣∣H(f) − Ĥ(f)
∣∣∣
2

df =
∫ Fs

2

− Fs
2

∣∣∣∣∣∣

P∑

p=1

αpe
−j2πf(p−1)Ts −

P+∆P∑

q=1

α̂qe
−j2πf(q−1)Ts

∣∣∣∣∣∣

2

df (G.5)

=
∫ Fs

2

− Fs
2

∣∣∣∣∣∣

P∑

p=1

(αp − α̂p) e−j2πf(p−1)Ts −
P+∆P∑

q=P+1

α̂qe
−j2πf(q−1)Ts

∣∣∣∣∣∣

2

df

(G.6)
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∫ Fs
2

− Fs
2

∣∣∣H(f) − Ĥ(f)
∣∣∣
2

df =
P∑

p=1

|αp − α̂p|2 +
P+∆P∑

q=P+1

|0 − α̂q|2 , (G.7)

which leads to (4.56).

G.2 P + next Correlation Coefficient

Let one consider a study case, the GPS L1 C/A. The auto-correlation function is known
and can be modeled by a zero-centered triangle. One can then assume that the normalized
cross-correlation between sP and sP+1 is simply: sHP sP+p = 1 − pF0/Fs where F0 is the GPS
L1 C/A chip rate, equal to 1.023 MHz. Then, if one considers the case with P = 2 sources
already detected and no other remaining source (H0):

PA2s3 = A2

(
AH

2 A2

)−1
AH

2 s3 =
[

s1 s2

] [ sH1 s1 sH1 s2

sH2 s1 sH2 s2

]−1 [
sH1 s3

sH2 s3

]
(G.8)

Then with the approximated triangular shape and assuming that Fs/F0 ≫ 1, one can get

P⊥
A2

s3 ≈ s3 −
(

1 − F0

Fs

)
s2 +

F0

2Fs
s1. (G.9)

And for Fs large enough, this is no longer a series of +1 and −1 because of the cross-correlation
between close-in-time signals. Figure G.1 shows an example for Fs = 8F0: the variance of
s3 is 1 but the variance of its orthogonal projection is now 0.2336. There is then a given

Figure G.1: Projection of sP+1 on the space spanned by the columns of AP , P = 2, Fs = 8F0.

correlation coefficient kσ that depends on Fs, the pseudo-random noise code, the number of

204



signals and the distance between the consecutive pulses considered. This coefficient directly
determines the distribution under H0 and is needed to set the threshold for a given probability
of false alarm. However it is difficult to anticipate kσ, as it can be seen in the following table
G.1. Consequently, kσ needs to be evaluated during the detection test.

Table G.1: Exemples of kσ for GPS L1 C/A with P = 2.

Fs/F0 2 4 8 12
kσ 0.6673 0.4290 0.2336 0.1596

G.3 Chung and Mecklenbräuker Likelihood Ratio Distribu-
tion Derivation

The orthogonal projector over the space defined by the column of AM can be separated into
two orthogonal projectors. One over the subspace defined by M − 1 columns (omitting the
m-th component) and the other, which is naturally the projection upon the subspace defined
by the m-th column, orthogonalized:

PAM
= PAM−1,m

+ P(
P⊥

AM −1,m
sm

) (G.10)

Proof. See Appendix B.2 for more details.

Consequently, the likelihood ratio defined in (4.63) can be reorganized using the orthogonal
decomposition (G.10):

LRm =

∥∥∥P⊥
AM

y
∥∥∥

2

∥∥∥P⊥
AM−1,m

y
∥∥∥

2 =

∥∥∥P⊥
AM−1,m

y
∥∥∥

2
−
∥∥∥∥∥∥
P(

P⊥
AM−1,m

sm

)y

∥∥∥∥∥∥

2

∥∥∥P⊥
AM−1,m

y
∥∥∥

2 (G.11)

Therefore,

LRm = 1 −

∣∣∣sHmP⊥
AM−1,m

y
∣∣∣
2

∥∥∥P⊥
AM−1,m

sm
∥∥∥

2 ∥∥∥P⊥
AM−1,m

y
∥∥∥

2 (G.12)

Under the Hm hypothesis, the m-th component is not relevant. In that case the numerator∣∣∣sHmP⊥
AM−1,m

y
∣∣∣
2

has the same probability density function as in (4.61), the first norm of the

denominator
∥∥∥P⊥

AM−1,m
sm
∥∥∥

2
is an attenuated version of the vector sm as detailed in G.2 and
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the last norm is the norm of the residual noise. In short:

LRm
Hm−→ 1 −

∼χ2
2(0,Nkσσ2

n/2)
︷ ︸︸ ︷∣∣∣sHmP⊥

AM−1,m
y
∣∣∣
2

∥∥∥P⊥
AM−1,m

sm
∥∥∥

2

︸ ︷︷ ︸
=Nkσ

∥∥∥P⊥
AM−1,m

y
∥∥∥

2

︸ ︷︷ ︸
∼χ2

2N
(0,σ2

n/2)

(G.13)

Now, considering the fractional component of this expression:

LRm ∼ χ2
2

χ2
2N

=
χ2

2

χ2
2 + χ2

2(N−1)

= β1,N−1 (G.14)

which has a known probability density function and which allows to compute a desired prob-
ability of false alarm.
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