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M. Marco Velli Professor, UCLA
M. Thierry Passot CNRS, Observatoire de la Côte d’Azur
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Laboratoire d’Études Spatiales
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Abstract

This HDR is devoted to solar wind turbulence from MHD to kinetic plasma scales.
Solar wind turbulence was mostly studied at MHD scales: there, magnetic fluctuations
follow the Kolmogorov spectrum. The fluctuations are mostly incompressible and they
have non-Gaussian statistics (intermittency), due to the presence of coherent structures
in the form of current sheets, as it is widely accepted. Kinetic range of scales is less
known and the subject of debates.

We study the transition from Kolmogorov inertial range to small kinetic scales with
a number of space missions. It becomes evident that if at ion scales (100-1000 km)
turbulent spectra are variable, at smaller scales they follow a general shape. Thanks
to Cluster/STAFF, the most sensitive instrument to measure magnetic fluctuations by
today, we could resolve electron scales (1 km, at 1 AU) and smaller (up to 300 m) and
show that the end of the electromagnetic turbulent cascade happens at electron Larmor
radius scale, i.e., we could establish the dissipation scale in collisionless plasma.

Furthermore, we show that intermittency is not only related to current sheets, but
also to cylindrical magnetic vortices, which are present within the inertial range as well
as in the kinetic range. This result is in conflict with the classical picture of turbulence
at kinetic scales, consisting of a mixture of kinetic Alfven waves. The dissipation of
these waves via Landau damping may explain the turbulent dissipation. How does this
picture change if turbulence is not only a mixture of waves but also filled with coherent
structures such as magnetic vortices?

These vortices seem to be an important ingredient in other instances, such as as-
trophysical shocks: for example, they are observed downstream of Earth’s and Saturn’s
bow-shocks. With the new data of Parker Solar Probe and Solar Orbiter we hope to
study these vortices closer to the Sun to better understand their origin, stability and
interaction with charged particles.
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Résumé

Cette HDR est consacrée à la turbulence dans le vent solaire, des échelles MHD aux
échelles cinétiques du plasma.

La turbulence dans le vent solaire a principalement diux elles MHD : las, les fluc-
tuations magnques suivent le spectre de Kolmogorov (on appelle ces elles le domaine
inertiel de la turbulence). Les fluctuations y sont pour la plupart incompressibles et ont
des statistiques non gaussiennes (intermittence), use de la prnce de structures cohntes
sous forme de couches de courant, comme il est largement admis. Les elles cinques sont
moins connues et font l’objet de débats.

Nous étudions le passage du domaine inertiel aux échelles cinétiques avec plusieurs
missions spatiales. Il devient évident que si aux échelles ioniques (100-1000 km) les spec-
tres turbulents sont variables, à des échelles plus petites ils suivent une forme générale.
Grâce à Cluster/STAFF, l’instrument le plus sensible pour mesurer les fluctuations
magnétiques jour, nous avons pu rudre les elles ctroniques (1 km, A) et plus petites
(jusqu’0 m) et montrer que la fin de la cascade ctromagnque se produit elle du rayon de
Larmor des électrons. Autrement dit, nous avons pu établir l’échelle de dissipation dans
le plasma sans collision.

De plus, nous montrons que l’intermittence n’est pas seulement liux couches de
courant, mais aussi aux vortex magnques cylindriques, qui sont prnts dans le domaine
inertiel ainsi que dans le domaine cinque.

Ce rltat est en contradiction avec l’image classique de la turbulence aux petites elles,
qui consiste en un mnge d’ondes d’Alfven cinques. La dissipation de ces ondes par
l’amortissement de Landau peut expliquer la dissipation turbulente. Comment cette
image change-t-elle si la turbulence n’est pas seulement un mnge d’ondes mais aussi
remplie de structures cohntes telles que des vortex magnques ?

Ces vortex semblent e un ingrent important dans d’autres cas, comme les chocs
astrophysiques : par exemple, ils sont observn aval des chocs de la Terre et de Saturne.
Avec les nouvelles donn de Parker Solar Probe et de Solar Orbiter, nous espns dier ces
vortex plus pru Soleil pour mieux comprendre leur origine, leur stabilit leur interaction
avec les particules charg.
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Chapter 1

Introduction

1 Space plasma

Natural plasmas are frequently in a turbulent state characterized by large and irregular
fluctuations of the physical parameters. The spatial and temporal scales of these fluctu-
ations cover a large range, usually extending down to the smallest scales resolved by the
observations. Plasma turbulence appears to be present throughout the universe, like,
e.g., in galaxy clusters, accretion disks, supernova remnants, the interstellar medium,
stars, stellar winds and planetary magnetospheres.

The Heliosphere with the solar wind and planetary magnetospheres represent ex-
cellent laboratories for the observations of collisionless astrophysical plasmas and in
particular of plasma turbulence. Instruments on board more and more sophisticated
spacecraft can obtain high quality in situ measurements of electromagnetic fields and of
particle distribution functions with their moments (density, velocity, temperature, etc.),
in a wide range of scales and frequencies, and under different plasma and boundary
conditions.

In particular, since the beginning of the exploration of the interplanetary space in
the sixties, it has been observed that the solar wind plasma flow is far from being
laminar and exhibits large magnetic and velocity fluctuations at all accessible scales,
qualitatively similar to what is observed in high Reynolds number neutral flows. This
apparently fluid behavior is puzzling in a very rarified plasma such as the solar wind.
Indeed, at the Earth’s orbit, the solar wind density is of the order of 5 particles per cm3

and the mean free path `mfp of the order of 1 AU. Thus, one may expect that the fluid
approximation may not be valid (for scales smaller than 1 AU).

In agreement with the very low degree of collisionality, the solar wind particle dis-
tribution functions are far from being isotropic Maxwellians. The distribution functions
of ions (mostly protons, and 5% of α particles) and of electrons are not isotropic with
respect to the mean magnetic field B0 direction, i.e, their temperatures in the plane
perpendicular to the mean field T⊥ is different from the parallel temperature T‖

1. When

1All over the manuscript, symbols ⊥ and ‖ mean perpendicular and parallel to the mean magnetic
field B0.
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the ion (electron) distribution functions have a strong anisotropy, electromagnetic waves
at ion (electron) scales are generated, bringing the plasma to a marginal stability state.
In addition to the temperature anisotropy, the distribution function of parallel electron
velocities f(Ve,‖) is not symmetric but has an important skewness: there exists a broad
electron beam coming from the Sun (called Strahl), that results in an outward electron
heat flux.

All these features can throw a doubt on the fact that the solar wind plasma can
behave as a fluid. Nevertheless, the presence of turbulence at scales ` smaller than the
mean collisional scale `mfp and also of magnetohydrodynamic (MHD) discontinuities,
like shocks in front of the planetary magnetospheres and of Coronal Mass Ejections, are
signatures that space plasmas behave like a fluid (or, to be more precise, like a magneto-
fluid) at scales ` < `mfp. Fluid behavior ceases in the vicinity of ion and electron
characteristic scales, the so-called kinetic plasma scales. This manuscript is devoted to
the space plasma turbulence covering fluid and kinetic scales.

2 Fluid turbulence in brief

Turbulence is a non-resolved problem of classical mechanics. In the case when convection
dominates viscosity, an external source of energy produces turbulence in a fluid. In other
words, this happens when the energy injection scale L is much larger than the dissipation
scale `d. The ratio between convective and dissipative terms at the injection scale L
defines the Reynolds number Re = LVL/ν (where VL is the typical value of velocity
fluctuations at scale L and ν the kinematic viscosity). Turbulence is well developed in
a fluid when Re � 1.

Thanks to a number of observations, numerical simulations and theoretical works,
the following universal properties of a turbulent system have been firmly established:

• In Fourier space, at intermediate scales L−1 � k � `−1d (k being a wave-number),
within the so-called inertial range, the power spectrum of the velocity fluctuations
is observed to follow a k−5/3 law, independently of how energy is injected in the
system, and of how it is dissipated at small scales. This suggests scale invariance:
at each scale the same physical description is valid (the Navier-Stokes equation
for fluids and the MHD equations for magnetised plasmas are scale invariant and
describe well self-similar turbulent fluctuations).

• Intermittency, due to spatial non-uniformity of the energy transfer across scales,
manifests itself as a scale dependent departure from Gaussian distributions of the
probability distribution functions (PDF’s) of the turbulent fluctuations.

To date, three-dimensional fluid turbulence is far from being understood, and there
is no satisfactory theory that fully describes it in a sufficiently general frame: we still
don’t know how to arrive from the fundamental Navier-Stokes equation (with or without
magnetic field) to the statistical description which admits solutions in the form of the
observed stationary spectra independent of the energy injection and its dissipation.
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Therefore one has to rely on “phenomenologies” which attempt to provide a frame-
work for the interpretation of experimental results. For example the empirical k−5/3 law
is well described by the Kolomogorov’s phenomenology (hereafter K41) (Kolmogorov,
1941; Frisch, 1995). In this simple model of incompressible turbulence, kinetic energy Ec
is supposed to cascade from large scales to small scales and the cascade rate ε (energy
per unit time) is constant over the inertial range ε = ∂Ec/∂t = const. Since the only
timescale that appears in the system is the time of the energy exchange between the fluc-
tuations (the eddies), also called the non-linear time or eddie turnover time τNL = `/δv,
the cascade rate for incompressible velocity field fluctuations δv can be approximated
by ε ∼ (δv)2/τNL = const. It follows that the fluctuations verify the following scaling
δv ∼ (ε`)1/3, so that the power spectrum δv2/k goes like `5/3 or k−5/3.

Intermittency is beyond the K41 phenomenology. It has been observed that in neutral
fluids it appears in the form of coherent structures as filaments of vorticity (She et al.,
1990). Their characteristic length can be of the order of the energy injection scale L but
their cross-section is of the order of the dissipation scale `d (see the references of Section
8.9 in Frisch (1995)). Thus, in Fourier space, these filaments occupy all scales including
the edges of the inertial range.

As we have said, in the phenomenological framework of turbulence, the majority
of the results are based on the interpretation of experimental results. However, one
important theoretical result was obtained from the first principles, independently of K41
phenomenology: it is known as Kolmogorov’s 4/5 law (hereafter K4/5). The K4/5 law
prescribes that, for fully developed incompressible Navier-Stokes turbulence in condition
of isotropy, local homogeneity, and vanishing dissipation (i.e., in the inertial range), the
third moment of the longitudinal (i.e., along the bulk flow) velocity fluctuations δv scales
linearly with the separation `:

Y (`) = 〈δv3〉 = −4

5
ε`, (1.1)

see (Frisch, 1995), Section 6.2, and references therein. This law has been indeed observed
in neutral fluid turbulence (e.g., Danaila et al., 2001).

At scales around `d (dissipation range), the viscosity converts turbulent energy into
heat. The fluctuations are not self-similar anymore and the spectrum does not follow
a power-law but has an exponential cut-off ∼ k3 exp (−Ck`d), with C ' 7, see (Chen
et al., 1993). The dissipation range is described in fluid approximation: `d is much larger
than the collisional mean free path.

The dissipation scale `d, also called the Kolmogorov micro-scale, is defined as the
scale where the Reynolds number is one, where the dissipation and convection are equally
important. It can be expressed as a function of the kinematic viscosity ν and the energy
dissipation rate εd:

`d =

(
ν3

εd

) 1
4

. (1.2)

For a stationary turbulence system, the energy dissipation rate εd is the same as the
energy injection and energy transfert rates ε. As one can see from Equation (1.2), the
stronger the energy dissipation rate (and so the injection rate), the smaller `d.
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3 Turbulence in collisionless magnetized plasmas

Does turbulence in magnetised astrophysical plasmas share the above universal char-
acteristics of neutral flows? Are plasma fluctuations self-similar at different scales and
what is the nature of these fluctuations? What is the nature of the intermittency? How
does dissipation set in? at which scale? and is dissipation spectrum universal?

To answer these questions, we shall mainly consider solar wind turbulence, which
is perhaps our best laboratory for studying astrophysical plasma turbulence (Tu and
Marsch, 1995; Horbury et al., 2005; Matthaeus and Velli, 2011; Bruno and Carbone,
2013; Alexandrova et al., 2013). Then we will give several examples of the solar wind
downstream of planetary bow-shocks (of Earth and Saturn), called planetary magne-
tosheath.

Let us summarize now the differences between astrophysical plasmas and usual neu-
tral fluids. In natural plasmas:

• there is a mean magnetic field B0, which introduces a privileged direction and
imposes an anisotropy of turbulent fluctuations. It allows waves to propagate,
even in the incompressible limit (Alfvén waves);

• the collision frequency is very low, thus the dissipation process at work and the
dissipation scale `d are not known precisely;

• there is a number of plasma kinetic scales, namely, Larmor radius and cyclotron
frequency of charged particles, their inertial length, the Debye length;

• there is a wave dispersion: beside Alfvén waves, one may also expect fast and/or
slow magnetosonic waves at MHD scales, and, at kinetic scales, kinetic Alfvén,
whistler or slow/ion-acoustic waves, etc.

As we will show below, notwithstanding this complexity, there is a certain degree
of generality in space plasma turbulence, and there are similarities with incompressible
neutral fluids.

Turbulent spectrum in the solar wind at R ≥ 0.3 AU

Solar wind is the coronal plasma in spherical expansion. It is inhomogeneous, with a
dense slow wind blowing at low heliographic latitudes and a fast and more tenuous wind
at high latitudes. Observations at R ≥ 0.3 AU indicate that the following picture can
be valid. The large scale magnetic field of the Sun forms an Archimedean spiral in the
Heliosphere, with a step of ∼ 6 AU (for the solar wind speed V = 400 km/s), also called
the Parker spiral (Parker, 1958). At smaller scales, the solar wind is filled with flux ropes
more or less aligned with the Parker spiral: the scale of these flux tubes correspond to
the size of granules on the solar surface and is of the order of the largest scale of the
turbulent cascade; the mean diameter of a flux tube at 1 AU is estimated to be ∼ 106 km
(Borovsky, 2008). At smaller scales, a turbulent cascade is observed.
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Figure 1.1: (Top) Combined magnetic spectrum from different time intervals and different space missions
(Kiyani et al., 2015). (Bottom) Magnetic spectrum P⊥ = PSD(k⊥) is the power spectral density (PSD) of
the k⊥ fluctuations, measured while the flow-to-field angle ΘBV is quasi-perpendicular (ΘBV ∈ [80, 90]◦),
shown by blue open squares. Magnetic spectrum of k‖ fluctuations, P‖ = PSD(k‖), is measured while
ΘBV ∈ [0, 10]◦ (blue dots). The total Fourier spectrum is shown in gray. P⊥ is more intense within the
inertial range; it follows a power-law with the spectral index −5/3. P‖ has a lower intensity, is steeper
and has a spectral slope −2. At the energy injection scales f < 5 · 10−4 Hz (which correspond to spatial
scales kρi < 2 · 10−3) the fluctuations are isotropic and their spectrum follows a law ∼ f−1. Courtesy of
R. Wicks. The same figure as a function of kρi can be found in (Wicks et al., 2010).
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Figure 1.1(Top) shows a combined magnetic spectrum from different time intervals
and different space missions (Kiyani et al., 2015). Is there a meaning in combining
different solar wind streams and satellites? It seems so because all these spectra overlap
perfectly (K. Kiyani, private communication, 2017). The observed spectral behaviour is
typical for any other solar wind measurements and then can be used as a representative
example. One observes here magnetic fluctuations δB covering nearly 8 decades in
frequencies and more than 14 decades in power spectral density. At very large scales
(low frequencies), the spectrum follows a law f−1. The fluctuations are Alfvénic in
nature with δB aligned (or anti-aligned) with velocity fluctuations δV (e.g., Belcher and
Davis, 1971; Gosling et al., 2009). However, these Alfvénic fluctuations are not classical
linear Alfvén waves as their relative amplitude δB/B0 is of order 1 (e.g., Horbury et al.,
2005; Tsurutani et al., 2011b; Chen, 2016; Matteini et al., 2018). The wave vectors are
isotropic at such large scales, see Figure 1.1 (Bottom) from (Wicks et al., 2010), where
we observe the same energy in k‖ and k⊥ fluctuations. The separation in k‖ and k⊥
fluctuations was done by varying the sampling direction with respect to the local B0

(Horbury et al., 2008; Wicks et al., 2010). Indeed, when the angle ΘBV between the flow
and the field is close to zero, the satellite measures k‖ fluctuations; when ΘBV ' 90◦,
the k⊥ fluctuations are observed.

At large scales, where the mean field B0 is of the same order as the fluctuations, the
B0/|B0| direction is ill-defined. That explains the observed isotropy of the k distribution
at large scale. This low frequency range corresponds to scales between 106 km (that is
just larger than the radius of the Sun RSun ' 0.7 · 106 km) and up to 108 km ∼ 1 AU
(Veltri, 1994). It is usually called the energy-containing scales (Bruno and Carbone,
2013). However, the exact physical process which generates the f−1 spectrum is still
under debates (e.g., Horbury et al., 2005; Verdini et al., 2012).

At 1 AU, the MHD inertial range is observed between 10−3 Hz and 10−1 Hz (corre-
sponding to 106 km > ` > 103 km), see both panels of Figure 1.1. Here, the spectrum

follows the Kolmogorov scaling for the k⊥ fluctuations, P⊥ ∼ k
−5/3
⊥ , and a steeper one

for the k‖ fluctuations, P‖ ∼ k−2‖ , which reminds the spectrum of any kind of magnetic

discontinuity along B0 (bottom panel). Note that the spectrum in the top panel shows
the Kolmogorov scaling, as far as the k⊥ fluctuations dominate turbulence within the
inertial range2.

The observed anisotropic scaling in the inertial range is in agreement with the criti-
cally balanced Alfvénic turbulence model of Goldreich and Sridhar (1995). This model
is based on the assumption that in incompressible MHD turbulence, the non-linear time
τNL = 1/(δz±k⊥) (with Elsässer variables δz± = δV ±δB, where δB is in velocity units)
is of the same order as the Alfvén time τA = 1/(VAk‖) (the linear time of the parallel
propagating Alfvén waves). An experimental verification of this assumption was done
by Chen (2016) using the simplified definition of the non-linear time: τNL = 1/(δBk⊥).
Then, the ratio τA/τNL = (k⊥/k‖)(δB/B0) turns out to be constant within the inertial
range and close to unity. This result seems to indicate that critical balance is indeed

2In fact, it is natural that the k⊥ spectrum dominates: both spectra start at the same level at large
scales, but the k‖ spectrum is steeper.
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at work within the inertial range. However, pure Alfvénicity is not observed (Grap-
pin et al., 1983; Salem, 2000; Podesta et al., 2006; Boldyrev, 2006; Salem et al., 2009;
Alexandrova et al., 2013; Grappin et al., 2016; Verdini et al., 2018, 2019): the parallel
velocity spectrum follows the k−2‖ scaling, like the magnetic field (Wicks et al., 2011), but

the perpendicular and dominant one is flatter, k
−3/2
⊥ . Moreover, density fluctuations are

ubiquitous in the solar wind and follow the Kolmogorov scaling within the inertial range
(Celnikier et al., 1983; Issautier et al., 2010; Howes et al., 2012; Chen et al., 2012a,b,
2013; Šafránková et al., 2013).

If the spectral shape of different fluctuating quantities is more or less well established
for radial distances R ≥ 0.3 AU, the energy injection, transfer and dissipation rates are
matters of debates (e.g., Sorriso-Valvo et al., 2007; Marino et al., 2008; Carbone et al.,
2009; Alexandrova et al., 2013; Banerjee and Galtier, 2014; Banerjee et al., 2016; Sorriso-
Valvo et al., 2018a,b; Kuzzay et al., 2019; Yang et al., 2019). These rates are closely
related to the amplitude of the turbulent spectrum. In this manuscript, we will adress
the turbulence level within the inertial range and its relation to the plasma parameters
in the solar wind (see Chapter 2, Section 1).

The inertial range stops at frequencies (and scales) around ion characteristic scales,
such as the ion cyclotron frequency fci = eB0/2πmi (where e is the elementary charge
and mi is the ion mass), the ion inertial length λi = c/ωpi (where ωpi is the ion plasma
frequency) and the ion Larmor radius ρi = Vi⊥/ωci (where Vi⊥ =

√
2kTi⊥/mi is the ion

thermal speed in the plane perpendicular to B0, Ti⊥ is the perpendicular ion temperature
and ωci = 2πfci). At these scales, the MHD approximation is no more valid, ions and
(light) electrons behave separately (e.g., Matthaeus et al., 2008; Stawarz et al., 2016;
Chen and Boldyrev, 2017; Hellinger et al., 2018; Papini et al., 2019). In Fourier space,
at 1 AU, ion scales cover approximately one decade, from 0.1 to 1 Hz (corresponding
to ` ∈ [102, 103] km), see transition range in Figure 1.1 (Top). Here, the turbulent
spectrum undergoes a steepening (Leamon et al., 1998b; Bale et al., 2005; Alexandrova
et al., 2007; Chen et al., 2012b; Šafránková et al., 2013) and the spectral shape is variable
(e.g., Smith et al., 2006; Bruno et al., 2014; Lion, 2016; Lion et al., 2016)3.

The physical nature of the range around ion scales is strongly debated: is it the
beginning of the dissipation range? or does the turbulent cascade just change its nature?
Or both phenomena take place? What is the physical scale responsible for the spectral
change? We will discuss these questions in more details in Chapter 2, Section 2.

What happens with turbulence at scales smaller than the ion scales? The first solar
wind observations at sub-ion scales were reported by Denskat et al. (1983), using He-
lios/SCM at radial distances R ∈ [0.3, 0.9] AU. From this pioneering work we know that
between ion and electron scales, the magnetic spectrum follows the ∼ f−3 power law.
That is close to the spectrum shown in Figure 1.1 (Top).

Thanks to the Cluster/STAFF instrument (Escoubet et al., 1997; Cornilleau-Wehrlin
et al., 1997), which is the most sensitive Search Coil Magnetometer by today, the small
scale tail of the electromagnetic cascade at 1 AU could be explored down to a fraction of

3This is normal: in the presence of characteristic scales no one expects to observe a general self-similar
behaviour.
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electron scales4 ∼ 0.2−1 km (Mangeney et al., 2006; Lacombe et al., 2006; Alexandrova
et al., 2008b, 2009, 2012, 2013; Sahraoui et al., 2010, 2013; Lacombe et al., 2017; Matteini
et al., 2017).

The Cluster observations at electron scales seem confusing at first glance: the spectral
shape of the magnetic fluctuations vary from event to event suggesting that the spectrum
is not universal at kinetic scales (Mangeney et al., 2006; Sahraoui et al., 2010, 2013).
However, as we show in (Lacombe et al., 2014; Roberts et al., 2017; Matteini et al.,
2017), most of these spectral variations are due to the presence or absence of whistler
waves with frequencies of a fraction of fce and wave vectors k quasi-parallel to B0. These
waves may result from the development of some instabilities associated to an increase
of the electron heat flux and/or an increase of the electron temperature anisotropy, in
some regions of the solar wind (Štverák et al., 2008).

Are whistler waves part of the background turbulence at kinetic scales? Our analysis
of the anisotropy (in amplitudes of the fluctuations and in the distribution of wave
vectors) shows that turbulent fluctuations at sub-ion and up to sub-electron scales have
low frequencies in the plasma frame (f ' 0) and wave vectors mostly perpendicular to the
mean field k ⊥ B0 (Lacombe et al., 2017). This background turbulence is convected by
the solar wind (with the bulk speed V) across the spacecraft and appears in the satellite
frame at frequencies f = k⊥V/2π. It happens that these frequencies are below but
close to fce, exactly in the range where whistler waves (with k‖B0 and flh ≤ f ≤ fce,
where flh =

√
fcefci is the low hybrid frequency) may appear locally. Therefore, the

superposition of turbulence and whistlers at the same frequencies is incidental. If we
could do measurements directly in the plasma frame, these two phenomena would be
completely separated in k and f . We discuss our observations of whistlers in the solar
wind (Lacombe et al., 2014; Kajdič et al., 2016; Krishna Jagarlamudi et al., 2020) in
Chapter 2, Section 6.

Chapter 2, Section 3 describes the spectral shape of the background turbulence at
sub-ion scales, i.e., in the absence of parallel whistler waves. We show that the magnetic
spectrum has a general shape, independently of plasma conditions and of radial distances,
for R ∈ [0.3, 1] AU. This general spectrum is similar to what is observed in the dissipation
range of neutral fluids.

Which plasma scale plays the role of the dissipation scale `d in a nearly collisionless
medium? Using different independent tests, we could show that in the solar wind, it
is the electron Larmor radius ρe, which plays the role of `d for the electromagnetic
turbulence. This result seems to be valid at different radial distances from the Sun. See
Chapter 2, Section 4, for more details.

Intermittency in space plasmas?

As we have discussed in Section 2 of this chapter, intermittency is the second universal
property of any turbulent system. In hydrodynamic turbulence, it is manifested by non-

4The electron scales, namely fce, λe and ρe, are defined in equivalent way as the corresponding ion
scales.
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Figure 1.2: Intermittent structures in turbulent flows. Left: vortex filaments in 3D incompressible
Navier–Stokes turbulence. Shown are iso-surfaces of high vorticity. Right: current filaments and current
sheets in 3D incompressible MHD turbulence. Shown are iso-surfaces of high vorticity (red) and high
current density (blue). The form of the structures and their dimension is believed to have major impact
on turbulent statistics. Figure from (Grafke et al., 2015).

Gaussian statistics of velocity increments. Intermittency is believed to be responsible for
a non-homogenous energy transfer and dissipation. It is due to coherent structures in
the form of filaments of vorticity, as can be observed in 3D incompressible hydrodynamic
numerical simulations, Figure 1.2 (Left).

What do we know about intermittency and coherent structures in space plasmas?
Signatures of intermittency, such as departure from Gaussianity of the PDFs of the
fluctuating quantities (e.g., components of the magnetic field and velocity) and increases
of Kurtosis toward small scales, are widely observed in the solar wind (e.g., Veltri, 1994;
Sorriso-Valvo et al., 1999; Salem et al., 2009; Bruno and Carbone, 2013).

Figure 1.2 (Right) shows isosurfaces of high current density in 3D incompressible
MHD simulations. We can recognise here current filaments (similar to the high vortic-
ity regions in hydrodynamic simulations), but as well, planar structures, which can be
interpreted as current sheets.

Starting with the first in-situ measurements, planar discontinuities in the interplan-
etary magnetic field have been detected (Burlaga, 1969; Burlaga and Ness, 1969). Since
then, there has been debate on their nature, origin and role in solar wind heating (e.g.,
Burlaga, 1971; Burlaga et al., 1977; Vasquez and Hollweg, 1996, 2001; Horbury et al.,
2001; Söding et al., 2001; Knetter et al., 2004; Neugebauer, 2006; Tsurutani et al., 2007,
2011a; Gosling, 2012; Artemyev et al., 2018, 2019). And what if the planar discontinu-
ities at scales ` < 106 km (i.e., within the inertial range and at smaller scales) are the
result of developed turbulent cascade in the solar wind?

Turbulence analysis of Veltri and Mangeney (1999), Veltri (1999) and Mangeney
et al. (2001) showed that intermittency in the solar wind inertial range is due to planar
coherent structures in the form of shocks and current sheets. This analysis, where
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turbulent fluctuations are defined via Haar wavelets, detects high amplitude events which
are responsible for non-Gaussian statistics.

Greco et al. (2009, 2010, 2012) compared in-situ observations and MHD numerical
simulations. In these studies, the Partial Variance of Increments (PVI) method is used
to detect strong changes in the field components within the inertial range. The authors
showed a nice agreement between statistical properties of intermittency in the solar wind
and in the simulations. The shape of magnetic structures is very similar and looks like
current sheets. Within the kinetic range of scales, again using the PVI method, Perri
et al. (2012a) and Greco et al. (2016) have detected current sheets as well.

Indeed, current sheets are good candidates for a local dissipation by magnetic recon-
nection (e.g., Velli, 2003; Retinò et al., 2007; Sundkvist et al., 2007; Servidio et al., 2009;
Osman et al., 2011). Thus, as in hydrodynamic turbulence, these intermittent structures
can be the origin of a non-homogenous energy transfer and dissipation in space.

Are there other types of structures? Does their topology change across the cascade?
In Chapter 3, we first attempt to give a definition of a coherent structure. One of the
most important properties of a coherent structure is its phase coupling across a wide
range of scales (like in a shock wave, where phases of each Fourier component are fixed
to the same value). Second, we show a way to detect signatures of phase coupling in the
data. We find that these signatures start at the break point between the f−1 and f−5/3

ranges, and go through the cascade up to the smallest resolved scales. See Chapter 3,
Section 1 for more details. Chapter 3, Section 2 shows the relation between the phase
coupling and non-Gaussianity of turbulent fluctuations.

Regarding the topology of structures (Chapter 3, Section 3), we find magnetic holes,
solitons, small-scale shocks, current sheets, but mostly, magnetic vortices (Lion et al.,
2016; Roberts et al., 2016; Perrone et al., 2016, 2017). Indeed, unlike previous works,
where to detect structures the threshold was applied on the amplitudes of PVI, here we
apply it on the amplitudes of (i) the Morlet wavelet coefficients and (ii) fluctuations in
physical space. This explains why we detect not only planar discontinuities.

Magnetic vortices are cylindrical structures with a field aligned current. We detect
them within the inertial range and at ion scales. Recently, we find them at sub-ion scales
as well (Alexandrova et al., 2020). These structures are much more energetic than the
background and are thus responsible for the observed general spectrum at kinetic scales.

Our results indicate that magnetic vortices are important features of the space plasma
turbulence. We focus on Alfvén vortices in Chapter 4. First, we remind the basic equa-
tions of MHD Alfvén vortices. Second, we discuss the spectral properties (Alexandrova,
2008) and apparent polarisation of the vortex signal passed by a spacecraft (Alexandrova
and Saur, 2008), which is important for in-situ data interpretation. Then, we show our
observations of the plasma behaviour within an Alfvén vortex detected by the MMS
mission in the Earth’s magnetosheath (Wang et al., 2019). Finally, we discuss recently
developed models of fluid vortices in high-β plasma5 (β ∼ 1) and at ion, and electron

5Plasma parameter β is the ratio between the ion (electron) thermal pressure and magnetic pressure:
βi,e = nkTi,e/(B

2
0/2µ0), where n is the plasma density, Ti,e is the ion (electron) temperatures, k – the

Boltzmann constant and µ0 is the magnetic constant.
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scales (Jovanović et al., 2015; Jovanovic et al., 2020).

4 Concluding remarks

When I started working on solar wind turbulence after my PHD (November 2005), the
kinetic range of turbulence was not well known, and it was thought to be characterised
by a significant variability, depending on details of its formation.

I spent some time trying to clarify this situation. With my colleagues, we were able
to show that this variability was mostly an effect of the way data are treated. More or
less general spectrum is always present at kinetic scales. Indeed the variability of the
exponents of the power-law spectra appears if the analysis is done at scales which include
ion scales (as was usually done in the past, including by ourselves in the first studies
(Alexandrova et al., 2007, 2008a) of the solar wind kinetic turbulence). This is due to the
fact that at ion scales, different physical processes can be active including partial energy
transfer from electromagnetic fluctuations to ions. At these scales (covering one decade)
there is no reason to expect that a scale-free turbulence approach is valid. Similarly,
variability at electron scales appears when parallel whistler waves are superimposed on
the background turbulence in the satellite frame. At scales smaller than ion scales and
in the absence of parallel whistlers, the spectrum follows indeed a universal shape.

Actually, beyond the question of methodology, our results answer to one of the open
questions in space plasma turbulence: (1) what are the properties of kinetic plasma
turbulence? and (2) are they universal, with a spectral shape independent of local
plasma parameters? The answers to the second question is definitely yes.

The first question is directly related to intermittency. Before 2005, it was studied
mostly within the inertial range and it was thought to be due to planar discontinuities,
essentially current layers, most probably related to reconnection, as we have discussed
above. My main contribution, together with my colleagues, students and post-docs, has
been to show that planar discontinuities are not the only intermittent structures in space
plasma turbulence. Cylindrical magnetic vortices play an important role in the cascade
and they cover a wide range of scales, from fluid to kinetic.

Our results give new insights to physics of space plasma turbulence and we discuss
theoretical interpretations of our findings in Chapter 5.
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Chapter 2

Turbulent spectrum from MHD
to electron scales

In this chapter, we focus on the turbulent spectrum of magnetic fluctuations in the solar
wind from the MHD scales up to the plasma kinetic scales. Regarding the inertial range,
we show that the turbulent energy is well correlated with the magnetic and ion thermal
pressures for a wide range of radial distances from the Sun (between 0.5 and 5 AU).
Regarding the kinetic scales, we show that for the perpendicular wave numbers k⊥ the
magnetic turbulent spectrum follows a universal shape, independent of the plasma con-
ditions and of the solar wind type. The level of the kinetic spectrum correlates with the
magnetic and ion thermal pressures as well. Using several independent approaches, we
show that the Kolmogorov (or dissipation) scale in a collisionless plasma is the electron
Larmor radius ρe. We propose a general description of the magnetic turbulent spectrum
from ion to sub-electron scales. These results, established at 1 AU up to 200 − 400 Hz
(Alexandrova et al., 2009, 2012), have been recently verified at 0.9, 0.6 and 0.3 AU with
the Helios measurements up to ∼ 500 − 700 Hz (Alexandrova et al., 2020). Finally,
we discuss observations of Alfvén-Ion-Cyclotron waves and whistler waves, generated by
quasi-linear plasma instabilities, which modify the general spectral shape in the satellite
frame, around ion and electron scales, respectively.

1 Amplitude of turbulence within the inertial range

Figure 2.1 shows turbulent spectra measured on Cluster by the FGM and STAFF(SC
and SA) instruments, for seven time intervals in slow and fast wind with different βi
(see the caption of the left panel for the exact values of the solar wind speed V and
proton plasma βi values). Variations of the ion and electron scales among the intervals
are indicated by horizontal black lines.

The Cluster mission being a magnetospheric mission is not going far in the solar
wind; therefore (i) the time intervals in the solar wind are relatively short (i.e., the f−1

range is not resolved) and (ii) while being in the solar wind, the satellites are very often
magnetically connected to the Earth’s bow shock. The only way to avoid this connection
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Figure 2.1: Seven solar wind turbulence spectra from MHD to electron scales for different solar wind
conditions. Left: superimposition of the spectra within the inertial range. Right (will be commented
in Section 3): superimposition of the same spectra within the sub-ion range; here, the variability of the
spectra around ion scales is particularly well visible. The data are from (Alexandrova et al., 2009).

is to consider time intervals when the solar wind magnetic field is quasi-perpendicular
to the wind flow. It appears that Cluster can be in the free solar wind only when the
flow-to-field angle ΘBV is greater then 60◦ (Alexandrova et al., 2012). This means that
with Cluster we mostly resolve the k⊥ turbulent fluctuations in the solar wind.

To underline the general shape of the spectra within the inertial range, we super-
impose in Figure 2.1 (Left) all the spectra within the low frequency range, i.e., corre-
sponding to scales larger than the ion spatial scales, ρi and λi. All the spectra follow a
power law close to ∼ f−5/3. The factor P0, which allows to superimpose the spectra, is
the relative amplitude of each spectrum with respect to the most intense one1. Thus,
P0 is proportional to the absolute amplitude of the spectrum A0, i.e., turbulence level.
It is well correlated with the magnetic pressure Pm = B2

0/2µ and with the wave number
corresponding to the electron Larmor radius kρe = 1/ρe, see Figure 3(d) in (Alexandrova
et al., 2009).

In the hydrodynamic turbulence, the amplitude of the spectrum is directly related
to the energy injection rate ε

P (k) = A0(ε)k
−5/3. (2.1)

At the same time, as ε is supposed to be the same as the energy dissipation rate εd, A0

is related to the dissipation scale `d:

A0 ∼ ε2/3 ∼ `−8/3d , (2.2)

i.e., the larger the energy injected in the cascade, the higher the spectrum and the smaller
the dissipation scale.

1We take the most intense spectrum as a reference. For a given spectrum, the factor P0 is the ratio
between that spectrum and the reference one, averaged over frequencies of the inertial range.
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Figure 2.2: Magnetic field measurements by different satellites at different radial distances: the thick
solid lines of different colours give the median PSD(f) at different R, the filled deep-coloured areas
around represent 50% of the spectra around the median, the light areas show the extreme PSD levels.
The vertical dashed line is at 3.9 · 10−3 Hz, a common frequency within the inertial range for all R.
Figure from the PHD thesis of Lion (2016).

The anticorrelation between P0 and ρe observed in the solar wind (Alexandrova
et al., 2009) makes us think that the electron Larmor radius ρe may play the role of the
dissipation scale `d in a nearly collisionless solar wind. We will go back to this point
below. Now we focus on the turbulence level in the solar wind and its relation to different
plasma parameters.

In Figure 2.1 we have only considered 7 spectra. Let us now perform a larger statis-
tical study of the solar wind spectral level within the inertial range and for various radial
distances R. Figure 2.2, from the PHD thesis of Lion (2016), shows the distribution of
magnetic power spectral density (PSD) as observed by different satellites at R = 0.5
and 0.9 AU (Helios), 1 AU (STEREO A), 1.4 and 5.3 AU (Ulysses). Each spectrum is
integrated over 24 h. The vertical dashed line indicates f1 = 3.9 · 10−3 Hz (which corre-
sponds to a time scale τ ' 4 min). It is a common frequency within the inertial range
for all R and its PSD will be used as a reference for the turbulence level, EB =PSD(f1)

2.
For any radial distance R, we find that (i) the turbulence level EB is correlated

with magnetic pressure Pm, as was observed for the 7 intervals of Cluster, and (ii)
it correlates even better with the ion (or proton) thermal pressure Pth = nkTi, see
Figure 2.3 (Left, a-c). Indeed, a dependence between the amplitude of the frequency
spectrum, within the inertial range, and the ion thermal pressure has been already
measured by Helios spacecraft in the inner Heliosphere (Grappin et al., 1990). Here, we

2Note that EB here is an absolute turbulence level at a fixed frequency within the inertial range
and P0 in Figure 2.1 is a relative turbulence level for the inertial range frequencies. Both have similar
physical meaning.
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confirm this correlation for a much wider range of radial distances3.
For both pressures, Pm and Pth, we find the following relations:

log (EB(R)) = am,th log(Pm,th) + bm,th(R) (2.3)

The radial evolution of the fitting parameters is shown in Figure 2.3 (Right, a-b). The
factors of proportionality am = ath = a = 1 for any R.

The intercepts bm,th varies with R, as expected in the expanding solar wind for the
observed radial evolution of the solar wind plasma parameters (Lion, 2016). Indeed, if
H is a physical quantity such as ion temperature T , plasma density n, magnetic field
energy B2 and turbulence level EB, then one can write the following scaling with the
radial distance:

H(R) = H(R0)

[
R0

R

]γH
, H = T, n,B2, EB. (2.4)

Combining equations (2.3) and (2.4), Lion (2016) has shown that

bth(R) = bth(R0) + [a(γT + γn)− γEB ] · log

[
R0

R

]
, (2.5)

bm(R) = bm(R0) + [aγB2 − γEB ] · log

[
R0

R

]
. (2.6)

From Helios observations, it is known that γT ' −0.9, γn ' −2, γB2 ' −3.2 (Totten
et al., 1995; Hellinger et al., 2013; Perrone et al., 2019a).

Taking radial evolution of the turbulence level at the energy injection scales as R−3

(Bavassano et al., 1982; Bruno and Carbone, 2013), and assuming that at the correla-
tion scale (or the break scale between f−1 and f−5/3 frequency ranges) the solar wind
expansion time τexp = R/V is equal to the non-linear time τNL, it is possible to show
that the radial evolution of the turbulence level within the inertial range has γEB = −4
(Lion, 2016)4. Thus, we get the radial evolution of the intercepts bth,m(R), shown by
dashed lines in Figure 2.3 (Right, a-b).

Figure 2.3 (Right, c-d) show the observed correlations between EB and nT (c), and
between EB and B2 (d) as a function of R: it seems that they improve with radial
distance, and the correlations within the fast wind (in red) are better than within the
slow wind (in green).

The correlations observed in Figure 2.3 mean that the energy injection and dissipation
rates are mainly determined by Pm and Pth, see Equation (2.2), and this situations
seems to improve with R. These results are puzzling. Indeed, in the solar wind, all
the plasma parameters are more or less intercorrelated. For example, for the data set
of STEREO analysed here, the correlation between the magnetic and thermal pressures

3We observe the same correlation for the kinetic range spectrum at 1 AU with Cluster in the solar
wind (Alexandrova et al., 2013; Lacombe et al., 2017) and at 9.6 AU within the Saturn’s magnetosphere
(von Papen et al., 2014).

4This radial evolution was indeed observed in-situ by Bavassano et al. (1982)
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Figure 2.3: Left: (a) B0(t), Ti(t), nTi(t) and PSD(fj , t), with j = 1, 2, at f1 = 3.9 · 10−3 Hz and
f2 = 3.1 · 10−2 Hz, over one month of STEREO data (July 2009); (b) log(EB) as a function of log(nTi)
for different R, with EB =PSD(f1); (c) log(EB) as a function of log(B2). The solid lines in (b) and (c)
give the linear fittings for each satellite.
Right: Radial evolution of the fitting parameters and correlations between EB and Pth (a) & (c); and
between EB and Pm (b) & (d). The correlations are shown for the total data set (blue dots connected
by the blue dashed lines), and separately, for the fast (red) and slow (green) solar wind subintervals.
Correlations within the fast wind are higher. It seems that all correlations increases with R: for the
total data set, the correlation coefficient Ω(EB , nT ) goes from 0.5 to 0.9 and Ω(EB , B

2
0) goes from 0.4

to 0.8 with R. Is it an indication of a local process?
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is Ω(B2
0 , nT ) ' 0.5 (not shown). The fact that both correlate with EB with a higher

correlation coefficient (especially for R ≥ 1 AU, see Figure 2.3 (Right, c-d)) makes
us think that independently both pressures are important for the energy injection and
dissipation rates of the turbulent cascade. However, with our observations, we are not
able to answer the fundamental questions, like:

• Why does a stronger magnetic field B0 imply a higher level of turbulent fluctua-
tions?

• Why is the plasma hotter within the regions with a stronger turbulence level?

• Is it turbulence, which heats the plasma, so that the ion thermal pressure increases?
Or, is there a kind of a fossil balanced energy allocation between different degrees
of freedom in the solar wind? In other words, in each flux tube starting at the Sun
surface, is there a certain partition between the magnetic, kinetic, thermal and
turbulent forms of the energy, that is maintained during the solar wind expansion?
Thus crossing different flux tubes, a satellite will automatically measure corre-
lations between the different forms of the energy and, particularly, the stronger
turbulence level within the hotter plasma regions.

Recently, Matteini et al. (2018) have shown that the break scale between the f−1

and f−5/3 ranges is characterised by δB/B0 ' 1. This result together with our findings
make us think that the following scenario is possible: a stronger magnetic field B0 allows
stronger fluctuations δB, while keeping δB/B0 ' const at the injection scale. Therefore,
the mean field defines the energy injection in turbulent cascade, ε(Pm). The turbulent
cascade heats ions and their thermal pressure increases, i.e., εd(Pth). The fact that
ε = εd explains why we observe similar correlations of EB with both, Pm and Pth. This
scenario is compatible as well with the idea of a balanced energy allocation between
different degrees of freedom in the solar wind and it can even explain the observed
balance.

2 Ion transition scales

As we have already seen, at large scales all spectra are well superimposed in Figure 2.1
(Left). However, arriving to ion spatial scales, they start to diverge. The divergence of
the spectra around ion scales, in a transition range (see the two vertical dotted lines in
the right panel of Figure 2.1) is the manifestation of a deviation from self-similarity.

Physics of the ion transition range is a topic of debates. At these scales, different
ion temperature anisotropy instabilities may take place, and there is thus a possible
injection or dissipation of turbulent energy (see Section 6 of this chapter and Section 3.2
in the review by Alexandrova et al. (2013) for a more detailed discussion). Is it the
beginning of the dissipation range or the starting point of another inertial range, where
the characteristic eddy-turnover time is different thus the slope changes (e.g., Biskamp
et al., 1996, 1999; Ghosh et al., 1996; Leamon et al., 1998b; Stawicki et al., 2001; Galtier,
2006; Galtier and Buchlin, 2007; Alexandrova et al., 2008a; Meyrand and Galtier, 2013)?
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As was discussed in the Introduction, the characteristic plasma scale responsible
for this spectral steepening, usually called the ion spectral break frequency fb, is also
under debates. If the MHD scale cascade was filled with parallel propagating Alfvén
waves, the spectrum would show changes at the ion cyclotron frequency fci, where the
parallel Alfvén waves undergo the cyclotron damping, or/and at the Doppler shifted
resonant parallel wave number kr = 2πfci/(VA + Vth,i) (e.g., Bruno et al., 2014). The
oblique kinetic Alfvén wave (KAW) turbulence is sensitive to the ion gyroradius ρi (e.g.,
Schekochihin et al., 2009; Boldyrev and Perez, 2012). The Hall MHD regime starts in the
vicinity of the ion inertial length λi (e.g., Galtier, 2006; Servidio et al., 2007; Matthaeus
et al., 2008, 2010).

In fact, the ion plasma parameter βi can be written as ρ2i /λ
2
i . This means that for

low βi, the ion inertial length λi is the first plasma scale which the cascade ‘meets’ at the
end of the MHD inertial range, and it can thus be responsible for the spectral steepening
(Spangler and Gwinn, 1990; Alexandrova et al., 2013). For high βi, it can be the ion
Larmor radius ρi. Indeed, for extreme values of βi, Chen et al. (2014) have shown that
the break frequency fb corresponds to λi for βi � 1 and to ρi for βi � 1. Based on
Helios observations in the inner Heliosphere, where βi < 1, we have shown that the
fb(R) follows the λi(R) scale under the assumption that turbulence develops mostly in
the plane perpendicular to B0, i.e., the 2D turbulence with k⊥ � k‖ (Bourouaine et al.,
2012).

Later, we tried to approach the problem of the plasma scale responsible for the
spectral steepening using 6 years of STEREO data (Lion, 2016). Figure 2.4 shows
the dependences between the break frequency fb, as it is usually defined5, and four
characteristic frequencies: (a) the Doppler shifted ion inertial length fλi = V/2πλi, (b)
the ion cyclotron frequency fci, (c) the Doppler shifted ion Larmor radius fρi = V/2πρi,
and (d) the Doppler shifted ion resonant scale fr = krV/2π of parallel Alfvén waves.
Taking into account a possible βi dependence, we show the data using different color
codes: the whole dataset is shown in black, then the points corresponding to βi < 0.2
are over-plotted in blue, and with βi > 1 in red. One observes nice correlations of fb
with all the considered ion scales, and for any dataset: the correlation coefficient Ω is
always higher than 0.5. For βi > 1, all the correlations are close to 0.7 and for βi < 0.2,
they are of the order of 0.6. No particular scale stands out. This can be explained by
the fact that different physical phenomena are at work at ion scales and all of them are
important for the turbulence spectrum steepening. In a study by Lion et al. (2016), we
illustrate this statement: for a rare case published by Leamon et al. (1998b) when the
spectrum shows indeed a clear spectral break (in the fast wind with βi < 1), we identify
at the break scale (i) quasi-parallel AIC waves, which cover 20% of time, (ii) oblique
coherent structures such as current sheets and Alfvén vortices, which cover 40% of time,
and (iii) in the remaining 40% of time non-coherent noise. Any other combination or
duration of the observed phenomena, and any other solar wind speed, would lead to
another spectral shape at ion scales.

5Indeed, typically we do not observe a sharp spectral break, but a smooth transition. Thus fb is
defined as the frequency where the power-law fittings in the inertial and in the transition range intersect.
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Figure 2.4: Dependences between the spectral break frequency fb and ion plasma scales. Magnetic
spectra are calculated from STEREO/MAG measurements between 2008 and 2014. Integration time of
each spectrum is 9 hours, two spectra per day, for 6 years continuously (' 4380 spectra/time intervals).
fb is defined as the frequency where power-law fittings in the inertial and kinetic ranges intersect. We
show separately low and high βp time intervals: βp < 0.2 (blue), βp > 1 (red), all data are shown in
black. Figure from (Lion, 2016).
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Figure 2.5: The same dataset of about 4380 spectra as in Figure 2.4. (Left) 2D–histogram of the local
spectral slope estimated between 10−3 Hz and 3 Hz (over the inertial range and up to the end of the
transition range around ion scales). The two vertical lines define the frequency range [0.3, 0.5] Hz.
(Right) 1D integrated histograms before and after delimited zone. Figure from (Lion, 2016).

Thus, from a general point of view, it is impossible to establish one given scale
and to localise the ion transition in frequencies. This point can be also nicely illus-
trated by Figure 2.5, where we show the 2D–histogram of the local spectral slope of
the STEREO/MAG spectra integrated over 9 hours twice a day for 6 years, from 2008
and up to 2014 (Left). As expected for a k⊥ turbulence within the inertial range, the
histogram is peaked around the Kolmogorov scaling. Approaching 0.3 Hz (left dashed
vertical line), the slope starts to deviate from the −5/3 value. No stable mean is ob-
served within the transition range (at f ∈ [0.3, 3] Hz): the spectral slope decreases in
a monotonic way. Thus, there is no definite meaning in the terminology ion spectral
break, widely used in the literature (e.g., Leamon et al., 1998b; Markovskii et al., 2008;
Bourouaine et al., 2012; Alexandrova et al., 2013; Chen et al., 2014; Bruno and Trenchi,
2014; Franci et al., 2016).

Instead, the whole frequency range where the ion scales appear in the spectrum
(usually one decade between 0.1 − 0.3 Hz and 1 − 3 Hz, at 1 AU) must be avoided
when turbulence approach is used (like interpretation of turbulent statistics, etc.). In
particular, there is no meaning in a power-law fitting within this decade around ion
scales. However, it can indicate a type of discontinuity which dominates ion scales
(e.g., Alexandrova, 2008; Lion et al., 2016), see Chapter 4, Section 2 for more developed
discussions of this point.

Now, let us go to smaller scales and discuss the spectral shape at sub-ion scales and
around electron scales.
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3 Turbulent spectrum within the kinetic range

Figure 2.1 (Right) shows the same spectra as in the left panel but as a function of k⊥ =
2πf/V , and superimposed (with a factor E0) within the range of k⊥ between {kρi , kλi}
and {kρe , kλe}. All spectra match perfectly at these scales. Thus, despite different
plasma conditions (βi varies between 0.4 and 2, solar wind speed is V ∈ [370, 670] km/s),
the perpendicular turbulence in the solar wind has a general spectrum between ion and
electron scales (Alexandrova et al., 2009):

E(k⊥) ∼ k−2.8⊥ . (2.7)

A case study of Kiyani et al. (2009) and later observations by Chen et al. (2010); Alexan-
drova et al. (2012); Sahraoui et al. (2013) are in agreement with this finding. More
precisely, a statistical study of Alexandrova et al. (2012) shows α = −2.86± 0.08, with
limit values −3 and −2.6 (see Figure 5(a) in that paper). Sahraoui et al. (2013) gives
the mean spectral index of −2.8 and its limits [−3.1,−2.5], see Figure 5 (Left) in that
paper. Note, that the scaling ∼ k−2.8⊥ is observed only out of ion and electron scales.
In the literature, a wider range of values can be found, but in most of cases where a
different spectral index from −2.8 is found, the fitting procedure includes ion scales (e.g.,
Alexandrova et al., 2007, 2008a).

What happens at electron scales? Here, as at ion scales, one expects a loss of self-
similarity. For our data sample of Figure 2.1, the electron scales appear at frequencies
between 30 and 400 Hz: the Doppler shifted inertial length is fλe = V/2πλe ∈ [30, 90] Hz;
the electron Larmor radius appears at fρe = V/2πρe ∈ [60, 200] Hz and the electron
cyclotron frequency is fce ∈ [60, 440] Hz. If we calculate the local spectral index α
(not shown here), it follows a constant value α = −2.8 up to 30 Hz (beginning of the
electron scales). At higher frequencies it starts to decay monotonically, as we have
observed already at ion scales, Figure 2.5. This monotonic decay of a local spectral
index confirms what we can see by eyes: an exponential spectral shape at f > 30 Hz,
that is a signature of a turbulence dissipation.

The complete kinetic range spectrum at sub-ion scales, including k−2.8⊥ as well as the
dissipation range at electron scales, can be modelled by:

E(k⊥) = Akα⊥ exp(−k⊥`d), (2.8)

where A is the amplitude of the spectrum, α is the spectral index within the power-
law range between ion and electron scales and `d – the cut-off or dissipation scale.
In (Alexandrova et al., 2012) we have performed a statistical study of 100 solar wind
spectra (integrated over 10 minutes under stable plasma conditions for each of them).
The comparison of the spectra with the model function (2.8) shows that (i) the most
probable spectral index is α = −8/3; (ii) the cut-off scale correlates the best with the
electron Larmor radius ρe, and the linear regression gives a proportionality coefficient of
about 1; precisely we found `d ∼ 1.4ρe:

E(k⊥) = Ak
−8/3
⊥ exp(−Ck⊥ρe), C = 1.4. (2.9)
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Figure 2.6: Left: Superposition of 107 solar wind spectra under different plasma conditions showing
a general shape out of ion scales. Right: Example of the most intense spectrum measured well below
electron scales by Cluster/STAFF and the model function (2.9), with C = 1, shown by a black solid line.
Figures from (Alexandrova et al., 2012).

Note that α = −8/3 ' −2.67 is not exactly −2.8 found between ion and electron scales.
In fact, there is no contradiction in these apparently different numbers: the spectra
continue to follow a k−2.8⊥ law between ion and electron scales, but when multiplied by
exp(−Ck⊥ρe), the spectral index of −2.67 should be used to describe the same slope.

Figure 2.6 (Left) shows a comparison of 107 superimposed spectra with the model
function Equation (2.9), with C = 1. One may see that this function describes the
whole spectrum, starting just “after” the ion scales and going beyond electron scales.
The compensated spectra are flat over these 2 decades in k⊥, see Figure 4 in (Alexandrova
et al., 2012). To appreciate in more details the comparison between the observations
and the model, the right panel of Figure 2.6 shows the most intense spectrum only at
kinetic scales (as measured by Cluster/STAFF).

Recently, we have analysed Helios/SCM spectra in the inner Heliosphere (Alexan-
drova et al., 2020) and we have found that the model function

E(k⊥) = Ak
−8/3
⊥ exp(−Ck⊥ρe), C = 1.8. (2.10)

can describe the kinetic spectra at 0.3, 0.6 and 0.9 AU, see Figures 2.7 and 2.8. The factor
C here is slightly different from the one found with Cluster at 1 AU. These results should
be verified with the Parker Solar Probe closer to the Sun and with the measurements of
Solar Orbiter. Nevertheless, the shape of the spectrum seems to be the same at 4 radial
distances analysed up to now, indicating the universality of the phenomena.
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Figure 2.7: Helios spectra at (a) 0.3, (c) 0.6 and (d) 0.9 AU, as well as (b) the relation between the
exponential cut-off scale `d and the electron Larmor radius ρe for the most intense 39 spectra at 0.3 AU.
Figure from (Alexandrova et al., 2020).

4 Dissipation scale

As we have discussed in Section 1 of this chapter, in the solar wind, the level of tur-
bulence, that is directly related to the energy cascade rate ε (see Equation (2.2)), is
observed to be anticorrelated with the electron Larmor radius ρe (Alexandrova et al.,
2009). Moreover, the exponential cut-off scale `d in Equation (2.8) correlates the best
with ρe (Alexandrova et al., 2012; Alexandrova et al., 2020). If the intuitive picture
from hydrodynamic turbulence is applicable to the solar wind, our findings point out
that ρe can play the role of the dissipation scale in nearly collisionless astroplasmas. Let
us confirm this statement by another independent test.

Based on the assumption of the balance between the energy injection at large scales
and the energy dissipation at small scales, it has been shown that Kolmogorov’s spec-
trum E(k) normalised by the dissipation length `d and by the kinematic viscosity ν as
E(k)`d/ν

2 is a universal function of k`d (Frisch, 1995; Davidson, 2004), i.e., the spectra
for different turbulent flows normalised in this way superimpose.

Let’s say that we have no a priori particular scale in mind, but different candidates for
the dissipation scale exist: ρi,e, λi,e and fci,ce. Figure 2.9 shows the Universal Kolmogorov
Function E(k)`d/ν

2 as a function of k`d for the three independent candidates for `d,
namely for ρi, λi and ρe; and for one temporal scale, namely the electron gyro-period
f−1ce (Alexandrova et al., 2009). For simplicity, the kinematic viscosity ν (that is ill-
defined in the solar wind) is assumed to be constant among the 7 time intervals shown
here, despite the varying plasma conditions from one time interval to another.
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Figure 2.8: Helios spectra at 0.3 AU: (a) Raw 3344 spectra. (b) The same spectra as in (a) but as a
function of the normalised frequency to the Doppler shifted ρe. The most intense 39 spectra are marked
by red crosses. These spectra are used to determine the spectral shape, Equation (2.10). (c) The same
spectra as in (b) but superimposed in amplitude and plotted as a 2D histogram. Dashed line represents
Equation (2.10) without any particular fitting, only the amplitude was adjusted around f/fρe = 0.04.
Figure from (Alexandrova et al., 2020).
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Figure 2.9: Universal Kolmogorov function ∝ `dE(k) for different hypothetical dissipation scales `d as
a function of (a) kρi, (b) kλi, (c) kρe and (d) f/fce. Figure from (Alexandrova et al., 2009), corrected
for 3 STAFF-SA frequencies, as explained in (Alexandrova et al., 2012).

One can see that the ρi and λi normalisations are not efficient to superimpose the
spectra together. (Normalisation with λe gives the same result as with λi.) At the
same time, the normalisations with ρe and fce bring the spectra close to each other, as
expected while normalising with `d. So, in addition to the spectral analysis presented
in Figure 2.6 and to the anticorrelation observed between P0 and ρe, the Universal
Kolmogorov Function normalisation gives an independent confirmation that the spatial
scale which may play the role of the dissipation scale, in the weakly collisional solar
wind, is the electron gyro-radius `d ∼ ρe.

5 Amplitude of the kinetic spectrum

Is it possible to completely determine the kinetic spectrum as a function of the plasma
parameters? Up to now, an unclear parameter in Equations (2.9) and (2.10) is the
amplitude of the spectrum A. Within the inertial range, the amplitude of the spectrum
is well correlated with the mean magnetic and ion thermal pressures (averaged over 1
day time scale), as we have described above (Section 1). The Cluster/STAFF spectra
of Figure 2.6 (Left) are integrated over 10 minutes while plasma parameters are nearly
constant. Let us consider different forms of plasma pressure corresponding to these
kinetic spectra.

Figure 2.10 shows dependencies between the amplitude P0 =PSD(f0) of the turbulent
spectrum at f0 = 17.5 Hz (within the kinetic range) and
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Figure 2.10: Amplitude P0 of frequency spectra in the solar wind at f0 = 17.5 Hz, i.e., within the kinetic
range between ion and electron scales, as a function of (a) the proton thermal pressure Pth,p = nkTp, (b)
the magnetic pressure Pmag = B2

0/2µ0, (c) the solar wind dynamical pressure Pdyn = mpnV
2
sw, (d) the

electron thermal pressure Pth,e = nkTe. Red crosses are for time intervals downstream of interplanetary
shocks. The best correlation is observed between P0 and the ion thermal pressure. A 0.5 correlation is also
observed with T⊥,p/T‖,p (not shown); no correlation is found with the electron temperature anisotropy
and ion and electron plasma betas. This dataset of 155 intervals in the free solar wind contains the 100
intervals where the spectra of Figure 2.6 (Left) are determined.
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plasma pressures B2
0 nTp nTe nV 2

B2
0 1.00 0.70 0.60 0.65

nTp 1.00 0.75 0.90
nTe 1.00 0.80
nV 2 1.00

Table 2.1: Intercorrelations between different forms of plasma pressures in the solar wind for the dataset
of 155 time intervals of 10 minutes as measured by Cluster at 1 AU.

plasma parameters B0 n V Tp Te
B0 1.00 0.30 0.50 0.50 0.50
n 1.00 -0.20 -0.15 0.15
V 1.00 0.90 0.25
Tp 1.00 0.45
Te 1.00

Table 2.2: Intercorrelations between different solar wind plasma parameters for the same dataset as in
Table 2.1.

(a) the proton thermal pressure nkTp, with correlation coefficient Ω(P0, nTp) = 0.85,

(b) the magnetic pressure B2
0/2µ0, with Ω(P0, B

2
0) = 0.75,

(c) the solar wind kinetic pressure mpnV
2, with Ω(P0, nV

2) = 0.75 and

(d) the electron thermal pressure nkTe, with Ω(P0, nTe) = 0.45.

This is done for a larger statistical sample of 155 time intervals of 10 minutes in the free
solar wind, which include the 107 spectra of Figure 2.6 (Left).

Thus, we observe correlations between P0 and all forms of pressures except may be
the electron thermal pressure. The strongest correlation is again with nkTp. And what
about the others, are they independent?

Indeed, it is possible that some of the observed correlations in Figure 2.10 are induced
by the inter-correlation of the plasma parameters and/or different forms of pressures in
the solar wind. To address this issue, we calculate the two correlation matrices. The
first, with the considered plasma pressures in Figure 2.10, B2

0 , nTp, nTe, nV
2, and the

second, with the basic plasma parameters in the solar wind B0, n, V, Tp, Te, where each
quantity is a column vector of size 155.

The matrices are indicated in Tables 2.1 and 2.2. All pressures are correlated among
one another with Ω ≥ 0.6. Regarding plasma parameters, only the well known Tp − V
relationship (e.g., Démoulin, 2009; Perrone et al., 2019b) stands out with Ω ' 0.9, then,
a marginal correlation of 0.5 is observed between B0 and Te,p.

Let us focus on the ion thermal pressure nTp, which seems to determine the tur-
bulence level P0 without any doubt. We find that the ion thermal pressure is strongly
correlated with (i) the solar wind kinetic pressure Ω(nTp, nV

2) ' 0.9, and (ii) the elec-
tron thermal pressure Ω(nTp, nTe) = 0.75. The first correlations is explained by the
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Tp − V relationship. The second one is due to the presence of density n in both quan-
tities (the correlation between Te and Tp being 0.45 only). Thus, we discard possible
influence of the kinetic and the electron thermal pressures on the amplitude of turbu-
lence spectrum at small scales: the observed P0−nV 2 and P0−nTe relations are simply
induced by nTp − nV 2 and nTp − nTe strong correlations.

Can we discard the influence of magnetic pressure? Indeed, we observe quite an
important correlation Ω(nkTi, B

2
0) = 0.7. However, this correlation coefficient is smaller

than6 Ω(P0, B
2
0) = 0.75. It seems that magnetic pressure is first related to turbulence

level and then, via turbulence, correlates with nkTp. In other words, the correlation
between B0 and nkTp, which we observe here, is imposed by the turbulence, as we have
discussed in Section 1 of this chapter.

Thus, the best and independent correlations of the level of the kinetic spectra are
still with the ion thermal pressure and with the magnetic pressure

P0 ∼ (nkTp)
1.4 ∼ B2

0

as within the inertial range of the solar wind turbulence (Lion, 2016). That seems
natural: all parts of the turbulent spectrum, from MHD to kinetic scales, go up and
down together.

Analyzing spectra as a function of the satellite-frame frequency f is just a first step
in understanding the solar wind turbulence. Let us now consider the k–spectra:

k = 2πf/V, P (k) = P (f)V/2π.

We find that the correlations of the turbulence level at a given k0, P0(k0), with the
magnetic and thermal pressures are still present although they decrease in absolute
value (not shown).

And what about normalized spectra by the dissipation scale? We find that the
amplitude of the k-spectra normalised by the electron Larmor radius,

P (kρe) = P (k)/ρe,

does not correlate with the plasma pressures anymore. Only one correlation emerges,
with ion temperature anisotropy Ti⊥/Ti‖ (with correlation coefficient of 0.6, see Fig-
ure 20(d) in Alexandrova et al. (2013)). Does it mean that ion temperature instabilities
regulate the turbulence level at kinetic scales? At the moment, we have not fully un-
derstood the correlations summarized above, and the parametrisation of the turbulent
spectrum is not complete.

6We remind that at large scales, we have observed Ω(nkTi, B
2
0) ' 0.5 and Ω(P0, B

2
0) ' 0.7 (see

Section 1).
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6 Non-universal spectral features at ion and electron scales
due to narrow-band waves

Solar wind observations sometime show spectra different from the picture described
above. In fact, when particle distributions are far from the local thermodynamic equi-
librium (strong anisotropy, presence of beams or holes, etc...), quasi-linear plasma in-
stabilities operate at scales close to the unstable particles scales in order to bring the
plasma in a marginal stability state. A superposition of quasi-linear unstable waves on
the background turbulence modify the observed spectrum in the satellite frame.

In case of unstable ions, with Ti,⊥ > Ti,‖, the Alfvén-Ion-Cyclotron instability may
operate if βi ≤ 1 (e.g., Gary et al., 1994; Schwartz et al., 1996; Hellinger et al., 2006;
Matteini et al., 2007; Bale et al., 2009). This instability generates quasi-parallel Alfvén
waves at a fraction of fci, with a left-handed (LH) circular polarisation7, which reso-
nantly interact with ions. In case of βi > 2, the mirror mode instability (at scales close
to ρi) operates to bring ions toward a more isotropic state. For the inverse anisotropy
conditions Ti,⊥ < Ti,‖, the firehose instability may dominate at ion scales (e.g., Matteini
et al., 2007).

The distribution functions of electrons f(Ve) are even more complicated than of ions
(e.g., Maksimovic, 2007), as we have already mentioned in the introduction. A typical
f(Ve) is a combination of a quasi-thermal core, a Kappa-like halo and a Strahl (a field-
aligned electron beam diffused in energy and propagating in the anti-solar direction).
The core and halo of f(Ve) can be anisotropic (Štverák et al., 2008). The Strahl can be
more or less important and more or less focused around the direction of the mean field B0

(Maksimovic et al., 2005; Štverák et al., 2009; Kajdič et al., 2016; Berčič et al., 2019).
All these non-thermal features may generate narrow-band right-handed (RH) parallel
whistler waves at frequencies between the low hybrid frequency flh =

√
fcifce and a

fraction of the electron cyclotron frequency ∼ 0.5fce (Gary and Feldman, 1977; Lacombe
et al., 2014; Stansby et al., 2016; Tong et al., 2019a). Indeed, this frequency range was
usually called whistler wave turbulence in the past (e.g., Beinroth and Neubauer, 1981).

The narrow-band waves at ion and electron scales are usually quasi-linear. They
have small amplitudes δB/B0 < 0.1 and appear in turbulent spectra as peaks, bumps or
breaks, as a function of the filling factor of the wave with respect to the total time over
which the spectrum is integrated, as we have shown in (Lacombe et al., 2014; Roberts
et al., 2017). Thus, the presence of such waves makes the spectra different in shape from
the general spectrum of the background turbulence described in Sections 1 to 5.

The only way to identify and separate these waves from the background turbulence is
to measure the polarisation (phase differences between two perpendicular components to
B0) of the magnetic fluctuations as a function of frequency and time, and then represent
it as a polarisation map (see example in Figure 2.11 (Right)). The waves which interact
resonantly with ions and electrons have a well defined polarisation in a given narrow
frequency range and can thus be clearly seen in the polarisation maps. Below, we

7Left handed circular polarization corresponds to phase difference between two components in the
plane perpendicular to B0 of ∆Φxy = −90◦.
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Figure 2.11: STEREO measurements on August 13, 2010, when B0 ' 3.6 nT, fci = 0.055 Hz, flh =
2.35 Hz and fce = 101 Hz. Left: PSD of magnetic fluctuations in RTN frame. Right: Polarisation map
in the plane perpendicular to the mean magnetic field. Here, red (blue) color corresponds to left-handed
(right-handed) polarization. Figures from (Lion et al., 2016).

summarise our solar wind observations of AIC waves in the vicinity of ion scales, and of
parallel whistlers in the vicinity of electron scales.

Quasi-parallel Alfvén Ion Cyclotron waves

During the PHD thesis of Sonny Lion, we have studied 6 years of STEREO measure-
ments (2008–2014). It was shown that approximately ∼ 1% of spectra have a bump
at ion scales, as is shown in Figure 2.11 (Left) (Lion, 2016). The corresponding po-
larisation map in Figure 2.11 (Right) reveals a narrow band left-handed polarisation
around 0.1 Hz (phase difference of −90◦, in red) and right-handed polarisation around
0.3 Hz (phase difference of 90◦, in blue). This is probably an example of simultaneous
counter-propagating Alfvén-ion-cyclotron waves8.

Is it possible that AIC waves are permanent features of the solar wind but we do not
see them all the time? AIC waves have wave vectors parallel to B0 which can be detected
only when the satellite spans the solar wind in the direction of the mean field B0 (i.e.,
when the solar wind speed is aligned with B0). Figure 2.12 shows histograms of plasma
parameters (proton velocity V , proton temperature Tp, density n and the angle between
B0 and the radial direction ΘBR) in the solar wind when only background turbulence
is present (black solid line) and when AIC waves are observed (dashed line). The only
clear difference appears in the histograms of the ΘBR: the AIC waves are observed when
ΘBR ' 10− 15◦ and around 150◦.

These observations are in agreement with the results of Jian et al. (2009, 2014). In
(Jian et al., 2009), the authors have analysed 2 months of STEREO A & B data in

8At 1 AU, right-handed whistlers are usually observed at f > 3 Hz (see below). Thus, the spectral
bump within the [0.05, 0.5] Hz frequency range observed here is hardly to be Doppler shifted whistler
waves.

34



200 400 600 800
Proton Velocity [km/s]

0
2
4
6
8

10
12
14
16

O
cc

ur
re

nc
e 

[%
]

0 100000 200000 300000
Proton Temperature [K]

0
5

10
15
20
25
30

O
cc

ur
re

nc
e 

[%
]

0 10 20 30
Proton Density [1/cm3 ]

0
5

10
15
20
25
30
35
40

O
cc

ur
re

nc
e 

[%
]

0 45 90 135 180
Angle between B and R [Degrees]

0
2
4
6
8

10
12

O
cc

ur
re

nc
e 

[%
]

Figure 2.12: Analysed dataset of STEREO A separated in two groups: without signatures of AIC waves
(solid lines histograms) and with signatures of AIC waves (dashed). Distributions of V , Tp, n are the
same for these two groups. The only difference can be seen in the histograms of ΘBR: the AIC waves
are observed while B is more or less radial. Figure from (Lion, 2016).
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Figure 2.13: (a) Magnetic spectra with bumps covering [3,300] Hz range, with the signatures of quasi-
parallel right-handed whistler waves. The solid vertical line gives the limit between SC and SA parts
of the Cluster/STAFF instrument; (b) the same spectra but as a function of f/fce, the bumps appear
between flh and 0.5fce, see two vertical dotted lines. Figure from (Lacombe et al., 2014).

July-August 2007. They have shown that the spectral bumps at ion scales (f ' 0.2 Hz)
correspond to quasi-monochromatic ion cyclotron waves propagating along B0. These
waves occur usually when B0 is more or less radial (ΘBR ∈ [0, 40]◦). In a larger statistical
study, over the one year 2008 of STEREO data, Jian et al. (2014) have analysed bursts
of left- and right-handed polarised waves lasting over 10 minutes, named in this study
Low-frequency waves (LFW) storms. The authors concluded that storms and isolated
wave-packets have the same properties: (i) the observed frequency is close to 0.2 Hz, (ii)
the relative amplitude of waves is δB⊥/B0 ' 0.03, and (iii) the estimated wave vector
in terms of the ion skin depth is kλp ' 0.3. Such waves are observed about 1% of the
time at the Earth’s orbit, when the magnetic field is radial. Storms are preferentially
detected in the rarefaction regions following the fast wind.

Closer to the Sun, the magnetic field is more radial than at 1 AU; therefore, one
might expect to observe AIC waves more than 1% of the time with the Parker Solar
Probe/FIELDS measurements. First results recently published by Bowen et al. (2020)
confirm this idea.

Quasi-parallel whistler waves

Similar spectral features as we have just seen but at electron scales are due to parallel
whistlers. In (Lacombe et al., 2014) we have done the first large statistical study of
quasi-parallel whistler waves in the free solar wind thanks to Cluster data. Indeed, it
is with Cluster/STAFF-SA (constructed in DESPA, now named LESIA) that for the
first time we have continuous measurements of the spectral matrix with polarisation
properties of the fluctuations at frequencies f ∈ [8, 4000] Hz, every 4 seconds. We have
made a survey of five years of Cluster (2001–2005) and selected solar wind intervals not
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Figure 2.14: Example of polarisation and propagation properties of the observed whistler waves. Upper
panel: phase difference ∆Φxy = Φx − Φy during 1 h, ∆Φxy is variable in the beginning and at the end
of the time interval, and is constant (∆Φxy = 90◦) between 17:12 and 17:42 UT indicating right-handed
polarisation. Middle panel: ellipticity is close to 1 during the constant phase difference interval, that
corresponds to quasi-circular polarisation. Bottom panel: angle ΘkB between the minimum variance
direction and the mean field, indicating quasi-parallel propagation during the interval with a right-
handed circular polarisation. Figure from (Lacombe et al., 2014).
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connected to the Earth’s bow-shock, using the Cluster/WHISPER instrument. Most of
the data show the spectrum of the background turbulence discussed above. In ∼ 10%
of the retained data9, the spectra have bumps between 3 Hz and 300 Hz, as is shown in
Figure 2.13. The typical polarisation properties of the fluctuations for each time interval
with a spectral bump is shown in Figure 2.14, where a continuous (for this case, ∼ 30 min
long) right handed polarisation is observed at a fixed frequency (the central frequency
of the spectral bump).

In cases when the spectrum shows a break at electron scales, the polarisation gener-
ally indicates intermittent whistlers at the frequency of the break, as we have shown in
(Lacombe et al., 2014) and (Roberts et al., 2017) using Cluster/STAFF-SC burst mode
data, see Figures 2.15.

One can argue that whistler waves are expected to be present in the corresponding
frequency range (f ∈ [30, 400] Hz at 1 AU) and so are a part of the background turbulence
at kinetic scales. As we show in (Lacombe et al., 2017), the background turbulence at
kinetic scales have low frequencies f ∼ 0 and k⊥ � k‖. The narrow-band whistlers are
characterized by f ∈ [flh, 0.5fce] and k‖ � k⊥. Thus, the fact that these two phenomena
are superimposed in the satellite frame is incidental. In the plasma frame they are well
separated.

The generation of whistlers in the solar wind and their interaction with electrons and
with the background turbulence are under debate (Lacombe et al., 2014; Kajdič et al.,
2016; Stansby et al., 2016; Tong et al., 2019b,a; Krishna Jagarlamudi et al., 2020).

In (Kajdič et al., 2016), we have analysed the electron distribution functions f(Ve) in
the presence of quasi-parallel whistler waves and in the neighbour time intervals without
whistlers. We could show that the intervals with waves have a suprathermal electron
Strahl wider by 10◦ than without waves. These results make us think that parallel
whistlers may be at the origin of the Strahl diffusion with increasing radial distance
(Maksimovic et al., 2005). It will be interesting to verify these results with Parker Solar
Probe measurements closer to the Sun and with Solar Orbiter in the inner Heliosphere.

Regarding the observability conditions and generation of quasi-parallel whistlers, we
have found that the waves are observed mostly within the slow wind, V < 500 km/s
and for a low proton thermal pressure nkTp, i.e., when the background turbulence has
a low amplitude (Lacombe et al., 2014). For fast wind and high nkTp, the background
turbulence is intense and may hide possible whistler waves. We also find that whistlers
appear when there is a change in the B0 direction, close to the heliospheric current sheet.
It is possible that in these particular cases, whistlers are generated during reconnection

9The following criteria have been applied to construct Cluster-KineticTurbulence-database, which is
used in the studies of Alexandrova et al. (2012) and Lacombe et al. (2014, 2017): (i) visual inspection of
the electrostatic waves around plasma frequency measured by WHISPER allows for detection of the free
solar wind time intervals not magnetically connected to the Earth’s bow shock (the shock connectivity
appears as intense Langmuir waves emissions at local plasma frequency); (ii) measurements of the DC
magnetic field (FGM) and of magnetic fluctuations (STAFF), as well as ion and electrons moments
(CIS/HIA and PEACE instruments) are available; (iii) 10 minutes of homogeneous time interval (no
important changes in the plasma parameters). This selection over 5 years of Cluster mission gives us
173 time intervals with 154 examples of usual background turbulence described above and 19 intervals
of long lived whistler waves, lasting at least 5 minutes within the selected 10 minutes interval.
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Figure 2.15: Left: Magnetic spectrum measured by Cluster/FGM (red line) and STAFF-SC in the
burst mode (blue line). A clear break around electron scales (∼ 30 − 40 Hz) is observed. Middle:
Wavelet analysis of δB⊥: (a) coherence between two perpendicular components of magnetic field. (b)
Phase difference between two perpendicular components of δB, the green colour corresponds to phase
difference of 90◦ (RH polarisation); (c) A one-dimensional cut of the coherency (black) and of the phase
difference (blue) at 30 Hz; (d) Local Intermittency measure. Right: The whistler waveforms, which
appear around t = 3.5 s in the middle panel. Figures from (Roberts et al., 2017).
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events within the heliospheric current sheet, and we observe them far from their source.
The most important condition of the appearance of parallel whistlers is the presence
of an electron heat flux larger than a certain threshold. Therefore, the electron heat
flux instability is probably at the origine of the observed parallel whistlers at 1 AU. No
evidence of the electron temperature anisotropy have been found in this study.

Recently, Tong et al. (2019b) studied solar wind whistlers with ARTEMIS spacecraft.
The authors confirm that quasi-parallel whistlers can be generated by the heat flux
instability. Interestingly, they show that the electron heat flux instability is affected by
the temperature anisotropy of halo electrons: A slight parallel anisotropy (Te,‖ > Te,⊥)
may quench the instability, while a slight perpendicular anisotropy (Te,⊥ > Te,‖) may
significantly increase the growth rate of the the electron heat flux instability, see also
(Gary and Feldman, 1977).

The radial evolution of whistlers waves in the inner Heliosphere for R ∈ [0.3, 0.9] AU
using Helios/SCM measurements have been recently studied by Vamsee Krishna Jagar-
lamudi during his PHD thesis, (Krishna Jagarlamudi, 2019). In (Krishna Jagarlamudi
et al., 2020), we show that the whistlers signatures are mostly present in the slow wind
streams, and their number increases with the radial distance R, from ∼ 3% at 0.3 AU
to ∼ 10% at 0.9 AU. In the fast wind, spectral bumps appear for R > 0.6 AU and their
number increases from ∼ 0.03% at 0.65 AU to ∼ 1% at 0.9 AU. Interestingly, the plasma
follows the marginal stability path of the heat flux instability, but the radial evolution
of whistlers follows the radial evolution of the core and halo temperature anisotropy.
Perhaps, these are indications of the same effect found by Tong et al. (2019b), i.e., the
perpendicular anisotropy (Te,⊥ > Te,‖) of f(Ve) favors the heat flux instability. Obser-
vations of Parker Solar Probe and Solar Orbiter will provide us with new elements on
this puzzling problem.
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Chapter 3

Coherent structures across the
turbulent cascade

The previous chapter has been devoted to the spectral shape. What is behind the
observed spectrum of background turbulence in the solar wind? What do the turbulent
fluctuations which form this spectrum look like? Any turbulent flow is intermittent.
Let us focus now on intermittency and coherent structures. In this chapter, first, we
attempt to give a definition of a coherent structure. Then, we verify the presence of
such structures in a wide range of scales of the solar wind turbulent cascade (from the
energy injection to the dissipation scales). We show that all over the cascade, signatures
of space-localised and scale-delocalised structures exist. We illustrate the connection
between the presence of such structures, non-Gaussianity and the phase coupling in the
observed signal. We analyse the topology of the structures within different frequency
ranges, and we show the presence of magnetic vortices within the inertial range and at
kinetic plasma scales.

Most of the studies of intermittency in turbulence are based on statistical methods.
These methods show non-Gaussianity of turbulent fluctuations and the increase of this
non-Gaussianity toward small scales (e.g., Sorriso-Valvo et al., 1999; Bruno and Carbone,
2013). It is well known that these statistical manifestations are due to the presence of
coherent structures (e.g., Frisch, 1995).

Fiedler (1988) gives the following characteristics of coherent structures in non-mag-
netised flows (here is the complete quote):

1. They are typically of composite scales (i.e., they cover a range of scales), the largest
scale being comparable to the lateral flow dimension.

2. They appear to be flow-specific in shape and composition, i.e., indirectly related
to boundary conditions.

3. They show strong similarities with corresponding structures of the (preceding)
laminar-turbulent transition.
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4. They are, and this is their very essence, as a pattern recurrent, having a life-span
typically at least the average passage time of a structure. (Cardesa et al. (2017)
have recently estimated life time of eddies in 3D numerical simulations of isotropic
hydrodynamic turbulence: the structures may persist up to 20τNL.)

5. They exhibit a high degree of organization in their structure as well as in their
dynamics, their appearance is at best quasi-periodic (typically stochastically in-
termittent).

Farge and Schneider (2015) define coherent structures in any turbulent flow (non-
magnetised and MHD) as everything that is not noise. This is very general, but if we
apply such definition to the solar wind observations, it will include narrow-band waves,
like AIC and whistlers. We do not think that events which are localized in frequency
(and k), as waves, can be classified as coherent structures.

We propose here the following definition of a Coherent structure in the space plasma
turbulence :

• A coherent structure is a high amplitude event localized in space. This means that
it is delocalized in Fourier space and it exhibits phase coupling over a large range
of scales. (For the satellite in-situ measurements coherent structures are localized
in time and delocalized in frequency, i.e., with a broad band.)

• A coherent structure has a particular topology, which yields a coupling between
the components of the fields, i.e., to a particular apparent polarisation. (How
this topology is related to the flow boundaries and/or original structures of the
laminar-turbulent transition, as is the case in hydrodynamic turbulence, has never
been studied yet in the solar wind.)

• Its life time τlife is much longer than the life time of the random fluctuations at the
smallest scale of the structure that is the eddy turn-over time at this scale. (As
far as coherent structures cover a very large range of scales, τlife is probably of the
order or bigger than τNL at the largest scale of the structure.)

Let us now verify the first two points1 for the solar wind turbulence, starting from
scales larger than the inertial range, and going to the smallest resolved electron scales.
For this purpose, first, we use the Wind/MAG data within one of the longest recorded
slow solar wind stream (about 9 days), where we observe a f−1 spectrum at the lowest
frequencies and most of the inertial range (dataset analysed by Vamsee Jagarlamudi dur-
ing his PHD, (Krishna Jagarlamudi, 2019)). Then, we use the famous interval of Leamon
et al. (1998b) to illustrate the inertial range and the ion transition range (Lion et al.,
2016). To study sub-ion and electron scales we use the waveforms of the Cluster/STAFF
instrument in normal and burst modes, respectively (Alexandrova et al., 2020).

1We will not address the issue of coherent structures life time here. This will be a subject of our
future studies.
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1 Time localisation and frequency/scale delocalisation

Figure 3.1 shows the turbulent spectrum S⊥(f) of transverse (or Alfvénic) magnetic fluc-
tuations δB⊥ (solid), and the spectrum S‖(f) of compressible fluctuations δB‖ (dashed
line) for a 9 days time interval in a slow solar wind stream as measured by the Wind/MAG
instrument on August 9–18, 2009 (221–230 DOY). The spectra are calculated using the
Morlet wavelet transform integrated over the time variable (e.g., Torrence and Compo,
1998; Alexandrova et al., 2008a; Dudok de Wit et al., 2013). The spectrum S⊥(f) dis-
plays a transition from the power-law f−1.1 to f−1.8 between 2 ·10−4 Hz and 5 ·10−4 Hz,
or a break around 3 ·10−4 Hz. The highest resolved frequency is about 3 ·10−2 Hz, which
is just below the ion cyclotron frequency fci ' 4.5 ·10−2 Hz, indicated by a vertical solid
line. The compressible fluctuations follow nearly a Kolmogorov scaling all over the ob-
served frequency range. However, the spectrum S‖(f) is not a perfect power-law within
the transition frequency range of S⊥(f). This non-equal behaviour of transverse and
parallel spectra is quite puzzling (but is out of the scope for the present manuscript).

The compressibility S‖(f)/S(f) (middle panel of Figure 3.1) exhibits a large local
minimum around the break at about 3 · 10−4 Hz. At higher frequencies, i.e., across the
inertial range of the δB⊥ fluctuations, the compressibility increases monotonically from
0.02 to ∼ 0.1.

The two upper panels of Figure 3.1 give averaged characteristics of the solar wind
turbulence at MHD scales within the considered slow wind stream. The bottom panel
of Figure 3.1 shows the Local Intermittency Measure (LIM ) introduced by Farge (1992)
as

I(t, τ) =
|W (t, τ)|2

〈|W (t, τ)|2〉t
, (3.1)

where W (τ, t) is a wavelet coefficient at time t and scale τ , and |W (τ, t)|2 is a wavelet
scalogram. Thus, LIM is just a wavelet scalogram normalised over the mean value
of energy at each scale τ . This representation allows to appreciate the texture of the
turbulent fluctuations in time and scales and to see the deviation of energy of fluctuations
from the mean spectrum (shown in the upper panel). The darker the colour, the lower
the energy of the fluctuations. We observe that, at very large scales, there is an event
around τ ' 5 · 104 s (∼ 14 hours), lasting about 2 days (between day 2 and 4). This is
probably the trace of a solar structure2. At the time scale of the spectral break, τ ' 104 s
(∼ 3 h) there is an onset of completely different behaviour: energetic events localised in
time appear and continue all down the inertial range up to the smallest resolved scale.
We observe here the phenomenon of time localisation and scale delocalisation, one of
the properties of coherent structures.

Let us now move to smaller scales (τ < 102 s) and see if this tendency continues
down to the end of the inertial range and at kinetic plasma scales.

Figure 3.2 shows the spectra and the compressibility level (on the left). On the right,
there are the Morlet wavelet scalograms of δB⊥ (right, upper panel) and of δB‖ (middle

2Could this be a signature of supergranulation, whose lifetime is approximately twice the observed
scale ' 105 s (e.g., Velli, 2003)?
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Figure 3.1: Time interval of 9 days within the slow wind as measured by Wind/MAG, analysed by
Jagarlamudi et al. (2019). Upper panel: PSD of δB⊥, S⊥ (solid line), PSD of δB‖, S‖ (dashed line);
Middle: Compressibility level S‖(f)/S(f) of the fluctuations as a function of the satellite frame frequency;
Bottom: Local Intermittency Measure (LIM) of the total energy of the magnetic fluctuations.
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Figure 3.2: Left: Magnetic turbulent spectrum measured in a fast wind stream by Wind/MAG on the
January 30, 1995, between 13:00 et 14:00 UT. The total energy (solid line) follows an f−1.7 power-
law within the inertial range and has a very steep spectrum (close to f−4) at ion scales. The bottom
panel shows the compressibility on the same way as in Fig. 3.1. Right: scalograms normalised by the
Kolmogorov scaling (τ−1.7) of δB⊥ (upper panel) and of δB‖ (middle panel) are shown with a colour
code; in both scalograms, the cyclotron period is the solid curve around τ = 10 s; the ion break time
scale τb = 2.3 s (corresponding to fb ' 0.44 Hz) is indicated by a horizontal dashed-dotted line; two
curves below τ = 1 s are the Doppler shifted ρi (dashed) and λi (solid). The bottom panel shows
the polarisation of the magnetic fluctuations in the plane (x, y) perpendicular to B0, the left-hand
polarisation is indicated by blue, and the right-hand polarisation is in red. A left-hand-emission is
observed at the ion break time scale τb in the beginning and at the end of the time interval. Courtesy
of Sonny Lion, 2015, see also (Lion et al., 2016).
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Figure 3.3: Left: Spectrum of magnetic fluctuations in the slow solar wind from ion to sub-electron
scales (Cluster/STAFF-SC and SA measurements). Right: δBx(t) as measured by STAFF-SC in normal
mode (up to 12.5 Hz) in Geocentric solar ecliptic (GSE) reference frame, scalogram and LIM of δBx(t)
from ion and to sub-ion scales (waveforms at electron scales are not measured for this time interval).
The bottom panel gives LIM for a fixed scale τ = 1 s. Figure from Alexandrova et al. (2020).

panel), normalized by τ−1.7, for scales covering two decades of the inertial range and more
than one decade around ion scales. The bottom panel on the right gives informations
on the polarisation of the magnetic fluctuations in the plane (x, y) perpendicular to the
mean field B0 during the considered time interval of a fast stream (Leamon et al., 1998b;
Lion et al., 2016). In the three scalograms, one observes the energetic events localised in
time which cover all the observed scales in the inertial range; they ‘cross’ the ion break
scale τb = 1/fb (horizontal dashed-dotted line at 2.3 s) and become less visible at scales
smaller than ρi and λi (black solid and dashed curves below τ = 1 s). The normalization
of the scalograms by the inertial range scaling gives the impression that the two spatial
ion scales ρi and λi (which are close to each other for this time interval) are the smallest
scales of most of the localised energetic events of the inertial range. However, from
the polarization map (bottom panel on the right), there are no changes across the ion
scales for the localized events: one observes vertical lines up to the smallest resolved
scale, except for time intervals where left-handed waves are present. Let us consider now
smaller scales.

Cluster/STAFF (Cornilleau-Wehrlin et al., 1997) is the most sensitive instrument
by today to measure the sub-ion scales in the solar wind. Figure 3.3 shows STAFF
measurements at kinetic scales for a slow wind time interval of 45 minutes on February
2, 2002. The left panel gives the spectrum of the total energy of magnetic fluctuations
from ion and up to electron scales. One observes here the general spectrum as described
in the previous chapter. The exact fitting to this spectrum in the frequency domain
gives P (f) ∼ f−8/3 exp (−1.4f/fρe), with fρe = V/2πρe. The right panel shows from
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top to bottom: (i) the original Bx(t) signal as measured by STAFF-SC in normal mode,
i.e., f ∈ [0.1, 12.5] Hz; (ii) its Morlet wavelet scalogram; (iii) its Local Intermittency
Measure, LIM, I(t, τ) (see Equation (3.1)) and (iv) LIM for a fixed time scale τ = 1 s
as a function of time. LIM (in the 3rd panel on the right) shows the same tendency as
in the inertial range: localised energetic events exist and cover all the observed scales.
Unfortunately, for this time interval, the STAFF instrument was in normal mode and
could not measure the waveforms up to the electron scales. To complete the study, we
analysed burst mode STAFF-SC data3. We found a continuation of the localised events
up to the electron scales τ ' 0.01 s (not shown).

To conclude, starting at the spectral break between f−1 and f−5/3, i.e., at a time
scale around 3 hours and going to electron scales, τ < 0.1 s, all over the cascade we
observe time localised energetic events covering all the observed scales (or frequencies).
Is there a reset of these events at ion scales or do the same structures continue at smaller
scales? This will be a subject of a future study. Here we just note the observational
fact that for randomly chosen time intervals in slow or fast solar wind streams, the
same tendency of time localisation of the energy and its scale/frequency delocalisation
is observed at all scales across the cascade.

Below, we address the issue of how this time localisation and frequency delocalisation
relates to phase coupling across scales and non-Gaussianity of turbulence fluctuations.

2 Phase coupling and non-Gaussianity

To approach this problem, we use an idea of Hada et al. (2003) and Koga and Hada
(2003), who compared the observed signal and surrogate random and constant phase
signals. The upper panel of Figure 3.4 shows from left to right: (i) the same signal
Bx(t) as in Figure 3.3, (ii) its Fourier spectrum between 0.5 and 12.5 Hz, and (iii) its
phase as a function of the measured frequency. In the middle panels we have the same
representation but for a random phase signal Bx,r(t) constructed as follows: we keep the
Fourier amplitudes of the observed signal, we resample phases uniformly and randomly
and then we perform the inverse Fourier Transform. In the bottom panels the constant
phase surrogate signal is shown: it is obtained by fixing all phases to 90o, giving a
coherent high-amplitude event in the middle of the time domain. A zoom on this event
is shown in the Laurea Thesis of Claudia Rossi (2011). Let us now compare statistics
for these three signals.

Figure 3.5 (Left) shows the probability distribution functions (PDFs) of the nor-
malised magnetic fluctuations δBx/σx (σx being the standard deviation of δBx at a
given scale τ) at 3 different scales τ = 0.08, 0.16 and 0.64 s and for the 3 signals, origi-
nal and two surrogate. One observes non-Gaussian distributions for the original signal,
with increasing of tails toward small scales (upper panels), as expected for an intermit-
tent turbulence. Middle panels reveal the connection between Gaussianity and phases:
the distributions for the random phase signal are completely Gaussian at all scales. The

3See http://sci.esa.int/cluster/55616-guest-investigator-operations-2015-2016/
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Figure 3.4: Upper panels: Original signal Bx as measured by Cluster/STAFF-SC for the same time
interval as in Figure 3.3, its Fourier spectrum and phases. Middle panels: the same representation as in
the upper panels, but for the uniform random phase signal. Bottom panels: the same for the constant
phase signal. Figure from (Claudia Rossi, Thesi di Laurea, 2011).
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Figure 3.5: Left: Upper panels: PDFs for the measured signal Bx at 3 time scales. Middle panels: the
same representation as in the upper panels, but for the random phase signal. Bottom panels: the same
for the constant phase signal. Figure from (Claudia Rossi, Thesi di Laurea, 2011). Right: Random
phase signal and its scalogram and LIM represented in the same way as in Figure 3.3 (Right).

constant phase signal shows PDFs with very heavy tails (bottom panels). Therefore,
the original signal (upper panels) might be a combination of coherent events with cou-
pled phases, and random phase fluctuations. This will give statistics between the two
considered limits. In other words, the solar wind turbulence contains fluctuations with
coupled phases that are at the origin of the non-Gaussian tails of the PDFs.

Figure 3.5 (Right) shows the same information as Figure 3.3 (Right) but for the
random phase signal. From the time series of the random phase signal (upper panel in
Figure 3.5 (Right)) and its LIM at a fixed scale τ0 = 1 s (bottom panel), it becomes
clear that by randomising phases, we kill all high amplitude events. Thus, it seems that
phase coupling leads to high amplitude events. From the scalograms of wavelets and LIM
(2nd and 3d panels in Figure 3.5 (Right)), we observe a completely homogeneous energy
distribution in time and scales. Therefore, by proof of the opposite, all time localised
and scale delocalised energetic events observed in scalograms of Figures 3.1, 3.2 and 3.3,
from the beginning of the inertial range down to the sub-ion scales, correspond to events
with coupled phases which are at the origin of non-Gaussianity and intermittency.

So, we have shown the relation between phase coupling, time localisation and scale
delocalisation, and non-Gaussianity of the fluctuations. Indeed, by making a noise from
the observed turbulent signal, we destroy all these properties. Here, we agree with Farge
and Schneider (2015) who define coherent structures as everything that is not noise.
Now, let us verify the topology of these localised energetic events with coupled phases.
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3 Topology of the structures

What do the coherent structures look like? To answer this question, let’s go back to the
physical space and consider the magnetic field and its fluctuations at different scales.

Fluctuations at time scales smaller or equal to τ for a j’s component of the field are
defined as

δBτ
j (t) = Bj(t)− 〈Bj(t)〉τ , (3.2)

where 〈.〉τ is the moving average with a window of size τ . This definition is equivalent
to a high-pass filter for f ≥ 1/τ . The low-pass filter for f < 1/τ is just the smoothed
field

Bτ
j (t) = 〈Bj(t)〉τ . (3.3)

The band-pass filter between frequencies f1 = 1/τ1 and f2 = 1/τ2 can be defined as

δBj(t) = 〈Bj(t)−Bτ1
j (t)〉τ2 = 〈δBτ1

j (t)〉τ2 , (3.4)

with τ1 > τ2.

Large scales: from f−1 to f−5/3

The largest resolved scales have been discussed in the beginning of Section 1 of this
chapter; see Figure 3.1, where we show the spectrum and the intermittency measure,
LIM, for the time interval of 9 days of continuous slow solar wind. Let us now only
consider the second day of this time interval to see in more details the magnetic field at
different time scales (or frequency ranges). Figure 3.6(a) shows the components of the
magnetic field B(t) for this particular day. The panels below, show B(t) for different
frequency ranges.

Based on the spectrum and LIM of Figure 3.1 upper and lower panels, respectively,
and using Equations (3.2–3.4), we separate B(t) into (i) a smoothly varying field of
the f−1–range (for f < 10−4 Hz), see Figure 3.6(b), (ii) fluctuations defined between
f1 = 10−4 and f2 = 5 · 10−4 Hz, i.e., around the break at fb ' 3 · 10−4 Hz, see panel (c),
and (iii) δB(t) within the inertial range, i.e. for frequencies f > 10−3 Hz, see panel (d).

For the scales of the break, in panel (c), the magnetic structures last several hours
(∼ 4 − 6 hours), and look like a sequence of flux ropes or vortices (see below). Their
amplitude δB/B0 is about 1, as expected for fluctuations at the break scale (Matteini
et al., 2018). Within the inertial range, the fluctuations are very intermittent with a
number of high amplitude events: a 30 minutes zoom around one of such event with
δB/B0 ∼ 1 is shown in the bottom panel of Figure 3.6, and it looks like a current sheet
(see below). Let us now consider the inertial range structures in more details.

Inertial range and ion transition

As discussed above, the inertial range is filled with structures localised in time and delo-
calised in frequencies, with the smallest scales around the ion scales. Indeed, Lion et al.
(2016) performed the phase coherency analysis of the time interval shown in Figure 3.2.
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Figure 3.6: B(t) (in the minimum variance frame) within the slow wind stream, which is characterised
by the spectrum shown in Figure 3.1: (a) raw measurements: Bx (solid line) is the maximum variance
component, By (dotted) is the intermediate, Bz (dashed) is the minimum variance component. The
normalised eigenvalues are λj/λmax = (1, 0.3, 0.2), i.e., fluctuations are mostly linearly polarized. (b)
δB(t) within the f−1 spectral range (low-pass filtered B(t) for f < 10−4 Hz). (c) δB(t) at scales around
the break scale, f ∈ [10−4, 5 · 10−4] Hz. (d) δB(t) within the inertial range. (e) A 30 minutes zoom of
the panel (d) around one of the coherent structures.

51



13:29:35 13:29:40 13:29:45 13:29:50 13:29:55

10

0

10

B(
nT

)

(a)

Bmax
Bmed
Bmin
|B|

13:29:35 13:29:40 13:29:45 13:29:50 13:29:55
Universal Time, 1995-01-30

1

0

1

B(
nT

)

t2
(c)

Bmax
Bmed
Bmin

13:42:15 13:42:20 13:42:25 13:42:30 13:42:35

10

0

10

B(
nT

)

(b)

Bmax
Bmed
Bmin
|B|

13:42:15 13:42:20 13:42:25 13:42:30 13:42:35
Universal Time, 1995-01-30

2

0

2

B(
nT

)

t3

(d) Bmax
Bmed

By model
Bx model

Figure 3.7: Upper panels: Wind/MAG measurements around two localized events, in time intervals of
30 seconds. Bottom panels: Fluctuations δB defined at scales around the ion break scale, in panel (c)
band pass filter is applied between 0.4 and 1 Hz, in (d) – between 0.1 and 0.5 Hz. Figure from (Lion
et al., 2016).
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This analysis reveals that the structures present at the ion break scale have a filling fac-
tor of 40% in time (or space) and cover a wide range of scales, from 4 · 10−2 Hz to 1 Hz
that corresponds to τ ∈ [1−25] s and spatial scales of the order of ` ∈ [0.5−20] ·103 km
' [5− 200]ρi = [4− 160]λi.

Figure 3.7 (upper panels) shows the magnetic field around two of such events: in
panel (a) we observe a strong gradient in one of magnetic field components; usually such
a variation is interpreted as a current sheet. In panel (b), we have waveforms inherent
to a magnetic vortex or a flux rope4.

Figure 3.7 (bottom panels) show magnetic fluctuations around ion scales. The fluc-
tuations within the current sheet (defined between 0.4 and 1 Hz, panel c) do not cross
zero at the same time. It seems that, at ion scales, the substructure of the large scale
current sheet looks more like a small flux rope or a vortex than a smaller scale current
sheet.

In panel (d) of Figure 3.7, the magnetic fluctuations within the frequency range
[0.1 − 0.4] Hz can be compared with the Alfvén vortex model shown by dotted lines
(Petviashvili and Pokhotelov, 1992; Alexandrova, 2008). Unfortunately, on Wind space-
craft, the time resolution of the ion moments, and thus of the velocity fluctuations δV,
is not good enough to verify the alignment between δB⊥ and δV⊥, which is the property
that distinguishes the Alfvén vortex from the magnetic flux-rope.

Another issue with Wind is that it is a mono-satellite. To confirm the space local-
ization of magnetic vortex signatures in the solar wind, 4 satellite measurements are
needed. We have done such analysis in detailed case studies in the slow and fast wind
streams using Cluster data, see (Roberts et al., 2016) and (Perrone et al., 2016, 2017).

Alfvén vortices will be discussed in more details in Chapter 4. Now, let us follow the
localised energetic events down the cascade, toward sub-ion and electron scales.

Kinetic scales

At plasma kinetic scales, δB/B0 is so small that an approach based on a mixture of
weakly interacting waves (wave turbulence) seems applicable. However, as we have
shown above (Section 1), these scales are filled with signatures of coherent structures:
energetic events localised in time and delocalised in scales.

Figure 3.8 shows magnetic fluctuations around one of the energetic events, observed
as a vertical line in LIM in Figure 3.3 and detected by the 4 satellites of Cluster (see
the 4 panels): in the centre of the 4 s–time interval we find coherent fluctuations with
δB/B0 ' 0.1 − 0.2 depending on the satellite. The time delays between the satellites
are consistent with a space localised cylindrical magnetic vortex at spatial scales of
the order of the inter-satellite separations (∼ 200 km) and which slowly propagates
(∼ 0.4VA) in the plasma frame quasi-perpendicularly to B0. The difference of amplitude
of the fluctuations detected by the different satellites indicates that the four satellites

4The magnetic field of an Alfvén vortex is similar to the field of a flux rope, usually approximated by
the force-free current. The difference between them is alfvénicity: within a vortex magnetic fluctuations
are aligned with velocity ones (see Chapter 4).
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crossed the vortex with slightly different trajectories, that is in agreement with the space
localisation of the structure.

To resolve electron scales, we consider the data obtained during the Cluster Guest
Investigator campaign of O. Alexandrova (2015-2016) 5. The only available data in the
free solar wind during this campaign is in the slow wind (V ' 330 km/s) on February
15, 2015. This time interval looks like any other typical solar wind turbulence, but here
Cluster 3 and Cluster 4 were only 7 km apart, and the time resolution is 0.0028 s (i.e.,
360 vectors per second), which allow us to resolve electron scales in the solar wind in
space and in time simultaneously, for the first time6.

The shape of the coherent structures at such small scales resembles magnetic vortices
as well. An example of such an electron-scale magnetic vortex detected on two close
satellites (Cluster 3 and Cluster 4) is shown on Figure 3.9: the duration of the crossing
of such a vortex is about 0.05 s. The strongest gradient within this structure is localised
within about 0.01 s, which corresponds to a spatial scale of about 3 km, i.e., several
electron Larmor radii ρe. Note that this is the first time that such small-scale vortices
are found in the solar wind. They can be interpreted by the theory of electron-scale
vortices in high-β plasmas in the presence of electron temperature anisotropy (Jovanović
et al., 2015). Similar structures have been found in 2D Particle-in-cell (PIC) numerical
simulations (Haynes et al., 2015) and in the Earth’s plasma sheet (Sundberg et al., 2015);
bigger magnetic vortices (∼ 30ρe) have been recently detected by MMS in the Earth’s
magnetosheath (Huang et al., 2017).

How general are these results at 1 AU? We have analysed in the same way a dozen
of hours in the free solar wind between 2001 and 2006 under different plasma conditions
and we have always found signatures of coherent structures at kinetic scales. Then,
we have done a visual check of many random samples of STAFF measurements from
19 years of Cluster mission on the Cluster Quicklook (Fields & Waves). Signatures of
coherent structures, i.e., time localised and frequency delocalised energy enhancements,
were always present in the spectrograms while Cluster is in the free solar wind. Thus
it seems that presence of coherent structures is the typical situation at kinetic scales at
1 AU. Results on kinetic scale structures are summarized in (Alexandrova et al., 2020).

4 Concluding remarks

In this chapter, we show that time localised and frequency delocalised energetic events
are signatures of coherent structures. In the solar wind, such signatures are observed all
over the turbulent cascade, starting at the onset of the inertial range, and going up to
the electron scales.

The topology and dimension7 of coherent structures seems to vary. Scales of the onset

5See http://sci.esa.int/cluster/55616-guest-investigator-operations-2015-2016/.
6Unfortunately, MMS/SCM measurements are not sensitive enough to resolve kinetic turbulence in

the solar wind.
7We can define the dimension of coherent structures as three minus the dimension of the symmetry

group of the structure. For example, a cylindrical structure is an invariant under translation along one
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Figure 3.8: A vortex-like structure at sub-ion scales observed by the four Cluster satellites with inter-
separation distances of about 200 km, during the time interval of Figure 3.3. Magnetic field components
are in the GSE frame. Such magnetic fluctuations correspond to current filaments localised in the centre
of each structure with a cross section of the order of ion scales. Figure from Alexandrova et al. (2020).

55



Figure 3.9: Electron scale vortex-like structure crossed by two satellites of Cluster, 7 km apart (Cluster
Guest Investigator Operations of 2015); here the time interval is 20 times shorter than in Figure 3.8.
Such magnetic fluctuations correspond to current filaments with a cross section of the order of several
ρe. Figure from Alexandrova et al. (2020).

of turbulence are probably dominated by flux ropes (or magnetic vortices) (Borovsky,
2008). Large scale planar discontinuities are present within the inertial range (Veltri
and Mangeney, 1999; Salem, 2000; Mangeney et al., 2001). Vortex filaments seem to
co-exist with the current sheets within the inertial range and to dominate within the
kinetic range (Perri et al., 2012a; Greco et al., 2016; Lion et al., 2016; Roberts et al.,
2016; Perrone et al., 2016, 2017; Alexandrova et al., 2020). The time intervals analysed
here for the illustration of different frequency ranges are more or less randomly chosen.
We need to do a more systematic study to reach firm conclusions.

What is the filling factor of different type of the structures, and how it varies with
radial distance from the Sun, will be subjects of our future studies.

dimension (along its axis), and variations are important only in two other dimensions, we call it 2D
structure (3−1). A plane structure, like a current sheet or a shock, is invariant in the plane, so their
dimension is one (3−2). In reality, infinitely long magnetic vortices are probably do not exist and a finite
parallel to the field length appears. Still, `‖ � `⊥, but probably the derivative along the vortex axis is
not zero, so the structure can be considered as 3D. The same perhaps true for the current sheets with
finite size within the plane and thus, they can be considered as 2D or even 3D structures.
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Chapter 4

Alfvén vortices as building blocks
of the space plasma turbulence?

As we have just seen in the previous chapter, Alfvén vortices or vortex-like fluctuations
seem to cover all observable scales, i.e., from the large scale spectral break, between f−1

and f−5/3, down to electron scales.
By today, the most studied Alfvén vortices are at small scales of the inertial range,

and down to ion scales (Alexandrova et al., 2006; Alexandrova, 2008; Alexandrova and
Saur, 2008; Lion et al., 2016; Roberts et al., 2016; Perrone et al., 2016, 2017; Wang
et al., 2019). The first observations of nearly incompressible Alfvén vortices at these
scales have been done by Alexandrova et al. (2006) in the quasi-perpendicular Earth’s
magnetosheath. Thanks to the multi-satellite measurements of Cluster it was possible
to show the space localisation of these structures in the plane perpendicular to B0,
i.e, `⊥ < `‖. The plasma is nearly incompressible within the vortices, even if the sur-
rounding plasma can be compressible in the Earth’s magnetosheath, see Figure 1 from
(Alexandrova, 2008), shown below in Figure 4.4.

Later, using Cassini/MAG magnetic field measurements, Alexandrova and Saur
(2008) have shown that signatures of such vortices are also present in the quasi-perpen-
dicular magnetosheath of Saturn, see Figure 4.5. These observations of Alfvén vortices
with a radius a = `⊥ ' 10λi ∼ 10ρi in planetary magnetosheaths made us think that
they are inherent to the shock physics, see discussions in the review part of (Alexandrova,
2008), where we compare magnetosheath and solar wind turbulence.

However, our recent multi-satellite studies in the solar wind (Roberts et al., 2016;
Perrone et al., 2016, 2017), showing the existence of such structures in slow and fast
streams, indicate that magnetic vortices are generally present in space plasma turbulence.
Figure 4.1, from (Roberts et al., 2016), shows an example of an Alfvén vortex in the
slow solar wind as observed on the four Cluster satellites (the dotted lines are the fitting
of the model, with different closest approaches for the different satellites).

Indeed, these structures are more frequently observed than current sheets. In a case
study of the fast wind (Perrone et al., 2017), we found only a few isolated current sheets
(6 events among 138), the rest of the intermittent events being vortices (isolated or in a
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Figure 4.1: (a) The magnetic field lines of a quasi-monopolar Alfvén vortex, i.e, nearly aligned with
B0 (the angle between the axis and B0 is 0.35◦). (b and c) The perpendicular magnetic fluctuations
due to the vortex. The arrows denote the paths of the spacecraft through the vortex which give the
modelled fluctuations in Figures 4d–4g. The impact parameters for the various spacecraft are given in
units of vortex radius and denote the distance from the vortex axis (in the centre of the (a-c) panels).
The spacecraft trajectories are denoted by arrows. (d–g) The observed fluctuations (solid lines) and the
modelled fluctuations (dashed lines) which correspond to the trajectories presented in panels (a–c). The
left column shows δBx and the right one shows the δBy for the four satellites (C1, C2, C3 and C4) of
Cluster. Figure from (Roberts et al., 2016).
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network). Very often, on the boundaries of the vortices or during a central pass through
a dipole vortex, we observe a signal which can be interpreted as a current sheet crossing.

Another case study of a slow solar wind confirms the dominance of the vortices over
different types of intermittent events, like current sheets, magnetic solitons, holes and
shocks, as we found in (Perrone et al., 2016). Indeed, in the slow wind, the ion plasma
βi can be larger than or equal to 1, and compressible structures with δB‖ � δB⊥, such
as shocks, magnetic holes and solitons, are present; moreover, the vortices, which are
characterised by δB⊥, have a non-negligible compressible component δB‖ 6= 0 (Perrone
et al., 2016).

An incompressible hydrodynamic vortex was first described by Lamb (1895, 1906)
and Chaplygin (1903) independently. Its magnetic counterpart, the classical Alfvén
vortex, was introduced by Petviashvili and Pokhotelov (1992). The Alfvén vortex model
is based on incompressible non-linear quasi-bidimensional MHD equations of Kadomtsev
and Pogutse (1974) and Strauss (1976).

Solar wind plasma is nearly incompressible when β < 1, however, it become more and
more compressible while β increases. Recently, we have proposed the first Alfvén vortex
model for the plasma with β ∼ 1 (Jovanovic et al., 2020). The model is rather complex
but the topology of the vortex solution is very similar to the incompressible case, the
principal difference is the presence of a compressible part δB‖ within the vortex core
resulting from the pressure balance. For more details we refer the reader to the article
(Jovanovic et al., 2020).

Below we summarize the basic equations of Petviashvili and Pokhotelov (1992), which
admit fluid Alfvén vortices as solutions. Then, we discuss these solutions in light of the
interpretation of the spacecraft data, such as waveforms, polarisation and coherency
analysis, as well magnetic spectra.

1 Fluid Alfvén vortex model

The Alfvén vortex is a non-linear solution of the ideal incompressible MHD equations in
some approximation regime. It is characterized by magnetic field and velocity fluctua-
tions mostly perpendicular to the unperturbed magnetic field B0 (taken here as parallel
to the z direction), δBz�δB⊥ and δVz�δV⊥; they have a slow time dependence, ∂t�Ωci,
and their space variations verify ∂z�∇⊥ (i.e., k⊥ � k‖). Their amplitude ε∼δB⊥/B0

is assumed to be small although finite, 0<ε<1 and they satisfy the following scaling
relations:

∂z
∇⊥
∼ ∂t
VA∇⊥

∼ δBz
δB⊥

∼ δVz
δV⊥

∼ δB⊥
B0
∼ δV⊥

VA
∼ ε. (4.1)

Neglecting all terms of order ε3, the transverse fluctuations can then be described by two
scalar functions, the parallel component of the vector potential Az and a flux function
ψ

δB⊥ = ∇Az × z, δV⊥ = z×∇ψ (4.2)

(in the following the symbol δ will be omitted).
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For the scalar variables Az and ψ the MHD equations

ρ(∂t + V · ∇)V = −∇p+
1

4π
(∇×B)×B (4.3)

∂tB = ∇× (V ×B) (4.4)

∇ ·V = 0 ; ∇ ·B = 0 (4.5)

reduce to two non-linear scalar equations (Kadomtsev and Pogutse, 1974; Strauss, 1976;
Petviashvili and Pokhotelov, 1992): the conservation of the momentum along z

∂t∇2
⊥ψ+{ψ,∇2

⊥ψ}=
1

4πρ
{Az,∇2

⊥Az}−
B0

4πρ
∂z∇2

⊥Az, (4.6)

and the Maxwell-Faraday equation in the plane perpendicular to z

∂tAz +B0∂zψ + {ψ,Az} = 0. (4.7)

Here the notation {., .} corresponds to the Poisson bracket (or the Jacobian)

{a, b}=∂xa∂yb−∂ya∂xb≡(∇a×∇b)·z.

These equations can be written in dimensionless form, using new variables t=Ωcit,
r⊥ = r⊥/ρi, z=z/(c/ωpi), ρ=ρ/ρ0, Φ=ψ/(ρ2iΩci), A=AzVA/(B0ρ

2
iΩci)

dt∇2
⊥Φ = {A, J} − ∂zJ (4.8)

dtA+ ∂zΦ = 0 (4.9)

where J=∇2
⊥A is the longitudinal current and

dt≡∂t+V⊥·∇⊥.

The Alfvén vortices are solutions which are localized in a plane nearly perpendicular
to z and propagate with a speed u in this plane while conserving their shape. Choosing
the variables in the vortex plane x and η, with

η = y + αz − ut, α = tan(ϑ), (4.10)

ϑ being the angle between the normal to the plane (x, η) and B0, we arrive to a two
dimensional problem. In the new variables (x, η) the Eqs. (4.8) and (4.9) become

{Φ− ux,∇2
⊥(Φ− ux)} = {A− αx, J} (4.11)

{Φ− ux,A− αx} = 0 (4.12)

with the new Poisson bracket {a, b}=∂xa∂ηb−∂ηa∂xb. Equation (4.12) means that
(Φ−ux) and (A−αx) depend on each other:

A− αx = f(Φ− ux) (4.13)
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Figure 4.2: The surface of the current J above the vortex plane (x, η) and the contours of the potential
A (that coincide here with the field lines) in this plane for (Left) the monopolar structure with the radius
of localization a=1 and angle α=0; (Right) the bipolar vortex with a=1, α=5◦, here the current and
field lines are symmetric with respect to the line x=0 as far as the amplitude of the monopolar part of
the vortex is chosen to be A0=0. Figure from (Alexandrova, 2008).

so that Eq. (4.11) leads to an equation for (Φ−ux)

∇2
⊥(Φ− ux) = f ′(Φ− ux)J + f1(Φ− ux), (4.14)

containing two arbitrary functions, f and f1. There is, therefore, an infinite number of
solutions of the system (4.11) and (4.12) in the form of travailing vortices.

Among this infinite set of solutions, the simplest Alfvén vortex solution is localized
in a circle of the radius a (called below as vortex radius) in the plane (x, η), and decays
at infinity as a power law. It satisfies a generalized Alfvén relation

Φ = ξA, with ξ =
u

α
(4.15)

where α and u can be zero only simultaneously. Its current density J is a linear function
of A−αx inside a circle of radius a and vanishes outside{

J = −k2(A− αx− c), r < a
J = 0, r ≥ a (4.16)

where k and c are constants. This solution is A = A0(J0(kr)− J0(ka))− 2αx

kr

J1(kr)

J0(ka)
+ αx, r < a

A = a2 αx
r2
, r ≥ a.

(4.17)

Here A0 is a constant amplitude, J0 and J1 are the Bessel functions of 0th and 1st order
respectively, r=

√
x2+η2 is the radial variable in the plane of the vortex.
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The continuity of the solution (4.17) in r=a requires that the parameter k and the
radius a are coupled by the following dispersion relation

J1(ka) = 0. (4.18)

This relation ensures the continuity of the magnetic field B⊥=(Bx, Bη)=(∂ηA,−∂xA) in
r=a as well as a vanishing divergence of B⊥ everywhere.

Going back to the 3-D problem we must respect the following conditions: since
∂z�∇⊥ has to be satisfied, α = tan(ϑ)∼∂z/∇⊥∼ε and thus the angle ϑ must be small.
Similarly, the velocity u must also be small in order to satisfy the condition ∂t�Ωci, i.e.
u∼∂t/Ωci∼ε. In principle, ξ is arbitrary, but of the order of 1.

The Alfvén vortex solution (4.17) is the analogue of the incompressible unmagnetized
hydrodynamic vortex solution, and, as in hydrodynamics, we distinguish here two types
of vortices: monopole and dipole.

The monopolar vortex solution correspond to the case with α=0 (u=0), i.e., when
the projection of the mean field to the vortex plane is zero. This vortex is at rest in
the plasma frame. It corresponds to a field-aligned force-free current localized within a
circle of the radius a {

A = A0(J0(kr)− J0(ka)), r < a
A = 0, r ≥ a. (4.19)

The current J and the field lines of the monopole are shown in Figure 4.2 (Left).
As soon as α 6=0 (u6=0) and the amplitude of monopolar part A0 is zero, the solution

(4.17) describes the dipolar vortex. It is not stationary in the plasma as the monopole,
but propagates with a velocity u along the η-direction, the direction of the mean field
projection on the vortex plane. The current of the dipolar vortex and its field lines are
presented in Figure 4.2 (Right).

The situation when u6=0 and A0 6= 0 corresponds to a combined solution, with a
monopole vortex traveling on the top of a dipole vortex. A, J , the magnetic field lines
and velocity field lines are not symmetric with respect to the vortex center in this case.

The pure monopolar and pure dipolar vortices are topologically different and there
is no continuous transition between them. These differences reflect themselves in the
Fourier spectra of these two vortex types.

2 Spectral properties of Alfvén vortices

The Alfvén vortices are multi-scale nonlinear structures and one may wonder how they
can influence the turbulent spectrum.

Suppose that a magnetic probe moves in space with a constant velocity, along the
x-axis, with the coordinate η = −0.2a (i.e., with the closest approach to the vortex axis
of 0.2a). Figure 4.3 (upper panels) shows the “measured” Bx profiles of monopole and
dipole vortex structures for such a trajectory across the vortex. The lower panels of
Figure 4.3 show the power spectral densities of these signals calculated via Fourier (solid
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Figure 4.3: Upper panels: Bx component of the magnetic field of the monopole (left) and dipole (right)
measured along x with η=−0.2a. Lower panels: the Fourier (solid line) and the Morlet (empty circles)
transformations of the signals of the upper panels. The straight lines refer to the power law fits. Figure
from (Alexandrova, 2008).

lines) and via Morlet Wavelet Transforms (circles). The power spectra of both, monopole
and dipole, have a knee around the wave vector k = 1/a (here, the radius of the vortex
is a=1). Above this maximum, for ka>2, well-defined power laws are observed. The
monopole vortex spectrum follows ∼(ka)−4 , while the dipolar follows ∼(ka)−6. These
power laws can be easily explained.

The magnetic field of a monopole vortex is completely localized within the circle of
the radius a. It yields a discontinuity at r=a for the current density, so that the PSD of
J follows a k−2 power law. Therefore the power spectral density of the magnetic field
components is k−4 (indeed, J ∼ k · B and then B2 ∼ J2/k2). In the case of a dipolar
vortex structure, the current is localized while the field extends to infinity, the derivative
of the current has a discontinuity and its PSD follows a k−2 law, the PSD of the current
is ∝k−4 and that of the field follows a k−6 law.

Note that these spectra are not completely independent of the trajectory of the
virtual probe through the vortices. Along some particular trajectories, the magnetic
field components are equal to zero and then the spectrum vanishes. These trajectories
are vortex separatrices, which can be easily seen in Figure 4 in (Alexandrova, 2008).
For example, for the monopole structure, the trajectory along the x-axis with η=0 is a
separatrix of the Bx component, and the one along η with x=0 is a separatrix of By.
The dipole has twice as many separatrices: the trajectory along the x-axis with η=0 and
the one along η with x = 0 are the separatrices of Bx, while By=0 along the diagonals.
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Figure 4.4: Spectral properties of magnetic fluctuations in the magnetosheath downstream of a quasi-
perpendicular bow-shock during a time period [18:36–18:44] UT on March 31, 2001: (a) Solid line: the
total power spectral density of magnetic fluctuations S; dashed line: the spectrum of parallel fluctuations
of magnetic field S‖. The straight line refers to a fit with a power law ∝ f−4. The vertical dotted line
indicates the ion cyclotron frequency fci=1.2 Hz. (b) The level of compressible fluctuations S‖/S for
different frequencies; even if strongly compressible fluctuations are present at 0.025 and 0.1 Hz, at
the scales of the vortex (around 1 Hz), the compressibility is going down drastically, reflecting the
incompressible nature of Alfvén vortices. Figure from (Alexandrova, 2008).

Actually, the probability that the satellite crosses the vortex along a separatrix is small
and the spectra of Figure 4.3 can be considered as typical.

A spectral knee around the scale of the vortex radius is indeed observed in space
plasmas, see Figure 2(a) in (Alexandrova et al., 2006) and Figure 4.4, for the Earth’s
magnetosheath examples; then, Figure III.12 in the PhD thesis of Lion (2016), for a fast
solar wind example. In all these cases, a power-law spectrum close to f−4 is observed at
higher frequencies (i.e., smaller scales). Spectra with a f−6 scaling have so far not been
observed in the solar wind.

3 Apparent polarisation

When a spacecraft crosses a vortex structure, the polarisation, or coupling between
different components of the magnetic field (and velocity field), depends on the trajectory.
Let us consider observations within Saturn’s magnetosheath, where Cassini/MAG have
detected Alfvén vortex signatures, see Figure 4.5(a, upper panels). The corresponding
polarisation δBy(δBx) of the observed events is shown in the bottom panels of this
figure. Figure 4.5(b) shows monopole (left) and dipole (right) crossed along the y-axis
with different distances from the vortex centres (with different x coordinates); and in
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Figure 4.5: (a) Two examples of Alfvén vortices observed downstream of the Kronian bow-shock with
Cassini/MAG instrument: magnetic field fluctuations (top) and corresponding polarisations (bottom
panels); (b) monopole and dipole Alfvén vortex cross-sections (Petviashvili and Pokhotelov, 1992) (top),
magnetic field fluctuations along the satellite trajectory (along y-axis) with the closest approach to the
vortex centrum ∆x = 0.04a in the case of the monopole, and with ∆x = 0.2a in the case of the dipole
(middle panels); corresponding polarisations (bottom panels). Figure from (Alexandrova and Saur, 2008;
Dudok de Wit et al., 2013).
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the bottom panels, polarisations of the modelled field components by(bx)1 are shown in
both cases. One can see that in the case of the monopole crossed close to its center,
(with the closest approach ∆x ' 0.04a), the polarisation is elliptical (nearly linear),
and in the case of the dipole, crossed with ∆x = 0.2a, the two transverse components
have equal amplitudes and the polarisation is nearly circular. A visible difference with
a quasi-linear circularly polarised Alfvén wave here is that smaller scales are present
within a vortex and in the plane (bx, by), they give a kind of a loop around bx = 0. The
direction of polarisation (left or right handed) is also trajectory-dependent.

This trajectory dependence of the observed signal, and thus of the polarisation,
explains why Alfvén vortices are difficult to detect from the polarisation maps, like Fig-
ure 3(d) in (Lion et al., 2016). But they are easily detected from the wavelet scalograms
(or LIM ’s) as energetic coherent events covering all scales2.

The knowledge of possible observed polarisations by a spacecraft crossing an Alfvén
vortex and also their spectral features may help to explain old puzzling observations of
Tsurutani et al. (1994). The authors observed Alfvénic fluctuations with δB/B0 ' 0.3
at ion scales, with a spectral knee around fci and with a very steep spectrum at higher
frequencies. The polarisation in the plane perpendicular to the mean field was variable,
from elliptical/quasi-linear to circular and both, left and right handed. The minimum
variance indicated an oblique propagation, ΘkB = 60◦, but also 5◦. These fluctuations
were detected for all mean field orientations, with the Parker spiral orientation being
the most likely, and not only for the radial B0, when small amplitude linear AIC waves
are usually observed (see our discussion in Chapter 2, Section 6).

Indeed, the Parker spiral at 1 AU corresponds to ΘBV ' 45◦, when k⊥ fluctuations
dominate the turbulent spectrum. As Alfvén vortices are k⊥ structures, it is very pos-
sible that the described observations of ISEE-3 (Tsurutani et al., 1994) are indeed such
vortices. Nearly linear polarisation and oblique ΘkB can be explained by an Alfvén vor-
tex crossed close to its centre, when the minimum and intermediate variance directions
can be mixed up. Quasi-circular polarisation and small ΘkB can be explained by a vortex
crossed with a certain distance from the centre, and in this case the minimum variance
is aligned with the vortex axis, i.e. along B0, like in the case study by Alexandrova et al.
(2006).

4 Plasma behaviour within an Alfvén vortex

How does plasma behave within magnetic vortices? How do vortices interact with ions
and electrons? Which role do they play in solar wind heating?

An attempt to estimate velocity fluctuations δV using the electric and magnetic field
data was done in (Alexandrova et al., 2006). It was shown that indeed magnetic and
velocity fluctuations are well aligned as expected for an Alfvén vortex.

1We distinguish here the notations for observed magnetic fluctuations δB and modelled ones b.
2Alfvén vortices can also be detected in coherency maps, as we show in (Lion et al., 2016), see Figure 6

in this paper and the corresponding discussion.
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Concerning kinetic physics, we have analysed electron distribution functions during
the crossing of a vortex chain by Cluster in a fast solar wind stream in (Perrone et al.,
2017). At times corresponding to the vortex central region, the electron distributions
seem to be typical for the solar wind: almost isotropic with a spectral break between
the core and the halo at about 60 eV. No evidence of accelerated particles or beams is
observed. A different situation is found close to the vortex boundary, where the theo-
retical model predicts a discontinuity of the current. Here, the electron distributions are
atypical, beams appear around 100 eV, in both antiparallel and perpendicular directions
(parallel direction is not resolved in this case). These distributions could be unstable
and generate Langmuir waves (Perrone et al., 2017). Unfortunately, due to the low time
resolution of Cluster particles measurements, we were not able to follow the evolution
of the electron pitch angle distribution all over the structure.

Recently, using MMS observations within an Alfvén vortex in the Earth’s magne-
tosheath, we could study behaviour of the ions and the electrons within different parts
of the vortex (Wang et al., 2019), see Figure 4.6.

We could verify the generalised Alfvén relation and show that

δB⊥/B0 ' −0.9δV⊥/VA

within the vortex. Thus, the parallel current density j‖ and the flow vorticity ω‖ are
anti-aligned, see Figure 4.6(a). We observe Ti and Te to be anti-correlated across the
vortex: Ti varies as j‖ and Te correlates with ω‖. We note as well that, as was already
observed with Cluster in the fast solar wind (Perrone et al., 2017), in the middle of
the vortex and within two other j‖ local maxima, the electron distribution function
f(ve) becomes isotropic (Figure 4.6(c)). Within the local minima of the current density,
electrons have a Te,‖ > Te,⊥ anisotropy. Ions behave in a different way: they are more
isotropic at inflection points of j‖(r) and ω‖(r) within the vortex (Figure 4.6(b)). Then,
at the local extrema of j‖(r) the ions are anisotropic: Ti,‖ > Ti,⊥ at the local maxima
(where electrons are isotropic) and Ti,‖ < Ti,⊥ at the local minima.

These MMS observations are not yet well understood and will be the subject of a
future study. Recently developed fluid theory of coherent magnetic vortices in high-β
space plasmas (Jovanovic et al., 2020) may probably explain the temperature behavior
observed here.

5 Concluding remarks

Alfvén vortices are the simplest non-linear cylindrical solutions of the incompressible
reduced MHD equations. A well known example of such a non-linear standing Alfvén
wave in close cosmos is the Alfvén wing in the Jupiter magnetosphere (Drell et al., 1965;
Neubauer, 1980; Saur et al., 2004) and (J. Saur, private communication, 2008).

In space plasma turbulence, such vortices seem to be quite generic: we observe them
in the quasi-perpendicular magnetosheath of the Earth (Alexandrova et al., 2004, 2006;
Alexandrova, 2008; Wang et al., 2019) and Saturn (Alexandrova and Saur, 2008), in the
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Figure 4.6: An Alfvén vortex crossed by MMS in Earth’s magnetosheath on October 2nd, 2015, just
before 11:00 UTC. (a) Parallel current density jz and vorticity ωz; (b) ion temperatures, total Ti (red),
parallel Ti,‖ (black) and perpendicular Ti,⊥ (blue); (c) electron temperatures (with the same color code);
(d) normalised reduced velocity distribution function (VDF) of the ions along and (e) perpendicular to
the mean field; (f) and (g) the same as (d) and (e) but for electrons; (h)-(l) projections of the ion VDF’s
in the local (B,V)–frame (e.g., Lion et al., 2016), in the middle of the vortex (r0), and within the local
minima and maxima of jz (r1 and r2); (m)-(q) the same for electron VDF’s. Figure from (Wang et al.,
2019).

68



fast (Lion et al., 2016; Perrone et al., 2017) and the slow (Perrone et al., 2016; Roberts
et al., 2016) solar wind.

Before the era of the multi-satellite measurements with Cluster and MMS, the mag-
netic perturbations δB due to Alfvén vortices, their spectral features and apparent po-
larisation have been probably interpreted as AIC or large amplitude Alfvén waves (e.g.,
Tsurutani et al., 1994).

The classical model of Petviashvili and Pokhotelov (1992) can explain our observa-
tions at ` ' [10, 20]ρi (Alexandrova et al., 2006; Alexandrova, 2008; Lion et al., 2016;
Roberts et al., 2016; Perrone et al., 2017). At kinetic scales, this model is no more appli-
cable. Approaching ion scales, vortices show the presence of a compressible component
appearing when βi increases (Perrone et al., 2016). We could explain this feature by
pressure balance within the structure in the framework of fluid model of coherent vor-
tices in high-β plasma (Jovanovic et al., 2020). At sub-ion scales there exist topologically
similar cylindrical nearly field aligned vortex filaments, however, analytically it was pos-
sible to describe only a particular case when δB‖/B0 = δn/n0 (Jovanovic et al., 2020).
At electron scales, we could find vortex solutions in the presence of electron temperature
anisotropy Te⊥/Te‖ > 1 (Jovanović et al., 2015). These self-organized structures are non-
linear cylindrical oblique whistler waves. They are characterized by both compressional
and torsional perturbations of the magnetic field. These structures may probably ex-
plain our observations at the smallest resolved scales, of the order of a few ρe, described
in Chapter 3, Section 3 (see Figure 3.9) and summarised in (Alexandrova et al., 2020).
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Chapter 5

Conclusion and discussion

In this manuscript, we attempted to give our understanding of well developed turbulence
in the solar wind. It is based on in-situ observations we could carry out with Cluster,
Wind, Stereo, Helios, Ulysses, Cassini and MMS spacecrafts, under different plasma
conditions and at radial distances R ∈ [0.3, 9.5] AU.

Despite important differences with neutral fluids, space plasma turbulence seems
to show a number of general properties inherent to hydrodynamic turbulence, such as
a general turbulent spectrum and intermittency. Our principal contributions to the
understanding of space plasma turbulence described in this document are:

• the observation of the kinetic range spectrum at sub-ion scales (Alexandrova et al.,
2009, 2011, 2012; Alexandrova et al., 2020) and the evidence of its general shape
between 0.3 and 1 AU in the form:

E(k⊥) = Ak
−8/3
⊥ exp(−k⊥`d); (5.1)

• the observational evidence that the electron Larmor radius ρe plays the role of the
dissipation scale, `d, for the electromagnetic turbulence in a collisionless plasma
(Alexandrova et al., 2009, 2012; Alexandrova et al., 2020)

`d = Cρe, with C ∈ [1, 2]; (5.2)

• the observational evidence that the turbulence amplitude A is correlated with the
ion thermal and magnetic pressures, within the inertial range and at kinetic scales,
in the solar wind (Alexandrova et al., 2011, 2013; Lacombe et al., 2014; Lion, 2016)
and in the Saturn’s magnetosphere (von Papen et al., 2014);

• the detection of coherent structures in the form of magnetic vortex filaments in a
wide range of scales (from the inertial range to the dissipation range), in differ-
ent plasma environments (fast and slow winds, planetary magnetosheaths) and at
different distances from the Sun (at R = 1 and 9.5 AU), see (Alexandrova et al.,
2006; Alexandrova, 2008; Alexandrova and Saur, 2008; Lion et al., 2016; Lion, 2016;
Roberts et al., 2016; Perrone et al., 2016, 2017; Wang et al., 2019; Alexandrova
et al., 2020).
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What is the theoretical interpretation of these results? How consistent are they with
previous and recent observations?

1 Interpretation of kinetic spectrum: small scale cascade
and dissipation range?

The end of the inertial range and ion scales were usually attributed to the dissipation
range of solar wind turbulence. However, the power-law behavior observed at ion scales
(e.g., Leamon et al., 1998a) instilled uncertainty in my mind when I started reading solar
wind literature during my short post-doctoral period in Calabria University (in 2006):
What if it was not the end of the story, or rather, of the cascade?

Thanks to Cluster/STAFF instrument, that is the most sensitive search-coil magne-
tometer by today, we were able to measure the small scale cascade following a general
shape k−2.8⊥ (if the fitting frequency range is well separated from the ion and electron
scales) and an exponential roll-off at electron scales. Three different observational ap-
proaches point out that this roll-off is controlled by ρe. One analytic function which
describes both parts is given by Equation (5.1). Precisely, it describes the solar wind
spectrum of magnetic fluctuations at scales smaller than the ion characteristic scales,
λi and ρi, and going beyond the electron scales. This model describes well the totality
of observed spectra without signatures of quasi-parallel whistlers. The amplitude of the
spectrum A seems to be a function of the ion thermal pressure A ∼ nkTp and magnetic
pressure A ∼ B2

0 . Such dependences are also observed in the magnetosphere of Saturn
(von Papen et al., 2014), indicating the generality of the phenomenon.

The power-law range at sub-ion scales is usually attributed to a mixture of dispersive
modes, such as the magnetosonic/whistler mode or the kinetic Alfvén mode (Stawicki
et al., 2001; Galtier and Bhattacharjee, 2003; Cho and Lazarian, 2004; Howes et al.,
2008a; Schekochihin et al., 2009; Rudakov et al., 2011; Boldyrev and Perez, 2012; Cerri
et al., 2016), interacting non-linearly in Fourier space.

The observed power-law k−2.8⊥ is quite steep with respect to the incompressible
Hall MHD, Electron MHD or gyro-kinetic predictions, k−7/3 (Biskamp et al., 1999;

Howes et al., 2008b; Schekochihin et al., 2009), or wave turbulence prediction k
−5/2
⊥ k

−1/2
‖

(Galtier and Bhattacharjee, 2003; Galtier, 2006, 2009).

A scaling of k
−8/3
⊥ , closer to observations, was found in 3D incompressible EMHD

numerical simulations in presence of a strong external magnetic field B0 (Meyrand and
Galtier, 2013). The authors observe that under such conditions, turbulence is charac-
terized by filaments of electric currents parallel to B0 and the transfer of energy in the
parallel direction is negligible. This turbulent regime is in agreement with our observa-
tions of Alfvén vortices at kinetic scales.

The same scaling of k
−8/3
⊥ was observed in a numerical study of strong KAW tur-

bulence (Boldyrev and Perez, 2012). It was explained by the dominance of pressure-
balanced 2D-structures. This is in agreement with magnetic vortices in high β plasma
(Jovanovic et al., 2020).
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Indeed, compressible effects are important at kinetic scales (Alexandrova et al.,
2008a; Salem et al., 2012; Kiyani et al., 2013; Perrone et al., 2016). In Lacombe et al.
(2017), we have shown that the magnetic compressibility, defined as,

C‖ = δB2
‖/(δB

2
⊥ + δB2

‖), (5.3)

at kinetic scales varies with the plasma β in a way compatible with the predictions of
Boldyrev et al. (2013) for low frequency magnetic structures in pressure balance, e.g.,
KAWs in the linear regime (Matteini et al., 2020).

2D and 3D Hybrid numerical simulations of Franci et al. (2015, 2016) recover mag-
netic spectra ∼ k−α⊥ , with α ∈ [2.8, 3.5], which is close to what is observed in the solar
wind. Moreover, the same numerical model describes well the observed C‖ behavior, as
we have recently shown in (Matteini et al., 2020). Franci et al. (2017) provides numeri-
cal evidence of magnetic reconnection of current sheets at ion scales being at the origin
of the small-scale cascade. This result may provide an explanation of observations of
magnetic filaments at sub-ion scales.

A theoretical model describing vortex generation by tearing instability for low β at
the scales of the ion spectral break was proposed by Mallet et al. (2017). However, it
is not clear if the time needed to switch on the instability (inverse of the growth rate
τtearing = γ−1tearing) is short enough to dominate the non-linear transfer (τtearing < τNL at
the scale of a current sheet thickness). This point can be probably checked by numerical
simulations.

Loureiro and Boldyrev (2017) propose a similar idea, but to describe the whole
kinetic range of turbulence. The authors assume τtearing < τNL and then obtain the
energy spectrum of Alfvénic turbulence mediated by kinetic reconnection to follow a
power-law ∼ k−α⊥ , with α ∈ [8/3, 3].

What about an exponential roll-off at electron scales? In usual fluid turbulence, the
far dissipation range is described by E(k) ∼ k3 exp(−ck`d) (with c ' 7) (Chen et al.,
1993). This is due to the resistive damping rate ∝ k2 valid in a collisional fluid, which
gives an exponential spectral tail. In the collisionless plasma of the solar wind there is
no resistive damping, and thus this coincidence deserves an explanation.

Gyrokinetic simulations of Howes et al. (2008a) typically show an exponential roll-off
of the magnetic power spectra at electron scales. This behavior seems to be related to
the electron Landau damping. However, local interactions result in a strong Landau
damping and in a sharp cut-off at electron scales.

Howes et al. (2011) consider a weakened cascade model which includes nonlinear and
non-local transfer of energy from large to small scales in Fourier space (see Equation (23)
in (Howes et al., 2011)) and the damping of kinetic Alfvén waves. The spectral laws are

respectively Ek ∝ k
−5/3
⊥ at large scales and Ek ∝ k

−7/3
⊥ between ion and electron scales.

When taking into account the damping term, Howes et al. (2011) obtain numerically
the same spectral laws, with a final curved tail at scales smaller than electron scales.
Superficially, this spectrum thus resembles the analytic form which we have found to be
valid to describe the solar wind turbulence.

72



Note that the damping term in the model of Howes et al. (2011) is obtained by
linearising the Vlasov-Maxwell equations in the gyrokinetic limit (k‖ � k⊥, with fre-
quencies f � fci). For k⊥ρi � 1 it has the form γ ' k‖VA(k⊥ρi)

2 ∝ k‖k
2
⊥ (see

Equation (63) in (Howes et al., 2006)). Taking into account the assumption of critical
balance τNL = τA (i.e., k⊥u = k‖VA) and the spectral index −7/3 (that means that

velocity fluctuation u verifies u ∼ k
−2/3
⊥ ), one gets k‖ ∝ k

1/3
⊥ . Therefore, the damping

term takes the form γ ∝ k2+1/3
⊥ . The exponent of the damping rate is thus very close to

the k2 scaling of the Laplacian viscous term, which is known to lead in hydrodynamical
turbulence to an exponential tail in the dissipation range.

The model of Howes et al. (2011) is based on the assumption k⊥ � k‖. So, while
the proposed phenomenology may explain the exponential tail of the k⊥–spectrum, it
cannot describe more isotropic wave vectors. Indeed, in Lacombe et al. (2017), we
have shown that while between ion and electron scales quasi-2D turbulence (with k⊥ �
k‖) dominates, at electron scales, the wave vectors are more isotropic (as well as the
amplitudes of δB).

Passot and Sulem (2015) proposed the phenomenological model of KAW turbulence,
which covers weak and strong regimes. The authors show that the weak turbulence
regime of KAW cannot survive in the presence of a significant Landau damping. In the
strong turbulence regime, the process of ion temperature homogenization along magnetic
field lines, induced by Landau damping, introduces an additional characteristic time
which modifies the turbulence transfer time at sub-ion scales, leading to a power law
magnetic spectrum steeper than the classical −7/3 spectrum of critically balanced KAW
turbulence. At electron scales, this model shows spectra following an exponential cut-off
due to the electron Landau damping.

Schreiner and Saur (2017) developed an analytic dissipation model to describe tur-
bulence at electron scales. This model combines the energy transport from large to small
scales and collisionless damping, which removes energy from the magnetic fluctuations
in the kinetic regime. The authors assume wave-particle interactions of KAWs to be the
main damping process. Turbulence is strong and critically balanced, i.e., for a given k⊥,

k‖ ∝ k
1/3
⊥ . Based on the KAWs dissipation rate particularity, the authors explain why

`d ' ρe, independently of the solar wind conditions. This model described nicely the
observed spectrum, Equation (5.1).

Parashar et al. (2018) did a 2D full particle simulations to study the role of electron
plasma beta, βe. The obtained magnetic power spectra show an exponential-like shape
on electron scales with a weak dependence on βe: the PSDs decrease faster for larger
βe (and for larger ρe) (cf., Parashar et al., 2018, Figure 6, top panel) in a qualitative
agreement with the observational results presented here.

2 Intermittency: current sheets or vortices?

Most of the studies of intermittent events in the solar wind reveal the presence of planar
structures such as current sheets, shocks and rotational discontinuities (Veltri and Man-
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geney, 1999; Salem, 2000; Mangeney et al., 2001; Greco et al., 2009, 2010; Perri et al.,
2012b). Here we show the importance of magnetic vortices (Alexandrova et al., 2006;
Alexandrova and Saur, 2008; Lion et al., 2016; Roberts et al., 2016; Perrone et al., 2016,
2017), rarely observed before (Rezeau et al., 1993; Verkhoglyadova et al., 2003). Why
such structures did not attract more attention in the past?

The most important point is mono-satellite vs multi-satellite observations. Indeed,
a wave-packet passing across a satellite along B0 will give the same signal of δB(t) as a
magnetic flux rope convected by the wind in a plane perpendicular to B0. Only multi-
satellite observations can discriminate these two phenomena, see Figure 5 in (Alexan-
drova et al., 2006) and the corresponding discussion. Thus, only with the era of Cluster
(and later with MMS), we could establish the presence of such cylindrical structures in
the turbulent signal in the solar wind and the Earth’s magnetosheath. Previously, the
signatures of vortices could be interpreted as large-amplitude Alfvén (or AIC) waves,
see the discussion in Chapter 4, Section 3.

Another crucial point is the detection method. Current sheets are easily detected
using the Partial Variance of Increments (PVI ) method (Greco et al., 2018), based on
magnetic field increments ∆Bj,τ = Bj(t+ τ)−Bj , where j = x, y, z. Haar wavelets are
indeed very similar to PVI and give alike results (Veltri and Mangeney, 1999; Salem,
2000; Mangeney et al., 2001). In our studies we usually use Morlet wavelets (Alexandrova
et al., 2006; Alexandrova and Saur, 2008), whose mother function looks like the vortex
solution (in the form of a Bessel J0,1 function of the zeroth and first order) close to a
vortex centre. Thus, it helps to detect vortices. But to avoid an influence of the method
on our results, we also used direct magnetic field measurements at a given frequency
range (Perrone et al., 2016, 2017). And again, we have found magnetic vortices. These
last studies show just few current sheets. While, the signal depends on the trajectory of
a satellite across the vortex, it can be quite similar to a current sheet if the trajectory
goes through the centrum.

It is interesting to understand how the dominance of Alfvén vortices as intermittent
structures agrees with modern theories of space plasma turbulence.

As we have discussed in Chapter 1, a very popular model of solar wind turbulence is
Critically Balanced Alfvénic turbulence of Goldreich and Sridhar (1995) at MHD scales.
At kinetic scales, it is Critically Balanced Kinetic Alfvén turbulence (e.g., Schekochihin
et al., 2009). As we have already discussed, the basis of these models is the balance
between linear Alfvén time τA at MHD scales (τKAW at kinetic scales) and non-linear
time τNL. Vortices are cylindrical structures which can be (i) field aligned magnetostatic
or (ii) slightly inclined tubes having a small angle with B0, such vortices propagate
slowly in the plane nearly perpendicular to the mean field. If these structures dominate
turbulence within 1–2 decades of the inertial range and at sub-ion scales, there is a
problem with the Critical Balance approach. In fact, the parallel time of a field-aligned
vortex is zero all along the field line (τ‖,vortex = 0), and it is small for an inclined vortex.
A perpendicular time (or life time) can be quite long if the vortex is stable in the plasma
(τ⊥,vortex � τNL at the smallest scale of the vortex). So, parallel and perpendicular
characteristic times are not of the same order at all. The estimation of the vortex life-
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time, however, is an open question and should be studied in more details via numerical
simulations and multi-satellite observations. In particular, it will be interesting to find
occurrence of the same plasma parcel measured by Parker Solar Probe and by Solar
Orbiter at different R during the satellites radial alignments.

A larger statistical study should be done to determine also typical filling factors of
different structures (planar and cylindrical) and their possible coupling across scales.
How do they interact with ions and electrons, and thus participate to the solar wind
global heating? And what is going on closer to the Sun, where we have an onset of
turbulence?

In hydrodynamic turbulence, the topology of intermittent events reflects the original
structures of the laminar-turbulent transition, i.e, the onset of turbulence. The first
results of Parker Solar Probe at 0.17 AU (Bale et al., 2019) show δB/B0 ∼ 1 reversals
at very large scales. They are observed during the time intervals for a non-radial-field
wind, when fluctuations with k⊥B0 are measured. Probably here, we are facing the
origin of turbulence in the solar wind... How are they generated? Which role do they
play in the shaping of the particles distributions?

During these reversals at smaller scales, Bale et al. (2019) observe signatures of
coherent structures covering inertial and kinetic ranges, see Figure 3 in (Bale et al.,
2019). The topology of these structures closer to the Sun is not known by today and
will be the topic of some of our future studies.
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skikh, V., Maksimovic, M., and Štverák, c. (2020). Whistler waves and electron
properties in the inner heliosphere: Helios Observations. The Astrophysical Journal,
897(2).

84



Kuzzay, D., Alexandrova, O., and Matteini, L. (2019). Local approach to the study of
energy transfers in incompressible magnetohydrodynamic turbulence. Phys. Rev. E,
99(5):053202.

Lacombe, C., Alexandrova, O., and Matteini, L. (2017). Anisotropies of the Magnetic
Field Fluctuations at Kinetic Scales in the Solar Wind: Cluster Observations. ApJ,
848:45.

Lacombe, C., Alexandrova, O., Matteini, L., Santoĺık, O., Cornilleau-Wehrlin, N., Man-
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situ evidence of magnetic reconnection in turbulent plasma. Nature Physics, 3(4):236–
238.

Rezeau, L., Roux, A., and Russell, C. T. (1993). Characterization of small-scale struc-
tures at the magnetopause from ISEE measurements. J. Geophys. Res., 98(.17):179–
186.
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André Mangeney; Terre, océan, espace. Physique Paris 7 2000.

Salem, C., Mangeney, A., Bale, S. D., and Veltri, P. (2009). Solar Wind Magnetohydro-
dynamics Turbulence: Anomalous Scaling and Role of Intermittency. ApJ, 702:537–
553.

88



Salem, C. S., Howes, G. G., Sundkvist, D., Bale, S. D., Chaston, C. C., Chen, C. H. K.,
and Mozer, F. S. (2012). Identification of Kinetic Alfvén Wave Turbulence in the Solar
Wind. ApJ, 745:L9.

Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., and Kivelson, M. G. (2004).
Plasma interaction of Io with its plasma torus, volume 1, pages 537–560.

Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G.,
Quataert, E., and Tatsuno, T. (2009). Astrophysical Gyrokinetics: Kinetic and Fluid
Turbulent Cascades in Magnetized Weakly Collisional Plasmas. ApJS, 182:310–377.

Schreiner, A. and Saur, J. (2017). A Model for Dissipation of Solar Wind Magnetic Tur-
bulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations.
ApJ, 835:133.

Schwartz, S. J., Burgess, D., and Moses, J. J. (1996). Low-frequency waves in the Earthś
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