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“The Terminator’ is not an impossibility. I think that symbolizes the downside of ar-

tificial intelligence ... but technology has a big downside in general. There is a bigger

downside to not pursuing it.”

Ray Kurzweil, 2011
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Learning Safe Controllers for Motion Generation in Redundant Robots

by Valerio Modugno

One of the key problems in planning and control of redundant robots is the fast gen-

eration of controls when multiple tasks and constraints need to be satisfied. In the

literature, this problem is classically solved by multi-task prioritized approaches, where

the priority of each task is determined by a weight function, or with trajectory optimiza-

tion techniques. In this thesis we propose a framework that, through the combination of

machine learning and control theory approach, can be efficiently applied both for multi

task prioritization and trajectory optimization to automatically find optimal behaviour.

First we learn the temporal profiles of the task priorities, represented as parametrized

weight functions: we automatically determine their parameters through a constrained

stochastic optimization procedure. Then we extend the proposed method for trajectory

optimization scenario where we learn the task trajectories for whole-body balancing

tasks. In both cases we ensure that the optimized movements are safe and never violate

any of the robot and problem constraints. For this purpose we compare three constrained

variants of CMA-ES on several benchmarks, among which two are new robotics bench-

marks of our design using the KUKA LWR. We retain (1+1)-CMA-ES with covariance

constrained adaptation [30] as the best candidate to solve our problems. In order to

tackle the limitations of the algorithm described in [30], in this thesis we propose an

extension of (1+1)-CMA-ES with Constrained Covariance Adaptation (CCA) that ad-

dresses all the issue that affects the learning module of our framework. We show the

effectiveness of the proposed framework for the task priority learning on a simulated 7

DOF Kuka LWR and both a simulated and a real Kinova Jaco arm. We compare the

performance of our approach to a state-of-the-art method based on soft task prioriti-

zation, where the task weights are typically hand-tuned. Then we apply our method

on two whole-body experiments with the iCub humanoid robot to show its scalability

property. Finally we test our learning framework to the prioritized whole-body torque

controller of iCub, to optimize the robot’s trajectory for standing up from a chair.
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Chapter 1

Introduction

According to Klaus Schwab, founder and executive chairman of the World Economic

Forum [8], today we are on the brink of a new industrial revolution that will radically

change our society from the ground up. Our society is going through a great number of

changes that has never been experienced in the history of humankind. Today we ignore

how this technological explosion will develop but we know for sure that we are going to

experience a technological and societal step forward that will flourish at an exponential

pace in the way that many futurologists, like Ray Kurzweil, in recent years refer to this

as a self sustained process that will push humanity to the technological singularity [9].

In this context we do not bolster the most far-fetched ideas of the Singularitarianism

movement (such as the creation of superintelligence or the same idea of technological

singularity) but, in accordance with this positivistic way of thinking, we uphold the idea

of technological fast growth that moves in successive paradigm shifts.

This progression can be seen from the first industrial revolution, where water and steam

power were used to mechanize production, to the second, where electric power pushed

the creation of mass production. More recently the third industrial revolution, stemmed

from electronics and information technology, in less than 20 years brought the world into

the fourth revolution. This last revolution is characterized by a technological blending

between physical, digital, and biological worlds, and it is strongly dependent on the

digitalization process occurred since the middle of the last century.

Velocity, scope, and systems impact are the three main reasons why this technological

wave is not just a mere extension of the previous one but is something entirely new that

is intended to change our society from the ground up. The speed of current development

is unprecedented. The fourth industrial revolution is experiencing a rate of growth that

is exponential rather than linear. Moreover, the breadth and depth of technological

1
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Figure 1.1: This illustration shows the sequences of the four industrial revolutions by
highlighting their main features. For the fourth revolution by Cyber Physical System
we refer to a mechanism that is controlled by computer algorithms and is characterized

by a tight integration among them.

innovation is changing every single aspect of our society from production to governance

and it is disrupting almost every industry in the entire world.

Today mainstream media grants more and more air time to stories about new arising

technologies or innovative treatments for deadly diseases. Nowadays, many technology-

related buzzwords reach the general public more than ever. One of these, is Industry

4.0 a framework that tries to decline the ideas of the fourth industrial revolution in the

manufacturing environment.

The entire Industry 4.0 concept is built around the concept of ”smart factory“. The

smart factory is conceived as an independent unit where autonomous systems monitor

the physical process inside the factory and provide a full control of the plant. A Smart

factory requires high interoperability among devices, sensors and people, and capability

to recollect and analyze all the sensory data an provide an autonomous response depend-

ing on the current state of the factory, or support humans in making decisions. A fully

autonomous productive unit represents the last step on the road towards the industry

4.0 implementation. A ”light-out factory“ is a place where no human intervention is

required in order to function, thus the factory can operate with lights switched off. A

fully automatic factory is a place where the raw materials enter as input and finished

products leave. Another great example of the effect of the fourth industrial revolution

is represented by the rising of the autonomous cars technology. An autonomous car is

a machine capable of taking producing real-time decisions based on the current state of

the environment. Nowadays this technology has not yet reached the streets of our cities

but it has the potential to disrupt the logistics industry and change the life of millions
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Figure 1.2: In this picture are presented the 6 levels of autonomy for AVs, according to
the Society of Automotive Engineers (SAE). It is worth noticing the difference between
level 2, where the driving task is performed by humans, and level 3 where the automated
driving system is responsible for the control of the vehicle. This table is taken from

https://www.sae.org/misc/pdfs/automated_driving.pdf

of people. In 2014 an autonomous cars classification with 6 different levels of autonomy

was published by SAE international, a US based automotive standardization authority.

These levels give a technical and descriptive characterization of each state of autonomy

rather than defining a normative framework. Each level introduce a lower bound for the

system capabilities. The table is shown in figure 1.2

All these examples point towards the same directions: here the common goal is to imple-

ment a level of autonomy that aims to make the human intervention superfluous. Today

this goal appears to be closer than ever in the history of the human kind due to the

great progress that the scientific community from both public and private institutions

is pursuing in two very important sectors of the fourth industrial revolution: Machine

Learning and Robotics Control. Just looking at applications for robotics, worldwide,

the private sector expenditure for 2017 will total 97.21 billion dollars with a predicted

acceleration in spending over the next five years, that will hit 230.7 billion in 2021.

The International Data Corporation (IDC) that redacted the report explains that the

sustained growth of investments is due to the convergence of robotics and machine learn-

ing, that is opening the way to the next generation of intelligent robots for industrial,

commercial, and consumer applications. Even if we have witnessed a contraction in the

https://www.sae.org/misc/pdfs/automated_driving.pdf
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Figure 1.3: In this figure an HRP-4 humanoid robot is involved in two different
working scenarios that can occur inside a plane factory.

public funding for research worldwide after the financial crisis in 2008, the public insti-

tutions are still playing a prominent role in the support of robotics R&D. In particular,

in the last decade the European Union, through the FP7 and horizon 2020 research

programs has already funded more than forty thousand projects with a combined total

investment of 130 billion euros over 15 years (FP7 with 50 billions from 2008 to 2013 and

H-2020 with 80 billions (estimated) from 2014 to 2020) with more than 1472 of them re-

lated to robotics (according to the Community Research and Development Information

Service - CORDIS).

Among this multitude of projects, two of them, COMANOID and CoDyCo, highlight

many interesting aspects about the current state of research in the robotics field. Cit-

ing from the main web page of the project: “COMANOID aims at deploying humanoid

robots to achieve tasks that have been identified by Airbus Group in aircraft assembly op-

erations. The project focuses on showing precise accessibility (namely into areas where

wheeled robots cannot be deployed) through whole body multi-contact planning motion

with advanced embedded 3D dense SLAM localization and visuo-force servoing capabil-

ities. Because the robots evolve in human worker co-localized spaces, safety issues will

be specifically accounted for”. In CoDyCo, the proposers of the project aim to advance

the current state of whole body motion control for humanoids and provide control and

cognitive robust goal directed tasks with multiple contacts interaction point with the

environment. In this project there is an explicit reference to the combination of machine

learning and control theory in order to advance the corpus of methods for whole body

control. Both the projects are concerned with the development of controllers that allow

the humanoid robot to interact with a dynamical environment where multiple exchanges

of forces through contacts are considered to solve the tasks. In COMANOID there is

an explicit reference to the satisfaction of safety conditions during the execution of the
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Figure 1.4: In this picture two of the final demos that where conceived for the CoDyCo
European Project. This scenario involves multiple contacts with the environment and

a force interaction with a human operator.

task, while in CoDyCo a smart combination of control and machine learning is consid-

ered one of the key factors to advance the whole body control strategies. The research

proposed in this manuscript is grounded in this theoretical framework: our work wants

to leverage from both machine learning and control theory to define new strategies in

order to achieve better performances for humanoid whole body control applications and

to provide solutions for complex tasks involving contacts with the environments. We

want to do all of that by satisfying all the safety requirements that are necessary in order

to avoid dangerous outcomes both for the humanoids and the humans involved in the

interactions. In the next sections we will describe the problem of safe motion generation

and in the last section we will define the contribution of this thesis.

1.1 Safe Motion Generation

The generation of complex behaviour for highly redundant robots is a challenging prob-

lem which solution is a necessary step towards the deployment of fully autonomous

robotic platforms in every economic sector. Exploiting the redundancy in robotic sys-

tems to simultaneously fulfil a set of tasks is a classical problem for complex manipulators

and humanoid robots [10, 11].

Depending upon the global task that is requested to solve, several controllers have been

proposed in the literature. Multi-task coordination and trajectory optimization are the

classical ways to face the redundancy resolution problem.
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For prioritized multi-task controllers there are two main approaches. The first is based

on strict task priorities, where a hierarchical ordering of the tasks is defined: critical

tasks (or tasks that are considered as more important) are fulfilled with higher priorities,

and low-priority tasks are solved in the null-space of the higher priority tasks [12, 13].

Another example is represented by Sentis and Khatib [14] where the authors defined

three levels of hard priorities i.e., constraints of utter importance (such as contacts,

near-body objects, joint-limits and self-collisions), operational tasks demands (i.e., ma-

nipulation and locomotion) and adaptable postures (i.e., the residual motion). However,

in many contexts, it is difficult to organize the tasks in a stack and pre-define their rel-

ative importance in form of priorities. When priorities are strict, a higher-priority task

can completely block lower-priority tasks, which can result in movements that are not

satisfactory for the robot mission (i.e., its “global” task). Another issue concerns the oc-

currence of discontinuities in the control law due to sudden changes in the prioritization

[15].

The second method is based on soft task priorities, where the solution is typically given

by a combination of weighted tasks [16]. The importance or “soft priority” of each

individual task is represented by a scalar weight function, which evolves in time depend-

ing on the sequencing of the robot actions. By tuning the time-dependent vector of

scalar weights, the global robot motion can be optimized. In simulation studies, it was

shown that adapting these weights may result in a seamless transition between tasks

(i.e., reaching for an object, staying close to a resting posture and avoiding an obstacle),

as well as in continuous task sequencing [17]. However, the simultaneous execution of

different elementary tasks with variable soft priorities can lead to incompatibilities that

might generate undesired movements or prevent the execution of some tasks. These

issues are well explained in [18], where the authors modulate the task weights based on

the movement variance to handle incompatibilities during online execution. Moreover,

when the number of tasks increases, (this is true especially for whole-body control of

humanoid robots), and some tasks related to safety (e.g., balance) are given high prior-

ity, it is generally difficult to define suitable task activations. In this case the priorities

and their transitions are manually tuned by expert users [17] or defined before-hand

[20]. In Liu et al. [17] the authors proposed a generalized projector (GHC) that han-

dles strict and non-strict priorities with smooth transitions when tasks priorities are

swapped. Despite the elegant framework, their controller needs again a lot of manual

tuning. The evolution of the tasks priorities in time, the timing and the tasks tran-

sitions need to be designed by hand. While this approach could still be easy for few

tasks and simple robotic arms, it quickly becomes infeasible for complex robots such as

humanoids performing whole-body movements that usually require a dozen of tasks and
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constraints (e.g., control balance, posture, end-effectors, stabilize head gaze, prevent

slipping, control the interaction forces etc.).

In our first application of the framework presented in this thesis we propose to auto-

matically learn the task weight functions, described as parametrized functional approxi-

mators. The concept of learning the soft priorities can be applied to existing multi-task

frameworks, such as the GHC [17]. However, we introduce here a simpler controller

based on a regularized version of the Unified Framework for Robot Control (UF) [21]

proposed by Peters et al.

When the global movement to realize is complex, it is not straightforward to define an

a priori granulation of the main task. For example, let us consider a humanoid that

must stand up from a chair. This motion, trivial for a human, is very challenging for

a humanoid. During the execution of the stand up we want to be sure that the robot

produces the right acceleration of its Center of Mass (CoM) while balancing. This ne-

cessitates optimizing its posture at each time step. In this example, a significant amount

of manual tuning is required to optimize the motion and adapt it to the robot: one can

optimize the task priorities/weights, their evolution in time (e.g., their relative priority,

or scalar value, or the task transitions), and/or the task trajectories, by acting on the

desired trajectories (e.g., desired CoM) or some via-points (e.g., to avoid collisions or

potentially unstable configurations). For this application, this kind of motion is char-

acterized by switching contacts (from the legs on the chair to the feet on the ground),

physical interaction with the environment and several balance constraints to be verified.

Executing this kind of motion with the previous approach (learning task priorities) is

hardly possible, because it is not suited to segment a complex movement into phases

characterized by different contacts configurations. Therefore we designed a different ap-

proach: we consider a controller with a fixed strategy and task priorities, and optimize

the task trajectories, i.e. the reference trajectories or desired trajectories of the tasks. In

particular for the stand up case, we do not use a weighted QP controller but the priori-

tized whole-body controller proposed by Nava et al. [22], which is capable of performing

highly dynamic tasks in iCub [23]. Again for the optimization of the parametrized task

trajectories, we employed a black-box stochastic optimization.

Both the application cases proposed so far rely on black box optimization technique.

In this thesis we propose a general approach that tries to solve several limitations that

afflicts transversally almost all the algorithms proposed in the literature. Many of them

display serious structure limitations. They rely on optimal solvers that limit the way

that a problem can be formulated. They relies on quadratic cost function and need

an analytical description of the environment and the constraints that define the global

task that has to be achieved. In order to generalize both the structure of the objective
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function and the way to describe the global behaviour that we want to obtain, we decided

to employ a black-box optimization method, CMA-ES [24]. Unfortunately this choice

comes at a cost: we need to provide a simulation of the global task that we want to

solve. It means that the solution that we find has to be optimized offline many times

with the aid of a simulation engine.

In this thesis we take a major step in the direction of taking into account constraints

satisfaction directly inside the machine learning procedure. Ensuring that the optimiza-

tion process yields a ”safe“ solution — where safety means not violating any constraints

— becomes mandatory if we want to successfully apply these solutions to a real robot

[25]. Even the most recent approaches that are similar to our framework and are based

on an iterative policy learning technique that needs many repetitions (rollouts) of the

same experiment to find a viable solution, [18, 26–28], poorly address the problem of

constraints satisfaction when optimizing the task priorities. For example, in [27], torques

are saturated for safety, and joint and velocity limits are introduced as tasks. However,

satisfaction of constraints formulated as tasks cannot be ensured, especially in the case

of soft tasks prioritization. In [28] the balance constraint is added as an objective to the

fitness function, but this is a relaxation of the constraint that does not ensure its satis-

faction either. In [26] we used the Covariance Matrix Adaptation-Evolutionary Strategy

(CMA-ES) [24], a derivative-free stochastic optimization method that solves non-linear,

non-differentiable optimization problems, with death penalties to enforce constraint sat-

isfaction on the solutions. This choice was not efficient in terms of searching for the

optimum solution, since the exploration could easily get stuck in a constrained region

where the fitness landscape was turned into a plateau. Furthermore, many solutions

had to be dropped because of constraints violation. To approach the safety issue, in this

thesis we investigate constrained stochastic optimization algorithms, and we focus on

three variants of CMA-ES: one with vanilla constraints, one with adaptive constraints

[29] and the (1+1)-CMA-ES with covariance constrained adaptation [30]. We compare

these methods with a baseline constrained optimization algorithm, (the fmincon func-

tion in Matlab). To compare the algorithms, we explicitly look for methods that can find

good solutions while ensuring zero constraint violations within a reasonable computation

time.

There exist standard benchmarks for constrained optimization, consisting in analytic

problems with several variables and constraints and known optimal solutions. For ex-

ample Arnold & Hansen [30] tested (1+1)-CMA-ES on seven different problems with

a number of variables ranging from 2 to 10, and a number of constraints between 1 to

9. However, in robotics the number of constraints usually grows with the number of

Degrees of Freedom (DoF) of the robot: for example, with a 7-DoF robot, the joint

position range (7 × 2) and the torque limits (7 × 2) already introduce 28 constraints.
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In humanoids and highly articulated systems, the number of DoF is higher (e.g., 32

DoF for the iCub) and so is the number of constraints. Furthermore, the number of

tasks increases with the complexity of the action, especially for bimanual or whole-body

movements. It is therefore necessary to design new benchmarks tailored for robotics ap-

plications to make a pondered decision about the algorithm that is most suited to solve

our problem while ensuring that the constraints are never violated. So we compared

the performance of three constrained variants of CMA-ES with fmincon on analytic and

robotic benchmarks where the latter (RB1,RB2) were been designed designed ad hoc to

provide a meaningful benchmark for robotics application.

Finally in this thesis we present some preliminary results on a new approach that has

been conceived in order to provide a possible solution for the slow convergence rate

issue and the feasible starting point issue that affects (1+1)CMA-ES with Constrained

Covariance Adaptation (CCA).

1.2 Contribution of this Thesis

In this thesis we gathered together the results of three different works that we published

or we submitted for publication. In our first work [26], we tackled a daunting problem

for the design of multi task controller. In this context the definition of hierarchies

plays a central role to successfully achieve a solution for the objective global task.In

literature, this kind of problem is solved using two different approaches: strict priorities

and soft priorities. In both cases we need the intervention of an expert to manually

design the correct prioritization (both the sequence of tasks and the switching time) to

find the correct solution. In this work we proposed an automatic technique to find an

optimal solution for the prioritization problem. A controller was presented, based on

parametrized soft task priorities and the parameters were learned using CMA-ES a black

box Stochastic Optimization technique. We showed the effectiveness of our approach on

both a simulated and a real 6 degrees of freedom Kinova Jaco arm, on a goal reaching

problem with several elementary tasks. Furthermore, we compare the performance of

our controller with the state-of-the-art method GHC proposed by Liu et al. [17] on a

simulated 7 DoF Kuka LWR arm. Moreover, constraints satisfaction is another issue

that affects the problem of multi-task combination. It depends on the fact that many

solvers for quadratic programming problems rely on a relaxation procedure that allows

for constraints violation. In our second work [31] we proposed to address this issue

by extending the previous technique to deal with constraints. In this second work we

searched for a constrained black-box technique that provided a solution that satisfies
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the constraints without violation. We benchmarked three different extension of CMA-

ES [24] that incorporate the capacity to deal with constraints. We found out that the

method from [7] satisfied all of our requirements with performance comparable with the

other two methods. In our last work [32], we extended the framework by showing that

the idea of optimizing some task parameters guaranteeing the constraints satisfaction

can be applied not only to learning task priorities but also task trajectories. In this

work we combine the learning capabilities of our method with a well established balance

controller already applied with success on the iCub Platform [23]. In this work we

aim to extend the results on balance [23], leveraging on our framework, to find optimal

trajectories on the iCub platform for extremely challenging task like standing up from

a chair. In this work we provided a solution in simulation to show the capabilities of

the proposed solution. Finally in this thesis we present early results for a (1+1)CMA-

ES + CCA extension that aims to solve some of the issues of the original algorithm.

In this work we propose a different approach that tries to accelerate the converging

rate of (1+1)CMA-ES + CCA leveraging on the information that we collect and store

inside a Gaussian Process. Then this information is used inside a Bayesian optimization

framework that provides a solution for the feasible starting point that affects (1+1)CMA-

ES + CCA in its basic implementation. Here we show some preliminary results where

the the proposed algorithm is benchmarked on a set of analytical constrained objective

functions and compared with other state of the art methods.

The research in this thesis has been published/submitted for publication in the following

papers:

• Modugno, V.; Chervet, U.; Oriolo, G.; Ivaldi, S. (2016) Learning soft task priorities

for safe control of humanoid robots with constrained stochastic optimization. Proc.

IEEE/RAS International Conf. on Humanoid Robots (HUMANOIDS).

• Modugno, V.; Neumann, G.; Rueckert, E.; Oriolo, G.; Peters, J.; Ivaldi, S. (2016)

Learning soft task priorities for control of redundant robots. Proc. IEEE Interna-

tional Conf. on Robotics and Automation (ICRA).

• Marichal*, S.; Malaise*, A.; Modugno, V.; Dermy, O.; Charpillet, F.; Ivaldi, S.

(2016) One-shot Evaluation of the Control Interface of a Robotic Arm by Non-

Experts. Proc. International Conf. on Social Robotics.

• Modugno, V.; Nava, G.; Pucci, D.; Nori, F.; Oriolo, G.; Ivaldi , S. (2017) Safe tra-

jectory optimization for whole-body motion of humanoids. Submitted to IEEE/RAS

International Conf. on Humanoid Robots (HUMANOIDS).



Chapter 2

A Brief Literature Survey on

Motion Generation

In this chapter we present the most prominent work about motion generation for re-

dundant robots. For the robotics community, motion generation is one of the central

topics that aims to provide greater autonomy capabilities for robotic platform. In this

compendium we focus our attention on two specific approaches for motion generation:

• Combination of multiple tasks

• Trajectory optimization

2.1 Motion Generation through the Combination of Mul-

tiple Tasks

Since the very early days of the robotics research [33], fulfilling multiple operational

tasks to achieve a complex behaviour while satisfying constraints is one of the chal-

lenges of whole-body control for redundant robots. In the early work on manipulators,

the redundancy was resolved by exploiting the geometrical properties of the jacobian. A

pseudo inversion of Jacobian allows task prioritization that protects from tasks incon-

sistencies. Solutions were proposed for velocity [10, 11, 34, 35], acceleration [36–39] and

torque [21, 40] controllers. For example, let us consider the humanoid iCub that must

fulfil a “global task”. The global task can be decomposed as a combination of simpler

elementary tasks (for example: control the end-effector, control the pose of a particular

link, etc.) and constraints that guarantee a condition of feasibility over the generated

motions (for example: torque and joint limits, collisions, external forces etc.).

11
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Figure 2.1: In this picture is shown the general scheme of the Stack of Tak approaches
described in Mansard et al. [1]. On the right the stack of task is presented while on the
left the blue box represents the high level controller that can change the stack of task
order through three different actions: remove a task, swap two task or add a new task.

More generally, elementary tasks can include tracking desired trajectories, regulating

contact forces, controlling the center of mass for balancing, etc. Constraints range

from mechanical limitations (e.g., joint and torque limits) to safety specifications (e.g.,

collision avoidance, limiting the exchange of mechanical forces with the environment) and

balance keeping for floating base platforms. In literature there are two main approaches

for prioritized task controllers. The first is based on strict task hierarchies, where a

hierarchical ordering of the tasks is defined: critical tasks (or tasks that are considered

as more important) are fulfilled with higher priorities, and the low-priority tasks are

solved in the null-space of the higher priority tasks [12, 13]. One of the early work for

task prioritization is from Siciliano and Slotine [11]. In this work the authors propose a

general framework that, given a predefined hierarchy of tasks for an highly redundant

structure, provides joint velocity and acceleration references that realize the desired stack

of task. The strict prioritization is assured through the projection of each task in the

null space of the all the other with higher priority. De Luca and Oriolo [41] proposed

a method for a dynamic resolution of redundancy through local optimization, where

an optimization based joint decomposition is performed and an efficient computational

scheme for real time control is proposed. To avoid the saturation of the joint velocities,

the authors present several dynamic criteria that produce acceptable torque inputs.

More recently, Mansard and Chaumette [1] introduce a novel multi-task controller that
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Figure 2.2: This picture shows a bimanual movements with two different tasks on a
real COMAN humanoid robot. IN this experiment in the first row is shown how the
task hierarchies learned through the method described in [2] prioritizes the red marker.
IN the second row is shown a reproduction of the task priority model learned by giving

more weight to the green marker.

tries to mitigate the fixed hierarchies issue. In their framework each task can be ac-

tivated or deactivated. When the motion is far away from any constraints the robot

can execute the full motion. Otherwise, when the robot is getting closer to a forbidden

configuration, an high level task manager intervenes to deactivate one or more tasks.

Once the robot overcomes the configuration to avoid all the tasks are restored, although,

in many practical contexts, it is difficult to organize the tasks in a stack and define their

relative importance in forms of priorities. When priorities are strict, a higher task can

completely block lower tasks, which can result in movements that are not satisfactory

for the robot mission (e.g., its “global” task). Another issue is the occurrence of discon-

tinuities in the control law due to suddenly changes in the prioritization [15].

The second is based on soft task hierarchies, where the solution is typically given by

a combination of weighted tasks. With this approach the robot global behaviour will

depend from the vector of scalar weights and their evolution in time, [16]. In [17], it
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Figure 2.3: In this picture is shown an iCub performing a bimanual task (from [3]). In
this experiment the icub has to reach an object on the table while supporting himself
with the other arm. The iCub has three different supporting areas for the left arm
identified by different color. In clockwise order from the top-right three different task

combination are presented that are learned through the method in [3].

was shown that adapting these weights may result in a seamless transition between

tasks (i.e., reaching for an object, staying close to a resting posture and avoiding an

obstacle) and in continuous task sequencing Especially for humanoid robots, that need

to perform complex manipulations while satisfying many constraints (e.g., keeping a

posture, avoiding obstacles, controlling the contact forces with the environment), soft

task hierarchies methods show many interesting features. In these scenarios, the strict

control approaches typically require the pre-specification of the task hierarchy.

Recently Silverio et al. [2] proposed a framework based on learning by demonstration for

bimanual robots. In this work they employed an extension of task parametrized Gaussian
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Mixture Model to learn operational and configuration space constraints and the task

priorities as well, given a set of candidate task hierarchies. In order to provide a different

task prioritization, we need to design different demonstration for the robot although,

in some application scenario, is not easy to design all the possible demonstrations for

competing tasks together with all the possible candidate tasks hierarchies.

Parachos et al. [3] presented a probabilistic prioritization framework for tasks rep-

resented as Probabilistic Movements Primitives (ProMPs)[42]. The ProMPs are con-

trollers that execute a trajectory defined as a distribution of repeated movements over

the same full motion sequence. In this paper the authors extend this framework by

adding another feedback for the tasks prioritization and to amend inaccuracies. For

the prioritization they exploited the task variance information in time to modulate the

priority of each task. This prioritization method can be interpreted as an extension of

[18]. Moreover, the authors propose a procedure to learn the trajectory prioritization

from demonstration and they showed that this soft prioritization scheme can combine

tasks to generate even unseen movements.

2.2 Motion Generation through Trajectory Optimization

Trajectory optimization has been a critical topic in robotics for decades, especially to

generate highly dynamic motions. In some cases, the problem of trajectory optimisation

has been decoupled from the controller used to execute the trajectory on the robot. For

example, in [4] Mordatch et al. propose the Contact Invariant Optimization method to

synthesize highly complex behaviours, decomposed in different phases with their own

set of contacts and weight functions. The problem of whole-body control for redun-

dant robots such as humanoids involves fulfilling multiple operational, posture and force

tasks, while satisfying several constraints that guarantee the physical feasibility of the

generated motions [43, 44]. The problem is classically solved by prioritized multi-task

controllers with strict task priorities [45, 46] or soft task priorities (also called weights)

[47, 48]. It is formulated as a QP problem subject to constraints, that is solved at

each time step of the control loop [49, 50]. In some cases, the problem of trajectory

optimisation has been decoupled from the controller used to execute the trajectory on

the robot. To optimize the global robot movement, one classic approach is to fix the

desired task trajectories (e.g., they are known in advance, or demonstrated by a human)

and optimize the task priorities/weights (including their value in time, their transitions,

etc.). Very frequently, this optimization is done manually. In [26, 31] we parametrized

the task priorities and optimized their parameters to obtain behaviours to maximize a
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Figure 2.4: In this pcitures we show 4 different movements generated with the CIO
framework [4]. This technique can deal with a great number of contacts in very different

scenario even with robots with different geometric model.



Chapter 2. literature survey of motion generation 17

fitness function while satisfying the problem constraints. The Contact Invariant Opti-

mization method [4] belongs to the second group. In this paper the author propose a

contact based trajectory optimization approach to synthesize highly complex behaviour

for general robot morphology. In this method a complex behaviour is decomposed in

different phase and each of them is associated with a set of contacts through the associ-

ated set weight functions. In the broad context of trajectory optimization for planning,

another powerful framework is the Incremental Optimization for Real-Time Replanning

(ITOMP) [51]. The aforementioned paper presents an optimal planning framework that

can avoid moving obstacle by interleaving planning and execution. Both in [4] and [51],

the constraints of the problem are managed as an additional cost inside the objective

function. This might lead to solutions that are not feasible with catastrophic outcomes

if such occurrences are not properly managed. Alternatively the trajectory optimization

is reframed as an optimal control problem. For locally linearized system with quadratic

cost function and gaussian noise we have [52], [53], [5]. In the work of Todorov et al [52],

a new method is presented that iteratively improves an optimal controller that locally

optimizes a linearisation of a general non linear system around the current trajectory.

Subsequently this method has been extended in [53] where the ILQG from [52] is used as

optimization routine inside a Model Predictive Control scheme. Finally in [5] the author

propose a generalized version of Differential Dynamic Programming a method that pro-

vides a second order approximation of the Bellman equation (where ILQG employs a first

order approximation of the same expression). These trajectory optimization methods

provide explicit means to manage constraints on the control inputs with backtracking

line search for [52], [53], or by solving quadratic program with box constraints for each

time step in [5]. None of them combat the state space constraint issue in an explicit

way, so there is no guarantee of constraints satisfaction in scenarios where real robot are

involved. A broader extension of ILQG is presented in Toussaint [54]. In this work the

author recasts the problem by conditioning a probabilistic trajectory on desired criteria,

proving that the maximum likelihood of the conditioned probability correspond to the

optimal solution of the ILQG case. Finally an extension to non gaussian noise model is

introduced through the application of approximate inference techniques. Even if [54] re-

sults in a much larger set of problem that can be solved it reduces the protections offered

against constraints with respect to ILQG. Another recent work that claims to extends

the results from [52] is [55]. In this work the linear approximation of the model dynamic

is dropped and replaced with a model free approach based on a quadratic Q-function.

The idea behind the proposed algorithm is that, at each iteration, an estimation of the

Q-fuction and the state distribution are provided by evaluating the current policy several

times. After that, using these quantities, a new policy is computed as a solution of a

constrained optimization problem that maximize the average of the current Q-function

by satisfying a KL upper bound (that act as step size) and a entropy lower bound on
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Figure 2.5: In this picture is shown a simulated results from the application of the
method proposed in [5]. In particular on the right is shown a robot that is keeping the
balance while performing a reaching task with the right arm. The picture on the left

shows a humanoid robot called HRP-2.

the new policy. The proposed method as the others presented in this section ignores

the existence of constraints defined in the state and action spaces. In [6] the authors

are fully aware of the constraints issue. They propose a framework that combines op-

timal control and trajectory planning to compute a set of policies that stabilizes, from

any starting position, a non-linear system toward a goal state. The motion planning

module generates an open-loop trajectory for the system that satisfies the control-state

constraints. Then the feedback module assures local stability around the nodes of the

computed trajectory. The union of the controllable region around each ball produces the

so called funnel. All the states in the funnel under the optimal control policy reach the

goal and satisfy all the problem’s constraints. The main limitations regard the problem’s

structure where only quadratic cost functions are allowed and the objective difficulties

to extend the framework for physical interaction with the environment. The framework

that we propose in this thesis resolve all the drawbacks that affect the other methods.

Our learning module relies on a derivative free constrained optimization method that

poses no restriction on the structure of the problem and guarantees constraints satisfac-

tion both in the state and in the control space. The integration of the learning module

with established torque controllers lets us obtain solutions that are robust due to the
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Figure 2.6: In this picture is shown how to adjsut the funnel hypothesis through
simulation as it is proposed in [6]. Each ellipsoid represents a stabilizable ball to the
goal with the action defined in each ball without violating the constraints. In this
picture is shown that for the state xi

s the final goal is not reached. Therefore it means
that the funnel hypothesis is wrong and each ball has to be shrunken to integrate this

new information from the simulation.

feedback structure and can be easily extended to multi-contacts scenarios.



Chapter 3

The Method

In this chapter we introduce and describe in detail the method that it is at the core of

this manuscript. The proposed algorithm exploits the synergies arising from the combi-

nation of classical torque control methods and machine learning procedures.The method

is built around the idea that enhancing control strategy through black box optimiza-

tion can bring great performance improvements. The framework that we propose in

this manuscript presents several advantages over other state of the art methods. The

proposed method is extremely flexible and can be used to find the solution to different

movement generation problems. This is possible because we do not make any strong

assumption on the structure of the problem that we want to solve. In this thesis we

apply this method in two different contexts: the automatic task combination and the

optimization of trajectory to find a solution for challenging problems. The method was

applied both on fixed and mobile robots, proving its capabilities each time. The method

provides optimal solutions in respect to pre-designed objective functions. The optimiza-

tion method that is employed gives great freedom to the user in designing objective

functions that can be both non-linear and non-differentiable. This is possible because

we use a derivative free method that exploits repeated simulation of the same experi-

ment in order to find an optimal solution. Moreover, the proposed method relies on an

optimization framework that can be easily extended for constrained optimization. We

do not allow for any relaxation of the constraints, but aim for a solution that may be

suboptimal but has to strictly satisfy all the constraints of the problem. This is one of

the cardinal features of our method: providing controllers that are both optimal and

safe. This is crucial when it comes to deploying the controller on the real robot. Having

a solution that satisfies all of the constraints minimizes the risk that are common when

the solution is transferred from the simulation environment to the real robot. In this

manuscript we propose a novel optimization procedure to overcome some limitations

that are intrinsic to the derivative free approach that we used in the our previous work.

20
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Here we propose a method that alleviates the slow optimal solution convergence rate of

the optimization methods that we used previously in our work. We have collected some

preliminary results on analytical functions that indicate that this novel optimization

method converges faster than the previous one and can be used even for constrained

optimization problems.

3.1 Stochastic Optimization Framework

joints 
torques

robot

joints positions
& velocities

updated controller parameters 

constrained
stochastic 

optimization

"global" robot
mission

performance

fitness

controller

learning

constraints

Parametric
torque

controller

Figure 3.1: In this picture we show the general structure of the proposed framework.
Our method is composed by two components: a parametrized controller and a con-
strained stochastic optimization routine. To optimize the controller parameters, we
perform several repetitions of the experiment that we want to solve. The performance
associated to the execution of each experiment is given as input to the constrained
optimization algorithm, that updates the current parameters set toward the optimal

solution

In this manuscript we propose a general framework to address several different robotics

problems. The generality stems from the fact that we formalize our approach on very

large assumptions while using universal tools like model based controllers and black box

optimization methods. Our method is comprised of three main parts:

• a parametric torque controller

• a constrained stochastic optimizer

• a robot simulator

The model based torque controllers have a great advantage over the kinematic ap-

proaches. At the cost of greater modeling efforts, we can have a finer control strategy

even for tasks defined in position and it allows us to explicitly model the forces that

the robot exchanges with the environment. This is the only control framework that
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can be used when the robot establishes multiple contacts with its environment and can

give greater control for specific problems like robot balance. Even if kinematic control

strategies for balance exist, all of them are employed as a means of planning strategy

(like CoM trajectories planning and footstep placements according to those trajectories)

and are not suited for fast real time compensation that is vital when the robot has

to perform quick movements or when it has to hastily react to external disturbances.

In the next chapter we showed how this kind of controller can be used for trajectory

optimization for humanoid robots while keeping their balance. We decided to model

our actor as a feedback controller instead of relying on any sort of learning technique

(like neural networks et similia) in order to exploit the robustness and adaptability that

characterize these kinds of approaches. We design the parameterization of the controller

in a way that the structure of the controller is not altered, but we try to enhance it

either by optimizing the input trajectory or introducing a weighting function in order

to activate or deactivate each controller.

To optimize the free parameters, we introduce two elements, the fitness function and a

set of inequality and equality constraints the fitness function computes a performance

measure of the global task executed by the robot over T time steps with the current

parameters. The fitness function can contain different criteria ranging from energy

consumption arguments to specific properties of the desired trajectories (e.g. speed and

smoothness). the constraints determine the admissible controls to be applied to the

robot. They can be dependent on the robot structure (e.g. maximum joint torques

and joint ranges), on the environment (e.g. obstacles and collisions), on the tasks (e.g.

safety limits and couplings), etc.

In our work we decided to choose an optimization method that does not constrain the

structure of the objective function and its differentiability property. For this reason

we used CMA-ES [24] a derivative free method used for black box optimization. We

chose this method over other approaches from the literature for many different reasons.

CMA-ES needs only few parameters to be tuned in order to provide an optimal solution.

CMA-ES because is an evolutionary strategy that can be easily extended for constrained

optimization problems. Although CMA-ES shows a very slow converging rate, perform-

ing the optimization offline makes this issue less of a problem. The optimization loop is

based on the repetition of the same experiments several times. All of the experiments

are performed in simulation. Running the optimization inside a simulated environment

it is very desirable, especially when want to tackle risky tasks like keeping the robot in

balance or avoiding obstacles. In these cases, especially if we start the optimization from

a random point, we will incur many failures that can lead to disastrous outcome than if

they would have performed directly on the real robot. In our work we use different sim-

ulated environment. All the tasks that do not involve a force interaction are performed
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Figure 3.2: Overview of the proposed method. The controller consists of a weighted
combination of elementary tasks, where the weight functions represent the soft task pri-
orities. An outer learning loop enables the optimization of the task weight parameters,

taking into account the constraint violations in an explicit way.

in Matlab with the aid of The Robotics Toolbox [56] and the mex-wholebodymodel li-

brary to provide a dynamical model of the robots. For the experiments that need a

good simulation of the force interaction between the robot and the environment, we

used Gazebo as simulator and we implemented our controller inside Simulink [57]. We

integrate every simulation means with the control and optimization routine inside a set

of Matlab libraries that are freely available in Github.

3.2 Learning Soft Task Priorities

Our method aims at automatically learning the task priorities (or task weight functions)

to maximize the robot performance ensuring that the optimized priorities lead to be-

haviours that always satisfy the constraints. The global robot movement is evaluated

by a fitness function φ that is used as a measure of the ability of the robot to fulfil its

mission without violating the constraints. Our proposed method, outlined in Fig. 3.2,

extends the framework that was introduced in [26]. In this section we recall the multi-

tasks controller and the structure of the parametrized task weight functions αi, while

the optimization procedure is described in Section 3.4, where we analyze some recent

extensions of the basic CMA-ES method that deal with constraints.

3.2.1 Controller for a Single Elementary Task

We hereby describe the torque controller for the i-th elementary task. To simplify the

controller design, we decided to adopt the Unified Framework (UF) [21]. We consider
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the well-known rigid-body dynamics of a robot with n DOF, i.e.,

M(q)q̈ + F(q, q̇) = ui(q, q̇), (3.1)

where q, q̇, q̈ ∈ Rn are, respectively, the joints positions, velocities and accelerations,

M(q) ∈ Rn×n is the generalized inertia matrix, F(q, q̇) ∈ Rn accounts for Coriolis,

centrifugal and gravitational forces and ui(q, q̇) ∈ Rn is the vector of the commanded

torques of the i-th task. Using the same notation as in [21], we describe the task as a

constraint, given by:

hi(q, q̇, t) = 0 , (3.2)

where hi ∈ Rm is at least a twice differentiable function, where m is the task dimension.

By differentiating the constraint with respect to time, we obtain:

Ai(q, q̇, t)q̈ = bi(q, q̇, t), (3.3)

where Ai(q, q̇, t) is a known m×n matrix and bi(q, q̇, t) is a m×1 vector. For example,

given a simple tracking control task with hi(q, q̇, t) = q−qdes, where qdes corresponds to

a desired trajectory. By computing the second order derivative in t we obtain q̈ = q̈des,

where b = q̈des and Ai = I (with I the identity matrix). Applying Gauss’s principle, it is

possible to derive a controller that fulfils the constraints by minimizing the cost function

ζi(t) = u>i Ni(t)ui, where Ni(t) is a positive semidefinite matrix. The optimization

problem is defined by

u∗i = argmin
ui

ζi(t) = argmin
ui

[u>i Ni(t)ui] , (3.4)

subject to Eq. 3.1 and 3.3. The solution to this optimization problem is given by

ui = N
− 1

2
i (AiM

−1N
− 1

2
i )#(bi + AiM

−1f), (3.5)

where (·)# is the Moore-Penrose pseudoinverse and the upper script in N
− 1

2
i denotes the

inverse of the matrix square root. Controllers derived from UF are sensitive to kinematic

singularities, due to the matrix inversion [58]. To overcome this problem, we reformulate

the UF controller in a regularized fashion, as classically done at the kinematic level, for

instance in [59]. The objective function of UF can be reformulated in such a way that the

solutions of the optimization problem naturally exhibit a damped least squares structure

(at the price of a loss of precision in the execution of the elementary task). Given the

dynamical model of the robot (Eq. 3.1) and the constraint that describes the task (Eq.
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3.3), we define the regularized optimal control problem:

argmin
ui

ζi(t) = argmin
ui

[
(Aiq̈− bi)

2 + u>i
Ni(t)

λi
ui

]
, (3.6)

where λi is the regularizing factor with a l2-weighted norm for the regularization term.

In the simplest case, λi can be a manually-tuned constant value, or automatically de-

termined by more sophisticated methods, as done in [60], based on the smallest singular

value of the matrix to invert. To derive the closed form solution of the optimization

problem, we substitute q̈ in Eq. 3.6 with the expression obtained by solving the dynam-

ical constraint for q̈. The resulting closed form solution of the controller for a single

elementary task is then:

ui = N−1
i M̃i

>
(Iλ−1

i + M̃iN
−1
i M̃i

>
)−1(bi + M̃if) , (3.7)

with M̃i = AiM
−1.

3.2.2 Controller for Multiple Elementary Tasks with Soft Task Prior-

ities

With reference to the scheme of Fig. 3.2, we consider a number nt of elementary tasks,

that can be combined by the robot to accomplish a given “global” mission. The solution

of the i-th task is provided by the torque controller ui described in the previous section.

Each task is modulated by a task priority or task weight function αi(t). The ensem-

ble {αi(t)}i=1,...,nt constitutes the activation policy that determines the overall robot

movement. The robot controller is therefore given by

u(q, q̇, t) =

nt∑
i=1

αi(t) ui(q, q̇) , (3.8)

where t is the time, and q and q̇ are the robot joint positions and velocities. The

task priorities αi(t) are scalar functions and their time profile can be optimized. We

automatically tune the task priorities with a learning algorithm. We seek the best task

weight functions that maximize a defined performance measure, or fitness, evaluating

the execution of the global task. As finding the optimal functions α∗i (t) is an intractable

problem, we turn the functional optimization problem into a numerical optimization

problem by representing the task priorities with parametrized functional approximators,

αi(t) → α̂i(πi, t), where πi is the set of parameters that shape the temporal profile of



Chapter 3. The Method 26

the i-th task weight function. The controller then becomes:

u(q, q̇, t) =

nt∑
i=1

α̂i(πi, t) ui(q, q̇) (3.9)

Finding the optimal task priorities consists therefore in finding the optimal parameters

π∗i , which can be done applying a learning method to maximize the fitness φ.

3.2.3 Learning the Task Priorities

We model the task priorities as a weighted sum of normalized Radial Basis Functions

(RBFs):

α̂i(π̂i, t) = S

(∑nr
k=1 π̂ikψk(µk, σk, t)∑nr
k=1 ψk(µk, σk, t)

)
, (3.10)

where ψk(µk, σk, t) = exp
(
−1/2[(t− µk)/σk]2

)
, with fixed mean µk and variance σk of

the basis functions, nr is the number of RBFs and π̂i = (π̂i1, . . . , π̂inr) ⊆ RnP is the

set of parameters for each task priority. S(·) is a sigmoid function that squashes the

output to the range [0, 1]. The elementary task is fully activated when the task priority

is equal to 1, otherwise the control action fades out until a full deactivation occurs when

the priority goes to 0. The free parameters π̂i of each task weight function (Eq. 3.10)

constitute the current parameters set to optimize: π = (π̂1, . . . , π̂nt).

3.3 Learning Optimal Trajectories
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Figure 3.3: Overview of the proposed method. The controller consists of a weighted
combination of elementary tasks, where the weight functions represent the soft task pri-
orities. An outer learning loop enables the optimization of the task weight parameters,

taking into account the constraint violations in an explicit way.
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Inspired by the idea that by combining machine learning and control theory we can

obtain better results, we design a learning control system where the controller is en-

hanced through an iterative learning procedure. To show the great capabilities of this

approach we decide to face with the problem of balance for humanoids robot for highly

dynamic task. The structure of the proposed framework is rather simple: we introduce a

parametric reference for the torque balance controller of the humanoid robot. Than we

perform a complete experiment and we evaluate the fitness of the current parameter set.

The cost to go of the current roll-out is provided as input to an instance of constrained

(1+1)CMA-ES [7], then a new parameter set is computed and tested by repeating the

same experiment in simulation. This approach does not request the intervention of an

expert to design a feasible trajectory and minimize the effort to deploy the solution on

the humanoids platform in use. On the other side this method inherits from the feed-

back controller the robustness of a closed loop solution and the possibility to extend the

current framework to an ample set of multi-contact scenario. In the next section we will

refer to [61], [23] to introduce and describe the balance controller in use.

3.3.1 Balance Controller

Balance control plays a major role when it comes to human robot cooperation. We

need reliable controllers that are robust under a wide range of disturbances.If for now

we ignore the friction, from a physical perspective, a stance is in balance when the

Center of Pressure (CoP) stays inside the area of the feet in contact with the ground

(commonly called the support polygon) . The CoP represents the application point of

the Ground Reaction Force (GRF), and they represents all the forces acting between

the the robot feet and the supporting surface. To the extent of our knowledge, results

from literature [62] [63] show that controlling both angular and linear momentum of the

floating base platform is responsible for a full control of the CoP of the robot stance.

The D’Alambert principle describes the dynamical relations between the external forces

acting on the robot and the rate of change of the linear and angular momentum of the

robot in its Center of Mass (CoM).

l̇ = mg + w (3.11)

k̇ = (p− rG)×w + τn (3.12)

(3.13)

where rG is the center of mass position, p is the CoP position, w is the force component

of the external wrench f = [w, τ ] ∈ R6, τn is the component of the external wrench

torque orthogonal to the ground and together k and l (respectively the rotational and
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linear momentum) for the spatial centroidal momentum h = [l,k]T ∈ R6. The spatial

centroidal momentum represents the summation of all the linear and angular momentum

of each link of the robot projected in a reference frame that is centred in the instanta-

neous center of mass. Due to the relation in 3.11 to achieve a full control of the CoP

we need to act both on the rate of change of the linear and the angular momentum.

Given the latter considerations, momentum-based balance controllers represents to our

knowledge the best means to manage the robotic balance control issue.

We hereby describe the balance torque controller. Let us consider a dynamic represen-

tation of a floating base robot. We represent the configuration space of a humanoid

robot by a triplet q = (IpB,
IRB,qj) ∈ R3 × SO(3) × Rn where IpB and IRB de-

scribe respectively the position and orientation of the base of the humanoid (usually

located in the torso) respect of an inertial reference frame, while qj represents the vec-

tor of joint angles. The total Degrees of Freedom (DoF) of the robot are n+ 6 because

the free floating base adds 6 DoF. The generalized velocity associated to the system is

ν = (I ṗB,
IωB, q̇j) = (vB, q̇j) where vB describes the spatial velocities of the base frame

with respect to the inertial frame; IωB is defined as [IωB]× = IṘB
IRTB , with [·]× being

the screw symmetric matrix obtained from IωB. With the hypothesis of a flat contact

surface (reasonable hypothesis in our case, since our contacts are on a flat ground and

flat chair) the constrained dynamic model describing the robot is:

0 = JCk
ν (3.14)

Su = M(q)ν̇ + C(q,ν)ν + G(q)−
∑
k

JCk
fk (3.15)

where u ∈ Rn denotes the generalized force at the joints, S is a selection matrix, M ∈
Rn+6 × Rn+6 is the generalized mass matrix, C(q,ν) and G(q) account respectively for

the non inertial forces and the gravity torque. fk ∈ R6 represents the external wrench

and is related to the Ground Reaction Forces (GRF) and the Center of Pressure (CoP)

while the Jacobian JCk
maps the robot velocity to the linear and angular velocity of the

frame where the external wrench is exerted:

JCk
(q) =

[
JbCk

(q) J jCk
(q)
]

(3.16)

JbCk
=

[
13 −[IpCk

− IpB]×

03 13

]
(3.17)

The dimension of JCk
depends on the number and the kind of contacts with the envi-

ronment. For example a double stance contact that constraints both orientation and

position of the contact point has 12 dimensions (6 for each foot in contact with the

ground). Equation 3.14 is equal to zero because we make the hypothesis of no slippage

on the contact surfaces. Due to the fact that a free floating model is underactuated, we
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can rewrite the equation 3.15 into two different parts:

0 = JCk
ν̇ + J̇Ck

ν (3.18)

0 =

[
Mb(q) Mbj(q)

]
ν̇ + Cb(q,ν)ν + Gb(q)−

∑
k JbCk

fk ∈ R6 (3.19)

u =

[
Mbj(q)T Mj(q)

]
ν̇ + Cj(q,ν)ν + Gj(q)−

∑
k JjCk

fk ∈ Rn (3.20)

with Mb(q) ∈ R6×6 Mj(q) ∈ Rn×n and Mbj(q) ∈ R6×n. It is proven that it is possible

to diagonalize the generalized mass matrix M leading to a decoupling of base and joint

accelerations [64]. We introduce the following change of coordinates q = q , ν = T(q)ν

T =

[
cXB

cXBM−1
b Mbj

0n×6 1n

]
(3.21)

cXB =

[
13 −[Ipc − IpB]×

03×3 13

]
(3.22)

where the c superscript represents the frame centered in the center of mass of the floating

base platform, oriented as the inertial frame I. Equation 3.15 becomes:

Su = M(q)ν̇ + C(q,ν)ν + G−
∑
i

JTCi
fi (3.23)

where

M =

[
Mb(q) 06×n

0n×6 Mj(qj)

]
(3.24)

Mb(q) =

[
m13 03×3

03×3 Ĩ(q)

]
(3.25)

G = mg e3 (3.26)

JCi(q) =
[
J
b
Ci

(q) J
j
Ci

(q)
]

(3.27)

J
b
Ci

=

[
13 −[IpCi − Ipc]×

03×3 13

]
(3.28)

with m the mass of the robot and Ĩ the inertia of the robot defined in the CoM frame.

Due to the change of coordinate, the floating base velocities now represent the linear

and angular velocities of the CoM. In particular the angular velocity is the average

angular velocity. Equation 3.23 unifies in one expression the centroidal dynamics and the

dynamic description of the free floating base. From now on all the subsequent equations

will refer to Equation 3.23 and to lighten the notation we will drop the overline sign. The

change of coordinate allows for a simple computation of the robot momentum. From
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[61] and Equation 3.23,the robot momentum is defined as h = Mbvb.The D’Alembert’s

principle states that the rate of change of the robot momentum depends on the external

forces acting on the robot (force from the environment and gravity in the CoM). From

Equation 3.23 and d’Alembert’s principle we can write:

ḣ =
d

dt
(MbvB) = JTBf −mg e3 (3.29)

By inverting the previous relation we can find an expression that connects the desired

rate of the change of the centroidal momentum and the external forces:

f = J−TB (ḣ∗ +mg e3) (3.30)

ḣ∗ = ḣdes + Kp(h− hd) + Ki

∫
h− hd (3.31)

where ḣ∗ combines a feed-forward term and a Proportional Integral correction to ensure

that the system achieves the desired centroidal momentum. The control torques that

realize the instantaneous external forces and satisfy the holonomic constraints at the

contact point are:

u = Λ†(JCM(F− JTCf)− J̇Cν)) + NΛu0 (3.32)

with Λ = JjMj , (·)† the pseudo-inversion, F = C + G and u0 = F − Jjf + Kj
p(qj −

qdesj ) + Kdq̇j the posture task projected in the null space of the primary task that is

introduced for the stability of the zero dynamics. In [22] the authors empirically proved

that in a centroidal momentum controller the posture task do not always assure the

internal stability. To overcome this issue in Equation 3.31 they replace the momentum

error with

herr =

[
J
l
G(qj)

J
k
G(qdj )

]
q̇j (3.33)

where [J
l
G(qj)J

k
G(qdj )] comes from a reduced expression of the centroidal momentum

matrix that maps the joints velocities to the velocities of the floating base and is defined

as JG(qj) = −MbJ
−1
b Jj . This substitution is motivated by the Lyapunov stability of the

linearized closed loop dynamics around the joint positions-velocities equilibrium point

(qdj , 0).

Equation 3.30 is mathematically sound only if the robot is standing on one foot and we

ignore all the balance related constraints (GRF contained inside the friction cone and

CoP inside the support polygon). To resolve the redundancy in the external forces in a

multi-contact scenario and to take into account all the conditions for a stable stance we

can recast the computation of the external forces as an optimization problem. This is

done in our case, since the robot transitions between 2 contact forces in the legs when
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seated (contacts between legs and chair) and 2 in the feet when it stands up (contacts

between feet sole and ground).

3.3.2 Trajectories Parametrization

for this application the cartesian trajectory is modelled as a weighted sum of normalized

Radial Basis Functions (RBFs):

α̂i(π̂i, t) =

∑nr
k=1 π̂ikψk(µk, σk, t)∑nr
k=1 ψk(µk, σk, t)

(3.34)

where ψk(µk, σk, t) = exp
(
−1/2[(t− µk)/σk]2

)
, with fixed mean µk and variance σk of

the basis functions, nr is the number of RBFs and π̂i = (π̂i1, . . . , π̂inr) ⊆ RnP is the

set of parameters for each task priority. Generally for the design of cartesian trajectory

some conditions are needed to be meet for example passing through a set waypoints or

imposing particular conditions on initial or final velocities and accelerations to cite a

few. In this work, due to the application scenario, we employed an extend version of the

RBF that allows for waypoints. We augment the RBF model by adding a set of RBFs

ψj , one for each waypoint, located in correspondence of the time µj in which we impose

the waypoint passage:

α̂i(π̂i, t) =

∑nwp

j=1 π̂
c
ijψj(µj , σj , t) +

∑nr
k=1 π̂

f
ikψk(µk, σk, t)∑nr+nwp

k=1 ψk(µk, σk, t)
(3.35)

Once we set the value of the free parameters π̂fi , we need to compute the value of the

fixed parameters in order to match the waypoint passage conditions. Given the vector

of fixed value fwp = [f1, . . . , fnwp ] we can write:

π̂i
c = A−1b (3.36)

where

A =


ψ1(µc1, σ1, µ

c
1) · · · ψnwp(µcnwp

, σnwp , µ
c
1)

...
...

ψ1(µc1, σ1, µ
c
nwp

) · · · ψnwp(µcnwp
, σnwp , µ

c
nwp

)

 (3.37)

b =


fwp1

∑nr
k=1 π̂

f
ikψk(µk, σk, µ

c
1)−

∑nr+nwp

k=1 ψk(µk, σk, µ
c
1)

...

fwpnwp

∑nr
k=1 π̂

f
ikψk(µk, σk, µ

c
nwp

)−
∑nr+nwp

k=1 ψk(µk, σk, µ
c
nwp

)

 (3.38)

For the case of exponential radial basis functions the matrix A is always invertible due

to its particular structure.
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3.4 Black-Box Optimization

In the context of global optimization is not unusual that the objective function is con-

sidered as a black box: in such case we ignore the analytical expression and we are

not capable of computing its derivative in closed form. In particular the differentiabil-

ity properties of the objective function determines which approach has to be employed

in order to find a solution for the optimization problem. If the objective function is

differentiable with respect to the controls and the parameters (which requires the func-

tion approximators to be differentiable as well with respect to the controls [60]), then

gradient methods can be used. If the fitness is not differentiable with respect to the

parameters, then a derivative-free method can be used. Usually in the context of black

box optimization we can access the value of our objective function only using sparse

query input points which give us noisy response. Black box optimization requires that

each dimension of the parameter space that where we want to find an optimal solution,

is bounded. So is reasonable to suppose that our optimization problem is confined inside

an hyperrectangle of the same dimension of the search space. In our method, the learn-

ing procedure is an attempt to find an optimal solution for the free parameters vector

π without knowing the real structure of the objective function. Given T time steps,

the fitness function is defined as φ = φ(qt=1,...,T ,ut=1,...,T , t). φ describes the perfor-

mance of the controller in fulfilling its global mission. The objective function could be

a simple measure of success in case of goal reaching, the time duration of a movement,

the energy consumption etc. More criteria for optimizing robot motions in optimal

control frameworks are reported in [65]. Derivative-free methods are appealing, since

they do not constrain the design of the objective function. Furthermore, recent results

showed that it is possible to achieve very fast performances in trial-and-error learning

with derivative-free methods [66]. The black box optimization problems that we want to

solve are formalized in the following way. Given an objective function φ(π) : RnP → R

and a set of equality and inequality constraints g, h, we want to find an optimal solution

π ∈ Π ⊆ RnP to the problem:

π◦ = arg max
π

φ(π) (3.39)

s.t.

gi(π) ≤ 0 i = 1, . . . , nIC (3.40)

hi(π) = 0 i = 1, . . . , nEC (3.41)

where gi(π) with i = 1, . . . , (π) represents all the inequality constraints and hi(π) with

i = 1, . . . , nEC describes all the equality constraints.
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CMA-ES without constraints

function CMA-ES
for each gen = 1, . . . , nGENERATIONS do

for each k = 1, . . . ,K do
πk ∼ N (π̄, ς2Σ) . samples
φk = φ(πk) . evaluation

end for
π1:Ke = Sort(πk=1:K , Jk=1:K) . sorting
π̄new =

∑Ke
k=1 Pkπk with

∑Ke
k=1 Pk = 1

Σnew = UpdCov(π̄new, Pk=1:Ke)
ςnew = UpdStepSize(ς)
π̄ = π̄new Σ = Σnew σ = σnew

end for
end function

Figure 3.4: Pseudocode for the basic CMA-ES without constraints.

3.5 CMA-ES

CMA-ES [24] is a stochastic derivative-free optimization strategy that is suitable for

non-linear and non-convex objective functions. This method belongs to the class of

evolutionary algorithms. CMA-ES algorithm exploits two main principles in order to

update the parameters of the search distribution to find an optimal solution.

the first principle consist in increasing the probability of discovering new successful can-

didate through the application of a maximum-likelihood approach. Mean and covariance

updates act as a natural gradient descent. The idea behind mean distribution update is

that the algorithm tries to maximize the likelihood of the last successful sample while the

covariance matrix update increases the likelihood of previous search steps that proved

to ameliorate the fitness. The Covariance Matrix Adaptation incorporates the idea of a

principal components analysis without discarding any principal axes. Other evolution-

ary algorithm that employs search distribution like Cross-Entropy Method [67] make

use of very similar ideas, but the covariance matrix update is based on successful points

and they not take into account the direction of the improvement. The second prin-

ciple is based on the idea that exploiting the information among consecutive steps is

beneficial for the optimization. two paths store the evolution of the distribution mean

throughout the course of all the past generations. We refer to this path as search or

evolution paths. These paths try to capture information about successful consecutive

steps. When the evolution paths become long it means that we have just got several

consecutive successful steps. The evolution paths provides different information about

the evolution of the search distribution. One path accelerates the peace at witch the

covariance matrix is updated to set a preference for successful update directions. The

other path fulfils the function of step-size control. In this way the second path tries
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Figure 3.5: This image shows the evolution in time of the search distribution toward
the optimum for a simple two dimensional problem. The contour lines in the picture
represents the region of the space where objective function presents the same value
while the brighter area represent portion of the space where the objective function
reaches the highest values. The sequence of images shows that, after six generation,
the search distribution has reached the maximum. One of the most interesting feature
of CMA-ES is the capability to adapt the step-size exploiting the information collected
during the optimization process. Source: https://en.wikipedia.org/wiki/CMA-ES

to prevent premature convergence while keeping a good converge rate to the optimum.

In the following we outline the most commonly implementation of CMA-ES. At each

iteration of the algorithm, new candidate solutions are generated from a population of

candidates through stochastic sampling. The fitness function is then used to evaluate

the candidates. In our case, each candidate is a possible set of parameters for the task

that we want to solve π = {π1, . . . , πnP }. At each iteration of the algorithm (called

generation), a new population of candidates is generated by sampling a multivariate

normal distribution N (π̄,Σ), where π̄ and Σ represent respectively mean and covari-

ance of the distribution. A fitness value is computed for each candidate in the current

population and, according to the fitness, only the most promising candidates are kept to

update the search distribution. Given K candidates {π1, . . . ,πK}, the algorithm selects

the Ke < K best ones according to their ordered fitness values {π1, . . . ,πKe}. It uses

the selected candidates to compute the mean of the sampling distribution at the next

iteration: π̄(new) =
∑Ke

i=1 Piπi, with
∑Ke

i=1 Pi = 1.

Then the covariance matrix is updated as:

https://en.wikipedia.org/wiki/CMA-ES
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Σ(new) = (1− c1 − c2)Σ + c1pΣpTΣ + c2
∑Ke

i=1 Piyi (yi)
T

with yi = (πi − π̄), c1 and c2 two predefined parameters (see [24] for more details).

The symbol pΣ is a term measuring the correlation among successive generations. The

covariance is related to the exploration rate of the algorithm, a scalar value between

[0,1] and the only parameter of the algorithm that needs to be tuned. This version of

CMA-ES does not support constrained optimization, which means that the optimized

solutions that are not physically feasible on the real robot must be dropped and the

learning algorithm restarted

3.6 Constrained CMA-ES

In robotics the notion of constraint arises in such diverse contexts and assuring feasibility

plays a capital role when it comes to solve,

Assuring satisfaction constraints is a precondition that has to be met in order to trans-

fer solution on the real robots. In our first work, [26], we employed CMA-ES to find a

solution for the multi-tasks coordination problem. In this work we enforce constraints

satisfaction through a constant penalties terms added to the fitness value of each can-

didates that violates one or more constraints. We observed that the proposed solution

diminished the CMA-ES capabilities to find an optimal solution due to the introduction

of artificial plateau in the fitness. So in the subsequent work we resolved to search for

an approach that include constraint satisfaction directly in the exploration procedure.

In this paper, we adopt a different strategy and look explicitly for variants of CMA-ES

that take into account the constraints in the exploration procedure. Our goals are: 1)

to improve the efficiency of the optimization procedure exploiting the constraint infor-

mation, and 2) to guarantee that every solution found by the stochastic optimization

process lies in a region of the parameter space that satisfies all the constraints. Inter-

estingly, we are not interested in algorithms that permit constraints relaxation (hence

violation) to find a solution: this is typically the case of real-time quadratic solvers (e.g.

quadprog and qpOASES).

Among the multitude of constrained black-box optimization algorithms, we focused

on three variants of CMA-ES: a vanilla penalty CMA-ES, the CMA-ES with adaptive

penalty approach proposed in [29] and the (1+1)-CMA-ES with covariance constrained

adaptation proposed in [7]. The first is a baseline CMA-ES that applies a penalty to the

fitness that is proportional to the constraint violation. The second method is similar in

principle, but the penalty weights are changed following a heuristic that depends on the
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CMA-ES with Vanilla Constraints
function CMA-ES-VC

for each gen = 1, . . . , nGENERATIONS do
for k = 1, . . . ,K do
πk ∼ N (π, ς2Σ)

end for
for k = 1, . . . ,K do

φk = φ(πk)
if ConstrViolation(πk) then

Ĵk = Penalty(πk, Jk)
end if

end for
π1:Ke = Sort(πk=1:K , Ĵk=1:K)
πnew =

∑Ke
k=1 Pkπk with

∑Ke
k=1 Pk = 1

Σnew = UpdCov(πnew, Pk=1:Ke)
ςnew = UpdStepSize(ς)
π̄ = π̄new Σ = Σnew σ = σnew

end for
end function

Figure 3.6: Pseudocode of CMA-ES with Vanilla Constraints

constraint violation. The third does not rely on penalties but updates the covariance

whenever a constraint is violated, to drive the exploration away from infeasible regions.

3.6.1 CMA-ES vanilla

The vanilla penalty functions method relies on adding a penalty term to the fitness of

a candidate that depends on the constraints violation of the candidate. The method

employs a penalized objective function φ̂(πk) = φ(πk) + l(πk) with the penalty factor

l(πk) defined as:

l(πk) =

nIC∑
i=1

ri max(0, gi(πk))
2+

nEC∑
j=1

cj |hj(πk)|

where ri and ci are positive constant values. In Fig. 4.5 we present a pseudo-code for

this variant where we refer to the penalization routine with Penalty(·).

3.6.2 Adaptive CMA-ES

The previous method is by far the simplest and the most intuitive, as it applies a penalty

that depends on the candidate πk. However, one may want to make the penalty term
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CMA-ES with Adaptive Constraints

function CMA-ES-AC
for each gen = 1, . . . , nGENERATIONS do

for k = 1, . . . ,K do
πk ∼ N (π, ς2Σ)

end for
for k = 1, . . . ,K do

φk = φ(πk)
end for
[l, r, r] = CollectViolation(πk, ε)
wnew = UpdateWeight(w, r, r)
φ̂k = WeightPenalty(wnew, l)
π1:Ke = Sort(πk=1:K , Ĵk=1:K)
πnew =

∑Ke
k=1 Pkπk with

∑Ke
k=1 Pk = 1

Σnew = UpdCov(πnew, Pk=1:Ke)
ςnew = UpdStepSize(ς)
π̄ = π̄new Σ = Σnew σ = σnew

end for
end function

Figure 3.7: Pseudocode for CMA-ES with Adaptive Constraints

variable, for example depending on the exploration path. Collange et al. [29] proposed

a penalty function approach where a set of adaptive weights are tuned to prevent the

search process from getting stuck in a local minima of the penalized fitness function φ̂(·).
A penalized objective function Ĵ(πk) is therefore used. The key idea is that the penalty

factor l(πk) is built to consider the number of feasible solutions per each generation and

the activation of each constraint, determined by a heuristic tuned by a user-defined εi. In

particular, one assigns l(πk) =
∑nC

i=1wi[γ
+
i (πk)]

2, where wi, i = 1, . . . , nC is the set of

adaptive weights, and γ+
i (·) is the positive part of the so-called ε-normalized constraint

values γi, which are used to identify the active constraints. The ε-normalized constraint

values γi are defined as:

γi =

{
[gi(πk) + εi]/εi for inequality constraints

|hi(πk)|/εi for equality constraints
. (3.42)

The user can tune the definition of the constraint violations and the relaxation of the

constraints through the parameters εi > 0, i = 1, . . . , nC . For equality constraints hi(·),
a candidate solution πk is labelled “feasible” if 0 ≤ γi ≤ 1 and “infeasible” otherwise.

For inequality constraints gi(·), a candidate solution πk is labelled “feasible” if γi ≤ 1

and “infeasible” otherwise (Fig. 3.7).
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The weights update is driven by the ratio of feasible solutions for all the constraints:

rfeasi =
# feasible solutions for the i-th constraint in the curr. generation

K

rfeasi = average of rfeasi over the last nP + 2 generation

If all the samples πk with k = 1, . . . ,K satisfy the i-th constraint, then rfeasi = 1;

otherwise rfeasi < 1. So rfeasi = 1 only when all the samples satisfy the i-th constraint

for nP + 2 generations. Once this condition is met, the weight wi related to the i-th

constraint is decreased almost surely (in a statistical sense). The adaptation rule for the

weight wi after each generation is defined as: wi = wi exp(ptarget− rfeasi ), where ptarget

is a value that changes at each iteration according to ptarget = (1/KnP )1/D, where D
represents the cardinality of the elements’ set that satisfies i = 1, . . . , nC : rfeasi < 1 and

K is the number of samples. As a rule of thumb, when rfeasi > ptarget the weight wi

decreases, otherwise it increases. In Fig. 4.5 we provide a pseudo-code for this variant,

where we refer to the weight computation routine as UpdateWeight(·). For more detail

on the method we refer to [29]. This method is more interesting since the penalty factor

inequalities equalities

feasible            infeasible

. .

Figure 3.8: This illustration shows the relation between εi and γi for inequality and
equality constraints as in Eq. 3.42. As described in Section 3.6.2, the green and red
regions identify the constraint values that are respectively labeled as “feasible” and
“infeasible”. One may notice that εi induces a relaxation for the equality constraint:
therefore it could be possible to label as feasible a solution that violates the constraint
(how much depends on ε). On the contrary, it is noticeable that γ+i in the inequality
constraint also includes a boundary region determined by εi where the constraint is

satisfied.

applied to the objective function changes during the optimization process depending

on the number of feasible solutions that do not violate the constraints, considering

the relaxation acting on the equality constraints. With respect to the vanilla method,

the penalty factor here is not constant over the parameter space and depends on the

exploration path in the parameter space. This decreases the possibility of getting stuck

in local minima or flat areas of the fitness.
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(1+1)-CMA-ES with Const. Cov. Adapt.

function (1+1)-CMA-ES-CCA
π = FindFeasibleStartingPoint()
for each gen = 1, . . . , nGENERATIONS do
π1 = π + ςDz (Eq.3.43)
if ConstrViolation(π1) then

Dnew = UpCovConstr(); D = Dnew

else
φnew = φ(π1)
if φnew > φ then

Dnew = UpCovSucc()
ςnew = UpdStepSize(ς)
π = π1; D = Dnew; ς = ςnew

else if φnew > φold then
Dnew = UpCovActive(); D = Dnew

end if
end if

end for
end function

Figure 3.9: Pseudocode for (1+1)-CMA-ES with Constrained Covariance Adaptation

3.6.3 (1+1)CMA-ES with Constrained Covariance Adaptation

The third method, proposed by Arnold et al. [7], is an extension of (1+1)-CMA-ES with

active covariance adaptation [68]. As opposed to the other two methods, here we do not

have a penalty factor, i.e., the objective function is unchanged, but there is a different

exploration strategy that exploits the constraints information to change the covariance

and keep the optimization in a feasible region.

A notable difference with the classical CMA-ES is the fact that there is only one sample

per generation (π1, therefore K = 1), that is generated according to the following rule:

π1 = π + ςDz (3.43)

where D is the Cholesky factor of the covariance matrix Σ = DTD and z is a standard

normal distributed vector z ∼ N (0, I). The algorithm stores the information about

the successful steps in a search path s ∈ RnP . Each time a candidate outperforms the

current best, s and D are updated (UpCovSucc in Fig. 4.5):

snew =(1− c)s
√
c(2− c)Dz

Dnew =
√

1− c+
covD +

√
1− c+

cov

||w||2

√1 +
c+
cov||w||2

1− c+
cov
− 1

 swT
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constraint
violation

constraint

D D new
. .

Figure 3.10: This illustration shows the effect of the covariance adaptation with con-
straints, as described in Section 3.6.3. A linear inequality constraint, represented by
the vertical thick line, divides the parameter space into a region where the constraint
is not violated (light grey) and a region where the constraint is violated (dark grey).
The covariance D of the search distribution is updated in such a way that the succes-
sor samples will not fall into the region where the constraint is active: the updated

covariance Dnew is directed orthogonally with respect to the constraint.

where c+
cov and c are both factors that control the update rate of s and D respectively,

while w = D−1s. Instead, if the current candidate is feasible but its performance is

lower than the predecessors, the Cholesky factor D is actively updated (UpCovActive

in Fig. 4.5):

Dnew =
√

1 + c−covD +

√
1 + c−cov
||z||2

√1− c−cov||z||2

1 + c−cov
− 1

DzzT

where c−cov is again a constant that determines the update rate. In this case s is not

updated because the current candidate is not better in terms of fitness.

To handle constraints, the key idea is to update the covariance matrix, by reducing

the components of Dz in the direction that is orthogonal to the constraint whenever

a constraint is violated, as illustrated in Fig. 3.10. Each time the j-th constraint is

violated, we update the corresponding constraint vector vj ∈ RnP and the matrix D

(UpCovConstr in Fig. 4.5):

vnewj = (1− cc)vj + ccDz

Dnew = D− β∑nC
j=1 1{gj(π1>0)}

nC∑
j=1

1{gj(π1>0)}
vjw

T

wTw

where cc and β are constants that tune the update step respectively for vj and D,

wj = D−1vj and 1{gj(π1>0)} is equal to one when gj(π1) > 0 and zero otherwise.

In summary, the method searches for the optimal solution by testing one sample at

the time and accounting for the constraints in the covariance adaptation to stay away
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from infeasible regions. The algorithm is designed in such a way that the mean of

the search distribution is updated only if the fitness improves and the candidate is a

feasible solution; these two elements ensure that the solution of the optimization problem

always satisfies the constraints. However, unlike the other methods, this requires a

feasible1 starting candidate to work, otherwise the exploration process quickly gets stuck.

Hence, this method cannot be started from scratch or random values, but needs the pre-

computation of a feasible starting point.

3.7 Constrained CMA-ES with memory

(1+1)CMA-ES with CCA has two known limitations: does not evolve if the starting

point is unfeasible and it requires many samples to achieve local optimal solutions. In this

manuscript, we propose an extension of (1+1)CMA-ES with CCA in order to mitigate

these two issues. At the core of the new algorithm, there is a smart way to exploit

the geometrical information that arises from the search distribution used to run a local

meta-model optimization to boost the search for an optimal solution. This is obtained by

combining (1+1)CMA-ES with CCA with Constrained Bayesian Optimization (CBO).

To introduce CBO we need to introduce two basic concepts, Gaussian Process(GP) and

Bayesian Optimization(BO). This introduction is based on [69].

3.7.1 Gaussian Process

GP is stochastic process that extends the multivariate Gaussian, and can be represented

as an uncountable collection of random variables. Every subset of random variables in

the GP displays a joint Gaussian distribution. GP as a generalization of Gaussian dis-

tribution can be viewed as a Gaussian prior over function and it is completely described

by its mean and variance:

φ̃(x) = GP(m(x), k(x,x′)) (3.44)

where x ∈ Π ⊆ RnP is an element of the parameter space, m(·) and k(·, ·) are respectively

mean and variance of the stochastic process. Given a set of inputs X = [x1, ...,x1d] and

outputs φ(X) = [φ(x1), ..., φ(x1d)] and one query point x̂ (of which the output is not

known)the joint Gaussian distribution is defined as:[
φ(X)

φ(x̂)

]
= N

(
0,

[
K kT

k k(x̂, x̂)

])
(3.45)

1A candidate solution is feasible if it satisfies all the constraints.
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Figure 3.11: This illustration shows 1D Gaussian point with three query points. This
picture is a visualization of the predictive. The thick black line represents the mean
value predicted from the GP, and the blu area represents the one σ deviation from the
mean values. At each query point x1:3 the univariate Gaussian that is computed from

the predictive distribution is shown. This picture is taken from [69].

where:

K =


k(x1,x1) . . . k(x1,xd)

...
. . .

...

k(xd,x1) . . . k(xd,xd)

 (3.46)

k =
[
k(x̂,x1) . . . k(x̂,xd)

]
(3.47)

Using the Sherman-Morrison-Woodbury formula [70] we can define the predictive dis-

tribution:

P(φ(x̂)|X, x̂) = N (µ(x̂), σ2(x̂)) (3.48)

where:

µ(x̂) = kTK−1f(X) (3.49)

σ2(x̂) = k(x̂, x̂)− kTK−1k (3.50)
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A full treatment of this topic is available at [70]

3.7.2 Bayesian Optimization

Bayesian optimization is a powerful tool to solve black box optimization problem. When

we need to optimize an expensive objective function φ Bayesian Optimization turns out

to be the method of choice to reduce the number of queries during the optimization.

Bayesian Optimization employs a model of the objective function, usually a GP, and this

model gives information across not yet evaluated points of the objective function. Based

on this additional information a second acquisition function,φ̃, is introduced to guide

the process of selecting the next point given a utility criteria that has to be designed in

advance. At each iteration, once the new point xnew is selected, the evaluation of this

point is performed on the expensive function φ and the new input-output information is

used to update the GP model. This process can be iterated until the problem’s optimum

is reached.

The performance of the entire process depends upon the choice of the acquisition function

that enables active learning of the process. Let x+ be the current best point evaluated

so far, x̂ a generic candidate point, we can introduce several acquisition functions well

known from the literature.

3.7.2.1 Improvement Criteria

From Kushner [71] we introduce the probability of improvement over φ(x+) defined as:

PI(x̂) = P(φ̃(x̂) > φ(x+)) (3.51)

= Φ

(
µ(x̂)− φ(x+)

σ(x̂)

)
(3.52)

where µ(·) and σ(·) are respectively the mean and variance of the predictive distribution

associated to the query point and Φ(·) is the normal cumulative distribution function.

The main issue about this approach is that this expression not allow for exploration.

The PI criteria will privilege points with a an epsilon improvement over the current best

while ignoring other points with a larger uncertainty but a smaller average value. To

moderate this issue a trade-off parameter ξ is introduced:

PI(x̂) = P(φ̃(x̂) > φ(x+ + ξ)) (3.53)

= Φ

(
µ(x̂)− φ(x+)− ξ

σ(x̂)

)
(3.54)
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Figure 3.12: This illustration shows the same 1D gaussian process from Figure 3.11.
Here it is shown how the PI acquisition function is computed. The current best can-
didate is x+. The dark green area under the dashed gaussian distribution represents a
measure of improvement. As you can see from the picture the PI is mostly an exploita-
tion method because the mean is the main driver for the selection of the next point.
For this reason it is necessary to introduce a parameter ξ to promote an exploration

behaviour. This image is taken from [69].

. The choice of ξ is left to the user. Kushner suggests use a scheduling scheme for

the value of ξ that slowly reduces over time. A better choice for the acquisition is one

that tries to minimize the expected deviation from the true optimal solution xo. This

selection criteria will be:

xnew = argmin
x̂

[E(‖φ̂(x̂)− φ(xo)‖)] (3.55)

= argmin
x̂

∫
‖φ̃(x̂)− φ(xo)‖P(φ̃(x̂)|X, x̂)dφ̃(x̂) (3.56)

To avoid a myopic approach we should apply a recursive approach over many samples

into the future. Due to the computational cost of this approach Mockus [72] introduces

the Expected Improvement criteria. The improvement I of the candidate point x̂ is

defined as

I = max
(

0, φ(x+)− φ̃(x̂)
)

(3.57)



Chapter 3. The Method 45

and the new query point is determined by computing the Expected Improvement

EI(x̂) = E(I(x̂)|x̂) (3.58)

In the work of Mockus [72] and Jones [73] a closed form of the Expected Improvement

is given:

EI(x̂) = σ(x̂)ZΦ(Z) + φ(Z) (3.59)

Z =
µ(x̂)− φ(x+)

σ(x̂)
(3.60)

where φ(·) denotes the pdf of the normal distribution. In the same way of Probability

of Improvement Lizotte [74] introduces an extension of EI that gives the user a control

capability over the exploitation-exploration trade-off. Lizzote introduces a parameter ξ:

EI(x̂) = σ(x̂)ZΦ(Z) + φ(Z) (3.61)

Z =
µ(x̂)− φ(x+)− ξ

σ(x̂)
(3.62)

3.7.2.2 Confidence Bound Criteria

Another common criteria for an acquisition function is the confidence bound. For a

minimization problem we introduce the lower confidence bound :

LCB(x̂) = µ(x̂)− κσ(x̂) (3.63)

where κ ≥ 0. If we are interested in a maximization, a upper confidence bound is

introduced

LCB(x̂) = µ(x̂) + κσ(x̂) (3.64)

In both cases κ is a parameter left to the user’s choice. From Srinivas et al. [75]

if Bayesian Optimization problem is recasted in a multi-armed bandit setting we can

redefine the acquisition function as instantaneous regret:

r(x̂) = φ(xo)− φ̃(x̂) (3.65)

Given this formulation, the goal is to find

min

T∑
t

r(x̂t) (3.66)
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Figure 3.13: This is an example of three different acquisition functions for a 2D
optimization problem. The first image in the first row represents the value of the
objective (ground truth) and the second and the third ones show respectively the mean
and the variance of the GP surrogate model. In the bottom rows the heatmap in each
picture shows where the most desirable points to pick next are. The best value for the
current iteration is represented through a white triangle. The represented acquisition
functions are Probabilty of Improvement (PI), Expected Improvement (EI) and Upper

Confidence Bound (GP-UCB). This picture is taken from [69].

Where T is the total number of ”trials“ that are performed on the process. The Upper

Confidence Bound selection criteria introduced by Srinivas et al.

GP − UCB = µ(x̂) +
√
ντtσ(x̂) (3.67)

with κt =
√
ντt and ν an hyperparameter greater than 0. It is possible to prove with

high probability that with certain choices for ν and τt (ν = 1 and τt = 2) the selection

criteria displays no regret (limT→inf Rt/T = 0) where Rt

Rt =

T∑
t=1

r(x̂t) (3.68)
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3.7.3 Constrained Bayesian Optimization

Here we introduce the method proposed by Gardner et al. [76]. In this work the

authors introduce a novel acquisition function designed for expensive constrained black-

box optimization. The novel acquisition criteria extends the EI approach in order to

take into account the problem’s constraints for the selection of the next query point. For

one constraint, g(x̂), they introduce the constrained improvement for the x̂ candidate:

Ic = 1{g(x̂)≤0}(x̂) max
[
0, φ(x+)− φ(x̂)

]
(3.69)

= 1{g(x̂)≤0}(x̂)I(x̂) (3.70)

where x+ represents the current best feasible candidate and 1{g(x̂)≤0} is an indicator

function that is one when the candidate is feasible otherwise is zero. We provide a

model both for the objective functions φ̃(·) and the constraints g̃(·) using a set of GPs.

Every iteration for each new candidate xnew, we evaluate both the objective function and

of all the constraints and we update the set of input-output value Xφ and Xg respectively

for the predictive distribution of the objective function P(φ(x̂)|Xφ, x̂) and the predic-

tive distribution of the constraints P(g(x̂)|Xg, x̂). Given this model the improvement

becomes

Ĩc = 1̃{g(x̂)≤0}max
[
0, φ(x+)− φ̃(x̂)

]
(3.71)

= 1̃{g(x̂)≤0}Ĩ (3.72)

where 1̃{g(x̂)≤0} is defined as a Bernoulli random variable

PF = P(g̃(x̂) ≤ 0) =

∫ 0

− inf
P(g(x̂)|Xg, x̂)dg̃(x̂) (3.73)

Because of the marginal Gaussianity of the g̃i constraints model, PF is a univariate

Gaussian distribution. The Expected Constrained Improvement is derived as:

ECI(x̂) = E

[
Ĩc|(x̂)

]
(3.74)

= E

[
1̃{g(x̂)≤0}Ĩ|(x̂)

]
(3.75)

= E
[
1̃{g(x̂)≤0}|(x̂)

]
E

[
Ĩ|(x̂)

]
(3.76)

= PF (x̂)EI(x̂) (3.77)

where the third line comes from the fact that objective function and constraints are

conditional independent. Therefore the ECI corresponds to the expected improvements

over the feasible current best x+ weighted by the probability that the candidate point is
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feasible. Even if the infeasible points are not a desirable outcome during the optimization

process they prove to be useful in determining the shape of the constraint functions. This

property renders the algorithm independent from the starting point because it is not

necessary to sample feasible region to to discover them.

For multiple constraints g = 0 where g = [g1, . . . , gnIC ] and 0 ∈ RnIC , the expectation

of the Bernoulli random variable is redefined as

PF = E
[
1̃{g(x̂)≤0}|x̂

]
= P(g̃1(x̂) ≤ 0, . . . , g̃nIC (x̂) ≤ 0) (3.78)

=

nIC∏
i=1

P(g̃i(x̂) ≤ 0) (3.79)

where the probability factorization is made possible because the constraints are condi-

tionally independent over x̂. Each probability that composes the product is a univariate

Gaussian distribution.

3.7.4 The algorithm

Two main issues negatively affect the overall perfomances of (1+1)CMA-ES with CCA.

(1+1)CMA-ES with CCA displays a very slow converge rate and it does not work if

the starting point does not satisfy all the constraints of the problem. In this section we

propose an algorithm to solve black box constrained optimization that by combining the

Constrained Bayesian Optimization framework with (1+1)CMA-ES with CCA, aims

to find a solution faster than the other CMA-ES approaches with a random starting

point. This algorithm is designed to search for many local optimal solutions in order

to provide a richer description of the objective function landscape. Here we introduce

the concept of Particle PAi: each PAi represents an instance of a (1+1)CMA-ES with

CCA and λ is a user defined parameter that controls the maximum number of particles

that can be deployed during one optimization run. We designed a set of particle’s death

and birth rules that were set in place to avoid wasting computational time over non

informative particles and to not incur in early convergence states. Because our algorithm

employs a CBO scheme, a set of surrogate function modeled as Gaussian Process are

introduced. We define a model for the objective function φ̃ and for the constraints g̃i

with i = 1, . . . , nIC . At the end of each iteration we update all the models adding to

the table of input-output values (respectively Xφ and Xgi for objective function and

constraints) the last tested point with the associated objective function value. In the

algorithm we identify 4 different phases and a set of transitions that take place only if

certain conditions are met. The 4 stages are:

• initialization
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(1+1)BO-CMA-ES with CCA

function (1+1)BO-CMA-ES
deploy,bootstrapping = true
btIt = 0
#ofparticles = 0
CreateGPs()
for each gen = 1, . . . , nGENERATIONS do

if btIt > btTresh && bootstrapping then
state = bootstrapping
act = BtActionSelector()
curPartIt = 0
π1 == DoAction(state, act, curPartIt)
φnew, φnewconstr, violation = Execution(π1)
if !violation then

bootstrapping = false
end if

else
if deploy && (#ofparticles < lambda) then

state = deploy
act = DeployActionSelector()
curPartIt = 0
π1 == DoAction(state, act, curPartIt)
φnew, φnewconstr, violation = Execution(π1)
btIt = btIt+ 1
if feasiblecandidate then

AddNewParticle(π1)
#ofparticles = #ofparticles + 1

end if
else

deploy = false;
state = optimization
[act, curPartIt] = OptimActionSelector()
π1 == DoAction(state, act, curPartIt)
φnew, φnewconstr, violation = Execution(π1)
if !violation && act == global then

if φnew > φbest then
AddNewParticle(π1)

end if
end if
if (#ofparticles > 1) then

PruneParticles()
end if

end if
end if
if (act == particleSample ‖ act == Local) then

UpdateParticle(state, act, curPartIt)
end if
UpdateGPs(φnew, φnewconstr, violation)

end for
end function

Figure 3.14: Pseudo code for (1+1)BO-CMA-ES
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initstart deploy

bootstrap

optimization

if(btIt < btTresh)

if(feasible)

if
(!f
ea
sib
le)

repeat until feasible

if(#PAi < λ)

Figure 3.15: This figure shows the states that compose our algorithm and the condi-
tions that have to be met in order to evolve from one state to the next

• bootstrapping

• particles deploy

• constrained optimization

During the initialization phase, the algorithm looks for a feasible solution. If it fails, we

enter in the bootstrapping mode where we cast an unconstrained optimization problem

specifically designed for the research of a feasible solution. Once a feasible solution is

found (during the initialization or after the bootstrapping phase) we start to deploy a λ

number of PAi inside the feasible region. Once we reach the desired number of particles,

during the optimization phase we make the particles evolve until certain conditions are

met or we attain the maximum number of generations. Two user defined parameters

control the transitions among the phases:

• λ determines how many particles PAi have to be deployed before entering in the

constrained optimization phase. In this algorithm we introduce a set of user defined

parameters to control the state machine evolution over generations.

• btTresh controls how many generations we can wait, during the initialization

phase, before starting the bootstrapping phase if we do not find a feasible starting

point.
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In this algorithm we distinguish between local and global search. We refer to the former

when the search for the optimal point is restricted to the neighbourhood of the current

particle, while we consider the latter when the search region coincides with the entire

hyperrectangle of the parameters space. We designed only 1 action that perform a global

search and we conceive 2 actions that implements a local search search. A Bayesian

optimization (constrained or unconstrained), performed on the entire parameters space,

represents our global action. It can differs among all the phases for the kind of acquisition

function that is employed for the search. The first local action is performed every time

we sample from the search distribution associated to each particle to enact one step

of (1+1)CMA-ES. The second local action is represented as a Bayesian Optimization

(constrained or unconstrained) performed in a neighbourhood of the particle that we

are considering. given the Search Distribution (SD) of the Particle PAi

SD = N (πi, ς
2
i Σi) (3.80)

Where πi is the mean, Σi is its covariance matrix and ςi is a multiplication factor that is

used inside CMA-ES to set the step size value. Here we can define a local reference frame,

loc, centred in the mean of the particle and oriented as the principal direction of the

covariance matrix. Therefore we compute the Eigen Decomposition of the convariance

matrix Σi

Σi = Vidiag(δi)V
−1
i (3.81)

where Vi is the eigenvectors matrix while δi is the vector of eigenvalues. With this infor-

mation we can compute the new local bounding box built around the hyper ellipsoid of

the gaussian search distribution associated to the i-th particle. The local hyperrectangle

bounds are defined as

bmaxi = diag(|δi|)ςikmku (3.82)

bmini = −diag(|δi|)ςikmku (3.83)

(3.84)

where ku is a user defined parameter that is used to inflate or deflate the local bounding

box, finally km represents a particular Mahalanobis distance that describes an ellipsoid

centred at the mean of the distribution. In order to compute the km we have to define a

specific confidence interval that determines the the probability mass enclosed inside the

ellipsoid. For our purpose we use a confidence interval equal to 0.95. km is defined as

km =
√

invChi(0.95, np); (3.85)
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where np is dimension of the multivariate distribution and invChi is the inverse cumu-

lative distribution function of the chi squared distribution up to the confidence value

because the Mahalanobis distance of a multivariate gaussian is distributed according

to the Chi-squared distribution with np degrees of freedom. When we perform the BO

in the local bounding box To speed up the optimization of the acquisition function we

compute at runtime for both the objective function and the constraints a local Gaussian

process. For the i-th particle the new GPs are defined by considering only a subset of

points of X(·) lying in a neighbourhood of the search distribution

Xloc
(·) ⊆ X(·) : ||x− πi|| ≤ max (bmaxi ) with x ∈ X(·) (3.86)

where max (bmaxi ) represents an hypersphere centred in the mean of the SD with radius

equal to the biggest axis of the local bounding box. To guarantee that the optimal

solution will belong to the local hyperrectangle we perform the optimization of the

acquisition function directly in the local reference frame loc. For that reason, given

a generic acquisition function built on the restricted Gaussian Process ac(x̂,Xloc) and

the set of point that belongs to the local hyperrectangle in the local reference frame

bmini ≤ x̂loc ≤ bmaxi we define a local acquisition function acl(x̂
loc,Xloc)

acl(x̂
loc,Xloc) = ac

[
t(x̂loc),Xloc

]
(3.87)

where t(·) represents the rototraslation from the local reference to the original frame

t(x̂loc) = πi + Vix̂
loc (3.88)

where the matrix of the eigenvector Vi acts as rotation matrix. By interleaving random

sampling (according to the search distribution) and ”informed“ sampling (through the

Bayesian optimization framework) we mitigate the slow converge rate issue that afflicts

every CMA-ES approach. We implemented different heuristics for each phase to switch

among actions.

Hereafter we introduce, with a detailed description, each phase that compose our method.

3.7.4.1 Initialization Phase

As we stated before, each particle need a feasible starting point to properly work. So we

need to find λ feasible points to start the optimization phase. For our problem we make

the hypothesis that the problem is well posed so at least one feasible region exists. In

order to do so we search for a feasible optimal solution using an instance of Constrained

Bayesian optimization 3.7.3. Here we use a different acquisition function from the one
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used in [76]. To push the exploratory behaviour of the search, we introduce another

constrained acquisition function called Constrained Variance (CV) defined as:

CV = E
[
1̃{g(x̂)≤0}|x̂

]
σφ(x̂) (3.89)

=

nIC∏
i=1

P(g̃i(x̂) ≤ 0)σφ(x̂) (3.90)

where σφ(x̂) is the variance of the predictive distribution of the objective function’s

Gaussian Process model. Weighting the variance of the surrogate objective function

with the probability of constraints satisfaction leads to a behaviour that try to look into

the regions with less points with a preference for the feasible ones. If we find at least one

or more feasible regions before reaching the btTresh maximum number of generations,

we reach the deploy phase. Otherwise if, the free region is too narrow or the number of

maximum allowed iterations is too small we start the bootstrapping phase.

3.7.4.2 Bootstrapping Phase

If we fail to find a feasible starting point the algorithm is provided with a specific

procedure to manage this occurrence. In this section we apply the issue we employ a

simple divide et impera idea to render the issue easier to manage. During thi phase we

recast a new unconstrained optimization problem where the sum of constraints violations

is the new fitness function:

φbs =

−
∑T

t

∑nC
i=1 |ê(t, i,π)|, if constr. viol.

−
∑T

t

∑nC
i=1 |ŝ(t, i,π)|, if no constr. viol.

where T is the number of control steps, ê(t, i,π) = 1{gi(π)>0} gi(π) and ê(t, i,π) =

1{hi(π)6=0} hi(π) are respectively the inequality and equality constraints that are not

satisfied at time t and ŝ(t, i,π) = 1{gi(π)<=0} gi(π), ŝ(t, i,π) = 1{hi(π)=0} hi(π) represent

all the satisfied constraints at time t. Even though during the Initialization phase we

employed only one global action here To solve this unconstrained optimization we employ

all the actions that are at our disposal. In this phase we start the optimization process by

randomly selecting a starting point. From this point we initialize only one particle PAbt
that is an instance of unconstrained (1+1)CMA-ES. After a fixed amount of generations

(in our experiment we use a value of 10 max iterations) where we let the (1+1)CMA-ES

evolve. when we reach the maximum number of iteration we perform a global BO if

the objective function value associated to the current search distribution mean is lower

than a certain threshold. Otherwise, we use a local BO in the neighbourhood of the
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search distribution. After one of the two BO actions is performed we set back to the

local (1+1)CMA-ES evolution. For both the local BO and the global one we use as an

acquisition function the Probability of Constraint Satisfaction (PCS) defined as

PCS =

nIC∏
i=1

P(g̃i(x̂) ≤ 0) (3.91)

3.7.4.3 Deploy Phase

Once a feasible solution is found (directly after the Initialization Phase or because a

Bootstrapping become necessary) the algorithm starts to add particles until we reach

the maximum number requested, λ. In this phase the Heuristic for the action selection is

slightly different than if the previous phase was the initialization or the Bootstrapping

phase. If the algorithm moved directly from the initialization phase we keep looking

for other feasible point using the CBO with the acquisition function already employed

during the Initialization phase (see Eq. 3.89). Although if the algorithm requested a

bootstrapping it means that the feasible region is narrow in respect to the global bound-

ing box that contains the parameter space. So in this case a better strategy consists

in looking for other starting points around the bootstrapping particle. As such, we al-

ternate between one evolution of the PAbt and on local CBO around the bootstrapping

particle. Every time a feasible point is sampled we add a new particle. For the local

CBO we introduce a new acquisition function called Maximum Constrained Distance

(MCD)

MCD =

nIC∏
i=1

P(g̃i(x̂) ≤ 0)

nd∑
i=1

||πi − x̂|| (3.92)

where nd < λ is the total number of particles already deployed. In this way the research

for the next candidate during the local CBO is skewed to the points that are feasible

and have the biggest distance from the particle already deployed. In this way we try to

obtain a good coverage of the feasible region.

3.7.4.4 Optimization phase

After collecting λ particles, the algorithm proceeds with the optimization of the original

constrained problem. In advance, the optimal value of the objective function is unknown

so we need to iterate through every action during the entire optimization process. We

start by applying a simple round-robin heuristics to evolve every particle in our set.

When each particle has evolved a fixed amount of times we alternate between a round

of local CBO for each particle and a global CBO search. For both local and global

CBO, we employ the ECI acquisition function from Gardner etal. [76] (3.7.3). For the
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Figure 3.16: in this figure we show the different phases of the proposed algorithm.
In the first row we start by using a global constrained BO to look for a solution that
satisfies all the constraints. Because it fails, we enter in bootstrapping mode where
only one particle is deployed to look for a free solution. In this phase we interleave
after 10 sampling from the search distribution a global and a local BO (in this order).
Finally, once a solution is found, in the third and fourth rows the algorithm performs
the deployment of three particle to look for an optimal solution of the constrained
optimal problem that is eventually found by the green particle (in the last figure at the

bottom right)

global CBO we consider as current best sample x+ the highest fitness value among all

particles. In order to reduce the execution cost when we have to deal with numerous

particles we introduce a set of death rules. The first rule aims to reduce the particle

redundancy. If the distance between to particles become lower than a certain threshold

we remove the particle with the lower fitness value. The second rule is designed to

remove the particle that reach a local optima. For each particle we record the consecutive

number of generations where the particle did not evolve. If this number becomes greater
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than a predefined maximum value we drop the current particles. If the number of

active particles drops to 1 we do not apply any more any death rules and we execute

the algorithm until the maximum number of generation is reached. To allow for late

discovery of new feasible region, we defined a birth rule. Each time that the algorithm

employs a global CBO action if the sampled point is feasible we add a new particle if

and only if we have less than λ active particles.

The proposed algorithm presents little criticality. The great number of user defined

parameters introduced in the proposed algorithm nullify one of the best feature of CMA-

ES (and all its variations), having few parameters to tune. Even if some of the new

parameters introduced are not critical, others can play an essential role in order to find an

optimal solution. To overcome this, we plan to introduce a multi armed bandit approach

for the action selection in each phase (similar to [77]). The computational time is another

issue that affects the proposed method. This is due to the introduction of the BO

framework. When the training set starts to grow in size the it takes more time to compute

the prediction distribution. To reduce this problem we can use C++ implementation of

BO that presents has better performance than the Matlab implementation.

3.8 Benchmarking the Algorithms

In this section we test the algorithms described in Section 3.6 to decide which one better

suits our problem. We compare their performances on five different benchmarks:

− g07: nP = 10, nIC = 8, nEC = 0

− g09: nP = 7, nIC = 4, nEC = 0

− HB: nP = 5, nIC = 6, nEC = 3

− RB1: nP = 15, nIC = 32, nEC = 0

− RB2: nP = 15, nIC = 50, nEC = 0

The first three are classical benchmarks for constrained optimization [7], that is analytic

problems with known optimal solutions; the last two are new benchmarks that we de-

signed ad hoc to evaluate the performance of the algorithms on robotic problems with

growing complexity. RB1 is a problem inspired by our previous work [26] where a KUKA

LWR (7DOF) has to reach a goal position with its end-effector behind an obstacle, while

satisfying constraints of joint position limits, joint torque limits and obstacle avoidance.

RB2 has a similar setting with the addition of a second obstacle to avoid and another

set of constraints coming from joint velocity limits. To compare the performance of the

algorithms on these benchmarks, we define the following metrics:
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• m1: distance from the optimal solution, defined as m1 = ‖π◦ − π∗‖, where π◦ is

the optimal solution (known) and π∗ the best solution found by the constrained

optimization algorithm;

• m2: constraint violations, defined asm2 =
∑nC

i=1 |ê(i,π∗)|, where ê(i,π) = 1gi(π)>0 gi(π)

for the inequality constraints and ê(i,π) = 1hi(π) 6=0 hi(π) for the equality con-

straints — basically it sums all the constraints that are violated;

• m3: number of steps to converge, or settling time, defined as m3 = nsc(δ), the

number of steps after which the fitness function reaches a steady state condition,

i.e., its value is bounded between ±δ% of the steady state value — here, we set

δ = 2.5;

• m4: best fitness, defined as m4 = J(π∗), i.e., the fitness of the best solution found

by the constrained optimization algorithm.

3.8.1 Benchmarking (1+1)CMA-ES with CCA

In this section we provide some benchmarking results for (1+1)CMA-ES with CCA. Here

we compare (1+1)CMA-ES with CCA with to other variants of CMA-ES for constrained

black box optimization: CMA-ES-AC and CMA-ES-VC. To provide a baseline, we use

the (deterministic) constrained optimization function fmincon in Matlab, using the SQP

method. This is a suitable choice because it does not require the gradient of the objective

function for non-linear constrained optimization problem with nonlinear constraints.

Since (1+1)-CMA-ES with covariance constrained adaptation (Section 3.6.3) needs a

feasible candidate solution as a starting point, in order to make a fair comparison all

the algorithms start from the same initial position. We perform 40 repetitions of the

optimization process per each test problem for each algorithm with an exploration rate

of 0.1 and a 5000 samples to assure the convergence of the methods.

Fig. 3.17 shows the results of the numerical experiments with the five benchmarks. The

top row reports on the results for g07, g09 and HB with metrics m1, m2, m3, while

the bottom row reports on the results for the robotics benchmarks RB1 and RB2, with

metrics m2, m3, m4 (m1 cannot be used in this case because the optimal solution π◦ is

not known). We also compared the four algorithms in terms of computational time, and

did not find significant differences (for example, the optimal solution for RB2 is found

on average in u1.7e+04 s for the CMA-ES variants and 1.9e+04 s for fmincon on a i5

laptop with Matlab).
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Figure 3.17: Performance comparison of the three constrained CMA-ES algorithms
and the baseline fmincon algorithm from Matlab using the SQD method. The top row
reports on the results on three standard analytical constrained optimization bench-
marks (g07, g09, HB - see [7]). The bottom row reports on the results on two robotics
benchmarks (RB1, RB2) that we designed ad hoc to evaluate the performance of the

algorithms on robotics problems.

(1+1)-CMA-ES with covariance constrained adaptation offers the best trade-off between
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performance and constraints’ satisfaction both on the analytic and the robotic bench-

marks. It always ensures full satisfaction of the constraints while the other methods

sometimes fail. Its settling time is comparable to the other stochastic algorithms, while

fmincon converges faster. fmincon could seem more appealing, but on the robotic bench-

marks its best fitness is lower and actually quite close to the fitness of the starting point

(meaning that the algorithm does not really “explore”). Therefore fmincon does not

seem a suitable candidate for solving robotic problems with a lot of constraints.

The different performances of the algorithms in the analytic and robotic benchmarks

confirm the benefit gained by designing two new robotics benchmarks RB1,RB2. Over-

all, considering the zero constraint violations and the capability of finding a good solu-

tion, we choose to use (1+1)-CMA-ES with covariance constrained adaptation for our

experiments with the iCub robot.

3.8.2 Benchmarking (1+1)BO-CMA-ES

Figure 3.18: This illustration shows the result for the m1 metrics. Our method
outperforms all the others in term of distance from the optimal solutions. Here the

smaller the value the better.

In this section we provide benchmarking results for the updated version of (1+1)CMA-ES

with CCA. In this benchmark we present some preliminary results on a set of analyt-

ical constrained optimization problems and we do not provide any comparison on the
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Figure 3.19: In this figure the metric m2 results are presented. While all the CMA-
ES methods satisfy the constraints (with the exception of CMA-ES-VC ), the CBO
approach greatly violates them. This happens because for the CBO method there are

no guarantees that such occurrences may not happen.

robotics benchmarks. Here we compare (1+1)BO-CMA-ES with CCA and other vari-

ants of CMA-ES for constrained black box optimization: CMA-ES-AC, CMA-ES-VC,

(1+1)CMA-ES with CCA and a plain implementation of Constrained Bayesian Opti-

mization with an ECI acquisition function. We perform 45 repetitions for each bench-

mark problem with an exploration rate of 0.1 and 300 maximum allowed iterations for

each algorithm. Because (1+1)CMA-ES with CCA need a feasible starting solution, we

used the same starting point for every algorithm except for (1+1)BO-CMA-ES and the

CBO algorithm. For CBO and (1+1)BO-CMA-ES we provide only 5 points with the

associated fitness to initialize the Gaussian Processes for the objective function and all

the constraints. For the CBO method we perform only one experiment because we use

the same starting points. In this case CBO is strictly deterministic. In this benchmark

we used only 3 particles for (1+1)BO-CMA-ES because we know in andvance that this

analytical problems present only one optimum. Even if the comparison was not com-

pletely fair, the results show that, given the small iteration budget, the proposed method

outperforms the others in terms of optimality of the solutions found. From the Figure

3.18 it is clear that even for the first analytical problem (where the feasible region is in

a narrow portion of the search space compared to the entire bounding box) our method

show to get extremely close to the optimal solution while the others method do not

present the same capability. For the other two benchmark functions, g09andHB, our
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Figure 3.20: This image presents the results for the convergence rate metric m3. Even
if our method shows a worse performance than the other approaches, for the converge
rate computation we take into account all the iterations spent during the bootstrapping
phase. On the contrary the other algorithms started directly from a feasible solution

that reduces the overall iteration cost.

algorithm reach better results especially for the last function where we got the exact op-

timal solution. This behaviour is possible because in our algorithm we leverage on local

and global Bayesian optimization moves that reduce the number of required sample. For

the metrics m2 we get comparable results among the CMA-ES based algorithms while

the CBO alone results in huge constraints violations. For the metric m3, our algorithm

shows a similar converge of (1+1)CMA-ES with CCA with a difference: by starting from

an infeasible solution we spend some iteration for the bootstrapping procedure and at

the end we reach a better optimal solution. If we consider the computational time to

reach a solution, our algorithm is much slower than the others (except for the CBO).

This problem is related to the computational cost associated to the calculation of the

predictive distribution for the acquisition function optimization inside CBO. We believe

that we can mitigate this issue by migrating our code from Matlab to better performing

language like C++ or Java.
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Experiments

4.1 Optimizing Soft Task Priorities Without Constraints

In this section we discuss our experiments on learning the task priorities. We start show-

ing on a simulated Kinova Jaco arm that our learning method improves the performance

of the movement in terms of fitness values, over existing task priorities that have been

manually tuned. We also show that the optimized trajectories are robust with respect to

the initialization of the learning process. We compare on a real Jaco arm some typical

learned policies with the manually tuned one, showing that our method improves the

real robot motion. Finally, we compare on a simulated Kuka LWR the performance of

our method with the state-of-art GHC controller [19] . We show that our method is not

only better in terms of performance, but also computationally 10 times faster.

4.1.1 Learning the Task Priorities for the Kinova Jaco Arm

The setting for the first experiment is shown in Figure 4.1. The Kinova Jaco arm (6

DoF), starting from its zero configuration, must reach a desired position behind a wall

with its end-effector. The goal position is difficult to reach, and the robot kinematics is

such that it is not straightforward to manually design a trajectory that does not collide

with the obstacle and brings the hand to the goal.

There are 3 given elementary tasks. The first is about reaching the Cartesian pose

p∗ =[0, -0.63, 0.7] with the end-effector (goal). The second is about reaching the Carte-

sian pose [-0.31, -0.47, 0.58] with the 4th link. The third is about keeping the joint

configuration [120, 116, 90, 0, 0, 0] (degrees).

62
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Figure 4.1: The Jaco arm must reach a goal behind a wall (obstacle) while fulfilling
a pose task on joint 4 and a full posture task. The initial sequencing of task priorities
is not efficient. Our method allows the automatic learning of the temporal profiles of

the task priorities from scratch.

We design the following fitness function φ ∈ [−1, 0]:

φ(q1,...,T ,u1,...,T ) = −1

2

(∑T
i ‖pi − p∗‖
εmax

+

∑T
i ‖ui‖22
umax

)

where T is the number of control steps (the task duration is 20 seconds, and we control

at 10ms), pi describes the end-effector position at time i and p∗ is the goal position,

‖ · ‖22 is the square of the `2 norm and ε−1
max and u−1

max are two scaling factors. The

first term of φ penalizes the cumulated distance from the goal, while the second term

penalizes the global control effort. To ensure that the generated controls are feasible

for the real Jaco robot, we set the fitness to -1 whenever the generated policy violates

one of the robot constraints: a collision with the environment, joints position ranges

and maximum joint torques. This ad-hoc solution is also a consequence of the learning

algorithm. Fig. 4.2 shows the average fitness value computed over the eleven optimized

trajectories satisfying the constraints, found on 100 restarts of CMA-ES.
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Figure 4.2: Average fitness value for the task priorities learned with our method,
for the 3-tasks experiment with the simulated Jaco arm. The horizontal line indicates
the fitness of the manually tuned solution. The mean and standard deviation of the
fitness for the learned policies is computed over 100 restarts of CMA-ES, each with 80
generations and random initialization of the parameters. We only retained the fitness

for the experiments that provided solutions satisfying the real robot constraints.

4.1.2 Robustness of the Learning Process

Different profiles of the task priorities can yield similar movements of the robot. It is

however important to show that the learning process is able to optimize the task priorities

in a robust way, that is providing similar optimal solutions. We therefore execute N=100

replicates of the experiment in Section 4.1.1, with a simulated Jaco arm and three

tasks. In each experiment, CMA-ES runs for 100 generations with an exploration rate

of 0.5. The parameters are randomly initialized. We compute the average and standard

deviation of the solutions that satisfy the robot and task constraints. Figure 4.3 shows

the average end-effector trajectory in the Cartesian space and the corresponding joint
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Figure 4.3: Mean and variance of the Cartesian trajectory of the end-effector and the
joints torques of the simulated Jaco arm, generated by learned task priorities over 100
trials of the 3-tasks experiment (see text in Section 4.1.2). Even starting from random
initialization of the task weight parameters, the learning process is eventually able to

produce similar optimized motions of the robot that fulfil its ‘global’ task.

torques. Despite the redundancy of the robot and the one of the task priorities, the

final robot movements are smooth and quite consistent with each other. Their average

fitness is −0.0874 ± 0.0213. Overall, this result indicates that learning the soft task

priorities starting from scratch (i.e., where an initial guess for the activation of the task

priorities in time is not available) is a viable and robust option for generating the motion

of redundant robots.

4.1.3 Experiment on the Real Kinova Jaco Arm

We compare in Fig. 4.4 the effect of three different task prioritizations on the real Jaco

arm. In the left column, we show the robot movement generated by task priorities

that were manually tuned by an expert user of the Kinova arm; on the right column,

we show two typical robot movements generated by learned task priorities, which were

optimized with CMA-ES starting from a known initial value (the manually tuned task

weight functions) and a random value. We set the exploration rate in CMA-ES to

0.5 and perform 40 generations. Learning the priorities has a beneficial effect on the

smoothness of the trajectories, which becomes evident when comparing the plots of the

end-effector (Fig. 4.4c), joints positions (Fig. 4.4d) and torques (Fig. 4.4e) and the task

errors (Fig. 4.4b). We evaluate the fitness using the commanded joint torques ui and the

kinematics and dynamics model of the Jaco arm to compute pi. The fitness value for

the manually tuned task priorities is −0.1431. The fitness values for the two optimized

solutions are better: −0.0585 and −0.0644 initializing the parameters with fixed and

random values respectively. Overall, this experiment illustrates that learning the task
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(a) The task priorities evolving in time.
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(c) The end-effector trajectory in the Cartesian space.
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(d) The joints trajectories.
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(a) The measured joints torques (estimated by the motor currents).
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Figure 4.4: Comparison between a manually tuned (left side) and two typical learned
(right side) policies for the 3-tasks experiment performed with the real Kinova Jaco
arm. On the right, a solid line corresponds to a policy optimized starting from a
fixed/known initial value of the priorities (fixed init), in this case the priorities found
by manual tuning; the dashed line corresponds to a policy optimized starting from
random values (random init). The final fitness values are: −0.1431 (manual tuning),

−0.0585 (fixed init) and −0.0644 (random init).

priorities improves the real robot motion with respect to an existing manually tuned

solution.

4.1.4 Comparison with the State-of-the-Art GHC

In this experiment we compare the performance of the task priorities learning applied

to our method and to the state-of-the-art multi-task controller GHC [19].

In the GHC, each task is associated to a null space projector of the extended Jacobian

that contains the analytical description of all the task objectives. Soft task prioritization

is achieved because the null space projector depends on a set of manually designed weight

functions ranging from 0 to 1, that control if each task is fully or partially projected

in the null spaces of the other tasks with higher priority. The controller is the solution
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Figure 4.5: Comparison between our method and the GHC modified to learn the task
priorities with CMA-ES. The plot shows the mean and the standard deviation of the
fitness in R = 20 trials of the experiment with the simulated KUKA LWR arm (see
Section 4.1.4). For both controllers, the learning is initialized with random parameters.
Our method shows a faster convergence and better optimization of the fitness. The
average fitness is is −0.0373 ± 0.0320 for our method and −0.0735 ± 0.0946 for the
GHC+learning. The two distributions are statistically different (p < 0.01 with the K-S

test).

to a quadratic optimal control problem subject to the robot and task constraints – see

[19]. The soft task priorities are introduced as a further constraints, formulated by

q̈ =
∑nt

i=1 Pi(Λi)q̈
′
i , where Pi(·) is the null space projector associated to the i-th task,

Λi is a matrix that depends on the task priorities, q̈
′
i are intermediate joint accelerations

associated to each task and q̈ are the joints accelerations. To enable the comparison

with our method, we parametrized the task priority matrix Λi for each task i in the

same way as described in Section 3.2.2.

We compare the two methods on a reaching task with a simulated 7 DoF Kuka LWR,

which was originally used in [19]. In this scenario, the robot must reach a goal point

beneath a rectangular surface parallel to the ground (z = 0.25m), without collision. The

are 2 elementary tasks. The first is about reaching the Cartesian pose p∗ =[0.6, 0, 0.15]

with the end-effector (goal). The second is about keeping the joint configuration [0, 90,

0, -90, 0, 90, 0] (degrees). We design the following fitness function φ ∈ [−1, 0]:

φ(q1,...,T ,u1,...,T ) = −1

2

(∑T
i ‖pi − p∗‖
εmax

+
max(‖ui=1,...,T ‖∞)

umax

)

where ‖ ·‖∞ is the infinity norm. We set the fitness to −1 in case of collision. We run 20

experiments from random initial parameters for both methods, with an exploration rate
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of 0.1 for CMA-ES and 80 generations. Our method generated solutions that satisfy

the collision constraint in 90% of the cases, while the GHC succeeded only in 75%.

Figure 4.5 shows the mean and standard deviation of the fitness: our method is faster

in convergence and improves the final optimized fitness. The average fitness at the

end of the learning process is −0.0373 ± 0.0320 for our method and −0.0735 ± 0.0946

for the GHC+learning. The two distributions of the fitness are statistically different

(p = 0.0073 < 0.01, obtained with the two-sample Kolmogorov-Smirnov test). Our

method is also 10 times faster in terms of computational time: on a standard i7 machine,

the average time for the optimization process to find a solution with 80 generations

(average over 20 trials) is 3.7× 103 ± 2.4× 102 seconds for our method and 3.9× 104 ±
2.2× 103 seconds for the GHC+learning approach.

4.2 Optimizing Soft Task Priorities with Constraints

In this section, we apply (1+1)-CMA-ES with covariance constrained adaptation to our

multi-task control framework (Section 3.2). We use it to optimize the task priorities and

to obtain a solution that never violates the constraints. In the following, we report on the

experiments performed to optimize the whole-body movements of the iCub humanoid

robot.

We designed two experiments using the 17 DoF of the upper-body of the robot (arms

and torso). In the experimental scenario, a rectangular obstacle similar to a wall, that

is as large as the robot’s chest and 2 cm thick, is placed about 20 cm in front of the

robot.

learn the task priorities

that optimize the robot
motion w.r.t. a fitness

to ensure that they never 
violate constraintstasks

constraints
0

0

1

0

-1

Figure 4.6: The humanoid robot iCub performing a bimanual task with several tasks
and constraints. In this experiment we optimize the task priorities in a way that it

never violates any of the constraints.
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The first experiment is aimed at reaching a goal Cartesian position behind the wall

with one hand. There are three elementary tasks. The first is about reaching the

desired Cartesian position p∗r = [0.35,−0.15, 0.7] (m) with the right hand frame of the

robot. The second task is reaching a desired Cartesian position p∗elbr = [0.24,−0.23, 0.7]

(m) with the elbow frame. The third task is keeping the initial joint configuration

q∗ = [0, 45, 0, 0,−20, 30, 0, 0, 45, 0, 0, 0, 30, 0, 0, 0, 0] (deg). In sum, the goal is hidden

behind the wall, and to reach it with the hand the robot must bend its elbow around

the wall corner; the third task should prevent the robot from moving the right arm

and the torso. The task priorities are approximated by RBFs with nr = 5, therefore

nP = 5× 3 = 15. There are nC = nIC = 73 inequality constraints: joint position limits,

joint torque limits and distance constraints to avoid collisions between the robot and

the obstacle. Precisely, a minimal distance of 3 cm is required between the obstacle and

a set of pre-defined collision check points (located at the origin of the frames of right

shoulder, elbow, wrist, hand and head). For this experiment we use the following fitness

A B

C D

Figure 4.7: Experiment with the iCub, about reaching a goal behind the wall with
one hand. A) The robot’s movement visualized by the mex model. B) The median con-
straint violation and fitness optimized by (1+1)-CMA-ES with covariance constrained
adaptation (over 25 experiments) the constraints are never violated C-D. The task

priorities and joint torques of the best solution.
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function:

φ = −1

2

[∑T
i ‖pr,i − p∗r‖
εmax

+

∑T
i u2

i

umax

]
(4.1)

where φ ∈ [−1, 0], T is the number of control steps (the task duration is 20 s, and we

control at 1 ms), pr,i is the right hand frame position at time i, p∗r the goal position

for the hand frame and εmax = 120 and umax = 3.5 ∗ 105 are two scaling factors. The

first term of φ penalizes the cumulative distance from the goal, while the second term

penalizes the global control effort.

The second experiment complicates the first by adding 2 more tasks. The aim is to

reach a Cartesian goal position with both robot hands. Two Cartesian goal tasks for

each hand and elbow are set symmetrically with respect to iCub’s sagittal plane. A fifth

posture task is set as to keep the torso as straight as possible during the movement.

• Task 1 : p∗r = [0.35,−0.15, 0.68] (m)

A B

C D

Figure 4.8: Experiment with the iCub, about reaching a goal behind the wall with two
hands. A) The robot’s movement visualized by the mex model. B) The median con-
straint violation and fitness optimized by (1+1)-CMA-ES with covariance constrained
adaptation (over 25 experiments) the constraints are never violated C-D. The task

priorities and joint torques of the best solution.
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• Task 2 : p∗elbr = [0.21,−0.25, 0.68] (m)

• Task 3 : p∗l = [0.3, 0.0248, 0.68] (m)

• Task 4 : p∗elbl = [0.21, 0.1138, 0.68] (m)

• Task 5 : q∗ = [0, 45, 0, 0,−20, 30, 0, 0, 45, 0, 0, 0, 30, 0, 0, 0, 0] (deg)

The task priorities are approximated by RBFs with nr = 5, therefore nP = 5× 5 = 25.

The optimization is carried out under the same constraints as in the first experiment

with the addition of the left arm collision checks. This means we have nC = nIC = 77

inequality constraints. The fitness is:

φ = −1

2

(∑T
i ‖pr,i − p∗r‖
εmax

+

∑T
i ‖pl,i − p∗l ‖
εmax

+

∑T
i u2

i

umax

)
(4.2)

where pl,i is the left hand frame position at time i, p∗l the goal position for the left hand

frame.

In all the experiments, we seek the best solutions that do not violate any of the con-

straints. We employ (1+1)-CMA-ES as described in Section 3.6.3 with the exploration

rate set to 0.1 (this is the only parameter to tune and this is the default value!).

Fig. 4.7 B and Fig. 4.8 B show the median fitness and constraint violation obtained by 25

experiments. The fitness grows nicely (φ = 0 would be the optimum). Most importantly,

the constraints are never violated, which is exactly what we wanted to obtain. We

also show the task priorities and the joint torques from one of the best solutions; they

are both smooth, and it is clear that optimizing the task priorities manually would be

very difficult if these solutions were to be achieved.

4.3 Optimizing Whole-Body Trajectories

In this section we present our experiments with the iCub humanoid performing a “stand-

up from the chair” movement. Our method is capable of optimizing the task trajectories

to generate a safe motion even when the robot is switching contacts in physical interac-

tion with the environment.

Robotics setup - Our experiments were performed with the iCub humanoid robot. iCub

is a 53-DoF humanoid robot [78], but only 23-DoF are torque-controlled and used for

balancing tasks. It is equipped with 6 force/torque sensors, placed in the middle of arms,

legs and feet, that are used to compute the whole-body dynamics [79]. We developed

our controller in Matlab/Simulink using the WBToolbox [80], which can be applied to
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Figure 4.9: The humanoid robot iCub performing a whole-body motion (stand-up
from the chair), with several tasks and constraints. In this experiment we optimize
the desired task trajectory w.r.t. a fitness function, guaranteeing that the global robot

behavior is safe: it never violates any of the constraints.

both the simulated and real robot, whereas the learning and trajectory optimisation is

done with our framework for learning task priorities [31]. Considering the high chance

of breaking the real robot during learning, we perform all the learning procedure in

simulation. The rollouts are performed in Gazebo.

Stand-up problem - We apply our method to solve the problem of finding a safe trajectory

for the robot to stand up from a chair, where “safe” means physically feasible and that

it does not violate any problem/robot constraint. The goal of the experiment is to

learn an optimal CoM trajectory to move the robot from a sitting position to a double

support stance that guarantees constraints satisfaction and minimizes the risk of falling.

The desired trajectory is executed by the centroidal momentum controller described in

Section 3.3.1. For this experiment we constrain the desired CoM trajectory to lay on

the sagittal plane of the robot (x, z plane in the robot world frame). For each trajectory

component, we associate a RBFs network with nf = 5 and we add two fixed viapoints

for the starting and the final CoM positions. Then we use a third RBFs network to

model the time law. To allow for the stand up movements in the controller, we need to
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Posture Torso (deg) Larm (deg) Lleg (deg)

qsi 60, 0.62, 0.40 -67.2, 34.1, 4.8, 43.2 84.3, 0.8, 0.1, -99.2, -15.8, 0.1

qsi -10, 0, 0 -20, 30, 0, 45 25.5, 0, 0, -18.5, -5.5, 0

Table 4.1: The intermediate (qsi) and the final joint pose (qst) that define the sec-
ondary task.

switch from the lower back/legs contact points (when the robot is sitting on the chair) to

the feet contact points. Therefore we introduce a switching time tswitch. This induces a

natural segmentation of the movement in two distinct phases: the first is when the robot

is sitting, the second is when the robot breaks the contacts with the chair and starts

to stand up to reach the standing position. For the posture task we set two different

keyframe joint postures: one at the end of sitting phase (qsi) and one a the end of the

sit up movement (qst).

To ensure a smooth transition in the joint space, we used the method from [81]. To assure

the feasibility of the optimal solution and to lighten the burden of the deployment on the

real robot we introduce a set of constraints. For this experiment we set nC = nIC = 93

inequality constraints: joint position limits, joint torque limits and a dynamic balance

constraint to assure that after the tswitch the Zero Moment Point (ZMP) is located inside

the support polygon of the robot.

4.3.1 Optimization for the Simulated iCub in Gazebo

To obtain an optimal CoM trajectory that never violates the constraints we apply (1+1)-

CMA-ES with CCA to our framework. As described in Section 3.6.3, to avoid stalling,

the algorithm requires a starting point that verifies the constraints, but for our appli-

cation scenario it is not straightforward to set the right parameters that verify all the

constraints at once.

Therefore we split the optimisation problem in two. In the first, we run an unconstrained

optimisation problem, where we want to minimize the constraints violation to 0 (no

constraint violation). In the second, we run a constrained optimization problem to find

a solution that satisfies our ”true“ cost function. The two problems have similar settings

(tswitch = 1.5s, 3 RBFs networks with 5 RBFs each, for a total number of parameters

equal to 15, T = 4.5s with a control step of 10ms) but different fitness functions.

The fitness function for the first problem, or bootstrap problem, (unconstrained opti-

mization) is:

φuc =

l̂, if fallen

φbs(T, nc) otherwise
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Hand-tuned solution

A B

C D

Figure 4.10: Typical trajectory that is manually hand-tuned by an expert. A plots
the joint torques, B plots the joints positions during the experiment, C shows the CoM
trajectory of the robot on the sagittal plane, D shows the evolution of the ZMP on the
ground plane. In D, the square is a conservative estimation of the support polygon of
the robot: for this reason, even if the ZMP of the hand-tuned experiment moves outside

the support polygon, the robot does not fall.

where φbs is the fitness function from Section 3.7.4.2, and l̂ is a penalty that we apply

when the robot falls.

The fitness function for the second problem, (constrained optimization) is:

φco =


l̂, if fallen

− 1∑3
i wi

[
w1

∑T
i |pcom(i)−p∗com|

εmax
+

w2
∑T

i u2(i)
umax

+
w3

∑T
i b(i)

bmax

]
, otherwise

where φco ∈ [−1, 0], wi are fixed weights, εmax, umax, bmax are normalization factors

for, respectively, the CoM position error (where pcom(i) is the current CoM position

and p∗com is the desired CoM), the effort penalty (u(i) is the torque at time i) and the
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Unconstrained solution (bootstrapping)

A B

C D

Figure 4.11: Typical solution after the bootstrapping. A plots the joint torques, B
plots the joints positions during the experiment, C shows the CoM trajectory of the
robot on the sagittal plane, D shows the evolution of the ZMP on the ground plane. In

D, the square is a conservative estimation of the support polygon of the robot.

backward penalty. The latter is defined as

b(i) =1{px
com(i−1)>px

com(i)}(p
x
com(i− 1)− pxcom(i))+ (4.3)

1{pz
com(i−1)>pz

com(i)}(p
z
com(i− 1)− pzcom(i)) (4.4)

where pxcom, p
z
com are the x and z coordinate of the CoM position. This term penalizes

all the trajectories that produce backward movements along the x or z direction. We

use it to minimize undesirable oscillations of the robot along the sagittal plane.

To find a solution for the first problem (bootstrap) we performed 500 rollouts of (1+1)-

CMA-ES (without CCA) with an exploration rate equal to 0.1. The solution is used

as the starting point for the second problem, which is solved with (1+1)-CMA-ES with

CCA, with the same exploration rate. A typical fitness profile for φco after 500 rollouts
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Constrained solution (final, “safe”)

A B

C D

Figure 4.12: Typical final solution obtained by the constrained optimization. A plots
the joint torques, B plots the joints positions during the experiment, C shows the CoM
trajectory of the robot on the sagittal plane, D shows the evolution of the ZMP on
the ground plane. In D, the square is a conservative estimation of the support polygon
of the robot. Our optimization algorithm finds solutions that satisfy the conservative

ZMP constraint.

is shown in Figure 4.13. For this experiment, the weights for the penalty terms are

respectively w1 = 1.3 for the CoM error, w2 = 1 for the effort and w3 = 3 for the

backward penalty.

Solution CoM error effort penalty backward penalty

hand-tuned 1.0 1.0 0.186292

unconstrained 0.806484 0.945829 0.962220

constrained 0.580518 0.646327 0.844451

Table 4.2: Comparison of three typical solutions: hand-tuned, unconstrained (used for
bootstrapping) and the final found by the constrained optimization. For each solution
we separately compute each cost that composes the fitness φco in Equation 4.3.1. The
constrained solution computed at the end of the whole optimization process has a better

performance than the hand-tuned both in terms of COM error and total effort.
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Figure 4.13: Evolution of a typical fitness value for φco.

We compare the optimized solution with one that was hand-tuned by an expert. The

hand-tuned solution lasts for 11s, with tswitch = 4.53s. Even if the hand-tuned solution

has a smoother profile for the CoM, it makes the robot move faster during the stand-up

and with higher torques (with a peak of torques at tswitch). The optimized trajectory,

on the contrary, is faster (less than 5s), has lower energy consumption and lower CoM

tracking error, as shown in Table 4.2. By design, our solution satisfies all the problem

constraints: as shown in Figure 4.12, it satisfies a very conservative constraint on the

ZMP, that the hand-tuned solution was violating even if it was generating a physically

feasible movement.



Chapter 5

Conclusions

In this thesis we have shown that better results stem from the combination of machine

learning approaches with torque control schemes, whereas, using solely one of the afore-

mentioned approach, lacks of robustness and flexibility. This paradigm inherit from the

machine learning the capability of providing optimal solutions for problems that due of

complexity lack of a precise mathematical models, while it gets from the control theory

the robustness and the repeatability that are highly desirable for real application sce-

nario. therefore in this thesis, we propose a novel framework located at the confluence

of machine learning and control theory that is extremely versatile and tackles a broad

range of different problems. Originally we started by addressing an important issue for

prioritized multi-task controllers, that is the automatic and optimal generation of task

priorities through parametrized weight functions. As a first step towards an automati-

cally tuned controller for redundant robots, we propose an adaptation of our framework

with a multi-task controller where the task priorities can be learned via stochastic op-

timization. We show the effectiveness of our approach by comparing to GHC [17], a

state-of-the-art multi-task prioritized controller. We present several results performed

on a simulated 7 DOF Kuka LWR arm and both a simulated and a real 6 DOF Kinova

Jaco arm.

From the results collect in this first stage we realize that constraints satisfaction plays a

major role in the automatic search of an optimal solution. We noticed that with a simple

constraints management, based on a death penalty criteria for the unfeasible solutions,

we easily got stuck during the optimization process.

Therefore, in our second work, we proposed to optimize the task priorities of multi-task

controllers by a stochastic constrained optimization algorithm that ensures that the

constraints were never violated. We benchmarked four constrained optimization algo-

rithms on analytical functions and robotics applications and found that (1+1)-CMA-ES

79
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with covariance constrained adaptation meets our requirements in terms of fitness of

the solution and constraints satisfaction. In this work we showed that our framework is

capable of generating optimized whole-body movements that always comply with safety

requirements. As shown in two bimanual experiments with the iCub both in simulation

and on the real robot, our method compute solutions that can be easily deployed on the

real robot with reduced risk of damaging the robot due to our constraints satisfaction

requirements In this paper we propose a method to compute safe task trajectories for

whole-body control of humanoid robots, where “safe” means that we ensure that the

optimized trajectories lead to behaviours that never violate any of the problem/robot

constraints. In our last work we extend our framework to trajectory optimization prob-

lems. Here we proposed a method to compute safe task trajectories for whole-body

control of humanoid robots, where “safe” means that we ensure that the optimized tra-

jectories lead to behaviours that never violate any of the problem/robot constraints. We

propose to use (1+1)-CMA-ES with CCA, that we previously benchmarked in [31], to

optimize the parameters of the task trajectories, while for controlling the robot we rely

on a whole-body multi-task centroidal momentum controller from [22, 23].

We demonstrate our method on the iCub humanoid, to find a safe trajectory for the

motion “stand-up from the chair”, with multiple switching contacts and several con-

straints. By comparing the optimal solution with an hand-tuned one we showed that

our method improves the task trajectories satisfying all constraints and reducing the

energetic consumption. Realizing this kind of motions was not possible in our previous

framework where task priorities were optimized [31].

Even if our method showed great robustness in addressing different problems and strong

efficacy in finding optimal solutions it has several drawbacks. The first issue that we want

to address refer to the time to find an optimal solutions. The optimization engine of our

method, CMA-ES, suffers from a slow converging rate. In this manuscript we propose

a draft solution to tackle this issue. We designed a novel version of (1+1)CMA-ES with

CCA that harnesses the capability of Bayesian Optimization scheme to minimize the

number of trial to find an optimal solution. The algorithm is described in Chapter 3.

In this work we present only preliminary results but they are quite promising and they

provide good insight on how to solve this issue. The second issue that we want to tackle

is referred to the lack of generalization that we experience when it comes to deploy our

solutions on a real robot. Imposing the safety of our solution is a necessary but not

sufficient condition to assure the one-shot deployment of our controller. Currently, the

solution is optimized in simulation, as the number of roll-outs is too high for executing

the algorithm directly on the real robot. However, the feedback controller and the good

dynamics model make it applicable with minor adaptations to the real robot. In the

future we plan to take inspiration from the ”Intelligent Trial and Error” approach, which
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essentially suggests to generate a large diversity of high-performing trajectories offline

and select the best one to test on the robot online by trial and error [66].



Appendix A

Balance Criteria for Humanoids

Robots

In this appendix we present a brief introduction of one of the most used balance criteria

for humanoid robots. This description is based on the paper by Sardain and Bessonet

[? ]. In literature there exists many balance criteria that to establish if a certain

robot internal configuration guarantees the stability of humanoid robots. In recent years

scholars proposed many criteria such as Foot Rotation Indicator (FRI) [? ], Centroidal

Momentum Pivot (CMP) [? ], Capture Point (CP) [? ], zero rate of change of angular

momentum (ZRAM) [? ], etc. In this appendix we focus our attention on the first

balance criteria introduced in 1969 by Vukobratovic and Juricic [? ], the Zero Moment

Point (ZMP) and its relationship with the center of pressure (CoP). In this summary

we consider multi actuated joints system establishing only one rigid flat stable contact

with the environment. In this circumstances there are two different type of forces acting

on the humanoid: forces acting on the contact surface and contact-less forces such as

gravity and inertia forces. Contact forces define CoP while ZMP depends upon the forces

exerted without contacts. At the contact surface the pressure field (orthogonal to the

surface) is equivalent to a single force with a zero moment application point, the CoP.

On the other hand The ZMP is defined as the point on the ground where the component,

tangential to the contact surface, of the moment exerted by gravity and inertial forces

is equal to zero. The previous assertion means that the tangential moment could be

different from zero. For this reason a more suitable definition for ZMP would be ”zero

tipping moment point“. To compute the CoP we consider a generic point O on the

contact surface and n, a normal vector to the contact surface with unit norm. Given

the wrench Rp
O,M

p
O associated to the pressure forces at the point O and knowing the
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Figure A.1: In this figure we show the forces and moments locations at the contact
surface (image a) and at the Center of Mass (image a). In the image a the term ∆c

represents the axis where the contact moment applied in each point of ∆c is perpendic-
ular to the surface of contact. The CoP is defined as the intersection of this axis with
the contact surface. In the image a the ∆g is th axis where the gravity and inertial
forces moment is always parallel with the unit norm vector n. The intersection of ∆g

with the contact surface identifies the ZMP location. This image is taken from [? ].

fact that the tipping moment vanishes at the CoP we can compute the CoP location as:

Mp
O = OC×Rp (A.1)

and by inverting the previous relation we obtain:

OC =
n×Mp

O

Rp
(A.2)

it is easy to show that the Equation A.2 can be written as a function of the total contact

forces acting at the point O as

OC =
n×Mc

O

Rc · n
(A.3)

where here the (·)c apex means that we are considering the total contact forces and

moments acting at the application and not only its orthogonal components to the surface

(represented with a (·)p apex).
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For the ZMP computation we start from the the Newton-Euler equation of motion of

the entire multi-articulated robotics platform

Rc +mg = maG (A.4)

Mc
Q + QG×mg = ḢG + QG×maG (A.5)

where g is the gravity vector, m is the robot total mass, aG is the acceleration vector of

the robot Center of Mass G, ḢG is the rate of change of the angular momentum at the

Center of Mass and QG is the vector joining a generic point at the contact surface Q

with the Center of Mass G. The Equation A.4 can be rewritten as:

Rc + (mg −maG) = 0 (A.6)

Mc
Q + (QG×mg − ḢG −QG×maG) = 0 (A.7)

Due to the fact that the wrench applied to the Center of Mass (represented with the

(·)gi apex) can be written has

Rgi = maG −mg (A.8)

Mgi
Q = ḢG + QG×maG −QG×mg (A.9)

we can substitute the previous two expression inside the Equation A.6 and we obtain

Rc + Rgi = 0 (A.10)

Mc + Mgi = 0. (A.11)

This relations state that the humanoid stance presents a dynamic balance if the contact

and the gravity-inertia forces are opposite. Due to this opposition the ZMP location,

D, can be computed with an equation analogous to the Equation A.2

OD =
n×Mgi

O

Rgi · n
. (A.12)

From the last expression is possible to derive the more common definition of ZMP that

is recurrent in the literature

OD =
mgz×OG× z + z× Ḣ

mg +maG · z
. (A.13)

This equation is true only if the ground is horizontal with n = z and g = −gz. We know

that if the Equation A.10 are satisfied, then the robot is dynamically balanced so in this

it follows that the CoP and the ZMP are the same point. This equality does not hold

when we are in a condition of dynamically unbalanced contact with the environment
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(the robot is rotating around one of the contact surface edge). In this situation the

ZMP does not represent a physical point and it is located outside the support polygon.

When the ZMP leaves the support polygon it means the occurrence of a moment that

cannot be counteracted by contact surface reaction forces. The distance of the ZMP

from the support polygon provide an estimation of the unbalance moment, and even if

we are in a dangerous situation that may bring the downfall of the humanoid it is still

possible to define a correct dynamic reaction to bring back the ZMP inside the support

polygon and re-establish a dynamic balance.



Appendix B

Experimental Platforms

In this thesis, for testing the proposed framework, we performed our experiments on two

different platforms: a manipulator from the Kinova Robotics called Jaco and a humanoid

robot entirely developed at the Italian Institute of Technology (IIT), the iCub.

The Jaco arm is a manipulator launched in 2010 by Kinova, a canadian company founded

in 2006. The Jaco arm is a light weight manipulator (only 6 Kg) and it was originally

designed for the assistance of people with upper limbs impairments. The manipulator

has 6 Degree Of Freedom and is equipped with a three fingers gripper. Each link is

made of carbon fibre to keep small the weight of the entire structure and each joint

can be controlled in position or velocity and , only recently, in torque. The robotic

arm has a maximum payload of 1.5 Kg and can reach objects at 90 cm from the robot.

The reduced weight and the compact dimensions permits an easy deployment of the

robot on every surface. The gripper consists of 3 underactuated fingers and each finger

can be independently flexed. The Jaco arm can be controlled through a joystick that

implements very simple primitive movements. The joystick control allows for simple

cartesian position(x, y and z axis) and orientation (roll, ptich and yaw) of the end

effectors. Moreover with the joystick is possible to control grasp and release of the hand

with two or three fingers. The Jaco arm possess a rich set of API that allows for the

control of the arm remotely. The Jaco arm is equipped with a usb 2.0 connection that

make the connection with the control interface completely effortless. For this thesis we

developed a controller interface for the kinova written in C++. To provide a feedback

cartesian trajectory controller capabilities we employed the Open Kinova Driver Library

[? ] that are natively designed for multi-threading. In this way we where capable

of measuring the state of the robot and compute the next control input with a 10

kilohertz control loop. The library comes with a visual interface (developed by Sebastian

Marichal)that can be used to control the arm using the extended set of functions provided
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Figure B.1: A remotely controlled Kinova performing a manipulation task.

by the library. The library was employed to perform multi task learning [26] and for the

interface evaluation in human robot interaction [? ]. This library can be downloaded at

https://github.com/serena-ivaldi/kinova-modules.

The iCub project was launched in 2004 by the RobotCub Consortium, an association

of several European universities leaded by the IIT. The project has received 8.5 million

Euro until it’s end in 2010. The developed platform is entirely open-source and the entire

documentation (hardware design and software) is released under a shareable license. The

RobotCub project is based on the idea that developing a human like robot could push

forward our understanding of the cognitive capabilities both natural and artificial and

how they develop over time. The iCub platform [? ] is 104 cm tall, is compact design (it

weights only 22 kg) is suitable for a wide range of cognitive task like manipulation and

general interaction with the environment. The great number of Degrees of Freedom (53)

gives to the platform extreme flexibility to perform the most diverse tasks. The upper

body has a total of 38 DoF, 7 for the arms, 9 for the hands and 6 for the head. To give

to the platform the capability of performing many locomotions tasks such as walking,

sitting or squatting, the designers provided the robot with 6 DoF for the legs with 3 at

the hip, 1 for the knees and 2 DoF for the ankle. To extended the motion capability of

the robot for manipulation and crawling 3 DoF in the waist were considered sufficient in

order to reach a larger workspace for the upper body. For interacting with the environ-

ment the robot has to be equipped with exteroceptive and proprioceptive sensors. The
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Figure B.2: In this figure we show an iCub prototype without its skin. Source: [? ]

iCub can counts on a series of cameras, inertial sensors force-torques, position and tactile

sensors that provide to the robot enough information to deal with the environment. The

software modules that control the iCub are base on the Yarp system. The yarp system

is a communication layer that acts as a transparent interface among algorithms and the

hardware of the robot. Yarp introduces a set of protocols for inter-processing communi-

cation. Yarp defines ports and devices. The former can deliver massage across the Yarp

network using several different protocols, the latter create an interface that provide all

the devices capabilities through a set of APIs. A recently developed of the iCub software

ecosystem is directed toward the integration of the Yarp system with Matlab-Simulink.
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Figure B.3: In this figure we presents a conceptual scheme of the code that we
developed for this thesis. On the left we show how we define an abstraction for the
robot classes and how the controller class relates to them. On the right we show
how we structure a black box optimization problem and the optimization method that
we provide in the toolbox(in the picture we do not show all the variants of constrained
CMA-ES associated with the different penalty methods that are available in the software

package)

For the CoDyCo project the IIT Dynamic interaction Group released a toolboxes to

directly design iCub controller inside the Simulink simulator. This simulink control

schemes can be used to control both a simulation of the iCub and a the real platform

with few changes of configuration parameters. One of the main contribution of our thesis

is the integration of the iCub Simulink controller inside our framework. We developed

a software system that provides an abstract interface for the simulation and control of

robots (based on the Robotics Toolbox [56] from Peter Cork and whole body control

toolbox [57] from IIT) and a set of routines for black box optimization (constrained and

unconstrained) that is problem agnostic and requires simple wrapping procedure to be

applied to new optimization problem. The framework is developed in Matlab and it is

freely available for download at https://github.com/serena-ivaldi/learnOptimWBC.
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