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Ingrid Lacroix-Violet Professeure Université de Lorraine Co-directrice



BEC Art

Check out the art presented below that has been randomly created through-
out the work of my thesis. These are beautiful numerical minimizers obtained by
simulating a two components Bose–Einstein condensate in a segregation regime.

Segregated two components BEC fish

Two components BEC version of Thalia & Melpomene masks

Butterfly breaking free from a two components BEC

Enjoy.
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Abstract

In this thesis, we consider a Gross–Pitaevskii (GP) energy functional as a model for
rotating one component and two components Bose–Einstein condensates (BEC) in
two dimensions. This model can be non-dimensionalized to highlight a strong con-
finement regime with strong interaction between the two components. We introduce
a new discretization of this energy, featuring both finite difference and fast Fourier
transform approaches, in a bounded domain of R2 using Dirichlet boundary condi-
tions. We develop an explicit gradient method algorithm with adaptive step and
projection (EPG) over the constraints manifold for the minimization of the discrete
energy. This method allows for the derivation of a stopping criterion. Moreover, we
propose two post processing algorithms for the numerical minimizers. One is aimed
for single vortices while the other is aimed for vortex sheets. Both algorithms detect
these structures and compute their indices.

In a recent article [6], the authors study the behaviour of a segregated two
components BEC set into rotation. They are able to prove that for large rotation,
the interface between the components gets long, conjecturing the possibility towards
vortex sheets. They also study the vortex structures of BEC in a segregated regime.
In this thesis, we produce numerical simulations using EPG, validating these recent
theoretical results, supporting conjectures, and covering different physical cases (the
cases of one component and two components in coexistence regime [45, 39]). We
also illustrate the efficiency of EPG compared to the well-known GPELab method
[11] which requires to solve a linearly implicit system at each step.

Finally, we adapt a few theorems found in the literature to our discrete set-
ting. We prove the existence of a global minimizer of the GP energy functional
for the finite difference scheme and study some of its properties. We also work on
symmetrical problems we encountered in some of the numerical simulations.



Résumé

Dans cette thèse, nous considérons une fonctionnelle d’énergie Gross–Pitaevskii (GP)
comme modèle d’une espèce et de deux espèces de condensats de Bose–Einstein
(BEC) en deux dimensions mise en rotation. Ce modèle peut être non dimensionné
pour mettre en évidence un régime de fort confinement avec une forte interaction
entre les deux espèces. Nous introduisons une nouvelle discrétisation de cette énergie,
comportant à la fois des approches par différences finies et par transformée de Fou-
rier, dans un domaine borné de R2 en utilisant des conditions de Dirichlet nulles
aux bords. Nous développons ainsi un algorithme de méthode de gradient explicite
avec pas adaptatif et projection (EPG) sur la variété de contraintes pour la mini-
misation de l’énergie discrète. Cette méthode permet de dériver un critère d’arrêt.
De plus, nous proposons deux algorithmes de post-traitement pour les minimiseurs
numériques. L’un est destiné aux vortex simples tandis que l’autre est destiné aux
nappes de vortex. Les deux algorithmes détectent ces structures et calculent leurs
indices.

Dans un article récent [6], les auteurs étudient le comportement d’un BEC à
deux espèces en ségrégation et mis en rotation. Ils sont capables de prouver que
pour une forte rotation, l’interface entre les espèces devient longue, conjecturant la
possibilité vers des nappes de vortex. Ils étudient également les structures des vortex
du BEC en régime de ségrégation. Dans cette thèse, nous produisons des simulations
numériques à l’aide d’EPG, validant ces résultats théoriques récents, supportant des
conjectures, et couvrant différents cas physiques (les cas d’une espèce et de deux
espèces en régime de co-existence [45, 39]). Nous illustrons également l’efficacité
d’EPG par rapport à la méthode bien connue GPELab [11] qui nécessite de résoudre
un système linéaire implicite à chaque étape.

Enfin, nous adaptons quelques théorèmes trouvés dans la littérature à notre
cadre discret. Nous prouvons l’existence d’un minimiseur global de la fonctionnelle
d’énergie GP pour le schéma aux différences finies et étudions certaines de ses pro-
priétés. Nous travaillons également sur des problèmes symétriques rencontrés dans
certaines simulations numériques.
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Chapter 1

Introduction

In condensed matter physics, a Bose-Einstein condensate (BEC) is a state of mat-
ter that is typically formed when a gas of bosons at very low densities is cooled to
temperatures very close to absolute zero. Under these conditions, a large fraction
of bosons occupy the lowest quantum state, at which point microscopic quantum
mechanical phenomena, particularly wave function interference, become apparent
macroscopically. Thus, a single wave function is sufficient to describe each compo-
nent of the BEC. When the so called Bose-Einstein condensates are set to rotation,
under a strong confinement regime, topological defects often manifest themselves as
vortices that correspond to a zero of the wave function with phase circulation. This
phenomenon was first observed in two components BEC [46].

When a BEC is set to a high rotation in a strong confinement regime, the vortices
align and form unique structures. In the case of a single component condensate, we
observe singly quantized vortices, forming triangular lattices once they are numerous
[36, 45]. In the case of a two components condensate, depending on the interaction
between the two components, many structures may appear. For example, we can
observe coreless vortices, which refer to having singly quantized vortices in one
component while having a corresponding peak in the second component [47], or
vortex sheets [45, 40].

Different models of BEC with one or several components have already been
studied in the mathematical literature. For example, the minimization of the Gross-
Pitaevskii functional in R2 is studied theoretically in [37] (see also references therein).
In [6, 3], the authors study different structures of a BEC in a strong confinement and
coupling regime in a bounded domain of R2. Several methods have been developed
for the numerical computation of approximations of minimizers of Gross-Pitaevskii
energies. For example, in [20, 12, 16, 21, 15, 14, 1, 13, 10, 18], the authors develop
numerical methods which require solving a linear system at each time-step. Another
option is to use Sobolev gradients, as opposed to L2 gradients, as developed in [28].

The outline of this thesis is as follows. The first chapter is devoted to defining the
problematic of this thesis. In Chapter 1 Section 1, we introduce the physical problem
behind BEC as well as its uses in the technological intervention while recalling the
main advances to it. We then introduce in Section 2 the different continuous models
for describing two components rotating BEC that has been studied in the latest
mathematical literature. In Section 4.1, we introduce the continuous model used in
the rest of this work for rotating Bose-Einstein condensates with two components.

1



1. THE PHYSICAL PROBLEM

Finally in Section 4, we recall the different regimes for single and two components
condensates.

In order to numerically study these regimes, we discretize in Chapter 2 Sections
1 and 2 (using finite difference and FFT approaches respectively) the continuous
Gross-Pitaevskii energy. For the finite difference scheme, we re-write the energy in
Section 1.3 using predefined sparse matrices so that we optimize the computation
time of the numerical simulations. For the FFT approach, our discretization uses
the predefined FFT algorithm of Python for a faster computation of the gradient.
We introduce in Section 4 a gradient method for the minimization of the energy
with an adaptive step and a projection step to take the constraints into account.
One of the interests of this method is that it allows for the derivation of a stopping
criterion which we developed in Section 3. We also develop in Chapter 2 Section 4
two post processing algorithms for the computation of indices. The first deals with
vortices and the second deals with vortex sheets.

In Chapter 3, we present numerical results for the regimes described in Sections
4.2, 4.3 and 4.4 of Chapter 1. In Section 2 we present the numerical results of the
finite difference scheme developed in Chapter 1 Section 1. We can see in some of
the simulations (especially in the one component case with a huge rotational speed)
a grid orientation effect. However, in Section 3, we present the numerical results of
the Fast Fourier Transformation scheme developed in Chapter 1 Section 2. Look-
ing at the numerical simulations, we can clearly see that there is no longer a grid
orientation effect. In particular, we validate numerically, using both approaches,
recent theoretical results and we support some conjectures as for example the exis-
tence of vortex sheets in a segregation regime. The last Section 5 is devoted to the
comparison of the efficiency of our method to that of GPELab [9, 11].

Finally, in Chapter 4, we adapt few theorems we already have for the continu-
ous problem into our discrete analogue for the finite difference scheme in Section
1. We also prove a symmetrical problem we encountered in some of the simula-
tions of Chapter 3 Section 2. In Section 2, we prove another symmetrical problem
encountered using the FFT scheme.

1 The physical problem

Bose-Einstein condensate (BEC), a state of matter in which separate atoms or sub-
atomic particles, cooled to near absolute zero (0 Kelvin), coalesce into a single
quantum mechanical entity—that is, one that can be described by a single wave
function—on a near-macroscopic scale. This form of matter was predicted in 1925
by Albert Einstein [29] on the basis of the quantum formulations of the Indian
physicist Satyendra Nath Bose [22].

Although it had been predicted for decades, the first atomic BEC was realized
only in 1995, when Eric Cornell and Carl Wieman of JILA, a research institution
jointly operated by the National Institute of Standards and Technology (NIST) and
the University of Colorado at Boulder, cooled a gas of rubidium atoms to 1.7 ˆ
10´7 K above absolute zero (Figure 1.1). Along with Wolfgang Ketterle of the Mas-
sachusetts Institute of Technology (MIT), who created a BEC with sodium atoms,
these researchers received the 2001 Nobel Prize for Physics. Research on BECs has
expanded the understanding of quantum physics and has led to the discovery of

2



CHAPTER 1. INTRODUCTION

new physical effects such as turning a metal into an insulator (an effect known as
Anderson localization) and solids that flow through themselves [41].

Figure 1.1 – Precessing two components vortex (a) direct images, at 50 ms intervals
(b) smoothed images of the first Bose Einstein condensate experiment ([30]).

BEC theory traces back to 1924, when Bose considered how groups of photons
behave. Photons belong to one of the two great classes of elementary or submicro-
scopic particles defined by whether their quantum spin is a non-negative integer (0,
1, 2, . . . ) or an odd half integer (1

2
, 3

2
, . . . ). The former type, called bosons, includes

photons, whose spin is 1. The latter type, called fermions, includes electrons, whose
spin is 1

2
.

As Bose noted, the two classes behave differently. According to the Pauli exclu-
sion principle, fermions tend to avoid each other, for which reason each electron in a
group occupies a separate quantum state (indicated by different quantum numbers,
such as the electron’s energy). In contrast, an unlimited number of bosons can have
the same energy state and share a single quantum state.

Einstein soon extended Bose’s work to show that at extremely low temperatures
“bosonic atoms” with even spins would coalesce into a shared quantum state at
the lowest available energy. The requisite methods to produce temperatures low
enough to test Einstein’s prediction did not become attainable, however, until the
1990s. One of the breakthroughs depended on the novel technique of laser cooling
and trapping, in which the radiation pressure of a laser beam cools and localizes
atoms by slowing them down. The second breakthrough depended on improvements
in magnetic confinement in order to hold the atoms in place without a material
container. Using these techniques, Cornell and Wieman [26] succeeded in merging
about 2000 individual atoms into a “superatom,” a condensate large enough to
observe with a microscope, that displayed distinct quantum properties (Figure 1.2).

Superfluidity, a remarkable macroscopic quantum phenomenon, was first discov-
ered in the study of liquid helium 4 in 1938. It characterizes the property of a fluid
with zero viscosity which therefore flows without any loss of kinetic energy. When
stirred, a superfluid forms vortices that continue to rotate indefinitely, meaning it
cannot fade away or disappear, it is only allowed to move out of the superfluid or
annihilate with a vortex of opposite direction [42, 49]. Although it is found theo-
retically that superfluidity is a general phenomenon for interacting boson systems,
liquid helium had been the only bosonic superfluid available in experiments until
the first experimental realization of BEC of dilute alkali atomic gases. This addi-
tion to the family of superfluids is highly nontrivial as BECs offer various aspects

3



2. GROSS–PITAEVSKII EQUATIONS

Figure 1.2 – Large triangular vortex array in a rotating BEC ([30]).

of advantages over liquid helium that can greatly enrich our understanding of su-
perfluidity [51, 50].Almost all the parameters of a BEC can be controlled easily in
experiments: its kinetic energy, density, and the interaction between atoms can all
be tuned easily by engineering the atom-laser interaction, magnetic or optical traps,
and the Feshbach resonance.

One of the most intriguing property of BECs is that they can slow down light.
In 1998 Lene Hau of Harvard University and her colleagues slowed light traveling
through a BEC from its speed in vacuum of 3ˆ 108 meters per second to a mere 17
meters per second, or about 60 kilometers per hour. Since then, Hau and others have
completely halted and stored a light pulse within a BEC, later releasing the light
unchanged or sending it to a second BEC. These manipulations hold promise for new
types of light-based telecommunications, optical storage of data [35], and quantum
computation using qubits made of two components Bose-Einstein condensates [23],
though the low-temperature requirements of BECs offer practical difficulties. Also
it can be used in the field of computer vision and deep learning since the properties
of a BEC allow the creation of a neural network (see [24]).

Among various fascinating features demonstrated by BECs, much interest has
been drawn to experiments performed in two components condensates composed of
87Rb atoms in two different spin states. In addition to this most familiar type of
the two components condensate, more sophisticated experimental techniques open
a way to experiments with hetero nuclear mixtures, such as 41K–85Rb, 39K–85Rb,
and 85Rb–87Rb. Actual experimental results reported thus far for two components
BEC mixtures are limited. They include the demonstration of segregation between
two species in immiscible BECs [34], and various vortex configurations in 87Rb, with
one spin-state species filling an empty core of a vortex created in the other species
[7] (see [44] for more details).

2 Gross–Pitaevskii equations

In this section, we discuss the different physical and mathematical models describing
a two components BEC under rotation and confinement.

4



CHAPTER 1. INTRODUCTION

At a very low temperature T , below a certain critical temperature Tc given by

Tc « 3.3125
~2n

2
3

mkB

,

where m represents the mass per boson, n the particle density, ~ the reduced Planck
constant and kB the Boltzmann constant, the dilute multi-component Bose-Einstein
condensates can be represented by their macroscopic wave functions (each compo-
nent is represented by a single wave function) which satisfies a nonlinear Schrödinger
equation, called the Gross-Pitaevskii equation (known as GPE), based on the work
of Eugene P. Gross [33] and Lev P. Pitaevskii [48]. For ` P t1, 2u, the two dimensional
two components GPE is given by

i~Btu`px, tq “
„

´
~2

2m`

∇2
´ i~ΩxK∇` V`prq ` U`|u`|2 ` U12|u3´`|

2



u`px, tq, (1.1)

under the mass 1 constraints
ż

D

|u`|
2
“ N` where N1 `N2 “ 1,

where m` is the mass of the bosons in the `th component, D Ă R2 is the bounded
physical domain of interest, Ω is the angular velocity of the condensate along the
z-axis, i is the purely imaginary unit, u` is the macroscopic wave function for com-
ponent ` which depends on the spatial variable x “ px, yq P R2 and time t ą 0. Note

that |u`|
2

N`
is a real number interpreted as the probability density of measuring the

particle as being at a given place. We define xK “ p´y, xq, r “ |x| “
a

x2 ` y2, and
we denote by V`prq the confinement function. In the case of harmonic confinement
we have V`prq “ m`ω

2
`
r2

2
with trapping frequencies w`. The quantity U` defined by

U` “
4π~2a`
m`

,

describes the interaction between the atoms of the condensate, a` being the scatter-
ing length of component ` which is positive for a repulsive interaction and negative
for an attractive interaction and U12 defined by

U12 “
2πpm1 `m2q~2a12

m1m2

,

represents the interaction between the two components. The energy functional as-
sociated to (1.1) is given by

E0pu1, u2q “

ż

D

ÿ

`“1,2

ˆ

~2

2m`

|∇u`|2 ´ ~Ω<
`

iu`x
K
Ě∇u`

˘

` V`prq|u`|
2
`

1

2
U`|u`|

4

˙

`

ż

D

U12|u1|
2
|u2|

2. (1.2)

1The mass here is not related to physical masses m1 nor m2, instead it indicates the particles
density of the normalized wave function.

5



2. GROSS–PITAEVSKII EQUATIONS

One can obtain (1.2) from (1.1) (or the opposite) using the following variational
procedure (see [38])

i~
Bu`
Bt
“

1

2

δE
δu˚`

. (1.3)

From now on, we will consider the case of harmonic confinement. Following
the physical literature [19, 17, 25], let ω̃ “ ω1`ω2

2
be the average of the trapping

frequencies of the two components and introduce the reduced mass m12 such that
m´1

12 “ m´1
1 `m

´1
2 . The coupled GP equations can be undimensionalised by choosing

w̃´1, ~ω̃ and r0 “
a

~{p2m12ω̃q (1.4)

as units of time, energy and length respectively. On defining the undimensional
intra-component coupling parameters g` “ 2U`m12{~2 and the inter-component cou-
pling parameter g12 “ 2U12m12{~2 and by plugging the new time and length from
(1.4) into (1.1) and dividing the result by the energy unit ~ω̃, the dimensionless
coupled GP equations read

iBtu`px, tq “

„

´
m12

m`

∇2
´ i

Ω

ω̃
xK∇` V`prq ` g`|u`|2 ` g12|u3´`|

2



u`px, tq, (1.5)

where the new harmonic potential is V`prq “
m`

4m12

ω2
`

ω̃2 r
2. The energy functional

associated to (1.5) is given by

E1pu1, u2q “

ż

D

ÿ

`“1,2

ˆ

m12

m`

|∇u`|2 ´ <
`

iu`
Ω

ω̃
xKĚ∇u`

˘

` V`prq|u`|
2
`

1

2
g`|u`|

4

˙

`g12|u1|
2
|u2|

2. (1.6)

One can obtain (1.6) from (1.5) (or the opposite) using the variational procedure
(1.3).

In the case of strong confinement regime, a different undimensionalization method
for GPE is used. We assume here that m1 “ m2 ” m, ω1 “ ω2 ” ω and a1 “ a2 ” a
(i.e. U1 “ U2 ” U)2. Following articles [2, 6], we change the coupled GP equations

to dimensionless GPE by choosing d “
b

~
mω

as the characteristic length unit and

ε2
“

~2

2Um
.

We rescale the distance by R “ d?
ε

and define φprq “ Rupxq where x “ Rr and

we set Ωε “
Ω
εω

. The velocity Ωε is chosen such that Ωε ă
1
ε
, that is the trapping

potential is stronger than the inertial potential. This time we choose ~ωε as a unit
of energy. The energy can be rewritten as

E2pφ1, φ2q “

ż

D

ÿ

`“1,2

ˆ

1

2
|∇φ`|2 ´ <

`

iφ`Ωεx
K
Ě∇φ`

˘

`
1

2ε2
Ṽ prq|φ`|

2
`

1

4ε2
|φ`|

4

˙

`

ż

D

δ

2ε2
|φ1|

2
|φ2|

2,

2The case where the two components are the same atoms.
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CHAPTER 1. INTRODUCTION

where δ “ U12

U
is a positive parameter determining the intra-component strength

and Ṽ prq “ r2 the confinement function in the Thomas-Fermi limit. According to
the experimental values of [4, 43], ε is very small. This is why we are interested in
the asymptotic behaviour of the minimizers of E2 when ε Ñ 0. Notice that, since
ş

|φ`|
2 “ N`, adding to the energy E2 any function of

ş

|φ1|
2 and

ş

|φ2|
2 won’t change

the minimization problem.

3 The model

For the rest of this thesis, we will consider for a single component or two components
rotating Bose-Einstein condensate in the limit of strong confinement and strong
rotation, the following GPE

i
Bu`
Bt
“ ´

1

2

`

∇´ iΩxK
˘2
u` ´

1

2ε2
ρprqu` `

1

2ε2
|u`|

2u` `
δ

2ε2
|u3´`|

2u`, (1.7)

where u1, u2 P H
1pD ˆ R`,Cq are two wave functions, each one representing one

component of the condensate, D Ă R2 is the bounded physical domain of interest,
Ω P R the rotation velocity, ρ is a function of r “

a

x2 ` y2 to be defined later,
xK “ p´y, xq, ε ą 0 such that 1

ε2
measures the interaction strength in each compo-

nent of the condensate (we are interested in the case where ε tends to 0), and δ ą 0
measures the interaction strength between the two components.
As studied in [6], the Gross-Pitaevskii energy functional of the rotating two compo-
nents, two-dimensional BEC is given by

Epu1, u2q “

2
ÿ

`“1

1

2

ż

D

›

›∇u` ´ iΩu`xK
›

›

2
dxdy `Wε,δpu1, u2q, (1.8)

where Wε,δpu1, u2q is the confining part of the energy defined as

Wε,δpu1, u2q “
1

4ε2

ż

D

pρprq ´ |u1|
2
q
2dxdy `

1

4ε2

ż

D

pρprq ´ |u2|
2
q
2dxdy

`
δ

2ε2

ż

D

|u1|
2
|u2|

2dxdy ´
1

4ε2

ż

D

pρprqq2dxdy.

One can obtain (1.7) from (1.8) (or the opposite) using the variational procedure
(1.3). The energy E in 1.8 will be used in all of this work. Starting from 1.9, We
will change its notation to EΩ

ε,δ to highlight the dependency on the parameters.

4 Aim of the thesis

Bose-Einstein condensation is a state of matter that is formed when a gas of bosons
is cooled to very low temperatures. Under such conditions, a large number of bosons
occupy the lowest quantum state which associates to the lowest ”energy level” (also
known as the ground states). In order to find the ground states, one has to find the
minimum of the energy (1.8) under some constraints. My work in this thesis consist
in numerically minimizing the energy (1.8) under these constraints.

With a strong confinement and depending on the rotation velocity, minimizing
the energy (1.8) reveals vortices as well as different regimes of either coexistence or

7



4. AIM OF THE THESIS

segregation in a two components condensate. The aim of this thesis is to numerically
simulate these vortices and to classify the other regimes as mentioned in [6].
There exists already a well implemented algorithm in MatLab called GPELab [8, 9,
11] that solves (1.7). In particular, the GPELab algorithm requires solving a linearly
implicit system at each time-step, which is time consuming. Our approach consists in
minimizing the energy (1.8) with an adaptive step gradient method and projection,
which requires solving an explicit system at each time-step. For reference, we are
also going to compare the execution time between GPELab and our approach later
on.

The outline of this section is as follows. We introduce in Section 4.1 the Gross-
Pitaevskii energy describing 2-dimensional, two components rotating Bose-Einstein
condensates in a strong confinement regime as studied in [6]. This model is used
for the computation of the minimizers for the rest of our work. In the case of
one component BEC, according to [27], we can identify four regimes depending
on the rotational speed. Section 4.2 is devoted to introducing the four critical
rotational speeds which help us to identify the four different regimes. For the two
components BEC, we distinguish two cases. The first one being the coexistence
regime as developed in [3, 45]. In Section 4.3, we present the 4 different cases
depending on the rotational speed and interaction strength. The second one is the
segregation regime as developed in [6]. In Section 4.4, we present the segregation
case both with and without rotation.

4.1 The Gross-Pitaevskii Energy

For the rest of this work, we consider the two components model for the energy
of a two components rotating Bose–Einstein condensate in the limit of a strong
confinement and a strong rotation studied in [6]

EΩ
ε,δpu1, u2q “

2
ÿ

`“1

1

2

ż

D

›

›∇u` ´ iΩu`xK
›

›

2
dxdy `Wε,δpu1, u2q, (1.9)

where D Ă R2 is the bounded physical domain of interest (in our case D “ tpx, yq P
R2 s.t. x2 ` y2 ă R2u), Ω P R is the rotation velocity, ε and δ are positive
constants, xK “ p´y, xq, u1, u2 P H

1pD,Cq are the wave functions related to each
component of the condensate and Wε,δ is the confining part of the energy defined as

Wε,δpu1, u2q “
1

4ε2

ż

D

pρprq ´ |u1|
2
q
2dxdy `

1

4ε2

ż

D

pρprq ´ |u2|
2
q
2dxdy

`
δ

2ε2

ż

D

|u1|
2
|u2|

2dxdy ´
1

4ε2

ż

D

ρ2
prqdxdy,

where ρ is a function of r “
a

x2 ` y2 to be defined later (ρ ” 1 in [6]), δ ě 0
measures the interaction strength between the two components, 1{ε2 measures the
interaction strength in each component of the condensate.

As mentioned before, in order to find the lowest ”energy level”, we have to
compute the minimizers of the energy in H1

0 pD,Cq under the constraints
ż

D

|u1|
2dxdy “MN1, and

ż

D

|u2|
2dxdy “MN2, (1.10)

where M “
ş

D
ρprqdxdy, and N1, N2 ě 0 with N1 `N2 “ 1, in the regime εÑ 0.

8



CHAPTER 1. INTRODUCTION

Remark 1 We can use the same two components model (1.9) for the one component
simulations by taking N1 “ 1 and N2 “ 0.

Note that one has also

Wε,δpu1, u2q “
1

4ε2

ż

D

pρprq ´ |u1|
2
´ |u2|

2
q
2dxdy `

δ ´ 1

2ε2

ż

D

|u1|
2
|u2|

2dxdy. (1.11)

The sign of the second term in (1.11) plays a role in the physical structure of the
two components condensates. We can identify 3 cases:

• if δ “ 0 then there is no interaction between the two components of the con-
densate and each component is going to act like a one component condensate,

• if 0 ă δ ď 1 then the second term in (1.11) is negative which is why both
components tend to coexist (coexistence regime),

• if δ ą 1 then the second term in (1.11) is non-negative which is why the two
components tend to avoid each other3 (segregation regime).

Observe also that for all ` P t1, 2u.

1

2

ż

D

›

›∇u` ´ iΩu`xK
›

›

2
dxdy “

1

2

ż

D

}∇u`}2dxdy (1.12)

´ Ω

ż

D

<
`

iu`x
K
¨∇u`

˘

dxdy `
Ω2

2

ż

D

r2
|u`|

2dxdy.

Remark 2 Following Remark 1 of [6] and the one component analysis carried out in
[27], in the regime |Ω| ăă 1{ε, the contribution of the third term in (1.12) plays no
role in the asymptotic ε Ñ 0. Therefore, from now on and unless stated otherwise,
we shall consider in the regime |Ω| ăă 1{ε the minimization of the energy

EΩ
ε,δpu1, u2q “

2
ÿ

`“1

„

1

2

ż

D

}∇u`}2 dxdy ´ Ω

ż

D

<
`

iu`x
K
¨∇u`

˘

dxdy



`Wε,δpu1, u2q

“ EΩ
ε,δpu1, u2q ´

Ω2

2

ż

D

r2
p|u1|

2
` |u2|

2
qdxdy, (1.13)

4.2 One component regimes

According to [27], for one component condensates (N1 “ 1, N2 “ 0), the behaviour
of the structure of the vortices of the minimizers of (1.13) with constraints (1.10)
in the regime εÑ 0 depends on the dependency of the rotation speed Ω “ Ωε with
respect to ε. Namely, there exist three critical rotation speeds Ω1

ε ăă Ω2
ε ăă Ω3

ε

such that

• if Ωε ă Ω1
ε, then the minimizers uε1 have no vortices,

• if Ω1
ε ă Ωε ă Ω2

ε, then the minimizers uε1 appear on a hexagonal lattice and
are singly quantized,

3The two components of the condensate will be spatially separated.
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4. AIM OF THE THESIS

• if Ω2
ε ă Ωε ă Ω3

ε, the centrifugal force comes into play and a hole appears
in the minimizers uε1, the condensate looks like an annulus and the vortices
appear on a lattice in the annulus,

• if Ω3
ε ă Ωε, the centrifugal force is so important that the vortices retreat in

the central hole of the condensate, creating a central giant vortex with high
index.

Moreover, one has

Ω1
ε „ logp1{εq, Ω2

ε „
1

ε
, and Ω3

ε „
1

ε2 logp1{εq
. (1.14)

Note that δ plays no role in this case since u2 ” 0 because N2 “ 0.
According to Remark 2, the regimes Ωε ă Ω2

ε are similar for minimizers of EΩε
ε,δ

and EΩε
ε,δ . In the regimes Ω2

ε ă Ωε, the annulus behaviour is due to the centrifugal

force missing from the energy EΩε
ε,δ . Numerical simulations illustrating the results of

this section can be found in Chapter 3 Sections 2.1,2.2, 3.1 and 3.2.

4.3 Two components coexistence regimes (0 ď δ ď 1)

According to [45] and [39], for δ ď 1 we are in the coexistence regime since the
support of each of the components of the condensate tend to overlap and has mass
in the region where ρ ą 0. In this regime δ ď 1, depending on the rotational speed
Ω, we should observe four different regimes for the minimizers when εÑ 0.

• The first regime, with a very low velocity to none and δ P r0, 1s, is when
the coexistence occurs with no vortices in any component of the minimizer.
Moreover the profile density of each component depends on the values N1 and
N2.

• For the second regime, when δ “ 0 (which means there is no interactions
between the two components), we should observe, depending on the value of
the rotational speed Ω, the existence of a triangular vortex lattice.

• As δ P p0, 1s increases, the positions of vortex cores in one component grad-
ually shift from those of the other component and the triangular lattices are
distorted. Eventually in the third regime, after a certain value of δ, the vortices
in each component form a square lattice.

• The last regime corresponds to the case δ Ñ 1, in which we should observe
either stripe or double-core vortex lattice.

Numerical simulations illustrating the results of this section can be found in Chapter
3 Sections 2.5, and 3.5.

4.4 Two components segregation regimes (δ ą 1)

In the recent paper [6], the authors consider two components condensates in the
segregation case δ ą 1. For N1 P p0, 1q, they introduce the minimizing perimeter

`N1 “ min
ωĂD

|ω|“N1

perpωq.

10



CHAPTER 1. INTRODUCTION

First, we address the minimization of (1.13) with constraints (1.10) when Ω “ 0.
In this case, the squared modulus of the minimizers uε1 and uε2 tend to 1 in two
separate regions of D and the authors of [6] prove that their sum v2

ε “ |u
ε
1|

2 ` |uε2|
2

and the normalized energy εE0
ε,δε

have the following behaviours

• in the regime δεε
2 Ñ `8 (strong segregation regime [5]), infD v

2
ε tends to 0

and εE0
ε,δε

tends to some constant times `N1 ,

• in the regime εÑ 0 with δ ą 1 fixed, infD v
2
ε tends to some number between 0

and 1 and εE0
ε,δε

tends to some constant (which depends on δ) times `N1 [32],

• in the regime δε Ñ 1 with ε̃ “ ε{
?
δε ´ 1 Ñ 0, the re-scaled energy ε̃E0

ε,δε

tends to `N1{2 and it is expected that infD v
ε tends to 1 [31].

Second, we address the minimization of (1.13) with constraints (1.10) when
Ω “ Ωε Ñ `8 as ε tends to 0. With ε̃ defined as above, we consider a regime where
δ “ δε Ñ 1 and ε̃Ñ 0 as ε tends to 0. In [6], the authors prove that

• there exists two constants C1, C2 ą 0 such that, for all i, if Ωε ă Ci logp1{ε̃q,
then the infimum of the limiting density |ui|

2 vanishes as ε tends to 0;

• in the regime of moderate rotational speed logp1{ε̃q ăă Ωε ăă 1{ε̃, the limit-
ing density |ui|

2 is uniform in each region, and hence does not depend on the
shape of the region.

• for higher rotational speeds 1{pε̃ logp1{ε̃qq ăă Ωε ăă 1{ε̃2, the authors of
[6] prove that the leading order in the energy EΩε

ε,δε
is the vortex energy, and

conjecture the possibility of observing vortex sheets.

Numerical simulations illustrating the results of this section can be found in Chap-
ter 3 Sections 2.3, 2.4, 3.3 and 3.4. In particular, for the last bullet point, we
actually observe vortex sheets (see Figures 3.36 and 3.15), validating numerically
the conjecture.
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Chapter 2

Discretization and minimization
method

Minimizing the energy EΩ
ε,δ under the constraints (1.10) is a continuous minimiza-

tion problem over an infinite dimensional manifold that we replace in this chapter
by a discrete minimization problem over a finite dimensional manifold. We consider
the gradient descent method with projection over the constraints manifold, which
is a first-order iterative optimization algorithm for finding a local minimum of a
differentiable function. By calculating the gradient of the energy EΩ

ε,δ, we are able
to approach more and more towards the solution of the discrete problem after each
iteration of the method. In this chapter, we describe in Section 1 the discretiza-
tion of the energy using finite difference scheme as a first approximation, then in
Section 2 using the fast-Fourier transform as a second approximation followed by
a computation of its gradient (respectively Subsections 1.2, 1.4 and 2.3). Then in
Section 3, we establish a criterion for the minimization of the energy on the finite
dimensional manifold and we conclude in Section 4 by a full description of the min-
imization method. We develop as well in Section 4 two post processing algorithms
for the detection of vortices and vortex sheets. It allows for the computation of their
indices as well.

Theoretically, the function ρ is strictly positive over the disk D. It plays no role
outside the disk. The non-existence of mass outside of D is modeled by the fact
that u P H1

0 pDq. For discretization purposes, we decide to work in a square box of
length L ą D centered at the origin. We impose homogeneous Dirichlet boundary
conditions on that box as well as negative values of (an extension) ρ outside the disk
of radius R. In the small ε regime, this setting should avoid the presence of mass
outside the disk in the minimizers and be consistent with the continuous problem.

Now let us consider a square r´L,Ls2 such that L ą R. We discretize r´L,Ls2

into N ` 2 equidistant points with respect to the x-axis and K ` 2 equidistant
points with respect to the y-axis. We consider a finite sequence of points pxn, ykq,
n P t0, ..., N`1u, k P t0, ..., K`1u such that xn “ ´L`

2L
N`1

n and yk “ ´L`
2L
K`1

k.

Denoting δx “
2L
N`1

and δy “
2L
K`1

, we rewrite xn “ ´L` nδx and yk “ ´L` kδy.
We use the letter ψ to denote the discrete counterpart to the continuous wave
function denoted by u in Chapter 1 Section 4.1. We think of ψ`n,k as an approximation

13
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of u`pxn, ykq for ` “ 1, 2. In matrix form, we use the notation:

ψ` “

¨

˚

˚

˚

˝

ψ`1,1 ψ`1,2 ... ψ`1,K
ψ`2,1 ψ`2,2 ... ψ`2,K

...
...

. . .
...

ψ`N,1 ψ`N,2 ... ψ`N,K

˛

‹

‹

‹

‚

.

with the convention that ψ`n,k “ 0 if either of these conditions is true: n “ 0 or
k “ 0 or n “ N ` 1 or k “ K ` 1. In order to separate real and imaginary part
of the unknowns, we set ψ`n,k “ p`n,k ` iq`n,k for ` “ 1, 2. For the convenience of the

reader, we will replace ψ` by a vector of 2 elements, the first one being the real part
and the second one being the imaginary part, without changing it’s norm, when it
is necessary.

1 Finite difference scheme

1.1 Discretization of the energy

In this section we choose the forward finite difference discretization which approaches
∇upxn, ykq by ∇ψn,k defined as follows

∇ψn,k “

˜

ψn`1,k´ψn,k
δx

ψn,k`1´ψn,k
δy

¸

for all n P t0, ..., Nu and k P t0, ..., Ku.

We then define E∆
ε,δpψ

1, ψ2q as a discrete counterpart of EΩ
ε,δpu1, u2q by setting

E∆
ε,δpψ

1, ψ2
q “

ÿ

`“1,2

ˆ

pEkinq
∆
ε pψ

`
q ` pErq

∆
ε pψ

`
q

˙

` pEW q
∆
ε,δpψ

1, ψ2
q, (2.1)

where:

‚ pEkinq
∆
ε , corresponding to the discretization of the kinetic energy, is defined as

pEkinq
∆
ε pψ

`
q “

δxδy
2

N
ÿ

n“0

K
ÿ

k“0

˜

ˇ

ˇψ`n`1,k ´ ψ
`
n,k

ˇ

ˇ

2

δ2
x

`

ˇ

ˇψ`n,k`1 ´ ψ
`
n,k

ˇ

ˇ

2

δ2
y

¸

“
δxδy

2

N
ÿ

n“0

K
ÿ

k“0

˜

ˇ

ˇp`n`1,k ´ p
`
n,k

ˇ

ˇ

2

δ2
x

`

ˇ

ˇp`n,k`1 ´ p
`
n,k

ˇ

ˇ

2

δ2
y

¸

`
δxδy

2

N
ÿ

n“0

K
ÿ

k“0

˜

ˇ

ˇq`n`1,k ´ q
`
n,k

ˇ

ˇ

2

δ2
x

`

ˇ

ˇq`n,k`1 ´ q
`
n,k

ˇ

ˇ

2

δ2
y

¸

.

‚ pErq
∆
ε , corresponding to the discretization of the rotational energy, is defined

as

pErq
∆
ε pψ

`
q “ ´Ωεδxδy

N
ÿ

n“0

K
ÿ

k“0

<

¨

˝iψ`n,kr´yk, xns.

»

–

ψ`n`1,k´ψ
`
n,k

δx
ψ`n,k`1´ψ

`
n,k

δy

fi

fl

˛

‚

“´Ωεδxδy

N
ÿ

n“0

K
ÿ

k“0

ˆ

yk
δx
pq`n,kp

`
n`1,k q́`n`1,kp

`
n,kq `

xn
δy
pq`n,k`1p

`
n,k q́`n,kp

`
n,k`1q

˙

.
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‚ pEW q
∆
ε,δ, corresponding to the discretization of the confinement and interaction

energy, is defined as

pEW q
∆
ε,δpψ

1, ψ2
q “

δxδy
4ε2

N
ÿ

n“0

K
ÿ

k“0

pρprn,kq ´ pp
1
n,kq

2
´ pq1

n,kq
2
´ pp2

n,kq
2
´ pq2

n,kq
2
q
2

`
δxδypδ ´ 1q

2ε2

N
ÿ

n“0

K
ÿ

k“0

`

pp1
n,kq

2
` pq1

n,kq
2
˘ `

pp2
n,kq

2
` pq2

n,kq
2
˘

,

where rn,k “
a

x2
n ` y

2
k.

Remark 3 We define pEcf q
∆
ε,δ, corresponding to the discretization of the centrifugal

energy (see Remark 2), as

pEcf q
∆
ε,δpψ

1, ψ2
q “

δxδyΩ
2

2

N
ÿ

n“0

K
ÿ

k“0

r2
n,kppp

1
n,kq

2
` pq1

n,kq
2
` pp2

n,kq
2
` pq2

n,kq
2
q,

such as E∆
ε,δpψ

1, ψ2q “ E∆
ε,δpψ

1, ψ2q ` pEcf q
∆
ε,δpψ

1, ψ2q is the discrete counter part of
EΩ
ε,δ.

1.2 Computation of the gradient of the discrete energy (2.1)

Let P `, Q` P RNˆK be the real and imaginary part (respectively) of ψ` for ` “ 1, 2.
In order to minimize the energy E∆

ε,δ defined in (2.1) using the gradient method de-
scribed later in Section 4, we have to compute at each iteration the gradient of the
energy E∆

ε,δ with respect to P 1, Q1, P 2, Q2. Therefore, let us express the gradient of

each energy term (still using the convention p`n,k “ q`n,k “ 0 if one of these conditions
is true: n “ 0 or k “ 0 or n “ N ` 1 or k “ K ` 1).

Proposition 4 For all n P t1, ¨ ¨ ¨ , Nu and k P t1, ¨ ¨ ¨ , Ku, and for ` P t1, 2u, the
gradient of the energy E∆

ε,δ is equal to

‚
BpEkinq

∆
ε pψ

`q

Bp`n,k
“
δy
δx
p2p`n,k ´ p

`
n`1,k ´ p

`
n´1,kq `

δx
δy
p2p`n,k ´ p

`
n,k´1 ´ p

`
n,k`1q,

‚
BpEkinq

∆
ε pψ

`q

Bq`n,k
“
δy
δx
p2q`n,k ´ q

`
n`1,k ´ q

`
n´1,kq `

δx
δy
p2q`n,k ´ q

`
n,k´1 ´ q

`
n,k`1q,

‚
BpErq

∆
ε pψ

`q

Bp`n,k
“ ´Ωεδxδy

ˆ

yk
δx
pq`n´1,k ´ q

`
n`1,kq `

xn
δy
pq`n,k`1 ´ q

`
n,k´1q

˙

,

‚
BpErq

∆
ε pψ

`q

Bq`n,k
“ ´Ωεδxδy

ˆ

yk
δx
pp`n`1,k ´ p

`
n´1,kq `

xn
δy
pp`n,k´1 ´ p

`
n,k`1q

˙

,

‚
BpEW q

∆
ε,δpψ

1, ψ2q

Bp`n,k
“ ´

δxδy
ε2

p`n,k

´

ρprn,kq ´
ˇ

ˇψ1
n,k

ˇ

ˇ

2
´
ˇ

ˇψ2
n,k

ˇ

ˇ

2
¯

`
δxδypδ ´ 1q

ε2
p`n,k

`

pp3´`
n,k q

2
` pq3´`

n,k q
2
˘

,
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‚
BpEW q

∆
ε,δpψ

1, ψ2q

Bq`n,k
“ ´

δxδy
ε2

q`n,k

´

ρprn,kq ´
ˇ

ˇψ1
n,k

ˇ

ˇ

2
´
ˇ

ˇψ2
n,k

ˇ

ˇ

2
¯

`
δxδypδ ´ 1q

ε2
q`n,k

`

pp3´`
n,k q

2
` pq3´`

n,k q
2
˘

q.

‚
BpEcf q

∆
ε,δpψ

1, ψ2q

Bp`n,k
“ δxδyΩ

2r2
n,kp

`
n,k.

‚
BpEcf q

∆
ε,δpψ

1, ψ2q

Bq`n,k
“ δxδyΩ

2r2
n,kq

`
n,k.

1.3 Discretization of the energy in a matrix form

In this subsection, we rewrite the discretized energy as a combination of sums and
products of matrices.
From now on, we consider the case where N “ K, in particular δx “ δy. Let
ψ` “ P ` ` iQ` where P `, Q` P RN2

for ` “ 1, 2 and let the multiplication symbol ˚
denote the element wise multiplication.

Example 5 Let P “

¨

˚

˚

˚

˝

p1

p2
...
pN

˛

‹

‹

‹

‚

P RN , and let Q “

¨

˚

˚

˚

˝

q1

q2
...
qN

˛

‹

‹

‹

‚

P RN , then

P ˚Q “

¨

˚

˚

˚

˝

p1

p2
...
pN

˛

‹

‹

‹

‚

˚

¨

˚

˚

˚

˝

q1

q2
...
qN

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

p1q1

p2q2
...

pNqN

˛

‹

‹

‹

‚

, and pP q2 “ P ˚ P.

We define the following matrices:

• Let Ak P RN2ˆN2
such as:

Ak “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ã ´I 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´I Ã ´I
. . .

...

0 ´I Ã ´I
. . .

...
...

. . . . . . . . . . . . 0
...

. . . ´I Ã ´I

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´I Ã

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with I, Ã P RNˆN , I being the identity matrix and

Ã “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

4 ´1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´1 4 ´1
. . .

...

0 ´1 4 ´1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . ´1 4 ´1
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´1 4

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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• Let X̃n, Ỹ P RNˆN be defined for all n P t1, ¨ ¨ ¨ , Nu as

X̃n “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 ´xn 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

xn 0 ´xn
. . .

...

0 xn 0 ´xn
. . .

...
...

. . . . . . . . . . . . 0
...

. . . xn 0 ´xn
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 xn 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, Ỹ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

y1 0 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 y2 0
. . .

...

0 0 y3 0
. . .

...
...

. . . . . . . . . . . . 0
...

. . . 0 yN´1 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 yN

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where xn “ ´L ` nδx and yn “ ´L ` nδy for all n P t1, ¨ ¨ ¨ , Nu. And let
Ar P RN2ˆN2

be defined as:

Ar “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

X̃1 Ỹ 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´Ỹ X̃2 Ỹ
. . .

...

0 ´Ỹ X̃3 Ỹ
. . .

...
...

. . . . . . . . . . . . 0
...

. . . ´Ỹ X̃N´1 Ỹ

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´Ỹ X̃N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

• Finally let VW P RN2
, such as:

VW “

¨

˚

˚

˚

˚

˚

˚

˚

˝

ρpr1,1q

ρpr1,2q
...

ρpr2,1q
...

ρprN,Kq

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Let ψ P CpN`2q2 . We define the following norm

}ψ}2∆ “ δ2
x

N`1
ÿ

n“0

N`1
ÿ

k“0

|ψn,k|
2. (2.2)

Proposition 6 Using the matrices Ak, Ar, VW and the expressions obtained in (2.1)

17



1. FINITE DIFFERENCE SCHEME

we rewrite the discretized energy in matrix form as follows

E∆
ε,δpψ

1, ψ2
q “

1

2

2
ÿ

`“1

N
ÿ

n“0
k“0

`

|p`n`1,k ´ p
`
n,k|

2
` |p`n,k`1 ´ p

`
n,k|

2
˘

`
1

2

2
ÿ

`“1

N
ÿ

n“0
k“0

`

|q`n`1,k ´ q
`
n,k|

2
` |q`n,k`1 ´ q

`
n,k|

2
˘

´ Ωεδx

2
ÿ

`“1

N
ÿ

n“0
k“0

`

ykpq
`
n,kp

`
n`1,k´q

`
n`1,kp

`
n,kq`xnpq

`
n,k`1p

`
n,k´q

`
n,kp

`
n,k`1q

˘

` δ2
x

N
ÿ

n“1
k“1

ˆ

1

4ε2

´

ρprn,kq ´
ˇ

ˇψ1
n,k

ˇ

ˇ

2
´
ˇ

ˇψ2
n,k

ˇ

ˇ

2
¯2

`
δ ´ 1

2ε2

ˇ

ˇψ1
n,k

ˇ

ˇ

2 ˇ
ˇψ2
n,k

ˇ

ˇ

2

˙

“

2
ÿ

`“1

ˆ

1

2
pP `
q
tAkP

`
`

1

2
pQ`
q
tAkQ

`
´ ΩεδxpQ

`
q
tArP

`

˙

`
1

4ε2

›

›

›

›

VW ´
2
ÿ

`“1

`

pP `
q
2
´ pQ`

q
2
˘

›

›

›

›

2

∆

`
δ ´ 1

2ε2

›

›

`

pP 1
q
2
` pQ1

q
2
˘

˚
`

pP 2
q
2
` pQ2

q
2
˘
›

›

∆

Remark 7 Following Remark 3, we can also rewrite the centrifugal energy in a
matrix form

pEcf q
∆
ε,δpψ

1, ψ2
q “

δxδyΩ
2

2
}Rcf ˚ p|ψ

1
|
2
` |ψ2

|
2
q}1,

with

Rcf “

¨

˚

˚

˚

˝

x2
1 ` y

2
1 x2

1 ` y
2
2 ¨ ¨ ¨ x2

1 ` y
2
N

x2
2 ` y

2
1 x2

2 ` y
2
2 ¨ ¨ ¨ x2

2 ` y
2
N

...
...

. . .
...

x2
N ` y

2
1 x2

N ` y
2
2 ¨ ¨ ¨ x2

N ` y
2
N

˛

‹

‹

‹

‚

.

1.4 Computation of the gradient of the discrete energy in a
matrix form

Still assuming N “ K, we have the following proposition

Proposition 8 The gradient in the matrix form is equal to

∇P 1,Q1E∆
ε,δ “

¨

˚

˝

AkP
1´ΩεδxpQ

1qtAr ´
δ2
x

ε2

`

VW´
ř2
`“1ppP

`q2 ´ pQ`q2q
˘

˚ P 1 `
δ2
xpδ´1q
ε2

P 1 ˚ ppP 2q2 ` pQ2q2q

AkQ
1´ΩεδxpP

1qtAr ´
δ2
x

ε2

`

VW´
ř2
`“1ppP

`q2 ´ pQ`q2q
˘

˚Q1 `
δ2
xpδ´1q
ε2

Q1 ˚ ppP 2q2 ` pQ2q2q

˛

‹

‚

,

∇P 2,Q2E∆
ε,δ “

¨

˚

˝

AkP
2´ΩεδxpQ

2qtAr ´
δ2
x

ε2

`

VW´
ř2
`“1ppP

`q2 ´ pQ`q2q
˘

˚ P 2 `
δ2
xpδ´1q
ε2

P 2 ˚ ppP 1q2 ` pQ1q2q

AkQ
2´ΩεδxpP

2qtAr ´
δ2
x

ε2

`

VW´
ř2
`“1ppP

`q2 ´ pQ`q2q
˘

˚Q2 `
δ2
xpδ´1q
ε2

Q2 ˚ ppP 1q2 ` pQ1q2q

˛

‹

‚

.
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Remark 9 Note that here the vectors P `, Q` and VW are in RN2
, and the matrices

Ar, Ak are in RN2ˆN2
so that ∇P `,Q`E

∆
ε,δ is in R2N2

.

2 Fast Fourier Transform scheme

Using the finite difference scheme, we noticed the frequent appearance of a square
shaped behaviour in the simulations when Ω is big enough (see Chapter 3, Section
2, the one component case). So we decided to use the discrete Fourier transform
and its inverse for the discretization of the terms in the energy (1.13) that involve
gradients (mainly the kinetic and rotational energies). This choice allows the use
of Fast Fourier Transform algorithms for the computation of the gradient of the
discrete energy (see Section 2.3). To do so, we set the following definitions, which
are related to that of Python Numpy.

2.1 Fast Fourier transform discretization

Let v P CpN`2qˆpK`2q. The discrete Fourier transforms of v in the x- and y-direction
are respectively given by:

pvxn,kpξpq “
δx
?

2π

N`1
ÿ

n“0

vn,ke
´ixnξp

“
δx
?

2π
e
´iπpN`1q

2 eipπ
N`1
ÿ

n“0

vn,ke
´2πi np

N`1 eiπn,

for p P t0, ¨ ¨ ¨ , N ` 1u and

pvyn,kpλqq “
δy
?

2π

K`1
ÿ

k“0

vn,ke
´iykλq

“
δy
?

2π
e
´iπpK`1q

2 eiqπ
K`1
ÿ

k“0

vn,ke
´2πi kq

K`1 eiπk,

for q P t0, ¨ ¨ ¨ , K ` 1u, with

ξp “ ´
πpN ` 1q

2L
` pδξ, λq “ ´

πpK ` 1q

2L
` qδλ, δξ “ δλ “

π

L
. (2.3)

The inverse discrete Fourier transforms in the ξ- and λ-direction are respectively
given by:

qvξp,qpxnq “
δξ
?

2π

N`1
ÿ

p“0

vp,qe
ixnξp

“
δξ
?

2π
e
iπpN`1q

2 e´inπ
N`1
ÿ

p“0

vp,qe
2πi np

N`1 e´iπp

qvλp,qpykq “
δλ
?

2π

K`1
ÿ

q“0

vp,qe
iykλq

“
δλ
?

2π
e
iπpK`1q

2 e´ikπ
K`1
ÿ

q“0

vp,qe
2πi kq

K`1 e´iπq.
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Notice that we have δxδξ “
2π
N`1

and δyδλ “
2π
K`1

and, for all v, we have

q

pvx
ξ
“ q

pvy
λ
“ N`2

N`1
v. From now on we consider the case where N “ K, in par-

ticular δx “ δy.
Since we always use discrete Fourier transform and its inverse to compute the quan-
tities of interest, we decide to set the following definitions, which correspond to that
of Python Numpy and allow for the computation via the Fast Fourier Transform
algorithm:

•
`

fftxpvq
˘

p,k
“
řN`1
m“0 vm,ke

iπme´2πi mp
N`1 ,

•
`

ifftxpvq
˘

n,k
“ 1

N`1
e´iπn

řN`1
p“0 vp,ke

2πi np
N`1 ,

•
`

fftypvq
˘

n,q
“
řN`1
l“0 vn,le

iπle´2πi lq
N`1 ,

•
`

ifftypvq
˘

n,k
“ 1

N`1
e´iπk

řN`1
q“0 vn,qe

2πi kq
N`1 .

Notice that we also have ifftxpfftxpvqq “ ifftypfftypvqq “
N`2
N`1

v.

Using these definitions, we can now discretize the energy EΩ
ε,δ.

2.2 Discretization of the energy

In this section, we will consider the same approximation as Section 2. Here, the
borders are included so that:

ψ` “

¨

˚

˚

˚

˝

ψ`0,0 ψ`0,1 ... ψ`0,N`1

ψ`1,0 ψ`1,1 ... ψ`1,N`1
...

...
...

...
ψ`N`1,0 ψ`N`1,1 ... ψ`N`1,N`1

˛

‹

‹

‹

‚

P CpN`2q2 ,

with the convention that ψ`n,k “ 0 if one of these conditions is true: n “ 0 or k “ 0
or n “ N ` 1 or k “ N ` 1.
Let us define for all n, k P t0, ¨ ¨ ¨ , N ` 1u, X, Y,Ξ,Λ P RpN`2q2 by

Xn,k “ xn, Yn,k “ yk, Ξn,k “ ξn, Λn,k “ λk.

These will be used for the discretization of the rotational and kinetic energy. We
still denote by ˚ the element wise multiplication operator between 2 matrices (see
Example 5).
We define E∆

ε,δpψ
1, ψ2q as a discrete counterpart of EΩ

ε,δpu1, u2q by setting for ψ1, ψ2 P

CpN`2q2

E∆
ε,δpψ

1, ψ2
q “

ÿ

`“1,2

`

pEkinq
∆
ε pψ

`
q ` pErq

∆
ε pψ

`
q
˘

` pEW q
∆
ε,δpψ

1, ψ2
q, (2.4)

where:

• pEkinq∆ε , corresponding to the discretization of the kinetic energy, is defined as

pEkinq
∆
ε pψ

`
q “

δ2
x

2

N`1
ÿ

n,k“0

ˆ

ˇ

ˇ

ˇ
ifftx

`

iΞ ˚ fftxpψ
`
q
˘

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ
iffty

`

iΛ ˚ fftypψ
`
q
˘

ˇ

ˇ

ˇ

2
˙

n,k

(2.5)

20
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• pErq∆ε , corresponding to the discretization of the rotational energy, is defined
as

pErq
∆
ε pψ

`
q “ ´Ωεδ

2
x

N`1
ÿ

n,k“0

<
´

´ iψ` ˚
”

´ Y ˚ ifftx
`

iΞ ˚ fftxpψ
`
q
˘

`X ˚ iffty
`

iΛ ˚ fftypψ
`
q
˘

ı¯

n,k

• pEW q∆ε,δ, corresponding to the discretization of the confinement energy, is de-
fined as

pEW q
∆
ε,δpψ

1, ψ2
q “

δ2
x

4ε2

N`1
ÿ

n,k“0

ˆ

ρprn,kq ´ |ψ
1
n,k|

2
´ |ψ2

n,k|
2

˙2

`
δ2
xpδ ´ 1q

2ε2

N`1
ÿ

n,k“0

|ψ1
n,k|

2
|ψ2
n,k|

2,

where rn,k “
a

x2
n ` y

2
k.

Remark 10 Similarly to Remark 3 let pEcf q
∆
ε,δ, corresponding to the discretization

of the centrifugal energy, be defined as

pEcf q
∆
ε,δpψ

1, ψ2
q “

δxδyΩ
2

2

N`1
ÿ

n,k“0

„

`

X2
` Y 2

˘

˚
`

|ψ1
|
2
` |ψ2

|
2
˘



n,k

.

In this case, E∆
ε,δpψ

1, ψ2q “ E∆
ε,δpψ

1, ψ2q`pEcf q
∆
ε,δpψ

1, ψ2q is the discrete counter part
of EΩ

ε,δ (2).

2.3 Computation of the gradient of the discrete energy E∆
ε,δ

Each energy term in (2.4) is a function of the 4N2 real variables pP 1
n,kq1ďn,kďN ,

pQ1
n,kq1ďn,kďN , pP 2

n,kq1ďn,kďN , pQ2
n,kq1ďn,kďN . Let us compute the gradient of each

energy term (still using the convention ψn,k “ 0 if one of these conditions is true:
n “ 0 or k “ 0 or n “ N ` 1 or k “ N ` 1) with respect to these variables. Let
ṼW P RpN`2q2 be defined as:

ṼW “

¨

˚

˚

˚

˝

ρpr0,0q ρpr0,1q ¨ ¨ ¨ ρpr0,N`1q

ρpr1,0q ρpr1,1q ¨ ¨ ¨ ρpr1,N`1q
...

ρprN`1,0q ρprN`1,1q ¨ ¨ ¨ ρprN`1,N`1q

˛

‹

‹

‹

‚

.

Proposition 11 For ` P t1, 2u we have for the discrete kinetic energy

BE∆
kin

BP `
pψ`q “ δ2

x<

˜

“

ifftx
`

Ξ2fftxpψ
`
q
˘‰

n,k
`
“

iffty
`

Λ2fftypψ
`
q
˘‰

n,k

¸

1ďn,kďN

,

BE∆
kin

BQ`
pψ`q “ δ2

x<

˜

´ i
“

ifftx
`

Ξ2fftxpψ
`
q
˘‰

n,k
´ i

“

iffty
`

Λ2fftypψ
`
q
˘‰

n,k

¸

1ďn,kďN

.
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3. A CRITERION FOR THE MINIMIZATION OF E∆
ε,δ UNDER

CONSTRAINTS

Proposition 12 For ` P t1, 2u we have for the discrete rotational energy

BpErq
∆
ε

BP `
pψ`q“´2Ωεδ

2
x<

˜

“

X ˚ iffty
`

Λ ˚fftypψ
`
q
˘

Ý ˚ifftx
`

Ξ˚fftxpψ
`
q
˘‰

n,k

¸

1ďn,kďN

,

BpErq
∆
ε

BQ`
pψ`q“´2Ωεδ

2
x<

˜

í
“

X ˚iffty
`

Λ˚fftypψ
`
q
˘

Ý ˚ ifftx
`

Ξ ˚fftxpψ
`
q
˘‰

n,k

¸

1ďn,kďN

.

Proposition 13 For ` P t1, 2u we have for the discrete interaction energy

BpEW q
∆
ε,δ

BP `
pψ1, ψ2

q“´
δ2
x

ε2

˜

”

P `
˚

´

ṼW ´
2
ÿ

j“1

ˇ

ˇψj
ˇ

ˇ

2
¯

´ pδ ´ 1qP `
˚ |ψ3´`

|
2
ı

n,k

¸

1ďn,kďN

,

BpEW q
∆
ε,δ

BQ`
pψ1, ψ2

q“´
δ2
x

ε2

˜

”

Q`
˚

´

ṼW ´
2
ÿ

j“1

ˇ

ˇψj
ˇ

ˇ

2
¯

´ pδ ´ 1qQ`
˚ |ψ3´`

|
2
ı

n,k

¸

1ďn,kďN

.

Proposition 14 For ` P t1, 2u we have for the discrete centrifugal energy

BpEcf q
∆
ε,δ

BP `
pψ1, ψ2

q “ δ2
xΩ

2
´

“

pX2
` Y 2

q ˚ P `
‰

n,k

¯

1ďn,kďN
,

BpEcf q
∆
ε,δ

BQ`
pψ1, ψ2

q “ δ2
xΩ

2
´

“

pX2
` Y 2

q ˚Q`
‰

n,k

¯

1ďn,kďN
.

3 A criterion for the minimization of E∆
ε,δ under

constraints

We replace the continuous constraints }u`}22 “
ş

D
|u`|2dxdy “ MN` (` “ 1, 2) with

the discrete analogues

}ψ`}2∆ “ δxδy

N
ÿ

i“1

N
ÿ

j“1

|ψ`i,j|
2
“MN`, p` “ 1, 2q. (2.6)

In order to derive a criterion for the minimizers of E∆
ε,δ ((2.1) and (2.4)) under the

constraints (2.6), we introduce the following function which evaluates the energy on
the constraints manifold defined by (2.6) close to some (ψ1˚, ψ2˚):

f∆
ptq “ E∆

ε,δ

ˆ

ψ1˚ ` tψ1

}ψ1˚ ` tψ1}∆

a

N1M,
ψ2˚ ` tψ2

}ψ2˚ ` tψ2}∆

a

N2M

˙

, (2.7)

where t P R is a real variable that later on will tend to 0, where ψ1˚, ψ2˚ P CpN`2q2

are minimizers of E∆
ε,δ under the constraints (2.6) satisfying the homogeneous Dirich-

let boundary conditions and where ψ1, ψ2 P CpN`2q2 are arbitrary and satisfy the
homogeneous Dirichlet boundary conditions. In the following, we will denote ψ`˚ “
P `˚ ` iQ`˚ and ψ` “ P ` ` iQ` for ` P t1, 2u.
We identify C2N2

with the subspace of MN`2pCq2 consisting in pairs of matrices
with zeros first and last row and column. We have the following proposition:
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Proposition 15 If pψ1˚, ψ2˚q is a minimizer of E∆
ε,δ under the constraints (2.6),

then K∆ “ 0 with K∆ given by

K∆
“

2
ÿ

`“1

›

›

›

›

∇E∆
ε,δpψ

`˚
q ´

δ2
x

}ψ`˚}2∆

N`1
ÿ

n,k“0

ˆ

BE∆
ε,δ

BP `
pψ`˚q ˚ P `˚

`
BE∆

ε,δ

BQ`
pψ`˚q ˚Q`˚

˙

n,k

ˆ

P `˚

Q`˚

˙
›

›

›

›

∆

.

(2.8)

Proof : Let us denote the scalar product on C2N2
by xu, vy∆ “ <

˜

N
ÿ

k,l“1

uk,lĎvk,l

¸

with the following relation δ2
xxu, uy∆ “ }u}

2
∆. The fact that (ψ1˚, ψ2˚) are minimizers

of E∆
ε,δ under the constraints (2.6) implies that

`

f∆
˘1
p0q “ 0, (2.9)

for all (ψ1, ψ2). Using (2.7), we set for ` “ 1, 2

f∆
`,P ptq “

P `˚ ` tP `

}ψ`˚ ` tψ`}∆

a

N`M, and f∆
`,Qptq “

Q`˚ ` tQ`

}ψ`˚ ` tψ`}∆

a

N`M,

so that, using (2.6), we have

›

›f∆
`,P ptq ` if

∆
`,Qptq

›

›

2

∆
“ N`M.

We also set, in order to compute the first derivative of f∆ at t “ 0,

a` “
δ2
x

}ψ`˚}2∆

˜

N
ÿ

n,k“1

ppl˚n,kp
l
n,k ` q

l˚
n,kq

l
n,kq

¸

“
δ2
x

}ψ`˚}2∆

N
ÿ

n,k“1

“

P `˚
˚ P `

`Q`˚
˚Q`

‰

n,k
,

so that we have

pf∆
`,P q

1
p0q “ P `

´ a`P
`˚, and pf∆

`,Qq
1
p0q “ Q`

´ a`Q
`˚,

Let us remind that for all t P R small enough, we have

E∆
ε,δpψ

1˚
` tψ1, ψ2˚

` tψ2
q “ E∆

ε,δpψ
1˚, ψ2˚

q ` tx∇E∆
ε,δ

`

ψ1˚, ψ2˚
˘

,
`

ψ1, ψ2
˘

y∆ `Opt
2
q.

The next step is the computation of pf∆q1p0q in order to derive a criterion for the
minimizer. We obtain, using the definition (2.7) of f∆ and the chain rule,

pf∆
q
1
p0q “

@

∇E∆
ε,δ

˜

ˆ

f∆
1,P p0q
f∆

1,Qp0q

˙

,

ˆ

f∆
2,P p0q
f∆

2,Qp0q

˙

¸

,

˜

ˆ

pf∆
1,P q

1p0q
pf∆

1,Qq
1p0q

˙

,

ˆ

pf∆
2,P q

1p0q
pf∆

2,Qq
1p0q

˙

¸

D

∆

“
ÿ

`“1,2

N
ÿ

n,k“1

ˆ

BE∆
ε,δ

BP `
pψ`˚q ˚

`

P `
´ a`P

`˚
˘

`
BE∆

ε,δ

BQ`
pψ`˚q ˚

`

Q`
´ a`Q

`˚
˘

˙

n,k

.

As expected, pf∆q1p0q is a linear function of pP 1, Q1, P 2, Q2q of the form:

pf∆
q
1
p0q “

2
ÿ

`“1

N
ÿ

n,k“1

´

“

K∆
`,P ˚ P

`
‰

n,k
`
“

K∆
`,Q ˚Q

`
‰

n,k

¯

, (2.10)
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with K∆
`,P and K∆

`,Q matrices in RNˆN for ` P t1, 2u given by

K∆
`,P “

BE∆
ε,δ

BP `
pψ`˚q ´

δ2
x

}ψ`˚}2∆

N`1
ÿ

n,k“0

ˆ

BE∆
ε,δ

BP `
pψ`˚q ˚ P `˚

`
BE∆

ε,δ

BQ`
pψ`˚q ˚Q`˚

˙

n,k

P `˚,

and

K∆
`,Q “

BE∆
ε,δ

BQ`
pψ`˚q ´

δ2
x

}ψ`˚}2∆

N`1
ÿ

n,k“0

ˆ

BE∆
ε,δ

BP `
pψ`˚q ˚ P `˚

`
BE∆

ε,δ

BQ`
pψ`˚q ˚Q`˚

˙

n,k

Q`˚.

Using (2.9) and the expression given by (2.10), if pP ˚1 , Q
˚
1 , P

˚
2 , Q

˚
2q minimizes

E∆
ε,δ under the constraints (2.6), then for any pψ1, ψ2), pf∆q1p0q “ 0 is equivalent to

K∆
`,P “ K∆

`,Q “ 0 for ` P t1, 2u. ˝

Therefore, we use the smallness of pK`,P q`“1,2 and pK`,Qq`“1,2 in the method
described in Section 4 as a criterion for numerical convergence. To this end, we set

K∆
“

2
ÿ

`“1

}K∆
`,P }∆ ` }K

∆
`,Q}∆.

Remark 16 In the same way, we can use an adapted criterion for the minimization
of E∆

ε,δ.

4 Gradient Method

In order to minimize the discrete energy E∆
ε,δ (in the form (2.1) or (2.4)) under the

constraints (2.6), we propose the following gradient method with projection and
with adaptive step.

• Initialization:

1. Choose ψ1,1, ψ2,1 P CpN`2q2 normalized as: }ψ`,1}∆ “
?
N`M , (` “ 1, 2)

and satisfying the homogeneous Dirichlet boundary conditions,

2. choose the step h ą 0,

3. choose two tolerance parameters h0, K0 ą 0 for the convergence test.

• Iteration:

1. Compute the gradient: ∇E∆
ε,δ pψ

1,m, ψ2,mq,

2. Compute the auxiliary step

ˆ

ψ̃1,m

ψ̃2,m

˙

“

ˆ

ψ1,m

ψ2,m

˙

´h∇E∆
ε,δpψ

1,m, ψ2,mq, and

set the homogeneous Dirichlet boundary conditions on ψ̃1,m and ψ̃2,m,

3. Normalize the auxiliary step to obtain an attempt for the next step:

ψ`,m`1
“

ψ̃`,m

}ψ̃`m}∆

a

N`M.
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4. If E∆
ε,δpψ

1,m`1, ψ2,m`1q ą E∆
ε,δpψ

1,m, ψ2,mq then we replace h by h
2

(pro-

vided h
2
ě h0, otherwise we stop without convergence) and we compute a

new auxiliary step ψ̃1,m, ψ̃2,m for the same m by going back to step 2. Else
we compute K∆ at point ψ1,m`1, ψ2,m`1 using (2.8). If K∆ ě K0 then we
replace m by m ` 1 and we start at step 1. Else we take ψ1,m`1, ψ2,m`1

as an approximate minimizer and we stop with convergence.

5 Post processing algorithms

5.1 Indices computation of single vortices

In this subsection, we introduce an algorithm that we developed for the computation
of the indices of the vortices in the minimizers of the discrete energy functional. This
algorithm is used in the Chapter 3.

The algorithm relies on 4 numerical parameters tol1 ą 0, tol2 ą 0, Nmin P N˚
and Nmax P N˚ with Nmin ď Nmax. It follows the 4 steps below. The three first
steps identify vortices’ centers and the last step computes the vortices’ indices. In
this section, ψ denotes the squared complex matrix with N2 entries for one of the
two species of the Bose–Einstein condensate.

First, we determine the potential centers of the vortices and establish a lot of
candidates as the set of pn, kq P t1, ¨ ¨ ¨ , Nu2 such that |ψn,k|

2 ă tol1.
Second, we build a second list P based on the first list above using the following

rule. For each potential center pn, kq in the list established in step 1, we consider
the values of |ψ|2 on the squares

Sλpn, kq “
"

pn˘ λ, k ` jq
ˇ

ˇ j P t´λ, ¨ ¨ ¨ , λu

*

ď

"

pn` j, k ˘ λq
ˇ

ˇ j P t´λ, ¨ ¨ ¨ , λu

*

,

of length 2λδx, for λ P tNmin, ¨ ¨ ¨ , Nmaxu. If for one of these λ “ λpn, kq, the values
of |ψ|2 at all points of the square Sλpn, kq are such that |ψ|2 ´ |ψn,k|

2 ą tol2, then
we add the center pn, kq to the second list P, and we set λpn, kq as the characteristic
length of the potential vortex. In other words, we have determined a list P of couple
of points pn, kq satisfying the following conditions:

• |ψn,k|2 ă tol1,

• |ψi,j|2 ą |ψn,k|2 ` tol2, for all the couples pi, jq in Sλpn,kqpn, kq.

Third step, we consider each center pn, kq from the list P and we identify if an-
other center is inside the square

Ť

1ďλďλpn,kq Sλpn, kq. If this is the case, we eliminate

the center with the biggest |ψ|2 at the center from the list. We repeat this step
until we are left with isolated centers. Let us denote by T all the couples pn, kq
corresponding to isolated centers. The last step consists in computing the indices.
For each pn, kq P T, we start off with any couple pi, jq in Sλpn,kqpn, kq. Then we
calculate their associated angle θ0 “ argpψi,jq. Note that there are 8λpn, kq couples
in Sλpn,kqpn, kq. After computing the first angle θ0, we proceed to compute the other
angles θ1, θ2, ¨ ¨ ¨ , θ8λpn,kq in the following way:

• After computing the angle θm, the next angle θ̃m`1 is computed as an argument
of the next value of ψ on the square Sλpn,kqpn, kq with anticlockwise orientation
(see Figure 2.1).
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5. POST PROCESSING ALGORITHMS

Figure 2.1 – Sλpn, kq with angles θ0 to θ8λ.

• We set θm`1 :“ θ̃m`1 ` 2kπ with k “ argminlPZ|θ̃m`1 ´ θm ` 2πl|.

Finally the index of the vortex pn, kq is set to pθ8λpn,kq ´ θ0q{2π.

5.2 Indices computation of vortex sheet

In this subsection, we introduce an algorithm that we developed for the computation
of the index along a vortex sheet of a minimizer of the discrete energy functional.
Let us note that this algorithm does need the interference of a human being at one
point. This algorithm is used in Chapter 3.

The algorithm relies on 4 main steps in total and it uses 3 numerical values
m ď M (close to 1{2) and a small tol3 ą 0. The first step consists in identifying
the contours of the vortex sheets. The second step optimizes these contours. The
third step sorts the optimized contours, in order to compute, in the last step, each
vortex sheet index alongside its contour. We will use the example in Figure 2.2 to
illustrate the different steps of the algorithm.

The contour of a vortex sheet in one of the components of the condensate consists
in a region where the squared modulus of the minimizer moves fast from 0 to 1 “
max ρ(or the opposite). The first step consists in finding regions on the discrete
square r´L,Ls2 where this occurs. We identify, for each species ψ`, the coordinates
on the grid for the values |ψ`|2 between m and M . Next, we add the grid coordinates
close to the circle BD, of which we retain only the coordinates where |ψ`|2 ď tol3.
These grid points constitute the union of potential contours of vortex sheets (see
Figure 2.3a for an example). Let us sort these points, to ease the search for connex
components in contours in the next step. Let us note K the set of coordinates we
have found so far. We are looking for a union of connex curves that describe the
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CHAPTER 2. DISCRETIZATION AND MINIMIZATION METHOD

(a) The first component of a minimizer
for the energy E∆

ε,δ presenting vortex
sheets (see Figure 3.36a for details on the
parameters).

(b) An example of the contours detected
after the first part of the first step of the
contour detection algorithm.

Figure 2.2 – An example of the contours detected after the first step of the contour
detection algorithm (m “ 0.4, M “ 0.6, and tol3 “ 0.3).

(a) An example of the contours detected
after the first part of the first step of the
contour detection algorithm.

(b) An example of the connex curves ob-
tained at the end of the first step of the
contour detection algorithm.

Figure 2.3 – A particular sheet from the example displayed in Figure 2.2 after the
first step of the contour detection algorithm (m “ 0.4, M “ 0.6, and tol3 “ 0.3).
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5. POST PROCESSING ALGORITHMS

borders of each vortex sheet. Each curve can be determined with as many points
as we want, but we want to avoid taking too many points per curve. Therefore, we
want to limit the number of neighbours to any point on the curve to 3. For each
grid point of coordinates pi, jq, we denote by S1pi, jq the set of its neighbours. For
all grid point pi, jq P K, we act as follows:

1. If pi, jq has no neighbours in K, we just remove it from the set K.

2. If pi, jq has 1 neighbour, we add to the set K a couple pi1, j1q R K verifying

pi1, j1q “ argminpn,kqPS1pi,jq

ˇ

ˇ|ψi,j|
2
´ |ψn,k|

2
ˇ

ˇ.

3. If pi, jq has 2 or 3 neighbours in K, we do nothing.

4. If pi, jq has at least 4 neighbours in K, we remove the couple pi1, j1q from K
verifying:

pi1, j1q “ argmaxpn,kqPS1pi,jqXK
ˇ

ˇ|ψi,j|
2
´ |ψn,k|

2
ˇ

ˇ,

and we repeat this step until we are left with only 3 neighbours.

At this point, we have detected a union of different curves defining the borders of the
vortex sheets. An example if displayed in Figure 2.3b. Our next step is to separate
the connex components in K, to categorize the different sheets (since each minimizer
can have more than one vortex sheet). Therefore, step 2 consists in associating to

(a) After Step 2: We can use a differ-
ent colour of each contour (the colour
changes with p).

(b) After Step 3: We can use colour
shading to show the anticlockwise orien-
tation of each contour.

Figure 2.4 – An example of the contours detected and orientated by the contour
detection algorithm after the second and third step.

each border an integer number p ě 1. At the pth vortex sheet, we create a new
list Kp. We start by adding to Kp a grid point at random from the list K whilst
removing it from K. Then, we add all of its neighbours one by one whilst removing
them from K until we are left with no neighbours in K to all the grid points in Kp.
Of course, if there are still points in K, we increase p to p`1 and start this step again
until K is empty. After dividing the contours of the vortex sheets into categories,
we look at all the categories and let a human decide if a detected category Kp makes
sense or not, as well as whether two categories should be merged into one. This is
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the only human interaction needed in the sheet detection algorithm. To merge two
categories Kq and Kq1 we follow these simple steps. First, we search for the closest
two couples pn, kq and pn1, k1q from Kq and Kq1 (using the usual distance in R2) and
we compute their middle pi1, j1q “ ptn`n

1

2
u, tk`k

1

2
uq. If this middle has neighbours in

both categories, we merge them into a new set Kq Y Kq1 Y pi
1, j1q. Otherwise, we

repeat once the same process between Kq Y tpi
1, j1qu and Kq1 Y tpi

1, j1qu. In the end,
we are left with different categories for different vortex sheet’s contours. An example
of what we obtain after Step 2 is displayed in Figure 2.4a.

Step 3 consists in building, from each set Kp a list of grid points corresponding
to an anticlockwise path along the contour of the pth vortex sheet. We proceed in
the following way:

1. For each list Kp, we compute it’s barycentre. We choose our starting couple
from Kp as one with a close x-axis coordinate to that of the barycentre and
with the biggest y-axis coordinate. We add this to our new list Ksort

p .

2. While the length of Ksort
p is less than 70% of the original length of Kp and the

last point and the first point of Ksort
p are not neighbours:

(a) Out of all the neighbours in Kp to the last grid point we added to Ksort
p , we

choose one and prioritize the anticlockwise direction. Then, we remove
this grid point from Kp.

(b) If we don’t find any neighbour, we delete this grid point from Ksort
p and

from Kp. Next, we return to the last grid point we added to Kp before
that and we repeat the previous step.

An example of what we obtain after Step 3 is displayed in Figure 2.4b.
The last and fourth step consists in computing the indices of each vortex sheet

contour detected Ksort
p . The algorithm is similar to the last step in Section 5.1 but

we take the list Ksort
p instead of Sλpn,kqpn, kq.

Remark 17 In the case of a circular giant hole, we know it is going to be a disk
shaped hole centered in p0, 0q. We compute the radius of the disk using a simple
algorithm that goes as follows.
Let ψ be a minimizer with a giant hole and let R be a set of radius rl ą 0 with
l P t0, ¨ ¨ ¨ , l0u and θm “

2πm
m0

an angle with m P t0, ¨ ¨ ¨ ,m0u for m0 " 1. At step l,
we compute the following set

βl “
 

pn, kq “ argmin
pn,kqPt1,Nu2

p|xn ´ rl cospθtq|, |yk ´ rl sinpθtq|q for all t P t0, ¨ ¨ ¨ ,m0u
(

.

Note that βl contains at most m0 unique couples. If maxn,kPβl |ψn,k|
2 ą 0.1, then

we stop the algorithm and we will use rl and βl for the computation of the index.
Otherwise we repeat this step with l “ l ` 1. Finally, to compute the index of the
giant hole, we use the last step of Section 5.1 with βl instead of Sλpn,kqpn, kq.

Remark 18 Following Remark 17, in the case of a square giant hole (in the case
of high rotation single-component minimizer using DF scheme), we know it is going
to be a square shaped hole tilted by angle of 45˝ centered in p0, 0q. We compute the
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side c of the square using the radius r found in Remark 17 with this simple relation
c “

?
2r. We then compute the set defining the tilted square C. Finally, to compute

the index of the square hole, we use the last step of Section 5.1 with C instead of
Sλpn,kqpn, kq.

In the next chapter, we will present the numerical results obtained using the gra-
dient method with different numerical and physical parameters in order to illustrate
numerically the theory presented in Chapter 1 Sections 4.2, 4.3 and 4.4.
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Chapter 3

Numerical results

This chapter is devoted to the numerical results in 2D of the numerical minimizers
of the Gross-Pitaevskii energy using the Explicit with Projection Gradient method
(EPG method) developed in Chapter 2. We display results covering the regimes
discussed in Chapter 1 Sections 4.2, 4.3 and 4.4.

This chapter is divided into three main parts. The first part is dedicated to
displaying the results of the finite difference scheme for one component and two
components BEC. The second part of this chapter focuses on the numerical mini-
mizers using the Fourier transformation approach. Both parts also display the post
processing algorithms developed in Section 4 of Chapter 2 to validate the existence
of numerical vortices and vortex sheets. The last part is devoted to the comparison
between EPG and GPELab (see [9, 11]). We display different tests of one compo-
nent and two components numerical minimizers for low and moderate number of
points in the discretization to show the efficiency of the EPG method.

1 Common parameters used in all of the simula-

tions

For all the simulations in this chapter, we consider the following parameters. The
confinement is defined by the function

ρpx, yq “ minr1, 10pR2
´ x2

´ y2
qs. (3.1)

The discretization parameters are the following: the square’s length L “ 7, the
radius R “ 4, the initial step h “ 0.1 and the tolerance h0 “ 10´12.

2 Numerical results for a discretization of E∆
ε,δ

using Finite Difference scheme

This first section is devoted to displaying the numerical minimizers of
Gross-Pitaevskii energy using finite difference scheme (2.1). We cover all the regimes
described in Chapter 1.

We first cover the one component cases with and without rotation. We then
move on to the two components condensates results. We display both segregation
and coexistence regimes with and without rotation.
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ε,δ

USING FINITE DIFFERENCE SCHEME

2.1 One component condensate without rotation

Parameters of the numerical simulations

In this first subsection, we consider the following parameters. For the initial datum
we choose ψ0px, yq “ expp´10x2 ´ 10y2q{5. We choose then for the rotational
velocity Ω “ 0, the values N1 “ 1, N2 “ 0, (since N2 “ 0 then δ plays no role here).
For the rest of the parameters, we refer to Section 1 of this chapter.

Numerical results

In this simulation of one component condensate, we study the case of no rotation
(Ω “ 0) and strong confinement (ε “ 10´2). We set the number of points in the x-
axis and y-axis to N “ K “ 512. In this simulation, the gradient descent algorithm
stopped due to the stopping criterion K∆ ď 10´2. The results are shown in Figure
3.1b. As we can see, there are no vortices present in the numerical minimizer. This
is in accordance with the theory presented in Section 4.2 (first case Ω ă Ω1

ε).

(a) The graph of ρpx, yq ą 0. (b) The squared modulus of a minimizer
of E∆

ε,δ for Ω “ 0, ε “ 10´2.

Figure 3.1 – Comparison between the positive part of ρ and the squared modulus of
a minimizer for the energy E∆ with no rotation Ω “ 0.

In Figure 3.2, we present alongside the axis y “ 0, the function ρpx, yq (in blue),
the positive part of ρpx, yq (in black), the squared modulus of a minimizer for the
energy E∆

ε when Ω “ 0, for N “ K “ 512, for ε “ 0.1 (in green mark x) and for
ε “ 0.01 (in red mark x). As we can see, the Figure 3.2 numerically illustrates the
convergence of the squared modulus of a minimizer for the energy E∆

ε to ρ when ε
tends to 0 at fixed rotational speed Ω “ 0. We observe that, as ε gets smaller, the
squared modulus of a minimizer of the energy converges to the positive part of ρ
and vanished outside of r´R,Rs. This is in accordance with Theorem 31 in Chapter
4.
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Figure 3.2 – The graph of ρpx, 0q (in blue), the positive part of ρpx, 0q (in black),
the squared modulus of a minimizer for the energy E∆

ε for ε “ 0.1 (in green mark
x) and for ε “ 0.01 (in red mark x) alongside the axis y “ 0.

2.2 One component condensate with rotation

We now consider the theoretical results described in Chapter 1 Section 4.2. The
results identify four different regimes for the behavior of the one component Bose-
Einstein condensate depending on how big Ωε is as ε Ñ 0. These four regimes are
separated by three characteristic rotational speeds Ωi

ε, i “ 1, 2, 3 (see (1.14)). We
explain below how we identify the four different regimes numerically. We conclude
with numerical simulations for small ε in each one of the four regimes.

Identification of the regimes

In order to identify the four regimes described in Chapter 1 Section 4.2, we proceed
as follows. First, we take ε “ 10´1 and we use the gradient algorithm described in
Section 4 of Chapter 2 to compute minimizers of E∆

ε,δ for several rotational speeds.
Then, we do the same for ε “ 5 ˆ 10´2. Based on these many simulations, and
the expressions (1.14), we estimate the three critical values for the rotation speed
which are shown in Figure 3.3. This provides us with an estimation of the three
critical values of the rotational speed when ε “ 10´2. Choosing rotation speed
between these 3 estimated critical values for ε “ 10´2, we manage to observe the
four different regimes, as detailed below.

In view of Figure 3.3, for ε “ 10´2 we choose the following values for the rota-
tional velocity: Ω “ t1, 30, 60, 85, 110u. We choose these values to exhibit one case
of the first two zones and three cases for the third zone. The case Ω “ 60 (Figure
3.6) is close enough to zone 2 and allows to see the transition from zone 2 to zone
3. The case Ω “ 85 (Figure 3.7) exhibits an annulus with a hole looking like a
square. This is due to a grid orientation effect and might disappear if we would
change numerical parameters such as the size of the computational domain. The
last case Ω “ 110 (Figure 3.8) also displays an annulus with vortices but now the
square shaped hole is more clear.
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Figure 3.3 – Ω as a function of ε and the associated zones.

Parameters of the numerical simulations

For all the one component simulations with rotation (Ω ‰ 0), we choose ψ0 “
1
5

expp´10x2 ´ 10y2q as initial datum, the values N1 “ 1 and N2 “ 0. For the rest
of the parameters we refer to Section 1 of this chapter.

Small rotational speed (Ω ă Ω1
ε)

In a first simulation of one component condensate, we study the case of a very low
rotational velocity (Ω “ 1) and strong confinement (ε “ 10´2). We set the number
of points in the x-axis and y-axis to N “ K “ 256. In this simulation, the gradient
descent algorithm converged due to the stopping criterion K∆ which has a value
smaller than 5 ˆ 10´4 after 213300 iterations. The results are shown in Figure 3.4.

Figure 3.4 – The squared modulus of a minimizer of the energy E∆
ε,δ for Ω “ 1 and

ε “ 10´2.
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As we can see, there are no vortices present in the numerical minimizer. This is
due to the low rotational velocity and is in accordance with the theory presented in
Chapter 1 Section 4.2 (first case Ω ă Ω1

ε).

Moderate rotational speed (Ω1
ε ă Ω ă Ω2

ε)

In a second simulation of one component condensate in rotation, we study the case
of a moderate rotational velocity (Ω “ 30) and strong confinement (ε “ 10´2). We
set the number of points in the x-axis and y-axis to N “ K “ 512. Then, we
interpolate its real and imaginary parts to a new grid with N “ K “ 1024. In this
simulation, the gradient descent algorithm converged due to the stopping criterion
K∆ which has a value smaller than 5ˆ 10´3 after 714900 iterations. The results are
shown in Figure 3.5a. As we can see, there are vortices in the numerical minimizer.
This is due to the moderate rotational velocity and is in accordance with the theory
presented in Chapter 1 Section 4.2 (second case Ω1

ε ă Ω ă Ω2
ε).

(a) The squared modulus of a minimizer
of a one component condensate.

(b) The vortices indices of a minimizer
of a one component condensate.

Figure 3.5 – The squared modulus of a minimizer (a) of the energy E∆
ε,δ for Ω “ 30

and ε “ 10´2. In the right panel, the numerical computation of the indices of the
vortices is carried out with Nmin “ 1, Nmax “ 5, tol1 “ 0.05 and for tol2 “ 0.01.

In Figure 3.5b, we compute the indices of the numerical vortices with Nmin “ 1,
Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.01 (see Chapter 2 Section 5.1 for a description
of the method). As we can see, the index of all the numerical vortices is equal to
one. This validates numerically that the zeros of the function are singly quantized
vortices.

Remark 19 Using the forward finite difference scheme, we encounter a square
shape displayed in some of the minimizers of the energy E∆

ε,δ due to the orienta-
tion grid effect (see for example Figures 3.6a and 3.7a). This only occurs when Ω
is big enough for the centrifugal force to come into play. We avoid this problem by
choosing the Fast Fourier transform approach instead (see simulations in Section 3
of this chapter).
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Big rotational speed (Ω2
ε ă Ω ă Ω3

ε)

In a third simulation of one component condensate, we study the case of a fairly high
rotational velocity (Ω “ 60) and strong confinement (ε “ 10´2). We set the number
of points in the x-axis and y-axis to N “ K “ 512. In this simulation, the gradient
descent algorithm converged due to the step h being too small (h ă tol) while the
stopping criterion K∆ has a value of 0.015 after 1164200 iterations. The results are
shown in Figure 3.6a. As we can see, there is a giant hole in the center, surrounded
by vortices on the annulus of the numerical minimizer. This is due to the centrifugal
force coming into play with the fairly high rotational velocity and is in accordance
with the theory presented in Chapter 1 Section 4.2 (third case Ω2

ε ă Ω ă Ω3
ε).

(a) The squared modulus
of a minimizer of the en-
ergy E∆

ε,δ.

(b) The vortices indices for
Nmin “ 1, Nmax “ 5,
tol1 “ 0.05 and tol2 “

0.01.

(c) The vortices indices of
a minimizer of the energy
with r “ 0.782 (see Re-
mark 17))

Figure 3.6 – The squared modulus of a minimizer (a) of the energy E∆
ε,δ for Ω “ 60

and ε “ 10´2. The vortices indices of the minimizer are presented in Figures (b)
and (c).

In Figure 3.6b, we compute the index of the numerical vortices of Figure 3.6a
with Nmin “ 1, Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.01 (see Chapter 2 Section 5.1 for
a description of the method). As we expected, the index of all the numerical vortices
in Figure 3.6b around the giant hole is equal to one. In Figure 3.6c, we compute the
index of the giant hole using the algorithm described in Remark 17 with r “ 0.782.
The index of the giant hole is equal to 30. This is in accordance with the theory
presented in Chapter 1 Section 4.2 (third case).

In a fourth simulation of one component condensate, we study the case of a
high rotational velocity (Ω “ 85) and strong confinement (ε “ 10´2). We set the
number of points in the x-axis and y-axis to N “ K “ 512. In this simulation, the
gradient descent algorithm converged due to the stopping criterion K∆ that has a
value smaller than 9ˆ10´3 after 1150200 iterations. The results are shown in Figure
3.7a. As we can see, the giant hole in the center is now bigger, surrounded by less
vortices on the ”annulus” of the numerical minimizer than before. In this simulation
we can see the giant hole is actually becoming square shaped (see Remark 19). This
is due to the centrifugal force coming into play with a very high rotational velocity.

In Figure 3.7b, we compute the index of the numerical vortices of Figure 3.7a
with Nmin “ 1, Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.01 (see Chapter 2 Section 5.1 for
a description of the method). As we can see, the index of all the numerical vortices
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(a) The squared modulus
of a minimizer of the en-
ergy E∆

ε,δ.

(b) The vortices indices of
a minimizer for Nmin “ 1,
Nmax “ 5, tol1 “ 0.05 and
for tol2 “ 0.1.

(c) The index of the giant
vortex with c=2.014 (see
Remark 18).

Figure 3.7 – The squared modulus of a minimizer (a) of the energy E∆
ε,δ for Ω “ 85

and ε “ 10´2. The vortices indices of the minimizer are presented in Figures (b)
and (c).

in Figure 3.7b around the giant hole is equal to one. In Figure 3.7c, we compute the
index of the giant hole using the algorithm described in Remark 18 with c “ 2.014.
The index of the giant vortex is now equal to 105. This is in accordance with the
theory presented in Chapter 1 Section 4.2 (third case).

Huge rotational speed (Ω ą Ω3
ε)

In this last simulation of one component condensate, we study the case of a huge
rotational velocity (Ω “ 110) and strong confinement (ε “ 10´2). We set the number
of points in the x-axis and y-axis to N “ K “ 512. In this simulation, the gradient
descent algorithm converged due to the stopping criterion K∆ that has a value
smaller than 10´2 after 1443214 iterations. The results are shown in Figure 3.8a.
As we can see, the giant hole is becoming a central giant vortex, surrounded by less
vortices on the ”annulus” of the numerical minimizer than before. In this simulation
we can also see the giant hole is actually a square shaped hole (see Remark 19). This
is due to the centrifugal force coming into play with a rotational velocity and is in
accordance with the theory presented in Chapter 1 Section 4.2 (fourth case Ω « Ω3

ε).
In Figure 3.8b, we compute the index of the numerical vortices of Figure 3.8a

with Nmin “ 1, Nmax “ 5, tol1 “ 0.1 and tol2 “ 0.02 (see Chapter 2 Section 5.1 for
a description of the method). As we can see, the index of all the numerical vortices
in Figure 3.7b around the giant hole is equal to one. In Figure 3.8c, we compute the
index of the giant hole using the algorithm described in Remark 18 with c “ 2.54.
The index of the giant vortex is now equal to 161. This is in accordance with the
theory presented in Chapter 1 Section 4.2 (last case).
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(a) The squared modulus
of a minimizer of the en-
ergy E∆

ε,δ.

(b) The vortices indices of
a minimizer for Nmin “ 1,
Nmax “ 5, tol1 “ 0.1 and
for tol2 “ 0.02.

(c) The index of the gi-
ant vortex with c=2.54 (see
Remark 18).

Figure 3.8 – The squared modulus of a minimizer (a) of the energy E∆
ε,δ for Ω “ 110

and ε “ 10´2. The vortices indices of the minimizer are presented in Figures (b)
and (c).

2.3 Two components condensate without rotation (Ω “ 0)

We move now on the theoretical results described in the first part of Chapter 1
Sections 4.3 and 4.4.

Parameters used for the simulations

In this subsection, we consider the following parameters. For the initial datum we
choose

ψ1
px, yq “ ψ2

px, yq “ expp´10x2
´ 10y2

q{5. (3.2)

We use a rotational velocity Ω “ 0, a confinement ε “ 5 ˆ 10´2, and the values
N1 “ 0.55, N2 “ 0.45. The stopping criterion value for K∆ is set to K0 “ 10´2 and
we set the number of point in the x-axis and y-axis to N “ 256. For the rest of the
parameters, we refer to Section 1 of this chapter.

Strong confinement in a strong segregation regime (δε Ñ 8 as εÑ 0)

(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The sum of the squared
modulus of both compo-
nents.

Figure 3.9 – The squared modulus of the first component (a) and the second compo-
nent (b) of a minimizer of the energy E∆

ε,δ in the case of two components condensate
with no rotation and δ “ 4000. Figure (c) displays their sum.
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In a first simulation of two components condensate without rotation, we study
the case of strong segregation regime (δ “ 4000) and strong confinement (ε “
5 ˆ 10´2). The results are shown in Figure 3.9. As we can see in Figures 3.9a
and 3.9b, we are in the segregation regime since the two components tend not to
overlap. In Figure 3.9c, we can see the sum of the squared modulus of the two
components displays a red curve which separates the squared modulus of the two
components with minpx,yqPD |ψ

1˚|2 ` |ψ2˚|2 « 0.243. This is in accordance with the
theory presented in Chapter 1 Section 4.4 (first case of no rotation with δεε

2 Ñ `8).

Strong confinement in a moderate segregation regime (δε fixed as εÑ 0)

(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The sum of the squared
modulus of both compo-
nents.

Figure 3.10 – The squared modulus of (a) the first component and (b) the second
component of a minimizer for a two components condensate and (c) their sum, in
the case of no rotation (Ω “ 0) and δ “ 1.5.

In a second simulation of two components condensate without rotation, we study
the case of moderate segregation regime (δ “ 1.5) and strong confinement (ε “
5 ˆ 10´2). The results are shown in Figure 3.10. As we can see in Figures 3.10a
and 3.10b, we are in the segregation regime (δ ą 1). In Figure 3.10c, we can see
that the sum of the squared modulus of the two components displays a white curve
which separates the squared modulus of the two components with minpx,yqPD |ψ

1˚|2`

|ψ2˚|2 « 0.78. This is in accordance with the theory presented in Chapter 1 Section
4.4 (second case with no rotation where δ ą 1 is fixed).

Strong confinement in a weak segregation regime (δε Ñ 1 as εÑ 0)

In a last simulation of two components condensate without rotation, we study the
case of segregation regime (δ “ 1.02) and strong confinement (ε “ 5 ˆ 10´2). The
results are shown in Figure 3.11. As we can see in Figures 3.11a and 3.11b, we are
in the segregation regime (δ ą 1). In Figure 3.11c, we can see that the sum of the
squared modulus of the two components does not display a separation area with
minpx,yqPD |ψ

1˚|2 ` |ψ2˚|2 « 0.971. With the notations of Chapter 1 Section 4.4 we
have here ε̃ “ 0.35. This is in accordance with the theory presented in Chapter 1
Section 4.4 (second case with no rotation where δε Ñ 1 and ε̃Ñ 0).
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(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The sum of the squared
modulus of both compo-
nents.

Figure 3.11 – The squared modulus of the first component (a) and the second compo-
nent (b) of a minimizer of the energy E∆

ε,δ in the case of two components condensate
and their sum (c) in the case of no rotation and δ “ 1.02.

2.4 Two components condensate with rotation (Ω ‰ 0) in a
segregation regime (δε ą 1)

In this subsection, we consider the theoretical results described in Chapter 1 Section
4.4 for the two components rotating Bose-Einstein condensate in the segregation
regime.

Parameters used for a two components condensate with rotation

For all the two components segregation regime with rotation, we consider the fol-
lowing parameters. For the initial datum we choose ψ1, ψ2 as defined in (3.2). We
choose then the numerical values N1 “ 0.55, N2 “ 0.45. The stopping criterion
value for K∆ is set to K0 “ 10´2 and we set the number of points in the x-axis
and y-axis to N “ 256. Then, we interpolate the real and imaginary parts of the
minimizer to a grid with N “ 512. We also set the physical parameters ε “ 10´2

and δ “ 1` ε “ 1.01 so that ε̃ “
?
ε “ 0.1. For the rest of the parameters, we refer

to Section 1 of this chapter.

Low rotation case : Ω “ 1

We first consider the case of low rotation Ω “ 1 and strong confinement (ε “ 10´2).
The results are shown in Figure 3.12. The numerical experiment confirms that we
are in a segregation regime (recall that δ ą 1) and the two components tend to
not overlap. Moreover, the small rotational velocity Ω “ 1 is not big enough to
produce vortices in the minimizer. This is in accordance with the theory presented
in Chapter 1 Section 4.4 (first bullet point in the rotational case).
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(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

Figure 3.12 – The squared modulus of the first component (a) and the second compo-
nent (b) for a minimizer in the case of two components condensate with low rotation
Ω “ 1 in the segregation regime.

Moderate rotational case pΩ “ 3)

Next we consider the case of a moderate rotation Ω “ 3 and strong confinement
(ε “ 10´2). The results are shown in Figure 3.13. The numerical experiment
shows that the segregation holds and the moderate rotational velocity Ω “ 3 is now
big enough to produce singly quantized vortices in one of the components of the
numerical minimizer. This is in accordance with the theory presented in Chapter 1
Section 4.4 (second bullet point in the rotational case).

(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The vortices indices
of the first component for
Nmin “ 1, Nmax “ 5,
tol1 “ 0.05 and tol2 “ 1 “
0.02.

Figure 3.13 – The squared modulus of the first component (a) and the second compo-
nent (b) for a minimizer in the case of two components condensate with low rotation
Ω “ 3 in the segregation regime. The vortices indices of the first component are
displayed in Figure (c).

High rotational speed (Ω “ 6)

Next we consider the case of high rotation Ω “ 6 and strong confinement (ε “ 10´2).
The results are shown in Figure 3.14. The numerical experiment shows that the

41



2. NUMERICAL RESULTS FOR A DISCRETIZATION OF E∆
ε,δ

USING FINITE DIFFERENCE SCHEME

segregation holds and the high rotational velocity Ω “ 6 is now big enough to
produce singly quantized vortices in both components of the numerical minimizer.
This is in accordance with the theory presented in Chapter 1 Section 4.4 (second
bullet point in the rotational case).

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortices indices of the first com-
ponent.

(d) The vortices indices of the second
component.

Figure 3.14 – The squared modulus of the first component (a) and the second com-
ponent (b) for a minimizer in the case of a two components condensate with high
rotation Ω “ 6 in the segregation regime. The vortices indices of the first and sec-
ond component are displayed in Figures (c) and (d) respectively with Nmin “ 1,
Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.01.

Huge rotational speed (Ω “ 15)

In the last and final numerical simulation of the segregation case, we consider the
case of huge rotation Ω “ 15 and strong confinement (ε “ 10´2). The results
are shown in Figure 3.15. The numerical experiment shows that the segregation
holds since the support of the minimizers tend to not overlap. Moreover, the huge
rotational velocity Ω “ 15 is big enough to produce vortex sheets in both components
of the numerical minimizer. As we can see in Figures 3.15b and 3.15e, almost all
the indices of the numerical vortices are equal to one. Some vortices appear with
an index of 2. This is due to the vortex detection algorithm which is not able to
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identify vortices close to each others. Moreover, in Figures 3.15c and 3.15f, we use
the post processing algorithm we developed in Section 5.2 of Chapter 2 to detect
and compute the index of vortex sheets. The existence of vortex sheets is in
accordance with the conjecture presented in Chapter 1 Section 4.4 (last bullet point
in the rotational case). Indeed, this numerical simulation supports the theoretical
possibility of having vortex sheets.

(a) The squared modulus
of the first component.

(b) The vortices indices of
the first component.

(c) The vortex sheet in-
dices of the first compo-
nent.

(d) The squared modulus
of the second component.

(e) The vortices indices of
the second component.

(f) The vortex sheet in-
dices of the second compo-
nent.

Figure 3.15 – The squared modulus of the first component (a) and the second com-
ponent (d) for a minimizer in the case of two components condensate with huge
rotation Ω “ 15 in the segregation regime. The vortices indices of the first and
second component are displayed in Figures (b) and (e) respectively with Nmin “ 1,
Nmax “ 2, tol1 “ 0.05 and tol2 “ 10´5. The vortex sheets of the first and sec-
ond component are displayed in Figures (c) and (f) with m “ 0.4, M “ 0.6 and
tol3 “ 0.3.

Remark 20 In order to detect most of the vortices, it is necessary that Nmax be
close to Nmin “ 1 and tol2 small enough.

2.5 Two components condensate in a coexistence regime
(δε ă 1)

In this subsection, we study the numerical behaviour of two components Bose-
Einstein condensate in the coexistence regime (δ ă 1) as ε Ñ 0. Also, in this
subsection, due to the high rotational speed in some simulations, we look for the
minimizers of the energy E∆

ε,δ with the centrifugal force (see Remark 2 in Chapter 1)
in order to find the different regimes.
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As mentioned in Chapter 1 Section 4.3, depending on the value of δ and Ω, we
identify four different regimes.

Parameters used for the coexistence regimes

For all the two components coexistence regime with rotation, we consider the fol-
lowing parameters. For the initial datum we choose, unless stated otherwise,

ψ1
px, yq “ expp´10px´ 0.5q2 ´ 10py ` 0.3q2q{5,

ψ2
px, yq “ expp´10px` 0.7q2 ´ 10py ´ 0.1q2q{5.

We choose then the numerical values N1 “ 0.55, N2 “ 0.45. The stopping criterion
value for K∆ is set to K0 “ 10´2 and we set the number of points in the x-axis
and y-axis to N “ 128. Then, we interpolate the real and imaginary parts of the
minimizer to a grid with N “ 256. We also set the physical parameter ε “ 5ˆ10´2.
For the rest of the parameters, we refer to Section 1 of this chapter.

No vortices

In a first simulation of two components condensate in coexistence regime (δ “ 0.3),
we study the case of no rotation (Ω “ 0) and strong confinement (ε “ 5 ˆ 10´2).
We use the same initial datum as (3.2). The results are shown in Figure 3.16.

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

Figure 3.16 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy E∆

ε,δ with Ω “ 0

We can see in Figure 3.16 that we are in the coexistence regime since each
component is disk-shaped and both components are overlapping. Also, notice that
the maximum value of the squared modulus of each component depends on the
values of N1 “ 0.55 and N2 “ 0.45. This is in accordance with the theory presented
in Chapter 1 Section 4.3, for the first case.

Triangular vortex lattices

In a second simulation of a two components condensate in coexistence regime, we
study the case of moderate rotational speed (Ω “ 5), strong confinement (ε “
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5ˆ 10´2) and weak interaction strength (δ “ 0.1). The results are shown in Figure
3.17. We can see in Figure 3.17 that we are in the coexistence regime where each

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortex indices of the first com-
ponent.

(d) The vortex indices of the second com-
ponent.

Figure 3.17 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy E∆

ε,δ for Ω “ 5, and δ “ 0.1. The
vortices indices of the first component (c), and the second component (d), followed
by red lines highlighting the triangular lattice.

component is disk-shaped. Also in Figure 3.17, we compute the index of the vortices
detected with Nmin “ 1, Nmax “ 5, tol1 “ 5 ˆ 10´2, tol2 “ 10´2. As expected, all
the indices of the numerical vortices are equal to one which validates numerically
that the zeros of the function have a singly quantized phase circulation. Finally,
the red lines highlighting the vortex lattice in Figures 3.17c and 3.17d form mostly
triangles which is in accordance with the theory presented in Chapter 1 Section 4.3.

Remark 21 In Figures 3.17, 3.18, 3.38 and 3.39, we consider all the pairs of vor-
tices detected by our algorithm, and draw a red line between the two vortices of the
pair if their euclidean distance is below some threshold, which is taken close to the
mean distance between 2 vortices.
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Square vortex lattices

In a third simulation of a two components condensate in coexistence regime (δε ă 1),
we study the case of high rotational speed (Ω “ 6), strong confinement (δε “
5 ˆ 10´2) and strong interaction strength (δ “ 0.8). The results are shown in
Figure 3.18. We can see in Figure 3.18 that we are in the coexistence regime where

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortex indices of the first com-
ponent.

(d) The vortex indices of the second com-
ponent.

Figure 3.18 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy E∆

ε,δ with Ω “ 6 and δ “ 0.8. The
vortices indices of the first component (c), and the second component (d), followed
by red lines highlighting the square lattice.

each component is disk-shaped. Also in Figure 3.18, we compute the indices of the
vortices detected with Nmin “ 1, Nmax “ 3, tol1 “ 5 ˆ 10´2, tol2 “ 2 ˆ 10´2. As
expected, all the indices of the numerical vortices are equal to one which validates
numerically that the zeros of the function are singly quantized vortices. Finally,
the red lines highlighting the vortex lattice in Figures 3.18c and 3.18d form mostly
squares which is in accordance with the theory presented in Chapter 1 Section 4.3.

Double core and Stripe vortex lattice

In this last regime, for δ close to 1, we observe depending on the initial datum and
the rotational speed, either a stripe vortex lattice or a double core vortex lattice.
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For a first simulation, we consider the case of fairly high rotational speed (Ω “ 4)
and strong confinement (ε “ 5 ˆ 10´2) and strong interaction strength (δ “ 0.99).
The results are shown in Figure 3.19.

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortex indices of the first com-
ponent.

(d) The vortex indices of the second com-
ponent.

Figure 3.19 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy E∆

ε,δ with Ω “ 4, ε “ 5 ˆ 10´2 and
δ “ 0.99. The vortices indices of the first component (c) and the second component
(d) for Nmin “ 1, Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.02.

We can see in Figure 3.19 that we are in the coexistence regime where each com-
ponent is disk-shaped (although the second component is small on the border of the
disk, but comparing it to the segregation regime the case where δ Ñ 1, we can see
the disk shape). In Figures 3.19c and 3.19d, we compute the indices of the vortices
detected. First, as expected, almost all the vortices are paired up 2 by 2. Second,
all the indices of the numerical vortices are equal to one which validates numerically
that the zeros of the function have a singly quantized phase circulation. This is in
accordance with the theory presented in Chapter 1 Section 4.3, last case.

For the last simulation, we use the following initial datum:

ψ1
n,k “ ψ2

n,k “ sinpxn,k ` yn,kq,
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still with the convention that ψ1 and ψ2 satisfies the homogeneous Dirichlet bound-
ary conditions. We consider the case of fairly moderate rotational speed (Ω “ 3) and
strong confinement (ε “ 5 ˆ 10´2) and very strong interaction strength (δ “ 0.99).
The results are shown in Figure 3.20.

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortex indices of the first com-
ponent.

(d) The vortex indices of the first com-
ponent.

Figure 3.20 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy E∆

ε,δ with Ω “ 3 and δ “ 0.99. The
vortices indices of the first component (c) and the second component (d) for Nmin “

1, Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.01.

We can see in Figure 3.20 that we are in the coexistence regime still where each
component is disk-shaped. Also in Figure 3.20, we compute the index of the vortices
detected. As expected, all the indices of the numerical vortices are equal to one which
validates numerically that the zeros of the function have a singly quantized phase
circulation. We can see a stripe pattern in both components (Figures 3.20a, 3.20b),
this is in accordance with the theory presented in Chapter 1 Section 4.3, last phase.
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3 Numerical results for a discretization of the en-

ergy using Fast Fourier Transform

This second section is devoted to displaying the numerical minimizers of GP energy
using Fourier transform (2.4). We cover all the regimes described in Chapter 1.

Similarly to Section 2, we first cover the one component cases with and without
rotation. We then move on to the two components condensates results. We display
both segregation and coexistence regimes with and without rotation.

3.1 One component condensate without rotation

In this first subsection, we present numerical results for one component condensate
with no rotation. They show the convergence of |ψ|2 Ñ ρ as ε tends to 0. This
result will be proved later in Chapter 4 Theorem 31.

We introduce below the parameters used for the one component simulations.

Parameters used for the one component simulations

For all the one component simulations we consider the following parameters. For
the initial datum we choose ψ0px, yq “ expp´10x2 ´ 10y2q{5. We choose the con-
finement parameter ε “ 10´2, the values N1 “ 1, N2 “ 0, (since N2 “ 0 then δ plays
no role here). For the rest of the parameters, we refer to Section 1 of this chapter.

Numerical simulations

In this first simulation of a one component condensate without rotation (Ω “ 0) we
consider a strong confinement (ε “ 10´2). We set the number of points in the x-axis
and y-axis to N “ K “ 512. In this simulation, the gradient descent algorithm con-
verged due to the stopping criterion K∆ ď 10´2. The results are shown in Figure
3.21b. As we can see, there are no vortices in the numerical minimizer. This is in
accordance with the theory presented in Chapter 1 Section 4.2 (first case Ω ă Ω1

ε).
Moreover the squared modulus of a minimizer converges to the positive part of the
function ρ as we can see in Figure 3.21a.

In Figure 3.22, we present alongside the axis y “ 0, the function ρpx, yq (in blue),
the positive part of ρpx, yq (in black), the squared modulus of a minimizer for the
energy E∆

ε for Ω “ 0, N “ K “ 512, ε “ 0.1 (in green mark x) and ε “ 0.01 (in
red mark x). As we can see, the Figure 3.22 numerically illustrates the convergence
of the squared modulus of a minimizer for the energy E∆

ε to ρ when ε tends to 0
at fixed rotational speed Ω “ 0. We observe that, as ε gets smaller, the squared
modulus of a minimizer of the energy converges to the positive part of ρ. This is in
accordance with Theorem 31 in Chapter 4.
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(a) The graph of ρpx, yq ą 0. (b) The squared modulus of a minimizer
for Ω “ 0, ε “ 10´2.

Figure 3.21 – Comparison between the positive part of ρ and the squared modulus
of a minimizer for the energy E∆

ε without rotation (Ω “ 0).

Figure 3.22 – The graph of ρpx, 0q (in blue), the positive part of ρpx, 0q (in black),
the squared modulus of a minimizer for the energy E∆

ε for ε “ 0.1 (in green mark
x) and for ε “ 0.01 (in red mark x) alongside the axis y “ 0.

3.2 One component condensate with rotation

We consider the theoretical results described in Chapter 1 Section 4.2. The results
identify four different regimes for the behaviour of the one component Bose–Einstein
condensate depending on how big Ωε is as ε tends to zero. These four regimes
are separated by three characteristic rotational speeds Ωi

ε, i “ 1, 2, 3 (see (1.14)).
We refer to Section 3.1 of this chapter for the parameters we use for all the one
component simulations. Then we explain how we identify the four different regimes
numerically. We conclude with numerical simulations for small ε in each one of the
four regimes.
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Identification of the four regimes

In order to identify the four regimes, we proceed as follows and as we did in Section
2. First we take ε “ 10´1 and we use the gradient algorithm described in Section 4 of
Chapter 1 to compute minimizers of E∆

ε,δ for several rotational speeds. Then we do
the same for ε “ 5ˆ10´2. Based on all these simulations, and the expressions (1.14),
we identify the 3 critical values for the rotational speed which are shown in the Fig-
ure 3.23. This provides us with some critical values of the rotational speed when
ε “ 10´2. The four regimes numerically observed for ε “ 10´2 that we present below
are separated by these three critical values. In view of Figure 3.23, for ε “ 10´2

Figure 3.23 – Ω as a function of ε and the associated zones using the discrete energy
(2.4) with N=K=128.

we choose the following values for the rotational velocity: Ω “ t1, 20, 30, 40, 50, 70u.
We choose these values to exhibit at least one case of each zone

We can see a difference between the estimation of the critical constants obtained
with the finite difference discretization of the energy (Figure 3.3) and the Fourier
transform discretization of the energy (Figure 3.23). This might be due to several
things:

• The grid orientation effect caused by the discretization choice (see Remark
19). Each approach may require different discretization parameters to mimic
the Dirichlet boundary conditions at the boundary of the disk.

• The Fourier transform discretization gives more importance to the rotational
energy than the finite difference approach.

• The values ε “ 10´1 and ε “ 5ˆ 10´2 are maybe not small enough to predict
the critical constants for ε “ 10´2 using both approaches.
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Small rotational speed (Ωε ă Ω1
ε)

In a first simulation of a one component condensate, we consider the case of small
rotational speed (Ω “ 1) and strong confinement (ε “ 10´2). This simulation is
carried out with N “ 512. In this simulation, the gradient descent algorithm con-
verged due to the stopping criterion K∆ ď 10´2. The results are shown in Figure
3.24. As we can see, there are no vortices in the numerical minimizer which indicates
we are in the first zone. This is in accordance with the theory presented in Chapter
1 Section 4.2 (first case Ω ă Ω1

ε).

Figure 3.24 – The squared modulus of a minimizer for the energy E∆
ε with small

rotational speed (Ω “ 1) and strong confinement (ε “ 10´2) computed with N “ 512
and K∆ “ 10´2.

Moderate rotational speed (Ω1
ε ă Ωε ă Ω2

ε)

In a second simulation of a one component condensate, we consider the case of a
moderate rotational velocity (Ω “ 20) and strong confinement (ε “ 10´2), according
to Figure 3.3. First, we compute a minimizer with N “ 512. Then we interpolate
its real and imaginary parts and compute another minimizer with N “ 1024. In this
simulation, the gradient descent algorithm converged due to the stopping criterion
K∆ which has a value of 5ˆ10´2. We compute numerically the indices of the vortices
using the algorithm described in Chapter 2 Section 5.1. The results are shown in
Figure 3.25. As we can see, there are several vortices in the numerical minimizer
and there is no sign of a giant hole in the center. This corresponds to the case of a
moderate rotational speed and is in accordance with the second case of the theory
presented in Chapter 1 Section 4.2.

In a third simulation of a one component condensate, we still consider the case of
a moderate rotational velocity (Ω “ 30) and strong confinement (ε “ 10´2). Once
again we use an interpolation from N “ 512 to N “ 1024. In this simulation, the
gradient descent algorithm converged due to the stopping criterion K∆ which has
a value of 5 ˆ 10´2. We also compute the indices of the vortices numerically using
the algorithm described in Chapter 2 Section 5.1. The results are shown in Figure
3.26. As we can see, there are vortices in the numerical minimizer and there is a
dark disk in the center (not present in Figure 3.25) which indicates that we are

52



CHAPTER 3. NUMERICAL RESULTS

Figure 3.25 – The squared modulus of a minimizer for Ω “ 20 and ε “ 10´2. In the
right panel, the numerical computation of the indices of the vortices is carried out
with Nmin “ 1, Nmax “ 3, tol1 “ 0.1 and tol2 “ 0.05.

close to the limit between zone 2 and zone 3 as shown in Figure 3.3. This is due to
the moderate rotational velocity and is in accordance with the theory presented in
Chapter 2 Section 4.2. Moreover, the numerical index of almost all the numerical
vortices is equal to one. This validates numerically that almost all the zeros of the
wave function have a singly quantized phase circulation.

Figure 3.26 – The squared modulus of a minimizer for Ω “ 30 and ε “ 10´2. In the
right panel, the numerical computation of the indices of the vortices is carried out
with Nmin “ 1, Nmax “ 3, tol1 “ 0.05 and tol2 “ 0.02.

Big rotational speed (Ω2
ε ă Ωε ă Ω3

ε)

In a fourth simulation of a one component condensate, we consider the case of a fairly
high rotational velocity (Ω “ 40) and strong confinement (ε “ 10´2) in accordance
with the regimes obtained in Figure 3.23. Once again we use an interpolation from
N “ 512 to N “ 1024. The gradient descent algorithm converged due to the
stopping criterion K∆ ď 5 ˆ 10´2. The results are shown in Figure 3.27a. As we
can see, there is a giant hole in the center, surrounded by vortices on an annulus in
the numerical minimizer. This is due to the centrifugal force coming into play with
the fairly high rotational velocity and is in accordance with the theory presented in
Chapter 2 Section 4.2.
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(a) The squared modulus
of a minimizer of the en-
ergy E∆

ε,δ.

(b) The vortices’ indices of
a minimizer of the energy
for Nmin “ 1, Nmax “ 3,
tol1 “ 0.05 and tol2 “

0.02.

(c) The index of the giant
hole of a minimizer of the
energy for with r “ 1.523
(see Remark 17)

Figure 3.27 – The squared modulus of a minimizer for Ω “ 40 and ε “ 10´2. The
vortices indices of the singly quantized vortices (a) and the giant hole (b).

In Figure 3.27, we compute the indices of the vortices in the numerical mini-
mizer displayed in Figure 3.27a. First, in Figure 3.27b, we compute the indices of
the vortices in the annulus. Then, in Figure 3.27c, we compute the index of the
giant hole with r “ 1.523 (see Remark 17). As we can see, all the indices of the
numerical vortices in Figure 3.27b around the giant hole are equal to one which
validates numerically that almost all the zeros of the wave function have a singly
quantized phase circulation. In Figure 3.27c, the index of the giant hole is equal to
100. This is in accordance with the theory presented in Chapter 2 Section 4.2.

In a fifth simulation of a one component condensate, we study the case of a fairly
high rotational velocity (Ω “ 50) and strong confinement (ε “ 10´2) in accordance
with the regimes obtained in Figure 3.23. Once again we use an interpolation from
N “ 512 to N “ 1024. In this simulation, the gradient descent algorithm converged
due to the stopping criterion K∆ ď 5 ˆ 10´2. The results are shown in Figure
3.28a. As we can see, the giant hole in the center is now bigger, surrounded by
less vortices on the annulus of the numerical minimizer than before. This is due to
the centrifugal force coming into play with a very high rotational velocity and is in
accordance with the theory presented in Chapter 2 Section 4.2 (fourth case Ω3

ε ă Ω).

In Figure 3.28, we compute the indices of the vortices of the numerical minimizer
displayed in Figure 3.28a. Firstly, in Figure 3.28b, we compute the indices of the
vortices on the annulus. Then, in Figure 3.28c, we compute the index of the giant
hole. As we can see, all the indices of the numerical vortices in Figure 3.28b around
the giant hole are equal to one which validates numerically that the zeros of the
function have a singly quantized phase circulation. While in Figure 3.28c, the index
of the giant hole is equal to 263. This is in accordance with the theory presented in
Chapter 2 Section 4.2 (fourth case).
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(a) The squared modulus
of a minimizer of the en-
ergy E∆

ε,δ.

(b) The vortices indices of
a minimizer of the energy
for Nmin “ 1, Nmax “ 3,
tol1 “ 0.05 and for tol2 “
0.02.

(c) The vortices indices of
a minimizer of the energy
with r “ 2.188 (see Re-
mark 17))

Figure 3.28 – The squared modulus of a minimizer (a) for Ω “ 50 and ε “ 10´2.
The vortices indices of the singly quantized vortices (b) and the giant hole (c).

Huge rotational speed (Ω3
ε ă Ωε)

In a last simulation of one component condensate, we study the case of a huge
rotational velocity (Ω “ 70) and strong confinement (ε “ 10´2). Once again, we
use an interpolation from N “ 512 to N “ 1024. The gradient descent algorithm
converged due to the stopping criterion K∆ ď 7 ˆ 10´2. The results are shown in
Figure 3.29a. As we can see, the giant hole in the center is now bigger, surrounded
by less vortices on the annulus of the numerical minimizer than before. This is due
to the centrifugal force coming into play with a huge rotational velocity and is in
accordance with the theory presented in Chapter 2 Section 4.2 (fourth case Ω3

ε ă Ω).

(a) The squared modulus
of a minimizer of the en-
ergy E∆

ε,δ.

(b) The vortices indices of
a minimizer of the energy
for Nmin “ 1, Nmax “ 3,
tol1 “ 0.05 and for tol2 “
0.02.

(c) The vortices indices of
a minimizer of the energy
with r “ 2.85 (see Remark
17))

Figure 3.29 – The squared modulus of a minimizer (a) for Ω “ 70, ε “ 10´2. The
vortices indices of the singly quantized vortices (b) and the giant hole (c).

In Figure 3.29, we also compute the indices of the vortices in the numerical
minimizer displayed in Figure 3.29a. First, in Figure 3.29b, we compute the indices
of the vortices in the annulus. Then, in Figure 3.29c, we compute the index of the
giant hole. As we can see, all the indices of the numerical vortices in Figure 3.29b
around the giant hole are equal to one which validates numerically that the zeros
of the function have a singly quantized phase circulation. While in Figure 3.29c,
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the index of the giant hole is equal to 560. This is in accordance with the theory
presented in Chapter 2 Section 4.2 (fourth case).

3.3 Two components condensate without rotation (Ω “ 0)

We move on the theoretical results described in the first part of Chapter 1 Section
4.4.

Parameters used for two components simulations without rotation

We consider the following parameters for all the simulations of this subsection. We
choose the numerical values N1 “ 0.55, N2 “ 0.45. The stopping criterion value for
K∆ is set to K0 “ 10´2 and we set the number of point in the x-axis and y-axis
to N “ 256. We then interpolate the real and imaginary parts of the minimizer to
a grid with N “ 512. We also set the physical parameters ε “ 5 ˆ 10´2 and the
rotational velocity Ω “ 0. For the rest of the parameters, we refer to Section 1 of
this chapter.

Remark 22 For the second simulation, displayed in Figure 3.31, we choose the
same initial datum as before (see (3.2)). As to the first and third simulations (Fig-
ures 3.30 and 3.32), we started with the numerical minimizer obtained in Figure
3.31 as initial datum without changing the other parameters.

Strong confinement in a strong segregation regime (δεε
2 Ñ 8 as εÑ 0)

In a first simulation of two components condensate without rotation, we study the
case of strong segregation regime (δ “ 4000) and strong confinement (ε “ 5ˆ10´2).
This simulation is carried out with N “ 256. In this simulation, the gradient
descent algorithm converged due to the stopping criterion K∆ ď 10´2. The results
are shown in Figure 3.30. As we can see in Figures 3.30a and 3.30b, we are in the
segregation regime (δ ą 1). In Figure 3.30c, we can see that the sum of the squared
modulus of the two components present a red and white curve which separates the
two components with minpx,yqPD |ψ

1˚|2 ` |ψ2˚|2 « 0.14. This is in accordance with
the theory presented in Chapter 1 Section 4.4 (first case with no rotation where
δεε

2 Ñ `8).
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(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The sum of the squared
modulus of both compo-
nents.

Figure 3.30 – The squared modulus of the first component (a) and the second com-
ponent (b) of a minimizer for a two components condensate for Ω “ 0, ε “ 5ˆ 10´2

and δ “ 4000. Their sum is displayed in figure (c).

Strong confinement in segregation regime (δε ą 1 fixed as εÑ 0)

In a second simulation of two component condensate without rotation, we study the
case of moderate segregation regime (δ “ 1.5) and strong confinement (ε “ 5ˆ10´2).
This simulation is carried out with N “ 256. In this simulation, the gradient descent
algorithm converged due to the stopping criterion K∆ ď 10´2. The results are shown
in Figure 3.31. As we can see in Figures 3.31a and 3.31b, we are in the segregation
regime (δ ą 1). In Figure 3.31c, we can see that the sum of the squared modulus
of the two components present a white and blue curve which is the separation
areas between the two components with minpx,yqPD |ψ

1˚|2 ` |ψ2˚|2 « 0.78. This is in
accordance with the theory presented in Chapter 1 Section 4.4 (second case with no
rotation where δ ą 1 is fixed).

(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The sum of the squared
modulus of both compo-
nents of the minimizer.

Figure 3.31 – The squared modulus of the first component (a) and the second com-
ponent (b) of a minimizer for two components condensate for Ω “ 0, ε “ 5 ˆ 10´2

and δ “ 1.5. Their sum is displayed in figure (c).

Strong confinement in weak segregation regime (δε Ñ 1 as εÑ 0)

In a last simulation of two components condensate without rotation, we study the
case of a weak segregation regime (δ “ 1.02) and strong confinement (ε “ 5ˆ10´2).
This simulation is carried out with N “ 256. In this simulation, the gradient descent
algorithm converged due to the stopping criterion K∆ ď 10´2. The results are shown
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in Figure 3.32 and Figure 3.32c. As we can see in Figures 3.32a and 3.32b, we are
in the segregation regime (δ ą 1). In Figure 3.32c, we can see that the sum of the
squared modulus of the two components does not present a separation area of any
kind and minpx,yqPD |ψ

1˚|2 ` |ψ2˚|2 « 0.976. Here ε̃ “ 0.35. This is in accordance
with the theory presented in Chapter 1 Section 4.4 (second case with no rotation
where δε Ñ 1 and ε̃Ñ 0).

(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The sum of the squared
modulus of both compo-
nents.

Figure 3.32 – The squared modulus of the first component (a)) and the second
component (b) of a minimizer for two components condensate for Ω “ 0, ε “ 5ˆ10´2

and δ “ 1.02. Their sum is displayed in figure (c).

3.4 Two components condensate with rotation (Ω ‰ 0) in a
segregation regime (δε ą 1)

We move now on the theoretical results described in the second part of Chapter 1
Section 4.4.

Parameters used for the rotating two components simulations

For the next simulations, in the segregation regime δε Ñ 1 and ε ăă ε̃, we took
the following parameters. We choose the same initial datum as before (3.2). We
choose then the numerical values N1 “ 0.55, N2 “ 0.45. We also set the physical
parameters ε “ 10´2, δ “ 1 ` ε “ 1.01 so that ε̃ “

?
ε “ 0.1. For the rest of the

parameters, we refer to Section 1 of this Chapter.

Small rotational speed

In a first simulation of a rotating two components condensate in the segregation
regime, we study the case of low rotation (Ω “ 1) and strong confinement (ε “ 10´2).
We use an interpolation from N “ 256 to N “ 512. In this simulation, the gradient
descent algorithm converged due to the stopping criterion K∆ ď 2 ˆ 10´2. The
results are shown in Figure 3.33. As we can see, we are in the segregation regime
with no numerical vortices presented in neither of the components of the numerical
minimizer. This is in accordance with the theory presented in Chapter 1 Section 4.4
(the first bullet point in the rotational case).
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(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

Figure 3.33 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for a two components condensate for Ω “ 1.

Moderate rotational speed

In a second simulation of a rotating two components condensate in the segrega-
tion regime, we study the case of moderate rotational velocity (Ω “ 3) and strong
confinement (ε “ 10´2). Once again, we use an interpolation from N “ 256 to
N “ 512. In this simulation, the gradient descent algorithm converged due to the
stopping criterion K∆ ď 2ˆ 10´2. The results are shown in Figure 3.34. As we can
see, there are vortices in one of the components of the numerical minimizer 3.34b.
This is in accordance with the theory presented in Chapter 1 Section 4.4 (second
bullet point of the rotational case).

(a) The squared modulus
of the first component.

(b) The squared modulus
of the second component.

(c) The vortices indices of
the second component for
Nmin “ 1, Nmax “ 5,
tol1 “ 0.05 and tol2 “

0.02.

Figure 3.34 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for a two components condensate with Ω “ 3. The
vortices indices are displayed in Figure (c).

In Figure 3.34c, we compute the indices of the vortices of the second component
of the minimizer. As we can see, all the indices of the numerical vortices are equal
to one which validates numerically that the zeros of the function have a singly quan-
tized phase circulation.
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Big rotational speed

In a third simulation of a rotating two components condensate in the segregation
regime, we study the case of moderate rotational velocity (Ω “ 6) and strong con-
finement (ε “ 10´2). Once again we use an interpolation from N “ 256 to N “ 512.
In this simulation, the gradient descent algorithm converged due to the stopping
criterion K∆ ď 2 ˆ 10´2. The results are shown in Figure 3.35. As we can see,
there are vortices in both components of the numerical minimizer (Figures 3.35c
and 3.35d). This is in accordance with the theory presented in Chapter 1 Section
4.4 (second bullet point of the rotational case).

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortices indices of the first com-
ponent.

(d) The vortices indices of the second
component.

Figure 3.35 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for a two components condensate with Ω “ 6. The
vortices indices of the first component (c) and the second component (d) withNmin “

1, Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.02.

Also in Figure 3.35, we compute the vortices indices of the numerical minimizer.
First, in Figure 3.35c, we compute the indices of the vortices of the first component
with Nmin “ 1, Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.02. Second, in Figure 3.35b,
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we compute the index of the second component with the same parameters. As we
can see, all the indices of the numerical vortices are equal to one which validates
numerically that the zeros of the function have a singly quantized phase circulation.

Huge rotational speed

In a last simulation of a rotating two components condensate in the segregation
regime, we study the case of high rotational velocity (Ω “ 15) and strong confine-
ment (ε “ 10´2). Once again we use an interpolation from N “ 256 to N “ 512.
In this simulation, the gradient descent algorithm converged due to the stopping
criterion K∆ ď 2 ˆ 10´2. The results are shown in Figure 3.36. As we can see, we
are in the segregation regime and there are vortex sheet patterns in each component
of Figure 3.36. This is in accordance with the theory presented in Chapter 1 Section
4.4 (last bullet point of the rotational case).

(a) The squared modulus
of the first component.

(b) The vortex indices of
the first component.

(c) The vortex sheet in-
dices of the first compo-
nent.

(d) The squared modulus
of the second component.

(e) The vortex indices of
the second component.

(f) The vortex sheet in-
dices of the second compo-
nent.

Figure 3.36 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for a two components condensate with Ω “ 15. The
vortex indices of the first component (c) and for the second component (d) with
Nmin “ 1, Nmax “ 2, tol1 “ 0.1 and tol2 “ 10´5. The vortex sheet indices of the
first component (e) and for the second component (f) for m “ 0.4, M “ 0.6 and for
tol3 “ 0.3.

Also in Figure 3.36, we compute the vortices indices of the numerical minimizer.
In Figure 3.36b (Figure 3.36e), we compute the index of the vortices detected by
our algorithm presented in Section 5.1 of Chapter 2 of the first (respectively second)
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component with Nmin “ 1, Nmax “ 2, for tol1 “ 0.1 and for tol2 “ 10´5. As we
can see, almost all the indices of the numerical minimizer are equal to one which
validates numerically that these numerical vortices have a singly quantized phase
circulation. Since these vortices are condensed, in the meaning that they are so close
to each others, it validates numerically the existence of vortex sheets when δε Ñ 1
and ε̃Ñ 0.

In order to detect all of the vortices and their indices, we developed a vortex
sheet detection algorithm. Given a certain minimizer with vortex sheets, it identifies
the contours of each vortex sheet, optimize these contours to create a connex path,
reorganize the path into an anticlockwise path then compute the index of each vortex
sheet detected (see Chapter 2 Section 5.2 for more details on the algorithm).

In Figures 3.36c and 3.36f, we compute the index of numerical vortex sheets. In
Figure 3.36c (Figure 3.36f), we compute the index of the vortices sheets detected by
our algorithm of the first (respectively second) component with m “ 0.4, M “ 0.6
and tol3 “ 0.3 (see Chapter 2 Section 5.2 for a description of the method). As we can
see, the indices of the different numerical vortex sheets detected are strictly positive
which validates numerically that these vortex sheets have a singly quantized phase
circulation. This validates numerically the existence of vortex sheets when δε Ñ 1
and ε̃Ñ 0.

Remark 23 Notice that the index of any vortex sheet in Figures 3.36c and 3.36f
is greater or equal than the sum of the single vortices detected in the same vortex
sheet in Figures 3.36b and 3.36e. For example let us compare Figures 3.36f and
3.36e. Consider the green vortex sheet in the center. The first algorithm detected
18 singly quantized vortices and the second algorithm detected one vortex sheet with
index 18. In contrast, for the red vortex sheet, the first algorithm detected 19 singly
quantized vortices, and the second algorithm detected one vortex sheet with index 21.
This indicates that the single vortex detection algorithm fails to detect all the single
vortices with these parameters.

3.5 Two components condensate in the coexistence regime
δε ă 1

In this subsection, we observe the numerical behaviour of a two components Bose-
Einstein condensate in the coexistence regime (δ ă 1) as ε Ñ 0. Also, in this
subsection, due to the high rotational speed in some simulations, we look for the
minimizers of the energy E∆

ε,δ with the centrifugal force (see Remark 2 in Chapter 1)
in order to find the different regimes.
As mentioned in Chapter 1 Section 4.4, depending on the value of δ and Ω, we
identify four different regimes.

Parameters used for the coexistence regimes

For all the two component coexistence regime, we consider the following parameters.
Unless stated otherwise, we choose for the initial datum the same as (3.2). We also
choose the numerical values N1 “ 0.55, N2 “ 0.45. The stopping criterion value for
K∆ is set to K0 “ 10´2. We also set the physical parameter ε “ 5 ˆ 10´2. For the
rest of the parameters, we refer to Section 1 of this chapter.
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No vortices

In a first simulation of a two components condensate in coexistence regime (δε ă 1),
we study the case of no rotational velocity (Ω “ 0) and strong confinement (ε “
5ˆ 10´2). This simulation is carried out with N “ 128 which we then interpolated
to N “ 256. In this simulation, the gradient descent algorithm converged due to
the stopping criterion K∆ ď 10´2. The results are shown in Figure 3.37.

(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

Figure 3.37 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy E∆

ε,δ with Ω “ 0 and δ “ 0.9.

We can see in Figure 3.37 that we are in the coexistence regime since each
component is disk-shaped depending on the values of N1 “ 0.55 and N2 “ 0.45.
This is in accordance with the theory presented in Chapter 1 Section 4.3, the first
case.

According to Theorem 41 of Chapter 4, starting with an initial datum that is
symmetrical leads to a symmetrical minimizer. For the next 3 simulations (triangu-
lar/square/stripe vortex lattice), we will use the following initial data:

ψ1
“

1

5
expp´10px´ 0.5q2 ´ 10py ` 0.3q2q,

ψ2
“

1

5
expp´10px` 0.7q2 ´ 10py ´ 0.1q2q.

Triangular vortex lattices

In a second simulation of a two components condensate in coexistence regime, we
study the case of high rotational speed (Ω “ 7), strong confinement (ε “ 5ˆ 10´2)
and weak interaction strength (δ “ 0.2). This simulation is carried out with N “ 128
which we then interpolated to N “ 256. In this simulation, the gradient descent
algorithm converged due to the stopping criterion K∆ ď 10´2. The results are shown
in Figure 3.38. We can see in Figure 3.38 that we are in the coexistence regime where
each component is disk-shaped. Also in Figure 3.38, we compute the index of the
vortices detected with Nmin “ 1, Nmax “ 3, tol1 “ 5 ˆ 10´2, tol2 “ 2 ˆ 10´2. As
expected, all the indices of the numerical vortices are equal to one which validates
numerically that the zeros of the function have a singly quantized phase circulation.
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(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortex indices of the first com-
ponent.

(d) The vortex indices of the second com-
ponent.

Figure 3.38 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy with centrifugal force E∆

ε,δ for Ω “ 7,
ε “ 5 ˆ 10´2 and δ “ 0.2. The vortices indices of the first component (c), and the
second component (d), followed by red lines highlighting the triangular lattice.

Finally, the red lines highlighting the vortex lattice (see Remark 21) in Figures 3.38c
and 3.38d form mostly triangles which is in accordance with the theory presented
in Chapter 1 Section 4.3 second case.

Square vortex lattices

In a third simulation of a two components condensate in coexistence regime (δε ă 1),
we study the case of high rotational speed (Ω “ 8), strong confinement (δε “
5 ˆ 10´2) and strong interaction strength (δ “ 0.8). This simulation is carried out
with N “ 128 which we then interpolated to N “ 256. In this simulation, the
gradient descent algorithm converged due to the stopping criterion K∆ ď 10´2.
The results are shown in Figure 3.39. We can see in Figure 3.39 that we are in the
coexistence regime where each component is disk-shaped. Also in Figure 3.39, we
compute the index of the vortices detected with Nmin “ 1, Nmax “ 3, tol1 “ 5ˆ10´2,
tol2 “ 2ˆ10´2. As expected, all the indices of the numerical vortices are equal to one
which validates numerically that the zeros of the function have a singly quantized
phase circulation. Finally, the red lines highlighting the vortex lattice (see Remark
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(a) The squared modulus of the first
component.

(b) The squared modulus of the second
component.

(c) The vortex indices of the first com-
ponent.

(d) The vortex indices of the second com-
ponent.

Figure 3.39 – The squared modulus of the first component (a), and the second
component (b) of a minimizer for the energy with centrifugal force E∆

ε,δ for Ω “ 8,
ε “ 5 ˆ 10´2 and δ “ 0.8. The vortices indices of the first component (c), and the
second component (d), followed by red lines highlighting the square lattice.

21) in Figures 3.39c and 3.39d form mostly squares which is in accordance with the
theory presented in Chapter 1 Section 4.3 third case.

Double core and Stripe vortex lattice

In this last regime, for δ close to 1, we observe depending on the initial datum and
the rotational speed, either stripe vortex lattice or double core vortex lattice.

For a first simulation, we use the same initial datum ψ1 and ψ2 as before. We
consider the case of fairly high rotational speed (Ω “ 4) and strong confinement (ε “
5ˆ 10´2). This simulation is carried out with N “ 128 which we then interpolated
to N “ 256. In this simulation, the gradient descent algorithm converged due to the
stopping criterion K∆ ď 10´2. The results are shown in Figures 3.40a and 3.40d.

Due to the high rotation, the centrifugal force comes into play. Indeed, a dark
area appears in the middle of each component of the minimizer. Therefore, in
Figures 3.40b and 3.40e, in addition to minimizing the energy EΩ

ε,δ, we compute a
minimizer of the energy E∆

ε,δ with centrifugal force for the same parameters, taking
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the minimizer found in Figures 3.40a and 3.40d as initial data. We can see in Figure

(a) The squared modulus
of the first component.

(b) The squared modulus
of the first component.

(c) The vortex indices
of the first component
Nmin “ 3, Nmax “ 4.

(d) The squared modulus
of the second component.

(e) The squared modulus
of the second component.

(f) The vortex indices of
the second component for
Nmin “ 1, Nmax “ 4.

Figure 3.40 – The squared modulus of the first component (a) (resp. (b)), and the
second component (d) (resp. (e)) of a minimizer for the energy E∆

ε,δ (resp. the energy
with centrifugal force E∆

ε,δ) with Ω “ 4 and δ “ 0.995. The vortices indices of the
first component (e) and the second component (f) for tol1 “ 0.05 and tol2 “ 0.01.

3.40 that we are in the coexistence regime where each component is disk-shaped
(although the second component is small on the border of the disk, but comparing
it to the segregation regime the case where δ Ñ 1, we can see the disk shape). In
Figures 3.40c and 3.40f, we compute the indices of the vortices detected. First, as
expected, almost all the vortices are paired up 2 by 2. Second, almost all the indices
of the numerical vortices are equal to one which validates numerically that the zeros
of the function have a singly quantized phase circulation except for one vortex in
the first component 3.40c which has an index of 2. This also presents a double core
vortex that are too close to each other which cannot be detected as two different
vortices by our index detecting algorithm. This is in accordance with the theory
presented in Chapter 1 Section 4.3, last case.

For the second and last simulation, we use the following initial data:

ψ1
n,k “ ψ2

n,k “ sinpxn,k ` yn,kq,

still with the convention that ψ1 and ψ2 satisfies the homogeneous Dirichlet bound-
ary conditions. We consider the case of fairly high rotational speed (Ω “ 5) and
strong confinement (ε “ 5 ˆ 10´2) and very strong interaction strength (δ “ 0.98).
This simulation is carried out with N “ 128, then we interpolate to N “ 256. In this
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simulation, the gradient descent algorithm converged due to the stopping criterion
K∆ ď 10´2. The results are shown in Figures 3.41a and 3.41d.

Due to the high rotation, the centrifugal force comes into play again and a dark
area appears in the middle of each component of the minimizer. Therefore, in Figures
3.41b and 3.41e, we computed a minimizer of the energy E∆

ε,δ with centrifugal force
for the same parameters, taking the minimizer found in Figures 3.41a and 3.41d as
initial data.

(a) The squared modulus
of the first component.

(b) The squared modulus
of the first component.

(c) The vortex indices of
the first component for
Nmin “ 1, Nmax “ 3.

(d) The squared modulus
of the second component.

(e) The squared modulus
of the second component.

(f) The vortex indices of
the first component for
Nmin “ 1, Nmax “ 4.

Figure 3.41 – The squared modulus of the first component (a) (resp. (b)), and the
second component (d) (resp. (e)) of a minimizer for the energy E∆

ε,δ (resp. the
energy with centrifugal force E∆

ε,δ) with Ω “ 5 and δ “ 0.998. On the right panel,
we display the vortices indices of the first component (e) and the second component
(f) for tol1 “ 0.05 and tol2 “ 0.01.

We can see in Figure 3.41 that we are in the coexistence regime still where
each component is disk-shaped. Also in Figure 3.41, we compute the index of the
vortices detected. As expected, almost all the indices of the numerical vortices are
equal to one which validates numerically that the zeros of the function have a singly
quantized phase circulation (except for one vortex in the second component 3.41f
which has an index of 2). We can see a stripe pattern in both components (Figures
3.41b, 3.41e), which is in accordance with the theory presented in Chapter 1 Section
4.3, last case.
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4. COMPARISON BETWEEN FINITE DIFFERENCE AND
FOURIER TRANSFORM APPROACHES

4 Comparison between finite difference and

Fourier transform approaches

This section is a brief comparison between the finite difference approach (Section
1 of Chapter 2) and the fast Fourier transform approach (Section 2 of Chapter 2).
Although the finite difference approach seemed to be more time efficient, it also has
some drawbacks.

In terms of computational time, the finite difference approach is way more ef-
ficient when the number of points in the discretization is big (N ě 512). Using
predefined sparse matrices, the finite difference approach allows for a faster com-
putation of the minimizer (gradients are faster to compute) than the fast Fourier
transformation approach since the number of operations is much less. An example
of the time efficiency of the finite difference approach over the FFT is displayed in
Figure 3.42a. In this figure, we can see that the computation time of a minimizer
of the energy E∆

ε,δ using finite difference approach is almost 1.5 times faster with
N “ 256. Notice that the energy E∆

ε,δ in Figure 3.42b decreases faster using finite
difference approach but then stagnates above the energy level of the FFT approach.
This is mainly because the energy using these two approaches is not the same func-
tional. Finally we see in Figure 3.42c that the value of K mainly decreases over the
number of iterations to finally reach the stopping criterion (K∆ “ 0.05). In this
figure we see as well that the gradient method using the finite difference approach
needs less iterations to converge than using FFT approach.

In terms of qualitative results, the Fourier transformation approach is more rele-
vant. In particular, it shows better numerical resemblance to the theoretical regimes
described in Chapter 1. For instance, comparing Figures 3.17 and 3.38, they both
exhibit the coexistence regime and a triangular lattice. The difference is that the
triangular lattice using the Fourier transform approach is more distinctive. In addi-
tion to that, in the case of a one component condensate with high rotation, we can
see a grid orientation effect affecting the results using the finite difference scheme.
Indeed, the shape of the hole is different in this regime: it is a square shaped hole
in Figures 3.7 and 3.8 (finite difference approach with Ω “ 85 and Ω “ 110) and it
is a disk in Figures 3.28 and 3.29 (fast Fourier transform approach with Ω “ 50 and
Ω “ 70).

(a) The computation time
(in seconds) as a function
of ´ logpK∆q.

(b) The evolution of energy
as a function of the number
of iterations.

(c) The evolution of the
value of K∆ as a function
of the number of iterations.

Figure 3.42 – Data extracted from a simulation of a minimizer of the energy E∆
ε,δ for

one component condensate using both finite difference and FFT approaches with
N “ 256, ε “ 0.05 and Ω “ 5.
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5 GPELab comparison

In this section, we study the efficiency of EPG used in this thesis (using Fourier
transformation) compared to GPELab (see [8, 9, 11]) for minimizing the energy
E∆
ε,δ. At first sight, the EPG method is explicit whereas the GPELab method solves

a linear system at each time step ∆t (here ∆t denotes the step of GPELab). We
display for each comparison test three convergence criteria (see below) as well as the
number of iterations, the energy (as defined in (1.13)) and the execution time. Let
ψn denote the nth iteration using both algorithms. We compute the following three
criteria

1. the difference between two successive iterations }ψn ´ ψn´1}
2
8,

2. the criterion we developed (see equation (2.8)): K∆,

3. the energy evolution |E∆
ε,δpψnq ´ E

∆
ε,δpψn´1q|.

For the simulations with GPELab, we use the first criterion as a convergence test
(which is a native criterion in the code). For the simulations with EPG method,
we use the first two criteria (in contrast to the previous numerical simulations of
Sections 2 and 3 where the only criterion with K∆ is used). For each test case, we
compute the final value of the three criteria and we compare them.

Remark 24 The energy computed by GPELab’s method is different from (1.13).
The continuous GPELab’s energy goes as follows (see [9, 11] for more details):

EGPEpu1, u2q “

ż

D

2
ÿ

`“1

„

1

2
|∇u`|2 ` V`|u`|2 ´ Ωu˚`Lzu`



`

ż

D

u˚
β

2
Fu,

where V` “ ´
ρ

2ε2
is the confinement function associated to component number `,

β “ 1
2ε2

is the intra-component interaction, u˚ is defined as p su1, su2q, the matrix F
is given by

F “

ˆ

β1,1|u1|
2 ` β1,2|u2|

2 0
0 β2,1|u1|

2 ` β2,2|u2|
2

˙

,

where

ˆ

β1,1 β1,2

β2,1 β2,2

˙

“

ˆ

1 δ
δ 1

˙

and the rotation operator is defined by Lz “ ´i
`

xBx´

yBx
˘

. The relation between the discrete analogue to EGPE and E∆
ε,δ (see (2.4)) is the

following:

E∆
GPE “ E∆

ε,δ ´
δxδy
4ε2

N
ÿ

n“0

K
ÿ

k“0

`

ρ2
n,k

˘

ρą0
.

Observe that the difference between the two energies does not depend on u “ pu1, u2q.
In the case of one component condensate (by taking u2 ” 0), we take β1,1 “ 1 and

β1,2 “ β2,1 “ β2,2 “ 0, so that the last term of EGPE reads

ż

D

u˚
β

2
Fu “

ż

D

β

2
|u1|

4.

5.1 One component condensate comparison

For this first series of comparisons, we consider a one component Bose-Einstein
condensate. We compare both algorithms on the same computer machine, each test
done separately.
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Remark on implementation

We compare in this section our implementation of the EPG method in a „ 500 lines
Python code to that of the implicit gradient method with projection of GPELab All
the simulations of this section are numerically simulated on a laptop with an i5 8th
generation CPU with 15 Gb of RAM.

Parameters taken for EPG method

We take the following parameters for all the one component tests we did. For the
initial datum, we choose ψ1 “ 1

5
expp´10x2 ´ 10y2q. We choose the confinement

parameter ε “ 5 ˆ 10´2, the values N1 “ 1, N2 “ 0 and K0 “ 10´2. We refer to
Section 1 of this chapter for the rest of the parameters.

Parameters taken for GPELab

The equivalent of these parameters in GPELab are the following. We choose
Ncomponents“ 1, Type=’BESP’, Delta“ 0.5 (the coefficient in front of the ki-

netic energy), Beta“ 200 (equivalent to
1

2ε2
), the confinement function V px, yq “

1

2ε2
minr1, 10pR2 ´ x2 ´ y2qs (we had to add our own function to the algorithm),

xmin “ ymin “ ´7 and xmax “ ymax “ 7. As for the initial datum, we have to add
ψ1 “ 1

5
expp´10x2 ´ 10y2q. We also have to modify the normalization step after

each time step ∆t.

Parameters taken for detecting and computing vortex indices

For all the vortex indices detection and computations of this section, we use the
post processing algorithm for singly quantized vortices (see Section 5.1 of Chapter
2). We choose Nmin “ 1, Nmax “ 5, tol1 “ 0.1 and tol2 “ 0.02 to detect most of the
vortices.

Convergence test

The GPELab algorithm converges whenever the infinity norm of the difference be-
tween two successive iteration is less than a certain value G0 “ ∆t ˆ Stop crit. It
stops without convergence if the number of iterations done exceeds 106.

The EPG method converges if either one of the following statements is true: at
an iteration step n, if }ψ1

n ´ ψ
1
n´1}8 ă G0 or K∆ ă K0.

Remark 25 GPELab’s minimization method uses a fixed time step ∆t. The min-
imizer provided by the method may depend on the value of ∆t. We make sure we
choose ∆t small enough so that we converge to a comparable minimizer to that
obtained by EPG method from the same initial datum. Another point is that the
discretization slightly differs in GPELab from the EPG method so the two methods
minimize two different discrete energies. However these two energies are consistent
with (1.13).
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Low number of points in the discretization N “ 128

For a first comparison, we set the rotational speed to Ω “ 1. We also set ∆t “ 10´3

and Stop crit“ 10´2 so that G0 “ 10´5. We display the results in Figure 3.43.

(a) A minimizer of the energy E∆
ε using

EPG.
(b) A minimizer of the energy E∆

GPE us-
ing GPELab.

E∆
ε,δ G0 K∆ Iteration # E∆

ε,δpunq ´ E
∆
ε,δpun´1q Time(s)

GPELab 69 10´5 0.189 16 880 ´10´4 2 749
EPG 39 10´5 0.045 116 830 ´1.7ˆ 10´4 2 538

Figure 3.43 – Comparison between the results of GPELab (right) and EPG (left)
for Ω “ 1.

In this first comparison (Figure 3.43), both methods converged with respect to
the first criterion (G0) sharing almost the same value for the third criterion (energy
difference). Even though the execution time of both methods is approximately the
same, the criterion we developed in this thesis (see Section 3 of Chapter 1) is 4 times
smaller for the EPG method than for GPELab method.

Notice that the number of vortices in Figure 3.43 varies depending on the method
used since each method will converge to a potentially different local minimizer (see
also Remark 25). This explains the energy difference as well. Notice also that there
is a significant difference between the number of iterations of both methods. It is
justified by the fact that GPELab method is implicit and therefore each iteration
takes more computational time. In addition to that, GPELab method works best
with an odd number of points, this is why it has 2n ` 1 points per direction (see
Section 7 in [9] for reference) in contrast to the EPG method which has 2n`2 points
per direction (including the boundary condition). This holds for all the simulations
of this section as well.

Remark 26 Note that we display the third criterion without the absolute value to
show that the energy difference between two successive iterations of both methods is
negative. This is consistent with the fact that we are using a gradient method.

For a second comparison, we set the rotational velocity to Ω “ 3. We also set
∆t “ 2 ˆ 10´3 and Stop crit“ 25 ˆ 10´4 so that G0 “ 5 ˆ 10´6. The results are
displayed in Figure 3.44

In this second comparison (Figure 3.44), both methods converge with respect to
the first criterion (G0) sharing almost the same value for the third criterion (energy
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(a) A minimizer of the energy E∆
ε using

EPG.
(b) A minimizer of the energy E∆

ε using
GPELab.

E∆
ε,δ G0 K∆ Iteration # E∆

ε,δpunq́ E
∆
ε,δpun´1q Time(s)

GPELab ´1427 5.10´6 0.242 22 591 ´2.3ˆ 10´5 6 742
EPG ´1398 5.10´6 0.028 217 000 ´1.7ˆ 10´5 5 330

Figure 3.44 – Comparison between the results of GPELab (right) and EPG (left)
for Ω “ 3.

difference). We notice that the execution time of GPELab is a bit bigger than that
of EPG. On the other hand, the second criterion (K∆) is 8 times smaller for EPG
than for GPELab. We see that the energies of both methods are closer than in the
previous experiment, and the numerical minimizers share similarities in the number
of vortices and in their positions.

Moderate number of points in the discretization N “ 256

For a first comparison, we set the rotational speed to Ω “ 1. We also set ∆t “

2 ˆ 10´3 and Stop crit“ 10´2 so that G0 “ 2 ˆ 10´5. We display the results in
Figure 3.45.

In this first comparison with N “ 256 (Figure 3.45), both methods converge with
respect to the first criterion (G0) with GPELab having 3 times less energy difference
(third criterion) than EPG. We notice that the execution time of GPELab is almost
4 times greater than EPG and yet the second criterion (K∆) is 3 times smaller for
EPG than for GPELab.

We see more vortices in the numerical minimizers of EPG than in that of
GPELab. These vortices are more positioned in the center for GPELab’s minimizer
and more on the outer disk for EPG’s minimizer. All numerical vortices detected
for both methods (see Section 5.1 of this chapter for the parameters taken for the
index detection algorithm of Section 5.1 of Chapter 2) are singly quantized vortices.
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(a) A minimizer of the energy E∆
ε using

EPG.
(b) A minimizer of the energy E∆

ε using
GPELab.

(c) The vortex indices of the minimizer
obtained by EPG.

(d) The vortex indices of the minimizer
obtained by GPELab.

E∆
ε,δ G0 K∆ Iteration # E∆

ε,δpunq́ E
∆
ε,δpun´1q Time(s)

GPELab 38 2.10´5 0.037 129 569 ´1.4ˆ 10´5 95 189
EPG 83 2.10´5 0.011 271 041 ´4.5ˆ 10´5 24 688

Figure 3.45 – Comparison between the results of GPELab (right) and EPG (left)
for Ω “ 1 and N “ 256.

For a second comparison, we set the rotational speed to Ω “ 3. We also set
∆t “ 2 ˆ 10´3 and Stop crit“ 10´2 so that G0 “ 2 ˆ 10´5. We display the results
in Figure 3.46.

In this second comparison with N “ 256 (Figure 3.46), GPELab converges with
respect to the first criterion (G0) while EPG converges with respect to the second
criterion (K∆). GPELab has 3 times less energy difference (third criterion) than
EPG on the last iteration. We notice that the execution time of GPELab is almost
4 times greater than that of EPG. However, the second criterion (K∆) is 5 times
smaller for EPG than for GPELab. We see slightly more vortices in the numerical
minimizer of GPELab than in that of EPG. The two minimizers share similarities in
the vortices positions except in the center. Indeed for EPG, the vortices are aligned
on a square lattice around the center and this is not the case for GPELab. How-
ever, all numerical vortices detected in the minimizers of both methods are singly
quantized.
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(a) A minimizer of the energy E∆
ε using

EPG.
(b) A minimizer of the energy E∆

ε using
GPELab.

(c) The vortex indices of the minimizer
obtained by EPG.

(d) The vortex indices of the minimizer
obtained by GPELab.

E∆
ε,δ 105.G0 K∆ Iteration # E∆

ε,δpunq́ E
∆
ε,δpun´1q Time(s)

GPELab ´1426 2.0 0.05 56 507 ´1.3ˆ 10´5 60 209
EPG ´1428 2.4 0.01 182 346 ´3.5ˆ 10´5 16 609

Figure 3.46 – Comparison between the results of GPELab (right) and EPG (left)
for Ω “ 3.
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For a final comparison, we set the rotational velocity to Ω “ 6. We also set
∆t “ 10´3 and Stop crit“ 10´2 so that G0 “ 10´5. The results are displayed in
Figure 3.47.

(a) A minimizer of the energy E∆
ε using

EPG.
(b) A minimizer of the energy E∆

ε using
GPELab.

(c) The vortex indices of the minimizer
obtained by EPG.

(d) The vortex indices of the minimizer
obtained by GPELab.

E∆
ε,δ G0 K∆ Iteration # E∆

ε,δpunq́ E
∆
ε,δpun´1q Time(s)

GPELab ´7334 10´5 0.07 224 473 ´4.3ˆ 10´4 199 321
EPG ´7338 5.10´6 0.006 707 141 ´1.1ˆ 10´5 64 942

Figure 3.47 – Comparison between the results of GPELab (right) and EPG (left)
for Ω “ 6.

We started this last comparison with N “ 256 and we noticed that EPG con-
verged fast but with an important energy difference at the last iteration when we
used G0 “ 10´5. This is why we modify, for this comparison only, the values of the
first and third criterion for EPG. The new values for EPG are G0 “ 5 ˆ 10´6 and
K0 “ 5 ˆ 10´3. With these parameters, we compare both methods. The results
are displayed in Figure 3.47. Both methods converge with respect to the first cri-
terion (G0), with EPG having 40 times less energy difference (third criterion) than
that of GPELab. Even though EPG’s first criterion of convergence is twice less than
GPElabs, we notice that the execution time of GPELab is more than 3 times greater
than the one of EPG. However, the second criterion (K∆) is 12 times smaller for
EPG than for GPELab.
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We see almost the same number of vortices in both numerical minimizers of
GPELab and EPG. The result of GPELab shows a circular pattern of vortices while
the result of EPG is more disrupted. All numerical vortices detected for the mini-
mizers of both methods are singly quantized.

5.2 Two components condensate comparison

For the second series of comparison, we consider a two components Bose-Einstein
condensate. We also compare both algorithms on the same computer machine, each
test done separately.

Parameters taken for EPG method

We take the following parameters for all the two components tests we did. For
the initial data, we choose the same Gaussian function as before (3.2). We choose
the confinement parameter ε “ 5 ˆ 10´2, the values N1 “ 0.55, N2 “ 0.45 and
K0 “ 10´2. We refer to Section 1 of this chapter for the rest of the parameters.

Parameters taken for GPELab

The equivalent of these parameters in GPELab are the following. We choose
Ncomponents“ 2, Type=’BESP’, Delta“ 0.5 (the coefficient in front of the kinetic

energy), Beta“ 200 (equivalent to
1

2ε2
), Beta coupled“

ˆ

β1,1 β1,2

β2,1 β2,2

˙

“

ˆ

1 δ
δ 1

˙

,

the confinement function V px, yq “
1

2ε2
minr1, 10pR2´ x2´ y2qs (the same function

we added before), xmin “ ymin “ ´7 and xmax “ ymax “ 7. As for the initial
data, we have to add ψ1 “ ψ2 “ 1

5
expp´10x2 ´ 10y2q. We also have to modify the

normalization step after each time step ∆t.

Parameters taken for detecting and computing vortex indices

For all the vortex indices detection and computations of this section, we use the
post processing algorithm for singly quantized vortices (see Section 5.1 of Chapter
2). We choose Nmin “ 1, Nmax “ 5, tol1 “ 0.05 and tol2 “ 0.02 to detect most of
the vortices. If large vortices exists with small vortices (like in Figure 3.49), we use
a combination of both algorithms (Sections 5.1 and 5.2 of Chapter 2) using m “ 0.4,
M “ 0.6 and tol3 “ 0.3 as parameters for the vortex sheet detection algorithm.

Numerical results

For a first comparison, we set the rotational speed to Ω “ 3 and the interaction
strength to δ “ 0.7. We also set ∆t “ 5 ˆ 10´4 and Stop crit“ 2 ˆ 10´2 so that
G0 “ 10´5. We display the results in Figure 3.48. In this comparison of two
components condensate in a coexistence regime, both methods converge with respect
to the first criterion (G0) with GPELab having 10 times less energy difference (third
criterion) than EPG. We notice that the execution time of GPELab is almost 3
times greater than EPG and the second criterion (K∆) is 7 times smaller for EPG
than for GPELab.
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(a) The first and second component of a
minimizer of the energy E∆

ε using EPG.
(b) The first and second component of a
minimizer of the energy E∆

ε using GPELab.

(c) The vortex indices of the first and sec-
ond component of the minimizer obtained
using EPG.

(d) The vortex indices of the first and sec-
ond component of the minimizer obtained
using GPELab.

E∆
ε,δ G0 K∆ Iteration # E∆

ε,δpunq́ E
∆
ε,δpun´1q Time(s)

GPELab ´2234 10´5 0.07 206 833 ´2.3ˆ 10´6 163 690
EPG ´2227 10´5 0.01 259 383 ´2ˆ 10´5 50 527

Figure 3.48 – Comparison between the results of GPELab (right) and EPG (left)
method for Ω “ 3 and δ “ 0.7.

We see almost the same number of vortices in both numerical minimizers of EPG
and GPELab. These minimizers both display lattices of vortices made of triangles
and squares, which is in accordance with the theory presented in Section 4.3 of
Chapter 1. All the numerical vortices detected for both methods are singly quan-
tized.

For the second and last comparison test, we set the rotational speed to Ω “ 3 and
the interaction strength to δ “ 1.5. We also set ∆t “ 5ˆ10´4 and Stop crit“ 2ˆ10´2

so that G0 “ 10´5. Due to a symmetrical problem (see Chapter 4 Theorem 41),
we display in Figure 3.49 3 results. The first numerical minimizer is computed
with EPG using the same symmetrical initial data as (3.2). The second numerical
minimizer is computed with EPG using the following non symmetrical initial data

ψ1
“

1

5
expp´10px´0.5q2´10py`0.2q2q, ψ2

“
1

5
expp´10px`0.5q2´10py´0.3q2q.

The third numerical minimizer is computed using GPELab with the symmetrical
initial data (3.2).

In this comparison of a two components condensate in a segregation regime
(Figure 3.49), we compare EPG’s symmetrical results (denoted with *) to GPELab’s
results. Although EPG’s non-symmetrical results (denoted with **) are visually
more comparable to that of GPELab, we only compare the efficiency of the two
methods starting with the same symmetric initial data.

Both methods (GPELab and EPG (*)) converge with respect to the first criterion
(G0) with GPELab having 37 times less energy difference (third criterion) than EPG.
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(a) The first and second component of a
minimizer of the energy E∆

ε using EPG (*).
(b) The vortex indices of the first and sec-
ond component of the minimizer obtained
using EPG (*).

(c) The first and second component of a
minimizer of the energy E∆

ε using EPG
(**).

(d) The vortex indices of the first and sec-
ond component of the minimizer obtained
using using EPG (**).

(e) The first and second component of a
minimizer of the energy E∆

ε using GPELab.
(f) The vortex indices of the first and sec-
ond component of the minimizer obtained
using using GPELab.

E∆
ε,δ G0 K∆ Iteration # E∆

ε,δpunq́ E
∆
ε,δpun´1q Time(s)

GPELab ´1396 10´5 0.07 508 797 ´10´6 1 526 529
EPG (**) ´1389 10´5 0.01 321 882 ´1.7ˆ 10´5 62 745
EPG (*) ´1375 10´5 0.015 349 265 ´3.7ˆ 10´5 75 224

Figure 3.49 – Comparison between the results of GPELab and EPG for Ω “ 3 and
δ “ 1.5.

We notice that the execution time of GPELab is 20 times greater than EPG and
yet the second criterion (K∆) is 4 times smaller for EPG than for GPELab.

We see more vortices in the first component of the minimizer computed with
EPG (*) than in the corresponding component computed with GPELab.

5.3 Conclusion

The numerical results displayed in Figures 3.45, 3.46, 3.47, 3.48 and 3.49 show
that the methods may converge to different minimizers, with different energies (see
Figure 3.45), as well as they may converge to similar minimizers with similar energies
(see Figure 3.47), taking into account suitable re-scaling of the discrete energies (as
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indicated in Remark 24). The qualitative behaviour of both methods is correct in
the sense that higher rotations end up in creating more vortices, and the beginning
of a hole when Ω “ 6.0 (see Figure 3.47) for the one component case. For the two
components case, the qualitative behaviour of both methods is correct in the sense
that they provide coexisting minimizers when δ “ 0.7 and segregated minimizers
when δ “ 1.5. The EPG method uses more iterations in all cases. Since the EPG
method is explicit and the GPELab method is linearly implicit, the EPG method
is faster in all cases. The order of magnitude of the speed is roughly 3 for all the
simulations except for the two components case with δ “ 1.5 where it is roughly 25.
Of course, the stopping criterion is much smaller in minimizers obtained by EPG
than in that computed using GPELab.

In total, there were 7 tests varying from one component BEC with low and
moderate number of points in the discretization to two components BEC in both
segregation and coexistence regimes. These many tests show a better performance
on EPG with roughly 3 times faster computation time and 5 times smaller stopping
criterion (K∆) than GPELab.
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Chapter 4

Theoretical part

In this chapter we adapt a few theorems that are known in the continuous setting to
a discrete setting. Using the same notations as before, we prove, first, the existence
of a minimizer for the energy defined in (2.1) for only one component with some of
its properties. Second we prove a symmetric result related to numerical results that
we obtained in Chapter 3.

1 Theory for the finite difference discretization

In this section, we consider the two components discrete energy (see equation (2.1))
using a finite difference scheme. We prove in this section some theorems that are
known in the continuous setting, as well as symmetric property related to what we
observed in some of the simulations.
First of all, we consider the one component discrete energy (with N2 “ 0), and
we prove the existence of a minimizer for the discrete energy with no rotation in
Theorem 29. Then, in Theorem 30, we prove the existence of a real minimizer
for the energy without rotation. We proceed to prove in Theorem 31 that in the
case of strong segregation, the minimizer for the energy without rotation tends to
the confinement function ρ. Moreover, we prove also in Theorem 32 that this real
minimizer has mass everywhere in the discretization problem, i.e. it is positive. We
prove the existence of a global minimizer for the energy with rotation in Theorem
33.
Finally, we consider the two components energy and we prove in Theorem 39, that if
the initial datum is symmetric with respect to the several axes, then all the iterations
of our gradient method share the same symmetry property.

1.1 Theoretical studies of the energy E∆
ε

Notation used

Let D̃ be the square r´L,Ls ˆ r´L,Ls containing the disk D of radius R ă L
centered at the origin (following the definition used in Chapter 1).
The energy (2.1) is split as follows:

E∆
ε pψq “ pEkinq

∆
ε pψq ` pErq

∆
ε pψq ` pEW q

∆
ε pψq

“ Fεpψq ` Lεpψq,
(4.1)
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where

‚ Fεpψq “ pEkinq
∆
ε pψq ` pEW q

∆
ε pψq, is defined as

Fεpψq “ δxδy

N
ÿ

n“0

K
ÿ

k“0

˜

|ψn`1,k ´ ψn,k|
2

δ2
x

`
|ψn,k`1 ´ ψn,k|

2

δ2
y

¸

`
δxδy
4ε2

N
ÿ

n“0

K
ÿ

k“0

pρprn,kq ´ |ψn,k|
2
q
2,

with ρ the non-negative part of the function (3.1) defined in Chapter 3.

‚ Lεpψq “ pErq
∆
ε pψq, is defined as

Lεpψq “ ´Ωεδxδy

N
ÿ

n“0

K
ÿ

k“0

<

˜

iψn,kr´yk, xns.

«

ψn`1,k´ψn,k
δx

ψn,k`1´ψn,k
δy

ff¸

.

Notice that both Fε and Lε are polynomial expressions of
`

ψn,k
˘

1ďnďN
1ďkďK

and
`

ψn,k
˘

1ďnďN
1ďkďK

thus continuous over the matrix space CNˆK with the norm }.}∆ (see (2.2)) defined
in Chapter 2.

Our main result in this section is to prove the existence of a minimizer for the
energy (4.1) with and without rotation under the following constraints

}ψ}2∆ “ δxδy

N
ÿ

n“1

K
ÿ

k“1

ρprn,kq “M. (4.2)

Then, we will prove a symmetric problem we encountered in some of the simulations
in Chapter 3 Section 2 (one component condensate with a high rotational speed).

Definition 27 Let C be the discrete analogue of the constraints manifold using the
norm }.}∆ (see (2.2)), i.e.

C “
 

ψ P CNˆK such that }ψ}2∆ “M
(

.

Definition 28 Let the following norm be the discrete analogue of H1
0 -norm in the

continuous setting

}u}2h1
0
“ δxδy

N
ÿ

n“0

K
ÿ

k“0

ˆ

|un`1,k ´ un,k|
2

δ2
x

`
|un,k`1 ´ un,k|

2

δ2
y

˙

,

for all u P CNˆK with the convention that un,k “ 0 as soon as n “ 0 or n “ N ` 1
or k “ 0 or k “ K ` 1.

Theoretical studies of the function Fε

Theorem 29 For all ε ą 0, Fεpψq has a global minimizer on C .
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Proof : The following function

g : CNˆK
Ñ R

U ÞÑ δxδy

N
ÿ

n“1

K
ÿ

k“1

|un,k|
2
´M

is continuous over CNˆK and t0u is a closed set in the real normed vector space
R. Hence, g´1pt0uq is a closed set in CNˆK . In addition, the set g´1pt0uq “ C
is non-empty and bounded. Therefore, C is compact subset of CNˆK . Since Fε is
continuous over CNˆK , Fε has a global minimizer over C . ˝

Theorem 30 For all ε ą 0, Fε admits a real non-negative minimizer.

Proof : Let ψ˚ P C . Using that for all a, b P C, we have
ˇ

ˇ|a| ´ |b|
ˇ

ˇ ď |a ´ b|, we
infer

N
ÿ

n“0

K
ÿ

k“0

˜

ˇ

ˇ|ψn`1,k| ´ |ψn,k|
ˇ

ˇ

2

δ2
x

`

ˇ

ˇ|ψn,k`1| ´ |ψn,k|
ˇ

ˇ

2

δ2
y

¸

ď

N
ÿ

n“0

K
ÿ

k“0

˜

ˇ

ˇψn`1,k ´ ψn,k
ˇ

ˇ

2

δ2
x

`

ˇ

ˇψn,k`1 ´ ψn,k
ˇ

ˇ

2

δ2
y

¸

.

Hence Fεp|ψ
˚|q ď Fεpψ

˚q. Moreover, |ψ˚| P C . This means there exists a real
non-negative minimizer for Fε in C , using Theorem 29. ˝

Theorem 31 Let ψ˚ε P C be a real non-negative minimizer of Fε over C , then

ψ˚ε
}.}∆
ÝÝÑ

?
ρ when εÑ 0.

Proof : For all φ P C , Fεpψ
˚
ε q ď Fεpφq. In particular, it is also true for φ “

?
ρ

since }
?
ρ}2∆ “M . Moreover,

Fεpψ
˚
ε q ´ Fεp

?
ρq “

δxδy
2

N
ÿ

n“0

K
ÿ

k“0

|ψ˚ε,n`1,k ´ ψ
˚
ε,n,k|

2

δ2
x

`
|ψ˚ε,n,k`1 ´ ψ

˚
ε,n,k|

2

δ2
y

`
δxδy
4ε2

N
ÿ

n“0

K
ÿ

k“0

`

ρprn,kq ´ |ψ
˚
ε,n,k|

2
˘2

´
δxδy

2

N
ÿ

n“0

K
ÿ

k“0

|
a

ρprn`1,kq´
a

ρprn,kq|
2

δ2
x

`
|
a

ρprn,k`1q´
a

ρprn,kq|
2

δ2
y

ď 0,

83



1. THEORY FOR THE FINITE DIFFERENCE DISCRETIZATION

hence,

δxδy
4ε2

N
ÿ

n“0

K
ÿ

k“0

`

ρprn,kq ´ |ψ
˚
ε,n,k|

2
˘2

ď ´
δxδy

2

N
ÿ

n“0

K
ÿ

k“0

|ψ˚ε,n`1,k ´ ψ
˚
ε,n,k|

2

δ2
x

`
|ψ˚ε,n,k`1 ´ ψ

˚
ε,n,k|

2

δ2
y

`
δxδy

2

N
ÿ

n“0

K
ÿ

k“0

|
a

ρprn`1,kq ´
a

ρprn,kq|
2

δ2
x

`
|
a

ρprn,k`1q ´
a

ρprn,kq|
2

δ2
y

ď
δxδy

2

N
ÿ

n“0

K
ÿ

k“0

|
a

ρprn`1,kq ´
a

ρprn,kq|
2

δ2
x

`
|
a

ρprn,k`1q ´
a

ρprn,kq|
2

δ2
y

ď
1

2
}
?
ρ}2h1

0
.

We conclude with

}ρ´ |ψ˚ε |
2
}

2
∆ “ δxδy

N
ÿ

n“0

K
ÿ

k“0

`

ρprn,kq ´ |ψ
˚
ε,n,k|

2
˘2
ď 2ε2

}
?
ρ}2h1

0
.

Then ψ˚ε
}.}∆
ÝÝÑ

?
ρ as εÑ 0. ˝

Theorem 32 For ε ą 0 small enough, a non-negative minimizer ψ˚ P C of Fε
satisfies for all pn, kq P t1, ¨ ¨ ¨ , Nu ˆ t1, ¨ ¨ ¨ , Nu, ψ˚n,k ą 0.

Proof : Let ψ˚ P C be a non-negative real minimizer of Fε under the constraints
(4.2). Its existence is granted by Theorem 30. We prove the result by contradiction.
Let us suppose there exists a couple pm, lq P t1, ¨ ¨ ¨ , Nu ˆ t1, ¨ ¨ ¨ , Ku such that
ψ˚m0,l0

“ 0. The set A “ tpn, kq P t1, ¨ ¨ ¨ , Nu ˆ t1, ¨ ¨ ¨ , Ku such that ψ˚n,k “ 0u
contains pm0, l0q and has at most N ˆK ´ 1 elements since ψ˚ ‰ 0. Therefore, one
can choose a couple pm, lq P A such that

ψ˚m`1,l ą 0 or ψ˚m´1,l ą 0 or ψ˚m,l`1 ą 0 or ψ˚m,l´1 ą 0. (4.3)

Since ψ˚ is a minimizer of Fε over C , it satisfies, for all v P CNˆK ,

dFε
`

ψ˚`tv
}ψ˚`tv}∆

?
M
˘

dt

ˇ

ˇ

ˇ

ˇ

t“0

“ 0.

Similarly to (2.8) in Chapter 2, we have, for all the v P CNˆK , the following equation

dFε
`

ψ˚`tv
}ψ˚`tv}∆

?
M
˘

dt

ˇ

ˇ

ˇ

ˇ

t“0

“ x∇Fεpψ˚q, vy ´
1

}ψ˚}2∆
xψ˚, vyx∇Fεpψ˚q, ψ˚y.

In particular, for v “ em,l (the canonical base of CNˆK), we have

x∇Fεpψ˚q ´
1

}ψ˚}2∆
ψ˚x∇Fεpψ˚q, ψ˚y, em,ly “

BFεpψ
˚q

Bψm,l
´

ψ˚m,l
}ψ˚}2∆

x∇Fεpψ˚q, ψ˚y “ 0.
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Since ψ˚m,l “ 0, we have BFεpψ˚q
Bψm,l

“ 0. According to Section 1.2 in Chapter 2, we have

BFεpψ
˚q

Bψm,l
“
δy
δx
p2ψ˚m,l ´ ψ

˚
m´1,l ´ ψ

˚
m`1,lq `

δx
δy
p2ψ˚m,l ´ ψ

˚
m,l´1 ´ ψ

˚
m,l`1q

´
δxδy
ε2

ψ˚m,l
`

ρprn,kq ´ ψ
˚2
n,k

˘

“
δy
δx
p´ψ˚m´1,l ´ ψ

˚
m`1,lq `

δx
δy
p´ψ˚m,l´1 ´ ψ

˚
m,l`1q

“ 0.

Using the non-negativity of ψ˚ we infer ψ˚m`1,l “ ψ˚m´1,l “ ψ˚m,l`1 “ ψ˚m,l´1 “ 0.
This is in contradiction with (4.3). ˝

Theoretical studies of the function E∆
ε

Theorem 33 For all ε ą 0, E∆
ε pψq has a global minimizer in C .

Proof : Similarly to the proof of Theorem 30, C is compact. Since E∆
ε is continu-

ous over CNˆK , then E∆
ε has a global minimizer over C . ˝

1.2 Symmetric theory

In this Section we study a particular symmetric property related to the gradient
method used in EPG (see Section 4 of Chapter 2). Therefore N is equal to K.

The gradient of the continuous energy (1.13) conserves any orthogonal symmetry
with respect to any line that crosses the origin in the following sense. Let S be an

orthogonal symmetry of R2, and u1, u2 P H
1
0 pD,Cq, we have ∇

`

EΩ
ε,δpu1, u2q

˘

˝ S “

∇EΩ
ε,δ

`

u1 ˝ S, u2 ˝ S
˘

. Therefore if u1, u2 satisfy u` ˝ S “ u` for all ` “ 1, 2, then we
have

∇
`

EΩ
ε,δpu1, u2q

˘

˝ S “ ∇EΩ
ε,δ pu1, u2q ,

which gives exactly the preservation of the orthogonal symmetry for the gradient of
the energy. In the following of this section, we investigate the preservation of this
property with respect to four axes (x and y-axes, first and second diagonals) for the
numerical approaches. We start with a proof of the aforementioned result.

Proposition 34 Let S be an orthogonal symmetry of R2, and u1, u2 P H
1
0 pD,Cq.

If u1, u2 satisfy u` ˝ S “ u` for all ` “ 1, 2 then we have

∇
`

EΩ
ε,δpu1, u2q

˘

˝ S “ ∇EΩ
ε,δ pu1, u2q ,

with EΩ
ε,δ being the continuous energy defined in (1.13).

Proof : Let S be an orthogonal symmetry of R2 defined as follows

S “ Rt

ˆ

1 0
0 ´1

˙

R,
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where R “
ˆ

cospθq sinpθq
sinpθq ´ cospθq

˙

and θ P r´π, πr is the rotation angle. Therefore, we

can rewrite S as follows

S “

ˆ

cos2pθq ´ sin2pθq 2 cospθq sinpθq
2 cospθq sinpθq ´ cos2pθq ` sin2pθq

˙

“

ˆ

a b
b ´a

˙

,

where a “ cos2pθq ´ sin2pθq and b “ 2 cospθq sinpθq.
According to the hypothesis, we have u` ˝ S “ u` for ` “ 1, 2. Our goal is to

prove that this symmetry holds for the gradient of the energy under this hypothesis.

Gradient of the kinetic energy:
We have for the kinetic gradient and for ` “ 1, 2

∇EΩ
k,ε,δpu` ˝ Sq “ ´∆pu` ˝ Sq

“ ´pa2
` b2

qB2
xu` ˝ S ´ 2pab´ abqBxByu` ˝ S ´ pa

2
` b2

qB2
yu` ˝ S

“ ´
`

pcos2
pθq ´ sin2

pθqq2 ` p2 cospθq sinpθqq2
˘`

pB2
x ` B

2
yqpu`q ˝ S

˘

“ ´
`

cos2
pθq ` sin2

pθq
˘`

pB2
x ` B

2
yqpu`q ˝ S

˘

“ ´
`

pB2
x ` B

2
yqpu`q ˝ S

˘

“ ´∆u` ˝ S

“ ∇EΩ
k,ε,δpu`q ˝ S

The symmetry property holds for the gradient of the kinetic energy.

Gradient of the rotational energy:

Note that ∇EΩ
r,ε,δpu`q “ ´2ΩixK.∇u` with xK “

ˆ

0 ´1
1 0

˙

x. Let P “

ˆ

0 ´1
1 0

˙

,

then SP “ ´PS, and St “ S since S is symmetric.
We have for the rotational gradient and for ` “ 1, 2

∇EΩ
r,ε,δpu` ˝ Sq “ ´2ΩixK.∇pu` ˝ Sq

“ ´2ΩixK.S
`

∇u` ˝ S
˘

“ ´2ΩiP

ˆ

x
y

˙

.Sp∇u` ˝ Sq

“ ´2ΩiStP

ˆ

x
y

˙

.p∇u` ˝ Sq

“ 2ΩiPS

ˆ

x
y

˙

.p∇u` ˝ Sq

“ 2Ωi

ˆ

S

ˆ

x
y

˙˙K

.p∇u` ˝ Sq

“ ´2Ωi

ˆ

S

ˆ

x
y

˙˙K

.p∇u` ˝ Sq

“ ∇EΩ
r,ε,δpu`q ˝ S

The symmetry holds for the gradient of the rotational energy.
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Gradient of the confinement and interaction energy:

Note that, because u` ˝ S “ u`, |.|
2 is invariant under rotations of the plane around

the origin, i.e. |u ˝S|2 “ |u|2. We have for the confinement and interaction gradient
and for ` “ 1, 2

∇EΩ
W,ε,δpu` ˝ Sq “ ´

1

ε2
u` ˝ S

`

ρprq ´ |u` ˝ S|
2
´ |u3´` ˝ S|

2
˘

`
δ ´ 1

ε2
u` ˝ S|u3´` ˝ S|

2

“ ´
1

ε2
u` ˝ S

`

ρprq ´ |u`|
2
´ |u3´`|

2
˘

`
δ ´ 1

ε2
u` ˝ S|u3´`|

2

“

ˆ

´
1

ε2

`

ρprq ´ |u`|
2
´ |u3´`|

2
˘

`
δ ´ 1

ε2
|u3´`|

2

˙

u` ˝ S

“

ˆ

´
1

ε2

`

ρprq ´ |u`|2 ´ |u3´`|
2
˘

`
δ ´ 1

ε2
|u3´`|

2

˙

u` ˝ S

“ ∇EΩ
W,ε,δpu`q ˝ S

The symmetry holds for the gradient of the confinement and interaction energy.

Putting together all the previous results, we obtain∇EΩ
ε,δ

`

u`
˘

“ ∇EΩ
,ε,δ

`

u` ˝ S
˘

“

∇EΩ
ε,δpu`q ˝ S under the hypothesis that u` ˝ S “ u` for ` “ 1, 2, thus proving the

proposition. ˝

In the following of this section, we investigate the preservation of this property
with respect to four axes (x and y-axes, first and second diagonals) for the numerical
approaches.

Definition 35 Let ψ P CNˆN . We say ψ is symmetric (resp. skew-symmetric) with
respect to first diagonal if ψn,k “ ψk,n (resp. ψn,k “ sψk,n) for all n, k P t1, ¨ ¨ ¨ , Nu.

Definition 36 Let ψ P CNˆN . We say ψ is symmetric (resp. skew-symmetric) with
respect to second diagonal if ψn,k “ ψN`1´k,N`1´n (resp. ψn,k “ sψN`1´k,N`1´n) for
all n, k P t1, ¨ ¨ ¨ , Nu.

Remark 37 For Proposition 38 and for Theorems 39 and 41, we suppose that the
given confinement function ρ is symmetric with respect to the first and second di-
agonal, x-axis and y-axis. This is the case if the function ρ depends only on the
distance from the origin as for example the function (3.1).

Proposition 38 Let ψ1, ψ2 P CNˆN and ρ satisfying the hypothesis of Remark 37.
If ψ1 and ψ2 share the same symmetry property (symmetric or skew-symmetric with
respect to the first or second diagonal, x-axis or y-axis.) then the gradient of the
discrete confinement energy shares the same symmetry property as ψ` for ` “ 1, 2.

Proof : Assume ψ` share both the same symmetry property for ` “ 1, 2. If both
of them are symmetric or skew-symmetric with respect to dth diagonal (for d “ 1, 2)
then |ψ|2 is symmetric with respect to the dth diagonal. According to Remark 37,
the function ρ is already symmetric with respect to the first and second diagonal.

First diagonal case:
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Assume ψ` is symmetric (resp. skew-symmetric) with respect to first diagonal
for ` “ 1, 2, then for all n, k P t1, ¨ ¨ ¨ , Nu, according to Section 1.2, we have
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where the last sign is `1 if ψ` is symmetric and ´1 if ψ` is skew-symmetric.
Second diagonal case:
Assume ψ` is symmetric (resp. skew-symmetric) with respect to second diagonal,

then we have, for all n, k P t1, ¨ ¨ ¨ , Nu
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where the last sign is `1 if ψ` is symmetric and ´1 if ψ` is skew-symmetric.
x-axis case:
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Assume ψ` is symmetric (resp. skew-symmetric) with respect to the x-axis, then
we have, for all n, k P t1, ¨ ¨ ¨ , Nu
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where the last sign is `1 if ψ` is symmetric and ´1 if ψ` is skew-symmetric.
y-axis case:
Similarly to the x-axis case, we can prove that

BpEW q
∆
ε,δ

Bp`n,N`1´k

pψ1, ψ2
q “

BpEW q
∆
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Bp`n,k
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where the last sign is `1 if ψ` is symmetric and ´1 if ψ` is skew-symmetric.
This proves that the gradient of the discrete confinement energy shares the same

symmetry property as ψ` for ` “ 1, 2. ˝

Theorem 39 (Finite difference scheme) If the initial datum of the gradient de-
scent algorithm is such that the two components are either skew-symmetric with
respect to the first or skew-symmetric with respect to the second diagonal or skew-
symmetric with respect to the the x-axis or skew-symmetric with respect to the y-axis
and ρ satisfies the hypothesis of Remark 37, then all of the iterations of the method
share the same symmetry property.

Proof : It is sufficient to prove the result for one iteration. Let ψ`n,k for ` P t1, 2u

be the initial data of one iteration and let us denote by φ`n,k for ` “ 1, 2 the result
of the iteration. For the convenience of the reader, we introduce g1, g2, g3 and g4 as
functions from t1, ¨ ¨ ¨ , Nu2 to itself defined as

g1pn, kq “ pk, nq,

g2pn, kq “ pN ` 1´ k,N ` 1´ nq,

g3pn, kq “ pN ` 1´ n, kq,

g4pn, kq “ pn,N ` 1´ kq.
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Notice that g1 correspond to the first diagonal, g2 corresponds to the second diagonal,
g3 corresponds to the y-axis and g4 corresponds to the x-axis. Depending on the
skew-symmetry property we have ψ`n,k “ ψ`gjpn,kq for all n, k P t1, ¨ ¨ ¨ , Nu and in

particular
p`n,k “ p`gjpn,kq and q`n,k “ ´q

`
gjpn,kq

. (4.4)

According to Sections 1.2 and 4 of Chapter 2, we have

φ` “ ψ` ´ h∇E∆
ε,δpψ

`
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with
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∇E∆
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¯

n,k
“

¨

˚

˚

˝

BpEkinq
∆
ε

Bp`n,k
pψ`q ` BpErq∆ε

Bp`n,k
pψ`q `

BpEW q
∆
ε,δ

Bp`n,k
pψ1, ψ2q

BpEkinq
∆
ε

Bq`n,k
pψ`q ` BpErq∆ε

Bq`n,k
pψ`q `
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˛

‹

‹

‚

.

It is sufficient to prove that each one of these partial derivatives shares the same
symmetry property as ψ`, i.e. for all n, k P t1, ¨ ¨ ¨ , Nu and for ` “ 1, 2, we have to
prove one of the corresponding property below

BE∆
ε,δpψ

`q

Bpgjpn,kq
“
BE∆

ε,δpψ
`q

Bpn,k
and

BE∆
ε,δpψ

`q

Bqgjpn,kq
“ ´

BE∆
ε,δpψ

`q

Bqn,k
.

Partial derivative of the discrete kinetic energy:
Using (4.4) and Section 1.2 of Chapter 2, we have

BpEkinq
∆
ε pψ

`q

Bp`gjpn,kq
“ 4p`gjpn,kq ´ p
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∆
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In the same way we can obtain

BpEkinq
∆
ε pψ

`q

Bq`gjpn,kq
“ ´

BpEkinq
∆
ε pψ

`q

Bq`n,k
.

Partial derivative of the discrete rotational energy:
For the partial derivative of the discrete rotational energy we have to distinguish

two cases. The first one corresponds to g1, g2 for which the proof relies on switch-
ing the roles of x and y. The second one corresponds to g3, g4 which share some
similarities.

Let us first consider the partial derivative with respect to the real part. The
proof being the same for g1 we only consider the case of g2. Using (4.4) and the fact
that for all n, k P t1, ¨ ¨ ¨ , Nu,

yN`1´k “ ´L` pN ` 1´ kqδy “ ´L` 2L´ kδy “ ´yk,

xN`1´n “ ´L` pN ` 1´ nqδx “ ´L` 2L´ nδx “ ´xn,

xn “ yn,
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we have
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This proves the result for g1 and g2. Let us now consider only g3, since the proof is
similar for g4. We have
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In the same way we can prove that for j “ 1, 2, 3, 4, we have
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BpErq
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.

Partial derivative of the discrete confinement energy:

Last, using Proposition 38 and under the assumption ψ`n,k “ ψ`gjpn,kq, we can
prove that

BpEW q
∆
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1, ψ2q
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.

Putting together all the previous results we obtain ψ`n,k “ ψ`gjpn,kq, for the corre-

sponding j “ 1, 2, 3, 4 (depending on the hypothesis) and for all n, k P t1, ¨ ¨ ¨ , Nu
and ` “ 1, 2. This completes the proof of Theorem 39. ˝

Example 40 In this example, we display the results of the gradient descent method
(see Section 4 of Chapter 2) with one component ψ using 19 points in the dis-
cretization after 1 iteration. We consider a real initial datum depending only on the
distance from the center hence satisfying all the conditions of Theorem 39 (similarly
to Remark 37). As we can see in Figures 4.1c and 4.1a, the squared modulus of ψ
and its real part both conserve the symmetry with respect to all axes, while in Figure
4.1b we can see that the imaginary part of ψ conserves the skew-symmetry property
with respect to all axes.
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(a) Real part of φ. (b) Imaginary part of φ. (c) Squared modulus of φ.

Figure 4.1 – Example of symmetry conservation using the finite difference approach.

2 Theory for the Fast Fourier transform

discretization

In this section, we consider the two components discrete energy (see Equation (2.4))
using fast Fourier discretization. We prove in this section a symmetry property
related to some of the simulations of Chapter 3. Moreover we prove a Plancherel’s
equality.
First, we prove in Theorem 41, that if the initial datum is skew-symmetric with
respect to the second diagonal i.e. ψ`N`1´k,N`1´n “ ψ`n,k, then all of our gradient
method’s iterations share the same skew-symmetry property. Then, in Theorem 44,
we prove a Plancherel’s equality.

Theorem 41 (Fast Fourier transform scheme) If the initial data’s matrices of
the gradient descent algorithm are skew-symmetric with respect to the second diag-
onal (see definition (36)) and ρ satisfies the hypothesis of Remark 37, then all the
iterations of the EPG algorithm 4 share the same skew-symmetry property.

Proof : It is sufficient to prove the result for one iteration. Let ψ`n,k for ` P t1, 2u

be the initial data of one iteration and let us denote by φ`n,k for ` “ 1, 2 the result of
the iteration. According to Sections 2.3 and 4 of Chapter 2, we have the following
relation

φ` “ ψ` ´ h∇E∆
ε,δpψ

`
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∇E∆
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∆
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.

It is sufficient to prove that each one of these partial derivatives shares the same
skew-symmetry property as ψ`, i.e. for all n, k P t1, ¨ ¨ ¨ , Nu and for ` “ 1, 2, we
have to prove

BE∆
ε,δpψ

`q
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and
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.
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Partial derivative of the discrete kinetic energy:

Using the fact that ξn “ λn for all n P t0, ¨ ¨ ¨ , N`1u (see (2.3)) and the definition
of g2 in the proof of Theorem 39, we have for the kinetic partial derivative:
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Similarly, we can prove for the partial derivative of the discrete kinetic energy with
respect to qn,k that, for all n, k P t0, ¨ ¨ ¨ , N ` 1u, we have

BE∆
kinpψ

`q
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.

This is due to the presence of the imaginary unit i inside the real part of
BE∆

kinpψ
`q

Bqn,k
(see Proposition 11 of Chapter 2).
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Partial derivative of the discrete rotational energy:

Using the fact that yn “ xn and xn “ ´xN`1´n for all n P t0, ¨ ¨ ¨ , N ` 1u, we
have for the rotational partial derivative:
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iπme´2πi mp

N`1 e2πi kp
N`1

˛

‚

“
2Ωεδ

2
x

N ` 1
<

˜

yke
´iπn

N`1
ÿ

q“0

ξq

N`1
ÿ

l“0

ψ`l,ke
iπle´2πi lq

N`1 e2πi nq
N`1

¸

´
2Ωεδ

2
x

N ` 1
<

˜

xne
´iπk

N`1
ÿ

p“0

λp

N`1
ÿ

m“0

ψ`n,me
iπme´2πi mp

N`1 e2πi kp
N`1

¸

“
BpErq

∆
ε pψ

`q

Bp`n,k

Similarly, we can prove for the partial derivative of the discrete rotational energy
with respect to qn,k that, for all n, k P t0, ¨ ¨ ¨ , N ` 1u, we have

BE∆
r pψ

`q

Bq`N`1´k,N`1´n

“ ´
BE∆

r pψ
`q

Bq`n,k
.

Again, this is due to the presence of the imaginary unit i inside the real part of
BE∆

r pψ
`q

Bqn,k
(see Proposition 12 of Chapter 2).
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Partial derivative of the discrete confinement energy:

Last, using Proposition 38 of this chapter, we can prove that

BpEW q
∆
ε,δpψ

1, ψ2q

Bp`N`1´k,N`1´n

“
BpEW q

∆
ε,δpψ

1, ψ2q

Bp`n,k
,

BpEW q
∆
ε,δpψ

1, ψ2q

Bq`N`1´k,N`1´n

“ ´
BpEW q

∆
ε,δpψ

1, ψ2q

Bq`n,k
.

Putting together all the previous results, we obtain ψ`n,k “ ψ`N`1´k,N`1´n for all
pn, kq P t1, ¨ ¨ ¨ , Nu2 and ` “ 1, 2. This completes the proof of Theorem 41. ˝

Example 42 In this example, we display the results of the gradient descent method
(see Section 4 of Chapter 2) with one component ψ using 19 points in the dis-
cretization after 1 iteration. We consider a real initial datum depending only on
the distance from the center hence satisfying the condition of Theorem 41. As we
can see in the table of Figure 4.2, the symmetry property of the real and imaginary
parts of φ is preserved with respect to the second diagonal. The other three possible
symmetries are not preserved by the numerical discretization.

(a) Real part of φ. (b) Imaginary part of φ. (c) Squared modulus of φ.

j “ 1 j “ 2 j “ 3 j “ 4

maxn,k
ˇ

ˇ<pφn,k ´ φgjpn,kqq
ˇ

ˇ 3ˆ 10´5 4.7ˆ 10´16 1.7ˆ 10´5 1.7ˆ 10´5

maxn,k
ˇ

ˇ=pφn,k ´ φgjpn,kqq
ˇ

ˇ 10´5 5.3ˆ 10´20 10´5 10´5

maxn,k
ˇ

ˇ|φn,k|
2 ´ |φgjpn,kq|

2
ˇ

ˇ 5.6ˆ 10´5 3ˆ 10´16 3.5ˆ 10´5 3.5ˆ 10´5

Figure 4.2 – Example of symmetry conservation using the fast Fourier transformation
approach.

Remark 43 Note that visually, the first diagonal and the second diagonal are in-
verted. In fact, at the bottom left of each figure we have the couple px0, y0q “ p´7,´7q
and at the top right we have the couple pxN`1, yN`1q “ p7, 7q. Since we define the
first diagonal as the definition of a matrix diagonal (see Definition 35), visually it
is associated with the diagonal connecting the couples px0, y0q and pxN`1, yN`1q.
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Theorem 44 Let v P CN2
and let fftx, ffty denote the Fourier transform defined

in Section 2.1 of Chapter 2, then we have

δ2
x

N
ÿ

p“0

N
ÿ

k“0

|
`

fftxpvq
˘

p,k
|
2
“ pN ` 1qδ2

x

N
ÿ

n“0

N
ÿ

k“0

|vn,k|
2,

δ2
x

N
ÿ

q“0

N
ÿ

n“0

|
`

fftypvq
˘

n,q
|
2
“ pN ` 1qδ2

x

N
ÿ

n“0

N
ÿ

k“0

|vn,k|
2,

δ2
x

N
ÿ

n“0

N
ÿ

k“0

|
`

ifftxpvq
˘

n,k
|
2
“

δ2
x

N ` 1

N
ÿ

n“0

N
ÿ

k“0

|vn,k|
2,

δ2
x

N
ÿ

k“0

N
ÿ

n“0

|
`

ifftypvq
˘

n,k
|
2
“

δ2
x

N ` 1

N
ÿ

n“0

N
ÿ

k“0

|vn,k|
2.

Proof : We have, with δ the Kronecker symbol,

δ2
x

N
ÿ

p“0

|
`

fftxpvq
˘

p,k
|
2
“ δ2

x

N
ÿ

p“0

ˆ N
ÿ

m“0

vm,ke
iπme

´2iπ
N`1

mp
N
ÿ

l“0

Ďvl,ke
´iπle

2iπ
N`1

lp

˙

“ δ2
x

N
ÿ

p“0

N
ÿ

m“0

N
ÿ

l“0

vm,kĎvl,ke
iπpm´lqe

´2iπ
N`1

pm´lqp

“ δ2
x

N
ÿ

m“0

N
ÿ

l“0

vm,kĎvl,ke
iπpm´lq

N
ÿ

p“0

e
´2iπ
N`1

pm´lqp

“ pN ` 1qδ2
x

N
ÿ

m“0

N
ÿ

l“0

vm,kĎvl,ke
iπpm´lqδm,l

“ pN ` 1qδ2
x

N
ÿ

m“0

vm,kĚvm,k.

(4.5)

Finally, by summing (4.5) over k P t0, ¨ ¨ ¨ , Nu, we obtain

δ2
x

N
ÿ

p“0

N
ÿ

k“0

|
`

fftxpvq
˘

p,k
|
2
“ pN ` 1qδ2

x

N
ÿ

m“0

N
ÿ

k“0

|vm,k|
2.

Similarly, we can prove the rest of the equalities of Theorem 44. ˝
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Conclusion

I have considered in this thesis a dimensionless Gross–Pitaevskii energy as a model
for rotating one component and two components Bose–Einstein condensates in two
dimensions in a strong confinement regime.

First, I have introduced a new discretization of this energy using both finite
difference and FFT approaches which allowed using predefined sparse matrices to
speed up the computation.

Second, in contrast to the literature, I proposed a minimization method for this
discrete energy using an explicit L2 gradient method with projection (EPG). This
method allowed for the derivation of a stopping criterion.

Third, I introduced two post processing algorithms for the numerical minimizers.
One is aimed for the single vortices and the other for vortex sheets. Both allow to
detect these structures and compute their indices.

Fourth, I have ran the EPG method and algorithms for different physical regimes
from one component with high rotation to two components in coexistence and seg-
regation regimes. This allowed to validate recent theoretical results as well as to
support conjectures (as for example the existence of vortex sheets in the segregation
regime) and covered different physical cases.

Fifth, I have compared the efficiency of EPG to the GPELab method [11] in both
cases of one component and two components condensates. On all the numerical tests
presented with a moderate number of points, EPG appears to be roughly speaking
3 times faster than GPELab.

Last, I have adapted some theorems that are known in the continuous setting
to a discrete setting, like the existence of a global minimizer of the energy (2.1).
Then I have studied a symmetry property appearing in some of the simulations of
Chapter 3 using both finite difference and FFT approaches.
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