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Abstract

Apparently, UWB, multiband, and dual-band antennas have become increasingly critical

in developing wireless communication technology as a result of the development of UWB
technology. There is wide use of cellular technology in wireless personal area networks
(WPANS) today. With a frequency range of 3.1-10.6 GHz, ultra-wideband (UWB) tech-
nology has been implemented to meet network requirements with a frequency range of
3.1-11.68 GHz. This frequency range has been approved by the Federal Communications
Commission (FCC), which is vital for the development of modern wireless communication
networks, which are crucial to the development of modern societies. The development of
printed UWB antennas in simple and hybrid forms has been taking place in recent years.
It is important to point out that these printed antennas do not only have controllable
bandwidth, but they are also characterized by the fact that they are low profile, simple
to design, and have a low manufacturing cost in addition to their favorable radiation
properties.

In this thesis, previous studies on Euclidean and Fractal monopole antennas are discussed
in detail to reach a comprehensive approach to designing intended microstrip antennas at
the desired frequency. Novel printed monopole antennas for ultra-wideband and multi-
band applications are presented as a first step to developing novel antenna structures. It
is possible to obtain a much wider impedance bandwidth by increasing only the three
fractal iterations without affecting the resonance frequency using fractal shapes. The pro-
posed antennas are etched on an FR4 substrate of 25 x 25 x 1 mm? and optimized to
operate over the frequency band between 2.5 and 15 GHz for VSWR <2. We also attempt
to study square slot antennas with circular polarization in another chapter of this thesis
with the intended use for UWB applications. The proposed slot antenna is etched on an
FR4 substrate of 60 x 60 x 0.8 mm?3 and optimized to operate over the frequency band
between 2.5 and 15GHz for VSWR <2. Having been adopted by some of the WLAN stand-
ard technologies, this is now a thing of the past. As a result of FCBW, there are now a
variety of WLAN frequencies between 5150-5350 and 5725-5825 MHz (specified by IEEE
802.11a). The first step in this research is to develop three hybrid designs of microstrip-
fed parasitic-coupled monopole antennas with a much higher degree of freedom in the
design process than conventional monopole antennas. As a result of this approach, fractal
ring monopole antennas have been developed as a multiband antenna structure that con-
sists of a directly fed main patch and an electromagnetically coupled parasitic patch.
Utilizing the self-similarity characteristics of fractals, the proposed WLAN/WiMAX an-
tenna has a compact size, offers wide impedance-matching bandwidth, and has a radiation
pattern similar to a dipole. In IEEE 802.11b/g, the frequency range is 2400—2484 MHz,



and IEEE 802.16e and IEEE 802.11a specify 5150-5350/5725-5825 MHz. In 2010, the first
results of this research study were published in an IEEE Antennas and Wireless Propa-
gation Letter (volume: 9), which was an important development in the field.

A second approach uses Pythagorean theory in arithmetic to modify Pythagorean trees
to increase their freedom degree, creating an antenna for UWB based on the proposed
fractal. Monopole antenna patches were embedded as samples of the first five iterations
of the modified Pythagorean tree fractal. Simulation and experimental results of the pro-
totype antennas are presented and discussed in detail to verify the proposed design prin-
ciple. Finally, we review and propose two novel square slot antennas with impedance and
axial ratio bandwidth enhancement. These antennas are based on 20 antennas published
in IEEE and IET journals in recent years. Due to the use of different techniques, better
results were achieved in comparison to prior structures, thanks to the use of more ad-
vanced techniques. It operates between 2.74 and 13 GHz and has been measured to have
a bandwidth of 32.2%.

It is proposed that we combine Euclidean and Fractal geometric structures to design
antennas based on this novel geometry. As a result of studying and designing monopole
antennas, we can produce a novel fractal antenna that can be used for UWB and multi-
band applications. To simulate all the antenna structures presented in the thesis, the
High-Frequency Structure Simulator (Ansys HFSS, ver.11) has been used. The impedance
bandwidths of the antennas are measured by the Agilent8722ES network analyzer in the
anechoic chamber of the Iranian Telecommunication Research Center (ITRC).

Keywords: broadband CPW-fed circularly polarized square slot antenna, UWB applica-
tion, single layer antenna, square ground plane, unequal size inverted-L strips, orthogonal
E vector, CPSSA structure, impedance bandwidth, modified Pythagorean tree fractal
monopole antennas, UWB application, modified microstrip-fed ultrawideband printed an-
tenna.
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THz
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1. Chapter One

1. Understanding of Fractal Geometry Background

1.1. Introduction

Fractal geometry has found a unique place in science because of the unique features it
shows in nature [1|. The word fractal entered the world of mathematics in 1976 by a
Polish mathematician named Benoit Mandelbrot. As is known scientifically, fractals are
primarily used to describe leaf and plant growth patterns, water vapor patterns that form
clouds, the fractured lines that form coastlines, and the arrangement of leaves on trees,
among many other examples [2]. Mandelbrot came to the conclusion that the length of
the English coast is measured by a scale when he studied this during the research for his
doctoral dissertation in 1976. As a result of measuring, it on a large scale, the amount is
smaller than if it was measured on a smaller scale. Fructus is the Latin word that Man-
delbrot took as the basis for the word fractal in terms of its meaning. It is a stone that
has been broken into an irregular shape as a result of being broken. This is to emphasize
the nature of irregularity and fragmentation, which is one of the main characteristics of
this form of geometry [1].

Figure 1-1 illustrates the complexity of the situation by showing the flight of a microscopic
mosquito towards a piece of paper. As shown in the figure above, the mosquito perceives
an object in the distance as a zero-dimensional particle. In Figure 1-1b, it perceives the
object as a one-dimension line, and in Figure 1-1c, it perceives it as a two-dimensional
plane when it flies over it. By getting closer to the object in Figure 1-1d, he can see the
depth of the object, and he can view it as a two-dimensional plane, and finally a two-
dimensional plane when he gets much closer. The next dimension consists of one-dimen-
sional linear networks of fibers.

As shown in Figure 1.2 [1], another classic puzzle in mathematics is the need for fractal
geometry to calculate the coastline of continents. For example, in this experiment, if a 1-
kilometer ruler is used for measurement, the total number of rulers used will be equal to
the approximate length of the coastline [1]. This is despite the fact that a ruler with a
length of only 1 meter is used and this experiment is repeated. As the updated measure-
ment also includes measurements inside caves and wetlands, the results will different. If
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the new measurement scale is smaller, the coastal length will increase again. Let's pay
attention to the fact that this coastline area, whose size increases as the measurement
scale is reduced, is inside the earth with a limited volume [1]. We, therefore, need a ge-
ometry better than Euclidean geometry to solve such a problem. Euclidean geometry has
complete dimensions such as one-dimensional like a line and two-dimensional like a plane.
Benoit Mandelbrot introduced the word fractal, meaning fractional dimensions, for di-
mensions whose dimensions were not included in the classification of complete dimensions.

i

a) b) c) d)

Figure 1.The movement of a small insect from a long distance towards a plane [ 1].

One of the characteristics of some fractals was mentioned in the example of calculating
the length of the coastline, which had an unlimited length that was included in a limited
volume. The fractals used in this thesis have structures with unlimited complexity and a
self-similar nature. This means that by approaching the target structure, the overall struc-
ture is repeated [1]. An example of this self-similarity in nature can be seen in the fern
leaf shown in Figure 1.3. The entire structure of the fern is repeated on the leaves. In fact,
if we zoom in on the structure of the fern leaf, the process of repetition continues [1]. The
idea of dimensions between fractal geometry and Euclidean geometry has opened up a
wide range of applications for fractal geometry, including electromagnetic systems. These
applications can be used to develop the characteristics of emitters and reflectors. There-
fore, the use of this geometry can provide better functionality in comparison with Euclid-
ean geometry. Mandelbert investigated the relationship between fractals and nature using
the discoveries of Felix Hausdoff-Fato, Pierre, and Gaston Julia. He showed that there
are many fractals in nature and those fractals can accurately model natural phenomena
[1]. To model complex structures such as trees and mountains, he introduced new types
of fractals. Mandelbrot defined a fractal as an uneven and curved geometric shape that
can be divided into smaller pieces and each one is a smaller copy of the whole (a part of
the whole). Although there is no personal standard for what defines fractals, there are a
number of characteristics that define fractal properties. The Persian Language and Liter-
ature Academy have also approved the word "barkhal" along with the word "barkhali"
for the word "fractal". Fractal geometry, in contrast to Euclidean geometry, which em-
phasizes the establishment of order at all levels, refers to the order resulting from the
infinite repetition of the disorder [1].
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Figure 2.Calculation of the length of the coastline of the American continent [ 1].

Figure 3. Fern leaf is the simplest fractal structure in nature [1].
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1.2. Characteristics of Fractals: Self-similarity, and Space
filling

It is possible to create fractal shapes by combining geometric shapes such as squares, triangles,
circles, and rectangles. But they differ from Euclidean structures in a very special way. As a result,
these shapes differ from the usual Euclidean shapes, such as circles, squares, etc. They are a mix-
ture of many Euclidean shapes. Unlike other structures, fractals consist of constituent parts that

are arranged in a unified manner. In this case, the scales are smaller. In this situation, we
call it self-similarity. As a matter of fact, the shapes of each of the different components
of a fractal represent its overall shape at different scales. One fundamental property of
fractals is the fact that they are self-similar. This significant trait of fractals has attracted
more and more attention in areas such as mathematics, the arts, and various engineering
fields. This includes telecommunications, coding, aerospace, and mechanics. Therefore,
there will be an infinite number of small copies of the whole object in each part of the
structure. The majority of versions with a smaller scale than the whole structure are
different from the whole object. For example, they may be diagonal or have a different
scale factor self-similarity and have been compressed differently in relation to the coordi-
nate axis. In this case, the object is read. From this feature, another critical feature called
space-curving filling has been obtained, in which the fractal environment increases without
increasing its surface area. This problem causes incorrect dimensions in fractals. Line,
square, and cube are 1, 2, and 3 dimensional, respectively, but the dimension of a fractal
can be an incorrect number like 1/154. So, the three essential features of fractals that
have led to different applications for them are:

e Self-similarity
e Space Filling
e Fractional dimension

Equation 1-1 can then be used to obtain a fractional dimension fractal:

__ Log(N)
D = Loz 5) Eq. 1-1
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1.3. Fractal Characteristics and Common Geometry for
Fractal Antenna Design

Considering their self-similarity and space-filling properties, fractals have had many ap-
plications in electromagnetic. Various applications of the self-similarity property have
been found in the field of designing and manufacturing multiband antennas, especially
microstrip antennas. In microstrip antennas and filters, this property can be used to re-
duce dimensions by filling the space. Here is a brief overview of common fractal geometries
used in antenna design development, which are [1-10]:

The Sierpinski
Koch

Hilbert

o Tree

1.3.1. A Sierpinski Fractal in 2D and in 3D

Sierpinski carpet [3] is the first fractal. In terms of Sierpinski Fractal type, there are two
types, Sierpinski Gasket and Sierpinski Carpet. These two types of fractals are shown in
Figure 1-4. Figure 4-1 illustrates some initial steps in the construction of Sierpinski gas-
kets. An equilateral triangle forms the basis of this fractal's geometric construction. As
shown in Figure 4-1, the next step in this fractal structure is to remove the central triangle
with the tips at the midpoints of the sides [1-3]. Step 2 of Figure 1-4 below illustrates how
this process is repeated for the remaining three triangles. Sierpinski gasket fractals can be
generated through an infinite number of repetitions of this process. As shown in the figure,
Sierpinski gaskets are examples of self-similarity fractals. Metal conductors are represented
by black triangles, while areas without metal are represented by white triangles. In the
Sierpinski fractal of the first order N, the number of similar triangles is equal to three,
and their scale compared to the initial triangle is equal to 0.5. The left and right rows of
Figure 4-1 illustrate the stages of formation of Sierpinski fractals, carpet, and gasket.
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(c)

Figure 4. Two Sierpinski fractal structures: a)) Sierpinski carpet (b)) two-dimensional Sierpinski gasket (c)) Sierpinski three-
dimensional gasket).

1.3.2. Fractal Koch

There are also two types of fractals in snowflakes and islands [3] and [5]. These two types
of fractals are shown in figures 1-5. An equilateral triangle forms the basis of this fractal.
Snowflake Kochs, on the other hand, are made by adding smaller and smaller triangles to
the original structure in a repeatable process. This is in contrast to Sierpinski gaskets,
which are created by removing smaller and smaller triangles. An illustration of the process
can be seen in Figure 1.5.
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Figure 5.The Stages of Forming a Snowflake Koch Fractal [3].

1.3.3. Hilbert fractal

We propose Hilbert's fractal space-filling for use in designing fractal antennas based on
their surface properties. The Hilbert fractal structure can be visualized by looking at fig-
ure 6-1. As a fractal that does not have intersection points, the Hilbert fractal exhibits
the properties of a space-filling pattern.

EREE,
Hels

1.3.4. Fractal Tree

Figure 6.Hilbert Fractal Formation Steps

As part of the design of antennas and frequency selective surfaces (FSS), the fractal tree
structure is also widely used. As shown in the figure below, there are three branches to a
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tree fractal. Ternary trees have geometry similar to Sierpinski gaskets and are known as
Ternary Trees. As shown in Figure 7-1, the triple tree geometry can be interpreted as a
wire model corresponding to the fourth stage of the Sierpinski gasket fractal. Figure 1.5
illustrates how antenna design can be applied to some common fractal geometries. For
miniature loops, patches, and microstrips, Minkowski Island and Koch Flake have been
used primarily to develop and expand existing designs.

B S NS P S NS, S NI SIS N PN S P G N w

Figure 7. Fractal Tree

1.4. Fractal Background, Applications, and Motivations

In the modern era, fractals are used in a number of disciplines, such as physics, chemistry,
biology, economics, geology, image processing, computer graphics, and antenna design,
among others. A new and exciting topic in array techniques to reduce scattering in elec-
tromagnetic waves is the use of fractal geometry as a means to reduce scattering. It is the
purpose of this research to use these mathematical functions to solve problems related to
size, frequency, and multi-band antennas. Antennas have recently been designed using
fractal geometry, which has been used as a design method as well. In the design of anten-
nas, fractals have a number of advantages that encourage designers to use them as part
of their design process. In terms of mathematics, there are many subtleties and complex-
ities involved in fractal geometry. As a matter of fact, it has been tried here, with a brief
review, to implement the approach when designing antennas, with promising results.
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1.4.1. Antenna Design Using Fractal Structures

When it comes to the dimensions of the antenna as well as the wavelength of the signal,
there is a close relationship between the two. In most cases, this is regarded as one of the
most challenging limitations when it comes to designing antennas. The efficiency of an
antenna is greatly reduced when its size is scaled down significantly compared to its op-
erating wavelength. Additionally, its radiation resistance is also reduced, while the amount
of reactive energy stored in its vicinity is significantly increased [7]. These two phenomena
make it difficult for small antennas to adapt to feeding circuits. When they are adopted,
they exhibit a very narrow bandwidth and a high-quality factor. An electric antenna of
this type is called a small electric antenna. The numerical moment analysis performed by
Dr. Kahn revealed that Minkowski's fractal rings have a low resonance frequency com-
pared to their electrical size 8], [9], and [10]. The frequency range of an antenna is usually
limited to around 10-40% of its central wavelength. As a result, antenna sizes are limited
to about half or a quarter wavelength. It was long considered an inherent limitation, until
1961, when frequency-independent (broadband) antennas were proposed [11]. Frequency-
independent antennas include spiral antennas, alternating logarithmic dipole arrays, etc.
Antenna structure was taken into account regardless of scale (and therefore regardless of
frequency) by using Mandelbrot's fractal theory [2|. These antennas can be designed using
the self-similarity principle in fractal structures in order to improve their size-to-wave-
length ratio. It was proposed in 1993 that fractals could be used to design arrays that
operate across several frequency bands. When electromagnetic waves collide with fractal
surfaces, Dr. Jaggar’d demonstrated special properties [12].

Developing antennas capable of operating across multiple frequency bands is a topic of
recent interest in fractal antenna research. The design of small antennas is another appli-
cation of fractals. Antennas with small sizes and wide bands, including frequency-inde-
pendent antennas, have been developed in large numbers. An independent frequency an-
tenna's major characteristic is its ability to return to fractal geometry. As we know, there
are several self-similar antennas, known as fractal antennas, whose frequency-independent
properties allow them to be organized as fractal antennas, such as logarithmic and helical
antennas, although fractals are not responsible for the creation of these antennas [11].

There are a number of ways in which fractals can be used to miniaturize antennas, for
example, by taking advantage of their ability to pack huge electrical lengths into small
physical volumes [13] and [14]|. The self-similarity property is also used when designing
antennas. Depending on the geometry of the antenna, similar properties are graded in
different frequency bands based on how they behave in those bands. A fractal structure
is a structure that has a great deal of unique properties, which can be used to design
antennas that can have very high performance.
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An example of a fractal is a view of the boundary of the filling plane, which means that
large electrical shapes are packed efficiently into a compact array of elements. With elec-
trical lengths playing a much more significant role in antenna design, than they used to
be, this packaging can be used as a successful and practical method of miniaturization to
make antennas smaller and more efficient [14], [15]. By applying the general concept of
fractals, different antenna elements and arrays can be created. It is possible to design
antennas with multi-band or wide-band properties using fractals when using smaller res-
onant antenna elements. When using fractals in array antenna design, multiband or wide-
band arrays can be developed as a result. Most fractals, as a matter of fact, are extremely
complex, which allows us to be able to reduce the antenna's size by utilizing the details
within the mathematical formula. Due to the fact that different parts of the antenna are
similar to one another on different scales, they can even be able to reach several frequency
bands of arrays, with the meaning of the full screen [15].

As a matter of fact, Dr. Kahn was the first person to develop an antenna element using
fractals. He demonstrated that by applying the concept of fractals to an antenna element,
the size of the antenna could be significantly reduced [5|. By studying the behavior of
Sierpinski monopoles and dipoles, Puete was able to prove the multiband ability of fractals
[2], [3], and [6]. Both the radiation pattern and the input return loss of Sierpinski mono-
poles are characterized by similar behavior over a wide range of frequencies. There are a
number of other fractals that can be used to obtain ultra-wideband or multiband antennas
[14] to [19]. Fractal antennas have the apparent practical advantage that they can be used
as a resonant antenna in a smaller area, which is an obvious benefit.

1.5. Fractal Antenna Elements

Antennas such as dipole Koch, monopole Koch, Koch rings, and Minkowski rings can be
reduced in size by using the fractal concept. Due to its self-similarity in geometry, the
fractal concept can also be employed to achieve multiple bandwidths and increase each
band's bandwidth, for example, Sierpinski bridge dies, Patch-and-counter slot and Fractal
tree die bridge. Fractal structures can also be used to create wide-band responses, such as
printed fractal rings. In Figure 1-7, several examples of fractal antenna elements are
shown. Based on the general concept of fractals, arrays can also be designed and analyzed
using fractal theory. Multi-band performance can be achieved with fractal arrangements
or array elements [10], [14], and [19].
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Figure& Some Examples of Fractal Antenna Elements [19].

1.6. Conclusion

Due to the idea of dimensions between fractal geometry and Euclidean geometry, a large
variety of applications have been developed for fractal geometry. These include the devel-
opment of characteristics of emitters and reflectors, which are employed in electromagnetic
systems to demonstrate their properties. Thus, when compared with Euclidean geometry,
the use of this geometry is likely to provide better results than doing so using Euclidean
geometry. There are several advantages to fractal geometry over Euclidean geometry when
designing antennas [1-10]. The reason for this is fractals' self-similarity, their high spatial
complexity, and their ability to fill space efficiently [5-9].

Simple, regular shapes, such as circles, squares, and triangles, are the basic building blocks
of Euclidean geometry [1-10]. Euclidean antenna designs are limited both in their ability
to provide a large amount of surface area relative to their volume, as well as their ability
to provide multiple paths for signals to reflect [1-10]. In contrast, fractal shapes are more
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complex and irregular, and they are more efficient at filling space. The use of fractal
shapes for antenna designs will result in greater surface areas compared to their volumes,
which will lead to greater performance and efficiency [5-9]. The antenna's ability to receive
and transmit signals can be further improved by using multiple reflection paths provided
by fractals [1-10]. Fractal antennas, such as the Sierpinski fractal antenna based on the
Sierpinski triangle, are examples [5-9]. Wireless communication systems require antennas
with small volumes but large surfaces, so this antenna fits the bill. Additionally, Sierpinski
fractal antennas have multiple reflection paths, which improve their receiving and trans-
mitting abilities [1-10]. A fractal antenna can be operated over a wide frequency range,
which is another advantage [1-10]. Since fractal shapes are spatially complex, they are
capable of interacting with signals across wide frequency ranges. In wireless and cellular
communication systems, fractal antennas are useful for applications requiring multi-band
or broadband operation [5-9]. The design and manufacture of fractal antennas are rela-
tively simple as well as offering the advantages described above [1-10]. As a result, fractals
can be easily generated using computer software by using simple mathematical algorithms.
A wide range of wireless communication applications can benefit from fractal antennas
because they are cost-effective and efficient solutions [5-9)].

The design of antennas can be facilitated by using fractal geometry instead of Euclidean
geometry. Spatial complexity is increased, space is filled more efficiently, and multiple
reflection paths can be provided for signals. The design and manufacture of fractal anten-
nas are relatively simple, and they can operate across a wide frequency range. In compar-
ison to Euclidean geometry, fractal geometry has these unique properties that make it an
excellent choice for designing antennas. As a result, the aim of this project is to develop
new fractal structures of monopole antennas, or to modify an existing fractal structure in
order to achieve the best possible optimization in terms of performance.
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Chapter Two

2. Design Methods of Printed Monopole Antennas for
UWB applications.

2.1. Introduction

It requires its own design methods because printed monopole antennas have a special
structure. These antennas lack a ground plane under the radiating element, so their three-
dimensional symmetry is somewhat disturbed compared to vertical monopole antennas or
simple microstrip antennas. As a result of this problem, traditional methods of analyzing
and designing antennas, such as the microstrip transmission line method and the cavity
model, are not effective anymore. Instead of considering the resonance frequency in mon-
opole antennas, researchers examine how design parameters affect low-band edge frequen-
cies and impedance bandwidths rather than the resonance frequency. A lower edge of the
band's frequency depends on the antenna's maximum vertical height in the initial design.
Broadband antennas are determined by how they match the impedance of different an-
tenna modes with their feed lines [16-22|. HFSS, Computer Simulation Technique, is com-
monly used to analyze, design and optimize these antennas. Over the last few years, in
addition to the usual design methods, a series of analytical formulas, along with a number
of diagrams that can assist in the design of printed monopole antennas at low frequencies,
have been suggested in addition to the usual design methods. This chapter presents a
comprehensive analysis of the data collected. Several techniques have been introduced so
far to improve the performance of these antennas, and we will examine them in the fol-
lowing chapters. Analytical methods will be used to improve the antenna's bandwidth,
impedance matching, gain, pattern, and other characteristics. [21] and [22] demonstrate
that software or experimental methods can be used.
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2.2. Methods of Designing and Improving the Perfor-
mance of PMA for UWB applications

In addition to having a broad bandwidth and an omnidirectional radiation pattern, the
printed monopole antenna can be analyzed in two ways. A microstrip antenna, in which
the ground plane is located under the radiating element, is assumed in the first method.
There are two substrates used for printing the antenna. In the first case, it is air with a
dielectric coefficient of 1, and in the second case, it is FR4 with a dielectric coefficient
other than 1 (4.4 if this FR4 substrate is chosen). Based on this assumption, the printed
monopole antenna is equivalent to an antenna that is placed on a substrate with a dielec-
tric coefficient close to 1, and we know that this will result in a very wide bandwidth. In
the second method, the printed monopole antenna is examined in the same way as the
vertical monopole antenna. As we know, the vertical monopole antenna consists of a very
large metal cylinder placed perpendicular to the ground. Its bandwidth increases as the
radius of the cylinder increases. A printed antenna can be considered equivalent to a
vertical antenna that has a large effective diameter and is surrounded by a dielectric
material other than air. The last method calculates the low band edge in common struc-
tures for printed monopole antennas [22-30].

2.2.1. Design Methods for Ultra-Wideband Antennas at
Low Frequency ff,

Square antennas, rectangular antennas, polygonal antennas, triangular antennas, circular
antennas, and elliptical antennas are the most common designs and shapes of printed
monopole antennas. As shown in Figure.9, there are a number of forms with different
feeding structures. The shape of the antenna affects the radiation pattern and the effi-
ciency of the antenna. The size of the antenna also affects the amount of radiation that
is emitted. Different shapes, sizes, and feeding structures can result in different radiation
patterns and efficiencies. Microstrip feed extension 1 and extension 2 are connected to the
radiating element through microstrip feed. With a height of 1.6 mm and a loss tangent of
0.01, all these antennas are positioned on FR4 substrates. The shape of the antenna de-
termines how the electromagnetic waves are radiated, while the size of the antenna con-
trols the power that is radiated. Different antenna designs, such as microstrip feed exten-
sions, will result in different radiation patterns and efficiencies. The height and the loss
tangent of the antenna also affect the radiation pattern and efficiency, and these param-
eters are determined by the substrate material used to build the antenna. A modified
version of the standard formula used for vertical cylindrical monopole antennas is modified
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appropriately. It can estimate the low-frequency band edge frequency in printed monopole
antennas.

In the first step, the relationship used in monopole vertical plane antennas is modified as
follows: if L is the maximum height of the radiating element and r is the effective radius
of the equivalent cylindrical antenna, the frequency of the lower edge of the band from
Equation (2-1) is obtained. In this expression, r is obtained by setting the area of the
cylindrical monopole antenna equal to the area of the desired planar antenna. In this
expression, p is the horizontal distance of the end of the ground from the radiating ele-
ment.

R 1 A

PRMAZ2

PCMA PEMA2

a -----. r----

PTMAZ2 PHMAZ2

Figure 9. Common forms of printed monopole antennas with different feeding structure. These are different types of monopole
antennas, each with a unique shape, used in various wireless communication applications. A monopole antenna is a type of radio
antenna with a single conductive element, typically a metal rod or wire, that is fed with radio frequency energy at its base and
radiates it into space. The shape of the antenna affects its radiation pattern, frequency response, and impedance matching, among
other factors. Each of the antennas listed above has its own unique advantages and disadvantages, depending on the specific
requirements of the application [1-40].
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fL :m Hz Eq. (2.1)
72
fiL= ik GHz Eq. (2.2)

The effective dimensions of printed antennas increase when the substrate has a dielectric
coefficient greater than 1. Consequently, the lower band edge frequency will decrease. For
the calculation of the low band edge frequency, equation (1-2) is modified into equation
(2-2).

Figure 2.1 shows a printed monopole structure, and L. and r can be calculated based on
it. For a circular patch monopole antenna with radius A, As = L and A = r/4, and for
an elliptical antenna 1, A» = L and B = r/4, and for an elliptical antenna 2, By = L and
r = A/4. The value of factor k can be calculated by applying the first-mentioned method
to printed monopole antennas. In this case, the plane of the earth is assumed to be at
infinity. With a maximum error of 10%, the experimental value of k for the FR4 substrate
with a height of 1.6 equals 1.15 estimates the frequency of the lower edge of the band [20]-
[30]. By applying the method to monopole antennas, the value of k can be determined
based on the frequency of the lower frequency band edge. This is in addition to well as
the height of the substrate. This value can then be compared to the experimental value
of k, and if the error is within 10%, then it is considered an accurate estimate of the
frequency.
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Figure 10. Changes in the length of p with the change of the frequency of the lower edge of the band in monopole antennas of
group 2. [30]

The effective length of the feed line, p, is another parameter that is effective in determining
the lower band edge frequency (f1). In order to determine the p parameter, three param-
eters must be taken into consideration [30]:

e The degree of curvature of the final dividing line of the earth
e The curvature of the lower dividing line of the radiating element
e Distance between the ground's end and the radiating element's beginning.

As a result of these three parameters, the printed monopole antenna (PMA) is capable of
matching the impedances of adjacent resonances simultaneously [10-30]. In order to
achieve the desired impedance bandwidth and lower edge frequency, the parameters of
this network must be optimized. An impedance-matching network's lower edge frequency
can be increased by adjusting the capacitance of the inter-resonator capacitor. In Figure
2.1, the length of the p-value will be extra for antennas that have radiating elements of
different shapes that are fed from other sources [10-30]. There are three common types of
printed monopole antennas (PMA) based on this difference: In group 2.1-A, the feeding
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line sees a sudden change in the edge at the entrance to the radiating element. The radi-
ating patch and feeding line change slowly in the antennas of group 2.1-B. As shown in
Figure 2.1-C, the patch is fed from the corner in the third category [10-30].

To obtain the desired p with the desired lower edge frequency (desired) and maximum
impedance bandwidth, use the following method [10-30]. Based on the HFSS software, we
consider all of the lower edge frequencies of the wireless network band, which is 0.5 GHz
to 2.3 GHz [10-30]. To have the maximum impedance bandwidth, we need the optimal
value of p in this interval. In order to determine the change in p according to a lower
band edge frequency, we draw a curve [10-30]|. This curve will be different for three dif-
ferent categories. Figure 2.2 shows the intended curve for the second category, namely
PEMA and PCMA [30].

FR4-substrate

/ ~

ground plane microstrip line
Figure 11.The structure of an elliptical monopole antenna /30-35/.
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2.2.2. Basic Method for the High-Frequency (fg) Design
of UWB Printed Monopole Antennas

A printed monopole antenna is equivalent to a vertical cylindrical monopole antenna with
a large radius, as previously mentioned [30-33]. The metal radiating element is then ex-
cited to exhibit various high-order current modes in accordance with this assumption. The
antenna feed must be optimal, and its transverse dimensions must be large enough for all
existing resonant modes to have a high impedance bandwidth [30]. Consequently, they
undergo less change in impedance during resonance [2-33|. All parameters of the antenna,
including its size and shape, should be optimized so that the impedance of all resonant
modes is placed within the VSWR=2, unit circle on the Smith diagram. It will be possible
to obtain a wide impedance range with this work. An example of an elliptical monopole
antenna is used to explain and prove this problem [30-33].

In Figure 2.3, the antenna is shown as an elliptical radiation element with a major diam-
eter of A2 and a minor diameter of By, which is mounted on an FR4 substrate with a
dielectric coefficient of 4.4, a height of 1.6 mm, and a loss tangent of 0.01. By using the
curve of Figure 2.2, the length p is determined to have a lower band edge frequency (fr,)
of 1.1 GHz equal to 1 mm. In order to maintain a constant input frequency, we keep the
main diameter of the oval patch at Ay = 4.8 cm [30-33|. Four different values of B2, 10,
20, 40, and 52 mm were selected [30] to examine how changes in the transverse diameter
of the radiation patch affected the input impedance and the bandwidth of the impedance.
As shown in Figures 2.4 and 2.5, the monopole antenna structure with the four mentioned
values has been parametrically analyzed using HFSS software up to a frequency of 5 GHz,
indicating where impedance changes occur in the Smith diagram and the corresponding
return loss diagram. It is evident from the Smith diagram that the radiating element at
By = 10 mm behaves like a monopole wire antenna [30-33]. The impedance difference
between several different resonant rings, as well as within the rings themselves, is very
large [30-33]. Each of the rings represents one of the resonant modes of the radiating
elliptical element. In order to reduce the impedance changes in Bs, it is necessary to
increase its transverse radius. As a result, the rings become smaller and closer together,
which increases the impedance bandwidth. Figures 4a to 4c [30] illustrate these changes
[30-33].
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Figure 12: Smith diagram for four elliptical monopole antennas with A2 and B2 = 48 mm: (a) 10 mm, (b) 20 mm, (c) 40 mm, (d)
52 mm/30-35].
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Figure 13: Return loss diagram for four elliptical monopole antennas with Az = 48 mm and B2 variable [30-33].
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Figure 14: Surface current distribution on the radiating element and the antenna ground for the structure of the elliptical mono-
pole antenna with A2=48 mm and B2=52 mm at frequencies 1, 3, 5, and 7 GHz [30-535].

A graph of the changes in return losses in relation to frequency and the four mentioned
parameters is illustrated in Figure 2.5. As part of the next step, we will examine the
distribution of surface currents in the radiating element and the ground below the antenna
that is optimized with the values of As=48mm and By=48mm, up to a frequency of 16
GHz.

Figure 2.6 illustrates the results of this analysis. A distribution of the surface current of
the antenna at 1 GHz around the first resonance frequency is shown in figure 2.6.A [30-
33):

Only the first half cycle of the surface current is seen at this frequency, representing the
main resonance mode around the elliptic element and in the feeding area. Alternatively,
the current on the ground is distributed around the upper edge and demonstrates the
importance of length p during optimization [30-33]. Figure 2.6.b shows the current distri-
bution at 3 GHz frequency: the number of current cycles is three times the original fre-
quency. According to Figure 2.6, increasing the frequency to 5 and 7 GHz multiplies the
number of current cycles, but reduces the current amplitude. This causes the current to
spread out to the other edges [30].

Antenna gain and radiation pattern are examined in the following sections. The radiation
pattern diagram in Figure 2.7 shows antennas operating at 2, 6, 10 and 14 GHz in the H
plane. It can be observed that the single-pole wire antenna pattern is omnidirectional at
low frequencies (the ideal state for single-pole wire antennas) [30]. As frequency increases,
the pattern's directivity increases, while at the same time the cross component gradually
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becomes larger and can be measured at a frequency of 14 GHz. Moreover, Figure 2.8 shows
the antenna radiation pattern on the E-plane at the mentioned frequencies. As can be
seen in this figure, at low frequencies, the E plane pattern takes on the shape of a number
8 (ideal for monopole wire antennas), and as frequency increases, it becomes more skewed
and has a larger cross component [30-33|. This antenna's radiation gain and efficiency are
also shown in Figure 2.9. Gain increases with frequency until saturation occurs. Radiation
efficiency decreases from 100% to 80% as the frequency range increases from 1 to 15 GHz
[30-33]. With an increase in frequency up to 6 GHz, the antenna's effective area has
increased [30-33|. This results in an increase in gain of 1.84 dB to 7.7 dB, but as radiation
efficiency decreases, the gain rate increases in 0.5 dB between 6 tol5 GHz.

Figure /5 :The radiation pattern of the H plane for the elliptical monopole antenna structure with A2=48 mm and B2=52 mm at
frequencies (a) 1, (b) 6 and (c) 10 GHz [30].

Figure 16: E plane radiation pattern diagram for an elliptical monopole antenna structure with A2=48mm and B=52mm at fre-
quencies (a) 1, (b) 6 and (c) 10GHz (From left to right, respectively.)[30-33]
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Figure 17: Gain and radiation efficiency of an elliptical monopole antenna with A2=48 mm and B2=52 mm [30].

2.2.3. Printed Monopole Antennas with an Annular Radi-
ation Elements

A higher surface current density is found in the environment of the radiation element than
in other areas, as explained in Section 2.1. A radiation element with an elliptical shape
can be used in the antenna structure instead of a complete elliptical element [30, 31-33].
This work allows for the use of other RF elements in the antenna, and at the same time,
by adjusting the internal radius (r) of the ring antenna, the antenna's ultra-wide band
performance is maintained, as well as reducing the amount of metal used. It is also possible
to increase the radiation efficiency as well as reduce the heat loss of the antenna. An
example of the ring antenna structure described in reference [25] is shown in Figure 2.1.
In Figure 2.11, we see the effects of parametric analysis to determine r. From these graphs,
it can be determined that r=4.5 mm [30].
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Figure20: Antenna radiation pattern of Figure 22-2 [25] in: (a) H plane at 3.5 GHz frequency, (b) E plane at 3.5 GHz fre-
quency, (c) H plane at 10 GHz frequency and (d) E plane at 10 GHz frequency (from left to right clockwise) [30].
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Figure2/ :Gain diagram for antenna 2-10 [25,30].
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Figure22:The structure of a circular antenna with a symmetrical cut in the radiating element [26,27-33].

2.2.4. Symmetrical Sector Cut in Antenna Radiation Ele-
ments

As shown in Figure 2.14, a monopole antenna with a symmetric radiating element can be
constructed. Reference [26] provides the design of this structure and how to examine it.
A circular radiation element with a radius of 8.5 mm is located on a FR4 substrate with
a height of 0.8 mm in this structure. Antenna dimensions and other characteristics are
shown in figure 2.14. A change in antenna return loss with M size can be seen in figure
2.15. By increasing the angle M from 0 to 180 degrees, the bandwidth of the impedance
has increased by 6%. In addition, the frequency of the lower frequency band edge of the
band has increased by 25%. Our study of antenna radiation patterns at resonance fre-
quencies of 4 and 10 GHz depends on choosing M = 80°. A comparison can be made
between Figures 2.16 and 2.17. This is because the H plane radiation pattern is omnidi-
rectional at all band frequencies. The E plane radiation pattern is reminiscent of the ideal
monopole radiation pattern found in antennas across all band frequencies. Figure 2.18
shows an antenna gain diagram. The 4 and 10 GHz resonance frequencies enable us to
compare the relative gains of the antenna in the E and H planes. We can observe that the
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E plane gain is higher than the H plane gain, which is consistent with the behavior of a
monopole antenna. The antenna gain diagram in Figure 2.18 provides further evidence of
this, as it shows the maximum gain in the E plane and the relatively lower gain in the H

plane. Throughout the whole frequency bandwidth, the antenna gain requirements change
by about 4 dB [26, 30].
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Figure23 :The diagram of changes in return loss of the antenna Figure 2.14 [26] based on the change in M angle.

Figure24 :The radiation pattern of the antenna in Figure 2.14 [26] in H-plane at frequencies: (a) 4 and (b) 10 GHz.
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Figure25:The radiation pattern of the antenna in Figure 2.14 [16] in plane E- at frequencies: (a) 4 and (b) 10 GHz.
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Figure26 :Diagram of gain changes for the antenna in Figure 2.14 [26].

2.2.5. E and EC Monopole Antennas

The purpose of this section is to introduce two types of monopole antennas based on a
novel point of view for the analysis of monopole antennas [27]. In Figure 2.19(a) and
2.19(p), the radiating element of the antennas is created by removing the common plane
of two circles or an oval from the larger plane, and they are called E monopole antennas
[27-30]. They are called EC antennas because their radiating element complements the E
structure in Figure 2.19(b) and 2.19(c) [27-30]. This antenna has a gap between the radi-
ating element and the ground, and the gap affects its performance for UWB [27-30]. An
antenna's lower edge frequency is determined by the opening of this gap, and the gap
opening should equal A/2 of the desired lower edge frequency [27-30].
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Figure 27.Ultra-wideband monopole antennas: (a) Elliptical antenna E, (b) Elliptical antenna EC, (c) Circular antenna E, and
(d) Circular antenna EC [27].

Detailed instructions for designing the feeding line can be found in [28-30]. It is necessary
to specify the substrate's height and dielectric coefficient in this method. As shown in
Figure 2-19 with wy,, the feed line width is chosen so that its characteristic impedance is
50 ohms. This is done in order to ensure that signal power is efficiently transferred between
the transmitter and the receiver. With the dielectric coefficient and the substrate's height
specified, the feed line's width can be determined to provide an impedance match between
the source and load. This will allow maximum power transfer. First, calculate the effective
dielectric coefficient for the combination of substrate and air based on the frequency of
the lower edge of the band (fi). The first order approximation is used to calculate the
effective dielectric coefficient, and in this case, €ef = 2/(e; + 1) in higher order approxi-
mations. The height of the substrate and the working frequency of the antenna are also
used in the calculation of e They are effective and have been omitted here. Based on the
design method mentioned in [29, 30|, the length and width of the radiating element apart
from the feeding structure are chosen to be equal to the quarter A/4 and half of the
effective electric wavelength A/4 at the frequency fi, respectively.

Therefore, w=c/(2/(ceff)fL)=heff/2 and 1=c/(44/(ceff)fL)=heff /4 and based on this selec-
tion of dimensions, w = 1D and w = 2D /2 will be. Thus, in ellipses, the diameter ratio
equals 0.5 = 2R = 1R, and in circles, it equals 1 [29, 30]. A semi-circular ground plane is
selected for circular antennas and an oval ground plane for semi-elliptical antennas, as
shown in Figure 2.19. The semi-circular ground plane is chosen for circular antennas be-
cause it provides the same electrical properties as a full circle does, but with a much
smaller footprint [29]. The oval ground plane for semi-elliptical antennas is chosen because
it provides a larger area for the antenna to radiate, allowing for more power to be trans-
mitted. Additionally, the oval shape provides a more efficient method of radiating the
signal, as its length is equal to the wavelength of the signal, allowing for more efficient
radiation of the signal [30]. This allows the earth's curvature to match the radiation ele-
ment, improving the impedance matching, as discussed in Section 2.2.2.

In addition to choosing the center points of small and large circles, ellipses, and arcs of
the antennas, we ensure symmetry is maintained in the structure. Their horizontal dis-
tance from the ground in E antennas equals Ci=R;D;/2 and Cy=wm-+R2D2/2, while in
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EC antennas it equals Co=RsD2/2 [30]. A DuPont 951 substrate with a dielectric coeffi-
cient of 7.8 and a loss tangent of 0.0015 is used for the first structure in this section.
Considering the frequency f1, equal to 2.5 GHz, Table 1-2 presents the design parameters
for the four antennas of Figure 2.19 using the aforementioned design relationships. HFSS
software optimized the four structures for return loss less than 10 dB and impedance
bandwidth between 3.1 and 10.6 GHz based on the optimization results. The DuPont 951
substrate was chosen because it had low loss tangent and dielectric coefficient values which
would lead to better antenna performance [30]. The frequency of 2.5 GHz was chosen to
ensure that the antennas had the desired impedance bandwidth. The parameters in Table
1-2 were designed using the design relationships and the antennas were optimized with
HF'SS software to ensure that they had the desired return loss and impedance bandwidth.
As well as the results of the formulation, Table 1-2 shows the results of this optimization
[30].

Table 1-2 shows that the difference between computer analysis and formulation is less
than 10%, which indicates that the relationships are almost accurate. As can be seen in
Figure 2.19, the return loss diagrams for four monopole antennas are shown based on their
frequencies [30]. Figure 4 shows that all four structures operate in the ultra-wide band
and cover the impedance bandwidth between 1.3 and 10.6 GHz, with E antennas having
a lower frequency at the lower edge of the band than EC antennas [30]. This indicates
that the computer analysis and formulation of the monopole antennas have been able to
accurately replicate the physical structures, as the difference between the two is less than
10%. This is further supported by the return loss diagrams, which show that the antenna
structures operate in the ultra-wide band and cover the impedance bandwidth between
3.1 and 10.6 GHz. This suggests that the computer analysis and formulation of the mon-
opole antennas have been able to accurately reproduce the physical structures and their
performance over a wide frequency range [30]. In Figure 2.20, we can see the three-dimen-
sional pattern of the monopole E antenna. At low frequencies, this pattern is ideal, as
with other monopole antennas [30, 31-36]. Furthermore, the monopole E antenna exhibits
an omnidirectional radiation pattern within the entire ultra-wide band, making it suitable
for a variety of applications. The pattern becomes distorted or multiple zeros appear with
increasing frequency. The rest of the E and EC structures are also similar [30]. However,
the monopole E antenna is still very useful in terms of its benefits despite the distortion
in the higher frequency range. Its omnidirectional radiation pattern and wide frequency
range make it a great choice for multiple applications [30].

Table 1-2: Monopole antenna design parameters calculated and optimized

Parameters Calculated Opt. E Opt. E Opt. EC Opt. EC
Elliptical | Circular | Elliptical Circular

monopole | monopole | monopole | monopole
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Figure2& :Comparison of return loss diagrams of four monopole E and EC antennas based on frequency [30].

Figure29 :Three-dimensional radiation pattern of monopole antenna E at frequencies (a) 3, (b) 5, (c) 7 and (d) 10 GHz (left to
right, respectively) [30].
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Figure30 :Four monopole antennas and their gains based on frequency [30].

Figure 2.21 shows the gain changes of monopole antennas based on frequency. According
to this figure, the gain changes for E antennas in the UWB frequency range are between
0.5 and 4.7 dB and for EC antennas between -0.5 and 2.5 dB. As a result of these changes,
E antennas have a higher overall gain than EC antennas. Figures 2.22 to 2.24 show the
simulation results with dielectric coefficients and height with the design parameters for
two other sub-layers in Table 2-2 to verify the accuracy of the design relationships. The
results of the simulations show that the gain of the E antennas is higher than that of the
EC antennas across the entire UWB frequency range. This is due to the fact that the
dielectric coefficient and height of the two antennas are different, which affects the im-
pedance and therefore the gain of the antennas. There are different substrates [30]. The
graphs above show that at low frequencies and with low dielectric coefficients, changing
the height of the sub-layer has a very small effect, while at higher frequencies and with
higher dielectric coefficients, the effect becomes more pronounced. It has been assumed
that the lower edge of the band has a fixed frequency. We consider the substrate with a
coefficient of 7.8 and a constant height of 0.5 mm, changing the frequency of fi, from 1.5
to 3 GHz. This return loss diagram shows the effect of these changes at frequencies be-
tween 1 GHz and 6 GHz. Based on the graph, it can be seen that fi, differs by about 5%
from the assumed frequency. Considering the sum of these results, the presented formu-
lation accurately simulates UWB monopole antenna performance [30]. For instance, the
return loss in the diagram is lower than -10 dB when the frequency is between 1.5 and 3
GHz, indicating that the antenna is efficiently transmitting and receiving signals within
this range.
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Table 2.2. Calculated design parameters for monopole antenna with different sub-layers

w 1 D, Do wo | Height and type of substrate
R04003C

1/15 h=0/5mm

40/6 20/3 40/6 20/3 1/7 h=0/75mm
2/3 h=1mm

2/9 h=1/25mm

3/45 h=1/5mm

DuPont951

0/58 h=0/5mm

28/6 14/3 28/6 14/3 0/9 h=0/75mm
1/2 h=1mm

1/5 h=1/25mm

1/8 h=1/5mm

RT6010LM

0/46 h=0/5mm

25 /4 12/7 25 /4 12/7 0/68 h=0/75mm
0/92 h=1mm

1/15 h=1/25mm

1/4 h=1/5mm
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Figure3/ :The antenna return loss of R04003C substrates with different heights varies with frequency [30].
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Figure32 :Variations of antenna return loss with frequency for DuPont951 substrate with different heights [30].
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2.3. Design and Improvement of Printed Dual-band M on-
opoles for WLAN /WiMAX

2.3.1. Antenna Design Methods for Dual or Multiband
Antennas with Bending Radiation Elements

The purpose of this section is to examine how a simple wire monopole antenna structure
can be modified to create a dual-band antenna, which is described in the references [30].
Figure 2.24 illustrates the design process in three parts. Structure 2.26 (a) A2/2 monopole
antenna is excited by a 50-ohm feed line. However, this antenna occupies about 85% of
space when compared to the dimensions of the patch antenna with the same frequency
response [30]. The above structure has been corrected according to Figure 2.26 (b) to
improve this and reduce the antenna's dimensions. By bending the radiation element, this
structure occupies 76% less space, and has the same frequency response as a patch antenna
[10-30]. This element needs a length equal to 0.62 A to work at the resonance frequency
of the structure (A). But by bending the radiating element of the loaded antenna, a
capacitive coupling is created between the edge of the ground and the horizontal part of
the antenna structure. Therefore, the antenna's bandwidth is reduced, but in 2.26 (c), a
bent radiation element of a different length is added to the antenna's structure [30]. Dual-
band antennas are created by creating different resonances in their structure with different
current paths [30]. The first arm should be located at a distance of 1.4\ and the second
at a distance of 2.4\ from the ground plane. A 50-ohm power line feeds the above radiation
elements, which are placed on FR4 substrates with a height of 1.6 mm and a dielectric
coefficient of 4.36 [30]. High impedance bandwidth and proper impedance matching have
been achieved with the same length and width of the ground plane as with the previous
antennas [30]. The 1.4\ distance of the first arm allows for better radiation characteristics,
while the 2.4\ distance of the second arm is designed to ensure proper impedance matching
of the power line. The use of the FR4 substrate with its dielectric coefficient of 4.36 allows
for the proper bandwidth and impedance matching of the antenna. Finally, the same
length and width of the ground plane as with previous antennas ensures that the antenna
will have the desired radiation characteristics.
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Figure 35:Baud rate and width of three types of monopole antennas: the simple monopole (a), the curved monopole (b), and the
double-band monopole (c) (from left to right, respectively) [30].

A comparison of the return loss of the above three antennas can be seen in figure 2.27.
The antenna 2.26 (A) resonates at 2.41 GHz and covers a 500 GHz bandwidth around the
resonance frequency. The antenna in Fig. 2.26 (A) has the lowest return loss, indicating
that it is the most efficient out of the three antennas. This is likely due to its resonant
frequency being closer to the desired frequency of 2.41 GHz, allowing it to capture more
of the signal within its 500 GHz bandwidth. The dimensions of the antenna are identical
to those of a standard patch with the same frequency response. An antenna 2-26 (b) is
operating at 2.44 GHz, has a bandwidth of 400 MHz, and occupies 76% of the patch. Fig.
2.26(c) antenna covers a DCS frequency band of 500 MHz and a 2.4-WLAN band of 220
MHz in two resonant modes of 1.725 and 2.45 GHz. In order to achieve the wideband
response, the antenna of Fig. 2.26(c) uses two resonant modes, which may not be possible
for the antenna of Fig. 2.26(b). In addition, the antenna of Fig. 2.26(c) has a narrower
bandwidth than the antenna of Fig. 2.26(b).
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Figure 36:Diagram of the return loss of the antennas in Figure 2.26 [30].
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Figure 37:An antenna that was used as the initial reference [31].

2.3.2. Using the Effect of Capacitive and Inductive Load-
ing

The purpose of this section is to examine the effects of capacitive and reactive loading. A
resonance frequency ratio has been adjusted using this effect in reference [31]. The mag-
netic field of a capacitor concentrates magnetic fields inherently, and the electric field of
a capacitor concentrates magnetic fields inherently [30]. In an antenna region with a fixed
electric length [30], the effective electric length increases with increasing electric or mag-
netic field density, and the resonance frequency decreases, a phenomenon known as ca-
pacitive or self-loading [30].

Whenever the electric or magnetic field in a region of an antenna is reduced, the effective
length and resonance frequency associated with that region decrease [30]. Anti-capacitive
effects are known as a result of such a phenomenon [30]. By adjusting the radiating ele-
ment of the monopole antenna shown in figure 2.28 and its current distribution in figure
2.29, you can control its resonance frequency ratio. It can be seen in Figure 2.30 that the
antenna structure has changed, and in Figure 2.31 that the return losses have increased
130,
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Figure 38:Surface current distribution in Figure 2.28 antenna [30].

2 1

Figure 39:Self-loading and anti-capacitance applied to the antenna in Figure 2.28 [30, 31].
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Figure 40:Return loss diagram for the antenna of Figure 2-30 with the application of self-loading and anti-capacitance [30].
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Figure 41:The structure of a double-band monopole antenna with a parasitic element [30].

2.3.3. Parasitic Elements

By creating two different paths of surface electric current, section 2.3.1 showed how to
create two separate resonances in the antenna and achieve two-band performance. Figure
2.32 shows another method described in reference [32] with its intended structure. Using
this structure, a square radiation element with determined dimensions is fed by a 50-ohm
microstrip line [32]. There is a 0.8 mm height difference between it and the FR4 substrate.
Under the radiation element is the parasitic element with parametric dimensions. The
main resonance frequencies produced by the radiation element alone in the desired struc-
ture are 2.3 GHz and 3.7 GHz [32]. The parasitic element placed under the radiation
element is electrically coupled to it. If the dimensions of the parasitic element and its
distance from the ground plane are adjusted correctly [32], a new resonance is created
between the two main and sub-resonances and two-band performance with the appropriate
impedance width is produced [32]. As shown in Figure 2.33, return loss for the above
antenna varies with parasitic element length and ground distance [32].

According to this figure, the best impedance bandwidth is obtained at length (h) 24.4 mm
and distance (g) 6.1 mm [32]. Table 3-2 also includes the results of the simulation based
on the transverse values of the parasitic element [32]. According to Table 2-3, the optimal
values for large width (2w) and small width (1w) are 17 mm and 12 mm, respectively.
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Figure 2.34 shows the return loss diagram for the above antenna with and without para-
sitic elements. Adding the parasitic element produces a new resonance and increases the
impedance bandwidth, as illustrated in this figure [32|. In this way, measurements and
simulations are compared, and an excellent agreement is found. Figs. 2.35 (a) to (p) show
the radiation pattern of the above antenna in three planes: xy, xz, and yz. As shown in
the diagram, this antenna follows the same pattern as other monopole antennas that were
discussed in the previous Sections 2.3.2 [30]. However, its breakdown occurs at lower
frequencies [30]. The simulations provided by the measurements help to confirm that the

antenna performs as expected, which explains why the antenna is able to reach the break-
down frequencies at lower levels [30]. This is due to the radiation pattern of the antenna,
which is similar to the radiation patterns of other monopole antennas discussed in the
previous Sections 2.3.2 [30]. This helps to explain why the antenna is able to reach lower
frequencies than other antennas.
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Figure 42:Antenna return loss diagram for the parasitic element in Figure 2.44 with different parasitic element lengths and dis-
tances from the ground [30].
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Figure 43:Simulation and return loss measurement results for the antenna of Figure 2-32 with and without parasitic elements
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Figure44 :Gain and radiation pattern diagrams for frequencies of 2.5 GHz, 3.5 GHz, and 5.5 GHz [30].
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Figure45 :Gain diagram for frequency ranges: (a) 2.8-2.3, (b) 5.95-5.05 GHz, (c) 3.8-3.2. [30]

Table.2.3. Simulation Results based on the Change in the Transverse values of the para-

sitic element.

(mm) wl And w2

First band and
Impedance BW (GHz)

Second band and
Impedance BW (GHz)

17, 4
17,12
17, 16
11,12
22,12

2.06 « 4.14-2.08
2.16, 4.16-2
2.24, 4.18-1.94
1.41, 3.35-1.94
2.11, 4.15-2.04

1.72, 6.90-5.18
2.01, 7.03-5.02
1.98, 6.94-4.96
2.96, 8.30-5.34
0.74, 5.71-4.979
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As a result, the parasitic element radiates at high frequencies and affects the main radi-
ation pattern. In Figure 2.35, the antenna gain is shown in three frequency ranges with
relative constancy across the full range [30-40].

2.4. Conclusion

The lower edge of the band frequency in printed monopole antennas is determined by the
antenna's maximum vertical height in the initial design. Meanwhile, the bandwidth of the
antenna will be related to the way of matching the impedance of different modes of the
antenna with the feed line, which can be used to design a combination of techniques, such
as parasitic elements and half-grounds, etc., based on the bandwidth required. Printed
monopole antennas operate at their lowest frequencies at their maximum height, and their
bandwidth depends on the impedance matching between the antenna and the feed line. A
resonance frequency is determined by the height of the antenna and the impedance of the
feed line, and it is at this frequency that the antenna can best transmit and receive signals.
It is also the impedance match between the two that affects the antenna's bandwidth,
which is the range of frequencies it can receive and transmit [30-51].

Antenna height determines the lower edge of the band frequency, because antenna height
determines its resonant frequency [51-58]. Monopole antennas have a resonant frequency
that is proportional to their height, so a taller antenna will have a lower resonant fre-
quency and a wider bandwidth [51-58]. Monopole antennas have a resonant frequency
that is inversely proportional to the square root of the antenna height. Due to this, the
taller the antenna, the lower its resonant frequency and the wider its bandwidth [58-87].
The impedance matching between the antenna and the feed line also determines the an-
tenna's bandwidth [58-87]. An antenna's impedance should be well matched with the feed
line's impedance to avoid re-radiating energy into free space. This can cause the return
loss of the antenna to be high, which limits the bandwidth of the antenna [58-87]. This is
because an antenna with high return loss will have a limited frequency range in which it
can operate efficiently, resulting in a limited bandwidth [51-58].

There are several techniques that can be used to improve the impedance matching of the
antenna and increase its bandwidth, such as using parasitic elements and half-grounds.
These techniques are designed to change the impedance of the antenna so that it is closer
to the impedance of the feed line, which improves the matching and increases the band-
width [58-87]. The combination of techniques used will depend on the desired bandwidth
and the specific requirements of the antenna design. For instance, a half-ground technique
can be used to reduce the physical size of the antenna, while a parasitic element can be
used to reduce the reflection coefficient and increase the bandwidth [30-51].
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Chapter Three

3. Investigation of Proposed Multi-band Fractal Antennas
for Mobile Devices

A new form of hybrid design of microstrip-fed parasitic coupled ring fractal monopole
antenna with semi ellipse ground plane is proposed for modern mobile devices having a
Wireless Local-Area Network (WLAN) module along with a Worldwide Interoperability
for Microwave Access (WiMAX) function. In comparison to the previous monopole struc-
tures, the miniaturized antenna dimension is only about 25X25X 1mm3 that is 15 times
smaller than the previous proposed design. By only increasing the fractal iterations very
good impedance characteristics are obtained. Throughout the present paper improvement
process of the impedance and radiation properties is completely presented and discussed.
The proposed hybrid design of microstrip-fed parasitic coupled ring fractal monopole an-
tenna combines the advantages of microstrip-fed antennas and fractal antennas, making
it a compact and efficient solution for modern mobile devices with WLAN and WiMAX
functions. The fractal iteration of the antenna design results in improved impedance char-
acteristics, which enhances the performance of the antenna. The miniaturized size of the
antenna, being only 25x25x1mm~3, makes it a suitable solution for mobile devices with
limited space for antenna placement. By using the fractal iteration in the antenna design,
it allows the antenna to be more compact while still maintaining its desired performance
characteristics. This allows it to be used in mobile devices with space constraints without
sacrificing performance. (See Section 2.3.3)

This study presents the improvement process of the impedance and radiation properties
of the proposed hybrid design in detail and provides a thorough discussion of the results.
Through simulations and experiments, the study shows that the hybrid antenna design
has better impedance and radiation properties compared to conventional antenna designs.
Furthermore, the study provides a step-by-step guide on how to optimize the design pa-
rameters of the hybrid antenna to further improve its performance. The improved perfor-
mance of the antenna makes it a suitable choice for modern mobile devices with multi-
frequency and multi-standard requirements, making it possible to meet the increasing
demand for high-speed data transmission and reception. The results of this study pub-
lished in publication Section (See Publication) [58-87].
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3.1. Introduction

Low profile antennas [51]| are especially suitable for modern mobile devices. Low profile
antennas are particularly attractive for modern mobile devices due to their compact size
and ability to fit within the limited space available in these devices. By using low profile
antennas, mobile devices can be upgraded with a WLAN module that supports WiMAX,
allowing them to keep pace with the latest trends in wireless technology. This can enable
high-speed data transmission and reception, providing a seamless experience for users who
require connectivity on the go. Low profile antennas also offer a number of advantages
compared to traditional antennas due to their size. They are less likely to be affected by
interference, which allows for better performance, and they are also more energy efficient.
This can extend the battery life of mobile devices and allow them to stay connected for
longer.

Low profile antennas can be designed in a variety of shapes and configurations, such as
planar, circular, or fractal, to meet the specific requirements of a mobile device [51]. The
choice of a low-profile antenna design depends on several factors, including the frequency
of operation, desired radiation pattern, and available space for antenna placement. By
carefully considering these factors, it is possible to optimize the performance of a low-
profile antenna for a specific mobile device. For instance, laptop computers and handheld
devices and cell phones having a Wireless Local Area Network (WLAN) module support-
ing a Worldwide Interoperability for Microwave Access (WiMAX) function, in keeping
with the current trend, can be upgraded to the WLAN module. For these devices, it is
usually necessary for the antenna to have multiple impedance-matching bands, such as
2400-2484 MHz (specified by IEEE 802.11b/g), 2500-2569 MHz (specified by IEEE
802.16e), and 5150-5350/5725-5825 MHz (specified by IEEE 802.11a). This is because the
radio signals in these different bands have different frequencies which need to be matched
with the antenna impedance in order for them to be properly received and transmitted.
The antenna must be able to tune itself to the specific frequency of the signal in order to
receive and transmit it. A large number of such antennas have been proposed [52]-[54],
often with sizes that may be too large to be used practically. Some compact antennas
[55]-[56] have also been proposed. In this letter, a new hybrid ring fractal printed mono-
pole antenna with a very compact size and good impedance and radiation characteristics
is presented. Here, we show that by increasing fractal iterations and inserting cardioid
parasitic patch in back side, the bandwidth enhancement and matching improvement for
WiMAX /WLAN uses are noticeably obtained. Moreover, the dipole-like antenna patterns
can be obtained through all these bands [56].
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Figure46 :Geometry of a 4th iteration of fractal monopole antenna for WLAN/WiMAX uses. W_sub=25, L_sub=25, W_f=1.875,
L _f=6.5,D_2=4, D _4=8,D _6=12, D_8=16, G=3, g=0.5,R_1=18, R_2=21, h=1, L_g=6 (Unit : mm). [87]

3.2. Details of the Provided PMA'’s

Fig. 1 shows the geometry of the proposed small Multiband antenna, which consists of
Imm width multiple rings, a semi-ellipse shaped ground plane and heart shaped conduc-
tor-backed plane. The proposed fractal antenna is printed on an FR4 substrate with per-
mittivity of 4.4, a loss tangent of 0.024 and compact dimension of 25x25x1 mm3(= h).
The width Wy of the microstrip feedline is fixed at 1.875 mm to achieve 50-{ charactteristic
impedance. On the front surface of the substrate, four 1mm width multiple rings with
outer diameters D, < D, < Dg < Dg is printed. Due to the increasing fractal iteration on
the fractal patch, it is expected that several resonances will be generated. The fractal
patch has a distance of g = 0.5 mm to the ground plane having Ly= 6 mm and width of
W= 25 mm printed on the back surface of the substrate. As illustrated in Fig.3.1, the
cardioid-shaped conductor—backed plane is placed under the radiating fractal patch and
is also symmetrical with respect to the longitudinal direction. The conductor—backed plane
perturbs the resonant response and also acts as a parasitic structure, electrically coupled
to the fractal monopole. The cardioid patch has a length of R; , width of R, and a distance
of G to the ground plane, printed on the back surface of the substrate. Note that the G
stands for the distance of cusp and ground plane. The name cardioid comes from the heart
shape of the curve. The cardioid is given by the following parametric equations Eq.3.1.
Here ry , v, without units are the radius of the circles which generate the curve. Cusp will
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be turned 180deg when 1y, 1, are positive. For a given physical length of an antenna, if
the density of the electric or magnetic field in a section of the antenna is increased, the
antenna’s electrical length is also increased which is called capacitive loading or inductive
loading [57],[58]. Based on the over-coupling condition between the fractal and cardioid
parasitic patches, placing the cardioid parasitic patch increases the electric field density
between the fractal and cardioid patches in the substrate leading to the capacitive loading
condition and the increase of electrical lengthy of the antenna [58-87].

x(t) = 2r;(cos(t) — 0.5 cos(2t) ) Eq.3.1
y(t) = 2r,(sin(t) — 0.5sin(2t) )

3.3. Results and Discussions of a Multi-band Fractal
Antennas

The proposed antenna structures are simulated using a High Frequency Structure Simu-
lator (HFSS, ver.11). During the simulation process, by adding various metal strips and
blocks to the antenna structure, the effects of bad soldering and great SMA connector are
considered. At first, for clarifying the improvement process, four iteration of fractal patch
are defined as follows (Fig.3.1): 1st iteration, includes only one ring with Dg outer diameter
; 27d jteration, contains two rings with Dg, Dg outer diameters respectively ; 3rd iteration,
has three rings with Dg, Dg, D, outer diameters respectively; and finally 4th iteration,
contains four rings with Dg,D¢,D, and D, outer diameters respectively. The simulated Sq;
curves for 4 iterations of fractal are plotted in Fig.3.2. From the simulation results in
Fig.2, it is observed that the impedance bandwidth increases as the fractal iterations are
increased, thus, we have maximum impedance band-width for 4th iterated antenna at
WIMAX/WLAN frequencies. The parameters (1,72, G and Lg), based on the parametric
analysis of the 4th iterated of the proposed fractal antenna, are optimized to achieve the
maximum impedance bandwidth and good impedance matching. The simulated S;; curves
for 4th iterated of fractal with different values of L, and g are plotted in Fig.3.3. As
ground length(Ly) increases, the impedance bandwidth is increased up to 6.5 mm. As
shown in Fig.3.3, the small changes in the width of the gap between the ground plane and
the fractal patch (g) has a great effect on the impedance matching of the 4th iterated of
fractal antenna. The simulation result indicates that, as the gap width increases from 0.5
to 2.5 mm, the lower band-edge frequency for Band I decreases from 2.5 to 2.35 GHz and
the Band IV-width is decreased 100%. By decreasing g up to 0.5mm, the ellipticity of the
ground plane improves the impedance matching as the great ellipticity the antenna gets
produces a smoothly tapered structure stopping discontinuities in the current distribution.
On the other hand, as g increases from 0 to 1 mm, the lower-edge of Band III is decreased
from 5.35 to 4.8 GHz. The maximum impedance bandwidth and impedance matching
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increased for Ly = 6 mm,g = 0.5mm as shown in Fig.3.3. The simulated S;; curves for
4th iteration of fractal antenna with the optimal length (Ly; = 6 mm) for various (ry, 73,
G) are plotted in Fig.3.4 and Fig.3.5. By properly tuning dimensions r;and r, and spacing
(G) to parasitic patch, path of current surface will be more flexible and so higher resonant
modes of the antenna can be excited. Fig.3.4 indicates that as the (ry,r,) of the cardioid-
backed plane is decreased from - 4 to - 8, the center frequency of Band I will be varied
from 3.3 to 2.7 GHz (Bandwidth reduce from 30% to 18%). Meanwhile a new Band II
generated from 3.2 to 4GHz (1.25:1, 22%). The lower band-edge of new generated Band
IV (overlap Bands of IV and V in Fig.3.2) is also decreased from 8.3 to 8 GHz. Based on
r; = — 8 and also different r, ranging from -7.5 to -9.5, the higher band-edge of Band III
is decreased from 7 to 6.6 GHz. Which generates a new band from 6.8 to 7 GHz. Fig.6
shows the measured S;; curves for the proposed antennas with optimized Values depicted
in TABLE 1.

The measured impedance bandwidth of Fig.3.6 has the following bandwidths: BAND I
(2.42 to 3 GHz, 21%), BAND 1II (3.3 to 4.25 GHz, 103%), BAND III (5.1 to 7.2 GHz,
34%), and BAND IV (8.1 to 12 GHz, 39%). It has an operating frequency range of 2.5 to
12 GHz. Generally, for providing good impedance characteristics over the application
bands, the parameters of the proposed antenna should be equal to the values shown in
TABLE.3.1. The measured impedance bandwidth and the operating frequency range in-
dicate that the proposed antenna has the ability to provide good impedance characteristics
within the desired application bands. The parameters in Table I ensure that these imped-
ance characteristics will remain consistent across the desired frequency range. The photo-
graph of the realized very compact monopole antenna is shown in Fig.3.10. The measured
of the realized antenna is plotted in Fig.3.6, showing a very good agreement between the
simulated and experimental values. Furthermore, the radiation pattern of the antenna is
analyzed in order to evaluate its performance in the desired frequency range, as seen in
Fig.3.7, confirming that the antenna is suitable for the intended application. In the simu-
lated and measured graphs of the proposed antenna in Figs. 3.2 — 3.6, we recognize five
different resonances generated due to the existence of four Imm rings in the direction of
the microstrip-fed line. In the structure of proposed antenna, there is one coupling distance
between the fractal patch and the ground plane that could help to improve the impedance
and matching properties. The rings are used to increase the bandwidth of the antenna
and enhance its gain, while the coupling distance helps to improve its impedance match-
ing, allowing it to achieve better signal transmission. Measured results of the radiation
patterns of the fractal antenna and the corresponding proposed antenna for WI-
MAX/WLAN Bands are presented in Figs.3.7 and 3.8, respectively. The improved imped-
ance matching enabled by the coupling distance results in a higher gain, wider bandwidth,
and better signal transmission than those achieved with the fractal antenna. The results
include co-polarization and cross polarization in the E(xz)-plane and the H(yz)-plane
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(Fig.3.1).The patterns resemble a donut shape with an approximately omnidirectional H-
plane pattern and a figure of eight pattern in the E-plane up to 10 GHz. The measured
maximum gain of the antenna versus frequency is also presented in Fig.3.9, for WI-
MAX/WLAN applications. We can see that maximum antenna gains are determined as
0.84, 1.09, 0.89 and 1.08 (dBi) across the 2.4, 2.6, 5.2 and 5.8 GHz bands, respectively.
This shows that the antenna is able to effectively transmit and receive signals across the
WIMAX/WLAN frequency bands with consistent and adequate antenna gain. This is
essential for reliable communication over these frequencies.
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Figure47:Simulated S_11 for different iteration of fractal rings with (w) and without (w/o0) cardioid parasitic (L_g =6mm, r_1=
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Figures0 :Simulated S11 for 4th iteration of fractal rings with cardioid parasitic with different positive and negative values (r1,
r2) and spacing G=3mm (Lg =6mm, Wf=1.875mm, h=1mm, g=0.5mm).

It is also interesting to notice that the proposed antenna has an area of 625 mm?
(25mm X 25mm), which is less than the area of the presented antenna (9025mm?) in [59]
with dimension of (95mm X 95mm) and thickness of 1.5mm. Moreover, unlike the pro-
posed ground plane of the antenna in [60], the ground plane of the proposed structure has

no limitation in shape and size [87].
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Figures7 :Measured S11 for 4th iteration of fractal rings antenna with optimized values of the design parameters summarized in
TABLE I.

TABLE 3.1
OPTIMIZED VALUES OF THE DESIGN PARAMETERS OF THE
4th ITERATION OF FRACTAL ANTENNA

ry | R, R, L, G g Wk

T— 7— | 16mm | 18mm | 6mm | 3.5mm | 0.5mm | 1.875mm
8— 8— | 18mm | 21mm | 6mm 3mm | 0.5mm | 1.875mm
8—19.5— | 18mm | 24mm | 6mm | 3mm | 0.5mm | 1.875mm
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Figures2 :Measured E-Plane (left)and H-plane (Right) radiation patterns of the proposed antennar_1=-8,r_2=-8 ,at 2.84,
4.12 6.45,6.95 and 9.82 GHz. (for 4th iteration of fractal antenna with optimized values of the design parameters summarized
in TABL
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Figures3 :The measured radiation pattern of the monopole fractal antenna at the frequencies of 5.8, 5.2, 2.6, 2.45 GHz a) H
plate b) E plate with the values mentioned in table 3.1 and the three-dimensional radiation pattern of the mentioned antenna at

frequencies a) 5.8- and b) 2.6- GHz.
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Figures4 :Measurements of gain in 2.4 GHz, 2.6 GHz, 2.5 GHz, and 5.8 GHz bands covered by the antenna.
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Figures3 :Photograph of realized compact monopole antenna. (g=0.5mm, Wf=1.875mm, Lg =6mm, h==1mm, r1= -8, r2=-8).
(For 4th iteration of fractal antenna with optimized values of the design parameters summarized in TABLE I). [87]
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In order to know which part of the antenna is effective in the resonances of the antenna,
we study the surface currents of the 4th order circular fractal antenna. Figure 3.11 shows
the surface currents of the desired fractal antenna at frequencies of 2.8, 4.1, 6.3, and 9.5
GHz. By studying the surface currents of the antenna at different frequencies, we can
determine which parts of the antenna are more effective in producing resonances. This
helps us optimize the antenna design for better performance. Surface currents of antenna
4 provide an overview of how the aforementioned antenna exhibits multi-band properties.
According to the results, the self-similarity characteristic of a ring fractal leads to multi-
band characteristics in the above-mentioned antenna, and the number of rings is equal to
the number of bands and resonances. By understanding the surface currents of the an-
tenna, we can optimize its design to take advantage of the multi-band properties it inher-
ently possesses. This can be done by adjusting the antenna's geometry and size, as well
as the number of rings, to ensure that it operates in the desired frequency bands and
resonances. The distribution of currents for antenna 4, which is at the frequency of 2.8
GHz of the first resonance of the antenna in Figure 3.11-A, shows that the currents are
distributed in the first loop and at this frequency, the maximum distribution of currents
has taken place in this loop. This is while according to figures 3.11b, 3.11c and 3.11d, the
maximum current distribution is at 1.4 GHz frequency (second resonance), 6.3 GHz fre-
quency (third resonance) and 9.5 GHz frequency (4th resonance). It is in the second, third
and fourth rings, respectively, and indicates the multi-band feature of the aforementioned
antenna. These frequencies all show that the antenna can operate at multiple frequencies,
as the resonant frequency of the antenna is at the same point. This indicates that the
antenna can be used in multiple frequency bands, giving it a multi-band capability.

3.4. Conclusion

A novel hybrid fractal ring monopole planar antenna with a very compact size was pre-
sented and investigated. We showed that by increasing fractal iteration and optimizing
antenna parameters with proper values, a very good impedance matching and improve-
ment bandwidth can be obtained. The measured results illustrate that the proposed an-
tenna offers a very good bandwidth and Omni- directional H-pattern up to 10 GHz. As a
result, the proposed simple antenna can be very suitable for various applications of the
future developed WIMAX/WLAN technologies for mobile and handhelds devices.

The novel hybrid fractal ring monopole planar antenna provides a compact and efficient
solution for modern mobile devices with WIMAX and WLAN capabilities. The fractal
iteration of the antenna design and proper tuning of the antenna parameters result in
improved impedance matching and wider bandwidth, making it a suitable solution for
high-speed data transmission and reception. The measured results of the proposed antenna
show good bandwidth and omnidirectional H-pattern up to 10 GHz, making it a potential
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candidate for future WIMAX and WLAN technologies for mobile and handheld devices.
The fractal antenna design offers significant advantages over traditional antenna designs
by providing a wide bandwidth, good impedance matching, and improved radiation effi-
ciency. Furthermore, the optimal tuning of the antenna parameters reduces the reflection
coefficient, which further improves the antenna performance. The measured results of the
proposed antenna show that it can be used for high-speed data transmission and reception,
making it a potential candidate for future WIMAX and WLAN technologies. The compact
size of the antenna, combined with its improved performance, makes it a suitable solution
for applications where space is limited, such as mobile phones and handheld devices. The
simple design of the antenna also makes it easy to integrate into existing devices, providing
a cost-effective solution for upgrading to WIMAX and WLAN capabilities. The antenna's
small size helps to reduce the size and weight of the device, which makes it ideal for mobile
phones and other handheld devices where space and weight are limited. The improved
performance of the antenna also means that the device can transmit and receive data
faster and more reliably than before, further reducing the cost of upgrading to WIMAX
and WLAN capabilities.

In conclusion, the novel hybrid fractal ring monopole planar antenna provides a compact
and efficient solution for modern mobile devices with WIMAX and WLAN capabilities.
The improved performance and versatility of the antenna make it a suitable choice for
future wireless technologies and applications in the mobile and handheld device market.
The antenna is also suitable for use in multiple antenna systems, which can improve the
capacity of communication systems and allow for the transmission of data over longer
distances. Additionally, its small size and low profile make it ideal for integration into a
variety of devices, providing a cost-effective solution for wireless communication.
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Chapter Four

4. An investigation of UWB Monopole Antennas with a
PTF

A novel modified microstrip-fed ultra-wide band (UWB) printed Pythagorean tree fractal
monopole antenna is presented. In this paper by inserting a modified Pythagorean tree
fractal in the conventional T-patch, much wider impedance bandwidth and new reso-
nances will be produced. By only increasing the tree fractal iterations, new resonances are
obtained. The designed antenna has a compact size of 25x25x 1mm3and operates over
the frequency band between 2.6 and 11.12 GHz for VSWR < 2. Using multi fractal concept
in Modified Pythagorean tree fractal antenna design makes monopole antennas flexible in
terms of controlling resonances and bandwidth. In this letter, the improvement process of
the impedance bandwidth has been presented and discussed.

This study describes the design of a modified microstrip-fed ultra-wide band (UWB) an-
tenna that utilizes the Pythagorean tree fractal structure. The antenna has an enhanced
gain pattern, improved impedance matching, and a wide impedance bandwidth. The an-
tenna is designed to operate in the frequency range of 3.1-10.6 GHz. The antenna also
has a compact size as well as a low profile. The modification of the conventional T-patch
antenna is achieved by inserting a modified Pythagorean tree fractal into the structure,
which results in a wider impedance bandwidth and new resonances. This modification not
only increases the antenna gain, but also improves the impedance matching and band-
width characteristics. The new resonances generated by the modified fractal structure also
allow the antenna to operate in a wider frequency range than the conventional T-patch
antenna. Additionally, the compact size and low profile of the antenna make it suitable
for use in many applications. By increasing the number of fractal iterations, additional
resonances can be obtained. This allows the antenna to achieve a higher gain and wider
bandwidth than the conventional T-patch antenna. It also has a smaller size and low
profile which makes it suitable for use in a variety of applications. Furthermore, increasing
the number of fractal iterations will result in additional resonances that can further in-
crease the antenna's gain and widen its frequency range. The compact size of the antenna
(25%x25x1mm"~3) and its performance over a frequency band between 2.6 and 11.12 GHz
with a VSWR of less than 2 make it an attractive solution for UWB applications. The
use of the multi-fractal concept in the design process makes this type of antenna more
flexible in terms of controlling resonances and bandwidth. The results also discuss the
improvement of the impedance bandwidth and presents the results of the design process.
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A fractal is a never-ending pattern that is created by repeating a simple process over and
over. Fractals are found in nature, but they can also be created by using mathematical
formulas. The multi-fractal concept allows the designer to create a complex antenna design
with a wide range of parameters, which can be adjusted to control the antenna's perfor-
mance. By using mathematical formulas to create a fractal pattern, the antenna can be
tuned to a desired frequency range, giving it the ability to operate across a wide range of
frequencies. This increased flexibility allows the antenna to be used in a variety of appli-
cations [61-77].

Figure 57:1llustration of the first five iterations for Pythagorean Tree Fractal [71]

4.1. Introduction

In the past decades, fast development of wireless communication has urged the need for
dual band, multiband and UWB antennas. Specifically, its commercial application on the
UWRB systems was further developed after federal communications commission assigned
an unlicensed 3.1 — 10.6 GHz bandwidth. Planar antennas with different feeding struc-
tures (coplanar waveguide type, coaxial and microstrip) and shapes have been found as
suitable candidates to fulfill UWB systems requirements. Because of the self-similarity
[61], [63] and space filling characteristics [64], fractal concepts have emerged a novel
method for designing compact UWB, Wideband and Multiband antennas [61], [69]. Frac-
tal antenna technology has become popular in the design of compact antennas for ultra-
wideband (UWB), wideband, and multiband applications due to their unique properties
such as self-similarity and space-filling characteristics. These properties allow for efficient
use of space and can result in antennas with smaller dimensions than traditional antennas
while still providing wide frequency bandwidth and good performance. The self-similarity
of fractals means that the same pattern is repeated at different scales, making it possible
to create antenna elements that are smaller in size but still exhibit the desired radiation
characteristics. The space-filling properties of fractals ensure that the antenna design takes
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up all available space, which can reduce the overall size of the antenna and improve its
performance [61, 69].

This letter presents the design of a novel Modified Pythagorean-Tree-Fractal (MPTF)
based antenna using multi fractal technique for UWB application. Based on simulation
results, the MPTF exhibited very good miniaturization ability due to its self-similar prop-
erties, without reducing significantly the bandwidth and the efficiency of the antenna. It
was also found that as the fractal iteration increases the radiation patterns just like Eu-
clidean shape patches don’t under go any changes. The MPTFs geometry possesses several
degrees of freedom compare to a conventional Euclidean shape (Square, Ellipse, etc) that
can be exploited to achieve further size reduction or keep the bandwidth to a satisfactory

‘ “ﬁ" '1.’ .

¢’

\

level.

Figure 58:1n black and white, the modified fractal is described in its first five stages.

4.2. Pythagorean Tree Fractals: Original and M odified

Unmodified Pythagoras Tree Fractal (UPTF) was invented by the Dutch mathematician,
Albert E. Bosman, in 1942 [71]. The Pythagoras Tree is a 2D fractal constructed from
squares [70]-[73]. It is named after the ancient Greek mathematician Pythagoras because
each triple of touching squares encloses a right triangle (£45 deg) based on configuration
traditionally used to depict the Pythagorean theorem [70]-[83]. If the largest square has a
size of L X L, the entire Pythagoras tree fits snuggles inside a box of size 6L X 4L [80]-
[83]. The construction of the Pythagoras tree begins with a square. Upon this square are
constructed two other squares, each scaled down by a linear factor of %2, such that the
corners of the squares coincide pair wise [70]-[73]. The same procedure is then applied
recursively to the two smaller squares, ad infinitum [71]. Fig.4.1 shows illustration of the
first five iterations in the construction process. Iteration n in the construction adds 2"

squares of size(%V2)", for a total area of 1 [71]. Thus, the area of the tree fractal might
seem to grow without boundary (n — o) [69]-[73]. However, starting at the 5th iteration
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some of the squares overlap, and the tree fractal actually has a finite area because it
snuggles in to 6 X 4 box. For this reason, to delay the overlap of left- and right-hand
fingers of UPTF in 4th iteration (Fig.4.1), we design MPT fractal by eliminating 1st
iteration large side square and change isosceles right-angled triangle to isosceles triangle
with steep angles (@ = 10 deg) to reduce the fractal height to design compact antennas.
This triangle change is our fractal freedom degree that helps antenna designer to make a
novel fractal shape. Our purpose in designing a MPTF is to use this fractal to control
impedance bandwidth and resonances. Fig. 4.2 shows illustration of the first five iterations
for Modified Pythagorean Tree Fractal (MPTF) with different colors (Odd iterations with
Black and Even iterations with White colors). Note that all the triangles are isosceles
triangles with steep angles equal a = 10 deg and other angles values of triangles and
squares can be calculated by geometrical theories.
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Figure 59:First five iterations MPT Fractal monopole structure from down to up with different colors: (a) 1st iteration (Ant. I);
(b) 2nd iteration (Ant. I1); (c) 3rd iteration (Ant.I11); (d) 4th iteration (Ant. 1V); (e) 5th iteration (Ant. V);
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4.3. Modified PTF Antenna Design, Simulation and Fab-
rication

Fig. 4.2 shows the geometry of the proposed fabricated small UWB antennas, which con-
sists of MPTF and a semi-ellipse shaped ground plane. The proposed MPTF antenna is
printed on FR4 substrate with permittivity of 4.4, a loss tangent of 0.024 and compact
dimension of 25x25x1mm?>(= h). The width W;and length of L of the microstrip feed-
line are fixed at 1.875 mm and 7.5 mm respectively to achieve 50-Q charactteristic imped-
ance [61]. Due to the increasing fractal iteration on the fractal patch, it is expected that
several resonances will be generated [61]. The fractal patch has a distance of g = 1.5 mm
to the ground plane having L;=6mm and width of W= 25 mm printed on the back surface
of the substrate. In the proposed antenna design, the main T-patch can provide the main
resonant frequency before inserting MPT Fractal. The photographs of these very compact
MPTF monopole antennas (Ant I-IV) have been presented in Fig. 4.3.

4.4. Modified Pythagorean PTFA Simulations and La-
boratory Results

The MPT fractal structures have been not only simulated, but also fabricated as printed
monopoles using conventional printed circuit techniques (PCB). The performances of the
MPT fractal antenna at different iteration have been investigated using Ansoft HFSS
(ver.11.1). The impedance bandwidth of the antenna is measured using the Agilent8722ES
network analyzer. In this section, we have presented the measured results for a fabricated
prototype of the proposed Modified Pythagorean Tree Fractal (MPTF) antenna using
optimum simulated design parameters. Initially, the design of fractal monopole antenna
is starts with a T-patch (T-patch wide and length arel.5mm X11mm), which resonates at
7.75GHz (1.58:1, 45.16%). The simple semi ellipse ground (GND) plane acts as an imped-
ance matching circuit [61]. The parameters (g, Ly), based on the parametric analysis of
the 3rd iterated of the proposed MPT fractal antenna, are optimized to achieve the max-
imum impedance bandwidth and good impedance matching. The simulated S;; curves for
3rd iterated of MPT fractal with different values of L; and g are plotted in Fig. 4.4. As
the ground length (Lg) increases, the impedance bandwidth is increased up to 7.5mm. As
shown in Fig. 4.4, the small changes in the width of the gap between the fractal patch (g)
and the ground plane has a great effect on the impedance matching of the 3rd iteration
of fractal antenna. By decreasing g up to 1.5mm, the ellipticity of the ground plane
improves the impedance matching as the great ellipticity the antenna gets produces
smoothly tapered structure discontinuities in the current distribution [61]. Note that the
simulated S1; curves for Ant I, II, IV and V with different values of L, and g are not
included in Fig. 4 to avoid clouding the simulated curves. However, they have maximum
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impedance bandwidths for L; = émm and g = 1.5mm. The simulated S;; curves for first
five iterations of fractal are plotted in Fig. 4.5 and Fig. 4.6. From the simulation results
in Figs. 4.5 and 4.6, it is observed that increasing fractal iteration on the fractal patch
will generate several resonances. Figs. 4.2 and 4.3 indicate that as fractal iterations in-
crease, the number of fingers and the length of the fingers will be increased and decreased
respectively. As shown in Figs.4.5 and 4.6 the fractal shape would result in pushing down
the lower edge of the impedance bandwidth. This would be the result of the fractals space-
filling property in X-direction (which leads to increase of the total electrical length). In
addition, the simulation results show that, if we increase Ant I's fingers length (V-shape)
according to Ant II, III, IV and V fingers length without increasing fractal iterations,
impedance bandwidth will be decreased (from upper band edge). Therefore, increase of
impedance bandwidth with fractal iterations would be the result of the fractals space-
filling and its special layout properties.

Figure60 :Fabricated first four iterations MPT Fractal proposed monopole antenna: (a) 1st iteration (ANT.I) (b) 2nd iteration
(ANT.II) (c) 3rd iteration (ANT.11) (d) 4th iteration (ANT.IV) (W_sub=25,L_sub=25, W_f=1.875, L_f=7.5, g=1.5, h=1, L_g=6
(Unit : mm));(See Publication Section)

Although the length of fingers is decreased by increasing the number of iterations, the
4th and 5th iterations has approximately the same height of H=13.4 mm therefore they
have similar number of resonances. The resonance (f,) of the MPT fractal antenna is
approximated as Eq.4.1. C is the speed of light in vacuum, h is the height of the largest
finger of the monopole, neNis a natural number and § is the scale factor approximately
equal to 1.24 for this fractal structure [62], [63].

Cx024 1
fox S22 Fa (i)

For clarifying the fractal iterations as shown in Fig.4.3, five different antennas are defined
as follows:

Ant I: 1st iteration of MPT fractal antenna contains two fingers with length of 5.5 mm,
from the measured results in Fig. 4.4. It is observed that the Ant I resonates at 4.82 GHz
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(3.21 to 10.68 GHz, 107%) and impedance bandwidth increases 61.84% in comparison
with T-patch monopole antenna;

Ant II: 2nd iteration of MPT fractal antenna contains four fingers with length of 2.8 mm

The measured result indicates that the Ant II resonates at 4.36 and 8.34 GHz (3.08 to
10.82 GHz, 111%);

Ant III: 3rd iteration of MPT fractal antenna contains eight fingers with length of 1.4 mm

The measured result in Fig. 4.4 indicates that the Ant III resonates at 3.96, 7.62, 8.39GHz
(2.68 to 11GHz, 121%);

Ant IV: 4th iteration of MPT fractal antenna contains sixteen fingers with length
of 0.7 mm.The measured result in Fig. 4.4 indicates that the Ant IV resonates at 3.79
7.23, 7.96 GHz (2.83 to 11.12 GHz, 121%);

Ant V: 5th iteration of MPT fractal antenna contains thirty-two fingers with length

of 0.4 mm. The measured results in Fig.4.4 indicates that the Ant V resonates at 4.11
7.22, 8.26GHz (2.64 to 11.14GHz, 123.3%);
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Figures/ :Simulated S_11 for 3rd iteration of fractal with different L_g and g. (W_sub=25,L_sub=25, W_f=1.875, L_f=7.5)
(Unit : mm).
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The impedance bandwidths of first five MPTF antennas (I, II, III, IV, V) for VSWR< 2
are 7.47, 7.74, 8.32, 8.29 and 8.5GHz respectively. From the simulation results in Figs.4.
5 and 4.6, it is observed that the impedance bandwidth increases as the fractal iterations
are increased. Thus, we have maximum impedance bandwidth for UWB applications.
Also, it is found that the impedance bandwidth is effectively improved with increasing
fractal iterations at the lower band-edge frequencies [61]. Fig. 4.6 shows that the imped-
ance bandwidth of the proposed MPTF Ant V is as large as 8.5 GHz (from 2.64 to 11.14
GHz), which is about three times of the T-patch antenna. The measured results in TA-
BLE.4.1 indicate the increase of radiation efficiency n and a reduction of Quality factor
which is one of common features of fractal iterations [66], [68]. Measured results of the
radiation patterns of the corresponding proposed MPTF antennas (Ant I-V) for the reso-
nant frequencies are shown in Fig. 4.8. The normalized radiation patterns are found to be
Omni-directional (donut shape) in H(yz)-Plane and eight shapes in E(xz) plane with good
cross polar level at all resonating bands of operation. The radiation patterns are very
similar to those of the monopole antenna with Fuclidean shapes. The maximum antenna
gains are determined as 4.2, 3.2, 1.9, 1.5 and 1.20 (dBi) across the 8.78, 5.75, 8.4, 4.88
and 3.56 GHz bands, for Ant I to V respectively. As shown in TABLE.I and Fig. 4.9 the
gain is stable in center frequencies of antennas operating bands. In designing Ultra-Wide
Band antennas, it is not sufficient to evaluate the antenna performance in traditional
parameters such as S;;, gain and radiation patterns, etc. However, it is important to eval-
uate system transfer functions as the transmitting/receiving antenna. For UWB
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applications, the magnitude of this transfer function should be flat as possible in the
operating band [64]-[67].
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Figures3 :Measured and simulated S11 for MPTF antennas (Ant 1V and V) with optimized values. (W_sub=25,L_sub=25,
W_f=1875, L_g =6, g=1.5, L_f=7.5) (mm)

The group delay needs to be constant over the entire band as well [64-67]. Measurement
of group delay and S,; is performed by exciting two identical prototypes of the MPTF
antennas kept in the far field for two orientations; side-by-side and face-to-face. The sys-
tem transfer function, which is the transfer parameter |S,;(f)| of a two-port network, was
measured in an anechoic chamber with an identical MPTF monopole pair. The separation
between the identical MPTF monopole antenna pairs was 1.0 m. Fig. 4.9 indicates mag-
nitude of S,; and group delay for the side by side and for the face-to-face orientations of
MPTF antenna respectively [64]-[67]. It can be observed that, for the face-to-face orien-
tation, the proposed MPTF monopole pairs features flat magnitude of around —47 dB
over the UWB band, which ensures distortion less behavior of the system when UWB
pulses are transmitted and received [63]-[66]. Fig. 4.9 shows the measured results of group
delay for the proposed antenna. It is observed that the group delay variation is less than
0.6ns over UWB. It is also interesting to mention that MPT fractal is for first time used

in antenna design with these exciting results and compact sizes.
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Figure 65:Measured E (xz)-plane and the H (yz)-plane radiation patterns of the first three iterations of MPT fractal proposed
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TABLE 4.1
SUMMARY OF MEASURED CHARACTERSISTICS OF MPTF ANTENNAS IN THE TABLE, THE
IMPEDANCE BAND IS THE FREQUENCY RANGE WHERE THE VSWR EQUAL TO OR LESS
THAN 2; f IS THE CENTER FREQUENCY; BW IS THE BANDWIDTH AND GAIN OF EACH
RESONANCE BAND WITH H LENGTH; n IS THE RADIATION EFFICIENCY; Q IS THE QUALITY
FACTOR. (&, = 4.4, tand = 0.024, h = 1mm, g = 1.5mm, wy = 1.875mm, Lg = 6mm )

fn S11 fe H n Q fe BW BW
GHz dB GHz mm % Gain % (VSWR = 2)
dBi s fi—fu
GHz,%

Antll | 4.36, 8.34 -38, -22 6.95 10.6 76 40 1.62 111 3.080-10.82,
2 111

3.79, 7.23, -24,-39, 6.86 13.3 87 24 1.64 121  2.834-11.12,

7.96 -34 5 6 121

4.5. Conclusion

A novel MPT fractal monopole planar antenna with a very compact size was presented
and investigated. By increasing the number of MFT fractal iterations and optimizing
antenna parameters properly, we were able to achieve excellent impedance matching and
increased bandwidth. As a result of fractal's space-filling and its special layout properties,
this would occur. The operating bandwidth of the proposed MPTF antennas covers the
entire frequency band from 3.1-10.6 GHz. Both measured and simulated results suggest
that the proposed MPTF antenna is suitable for UWB communication applicationsThe
fractal structure of the antenna allows it to have a higher gain and a wider bandwidth
than traditional antennas. Additionally, the antenna's layout is optimized to reduce the
effect of mutual coupling between the elements. This improves the antenna's impedance
matching and increases its bandwidth, making it suitable for UWB communication. Fur-
thermore, the fractal structure of the antenna enables it to operate in a wide frequency
range, making it suitable for a variety of applications. The antenna's low profile also
makes it suitable for use in mobile and portable devices. Additionally, the antenna's low
cost and easy fabrication make it a viable option for UWB communication.
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The proposed MPT fractal monopole planar antenna is a compact solution for ultra-
wideband (UWB) communication applications. The use of a fractal structure and optimi-
zation of antenna parameters allows for a good impedance matching and an improvement
in bandwidth. The operating bandwidth of the proposed MPTF antenna covers a wide
frequency range from 3.1 to 10.6 GHz. The antenna is designed to cover a wide frequency
range due to its fractal structure which provides better impedance matching and its opti-
mized parameters that allow for improved bandwidth. Additionally, the antenna is com-
pact, making it a good solution for UWB communication applications.

The space-filling properties of the fractal structure and its special layout are key factors
in achieving the desired performance. By increasing the number of fractal iterations, the
antenna can be made even more compact while still maintaining a wide frequency band-
width. The fractal structure of the antenna creates multiple paths for the signal, allowing
it to propagate through the antenna more efficiently. The fractal iterations add layers of
complexity to the antenna, allowing it to be more compact while still efficiently receiving
and transmitting signals. The measured and simulated results suggest that the proposed
MPTF antenna is a promising solution for UWB communication systems. The combina-
tion of its compact size, wide operating bandwidth, and good impedance matching makes
it well-suited for these types of applications. Furthermore, the MPTF antenna has good
radiation performance, which is critical for UWB systems. It also has a low profile, making
it easy to integrate into a variety of platforms.
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Chapter Five

5. UWB-SSA’s with a Redesigned Inverted-L Strips

5.1. Introduction of CPSSA’s

The purpose of this chapter is to describe a newly developed type of wideband antenna
with circular polarization (CP) designed for square slots, called the CPSSA. With a single-
layer structure, the antenna consists of two L-shaped appendages formed on the square
ground that produce circular polarization at the square ground's corners and resonant
modes that excite two perpendicular E currents in the square ground's corners. In order
to produce circular polarization, they need each other. There is a 4 times greater impedance
bandwidth of the proposed antenna than that of other previous square slot structures, in
comparison to other structures with similar bandwidths. With dimensions of 60 square
millimeters by 60 square millimeters by 0.8 millimeters thick, this slot antenna covers
132% of the bandwidth allocated by the FCC for ultra-broadband applications. In addition
to circular polarization, the antenna has linear polarization in other bands and occupies
32% of the total bandwidth with a ratio of 1:1.5 [69-88].

We will study the design process of this type of antenna and compare it with the one
presented. In recent years, the rapid and increasing growth of wireless communication has
led to the rapid and increasing growth of multi-band, dual-band and even ultra-wideband
antennas, as well as the expansion of the use of these types of antennas after the FCC
allocated the 1.3 to 10.6 GHz frequency band. It has become more widespread for com-
mercial applications [69-73]. The best choice for a broadband system is printed antennas
with a variety of extensions, such as coplanar waveguides, coax, and microstrip with dif-
ferent structures and functions. Meanwhile, circular polarization is the best and most
popular choice in wireless communication when it comes to expanding communication
between transmitters and receivers without the problem of polarization mismatch. By
providing better mobility and not weakening against weather changes, it increases system
efficiency [78, 79]. There have been several designs for slotted antennas made in recent
years that cover a wide range of their performance with circular polarization, which has
overcome some of the problems of this type of antenna, such as their narrow impedance
bandwidth and the axial ratio [78-88|. There are several types of slotted antennas, but the
square slot antenna is capable of providing a wide bandwidth and high axial ratio. Differ-
ent techniques can also be used to achieve right-handed and left-handed circular polari-
zation in these antennas [78-88|.
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The following techniques have recently been introduced to design this type of antenna
with circular polarization and a wide bandwidth:

The installation of two L-shaped ground strips in the two opposite corners of the square
slot [78], the installation of the T-shaped ground strip which is placed in the direction
perpendicular to the direction of the polarization and the CPW feed line [79], the instal-
lation of the helical slot in the ground plane [83], the installation of a lightning-shaped
feeding line with two L-shaped ground strips in the two opposite corners of the square
slot [85], the use of an embedded arc based on a metal strip for circular polarization and
linear [86]. The proposed slot antenna for ultra-wideband applications uses the techniques
of two L-shaped ground strips in the two opposite corners of the square slot to produce
circular polarization and rectangular appendages embedded in the feed line to increase its
bandwidth [78-88|. The results obtained for the aforementioned antenna, both in the form
of simulation and measurement, indicate that the polarization obtained for this antenna
has a bandwidth of 32.2%, which covers the frequency range of wireless standards, tech-
nologies such as IEEE 802.11a., which includes the following frequency bands: 5825-
5725/5350-5150 MHz [78-88].

5.2. Investigating Microstrip Slot Antennas [78-88].

An overview of these antennas is given in Figure 5.1(Figure 66): In CPW mode, there is
no need to drill or perforate the antenna substrate to connect the antenna to active devices
such as pin diodes and MEMS. The radiation from microstrip slot or slit antennas is two-
way and symmetrical with respect to the antenna. Microstrip square slot antennas are a
type of microstrip patch antenna that use a square slot etched into a thin metal sheet
placed over a ground plane. These antennas have been widely researched for ultra-wide-
band (UWB) applications due to their low profile, simple design, and ease of integration
with other components [78-88].

There are several different types and structures of microstrip square slot antennas that
have been proposed for UWB applications, including [78-88|:

1. Circularly Polarized Square Slot Antenna (CPSS): This type of antenna uses two
L-shaped ground strips in the opposite corners of the square slot to produce circular
polarization. The use of rectangular appendages in the feed line can help to increase
the bandwidth [78-88].

2. Dual-Band Square Slot Antenna: This type of antenna is designed to operate at
two distinct frequency bands, making it suitable for multi-band UWB applications.
The antenna uses a combination of square slots and rectangular patches to achieve
dual-band operation [78-88].
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3. Square Slot Antenna with Stacked Slots: This type of antenna uses multiple square
slots stacked one above the other to increase the bandwidth [78-88]. The stacking
of the slots also helps to reduce the size of the antenna, making it suitable for
compact UWB systems [78-88].

4. Square Slot Antenna with U-Shaped Slot: This type of antenna uses a U-shaped
slot etched into the metal sheet to produce a broader impedance bandwidth. The
U-shaped slot also helps to reduce the size of the antenna and increase its gain |[78-
88].

These are just a few examples of the types and structures of microstrip square slot anten-
nas that have been proposed for UWB applications. The choice of type and structure
depends on the specific requirements of the application, such as frequency band, gain, and
size constraints [78-88|.

Figure 66:Microstrip slotted antenna [78-88/.
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5.3. Radiation Mechanism for Slot Antennas

The main concepts of aperture radiation were available in 1690 when Huygens explained
the bending and diffraction of light waves around an object with a simple method. A wave
front's points are considered secondary sources of spherical waves according to Huygens’s
principle in physical optics. Wave fronts covering secondary waves follow [78-88]. Geo-
metrical optics predicts that the light that radiate through a slit to a curtain creates a
bright area and a completely dark shadow area [78-88]. This is because there is a sharp
and clear border between them. Huygen's principle states that each point on the wave
front acts as a secondary source of spherical wavelets that spread out in all directions.
The wavelets overlap and interfere with each other, creating a bright area where the
wavelet crests add and a dark area where the wavelet troughs cancel each other out. This
explains why light that shines through a slit to a curtain creates a bright and dark area.
When compared to one wavelength, such a prediction holds almost true even for apertures
that are very large [78-88]. The concept of secondary sources is used to describe waves
that come out of a slit. This results in a smooth mixing of light and shadow areas due to
the spread of waves in secondary waves [78-88]. In this chapter, Maxwell's equations and
boundary conditions are used to describe the problems raised. We know that according to
the unity theorem, if a function applies to a differential equation and satisfies the bound-
ary conditions of the problem, it is the only solution of the problem [78-88].

With unique boundary conditions, Maxwell's equations are solved. An arbitrary surface
including conductive parts makes calculating radiation from sources difficult. The image
method simplifies solving problems with infinitely wide surfaces if the surface is infinitely
wide. The majority of slot antennas have a flat aperture. The result is that such a simpli-
fication of the analysis is usually not problematic. We can nevertheless define an equiva-
lent flat aperture surface for an antenna, regardless of whether it has a flat physical aper-
ture. There is no benefit to this method unless the crack surface's tangential fields are
known. In the following, by assuming a constant field distribution on the surface of the
rectangular and circular slit, its radiation pattern has been calculated |[78-88].

By using Huygens' principle to explain the bending and diffraction of light waves around
an object, pinhole radiation has greatly simplified the understanding of pinhole radiation
[78-88]. A wave front is considered as a secondary source of spherical waves according to
Huygens' principle of physical optics [78-88]. Next, these secondary waves will be covered
by the wave front. Figure 5.2 shows how to make a plane wave and a spherical wave
caused by secondary waves [78-88]. The cover of secondary waves forms the front of the
new wave. Geometric optics (ray tracing) predicts that light shining through a slit into a
curtain creates a bright area and a completely dark shadow area with a sharp and defined
border between them [78-88|. Such a prediction is almost true even for very large apertures
(relative to one wavelength). We use the concept of secondary sources for waves that come
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out of a slit [78-88]. Therefore, secondary waves show an expansion of waves and, as a
result, a smooth mixing of light and shadow areas [78-88]. In theory, this principle is
known as the Huygens principle or the equivalence principle [78-88].
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Figure 67: Secondary waves to create successive wave fronts. (a) plane wave (b) spherical wave [78-88].
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Figure 68: Radiation from a plane wave passing through a slit in a curtain caused by edge diffraction [78-88/.
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A volume v with a surface s is taken as the location of the electromagnetic sources. In
Figure 5.4(a), we see the outward unit vector perpendicular to the surface s. The fields E
and H outside the surface can be obtained by removing the sources inside v and estab-
lishing the surface electric and magnetic current density on the surface s. This can be seen
in Figure 5.4(b) [78-88|.
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Figure 69:Principle of equivalence. (a) Main issue, (b) Equivalent issue [78-88].

By calculating the H(s) and E(s) fields on the s level, the main sources create the H(s)
and E(s) fields. Using the equivalent surface current densities Js and Ms (also called Huy-
gens sources), we can calculate the tangential fields at all points outside the surface arising
from the main sources [78-88]. This form of the equivalence theorem can be proved rela-
tively easily (known as Law's equivalence principle). Maxwell's equations and boundary
conditions describe this problem, like any electromagnetic problem. In accordance with
the unity issue, any function that applies to a differential equation and meets the bound-
ary conditions of the problem is the only solution. Use unique boundary conditions to
solve Maxwell's equations (including sources) [78-88]. Resources outside the volume v
don't change in the equivalence problem since they don't exist. As will be explained below,
the boundary conditions remain the same. Fields inside volume v are zero, and surface
currents are given by equations (5.1) and (5.2) [78-88].
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In order for the boundary conditions to be the same, the difference between the internal
and external fields (tangent on the surface s) must also be the same. Here are the boundary
conditions:

Ax[A(S)-0]=J, and [E(S)-0]xn = M, [78-88].

Equations (1-5) and (5-5) are the same. This means that the boundary conditions for the
equivalent problem are the same as for the original problem. Because of this, there are no
differences between the equivalent problem and the main problem in terms of the fields
outside volume v [78-88]. A complete conductor can be placed on a part of the surface s
since the fields in the equivalent problem are zero inside volume v [78]. Due to the zero
tangential component E, the magnetic surface current density Mg on this part of the
surface is zero. As a result, Js on this part s is equal to the real electric current density
that radiates from the complete conductor when present in the conductor. If there is an
aperture or opening in the conductor, you will have electric and magnetic currents. Radi-
ation caused by sources on an arbitrary surface, including conductor parts, is generally
difficult to calculate [78-88|. Using the image method simplifies the problem if the surface
s is an infinitely wide plane. Antennas with a flat aperture are common for slot antennas.
Due to this, such simplifications of the analysis are usually not problematic. However,
although an antenna may not have a physical planar aperture, we can define equivalent
planar aperture surface(s) for it [78-88].

A tangent field on s must be known in order to use this method. Equivalent surface
currents (which act in free space) can be used to calculate fields outside the half-space of
the source (for example, z > 0) using the half-space fields (for example, z > 0) [78-88]. As
can be seen in Figure 5.6, this is an equivalent system. The vector potential can be used
to calculate the radiation fields caused by the density of surface currents. A comparison
between slotted and patch antennas is given in Table 5.1.
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Figure 70:Arrangement of equivalent currents for a flat surface with an opening /78-88/.

Table 5.1 Qualitative comparison between patch and slotted microstrip antennas

Characteristic Patch Slot
Tolerance in Fabrication Critical Not very critical
Shape Flexibility Any shape Limited

Radiation fields Unidirectional Umd1rc¢_:tmn;11 and
omnidirectional
Bandwidth Narrow Wide
Spurious radiation Moderate Low
Cross-polarization level Low Very low
End-fire antenna Not possible Possible
?snrlatlinn between Fair Good
radiating elements
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5.4. Description of the provided CPSSA’s for UWB ap-
plications

A novel CPW-fed ultra-wideband circularly polarized square slot antenna (CPSSA) is
presented [87]. The proposed single layer antenna comprised of a square ground plane
embedded with two unequal size inverted-L strips around two opposite corners, which is
capable of generating a resonant mode for UWB impedance-bandwidth, and excites two
orthogonal vectors. In comparison to the previous CPSSA structures, impedance band-
width and the axial ratio bandwidth (AR) of antenna are increased, which is 4 times wider
than the impedance bandwidth for previous proposed design. The designed CPSS antenna
has a size of 60x60 mm "2 and operates over the frequency band between 2.74 and 13 GHz
for and measured to exhibit 32.2% a CP bandwidth. Throughout this work, the improve-
ment process of the axial ratio (AR) and Si; properties is completely presented and dis-
cussed. The proposed CPW-fed ultra-wideband circularly polarized square slot antenna
(CPSSA) is a novel design that offers improved performance compared to previous CPSSA
structures. The single-layer antenna consists of a square ground plane embedded with two
unequal-sized inverted-L strips located around two opposite corners. This design enables
the generation of a resonant mode for UWB impedance-bandwidth and excites two or-
thogonal electric (E) vectors. This design offers the advantage of an improved radiation
performance in terms of gain and directivity, as well as a low cross-polarization level.
Additionally, the proposed structure eliminates the need for a double-layer structure, thus
reducing the size and manufacturing costs.

The wider impedance bandwidth and CP bandwidth of the proposed CPSSA design make
it well-suited for UWB communication applications. The compact size and improved per-
formance make it an attractive solution for a variety of applications requiring a compact,
circularly polarized antenna with a wide operating bandwidth. This is because the wider
impedance bandwidth allows for the antenna to be used with a greater range of frequen-
cies. The improved performance of the CPSSA design over other designs also makes it
more efficient and reliable in terms of transmission and reception. The compact size makes
it ideal for applications where space is limited.

In the past few years, the rapid development of wireless communication has urged the
need for multiband, dual band and UWB antennas. Specifically, its commercial applica-
tion on the UWB systems has been further developed after FCC assigned an unlicensed
3.1 — 10.6 GHz bandwidth (with less than —41.3 dBm/MHz effective isotropic radiated
power (ERIP)) [78-88]. Printed antennas with different feeding structures (coplanar wave-
guide type, coaxial and microstrip) and different shapes have been found as suitable can-
didates to fulfill UWB systems requirements [78-88]. On the other hand, for deploying a
transmitter and a receiver without causing a polarization mismatch between them, circular
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polarization (CP) is getting popular in wireless communications to enhance system per-
formance providing better mobility and weather penetration than linearly polarized (LP)
antennas [71], [72], [78-88]. In recent years, various shapes and designs of broadband CP
slot antennas have been developed to overcome the narrow impedance and axial-ratio
bandwidths (ARBW) [71]-[80]. Circularly polarized square slot antenna can provide broad
impedance and axial ratio bandwidths. Also, the right-hand CP and the left-hand CP can
be achieved simultaneously with various techniques in these antennas [71-80]. Some of the
techniques that are used to design these kinds of antennas with broad CP bandwidth have
been stated as below: Embedding two inverted-L grounded strips around two opposite
corners of the slot [71], embedding T-shaped grounded metallic strip that is perpendicular
to the axial direction of the CPW feed-line [72], embedding spiral slot in ground plane
[76], embedding lightning shaped feed-line and inverted-L grounded strips 78], utilizing
the embedded arc-shaped grounded metallic strip for circular and linear polarization [79].
This study presents the new design of a circular polarization square slot antenna (CPSSA)
for UWB systems with techniques introduced in [71],[78] and [90]. The achieved fractional
circular polarization bandwidth (FCPBW) is up to 32.2% cover 5150-5350/5725-5825
MHz (specified by IEEE 802.11a) bands for wireless standard technologies [78-88].
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Figure 77 :Geometry of the proposed CP square slot antenna for UWB applications (G=60, L=40, Wf=3, Lf=10.3, g=0.3, h=0.8,
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Figure 72 :Four improved prototypes of the proposed CPSS antenna.

5.5. Simulations and Laboratory Tests of Designed
CPSSA

The geometry of the proposed single layer CPW-fed CPSS antenna has been illustrated
through Fig. 5.1. As it is indicated in the Fig.5.1, the proposed antenna consists of a
rectangular main patch (x X y) embedded to feed line (L¢ + It + Im). It has two inverted-
L strips around two opposite corners. A tuning slit has been cut and removed from feed
line and a tuning vertical stub has been embedded in the feeding structure [78-88]. Two
main features have been incorporated within the design: one mainly for enhancing the
impedance bandwidth and the other for enlarging the ARBW. The feed line consists of a
rectangular patch in conjunction with two inverted-L strips accounting for the enhance-
ment of the ARBW. The simulation results show that embedding x X y rectangle patch
to fed mechanism (Ant 0-Ant IV) and increasing x and y parameters increase the imped-
ance bandwidth. However, the combination of the feed line with a rectangular patch and
the inverted-L strips that lead to a large ARBW may not guarantee a satisfying impedance
matching [78-88]. Therefore, two tuning stubs are embedded in the feeding structure to
widen the impedance bandwidth. The proposed CPSS antenna is printed on a commer-
cially cheap FR4 substrate with permittivity of 4.4, a loss tangent of 0.024 and compact
dimension of 60x60x0.8(= h) mm?3. The width W; of the CPW feedline is fixed at 3
mm to achieve 50-Q characteristic impedance [78-88|.The horizontal feed section (+X di-
rection) is separated from the right and left hand of the feed by a gap of g = 0.3mm. The
feed line is terminated with a standard SMA connector. The circular polarization mecha-
nism of the proposed CPSS antenna is principally related to the two unequal size inverted-
L strips placed around two opposite corners of the square slot with Ix X ly and dx X dy
dimensions. By embedding inverted-L grounded metallic strips, it is expected that a wide-
band CP operation will be generated [78-88|.
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5.5.1. Results, and Discussions

The simulated CPSSA structures have been fabricated using conventional printed circuit
techniques (PCB). The performances of the CPSS antenna at parametric studies have
been investigated to find optimized parameters using commercial Ansoft HF'SS (ver.11.1)
software. The impedance bandwidth and Axial Ratio of the CPSSA are measured using
the Agilent 8722ES network analyzer. To simplify the comparison of the proposed antenna
design with antennas introduced in [71] and [78]|, the same parameters including L =
40mm, G = 60mm and width of inverted-L strips equal to 1mm have been selected [78-
88].

At first, for clarifying the improvement process, four prototype of the CPSS antenna are
defined as follows (Fig.2) [78-88]:

Antenna I. includes only a rectangular patch;

Antenna II. contains a rectangular patch and two inverted-L grounded strips;
Antenna III. has a rectangular patch, two inverted-L grounded strips and a vertical
tuning stub (w, X €,).;

Antenna IV. contains a rectangular patch, two inverted-L grounded strips, a vertical
tuning stub and a rectangular tuning slit with optimized parameters.

The antennas III and IV have (€, w;, €; and £,,) parameters. These parameters, based on
the parametric analysis of the proposed CPSS antenna by HFSS, are optimized to achieve
the maximum impedance bandwidth and a wide CPBW. The simulated S;; curves for
four CPSS antennas are plotted in Fig.5.3. As shown in Fig.5.3, embedding of inverted-L
metal strips to ground plane has a great effect on the ARBW of Ant I. The 3dB ARBW
achieved for the Ant II is about 12% (5.35 — 6 GHz). The simulation results in Fig.5.3
indicates that, this structure (the inverted-L grounded strips) that leads to large ARBW
may not have a satisfying impedance matching [78-88|. The simulation results in Fig.5.3
also show that if, ly, Ix,dy and dx of the inverted-L strips are set equal to 15mm(=
0.375L) [71], [78] 3-dB fractional ARBW will be reduced to 0%. Through extensive sim-
ulations and experiments, we have found that increasing ly, [x and decreasing dy and dx,
based on optimized results presented in TABLE 5.1, not only increases the amount of
ARBW to 12% (relative to the center frequency of 5652MHz) but also improve impedance
bandwidth in lower frequencies between 4 — 6GHz. Therefore, a tuning stub and a slit are
added in feeding structure to widen the impedance bandwidth (called Ant III and Ant
IV) [78-88]. Our simulations show that if part of the tuning vertical stub is widened,
impedance matching in the 3-dB AR band can be greatly improved. The vertical tuning
stub is formed by extending the feed section to left by a length of £, and a width of w,,.
As revealed in Figs.5.3 and 5.4, the Axial Ratio curve of Ant III is very similar to that of
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Ant IV, where their §1; variations are quite different. Note that Ant III has already at-
tained a 3dB ARBW of 31% (5.28 — 7.2 GHz) [78-88].
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Figure 73:Simulated S11 and AR for antenna I-1V; (For CPSS antennas with optimized values of the design parameters summa-
rized in TABLE ).

The vertical tuning stub adjusted to In = 3.3mm and Wn = [t = 6mm forms Band I
(3.4 — 6.6 GHz) and Band II (7.2 — 13GHz). The vertical tuning stub is very close to the
inverted-L grounded strip around the lower left corner of the slot leaving little space for
further extension of the vertical tuning stub. In Ant IV with the vertical tuning stub fixed
at In = 3.3mm and w,, = 6mm, we then added a tuning slit by shifting the vertical feed
section to the left by a width of w, = 1.5mm. By adjusting the vertical tuning slit to It =
6mm and w; = 1.5mm, the impedance bandwidth has been increased to 130% (2.8 —
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13GHz) [78-88]. Note that Ant IV has already attained a 3dB axial ratio bandwidth of
29.8% (5 — 6.75 GHz). Fig. 5.4 indicates the close correspondence between the measured
and simulated S;; curves for the Ant IV with optimized Values presented in TABLE 5.1.
As also indicated in Fig.5.4, the measured impedance bandwidth for Ant IV has an oper-
ating frequency range from 2.67 to 13GHz and 3dB ARBW of 32.2% (4993 — 6945 MHz).

Both tuning vertical stub and slit, when properly widened, can not only enhance the

coupling among the feed line and inverted-L strips (lower left corner), but also further
perturb the current distribution in the square slot so that the 3 dB Axial Ratio bandwidth

(AR) would be shifted to around a lower frequency as shown in Fig.5.3, yet preserving
the large 3-dB ARBW [78-88].
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Figure 74:Simulated and measured S_11 and AR for antenna IV.

The simulation results for Ant IV shows that tuning slit has a great effect on impedance

matching (Fig. 5.4). Generally, for providing good impedance characteristics and ARBW
over the application bands, the parameters of proposed antenna should be equal to the
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values shown in TABLE.5.1. The photograph of the realized CPSS antenna is shown in
Fig. 5.5. We simulate the time-varying surface current distribution on the Ant IV at
6.42 GHz, the minimum point of AR. The simulation results of surface current distribution
for Ant IV are shown in Fig. 5.6. It is observed that the surface current distribution in
180" and 270" are equal in magnitude and opposite in phase of 0° and 90°.

If the current rotates in the clock wise (CW) direction, the antenna can radiate the right-

handed circular polarization (RHCP). The simulated and measured maximum gain is
shown in Fig. 5.7. It can be seen the both simulated and measured gain are between 3 —
4.13 dBic within the 3 — dB axial ratio bandwidth from 4993 — 6945MHz. The measured
peak gain is 4.2 dBi at 8.38 GHz while the simulated peak gain is 4.32 dBi. The measured
results of the normalized radiation patterns of the CPSS antenna IV are presented in
Fig.5.8. The radiation pattern is left hand circular polarization (LHCP) for z > 0 and right-
hand circular polarization (RHCP) for z < 0, as can be deduced from surface current dis-
tributions in Fig. 5.6. It is also interesting to notice that the proposed CPSS antenna has
132% impedance bandwidth, which is 4 times and 2 times wider than the impedance
bandwidth in [71],[78] and [80] with similar CP technique, respectively. Moreover, the
proposed CPSS antenna has 32.2% FCPBW, which is equal to with FCPBW in [71] and
16% smaller than FCPBW in [78].

Figure 75:The photograph of realized CPSS antenna 1V built with PCB techniques. (CPSS antennas with optimized values of the
design parameters summarized in TABLE I).
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270"°phase.

— Ant IV (Measured)

& Ant IV (Simulated)

(o1gp)ure

8 10 12 14

6

4
Frequency(GHz)

Figure 77:Measured and simulated Ant IV gains in the +z direction.

109



Because slotted antennas are bidirectional, the above antenna will have left-handed po-
larization in the positive direction of the Z-axis and right-handed polarization in the neg-
ative direction of the Z-axis due to the fact that slotted antennas are bidirectional. The
results of a simulation of the three-dimensional radiation pattern of the antenna in ques-
tion are shown in figure 5.14. As you can see, it indicates that the desired antenna pattern
is bidirectional. This figure illustrates the measurement results of normalized radiation
patterns for antenna 4 as shown in figure 5.15. This thesis presents a square slot antenna
with a bandwidth of 132%, which is 4 times the impedance bandwidth of the reference
[78], and 2 times the impedance bandwidth of the reference [85], [87].

This is very interesting because the square slot antenna has 4 times the impedance band-
width of the reference [78]. In spite of this, all the antennas mentioned above have used
similar design techniques in order to create their antennas. It is also noteworthy that the
antenna in question possesses 2.32% circular polarization, that is, it possesses the same
circular polarization width as reference [78] and it possesses a circular polarization band-
width that is 16% smaller than that of reference [85].

2

Figure 78 :3D radiation pattern of antenna 4, (1) RHCP and (2) LHCP at frequencies: (a) 5.12, (b) 5.73, (c) 6.42 GHz.
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antennas with new inverted L-strips

Table.5.2
Summary of the measurement and simulation results for the aforementioned 1 to 4 slot

(e, = 4.4, tand = 0.024, h = 0.8mm, G = 60mm, L = 40mm, w; = 3mm, g = 0.3mm )

BW
Lx Iy dx dy wt it Wn In (VSWR =2) fe 3dB ARBW
mm mm mm mm mm mm mm mm f1—fu, MHz MHz GHz, %
Ant 1 0 0 0 0 0 0 0 0 5446-6824 0 0
1154-1362
Ant 1L 155 16.5 21 13 1.5 6 6 33 4021-5824 5652 12
(0.387L)  (0.412L)  (1.9L)  (0.325L)  (0.037L)  (0.151L)
Ant IIT 5.5 16.5 21 13 1.5 6 6 33 3421-6610 6240 31
(0.387L)  (0.412L)  (19L)  (0.325L)  (0.037L)  (0.151L) 7202-1305
Ant IV 155 16.5 21 13 1.5 6 6 33 2844-13045 5919 298
(Simulated)
Ant IV 155 16.5 21 13 1.5 6 6 33 2674-13124 5969 32.2
(Measured)
Ref.[1] 15 15 15 15 0 0 0 0 1600-3055 2665 274
Ref.[8] 15 5 5 0 0 0 0 2023-3421 2745 48.8
Ref.[10] 5 15 15 5 1.5 6 6 4.8 2000-7071 3575 85
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Figure 79:Measured radiation pattern for antenna 4 (IV) made at frequencies of 5.12, 5.73, and 6.42 GHz.

5.6. Conclusion

A new design circularly polarized square slot antenna has been proposed and implemented.
The antenna structure is very simple, yet the measured FCPBW can be enhanced to
32.2% with a fractional impedance bandwidth of greater than 132%. The proposed an-
tenna uses two inverted-L strips for the excitation of two orthogonal resonant modes for
CP radiation. In addition, the antenna design is compact, which results in an omnidirec-
tional radiation pattern with a low profile and low cost. The antenna also has high gain
and low cross-polarization levels, which makes it suitable for a variety of applications.
Our simulation results show that the modified feed structure plays an important role in
increasing the impedance bandwidth. The vertical tuning stub and slit have effectively
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widened the impedance bandwidth apart from slightly broadening the 3-dB AR band. The
maximum antenna gain was measured, and was found to have a maximum value of 4.2dBi.

As a result, the proposed simple CPSS antenna can be used in future mobile devices such
as IEEE 802.11a technologies.

In conclusion, this is a great description of the proposed circularly polarized square slot
antenna and its characteristics. The use of two inverted-L strips for excitation of orthog-
onal resonant modes, along with the modified feed structure, has contributed to the en-
hancement of the FCPBW and impedance bandwidth. The addition of the vertical tuning
stub and slit has further broadened the impedance bandwidth and slightly increased the
3-dB AR band. The measured maximum antenna gains of 4.2 dBi suggests that this an-
tenna could be a useful candidate for application in mobile devices using IEEE 802.11a
technologies. It's great to see that the proposed antenna is both simple in structure and
efficient in performance. Furthermore, this antenna's ability to maintain a low profile and
still achieve a moderate gain makes it an ideal choice for mobile communication applica-
tions.
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Chapter Six

6. Suggestions

A fractal geometry was introduced for the first time in 1975 as a means of mathematically
defining structures whose dimensions cannot be limited to whole numbers. Structures such
as these have been used in the past in order to investigate complex structures in nature
that can be difficult to analyze using Euclidean structures that are based on Euclidean
geometry. Among the examples of this phenomenon in nature are the length of coastlines,
the density of clouds, as well as the branches and leaves of trees. As nature is not limited
to Euclidean geometry structures, antenna design should not be limited to Euclidean
structures. As a result of the search for structures whose dimensions are not limited to
integers, geometric structures with improved features have been designed, compared to
structures like Euclidean geometry. For example, fractal antenna designs have been de-
veloped which enable antenna structures to be made smaller, while still maintaining their
efficiency. Additionally, these fractal antenna structures can be designed to operate in a
wide range of frequencies, providing increased performance and more flexibility in antenna
design.

This thesis shows how antenna engineering horizons for fractal geometry can be broadened
by a collection of several new fractal structures made as antennas. Fractal characteristics
suggest that antennas can be miniaturized and input impedance can be improved com-
pared to other structures. The structure of some fractals allows them to cover only certain
bands of an entire band when they are designed as antennas. A modified Pythagorean
fractal as well as a ring fractal are the only fractals investigated in this thesis for minia-
turization. In order to accomplish the goal of this thesis, a large number of fractals could
have been used; however, only two were used, and the majority are patented or have been
put off for future publications either due to manufacturing difficulties. In order to inves-
tigate multi-band mode, improve input impedance, and reduce size, three examples of ring
fractals were used. Using a fractal can minimize the dimensions of antennas, which is the
primary benefit of using a ring fractal. This is because the ring fractal is able to create a
self-similar structure that replicates its size and shape over multiple iterations. This self-
similarity allows it to create a compact antenna while still maintaining the desired char-
acteristics of the antenna. Additionally, the modified Pythagorean Fractal was used to
optimize the antenna's bandwidth and gain.
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In comparison to other multi-band antennas, this antenna has a miniaturized structure
created by a circular fractal structure, reducing its dimensions by 56%. Using this fractal
leads to a multiband mode of this antenna, which covers WiMAX, WLAN, and Bluetooth.
A modified Pythagorean fractal was used as the second fractal. This fractal has been
redesigned in a way to reduce not only its dimensions, but also the problem that the
fingers overlapped when the fractal steps were increased. To develop a new method for
designing miniaturized antennas and also to investigate the structural properties of the
fractal in antenna design, five new antennas were designed using this fractal. Furthermore,
the designer of the presented designs wanted to explore multi-band and multi-resonance
fractal self-similarity features. In simulation studies, studying the surface currents of these
antennas reveals which part of the antenna leads to multi-band and multi-resonance char-
acteristics.

The next step in the development of the CPSSA is the development of array structures

for applications in L-band and S-band. Dedicated feed networks for these antennas are
sequentially rotated.
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