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Low Froude regime and implicit kinetic
schemes for the Saint-Venant system

Abstract : In this thesis we study implicit time discretizations for the Saint-Venant
system. First we consider the issue of the low Froude regime in the two dimensional case.
The ability to seamlessly transition towards this limiting regime poses two main issues,
namely the computational cost of handling fast scales and the correct description of the
asymptotic dynamic. The former is traditionally dealt with the use of implicit-explicit
time integrators, whereas the latter requires the numerical error to be uniformly bounded
with respect to the scale parameter. Especially, it is important for nearly incompressible
states to satisfy some form of stability. This motivates the refinement of an existing
criterion allowing to predict whether a scheme is accurate at low Froude numbers, which
we validate through numerical examples. Furthermore the proposed semi-implicit schemes
are based on a wave splitting enabling the well balanced property.
Then we focus on kinetic schemes for the one dimensional Saint-Venant system. In
the case of a flat bathymetry, we obtain a fully implicit scheme preserving the water
height positivity and admitting a discrete entropy inequality without any restriction
on the time step. A simplified version of this scheme allows to explicitly rewrite the
update at the macroscopic level. In order to account for varying bottoms, we examine an
iterative strategy making use of the hydrostatic reconstruction. This approach requires
a CFL condition to converge, in exchange of what we obtain a positive update with a
discrete entropy inequality that always dissipates the energy of the system. This is an
improvement over the fully explicit version of the scheme, which can sometimes increase
the energy. We perform numerical tests to assess the efficiency and qualitative aspects of
the proposed schemes.

Key words : Saint-Venant system, implicit-explicit methods, kinetic schemes, low Froude
regime, asymptotic preserving methods, finite volumes, entropy inequality.
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12 General introduction

1.1 Introduction

This work is devoted to the study of the Saint-Venant equations — also known as the
Shallow Water system, mainly under the prism of numerical analysis. More specifically we
aim to design, analyze and implement numerical methods for approximating the solutions
of the Saint-Venant system both in one and two spatial dimensions. The principal aspect
of this work revolves around assessing the interest of using an implicit in time type of
strategy, together with ensuring good properties at the discrete level that mirror the
features of the continuous model.

1.1.1 Motivation

To begin with, we would like to motivate this goal and, to do so, we start by the more
general picture of geophysical flows. With upwards of seventy percent of the Earth
covered in water, this is a broad subject that, if well understood, can help us predict
and solve numerous issues of great interest. Water management is probably among the
most vital ones, as it implies the control of water quality and its availability. The term
quality makes for instance echo to the degree of salinity near an estuary or the evolution
of pollutants in the vicinity of an industrial area or a sewage treatment plant. It is
critical especially for running water or swimming places. The availability is important
for households but also agriculture (irrigation), energy production (dams, cooling of
nuclear plants) and even leisure (swimming, kayaking, fishing). Another point of interest
is the forecasting of natural disasters and the mitigation of their consequences. Natural
disasters can include among other things floodings, tsunamis, tidal waves or dam break.
Finally we want to mention the understanding of ocean hydrodynamics, which is relevant
for various reasons. First, it is deeply coupled with climate change through factors such
as the rise of sea level and its impacts on the coasts, changes in chemical constitution, as
well as hurricane formation due to a greater heat transfer into the atmosphere. Secondly,
the understanding of ocean hydrodynamics can allow us to better take advantage of its
resources (marine energy, sea food) while preserving the ecosystems.

The common denominator in the above examples is that we are faced with a hy-
drodynamical evolution problem. The free surface Navier-Stokes system stands as one
of the most precise models to describe this physical phenomena, but it also has a high
level of complexity, which is problematic for two reasons. Firstly, it makes it difficult to
study the mathematical properties of the model itself. Secondly, it is a real challenge to
derive numerical methods that yield qualitatively good approximations at a reasonable
computational cost. A simplification can be achieved under some scaling hypotheses and
by averaging the incompressible Navier-Stokes system over the vertical. Doing so we
reduce the dimension of the problem by one, and obtain a hierarchy of depth averaged
free surface flow models. Among them, the Saint-Venant system constitutes one of
the simplest yet accurate nonlinear model. Historically, it was introduced by de Saint
Venant [61] in 1871. More than a century later, its rigorous mathematical derivation was
proposed by Gerbeau and Perthame [33] for the one dimensional case, and by Marche [52]
for the two dimensional one.

As a nonlinear system of hyperbolic conservation laws, the Saint-Venant equations are
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classically treated with finite volumes schemes. Such methods are naturally conservative,
since the cell values are updated through an exchange of fluxes with their neighbors.
In order to produce good results, the two main ingredients are accuracy and stability.
An accurate scheme is able to approximate the solution with a small error for a given
resolution in time and space, whereas a stable scheme is able to yield qualitatively good
approximations by keeping them in some domain of physical validity. Here we purposely
use the term stability in a broad sense, which encompasses methods decreasing some
energy, avoiding the apparition of spurious oscillations, keeping the water height positive
or preserving steady states. One particular family of steady states regroups the lake at
rest stationary states, which correspond to motionless flows with a flat free surface. It
is important to take into consideration these stationary flows as most flows are a small
perturbation of a lake at rest. Another fundamental aspect is that we are interested in
solutions of the Saint-Venant equations that satisfy an entropy inequality. Accuracy and
stability can enter in competition with each other, as for instance a scheme dissipating
the energy will tend to be more diffusive and have a greater error. Yet, one must not
overlook the stability as we believe it is essential to have exploitable results. To some
degree, stability can be improved by using implicit (or semi-implicit) time integrators. In
this thesis we shall see to what extent this statement is true, and how it can be taken
advantage of.

1.1.2 Structure of the document

In a first part, we focus on the two dimensional Saint-Venant system in the regime of
low Froude numbers. The Froude number is a dimensionless scale parameter obtained
by taking the ratio between the material velocity of fluid particles and the celerity of
propagation of surface gravity waves. Hence this regime coincides to the case where
the particles travel much slower than the surface waves and which, in real life, can
correspond to coastal flows, lakes or rivers. Usual finite volumes schemes with explicit
time integration struggle to approximate this type of flows in an efficient and accurate
way. One issue is that the stability of such methods requires to enforce a CFL condition
making the time step proportional to the Froude number. Therefore when the latter
tends to zero, the time step has to vanish which renders the scheme unusable. The
other issue is that numerical solutions can become inaccurate when the Froude number
decreases. To avoid this, one must be careful to ensure the error of consistency to be
bounded uniformly in the scale parameter. To overcome these obstacles, we study an
asymptotic preserving semi-implicit approach based on a wave splitting. The implicited
part is linear in order to get a reasonable computational cost. The advantage of this
method is that the CFL constraint is no more dependent of the Froude number, and we
can use large time steps. We also justify that a centered discretization of the surface
waves linear operator prevents any loss of accuracy as the Froude number goes to zero.
Furthermore, lakes at rest are preserved thanks to the choice of splitting.

The second part of this work is dedicated to the analysis of an implicit kinetic scheme
in the one dimensional case. The kinetic framework is attractive, as we replace the
nonlinear system by a linear scalar equation which is much easier to discretize and study.
It is also a practical way to design numerical schemes preserving the water height and
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admitting a discrete entropy inequality, two properties that are satisfied at the continuous
level by the solutions of the Saint-Venant system. Especially, negative water heights
should be avoided at all cost as it has no physical meaning, and makes the system non
hyperbolic. In the past years, kinetic schemes have been successful in achieving these
two properties in absence of source term [56][57]. In order to deal with a varying bottom,
a kinetic interpretation of the hydrostatic reconstruction has been proposed recently
in [10] and was used in an explicit framework. This allows, in the context of a varying
bathymetry, to obtain once again the positivity of the water height. However it was
shown that this scheme can sometimes increase the energy of the system, which is due to
the error induced by the explicit time discretization. This motivates the use of an implicit
strategy that we investigate. In the end we are able to obtain a discrete entropy inequality
which always dissipates the energy. Furthermore in absence of bathymetry we have an
implicit kinetic scheme whose update can be rewritten explicitly at the macroscopic level.
On the other hand the resolution over a varying bathymetry involves an iterative process.

1.2 The Saint-Venant system in one dimension

1.2.1 Properties of the model

The Saint-Venant system models a fluid flow in a geometry delimited below by a fixed
bathymetry and above by a moving free surface (air-fluid interface). More precisely, it
describes the conservation of the water height and the balance of the discharge — also
called momentum. In the one dimensional case, we denote these scalar quantities by
h(t, x) and q(t, x). After introducing the bathymetry profile z(x) and the gravitational
acceleration constant g, the Saint-Venant system reads

∂h

∂t
+
∂q

∂x
= 0

∂q

∂t
+

∂

∂x

(q2
h

+
g

2
h2
)
= −ghz′

. (1.1)

We remark that the discharge becomes a conservative variable when the bathymetry is
flat. It can be related to the water height with the equality q = hu where u(t, x) is the
horizontal velocity of the fluid averaged over the vertical. It is also usual to consider the
notation ζ(t, x) := h+ z for the free surface. These quantities of interest are illustrated
in Figure 1.1.

The water height should remain positive at all times, and we look for solutions valued
in some convex set U satisfying

U ⊂ R+ × R .

We have the convenient vector notation of (1.1)

∂tU + ∂xF (U) = S(U, z) , (1.2)

with F (U) = (hu, hu2 + gh2/2)T and S(U, z) = (0,−gh∂xz)T . The flux Jacobian reads

DF (U) =

(
0 1

gh− u2 2u

)
,
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Free surface

Rigid bottom

h(t, x)
u(t, x)

ζref

ζ(t, x)

z(x)

Figure 1.1: Quantities of interest in the one dimensional case. The reference free surface
elevation ζref is chosen such that it coincides with the lake at rest by convention.

and the real eigenvalues are λ±(U) = u ±
√
gh with the celerity

√
gh related to the

surface waves, and as a consequence problem (1.1) is an hyperbolic system of nonlinear
conservation laws with source term. It is well known that solutions of the Saint-Venant
system can exhibit discontinuities even when the initial data is taken smooth, thus
we have to consider them in the weak sense. Because weak solutions are not unique,
System (1.1) is ill posed and we need a criterion to choose which solution is the physical
one. The classical method [64] in the homogeneous case consists in adding a parabolic
viscous perturbation of the form

∂tU + ∂xF (U) = ν∂2xxU , ν > 0 ,

admitting a unique and smooth solution Uν for a given initial data. The criterion is
then to select the weak solution as the limit of the perturbed solution when ν → 0.
Equivalently (see Lefloch [50], Chapter 1, Section 3 for the scalar case), this amounts
to ask for all the entropy-entropy flux pairs (η,Gη) with η convex on U to satisfy the
entropy inequality

∂tη(U) + ∂xGη(U) ≤ 0 . (1.3)

For smooth solutions, the inequality becomes an equality. The entropy flux Gη associated
to η has to verify ∇Gη(U) = DF (U)T∇η(U) so that in the smooth case (1.3) is obtained
upon multiplication of (3.2) by ∇η(U)T from the left. One such pair is given by the
energy of the system and the associated flux

E(U) =
hu2

2
+
gh2

2
+ ghz, G(U) =

(
E +

gh2

2

)
u . (1.4)

We call entropy solution of the Saint-Venant system any solution of (1.1) verifying the
entropy inequality (1.3) for η = E. Since the work of Lions, Perthame and Souganidis [59],
the existence of entropy solutions is ensured when the bathymetry is flat. The proof uses
a kinetic formulation [51][55], meaning that all entropies are accounted for, not only the
energy E. When only using a single entropy, we get the less precise kinetic representation
which can nevertheless be used to derive numerical schemes with nice properties such
as positivity and discrete entropy inequality. Such schemes are investigated in the third
chapter.
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Finally we have to mention the steady states of the one dimensional Saint-Venant
system. They are obtained by looking for solutions that are constant in time. From the
water height conservation, we deduce that steady states are characterized by a discharge q
constant in space. Together with the momentum equation this yields Bernoulli’s principle
when the data is smooth ∂xhu = 0

∂x

(
hu2 +

g

2
h2
)
= −ghz′

=⇒ ∂x

(u2
2

+ g(h+ z)
)
= 0 .

A particular type of steady flows is obtained by setting u = 0, implying also q = 0. This
coincides to stationary states or motionless flows. In this case, the momentum equation
leads to a balance between the pressure variation and the source term, and we deduce
that in wet areas the free surface is flat

∂x

(g
2
h2
)
= −ghz′ =⇒ h+ z ≡ Cst .

Because of that, a stationary state is often called lake at rest or hydrostatic equilibrium.
In real life, most flows can be seen as a perturbation around a lake at rest, therefore
is especially important to preserve these at the discrete level. Such methods are called
well balanced, and will be achieved in two different ways throughout this thesis. In
Chapter 2 we will split the flux into a convection operator and a surface wave operator
according to [14][34]. The surface wave operator is obtained by linearizing the Saint-
Venant system around a lake at rest, and this is what makes it easy to propose well
balanced discretizations. In the third chapter we will use the hydrostatic reconstruction
introduced in [6].

1.2.2 Derivation, domain of validity and extensions

We finish this section by briefly recalling the arguments used to derive the d dimensional
Saint-Venant system, where d is either one or two. Departing from the incompressible
d + 1 dimensional Navier-Stokes system, the main idea is to reduce the dimension by
averaging along the vertical direction, and then perform an asymptotic analysis using the
hydrostatic and shallow water assumptions [33][48][52]. These assumptions are important
as they shape the domain of validity of the Saint-Venant system. They are enumerated
in the below.

• The flow is incompressible in dimension d+ 1;

• The free surface can be described by a single valued function ζ;

• The water depth is small compared to the characteristic wavelength;

• The velocity profile varies slowly in the vertical direction;

• The non hydrostatic part of the pressure is neglected;
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We comment on these assumptions, as they point to the strong suit and limitations of
the Saint-Venant model. Despite the flow being assummed incompressible in dimension
d+ 1, the Saint-Venant system shares the same structure as the compressible isentropic
Euler system. In fact, the compressibility of the Saint-Venant system should be understood
in the sense that the free surface is able to evolve throughout time. This means that
the model does not feature sound waves, but it can represent surface gravity waves.
One advantage of depth averaged models over more complex ones such as the Navier-
Stokes system is that the geometry of the fluid domain is naturally accounted for, and
we don’t need to keep track of the free surface. On the other hand, the non folding
assumption prevents the model to describe the wave breaking phenomena responsible for
the formation of wave rolls near the shoreline for instance.

Since it is a vertically averaged model, the Saint-Venant system better handles flows
with a slowly varying velocity profile over the vertical axis. On the contrary, a situation
not well represented is given by a strong change of horizontal velocity depending on
depth, which can be induced in real life by wind friction or a gradient of temperature.
For instance, a circular flow in the vertical plane correspond to a change of sign of the
velocity, which is not seen by the model. When the vertical description of the flow is
relevant such as in high sea, multi-layer models [7] can be used instead as they offer a
good compromise between low complexity and accuracy. Another assumption restricting
the domain of validity of the shallow water equations stems from the fact that the non
hydrostatic pressure is neglected. Only keeping the hydrostatic part of the pressure
means that the latter is exclusively related to the effect of gravity (i.e. the weight exerted
by the mass of fluid above). A consequence is that dispersive effects are not featured in
the model. The Serre-Green Naghdi model should then be preferred.

Despite the previous limitations, the Saint-Venant model yields accurate results in
many situations of interest such as rivers or coastal flows. In addition, it admits several
possible extensions to account for various additional physical phenomena. These range
from the friction at the bottom required to represent granular flows, the friction induced
by the wind at the free surface, the Coriolis force which is relevant in ocean dynamics,
to the transport of a density of salt or pollutants. Variations in time of the bathymetry
profile can also be considered with the Saint-Venant–Exner model. In this model it is a
sediment layer standing on top of the fixed bottom that is allowed to evolve, see [31] for
a derivation from the 3D Navier-Stokes system.

1.3 Finite volumes in the one dimensional case

Finite volumes are well suited to approximate the solutions of hyperbolic systems
of conservation laws with a source term such as the Saint-Venant equations. Their
main advatages lie in their ability to conserve the quantities of interest, to deal with
discontinuous weak solutions, and to treat complex geometries by the mean of unstructured
meshes. In this thesis we will consider both the one and two dimentional Saint-Venant
systems. However in the two dimensional case we will limit to cartesian meshes that
will enable the analysis of a given scheme through its modified PDE. For this reason we
restrict this presentation to 1D finite volumes, as the methods for the two dimensional
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case are obtained from one dimensional numerical fluxes projected along the principal
directions.

1.3.1 Integral formulation and Riemann problem

The concept of finite volumes is closely tied with the integral formulation of conserva-
tion laws. Considering a strong solution U of the Saint-Venant system (1.1) with flat
bathymetry, we obtain the equality

ˆ b

a
U(t2, x)dx−

ˆ b

a
U(t1, x)dx =

ˆ t2

t1

F (U(τ, a))dτ −
ˆ t2

t1

F (U(τ, b))dτ (1.5)

by integrating (3.2) over the control volume [t1, t2] × [a, b] ⊂ R+ × R and by applying
Green’s formula. This equality means that the variation of the quantities of interest
contained in [a, b] between times t1 and t2 is entirely determined by the fluxes at the
boundaries a and b. Let us introduce the spatial discretization made of cells Ci =
[xi−1/2, xi+1/2] for i ∈ Z, where xi±1/2 represents the position of the left and right
interfaces. Now if we apply the previous formula to cell Ci between times 0 and ∆t, we
get that

Ui(∆t)− Ui(0) =
1

|Ci|

( ˆ ∆t

0
F (U(τ, xi−1/2))dτ −

ˆ ∆t

0
F (U(τ, xi+1/2))dτ

)
, (1.6)

where Ui(t) is the average of the solution at time t over the cell Ci. No approximation
has been made to obtain (1.6) which is exact. All the difficulty is then to evaluate the
remaining integrals of the interfacial fluxes, which for the Saint-Venant system this is in
general not possible. In practice we will replace the solution Ui(0) by a cellwise constant
approximation U0

i . If we then zoom on the neighborhood of an interface xi+1/2, at time
t = 0 the data is made of two constant states U0

i and U0
i+1 separated by a discontinuity.

Performing the translation y = x− xi+1/2, this gives us a Riemann problem of the form

{
∂tŨ + ∂yF (Ũ) = 0

Ũ(0, y) = 1y<0ŨL + 1y>0ŨR

. (1.7)

It is well known that solutions Ũ of (1.7) are self slimilar, meaning that they verify
Ũ(t, y) = Ũ(y/t). More precisely they are made of up to two waves, each one either a
shock or a rarefaction. We recall that a shock is a traveling discontinuity dissipating
the entropy, and a rarefaction is a C1 fan profile preserving the entropy. In general, the
left and right states ŨL and ŨR are connected to an intermediate state ŨI , in which
case we have two waves. Such an example is given in Figure 1.2, where the left-going
wave is a shock connecting ŨL to ŨI , and where the right-going wave is a rarefaction
connecting ŨI to ŨR. It is also possible that ŨL and ŨR are on the same Hugoniot locus,
that is to say that they can be connected directly by one wave without the need for an
intermediate state.
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0
0

t

y

∆t

S1 R2

ŨL

ŨI

ŨR

Figure 1.2: Example of solution to the Riemann problem featuring a 1-shock and a
2-rarefaction.

We briefly recall how to construct entropy solutions for the Riemann problem (1.7).
Two states UL, UI are connected together through a 1-wave if

uI = W1(hI , hL, uL)
def
=


uL + 2

√
ghL − 2

√
ghI if hI ≤ hL (rarefaction)

uL −
√
g

2

(hL
hI

− hI
hL

)
(hL − hI) if hI > hL (shock)

,

and two states UI , UR are connected through a 2-wave if

uI = W2(hI , hR, uR)
def
=


uR − 2

√
ghR + 2

√
ghI if hI ≤ hR (rarefaction)

uR +

√
g

2

(hR
hI

− hI
hR

)
(hR − hI) if hI > hR (shock)

.

To establish these conditions, we make use of the fact that the 1-Riemann invariant
u − 2

√
gh (resp. the 2-Riemann invariant u + 2

√
gh) remains constant through a 2-

rarefaction (resp. a 1-rarefaction), and that the speed σ of a shock has to satisfy the so
called Rankine-Hugoniot jump relation. Then the intermediate water height h̃I of the
solution is found as the root of

h ∈ R+ 7−→ W1(h, h̃L, ũL)−W2(h, h̃R, ũR) , (1.8)

and the intermediate velocity ũI is given by

ũI = W1(h̃I , h̃L, ũL) = W2(h̃I , h̃R, ũR) .

Finally, we deduce the position of the shocks and the profile of the rarefactions that
appear in the solution. We refer to [44], Chapter 7 for more details on the complete
procedure.

1.3.2 The HLL approximate Riemann solver

In 1959, Godunov [60] proposed to approximate Equality (1.6) by substituting the
interfacial flux F (U(t, xi+1/2)) with F (Ũ(0;U0

i , U
0
i+1)), where Ũ(y/t;U0

i , U
0
i+1) is the self

similar solution of the Riemann problem (1.7) given by the initial condition 1y<0U
0
i +
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1y>0U
0
i+1. However solving this Riemann problem is rather expensive, as one has to find

the root of the nonlinear function (1.8).

0
0

t

y

∆t

λL∆t λR∆t

λL λR

ŨL ŨR

U?

Figure 1.3: Approximate Riemann solver with two discontinuities.

Alternatively we can consider an approximate Riemann solver. The simplification
proposed by Harten, Lax and Van Leer in [40] consists to introduce two fictitious waves
traveling at speeds λL < λR as illustrated by Figure 1.3. Instead of solving exactly the
Riemann problem, we try to connect the exterior states ŨL, ŨR to the average U? of
the solution between these characteristics. If we assume that the fan produced by the
fictitious waves encompasses all the waves arising in the exact solution of problem (1.7),
then U? can be computed explicitly using the integral formulation (1.5) applied to the
control volume [0,∆t]× [λL∆t, λR∆t]ˆ λR∆t

λL∆t
Ũ
( s

∆t
; ŨL, ŨR

)
ds =

ˆ λR∆t

λL∆t
(1y<0ŨL + 1y>0ŨR)dy +∆tF (ŨL)−∆tF (ŨR) ,

which leads to the so called consistency condition

U? =
1

λR − λL

(
λRŨR − λLŨL + F (ŨL)− F (ŨR)

)
. (1.9)

Typically we will estimate the velocities λL, λR from the eigenvalues of the jacobians
DF (ŨL) and DF (ŨR). We can then introduce the piecewise constant function

UHLL(y/t; ŨL, ŨR) =


ŨL if y/t ≤ λL
U? if λL < y/t < λR
ŨR if y/t ≥ λR

. (1.10)

as a substitute of the exact solution Ũ(y/t; ŨL, ŨR), and define the HLL flux FHLL as

FHLL(ŨL, ŨR) =
1

∆t

ˆ λR∆t

0
UHLL

( s

∆t
; ŨL, ŨR

)
ds− λRŨR + F (ŨR) (1.11)

= − 1

∆t

ˆ 0

λL∆t
UHLL

( s

∆t
; ŨL, ŨR

)
ds+ λLŨL + F (ŨR) .

The second equality holds true thanks to the consistency condition (1.9). Note that
definition (1.11) can be seen as an analogy with Godunov’s flux which satisfies

F (Ũ(0; ŨL, ŨR)) =
1

∆t

ˆ λR∆t

0
Ũ
( s

∆t
; ŨL, ŨR

)
ds− λRŨR + F (ŨR)
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= − 1

∆t

ˆ 0

λL∆t
Ũ
( s

∆t
; ŨL, ŨR

)
ds+ λLŨL + F (ŨR)

through the integral formulation applied to the control volumes [0,∆t]× [λL∆t, 0] and
[0,∆t]× [0, λR∆t]. Plugging the definition (1.10) of UHLL in (1.11) we finally get

FHLL(ŨL, ŨR) =


F (ŨR) if λL, λR ≤ 0

λRF (ŨL)− λLF (ŨR) + λLλR(ŨR − ŨL)

λR − λL
if λL < 0 < λR

F (ŨL) if λL, λR ≥ 0

.

We remark that the case where velocities λL, λR have the same sign is treated by an
upwinding. Interestingly, if we symmetrize the fictitious waves by setting λR = −λL we
obtain the Rusanov flux. In practice, the HLL flux introduces less diffusion than the
Rusanov flux and is thus more accurate. An extension of the HLL flux called HLLC was
proposed by Toro in [66], with the purpose of accounting for a contact discontinuity as a
third wave. Such a modification is not required for the one dimensional Saint-Venant
system, as we only have two waves and none of them is a contact discontinuity. However
in the two dimensional case the transverse velocity gives a contact discontinuity which
makes the HLLC an interesting choice of discretization.

1.3.3 Time integration

The Saint-Venant system is a first order evolution problem involving a time derivative.
To discretize this term, one needs to use some time integrator whose choice will of course
impact the properties of the overall scheme. We start by illustrating the effect it can have
on the stability by considering a toy problem. This will help to better understand what
kind of issues occur in the richer dynamics offered by the nonlinear Saint-Venant system,
and what benefits come with using implicit time integration. We consider the solutions
in L2([0, 1]) of the following initial value problem with periodic boundary conditions

∂u

∂t
+ a

∂u

∂x
= 0 , u(0, x) = u0(x) , u(t, 0) = u(t, 1) . (1.12)

This corresponds to the scalar linear transport equation whose speed a > 0 is taken
constant. Multiplying Equation (1.12) by u, we obtain that the energy E(u) = u2/2 also
satisfies the same transport equation. This implies that the total energy

´
[0,1]E(u)(t, x) dx

is a constant function of time, especially it is non increasing. We would like a numerical
approximation to satisfy this stability property at the discrete level. Let us first introduce
a θ-scheme combined to the forward Euler method in time, where the solution at time
∆t is approximated in cell j by u1j defined as

u1j − u0j
∆t

+
a

∆x

[
θ(u0j − u0j−1) + (1− θ)(u0j+1 − u0j )

]
= 0 . (1.13)

This scheme is parameterized by θ ∈ [0, 1], which can be interpreted as taking a convex
combination between the upwind and downwind discretization of the spatial derivative.
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By analogy with the continuous energy, we can write the update induced on the discrete
energy E(u1j ) by multiplying (1.13) with u0j . Remarking that for any (a, b) ∈ R2 there
holds

a (b− a) = E(b)− E(a)− 1

2
(b− a)2 ,

we obtain the following equation

E(u1j )− E(u0j )

∆t
+

a

∆x

[
θ(E(u0j )− E(u0j−1)) + (1− θ)(E(u0j+1)− E(u0j ))

]
=

1

2∆t
(u1j − u0j )

2 − a

2∆x

[
θ(u0j − u0j−1)

2 − (1− θ)(u0j+1 − u0j )
2
]
.

Of the three terms appearing in the right hand side, only the second one, in factor of θ,
has a negative sign no matter the value of θ ∈ [0, 1]. We say that it corresponds to the
dissipation related to the upwinding. The third term is positive but can be made zero by
taking θ = 1, which is the upwind scheme. On the other hand we cannot get rid of the
first term resulting from the time discretization. Since its sign is always positive, and
because it is not always dominated by the upwind dissipation, the overall scheme (1.13)
will increase the total energy in some occurrences. In other words, under no condition is
the explicit scheme (1.13) ensured to dissipate the total energy.

Now consider the implicit version of the previous scheme, meaning that we use a
backward Euler strategy consisting to evaluate the fluxes at time ∆t

ũ1j − ũ0j
∆t

+
a

∆x

[
θ(ũ1j − ũ1j−1) + (1− θ)(ũ1j+1 − ũ1j )

]
= 0 . (1.14)

Multiplying the scheme (1.14) by ũ1j and performing the same operations as before, the
discrete energy is shown to satisfy

E(ũ1j )− E(ũ0j )

∆t
+

a

∆x

[
θ(E(ũ1j )− E(ũ1j−1)) + (1− θ)(E(ũ1j+1)− E(ũ1j ))

]
=

− 1

2∆t
(ũ1j − ũ0j )

2 − a

2∆x

[
θ(ũ1j − ũ1j−1)

2 − (1− θ)(ũ1j+1 − ũ1j )
2
]
. (1.15)

Now we see that all the terms on the right hand side can be made negative when θ = 1.
Especially, no constraint on the time step is required. We loose this property if θ < 1.

The use of implicit time integrator can make the upwind scheme (θ = 1) uncondition-
ally stable in the sense that it is granted to always dissipate the total energy. An analogy
of this fact is encountered in the third chapter where we work with kinetic entropies to be
introduced later.

In Chapter 2 we will among other things focus on a linear wave equation representing
the propagation of surface waves in the two dimensional case. Implicit time stepping
methods will again prove advantageous, and we illustrate why through a simplified
example. We are interested in the solutions from L2(R) of{

∂tu+ ∂xv = 0
∂tv + a∂xu = 0

. (1.16)
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In this case the total energy is given by Etot(u) = a ‖u‖2L2 + ‖v‖2L2 and remains constant
in time. In fact we have using (1.16)
1

2

d
dt

‖u‖2L2 =

ˆ
R
u ∂tudx = −

ˆ
R
u ∂xv dx =

ˆ
R
v ∂xudx = −1

a

ˆ
R
v ∂tv dx = − 1

2a
‖v‖2L2 .

Now consider the explicit scheme with centered fluxes

u1j − u0j
∆t

+
v0j+1 − v0j−1

2∆x
= 0 ,

v1j − v0j
∆t

+ a
u0j+1 − u0j−1

2∆x
= 0 , (1.17)

where we assume that sequences (u0j )j∈Z and (v0j )j∈Z are in `2(Z;R). Multiplying the
first equality from (1.17) by au0j and the second equality by v0j , and then summing both
over j ∈ Z we find

a

2∆t

(∑
j∈Z

(u1j )
2 − (u0j )

2 − (u1j − u0j )
2
)
+

1

2∆t

(∑
j∈Z

(v1j )
2 − (v0j )

2 − (v1j − v0j )
2
)
=

− a

2∆x

∑
j∈Z

u0j (v
0
j+1 − v0j−1)−

a

2∆x

∑
j∈Z

v0j (u
0
j+1 − u0j−1) . (1.18)

The two sums on the right hand side cancel each other by performing a change of index∑
u0j (v

0
j+1 − v0j−1) =

∑
u0j v

0
j+1 −

∑
u0j v

0
j−1 =

∑
u0j−1 v

0
j −

∑
u0j+1 v

0
j . (1.19)

We deduce from (1.18) and (1.19) that the discrete total energy associated with (1.17)
satisfies

1

∆t

∑([
a(u1j )

2 + (v1j )
2
]
−
[
a(u0j )

2 + (v0j )
2
])

=
1

∆t

∑[
a(u1j − u0j )

2 + (v1j − v0j )
2
]
.

The right hand side is always positive, thus the total energy increases. In order to
stabilize this explicit scheme, one would need to add some numerical viscosity together
with a CFL condition. On the other hand, if we consider the implicit version of (1.17)
given by

ũ1j − ũ0j
∆t

+
ṽ1j+1 − ṽ1j−1

2∆x
= 0 ,

ṽ1j − ṽ0j
∆t

+ a
ũ1j+1 − ũ1j−1

2∆x
= 0 , (1.20)

then the corresponding total energy satisfies
1

∆t

∑([
a(ũ1j )

2 + (ṽ1j )
2
]
−
[
a(ũ0j )

2 + (ṽ0j )
2
])

= − 1

∆t

∑[
a(ũ1j − ũ0j )

2 + (ṽ1j − ṽ0j )
2
]
.

The last equality is obtained similarly as in the explicit case, only multiplying equalities
from (1.20) by aũ1j and ṽ1j respectively.

When approximating the one dimensional wave equation (1.16) by an explicit approach,
one needs to add numerical viscosity and constrain the time step by a CFL condition in
order to dissipate the total energy. On the contrary, the implicit scheme (1.20) dissipates
the energy without requiring any additional viscosity nor CFL condition. In the second
chapter we will see that having a numerical viscosity in the context of low Froude numbers
results in poorly accurate results. An implicit time stepping method rids us from the
need of having such a term, and much improved results will ensue. This is yet again an
advantage of using implicit methods.
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1.4 State of the art and contributions

1.4.1 Low Froude accurate implicit-explicit schemes

In Chapter 2 we will consider the two dimensional case, where the quantities of interest
depend on the spatial coordinates (x, y) ∈ R2 and where the scalar discharge q is replaced
by the vector Q(t, x, y) = (q, r)T (t, x, y) of R2. Similarly to the one dimensional case, we
introduce the horizontal velocity V (t, x, y) ∈ R2 so that we are able to write Q = hV .
The corresponding system is given by

∂h

∂t
+
∂q

∂x
+
∂r

∂y
= 0

∂q

∂t
+

∂

∂x

(q2
h

+
g

2
h2
)
+

∂

∂y

(qr
h

)
= −gh∂z

∂x

∂r

∂t
+

∂

∂x

(qr
h

)
+

∂

∂y

(r2
h

+
g

2
h2
)
= −gh∂z

∂y

. (1.21)

A dimensionless version of the 2D Saint-Venant system (3.78) is obtained by substituting
the gravity constant g with the inverse of the quadratic characteristic Froude number Fr.
If we denote by Ũ = (h̃, q̃, r̃)T ∈ R3 the dimensionless physical quantities of order unity,
then the dimensionless Saint-Venant system admits the following vector form

∂tŨ +∇ · F (Ũ) = S(Ũ , z̃) , (1.22)

In what follows we will drop the tildes, and detail the dimensionless flux and source term

F (U) =

(
hV T

hV ⊗V + h2I2/(2Fr2)

)
∈ R3×2, S(U, z) =

(
0

−h∇z/Fr2
)

∈ R3 . (1.23)

The flux in direction n ∈ S2 is given by F (U)n, and its jacobian DF (U ;n) admits the
eigenvalues λ±(U ;n) = (V · n) ±

√
h/Fr and λ0(U ;n) = (V · n). In the low Froude

regime, the celerity of the surface gravity waves
√
h/Fr appearing in λ±(U ;n) is several

orders of magnitude greater than the material velocity of particles ‖V ‖. For instance
in coastal flows and lakes we frequently encounter Froude numbers around 10−2. For
stability purposes, it is well known that explicit finite volumes schemes require a CFL
condition where, up to a multiplicative constant independent of Fr, the ratio between the
time resolution ∆t and the spatial resolution δ has to be smaller than the inverse of the
greatest wave velocity

∆t

δ
≤ CFL × Fr

Fr‖V ‖+
√
h
.

This implies that the time step has to scale as O(Fr), which renders explicit methods
inefficient when the characteristic Froude number becomes small, and even unusable in
the vanishing limit Fr → 0. Note that the low Froude regime is analogous to the low
Mach regime for the Euler and Navier-Stokes systems, and the literature on the topic is
quite vast. We give a glimpse of it in the following lines.
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State of the art. A way to get rid of the over-restrictive CFL condition is to
use implicit time integrators. We are more specifically interested in implicit-explicit
Runge-Kutta methods (IMEX-RK), which give the possibility to just implicit a linear
part of the equations for efficiency purposes, while offering arbitrary high orders of
accuracy depending on which Butcher tables are used. A general study on IMEX-RK
methods has been conducted by Boscarino et al. in [16][15], where questions related
to the order conditions, stability properties and the loss of accuracy in the asymptotic
regime have been answered. A total variation diminishing (TVD) MOOD-based strategy
was proposed by Michel-Dansac and coauthors first in the case of second order Butcher
tables [29], and then in the case of arbitrary high order Butcher tables [53]. An IMEX-RK
scheme is based on a splitting of the equations in a part conveying the slow dynamics —
typically a convective phenomena, and a part representing the fast dynamics. Usually
the splitting leads to a wave equation for the fast dynamics. This is the case of the
splitting proposed by Giraldo and Restelli [34] and later used by Bispen et al. [14] in
the context of evolution Galerkin schemes (FVEG). This splitting consists to linearize
the Saint-Venant system around the lake at rest to obtain a linear fast surface waves
operator. In a similar fashion Hack et al. [39] propose to decompose the pressure of the
isentropic Navier-Stokes equations in a slow nonlinear and a fast linear contributions.
Likewise a splitting of the pressure for the full Euler equations is studied by Noelle et
al. in [54]. The idea of decomposing the pressure by performing a multiscale expansion
stems from the work of Klein [46].

We say that a scheme is asymptotically stable when it produces stable results while
using time increments that are uniform in the scale parameter. Another concern is related
to the ability of the scheme to remain accurate with the model in the asymptotic regime.
For this to be true, we need the error of the scheme to remain uniformly bounded with
respect to the scale parameter, which is referred to as asymptotic consistency. When
both the asymptotic stability and asymptotic consistency are satisfied, we obtain the
notion of asymptotic preserving property (AP) introduced by Jin [43][42], and which
means that the scheme converges to a consistent discretization of the limiting equations.
To know how to design asymptotically consistent methods, we must first understand the
behavior of the continuous solutions in the asymptotic regime. In [45], Klainerman and
Majda established in a rigorous manner that the compressible Euler equations converge
to an incompressible model in the low Mach limit, assuming that the initial condition is a
perturbed incompressible state and under further technical assumptions on the functional
spaces. In agreement with this result, Schochet [63] obtained an estimate stating that
when the initial data is close to an incompressible state within a distance controlled by
the Mach number, then the solution remains so. This characterization of the asymptotic
regime carries to the low Froude Saint-Venant system over a flat bathymetry, and we can
formally recover the incompressible limit in the periodic case by performing an expansion
in powers of Froude

h(t, x, y ;Fr) = h(0)(t, x, y) + Frh(1)(t, x, y) + Fr2 h(2)(t, x, y) +O(Fr3)
V (t, x, y ;Fr) = V(0)(t, x, y) + FrV(1)(t, x, y) + Fr2 V(2)(t, x, y) +O(Fr3)

. (1.24)

We then inject this expansion in (1.22), identify the powers of Froude alike and obtain
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that the solution (h, V )T belongs to the set of well prepared data{∑
k∈N

Frk
(
h(k)
V(k)

)
: T2 → R3, ∇(h(0) + z) = ∇h(1) = 0, ∇ · (h(0)V(0)) = 0

}
. (1.25)

When the bathymetry is flat, this set implies the incompressibility of the leading order
term in the sense that we have ∇h(0) = 0 and thus ∇ · (h(0)V(0)) = h(0)∇ · V(0) = 0. It is
important to restrict to initial conditions that are well prepared in order to avoid initial
boundary layers.

A key ingredient to achieve asymptotic consistency is for the numerical approximation
to mimic the behavior of continuous solutions. With that in mind, one of the conditions
is that a discrete version of (1.25) should be preserved by the scheme. Thanks to the
estimate from Schochet [63] we can be more specific, as we know that in the limit Fr → 0
a solution of (1.22) arising from a nearly incompressible initial data remains close to the
initial condition advected by the flow, at least when the bottom is flat. An interesting
idea due to Dellacherie [27][28] is to check whether the modified PDE of a given scheme
satisfies a linearized version of this property. The modified PDE is a system of equations
that incorporates the error of consistency of the scheme back into the original model.
Therefore it better describes the behavior of the scheme by accounting for its diffusion or
dispersion. In [8][9] Audusse et al. applied this criterion to first order Godunov schemes
for the Saint-Venant system with Coriolis source. The defect of these methods is well
characterized by the proposed criterion, and comes from a wrong scaling in the pressure
that unnecessarily increases the diffusion. This issue was already pointed to by Guillard
and Viozat [38], and one solution is to center the discretization of the pressure term.
In [2][3] Arun an coauthors study the properties of a second order IMEX-RK scheme
applied to the Euler isentropic system, and prove that the criterion from Dellacherie is
satisfied when linearizing the nonlinear convection operator. We also point to Barsukow’s
thesis [11] where a similar criterion was studied in the context of the linear wave equation.

Although we will not focus on them, we mention relaxation methods which have
recently received an extensive coverage. These methods allow to design cheap asymptoti-
cally consistent schemes by enriching the model with relaxation variables. The latter are
used to construct an augmented Riemann solver that remains accurate in the asymptotic
regime. Generally, the relaxation is designed such that the Riemann problem only
develops linearly degenerated waves, and is simpler to solve. In [21], Bouchut et al.
proposed an explicit relaxation scheme satisfying the asymptotic preserving property for
the barotropic Euler equations. The scheme is based on the Suliciu relaxation system
with two velocities. Usually an explicit scheme is not asymptotically stable, but in this
case the CFL condition was made independent of the scale parameter at the expense
of becoming parabolic (i.e. ∆t ≤ CFL × δ2). This scheme has been adapted to the full
Euler equations in [22] and uses a semi-implicit time integrator. Relaxation techniques
offer a favorable context for IMEX integrators, as one can choose to implicit the linear
update of the relaxation variables, while the physical variables are treated with the
explicit nonlinear Riemann solver. A slightly different relaxation strategy was proposed
by Berthon et al. [12] together with a fully implicit time integrator. The difference with
the previous technique is that an additional relaxation term for the pressure is used
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to cure the excessive diffusion. An IMEX-RK version of this scheme was proposed by
Klingenberg et al. in [47], and was then extended to the case with gravitational source
term in [65]. Another possibility is to use a Lagrange-projection strategy to decouple the
slow material waves form the fast acoustic ones and treat them with an IMEX solver. A
Suliciu-type relaxation can then be applied to solve the acoustic waves accurately. We
refer to the thesis of Girardin [35] and to the work of Chalons et al. [25] for more details
on this last approach.

Contributions. We consider an IMEX-RK strategy for discretizing (1.22). The
splitting we use is the one from Giraldo and Restelli [34], which is given by

∂tU +∇ ·H(U, z) + [∇ · (F −H)− S](U, z) = 0 , (1.26)

where H(U, z) ∈ R3×2 is a convective flux defined by

H(U, z) =

(
0

hV ⊗V + 1
2Fr2 (h+ z)2 I2

)
, (1.27)

and where we introduce L(U, z) := [∇ · (F −H)− S](U, z) a linear operator representing
the propagation of surface waves

L(U, z) =

 0 1 0
−z/Fr2 0 0

0 0 0

 ∂U

∂x
+

 0 0 1
0 0 0

−z/Fr2 0 0

 ∂U

∂y
+

 0
(−z/Fr2)∂xz
(−z/Fr2)∂yz

 . (1.28)

We emphasize on the advantages offered by the decomposition (1.27)–(1.28) of the
Saint-Venant flux, which we enumerate below.

• When replacing either H or L by zero in (1.26), the resulting system remains
hyperbolic and admits a conservative writing for the water height and for the
discharge when the bathymetry is flat;

• For any unit vector n ∈ S2, the convective flux H(U, z)n has all its eigenvalues
independent of Fr and is thus adapted for an explicit treatment;

• The operator L is linear. More specifically it coincides with the Saint-Venant
system linearized around the lake at rest h+ z = 0, V = (0, 0)T . The linearity of L
is important as it will be treated implicitly, and means that the computational cost
of inverting the associated matrix will be smaller than for a nonlinear operator;

We focus on the periodic case and restrict to initial conditions belonging to the set of
well prepared data (1.25), which are relevant when considering the low Froude regime.
One of our goal is to predict whether a scheme is accurate at low Froude numbers, and
explain why it is so. To this end we study the modified PDE of our scheme for an
arbitrary IMEX-RK method when the convection part is neglected (H ≡ 0) and when
the bathymetry is flat. This modified PDE will take the form

∂tU + LU = (R∆t −Rδ)U , (1.29)
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where R∆t and Rδ are respectively the error of consistency related to the time and spatial
discretizations. We believe that it is reasonable to neglect H as it only accounts for the
slow dynamics, and an eventual loss of accuracy will rather come from the wave operator
L. We recall that the criterion proposed by Dellacherie (Theorem 2.2 in [28]) and used
by Arun et al. in [2][3] consists to check whether the modified PDE (1.29) leaves the set
of incompressible states

E def
=

{(
h
V

)
∈ (L2(T2))3, ∇h = 0, ∇ · V = 0

}
(1.30)

invariant. This is sufficient to ensure that a nearly incompressible data (h, V )T ∈ E+O(Fr)
remains so throughout the time. We propose a refined version of this criterion by doing
the following remarks

1. The wave equation (∂t + L)U = 0 admits E as a set of steady states. This means
that rather than checking if the modified PDE (1.29) leaves E invariant, we should
be more specific and verify if its solutions U = (h, hV )T satisfy

(h, V )T (t = 0, ·) ∈ E =⇒ U(t ≥ 0, ·) = U(0, ·) . (1.31)

This argument is compatible with Proposition 2.1 from [28] since we set the
convection flux H to zero.

2. In reality we will not consider flows that are exactly incompressible, but nearly
incompressible, and we want the solutions U of the modified PDE (1.29) to satisfy

(h, V )T (t = 0, ·) ∈ E +O(Fr) =⇒ ‖U(t ≥ 0, ·)− U(0, ·)‖L2 = O(Fr) . (1.32)

This condition corresponds to the one encountered in Theorem 1.3 from [27].
Property (1.31) acts as a sufficient condition for (1.32), but is somewhat restrictive.
We relax it with the following criterion

(h, V )T (t = 0, ·) ∈ E =⇒ ‖U(t ≥ 0, ·)− U(0, ·)‖L2 = O(Fr) . (1.33)

We call (1.33) the low Froude accuracy criterion and show by a simple triangle inequality
that it is still a sufficient condition to have (1.32). We then obtain the following statement

Proposition 1.4.1. Consider a time semi-discretization scheme using a IMEX-RK
method. Without any assumption on the Butcher tables, this scheme is low Froude
accurate. This means that when neglecting the convective flux (1.27), the modified PDE
of the corresponding scheme keeps any data initially incompressible close to the initial
condition. In addition the set of well prepared data (1.25) is left invariant by the update
of the IMEX-RK scheme when the Butcher tables are globally stiffly accurate and when
the implicit table is of type A or CK.

The terminology related to Butcher tables will be reviewed later in Chapter 2. What
enables us to obtain Proposition 1.4.1 is that in the modified PDE (1.29) we have Rδ = 0
(no spatial discretization has been made) and we can show that

(h, V )T ∈ E =⇒ (h, hV )T ∈ kerL ∩ kerR∆t .
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Still in the time semi-discrete case, when neglecting the convective flux H we prove that
the modified PDE (1.29) decreases the L2 energy under some algebraic condition on the
Butcher table. It is important to satisfy this condition in the perspective of having the
asymptotic stability, and which allows the use of large time steps. As expected, we check
that common implicit Butcher tables verify this condition, but not explicit ones. The
better stability of implicit schemes in the setting of the wave equation was suggested
through the toy problem (1.16), and so the generalization to the 2D case with arbitrary
high order Butcher tables is not a surprise.

Proposition 1.4.1 is valuable, as it indicates that in the context of a fully discrete
scheme, an eventual loss of accuracy cannot come from the IMEX-RK time discretization.
We study various spatial discretizations for the surface waves operator (1.28). It appears
that using a spatial discretization with an order of accuracy strictly larger than that of
the time discretization prevents the loss of asymptotic consistency. Indeed a consequence
of a higher order accuracy in space is that Rδ becomes negligible compared to R∆t,
and we can apply the same reasoning that led to Proposition 1.4.1. When using first
order methods, this is compatible with the solution proposed in [8][9][28], which consists
to center the pressure discretization. We verify this with the first order IMEX-Euler
method, and compare a centered difference discretization with a Godunov scheme that
adds numerical viscosity. In presence of viscosity, the method is first order in space and
strongly degrades the approximation when the Froude number becomes small. On the
other hand, in absence of viscosity the surface waves operator is discretized at second
order, and the results seem insensible to the scale parameter (asymptotic consistency).
These numerical results can be seen in the two middle plots from Figure 1.4. We are
able to justify that the refined low Froude accuracy condition (1.33) is satisfied by the
centered scheme but not by the Godunov scheme.
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Figure 1.4: Approximated local Froude number for the Gresho vortex. From left to
right: reference solution, IMEX-Euler with upwind flux, IMEX-Euler with centered flux,
ARS-(2,2,2) with centered flux.

Interestingly, a centered discretization of the surface wave operator L combined to a
second order IMEX-RK method produces accurate approximations, see the right plot in
Figure 1.4. This outcome is not so obvious to predict since the spatial error operator
Rδ can no more be neglected, and we verify that incompressible states do not belong to
kerRδ in general. Yet we obtain the proposition below.

Proposition 1.4.2. Consider a second order IMEX-RK method. When combined with
a centered discretization of the surface waves operator (1.28), we get a scheme that is
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low Froude accurate. Provided that the IMEX-RK method is globally stiffly accurate and
that the implicit Butcher table is of type A or CK, a discrete version of the set of well
prepared data (1.25) is preserved during each update.

This good result is explained by the fact that the error in time somehow dominates the
error in space. To validate our approach, we also compare this scheme to discretizations
of the surface gravity waves operator involving modified stencils used in [11][41]. These
stencils offer the advantage to yield a modified PDE satisfying the more restrictive
sufficient condition (1.31). Despite this we weren’t able to detect any noticeable difference
between these discretizations and the standard centered scheme, which is a good point
for this latter. It is also an additional argument confirming the ability of the low Froude
accuracy criterion to predict whether a scheme remains accurate or not in the asymptotic
regime.
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Figure 1.5: Error and efficiency curves for the Gresho testcase. LAR-? refers to the
ARS-(2,2,2) scheme with a centered discretization of the surface gravity waves. The two
other schemes LAR-[ and LAR-] use the same ARS-(2,2,2) double Butcher table, but
with a modified second order stencils for the surface gravity waves.

All considered schemes preserve the lake at rest stationary states. Efficiency wise, the
use of semi-implicit methods over explicit ones seems to become advantageous for Froude
numbers smaller than 10−2, at least for the Gresho testcase. The error and efficiency
curves of various schemes have been compiled in Figure 1.5 for the case Fr = 10−4. We
see that despite using a modified stencil referred to previously, the second order explicit
scheme produces much less accurate results than its semi-implicit counterparts. In fact
its error is more than six orders of magnitudes greater for an equivalent computational
cost. This is partly explained by the fact that small times steps have to be used to
achieve stability.

We finish by mentioning that implementation for the two dimensional case was done
in Matlab. Great care has been brought to re-usability through the use of classes, such
that previous functionalities can be accessed without re-implementing them in every
scheme. For instance, new Butcher tables can be set by just specifying their coefficients,
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and no additional line of code is needed. The program is fully vectorized for greater
efficiency.

1.4.2 Implicit kinetic schemes and iterative methods

The Saint-Venant system is a macroscopic law that predicts the evolution of quantities
of interest observable at our scale. Yet the underlying mechanism can be described more
precisely at the mesoscopic scale by the mean of Boltzmann-type kinetic equations. The
kinetic theory aims at describing a cloud of particles such as a gas or a fluid. To this
end we introduce a positive function f(t, x, ξ) representing the density of particles which,
at time t, are located at the point x and travel with velocity ξ ∈ R. We call f the
distribution function, and when integrating it with respect to the velocity variable we
recover macroscopic quantities of interest. An overview on kinetic theory can for instance
be found in the book from Perthame [55].

Both the macroscopic Saint-Venant system and the kinetic description are part of
the field of continuum mechanics, where the particles constitutive of the matter (here
the fluid) fill the whole space. However in the kinetic setting one also accounts for the
binary collisions occurring between particles of different velocities. The evolution of the
distribution function is governed by the kinetic equation

∂tf + ξ∂xf = Q[f ](t, x, ξ)/ε , (1.34)

where Q[f ] is a collision operator accounting for the evolution of the population of
particles, and 1/ε is the collision frequency. Several choices are possible for the collision
term, and we consider one of the simplest given by the BGK operator (Bhatnagar, Gross
and Krook)

QBGK[f ](t, x, ξ)
def
= M(Uf (t, x), ξ)− f(t, x, ξ) , Uf =

ˆ
R

(
1
ξ

)
f(t, x, ξ)dξ .

Over a given period of time, the number of collisions increases when ε decreases, and in
the limit ε→ 0 the distribution of particles converges to some hydrodynamic equilibrium
M(Uf , ξ) that we refer to as the Gibbs equilibrium or maxwellian distribution. The
Gibbs equilibrium plays a crucial role as it allows to link the kinetic equation description
to the Saint-Venant system by recovering the macroscopic quantities of interest U and
the Saint-Venant flux F (U) when integrating. In fact we can for instance consider

M(U, ξ) =
1

gπ

√(
2gh− (ξ − u)2

)
+

=⇒
ˆ
R

 1
ξ
ξ2

M(U, ξ)dξ =
(

h
F (U)

)
. (1.35)

In (1.35), when integrating M(U, ξ) against ξ we get the first component of F (U) which
coincides with hu the second component of U . Then the Saint-Venant system (1.1) is
obtained by integrating the kinetic representation given by

∂tM + ξ∂xM − gz′∂ξM = Q(t, x, ξ) ,

ˆ
R

(
1
ξ

)
Q(t, x, ξ)dξ = 0 , (1.36)
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against the vector (1, ξ)T . In the above Q(t, x, ξ) has to be understood as the distribution
obtained by taking the limit of QBGK[f ]/ε when ε vanishes. More details about the
relation between (1.1) and (1.36) can be found in [58]. The upside is that we replaced
the initial nonlinear system of two equations by a linear scalar transport equation with
collision term, at the price of having to compute an integral. An interesting idea is to
propose a simple solver for (1.36), and then to integrate it over the velocities ξ ∈ R in
order to obtain a numerical scheme for the macroscopic law. This is the approach followed
by kinetic schemes, and we propose to combine them with implicit time integrators.

The kinetic schemes we consider are based on the fact that over flat bathymetries,
the kinetic interpretation (1.36) is obtained by relaxing the kinetic equation (1.34) in the
limit ε→ 0. In practice we perform a BGK splitting, meaning that instead of directly
discretizing (1.34), we alternate between a collision step and a transport step written as{

∂tf = (M(Uf , ξ)− f)/ε

∂tf + ξ∂xf = 0
.

In the limit ε→ 0, the collision step projects the initial data onto the space of maxwellians,
which can then be transported in the second step. This alternating process gives rise to
the transport-projection method from [18]. In our case we discretize the transport step
by an upwind implicit scheme

f1−i −M0
i

∆t
+

ξ

∆x

(
1ξ<0(f

1−
i+1 − f1−i ) + 1ξ>0(f

1−
i − f1−i−1)

)
= 0 , (1.37)

with M0
i =M(U0

i , ξ). As suggested in the example of the previous toy problem (1.12),
having an upwind discretization of the flux is important even when using an implicit
time stepping algorithm, as we can otherwise increase some energy. In order to write
the update at the macroscopic level, we need to invert the system defined by (1.37) and
compute the integrals against 1 and ξ. Hence over a mesh of N cells the updates h1 ∈ RN

and (hu)1 ∈ RN take the form

h1 =

ˆ
R
(I + σL(ξ))−1[M0 + σB](ξ)dξ , (hu)1 =

ˆ
R
ξ(I + σL(ξ))−1[M0 + σB](ξ)dξ ,

(1.38)

with I + σL(ξ) a triangular matrix from RN×N and B(ξ) ∈ RN a vector accounting for
the boundary conditions. We discuss these terms more in detail in Chapter 3, and state
the main result below.

Proposition 1.4.3. The update (1.38) is conservative and consistent with the Saint-
Venant system, and keeps the water height positive. Besides, it admits a discrete entropy
inequality which always dissipates the energy when the coefficients of M0 are half-disk
maxwellians given by (1.35). These properties hold without any condition on the time
step.

We will see that proving the existence of a discrete entropy inequality is akin to obtaining
equality (1.15) for the discrete energy of the toy problem. The difference is that now the
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proof is made harder by requiring the use of a kinetic entropy, to be defined in Chapter
3. Although we are able to obtain an analytical expression for the inverse of the mass
matrix I+σL(ξ), in practice it is not possible to compute the integrals (1.38) when using
the half-disk maxwellian (1.35). Substituting this reference maxwellian with

M(U, ξ) =
h

2
√
3 c

1|ξ−u|≤
√
3 c (1.39)

enables to explicitly compute formulas (1.38) while retaining the positivity of the scheme.
It can be implemented numerically with a quadratic cost with respect to the number of
cells. This is due to the fact that we lose the sparsity of the mass matrix when inverting
it.

Still in the case without bathymetry, we consider the alternative offered by an
iterative method to approximate (1.36). The iterative process is based on a Gauss-Jacobi
decomposition and reads

f0(ξ) =M0 ,

{
(1 + α)fk+1(ξ) = (αI − σL)Mk +M0 + σB[Mk]

Mk+1 =M({Uf}k+1, ξ)
, (1.40)

with k denoting the iteration index and α ≥ 0 a relaxation parameter. This time we
don’t need to invert any matrix, and the integrals of update (1.40) against 1 and ξ can
be expressed explicitly when using the half-disk maxwellian (1.35). The drawback is that
we will need a CFL condition on the time step to ensure both the convergence and the
positivity. Moreover we get the following proposition giving the existence of a kinetic
entropy inequality.

Proposition 1.4.4. Assuming that it converges, the sequence (fk(ξ))k ⊂ RN defined
by (1.40) satisfies a kinetic entropy inequality that dissipates the energy from some rank.

The iterative approach is also useful to treat varying bathymetries which we investigate
next. The source term is treated through the hydrostatic reconstruction introduced in [6].
Without entering too much into the details, the kinetic interpretation of the hydrostatic
reconstruction proposed in [10] introduces nonlinear terms in the kinetic scheme (1.37).
Due to this we must use an iterative approach similar to (1.40) and given below.

(1 + α)fk+1
i =M0

i + αMk
i − σξ(Mk

i+1/2 −Mk
i−1/2) + σ(ξ − uki )(M

k
i+1/2− −Mk

i−1/2+)

Mk+1
i =M

(
{Uf}k+1

i , ξ
)

Mk+1
i±1/2 = 1ξ<0M

(
{Uf}k+1

i±1/2+, ξ
)
+ 1ξ>0M

(
{Uf}k+1

i±1/2−, ξ
)

(1.41)

The macroscopic quantities {Uf}i+1/2− and {Uf}i+1/2+ denote the reconstructed states in
the left and right neighborhoods of interface i+1/2 following the hydrostatic reconstruction
procedure to be recalled in Chapter 3. We are able to prove the positivity of this method
as well as an estimate on the kinetic entropy. This estimate guarantees the dissipation of
energy from some rank, which is an improvement over the explicit version of the scheme.
In fact, Audusse et al. proved in [10] that the explicit kinetic scheme with hydrostatic
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Figure 1.6: Dissipation of total energy is achieved by the iterative kinetic schemes, but
not by the explicit method. The testcase is given by a varying bathymetry, and at
initial time both the velocity and free surface elevation are constant. Periodic boundary
conditions are used.
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reconstruction admits a discrete entropy inequality with an error term that can sometimes
increase the energy. The benefit of using iterative kinetic schemes is well illustrated by
the testcase presented in Figure 1.6. To finish we demonstrate the convergence of our
algorithm under some assumptions relative to the boundedness of the iterated solution
hk and (hu)k. One of the assumption is that the water height should be bounded away
from zero. We believe there is hope to get rid of this restriction, as the iterative process
performed quite well on the parabolic bowl testcase featured in Figure 1.7. This testcase
is characterized by an evolving wet/dry front over a non flat bottom, which is rather
complex to resolve. Therefore in the near future we would like to investigate another way
to obtain the convergence of the iterative scheme that includes the possibility of having
dry areas.
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2.1 Introduction

The goal of this article is to design an efficient accurate numerical scheme for the Saint-
Venant system under low Froude regime in two spatial dimensions. A good comprehension
of this model benefits a wide spectrum of applications, ranging from water management,
interplay between ocean dynamics and climate change, erosion of the coastline, as well as
forecasting natural disasters among other examples.

At low Froude numbers, the Saint-Venant system models flows featuring a slow
convection of fluid particles and a fast propagation of surface gravity waves. The velocity
attributed to these two phenomena vary drastically, inducing a multiscale behavior in
time. For reference, in coastal flows the order of magnitude between these characteristic
speeds is about 10−2. Because of such a great disparity, usual Godunov methods with
explicit time integration are inefficient to approximate low Froude flows, since the CFL
condition required for stability dictates a prohibitively small time step. Indeed, the latter
is restricted by the inverse of the maximum wave speed, which effectively means that the
scheme tries to resolve the scale of faster dynamics. As a result, numerical computations
are significantly slowed down, and the increased number of iterations implies a surge in
numerical diffusion, regardless of the order. A solution is then to implicit the resolution
of the fast dynamics to enable the use of larger time steps, and justifies the recent interest
of implicit-explicit (IMEX) methods [3][14][15][22][25][34][39][53][65].

By analogy with the Euler system, as the Froude number vanishes the shallow water
equations with flat bottom converge, at least for suitable initial conditions and periodic
boundary conditions, towards an incompressible-like system in the sense that the water
height can be seen as a density. A rigorous proof of this convergence result can be
found in the work of Klainerman and Majda [45], and a compatible estimate is stated by
Schochet [63]. Hence it is important to satisfy this property at the discrete level, and for
that reason asymptotic preserving schemes (AP) seem to be judicious, as they converge
towards a consistent discretization of the limiting system, see [42] for a review on the
topic. On the contrary, a non AP scheme could have a bad behavior, with for instance
the emergence of a wrong scaling in the approximated pressure [38], or the formation of
spurious oscillations caused by the loss of near-incompressibility as studied by Dellacherie
in [28]. Thus the AP property is of paramount importance in achieving accurate results
at low Froude numbers, and a key ingredient in this regard is the ability of a scheme to
preserve nearly incompressible states. Several methods satisfying this criterion have been
proposed recently. In [28][9][8], the first order case is handled through the cancelling of
the numerical diffusion associated to the discharge. However one has to be worried about
the stability of the method when removing diffusive terms, and it might not work for
the Saint-Venant system without any regularizing contribution such as the Coriolis force.
Instead, the approach exploited in [41][11] consists in adding terms rather than removing
diffusion, and seems a safer way to go. At second order, the scheme proposed in [3]
requires no modification but the splitting used is nonlinear in the acoustic operator, and
is very costly to solve implicitly. We also want to mention relaxation strategies which are
suitable for designing AP schemes, see for instance [12][21][22][25][47][65].

When designing schemes for the Saint-Venant system, great care has to be brought
to the preservation of the lake at rest steady state. In fact, many geophysical flows can
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be seen as a perturbation of this state, which is given by a flat free surface and a zero
discharge. Numerically, we need to ensure that the pressure variation is exactly balanced
by the source term, and schemes entering this scope are said to be well balanced (WB).
This has proven challenging and numerous works have been devoted to this issue, with
for instance the hydrostatic reconstruction [6] and its kinetic interpretation [10]. In the
case of IMEX methods, where it is not desirable to apply nonlinear reconstructions to
the implicit update, the system has to be splitted appropriately so that lakes at rest are
naturally accounted for.

In the light of the above, we strive to design a high order IMEX scheme offering a
linear treatment of surface gravity waves, stable under a convection-driven CFL, well
balanced, AP, and keeping the compressible component of the flow under control. To
achieve this, the present document is organized as follows. The second section is dedicated
to a recall of the main literature results concerning the limiting system, AP property
and the stability of nearly-incompressible states. As we shall see, the latter will be
easier to characterize for the linear surface waves system, and will give rise to the low
Froude accuracy criterion. In the third section, a wave splitting is proposed and IMEX
time semi-discretizations using diagonally implicit Runge-Kutta methods (IMEX-DIRK)
are studied. We show that in this framework, schemes are always low Froude accurate
and well balanced. Regarding the asymptotic consistency, it is obtained formally for a
specific class of Butcher tableaux. When neglecting the convection operator, the use of
scale-independent time steps is granted to lead to an L2 stable semi-discretization of the
survace waves under some algebraic condition on the corresponding Butcher table. In the
next section, we take a look at fully discretized schemes. We illustrate the well known
defect of a standard first order upwinded method, and check that the low Froude accuracy
criterion is able to detect it. We also discuss a simple fix consisting in having an order of
accuracy in space striclty greater to that of the time discretization. Then, we consider a
second order scheme in time and space with centered discretization of the surface gravity
waves. Thanks to the notion of low Froude accuracy introduced earlier, we justify the
good results obtained with this method for small Froude numbers. Interestingly the
centered discretization of the surface waves doesn’t satisfy the criterion from Dellacherie
(Theorem 2.2 in [28]), which to a certain extent is more restrictive than the low Froude
accuracy condition. Finally, to illustrate its good behavior, we compare the standard
centered discretization to modified stencils proposed in the litterature, and get similar
results for scale independent time steps over the Gresho vortex testcase.

2.2 The low Froude singular limit

2.2.1 Dimensionless formulation of the Saint-Venant system

The Saint-Venant system, also known as the shallow water system, describes the
conservation of the water height h(t, x, y) and the balance of the discharge vector
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Q(t, x, y) = (q, r)T (t, x, y) according to the following set of equations:

∂h

∂t
+
∂q

∂x
+
∂r

∂y
= 0

∂q

∂t
+

∂

∂x

(q2
h

+
g

2
h2
)
+

∂

∂y

(qr
h

)
= −gh∂z

∂x

∂r

∂t
+

∂

∂x

(qr
h

)
+

∂

∂y

(r2
h

+
g

2
h2
)
= −gh∂z

∂y

(2.1)

where z(x, y) is the fixed bathymetry, and g the gravitational acceleration constant.
It is also usual to consider the free surface ζ(t, x, y) := h + z and the fluid velocity
V (t, x, y) = (v, w)T := Q/h. We detail the dimensionless formulation for the Saint-
Venant system so as to exhibit the dominant terms in the low Froude regime. For this
we introduce the dimensionless quantities:

t̃ =
t

t∗
, x̃ =

x

l∗
, ỹ =

y

l∗
, h̃ =

h

h∗
, Ṽ =

V

u∗
, Q̃ =

Q

h∗u∗
, z̃ =

z

h∗

The star denotes a strictly positive characteristic constant chosen such that the dimen-
sionless quantities are of order one. In this new set of coordinates, the equation (3.78)
reads: 

h∗

t∗
∂h̃

∂t̃
+
h∗u∗

l∗

(
∂q̃

∂x̃
+
∂r̃

∂ỹ

)
= 0

h∗u∗

t∗
∂q̃

∂t̃
+
h∗(u∗)2

l∗

(
∂h̃ṽ2

∂x̃
+
∂h̃ṽw̃

∂ỹ

)
+
g(h∗)2

2l∗
∂h̃2

∂x̃
= −g(h

∗)2

l∗
h̃
∂z̃

∂x̃

h∗u∗

t∗
∂r̃

∂t̃
+
h∗(u∗)2

l∗

(
∂h̃ṽw̃

∂x̃
+
∂h̃w̃2

∂ỹ

)
+
g(h∗)2

2l∗
∂h̃2

∂ỹ
= −g(h

∗)2

l∗
h̃
∂z̃

∂ỹ

Dividing the first equality by h∗u∗/l∗ and the momentum equations by h∗(u∗)2/l∗,
defining Fr = u∗/

√
gh∗, St = l∗/(u∗t∗) and dropping the tildes for the sake of legibility

we get: 

St ∂h
∂t

+
∂q

∂x
+
∂r

∂y
= 0

St ∂q
∂t

+

(
∂hv2

∂x
+
∂hvw

∂y

)
+

1

2Fr2
∂h2

∂x
= − h

Fr2
∂z

∂x

St ∂r
∂t

+

(
∂hvw

∂x
+
∂hw2

∂y

)
+

1

2Fr2
∂h2

∂y
= − h

Fr2
∂z

∂y

(PFr)

The characteristic quantities Fr and St correspond respectively to the Froude and the
Strouhal numbers. The choice St = O(Fr−1) is attributed to an acoustic time scale,
whereas St = O(1) is rather associated with convective phenomena. Hence it is this
second choice that we make. We will also adopt the more compact vector notation for
system (PFr) as given below:

∂U

∂t
+∇ · F (U) = S(U, z)
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where the flux F and source term S are defined by:

F (U) =

(
hV T

hV ⊗V + h2I2/(2Fr2)

)
∈ R3×2, S(U, z) =

(
0

−h∇z/Fr2
)

∈ R3 (2.2)

For any vector n belonging to the unit sphere S2, we denote F (U ;n) = F (U)n the
directional flux, whose Jacobian with respect to the variables (h,Q) is given by:

DF (U ;n) =

(
0 nT

(hI2/Fr2 − V ⊗V )n V ⊗n+ (V · n)I2

)
∈ R3×3 (2.3)

The corresponding eigenvalues are given for j ∈ {−1, 0, 1} by λj(U ;n) = V · n + jc,
where c =

√
h/Fr is the velocity of surface waves. Especially, we see that the system is

strictly hyperbolic in wet areas, where we have h > 0. Classical explicit finite volumes
schemes will be stable under the usual CFL condition δ/∆t ≥ 2λmax with λmax being
the maximum wave velocity arising from the discretized data on a cartesian mesh ∪i,jCi,j .
For approximate Riemann solvers this velocity is estimated as an upper bound of the
aforementioned eigenvalues, hence we need to have over every interface:

δ

∆t
≥ 2 ‖V ‖

(
1 +

c

‖V ‖

)
with δ the spatial mesh resolution and ‖V ‖ the greatest velocity along the interface
normal in neighboring cells. This is problematic in the low Froude regime, corresponding
to the case where c ‖V ‖ � 1, meaning that gravity waves are propagating much faster
than material waves. In this regime, the time step will be severely restricted by the fast
dynamics, whereas interest might only concern convection-type/convective phenomena.

We dedicate the remainder of this section to present the asymptotic properties of the
dimensionless system (PFr).

2.2.2 The limiting equations

In order to investigate the solutions of (PFr) in the limit Fr → 0, a standard prac-
tice [14][39][65] is to assume that they admit the following expansion with respect to the
Froude number:

h(t, x, y ;Fr) = h(0)(t, x, y) + Frh(1)(t, x, y) + Fr2 h(2)(t, x, y) +O(Fr3)
V (t, x, y ;Fr) = V(0)(t, x, y) + FrV(1)(t, x, y) + Fr2 V(2)(t, x, y) +O(Fr3)

(2.4)

It is important to note that the terms h(j), V(j) appearing above do only depend on
time and space variables, but not on the Froude number. Inserting this in (PFr), we
identify/extract the terms in factor of different Froude powers/magnitudes. Terms in
Fr−2 give:

1

2Fr2
∇(h(0))

2 = − 1

Fr2
h(0)∇z =⇒ h(0)∇(h(0) + z) = 0 (2.5)
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This means that the leading order free surface should remain flat in wet areas. Now
considering the terms in Fr0 in the water height conservation law we have:

∂h(0)

∂t
+
∂(h(0)v(0))

∂x
+
∂(h(0)w(0))

∂y
= 0 (2.6)

From (2.5) we know that h(0) + z is constant in space, and so is ∂t(h(0) + z) = ∂th(0).
Making use of this, we integrate the above equation over the spatial domain Ω and apply
Gauss’ divergence formula:

0 = |Ω|
∂h(0)

∂t
+

¨
Ω
∇ · (h(0)V(0))dxdy = |Ω|

∂h(0)

∂t
+

ˆ
∂Ω
h(0)V(0) · n∂Ω dσ

Assuming either that Ω = T2, or that the non-penetration condition V · n∂Ω = 0 hold at
the boundary, the last integral cancels out and thus h(0) is time independent. If Ω = R2,
the same conclusion holds assuming the sub-linear growth condition is satisfied by the
discharge, that is to say hV = o(|x|, |y|). As a consequence, Equation (2.6) becomes a
divergence-free condition on the leading order discharge:

∇ ·Q(0) = ∇ · (h(0)V(0)) = 0 (2.7)

Next, we collect terms in Fr−1 from the momentum balance equation of (PFr), resulting
in the relation:

1

Fr ∇ · (h(0)h(1)I2) = − 1

Fr h(1)∇z =⇒ h(0)∇h(1) = 0 (2.8)

Finally, terms in Fr0 taken from the same equation form the relation:

∂

∂t
(h(0)V(0)) +∇ · (h(0)V(0) ⊗ V(0) + [h(0)h(2) + (h(1))

2/2]I2) = −h(2)∇z

=⇒ ∂

∂t
(h(0)V(0)) + h(0)(V(0) · ∇)V(0) + h(0)∇h(2) = 0 (2.9)

=⇒ ∂

∂t
V(0) + (V(0) · ∇)V(0) +∇h(2) = 0 . (2.10)

To get the second equality we have used that ∇ · (h(0)V(0)⊗V(0)) = h(0)(V(0) · ∇)V(0) due
to the divergence-free condition (2.7). The last equality is a consequence of the time
independence of h(0) under adequate boundary conditions. The limiting system of (PFr)
shall be noted (P0) and is obtained, at least formally, by gathering the equations satisfied
by the leading order terms h(0), V(0). In accordance with equations (2.5) and (2.7), we
introduce the following set of functions:

W def
= {(h, V ) : T2 → R3, ∇(h+ z) = 0, ∇ · (hV ) = 0} . (2.11)

Together with Equation (2.10), we get the following writing of the limiting system:
∀t > 0, (h(t, ·), V (t, ·)) ∈ W
∂

∂t
V + (V · ∇)V +∇Π = 0

(P0)
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The term Π in (P0) coincides with the remaining term h(2) from (2.10) and can be seen
as a pressure. At least when the initial condition (h0, V 0) belongs to W, we can relate
this pressure to the leading order terms by taking the divergence of (2.9), leading to:

(∇h(0) + h(0)∇) · [∇h(2) + (V(0) · ∇)V(0)] = 0 (2.12)

If additionally the bathymetry is flat, we get a Laplace equation on h(2). On the other
hand, if the incompressibile constraint isn’t initially fulfilled by the leading order terms,
a boundary layer might appear for 0 < Fr � 1.

Remark 2.2.1. Some important remarks are in order:

1. The condition (2.8) on the second order term h(1) doesn’t appear in the limiting
system (P0). However for small but non zero Froude numbers, it is important to
take into consideration as it implies that the fluctuations of the free surface elevation
ζ = h + z are in O(Fr2), that is to say ∇ζ = O(Fr2). For a flat bathymetry, we
also have that the spatial variations of the pressure p(h) = h2/2 are in O(Fr2).
This is true because p(h) = h2(0)/2 + Frh(0)h(1) + Fr2(h2(1)/2 + h(0)h(2)) +O(Fr3) and
∇h(0) = ∇h(1) = 0 in that case. For this reason, we will have to consider the so-called
set of well prepared data defined below, whose denomination will become clearer in
the next point:

Wp =

{∑
k∈N

Frk
(
h(k)
V(k)

)
: T2 → R3,

(
h(0)
V(0)

)
∈ W and ∇h(1) = 0

}
(2.13)

2. We have only provided a formal derivation of the limiting system (P0), based on the
assumption that expansion (2.4) exists. Its existence in the case without source term
was justified rigorously by Klainerman and Majda. More precisions about the required
functional spaces and convergence results can be found in their paper [45]. Without
entering too much into the details, one of the requirements is for the initial pressure
to fluctuate in O(Fr2). Thus if the initial condition (h, V )(t = 0, ·) belongs to Wp, we
will say that it is well prepared since we recover a similar constraint over the pressure.

3. In the case where the initial data is not well prepared, the solution isn’t granted to
admit expansion (2.4) anymore. In this situation a boundary layer appears, in which
the solution transitions into the set of well prepared data, see for instance [67]. In this
work we will only focus on well prepared data, where it makes sense to use large times
steps.

2.2.3 Asymptotic preserving property

Intuitively, for well prepared initial data the solutions of (PFr) are good approximations
to the solutions of (P0) when the Froude number is small, because we have (h, V ) =
(h(0), V(0)) + O(Fr). With this in mind, we would like to construct numerical schemes
complying with this asymptotic behavior. More specifically, if Pδ,Fr is a consistent
discretization of PFr associated to some time or spatial step/resolution δ, we would like
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the limit scheme Pδ,0 to yield a consistent approximation of the continuous system (P0).
Keeping the consistency while taking the low Froude limit indicates that the consistency
error should be uniform in Fr. Otherwise, the consistency error would blow up in the
limit Fr → 0, δ fixed. In a similar fashion, we ask for the region of stability of the scheme
to be scale independent. Such methods are called asymptotic preserving, see [42] for
in depth explanations on this concept. The AP property can be summarized by the
commuting diagram in Figure 2.1, and motivates the definition below.

Pδ,Fr

PFr

Pδ,0

P0

δ → 0

Fr → 0

Fr → 0

δ → 0

Figure 2.1: Asymptotic preserving diagram.

Definition 2.2.2 (Asymptotic preserving property). A numerical discretization Pδ,Fr
of (PFr) is said to be asymptotic preserving if it satisfies the two following conditions:

1. It is asymptotically consistent, meaning that the limit discretization Pδ,0 results in
a consistent discretization of the continuous limiting system (P0).

2. It is asymptotically stable, meaning that the stability constraint on the time step
has to be scale-independent.

We have seen that for well prepared data, the leading order height and discharge satisfy
the two static equations ∇(h(0) + z) = 0 and ∇ · (h(0)V(0)) = 0. In the next section, we
further characterize how close the solutions (h, V ) of (PFr) are from the incompressible
set of data W.

2.2.4 Stability of nearly incompressible states

In this section, we recall important invariance and convergence results related to the
set of well prepared data, due to Schochet [63] and Dellacherie [28]. These results have
been obtained for the barotropic Euler equations without source term, for which the
Saint-Venant system with flat bathymetry constitutes one particular case. Hence we will
assume the absence of varying bottom thereafter. In this setting, note that the space
W defined in (2.11) is now the set of space-constant water heights h and divergence-free
velocities V . Seeing h as a density, W can thus be considered as the set of incompressible
states.

Let us motivate the analysis by remarking that any initial condition (h, V )(t = 0, ·) ∈
Wp parameterized by Fr admits a limit (h(0), V(0)) in W as Fr vanishes. This means that
for small Froude numbers, the parameterized initial condition will be close to W. The
relevant question is whether or not the state (h, V )(t > 0, · ;Fr) remains close to W at
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later times for a fixed small Froude number. To answer this question, we will decompose
the solutions in an incompressible part and a compressible (or acoustic) one. We shall see
that the compressible component is in some way controlled by the initial data, ensuring
the invariance of nearly-incompressible states. For this we introduce the incompressible
and acoustic L2 energy spaces defined by:

E def
=

{(
h
V

)
∈ (L2(T2))3, ∇h = 0, ∇ · V = 0

}
E⊥ def

=

{(
h
V

)
∈ (L2(T2))3,

¨
T2

hdxdy = 0, ∃φ ∈ H1(T2), V = ∇φ
}
.

Every function in (L2(T2))3 can be written uniquely as the sum of one element of E and
one element of E⊥. This is known as the Helmoltz-Leray decomposition

(L2(T2))3 = E ⊕ E⊥ .

Note also that E is the set of square integrable functions lying in W. Because the spaces
E and E⊥ are orthogonal for the usual scalar product on L2, we can introduce the
orthogonal projection, or Leray projector, defined by

∀U ∈ (L2(T2))3, PEU
def
= UE with UE ∈ E , and U − UE ∈ E⊥ .

It is then interesting to recast system (PFr) in (h, V ) coordinates as below:

∂U

∂t
+K(U) + G(U) = 0, (2.14)

U =

(
h
V

)
, K(U) = (V · ∇)U, G(U) =

(
h(∇ · V )
Fr−2∇h

)
Operator K accounts for convective phenomena occurring over a time scale of order O(1),
whereas G stands for the gravity waves propagating over a short time scale of order O(Fr).
We are now able to recall the convergence result from Schochet [63]:

Theorem 2.2.3 (Schochet, 1994). Let U = (h, V )T and U∗ = (h∗, V ∗) be respective
solutions of{

∂tU +K(U) + G(U) = 0

U(t = 0, ·) = U0(·)
(2.15)

{
∂tU

∗ + PEK(U∗) = 0

U∗(t = 0, ·) = PEU
0(·)

(2.16)

on T2. Then U∗(t ≥ 0, ·) ∈ E, and{
‖h− hE‖L2(t = 0) = O(Fr2)
‖V − VE‖L2(t = 0) = O(Fr)

=⇒

{
‖h− h∗‖L2(t > 0) = O(Fr2)
‖V − V ∗‖L2(t > 0) = O(Fr)

In Theorem 2.2.3, the projected system (2.16) is equivalent to the incompressible Euler
system with constant density, and thus coincides with problem (P0). In fact we have
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U∗(t, x, y) = PE
(
U0(x, y) −

´ t
0 H(U∗)(s, x, y)ds

)
which belongs to E at all times. As a

consequence we get H(U∗) = (0, (V ·∇)V )T and PEH(U∗) = (0, (V ·∇)V +ψ)T with ψ a
vector field satisfying both ∇ · [(V · ∇)V +ψ] = 0 and the existence of a scalar function φ
such that ψ = ∇φ. Up to a constant, the valid choice for φ coincides with the pressure Π
appearing in (2.12). Hence Theorem 2.2.3 ensures us that if the initial condition is close
to an incompressible state, the solution U remains close to being incompressible at later
times. However, the closeness is stated with respect to the solution U∗ of the projected
system which is not practical to manipulate, and we would like to have a simpler criterion.
For that reason, in [28] Dellacherie studies the linearization of Equation (2.14) around
the constant-in-space state (h, V ) with h ≥ 0:

∂U

∂t
+KU +GU = 0, KU = (V · ∇)U, GU =

(
h∇ · V
Fr−2∇h

)
(2.17)

Defining the incompressible and acoustic energies

EE(t) =
1

Fr2
‖hE‖2L2 + h ‖VE‖2L2 , EE⊥(t) =

1

Fr2
‖h− hE‖2L2 + h ‖V − VE‖2L2 ,

the following result is given in [28]:

Theorem 2.2.4 (Dellacherie, 2010). Let U = (h, V )T and U∗ = (h∗, V ∗)T be respective
solutions of{

∂tU +KU +GU = 0

U(t = 0, ·) = U0(·)
(2.18)

{
∂tU

∗ +KU∗ = 0

U∗(t = 0, ·) = PEU
0(·)

(2.19)

Then PEU = U∗, and the incompressible and acoustic energies remain constant in time:

d
dt
EE =

d
dt
EE⊥ = 0 .

As a consequence we recover the estimate{
‖h− hE‖L2(t = 0) = O(Fr2)
‖V − VE‖L2(t = 0) = O(Fr)

=⇒

{
‖h− h∗‖L2(t > 0) = O(Fr2)
‖V − V ∗‖L2(t > 0) = O(Fr)

since in this case EE⊥(t ≥ 0) = EE⊥(t = 0) = O(Fr2).

The projected system is now equivalent to a linear transport equation on the divergence-
free velocity, combined with a constant-in-time water height. More precisely, the solution
U∗ of (2.19) is given by U0

E ◦ γ with the characteristic γ defined as

γ : (t, x, y) ∈ R+ × T2 7−→ (x− t Vx, y − t Vy) . (2.20)

The key ingredient of Theorem 2.2.4 is that Equation (2.17) is E- and E⊥-invariant,
see [28] for a proof. This sheds some light on why basic schemes fail to capture the
correct behavior by introducing unwanted oscillations. In fact, what might happen in the
linear case (2.17) is that the numerical method fails to satisfy a discrete analogy of the
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E-invariance. This is especially problematic when this failure occurs in the discretization
of the wave operator G, since it corresponds to the fast dynamics and will rapidly amplify
the oscillations of the compressible component, eventually making it dominant. The
ability of a scheme to preserve or not the space E will be assessed by its modified PDE [68],
whose definition is recalled below.

Definition 2.2.5 (Modified PDE). A pth order modified PDE associated to a scheme is
an equation whose solutions are approximated by that scheme up to O(δp+2) terms, with
δ the time and/or space resolution.

According to this definition, a modified PDE better models the behavior of the scheme
when compared to the original problem (2.17). However the latter usually differs from
the former since modified PDEs incorporate some consistency error, either under the
form of diffusive or dispersive terms. Because it is necessary to consider those new terms,
Theorem 2.2.4 cannot be used directly, and we need the more general result from [28]:

Theorem 2.2.6 (Dellacherie, 2010). Let F denote a linear differential operator such
that the following equation is well-posed on L∞(R+; (L

2(T2))3)

∂tU + FU = 0 . (2.21)

Let U and U∗ be solutions of (2.21) with respective initial condition U(t = 0, ·) = U0(·)
and U∗(t = 0, ·) = PEU

0(·). Then the following holds:

1. ‖U0 − PEU
0‖L2 = O(Fr) =⇒ ‖U − U∗‖L2(t ≥ 0) = O(Fr) where the time t = O(1)

is bounded as Fr → 0. Since E is not left invariant, in general U∗ does not belong
to E and thus U∗ 6= PEU .

2. Assume F is such that (∂t + F)U = 0 leaves E invariant. Then we can substitute
U∗ with PEU in the point above.

In Theorem 2.2.6, equation ∂tU + FU = 0 stands for the modified PDE. Analogously
to the original system (2.17), the E-invariance seems to be a key ingredient enabling
the modified PDE to preserve nearly incompressible states. In fact this is a sufficient
condition to get the relevant estimate implied in the second point of Theorem 2.2.6. On
the other hand, for the first point to hold we only need the well-posedness of the modified
PDE, implying that the dependence of the solution on the initial condition is smooth.

2.2.5 The near stationary condition

Theorem 2.2.6 has been used to detect and fix the inaccuracy observed with first order
upwinded schemes. In [8][9][28][38] the proposed solution consists in removing the
diffusion on the discharge component in order to meet the requirement of the sufficient
condition found in Theorem 2.2.6, while hoping to retain the stability property of the
scheme. In [11] a similar objective was achieved, although instead of removing diffusive
terms, additional crossed partial derivatives were discretized, such that E is encompassed
in the kernel of the resulting diffusion operator. This latter solution potentially causes
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less issues regarding the stability in the case of explicit methods, and can be extended to
higher order methods on cartesian meshes.

Although the mentioned modifications are successful in getting much improved results
at low Froude numbers, we believe that the criterion from Theorem 2.2.6 could be refined
and made more accurate in its ability to detect and explain an eventual loss of consistency
in the asymptotic regime. In fact we can do the following remarks.

1. Theorem 2.2.6 ensures the solution of the modified PDE (2.21) remains close to some
incompressible data, but without specifying which one. In this regard, Theorem 2.2.4
is stronger because it implies that solutions should remain close to an incompressible
state determined from the initial condition. Indeed the incompressible state in question
is given by U0

E ◦ γ the solution of (2.19), with γ defined in (2.20). In other words the
linear PDE (∂t+K +G)U = 0 acts on the elements of E by translating them at speed
V . Therefore instead of asking the modified PDE to keep E invariant as in the second
point of Theorem 2.2.6, we can be more specific and verify if its solutions U satisfy

U(t = 0, ·) ∈ E =⇒ U(t ≥ 0, ·) = U(0, γ(t, ·)) . (2.22)

This way we are able to detect the situations where the solution deviates from U0 ◦ γ
even if it remains in E .

2. In practice we will consider small Froude numbers that are strictly positive, and the
initial condition need not be exactly incompressible. Hence we want to know if the
modified PDE (2.21) satisfies

U(t = 0, ·) ∈ E +O(Fr) =⇒ ‖U(t ≥ 0, ·)− UE(0, γ(t, ·))‖L2 = O(Fr) , (2.23)

which is an analogy of the implication found in Theorem 2.2.6. The property (2.22)
constitutes a sufficient condition with respect to (2.23). However (2.22) is restrictive
and can be relaxed through a small modification

U(t = 0, ·) ∈ E =⇒ ‖U(t ≥ 0, ·)− U(0, γ(t, ·))‖L2 = O(Fr) . (2.24)

Thanks to the last condition (2.24) we will now be able to detect situations where
initially incompressible solutions deviate too quickly from U0 ◦ γ while remaining in
E +O(Fr). Such an example will be encountered in Section 2.4.3 with the first order
Rusanov scheme.

We retain the condition (2.24) as a good indicator to predict whether a scheme can
remain accurate in the low Froude regime. We have the following result which confirms
that (2.24) is a sufficient condition for (2.23) to hold.

Theorem 2.2.7. Let F be a linear differential operator such that (2.21) is well-posed.
We assume that any solution U of (2.21) with initial condition U0 satisfies the near
stationary condition

U0 ∈ E =⇒ ‖U − U0 ◦ γ‖L2(t ≥ 0) = O(Fr) . (2.25)

Then the following holds for any convective time τ bounded as Fr → 0

‖U0 − PEU
0‖L2 = O(Fr) =⇒ ‖U − U0

E ◦ γ‖L2(τ) = O(Fr) .
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The proof results from a simple triangle inequality.

Proof. (Theorem 2.2.7). Let U and U∗ be solutions of (2.21) with respective initial
conditions U0 and PEU

0, and let τ = O(1) be a positive time. As in Theorem 2.2.6 the
well-posedness of the linear modified PDE (2.21) implies that

‖U0 − PEU
0‖L2 = O(Fr) =⇒ ‖U − U∗‖L2(τ) = O(Fr) .

Furthermore, for any time t ≥ 0, the distance between U(t, ·) and U0
E ◦ γ(t, ·) can be

bounded from above using the following triangle inequality:

‖U − U0
E ◦ γ‖L2 = ‖(U − U∗) + (U∗ − U0

E ◦ γ)‖L2 ≤ ‖U − U∗‖L2 + ‖U∗ − U0
E ◦ γ‖L2 .

But since U∗ initially belongs to E , we have by the assumption (2.25) that

‖U∗ − U0
E ◦ γ‖L2(τ) = O(Fr) ,

and thus we get ‖U − U0
E ◦ γ‖L2(τ) = O(Fr).

As suggested before, the differential operator F represents the consistent part K +G
in addition to some diffusive or dispersive error terms introduced by the scheme. One
could also neglect the operator K by setting it to zero, since it does not act over acoustic
time scales and thus shouldn’t be a cause for concern. Note that this would amount to
linearize Equation (2.14) around the state (h, V ) with V the null velocity, in which case
we also have γ(t, ·) = id for any time t. In this situation, the condition (2.23) corresponds
to (1.6) in [27], meaning that we want the modified PDE to keep the solutions close
to their initial condition if the latter are nearly incompressible. This explains why we
referred to (2.25) as near stationary condition. Again, the purpose here is to emphasize
on the fact that the near stationary condition can be seen as a requirement for having
accurate results as Fr → 0 in the linear case. Despite this simplification, we hope that
this condition remains a good indicator of accuracy in the setting of nonlinear schemes.

In the next section, we will consider a wave splitting differing from the one suggested
by Equation (2.14). The main reason for this is that we want a linear representation
of the surface waves in order to obtain an efficient IMEX scheme. Despite this change,
the incompressible set E will still be included in the kernel of the new acoustic operator,
and we expect all the arguments mentioned until now to remain relevant for this new
splitting.

2.3 Semi-discretization in time

2.3.1 Wave splitting and low Froude accuracy

In the shallow water system (PFr), time variations of the solution are given by S −∇ · F
where F and S are respectively the nonlinear flux and source term (2.2). We have seen
that the eigenvalues of the flux Jacobian DF do not remain bounded as Fr → 0, and
the use of an explicit time integrator would require the time steps to vanish in the low
Froude limit which we cannot afford. On the other hand an implicit treatment of the
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nonlinear term can be deemed too expensive at the computational level. Hence the first
and foremost goal is to decompose the time variations of the solution as a contribution
from a nonlinear term with slow dynamic, and a linear term embodying the fast scales.
The former will then be treated explicitly, while the latter will be handled implicitly.

Under the light of the above, we introduce a new convective flux H whose eigenvalues
are independent of Froude, and we recast system (PFr) under the form

∂tU +∇ ·H(U, z) + [∇ · (F −H)− S](U, z) = 0 . (2.26)

In the choice detailed below H will incorporate a contribution from the source term, and
it is why we make it depend on z. The remaining differential operator ∇ · (F −H)− S
accounts for the acoustic waves and we denote it by L. We have to chose H so that L
is linear, and both operators ∇ · H,L should lead to hyperbolic systems for the well-
posedness of the splitting. They should also admit a conservative writing for the water
height component, and for the discharge component provided a flat bathymetry. Finally,
the splitting should yield semi-implicit schemes verifying the low Froude accuracy and
asymptotic preserving properties while preserving the lakes at rest. The former two points
have already been motivated in Section 2.2, and preserving lakes at rest is particularly
important since most geophysical flows can be seen as small perturbations around this
steady state.

Taking L linear signifies the existence of two matrices Lx(z) and Ly(z) in R3×3 such
that L(U, z) = Lx(z)∂xU + Ly(z)∂yU up to a vector independent of U . Making use of
the relation ∇ ·H = ∇ · F − S − L, we have the following sufficient condition:

Proposition 2.3.1. For H to have bounded eigenvalues, it is sufficient for matrices Lx

and Ly to satisfy:

Lx =

 O(1) 1 +O(Fr2) O(Fr2)
O(Fr−2) O(1) O(1)
O(Fr−2) O(1) O(1)

 , Ly =

 O(1) O(Fr2) 1 +O(Fr2)
O(Fr−2) O(1) O(1)
O(Fr−2) O(1) O(1)


If we restrict ourselves to the set of well prepared data Wp, we can replace the condition
above with:

Lx =

 O(1) O(1) O(1)
−z/Fr2 +O(1) O(1) O(1)

O(1) O(1) O(1)

 , Ly =

 O(1) O(1) O(1)
O(1) O(1) O(1)

−z/Fr2 +O(1) O(1) O(1)


Proof. Up to a vector independent of U , we have by definition:

∇ ·H(U, z) = (DF (U ;nx)− Lx(z))∂xU + (DF (U ;ny)− Ly(z))∂yU − S(U, z)

with nx = (1, 0)T and ny = (0, 1)T . The expression of the flux Jacobian DF (U ;n) is given
in (2.3). Eigenvalues along direction n ∈ S2 are given as the roots of the characteristic
polynomial associated to DH(U, z;n) = DF (U ;n)−C(z;n) where C = n1Lx +n2Ly. It
is then sufficient for the characteristic polynomial PDH(λ) to have bounded coefficients.
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If we assume that all the coefficients (cjk)j,k of matrix C are in O(1) except potentially
c21 and c31, and noting that

PDH(λ) = λ3 − tr(DH)λ2 +
1

2
(tr(DH2)− tr(DH)2)λ− det(DH)

we get the desired result by computing:

tr(DH) = O(1),

tr(DH2) = 2(n1 − c12)
(hn1

Fr2
− c21

)
+ 2(n2 − c13)

(hn2
Fr2

− c31

)
+O(1)

det(DH) = (n2 − c13)(vn1 − c32)
(hn1

Fr2
− c21

)
+ (n1 − c12)(un2 − c23)

(hn2
Fr2

− c31

)
− (n2 − c13)(2un1 + vn2 − c22)

(hn2
Fr2

− c31

)
− (n1 − c12)(un1 + 2vn2 − c33)

(hn1
Fr2

− c21

)
+O(1)

Indeed, under the first assumption one has n1−c12 = O(Fr2) and n2−c13 = O(Fr2), and as
a result every coefficient is a O(1). When restricting to the set Wp we have h+z = O(Fr2),
which in turns implies that hn1/Fr2 − c21 = O(1) and hn2/Fr2 − c31 = O(1).

In practice, the acoustic wave operator is obtained by linearizing system (PFr) around
the lake at rest (h,Q) = (−z, 0), similarly to what was done in (ζ,Q) coordinates in [14].
The purpose is to later get an easy way to preserve lakes at rest during the implicit
step. Incorporating the source term into the linearized spatial operator, we find the
non-conservative formulation for the acoustic waves:

∂h

∂t
+∇ · (hV ) = 0

∂hV

∂t
+

−z
Fr2

∇(h+ z) = 0

As a consequence, it entails the following splitting, referred to as the lake at rest splitting
(LAR), and that we will use from now on in the rest of this work:

L(U, z) =

 0 1 0
−z/Fr2 0 0

0 0 0

 ∂U

∂x
+

 0 0 1
0 0 0

−z/Fr2 0 0

 ∂U

∂y
+

 0
(−z/Fr2)∂xz
(−z/Fr2)∂yz

 (2.27)

H(U, z) =

(
0

hV ⊗V + 1
2Fr2 (h+ z)2 I2

)
(2.28)

Clearly, both sufficient conditions from proposition 2.3.1 are satisfied, and eigenvalues are
bounded for the convection flux H. Indeed, we can compute them to find 0, (V · n) and
2(V · n). Hence DH admits three real eigenvalues that are different as long as V · n 6= 0.
Regarding L, its eigenvalues are 0 and ±

√
−z/Fr, which for well prepared data does not

deviate too much from the gravity waves velocity
√
h/Fr.
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The accuracy of schemes based on the LAR splitting (2.27)-(2.28) will be assessed
by the mean of the near stationary condition (2.25) introduced in Theorem 2.2.7. This
condition will only be checked over the discretization of the linear acoustic part, meaning
that the convective part ∇ · H is neglected next to L. In the framework of IMEX
Runge-Kutta methods detailed later, this simplification makes it easier to compute the
modified PDE, which will furthermore be linear.

Definition 2.3.2 (Low Froude accuracy). Assume the bathymetry to be flat, and let ∆t
be the time increment independent of Froude. We call low Froude accurate any scheme
for (2.26) such that when neglecting ∇ ·H — or its numerical approximation in the fully
discrete case, the solutions of the corresponding linear modified PDE

∂U

∂t
+ L(U, z ≡ Cst) = R∆t(U)

satisfy the near stationary condition (2.25) with γ(t, ·) = id.

Remark 2.3.3. In Definition 2.3.2, R∆t denotes the linear differential operator related to
the error of discretization. When also discretizing in space, this term will also depend on
the mesh resolution δ. We will detail how to compute R∆t further down in the document,
first in the time semi-discrete case and then in the fully discrete case. We only require
the near stationary condition (2.25) to be satisfied for convective time steps, i.e. for
time steps that don’t depend on the Froude parameter. In particular this excludes small
acoustic times scales τa = O(Fr) that would otherwise be seen by the scheme. The reason
for this restriction is that a scheme could yield accurate results for convective time steps
but not for acoustic ones — such an example will be encountered in Section 2.4.5. This
not a big problem, as we aim at designing schemes that are asymptotically stable, and
plan to use large time steps anyway.

2.3.2 IMEX Runge-Kutta methods

Time integration shall be performed by the mean of IMEX Runge-Kutta methods. It is
usual to represent such methods thanks to double Butcher tableaux constituted from
the triple (A, b, c) for the implicit part, and (Ã, b̃, c̃) for the explicit part. For an s-
stages update, vectors c, c̃ ∈ Rs represent the fractional time steps used throughout the
successive internal updates respectively for the implicit and explicit parts. Matrices
A, Ã ∈ Rs×s store the weights for the internal updates, whereas b, b̃ ∈ Rs store the final
update weights. We introduce the vector e = (1, . . . , 1)T ∈ Rs which will be useful in the
next lines. A standard constraint on vectors c, c̃ is for them to satisfy c = Ae, c̃ = Ãe.

We restrict ourselves to diagonally implicit Runge-Kutta methods (DIRK) for efficiency
reasons. In the framework of IMEX-DIRK methods, matrix Ã is lower triangular with
zeros on the diagonal, and A is lower triangular, see Table 2.2. More concrete examples
of such IMEX-DIRK Butcher tables are given in Appendix 2.D. An s-stages update
associated to these generic IMEX-DIRK Butcher tableaux then reads:

U (j) − U0

∆t
+

j−1∑
k=1

ãjk∇ ·H(U (k), z) +

j∑
k=1

ajkL(U
(k), z) = 0, ∀1 ≤ j ≤ s (2.29)
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c̃1 0

c̃2 ã21 0
...

...
... . . .

c̃s ãs1 ãs2 · · · 0

b̃1 b̃2 · · · b̃s

c1 a11

c2 a21 a22
...

...
... . . .

cs as1 as2 · · · ass

b1 b2 · · · bs

Figure 2.2: Butcher tableaux for the explicit convection (left) and implicit acoustic waves
(right) involving s intermediate stages.

U1 − U0

∆t
+

s∑
j=1

b̃j∇ ·H(U (j), z) +

s∑
j=1

bjL(U
(j), z) = 0 (2.30)

An assumption we make is that none of the coefficients appearing in the Butcher tableaux
depend on the Froude number. Also note that in our case the coefficients from c, c̃
don’t appear since the equations are autonomous, and thus we will stop refering to these
quantities from now on.

We introduce the classification by refering to Boscarino [16][15][17] that will be usefull
throughout this document.

Definition 2.3.4 (RK classification). Let (A, b) be a diagonally implicit Runge-Kutta
method. We call it of type A if matrix A has all its diagonal coefficients nonzero
(∀1 ≤ i ≤ s, aii 6= 0), and of type CK if there is a vector a ∈ Rs−1 and a matrix
A′ ∈ R(s−1)×(s−1) with only nonzero diagonal entries such that

A =

(
0 0
a A′

)
.

Definition 2.3.5 (Stiff accuracy). Let (Ã, b̃;A, b) be a double IMEX-DIRK Butcher
table of s stages. We say it is globally stiffly accurate (GSA) if for all 1 ≤ i ≤ s we have
b̃i = ãs,i and bi = as,i, that is to say if in both explicit and implicit parts the weights of
the last partial update coincide with the weights of the final update. If this only holds true
for the implicit part, then we say that the method is implicitly stiffly accurate (ISA).

We will now investigate the properties of semi-discrete IMEX-DIRK schemes, which will
give us valuable information regarding their compliance with the low Froude accuracy
criterion, asymptotic consistency as well as L2 stability. In particular, the notion of stiff
accuracy will be helpful to prove the asymptotic consistency since it means that the final
update is exactly equal to the last stage. A more general situation would be to have
double Butcher tables allowing to write the final update U1 as a convex combination of
the partial updates (U (j))1≤j≤s.
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2.3.3 Modified PDE and asymptotic consistency

Rather than studying the IMEX-DIRK method in its discrete form, it will sometimes be
easier to work with the modified PDE. This is especially true for assessing the compliance
with the result of Theorem 2.2.4, for which we have to check the low Froude accuracy
criterion from Definition 2.3.2. We recall that the modified PDE associated to some
scheme describes its behavior with more accuracy than the original system that is being
approximated, at least when the refinement in time and in space is sufficiently small.
Neglecting the convection part (2.28) from the LAR splitting, we can make use of the
following result for a generic Butcher tableau, whose proof can be found in Appendix
2.A.

Proposition 2.3.6. Let p ∈ N∗ and let (A, b) be a Butcher tableau satisfying the equalities
bTAke = 1/(k + 1)! for all 0 ≤ k ≤ p− 1. When applied to the autonomous linear wave
equation (

∂

∂t
+ L

)
U = 0

the RK method associated to (A, b) admits the following p-th order modified equation(
∂

∂t
+ L

)
U = R∆tU , (2.31)

where R∆t is the differential operator defined by:

R∆t = ∆tpϕ(A, b; p)(−L)p+1, ϕ(A, b; p) =
(
bTApe− 1

(p+ 1)!

)
. (2.32)

Remark 2.3.7. In Proposition 2.3.6, hypothesis on the Butcher tableau coincide with
the order conditions in the case of an autonomous linear system. Also note that although
it only involves spatial derivatives, operator R∆t arises from the leading order consistency
error attributed to the time discretization.

As a direct consequence of Proposition 2.3.6, we get that any consistent IMEX-RK time
discretization of the LAR wave equation satisfies the low Froude accuracy property.
Indeed, the kernels of the spatial operators in Equation (2.31) verify E ⊂ kerL ⊂ kerR∆t,
even when the bathymetry is not flat. Hence if the initial data belongs to E , it is left
unchanged by (2.31).

Proposition 2.3.8. Any consistent IMEX-RK time semi-discretization of the LAR
splitting (2.27)–(2.28) is low Froude accurate.

To do the proof, we will work in Fourier coordinates, where it is easier to caracterize the
belonging to the set W of constant free surface and divergence-free discharge defined
in (2.11). In fact, for any function U ∈ (L2(T2))3 let us denote by Û its Fourier coefficients

∀k ∈ Z2, Û(k) =

ˆ
T2

U(x, y) exp(−2iπ(k1x+ k2y))dxdy .
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Performing integration by parts, we get the formulas

∇̂h(k) = 2iπkĥ(k) , ∇̂ ·Q(k) = 2iπk · Q̂(k) , (2.33)

leading to the following equivalence

U ∈ W ⇐⇒ Û ∈ Ŵ def
=
{
(ĥ, Q̂) : Z2 → C3, ∀k ∈ Z2 \ {0}, ĥ(k) = k · Q̂(k) = 0

}
.

(2.34)

Proof. (Proposition 2.3.8) Let U(t, ·) ∈ E be a solution of the modified PDE (2.31) with
flat bathymetry. It is sufficient to show that U is constant in time. We rewrite this
equation in Fourier space: (

∂

∂t
+ L̂(k)

)
Û = R̂∆t(k)Û . (2.35)

Making use of the relations (2.33) we find that L̂(k) = 2iπ(k1Lx + k2Ly), and R̂∆t(k)

is proportional to (−L̂(k))p+1. Supplementing (2.35) with some initial condition Û(t =
0, ·) = Û0, for any fixed value k ∈ Z2 we get a Cauchy problem admitting a unique
solution over positive times t ∈ R+. If we then take U(t = 0, ·) ∈ E = (L2(T2))3 ∩W,
using (2.34) we also have that Û0 ∈ Ŵ. Furthermore, it is straightforward to verify that
Ŵ = ker L̂ ⊂ ker R̂∆t, and hence the unique solution is constant in time equal to the
initial data. This holds for all k ∈ Z2, therefore U(t ≥ 0, ·) = U(t = 0, ·) ∈ E .

As a result, lack of low Froude accuracy cannot be imputed to IMEX-RK time integration,
but will rather come from the spatial discretization, which will be the focus of Section 2.4.

Next we give a condition over the Butcher table ensuring the invariance of the space
of well prepared data Wp introduced in (2.13).

Proposition 2.3.9. Let s denote the number of stages of the IMEX-DIRK method with
the implicit part of type A or of type CK, and assume there exist a vector ν ∈ Rs with
positive entries and such that

s∑
i=1

νi = 1, b = AT ν, b̃ = ÃT ν .

If additionally we admit that each partial update admits a decomposition in powers of
Froude, we get at least formally that Un ∈ Wp =⇒ Un+1 ∈ Wp.

Remark 2.3.10. We believe it is reasonable to assume existence of a decomposition in
powers of Froude at each stage since we know that any IMEX-DIRK semi-discrete scheme
is low Froude accurate, which means that the numerical approximation is kept close to
E. We will see in the next section that when discretizing in space too, not any scheme
will be low Froude accurate, in which case such a condition cannot be expected to be met.
Also note that in Proposition 2.3.9 the assumption on vectors b, b̃ encompasses globally
stiffly accurate methods (GSA) for which b and b̃ are given by the last row from A and Ã
respectively. In fact in this situation ν is the vector from Rs whose all entries are zero
except the last equal to one.
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Remark 2.3.11. If a11 6= 0, the first stage from the IMEX-DIRK method defines a
partial update U (1) that belongs to Wp even if at the start Un only satisfies ∇(hn0 +z) = 0.
In fact this can be seen in equalities (2.69) and (2.70) of the proof for j = 1.

This invariance result with respect to Wp enables us to get the asymptotic consistency,
again formally.

Proposition 2.3.12. The time semi-discrete scheme considered in Proposition 2.3.9 is
asymptotically consistent.

The proofs of Proposition 2.3.9 and Proposition 2.3.12 are in Appendix 2.B.

2.3.4 Asymptotic L2 stability

Generally speaking, stability refers to the ability of the scheme, when applied to some
well posed equation, to avoid blow ups or amplifications of small perturbation in the
approximated solution — typically caused by limited machine precision. Among the
different definitions attributed to stability, we chose here to look at the L2 stability, that is
to say the decrease of some L2-norm of the numerical approximation, potentially under a
condition on the Butcher tableau. A discrete analysis might not be straightforward, hence
we rather study the modified PDE. But even in this continuous setting stability is difficult
to assess, and one often substitute the reference modified PDE by a simpler version. In
our case, the difficulty arises not only from the fact the overall scheme is nonlinear due
to the convection part, but also because the method involves a wave splitting. In fact,
this renders difficult the computing of the modified PDE itself, since coupling conditions
of the double Butcher tableau have to be accounted for. In particular, these coupling
conditions become increasingly many as the order of the method and the number of
partial updates increase. For this reason we will rather consider the L2 stability of the
acoustic part alone with flat bathymetry and neglect the convection operator.

Let us define the acoustic energy

E =
1

2
‖h‖2L2(T2) +

1

2
‖Q/c‖2(L2(T2))2 , c =

√
−z/Fr (2.36)

and recall the quantity ϕ(A, b; p) = bTAe− 1/(p+ 1)! encountered in the definition of
the consistency error in time (2.32). Whenever the method under consideration has an
even order of accuracy, we can show that the associated modified PDE of same order
(i.e. the one encompassing the consistent part and main leading error term) keeps the
acoustic energy (2.36) constant. This is due to the presence of odd order derivatives in
the leading error term, which then cancels by integration by parts and by periodicity. In
fact, let (A, b) be a Butcher tableau with order of accuracy p = 2k. There holds

d
dt
E = (h, ∂th) +

1

c2
(Q, ∂tQ)

= −(h,∇ ·Q)− (Q,∇h) + ∆tpϕ(A, b; p)
(
(h, [(−L)p+1U ]h) +

1

c2
(Q, [(−L)p+1U ]Q)

)
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The notation [·]h/Q refers to the water height or discharge component depending on the
subscript. As anticipated, the first two scalar products cancel by integration by parts
and by periodicity. The same goes for the last two terms, since we have:

(h, [(−L)p+1U ]h) = −c2k(h,∆k∇ ·Q) = c2k(∆k∇h,Q) = − 1

c2
(Q, [(−L)p+1U ]Q)

Therefore in this setting the p-th order modified PDE exactly preserves the energy.
Because of that we will need to go further and account for the next leading order error
term which will either give dissipation or increase of energy depending upon its sign —
and ultimately depending on the Butcher table. First we derive the modified PDE of
order p+ 1 related to a p-th order scheme in the statement below, with the proof given
in Appendix 2.A.

Proposition 2.3.13. Consider a p-th order semi-discrete in time acoustic scheme with
Butcher tableau (A, b) satisfying hypothesis of Proposition 2.3.6. Then its (p + 1)-th
order modified PDE is given by:( ∂

∂t
+ L

)
U = (R∆t + R̃∆t)U (2.37)

where the operator R∆t was defined in Proposition 2.3.6, and where the new operator
R̃∆t is expressed below:

R̃∆t = ∆tp+1(−ϕ(A, b; p) + ϕ(A, b; p+ 1))(−L)p+2

Now we can give the L2 stability result:

Proposition 2.3.14. Let (A, b) be a Butcher tableau of order p applied to the acoustic
system with flat bathymetry. The (p + 1)-th order modified PDE associated with this
semi-discrete scheme dissipates the acoustic energy E provided one of the following two
points hold:

1. p is even and we have (−1)p/2(ϕ(A, b; p+ 1)− ϕ(A, b; p)) > 0;

2. p is odd and we have (−1)(p+1)/2ϕ(A, b; p) < 0;

The proof is featured in Appendix 2.B and is based on the fact that for all integer k, for
all U smooth solution of the modified PDE (2.31) we have:

L2k+1U = c2k∆k

(
∇ ·Q
c2∇h

)
, L2(k+1)U = c2(k+1)∆k

(
∆h,

∇(∇ ·Q)

)
. (2.38)

Remark 2.3.15. It is possible to have a Butcher table with an even order of accuracy p
such that ϕ(A, b; p+1) = ϕ(A, b; p). In this case the acoustic energy is exactly conserved
by the (p+ 1)-th order modified PDE, and we need to incorporate additional error terms
to tell whether the scheme dissipates or increases the energy. An example of such a
Butcher table is given by the Crank-Nicolson time integrator.
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Remark 2.3.16. Proposition 2.3.14 only gives part of the picture. In fact to assess the
L2 stability of a fully discretized scheme with certainty, one would also need to consider the
spatial consistency error terms. However we think that the result from Proposition 2.3.14
can be usefull in itself and we illustrate this through a simplified example. We replace the
modified equation by the following toy model:

∂tu+ v · ∇u = (E∆t + Eδ)∆u . (2.39)

In this scalar PDE, the right hand side embodies the error one would get from first
order time and spatial discretizations. Typically a situation that will be encountered later
correspond to the ratio Eδ/E∆t being equal to KδFr/∆t, with K independent of Froude.
It is well known that when the coefficient in factor of the Laplacian is positive, the
PDE (2.39) is diffusive, and is otherwise anti-diffusive. Hence stability is conditionned
to E∆t(1 +KδFr/∆t) being positive. If the time semi-discrete scheme is unconditionally
unstable (i.e. E∆t < 0) there are only two possible outcomes. Either Eδ < 0 and the
fully discretized scheme is unconditionally unstable, or Eδ > 0 ⇒ K < 0 and the scheme
is stable under the acoustic condition ∆t ≤ −KFrδ. On the other hand if the time
semi-discrete scheme is unconditionally stable (E∆t > 0), the fully discrete method is
unconditionally stable if Eδ > 0. If Eδ < 0, we have K < 0 and the scheme is stable
under the reverse CFL condition ∆t ≥ −KFrδ. The latter situation is not an issue as it
does not contravene the notion of asymptotic stability. Put in other words, under this
scenario Proposition 2.3.14 can be seen as a necessary condition for reaching asymptotical
L2 stability.

Name Type Order Stiff accuracy L2 stability
Forward Euler Explicit 1 Yes No
Heun Explicit 2 No No
Midpoint Explicit 2 No No
Backward Euler Implicit 1 Yes Yes
Crank-Nicolson Implicit 2 Yes Inconclusive
Implicit part of ARS-(2,2,2) Implicit 2 Yes Yes
Implicit part of JIN-(2,2,2) Implicit 2 No Yes

Table 2.1: Properties of the semi-discretization in time for the acoustic system for various
Butcher tables. Fourth column: stiff accuracy, see Definition 2.3.5. Last column: whether
the condition of Proposition 2.3.14 for L2 stability is satisfied or not. The mentionned
Butcher tables can be found in Appendix 2.D.

We check the condition of Proposition 2.3.14 for several Butcher tables, including explicit
ones, to see which methods can be expected to give rise to asymptotically L2 stable
discretizations of the acoustic system. The results are gathered in Table 2.1. We see
that among all of the semi-discrete explicit in time methods, none is L2 stable, which
is expected for first order methods. In fact it is known that first order explicit time
integrators lead to an antidiffusive leading error term.
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2.3.5 Well balanced property

The ability of a scheme to preserve the hydrostatic equilibrium h+ z = Cst and V = 0,
is called well balanced property. Thanks to the choice of wave splitting (2.27)-(2.28),
the well balanced property is automatically satisfied for any IMEX-DIRK method. The
proof will be analougous to that of [14] and is included in Appendix 2.B for the sake of
completeness.

Proposition 2.3.17. Let z ≤ 0 be the bathymetry profile lying in W 1,∞(T2). Suppose
that U0 verifies the lake at rest condition h0 + z ≡ K ∈ R, Q0 ≡ 0. Then the final update
U1 produced by the semi-discrete IMEX-DIRK method (Ã, b̃;A, b) is equal to U0.

2.4 Spatial discretization

2.4.1 Notations

We discretize the torus T2 with a uniform cartesian mesh C(T2). Every element of C(T2)
is a rectangular cell whose sizes in the horizontal and vertical directions are respectively
∆x and ∆y. These cells are indexed by a unique relative integer pair I = (i, j) ∈ Z2,
and we note CI or C(i,j) ∈ C(T2) the cell of center (xi, yj) with xi = (i + 1/2)∆x and
yj = (j + 1/2)∆y. The scheme is initialized by projecting the initial condition U0 and
bathymetry z onto the space of cellwise-constant functions making use of some projector
Q : X 7→

∑
I∈Z2 QI(X)1CI (·) with X a scalar or vector field defined on T2 and QI a

quadrature method applied to each component of X with given accuracy over CI . As a
rule of thumb, we denote the average of a given function over the cell C(i,j) by indexing
it with the pair (i, j) ∈ Z2. Hence after the initialization step, we are provided with
cellwise-constant data U0 = Q(U0) and z = Q(z) such that for all point (x, y) belonging
to CI , one has U0

I = U0(x, y) = QI(U
0) and similarly zI = z(x, y) = QI(z). Note that it

is important to use the same quadrature for h0 and z if we wish to correctly describe
lakes at rest at the discrete level, requiring us to have ∇(h0 + z) = 0 ⇒ (h0 + z)I = Cst.
For convenience, from now on we will denote the set of cellwise-constant scalar functions
valued in R by RC .

Knowing an approximation Un ∈ (RC)3 to the solution of Equation (PFr) at time
tn, we would like to find an approximation Un+1 ∈ (RC)3 for the next iteration time
tn+1 = tn +∆t. Hence we need a procedure to determine the values (Un+1

I )I∈Z2 taken
by the function Un+1 over each cell CI . The main discussion in the following lines aims
for a strategy enabling a suitable discretization of operators ∇ ·H and L encountered in
the LAR splitting. In particular, let us stress that the low Froude accuracy, asymptotic
preserving and well-balanced properties are highly desirable.

In this regard, we will highlight the usefulness of the low Froude accuracy criterion
for assessing whether a scheme is accurate or not at low Froude numbers. Especially, we
will compare it to the E-invariance condition proposed by Dellacherie in Theorem 2.2.6.
Interestingly, the latter allows to fix the inaccuracy of a first order upwind scheme but,
contrary to our low Froude accuracy criterion, doesn’t give the true orgin of the defect.
A well known correction consists in centering the discretization of the pressure — or at
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least its fast component in the case of a splitting, see [28][9][8] for example. Thus the
pressure is discretized at second order accuracy, which renders the associated spatial
error negligible with respect to the first order error in time. What is more, we have seen
in the previous section that the error in time is compatible with the near stationary
condition (2.25), and this gives an intuition as to why the modified schemes proposed in
the litterature are accurate at low Froude numbers.

Another point of improvement brought over by the low Froude accuracy criterion
is its ability to explain the good behavior of a second order scheme in time and space
with centered acoustic part. In fact we will see that the associated modified PDE doesn’t
satisfy the E-invariance, but that it is nearly stationary in the sense of (2.25).

Time discretization is achieved using IMEX-DIRK methods as studied in Section 2.3.
Finite volumes making use of approximate Riemann solvers are used to update the
convection step (2.28), whereas finite differences are involved in the propagation of
surface waves (2.27).

2.4.2 Stencils for the acoustic wave operator

We start by introducing the notion of stencil, which provides a practicle way to write
finite difference schemes. A stencil is a linear mapping S between the values stored in
the neighborhood of a cell and the new value to be assigned to this cell. Hence every
stencil S is characterized by wheights (ω[S]I)I∈Z2 such that for any f ∈ RC and for all
(x, y) in T2,

Sf(x, y) =
∑

(i,j)∈Z2

ω[S](i,j) · f(x+ i∆x, y + j∆y) . (2.40)

The weights do not depend on which cell the stencil is being applied to, and we will only
consider stencils with a finite number of nonzero weights. It should be noted that the
definition (2.40) can easily be generalized to functions that are not cellwise-constant. This
will be especially usefull to study the error of a stencil by interpolating and performing a
Taylor expansion. We now give a more concrete example by considering the following
translation operators of L(RT2

) used later as building blocks.

∀f ∈ RT2
,∀(x, y) ∈ T2,

 t±x f(x, y) = f(x±∆x/2, y)

t±y f(x, y) = f(x, y ±∆y/2)

From these we can define the averaging operators

µx =
1

2
(t+x + t−x ), µy =

1

2
(t+y + t−y )

as well as the discrete deriatives approximating ∂x and ∂y

∂x =
1

∆x
(t+x − t−x ), ∂y =

1

∆y
(t+y − t−y ) .

The composition of any two of the previous operators with same subscript (x or y) defines
a scalar stencil when restricted to the class of functions belonging to RC. For instance
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the stencils t±x ∂x and t±y ∂y are edge-centered partial derivatives, with:

∀(i, j) ∈ Z2, ∀f ∈ RC ,


t−x ∂xf(i,j) =

f(i,j) − f(i−1,j)

∆x
, t+x ∂xf(i,j) =

f(i+1,j) − f(i,j)
∆x

t−y ∂yf(i,j) =
f(i,j) − f(i,j−1)

∆y
, t+y ∂yf(i,j) =

f(i,j+1) − f(i,j)
∆y

The standard cell centered discrete derivatives are obtained from µx∂x and µy∂y. It is
then possible to define the centered second order discrete operator mimicking the action
of the continuous acoustic wave operator L on the space of cellwise-constant functions as

L?(U, z) =

µx∂x(hVx) + µy∂y(hVy)

c2µx∂x(h + z)
c2µy∂y(h + z)

 . (2.41)

Other choices of discretization for the acoustic wave operator L will be introduced
thereafter, but before that we would like to restate useful results regarding the modified
PDE of the fully discretized scheme and its ability to preserve incompressible states E .
Let L̃ be a discrete approximation of L accurate at order p. This means that there exists
a differential operator Rδ[L̃] = O(δp) representing the leading order consistency error in
space, and such that for every function U ∈ (Cp+1(T2))3 interpolating U ∈ (RC)3 at each
cell center we have

∀(i, j) ∈ Z2, L̃U(i,j) = (L+Rδ[L̃])U(xi, yj) +O(δp+1) . (2.42)

In practice Rδ[L̃] will be obtained by performing a Taylor expansion. For instance we
have Rδ[t

±
x ∂x] = ±(∆x/2)∂2xx and Rδ[t

±
y ∂y] = ±(∆y/2)∂2yy, whereas the centered versions

satisfy Rδ[µx∂x] = (∆x2/6)∂3xxx and Rδ[µy∂y] = (∆y2/6)∂3yyy. Hence the leading error
term for (2.41) is:

Rδ[L
?] =

∆x2

6
Lx∂

3
xxx +

∆y2

6
Ly∂

3
yyy .

It is important to know Rδ[L̃] as this differential operator will appear in the modified
PDE of the fully discretized scheme. Especially, when accounting for leading error terms
only, the modified PDE is obtained by summing R∆tU and −Rδ[L̃]. This is the statement
of the proposition below whose proof can be found in Appendix 2.A.

Proposition 2.4.1. Let (A, b) be a p-th order Butcher tableau satisfying hypothesis
from Proposition 2.3.6, and let L̃ be a p-th order discretization of L, i.e. such that
there exists a differential operator Rδ[L̃] satisfying (2.42). When applied to the acoustic
wave equation with flat bathymetry, the resulting scheme admits the following p-th order
modified equation: (

∂

∂t
+ L

)
U = (R∆t −Rδ[L̃])U (2.43)

where R∆t has been defined in (2.32).
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We recall from Definition 2.3.2 that the low Froude accuracy criterion is satisfied when
a scheme on the linear acoustic wave system admits a modified PDE whose solutions are
nearly stationary for purely convective time steps — i.e. time increments independent of
Froude. The near stationary condition (2.25) means that whenever the initial data is
in the incompressible set E , it remains unchanged up to O(Fr) perturbation terms. We
believe that a scheme for the LAR splitting cannot be asymptotically consistent if it is
not low Froude accurate. Regardless of the discretization of the convective part ∇ ·H,
we can assess whether the discrete operator L∗ leads to a low Froude accurate scheme or
not. Especially, we have the sufficient condition thereafter.

Proposition 2.4.2. Consider a scheme for the acoustic wave equation whose modified
equation is given by (2.43). For this modified PDE to admit stationary solutions over E,
it is sufficient to have E ⊂ kerRδ. In particular, such a scheme is low Froude accurate.

Proof. Since the space E is encompassed in the kernel of all three operators L,R∆t and
Rδ, we conclude by reusing the same arguments as for the proof of Proposition 2.3.8.

We now give the fully discrete analog of Proposition 2.3.17 regarding the well-
balancedness of the method.

Proposition 2.4.3. Let z ≤ 0 be the discretized bathymetry profile, and let U0 ∈ (RC)3

describe a cellwise-constant lake at rest, that is to say h0 + z ≡ K ∈ R, Q0 ≡ 0.
Consider an s stages consistent IMEX-DIRK method such that for all 1 ≤ j ≤ s the map
id +∆taj,jL

∗(·, z) is invertible over (RC)3. It amounts to ask for each stage to admit a
unique solution so that the overall scheme is well posed. Then final update U1 of the fully
discrete scheme is equal to U0 as soon as the two conditions are fulfilled:

1. the convective numerical fluxes are constant over cellwise-constant lakes at rest;

2. cellwise-constant lakes at rest are in the kernel of discrete operator L∗(·, z);

Proof. Once more the proof is by induction over the stages of the IMEX-DIRK method.
The initialization is obvious and we focus on the recurrence. Assume U (j) = U0 for all
0 ≤ j < k. By assumption on the convective numerical flux and on discrete operator L∗,
the k-th stage reads:

U(k) = U0 −∆tak,kL
∗(U(k), z)

Since U0 ∈ kerL∗(·, z), a solution is given by U(k) = U0 and by hypothesis it is the unique
one.

All the fully discrete schemes considered in the remainder of this document will satisfy
the two points from Proposition 2.4.3 and will thus be well balanced.

2.4.3 Inaccuracy of the standard upwind scheme

We begin by investigating the case of first order schemes. It is well known that a naive
upwind approach fails to yield accurate results at low Froude numbers, and we want
to specify the origin of failure. In Theorem 2.2.6, the suggested reason for this lack
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of accuracy is a loss of incompressibility. We will see that it is indeed the case when
considering an acoustic time scale, i.e. when both the time steps and the final time of the
simulation scale as Fr. However we are rather interested in convective times τc independent
of Froude, where it makes sense to use IMEX methods with large time increments. In this
setting, the approximation of solution U(τc, ·) is kept nearly incompressible, but it suffers
from an excessive diffusion over the discharge components. Besides, we will justify that
such upwind schemes are consistent with the more restrictive and undesirable constraint

lim
Fr→0

(∥∥∥∥∂Qx

∂x

∥∥∥∥
L2(T2)

+

∥∥∥∥∂Qy

∂y

∥∥∥∥
L2(T2)

)
(τc) = 0 ,

disregarding of the initial condition. This underlines the fact that the E-invariance is not
enough to get asymptotic consistency, and that we also need to have the near stationary
condition (2.25). However this more restrictive condition cannot hold if the discharge
derivatives vanish as Fr becomes small.

In this section, the updating of the discharge during the convection step will be dealt
with an HLL approximate Riemann solver with directionnal splitting, whose formula is
written below for UL, UR ∈ R+ × R2 and n ∈ S2.

HHLL
Q (UL, UR;n) =


λRHQ(UL;n)− λLHQ(UR;n) + λLλR(QR −QL)

λR − λL
if λLλR < 0

HQ(UL;n) if λL and λR positive

HQ(UR;n) if λL and λR negative
(2.44)

In (2.44), HQ is the discharge component of the convective flux (2.28) encountered in
the LAR splitting

HQ(U, z) = hV ⊗ V +
1

2Fr2
(h+ z)2 I2 ,

and λL (resp. λR) is the left-most (resp. the right-most) eigenvalue:

λL = min
{

SpR(DHQ(UL;n)) ∪ SpR(DHQ(UR;n))
}
,

λR = max
{

SpR(DHQ(UL;n)) ∪ SpR(DHQ(UR;n))
}
.

Let us recall that during the convective step we have ∂th = 0 and thus we don’t need
to evolve the water height. Hence the overall numerical flux in (h,Q) coordinates
is HHLL = (0,HHLL

Q ). Especially it is straightforward to see that the first point of
Proposition 2.4.3 regarding the well balancedness is satisfied, thanks to HQ being constant
over lakes at rest.

Next we focus on the discretization of the LAR surface gravity wave system by the
mean of stencils introduced previously. A first order spatial discretization is achieved
by introducing an upwinding giving rise to some numerical diffusion. Such a diffusion is
usually required to stabilize explicit methods, but might seem artificial in the framework
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of semi-implicit ones. Indeed in the latter case, when factoring Remark 2.3.16 in, we
expect a centered approach for the acoustic part to be stable without the need for acoustic
time steps. Let us stress that here, our motivation for considering diffusive terms is not
to improve the stability, but rather to illustrate how poorly low Froude numbers are
handled over convective times by a naive upwind approach. We will also compare this
scheme with its counterpart without additional diffusion — meaning a first order scheme
in time and space except for the acoustic part, approximated at second order.

Before introducing the first order discretization for the acoustic operator, we briefly
recall and comment on the acoustic wave system written in (ζ,Q)-coordinates, with
ζ = h+ z being the elevation of the free surface:

∂ζ

∂t
+∇ ·Q = 0

∂Q

∂t
+ c2∇ζ = 0

In the above, c =
√
−z/Fr can be seen as an approximation to the dimensionless speed of

sound
√
h/Fr, provided that −z is close to h or, equivalently, that ζ is close to zero. We

motivate the choice of the (ζ,Q) coordinates, also known as pre-balanced coordinates, by
remarking that adding a viscosity on the equation for the free surface doesn’t change
the steady state (0, 0, 0), whereas in (h,Q) coordinates an additionnal viscosity term on
the water height would in general modify it. In fact in the case of a lake at rest with
varying bathymetry, there is no reason for the second order derivatives of h to cancel,
unlike for ζ. This convenient choice of coordinates has already been used in [30] or [14]
for instance. Hence we consider the discretization of L with diffusive term below:

Lupwind(U, z) =

µx∂x(hVx) + µy∂y(hVy)

c2µx∂x(h + z)
c2µy∂y(h + z)

− c
2

[∆x (∂x)
2 +∆y (∂y)

2](h + z)
∆x (∂x)

2(hVx)

∆y (∂y)
2(hVy)


(2.45)

This discrete operator admits cellwise-constant lakes at rest in its kernel, which will allow
the overall scheme to preserve this class of steady states. Provided a flat bathymetry (c
constant over each cell), the second term in definition (2.45) is similar to the diffusion
one would get from the upwinding of a Rusanov scheme. Furthermore, the error of
consistency obtained with the choice (2.45) is directly related to this numerical diffusion,
and is given by:

Rδ[L
upwind]U = −c∆x

2

∂2

∂x2

 ζ
Qx

0

− c∆y

2

∂2

∂y2

 ζ
0
Qy


Now that the spatial discretization of the scheme has been specified, we will study

the modified PDE associated with its acoustic part for a first order Butcher table (A, b).
We first notice that the incompressible set E is not included in kerRδ[L

upwind]. In fact,
a divergence-free discharge doesn’t necessary have its second order derivatives ∂2xxQ
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nor ∂2yyQ equal to zero. We will justify later that a consequence of this will be an
incompatibility with the near stationary condition (2.25) at convective times. Let us
develop the modified PDE (2.43):

∂h

∂t
+∇ ·Q = c

[∆x
2

∂2

∂x2
+

∆y

2

∂2

∂y2
+ c∆tϕ(A, b; 1)∆

]
h

∂Q

∂t
+ c2∇h = c

[
diag

(∆x
2

∂2

∂x2
,
∆y

2

∂2

∂y2

)
+ c∆tϕ(A, b; 1)∇⊗∇

]
Q

. (2.46)

The scalar function ϕ was introduced in (2.32). The question is to know whether any
initial condition U0 belonging to E results in a solution remaining equal to U0 up to a
O(Fr) term. We recall that being incompressible in physical variables translates to having
the Fourier coefficients in the set Ŵ given in (2.34). For convenience, we fix k ∈ Z2

and introcuce the shorthand notation η(k) = 2iπk. For any solution U(t, ·) ∈ (L2(T2))3

of (2.46), its Fourier coefficient Û associated to k satisfies the ODE below.

∂

∂t

(
ĥ

Q̂

)
=

(
α(η) + β(η) + γ(η) · η ηT

c2η diag(α(η), β(η)) + γ(η)⊗ η

)(
ĥ

Q̂

)
(2.47)

The coefficients α, β are related to the error in space, while γ is related to the error in
time and depends on the Butcher tableau (A, b) as follows:

α(η) =
c∆x

2
η2x ≤ 0, β(η) =

c∆y

2
η2y ≤ 0, γ(η) = c2∆tϕ(A, b; 1)η ∈ iR2 . (2.48)

Due to the structure of the matrix encountered in (2.47), it is unfortunately difficult,
if possible at all, to compute the related solutions for gerneric values of k. Instead we
will simplify the problem by assuming that an incompressible initial condition leads to a
solution that belongs to E + O(Fr), meaning that it stays nearly incompressible. The
simplification is based on the observation that any smooth U belonging to E + O(Fr)
verifies:

∇ ·Q = O(Fr), c
[∆x

2

∂2

∂x2
+

∆y

2

∂2

∂y2
+ c∆tϕ(A, b; 1)∆

]
h = O(∆t/Fr),

c2∇h = O(1/Fr), c
[
diag

(∆x
2

∂2

∂x2
,
∆y

2

∂2

∂y2

)
+ c∆tϕ(A, b; 1)∇⊗∇

]
Q = O(δ,∆t)/Fr .

Hence we will neglect ∇ ·Q the only term scaling as Fr and substitute (2.46) by
∂h

∂t
= c

[∆x
2

∂2

∂x2
+

∆y

2

∂2

∂y2
+ c∆tϕ(A, b; 1)∆

]
h

∂Q

∂t
+ c2∇h = c

[
diag

(∆x
2

∂2

∂x2
,
∆y

2

∂2

∂y2

)
+ c∆tϕ(A, b; 1)∇⊗∇

]
Q

. (2.49)

We believe that if the solutions of the original modified PDE (2.46) remain nearly
incompressible, then they should be close to solutions of System (2.49) for Fr � 1. In
other words, either the modified PDE does not keep the solution close to E , or it inherits
the properties from (2.49) in the low Froude limit. We study the simplified equations
through the following result.
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Proposition 2.4.4. Let (A, b) be a first order Butcher table, and assume the resolutions
∆x,∆y as well as the time τ to be independent of Fr. Consider U ∈ (L2(T2))3 a solution
of System (2.49) with initial condition in E. If ∆t = O(Fr), then U(Fr × τ, ·) does not
converge in E as Fr → 0 and we recover the result from Dellacherie regarding the loss of
incompressibility at acoustic times (see Proposition 4.1 from [28]). If Fr−1∆t does not
vanish and as long as the CFL condition

c∆tϕ(A, b; 1) > −min
(∆x

2
,
∆y

2

)
(2.50)

holds, we have that U(τ, ·) admits a limit in E, and additionally

lim
Fr→0

(∥∥∥∥∂Qx

∂x

∥∥∥∥
L2(T2)

+

∥∥∥∥∂Qy

∂y

∥∥∥∥
L2(T2)

)
(τ) = 0 . (2.51)

Proof. (Proposition 2.4.4). If U ∈ (L2(T2))3 satisfies (2.49), then its Fourier coefficients
Û are solution of

∂

∂t

(
ĥ

Q̂

)
=

(
α(η) + β(η) + γ(η) · η 0

c2η diag(α(η), β(η)) + γ(η)⊗ η

)(
ĥ

Q̂

)
, (2.52)

Since the initial condition on ĥ is zero, we have ĥ(t, k) = 0 for all (t, k) ∈ R+×Z2. Hence
the discharge coefficient is determined by the ODE

∂

∂t
Q̂ = [diag(α(η), β(η)) + γ(η)⊗ η]Q̂ , (2.53)

combined to the initial condition Q̂(0, k) = Q̂0(k) with k · Q̂0(k) = 0.
First assume that Fr−1∆t does not vanish as Fr → 0 and that CFL condition (2.50)

holds. For k 6= 0 colinear to (1, 0)T (resp. colinear to (0, 1)T ), we see that Q̂x(τ, k) (resp.
Q̂y(τ, k)) decays exponentially to zero as Fr → 0. This is true because all the coefficients
of diag(α(η), β(η)) + γ(η)⊗ η are zero except the first diagonal term (resp. the second),
which converges to −∞ by assumption. Now consider the case where k has no zero
coefficient. By defining the quantities

r1 = c
(∆x

2
+ c∆tϕ(A, b; 1)

)
η21, r2 = c

(∆y
2

+ c∆tϕ(A, b; 1)
)
η22, s = c2∆tϕ(A, b; 1)η1η2

the eigenvalues of the matrix found in Equation (2.53) are given by

λ± =
1

2
(r1 + r2)±

1

2

√
(r1 − r2)2 + 4s2 .

The associated exponential of matrix can be expressed as

1

s(λ+ − λ−)

(
s s
p− p+

)(
exp(tλ−) 0

0 exp(tλ+)

)(
p+ −s
−p− s

)
, p± = λ± − r1 .

Using that η21, η22 < 0 and thanks to the CFL condition (2.50), we get r1, r2 < 0. It is
then possible to show that λ± < 0, by remarking that it is equivalent to ask

|r1 + r2| >
√
(r1 − r2)2 + 4s2 ⇐⇒ (r1 + r2)

2 > (r1 − r2)
2 + 4s2 ⇐⇒ r1r2 > s2 .
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The last inequality is always true under the assumption we made. Hence λ± → −∞
in the low Froude limit, and the exponential of matrix converges to the null matrix.
Gathering our findings we have shown that for any k ∈ Z2,

0 = lim
Fr→0

k1Q̂x(∆t, k) = lim
Fr→0

k2Q̂y(∆t, k)

and we recover (2.51) by using Parseval’s equality. Furthermore the fact that ĥ(τ, k) = 0
and k · Q̂(τ, k) → 0 for any k 6= 0 implies that U(τ, ·) converges in E .

Next we take ∆t = O(Fr) and choose for instance k = (2, 1)T . Let Q̂ be the solution
of (2.53) with initial condition k⊥. Noting K± = exp(Fr τλ±) and using the exponential
of matrix computed previously we get at time t = ∆t:

k · Q̂ =
1

s(λ+ − λ−)

(
2s+ p−

2s+ p+

)
·
(
−K−(p+ + 2s)
K+(p− + 2s)

)
=

K+ −K−

s(λ+ − λ−)
(2s+ p−)(2s+ p+)

By assumption, Fr τλ± remains bounded in the low Froude limit, and we can check that
K+ −K− doesn’t vanish. We also verify that the terms 2s + p± and s(λ+ − λ−) are
scaling as Fr−2 and Fr−4 respectively. Hence k · Q̂(∆t, k) doesn’t converge to zero as
Fr → 0, and U(Fr × τ, ·) doesn’t admit a limit in E .

Remark 2.4.5. In Proposition 2.4.4, the CFL condition (2.50) is always satisfied when
ϕ(A, b; 1) is strictly positive. Hence we recover the result anticipated in Remark 2.3.16.
Especially we see that when the sign of ϕ(A, b; 1) is strictly negative while having a
uniform time increment, one can have r1, r2 > 0 for Fr � 1 and we obtain positive
eigenvalues, implying a blow up of the Fourier coefficients.

Thanks to Proposition 2.4.4, we expect the approximation of the solutions at acoustic
times to have a non vanishing compressible part, whereas at convective times an un-
desirable constraint on the discharge derivatives is enforced no matter what the initial
condition is. Anyway, the resulting scheme will not be asymptotically consistent. We
will now support this statement through a numerical illustration. We approximate
System (2.47) by the mean of a Crank-Nicolson time integrator for values of k comprised
in J−12, 12K2 \ {(0, 0)} and for different values of Fr. Regarding the mesh resolution, we
set δ = 10−2. We choose z = −1 for the bathymetry, and the initial condition is given by
ĥ0(k) = 0 and Q̂0(k) = k⊥/|k|.

Figures 2.3 and 2.4 give the results obtained for an acoustic time step ∆ta = Frδ/4
and a forward Euler method (ϕ(A, b; 1) = −1/2). The plots are performed at time
t = ∆ta. Figure 2.3 aims at measuring how well the incompressible constraint is satisfied
as we reduce the value of Froude. Especially, for an asymptotically consistent scheme we
should observe the vanishing of the quantity |ĥ|+ |k · Q̂| as Fr → 0. This doesn’t seem
to be the case, as all of the plotted Fourier coefficients remain unaffected by the value
of Froude. The same can be said about the norm of Q̂, featured in Figure 2.4. This
coincides with the result of Proposition 2.4.4.

In Figures 2.5 and 2.6, we investigate the case of a convective time step ∆tc = δ/4
combined with a backward Euler method (ϕ(A, b; 1) = 1/2). Results are shown at time
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Figure 2.3: Constraint of incompressibility obtained from a solution of (2.47) at time
∆ta = Frδ/4. Dots correspond to different values of k ∈ Z2. Left to right: decreasing
values of Froude do not impact the constraint function |ĥ|+ |k · Q̂|.
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Figure 2.4: Norm of the discharge Fourier coefficients obtained from a solution of (2.47)
when the time step is acoustic. Values are unchanged when reducing the Froude number.
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Figure 2.5: Constraint of incompressibility obtained from a solution of (2.47) at time
∆tc = δ/4. The constraint function seems to vanish as Fr → 0.

t = ∆tc. In Figure 2.5, we witness a decrease of the constraint function towards zero
when Fr → 0. In physical variables, this signifies that the solution U(∆t, ·) converges
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Figure 2.6: Norm of the discharge Fourier coefficients obtained from a solution of (2.47)
when the time step is convective. Every mode is vanishing except along the main axes.

in E . The Figure 2.6 showcases the vanishing of the discharge Fourier coefficients when
k1k2 6= 0. In particular we can conjecture that

lim
Fr→0

k2Q̂y(k1 6= 0) = 0 , lim
Fr→0

k1Q̂x(k2 6= 0) = 0 .

But from the previous Figure 2.5, we also believe that k1Q̂x and −k2Q̂y share the same
limit. Therefore in the vanishing Froude limit we get that k1Q̂x(k1 6= 0) and k2Q̂y(k2 6= 0)
both go to zero. In other words Qx(x, y) = Qx(y) and Qy(x, y) = Qy(x) in the limit,
which coincides with the result of Proposition 2.4.4 for the simplified modified PDE (2.49).

Remark 2.4.6. In Figures 2.3 and 2.5, the constraint function is kept to zero over the
main axes k1k2 = 0 and over the secondary axes |k1| = |k2|. In fact when either one of
these equalities holds, we can take the scalar product between k and the last two equations
of (2.47) in order to obtain a linear system of two equations for the unknowns ĥ and
k · Q̂. Since these quantities are initially zero, the unique solution is also zero.

Now that we have a better understanding of how the solutions to the modified
PDE (2.46) behave, we will confront this with numerical simulations of the Saint-Venant
system using Lupwind with both small and large time steps. The testcase will be given by
the Gresho Vortex over a varying bathymetry, which is a steady state whose derivation
has been included in Appendix 2.C. The results are plotted in Figure 2.7 at time 1/2, with
the reference solution in the first row. The discharge components are more diffused by the
explicit scheme, but overall we get a similar behavior compatible with our expectations
regarding the vanishing of ∂xQx and ∂yQy.

2.4.4 Scheme without acoustic diffusion

The defect of the first order naive scheme involving Lupwind is coming from the diffusive
term found in the definition (2.45). In fact it is this term that shapes the leading order
spatial error Rδ[L

upwind] scaling as 1/Fr even when the data is well prepared. A simple
solution would then be to just remove it, and this will get us to consider the second order
centered operator L? defined in (2.41). In the setting of explicit time integrators this
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Figure 2.7: Top: initial condition. Second row: implicit scheme using large time steps.
Third row: explicit scheme using small time steps.

would cause stability issues as per Remark 2.3.16, but since we focus on implicit in time
methods for the acoustic part, this should not be a cause for concern. Thanks to this
choice, the leading order error term will come from the time discretization only, which we
keep at first order accuracy. This means that the first order modified PDE of the fully
discrete scheme is stationary over E , in particular the low Froude accuracy criterion is
satisfied.

We now investigate if a scheme using L? is asymptotically consistent when combined
with discretization (2.44) for the convection. This will of course depend on the choice
of Butcher tables, as it did in the time semi-discrete case. The next result states the
invariance of a discrete counterpart W?

p of the well prepared set Wp introduced in (2.13),
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that we define as

W?
p =

{∑
k∈N

Frk
(

hk
Vk

)
∈ (RC)3, h0 + z = ζref, ∇? · (hV)0 = O(δ), ∇?h1 = 0

}
. (2.54)

The convenient notation for the discrete nabla operator ∇? correspond to the second
order centered discretization

∇? =

(
µx∂x
µy∂y

)
. (2.55)

The choice (2.54) stems from the fact that the initial projection Q onto cellwise-constant
functions sends every smooth element of Wp into W?

p, meaning that we have the inclusion
Q(C1(T2) ∩Wp) ⊂ W?

p. Especially, a divergence-free constraint at the continuous level
cannot be discretized exactly, which is why we only ask to have ∇? · (hV)0 = O(δ). Since
the bathymetry profile is defined relatively to some reference, we choose to define it so
that ζref = 0.

Proposition 2.4.7 (Invariance of W?
p). Let (Ã, b̃;A, b) be a double Butcher tableau with

s stages, such the final update is a convex combination of the partial stages, and such
that the implicit part is either of type A or CK. Assume that when applied along with the
discrete operators (HHLL, L?) to initial data (h0,V0) ∈ W?

p, the resulting scheme yields
partial updates admitting a decomposition in powers of Froude. Then the final update
(h1,V1) is also in W?

p.

Proof. (Proposition 2.4.7) Similarly to the time semi-discrete case, it is sufficient to show
that each partial update (h(j),V(j))1≤j≤s belongs to W?

p. We proceed by induction.
Initialization. By hypothesis we have that U(0) := U0 ∈ W?

p. In the case where a1,1 = 0

we directly get that U(1) ∈ W?
p too since U(1) = U(0).

Recurrence. Let j ∈ {1, . . . , s} if a1,1 6= 0, j ∈ {2, . . . , s} otherwise. Assume that
U(k) ∈ W?

p for all k comprised between 0 and j − 1 included. For the sake of simplicity,
we replace the HLL flux HHLL

Q by a standard Rusanov flux with global upwinding
λmax = O(1) to ease the notations, but the arguments of the proof in the former case
remain the same. In this setting the j-th partial update for the discharge reads:

Q(j) − Q0

∆t
+

j−1∑
k=1

ãjk

(
∇? · (hV ⊗ V)(k) + 1

2Fr2
∇?(h(k) + z)2 − λmax

2

(
∆x∂

2
xQ(k)

x

∆y∂
2
yQ(k)

y

))

+

j∑
k=1

ajkc2∇?(h(k) + z) = 0

Assume expansion U(j) =
∑

k∈N FrkU(j)
k holds. Extracting the terms in Fr−2 leads to:

j−1∑
k=1

ãjk
2

∇?(h(k)0 + z)2 −
j∑

k=1

ajkz∇?(h(k)0 + z) = 0
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Every summed term cancel for k < j by assumption on the U(k)
0 . Using furthermore that

ajj 6= 0, we find ∇?(h(j)0 + z) = 0. Similarly terms in Fr−1 are isolated so that we find
∇?h(j)1 = 0. Next let N be such that the torus T2 is identified with ∪0≤i,j≤NC(i,j). In
particular this means that ∆x = ∆y, but what follows can be generalized to the case
∆x 6= ∆y. We extract the leading order terms from the mass update to get:

h(j)0 − h00
∆t

= −
j∑

k=1

ajk∇? · Q(k)
0 (2.56)

A difference with the continuous case is that although the cellwise-constant function
h(j)0 − h00 lies in the kernel of stencil ∇?, it doesn’t generally translate into h(j)0 − h00
being constant over the whole mesh. In fact this is wrong when N + 1 the number
of cells in one direction is even, due to the stencil ∇? being centered. To make up
for this we can sum (2.56) over the sets Jeven = {0 ≤ i, j ≤ N, i + j even} and
Jodd = {0 ≤ i, j ≤ N, i+ j odd}, over which h(j)0 − h00 is constant. The case where N +1
is odd is treated naturally by summing over all cells and we omit it. As the computations
are the same, we only detail the summation over Jodd:

(2.56) =⇒ |Jodd|
h(j)0 − h00

∆t
= −

j∑
k=1

ajk
∑

I∈Jodd

(∇? · Q(k)
0 )I

Since we are considering N + 1 even and by periodicity we find:

∀1 ≤ k ≤ j,
∑

I∈Jodd

(∇? · Q(k)
0 )I = 0

and as a consequence h(j)0 = h00 for every cell with index in Jodd. Since this holds true
also for Jeven, the equality h(j)0 = h00 is valid over the whole mesh. Using hypotheses
ajj 6= 0 as well as ∇? · Q(k) = O(δ) for all 1 ≤ k < j, it follows directly that

∇? · Q(j)
0 = − 1

ajj

j−1∑
k=1

ajk∇? · Q(k)
0 = O(δ) (2.57)

We have proved that (h(j),V(j)) belongs to W?
p, and so does the final update by convex

combination.

Remark 2.4.8. In practice, the decoupling between odd and even cells doesn’t lead to a
checkerboard pattern on the updated water height since in the proof we managed to get
the equality h(j)0 = h00, where h00 is taken equal to −z.

Proposition 2.4.7 is helpful to prove the asymptotic consistency of the considered scheme,
which is stated below.

Proposition 2.4.9. A fully discrete scheme satisfying hypotheses of Proposition 2.4.7
is asymptotically consistent with the limiting system (P0).
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Figure 2.8: First row: reference solution. Second row: results obtained for the backward
Euler method combined with operator L?.

Proof. We know from Proposition 2.4.7 that the final update Un+1 defines a cellwise-
constant function lying in W?

p. This implies the existence of some U ∈ W such that

lim
δ→0

∥∥∥U − lim
Fr→0

Un+1
∥∥∥
L2(T2)

= 0 .

The remainder of the proof focuses on the asymptotic consistency with respect to
the velocity equation from (P0). Consider the decomposition in powers of Froude
U(j) =

∑
k∈N FrkU(j)

k . When extracted from the j-th partial update of the discharge,
terms in Fr0 give

Q(j)
0 − Q0

0

∆t
+

j−1∑
k=1

ãjk

(
∇? · (hV ⊗ V)(k)0 − λmax

2

(
∆x∂

2
xQ(k)

0,x

∆y∂
2
yQ(k)

0,y

))
−

j∑
k=1

ajkz∇?h(k)2 = 0 ,

(2.58)

where we used that ∇?h(k)1 = 0. The update (2.58) is consistent at the continuous level
with

∂tQ0 +∇ · (hV ⊗ V )0 − z∇h2 = 0 ⇐⇒ ∂tV0 + (V0 · ∇)V0 +∇h2 = 0 .

The equivalence holds because we have h0 = −z and ∇ · (hV )0 = 0. Hence we recover
the desired equation on the velocity, and we conclude that the scheme is asymptotically
consistent.
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In practice, the use of operator L? combined to a first order double Butcher table offers
much improved results compared to Lupwind. In Figure 2.8, we performed a simulation
on the stationnary Gresho Vortex. The result is displayed at time 1/2, and we avoid the
1D diffusion that characterized the use of the upwind operator.

2.4.5 Second order approach

The case of second order schemes is now investigated. The goal is to compare several
discretizations of the surface waves operator in order to underline the effectiveness of the
near stationary condition (2.25) in predicting the behavior of second order methods. In
particular we will underline that the exact E-invariance is not mandatory to get accurate
results. We recall that the E-invariance, i.e. the ability of the modified PDE to keep
solutions incompressible assuming they are so initially, was at the core of Dellacherie’s
original criterion. Instead, the refined near stationary condition states that it is acceptable
for the solutions to deviate up to a O(Fr) term from an incompressible initial data. To
this end we will compare between three stencils:

• the standard second order centered stencil which is shown to satisfy the refined
criterion but not the exact E-invariance;

• a modified version of the previous stencil that is also second order accurate, and
satisfies both the refined criterion and the exact E-invariance;

• a fourth order centered stencil that satisfies both criteria when combined with a
second order time discretization;

The definition of these stencils will be specified latter, with the standard second order
operator L? already encountered in (2.41). We will see that the results between these
discretizations are quite comparable in terms of accuracy and efficiency at low Froude
numbers. In particular this means that the nearly stationary condition is able to explain
why the second order centered scheme yields good results, even though the latter is not
exactly E-invariant.

In all considered schemes a second order semi-implicit DIRK method is selected, and
the convection part is handled through the use of a MUSCL reconstruction, together
with a minmod limiter to avoid spurious oscillations from appearing near areas with
discontinuities. It is defined in the following way

U(i±1/2∓,j) = U(i,j) ±
∆x

2
minmod(µx∂xU(i,j), ∂

±
x U(i,j)) ,

U(i,j±1/2∓) = U(i,j) ±
∆y

2
minmod(µy∂yU(i,j), ∂

±
y U(i,j)) , (2.59)

minmod(a, b) = 1

2
(sgn(a) + sgn(b))min(|a|, |b|) .

This reconstruction step happens just before computing the numerical fluxes. The latter
will coincide with the null flux on the water height and HLL flux (2.44) on the discharge,
as in the previous section.
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We start by studying the second order scheme obtained by using the centered operator
L?. This stencil has already been studied in conjunction with a first order DIRK method
in Section 2.4.4, which allowed us to neglect the contribution of the spatial error in
the modified PDE. This time we are combining L? with a second order DIRK method,
which means we can no longer neglect the error in space anymore. We will see that
as a consequence, the modified PDE will not satisfy the E-invariance criterion from
Theorem 2.2.6. Despite this, the low Froude accuracy criterion will be satisfied, and it
will be corroborated by accurate numerical results.

Proposition 2.4.10. Let (A, b) be a second order accurate Butcher table. When associ-
ated to the discrete operator L?, the resulting scheme admits a modified PDE satisfying
the low Froude accuracy property, but which is not E-invariant.

Proof. (Proposition 2.4.10) Consider the modified PDE of the scheme, taking the form

(∂t + L)U = (R∆t −Rδ[L
?])U

where the detail of error operators is given thereafter

R∆t = −∆t2ϕ(A, b; 2)L3, Rδ =
∆x2

6
Lx∂

3
xxx +

∆y2

6
Ly∂

3
yyy .

Hence the Fourier coefficients of the solution satisfy

∀k ∈ Z2, ∂tÛ(t, k) = Â(k)Û(t, k), Â = i

 0 α(k) β(k)
c2α(k) 0 0
c2β(k) 0 0

 , (2.60)

with the real coefficients α, β defined as
α(k) = −2π(1 + 4π2c2∆t2ϕ(A, b; 2)|k|2)k1 −

∆x2

6
(2πk1)

3

β(k) = −2π(1 + 4π2c2∆t2ϕ(A, b; 2)|k|2)k2 −
∆y2

6
(2πk2)

3

. (2.61)

For convenience, we introduce the vector ϑ(k) = (α(k), β(k))T and diagonalize matrix
tA as below.

1

2|ϑ|2

(
0 −|ϑ| |ϑ|
ϑ⊥ cϑ cϑ

)0 0 0
0 −ic|ϑ|t 0
0 0 ic|ϑ|t

 0 2(ϑ⊥)T

−|ϑ| ϑT /c
|ϑ| ϑT /c


Computing the exponential of matrix, one finds the next expression

1

|ϑ|2

(
cos(c|ϑ|t)|ϑ|2 −i sin(c|ϑ|t)|ϑ|ϑT /c

−ic sin(c|ϑ|t)|ϑ|ϑ ϑ⊥ ⊗ ϑ⊥ + cos(c|ϑ|t)ϑ⊗ ϑ

)
.

Let ϑ̃ denote the unit vector ϑ/|ϑ|, the solutions of (2.60) can be expressed as ĥ(t, k) = cos(c|ϑ|t)ĥ0(k)− i
sin(c|ϑ|t)

c
ϑ̃ · Q̂0(k)

Q̂(t, k) = −ic sin(c|ϑ|t)ϑ̃ĥ0(k) + (Q̂0(k) · ϑ̃⊥)ϑ̃⊥ + cos(c|ϑ|t)(Q̂0(k) · ϑ̃)ϑ̃
. (2.62)
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We are now able to study the evolution of incompressible initial data characterized by

∀k 6= 0, ĥ0(k) = 0, k · Q̂0(k) = 0 .

Let us remark that from (2.61) and by definition of vector ϑ, the latter can be decomposed
as ϑ∆t + ϑδ with ϑ∆t the contribution of the consistent part and the error in time, and
with ϑδ the contribution of the error in space. What is important to note is that ϑ∆t(k)
is colinear to k, and that ϑδ(k) is neither colinear nor orthogonal to the wavenumber k.
A direct consequence of this and of expression (2.62) is that, for any time t > 0 we do
not have k · Q̂(t, k) = 0, and the modified PDE cannot be exactly E-invariant.

Now assume the resolution of the scheme is scale independent, meaning that ∆t,∆x,∆y
do not depend on Froude. From (2.61), using c2 = −z/Fr2 we see that

α(k) = −8π3c2∆t2ϕ(A, b; 2)|k|2k1 +O(1)

β(k) = −8π3c2∆t2ϕ(A, b; 2)|k|2k2 +O(1)
(2.63)

Hence there holds ϑ̃(k) = k/|k|+O(Fr2) and ϑ̃(k)⊥ = k⊥/|k⊥|+O(Fr2), and it ensues
from (2.62) that for any time t, for any wavenumber k ∈ Z2,

ĥ(t, k) = O(Fr2), Q̂(t, k) = Q̂0(k) +O(Fr2) .

Thus the near stationary condition (2.25) is verified for a scale independent resolution
which is precisely the definition of the low Froude accuracy criterion.

Remark 2.4.11. It is important to note that in the proof of Proposition 2.4.10, we
restricted to using time steps ∆t that are truly independent of Froude. On the contrary, if
the updates were advanced within an acoustic time-scale (∆t = O(Fr)), then we wouldn’t
have the near stationary condition (2.25) anymore since the contribution from the error
in time (2.63) would scale as c2∆t2 = O(1). As we plan on using this scheme with large
time steps afforded by the implicit time integration, this is not an issue.

2.4.6 Second order modified stencil for exact E-invariance

To better assess how well the second order scheme making use of L? behaves despite not
admitting an exactly E-invariant modified PDE, we will consider and compare it with
other discrete operators that are both low Froude accurate and E-invariant. Similarly
to what has been done in the first order case, a simple solution could be to discretize
L with an order of accuracy strictly greater than that of the time discretization. This
way, the error in space can be neglected in the modified PDE, and the solutions are
stationary when the initial data is in E . For instance we introduce the centered fourth
order discretization L] defined by

L] : (U, z) 7−→ (Lx∂
]
x + Ly∂

]
y)

(
h + z

Q

)
,


∂]x =

1

3
(2µ2x + id)µx∂x

∂]y =
1

3
(2µ2y + id)µy∂y

. (2.64)
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Regarding the implementation of this operator, it is worthy to note tha its stencil doesn’t
only include neighboring cells. When generalizing to limit conditions other than periodic

— such as Dirichlet, Neumann or based on Riemann invariants, one will have to use
two layers of ghost cells. Anyway, this is usually required when dealing with spatial
discretizations of order at least three. We illustrate the stencils of ∂]x, ∂]y in the below.

∂]x =
1

12∆x
× −1 −4 4 1 , ∂]y =

1

12∆y
×

−1

−4

4

1

.

Figure 2.9: Stencil discretizing the spatial derivatives intervening in definition of L].

An alternative idea for getting stationary solutions while remaining second order
accurate in space is to modify L? such that the kernel of the associated leading trun-
cation error contains all incompressible states. This way the sufficient condition from
Proposition 2.4.2 will be satisfied, and with this in mind we have the following result.

Proposition 2.4.12. Consider a scheme for the acoustic wave system obtained from
combining a second order Butcher table (A, b) with a discrete operator L?+R?, where the
centered discretization L? was introduced in (2.41), and where R? is a discrete operator
consistent with

∆y2

6
Lx∂

3
xyy +

∆x2

6
Ly∂

3
xxy .

Then such a scheme admits a modified PDE whose solutions in E are stationary.

Proof. When the bathymetry is flat, under the assumption of Proposition 2.4.12 the
leading error term associated to operator L? +R? is given by

∆x2

6
∂xx(Lx∂x + Ly∂y) +

∆y2

6
∂yy(Lx∂x + Ly∂y) =

(∆x2
6
∂xx +

∆y2

6
∂yy

)
L ,

whose kernel clearly contains kerL, and thus it contains the incompressible set E . Hence
an initial data from E remains constant in time.

Discrete operators satisfying Proposition 2.4.12 can only be obtained by approximating
third order crossed partial derivatives. This strategy has already been studied for instance
in [41][11], where it enables to go further by designing methods that are exactly constraint-
preserving at the discrete level with respect to the divergence-free condition. This means
that in the incompressible case without bathymetry, it could be possible to construct
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some update on the discrete velocity field V and to design some discrete divergence
operator ∇̃· such that

∇̃ · Vn = 0 =⇒ ∇̃ · Vn+1 = 0 . (2.65)

The preservation of such a discrete constraint involves a truly multidimensional mechanism,
and this gives an intuition as to why it is necessary to discretize crossed partial derivatives
in order to satisfy (2.65). However this goes beyond the scope of the present work, as
we believe that working at the level of the modified PDE is sufficient to ensure accurate
results at low Froude numbers. Among the good candidates for approximating L while
satisfying the condition of Proposition 2.4.12, we have operator L[ defined here:

L[ : (U, z) 7−→ (Lx∂
[
x + Ly∂

[
y)

(
h + z

Q

)
,


∂[x = µx∂x +

∆y2

6
(µx∂x)∂

2
y

∂[y = µy∂y +
∆x2

6
(µy∂y)∂

2
x

(2.66)

The stencils ∂[x, ∂[y admit the graphical representation in Figure 2.10.

∂[x =
1

2∆x
× −1 1 +

1

12∆y
×

1 −2 1

−1 2 −1

∂[y =
1

2∆y
×

−1

1

+
1

12∆x
×

−1

2

−1

1

−2

1

Figure 2.10: The stencils encountered in the definition of L[ discretize crossed partial
derivatives.

Proposition 2.4.13. Let (Ã, b̃;A, b) be a double Butcher table satisfying assumptions of
Proposition 2.4.7. We consider the numerical flux HHLL on the convective part combined
with MUSCL reconstruction. Regarding the choice of approximation for the acoustic part:

1. the use of L? leads to a scheme that leaves the set W?
p defined in (2.54) invariant;

2. the use of L] allows to preserve the set W]
p defined for ∇] = (∂]x, ∂

]
y)T as:

W]
p =

{∑
k∈N

Frk
(

hk
Vk

)
∈ (RC)3, h0 + z = ζref, ∇] · (hV)0 = O(δ), ∇]h1 = 0

}
;
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3. the use of L[ allows to preserve the set W[
p defined for ∇[ = (∂[x, ∂

[
y)

T as:

W[
p =

{∑
k∈N

Frk
(

hk
Vk

)
∈ (RC)3, h0 + z = ζref, ∇[ · (hV)0 = O(δ), ∇[h1 = 0

}
;

Any of the three aforementioned choices results in an asymptotically consistent scheme.

Proof. The proof of Proposition 2.4.13 follows the same lines to that of Proposition 2.4.7
and Proposition 2.4.9. This why we only focus on the one point that could potentially
cause an issue, which is the slow pressure term in factor of Fr−2 in the discharge update

1

2Fr2
∇?(h̃0 + z̃)2 .

The tildes signify the use of values reconstructed by the MUSCL approach (2.59). In
the case of a discrete lake at rest, the slopes involved in the reconstruction of the water
height are equal to minus that of the bathymetry. In other words we have h̃0+ z̃ = h0+ z,
and this term is treated exactly as in the previous propositions.
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Figure 2.11: Results obtained using the ARS-(2,2,2) Butcher table combined to various
acoustic operators. First row: centered second order L?, second row: modified second
order L[, third row: centered fourth order L].

We compare qualitatively the schemes obtained from using the ARS-(2,2,2) Butcher
table together with operators L?, L[ and L] in Figure 2.11. No real difference can be seen
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between the standard centered approach of second order and the two other discretizations.
It is a good point, since it means that no specific treatment is required to get accurate
results at low Froude numbers.

As a more rigorous approach, we should instead look at whether the order of con-
vergence deteriorates when the value of Fr decreases. We can see on the left cuves from
Figure 2.12 that the schemes using L?, L[ and L] are unaffected by smaller values of Fr.
Curves on the right give the efficiency. Idealy, we would like both the error and the CPU
time to be as small as possible. We see that discrete operators L[, L] produce better
results in this regard at Froude equal 1 and 10−2, although the error for L] increases
when going from 64 to 128 cells per direction. When Fr = 10−4, the standard scheme
using L? seems quite competitive. We also featured an explicit scheme to highlight that
it is less efficient because of the small time steps needed for stability. This scheme makes
use of the same LAR wave splitting, and time integration is performed via the Heun
method for both convection and acoustic steps. Note that this Butcher table is not of
type A nor CK, and thus we cannot apply the result of Proposition 2.4.13 related to the
asymptotic consistency.

2.5 Conclusion

In this work, we have revisited the issue of efficient and accurate schemes for the
bidimensional Saint-Venant system over non-flat bottoms in the low Froude regime. The
main contribution of our work is the study of the low Froude accuracy criterion for
predicting if a scheme is able to yield accurate results when the Froude number becomes
small. This criterion has been obtained by refining an existing condition proposed by
Dellacherie in [28]. The difference lies in the fact that instead of asking for incompressible
states to be left invariant by the modified PDE related to the discretization of the surface
waves, we rather need to make sure that solutions remain close to the initial data if this
latter is incompressible. This refined criterion was able to detect the origin of the loss
of accuracy encountered in first order upwind schemes. In fact such schemes keep the
numerical solutions close to an incompressible state, but not the good one. It seems
that a general solution to cure the loss of accuracy is to consider a spatial discretization
with an order of accuracy strictly greater than that of the time discretization, and was
validated numerically for the implicit-explicit Euler method. When restricting to scale
independent time steps, the low Froude accuracy also enables to justify the good behavior
of a second order IMEX-DIRK scheme with centered discretization of the acoustic part,
despite its modified PDE not being exactly E-invariant. To validate our approach, we
made several comparisons with modified schemes satisfying both the exact E-invariance
and the low Froude accuracy, and saw no real difference.

Aside from this, we have carried out an extensive study of the properties of IMEX-
DIRK schemes, first in a time semi-discrete framework and then in the fully discrete
case. Thanks to this, we know that any semi-discrete IMEX-DIRK scheme is low Froude
accurate and that it is the spatial approximation that can lead to inaccuracies when the
Froude number becomes small. Asymptotic consistency is obtained formally when the
Butcher table of the acoustic part is of type A or CK, and when the final update rewrites
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Figure 2.12: Convergence and efficiency curves for Fr = 1 (top row), Fr = 10−2 (center
row) and Fr = 10−4. Butcher table: ARS-(2,2,2).
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as a convex combination of the partial updates. The L2 stability of the surface waves
time semi-discretization is obtained for arbitrary large time steps under some condition
over the corresponding Butcher table, and as expected it seems that time integrators
satisfying this condition are implicit ones. All the proposed schemes are preserving the
hydrostatic equilibrium thanks to the choice of wave splitting already under use in [14].

There are several perspectives to this work. One of them would be to compare the
dispersion relation of the surface gravity waves equation with that of the modified PDE
of the scheme. This would allow to understand the behavior of the dispersion error in
the low Froude regime. We have applied the low Froude accuracy criterion to first and
second order methods, but we believe it can be generalized to arbitrary high orders.
Thus it would be interesting to validate our findings at higher orders. We think that
taking the Coriolis force into account should not cause any issue in the rotating lake
regime, i.e. when the Froude number is small and the Rossby number remains of order
unity. We also believe that discrete energy estimates can enable a rigorous justification
of the asymptotic consistency, in opposition to the formal approach usually found in the
literature and that we followed in this paper. A drawback that we did not mention so
far is that the proposed second order schemes are not suited to handle discontinuities
such as shocks, because they introduce spurious oscillations during the surface waves
step. A MOOD approach could potentially solve this problem. This method consists
to try to update the numerical solution with a high order scheme and, if oscillations
are detected, the update is restarted by the mean of a first order scheme that doesn’t
oscillate. The hope is that the low order updates only occur every once in awhile, so that
the experimental order of accuracy remains globally high. We refer to [29][53] for more
details on this strategy. Another issue with the proposed schemes is that they do not
warrant positivity of the water height. In practice this is not problematic when the water
depth is consequent over the whole domain, such as in coastal flows, but it becomes a
major hindrance when the handling of wet/dry transitions is relevant — as in littoral
flows. This issue is rooted in the LAR splitting itself, as the surface waves system can
lead to negative water heights at the continuous level. A solution could be to propose a
hybrid approach where an IMEX-RK discretization based on the LAR splitting is used
in areas where the water height is considered large, and a positivity preserving explicit
scheme with hydrostatic reconstruction is used everywhere else. The CFL condition
shouldn’t be impacted too badly if the explicit scheme is applied in areas where the
water depth is small enough, so that the speed of surface waves

√
h/Fr remains uniformly

bounded with respect to the Froude number. A possible choice for the explicit scheme is
the one studied by Duran [30], and is based on the (ζ,Q) coordinates.



Appendix

2.A Proofs related to modified PDEs

— Proof of Proposition 2.3.6 —

The proof follows the same lines as for deriving the order conditions, see for instance
Boscarino [17]. Let U be the solution of (2.31) with initial condition U(t = 0, ·) = U0(·),
and let U1 be the discrete solution at time ∆t obtained through the DIRK method
associated to (A, b). We need to show that the local truncation error U(∆t, ·)− U1(·) is
in O(∆tp+2). We remark that

U(∆t)− U1 = U(∆t)− (U0 −∆t LU(∆t)b) (2.67)

where U : (∆t, x, y) 7→ (U (1), . . . , U (s))(∆t, x, y) ∈ R3×s is the matrix-valued function
defined implicitly by the set of s linear PDEs corresponding to each one of the internal
updates (2.29):

U(∆t, x, y) = U0(x, y) eT −∆t LU(∆t, x, y)AT (2.68)

We perform a Taylor-Young expansion of U around ∆t = 0 at order p:

U(∆t) = U0eT +

p∑
k=1

∆tk

k!

∂kU

∂∆tk

∣∣∣∣
∆t=0

+O(∆tp+1)

Differentiating equation (2.68) k ≥ 1 times with respect to ∆t leads to the following
relation:

∂kU

∂∆tk
= −

(
k L

(
∂

∂∆t

)k−1

+∆t L

(
∂

∂∆t

)k)
U AT

Hence for ∆t = 0 we get that (∂∆t)
k U(0) = k! (−L)k U0eT (AT )k. The truncation error

(2.67) can then be expressed in terms of Taylor expansions for U as well as U :

U(∆t)− U1

=

[( p+1∑
k=0

∆tk

k!

∂kU

∂tk

)
− U0 +∆t L

p∑
k=0

(−∆tL)k UbTAke

]
t=0

+O(∆tp+2)

83
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= ∆t

[(
∂

∂t
+ L

)
U +

p+1∑
k=2

∆tk−1

k!

∂kU

∂tk
+ L

p∑
k=1

(−∆tL)k UbTAke

]
t=0

+O(∆tp+2)

= ∆t

[(
∂

∂t
+ L

)
U +

1

∆t

p∑
k=1

(
1

(k + 1)!
− bTAke

)
(−∆tL)k+1 U

]
t=0

+O(∆tp+2)

where we used that eT (AT )kb = bTAke by symmetry of the scalar product, and in order
to get to the last line we remark that equality ∆tk∂k

tk
U = (−∆t L)kU +O(∆tp+2) holds

for 2 ≤ k ≤ p + 1. Since terms between the brackets cancel out by hypothesis, this
concludes the proof.

— Proof of Proposition 2.3.13 —

Let U be solution of (2.37), and let U1 be the approximation of U(∆t, x, y) obtained
with the Butcher tableau (A, b). Taking the same steps as in the proof of proposition
2.3.6, we find that

U(∆t)− U1

= ∆t

[(
∂

∂t
+ L

)
U +

p+2∑
k=2

∆tk−1

k!

∂kU

∂tk
+ L

p+1∑
k=1

(−∆tL)k UbTAke

]
t=0

+O(∆tp+3)

From (2.37) we then remark that ∂kt U = (R∆t + R̃∆t − L)kU hence we have

k = 2 : ∆t2∂2t U = ∆t2(L2U − 2R∆tLU) +O(∆tp+3)

k ≥ 3 : ∆tk∂kt U = ∆tk(−L)kU +O(∆tp+3)

It follows that up to O(∆tp+3) terms, the difference U(∆t)−U1 is equal at time t = 0 to

∆t

[(
∂

∂t
+ L

)
U −∆tR∆tLU +

p+1∑
k=1

∆tk
( 1

(k + 1)!
− bTAke

)
(−L)k+1U

]
t=0

Using the assumption ϕ(A, b; k) = 0 for all 0 ≤ k ≤ p− 1 this quantity is equal to

∆t

[(
∂

∂t
+ L

)
U +∆tp+1ϕ(A, b; p)(−L)p+2U −

p+1∑
k=p

∆tkϕ(A, b; k)(−L)k+1U

]
t=0

Finally the terms between the brackets cancel by hypothesis on U .

— Proof of Proposition 2.4.1 —

The proof is mostly the same than that of 2.3.6, only substituting L with L∗ and
R∆t with R∆t − Rδ[L

∗]. Let U ∈ (Cp+1(R+ × T2))3 be a solution of (2.43) with initial
condition U(t = 0, ·) = U0(·). Let U0 ∈ (RC)3 be the discrete initial data interpolated by
U0 at every cell center, and denote U1 ∈ (RC)3 the update at time ∆t obtained through
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the DIRK method associated to (A, b) for the acoustic wave system. For every (i, j) ∈ Z2,
we get the following relation by taking the same steps as in the proof of 2.3.6:

U(∆t, xi, yj)− U1
(i,j)

=

p+1∑
k=0

∆tk

k!

∂kU

∂tk
(0, xi, yj)− U0(xi, yj)−

p∑
k=0

(−∆tL∗)k+1 U0
(i,j)b

TAke+O(∆tp+2)

Note that because ∂tU = −LU +O(δp), the first sum on the right hand side becomes[
U +∆t∂tU +

p+1∑
k=2

∆tk

k!
(−L)kU

]
(0, xi, yj) +O(∆t, δ)p+2

As for the second sum, since U(t = 0, ·) interpolates U0 at every cell center we have that
for all (i, j) ∈ Z2,

L∗U0
(i,j) =

∑
(k,l)∈supp(L∗)

ω[L∗](k,l) · U(0, xi+k, yj+l) = (L+Rδ[L
∗])U(0, xi, xj) +O(δp+1)

where the second equality holds thanks to L∗ being consistent with L + Rδ[L
∗] up to

order p+ 1, and by definition of the consistency error Rδ[L
∗]. By recurrence, we then

get (L∗)kU0
(i,j) = (L+Rδ[L

∗])kU(0, xi, yj) +O(δp+1) for all k ∈ N. Hence we obtain:

U(∆t, xi, yj)− U1
(i,j)

= ∆t(∂t + L+Rδ)U(0, xi, yj) +

p+1∑
k=2

∆tk

k!
(−L)kU(0, xi, yj)

−
p∑

k=1

(−∆t)k+1(L+Rδ)
k+1 U(0, xi, yj)b

TAke+O(∆tp+2)

=

[
∆t(∂t + L+Rδ) +

p∑
k=1

( 1

(k + 1)!
− bTAke

)
(−∆tL)k+1

]
U(0, xi, yj) +O(∆t, δ)p+2

= ∆t(∂t + L+Rδ[L
∗]−R∆t)U(0, xi, yj) +O(∆t, δ)p+2

= O(∆t, δ)p+2

2.B Proofs of the properties in the time semi-discrete set-
ting

This appendix gathers the proofs of the properties stated for time semi-discrete methods
using the IMEX-DIRK strategy.

— Proof of Proposition 2.3.9 —

Assumption on the weights b, b̃ implies that the final update is a linear combination
of the partial updates. Indeed in that case there holds Un+1 =

∑s
j=1 νjU

(j). Hence it
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is sufficient to show that each partial update U (0), . . . , U (s) belongs to Wp, where we
defined U (0) := Un for consistency. We proceed by induction and shall assume that each
U (j) admits an expansion in powers of Froude.
Initialization. By hypothesis we have that U (0) ∈ Wp. In the case where a1,1 = 0 we
directly get that U (1) ∈ Wp too since U (1) = U (0).
Recurrence. Let j ∈ {1, . . . , s} if a1,1 6= 0, j ∈ {2, . . . , s} otherwise. Assume that
U (k) ∈ Wp for all k comprised between 0 and j − 1 included. The j-th partial update for
the discharge reads:

Q(j) −Qn

∆t
+

j−1∑
k=1

ãjk

(
∇ · (hV ⊗ V )(k) +

1

2Fr2
∇(h(k) + z)2

)
+

j∑
k=1

ajk
−z
Fr2

∇(h(k) + z) = 0

Assume expansion U (j) =
∑

k∈N FrkU (j)
k holds. Extracting the terms in Fr−2 leads to:

j−1∑
k=1

ãjk
2

∇(h
(k)
0 + z)2 −

j∑
k=1

ajkz∇(h
(k)
0 + z) = 0 (2.69)

Every summed term cancel for k < j by assumption on the U (k)
0 . Using furthermore that

ajj 6= 0, we find ∇(h
(j)
0 + z) = 0. Similarly terms in Fr−1 are identified so that we find

∇h(j)1 = 0. Next we extract the leading order terms from the mass update and integrate
it over the domain Ω = T2:

h
(j)
0 − hn0
∆t

+

j∑
k=1

ajk∇ ·Q(k)
0 = 0 =⇒ |Ω|h

(j)
0 − hn0
∆t

+ ajj

ˆ
∂Ω
Q

(j)
0 · n|∂Ω dσ = 0 (2.70)

We have used that h(j)0 − hn0 is space-independent and ∇ ·Q(k)
0 = 0 for k < j. Because

we restrict to periodic boundary conditions, the integral cancel and we have h(j)0 = hn0 .
This exactly imply the divergence-free condition ∇ ·Q(j)

0 = 0. To conclude U (j) ∈ Wp
and thus Un+1 belongs to the same set.

— Proof of Proposition 2.3.12 —

Since Un+1(x, y;Fr) ∈ Wp by proposition 2.3.9, we have limFr→0 U
n+1 ∈ W. Thus it

only remains to show the asymptotic consistency with the velocity equation from (P0).
Again, we assume that for all j ∈ {1, . . . , s}, U (j) =

∑
k∈N FrkU (j)

k . Extracting terms in
Fr0 from the j-th partial update of the discharge we get:

Q
(j)
0 −Qn

0

∆t
+

j−1∑
k=1

ãjk

[
∇ · (hV ⊗ V )

(k)
0 +

1

2
∇(h

(k)
1 )2

]
−

j∑
k=1

ajkz∇h
(k)
2 = 0

In the above, the leading order velocities V (k)
0 are such that Q(k)

0 = h
(k)
0 V

(k)
0 for all 1 ≤

k ≤ j. Using then that h(k)0 = −z, ∇h(k)1 = 0 and that ∇(hV ⊗V )
(k)
0 = (h

(k)
0 V

(k)
0 ·∇)V

(k)
0
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due to the divergence-free condition on the leading order discharge, we finally get:

V
(j)
0 − V n

0

∆t
+

j−1∑
k=1

ãjk(V
(k)
0 · ∇)V

(k)
0 +

j∑
k=1

ajk∇h
(k)
2 = 0

Collecting all the updates 1 ≤ j ≤ s, this results in an IMEX-RK discretization of the
velocity equation in (P0), which is consistent as soon as

∑s
j=1 b̃j =

∑s
j=1 bj = 1.

— Proof of Proposition 2.3.14 —

Let (h,Q)T be a smooth solution of (2.31) on a flat bottom. The variations in time
of the acoustic energy (2.36) are given by

d
dt
E = (U, ∂tU) = (U, (R∆t + R̃∆t − L)U) (2.71)

Error terms R∆tU and R̃∆tU were respectively defined in propositions 2.31 and 2.37. As
already mentionned, we have (U,LU) = 0 by integration by parts and by periodicity.
Hence (2.71) simplifies to:

d
dt
E = (U,R∆tU + R̃∆tU)

Furthermore we know that one of the two errors R∆tU, R̃∆tU will cancel when taking
the scalar product against U . Which one depends on the parity of p, and we will treat
both cases separately. Assume for instance that we have p = 2k. Making use of the
corresponding identity (2.38), we compute (U,R∆tU) = 0, and thus there remains

d
dt
E = ∆tp+1(ϕ(A, b; p+ 1)− ϕ(A, b; p))

((
h, [(−L)2(k+1)U ]h

)
+
(
Q, [(−L)2(k+1)U ]Q

))
Meanwhile we have:

(h, [(−L/c)2(k+1)U ]h) = (h,∆k+1h) =

{
‖∆(k+1)/2h‖2 k odd
−‖∆k/2∇h‖2 k even

Similarly we get

(Q, [(−L/c)2(k+1)U ]Q) = −(∇ ·Q,∆k∇ ·Q) =

{
−‖∆k/2(∇ ·Q)‖2 k even
‖∆(k−1)/2∇(∇ ·Q)‖2 k odd

Hence for even values p = 2k the time derivative of E has same sign as (−1)k+1(ϕ(A, b; p+
1)− ϕ(A, b; p)), and the energy is dissipated if this quantity is negative. This is exactly
the assumption made in the first point of proposition 2.3.14. Next we assume that
p = 2k + 1. It follows from (2.38) that (U, R̃∆tU) = 0 and thus

d
dt
E = ∆tpϕ(A, b; p)

((
h, [(−L)2(k+1)U ]h

)
+
(
Q, [(−L)2(k+1)U ]Q

))
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In this case the time derivative of E has same sign as (−1)k+1ϕ(A, b; p), which concludes
the proof since k = (p− 1)/2.

— Proof of Proposition 2.3.17 —

We show by induction that each partial update U (j) for 0 ≤ j ≤ s is equal to U0.
Since lakes at rest belong to the kernel of both operators ∇ ·H and L, the final update
will then read U1 = U0 and the proof will be complete.
Initialization. Equality U (0) = U0 is true by definition.
Recurrence. Let k be such that U (j) = U0 for all 0 ≤ j < k. Partial update k then
reads:

U (k) = U0 −∆t
k−1∑
j=1

ãk,j∇ ·H(U (j), z)−∆t
k∑

j=1

ak,jL(U
(j), z)

=⇒ U (k) = U0 −∆tak,kL(U
(k), z) (2.72)

It is clear that U (k) = U0 is solution to the above equation. It remains to prove its unicity.
Let Ũ be another solution to (2.72), then by linearity of L the difference U := Ũ − U0

satisfies the PDE U = −ak,k∆tL(U, z), whose unique solution is identically equal to zero.
In fact there holds:{

h = −∆tak,k∇ ·Q

Q = ∆tak,k(z/Fr2)∇h
=⇒ h = −∇ · (z∇h) = λh

with λ = (∆tak,k/Fr)−2 > 0. Integrating this equality against h over T2 we get by
integration by parts:

0 ≤ λ‖h‖2L2(T2) = −
ˆ
T2

h∇ · (z∇h)dx =

ˆ
T2

z|∇h|2 dx ≤ 0

The last inequality holds because z is taken negative. We conclude that necessarily
Ũ = U0 and the unique solution to the IMEX-DIRK k-th partial update is the lake at
rest U0.

2.C Derivation of the stationary vortex test-case
We restrict ourselves to steady states of the shallow water system with Coriolis source,
thus verifying: { ∇ · (hV ) = 0

(V · ∇)V +
1

RoV
⊥ +

1

Fr2
∇(h+ z) = 0

(2.73)

The case without the Coriolis term is obtained by taking the limit of the Rossby number
Ro towards +∞. We rewrite this system under polar coordinates r, θ associated with
the basis (er, eθ) where er = (cos θ, sin θ)T and eθ = (− sin θ, cos θ)T . Let Φ−1 : (r, θ) 7→
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(r cos θ, r sin θ) a bijective map. For conciseness, if f is a function of the cartesian variables,
we denote by f̂ the function f ◦ Φ in polar coordinates. It is then possible to establish
the following relations:

∂rf̂(r, θ) = ∂r(f ◦ Φ−1)(r, θ) = ∂xf∂rΦ
−1
x + ∂yf∂rΦ

−1
y = cos θ∂xf + sin θ∂yf (2.74)

∂θf̂(r, θ) = ∂θ(f ◦ Φ−1)(r, θ) = ∂xf∂θΦ
−1
x + ∂yf∂θΦ

−1
y = −r sin θ∂xf + r cos θ∂yf

(2.75)

Reciprocally we find:

∂xf = cos θ∂rf̂ − sin θ
r
∂θf̂

∂yf = sin θ∂rf̂ +
cos θ
r

∂θf̂

 =⇒ ∇f = er∂rf̂ +
eθ
r
∂θf̂ (2.76)

Next we decompose the velocity vector alongside the vector of the polar basis (er, eθ) by
denoting ur and uθ its coordinates:

V̂ = urer + uθeθ

Hence we have:

∂xVx = cos θ[cos θ∂rur − sin θ∂ruθ]−
sin θ
r

[cos θ∂θur − sin θur − sin θ∂θuθ − cos θuθ]

∂yVy = sin θ[sin θ∂rur + cos θ∂ruθ] +
cos θ
r

[sin θ∂θur + cos θur + cos θ∂θuθ − sinθ uθ]

As a result, the divergence of the discharge becomes:

∇ · (hV ) = ∂r(ĥur) +
ĥur
r

+
∂θĥuθ
r

=
∂r(rĥur)

r
+
∂θĥuθ
r

and the divergence-free condition reads:

∂r(rĥur) + ∂θ(ĥuθ) = 0 (2.77)

Next, we develop the nonlinear Burgers convection term. From (2.74) and (2.75) we
directly get:

(urer · ∇)V = ur∂rV̂ = urer∂rur + ureθ∂ruθ

(uθeθ · ∇)V =
uθ
r
∂θV̂ =

uθ
r
[er∂θur + eθur + eθ∂θuθ − eruθ]

In the last line we made use of ∂θer = eθ and ∂θeθ = −er. Regrouping the terms we get:

(V · ∇)V =
[
ur∂rur +

uθ
r
(−uθ + ∂θur)

]
er +

[
ur∂ruθ +

uθ
r
(ur + ∂θuθ)

]
eθ (2.78)

The Coriolis force is expressed as:

1

RoV
⊥ =

1

Ro(ureθ − uθer) (2.79)
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Collecting (2.76), (2.78) and (2.79), we decompose alongsied the basis vectors er and eθ:

ur∂rur −
u2θ
r

+
uθ
r
∂θur −

uθ
Ro +

1

Fr2
∂r(ĥ+ ẑ) = 0

ur∂ruθ +
uruθ
r

+
uθ
r
∂θuθ +

ur
Ro +

1

Fr2
∂θ(ĥ+ ẑ)

r
= 0

To conclude, the steady state solutions verify the following system in polar coordinates:
∂r(rĥur) + ∂θ(ĥuθ) = 0

ur∂rur −
u2
θ
r + uθ

r ∂θur −
uθ
Ro + 1

Fr2∂r(ĥ+ ẑ) = 0

ur∂ruθ +
uruθ
r + uθ

r ∂θuθ +
ur
Ro + 1

Fr2
∂θ(ĥ+ẑ)

r = 0

(2.80)

We consider the following axisymmetric solution of (2.80):

ur = ∂θuθ = ∂θĥ = ∂θẑ = 0 (2.81)

The bathymetry is:

ẑ(r) = exp(1/(r2 − 1/9))1r<1/3 − 5/2

We define the tangential velocity field as a C2 piecewise polynomial:

uθ(r) =

{
56 × r3(2/5− r)3 if 0 ≤ r ≤ 2/5
0 otherwise

Well prepared data obtained with ĥ = ĥ0 + Fr2ĥ2 with ĥ0 = −ẑ and ĥ2 defined below:

ĥ2(r) =

ˆ r

0

uθ(s)

Ro ds+
ˆ r

0

uθ(s)
2

s
ds if 0 ≤ r ≤ 2/5, ĥ2(2/5) if r > 2/5

with:
ˆ r

0

uθ(s)

Ro ds = 56

Ro

3∑
j=0

(
3

j

)(
2

5

)3−j (−r)4+j

4 + j

ˆ r

0

uθ(s)
2

s
ds = 512

6∑
j=0

(
6

j

)(
2

5

)6−j (−r)6+j

6 + j

2.D Butcher tables
We give some Butcher tables that have been investigated in the document.

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1

Figure 2.D.1: Left: forward Euler. Right: backward Euler.
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0 0 0
1 1 0

1/2 1/2

−1 −1 0
2 1 1

1/2 1/2

Figure 2.D.2: Left: Heun. Overall IMEX scheme: JIN(2,2,2).

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

Figure 2.D.3: ARS(2,2,2) obtained for the choice γ = 1−
√
2/2 and δ = 1− 1/(2γ).

0 0 0
1/2 1/2 0

0 1

Figure 2.D.4: Explicit midpoint method.

0 0 0
1 1/2 1/2

1/2 1/2

Figure 2.D.5: Crank-Nicolson.
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3.1 Introduction

This chapter mainly deals with the one dimensional Saint-Venant equations in presence
of a bathymetry with spatial variations, and gives a perspective towards the two di-
mensional case. The Saint-Venant system constitutes one of the simplest yet accurate
nonlinear model for studying free surface flows with a small water height compared to
the characteristic horizontal length, usually the domain width or the wavelength of the
water waves. The smallness of the depth compared to the horizontal scale allows to
neglect the non hydrostatic part of the pressure as a first order approximation. One
can think of flows with a thin layer of water such as rivers, lakes or coastal flows which
all enter this framework. As a vertically averaged model, the dimension is reduced by
one which simplifies the study of the model and greatly diminishes the computational
cost of numerical methods. Especially, the geometry of the fluid domain is naturally
accounted for, and we don’t need to keep track of the free surface, whose description is
self-contained in the variables of the model.

Despite being a simplified model, the Saint-Venant system has several important
properties that can be challenging to recover at the discrete level. It is a hyperbolic
system of conservation laws with the possibility of shock and rarefaction waves developing
in the solution, even if the initial data is smooth. The water height has to remain positive
at all times, and a still free surface together with a null velocity constitutes a stationary
equilibria called hydrostatic equilibrium or lake at rest. Other non stationary equilibria
exist and they all follow Bernoulli’s principle, but the hydrostatic equilibrium is probably
the most important one since a numerical scheme preserving it usually guarantees better
results even when the flow is not quite a lake at rest. Finally, we have to mention
the entropy inequality satisfied by the energy of the system. A discrete counterpart
to this inequality is desirable as it grants stability properties and enables to prove the
convergence towards an entropy solution, see Bouchut and Lhebrard [19].

Recently kinetic solvers have been investigated [4][5][18][20][23][37][58], and they offer
a favorable framework to satisfy the previous properties at the discrete level. In [10], the
authors proposed an explicit kinetic scheme combined to the hydrostatic reconstruction
strategy introduced in [6]. This method was shown to be positive, well balanced, and to
verify a fully discrete entropy inequality with a positive error term which, unfortunately,
is not always dominated by the dissipation arising from the upwinding of the numerical
fluxes. As a consequence, in some cases the aforementioned scheme may increase the
total energy in violation of the entropy inequality. A more general issue common to
explicit finite volume schemes is that a CFL condition is required for stability. This
condition can be quite restrictive when the time scale is consequent, or in presence of
large wave velocities such as in the low Froude regime.

In light of these limitations, the goal of the present work is to explore an implicit
kinetic approach leading to a fully discrete entropy inequality, what is more without any
restriction on the time step. We also want to assess the interest and usability of such an
implicit approach, in the sense that we get rid of the CFL condition in exchange of a
greater algorithmic complexity. Furthermore, taking very large time steps is not always
a wise choice as it can make the resolution inaccurate, so this also has to be taken into
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account. In practice the update of our fully implicit scheme involves integrals without
analytical expressions, and we have to simplify it by either giving up on the discrete
entropy inequality, or by approximating it with an iterative strategy requiring once again
a CFL condition for the sake of convergence.

The document is organized as follows. In Section 2, we recall the properties of the
Saint-Venant system and the formalism of kinetic representations. In Section 3, we focus
on the case of a flat bathymetry where we propose a fully implicit scheme admitting a
discrete entropy inequality with no restriction on the time step. A simplified version of
this scheme can be written explicitly at the macroscopic level. We detail its expression,
how to implement it efficiently and perform numerical tests. In Section 4, we approximate
the implicit scheme by an iterative approach and study the properties of the method.
We also extend it to the case with varying bathymetry by the mean of the hydrostatic
reconstruction, and validate it with numerical simulations. Finally, in Section 5 we give
some perspectives towards the two dimensional case.

This project started in the context of the master internship of Antonin Leprevost. It
was continued in this thesis in collaboration with Chourouk El Hassanieh and Jacques
Sainte-Marie. In a way, the present work complements the LAR wave splitting approach
proposed in the previous chapter, as it introduces an alternative strategy alleviating the
lack of positivity and discrete entropy inequality.

3.2 Preliminaries about the Saint-Venant system

3.2.1 Properties of the model

In one spatial dimension, the Saint-Venant system reads
∂h

∂t
+

∂

∂x
(hu) = 0

∂

∂t
(hu) +

∂

∂x

(
hu2 +

g

2
h2
)
= −gh∂z

∂x

, (3.1)

with h(t, x) ≥ 0 the water height, u(t, x) the horizontal velocity averaged on the vertical
and z(x) the bottom profile fixed in time. This set of equations admits the partialy
conservative form

∂tU + ∂xF (U) = S(U, z) , U =

(
h
hu

)
, (3.2)

where F (U) = (hu, hu2 + gh2/2)T is the flux and S(U, z) = (0,−gh∂xz)T the source
term. The eigenvalues associated to the flux jacobian are λ±(U) = u±

√
gh and imply

the hyperbolicity of the model. We consider solutions U belonging to some convex set

U ⊂ R+ × R ,

and satisfying the entropy inequality

∂tE(U) + ∂xG(U) ≤ 0
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given by the energy E of the system and its flux G defined as

E(U) =
hu2

2
+
gh2

2
+ ghz, G(U) =

(
E(U) +

gh2

2

)
u . (3.3)

3.2.2 Kinetic representations

First introduced by Maxwell and Boltzmann, the kinetic theory aims at studying large
systems of particles — such as those constitutive of gases and plasmas. The idea is
to describe the state of a system by the mean of a distribution of particles f(t, x, ξ) in
the phase space related to the position x and the velocity ξ. Macroscopic quantities of
interest such as the density or the momentum are recovered through integrals of the
distribution function over all possible velocities. In our case the integral of f , called first
moment, will yield a water height, whereas its integral against ξ, called second moment,
defines a discharge. The kinetic equation ruling the evolution of the distribution function
is given for all real ξ by

∂f

∂t
(t, x, ξ) + ξ

∂f

∂x
(t, x, ξ) =

1

ε
Q[f ](t, x, ξ) . (3.4)

In the left hand side of Equation (3.4) we recognize a linear transport of particles
characterized by velocity ξ. Conceptually, when two particles enter in collision they
bounce and their velocities change. This mechanism is embedded on the right hand
side through the frequency 1/ε and the collision operator Q satisfying the mass and
momentum conservation constraints

ˆ
R
Q[f ](t, x, ξ)dξ =

ˆ
R
ξQ[f ](t, x, ξ)dξ = 0 for a.e. (t, x) . (3.5)

These constraints signify that overall, when accounting for all velocities the total mass
and momentum of the system is unchanged by the collisions. There exist several choices
compatible with (3.5), one of which is the Boltzmann operator resolving collisions by the
mean of hard spheres mechanic (elastic collisions). However, as we don’t need a very fine
description of the collision process, we will make use of the simpler model introduced by
Bhatnagar, Gross and Krook in [13].

The kinetic approach conveys a mesoscopic point of view, sitting between the micro-
scopic level of individual particle dynamics and macroscopic laws. Great care was given
to link these different descriptions, and it constitutes an active field of research to this day.
Passing from microscopic to mesoscopic scale is achieved by taking the limit towards an
infinite number of particles [32]. By doing so we get a continuum description of matter,
yet the mean free path remains nonzero (ε > 0). On the other hand, transitioning from
the kinetic level to the macroscopic level is achieved by taking the limit ε→ 0, meaning
that particles are permanently colliding, and formally [62][36] solutions f from (3.4) reach
an equilibrium M(Uf , ξ) provided the kernel of operator Q satisfies the equivalence

Q[f ] ≡ 0 ⇐⇒ f(ξ) =M(Uf , ξ), Uf =

ˆ
R

(
1
ξ

)
f(ξ)dξ .
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The distribution M is called maxwellian or Gibbs equilibrium, and in the hydrodynamical
limit ε→ 0 Equation (3.4) becomes formally

∂M

∂t
+ ξ

∂M

∂x
= µ(t, x, ξ) ,

with the measure µ satisfying the same conservation constraints (3.5) as Q[f ]. For more
details on this approach, we refer to the article [55] from Perthame. In order to link
the hydrodynamic limit to the Saint-Venant equations (3.1), we need to choose the
maxwellian so as to have the moment relations

∀U ∈ U ,
ˆ
R

(
1
ξ

)
M(U, ξ)dξ = U,

ˆ
R
ξ

(
1
ξ

)
M(U, ξ)dξ = F (U) . (3.6)

Note that although a generic distribution f(t, x, ξ) allows to define a macroscopic state
Uf , its integral against ξ2 doesn’t necessarily coincide with the second component of
F (Uf ). A family of maxwellians satisfying (3.6) is given in the following lemma.

Lemma 3.2.1. (Perthame and Simeoni [58]) Let χ : R → R+ be an even shape function
such that

∀ω ∈ R, χ(ω) = χ(−ω) ≥ 0,

ˆ
R
χ(ω)dω =

ˆ
R
ω2χ(ω)dω = 1 .

Then a maxwellian M satisfying the moment relations (3.6) is obtained by setting for all
U ∈ U and ξ ∈ R

M(U, ξ) =
h

c
χ
(ξ − u

c

)
, c =

√
gh

2
.

Proof. One computes the integrals using the change of variable ω = (ξ − u)/c. The odd
nature of the shape function is used to compute the second and third moments.
ˆ
R
M(U, ξ)dξ = h

c

ˆ
R
χ(ω) cdω = h ,

ˆ
R
ξM(U, ξ)dξ = h

c

ˆ
R
(u+ cω)χ(ω) cdω = hu

ˆ
R
χ(ω)dω = hu ,

ˆ
R
ξ2M(U, ξ)dξ = h

c

ˆ
R
(u+ cω)2χ(ω) cdω = hu2 + h

ˆ
R
c2ω2χ(ω)dω = hu2 +

g

2
h2 .

We relate the kinetic description with the Saint-Venant system through the

Lemma 3.2.2. U is a weak solution of (3.1) if and only if M(U,·) satisfies the moment
relations (3.6) together with the kinetic representation

∀ξ ∈ R, ∂tM + ξ∂xM − g(∂xz)∂ξM = µ(t, x, ξ) , (3.7)

where µ is subject to the conservation constraints (3.5).
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The proof can be found in [10], and the last term on the left hand side allows to recover
the source term by integration by parts. For numerical purposes, it will be more useful
to replace (3.7) by the kinetic relaxation

∂tf + ξ∂xf − g(∂xz)∂ξf =
1

ε
(M(Uf , ξ)− f) . (3.8)

The right hand side of (3.8) corresponds to the BGK collision operator, which is the
simplest one can think of. Yet, since the first two moments of M(Uf , ξ) coincide with
the ones from f , this collision operator satisfies conservation constraints (3.5) and thus
leads to an hydrodynamic equilibrium compatible with the Saint-Venant system. We also
remind the notion of kinetic entropy, which is useful to rewrite the entropy inequality (1.3)
at the kinetic level.

Definition 3.2.3. A kinetic entropy associated to the hydrodynamic equilibrium M is a
function H : R+ × R → R convex with respect to its first variable and satisfying for any
admissible U ∈ U

ˆ
R
H(M(U, ξ), ξ)dξ = η(U) , (E1)

and for any density f(ξ)
ˆ
R
H(M(Uf , ξ), ξ)dξ ≤

ˆ
R
f(ξ)dξ . (E2)

A kinetic entropy can be seen as a distribution of energy E at the kinetic level. A general
framework to construct BGK models based on kinetic entropies was proposed by Bouchut
in [20]. It stems from the fact that when there is no source term (in our case assume
a flat bathymetry ∂xz = 0), entropy inequality (1.3) is recovered at the limit ε→ 0 by
multiplying (3.8) with ∂1H(f(t, x, ξ), ξ). In fact doing so we get

∂tH(f, ξ) + ξ∂xH(f, ξ) =
1

ε
∂1H(f, ξ)(M(Uf , ξ)− f) .

Using the convexity of H, the right hand side has to satisfy

1

ε
∂1H(f, ξ)(M(Uf , ξ)− f) ≤ 1

ε
(H(M(Uf , ξ), ξ)−H(f, ξ)) .

We then integrate the resulting inequality, and using (E2) the upper bound obtained on
the right hand side becomes zero

∂t

ˆ
R
H(f, ξ)dξ + ∂x

ˆ
R
ξH(f, ξ)dξ ≤ 1

ε

ˆ
R
(H(M(Uf , ξ), ξ)−H(f, ξ))dξ = 0 .

Finally, in the limit ε→ 0 the distribution f converges to M(Uf , ξ) and we recover the
entropy inequality (1.3) by using (E1) and by defining the entropy flux G as the integral
of H(M(Uf , ξ), ξ) against ξ.
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In the case of a single known entropy, a BGK model can be designed by first choosing
a convex kinetic entropy, and then taking the maxwellian as the distribution minimizing
the functional from (E2) under the constraints formed by the moment relations (3.6).
Equality (E1) is then seen as a definition of the entropy. For the one-dimensional
Saint-Venant system a commonly used kinetic entropy [58][10] is given by

H(f, ξ) =
ξ2

2
f +

g2π2

6
f3 + gzf , (3.9)

whose terms from left to right correspond to the distribution kinetic energy, transverse
translational energy and potential energy. As remarked by Perthame and Simeoni [58],
the cubic contribution is a one-dimensional feature that is not required anymore in the
two-dimensional case. They also proved that the maxwellian satifying the constrained
minimization problem (E2) associated to kinetic entropy (3.9) is the half-disk maxwellian

χ(ω) =
1

π

√(
1− ω2

4

)
+

=⇒ M(U, ξ) =
1

gπ

√
(2gh− (ξ − u)2)+ . (3.10)

Other maxwellians can be considered, but to our knowledge they lack a kinetic entropy.
Such alternatives are for instance

χ(ω) =
1

2
√
3
1|ω|≤

√
3 , χ(ω) =

( 3

20
√
5
ω2 +

3

4
√
5

)
1|ω|≤

√
5 .

3.3 Kinetic schemes without source term

In this section we assume the bathymetry profile to be flat, so that no source term is
present. Especially the evolution of quantities of interest only involves conservative flux
variations. Since z is defined up to a constant, we can choose it so that z ≡ 0 and in this
setting the kinetic entropy (3.9) will simplify to

H(f, ξ) =
ξ2

2
f +

g2π2

6
f3 . (3.11)

3.3.1 Reminder on the explicit approach

We recall results about the explicit kinetic scheme that has been extensively studied by
Audusse et. al in [10], first in its time semi-discrete form, and then in the fully discrete
case. As usual ∆t denotes the time step. Given some initial data U0 ∈ U , we wish to
compute U1 an approximation of the solution of the Saint-Venant system (3.1) at time
∆t. To this end, the kinetic relaxation (3.8) is of great use, as it allows to replace a
nonlinear system of two equations by a scalar equation with a linear transport that is
easy to treat. However the presence of the BGK collision term Q[f ], which carries a
nonlinear and integral dependence on the distribution f , is not straightforward to handle.
Instead, we can perform a BGK splitting to treat the collision and transport terms in an
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alternating way. Let us first focus on the collision step, which writes as
∂tf =

1

ε
(M(Uf , ξ)− f(t, x, ξ))

f(0, x, ξ) = f0(x, ξ) with
ˆ
R

(
1
ξ

)
f0(x, ξ)dξ = U0(x)

. (3.12)

When integrating Equation (3.12) against (1, ξ)T , the right hand side cancels and we find
that the macroscopic quantity Uf is independent of time. So is M(Uf , ξ) = M(U0, ξ),
and the unique solution of (3.12) is

f(t, x, ξ) =M(U0(x), ξ) + exp(−t/ε)(f0(x, ξ)−M(U0(x), ξ)) .

Regardless of the initial condition, we get a dampening towards the equilibrium at
exponential rate in the hydrodynamic limit ε→ 0. Especially there holds

∀t > 0 , lim
ε→0

f(t, x, ξ) =M(U0(x), ξ) . (3.13)

A way of seeing the limit (3.13) is that all collisions are performed at once, and the
equilibrium is reached instantaneously. Therefore the collision step is just a projection
onto the space of maxwellians, and will serve as a starting point for the transport phase.
The latter is simply solved via the method of characteristics{

∂tf + ξ∂xf = 0

f(0, x, ξ) =M(U0(x), ξ)
=⇒ f(t, x, ξ) =M(U0(x− tξ), ξ) . (3.14)

Hence the update defining the time semi-discrete scheme and approximating the solution
U at time ∆t is

U(∆t, x) ≈ U1(x) =

ˆ
R

(
1
ξ

)
M(U0(x−∆tξ), ξ)dξ . (3.15)

However a continuous representation in space is impractical, and in general we
cannot compute integral (3.15) analytically. Instead we have to discretize in space too,
and we approximate the transport equation over a uniform mesh constituted by cells
Ci = (xi−1/2, xi+1/2) with center points xi = i∆x and interfaces xi+1/2 = (i + 1/2)∆x
for i ∈ Z. We assume the initial data U0 to be cellwise constant, and denote by U0

i its
value in cell Ci. In this simplified setting, the solution of the transport equation (3.14)
at time ∆t is expressed as

f(∆t, x, ξ) =
∑
i∈Z

M(U0
i , ξ)1Ci(x−∆tξ) . (3.16)

To ensure that information doesn’t travel more than one cell, we enforce the CFL condition
σ|ξ| ≤ 1 with σ = ∆t/∆x, under which the sum in (3.16) only contains two terms. Note
that when the maxwellian has compact support and when (h0i )i∈Z and (u0i )i∈Z are in
`∞(Z;R), we only need to consider velocities ξ in the domain Ξ = ∪i∈Z suppM(U0

i , ·)
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which is bounded. Denoting M0
i =M(U0

i , ξ) and f1−i the average of f(∆t, ·, ξ) over the
cell Ci, we deduce the following relations from (3.16){

f1−i (ξ > 0) = (1− σξ)M0
i + σξM0

i−1

f1−i (ξ < 0) = (1 + σξ)M0
i − σξM0

i+1

. (3.17)

This can be recasted as the first order upwind scheme

f1−i −M0
i

∆t
+

ξ

∆x

(
1ξ<0(M

0
i+1 −M0

i ) + 1ξ>0(M
0
i −M0

i−1)
)
= 0 , (3.18)

and we define the macroscopic approximation at time ∆t by

U1
i =

ˆ
R

(
1
ξ

)
f1−i (ξ)dξ . (3.19)

Equivalently, by integrating (3.18) against (1, ξ)T we can relate (U1
i )i to (U0

i )i by the
finite volume scheme

U1
i − U0

i

∆t
+

1

∆x
(F (U0

i , U
0
i+1)− F (U0

i−1, U
0
i )) = 0 . (3.20)

The macroscopic numerical flux F (UL, UR) can be written as F−(UR) + F+(UL) where

F−(UR) =

ˆ
R−

ξ

(
1
ξ

)
M(UR, ξ)dξ , F+(UL) =

ˆ
R+

ξ

(
1
ξ

)
M(UL, ξ)dξ . (3.21)

This numerical flux can be computed explicitly with the half-disk maxwellian (3.10). It
enters the framework of flux-vector splitting methods [18] since it is decomposed in a
part carrying information coming from the left, and another part carrying information
coming from the right. This upwinding is a way to account for the underlying structure
of the solutions of Riemann problems from the kinetic level. The Roe scheme is a famous
example but other exist, see for instance [49]. The interest of the kinetic approach is
that it enables to prove several desirable properties, namely the positivity and discrete
entropy inequality. This was shown in [10], and we recall the results and their proof in
the below.
Proposition 3.3.1. Let ξ ∈ R. Under the CFL condition σ|ξ| ≤ 1, the explicit kinetic
scheme (3.18) satisfies the maximum principle given for any i ∈ Z by

min
j∈{−1,0,1}

M0
i+j(ξ) ≤ f1−i (ξ) ≤ max

j∈{−1,0,1}
M0

i+j(ξ) . (3.22)

Especially the positivity of the distribution function is preserved, that is to say

∀i ∈ Z, M0
i ≥ 0 =⇒ ∀i ∈ Z, f1−i ≥ 0 .

Proof. Let i ∈ Z and fix the velocity ξ ∈ R. We consider the explicit kinetic scheme (3.18)
written under the form

f1−i (ξ) = (1− σ|ξ|)M0
i (ξ) + σ|ξ|

(
1ξ<0M

0
i+1(ξ) + 1ξ>0M

0
i−1(ξ)

)
.

Assuming the CFL condition σ|ξ| ≤ 1 holds, we see that the approximated distribution
f1−i (ξ) is a convex combination of (M0

i+j(ξ))−1≤j≤1, and thus we get (3.22). The positivity
of f1−i (ξ) is a trivial consequence.
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The result of Proposition 3.3.1 is then used to recover the positivity of the updated water
height h1i under a CFL condition accounting for all the velocities encountered in the
mesh. To be more specific, we denote by ξmax the greatest kinetic velocity supported in
the mesh at initial time, that is to say

ξmax = sup
i∈Z, ξ∈R

{
|ξ|, M(U0

i , ξ) 6= 0
}
= sup

i∈Z

(
|u0i |+

√
2gh0i

)
. (3.23)

For any i ∈ Z we have that supp f1−i (·) ⊂ (−ξmax, ξmax) as a consequence of (3.17). Then
if the CFL condition σξmax ≤ 1 holds we can apply the maximum principle (3.22) under
the integral so that

h1i =

ˆ ξmax

−ξmax

f1−i (ξ)dξ ≥
ˆ ξmax

−ξmax

(
min

j∈{−1,0,1}
M0

i+j(ξ)
)

dξ .

This lower bound is positive since we have M0
i ≥ 0.

Remark 3.3.2. The maximum principle (3.22) means that at the kinetic level, the
explicit kinetic scheme (3.18) is L∞-stable, in the sense that

∀ξ ∈ R , sup
i∈Z

|f1−i (ξ)| ≤ sup
i∈Z

|M0
i (ξ)| .

Note that despite having a maximum principle at the kinetic level, it is not true at the
macroscopic level anymore. This is to be expected since the continuous Saint-Venant
system doesn’t satisfy such principle. Rather, we want to check whether a discrete
entropy inequality is verified. This is achieved using the kinetic entropy, and we have the
following statement.

Proposition 3.3.3. (Audusse et al. [10]) Under the CFL condition σ|ξ| ≤ 1, the explicit
kinetic scheme (3.18) satisfies a fully discrete entropy inequality of the form

H(f1−i , ξ) ≤ H(M0
i , ξ)− σξ(H0

i+1/2 −H0
i−1/2) , (3.24)

with the interfacial kinetic entropy H0
i+1/2 defined by upwinding with respect to ξ

H0
i+1/2 = 1ξ<0H(M0

i+1, ξ) + 1ξ>0H(M0
i , ξ) .

Proof (Proposition 3.3.3). The CFL restriction on the time step allows to write f1−i as
a convex combination of the (M0

i+j)−1≤j≤1. Using the convexity of H we then get

H(f1−i , ξ) = (3.25){
H((1− σξ)M0

i + σξM0
i−1, ξ) ≤ (1− σξ)H(M0

i , ξ) + σξH(M0
i−1, ξ) (ξ > 0)

H((1 + σξ)M0
i − σξM0

i+1, ξ) ≤ (1 + σξ)H(M0
i , ξ)− σξH(M0

i+1, ξ) (ξ < 0)

Inequalities (3.25) depending on the sign of ξ can be combined in one

H(f1−i , ξ) ≤

H(M0
i , ξ)− σξ

(
1ξ<0(H(M0

i+1, ξ)−H(M0
i , ξ)) + 1ξ>0(H(M0

i , ξ)−H(M0
i−1, ξ))

)
,

which is exactly (3.24).
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Corollary 3.3.4. Under the CFL condition σξmax ≤ 1 with ξmax defined in (3.23), the
macroscopic explicit kinetic scheme (3.20) satisfies the discrete entropy inequality

E(U1
i ) ≤ E(U0

i )− σ

(ˆ
R
ξ H0

i+1/2(ξ)dξ −
ˆ
R
ξ H0

i−1/2(ξ)dξ
)
.

where E is the energy defined in (3.3) with z ≡ 0.

Proof. As a direct consequence of relations (E1) and (E2) we have

E(U1
i ) =

ˆ
R
H(M(U1

i , ξ), ξ)dξ ≤
ˆ
R
H(f1−i , ξ)dξ .

Since the kinetic entropy H(f1−i , ξ) cancels outside of (−ξmax, ξmax), the CFL condition
σξmax ≤ 1 allows to apply the result from Proposition 3.3.3 under the integral and
conclude.

3.3.2 Benefits of the implicit approach

The goal is now to compare the explicit kinetic scheme (3.20) with its implicit version.
We will see that the latter will achieve similar stability properties in terms of water height
positivity and discrete entropy dissipation, albeit unconditionally with respect to the
time step which is an improvement. The implicit update reads

f1−i −M0
i

∆t
+

ξ

∆x

(
1ξ<0(f

1−
i+1 − f1−i ) + 1ξ>0(f

1−
i − f1−i−1)

)
= 0 . (3.26)

This time, the fluxes are approximated at time ∆t and will not coincide with maxwellian
distributions in general. Over a mesh of N cells, we can rewrite this scheme as

−σξ1ξ>0f
1−
i−1 + (1 + σ|ξ|)f1−i + σξ1ξ<0f

1−
i+1 =M0

i ∀2 ≤ i ≤ N − 1

(1 + σ|ξ|)f1−1 + σξ1ξ<0f
1−
2 =M0

1 + σξ1ξ>0M
1
0

−σξ1ξ>0f
1−
N−1 + (1 + σ|ξ|)f1−N =M0

N − σξ1ξ<0M
1
N+1

, (3.27)

which will be useful to write the matrix of the system. The last two lines of system (3.27)
use the quantities M1

0 and M1
N+1 defined at time ∆t over ghost cells, and their purpose is

to enforce the boundary conditions. For now on, we will assume that these maxwellians
are known, and we will detail their treatment later in the document. We rewrite
the scheme (3.27) under vector form, and to this end we introduce the vectors from
RN corresponding respectively to the maxwellians M0 at initial time, the unknown
distributions f1− at time ∆t and the ghost cells contributions B1

M0 =


M0

1

M0
2

...
M0

N

 ∈ RN , f1− =


f1−1
f1−2

...
f1−N

 ∈ RN , B1 =


ξM1

01ξ>0

0
...
0

−ξM1
N+11ξ<0

 ∈ RN .

(3.28)
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Then (3.27) is equivalent to

(I + σL)f1− =M0 + σB1 , (3.29)

with I the identity matrix from RN×Nand

L =


|ξ| ξ1ξ<0 0 · · ·

−ξ1ξ>0 |ξ| ξ1ξ<0

. . . . . . . . .
−ξ1ξ>0 |ξ| ξ1ξ<0

· · · 0 −ξ1ξ>0 |ξ|

 ∈ RN×N .

The mass matrix I + σL has important properties which will enable the implicit
scheme (3.29) to comply with the desired stability properties.

Lemma 3.3.5. For any value of ξ ∈ R and without any restriction on the time step, the
mass matrix I + σL satisfies the following properties

1. it is invertible;

2. it is a monotone matrix (M-matrix), that is to say its inverse (I + σL)−1 has only
positive coefficients;

3. its inverse satisfies ‖(I+σL)−1‖∞,∞ ≤ 1 with ‖·‖∞,∞ the subordinate matrix norm
associated to the vector norm ‖·‖∞;

Proof. The mass matrix I + σL is strictly diagonally dominant and thus is invertible.
To prove the second point we consider a vector X = (x1, . . . , xN )T ∈ RN such that
Y := (I + σL)X ≥ 0 component wise. It is sufficient to show that X has all its entries
positive. Denoting k the index of the smallest component of X we have

0 ≤
N∑
j=1

(I + σL)k,j xj = (1 + σ|ξ|)xk − σ|ξ|xk±1 =⇒ xk ≥ σ|ξ|(xk±1 − xk) ≥ 0 .

The third point amounts to show that every coefficient of the inverse matrix is less
than one in absolute value. We postpone the proof, which becomes clear when detailing
the expression of the inverse, see Equation (3.33).

As a consequence of Lemma 3.3.5 we have the

Proposition 3.3.6. The system (3.29) is consistent with the continuous problem (3.14),
admits a unique solution, and thus defines an implicit kinetic scheme. Furthermore, the
solution satisfies f1− ≥ 0.

Proof. The consistency of the update comes from standard Taylor expansions and do
not cause any difficulty. The existence and uniqueness of the solution is due to the
invertibility of the mass matrix, so that the scheme is well defined. The positivity of
the solution comes from the fact that (I + σL) is an M-matrix and the right hand side
M0 + σB1 has positive components.
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Proposition 3.3.7. Assuming a flat bathymetry, the numerical scheme (3.26) involving
the half-disk maxwellian (3.10) satisfies the fully discrete entropy equality

H(f1−i , ξ) = H(M0
i , ξ)− σξ(H1−

i+1/2 −H1−
i−1/2) +Di , (3.30)

with H the kinetic entropy presented in (3.11), H1−
i±1/2 the interfacial kinetic entropy

defined by upwinding

H1−
i+1/2 = 1ξ<0H(f1−i+1, ξ) + 1ξ>0H(f1−i , ξ) ,

H1−
i−1/2 = 1ξ<0H(f1−i , ξ) + 1ξ>0H(f1−i−1, ξ) ,

and where Di is a non positive term given by

Di = σξ
g2π2

6

(
1ξ<0(2f

1−
i + f1−i+1)(f

1−
i+1 − f1−i )2 − 1ξ>0(2f

1−
i + f1−i−1)(f

1−
i−1 − f1−i )2

)
− g2π2

6
(2f1−i +M0

i )(M
0
i − f1−i )2 .

The proof makes use of the following lemma.

Lemma 3.3.8. For all (a, b) ∈ R2, for all ξ ∈ R there holds

∂1H(a, ξ)(b− a) = H(b, ξ)−H(a, ξ)− g2π2

6
(2a+ b)(b− a)2 .

Especially we recover that ∂1H(a, ξ)(b− a) ≤ H(b, ξ)−H(a, ξ) which gives the convexity
of H(·, ξ) over R+.

Proof (Lemma 3.3.8). We develop the left hand side

∂1H(a, ξ)(b− a) =
ξ2

2
b+

g2π2

2
a2b− ξ2

2
a− g2π2

2
a3

= H(b, ξ) +
g2π2

2
a2b− g2π2

6
b3 −H(a, ξ)− g2π2

2
a3 +

g2π2

6
a3

= H(b, ξ)−H(a, ξ) +
g2π2

6

(
3a2b− 2a3 − b3

)
= H(b, ξ)−H(a, ξ)− g2π2

6

(
b3 − a3 − 3a2(b− a)

)
.

We conclude by using the formula b3 − a3 − 3a2(b− a) = (2a+ b)(b− a)2.

Proof (Proposition 3.3.7). We multiply (3.18) by ∂1H(f1−i , ξ) in order to get

∂1H(f1−i , ξ)(f1−i −M0
i ) = −σξ∂1H(f1−i , ξ)

(
1ξ<0(f

1−
i+1 − f1−i )− 1ξ>0(f

1−
i−1 − f1−i )

)
.

(3.31)

We then apply Lemma 3.3.8 for a = f1−i and b ∈ {f1−i−1,M
0
i , f

1−
i+1} so that Equation (3.31)

rewrites as

H(f1−i , ξ)−H(M0
i , ξ) +

g2π2

6
(2f1−i +M0

i )(f
1−
i −M0

i )
2 =
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− σξ1ξ<0

(
H(f1−i+1, ξ)−H(f1−i , ξ)− g2π2

6
(2f1−i + f1−i+1)(f

1−
i+1 − f1−i )2

)
+ σξ1ξ>0

(
H(f1−i−1, ξ)−H(f1−i , ξ)− g2π2

6
(2f1−i + f1−i−1)(f

1−
i−1 − f1−i )2

)
.

Regrouping the terms we get

H(f1−i , ξ)−H(M0
i , ξ) =

− σξ
((

1ξ<0H(f1−i+1, ξ) + 1ξ>0H(f1−i , ξ)
)
−
(
1ξ<0H(f1−i , ξ) + 1ξ>0H(f1−i−1, ξ)

))
+ σξ

g2π2

6

(
1ξ<0(2f

1−
i + f1−i+1)(f

1−
i+1 − f1−i )2 − 1ξ>0(2f

1−
i + f1−i−1)(f

1−
i−1 − f1−i )2

)
− g2π2

6
(2f1−i +M0

i )(M
0
i − f1−i )2 .

This is exactly (3.30).

As in the explicit case, the kinetic entropy dissipation (3.30) gives rise to a macroscopic
entropy inequality upon integration, which is the Corollary 3.3.9 below. The proof is
omitted since it is the same as that of Corollary 3.3.4, only with the additional term Di

that doesn’t require any specific treatment.

Corollary 3.3.9. The fully discrete entropy inequality

E(U1
i ) ≤ E(U0

i )− σ

(ˆ
R
ξ H1−

i+1/2(ξ)dξ −
ˆ
R
ξ H1−

i−1/2(ξ)dξ
)
+

ˆ
R
Di dξ

is satisfied by the implicit kinetic scheme (3.26).

3.3.3 Practical implementation of the fully implicit scheme

In this section we are interested in the practical aspect of how to implement the
scheme (3.27). There are essentially two steps to go through and that we shall dis-
cuss. The first one is the inversion of the mass matrix (I + σL), so as to get an analytic
expression of the vector f1−(ξ). The second one is the computation of the integral
of f1−(ξ) to define the macroscopic update U1 as in (3.19). We will see that invert-
ing the matrix will not cause any particular issue. On the other hand it seems to us
that it is difficult, if possible at all, to compute the integral when using the half-disk
maxwellian (3.10). The prospect of numerical integration using a quadrature formula to
approximate this integral has one major hindrance, which is the loss of accuracy together
with the higher computational cost that would be induced. We believe this can hardly
be usable in practice, and instead we explore a compromise in which we substitute the
half-disk maxwellian for a simpler one, namely the index maxwellian defined through the
following shape function

χ(ω) =
1

2
√
3
1|ω|≤

√
3 =⇒ M(U, ξ) =

h

2
√
3 c

1|ξ−u|≤
√
3 c , (3.32)
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where we recall c =
√
gh/2. This means that we will be unable to prove the existence

of a discrete entropy inequality. In fact Corollary 3.3.4 (and thus Corollary 3.3.9) isn’t
satisfied anymore for another choice of shape function χ. This is the otpimality argument
of the half-disk maxwellian (3.10), which was constructed as the minimizer of the kinetic
entropy 3.9, see Perthame and Simeoni [58], Lemma 2.3. Nevertheless, without any
restriction on the time step the implicit scheme with index maxwellian (3.32) will still be
positive, L∞-stable at the kinetic level, and will enable us to write it explicitly at the
macroscopic level, which is remarkable for a fully implicit scheme applied to a nonlinear
system.

Matrix inversion. We begin by detailing the inversion of the mass matrix (I + σL).
To this end let us introduce the matrix D ∈ RN×N as the diagonal part of (I + σL), and
N ∈ RN×N the non diagonal part, that is to say

Di,j =

{
1 + σ|ξ| if i = j

0 otherwise , Ni,j =


−σξ1ξ>0 if i = j + 1
σξ1ξ<0 if i = j − 1

0 otherwise
.

We have the following implication

I + σL = D(I + D−1N) =⇒ (I + σL)−1 = (I + D−1N)−1D−1 .

One important property about matrix N is that it is either upper triangular or lower
triangular depending on the sign of ξ, with zeros on its diagonal. Therefore matrix D−1N
admits zero as its only eigenvalue of multiplicity N , and we can express the inverse via a
geometric sum

(I + σL)−1 =
∑
k∈N

(−D−1N)k D−1 .

Next we use that matrix D−1N is nilpotent to get a finite sum that can be computed
explicitly. In fact we have for all 1 ≤ i, j ≤ N and for all k ∈ N

(Nk)i,j =


(−σξ)k1ξ>0 if i− j = k
(σξ)k1ξ<0 if j − i = k

0 otherwise

As a consequence we find

((I + σL)−1)i,j =


(−σξ)j−i

(1− σξ)j−i+1
1ξ<0 if j ≥ i

(σξ)i−j

(1 + σξ)i−j+1
1ξ>0 if i ≥ j

. (3.33)

Especially, we recover that every coefficient of the matrix inverse is positive, which gives
the monotonicity (M-matrix). Furthermore, we see from (3.33) that the coefficients are
less than one, which justifies the third point from Lemma 3.3.5 (maximum principle).
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Integral computation. The next step is to write the solution of (3.29) at the
macroscopic level, so as to define the updates h1 and hu1 depending on the data
(h0, hu0) ∈ RN ×RN . To this end we need to express the integrals defining the following
vectors of RN

h =

ˆ
R
(I + σL)−1M0(ξ)dξ

h̃ =

ˆ
R
(I + σL)−1σB1(ξ)dξ

,


hu =

ˆ
R
ξ (I + σL)−1M0(ξ)dξ

h̃u =

ˆ
R
ξ (I + σL)−1σB1(ξ)dξ

. (3.34)

Then the macroscopic update consists to set h1 = h + h̃ and hu1 = hu + h̃u, which
corresponds indeed to the solution of (3.29) integrated against 1 and ξ. We comment
on the decomposition induced by (3.34). The overlined quantities refer to contributions
coming from the interior of the computational domain, whereas the quantities with a
tilde represent contributions coming from outside the domain. In fact, we recall that the
purpose of vector B1 is to enforce the boundary conditions. Its definition (3.28) makes
use of the ghost values M1

0 and M1
N+1 that we assume to be known for now. We will see

later how to determine these ghost maxwellians from the known macroscopic values U0
1

and U0
N in the border cells.

We first focus on the interior contributions h and hu. Developing the expression (3.33)
obtained for the matrix inverse, we have for 1 ≤ i ≤ N

hi =

N∑
j=i

ˆ
R−

(−σξ)j−i

(1− σξ)j−i+1
M0

j (ξ)dξ +
i∑

j=1

ˆ
R+

(σξ)i−j

(1 + σξ)i−j+1
M0

j (ξ)dξ , (3.35)

hui =

N∑
j=i

ˆ
R−

ξ
(−σξ)j−i

(1− σξ)j−i+1
M0

j (ξ)dξ +
i∑

j=1

ˆ
R+

ξ
(σξ)i−j

(1 + σξ)i−j+1
M0

j (ξ)dξ . (3.36)

As already mentioned, finding analytic expressions for the above integrals (3.35) and (3.36)
when dealing with the half-disk maxwellian doesn’t seem an achievable goal. Instead,
working with the simpler index maxwellian (3.32) makes it possible to compute these
integrals, and we have the following results.

Proposition 3.3.10. Let 1 ≤ i ≤ N . We have the following analytical expressions for
the water height hi and the discharge hui when using the index maxwellian (3.32)

hi =
1

2
√
3

(
N∑
j=i

√
2h0j
g

(Ah)i,j +
i∑

j=1

√
2h0j
g

(Bh)i,j

)
, (3.37)

hui =
1

2
√
3σ

(
−

N∑
j=i

√
2h0j
g

(Ahu)i,j +
i∑

j=1

√
2h0j
g

(Bhu)i,j

)
. (3.38)

Introducing the function φ : x ∈ R \ {−1} 7→ x/(1 + x) and the velocities

∀1 ≤ j ≤ N , aj = u0j −
√

3

2
gh0j , bj = u0j +

√
3

2
gh0j ,
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the triangular matrices (Ah) and (Bh) can be written as

(Ah)i,j =
1j≥i

σ

[
ln(|1 + x|)−

j−i∑
l=1

φ(x)l

l

]−min(0,aj)σ

−min(0,bj)σ
,

(Bh)i,j =
1i≥j

σ

[
ln(|1 + x|)−

i−j∑
l=1

φ(x)l

l

]max(0,bj)σ

max(0,aj)σ
.

Similarly we obtain the formulas for (Ahu) and (Bhu) under the form

(Ahu)i,j =
1j≥i

σ

[
− (j − i+ 1) ln(|1 + x|) + x+

j−i∑
l=1

l
φ(x)j−i+1−l

j − i+ 1− l

]−min(0,anj )σ

−min(0,bnj )σ
,

(Bhu)i,j =
1i≥j

σ

[
− (i− j + 1) ln(|1 + x|) + x+

i−j∑
l=1

l
φ(x)i−j+1−l

i− j + 1− l

]max(0,bnj )σ

max(0,anj )σ
.

To demonstrate this proposition, the two following lemmas are needed. Their proofs
together with the proof of Proposition 3.3.10 are featured in Appendix 3.A.

Lemma 3.3.11. Consider φ : x ∈ R \ {−1} 7→ x/(1 + x) and let k ∈ N. We have the
following primitive for some constant C ∈ R

ˆ
xk

(1 + x)k+1
dx = ln(|1 + x|)−

k∑
l=1

φ(x)l

l
+ C .

Lemma 3.3.12. Using the same notation as in the previous lemma, we have

ˆ
xk

(1 + x)k
dx = −k ln(|1 + x|) + x+

k−1∑
l=1

l
φ(x)k−l

k − l
+ C ′ .

Next we look at the exterior contributions given in (3.34) by h̃ and h̃u. The i-th
component of vector h̃ develops as(ˆ

R
(I + σL)−1σB1 dξ

)
i
=

ˆ
R+

(σξ)i

(1 + σξ)i
M1

0 dξ +
ˆ
R−

(−σξ)N−i+1

(1− σξ)N−i+1
M1

N+1 ξ ,

whereas for h̃u we have( ˆ
R
ξ (I + σL)−1σB1 dξ

)
i
=

1

σ

ˆ
R+

(σξ)i+1

(1 + σξ)i
M1

0 dξ − 1

σ

ˆ
R−

(−σξ)N−i+2

(1− σξ)N−i+1
M1

N+1 dξ .

Hence we can reuse the previous analytic expression of Lemma 3.3.12 to compute the
exterior contribution h̃. However in order to compute h̃u, we need to know how to
explicitly write the integral of (I + σL)−1σB1 against ξ which requires the following
lemma.



110 Implicit kinetic schemes and iterative methods

Lemma 3.3.13. Let k ∈ N∗. Considering φ : x 7→ x/(x + 1) and C ∈ R we have the
following expression

ˆ
xk+1

(1 + x)k
dx =

(
−

k−2∑
r=1

(k − r − 1)
k − r

2

φ(x)r

r

)
1k≥3 +

(
k(k − 1)

2
ln|1 + x|

)
1k≥2

− (k + 1)x+
(1 + x)2

2
−
( k−1∑

q=1

(k − q)
φ(x)q

q

)
1k≥2 + k ln|1 + x|+ C .

The proof of Lemma 3.3.13 can be found in Appendix 3.A.

Boundary conditions. We now consider the issue of boundary conditions, which
amounts to determine the vector B1. The latter is entirely characterized by the ghost
values M1

0 ,M
1
N+1, which are defined in relation to the neighboring values in the border

cells C1 and CN at time ∆t. Thus we have an implicit problem whose solution is unknown.
Depending on the type of boundary conditions one wishes to enforce, the relation between
the ghost and border values can be nonlinear. We choose to simplify the problem by
replacing the implicit ghost values at time ∆t by the ghost values at the starting time
which can be explicitly determined. This can be seen as a first order approximation in
time since

U1
0 = U0

0 +O(∆t) , U1
N+1 = U0

N+1 +O(∆t) .

Hence in the definition (3.34) of h̃ and h̃u we will replace B1 by

B0 =

 ξM(U0
0 , ξ)1ξ>0
...

−ξM(U0
N+1, ξ)1ξ<0

 .

Then need to fix the values of U0
0 and U0

N+1 for a given U0
1 and U0

N . We consider the
case of fluvial flows as described by Bristeau and Coussin in [24]. This type of flows
corresponds to the situation where the celerity of surface gravity waves

√
gh is greater

than the material velocity of particles u. This occurs quite frequently in real life, for
instance in lakes, coastal flows as well as in rivers, and more generaly the low Froude
regime clearly falls within this scope. Since the eigenvalues u−

√
gh and u+

√
gh have

opposite sign, at each boundary we have exactly one wave entering the domain and one
wave leaving it. Hence we only dispose of a single degree of freedom to set the ghost
values, which generally consists in enforcing either a given water height or a discharge.
The ghost state is then fully determined by asking the outward-going Riemann invariant
to remain constant through the interface. We recall that for the Saint-Venant system the
two Riemann invariants denoted R± are given by

R±(U) = u± 2
√
gh .

Let us first treat the case where the water height is enforced at the boundary of the
domain. We denote by hg,l the value attributed to the left ghost cell, and hg,r the one



Kinetic schemes without source term 111

attributed to the right ghost cell. Together with the condition on the outgoing Riemann
invariant, we get the following systems{

h0 = hg,l
R−(U0) = R−(U1)

,

{
hN+1 = hg,r
R+(UN+1) = R+(UN )

.

Using the equalities satisfied by the Riemann invariants we find

u0 − 2
√
gh0 = u1 − 2

√
gh1 =⇒ q0 = hg,l(u1 − 2(

√
gh1 −

√
ghg,l)) ,

uN+1 + 2
√
ghN+1 = uN + 2

√
ghN =⇒ qN+1 = hg,r(uN + 2(

√
ghN −

√
ghg,r)) .

Another possibility is to enforce the discharge at the boundary, and we denote by qg,l and
qg,r the left and right ghost values. This time, the constraint on the Riemann invariant
will lead to a nonlinear equation that has to be solved to determine the ghost water
height. Indeed we have the systems{

q0 = qg,l
R−(U0) = R−(U1)

,

{
qN+1 = qg,r
R+(UN+1) = R+(UN )

,

and the equalities satisfied by the Riemann invariants amount to finding the real roots of
the third order polynomials in

√
h0 and

√
hN+1 below

−2
√
g(h0)

3/2 − (u1 − 2
√
gh1)h0 + qg,l = 0 ,

2
√
g(hN+1)

3/2 − (uN + 2
√
ghN )hN+1 + qg,r = 0 .

In this case, this approach slightly differs from that of Bristeau and Coussin in [24], where
the ghost value is chosen such that the resulting numerical flux at the interface coincides
with the boundary discharge. Instead we do not enforce any value at the interface but
directly in the ghost cell, which can be seen as a first order simplification in space. Also
note that nothing prevents us from mixing the boundary conditions, for instance we can
enforce a water height on the left boundary, and a discharge on the right. A common
practice for channel flows is to enforce the water height at the inlet and the flux at the
outlet.

Remark 3.3.14. We briefly mention the case of torrential flows, which refer to a
material velocity of particles |u| greater than the celerity of surface gravitational waves√
gh. In this situation the characteristics given by the eigenvalues u−

√
gh and u+

√
gh

go in the same direction.

• Assume a torrential inflow at the boundaries, which implies that no information is
leaving the domain. Then we have two degrees of freedom for setting the ghost cells
and we don’t need the data from the neighboring border cells in order to define the
vector B1.

• On the other hand if we assume that a torrential outflow holds at the boundaries,
then no information enters the domain (all the waves are propagating outwards)
and we expect the boundary fluxes to be entirely determined from the border cells
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C1 and CN . More specifically if throughout time the outflow remains in the regime
given by |u| ≥

√
3c, then we can show that B1 = 0, and therefore we also don’t need

to know precisely the data in the border cells. In fact, recalling the expression of B1

which was given in (3.28) together with the choice of maxwellian (3.32), we obtain

B1 = 0 ⇐⇒

{
∀ξ > 0 M1

0 (ξ) = 0

∀ξ < 0 M1
N+1(ξ) = 0

⇐⇒

{
u10 +

√
3 c10 ≤ 0

u1N+1 −
√
3 c1N+1 ≥ 0

.

• Finally the situation of a torrential outflow characterized by c ≤ |u| <
√
3c will

require to know the data in the border cells. In this case we can as previously
approximate B1 by B0 and apply the strategy described in [24] to explicitly determine
U0
0 and U0

N+1.

Numerical cost. It is important to try and keep a reasonable algorithmic complexity
so that the implicit method presented in the previous lines remains usable in practice.
We discuss here how to improve its computational cost by a substantial margin. In
formulas (3.37) and (3.38), the sums can be seen as a matrix vector product. Thus to
update each cell one needs to perform a scalar product for a total of O(N) operations.
Since there are N cells, the complexity for applying this formula is quadratic, and we
cannot hope to do better than this. Note however that we first have to assemble the
matrices (Ah), (Bh), (Ahu) and (Bhu) whose coefficients involve a summation. Because
of that, this step has a seemingly cubic complexity in the number of cells N . This is quite
expensive and can render the method pretty much inefficient. However this complexity
can be reduced to a quadratic cost by computing the coefficients in the correct order.
This is better seen through the following recurrence relation allowing to define each
coefficient from a previous one in O(1) operation.

(Ah)i,j =


0 if j < i[

ln(|1 + x|)
]−min(0,aj)σ
−min(0,bj)σ

if i = j

(Ah)i+1,j −
1

j − i

[
φ(x)j−i

]−min(0,aj)σ
−min(0,bj)σ

if j > i

, (3.39)

(Bh)i,j =


0 if i < j[

ln(|1 + x|)
]max(0,bj)σ

max(0,aj)σ
if i = j

(Bh)i−1,j −
1

i− j

[
φ(x)i−j

]max(0,bj)σ
max(0,aj)σ

if i > j

. (3.40)

Hence it is more efficient to assemble matrices (Ah) and (Bh) column wise, starting from
the diagonal coefficient and moving towards the first or last row. A similar conclusion is
achieved for (Ahu) and (Bhu), although the recurrence relation is less straightforward to
obtain. We first remark that, introducing l(i, j) = i− j + 1 there holds

(Ahu)i,j = 1j≥i

[
− l(j, i) ln|1 + x|+ x+

j−i∑
k=1

k
φ(x)l(j,i)−k

l(j, i)− k

]−min(0,aj)σ

−min(0,bj)σ
,
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(Bhu)i,j = 1i≥j

[
− l(i, j) ln|1 + x|+ x+

i−j∑
k=1

k
φ(x)l(i,j)−k

l(i, j)− k

]max(0,bj)σ

max(0,aj)σ
.

Performing the change of index r = l(j, i)− k for matrix (Ahu) and s = l(i, j)− k for
matrix (Bhu) we find

(Ahu)i,j =
[
− l(j, i) ln|1 + x|+ x+ l(j, i)

j−i∑
r=1

φ(x)r

r
−

j−i∑
r=1

φ(x)r
]−min(0,aj)σ

−min(0,bj)σ
,

(Bhu)i,j =
[
− l(i, j) ln|1 + x|+ x+ l(i, j)

i−j∑
s=1

φ(x)s

s
−

i−j∑
s=1

φ(x)s
]max(0,bj)σ

max(0,aj)σ
.

Next we introduce the matrices defined column wise in a recursive manner

(UA)i,j =

 0 if j ≤ i

(UA)i+1,j +
[
φ(x)j−i

]−min(0,aj)σ

−min(0,bj)σ
if j > i

,

(VA)i,j =


0 if j ≤ i

(VA)i+1,j +
[φ(x)j−i

j − i

]−min(0,aj)σ

−min(0,bj)σ
if j > i

.

Then we can write that

(Ahu)i,j =


0 j < i[
x− ln|1 + x|

]−min(0,aj)σ

−min(0,bj)σ
j = i

l(j, i)(VA)i,j − (UA)i,j +
[
x− l(j, i) ln|1 + x|

]−min(0,aj)σ

−min(0,bj)σ
j > i

.

(3.41)

Similarly we introduce

(UB)i,j =

 0 if i ≤ j

(UB)i−1,j +
[
φ(x)i−j

]max(0,bj)σ

max(0,aj)σ
if i > j

,

(VB)i,j =


0 if i ≤ j

(VB)i−1,j +
[φ(x)i−j

i− j

]max(0,bj)σ

max(0,aj)σ
if i > j

,

so that we have

(Bhu)i,j =


0 i < j[
x− ln|1 + x|

]max(0,bj)σ

max(0,aj)σ
i = j

l(i, j)(VB)i,j − (UB)i,j +
[
x− l(i, j) ln|1 + x|

]max(0,bj)σ

max(0,aj)σ
i > j

. (3.42)
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To conclude, through relations (3.41) and (3.42) we are also able to assemble matrices
(Ahu) and (Bhu) with a quadratic cost with respect to the number of cells, which
means that the overall scheme has a O(N2) complexity. A practical and fully vectorized
implementation in Python is given in Appendix 3.C. We have to put this in perspective by
comparing our scheme to explicit ones. The latter require a potentially more restrictive
time step ∆texp to be stable, but usually they only need O(N) operations per iteration.
Roughly speaking, the total number of iterations to reach the final time T with an explicit
scheme is of order N × T/∆texp. With our scheme, the time step ∆timp might be taken
larger than ∆texp, but we have O(N2) operations to update the solution, hence the total
number of operations until final time T is of order N2 × T/∆timp. Therefore, our scheme
is less time consuming if we have

N
T

∆texp
� N2 T

∆timp
=⇒ ∆timp � N∆texp . (3.43)

Note however that the computational time is not the only factor to account for, and one
should also consider the error of the scheme. Generally, taking a very coarse resolution
in time results in poorly accurate results, in which case it is not desirable to have (3.43).
However there are some cases where the fast dynamics do not play an important role
such as in the low Froude regime. Then it might be advantageous to consider large
time steps. In a sense, when it comes to implicit methods the situation offered by our
scheme is optimal. In fact, we explicitly know the inverse of the matrix and can hardly
do better than just evaluating the update through a matrix-vector product. Yet we will
see through the upcoming numerical results that its interest is rather limited when it
comes to efficiency, at least for the considered testcases.

3.3.4 Numerical results

To assess the efficiency and interest of the implicit scheme, we perform a numerical
test over a Riemann problem featuring a slowly moving shock. This configuration is
achieved for nearly transcritical flow where the material velocity u is positive and satisfies
u −

√
gh ≈ 0 and u +

√
gh � 1. Hence the maximum eigenvalue severely constrains

the time step, however a small time step might not be necessary to accurately resolve
the slow shock. In Figure 3.3.1 we compare several schemes with an explicit time step
∆texp given by the usual CFL condition, as well as the implicit scheme using a time
step ∆timp = 10∆texp. We notice that in the discharge profile, an oscillation appears
downwind of the shock, which is quite pronounced for the explicit and iterative kinetic
schemes, and less so for the fully implicit ones. As expected, the fast travelling rarefaction
is strongly diffused by the implicit scheme with large time steps.

Despite this favorable context, the implicit scheme using larger time steps isn’t very
good. In fact, the 1-shock is more diffused that for the explicit kinetic scheme which
is slightly faster. The conclusion might change by taking an even slower shock and by
increasing the value of ∆timp.
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Figure 3.3.1: Slowly moving shock. The position of the discontinuity in the initial
Riemann data is x = 0. The iterative scheme is presented in the next section.

3.4 Iterative resolution scheme

3.4.1 Case with flat bathymetry

We have proposed a modified version of the scheme (3.26) where the half-disk maxwellian
has been replaced with the index maxwellian (3.32). This is a compromise between the
ability to explicitly express the update at the macroscopic level and the existence of
a discrete entropy inequality. We now consider a different paradigm where we don’t
want to be restricted by the choice of maxwellian, in exchange of what we approximate
the implicit update by an iterative process. Later this will also enable us to deal with
non flat bottoms. The strategy we use is a Gauss-Jacoby type decomposition which
consists to introduce two matrices P and Q from RN×N such that P is invertible and
such that P − Q equals the mass matrix I + σL. Then the implicit kinetic scheme (3.27)
is equivalent to finding the solution f(ξ) ∈ RN of

f = P−1Q f + P−1(M0 + σB[f ]) . (3.44)

We recall that the vector B[f ] stands for the boundary conditions. The left and right
ghost values Ug,l, Ug,r are enforced in relation with the border values {Uf}1 and {Uf}N ,
for instance using Riemann invariants as discussed previously. Hence Ug,l and Ug,r depend
on f , and the vector B[f ] is defined in the usual way (3.28)

B[f ] =


ξ1ξ>0M(Ug,l, ξ)

0
...
0

−ξ1ξ<0M(Ug,r, ξ)

 ∈ RN .

In the sequel we will work with the decomposition P = (1 + α)I and Q = αI − σL,
with α ≥ 0 a relaxation parameter. Instead of solving (3.44) a possibility is to study the
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sequence (fk(ξ))k∈N from RN defined by

f0(ξ) =M0 ,


(1 + α)fk+1(ξ) = (αI − σL)fk +M0 + σB[fk]

∀1 ≤ i ≤ N, {Uf}ki =

ˆ
R

(
1
ξ

)
fki (ξ)dξ

. (3.45)

Note that in previous section we were using the superscript ”1−” to signify a non
maxwellian distribution evaluated at time ∆t. In what follows we drop this notation
so as to only have the iteration index k ∈ N for simplicity. If the sequence (fk(ξ))k∈N
converges in RN to some f∞(ξ), then this limit is necessarily the solution f(ξ) of (3.44).
In practice we stop the iteration process for some k large enough, hoping that fk is close
to the limit. The stopping criterion shall be discussed later, and we have the following
result.

Proposition 3.4.1. Assume that B[fk] remains constant equal to B[M0] for any k in
N. Then (3.45) defines an arithmetico-geometric sequence which converges if the CFL
condition σ|ξ| < 1 + 2α holds for all ξ belonging to suppM0 ∪ suppB[M0].

Proof. By recurrence, we can show that for any k ∈ N the support of fk is included
in suppM0 ∪ suppB[M0], which is why we restrict to velocities ξ belonging to this set.
Denote A = P−1Q = (1 + α)−1(αI − σL) and consider f the solution of

f = Af + (1 + α)−1(M0 + σB[M0]) .

The sequence (gk)k defined by gk = fk − f verifies gk+1 = Agk and converges to zero as
soon as the spectral radius of A is strictly less than one. Since A is a triangular matrix,
its eigenvalues are given by its diagonal coefficients, all equal to (1 + α)−1(α − σ|ξ|).
Under the assumption σ|ξ| < 1 + 2α, this quantity is strictly less than one in absolute
value, which concludes the proof.

Remark 3.4.2. As we did in the fully implicit scheme, we can replace B[fk] by B[M0] in
the iterative process (3.45). In fact this constitutes a first order approximation in time since
we have fk = M0 +O(∆t). Under this simplification, the assumption B[fk] = B[M0]
from Proposition 3.4.1 becomes automatically satisfied.

Proposition 3.4.1 points to a limitation of the iterative approach, which is that a CFL
condition is now required to ensure the convergence. One might be tempted to take the
relaxation parameter α large, but doing so can make the convergence slower by increasing
the number of iterations needed to get close to the limit. In fact this is seen by the fact
that the spectral radius of A gets closer to one when α is large. In particular, taking
the limit α→ ∞, the method (3.45) defines a constant sequence fk+1 = fk which is not
usable anymore.

In practice, we do not wish to apply an iterative method at the kinetic level, since we
then need to perform a numerical quadrature to approximate the macroscopic update.
An issue with (3.45) is that the distribution involved in the kinetic flux (i.e. the term in
factor of σL) is not a vector of maxwellians. Apparently this prevents us from retrieving a
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numerical flux at the macroscopic level, in the sense that we don’t know how to construct
maps Fh, Fhu such that for any f : ξ ∈ R → RN with compact support there holds
ˆ
R
(Lf(ξ))i dξ = Fh({Uf}i, {Uf}i+1)− Fh({Uf}i−1, {Uf}i)

ˆ
R
ξ (Lf(ξ))i dξ = Fhu({Uf}i, {Uf}i+1)− Fhu({Uf}i−1, {Uf}i)

, 2 ≤ i ≤ N − 1 .

To bypass this issue, we propose the following modification of (3.45), where we replace
all occurrences of fk on the right hand side by a vector of maxwellians Mk, which defines
a new sequence (gk(ξ))k∈N as

g0(ξ) =M0 ,

{
(1 + α)gk+1(ξ) = (αI − σL)Mk +M0 + σB[Mk]

Mk+1 = gk+1 +∆tQk
. (3.46)

This new iterative process is alternating two stages, the first one being the usual transport
step, while the second one is a projection step onto the set of maxwellians. The term Qk is
a vector of collision operators each one satisfying the conservation constraints (3.5). In a
sense (3.46) is an iterative BGK splitting approach. Note that the projection step doesn’t
modify the macroscopic quantities of interest. It is important to remark that this iterative
scheme differs from (3.45) and we cannot apply the result of Proposition 3.4.1. Especially,
the projection step is nonlinear in that it amounts to define Mk+1

i := M({Ug}k+1
i , ξ)

for 1 ≤ i ≤ N . It will not be possible to prove the convergence using the argument of
geometric sequence, and instead we have to show a more general contraction property.
We try to get such a result later when also incorporating a source term, and skip it for
now.

If the sequence (gk(ξ))k∈N defined by the iterative process (3.46) converges in RN to
a limit g(ξ), then this limit satisfies

(1 + α)g(ξ) = (αI − σL)M(Ug, ξ) +M0(ξ) + σB[g](ξ) . (3.47)

Integrating (3.47) respectively against 1 and ξ, the terms in factor of α cancel and we
get at the macroscopic level

∀1 ≤ i ≤ N, {Ug}i = U0
i − σ

(
F ({Ug}i, {Ug}i+1)− F ({Ug}i−1, {Ug}i)

)
,

with the numerical flux F (UL, UR) already defined in (3.21). In practice we iterate at
the macroscopic level over

∀1 ≤ i ≤ N, (1 + α)Uk+1
i = U0

i + αUk
i − σ

(
F (Uk

i , U
k
i+1)− F (Uk

i−1, U
k
i )
)
, (3.48)

which corresponds to (3.46) integrated against (1, ξ)T . We can show the following
properties from the kinetic description offered by (3.46).

Proposition 3.4.3. The distribution fk+1 defined by the iterative scheme (3.46) is
positive if the CFL condition σ|ξ| ≤ α+M0

i /M
k
i holds for any ξ belonging to suppMk

and for any 1 ≤ i ≤ N . In particular fk+1 is positive when σ|ξ| ≤ α.
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Remark 3.4.4. Regarding the CFL condition from Proposition 3.4.3, we have no a priori
knowledge on the vector of maxwellians Mk for k > 0. We don’t think this is a concern,
as nothing prevents us from modifying the value of the time step ∆t over the course of
the iteration process if needed. This means that we can replace ∆t by ∆tk, and if the
sequence (Mk)k∈N converges to some limit then ∆tk will converge in R+. In practice
when we stop the iterative process at some index kmax we advance the time of ∆tkmax.

Proof (Proposition 3.4.3). Let us rewrite the iterative scheme (3.46) over a given cell
1 ≤ i ≤ N

(1 + α)fk+1
i (ξ) = (α− σ|ξ|)Mk

i + σξ1ξ>0M
k
i−1 − σξ1ξ<0M

k
i+1 +M0

i + σB[Mk]i .
(3.49)

The case where ξ is not in the set suppMk is obvious since we have fk+1
i (ξ) = M0

i +
σB[Mk]i which is positive. If ξ belongs to to this set and under the CFL condition
σ|ξ| ≤ α, all the terms on the right hand side of (3.49) are positive, hence fk+1

i (ξ) is
positive too. If α is very small this CFL becomes quite restrictive (in fact it is unusable
when α = 0), and we can improve it with the help of the term M0

i . Notice that since

σξ1ξ>0M
k
i−1 − σξ1ξ<0M

k
i+1 + σB[Mk]i

is always positive, it is sufficient to have the positivity of the remaining terms

M0
i + (α− σ|ξ|)Mk

i =
(M0

i

Mk
i

+ α− σ|ξ|
)
Mk

i ,

which is the case as soon as σ|ξ| is smaller than α+M0
i /M

k
i , thus the result.

Proposition 3.4.5. The kinetic entropy of the iterative process (3.46) satisfies the
following equality

H(Mk+1
i , ξ) = (3.50)

H(M0
i , ξ)− σξ

(
Hk

i+1/2 −Hk
i−1/2

)
+ (1 + α)∆t ∂1H(Mk

i , ξ)Qi

+ α
(
H(Mk

i , ξ)−H(Mk+1
i , ξ)

)
+ (1 + α)

g2π2

6
(2Mk

i +Mk+1
i )(Mk+1

i −Mk
i )

2 +Dk
i ,

with Qi =Mk+1
i − fk+1

i a collision operator satisfying the conservation constraints (3.5).
The interfacial kinetic entropies Hk

i±1/2 are defined as

Hk
i−1/2 = 1ξ>0H(Mk

i−1, ξ) + 1ξ<0H(Mk
i , ξ) ,

Hk
i+1/2 = 1ξ>0H(Mk

i , ξ) + 1ξ<0H(Mk
i+1, ξ) ,

and the dissipation Dk
i ≤ 0 has the form

Dk
i = σξ

g2π2

6

(
1ξ<0(2M

k
i +Mk

i+1)(M
k
i+1 −Mk

i )
2 − 1ξ>0(2M

k
i +Mk

i−1)(M
k
i −Mk

i−1)
2
)

− g2π2

6
(2Mk

i +M0
i )(M

0
i −Mk

i )
2 .
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Before doing the proof, we want to raise the following remark.

Remark 3.4.6. In Proposition 3.4.5, the right hand side of the kinetic entropy equal-
ity (3.50) contains three non conservative terms that seem to be problematic. We have
the terms

α
(
H(Mk

i , ξ)−H(Mk+1
i , ξ)

)
+ (1 + α)

g2π2

6
(2Mk

i +Mk+1
i )(Mk+1

i −Mk
i )

2

which can have a positive sign and do not vanish when integrating. Thus they can
prevent the dissipation of entropy at the macroscopic level, but assuming the method
converges, the differences Mk+1

i −Mk
i and H(Mk

i , ξ) −H(Mk+1
i , ξ) vanish as k → ∞.

As a consequence, we hope that for k large enough, these two terms will become negligible
before the dissipation Dk

i . On the other hand, when Mk
i is a half-disk maxwellian (3.10),

the term

(1 + α)∆t ∂1H(Mk
i , ξ)Qi

does not cause any issue as it vanishes upon integration over ξ ∈ R. This is intrinsically
related to the form of the half-disk maxwellian Mk

i which makes ∂1H(Mk
i , ξ) linear in ξ

over the support of Mk
i (·). In fact we have

∂1H(Mk
i , ξ) =

ξ2

2
+
g2π2

2

(
1

gπ

√
2ghki − (ξ − uki )

2

)2

= ghki + uki ξ −
(uki )

2

2
.

Furthermore we remind that Qi satisfies the conservation constraints (3.5), meaning that
its integral against (1, ξ)T vanishes. This is why ∂1H(Mk

i , ξ)Qi is macroscopically zero.

Proof. We start by rewriting the transport step from (3.46) as

(1 + α)(Mk+1
i −Mk

i ) = (3.51)

(M0
i −Mk

i )− σξ
(
1ξ>0(M

k
i −Mk

i−1) + 1ξ<0(M
k
i+1 −Mk

i )
)
+ (1 + α)∆tQi .

To obtain this expression, we subtracted (1 + α)Mk
i from both sides and we replaced

fk+1
i with Mk+1

i −∆tQi. The term Qi is the collision operator involved in the collision
step from (3.46). In the case i = 1 (resp. i = N), we define Mk

i−1 (resp. Mk
i+1)

using the corresponding macroscopic ghost state Uk
g,l or Uk

g,r. Similarly to the proof of
Proposition 3.3.7, we multiply (3.51) by ∂1H(Mk

i , ξ) and apply Lemma 3.3.8 for a =Mk
i

and b ∈ {Mk
i−1,M

k
i ,M

k
i+1} which leads to

(1 + α)
(
H(Mk+1

i , ξ)−H(Mk
i , ξ)−

g2π2

6
(2Mk

i +Mk+1
i )(Mk+1

i −Mk
i )

2
)
=(

H(M0
i , ξ)−H(Mk

i , ξ)−
g2π2

6
(2Mk

i +M0
i )(M

0
i −Mk

i )
2
)

+ σξ1ξ>0

(
H(Mk

i−1, ξ)−H(Mk
i , ξ)−

g2π2

6
(2Mk

i +Mk
i−1)(M

k
i −Mk

i−1)
2
)

− σξ1ξ<0

(
H(Mk

i+1, ξ)−H(Mk
i , ξ)−

g2π2

6
(2Mk

i +Mk
i+1)(M

k
i+1 −Mk

i )
2
)

+ (1 + α)∆t ∂1H(Mk
i , ξ)Qi .
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Rearranging the terms and denoting Hk
i+1/2 = 1ξ>0H(Mk

i , ξ) + 1ξ<0H(Mk
i+1, ξ) we get

(1 + α)H(Mk+1
i , ξ) =

H(M0
i , ξ) + αH(Mk

i , ξ)− σξ
(
Hk

i+1/2 −Hk
i−1/2

)
+ σξ

g2π2

6

(
1ξ<0(2M

k
i +Mk

i+1)(M
k
i+1 −Mk

i )
2 − 1ξ>0(2M

k
i +Mk

i−1)(M
k
i −Mk

i−1)
2
)

− g2π2

6
(2Mk

i +M0
i )(M

0
i −Mk

i )
2 + (1 + α)

g2π2

6
(2Mk

i +Mk+1
i )(Mk+1

i −Mk
i )

2

+ (1 + α)∆t ∂1H(Mk
i , ξ)Qi .

We obtain the relation we are looking for by regrouping the terms in factor of α.

3.4.2 Stopping criterion

We want to discuss the question of the stopping criterion of (3.45) and (3.46). The usual
approach is to end the iterative process whenever two successive iterates are sufficiently
close to each other, as it means that the approximation might be close to the solution,
and that further iterations won’t make any noticeable change. Concretely we introduce
a small tolerance value εtol > 0, and we say the algorithm converges if ‖Uk+1 − Uk‖
becomes smaller than this threshold for some vector norm ‖·‖. However this is not the
only condition to look at, and we can combine it with another one to get a stricter
criterion. In our case, we know that the Saint-Venant system dissipates the total energy

d
dt

ˆ
R
E(U)(t, x)dx ≤ 0 (3.52)

under appropriate boundary conditions. In fact this is obtained by integrating the entropy
inequality (1.3) over the spatial domain and assuming the energy fluxes G(U) are equal
at the left and right borders. Thanks to equality (3.50) and as per Remark 3.4.6, we
expect the iterative method (3.48) to verify a conservative discrete entropy inequality on
the energy from a certain iteration rank K ∈ N

k ≥ K =⇒ E(Uk+1
i ) ≤ E(U0

i )− σ

(ˆ
R
ξ Hk

i+1/2(ξ)dξ −
ˆ
R
ξ Hk

i−1/2(ξ)dξ
)
.

Hence, assuming again appropriate boundary conditions, a discrete counterpart to the
total energy dissipation (3.52) is obtained by summing the discrete entropy inequality
over the cells 1 ≤ i ≤ N leading to

∆x

N∑
i=1

E(Uk+1
i ) ≤ ∆x

N∑
i=1

E(U0
i )−∆t

( ˆ
R
ξ Hk

N+1/2(ξ)dξ −
ˆ
R
ξ Hk

1/2(ξ)dξ
)
. (3.53)

We will call entropy criterion the inequality (3.53).
When presenting the numerical results in next section, we will see that a tolerance

criterion can be expensive to reach compared to explicit schemes. A compromise would
be to only have the entropy criterion, meaning that the iterative process stops as soon
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as (3.53) is satisfied, even if the method did not converge (i.e. the approximation can be
far from the true implicit update). The risk is then to have a lack of consistency with
respect to the Saint-Venant system. In fact, for the sake of the example assume that
the criterion (3.53) is satisfied after just one iteration. In this case, the iteration process
approximates the implicit update at time ∆t by

U1
i = U0

i − σ

1 + α

(
F (U0

i , U
0
i+1)− F (U0

i−1, U
0
i )
)
,

which is nothing else than (3.48) with k = 0. We recognize the forward Euler scheme
with time step ∆t/(1 + α), whereas we want to approximate the solution at time ∆t.
Hence in this setting α = 0 is the only possibility to have the correct time stepping
leading to a consistent update. Keeping this in mind, we will always set the value of α
to zero when using an entropy-only stopping criterion.
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Figure 3.4.1: Comparing the iterative and fully implicit kinetic schemes with explicit
strategies.

3.4.3 Numerical results over a flat bathymetry

We compare the fully implicit kinetic scheme and iterative kinetic scheme to explicit
methods. The testcase is given by the Riemann problem with initial data U0(x) =
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1x<0UL + 1x>0UR where we define

UL =

(
2
1/2

)
, UR =

(
1

1/2

)
.

The solutions consists in a 1-rarefaction and a 2-shock. The iterative kinetic scheme
uses the half-disk maxwellian, and we choose the parameters α = 1 and εtol = 10−9. All
the schemes use an explicit time step, and the results are given in Figure 3.4.1. Three
aspects have to be considered, namely the accuracy, the computational cost and the
stability. In the plotted curves, we see that in terms of efficiency both iterative and
implicit kinetic schemes are at their disadvantage. Especially, the quadratic complexity
of the fully implicit version results in a steeper slope of the efficiency curve which is a
bad thing. However this is only one part of the picture, and we know for a fact that
the iterative method has better stability properties, since it admits a discrete entropy
inequality. This is a great advantage over the explicit methods which don’t satisfy such
an inequality and can increase the entropy. Concretely the greater stability comes with a
higher level of diffusion which is noticeable in the discharge profile shown in Figure 3.4.1.
This diffusion remains within acceptable margin, and is the price to pay to have better
stability properties.

3.4.4 Hydrostatic reconstruction

The hydrostatic reconstruction is a technique introduced by Audusse et al. in [6]. It
consists to take a numerical flux consistent with the Saint-Venant system, and to modify
it in order to handle varying bathymetries in a well balanced way. The terminology well
balanced refers to the ability of the method to preserve the lake at rest steady states
characterized by h+ z ≡ Cst and u = 0, which is one of the equilibria of the model. The
hydrostatic reconstruction also has the property to retain the positivity of the scheme it is
applied to, meaning that if the original scheme yields positive water heights (potentially
under some CFL condition), then the modified version of the scheme with hydrostatic
reconstruction also gives positive water heights.

To motivate the use of a reconstruction step, let us point to the main obstacles that
hinder the preservation of lakes at rest. The first one comes from the numerical diffusion
introduced by the upwinding of the numerical flux. Upwinding is a common feature in
finite volumes and doesn’t restrict to kinetic solvers, thus we can illustrate our point with
the simpler Rusanov flux, and the argument will remain the same for the kinetic flux.
Let (Ui)1≤i≤N define a discrete lake at rest, that is to say hi + zi = K and ui = 0 for
all 1 ≤ i ≤ N and for some K ∈ R. Estimating an upper bound of the waves velocities
using the global speed of upwinding a = maxi (|ui|+

√
ghi), the first component of the

flux difference used in the water height update is given by

Fh(Ui, Ui+1)− Fh(Ui−1, Ui) =
(hu)i+1 − (hu)i−1

2
− a

2
((hi+1 − hi)− (hi − hi−1))

=
a

2
(zi+1 − 2zi + zi−1) .

Since we don’t enforce any condition on the discretized bathymetry (zi)i, this term has
no reason to vanish. In fact this quantity is consistent at the continuous level with
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(a∆x2/2)∂2xxz which only cancels when the bathymetry profile is linear. As a consequence
the value of the updated water height h1i isn’t the same as the starting value h0i , whereas
a well balanced scheme would keep it constant in time. The second obstacle comes
from the discharge equation, for which a lake at rest implies that the pressure variation
balances exactly with the source term

∂x

(gh2
2

)
= −gh∂xz . (3.54)

Put in other words, the source term admits a conservative writing in the hydrostatic
equilibrium. This is not straightforward to get at the discrete level, and one of the
ingredients will be to introduce an interfacial value of the bathymetry defined by

zi+1/2 = max(zi, zi+1) . (3.55)

Interface i+ 1/2

hi

hi+1

hi+1/2− hi+1/2+

Figure 3.4.2: In standard schemes diffusion occurs even at hydrostatic equilibrium. In
this example the diffusion can be interpreted as the flow from the dashed area to the left
cell. The solution proposed by the hydrostatic reconstruction is to elevate the bathymetry
perceived at the interface so that the reconstructed water heights hi+1/2± are the same
when the free surface is flat (hi + zi = K for all i).

The idea of the hydrostatic reconstruction is to avoid the issue of diffusion by modifying
the water height in the left and right neighborhoods of each interface. For that matter
we use the interfacial bathymetry (3.55) and we reconstruct the water height as below

hi−1/2+ = (hi + zi − zi−1/2)+ , hi+1/2− = (hi + zi − zi+1/2)+ , (3.56)

with the notation (·)+ = max(0, ·). Figure 3.4.2 is helpful to visualize and understand
how this reconstruction works. Conceptually, we say that the water comprised vertically
between min(zi, zi+1) and max(zi, zi+1) is not able to jump and cross the interface i+1/2,
which has the benefit of preventing the unnecessary diffusion. In the example given in
Figure 3.4.2, we enforce this by raising the bathymetry in the right cell Ci+1 and by
reducing the water height hi+1 by the same amount, which gets us hi+1/2+. Another way
to look at this is that the numerical diffusion on the first component will now come from
the the free surface elevation h+ z rather than the water height. We are then able to
define the reconstructed vectors of conserved variables

∀1 ≤ i ≤ N, Ui+1/2− =

(
hi+1/2−
hi+1/2−ui

)
, Ui−1/2+ =

(
hi−1/2+

hi−1/2+ui

)
, (3.57)
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with the value of the velocity ui left unchanged. The numerical flux at interface i+1/2 is
now evaluated using these modified values and incorporates the source term contribution
as given below

Fi+1/2− = F (Ui+1/2−, Ui+1/2+) +
g

2

(
0

(hi)
2 − (hi+1/2−)

2

)
Fi−1/2+ = F (Ui−1/2−, Ui−1/2+) +

g

2

(
0

(hi)
2 − (hi−1/2+)

2

) , (3.58)

where F (UL, UR) is any consistent numerical flux. We recall the expression of the kinetic
flux that we are interested in and will use throughout the whole section

F (UL, UR) =

ˆ
R−

(
1
ξ

)
ξ M(UR, ξ)dξ +

ˆ
R+

(
1
ξ

)
ξ M(UL, ξ)dξ .

Remark 3.4.7. We have the following comments regarding the hydrostatic reconstruction.

1. When the bathymetry varies slowly, we recover a consistent discretization of the source
term −gh∂xz at interface i+ 1/2 by computing

g

2∆x
(h2i+1 − h2i+1/2+)−

g

2∆x
(h2i − h2i+1/2−) ,

which comes from the difference
(
(Fhu)i+1/2+ − (Fhu)i+1/2−

)
/∆x. In fact, if we take

for instance the configuration shown in Figure 3.4.2 we have

hi+1/2− = hi =⇒ g

2∆x
(h2i − h2i+1/2−) = 0 ,

and using that hi+1/2+ = hi+1+zi+1−zi in the case where hi+1 is greater than zi+1−zi
we can also write

g

2∆x
(h2i+1 − h2i+1/2+) =

g

2∆x
(hi+1 + hi+1/2+)(zi − zi+1)

= − g

2∆x
(2hi+1 + zi+1 − zi)(zi+1 − zi) .

This last expression is consistent with the desired term provided |zi+1 − zi| � hi+1.
It also suggests that the hydrostatic reconstruction tends to be less consistent near
wet/dry transitions. A second order extension of the hydrostatic reconstruction exists
and is known to give good results, see [6].

2. Notice that the reconstruction (3.56) of the water height is non conservative. This is
not a problem as the reconstructed values will only be used to compute the modified
numerical fluxes (3.58).

3. Equality (h+ z)i = (h+ z)i+1 implies hi+1/2− = hi+1/2+ and we can define hi+1/2 =
hi+1/2±. Therefore over lakes at rest the difference

g

2
(h2i − h2i+1/2−)−

g

2
(h2i − h2i−1/2+)
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comming from the source discretization is equal to the discrete pressure variation

−g
2
(h2i+1/2 − h2i−1/2) ,

and we recover the balance (3.54) at the continuous level.

4. In the hydrostatic reconstruction, the water is prevented from jumping the step
characterizing the bathymetry variation. This could be relaxed by allowing the water
to overcome a step ∆z ≥ 0 if the associated kinetic energy hu2/2 is greater than the
potential energy gh∆z required for the jump to happen. Such an argument was used by
Perthame and Simeoni in [58] at the kinetic level by incorporating reflections against
the staircase shaped bottom. We do not take into account this phenomena.

We end this section by recalling how to interpret the hydrostatic reconstruction at
the kinetic level. Introducing the reconstructed maxwellians Mi+1/2± =M(Ui+1/2±, ξ),
we recover the source term discretization by the mean of the following integrals

ˆ
R

(
1
ξ

)
(ξ − ui)(Mi −Mi+1/2−)dξ =

(
0

g
2(h

2
i − h2i+1/2−)

)
,

ˆ
R

(
1
ξ

)
(ξ − ui)(Mi −Mi−1/2+)dξ =

(
0

g
2(h

2
i − h2i−1/2+)

)
.

Hence the explicit kinetic scheme (3.20) with hydrostatic reconstruction can be interpreted
at the kinetic level as

f1−i − f0i
∆t

+
ξ

∆x

(
M0

i+1/2 −M0
i−1/2

)
+

1

∆x
(ξ − u0i )(M

0
i−1/2+ −M0

i+1/2−) = 0 . (3.59)

where we defined the upwinded reconstructed maxwellian

M0
i+1/2 = 1ξ<0M

0
i+1/2+ + 1ξ>0M

0
i+1/2− .

This scheme was extensively studied in [10], and in the following section we propose to
look at its implicit version.

3.4.5 Iterative scheme with hydrostatic reconstruction

We are interested by the implicit version of the kinetic scheme (3.59) with hydrostatic
reconstruction. It is given below at the kinetic level

f1−i − f0i
∆t

+
ξ

∆x

(
M1

i+1/2 −M1
i−1/2

)
+

1

∆x
(ξ − u1i )(M

1
i−1/2+ −M1

i+1/2−) = 0 , (3.60)

Having maxwellians in the implicit kinetic fluxes is important, as it allows to have a clear
definition of the hydrostatic reconstruction at the kinetic scale. We have the following
rewriting of (3.60) at the macroscopic level

U1
i = U0

i − σ(F1
i+1/2− −F1

i−1/2+) , (3.61)
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with the implicit modified fluxes F1
i−1/2+ and F1

i+1/2− defined following the formula (3.58)
at time ∆t. Neither (3.60) nor (3.61) can be solved analytically because of the underlying
nonlinearity. Instead, we propose an iterative approximation based on the Gauss-Jacobi
decomposition P = (1 + α)I and Q = αI − σL already used in the case without bathy-
metry. Dropping the discrete time exponent to make room for the iteration index k, the
iterative process reads

(1 + α)fk+1
i =M0

i + αMk
i − σξ(Mk

i+1/2 −Mk
i−1/2) + σ(ξ − uki )(M

k
i+1/2− −Mk

i−1/2+)

Mk+1
i =M

(
{Uf}k+1

i , ξ
)

Mk+1
i±1/2 = 1ξ<0M

(
{Uf}k+1

i±1/2+, ξ
)
+ 1ξ>0M

(
{Uf}k+1

i±1/2−, ξ
)

(3.62)

for 1 ≤ i ≤ N . We recall that for i = 1 (resp. i = N), the term M1/2− (resp. MN+1/2+)
makes use of a ghost value also subject to the hydrostatic reconstruction, and which was
previously denoted by the mean of vector σB[Mk]. In practice, we will implement the
macroscopic iterative process obtained by integrating (3.62) against (1, ξ)T and given by

(1 + α)Uk+1
i = U0

i + αUk
i − σ(Fk

i+1/2− −Fk
i−1/2+) . (3.63)

As in the case without hydrostatic reconstruction, the positivity is obtained under a CFL
condition, with the possibility to adapt the time step as we iterate. This time however,
we will not prove the positivity of the vector fk+1 but directly that of the water height
hk+1 at the macroscopic level.

Proposition 3.4.8. The water height hk+1
i obtained from the iterative process (3.63) is

positive if the CFL condition σ|ξ| ≤ α+M0
i /M

k
i holds for any ξ contained in suppMk.

Proof. We start by remarking that σ(ξ − uki )(M
k
i+1/2− −Mk

i−1/2+) is an odd function of
ξ around uki , hence its integral over ξ ∈ R vanishes and we have at the macroscopic level

(1 + α)hk+1
i =

ˆ
R

(
M0

i + αMk
i − σξ(Mk

i+1/2 −Mk
i−1/2)

)
dξ .

Thus it is enough to prove the positivity of the integrand, whose developed form is

M0
i + αMk

i − σξ
(
1ξ>0M

k
i+1/2− − 1ξ<0M

k
i−1/2+

)
+ σξ

(
1ξ>0M

k
i−1/2− − 1ξ<0M

k
i+1/2+

)
.

By definition of the water height reconstruction (3.56), we have the inequalities hki+1/2− ≤
hki and hki−1/2+ ≤ hki . As a consequence Mk

i+1/2− ≤Mk
i and Mk

i−1/2+ ≤Mk
i , which allows

us to get the following lower bound of the integrand

M0
i + αMk

i − σ|ξ|Mk
i .

If ξ does not belong to suppMk this quantity equals M0
i which is positive. Otherwise, it

is made positive under the condition σ|ξ| ≤ α+M0
i /M

k
i which concludes the proof.
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Next we propose an estimate for the kinetic entropy dissipation, which provides (3.63)
with a discrete entropy inequality from some rank. We recall that since we consider a
varying bottom, the kinetic entropy also depends on z. To ease the notations, we skip
the dependence in ξ and write

H(f, z) =
ξ2

2
f +

g2π2

6
f3 + gzf .

Proposition 3.4.9. The iterative kinetic scheme with hydrostatic reconstruction (3.62)
verifies the following kinetic entropy inequality

H(Mk+1
i , zi) ≤ (3.64)

H(M0
i , zi)− σ

(
G̃i+1/2− − G̃i−1/2+

)
+ (1 + α)∆t∂1H(Mk

i , zi)Qi

+ α
(
H(Mk

i , zi)−H(Mk+1
i , zi)

)
+ (1 + α)

g2π2

6
(2Mk

i +Mk+1
i )(Mk+1

i −Mk
i )

2

− g2π2

6
(2Mk

i +M0
i )(M

0
i −Mk

i )
2 ,

with Qi = (Mk+1
i −fk+1

i )/∆t a collision term satisfying the conservation constraints (3.5),
and where

G̃i+1/2− = ξ1ξ<0H(Mk
i+1/2+, zi+1/2) + ξ1ξ>0H(Mk

i+1/2−, zi+1/2) (3.65)

+ ξH(Mk
i , zi)− ξH(Mk

i+1/2−, zi+1/2)

+
(
∇η(Uk

i )
T

(
1
ξ

)
+ gzi

)
(ξMk

i+1/2− − ξMk
i + (ξ − uki )(M

k
i −Mk

i+1/2−)) ,

G̃i−1/2+ = ξ1ξ<0H(Mk
i−1/2+, zi−1/2) + ξ1ξ>0H(Mk

i−1/2−, zi−1/2) (3.66)

+ ξH(Mk
i , zi)− ξH(Mk

i−1/2+, zi−1/2)

+
(
∇η(Uk

i )
T

(
1
ξ

)
+ gzi

)
(ξMk

i−1/2+ − ξMk
i + (ξ − uki )(M

k
i −Mk

i−1/2+)) ,

with the entropy η(U) = hu2

2 + g
2h

2.

Remark 3.4.10. In Proposition 3.4.9 the difference G̃i+1/2− − G̃i−1/2+ is non conserva-
tive at the kinetic level, but becomes conservative when it is integrated over ξ ∈ R. This
is due do the fact that the last two lines of (3.65) and (3.66) are macroscopically zero,
see [10] Proposition 3.1. Furthermore, we reiterate the comments made in remark 3.4.6
which are to say that in (3.64) the term

(1 + α)∆t∂1H(Mk
i , zi)Qi

is macroscopically zero for the half-disk maxwellian and when integrated, the quantity

α
(
H(Mk

i , zi)−H(Mk+1
i , zi)

)
+ (1 + α)

g2π2

6
(2Mk

i +Mk+1
i )(Mk+1

i −Mk
i )

2

− g2π2

6
(2Mk

i +M0
i )(M

0
i −Mk

i )
2

will eventually become negative for k large enough.
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Proof (Proposition 3.4.9). We start to rewrite (3.62) as

(1 + α)(Mk+1
i −Mk

i ) = (3.67)
(M0

i −Mk
i )− σξ(Mk

i+1/2 −Mk
i−1/2) + σ(ξ − uki )(M

k
i+1/2− −Mk

i−1/2+) + (1 + α)∆tQi .

The strategy is to multiply (3.67) by ∂1H(Mk
i , zi) and to write

∂1H(Mk
i , zi)

[
(1 + α)(Mk+1

i −Mk
i )− (M0

i −Mk
i )− (1 + α)∆tQi

]
= (3.68)

− σ∂1H(Mk
i , zi)

[
ξ(Mk

i+1/2 −Mk
i−1/2) + δMi+1/2− − δMi−1/2+

]
,

where we defined

δMi+1/2− = (ξ − uki )(M
k
i −Mk

i+1/2−) , δMi−1/2+ = (ξ − uki )(M
k
i −Mk

i−1/2+) .

We apply Lemma 3.3.8 to the left hand side to get

∂1H(Mk
i , zi)

[
(1 + α)(Mk+1

i −Mk
i )− (M0

i −Mk
i )− (1 + α)∆tQi

]
= (3.69)

(1 + α)
(
H(Mk+1

i , zi)−H(Mk
i , zi)−

g2π2

6
(2Mk

i +Mk+1
i )(Mk+1

i −Mk
i )

2
)

−
(
H(M0

i , zi)−H(Mk
i , zi)−

g2π2

6
(2Mk

i +M0
i )(M

0
i −Mk

i )
2
)

− (1 + α)∆t∂1H(Mk
i , z)Qi .

Furthermore, an upper bound on the right hand side of (3.68) is obtained by applying
Proposition 3.1 from [10] which directly yields

−∂1H(Mk
i , zi)

[
ξ(Mk

i+1/2 −Mk
i−1/2) + δMi+1/2− − δMi−1/2+

]
≤ G̃i−1/2+ − G̃i+1/2− ,

(3.70)

with G̃i+1/2− and G̃i−1/2+ defined by (3.65) and (3.66). Injecting equality (3.69) and
inequality (3.70) into (3.68) we obtain the desired kinetic entropy inequality (3.64).

The question arising naturally is under what conditions can we ensure the convergence
of the sequence given by (3.63). The remainder of this section will be dedicated to
answering this question. Let us fix δ,K1,K2 some strictly positive values and consider
the set thereafter

D =
{
(h, q) ∈ R+ × R, δ ≤ h ≤ K1, |q| ≤ K2h

}
. (3.71)

We will see that there will be convergence if the time step ∆t is small enough and if
the solution remains in the set DN . This is somewhat restrictive, as we don’t have any
maximum principle for the Saint-Venant system. However we believe that for a reasonable
initial condition, the upper bounds h ≤ K1 and |u|≤ K2 are realized. On the other
hand, the lower bound on h means that there cannot be dry areas. This last restriction
seems to be required due to the choice of the Maxwellian and its lack of regularity near
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the border of the support. To establish our convergence result we will first introduce
some additional notations to restate the iterative process (3.62) under vector form. We
consider R± : R2N → R2N the two reconstruction operators as well as Mξ : R2N → RN

the projection onto the space of Maxwellians (hydrodynamic equilibrium at the kinetic
level) defined below for any U ∈ (R+ × R)N

R+(U) =


U1/2+

...
Ui−1/2+

...
UP−1/2+

 , R−(U) =


U3/2−

...
Ui+1/2−

...
UP+1/2−

 , Mξ(U) =


M(U1, ξ)

...
M(Ui, ξ)

...
M(UP , ξ)

 .

We also introduce the matrices from RN×N corresponding, in the right hand side of
(3.62), to the upwind linear transport and source term:

Aξ[U ] = 1ξ<0|ξ|(J − I) + (ξ I − diag(u)), Ji,j = δi,j−1

Bξ[U ] = 1ξ>0|ξ|(N − I)− (ξ I − diag(u)), Ni,j = δi,j+1

(3.72)

Note that there is a dependence on the macroscopic velocity u in the source term
contribution. Then the iteration (3.62) can be recasted at the macroscopic level for the
water height and the momentum as

(1 + α)hk+1 =

ˆ
R
φ(Uk, ξ)dξ, (1 + α)huk+1 =

ˆ
R
ξφ(Uk, ξ)dξ (3.73)

by using the kinetic operator φ defined for all U ∈ DN and ξ ∈ R as:

φ(U, ξ) = Mξ(U
n) +

[
αMξ + σAξ(Mξ ◦R+) + σBξ(Mξ ◦R−)

]
(U) (3.74)

Remark 3.4.11. The operators R± do not leave DN invariant in general since they can
lead to dry cells. To have the set DN preserved, we have to assume that in each cell the
water depth hi is greater that δ + max(zi+1/2 − zi, zi−1/2 − zi). Hence our approach will
be limited to sufficiently deep flows. In particular, no wet/dry transition can occur.

Remark 3.4.12. Note that φ is compactly supported on DN × Ξ, with the set Ξ defined
as:

Ξ =
⋃
U∈D

suppM(U, ·) ⊂
[
−K2 −

√
2gK1, K2 +

√
2gK1

]
(3.75)

We are now able to state our convergence result.

Proposition 3.4.13. Assume the iterative process (3.62) keeps the numerical approxi-
mation in DN . There exists a positive constant C(K1,K2, 1/δ) such that the scheme is
granted to converge under the CFL condition

∆t

∆x
≤ C(K1,K2, 1/δ) .
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Remark 3.4.14. In practice it seems that the lower bound on h from (3.71) is not needed.
In fact we later consider Thacker’s numerical test with wet/dry interfaces and despite
this the method seems to be working fine. A proof without this hypothesis is currently
under investigation.

The proof of Proposition (3.4.13) makes use of the following two lemmas, where ‖·‖
denotes the infinity vector norm on RN .

Lemma 3.4.15. There exists a constant L(K1,K2, 1/δ) such that any pair (U, Ũ) be-
longing to DN ×DN satisfies

ˆ
R

∥∥Mξ(U)−Mξ(Ũ)
∥∥dξ ≤ L(K1,K2, 1/δ)

(∥∥h− h̃
∥∥+ ∥∥q − q̃

∥∥) . (3.76)

In the next lemma, we have a Lipschitz property characterizing the reconstruction
operators Rh

±, R
hu
± valued respectively in RN

+ and RN , and defined for all i ∈ J1, P K as

Rh
±(U)i = R±(U)2i = hi∓1/2±, Rhu

± (U)i = R±(U)2i+1 = hi∓1/2±ui

Lemma 3.4.16. For any U, Ũ ∈ DN , we have∥∥Rh
±(U)−Rh

±(Ũ)
∥∥+ ∥∥Rhu

± (U)−Rhu
± (Ũ)

∥∥ ≤ (1 + 2K2)
∥∥h− h̃

∥∥+ ∥∥q − q̃
∥∥ (3.77)

All the proofs can be found in Appendix 3.B.

3.4.6 Numerical tests with varying bathymetry

We consider Thacker’s testcase, also known as the parabolic bowl testcase, taken from [26].
We plot the numerical solution at two times 1/2 and 1 in Figure 3.4.3. It seems that the
iterative scheme (α = 1, εtol = 10−9) whose stopping criterion is given by combining a
tolerance and an entropy condition converges despite two moving wet/dry transitions
characterizing the solution. Hence this gives hope to improve the convergence result by
dropping the lower bound on h from Proposition 3.4.13.

Numerical simulations were performed for the iterative kinetic scheme with an entropy-
only stopping criterion in conjunction with α = 0. We remind that the reason for taking
α = 0 with this specific stopping criterion was discussed in Section 3.4.2, and is related to
the ability of the iterative process to yield a consistent update after just a few iterations —
in fact as fiew as one. Unfortunately the results we obtained weren’t reliable. In fact
when refining the mesh, we were witnessing oscillations together with an increase of the
total energy despite reaching the maximum number of iterations allowed, which was fixed
at 5000. We believe that α > 0 could be an important condition to dissipate the energy,
but in the case of the entropy-only condition the numerical approximation then doesn’t
converge to the solution. We also remark that poor results are obtained on the discharge
profile at time t = 1 across all tested schemes. This corresponds to the time around
which the velocity changes sign so that the fluid starts going back in the other direction.
Moving to a second order accuracy method might help to circumvent this issue.
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Figure 3.4.3: Thacker’s testcase. From top to bottom: solution at time 1/2, solution at
time 1, convergence and efficiency curves.
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Figure 3.4.4: Dissipation of total energy is achieved by the considered iterative kinetic
schemes, but not by the explicit method. The light blue and green lines represent iterative
methods using a tolerance plus entropy-type stopping criterion, whereas the dark blue
line is for the entropy-only iterative scheme. The three dissipate the total energy.
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Given the efficiency curves shown in Figure 3.4.3, the explicit strategy seems preferable
in terms of the computational cost at a prescribed accuracy. However we have to stress
that among all the considered methods, the iterative kinetic scheme with half-disk
maxwellian is the only one to satisfy a discrete entropy inequality, at least when the
number of iterations is large enough. We remind that on the opposite, the explicit kinetic
scheme with hydrostatic reconstruction does not satisfy a discrete entropy inequality
without quadratic error term, however restrictive the CFL condition is, which is the
Proposition 3.8 from [10]. Hence the iterative scheme can be considered an improvement
over this aspect, and we illustrate this through a second numerical test where the explicit
strategy increases the total energy, unlike the iterative method. More precisely we
measure the variation of total energy in a configuration with a varying bottom, and
where the initial condition is given by a flat free surface and a constant velocity. Periodic
boundary conditions are used, and the results can be seen in Figure 3.4.4. Interestingly
all the iterative methods manage to dissipate the total energy, even the scheme using the
index maxwellian, for which we recall there is no proof of discrete entropy inequality. On
the contrary, the explicit kinetic scheme with half-disk maxwellian increases the energy
in the first few time steps, after what it decreases. The same goes for the explicit HLL
scheme.

3.5 Perspectives and conclusion

3.5.1 Towards 2D: exploring the iterative method

We generalize the iterative procedure to the case of the 2D Saint-Venant system

∂h

∂t
+
∂q

∂x
+
∂r

∂y
= 0

∂q

∂t
+

∂

∂x

(q2
h

+
g

2
h2
)
+

∂

∂y

(qr
h

)
= −gh∂z

∂x

∂r

∂t
+

∂

∂x

(qr
h

)
+

∂

∂y

(r2
h

+
g

2
h2
)
= −gh∂z

∂y

. (3.78)

A kinetic representation for System (3.78) with flat bathymetry takes the form

∂tf + ξ · ∇f =
1

ε
(M [f ]− f) (3.79)

with ξ ∈ R2 the kinetic velocity, f(t, x, y, ξ) ∈ R+ the density and M [f ] some hydrody-
namic equilibrium associated to f and verifying

∀n ∈ S2,
ˆ
R2

 1
ξ · n

(ξ · n)ξ

M(U, ξ)dξ =
(

h
F (U ;n)

)
∈ R4 . (3.80)

The quantity F (U ;n) is the flux in direction n associated to the Saint-Venant sys-
tem (3.78), and is detailed in (2.2) in dimensionless form. Defining c =

√
gh/2 the speed

of sound, a choice compatible with the moment relations (3.80) is given by setting

M(U, ξ) =
h

c2
χ
(ξ − V

c

)
,
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where the shape function χ defined on R2 has to satisfy

∀(i, j) ∈ {1, 2}2,
ˆ
R2

(
1

ωiωj

)
χ(ω)dω =

(
1
δij

)
.

Two possible choices can be found for instance in [1] and [5], and they correspond
respectively to 

χ1(ω) =
1

4π
1|ω|≤2

χ2(ω) =
1

12
1‖ω‖∞≤

√
3

. (3.81)

We will use χ1 throughout this section. Let us remark that when averaging this shape
function in one direction, say for instance along the ω2-axis, we get a function of ω1 that
coincide with the half-disk shape function used in the 1D case (3.10)

1

4π

ˆ
R
1|ω|≤2 dω2 =

1

4π

ˆ √
4−ω2

1

−
√

4−ω2
1

dω2 =
1

2π

√
4− ω2

1 =
1

π

√
1− ω2

1

4
.

A consequence is that applying the 2D scheme to an artificially 2D testcase (constant
along one direction) should yield the same result as using the 1D scheme (3.63) in the
truly one dimensional configuration.

The iterative method will be based on a BGK splitting of the kinetic representa-
tion (3.79). The first step corresponds to the collisions of particles, which amounts
to relax f towards a maxwellian sharing the same moment relations when integrating
against 1 and ξ. When taking the limit ε→ 0, the hydrodynamic equilibrium is reached
immediately, and it gives us the starting point f0 =M(U0

f , ξ). This data is then advected
during the transport step below{

∂tf + ξ · ∇f = 0
f(t = 0, x, y, ξ) =M(U0

f (x, y), ξ)
. (3.82)

We discretize it using an upwind approach. First we average (3.82) over a square cell Ci,j

∂tfi,j +
1

|Ci,j |

ˆ
∂Ci,j

f(t, x, y, ξ) ξ · n∂Ci,j
dσ = 0 . (3.83)

We use an upwind evaluation of the flux over the interfaces, such that (3.83) is approxi-
mated by

∂tfi,j +
ξ1∆y

|Ci,j |
(fi+1/2,j − fi−1/2,j) +

ξ2∆x

|Ci,j |
(fi,j+1/2 − fi,j−1/2) = 0 ,

with

fi+1/2,j = 1ξ1>0fi,j + 1ξ1<0fi+1,j , fi,j+1/2 = 1ξ2>0fi,j + 1ξ2<0fi,j+1 .



Perspectives and conclusion 135

Let us introduce the corresponding macroscopic fluxes

F (UL, UR) =

ˆ
R2

(
1
ξ

)
ξ1[1ξ1>0M(UL, ξ) + 1ξ1<0M(UR, ξ)]dξ ,

G(UL, UR) =

ˆ
R2

(
1
ξ

)
ξ2[1ξ2>0M(UL, ξ) + 1ξ2<0M(UR, ξ)]dξ .

For a given U0 ∈ R+ ×R2, the fully implicit scheme is defined by setting U1 equal to the
solution U of

Ui,j − U0
i,j

∆t
+
F (Ui,j , Ui+1,j)− F (Ui−1,j , Ui,j)

∆x
+
G(Ui,j , Ui,j+1)−G(Ui,j−1, Ui,j)

∆y
= 0 .

In the definition of the numerical fluxes F,G integrals are performed over half-planes
corresponding to the natural upwinding introduced at the kinetic level. Since we are not
integrating over R2, we cannot make use of the moment relations (3.80). Let us define

α± = arcsin
(

min
(
1, max

(
± 1,

V1
2c

)))
, β± = arcsin

(
min

(
1, max

(
± 1,

V2
2c

)))
,

we have the following formulas involved in the computation of the numerical flux F
ˆ
ξ1>0

(
1
ξ2

)
ξ1M(U, ξ)dξ = 2h

π

(
1
V2

)[V1
2

(
θ +

sin(2θ)
2

)
− 2c

3
cos3 θ

]θ=α+

θ=α−
,

ˆ
ξ1>0

ξ21M(U, ξ)dξ = h

π
(V 2

1 + 4c2)
[
θ +

sin(2θ)
2

]α+

α−
− hc2

π

[sin(4θ)
4

+ 2 sin(2θ) + 3θ
]α+

α−
.

Integrals over the left half plane ξ1 < 0 are obtained from the previous ones, only
substituting max by min and vice versa in the bounds α±. As for the numerical flux G,
there holds similarly
ˆ
ξ2>0

(
1
ξ1

)
ξ2M(U, ξ)dξ = 2h

π

(
1
V1

)[V2
2

(
θ +

sin(2θ)
2

)
− 2c

3
cos3 θ

]β+

β−
,

ˆ
ξ2>0

ξ22M(U, ξ)dξ = h

π
(V 2

2 + 4c2)
[
θ +

sin(2θ)
2

]β+

β−
− hc2

π

[sin(4θ)
4

+ 2 sin(2θ) + 3θ
]β+

β−
.

A steady state for the 2D Saint-Venant system necessarily satisfies ∇ · (hV ) = 0. We
focus on the artificially 2D case where the quantities remain constant along the y-axis,
and where we enforce

hVx = K ∈ R, hVy = 0 . (3.84)

The momentum equation results in the following definition of the bathymetry

∇ · (hV ⊗ V ) + gh∇ · ((h+ z) I2) = 0 =⇒ g∇(h+ z) = −(V · ∇)V = −1

2
∂x

(
V 2
x

0

)
.

Integrating we get

g(h+ z) = K ′ − 1

2
V 2
x =⇒ z = K ′′ − h− K2

2gh2
. (3.85)
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We work on the square domain [0, 1]× [0, 1] with periodic boundary condition, and the
initial condition giving rise to a steady flow is set to

h(x) = 1 + 1[ 1
4
, 3
4
](x)(1 + sin(8π(x− 1/2)− π/2)), K = 1/2, g = 1 ,

in addition to the constraints (3.84)–(3.85) on V and z.
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Figure 3.5.1: Left: convergence curves for different schemes. Two stopping criteria for
the iterative schemes are compared: tolerance and total energy dissipation, and total
energy dissipation only. Right: efficiency curve. Note that the x-axis has decreasing
values for the L2 error on the water height.

We plot the results in Figure 3.5.1. All the schemes make use of the first order
hydrostatic reconstruction (3.55)–(3.58) to handle the bathymetry. We also compare to
a non kinetic scheme making use of the HLL numerical flux. As in the one dimensional
case, we see that the iterative scheme with tolerance criterion is less efficient. On the
otherhand using an entropy-only stopping criterion in conjunction to α = 0 is quite
competitive.

3.5.2 Conclusion

In this work we have investigated the case of implicit kinetic schemes for the Saint-Venant
system. Such schemes provide us with the framework to obtain a fully discrete entropy
inequality without restriction on the time step. In practice, we have seen that it is
possible to rewrite the implicit update explicitly when dealing with a flat bathymetry (no
source term) and for a simplified choice of maxwellian. Knowing explicitly the expression
of the solution on the linear system (written at the kinetic level) is the best thing one
can hope for when it comes to implicit solvers applied to a nonlinear problem. Yet, the
quadratic algorithmic complexity makes it less efficient to use this scheme, at least in the
numerical experiments considered in the document.

Dealing with a varying bathymetry is achieved by the mean of the hydrostatic
reconstruction, but this renders the scheme nonlinear at the kinetic level and we are no
more able to compute the update explicitly. Instead we turn to an iterative strategy based
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on a Gauss-Jacobi decomposition of the operator, and a CFL condition is required to
obtain the convergence of the method. To prove this latter point we had to make strong
assumptions on the boundedness of the solutions, but we believe it could be relaxed at
least to cases with dry areas given the numerical results of Thacker’s testcase. Most
importantly, we were able to numerically validate the dissipation of total energy by the
iterative kinetic scheme with hydrostatic reconstruction, which is a true improvement over
the explicit case. In a future work we plan to extend this study to the two dimensional
case, and already experimented an iterative kinetic scheme in this context.





Appendix

3.A Expression of the numerical updates
— Proof of Lemma 3.3.11 —

We have

I =

ˆ
xk

(1 + x)k+1
dx =

ˆ
xk

(1 + x)k
1

1 + x
dx =

ˆ (
1− x

1 + x

)k 1

1 + x
dx .

Performing the change of variable y = 1− 1/(1 + x) leads to

I =

ˆ
yk(1− y)

dy
(1− y)2

=

ˆ
yk − 1

1− y
+

1

1− y
dy .

Now we use the formula yk − 1 = (y − 1)(yk−1 + yk−2 + . . .+ y + 1), and we obtain

I = −
ˆ k−1∑

l=0

yl dy − ln(|1− y|) + C = ln(|1 + x|)−
k∑

l=1

yl

l
+ C ′

for some (C,C ′) ∈ R2.

— Proof of Lemma 3.3.12 —

Yet again we make the chage of variable y = x/(1 + x) = 1− 1/(1 + x), and we have

I =

ˆ ( x

1 + x

)k
dx =

ˆ
yk

(1− y)2
dy =

ˆ ( yk − 1

(1− y)2
+

1

(1− y)2

)
dy ,

and we use the formula yk − 1 = (y − 1)(yk−1 + yk−2 + . . .+ y + 1) to get the following

I =−
( ˆ k−1∑

l=0

yl

1− y
dy
)
+

1

1− y
+ C = −

ˆ k−1∑
l=0

yl − 1

1− y
dy −

ˆ
1

1− y

k−1∑
l=0

dy + x+ C

=

ˆ k−1∑
l=1

yl − 1

y − 1
dy + k ln(|1− y|) + x+ C ′ =

ˆ k−1∑
l=1

l−1∑
p=0

yp dy − k ln(|1 + x|) + x+ C ′

=
k−1∑
l=1

l

ˆ
yk−1−l dy − k ln(|1 + x|) + x+ C ′ =

k−1∑
l=1

l
yk−l

k − l
− k ln(|1 + x|) + x+ C ′′ ,

139
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for some (C,C ′, C ′′) ∈ R3.

— Proof of Lemma 3.3.13 —

We begin by performing the change of variable y = 1− 1
1+x

ˆ
xk+1

(1 + x)k
dx =

ˆ
yk
( 1

1− y
− 1
) dy
(1− y)2

=

ˆ
yk

(1− y)3
dy −

ˆ
yk

(1− y)2
dy .

Making use of yk − 1 = (y− 1)(yk−1 + yk−2 + · · ·+ 1) as before, we remark the following
relation for k ≥ 1

yk

1− y
=
yk − 1

1− y
+

1

1− y
= −

k−1∑
p=0

yp +
1

1− y
.

Dividing this by 1− y leads to

yk

(1− y)2
= −

k−1∑
p=0

yp

1− y
+

1

(1− y)2
= −

k−1∑
p=0

(yp − 1

1− y
+

1

1− y

)
+

1

(1− y)2

=

( k−1∑
p=1

p−1∑
q=0

yq
)
1k≥2 −

k

1− y
+

1

(1− y)2
.

Iterating this step one more time we find

yk

(1− y)3
=

( k−1∑
p=1

p−1∑
q=0

yq

1− y

)
1k≥2 −

k

(1− y)2
+

1

(1− y)3

=

( k−1∑
p=1

p−1∑
q=0

yq − 1

1− y
+

1

1− y

)
1k≥2 −

k

(1− y)2
+

1

(1− y)3

=

(
−

k−1∑
p=2

p−1∑
q=1

q−1∑
r=0

yr
)
1k≥3 +

k(k − 1)

2(1− y)
1k≥2 −

k

(1− y)2
+

1

(1− y)3
.

As a consequence we get the following primitives up to a constant

ˆ
yk

(1− y)2
dy =

( k−1∑
p=1

p∑
q=1

yq

q

)
1k≥2 + k ln|1− y|+ 1

(1− y)

ˆ
yk

(1− y)3
dy =

(
−

k−1∑
p=2

p−1∑
q=1

q∑
r=1

yr

r

)
1k≥3 −

k(k − 1)

2
ln|1− y|1k≥2

− k

(1− y)
+

1

2(1− y)2
.
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Finally, we simplify the double and triple sums

k−1∑
p=1

p∑
q=1

yq

q
=

k−1∑
q=1

k−1∑
p=q

yq

q
=

k−1∑
q=1

(k − q)
yq

q
.

From this we also deduce that

k−1∑
p=2

p−1∑
q=1

q∑
r=1

yr

r
=

k−1∑
p=2

p−1∑
r=1

(p− r)
yr

r

=
k−2∑
p=1

p∑
r=1

(p− r + 1)
yr

r
=

k−2∑
r=1

k−2∑
p=r

(p− r + 1)
yr

r

=

k−2∑
r=1

((k − r − 1)(k + r − 2)

2
+ (k − r − 1)(1− r)

)yr
r

=

k−2∑
r=1

(k − r − 1)
k − r

2

yr

r
.

As a conclusion we have the expression

ˆ
xk+1

(1 + x)k
dx =

(
−

k−2∑
r=1

(k − r − 1)
k − r

2

yr

r

)
1k≥3 −

(
k(k − 1)

2
ln|1− y|

)
1k≥2

− k + 1

(1− y)
+

1

2(1− y)2
−
( k−1∑

q=1

(k − q)
yq

q

)
1k≥2 − k ln|1− y|+ C .

for some C ∈ R and where we recall y = x/(x+ 1) = 1− 1/(x+ 1).

— Proof of Proposition 3.3.10 —

We recall that the index maxwellian over cell 1 ≤ j ≤ N writes

M0
j =

1

2
√
3

√
2h0j
g

1aj≤ξ≤bj .

Hence to do the proof, it is sufficient to show that for j ≥ i

ˆ
R−

(−σξ)j−i

(1− σξ)j−i+1
1aj≤ξ≤bj dξ = (Ah)i,j ,

ˆ
R−

ξ (−σξ)j−i

(1− σξ)j−i+1
1aj≤ξ≤bj dξ = − 1

σ
(Ahu)i,j ,

and that for j ≤ i

ˆ
R+

(σξ)i−j

(1 + σξ)i−j+1
1aj≤ξ≤bj dξ = (Bh)i,j ,

ˆ
R+

ξ (σξ)i−j

(1 + σξ)i−j+1
1aj≤ξ≤bj dξ = 1

σ
(Bhu)i,j .
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Since the arguments are similar, we only treat the first integral. We have

I =

ˆ
R−

(−σξ)j−i

(1− σξ)j−i+1
1aj≤ξ≤bj dξ =

ˆ min(0,bj)

min(0,aj)

(−σξ)j−i

(1− σξ)j−i+1
dξ

The change of variable x = −σξ then leads to

I =
1

σ

ˆ −min(0,aj)σ

−min(0,bj)σ

xj−i

(1 + x)j−i+1
dx

We conclude by applying Lemma 3.3.11 for the value k = j − i.

3.B Convergence of the HR iterative kinetic scheme
Here we give the proof of convergence of the iterative kinetic scheme with hydrostatic
reconstruction (3.62).

— Proof of Lemma 3.4.15 —

We start by computing the gradient of the Maxwellian with respect to h and hu:

∀U ∈ R+ × R, ∇(h,hu)M(U, ξ) =
1

ghπ

(
gh− u(ξ − u)

(ξ − u)

)
1ξ∈suppM(U,·)√
2gh− (ξ − u)2

More specifically, if U belongs to the set D, the greatest derivative in absolute value
between |∂hM | and |∂huM | is bounded as

∥∥∇M(U, ξ)
∥∥
∞ ≤ 1

π
L(K1,K2, 1/δ)

1ξ∈suppM(U,·)√
2gh− (ξ − u)2

(3.86)

where the constant L(K1,K2, 1/δ) is equal to

L(K1,K2, 1/δ) = max
(
1 +

K2
√
2gK1

gδ
,

√
2gK1

gδ

)
. (3.87)

We remark that the upper bound (3.86) is integrable, and by performing the change of
variable cos θ = (ξ − u)/

√
2gh we find
ˆ u+

√
2gh

u−
√
2gh

dξ√
2gh− (ξ − u)2

= π .

It follows directly that for any pair (U, Ũ) ∈ D ×D one has
ˆ
R

∣∣M(U, ξ)−M(Ũ , ξ)
∣∣dξ ≤ L(K1,K2, 1/δ)

(∣∣h− h̃
∣∣+ ∣∣q − q̃

∣∣)
and thus we have (3.76) by taking the infinity norm over the mesh cells.
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— Proof of Lemma 3.4.16 —

Let U and Ũ be in DN , and let i ∈ J1, P K. It is enough to show the two inequalities∣∣hi∓1/2± − h̃i∓1/2±
∣∣ ≤ ∣∣hi − h̃i

∣∣∣∣qi∓1/2± − q̃i∓1/2±
∣∣ ≤ ∣∣qi − q̃i

∣∣+ 2K2

∣∣hi − h̃i
∣∣

The first inequality is obvious if both hi and h̃i are smaller or greater that max(zi, zi∓1)−zi
at the same time. In fact in the first case both reconstructed water heights are zero,
whereas in the second one, their difference is equal to hi − h̃i. There only remains the
case

hi < max(zi, zi∓1)− zi < h̃i

implying that∣∣hi∓1/2± − h̃i∓1/2±
∣∣ = h̃i∓1/2± = h̃i + zi − max(zi, zi∓1) ≤ h̃i − hi

Next the second inequality on the discharge is obtained by remarking that∣∣qi∓1/2± − q̃i∓1/2±
∣∣ = ∣∣hi∓1/2±(ui − ũi) + ũi(hi∓1/2± − h̃i∓1/2±)

∣∣
≤ hi

∣∣ui − ũi
∣∣+K2

∣∣hi − h̃i
∣∣ = ∣∣qi − (hi − h̃i)ũi − q̃i

∣∣+K2

∣∣hi − h̃i
∣∣

≤
∣∣qi − q̃i

∣∣+ 2K2

∣∣hi − h̃i
∣∣

where we used that hi∓1/2± ≤ hi as well as the first inequality to get the second line. We
conclude by summing the two inequalities and by taking the maximum with respect to
index i.

— Proof of Proposition 3.4.13 —

The iterative process converges as soon as we have a contraction property on the
update for some ∆t > 0 sufficiently small, that is to say if for any U, Ũ ∈ DP there holds∥∥∥∥ˆ

Ξ

φ(U, ξ)− φ(Ũ , ξ)

1 + α
dξ
∥∥∥∥+ ∥∥∥∥ˆ

Ξ

ξ(φ(U, ξ)− φ(Ũ , ξ))

1 + α
dξ
∥∥∥∥ < ∥∥h− h̃

∥∥+ ∥∥q − q̃
∥∥
(3.88)

with ‖·‖ the infinity norm on RP . We have the following bound:∥∥∥∥ˆ
Ξ
φ(U, ξ)− φ(Ũ , ξ)dξ

∥∥∥∥ ≤ α
∥∥h− h̃

∥∥ (3.89)

+ σ

ˆ
Ξ

∥∥Aξ(Mξ ◦R+(U)−Mξ ◦R+(Ũ))
∥∥dξ

+ σ

ˆ
Ξ

∥∥Bξ(Mξ ◦R−(U)−Mξ ◦R−(Ũ))
∥∥dξ

From the definition (3.72) of matrices Aξ,Bξ, we remark that the two component-wise
inequalities

|Aξ| ≤ (K2 +
√

2gK1)(J + 2I) +K2 I,
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|Bξ| ≤ (K2 +
√
2gK1)(N + 2I) +K2 I

are true for any ξ ∈ Ξ. Introducing ||| · ||| the matrix subordinate norm associated to ‖·‖,
we then get that there exist a real number ρ(K1,K2) such that

|||Aξ|||, |||Bξ||| ≤ ρ(K1,K2) . (3.90)

Hence we can write that∥∥Aξ(Mξ ◦R+(U)−Mξ ◦R+(Ũ))
∥∥ ≤ ρ

∥∥(Mξ ◦R+(U)−Mξ ◦R+(Ũ))
∥∥∥∥Bξ(Mξ ◦R−(U)−Mξ ◦R−(Ũ))

∥∥ ≤ ρ
∥∥(Mξ ◦R−(U)−Mξ ◦R−(Ũ))

∥∥
Combining lemmas 3.4.15 and 3.4.16 together, it then follows that

ˆ
Ξ

∥∥Aξ(Mξ ◦R+(U)−Mξ ◦R+(Ũ))
∥∥dξ ≤ Lρ

(∥∥q − q̃
∥∥+ (1 + 2K2)

∥∥h− h̃
∥∥)

ˆ
Ξ

∥∥Bξ(Mξ ◦R−(U)−Mξ ◦R−(Ũ))
∥∥dξ ≤ Lρ

(∥∥q − q̃
∥∥+ (1 + 2K2)

∥∥h− h̃
∥∥)

where the constant L was defined in (3.87). Plugging this in (3.89) leads to:∥∥∥∥ˆ
Ξ
φ(U, ξ)− φ(Ũ , ξ)dξ

∥∥∥∥ ≤ α
∥∥h− h̃

∥∥+ 2σLρ(1 + 2K2)
(∥∥q − q̃

∥∥+ ∥∥h− h̃
∥∥) (3.91)

In a very similar fashion, we can find a constant L′(K1,K2, 1/δ) such that the second
term on the left handside of (3.88) satisfies∥∥∥∥ˆ

Ξ
ξ(φ(U, ξ)− φ(Ũ , ξ))dξ

∥∥∥∥ ≤ α
∥∥q − q̃

∥∥ (3.92)

+ 2σL′ρ(1 + 2K2)
(∥∥q − q̃

∥∥+ ∥∥h− h̃
∥∥)

Indeed we can just chose L′ = (K2 +
√
2gK1)L(K1,K2, 1/δ) for (3.92) to be true, since

we have the inclusion from remark 3.4.12. Summing the right handside of (3.91) and
(3.92), we find the following upper bound for the left handside of (3.88):(

α+ 2σ(L+ L′)ρ(1 + 2K2)
)(∥∥h− h̃

∥∥+ ∥∥q − q̃
∥∥)

Hence the contraction property (3.88) is granted provided we have

∆t

∆x
<

1

2(L+ L′)ρ(1 + 2K2)
.

This is precisely the CFL condition we were looking for.

3.C Assembling matrices with Numpy
We make use of the numpy library.

1 import numpy as np
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The implementation is fully vectorized, meaning no for loops are used. The matrix (Ah)
is assembled using the recursive definition (3.39) as below.

1 def AssembleMatrix_Ah(X):
2 # Input: array X
3 N = X.shape[0]
4 Y = X/(1+X)
5

6 Ah = np.zeros((N, N))
7 #Extract upper triangular indices
8 I, J = np.triu_indices(N, 0)
9 Ah[I,J] = np.log(np.abs(1 + X))[J]

10

11 S = np.zeros((N, N))
12 #Extract upper triangular indices , excluding the diagonal
13 I, J = np.triu_indices(N, 1)
14 S[I,J] = (Y[J]**(J-I))/(J-I)
15 #Cumulative sum along every column (upward direction)
16 Ah[I,J] -= np.cumsum(S[::-1,:], axis=0)[N-I-1,J]
17

18 return Ah

Likewise the matrix (Ahu) is assembled using the recursive definition (3.41).
1 def AssembleMatrix_Ahu(X):
2 # Input: array X
3 N = X.shape[0]
4 Y = X/(1+X)
5

6 #Extract upper triangular indices
7 I, J = np.triu_indices(N, 0)
8 K = np.zeros((N, N))
9 K[I,J] = X[J] - (J-I+1)*np.log(np.abs(1+X))[J]

10

11 #Extract upper triangular indices , excluding the diagonal
12 I, J = np.triu_indices(N, 1)
13 UA = np.zeros((N, N))
14 UA[I,J] = Y[J]**(J-I)
15 UA = np.cumsum(UA[::-1,:], axis=0)[::-1,:]
16

17 VA = np.zeros((N, N))
18 VA[I,J] = (Y[J]**(J-I))/(J-I)
19 VA = np.cumsum(VA[::-1,:], axis=0)[::-1,:]
20 VA[I,J] *= J-I+1 #Multiply by l(j,i)
21

22 Ahu = VA - UA + K
23 return Ahu

For (Bh) and (Bhu) we use respectively (3.40) and (3.42).
1 def AssembleMatrix_Bh(X):
2 # Input: array X
3 N = X.shape[0]
4 Y = X/(1+X)
5

6 Bh = np.zeros((N, N))



146 Implicit kinetic schemes and iterative methods

7 #Extract lower triangular indices
8 I, J = np.tril_indices(N, 0)
9 Bh[I,J] = np.log(np.abs(1 + X))[J]

10

11 S = np.zeros((N, N))
12 #Extract upper triangular indices , excluding the diagonal
13 I, J = np.tril_indices(N, -1)
14 S[I,J] = (Y[J]**(I-J))/(I-J)
15 #Cumulative sum along every column (downward direction)
16 Bh[I,J] -= np.cumsum(S, axis=0)[I,J]
17

18 return Bh

1 def AssembleMatrix_Bhu(X):
2 # Input: array X
3 N = X.shape[0]
4 Y = X/(1+X)
5

6 #Extract lower triangular indices
7 I, J = np.tril_indices(N, 0)
8 K = np.zeros((N, N))
9 K[I,J] = X[J] - (I-J+1)*np.log(np.abs(1+X))[J]

10

11 #Extract upper triangular indices , excluding the diagonal
12 I, J = np.tril_indices(N, -1)
13 UB = np.zeros((N, N))
14 UB[I,J] = Y[J]**(I-J)
15 UB = np.cumsum(UB, axis=0)
16

17 VB = np.zeros((N, N))
18 VB[I,J] = (Y[J]**(I-J))/(I-J)
19 VB = np.cumsum(VB, axis=0)
20 VB[I,J] *= (I-J+1) #Multiply by l(i,j)
21

22 Bhu = VB - UB + K
23 return Bhu

The full code can be found at the following address:
https://gitlab.com/mrigal/swimpy-1d

https://gitlab.com/mrigal/swimpy-1d
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Résumé : Dans cette thèse nous étudions des discrétisations en temps implicites pour le
système de Saint-Venant. Premièrement nous considérons la question du régime bas Froude
dans le cas bidimensionnel. L’aptitude à transitionner vers le régime limite de manière
transparente pose principalement deux problèmes, à savoir le coût de calcul associé à la
gestion des échelles rapides et la bonne description de la dynamique asymptotique. Le
premier point est traditionnellement traité par l’utilisation d’intégrateurs en temps implicite-
explicite, tandis que le second nécessite d’avoir une erreur numérique uniformément bornée
par rapport au paramètre d’échelle. En particulier, il est important pour les états quasi
incompressibles de satisfaire une certaine forme de stabilité. Ceci motive le raffinement
d’un critère existant permettant de prédire si un schéma est précis à bas nombre de Froude,
ce que nous validons par l’intermédiaire d’exemples numériques. De plus les schémas
semi-implicites proposés sont basés sur un splitting d’onde propice à la préservation de
l’équilibre hydrostatique.
Nous nous concentrons ensuite sur des schémas cinétiques pour le système de Saint-
Venant unidimensionnel. Dans le cas d’une bathymétrie plate, nous obtenons un schéma
entièrement implicite préservant la positivité de la hauteur d’eau et admettant une inégalité
d’entropie discrète sans aucune restriction sur le pas de temps. Une version simplifiée de
ce schéma permet de réécrire explicitement la mise-à-jour au niveau macroscopique. Afin
de prendre en compte les fonds variables, nous examinons une stratégie itérative faisant
appel à la reconstruction hydrostatique. Cette approche requiert une condition CFL pour
converger, en échange de quoi nous obtenons une mise-à-jour positive avec une inégalité
d’entropie discrète qui dissipe toujours l’énergie du système. Ceci est une amélioration par
rapport à la version entièrement explicite du schéma, qui peut parfois accroître l’énergie.
Nous effectuons des tests numériques pour évaluer l’efficacité et les aspects qualitatifs des
schémas proposés.

Mots-clés : équations de Saint-Venant, méthodes semi-implicites, schémas cinétiques,
régime bas Froude, méthodes préservant l’asymptotique, volumes finis, inégalité d’entropie.
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