
HAL Id: tel-03988184
https://hal.science/tel-03988184

Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Word Meaning Representation and Interpretation in
Vector Space

Marianna Apidianaki

To cite this version:
Marianna Apidianaki. Word Meaning Representation and Interpretation in Vector Space. Computer
Science [cs]. Université Toulouse III - Paul Sabatier, 2022. �tel-03988184�

https://hal.science/tel-03988184
https://hal.archives-ouvertes.fr


MARIANNA APIDIANAKI

HABILITATION À DIRIGER DES RECHERCHES EN INFORMATIQUE

Word Meaning Representation and Interpretation
in Vector Space

Jury

Marco Baroni, ICREA, Universitat Pompeu Fabra, Rapporteur

Marie-Catherine de Marneffe, FNRS, UCLouvain, The Ohio State University, Rapporteure

Emmanuel Morin, Nantes University, Rapporteur

Philippe Blache, CNRS, Aix-Marseille Université, Examinateur
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Abstract

The analysis and representation of lexical meaning is a central topic in computational linguistics re-
search, with both theoretical and application-oriented interest. It allows to study phenomena related to
language acquisition and semantic modelling, and to improve the inference and common-sense reason-
ing capabilities of computational systems. The work presented in this thesis covers a period of time
where the field of computational linguistics has been marked by an important paradigm shift due to
the wide adoption of neural language models, which have progressively replaced older methods for
semantic modelling.

This paradigm shift has greatly impacted my research and constitutes the central axis of this thesis. The
content is organised in a way that highlights important aspects of this transition, and which puts forward
the methodological changes that have been imposed. The introduction of deep learning models in the
field of computational semantic analysis has brought about new research questions, but older questions
also remain relevant and are now being studied from a different angle. Moreover, the recent area of
interpretability, which attempts to explain the success of neural models, brings a novel perspective to
open questions related to semantics.

After explaining the transition to neural model representations in an introductory chapter, I then propose
a systematic comparison of older and more recent studies that I conducted individually, and in collabo-
ration with students and colleagues. These have been selected with the aim to put side by side the older
and novel methodology that has been used for addressing semantics-related questions, including lexical
polysemy and clusterability, in-context paraphrasing, and the modelling of abstract semantic notions
such as scalar adjective intensity. The last chapter of this thesis includes a discussion of the limitations
of current methodology, and a presentation of future perspectives aimed at addressing these shortcom-
ings. These include the grounding of semantic knowledge into different modalities, the development of
adversarial methods for improving the robustness and generalisation capability of neural models, and
the development of interpretation methods for capturing causality and explaining model behaviour.
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Résumé

L’analyse et la représentation des sens lexicaux sont des sujets de recherche centraux en linguistique
computationnelle, qui présentent de l’intérêt tant théorique que pratique. Elles permettent d’étudier
des phénomènes liés à l’acquisition des langues et à la modélisation sémantique, et d’améliorer les
capacités d’inférence et de raisonnement des systèmes computationnels. Le travail présenté dans cette
thèse couvre une période de temps où le domaine de la sémantique computationnelle a été marqué
par un changement de paradigme important dû à l’adoption des modèles de langue neuronaux, qui ont
progressivement remplacé les méthodes traditionnelles de modélisation sémantique.

Ce changement de paradigme a eu un grand impact sur ma recherche et constitue l’axe central de
cette thèse, dont le contenu est organisé de manière à mettre en valeur les aspects importants de
cette transition, et les changements méthodologiques qui ont été imposés. L’introduction de modèles
d’apprentissage profond dans le champ de l’analyse sémantique computationnelle a suscité de nouvelles
questions de recherche, néanmoins celles étudiées auparavant restent pertinentes et sont actuellement
explorées sous un angle différent. En outre, le nouveau domaine de l’interprétabilité qui vise à expliquer
les succès des modèles neuronaux, amène une nouvelle perspective aux questions liées à la sémantique.

Suite à un chapitre d’introduction qui explique la transition vers les représentations neuronales, je
propose une comparaison systématique d’études que j’ai menées pendant cette période à titre indi-
viduel, et en collaboration avec mes étudiant(e)s et collègues. Ces travaux ont été sélectionnés avec
l’objectif de juxtaposer la méthodologie utilisée auparavant et la méthodologie actuelle pour l’analyse
de la sémantique, comme la polysémie lexicale et la clusterabilité des sens, la substitution lexicale en
contexte, et la modélisation de notions sémantiques abstraites comme l’intensité des adjectifs scalaires.
Le dernier chapitre de cette thèse comporte une discussion des limites de la méthodologie actuelle, et
une présentation de perspectives de recherche futures destinées à pallier ces faiblesses. Celles-ci inclu-
ent l’ancrage des connaissances sémantiques dans des modalités variées, le développement d’attaques
contradictoires dans le but d’améliorer la robustesse et la capacité de généralisation des modèles neu-
ronaux, et le développement de méthodes d’interprétation visant à capter la notion de causalité et à
expliquer le comportement des modèles.
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Chapter 1

Introduction

1.1 Computational Approaches to Meaning Representation

Meaning representation and inference are core mechanisms that allow us humans to reason about our
experiences and the world. Children acquire these skills early in life through exposure to language in
a situated perceptual context. They know, for example, that cats are animals, and that a fun game is
worth playing. Devising computational systems endowed with human-like language understanding ca-
pabilities has been a long-term goal in linguistics, cognitive science and artificial intelligence. From a
theoretical perspective, computational models of meaning are of enormous interest: Leveraging knowl-
edge from large amounts of data, they provide insights into how humans themselves perceive meaning.
Meaning representation is also at the center of applied research, since any computational system that
needs to be “smart” and understand language in order to perform specific tasks (e.g., question answer-
ing, translation or summarization) should possess semantic reasoning and inference skills.

My research addresses the meaning representation and reasoning capabilities of computational systems,
with specific focus on lexical meaning. This domain has seen a big paradigm shift in recent years. We
have witnessed an important change from traditional distributional models which encoded meaning by
keeping track of words’ co-occurrences in texts, to neural language models which encode this type of
knowledge using self-supervision, through exposure to huge volumes of text. These deep artificial neu-
ral networks (ANNs) are currently the dominant paradigm in artificial intelligence and natural language
processing. Their architecture is inspired by the neural structure of the brain with artificial neurons
(processing units) organised in multiple layers, allowing to form representations at different levels of
abstraction (LeCun et al., 2015). These models learn to identify and encode rich knowledge through
complex calculations during exposure to raw text data during training, which they can subsequently
refine when fine-tuned for specific tasks. The traditional Natural Language Processing (NLP) pipeline
which included grammatical, morphological, syntactic and semantic processing tasks (such as part of
speech tagging, parsing and word sense disambiguation) has become obsolete, since neural models can
learn to perform the same tasks in a black-box manner, without explicit (pre-)processing and feature
engineering steps.

My research has followed this path from dedicated lexical semantic analysis modules for specific NLP
applications, to interpretation studies aimed at deciphering the semantic knowledge encoded in neural
networks and enhancing its quality. My PhD and early research work focused on word sense induction
and disambiguation (WSI and WSD) for cross-lingual applications (Apidianaki, 2006, 2007, 2008b,
2009b,a, 2011, 2012; Apidianaki and Gong, 2015), specifically Machine Translation (MT) (Apidianaki
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et al., 2012b) and the integration of semantic knowledge in MT evaluation metrics (Apidianaki and He,
2010; Marie and Apidianaki, 2015), but also the use of cross-lingual WSD techniques for enhancing
tasks such as Bilingual Lexicon Induction (BLI) (Apidianaki et al., 2012a, 2013), lexicon development
(Apidianaki and Sagot, 2012), and Semantic Role Labelling (van der Plas and Apidianaki, 2014; van der
Plas et al., 2014). Cross-lingual applications (for example, Machine Translation) have been the targeted
downstream task in these studies, but I have also used translations as a proxy for meaning in my work
on lexical semantic analysis, often combined with distributional information for word sense identifica-
tion and cross-lingual clustering (Apidianaki, 2009a, 2011; Apidianaki et al., 2014). Alignments and
translation annotations have served to identify senses at the level of word types (Apidianaki and Gong,
2015; Marie and Apidianaki, 2015), but also for estimating the meaning and similarity of contextualised
word instances (McCarthy et al., 2016; Garı́ Soler et al., 2019a).

The shift to neural language models in the field of NLP couldn’t leave the field of lexical seman-
tics untouched. Low-dimensional word embedding representations generated by neural models have
been shown to represent lexical semantic similarity better than traditional count-based distributional
approaches, and to offer greater generalization potential (Baroni et al., 2014b). The questions posed
until their introduction in the lexical semantics field could thus be revisited under this new representa-
tion paradigm. My research has followed this evolution. Notably, this change has occurred in the be-
ginning of my research project MULTISEM “Advanced Models for Multilingual Semantic Processing”
which was granted funding by the ANR Young Researchers (JCJC) program in 2016.1 Consequently,
the work carried out during the five-year duration of the project has been mainly focused on exploring
and leveraging the knowledge encoded in neural language models for semantic analysis.

In spite of this paradigm and methodological shift, a common thread underlying these works is the
data-driven approach to meaning, where knowledge about words is inferred from their distribution in
texts without access to external semantic resources. This synthetic document first explains the changes
that have occurred in the domain due to this paradigm shift and the current state of affairs in terms
of meaning representation. Additionally, I will explain and analyse the divergences witnessed in the
field in terms of the unit of representation addressed in lexical semantics. I will explain how meaning is
represented at the level of word types and that of word tokens or individual instances, and the advantages
of the two types of representation. I will then present a selection of my articles which address lexical
semantic questions using distributional models possibly enriched with other knowledge sources (for
example, annotations or external lexicons), and others that demonstrate how these same questions can
be addressed using neural language model representations. The presented works have been carried out
in collaboration with my colleagues Diana McCarthy (University of Cambridge), Katrin Erk (University
of Texas in Austin) and Chris Callison-Burch (University of Pennsylvania); Anne Cocos and other PhD
and Master’s students at the University of Pennsylvania; and my PhD student Aina Garı́ Soler at the
University Paris-Saclay. Aina did her thesis in the frame of the ANR JCJC project MULTISEM for
which I have been the Principal Investigator from 2016 to 2021. The results and findings of these studies
highlight the potential of neural representation methods for representing meaning, demonstrate the
richness of the encoded information, and open up multiple promising perspectives for future research.

1Information about MULTISEM can be found on the project website: https://sites.google.com/view/multisem/.

https://sites.google.com/view/multisem/
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1.2 Lexical Semantic Analysis Across Paradigms

The paradigm shift that has occurred with the wide adoption of neural language models in the field of
NLP and computational linguistics has raised novel research questions. It has also allowed to approach
old research topics from a different perspective than previous computational analysis methods. I pro-
pose to illustrate this paradigm shift by presenting studies that address specific research questions from
different standpoints and using different methodology. The research questions studied are: (A) Lex-
ical Polysemy and Word Sense Clusterability, (B) In-Context Lexical Substitution, and (C) Adjective
Intensity Identification.

(A) Lexical Polysemy and Word Sense Clusterability

In this chapter, I present two studies which approach the questions of lexical polysemy and word
sense clusterability using manual meaning annotations (substitutes and translations), and repre-
sentations generated by neural language models. The first paper was published in the Compu-
tational Linguistics journal (MIT Press) in 2016. The second paper has been published in the
Transactions of the ACL (TACL) journal (MIT Press) in 2021.

(i) McCarthy et al. (2016): Diana McCarthy, Marianna Apidianaki and Katrin Erk, “Word
Sense Clustering and Clusterability”, Computational Linguistics Journal, Vol. 42(2), p.
245-275.

(ii) Garı́ Soler and Apidianaki (2021a): Aina Garı́ Soler and Marianna Apidianaki, “Let’s Play
Mono-Poly: BERT Can Reveal Words’ Polysemy Level and Partitionability into Senses”,
TACL Journal, Vol. 9, p. 825–844.

In our Computational Linguistics paper (i), we propose to study the question of word sense par-
titionability using clusterability metrics from the Machine Learning literature (Ackerman and
Ben-David, 2009). We adopt a graph-based method to sense identification which discovers word
senses by relying on substitute and translation annotations of English words (Erk et al., 2013).
These annotations serve as proxy for words’ meaning in context. We show that it is possible
to identify words with clear sense distinctions by analysing the semantic space occupied by their
instances, and to distinguish them from words with fuzzy sense boundaries where different mean-
ings overlap with each other (as in the case of regular polysemy).

In our paper published in the TACL journal (ii), we extend and scale up the McCarthy et al.
(2016) clusterability approach using representations generated by contextual language models.
This overcomes the limitation of the previous study which focused on words in the annotated
datasets, and allows us to apply the method to an open vocabulary and to different languages.
We specifically conduct experiments using monolingual language models in English, French,
Spanish and Greek (Devlin et al., 2019; Le et al., 2020; Cañete et al., 2020; Koutsikakis et al.,
2020), as well as multilingual models covering these languages. We show that state-of-the-art
language models encode rich knowledge about lexical polysemy, and that their representations
can be effectively used to define words’ ease of partitionability into senses.

(B) In-context Lexical Substitution

In this chapter, I present two studies which address the question of in-context lexical substitution
using distributional and neural language models (Apidianaki, 2016; Garı́ Soler et al., 2019b). In-
context lexical substitution is the process where a word (or phrase) is substituted by a synonym
(or paraphrase) with similar meaning, which is also a good fit in the context. Hence, a lexical
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substitution method needs to consider both the semantics of the substitutes and the context (e.g.,
sentence) where the substitution will take place, in order to select the best candidate.

Lexical substitution methods can be useful for language learners and in applications that require
rewriting, such as text summarization and simplification systems. They can also aid systems ad-
dress unknown words (words not seen during system training) by substituting them with plausible
alternatives. Furthermore, word and phrase substitution is highly useful for matching alternative
wordings in evaluation metrics, for example in order to award systems that generate text contain-
ing words not found in the reference. Finally, substitution models are very useful for generating
adversarial examples that are fluent and preserve the meaning of the original text, which can serve
to test the robustness of computational systems (Alzantot et al., 2018; Jin et al., 2020).

I present two papers addressing in-context lexical substitution which appeared at the Empirical
Methods for Natural Language Processing (EMNLP) conference in 2016, and at the International
Conference on Computational Semantics (IWCS) in 2019.

(i) Apidianaki (2016): Marianna Apidianaki “Vector-space models for PPDB paraphrase rank-
ing in context”, Proceedings of the Empirical Methods for Natural Language Processing
(EMNLP) Conference - Short Papers, p. 2028–2034.

(ii) Garı́ Soler et al. (2019b): Garı́ Soler, Aina and Cocos, Anne and Apidianaki, Marianna and
Callison-Burch, Chris (2019) “A Comparison of Context-sensitive Models for Lexical Sub-
stitution”, Proceedings of the 13th International Conference on Computational Semantics
(IWCS) - Long Papers, p. 271–282.

In the EMNLP 2016 paper (Apidianaki, 2016), I show how paraphrases of words in the Para-
phrase Database (Ganitkevitch et al., 2013; Pavlick et al., 2015) can be used for in-context lex-
ical substitution. Specifically, I demonstrate how a syntax-based distributional model (Thater
et al., 2011) can be used to filter and rank the unigram paraphrases of words (i.e. their syn-
onyms) according to their context of use in order to select the best substitutes. In our Garı́ Soler
et al. (2019b) paper, we present more recent neural lexical substitution methods, which explicitly
model the context of substitution and the semantics of individual lexical items. In the end of the
chapter, I briefly discuss substitution approaches which rely on the capability of the BERT model
(Devlin et al., 2019) to perform cloze-style slot filling.

(C) Scalar Adjective Intensity Identification

This chapter presents two studies addressing scalar adjective intensity. Scalar adjectives describe
a property of an entity (e.g., BEAUTY, TEMPERATURE, SIZE) at different degrees of intensity
(e.g., beautiful/gorgeous beach; hot/scalding drink; compact/big/huge car). Adjectives that ex-
press intensity can serve to assess the emotional tone of a given text (Hatzivassiloglou and McKe-
own, 1993; Pang et al., 2008), as opposed to relational adjectives (e.g., wooden, chemical) which
contribute to its descriptive content (McNally and Boleda, 2004). Intensity estimation is also
useful for detecting the directional textual entailment relationship (wonderful |= good but good
̸|= wonderful) (Van Tiel et al., 2016; McNally, 2016), for product review analysis and recommen-
dation systems, as well as for emotional chatbots, conversational agents and question answering
applications (de Marneffe et al., 2010). Lastly, this type of knowledge can assist language learn-
ers in distinguishing and learning to use semantically similar words (Sheinman and Tokunaga,
2009). I will discuss two papers addressing this question which have been published at the Em-
pirical Methods for Natural Language Processing (EMNLP) Conference in 2018 and in 2020.
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(i) Cocos et al. (2018): Anne Cocos, Skyler Wharton, Ellie Pavlick, Marianna Apidianaki,
Chris Callison-Burch, “Learning Scalar Adjective Intensity from Paraphrases”, Proceed-
ings of the Empirical Methods for Natural Language Processing (EMNLP) Conference, p.
1752-1762.

(ii) Garı́ Soler and Apidianaki (2020): Aina Garı́ Soler and Marianna Apidianaki, “BERT
Knows Punta Cana is not just beautiful, it’s gorgeous: Ranking Scalar Adjectives with
Contextualised Representations”, Proceedings of the Empirical Methods for Natural Lan-
guage Processing (EMNLP) Conference, p. 7371–7385.

In our EMNLP 2018 paper, we proposed to learn the intensity relationship of scalar adjectives
using paraphrases from the automatically created Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013; Pavlick et al., 2015). We test this method on a scalar adjective ranking task, and
combine it with information extracted from corpora using patterns and with knowledge from
polarity lexicons. The paraphrase-based approach guarantees the large coverage of the method,
while the use of patterns and lexicons increases its precision in the ranking task.

In our EMNLP 2020 paper, we again address the question of adjective intensity identification,
this time using representations generated by contextual language models. We demonstrate that
information about intensity is encoded in scalar adjectives’ contextualised representations. We
conceive intensity as a continuum going from less intense to more intense words (e.g., pretty
> beautiful > gorgeous). We construct a vector in the space built by BERT which represents
the semantic notion of intensity, and which can serve to rank adjectives across this axis. Our
methodology for detecting the intensity dimension is inspired from gender bias detection works,
and involves simple vector calculations in the vector space constructed by the neural language
model. One of its strong advantages is that it can be easily applied to other languages for which
such models are available. We demonstrate the cross-lingual applicability of the method in a
sequel study presented at NAACL 2021 (Garı́ Soler and Apidianaki, 2021b).



Chapter 2

Representations of Word Meaning

2.1 Introduction

Word representation in vector space lies in the core of distributional approaches to language process-
ing. The idea that words’ collocations describe their meaning (Harris, 1954; Firth, 1957) underlies
traditional distributional vector space models (DSMs) and the structure of the semantic space built by
neural language models (NLMs). Different approaches, however, address different units of meaning
representation.

Traditional DSMs represent words by aggregating over their usages in a corpus of documents (Landauer
and Dumais, 1997; Lund and Burgess, 1996). Similarly, classical word embedding approaches (such
as word2vec, GloVe and FastText) generate a static vector per word type which groups its different
senses (Mikolov et al., 2013a; Pennington et al., 2014; Bojanowski et al., 2017). Current NLMs, on the
contrary, generate “dynamic” representations that differ for every new occurrence of a word in texts and
directly encode the contextualised meaning of individual tokens (Peters et al., 2018; Devlin et al., 2019;
Liu et al., 2019c). For example, although a static word embedding model would create one vector for
the word bug, a contextual model would generate different representations for instances of the word in
context (e.g., “There is a bug in my food”, “There is a bug in my code”).

Contextualised representations constitute a powerful feature of state-of-the-art NLMs, and contribute
to their impressive performance in downstream tasks. The flexibility of contextualised representations
confers them an undeniable advantage over static embeddings which, by aggregating information from
different contexts in the same word vector, often lead to the “meaning conflation” problem (Pilehvar
and Camacho-Collados, 2020). Additionally, the dynamic nature of contextualised embeddings pro-
vides a more straightforward way for capturing meaning variation than previous sense representation
methodologies which relied on semantic resources or a clustering algorithm (Reisinger and Mooney,
2010; Iacobacci et al., 2015; Camacho-Collados and Pilevar, 2018).

Interestingly, in spite of the success of this new representation paradigm, in recent works we witness a
critical stance and a rise of scepticism regarding the quality of these representations and of the similarity
estimates that can be drawn from them, accompanied with a resurgence of interest towards word type
level vectors. This is due to several reasons. Although modelling word usage is one of contextualised
representations’ recognized merits and a highly useful methodological tool for studying linguistic struc-
ture (Linzen et al., 2016; Hewitt and Manning, 2019), the observed context variation makes the study
of the encoded semantic knowledge challenging. Specifically, it has been shown that context speci-
ficities and the token position within a sentence have a negative impact on the quality of the semantic
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Figure 2.2: Comparison of an isotropic vector space where embeddings are uniformly distributed in all directions
(left) with a highly anisotropic space (right).

similarity estimates that can be drawn from them (Mickus et al., 2020). Hence, two occurrences of
the same word expressing the same meaning in slightly different contexts, or at different positions in
the sentence, might get substantially different representations. Figure 2.1 shows the pairwise cosine
similarity of contextualised vectors obtained for the highlighted words from the last layer of the BERT
(bert-base-uncased) model. We observe that vectors assigned to different words in the same context
are more similar than the ones assigned to semantically similar instances of the same word in different
contexts. The vectors for interesting and great in examples (i) and (iii) have a cosine similarity of 0.753,
while the vectors for the instances of the noun field in (b) and (c) get a score of 0.411. Surprisingly, the
vectors for antonymous words (interesting ↮ boring and great ↮ horrible) are among the most simi-
lar. The instances of these adjectives in sentences (i) and (ii), and (iii) and (iv), have a cosine similarity
score of 0.691 and 0.670, respectively. We would, however, expect a high quality semantic vector space
to reflect the dissimilarity between these semantically opposite words in any context.

Figure 2.1: Similarity of vectors for word instance pairs.

The issue of the problematic, or distorted,
similarity estimates is accentuated by the
geometry of the highly anisotropic seman-
tic space that is constructed by contextual
models (Ethayarajh, 2019a). In this space,
word vectors are concentrated in a narrow
(cone-shaped) area, instead of being uni-
formly distributed in the constructed space,
as shown in Figure 2.2. Since similarity is
a relative notion (Arora et al., 2017), this
particularly close proximity of all word instance vectors gives rise to problematic similarity estima-
tions. Ethayarajh (2019a) specifically highlights the high similarity of random words in the anisotropic
space constructed by the models. Hence, although reflecting the meaning of word usages is one of the
recognized merits of these dynamic vectors, the observed variation makes the exploration of semantic
knowledge challenging. This explains to some extent the resurgence of interest towards word-level
representations, deemed to provide a more solid basis for meaning exploration. Naturally, this trend is
mainly observed in the lexical semantics field where the notion of lexical concept is central (Lauscher
et al., 2020b; Liu et al., 2020; Bommasani et al., 2020; Vulić et al., 2020b; Garı́ Soler and Apidianaki,
2021a).

The prevalence of contextual models has also brought about a shift from methodologies traditionally
used to evaluate the quality of distributed representations (e.g., out-of-context word similarity and anal-
ogy tasks) (Mikolov et al., 2013b) to interpretation tools common in human language learning studies
(e.g., cloze tasks and probes) (Linzen et al., 2016; Kovaleva et al., 2019; Tenney et al., 2019b; Ettinger,
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2020). These serve to assess the linguistic and world knowledge encoded in contextualised vectors,
and are often complemented with methods that explore the models’ inner workings, such as their self-
attention mechanism or the information flow between layers (Voita et al., 2019a; Hewitt and Manning,
2019; Clark et al., 2019; Voita et al., 2019b; Tenney et al., 2019a). In lexical semantics, the probing
methodology is used to explore the knowledge models encode about semantic properties and relation-
ships (Petroni et al., 2019; Bouraoui et al., 2020; Ravichander et al., 2020; Apidianaki and Garı́ Soler,
2021). Nevertheless, evaluations that rely on cloze-task prompts are not really indicative of the knowl-
edge the models encode about language, since results strongly depend on prompt quality (Ettinger,
2020; Apidianaki and Garı́ Soler, 2021). Additionally, semantic information might be implicitly en-
coded and not explicitly stated in texts due to the reporting bias phenomenon, in which case it is hard to
recover this knowledge from language model representations using probing (Gordon and Van Durme,
2013; Shwartz and Choi, 2020; Apidianaki and Garı́ Soler, 2021). These two factors undermine the
reliability of the cloze-task probing methodology for semantics. The variability of the results obtained
with different prompts has brought attention back to word similarity and analogy tasks, considered as
more established and mature for exploring the concept-related knowledge encoded in language model
representations (Vulić et al., 2020b; Bommasani et al., 2020).

This section provides an overview of word and meaning representation methodologies that rely on
distributional approaches and language models. We present methods that generate distributed repre-
sentations (embeddings) at the level of word types, senses, and individual instances. We explain the
evolution from distributional to distributed embedding representations, as well as the advantages of the
latter over traditional distributional models. For a full account of distributional approaches and their
origins, we point the reader to the surveys by Turney and Pantel (2010), Erk (2012) and Clark (2015).
For a discussion of their relationship with theoretical and formal linguistics, we refer the reader to
Boleda and Herbelot (2016) and Boleda (2020). Finally, a thorough account into embeddings generated
by different types of language models is given in the essay of Pilehvar and Camacho-Collados (2020).

2.2 Distributional Representations

ch
oc

ol
at

e

browser 0

1

2

3

4

5

6

0 1 2 3 4 5

cake (0,4)

chocolate chip cookies…
cookies store data…

…delicious cookies

cookies (1,3)

browser (4,0)

0

2

1

5

4
3

0
 5
2
1
 4
3

chip

ch
oc

ol
at

e

Figure 2.3: Toy examples of word
similarity in vector space.

Semantic spaces are a popular framework for meaning representation,
encoding words as high-dimensional vectors (Schütze, 1998). Dis-
tributional Semantic Models (DSMs) construct such spaces by col-
lecting vectors that keep track of lexical co-occurrence patterns in
large text corpora, following the distributional hypothesis of meaning
(Harris, 1954). The central idea behind the distributional approach is
that “the meaning of a word is its use in the language” (Wittgenstein,
1953) or, put in other words, “you shall know a word by the company
it keeps” (Firth, 1957).

Since related words occur in similar contexts, distributional vectors
also provide a robust model of semantic similarity which is reflected
in the proximity of words in the constructed high-dimensional vector
space (Miller and Charles, 1991). In this space, a word is represented
as a point where the dimensions stand for context items (co-occurring
words), and the word’s coordinates represent its context counts (Erk,
2012). Geometric distance (or proximity) between vectors (as measured by the cosine of their angle,
or their Euclidean distance) tends to correlate well with human semantic similarity judgements. This is
illustrated by the artificially small vector space on top of Figure 2.3, where croissant is close to cookies
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because they often co-occur with chocolate, but cookies also has a computer-related meaning as tracking
devices. As we have shown in previous work, vector similarity can serve to identify word senses
(Apidianaki, 2008a,b, 2009a; Van de Cruys and Apidianaki, 2011; Apidianaki et al., 2014; McCarthy
et al., 2016), detect semantic relationships (Rajana et al., 2017; Cocos et al., 2018), and determine word
substitutability in context (Apidianaki, 2016; Cocos et al., 2017; Garı́ Soler et al., 2019b).

Distributional models of meaning can be learned from a corpus in an unsupervised fashion (Erk, 2012).
As a consequence, the provided model of word meaning is independent of dictionary senses and un-
derlying linguistic theories (Kilgarriff, 1998; Ide and Wilks, 2007). One of the downsides of traditional
distributional methods is that the use of raw co-occurrence counts leads to sparse representations. A
common approach to alleviate this sparseness and improve the performance of the representations is to
apply some type of transformation to the raw vectors. This involves reweighting the counts for context
informativeness and smoothing them with dimensionality reduction techniques (e.g., Singular Value
Decomposition (SVD)) (Turney and Pantel, 2010). The applied optimization process might be unsu-
pervised and based on independent (for example, information-theoretic) considerations. I can also rely
on some sort of indirect supervision where the best parameter settings are chosen based on performance
on some semantic task selected for tuning (Baroni et al., 2014b). This is an important point of differ-
ence from word embedding techniques which replace the stacking of vector transforms with a single
supervised learning step, generating low-dimensional vector representations at no manual annotation
cost. We explain this procedure in more detail in Sections 2.4 and 2.5.

An important aspect that deserves our attention is how contextualization occurs in distributional models.
As explained above, a word (lemma) in a distributional model is represented as a point in space, the
position of which is defined by its co-occurrences over a large corpus. This representation is the result
of an aggregation over multiple contexts (Landauer and Dumais, 1997; Lund and Burgess, 1996), it
will hence encode information for different meanings of the word. In the toy example given in Figure
2.3, the position of cookies shows its semantic proximity to croissant as well as its relation to computer.
However, every new occurrence of a word in a text might instantiate a different meaning (e.g., Chocolate
chip cookies are my favourite vs. You can disable unnecessary cookies). In order to characterise the
meaning of individual instances, different methods have proposed to compute meaning in context from
lemma vectors. The problem is then addressed as a matter of vector composition (Schütze, 1998;
Mitchell and Lapata, 2008): the meaning of a target occurrence a in context b is a single new vector c
that is a function of the two vectors: c = a⊙ b. Mitchell and Lapata apply this method to calculating
phrase meaning, and test different composition methods, such as vector addition and component-wise
multiplication. The good results of the latter has made of it a widely used approach for calculating
phrase meaning as in verb phrases (e.g., catch a ball vs. attend a ball) (Erk and Padó, 2008) and
noun phrases involving a modifier (e.g., green chair vs. green initiative) (Baroni and Zamparelli, 2010;
Zanzotto et al., 2010).

When considering entire sentences, it is important to integrate syntax into the computation of word
meaning in context, because the position and syntactic role of a word in the sentence greatly impacts
its meaning (Erk and Padó, 2008; Thater et al., 2011). A model which does not account for syntax
would, for example, generate the same representation for school in “law school” and in “school law”.
A good quality semantic model must also be able to distinguish “Mary peeled the avocado” from
“The avocado peeled Mary”, similar to human hearers, and to draw different conclusions from them,
specifically that the event described by the second sentence is not as probable as that described by
the first one. The dependency-based vector space of Padó and Lapata (2007) models coocurrences of
words linked with dependency relations in a parsed corpus, viewing syntactic and argument structure
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as a reflection of lexical meaning (Levin, 1993). They precisely model meaning by quantifying the
degree to which words are attested in similar syntactic environments. The structure vector space model
of Erk and Padó (2008) also accounts for selectional preferences; the meaning of a word is represented
as a combination of a vector that models lexical meaning, and a set of vectors which represent the
semantic expectations for each relation that the word supports (e.g., catch a cold vs. catch a ball). In
the model of Thater et al. (2011), the vector of a target word is modified according to the words in its
syntactic context. Contextualization of a vector is performed by reweighting its components based on
distributional information about the context words.

Still, it is difficult to generate a vector which properly describes the meaning of an entire sentence. As
noted by Erk and Padó (2008), classical composition methods which result in a single vector are not
informative enough to provide interesting meaning representations for entire sentences. It is hard to
conceive how a single vector can encode deeper semantic properties like predicate- argument structure
(cf. the “avocado” example above) which are crucial for sentence-level semantic tasks such as the
recognition of textual entailment (Dagan et al., 2006). There has, however, been important evolution
on this topic in recent years with neural models which generate sentence representations that achieve
impressive performance in downstream natural language understanding tasks. It, however, remains
difficult to find out how this is done, and what is really encoded in these sentence representations (Con-
neau et al., 2018). Furthermore, these vectors seem to not capture semantic similarity well (Reimers
and Gurevych, 2019).

2.3 Lexical Meaning in Formal Semantics

Formal Semantics provides semantic representations of linguistic expressions using logic and other
symbolic mathematical tools (Montague, 1973). It is mainly centred around the inferential properties
of language and compositionality, the mechanism by which the meaning of sentences is incrementally
built by combining the meanings of their constituents. Formal Semantics research has been mainly pre-
occupied with logical form and the mapping from a sentence-level syntactic representation to a logical
representation, with a few exceptions of approaches that recognise the central role of lexical meaning in
semantic inference and explicitly account for it (Asher, 2011). The Generative Lexicon (Pustejovsky,
1995), for example, is a system that involves different levels of semantic representation, and a set of
generative devices which connect these levels and account for the compositional interpretation of words
in context. It provides an expressive and flexible formal statement of language which can capture the
generative nature of lexical creativity and sense extension, contrary to approaches aimed at the exhaus-
tive listing of word senses.

Formal Semantics approaches to meaning interpretation are highly elegant but face the issue of lexicon
coverage. It is not feasible to manually specify how the meaning of content words in the lexicon is
affected by context, be it for regular polysemy or for non-systematic meaning shifts (Baroni et al.,
2014a). DSMs, instead, provide extremely rich data for lexical semantic analysis, and can contribute
to building large coverage semantic systems. They specifically provide good representations of the
descriptive content of linguistic expressions by encoding abstractions over contexts of use observed
in large amounts of data (Schütze, 1998; Pantel and Lin, 2002), as explained in Section 2.2. They
also account for polysemy, as reflected in word usage, and capture lexical relations through geometric
distance in the constructed vector space. DSMs can also capture fuzzy aspects of meaning and subtle
meaning shifts by accounting for the graded similarity of word usages (Erk et al., 2013; Jurgens and
Klapaftis, 2013), while their representations can be combined into more complex meanings (Baroni
et al., 2014a). Recent works attempt to combine the strengths of Formal Semantics relative to the
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rigorous account of linguistic structure, with the ability of DSMs to account for the descriptive content
of linguistic expressions. Asher et al. (2016), for example, effectively combine Type Composition
Logic (TCL) (Asher, 2011), a detailed formal model of the interaction between composition and lexical
meaning, with DSMs that provide the information needed for constructing the functors within the TCL
construction process. This trend is becoming increasingly important and a new framework is being
established under the umbrella term of “Formal Distributional Semantics” (Boleda and Herbelot, 2016).

Contextualised representations generated by state-of-the-art models (Devlin et al., 2019; Liu et al.,
2019c) can open up new avenues for Formal Semantics research since they encode rich information
about word usage. They can provide representations of the descriptive content of words and also reflect
minor meaning shifts, thanks to their high sensitivity to syntactic variation which can be beneficial in
this setting. This can also help in handling types of polysemy that are central in Formal Semantics but
difficult to handle with traditional DSM models, which involve related (or complementary) senses that
are less sensible to contextual priming than contrastive senses and, thus, more difficult to disambiguate
(Haber and Poesio, 2020, 2021).

2.4 Language Modelling with Deep Neural Networks

Figure 2.4: One hidden layer ANN.

Deep artificial neural networks (ANNs) belong to the “represen-
tation learning” paradigm that seeks to automatically induce use-
ful features for a task from raw text data (LeCun et al., 2015).
This differentiates them from traditional Machine Learning meth-
ods that involve high levels of feature engineering, which can be
time-consuming and error-prone. An ANN is a computational non-
linear model inspired by the neural structure of the brain. It consists
of artificial neurons – or processing elements – and is organised in
interconnected layers: input, (one or more) hidden layer(s), and out-
put (cf. Figure 2.4). Deep learning models involve multiple hidden
layers and learn representations of data at different levels of abstrac-
tion (LeCun et al., 2015). This multi-layer architecture contributes
to their high performance, since it allows them to learn complex functions from input (e.g., a Twitter
post) to output (its sentiment polarity), and more complex features than shallow networks. Alongside
their powerful architecture, ANNs also benefit from the abundance of training material in the form of
naturally occurring text. Their success over traditional machine learning methods is undeniable, as
shown by their results on the GLUE (General Language Understanding Evaluation) benchmark (Bow-
man et al., 2015).1 However, it remains unclear whether they manage to learn the deep knowledge
actually needed for understanding and modelling language (Tenney et al., 2019b).

State-of-the-art ANNs are actually trained on large text corpora (for example, the 1B word corpus
(Chelba et al., 2013) or the English Wikipedia) and encode the observed distributional regularities in
the form of complex co-occurrence statistics through “language modelling” objectives. Language mod-
elling is the task of predicting upcoming words in a text, that is estimating how likely (probable) a
particular word w is to occur given the previous words in a sequence. For example, when a model pro-
cesses the sentence “These flowers so good”, it uses its existing (often randomly initialised) weights

1The GLUE benchmark includes eight tasks: MultiGenre Natural Language Inference (MNLI), Quora Question Pairs
(QQP), Question NLI (QNLI), The Stanford Sentiment Treebank (SST-2), The Corpus of Linguistic Acceptability (CoLA),
The Semantic Textual Similarity Benchmark (STSB), Microsoft Research Paraphrase Corpus (MRPC), Recognizing Textual
Entailment (RTE).
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to predict how likely each word of the language (the English vocabulary) is to follow “flowers”. When
the hidden word smell is revealed, the network’s weights are adjusted using standard error backpropa-
gation and gradient descent techniques (Nielsen, 2018; Rumelhart et al., 1986), such that in the future it
will assign a higher probability to “smell” in a similar context. Gradient descent is specifically an opti-
misation algorithm which is used to train machine learning models and neural networks, by minimising
errors between predicted and actual results.

Most powerful state-of-the-art models such as Long Short-Term Memory Recurrent Neural Networks
(LSTM RNNs) (Elman, 1990; Hochreiter and Schmidhuber, 1997), bidirectional language models (Pe-
ters et al., 2018) and Transformer-based models (Vaswani et al., 2017; Radford et al., 2019; Devlin
et al., 2019) rely on language modelling objectives. The representations ANNs acquire during this type
of pre-training are general-purpose and can be adapted (fine-tuned) to specific downstream tasks (e.g.,
question answering or sentiment analysis). Task-specific datasets are typically small; hence, general
knowledge about language is acquired during pre-training on large text corpora, and then the model
weights are basically adjusted on datasets tailored for the task at hand, as in transfer learning (Pan and
Yang, 2010). Fine-tuned models tend to deliver optimal performance, but it is unclear how much of the
knowledge learned during pre-training is actually used to solve these tasks, and what knowledge is ac-
quired during fine-tuning. Sometimes the fine-tuning process can do more harm than good, when useful
information acquired during pre-training might be overwritten through exposure to new information, a
process characteristically called “catastrophic forgetting” (Mccloskey and Cohen, 1989). The learning
objective used for training the models has also been shown to have an important impact on the content
of the acquired representations (Voita et al., 2019a; Kovaleva et al., 2019; Conneau et al., 2018).

Each model represents words either with static (word-level and out-of-context) or with contextualised
(instance-based) representations. In the next sections, we present the types of word vectors that can be
obtained from different models, explaining the implications that each type of representation has on the
modelling of lexical semantics, in general, and the meaning of specific words, in particular.

2.5 Static Word Embeddings

2.5.1 Word Representation Learning

Word embedding models leverage neural networks to directly learn low-dimensional word representa-
tions from corpora (Bengio et al., 2003; Collobert and Weston, 2008; Collobert et al., 2011; Mikolov
et al., 2013a). These “self supervision” models are trained on raw text and rely on the optimization of
a specific objective. With a language modelling objective, for example, the vector estimation problem
is framed directly as a supervised task, where the weights in a word vector are set to maximise the
probability of the contexts where the word is observed in the training corpus.

A classical word embedding architecture is that of word2vec (Mikolov et al., 2013a) which consists
of input, hidden and output layers. The input layer has the size of the vocabulary of the language and
encodes the context of a target word as a combination of one-hot vector representations of the words
surrounding it in texts. The output layer has the same size as the input layer and contains a vector of the
target word built during the training phase. The model is trained using a predictive task which, in the
case of the Continuous Bag-of-Words (CBOW) Word2Vec model, is to predict the current word using
its surrounding context minimizing this loss function:

E =−log(p(w⃗t |W⃗t)) (2.1)
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Figure 2.5: Architecture of the CBOW and Skip-gram models.

where wt is the target word and Wt = wt−n, ...,wt , ...,wt+n represents the sequence of words in context.
The CBOW architecture is based on the feedforward neural network language model (Bengio et al.,
2003). In Word2Vec Skip-gram, on the contrary, the goal is to predict the words in the surrounding
context given the target word, rather than predicting the target word itself. The difference between the
two models is illustrated in Figure 2.5.

The idea underlying word embedding models is that contextual information can provide a good approxi-
mation for word meaning, since semantically similar words tend to have similar contextual distributions
(Harris, 1954; Miller and Charles, 1991). This is also the guiding principle of traditional Distributional
Semantic Models (DSMs) (Turney and Pantel, 2010; Erk et al., 2009; Clark, 2015), as explained in
Section 2.2. Another similarity with DSMs is that self-supervised embedding learning models can be
trained on raw text without need for manual annotations. As a result, they can be applied to different
languages. The dimensionality of embedding vectors is, however, much lower than that of distribu-
tional vectors where dimensions correspond to words in the vocabulary (i.e. their number can easily
reach hundreds of thousands or even millions). The high dimensionality of distributional vectors chal-
lenges the scalability and computational efficiency of the models. Although vector transformations can
reduce their sparseness, word embedding techniques replace the heuristic stacking of vector transforms
with a single supervised learning step at no manual annotation cost. Furthermore, pre-trained word
embeddings outperform count-based representations in intrinsic evaluations (i.e. word similarity and
relatedness tasks) (Mikolov et al., 2013c; Baroni et al., 2014b), and can be successfully integrated in
downstream applications due to their high generalization potential.

2.5.2 The Meaning Conflation Problem

Figure 2.6: Illustration of word embeddings’
meaning conflation deficiency in a 2D seman-
tic space.

One of the limitations of static word embedding models,
like word2vec (Mikolov et al., 2013a), GloVe (Penning-
ton et al., 2014) and FastText (Bojanowski et al., 2017),
is that they build a single representation for each word
in the vocabulary of a language. Therefore, they are by
design unable to model polysemy. On the contrary, the
contextual evidence for different word meanings is con-
flated into a single vector. Representing a word type as
a single point in the semantic space is another similar-
ity between embedding and early distributional models
(Landauer and Dumais, 1997; Lund and Burgess, 1996),
and is considered as a major deficiency of these models.
Not distinguishing between different meanings of a pol-
ysemous word (e.g., plant, mouse, bug) can negatively
impact the semantic understanding of NLP systems that
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rely on these representations. The conflation of different
meanings in the same vector has consequences on the structure of the obtained semantic space and
on semantic modelling accuracy (Neelakantan et al., 2014; Chen et al., 2014; Camacho-Collados and
Pilevar, 2018). Representing an ambiguous word (e.g., mouse) as a single point in space pulls together
semantically unrelated words (e.g., rat, cat and computer) due to their similarity to different senses
of the ambiguous word, as illustrated in Figure 2.6.2 A careful analysis shows that multiple word
senses reside in linear superposition within word2vec and GloVe word embeddings, and that vectors
that approximately capture the senses can be recovered using simple sparse coding (Arora et al., 2018).
Furthermore, similar to distributional methods for modelling compositionality (as the ones described in
Section 2.2), a simple method for generating context-specific representations for words is to aggregate
over the embeddings of their co-occurrences in a sentence or a specific context window.

2.5.3 Static Embedding Evaluation

The quality of static word embeddings has traditionally been evaluated using word analogy and similar-
ity tasks. Word analogy is usually framed as relational similarity; it models the idea that pairs of words
may hold similar relations to those that exist between other pairs of words (Turney, 2006).3 Analogies
are thus perceived as equations of the form a : b :: c : d (i.e. “a is to b what c is to d”) where given the first
three terms (a, b, c), the tested model needs to predict the word that stands for d. Mikolov et al. (2013a)
showed that such relations are reflected in vector offsets between word pairs.4 In the famous example
“man is to king as woman is to X”, the embedding for the word queen can be roughly recovered from the
representations of king, man and woman using the following equation: ⃗queen ≈ ⃗king− m⃗an+ ⃗woman.

Word analogies became a highly popular tool for embedding evaluation, but were then discredited due
to numerous concerns regarding the use of the vector offset method for solving analogies. The accuracy
of this method depends on the proximity of the target vector to its source (e.g., ⃗queen and ⃗king), limiting
its applicability to linguistic relations that happen to be close in the vector space (Rogers et al., 2017).
Reliance on cosine similarity also conflates offset consistency with largely irrelevant neighbourhood
structure, while results are inconsistent when the direction of the analogy is reversed (even though the
same offset is involved in both directions) (Linzen, 2016). Last but not least, linguistic relations might
not always translate to linear relations between vectors but to more complex correspondence patterns
(Drozd et al., 2016; Ethayarajh, 2019b). Another issue with the classical analogy task is that examples
are structured such that given the first three terms, there is one specific, correct (expected) fourth term.
This might be the case with factual queries involving morpho-syntactic and grammatical alternations
(e.g., high/higher, long/longer), but for semantic queries there might be several equally plausible correct
answers (e.g., man:doctor :: woman:X). These semantic analogies are more creative and various terms
could be used for completion depending on the implied relation, which might be unspecified in the
query (Nissim et al., 2020).

The quality of distributional and word embedding representations is also intrinsically evaluated against
human similarity and relatedness judgements (Rubenstein and Goodenough, 1965; Miller and Charles,
1991; Hodgson, 1991; Finkelstein et al., 2001; Bruni et al., 2012; Jurgens et al., 2012). A high corre-
lation between human judgements on word pairs and the cosine of the corresponding vectors, demon-

2Figure taken from Camacho-Collados and Pilevar (2018).
3As noted by Rogers et al. (2017), this conception of analogy is different from the notion of analogy in philosophy and

logic. The classical analogical reasoning follows this template: objects X and Y share properties a, b and c, therefore they
may also share the property d.

4The answer to the above question is represented by hidden vector d which is calculated as argmaxd∈V (sim(d,c−a+b)),
where V is the vocabulary excluding words a, b and c, and sim is a similarity measure.
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strates the quality of the constructed space. A downside of this type of evaluation is that similarity
scores are given to pairs of words in isolation, and does not allow to assess the capability of the models
to capture polysemy and word meaning in context.

2.6 Word Sense Representations

2.6.1 Multi-Prototype Embeddings

A solution to the meaning conflation problem of word embeddings is to generate separate vectors for
different word senses. Multi-prototype methods generate such vectors for senses discovered from texts
using unsupervised Word Sense Induction (WSI) methods (Reisinger and Mooney, 2010; Neelakantan
et al., 2014; Huang et al., 2012). The contexts where a word occurs are clustered and a distinct prototype
vector is generated from each cluster by averaging over the context vectors it contains. The method of
Reisinger and Mooney (2010) is illustrated in Figure 2.7 (a).

Multi-prototype methods vary with respect to the vector representations, the clustering algorithm and
the context used. Reisinger and Mooney (2010) use count-based vectors composed of features that
correspond to the unigrams in a ten-word context window around a target word wt , while Huang et al.
(2012) and Neelakantan et al. (2014) use word embeddings. In terms of the clustering algorithm,
Reisinger and Mooney (2010) apply a “mixture of von Mises-Fisher distributions” (movMF) cluster-
ing method, while Huang et al. (2012) use the K-means algorithm to decompose words’ continuous
distributed representations into multiple prototypes. The method of Neelakantan et al. (2014) is a
multi-prototype extension of the Skip-gram model called Multiple-Sense Skip-Gram (MSSG), which
represents the context of a target word wt as the centroid of the vectors of the context words, and clus-
ters them to form wt’s sense representations. Contrary to previous multi-prototype methods, clustering
and sense embedding learning are performed jointly during training. The intended sense for a word is
dynamically selected as the closest sense to the context and weights are updated only for that sense.
Tian et al. (2014) propose a technique that significantly reduces the number of parameters in the Huang
et al. (2012) model. Word embeddings in the Skip-gram model are replaced with a finite mixture model
where each mixture corresponds to a prototype of the word. The multi-prototype Skip-gram model is
trained using the Expectation-Maximization algorithm. In contrast to previous methods where senses
were induced from words’ local context, Liu et al. (2015) propose Topical Word Embeddings (TWE).
Each word is allowed to have different embeddings under different topics computed globally using
latent topic modelling (Blei et al., 2003b).

While offering a solution to the meaning conflation problem, multi-prototype embedding methods also
face a number of challenges. In early methods, the number of clusters (or senses, k) is a parameter
that needs to be pre-defined. This number is sometimes chosen arbitrarily and used for all words, in-
dependently of their polysemy (Huang et al., 2012). Moreover, these methods are generally offline and
difficult to adapt to new data and domains, or to capture new senses (Chen et al., 2014). An alternative
is to use a non-parametric clustering method which allows to dynamically adjust the number of senses
to each word. Neelakantan et al. (2014)’s method precisely relies on the notion of “facility location”
(Meyerson, 2001): A new cluster is created online during training with probability proportional to the
distance λ from its context to the nearest cluster (sense).5 The higher this distance, the higher the prob-
ability that the context describes a new sense of the word. The same idea underlies the method of Li
and Jurafsky (2015) who learn embeddings for senses of a word induced using the Chinese Restaurant
Processes (Blei et al., 2003a), a practical interpretation of Dirichlet Processes (Ferguson, 1973) for non-

5λ is a hyperparameter of the model. Its value is selected through manual exploration on a validation set.
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(a) (b)

Figure 2.7: Illustration of a multi-prototype approach (a) and a sense embedding approach (b).

parametric clustering. A word is associated with a new sense vector when evidence in the context (e.g.,
the neighboring words) suggests that it is sufficiently different from its previously identified senses.

Other issues of multi-prototype methods are that the clusters are not always interpretable (i.e. it is
difficult to determine the senses they correspond to), and the representations obtained for infrequent
senses are unreliable (Pilehvar and Collier, 2016). Finally, the usefulness of using this type of sense
embeddings in downstream tasks is unclear. These have been shown to outperform static embeddings
in intrinsic evaluations, but when tested in real NLP applications they seem to benefit some tasks (part-
of-speech tagging and semantic relation identification) and harm others (sentiment analysis and named
entity extraction) (Li and Jurafsky, 2015).

2.6.2 Translation-Based Embeddings

Seeking a stable criterion for word sense identification, several studies use translations as proxies for
senses. This idea dates back to the work of Gale et al. (1992) where it was put forward as a solution
to the knowledge acquisition bottleneck. It has since been adopted in several word sense induction
and disambiguation works (Dagan and Itai, 1994; Dyvik, 1998, 2004; Resnik and Yarowsky, 1999; Ide
et al., 2002; Resnik, 2004; Diab and Resnik, 2002; Carpuat and Wu, 2007; Apidianaki, 2008b, 2009a;
Lefever et al., 2011; Carpuat, 2013). The underlying assumption is that the senses of a polysemous
word in a source language (ws) are translated with different words in other languages (T = t1, ..., tn).
Clustering is still relevant in this context since synonymous translations can be grouped to describe one
sense of word ws (Apidianaki, 2008c). Translation clusters can be associated to context vectors which
can serve for disambiguation (Apidianaki, 2009a).

Guo et al. (2014) use translations to create sense embeddings. They project translation (English) clus-
ters describing senses onto source language (Chinese) words in a parallel corpus, in order to create the
labelled data needed for training a neural network language model that generates the sense embeddings.
The obtained representations significantly outperform static and multi-prototype embeddings in a word
similarity and a Named Entity Recognition task for polysemous words. The sense embedding method
of Šuster et al. (2016) also exploits both monolingual and translation information. It assigns a sense to a
pivot word during the encoding phase, and predicts context words based on the pivot word and its sense
during a decoding (or reconstruction) phase. Parameters of encoding and reconstruction are jointly opti-
mized, the goal being to minimize the error in recovering context words based on the pivot word and its
assigned sense. The obtained sense-specific representations are shown to outperform their monolingual
counterparts across a range of evaluation tasks, including in and out of context similarity estimation
(Huang et al., 2012; Finkelstein et al., 2001; Rubenstein and Goodenough, 1965; Bruni et al., 2012).
Finally, in the context of Neural Machine Translation, Liu et al. (2018) propose a method for captur-
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ing contextual information in order to disambiguate difficult-to-translate homographs. They compute
a context vector for each source word which is combined with the original word embedding to form
context-aware word embeddings that improve the quality of the translations produced for homographs.

2.6.3 Sense Embeddings

Sense embedding methods offer another solution to the meaning conflation deficiency of type-level
embeddings (Camacho-Collados and Pilevar, 2018). They practically produce vectors corresponding to
senses found in lexicographic resources, which are more interpretable than the ones obtained through
clustering. A typical sense embedding procedure is illustrated in Figure 2.7 (b).6

Sense embedding approaches can rely on definitions (glosses) of senses in a lexicon, or combine this
knowledge with information collected from corpora. The SENSEMBED method of Iacobacci et al.
(2015), for example, learns sense representations from large text corpora disambiguated and sense an-
notated with the knowledge-based Babelfy algorithm (Moro et al., 2014; Navigli and Ponzetto, 2010).
Similarly, the “Senses and Words to Vectors” (SW2V) neural model of Mancini et al. (2017) jointly
learns word and sense embeddings by exploiting knowledge from BabelNet and large text corpora.
SW2V relies on the CBOW word2vec model (Mikolov et al., 2013a). The input to the model is an
automatically sense-disambiguated corpus. A training instance is a sequence of words and their as-
sociated senses. The underlying assumption is that since a word is the surface form of an underlying
sense, updating the embedding of the word should produce a consequent update to the embedding of
the sense, and inversely. The learned embeddings are represented in the same unified vector space. The
approach outperforms previous sense embeddings approaches on out-of-context word similarity tasks
(SimLex-999 (Hill et al., 2015) and MEN (Bruni et al., 2012)).

Naturally, the results of these methods and the quality of the generated sense representations
strongly depend on the success of the disambiguation step. If word instances are assigned the wrong
senses, this has a direct impact on the quality of the representations. The method of Chen et al. (2014)
alleviates this dependence by learning representations for senses using their definitions (glosses) in
WordNet (Fellbaum, 1998). Each sense is represented using the average of the vectors of the content
words in the gloss that are most similar to the target word. The authors modify the training objective of
Skip-gram, and train word vector representations that are good at predicting not only a word’s context
words but also their senses. Since each sense vector corresponds to a WordNet sense, the obtained
vectors can be directly used for knowledge-based WSD.

2.7 Contextualised Representations

Contextual language models constitute a novel representation paradigm where the generated embed-
dings encode the meaning of individual word tokens (Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019c). Contrary to static embeddings which describe word types, contextual models assign different
vectors to different instances of a word depending on the context of use (e.g., “There is a bug in
my soup”, “There is a bug in my code”). These vectors are dynamic and can capture subtle meaning
nuances expressed by word instances, alleviating at the same time the meaning conflation problem of
static embeddings and sense embeddings’ reliance on lexicographic resources.

The first contextual language model was ELMo (Embeddings from Language Models) (Peters et al.,
2018). ELMo is a two-layer bidirectional LSTM (biLSTM) language model (Hochreiter and Schmid-

6The figure is taken from the original paper by Camacho-Collados and Pilevar (2018).
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(a) (b)

Figure 2.8: Figure (a) illustrates the architecture of the ELMo language model which relies on a bidirectional
LSTM. Figure (b) describes the architecture of the Transformer-based BERT model.

huber, 1997; Graves and Schmidhuber, 2005), built over a context-independent character Convolutional
Neural Network (CNN) layer. The original ELMo model was trained on the Billion Word Benchmark
dataset (Chelba et al., 2013) which consists primarily of newswire text. ELMo representations are a
linear combination of the internal layers of the model. Its architecture is illustrated in Figure 2.8 (a).
When ELMo is integrated into task-specific architectures, the task and the linear combination of the
layers are simultaneously learned in a supervised way.

Figure 2.9: BERT multi-head attention.

Soon after ELMo appeared, the BERT Transformer model was
proposed (Devlin et al., 2019). BERT has been the most influ-
ential contextual model and a high number of variants have been
developed (Liu et al., 2019c; Sanh et al., 2020; Lan et al., 2020;
Joshi et al., 2020). In contrast to traditional sequence models
based on recurrent architectures, the Transformer model uses a
fully attention-based approach. It relies on the “self-attention”
mechanism where the representation of a sequence is computed
by relating different words (positions) in the same sequence
(Vaswani et al., 2017). The attention function can be considered
as a mapping between a query and a set of key-value pairs, to an
output. The output is computed as a weighted sum of the values;
the weight assigned to each value is computed by a compatibil-
ity function of the query with the corresponding key. Figure 2.9
illustrates the attention patterns produced by different attention
heads in the 10th layer of BERT for inputs “the cat sat on the
mat” (Sentence A) and “the cat lay on the rug” (Sentence B) (Vig, 2019).7 The [SEP] symbol is a
special separator token that indicates a sentence boundary. [CLS] is a symbol appended to the front of
the input that is used for classification tasks.

The fully attention-based approach in the Transformer shows improved performance compared to tra-
ditional recurrent architectures. Apart from BERT and its variants, other high performing Transformer-
based models are the OpenAI GPT-2 and GPT3 models (Radford et al., 2019) which deliver high per-
formance on several benchmarks in a zero-shot setting. Additionally, attention is a useful interpretation
tool which shows how the model assigns weight to different input elements when performing specific
tasks (Raganato and Tiedemann, 2018; Voita et al., 2019a; Kovaleva et al., 2019; Rogers et al., 2020).

The power of BERT also lies in the use of a bidirectional model. Contrary to ELMo, where a forward
and a backward language model are separately trained,8 BERT jointly conditions on the left and right

7The figure is produced by the BertViz multiscale visualization tool for the Transformer model (Vig, 2019).
8A forward LM computes the probability of the sequence by modelling the probability of a given token (tk) given the
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Figure 2.10: BERT input representation for the sequence “My dog is cute. He likes playing”. The input embed-
dings are the sum of the token, segmentation and position embeddings.

context in all layers, as shown in Figure 2.8 (b).9 Bidirectional representations in the BERT model are
obtained with a double pre-training objective: (a) a Masked Language modelling (MLM) task similar
to a Cloze task (Taylor, 1953), where a portion of the input tokens is masked at random (e.g., The cat
[MASK] on the mat) and the model has to predict those tokens; and (b) a Next Sentence Prediction
(NSP) task, where the model needs to predict whether two segments follow each other in the original
text.

In MLM, the portion of words to mask is a parameter that needs to be set for model training. The
tradeoff between masked and unmasked words is important; when too many words are masked training
gets expensive, but masking very few words does not provide enough context for the model to learn
good quality representations. Moreover, masking tokens in the training corpus creates a mismatch
between pre-training and fine-tuning, where the [MASK] token does not appear. To mitigate this issue,
only 15% of the token positions are selected for possible replacement during BERT pre-training.10 The
final hidden vector for the input token is then used to predict the original token with cross entropy
loss. The NSP objective aims at improving performance on downstream tasks that require reasoning
about the relationships between pairs of sentences (e.g., Natural Language Inference (NLI) or Question
Answering). Positive examples (consecutive sentences in the text corpus) and negative examples (pairs
of segments from different documents) are sampled with equal probability.

Two English models, BERTBASE and BERTLARGE, have been trained on the BooksCorpus (800M
words) (Zhu et al., 2015) and the English Wikipedia (2,500M words). The two models differ in terms
of number of layers (i.e., Transformer blocks) (L=12 vs. L=24), hidden size (H=768 vs. H=1024),
number of self-attention heads (A=12 vs. A=16) and total number of parameters (11M and 340M,
respectively). Both models are trained with a specific kind of tokenization where some words are split
into smaller units called WordPieces (Wu et al., 2016).11 The first layer of BERT receives as input
a combination of token, segment, and positional embeddings, as shown in Figure 2.10. The segment
embedding shows which sentence (A or B) a token belongs to, while the position embedding shows the
position of the token inside the sequence. It is also typical of BERT that the first token of every sequence
is always a special classification token ([CLS]). Sentence pairs are grouped into a single sequence and
separated with a special token ([SEP]). The final hidden state corresponding to the CLS token is used
as the aggregate sequence representation. BERT can be fine-tuned for different tasks by simply adding

history (t1,..., tk−1). A backward LM is similar to a forward LM but runs over the sequence in reverse, predicting the previous
token given the future context (Peters et al., 2018).

9Portion of Figure 3 in the Devlin et al. (2019) paper.
10When a position is chosen, the corresponding token is replaced with the special [MASK] token (80% of the time), with a

random token (10% of the time), or is left unchanged (10% of the time).
11A 30,000 WordPiece vocabulary is generated from a training corpus by minimising the number of word splits done.

This results in dedicated vocabulary units for the most common words in the corpus, while less frequent words are split into
multiple wordpieces.
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a classification or regression head on top of the CLS token.

BERT has set a new SOTA in numerous NLP tasks. Also, BERT models exist in different languages
(e.g., (Martin et al., 2020; Le et al., 2020; Cañete et al., 2020; Koutsikakis et al., 2020; Virtanen et al.,
2019)). Multilingual versions of the model also exist, covering up to 104 languages. Given that the
training of BERT models is expensive, most research works use the pre-trained models. A downside
of this is that it makes it hard for researchers to draw conclusions and interpret the model results by
reference to the way the model was trained, since it is unclear what data the model was exposed to
during training.

Among the variants of BERT that have been proposed, we find lighter models with significantly fewer
parameters than BERT (e.g., DistilBert (Sanh et al., 2020) and ALBERT (A Lite BERT) (Lan et al.,
2020)) but yield comparable or improved performance on most downstream tasks. Other BERT variants
integrate different training procedures and objectives (RoBERTa (Liu et al., 2019c), SpanBERT (Joshi
et al., 2020), AMBERT (Zhang et al., 2021)).

Although contextualised representations encode the meaning of individual instances, methods that in-
ject sense information into them have also been proposed. In the SenseBERT model (Levine et al.,
2020), this is done using an auxiliary masked word sense prediction task, alongside the usual training
tasks of the contextual language model. The model that predicts the missing words’ sense is trained
jointly with the standard word-form level language model using information from WordNet as weak
supervision for self-supervised learning: the masked word’s supersenses form a set of possible labels
for the sense prediction task.12

2.8 Conclusion

In this chapter, I described the evolution of word representations from classical distributional mod-
els to recent contextual language models. I included a thorough discussion of the meaning conflation
problem which characterises both distributional approaches and static word embedding methods, and is
important for lexical semantics analysis. I explained the mechanisms that have been proposed for repre-
senting specific word instances, which might be aimed at capturing compositionality or at representing
the contextual meaning of word occurrences by aggregating over the vectors of their co-occurrences.
I specifically described different methods that have been proposed for representing word senses by
relying on automatically generated context clusters, on translations and on sense descriptions in exter-
nal lexicons. I also explained the architecture of contextual language models which are currently the
prevalent way for modelling lexical meaning. I clarified the differences between a bidirectional LSTM
model (ELMo) and a Transformer-based model (BERT) in order to highlight what contributes to the
superiority of the latter, and to their wide adoption in the community.

The goal of this introductory chapter is to illustrate the evolution of word meaning representations, and
the paradigm shift attested in the computational linguistics community in the past years. In the next
chapter, I will present three sets of articles which explore questions related to lexical semantics from a
different standpoint, using a different methodological approach.

12When a single supersense is available, the network is trained to predict it given the masked word’s context. When multiple
supersenses are available (e.g., bass: noun.food, noun.animal, noun.artifact, noun.person), the model is trained to predict any
of these senses, leading to a simple soft-labelling scheme.
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Chapter 3

Lexical Polysemy and Clusterability

3.1 Introduction

Traditional semantic processing tasks such as word sense disambiguation and word sense induction
assume that the semantic space of a polysemous word (lemma) can be partitioned into senses (Navigli,
2009; Manandhar et al., 2010). This, however, is a much easier task for some lemmas than others. In
more technical distributional terms, sense identification is the process that groups the instances of an
ambiguous word into clusters describing different meanings (Schütze, 1998). Naturally, instances of
words that express clearly different meanings are easier to tell apart than instances which describe inter-
related senses. For example, the following instances of the noun match describe three clearly different
senses of the word: SPORTS GAME, PAIRING or LIGHTING DEVICE.

You can live stream the match via an up to date device.

They are a perfect match.

How to light a match without the box.

On the contrary, these instances of the noun book:

The book I bought the other day.
I really enjoyed reading this book.

describe closely related meanings: the CONTENT and OBJECT senses of the word.

In our McCarthy et al. (2016) paper (paper A(i) in Section 1.2), we propose to study the partitionability
of lemmas into senses, that is how easy it is to decide whether different instances of a word express
different meanings. Evidence about a “spectrum of partitionability” of words into senses already existed
in the linguistics literature (Tuggy, 1993), however our paper was the first attempt to measure the
phenomenon. To do so, we proposed to operationalize partitionability as clusterability, a measure of
how easy the occurrences of a lemma are to cluster.

We specifically approached clusterability using metrics from the machine learning literature which
explore the general clusterability of a data set (Ackerman and Ben-David, 2009), contrary to clustering
quality metrics which instead measure the goodness of particular clusterings. A data set is considered
to be more clusterable if the partitions of the data points it contains are easier to make. Figure 3.1(a)
illustrates a clusterable data set, while Figure 3.1(b) illustrates a data set where the partitions are not
easy to make since the data points are grouped into overlapping clusters. In our study, the data points
corresponded to individual instances of a word, which can be grouped into more or less distinct clusters
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(a) More clusterable data (b) Less clusterable data

Figure 3.1: A more clusterable dataset compared to a less clusterable one.

depending on how similar the meanings they express are. In the case of a highly clusterable word (e.g.,
match) different instances describe distinct meanings and can be grouped into interpretable clusters; on
the contrary, in the case of a word with low clusterability (e.g., book or paper), different instances are
expected to describe more or less inter-related meanings.

3.2 Annotation-based Word Clusterability Estimation

An important step in our methodology is to measure the similarity of different word instances. This
is also a common step in Word Sense Induction (WSI) methods which aim at identifying the senses
of words from raw data (Manandhar et al., 2010; Jurgens et al., 2012).1 We adopt a graph-based
approach to WSI. Traditional graph-based algorithms reveal the senses of a word by partitioning a co-
occurrence graph built from its contexts into vertex sets grouping semantically related co-occurrences
(Véronis, 2004; Di Marco and Navigli, 2013). In our experiments, we instead rely on substitute and
translation annotations of word instances as a proxy for their meaning in context. We use data from the
SemEval 2007 Lexical Substitution (LEXSUB) dataset (McCarthy and Navigli, 2007) and the SemEval
2010 Cross-lingual Lexical Substitution (CLLS) dataset (Mihalcea et al., 2010). In our setting, the
similarity of individual word instances is reflected in, and can be measured through, the similarity of
their annotations. Example annotations for instances of the adjective clear are given in Table 3.2. The
first two instances have similar meaning, as shown by their shared annotations (obvious, claro, obvio,
evidente), which differs from the meaning expressed by the last instance (with substitutes clean, fresh
and pure).

In our paper, we propose two approaches for measuring the clusterability of a word:

• The first approach considers the distances of the data points that correspond to the instances of
the word. We implement this approach using clusterability metrics from the machine learning
literature which aim to measure the goodness of optimal k-means clusterings (Ackerman and
Ben-David, 2009). We call these intra-clustering (intra-clust) metrics;

• The second approach considers the similarity of the clusterings obtained based on the substitute
and translation annotations. It relies on the idea that if a lemma is more clusterable, two cluster-
ings based on two different “views” of the same data points will be more congruent. We call this
our inter-clustering (inter-clust) method.

For both methods, we first need to obtain a clustering of the instances for each word.

1Such methods are also commonly described as word sense identification or discrimination methods.
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Instances Substitutes Translations
In this regard , neither ink appears to have a clear advantage
over the other.

distinct (3), obvious (2), un-
ambiguous (1), definite (1)

claro (2), obvio (2), evidente
(1), perceptible (1)

I made that point perfectly clear to those of you who I dis-
cussed that with on Thursday.

obvious (3), understandable
(1), distinctly (1), evident (1),
unambiguous (1)

claro (4), evidente (2), obvio
(2), sin lugar a duda (1), con-
siso (1), preciso (1)

After opening a few files in the sample project the concept
of projects and file usage is clear.

obvious (3), plain (1),
unmistakable (1), evident (1),
apparent (1)

claro (4), entendido (1),
esclarecido (1), comprendido
(1), obvio (1)

The clear cool breeze is on your face first thing in the morn-
ing , and the children have new energy and interest in the
season.

clean (3), fresh (2), pure (1)
claro (4), entendido (1),
esclarecido (1), comprendido
(1), obvio (1)

Figure 3.2: Instances of the adjective clear from the LEXSUB and CLLS datasets with more or less similar senses,
as reflected in their English substitutes and Spanish translations.

3.2.1 An Intra-Clustering Clusterability Approach

Clusterability Metrics. We follow Ackerman and Ben-David (2009) and measure the general clus-
terability of a data set. A data set is considered to be more clusterable if the partitions of the data points
it contains are easier to make. The notions of clusterability considered are all based on the k-means
algorithm, and involve optimum clusterings for a fixed k. Let X be a set of data points, then a k-means
k-clustering of X is a partitioning of X into k sets. We consider three clusterability measures:

• Variance ratio (VR): The intuition underlying VR is that in a good clustering, points should be
close to the centroid of their cluster, and clusters should be far apart (Zhang, 2001).

• Worst pair ratio (WPR): This metric relies on a similar intuition as VR, in that it, too, considers
a ratio of a within-cluster measure and a between-cluster measure. A difference lies in the focus
on “worst pairs” (Epter et al., 1999), i.e. the closest pair of points that are in different clusters,
and the most distant points that are in the same cluster.

• Separability (SEP): SEP measures the improvement in clustering (in terms of the k-means loss
function) when we move from (k − 1) clusters to k clusters (Ostrovsky et al., 2006).

For VR and WPR, higher values indicate better clusterability, but the opposite is true for SEP. Lower
separability values signal a larger drop in k-means loss when moving from (k − 1) to k clusters. We use
an external method to determine k. We approximate k-means optimality by performing many clusterings
of the same data set with different random starting points, and using the clustering with minimal k-
means loss L.

Instance Similarity for k-Means Clustering. In order to measure the similarity between the in-
stances I of a lemma l, we turn the substitute annotations (S) for an instance i ∈ I into a vector (vSi).
Each possible substitute s ∈ S for l over all its ten LEXSUB instances becomes a dimension d in vSi,
with as value the number of annotators who proposed it. The resulting vector has as many dimensions
as the number of annotations (|S|) across all ten instances of l. Dimensions that correspond to substi-
tutes which were not proposed for an instance get a value of zero. For example, the vector for the first
example given for clear in Table 3.2 has an entry of 3 in the dimension distinct, an entry of 2 in the
dimension obvious, a value of 1 in the dimensions unambiguous and definite, and zero in all other di-
mensions (unmistakable, evident, fresh, pure, etc). The translations (T ) for an instance in the CLLS data
are turned into a vector in the same way. This procedure results in vectors of the same dimensionality
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for all instances of the same lemma. The distance (dvec) between two instances i, i′ of a lemma ℓ is
calculated as the Euclidean distance between their vectors.

Number of Clusters for k-means. The number of clusters (k) needed by the clustering algorithm is
determined using a simple graph-based approach which groups instances with a minimum number of
shared substitutes. We build two undirected graphs for each lemma in LEXSUB and CLLS. The two
datasets contain the same word instances as Usim (Erk et al., 2009, 2013), which serves to evaluate
the clusterability metrics. For a given lemma l, each instance i ∈ I is represented by a vertex in the
graph and is associated with its set of substitutes (S) or translations (T ). Two vertices (instances) are
linked by an edge if their distance is found to be low enough, as defined by a similarity measure which
considers their unique and shared annotations (Goldberg et al., 2010). Practically, the distance (dnode)
between two instances (nodes) i and i′ with substitute sets S and S′ corresponds to the number of moves
necessary to convert S into S′. We use the metric proposed by Goldberg et al. (2010) which considers
the elements that are shared by, and are unique to, each of the sets.

dnode(S,S′) = |S|+ |S′|−2|S∩S′| (3.1)

The graph built for l is partitioned into non-overlapping clusters (connected components) which de-
scribe the senses of that lemma. Two instances belong to the same component if there is a path between
their vertices.

3.2.2 An Inter-Clustering Clusterability Approach

The basic assumption behind this method is that if a lemma l is highly clusterable, then two clusterings
based on different “views” of the same data points (instances) should be relatively similar. We derive
two clusterings of the same set of instances from the graphs constructed as explained in Section 3.2.1
using substitutes and translations, which we consider as two different ways (or views) to describe the
meaning of a lemma in the Usim dataset (cf. Table 3.2). We compare the two clustering solutions using
measures from the SemEval 2010 Word Sense Induction task (Manandhar et al., 2010):

• V-measure (V ) is the harmonic mean of homogeneity and completeness (Rosenberg and Hirschberg,
2007). Homogeneity refers to the degree that each cluster consists of data points primarily be-
longing to a single gold-standard class, while completeness refers to the degree that each gold-
standard class consists of data points primarily assigned to a single cluster. V depends on both
entropy and number of clusters, since systems that provide more clusters do better.

• Paired F score (pF) is the harmonic mean of precision and recall (Artiles et al., 2009). Precision
is the number of common instance pairs between clustering solution and gold-standard classes,
divided by the number of pairs in the clustering solution. Recall is the same numerator but divided
by the total number of pairs in the gold-standard. pF penalizes a difference in number of clusters
to the gold-standard in either direction.

Since both measures use the harmonic mean, we can alternatively use CLLS or LEXSUB as gold standard.
The harmonic mean of homogeneity and completeness, or precision and recall, is the same regardless
which clustering solution is considered as ‘gold’.
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Gold partitionability estimates Clusterability measures
Umid: ↘ VR: ↗
Uiaa: ↗ WPR: ↗

SEP: ↘
V : ↗
pF : ↗
ncs: ↘

Table 3.1: Directions of partitionability estimates and clusterability measures: ↗ means that high values denote
high partitionability, and ↘ means that high values denote low partitionability.

3.2.3 Overlap-based Baseline Method

Word sense induction has often involved a hard partitioning of usages into senses, but it can also be
viewed in a graded (or soft clustering) fashion (Erk et al., 2009, 2013; Jurgens and Klapaftis, 2013). As
opposed to our inter-clustering and intra-clustering methods which are applicable to hard clusterings,
our baseline method relies on a simple criterion for estimating clusterability, the overlap that exists
between clusters. The idea for proposing this baseline is that if the amount of cluster overlap indicates
clusterability, then soft clustering would be a simple and useful tool for identifying lemmas with clear
cut senses. These would have little or no overlap between clusters, as depicted in Figure 3.1(b). The
clusters in this case correspond to a soft grouping solution of the nodes in the graphs described in
Section 3.2.1. A cluster (called CLIQUE) consists of a maximal set of nodes that are pairwise adjacent.
These are typically finer-grained than the partitions in the hard clustering solution, since there might be
vertices in a component that have a path between them without being adjacent.

3.2.4 Gold Standard Partitionability

We compare the clusterability ratings obtained with the measures described in the previous sections
to two gold standard partitionability estimates, derived from the usage similarity (Usim) dataset (Erk
et al., 2009, 2013). Usim contains ten instances for 56 target words (nouns, adjectives, verbs and
adverbs). Word instances are manually annotated with pairwise graded similarity scores on a scale from
1 (completely different) to 5 (same meaning). Each sentence pair was rated by multiple annotators and
the average judgement for a pair was retained. In order to use the Usim data as a reference, we model
partitionability as:

(a) inter-tagger agreement (Uiaa), i.e. the average pairwise Spearman’s correlation between the
ranked judgements of the annotators for a lemma;

(b) proportion of mid-range judgements over all instances for a lemma and all annotators (Umid).
Mid-range judgements are between 2 and 4, i.e. not 1 (completely different usages) or 5 (the
same usage).

3.2.5 Evaluation

The partitionability estimates and the clusterability measures vary in their directions. In some cases,
high values denote high partitionability (WPR and VR); in other cases (SEP), high values indicate low
partitionability. We expect WPR and VR to positively correlate with Uiaa and negatively with Umid,
and the direction of correlation to be reversed for SEP.

Our clustering evaluation metrics (V and pF) provide correlations with the gold standards in the same
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direction as WPR and VR. High congruence between the two solutions obtained for a lemma from dif-
ferent annotations of the same sentences should be indicative of higher clusterability and, consequently,
higher values of Uiaa and lower values of Umid. As regards the overlap-based baseline approach, since
we assume that lemmas that are harder to partition will have higher values of ncs, high values of ncs

should be positively correlated with Umid and negatively correlated with Uiaa (like SEP). Table 3.1
gives an overview of the expected directions.

We measure the Spearman’s ρ correlation between a ranking of gold partitionability estimates and a
ranking produced by clusterability predictions. Given that polysemy can influence clusterability, we
control for polysemy by grouping lemmas into polysemy bands depending on their number of senses,
and measure the correlation for lemmas in the same band. The number of senses (k) for lemma l
corresponds to the number of its clusters, i.e. the number of hard clusters (components) for VR, WPR

and SEP), and the number of soft clusters (cliques) for the baseline. For the cluster congruence metrics
(V and pF), k is the average number of clusters for l in LEXSUB and CLLS. Three polysemy bands are
defined:2

• low: 2 ≤ k < 4.3

• mid: 4.3 ≤ k < 6.6

• high: 6.6 ≤ k < 9

We hereby present the correlation experiments which demonstrate the usefulness of the proposed clus-
terability metrics. A second set of experiments is presented in the paper which performs linear regres-
sion to link partitionability to clusterability, using the degree of polysemy k as an additional independent
variable.

We calculated Spearman’s correlation coefficient (ρ) for the two gold-standards (Uiaa and Umid) and
all our clusterability measures: intra-clust (VR, WPR and SEP), inter-clust (V and pF) and the baseline
ncs. For all these measures (except for inter-clust), we calculate ρ using LEXSUB and CLLS separately
as our clusterability measure input. For the inter-clust measures, LEXSUB and CLLS are the two views of
the data. We calculate the correlation for lemmas in the polysemy bands (low, mid and high) where there
are at least five lemmas. Table 3.2 shows the average Spearman’s ρ over all trials for each clusterability
measure.

We observe that all average ρ scores are in the anticipated direction, specified in Table 3.1; SEP and ncs

are positively correlated with Umid and negatively with Uiaa, whereas for all other measures the direc-
tion of correlation is reversed. Some of the metrics show a promising level of correlation. WPR, on the
contrary, is quite weak possibly because it only considers the worst pair rather than all data points. The
baseline (ncs) is also particularly weak, suggesting that the amount of overlap is not a strong indication
of clusterability. The inter-clust measures (pF and V ) have a stronger correlation with Uiaa, whereas
the machine learning measures are more strongly correlated with Umid. Results for many individual
trials do not give significant results, as shown in the two last columns of the table, because controlling
for polysemy leaves less data (lemmas) for each correlation. However, all significant correlations are in
the anticipated direction.

From the machine learning metrics, VR (with a higher proportion of successful trials) and SEP (with the
highest average correlations) are most consistent in indicating partitionability. While there are some
success trials for the inter-clust approaches, the results are not consistent and only one trial showed a
highly significant correlation. Similarly, the overlap-based baseline approach has only one significant

2In cases where the number of COMPS is one, the lemma is excluded from analysis, since the clustering algorithm itself
decides that the instances are not easy to partition.
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measure average ρ prop. ρ > 0.4* or **
type measure Umid Uiaa Umid Uiaa

intra-clust
VR -0.4827 0.3651 2/3 2/3
SEP 0.5694 -0.3895 2/3 1/3
WPR -0.3221 0.2097 1/3 0/3

inter-clust
pF -0.3183 0.5398 0/2 1/2
V -0.1228 0.4925 0/2 0/2

baseline ncs 0.0525 -0.1641 0/6 1/6

Table 3.2: The macro-averaged correlation of each clusterability metric with the Usim gold-standard rankings
Uiaa and Umid: All correlations are in the expected direction. We also give, the proportion (prop.) of trials with
moderate or stronger correlation in the correct direction with a statistically significant result.

result, while in 4 out of 12 trials the correlation was in the non-anticipated direction. All other individual
results were in the anticipated direction, except from one result for WPR in the non-anticipated direction,
and one result for V on the fence. We made similar observations when controlling for polysemy, which
could be an important confounder. SEP and VR were again the most promising metrics, while the
inter-clust metrics (V and pF) and the baseline are overall not as consistent.

Clusterability metrics can serve to estimate the cost and effort needed in annotation projects, to deter-
mine the appropriate representation (clusters or per-instance vectors) for a lemma, and to identify words
on which disambiguation efforts should be focused (for example, for query expansion). We have shown
that clusterability metrics from machine learning are particularly relevant for lexical semantic analysis.
A limitation of this study is that it relies on manually produced annotations. An obvious perspective for
future work involves applying the measures to automatically generated word usage annotations, and to
word embedding representations of the instances. This would allow us to measure clusterability over
a larger vocabulary. In our recent work with Aina Garı́ Soler (my former PhD student in the MULTI-
SEM project) which is presented in the next section (Garı́ Soler and Apidianaki, 2021a), we perform
this type of clusterability analysis using contextual embeddings produced by neural language models
(Devlin et al., 2019).

3.3 Lexical Semantic Analysis with Language Models

In the previous section, we showed that the theoretical notion of clusterability from machine learning
(Ackerman and Ben-David, 2009) is relevant for lexical semantic analysis and can serve to reveal the
lemmas’ degree of partitionability into senses (Tuggy, 1993; Erk et al., 2013). We demonstrated how
clustering of word instances based on in-context substitute and translation annotations can be used
with clusterability measures to estimate how easily a word’s usages can be partitioned into discrete
senses, and have operationalized clusterability as consistency in clustering across these two information
sources.

In more recent work (Garı́ Soler and Apidianaki, 2021a), we also address the questions of polysemy
and sense partitionability, but this time using language model (LM) representations. In a series of ex-
periments conducted in English, French, Spanish and Greek, we show that LMs encode rich knowledge
about lexical polysemy which serves to tell polysemous from monosemous words, and to rank them ac-
cording to their polysemy level. Additionally, we demonstrate that by leveraging LM representations,
it is possible to scale up clusterability estimation to an open vocabulary. This overcomes the limitations
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inherent to the use of manual annotations in the McCarthy et al. (2016) study, which constrained clus-
terability estimation to words in the LEXSUB and CLLS annotated data sets. Clusterability experiments
are conducted in English due to the lack of evaluation data in the other three languages.

3.3.1 Probing for Semantic Information

The success of pre-trained LMs in numerous natural language understanding tasks (Devlin et al., 2019;
Peters et al., 2018) has motivated a large number of studies exploring what these models actually learn
about language (Voita et al., 2019a; Clark et al., 2019; Voita et al., 2019b; Tenney et al., 2019a). The
bulk of this interpretation work relies on probing tasks which serve to predict linguistic properties
from the representations generated by the models (Linzen, 2018; Rogers et al., 2020). The focus was
initially put on structural linguistic aspects pertaining to grammar and syntax (Linzen et al., 2016;
Hewitt and Manning, 2019; Hewitt and Liang, 2019). The first probing tasks addressing semantic
knowledge explored phenomena in the syntax-semantics interface, such as semantic role labelling and
coreference (Tenney et al., 2019a; Kovaleva et al., 2019), and the symbolic reasoning potential of LM
representations (Talmor et al., 2019).

Language model representations have also been probed for lexical meaning. First, it was shown that
they can successfully leverage sense annotated data (from Wikipedia and the SemCor corpus (Miller
et al., 1993)) for disambiguation. Wiedemann et al. (2019) and Reif et al. (2019) specifically show that
BERT can organise word usages in the semantic space in a way that reflects the meaning distinctions
present in the data. These works address the disambiguation capabilities of the model but do not show
what BERT actually knows about words’ polysemy. In an exploration of word meaning representation
in context, Aina et al. (2019) explore the interplay between word type and token-level information in
the hidden representations of LSTM LMs. They probe the hidden representations of a bidirectional
(bi-LSTM) LM for lexical (type-level) and contextual (token-level) information. They specifically train
diagnostic classifiers on the tasks of retrieving the input embedding of a word (Adi et al., 2017; Conneau
et al., 2018), and a representation of its contextual meaning as reflected in its lexical substitutes. The
results show that the information about the input word that is present in LSTM representations is not
lost after contextualisation.

The work of Ethayarajh (2019a) explores the similarity estimates that can be drawn from contextu-
alised representations without directly addressing word meaning. This study provides valuable observa-
tions regarding the impact of context on the representations, without explicitly addressing the semantic
knowledge encoded by the models. Through an exploration of BERT, ELMo and GPT-2 (Radford et al.,
2019), the author highlights the highly distorted similarity of the obtained contextualised representa-
tions which is due to the anisotropy of the vector space built by each model. This issue affects all tested
models and is particularly present in the last layers of GPT-2, resulting in highly similar representations
even for random words. Although addressing word representation in context, this work does not address
the question of meaning, making it hard to draw any conclusions about lexical polysemy.

Vulić et al. (2020b) probe BERT representations for lexical semantics, but they do so using “static” word
embeddings derived from contextualised representations. These are obtained through pooling over sev-
eral contexts, or by extracting representations for words in isolation and from BERT’s embedding layer
before contextualisation. Naturally, these representations are evaluated on tasks traditionally used for
assessing the quality of static embeddings, such as out-of-context word similarity and analogy (Drozd
et al., 2016; Hill et al., 2015; Vulić et al., 2020a) and the bilingual lexicon induction task (Artetxe et al.,
2020), which are not well-suited for addressing lexical polysemy.
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Our proposed experimental setup is aimed at investigating the information about polysemy that is en-
coded in the representations built at different layers of deep pre-trained LMs. This question is also
addressed by Pimentel et al. (2020), who adopt an information theoretic perspective to measuring lexi-
cal ambiguity using BERT embeddings. The assumption underlying their method is that the contexts in
which a word appears are systematically adapted to enable disambiguation. Consequently, the lexical
ambiguity of a word should negatively correlate with its contextual uncertainty. Work by Xypolopoulos
et al. (2021) explores ELMo’s (Peters et al., 2018) knowledge about lexical polysemy based on the ge-
ometry of the space built for different instances of words. Their approach builds multiresolution grids
in the contextual embedding space based on the assumption that the volume covered by the cloud of
points corresponding to different instances of a word is representative of its polysemy. Specifically,
they construct a hierarchical discretization of the space where, at each level, the same number of bins
are drawn along each dimension. Each level corresponds to a different resolution. The polysemy score
for a word is based on the volume (i.e. the proportion of bins) covered by its vectors at each level.3

Our approach basically relies on the similarity of contextualised representations, which amounts to
word usage similarity estimation as in the paper of Ethayarajh (2019a). This is a classical task in lexical
semantics which precisely involves predicting the similarity of word instances in context without use
of sense annotations (Erk et al., 2009; Huang et al., 2012; Erk et al., 2013). BERT has been shown to
be particularly good at this task (Garı́ Soler et al., 2019a; Pilehvar and Camacho-Collados, 2019). Our
experiments allow to explore and understand what this ability is due to.

3.3.2 Lexical Polysemy Detection

Our approach to investigate the knowledge that LMs encode about lexical polysemy and sense parti-
tionability follows a rigorous experimental protocol proper to lexical semantic analysis, which involves
the use of datasets carefully designed to reflect different sense distributions. This allows us to inves-
tigate the knowledge models acquire during training, and the influence of context variation on token
representations. Our investigation encompasses monolingual models in different languages (English,
French, Spanish and Greek) (Le et al., 2020; Cañete et al., 2020; Koutsikakis et al., 2020) and the lan-
guage specific parts of multilingual BERT (Devlin et al., 2019). We demonstrate that contextualised
representations generated by these models encode an impressive amount of knowledge about polysemy,
and are able to distinguish monosemous (mono) from polysemous (poly) words in a variety of settings
and configurations. Additionally, we show that BERT representations can serve to determine how easy
it is to partition a word’s semantic space into senses. They thus provide a way to scale up the McCarthy
et al. (2016) study to an open vocabulary and to new languages where contextual language models are
available.

Mono and Poly Sentence Pools. We build the English dataset for our experiments using SemCor
3.0 (Miller et al., 1993), a corpus manually annotated with WordNet senses (Fellbaum, 1998). It is
important to note that the annotations present in the corpus do not serve for training or evaluating any
of the models. They, instead, only serve to control the composition of the sentence pools that are used
for generating contextualised representations, and to analyse the results. We form sentence pools for
monosemous (mono) and polysemous (poly) words that occur at least ten times in SemCor. For each

3The binning strategy is deemed preferable to a clustering-based approach because of the non-uniform distribution of word
representations in the embedding space (Ethayarajh, 2019a). According to the authors, clustering would assign vectors lying
in the same dense area of the space to the same cluster, and outliers lying in the same but sparser area to many different small
clusters. This would make the number of clusters an unreliable indicator of the space a word covers.
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mono word, we randomly sample ten of its instances in the corpus. For each poly word, we form three
sentence pools of size ten reflecting different sense distributions:

• Balanced (poly-bal). We sample a sentence for each sense of the word in SemCor until a pool
of ten sentences is formed. This pool contains a balanced distribution of the word’s senses.

• Random (poly-rand). We randomly sample ten poly word instances from SemCor. We expect
this pool to be highly biased towards a specific sense due to the skewed frequency distribution of
word senses (Kilgarriff, 2004; McCarthy et al., 2004). This configuration is closer to the expected
natural occurrence of senses in a corpus, it thus serves to estimate the behaviour of the models in
a real-world setting.

• Same sense (poly-same). We sample ten sentences illustrating only one sense of the poly word.
Although the composition of this pool is similar to that of the mono pool (i.e. all instances describe
the same sense) we call it poly-same because it describes one sense of a polysemous word.4

Specifically, we want to explore whether BERT representations derived from these instances can
distinguish mono from poly words, even though there is no variation inside the respective pools.

The controlled composition of the poly sentence pools allows us to investigate the behaviour of the
models when they are exposed to instances of polysemous words describing the same or different
senses. There are 1,765 poly words in SemCor with at least 10 sentences available.5 We randomly
subsample 418 from these in order to balance the mono and poly classes. Our English dataset is com-
posed of 836 mono and poly words, and their instances in 8,195 unique sentences. For French, Spanish
and Greek, we retrieve sentences from the Eurosense corpus (Delli Bovi et al., 2017) which contains
texts from the Europarl corpus automatically annotated with word senses from the multilingual seman-
tic network BabelNet (Navigli and Ponzetto, 2012).6 We extract sentences from the high precision
version7 of the corpus, and create sentence pools in the same way as in English, by balancing the num-
ber of monosemous and polysemous words (418). The number of senses for a word is defined as the
number of its Babelnet senses that are mapped to a WordNet sense.

Contextualised Word Representations. In our Garı́ Soler and Apidianaki (2021a) paper, we exper-
iment with representations generated by three English models: BERT (Devlin et al., 2019)8, ELMo
(Peters et al., 2018), and context2vec (Melamud et al., 2016). We present here the results obtained
by the best-performing model, BERT. We use the bert-base-uncased and bert-base-cased mod-
els, pre-trained on the BooksCorpus (Zhu et al., 2015) and English Wikipedia.9 For French, Spanish
and Greek, we use BERT models specifically trained for each language: Flaubert (flaubert base

uncased) (Le et al., 2020), BETO (bert-base-spanish-wwm-uncased) (Cañete et al., 2020), and
Greek BERT (bert-base-greek-uncased-v1) (Koutsikakis et al., 2020). We also use the mBERT
model (bert-base-multilingual-cased) for each of the four languages. mBERT was trained on
Wikipedia data of 104 languages. All BERT models generate 768-d representations.

The Self-Similarity Metric. All models used in this study produce representations that describe word
meaning in specific contexts of use. For each instance i of a target word w in a sentence, we extract
its representation from each of the 12 layers of a BERT-type model. These models are trained with a

4The polysemous words are the same as in poly-bal and poly-rand.
5We use sentences of up to 100 words.
6BabelNet was built from lexicographic and encyclopedic resources such as WordNet and Wikipedia.
7Disambiguation in this version of Eurosense is more accurate than in the high coverage version of the corpus.
8We use Huggingface transformers (Wolf et al., 2019).
9The training and architecture of the BERT model are explained in detail in Section 2.7.
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specific kind of tokenization where some words are split into smaller units called WordPieces (WPs)
(Wu et al., 2016). When a word is split into multiple WPs, we obtain its representation by averaging
the WPs.

Our tool for measuring the similarity of the representations generated for different word instances is
self-similarity (Sel f Sim), one of the three measures of contextuality proposed by Ethayarajh (2019a) for
measuring how contextualised a representation is.10 They define Sel f Sim as follows: Let w be a word
that appears in sentences {s1, ..., sn} at indices {i1, ..., in} respectively, such that w = s1[i1] = ...= sn[in].
Let fl(s, i) be a function that maps s[i] to its representation in layer l of model f . The self similarity of
w in layer l is given by Equation 3.2.

Sel f Siml(w) =
1

|n|2 −|n| ∑j
∑
k∈I
k ̸= j

cos( fl(s j, i j), fl(sk, ik)) (3.2)

We calculate Sel f Sim for a word w in a sentence pool p and a layer l of a model by taking the average
of the pairwise cosine similarities of the representations of its instances in l. We report the average
Sel f Sim for all w’s in a pool p. Sel f Sim is in the range [-1, 1]. We expect the average Sel f Sim for
monosemous words and words with low polysemy to be higher than that of highly polysemous
words. We also expect the poly-same pool, which contains instances of the same sense of a poly

word, to have a higher average Sel f Sim than the other poly pools which contain instances of different
senses.

Ethayarajh (2019a) has shown that contextualisation has a strong impact on Sel f Sim since it introduces
variation in the token-level representations, making them more dissimilar. The Sel f Sim value for a
word would be 1 with non-contextualised (or static) embeddings, as all its instances would be assigned
the same vector. In contextual models, Sel f Sim is lower in layers where the impact of the context is
stronger. It is, however, important to note that contextualisation in BERT models is not monotonic, as
shown by previous studies of the models’ internal workings (Voita et al., 2019a; Ethayarajh, 2019a).
Our experiments provide additional evidence in this respect.

3.3.3 Results and Analysis

Figure 3.3 shows the average Sel f Sim obtained for each sentence pool (mono, poly-same, poly-rand,
poly-bal) with representations produced by BERT models in the four languages of the study. The
numbers on the x axis of the plots (1, ..., 12) correspond to the layer of the tested model. In the upper
left plot, which shows results obtained with the English BERT model, the thin lines illustrate the average
Sel f Sim score obtained using representations from the uncased English BERT model, while the thicker
lines correspond to scores obtained with the cased model. We observe a clear distinction of words
according to their polysemy: Sel f Sim is higher for mono than for poly words across all layers and
sentence pools.

A highly important and clear distinction seen in the plots is the one between the mono and poly-same

pools, which contain instances of only one sense. This distinction suggests that BERT encodes infor-
mation about a word’s monosemous or polysemous nature regardless of the contexts where the
word is seen, and which serve to derive the representations. BERT produces less similar representa-
tions for word instances in the poly-same pool compared to mono, reflecting that poly words can have
different meanings. We also observe a clear ordering of the three poly sentence pools: Average

10The other two are intra-sentence similarity and maximum explainable variance.
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Figure 3.3: Average Sel f Sim obtained with monolingual BERT models (top row) and mBERT (bottom row)
across all layers of the models (horizontal axis). In the first plot, thick lines correspond to the cased model.

Sel f Sim is higher in the poly-same pool, which only contains instances of one sense, followed by
mid-range values in poly-rand, and gets its lowest values in the balanced setting (poly-bal). This
is noteworthy given that poly-rand contains a mix of senses but with a stronger representation of w’s
most frequent sense than in poly-bal (71% of the instances vs. 47% in poly-bal).11

Our results demonstrate that BERT representations encode two types of lexical semantic knowl-
edge:

• Information about the polysemous nature of words acquired through pre-training, as reflected in
the distinction between mono and poly-same;

• information from the particular instances of a word used to create the contextualised representa-
tions, as shown by the finer-grained distinctions between different poly settings (poly-same,
poly-bal, poly-rand).

BERT’s knowledge about polysemy can be due to differences in the types of context where words of
different polysemy levels are used. We expect poly words to be seen in more varied contexts than mono
words, reflecting their different senses. BERT encodes this variation with the LM objective through
exposure to large amounts of data, and this is reflected in the representations. The same ordering
pattern is observed with mBERT (lower part of Figure 3.3).

Using the bert-base-cased model leads to an overall increase in Sel f Sim and to smaller differences
between bands, as shown by the thick lines in the upper left plot of Figure 3.3. Our explanation for
the lower distinction ability of the cased model is that it encodes sparser information about words than
the uncased model, since it was trained on a more diverse set of strings which included capitalised
and non-capitalised forms. Surprisingly, in spite of that, the cased model has a smaller vocabulary size
(29K WPs) than the uncased model (30.5K). Averaging the WPs of words might also have an impact
on the resulting representations, since the cased model contains a higher number of WPs corresponding
to word parts, compared to bert-base-uncased (6,478 vs. 5,829).

The decreasing trend in Sel f Sim observed for BERT in Figure 3.3, and the peak in layer 11, confirm the

11Numbers are macro-averages for words in the pools.
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phases of context encoding and token reconstruction observed by Voita et al. (2019a).12 In earlier layers,
context variation makes representations more dissimilar and Sel f Sim decreases. In the last layers,
information about the input token is recovered for LM prediction and similarity scores are boosted.
Our results show clear distinctions across BERT layers. This suggests that lexical information is spread
throughout the layers of the models, and contributes new evidence to the discussion on the localisation
of semantic information (Rogers et al., 2020; Vulić et al., 2020b).

The average Sel f Sim scores obtained for words in our pools using monolingual French, Spanish and
Greek models are shown in the top row of Figure 3.3. Flaubert, BETO and Greek BERT representations
clearly distinguish monosemous from polysemous words, but average Sel f Sim values for different poly
pools are much closer than in English. The results obtained with mBERT representations are shown in
the lower part of the figure. The model assigns highly similar average Sel f Sim values to different poly
pools, making distinction harder than with monolingual models. We test the statistical significance of
the mono/poly-rand distinction.13 The results show that differences are significant across all layers
of the models in English (α = 0.01). In the other languages, the difference between Sel f Sim values
in mono and poly-rand is significant in all layers of the monolingual models, and with mBERT for
Spanish and French. In mBERT for Greek, the difference is significant in ten layers, but the magnitude
of the difference is smaller compared to the other models.

We also conduct a classification experiment where contextualised representations are probed to test their
ability to guess whether a word is polysemous, and which poly band it belongs to. We use a binary
logistic regression classifier for the mono-poly distinction, and a multi-class classifier for predicting the
polysemy level (poly-band), using Sel f Sim as feature. Details about the experimental setup are given
in the paper. The results show that BERT achieves good accuracy (higher than mBERT) in both the
binary and multiclass settings. BERT embeddings can thus be used to determine whether a word has
multiple meanings, and to provide a rough indication of its polysemy level. A simple frequency-based
classifier performs on par with mBERT in the binary setting, highlighting that frequency information is
highly relevant for the mono-poly distinction. Results in the other three languages are not as high as
those obtained in English, but most models perform better than a frequency-based classifier.14

We believe that the lower quality results obtained with mBERT are partly due to the fact that the mul-
tilingual WP vocabulary is mostly English-driven, resulting in arbitrary partitionings of words in the
other languages. This word splitting procedure must have an impact on the quality of the lexical infor-
mation in mBERT representations. The nature and quantity of the training data must also have a strong
impact on the quality of the embedding space built by each model. Nevertheless, since we are using the
pre-trained models, it is not possible to draw conclusions and interpret the results based on the quality
of the training data.

Anisotropy Analysis. In order to better understand the differences between monolingual and mul-
tilingual models, we analyse their anisotropy using the method proposed by Ethayarajh (2019a). We
form pairs of random words,15 calculate the cosine similarity between two random instances of the
words in a pair, and take the average over all pairs. We call this score RandSim. The results are given

12They study the information flow in the Transformer estimating the MI between representations at different layers.
13We use unpaired two-samples t-tests when the normality assumption is met (as determined with Shapiro Wilk’s tests).

Otherwise, we run a Mann Whitney U test, the non-parametrical alternative of this t-test. In order to lower the proba-
bility of type I errors (false positives) that increases when performing multiple tests, we correct p-values using the Ben-
jamini–Hochberg False Discovery Rate (FDR) adjustment (Benjamini and Hochberg, 1995).

14Only exceptions are Greek mBERT in the multi-class setting, and Flaubert in both settings.
152,183 in English and 1,318 in each of the other languages.
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Figure 3.4: Similarity between random word instances in monolingual models and mBERT.

in Figure 3.4. We observe a clear difference in the scores obtained by monolingual models (solid lines)
and mBERT (dashed lines). Clearly, mBERT assigns higher similarities to random words, an indication
that its semantic space is more anisotropic than the one built by monolingual models. High anisotropy
means that representations occupy a narrow cone in the vector space (Ethayarajh, 2019a). This also
indicates that the vectors of random words are found close to each other which is not a desirable prop-
erty of semantic spaces, since it results in lower quality similarity estimates and in the model’s limited
potential to establish clear semantic distinctions.

In a quality semantic space, we would also expect the similarity between same word instances (Sel f Sim)
to be much higher than similarity of random words (RandSim). A second experiment described in the
paper shows that the difference is smaller in the space built by mBERT, and becomes very low in the last
layers of the model. This means that the multilingual model is less capable of distinguishing instances
of the same and different words than monolingual models and, consequently, that it is more anisotropic
than monolingual spaces.

3.3.4 Polysemy Level Prediction

We consider that the polysemy level of words can have an impact on the results. Distinguishing
a monosemous word from a polysemous word with a high number of senses should be an easier task
than distinguishing it from a polysemous word with fewer senses. In a second set of experiments, we
explore the impact of words’ degree of polysemy on the representations. We control for this factor by
grouping words into three polysemy bands, as in our McCarthy et al. (2016) work, which correspond
to a specific number of senses (k): low: 2 ≤ k ≤ 3, mid: 4 ≤ k ≤ 6, high: k > 6.16

In Figure 3.5, we compare mono words with lemmas in each polysemy band, in terms of their average
Sel f Sim. Values for mono words are taken from Section 3.3.2. For poly words, we use representations
from the poly-rand sentence pool which better approximates natural word occurrence in a corpus.
For comparison, we report results obtained in English using sentences from the English poly-same

and poly-bal pools in Figure 3.6. In English, the pattern is clear in all plots: Sel f Sim is higher for
mono than for poly words in any band, confirming that BERT is able to distinguish mono from poly

words at different polysemy levels. The range of Sel f Sim values for a band is inversely proportional
to its k: Words in low get higher values than words in high. The results denote that the meaning
of highly polysemous words is more variable (lower Sel f Sim) than the meaning of words with fewer
senses. As expected, scores are higher and inter-band similarities are closer in poly-same (cf. Figure
3.6 (b)) compared to poly-bal and poly-rand, where distinctions are clearer. These results confirm
that BERT can predict the polysemy level of words, even from instances describing the same sense.

16In English, the bands contain 551, 663 and 551 words, respectively. In the other languages, they contain 300 words each.
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Figure 3.5: Polysemy level prediction results. We show the average Sel f Sim obtained with monolingual BERT
models (top row) and mBERT (bottom row) for mono and poly lemmas in different polysemy bands. Represen-
tations are derived from sentences in the poly-rand pool.

Figure 3.6: Comparison of BERT average Sel f Sim for mono and poly lemmas in different polysemy bands in
the poly-same and poly-bal sentence pools.

The inter-band differences detected in poly-rand are significant in all but the first layer of BERT.17

In the other languages, the bands are also correctly ranked but with smaller inter-band differences than
in English.18 This variation across languages can be explained to some extent by the quality of the
automatic EuroSense annotations, which has a direct impact on the quality of the sentence pools.19 The
mBERT model makes less clear distinctions than the monolingual models, as shown in the lower row of
Figure 3.5. Still, inter-band differences are significant in most layers of mBERT and the monolingual
French, Spanish and Greek models.20

Controlling for frequency and part-of-speech category. Given the strong correlation between word
frequency and number of senses (Zipf, 1945), we explore how frequency influences the obtained results.
We use frequency information from Google Ngrams (Brants and Franz, 2006) for English, and gather
frequency counts from the OSCAR corpus (Suárez et al., 2019) for the other languages. In an initial
experiment, we examine whether BERT can rely on Sel f Sim to distinguish words by frequency. We find
that Sel f Sim can indeed serve to produce a clear ranking, with less frequent words having higher values

17We use the same approach as in Section 3.3.2.
18In Greek, clear distinctions are only made in a few middle layers.
19The WSD precision is ten points higher in English (81.5) and Spanish (82.5) than in French (71.8) (Delli Bovi et al.,

2017). The Greek portion has not been evaluated.
20With the exception of mono→low in mBERT for Greek and low→mid in Flaubert and mBERT for French.
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Figure 3.7: Average Sel f Sim inside the poly bands balanced for frequency (FREQ-bal) and part of speech (POS-
bal). Sel f Sim is calculated using representations generated by monolingual BERT models from sentences in each
language-specific pool. We do not balance the Greek dataset for PoS because it only contains nouns.

than more frequent ones. The words can also be distinguished by part of speech. Verbs, which are often
highly polysemous,21 have the lowest Sel f Sim values. The same trend is observed for monolingual
models in the other three languages. More details about these two experiments are given in the paper.

In order to test whether grammatical category and word frequency are to some extent responsible for
the good polysemy detection results, we create two new settings (called POS-bal and FREQ-bal) where
we control for the composition of the poly bands in terms of these two factors. We examine the
average Sel f Sim values obtained for words in each band in poly-rand. Figure 3.7 shows the results
for monolingual models. We observe a similar ordering of polysemy bands as in Figure 3.5, although
inter-band distinctions become less clear. These results indicate that BERT’s polysemy predictions do
not rely on frequency or part of speech. Statistical tests show that all inter-band distinctions are still
significant in most layers of the BERT model. For French and Spanish, all distinctions in POS-bal are
significant in at least one layer of the models. The same applies to the mono→poly distinction in FREQ-
bal but finer-grained distinctions get lost. Greek BERT cannot establish correct inter-band distinctions
when the influence of frequency is neutralised in the FREQ-bal setting.

3.4 Clusterability Estimation with Language Model Representations

3.4.1 Measuring Sense Partitionability with Contextualised Vectors

We have shown that representations from pre-trained LMs can serve to predict words’ degree of pol-
ysemy. In this section, we explore whether they can also point to the clusterability of polysemous
words. This study extends our McCarthy et al. (2016) work by replacing the manual annotations with
contextualised representations. The need for manual annotations constrained the initial study to a small
set of words found in the Usim, LEXSUB and CLLS datasets. The use of contextualised embeddings
allows us to scale up the approach to an open vocabulary. This experiment is conducted in English due
to the availability of evaluation data (Erk et al., 2013) and also for comparison with previous results.
We specifically test the ability of contextualised representations to estimate how easily the instances

21Only 10.8% of monosemous words in our mono pool are verbs.
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of a polysemous word can be grouped into interpretable clusters, Following McCarthy et al. (2016),
we use the clusterability metrics proposed by Ackerman and Ben-David (2009) to measure the ease of
clustering word instances into senses.

In order to make comparison with previous results possible, we run our experiments on the usage simi-
larity (Usim) dataset (Erk et al., 2013). We represent target word instances in Usim in two ways: using
contextualised representations generated by BERT, and using automatically generated substitute
annotations. The substitute-based approach makes possible a direct comparison with our annotation-
based method in the McCarthy et al. (2016) paper. In this initial experiment, we represented each
instance i of a word w in Usim as a vector i⃗, where each substitute s assigned to w over all its instances
(i ∈ I) becomes a dimension (ds). For a given i, the value for each ds is the number of annotators who
proposed substitute s. ds contains a zero entry if s was not proposed for i. We refer to this type of
representation as Gold-SUB.

We generate our substitute-based representations with BERT using the simple “word similarity” ap-
proach in Zhou et al. (2019). For an instance i of word w in context C, we rank a set of candidate
substitutes S = {s1,s2, ...,sn} based on the cosine similarity of the BERT representations for i and for
each substitute s j ∈ S in the same context C.22 As candidate substitutes, we use the paraphrases of w
in the Paraphrase Database (PPDB) XXL package (Ganitkevitch et al., 2013; Pavlick et al., 2015).23

For each instance i of w, we obtain a ranking R of all substitutes in S, and remove low-quality sub-
stitutes (i.e., noisy paraphrases or substitutes referring to a different sense of w) using a the filtering
approach we proposed in Garı́ Soler et al. (2019a).24 We build vectors as in McCarthy et al. (2016)
using the cosine similarity assigned by BERT to each substitute as a value. We call this representation
BERT-SUB.

Clusterability metrics. We use the two best performing metrics from McCarthy et al. (2016): Vari-
ance Ratio (VR) (Zhang, 2001) and Separability (SEP) (Ostrovsky et al., 2006). We also experiment
with the Silhouette coefficient (SIL) (Rousseeuw, 1987) as a clusterability metric, as it can assess clus-
ter validity. For VR and SIL, a higher value indicates higher clusterability. The inverse applies to SEP.

We calculate Spearman’s ρ correlation between the results of each clusterability metric and the two
gold standard measures from McCarthy et al. (2016): Uiaa, the inter-annotator agreement for a lemma
in terms of average pairwise Spearman’s correlation between annotators’ judgements; and Umid, the
proportion of mid-range judgements (between 2 and 4) assigned by annotators to all sentences of a
target word. Higher Uiaa values indicate higher clusterability, meaning that sense partitions are clearer
and easier to agree upon. Therefore, higher Umid values indicate lower clusterability, since it indicates
how often usages do not have identical (5) or completely different (1) meaning.

Sense Clustering. In order to estimate the clusterability of a lemma l, we need to first cluster its
instances in the data. For this, we use the k-means algorithm. We define the optimal number of clusters
k for a lemma using the Silhouette coefficient (SIL).25 For a data point i, SIL compares the intra-cluster
distance (i.e., the average distance from i to every other data point in the same cluster) with the average
distance of i to all points in its nearest cluster. The SIL value for a clustering is obtained by averaging
SIL for all data points, and it ranges from -1 to 1. We cluster each type of representation for w using

22We use representations from the last layer of the model.
23We use PPDB to reduce variability in our substitute sets, compared to the ones that would be proposed by looking at the

whole vocabulary. PPDB can be found at: http://www.paraphrase.org
24This filtering ensures that substitutes are both a good fit in the context and semantically related in the PPDB.
25We do not use McCarthy et al.’s graph-based approach because it is not compatible with all our representation types.

http://www.paraphrase.org
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Gold Metric BERT-REP BERT-SUB Gold-SUB BERT-AGG Gold-AGG

Uiaa
SEP ↘ -0.48*10 -0.03 -0.20 -0.48*11 –
VR ↗ 0.1712 0.09 0.34* 0.33*12 –
SIL ↗ 0.61*11 0.10 0.32* 0.69*10 0.80*

Umid
SEP ↗ 0.43*9 0.05 0.16 0.43*9 –
VR ↘ -0.249 -0.15 -0.24 -0.32*5 –
SIL ↘ -0.46*10 -0.11 -0.38* -0.44*8 -0.48*

Table 3.3: Spearman’s ρ correlation between automatic metrics and gold standard clusterability estimates. The
arrows indicate the expected direction of correlation for each metric. Subscripts indicate the BERT layer that
achieved best performance.

k-means with a range of k values (2 ≤ k ≤ 10), and retain the k of the clustering with the highest mean
SIL. Additionally, since BERT representations’ cosine similarity correlates well with usage similarity
(Garı́ Soler et al., 2019a), we experiment with Agglomerative Clustering with average linkage directly
on the cosine distance matrix obtained with BERT representations (BERT-AGG). For comparison, we
also use Agglomerative Clustering on the gold usage similarity scores from Usim, transformed into
distances (Gold-AGG).

3.4.2 Evaluation

The results of the clusterability experiment are given in Table 3.3. We show the Spearman’s ρ cor-
relation between automatic metrics and gold standard clusterability estimates. Significant correlations
(where the null hypothesis ρ = 0 is rejected with α < 0.05) are marked with *.

Best results on the Uiaa evaluation are given by Agglomerative Clustering on the gold Usim similarity
scores (Gold-AGG) in combination with the SIL clusterability metric (ρ = 0.80). This is unsurpris-
ing, since Umid and Uiaa are derived from the same Usim scores. From the automatically generated
representations, the strongest corrselation with Uiaa (0.69) is obtained with BERT-AGG and the SIL

clusterability metric. The SIL metric also works well with BERT-REP achieving the strongest corre-
lation with Umid (-0.46). It constitutes, thus, a good alternative to the SEP and VR metrics used in
previous studies.

An interesting point is that the correlations obtained using raw BERT representations are much higher
than the ones observed with McCarthy et al. (2016)’s representations which relied on manual sub-
stitutes (Gold-SUB): These were in the range of 0.20-0.34 for Uiaa and 0.16-0.38 for Umid. These
results demonstrate that BERT representations offer good estimates of the partitionability of words into
senses. As expected, the substitution-based approach performs better with clean manual substitutes
(Gold-SUB) than with automatically generated ones (BERT-SUB).

3.5 Conclusion

The studies presented in this chapter demonstrate how the clusterability of words can been estimated
using meaning annotations and a graph-based methodology, but also – and more efficiently – by directly
using the representations that are generated by contextual language models. The findings from this
series of experiments demonstrate that contextualised BERT representations encode rich information
about lexical polysemy. Our experimental results suggest that the knowledge that allows BERT to
detect polysemy in different configurations is acquired during the pre-training phase. Our findings hold
for monolingual BERT models in all four languages addressed in the study, and to a lesser extent for
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multilingual BERT.

These results open up new avenues for research in multilingual semantic analysis, with multiple theo-
retical and application-oriented extensions. The polysemy and sense-related knowledge revealed by the
models can serve to develop novel methodologies for improved cross-lingual alignment of embedding
spaces and cross-lingual transfer (Ruder et al., 2019; Liu et al., 2019b), pointing to more polysemous
words for which transfer might be harder. Predicting the polysemy level of words can also be useful
for determining the context needed for acquiring representations that properly reflect the meaning of
word instances in running text, and for identifying words which can be used as safe (unambiguous)
cues for disambiguation (Leacock et al., 1998; Mihalcea, 2002; Agirre and Martinez, 2004; Loureiro
and Camacho-Collados, 2020). From a more theoretical standpoint, we expect this work to be useful for
studies on the organisation of the semantic space in different languages and on lexical semantic change
(Kutuzov et al., 2018; Schlechtweg et al., 2019; Giulianelli et al., 2020).
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Chapter 4

In-Context Lexical Substitution

4.1 Introduction

The lexical substitution (LexSub) task involves selecting meaning-preserving substitutes for words in
context (cf. Table 4.1). The task was initially proposed as a testbed for word sense disambiguation
(WSD) systems (McCarthy and Navigli, 2007). Contrary to other WSD evaluation settings, LexSub
does not rely on pre-defined sense inventories (like WordNet). This permits the evaluation of different
types of systems and makes cross-system comparison easier. In more recent works, LexSub is mainly
seen as a way for evaluating the in-context lexical inference capability of vector-space models (Kremer
et al., 2014; Melamud et al., 2015). Lexical substitution is also useful for language learners and can
assist writers and translators in finding alternative lexicalisations. It can also serve in applications that
involve re-writing, such as text simplification and summarization methods, as well as in text generation
and machine translation evaluation metrics.

In this section, I again adopt a contrastive perspective and present two studies which address the ques-
tion of in-context lexical substitution using different methodology. The main idea behind LexSub
models is the contextualisation of the vector representation that is available for a word, i.e. its
adaptation to each individual context of use. This is generally done by combining a target word’s basic
vector with the vectors of words found in the surrounding context (for example, in the same sentence or
in a specific context window). Alternatively, words that are related to the target with a specific syntactic
relation can be used. Appropriate substitutes for a specific target word instance are its paraphrases or
synonyms that are similar to this contextualised representation. These are both semantically similar
to the target and a good fit in the context. Hence, a substitution method needs to consider both the
semantics of the candidate substitutes, as well as the context where the substitution will take place for
prediction.

The early paper that I will present appeared at the Empirical Methods for Natural Language Processing
(EMNLP) conference in 2016, and the most recent one at the International Conference on Computa-
tional Semantics (IWCS) in 2019.

(i) Apidianaki (2016): Marianna Apidianaki, “Vector-space models for PPDB paraphrase ranking
in context”, Proceedings of EMNLP 2016, p. 2028–2034.

(ii) Garı́ Soler et al. (2019b): Garı́ Soler, Aina and Cocos, Anne and Apidianaki, Marianna and
Callison-Burch, Chris, “A Comparison of Context-sensitive Models for Lexical Substitution”,
Proceedings of the 13th International Conference on Computational Semantics - Long Papers, p.
271–282.
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Lemma Substitutes Sentences

bright
intelligent (3), clever (3) He was bright and independent and proud .
shining (2), deep (1), vivid (1),
luminous (1), vibrant (1)

Snow covered areas appear bright blue in the image which
was taken in early spring and shows deep snow cover .

mood

humour (2), temperament (1),
disposition (1), feeling (1),
vibe (1), state of mind (1)

Trying to take away my good mood .

atmosphere (4), ambience (1),
feeling (1), tone (1)

In the room was perhaps 10 teachers , all friends and col-
leagues , when the director walked in the mood stiffened .

Table 4.1: Examples of in-context substitutes for the adjective bright and the noun mood from the SemEval-2007
LexSub dataset. Numbers in brackets indicate the number of annotators who proposed each substitute.

The EMNLP 2016 paper is a short paper where a syntax-based distributional model (Thater et al., 2011)
is used to rank the unigram paraphrases (synonyms) of words in the Paraphrase Database (Ganitkevitch
et al., 2013; Pavlick et al., 2015) according to new contexts of use. I show that good out-of-context
paraphrases might not be adequate for in-context substitution. They need to be ranked according to
how well they fit specific contexts of use. I use a syntax-based distributional model for this ranking
which generates a context-specific representation for each target word, and uses this vector to find the
best candidates for substitution (Thater et al., 2011). In our Garı́ Soler et al. (2019b) paper, we present
more recent neural lexical substitution models which explicitly model the context of substitution and the
semantics of individual lexical items. Before ending the chapter, I also briefly discuss even more recent
substitution approaches which rely on the capability of BERT-like contextualised models to perform
cloze-style slot filling.

4.2 A Syntax-based Lexical Substitution Model

Paraphrases are alternative ways to convey the same information and can improve natural language
processing by making systems more robust to language variability and unseen words. The paraphrase
database (PPDB) (Ganitkevitch et al., 2013; Pavlick et al., 2015) contains millions of lexical, phrasal
and syntactic paraphrases in 21 languages, associated with features that serve to their ranking. These
were automatically acquired by applying bi- and multi-lingual pivoting on parallel corpora (Bannard
and Callison-Burch, 2005). In PPDB’s release 2.0, such features include natural logic entailment rela-
tions, distributional and word embedding similarities, formality and complexity scores, and paraphrase
quality scores assigned by a supervised ranking model (Pavlick et al., 2015). These features serve to
identify good candidate paraphrases but do not say much about their substitutability in context.

In order to judge the adequacy of paraphrases for specific word instances, the surrounding context
needs to be considered. This can be done using vector-space models of semantics which calculate the
meaning of word occurrences in context based on distributional representations (Mitchell and Lapata,
2008; Erk and Padó, 2008; Dinu and Lapata, 2010; Thater et al., 2011). In the EMNLP 2016 paper
(Apidianaki, 2016), I consider as candidate substitutes the unigram paraphrases of words in PPDB (i.e.
their synonyms). I propose to use vector-space distributional semantic models for LexSub in order to
select PPDB paraphrases that preserve the meaning of specific text fragments. This is a ranking variant
of the LexSub task where systems are not expected to identify substitutes from the whole vocabulary,
but rather to estimate the suitability of items in a specific pool of substitutes and rank them accordingly
(Kremer et al., 2014). I used the vector space models of Thater et al. (2011) to rank the PPDB para-
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phrases in context, and retain the ones that preserve the semantics of specific sentences. I evaluated the
vector-based paraphrase ranking on data hand-annotated with lexical substitutes from the COINCO cor-
pus (Kremer et al., 2014).1 I also compared the obtained ranking to out-of-context confidence estimates
available in the PPDB, in order to show the importance of context filtering for paraphrase selection and
substitution.

Vector-based models of semantic composition. Vector-based models of meaning determine a grad-
ual concept of semantic similarity which does not rely on a fixed set of dictionary senses. They have
been used for word sense discrimination and induction (Schütze, 1998; Turney and Pantel, 2010) and
can capture the contextualised meaning of words and phrases (Mitchell and Lapata, 2008; Erk and Padó,
2008; Dinu and Lapata, 2010; Thater et al., 2011). Vector composition methods build representations
that go beyond individual words to obtain word meanings in context. They specifically represent the
contextualised meaning of a target word wt in context c through vector composition, by creating a vec-
tor which combines the vectors of wt and of the words {w1, ...,wn} in c using some operation such as
component-wise multiplication or addition.

Some models use explicit sense representations. In the method of Dinu and Lapata (2010), for example,
word meaning is represented as a probability distribution over a set of latent senses reflecting the out-
of-context likelihood of each sense, and the contextualised meaning of a word is modelled as a change
in the original sense distribution.2 Thater et al. (2011), on the contrary, use no explicit sense representa-
tion, but rather modify the basic meaning vector of a target word by reweighting its components on the
basis of the context of occurrence. Paraphrase candidates for a target word are then ranked according
to the cosine similarity of their basic vector representation to the contextualised vector of the target.

PPDB Instances Lemmas Avg |P|
S 2,146 560 2.67
M 3,716 855 2.92
L 6,228 1,394 3.57

XL 13,344 2,822 10.33
XXL 14.507 3,308 185.09

Table 4.2: Number of COINCO instances
and unique lemmas covered by PPDB.

Paraphrase Ranking. I test whether vector-based models
can select appropriate paraphrases for words in context. Given
an instance of a target word w and a set of paraphrases P from
PPDB, the task is to rank the elements in P according to their
adequacy as paraphrases of w in the given context. I use in-
stances from the COINCO corpus (Kremer et al., 2014) be-
cause the provided annotations can be used for evaluation.

For each annotated English target word (noun, verb, adjective
or adverb) in COINCO, I collect its lexical paraphrases (P =

p1, p2, ..., pn) from each PPDB package (from S to XXL).3 Table 1 shows the number of COINCO

tokens and lemmas with more than one paraphrases in a PPDB package, and the average size of the
retained paraphrase sets. The larger the size of the resource, the greater the coverage of target words
in COINCO, and the noisier the retained set of paraphrases.4 I test three flavours of the Thater et al.
(2011) model:

(a) a syntactically structured model (Syn.Vec) which uses vectors recording co-occurrences based
on dependency triples, explicitly recording syntactic role information within the vectors;

1COINCO is a subset of the “Manually Annotated Sub-Corpus” MASC (Ide et al., 2008). It comprises more than 15K
word instances manually annotated with single and multi-word substitutes.

2The latent senses are induced using non-negative matrix factorization (NMF) (Lee and Seung, 2000) and Latent Dirichlet
Allocation (LDA) (Blei et al., 2003b).

3PPDB comes in packages of different sizes.
4In the paper, I also report statistics and results for words with one paraphrase in PPDB. These practically evaluate the

extent to which this unique candidate fits in different contexts where the word occurs.
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PPDB Bow.Vec Syn.Vec Filter.Vec Google AGiga Ppdb1 Ppdb2 Parprob Random (5)
S 0.91 0.91 0.91 0.78 0.86 0.66 0.83 0.66 0.78
M 0.91 0.91 0.92 0.79 0.87 0.68 0.84 0.68 0.79
L 0.90 0.90 0.91 0.78 0.85 0.66 0.83 0.66 0.77

XL 0.78 0.79 0.79 0.58 0.67 0.44 0.66 0.43 0.58
XXL 0.53 0.56 0.57 0.27 0.36 0.12 0.58 0.12 0.27

Table 4.3: Average GAP scores obtained by the contextual models, the paraphrase adequacy methods and the
random baseline on the COINCO dataset.

(b) a syntactically filtered model (Filter.Vec) which uses dependency-based cooccurrence informa-
tion without explicitly representing the syntactic role in the vector representations, as in (Padó
and Lapata, 2007));

(c) a bag of words model (Bow.Vec) which uses a window of ± 5 words.

Co-occurrence counts are extracted from the English Gigaword corpus5 analysed with Stanford depen-
dencies (de Marneffe et al., 2006). The syntactic model vectors are based on dependency triples that
occur at least five times in the corpus and which have a PMI score of at least 2. For the bag of words
model, two words are retained as co-occurrences if they have been observed at least five times in the
same context window. The task of the vector-space models for each target word instance is to rank
the contents of the corresponding PPDB paraphrase set so that the actual substitutes are ranked higher
than the rest. For example, newspaper, manuscript and document are candidate paraphrases for paper
but we would expect a good ranking model to order newspaper higher than the other two candidates
in the sentence: “the paper’s local administrator”. In the Bow.Vec model, the context is made up of
five words before and after the target while in the syntactic models, it corresponds to the target’s direct
syntactic dependents. The contextualised vector for w is obtained through vector addition.

Paraphrase candidates are ranked according to the cosine similarity between the contextualised vector
of the target word and the basic meaning vectors of the candidates. Following Kremer et al. (2014),
I compare the resulting ranked list of paraphrases to the COINCO gold standard annotations using
Generalised Average Precision (GAP) (Kishida, 2005) and annotation frequency as weights. GAP score
is in the range [0,1]. A score of 1 indicates a perfect ranking in which all correct substitutes precede all
incorrect ones, and correct high-weight substitutes precede low-weight ones.6

Evaluation. The average GAP scores obtained by the three vector-space models for words with more
than one paraphrase in the PPDB are shown in Table 4.3.7 These are compared to five out-of-context
rankings reflecting paraphrase quality in the PPDB (Pavlick et al., 2015), and to a random baseline.

• AGigaSim captures the distributional similarity of a phrase p and its paraphrases {p1, ...pn} ∈ P,
as computed according to contexts observed in the Annotated Gigaword corpus (Napoles et al.,
2011);

• GoogleNgramSim reflects the distributional similarity of p and its paraphrases in P, as computed
according to contexts observed in the Google Ngram corpus (Brants and Franz, 2006);

• ParProb: the paraphrase probability of every paraphrase {p1, ...pn} ∈ P given the original phrase
p (Bannard and Callison-Burch, 2005);

5http://catalog.ldc.upenn.edu/LDC2003T05
6In order to calculate the GAP score, we assign a very low score (0.001) to paraphrases that are not present in COINCO

for a target word (i.e. which were not proposed by the annotators).
7The paper contains results for all words, including the ones with a single paraphrase.
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• Ppdb1: the heuristic scoring used for ranking in the original release of the PPDB (Ganitkevitch
et al., 2013);

• Ppdb2: the improved ranking of English paraphrases in PPDB 2.0 using a supervised scoring
model trained on human judgements of paraphrase quality (Pavlick et al., 2015);

• Random: A baseline where the paraphrases of p are randomly ranked. The reported figures are
PPDB package-specific since a different paraphrase set is retained from each package. They cor-
respond to averages over five runs. The quality of the ranking produced by the baseline clearly
decreases as the size of the PPDB resource increases due to the higher number of retained para-
phrases which makes ranking harder.

The results show that the vector-space models provide a better ranking than the PPDB paraphrase qual-
ity estimates and largely outperform the random baseline. The three models perform similarly on this
ranking task according to the average GAP score with the syntactically-informed models getting slightly
higher scores. Differences between Syn.Vec and Filter.Vec, as well as between Bow.Vec and the
syntactic models, are highly significant in the XL and XXL packages (p-value < 0.001) as computed
with approximate randomisation. In the L package, the difference between Syn.Vec and Filter.Vec

is significant (p < 0.05) and the one between Bow.Vec and Filter.Vec is highly significant. Finally,
in the M package, only the difference between Bow.Vec and Filter.Vec is significant (p < 0.05),
while Syn.Vec and Filter.Vec seem to deal similarly well with the contents of this package.

From the PPDB ranking methods, AGigaSim and Ppdb2 obtain good results. This is probably due to
the natural skewed distribution towards predominant senses in COINCO where whole documents were
annotated (Kremer et al., 2014). This distribution of senses favours non-contextualised baseline models
since the most frequent sense is the one often attested. The good performance of Ppdb2 is due to the use
of a supervised scoring model. Human judgements of paraphrase quality were used to fit a regression
to the features available in PPDB 1.0 plus numerous other features including cosine word embedding
similarity, lexical overlap features, WordNet features and distributional similarity features. The small
difference observed between Ppdb2 and the syntactic models score in the XXL package is highly
significant. However, Ppdb2 scores are available only for English, while the vector-space methodology
is unsupervised and can be easily applied to other languages. The performance of the models remains
high with the XL package which ensures a high coverage since it contains paraphrase sets of reasonable
size (about 10 paraphrases per word), and lowers in XXL which contains 185 paraphrases in average
per word (cf. Table 1). To use this package more efficiently, one could initially reduce the number
of erroneous paraphrases on the basis of the Ppdb2 score which provides a good ranking of the XXL
package contents before applying the vector-based models.

To conclude, vector-based models of semantics can be successfully applied to the in-context ranking
of PPDB paraphrases. Allowing for better context-informed substitutions, they can be used to filter
PPDB paraphrases on the fly and select variants preserving the correct semantics of words and phrases
in texts. This processing would be beneficial to numerous applications that need paraphrase support
(e.g., summarization, query reformulation and language learning) as it provides a practical means for
exploiting the extensive knowledge present in the multilingual PPDB resource. It can also be useful
in evaluation settings (as in Machine Translation and summarization evaluation) where there is need to
understand whether the rephrasings proposed by a model are semantically plausible (Denkowski and
Lavie, 2014; Marie and Apidianaki, 2015). Although tested on English, the proposed methodology can
be applied to all languages in the PPDB even to those that do not dispose of a dependency parser, as
shown by the high performance of the Bow.Vec models.
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4.3 Neural Models for Substitution

Word embedding models provide good estimates of word meaning, they would thus be a good fit for
the LexSub task. In our work presented at the International Conference on Computational Seman-
tics (IWCS 2019) Garı́ Soler et al. (2019b), we compare different types of representations on this task.
Specifically, we compare static embeddings (GloVe (Pennington et al., 2014) and FastText (Bojanowski
et al., 2017)) and contextualised (ELMo) representations (Peters et al., 2018), with models specifically
designed for lexical substitution (Melamud et al., 2015, 2016). We evaluate all models on the SemEval
2007 LexSub task test set (McCarthy and Navigli, 2007). Given an instance of a target word t and a set
of candidate substitutes (S = {s1,s2, ...,sn}), we use each model to get a ranking of the substitutes in S
depending on how well they describe the meaning of t. Higher ranked substitutes are both good para-
phrases of the target and a good fit in the context. Similar to our experiments presented in Section 4.2,
we consider as candidate substitutes S = {s1,s2, ...,sn} for t its paraphrases in the Paraphrase Database
(PPDB) XXL package (Pavlick et al., 2015)8 that are also present in the gold standard SemEval 2007
LexSub annotations.

4.3.1 Lexical Substitution Methods

Target-to-substitute (tTs) ELMo embedding similarity. ELMo representations are contextualised,
so the embedding for a token is a function of the entire sentence in which it appears. We apply the ELMo
vectors for the first time to the lexical substitution task. The proposed substitute ranking method uses
target-to-substitute (tTs) similarity, as measured by the cosine similarity of the corresponding ELMo
representations. Given a new sentence C with an instance of the target word t to be substituted, we first
obtain a representation for t. We experiment with the top layer (ELMo-top) and the average of the three
layers of the model (ELMo-avg).9 We then replace t with all its potential substitutes st ∈ St one by one,
and obtain the ELMo vector for each substitute in the same context. Substitutes are then ranked by the
cosine similarity of their vector with that of t in the same context.

The AddCos method. This method has been proposed by Melamud et al. (2015) and is based on the
skip-gram word embedding model. The method explicitly leverages the context embeddings generated
within skip-gram, which are generally considered as internal and discarded at the end of the learning
process. The proposed substitutability measures capture two types of similarity:

(a) target-to-substitute, showing how similar a potential substitute is to the target word;

(b) target-to-context, reflecting the substitute’s compatibility with a given sentential context.

Similarities are estimated using the cosine distance between the skip-gram word and context embed-
dings. The proposed measures differ in the way they combine the score elements together, using either
an arithmetic or geometrical mean. We choose the more flexible additive approach which (contrary to
the multiplicative variants) does not require high similarities in all elements of the product to highly
rank a substitute, but can yield a high score even if one of the elements in the sum is zero. The Add
measure equation (1),10 estimates the substitutability of a substitute s with the target word t in context
C, where C corresponds to the set of words in the sentence, and c corresponds to an individual context
word.

8http://paraphrase.org
9Averaging across layers has been shown to improve performance in several syntax and semantics-related tasks compared

to using the top LSTM layer.
10We call this method AddCos because of the Cosine function applied to the vector representations of words and contexts.

http://paraphrase.org
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AddCos(t,s,C) =
cos(s, t)+∑c∈C cos(s,c)

|C|+1
(4.1)

We use 300-dimensional skip-gram word and context embeddings trained on the 4B words of the An-
notated Gigaword corpus (Napoles et al., 2012).11 We also apply this method to ELMo embeddings.
We extract the vector for the target and for each substitute in the same sentence.

The context2vec-based model. The context2vec (c2v) model of (Melamud et al., 2016) jointly learns
context and word embeddings using a bidirectional LSTM. The model is based on word2vec’s CBOW
architecture (Mikolov et al., 2013a) but replaces its naive context modelling (of averaged word em-
beddings in a fixed window) with a full-sentence neural representation of context. Words and contexts
are embedded in the same low-dimensional space which allows for calculating target-to-context (t2c),
context-to-context (c2c) and target-to-target (t2t) similarities. A score for a candidate substitute is com-
puted using the following formula:

c2v score =
cos(s, t)+1

2
× cos(s,C)+1

2
(4.2)

where t and s are the word embeddings of the target and the substitute, and C is the c2v context vector
of the sentence with an empty slot at the target’s position. We use the 600-dimensional c2v embeddings
released by Melamud et al. (2016). We also use Equation 4.2 (hereafter called c2vf ) with standard
ELMo (instead of skip-gram) vectors. We obtain the ELMo embedding of the target word and its
substitutes in the same context. The context vector (C) is the average of the ELMo embeddings of all
words in the context.

Baselines. The context-unaware baseline models solely rely on the target-to-substitute similarity of
pre-trained word embeddings: 300-dimensional GloVe vectors (Pennington et al., 2014)12 and FastText
vectors, both trained on Common Crawl (Mikolov et al., 2018).13 Since these embeddings are uncon-
textualised, the proposed substitute ranking is the same for all contexts. We also test an “enriched”
version of the baseline models which integrates a simple representation of the context consisting of the
average of the embeddings of words contained in it. We then compare target and substitute vectors to
the generated context vector using the context2vec formula (Equation 4.2).

4.3.2 Evaluation

We compare the models by testing them in a substitute ranking task. We use 158 target words from the
SemEval-2007 Lexical Substitution (LexSub) task dataset (McCarthy and Navigli, 2007) which have
more than one substitutes (S = {s1,s2, ...,sn}) in PPDB 2.0 XXL.14 The substitutes in S need to be
ranked according to their suitability in context. For example, the noun way has the following candidate
paraphrases in PPDB XXL: sense, means, aspect, technique, passage, respect, direction, characteristic,
journey, method, route, practice, fashion, manner. These need to be ranked for every instance in a new

11The vectors used by the original Add method are syntax-based embeddings (Levy and Goldberg, 2014). We use the
lighter adaptation proposed by Apidianaki et al. (2018) which circumvents the need for syntactic analysis.

12https://nlp.stanford.edu/projects/glove
13https://fasttext.cc/docs/en/english-vectors.html
14There are 1,584 sentences for these words. The full dataset contains 201 target words and 2,010 sentences extracted from

the English Internet Corpus (Sharoff, 2006) and annotated with substitutes by five native English speakers.
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sentence, for example: “on the way out of the parking lot johnny felt a thump”. A model performs well
if it ranks the gold substitutes for this instance route (3), passage (1), journey (1)15 higher than the other
paraphrases (synonyms) of this noun.

Method Vectors GAP

AddCos
(c=1 or c=4)

Skip-gram 0.527 (0.520)
ELMo-avg 0.527 (0.498)
ELMo-top 0.513 (0.476)

c2vf
UkWac c2v 0.587
ELMo-avg 0.529
ELMo-top 0.516

tTs
ELMo-avg 0.534
ELMo-top 0.531

Glove + context Glove 0.467
Fasttext + context Fasttext 0.491

Baselines
Glove 0.465

Fasttext 0.485

Table 4.4: The GAP score of substitute ranking
methods. The two scores for AddCos are for dif-
ferent window sizes (c =1 and c = 4).

Similar to the experiments in Section 4.2, we measure
the quality of the automatic ranking by comparing it
to the gold ranking using Generalized Average Preci-
sion (GAP) (Kishida, 2005). The results for different
model and vector combinations are given in Table 4.4.
We observe that context2vec outperforms other meth-
ods. This must be due to the model’s training objective
which makes it highly suited for the LexSub task: con-
text2vec is explicitly trained with pairs of target words
and sentential contexts, optimising the similarity of
context vectors and potential fillers. In contrast, ELMo
is trained as a general language model to predict the
immediate next tokens. The ELMo-avg configuration
gives slightly better performance than ELMo-top. Fast-
Text embeddings perform slightly better than GloVe in
this task, while both models benefit from adding con-
text. For the AddCos method, one word around the target word (c=1) is more effective than a bigger
context window (c=4).

4.3.3 BERT as LexSub model

More recently, the use of BERT for lexical substitution has also been considered, but there are several
issues to be considered regarding the straightforward application of this model to this task. One problem
is that the proposed substitutes – which are often obtained using masking, as in cloze-task probing
studies – might not preserve the semantics of the original text. For example, if cat is masked in the
sentence “I love this cat”, BERT would propose substitutes that fit this context without preserving the
semantics of the original sentence (e.g., dog, food, movie, restaurant). To address this problem, Li et al.
(2020) proposed to generate examples for their BERT-ATTACK method without using the [MASK]

token. They instead query BERT with the whole sentence (without masking). This method poses other
problems such as the probability mass going to the original (unmasked) target word, making it hard
to choose good candidates from the remaining probability space. Zhou et al. (2019) address this issue
by partially masking the target word. This is done by applying embedding dropout and having BERT
propose substitutes for that position. This is a mid-way solution between target word masking, which
can generate semantically irrelevant substitutes and unmasking which would put about 99.99% of the
predicted probability distribution into the target word.

4.4 Conclusion

This chapter explains how in-context lexical substitution was performed with distributional (syntax-
based and bag-of-words) models, and how this is now done with neural model representations. I present
a comparison of the performance of static and contextualised embeddings on this task. I also compare
models that have been trained with a language modelling objective (like ELMo) with models specifi-

15The numbers denote how many annotators proposed each substitute.
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cally trained for the LexSub task (like context2vec). The results of this comparison show that powerful
contextualised word representations, which give high performance in several semantics-related tasks,
deal less well with the subtle in-context similarity relationships that need to be considered for substitu-
tion. This is better handled by models trained with a specific lexical substitution objective (Melamud
et al., 2015, 2016), where the inter-dependence between word and context representations is explicitly
modelled during training.
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Chapter 5

Adjective Intensity Detection

5.1 Introduction

Adjectives like pretty, beautiful, and gorgeous all describe appearance in positive terms but differ in
intensity. Understanding these differences between adjectives is necessary for reasoning about natural
language. Modelling this distinction is also important for language understanding tasks such as senti-
ment analysis (Pang et al., 2008), question answering (de Marneffe et al., 2010), and textual inference
(Dagan et al., 2006). Information on the relative intensities of adjectives, however, is not present in
existing lexico-semantic resources such as WordNet (Miller, 1995; Fellbaum, 1998).

We have approached the question of scalar adjective intensity using two approaches. The first
relies on paraphrases extracted from an automatically built large-scale multilingual database, and
combines them with patterns extracted from texts and with information from semantic lexicons (Cocos
et al., 2018). Our second approach leverages the semantic space built by contextual language
models (Garı́ Soler and Apidianaki, 2020). We specifically show that abstract semantic notions such
as intensity can be identified in the space constructed by these models and can serve to rank words with
different intensity in different languages. In what follows, we present the details of the two approaches
and a comparison in intrinsic and extrinsic evaluation settings.

Previous approaches to adjective intensity detection gathered evidence from large text corpora using
patterns. These included lexical (Sheinman and Tokunaga, 2009; de Melo and Bansal, 2013; Sheinman
et al., 2013) and syntactic (Shivade et al., 2015) patterns indicative of an intensity relationship. For
example, the patterns “X, but not Y” (e.g., good but not great), “not just X but Y” (not just good but
great), “X though not Y” (good though not great) provide evidence that X is an adjective less intense
than Y (X < Y). These methods are precise but have relatively small coverage of comparable adjectives,
even when using web-scale corpora (de Melo and Bansal, 2013; Ruppenhofer et al., 2014).

Lexicon-based approaches employ resources that map an adjective to real-valued scores encoding both
sentiment polarity and intensity (Hatzivassiloglou and McKeown, 1993). For example, good might map
to 1 and phenomenal to 5, both positive scores reflecting the respective intensity of the words; while
bad maps to negative score -1 and awful to -3. The lexicon used in these methods might be compiled
automatically – for example, from analyzing adjectives’ appearance in star-valued product or movie
reviews (de Marneffe et al., 2010; Rill et al., 2012; Sharma et al., 2015; Ruppenhofer et al., 2014) – or
manually (e.g., the SO-CAL lexicon (Taboada et al., 2011)). Similar to pattern-based approaches, these
methods are highly precise but have low coverage, since they are constrained by the limited coverage
of the used lexicons.
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5.2 Paraphrase-based Adjective Ranking

5.2.1 Our Intensity Detection Method

Our method for automatically learning the relative intensity relation that holds between scalar adjec-
tives presented in Cocos et al. (2018) relies on paraphrases. The proposed method provides increased
coverage compared to pattern- and lexicon-based approaches. We demonstrate how paraphrases can be
useful in this scenario, and also how the three information sources (paraphrases, patterns and lexicons)
can be combined for effectively detecting intensity in adjective scales.

The novelty of our method is its reliance on paraphrases as a source of evidence for intensity identifi-
cation. A paraphrase is a pair of words or phrases with approximately similar meaning, such as really
great ↔ phenomenal. Adjectival paraphrases of the form RB JJu ↔ JJv where one phrase is comprised
of an adjective (JJu) modified by an intensifying adverb (RB) and the other is a single-word adjective
(JJv), provides evidence about their relative intensity, i.e. that the first adjective is less intense than the
second (JJu < JJv). For example, the paraphrase rules “really great ↔ phenomenal” and “very pleasant
↔ delightful” provide evidence that “great < phenomenal”, and “pleasant < delightful”. The proposed
relationships indeed hold between these adjectives.

We extract this type of knowledge from the Paraphrase Database (PPDB) (Ganitkevitch et al., 2013;
Pavlick et al., 2015), which contains over 36k adjectival pairs.1 A few more examples illustrating
our basic assumption that the presence of an intensifying adverb in a paraphrase rule involving two
adjectives is indicative of an intensity relationship between them are given below.

particularly pleased ↔ ecstatic ⇒ pleased < ecstatic
quite limited ↔ restricted ⇒ limited < restricted

rather odd ↔ crazy ⇒ odd < crazy
so silly ↔ dumb ⇒ silly < dumb

completely mad ↔ crazy ⇒ mad < crazy
really beautiful ↔ gorgeous ⇒ beautiful < gorgeous

We use these paraphrases to build a graph (called JJGRAPH) where nodes represent adjectives, and
directed edges represent the intensifying adverbs (e.g., particularly, rather, really) linking the two
adjectives.2 We identify the intensifying adverbs needed for constructing the graph using the following
bootstrapping approach.

1. Round 1: We start with a small seed set of adjective pairs (JJu,JJv) having a known intensity
relationship, such as the base-form adjective and its comparative or superlative form (e.g., very
hard ↔ harder, so hard ↔ harder). Since we know that JJu < JJv in these cases, we infer that
adverb RB is intensifying. All such RB’s are added to an initial adverb set R1.

2. Round 2: The process continues by extracting paraphrases (RB JJu′ ↔ JJv′) with RB ∈ R1,
indicating additional adjective pairs (JJu′ , JJv′) with intensity direction inferred by RB.

3. Round 3: Finally, the adjective pairs extracted in this second iteration are used to identify addi-
tional intensifying adverbs R3, which are added to the final set R = R1 ∪ R3.

This process generates a set of 610 adverbs, many of which are intensifying (e.g., very, truly, abun-
dantly, particularly). A few de-intensifying adverbs (e.g. hardly, kind of ) and adverbs that do not

1www.paraphrase.org
2Intensifying adverbs (e.g., very, totally) strengthen the adjectives they modify in contrast to de-intensifying adverbs (e.g.,

slightly, somewhat) which weaken the intensity of the adjectives.

www.paraphrase.org
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express intensity (e.g. ecologically) are also included due to the bootstrapping process, and the noise
in the automatically-compiled PPDB resource. The JJGRAPH is built using all 36,756 adjectival para-
phrases in PPDB of the specified form RB JJu ↔ JJv, where the adverb belongs to R. The resulting
JJGRAPH has 3,704 unique adjective nodes. It can be used for pairwise intensity prediction, since the
directed adverb edges between two adjectives JJu and JJv provide evidence about the intensity relation-
ship between them.

The proposed paraphrase approach can be combined with pattern- and lexicon-based approaches. This
allows us to benefit from the different approaches, and to improve the quality of the results both in terms
of precision and coverage. We use pattern-based evidence gathered using the de Melo and Bansal (2013)
approach which relies on intensity patterns from Google n-Grams (Brants and Franz, 2006). These
comprise “weak-strong” patterns (e.g., “X, but not Y”) and “strong-weak” patterns (e.g., “not X, but still
Y”) which serve as evidence about the directionality of the intensity relationship. Given an adjective
pair (JJu,JJv) (e.g., good, great), an overall pattern-based “weak-strong” score is calculated based on
the number of times where the adjectives occur in patterns corresponding to the “weak-strong” and
“strong-weak” intensity relations (e.g., “good, but not great”, “not only good but great”, “not great,
just good”). Additionally, we use evidence from the manually-compiled SO-CAL3 lexicon (Taboada
et al., 2011) for inferring intensity. SO-CAL includes integer weights in the range [−5,5] for 2,826
adjectives. The sign of the weight encodes sentiment polarity (positive or negative) and the value
encodes intensity (e.g., phenomenal: 5; unlikable: -3). We derive a pairwise intensity prediction score
for adjectives having the same polarity by subtracting their scores.

We combine two metrics x and y to generate a score for an adjective pair (JJu, JJv), by simply using
the first metric x if it can be reliably calculated for the pair, and backing off to metric y otherwise.
For pattern-based evidence, a score is reliably calculated for a pair of adjectives when they appear
together in an intensity pattern. For lexicon-based evidence, there is confidence in a prediction when
both adjectives are in the lexicon and have the same polarity (positive/negative). For paraphrase-based
evidence, when the two adjectives are directly connected in JJGRAPH.

5.2.2 Intrinsic Evaluation

We evaluate our method against three manually created datasets. We use each type of evidence (para-
phrases, patterns, lexicon) separately, and their combination, for ranking the scalar adjectives in these
resources.

• The de Melo and Bansal (2013) dataset (deMelo)4 contains 87 adjective sets extracted from
WordNet ‘dumbbell’ structures (Gross and Miller, 1990) which are partitioned into half-scale
sets based on their pattern-based evidence in Google N-Grams (Brants and Franz, 2006), and
manually annotated for intensity relations (<, >, and =).

• The Wilkinson and Oates (2016) dataset (Wilkinson) contains 12 full adjective scales annotated
for intensity through crowdsourcing.

• Crowd is a crowdsourced dataset of 79 adjective scales with high coverage of the PPDB vocab-
ulary (293 adjective pairs).

We measure the agreement between the gold standard ranking of adjectives along each scale in these
datasets and the ranking predicted by each of our methods. We consider intensity predictions as high
quality if they agree with the reference ranking. We calculate the pairwise accuracy of the predictions

3https://github.com/sfu-discourse-lab/SO-CAL
4http://demelo.org/gdm/intensity/

https://github.com/sfu-discourse-lab/SO-CAL
http://demelo.org/gdm/intensity/
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Test Set Score Type Coverage Pairwise Accuracy

deMelo

scorepat 0.48 0.844
scorepp 0.33 0.458
scoresocal 0.28 0.546
scorepat+socal 0.61 0.757
scorepat+socal+pp 0.70 0.722

Crowd

scorepat 0.11 0.784
scorepp 0.74 0.676
scoresocal 0.35 0.757
scorepat+socal 0.81 0.687
scorepat+socal+pp 0.82 0.694

Wilkinson

scorepat 0.44 0.852
scorepp 0.80 0.753
scoresocal 0.31 0.895
scorepat+socal 0.89 0.833
scorepat+socal+pp 0.89 0.833

Table 5.1: Pairwise relation prediction for each score type in isolation, and for the best-scoring combinations of
two or three score types on each dataset. We also report the coverage of each method.

against the gold standard. For each pair of adjectives along the same scale, we compare the predicted
to the gold-standard ordering for the pair. We report the overall accuracy of the pairwise predictions in
Table 5.1. We report the results for each score type in isolation, and for the best-scoring combinations
of two or three score types on each dataset. scorepat shows the results for the pattern-based method,
scorepp for the paraphrase-based method, and scoresocal shows the performance of the lexicon-based
method that relies on SO-CAL (Taboada et al., 2011). We also report the performance of the combined
methods scorepat+socal and scorepat+socal+pp.

The pairwise accuracy scores for the pattern-based and the lexicon-based methods are higher than those
of the paraphrase-based methods for all datasets, but their coverage is relatively limited. One exception
is the deMelo dataset where the pattern-based method has high coverage, because the dataset was also
compiled by finding adjective pairs that matched lexical patterns in the corpus. For all datasets, highest
coverage is achieved using one of the combined metrics that incorporates paraphrase-based evidence.

5.2.3 Extrinsic Evaluation

We also evaluate our method on an Indirect Question-Answering task (de Marneffe et al., 2010). This
task involves polar (yes/no) questions for which the answers often do not contain an explicit yes or no.
They rather give information that the hearer can use to infer such an answer in a context with some
degree of certainty. Interpreting the answer is straightforward in some cases (Q: Was it bad? A: It was
terrible.) but in other cases the answer is unclear (Q: Was it good? A: It was provocative.).

The de Marneffe et al. (2010) dataset is focused on the interpretation of answers to polar questions
where the main predication involves a gradable modifier (e.g., highly unusual, not good, little) and the
answer either involves another gradable modifier or a numerical expression. In such cases, the implied
answer depends on the relative intensity of adjective modifiers in the question and answer. For example,
in the exchange:

Q: Was he a successful ruler?
A: Oh, a tremendous ruler.
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the implied answer is “yes”. This answer is inferred because success f ul is less intense than tremendous.
Inversely, in the exchange:

Q: Does it have a large impact?
A: It has a medium-sized impact.

the implied answer is “no” because large is less intense than medium− sized.

Interpreting such question–answer pairs requires dealing with modifier meanings, specifically, learning
context-dependent scales of expressions (Fauconnier, 1975) that determine how, and to what extent, the
answer as a whole resolves the issue raised by the question (de Marneffe et al., 2010).

For this evaluation, we use the dataset that was compiled by de Marneffe et al. (2010), which contains
123 examples of indirect question-answer pairs (IQAP) extracted from dialogue corpora and annotated
(with yes or no) through crowdsourcing. For each QA pair, the implied answer depends on the relative
intensity relationship between the modifiers present in the question and answer texts.

Method % OOV Acc. P R F
all-“YES” .00 .691 .346 .500 .409

(de Marneffe et al., 2010) .02 .610 .597 .594 .596
scoresocal .33 .504 .710 .481 .574
scorepp .09 .496 .568 .533 .550
scorepat .07 .407 .524 .491 .507

scoresocal+pp .09 .634 .690 .663 .676
scoresocal+pat+pp .06 .642 .684 .683 .684

Table 5.2: Results of the evaluation on the Indirect Question
Answering dataset.

As in the intrinsic evaluation described in the
previous section, we test the quality of the pre-
dictions made using the paraphrase-based ev-
idence with predictions made using pattern-
based, lexicon-based, and combined scoring
metrics. In order to use the pairwise scores
for inference, we employ a decision procedure
nearly identical to that of de Marneffe et al.
(2010). If the adjective in the question ( jq) and
the adjective in the answer ( ja) are scorable,5

then jq ≤ ja implies the answer is “yes”, and
jq > ja implies the answer is “no”. If the score of the pair of adjectives is undefined, then the prediction
is no (they could be antonyms or unrelated). If either adjective is missing from the scoring vocabulary,
then the prediction is uncertain because they are impossible to compare. Table 5.2 shows the results
of this evaluation. We report the accuracy, the macro-averaged precision, the recall, and the F1-score
for each of the tested methods, as well as the percentage of pairs with one or two out-of-vocabulary
(OOV) adjectives. We compare to an “all-YES” baseline which predicts all answers to be “YES”, and
to the result of the original method of de Marneffe et al. (2010), which used an automatically compiled
lexicon to make polarity predictions for each indirect QA pair.

The simple “all-YES” baseline gets highest accuracy in this imbalanced test set, but all score types
perform better than this baseline in terms of precision and F1-score. scoresocal , which was derived
from a manually-compiled lexicon, is very precise and scores higher than scorepp and scorepat with a
Precision of .710. However, due to its low coverage of the IQAP vocabulary, it mispredicts 33% of
the pairs as uncertain. scorepp has relatively high coverage and a mid-level F1-score, while scorepat

scores poorly on this dataset due to its sparsity.6 The paraphrase-based and lexicon-based evidence
is complementary. Thus, the combined scoresocal+pp and scoresocal+pat+pp produce significantly better
accuracy than any score in isolation (McNemar’s test, p < .01), and outperform the original ranking
method of de Marneffe et al. (2010). In later work, Kim and de Marneffe (2013) report a higher F1-score
(.7058) on this dataset using word embeddings and a vector offset method (Mikolov et al., 2013c).

5Two adjectives are scorable if they have an intensity relationship along the same half-scale
6All modifiers in the IQAP dataset are in the Google N-grams vocabulary but most of them do not have observed patterns.

Therefore, scorepat returns “NO” predictions.
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5.3 Adjective Intensity in Contextual Language Models

The paraphrase, pattern-based and lexicon-based methods presented in the previous section complement
each other and achieve fair results in both intrinsic and extrinsic evaluations. As has been shown, they
all involve different processing steps and engineering choices (fixing weights, choosing features for
graph construction, selecting patterns, etc) which condition their success. In this section, I present
our recent work on leveraging the representations of contextual language models for scalar adjective
intensity identification.

Interpretability studies which explore the information encoded in neural language model representa-
tions, such as the ones presented in Section 3.3.1, have shown that these encode rich linguistic, com-
monsense and world knowledge. Inspired by the findings of these studies and by works which showed
that semantic notions such as gender are encoded in the space constructed by word embedding models
(Bolukbasi et al., 2016; Dev and Phillips, 2019), we set to explore whether intensity is also encoded
in these representations. In our paper Garı́ Soler and Apidianaki (2020), we investigate the knowledge
that the pre-trained BERT model (Devlin et al., 2019) encodes about the intensity of the emotion ex-
pressed on an adjective scale, without access to any external resources such as lexicons or paraphrases.
We consider the contextualised representations produced by BERT to be a good fit for this task, since
the scalar relationship between adjectives is context-dependent (Kennedy and McNally, 2005). We view
intensity as a direction in the semantic space which, once identified, can serve to detect the intensity
relationship of new adjectives on the fly. This work was done in collaboration with my former PhD
student Aina Garı́ Soler, in the MULTISEM project.

5.3.1 Contextualised Adjective Representations

In order to explore the knowledge that BERT encodes about relationships in an adjective scale s (e.g.,
pretty → beautiful → gorgeous), we generate a contextualised representation for each adjective a ∈ s
occurring in the same context. This ensures that variation in the representations reflects differences in
the semantics of the adjectives, instead of context variation (Ethayarajh, 2019b; Mickus et al., 2020).
Since it is difficult, or impossible, to find such examples in running text, we construct sentence sets
satisfying this condition using the ukWaC corpus (Baroni et al., 2009)7 and the Flickr 30K dataset
(Young et al., 2014).8 We use the adjective scales in the three datasets (D) described in Section 5.2.2:
demelo (de Melo and Bansal, 2013), Wilkinson (Wilkinson and Oates, 2016), and Crowd (Cocos et al.,
2018).

For every scale s ∈ D, and for each adjective a ∈ s, we collect 1,000 instances (sentences containing
that adjective) from each corpus.9 We substitute each instance i of a ∈ s, with each b ∈ s where b ̸= a,
creating |s| − 1 new sentences. For example, we substitute beautiful in the sentence “This beach is
beautiful” with the other adjectives in the scale “pretty → beautiful → gorgeous”, creating: “This
beach is pretty” and “This beach is gorgeous”. We filter out sentences where substitution should not
take place, such as cases of specialisation between a hypernym and its hyponym, or instantiation (IS-A

relations). For example, the sentences that would be created by substituting deceptive with fraudulent
in “Viruses and other deceptive software” or in “Deceptive software such as viruses” would not be
valid. We identify cases of specialization and instantiation by parsing the sentences10 to reveal their

7http://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/
8Flickr contains crowdsourced captions for 31,783 images describing everyday activities, events and scenes.
9ukWaC has perfect coverage. Flickr 30K covers 96.56% of DEMELO scales and 86.08% of CROWD scales. A scale s is

not covered when no a ∈ s is found in a corpus.
10We use stanza (Qi et al., 2020).

http://u.cs.biu.ac.il/~nlp/resources/downloads/context2vec/
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dependency structure, and then identifying the ones that describe is-a relations between nouns using
Hearst lexico-syntactic patterns (Hearst, 1992).

We use additional criteria to ensure the quality of the generated sentences. We filter the substitutes using
language modelling criteria, since adjectives that belong to the same scale might not be replaceable in
all contexts. Polysemy can also influence their substitutability; for example, a hot drink is warm, but
a hot topic is interesting. In order to select contexts where all adjectives in a scale (∀a ∈ s) fit, we
measure the fluency of the generated sentences using a score assigned by the context2vec substitution
model (Melamud et al., 2016). This score reflects for an a ∈ s how well it fits a context by measuring
the cosine similarity between a and the context representation.11 We calculated the context2vec score
for all sentences generated for a scale s through substitution, and kept the ten with the lowest standard
deviation (STD). Low STD for a sentence means that ∀a ∈ s are reasonable choices in this context. For
comparison, we also randomly sampled ten sentences from all the ukWaC sentences collected for each
scale. We call these sets of sentences SENT-SETs.

We extracted the contextualised representation for each a ∈ s in the ten sentences retained for scale s,
using the pre-trained bert-base-uncased model.12 This results in |s| ∗ 10 BERT representations for
each scale. We repeated the procedure for each BERT layer.

5.3.2 Adjective Ranking with a Reference Point

Figure 5.1: Examples of BERTSIM ranking predictions for two
adjective scales from WILKINSON.

In a first experiment, we explored whether
BERT encodes knowledge about adjective
intensity. We used as reference point the
adjective with the highest intensity (aext)
in a scale s. We rank ∀a ∈ s where a ̸= aext

by intensity by measuring the cosine simi-
larity of their representation to that of aext

in the ten ukWaC sentences retained for s,
and in every BERT layer. For example, to
rank [pretty, beautiful, gorgeous] we mea-
sure the similarity of the representations
of pretty and beautiful to that of gorgeous. We then average the similarities obtained for each a and use
these values for ranking.

We evaluate the quality of the ranking obtained for a scale by measuring its correlation with the gold
standard ranking in the corresponding dataset D. We use Kendall’s tau and Spearman’s rho correlation
coefficients. We report correlations as a weighted average using the number of adjective pairs in a scale
as weights. We also measure a model’s pairwise accuracy (P-ACC) which shows whether it correctly
predicted the relative intensity (<, >, =) for each pair ai-a j ∈ s with i ̸= j. 13 We compare the BERTSIM

method to two baselines which rank adjectives by frequency (FREQ) and number of senses (SENSE). Our
assumption is that mild words (e.g., good, old) are more frequent and polysemous than their extreme
counterparts on the same scale (e.g., awesome, ancient). We rank adjectives by their frequency counts
in Google Ngrams (Brants and Franz, 2006). In SENSE, adjectives are ranked according to their number

11This score was shown to work better on a development set that we constructed from CoInCo, where it was compared with
a BERT-based perplexity score, and with the probability assigned to each adjective in a slot filling task.

12When an adjective is split into multiple wordpieces (Wu et al., 2016), we average them to obtain its representation.
13We exclude scales where there is only one adjective (|s|= 1) apart from aext (26 out of 79 scales in CROWD; 9 out of 21

scales in WILKINSON).
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of senses in WordNet. Accuracy and correlation are moderate to high in the three datasets, showing
that the similarity of scalar adjectives’ BERT representations reflects the notion of intensity. The good
results obtained by the FREQ and SENSE baselines (especially on CROWD) highlight the relevance of
frequency and polysemy for scalar adjective ranking.

Dataset Metric BERTSIM FREQ SENSE

DEMELO
P-ACC 0.59111 0.571 0.493

τ 0.36411 0.304 0.192
ρavg 0.38911 0.309 0.211

CROWD
P-ACC 0.64611 0.608 0.570

τ 0.49811 0.404 0.428
ρavg 0.49411 0.499 0.537

WILKINSON
P-ACC 0.9139 0.7399 0.7399

τ 0.8269 0.478 0.586
ρavg 0.7249 0.345 0.493

Table 5.3: BERTSIM results using contextualised
representations from ukWaC. Subscripts denote
the best-performing BERT layer.

The results of this evaluation are presented in Table
5.3. Overall, similarities derived from BERT represen-
tations encode the notion of intensity, as shown by the
moderate to high accuracy and correlation in the three
datasets. The good results obtained by the FREQ and
SENSE baselines (especially on CROWD) highlight the
relevance of frequency and polysemy for scalar adjec-
tive ranking.

Figure 5.1 shows BERT ranking predictions across lay-
ers for two adjective scales from WILKINSON:14 (a)
[big → large → enormous → huge → gigantic], (b)
[good → great → wonderful → awesome]. Adjectives
are ranked according to their similarity to the extreme
adjectives in these scales, gigantic and awesome. Predictions are generally stable and reasonable across
layers. We observe that huge and enormous, which have similar intensity, are inverted in some layers,
but are not confused with adjectives further down the scale (large, big). Same for wonderful and great
in figure (b), which are very close in the last layers of the model but are not confused with good.

5.3.3 Identifying an Intensity Direction in Vector Space

In real life scenarios, however, no concrete reference points (e.g., aext) are available and scalar adjective
interpretation needs to be performed on the fly. We need, for example, to recognise that a great book is
better than a well-written one, without necessarily detecting the relationship of these two adjectives to
brilliant. Our proposed adjective ranking method does not need reference points and allows to perform
this type of inference.

The method draws inspiration from word analogies in gender bias work, where a gender subspace
is identified in word-embedding space by calculating the main directions spanned by the differences
between vectors of gendered word pairs (e.g.,

−→
he -

−→
she, −−→man - −−−−→woman) (Bolukbasi et al., 2016; Dev

and Phillips, 2019; Ravfogel et al., 2020; Lauscher et al., 2020a). Our proposition is to obtain an
intensity direction by subtracting the representation of a mild intensity adjective amild from that
of an extreme adjective aext on the same scale. Given, for example, pretty and gorgeous which express
a similar core meaning (they are both on the BEAUTY scale) but with different intensity, we expect the
embedding that would result from their subtraction to represent this notion of intensity or degree. We
call this embedding

−−→
dVec.

−−→
dVec = −−−−−→gorgeous - −−−→pretty

We can then compare other adjectives’ representations to
−−→
dVec, and rank them according to their simi-

larity to this intensity vector: Our assumption is that the closer an adjective is to
−−→
dVec, the more intense

it is. We calculate the
−−→
dVec for each scale s ∈ D (a dataset from Section 5.2.2) using the most extreme

(aext) and the mildest (amild) words in s, and subtracting their contextualised vectors. We experiment

14The representations are obtained from ukWaC sentences.
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DEMELO (DM) CROWD (CD) WILKINSON (WK)
Method P-ACC τ ρavg P-ACC τ ρavg P-ACC τ ρavg

B
E

R
T

uk
W

aC
DIFFVEC-DM - - - 0.73912 0.67412 0.75312 0.9186 0.8366 0.8396

DIFFVEC-CD 0.6468 0.4318 0.5098 - - - 0.86911 0.73811 0.82911

DIFFVEC-WK 0.5849 0.3039 0.31310 0.70610 0.6039 0.6879 - - -

Fl
ic

kr

DIFFVEC-DM - - - 0.73012 0.66712 0.70510 0.9349 0.8699 0.8719

DIFFVEC-CD 0.62010 0.37710 0.46610 - - - 0.9027 0.8037 0.7987

DIFFVEC-WK 0.5791 0.2941 0.3211 0.7028 0.6088 0.6778 - - -

R
an

do
m DIFFVEC-DM - - - 0.73912 0.67312 0.74312 0.9186 0.8366 0.8396

DIFFVEC-CD 0.6268 0.3888 0.4668 - - - 0.83612 0.67212 0.79010

DIFFVEC-WK 0.5579 0.2469 0.2846 0.7038 0.5988 0.6768 - - -

w
or

d2
ve

c DIFFVEC-DM - - - 0.657 0.493 0.543 0.787 0.574 0.663
DIFFVEC-CD 0.633 0.398 0.444 - - - 0.803 0.607 0.637
DIFFVEC-WK 0.593 0.323 0.413 0.618 0.413 0.457 - - -

B
as

el
in

e FREQ 0.575 0.271 0.283 0.606 0.386 0.452 0.754 0.508 0.517
SENSE 0.493 0.163 0.165 0.658 0.498 0.595 0.721 0.586 0.575

Cocos et al. ’18 0.653 0.633 - 0.639 0.495 - 0.754 0.638 -

Table 5.4: Results of our DIFFVEC adjective ranking method on the DEMELO, CROWD, and WILKINSON datasets.
We report results with contextualised (BERT) representations obtained from different SENT-SETs (ukWaC, Flickr,
Random) and with static (word2vec) vectors. We compare to the frequency (FREQ) and number of senses (SENSE)
baselines, and to results from previous work (Cocos et al., 2018). Results for a dataset are missing (-) when the
dataset was used for building the

−−→
dVec vector.

with BERT embeddings from the SENT-SETs generated through substitution as described in the previous
section, where the adjectives occur in the same context.

We build a
−−→
dVec from every sentence c in the set of 10 sentences C for a scale s by subtracting the

BERT representation of amild in c from that of aext in c. For example, we subtract the vector of beautiful
in “This beach is beautiful” from that of gorgeous in the same context after substitution: “This beach
is gorgeous”. The same from all other sentences collected for that scale (“You look beautiful/gorgeous

today”, etc), until we obtain ten
−−→
dVec vectors. We then average the ten

−−→
dVec’s obtained for s to construct

an intensity vector specific for that scale. Subsequently, we construct a global
−−→
dVec for dataset D by

averaging the vectors of ∀s ∈ D. We then use the
−−→
dVec obtained from a dataset for adjective ranking.

For a fair evaluation of the contribution of this vector to this task, we perform a lexical split in the data
used for deriving

−−→
dVec and the data used for testing. Hence, when evaluating on CROWD, we calculate

a
−−→
dVec on DEMELO (DIFFVEC-DM) and one on WILKINSON (DIFFVEC-WK) omitting all scales where

aext or amild are present in CROWD. We perform similar splits for the other datasets.

We also compare with results obtained using static word2vec embeddings (Mikolov et al., 2013a)
trained on Google News.15 We obtain the

−−→
dVec for a scale s by simply calculating the difference

between the word2vec embeddings of aext and amild in s. We also compare our results to the FREQ and
SENSE baselines, and to the best results obtained in our previous study (Cocos et al., 2018) where we
used information from lexico-syntactic patterns, a SO-CAL intensity-annotated lexicon (Taboada et al.,
2011), and paraphrases from PPDB. We show the results of our experiments in Table 5.4. The DIF-
FVEC method gets remarkably high performance compared to previous results, especially when

−−→
dVec

is calculated with BERT embeddings. With the exception of Kendall’s tau and pairwise accuracy on
the DEMELO dataset, DIFFVEC outperforms results from previous work and the baselines across the
board. We believe the lower correlation scores on the DEMELO dataset to be due to the large amount
of ties present in this dataset: 44% of scales in DEMELO contain ties, versus 30% in CROWD and 0%

15We use the magnitude library (Patel et al., 2018).
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DEMELO CROWD

# Scales P-ACC τ ρavg P-ACC τ ρavg

B
E

R
T

uk
W

aC

1 (+) 0.6539 0.4389 0.48911 0.70912 0.61112 0.67012

1 (−) 0.61110 0.35010 0.42411 0.64810 0.477 0.50710

5 0.65010 0.43010 0.51410 0.70011 0.59510 0.67310

Fl
ic

kr

1 (+) 0.6568 0.4498 0.5048 0.67612 0.5528 0.6128

1 (−) 0.6003 0.3243 0.3755 0.6419 0.4709 0.5029

5 0.64712 0.42612 0.49811 0.69211 0.58711 0.64011
R

an
do

m 1 (+) 0.65911 0.45111 0.49311 0.69111 0.57011 0.65811

1 (−) 0.60812 0.34012 0.42110 0.65510 0.49010 0.51412

5 0.65311 0.44211 0.53810 0.69411 0.58211 0.65311

w
or

d2
ve

c 1 (+) 0.602 0.334 0.364 0.624 0.419 0.479
1 (−) 0.613 0.359 0.412 0.661 0.506 0.559

5 0.641 0.415 0.438 0.688 0.559 0.601

Table 5.5: Results of DIFFVEC on DEMELO and on CROWD using a single positive (1 (+)) or negative (1 (−))
aext −amild pair, and five pairs (5).

in WILKINSON, where we obtain better results. Our models cannot easily predict ties using similarities
which are continuous values. The composition of the SENT-SETs used for building BERT representa-
tions plays a role on model performance as well. Overall, the selection method described in Section
5.3.1 offers a slight advantage over random selection, with ukWaC and Flickr sentences doing better
on different datasets. Overall, the best-performing BERT layers are situated in the upper half of the
Transformer network. The only exception is DIFFVEC-WK with the Flickr SENT-SET on DEMELO,
where all layers perform similarly. Overall, the FREQ and SENSE baselines get lower performance than
our method with BERT embeddings. SENSE manages to give results comparable to DIFFVEC with static
embeddings and to previous work (Cocos et al., 2018) in one dataset (CROWD), but is still outperformed
by DIFFVEC with contextualised representations.

Given the high performance of the DIFFVEC method in the ranking task, we carry out additional ex-
periments to explore the impact that the choice of scales and sentences has on the quality of the in-
tensity vector. We test the method with a

−−→
dVec built from a single aext − amild pair of either positive

(awesome-good) or negative (horrible-bad) polarity, that we respectively call DIFFVEC-1 (+)/(−). We
also experiment by varying the number of scales and the number of sentences used to extract the rep-
resentations. We specifically add three more scales: ancient-old, gorgeous-pretty and hideous-ugly) to
form DIFFVEC-5. The scales are from WILKINSON, so we exclude this dataset from the evaluation.

Results are given in Table 5.5. We observe that a small number of word pairs is enough to build a
−−→
dVec

with competitive performance. Interestingly, DIFFVEC-1 (+) with random sentences obtains the best
pairwise accuracy on DEMELO. The fact that the method performs so well with just a few pairs
is very encouraging, making our approach easily applicable to other datasets and languages. A
larger number of scales seems to be beneficial for the method with static word2vec embeddings, which
seem to better capture intensity on the negative scale. For BERT, intensity modeled using a positive
pair (DIFFVEC (+)) gives best results across the board. The use of five pairs of mixed polarity improves
results over a single negative pair, and has comparable performance to the single positive one.

Finally, we compare the performance of DIFFVEC-1 (+)/(−) and DIFFVEC-5 when the contextualised
representations are extracted from a single sentence instead of ten. Our main observation is that re-
ducing the number of sentences harms performance, especially when the sentence used is randomly
selected.
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5.3.4 Multilingual Adjective Ranking

DEMELO

EN dim < gloomy < dark < black
FR terne < sombre < foncé < noir
ES sombrı́o < tenebroso < oscuro < negro
EL αμυδρός || αχνός < μουντός < σκοτεινός < μαύρος

WILKINSON

EN bad < awful < terrible < horrible
FR mauvais < affreux < terrible < horrible
ES malo < terrible < horrible < horroroso
EL κακός < απαίσιος < τρομερός < φρικτός

Table 5.6: Example translations from each dataset. The
symbol “||” indicates ties.

The knowledge-lean adjective ranking method
presented in the previous section performs
well even with an intensity vector built from
a single adjective scale. Given that it is so
lightweight, it is easily extendable to new lan-
guages. In our Garı́ Soler and Apidianaki
(2021b) paper, we show that vectors represent-
ing intensity can be built in other languages
for which language models are available.
We address French, Spanish and Greek, and
build scalar adjective resources in these lan-
guages by translating the deMelo and Wilkin-
son datasets. We make this new dataset, called MULTI-SCALE, available for research purposes. Table
5.6 shows examples of original English scales and their French, Spanish and Greek translations. Table
5.7 contains statistics on the composition of the translated datasets.

# unordered pairs # adjectives

D
E

M
E

L
O

EN 548 (524) 339 (293)
FR 590 (567) 350 (303)
ES 448 (431) 313 (275)
EL 557 (535) 342 (295)

W
IL

K
IN

S
O

N EN 61 (61) 59 (58)
FR 67 (67) 61 (60)
ES 59 (59) 58 (56)
EL 68 (68) 61 (58)

Table 5.7: Composition of the translated
datasets with the number of unique adjec-
tives and pairs in parentheses.

In order to test contextual models on the ranking task, we col-
lect sentences containing the adjectives from the OSCAR cor-
pus (Suárez et al., 2019), a multilingual corpus derived from
CommonCrawl. French, Spanish and Greek are morpholog-
ically rich languages where adjectives need to agree in num-
ber and gender with the noun they modify. In order to keep
the method resource-light, we gather sentences that contain
the adjectives in their unmarked (non-inflected) form. For
each scale s, we randomly select ten sentences from OSCAR
where adjectives from s occur. Then, we generate additional
sentences through lexical substitution. Specifically, for every
sentence (context) c that contains an adjective ai from scale s,
we replace ai with ∀ a j ∈ s where j = 1...|s| and j ̸= i. This

process results in a total of |s| * 10 sentences per scale and ensures that ∀ a ∈ s is seen in the same ten
contexts.

We conduct experiments with state-of-the-art contextual language models and several baselines on the
MULTI-SCALE dataset. We use the pre-trained cased and uncased multilingual BERT model (Devlin
et al., 2019) and report results of the best variant for each language. We also report results obtained
with four monolingual models: bert-base-uncased (Devlin et al., 2019), flaubert base uncased

(Le et al., 2020), bert-base-spanish-wwm-uncased (Cañete et al., 2020), and bert-base-greek-

uncased-v1 (Koutsikakis et al., 2020). We compare to results obtained using fastText static embed-
dings in each language (Grave et al., 2018). For a scale s, we feed the corresponding set of sentences to
a model and extract the contextualised representations for ∀ a ∈ s from every layer. When an adjective
is split into multiple BPE units, we average the representations of all wordpieces (we call this approach
“WP”) or all pieces but the last one (“WP-1”). The intuition behind excluding the last WP is that the
ending of a word often corresponds to a suffix with morphological information.

The DIFFVEC method. We apply the adjective ranking method that we proposed in our EMNLP 2020
paper (Garı́ Soler and Apidianaki, 2020) to the MULTI-SCALE dataset. The method relies on an inten-
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sity vector (called
−−→
dVec) built from BERT representations and yields state-of-the art results with very

little data. This makes it easily adaptable to new languages. We build a sentence specific intensity rep-
resentation (

−−→
dVec) in each language by subtracting the vector of a mild intensity adjective, amild from

that of aext , an extreme adjective on the same scale in the same context. We create a dVec representation
from every sentence available for these two reference adjectives, and average them to obtain the global−−→
dVec for that pair.

In Garı́ Soler and Apidianaki (2020), we showed that a single positive adjective pair (DIFFVEC-1 (+))
is enough for obtaining highly competitive results in English. We apply this method to the other lan-
guages using the translations of a positive English (amild , aext) pair from the CROWD dataset. We select
the pair (perfect,good). Its translations are (parfait,bon) in French, (perfecto,bueno) in Spanish, and
(τέλειος,καλός) in Greek. Additionally, we learn two dataset specific representations: one by averag-
ing the

−−→
dVec’s of all (aext , amild) pairs in WILKINSON that do not appear in DEMELO (DIFFVEC-WK),

and another one from pairs in DEMELO that are not in WILKINSON (DIFFVEC-DM). We rank adjec-
tives in a scale by their cosine similarity to each

−−→
dVec: The higher the similarity, the more intense the

adjective is.

Baselines. We compare our results to a frequency and a polysemy baseline (FREQ and SENSE). The
idea is that low intensity words (e.g., nice, old) are more frequent and polysemous than their extreme
counterparts (e.g., awesome, ancient). Extreme adjectives often limit the denotation of a noun to a
smaller class of referents than mild intensity adjectives (Geurts, 2010). For example, an “awesome
view” is more rare than a “nice view”. This assumption has been confirmed for English in Garı́ Soler
and Apidianaki (2020). FREQ orders words in a scale according to their frequency. Words with higher
frequency have lower intensity. Given the strong correlation between word frequency and number of
senses (Zipf, 1945), we also expect highly polysemous words (which are generally more frequent) to
have lower intensity. This is captured by the SENSE baseline which orders the words according to their
number of senses; words with more senses have lower intensity.

Frequency is taken from Google Ngrams for English, and from OSCAR for the other three languages.
The number of senses is retrieved from WordNet for English, and from BabelNet (Navigli and Ponzetto,
2012) for Spanish and French.16 For adjectives that are not present in BabelNet, we use a default
value which corresponds to the average number of senses for adjectives in the dataset (DEMELO or
WILKINSON) for which this information is available. We omit the SENSE baseline for Greek due to low
coverage.17

Adjective Ranking Results. We use the same evaluation metrics as in previous work (de Melo and
Bansal, 2013; Cocos et al., 2018; Garı́ Soler and Apidianaki, 2020). We compare the predicted ordering
for every adjective pair in a scale (<, >, =) to the gold ordering in a dataset using pairwise accuracy
(P-ACC). We evaluate the ordering for full scales with Kendall’s τ and Spearman’s ρ correlation. The
results are given in Table 5.8. The reported correlation values are a weighted average of the correlations
obtained for each scale in a dataset (DM: deMelo, WK: Wilkinson) with the number of adjective pairs
in each scale as weights. Monolingual models perform consistently better than the multilingual model,
except in French. We report the best wordpiece approach for each model: WP-1 works better with all
monolingual models and the multilingual model for English. Using all wordpieces (WP) is a better
choice for the multilingual model in other languages. We believe the lower performance of WP-1

16We omit Named Entities from BabelNet entries (e.g., names of TV shows or locations).
17Only 47% of the Greek adjectives have a BabelNet entry, compared to 95.7% and 88.9% for Spanish and French. All

English adjectives are present in WordNet.
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EN FR ES EL

Mono WP-1 Mono WP-1 Mono WP-1 Mono WP-1
P-ACC τ ρavg P-ACC τ ρavg P-ACC τ ρavg P-ACC τ ρavg

D
M DV-1 (+) .6519 .4359 .4969 .6103 .3693 .3963 .6589 .3819 .4079 .5642 .2381 .2712

DV-WK .5866 .2676 .3006 .5151 .1671 .1667 .6707 .4047 .4077 .5892 .2942 .3252

W
K DV-1 (+) .8521 .7051 .8021 .6126 .2576 .2156 .8147 .6277 .8039 .6188 .2828 .2568

DV-DM .91810 .83610 .85910 .6427 .3222 .3922 .7806 .5596 .6846 .75010 .56410 .58610

Multi WP-1 Multi WP Multi WP Multi (unc) WP

D
M DV-1 (+) .6094 .3464 .3894 .5597 .2607 .3117 .6143 .2913 .2685 .5179 .1399 .1639

DV-WK .5443 .2083 .2414 .51710 .17010 .17910 .61812 .30112 .30312 .5399 .1819 .2079

W
K DV-1 (+) .8366 .6726 .7176 .6723 .3823 .3803 .7973 .5933 .6393 .66210 .3889 .4239

DV-DM .8367 .6727 .7667 .7016 .4416 .4762 .69510 .39010 .51110 .6915 .4475 .5025

Static models and baselines

D
M

DV-1 (+) .637 .407 .458 .573 .288 .275 .656 .383 .421 .575 .266 .273
DV-WK .599 .330 .406 .454 .033 -.006 .616 .298 .315 .549 .205 .217
FREQ .575 .271 .283 .602 .346 .345 .585 .227 .239 .596 .306 .334

SENSE .493 .163 .165 .512 .229 .185 .516 .139 .151 - - -

W
K

DV-1 (+) .787 .574 .663 .582 .197 .152 .695 .390 .603 .706 .464 .566
DV-DM .852 .705 .783 .642 .325 .280 .712 .424 .547 .691 .447 .451
FREQ .754 .508 .517 .567 .167 .148 .576 .153 .382 .676 .417 .427

SENSE .721 .586 .575 .567 .255 .340 .644 .411 .456 - - -

Table 5.8: Results of the DIFFVEC (DV) method in English, French, Spanish and Greek with monolingual (Mono)
and multilingual (Multi) contextual models, and static embeddings. Subscripts denote the best layer. The best
result obtained for each dataset in each language is indicated in boldface.

in these settings to be due to the fact that the multilingual BPE vocabulary is mostly English-driven.
This naturally results in highly arbitrary partitionings in these languages (e.g., ES: fantástico → fant-
ástico; EL: γιγάντιος (gigantic)→γ-ι-γ-άν-τιος). On the contrary, the tokenisers of the monolingual
models tend to split words in a way that more closely reflects the morphology of the language (e.g., ES:
fantástico → fantás-tico; EL: γιγάντιος→γιγά-ντι-ος.

We observe that DIFFVEC-1 (+) yields comparable and sometimes better results than DIFFVEC-DM

and DIFFVEC-WK, which are built from multiple pairs. This is important especially in the multilingual
setting, since it shows that just one pair of adjectives is enough for obtaining good results in a new
language. The best layer varies across models and configurations. The monolingual French and Greek
models, and the multilingual model for English, generally obtain best results in earlier layers. For the
other models performance improves in the upper half of the Transformer network (layers 6-12). This
shows that the semantic information relevant for adjective ranking is not situated at the same level of
the Transformer in different languages. We plan to investigate this finding further in future work.

The lower results in French can be due to the higher amount of ties present in the datasets compared
to other languages.18 The baselines obtain competitive results showing that the underlying linguistic
intuitions hold across languages. The best models beat the baselines in all configurations except for
Greek on the DEMELO dataset, where FREQ and static embeddings obtain higher results. Overall,
results are lower than those reported for English. This shows that there is room for improvement in new
languages.

We proposed a new multilingual benchmark for scalar adjective ranking, and set performance baselines
on it using monolingual and multilingual contextual language model representations. Our results show
that adjective intensity information is present in the contextualised representations in the studied lan-

1858% of the French DEMELO scales contain a tie, compared to 45% in English.
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guages. We have made the scalar adjective datasets in the three languages, and the sentence contexts,
available to promote future research on scalar adjectives detection and analysis in different languages.

5.4 Conclusion

This section has presented two methods to adjective intensity detection which have been applied to the
scalar adjective ranking task. The first method combines information from a large paraphrase resource
with information acquired from corpora using patterns, and information found in polarity lexicons. The
combination of these sources of information allows to leverage the strengths of the paraphrase-based
approach, namely its high coverage, as well as the high precision guaranteed by the pattern and lexicon-
based approaches. The second paper presented in this section demonstrates how adjective intensity can
be captured and described in the space built by contextual language models. We have shown that a
method which relies on simple calculations in the generated vector space obtains similar performance
in the scalar adjective ranking task as the resource-rich approaches previously used. These results
highlight the richness of the lexical semantic information that is encoded in contextualised word rep-
resentations. We demonstrate an efficient way to retrieve this information in a controlled experimental
setting which allows to reduce the strong impact of context variation and to reason about the meaning
of words.

We have extended our method to French, Spanish and Greek, using the BERT-like models that are
available in these languages. In order to evaluate the performance of the method in these languages, we
translated two of our evaluation datasets, which we made available for future research. The results from
these experiments showed that the vector spaces built by contextual models in the other languages also
encode the notion of intensity, which can be retrieved and used for ranking words along this dimension.

It is our belief that these results open up avenues for future work on other abstract semantic notions
which might be encoded in the vector space of contextual models (Edmonds and Hirst, 2002; Allaway
and McKeown, 2021). We would, for example, expect to find traces of other types of connotations,
such as formality and complexity, but also politeness and register, as well as connotations which might
indicate a specific ideological or political stance (Webson et al., 2020; Romanov et al., 2019).
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Chapter 6

Conclusion and Perspectives for Future
Research

6.1 Illustrating the Paradigm Shift in Lexical Semantics

This synthesis document presents a selection of articles that have been published in the past ten years,
adopting a comparative perspective which juxtaposes older and more recent research methodologies
used in the field of lexical semantics. I selected a sample of papers which address specific research
questions following a different approach and experimental paradigm. In each set of papers, the earlier
study involves the use of external knowledge sources or annotations. In our clusterability study, for
example, presented in Section 3.2, the analysis relies on manual substitute and translation annotations
(McCarthy et al., 2016). For our study of lexical substitution (Apidianaki, 2016) presented in Section
4.2, and our work on adjective intensity detection in Section 5.2 (Cocos et al., 2018), our main source
of knowledge has been the unigram paraphrases of words in the Paraphrase Database (PPDB) (Gan-
itkevitch et al., 2013; Pavlick et al., 2015). In the latter study, these were combined with information
extracted from large corpora using patterns, and with emotion intensity scores from semantic orientation
lexicons (Taboada et al., 2011).

In contrast, in the more recent papers present in the three sets, we leverage the knowledge that is
encoded in neural language models to perform the tasks at hand (Garı́ Soler et al., 2019b; Garı́ Soler
and Apidianaki, 2020, 2021a,b). We show that information about polysemy is encoded in the BERT
model during pre-training where it is exposed to massive amounts of text data, and is complemented
with information from new contexts of use. Additionally, we demonstrate that due to the rich lexical
knowledge that is encoded, BERT representations can serve to estimate the clusterability of lemmas
without need for manual annotations. Notably, these representations yield even better results on this
task than the approach which relied on manually defined in-context substitutes (McCarthy et al., 2016).
The sole reliance on words’ contextualised representations permits to scale the method up in order to
cover a much larger vocabulary than previous studies, and to extend its applicability to other languages
where language models are available.

In our earlier work on lexical substitution, we demonstrated how syntax-based distributional models
performed on this task. Our later study presents a comparison of static (GloVe and FastText) and con-
textualised (ELMo) embedding representations, which we also compare to representations generated
by dedicated lexical substitution models (Melamud et al., 2015, 2016). Our results show that models
that were specifically trained with a lexical substitution objective outperform all other models and types
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of representations on this task.

Finally, in our Cocos et al. (2018) study on adjective intensity, we demonstrated that paraphrases can
be used as a proxy for identifying this dimension of meaning, possibly combined with pattern-based
information and polarity lexicons. In our Garı́ Soler and Apidianaki (2020) work, we showed that it is
possible to identify a dimension in the vector space built by BERT which describes this abstract seman-
tic notion. This can be easily discovered through simple calculations in the vector space, provided that
a few seed examples illustrating this relation are available. In the case of scalar adjectives, a single pair
of adjectives with different intensity was enough for obtaining a vector describing this dimension. The
intensity vector served for scalar adjective ranking through similarity calculations in the BERT vector
space, outperforming previous pattern- and resource-based methodologies. We also demonstrated the
straightforward application of the method to new languages, using both monolingual language models
specifically trained for the language and multilingual models (Garı́ Soler and Apidianaki, 2021b). Our
adjective ranking experiments in French, Spanish and Greek showed that although intensity differences
are less pronounced in multilingual models, they are still identifiable and can be used for reasoning
about adjectives’ relationships.

The comparisons presented in this report serve to illustrate the paradigm shift that has occurred in the
field of lexical semantics in particular and, more generally, in computational linguistics. In each of the
three sets of papers, the latter work which involves the use of neural language models outperforms the
earlier work which involves the use of distributional methods and external resources. These promising
findings highlight the superiority of neural models compared to traditional methods for lexical semantic
analysis. Due to the rich information they encode about words and their meanings, their representations
are more efficient for performing semantic tasks. Importantly, as soon as such language models are
available, the application of the proposed methodology to new languages is straightforward without
need for additional semantic resources.

In what follows, we present some shortcomings of using neural models for lexical semantic analysis
and discuss perspectives for future work.

6.2 Semantic Knowledge in Neural Language Models

6.2.1 On the Systematicity of the Encoded Knowledge

We have shown that the representations that are generated by contextual language models encode
rich information about lexical polysemy. Our results revealed clear patterns in English, as well as in
morphologically-richer (and resource-poorer) languages. Other studies have shown that contextualised
representations also encode a good amount of encyclopedic knowledge (Petroni et al., 2019; Bouraoui
et al., 2020) which is acquired by the models during their training on data encoding such knowledge
(for example, Wikipedia). The results from experiments that explore other types of semantic knowledge
have not, however, been that encouraging. Interestingly, it has been shown that even though a model
might succeed in a probing task, this does not mean that it “understands” the concept it is being queried
for, or that it encodes systematic knowledge about it.

In a compelling study, Ravichander et al. (2020) probe BERT representations for hypernymy and show
that although the model is able to retrieve hypernyms in cloze tasks, this does not correspond to system-
atic knowledge about this relationship. They propose a set of diagnostics to examine how systematically
this knowledge generalises, where they evaluate the model’s ability to consistently answer queries re-
flecting the understanding of a concept. They specifically combine related zero-shot probes based on
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the assumption that if a model succeeds on one probe and is drawing on a systematic general ability,
then it should also succeed on the paired probe.1 They also examine the model’s ability to recognise the
correct abstraction for a word (hyponym) in context.2 Their results show that high probing accuracy for
a particular competence does not necessarily follow that BERT understands a concept, and it cannot be
expected to systematically generalise across applicable contexts.

Ettinger (2020) also demonstrates that although a model might encode encyclopedic knowledge (for ex-
ample, about US Presidents and their biography), it does not succeed in recognising negation in simple
sentences. This failure has severe consequences on the model’s reasoning capabilities. It is important
to propose diagnostic devices which test the systematicity of different types of knowledge in neural
models, in order to be able to draw safe conclusions about the types of information these models
encode, and their actual understanding of linguistic phenomena. This will help to better explain
their behaviour and also to develop methods for enhancing the quality of the encoded knowledge, when
needed, and to determine when it would be necessary to complement this with information from other
modalities.

Lastly, it is important to ensure that the proposed diagnostic devices are applicable to different
types of models. Probing and other interpretation methods are often proposed with respect to a specific
model and a specific architecture (they might, for example, analyse the observed attention patterns) and
cannot thus be applied to other types of models. So, alongside the development of diagnostic suites and
controls, we need to ensure that the proposed probing methodology is generalisable to different types
of models and across different implementations of the same model (Sellam et al., 2022), and that it can
allow cross-comparison between them. Determining the right prompts to use for extracting the in-
formation of interest is also a challenge. These can be manually crafted, as in the studies cited above,
or automatically generated. The latter can be discrete (or “hard”) (Gao et al., 2021; Jiang et al., 2020;
Shin et al., 2020) or continuous (or “soft”) (Li and Liang, 2021; Lester et al., 2021; Zhong et al., 2021),
each type exhibiting specific advantages and shortcomings. Continuous prompts, in particular, might
present generalisation issues since the embedding spaces of different models might not be aligned.

6.2.2 Abstract Semantic Notions in Vector Space

We believe that the results obtained so far regarding the linguistic knowledge that is encoded in neural
models are promising. Apart from information about linguistic structure, lexical semantic phenom-
ena and common-sense knowledge, we have shown that it is possible to identify dimensions in the
vector space built by contextual language models which describe abstract semantic notions such as
intensity. We believe that this type of investigation could be extended and applied to other seman-
tic notions such as formality (e.g., get/acquire/obtain/snag, wealthy/rich), complexity (e.g., medical
practitioner/doctor, prevalent/very common) and politeness. These can serve to analyse the emotional
load of texts, the ideological position of the author, as well as situational factors such as the context of
the communication and the relationship of the participants.

By applying the methodology that we proposed for analysing scalar adjectives (Garı́ Soler and Apid-
ianaki, 2020) to these notions, it would be worth investigating if they are also encoded in the vector
space, in the same way as intensity. Illustrating these notions and identifying the relevant dimensions
in the vector space using a few seed examples (as in the case of scalar adjectives) would be highly
useful for semantic processing since it would permit to analyse the connotations (or subtle meanings)

1For example, a model which understands hypernymy is expected to answer queries about this relationship which contain
nouns in singular as well as in plural form (e.g., A robin is a [MASK] / robins are [MASK]).

2For example, A robin perches in its nest → A [MASK] perches in its nest, where the hypernym bird is acceptable.



6.3. PROBING AND EXPLAINABILITY 66

conveyed by words apart from their denotation (literal meaning). These are relevant for numerous tasks
since they express authors’ ideological attitudes and stance, as well as their cultural and emotional per-
spectives (Clark, 1992; Edmonds and Hirst, 2002; Webson et al., 2020; Allaway and McKeown, 2021).
It has, for example, been shown that the vocabulary used in a text can, for example, reflect the au-
thors’ positioning towards a specific political situation (e.g., undocumented workers vs. illegal aliens)
(Webson et al., 2020).

6.3 Probing and Explainability

6.3.1 Use of the Encoded Knowledge for Prediction

The majority of interpretability studies rely on probing in order to explain what the high performance of
artificial neural networks is due to. They investigate the knowledge encoded inside these blackboxes and
their internal workings, with the goal to determine whether neural models acquire the abstractions we
intuitively believe are important for common-sense reasoning. Although probing results have revealed
the rich linguistic and world knowledge that is encoded in language model representations (Linzen
et al., 2016; Hewitt and Manning, 2019; Tenney et al., 2019a; Petroni et al., 2019; Vulić et al., 2020b;
Ravichander et al., 2020; Ettinger, 2020; Garı́ Soler and Apidianaki, 2021a), it is hard to say whether
this knowledge is actually used by the models to perform specific tasks. Consequently, it is hard to
establish a causality relation between the encoded knowledge and downstream performance, which
casts doubt on the value of probing as a tool for explaining model behaviour.

Interestingly, recent studies provide increasing evidence that ANNs do not really use the encoded
knowledge for performing the tasks they are trained for (Elazar et al., 2021; Ravichander et al., 2021).
Identifying the knowledge that is actually used for reasoning is difficult with the existing interpretation
methodology which mainly reveals correlations between the encoded properties (Belinkov, 2021; Feder
et al., 2021). Probing can serve to indicate such correlations between model representations and linguis-
tic properties, but it does not tell us whether these are actually involved in the predictions made by the
original model (Feder et al., 2021). This uncertainty is accentuated by the disconnect between the prob-
ing classifier used and the original model which are separately trained (Belinkov, 2021). Importantly,
results of adversarial studies show that state-of-the-art models are highly vulnerable to slight pertur-
bations of the processed data, a behaviour that would not be expected if the models could understand
language and make informed decisions (Jin et al., 2020).

6.3.2 Counterfactual Methods

Counterfactual methods aim at estimating whether the knowledge encoded in model representations
is actually used for prediction. The Amnesic Probing method proposed by Elazar et al. (2021), for
example, uses counterfactual representations derived from pre-trained model representations where the
property of interest (e.g., number agreement or syntactic dependencies information) has been removed.
The change in model behaviour that occurs after this neutralisation procedure allows to measure how
useful the information was for the task at hand.3 Feder et al. (2021) also argue in favour of the use of
counterfactual examples which reveal the causal effect of a concept of interest on the performance of a
given model, rather than simply showing correlations between features and predictions.

These counterfactual methods mainly address grammatical and structural linguistic aspects (e.g., part-

3The idea is similar to that underlying ablation studies where some component is being removed and the influence of the
intervention on the result is being measured.
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of-speech, tense or number agreement) (Elazar et al., 2021; Ravfogel et al., 2021). In our study (Ce-
likkanat et al., 2020), we used the Amnesic Probing method for detecting the traces of passivisation and
negation in contextualised representations, in a controlled experimental setting.

In future work, such methods should be extended and applied to other types of linguistic (struc-
tural and semantic) phenomena. This would make it possible to perform a more thorough analysis of
the impact of the rich knowledge that is encoded in language models on results in different tasks. Given
that most neural models are blackboxes, interpretability constitutes a real and very important challenge.
It is also a crucial step for system development, since it provides the possibility to decipher the complex
decision mechanisms inside the models, and the reasons that lead to certain predictions. Finally, it is
essential for increasing the trustworthiness of the models and, consequently, the users’ confidence in
them, with real impact in their everyday life.

6.3.3 Adversarial Methods

Figure 6.1: Adversarial text generated using FGSM.

Another indication that high performing mod-
els might not rely on the knowledge that is
encoded in their representations for perform-
ing natural language understanding tasks, is
that they are highly vulnerable to adversarial
attacks. This means that they can be fooled
when exposed to adversarial examples that
have imperceptible alterations from their origi-
nal counterparts, a behaviour that would not be
expected if they a real “understanding” of the
processed text and the task was taking place.

Adversarial methodology is a useful tool for evaluating model robustness (Goodfellow et al., 2015; Li
et al., 2017; Alzantot et al., 2018; Jin et al., 2020). The idea is to impose minor data perturbations
which preserve the meaning of the original text, and to evaluate model performance on the generated
examples. If the models rely on their encoded semantic and common-sense knowledge for reasoning,
they are expected to continue making correct predictions on the altered data. Specifically, they would
be able to identify the similarity of the adversarial and the original examples, and would not alter their
predictions (i.e. after-attack accuracy would be the same as original accuracy). Results from adversarial
studies show that this is not generally the case, and that drops in performance when models are exposed
to perturbated data are huge.4

Adversarial attacks initially became popular in the field of image processing where example generation
is simple, since small perturbations to many pixels might not be perceptible to a human viewer (Szegedy
et al., 2014; Goodfellow et al., 2015). Generating adversarial examples for text data is challenging since
due to the discrete nature of word tokens (as opposed to the continuous nature of image pixel values),
changes are perceptible (Alzantot et al., 2018). Liang et al. (2018) show that applying a gradient-
based method such as the ones used in the image domain to text data generates unintelligible text. An
example of this manipulation is given in Figure 6.1 (b) where the Fast Gradient Sign Method (FGSM)
of Goodfellow et al. (2015) has been applied. Manipulating only a few characters with the highest
gradient magnitude still generates unnatural text with noticeable perturbations (Figure 6.1 (c)). Given

4Indicatively, Jin et al. (2020) report a reduction in BERT prediction accuracy by about 5-7 times on the Yelp reviews
sentiment classification task (Zhang et al., 2015), and a drop from 89.4% to 4.0% on the SNLI dataset (Bowman et al., 2015)
for the same model.



6.3. PROBING AND EXPLAINABILITY 68

the quality of the altered text, a model’s incapability to properly manipulate it would not reveal much
about its understanding of language. A natural language attacking system is, instead, expected to satisfy
three utility-preserving properties (Jin et al., 2020):

1. human prediction consistency: human predictions on the altered text should remain unchanged;

2. semantic similarity: the crafted example should bear the same meaning as the source;

3. language fluency: the generated examples should look natural and grammatical.

Manually changing every example of interest by introducing, or removing, a concept of choice is costly,
time-consuming, and therefore implausible for large data sets (Feder et al., 2021). Heuristic attack
methods for textual data involve simulating typos by randomly replacing characters with their nearby
key on the keyboard (Belinkov and Bisk, 2018); misspelling words and adding punctuation between
the letters (Hosseini et al., 2017); word scrambling, insertion and deletion (Li et al., 2017; Alzantot
et al., 2018; Liang et al., 2018; Li et al., 2019). However, with such heuristic strategies, it still remains
challenging to find the optimal solution in the massive space of possible combinations of insertions,
replacements and deletions, while preserving semantic consistency and language fluency (Li et al.,
2020). Furthermore, word deletion and insertion might result in unnatural sentences, where syntactic
and semantic plausibility are compromised. An alternative is to use a lexical substitution method, which
guarantees higher semantic similarity of the original and generated texts than alternative procedures
(e.g., word deletion). A good substitution system would also preserve the fluency of the generated text.
In existing methods (Alzantot et al., 2018; Tsai et al., 2019; Jin et al., 2020), substitution candidates for
a target word are often its nearest neighbours in the used embedding space. These might, however, be
antonyms of the target or words of a different grammatical category which happen to be close in space;
these substitutes would, however, compromise both fluency and semantic consistency. Furthermore, the
use of static embeddings does not guarantee that the selected substitutes are good fit in context due to
the meaning conflation problem which influences similarity.

The potential of using contextual language models as lexical substitution tools (as discussed in Section
4) would permit to address these issues. Lexical substitution models, precisely, address both the in-
context suitability of candidate substitutes, preserving fluency, and their similarity to the target (the
word to be substituted) (Melamud et al., 2015, 2016; Li et al., 2020). Consequently, they satisfy the
above constraints of adversarial methods to a larger degree than alternative approaches, ensuring the
fluency of the generated text and its similarity to the original.

Adversarial methods constitute a valuable tool for assessing the knowledge language models encode,
their understanding of it and the extent to which it is used for accomplishing specific tasks. Future
work should focus on developing adversarial methods which satisfy the three utility-preserving
constraints (human prediction consistency, similarity and fluency), in order to increase the useful-
ness of such methods. An interesting research direction would be to propose an adversarial framework
where the candidate substitutes describe the concepts of interest. By implementing controlled data
perturbations (for example, along specific axes of meaning variation), such an adversarial framework
would allow to investigate the impact of the concepts of interest on model behaviour. We could, for ex-
ample, restrict the candidates to words with varying (increasing or decreasing) intensity (e.g., good →
great → wonderful → awesome; love → adore; hate → despise; secretly → confidentially) (Garı́ Soler
and Apidianaki, 2020), and measure the impact of intensity on prediction (for example, in a sentiment
classification task). This could be extended to other concepts and abstract semantic notions that may
be modelled in the vector space built by contextual models. We could, for example, explore the impact
of the graded notion of lexical complexity (Shardlow, 2013; Paetzold and Specia, 2016; Kriz et al.,
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2018) using a model that ranks words according to this dimension (e.g., detention → imprisonment →
incarceration) and a lexical substitution method for generating text at different complexity levels (Kriz
et al., 2018). Similarly for formality (e.g., swing → oscillate, clean → immaculate) and the impact of
this stylistic dimension on model decisions (Pavlick and Tetreault, 2016).

6.4 Exploration of Other Types of Semantic Knowledge

6.4.1 Regular Meaning Alternations

Encoding rich information about word usage, contextualised representations can open up new avenues
for Formal Semantics research. Thanks to their great sensitivity to syntactic variation and the surround-
ing context, they can provide representations of the descriptive content of words and also reflect minor
meaning shifts. It has been shown that they can also serve to describe types of polysemy that are central
in Formal Semantics but difficult to handle with traditional DSM models. These involve related (or
complementary) senses which are less sensible to contextual priming than contrastive senses, and thus
more difficult to disambiguate (Haber and Poesio, 2020, 2021).

Modelling regular polysemy, and other types of meaning alternations (such as metonymy or
metaphor), using contextualised representations is a research question worth exploring in fu-
ture work. The term regular polysemy describes types of polysemy which are not word specific, but
are rather instances of general sense alternations such as ANIMAL/MEAT (lamb, chicken), FOOD/EVENT

(lunch, dinner), CONTAINER/CONTENT (glass, bottle, cup), PHYSICAL/INFORMATION/ORGANISATION

(newspaper, magazine), BUILDING/PUPILS/DIRECTORATE/INSTITUTION (school, university) (Boleda
et al., 2012a; Haber and Poesio, 2021). A large number of linguistics and cognitive science studies
have provided evidence about these meaning variation regularities which are due to general analogi-
cal processes (Apresjan, 1974; Lakoff and Johnson, 1980; Copestake and Briscoe, 1995; Pustejovsky,
1995).

Regular alternations of meaning are rather common in languages, however lexical semantic analysis
methods often analyse the semantics of individual words separately, ignoring the similarities of their
meaning alternations. Boleda et al. (2012a) proposed to address this phenomenon using a distributional
model which assesses how well a “meta alternation” (e.g., ANIMAL-FOOD) explains a pair of senses of
a lemma (e.g., lamb or chicken).5 In their model, “meta senses” are represented by a vector which is
defined as the centroid (average vector) of the monosemous words instantiating it. Meta alternations are
then represented by the centroids of their meta senses’ vectors. An advantage of this method is that the
lemmas do not need to be disambiguated, but meta alternation and polysemous words are represented
as simple centroid vectors. The method does not involve a word sense induction step (Schütze, 1998;
Pantel and Lin, 2002) which, as pointed out by Boleda et al. (2012a), would allow for more flexible and
realistic models.

Regarding coercion and logical metonymy, these have been traditionally approached in the distribu-
tional semantics literature using an approach to thematic fit modelling which considers for each verb
role a prototype vector (which averages the vectors of its most typical fillers) and its similarity to the
candidate fillers (Baroni and Lenci, 2010; Lenci, 2011). More recently, logical metonymy, and comple-
ment coercion in general, can be regarded as an instance of argument complexity caused by the effort
required to repair the violation of the verb selectional preferences (Chersoni et al., 2021).

5The meta senses can be defined a priori, or induced from the data. They are cross-word senses, since they describe the
meaning alternations present in different lemmas.
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Current contextual language models offer great potential for studying these questions since their rep-
resentations capture the meaning of specific word instances. This allows to generate representations
corresponding to specific senses (for example, by selecting the contexts or instances that will be used
to derive the vectors) and to avoid the noise that might be introduced by polysemy. In future work,
I plan to explore how these representations can reveal semantic alternations by their proximity to the
vectors of monosemous words representing meta senses, as in the above cited distributional study. Fur-
thermore, it would be interesting to investigate whether these alternations can be identified and located
in the vector space constructed by contextual language models, in a similar way as abstract semantic
notions like intensity which can be described by its own vector representation.

6.4.2 Semantic Properties of Concepts and Entities

6.4.2.1 Language Models’ Knowledge of Noun Properties

Neural language model representations encode rich linguistic (grammatical, syntactic and semantic)
and world knowledge. There are, however, types of knowledge that are more difficult to identify and
retrieve. This is, for example, the case with visual or common-sense knowledge about entities. This
difficulty might not be due to the models themselves and how advanced they are, but rather to some
types of information being rarely stated in texts. This is described in the literature as the “reporting
bias” phenomenon (Gordon and Van Durme, 2013) which poses challenges for knowledge extraction.
According to this phenomenon, the frequency with which people write about actions and properties is
not necessarily a reflection of real-world frequencies, or of the degree to which a property is charac-
teristic of a class of individuals. Hence, rare actions or properties are over-represented in texts at the
expense of trivial ones. For example, we would expect to find more mentions in a text to “a man who
is jumping” than to “a man who is breathing”, since the first describes an exceptional action. As far as
entity properties are concerned, bananas or strawberries would more often be described as ripe or tasty,
than as yellow or red since these are prototypical properties of the objects referred to by these nouns.
These are obvious and already known by the participants in the communication, and do not bring in new
information. Interestingly, Shwartz and Choi (2020) show that the impressive generalisation capability
of pre-trained language models allows them to better estimate the plausibility of frequent but unspo-
ken actions, outcomes and properties than previous models, but that they also tend to overestimate that
of the very rare, amplifying the bias towards rare (non prototypical) events that already exists in their
training corpus.

In our work (Apidianaki and Garı́ Soler, 2021), we used probing methodology to explore whether re-
trieving knowledge about noun properties constitutes a challenge for these models. We probed BERT
for the properties of English nouns as expressed by adjectives that do not restrict the reference scope of
the noun they modify (as in red car), instead emphasise some inherent aspect (red strawberry). Adjec-
tival modification is one of the main types of composition in natural language (Baroni and Zamparelli,
2010; Guevara, 2010). Adjectives (As) in attributive position6 usually have a restrictive role on the ref-
erence scope of the noun they modify, limiting the set of things it refers to (e.g., white rabbits ⊏ rabbits).
This property of adjectives has interesting entailment implications, generally leading to adjective-noun
(AN) constructions where the entailment relationship with the head noun holds (AN |= N) (Baroni et al.,
2012).7 When A is prototypical of the N it modifies (as in soft silk, red lobster, small blueberry), its

6Adjectives that appear immediately before the noun (N) they modify and form part of the noun phrase (e.g., white rabbit),
as opposed to adjectives in predicative position that occur after the noun (e.g., this rabbit is white).

7Entailment is directional (white rabbit |= rabbit but rabbit ̸|= white rabbit) (Kotlerman et al., 2010), unless modification
is not restrictive.
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insertion does not reduce the scope of N or add new information, but rather emphasises some inherent
property (Pavlick and Callison-Burch, 2016a). In these cases, N and AN denote the same set; they are
in an equivalence relation (red lobster = lobster) and entailment is symmetric.

Adjective prototypicality has been understudied in the computational linguistics literature, as opposed
to prototypicality relationships between nouns8 (Roller and Erk, 2016; Vulić et al., 2017). This lin-
guistic property is also absent from lexico-semantic resources such as WordNet (Fellbaum, 1998) and
HyperLex (Vulić et al., 2017). Alongside its theoretical interest – given its impact on the entailment
properties of AN constructions – knowledge about adjective prototypicality has interesting practical
implications. It can serve to retrieve information about the general concept (e.g., silk, blueberry) for
queries containing AN phrases where the modifier does not restrict the denotation of the noun (e.g., soft
silk, small blueberry). It can also serve to discard adjectives that do not add new information about the
noun for sentence compression and summarization.

In our Apidianaki and Garı́ Soler (2021) paper, we proposed to study the prototypicality of noun prop-
erties as expressed by modifiers in AN constructions. We used the psycholinguistics datasets that were
compiled by McRae et al. (2005) and Herbelot and Vecchi (2015), which describe noun properties as
association norms and capture the association strength between nouns and their semantic features using
quantifiers.9 Using these two datasets, we probed BERT for its knowledge of noun properties and their
prevalence, using cloze tasks and in a classification setting. We found that the model has marginal
knowledge of these features and their prototypicality, as expressed in the datasets used for evaluation.
This can be due to the model’s limited knowledge of these properties or to the absence of this knowl-
edge from the training data due to reporting bias (Gordon and Van Durme, 2013; Shwartz and Choi,
2020). In order to more thoroughly investigate the knowledge that is encoded by the models, alterna-
tive evaluation scenarios should be considered where the quality of the actual model output would
be assessed. This type of evaluation would circumvent the constraints related to the coverage of exist-
ing resources and to the nature of their content, which has been collected using specific experimental
protocols.

6.4.2.2 A Multimodal Approach to Noun Property Detection

It would be possible to alleviate the issues posed by reporting bias to knowledge modelling and
extraction through access to different modalities. In recent work (Yang et al., 2022), we specifically
explore the alternative of using images. Our assumption is that reporting bias mainly affects perceptual
properties which are well-known to the speakers of a language (e.g., cute cat, small blueberry, soft
silk) and are, consequently, not often stated in the communication. We have attempted to extract these
properties from images and to use them in an ensemble model in order to complement the information
predicted by language models. This idea follows up on previous models which combine different
modalities for providing a sort of grounding for different types of common-sense knowledge

The originality of our approach is that we use property concreteness (Brysbaert et al., 2014) as a lever to
calibrate the contribution of each source (text vs. images). We consider visual (or perceptual) properties
(e.g., red, round) as more concrete than abstract attributes (e.g., interesting, flawless). Concreteness is
a graded notion that strongly correlates with the degree of imageability (Friendly et al., 1982; Byrne,

8For example, cat is a more prototypical animal than snake, and basketball is a more prototypical sport than wrestling.
9The Herbelot and Vecchi (2015) dataset adds an extra layer of quantification annotations to the norms in the McRae

et al. (2005) dataset (e.g., ALL guitars are musical instruments, but SOME guitars are electric). Quantification is important
for semantic inference since it serves to understand set relations (such as synonymy and hyponymy), and to derive logically
entailed sentences.
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1974). Furthermore, concrete words generally tend to refer to tangible objects that the senses can
easily perceive (Paivio et al., 1968). We extend this idea to noun properties and hypothesize that vision
models would have better knowledge of perceptual, and more concrete, properties (e.g., red, flat, round)
than text-based language models, which would better capture abstract properties (e.g., free, inspiring,
promising).

We evaluate our ensemble model (which has access to both text and images) in a ranking task, where
the actual properties of a noun need to be ranked higher than other non-relevant properties. Candi-
date properties are taken from the McRae et al. (2005) dataset, from the MEMORY COLORS dataset
(Norlund et al., 2021), and from the CSLB (Centre for Speech, Language and Brain) dataset (Dev-
ereux et al., 2014). Our results show that the proposed combination of text and images greatly improves
noun property prediction compared to powerful text-based language models like BERT-LARGE (Devlin
et al., 2019), ROBERTA-LARGE (Liu et al., 2019c), GPT2-LARGE (Radford et al., 2019) and GPT3-
DAVINCI. Our ensemble model also outperforms the powerful CLIP vision-language model in the
property ranking task (Radford et al., 2021).10 This shows that concreteness is a useful lever for cali-
brating the contribution of texts and images which might be useful for exploring other types of semantic
knowledge.

Still, even though our results demonstrate the power of combining text and images, model performance
in the property ranking task remains low. Top-1 Accuracy on the McRae et al. (2005) dataset only
reaches 40.1 with our ensemble model and gold concreteness scores,11 and 37.9 with GPT3-DAVINCI.
Accuracy at 5 is higher (76.2 for the ensemble model with gold scores and 61.5 for GPT3), while the
recall at 5 is 40 for the ensemble model (31.8 for GPT-3). These results show that there is still room for
improvement for this challenging task.

6.4.3 Semantic Scope

In formal semantics, the scope of a semantic operator (e.g., negation or quantifier) is the semantic object
to which it applies. For example, in the sentence “Mary doesn’t like mozzarella but she loves pecorino”,
the proposition “Mary doesn’t like mozzarella” occurs within the scope of negation, while “she loves
pecorino” does not. Scope also determines the semantic order of operations. This is not always defined
by the position of the operators and the syntactic structure of the sentence (Nakov and Hearst, 2005;
Campbell, 2002), but is also strongly influenced by the semantics of the words contained in it (Kamp
and Partee, 1995). Scope is also relevant for the interpretation of noun phrases involving multiple
modifiers. The semantics of simple modifier-noun constructions have been modelled using first-order
logic (McCrae et al., 2014), linear mapping methodology12 (Baroni and Zamparelli, 2010), and other
explicit compositional operations such as weighted addition and multiplication (Boleda et al., 2012b,
2013). Other works address the semantics of these constructions using an inference-based approach
(Pavlick and Callison-Burch, 2016b,a; Apidianaki and Garı́ Soler, 2021).

In recent work (Lyu et al., 2022), we explore the semantics of recursive noun phrases (NPs) which
involve more than one modifier (e.g., the so-called imminent danger, an arguable perfect solution).
We show that interpreting the meaning of these constructions is a real challenge for language models.
Although the scope of the modifiers can be useful, it cannot always explain the meaning of the NPs
because of the influence from modifier semantics. Hence, two NPs with the same syntactic structure:

10CLIP which is pre-trained on 400M image-caption pairs. It integrates a text encoder fT and a visual encoder fV, and is
trained to align the embedding spaces learned from images and text, using contrastive loss as a learning objective.

1139.9 with scores predicted by a regression model (Charbonnier and Wartena, 2019) with FastText embeddings.
12The adjective is seen as a linear function from the noun vector to the AN representation.
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a [big [fake gun]] and a [big [black gun]], can have entirely different inference patterns, (i.e., the latter
is a gun while the former is not). In order to interpret these NPs and accurately determine the modifiers’
scope, subtle knowledge about their semantics is also needed which language models do not seem to
capture. For example, former negates the noun diplomat in the sentence “A former American diplomat”
(the person is probably still American), and the adjective beginner in “A former beginner drummer”
(the person is probably still a drummer).

In our work, we adopt an inference-based approach which explores the entailment properties of recur-
sive NPs (e.g., “does a fake fur entail fur?”, “does a tall basketball player entail a tall man?”), and an
event plausibility comparison task. We find that the interpretation of recursive noun phrases is a real
challenge for large language models, independent of the semantic category of the modifiers (intersec-
tive, privative, subsective, nonsubsective) (Kamp and Partee, 1995; Partee, 1995), which can however
be learned to some extent if the models are exposed to a small amount of data from the challenge set
(a process called “inoculation”) (Liu et al., 2019a). Our results demonstrate that there is still room for
improving models’ understanding of noun phrase constructions, and more generally of semantic scope,
as well as the reasoning processes that rely on their successful interpretation.
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Text, Speech and Dialogue, Sojka Petr, Kopeček Ivan, Pala Karel (eds.), pages 103–112. Springer, Berlin, Heidelberg.

Kim, J.-K. and de Marneffe, M.-C. (2013). Deriving adjectival scales from continuous space word representations. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1625–1630,
Seattle, Washington.

Kishida, K. (2005). Property of average precision and its generalization: An examination of evaluation indicator for informa-
tion retrieval experiments. Technical report, NII-2005-014E.

Kotlerman, L., Dagan, I., Szpektor, I., and Zhitomirsky-Geffet, M. (2010). Directional distributional similarity for lexical
inference. Natural Language Engineering, 16(4):359–389.

Koutsikakis, J., Chalkidis, I., Malakasiotis, P., and Androutsopoulos, I. (2020). GREEK-BERT: The Greeks visiting Sesame
Street. In 11th Hellenic Conference on Artificial Intelligence, pages 110–117.

Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky, A. (2019). Revealing the dark secrets of BERT. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 4365–4374, Hong Kong, China. Association for Computational
Linguistics.
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