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General Introduction

Logic formalizes different modes of reasoning. More precisely, it is a science of investigating how
conclusions are inferred from a set of arguments or premises. The study of logic begun with the ancient
Greek who started to use natural language to perform reasoning. The most known Aristotelien logic is
reasoning in the form of syllogisms. Here is an example of a syllogism:

Premise: Magpies fly.

Premise: Tweety is a magpie.

Conclusion: Tweety flies.

Knowing that both premises “Magpies fly” and “Tweety is a magpie” are true, we can infer that the
conclusion “Tweety flies” is also true. These forms of reasoning have been formalized further and de-
veloped into classical logic in the modern era. It consists of propositional and first-order logic. Classical
logic, in a sense, is based on fundamental logical intuitions and rules that are agreed upon by logicians.
Alongside these rules, a vocabulary is developed using symbols to simplify the expression of premises
and conclusions. In artificial intelligence, classical logic as well as many of its extensions (modal, epis-
temic, description, etc. ) are used as formal tools for representing knowledge and reasoning with said
knowledge in order to extract new conclusions. In the latter half of the twentieth century, the role of
mathematical logic in computer science is to codify problems in a language that machines can interpret
and define inference rules based on the different modes of reasoning.

One of these modes of reasoning is called defeasible inferences. When using defeasible reasoning,
one can draw conclusions based on generic or incomplete information, all whilst keeping the right to
retract these conclusions when presented with further information. Consider the following premises:

Premise: Normally, birds fly.

Premise: Penguins are birds.

Premise: Penguins do not fly.

Now, given a new premise “Tweety is a bird”, should we infer that it can fly or not? since the only
knowledge that we have on Tweety is that it is a bird, we can plausibly infer that “Tweety flies”. However,
when presented with the additional premise “Tweety is a penguin”, and knowing that penguins are one of
the rare birds that cannot fly, the conclusion is no longer true. The conclusion “Tweety flies” is thereby
retracted.

It turns out that this retractable way of reasoning is more similar to the common sense reasoning
than the deductive reasoning in classical logic. Classical logic operates on the basis that all current
information must be true and complete (without any edge cases, such as the penguins on the previous
syllogism). When presented with complete information, all drawn conclusions are not challenged and
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General Introduction

any additional information to the set of premises does not falsify them. This property of deductive
reasoning is called monotony. However, premises such as “normally, birds fly” are not complete. Since
we cannot say for sure that all birds fly, we cannot derive conclusions from this premise using deductive
reasoning. On the other hand, defeasible reasoning breaks the monotony rule by allowing reasoners to
draw initial conclusions even when the set of premises is not complete and granting the ability to retract
said conclusions when needed. That is why defeasible reasoning belongs to the family of non-monotonic
logics.

The field of non-monotonic logic has been a topic of interest in philosophy in the recent years. As
defeasible reasoning provides a solid framework of reasoning when dealing with incomplete information
that might contain exceptional cases, many researchers in artificial intelligence took interest in non-
montonic reasoning as well. The work was pioneered by McCarthy and Hayes [MH69] who discovered
the need to represent and implement this sort of reasoning. McCarthy and Hayes [MH69] introduced
the frame problem which is the challenge of representing the effects of an action without explicitly
mentioning a number of intuitively obvious non-effects. This reveals the question of whether it is possible
to infer conclusions based only on what is relevant to the current situation, whilst tolerating potential
anomalies that might arise in the cases that are not as relevant. Later on, McCarthy [McC80] proposed the
principle of circumscription as a solution to this problem. In this setting, one considers that we encounter
abnormalities in any situation, and it is warranted to conclude whatever is true based on all preferred
outcomes (which are considered to be minimal in regards to the other outcomes). Several systems of non-
monotonic reasoning in classical propositional logic build upon this notion of preference as an ordering
relation, amongst them are the work of Bossu and Siegel [BS85], Shoham [Sho87], Geffner [Gef89] and
Kraus et al. [KLM90].

We are particularly interested in the seminal work of Kraus et al. [KLM90] (known as the KLM
approach) on conditionals of the form “normally, if α is true, then β is true” and denoted by α |∼ β.
Kraus et al. generalized patterns of non-monotonic reasoning and defined clearly the set of rules for
defeasible inferences. Based on the aforementioned rules that are set for the inference operator |∼, Kraus
et al. introduced multiple families of non-monotonic inferences and defined adequate preference relations
of models for each of these families. The preference relation is an ordering relation on the worlds which
compares them based on their normality and plausibility in general. The preference relation is often
denoted by the symbol ⋎ . In recent years, defeasible aspects have been investigated in more complex
logics thanks to the KLM approach. The notable ones are defeasible extensions for description logic
proposed by Giordano et al. [GGOP07, GOGP09], Britz et al. [BCM+20] and a defeasible extension for
modal logic proposed by Britz et al. [BV18]. This work constitutes the continuation of this investigation
on other forms of logic.

The second topic of interest is temporal logic. Temporal logics cover approaches to reasoning about
time. The first temporal logic was introduced by Prior [Pri62] and was called tense logic. His idea is
inspired by the use of tense in natural language to differentiate between past, present and future. Tense
logic introduces temporal operators such as always and eventually to the language, which are given a
syntax and semantics similar to modalities in modal logic. This approach has the advantage of expressing
propositions that vary over time using an intuitive language rather than expressing them in first-order
logic. Subsequent temporal logics have been developed by logicians over the years. Three prominent
temporal logics are the linear temporal logic LTL [Pnu77], computational tree logic CTL (also known as
branching time logic) [EC80] and CTL⋆ [EH83] which combines both LTL and CTL. Applications of
temporal logic range from its use in philosophy as a framework to define temporal expressions in natural
language, to formalisms for encoding temporal knowledge in artificial intelligence. They are mostly used
as tools for the specification and verification of executions in computer programs and systems.

The main goal of this work is to investigate aspects of defeasibility in temporal logics. When tak-
ing into account the frame problem by McCarthy [MH69], computer systems are neither 100% safe nor
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100% faulty. Systems might contain, at some points of time, innocuous cases where exceptions are to be
tolerated, or on the contrary, exceptions that must be carefully handled on other points of time that are
more relevant. Similarly, the expected behavior of a system may not be correct for every possible execu-
tion, but rather for its most “normal” or probable executions. It so happens that temporal logics, because
they are logical formalisms built upon the basis of classical logic, i.e., whose underlying reasoning is
deductive and not common sense (defeasible), do not allow at all to formalize the different nuances of
exceptions and even less to treat them. Technically the reason being that these logics (1) at the level of
propositions, are often based on two truth values (true or false), (2) at the level of the object language,
have operators behaving in a monotonic way, and (3) at the level of reasoning, have a notion of logical
consequence which is also monotonic and, consequently, is not adapted to the evolution of the deductible
facts.

We present in this memoir a temporal formalism called defeasible linear temporal logic, denoted
by LTL˜. In this logic, we investigate the integration of preferential semantics of the KLM approach
in LTL. Based on Britz and Varzinczak’s work [BV18], we introduce defeasible temporal operators
that can help formalize temporal expressions that implicitly take into account that the execution might be
exceptional at some points of time. The intuition here is to provide a framework for expressing defeasible
properties on systems, all while following the principle of Prior’s temporal operators in spirit. In other
words, classical LTL encodes sentences such as “it will always ... ”, and LTL˜ can encode sentences of
the form “normally, it will always ... ”.

Synopsis of the memoir

This memoir is split into two parts: the preliminaries and the contributions. In the preliminaries, we
set up the building blocks of the formalism LTL˜:

• Chapter 1 highlights the KLM approach [KLM90, LM89] to non-monotonic logic. We present
their work on an axiomatic characterization of defeasible inference relations alongside their pro-
posed semantics for each of these relations. We present two of the prominent families of relations,
which are the preferential and rational inferences. In the latter half of the chapter, we expose use
cases of formalisms other than propositional logic extended with KLM approach, such as descrip-
tion logic [GGOP07, GOGP09, BCM+20] and modal logic [BV18].

• Chapter 2 goes into linear temporal logic LTL. We define the syntax and semantics of this logic
that we shall use in this memoir. Next, we highlight the axioms and properties of temporal opera-
tors from a modal logic standpoint. We present the work of Sistla and Clarke [SC85] on satisfia-
bility of LTL sentences and finally the version of tableau proposed by Reynolds [Rey16a].

The second part constitutes the contribution part. We give our report of the findings for LTL˜:

• Chapter 3 introduces defeasible linear temporal logic LTL˜. This formalism enriches LTL’s
temporal expression by adding defeasible temporal operators. We present the motivation, syntax
and semantics for LTL˜. We also compare the properties of the newly added modalities with their
classical counterparts.

• Chapter 4 is the extension of the work done regarding the satisfiability of LTL˜ sentences [CCACV20].
We discuss the decidability of this problem for two fragments of the language, namely L1 and L⋆.
We gave a detailed analysis to obtain the bounded-model property, as well as provide the procedure
for checking the satisfiability in said fragments.

3



General Introduction

• Chapter 5 concerns the topic of tableau for LTL˜ [CCACV21]. We adapt Reynolds’ one-pass
tableau [Rey16a] by integrating the preferential semantics into the method. We propose a tableau
for one of the previously mentioned fragment. We provide a sound and a complete method that
can serve as the basis for further exploring tableaux for this logic.

The conclusion summarizes the memoir, and provides perspectives for future work. We discuss the
findings about the introduction of defeasible inferences à la KLM to LTL˜. We give our intuition for a
defeasible extension for CTL as well.
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Chapter 1

Non-monotonic reasoning

Contents
1.1 The KLM approach to non-monotonic reasoning . . . . . . . . . . . . . . . . 8

1.1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 System P or preferential models . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 System R or rational closure . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Use cases of logical formalisms extended with KLM conditionals . . . . . . . 19
1.2.1 Description logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Defeasible description logic . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.3 Modal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.4 Defeasible modal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Non-monotonic reasoning (NMR) covers a family of formalisms and logics that capture and represent
defeasible inference. Using defeasible inference, reasoners draw conclusions even when the information
is incomplete and they reserve the right to retract said conclusion in the light of further information.
This deductive type of reasoning tries to represent a mode of reasoning closer to the common sense, it
is used in philosophical fields and expert fields (e.g. suspects list during an investigation, medical diag-
noses . . . ). However, classical logic (ranging from propositional to more complex formalisms like modal
and description logic) fails to capture this aspect of defeasibility in inferences. Classical (or monotonic)
inferences are by nature based on complete information and thus do not allow for the retraction of infer-
ences.

Defeasible reasoning is dynamic in that it allows for a retraction of inferences. A famous introductory
example in the literature of defeasible reasoning and non-monotonic reasoning is Tweety the bird. When
presented with the background knowledge that “birds usually fly”, we can infer that Tweety the bird
can fly. The latter inference can be retracted when presented with the new information that Tweety is a
penguin (penguins are an exceptional case of birds that cannot fly).

This kind of dynamics is characteristic for non-monotonic reasoning. When trying to express the
birds and penguins problem using classical consequence (that of propositional logic), the statement “birds
fly” entails that all the birds are able to fly, without any exception. Therefore in this case, when presented
with the information that Tweety is a penguin and penguin are birds, the reasoner safely assumes that it
can fly. This property in classical logic is referred to as the monotony rule. We shall use ` to represent
classical consequences:

7



Chapter 1. Non-monotonic reasoning

(Monotony) If Σ ` α, then Σ ∪ Σ′ ` α.

Monotony states that consequence are robust to the addition of new information. If a sentence α is a
consequence of a set of premises Σ, then it is also a consequence of any set of premises that contains Σ as
a subset. Hence, any consequence entailed using classical logic is not called in question and therefore not
retractable. This is why sometimes the monotony property is not desired when going for the retractability
in defeasible inferences. Most forms of defeasible reasoning violate the rule of monotony. This is why
the field of defeasible reasoning is called non-monotonic. It is a study of formal reasoning systems on
which the monotony rule is not present and is replaced by other properties.

So what are the properties of inferences in NMR settings? Given that monotony is abandoned in
NMR systems, we are led to the question of which properties that can replace it in order for inferences
to be considered defeasible. The central properties in the literature are (defeasible inferences are repre-
sented by |∼):

• (Reflexivity) If α ∈ Σ, then Σ |∼ α.

• (Cut) If Σ |∼ α and Σ ∪ {α} |∼ β, then Σ |∼ β.

• (Cautious Monotony) If Σ |∼ α and Σ |∼ β, then Σ ∪ {α} |∼ β.

Cautious monotony is a weaker form of the monotony property which allows the addition of a new
information α as a defeasible premises of β, i.e., Σ, only when α is itself is a defeasible consequence
of Σ. Thanks to these principles, a reasoner is able (under a set of restrictions) to draw conclusions that
can in turn be used as additional premises to the set of defeasible conclusions. In the work of Gabbay
[Gab85], it has been shown that some basic intuitions about non-monotonic derivations of the classical
consequence gives rise to defeasible inferences that satisfy Reflexivity, Cut and Cautious monotony.
Which is why these properties are considered, by many scholars (Makinson [Mak05], Gabbay [Gab85],
Adams [Ada65], Pearl [Pea89] and Geffner [Gef89]), to be the central principles of NMR.

This gave rise to many formalisms that pioneered the work in NMR. Such formalisms have a goal
of giving a mathematical characterization of defeasible inferences in reasoning systems. Here is some
examples of NMR formalisms: Default logic (Reiter [Rei80], Besnard [Bes89]), Circumscription logic
(McCarthy [McC80], Moinard [Moi88]), autoepistemic logic [Moo93] and conditional logic (Kraus et
al. [KLM90, LM89], Lewis [Lew73], Pearl [Pea90]) amongst others.

The selling point of non-monotonic reasoning, in the study highlighted in this memoir, is its ability
to cope with the notion of exceptionality. Defeasible reasoning by nature is retractable. An agent using
defeasible inferences such as “Normally, if α, then β” can infer that in most plausible, normal or in
general preferred cases where α is true, then β is true. All whilst keeping in mind that there might be
exceptional cases of α where β can be false. Assertions of the form “Normally, if α, then β” are referred
to as conditionals. The work we highlight here is the Kraus, Lehmann and Magidor’s (or KLM) approach
[KLM90, LM89] to conditionals. We discuss the properties of defeasible inferences in their approach.
Moreover, we expose also other formalisms that extend the preferential approach and express other forms
of defeasibility.

This chapter is divided in two sections, we shall discuss different properties of conditionals and their
appropriate semantics in Section 1.1. Section 1.2 contains a study of two logics (other than propositional)
on which KLM style of semantics have been investigated.

1.1 The KLM approach to non-monotonic reasoning

Since the introduction of Reiter’s work [Rei80] on default logic, many logician and researchers defined
logical frameworks which are able to represent and manage conditional type assertions. A conditional
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1.1. The KLM approach to non-monotonic reasoning

is any assertion of the form “Normally, if α, then β”. In the aforementioned statement, the normal (we
can also say preferred or plausible) worlds that satisfy α are worlds of β. The less normal (exceptional)
worlds of α do not satisfy necessarily β. Conditionals diverge from classical assertions, of the form “if
α, then β”, in the sense that all α-worlds need to satisfy β, no matter how unlikely they are. Whilst a
conditional statement captures the essence of defeasibility by allowing the unlikely worlds of α to not
satisfy β.

In the field of conditionals and conditional logic, many authors developed an array of systems and
formalisms in order to formalize conditionals. Nevertheless, these approaches share a common feature,
syntax-wise, of introducing a binary inference operator |∼ in order to express conditionals. A conditional
is a statement of the form α |∼ β which indicates that generally, α-worlds are β worlds. Many studies
in this field were focused on exploring properties and postulates of the inference relation |∼ in order to
be considered non-monotonic. We cite the work of Gabbay [Gab85], Makinson [Mak05] and Kraus et
al. [KLM90, LM89]. This field had also a surge of a multitude of systems that define conditional infer-
ences, some use the preferential semantics [Sho87, BS85] Lewis’s approach [Lew73] or the possibilistic
approach [Pea89, BDP97].

In this section, we present the work of Kraus, Lehmann and Magidor [KLM90, LM89], formally
known as the KLM approach, on conditionals. In their setting, the KLM approach defines the set of
properties for the relation |∼ for different systems. The approach is based on the preferential approach of
Shoham [Sho87]. Briefly, Shoham suggested that models can be described as a set of worlds equipped
with a preference relation ⋎ which is an ordering relation on these worlds. Using the preference relation
⋎ , a world w is more preferred than v if w is considered to be more plausible, normal than v. A
conditional statement α |∼ β would then, in the model, mean that the sentence β is true for all worlds
that satisfy α and are most normal among worlds of α with respect to the preference relation ⋎ . Kraus et
al. investigate this concept further. The KLM apprpach defines three central systems, namely cumulative
C, preferential P systems and rational closure R. In each of these systems, they described the properties
of the inference relation |∼ and proposed the adequate model that is well suited for |∼.

Since we will be using the preferential models in our work. We describe in what follows the system
P and the system R, since they are considered to be the core of the KLM approach. We present the
properties of the |∼ relation and their models for each of these systems.

1.1.1 Preamble

Before discussing the KLM approach, we set up the notions and notations. The set of propositional atoms
is represented by P def

= {p, q, r, s, t...} (atoms are represented by a lower case letter). We use the standard
Boolean connectors: ¬ for negation, ∧ for conjunction, ∨ for disjunction, → for consequence and ↔ for
equivalence. For any given set of propositional atoms P , let L be the set of well-formed sentences of
propositional logic that can be formed using P . We shall use small Greek letters α, β, γ · · · to denote
sentences in L.

Classical consequence are represented by the Boolean operator →. A statement of the α → β reads
as: if α, then β. Non-monotonic inferences on the other hand, are represented by a binary relation |∼. A
statement of the form α |∼ β reads as: normally, if α then β. Using the language opted by researchers
in this field of study, monotonic implications are referred to as consequences. While, non-monotonic
implications are referred to as inferences. We shall assume these terms to differentiate between them.
We discuss the properties of the |∼ operators for each of the systems in the upcoming section.

For semantics, the notions of a world u refers to a possible assignment of truth values of the given
propositional atoms in P . The set U denotes the set of all possible worlds and represents a universe of
reference. The set U is a subset of all assignments of truth values of the propositional atoms in P .

We assume that the notion of satisfaction behaves as the standard as far as Boolean connectors are
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concerned. Let u ∈ U , p ∈ P , α, β ∈ L, the notation u |= α indicates that the world u is a world where
α is true. The truth values of L sentences are recursively defined as follows:

• u |= p if the atom p is assigned to true in u;

• u |= ¬α if u 6|= α (we use the notation 6|= to indicate that α is false in u);

• u |= α ∧ β if u |= α and u |= β;

• u |= α ∨ β if u |= α or u |= β;

• u |= α → β if u |= ¬α or u |= β;

• u |= α ↔ β if u |= α → β and u |= β → α.

We use the classical symbols > def
= p ∨ ¬p to indicate true and ⊥ def

= p ∧ ¬p to indicate false. We shall
say that the world u satisfies the sentences α (or u is an α-world) if u |= α. We assume that a sentence is
valid if for all u ∈ U , we have u |= α. A valid sentence α is denoted by |= α. The last notation we shall
set is JαK. Let α be a sentence, if a world u is an α-world then u ∈ JαK. In other words, JαK denotes the
set of all worlds in the universe of reference U that satisfy the sentence α.

1.1.2 System P or preferential models

The central system in the KLM approach to non-monotonic reasoning is the preferential system, known
as the system P. Before discussing this non-monotonic system, we shall recall the monotonic property
for the consequence operator in classical systems. Let α, β, γ ∈ L, the monotony property states:

(Monotony) If |= α → γ, then |= α ∧ β → γ

Using classical consequence, the assertion α → γ is never challenged. This is based on the premise
all α-worlds are γ-worlds, without any exception. Therefore, we can deduce new facts based upon this
assertion, i.e., α ∧ β → γ (which are, also, never challenged). However, conditionals such as “normally,
if α, then β” are inference which are defeasible in nature. When handling conditionals, the reasoner
have the right to retract these inferences when presented with new facts. Moreover, the reasoner needs
to be cautious when trying to deduce new facts based upon conditionals. Let see the birds and penguins
example, we have the following assertions: “penguins are birds” penguins → birds and “normally, birds
fly” birds |∼ flies. If Tweety is a bird, we might plausibly deduce that it can fly. When Tweety is a penguin
on the other hand, we do not have the inference of penguins being capable of flying, i.e., we do not
not know whether penguins |∼ flies is true. Assuming that inferences behave monotonically (same as a
classical consequence), |= penguins → birds and |= birds |∼ flies entails that |= penguins∧birds |∼ flies.
Therefore, Tweety can indeed fly. However, the inference penguins ∧ birds |∼ flies does not take in
account whether penguins are a special case of birds that do not know how to fly (which is the case in
real life). The monotony property may be undesirable in non-monotonic inferences.

Defining properties of non-monotonic inference relation |∼ has been the study of many researchers
in the NMR field. In the preferential models (or system P), Kraus et al. proposed the axioms mentioned
below. Let α, β ∈ L:

1. Reflexivity

α |∼ α (1.1)

A sentence α is a plausible inference of itself.
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2. Left logical equivalence
|= α ↔ β, α |∼ γ

β |∼ γ
(1.2)

Left logical equivalence expresses that equivalent sentences have the same plausible inferences.

3. Right weakening
|= α → β, γ |∼ α

γ |∼ β
(1.3)

Right weakening states that we may replace the plausible inference α of γ by β when β is a
consequence of α.

4. Cut
α ∧ β |∼ γ, α |∼ β

α |∼ γ
(1.4)

Cut expresses the fact that, in order to deduce a new conditional α |∼ γ from α ∧ β |∼ γ, we need
to have α |∼ β.

5. Cautious monotony
α |∼ β, α |∼ γ

α ∧ β |∼ γ
(1.5)

Cautious monotony is a restrictive form of the monotony property. In the way that, we can deduce
α ∧ β |∼ γ from α |∼ γ, only when β is also plausibly inferred from α. This is considered
as the primordial rule for many non-monotonic systems (Adams [Ada65], Pearl [Pea89], Geffner
[Gef89]).

6. OR
α |∼ γ, β |∼ γ

α ∨ β |∼ γ
(1.6)

The OR rule states that if γ can be plausibly inferred from both α and β, then γ can be plausibly
inferred from their disjunction α ∨ β.

An interesting observation to highlight is that when using the axioms of reflexivity and right weak-
ening, we have the property:

if |= α → β, then α |∼ β.

Since we have |= α → β, and know that α |∼ α (thanks to reflexivity), we obtain α |∼ β using right
weakening. This observation concurs with the nature of conditionals. In the sense that, since there are
no exceptional worlds of α that do not satisfy β, we can safely assume that α |∼ β.

Note that the axioms from 1.1 to 1.5 are all rules of the cumulative system (or system C) in the KLM
approach. The conjunction of cut and cautious monotony can be expressed together by the following
principle: if α |∼ β, then the plausible inferences of α and α ∧ β are the same, i.e., α |∼ γ and
α ∧ β |∼ γ. This principle is called cumulativity (Makinson [Mak05]). The system P is an extension of
system C with the addition of the OR rule.

For a concrete example on the purpose of cautious monotony, we go back to the example of birds
and penguins.
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Example 1.1 (Birds and penguins). We have the following assertions: “penguins are birds” and “nor-
mally, birds fly”. If we express these assertions using consequence and non-monotonic inference, we
obtain penguin → bird and bird |∼ flies. We would like to know whether we can infer penguin |∼ flies or
not.

Using Reflexivity (1.1) and Right weakening (1.3), we have the assertion penguin |∼ bird. Even if
bird |∼ flies holds, we cannot infer that bird ∧ penguin |∼ flies because we do not have bird |∼ penguin.
Since birds are not a premise of penguins,

Let us introduce penguin |∼ ¬flies next. Using Cautious monotony (1.5), from penguin |∼ bird and
penguin |∼ ¬flies, we can safely infer that penguin ∧ bird |∼ ¬flies. Expressing this inference using
natural language, birds that are penguins usually do not fly.

Penguins

Birds

F lies

¬

Given a set of starting conditionals ∆, a preferential inference relation between two sentences α, β
is defined as:

Definition 1.2 (Preferential inference relation). Let α, β ∈ L, and ∆ be a set of conditionals. An
inference relation α |∼ β is said to be preferential if α |∼ β can be deduced from ∆ using only rules of
system P.

We shall discuss the semantics proposed by Kraus et al. for system P. Let P be the set of atomic
propositions. Each preferential model consists of a non-empty set of states S (each state s ∈ S is a
world in the universe of reference U ) and a binary ordering relation ⋎ on these states. The relation ⋎
represents the preference that are between the states. Before defining formally preferential models, we
define the ordering relation ⋎ first.

Definition 1.3 (Asymmetry). Let ⋎ be a binary relation on a set U . The relation ⋎ is asymmetric if for
all elements s, t ∈ U such that s ⋎ t, we do not have t ⋎ s (noted t �s).

Definition 1.4 (Irreflexivity). Let ⋎ be a binary relation on U . The relation ⋎ is irreflexive if for all
elements s ∈ U s �s.

Definition 1.5 (Transitivity). Let ⋎ be a binary relation on U . The relation ⋎ is transitive if for all
s, t, u ∈ U if s ⋎ t and t ⋎ u then s ⋎ u.

Definition 1.6 (Strict partial order). Let ⋎ be a binary relation on U . ⋎ is a strict partial order if ⋎ is
asymmetric, irreflexive and transitive.

Definition 1.7 (Minimal). Let V ⊆ U and s ∈ V , a state s is minimal in V if there is no t ∈ V such that
t ⋎ s.

The set min ⋎ (V ) denotes the set of minimal elements of V with respect to the ordering relation ⋎ .
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Definition 1.8 (Smooth). Let V ⊆ U and ⋎ be a strict partial order on U . We say that V is smooth if
for all the element t ∈ V , either there is an element s ∈ V such that s is minimal in V and s ⋎ t or t is
minimal in V .

We define the preference relation ⋎ as a strict partial order on the set of states S. Next, we shall
define preferential models of system P.

Definition 1.9 (Preferential models). Let P be a set of atomic propositions, and U be a universe of
reference. A preferential model P def

= (S, l, ⋎ ) is a tuple where S is a set, elements of which are called
states, l : S −→ U assigns to each state s a single world u ∈ U . The relation ⋎ is a strict partial order
of the states of S, the relation ⋎ satisfies the smoothness condition (see Definition 1.12).

With the introduction of the ordering relation ⋎ , states in S can be compared amongst themselves.
Let s, t ∈ S, if s ⋎ t, then s is more normal, plausible or in general preferred than t. Next, we define the
notion of satisfiability in preferential models.

Definition 1.10 (Satisfiability in preferential models). Let P := (S, l, ⋎ ) be a preferential model, and
α ∈ L. We say that a state s ∈ S satisfies α (denoted by s |≡ α) if its corresponding world l(s) satisfies
α, i.e., l(s) |= α.

It is worth to point out that each state s ∈ S is mapped to one and only one world u ∈ U thanks to
the mapping function l. The notion of satisfiability of L-sentences in preferential models stays the same
as discussed in the preamble (see Section 1.1.1). We say that a preferential model P = (S, l, ⋎ ) satisfies
a sentence α (denoted by P |≡ α) if s |≡ α for all s ∈ S.

Definition 1.11 (α-states). Let P := (S, l, ⋎ ) be a preferential model, and α ∈ L. The set of states that
satisfy α is defined as follows: JαKP def

= {s | s ∈ S, s |≡ α}.

Thanks to the ordering relation ⋎ , states that satisfies a given sentence α can be compared between
each other. They can be ordered from the least normal states of α to the more plausible ones. Given an
α ∈ L and a preferential model P = (S, l, ⋎ ), the set min ⋎ (JαKP) denotes the set of preferred states
with respect to ⋎ . The addition of the smoothness condition ensures that the smoothness JαKP for all
well formed sentences of L with respect to ⋎ .

Definition 1.12 (Smoothness condition). A preferential model P := (S, l, ⋎ ) satisfies the smoothness
condition if for all α ∈ L, the set JαKP is smooth.

Another way to look at the smoothness condition is that for all α ∈ L such that JαKP is not empty, the
set min ⋎ (JαKP) is not empty as well. With smoothness condition, we are sure to find a set of preferred
states of any well formed sentence in L with respect to ⋎ .

S1 : p, q, r S7 : p, r

S2 : p, q S3 : r

S4 : q S5 : p S6 : q, r

Figure 1.1: Example of a preferential model
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Figure 1.1 shows an example of a preferential model P = (S, l, ⋎ ). Each Si is a state in S that has
a mapping to a world l(Si). The arrows indicate the preferential ordering of these states. For instance,
S1 −→ S2 means that S1 is more preferred than S2 with respect to ⋎ . The transitive closure is not shown
in Figure 1.1. Based on the transitive properties of ⋎ , from S1 −→ S3 and S3 −→ S6, we deduce that
S1 −→ S6. It is worth to point out that the ordering relation ⋎ is a strict partial order. It is possible to
have states that are not compared to others. In this example, the state S7 fits this criteria. The state S7, in
this case, is not less preferred than the other states of S.

Kraus et al. also defined the non-monotonic inference |∼P for preferential models. Recall that a
conditional statement of the form α |∼ β refers to all normal worlds of α are worlds of β. Thanks to the
introduction of the preference relation ⋎ , it is possible to order α-states from the more plausible states
of α to the least plausible ones. As discussed earlier, the min ⋎ (JαKP) denotes the set of all minimal
states of α with respect to ⋎ . In preferential models setting, an inference α |∼P β is true if all states in
min ⋎ (JαKP) are β-states. Formally, the non-monotonic inference |∼P for preferential models is defined
as follows:

Definition 1.13. Let P = (S, l, ⋎ ) be a preferential model, α, β ∈ L and s ∈ S.

s |≡ α |∼P β if either s 6∈ min ⋎ (JαKP) or s ∈ JβKP.

We can generalize Definition 1.13 further. Let P = (S, l, ⋎ ) be a preferential model, α, β ∈ L. We
say that P satisfies α |∼P β (and write P |≡ α |∼P β) if for all s ∈ min ⋎ (JαKP), we have s ∈ JβKP. We
can write it also using the set inclusion operator ⊆. We obtain:

P |≡ α |∼P β if min ⋎ (JαKP) ⊆ JβKP.

Example 1.14. Going to the preferential model P represented in Figure 1.1. The set of p-states isJpKP = {S1, S2, S5, S7}. The set of preferred p-states with respect to ⋎ is min ⋎ (JpKP) = {S1, S7}.
The consequence p → q ∨ r is false, since S5 |≡ p and S5 6 |≡ q ∨ r. However, p |∼P q ∨ r is true, since
S5 is not a preferred p-state with respect to ⋎ . Both preferred p-states, i.e., S1 and S7, satisfy q ∨ r. To
summarise, we have:

• P 6 |≡ p → q ∨ r;

• P |≡ p |∼P q ∨ r.

Finally, Kraus et al. proved in their work, that the inference |∼P of a preferential model P is a
preferential inference relation (see Definition 1.2). They showed that all the rules of system P are satisfied
by the inference |∼P of any preferential model. Not only that, starting from a preferential inference, it is
possible to define a preferential model P such that the inference |∼P is the same as the inference relation
|∼.

Theorem 1.15 (Representation theorem for preferential inferences [KLM90]). An inference relation |∼
is preferential if it is defined by a preferential model P.

System P is a good reasoning system, in the sense that, all of its rules enable the deduction of new
inferences starting from a base of conditionals ∆ that are coherent with it. In addition, the preferential
models studied in the KLM framework are intuitive (the ordering relation ⋎ order the worlds from the
unlikely to the most probable) and offer a well-defined inference relation that satisfies all the rules of
system P. Many logics and formalisms were extended using preferential models. We highlight in this
memoir a use case for preferential models in both Description and Modal logic.

However, a problem that system P cannot offer is a solution to problem of "non-pertinence" in de-
feasible reasoning. The problem states as follows:
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“If γ is a plausible inference of α and β is not an exceptional case of α, then γ is a plausible inference
of α ∧ β.”

Let us consider that an agent uses a reasoning similar to the common sense. This “rational” agent,
when presented with a conditional of the form α |∼ γ, is able to infer that α ∧ β |∼ γ in the absence of
the fact that β is an exceptional case of α. Due to the nature of the cautious monotony rule, the agent
can infer α ∧ β |∼ γ only when α |∼ β is present in the base of conditionals, i.e., when it is known that
β is plausible case of α. Many studies were made by Freund [Fre91, Fre93] and Lehmann and Magidor
[LM89] in order to come up with models which inference can satisfy the non-pertinence problem. In the
upcoming section, we highlight yet another system in the KLM called the rational closure, denoted by
R, that answers this problem.

1.1.3 System R or rational closure

To better illustrate the problem of non-pertinence, we return to the birds and penguins example:

Example 1.16. Let ∆ contain the following conditional:

∆ = {birds |∼ flies}

Assuming that the symbol ’red’ indicates “being red”. Starting from ∆, it is possible to infer that “red
birds fly”, i.e., birds ∧ red |∼ flies, using only rules of system P. Same as the case of penguins, red birds
could potentially be an exceptional case of birds that do not fly (same as the case of penguins).

The cautious monotony does not take in account the non-pertinence of inferences. That is why, the
KLM approach introduces a new system called rational closure or system R. In addition to the rules of
P, Lehmann and Magidor [LM89] proposed a new rule called rational monotony:

• Rational monotony
α |∼ γ, α 6|∼ ¬β

α ∧ β |∼ γ
(1.7)

This rule states that when γ is a plausible inference of α, it is possible add β to the premise of α |∼ γ,
in the case when β does not plausibly contradicts α. The contradiction is formally expressed ¬(α |∼ ¬β)
(the absence of ¬β being a plausible inference of α).

Given a set of starting conditionals ∆, a rational inference relation between two sentences α, β is
defined as:

Definition 1.17 (Rational inference relation). Let α, β ∈ L, and ∆ be a set of conditionals. An inference
relation α |∼ β is said to be rational if α |∼ β can be deduced from ∆ using only rules of system R.

Going back to Example 1.16 and thanks to the rational monotony rule, we can infer that “red birds
normally fly”. Since birds |∼ flies ∈ ∆ and birds |∼ ¬red 6∈ ∆, we have red ∧ birds |∼ flies. The
rule of rational gives the agent the ability to infer more assertions than the cautious monotony rule.
However, this create the problem of consistency of the base of conditionals ∆ when using the rules
of system R. First of all, we say that base of conditionals ∆ is consistent if it does not contain two
conditionals such as α |∼ β and α |∼ ¬β. We illustrate the consistency problem using the “Nixon
diamond” example. Nixon is a republican and a quaker. Quakers are generally pacifists. Whereas,
republicans are generally not pacifists. The question is what defeasible conclusions are warranted on the
basis of these two conditionals. In particular, should we infer that Nixon is a pacifist or that he is not a
pacifist?
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Example 1.18 (Nixon Diamond). Let us consider the following conditional base ∆:

∆ = {republican |∼ ¬pacifist, quaker |∼ pacifist}.

Let ∆r be the closure of conditional statements inferred from ∆ using the rules of R. We first initialize
∆r by ∆r = ∆.

Republican Quaker

Pacifist

¬

fly Using rules of system R, from quaker |∼ pacifist ∈ ∆r and quaker |∼ ¬republican 6∈ ∆r, we deduce
that republican∧quaker |∼ pacifist. We can add the new conditional to ∆r. Similarly, from republican |∼
¬pacifist ∈ ∆r and republican |∼ ¬quaker 6∈ ∆r, we have republican ∧ quaker |∼ ¬pacifist. However,
since republican ∧ quaker |∼ pacifist is in ∆r, adding the conditional republican ∧ quaker |∼ ¬pacifist
to ∆r renders it inconsistent.

In general, the consistent closure of conditional bases ∆r is not unique. In the Nixon diamond
example, there are three consistent ∆r. They are as follows:

• ∆r
1 = {republican |∼ ¬pacifist, quaker |∼ pacifist, republican ∧ quaker |∼ pacifist};

• ∆r
2 = {republican |∼ ¬pacifist, quaker |∼ pacifist, republican ∧ quaker |∼ ¬pacifist};

• ∆r
3 = {republican |∼ ¬pacifist, quaker |∼ pacifist}.

Lehmann and Magidor [LM89] proposed a method of selecting a unique rational extension of a
conditional base ∆, called the rational closure and denoted by ∆RC. The rational closure of ∆ can be
seen as the “minimal” set of rational inferences that completes the set of conditionals. The basic idea is
to assign a rank (a numerical value) for each sentence which indicates how exceptional it is relative to
∆. Then the ranks of formulas are minimized which means that each formula is interpreted as normally
as possible. A conditional α |∼ β is in the rational closure ∆RC if, in the presence of α, we would like
to conclude β rather than ¬β. Based on their ranking, the rank of α ∧ β is strictly less than α ∧ ¬β. In
what, we define in more details the rational closure.

Definition 1.19 (Exceptionality of sentences). Let ∆ be a base of conditionals and α, β ∈ L. The
sentence α is said to be exceptional for ∆ if > |∼ ¬α can be inferred from ∆. A conditional α |∼ β is
said to be exceptional for ∆ if its premise α is exceptional for ∆. The set of conditionals of ∆ which are
exceptional for ∆ is denoted by E(∆).

Assuming that the starting conditional base ∆ is finite, it is possible to define a non-increasing se-
quence of subsets of ∆, ∆0 ⊇ ∆1 ⊇ · · · ⊇ ∆k such that ∆0 = ∆ and ∆i = E(∆i−1) for all i > 0. The
set ∆i contains all exceptional conditionals of ∆i−1. Since ∆ is finite, there is an k ≥ 0 where ∆j = ∆k

for all j ≥ k. Note that ∆k can either be empty ∆k = ∅ or not (in this case, conditionals in ∆k are
exceptional to all ∆i where 0 ≤ i ≤ k). The sets ∆i are used to define the ranks of sentences.

Definition 1.20 (Rank of sentences). Let ∆ be a conditional base and α ∈ L. The sentence α has a rank
rank(α) def

= i if i is the smallest natural number for which α is not exceptional for ∆i. If α is exceptional
for all ∆i, we say that α has no rank and write rank(α) def

=∞.

A conditional α |∼ β has a rank equal to rank(α), and ∆i \ ∆i−1 is the set in ∆ of conditionals
having the rank i or a larger rank. When rank(α) = ∞, we say that the conditional α |∼ β has no rank.
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Example 1.21. Let ∆ contain the following conditionals:

• Student |∼ ¬PayTaxes

• Student |∼ Young

• Student ∧ Employee |∼ PayTaxes

We start the construction by ∆0 = ∆. We find that rank(Student) = 0, since > |∼ ¬Student is not
true in ∆0. Therefore both of the conditionals Student |∼ ¬PayTaxes and Student |∼ Young have a
rank of 0. However Student ∧ Employee is exceptional for ∆0. Using the rational monotony rule, since
Student |∼ ¬PayTaxes and Student 6|∼ ¬Employee, then we have Student ∧ Employee |∼ ¬PayTaxes.
This conditional statement conflicts with Student ∧ Employee |∼ PayTaxes in ∆0. We can infer > |∼
¬(Student ∧ Employee) in ∆0.

We obtain ∆1 by ∆1 = E(∆0). The set ∆1 has only the conditional Student∧Employee |∼ PayTaxes
in it. We find that Student ∧ Employee is not exceptional for ∆1 (we cannot infer > |∼ ¬(Student ∧
Employee) in ∆1). Therefore, rank(Student∧Employee) = 1 and the conditional Student∧Employee |
∼ PayTaxes has a rank of 1.

The set ∆2 is empty since E(∆1) = ∅. The process stops at this point.

• ∆0 = ∆;

• ∆1 = {Student ∧ Employee |∼ PayTaxes}.

Rational closure uses the notion of exceptionality. Let ∆RC be a rational closure of ∆, a conditional
α |∼ β is in the rational closure ∆RC if α ∧ β is less exceptional than α ∧ ¬β. Intuitively speaking, we
rather, in the presence of α, deduce β rather than ¬β. Lehmann and Magidor defined rational closure as
follows.

Definition 1.22 (Rational closure). Let ∆ be a conditional base and α, β ∈ L. The rational closure of
∆, denoted by ∆RC is defined as:

∆RC def
= {α |∼ β | either rank(α) < rank(α ∧ ¬β) or rank(α) = ∞}.

The definition of the rational closure as ∆RC def
= {α |∼ β | either rank(α ∧ β) < rank(α ∧

¬β) or rank(α) = ∞} yields the same ∆RC as Definition 1.22. Lehmann and Magidor [LM89]
showed that the rational closure ∆RC is unique and minimal with respect to the set of all possible rational
extension of ∆.

Moving on to the semantics of rational inferences. In what follows, we describe ranked models which
are an extension of preferential models that use ordering relation ⋎ that are modular.

Definition 1.23 (modular ordering relation). Let ⋎ be a partial order on a set U and x, y be any element
of the set U . The relation ⋎ is said to be modular if there is a totally ordered set Ω (the strict order on Ω
is symbolised by <) and a ranking function r : U −→ Ω such that x ⋎ y if r(x) < r(y).

A modular ordering relation is characterised by a ranking function which orders the elements of a set.
In the context of models and given any two states s, s′, either s is preferred than s′ (in this case s ⋎ s′), s′
is preferred than s (in this case s′ ⋎ s) or s is equally preferred than s′ (in this case r(s) = r(s′)).

Definition 1.24 (Ranked models). A ranked model R def
= (S, l, ⋎ ) is a preferential model for which ⋎ is

modular.
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S1 : p, q, r S7 : p, r

S2 : p, q S3 : r

S4 : q S5 : p S6 : q, r

Figure 1.2: Example of a ranked model

Figure 1.2 depicts a ranked model R = (S, l, ⋎ ).
We can see the ranks of states as drawers. The first drawer contains the states S1, S7. The second

contains S2, S3. And the last drawer contains S4, S5, S6. All the states in the first drawer are more
preferred than all the states in the second drawer. Similarly, states in the second drawer are more preferred
than the third. States in the same drawers are not comparable amongst each other, they are considered to
be equally preferable.

The satisfiability of rational inferences is similar to the satisfiability of preferential inferences in
preferential models. Let R = (S, l, ⋎ ) be a ranked model and s ∈ S, a conditional α |∼R β is true in
a state s (denoted by s |≡ α |∼R β) if either s 6∈ min ⋎ (JαKR) or s ∈ JβKR. Moreover, we define the
generalized satisfiability as follows:

R |≡ α |∼R β if min ⋎ (JαKR) ⊆ JβKR.

The representation theorem was given by Lehmann and Magidor.

Theorem 1.25 (Representation theorem for rational inferences [LM89]). An inference relation |∼ is
rational if it is defined by a ranked model R.

Lehmann and Magidor [LM89] proposed also a semantics for a rational closure conditional base
∆RC by selecting a unique ranked model. Let P = (S, l, ⋎ ) be a preferential model of a conditional
base ∆. We can build a ranked model PRC = (SRC , lRC , ⋎ RC) such that SRC = S and lRC = l.
The ordering relation ⋎ RC is a total order that completes ⋎ . Each state s ∈ SRC has a rank (a natural
number) r(s) which indicates the longest ascending chain on which s is the minimal element. Lehmann
and Magidor [LM89] showed that any conditional α |∼ β ∈ ∆RC if PRC satisfies it.

Theorem 1.26. Let P = (S, l, ⋎ ) be a preferential model of a conditional base ∆. Let ∆RC be the
rational closure of ∆ and PRC = (SRC , lRC , ⋎ RC) be the corresponding ranked model of P. We have
the following:

α |∼ β ∈ ∆RC if PRC |≡ α |∼ β.

The rule of rational monotony is a less prudent approach than the rule of cautious monotony. In the
sense that when adding new inferences, the rational monotony property is more lenient than the cautious
monotony. However, a new issue arises when reasoning using system R. Let us go back to the birds
and penguins (see Example 1.1). So far, the conditional base contains ∆ = {penguin → bird, bird |∼
flies, penguin |∼ ¬flies}. Using cautious monotony, penguin ∧ bird |∼ ¬flies can be inferred. Which is
the case, since penguins are an exceptional case of birds that do not fly. When adding the conditional
bird |∼ wings (most of the birds have wings) and knowing that penguins are an exceptional case of
birds; it is not possible to infer that “normally, birds that are penguins have wings”. Using rules of R, a
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reasoner is still sceptical about attributing other plausible properties of birds that are penguins. System R
and system P as NMR systems are said to suffer from the drowning problem Benferehat et al. [BCD+93].

Nonetheless, both of the systems proposed in the KLM approach (although being sceptical at times)
offer a reliable framework for extending defeasible reasoning to other classical formalisms. In the up-
coming section, we shall present studies of more complex formalisms, on which the KLM approach
have been investigated. We shall see how their semantics are extended thanks to the preferential models.
Moreover, we shall see how new aspects of defeasibility can be expressed in these formalisms.

1.2 Use cases of logical formalisms extended with KLM conditionals

We focus next on the theory developed around the notion of coping with exceptionality that NMR field
can offer in general and the KLM approach in particular. As shown in the previous section, the two
systems (P and R) provide a roadmap on how non-monotonic inferences should behave in order to ex-
press defeasibility. Many aspects of defeasibility in propositional and complex logics have been studied.
We cite the works of (Boutilier [Bou94], Booth et al. [BMV12], Giordano et al. [GGOP07, GOGP09,
GGOP13, GGOP09], Castilho [CHV02] and Britz et al. [BMV11b, BV18, BV19]) as examples. In
this memoir, we shall expose two case studies of formalisms extended thanks to the KLM approach
[KLM90, LM89]. These formalisms are description logic and modal logic. The reason is to show how
the integration of preferential semantics within their respective semantics is done. The second reason is
to show the adequacy of the KLM approach for expressing defeasibility in these formalisms. We expose
defeasible description first as a vehicle to show that defeasibility is not present only within the context
conditionals α |∼ β. It is possible to express defeasibility in other types of inferences. We discuss
description logic and its defeasible extension in sections 1.2.1, 1.2.2. We also highlight a defeasible
extension of modal logic, in the goal of showing a new aspect of defeasibility (outside the scope of in-
ferences) made possible using the KLM approach. We discuss modal logic and its defeasible extension
in sections 1.2.3, 1.2.4.

1.2.1 Description logic

Description Logics (DL) is a knowledge representation formalism (see Baader et al. [BCM+07] for a
reference). DL can be used for modern AI and database applications in the field of knowledge represen-
tation and ontologies. A Description Logic knowledge base consists of two major elements: the TBox
introduces concepts, relationships, and constraints of the domain, and the ABox contains assertions of in-
dividuals in the knowledge base. There is a family of description logics, we shall summarize the general
DL language called ALC.

The DL ALC is built upon a finite set of atomic concept names C, a finite set of role names R
and a finite set of individuals I. In this section, we use the example of students (see Example 1.21) to
highlight a DL knowledge base. For example, we can have C = {Student, EmpStudent, Employee,
Y oung, Tax}, R = {pays, worksFor} and I = {alice, bob}. Complex concepts can be built from the
atomic concepts C,D, . . . using the constructors ¬ (complement), u (concept conjunction), t (concept
disjunction), ∀ (value restriction) and ∃ (existential restriction). Let A be an atomic concept, C be a
complex concept and r be a relation, the language of ALC is recursively defined as follows:

C ::= A | C | ¬C | C u C | C t C | ∃r.C | ∀r.C

Examples of these complex concepts using the students and employees (Example 1.21) scenario are
StudentuEmployee and ∃pays.Tax. We explain the meaning of each of these sentences further down
this section. With L, we denote the language of all ALC concepts. Moving on to the semantics of DL
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ALC, an interpretation is a pair I def
= 〈∆I, ·I〉 where ∆I is a non-empty set called a domain, and ·I is an

interpretation function. The interpretation function ·I maps each concept C to a subset CI of ∆I, roles r
to rI ⊆ ∆I ×∆I and each individual a to aI ∈ ∆I.

Going back to our example, let assume that alice is a normal student and bob is an employee student.
The domain is then ∆I = {alice, bob} and StudentI = {alice} and EmpStudentI = {bob}. Let
I def
= 〈∆I, ·I〉, we define rI(x) def

= {y ∈ ∆I | (x, y) ∈ rI}. The set rI(x) ⊆ ∆I is the set of individuals in
domains ∆I that are paired up with x through the relation rI. The truth values of complex concepts are
defined as follows:

• >I def
= ∆I;

• ⊥I def
= ∅;

• (¬C)I def
= ∆I \ CI;

• (C uD)I def
= CI ∩DI;

• (C tD)I def
= CI ∪DI;

• (∃r.C)I def
= {x ∈ ∆I | rI(x) ∩ CI 6= ∅};

• (∀r.C)I def
= {x ∈ ∆I | rI(x) ⊆ CI}.

The final element in DL ALC is the subsumption statement (also called concept inclusion), denoted
by C v D. As its name suggests, C is subsumed by D means that all individuals in C are in D.
In the context of knowledge bases, subsumption statements are considered to be the constraints that a
knowledge base must adhere to; more on that after Example 1.27. The ALC TBox T is a finite set of
subsumption statements. The ALC ABox A contains assertions of the form a : C and (a, b) : r, that read
as a is an instance of C and b is paired to a by r respectively. A knowledge base (KB) is defined as a
pair K def

= (T,A). Example 1.27 depicts a DL knowledge for the student and employee scenario.

Example 1.27. Here is a DL representation of the students and employee students scenario. The knowl-
edge base K = (T,A) consists of:

T =


Student v ¬∃pays.Tax,
Student v Y oung,
EmpStudent v Student u Employee,
EmpStudent v ∃pays.Tax,


A = {alice : Student, bob : EmpStudent}

Given a KB K and an interpretation I, I satisfies a subsumption statement C v D, denoted by
I ⊩ C v D if CI ⊆ DI. The interpretation I satisfies an assertion a : C (respectively (a, b) : r), denoted
by I ⊩ a : C (respectively I ⊩ (a, b) : r, if aI ∈ CI (respectively (aI, bI) ∈ rI). We say that I is a model
of T (denoted by I ⊩ T) if I ⊩ α for every subsumption statement α ∈ T. A similar definition can be
obtained for models of ABoxes A. An interpretation I is said to be a model of the knowledge base K, if
I is a model of its TBox T and its ABox A.

A statement α (α can either be a subsumption rule C v D or an assertion statement a : C) is
entailed by a knowledge base K if every model of K satisfies α. In Example 1.27, we can see that K |=
EmpStudent v Student and therefore K |= EmpStudent v ¬∃pays.Tax. This conflicts with the
statement EmpStudent v ∃pays.Tax in T, i.e, K |= EmpStudent v ⊥. The concept EmpStudent
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is an atypical (or exceptional) case of Student that pay taxes. The statement Student v ¬∃pays.Tax
is inadequate for representing about edge cases of Student that do pay their taxes.

It turns out, the subsumption operator behaves in a similar manner as the classical entailment →.
Both of these operators behave monotonically, in the sense that, they do not allow to formalize differ-
ent nuances of exceptions and how to treat them. On the other hand, NMR is a field that offers many
formalisms for expressing and modelling problems that might contain exceptional cases. Just as high-
lighted in Section 1.1, the work of KLM lays the foundation of models extended with a relation ⋎ that
captures the nuances of preference between different elements in a model. Moreover, the KLM study
gives a thorough analysis of properties in order for an inference to be deemed non-monotonic (from the
preferential inferences of system P, to the rational closure of system R). Over the years, many authors
introduced defeasible extensions of description logic. We focus in this memoir, on the preferential ex-
tension ALC+T and the notion typicality of a concept in the work of Giordano et al. [GOGP09]. We
highlight also defeasible description logic (defeasible ALC) in the work of Britz et al. [BCM+20].

1.2.2 Defeasible description logic

Going back to Example 1.27, one might consider that “Student typically do not pay taxes”. In other
words, the most typical or normal instances of Student do not pay taxes. Leaving in a sense, other
atypical instances of Student to pay taxes. Such is the case of the concept EmpStudent in general
and the individual bob in particular. In the defeasible extension ALC+T, Giordano et al. [GOGP09]
proposed the introduction of the operator of typicality T. The intended meaning is that, for any concept
C, T (C) contains the instance that are deemed to be the most typical of C. Therefore subsumption rules
such as “Student typically do not pay taxes” can be represented by T (Student) v ¬∃pays.Tax.

In addition of the ALC language L (defined in Section 1.2.1), the notion of extended concepts is
introduced. Given a concept C, the concept itself and T (C) are considered as extended concepts.
Moreover, all the Boolean combination of extended concepts are also extended concepts. Knowledge
bases are still defined as the pair K def

= (T,A) where T is the TBox of K and A is the ABox. Subsumption
rules C v D are contained in T, where C ∈ L is an extended concept that can either be C ′ or T (C ′),
and D ∈ L is a normal concept. ABoxes A contain assertions of the form a : C and (a, b) : r where C
is an extended concept.

Interpretations in ALC+T are defined as follows.

Definition 1.28. (Semantics of T) An interpretation is a tuple I def
= 〈∆I, ·I, fT〉. ∆I is the domain. The

function ·I maps each concept C to CI ⊆ ∆I, role r to rI ⊆ ∆I ×∆I and individual a to aI ∈ ∆I. The
function fT : Pow(∆I) −→ Pow(∆I) is a selection function that returns the instances of the extended
concept T (C) for each concept C, i.e., fT(CI) = (T (C))I. We say that the function fT selects typical
instances of concepts if it satisfies the following postulates.

1. fT(C
I) ⊆ CI;

2. if CI 6= ∅, then fT(C
I) 6= ∅;

3. if fT(CI) ⊆ DI, then fT(C
I) = fT((C uD)I);

4. fT(
⊔
(Ci)

I) ⊆
∪
fT((Ci)

I);

5.
∩

fT(Ci) ⊆ fT(
d

Ci).

Given a concept C ∈ L, the extended concept T (C) captures the typical individuals of C. The
postulate (1) states that typical individuals of C are in C. The postulate (2) requests that any non-empty
concept C has typical individuals. According to the postulate (3), if the typical individuals of C are in
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D, then they coincide with the typical element of both, i.e., C uD. This postulate expresses a weak form
of monotony (namely, cautious monotony). The postulate (4) stipulates that the typical individuals of a
disjunction of concepts Ci is included in the union of typical individuals of each concept. Whereas for
postulate (5), the intersection of typical individuals of each Ci is included in the typical individuals of
their conjunction.

Giordano et al. [GOGP09] provide semantics for T based on the preference relation ⋎ as defined
in KLM. The intuition is to extend DL interpretations by adding an ordering relation ⋎ on individuals
of the domain ∆I which symbolizes the preference of individuals amongst each other. In this setting,
the selection function that returns the typical individuals of a concept fT(CI) consists of the minimal
individual of C with respect to the ordering relation ⋎ . The characteristics of the preference relation
⋎ are analogous to the ones described in the KLM approach, we invite the reader to refer back from
Definition 1.6 to Definition 1.8 for its properties. Formally, preferential interpretations of ALC+T are
defined as follows.

Definition 1.29 (Preferential interpretations). A preferential interpretation is a tuple I def
= 〈∆I, ·I, ⋎ I〉. ∆I

is the domain. The function ·I maps each concept C to CI ⊆ ∆I, each role r to rI ⊆ ∆I ×∆I and each
individual a to aI ∈ ∆I. The relation ⋎ I ⊆ ∆I × ∆I is a strict partial order on the domain ∆I that
satisfies the smoothness condition. For each extended concept T (C), we have T (C)I def

= min ⋎ I(CI).

Giordano et al. [GOGP09] showed that, given an interpretation I = 〈∆I, ·I, fT〉 with a typical se-
lection function fT, it is possible to define in the same domain ∆I a preference relation ⋎ such that for
all CI ⊆ ∆I, fT(C) is the set of minimal individuals of the concept C with respect to the relation ⋎ .
Moreover, it is possible to define, from a preferential interpretation with a preference relation ⋎ , an inter-
pretation with a selection function fT that satisfies the postulates (1-5) of typicality. The representation
states the following:

Theorem 1.30 (Representation theorem - Giordano et al. [GOGP09]). Given any interpretation Idef=〈∆I, ·I, fT〉
satisfying the postulates (1-5) (see Definition 1.28) if it is possible to define on ∆I a strict partial order
⋎ I satisfying the smoothness condition such that for all CI ⊆ ∆I, fT(CI) = min ⋎ I(CI).

Using the syntax of ALC+T and preferential interpretations (see Definition 1.29), subsumption rules
of the form “typically, individuals in C are in D” are expressed using the typicality operator T (C) v
D. DL interpretations extended with the preferential relation ⋎ offers an intuitive framework for the
selection of typical individuals of a given concept. In the sense that, the minimal individual of a concept
with respect to ⋎ are considered to be the most typical of said concept. The satisfiability and entailment
are defined in the same way as in the classical DL interpretations (they are defined after Example 1.27).

Example 1.31. Here is a DL representation of the students and employee students scenario using the
language ALC+T. The knowledge base K = (T,A) consists of:

T =


T (Student) v ¬∃pays.Tax,
T (Student) v Y oung,
EmpStudent v Student u Employee,
EmpStudent v ∃pays.Tax,


A = {alice : Student, bob : EmpStudent}

Let I = 〈∆I, ·I, ⋎ I〉 be a DL interpretation where ∆I = {alice, bob}. We initialize the concepts
StudentI = {alice}, EmpStudentI = {bob} and the preference relation ⋎ I = {(alice, bob)} (which
indicates alice ⋎ bob). From K, the assertion bob : Student is entailed. However, the individual bob is
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not a typical instance of Student in the interpretation I since (alice, bob) ∈ ⋎ I. In this case, we have
bob 6∈ (T (Student))I. There is no conflict in K and the interpretation I satisfies its TBox T and its
ABox A.

Giordano et al. [GOGP09] proposed a DL framework where defeasible subsumption can be ex-
pressed. The extended concept T (C) by itself is the concept that contains all the typical individuals of
the concept C. Thus, defeasible subsumption rules are of the form T C v D. Britz et al. [BCM+20]
studied the properties of such defeasible subsumptions relation. In their setting, they introduced a de-
feasible subsumption rule operator ⊏∼ that can replace statement such as TC v D by C ⊏∼D. Britz et
al. [BCM+20] showed that defeasible subsumption rules induced by preferential models (see Definition
1.29) follow the same rules of system P (Axiom 1.1 to Axiom 1.6). We formalize in what follows the
syntax and semantics of the operator ⊏∼ in Britz et al. [BCM+20] defeasible extension to DL.

For the remainder of this section, we shall assume that L denotes the set of well-formed statements
expressed using the classical ALC language (without the operator T). We shall also assume that prefer-
ential interpretations in defeasible DL are defined in the same manner as Definition 1.29.

Definition 1.32 (Defeasible subsumption relation). A defeasible subsumption relation is a binary relation
⊏∼ ⊆ L× L.

Statements of the form C ⊏∼D read as “Normally, individuals in C are in D”. A knowledge base
K in defeasible DL has three components: a TBox T, an ABox A and a DTBox D. The defeasible TBox
(denoted by DTBox) contains defeasible subsumption rule of K. Formally a knowledge base in defeasible
is defined as a tuple K def

= (T,D,A).
Let I = 〈∆I, ·I, ⋎ I〉 be a preferential DL interpretation. The interpretation I is said to satisfy a

defeasible subsumption C ⊏∼D (denoted by I ⊩ C ⊏∼D) if the following is true:

I ⊩ C ⊏∼D if min ⋎ I(CI) ⊆ DI.

A statement C ⊏∼D is true in an interpretation I if all minimal individuals of C with respect to ⋎ I are
contained in D. A defeasible subsumption is said to be preferential if it satisfies the axioms mentioned
below.

1. Reflexivity

A ⊏∼A (1.8)

2. Left Logical Equivalence

A ≡ B (A v B andB v A), A ⊏∼C
B ⊏∼C

(1.9)

3. Right weakening
A v B, C ⊏∼A

C ⊏∼B
(1.10)

4. Cut
A uB ⊏∼C, A ⊏∼B

A ⊏∼C
(1.11)
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5. Cautious monotony
A ⊏∼B, A ⊏∼C

A uB ⊏∼C
(1.12)

6. OR
A ⊏∼C, B ⊏∼C

A tB ⊏∼C
(1.13)

The aforementioned properties are a direct translation of the properties of the non-monotonic in-
ference |∼ in preferential systems. Since the non-monotonic inferences |∼ captures defeasibility when
reasoning in the case of propositional logic. The goal here is to show defeasible subsumption ⊏∼ captures
defeasibility when reasoning about DL knowledge bases. Britz et al. [BCM+20] provide the representa-
tion theorem preferential subsumption relation.

Definition 1.33 (I-induced defeasible subsumption [BCM+20]). Let I = 〈∆I, ·I, ⋎ I〉 be a preferential
interpretation. Then vI

def
= {(C,D) | I ⊩ C ⊏∼D} is the defeasible subsumption induced by I.

There is a full correspondence between the class of preferential subsumption relations ⊏∼ (postulates
1.8 to 1.13 are true) and the class of defeasible subsumption induced by preferential interpretations
(interpretations where the preference relation ⋎ is a strict partial order that satisfies the smoothness
condition).

Theorem 1.34 (Representation theorem for preferential subsumption [BCM+20]). A defeasible sub-
sumption ⊏∼ is preferential if there is a preferential interpretation I such that ⊏∼I

=⊏∼.

In addition to preferential interpretations, Britz et al. [BCM+20] studied defeasible subsumption
relations that might be considered rational. Following the KLM approach to system R, a defeasible
subsumption relation is said to be rational if it satisfies, in addition to preferential rules, the rational
monotony rule.

• Rational monotony
A ⊏∼C, A 6⊏∼¬B)

A uB ⊏∼C
(1.14)

Since the preference relation ⋎ for DL interpretations is similar to the preference relation in the case
of propositional. Ranked DL interpretations are described preferential DL interpretations where ⋎ is
modular (see Definition 1.23).

Definition 1.35 (Ranked interpretations). A ranked interpretation 〈∆I, ·I, ⋎ I〉 is a preferential interpre-
tation where ⋎ I is modular.

Subsumption relation induced from ranked are defined in the same fashion as in Definition 1.33.

Definition 1.36 (I-induced defeasible subsumption). Let I = 〈∆I, ·I, ⋎ I〉 be a ranked interpretation.
Then vI

def
= {(C,D) | I ⊩ C ⊏∼D} is the defeasible subsumption induced by I.

Analogous to system R, Britz et al. [BCM+20] showed that rational subsumption can be represented
by ranked DL interpretations.

Theorem 1.37 (Representation theorem for preferential subsumption [BCM+20]). A defeasible sub-
sumption ⊏∼ is modular if there is a ranked interpretation I such that ⊏∼I

=⊏∼.
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The results of Theorem 1.34 and Theorem 1.37 are significant. They provide the characterization
of defeasible subsumption rule, that is, preferential and rational subsumption. One sees that defeasible
subsumption ⊏∼ (whether it is preferential or rational) is characterized by the same set of axioms as
its defeasible inference counterpart in propositional logic. Therefore, when inferring new defeasible
subsumption rules, the reasoner can apply the same principles of the KLM approach to NMR (from
inferring “cautiously” when handling preferential subsumption, to inferring “rationally” when handling
rational subsumption). The rational closure is also studied in defeasible DL, we refer the reader to
Giordano et al. [GGOP15] and Britz et al. [BCM+20].

Defeasible DL is a use case for a complex formalism (more expressive than propositional logic)
where it is possible to perform defeasible reasoning using the KLM approach to NMR. The second use
case we highlight in this memoir is defeasible modal logic, studied by Britz and Varzinczak [BV18]. De-
feasible modal logic introduces a new aspect of defeasibility outside the scope of defeasible inferences,
i.e., |∼ and ⊏∼.

1.2.3 Modal logic

The second use case of formalisms extend with the KLM approach we shall highlight is defeasible modal
logic. We introduce first modal logic. Broadly speaking, modal logic studies reasoning that involves the
use of the expressions “necessarily” and “possibly”. However, the term “modal logic” is used to cover a
family of logics with similar rules and a variety of different symbols. Here is a list describing the known
varieties of modal logic

Logic Symbols Expressions Symbolized

Modal logic □ It is necessary that . . .

♢ It is possible that . . .

Deontic logic O It is obligatory that . . .

P It is permitted that . . .

F It is forbidden that . . .

Temporal logic □ It will always be the case that . . .

♢ It will eventually be the case that . . .

Doxastic logic Bx x believes that . . .

We shall provide, in this section, the syntax and semantics of modal logic K (after the seminal work
of Kripke [Kri80, Kri59]). Let P be a set of atomic propositions. The set of Boolean connectives
¬,∧,∨,→,↔, and a set of operators □,♢ called modalities. The operator □ symbolises necessity and
♢ symbolises possibility. The modal logic language is recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α

All the other Boolean connectives are defined in terms of ¬ and ∧ in the usual way (see preamble in
Section 1.1.1). With L, we denote the set of well-formed sentences of modal logic. The semantics is the
standard possible-world semantics:

Definition 1.38 (Kripke semantics). Let P be a set of atomic propositions. A Kripke model is a tuple
I def
= (S,R, V ) where S is a set of states, R ⊆ S × S is a relation called the accessibility relation,
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V : S −→ 2P is a valuation function which assigns truth values of atomic propositions to each state
s ∈ S.

When modelling a problem of a system using modal logic, the set S are states s of the systems. The
valuation function V maps each state s ∈ S to a world V (s) ∈ 2P in the universe of reference. The
accessibility relation R describes outcomes of actions made on the system. In the sense that, the system
may go from a state s to a state s′ as a result an exercised action on the system, denoted by s 7−→ s′. The
accessibility relation R stores which states can access to which states of the system. If there are multiple
agents interacting with the system at hand, it is possible to define multiple accessibility relations Ri in
order to describe different actions. For the sake of simplicity, we shall assume in this memoir that there
is only one agent interacting with a system. We use the notation R(s)def

={s′ ∈ S | (s, s′) ∈ R} to indicate
all states s′ that are accessible to s via the accessibility relation R.

Next, we highlight the truth values of sentences in modal logic. Let I = (S,R, V ) be a Kripke model
and s ∈ S be a state, the truth values of sentences in s (denoted by I, s |= α) is defined as follows:

• I, s |= p if p ∈ V (s);

• I, s |= ¬α if I, s 6|= α;

• I, s |= α ∧ β if I, s |= α and I, s |= β;

• I, s |= α ∨ β if I, s |= α or I, s |= β;

• I, s |= □α if I, s′ |= α for all s′ in R(s);

• I, s |= ♢α if I, s′ |= α for some s′ in R(s).

Given α ∈ L and I = (S,R, V ), we say that I satisfies α if there is at least one state s ∈ S such that
I, s |= α. We say that I is a model of α, denoted by I |= α, if I, s |= α for all states s ∈ S. A sentence
α ∈ L is valid if every Kripke model I is a model of α. We shall denote valid sentences by |= α. One
such validity is duality between the possibility and necessity operator. We have the following:

(Duality) |= □α ↔ ¬♢¬α

We are highlighting the system of normal modal logic K, of which all the other modal logic are
extensions. Semantically, K is represented by the class of all Kripke models. Syntactically, these two
principles (RN) and (K) characterize sentences of modal logic K:

• Necessitation rule: (RN) if α is valid, so is □α;

• Distributivity axiom: (K) |= □(α → β) → (□α → □β).

According to the necessitation rule, any valid sentence of the logic is necessary. The distributivity
axiom says if it is necessary that α implies β, then if necessarily α, then necessarily β. These two
principles are considered the basis for accounting necessity. Many more principles and modal logic
systems were developed over the years in order to capture the properties of the necessity. As we are
interested in an extension of temporal logic called linear temporal logic, we shall discuss its axioms
in the upcoming chapter. For more details about different modal logic systems, we refer the reader to
Chellas [Che80].
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Example 1.39 (Message encryption). We want to model a system of messages encryption. We shall check
two properties of the system. The first property is whether the message is encrypted or not (denoted by c).
The second property to check is whether the message is safe or not (denoted by s). Let P = {c, s} and
I = (S,R, V ) be the model for this system. We have four states S = {u1, u2, u3, u4} where V (u1) = {},
V (u2) = {c}, V (u3) = {s} and V (u4) = {c, s}. The relation R describes the transitions from states
ui to uj . We also have R = {(u1, u2), (u1, u3), (u3, u2), (u3, u4), (u4, u4)}. Below is a graphical
representation of the model.

¬c,¬su1 c,¬s u2

¬c, su3 c, s

u4

We want to make sure that, necessarily in every state transition, an encrypted message implies that it
is safe. In other words, is I is a model for the sentence □(c → s). This is not the case, we have
I, u1 6|= □(c → s). See that since the state u2 is in R(u1) and I, u2 6|= c → s, we conclude that
I, u1 6|= □(c → s). Therefore, we have I 6|= □(c → s).

The agent interacting with the system in Example 1.39 might consider the state u2 as an exceptional
state. Moreover, between the two accessible states of u1, i.e., u2 and u3, the most normal transition from
u1 is u3. In this sense, rather than checking whether all possible outcomes satisfy c → s, one might
check that the normal outcomes satisfy it. As seen in the KLM approach and the defeasible extension
of DL, the theory developed around preferential models à la KLM focuses on the ability to cope with
exceptionality when performing inferences. However, in the case of modal logic, defeasibility might
present itself as an outcome of an action (such as Example 1.39) rather than the premise of inference.
The aim of a defeasible extension is then to formalize the notion of defeasible necessity and possibility.
These notions were investigated by Britz and Varzinczak [BV18].

1.2.4 Defeasible modal logic

Britz and Varzinczak [BV18] defined defeasible versions of necessity (□) and possibility (♢) in modal
logics and their role to describe the normality of the outcome an action. We shall introduce first, the
preferential extension of Kripke models.

Definition 1.40 (Preferential Kripke models). A preferential Kripke model is a tuple I def
= (S,R, V, ⋎ )

where S is a set of states, R is the accessibility relation, V : S −→ 2P is a valuation function and ⋎ is
a strict partial order on S that satisfies the smoothness condition.

Preferential Kripke models are extensions of Kripke models that have a preference relation ⋎ over
states. Intuitively speaking, the preference relation ⋎ is a strict partial order such that the more states
are lower w.r.t. ⋎ , the more preferred they are (or deemed to be more normal) than those that are higher
up w.r.t. ⋎ . The smoothness condition ensures that for any non-empty subset S′ ⊆ S, the set of minimal
states of S′ is always non-empty.

The language of defeasible modal logic is recursively defined as follows:
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Chapter 1. Non-monotonic reasoning

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α |p∼∼pα | p∼∼pα

The defeasible modality p∼∼p reads as defeasible necessity, and p∼∼p reads defeasible possibility. With Lp∼∼p, we
denote the set of well-formed sentences of defeasible modal logic. Next, we shall discuss the truth values
behind these defeasible operators. Let S′ ⊆ S, then min ⋎ (S

′) denotes the set of minimal elements of
S′ with respect to ⋎ . The truth values modalities in defeasible modal logic are defined as follows.

Definition 1.41. Let I def
= (S,R, V, ⋎ ) be a preferential Kripke model and s ∈ S.

• I, s |= □α if I, s′ |= α for all s′ in R(s);

• I, s |= ♢α if I, s′ |= α for some s′ in R(s);

• I, s |=p∼∼pα if I, s′ |= α for all s′ in min ⋎ (R(s));

• I, s |= p∼∼pα if I, s′ |= α for some s′ in min ⋎ (R(s)).

The sentence p∼∼pα is true if all the minimal states that are accessible to s via R satisfy the sentence
α. The sentence p∼∼pα is true if some minimal states that are accessible to s via R satisfy the sentence
α. We can see that defeasible modalities behave in a similar fashion as their classical counterparts. In
addition, defeasible modalities single out the preferred reachable state, by taking into account their order
with respect to the relation ⋎ . The truth values of classical sentences are preserved in preferential Kripke
models. The notion of satisfiability, models and validity in preferential Kripke models are defined the
same way as in classical Kripke models.

Example 1.42 (Message encryption). The following preferential Kripke is a better representation of the
system for message encryption. Let I = (S,R, V, ⋎ ) be a model such that S,R and V are the same as
in Example 1.39. The preference relation contains ⋎ = {(u3, u2), (u4, u2)} which indicates that both
u3 and u4 are more preferred than u2. Below is a graphical representation of the system (the preference
relation is highlighted by dashed arrows).

¬c,¬su1 c,¬s u2

¬c, su3 c, s

u4

We can check now for p∼∼p(c → s). The latter sentence indicates that, for each state ui ∈ S, the most
normal outcomes of an action in this system are states where c → s is true. For u1, we have R(u1) =
{u2, u3} and min ⋎ (R(u1)) = {u3}. Since I, u3 |= c → s, we conclude that I, u1 |=p∼∼p (c → s). For
u2, since R(u2) = ∅, we have min ⋎ (R(u2)) = ∅. Nonetheless, we consider that I, u2 |=p∼∼p(c → s). We
leave the reader to check the remaining two states. The preferential Kripke model I is a model for the
sentence p∼∼p(c → s), i.e., I |=p∼∼p(c → s).
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It is worth to note that the preference relation is not explicit in the syntax. In the sense that, defeasible
sentences of the form p∼∼pα and p∼∼pα implicitly single out the most normal accessible states without directly
referring to the order between them. This approach of defeasible operator is inspired by Booth et al.’s
[BMV12] work on the extension of propositional logic that deals with “typical” α-worlds. The current
definition of defeasible modalities stands in contrast to the approaches of Boutilier [Bou94] and Giordano
et al. [GGOP09] which cast the preference as a modality (usually using the operator □) in the language
level. This is why in Britz et Varzinczak’s [BV18] approach, the preference relation is not seen as an
extra accessibility relation. This makes it easier to integrate KLM preferential models in the case of
modal logic. Defeasible modalities offer a way to express defeasible version of necessity and possibility
that are similar in spirit to their classical counterparts.

We discuss now the properties of defeasible modalities. Same as classical modalities, there is a
duality between the operator p∼∼p and p∼∼p .

(Duality) |=p∼∼pα ↔ ¬ p∼∼p¬α

The two principles of necessity in modal logic K, namely (RN) and (K), are also true for defeasible
necessity. Here is a version of these two axioms:

• Necessitation rule: (RNN) if α is valid, so is p∼∼pα;

• Distributivity axiom: (K̃) |=p∼∼p(α → β) → (p∼∼pα →p∼∼pβ).

The following validity puts defeasible necessity in contrast to classical necessity:

(Ñ) |= □α →p∼∼pα

This properties represents the essence of defeasible necessity, as it is able to single the normal states
from all the accessible states. This observation concurs with an accepted principle of defeasibility, which
is whatever is classically the case is also defeasibly so (such as α → β entails α |∼ β in propositional
logic, and C v D entails C ⊏∼D in DL). This ties up p∼∼pas a defeasible version of □ and attests to the
adequacy of preferential Kripke as an approach to define defeasible modalities. Thanks to Ñ, we can also
have a correlation between p∼∼p and ♢:

(Ñ) |= p∼∼pα → ♢α

If defeasible necessity p∼∼p is a “weaker” version of classical necessity □ that targets only the normal
accessible states instead of all of them, then as a consequence of Ñ, the defeasible possibility p∼∼p is
“stronger” version of classical possibility ♢ which indicates that a preferred accessible state implicitly
entails that it is accessible. That is why Britz and Varzinczak [BV18] opted to name p∼∼p as “distinct
possibility”.

It also worth to mention that, with preferential Kripke models, it is possible to define a KLM style
defeasible inference. Britz and Varzinczak [BV18] proposed another fragment of defeasible modal that
contains defeasible modalities and the defeasible entailment |∼. This fragment is recursively defined as
follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α |p∼∼pα | p∼∼pα | α |∼ α

We denote the sentence of well formed sentences in this fragment by Lp∼∼p+ |∼. Provided that prefer-
ential Kripke models are equipped with a preference relation ⋎ , we shall interpret |∼ as in preferential
inferences in the case of propositional logic. Let I = (S,R, V, ⋎ ) be a preferential Kripke models, we
define JαKI as the set of states in S that satisfy α, i.e., JαKI def

= {s ∈ S | I, s |= α}.
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Chapter 1. Non-monotonic reasoning

Definition 1.43 (Defeasible entailment). Let I = (S,R, V, ⋎ ) be a preferential Kripke model and s ∈ S.
For every α, β ∈ Lp∼∼p+ |∼, we have:

I, s |= α |∼ β if either s 6∈ min ⋎ (JαKI) or s ∈ JβKI.
Definition can be generalized further, we say that I is a model for a sentence α |∼ β if the following

is true:

I |= α |∼ β if min ⋎ (JαKI) ⊆ JβKI.
This version of defeasible entailment satisfies the postulates of preferential models [BMV11a].

• (Reflexivity) I |= α |∼ α;

• (Left logical equivalence) if |= α ↔ β and I |= α |∼ γ, then I |= β |∼ γ;

• (Right weakening) if I |= α |∼ β and |= β → γ, then I |= α |∼ γ;

• (Cut) if I |= α ∧ β |∼ γ and I |= α |∼ β, then I |= α |∼ γ;

• (Or) if I |= α |∼ γ and I |= β |∼ γ, then I |= α ∨ β |∼ γ;

• (Cautious Monotony) I |= α |∼ β and I |= α |∼ γ, then I |= α ∧ γ |∼ β.

It is possible to also define a ranked semantics for Kripke models. Ranked Kripke models are pref-
erential Kripke models where the preference relation ⋎ is modular (see Definition 1.23). The defeasible
entailment of ranked Kripke models satisfies the postulates of rational systems. Note that since ranked
Kripke models are a subclass of preferential Kripke models, this would not affect the semantics of the
defeasible modalities p∼∼p and p∼∼p .

• (Rational monotony) If I |= α |∼ β and I |= ¬(α |∼ ¬γ), then I |= α ∧ γ |∼ β.

For a more in depth look on defeasible entailment, we refer the reader to the work of Britz et al.
[BMV11a]. The main goal of this section is to show that another aspect of defeasibility, namely the
defeasibility of necessity in modal logic.

1.3 Summary

Preferential Kripke models and defeasible modalities offers the reasoner the tools to model and reason
on systems that might have exceptions (such is the case in Example 1.42). The operator p∼∼p is a defeasible
version of the classical necessity □ that grants the reasoner the ability to describe properties of the form
“the most normal outcome of an action is α”. We shall discuss the notion of defeasibility in the context
of temporal logics, specifically Linear Temporal Logic. We shall base our approach on the work on
this study of Britz and Varzinczak [BV18]. We shall show how to use defeasible modalities in order to
express new temporal notions. Such is the goal of our study.
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The second element of our study is temporal logic. Temporal logic is a family of formalisms for
representing and reasoning about propositions that vary over time. What is the meaning when one says
propositions that vary over time? Let us take the statement “It will eventually rain” as an example. In
natural language, the sentence eventually rain entails that at some time in the future, it will rain. The
emphasis here is on the time. The truth of these sentences depends on how the weather changes over time.
There are other temporal concepts that are used in the natural language (temporal notions are italicized):

• After the operation is finished, display the output.

• The system is always on.

• Display the loading screen until the program is finished loading.

Formalizing and representing temporal notions such as the aforementioned (but not limited to) ap-
peared first in Greek philosophy. It is with the introduction of modal logic and Kripke semantics [Kri59]
that researchers in the fields of philosophy and mathematics renew their interest in temporal logic. The
first attempt of formalizing temporal notions was proposed by Prior’s Tense Logic [Pri62]. Tense logic is
a modal-based of temporal logic that uses modalities to express temporal notions. Examples of which are
the modality G for always, the modality F for eventually, amongst others. And thanks to Kripke models,
Prior showed that it is possible to use the accessibility relation R (see Definition 1.38) to indicate the
passage of time from one point to another. Temporal logic, thanks to Prior’s Tense logic, has found its
niche in modal logic. This gave rise to many temporal formalisms that use modalities in order to express
propositions that vary over time and use Kripke-like structures to model time.

31



Chapter 2. Linear temporal logic

In 1977, Pnueli [Pnu77] showed that temporal logic can specify properties of concurrent programs
(programs in which, during a period of time, multiple processes are being executed). Thanks to the
seminal work of Pnueli, temporal logics found their use in the computer science field as formal tools for
the logic of programs. In his work, Pnueli [Pnu77] introduced a new formalism called Linear Temporal
Logic (LTL). In LTL, time is viewed as a linear succession of time points that extends to infinity (see
Figure 2.1a). Therefore, we can interpret the changes of the states of a system from an initial time point
0 to to 1, to 2 and so on . . . , in a linear fashion.

Since the introduction of LTL, other temporal formalisms using Kripke-like semantics have been
developed over the years. Some of which view time as a tree-like structure such as Figure 2.1b. Time
can branch into multiple paths in the future. Each of these paths might be the path on which the program
is. There are two notable formalisms that use branching time structures. The first is Computational Tree
Logic (CTL) by Emerson and Clarke [EC80]. The second is a combination of LTL and CTL, called
CTL⋆, and introduced by Emerson and Halpern [EH83].

(a) Linear time structure (b) Branching time structure

Figure 2.1: Time structures

Temporal logics LTL,CTL and CTL⋆ are used as formal tools for the verification and specification
of programs. The verification problem, also referred to as model checking [CHV18], is the formalization
of whether a given system meets a certain specification (a wanted property for the system). Specifications
are expressed using mathematical sentences and a system is interpreted by having an adequate structure
that shows its different states, and the relation between them. Specification can be given by temporal
logics in order to describe the desired outcome of the system at different points of time. Therefore, these
formalisms are suitable for the verification of systems that change states over time. For more in depth
look in model checking and temporal logics, we refer the reader to the work of Baier and Katoen [BK08].

However, in our study of defeasibility in temporal logics, we shall focus on the symbolic side of LTL.
The main goal is to show how defeasibility can be expressed in temporal logic, and motivate its use in
this context. There are two reasons behind this choice. The first reason is that LTL uses the syntax and
semantics of modal logic to express properties that vary over time. Moreover, the syntax and semantics
of LTL are also present in CTL and CTL⋆. As such, LTL serves as a bridge between defeasiblity
in modal logic [BV18] and temporal logics. The second reason is the flexibility of LTL language and
its semantics. Many extensions of LTL have been developed in literature over the years, examples of
which are: LTL with past operators [LPZ85, Gab89, Rey00]. There is also a robust extension rLTL
proposed by Tabuada and Neider [TN16]. In their setting, a system is robust when small violations of
the environment assumptions should lead to small violations of the system guarantees. In particular, the
semantics proposed sentences of the form α → β is such that when the premise α breaks at some time
points, the consequence β can be true sometimes, instead of being outright false. There are many other
extensions of LTL that represents different behaviours of the system. We shall expose, in the upcoming
chapters, a defeasible extension of LTL [CCACV20], and the computational analysis of the satisfiability
problem of this language [CCACV20, CCACV21].

This chapter is split into three parts. In Section 2.1, we discuss the syntax and semantics of LTL.
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In Section 2.2, we discuss the observations and work of Sistla and Clarke [SC85] on the complexity of
different fragments of the LTL language. Finally, in Section 2.3, we present briefly a tableau method
developed by Reynolds [Rey16a] as a tool for determining the satisfiability of LTL sentences.

2.1 Linear temporal logic

Linear Temporal Logic (LTL) was introduced by Pnueli [Pnu77] as a formal tool for hardware and soft-
ware specification and verification. This formalism allows for the description of a program’s execution.
LTL is a modal temporal logic, it uses modalities to refer to time. We can encode sentences that describe
the future of an execution, e.g., a statement is always true, or, will eventually hold.

2.1.1 Syntax and semantics

We highlight the syntax of LTL that we use throughout the memoir. Let P be a finite set of atomic
propositions. The set of operators in LTL can be split into two parts: the set of Boolean connectives
¬,∧,∨, and that of temporal operators □,♢,©,U , where □ reads as always, ♢ as eventually, © as next
and U as until. The set of well-formed sentences expressed in LTL is denoted by L. Sentences of L are
built up according to the following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ©α | αUα

Other standard Boolean operators are part of the syntax of LTL. Let α, β be two sentences of LTL
language, the symbol > is an abbreviation of α ∨ ¬α, ⊥ is an abbreviation of α ∧ ¬α. The implication
operator is defined by α → β def

= ¬α ∨ β and the equivalence operator is defined by α ↔ β def
= (α →

β) ∧ (β → α). Here are some examples of well-formed sentences in L.

Example 2.1. Let p, q ∈ P:

p, ¬p, ♢(p ∧ q) → ♢p, ♢□p ↔ q, ¬♢p ∧□¬q

The negation and temporal operators have higher precedence than the other operators. As such, the
sentence ¬♢p ∧□¬q is the same as (¬♢p) ∧ (□¬q) and not ¬(♢p ∧□¬p).

The temporal structure is a chronological linear and infinite succession of time points. In this frame,
the state of a system switches from a state s0 to s1, from s1 to s2, and so on (the emphasis here is that
there is one and only one transition from t to t+ 1).

s0 → s1 → s2 → s3 → · · ·

LTL interpretations are Kripke structures K = (S,R, V ) of which the accessibility relation R is
reflexive, transitive, linear and total relation. We discuss them at length in Section 2.1.2. Here we set
the notations and the structures we shall use throughout this memoir. We use the set of natural numbers
in order to label each of time points, i.e., (N, <). A temporal interpretation I is defined by a mapping
function V : N −→ 2P which associates each time point t ∈ N of the temporal structure with a set of
propositional atoms V (t) that are true in t (atoms not belonging to V (t) are assumed to be false at the
given time point). The truth conditions of LTL sentences are recursively defined as follows, where I is
a temporal interpretation and t a time point in N:

• I, t |= p if p ∈ V (t);

• I, t |= ¬α if I, t 6|= α;
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• I, t |= α ∧ α′ if I, t |= α and I, t |= α′;

• I, t |= α ∨ α′ if I, t |= α or I, t |= α′;

• I, t |= □α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t;

• I, t |= ♢α if I, t′ |= α for some t′ ∈ N s.t. t′ ≥ t;

• I, t |= ©α if I, t+ 1 |= α;

• I, t |= αUα′ if I, t′ |= α′ for some t′ ≥ t and for all t ≤ t′′ < t′ we have I, t′′ |= α.

Figure 2.2 contains a graphical representation of the truth values of temporal sentences in LTL.

©α α
©α :

♢α α
♢α :

□α, α
□α :

α α α α

αUβ, α α α β
αUβ :

Figure 2.2: Graphical representation of LTL sentences

We say α ∈ L is satisfiable if there are I and t ∈ N such that I, t |= α. A sentence α is valid if for
all temporal interpretations I and all t ∈ N, we have I, t |= α. A valid sentence α ∈ L is denoted by
|= α. We shall discuss the satisfiability of sentences of L in depth in the upcoming two sections.

We introduce an example to better illustrate the use of the language of LTL. We shall also use this
example to motivate the defeasible extension of LTL in Chapter 3.

Example 2.2 (Transition system of two variables). We have a computer program in which the values
of its variables change with time. In particular, the agent wants to check two parameters, say x and
y. These two variables take one and only one value between 1 and 3 on each iteration of the program.
We represent the set of atomic propositions by P = {x1, x2, x3, y1, y2, y3} where xi (resp. yi) for all
i ∈ {1, 2, 3} is true if the variable x (resp. y) has the value i. The system has five states. The following
figure represents the different transitions between these states:
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x1, y1start x2, y3

x3, y3x1, y2

x2, y1

The initial state of the system is {x1, y1} (both of the variables are set to 1). Transitions from a state
si to sj are represented by an edge si −→ sj . There are many possible runs of this system. Starting from
the initial state and following the transitions, we could have this run:

x1, y1 x2, y3 x3, y3 x1, y2 x2, y3 x2, y3 x2, y3 · · ·

0 1 2 3 4 5 6

For t > 4, V (t) = V (4) = {x2, y3}.

The corresponding interpretation to this run is denoted by I1. In the current run, the program assigns
the value 3 to y whenever x = 2. The interpretation satisfies the sentence □(x2 → y3) at 0. Moreover,
there are not any time point such that y = 1 when x = 2. Therefore, I1 does not satisfy ♢(x2 ∧ y1) at
time 0. Hence, we have:

• I1, 0 |= □(x2 → y3);

• I1, 0 |= ¬♢(x2 ∧ y1).

Temporal interpretations are used to model the changes of a program over time. We use the term run,
path or trace to depict a possible sequence of an execution of a program (these sequences are represented
by a temporal interpretation). In a run, we are able to capture specifications (desired outcomes) by
expressing sentences about the current and future time points. Here are some specifications that can be
expressed in LTL.

• Safety: □α means that the property α will always hold, from this point of the execution onwards.

• Liveness: ♢α means that the property α will hold eventually. In other words, at some time point
of the run, α is true.

• Response: □♢α means that for any time point in the run there is a later time point where α holds.

• Persistence: ♢□α means that there exists a time point in the run such that from then and onwards,
α holds.
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2.1.2 Axomatisation and properties of LTL

One of the area of interest in modal logics is the axiomatic theory. Indeed, different modal logics can
be obtained by placing restrictions or constraints on the accessibility relation R (see Definition 1.38).
These restrictions are characterized by validities (using modalities) that represent interpretations with
said restrictions. For more in depth look on the automatisation in modal logics, we refer the reader to
the work of Blackburn and van Benthem [BvB07]. In this section, we lay down the properties of LTL ’s
temporal modalities.

p p, q q p, q · · ·

0 1 2 3 4

I :

Figure 2.3: LTL interpretation

It is possible to model linear temporal structures using Kripke semantics. Let K = (S,R, V ) be a
Kripke structure that we shall use to model linear temporal structures. Time points in a linear temporal
structure, such as the interpretation I in Figure 2.3, are represented by states in S. Moreover,the accessi-
bility relation R can be used to show the succession of states. The valuation function V maps each state
s ∈ S (which indicate a time point in temporal structures) to a set of true valued atomic propositions.
We shall assume, from this point on, that all the sentences in this section are well-formed sentences in
LTL. The following validities are true in LTL. First, the axioms of modal logic K are also true for LTL
interpretations.

(Duality) |= □α ↔ ¬♢¬α;

(RN) if α is valid, so is □α;

(K) |= □(α → β) → (□α → □β).

Beside the characterization of logic K, the linear temporal structure is a particular case of normal
Kripke structure. As the accessibility relation R models a linear passage of time, it is a more restrictive
form of the normal case. LTL interpretations are Kripke structures that have the following properties:
reflexive, transitive, linear and total.

To represent linear temporal interpretations, Kripke structures are required to be reflexive. Let take
the sentence ♢α, whose intuitive meaning is eventually α is true. There must be a time point in the
future where α is true. Said time point could be the present moment. Therefore, each time points can be
reachable to themselves. Reflexive Kripke structures, including LTL interpretations, are defined by the
axiom (T).

(T) |= □α → α, |= α → ♢α.

LTL interpretations are also transitive. Consider three time point t1, t2, t3 such that t3 comes after
t2 that comes after t1. Consider that the sentence ♢α is true in t2 because α is true in t3. It would be
intuitive, from a language perspective, to entail that ♢α is true in t1 because t3 has α and it can be used
to prove it. A Transitive Kripke structures, including LTL interpretations, are defined by the axioms (4).

(4) |= □α → □□α, |= ♢♢α → ♢α.

Combining axiom (T) and (4), we obtain the following validities.
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|= □□α ↔ □α, |= ♢♢α ↔ ♢α.

In addition, LTL interpretations are total. Knowing that in the case LTL, time is seen as an infinite
succession of time points. Thus, any given time point t has successors that come after it. Moreover, as
time is seen as linear sequence of time points, then for each time point t, there is at most one time point
t + 1 that is considered as its next step. From the linear and total properties, we can infer that for each
time point t, there is exactly one time point t+1 that comes after it. The total property does not held for
some extensions of LTL, such is the case of LTL on finite traces [GMM14]. However, in this study, we
focus on the general definition of LTL interpretation, which are by design, infinite. The operator © is
used to define the linearity and totality of LTL interpretations.

(Linearity and totality) |= ©α ↔ ¬©¬α.

Since there is exactly one time point t + 1 that comes after any given time point t. It would be
strange that such time point would contain a sentence α and its negation ¬α. Given these characteristics,
the accessibility can be inferred without being explicitly present in LTL interpretations. That is why
LTL interpretations are either defined as I def

= (S, V ) with S being a ordered sequence of time points
S def
= {s0, s1, s2, . . . }, or it is possible to use the temporal structure (N, <) in order to represent it (the

current representation that we are using in this study). Here are some additional properties of LTL
interpretations.

|= □α → ♢α.

Given a time point t, the sentence □α is true only when α is true for all of futures of t. This implies
that there is a time point in the future of t that satisfies α, and therefore ♢α is true in t.

Next, we discuss the collapsing properties of the temporal modalities □ and ♢.

|= □□α ↔ □α;

|= ♢♢α ↔ ♢α;

|= □♢□α ↔ ♢□α;

|= ♢□♢α ↔ □♢α.

In sentences without the ©,U operators, no more than two operators need to appear in sequence. Any
sequence of three or more □,♢ collapses into at most a pair of these operators.

|= □α ↔ α ∧ ©□α;

|= ♢α ↔ α ∨ ©♢α;

|= αUβ ↔ β ∨ (α ∧ (©(αUβ)).

These are the inductive form of temporal operator in LTL. These validities can be understood
by reading them using natural language. For a sentence α to be always true, α needs to be true at
this moment, and it must be always true in the next step. For a sentence α to be eventually true, it is
either true in the current moment or it is eventually true in the next step. We leave it to the reader to
interpret the until statement. The operator © plays a crucial role in algorithms and methods for deciding
the satisfiability of sentences in LTL (more on that in Section 2.3), but it is rarely used to express
specifications of programs. In general, the correctness of specifications is dictated by the entire run
rather than interleaving time points within said run. Therefore, they are usually expressed with operators
such as □,♢,U .

For additional properties of LTL interpretation and its operators, we refer the reader to the work of
Ben-Ari [BA12b].
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2.2 Satisfiability of LTL sentences

We shall discuss the problem of the satisfiability of LTL sentences. This problem states the following:
“given a sentence α ∈ L, is there an L interpretation I that satisfies it, i.e., there is a t ∈ N such that
I, t |= α”. Without loss of generality, we look for interpretations that satisfy α at the initial time point
0. The first task to find whether this problem is decidable, meaning we have an answer for this problem
(either yes or no) for any well-formed L sentence. The second task is to establish the computational
analysis for the satisfiability problem. Such work was done by Sistla and Clarke [SC85]. The particularity
of LTL interpretations is that they are infinite in their size. Sistla and Clarke show through a number
of observations that it is possible to have compact representations of interpretations, that are bounded in
size and are helpful to determine the satisfiability of sentences. As we shall see in the contribution part,
we use similar observations and structures in order to find compact representations for defeasible LTL
interpretations [CCACV20]. In this section, we shall discuss, in more details, the fragmentation of the L
language and the compact representations in each of these cases.

2.2.1 Observations and representations of temporal interpretations

Let P be a set of finite atomic propositions. An interesting observation made by Sistla and Clarke [SC85]
is that in every LTL interpretation, there is a time point t after which every t-successor’s valuation occurs
infinitely many times. This is an obvious consequence of having an infinite set of time points and a finite
number of possible valuations (thanks to P being finite).

Lemma 2.3 (([SC85])). Let I be an LTL interpretation. There exists a t ∈ N s.t. for all l ∈ [t,∞[, there
is a k > l where V (l) = V (k).

For each interpretation I , there is a first time point where the condition in Lemma 2.3 is met. Such
time point is denoted by tI . The interval of time points of the interpretation that comes before tI is called
the initial part of I . Time points that come after tI are in the final part of I .

Definition 2.4. Let I be an LTL interpretation. Sistla and Clarke define:

• init(I) def
= [0, tI [;

• final(I) def
= [tI ,∞[;

• range(I) def
= {V (i) | i ∈ final(I)};

• val(I) def
= {V (i) | i ∈ N};

• size(I) def
= length(init(I)) + card(range(I)), where length(·) denotes the length of a sequence

and card(·) set cardinality.

Note that for any interpretation, the initial part is always a finite sequence of time points. Moreover,
the final part is an infinite sequence of time points. In the size of I , we count the number of time points
in the initial part and the number of valuations contained in the final part. As we shall see in Section
2.2.2, the order on which time points are in the final part does not matter in some fragments of the LTL
language.

In order to find the upper-bound of interpretations on different fragments of the language. Sistla and
Clarke introduced intermediary structures. First of which are subsequences. The general idea is that
starting from an interpretation I that satisfies a sentence, it is possible to find subsequence of time points
within N that still satisfies the sentence α. Formally, they are defined as follows:
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2.2. Satisfiability of LTL sentences

Definition 2.5 (Sub-sequence). Let N,N ′ be two sequences of natural number. N ′ is a subsequence of
N (written as N ′ ⊆ N ) iff for all i ∈ N ′, we have i ∈ N .

We shall introduce the notion of pseudo-interpretations next. Given an interpretation I and sequence
N ⊆ N, a pseudo-interpretation IN is the restriction of the valuation of I to only time points that are
in N . The pseudo-interpretation has a valuation function V N : N −→ 2P such that for all t ∈ N , we
have V N (t) = V (t). With pseudo-interpretations, we can check the truth values of sentences within
sequences of the starting interpretation I . The truth values of L sentences in pseudo-interpretations are
defined in a similar fashion as for LTL interpretations. With |=P we denote the truth values of sentences
in a pseudo-interpretation.

• IN , t |=P p if p ∈ V N (t);

• IN , t |=P ¬α if IN , t 6|=P α;

• IN , t |=P α ∧ β if IN , t |=P α and IN , t |=P β;

• IN , t |=P α ∨ β if IN , t |=P α or IN , t |=P β;

• IN , t |=P □α if IN , t′ |=P α for all t′ ∈ N s.t. t′ ≥ t;

• IN , t |=P ♢α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ≥ t;

• IN , t |=P ©α if we have t+ 1 ∈ N and IN , t+ 1 |=P α;

• IN , t |=P αUβ if there is t2 ∈ N s.t. IN , t2 |=P β and IN , t1 |=P α for all t1 ∈ N s.t. t ≤ t1 < t2.

A sequence represents a set of time points. They can either be in a continuous interval of integers,
a discontinuous sequence or a combination of both. Sequences can also be finite or infinite. When a
sequence N is finite, the pseudo-interpretation can be considered to not have a final part. In this case
size(IN ) def

= length(N). When a sequence N is infinite, the condition of Lemma 2.3 is met. Therefore, a
tIN can be defined. Therefore, init(IN ), final(IN ) and size(IN ) can be introduced as well. However,
given some cases, time points that were initially in init(I) can be found in final(IN ) and vice-versa.
As such, given the definition of size(·), it is possible to find sequences N ⊆ N such that size(IN ) ≥
size(I). Sistla and Clarke [SC85] introduced sequences that display a certain behaviour called acceptable
sequences that solves this problem.

Definition 2.6 (Acceptable sequence w.r.t. I). Let I be an interpretation and N be a sequence of tempo-
ral time points. N is an acceptable sequence w.r.t. I iff for all i ∈ N ∩ final(I) and for all j ∈ final(I)
s.t. V (i) = V (j), we have j ∈ N .

The particularity we are looking for is that any picked time point in init(·) (resp. final(·)) will remain
in the initial (resp. final) part of the new pseudo-interpretation. It is worth pointing out that an acceptable
sequence w.r.t. an interpretation also can be either finite or infinite.

Definition 2.7. Let I be an interpretation, and let N be an acceptable sequence w.r.t. I . We define the
following:

init(I,N) def
= N ∩ init(I);

final(I,N) def
= N \ init(I,N);

range(I,N) def
= {V (t) | t ∈ final(I,N)};

val(I,N) def
= {V (t) | t ∈ N};

size(I,N) def
= length(init(I,N)) + card(range(I,N)).
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Thanks to Definition 2.7, the following properties are true:

Proposition 2.8 (([SC85])). Given an interpretation I and an acceptable N sequence w.r.t. I . We have:

size(I,N) ≤ size(I)

Let N1, N2 be two sequences of integers. The union of N1 and N2, denoted by N1 ∪ N2, is the
sequence containing only and all elements of N1 and N2.

Proposition 2.9 (([SC85])). Let I be an interpretation, N1, N2 be two acceptable sequences w.r.t. I .
Then N1 ∪N2 is an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) + size(I,N2).

Sistla and Clarke defined also a class of LTL interpretations called ultimately periodic interpreta-
tions. These interpretations have an initial part which is finite and a final part that periodically replicates
following time points that are in the interval of the first period. Figure 2.4 is a graphical representation
of ultimately periodic

I :

i i+ π

init(I) final(I)

Figure 2.4: Ultimately-periodic interpretation

In Figure 2.4, all time points between i and i+π− 1 are replicated indefinitely. The time point i+π
has the same valuation as i, the time point i+π+1 has the same valuation as i+1, and so on. Formally,
ultimately-periodic interpretations are defined as follows:

Definition 2.10 (Ultimately periodic interpretations). An LTL interpretation I with a valuation V is
said to be ultimately periodic if after a starting time point i ≥ 0, there is a period π > 0 such that for all
k ≥ i V (k) = V (k + π).

Ultimately periodic-interpretations are a compact representations of LTL interpretations. Sistla and
Clarke showed that from an interpretation I that satisfies α, and depending on the fragment of the L
language, an ultimately-periodic interpretation I ′ that satisfies the same sentence α can be induced. We
discuss these fragments in the second part of this Section.

Acceptable sequences and ultimately periodic interpretations are useful tools for finding bounded
representations.We shall extend these notions more in the contribution part of this memoir.

2.2.2 LTL fragments

With the structures introduced, the next step is to highlight the complexity analysis of the satisfiability
problem of different fragments of the LTL language. In their work, Sistla and Clarke introduced three
fragments: The first where the only temporal operators allowed are □,♢ (denoted L(♢)). The second
fragment contains only ♢,© and sentences are in normal negation form NNF (negation is only allowed
on atomic proposition level). This fragment is denoted by LNNF (♢,©). The third fragment is the entire
language L(U ,©), which covers the entire L language. For each of these fragments, we discuss the steps
to obtain the bounded model property and the complexity of their respective satisfiability problem. The
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goal of this section is to show Sistla and Clarke’s [SC85] approach to the satisfiability problem for LTL,
specially, their fragmentation of the language and the methods used to prove an upper-bound for LTL
interpretations in each of these cases. As we shall see in the contribution part, many fragmentations and
methods for checking the satisfiability problem of the defeasible extension of LTL are based on their
approach.

Given a sentence α ∈ L, we shall use the notation |α| to denote the length of the sentence, i.e., the
number of symbols that are in α.

The satisfiability of L(♢) sentences

The fragment L(♢) is recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α

Let α ∈ L(♢) be a satisfiable sentence in LTL. Then, there exists an interpretation I such that
I, 0 |= α. Not much is known about this initial interpretation I and its size size(I). Sistla and Clarke
[SC85] state that from I , we can find an acceptable sequence N such that IN size(I,N) ≤ |α| that
also satisfies α. From IN , an induced LTL interpretation I ′ has the same size as IN and keeps the
satisfiability of α.

As discussed in the previous Section 2.2.1, the order of time in the final part does not matter. Such is
the case for interpretation of L(♢) sentences.

Lemma 2.11. Let I be an interpretation and i ≤ i′ be time points of final(I) where V (i) = V (i′). Then
for every α ∈ L(♢), we have I, i |= α iff I, i′ |= α.

Theorem 2.12 (Bounded model property). Let α ∈ L(♢) be a satisfiable sentence. There exists an
interpretation I such that I, 0 |= α and size(I) ≤ |α|.

Sistla and Clarke showed that the satisfiability of L(♢) sentences is a NP-hard problem by reducing
it to a 3-SAT problem [SC85]. With the bounded model property obtained, a non-deterministic Turing
machine guesses an interpretation I such that the sum of elements in init(I) and distinct valuations in
range(I) is less than |α|. Sistla and Clarke defined a labelling function that check the satisfiability of α-
subsentences in I . The Turing machine accepts I as an interpretation for α if α is true in 0. Otherwise, the
interpretation I is rejected. Sistla and Clarke showed that the verification procedure is polynomial-time
bounded [SC85].

Theorem 2.13 ([SC85]). The satisfiability of L(♢) sentences is NP-complete.

The satisfiability of LNNF (♢,©) sentences

The negation operator ¬ in this fragment is only allowed within the scope of atomic propositions.
The fragment LNNF (♢,©) is recursively defined as follows:

α ::= p | ¬p | α ∧ α | α ∨ α | ♢α | ©α

It turns out that in the absence of the □ operator and for a specific time point t that satisfies α, there
is a sequence of time points that keeps the satisfiability of α in t and is always finite. As such, acceptable
sequence are not needed in this case.

Theorem 2.14 (Bounded model property). Let α ∈ LNNF (♢,©) be a satisfiable sentence. There exists
an interpretation I such that I, 0 |= α and size(I) ≤ |α|.
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The NP-completeness of the satisfiability of LNNF (♢,©) is similar to the fragment L(♢). The only
difference is that that the Turing machine guesses a finite sequence which size is less than |α|. The
labelling function operates the same way.

Theorem 2.15 ([SC85]). The satisfiability of LNNF (♢,©) sentences is NP-complete.

The satisfiability of L(U ,©) sentences

The third fragment is L(U ,©). It is worth to point that, the following validity |= ♢α ↔ >Uα is true
in LTL. Therefore sentences in L can be expressed using the operators of this fragment. The fragment
L(U ,©) can be recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | ©α | αUα

In the presence of ©,U operators, the Lemma 2.11 does not hold. The order of time points in the
final part of an interpretation does matter in this case and therefore the approach of acceptable sequences
is not helpful in this case. Sistla and Clarke [SC85] provide another method to find the upper-bound for
LTL interpretations. Let α ∈ L be a satisfiable sentence and I be an interpretation such that I, 0 |= α.
We shall see that starting form the I , an ultimately periodic interpretation I ′ can be induced such that
I ′, 0 |= α.

Let I, i |= α1Uα2 be an interpretation that satisfies α1Uα2 in i. We say that α1Uα2 in i is fulfilled
before j if there is i ≤ k ≤ j such that I, k |= α2. The key is to find two time points i, i+π in the initial
interpretation I that satisfy the same set α-subsentences such that all until sentences i are fulfilled before
i + π. Sistla and Clarke [SC85] showed that by keeping time points in [0, i[ as the initial interpretation
I , followed by replicating time points in the interval [i, i + π[, the sentence α remains satisfied in 0 on
this induced ultimately-periodic interpretation.

Theorem 2.16 (Bounded model property). A sentence α ∈ L(U ,©) is satisfiable if there is an ultimately
periodic interpretation I such that the starting time point is i ≤ 2|α|, the period is π ≤ 4|α| and I, 0 |= α.

Theorem 2.17 ([SC85]). The satisfiability of L(U ,©) sentences is PSPACE-complete.

The satisfiability in the fragments L(U), L(♢,©) are in the same complexity class as the fragment
L(U ,©). A detailed version of the theorems from 2.12 to 2.17 as well as Sistla and Clarke’s approach
can be found in [SC85]. Table 2.1 recapitulates the complexity of the satisfiability problem of multiple
LTL fragments. We also refer the reader to work of Demri and Rabinovich [DR10] for another outlook
on the complexity study of the satisfiability of LTL sentences.

Fragment Satisfiability

L(♢) NP-complete

LNNF (♢,©) NP-complete

L(♢,©) PSPACE-complete

L(U) PSPACE-complete

L(U ,©) PSPACE-complete

Table 2.1: Complexity of some LTL fragments
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2.3 Semantic tableau for LTL

A tableau approach for a logic is a decision procedure for checking the satisfiability of its sentences.
These approaches trace their origin to the semantic tableaux for propositional logic, developed by Smullyan
[Smu68]. Classical tableaux typically have a tree-shaped form, with the root node containing the initial
sentence. Moreover, tableaux methods are governed by a set of semantics rules that determine their
expansion. At any point of the tableau’s expansion, a parent node can branch out to zero or multiple
children nodes. An expanded tableau that has a successful branch entails that the initial sentence is
satisfiable while failing to have successful branches means that the sentence is not satisfiable. Many
logics, specially modal logic K (Goré [Gor99]), implements tree-shaped tableaux methods for checking
the satisfiability of its sentences.

However, in the case of LTL, variations on the traditional tableau idea have been prevalent and the
tree-shaped form tableaux for LTL sentences was scraped away. The first implementation was proposed
by Wolper [Wol85]. Starting from a root node with an LTL sentence and following only the semantic
rules, branch may go indefinitely. That is why in Wolper’s method, nodes with same set of sentences are
linked with each other. Therefore, the edges of the tableau generally end up heading upwards or crossing
branches. After the full expansion phase, there is a pruning phase which eliminates nodes according to
another set of rules. This style of tableaux is considered to be graph-shaped (edges are cross-branching)
and multi-pass (the expansion phase and the pruning phase). Over the years, graph-shaped tableaux for
LTL have been optimized further [Gou89, SGL97, RV07]. For a more in depth look on this method, we
refer the reader to the work of Goré [Gor99].

Although it is the most known approach for LTL tableaux, implementing a graph like tableau for a
preferential extension of LTL proved to be quite difficult. In the literature, logics extended with KLM’s
preferential semantics have tree-shaped tableaux. Examples of which are Giordano et al. [GGOP09] for
propositional logic, Giordano et al. [GOGP09], Britz and Varzinczak [BV19] for description logic and
Britz and Varzinczak [BV18] for modal logic. That is why we turned our focus on tree-shaped tableaux
for LTL in order to bridge the gap between tableaux with preferential semantics and LTL tableaux. This
was first done by Schwendimann [Sch98]. Schwendimann’s tableau is not only tree-shaped, it is also
one-pass, not relying on a two-phase procedure: expanding and pruning (they are done simultaneously).
Recently, Reynolds proposed another version of tree-shaped one-pass LTL that resembles traditional
tableaux. Reynolds’s approach does not need uplink connection between nodes (the direction of edges
follow the direction of root to leaf nodes). Such is the case for the proposed methods of logics extended
with the preferential semantics of KLM.

Many researchers renew their interest for the one-pass tree-shaped style of tableaux. The noteworthy
method is the tableau for LTL with past operators [GMR17]. There are also some interesting develop-
ment for CTL tableaux [ABHL20] using a similar approach as Reynolds’s. In this section, we highlight
Reynolds’s tableaux for LTL sentences that serves as a basis for a tableau method for our defeasible
extension of LTL [CCACV21].

Definition 2.18 (Labelled node). A labelled node is a triple of the form n : Γ where n ∈ N and Γ ⊆ L.

The integer n is a label for the temporal state of the node and Γ is the set of sentences that are true
in the node. Note that multiple nodes can have the same label n. For any sentence α ∈ L, the root is
the labelled node 0 : {α}. A node can also have zero to multiple children nodes. In the case of a node
having no children, we say that it is a leaf node.

Definition 2.19 (Branch). A branch is a sequence B def
= 〈x0, x1, x2, . . . 〉 of labelled nodes xi := ni : Γi.

Branches are sequences of labelled nodes. Each branch represents a potential model for the starting
sentence of the tableau. We shall say that a branch B is successful if it has a leaf node with a check mark
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(3). Otherwise, a branch is unsuccessful if it has a leaf node with a cross (7).
A tree is a set of finite branches T def

= {B0, B1, B2, B3, . . . , Bk} where k ≥ 0. A tableau T for α is
the limit of a sequence of trees 〈T 0, T 1, T 2, . . . 〉 where the initial tree is T 0 := {(〈0 : {α}〉)} and every
T i+1 is obtained from T i by applying a rule on one of its branches. We say that a tableau T for α is
saturated if no more rules can be applied after a tree T .

We have two types of rules, static and dynamic rules. We introduce static rules first. Let T be a tree,
and let B be a branch of T that has a leaf n : Γ. We say that a static rule (ρ) is applicable at the leaf
n : Γ if a sentence in Γ instantiates the pattern ρ. Static rules application is not deterministic. This means
when multiple patterns emerge in a node with a label n, there is no static rule that takes precedence over
an other. Eventually every static rule that can be applied on node with the label n will eventually be
applied. A static rule is a rule of the form:

(ρ)
n : Γ

n : Γ1 | . . . | n : Γk

The symbol ‘|’ indicates the occurrence of a split in the branch, i.e., a non-deterministic choice of
possible outcomes, each of which needs to be explored. It is worth to mention that after applying a static
rule on n : Γ, the leaf nodes of all the new branches keep the same label n.

In what follows, we show the rules for Boolean and temporal operators. We also show two stopping
conditions, namely, Empty and Contradiction. The symbol ∪ is the union of two sets. The symbol ]
represents the union between disjoint sets.

(Contradiction)
n : {α,¬α} ] Σ

(7)
(Empty)

n : ∅

(3)

(∧)
n : {α1 ∧ α2} ] Σ

n : {α1, α2} ∪ Σ
(∨)

n : {α1 ∨ α2} ] Σ

n : {α1} ∪ Σ | n : {α2} ∪ Σ

(□)
n : {□α1} ] Σ

n : {α1,©□α1} ∪ Σ
(♢)

n : {♢α1} ] Σ

n : {α1} ∪ Σ | n : {©♢α1} ∪ Σ

(U)
n : {α1Uα2} ] Σ

n : {α2} ∪ Σ | n : {α1,©(α1Uα2)} ∪ Σ

As discussed in Section 2.1.2, the inductive form of temporal sentences is utilized in the expansion
of tableaux. For each □α1 at a leaf with the label n at a branch B, α1 and ©□α1 are true in n. For
each sentence ♢α1, two possible outcomes are explored: either α1 is true in n or ©♢α1 is true in n.
Same goes for U-sentences. These rules are well accepted since their introduction in Wolper’s method
[Wol85]. Note that rules over sentences α consume (or remove) the initial sentence, and either propagates
its subsentences αi or replaces them with ©-sentences. In the case where a leaf contains no sentence
left (Empty condition), we consider there was no conflict up at the current leaf node and all of the
sentences were all consumed by applying the aforementioned rules. As such the branch is ticked with
(3), indicating that it is a successful branch. Note that when a node contains a sentence α and its negation
¬α in the same node x (Contradiction condition), we consider that there is conflict in the current branch.
As such, the branch is crossed (7), indicating that it is an unsuccessful branch.

Following Reynolds’s approach [Rey16a], let an eventuality ♢α (U-sentences are also considered
eventualities) be in a node x with a label n. If the sentence α appears in a successor node x′ with the
label m ≥ n, we say that ♢β at the position n is fulfilled in m. Next, we define state-labelled nodes.
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Definition 2.20 (State-labelled node). Let n : Γ be a labelled node. We say that it is state-labelled node
if Γ contains only sentences of the form p,¬p or ©α.

In a branch B of a tree T with a leaf node xi, after applying every static rule aforementioned (the
order of application of these rules is non-deterministic) that can be applied, all leaf nodes of the generated
branches contain only sentences of the form p,¬p or ©α in their Γ. State-labelled nodes mark the full
expansion of all sentences that hold in a state n. In a state-labelled node, the transition rule is applied.

(Transition)
n : {©α1,©α2,©α3, . . . ,©αk} ] Σ (Σ is the set of literals)

n+ 1 : {α1, α2, α3, . . . , αk}

After the transition rule is applied to a state-labelled node n : Γ, we add a node with the label n+ 1.
It marks the start of a new temporal state n+ 1. Only sentences in the scope of ©-sentences are carried
to the new node. The particularity of Reynolds’s method is that before applying the transition rule, a
set of checks are added in order to prevent branches from expanding indefinitely. These checks are
called loop and prune rules. These rules, together with the transition rule, are called dynamic rules. Let
B := 〈x0, x1, x2, . . . , v〉 be a branch where v is a state-labelled node n : Γv. These rules are applied
following the order on this list:

1. [Loop]: Suppose that there is a state ancestor node u that has the labelled node m : Γu such that
m < n, Γv ⊆ Γu, and for each sentence ©(αUβ) or ©♢β in Γu, we have a node x with the label
l : Γx with m < l ≤ n such that β ∈ Γx. The branch B in this case is ticked with (3).

2. [Prune]: Suppose that there are two state-labelled ancestors u1 with the label m1 : Γu1 and u2 with
the label m2 : Γu2 such that m1 < m2 < n and the same set of sentences Γu1 = Γu2 = Γv = Γ.
Moreover, for any sentence ©(αUβ) or ©♢β in Γ, if there is x with the label l1 : Γx such that
m2 < l1 ≤ n and β ∈ Γx then there is a node y with l2 : Γy with m1 < l2 ≤ m2 and β ∈ Γy. The
branch B in this case is crossed with (7).

3. [Transition]: If none of the above rules apply, then apply transition rule.

Figure 2.5 is a graphical representation of the prune and loop rules. The loop rule states that if a
subset of sentences is repeated along two nodes of a branch B such that all of the eventualities within
said sentences are satisfied in between, then we can build a model by looping the states (more on that in
the upcoming). That is why when this case occurs, the branch B is considered a successful branch.

The prune rule states that if a lead state node at the end of a branch B has a label which already
appeared twice before, and between the second and third appearance there were no new eventualities
fulfilled that were not already fulfilled between the first and the second occurrence. The branch B is then
crossed in order to prioritize other branches that satisfy additional eventualities. Here lies the novelty
of Reynolds’s method [Rey16a] instead of linking nodes with an ancestor node and pruning it later on
the second phase of the tableaux (such is the case in Wolper’s method [Wol85]). Branches that do not
prioritize the fulfilment of eventualities are not considered to be candidate branches for the satisfiability
of the initial sentence.

It can be shown using these set of rules, the termination of the tableau is guaranteed because there
can be no branch that expands indefinitely (the sketch proof is provided in the long report of Reynolds’s
work [Rey16b]). Therefore any tableau T for an L sentence is a saturated tableau.

Given a fully expanded tableaux T for a sentence α ∈ L with a successful branch B, Reynolds
[Rey16b] shows that using only B, an LTL interpretation IB can be induced such that IB, 0 |= α.
Depending on which condition the branch B is on (either empty or loop), Reynolds [Rey16b] provides the
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n : {□p}

n : {p,©□p}

n+ 1 : {□p}

n+ 1 : {p,©□p}

(3)

(a) Loop rule

n : {□p,♢¬p}

· · ·

n : {p,©□p,©♢¬p}

n+ 1 : {□p,♢¬p}

· · ·

n+ 1 : {p,©□p,©♢¬p}

n+ 2 : {□p,♢¬p}

· · ·

n+ 2 : {p,©□p,©♢¬p}

(7)

(b) Prune rule

Figure 2.5: Dynamic rules

adequate interpretation IB that satisfies the sentence α. Reynolds [Rey16b] shows also the completeness
of the method by proving that any tableau (Since the order of static rules application does not matter, a
sentence can multiple tableaux) for a satisfiable sentence α has a successful branch B.

2.4 Summary

This chapter highlights the notions and notations of LTL that we shall use in the upcoming chapters.
Furthermore, we show two seminal works in the area of satisfiability in LTL. First of which is the
work of Sistla and Clarke [SC85] that provides a roadmap for determining the computational properties
of this problem. The second one is the work of Reynolds [Rey16a], which is an algorithmic procedure
for answering the problem. This concludes the preliminaries portion of the memoir. In the contribution
part of the memoir, we shall report the findings of our study, which features a definition of a defeasible
extension of LTL called defeasible LTL and the results obtained around this new formalism.
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Defeasible linear temporal logic
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In this chapter, we describe a formalism for reasoning about time that is able to handle exceptional
points of time [CCACV20]. We do so by investigating a defeasible extension of LTL with a preferential
semantics. The following example introduces a case scenario we shall be using in the remainder of this
chapter, with the purpose of giving a motivation for this formalism and better illustrating the definitions
in what follows.

Example 3.1. We shall resume the Example 2.2. Here is the transition system as a reminder:

x1, y1start x2, y3

x3, y3x1, y2

x2, y1
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Recall that we want to check whether □(x2 → y3) is true. However in this transition system, it is
possible to have run where x2 → y3 is false at some time points. Below, is an interpretation that depicts
such case:

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

For t > 5, V (t) = V (5) = {x2, y3}

Under normal circumstances, the program assigns the value 3 to y whenever x = 2. We can express
this fact using classical LTL as follows: □(x2 → y3), with x2 → y3 defined by ¬x2 ∨ y3. Nevertheless,
the agent notices that there is one exceptional time point (the time point 3) where the program assigns
the value 1 to y when x = 2.

Some might consider that the current program is defective at some points of time. In LTL, the
statement □(x2 → y3) ∧ ♢(x2 ∧ y1) will always be false, since y cannot have two different values in an
iteration where x = 2. Nonetheless we want to propose a logical framework that is exception tolerant
for reasoning about a system’s behaviour. We would like express that (x2 → y3) is true in all normal
time points while taking into account that there might be some exceptional time points where (x2 → y3)
is not necessarily true.

3.1 Introducing defeasible temporal operators

Britz and Varzinczak [BV18] introduced new modal operators called defeasible modalities. Defeasible
operators, unlike their classical counterparts, are able to single out normal worlds from those that are less
normal or exceptional in the reasoner’s mind. Using a similar approach, we extend the vocabulary of
classical LTL with the defeasible temporal operators □∼ and ♢∼. Sentences of the resulting logic LTL˜
are built up according to the following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ©α | αUα | □∼α | ♢∼α

Other standard Boolean operators are part of the syntax of LTL˜. Let α, β be two sentences of LTL˜
language, the symbol > is an abbreviation of α ∨ ¬α, ⊥ is an abbreviation of α ∧ ¬α, the implication
operator is α → β def

= ¬α ∨ β and the equivalence operator is α ↔ β def
= (α → β) ∧ (β → α). The

intuition behind the defeasible operators in LTL˜ is the following: □∼ reads as defeasible always and
♢∼ reads as defeasible eventuality. The set of all well-formed LTL˜ sentences is denoted by L .̃ It is
worth to mention that any well-formed sentence α ∈ L is a sentence of L .̃ Here are some examples of
well-formed sentences in LTL˜.

Example 3.2. Let p, q ∈ P:

p, ¬p, □(p ∧ q) → ♢p, ♢∼□∼p, □♢∼p ∧□∼¬q

Same as the negation and temporal operators, defeasible operators have higher precedence than the
other operators. As such, the sentence □♢∼p∧□∼¬q is the same as (□♢∼p)∧ (□∼¬q) and not □♢∼(p∧□∼¬q).

Example 3.3. Going back to Example 3.1, we can describe the normal behaviour of the program using
the statement □∼(x2 → y3)∧♢(x2 ∧ y1). In all normal future time points, the program assigns the value
3 to y whenever x = 2. Although unlikely, there are some exceptional time points in the future where
x = 2 and y = 1. But those are “ignored” by the defeasible always operator.
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Normality can be expressed using non-monotonic operators. A similar version of the classical proper-
ties (see Section 2.1.1) can be expressed over runs that contain exceptional time points. These defeasible
properties target future time points that are normal on one hand, and ignore states that are exceptional on
the other. Here are some defeasible properties that can be expressed in LTL˜.

• Defeasible safety: □∼α means that the property α holds for all normal future time points of the run.

• Pertinent liveness: ♢∼α means that the property α will hold in a normal future time point of the run.

• Defeasible response: □∼♢∼α means that for all normal time points of the run, there is a later normal
time point where α holds.

• Defeasible persistence: ♢∼□∼α means that there exists a normal time point in the run such that from
then onward α holds for all normal time points.

The reasoner can therefore express defeasible properties using these new modalities, and more im-
portantly, use it alongside the rest of other operators of LTL˜. Next we shall discuss how to interpret
statements of LTL˜ formalism and how to determine the truth values of each well-formed sentence in L .̃

3.2 Preferential interpretations

Moving on to the semantics, an LTL˜ interpretation I is a pair I def
= (V, ⋎ ). Recall that in Section

2.1.1, a temporal structure is represented by the ordering of integers (N, <). This shall not change for
defeasible LTL interpretations. The function V is a valuation function which associates each time point
t ∈ N with a truth assignment of all propositional atoms V (t). The preferential component ⋎ of the
interpretation of LTL˜ is directly inspired by the preferential semantics proposed by Shoham [Sho88]
and used in the KLM approach [KLM90]. The preference relation ⋎ is a strict partial order on points
of time. Following the KLM approach [KLM90], t ⋎ t′ means that t is more normal or preferred than t′.
Time points can be ordered using the relation ⋎ , the closer they are to being minimal with respect to ⋎ ,
the more preferable they are, and vice versa, the farther they are to being minimal with respect to ⋎ , the
more exceptional they become. We also use the notation (t, t′) ∈ ⋎ to indicate that t is more preferred
than t′. The relation ⋎ is an ordering relation for time points of a temporal structure, which symbolizes
the preference over them. Before setting the formal definition for LTL˜ interpretation, we introduce the
notion of minimality and well-foundness w.r.t. the relation ⋎ .

Definition 3.4. (Minimality w.r.t. ⋎ ) Let ⋎ be a strict partial order on N and N ⊆ N. The set of the
minimal elements of N w.r.t. ⋎ , denoted by min ⋎ (N), is defined by min ⋎ (N) def

= {t ∈ N | there is no
t′ ∈ N such that t′ ⋎ t}.

Definition 3.5 (Well-founded set). Let ⋎ be a strict partial order on N. We say N is well-founded w.r.t.
⋎ iff min ⋎ (N) 6= ∅ for every ∅ 6= N ⊆ N.

Definition 3.6 (Preferential temporal interpretation). An LTL˜ interpretation on a set of propositional
atoms P , also called preferential temporal interpretation on P , is a pair I def

=(V, ⋎ ) where V is a mapping
function V : N −→ 2P , and ⋎ ⊆ N× N is a strict partial order on N such that N is well-founded w.r.t.
⋎ . We denote the set of preferential temporal interpretations by I.

Example 3.7. Going back to the run in Example 3.1, time points where x = 2 and y = 3 are more
preferred than time points where x = 2 and y = 1. For example, the time point 1 and 5 are more
preferred than 3. We extend the interpretation I in Example 3.1 by adding the set ⋎ := {(5, 3), (1, 3)}.
Figure 3.1 represents a preferential temporal interpretation I = (V, ⋎ ) of the second run. Directed
edges (1 −→ 3 for example) in Sub-figure a represent the pairs in the preference relation ⋎ .
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3

15

(a) Preference relation ⋎

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

(b) For t > 5, V (t) = V (5) = {x2, y3}

Figure 3.1: Preferential temporal interpretation I = (V, ⋎ )

In what follows, given an ordering relation ⋎ and a time point t ∈ N, the set of preferred future
time points relative to t is the set min ⋎ ([t,∞[) which is denoted in short by min ⋎ (t). It is also worth
pointing out that given a preferential interpretation I = (V, ⋎ ) and N, the set min ⋎ (t) is always a
non-empty subset of [t,∞[ at any time point t ∈ N.

Preferential temporal interpretations provide us with an intuitive way of interpreting sentences of L .̃
Let α ∈ L ,̃ let I = (V, ⋎ ) be a preferential interpretation, and let t be a time point in N. Satisfaction
of α at t in I , denoted I, t |= α, is defined as follows:

• I, t |= □∼α if I, t′ |= α for all t′ ∈ min ⋎ (t);

• I, t |= ♢∼α if I, t′ |= α for some t′ ∈ min ⋎ (t).

The truth values of Boolean connectives and classical modalities are defined as in LTL. The intuition
behind a sentence of the form □∼α is that α holds in all preferred time points that come after t. ♢∼α
intuitively means that α holds on at least one preferred time point relative to the future of t.

We say α ∈ L˜is preferentially satisfiable if there is a preferential temporal interpretation I and a
time point t in N such that I, t |= α. Without loss of generality, we can say that α ∈ L˜is preferentially
satisfiable if there is a preferential temporal interpretation I s.t. I, 0 |= α. A sentence α ∈ L˜is valid
(denoted by |= α) if for all preferential temporal interpretations I and time points t in N, we have
I, t |= α. We shall highlight the study of the satisfiability of LTL˜ sentences in the upcoming chapters
of the contribution.

Example 3.8. In the interpretation I = (V, ⋎ ) in Figure 3.1, the set of future preferred time points
relative to 0 is min ⋎ (0) = {0, 1, 2, 4} ∪ [5,∞[. We have the following:

• The time point 3 has the valuation V (3) = {x2, y1}. Thus, we have I, 0 |= ♢(x2 ∧ y1) because
I, 3 |= x2 ∧ y1. Moreover, we have I, 0 6|= □(x2 → y3) because I, 3 6|= x2 → y3. Therefore,
we conclude that I, 0 6|= □(x2 → y3) ∧ ♢(x2 ∧ y1). See that since x and y can have one and
only one value, then the □(x2 → y3) ∧ ♢(x2 ∧ y1) is always false (at most, either □(x2 → y3) or
♢(x2 ∧ y1) but never both).

• Using defeasible temporal operators, we have I, t |= x2 → y3 for all t ∈ min ⋎ (0). See that the
exceptional time point 3, on which the statement x2 → y3 is false, is not in min ⋎ (0). Therefore,
we can infer that I, 0 |= □∼(x2 → y3) ∧ ♢(x2 ∧ y1).

We can see that the addition of ⋎ relation preserves the truth values of all classical temporal sen-
tences. Moreover, for every α ∈ L, we have that α is satisfiable in LTL if and only if α is preferentially
satisfiable in LTL˜.
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3.3 Properties of defeasible temporal modalities

In this section, we discuss properties of defeasible temporal modalities next and compare them to their
classical versions. A detailed version of classical temporal modalities can be found in Section 2.1.2.

Proposition 3.9 (Duality). Let α be a well-formed sentence in L .̃ We have:

|= □∼α ↔ ¬♢∼¬α

Proof. We take an arbitrary I = (V, ⋎ ) ∈ I, α ∈ L˜and t ∈ N. For the only-if part, we assume that
I, t |= □∼α and suppose that I, t 6|= ¬♢∼¬α. Since I, t |= □∼α, we have I, t′ |= α for all t′ ∈ min ⋎ (t).
By our assumption, we have I, t |= ♢∼¬α. Thus, there is a time point t′ ∈ min ⋎ (t) such that I, t′ |= ¬α.
This contradicts with the above fact that I, t′ |= α for all t′ ∈ min ⋎ (t). Thus, I, t |= ¬♢∼¬α and
therefore we conclude that |= □∼α → ¬♢∼¬α.

For the if part, we assume that I, t |= ¬♢∼¬α. Going back to the semantics of the operator ♢∼, if
I, t |= ♢∼¬α, then there is a t′ ∈ min ⋎ (t) such that I, t |= ¬α. Therefore, I, t |= ¬♢∼¬α means that
there is no t′ ∈ min ⋎ (t) where I, t′ |= ¬α. Hence, for all t′ ∈ min ⋎ (t), we have I, t′ 6|= ¬α, and
consequently I, t′ |= α. We conclude that I, t |= □∼α and therefore |= ¬♢∼¬α → □∼α.

Analogously as for the classical modalities, we have a duality between the □∼ and ♢∼ operators. The
validity |= ♢∼α ↔ ¬□∼¬α is also true.

Proposition 3.10. Let α be a well-formed sentence in L .̃ We have:

|= □α → □∼α and |= ♢∼α → ♢α

Proof. We take an arbitrary I = (V, ⋎ ) ∈ I, α ∈ L˜and t ∈ N.

• We assume that I, t |= □α. Then, we have I, t′ |= α for all t′ ∈ [t,∞[. Moreover, since
min ⋎ (t) ⊆ [t,∞[, we have I, t′ |= α for all t′ ∈ min ⋎ (t). Therefore, we have I, t |= □∼α. We
conclude that |= □α → □∼α.

• We assume that I, t |= ♢∼α. Then, there is a t′ ∈ min ⋎ (t) such that I, t |= α. Since min ⋎ (t) ⊆
[t,∞[ and t′ ∈ min ⋎ (t), there is t′ ∈ [t,∞[ such that I, t′ |= α. Therefore, we have I, t |= ♢α.
We conclude that |= ♢∼α → ♢α.

Proposition 3.10 states that if a statement holds in all of future time points of any given point of time
t, it holds on all preferred future time points. As intended, this property establishes the defeasible always
as “weaker” than the classical always. It can commonly be accepted since the set of all preferred future
states are in the future. This is why we named □∼ defeasible always. On the other hand, we see that ♢∼ is
“stronger” than classical eventually, the statement within ♢∼ holds at a preferable future.

Next, we discuss the axioms that hold for classical modalities (□,♢) and compare them with defea-
sible modalities (□∼,♢∼). In the case of classical modalities, the distributivity axiom (K) |= □(α → β) →
(□α → □β), the reflexivity axiom (T) |= □α → α and the transitivity axiom (4) |= □α → □□α are
valid [BA12b]. As for defeasible modalities, we have the following:

Proposition 3.11 (Axiom K̃). Let α, β ∈ L .̃ We have:

(K̃) |= □∼(α → β) → (□∼α → □∼β)
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Proof. We take an arbitrary I = (V, ⋎ ) ∈ I, α, β ∈ L˜and t ∈ N. We assume that I, t |= □∼(α → β)
and suppose that I, t 6|= □∼α → □∼β. Since I, t |= □∼(α → β), we have (1) I, t′ |= α → β for all
t′ ∈ min ⋎ (t). Going back to the supposition, if I, t 6|= □∼α → □∼β, then I, t |= □∼α and I, t |= ¬□∼β.
Using duality, we obtain I, t |= □∼α and I, t |= ♢∼¬β. Since I, t |= ♢∼¬β, there is a t′′ ∈ min ⋎ (t) where
I, t′′ |= ¬β. Moreover, since t′′ ∈ min ⋎ (t) and I, t |= □∼α, we have I, t′′ |= α. Therefore, we have
I, t′′ |= α∧¬β. Thanks to De Morgan’s law, we obtain I, t′′ |= ¬(α → β). The result of the supposition
conflicts with the assumption (1), as t′′ is also in min ⋎ (t) and thus α → β is true at t′′. Therefore, we
have I, t |= □∼α → □∼β. We conclude that |= □∼(α → β) → (□∼α → □∼β).

The axiom of distributivity (K) can be stated in terms of our defeasible temporal operators. We can
also verify the validity of these two statements |= □∼(α∧β) ↔ (□∼α∧□∼β) and |= (□∼α∨□∼β) → □∼(α∨β).

Proof. • |= □∼(α ∧ β) ↔ (□∼α ∧ □∼β). We take an arbitrary I = (V, ⋎ ) ∈ I, α, β ∈ L˜and t ∈ N.
For the if part, we assume that I, t |= □∼α ∧ □∼β. For all t′ ∈ min ⋎ (t), we have I, t′ |= α and
I, t′ |= β. Therefore, we have I, t′ |= α ∧ β and thus I, t |= □∼(α ∧ β). For the only if part,
we assume that I, t |= □∼(α ∧ β). For all t′ ∈ min ⋎ (t), we have I, t′ |= α ∧ β. Then, for all
t′ ∈ min ⋎ (t), we have I, t′ |= α and also I, t′ |= β. Thus, we have I, t |= □∼α and I, t |= □∼β and
therefore I, t |= □∼α ∧□∼β.

• |= (□∼α ∨□∼β) → □∼(α ∨ β). We take an arbitrary I = (V, ⋎ ) ∈ I, α, β ∈ L˜and t ∈ N such that
I, t |= □∼α ∨ □∼β. We have I, t |= □∼α or I, t |= □∼β. We assume that I, t |= □∼α. It follows that
I, t′ |= α for all t′ ∈ min ⋎ (t). Then, we have I, t′ |= α ∨ β for all t′ ∈ min ⋎ (t). Therefore, we
have □∼(α ∨ β).

Similarly to the operator □, the validity |= □∼(α ∨ β) → (□∼α ∨ □∼β) is not true. Assume that a
preferential interpretation I satisfies □∼(α∨β) at t. This means that for all t′ ∈ min ⋎ (t), either I, t′ |= α
or I, t′ |= β. Let say that α is true for all t′ ∈ min ⋎ (t) except for one time point t′′ which satisfies β
instead. In this case, neither □∼α nor □∼β are true in t.

Proposition 3.12 (Reflexivity). Let α ∈ L .̃ We have:

(T̃ ) 6|= □∼α → α

The reflexivity axiom (T̃ ) for the classical operators does not hold in the case of defeasible modal-
ities. We can easily find an interpretation I = (V, ⋎ ) where I, t 6|= □∼α → α. Indeed, since we can
have t 6∈ min ⋎ (t) for a temporal point t, we can have I, t |= □∼α and I, t |= ¬α. Case in point on the
interpretation in Figure 3.1, the set of preferred future time points relative to 3 is min ⋎ (3) = [4,∞[. We
can see that I, t′ |= x2 → y3 for all t′ ∈ min ⋎ (3) and therefore I, 3 |= □∼(x2 → y3). However, we have
I, 3 6|= x2 → y3.

Proposition 3.13 (Transitivity). Let α ∈ L .̃ We have:

(4̃) 6|= □∼α → □∼□∼α

It is worth to point out that the set of future preferred time points changes dynamically as we move
forward in time. Given three time points t1 ≤ t2 ≤ t3, t3 6∈ min ⋎ (t1) whilst t3 ∈ min ⋎ (t2) could be
true in some cases. Hence, if I, t |= □∼α does not imply that for all t′ ∈ min ⋎ (t), I, t

′ |= □∼α. Therefore,
the transitivity axiom (4̃) does not hold in the case of defeasible modalities. On the other hand, given
those three time points, t3 6∈ min ⋎ (t2) implies that t3 6∈ min ⋎ (t1).

We argue that since defeasible modalities are non-monotonic in nature, the reflexivity and transitivity
axioms for these type of modalities do not hold. In the case of classical modalities, by combining both
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(T) and (4) axioms, we obtain the validity |= □□α ↔ □α. Using duality, we also obtain |= ♢♢α ↔ ♢α.
And as discussed in Proposition 3.12 and 3.13, the two aforementioned validities are false in the case of
defeasible modalities, i.e., 6|= □∼□∼α ↔ □∼α and 6|= ♢∼♢∼α ↔ ♢∼α. Therefore, there is no collapsing when it
comes to defeasible temporal operators.

3.4 LTL˜ sub-languages

In this memoir, we will focus on two subsets of the language, namely, L1 and L⋆. In the sub-language
L1, we omit U and □∼ from the set of modalities. Moreover, only Boolean sentences are allowed within
the scope of □ sentences. In the second subset L⋆, the language contains only Boolean connectives, the
two defeasible operators □∼,♢∼ and their classical counterparts.

3.4.1 The fragment L1

The set of operators consists of ∧,∨,♢,□,©,♢∼. We shall assume in L1 are in negation normal form,
which means that negation is only applied to atomic propositions. Furthermore, only Boolean connectors
are allowed within the scope of □ sentences. Temporal operators, classical or non-monotonic, are not
permitted in the scope of □ sentences.

In what follows, we describe well formed sentences of L1. In order to do that, we define first the set
of Boolean sentences Lbool. Let p ∈ P , sentences αbool ∈ Lbool are defined recursively as such:

αbool ::= p | ¬p | αbool ∧ αbool | αbool ∨ αbool

Next, let αbool ∈ Lbool, sentences in L1 are recursively defined as such:

α ::= αbool | α ∧ α | α ∨ α | ♢α | □αbool | ©α | ♢∼α
While the expressivity of L1 is restricted, we can express a variety of properties using this language.

For instance, we can check for the pertinent liveness property ♢∼α, liveness property ♢α and the persis-
tence property ♢□α. We can also express another version of the defeasible persistence property ♢∼□α
(after a normal time point, α holds in all future time points). Nevertheless, defeasible safety □∼α is not
allowed and only safety of Boolean properties is allowed □αbool.

Example 3.14. Here are some examples of well-formed sentences in L1. Let p, q ∈ P:

p, ¬p, □(p ∧ q) → ♢p, ♢∼□p, ©□(p ∨ q)

The following sentences are not well-formed sentences in L1:

□∼p, □♢(p ∧ q), □♢∼p

3.4.2 The fragment L⋆

The second fragment L⋆ is a sub-language of L˜on which only Boolean connectives and the temporal
operators □,□∼,♢,♢∼ (the operators ©,U are omitted) are allowed as connectives. Sentences in L⋆ are
recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | □∼α | ♢∼α
The fragment L⋆ is more expressive than L1. All classical and defeasible properties that are discussed

in Sections 2.1.1 and 3.1 can be expressed using this fragment. With the absence of ©, the inductive form
of both □ and ♢ cannot be expressed, i.e., |= □α ↔ α ∧ ©□α and |= ♢α ↔ α ∨ ©♢α.
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Example 3.15. Here are some examples of well-formed sentences in L⋆. Let p, q ∈ P:

p, ¬p, □(p ∧ q) → ♢p, ♢∼□p, □♢∼(p ∨ q), □∼p, □∼♢p, □∼♢∼(p → q)

The following sentences are not well-formed sentences in L⋆:

©p, pUq,©□(p ∧ q)

We based the syntax of these fragments on the fragments discussed in Section 2.2.2. In regards to the
fragment L1, sentences in L1 follows a similar pattern to the LNNF (♢,©) fragments, with the addition
of ♢∼ and allowing □ sentences only when they have αbool sentences in their scope. For the fragment
L⋆, we add our defeasible temporal operators □∼,♢∼ to the fragment L(♢). In the upcoming chapters, we
discuss the the satisfiability problem of sentences in these two fragments.

3.5 Summary

We show a new aspect of defeasibility that can be formulated in temporal logic, which is the normality
in a run. Normality in LTL indicates the importance of any time point during a run compared to others.
The addition of the preference relation ⋎ over time points adds a new dimension to the verification of
properties of runs by nuancing the desirability of the outcome in each time point. The well-foundness
condition (see Definition 3.5) can be intuitively understood, in the sense that, any subset of time points
can be categorized from the most desirable to the least desirable.

In this version of defeasible linear temporal logic, non-monotonic temporal operators express spec-
ifications similar to their classical counterparts, all whilst taking into account that exceptions might be
tolerated at some time points. This gives the defeasible temporal operators the same elegance that clas-
sical modalities express when it comes to describing properties on entire runs. When reasoning about
run that might have exceptional time points, the reasoner does not need to explicitly mention which are
preferable and which are not. The □∼ operator is a “weaker” version of □ that skips time points that are
preferable. On the other hand, ♢∼ is a “stronger” version of ♢ that targets preferable time points in the
future. With this framework, other defeasible versions of temporal operator can be implemented, such
as until U , release R and also past operators. The well-foundness ensures that any subset (past or future
of a time point t) has minimal time points w.r.t. ⋎ , and thus having preferable elements. This will be a
subject for future work.
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Chapter 4

The satisfiability problem of LTL˜
sentences
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With the L˜language and preferential temporal interpretations defined, we address in this chapter
an analysis of the satisfiability of L˜sentences. The algorithmic problem is as follows: Given an input
sentence α ∈ L ,̃ decide whether α is preferentially satisfiable. As highlighted in Section 2.2, Sistla and
Clarke [SC85] provide, depending on the fragment of L language, structures that are useful to prove the
bounded model property. Then, they lay out the procedures for checking the satisfiability of the sentence
within each of these fragments. In order to establish computational properties about the satisfiability
problem in LTL extended with defeasible operators such as those we have considered so far. We intro-
duce structures and LTL˜ fragments inspired by the approach put forward by Sistla and Clarke [SC85].
A part of this work was published in Chafik et al. [CCACV20]. We shall expand it further in this chapter.

This chapter is divided into four parts: we shall discuss in Section 4.1 an interesting sub-class of
LTL˜ interpretations that is useful for establishing the bounded model property for a part of the lan-
guage. Next, we investigate in Section 4.2 Sistla and Clarke’s notations for preferential temporal struc-
tures. We proceed then to establish the bounded model property for two of L˜fragments, namely L1

(Section 4.3) and L⋆ (Section 4.5). Finally, we provide a procedure for checking the satisfiability of
sentences within these fragments (Section 4.4 for L1 sentences and Section 4.6 for L⋆ sentences). Proofs
of propositions and lemmas that are not present in the main text of this chapter can be found in Appendix
A.

4.1 State-dependent preferential interpretations

The complexity of the satisfiability problem for LTL has been investigated by Sistla and Clarke [SC85].
Since temporal structures are infinite by nature, finite representations of these structures were put in place
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in order to check the computational properties of LTL. In the case of LTL˜, the preferential component
of I interpretations could also be infinite. That is why in the study of the satisfiability problem of LTL˜,
we define a well-behaved ordering relation ⋎ . In this section, we introduce a subclass of I-interpretations
called state-dependent interpretations.

Definition 4.1 (State-dependent preferential interpretations). Let I = (V, ⋎ ) ∈ I. I is a state-dependent
preferential interpretation iff for every i, j, i′, j′ ∈ N, if V (i′) = V (i) and V (j′) = V (j), then (i, j) ∈ ⋎
iff (i′, j′) ∈ ⋎ .

The notation Isd denotes the set of all state-dependent interpretations.

Example 4.2. Let take the preferential temporal interpretation represented of the second run (see Figure
4.1 for a reminder).

Recall that, time points where x = 2 and y = 3 are more preferred than time points where x = 2 and
y = 1. In the previous interpretation I = (V, ⋎ ), we had ⋎ := {(5, 3), (1, 3)}. Note that for all t > 5,
we have V (t) = {x2, y3}. Now that if all time points with valuations 1 and 5 are also more preferred than
3, We can use a state-dependent interpretation I ′ ∈ Isd to represent this case. The interpretation I ′ =
(V ′, ⋎ ′) has the same valuation function as the valuation function V in I . In addition, for all (t, t′) ∈ N2

such that V ′(t) = {x2, y3} and V ′(t′) = {x2, y1}, we have (t, t′) ∈ ⋎ ′. In other words, the relation ⋎ ′

can be defined as such: ⋎ ′ = {(1, 3), (5, 3)}∪{(t, t′) ∈ N2 | V ′(t) = {x2, y3} and V ′(t′) = {x2, y1}}.

3

15

(a) Preference relation ⋎

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

(b) For t > 5, V (t) = V (5) = {x2, y3}

Figure 4.1: Preferential temporal interpretation I = (V, ⋎ )

The intuition behind setting up this restriction is to have a more compact form of expressing the
ordering relation over time points. In general, time points with similar valuations are identical with re-
gards to ⋎ , they express the same normality towards other time points. Moreover, we have an interesting
property that does not hold in the general case.

Proposition 4.3. Let I = (V, ⋎ ) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and j ∈ min ⋎ (i). If
V (j) = V (j′), then j′ ∈ min ⋎ (i

′).

Proof. Let I = (V, ⋎ ) ∈ Isd and let i, j, i′, j′ be four time points s.t. i ≤ i′, i′ ≤ j′ and j ∈ min ⋎ (i).
We assume that V (j) = V (j′) and we suppose that j′ 6∈ min ⋎ (i

′). Following our supposition, j′ 6∈
min ⋎ (i

′) means that there exists k ∈ [i′,∞[ where (k, j′) ∈ ⋎ . From Definition 4.1, if (k, j′) ∈ ⋎
and V (j) = V (j′), then (k, j) ∈ ⋎ . Since (k, j) ∈ ⋎ , we have j 6∈ min ⋎ (i). This conflicts with our
assumption of j ∈ min ⋎ (i). We conclude that if V (j) = V (j′) then j′ ∈ min ⋎ (i

′).

Proposition 4.3 states that whenever j ∈ min ⋎ (i), i.e., j is a preferred future time point of i, then all
j′ ≥ i with the same valuation as j are preferred futures of all time points i′ ≥ i. This property is specific
to the class of state-dependent interpretations. We add another property that holds on all interpretations
I ∈ I.

Proposition 4.4. Let I = (V, ⋎ ) ∈ I and let i, j ∈ N s.t. j ∈ min ⋎ (i). For all i ≤ i′ ≤ j, we have
j ∈ min ⋎ (i

′).
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Proof. Let I = (V, ⋎ ) ∈ I and let i, i′, j ∈ N s.t. j ∈ min ⋎ (i) and i ≤ i′ ≤ j. Since j ∈ min ⋎ (i),
there is no j′ ∈ [i,∞[ s.t. (j′, j) ∈ ⋎ . Moreover, we have i ≤ i′, we conclude that there is no j′ ∈ [i′,∞[
s.t. (j′, j) ∈ ⋎ . Therefore, we have j ∈ min ⋎ (i

′).

In the case of I-interpretations, when a time point j is a preferred time point of i, than the time point
j remains a preferred time point of all time points between i and j. State-dependent interpretations are
going to be used as the de facto interpretations for the fragment in L⋆. We shall study them in more depth
in Sections 4.5 and 4.6.

4.2 Useful representations of preferential structures

Throughout this work, the term temporal sequence, or sequence in short, will denote a sequence of
integer numbers in their natural order. A sequence represents a set of time points. They can either be in a
continuous interval of integers, a discontinuous sequence or a combination of both. Sequences can also
be finite or infinite. In what follows, we define formally the notion of sub-sequences.

Definition 4.5 (Sub-sequence). Let N,N ′ be two sequences of natural number. N ′ is a subsequence of
N (written as N ′ ⊆ N ) iff for all i ∈ N ′, we have i ∈ N .

We introduce pseudo-interpretations next. A pseudo-interpretation IN over a sequence N is the
restriction of the valuation and the ordering relation of the interpretation I = (V, ⋎ ) to time points of N .

Definition 4.6 (Pseudo-interpretation over N ). Let I = (V, ⋎ ) ∈ I and N be a sequence of natural
numbers. The pseudo-interpretation over N is the pair IN def

= (V N , ⋎ N ) where:

• V N : N −→ 2P is a valuation function over N , where for all i ∈ N , we have V N (i) = V (i),

• ⋎ N ⊆ N ×N , where for all (i, j) ∈ N2, we have (i, j) ∈ ⋎ N iff (i, j) ∈ ⋎ .

With pseudo-interpretations, we can check the truth values of sentences within sequences of the
starting interpretation I . The truth values of L˜sentences in pseudo-interpretations are defined in a similar
fashion as for preferential temporal interpretations. With |=P we denote the truth values of sentences in
a pseudo-interpretation.

• IN , t |=P p if p ∈ V N (t);

• IN , t |=P ¬α if IN , t 6|=P α;

• IN , t |=P α ∧ β if IN , t |=P α and IN , t |=P β;

• IN , t |=P α ∨ β if IN , t |=P α or IN , t |=P β;

• IN , t |=P □α if IN , t′ |=P α for all t′ ∈ N s.t. t′ ≥ t;

• IN , t |=P ♢α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ≥ t;

• IN , t |=P ©α if we have t+ 1 ∈ N and IN , t+ 1 |=P α;

• IN , t |=P □∼α if for all t′ ∈ N s.t. t′ ∈ min ⋎ N (t), we have IN , t′ |=P α;

• IN , t |=P ♢∼α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ∈ min ⋎ N (t).
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Another observation made by Sistla & Clarke in the case of finite sets of atomic proposition P is
that in every LTL interpretation, there is a time point t after which every t-successor’s valuation occurs
infinitely many times. This is an obvious consequence of having an infinite set of time points and a finite
number of possible valuations. That is the case also for LTL˜ interpretations.

Lemma 4.7. Let I = (V, ⋎ ) ∈ I. There exists a t ∈ N s.t. for all l ∈ [t,∞[, there is a k > l where
V (l) = V (k).

Definition 4.8. For an interpretation I ∈ I, we denote the first time point where the condition set in
Lemma 4.7 is satisfied by tI .

With the delimiter tI defined, we can split each temporal structure into two intervals: an initial and a
final part.

Definition 4.9. Let I = (V, ⋎ ) ∈ I. We define:

• init(I) def
= [0, tI [;

• final(I) def
= [tI ,∞[;

• range(I) def
= {V (i) | i ∈ final(I)};

• val(I) def
= {V (i) | i ∈ N};

• size(I) def
= length(init(I)) + card(range(I)), where length(·) denotes the length of a sequence

and card(·) set cardinality.

In the size of I , we count the number of time points in the initial part and the number of valuations
contained in the final part. In the absence of © and U operators (such is the case of the fragment L⋆), the
order of time points in final I does not matter [SC85]. In what follows, we show that it is the case if we
use L⋆ sentences and Isd interpretations.

Proposition 4.10. Let I = (V, ⋎ ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.
V (j) = V (j′). Then we have j ∈ min ⋎ (i) iff j′ ∈ min ⋎ (i

′).

Lemma 4.11. Let I = (V, ⋎ ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′). Then for
every α ∈ L⋆, we have I, i |= α iff I, i′ |= α.

What we have in Lemma 4.11 is that given an interpretation I ∈ Isd, points of time in final(I)
having the same valuations satisfy exactly the same sentences.

Definition 4.12 (Faithful Interpretations). Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd be two inter-
pretations over the same set of atomic propositions P . We say that I, I ′ are faithful interpretations if
val(I) = val(I ′) and, for all i, j, i′, j′ ∈ N s.t. V ′(i′) = V (i) and V ′(j′) = V (j), we have (i, j) ∈ ⋎ iff
(i′, j′) ∈ ⋎ ′.

Throughout this chapter, we write init(I)
.
= init(I ′) as shorthand for the condition that states:

length(init(I)) = length(init(I ′)) and for each i ∈ init(I) we have V (i) = V ′(i).

Lemma 4.13. Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over P such
that V ′(0) = V (0) (in case init(I) is empty), init(I) .

= init(I ′), and range(I) = range(I ′). Then for
all α ∈ L⋆, we have that I, 0 |= α iff I ′, 0 |= α.
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In the case of an empty initial part, we need to make sure that both of the interpretations start at the
same temporal state V (0). Hence, we add the constraint V ′(0) = V (0) when init(I) is empty. Lemma
4.13 implies that the ordering of time points in final(·) does not matter, and what matters is the range(·)
of valuations contained within it. It is worth to mention that Lemmas 4.11 and 4.13 hold only in Isd

interpretations and they are not always true in the general case.
Sistla & Clarke [SC85] introduced sequences that display a certain behaviour called acceptable se-

quences. We extend the notion of acceptable sequences for preferential temporal interpretations in I as
follows:

Definition 4.14 (Acceptable sequence w.r.t. I). Let I = (V, ⋎ ) ∈ I and N be a sequence of temporal
time points. N is an acceptable sequence w.r.t. I iff for all i ∈ N ∩ final(I) and for all j ∈ final(I) s.t.
V (i) = V (j), we have j ∈ N .

The particularity we are looking for is that any picked time point in init(·) (resp. final(·)) will
remain in the initial (resp. final) part of the new pseudo-interpretation. It is worth pointing out that an
acceptable sequence w.r.t. a preferential temporal interpretation can be either finite or infinite. Moreover,
N is an acceptable sequence w.r.t. any interpretation I ∈ I. The purpose behind the notion of acceptable
sequence is to build new interpretations starting from an LTL˜ interpretation.

Given N an acceptable sequence w.r.t. I , if N has a time point t in final(I), then all time points t′

that have the same valuation as t must be in N . Thus, we have an infinite sequence of time points in
N . As such, we can define an initial part and a final part, in a similar way as LTL˜ interpretations. We
let init(I,N) be the largest subsequence of N that is a subsequence of init(I). Note that if N does
not contain any time point of final(I), then N is finite. Also, an empty sequence, by definition, is an
acceptable sequence w.r.t. I .

We now define the notions init(·), final(·), range(·), and size(·) for acceptable sequences.

Definition 4.15. Let I = (V, ⋎ ) ∈ I, and let N be an acceptable sequence w.r.t. I . We define the
following:

init(I,N) def
= N ∩ init(I);

final(I,N) def
= N \ init(I,N);

range(I,N) def
= {V (t) | t ∈ final(I,N)};

val(I,N) def
= {V (t) | t ∈ N};

size(I,N) def
= length(init(I,N)) + card(range(I,N)).

It is worth mentioning that the definition of size(·) is different between normal sequences and ac-
ceptable sequences. The reason behind it is that sequences do not have the same restriction as acceptable
sequences. Thus it is difficult to define an initial part of the sequence that remains included in the initial
part of the interpretation, same goes for the final part. That is why the size of pseudo-interpretations
is the length of the sequence for normal sequences. In the case of a finite normal sequence N , The
size of IN is defined by size(I,N) def

= length(N). Whereas for acceptable sequences, the size of the
pseudo-interpretation is the length of the initial part plus the number of distinct valuations in the final
part. Thanks to Definition 4.14, given an acceptable sequence w.r.t. I , we have size(I,N) ≤ size(I).

Let N1, N2 be two sequences of integers. The union of N1 and N2, denoted by N1 ∪ N2, is the
sequence containing only and all elements of N1 and N2. If N1, N2 are acceptable sequences, we have
the following property:

Proposition 4.16. Let I = (V, ⋎ ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I . Then N1 ∪ N2 is
an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) + size(I,N2).
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Proposition 4.17. Let I = (V, ⋎ ) ∈ I and N be an acceptable sequence w.r.t. I . If for all distinct
t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then size(I,N) ≤ 2|P|.

In the upcoming sections, we use sequences to establish the bounded model-property of the fragment
L1 (Section 4.3) and we use acceptable sequences for the bounded-model property of the fragment L⋆

(Section 4.5).

4.3 The bounded-model property of the fragment L1

The first contribution is to establish certain computational properties regarding the satisfiability problem
in L1 (see Section 3.4.1). Let P be a finite set of atomic propositions. Just as a remainder, sentences in
L1 are recursively defined as follows:

α ::= αbool | α ∧ α | α ∨ α | ♢α | □αbool | ©α | ♢∼α
Where αbool is a sentence that has only Boolean connectives. Next, we discuss the satisfiability of

L1 sentences. Given an I-satisfiable sentence α ∈ L1, there exists an interpretation I ∈ I s.t. I, 0 |= α.
From I , we can find a finite sequence of integers N s.t. the pseudo-interpretation IN satisfies α, i.e.,
IN , 0 |=P α. Then, we can transform the pseudo-interpretation IN into an interpretation I ′ which has
the same size and satisfies the sentence α. The first observation we make is that if an interpretation I
satisfies a Boolean sentence αbool ∈ Lbool at a time point t, then for all pseudo-interpretations IN over
sequences N that contain t, we have IN , t |=P αbool. We can extend it further and obtain Proposition
4.18.

Proposition 4.18. Let αbool ∈ Lbool, let I = (V, ⋎ ) ∈ I and N be a sequence containing a time point t
s.t. IN , t |=P αbool. Then for all N ′ ⊆ N containing t, we have IN

′
, t |=P αbool.

Proof. Let αbool ∈ Lbool, let I = (V, ⋎ ) ∈ I and N be a sequence containing t s.t. IN , t |=P αbool. Let
N ′ be a subsequence of N that contains t. We use structural induction based on αbool.

• αbool = p. Since IN , t |=P p, we know that p ∈ V N (t) and therefore p ∈ V (t). On the other hand,
since we have t ∈ N ′ and p ∈ V (t), then we have p ∈ V N ′

(t). Therefore, we have IN
′
, t |=P p.

• αbool = ¬p. Since IN , t |=P ¬p, we know that p 6∈ V N (t) and therefore p 6∈ V (t). On the
other hand, since we have t ∈ N ′ and p 6∈ V (t), then we have p 6∈ V N ′

(t). Therefore, we have
IN

′
, t |=P ¬p.

• αbool = α1 ∧ α2. We have IN , t |=P α1 ∧ α2, which means IN , t |=P α1 and IN , t |=P α2.
Since N ′ is a subsequence of N containing t, by the induction hypothesis on α1 and α2, we have
IN

′
, t |=P α1 and IN

′
, t |=P α2. Therefore, we have IN

′
, t |=P α1 ∧ α2.

• αbool = α1 ∨ α2. We have IN , t |=P α1 ∨ α2, which means either IN , t |=P α1 or IN , t |=P α2.
We suppose that IN , t |=P α1. Since N ′ is a subsequence of N containing t, by the induction
hypothesis on α1, we have IN

′
, t |=P α1. Therefore, we have IN

′
, t |=P α1 ∨ α2. Same reasoning

applies when IN , t |=P α2.

Next, let I ∈ I be an interpretation, N be a sequence, α ∈ L1 and t ∈ N s.t. IN , t |=P α. We can
show, using structural induction on α, that we can find a finite sequence M that contains t and such that
IM , t |=P α. Moreover, for all sequences M ⊆ Q ⊆ N we have IQ, t |= α. We show in the following
lemma that size(I,M) ≤ |α| (|α| denotes the number of symbols within α).
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Lemma 4.19. Let α ∈ L1, I = (V, ⋎ ) ∈ I, N ⊆ N and t ∈ N s.t. IN , t |=P α. Then there exists a
finite sequence M containing t such that:

1. M ⊆ N ;

2. size(I,M) ≤ |α|;

3. for all sequences Q where M ⊆ Q ⊆ N , we have IQ, t |=P α.

Proof. Let α ∈ L1, I = (V, ⋎ ) ∈ I, t ∈ N and N ⊆ N s.t. IN , t |=P α. We use structural induction on
the length of α.

• α = p. Let M = (t) be a sequence containing only t. Then M is a finite sequence such that:

1. since t ∈ N , then M ⊆ N ; 2. we have size(I,M) = 1 ≤ |p|; 3. since IN , t |=P p. Then
we have p ∈ V (t). Let Q be a sequence s.t. M ⊆ Q ⊆ N , we have t ∈ Q. Therefore, we have
p ∈ V Q(t) and IQ, t |=P p.

• α = ¬p. Let M = (t) be a sequence containing only t. Then M is a finite sequence such that:

1. since t ∈ N , then M ⊆ N ; 2. we have size(I,M) = 1 ≤ |¬p|; 3. since IN , t |=P ¬p, then
we have p 6∈ V (t). Let Q be a sequence where M ⊆ Q ⊆ N , we have t ∈ Q. Therefore, we have
p 6∈ V Q(t) and IQ, t |=P ¬p.

• α = α1 ∧ α2. Since IN , t |=P α1 ∧ α2, we then have IN , t |=P α1 and IN , t |=P α2. Using the
induction hypothesis on α1, there exists a finite sequence M1 containing t such that:

1. we have M1 ⊆ N ; 2. we have size(I,M1) ≤ |α1|; 3. for all sequences Q where M1 ⊆
Q ⊆ N , we have IQ, t |=P α1.

Similarly, using the induction hypothesis on α2, there exists a finite sequence M2 such that:

1. we have M2 ⊆ N ; 2. we have size(I,M2) ≤ |α2|; 3. for all sequences Q where M2 ⊆
Q ⊆ N , we have IQ, t |=P α2.

Let M = M1 ∪M2. Since M1 and M2 contain t, then M is a finite sequence that contains t such
that:

1. since M1 ⊆ N and M2 ⊆ N , then we have M1 ∪ M2 ⊆ N ; 2. we have size(I,M) =
size(M1 ∪M2) ≤ size(I,M1) + size(I,M2) ≤ |α1| + |α2| ≤ |α1 ∧ α2|; 3. let M ⊆ Q ⊆ N
be a sequence. Since M1 ⊆ Q ⊆ N , then we have IQ, t |=P α1. Similarly, since M2 ⊆ Q ⊆ N ,
then we have IQ, t |=P α2. Therefore, we have IQ, t |=P α1 ∧ α2.

• α = α1 ∨ α2. We have either IN , t |=P α1 or IN , t |=P α2. We suppose that IN , t |=P α1. Using
the induction hypothesis on α1, there exists a finite sequence M1 containing t such that:

1. we have M1 ⊆ N ; 2. we have size(I,M1) ≤ |α1|; 3. for all sequences Q where M1 ⊆
Q ⊆ N , we have IQ, t |=P α1.

Let M = M1. Since M1 contains t, then M is a finite sequence that contains t such that:

1. we have M = M1 ⊆ N ; 2. we have size(I,M) = size(M1) ≤ |α1| ≤ |α1 ∨ α2|; 3. for all
sequences Q where M1 ⊆ Q ⊆ N , we have IQ, t |=P α1. Therefore, I, t |=P α1 ∨ α2.

The reasoning is the same when IN , t |=P α2.
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• α = ©α1. Since IN , t |=P ©α1, then t + 1 ∈ N and IN , t + 1 |=P α1. Using the induction
hypothesis on α1, there exists a finite sequence containing t+ 1 such that:

1. we have M1 ⊆ N ; 2. we have size(I,M1) ≤ |α1|; 3. for all sequences Q where M1 ⊆
Q ⊆ N , we have IQ, t+ 1 |=P α1.

Let M = (t) ∪M1; then M is a finite sequence containing t such that:

1. since M1 ⊆ N and t ∈ N , then we have M ⊆ N ; 2. we have size(I,M) = 1+size(I,M1) ≤
|©α1|; 3. let Q be a sequence such that M ⊆ Q ⊆ N , we have t, t+ 1 ∈ M . Since M1 ⊆ Q ⊆
N , then IQ, t+ 1 |=P α1. Therefore, we have IQ, t |=P ©α1.

• α = ♢α1. Since IN , t |=P ♢α1, then there exists t′ ∈ N such that IN , t′ |=P α1. Using the
induction hypothesis on α1, there exists a finite sequence containing t′ such that:

1. we have M1 ⊆ N ; 2. we have size(I,M1) ≤ |α1|; 3. for all sequences Q where M1 ⊆
Q ⊆ N , we have IQ, t′ |=P α1.

Let M = (t) ∪M1; then M is a finite sequence containing t such that:

1. since M1 ⊆ N and t ∈ N , then we have M ⊆ N ; 2. we have size(I,M) = 1+size(I,M1) ≤
|♢α1|; 3. let Q be a sequence such that M ⊆ Q ⊆ N . Then we have t, t′ ∈ M . Since
M1 ⊆ Q ⊆ N and t′ ∈ M1, then IQ, t′ |=P α1. Therefore, we have IQ, t |=P ♢α1.

• α = ♢∼α1. Since IN , t |=P ♢∼α1, there exists t′ ∈ N s.t. t′ ∈ min ⋎ N (t). Using the induction
hypothesis on α1, there exists a finite sequence M1 containing t′ such that:

1. we have M1 ⊆ N ; 2. we have size(I,M1) ≤ |α1|; 3. for all sequences Q where M1 ⊆
Q ⊆ N , we have IQ, t′ |=P α1.

Let M = (t) ∪M1; then M is a finite sequence containing t such that:

1. since M1 ⊆ N and t ∈ N , then we have M ⊆ N ; 2. we have size(I,M) = 1+size(I,M1) ≤
|♢∼α1|; 3. let Q be a sequence such that M ⊆ Q ⊆ N . Since we have t, t′ ∈ M , M1 ⊆ M ⊆
Q ⊆ N and t′ ∈ M1, then (i) IQ, t′ |=P α1.

We suppose that t′ 6∈ min ⋎ Q(t), there exists t′′ ∈ Q s.t. (t′′, t′) ∈ ⋎ Q. Following this supposition,
we have (t′′, t′) ∈ ⋎ . Since t′, t′′ ∈ N , we have (t′′, t′) ∈ ⋎ N , thus t′ 6∈ min ⋎ N (t). This suppo-
sition conflicts with our assumption that t′ ∈ min ⋎ N (t). Therefore we have (ii) t′ ∈ min ⋎ Q(t).
From (i) and (ii), we conclude that IQ, t |=P ♢∼α1.

• α = □αbool. Since IN , t |=P □αbool, we have IN , t |=P αbool for all t′ ∈ N s.t. t′ ≥ t. Let
M = (t) be a sequence containing only t. Then we have the following:

1. we have M ⊆ N ; 2. we have size(I,M) = 1 ≤ |□αbool|; 3. let M ⊆ Q ⊆ N be a
sequence. We need to prove that IQ, t |=P □αbool. Suppose that IQ, t 6|=P □αbool. This means
that there exists t′ ∈ Q s.t. t′ ≥ t and IQ, t′ 6|=P αbool.

On the other hand, since t′ ∈ Q, and Q ⊆ N , we have t′ ∈ N . We know that IN , t |=P □αbool, and
t′ ≥ t, therefore IN , t′ |=P αbool. Thanks to Proposition 4.18, since αbool ∈ Lbool, t′ ∈ Q ⊆ N
and IN , t′ |=P αbool, we have IQ, t′ |=P αbool, which raises a contradiction with our assumption.
Thus, there is no t′ ∈ Q s.t. t′ ≥ t and IQ, t′ 6|=P αbool. We conclude that IQ, t′ |=P □αbool.

We can generalize the result of Lemma 4.19 in the following corollary.
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Corollary 4.20. Let α ∈ L1 and I = (V, ⋎ ) ∈ I s.t. I, t |= α. Then there exists a finite sequence M
containing t s.t. IM , t |=P α and size(I,M) ≤ |α|.

So far, we showed that if we have an interpretation I ∈ I where I, t |= α, then we can find a finite
sequence M that contains t s.t. IM , t |=P α. Next, an interpretation I ′ ∈ I is induced from the pseudo-
interpretation IN which preserves the satisfaction of α. We define formally the construction below.

Definition 4.21 (Induced interpretation). Let I = (V, ⋎ ) ∈ I, let N = (t0, t1, t2, . . . , tn−1) where
t0 < t1 < t2 < · · · < tn−1 be a finite sequence. The interpretation I ′ def

= (V ′, ⋎ ′) ∈ I is induced from
the pseudo-interpretation IN = (V N , ⋎ N ) as follows:

V ′ :

{
V ′(i) := V N (ti), if 0 ≤ i < n;

V ′(i) := V N (n− 1), otherwise.

And for all 0 ≤ i, j < n s.t. (ti, tj) ∈ ⋎ N , we have (i, j) ∈ ⋎ ′.

Let IN := (V N , ⋎ N ) be a pseudo-interpretation and let I = (V ′, ⋎ ′) be the IN -induced interpre-
tation. We can see that size(I ′) ≤ size(I,M). The size of the initial part of I ′ is the sequence N and
the final part has one distinct valuation which is the valuation of the last element of the sequence N . We
can also see that the truth values of sub-sentences are preserved in the induced interpretation I ′. In other
words, for every α ∈ L1, if IN , ti |=P α , then I ′, i |= α.

Theorem 4.22 (Bounded-Model property). Let α ∈ L1 be I-satisfiable. Then there exists I = (V, ⋎ ) ∈
I s.t. size(I) ≤ |α| and I, 0 |= α.

Proof. Let α ∈ L1 be I-satisfiable and let I = (V, ⋎ ) ∈ I where I, 0 |= α be an interpretation that
satisfies α. Thanks to Lemma 4.19, since N is a sequence and 0 ∈ N s.t. I, 0 |= α, then there is a sequence
M ⊆ N containing 0 where size(I,M) ≤ |α| and IM , 0 |= α. We obtain IN -induced interpretation
I ′ = (V ′, ⋎ ) by changing the labels of M into a sequence of natural numbers and looping the valuation
of the last element of M . We can see that I ′, 0 |= α and size(I ′) ≤ |α|.

4.4 The satisfiability problem in L1

Thanks to Theorem 4.22, if a sentence α ∈ L1 is I-satisfiable, then there exists an interpretation I
such that size(I) ≤ |α| that satisfies it. Otherwise, if there is no interpretation that satisfies α such
that its size is less than the length of α, then the sentence is unsatisfiable. Based on the bounded-model
property, we can make a non-deterministic guess for a bounded interpretation and check whether it
satisfies the sentence α. Note that the induced I-interpretations for sentences in L1 sentences have final
parts that consist of only one distinct valuation (see Definition 4.21). Not only that, but the preference
relation concerns only time points of the initial part. To this purpose, we introduce a compact structure
to represent the bounded interpretations obtained on the last section.

Definition 4.23 (Finite preferential structure). A finite preferential structure is a tuple S = (n, VS , ⋎ S)
where: n is an integer such that n ≥ 0 (where n is intended to be the size of the finite sequence);
VS : [0, n− 1] −→ 2P , and ⋎ S ⊆ [0, n− 1]2 is a strict partial order.

We define the size of the structure size(S) def
=n. Thanks to these structures, we can build the interpre-

tation I(S) in the following way:
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Definition 4.24. Given a finite preferential structure S = (n, VS , ⋎ S), let I(S) def
= (V, ⋎ ), V (t) def

= VS(t),
if t < n, and V (t) def

= VS(n− 1), otherwise; and ⋎ def
= {(t, t′) | (t, t′) ∈ ⋎ S}.

Interpretations of Definition 4.24 are I-interpretations such that:

• there is a time point n after which all time points t ≥ n have the same valuation V (t) = V (n−1);

• the preference relation is only on time points within the initial sequence [0, n− 1].

Moreover, we have size(I(S)) ≤ n, and thus size(I(S)) ≤ size(S). The interpretations of Definition
4.21 I ′ = (V ′, ⋎ ′) can be viewed as an interpretation I(S) issued from a finite preferential structure
S = (n, VS , ⋎ S). The structure S can be induced such that n def

= |N | (where N is the finite sequence
which I ′ was induced from, and |N | is its cardinality), VS

def
= V ′(t) for all t < n and ⋎ S

def
= {(t, t′) |

t, t′ ∈ [0, n− 1] and (t, t′) ∈ ⋎ ′}. We can go from interpretations of Definition 4.21 to finite preferential
structures S thanks to the intermediate interpretation I(S) of Definition 4.24, and go the other way
around. We extend also the notion of preferred time points to finite preferential structures S. The
formal definition goes as follows: for t < n we have min ⋎ S

(t) def
= {t′ ∈ [t, n − 1] | there is no t′′ ∈

[t, n− 1] with (t′′, t′) ∈ ⋎ S}. It is easy to show that for every t, t′ ∈ [0, n− 1], we have t′ ∈ min ⋎ S
(t)

iff t′ ∈ min ⋎ (t). Finite preferential structures are going to be useful in order to check the satisfiability
of the guessed interpretations.

In order to check the satisfiability of L1 sentences using a finite preferential structure S, we introduce
the notion of labelling sets in order to assign a set of sub-sentences of the original sentence α to each
element of the sequence [0, n− 1] of S. The set of sub-sentences of α is denoted by Sf (α).

Definition 4.25 (Sub-sentences). Let α ∈ L1. The set of all sub-sentences of α, denoted by Sf (α), is
recursively defined as follows:

• Sf (p) def
= {p};

• Sf (¬p) def
= {¬p};

• Sf (α1 ∧ α2) def
= Sf (α1) ∪ Sf (α2) ∪ {α1 ∧ α2};

• Sf (α1 ∨ α2) def
= Sf (α1) ∪ Sf (α2) ∪ {α1 ∨ α2};

• Sf (□αbool) def
= Sf (αbool) ∪ {□αbool};

• Sf (♢α1) def
= Sf (α1) ∪ {♢α1};

• Sf (©α1) def
= Sf (α1) ∪ {©α1};

• Sf (♢∼α1) def
= Sf (α1) ∪ {♢∼α1}.

With a proof by induction, we can show that the cardinality of the set Sf (α) is |Sf (α)| ≤ |α|. We
define for a structure S = (n, VS , ⋎ S) and a sentence α ∈ L1, labelling sets labMα (·) which link a set of
sub-sentences of α that hold true in each t ∈ [0, n− 1].

Definition 4.26 (Labelling sets). Let S = (n, VS , ⋎ S) be a structure, α ∈ L1. The set of sub-sentences
of α in a t ∈ [0, n− 1], denoted by labSα(t), is defined as follows:

• p ∈ labSα(t) iff p ∈ VS(t);

• ¬p ∈ labSα(t) iff p 6∈ VS(t);
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• α1 ∧ α2 ∈ labSα(t) iff α1, α2 ∈ labSα(t);

• α1 ∨ α2 ∈ labSα(t) iff α1 ∈ labSα(t) or α2 ∈ labSα(t);

• ♢α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for some t′ ∈ [t, n− 1];

• □αbool ∈ labSα(t) iff αbool ∈ labSα(t
′) for all t′ ∈ [t, n− 1];

• ©α1 ∈ labSα(t) iff α1 ∈ labSα(t+ 1) and t+ 1 ≤ n− 1;

• ♢∼α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for some t′ ∈ min ⋎ S

(t).

The labelling sets labMα (·) is used to check the satisfiability of the sub-sentences of α in each t in
the interval [0, n− 1]. As mentioned after Definition 4.24, we can represent the bounded interpretations
found on the last section. As such, for any given bounded interpretation I ′, there is a finite structure
S = (n, VS , ⋎ S) such that its I(S) is the same as I ′ (same valuation for all time points and same
preference relation). Given any induced bounded-interpretation I ′, we show that for every t ∈ [0, n− 1]
and every α1 ∈ Sf (α) we have α1 ∈ labSα(t) iff I ′, t |= α1. The proof of Lemma 4.27 can be found on
the Appendix A.

Lemma 4.27. Let α ∈ L1 be an I-satisfiable sentence and I = (V, ⋎ ) ∈ I be an interpretation such
that I, 0 |= α. Let IN be the pseudo-interpretation of I over the finite sequence N such that IN , 0 |=P α,
and I ′ = (V ′, ⋎ ′) be the induced interpretation from IN . Let S = (n, VS , ⋎ S) be the finite preferential
structure where n = |N |, VS(t) = V ′(t) for each t ∈ [0, |N | − 1] and ⋎ S = ⋎ ′. Let I(S) = (V ′′, ⋎ ′′)
be the induced interpretation from S. We have the following:

• ⋎ ′′ = ⋎ ′ and V ′′(t) = V ′(t) for each t ∈ N;

• for every α1 ∈ Sf (α), we have α1 ∈ labSα(t) iff I(S), t |= α1.

The Lemma 4.27 has two interesting results. The first result is we can represent bounded interpre-
tations of Section 4.3 as finite preferential structures. The second result is labelling sets can be used to
check the satisfiability of sub-sentences of α within the finite part of the interpretations. Furthermore,
we can generalize Lemma 4.27 and obtain this proposition. In fact, the following proposition is a special
case of Lemma 4.27 when t = 0.

Proposition 4.28. Given a finite preferential structure S = (n, VS , ⋎ S) and α ∈ L1, we have I(S), 0 |=
α iff α ∈ labSα(0).

We describe, in what follows, the algorithm that checks the I-satisfiability for L1 sentences. Let
α be a sentence in L1. If α is satisfiable, then there exists an interpretation I ∈ I where I, 0 |= α.
Thanks to Theorem 4.22, a new interpretation I ′ can be induced from I where I ′, 0 |= α, size(I ′) ≤ |α|,
final(I ′) = 1 and the preferential relation ⋎ ′ is only on time points within the finite sequence. As
discussed after Definition 4.24, a finite preferential structure S can be induced from I ′. Therefore, we
can make a non-deterministic guess for a finite preferential structure S = (n, VS , ⋎ S) s.t. size(S) ≤ |α|.
Next, for each α1 ∈ Sf (α) in the increasing order of |α1| and for each t ∈ [0, n− 1], we update labSα(t).
At the end of this procedure, S is accepted as a model for α iff α ∈ labSα(0), otherwise, S is rejected
(thanks to Proposition 4.28).

The procedure is polynomial-time bounded. Since the set Sf (α) is ordered by the increasing length
of sub-sentences of α, then each time we want to add a sub-sentence α1 to labSα(t), the presence of all
of the sub-sentences of α1 in the labelling set labSα(t) has already been checked for all t ∈ [0, n − 1].
Therefore, checking whether said sub-sentences of α1 are in a point t′ is a simple “yes” or “no” question.
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Thus, for each sub-sentence α1 and t ∈ [0, n − 1], we check only once if α1 ∈ labSα(t). We can
see that the most costly sentence to check time wise is ♢∼ sentences. Say that we check for a sentence
♢∼α1 ∈ labSα(t) with t ∈ [0, n − 1]. In this case, we need to check whether there is a t′ ∈ [t, n − 1] s.t.
α1 ∈ labSα(t

′) and t′ ∈ min ⋎ S (t). In the worst case scenario, this takes a time of O((t − n)2). Since
size(S) = n, checking whether ♢∼α1 ∈ labSα(0) costs at most O(n2), checking whether ♢∼α1 ∈ labSα(1)
costs at most O((n − 1)2), and so on. If we add them together, then for all t ∈ [0, n − 1], checking
whether ♢∼α1 ∈ labSα(t) is O(n3). Checking whether □ and ♢ sentences for all t ∈ [0, n − 1] costs at
most O(n2). For © and Boolean sentences, it costs at most O(n). Suppose that |Sf (α)| = k, checking
for all sub-sentences of α for all t ∈ [0, n − 1] costs O(k ∗ n3). Without loss of generality, since
k, n ≤ |α|, then the full expansion of the labelling sets costs O(|α|4) at most.

Theorem 4.29. I-satisfiability for L1 sentences is NP-complete.

Proof. I-satisfiability for L1 sentences is at least NP-hard because the satisfiability of Boolean sentences
is an NP-hard problem, and Boolean sentences are a subset of L1.

Let α ∈ L1. If α is I-satisfiable, then there is an interpretation I = (V, ⋎ ) ∈ I s.t. I, 0 |= α. Thanks
to Theorem 4.22, an interpretation I ′ = (V ′, ⋎ ) where size(I ′) ≤ |α| and I ′, 0 |= α can be induced
from I . The interpretation I ′ can be represented by a finite preferential structure S = (n, VS , ⋎ S) where
I(S) is I ′. We make a non-deterministic guess of a finite preferential structure S = (n, VS , ⋎ S) where
size(S) ≤ |α| and use the labelling sets labSα(t) to check for all sub-sentences of α1 in each t ∈ [0, n−1].
Thanks to Proposition 4.28, if α ∈ labSα(0), then S is accepted as a model and therefore α is satisfiable.
Otherwise, S is rejected. Using the aforementioned procedure, the labelling sets is polynomial-time
bounded in O(|α|4). I-satisfiability for L1 sentences is an NP problem. Therefore, I-satisfiability for
L1 sentences is NP-complete.

4.5 The bounded-model property of the fragment L⋆

The second contribution of our work is to show the decidability of the satisfiability problem of another
fragment of defeasible LTL, namely L⋆ (See Section 3.4.2). Just as a remainder, sentences in L⋆ are
recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | □∼α | ♢∼α
Let α ∈ L⋆ be a sentence. With |α| we denote the number of symbols within α. The main result of

this section is summarized in the following theorem, of which the proof will be given in the remainder
of the section.

Theorem 4.30 (Bounded-model property). If α ∈ L⋆ is Isd-satisfiable, then there is an interpretation
I ∈ Isd such that I, 0 |= α and size(I) ≤ |α| × 2|P|.

Hence, given a Isd-satisfiable sentence α ∈ L⋆, there is an Isd-interpretation satisfying α of which
the size is bounded. Since α is Isd-satisfiable, we know I, 0 |= α. From I we can construct an interpre-
tation I ′ also satisfying α, i.e., I ′, 0 |= α, which is bounded on its size by |α| × 2|P|.

The goal of this section is to show how to build said bounded interpretation. Let α ∈ L⋆ and let
I ∈ Isd be s.t. I, 0 |= α. The first step is to characterize an acceptable sequence N w.r.t. I such that
N is bounded first of all, and “keeps” the satisfiability of the sub-sentences α1 contained in α, i.e., if
I, t |= α1, then IN , t |=P α1 (see Definition 4.6). We do so by building inductively a bounded pseudo-
interpretation step by step by selecting what to take from the initial interpretation I for each sub-sentence
α1 contained in α to be satisfied. In what follows, we introduce the notion of Anchors(·) as a strategy
for picking out the desired time points from I . Definitions 4.33–4.37 tell us how to pick said time points.
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Definition 4.31 (Induced acceptable sequence). Let I = (V, ⋎ ) ∈ Isd and let N be a sequence of time
points. Let N ′ be the sequence of all time points t′ in final(I) for which there is t ∈ N ∩ final(I) with
V (t′) = V (t). With AS (I,N) def

=N ∪N ′ we denote the induced acceptable sequence of N w.r.t. I .

Example 4.32. Let I = (V, ⋎ ) be the interpretation represented in Figure 4.2 and N be a sequence
such that N = (t0, t1, t2) (marked with black circles on the figure). In order to obtain AS (I,N), we
look for time points of the sequence N that are in final(I). The only time point in final(I) is t2 and
has the valuation V (t2) = V1. In addition of t0, t1, t2, the induced acceptable sequence of N w.r.t. I ,
denoted by AS (I,N), contains all time points in final(I) that have the same valuation as t1 (marked
with green circles on the figure).

I
tI

init(I) final(I)

t0 t1 t2

V1

t′1

V1

t′2

V1

t′3

V1

Figure 4.2: Induced acceptable sequence

In the previous definition, N ′ is the sequence of all time points t′ having the same valuation as some
time point t ∈ N that is in final(I). It is also worth to point out that N ′ can be empty in the case of
there being no time point t ∈ N that is in final(I). N is then a finite acceptable sequence w.r.t. I where
AS (I,N) = N . This notation is mainly used to ensure that we are using the acceptable version of any
sequence.

Definition 4.33 (Chosen occurrence w.r.t. α). Let I = (V, ⋎ ) ∈ Isd, α ∈ L⋆ and N be an acceptable
sequence w.r.t. I s.t. there exists a time point t in N with I, t |= α. The chosen occurrence satisfying α
in N , denoted by tI,Nα , is defined as follows:

tI,Nα
def
=

{
min<{t ∈ final(I,N) | I, t |= α}, if {t ∈ final(I,N) | I, t |= α} 6= ∅;

max<{t ∈ init(I,N) | I, t |= α}, otherwise.

Notice that < above denotes the natural ordering of the underlying temporal structure. The strategy
to pick out a time point satisfying a given sentence α in N is as follows. If said sentence is in the final
part, we pick the first time point that satisfies it, since we have the guarantee to find infinitely many time
points having the same valuation as tI,Nα that also satisfy α (see Lemma 4.11). If not, we pick the last
occurrence in the initial part that satisfies α. Thanks to Definition 4.33, we can limit the number of time
points taken that satisfy the same sentence.

Example 4.34. To highlight the notion of chosen occurrence, we illustrate it in Figure 4.3. On the figure,
the coloured circles points are the time points of the sequence N that satisfy α1.

In Case 1, both t and t′ are in init(I). We pick the last occurrence which is t′ (coloured in blue) as
the chosen occurrence tI,Nα1 = t′.

In Case 2, all of the time points of N that satisfy α are in final(I). We pick the first occurrence in
N ∩ final(I), which is t′1 as the chosen occurrence tI,Nα1 .

In Case 3, even when time points of N are both in init(I) and final(I), the chosen occurrence
ST (I,N, α1) is the first time point in N ∩ final(I) that satisfies α1.
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Case 1
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Figure 4.3: Selected time points of α in AS (I,N)

Next, we define the sequence ST (·) as the induced acceptable sequence of the sequence that contains
only the chosen occurrence.

Definition 4.35 (Selected time points). Let I = (V, ⋎ ) ∈ Isd, N be an acceptable sequence w.r.t. I and
α ∈ L⋆ s.t. there is t in N s.t. I, t |= α. With ST (I,N, α) def

= AS (I, (tI,Nα )) we denote the selected time
points of N and α w.r.t. I . (Note that (tI,Nα ) is a sequence of only one element.)

Example 4.36. In Example 4.34, we obtained the chosen occurrences for each of the cases represented
in Figure 4.3. The next step is to compute ST (I,N, α1).

In Case 1, since ST (I,N, α1) is the induced acceptable sequence of (tI,Nα1 ) and tI,Nα1 ∈ init(I), then
ST (I,N, α1) = (tI,Nα1 ) = (t′).

In Case 2, now that tI,Nα1 is in final(I), the sequence ST (I,N, α1) is the acceptable sequence w.r.t.
I that contains all time points final(I) with the same valuation as tI,Nα1 (coloured in blue in Figure 4.3),
i.e., ST (I,N, α1) = (t′1, t

′
2, t

′
3, · · · ) with V (t′i) = V1 for all i ≥ 1.

In Case 3 and following the same line of reasoning as in Case 2, since we have tI,Nα1 = t′1 and
tI,Nα1 ∈ final(I), then ST (I,N, α1) is the sequence (t′1, t

′
2, t

′
3, · · · ) with V (t′i) = V1 for all i ≥ 1

(coloured in blue in Figure 4.3).

Given a sentence α ∈ L⋆ and an acceptable sequence N w.r.t. I s.t. there is at least one time point
t ∈ N where I, t |= α, the sequence ST (I,N, α) is the induced acceptable sequence of the sequence
(tI,Nα ). If tI,Nα ∈ init(I), the sequence ST (I,N, α) is the sequence (tI,Nα ). Otherwise, the sequence
ST (I,N, α) is the sequence of all time points t in final(I) that have the same valuation as tI,Nα . In both
cases, we can see that size(I,ST (I,N, α)) = 1.

Given an interpretation I = (V, ⋎ ) and N an acceptable sequence w.r.t I , the representative sentence
of a valuation v is formally defined as αv

def
=

∧
{p | p ∈ v} ∧

∧
{¬p | p 6∈ v}.

Definition 4.37 (Distinctive reduction). Let I = (V, ⋎ ) ∈ Isd and let N be an acceptable sequence w.r.t.
I . With DR(I,N) def

=
∪

v∈val(I,N) ST (I,N, αv) (The definition of val(I,N) can be found in Definition
4.15) we denote the distinctive reduction of N .
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Given an acceptable sequence N w.r.t. I , DR(I,N) is the sequence containing the chosen occurrence
tI,Nαv that satisfies the representative αv in N for each v ∈ val(I,N). In other words, we pick the se-
lected time points for each possible valuation in val(I,N). There are two interesting results with regard
to DR(I,N). The first one is that DR(I,N) is an acceptable sequence w.r.t. I . This can easily be proven
since ST (I,N, αv) is also an acceptable sequence w.r.t. I , and the union of all ST (I,N, αv) is an accept-
able sequence w.r.t. I (see Proposition 4.16). The second result is that size(I,DR(I,N)) ≤ 2|P|. Indeed,
thanks to Proposition 4.16, we can see that size(I,DR(I,N)) ≤

∑
v∈val(I,N) size(I,ST (I,N, αv)).

Moreover, we have size(I,ST (I,N, αv)) = 1 for each v ∈ val(I,N). On the other hand, there are at
most 2|P| possible valuations in val(I,N). Thus, we can assert that

∑
v∈val(I,N) size(I,ST (I,N, αv)) ≤

2|P|, and then we have size(I,DR(I,N)) ≤ 2|P|.

Definition 4.38 (Anchors). Let α ∈ L⋆ be of the form Oα1 where O ∈ {♢,□,♢∼,□∼} and α1 ∈ L⋆. Let
I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have
I, t |= α. The sequence Anchors(I, T, α) is defined as:

Anchors(I, T,♢α1) def
= ST (I,N, α1);

Anchors(I, T,□α1) def
= ∅;

Anchors(I, T,♢∼α1) def
=

∪
t∈T ST (I,AS (I,min ⋎ (t)), α1);

Anchors(I, T,□∼α1) def
= DR(I,

∪
t∈T AS (I,min ⋎ (t))).
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Figure 4.4: Anchors for ♢-sentences

Given an acceptable sequence T w.r.t. I ∈ Isd where all of its time points satisfy Oα1 (where
O ∈ {♢,□,♢∼,□∼}), Anchors(I, T,Oα1) is an acceptable sequence w.r.t. I such that all of its ele-
ments have the sub-sentence α1. The goal here if we inductively select the time points that satisfy α1

in Anchors(I, T,Oα1), all of the Oα1 sentences in T would then be satisfied. We shall start with
Anchors(·) for ♢α1 sentences (see Figure 4.4). Let T be an acceptable sequence w.r.t. I such that all of
its elements have the sentence ♢α1. In case 1 of Figure 4.4, let N be an acceptable sequence that contains
t0, t1, t2 and t′ such that IN , t′ |=P α1. The sentence ♢α1 is then satisfied in IN ,i.e., IN , t0 |=P ♢α1
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(same goes for t1, t2). We can see that t′′ is also a candidate that keeps the satisfiability of ♢α1 in t0, t1
and t2. However, in order to have a bounded number of elements, we use the selected time points ST (·)
function. If all time points that satisfy α1 are in the init(I), we pick the last one (t′ in case 1). Other-
wise, we choose the first candidate that satisfies α1 in final(I) (t′1 in case 2) and pick all time points of
final(I) that have a similar valuation. Even if said candidate comes before ti with ♢α1 (case 3), there is
always a time point with the same valuation that comes after ti that satisfies α1 (Thanks to Lemma 4.10,
time points with valuation in final(I) satisfy the same sentences). By choosing the first when it comes
to final(I) and the last when it comes to init(I), the picked can overlap with each other. This is the
essence of ST (·) function and our strategy for picking time points.

It is worth to point out that the choice of Anchors(I, T,□α1) = ∅ is due to the fact α1 is satisfied
starting from the first time point t0 in T and onwards, i.e., for all t ≥ t0, we have I, t |= α1. We need
to make sure that the sentence □α1 remains satisfied in ti ∈ T for all pseudo-interpretations IN where
T ⊆ N .

I
tI

init(I) final(I)

t0

♢∼α1

t′0

α1

t1

♢∼α1

t′1

α1
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t′′

α1

V1

t′′

α1

V1

t′′

α1

V1

Figure 4.5: Anchors for ♢∼-sentences

Moving on to Anchors(·) for ♢∼α1 sentences (see Figure 4.5), each time point of ti in T is represented
by different color in the figure. For each time point ti ∈ T , we shall pick the selected time points (using
the ST (·) function) in min ⋎ (ti) that satisfy α1. In Figure 4.5, each time point ti and its selected
candidate have the same color. Similarly to ♢α1, if there is an acceptable sequence N that satisfies α1

in all of the chosen occurrences. Then, the sentence ♢∼α1 is also satisfied. Later on this section, we will
show Anchors(·) for ♢∼α1 sentences is an acceptable sequence w.r.t. I that is bounded in its size.

I
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init(I) final(I)

t0
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t′0

α1

V1

t′1

α1

V1

t′2

α1

V2

t′′

α1

V3

t′′

α1

V3

t′′

α1

V3

t′′′

α1

V4

t′′′

α1

V4

Figure 4.6: Anchors for □∼-sentences

Finally, Anchors(·) for □∼α1 sentences is represented in Figure 4.6. For each time ti (for simplicity
sake, there is only one time point t0 in Figure 4.6), the selected time points are the chosen occurrence
for each distinct valuation in min ⋎ (ti), i.e., V1, V2, V3, V4 (each distinct valuation is represented by a
different color in Figure 4.6). Note that the all the selected time points have the sentence α1. These
candidates have a particular property that we shall motivate in Proposition 4.41.

The following are some properties of Anchors(·) sequence:

Lemma 4.39. Let α1 ∈ L⋆ be a sentence, I = (V, ⋎ ) ∈ Isd and let T be a non-empty acceptable
sequence w.r.t. I where for all ti ∈ T we have I, ti |= ♢∼α1. Then for all t, t′ ∈ Anchors(I, T,♢∼α1) s.t.
V (t) = V (t′) and t 6= t′, we have t, t′ ∈ final(I,Anchors(I, T,♢∼α1)).
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Proposition 4.40. Let α ∈ L⋆ be of the form Oα1, where O ∈ {♢,□,♢∼,□∼} and α1 ∈ L⋆. Let
I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have
I, t |= α. Then, we have:

size(I,Anchors(I, T, α)) ≤ 2|P|.

Proposition 4.41. Let α1 ∈ L⋆, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t.
I s.t. for all t ∈ T we have I, t |= □∼α1, with α1 ∈ L⋆. For all acceptable sequences N w.r.t. I s.t.
Anchors(I, T,□∼α1) ⊆ N and for all ti ∈ N ∩ T , let IN = (V N , ⋎ N ) be the pseudo-interpretation
over N and t′ ∈ N . We have the following:

If t′ 6∈ min ⋎ (ti), then t′ 6∈ min ⋎ N (ti).

When trying to build the bounded pseudo-interpretation IN that satisfies α, one problem we encoun-
tered is that the set min ⋎ N (t) may include a time point t′ that is not in min ⋎ (t). This becomes an
issue when checking truth values of defeasible sentences in IN . In order to solve this issue, we defined
Anchors(·) to pick only time points such that we keep truth values of defeasible sentences. In the case
of ♢∼-sentences, the sequence Anchors(I, T,♢∼α1) contains the selected time point t′i that satisfies α1 and
is minimal to ti w.r.t. ⋎ for each ti ∈ T . This is sufficient to preserve the truth ♢∼α1 for each ti ∈ T .
As for □∼-sentences and for each ti ∈ T , the sequence Anchors(I, T,□∼α1) contains selected time points
t′i for each distinct valuation in min ⋎ (ti). As showed in Proposition 4.41, any time point t′i that is not
originally in min ⋎ (ti), is therefore not in min ⋎ N (ti).

With Anchors(·) defined, we introduce the notion of Keep(·). The sequence Keep(·) will help us to
compute recursively, starting from the initial satisfiable sentence α down to its literals, the selected time
points to pick in order to induce the pseudo-interpretation IN that is bounded in size and satisfies α.

Definition 4.42 (Keep). Let α ∈ L⋆ be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be an acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= α. The sequence Keep(I, T, α) is defined as ∅, if T = ∅;
otherwise it is recursively defined as follows:

• Keep(I, T, ℓ) def
= ∅, where ℓ is a literal;

• Keep(I, T, α1 ∧ α2) def
=Keep(I, T, α1) ∪Keep(I, T, α2);

• Keep(I, T, α1 ∨ α2) def
= Keep(I, T1, α1) ∪ Keep(I, T2, α2), where T1 ⊆ T (resp. T2 ⊆ T ) is the

sequence of all t1 ∈ T (resp. t2 ∈ T ) s.t. I, t1 |= α1 (resp. I, t2 |= α2);

• Keep(I, T,♢α1) def
= Anchors(I, T,♢α1) ∪Keep(I,Anchors(I, T,♢α1), α1);

• Keep(I, T,□α1) def
=Keep(I, T, α1);

• Keep(I, T,♢∼α1) def
= Anchors(I, T,♢∼α1) ∪Keep(I,Anchors(I, T,♢∼α1), α1);

• Keep(I, T,□∼α1) def
=Anchors(I, T,□∼α1)∪Keep(I, T ′, α1), where T ′ =

∪
ti∈T AS (I,min ⋎ (ti)).

With µ(α) we denote the number of classical and non-monotonic modalities in α.

Proposition 4.43. Let α ∈ L⋆ be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have size(I,Keep(I, T, α)) ≤ µ(α)×2|P|.

Given an acceptable sequence N w.r.t. I , we need to make sure that for each added time point
t in the induced pseudo-interpretation IN , we keep the truth values of the sub-sentences in t, i.e., if
I, t |= α, then IN , t |=P α. The sequence Keep(I, T, α) is the acceptable sequence of time points s.t. if
Keep(I, T, α) ⊆ N and t ∈ T , then said condition is met. We prove this in Lemma 4.44.
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Lemma 4.44. Let α ∈ L⋆ be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I , if Keep(I, T, α) ⊆ N ,
then for every t ∈ N ∩ T , we have IN , t |=P α.

Since we build our pseudo-interpretation IN by adding selected time points for each sub-sentence
α1 of α, we need to make sure that said sub-sentence remains satisfied in IN . Lemma 4.44 ensures that.

Definition 4.45 (Induced interpretation). Let I = (V, ⋎ ) ∈ Isd and let N be an infinite acceptable
sequence w.r.t. I and ti, tj ∈ N . The interpretation I ′ = (V ′, ⋎ ′) ∈ Isd is induced from the pseudo-
interpretation IN = (V N , ⋎ N ) as follows:

• for all i ≥ 0, we have V ′(i) = V N (ti);

• for all i, j ≥ 0, ti, tj ∈ N , we have (ti, tj) ∈ ⋎ N iff (i, j) ∈ ⋎ ′.

It is worth mentioning that the IN -induced interpretation I ′ is a state-dependent interpretation. More-
over, we have size(I ′) = size(IN ). We notice also that if IN , t0 |= α, then I ′, 0 |= α. We can now
prove our bounded-model theorem.

Proof of Theorem 4.30. We assume that α ∈ L⋆ is Isd-satisfiable. The first thing we notice is that
|α| ≥ µ(α) + 1. Let α′ be the NNF of the sentence α. As a consequence of the duality rules of L⋆,
we can deduce that µ(α′) = µ(α). Let I = (V, ⋎ ) ∈ Isd s.t. I, 0 |= α′. Let T0 = AS (I, (0)) be an
acceptable sequence w.r.t. I . We can see that size(I, T0) = 1. Since for all t ∈ T0 we have I, t |= α′

(see Lemma 4.11), we can compute recursively U = Keep(I, T0, α
′). Thanks to Proposition 4.43, we

conclude that U is an acceptable sequence w.r.t. I s.t. size(I, U) ≤ µ(α′) × 2|P|. Let N = T0 ∪ U
be the union of T0 and U and let IN = (V N , ⋎ N ) be its pseudo-interpretation over N . Thanks to
Proposition 4.16, we have size(I,N) ≤ 1 + µ(α′) × 2|P|. Thanks to Lemma 4.44, since 0 ∈ N ∩ T0

and Keep(I, T0, α
′) ⊆ N , we have IN , 0 |=P α′. In case N is finite, we replicate the last time point tn

infinitely many times. Notice that size(I,N) does not change if we replicate the last element. We obtain
the IN -induced interpretation I ′ ∈ Isd by changing the labels of N into a sequence of natural numbers
minding the order of time points in N (see Definition 4.45). We can see that size(I ′) = size(I,N) and
I ′, 0 |= α. Consequently, we have size(I ′) ≤ 1 + µ(α′) × 2|P|. Hence, from a given interpretation I
s.t. I, 0 |= α we can build an interpretation I ′ s.t. I ′, 0 |= α and size(I ′) ≤ 1 + µ(α′) × 2|P|. Since
|α| ≥ µ(|α|) + 1 and µ(|α′|) = µ(|α|), we conclude that size(I ′) ≤ |α| × 2|P|.

4.6 The satisfiability problem in L⋆

We discuss in this section the satisfiability checking problem of the fragment L⋆. We use a similar
procedure as described in Section 4.4. Given a sentence α, a bounded structure is non-deterministically
guessed, then the labeling sets labSα(·) are used to update the set of sub-sentences in each element of
the sequence and checking whether the sentence α is satisfied. Thanks to Theorem 4.30, if a sentence
α ∈ L⋆ is Isd-satisfiable, then there exists an interpretation I ∈ Isd s.t. size(I) ≤ |α|×2|P| that satisfies
the sentence. We use a compact structure to represent state-dependent interpretations. For this purpose,
we focus on particular interpretations of the class Isd, namely the ultimately periodic interpretations
(UPI in short). We show that any interpretation I ∈ Isd has an equivalent UPI, and the other way round.
As we will see in the second part of this section, we define a finite representation of UPIs, called finite
preferential structures.

Definition 4.46 (UPI). Let I = (V, ⋎ ) ∈ Isd and let π = card(range(I)). We say I is an ultimately
periodic interpretation if:
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• for every t, t′ ∈ [tI , tI + π[ s.t. t 6= t′, we have V (t) 6= V (t′),

• for every t ∈ [tI ,∞[, we have V (t) = V (tI + (t− tI) mod π).

A UPI I is a state-dependent interpretation s.t. each time point’s valuation in final(I) is replicated
periodically. Given a UPI, π = card(range(I)) denotes the length of the period and the interval [tI , tI +
π[ is the first period which is replicated periodically throughout the final part. It is worth pointing out
that for every t ∈ final(I), we have V (t) ∈ {V (t′) | t′ ∈ [tI , tI + π[}, which is one of the consequences
of the definition above. Thanks to Lemma 4.13, we can prove the following proposition.

Proposition 4.47. Let P be a set of atomic propositions, I = (V, ⋎ ) ∈ Isd, i = length(init(I)) and
π = card(range(I)). There exists an ultimately periodic interpretation I ′ = (V ′, ⋎ ′) ∈ Isd s.t. I, I ′

are faithful interpretations over P (see Definition 4.12), init(I ′) .
= init(I), range(I ′) = range(I) (see

Definition 4.12 and Lemma 4.13 for reference) and V ′(0) = V (0). Moreover, for all α ∈ L⋆, we have
I, 0 |= α iff I ′, 0 |= α.

It is worth to point out that the size of an interpretation and that of its UPI are the same. It can
easily be seen that these interpretations have the same initial part and the same range of valuations in
the final part. I ′ from the aforementioned proposition is obtained from I by keeping the same initial
part, and placing each distinct valuation of range(I) in the interval [tI , tI + π[ and finally replicating
this interval infinitely many times. Moreover, the preference relation ⋎ ′ arranges valuations in the same
way as ⋎ . We can see that I and I ′ are faithful and that init(I ′) .

= init(I), range(I ′) = range(I) and
V ′(0) = V (0). Therefore, I and its UPI I ′ satisfy the same sentences.

We showed that, starting from any interpretation I ∈ Isd, the equivalent UPI can be induced. Next,
we introduce next a compact representation for ultimately periodic structures. The structure used for
checking the satisfiability of L⋆ sentences is defined in the following way:

Definition 4.48 (Periodical preferential structure). A periodical preferential structure is a tuple S =
(i, π, VS , ⋎ S) where: i, π are two integers such that i ≥ 0 and π > 0 (where i is intended to be the
starting point of the period, π is the length of the period); VS : [0, i + π[−→ 2P , and ⋎ S ⊆ 2P × 2P

is a strict partial order. Moreover, (I) for all t ∈ [i, i + π[, we have VS(t) 6= VS(i − 1); and (II) for all
distinct t, t′ ∈ [i, i+ π[, we have VS(t) 6= VS(t

′).

The periodical preferential structure is split into two intervals. The interval [0, i[ represents the initial
part of a UPI I , and the interval [i, i + π[ is the first period of the final part of I . Each element in the
interval [i, i + π[ has a unique valuation, they represent all valuations in the range of I . We suppose
that the elements of [i, i + π[ are inter-connected. Since this interval is infinitely replicated in the final
part of the interpretation, then every time point with a valuation in [i, i + π[ is a successor of all time
points with valuations in [i, i + π[. The added properties (I) and (II) make sure that we can build a
periodical preferential structure S from a UPI I , and back (the initial part of I coincides with [0, i[ and
the valuations in [i, i+π[ are the range of final part of I). Starting from a periodical preferential structure
S = (i, π, VS , ⋎ S), we can build a UPI I(S) as follows:

Definition 4.49. Given a periodical preferential structure S = (i, π, VS , ⋎ S), let I(S) def
= (V, ⋎ ), where

for every t ≥ 0, V (t) def
= VS(t), if t < i, and V (t) def

= VS(i + (t − i) mod π), otherwise. The ordering
relation ⋎ is defined as ⋎ def

= {(t, t′) | (V (t), V (t′)) ∈ ⋎ S}.

Given a periodical preferential structure S = (i, π, VS , ⋎ S), the interval [0, i[ of the structure corre-
sponds to the initial temporal part of the underlying interpretation I(S) and [i, i+π[ represents a temporal
period that is infinitely replicated in order to determine the final temporal part of the interpretation. The
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ordering relation ⋎ of I(S) is the projection of ⋎ S over the time points in the sequence. It follows di-
rectly from ⋎ S being an ordering relation on valuations that the relation ⋎ of I(S) satisfies the condition
of state-dependent interpretations, i.e., I(S) ∈ Isd. In addition, we have size(I(S)) = i + π. We define
the size of the periodical preferential structure as size(S) def

= i+ π.

Definition 4.50 (Minimality). Let S = (i, π, VS , ⋎ S) be a periodical preferential structure and t be
a time point s.t. t ∈ [0, i + π[. The set of preferred time points of t w.r.t. S, denoted by min ⋎ S

(t),
is defined as follows: min ⋎ S

(t) def
= {t′ ∈ [min<{t, i}, i + π[ | there is no t′′ ∈ [min<{t, i}, i +

π[ with (VS(t
′′), VS(t

′)) ∈ ⋎ S}.

The definition of minimality in periodical preferential structures follows the principle of future pre-
ferred time points in the preferential interpretations. Given a t ∈ [0, i + π[, the set min ⋎ S

(t) contains
the minimal elements that come after t. Notice that in the case of t ∈ [0, i[, the minimal set starts with
t and finishes with i + π − 1. Whereas in the case of t ∈ [i, i + π[, we recall that in Definition 4.48
the interval [i, i + π[ is a finite representation of the final part of an interpretation where the elements
within this interval are successors of each other, then the set min ⋎ S

(t) contains all minimal elements of
[i, i+ π[.

Proposition 4.51. Let S = (i, π, VS , ⋎ S) be a periodical preferential structure, I(S) = (V, ⋎ ) be its
corresponding interpretation and t, t′, tS , t

′
S ∈ N s.t.:

tS =

{
t, if t < i;

i+ (t− i) mod π, otherwise.
t′S =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.

We have the following: t′ ∈ min ⋎ (t) iff t′S ∈ min ⋎ S
(tS).

With the periodical preferential structures S introduced, we move to the procedure for checking the
satisfiability of L⋆ sentences. We use a similar procedure to the one described in Section 4.4. Let α ∈ L⋆

be a sentence, we define first the ordered set of sub-sentences of α1.

Definition 4.52 (Sub-sentences). Let α ∈ L⋆, the set Sf (α) is recursively defined as follows:

• Sf (p) := {p}; Sf (¬p) := {¬p};

• Sf (α1 ∧ α2) := Sf (α1) ∪ Sf (α2) ∪ {α1 ∧ α2};

• Sf (α1 ∨ α2) := Sf (α1) ∪ Sf (α2) ∪ {α1 ∨ α2};

• Sf (□α1) := Sf (α1) ∪ {□α1};

• Sf (♢α1) := Sf (α1) ∪ {♢α1};

• Sf (□∼α1) := Sf (α1) ∪ {□∼α1};

• Sf (♢∼α1) := Sf (α1) ∪ {♢∼α1}.

Next, the labelling set labSα(·) is defined accordingly.

Definition 4.53 (Labelling sets). Let S = (i, π, VS , ⋎ S) be a periodical preferential structure, α ∈ L⋆

and t ∈ [0, i+ π[. The set of sub-sentences of α that hold in t, denoted by labSα(t), is defined as follows:

• p ∈ labSα(t) iff p ∈ VS(t); ¬α1 ∈ labSα(t) iff α1 6∈ labSα(t);

• α1 ∧ α2 ∈ labSα(t) iff α1, α2 ∈ labSα(t); α1 ∨ α2 ∈ labSα(t) iff α1 ∈ labSα(t) or α2 ∈ labSα(t);
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• ♢α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for some t′ ∈ [min<{t, i}, i+ π[;

• □α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for all t′ ∈ [min<{t, i}, i+ π[;

• ♢∼α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for some t′ ∈ min ⋎ S

(t);

• □∼α1 ∈ labSα(t) iff α1 ∈ labSα(t
′) for all t′ ∈ min ⋎ S

(t).

The set labSα(t) contains the set of all sub-sentences of α that hold in t. For each sub-sentence, we
can see that the labelling sets mimic the definition for that sentence’s semantics. Moreover, we have the
following property.

Proposition 4.54. Given a periodical preferential structure S and α ∈ L⋆, we have I(S), 0 |= α iff
α ∈ labSα(0).

Checking the Isd-satisfiability for L⋆ sentences uses the same procedure described in Section 4.4.
Let α be a sentence in L⋆ and thanks to Theorem 4.30, if α is Isd-satisfiable, then there exists an
interpretation I ∈ Isd s.t. size(I) ≤ 2|P| × |α| that satisfies it. A UPI interpretation I ′ can induced from
I thanks to Proposition 4.47. Since UPI interpretations can be represented by periodical interpretations,
we can make a non-deterministic guess for an S = (i, π, VS , ⋎ S) s.t. size(S) ≤ 2|P|×|α|. Next, for each
α1 ∈ Sf (α) in the increasing order of |α1| and for each t ∈ [0, i + π[, we update labSα(t) accordingly.
At the end of this procedure, S is accepted as a structure for α if α ∈ labSα(0), otherwise, S is rejected.

Proposition 4.55. Let α ∈ L⋆. We have that α is Isd-satisfiable iff there exists a periodical preferential
structure S such that I(S), 0 |= α and size(I(S)) ≤ |α| × 2|P|.

Hence, to decide the satisfiability of a sentence α ∈ L⋆, we can first guess a structure S bounded by
|α| × 2|P|. Next, using the labelling sets of S, we check the satisfiability of α by the UPI I(S).

Theorem 4.56. Isd-satisfiability problem for L⋆ sentences is decidable.

Proof. Let α ∈ L⋆. Thanks to Theorem 4.30 and 4.47, if α is Isd-satisfiable, there exists a UPI inter-
pretation I s.t. I, 0 |= α and size(I) ≤ |α| × 2|P|. We make a non-deterministic guess of a structure
S = (i, π, VS , ⋎ S) where size(S) ≤ |α| × 2|P| and use the labelling sets labSα(t) to check for all
sub-sentences of α1 in each t ∈ [0, i]. If α ∈ labSα(0), S is accepted as a structure and therefore α
is satisfiable. Otherwise, S is rejected. Therefore, the Isd-satisfiability for L⋆ sentences is a decidable
problem.

4.7 Summary

By following the line of reasoning of Sistla and Clarke [SC85], we established the bounded model prop-
erty of the preferential temporal interpretations for some fragments of the LTL˜ language. The fragment
L1 is based on the work done on LNNF (♢,©) and L⋆ is based on the work done on the fragment L(♢)
of LTL (a brief presentation of both fragments was presented in Section 2.2). We extended their obser-
vation and notations in the case of preferential interpretations. In the investigation of the decidability of
the defeasible temporal language, we defined a sub-class of I interpretations called state-dependent in-
terpretations Isd. In case of the fragment L1, the upper-bound in the size of I-interpretations is the same
as in the LNNF (♢,©). However, we notice an exponential blowup when adding the □∼ to the syntax in
the case of the fragment L⋆ (for a sentence α, the upper-bound is |α| × 2|P| compared with |α| in the
fragment L(♢) in Sistla and Clarke’s work [SC85]).
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Unlike the fragment L⋆, Lemmas 4.11 and 4.13 do not hold in the general case of L .̃ In the case
of temporal interpretations for sentences in L, Sistla and Clarke [SC85] showed that they can be repre-
sented as ultimately periodic structures (see Definition 2.10) that are bounded in size (see Lemma 4.5
and Lemma 4.6 in [SC85]). However, the stakes are to show under what circumstances or restrictions
preferential interpretations where a similar version of the aforementioned Lemmas can be obtained.
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A one-pass tableau for LTL˜
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With the bounded model property and decidability of the two fragments L1 and L⋆ shown in Chapter
4, the next task we worked on is to develop tools for checking the satisfiability of sentences within these
fragments. In LTL, common techniques include automata-based approaches [BCM+92, Var96, RV11]
as well as tableaux approaches [Wol85, Rey16b]. On the other hand, Britz and Varzinczak [BV18]
proposed a tableau for defeasible modal logic K, on which they show that it is possible to build Kripke
structures with preferential relation ⋎ on possible worlds. Rules for defeasible modalities p∼∼p , p∼∼p (see
Section 1.2.4 for their definition) were also laid in the paper. Moreover, the rules for all modalities
(whether classical or defeasible) take into account whether the created accessible nodes are preferred
or not during the expansion of the tableau. We shall follow this principle for temporal sentences of
LTL˜. For more details about the approach for defeasible modal logic, we refer the reader to Britz and
Varzinczak’s paper [BV18].

As a first step, we proposed a tableau for sentences in the fragment L1 [CCACV21]. We based our
method on Reynolds’ one-pass tree-shaped tableau [Rey16a]. A brief description of the approach is
provided in Section 2.3. We opted for the one-pass tree-shaped tableau for two reasons. First of which
is its tree-like structure (the expansion only goes from a parent node to its children), which resembles
traditional tableaux. In the literature, tableaux for formalisms extended with preferential semantics à-la
KLM [GGOP09, BV18] have a similar structure. As such, Reynolds’ approach is a good starting point
for investigating preferential semantics for linear temporal logic. Secondly, each branch of the tree is
considered a potential model for the sentence independently of other branches. Therefore, it is easier to
integrate a preference relation ⋎ for each branch without worrying for a potential conflicts with other
branches. The tableau for defeasible modal logic K is similar in this regard [BV18], i.e., a successful
branch by itself is a model.
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We highlight, in this chapter, the tableau for L1 sentences. We discuss the structure of the tableau
which accommodates preferential semantics. We provide a rule for ♢∼ operator and how to handle defeasi-
ble eventualities. We introduce a version of dynamics rules, i.e., prune and loop. We show the soundness
and completeness of the method in Section 5.2 alongside some examples in Section 5.3.

5.1 Tableau method for L1

Just as a remainder, the fragment L1 considers that sentences are in NNF (negation is only allowed on
the level of atomic propositions). On the other hand, the non-monotonic operator □∼ is omitted from
L1. Furthermore, only Boolean sentences are permitted within the scope of □. Sentences in L1 are
recursively defined as such:

α ::= αbool | α ∧ α | α ∨ α | ♢α | □αbool | ©α | ♢∼α

Sentences of the form ♢α are called eventualities, because its truth depends on α being true in the
future. Similarly, sentences of the form ♢∼α are called non-monotonic eventualities. Their truth depends
not only on α being true in some future, but it depends also on this future being preferred to the other
future time points.

A tableau for α ∈ L1 is a tree of nodes. Each node has a positive integer n as a label. It has also two
sets: one we denote as Γ and the other as une (which stands for unfulfilled non-monotonic eventualities,
a notion to be detailed below). The set Γ is a subset of L1 which contains the sentences in the node. The
set une is a set of pairs (nk,♢∼αk), where nk is a label and ♢∼αk is a non-monotonic eventuality.

Definition 5.1 (Labelled node). A labelled node is a triple of the form n : (Γ, une) where n ∈ N, Γ ⊆ L1

and une ⊆ [0, n]× L1.

It is worth to mention that different nodes can have the same label. Intuitively, the nodes labelled
by a same integer n represent the set of sentences that are satisfied at the time point associated with n.
Hence, these nodes correspond with a given temporal state.

A branch B is a sequence of nodes, we introduce also a strict partial ordering relation ⋎ B on the
labels of the nodes within the branch. The relation ⋎ B is used to infer a preference relation on the
temporal states of the branch B. In addition to ⋎ B , each branch B has also has a set minB . It represents
the set constraints that the final preference relation issued from B must satisfy. More precisely, each pair
(n, n′) in minB indicates that n′ represents a preferred temporal state compared to all n′′ ≥ n. We shall
see their role on the rule application section.

Definition 5.2 (Branch). A branch is a tuple B def
= (〈x0, x1, x2, . . . 〉, ⋎ B,minB) where the first element

is a sequence of labelled nodes xi := ni : (Γi, unei), ⋎ B is a strict partial order ( ⋎ B ⊆ N × N) on
labels within the branch, and minB is a set of pairs of labels (minB ⊆ N× N).

Let B := (〈x0, x1, x2, . . . 〉, ⋎ B,minB) be a branch, xn, xm be two labelled nodes in B. If xm
comes after xn in the sequence, then xm is a successor of xn, and xn is a predecessor of xm. We denote
it by xn ≤ xm. Moreover, if xm is not the same labelled node as xn, we say that xm is a proper successor
of xn (same goes for a proper predecessor). We denote it by xn < xm. The last node of a branch is
called a leaf node. When a leaf node is ticked with 3, we say that the branch is a successful branch. On
the other hand, when a leaf node is crossed with 7, we say that the branch is a failed branch.

A tree is a set of branches T def
= {B0, B1, B2, B3, . . . , Bk} where k ≥ 0. A tableau T for α is the

limit of a sequence of trees 〈T 0, T 1, T 2, . . . 〉 where the initial tree is T 0 := {(〈0 : (α, ∅)〉, ∅, ∅)} and
every T i+1 is obtained from T i by applying a rule on one of its branches. We say that a tableau T for α
is saturated if no more rules can be applied after a certain tree T j .
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5.1.1 Static rules

We have two types of rules, static and dynamic rules. We introduce static rules first. Let T be a tree, and
let B be a branch of T that has a leaf n : (Γ, une). We say that a static rule (ρ) is applicable at the leaf
n : (Γ, une) if a sentence in Γ or a pair in une instantiates the pattern ρ. A static rule is a rule of the
form:

(ρ)
n : (Γ, une), ⋎ B,minB

n : (Γ1, une1), ⋎ B1 ,minB1 | . . . | n : (Γk, unek), ⋎ Bk
,minBk

In a tree T i, after applying the static rule (ρ), we obtain the tree T i+1 by replacing the branch
B := (〈x0, x1, x2, . . . , n : (Γ, une)〉, ⋎ B,minB) either by the branch B1 := (〈x0, x1, x2, . . . , n :
(Γ, une), n : (Γ1, une1)〉, ⋎ B1 ,minB1), or the branch B2 := (〈x0, x1, x2, . . . , n : (Γ, une), n : (Γ2, une2)〉,
⋎ B2 ,minB2), and so on. The symbol ‘|’ indicates the occurrence of a split in the branch, i.e., a non-
deterministic choice of possible outcomes, each of which needs to be explored. It is worth to mention
that after applying a static rule on n : (Γ, une), the leaf nodes of all the new branches keep the same
label n.

In what follows, we show the rules for Boolean connectives and the operators (□,♢). We also show
two stopping conditions, namely, (Empty) and (Contradiction). We chose to omit ⋎ B and minB to
lighten these rules. The crucial detail to remember is that they do not change after applying the rules
below, i.e., ⋎ Bi = ⋎ B and minBi = minB for all resulting branches. The symbol ∪ is the union of two
sets. The symbol ] represents the union between disjoint sets.

(Contradiction)
n : ({α,¬α} ] Σ, une)

(7)
(Empty)

n : (∅, ∅)

(3)

(∧)
n : ({α1 ∧ α2} ] Σ, une)

n : ({α1, α2} ∪ Σ, une)
(∨)

n : ({α1 ∨ α2} ] Σ, une)

n : ({α1} ∪ Σ, une) | n : ({α2} ∪ Σ, une)

(□)
n : ({□α1} ] Σ, une)

n : ({α1,©□α1} ∪ Σ, une)
(♢)

n : ({♢α1} ] Σ, une)

n : ({α1} ∪ Σ, une) | n : ({©♢α1} ∪ Σ, une)

Before introducing the rule for the non-monotonic operator ♢∼, we discuss first-hand the notion of
fulfilment for classical and non-monotonic eventualities. Following Reynolds’ tableau [Rey16b], let an
eventuality ♢α be in a node with a label n. If the sentence α appears in a proper successor node x with
the label m ≥ n, we say that ♢α at the position n is fulfilled in m. In a similar fashion, we define the
fulfilment for non-monotonic eventualities as follows:

Definition 5.3 (Fulfilment of non-monotonic eventualities). Let a non-monotonic eventuality ♢∼α be in a
node with a label n in a branch B. If α appears in a proper successor node x with a label m ≥ n, and
(n,m) ∈ minB , we say ♢∼α at the position n is fulfilled in m.
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The truth value ♢∼α in a temporal state n depends on α being true on a future temporal state m and m
being minimal to all temporal states that come after n w.r.t. ⋎ B . We say m is minimal to n as shorter way
to say that m is minimal to all temporal states that come after n. Unfulfilled non-monotonic eventualities
in a node x with the label n are stored in the set une def

= {(n1,♢∼α1), (n2,♢∼α2), . . . }, each pair (nk,♢∼αk)
represents a non-monotonic eventuality ♢∼αk at a position nk that needs to be fulfilled. Therefore each
node x has three components: n is a label indicating the temporal state, Γ is the set of sentences within
the node and une is the set of non-monotonic eventualities at x that need to be fulfilled. With all of our
notions introduced, here is the rule for the ♢∼ operator:

(♢∼)
n : ({♢∼α1} ] Σ, une), ⋎ B,minB

n : ({α1} ∪ Σ, une), ⋎ B,minB ∪ {(n, n)} | n : (Σ, une ∪ {(n,♢∼α1)}), ⋎ B,minB

For the rule (♢∼), we explore two outcomes. The first outcome is when the non-monotonic eventuality
♢∼α1 at n is fulfilled in n. We then add α1 to the set of sentences Γ of the leaf node and add (n, n) ∈ min
of the branch. The second outcome is when ♢∼α1 is not fulfilled in n, then we add the pair to (n,♢∼α1) to
une of the leaf node as a non-monotonic eventuality that needs to be fulfilled. Example 5.4 shows the
application of (♢∼) rule.

Example 5.4. Let a branch B have ⋎ B , minB and a leaf node 5 : ({p, q,□(p ∧ q),♢∼r}, ∅). After
applying (♢∼) rule on ♢∼r, we have two new branches B1 and B2. The branch B1 has a leaf node where
the sentence r is in Γ of the leaf node and (5, 5) ∈ minB1 . The branch B2 has (5,♢∼r) in une of the leaf
node.

5 : ({p, q,□(p ∧ q),♢∼r}, ∅), ⋎ B,minB

5 : ({p, q,□(p ∧ q), r}, ∅), ⋎ B,minB ∪ {(5, 5)} 5 : ({p, q,□(p ∧ q)}, {(5,♢∼r)}), ⋎ B,minB

The next static rule we discuss is the rule (une). Let n, n′ be two labels such that n′ < n, for each
label n and a pair (n′,♢∼α1), the rule (une) is applied one and only one time. The rule goes as follows:

(une)
n : (Γ, {(n′,♢∼α1)} ] U), ⋎ B,minB

n : ({α1} ∪ Γ, U), ⋎ B,minB ∪ {(n′, n)} |

n : (Γ, {(n′,♢∼α1)} ∪ U), ⋎ B,minB ∪ {(n′, n)} |

n : (Γ, {(n′,♢∼α1)} ∪ U), ⋎ B ∪ {(n′, n)},minB

For the rule (une), we explore three outcomes. The first outcome is when ♢∼α1 at the position n′ is
fulfilled at n. We remove (n′,♢∼α1) from une , then we add α1 in Γ of the leaf node and (n′, n) in min of
the branch. In the second and third branches, we explore the outcome of ♢∼α1 not being fulfilled yet in n,
we keep the pair (n′,♢∼α1) on the leaves of two branches. The second branch explore the outcome of n
being minimal to n′ w.r.t. to ⋎ of the branch. We then add (n′, n) to the min of the branch. In the third
branch, we explore the outcome of n not being minimal to n′ w.r.t. ⋎ of the branch. It means that there
exists a temporal state m′ in the future of n′ where m′ is preferred to n w.r.t. to ⋎ of the branch, we add
the pair (n′, n) in ⋎ of the branch to represent this case. It is worth to mention that the rule (une) does
not apply when the label of the node n is the same as (n,♢∼α1). The reason behind this is that we have
already explored the case when the eventuality is fulfilled in n thanks to (♢∼) rule. Example 5.5 shows
the application of (une) rule.
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Example 5.5. Let a branch B have ⋎ B , minB and a leaf node 5 : ({□(p ∧ q)}, {(2,♢∼s)}). In this leaf
node, we have Γ = {□(p ∧ q)} and une = {(2,♢∼s)}. After the application of une on (2,♢∼s), we have
three branches B1, B2 and B3. B1 has the sentence s in Γ of its leaf node, it has also (2, 5) in minB1 .
B2 keeps (2,♢∼s) in the une of its leaf node, with (2, 5) ∈ minB2 . B3 keeps also (2,♢∼s) in une of its
leaf node, with (2, 5) ∈ ⋎ B3 .

5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B,minB

5 : ({□(p ∧ q), s}, ∅), ⋎ B,minB ∪ {(2, 5)} 5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B,minB ∪ {(2, 5)} 5 : ({□(p ∧ q)}, {(2,♢∼s)}), ⋎ B ∪ {(2, 5)},minB

With the (une) and (♢∼) introduced, we need to check the consistency of ⋎ of all the new branches.
We apply this check each time we apply (une) or (♢∼) rule. Let B := (〈x0, x1, x2, . . . 〉, ⋎ B,minB) be
a branch, the rule goes as follows:

• ( ⋎ -inconsistency) : if (n, n′) ∈ minB and there exists n′′ ≥ n s.t. (n′′, n′) ∈ ⋎ B , then the branch
is crossed (7).

In a branch B, if (n, n′) ∈ minB , then we are currently exploring a branch where n′ is minimal to n
w.r.t. ⋎ B . Therefore there should be no n′′ ≥ n where (n′′, n′) ∈ ⋎ B . Each time we explore a branch
where this inconsistency arises, we close the branch.

Example 5.6. Let B be a branch where ⋎ B is empty, minB has (1, 5) in it, and a leaf node 5 :
(Γ, {(2,♢∼s)}). After applying une rule on (2,♢∼s), we have three branches B1, B2 and B3. The re-
lation ⋎ B1 is empty, and minB1 has the pairs (1, 5) and (2, 5). In this case, there is no inconsistency
w.r.t. ⋎ B1 so far. The same goes for B2. However, we add (2, 5) to ⋎ B3 . Since we already have
(1, 5) ∈ minB3 , then we cannot have (2, 5) ∈ ⋎ B3 . We close B3.

5 : (Γ, {(2,♢∼s)}), ∅, {(1, 5)}

. . . . . . 5 : (Γ, {(2,♢∼s)}), {(2, 5)}, {(1, 5)}

(7)

In a branch B of a tree T with a leaf node xi, after applying every static rule aforementioned (the
application order of these rules is non-deterministic) that can be applied, all leaf nodes of the generated
branches contain only sentences of the form p,¬p or ©α in their Γ. When no more static rules can be
applied in a node, this node is called a state-labelled node. State-labelled nodes mark the full expansion
of all sentences that hold in a state n.

5.1.2 Dynamic rules

Once we are in a state-labelled node, in order to go from a temporal state to the next, we need a transition
rule (a rule to go from a temporal state n to the next n+1). In a branch B with a leaf state-labelled node,
the rule (Transition) goes the following way:

(Transition)
n : ({©α1,©α2,©α3, . . . ,©αk} ] Σ, une), ⋎ B,minB

n+ 1 : ({α1, α2, α3, . . . , αk}, une), ⋎ B,minB
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After the (Transition) rule is applied to a state-labelled node n : (Γ, une), we add a node with the
label n+1. It marks the start of a new temporal state n+1. We carry over to n+1 only sentences within
the scope of ©αi sentences. The set une gets transferred as well to the next temporal state. Any pair
(n′,♢∼α1) ∈ une remaining in the state node with the label n indicates that the current branch explores
an outcome where the non-monotonic eventuality ♢∼α1 at n′ is not yet fulfilled in n. Therefore, these
non-monotonic eventualities need to be fulfilled in n′′ ≥ n+ 1.

Before applying the (Transition) rule, we need to add a set of checks to prevent branches from
expanding indefinitely. These checks are called (Loop) and (Prune) rules. These rules, together with the
(Transition) rule, are called dynamic rules.

Let B := (〈x0, x1, x2, . . . , v〉, ⋎ B,minB) be a branch where v is a state-labelled node n : (Γv, unev).
Let u be the last state-labelled node n − 1 : (Γu, uneu) that comes before v in the branch B. Before
applying the transition rule on v, we check for these rules:

• (Loop) Let v be a state-labelled node such that it has at least one sentence of the form ©□αbool

in Γv but has no ©αbool,©♢β,©♢∼β in Γv and unev = ∅. If for all ©□αbool in Γv, there exists
u < s ≤ v such that □αbool ∈ Γs, then the branch B is ticked (3).

Notice that once an eventuality is fulfilled, it does not appear any longer in the successors of the
node. In this case, we say that the sentence is consumed. On the other hand, sentences of the form
□αbool never get consumed and get replicated indefinitely. Once a branch has no eventuality left, □αbool

sentences give rise to an infinite tableau with repetitive nodes. Nevertheless, we can represent this by
looping nodes of the last temporal state. We can, in this case, stop the branch from ever going infinite.
The (Loop) rule states that when the leaf state node v has no eventualities (classical or non-monotonic),
has only ©□αbool as sentences with the pattern ©, and each ©□αbool is a result from applying the □ rule
to a node in B with label n, the branch is ticked and marked as a successful branch.

• (Prune) Let u < v be two consecutive state-labelled nodes s.t. Γv = Γu and unev = uneu and
such that there is at least one eventuality in xu (either ©♢β ∈ Γu or (n′,♢∼β) ∈ uneu), then the
branch is crossed (7).

The (Prune) rule states that when the last two state nodes u and v have the same set of classical
and non-monotonic eventualities that need to be fulfilled, and there is at least one eventuality in u, the
branch is then crossed and marked as an unsuccessful branch. Any branch that does not fulfill at least
one eventuality between the current and the last temporal state is closed, to prioritize the exploration
of branches that fulfill one or more eventuality of the last temporal state. If neither (Prune or (Loop)
apply on v, we apply the (Transition) rule on the node v. Note that the (Loop) and (Prune) rules are
fundamentally different from the ones proposed in Reynolds’ tableau [Rey16a]. These rules are tailored
to the restrictions of the fragment L1, in particular, the restriction of not allowing temporal sentences
inside the □ operator. We argue that when eventualities (either classical or non-monotonic) are not
infinitely replicated inside globally operators, we only need to check the current state node with the last
one that comes beforehand. It is the reason why we also omit also the operator U , since the right part of
a U-sentence can also replicate eventualities.

Once we are in a state-labelled node, we check for the loop and prune within the branch before
applying the transition rule. If the transition rule is applied on a state node with a label n, we obtain a
new node with the label n+ 1. We can then expand the tree from this node by applying static rules until
we find ticked branches (thanks to the (Empty) rule), closed branches (thanks to the (Contradiction) or
( ⋎ -inconsistency) rules), or branches with a state node that has the label n+1. We then repeat the cycle
between static and dynamic rules. We can see that the tableau method does not go indefinitely. Thanks
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to prune rule, we close any branch (7) that does not fulfil any eventuality in the current temporal state.
Anytime we apply a transition rule (from n to n + 1), we need to fulfil at least one eventuality in n.
Therefore, as long as a branch is not closed with prune rule, eventuality sentences (either classical or
non-monotonic) get consumed one by one over the execution of the method. Thus any branch that is not
closed with prune has no eventualities left to fulfil. Note that if a branch contains at least one sentence
of the form □αbool, it is then ticked thanks to the loop rule (□αbool sentences do not get consumed).
Otherwise, it is ticked thanks to the empty rule. Therefore any tableau T for a sentence in L1 is a
saturated tableau.

5.2 Soundness and completeness

We show the soundness and completeness of the tableau method for sentences in L1. We based the proofs
of this section on the soundness a completeness of one-pass tree-shaped tableaux proposed by Reynolds
[Rey16a].

5.2.1 Soundness

Here we prove that the tableau method is sound, that is, when a tableau T of a sentence α ∈ L1 has a
successful branch, then α is satisfiable. As a first step, we show that we can extract an interpretation
I ∈ I from the successful branch. Let B := (〈x0, x1, x2, . . . , xn, (3)〉, ⋎ B,minB) be a successful
branch of a tableau T for α, the sequence of nodes contains normal and state-labelled nodes. Each state-
labelled node, denoted by xji , within this sequence has a distinct label i. Figure 5.1 shows an example
of the branch B.

xj0

0

. . . xj1

1

. . . xj2

2

. . .x0 x1 . . .
B :

xjk−1

k − 1

. . . xjk

k

Figure 5.1: Illustration of the branch B.

From the aforementioned branch B, we can build an interpretation IB = (V, ⋎ ). In this section, k
denotes the label of the last state node. The function V is defined as follows:

V (i) :=

{
{p ∈ P | p ∈ Γxji

}, if 0 ≤ i ≤ k;

V (k), otherwise.

The ordering relation ⋎ is defined as follows ⋎ := {(n, n′) | (n, n′) ∈ ⋎ B}. We can see that the
resulting ⋎ is irreflexive, since there is no rule application that adds (n, n) to ⋎ B . The relation ⋎ does
not contradict the transitive property of strict-partial orders, since for all (n1, n2) and (n2, n3) in ⋎ B ,
there is no rule application that adds (n3, n1) ∈ ⋎ B knowing that n3 temporally comes after n1. Finally,
since ⋎ B has no infinitely descending chains, then we can conclude that ⋎ preserves the well-foundness
condition over N. Therefore, the interpretation IB is a preferential interpretation in I.

With the model construction introduced, we can move on to the second part of the proof of soundness.
We need to show that the model I satisfies the sentence α. In order to do so, we introduce a mapping
function, denoted by ∆B , that links each time point i ∈ N to a set of sentences that are true in said i.
These sentences come from the branch B. Depending on how the branch is ticked, the function ∆B is
defined in the following way.
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If the branch was ticked with the empty rule:

∆B(i) :=


∪

x0≤x≤xj0
Γx, if i = 0;∪

xji−1
<x≤xji

Γx, if 1 ≤ i ≤ k − 1;

∅, otherwise.

If the branch was ticked with the loop rule:

∆B(i) :=


∪

x0≤x≤xj0
Γx, if i = 0;∪

xji−1
<x≤xji

Γx, if 1 ≤ i ≤ k;

∆B(k), otherwise.

For a time point 0 ≤ i ≤ k, ∆B(i) contains the set of all sentences in Γ of the node between the
two consecutive state nodes xji−1 and xji , xji−1 not included. If B is ticked thanks to the empty rule,
then ∆B(i) is empty for all i ≥ k. If B is ticked thanks to the loop rule, then ∆B(i) has the same set of
sentences as ∆B(k) for all i ≥ k. We can show next that if a sentence α1 is in ∆B(i), then IB, i |= α1.
In what follows, let B be a successful branch of a tableau T, let k be the label of the last state node in B,
and let IB,∆B be the interpretation and the mapping function of sentences extracted from B.

Lemma 5.7. Let B be a successful branch, and i ∈ N. If ©α1 ∈ ∆B(i), then α1 ∈ ∆B(i+ 1).

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N. We discuss two
possibilities:

• When the branch B is ticked with empty rule. We can see that when i ≥ k, ∆B(i) = {} and
therefore ©α1 6∈ ∆B(i). We also know that since ∆B(k) = {}, then there is no ©α1 ∈ Γxjk−1

(otherwise, ∆B(k) would at least contain α1). Furthermore, there is no static rule that removes
©α1, we can conclude that there is no ©α1 ∈ ∆B(k − 1).

Otherwise, in the case of 0 ≤ i < k− 1, if ©α1 ∈ ∆B(i), then ©α1 ∈ Γx where xji−1 < x ≤ xji .
Since there is no static rule that removes ©α1, we have ©α1 ∈ Γxji

. Furthermore, after applying
the transition rule on the node xji , we have α1 ∈ Γxji+1 . Thus, we have α1 ∈ ∆B(i+ 1).

• When the branch B is ticked with loop rule. In the case of 0 ≤ i < k, the proof is analogous to
the case of empty rule. When i = k, if ©α1 ∈ ∆B(k), then ©α1 is subsequently in Γxjk

. Since B
is ticked with loop, then α1 is a sentence of the form □αbool and □αbool ∈ Γx (xjk−1

< x ≤ xjk )
and therefore □αbool ∈ ∆B(k). Moreover, we have ∆B(k) = ∆B(k + 1). Therefore, we have
□αbool ∈ ∆B(k + 1) and thus α1 ∈ ∆B(k + 1).

In the case where i ≥ k. If ©α1 ∈ ∆B(i), then ©α1 ∈ ∆B(k − 1). As mentioned before, since
©α1 ∈ ∆B(k − 1), then α1 is □α2 and □α2 ∈ ∆B(k − 1). Since □α2 ∈ ∆B(k − 1), then
□α2 ∈ ∆B(i+ 1) and therefore α1 ∈ ∆B(i+ 1).

Lemma 5.8. Let B be a successful branch, and i ∈ N. If □α1 ∈ ∆B(i), then for all f ≥ i, we have
{α1,□α1,©□α1} ⊆ ∆B(f).

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N.
For all 0 ≤ i ≤ k, whenever □α1 ∈ ∆B(i), then both α1 and ©□α1 is in ∆B(i). By Lemma 5.7,

since ©□α1 ∈ ∆B(i), then we have □α1 ∈ ∆B(i + 1). By successive applications of Lemma 5.7, we
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have {α1,□α1,©□α1} ⊆ ∆B(f) for all i ≤ f ≤ k. Note that in the case of a branch ticked with empty
rule, since ∆B(k) = {}, □α1 cannot be in any ∆B(i) where 0 ≤ i ≤ k. In other words, if a branch
contains □α1, it can only be ticked with loop rule.

Since {α1,□α1,©□α1} ⊆ ∆B(k), and for all f ≥ k, we have ∆B(f) = ∆B(k), then {α1,□α1,©□α1} ⊆
∆B(f). Thus, the lemma holds when 0 ≤ i ≤ k.

In the case of i > k, since □α1 ∈ ∆B(i) and ∆B(i) = ∆B(k−1). Thanks to □-rule, {α1,□α1,©□α1} ⊆
∆B(k−1). Thus, we have {α1,□α1,©□α1} ⊆ ∆B(f) for all f ≥ k and subsequently {α1,□α1,©□α1} ⊆
∆B(f) for all f ≥ i.

Lemma 5.9. Let B be a successful branch, and i ∈ N. If ♢α1 ∈ ∆B(i), then there exists d ≥ i s.t.
α1 ∈ ∆B(d) and for all i ≤ f < d, we have {♢α1,©♢α1} ⊆ ∆B(f).

Proof. Let B be a ticked branch of the tableau, k be the label of the last node and i ∈ N. We discuss two
possibilities:

• When the branch B is ticked with empty rule. In the case of 0 ≤ i ≤ k − 1, whenever ♢α1 ∈
∆B(i), then either α1 is in ∆B(i) or ©♢α1 is in ∆B(i). If α1 ∈ ∆B(i), the lemma holds.
Otherwise, by Lemma 5.7, if ©♢α1 ∈ ∆B(i) then ♢α1 ∈ ∆B(i+ 1). By successive applications
of Lemma 5.7, {♢α1,©♢α1} is in ∆B(f) for i ≤ f ≤ k − 1, unless we find i ≤ d ≤ f with
α1 ∈ ∆B(d). It remains to show that there is a time point d where α1 ∈ ∆B(d). Since the branch
is closed thanks to the empty rule, it means that ©♢α1 6∈ ∆B(k − 1). Therefore, there is a state
i ≤ d ≤ k − 1 where α1 ∈ ∆B(d).

• When the branch B is ticked with loop rule and in the case of 0 ≤ i ≤ k, the proof is analogous to
the case of empty rule (notice that ©♢α1 6∈ ∆B(k) also in the case of branches ticked with loop).

In the case of i > k, since ♢α1 ∈ ∆B(i), then we have ♢α1 ∈ ∆B(k − 1). Furthermore, since
the branch is ticked with loop rule, we know that ©♢α1 6∈ ∆B(k). Therefore α1 ∈ ∆B(k), thus
α1 ∈ ∆B(i).

Lemma 5.7 to 5.9 are analogous to Reynolds’ method [Rey16a]. We show that a similar property can
be obtained for ♢∼ sentences.

Proposition 5.10. Let B be a successful branch. If (i, i′) ∈ minB , then there is no i′′ such that i ≤ i′′

and (i′′, i′) ∈ ⋎ B .

Proof. Let B be a successful branch s.t. (i, i′) ∈ minB . Since the branch is successful, then it is not
closed with ⋎ -inconsistency and therefore there is no i′′ such that i ≤ i′′ and (i′′, i′) ∈ ⋎ B .

Lemma 5.11. Let B be a successful branch and 0 ≤ i ≤ k. If ♢∼α1 ∈ ∆B(i), then there exists d ≥ i s.t.
(i, d) ∈ minB and α1 ∈ ∆B(d).

Proof. Let B be a ticked branch of the tableau, k be the label of the last state node and i ∈ N. We discuss
two possibilities:

• When the branch B is ticked with empty rule, whenever ♢∼α1 ∈ ∆B(i), then we have 0 ≤ i ≤ k−1.
Since ♢∼α1 ∈ ∆B(i), then ♢∼α1 ∈ Γx where xji−1 < xk ≤ xji . Let x be the node where we apply
the rule (♢∼) on ♢∼α1, then we either have α1 in Γ of the next node with (i, i) ∈ minB or we
have (i,♢∼α1) ∈ une of the next node. If α1 is in Γ of the next node, then the lemma holds. If
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(i,♢∼α1) ∈ une of the next node, then we find (i,♢∼α1) ∈ unexji
. Thanks to the transition rule,

we have (i,♢∼α1) ∈ unexji+1 (transition rule propagates all unfulfilled eventualities to the next
temporal state). By applying the rule une on a node with the label i+1, then we either have α1 in
Γ of the next node with (i, i+1) ∈ minB or we have (i,♢∼α1) ∈ une (the two remaining branches)
of the next node. In a similar way as in i, we can conclude that either α1 ∈ ∆B(i + 1) with
(i, i + 1) ∈ minB (the lemma holds) or (i,♢∼α1) ∈ unexji+1

. Without loss of generality, (i,♢∼α1)

is in unexjf
for i ≤ f ≤ k − 1 unless we find i ≤ d ≤ f with α1 ∈ ∆B(d) and (i, d) ∈ minB .

Since the branch is ticked thanks to the empty rule, it means that (i,♢∼α1) 6∈ unexjk−1
. Therefore,

there is a state i ≤ d ≤ k − 1 where α1 ∈ ∆B(d) with (i, d) ∈ minB .

• When the branch B is ticked with loop rule, the proof is analogous to the case of the empty rule
(notice that we also have (i,♢∼α1) 6∈ unexjk

).

Theorem 5.12. Let B be a ticked branch from a saturated tableau, and IB = (V, ⋎ ) be the model built
from the branch B. For all α ∈ L1, for all i ≥ 0, if α ∈ ∆B(i) then IB, i |= α.

Proof. We prove this lemma using structural induction on the size of the sentence α. Let B be a suc-
cessful branch for a tableau T, and IB = (V, ⋎ ) be the model built from B.

• α = p. Let p ∈ ∆B(i). By construction of the model IB , we have p ∈ V (i). Therefore, we have
IB, i |= p.

• α = ¬p. Let ¬p ∈ ∆B(i). Since B is a ticked branch, then it was not closed with the contradiction
rule, therefore we have p 6∈ V (i). Therefore, we have IB, i |= ¬p.

• α = α1∧α2. Let α1∧α2 ∈ ∆B(i). By ∧-rule, we have α1, α2 ∈ ∆B(i). By induction hypothesis
on α1, α2, we have IB, i |= α1 and IB, i |= α2. Thus, we have IB, i |= α1 ∧ α2.

• α = α1 ∨ α2. Let α1 ∨ α2 ∈ ∆B(i). By ∨-rule, we either have α1 or α2 in ∆B(i). Suppose
that α1 ∈ ∆B(i), by induction hypothesis on α1, we have IB, i |= α1. Therefore, we have
IB, i |= α1 ∨ α2. Same reasoning applies when α2 ∈ ∆B(i).

• α = ©α1. Let ©α1 ∈ ∆B(i). Thanks to Lemma 5.7, we have α1 ∈ ∆B(i + 1). By induction
hypothesis on α1, we have IB, i+ 1 |= α1. Therefore, we have IB, i |= ©α1.

• α = □α1. Let □α1 ∈ ∆B(i). Thanks to Lemma 5.8, we have α1 ∈ ∆B(f) for all f ≥ i. By
induction hypothesis on α1, we have IB, f |= α1 for all f ≥ i. Therefore, we have IB, i |= □α1.

• α = ♢α1. Let ♢α1 ∈ ∆B(i). Thanks to Lemma 5.9, we have α1 ∈ ∆B(d) for some d ≥ i. By
induction hypothesis on α1, we have IB, d |= α1. Therefore, we have IB, i |= ♢α1.

• α = ♢∼α1. Let ♢∼α1 ∈ ∆B(i). Depending on where i is, we have two cases:

– In the case of i > k, since ♢∼α1 ∈ ∆B(i), then the branch is ticked with loop and we
have ♢∼α1 ∈ ∆B(k). Furthermore, since the branch is ticked with loop rule, we know that
(i,♢∼α1) 6∈ unexjk

. With ♢∼α1 ∈ ∆B(k) and (i,♢∼α1) 6∈ unexjk
, we can infer that α1 ∈

∆B(k), thus α1 ∈ ∆B(i). Furthermore, since ⋎ := ⋎ B , and there is no f ≥ i such
(f, i) ∈ ⋎ B , then i ∈ min ⋎ (i), and therefore, IB, i |= ♢∼α1.
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– 0 ≤ i ≤ k. Thanks to Lemma 5.11, there exists d ≥ i s.t. α1 ∈ ∆B(d) and (i, d) ∈ minB .
By induction hypothesis on α1, we have IB, d |= α1. Thanks to Proposition 5.10, there is
no i ≤ f ≤ k where (f, d) ∈ ⋎ B and therefore there is no i ≤ f ≤ k where (f, d) ∈ ⋎ .
Furthermore, by the construction of the model IB , there is no f ≥ k where (f, d) ∈ ⋎ .
Therefore, we have d ∈ min ⋎ (i). Thus, we have IB, i |= ♢∼α1.

Let α ∈ L1, B be a ticked branch from a saturated tableau for α, IB = (V, ⋎ ) be a model built from
B. Since we have α ∈ ∆B(0), then we have IB, 0 |= α. Hence, we have proved the soundness of the
tableau method for L1 sentences.

5.2.2 Completeness

In order to prove the completeness of the tableau method for L1 sentences, we need to check whether a
tableau T for a satisfiable sentence α has a successful branch (3). Recall that since the order of applying
static rules is non-deterministic, multiple tableaux for the same sentence α can be obtained. The strong
result we show in this section is the Theorem 5.13.

Theorem 5.13. Let α ∈ L1 be a satisfiable sentence of LTL˜. Then any tableau for α has a successful
branch.

Given an I-satisfiable sentence α, we prove that any given tableau T for α contains a successful
branch B with a ticked node (3). Since α is I-satisfiable, there exists an interpretation I ∈ I such that
I, 0 |= α. The goal is to show that the interpretation I is represented in the tableau T. Moreover, that
said representation leads to a ticked node (3).

In order to prove the aforementioned theorem, we use an intermediate sequence s that serves as a link
between an interpretation I that satisfies the sentence α and a tableau T for α. The sequence s is a tuple
s := (〈x0, x1, x2, . . . 〉, ⋎ s,mins) where each xi is a pair (Γ, une), ⋎ s,mins are the set of constraints
that the sequence s must follow in order to be coherent with ⋎ of the interpretation. The set ⋎ s is not
an ordering relation, it records instances of points of time not being minimal to other points of time w.r.t.
the ordering relation ⋎ . Remember that when we apply the une rule, we add a pair (n′, n) to ⋎ in order
to symbolize the outcome of n not being minimal to n′. The set mins records the instances of points of
time being minimal to other points of time w.r.t. the ordering relation ⋎ .

We link each node of the sequence xi to a time point J(xi) of the interpretation I and a labelled node
f(xi) of the tableau T. Depending on I , we can build the sequence s using the tableau, we then show the
sequence s ends up with a tick (3). We make sure that for each node xi with the index time point J(xi)
of the sequence, we have the following invariant:

Inv(xi, J(xi))



(1) For each α ∈ Γxi , we have I, J(xi) |= α.

(2) For each (J1,♢∼α1) ∈ unexi , there exists J2 ≥ J(xi) where
J2 ∈ min ⋎ (J1) and I, J2 |= α1.

(3) For each (J1, J2) ∈ mins, we have J2 ∈ min ⋎ (J1).

(4) For each (J1, J2) ∈ ⋎ s, there exists J3 ≥ J1 s.t. (J3, J2) ∈ ⋎
(in other words J2 6∈ min ⋎ (J1)).

We start by putting the root node 0 : ({α}, ∅) with the index time point J(x0) := 0 at the start of
the sequence. For the first node x0 with the index time point 0 (since there is no rule applied before
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the root node, the sets mins and ⋎ s are empty at the start), we have I, 0 |= α. Therefore the invariant
Inv(x0, 0) holds. Suppose that the invariant holds up to xi, and a rule was applied to xi, we then add
a new node xi+1 to the sequence depending on which outcome of the rule represents the interpretation
I . We then move to the outcome node in the tableau, and see which rule is applied to it, and so on and
so forth. Each time we add a new node xi+1 to the sequence s, we need to make sure that the invariant
Inv(xi+1, J(xi+1)) holds. In general, the sequence will head from the parent node to a child node but
it might occasionally jump backwards (only in the case of the parent being a prune node, more on that
later). It is worth to point out that since we might be jumping back and forth between nodes of T, each
time we are adding a new node xi+1 to the sequence s, we are going to rename labels within the sets
unex, ⋎ B and minB by their respective indexed time points J . The function f links each node xi of
the sequence s to a labelled node f(xi) of the tableau T. It is worth to mention that, since we are only
renaming labels of other sets, then we have Γxi = Γf(xi).

We discuss the case of each rule that is applied to xi. Suppose that the sequence s is built up to xi
and the invariant holds for all the nodes in the sequence.

Rules (Empty) and (Loop):

If we end up with a ticked node in the sequence s, the theorem holds.

Rule (Contradiction):

If the sequence s is closed, then we have p and ¬p in Γxi . Since we have Inv(xi, J(xi)), then we
I, J(xi) |= p and I, J(xi) |= ¬p. This cannot happen in a interpretation I ∈ I.

Rule (∧):

Suppose that the rule (∧) is applied to the sentence α1 ∧ α2 on the node f(xi) of the tableau T. Let
y be the child node of the node f(xi) in the branch. We have Γy = (Γf(xi) \ {α1 ∧α2})∪ {α1, α2}. We
define the next node in the sequence xi+1 with Γxi+1 = Γy, unexi+1 = unexi , and the sets mins, ⋎ s

remain unchanged. Since we have Inv(xi, J(xi)) and α1∧α2 ∈ Γxi , then I, J(xi) |= α1 and I, J(xi) |=
α2. For the node xi+1, we have Γxi+1 = (Γxi\{α1∧α2})∪{α1, α2} and unexi+1 = unexi . Therefore the
first and second conditions of Inv(xi+1, J(xi)) are met. Moreover, since mins, ⋎ s remain unchanged
and we have Inv(xi, J(xi)), then the third and forth conditions of Inv(xi+1, J(xi)) are met. Consider
that J(xi+1) = J(xi), the invariant Inv(xi+1, J(xi)) holds.

We can see that by applying a static rule of the from (∧,∨,□,♢) on the node f(xi), we do not add
in either une , ⋎ B or minB while applying these rules nor add a new non-monotonic eventuality to be
fulfilled in the outcome nodes. In order to lighten the proof, we skip the check for the second, third and
fourth conditions of Inv up until ♢∼ and une rules.

Rule (∨):

Suppose that the rule (∨) is applied to the sentence α1 ∨ α2 on the node f(xi) of the tableau T.
We obtain two children nodes y and z of f(xi). We have Γy = (Γf(xi) \ {α1 ∨ α2}) ∪ {α1} and
Γz = (Γf(xi) \ {α1 ∨ α2}) ∪ {α2}. Since we have Inv(xi, J(xi)), and α1 ∨ α2 ∈ Γxi , then we either
have I, J(xi) |= α1 or I, J(xi) |= α2. Consider that J(xi+1) = J(xi), we discuss two cases:

• Case 1: If I, J(xi) |= α1, then we define the next node xi+1 with Γxi+1 = Γy and unexi+1 =
unexi . We know that Γxi+1 = (Γxi \ {α1 ∨ α2}) ∪ {α1}. Therefore for all γ ∈ Γxi+1 , we have
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I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.

• Case 2: Otherwise, when I, J(xi) |= α2, then we define the node xi+1 with Γxi+1 = Γz and
unexi+1 = unexi . We know that Γxi+1 = (Γxi \ {α1 ∨ α2}) ∪ {α2}. Therefore for all γ ∈ Γxi+1 ,
we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.

Rule (♢):

Suppose that the rule (♢) is applied to the sentence ♢α1 on the node f(xi) of the tableau T. We obtain
two children nodes y and z of f(xi). We have Γy = (Γf(xi)\{♢α1})∪{α1} and Γz = (Γf(xi)\{♢α1})∪
{©♢α1}. Since we have Inv(xi, J(xi)), and I, J(xi) |= ♢α1, then we have I, J(xi) |= α1 ∨ ©♢α1.
Therefore, we either have I, J(xi) |= α1 or I, J(xi) |= ©♢α1. Consider that J(xi+1) = J(xi), we
discuss two cases:

• Case 1: If I, J(xi) |= α1, then we define the next node xi+1 with Γxi+1 = Γy and unexi+1 =
unexi . We know that Γxi+1 = (Γxi \ {♢α1}) ∪ {α1}. Therefore for all γ ∈ Γxi+1 , we have
I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.

• Case 2: When I, J(xi) |= ©♢α1, then we define the next node xi+1 with Γxi+1 = Γz and
unexi+1 = unexi . We know that Γxi+1 = (Γxi \ {♢α1}) ∪ {©♢α1}. Therefore for all γ ∈ Γxi+1 ,
we have I, J(xi) |= γ. Thus, the invariant Inv(xi+1, J(xi)) holds.

Rule (□):

Suppose that the rule (□) is applied to the sentence □α1 on the node f(xi) of the tableau T. Let
y be the child node of the node f(xi) in the branch. We have Γy = (Γf(xi) \ {□α1}) ∪ {α1,©□α1}.
We define the next node xi+1 with Γxi+1 = Γy and unexi+1 = unexi and I, J(xi) |= □α1, then we
have I, J(xi) |= α1 ∧ ©□α1. Therefore, we have I, J(xi) |= α1 and I, J(xi) |= ©□α1. We know that
Γxi+1 = (Γxi \ {□α1}) ∪ {α1,©□α1}. Therefore for all γ ∈ Γxi+1 , we have I, J(xi) |= γ. Consider
that J(xi+1) = J(xi), the invariant Inv(xi+1, J(xi)) holds.

Rule (♢∼):

When the rule (♢∼) is applied to ♢∼α1 on the node f(xi) of T, we explore two outcomes. Let n be
the label of the node f(xi) in the branch. In the first outcome, we have a child y with Γy = (Γf(xi) \
{♢∼α1}) ∪ {α1} and (n, n) in min of the branch. In the second outcome, we have a child node z with
Γz = (Γf(xi) \{♢∼α1}) and unez = unef(xi)∪ (n,♢∼α1). Since we have Inv(xi, J(xi)), and ♢∼α1 ∈ Γxi ,
then we have I, J(xi) |= ♢∼α1. It means that there exists J1 ≥ J(xi) s.t. J1 ∈ min ⋎ (J(xi)) and
I, J1 |= α1. Consider that J(xi+1) = J(xi), we discuss two cases:

• Case 1: If J1 = J(xi), then we have I, J(xi) |= α1 and J(xi) ∈ min ⋎ (J(xi)). We then
define the next node xi+1 of the sequence with Γxi+1 = Γy, unexi+1 = unexi and add the pair
(J(xi), J(xi)) to mins. Notice that we swapped the labels of nodes with the position of their
indexed time point J(xi), we will be using indexed time point J instead of labels throughout this
proof. We know that Γxi+1 = (Γxi \ {♢∼α1}) ∪ {α1} with I, J(xi) |= α1. Additionally, we have
mins := mins ∪ {(J(xi), J(xi))} with J(xi) ∈ min ⋎ (J(xi)). The sets unexi+1 , ⋎ s remains
unchanged. Therefore, the invariant Inv(xi+1, J(xi)) holds.

• Case 2: when J1 > J(xi), then we define the next node xi+1 of the sequence with Γxi+1 = Γz ,
unexi+1 = unexi ∪ {(J(xi),♢∼α1)}. We also know that J1 > J(xi) and J1 ∈ min ⋎ (J(xi)) and
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I, J1 |= α1. Therefore, the second condition of Inv(xi+1, J(xi)) holds on the pair (J(xi),♢∼α1).
The sets mins and ⋎ s remain unchanged. The invariant Inv(xi+1, J(xi)) holds.

Rule (une):

When the rule (une) is applied on a pair (n1,♢∼α1) in une of f(xi). Let n be the label of the node
f(xi). Let x be the predecessor of xi in s where the rule (♢∼) was applied on ♢∼α1, let J(x) be the
indexed time point of x. Note that the label of f(x) is n1. In the first outcome, we have a child y where
Γy = Γf(xi) ∪ {α1}, uney = unef(xi) \ {(n1,♢∼α1)} and (n1, n) in min of the branch. In the second
outcome, we have a child z where Γz = Γf(xi), unez = unef(xi) and (n1, n) in min of the branch.
In the third outcome, we have a child v where Γv = Γf(xi), unev = unef(xi) and (n1, n) in ⋎ of the
branch.

On the other hand, since x is a predecessor of xi in s, then we have Inv(x, J(x)). Furthermore, since
we have (n1,♢∼α1) ∈ unef(xi), it means that when the rule (♢∼) is applied on the node f(x), the branch
where (n1,♢∼α1) ∈ unef(x+1) is the path that corresponds with the interpretation I . By (♢∼) rule, since
we have Inv(x + 1, J(x + 1)), (n1,♢∼α1) ∈ unef(x+1) and we know that J(x + 1) = J(x), then we
have (J(x),♢∼α1) ∈ unex+1. Furthermore, since no rule application consumed (n1,♢∼α1) up to f(xi),
then the pair (J(x),♢∼α1) remains also in unexi . Also, we have Inv(xi, J(xi)), then there is J ′ ≥ J(xi)
where J ′ ∈ min ⋎ (J(x)) and I, J ′ |= α1. Consider that J(xi+1) = J(xi), we discuss all possibilities
below:

• Case 1: If J ′ = J(xi), then we have J(xi) ∈ min ⋎ (J(x)) and I, J(xi) |= α1. We define the next
node xi+1 with Γxi+1 = Γy, unexi+1 = unexi \ {(J(x),♢∼α1)} and add (J(x), J(xi)) to mins.
We have Γxi+1 = Γxi ∪ {α1} with I, J(xi) |= α1. Additionally, we have (J(x), J(xi)) ∈ mins

with J(xi) ∈ min ⋎ (J(x)). The set ⋎ s remains unchanged. Thus, the invariant Inv(xi+1, J(xi))
holds.

• Case 2: when J ′ > J(xi), we have two possibilities:

– Case 2.1: If J(xi) ∈ min ⋎ (J(x)), then we define the next node xi+1 with Γxi+1 = Γz ,
unexi+1 = unexi and add (J(x), J(xi)) to mins. We have (J(x), J(xi)) ∈ mins with
J(xi) ∈ min ⋎ (J(x)). The sets Γxi+1 , unexi+1 and ⋎ s remain unchanged. Thus, the
invariant Inv(xi+1, J(xi)) holds.

– Case 2.2: If J(xi) 6∈ min ⋎ (n1), then there exists J ′′ ≥ J(x) s.t. (J ′′, J(xi)) ∈ ⋎ . We
define the next node xi+1 with Γxi+1 = Γv, unexi+1 = unexi and add (J(x), J(xi)) to ⋎ s.
We have (J(x), J(xi)) ∈ ⋎ s with J(xi) 6∈ min ⋎ (n1). The sets Γxi+1 , unexi+1 and mins

remain unchanged. Thus, the invariant Inv(xi+1, J(xi)) holds.

Rule (Transition):

Suppose that the transition rule is applied on the state node f(xi). Let y be the child node of the node
xi in the branch. We have Γy = {α1 | ©α1 ∈ Γf(xi)} and uney = unef(xi). We define the next node
xi+1 in s with Γxi+1 = Γy and unexi+1 = unexi . We consider that J(xi+1) = J(xi) + 1.

Since we have Inv(xi, J(xi)), then for all ©α1 ∈ Γxi , we have I, J(xi) |= ©α1 and therefore
I, J(xi) + 1 |= α1. The first condition of the invariant Inv(xi+1, J(xi) + 1) is met.

Secondly, since xi is a state node, then for each remaining (n1,♢∼α1) ∈ unef(xi), either the rule (♢∼)
or (une) was applied to a node f(x′i) with the index J(x′i) = J(xi) and (n1,♢∼α1) was carried over to
f(xi). In both rules, for each (n1,♢∼α1) ∈ unef(xi), we have (J(x1),♢∼α1) ∈ unexi s.t. f(x1) is the node
where the rule (♢∼) was applied to ♢∼α1 (see Case 2 for (♢∼) and (une) rules). Furthermore, since we have
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Inv(xi, J(xi)) and f(xi) is a state node, then for each (J(x1),♢∼α1) ∈ unexi , there exists J2 > J(xi)
where J2 ∈ min ⋎ (J(x1)) and I, J2 |= α1. Without loss of generality, there exists J2 ≥ J(xi) + 1
where J2 ∈ min ⋎ (J(x1)) and I, J2 |= α1. The second condition of the invariant Inv(xi+1, J(xi) + 1)
is met. Since mins and ⋎ s remain unchanged, the invariant Inv(xi+1, J(xi) + 1) holds.

Rule ( ⋎ -inconsistency):

Suppose that the ( ⋎ -inconsistency) arises on the node f(xi), and let n be the label of the f(xi) on the
branch B. If this inconsistency rises, we have (n1, n) in minB and (n2, n) in ⋎ B where n1 ≤ n2 ≤ n.
These two pairs come from applying (♢∼) or (une) rule on two predecessors f(x), f(x′) of f(xi) with
the same label n and the same indexed time point J(x) = J(x′) = J(xi).

Let J1 be the time point corresponding to the node f(x1) with the label n1, and let J2 be the time
point corresponding to the node f(x2) with the label n2. It is worth to mention that J1 ≤ J2 ≤ J(xi).
Since x, x′ are predecessors of x, we have Inv(x, J(x)), Inv(x′, J(x′)) and Inv(xi, J(xi)). Therefore,
when the rules are applied on x and x′, we end up with (J1, J(xi)) ∈ mins and (J2, J(xi)) ∈ ⋎ s. Since
(J1, J(xi)) ∈ mins, then we have J(xi) ∈ min ⋎ (J1). On the other hand, since (J2, J(xi)) ∈ ⋎ s,
then there exists J3 ≥ J2 s.t. (J3, J(xi)) ∈ ⋎ . Moreover, we have J1 ≤ J2, this entails that there exists
J3 ≥ J1 s.t. (J3, J(xi)) ∈ ⋎ . This contradicts Definition 3.4 of minimality w.r.t. to the relation ⋎ .
Therefore this cannot happen in a interpretation I ∈ I.

Rule (Prune):

Let f(xi) be a state node where the prune condition is met. There is a sequence within s that goes the
following way, xh = u, xh+1, xh+2, . . . , v = xi. The node u or xh is the state node that comes before xi
and the node v is the current state node. Since v is a prune node, we have Γv = Γu and uneu = unev.
We can see that if we apply the transition rule to the node xi, we will have Γxi+1 = Γxh+1

and unexi+1 =
unexh+1

. Therefore, we can proceed with the construction of s as if xi was linked to f(u) instead of
f(v). Thanks to the transition, since we have Inv(xu, J(xu)), then we have Inv(xi+1, J(xi) + 1).

Each time we find a pair (u, v) in the sequence s, we call it a jump. These jumps may occur once or
many times (and it may go infinite) in s. In a sequence s, if a pair (u, v) jumps repeatedly in succession,
we call the pair a recurring jump. It is worth to point out that, each time we jump backwards because of a
node closed with prune, we return to the state labelled node that comes before. In general, the sequence s
explores one branch B of T, and it deviates sometimes to a prune node and goes back to B. Furthermore,
since no eventuality is fulfilled within a prune loop, eventualities and their fulfilment are in the same
branch B.

What we showed so far is that for an interpretation I and its corresponding sequence s, we have
Inv(xi, J(xi)) for each i ≥ 0. Going back to the start of the proof, we need to prove that the sequence
finishes with a ticked node (such is the case when we end up in (Loop) or (Empty) node). We can
see that if the sequence s is on a [prune] node, we jump back to the state node that comes before it.
Theoretically, this jump can recur infinitely many times. This means that sequence goes infinite on this
case (and never find a ticked node). We need to prove that this case cannot happen in the sequence s
of I . Suppose that is the case, that means the last jump (uk, vk) in the sequence s is a recurring jump
that goes infinitely many times. The jumps (uj , vj) that come before may recur many times but not
infinitely many times (otherwise, (uk, vk) would not be the last jump). In the recurring jump (uk, vk),
no eventuality is fulfilled (whether it is classical or non-monotonic). This entails that when we are in a
parent node uk < xl < vk that applies either (♢) or (une) rule, we move to the child node that delays
the propagation of the eventuality (we are in Case 2 for both rules).

It is worth to point out that we have at least one eventuality in uk. Let us take ©♢α1 ∈ Γuk
for
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example, since we have Inv(uk, J(uk)), that means that I, J(uk) |= ©♢α1. Thus, we take the first
time point Jα1 > J(uk) s.t. I, Jα1 |= α1. We also have I, Jα1 |= ♢α1. On the other hand, for all
J(uk) < J < Jα1 , we have I, J |= ♢α1 I, J |= ©♢α1. In other words, each time we encounter
♢α1 ∈ Γxl−1

within our jumps (keep in mind we have Inv(xl−1, J)), we pick the node in Case 2 of the
(♢) rule, i.e., ©♢α1 ∈ Γxl

. However, in the node indexed with Jα1 , when we encounter ♢α1 ∈ Γxl′−1

(keep in mind we have Inv(xl′−1, Jα1)), we pick the node in Case 1 of the (♢) rule, i.e., α1 ∈ Γx′
l
. This

raises a contradiction, because the node xl′ is not present within the jump (uk, vk). Thus breaking the
infinite recurring jump (uk, vk).

If the eventuality is a non-monotonic one, namely (J1,♢∼α1) ∈ uneuk
. Since we have Inv(uk, J(uk))

with uk being a state node, there exists J ′ > J(uk) s.t. J ′ ∈ min ⋎ (J1) and I, J ′ |= α1. Let Jα1

be the first time point that met these criteria. For all J(uk) < J < Jα1 , each time we encounter
(J1,♢∼α1) ∈ unexl−1

with the index J , we have Jα1 > J , Jα1 ∈ min ⋎ (J1) and I, Jα1 |= α1.
Therefore, we pick Case 2 of (une) rule, i.e., (J1,♢∼α1) ∈ unexl

. However, when we encounter
(J1,♢∼α1) ∈ unexl′−1

with the index Jα1 , we have Jα1 ∈ min ⋎ (J1) and I, Jα1 |= α1, then we pick
the node in Case 1 of (une) rule, i.e., α1 ∈ xl′ . This raises a contradiction, because the node xl′ is not
present within the jump (uk, vk).

We proved that since I, 0 |= α, then the corresponding sequence s cannot finish on a contradiction,
⋎ -inconsistency or a prune jump. Therefore it must finish with a ticked node. Hence, the tableau T of α
has a ticked node and therefore a successful branch.

5.3 Illustrations of tableaux for L1 sentences

In this section, we highlight a tableau for three sentences. The first tableau in Figure 5.2 is for the
sentence □(¬p ∨ q) ∧ ♢∼p. The tableau in Figure 5.3 is for the sentence □p ∧ ♢∼¬p. Finally, the tableau
in Figure 5.4 is for the sentence ♢∼p ∧ ♢∼q. In all of the figures, nodes have the form n : (Γ, une). The
state-labelled nodes are underlined. Each time there is an update in minB or ⋎ B in a branch, they are
marked under the node. In Figure 5.2 and 5.4, the children nodes after the application of the (une) rule
are stacked vertically instead of horizontally to fit it in the page (they are meant to be displayed the same
way as in Figure 5.3). Otherwise, the tableaux go from the top to the bottom.

The first sentence □(¬p ∨ q) ∧ ♢∼p is satisfiable. We show that its tableau contains a successful
branch. The second sentence □p ∧ ♢∼¬p. Therefore, all the branches of the fully expanded tableau
of the second sentence are crossed. The third sentence ♢∼p ∧ ♢∼q is a satisfiable sentence that has two
defeasible eventualities. The presented tableaux for this sentence highlights how defeasible eventualities
are handled.

The tableau for □(¬p∨ q)∧♢∼p features a lot of interesting rule applications. Alongside the Boolean
rules and (□) operator, Figure 5.2 shows the rules (♢∼) and (une) rules applied on the sentence ♢∼p. It
shows also branches closed with (Prune) and (Contradiction) rules. Notice in the pruned branches, there
are no eventualities (there is only one in the example, which is ♢∼p) fulfilled between the state node with
the label 0 and the state node with the label 1. Otherwise, the successful branch is ticked thanks to the
(Loop) rule. Note that the state node of said branch contains no eventualities, i.e., the only sentences left
are p, q and ©□(¬p ∨ q).

The sentence □p ∧ ♢∼¬p in Figure 5.3 is unsatisfiable. This sentences shows a similar pattern as
□p ∧ ♢¬p. Each time the sentence ♢∼p is fulfilled in a branch, it clashes with the sub-sentence in the
scope of □¬p. The fulfilment of the defeasible ♢∼p (similar to ♢p) can be delayed in the future state.
However, it will end up clashing with □¬p. That is why the (Prune) rule is quite effective in stopping
the tree from expanding indefinitely. While closing the branches that do not fulfil ♢∼p in 1 (the left
two branches), the only branch that fulfils the eventuality closes due to the (Contradiction) in the node
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0 : ({□(¬p ∨ q) ∧ ♢∼p}, ∅)

0 : ({□(¬p ∨ q),♢∼p}, ∅)

0 : ({¬p ∨ q,©□(¬p ∨ q),♢∼p}, ∅)

0 : ({¬p,©□(¬p ∨ q),♢∼p}, ∅) 0 : ({q,©□(¬p ∨ q),♢∼p}, ∅)

· · ·0 : ({¬p,©□(¬p ∨ q), p}, ∅)
minB = {(0, 0)}

(7)

0 : ({¬p,©□(¬p ∨ q)}, {(0,♢∼p)})

1 : ({□(¬p ∨ q)}, {(0,♢∼p)})

1 : ({¬p ∨ q,©□(¬p ∨ q)}, {(0,♢∼p)})

1 : ({¬p,©□(¬p ∨ q)}, {(0,♢∼p)})

1 : ({¬p,©□(¬p ∨ q), p}, ∅)
minB = {(0, 1)}

(7)

1 : ({¬p,©□(¬p ∨ q)}, {(0,♢∼p)})
minB = {(0, 1)}

(7)

1 : ({¬p,©□(¬p ∨ q)}, {(0,♢∼p)})
minB = ∅

⋎ B = {(0, 1)}

(7)

1 : ({q,©□(¬p ∨ q)}, {(0,♢∼p)})

1 : ({p, q,©□(¬p ∨ q)}, ∅)
minB = {(0, 1)}

(3)

1 : ({q,©□(¬p ∨ q)}, {(0,♢∼p)})
minB = {(0, 1)}

· · ·

1 : ({q,©□(¬p ∨ q)}, {(0,♢∼p)})
minB = ∅

⋎ B = {(0, 1)}

· · ·

(∧)

(□)

(∨)

(♢∼)

(Contradiction) (Transition)

(□)

(∨)

(une)

(Contradiction)

(Prune)

(Prune)

(une)

(Loop)

(Transition)

(Transition)

Figure 5.2: Tableau for □(¬p ∨ q) ∧ ♢∼p
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0 : ({□p ∧ ♢∼¬p}, ∅)

0 : ({□p,♢∼¬p}, ∅)

0 : ({p,©□p,♢∼¬p}, ∅)

0 : ({p,©□p,¬p}, ∅)
minB = {(0, 0)}

(7)

0 : ({p,©□p}, {(0,♢∼¬p)})

1 : ({□p}, {(0,♢∼¬p)})

1 : ({p,©□p}, {(0,♢∼¬p)})

1 : ({p,©□p,¬p}, ∅)
minB = {(0, 1)}

(7)

1 : ({p,©□p}, {(0,♢∼¬p)})
minB = {(0, 1)}

(7)

1 : ({p,©□p}, {(0,♢∼¬p)})
⋎ B = {(0, 1)}

(7)

(∧)

(□)

(♢∼)

(Contradiction)

(Transition)

(□)

(Contradiction)

(une)

(Prune) (Prune)

Figure 5.3: Tableau for □p ∧ ♢∼¬p
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1 : ({p,©□p,¬p}, ∅).
The sentences in Figure 5.4 contains two defeasible eventualities ♢∼p and ♢∼q. The branches on the

right explore the outcome of ♢∼p being fulfilled in 1 (meaning that 1 is a preferred future of 0). The
outcome of ♢∼q not being fulfilled in 1 because it is not a preferred future of 0 shall not be explored (the
branch on the bottom right side). And vice-versa, branches on the right explore ♢∼p not being fulfilled
in 1 it is not a preferred future of 0. Therefore, the fulfilment of ♢∼q in 1 shall not be explored (the first
branch closed with ( ⋎ -inconsistency) rule on the left side).

5.4 Summary

We showed how preferential semantics work in a one-pass tree-shaped tableau à-la Reynolds. We pro-
vide also semantic rules for the ♢∼ operator. We showed how to handle non-monotonic eventualities using
une , ⋎ B and minB . In the end, we proved that the method does not go indefinitely and that it is sound
and complete. The loop/prune checkers proposed in this paper are specific to L1 since there are no
infinitely replicating eventualities (i,e., □♢ and □♢∼), and work well under these restrictions.

The next step is to work on tableaux for far more expressive fragments of the L˜language, specially
when introducing the □∼ to the syntax. An interesting starting point is the sub-fragment of L⋆ that is
recursively defined as follows:

α ::= p | ¬α | α ∧ α | α ∨ α | □∼α | ♢∼α

We already established the bounded-model and decidability for state-dependent interpretations Isd

in the case of L⋆ sentences (see Theorem 4.30 for a reminder). Since the L⋆ contains the aforementioned
fragments, the upper-bound for the size of its interpretations is at most equal to the upper-bound for
L⋆. The first goal is to define semantic rules for the □∼ operator. We need to adapt the notations set for
branches B in order to represent state-dependent interpretations. Finally, since we allow the replication
of non-monotonic eventualities in the form of □∼♢∼ in this fragment, we need to check if a three step prune
similar to the one proposed by Reynolds [Rey16a] would work in this case.
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0 : ({♢∼p ∧ ♢∼q}, ∅)

· · · · · ·

0 : (∅, {(0,♢∼p), (0,♢∼q)})

1 : (∅, {(0,♢∼p), (0,♢∼q)})

1 : ({p}, {(0,♢∼q)})
minB = {(0, 1)}

1 : ({p, q}, ∅)
minB = {(0, 1)}

(3)

1 : ({p}, {(0,♢∼q)})
minB = {(0, 1)}

· · ·

1 : ({p}, {(0,♢∼q)})
minB = {(0, 1)}

⋎ B = {(0, 1)}

(7)

1 : (∅, {(0,♢∼p), (0,♢∼q)})
⋎ B = {(0, 1)}

1 : ({q}, {(0,♢∼p)})
minB = {(0, 1)}

⋎ B = {(0, 1)}

(7)

1 : (∅, {(0,♢∼p), (0,♢∼q)})
minB = {(0, 1)}

⋎ B = {(0, 1)}

(7)

1 : (∅, {(0,♢∼p), (0,♢∼q)})
⋎ B = {(0, 1)}

(7)

· · ·

(Transition)

(une)

(une)

(Transition),(Empty)

( ⋎ -inconsistency)

(une)

( ⋎ -inconsistency)

( ⋎ -inconsistency)

(Prune)

Figure 5.4: Tableau for ♢∼p ∧ ♢∼q
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6

Conclusion and Perspectives

We presented in this memoir a new formalism, named defeasible linear temporal logic. In this logic, the
syntax and the semantics of linear temporal logic are enriched by integrating the preferential semantics
of the KLM approach. Using LTL˜, one can reason about systems with more tolerant behaviour when
handling exceptions. Throughout executions of such systems, time points can range from non-pertinent,
where exceptions can be ignored, to time points that are important, where it is imperative to check for
exceptions to ensure their reliability. The addition of defeasible temporal operators □∼,♢∼ serves a similar
purpose to the classical modalities □,♢, all whilst expressing properties that target pertinent time points
and tolerating their absence (properties) on others. The advantage of expressing defeasible specifications
is to check the overall correctness of statements within the scope of non-monotonic temporal operators,
without the need to express the intricacies and nuances within the interpretations. In this regard, the same
purpose of the classical temporal modalities is preserved in □∼ and ♢∼. When an agent is able to express
specifications relating using classical LTL syntax, it is possible to obtain the defeasible version of the
specification by simply switching temporal operators to their non-monotonic counterparts. Defeasible
always □∼ is quite interesting by itself. It acts as the operator □ when executions contain no exceptions
through out their run. Moreover, it guarantees the overfall safety of properties when the absence of
exceptions in the execution cannot be ensured. On the other hand, preferable eventuality ♢∼ is a stronger
version of the eventuality operator ♢. The statements within the scope of ♢∼ are not only true in a future
time point, but a preferred one at that.

Three main axes were discussed in this memoir:

• In the first axis, we described non-monotonic operators and preferential temporal interpretations
for LTL˜. We argued their importance for modelling and expressing specifications of programs
that present some time points where exceptions are tolerated. We gave an example that describes
a preferential temporal interpretation and highlights the truth values of non-monotonic temporal
sentences.

• Second, we discussed the satisfiability problem in LTL˜. We showed the decidability of the prob-
lem in two fragments, namely L⋆ and L1. We defined structures to have compact representation of
preferential interpretations. We also introduced an interesting class of interpretations, called state-
dependent interpretations Isd. The bounded model property is shown for both of the fragments.
Finally, we provide a procedure for checking whether a guessed interpretation is a model for sen-
tences in the fragments. In the case of L⋆, although the procedure takes a polynomial time with
respect to the size of the non-deterministically guessed model, the model can take an exponential
space with respect to the input sentence. In addition, the truth values of sub-sentences of the input
sentence are checked in each element of the structure. Thus, checking for Isd-satisfiability (satisfi-
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ability in state-dependent interpretations) of the sentences in said model can be take an exponential
time. Further analysis on the computational complexity is needed for L⋆ fragments, as well as the
study of other fragments of the language.

• Finally, we proposed a one-pass tree-shaped tableau for L1 sentences. This deviates from classical
two-pass graph-shaped tableau such as Wolper’s method [Wol85] and follows the newly proposed
tableau by Reynolds [Rey16b]. We gave a first intuition on how preferential semantics could
work in a tableau method for LTL˜, alongside the rules for ♢∼ sentences. We showed that the
method terminates always. We proved the soundness of the method and showed how an induced
interpretation can be generated from a successful branch. We also showed that, thanks to the
invariant function, we can always trace any interpretation that satisfies a sentence in the tableau
down to a node with a checked mark (3) (signalling that the tableau is successful). Thereby, the
completeness of the method is also obtained.

Perspectives

We discuss in this part some lines of inquiry that can be explored in the future. In regards to LTL˜,
we still yet to have a definitive class of complexity for the satisfiability problem. We shall work on an
implementation of one-pass tree-shaped tableaux and find real case applications for this logic. Another
objective is to introduce the non-monotonic inference |∼ à la KLM to the formalism. Finally, the work
done in LTL˜ opens the door for integrating preferential semantics to other formalisms, we shall explain
the intuition of what it might entails in the case of CTL and CTL⋆.

A further complexity analysis is yet to be done in regards to the satisfiability problem in LTL˜. As
discussed briefly on the summary, checking for Isd-satisfiability can take an exponential time. We need
to find whether this problem is at least an exponential-time hard problem, or the answer to the problem
can be optimized further. In addition, we need to investigate the satisfiability problem for extended
fragments of LTL˜ that contain defeasible until U∼ and defeasible versions of past LTL operators.

The one-pass tree-shaped tableau presented in this memoir pertains to the fragment L1 which is re-
strictive in terms of expressivity. Nevertheless, it is a good starting point for exploring this approach for
other fragments of the language. The end goal is to have a generic one-pass tableau that works for the en-
tire language. Regarding implementation, the LTL satisfiability-checking solver named Leviathan was
developed by Bertello et al. [BGMR19] that is based on Reynolds’ tableaux. Leviathan’s performance
is comparable, both in time and memory, to other LTL satisfiability checkers in the literature such as
NuSMV [CCG+02], Aalta [LYP+14], TRP++ [HK03] and PLTL graph-based tableaux [AGW09]. Our
goal is to implement our one-pass tree-shaped tableaux to develop LTL˜ satisfiability checkers (based
on tools such as Leviathan).

We are also investigating defeasible inferences in a temporal formalism. With preferential temporal
interpretations I ∈ I (which contain preference relation ⋎ ), it is possible to integrate defeasible inference
|∼ to the LTL˜ formalism. It can be defined in a language level, along the lines of I, t |= α |∼ β. By
adapting the semantics of the KLM approach, the truth value of |∼ sentences can be: I, t |= α |∼ β if
either t 6∈ min ⋎ (JαK) or t ∈ JβK (with JαK being the set of time points that satisfy α, same goes forJβK). The inference can also be used at a meta-language level, such as α |∼I β. The formal definition
would then be: α |∼I β if min ⋎ (JαK) ⊆ JβK. Each type of inference has its merit, and needs to be
expanded further. One can see that both of the definitions are linked. For instance, if a sentence α |∼ β
is true for all t ∈ N, then we can say that α |∼I β. The main reason behind adding the inference operator
|∼ is to have a defeasible version of specifications of the form α → β. Since the operator → behaves
monotonically, it means that whenever the premise α is broken (false at some points of time), there is no
insurances on the consequence β (it can either be true or false). Thus, systems may behave arbitrarily in
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this case. When presented with “tolerable” violations on premises, specifications of the form α |∼ β can
reliably guarantee that the system can still properly function. Moreover, it ensures that the consequence
β is produced on the most preferable time points where α is true. Currently, the non-monotonic relation
|∼ in I-interpretations satisfies the axioms of system P (Axioms 1.1 to 1.6). Their proof is analogous to
the work of Kraus et al. [KLM90]. With a modular preference relation, the rational monotony (Axiom
1.7) can also be obtained. The remaining work is to prove the representation theorem for non-monotonic
inferences in LTL˜ interpretations.

Another perspective is to propose a preferential extension for CTL and CTL⋆. In branching-time
logics, time is seen as a tree-structure where at the current point of time, each resulting branch is a
possible execution. Alongside temporal operators □,♢,© and U , these formalisms have quantifiers over
branches (often referred to as paths in the literature). The quantifiers A,E can prefix linear temporal
sentences to represent paths where said sentences hold. The quantifier A indicates for all paths, and E
indicates that there exist a path. Same as temporal modalities, these quantifiers also have a monotonic
behaviour, in the sense that, a sentence with the quantifier A is true only when the assertion within
its scope holds for all of the paths. When presented with states where exception is tolerated through
out the multiple paths, a defeasible version of these quantifiers can express the normality for paths of
executions. As a first intuition, the quantifier Ã can encode “for all preferable paths” and the quantifier
Ẽ can encode “there exists a preferable path”. These defeasible quantifiers can be used together with
classical temporal modalities or their defeasible counterparts. Their syntax and meaning are yet to be
explored. As for semantics, there are versions for both CTL and CTL⋆ that are defined using Kripke
structure. Therefore, a preferential semantics à la KLM can also be discussed and investigated for these
formalisms.
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Appendix A

The satisfiability problem of LTL˜
sentences

A.1 Proofs of results in Section 4.2

Proposition 4.10. Let I = (V, ⋎ ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.
V (j) = V (j′). Then we have j ∈ min ⋎ (i) iff j′ ∈ min ⋎ (i

′).

Proof. Let I = (V, ⋎ ) ∈ Isd, and let us have four time points i ≤ j ≤ i′ ≤ j′ ∈ final(I).

• For the only-if part, we suppose that j ∈ min ⋎ (i) and we prove that j′ ∈ min ⋎ (i
′). We have

i ≤ i′, i′ ≤ j′, V (j) = V (j′) and j ∈ min ⋎ (i). Thanks to Proposition 4.3, j′ ∈ min ⋎ (i
′).

• For the if part, we suppose that j′ ∈ min ⋎ (i
′) and we prove that j ∈ min ⋎ (i). We use a proof

by contradiction. We assume that j′ ∈ min ⋎ (i
′) and we suppose that j 6∈ min ⋎ (i). This implies

that there exists k ∈ [i,∞[ such that (k, j) ∈ ⋎ .

– Case 1: k ∈ [i′,∞[. From Definition 4.1, since V (j) = V (j′) and (k, j) ∈ ⋎ , then (k, j′) ∈
⋎ and therefore j′ 6∈ min ⋎ (i

′). This conflicts with our assumption that j′ ∈ min ⋎ (i
′).

– Case 2: k ∈ [i, i′[. From Lemma 4.7, since k ∈ final(I), there exists k′ ∈ [i′,∞[ such
that V (k′) = V (k). From Definition 4.1, since we have V (j′) = V (j), V (k′) = V (k)
and (k, j) ∈ ⋎ , we also have (k′, j′) ∈ ⋎ , hence j′ 6∈ min ⋎ (i

′). This conflicts with the
assumption that j′ ∈ min ⋎ (i

′).

Lemma 4.11. Let I = (V, ⋎ ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′). Then for
every α ∈ L⋆, we have I, i |= α iff I, i′ |= α.

Proof. Let I = (V, ⋎ ) ∈ Isd and i ≤ i′ in final(I) be such that V (i) = V (i′). We prove that I, i |= α
iff I, i′ |= α using structural induction on α.

• Base: α = p. We know that I, i |= p iff p ∈ V (i). Since V (i) = V (i′), we have p ∈ V (i′). Thus
I, i′ |= p.

• α = ¬α1. For the only-if part, we assume that I, i |= ¬α1 and suppose that I, i′ 6|= ¬α1.
I, i′ 6|= ¬α1 implies that I, i′ |= α1. Since the Lemma holds on α1 and I, i′ |= α1, then I, i |= α1.
This conflicts with the assumption I, i |= ¬α1. We follow the same reasoning for the if part.
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• α = α1 ∧α2. I, i |= α1 ∧α2 means that I, i |= α1 and I, i |= α2. Since the Lemma holds on both
α1 and α2, we have I, i′ |= α1 and I, i′ |= α2. Thus I, i′ |= α1 ∧ α2.

• α = ♢α1. For the only-if part, we assume that I, i |= ♢α1. This means that there exists j ∈ [i,∞[
s.t. I, j |= α1. Thanks to Lemma 4.7, since j ∈ final(I), then there exists j′ ∈ [i′,∞[ where
V (j′) = V (j). Thanks to the induction hypothesis, if V (j) = V (j′) and I, j |= α1, then I, j′ |=
α1. We conclude that I, i′ |= ♢α1.

For the if part, we assume that I, i′ |= ♢α1. This means that there is a j′ ∈ [i′,∞[ s.t. I, j′ |= α1.
We know that [i′,∞[⊆ [i,∞[, and therefore we conclude that I, i |= ♢α1.

• α = ♢∼α1. For the only-if part, we assume that I, i |= ♢∼α1. This means that there is a j ∈ [i,∞[ s.t.
j ∈ min ⋎ (i) and I, j |= α1. Thanks to Lemma 4.7, since j ∈ final(I), there exists j′ ∈ [i′,∞[
such that V (j′) = V (j). Thanks to the induction hypothesis, if V (j) = V (j′) and I, j |= α1, then
(I) I, j′ |= α1. Thanks to Proposition 4.3, since V (j) = V (j′), i ≤ i′, i′ ≤ j′ and j ∈ min ⋎ (i),
then we have (II) j′ ∈ min ⋎ (i

′). From (I) and (II), we conclude that I, i′ |= ♢∼α1.

For the if part, we assume that I, i′ |= ♢∼α1. I, i′ |= ♢∼α1 means that there is a j′ ∈ [i′,∞[ such
that j′ ∈ min ⋎ (i

′) and (I) I, j′ |= α1. We need to prove that j′ ∈ min ⋎ (i). We suppose that
j′ 6∈ min ⋎ (i). It means that there exists k ∈ [i,∞[ such that (k, j′) ∈ ⋎ . From Lemma 4.7, since
k ∈ final(I), there is k′ ∈ [i′,∞[ such that V (k) = V (k′). By Definition 4.1, since (k, j′) ∈ ⋎
and V (k′) = V (k), we have (k′, j′) ∈ ⋎ and therefore j′ 6∈ min ⋎ (i

′), conflicting with the
assumption j′ ∈ min ⋎ (i

′). Thus, we have (II) j′ ∈ min ⋎ (i) . From (I) and (II), we conclude that
I, i |= ♢∼α.

The proof of Lemma 4.13 can be found in Section A.2.

Proposition 4.16. Let I = (V, ⋎ ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I . Then N1 ∪ N2 is
an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) + size(I,N2).

Proof. Let I = (V, ⋎ ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I and let IN1 = (V N1 , ⋎ N1),
IN2 = (V N1 , ⋎ N2) be two pseudo-interpretations over N1 and N2 respectively. We assume that N =
N1 ∪N2.

We suppose that N is not an acceptable sequence w.r.t. I . It means that there are two time points
t, t′ ∈ final(I) s.t. V (t) = V (t′) where t ∈ N and t′ 6∈ N . Since t ∈ N , t is either an element of N1

or N2. We assume that t ∈ N1. By Definition 4.14, since t ∈ N1 and N1 is an acceptable sequence
w.r.t. I , all time points of final(I) that have the same valuation as t are in N1. Since t′ ∈ final(I) and
V (t′) = V (t), then t′ ∈ N1, and therefore t′ ∈ N . This conflicts with the supposition of t′ 6∈ N . Same
reasoning applies if we take t ∈ N2. We conclude that for all t ∈ N s.t. t ∈ final(I), all t′ ∈ final(I)
s.t. V (t′) = V (t) are also in N . Thus, N is an acceptable sequence w.r.t. I .

In order to prove that size(I,N) ≤ size(I,N1) + size(I,N2), we need to prove that init(I,N) ⊆
init(I,N1) ∪ init(I,N2) and range(I,N) ⊆ range(I,N1) ∪ range(I,N2). Let t ∈ N be a time point
s.t. t ∈ init(I,N). By the definition of init(I,N), we know that t ∈ init(I). Since N is a sequence
containing only elements of N1 or N2, the time point t is either in N1 or N2. By definition of init(I,N1),
if t ∈ N1 and t ∈ init(I), then t ∈ init(I,N1). The same goes in the case of t ∈ N2. We conclude that
if t ∈ init(I,N), then t ∈ init(I,N1) ∪ init(I,N2).

Following the same line of thought, we can prove that final(I,N) ⊆ final(I,N1)∪final(I,N2) and
consequently we can prove that range(I,N) ⊆ range(I,N1) ∪ range(I,N2).
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Since init(IN ) ⊆ init(IN1) ∪ init(IN2), we have length(init(IN )) ≤ length(init(IN1)) +
length(init(IN2)). Similarly, if range(IN ) ⊆ range(IN1) ∪ range(IN2), then card(range(IN )) ≤
card(range(IN1)) + card(range(IN2)). We conclude that size(IN ) ≤ size(IN1) + size(IN2).

Proposition 4.17. Let I = (V, ⋎ ) ∈ I and N be an acceptable sequence w.r.t. I . If for all distinct
t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then size(I,N) ≤ 2|P|.

Proof. Let I = (V, ⋎ ) ∈ I and N be an acceptable sequence w.r.t. I . We assume that for all t, t′ ∈ N
s.t. we have V (t′) = V (t) only when both t, t′ ∈ final(N). Two cases are possible:

• init(I,N) is empty. Since card(range(I,N)) ≤ 2|P|, we have size(I,N) ≤ 2|P|.

• init(I,N) is not empty. We can see that for all t ∈ init(I,N) and t′ ∈ N s.t. t′ 6= t we have
V (t′) 6= V (t). If init(I,N) has n time points having distinct valuations, then range(final(I,N))
has at most 2|P| − n valuations. Therefore, we have size(I,N) ≤ 2|P|.

A.2 Proofs of results for Lemma 4.13

NB: The results marked (∗) are introduced here, while they are omitted in the main text.

Proposition A.1 (∗). Let I = (V, ⋎ ) ∈ I and i ∈ final(I). For all j ∈ final(I), there exists j′ ≥ j such
that V (j′) = V (i).

Proof. Let I = (V, ⋎ ) ∈ I and i, j ∈ final(I). Let E be the set defined by E = {i′ ∈ final(I) :
V (i′) = V (i)}. Since i ∈ final(I), we have E 6= ∅. Suppose now that there does not exist j′ ≥ j
such that V (j′) = V (i). We have E is a non empty finite set of integers included in [0, . . . , j − 1]. Let
k = max{k′ ∈ E}. From the definitions of E and k, we have k ∈ final(I) and there does not exist
k′ > k such that V (k′) = V (k). This contradicts Lemma 4.7. We conclude that there exists j′ ≥ j such
that V (j′) = V (i).

Proposition A.2 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over
the same set of atomic propositions P s.t. range(I) = range(I ′). For all i ∈ final(I) and i′ ∈ final(I ′)
such that V (i) = V ′(i′), we have :

(1) for all j ∈ [i,∞[ there exists j′ ∈ [i′,∞[ such that V ′(j′) = V (j).

(2) for all j ∈ min ⋎ (i) there exists j′ ∈ min ⋎ ′(i′) such that V (j) = V ′(j′).

Proof. Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over P s.t. range(I) =
range(I ′) and let i, i′ ∈ final(I) be such that V (i) = V ′(i′).

(1) Let j ∈ [i,∞[. Since i ∈ final(I), we have j ∈ final(I). Moreover, given that range(I) =
range(I ′), we can assert that there exists k ∈ final(I ′) such that V ′(k) = V (j). Hence, from
Proposition A.1, there exists j′ ≥ i′ such that V ′(j′) = V ′(k) = V (j).

(2) Let j ∈ min ⋎ (i). We have j ∈ final(I). From Property (1) above, there exists j′ ≥ i′ such
that V ′(j′) = V (j). Suppose that j′ 6∈ min ⋎ ′(i′). Since j′ ≥ i′, there exists k′ ≥ i′ such that
(k′, j′) ∈ ⋎ ′. From Property (1) above, there exists k ≥ i such that V (k) = V ′(k′). Since
V (k) = V ′(k′), V ′(j′) = V (j), (k′, j′) ∈ ⋎ ′ and, since I and I ′ are two faithful interpretations,
we can assert that (k, j) ∈ ⋎ . Consequently, since k ≥ i and (k, j) ⋎ , we have j 6∈ min ⋎ (i),
which leads to a contradiction. We conclude that j′ ∈ min ⋎ ′(i′).
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Proposition A.3 (∗). Let α ∈ L⋆, I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpreta-
tions over the same set of atomic propositions P s.t. range(I) = range(I ′). For every α ∈ L⋆ and every
i ∈ final(I) and i′ ∈ final(I ′) s.t. V (i) = V ′(i′), we have:

I, i |= α iff I ′, i′ |= α.

Proof. Let I = (V, ⋎ ), I ′ = (V ′, ⋎ ′) be two faithful interpretations belonging to Isd over the same set
of atomic propositions P s.t. range(I) = range(I ′). Let α ∈ L⋆, and let i ∈ final(I) and i′ ∈ final(I ′)
be such that V (i) = V ′(i′). Without loss of generality, we suppose that α does not contain ∨, □ and □∼.
This proposition can be proven by induction on the structure of the sentence α.

• Base case : α = p, with p ∈ P . Since V (i) = V ′(i′), we have p ∈ V (i) iff p ∈ V ′(i′), and thus
I, i |= p iff I ′, i′ |= p.

• α = ¬α1. By the induction hypothesis, I, i |= α1 iff I ′, i′ |= α1. Hence, we have I, i 6|= α1 iff
I ′, i′ 6|= α1. It follows that I, i |= ¬α1 iff I ′, i′ |= ¬α1.

• α = α1 ∧ α2. We know that I, i |= α1 ∧ α2 holds iff I, i |= α1 and I, i |= α2. By the induction
hypothesis, since V (i) = V ′(i′), we have I, i |= α1 and I, i |= α2 iff I ′, i′ |= α1 and I ′, i′ |= α2.
We conclude that I, i |= α1 ∧ α2 iff I ′, i′ |= α1 ∧ α2.

• α = ♢α1. First we prove that I, i |= ♢α1 implies that I ′, i′ |= ♢α1. We assume that I, i |= ♢α1. It
means that there exists j ∈ [i,∞[ s.t. I, j |= α1. From Proposition A.2 (1), there exists j′ ∈ [i′,∞[
such that V ′(j′) = V (j). By the induction hypothesis, we have I ′, j′ |= α1. Hence, we conclude
that I, i′ |= ♢α1. The if part can be proved with a similar reasoning.

• α = ♢∼α1. First we prove that I, i |= ♢∼α1 implies that I ′, i′ |= ♢∼α1. We assume that I, i |= ♢∼α1.
Hence, there exists j ∈ [i,∞[ s.t. j ∈ min ⋎ (i) and I, j |= α1. From Proposition A.2 (2), there
exists j′ ∈ min ⋎ ′(i′) such that V ′(j′) = V (j). By the induction hypothesis, we have I ′, j′ |= α1.
We conclude that I ′, i′ |= ♢∼α1. The if part can be proved with a similar reasoning.

Corollary A.4 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over
the same set of atomic propositions P s.t. range(I) = range(I ′). For every i ∈ final(I) and every
α ∈ L⋆, we have: if I, i |= α, then there exists i′ ∈ final(I ′) s.t. I ′, i′ |= α.

Proposition A.5 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over
P s.t. init(I) .

= init(I ′) and range(I) = range(I ′). Then we have:

For all t, t′ ∈ init(I), t′ ∈ min ⋎ (t) iff t′ ∈ min ⋎ ′(t).

Proof. Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over P such that
init(I)

.
= init(I ′) and range(I) = range(I ′). Let t, t′ ∈ init(I) be such that t′ ∈ min ⋎ (t). Suppose

that t′ 6∈ min ⋎ ′(t). Since t′ ≥ t, there exists t′′ ≥ t such that (t′′, t′) ∈ ⋎ ′. There are two possible
cases:

• t′′ ∈ init(I ′). Since init(I)
.
= init(I ′), we have V ′(t′′) = V (t′′). Moreover, since I and I ′ are

two faithful interpretations and V ′(t′) = V (t′), we have (t′′, t′) ∈ ⋎ . Since t′′ ≥ t, it follows that
t′ 6∈ min ⋎ (t). This leads to a contradiction. We conclude that t′ ∈ min ⋎ ′(t).
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• t′′ ∈ final(I ′). Since range(I) = range(I ′), there exists t′′′ ∈ final(I) such that V ′(t′′) = V (t′′′).
Moreover, since I and I ′ are two faithful interpretations and V ′(t′) = V (t′), we have (t′′′, t′) ∈ ⋎ .
Since t′′′ ≥ t, it follows that t′ 6∈ min ⋎ (t). This leads leads to a contradiction. We conclude that
t′ ∈ min ⋎ ′(t).

Same reasoning can be applied to prove the if part.

Proposition A.6 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over
P such that init(I) .

= init(I ′) and range(I) = range(I ′). For all t ∈ init(I) and t′ ∈ final(I) such
that t′ ∈ min ⋎ (t), we have {t′′ ∈ final(I ′) | V ′(t′′) = V (t′)} ⊆ min ⋎ ′(t).

Proof. Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over P such that
init(I)

.
= init(I ′) and range(I) = range(I ′). Let t ∈ init(I), t′ ∈ final(I), t′′ ∈ final(I ′) be such

that t′ ∈ min ⋎ (t) and V ′(t′′) = V (t′). We show that t′′ ∈ min ⋎ ′(t).
Suppose that t′′ 6∈ min ⋎ ′(t). Since t′′ ≥ t, there exists t′′′ ≥ t such that (t′′′, t′′) ∈ ⋎ ′. There are

two possible cases.

• t′′′ ∈ init(I ′). Since init(I)
.
= init(I ′), we have V ′(t′′′) = V (t′′′). Moreover, since I and I ′ are

two faithful interpretations and V ′(t′′) = V (t′), we have (t′′′, t′) ∈ ⋎ . Since t′′′ ≥ t, it follows
that t′ 6∈ min ⋎ (t). This leads to a contradiction. We conclude that t′′ ∈ min ⋎ ′(t).

• t′′′ ∈ final(I ′). Since range(I) = range(I ′), there exists u ∈ final(I) such that V ′(t′′′) = V (u).
Moreover, since I and I ′ are two faithful interpretations and V ′(t′′) = V (t′), we have (u, t′) ∈ ⋎ .
Since u ≥ t, it follows that t′ 6∈ min ⋎ (t). There is a contradiction. We conclude that t′′ ∈
min ⋎ ′(t).

Lemma A.7 (∗). Let I = (V, ⋎ ) ∈ Isd and I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over P
such that V ′(0) = V (0), init(I) .

= init(I ′), and range(I) = range(I ′). Then for all α ∈ L⋆, we have :

For all t ∈ init(I) ∪ {0}, I, t |= α iff I ′, t |= α.

The singleton {0} is there in case of an empty init(I).

Proof. Let I = (V, ⋎ ) ∈ Isd, I ′ = (V ′, ⋎ ′) ∈ Isd be two faithful interpretations over P such that
V ′(0) = V (0), init(I) .

= init(I ′), and range(I) = range(I ′). Let α ∈ L⋆ and t ∈ init(I) ∪ {0}.
Without loss of generality, we suppose that α does not contain ∨, □ and □∼.

First, notice that in the case where init(I) and init(I ′) are empty intervals, we necessarily have
t = 0. Moreover, since t ∈ final(I) and t ∈ final(I ′) and V (0) = V ′(0), from Proposition A.3, we can
assert that I, t |= α iff I ′, t |= α. Consequently, the property to be proved is true. Now, we suppose that
init(I) and init(I ′) are non empty intervals. Hence, we have t ∈ init(I) and t ∈ init(I ′). We prove
that I, t |= α iff I ′, t |= α by structural induction on α.

• Base case : α = p. Since t ∈ init(I), we have V (t) = V ′(t). Hence, p ∈ V (t) iff p ∈ V ′(t).
Thus I, t |= p iff I ′, t |= p.

• α = ¬α1. By the induction hypothesis, we have I, t |= α1 iff I ′, t |= α1. Hence, it is not the case
that I, t |= α1 iff it is not the case that I ′, t |= α1. We conclude that, I, t |= ¬α1 iff I ′, t |= ¬α1.

• α = α1 ∧ α2. We have I, t |= α1 ∧ α2 iff I, t |= α1 and I, t |= α2. Using the induction
hypothesis, it follows that I, t |= α1 and I, t |= α2 iff I ′, t |= α1 and I ′, t |= α2. We conclude that
I, t |= α1 ∧ α2 iff I ′, t |= α1 ∧ α2.
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• α = ♢α1. Suppose that I, t |= ♢α1. There exists a t′ ∈ [t,∞[ s.t. I, t′ |= α1. Two cases are
possible w.r.t. t′.

– t′ ∈ init(I). By the induction hypothesis, we have I ′, t′ |= α1. Hence, we conclude that
I ′, t |= ♢α1.

– t′ ∈ final(I). Since range(I) = range(I ′), there exists t′′ ∈ final(I ′) such that V ′(t′′) =
V (t′). From Proposition A.3, we have I ′, t′′ |= α1. Since t′′ > t, we have I ′, t |= ♢α1.

Same reasoning can be applied to prove the if part.

• α = ♢∼α1. Suppose that I, t |= ♢∼α1. There exists t′ ∈ min ⋎ (t) s.t. I, t′ |= α1. Two cases are
possible w.r.t. t′.

– t′ ∈ init(I). By the induction hypothesis, we have I ′, t′ |= α1. Moreover, from Proposition
A.5, we have t′ ∈ min ⋎ ′(t). Hence, we conclude that I ′, t |= ♢∼α1.

– t′ ∈ final(I). Since range(I) = range(I ′), there exists t′′ ∈ final(I ′) such that V ′(t′′) =
V (t′). From Proposition A.3, we have I ′, t′′ |= α1. From Proposition A.6, we have t′′ ∈
min ⋎ ′(t). Hence, we conclude that I ′, t |= ♢∼α1.

Same reasoning can be applied to prove the if part.

Lemma 4.13 is a direct result of result of Lemma A.7.

A.3 Proofs of results in Section 4.4

Lemma 4.27. Let α ∈ L1 be an I-satisfiable sentence and I = (V, ⋎ ) ∈ I be an interpretation such
that I, 0 |= α. Let IN be the pseudo-interpretation of I over the finite sequence N such that IN , 0 |=P α,
and I ′ = (V ′, ⋎ ′) be the induced interpretation from IN . Let S = (n, VS , ⋎ S) be the finite preferential
structure where n = |N |, VS(t) = V ′(t) for each t ∈ [0, |N | − 1] and ⋎ S = ⋎ ′. Let I(S) = (V ′′, ⋎ ′′)
be the induced interpretation from S. We have the following:

• ⋎ ′′ = ⋎ ′ and V ′′(t) = V ′(t) for each t ∈ N;

• for every α1 ∈ Sf (α), we have α1 ∈ labSα(t) iff I(S), t |= α1.

Proof. Let α ∈ L1 be an I-satisfiable sentence and I = (V, ⋎ ) ∈ I be an interpretation such that
I, 0 |= α. Let IN = (V N , ⋎ N ) be the pseudo-interpretation of I over the finite sequence N such that
IN , 0 |=P α, and I ′ = (V ′, ⋎ ′) be the induced interpretation from IN . Let S = (n, VS , ⋎ S) be the
finite preferential structure where n = |N |, VS(t) = V ′(t) for each t ∈ [0, |N | − 1] and ⋎ S = ⋎ ′. Let
I(S) = (V ′′, ⋎ ′′) be the induced interpretation from S.

By Definition 4.24, we have ⋎ ′′ = ⋎ S , V ′′(t) = VS(t) for each t ∈ [0, n−1] and V ′′(t) = V ′′(n−1)
for each t ∈ [n,∞[. Since ⋎ ′ = ⋎ S , V ′(t) = VS(t) for each, t ∈ [0, |N | − 1] V ′(t) = V ′(|N | − 1) for
each t ∈ [|N |,∞[ (see Defnition 4.21) and n = |N |, then ⋎ ′′ = ⋎ ′ and V ′′(t) = V ′(t) for each t ∈ N.
As such, the first item of the lemma holds. Therefore, the interpretations I ′ and I(S) are interchangeable.

Going back to the pseudo-interpretation IN , we know that N is a finite sequence. By the definition
of truth values of sentences in pseudo-interpretations (after Definition 4.6), we have the following:

• for any ©α1 such that IN , ti |=P ©α1, we have ti + 1 ∈ N and IN , ti + 1 |=P α1;
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• for any ♢α1 such that IN , ti |=P ♢α1, there exists tj ∈ N such that tj ≥ ti and IN , tj |=P α1;

• for any ♢∼α1 such that IN , ti |=P ♢∼α1, there exists tj ∈ N such that tj ∈ min ⋎ N (ti) and IN , tj |=P

α1.

Since I ′ is the induced from IN , the aforementioned properties hold for I ′ as well. Given i, j ∈
[0, |N | − 1], we have the following:

• (I) for any ©α1 such that I ′, i |= ©α1, we have i+ 1 ∈ [0, |N | − 1] and I ′, i+ 1 |= α1;

• (II) for any ♢α1 such that I ′, i |= ♢α1, there exists j ∈ [0, |N |−1] such that j ≥ i and I ′, j |= α1;

• (III) for any ♢∼α1 such that I ′, i |= ♢∼α1, there exists j ∈ [0, |N | − 1] such that ∈ min ⋎ ′(i) and
I ′, j |= α1.

It is important to note that these properties hold for I(S) as well. In other words, any sub-sentence of
the form ©α1, ♢α1 or ♢∼α1 that holds at t ∈ [0, n− 1] is satisfied within the finite part of I(S).

Moving on to the second item of the lemma, let α1 ∈ Sf (α) and t ∈ [0, n − 1]. We use structural
induction on sub-sentences of α1.

• α1 = p. By Definition 4.24, since I(S) is the S-induced interpretation and t ∈ [0, n − 1], then
V ′′(t) = VS(t). Thus, we have p ∈ VS(t) iff p ∈ V ′′(t). Therefore, we have p ∈ labSα(t) iff
I(S), t |= p.

• α1 = ¬p. Following the same reasoning as in the case of p, we have V (t) = VS(t). Thus, we have
p 6∈ VS(t) iff p 6∈ V ′′(t). Therefore, we have ¬p ∈ labSα(t) iff I(S), t |= ¬p.

• α1 = α2 ∧ α3. Assume that α2 ∧ α3 ∈ labSα(t), we have α2, α3 ∈ labSα(t). By the induction
hypothesis, α2, α3 ∈ labSα(t) iff I(S), t |= α2 and I(S), t |= α3. Therefore, we have α2 ∧ α3 ∈
labSα(t) iff I(S), t |= α2 ∧ α3.

• α1 = α2 ∨ α3. Assume that α2 ∨ α3 ∈ labSα(t), we either have α2 ∈ labSα(t) or α2 ∈ labSα(t).
Assume that α2 ∈ labSα(t), by the induction hypothesis, α2 ∈ labSα(t) iff I(S), t |= α2. Thus,
we have α2 ∨ α3 ∈ labSα(t) iff I(S), t |= α2 ∨ α3. Same reasoning can be applied in the case of
α3 ∈ labSα(t).

• α1 = ♢α2.

– For the only-if part, we assume that ♢α2 ∈ labSα(t), we have α2 ∈ labSα(t
′) where t′ ∈

[t, n− 1]. By the induction hypothesis, since α2 ∈ labSα(t
′) and t′ ∈ [0, n− 1], then we have

α2 ∈ labSα(t
′) iff I(S), t′ |= α2. Therefore, we have I(S), t |= ♢α2.

– For the if part, we assume that I(S), t |= ♢α2. Knowing I(S) is the same as I ′, since t ∈
[0, n − 1] and thanks to item (II), then there is t′ ∈ [t, n − 1] where I(S), t′ |= α2. By the
induction hypothesis, since I(S), t′ |= α2 and t′ ∈ [t, n − 1], then we have α2 ∈ labSα(t

′).
Therefore, we have ♢α2 ∈ labSα(t).

• α1 = ©α2. Assume that ©α2 ∈ labSα(t), we have α2 ∈ labSα(t+ 1) where t+ 1 ≤ n− 1 (thanks
to item (I), there is no need to check the case of t = n − 1). By the induction hypothesis, since
α2 ∈ labSα(t+1) and t+1 ∈ [0, n−1], we have α2 ∈ labSα(t+1) iff I(S), t+1 |= α2. Therefore,
we have ©α2 ∈ labSα(t) iff I(S), t |= ©α2.
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• α1 = □αbool. Assume that □αbool ∈ labSα(t), we have αbool ∈ labSα(t
′) for all t′ ∈ [t, n − 1].

By the induction hypothesis, since we have αbool ∈ labSα(t
′) for each t′ ∈ [t, n − 1], then for all

t′ ∈ [t, n − 1], we have (i) αbool ∈ labSα(t
′) iff I(S), t′ |= αbool. Moreover, we have V ′′(t′) =

VS(n− 1) = V (n− 1) for all t′ ∈ [n,∞[. Since αbool is a Boolean sentence, I(S), n− 1 |= αbool

and V ′′(t′) = V ′′(n − 1) for all t′ ∈ [i,∞[; then we deduce that (ii) I(S), n − 1 |= αbool iff
I(S), t′ |= αbool for all t′ ∈ [n,∞[ . From (i) and (ii), we conclude that □αbool ∈ labSα(t) iff
I(S), t |= □αbool.

• α1 = ♢∼α2.

– For the only-if part, we assume that ♢∼α2 ∈ labSα(t). We have α2 ∈ labSα(t
′) where t′ ∈

min ⋎ S
(t). By the induction hypothesis, since α2 ∈ labSα(t

′) and t′ ∈ [0, n − 1], then we
have (i) I(S), t′ |= α2. Moreover, since t′ ∈ min ⋎ S

(t), we have (ii) t′ ∈ min ⋎ (t). From (i)
and (ii), we conclude that I(S), t |= ♢∼α2.

– For the if part, we assume that I(S), t |= ♢∼α2. Knowing I(S) is the same as I ′, since t ∈
[0, n − 1] and thanks to item (III), then there is t′ ∈ [t, n − 1] such that t′ ∈ min ⋎ (t) and
I(S), t′ |= α2. By the induction hypothesis, since t′ ∈ [t, n − 1] and I(S), t′ |= α2, then we
have (i) α2 ∈ labSα(t

′). Moreover, since t′ ∈ min ⋎ (t), we have (ii) t′ ∈ min ⋎ S
(t). From (I)

and (II), we conclude that ♢∼α2 ∈ labSα(t).

A.4 Proofs of results in Section 4.5

Lemma 4.39. Let α1 ∈ L⋆ be a sentence, I = (V, ⋎ ) ∈ Isd and let T be a non-empty acceptable
sequence w.r.t. I where for all ti ∈ T we have I, ti |= ♢∼α1. Then for all t, t′ ∈ Anchors(I, T,♢∼α1) s.t.
V (t) = V (t′) and t 6= t′, we have t, t′ ∈ final(I,Anchors(I, T,♢∼α1)).

Proof. Let α1 ∈ L⋆, let T be a non-empty acceptable sequence w.r.t. I ∈ Isd where for all ti ∈ T we
have I, ti |= ♢∼α1. Just as a reminder, we have Anchors(I, T,♢∼α1) =

∪
ti∈T ST (I,AS (I,min ⋎ (ti)), α1).

Thus, there exists ti, t′i ∈ T such that t ∈ ST (I,AS (I,min ⋎ (ti)), α1) and t′ ∈ ST (I,AS (I,min ⋎ (t
′
i)), α1).

Suppose that the lemma is false. Then there are two time points t, t′ ∈ Anchors(I, T,♢∼α1) with t 6= t′

such that t is in init(I,Anchors(I, T,♢∼α1)) at least and V (t) = V (t′). Note that t ∈ init(I), since
we have t ∈ init(I,Anchors(I, T,♢∼α1)). Without loss of generality, we assume that t < t′. From

Definition 4.35, we have t ∈ AS (I, (t
I,AS(I,min ⋎ (ti))

α1 )) where t
I,AS(I,min ⋎ (ti))

α1 is the chosen occur-
rence that satisfies α1 in AS (I,min ⋎ (ti)). Thanks to Definitions 4.31 and 4.33, since t ∈ init(I),

we can see that: t = t
I,AS(I,min ⋎ (ti))

α1 . Moreover, (1) there is no t′′ ∈ final(I, AS(I,min ⋎ (ti))) s.t.

I, t′′ |= α1 and (2) t = t
I,AS(I,min ⋎ (ti))

α1 = max<{t′′ ∈ init(I, AS(I,min ⋎ (ti))) | I, t′′ |= α1}
(see Definition 4.33). On the other hand, thanks to Proposition 4.3, since t < t′, V (t) = V (t′)
and t ∈ min ⋎ (ti), we have t′ ∈ min ⋎ (ti). Hence, we have t′ ∈ AS(I,min ⋎ (ti)). Since t′ ∈
ST (I,AS (I,min ⋎ (t

′
i)), α1), we also have I, t′ |= α1. From this and the property (1), we can as-

sert that t′ does not belong to final(I, AS(I,min ⋎ (ti))). It follows that t′ ∈ init(I, AS(I,min ⋎ (ti))).
From the property (2) we can assert that t ≥ t′, which leads to a contradiction since t < t′. Therefore, for
all t, t′ ∈ Anchors(I, T,♢∼α1) s.t. V (t) = V (t′), we must have t, t′ ∈ final(Anchors(I, T,♢∼α1)).

Proposition 4.40. Let α ∈ L⋆ be of the form Oα1, where O ∈ {♢,□,♢∼,□∼} and α1 ∈ L⋆. Let
I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have
I, t |= α. Then, we have:
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size(I,Anchors(I, T, α)) ≤ 2|P|.

Proof. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we
have I, t |= α. We show that is the case for the temporal operators □,♢,□∼,♢∼:

• Since size(I,Anchors(I, T,□α1)) = size(I, ∅) = 0, the result follows immediately.

• Since size(I,Anchors(I, T,♢α1)) = size(I,ST (I,N, α1)) = 1, the result follows immediately.

• T is an acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= ♢∼α1. From Propo-
sition 4.39, for all t′i, t

′
j ∈ Anchors(I, T,♢∼α1) s.t. V (t′i) = V (t′j) and t′i 6= t′j , we have t′i, t

′
j ∈

final(I,Anchors(I, T,♢∼α1)). Thanks to Proposition 4.17, we conclude that size(Anchors(I, T,♢∼α1)) ≤
2|P|.

• Going back to Definition 4.38, we have Anchors(I, T,□∼α1) = DR(I,
∪

ti∈T AS (I,min ⋎ (ti))).
We denote the acceptable sequence

∪
ti∈T AS (I,min ⋎ (ti)) by N . From Definition 4.37 we

have Anchors(I, T,□∼α1) = DR(I,N) =
∪

v∈val(I,N) ST (I,N, αv). Moreover, we know that
size(ST (I,N, αv)) = 1 for all v ∈ val(I,N). Consequently, thanks to Proposition 4.16, we have
size(

∪
v∈val(I,N) ST (I,N, αv)) ≤ card(val(I,N)). We can see that card(val(I,N)) ≤ 2|P|,

and therefore size(Anchors(I, T,□∼α1)) = size(
∪

v∈val(I,N) ST (I,N, αv)) ≤ 2|P|.

Proposition 4.41. Let α1 ∈ L⋆, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t.
I s.t. for all t ∈ T we have I, t |= □∼α1, with α1 ∈ L⋆. For all acceptable sequences N w.r.t. I s.t.
Anchors(I, T,□∼α1) ⊆ N and for all ti ∈ N ∩ T , let IN = (V N , ⋎ N ) be the pseudo-interpretation
over N and t′ ∈ N . We have the following:

If t′ 6∈ min ⋎ (ti), then t′ 6∈ min ⋎ N (ti).

Proof. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we
have I, t |= □∼α1, with α1 ∈ L⋆. Let N be an acceptable sequence w.r.t. I s.t. Anchors(I, T,□∼α1) ⊆ N .
Let ti ∈ N ∩ T . Let t′ ∈ N be a time point s.t. t′ 6∈ min ⋎ (ti). There are two possible cases:

• t′ 6∈ [ti,∞[: Since t′ 6∈ [ti,∞[, then t′ 6∈ [ti,∞[∩N . Therefore, we conclude that t′ 6∈ min ⋎ N (ti).

• t′ ∈ [ti,∞[: Since ⋎ satisfies the well-foundedness condition (that is why T must not be empty),
t′ 6∈ min ⋎ (ti) implies that there exists a time point t′′ ∈ min ⋎ (ti) s.t. (t′′, t′) ∈ ⋎ . Let αt′′ be
the representative sentence of V (t′′) (recall that αt′′ =

∧
{p | p ∈ V (t′′)} ∧

∧
{¬p | p 6∈ V (t′′)}).

For the sake of readability, we shall denote the sequence
∪

t∈T AS (I,min ⋎ (t)) with M . Notice
that there exists V ∈ val(I,M) such that V = V (t′′) since ti ∈ T and t′′ ∈ min ⋎ (ti). Thanks
to Definition 4.37, since DR(I,M) =

∪
v∈val(I,M) ST (I,M, αv) and V (t′′) ∈ val(I,M), we

can find t′′′ ∈ ST (I,M, αt′′) where t′′′ ∈ DR(I,M) ⊆ N , V (t′′′) = V and t′′′ ≥ t′′. Since
(t′′, t′) ∈ ⋎ , I ∈ Isd and V (t′′′) = V (t′′), we have (t′′′, t′) ∈ ⋎ . Moreover, we have t′′′, t′ ∈ N ,
and therefore (t′′′, t′) ∈ ⋎ N . Since t′′′ ∈ [ti,∞[∩N and (t′′′, t′) ∈ ⋎ N , we conclude that
t′ 6∈ min ⋎ N (ti).

Proposition 4.43. Let α ∈ L⋆ be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have size(I,Keep(I, T, α)) ≤ µ(α)×2|P|.
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Proof. Let I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we
have I, t |= α where α ∈ L⋆.

We use structural induction on T and α in order to prove this property.

• Base: α = p or α = ¬p. We have Keep(I, T, α) = ∅. Since size(I, ∅) = 0 ≤ µ(α) × 2|P| = 0,
then the property holds on atomic propositions.

• α = α1∧α2. Since I, t |= α1∧α2 for all t ∈ T , we can assert that I, t |= α1 and I, t |= α2. By ap-
plying the induction hypothesis on T , α1 and α2, we have size(I,Keep(I, T, α1)) ≤ µ(α1)×2|P|

and size(I,Keep(I, T, α2)) ≤ µ(α2) × 2|P|. Thanks to Proposition 4.16, size(Keep(I, T, α1 ∧
α2)) ≤ (µ(α1)+µ(α2))×2|P|. We conclude that size(I,Keep(I, T, α1∧α2)) ≤ (µ(α1∧α2))×
2|P|.

• α = α1 ∨ α2. Since I, t |= α1 ∨ α2 for all t ∈ T , we have I, t |= α1 or I, t |= α2. Let T1 be the
sequence (resp. T2) containing all t1 ∈ T (resp.t2 ∈ T ) s.t. I, t1 |= α1 (resp. I, t2 |= α2). Using
induction hypothesis on T1, T2, α1 and α2, we have size(I,Keep(I, T1, α1)) ≤ µ(α1) × 2|P|

and size(I,Keep(I, T2, α2)) ≤ µ(α2) × 2|P|. We conclude that size(I,Keep(I, T, α1 ∨ α2)) ≤
(µ(α1 ∨ α2))× 2|P| in the same way as α1 ∧ α2.

• α = ♢α1. First of all, we proved in Proposition 4.40 that (I) size(I,Anchors(I, T,♢α1)) ≤ 2|P|.
On the other hand, thanks to Definition 4.38 it is easy to see that size(I,Anchors(I, T,♢α1)) is
a non-empty acceptable sequence w.r.t. I s.t. for all t′ ∈ Anchors(I, T,♢α1) we have I, t′ |= α1.
By the induction hypothesis on Anchors(I, T,♢α1) and α1, we have (II)
size(I,Keep(I,Anchors(I, T,♢α1), α1)) ≤ µ(α1) × 2|P|. Thanks to Proposition 4.16, from (I)
and (II) we conclude that size(I,Keep(I, T,♢α1)) ≤ (1 + µ(α1))× 2|P| = µ(♢α1)× 2|P|.

• α = □α1. As a result of semantics of the □ operator, we can see that for all t ∈ T we have I, t |=
α1. By the induction hypothesis on T and α1, we have size(I,Keep(I, T, α1)) ≤ µ(α1) × 2|P|.
Since Keep(I, T, α1) = Keep(I, T,□α1) then size(I,Keep(I, T,□α1)) ≤ µ(α1) × 2|P|. We
conclude that size(I,Keep(I, T,□α1)) ≤ µ(□α1)× 2|P|.

• α = ♢∼α1. First of all, we proved in Proposition 4.40 that (I) size(I,Anchors(I, T,♢∼α1)) ≤ 2|P|.
On the other hand, thanks to Definition 4.38, it is easy to see that Anchors(I, T,♢∼α1) is a non-
empty acceptable sequence w.r.t. I s.t. for all t′ ∈ Anchors(I, T,♢∼α1) we have I, t′ |= α1. By the
induction hypothesis on Anchors(I, T,♢∼α1) and α1, we have (II)
size(I,Keep(I,Anchors(I, T,♢∼α1), α1)) ≤ µ(α1) × 2|P|. Thanks to Proposition 4.16, from (I)
and (II), we conclude that size(I,Keep(I, T,♢∼α1)) ≤ (1 + µ(α1))× 2|P| = µ(♢∼α1)× 2|P|.

• α = □∼α1. First of all, we proved in Proposition 4.40 that (I) size(I,Anchors(I, T,□∼α1)) ≤ 2|P|.
On the other hand, from Definition 4.42, we have T ′ =

∪
ti∈T AS (I,min ⋎ (ti)). It is easy to see

that for all t′ ∈ T ′ we have I, t′ |= α1 and that T ′ is a non-empty acceptable sequence w.r.t. I .
By the induction hypothesis on T ′ and α1, we have (II) size(I,Keep(I, T ′, α1)) ≤ µ(α1)× 2|P|.
Thanks to Proposition 4.16, from (I) and (II) we conclude that size(I,Keep(I, T,□∼α1)) ≤ (1 +
µ(α1))× 2|P| = µ(□∼α1)× 2|P|.

Lemma 4.44. Let α ∈ L⋆ be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I , if Keep(I, T, α) ⊆ N ,
then for every t ∈ N ∩ T , we have IN , t |=P α.
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Proof. Let α ∈ L⋆ be in NNF, I = (V, ⋎ ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t.
I s.t. for all t ∈ T we have I, t |= α. Let N be an acceptable sequence w.r.t. I s.t. Keep(I, T, α) ⊆ N
and t ∈ N ∩ T (we assume that N contains at least one t ∈ T ). Let IN = (N,V N , ⋎ N ) be the
pseudo-interpretation over N .

We use structural induction on T and α in order to prove this property.

• α = p or α = ¬p. Since I, t |= p (resp. ¬p), it means that p ∈ V (t) (resp. p 6∈ V (t)). We know
that V N (t) = V (t). We conclude that IN , t |=P p (resp. ¬p).

• α = α1 ∧ α2. Since I, t |= α1 ∧ α2 for all t ∈ T , we can assert that I, t |= α1 and I, t |=
α2. By applying the induction hypothesis on T , α1 and α2, since Keep(I, T, α1) ⊆ N and
Keep(I, T, α2) ⊆ N , therefore we have IN , t |=P α1 and IN , t |=P α2. Thus, we have IN , t |=P

α1 ∧ α2.

• α = α1 ∨ α2. Suppose that I, t |= α1 (the case I, t |= α2 can be treated in a similar way) and
let T1 be the sequence containing all t1 ∈ T s.t. I, t1 |= α1 . Here, since t ∈ T1, therefore T1 is
non-empty and t ∈ T1∩N . We know that Keep(I, T1, α1)∪Keep(I, T2, α2) ⊆ N . Consequently
Keep(I, T1, α1) ⊆ N . From the induction hypothesis, we have IN , t |=P α1. Therefore, we have
IN , t |= α1 ∨ α2.

• α = ♢α1. We have I, t |= ♢α1 and we need to prove that IN , t |=P ♢α1. I, t |= ♢α1 means
that there exists t′ ∈ [t,∞[ such that I, t′ |= α1. Therefore Anchors(I, T,♢α1) is non-empty
(see Definition 4.38). We know that Anchors(I, T,♢α1) ⊆ Keep(I, T,♢α1) ⊆ N , consequently
Anchors(I, T,♢α1)∩N is non-empty. Thanks to Definition 4.38 it is easy to see that for all t1 ∈
Anchors(I, T,♢α1) we have I, t1 |= α1. By the induction hypothesis on Anchors(I, T,♢α1)
and α1, since Keep(I,Anchors(I, T,♢α1), α1) ⊆ N , t′ ∈ Anchors(I, T,♢α1) (a non-empty
acceptable sequence w.r.t I) and I, t′ |= α1, thus IN , t′ |= α1. Therefore, we have IN , t |=P ♢α1.

• α = □α1. We have I, t |= □α1 and we need to prove that IN , t |=P □α1. We know that for
all t′ ≥ t we have I, t′ |= α1. We can assert that for all t′ ∈ N ∩ T such that t′ ≥ t, we have
IN , t′ |=P α1. By the induction hypothesis on T and α1, Keep(I, T, α1) = Keep(I, T,□α1).
Consequently Keep(I, T, α1) ⊆ N since for all t′ ∈ N ∩ T , we have IN , t′ |=P α1. We conclude
that IN , t |=P □α1.

• α = ♢∼α1. We have I, t |= ♢∼α1 and we need to prove that IN , t |=P ♢∼α1. I, t |= ♢∼α1 means that
there exists t′ ∈ min ⋎ (t) such that I, t′ |= α1, and therefore Anchors(I, T,♢∼α1) is non-empty
(see Definition 4.38). We know that Anchors(I, T,♢∼α1) ⊆ Keep(I, T,♢∼α1) ⊆ N , consequently
Anchors(I, T,♢∼α1)∩N is non-empty. Thanks to Definition 4.38 it is easy to see that for all t1 ∈
Anchors(I, T,♢∼α1) we have I, t1 |= α1. By the induction hypothesis on Anchors(I, T,♢∼α1) and
α1, since Keep(I, T1, α1) ⊆ N with T1 = Anchors(I, T,♢∼α1), and T1 is an acceptable sequence
where I, t′ |= α1 for all t′ ∈ T1, we conclude (I) IN , t′ |=P α1. Thanks to the construction of the
pseudo-interpretation IN , since t′ ∈ min ⋎ N (t), we have (II) t′ ∈ min ⋎ (t). From (I) and (II), we
conclude that IN , t |=P ♢∼α1.

• α = □∼α1. We have I, t |= □∼α1 and we need to prove that IN , t |=P □∼α1. I, t |= □∼α1 means
that for all t′ ∈ min ⋎ (t) we have I, t′ |= α1, therefore for all t′ ∈ T ′ =

∪
ti∈T AS (I,min ⋎ (ti))

we have I, t′ |= α1. In addition, thanks to the well-founded condition on ⋎ , T ′ is non-empty.
We know that Anchors(I, T,□∼α1) ⊆ Keep(I, T,□∼α1) ⊆ N and that Anchors(I, T,□∼α1) =
DR(I, T ′), consequently T ′ ∩ N is non-empty. We use proof by contradiction. Suppose that
IN , t 6|=P □∼α1, which means there exists t′ ∈ min ⋎ N (ti) s.t. IN , t′ 6|=P α1. Thanks to Proposition
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4.41, if t′ ∈ min ⋎ N (ti), then t′ ∈ min ⋎ (ti). Just a reminder, we have T ′ =
∪

ti∈T AS (I,min ⋎ (ti))
where for all t′′ ∈ T ′ we have I, t′′ |= α1. Note that T ′ is a non-empty acceptable sequence
w.r.t. I . By the induction hypothesis on T ′ and α1, since Keep(I, T ′, α1) ⊆ N , and t′ ∈
AS (I,min ⋎ (t)) ⊆ T ′, therefore IN , t′ |=P α1. This conflicts with our supposition. We con-
clude that there is no t′ ∈ min ⋎ N (t) s.t. IN , t′ 6|=P α1, and therefore IN , t |=P □∼α1.

A.5 Proof of results in Section 4.6

NB: The results marked (∗) are introduced here, while they are omitted in the main text.

Proposition 4.51. Let S = (i, π, VS , ⋎ S) be a periodical preferential structure, I(S) = (V, ⋎ ) be its
corresponding interpretation and t, t′, tS , t

′
S ∈ N s.t.:

tS =

{
t, if t < i;

i+ (t− i) mod π, otherwise.
t′S =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.

We have the following: t′ ∈ min ⋎ (t) iff t′S ∈ min ⋎ S
(tS).

Proof. Let S = (i, π, VS , ⋎ S) be a periodical preferential structure, I(S) = (V, ⋎ ) and t, t′ ∈ N.

• For the only-if part, we use proof by contradiction. We assume that t′ ∈ min ⋎ (t) and suppose that
t′S 6∈ min ⋎ S

(tS). Following the assumption, t′ ∈ min ⋎ (t) means that there is no t′′ ∈ [t,∞[ s.t.
(t′′, t′) ∈ ⋎ . On the other hand, t′S 6∈ min ⋎ S

(tS) means that there exists t′′S ∈ [min<{tS , i}, i +
π[ with (VS(t

′′
S), VS(t

′
S)) ∈ ⋎ S (Note that t′S is also in [min<{tS , i}, i+π[). Note that following

Definition 4.49, we have VS(tS) = V (tS), VS(t
′
S) = V (t′S) and VS(t

′′
S) = V (t′′S). Knowing that

t′S , t
′′
S ∈ [0, i+ π[ and (VS(t

′′
S), VS(t

′
S)) ∈ ⋎ S , then we have (t′′S , t

′
S) ∈ ⋎ . We discuss two cases:

t ∈ [0, i[ and t ∈ [i,∞[.

– If t ∈ [0, i[, then we have t = tS and t′′S ∈ [t, i+ π[ (t = tS = [min<{tS , i}, i+ π[). Thanks
to Definition 4.49, since t′S = t′ in the case of t′ ∈ [0, i[ and t′S = i+(t′−i) mod π in the case
of t′ ∈ [i,∞[, then we have V (t′) = V (t′S). Moreover, since I(S) ∈ Isd, V (t′) = V (t′S) and
(t′′S , t

′
S) ∈ ⋎ , then we have (t′′S , t

′) ∈ ⋎ . This conflicts with the assumption of t′ ∈ min ⋎ (t).
– If t ∈ [i,∞[, then tS , t

′
S , t

′′
S ∈ [i, i+π[ (tS ≥ i and therefore i = min<{tS , i}, i+π[ for both

t′S , t
′′
S). This entails that tS , t′S , t

′′
S ∈ final(I(S)). On the hand we have V (t) = VS(tS) and

V (t′) = VS(t
′
S) thanks to Definition 4.49. Thanks to Proposition 4.7, since t′′S and t are in

final(I(S)), then there exists t′′′ ∈ [t,∞ where V (t′′′) = V (t′′S). Since I(S), V (t′′′) = V (t′′S)
and V (t′) = VS(t

′
S). This conflicts with the assumption of t′ ∈ min ⋎ (t).

• For the if part, we also use proof by contradiction. We assume that t′S ∈ min ⋎ S
(tS) and suppose

that t′ 6∈ min ⋎ (t). Following the assumption, t′S ∈ min ⋎ S
(tS) entails that there is no t′′S ∈

[min<{tS , i}, i + π[ with (VS(t
′′
S), VS(t

′
S)) ∈ ⋎ S . On the other hand, t′ 6∈ min ⋎ (t) means that

there exists t′′′ ∈ [t,∞[ where (t′′, t′) ∈ ⋎ . Let t′′′S be its corresponding points on the periodical
preferential structure S. t′′′s is defined as follows:

t′′′S =

{
t′′′, if t′′′ < i;

i+ (t′′′ − i) mod π, otherwise.
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The definition of tS , t′S , t
′′′
S in this proposition has two results. The first of which is that tS , t′S , t

′′′
S

are all in [0, i + π[. The second is that, thanks to Definition 4.49, we have VS(tS) = V (t),
VS(t

′
S) = V (t′) and VS(t

′′′
S ) = V (t′′′). Moreover, since (t′′′, t′) ∈ ⋎ , then (V (t′′′), V (t′)) ∈ ⋎ S

and therefore (VS(t
′′′
S ), VS(t

′
S)) ∈ ⋎ S . Next we show that t′′′S ∈ [min<{tS , i}, i+ π[. We discuss

two cases.

– If t′′′S ∈ [0, i[, then we have t′′′S = t′′′. Moreover, since t′′′ ≥ t, we also have t ∈ [0, i[,
therefore tS = t and t′′′S ∈ [tS , i+ π[. Thus, we have t′′′S ∈ [min<{tS , i}, i+ π[.

– The other case is when t′′′S ∈ [i, i+ π[. It follows that t′′′S ∈ [min<{tS , i}, i+ π[.

Since (VS(t
′′′
S ), VS(t

′
S)) ∈ ⋎ S and t′′′S ∈ [min<{tS , i}, i + π[, then t′S 6∈ min ⋎ S

(tS). THis
conflicts with the assumption of t′S ∈ min ⋎ S

(tS).

Definition A.8 (∗). Given a UPI I = (V, ⋎ ), we define the periodical preferential structure S(I) =
(i, π, VS , ⋎ S) by:

• i = length(init(I)), π = card(range(I));

• VS(t) = V (t) for all t ∈ [0, i+ π[;

• for all t, t′ ∈ [0, i+ π[, (V (t), V (t′)) ∈ ⋎ S iff (t, t′) ∈ ⋎ .

It is worth to note that Definition A.8 is possible because I is an UPI. In particular, UPIs are state-
dependent interpretations, i.e., in Isd. Therefore, for each t, t′, t′′, t′′′ where V (t) = V (t′) and V (t′′) =
V (t′′′), then t ⋎ t′′ iff t′′ ⋎ t′′′. Thus, it is possible to have a compact representation of the preference
relation of UPIs.

Next, we shall show that given an UPI I , the induced interpretation from the periodical preferential
structure I(S(I)) and I are the same. Let I = (V, ⋎ ) be an UPI and S(I) = (i, π, VS , ⋎ S) be its
periodical preferential structure. Let I(S(I)) = (V ′, ⋎ ′) be the induced interpretation of S(I). Since
VS(t) = V (t) for all t ∈ [0, i + π[ and V ′(t) = VS(t) for all t ∈ [0, i + π[, then V ′(t) = V (t) for
all t ∈ [0, i + π[. Given a t ∈ [i + π,∞[, since V (t) = V (i + (t − i) mod π) (see Definition 4.46,
note that tI = length(init(I)) = i and π = card(range(I))) and i + (t − i)) mod π ∈ [i, i + π[, then
VS(i+(t−i)) mod π) = V (i+(t−i) mod π). On the other hand, we have V ′(t) = VS(i+(t−i)) mod π)
for t ∈ [i + π,∞[ (see Definition 4.49), then we have V ′(t) = V (t). Therefore, for any t ∈ N,
we have V ′(t) = V (t). Moreover, given any (t, t′) ∈ ⋎ , we have ((V (t), V (t′)) ∈ ⋎ S). Since
(V (t), V (t′)) ∈ ⋎ S , V (t) = V ′(t) and V (t′) = V ′(t′), then we have (t, t′) ∈ ⋎ ′. The if part follows
the same reasoning. Therefore for any t, t′ ∈ N, we have (t, t′) ∈ ⋎ iff (t, t′) ∈ ⋎ ′.

Proposition 4.55. Let α ∈ L⋆. We have that α is Isd-satisfiable iff there exists a periodical preferential
structure S such that I(S), 0 |= α and size(I(S)) ≤ |α| × 2|P|.

Proof. Let α ∈ L⋆.

• For the only if part, let α be Isd-satisfiable. Thanks to Theorem 4.30 and Proposition 4.47, there
exists a UPI I = (V, ⋎ ) ∈ Isd s.t. I, 0 |= α and size(I) ≤ |α| × 2|P|. We define the periodical
preferential structure S(I) from I . Since I and I(S(I)) are the same interpretation, then from
Isd-satisfiable sentence α, we can find a periodical preferential structure S such that I(S), 0 |= α
and size(I(S)) ≤ |α| × 2|P|.
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• For the if part, let S = (i, π, VS , ⋎ S) be a periodical preferential structure s.t. I(S), 0 |= α. Since
I(S) ∈ Isd, therefore α is Isd-satisfiable.

Lemma 4.54 is a particular case of the following Lemma.

Lemma A.9 (∗). Let S = (i, π, VS , ⋎ S), α ∈ L⋆ be a periodical preferential structure, α1 ∈ Sf (α) and
t, t′ ∈ N such that:

t′ =

{
t, if t < i;

i+ (t− i) mod π, otherwise.

We have I(S), t |= α1 iff α1 ∈ labSα(t
′).

Proof. Let S = (i, π, VS , ⋎ S) be a periodical preferential structure, α ∈ L⋆, α1 ∈ Sf (α), t ∈ N and
I(S) = (V, ⋎ ). We use structural induction on α1 to prove the Lemma. Let t′ be a time point s.t. t′ = t,
if t ∈ [0, i[, and t′ = i+ (t− i) mod π, if t ∈ [i,∞[.

• α1 = p. If t ∈ [0, i[, then we have VS(t
′) = V (t). Thus p ∈ VS(t) iff p ∈ V (t), and therefore

I(S), t |= p iff p ∈ labSα(t). If t ∈ [i,∞[, we have VS(t
′) = V (t) . Following the same reasoning

as the previous case, I(S), t |= p iff p ∈ labSα(t
′).

• α1 = ¬α2. By the induction hypothesis, we have I(S), t |= α2 iff α2 ∈ labSα(t
′), and therefore

I(S), t 6|= α2 iff α2 6∈ labSα(t
′). We conclude that I(S), t |= ¬α2 iff ¬α2 ∈ labSα(t

′).

• α1 = α2 ∧ α3. By the induction hypothesis, we have I(S), t |= α2 iff α2 ∈ labSα(t
′) and I(S), t |=

α3 iff α3 ∈ labSα(t
′), and therefore I(S), t |= α2 ∧ α3 iff α2 ∧ α3 ∈ labSα(t

′).

• α1 = ♢α2.

– For the only-if part, let I(S), t |= ♢α2. We have t2 ∈ [t,∞[ s.t. I(S), t2 |= α2. Depending on
where t2 is, there exists a t′2 s.t. t′2 = t2 if t2 ∈ [0, i[ and t′2 = i+(t2−i) mod π if t2 ∈ [i,∞[.
By the induction hypothesis on α2, we have α2 ∈ labSα(t

′
2). Note that t′2 is [0, i + π[. Next,

we show that t′2 ∈ [min<{t′, i}, i + π[. When t′2 ∈ [0, i[, then we have t′ = t and t′2 = t2.
Since t ≤ t2, then t′2 ∈ [t′, i[ and without a loss of generality t′2 ∈ [min<{t′, i}, i+π[. When
t′2 ∈ [i, i + π[, it follows that t′2 ∈ [min<{t′, i}, i + π[. In both cases, since α2 ∈ labSα(t

′
2)

and t′2 ∈ [min<{t′, i}, i+ π[, we conclude that ♢α2 ∈ labSα(t
′) (see Definition 4.53).

– For the if part, let I(S), t 6|= ♢α2. I(S), t |= ¬♢α2 means that for all t2 ≥ t we have
I(S), t2 6|= α2. By the induction hypothesis, for all t2 ≥ t, we have α2 6∈ labSα(t

′
2) where

t′2 = t2 if t2 ∈ [0, i[ and t′2 = i+(t2−i) mod π if t2 ∈ [i,∞[. Following the same reasoning
as the only-part proof, we can check that for all t2 ≥ t, we have t′2 ∈ [min<{t′, i}, i + π[.
Therefore α2 6∈ labSα(t

′
2) for all t′2 ∈ [min<{t′, i}, i+ π[. Going back to Definition 4.53, we

conclude that ♢α2 6∈ labSα(t
′)

• α1 = ♢∼α2.

– For the only-if part, let I(S), t |= ♢∼α2. We have t2 ∈ min ⋎ (t) s.t. I(S), t2 |= α2. Depending
on where t2 is, there exists a t′2 s.t. t′2 = t2 if t2 ∈ [0, i[ and t′2 = i + (t2 − i) mod π if
t2 ∈ [i,∞[. By the induction hypothesis on α2, we have α2 ∈ labSα(t

′
2). From Proposition

4.51, we can see that t2 ∈ min ⋎ (t) iff t′2 ∈ min ⋎ S
(t′). Going back to Definition 4.53, since

there is t′2 ∈ min ⋎ S
(t′) where α2 ∈ labSα(t

′
2), we conclude that ♢∼α2 ∈ labSα(t

′).
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– For the if part, let I(S), t 6|= ♢∼α2. I(S), t |= ¬♢∼α2 means that for all t2 ∈ min ⋎ (t) we
have I(S), t2 6|= α2. By the induction hypothesis on α2, for all t2 ∈ min ⋎ (t), we have (I)
α1 6∈ labSα(t

′
2) where t′2 = t2 if t2 ∈ [0, i[ and t′2 = i + (t2 − i) mod π if t2 ∈ [i,∞[.

From Proposition 4.51, we can see that (II) t2 ∈ min ⋎ (t) iff t′2 ∈ min ⋎ S
(t′) for all t2 ≥ t.

Going back to Definition 4.53, since α2 ∈ labSα(t
′
2) for all t′2 ∈ min ⋎ S

(t′), we conclude that
♢∼α1 6∈ labSα(t

′).
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Résumé

Les logiques temporelles sont des outils formels de spécification et de vérification des systèmes infor-
matiques. Le succès de ces logiques est principalement dû à leur syntaxe élégante et à leur sémantique
intuitive permettant une représentation riche et une analyse fine des propriétés des systèmes évoluant au
cours du temps. Différents outils ont été développés à partir de ces formalismes, notamment ceux basés
sur des approches par automates et des méthodes des tableaux. Cependant, ces logiques restent limitées
quand il s’agit de la modélisation et du raisonnement à propos de certains aspects des systèmes informa-
tiques. En effet, les systèmes informatiques ne sont pas garantis totalement sûrs, et les propriétés que
l’on souhaite vérifier peuvent avoir des exceptions triviales et tolérables, ou au contraire, des exceptions
devant être gérées avec soin afin de garantir la fiabilité générale du système. De même, le comportement
attendu d’un système peut ne pas être correct pour toutes ses exécutions possibles. Cependant, il doit
l’être pour celles qui sont les plus normales où les plus plausibles.

La logique non-monotone est un domaine de recherche qui modélise l’aspect révisable du raison-
nement du sens commun au delà du raisonnement déductif de la logique classique. De plus, il permet
de raisonner avec des exceptions. L’objectif principal de ce travail est d’intégrer des approches non
monotones aux logiques temporelles pour mieux représenter le comportement de systèmes tolérants aux
exceptions.

Le formalisme présenté dans ce mémoire, appelé logique temporelle linéaire révisable, combine la
syntaxe et la sémantique de LTL classique avec l’approche préférentielle KLM sur des inférences con-
ditionnelles. Sa syntaxe contient une version révisable des opérateurs temporels permettant d’exprimer
d’une façon plus souple des spécifications similaires à leurs contreparties classiques. Plus précisément,
ces opérateurs permettent de considérer des points de temps admettant des exceptions lors des exécutions
du système. LTL révisable étend les interprétations temporelles avec une relation de préférence afin de
nuancer la prise en compte des différents points temporels.

Nous avons tout d’abord étudié la décidabilité du problème de la satisfiabilité des formules de cette
nouvelle logique. Plus précisément, nous nous sommes intéressés à deux sous-langages de LTL révis-
able, nommés L1 et L⋆. Nous avons prouvé que le problème de satisfiabilité pour les formules de L1

est NP-complet. Concernant le fragment L⋆, nous avons pu démontrer la décidabilité de ce problème
pour un ensemble d’interprétations nommées state-dependent interpretations. Nous avons montré que la
propriété des modèles bornés est vérifiée pour les deux sous-langages. Grâce à ces propriétés, nous avons
défini des structures et des méthodes pour résoudre le problème de satisfiabilité de ces deux fragments.

Dans un deuxième temps, nous avons défini une méthode des tableaux pour L1 en s’appuyant sur
l’approche one-pass tree-shaped tableaux récemment proposée pour LTL classique. Nous avons adapté
cette méthode en y intégrant la sémantique préférentielle KLM. La méthode introduite est basée sur un
ensemble de règles relatives aux différents opérateurs (dites statiques), ainsi qu’un ensemble de règles
dynamiques permettant de vérifier la cohérence des branches au fur et à mesure de l’exécution de la
méthode. Nous avons prouvé que la méthode proposée est correcte et complète.

Nous terminons notre étude en proposant des perspectives concernant LTL révisable. Nous envis-
ageons également une adaptation de la sémantique préférentielle sur d’autres formalismes temporelles,
notamment CTL et CTL*.

Mots-clés: Représentation des connaissances, logiques temporelles et modales, raisonnement non mono-
tone.
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Abstract

Temporal logics are formal tools for specifications and verification of computer systems. The success
of these logics is mainly due to their elegant syntax and intuitive semantics that simplify the represen-
tation of system’s properties that change over time. From automata based solvers to tableaux methods,
several approaches are developed based on these formalisms. However, these logics remain limited when
modeling and reasoning about certain aspects of computer systems. Indeed, computer systems are not
guaranteed to be totally safe, and the properties one wishes to verify may have trivial and tolerable ex-
ceptions, or on the contrary, exceptions that must be carefully handled to guarantee the general reliability
of the system. Similarly, the expected behaviour of a system may not be correct for every possible
execution, but rather for its most “normal” or plausible executions.

Non-monotonic logic is a field of research that captures defeasible modes of reasoning which accu-
rately represent common sense reasoning more than the deductive reasoning of classical logic. Moreover,
it allows for reasoning with exceptions. The main objective of this work is to integrate non-monotonic
approaches to temporal logics to better represent the behavior of exception-tolerant systems.

The formalism presented in this memoir is called defeasible linear temporal logic. This logic com-
bines the syntax and semantics of LTL with the preferential KLM approach to conditional statements.
The syntax contains a defeasible version of temporal operators, which express specifications similar to
their classical counterparts, but are more lenient when time points may have exceptions during execu-
tions. Defeasible LTL extends temporal interpretations with a preference relation that nuances the degree
of importance between time points.

We have studied the decidability of the satisfiability problem for defeasible LTL sentences. In this
setting, we have considered two fragments of the language, which are L1 and L⋆. We proved that
the satisfiability of L1 sentences is an NP-complete problem. As for the fragment L⋆, we showed the
decidability of the problem for a class of interpretations called state-dependent interpretations. We have
proved that the bounded-model property holds for both of these fragments. Thanks to these properties,
we have introduced structures and methods for solving the satisfiability problem.

We have developed also a tableau method for L1 by adapting the recently proposed one-pass tree-
shaped tableaux for classical LTL. The novelty of our approach is to show how KLM’s preferential
semantics work in a tableau for defeasible LTL. We have defined a set of static rules for different opera-
tors, as well as a set of dynamic rules for checking the correctness of branches at the same time of their
expansion. We have proved that the method is sound and complete.

Finally, we investigate future work relating to defeasible LTL. We also plan to integrate preferential
semantics to other temporal formalisms, namely CTL and CTL*.

Keywords: Knowledge representation, modal and temporal logics, non-monotonic reasoning.
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