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RÉSUMÉ FRANÇAIS

Depuis leur découverte en 1671 par van Leeuwenhoek, et leur association avec des
maladies humaines existantes, l’étude des microbes a représenté un intérêt majeur en
biologie. Bénéficiant des avancées technologiques au cours des siècles, la microbiologie a
permis de mieux comprendre l’écologie des microbes, mettant en évidence leur ubiquité
et le nombre élevé d’organismes présents dans l’environnement, constituant de grandes
communautés. Notamment, le fait que la majorité des molécules antimicrobiennes soient
issues de composés naturels synthétisés par les microbes du sol [1] souligne l’importance
de l’étude à grande échelle des communautés microbiennes. Une caractérisation profonde
et précise de ces communautés microbiennes est donc devenue nécessaire. Cette caractéri-
sation a été permise en répondant à trois questions : "Qui est là ?", "Que font-ils ?" et "Qui
fait quoi ?" [2]. Le développement du séquençage génomique et de la métagénomique a
permis de fournir des méthodes pour répondre à ces trois questions, la reconstruction des
génomes des organismes à partir des données métagénomiques, aussi appelés Metagenome-
Assembled Genomes (MAGs), ayant pour but de répondre à cette troisième question, et
de définir les rôles au sein de la communauté.
L’étude des communautés microbiennes est une discipline assez récente, qui a longtemps
souffert de plusieurs limitations techniques. La culture bactérienne étant le seul moyen
d’accéder aux microbes, l’étude des bactéries était limitée à une poignée d’organismes, en
raison de la faible proportion de taxons bactériens qui se développent bien en culture. Le
développement du séquençage du génome dans les années 1970 [3], et sa récente amélio-
ration du débit avec le développement des outils de séquençage de nouvelle génération
(NGS), ont permis d’accéder directement au matériel génomique environnemental, créant
ainsi un domaine appelé métagénomique [4]. La métagénomique a révolutionné la microbi-
ologie en offrant un moyen direct et plus complet d’étudier les communautés bactériennes
environnementales. L’exploration d’une diversité bactérienne jusqu’alors inconnue a per-
mis d’appréhender leur importance dans les processus biogéochimiques globaux [5], ainsi
que leurs rôles dans la physiologie des organismes multicellulaires [6]. Les études mé-
tagénomiques ont également révélé que les génomes microbiens n’expriment pas la même
plasticité [7], que les génomes des organismes multicellulaires eurkaryotes.
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Résumé français

Les progrès informatiques ont accompagné l’essor des études métagénomiques avec la
capacité d’extraire des génomes individuels à partir de données métagénomiques. La
dernière décennie s’est concentrée sur le développement d’outils permettant de regrouper
des séquences génomiques appartenant au même génome pour reconstruire des génomes
assemblés par métagénome (MAG). Ces outils suivent pour la plupart des protocoles stan-
dards, dans lesquels le problème principal est de regrouper les séquences métagénomiques
en génomes putatifs en se basant soit sur des références taxonomiques, soit sur des
caractéristiques communes inhérentes qui augmentent la probabilité qu’un ensemble de
séquences appartiennent au même génome. Les outils de binning ont été régulièrement
utilisés dans les études métagénomiques récentes [5, 8, 9], reconstruisant des milliers de
génomes microbiens [9, 10], et contribuer à améliorer la description taxonomique des
communautés microbiennes de divers environnements, comme l’intestin humain [11], les
sols ou les environnements marins [12, 13]. Cependant, les protocoles de reconstruction
des MAGs souffrent encore de limitations, telles que leur incapacité à traiter des por-
tions de génomes bactériens, ou leur difficulté à classer les séquences de faible abondance.
En raison de ces limitations, les MAGs ont souvent été fragmentés, ont manqué pour
des taxons ou des variants rares, et leur qualité n’a pas toujours été évaluée avec pré-
cision [14]. De plus, les bases de données MAGs contiennent encore une grande partie
des gènes qui n’ont pas été annotés taxonomiquement [15]. Le premier objectif de ce tra-
vail était de développer une nouvelle méthode qui permettrait de reconstruire les MAGs
d’un plus grand nombre de taxons présents dans les métagénomes. Pour cela, nous avons
choisi de nous appuyer sur un paradigme de programmation logique. Avec cette approche,
nous nous sommes concentrés sur la description du problème, sa résolution étant prise en
charge par le solveur. Nous avons inclus la procédure de regroupement dans un problème
de regroupement et d’optimisation, deux types de problèmes couramment résolus par la
programmation logique. Le principal avantage du paradigme de la programmation logique
est la certitude d’atteindre la solution optimale du problème, si elle existe, et la sortie de
toutes les solutions optimales du problème, par rapport à la sortie d’un seul ensemble de
reconstruction MAGs avec des outils de binning classiques.
Cette exploration d’un grand nombre de solutions de binning est envisagée comme une
bonne réponse aux limitations des outils de binning classiques, qui peuvent souffrir lors de
la reconstruction de génomes d’organismes rares, ou pour reconstruire des souches étroite-
ment liées. Pour cela, nous avons développé un modèle de binning de contigs reposant sur
l’Answer Set Programming (ASP), un langage de logique déclarative. Nous avons en-
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suite comparé les performances du modèle ASP à un outil de binning de la littérature,
metabat2 [16]. Le principal résultat de notre approche a été sa capacité à reconstruire
avec succès deux souches de génomes étroitement liés, alors que cette discrimination n’a
pas été du tout détectée par metabat2, qui a fusionné les souches en un seul MAG. La
séparation supposément meilleure permise par notre modèle doit cependant être reconsid-
érée à travers le cadre très contraint de notre modèle. Notamment, lorsque le modèle ASP
ne donnait aucune information sur le nombre de MAG à reconstruire, ses performances
ont fortement chuté. Ainsi, une évaluation préalable plus précise du nombre putatif de
MAG à reconstruire serait grandement bénéfique à notre modèle ASP, et permettrait de
faire ressortir sa meilleure capacité de reconstruction des souches. Si la détermination des
souches bactériennes présentes dans les métagénomes représente encore une tâche difficile
en métagénomique, elle constitue également l’un de ses objectifs majeurs pour le futur
proche, avec plusieurs études récentes se concentrant sur la détermination des souches [15,
17]. La possibilité d’explorer plusieurs solutions au problème de binning pour identifier
les souches de génomes et les pan-génomes soulignerait alors davantage la pertinence de
l’approche de programmation logique pour résoudre le problème de binning de contigs.
Cependant, l’efficacité globale du modèle de binning ASP pour reconstruire les MAGs s’est
révélée être surpassée par l’outil avec lequel nous nous comparons, metabat2. L’ajout de
plus de contraintes à notre modèle pourrait augmenter la précision du regroupement des
contigs. De plus, la capacité de rejeter certains contigs de l’ensemble de données représente
également un avantage majeur de metabat2 par rapport à notre modèle. L’inclusion du
rejet des contigs dans notre modèle permettrait alors d’augmenter la précision, en élimi-
nant les contigs provenant de régions génomiques qui diffèrent significativement dans leur
composition nucléotidique, et qui peuvent être difficiles à inclure dans un bin génomique.
Le principal problème restait cependant le nombre trop élevé de solutions à explorer, qui
dépassait la capacité du solveur de fermetures. La conception d’un modèle plus complet,
avec l’ajout de plus de contraintes, permettrait de réduire encore l’espace de recherche
du solveur. L’autre point principal du développement du cadre ASP a été la réduction
significative du temps de calcul permise par l’amélioration de l’implémentation du code.
Il y a sans aucun doute encore de la place pour d’autres améliorations techniques, afin
d’accélérer la résolution des problèmes. Parmi les améliorations possibles, l’utilisation de
propagateurs, qui sont des logiciels écrits dans des langages impératifs recouvrant le pro-
gramme ASP, devrait être envisagée. Ils peuvent traiter plus facilement des procédures
qui pourraient être très coûteuses dans le processus de résolution effectué par le solveur
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ASP, facilitant ainsi la résolution du problème. Leur utilisation limitée dans ce travail n’a
pas permis une amélioration significative du processus de résolution. D’autres approches,
telles que le développement d’un ASP à programmation par contraintes (CASP), inclu-
raient des caractéristiques qui sont plus facilement exécutées dans la résolution complète
de la PC que dans l’ASP. Notamment, le CASP supprimerait la nécessité de lister toutes
les solutions possibles [18], ce qui représenterait une amélioration majeure de la technique
ASP elle-même. Le développement de telles approches constitue cependant une discipline
assez récente, avec des applications actuellement limitées, mais a montré des résultats
prometteurs [18, 19].
Le second objectif de ce travail de thèse était de développer un nouveau workflow pour re-
construire les MAGs. L’extraction de connaissances à partir de données métagénomiques
brutes nécessite de traiter plusieurs tâches spécifiques, de l’assemblage à l’appel de gènes
et à l’annotation, chacune d’entre elles étant souvent réalisée à l’aide de logiciels dédiés.
Le choix, la configuration et l’utilisation de ces différents outils peuvent alors représenter
une tâche difficile pour l’utilisateur. Récemment, plusieurs workflows de métagénomique
ont été développés [20–23], utilisant souvent des paramètres spécifiques par défaut pour
chaque logiciel intégré. Cependant, ces flux de travail souffrent généralement de limites,
soit vers l’étape d’assemblage, soit vers l’étape de regroupement des génomes. Notam-
ment, la question de savoir comment réaliser le co-assemblage de plusieurs métagénomes
ensemble a été peu explorée dans la littérature. Nous avons donc développé un flux de tra-
vail intégrant un module entièrement automatisé (module de novo) pour déterminer quels
métagénomes devraient être co-assemblés, afin d’augmenter l’efficacité du co-assemblage.
Ce module a été intégré dans le workflow de reconstruction MAGs nommé MAGNETO.
Ce flux de travail permet également aux utilisateurs de configurer soit l’assemblage, soit
l’étape de regroupement, présentant ainsi quatre stratégies différentes de reconstruction
MAGs. Une comparaison entre ces quatre stratégies de reconstruction a été effectuée.
Le co-assemblage dans la reconstruction des MAGs a en effet été largement utilisé, en
raison de son avantage à augmenter l’abondance des variants rares présents dans les com-
munautés microbiennes. Cependant, l’utilisation du co-assemblage s’est révélée être une
stratégie du "tout ou rien", avec de nombreuses études qui co-assemblent systématique-
ment tous les métagénomes dans leurs ensembles de données. En raison de l’augmentation
de la consommation de ressources informatiques, le co-assemblage de tous les métagénomes
en une seule fois peut ne pas être possible, en particulier lorsque les métagénomes provien-
nent de communautés bactériennes complexes telles que les communautés marines. Cer-
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taines études choisissent donc d’effectuer plusieurs co-assemblages de sous-ensembles de
métagénomes de leur jeu de données. Cette pratique soulève cependant la question du
choix des ensembles de métagénomes. Les études réalisant des co-assemblages de sous-
ensembles de métagénomes marins ont à cette fin utilisé la localisation géographique [5,
10]. Les connaissances a priori nécessaires pour déterminer les ensembles à co-assembler
ne sont pas toujours disponibles ou pertinentes, ce qui constitue la raison d’être de notre
travail. Les ensembles de métagénomes extraits de la matrice de distance métagénomique
(MD) ont permis de rassembler des métagénomes suivant des caractéristiques environ-
nementales communes, comme la température. Cette observation a souligné la pertinence
de notre approche MD, car l’effet de la température dans le façonnement des commu-
nautés bactériennes a déjà été démontré [8]. Cette approche MD a également permis de
reconstruire plus de MAGs et avec une meilleure qualité que l’approche reposant sur la
localisation géographique. Des précisions sont toutefois nécessaires, notamment en raison
de l’apparente contradiction entre deux mesures de qualité différentes. Une explication
possible serait que le co-assemblage de métagénomes étroitement liés facilite la recon-
struction des parties accessoires du pan-génome, tout en détériorant la reconstruction des
parties centrales du génome.
La comparaison des quatre stratégies de reconstruction des MAGs a révélé un effet posi-
tif important du calcul de la couverture différentielle parmi un grand nombre de mé-
tagénomes. L’effet de la couverture différentielle a été mesuré comme étant plus efficace
que l’effet du co-assemblage, car l’assemblage simple combiné au co-binage pourrait sur-
passer les stratégies de co-assemblage. Cette observation peut refléter le fait que les effets
délétères du co-assemblage, à savoir la probabilité plus élevée de produire des MAG frag-
mentés, ne peuvent être surmontés qu’avec une couverture différentielle calculée sur un
nombre suffisamment élevé de métagénomes. Cela concerne essentiellement les commu-
nautés complexes, car ces observations ont été faites sur des MAG reconstruits à par-
tir d’ensembles de données sur le microbiome intestinal humain, qui peuvent contenir
plusieurs souches et variantes.
Le calcul de la couverture différentielle sur tous les métagénomes disponibles peut cepen-
dant ne pas être nécessaire, et s’est révélé coûteux, en raison du nombre quadratique
d’opérations à effectuer. Une amélioration de cette approche pourrait consister à évaluer
le nombre optimal d’échantillons sur lesquels calculer la couverture différentielle. Une telle
évaluation a déjà été faite dans le passé [24], mais il serait intéressant de savoir si ce nom-
bre optimal dépendrait de la complexité de la communauté bactérienne considérée [24].
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Résumé français

L’implémentation de MAGNETO permet l’ajout de modules supplémentaires, dont cer-
tains sont déjà considérés, afin de réaliser une analyse plus complète des MAGs. Notam-
ment, un module estimant la croissance optimale des MAGs basée sur leur composition nu-
cléotidique a été développé et a déjà contribué à l’étude des MAGs arctiques [25]. D’autres
ajouts concerneraient le logiciel d’assemblage et les outils de binning, afin d’augmenter la
flexibilité de l’utilisateur. Par ailleurs, le protocole de regroupement combinant plusieurs
outils pour récupérer des MAGs en mosaïque a donné des résultats prometteurs [26, 27],
et pourrait constituer un moyen facile d’améliorer l’efficacité du regroupement. Notre flux
de travail suit un protocole de reconstruction MAGs qui peut être caractérisé comme clas-
sique, convoquant des outils qui ont été largement utilisés dans les études métagénomiques
récentes. A cet égard, il souffre des limites de ces outils, et l’obstacle de la reconstruc-
tion des régions accessoires du pan-génome est resté sans réponse. Ces dernières années,
plusieurs études ont visé une meilleure caractérisation des pan-génomes dans les études
métagénomiques [28–30]. Ces travaux seraient une source d’inspiration pour permettre
une analyse plus complète des communautés bactériennes dans MAGNETO.
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INTRODUCTION

Since their discovery in 1671 by van Leeuwenhoek, and their association with existing
human diseases, the study of microbes has represented a major interest in biology. Bene-
fitting from technological advances through centuries, microbiology has allowed to better
understand the ecology of microbes, highlighting their ubiquitousness and the high num-
ber of organisms present in the environment, constituting large communities. Notably,
the fact that the majority of antimicrobial molecules are derived from natural compounds
synthetized by microbes from the soil [1] highlights the importance of large-scale study
of microbial communities. A deep and accurate characterization of these microbial com-
munities has become thus necessary. This characterization has been allowed by answering
three questions: "Who is there ?", "What are they doing ?" and "Who is doing what ?" [2].
The development of genome sequencing and metagenomics has allowed to provide meth-
ods to answering those three questions, the reconstruction of organisms’ genomes through
metagenomic data, also called Metagenome-Assembled Genomes (MAGs), constituting
the approach aiming to determine the different roles within the community.

The study of microbial communities is a rather recent discipline, which has suffered
for a long time from several technical limitations. With the bacterial culture as the only
way to access to microbes, the study of bacteria were limited to a handful of organisms,
because of the tiny proportion of bacteria taxa that develop well in culture. The devel-
opment of genome sequencing in the 1970s [3], and its recent improvement of throughput
with the development of Next-Generation Sequencing (NGS) tools, have led the oppor-
tunity to directly access environmental genomic material, creating a field called metage-
nomics [4]. Metagenomics has revolutionized microbiology by giving a direct and more
comprehensive way to study bacterial environmental communities. The exploration of a
hitherto unknown bacterial diversity has allowed to apprehend their importance in global
biogeochemical processes [5], as well as their roles in the physiology of multicellular or-
ganisms [6]. Metagenomics studies have also revealed that the microbial genomes do not
express the same plasticity [7], than the genomes of multicellular eurkaryotic organisms.
A more complete description of the development of metagenomics, and the discoveries
allowed by metagenomic studies, are presented in the Chapter 1 of this thesis.
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Introduction

Computational advances have accompanied the rise of metagenomic studies with the
capacity to retrieve individual genomes from metagenomic data. The last decade has
focused on the development of tools allowing to bin genomic sequences belonging to
the same genome to reconstruct Metagenome-Assembled Genomes (MAGs). These tools
mostly follow standard protocols, in which the main problem is to cluster metagenomic
sequences into putative genomes relying either on taxonomic references, or on inherent
common features which increase the likelihood for a set of sequences to belong to the
same genome. Binning tools have been routinely used in recent metagenomic studies [5,
8, 9], reconstructing thousands of microbial genomes [9, 10], and contributing to enhance
the taxonomic description of microbial communities from diverse environments, such as
the human gut [11], soils or marine environments [12, 13]. However, MAGs reconstruction
protocols still suffer from limitations, such as their inability to handle portions of bacterial
genomes, or its difficulty to bin sequences with low abundance. Because of these limita-
tions, MAGs have often been fragmented, have been missing for rare taxons or variants,
and their quality has not been always accurately assessed [14]. Moreover, MAGs databases
still contain a large portion of genes which have not been taxonomically annotated [15]. A
more complete description and a review of the MAGs reconstruction process is the object
of the Chapter 2.
The first objective of this work was to develop a new method that would allow to re-
construct MAGs from more taxa present in metagenomes. For that purpose, we choose
to rely on a logic programming paradigm. With this approach, our main focus was the
description of the problem, with its resolution being handled by the solver. We included
the binning procedure into a clustering and optimization problem, both of which being
kinds of problems routinely resolved in logic programming. The main advantage of the
logic programming paradigm is the certainty to reach the optimal solution of the problem,
if it exists, and the output of all optimal solutions of the problem, compared to the output
of only one MAGs reconstruction set with classic binning tools. This work, combined with
a description of logic programming, is presented in details in Chapter 3.
The second objective of this thesis work was to develop a new workflow to reconstruct
MAGs. Extracting knowledge from raw metagenomics data requires to handle several
specific tasks, from assembly to gene calling and annotation, each of them often per-
formed using dedicated software. The choice, configuration and the use of these different
tools may then represent a difficult task for the user. Recently, several metagenomics
workflows have been developed [20–23], often using specific default parameters for each
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integrated software. However, these workflows usually suffer from limits towards either the
assembly step or the genome binning step. Notably, the question of how to perform the
co-assembly of several metagenomes together was poorly explored in the literature. We
thus developed a workflow integrating a fully-automated, de novo module to determine
which metagenomes should be co-assembled together, in order to increase the efficiency
of co-assembly. This module was integrated in the MAGs reconstruction workflow named
MAGNETO. This workflow also allows the users to configure either the assembly and
the binning step, exhibiting four different strategies of MAGs reconstruction. A com-
parison between these four reconstruction strategies was performed. The development of
MAGNETO is presented in Chapter 4 and has led to the publication of an article in an
international journal [31].
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Chapter 1

FROM GENOMICS TO METAGENOMICS

In this chapter we will introduce metagenomics, a recent sub-field
of microbiology, to understand the context of its development. We
will then present in which context metagenomics appeared, how it
has answered the main limitations of environmental microbiology,
and the several discoveries it has allowed in recent years.

Preamble

1.1 The study of microbial communities in situ

1.1.1 The great plate count anomaly

The development of bacterial culture by Koch during the 19th century had allowed
considerable advances in the study of microbes, notably pathogenic bacteria. Direct ob-
servations based on microscope observations were later evidence of this limitation: in
1932, Razumov counted several orders of magnitude of difference between the number
of organisms he could count by directly observing water samples under the microscope,
and organisms present in culture [32]. This difference was later confirmed with the work
of Staley and Konopka [33] which named "great plate count anomaly" this observed dis-
crepancy. The filtering effect of the bacterial culture in the description of the microbial
diversity became the next barrier to overcome in environmental microbial genomics. DNA
sequencing was developed in 1977 by Sanger [3]. Considered as a revolution for genomics
study at its time, its high efficiency, able to sequence several hundreds of bases in a single
day, the Sanger method (fig. 1.1) helped to sequence many reference organisms, beginning
with the phage φ X-174 as early as 1977 [3]. However, due to the limits of the technology
at this time, pessimistic Staley and Konopka stated that "no breakthrough in determin-
ing species diversity seems likely in the near future" [33], and the assessment of microbial
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Chapter 1 – From genomics to metagenomics

diversity from environmental samples seemed to face a deadlock. However, the recent de-
velopment of bio-molecular techniques to directly sequence genomic material, combined
with the work of the Woese group, which identified the 16S ribosomal RNA (RNA) gene
as a marker molecule to estimate microbial diversity, helped to resolve this issue. 16S
RNA genes are universal in Prokaryotes and present in multiple copies located in hyper-
variable genomic regions, and as such, are easily recognizable, constituting primary targets
to gather information about organisms.

Figure 1.1 Sanger sequencing method.
After DNA extraction, preparation of library and an amplification phase, sequencing is per-
formed. On the left, the de-deoxy-triphosphate nucleosides (ddTNP) stops the strand replica-
tion once incorporated in the mix. As each ddTNP is linked with a specific fluorescent marker,
the observer may determine which nucleotide was added in the final position of a sequence.
On the right, synthesized fragments are then disposed on a polyacrylamide gel, and separated
through electrophoresis, allowing to read the order of nucleotides of the sequence. Source: https:
//microbenotes.com/dna-sequencing-maxam-gilbert-and-sanger-dideoxy-method
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1.1. The study of microbial communities in situ

1.1.2 A first description of microbial communities

Benefiting from the development of DNA sequencing, Carl Woese and others started to
analyse and sequence 16S RNA genes of various bacteria as early as the late 1970s, using
it as a marker for phylogeny, enabling the discrimination at molecular level of the three
domains of the tree of life [34]. The invention of the Polymerase Chain Reaction (PCR)
and the automation of DNA sequencing allowed a growing number of 16S RNA (and Eu-
karyotic 18S RNA) studies, leading to the accumulation of RNA sequences belonging to
a wide spectrum of living organisms in databases. Comparison of these sequences allowed
to understand that the RNA gene sequences are highly conserved within living organ-
isms of the same genus and species, but that they differ between organisms belonging
to different genera and species. This observation has made taxonomic assignments using
16S RNA very straightforward [35], thus recognising 16S RNA gene for taxonomic profil-
ing of microbial communities, initiating a sub-field of microbial ecology called "molecular
ecology". In the 1990s, molecular ecology studies then proceeded to explore diversity in
microbial communities belonging to different environments, such as oceans [36–38], hot
springs [39, 40] and soils [41]. These studies allowed the discovery of several hitherto un-
known phylogenetic lineages, such as the SAR11 cluster, first discovered through a study
of the bacterioplankton of the Sargasso Sea [42], followed one year later by the discov-
ery of new gene groups belonging to proteobacteriae lineages unrelated to any reference
genomes [36, 37]. Comparison between the composition of two marine communities be-
longing to two different oceanic regions also helped to understand the global distribution of
bacterioplankton [37]. It also revealed the widespread occurrence at the surface of coastal
marine environments of Archaeal species [38], a group that was previously thought to
colonize preferentially environments facing extreme physicochemical characteristics. Sim-
ilarly, eight novel uncultured bacterias were discovered in a hot spring habitat [39], also
the study of an acidic soil located in Australian rainforest revealed new bacterial taxa,
some of which could be related to known reference lineages, and others completely unre-
lated to reference genomes [41]. These first studies drove the environmental microbiology
toward its first purpose, the description of previously unknown, uncultured microbial lin-
eages in their environments. While the order of magnitude of the unknown proportion of
global bacterial diversity remained imprecisely assessed, these studies confirmed than the
diversity known from cultured reference lineages represented only a tiny proportion of the
global microbial diversity.
As these studies were pioneers in their domain, they also focused on highly constrained

21



Chapter 1 – From genomics to metagenomics

environments: the Sargasso Sea, for instance, is known for its high limitations in nutri-
ments supply [42], while the low pH of rainforest’s soil represents a hostile characteristics
for most common taxa [41]. The communities living in these environments have often a
lower biodiversity than average, which means a lower number of taxa, and relationships
easier to model.
However the RNA gene approach has also limitations to catch the whole environmental
microbial diversity, as it may ignore distant lineages such as those belonging to viruses
taxa. The design of the primers itself may also be biased towards specific taxa, at the
expense of the exclusion of others [43]. They were thus not able to predict the physio-
logical attributes of newly described phylotypes with the same efficiency as with already
well-known phylotypes. This is partly due to the wide array of physiological and metabolic
diversity encompassed within all phylogenetic lineages. The impossibility or at least the
difficulty to enrich and isolate in culture these newly phylotypes did represent an addi-
tional impediment to that prediction.

1.1.3 Accessing a greater portion of the genome

In 1992, Shizuya and colleagues succeeded to clone a human genomic fragment 300
kilobases long into a bacterial artificial chromosome (BAC) inserted into a bacterial host,
and to maintain the clone stable through a long serial growth of the bacteria [44]. BACs
offer advantages to sequence uncultured microbes’ DNA, as it was easier to control the
growth of the vector organism, which was most of the time Escherichia coli, a model or-
ganism whose culture is well known and completely harnessed [45]. They can carry large
portions of genes, with an insert size typically ranging from 150 to 300 kb. Metagenomic
studies quickly used this technology too, in order to access a wider proportion of the
microbial genomes than when relying on a few marker genes alone, constituting an en-
vironmental DNA library [46]. These microbial studies, rather than being limited to the
pure description of the diversity of the studied environment, could then analyze sets of
genes present in microbial communities [47, 48]. While studying the genetic content of a
soil microbial community, Handelsman and colleagues conceptualized the functional anal-
ysis of the collective genomes belonging to a bacterial community, and its interdependent
metabolic pathways, as an entity, and named it a "metagenome" [4]. To better describe the
genomic analysis of uncultured microorganisms, Schloss and Handelsman later proposed
to name this field of study "metagenomics" [49].
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1.1. The study of microbial communities in situ

1.1.4 The contribution of high-throughput sequencing

If the Sanger sequencing had allowed to determine precisely the bases composition of
nucleic acid molecules, contributing to the development of molecular biology as a field
of study, it quickly showed its own limits. The laborious library preparation, the limited
throughput of the method, impeded the efficiency of studies based on this technology.

Figure 1.2 Illumina sequencing.
1) Hybridization step: The DNA strands are bound to the adaptors; 2) Synthesis of the comple-
mentary strand; 3) The hybridized stand is evacuated; 4) The synthesized strand is hybridized
with an other anchor to form a bridge; 5) The bridge is then amplified, i.e., the complement
strand is synthesised; 6) The bridge is then relaxed: the two strands are still attached to their
anchors; 7) Repeat to further amplify the DNA strands; 8) Each nucleotide being associated to
a fluorescent molecule, whenever a nucleotide is incorporated during the elongation of strand, a
specific light is emitted, which allows to read the DNA sequence. Source: [50]

The development of high-throughput sequencing technologies, also called Next-Generation
Sequencing (NGS) technologies, during the 2000s, has revolutionized genomics research.
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The main difference between the old electrophoretic methods and these new ones were
the massive parallelization of the sequencing process, with not only one tube per reac-
tion, but a complex DNA templates library, densely disposed on a solid support. Besides,
these approaches also performed the amplification step in situ, directly on the sequencing
support, facilitating the library preparation. At the end of this process, the total vol-
ume of sequences produced is several orders of magnitude above Sanger method [51, 52].
Also, contrary to the previous decades during which Sanger remained the only sequencing
approach, the second generation of DNA sequencing saw the concurrence of several com-
panies and the development of different protocols and technologies [53]. However, several
of these approaches disappeared, and currently the Illumina sequencing protocol (fig. 1.2)
represents the dominant approach of this generation.
Due to their highly-parallel processing, the second generation of sequencing technologies
has dramatically increased the amount of genomic data produced in the 2010s [52]. Com-
pared to the Sanger sequencing era, sequencing a genome quickly became a routine, and
the second generation approaches allowed an enhancement in the rhythm of sequencing
new reference genomes. They have also allowed a sharp reduction of the sequencing costs
in the last 20 years, plummeting even faster than Moore’s law since 2008. The price to
sequence a human genome dropped with a four-orders of magnitude between 2008 and
2011 (fig. 1.3). Although the utility of metagenomics to observe the prokaryotic world in
situ had already become apparent, and thus the number of metagenomic studies already
began to grow, the development of NGS strongly contributed to increase their application.
As a result, metagenomic analysis of complex environmental samples became affordable
even for small laboratories, leading to a sharp increase of the number of metagenomic
studies: the number of published papers in the field has grown from one in 1998 to several
thousands today.

1.2 Metagenomics and its discoveries

1.2.1 The possibilities of metagenomics: a better exploration of
uncultiv ale lineages

The term "biological dark matter" [7, 54, 55] has been proposed as a descriptor of a wide
prokaryotic world which dominates the biosphere, by analogy with the dark matter sub-
stance in astrophysics. Indeed, prokaryotes represent about half of the living biomass [56],
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Figure 1.3 Sequencing cost per raw Mb.
After 2007, sequencing cost plummeted due to the arrival of high-throughput sequencing tech-
nologies such as the Illumina Miseq in laboratories, drifting sensibly below the degrowth ex-
pected if it would follow the Moore’s Law. Source: https://www.genome.gov/about-genomics/
fact-sheets/DNA-Sequencing-Costs-Data.

excluding viruses. In order to better describe this whole hitherto ill-known biodiversity,
and benefiting from the development of bio-informatics, metagenomics studies described
more and more complex communities, from acidic mine drainage [47, 57], geothermal hot
springs [58], followed with human gut [59], rhizosphere [60] and oceanic samples [5, 61,
62]. They helped to better characterize the gene content, the diversity and the relative
abundance of environmental microbes [48]. They gave better insights about niche-specific
adaptations, like the description of pathways for nitrogen fixation, and iron-oxidizing pro-
cess to obtain energy, in acid mine drainage biofilms, as well as the survival strategies
adopted to resist to low pH [47].
Studies focusing on the gut microbiome, more specifically in human, helped to better un-
derstand the important role played in the microbiome in several pathways. They notably
uncovered that several pathologies may be related with specific bacterial composition,
such as inflammatory bowel disease [11], obesity [63], diabetes [64], malnutrition [65] or
diarrhea [66], but also to pathologies which would a priori not be related to the intestinal
tractus, such as kidney disease [67], cardiovascular disorders [68] or neurodevelopmental
troubles [69].
The exploration of the bacterial diversity in oceanic communities helped to better con-
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sider the role of the ocean in key global biogeochemical processes. It led to a better
understanding of the diazotrophs organisms, and notably that this function could be ex-
pressed by previously unsuspected bacterial lineages [5]. It also revealed the importance
of Ammonia-Oxidizing Archaea [70] and revealed the presence of photosynthesis genes
within viral genomes [71].
Another question that metagenomics could help to answer was to understand what is the
predominant force structuring microbial communities’ composition. A tenet, known as the
Bass Becking’s hypothesis, stated that "everything is everywhere, but the environment
selects" [72], underlining the capacity of dispersal of microbes, but that the organisms
which proliferate are the most fitted to the specific conditions they face. The analysis
of 339 metagenomes, from different environments, based on sequence similarity networks
showed that similarities in metagenomes’ composition is more explained by similarities
in environmental conditions [73]. The effect of temperature had already been observed
as a key driver of the composition of oceanic bacterial communities [8]. The role of the
geographical distance was however underlined recently, with the observation that genetic
distance between communities is also driven by oceanic currents [74].

1.2.2 From genomes to pan-genomes

Bacteria exhibit a remarkable and adaptive plasticity of their genomic content, com-
pared to the stability of the genomic content observed amongst multicellular eukaryotes
organisms [7]. During early whole genome sequencing (WGS) efforts, the re-sequencing
of specific species led to the discovery of entirely new, previously undetected genes. This
observation led to the concept of a genomic part that would be shared amongst all indi-
viduals belonging to a particular taxon, the core genome, opposed to a set of genes present
in only some individuals, the accessory genome. These two components form a taxon’s
pan-genome [75] (fig. 1.4).
The core genome represents the set of genes that are mandatory for the organism’s sur-
vival, and is representative of the phylogenetic lineage of the organism. Functions present
in the core genome are thus related to housekeeping functions, construction of the cell
envelope, regulatory roles, transport and binding proteins [76]. The accessory genome,
on the other hand, contains key genes to face the conditions of a specific environment,
notably genes related to defense mechanisms, such as antibiotic resistance [76].
In 2002, a comparison between the genomes of three pathogenic E. coli strains found that
only 39.2% of the total set of proteins are shared amongst the three strains [77]. This
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Figure 1.4 Pan-genome and its components.
A schematic representation of the pan-genome shared between three genomes, for instance three
strains from the same species. The core genome represents the set of genes that are present in
every genomes considered, the cloud genome represents genes that are shared by some genomes,
but not all of them, while genes which are unique to one genome compose the shell genome. The
cloud and the shell genomes are both sub-parts of the accessory genome.

shared proportion was then assessed to be even lower when more strains were studied to-
gether: a study gathering 61 strains of E. coli and Shigella strains found that only 6% of
the gene families were shared between all strains, and that the proportion of the accessory
genome could represent 80% of one individual’s genome [78].

A taxon for which the re-sequencing of new individuals leads to
the discovery of new variants with their new genes is said to have
an open pan-genome. It means that the pan-genome of the taxon
may greatly exceed the genome size of one organism, resulting in
an extremely versatile gene content. On the contrary, a closed pan-
genome is characterized by a more predominant core genome: as
such, re-sequencing several genomes of the taxon might not identify
a significant number of new genes.

Open versus closed pan-genome

Recently, several approaches have emerged to combine pan-genomics and metagenomics in
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order to characterize strain-level variation of microbial communities [79–81]. Metagenomic
data has also been used to retrieve pan-genomes, such as the strategy used in [28], which
first identified gene clusters from isolated genomes or existing genomes in the database,
and deduces the relatedness between genomes to construct pan-genomes. It then assesses
the abundance and prevalence of the isolated microbial genes by performing reads map-
ping against metagenomic data. This strategy allows to identify subsidiary categories of
environment-related genes, discriminating which sets of genes are or are not mandatorily
related to one environment [28]. A de novo approach has also been developed, reconstruct-
ing pan-genomes based on co-abundances of genes found in metagenomics samples [29].
The pangenome of a species retrieved through both metagenomic and genomic data has
sometimes been called ameta-pangenome, representing the complete set of genes expressed
by a given species in an environment [30]. The collection of meta-pangenomes of all or-
ganisms detected in a specific environment has thus been named the pan-metagenome,
which would represent the global genetic landscape of this given environment [30].

1.2.3 Redefining biological concepts

Another major realization revealed by the study of the biological dark matter was
the differences of bacterias’ biology with the biology of the multicellular organisms. An
example is the determination of species: species has been historically determined based on
morphological differences between individuals, or by reproductive isolation. However, at
the microbial level, these determinants become irrelevant, as morphological differences are
often shallow, and large-scale horizontal gene transfers (HGT) allow exchanges of wide
portion of genomes between organisms belonging to different phyla. The impossibility
for the multicellular organisms’ species definition to be applied to microbes led to new
definitions of this concept, based on molecular markers. Although several definitions of
bacterial species have been proposed [82, 83], it became related to sequence identity. More
notably, the whole-sequence average nucleotidic identity (ANI), has been widely accepted
as a robust metric to discriminate through species [84, 85], with the threshold of 95% ANI
being able to catch the majority of known species [86, 87].
The discovery of environmental microbial genomes missing considered-mandatory genes,
enhanced the role of cooperation and communication in microbial ecology [88], and un-
dermined the idea of completely independent individuals surviving on their own [89]. The
fact that microbes rely heavily on other members of their community to survive may also
be an answer to the problems of the great plate count anomaly and the low percentage
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of bacterial species that develop in mono-specific culture [90].

Contrary to previous assumptions in which genomes lose genes only
because of genetic drift, it has been proposed that the loss of genes
within genomes of a microbial community would have been driven
by a positive selection force. Carrying less genes may represent a
benefit for bacteria, loosening the energy cost needed for its own
management [91]. The then impotent bacteria would thus have been
forced to cooperate with the other members of the community to
maintain a complete metabolism [92]. This assumption is called the
Black Queen Hypothesis [93, 94].

Losing genes to increase fitness

Studies focusing on gut microbiome brought this profound re-evaluation of the concept of
individuality, to the multicellular eukaryotes. Microbiomes can then represent a consider-
able number of microbes, estimated for a typical human being to ten times the number
of human cells. The important roles played by the microbiome in several pathways, as
well as the intimately intertwined connections with host’s cells, deeply impact the fitness
of the host and its interactions with its environment. Thus, it became more relevant to
consider the holobiont composed of the multicellular organism and its microbiome [6, 95]
as the relevant evolutionary unit of interest.

1.2.4 Functional metagenomics

Metagenomic analysis targeting total DNA isolated from the environment may be
performed using a different strategy, called functional metagenomics, which evaluates
metabolic activities of interest [96]. This approach relies on cloning random fragments of
community DNA in large insert vectors, similar to those used at the beginning of shotgun
metagenomics, to generate an expression library. This library is then screened, looking for
a target reaction with a specific substrate (fig. 1.5). Functional metagenomics allowed the
identification of several functions, and also to identify genes related to these functions. This
approach was for instance used to identify genes encoding for antibiotics resistance [97].
They were also applied to the characterization of genes encoding enzymes with a particu-
lar activity, which represents completely novel sequence types [98]. The limitations of this
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approach come from the method itself, as the available screening systems only identify a
limited range of functional activities. Besides, genes belonging to phylogenetically distant
organisms with the host are susceptible to show a limited level of expression in the cloning
host, a standard host being E. coli [99]. Lastly, the expression libraries have a limited size:
for example a library containing 50,000 clones with an average insert size of 40 kbp, equiv-
alent to 500 bacterial genomes with a size of 4 Mbp [100]. These size order of magnitude
are far below metagenomics based on sequencing genomes, in which 1g of soil might con-
tain in comparison several thousands of different microbial species [99]. To overcome the

Figure 1.5 Preparation of a library for functional metagenomics.
Environmental DNA can be isolated from an environment using a DNA extraction method,
obtaining sufficient DNA quantity and an appropriate average insert size. After isolation, the
DNA molecule is fragmented, then the fragments are ligated into a linearised cloning vector,
and the resulting library of recombinant vectors is inserted into a modified microbial host.
Amplification of the metagenomic library will allow its use in different types of screenings.
Source: [101]

size limits imposed by the expression library, and thus increasing the number of genes to
consider through functional analyses, alternative approaches have been proposed, such as
metatranscriptomics. Metatranscriptomics, named after metagenomics, involves the ran-

30



1.2. Metagenomics and its discoveries

dom sequencing of microbial community mRNA [102]. It thus reflects the actual functions
expressed by a community at a given time. This approach has been used to successfully
identify antiobiotic resistance genes in gut microbiome [103] or interactions between gut
microbiome and host’s immune system [104]. Other approaches include the analysis of
proteins expressed at a given time by the bacterial community, the metaproteomics [105].
The identification of the proteins is performed through a coupling of mass spectrometry,
and the use of algorithms to precisely identify amino acids composing the peptidic chain.
Metaproteomics has been proposed to be used as a complement of functional metage-
nomics [1]. The analysis of more complex metabolites with metabolomics also allowed to
observe the metabolism of a drug applied to gut microbiome [106]. Lastly, systems biology
represents an approach that aims to link several "-omics" methods, in order to modelize
complete metabolic pathways and interactions occurring within a community [107, 108].

1.2.5 Towards genome-resolved metagenomics

After allowing a better description of the processes underlying the structure of bac-
terial communities, identifying the members of the community ("Who is there ?") and
the function the community provides ("What are they doing ?"), another question was
yet to be answered : "Who is doing what ?" [2]. Answering this question requires to link
an organism to a function of the community. In 2004 already, two metagenomic stud-
ies successfully reconstructed individual bacterial genomes [47, 48], allowing to identify
the Leptospirum genus as an essential taxon involved in iron oxidation process [47], and
highlighting the need for a high sequence coverage to avoid a high fragmentation of the
reconstructed genomes [48]. In 2013, Albertsen et al. developed an approach based on the
differential abundance of genomic fragments to discriminate the sequences belonging to
the same chromosome [109]. These individual genomes reconstructed from metagenomic
data have been coined Metagenome-Assembled Genomes (MAGs), and are currently an
important representation of uncultured microbial genomes. The reconstruction of MAGs
represents a major achievement in metagenomics, allowing a better integration of taxo-
nomic and functional information [5]. MAGs have also been used in several metagenomic
studies to better identify genomes of numerous previously unknown species [9, 10, 110].
MAGs also gave the advantage to give an insight about gene sets present within a given
organism or taxon, thus providing information to better identifying genetic mobility and
potential metabolic interactions between taxa [5, 111].
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1.2.6 Current limits

A current major challenge in metagenomics is to determine the phylogenetic origin of
anonymous, unreferenced genome fragments. As metagenomics is still a recent discipline,
the under-sampling of the microbial dark matter has caused a lack of reference genomes,
which has hampered the ability to classify metagenomic fragments. It has been estimated
that 40 to 60 percent of all the genes newly discovered from metagenomic studies still can-
not be assigned to a known function [15]. This uncharacterised proportion of the genomes
is generally not included in downstream analyses, constraining their results to conserved
pathways and housekeeping functions [112]. This inability to describe such substantial pro-
portion of the genomes still represents an impediment to the characterisation of species
in microbiology.

1.3 Conclusion

Microbiology has seen a dramatic increase in its analytic power in the last half century,
allowing an ever increasing characterization of environmental biodiversity, giving birth to
metagenomics. Metagenomics really emerged and established with the development of
high-throughput sequencing technologies, and benefited from the advances made in sev-
eral sub-fields. Thus, metagenomic studies generally combine multiple approaches (fig. ??)
to obtain their data. Currently, metagenomics studies are routinely performed, and con-
tinue the description of communities whose the description remain uncomplete [9, 10].
They also help a better understanding of the deep complexity of bacterial ecology [87, 90,
113, 114], with several potential applications in the future. The perspectives metagenomics
has opened in human health research allow to foreshadow optimistic future development
for the field, notably regarding medical diagnosis [113, 115]. The task to perform is still
significant: the gathered information in databases is still fragmented, and a large set of
genes remain without taxonomic and functional annotation [15].
With the development of protocols enabling to reconstruct individual genomes from
metagenomic data, a new facet of metagenomics these recent years. Genome-resolved
metagenomics has allowed to isolate numerous genomes of previously unknown taxa [9,
10], filling the gap in the study of environmental bacterial communities. These individual
genomes, or MAGs, also help to better understand the relationships between members of
a community, identifying the genomes carrying specific genes and intervening in specific
pathways [5] and used as a mean to reconstruct pangenomes [30]. The next chapter will
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be dedicated to describe computational developments and methods applied to reconstruct
MAGs.
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Chapter 2

GENOME-RESOLVED METAGENOMICS

In this chapter we will focus on computational methods to recon-
struct MAGs from metagenomes, and essential developments en-
abling genome-resolved metagenomics. The reconstruction process
of MAGs from metagenomes can be divided into two main steps: the
assembly, which allows to obtain sequences longer than reads, called
contigs, and the binning of those contigs into putative genomes. The
binning of contigs, which can be considered as the major part of the
reconstruction of MAGs, exploit key features of genomes in order
to cluster the assembled contigs into putative genomes. Several bin-
ning tools curretly exist, each differing slightly in their clustering
algorithms, with different efficiency.

Preamble

2.1 Assembly of reads

2.1.1 Too short to be good : a matter of size

Once a genome is sequenced into reads, depending on the technology used to sequence
the DNA molecule, sequences obtained may be too short to predict structures, such as
genes, gene clusters, or repeats regions, that span across regions longer than the reads
themselves. This inability can cause difficulties to sort the reads in the right order to
reconstruct the chromosomes. The inclusion of these structures being essential in the re-
construction of a genome, it is thus needed to obtain sequences longer than the output
reads. It also helps to eliminate some sequencing errors present in reads.
The process to reconstruct sequences from reads is call an assembly, as the reads are
assembled together to form longer sequences named contigs, short term for contiguous.
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The assembly may be supervised thanks to the mapping of the reads through reference
genomes, or performed de novo [116]. Supervised assembly output good quality contigs,
its main advantages are its effectiveness in resolving repeats, its ability to exhibit better
performances at low depths of coverage than de novo approaches [116]. However, it relies
heavily on the availability of closely-related reference genomes. Because metagenomics
aims at the exploration of hitherto ill-studied communities, for which there are limited
available references, a supervised assembly may be limited in their applications [117]. A
de novo assembly thus become more suitable, despite its increased computational cost.
First generation (Sanger) sequencing produced far fewer reads than the high-throughput
sequencing technologies, with longer individual reads. The assembly of Sanger reads thus
relied on overlap-layout consensus (OLC) approaches (fig. 2.1), in which overlaps are
computed by performing pairwise alignments of all reads. The overlaps are then grouped
together to construct a contiguous layout, and a consensus sequence is determined, by pick-
ing at each position the most likely nucleotides, such as in the Celera assembler [118]. The
advent of the high-throughput sequencing technologies have both exponentially increased
the number of reads, and dramatically shortened their average length. With the number
of pairwise reads alignments growing with the number of reads following a polynomial
factor, rendering the computational needs for an OLC-based assembly nearly impracti-
cable. However, OLC assemblers have successfully been adapted for metagenomic data,
like MAP, which improved the OLC strategy by preliminary filtering reads that would be
used to compute the overlap graph [119] while also simplifying the graph assembly using
pair-ended information. An other example is Omega [120] which lowers the computational
costs of OLC assembly with a hash function built of the prefix and suffix of read. It then
uses the hash function to compute overlaps, and simplify the graph assembly by trimming
the reads, which are completely contained within a larger contiguous structure.
To overcome this computational impediment, de Bruijn Graph assemblers have been in-
troduced [121] and have become widespread in the field. A de Bruijn Graph (dBg) is a
directed graph where each node represents a kmer, i.e. a string of k nucleotides. Nodes
in the graph are connected if the last k − 1 nucleotides of one node correspond to the
first k− 1 nucleotides of the following node. The graph is built by decomposing each read
into individual, overlapping kmers, and creating nodes for new kmers, updating coverage
for existing kmers and adding vertices for new transitions (fig. 2.1). In an ideal case, a
dBg would form a single line in which each node is connected to one other node in the
forward direction, and to one in the reverse direction, except for the two nodes located
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at the extremities of the graph. It would thus output a unique contig, spanning all the
kmers retrieved from the reads. Real dBg are of course much more complex than this
simple representation, and complex branching structures occur, as a result of structural
variants, coverage differentials, heterozygosity, and sequencing errors. Much of the inno-
vation in genome assembly algorithms has come from developing heuristics to simplify
and navigate complex graphs, to output graphs. Amongst these advances, is the succinct
dBg, which, thanks to a data structure enabling text compression [122], has helped to
dramatically reduce the memory consumption to store the graph [123]. The dBg has thus

Figure 2.1 A schematic representation of an assembly graph.
In an OLC assembly (a), overlaps are found by performing pairwise reads alignments (i), then
contiguous layouts are constructed based on these overlaps (ii), and a consensus contig is de-
termined by the frequency of the nucleotides (iii). In a dBg assembly (b), first the kmers are
retrieved from the reads (i), then the graph itself is constructed, linking kmers overlapping on
k− 1 nucleotides (ii), and contigs are constructed traveling through eulerian paths of the graph
(iii). From [117]

two main advantages on OLC graph : its memory consumption is sensibly inferior, as well
as the number of computational operations needed to construct it. It also may handle
more easily with repetitions within the data, i.e. the presence of duplicated reads, than
OLC assemblers. However, the segmentation of the reads into smaller fragments may lose
context from the data, making dBg more prone to produce erroneous edges, between two
kmers belonging to two different genomic regions for example.
Currently, the sequence-by-synthesis approach, such as Illumina, has an average error rate
reported to be less than 0.5% per nucleotide [124], most of which being SNP. The presence
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of erroneous reads may not represent a main source of errors assembly in OLC assembly:
because of their rarity, errors in the sequence of the reads are easily removed during the
construction of the consensus. However within a dBg assembly, each SNP will generate
k erroneous kmers, resulting in the apparition of cycles with two k-length paths. Those
cycles, also called "bubbles", may shorten the length of output contigs when they remain
unsolved, while also increasing memory consumption [125]. A simple approach to remove
erroneous reads from the input sequences is to rely on their abundance in the sequencing
products. Because of the low error rate of the sequencers, the number of erroneous reads
are expected to be consequently low, and thus, unique. As such, some assemblers only
consider kmers with a number of occurences of at least 2 [125, 126].

Generally, dBg are stored in a data structure relying on a hash
table [127, 128]. k may be any particular integer, the number of
possible kmers growing with the value of k (the number of possible
kmers can theoretically reach 4k). The hash table, and thus the
hash function, then must be adapted to limit conflictual storage (i.
e. giving to 2 different kmers the same hash value). However, the
actual number of kmers contained within the whole set of reads is
almost independent from the value of k, as it is equal to C − k+ 1,
with C the number of nucleotides composing the reads. As C >> k,
the number of actual kmers can be considered as equivalent to C. As
such, for values of k high enough, there is enough space in the hash
table to limit conflicts (as 4k >> C), at the expense of an increased
memory cost, with a high proportion of unused space (i.e. kmers
that do not appear in the reads set). The choice of a relevant value
for k thus being difficult, it has been recommended to construct
several graphs assemblies using different values of k [129].

Contents of a dBg

2.1.2 Specifities of the metagenomic assembly

The assembly of metagenomic reads, while relying on the same basis as the assembly
of individual genomes, is a complex task. This is in part due to computational memory
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constraints, but mainly as a result of biological complexity, including genetic diversity
and mobile genetic elements present in the community. Long stretches of near-identical
metagenomic sequences are especially hard to assemble with short reads, because such
sequences might originate from multiple sources: repetitive DNA of a single genome, ho-
mologous regions of closely related strains, or conserved regions of different species that
coexist in the community. The presence of closely-related species, or strains within species,
may also create extensive overlaps in a kmer set, increasing the complexity of the assembly
graph, as multiple genomes occupy much of the same kmer space [117]. Thus, the assem-
bly process needs to resolve these regions to avoid generating erroneous rearrangements
or to reconstruct chimeric contigs.
Namiki et al. [130] outlined the most important limitation of single-genome assembly
software, which is their inability to cluster sequence reads with diverse origins and hetero-
geneous coverage. They designed a strategy to decompose the dBg of multiple species into
subgraphs, each representing a cluster of reads from an individual species [130]. These in-
dividual subgraphs may represent population genotype bins. An enhanced version of this
assembler, Metavelvet-SL, used a supervised machine learning approach to enhance the
detection of chimeric nodes within the graph [131].
The memory boundary, which represents a major impediment to metagenomic assembly,
was addressed by adapting memory-efficient data structures to store the dBg. Pell [127]
thus first used a bloom filter to store a dBg. This probabilistic approach however gen-
erate false kmers, with a false-positive ratio inversely related to memory consumption,
which could connect to actual kmers, thus deteriorating the quality of the contigs. This
problem was resolved with Minia [128], which, by discriminating and eliminating these
false kmers, succeeded to perform exact assembly. Other strategies to reduce high-peak
of memory consumption was the use of parallel algorithms on distributed-memory ma-
chines, for example with HiPMer [132] and its later version adapted to metagenomic data,
metaHiPMer [133], while Megahit [125] relies on a succinct dBg representation.
The abundance of the reads may represent a relevant metric to discriminate between two
possible paths of a bubble within the graph, as kmers with close abundance may have
a higher probability to belong to the same read, or to belong to reads from the same
organism. A problem posed by the abundance of reads is that the handling of erroneous
reads may cause the elimination of reads from actual, low-abundant organisms in the
metagenome.
As the reads already undergo the filter of the sequencing step, they also may be more
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under-represented within the sequencing products, at the point that reads from low-
abundant organisms may be present at such low abundance that they do not pass the
abundance threshold of the assembler, discarding them for the assembly. A strategy has
been to adapt the abundance threshold, to the local depth level of the region of the as-
sembly graph [134]. Megahit, a metagenomic assembler, answers this issue by introducing
a mercy kmers strategy. Given two solid kmers (i.e. kmers with an abundance of at least
2) x and y from the same read, where x has zero outdegree and y has zero indegree. If all
(k+1)-mers between x and y in that reads are not solid, they will be added to the dBg as
mercy kmers to strengthen the contiguity of low-depth regions [125]. Another approach
allowing a better integration of the variants present in the community is to rely on a
colored dBg [135], which attributes colors to kmers to reflect their origin. This approach
thus can help to identify the good path of a bubble, but is still impacted by sequence
repetitions, and also eases the assembly of reads belonging to multiple samples [136].
An approach to ease the assembly of low-depth regions may be to perform a co-assembly
of several metagenomes together. The idea behind this approach is that even if there is
a rare organism living in several similar environments, the addition of metagenomic sam-
ples coming from these environments will increase the abundance of the rare organisms,
exceeding the abundance threshold of the assembler. Metagenomic co-assembly was al-
ready performed in several studies with high-complexity environmental communities [5,
62]. However, co-assembly increases both the memory consumption, by adding kmers to
be considered in the dBg, and the resolution time of the assembly step. Co-assembly also
increases the probability to generate chimeric contigs, and may increase the abundance
of erroneous kmers, resulting in shorter contigs as compared to single-sample assembly,
leading to a more fragmented assembly [137].

2.1.3 Scaffolding

Although technological advances have made sequencing DNA much cheaper and faster,
short-read, high-throughput sequencing exacerbates the central challenge in genome as-
sembly: accurate assembly of genomes that are often highly repetitive. With the growing
use of high-throughput sequencing, the fragmentation of new genome assemblies increased,
affecting the results of comparative genomics analyses. The preparation of DNA libraries
through bacterial cloning was a first reason to the diminishing contiguity of the assemblies.
Plasmid libraries enabled generation of mate-pair reads, generating reads from both ends
of the plasmid insert, for little additional cost relative to single-end sequencing. Many early
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genome assemblies benefited from mate-pair sequencing, whose insert sizes were several
kilobases long. Due to the nature of their assembly, contigs do not overlap, and there are
gaps between them. The next step to the reconstruction of draft genomes would need thus
to bridge the gaps between the contigs, to sort them. This next step is called scaffolding,
and it can be done using either optical mapping or paired-end read linkage. Paired-end
read linkage use the pair-mate sequencing characteristic, in which reads are sequenced by
pairs, forward and reverse, separated by an arbitrary inserted sequence called the inner
sequence or "insert". The final output of the scaffolding is composed of ordered contigs,
and gaps (fig. 2.2). This step is however not mandatory in the reconstruction process of
MAGs, as several binning tools rely equally on contigs or scaffolds as input data.

Figure 2.2 Summary of the assembly step, from reads to scaffolds.
Dot lines represent paired-end reads linkage between contigs. The position of the forward and
reverse fragments of the paired-end reads help to order the contigs to reconstruct the genome.
As the nucleotides separated two contigs are not known, they are noted as "N". From [138].

2.2 Binning

Metagenomic binning, the scond main step of MAGs reconstruction, consists in the
clustering of reads [139, 140], contigs [24, 141–143], scaffolds [144] or genes [145] based
on their genetic characteristics, including oligonucleotide frequency and/or coverage. This
clustering step may be processed through a combination of different approaches, such as
hierarchical clustering and neural networks. These clusters are then grouped with var-
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ious data representation approaches into individual taxonomic bins. While performing
binning of reads, those bins then generally aim to assess the metagenomic taxonomic
diversity [139]. With contigs and scaffolds binning, the retrieved bins are considered as
putative organisms’ genomes [9, 10, 146]. However, contigs have been largely preferred
over scaffolds as the main items to bin into putative genomes, with the only tool using
scaffolds being converted to the use of contigs in its second version [144, 147]. Recently, a
binning tool relying on scaffold exhibited higher performance at bin reconstruction than
contigs-based binning tools [148]. Two main ways to perform contigs binning can be dis-
tinguished, the supervised binning, which relies on the assignment of contigs to a reference
genome, and unsupervised binning, which perform the clustering of contigs de novo, re-
lying only on intrinsic features of the sequences.

2.2.1 Supervised binning

Historically, it has not been possible to reconstruct the genomes of species belonging
to complex communities due to insufficient sequence coverage, thus tool development has
largely focused on classification algorithms that assign taxonomy to sequence fragments
(including reads). Before 2007, this taxonomic assignation was mainly performed using
ribosomal marker genes, but the sparse proportion of reads or contigs carrying these genes
limited their efficiency [149]. A first method based on sequence composition [149] relied
on a support vector machine classifier, inferring taxonomic assignation thanks to oligonu-
cleotides composition of the genomic fragments, and was able to cluster fragments of at
least 1 kb. MEGAN [150] relied on homology search, with a two-steps algorithm combin-
ing BLAST to compare sequences to reference genomes and finding the lowest common
ancestor to assign taxonomy. Marker genes from specific lineages were also used as a post-
processing to strengthen the analysis. This method was able to cluster reads as short as
35bp, which was the common output length for Illumina at this period. However it suffered
from a high computation time to perform all sequences alignments. Phylogenetic affiliation
based on Hidden Markov Models (HMM) has also been explored as a mean to perform
reads taxonomic affiliation, using either Pfam proteins family [151], or genes considered
universal in bacterial genomes [152], allowing classification of sequences as short as 80 bp,
and drastically reducing the computation time compared to MEGAN. All these methods
have however been criticised for their lack of performance, and also for their sensible de-
cline of efficiency with sequence length. In order to gain performance, a combination of
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these approaches has thus been proposed with PhymmBL [153], which used Interpolated
Markov Models (IMM) trained on 539 complete, curated, bacterial genomes, coupled with
a BLAST sequence comparison, to significantly enhance the clustering of reads with length
of at least 100 bp. Other hybrid approaches have then been developed, coupling homology
detection and bayesian phylogenetic affiliation [154], and sequence composition with ho-
mology detection [155]. The main hindrance underlying these supervised methods is the
lack of reference genomes in databases for the major proportion of bacteria. In contrast,
unsupervised clustering methods remove this impediment by performing self-comparison
of the assembled contigs for genome binning. Recently, the taxonomic assignation of a
contig to a reference genome was used within a tool relying on a semi-supervised spec-
tral clustering approach [156], but its little gain in clustering efficiency came at the cost
of a harsh increase of its high computation time when compared to recent unsupervised
binning tools.

2.2.2 Unsupervised binning

Due to the lack of reference genomes that may hinder the efficiency of supervised
binning tools, alternative binning approaches were developed based on the inherent char-
acteristics of contigs. Based on the differences in sampling content (one sample or series
of samples), clustering inputs (nucleotide composition-based or nucleotide composition-
independent) and use of abundance information, current methods of recovering genome
bins from metagenome assemblies can be divided into three types [157, 158] : sequence
composition (SC)-based , differential abundance (DA)-based, and sequence composition
and abundance (SCDA)-based. The major difference between the three methods is the
starting point for the contig binning process.
SC methods rely on oligonucleotide frequency variations. Nucleotide composition has long
been identified as being characteristic to a given species. The proportion of guanine and
cytosine in the genome is notably influenced by the past evolution of organisms, having
a strong impact on their competitiveness in their environment [159]. When considering
constraining environments, it thus becomes difficult to discriminate between genomes
from organisms belonging to the same community. Oligonucleotide frequency may also
vary within the same genome, depending on the transcription activity of the genomic
regions. To increase the quantity of information with a compositional metric, it was then
considered to measure the proportion of small subsequences within the sequence. Oligonu-
cleotides of 4 letters, called tetranucleotides, have been shown to overcome the limitations
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of dinucleotides, and thus to represent an ideal metric to assign genomic fragments to a
genome [160]. The incorporation of a combination of penta-mers and palindromic hexa-
mers abundances has been recommended as the best compositional metric for datasets
producing more than 50 bins [142]. However, this usage has not been established as a
standard in the binning community, as it relies currently solely on tetranucleotides to as-
sess compositional features of the contigs. Thus, the compositional metric in metagenomic
binning is generally referred as TetraNucleotides Frequencies, or TNF.
While earlier binning attempts were conducted using metagenomic reads, current work-
flows assemble them into contigs first. The reasons are the sensible enhancement of metage-
nomic assembly these last years, and that both SC and DA signals are more robust on
longer sequences.

The total number of kmers contained in a string depends on the
size N of its alphabet, with Nk number of elements. Thus within
the DNA, there are 44 = 256 different tetranucleotides. However,
because of its double-strand structure and the complementarity of
the bases, many tetra-mers have a reverse-complementary version,
which can be deducted from the tetra-mer sequence itself. To reduce
the number of tetra-mers to consider, they are represented into
their canonic form, with the best lexicographically-ranked tetra-
mers between the forward and reverse. This allows to reduce the
number of tetra-mers to consider to compute TNF to 136.

Canonic representation of oligonucleotides

Microbial communities surveys published in the beginning of the 2010s relied for their ma-
jority on SC, using mostly oligonucleotide frequency and %GC, while the latter become
less and less considered, due to the greater resolution of the first. In their study, Iverson
et al [161] first used a graph-based approach for assisting individual genome reassembly.
They then construct a network graph where nodes represent the scaffold, and edges rep-
resent tetranucleotide Z-statistic correlation. Edges corresponding to a score below an
empirically-determined correlation score are then removed from the graph, and connected
components with a cumulative length above 950 kb are clustered into candidate genome
bins.
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SC-only approaches have mostly been applied to communities composed of genotypes that
possess nucleotide composition pattern, such a low %GC, and consistent oligonucleotide
frequency. It is likely, though not proven, that this technique may struggle with commu-
nities composed of genomes with high oligonucleotide compositional variance.
DA methods rely on similarity of coverage profiles to cluster contigs into putative genome
bins. The contigs coverage may be estimated by mapping the reads belonging to one
metagenome, or several metagenomes, to the contigs from the assembly. The term cover-
age used in metagenomics studies then generally referred to the mean vertical coverage,
i.e., the mean times a read aligned to a position on the contigs. It has been shown that
the mapping profile of genomic fragments represents a characteristics of a genome [162].
Thus, the rationale of DA binning tools is that contigs with similar coverage profiles have
a higher probability to belong to similar genomes. It has been shown that DA is a more
powerful metric to group contigs than SC alone, allowing to improve MAG reconstruction
from the assembly [109, 163]. The resolution of the reconstruction of MAGs also increases
with the number of metagenomic samples from which DA is estimated [24]. An example of
DA binner is GroopM [164], which performs contigs binning through abundance profiles
computed from several metagenomic samples. It also includes a refinement step, splitting,
merging or deleting preliminary bins through detection of chimerism, using marker genes.
However, it has limited capacity to separate contigs of closely related genotypes, which are
placed in chimeric bins, and it requires at least three related samples to perform binning.

Emergent Self-Organizing Maps (ESOM) is an unsupervised clus-
tering approach which relies on the inner structure of the data to
perform an unsupervised clustering. One of its advantages over k-
means, another popular clustering approach, is that the classes may
be inferred from the map itself, and that it can leave a point unclas-
sified. ESOM have greatly benefited from the development of deep
neural networks, which have allowed them to scale, and their appli-
cation to large datasets [165] make them relevant to be integrated
in a binning tool [163].

Infer the classes from the data

Sharon et al. [163] reconstructed six complete and two near complete genomes from gas-
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trointestinal microbiome, applying a DA approach on times series data. These genomes
belonged to organisms representing a fraction as low as 0.05% of the total bacterial com-
munity, demonstrating the high resolution of their method. They first performed an itera-
tive assembly, optimized thanks to preliminary defined coverage bins. Another example of
genome binning relying on DA is the canopy algorithm [145]. The reconstruction strategy
used a gene catalog established from preliminary assemblies of the metagenomes, to de-
termine the co-abundance of each gene. Genes with similar abundance profiles, i.e., with
a Pearson correlation coefficient above 0.9, are then clustered together in a gene group.
Gene groups are then constructed as sets of genes whose abundance profiles exhibit a high
correlation with the abundance profile of the central gene, that is chosen randomly. The
gene groups are constructed iteratively, adding genes with an abundance profile which is
similar to the mean abundance profile of the already-added genes in the group at each
iteration. The formed gene groups, or canopies, which passed rejection criteria, i.e. con-
taining more than two genes and originating from more than three metagenomic samples,
are then considered as Co-Abundance gene Groups (CAGs), and a CAG containing more
than 700 genes is considered as a Metagenomic Species (MGS). MGS are then used to
realize an enhanced assembly of the reads, assembling the reads mapping to the same
MGS together. The canopy algorithm’s main advantage is its low complexity, with the
reconstruction of wide CAGs performed with a high velocity, and the genes within the
MGS showed consistent abundance profiles. The main limitation of DA-binning methods
is the decline of their performance when the number of samples is low, rendering them
not completely suitable for single-sample studies. As the dependency to a large volume of
data became more or less fulfilled with the increasing capacity of production of data, the
human supervision hindered the reproducibility and scalability of such approaches [24].
Binning approaches coupling both SC and DA metrics (fig. 2.3) have already been used for
a decade now, with a first study reconstructing genome bins from cow rumen metagenome [166].
Mackelprang et al. [167] followed a similar approach, using a hierarchical agglomera-
tive clustering method to process the tetranucleotide frequency matrix, then clustering
metagenome contigs into genome bins adding differential abundance. Numerous tools have
then followed this composite approach, such as CONCOCT [24], myCC [142], MaxBin [144]
or Metabat [141]. CONCOCT integrates the SC profile of the contigs using a Principal
Component Analysis (PCA), and the co-abundance profiles using Gaussian Mixture Mod-
els. Maxbin [144] classifies the scaffolds following the Expectation-Maximisation (EM)
algorithm, which calculates the probability that a given scaffold belongs to any genome
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at the same time. The EM algorithm performs two steps iteratively : first, it computes
the probability for each point to belong to one cluster (expectation step), relying on
maximum-likelihood estimation [168], then it updates new values of the clustering met-
rics for each cluster (maximisation step). It needs a preliminary determined number of
clusters to perform, each with initial values of TNF and coverage, which are estimated
via the detection of marker genes through the contigs. An enhanced version, allowing
the estimation of contigs coverage profiles through several metagenomes, has then been
developed in the software Maxbin2 [147].
Even though the rationale of the SCDA approaches are both to gain power resolution
and limit the major drawback of the DA approaches, they still suffer from a sensible de-
cline of their performances when only a limited number of metagenomes is available [157].
myCC [142] tries to alleviate this disadvantage by proposing an optional integration of DA
profiles, with only the SC step being mandatory. The SC-binning step relies on a reduc-
tion of dimensionality of compositional genomic signatures, using Barnes-Hut stochastic
neighbor embedding (Barnes-Hut SNE), which is a dimensionality reduction method. The
DA profiles are then integrated to the SC metric if the user wishes to integrate them, and
the contigs binning follows an Affinity Propagation (AP) algorithm.

Metabat [141] follows an original approach which modulates the weight of the co-
abundance profiles in the binning operation on the number of samples [141]. The software
performs a first clustering of contigs using only a distance probability estimated from
TNF-euclidean distances, estimating the probability for two contigs to be binned together.
Then, for each pair of contigs, a DA distance probability is estimated, computed as the
unshared area under curve of the normal distributions of the DA profiles of the contigs.
DA distance probabilities are then integrated to a global score, which is used to upgrade
the first binning. In Metabat [141] the coverage profile of contigs is modelled as a normal
distribution. The abundance distance between two contigs is thus set as the area under
curve between the two contigs coverage distributions (fig 2.4). Both composition and
abundance are then set as distance probabilities, and two contigs are clustered together
when this distance reaches a threshold. This initial version of Metabat allows to increase
the binning performance when compared to previously-published SCDA binning tools,
both in terms of computational efficiency and accuracy. However, it is prone to inconsistent
results when it is used on different datasets, and a fine tuning, requiring several runs
with multiple parameters sets, may be needed to achieve an optimal performance [9].
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Figure 2.3 Overview of a typical SCDA binning approach.
After sequencing the genomes (coloured circles, top), the reads (coloured small lines) are
assembled into contigs (grey lines). A compositional metric, generally the TNF, and cover-
age/abundance profiles are inferred from the contigs sequence, and both are used to cluster the
contigs into putative genomes (dotted coloured circles, bottom). From [141]
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Metabat2 [16] differentiates from its former version, with a preliminary designation of
putative contigs to cluster using TNF, before adding the coverage information to finalize
the binning, supported by a graph-based approach. This change of its main algorithm has
helped Metabat2 to dramatically increase its precision when applied to high complexity
communities. Besides, Metabat2 is currently the most rapid binning tool in the field of
MAGs reconstruction, as well as the most frugal in terms of memory usage. Maxbin2 and
Metabat2, both because of their performance and their ease of use, are the most used
tools in metagenomics studies [158].

Figure 2.4 Metabat/Metabat2 contig’s coverage metric.
The coverage of contigs is modelled as a normal distribution, of mean µ and standard deviation
σ. The distance probability estimated through contigs’ coverage is the unshared area under the
curves of both contig’s distribution (shaded area). From [141]

2.2.3 The need for a standardised benchmark

In the middle of the 2010s, an acknowledgement is made : even though the current
metagenomic literature flourished with the development of assembly, binning and tax-
onomy profiling tools, their results became extremely difficult to compare. A couple of
datasets already represented a relevant choice to perform the evaluation of new tools, such
as the METAHIT dataset [174], or the Sharon dataset [163]. However, if these datasets
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Tool Name Access link Type Release Last
updated

Current
citations

Ref.

ABAWACA https://github.com/CK7/abawaca SCDA - - - -
BMC3C http://mlda.swu.edu.cn/codes.

php?name=BMC3C
SCDA 2018 - 24 [169]

Canopy http://git.dworzynski.eu/
mgs-canopy-algorithm

DA 2014 - 560 [145]

COCACOLA https://github.com/
younglululu/COCACOLA

SCDA 2017 2017 66 [170]

COMET https://github.com/
damayanthiHerath/comet

SCDA 2017 2018 8 [171]

CONCOCT https://github.com/BinPro/
CONCOCT

SCDA 2013 2019 767 [24]

ESOM https://github.com/
MadsAlbertsen/multi-metagenome

DA 2013 - 789 [109]

GroopM https://github.com/
Ecogenomics/GroopM

DA 2014 2016 172 [164]

Maxbin/
Maxbin2

https://sourceforge.net/
projects/maxbin

SCDA 2014 2020 321/672 [144, 147]

MetaBAT/
MetaBAT2

https://bitbucket.org/
berkeleylab/metabat

SCDA 2015 2019 856/583 [16, 141]

myCC https://sourceforge.net/
projects/sb2nhri/files/MyCC

SCDA 2016 2017 126 [142]

SemiBin https://github.com/
BigDataBiology/SemiBin

SCDA 2022 2022 3 [172]

SolidBin https://github.com/sufforest/
SolidBin

SCDA 2019 2020 18 [156]

VAMB https://github.com/
RasmussenLab/vamb

SCDA 2018 2022 43 [173]

Table 2.1 Contigs binning tools.
Current numbers of citations are taken from Web of Science (october 2022).
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were used for several tools evaluation studies [141, 156], they did not represent a stan-
dard. Thus, tools evaluation were still performed with different data sets, performance
criteria, and evaluation strategies. Acknowledging this issue, a community-driven initia-
tive, the Critical Assessment of Metagenome Interpretation (CAMI) aimed to establish
standards in the design of benchmark datasets, procedures, choice of performance metrics
and questions to focus on [175]. This study also led to the evaluation of several assemblers,
binning tools (both supervised and unsupervised) and taxonomic profiling tools, and have
pointed out the difficulty to recover taxonomic information below the family level, even
though all binning tools have already shown good performance with communities without
closely related strains [175]. The simulated datasets used for the CAMI challenge were
then made publicly available, and are still currently standards for the evaluation of new
binning tools, used in several studies presenting new tools [16, 176] or performing global
evaluation of binning tools [177, 178]. A second version of the CAMI challenge started in
2019, even though the results have not been published yet.

2.2.4 Quality assessment : from bins to MAGs

The rapid development of genome binning tools led to the production of thousands
of draft genomes, with expectations that the number of genome-resolved metagenomics
studies continues to grow in number in the near future. This requires the availability of
automated tools to assess the quality of MAGs, and to perform post-processing refine-
ment or contaminated sequences removal. The main purpose of quality assessment and
bins refinement is to avoid the submission of sub-optimal MAGs to public genome repos-
itories, in order to maintain their quality. The Genome Standards Consortium (GSC) has
developed two standards for reporting bacterial and archeal genomes [179]. These stan-
dards include the minimum information about a single-amplified genomes (MISAG) and a
metagenomes-assembled genome (MIMAG). Due to the lack of genome references acting
as ground truth, the authors advised the report of standard assembly statistics, includ-
ing total assembly size, contig N50/L50, and maximum contig length. Information about
the presence and completeness of the ribosomal and transfer RNA genes are also consid-
ered appropriate complement about MAG quality. Manual curation has also produced the
best-quality MAGs, but this approach, which is time-consuming, may be prohibitive to
be set as a standard, in regards with the amount of genomes to process, and also its lack
of reproducibility.
No standards have been defined to evaluate the completeness and the contamination ra-
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tio of a MAG. As often, the ideal approach might be the alignment of the MAG to a
closely related reference genome. But the lack of reference for the majority of microbial
lineages, and high levels of strain heterogeneity, exclude such a process. As an alternative,
researchers have relied on the presence of "universal" marker genes to estimate complete-
ness of MAGs. These genes have to exhibit several characteristics, including their presence
in genomes of nearly all taxa, to be present in a single copy in the genome (enhancing
their second name, SCGs - for Single Copy Genes) and to not be subject to horizontal
transfer. The marker genes should exhibit specific characteristics, such as being essential
for a wide range of microbial taxa, and be present in a single copy within the genome.
Based on SCGs, the completeness of MAGs may be defined as the ratio of the number of
SCGs detected within the genome to the total number of SCGs, while contamination may
be defined as the ration of the observed SCGs in two or more copies to the total number
of SCGs [180].
Several SCGs sets have been identified and validated [181], corresponding to bacterial and
archaeal genomes, and are included in quality assessment software, such as CheckM [180],
Anvi’o [182], mOTU [61] and BUSCO [183]. CheckM proposes a particular approach, and
infers lineage-specific genes, based on the position of a query genome in a reference tree
using a reduced set of multi-domain markers, finally allowing the use of an increased num-
ber of SCGs. It can also estimate the level of strain heterogeneity, which may represent
an adequate complement of completeness and contamination, as it assesses whether the
source of contamination are strains relatives or SCGs from unrelated taxa. Currently, as
Anvi’o [182] and Vizbin [184] require human assistance during their workflows, CheckM
remains the most widely used tool to assess MAGs quality, due to its ease-of-use, com-
pletely automated workflow, and high accuracy. However, its assessment of quality relying
solely on SCGs has recently been questioned [185], due notably to their uneven localisa-
tion through a genome [186]. To overcome these limitations, an assessment of the quality
of bins, using all genes detected in a bin, has been proposed with GUNC [14].
After quality assessment, MAGs may be classified as near-completed (single continu-
ous sequence without gap or overall quality score equal to or above Q50), high-quality
(completeness ≥ 90% and contamination ≤ 5%), medium-quality (completeness ≥ 50%
and contamination ≤ 10%) and low-quality (completeness ≤ 50% and contamination ≤
10%) [179]. A majority of downstream analysis tools recommend to discard low-quality
MAGs to avoid false conclusions.
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2.2.5 Dereplication

The reconstruction of MAGs from several independent metagenomes’ assemblies be-
longing to similar environment leads almost inevitably to the recovery of highly similar
MAGs across all the assemblies. In order to reduce the computation cost of downstream
analyses, it is therefore often recommended to perform MAGs dereplication. The pres-
ence of multiple closely related genomes may also complicate the manual curation of
MAGs [187]. Dereplication may be defined as the reduction of a given set of MAGs on
the basis of sequence similarity among them. To this end, the estimation of Average
Nucleotide Identity (ANI) between two genomic sequences has been set as a robust ap-
proach to compare prokaryotic genomes [188]. However, the computation of ANI requires
pairwise alignments of MAGs, which may be computationally intensive if the number of
genomes becomes high, as the number of alignments scales quadratically with the number
of genomes. The utilisation of MUMmer [189] instead of BLAST as the alignment tool to
perform these pairwise mappings has shown to be both faster and more robust to compute
ANI between two closely-related genomes [188]. MUMmer has also been implemented as
a Python package which is still maintained [190]. Another scalable algorithm, using iden-
tification of orthologous genes to compute genome-wide ANI (gANI) has been developed
to refine taxonomic assignement of microbial genomes [191].
Alignment-free approaches to estimate genomes or metagenomes closeness has been de-
veloped, such as Mash [192]. Mash first creates sets of MAGs named sketches before
computing the distance between two sketches, providing a similarity measure between the
two MAGs (fig. 2.5).
This approach has revealed to be sensibly faster than alignment-based approaches to
compare genomes, with the Mash distance being strongly correlated with ANI. However,
it has been shown that the accuracy of Mash diminishes significantly with the complete-
ness of MAGs [193]. A hybrid, bi-phasic approach, combining Mash and gANI has been
proposed to both reduce the computational time required for genome dereplication, and
ensure high accuracy, with the software dRep [193]. With this tool, the genome set is
first divided into primary clusters using Mash, then each primary cluster is compared in
a pairwise manner using gANI, constructing secondary clusters of near-identical genomes
that can be dereplicated. Currently, dRep constitutes a routine tool to perform MAGs
dereplication.
By removing a certain proportion of MAGs for the downstream analysis, the dereplication
step constitutes a loss of information. In certain circumstances, such as the detection of
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Figure 2.5 Overview of the MinHash sketch strategy for estimating contigs similar-
ity in Mash.
First, the kmers of two objects to compare, i. e. contigs, or metagenomes (in red and blue, top)
are decomposed into their constituent kmers, and each kmer is passed through a hash function
h to obtain a hash (small circles). A and B thus represent the hash sets of the two elements to
compare. The fraction of shared kmers between A and B (purple) is estimated by subsampling
A and B: here, S(A) and S(B) both represent the 5 kmers with the smallest hash values (filled
points) in A and B, respectively. Because S(A ∪B) is a random sample of A ∪B, it is then an
unbiased estimate of the fraction of shared kmers. From [192].
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auxillary genes within bacterial strains, the dereplication may remove a significant and
relevant information, hindering the detection of these genes [187]. The decision to derepli-
cate MAGs or not should thus be made in accordance with the purpose of the study.

2.2.6 MAG refinement

In order to increase the overall quality of MAGs before downstream analysis, different
refinement approaches have been developed to increase their completeness and decrease
their contamination. One of these approaches relies on using several binning tools to pro-
duce a set of optimized and non-redundant MAGs. Since numerous binning tools show
differences in the metrics, integration of the metrics, and clustering algorithms they rely
on, these tools do not catch the same part of information from the metagenomes into the
MAGs they reconstruct. Pooling bins from several binning software has thus been thought
as a process to gather a maximal proportion of the metagenome’s information, thus com-
pensating the limits of each method taken individually. Binning_refiner [194] performs
pairwise BLAST alignments between sets of bins recovered from different binning tools,
in order to identify shared contigs between them. These shared contigs are then output to
produce new, refined bins, which exhibit both a decreased contamination level, a longer
sequence without any contamination, and a higher precision. This refinement process re-
veales however to be very stringent, as it significantly diminishes the completeness of the
refined bins. DAS Tool [27] also uses bins sets recovered from different binning tools, and
detects shared contigs between two sets of bins relying on the presence of SCGs in the
sequence of the contigs. Then, after designating the bin of best quality within a set of
duplicated genomes, it retrieves the shared contigs found in the best bin from the dupli-
cated versions of this bin. By the end of the process, DAS Tool outputs the complete,
best bin from all the binners, coupled with exclusive contigs that have been binned to the
equivalent of that bin by the others binning tools (fig 2.6). DAS Tool produces MAGs with
higher completeness, but its aggregation procedure may also increases the contamination
of the MAGs.
Another approach has been implemented in the METAWRAP [26] workflow, as a post-
processing module which aims to refine the binning process. This refinement procedure
outputs the best quality-score MAG from a set of copies obtained from the different bin-
ners, and their hybrid counterparts, constructed preliminary using the Binning_refiner
tool which is more similar to the dereplication step performed by dRep. This procedure
has shown to produce more MAGs of higher qualilty than both Binning_refiner alone and
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Figure 2.6 Overview of the DAS Tool algorithm.
Step 1: The input of DAS Tool comprises scaffolds of one assembly (grey lines) and a variable
number of bin sets from different binning predictions (same-coloured rounded rectangles). Step 2:
Single-copy genes (blue shapes) on scaffolds are predicted and scores (blue and green boxes) are
assigned to bins. Step 3: Aggregation of redundant candidate bin sets from all binning predic-
tions. Step 4: Iterative selection of high-scoring bins and updating of scores of remaining partial
candidate bins. The output comprises non-redundant sets of high-scoring bins from different
input predictions. From [27].
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DAS Tool.
Another approach to improve the effectiveness of MAGs reconstruction is to perform a
second assembly, posterior to the binning process. In the methods following this approach,
reads are aligned to the bins and tagged with the bin they align on (fig. 2.7). The reads
aligning to the same bin are then assembled together, following a supervised assembly
step. Metawrap includes in its set of MAGs reconstruction modules a bin re-assembly
step [26].

Figure 2.7 Canopy clustering algorithm.
The bins are reconstructed using correlation of co-abundance profiles of the contigs. Bins are
then considered as CAGs (Co-abundance gene groups) or MetaGenomic Species (MGS) depend-
ing on their size. A post-processing step includes reassembly of the reads which have mapped
to the same MGS, following a semi-supervised assembly, to reconstruct high-quality genomes.
From [145].
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2.3 Limits in MAGs reconstruction

2.3.1 Limits in SCGs-related approaches

SCGs have demonstrated their usefulness in the assessment of the quality of bins,
or in the post-processing refinement step. However, if SCG-based quality estimators can
detect redundant contamination with high sensitivity, they are less sensitive towards non-
redundant contamination, since they only consider inventories of expected SCGs as a
whole, ignoring potential disputed lineage assessments inferred from individual genes [180].
Especially, each set of SCGs has to be preliminary identified by scanning several reference
genomes from a wide range of lineages, and as such cannot be considered exhaustive. This
significantly limits their efficiency to assess quality of genomes assigned to taxa which
are absent from their reference database [195]. Lineage-specific SCGs, particularly used
in CheckM, are not evenly distributed across the genome, but locally clustered, further
limiting their representation of the query genome. Recently, a new tool, GUNC [14] has
been developed, estimating contamination of bins by the analysis of all the genes detected
in their sequences. This method has shown a more precise assessment of non-redundant
contamination of the bins, revealing higher levels of contamination of MAGs present in
public databases [14]. The uniqueness of SCGs may also be questioned, as archaeal lineages
belonging to the Asgard group have shown to borrow several copies of genes considered
as SCGs in several bacterial taxa, notably genes coding for ribosomal proteins [196].

2.3.2 Relevance of binning metrics

A main limitation to all of the genome binning tools cited above is that they have to
discard short contigs from the dataset, because both the composition and the coverage
features become unreliable from short contigs (with the length threshold varying depend-
ing of the tool) reducing their recall values. In order to retrieve these short contigs and
to integrate them in the binning process, several tools based on the exploration of the
assembly graph have been developed in the recent years. These tools rely on the fact that
contigs connected to each other in the assembly graph are more likely to belong to the
same species [111]. GraphBin identifies the unbinned contigs connected to already-binned
contigs in the assembly graph through a label propagation algorithm, and integrates these
contigs to refine the bins [197]. RepBin follows a constraint-based representation of the
graph assembly to perform genome binning, based on the presence of SCGs in the con-
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tigs [176]. This tool both uses SCGs to infer the number of labels (i.e., bins) to cluster
the contigs into, and integrate the SCGs into pairwise cannot-link constraints, expecting
that contigs carrying the same marker gene should not be binned together.

2.3.3 Difficulties to reconstruct the pangenome

The accessory genome represents the fraction of a genome that carries non-essential
genes, i.e. genes that are not shared by all strains within the same species, or are ex-
clusive to one unique strain [198]. It was defined as opposed to the core genome, which
contains the genes coding for essential functions of the organism, such as the SCGs. The
combination of the core genome of a species and the individual variants of its accessory
genome represents the pangenome of this species [198]. A deep, even if not exhaustive,
exploration of the pangenome of a species may imply to reconstruct numerous variants of
this genome.
A MAG may be apparented to a consensus genome, as the binning process tends to elimi-
nate numerous variants that may exist within a community. Globally, binning tools exhibit
difficulties to recover genomes while closely related species or strains are present within
a community [175]. Notably, the clustering of contigs into an exclusive bin completely
hinders the possibility to efficiently reconstruct genome variants. SCGs-related methods
may emphasize ths limitation, notably by considering the presence of variants genes as
contamination [180], and thus are not relevant to assess the quality of accessory regions,
within which there are no SCGs.
Different approaches have already attempted to reconstruct pangenomes. MSPMiner, in-
stead of binning contigs, clusters co-abundant or partially co-abundant genes to recon-
struct Metagenomic Species Pan-genomes (MSPs) [29]. Variation graphs represent an
alternative representation of a genome that allows a better integration of existing vari-
ants [199]. This representation has been integrated to reconstruct bacterial strains from
metagenomic samples [17].

2.4 Conclusion

During the recent years, several computational and algorithmic advances have helped
a better integration of information from the increasing volume of genomic data. Devel-
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opments in assembly algorithms and related methods have led to significant improve-
ments in the accuracy and efficiency of genome assembly, and have well adapted to the
specificities of metagenomic assembly. These successes are measured by more contiguous
sequences, an increased numbers of predicted genes, a reduction of breakpoints and rear-
rangements within contigs, and error limits close to the expected sequencing substitution
rate. Genome binning tools, performing the key step of the reconstruction of the MAGs,
have explored through intrinsic features of contigs to perform their clustering with high
confidence, without relying on reference genomes. Their clustering approaches have dif-
fered, and currently, tools integrating both compositional and coverage features represent
the most efficient binning tools. The problem of genome binning still remains difficult,
and all current approaches have their own limits. MAGs still remain more fragmented
than genomes retrieved from classic genomic approaches, and their reconstruction still
have difficulties to integrate regions belonging to the accessory genome. Based on this
observation, a constraints programming (CP) approach may appear as a relevant answer,
as it could allow the exploration of several equivalent good solutions to the problem. Some
of previous binning approaches have integrated genomic features as constraints, in order
to perform a constrained clustering approach. But there is still not a CP-based approach
to perform genome binning. In the next chapter, we will describe a constrained-clustering
in a CP framework, and how it would perform to bin contigs into genomes, and whether
this approach answers the limits of currently existing binning software.
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MAGS RECONSTRUCTION USING

CONSTRAINT LOGIC PROGRAMMING

In this chapter, we will present our approach to perform contig
binning in logic programming. The objective of this approach was
to proposed a binning approach that would allow to better take
into account of the possible solutions to a binning problem. We
thought it would help to better catch the variability of variants in-
side a metagenome, and notably the strains diversity. The first part
introduces the concepts of constraints programming and logic pro-
gramming, and ASP. Secondly, we will detail the model we built in
ASP, the constraints we implemented and the results we obtained,
compared to another binning tool.

Preamble

3.1 Introduction to declarative programming

The resolution of a problem through the description of the resolution process, gener-
ally by means of an algorithm, is called the imperative paradigm. For many programmers,
the imperative paradigm may represent the classic approach to resolve a problem. The
declarative programming takes the opposite point of view, in which the user has no in-
terest in the description of how to solve the problem, but instead explains what is the
problem. Therefore, the main purpose becomes the modeling of the problem, in order
to proceed to its resolution. Declarative programming languages tend to eliminate side
effects, and heavily rely on mathematical logic. The declarative programming paradigm
itself represents a wide field in computer science, and gathers several subdomains such
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as constraints programming (CP), logic programming, functional programming, or de-
scriptive programming. Consequently, different languages have been developed in each of
these domains: Prolog for constraint and logic programming, Haskell for functional pro-
gramming, or HTML for descriptive programming, for example. This chapter will focus
on logic programming and constraints programming.

In computer science, an operation, function or expression is said to
have a side effect if it modifies some state variable value(s) outside
its local environment, i.e. if it has any observable interaction other
than returning a value to the invoker of the operation. Imperative
programming languages use side effects as a mean to update the
state of the system, but they can impede the predictability of the
behaviour of the program, or the reuse of functions. Declarative
programming languages, by describing the system’s state, tend to
eliminate or at least minimize these effects. This feature makes them
strongly similar to mathematical logic.

Side effects

3.2 Constraint programming

3.2.1 Definitions

A constraint can be defined as an expression that discards solutions, which would be
acceptable otherwise. It represents an efficient and straightforward means to verify that
all solutions respect a property [200]. A constraint c(x1, ..., xn) typically implies a finite
number of decision variables x1, ..., xn. Each variable xj may then take any value vj from
a finite set Dj, which is called the domain of the variable. The constraint then defines
the relationship Rc, which is satisfied if all the observation variables have their values
included in the relationship. A constraint satisfaction problem, or CSP, is then a finite
constraints set C = {c1, ..., cn} on a set of variables {x1, .., xn}. The CSP is said satisfiable,
or feasible, if there exists a tuple {v1, ..., vn} of values that simultaneously satisfied all the
constraints in C. The tuple of values represents here a solution to the CSP. On the other
hand, if such a tuple does not exist, i.e. if there is no assignment of values to variables
from their respective domains for which all constraints are satisfied, then the problem is
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unsatisfiable. Constraints may be categorized as instance-level constraints or cluster-level
constraints. Instance-level constraints can be either must-link constraints, which formalise
a relationship in which two items must be put in the same cluster if the relationship is
verified, or cannot-link constraints, forbidding two items to be put in the same cluster if
the relationship is verified [201]. On the other hand, cluster-level constraints apply on the
characteristics of the group of items itself, such as its maximum size.
A language allowing constraint programming typically considers two steps. First, it models
the space search to define which are the possible solutions to explore, and second, it applies
the constraints to eliminate the undesired solutions from the search space.

For Bockmayr, CP has tried to weave imperative and declarative
programming, although these two paradigms seem completely ex-
clusive, as the declarative programming is static, while the imper-
ative programming is dynamic. The constraints used to describe
the solutions to be obtained may indeed be seen as an inclusion of
a procedure within a more global declarative framework [200]. To
each constraint is thus associated an algorithm to remove from the
space search infeasible solutions.

Procedures in CP

3.2.2 Resolution of the CSP

Constraint satisfaction problems are combinatorial by definition. Therefore, for many
categories of CSP, an efficient algorithm is unlikely to exist, as these problems are NP-
complete. This means that, unless P = NP , an algorithm that guarantees to find a
solution that satisfies all constraints would have a worst-case exponential time complex-
ity, as it would be enumerative. A CSP can be seen as a generalisation of the Boolean
satisfiability problem (SAT) [202]. SAT is a widely used modelling framework, and thus
is the core of a large family of combinatorial problems. It consists in deciding whether a
propositional logic formula can be satisfied, given suitable value assignments to the vari-
ables of the formula. Many CSP resolution works have been performed on binary CSP,
leading to the development of efficient SAT solvers. CSP solvers use different techniques
for CSP resolution, which can be categorised as backtracking methods, consistency tech-
niques, and constraint propagation.
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Backtracking

In practice, it may be sufficient to find a solution at a reasonable expense which
satisfies not all the constraints, but most of the constraints. This is particularly the case
if the problem contains soft constraints or an objective constraint. At the end, if all
constraints have been satisfied, the solution is said to be exact, otherwise, the solution
is approximate. Backtracking is a technique that uses approximate solutions as potential
candidatesto possibly reach the exact solution. The first step is then to enumerate the
potential candidates of the problem, which could be completed in various ways to give all
the possible solutions. These potential candidates will then be placed as the nodes of a tree
called potential search tree. In this tree, each candidate is the parent of candidates that
differ from it by a single extension step, and the leaves of the tree are the candidates that
cannot be extended any further. Backtracking tries to extend a potential candidate c that
specifies consistent values for some of the variables, towards a complete assignment, by
incrementally choosing a value for another variable, consistent with the values in c. When
all the variables relevant to a constraint are instantiated, the validity of the constraint is
checked. If c is a valid solution to the problem, i.e. if all constraints have been satisfied,
then it is returned to the user, and all the sub-trees of c are enumerated as valid solutions.
If c violates any of the constraints, then all the descendant candidates are ignored, leading
to the pruning of the sub-tree rooted in c (see fig. 3.1 for an illustration of the 4-queens
problem). Then, the algorithm backtracks to the most recently instantiated variable that
has alternative variables available. This algorithm allows to remove numerous candidates
from the search. Thus, backtracking is strictly better than a greedy search in which all
potential solutions would be explored.
The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [203], itself an enhancement of
the Davis-Putnam algorithm, is the main backtracking algorithm used in CSP resolution,
notably in SAT solvers. The DPLL alorithm is both complete and sound, i.e., it will always
find the solution of the problem if this solution exists, and all the returned solutions are
guaranteed to be true. Its main limit is thrashing, which is caused by the occurrence of
the same inconsistency several times within the search tree. This problem then causes
repeated failure during the search, which is not avoidable, causing a waste of time [204].

64



3.2. Constraint programming

Figure 3.1 Backtracking in the 4-queens problem.
The n-queens problem is a well-known problem consisting of positioning n queens on a n × n
chessboard, with no queen being placed on a square attacked by another queen. This problem
is easily translated into a CSP. Here, backtracking is used to find the solution of a 4-queens
problem. The number above each configuration is the order of visit of each configuration, while
the numbers below represents the row assigned to the next queen, the n-th queen being position
on the n-th row. A cross under a number represents an impossible assignment, resolving to a
backtracking. Thus, starting from candidate 1 "queen 1 on column 1", it is thus impossible to
assign "queen 2 on column 1", nor "queen 2 on column 2". The candidates descending from these
candidates are then left unsearched, as they would all lead to unsatisfiable assignments. Next
potential values assignment are then "queen 2 on column 3" and "queen 2 on column 4", in
configurations 2 and 3, respectively. However, all assignments for queen 3 after configuration 2
are unsatisfiable: the search then needs to backtrack to the previous potential candidate, the
configuration 3. From there, it continues to assign values to the next queens, backtracks whenever
it reaches unsatisfiable assignments, until it finds a solution, the configuration 8.
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Consistency checking

Consistency checking methods may discard many inconsistent candidates at a very
early stage, and thus greatly shorten the search for consistent candidates. They were first
introduced to improve the efficiency of picture recognition software, in which labeling all
the lines of a picture in a consistent way is required. The number of possible combinations
is very high, while very few are consistent. Consistency checking methods have been used
on a wide variety of hard search problems. The idea behind consistency checking is to
remove values from the domain of variables, if there is no consistent values satisfying a
constraint in the other domains [204]. These methods are rarely used alone to resolve a
CSP. By increasing the complexity of the applied consistency technique, more inconsistent
values are discarded from the CSP. However, consistency techniques generally fail to
eliminate all inconsistent values from the CSP, meaning that a search is still needed to
complete the resolution [204]. The more complex consistency technique, the n-consistency,
would ideally be able to find the solution of a CSP with n variables without performing any
search. However, the complexity of the operation makes it more costly than a backtracking
search. Then, consistency techniques are generally used to enhance backtracking search.

Let A < B be a constraint C between the variables A and B, with
domains DA = {3, .., 7} and DB = {1, .., 5} respectively. For some
values in DA, no consistent values exist in DB satisfying the con-
straint C. Such values can be removed from both domains, without
risking the loss of any solution. At the end, we get reduced domains
DA = {3, 4} and DB = {4, 5}. However the reduction does not re-
move all inconsistent pairs (A = 4, B = 4 for instance, is still in
domains). But for each value in DA, it is possible to find at least
one consistent value in DB, and vice versa.

Consistency checking: example

Constraint propagation

Constraint propagation helps to filter possible values from the domain of each variable,
leading to the discarding of all the interpretations carrying the aforementioned values.
Generally, as a constraint problem contains several constraints, reaching consistency for
one constraint may cause some other constraints to become unfeasible, even if they were
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feasible beforehand. Domain filtering has to be applied several times to constraints sharing
common variables, until no further domain reduction is possible. Constraint propagation
is used in CSP resolution as a means to embed backtracking and consistency checking, in
order to improve the efficiency of the solvers. These hybrid approaches are usually called
look-ahead strategies [204].

3.2.3 Optimization problems

A constraints optimization problem implies an objective function f(x1, ..., xn) which
needs to be maximized or minimized on the whole set of feasible solutions. Although al-
gorithms for solving CSPs aim to simply reach a feasible solution, they can be adapted to
find an optimal solution. This can be done through the addition of an objective variable,
which would represent the objective function. Once an initial feasible solution is found, a
new objective constraint is introduced to the problem, implying that the value of the ob-
jective variable must be better than in the initial solution. This process can be performed
iteratively, until the problem becomes unsatisfiable: the last satisfiable solution is then
an optimal solution [205]. The number of iterations needed to find the optimal solution
is not fixed, and depends on the quality of the initial solution. This initial solution may
generally be found by applying heuristic method.

3.3 Logic Programming

Logic programming represents a sub-paradigm of declarative programming, in which
sentences express facts and rules following formal logic [206]. A sentence in predicate logic
is defined as a finite set of clauses [206], which can be either rules or facts. Facts represent
the knowledge base of the system, which can be queried. In a logic programming language,
rules are written as logic clauses, such as:

H is true if B1,.., Bn are true.

In such a statement, "H is true" is called the head of the rule, while "B1,..., Bn are true"
is called the body of the rule. A fact is then a rule consisting of only a head: "H is true".
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3.3.1 Representation of logic

In a logic programming framework, the relations between the different objects are ma-
terialized as predicates. For instance, if one wants to represent the color of a node in a
graph, we can use a predicate colornode(node, color). This representation is different
from propositional logic, which relies on variables which may be true or false. Besides, in
propositional logic, any fact is unique and therefore must be stored independently from
the others. In predicate logic, facts are represented thanks to quantifiers: what is needed
is the list of objects to which the predicate applies. Predicates are used to build atomic
formulas, also named atoms which state true facts. Examples of predicates stating facts
may be, following a Prolog-like syntax:

hero(heracles).
god(zeus).

enemies(magneto, xavier).

Which can be interpreted as Heracles is a hero, Zeus is a god, Xavier and Magneto are
enemies. These facts are true, and are also atoms, which means they do not depend on
any other logical connectives, i.e. they do not have strict subformulas. The two first facts
contain only one item, while the latter contain two items (magneto and xavier). Thus,
predicates hero and god have an arity of 1, and predicate enemies has an arity of 2.
The arity of a relation thus represents the number of items concerned by the relation.
Predicates can be alternatively noted following the form <name_of_predicate>/n, n be-
ing their arity degree. For the above examples, this notation would be hero/1, god/1, and
enemies/2. Rules, on the other hand, contain a logical relationship, and are built following
the form: Head :- Body. The interpretation of a rule is If the body is true, so is the head.
Examples of rules may be:

immortal(zeus) :- god(zeus).
mortal(socrates) :- human(socrates).

Which represents the statements If Zeus is a god, then Zeus is immortal, and If Socrates
is a human, then Socrates is mortal.
The whole set of items over which the variables of interest may range and that the lan-
guage needs to represent is called the universe of discourse. Predicates establish relations
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between combinations of objects from the universe of discourse. The entities of the uni-
verse of discourse may be represented through terms, which may be variables, noted as
upper-case, or constants, noted as lower-case. Variables represent the whole set of possible
interpretations of the language, which can be infinite. A first step before the resolution
of the problem would be to find a subset of possible solutions composed only of con-
stant terms deducted from the language, instead of all the elements from the universe of
discourse [207].

3.3.2 Prolog and constraints in logic programming

CP aims to provides new approaches to solving discrete optimization problems, while
at the same time being embedded into a high-level programming language. It first ap-
peared in the form of constraints logic programming, with logic programming as the un-
derlying programming language paradigm [200]. One of the main logical and declarative
programming language is Prolog, or PROgramming in LOGics. Its development came to
the end of a long history of research on theorem provers and automated deduction system,
through the 1950s and 1960s. The first version of Prolog was developed by Colmerauer in
1971 [208]. Prolog is based on first-order predicate logic to describe the relations between
items. It has been enhanced with various extensions since its first release, notably from
the constraints logic programming community, to include constraint satisfaction concepts
in the language. Search and backtracking are also built directly into the language, which
greatly facilitates the development of search algorithms. Prolog may also support impera-
tive features when the logical paradigm becomes inconvenient, which allows the language
to exploit deliberate functions’ side effects. It is currently able to process large amounts
of data.

3.4 Answer Set Programming

Answer Set Programming (ASP) is a form of declarative programming oriented to-
wards difficult, primarily NP-hard, search problems [209]. ASP is based on the stable
models semantics of logic programming [210], which applies the ideas of nonmonotonic
logic [211] and default logic to the analysis of negation as failure [212]. A difference with
classic CP approaches, is that in ASP, search problems are reduced to computing stable
models, also called answer sets, and answer set solvers, i.e. software generating stable
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models, are used to perform search. An answer set is defined as a minimal set of atoms
that satisfies the set of rules and facts of the problem [213]. This problem resolution
is similar to a generate-and-test approach, coupling choice rules that describe potential
solutions, a step called grounding, and constraints that eliminate unsuitable potential so-
lutions (fig. 3.2).
The search algorithms used in the design of many answer set solvers are enhancements
of the DPLL algorithm, and as such, process similarly as efficient SAT solvers [209]. The
main advantage of these algorithms is that they are guaranteed to end, as opposed to
the resolution in Prolog [209]. ASP language allows the modeling of a problem relying on
logical predicates, and its syntax is heavily inspired by lparse [214]. lparse was originally
created for answer set solver smodels [215], and its syntax shared strong similarities with
Prolog.
The applications of ASP are numerous, for example in robotics [216], optimization in plan-
nings and diagnosis, as well as in computational biology, to determine phylogenies [217],
design of gene regulation graphs [218], or predict protein structure [219]. ASP also has
industrial applications, notably in employee’s management [220], or e-tourism and e-
medicine [221]. Currently, there are several existing versions of ASP. The version chosen
in this work was the implementation in POTASSCO (Potsdam Answer Set Solving COl-
lection), which may represent the most-used version of ASP. The main software of interest
for this study is clingo [222], which is a combination of two different software, gringo [223],
which is the grounding software, and clasp [224], the solver.

3.4.1 Generation of the search space: the grounding

Theory

As predicate logic can lead to an infinite number of interpretations, it may seem an
impossible task to reach the actual solution of a problem. However, there exists a subset
of interpretations called Herbrand interpretations, in which all constants are assigned very
simple meanings [225]. Under certain conditions, evaluating the Herbrand interpretations
is enough to check the satisfiability of a set of sentences: this is the Herbrand’s theorem.
These interpretations rely on the concept of ground terms [226].
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Figure 3.2 Representation of problem solving in ASP.
The problem is first modeled into a logic program, i.e., is implemented to a computer pro-
gram. Then, this logic program is interpreted by the grounder, which translates the pro-
gram choice rules into a grounding program, composed of models carrying only constant val-
ues, and no variables. This grounding program is then processed by the solver, which elim-
inates the inconsistent models based on the constraints rules within the logic program. At
the end, if the solver finds at least one stable model, i.e. a model whose values satisfy all
the constraints, then it outputs all the stable models as solutions of the problem. From
https://stackoverflow.com/tags/answer-set-programming/info

A set of sentences in a predicates language without quantifier is
satisfiable (verified) if and only if there is a Herbrand model, i. e. a
model containing only ground terms, that satisfies these sentences.

Herbrand’s theorem and ground terms

A ground term is a term that does not contain any variables, but only constant sym-
bols [226]. Similarly, an expression in predicate logic is said to be ground if, and only if, it
contains only ground terms, i.e. the expression does not contains any variables. Ground
terms may be used as a means to reduce the number of models/interpretations to test
for consistency. First, the Herbrand Universe is a reduction of the universe of discourse.
For a set of sentences in predicate logic, with at least one constant object, the Herbrand
universe is the set of all ground terms that can be generated only with the constants of
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the set of sentences [207]. If there is zero constant object, an arbitrary constant can be
added. The Herbrand Universe is then used to obtain the Herbrand base. For a set of
sentences, the Herbrand base is the set of all ground sentences that can be built solely
with constants from the Herbrand Universe [227]. In other terms, it is the set of sentences
r(t1, ..., tn), where r is a n-arity constant, and t1, ..., tn are ground terms belonging to the
Herbrand Universe. The Herbrand base may thus been seen as the logic program using
only constant terms. Finally, a Herbrand interpretation is an interpretation in which: i)
the universe of discourse is the Herbrand Universe, ii) each constant object is interpreted
as itself, and iii) every function symbols is interpreted as the function that applies to
it [225].
The purpose of the grounding step is thus to generate the Herbrand interpretations of
the problems, which would also be called more simply ground models. The generation
of the ground models is performed through the application of choice rules of the logic
program. Once the ground models have been generated, the next step is to check whether
the interpretations satisfy the constraints. Generally, the grounding step is performed by
a dedicated software. In the POTASSCO version of ASP, the grounding software is called
gringo [223]. The set of ground models output by the grounder represents the grounding
program, which is the input for the second software, the answer set solver.

3.4.2 Searching for answer sets

A Herbrand interpretation I would be a Herbrand model M if the elements belonging
to the interpretation satisfy all the sentences of the language, i.e., if for each sentence
of the language, there is a subset of I that validates the interpretation. Thanks to the
Herband theorem, one can also check the consistency and satisfiability of a set of sentences
in a finite time: it would only need to test the Herbrand models. The resolution step is
thus to check iteratively the Herbrand interpretations, and to discard any interpretation
that does not satisfy the set of constraints rules.
The format to write constraints in ASP is a rule without a head, beginning directly with
the operator :-. Thus, an ASP constraint is always seen as a restriction, as a no head rule
always implies that the statement is False. As an example, to write the constraint a ≥ 3,
then the ASP syntax would be :- a < 3., "the value of a must not be strictly inferior to
3". It is however possible to use a negative statement (with the not word) to implement
must-link constraints in ASP. An analogous version of the previous constraint would then
be :- not a >= 3., "the value of a must not not be superior or equal to 3", thus "a
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must be superior or equal to 3". ASP constraints are similar to SAT constraints, and they
are used by the solver to remove models from the grounding program. The addition of
constraints in an ASP program then leads to the reduction of the number of stable models
obtained. However, even efficient constraints will not prevent a high computation time
search, caused by a very large grounding program.
clasp [224] is the ASP solver developed by the POTASSCO lab. It was originally thought
as a tool combining the high-level capacities of ASP with state-of-the art techniques from
the Boolean constraints solving [224]. clasp relies on the Conflict-Driven Clause Learn-
ing (CDCL) algorithm [228], which has been employed for satisfiability checking in SAT
solver. The CDCL algorithm is based, as its name suggests, on clause learning, which
means that, when it meets an inconsistent value assignment, CDCL will keep that in-
formation. This information will then be added as an additional clause to resolve future
inconsistency conflicts (fig. 3.3), allowing pruning of larger sub-trees from the search tree.
The backjumping (instead of backtracking) in the search tree is also guided by the vari-
able which was the source of inconsistency. Thus, it will not necessarily return back to
the previous potential candidate: backjumping is thus said non-chronological.
clasp also supports parallel search using multi-threading with shared memory, parallel
optimization, and includes declarative support for domain heuristics [229]. The optimiza-
tion allowed by clasp is performed after having found a stable model for the problem.
The optimization may thus be considered as a refinement of the satisfiability search, by
adding new constraints that will eliminate further stable models, until it finds an optimal
solution. With clasp, each suitable solution is associated to a score, and the purpose of
the optimization step is to minimize this score [224].

3.5 Model used

3.5.1 Definition

The binning problem is formalized as a constrained clustering problem, coupled with
a bi-objective optimization. The aim of this model is to cluster the contigs such that the
clusters are the most well-defined. Then, the clustering has to be performed such that the
dissimilarity within clusters is the smallest as possible, and the dissimilarity between two
clusters as high as possible. Dao and colleagues have previously studied the formalization
of a constrained clustering approach as a constraint programming problem [230]. The
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Figure 3.3 Clause learning in the 8-queens problem.
Queens are noted with the number of the row they are placed (e.g. queen 1 on row 1). The
numbers in row 6 indicate the assigned queens that the corresponding squares are incompatible
with. In this configuration, it is possible to realise that changing the position of queen 5 will
not resolve the inconsistency, as the cases blocked by queen 5 are also blocked by other queens.
Thus, backtracking to other assignments for the position of queen 5 will just end to a waste
of time. Learning this clause will then allow the search to backjump to queen 4, which is the
closest queen we can move to allow to position queen 6 on D6, to continue to search for further
positions for the remaining queens. In this example, the queens represent the variables of the
CSP, while the queens’ positions represent the values. From [204].

problem was also an optimization problem, in which the objective was to both minimize
the diameter of the clusters formed, and to maximise the distance separating two clusters,
named margins.
Consider a clustering problem consisting in the clustering of n point in k clusters. The
diameter Dc of a cluster c is defined as the maximum distance between two points oi and
oj belonging to c (Equation 3.1).

Dc = max(d(oi, oj)); c ∈ [1, k];O − i, oj ∈ c (3.1)

The margin Mcc
′ between two dictinct clusters c and c′ is defined as the minimum

distance between two points oi and oj, belonging to c and c′ respectively (Equation 3.2).

Mcc′ = min(d(oi, oj)); c < c′ ∈ [1, k], oi ∈ c, oj ∈ c′ (3.2)
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3.5.2 Adaptation to the binning problem

In this work, we adapted the CP-constrained clustering approach to the binning of
contigs, and implemented it in ASP. In order to compute distance between contigs, two
metrics widely used by state-of-the-art binning tools were used: i) the compositional met-
ric, i.e., the TNF distance (Equation 3.3), was used to assess the clusters’ diameters,
and ii) the coverage distance (Equation 3.4) was used to compute the margins between
the bins. Both distances were computed using metabat2 [16]. The definition of the TNF
distance between two contigs p and q is a simple euclidean distance:

TNFp,q =

√√√√136∑
i=1

(pi − qi)2 (3.3)

With pi and qi being the number of occurrences of the i-th tetranucleotide in contig
p and q, respectively, and i ∈ 1; 136. Because of the double strand nature of DNA
molecule, each tetramer has both a forward and reverse version. We consider only the
best lexicographically-ranked tetramer between the forward and reverse versions, which
means that the frequencies of both forward and reverse are added to the same tetramer.
For example, the tetramer ACCT has the reverse version AGGT , so any occurrences of
both ACCT and AGGT in a contig will be counted as ACCT , which is the best tetramer
ranked in the couple. This allows to reduce the size of the TNF vector to compute TNF
distance between contigs from 256 to 136. See also Chapter 2, section 2.2.2 "Unsupervised
binning", p. 33.
The definition of the abundance distance bewteen two contigs p and q is:

abdp,q = 1
2

∫
|φµp,σ2

p
− φµq ,σ2

q
| (3.4)

Which is the unshared area under the curves of the distribution of abundances of the
two contigs, each abundance being assimilated to a normal distribution φ of mean µ and
standard deviation σ.
ASP, as several declarative programming languages, offers the advantage of enumerating
several suitable solutions to the problem. The exploration of several equivalent solutions
to a binning problem may represent a relevant answer to one of the main limitations of
the current binning tools, which is that the output MAGs are consensus genomes. With
ASP, we could in theory find every equivalent consensus genomes by finding all answer
sets, which might then be relevant to capture pan-genomes and identify shared contigs
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and/or genes between equivalent MAGs. Thanks to the search algorithm of clasp, it will
also guarantee to find a stable model, if such a model exists.

3.5.3 Constraints

Single-Copy Genes (SCGs) are genes present in microbial genomes which are consid-
ered to be universal and present in the genome in a single copy (see also Chapter 2,
section 2.2.4 "Quality assessment : from bins to MAGs", p.51). Usually, the presence or
absence of these genes has been used to assess the quality of the reconstructed MAGs [163,
180, 231], i. e., their completeness and their contamination. We integrated the presence of
SCGs within contig’s sequences as contraints of the ASP model. Because of their unicity
within one genome, the presence of SCGs may be translated as a cannot-link constraint:
two contigs must not be placed in the same cluster if they both carry copies of the same
SCG.
Standard quality criteria have been proposed in order to define which bin can be consid-
ered a MAG [179]. Following these criteria, a bin must reach at least a "medium" quality,
i. e., it must reach a completeness of at least 50%, and a contamination level of at most
10% to be considered as a MAG. By adapting these quality criteria to the ASP model, we
could implemented two cluster-level constraints: i) a bin must contain 50% of the total
number of SCGs, and ii) a bin must not have copies of SCGs counting for more than 10%
of the total of the SCGs set.
The estimation of completeness and contamination were formalized in the study of Parks
and colleagues [180]. The estimation of completeness is then:

∑
s∈M

|s∩GM |
|s|

|M |
(3.5)

Where s is a set of collocated marker genes, M is the set of all collocated marker sets
s, and GM is the set of marker genes identified in a genome. Genome contamination is
estimated from the number of multicopy marker genes identified in each marker set:

∑
s∈M

∑
g∈s

Cg

|s|

|M |
(3.6)

Where Cg = N −1 for a gene g identified N ≥ 1 times, and 0 for a missing gene. However
these equations may be simplified, when estimating both the completeness and the con-
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tamination without arranging SCGs into collocated sets. With this simplification, each
marker gene is assigned to its own set, meaning that |s| = 1. That means that the com-
pleteness can simply be measured by counting the number of SCGs within a bin, and that
each duplicated copy of a SCG equally increases the contamination of the bin.
In the binning problem, as the set of SCGs contains the 10 genes to determine the taxo-
nomic affiliation of contigs with the tool mOTUs2 [232], the completeness threshold is 5,
while the contamination threshold is 1. Following the simplification of formulas of com-
pleteness and contamination [180], the completeness constraint may then be formalized
as:

∀C, ∀M,
∑
s∈M

S ∩GM > 5 (3.7)

Where C represents a cluster, M the whole set of SCGs sets, S a SCG, and GM one set
of SCG. "A set of SCG" in this context means a set of SCG assigned to one particular
taxonomic lineage. While the contamination constraint may be formalized as:

∀C, ∀M,
∑
s∈M

∑
g∈s

Cg < 2 (3.8)

Where C is a cluster,M is the whole set of sets of SCGs, S is a SCG, g is a copy of S, and
Cg represents the SCGs found in the cluster C. It should be noted that all pairwise TNF
and abundance distance have been computed beforehand, using metabat2, because of its
fast computation. The distances values obtained were then rounded, as ASP works only
with integers. Indeed, the computation of the distances through ASP would represent a
tremendous computational effort, and maybe would not had even been possible. Even
though it removed a sensible amount of work to the whole procedure, it was at the cost of
two drawbacks. First, the predicates for the distances had to be written on disk, represent-
ing 2∗n2 predicates in total, with n the number of contigs. Thus, when the datasets began
to reach a thousand points, both files containing the predicates distances weighted several
megabytes. These values were still easily manageable, but one should remember that the
metagenomic datasets are generally composed of tens to hundreds of thousands contigs.
Second, the parsing and the integration of these files also took time, representing a hard
limit under which the grounding time could not go below. Nevertheless, these drawbacks
were still largely compensated by the gain of time allowed by preliminary computation of
the distances.
The assignment rules limited a contig to be put into one unique cluster, in order to limit
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the number of combinations. With this minimal model, the answer sets were composed
of clusters containing a unique contig. Indeed, because of the objective functions of the
model, the best solution would be to put each of the k contigs, k being the number of
clusters, with the highest abundance distance with the others in one of the k bins. Each
bin diameter would be null, and the margins could not grow further. Each contig added in
a solution tends to increased the value of diameters, and tend to reduce the value of the
margins, going against the objective function. To avoid to reach these irrelevant solutions,
several constraints were added in the model, concerning the contents of the clusters. These
constraints were: i) a cluster must contain at least two contigs, ii) the sum of the lengths
of the contigs within any cluster must reach a minimal threshold, and iii) all the contigs
have to be clustered. Of these three constraints, the third has the most powerful effect on
the limitation of the number of combinations. Because the dataset used for testing the
model contained very long contigs, the first and second constraints are less efficient to
filter unsatisfiable solutions. Indeed, in case of a contig with a length already above the
length limit, the assignation of this contig to a bin cannot avoid that this bin contains
only two contigs. The first and second constraints are however not removed, because the
presence of redundant constraints may still help to fasten the resolution.

3.6 Tests and results

3.6.1 Input data

As already stated above, both the pairwise TNF and abundance distances between
contigs has been computed beforehands, through metabat2 software. The model is thus
composed of a series of predicates facts representing these input data. The 2-ary predicate
contig/2 associates a contig identifier with the length of the contig, and was written in
the ASP code as:
contig(C, L).

With C an integer ranking from 1 to N , N being the total number of contigs, and L

the length of contig C. C is randomly chosen based on the order of the contig in the
assembly fasta file. It thus does not represent any biologically relevant information, and is
guaranteed to be unique. The distances are represented with 3-ary predicates tnf/3 and
abd/3:
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tnf(C1, C2, T).
abd(C1, C2, A).

Where C1 and C2 representes two distinct contigs (i.e., C1 6= C2), and T and A the value
of the TNF distance and abundance distance between the two contigs, respectively. The
information of the presence of the SCGs is also represented with a simple 2-ary predicate
scg/2:
scg(C, G).
With C being the identifier of the cluster, and G being an integer identifier number for
the SCG.

3.6.2 First model

The main rule of the ASP model was the assignment rule, which assigns a contig to a
bin. As the model clustered each contigs only once, the assignment rule was implemented
in ASP as:
#const k.
bin(1..k).
1{att(B,C) : bin(B)}1 :- contig(C,_).

The first line sets the constant k, which represents the number of clusters, using to the
statement #const. Constants help to increase code readability, and also can be man-
aged without modifying the code, directly from the command line, e.g., the gringo option
–const c=t allows the user to set the value of the constant c to t. In this example, k has
no value, so each run with gringo needs to set a value for k using the command line, oth-
erwise, the run would simply fail. The line 1{att(B,C) : contig(C,_)}1 ensures that
for each contig, the number of bins to be attributed could not go beyond or below 1, as
this limit is set both in front of the rbacket of the line, which represents the minimum
number of clusters to assign a contig to, and the value after the closing bracket repre-
senting the maximum number. The second line then generates k predicates bin/1, each
with a different value between 1 and k. In the third line, the assignment rule generates
the predicate att/2, which establishes the relationship between a contig C and its bin
B. The underscore character simply means that the value present at this position is not
considered in the choice rule.
The computation of the diameter of each cluster was translated into ASP program, using
TNF distance:
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distancetnf(C1,C2,T,B) :- att(B,C1), att(B,C2), C1<C2, bin(B),
tnf(C1,C2,T).
diam(B, D) :- bin(C1), bin(C2), D = #max{T : distancetnf(C1,C2,T,B)},
D!=#infimum.
The first line generates the predicate distancetnf/4, which establishes the relation be-
tween two contigs C1 and C2 belonging to the same bin B and having a TNF distance
of T . The second line performs the search for the diameter of a bin B, i.e., the maximum
TNF distance between all contigs belonging to B, thanks to the #max statement. The
statement #infimum is the built-in statement that computes the greatest lower bound of
all D values. The computation of the margins follows a similar formulation:
distanceabd(C1,C2,D) :- att(C1, B1), att(C2, B2), B1!=B2, bin(B1),
bin(B2), C1<C2, abd(C1,C2,D).
margin(C1,C2,M) :- bin(C1), bin(C2), M = #min{D : distancediff(C1,C2,D)},
M!=#supremum, C1<C2.

The first line generates the predicate distanceabd/3, which extracts the value D of
the abundance distance stored in predicates abd/3 of two contigs C1 and C2, belong-
ing to bins B1 and B2 respectively, B1 and B2 being strictly different bins. The second
line then processes to search for the minimal value M among all values D in predicates
distanceadb/3 for the pair of bins B1 and B2. The search for minimal value relies on
ASP included statement #min. The #supremum statement is the built-in statement that
computes the least greater bound of values of M .
As stated previously (see section 3.4.2 "Searching for answer sets", p.72), clasp is also
able to resolve optimization problems, and as such, optimization statements are already
included in ASP. The implementation of the objectives of the problem are then:
#minimize{D@1 : diam(C, D)}.
#maximize{M@1 : margin(C1, C2, M)}.

The value after the @ represents the priority of the objective function, the objectives being
applied by priority ranked by ascending order. Because the model does not favour one or
the other objective, the priorities stayed equal.
The constraint related to the minimum sum of contigs lengths was written in ASP as
constraints rules:
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#const lengthmin=200000.
attlengthmin(B,C,L) :- att(B,C), contig(C,L).
:- bin(B), not #sumL : attlengthmin(B,_,L)>lengthmin.

the first line created the constant lengthmin. Then, the second line creates a predicate
attlengthmin/3, which stores the information of the bin B attributed to the contig C,
and its length L. As these information were already present in the fact rules, this line
may look useless. Its purpose is to simplify the writing of the third line, which represents
the constraint itself. This constraints forbids a bin B if the sum of length of all contigs’
length in it does not reach lengthmin.
Our first attempts may be resumed as a calibration step, as we did not have any insight
on the time complexity of the resolution of the binning problem with ASP. We then just
tested the most simplest model to randomly-generated toy datasets of growing size, from
200 contigs to 800 contigs. The number of clusters k was set to 5. The ASP model did
not scale at all, with computation time quickly reaching hundreds of hours to obtain an
optimal solution when the number of contigs grew above 200 (Table 3.1). The time to list
all stable models i.e., all solutions) grew even more, with an already unreachable time for
a dataset containing as low as 400 points. If this was confirmed, this framework would not
represent a relevant approach to the binning problem, as metagenomic datasets generally
contain several hundreds of thousands contigs.

Contigs T1 T2
200 7h28 37h28
400 128h unknown
600 379h unknown
800 975h unknown

Table 3.1 Resolution time for binning randomly-generated toy datasets.
For each attempt, the contigs had to be binned in 5 clusters. Contigs = number of contigs within
the toy dataset; T1 = Time to find one optimal stable model; T2 = Time to find all optimal
stable models.
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3.6.3 Improvements of the model

ASP lists all the possible solutions, not considering permutations of predicates in so-
lutions. Thus, two solutions consisting of clustering all the contigs in the same clusters,
but identifying the clusters with different ids, lead to the enumeration of two different
solutions. A straightforward method to avoid parallel solutions is to attribute contigs to
clusters depending on the rank of the contig identifier. Therefore, contig 1 will be clustered
in cluster 1, then the first contig to not be clustered with contig 1 will be put in cluster
2, etc. Because the identifier of the first contig to put in cluster 1 will never change (it
will always be contig 1), this specific case can even be written as a fact, to help to further
fasten the generation of answer sets.
During the first attempts, the maximum TNF distance and the minimum abundance dis-
tance were computed with the #max and #min statements from ASP. Discussions with
Flavio Everardo, a post-doctoral researcher from Schaub’s group at Potsdam University
(which is the main group involved ine the development of the POTASSCO software) have
lead to a new formulation of the maximum and minimum formula.
Statements #count and #sum in ASP may become relatively problematic, because of the
number of predicates generated. The first implementation of the ASP model, using these
statements to enumerate predicates, has then a high computation time. The step to fasten
in this case was the grounding, even though, because of the very high number of ground
models generated, enhancing the implementation would also reduce the resolution time.
Based on these remarks, the implementation of the avoidance of parallel solutions relied
on the following lines:
aux_att(B,C) :- att(B,C).
aux_att(B,C-1) :- aux_att(B,C), C>0.
attmax(B,C) :- aux_att(B,C), not aux_att(B,C+1).
attmin(B,C) :- att(B,C-1), contig(C,_).
attmin(B,C+1) :- attmin(B,C), attmax(B,Cmax), C<Cmax.
attmin(B,C) :- attmin(B,C), not attmin(B,C-1).
:- attmin(B1,C1), attmin(B2,C2), B1<B2, C1>C2.

In the first three-lines block, rules looks for the maximum contig id present in a bin B.
This maximum contig id is captured in the predicate attmax/2. This value Cmax is then
used as a limit to search for the minimum contig identifier present in B: at line 5 the
contig identifier is captured in attmin/2 predicate if, and only if, it is strictly less than
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Cmax. If any high enough value (i.e., any value greater than or equal to the number
of contigs in the dataset) may be chosen instead of Cmax, Cmax is ensured to be the
lowest possible value to list all contigs identifier from a given bin. Without this limit,
the line 6 would result in an infinite loop during the grounding, forbidding the resolution
to continue further. The same remark applies to line 2, with the difference that a lower
threshold value for contigs identifier is easier to set (C > 0). With this implementation,
the research for the minimum contig identifier in each bin can be performed in linear
time, depending only on the number of contigs in the dataset, as it only needs to list the
contigs present in each bin. The last line represents the anti-parallel solution constraint
itself, forbidding that the minimal contig identifier C1 from the bin B1 is greater than
the minimum contig identifier C2 from bin B2, if B1 was less than to B2.
Rules determining the computation of diameter and margins were also modified. The im-
plementation for the computation of the diameter then became:
diam(B,D) :- att(B,C1), att(B,C2), C1<C2, bin(B), tnf(C1,C2,D).
diam(B,D-1) :- diam(B,D), D>0.
maxDiameter(B,D) :- diam(B,D), not diam(B,D+1).

With the first line generating a predicate diam/2, extracting all distances D between pairs
of contigs C1 and C2 belonging to the same bin B. The second line then processes to
find the maximum value among all possible values of D in diam/2, and then stores that
value D in the predicate maxDiameter/2. Besides including the enhanced search for the
minimum value, these lines also have the advantage to not relying on an intermediate
predicate like distancetnf in the previous implementation. The implementation for the
margin is done in a similar fashion:
margin(M) :- att(B1,C1), att(B2,C2), bin(B1), bin(B2), B1<B2,
abd(C1,C2,M).
margin(M+1) :- margin(M), M<100.
minMargin(M) :- margin(M), not margin(M-1), M>-1.

With the first line generating the predicate margin/3, which extract all distances M be-
tween two contigs C1 and C2 belonging to two different bins B1 and B2, respectively.
The second line then computes the search for the minimal values amongst all possible
values of M , and the third line stores this minimum M in minMargin/3, once found.
Similarly as the new implementation of the diameter, removing of intermediate predicate
distanceabd/3 allowes to reduce the number of predicates to produce to generate the
grounding program, further fastening the grounding. A particularity with the two imple-
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mentations is that the upper value of the abundance distance, and the lower value of the
TNF distances, are already known. Thus, contrary to the search for the minimum (or
maximum) contig identifier present in a bin, it is unnecessary to perform an intermediate
search for these values. Thanks to these modifications in the implementation, our ASP
model was able to perform the clustering of a toy dataset composed of a hundred contigs
in a couple of seconds, and with a toy dataset of a thousand contigs in twenty minutes,
far below the preliminary calibration tests.

3.6.4 Implementation of new constraints in ASP

The model was further enhanced with the implementation of SCGs-related constraints.
At first, the SCGs have been introduced as a cannot-link constraint: two contigs must not
be put in the same bin if they share a copy of the same SCG. One implementation in ASP
is:
:- scg(C1, G) ; scg(C2, G) ; att(B, C1) ; att(B, C2).

At this stage, all the predicates present in the constraint had already been generated, so
this line would not have any impact on the grounding. The line just stated that all models
in which two contigs C1 and C2, binned in the same bin B and carrying a SCG with
the same identifier G, would be unsatisfiable. This simple constraint was however highly
stringent, and the standard characterisation of MAGs should allow some tolerance to the
presence or absence of SCG in a putative MAG (see section 3.5.3 "Constraints" p.76).
The implementation in the ASP program of the completeness constraint as a cluster-level
constraint was:
#const threshold_completeness=5.
scg_bin(C,G) :- att(B,C), scg(C,G).
:- bin(B), not #countG : scg_bin(B,G)>threshold_completeness.

The second line is a rule, with the purpose to enumerate all the SCGs identifiers G be-
longing to the same cluster C. The third line is the constraint itself, and it forbids a
cluster to not reach the threshold_completeness, which was fixed beforehands. The
contamination constraint as a cluster-level constraint was implemented as follows:
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#const threshold_contamination=1.
scg_bin_duplicate(B,G1) :- att(B,C1), att(B,C2), scg(C1,G1), scg(C2,G1),
C1<C2.
:- bin(B), #countG : scg_bin_duplicate(B,G)>threshold_contamination.

The second line is a rule that enumerates all the duplicated copies Gij of the same SCG
Gi, for all SCGs Gi carried by any contig j within the cluster C. The third line represents
the constraint itself, and forbids a cluster to reach a level of contamination strictly supe-
rior to the threshold. In this case, a bin then must not contain more than 1 copy of any
SCG.
As with the anti-parallel constraint (see p.82), the statement #count does not affect the
computation time, because of the presence of the inequality sign.

3.7 Comparison with metabat2

Once both grounding and resolution times reached acceptable levels for medium-size
toy datasets, our enhanced ASP model was compared to the results of metabat2. The
selected dataset to perform this comparison was composed of 1183 contigs, belonging to 10
genomes from the CAMI [175] high complexity dataset. The CAMI dataset is a simulated
metagenomic dataset, which has been used as a standard to perform comparison between
MAGs reconstruction tools [146, 175]. The source genomes were selected in order to obtain
all the 10 mOTUs marker genes in each expected genome.
To perform the comparison between metabat2 and our ASP model, we computed the
recall, the precision and F1-Score of each approach. The recall is defined as:

Recall = number of correctly binned contigs

number of contigs
(3.9)

The precision is computed as:

Precision = number of correctly binned contigs

number of binned contigs
(3.10)

And the F1-Score is defined as:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3.11)
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Even though its computing performances had been dramatically fastened with the en-
hancement of its implementation, our ASP model still could not compete with the swift-
ness of metabat2. Indeed, our ASP model took more than 15 minutes to output an optimal
solution, while the latter performed binning in a mere couple of seconds.
The precision of the binning was also in favor of metabat2. However, metabat2 found only

Bins Ru Co Ba Cl Pa Rh Sh SK340 SK678 Sy Total bin
bin1 0 0 0 0 196 0 0 0 0 0 196
bin2 0 0 187 0 0 0 0 0 0 0 187
bin3 0 0 0 0 0 0 74 0 0 0 74
bin4 6 0 0 58 0 0 0 0 1 0 65
bin5 0 25 0 0 0 0 0 0 0 0 25
bin6 56 0 1 0 1 0 0 0 0 0 58
bin7 0 0 0 0 0 0 0 135 94 0 229
bin8 0 0 0 0 0 108 0 0 0 0 108
bin9 0 0 0 0 0 0 0 0 0 159 159
unbinned 11 8 18 0 11 3 15 1 3 11 81
Total genome 73 33 206 58 208 111 89 136 98 170 1182
Table 3.2 Metabat2 binning results.
Number of contigs binned per original genome. Lines: Metabat2 output bins, columns : Genomes
of origin. Metabat2 only retrieved 9 bins out of 10 original genomes, as it merged SK340 and
SK678, two closely related strains, into a single bin. Metabat2 also failed to bin 81 contigs,
generating a trash "unbinned" bin. Recall: 0.84 ; Precision: 0.91 ; F1-Score: 0.84.

9 genomes out of the 10 expected genomes, because of the presence of two strains (SK340
and SK678) related to the same species in the dataset, which metabat2 was unable to
discriminate (Table 3.2). Another major difference between the two approaches was that
metabat2 was not able to cluster all the contigs, leaving 81 contigs put in an "unbinned"
bin. Because our ASP model forces the clustering of all the contigs, and because the num-
ber of clusters on which to perform binning was fixed beforehands, it did not have these
two disadvantages. This result was however more than just an artifact due to the config-
uration of the model, as the clustering of the contigs belonging to these two genomes was
performed accurately, showing that the ASP model was able to discriminate the contigs
belonging to these two strains. Considering this point, the overall binning performances
of metabat2 were superior to the ASP model, exhibiting higher recall, precision and F1
Score than ASP binning. The ASP binning resulted in more mixing of contigs belonging
to several expected genomes, and more scattering of contigs from the same genomes in
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different bins (Table 3.3) than the binning performed by metabat2.

Bins Ru Co Ba Cl Pa Rh Sh SK340 SK678 Sy Total bin
bin1 0 27 0 0 0 0 0 0 0 0 27
bin2 0 7 0 36 0 0 0 0 0 0 43
bin3 9 0 0 22 0 0 0 0 0 0 31
bin4 38 0 0 0 0 0 0 0 0 0 38
bin5 26 0 0 0 0 0 89 0 1 0 116
bin6 0 0 0 0 0 0 0 0 95 0 95
bin7 0 0 0 0 0 110 0 0 2 0 112
bin8 0 0 0 0 0 1 0 136 0 26 163
bin9 0 0 0 0 0 0 0 0 0 77 77
bin10 0 0 206 0 208 0 0 0 0 67 481
Total genome 73 34 206 58 208 111 89 136 98 170 1183
Table 3.3 ASP model binning results.
Number of contigs binned per genome of origin. Lines: ASP output bins, columns : Original
genomes. The model was forced to cluster all the contigs, i.e. it did not have the capacity to
discard any contig. The model was also given the number of clusters beforehands. Even with
these advantages, the binning performances were inferior to the performances of metabat2.
Recall: 0.71 ; Precision: 0.71; F1-Score: 0.71.

3.7.1 Estimating the number of bins beforehand

Instead of giving the exact number of contigs on which to perform binning to the ASP
model, a different approach was tested. In this new approach, the number of expected
genomes was not fixed to 10, but estimated using SCGs. We thus counted the number of
contigs carrying each of the 10 SCGs in the dataset. An estimator of the possible number
of bins was the sum of the number of contigs carrying one of the 5 lowest-abundant
SCG within the dataset. This estimator, which was not precise, offered the advantage to
compute the theoretically maximum number of bins one could expect to obtain considering
the SCGs features. Following this approach, the number of clusters was estimated to be 50.
These clusters were integrated in the model as putative bins, on which cluster constraints
were not applied. These putative clusters were then considered as true bins if and only if
contigs were assigned to them, and these true bins had to satisfy all the bins constraints.
Thus, this new framework needed the addition of a new predicate putative bin/1 and a
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new rule to obtain bin/1 predicates, which increased the complexity of both the grounding
and the resolution steps:
#const k=50.
putative_bin(1..k).
1{att(B,C) : putative_bin(B)}1 :- contig(C,_).
bin(B) :- att(B,_).

The first three lines are just the same form than the previous assignment rule. But the
fourth line, then, generated the predicate bin/1 if a putative bin had at least one contig
attributed to it, i.e., a putative bin B was considered a true bin if there was at least one
predicate att/2 containing B. The complexity of the model thus grew sufficiently enough
to fail the resolution, because of a too high number of grounded models.
In order to assess the effect of the number of bins on the resolution time, we used a reduced
dataset composed of 350 contigs, to be clustered into 25 bins. The whole execution time
of this framework was 4h, reduced to 25 minutes thanks to clasp multi-threading.

3.7.2 Unbinned contigs from metabat2

To reduce the number of contigs to cluster, an approach would be to use the logic
programming framework as a post-processing step to enhance results obtained from an
established binner. We thus started from the clustering results of metabat2, with the
objective to cluster only the unbinned contigs. Because of the reduced size of the dataset,
these unbinned contigs represent a minor proportion of the contigs set.
Even after diminishing the number of contigs to cluster with ASP, it still needed to process
information from all existing contigs, notably the already-clustered contigs. As such, the
grounding time remained barely affected by this change of methodology. Our ASP model
integrated the whole binning result of metabat2 beforehand, and each metabat2 bin was
assigned to an original genome, based on the maximum number of contigs belonging
to that genome. For the contigs belonging to the two strains SK340 and SK678, which
were merged into a single bin by metabat2, the bin was identified as SK. The results
show that the model did not perform binning with high precision, as recall, precision and
F1 score only reached 0.13. The binning thus resulted in a high number of ill-assigned
contigs (Table 3.4). Because of the lower number of points to classify, the resolution
time significantly plummeted. In order to look for contigs which would be assigned to
different clusters, several binning solutions were explored. We identified the unbinned
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contigs belonging to genomes Sh, SK678 and Sy to be assigned to different bins through
several solutions (Table 3.4). A main limitation of the ASP model was that the unbinned
contigs had a high TNF distance with all the other contigs, with no means to discriminate
between contigs belonging to the same genome or to a different genome.

Bins Ru Co Ba Cl Pa Rh Sh SK340 SK678 Sy
Bin Ru 0 0 0 0 1 0 0 0 0 0
Bin Co 0 1 0 0 1 0 0 0 0 0
Bin Ba 0 0 0 0 1 0 [1,12,6.5,12] 0 [0,1,0.5,1] 0
Bin Cl 0 0 0 0 1 0 0 0 0 0
Bin Pa 0 0 18 0 3 0 [0,10,5,10] 0 0 [0,2,1,1]
Bin Rh 0 0 0 0 1 0 0 0 0 0
Bin Sh 11 7 0 0 1 3 [3,10,6.5,6] 1 [2,3,2.5,1] [9,11,10,1]
Bin SK 0 0 0 0 1 0 0 0 0 0
Bin Sy 0 0 0 0 1 0 0 0 0 0
Total genome 11 7 18 0 11 3 15 1 3 11
Table 3.4 ASP model on metabat2 unbinned contigs.
Number of contigs that were left unbinned by metabat2, per expected genome. Lines: Metabat2
bins, assigned to expected genomes, with the expected genome assigned being the genome from
which the maximum number of contigs in the metabat2 bin belong to; columns: Expected
genomes. The results are summarized from several obtained solutions, with some contigs be-
ing assigned to different bins through several solutions. The different contigs assignments are
shown in brackets, with minimum number of contigs, maximum number of contigs, average num-
ber of contigs, and standard deviation, respectively. Recall: 0.13; Precision: 0.13; F1-Score: 0.13.
Recall and Precision shared the same value because the model was forced to bin all the contigs.

3.8 Discussion

The work presented in this chapter is a first attempt to formalize the binning process
as a constraint logic programming problem. The purpose was the possible exploration of
several solutions of the problem, in order to adress limits of previous binning approaches.
Previous studies have already applied constraints to guide the binning of contigs [156]
and have formalized constrained clustering as a CP problem [230]. Thus, we knew this
framework could possibly be applied to the problem of binning of contigs into MAGs. We
chose more specifically ASP to implement this binning model, for its possible application
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to large combinatorial problems.
The application of the binning problem into ASP was not simple. First, problematic imple-
mentation heavily hindered the resolution of binning, even with very small toy datasets.
Discussion with members of Torsten Schaub’s group at Potsdam University, in charge
of the development of POTASSCO software, helped to deepen our understanding of the
language statements, dramatically fastening the problem resolution. Despite these im-
provements, its performance, both in terms of computation time and accuracy, remained
far below the performances exhibited by a binning tool from the literature, metabat2.
The ASP binning model was applied to a small dataset, composed of contigs belonging to
known original genomes, subsampled from a standard simulated dataset. We then com-
pared the results of the ASP model to metabat2 [16], which is currently the binning tool
providing the best computation performance, and the best binning efficiency. The com-
parison was much in favor of metabat2, notably in terms of computation time. However,
computation time was not considered as a major point, at least as long as the problem
can be solved in a humanly, feasible time; besides, the objectives of this work were to
have a complete resolution, and to obtain several solutions to explore. However, using our
current models, even the efficiency of the binning processed by the ASP model was below
the efficiency of metabat2 binning (Tables 3.2, 3.3). An interesting point however was
the inability of metabat2 to detect two genomes belonging to two closely related strains,
this drawback being absent from the ASP binning results. Metabat2 merged the contigs
belonging to the two genomes SK340 and SK678 into one unique genome, because of the
small TNF distance existing between contigs of these two genomes. If the ASP model suc-
ceeded to discriminate between contigs belonging to one of these two genomes, it should
be emphasized that the ASP model preliminarily knew the number of bins. It was also
forced to bin all the contigs, and to not leave a bin empty. Even after acknowledging
this bias, binning results showed that these two genomes were almost perfectly recovered
into bins (Table 3.3). Contigs from the genome SK678 were the most perfectly binned
contigs by the ASP model, with only 3 contigs dispatched in other bins, and with the bin
containing the majority of the contigs not being contaminated by alien contigs. This may
represent a clue of a strong discriminating effect of the use of SCGs constraints during
the binning, as metabat2 does not display any SCG feature in its binning algorithm.
Removing the initial information of the number of bins to the ASP model had been inter-
esting. In this new framework, the ASP model was instructed about a number of potential
bins. These putative bins would not have to be filled, like in the previous formalization,
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but instead, the model had to try to bin the contigs into a certain amount of bins, and
then removed the unused putative bins. Because of the estimation of the maximum of pu-
tative bins to consider was too high, reaching 50, the resolution was not possible. In this
case, the resolution generated a too high number of ground models to explore, reaching
the physical upper limit of the number of combinations that clasp could possibly handle.
Thus, even increasing the number of threads to perform resolution would not help. In
fact, it allowed us to observe the strong effect of the number of bins on the resolution
computation time. Thus, with a dataset composed of only 1183 contigs, even testing 25
putative bins resulted in a resolution failure, again because of a too high number of mod-
els to search. Attempts based on a smaller dataset composed of only 300 contigs and 25
putative bins successfully reach an optimal solution, but at the cost of a long resolution
time. The model was also unable to keep only a number of bins equal to the number of
original genomes, and kept all the 25 putative bins in the stable models output.
Application of the model as a post-processing step, in order to bin only the contigs left
unbinned by metabat2, output imprecise results (Table 3.4). The main explanation for
this decline in performance was the high TNF distances between each of the unbinned
contigs with all the other contigs, even those belonging to the same expected genome.
Another explanation may be the softening of the constraints of the model, in order to
process with such reduced dataset, limiting their effectiveness.

3.9 Conclusion & Perspectives

There are many perspectives to this work. First, in order to reduce the grounding
time, which would result in resolution time reduction, the input data might be filtered,
before clingo processes them. A possible approach would be to preliminary remove some
contigs from the dataset. This elimination would be based on a distance threshold, and
would replace a constraint of the model. However, such a method might be dubious, as a
distance constraint may help to find inconsistent models better. Besides, the application
of the ASP model to the unbinned contigs could already be consider as a data filtering,
as the binning had to be performed on only 8% of the contigs. Finally, the number of bins
represented a harder barrier for the resolution that the number of contigs.
The addition of more constraints would definitely help the resolution step. A main limit of
the ASP model was the small number of constraints, with only the SCG constraints and
the bins size constraints. However, the addition of a constraint unrelated to composition
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or abundance distance would result in the addition of more input data, resulting in an
increased parsing time.
An interesting development would be to use the Constraint ASP (CASP) [19] paradigm
in place of ASP. CASP, as it name suggests, is an adaptation to a CP resolution problem
implemented in ASP: it would then follow a resolution step closer to classic CP resolution.
CASP would notably allow to eliminate the grounding step [18], which would allow to
gain a sensible computation time for a problem resolution.
While there are still paths to explore related to this work, a major drawback remains
that the clustering of high amount of data represents a hard combinatorial problem,
which would still exceed the scaling capacities of ASP. Besides, clustering literature in
ASP seems nonexistent. We nevertheless hope that this introducing formalization of the
genome binning problem into a logic programming framework would serve as a peliminary
step for future development.
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Chapter 4

MAGNETO: AN AUTOMATED

WORKFLOW FOR GENOME-RESOLVED

METAGENOMICS

In this chapter, we present MAGNETO, a MAG reconstruction
workflow which includes an unsupervised co-assembly module.
First, we will present the context that led to the development of
the pipeline. Secondly, we will compare the performance of our co-
assembly module, which computes distance between metagenomes
using their nucleotidic composition, against an approach relying
on geographical distance. Last, we will compare four different
assembly-binning strategies to reconstruct MAGs. This work was
the subject of an article [31]

Preamble

.

4.1 Context

Genomes are a valuable resource for characterizing and understanding the diversity,
ecology and evolution of microbial organisms in the laboratory as well as in natural
environments. As culture-based approaches have been historically used to recover genomes
and enrich reference databases, current knowledge from most reference bacterial genomes
come from axenic cultures. However, despite the improvement of culture-based approaches
to cultivate novel microorganisms, the number of organisms that can be isolated and
cultivated remain mainly constrained by specific growth conditions. Depending on the
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considered environment, it is estimated that a proportion of only 0.1 to 1% of all microbial
genomes could be cultivated [233, 234].

The rise of metagenomic studies, thanks to the rapid development of high-throughput
shotgun sequencing, has allowed direct access to the diversity and functional potential of
naturally occurring microorganisms, bypassing the cultivation bottleneck. For more than
a decade, various studies have reconstructed genomes from metagenomes and contributed
to describe thousands of novel microbial clades belonging to diverse environments, such
as in the human gut [15], in soils and in aquatic environments [12, 13].

The reconstruction of these draft genomes, commonly called Metagenome-Assembled
Genomes (MAGs), has now become a common approach, with numerous software devel-
oped during the last decade [16, 24, 109, 170]. As for the reconstruction of genomes from
single organisms, MAG reconstruction can be split into two main steps: first, the assembly
of the reads obtained from the sequencing into longer sequences called contigs; second, the
binning of these contigs into MAGs, mainly using their compositional and/or abundance
similarities. However, MAGs reconstruction can face several limitations including gaps,
sequencing errors, local assembly errors, contigs chimeras and bin contamination, i.e. the
inclusion of contigs belonging to different genomes in the same bin. The binning of con-
tigs may also miss genomic regions in which nucleotidic composition significantly differs
from the average genomic composition, such as ribosomic RNA regions, or mobile ele-
ments [235]. These limitations can be partially addressed by several quality checkpoints,
misassemblies detection, and manual curation [182].

In addition, low abundance organisms are usually harder to recover, due to limited
reads information during the assembly process [137]. When shallower sequencing is per-
formed (i.e. when the number of bases output by the sequencer), reads from low-abundant
genomes will be rare, and thus their assembly into contigs will be more difficult, as assem-
blers tend to consider these reads as erroneous and discard them. A common approach to
increase the abundance of rare reads is to adapt the assembly strategy, that is not assem-
bling a unique metagenomic sample (single-assembly), but co-assembling several samples
together. Co-assembly will then tend to increase the number of occurrences of rare reads,
and consequently incorporate them into resulting contigs, thereby capturing a higher frac-
tion of the diversity within the samples. Co-assembly strategies have been instrumental
for recovering higher numbers of MAGs [5, 110]; however, this approach increases the
probability to generate fragmented assemblies [137, 175].
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The volume of sequenced products output by a sequencer depends
on the initial supplied quantity of nucleotidic products to perform
the sequencing. Coupled with the aimed sequencing coverage, i.e.
the number of times the same nucleotide is sequenced, these both
reduce the fraction of the actual genomic material of the microbial
community to be present in the sequencing products. Both these pa-
rameters may impact the downstream analysis, impacting notably
individual genome reconstruction[47, 48] and gene detection [236].

Sequencing effort & filtering effect

The genome binning process consists in classifying contigs usually based on similarities
of their sequence composition, their abundance, or their taxonomic affiliation. In most
existing software, binning is performed using two main metrics, namely sequence compo-
sition [109] and contigs abundance [24]. Sequence composition is defined as the frequencies
of all tetranucleotides within the contig sequence, called TNF (for TetraNucleotide Fre-
quency). The abundance (or co-abundance) represents the mean vertical coverage of the
contig in one (or several) sample(s) (see also: Chapter2, section 2.2.2 "Unsupervised bin-
ning", p.45). Other metrics, such as taxonomic affiliation of the contigs, may also be used
to determine which contigs belong to the same bin [156]. The principal differences between
existing binning softwares usually rely on the algorithm used to group contigs into genome
bins. Most successful software have used density-based clustering [171], Gaussian mixture
models [24], affinity propagation [237], or graph clustering [16]. Other methods can also
perform binning on genes rather than contigs, relying on the presence of co-abundant
genes within metagenomes, such as canopy clustering [145] and MSPminer [29]. The ob-
jects reconstructed by these methods may not be qualified as MAGs, and are commonly
referred as MetaGenomic Species (MGS) and Co-Abundance gene Groups (CAGs).

Extracting knowledge from raw metagenomics data requires to handle several spe-
cific tasks, from assembly to gene calling and annotation, each of them often performed
using dedicated software. Users commonly face choosing, configuring, and running differ-
ent tools, which can be challenging and time-consuming. Recently, several metagenomics
workflows have been developed [21, 22, 26, 238], often using specific default parameters
for each integrated software. However, these workflows usually suffer from limits towards
either the assembly step or the genome binning step. In workflows allowing to perform
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co-assembly, sets of samples to co-assemble have to be determined and manually speci-
fied by the user, implying some a priori knowledge about the microbial ecosystem under
study. Besides, only a single workflow [238] allows the user to compute co-abundances from
metagenomes that have not been included in the assembly. As computing co-abundance
profiles of contigs from multiple metagenomes may increase the precision of the met-
ric [16, 239], the impossibility to compute large-scale co-abundance may be considered a
limitation of these workflows.

In this chapter, we present MAGNETO, a fully automated workflow for genome-
resolved metagenomics, implementing a co-assembly module that integrates a non-supervised
method to define sets of samples to co-assemble without a priori knowledge. It also in-
cludes complementary strategies to compute abundance metrics from one to nmetagenomes,
even if they do not participate in the assembly process. In this study, we tested our
co-assembly module on a set of marine metagenomes, against a co-assembly relying on
existing knowledge. We also benchmarked four different assembly-binning strategies for
MAGs reconstruction, on diverse datasets ranging in complexity, from a mock dataset
representing a small bacterial community to human gut microbiome communities.

4.2 Design and implementation

MAGNETO is a Snakemake [240] workflow connecting open-source bioinformatics soft-
ware, all available from Bioconda and conda-forge. Snakemake was chosen for its flexibility,
its capacity to run both locally and on clusters, and its Conda management automating
software installation. MAGNETO includes several tools designed for metagenomic stud-
ies. First, reads trimming is performed using fastp [241] and FastQ Screen [242]. The
co-assembly module relies on Simka [243], which estimates metagenomic distances be-
tween samples based on their k-mers composition. MEGAHIT [125] then performs reads
assembly/co-assembly. We use MetaBAT2 [16] to bin contigs, and we assess the quality
of bins using CheckM [180]. The de-replication of bins into MAGs (bins of at least high
or medium quality) is performed using dRep [193]. Notably, MAGNETO can also be used
to establish gene catalogs, to better capture metagenomic gene diversity by producing a
non-redundant set of genes through sequence clustering at a user-defined sequence iden-
tity cutoff (e.g. 95%) using Linclust [244]. GTDB-tk [245] is used to perform taxonomic
annotation of dereplicated MAGs, and eggNOG-mapper [246] is used to perform the func-
tional annotation of MAGs as well as the gene catalog (see Figure 4.1).
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The four binning strategies are directly configurable by the user, and a quick configura-
tion allows to perform from a single to all strategies for reconstructing MAGs. Notably,
MAGNETO is currently the unique workflow providing an automated approach to de-
fine clusters of metagenomes for co-assembly. Importantly, MAGNETO and nf-core/mag
are also the only workflows allowing users to perform a co-binning strategy. A synthetic
comparison of functionalities provided by the workflows tested in this study is available
in Table 4.1.

Table 4.1 Comparison of tasks performed by evaluated workflows.
Steps ATLAS METAWRAP nf-core/mag MAGNETO

Pre-processing
Reads Trimming D D D D
Contamination D D D D
Assembly

Co-assembly availability D D D
Compute sets to co-assemble D

Binning
Co-binning availability D D D

Multiple binning software D D
Bin refinement D D
Bin reassembly D D

Post-processing
MAGs quality check D D D D
de-replication step D D D D
Genome annotation D D D D
Gene catalogue D D

Reproducibility
Workflow management D D D
Packages management D D D

4.2.1 Reads pre-processing

Raw reads were filtered using fastp [241] and FastQ Screen [242]. fastp filters reads on
their quality, length and complexity. FastQ Screen is a tool allowing to control contami-
nation within metagenomic samples, by mapping their reads to reference genomes. These
two tools provide results reports to the user that are useful to evaluate reads quality.
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Figure 4.1 Overview of the MAGNETO workflow.
Summary view of modules implemented in the MAGNETO workflow, with the name of the
software or script associated to each task. The workflow can be launched for a complete run, to
process raw reads into a gene catalog and MAGs, but each module can also be run independently.
In purple: path to perform single-assembly, corresponding to SASB (Single-Assembly-Single-
Binning) and SACB (Single-Assembly-Co-Binning) strategies, and orange: path to perform co-
assembly, corresponding to CASB (Co-Assembly-Single-Binning) and CACB (Co-Assembly-Co-
Binning) strategies.
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4.2.2 Assembly

We performed reads assembly using MEGAHIT [125], as this assembler provides
an excellent trade-off between computational requirements and assembly quality [157].
metaSPAdes [126] could have been considered as it provides better performances than
MEGAHIT in terms of overall percentage of the metagenome recruited in the assem-
bly [247] and maximum length of scaffolds produced [247, 248]. However, this performance
increase occurs at the cost of a greater consumption of computational resources [157] and a
presence of a greater proportion of misassembled sequences in contigs than MEGAHIT [247].
More importantly, metaSPAdes was originally not designed to perform co-assembly, which
constitutes a major drawback in our workflow. Moreover, MEGAHIT is able to capture
micro-diversity from the metagenomes more efficiently than metaSPAdes, as it discards
less low-abundant reads during assembly [157]. Co-assemblies of the marine metagenomes
were performed using the –presets meta-large option, as these metagenomes revealed to
be highly complex. All other assemblies were performed using the –preset meta-sensitive
option.

4.2.3 Co-assembly strategy

In order to determine which samples to co-assemble, we used Simka, a de novo and
scalable tool for comparative metagenomics [243]. Simka computes different distances
based on k-mer counts, instead of species counts. In our case, we used their modified
Jaccard (or AB-Jaccard) distance rather than the default Bray-Curtis distance, as the
latter does not satisfy triangle inequality. Once the distance matrix from Simka was
computed, samples were then clustered using a Ward-based hierarchical agglomerative
clustering [249]. Then, we iteratively cut the dendrogram and assessed partitioning quality
using the Silhouette method [250].

4.2.4 Genome binning strategies

Binning was performed using MetaBAT2 [16], as it is currently one of the fastest and
best performing genome binners. We set the minimum length for contigs to be binned
to 1500 nucleotides. As MetaBAT2 uses composition and abundance to perform binning,
a preliminary step to map reads back to assembled contigs was performed to measure
abundance. Reads mapping was achieved using Bowtie2 [251].
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Instead of computing an abundance metric only from the metagenome assembled into
contigs, MetaBAT2 may compute a co-abundance metric using contig coverage from sev-
eral samples, even if these samples do not participate in the assembly. A co-abundance
metric computed from several samples increases the quality of the genome bins pro-
duced [141]. Depending on the number of samples used to compute contigs abundance,
the corresponding metric is either an abundance or a co-abundance metric. Thus, two
strategies can be pursued in order to perform binning: (i) single-binning, which uses
abundance of contigs measured from assembled metagenome(s); or (ii) co-binning, which
uses co-abundance of contigs measured from all the metagenomes of a dataset. Combined
with the decision of performing either single-assembly or co-assembly, we defined four
binning strategies: Single Assembly of one metagenome with Single-Binning (SASB), Sin-
gle Assembly of one metagenome with Co-Binning (SACB), Co-Assembly of one set of
metagenomes with Single-Binning (CASB), and Co-Assembly of one set of metagenomes
with Co-Binning (CACB).

4.2.5 Genome bins quality

Genome bins quality was defined by two metrics, namely completeness and contam-
ination. Completeness measures the fraction of the initial genome captured, while com-
pleteness measures the fraction of alien sequences; both rely on the presence-absence
patterns of universal Single-Copy marker Genes (SCGs). To assess genome bins quality,
we used CheckM [180] and GUNC [14]. Based on contamination and completeness, we
distinguished three standard quality levels for bins [179] : (i) high-quality bins (HQ) with
completeness > 90% and contamination < 5%, (ii) medium-quality bins with complete-
ness > 50% and contamination < 10%, while the (iii) low-quality bins (LQ) are bins that
are neither HQ nor MQ. Only HQ and MQ bins were then considered to be MAGs. The
comparisons of reconstructed MAGs quality from different strategies were performed us-
ing Mann-Withney U test using R [252]. As a MAG may be reconstructed independently
either in two (or more) samples or two (or more) co-samples, MAGs are also de-replicated
using dRep [193]. Two MAGs were considered to be duplicated if their pairwise ANI
(Average Nucleotide Identity) score was above a given identity threshold t, (t being a
percentage of sequence identity) on more than 60% of their bases [191]. We consider two
different values for t: t = 0.95, which corresponds to a de-replication at species level, and
t = 0.99, which corresponds to a de-replication at strain level [85].
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4.2.6 Genome annotation module

Functional and taxonomic annotations were performed for the strain-level MAGs col-
lection, which encompasses the species-level collection. To perform functional annotation
of MAGs, we used eggNOG-mapper [246], and we used GTDB-tk [245] to perform taxo-
nomic annotation. Finally, reads of each sample are mapped back onto both species- and
strain-level MAGs collections using Bowtie2, and an abundance table is produced using
an in-house Python script.

4.2.7 Gene annotation module

Coding DNA Sequences (CDS) are detected on assembled contigs per-sample (single-
assembly) using Prodigal [253]. Genes from all samples are clustered at 95% identity
using Linclust [244] in order to produce a non-redundant set of genes (gene95 collection).
EggNOG [246] and MMSEQ2 [254] are used to annotate this gene collection, for functional
and taxonomic information, respectively. Finally, reads from each sample are mapped back
onto the gene95 collection using Bowtie2, and an abundance table is produced.

4.2.8 Future enhancements: adding modules

Thanks to the Snakemake implementation of MAGNETO, the addition of supple-
mentary modules can be very straightforward. Future interesting features to deepen the
metagenome analysis could be the inclusion of a module to measure the optimal maximum
growth rate of reconstructed MAGs. The estimation of the optimal maximum growth rate
temperature can give insight about the genome composition of a bacteria, as faster growth
in environments with higher resource availability has been related to a greater genome
size, and a higher number of ribosomal gene copies [255]. This module has already been
developed, and used to assess optimal growth temperature of reconstructed MAGs from
the Arctic ocean ; this work was our contribution to [25].
Estimations of minimum generation time and optimal growth temperature are performed
using Growthpred2 [256]. Growthpred relies on codon usage biases in highly expressed
genes identified in genomes. The identification of these highly expressed genes needed
first, the extraction of the coding sequence of each MAG, using GffRead [257]. The
highly expressed genes are then retrieved from the coding sequence using BLAST [258],
and only the MAGs exhibiting at least 10 highly expressed genes are kept for optimal
growth assessment. Growthpred v.1.08 was used and a Snakemake pipeline is available
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at https://gitlab.univ-nantes.fr/combi-ls2n/growthsnake. Other enhancements will be the
integration of other assembly software, and the addition of other binning tools, with an
aim to incorporate cross-tools approaches in order to further improve the quality of bin-
ning, such as in ATLAS [22] or METAWRAP [26].

4.3 Determining co-assemblies using metagenomic dis-
tances

In [5], the authors studied the abundance of diazotrophic bacteria in oceanic surface
metagenomes and showed that nitrogen fixation is an important feature of the prokaryotic
communities living in ocean surface. As microbial genetic distances often co-vary with
geographic distances in several habitats [259], co-assemblies were performed based on
the geographic coordinates of the metagenomes, i.e. metagenomes belonging to the same
oceanic region were co-assembled. In the euphotic zone, microbial community similarities
between metagenomic samples from the same oceanic regions have been observed to be
higher than similarity between metagenomes from distinct oceanic regions, although a
separation by regional origin is unclear [8] as other environmental factors (e.g. ocean
currents) can modulate genetic proximity between populations [74]. As a consequence,
two geographically close metagenomes do not necessarily share the highest proportion of
genomes, and two metagenomes belonging to the same ocean region may not be closer to
metagenomes from other regions.

Given that the main goal of co-assembly is to increase the proportion of reads be-
longing to a given strain or species, we propose to identify sets of samples to co-assemble
using metagenomic distances. To the best of our knowledge, very few studies have used
sequence-based compositional distances to guide metagenomic co-assembly. Historically,
metagenomic compositional distances have mainly been used to compare metagenomic
samples [260] or MAGs [110], but not to actually guide the co-assembly process. However,
a few recent studies have started to use metagenomic-based distances combined with clus-
tering to guide the co-assembly process of metagenomes [261–263], while another study
has used metagenomic distances to guide the co-binning (or co-mapping) process [264].
To perform co-assembly of large sets of oceanic metagenomes, we chose the Tara Ocean
dataset. We considered the 176 metagenomes sampled at three different sea depths: the
superficial water surface (SUR), the deep chlorophyll maximum (DCM), which corre-
sponds to a depth of around 5 to 30m, and in which has been observed the maximal
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planktonic photosynthetic activity, and the mesopelagic zone (MES) which corresponds
to depth greater than 200m. We only consider the prokaryotic part of these metagenomes,
which corresponds to water being filtered by filters of 0.22 to 1.6 µm and 0.2 to 3 µm.
We first computed the distances between all the 176 Tara Ocean metagenomic samples
using Simka [243]. In order to better represent the distribution of metagenomes, we then
computed a dimensionality reduction on the distance matrix output, using a principal
coordinates analysis (PCoA). The distribution of the metagenomes along the first two
axis of the PCoA, allowed to observe that the metagenomes were spread into three clus-
ters (Fig. 4.2). One of this cluster contained metagenomes originating from arctic ocean,
southern ocean, with also two samples from the southernmost regions of south atlantic
ocean, constituting the Polar cluster. The second cluster can be called the Mesopelagic
cluster, as it contains almost only metagenomes sampled at the mesopelagic depth, except
for one metagenome sampled at the DCM depth. The third cluster contained the rest of
the non-polar, non-mesopelagic metagenomes. These three clusters can be well separated
through the first axis of the PCoA, and the distribution of the metagenomes along the
first axis may imply that this axis represents the temperature of the sea water. We then
performed a k-medoids clustering on the metagenomic distance matrix, coupled with the
measure of the Silhouette index [250], which is a method used to identify the optimal
partition of a dataset. The Silhouette index was maximised for a number of 3 clusters,
confirming the relevance of the three clusters previously observed on the PCoA projection
(Fig. 4.3).
Then, in order to compare the metagenomic-distance approach against a previous ap-
proach to discriminate through groups of metagenomes to co-assemble, we focused on
the marine metagenomes dataset which corresponds to the same 93 oceanic metagenomes
as processed in Delmont et al. [5], which are available at the European Bioinformatics
Institute (EBI) repository under project ID ERP001736. Here, we computed distances
between metagenomes using Simka [243], and identified optimal clustering solutions us-
ing the Silhouette index [250] to delineate unsupervised sets of samples to co-assemble.
Applying this approach on the same set of metagenomes (n=93) as in [5], we identified
24 optimal clusters. This number of clusters is significantly higher compared to the 12
clusters (Fig. 4.4A) based on the oceanic regions, which suggests that a different partition
may be more relevant for co-assembly. As this optimal clustering generates smaller clus-
ters, in order to insure a fair comparison between both approaches, we further identified
a sub-optimal clustering (supp.fig 4.5) whose number of co-assembly sets is comparable
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Figure 4.2 Evaluating distribution of metagenomes using dimension-reduction on
metagenomic-distance based matrix.
(A) Projection of metagenomes along the first two axis of the PCoA computed on the matrix
distance. Colours reflect the oceanic regions as defined by the Tara Oceans consortium, while
points shapes represent the sea depth at which sampling was performed: surface layer (SUR),
Deep Chlorophyll Maxima (DCM) or mesopelagic zone (MES). AO = Arctic Ocean, IO = Indian
Ocean, MS = Mediterranean Sea, NAO = North Atlantic Ocean, SAO = South Atlantic Ocean,
RS = Red Sea, NPO = North Pacific Ocean, SPO = South Pacific Ocean, SO = Southern
Ocean. (B) Geographic distribution of the three clusters found with the PCoA. Each dot is a
metagenome, the SUR depth is represented with plain dots, the DCM with crosses, and the
MES with circles. X-axis and Y-axis are the values of the two first axis of the PCoA for each
metagenome, with the percentage of explained variance by each axis.
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Figure 4.3 Evaluation of the partition of the whole Tara metagenomes dataset.
Silhouette scores obtained when clustering the metagenomes into k groups. X-axis: values of k
tested, k varying from 2 to n− 1, with n = 176 (total number of samples). Y-axis: values of the
Silhouette score estimated for value k tested. A high Silhouette score yields a better clustering.
A maximum score is observed for k = 3, (dashed vertical line) which thus represents the optimal
clustering.

to the number of oceanic regions used in [5]. This second clustering identified 11 clusters,
which did not match the previously defined oceanic regions (Fig. 4.4A).

To evaluate the potential impact of co-assembly on assembly quality, we computed
classical assembly quality metrics (N50 and L50) for both approaches. N50 represents
the shortest contig length to cover at least 50% of the metagenome assembly [265], while
L50 represents the smallest number of contigs whose added lengths cover 50% of the
metagenome assembly [266]. The metagenomic distance-based (MD) and the oceanic re-
gions (OR) approaches actually reconstructed contigs of similar quality. No significant
differences were detected in either the number of misassemblies, or the N50 and L50
metrics (Fig. 4.6). When considering the total number of bins generated following both
co-assembly strategies, we found that both approaches reconstructed very similar numbers
of bins: 10,748 bins are generated using the MD approach, and 10,233 bins using the OR
approach (Fig. 4.4B). To further compare both co-assembly strategies, as these bins may
be very different in composition, we performed MAGs de-replication [193]. The MD ap-
proach systematically reconstructed more MAGs than the OR approach, at both species
(95% ANI) and strain (99% ANI) levels (Fig. 4.7B). Considering MAGs quality, medium
quality (MQ) MAGs reconstructed by the MD approach were significantly more complete
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Figure 4.4 Evaluating the metagenomic distance-based (MD) approach against the
oceanic regions (OR) approach for delineating groups of samples to co-assemble.
(A) Repartition of clusters obtained with Simka. Each dot represents a metagenome obtained
at a sampling station, with metagenomes located at Surface (SUR) represented as dots, and
metagenomes situated at the Deep Chlorophyll Maxima (DCM) depth as crosses. Colours rep-
resent the cluster to which the metagenome belongs. Oceanic regions are represented as dark
circles: ANE = Atlantic North-East, ANW = Atlantic North-West, ASE = Atlantic South-East,
ASW = Atlantic South-West, ION = Indian Ocean North, IOS = Indian Ocean South, MED =
MEDiterranean Sea, PON = Pacific Ocean North, PSE = Pacific South-East, PSW = Pacific
South-West, RED = RED sea, SOC = Southern OCean. (B) Repartition of the common MAGs
obtained after common de-replication between the two approaches. (C) Percentage of mapped
reads on MAGs reconstructed by each approach, and on combined MAGs from both approaches,
considering all mapping reads. MD+OR = MAGs from MD and OR approaches were combined
together prior to reads mapping. (D) Prevalence-Abundance plot for MAGs reconstructed by
both approaches (X-axis: MAG prevalence = number of metagenomic samples in which a MAG
has a horizontal coverage above 0.3; Y-axis: MAG cumulative abundance. Percentage of mapped
reads divided by the length of the MAG).
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Figure 4.5 Identifying metagenomic distance-based optimal clusters for Tara Ocean
metagenomes.
Silhouette scores obtained when clustering the metagenomes into k groups. X-axis: values of
k tested, k varying from 2 to n − 1, with n = 93 (the total number of samples used). Y-axis:
Values of the Silhouette score estimated for value k tested. A high Silhouette score yields a
better clustering. A maximum score is observed for k = 24 (dashed vertical line), which thus
represents the optimal clustering.

(Mann–Whitney U test, p = 0.01, Fig. 4.8B), but evaluated as more contaminated (using
checkM) than MQ MAGs reconstructed with the OR approach (Mann–Whitney U test,
p = 6.828 · 10−05, Fig. 4.8D). However, when considering the GUNC contamination met-
ric [14], contamination levels observed in MQMAGs of the MD approach were significantly
lower than MQ MAGs of the OR approach (Mann–Whitney U test, p = 2.352 · 10−07,
Fig. 4.8F). Because GUNC assesses gene contamination based on all taxonomically anno-
tated genes in a given genome, this latter approach may be considered as more robust than
the checkM metric, and lead us to conclude that the MD approach actually reconstructed
less contaminated MAGs. We found no significant differences in quality (completeness and
contamination) for high quality (HQ) MAGs reconstructed by both approaches (Fig. 4.8).
In addition, taxonomic annotations of strain-level de-replicated MAGs revealed a higher
diversity recovered in the MD MAGs as compared to the OR MAGs (Fig. 4.9) in terms
of number of distinct bacterial taxa, with a greater amount of annotated MAGs in MD
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Figure 4.6 Quality of the assembly of each Tara approach.
A Comparison of the number of misassemblies normalized by the number of contigs per assembly
of the metagenomic distance (MD) and the oceanic regions (OR) approaches; B Number of
mismatches detected per 100kb of alignments in contigs per approach; C N50 values; D L50
values. No significant differences were found between the two approaches (Mann-Withney U
test).

(n = 2006) compared to OR (n = 1869) MAGs 4.9.
Next, we also performed a global de-replication of MAGs in order to compare sets of

MAGs recovered by both approaches at species and strain levels. Remarkably, we observed
that both approaches reconstructed a very high number of exclusive MAGs (Fig. 4.4B).
The OR approach reconstructed 575 species-level and 243 strain-level MAGs that were
not recovered by the MD approach, while the latter did reconstruct 525 species-level and
323 strain-level MAGs that were not recovered by the OR approach. This result strongly
emphasizes the influence of the co-assembly step prior to genome binning, in particular re-
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Figure 4.7 Evaluating the metagenomic distance-based (MD) approach against the
oceanic regions (OR) approach for delineating groups of samples to co-assemble.
(A) Total number of bins obtained after binning step. HQ = High Quality, MQ = Medium Qual-
ity, LQ = Low Quality. (B) Number of reconstructed MAGs after independent de-replication
for each approach. Species resolution consists in a 95% ANI score de-replication, while Strains
resolution consists in a 99% ANI score de-replication.

garding how metagenomes are grouped for co-assembly. Given this observation, we aimed
at determining which approach could captured a greater proportion of metagenomic diver-
sity by back-mapping reads on MAGs generated by both approaches. While we observed
a lower proportion of reads mapping to MD MAGs, as compared to OR MAGs, this pro-
portion significantly increased when mapping on combined MAGs from both approaches.
This result confirms that distinct and complementary MAGs are reconstructed using each
approach. However, when only considering reads mapping to MAGs detected in samples,
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Figure 4.8 Quality of reconstructed MAGs from the Tara Ocean metagenomes.
Comparison of the oceanic regions (OR) approach against the metagenomic distance approach
(MD). HQ = High Quality, MQ = Medium Quality. (A) Completeness estimated for HQ MAGs;
(B) Completeness estimated for MQ MAGs; (C) Contamination measured using SCGs for HQ
MAGs; (D) Contamination measured using SCGs for MQ MAGs; (E) Contamination measured
using all genes detected in the sequences of HQ MAGs; (F) Contamination measured using all
genes detected in the sequences of MQ MAGs.

i.e. in which a given MAG has a minimum horizontal coverage (or breadth) of 30%, the
MD approach recruited significantly more metagenomic reads as compared to the OR
approach (Mann-Withney U test, p < 2.2 · 10−16, Fig. 4.4D). Thus, although the OR
MAGs were detected in more samples as compared to MD MAGs (Mann-Withney U test,
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Figure 4.9 Taxonomic diversity of reconstructed MAGs from the marine
metagenomes.
Comparison of the number of taxa retrieved from MAGs reconstructed following each approach.
(A): Number of bacterial taxa assigned to MAGs from both approaches, per taxonomic level ;
(B): Number of archaeal taxa assigned to MAGs from both approaches. Taxonomic annotation
was performed using gtdb-tk on de-replicated MAGs at strain level (99% ANI score) using
dRep. For each panel, the Y-axis represents the number of taxa found withing the complete set
of MAGs of each approach. Number of MAGs assigned to a bacterial annotation is 1729 for MD
and 1595 for OR, while there are 276 and 273 MAGs with an archeal annotation in MD and
OR, respectively.

p = 4.6 · 10−10), the MD MAGs significantly improved the number and quality of recon-
structed MAGs. In order to determine the prevalence of reconstructed MAGs in the set
of MAGs of each reconstruction method (Fig. 4.4D), we performed a global de-replication
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of the TARA Oceans MAGs, performed by combining sets of MAGs reconstructed with
both approaches using dRep as described in the section 4.3 "Design and Implementation"
below. Once this global de-replication was performed, the total number of de-replicated
MAGs (dMAGs) related to one approach is thus:
Nir = nir +mijr

with nir the number of dMAGs already reconstructed by the approach i at the resolution
r, and mij the number of dMAGs reconstructed by approach j, but located in a de-
replication cluster containing at least one MAG reconstructed by the approach i, at the
de-replication resolution r. From the dRep output, we can identify the de-replication clus-
ter each MAG belongs to, and the number of members located in the same de-replication
cluster. We can then list, for a given de-replication resolution r, the set of dMAGs re-
lated to one approach i, searching for each non-unique dMAG (i.e. having at least one
neighbour in its de-replication cluster) of approach j, if there is at least one MAG from
approach i. Thus, to detect shared dMAGs between both approaches, we identified the
common elements between the four sets of Nir dMAGs.
To detect shared genomes between sets of genomes related to different de-replication
resolutions (Fig. 4.4B), we should point out that the set of dMAGs at species-level for
one approach is completely included in the set of dMAGs at strain-level from this same
approach. Thus, we can non-ambiguously identify clustering relationships between two
MAGs from different de-replication levels, or find exclusive MAGs reconstructed by one
approach, but present at both species and strain levels.

4.3.1 Benchmarking assembly-binning strategies on simulated
metagenomes

Different strategies for assembly and binning are currently used in the literature,
each of them having its own advantages and disadvantages [110]. Thus, we defined four
assembly-binning strategies representing the most currently used approaches to recon-
struct MAGs. Namely, we considered single-assembly (SA, i.e. the assembly of a single
metagenome) and co-assembly (CA, i.e. the joint assembly of nmetagenomes) approaches,
as well as single-binning (SB, i.e. genome binning solely using (co-)abundance informa-
tion from metagenome(s) used to perform the (co-)assembly) and co-binning (CB, i.e.
genome binning using co-abundance information from all metagenomes) approaches. We
thus evaluated the following four strategies: Single-Assembly with Single-Binning (SASB),
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Single-Assembly with Co-Binning (SACB), Co-Assembly with Single-Binning (CASB),
and Co-Assembly with Co-Binning (CACB). We compared the performances of these
four strategies on three different datasets, the CAMI [175] high complexity dataset, a
lower complexity mockdataset generated using CAMISIM [267], and a human microbiome
dataset from the Human Microbiome Project [11].

First, to evaluate and compare these four strategies on simulated metagenomes, we
applied our MD clustering algorithm on the CAMI high-complexity dataset [175]. The
CAMI high-complexity dataset is composed of five metagenomic samples simulated from
a community of 596 known reference genomes and 478 circular elements. The optimal
solution identified for the co-assembly regrouped all five metagenomes, probably due to
the small number of metagenomes (n = 5) and the fact that they were simulated from the
same pool of reference genomes. Therefore, only one co-assembly (of all 5 samples) was
performed, and the CACB and CASB strategies were thus equivalent. Following genome
binning using MetaBAT2 [16], the SACB strategy reconstructed the highest number of
bins (> 400 genome bins), while the CASB and SASB strategies reconstructed about 300
and 200 bins, respectively (Fig. 4.10A).
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Figure 4.10 Evaluating assembly-binning strategies on the CAMI dataset.
(A) Total number of bins obtained after binning step. Colours represent quality of genome
bins estimated using CheckM: High Quality (HQ), Medium Quality (MQ), and Low Quality
(LQ). (B) Number of MAGs mapping to a source genome within each strategy, corresponding
to the number of expected genomes in the set of MAGs of each strategy. The diagram thus
represents the common genomes found in each strategy. (C,D) Number of reconstructed MAGs
after independent de-replication using dRep for each binning strategy, at (C) Species resolution,
consisting in a 95% ANI score de-replication; and (D) Strains resolution, consisting in a 99%
ANI score de-replication. SASB: Single-Assembly-Single-Binning, SACB: Single-Assembly-Co-
Binning, CASB: Co-Assembly-Single-Binning.

After de-replication, we compared the MAGs obtained for each strategy to the CAMI
reference source genomes. When considering the distribution of expected genomes across
all three strategies, we observed that the CASB strategy reconstructed more expected
genomes than both single-assembly strategies (SASB and SACB). Surprisingly, we did not
find expected genomes common to all strategies (Fig. 4.10B), which highlights the actual
complementarity of these strategies. When considering only de-replicated genomes, CASB
produced the highest number of MAGs. This difference was clear for HQ MAGs, for which
CASB produced about 2.5 times more MAGs as compared to single-assembled strategies,
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Figure 4.11 Evaluating assembly-binning strategies on simulated metagenomes.
(A) Total number of bins obtained after the binning step. Colours represent quality of genome
bins estimated using CheckM: High Quality (HQ), Medium Quality (MQ), and Low Quality
(LQ). (B) Number of source genomes found in each strategy. Each number represents the number
of times a MAG from a strategy maps against a source genome. Intersections represent common
genomes between strategies. (C) Number of de-replicated MAGs obtained, after independent
de-replication by dRep for each strategy. As the genomes are all represented with one single
strain, de-replication at both species or strain resolution gives the same number of de-replicated
genomes, so only one de-replication resolution is shown.

with both SACB and SASB generating a comparable number of HQ MAGs (Fig. 4.10CD).
The number of reconstructed MAGs was also dependent of the de-replication level. At
strain level, both single-assembly approaches reconstructed more non-redundant MAGs
compared to species level, while CASB reconstructed the same number of MAGs at both
species and strain levels. However, this increase only concerned the MQ MAGs, as the
number of HQ MAGs remained unchanged (Fig. 4.10D). We did not find any significant
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Figure 4.12 Quality of reconstructed MAGs from the CAMI dataset.
Comparison of the quality of MAGs reconstructed with each strategy on the CAMI dataset.
HQ = High Quality, MQ = Medium Quality. (A) Completeness estimated for HQ MAGs;
(B) Completeness estimated for MQ MAGs; (C) Contamination measured using SCGs for HQ
MAGs; (D) Contamination measured using SCGs for MQ MAGs; (E) Contamination measured
using all genes detected in the sequences of HQ MAGs; (F) Contamination measured using all
genes detected in the sequences of MQ MAGs.

differences in MAGs completeness between the different strategies, considering either HQ
MAGs or MQ MAGs (Fig. 4.12 A&B). However, we did observe differences in contamina-
tion estimated from Single-Copy Genes (SCGs) using checkM. CASB HQ MAGs were less
contaminated than SASB (Mann-Withney U test, p=0.01) and SACB (Mann-Withney U
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Figure 4.13 Quality of reconstructed MAGs from the mockdataset.
Comparison of the quality of MAGs reconstructed with each strategy on the mockdataset. HQ
= High Quality, MQ = Medium Quality. (A) Completeness of HQ MAGs; (B) Completeness of
MQ MAGs; (C) Contamination of HQ MAGs measured with CheckM; (D) Contamination of
MQ MAGs measured with CheckM; (E) Contamination of HQ MAGs measured with GUNC;
(F) Contamination of MQ MAGs measured with GUNC.

test, p = 0.04) HQ MAGs, while SACB MQ MAGs were less contaminated than SASB
MQ MAGs (Mann-Withney U test, p = 0.03) (Fig. 4.12 C&D). When considering MAGs
contamination estimated using taxonomically annotated genes with GUNC, CASB MAGs
were predicted most contaminated (Fig. 4.12 E&F), with significant differences observed
with either SASB (Mann-Withney U test, p = 3 · 10−4) and SACB (Mann-Withney U
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test, p = 2 · 10−4) MAGs. We did not find any other differences in contamination levels
between the four strategies.

Given that the MD clustering approach did not identify optimal clusters to co-assemble
within the CAMI dataset, we used CAMISIM [267] to simulate an additional metagenomic
dataset with a higher number of samples and a lower complexity. We thus simulated
20 metagenomes with a similar diversity of 100 reference genomes. On this simulated
dataset, the MD clustering approach identified 8 optimal clusters to co-assemble. Here,
the co-assembly-based strategies (CACB and CASB) reconstructed more bins than the
single-assembly-based strategies (Fig. 4.11A), also when considering only HQ bins. After
de-replication, we aimed to identify expected genomes among recovered MAGs by mapping
them to reference genomes used for the metagenomes simulation. The majority (n = 29) of
expected genomes we identified were reconstructed in all four strategies (Fig. 4.11B). The
SACB strategy recovered a short majority of expected genomes (n = 33), as compared to
CACB ans SASB (n = 32), and CASB (n = 31). However, the number of de-replicated
MAGs was higher for both co-assembly strategies compared to single-assembly strate-
gies (Fig.4.11C).

The drop in de-replicated MAGs from single-assembly strategies is likely a consequence
of the higher number of assemblies performed in both SASB and SACB strategies. As
single-assemblies are more numerous than co-assemblies, there is thus a higher probability
to reconstruct, independently, several times the same MAG. Finally, using this simulated
dataset, we did not detect any significant differences in the quality of MAGs reconstructed
by the four strategies, neither in their completeness nor in their contamination levels
(Fig. 4.13).

4.3.2 Comparing assembly-binning strategies on real metagenomes

To further compare the four genome reconstruction strategies, we applied them to
a real metagenomic dataset, which is more complex in terms of species diversity and
composition. Human gut microbiome studies represent a large fraction of publicly avail-
able metagenomes and are also good case studies as they represent metagenomes with
intermediate complexity compared to soil or ocean metagenomes. Thus, we focused on
analysing a selection of 150 metagenomes of human gut microbiomes from the Integrative
Human Microbiome Project (HMP) [11]. Here, the MD-based clustering approach iden-
tified 64 metagenomic clusters to co-assemble. When comparing all four strategies before
de-replication, both single-assembly strategies reconstructed more genome bins than both
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Figure 4.14 Evaluating the binning strategies on the HMP dataset.
(A) Total number of bins reconstructed per strategy. Colours represent the MAGs qualities,
estimated with CheckM. (B) Proportion of MAGs reconstructed for each strategy, after com-
mon de-replication of the four strategies, at the species resolution (95% identity) or at the
strain resolution (99% identity). Number of de-replicated MAGs from each strategy is com-
pared to the number of maximum expected MAGs, which is the number of MAGs obtained
after de-replication of all the four strategies together. (C,D): Number of reconstructed MAGs
after independent de-replication using dRep for each binning strategy, at (C) Species resolu-
tion, consisting in a 95% ANI score de-replication; and (D) Strains resolution, consisting in a
99% ANI score de-replication. SASB: Single-Assembly-Single-Binning, SACB: Single-Assembly-
Co-Binning, CASB: Co-Assembly-Single-Binning, CACB: Co-Assembly-Co-Binning. HQ: High
Quality, MQ: Medium Quality, LQ: Low Quality.

co-assembly strategies (Fig. 4.14A). Next, in order to determine how many MAGs we could
expect to reconstruct at best by each strategy, we de-replicated altogether genome bins
reconstructed by all strategies. The resulting number of de-replicated MAGs thus repre-
sents the highest number of MAGs we would be able to reconstruct with the HMP dataset
combining all four strategies. We then compared each strategy by considering what pro-
portion of the maximum number of MAGs it was able to reconstruct (Fig. 4.14B). After
de-replication at the species level, despite the fact that single-assembly strategies recov-
ered more bins, we observed that both co-assembly strategies reconstructed more MAGs
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Figure 4.15 Quality of reconstructed MAGs from the HMP dataset.
Comparison of the quality of MAGs reconstructed with each strategy on the HMP dataset.
HQ = High Quality, MQ = Medium Quality. (A) Completeness estimated for HQ MAGs;
(B) Completeness estimated for MQ MAGs; (C) Contamination measured using SCGs for HQ
MAGs; (D) Contamination measured using SCGs for MQ MAGs; (E) Contamination measured
using all genes detected in the sequences of HQ MAGs; (F) Contamination measured using all
genes detected in the sequences of MQ MAGs.

than single-assembly strategies. Also, for both co-assembly and single-assembly strate-
gies, the co-binning actually allowed to reconstruct more MAGs than the single-binning
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Figure 4.16 Composition of the MD clusters obtained with the HMP dataset.
For each cluster, the amount of metagenomes is shown, with the IBD (Inflammatory Bowel
Disease) diagnosis associated with each metagenome. Diagnoses: non-IBD = healthy; CD =
Crohn’s Disease; UC = Ulcerative Colitis

approach (Fig. 4.14B&C), which underlines the importance of integrating cross-samples
information when binning genomes. However, after de-replication at strain level, we ob-
served that the SACB strategy reconstructed more MAGs than CASB, while the SASB
strategy reconstructed more HQ MAGs than the CASB strategy (Fig. 4.14B&D).

We also compared the MAGs quality (completeness and contamination) produced
by each assembly-binning strategy. Differences in completeness were only observed be-
tween the SACB and CASB strategies, with SACB HQ MAGs being more complete
than CASB HQ MAGs (Fig. 4.15A). Here, we also used both checkM (SCG-based) and
GUNC (taxonomy-based) complementary approaches to estimate contamination. GUNC
was able to detect more subtle differences in contamination between strategies than the
checkM algorithm (Fig. 4.15). These observed differences demonstrate that co-binning
strategies actually produce less contaminated MAGs than single-binning strategies, at all
MAGs quality levels. Overall, these distinct results when de-replicating MAGs at species
or strain level suggest that no single strategy can fit all needs. Therefore, the choice of
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an assembly-binning strategy should be informed by a biological question and should
consider the microbiome complexity under study.

4.3.3 Comparing MAGNETO to similar metagenomics work-
flows

Finally, we compared the performances of MAGNETO to metagenomics workflows
dedicated to MAGs reconstruction, namely METAWRAP [20], ATLAS [22] and nf-core/mag [238].
We chose these three tools as they use similar software to perform assembly and binning,
namely MEGAHIT [125] and MetaBAT2 [16]. The comparison of the workflows was per-
formed using the HMP dataset. ATLAS is a workflow only permitting single-assembly
of metagenomes, but integrates a binning refinement module using DAStool [27], which
constitutes a good opportunity to evaluate whether single-assembly could perform better
after binning refinement. METAWRAP also contains a binning refinement module, albeit
less complex than the DAStool methodology. This refinement module performs pairwise
alignment of MAGs to detect redundant genomes, to then only conserve MAGs showing
the best quality amongst detected duplicated MAGs. nf-core/mag uses the exact same
tools as our workflow to perform assembly and binning. As compared to ATLAS, we ob-
served that MAGNETO systematically reconstructed more MAGs using any of the four
assembly-binning strategies (Table 4.2). However, it also reconstructed less MAGs than
METAWRAP. The higher number of MAGs produced by METAWRAP may be explained
by its refinement module coupling several binners, as these binners may reconstruct more
non-redundant MAGs, thus increasing their numbers. However, MAGNETO and nf/core-
mag reconstructed the same number of MAGs for both CASB or CACB strategies. These
similar results are most likely explained by the absence of a bins refinement module, and
by the fact that in both workflows, the binning step used the exact same parameters.

4.4 Discussion

In this work, we present MAGNETO, a fully automated workflow enabling genome-
resolved metagenomics. It implements a novel approach to compute clusters of metagenomes
for co-assembly without a priori knowledge, as well as complementary assembly-binning
strategies to maximize MAGs recovery towards specific goals. MAGNETO also provides
key functionalities, from the construction and annotation of gene catalogs, to the gener-
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Table 4.2 Number of reconstructed MAGs for the HMP dataset.
Comparison of the number of MAGs reconstructed with different workflows, and different strate-
gies, after dereplication at strains resolution. MAGs: number of dereplicated MAGs; HQ: High
Quality (Completeness > 90%, Contamination < 5%), MQ: Medium Quality (Completeness >
50%, Contamination < 10%).

Pipeline Strategy
MAGs

HQ MQ
ATLAS

SASB 253 120
METAWRAP

SASB 302 295
SACB 320 242
CASB 377 320
CACB 386 350

nf-core/mag
CASB 277 261
CACB 361 300

MAGNETO
SASB 280 251
SACB 311 286
CASB 277 261
CACB 361 300

ation of genes and genomes abundance matrices.

4.4.1 An unsupervised approach to metagenomic co-assembly

We demonstrated the utility of a non-supervised metagenomic-distance based ap-
proach to guide metagenomics co-assembly on a large set of ocean metagenomes. In-
deed, clusters of metagenomes identified by the MD-based approach did not overlap with
oceanic regions previously used for guiding co-assembly of these metagenomes [5]. As an-
ticipated, this implies that, in the ocean, geographic distances do not necessarily reflect
compositional metagenomic distances between microbial communities. This observation
can likely be explained by the fact that the composition of marine microbial communities
are significantly structured through environmental filtering by key abiotic factors such
as temperature [8] and ocean currents influencing species dispersal [268]. This allowed a
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clear separation between metagenomes originating from polar regions, mesopelagic zone,
and from superficial, temperate water. Interestingly, the MD-based clustering analysis
grouped together in a single cluster (cluster #1, see Figure 4.4A, p.100) metagenomes
from sampling stations facing upwelling currents. As upwelling regions are influenced by
deep ocean currents raising cold nutrient-rich waters to the surface, they can significantly
impact species diversity of marine microbial communities towards richer states [269, 270].

The rationale behind our metagenomic distance-based approach to perform co-assembly
was to infer which metagenomes should be grouped together in an unsupervised fashion
without a priori knowledge. The aim was to develop an approach that could guarantee
the actual closeness of the metagenomes to co-assemble, thus emphasizing the increase in
species-specific reads abundance for the assembler. Although the co-assembly of closely re-
lated metagenomes have been shown to erode contigs quality [137, 175], we could show that
our approach did not increase fragmentation or misassemblies within contigs (Fig. 4.6,
p.94). In fact, our MD approach reconstructs MAGs that are more complete, and less
contaminated than the OR approach (Fig. 4.8, p.96). Although both metrics we used to
estimate MAGs contamination reported contradictory results, we argue that GUNC [14]
likely provides better estimates of contamination as it is based on a much larger set of genes
as compared to CheckM [180], which assess contamination solely based on SCGs. As SCGs
represent highly-conserved genes across all taxa, co-assembling similar metagenomes may
actually increase the probability to assemble or bin core regions of closely related genomes.
A higher fragmentation of the genomes was already observed following the co-assembly
of metagenomes with closely related strains [175, 271], although it was also shown not
to affect completeness nor the contamination of co-assembled genomes [193]. Accessory
regions may thus be less affected by co-assembly, although they are also generally more
difficult to bin [137].

We observed a very high number of exclusive MAGs between the OR and MD ap-
proaches, namely 525 for MD and 575 for OR, representing 31.2% and 33.3% of the MAGs
reconstructed by each approach, respectively (Fig. 4.4B, p.92). This result indicates that,
even if our approach performs better in terms of reconstructed MAGs quality, it never-
theless does not capture the same information from metagenomes as compared to the OR
approach. This is confirmed by the increase in proportion of recruited reads when back-
mapping to combined MAGs from both approaches (Fig.4.4C, p.92). Thus, combining the
MD approach with a co-assembly based on a priori knowledge (when available) may rep-
resent a good opportunity to better capture the actual bacterial diversity in metagenomes.
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However, the proportion of mapped reads was significantly higher on MD MAGs as com-
pared to OR MAGs when considering only detected MAGs in samples (Fig.4.4D, p.92).
Here, we could show that the OR approach reconstructed MAGs recruiting a higher pro-
portion of reads, but that this higher proportion was mainly driven by MAGs displaying a
very low horizontal coverage (< 30%), suggesting these MAGs contained relatively small
genomic regions recruiting a high proportion of reads. These observations, coupled with
the smaller contamination observed in OR MAGs when estimated using SCGs, may imply
that the OR approach allows a better reconstruction of core genomic regions, which are
shared among a higher proportion of organisms.

Applying the MD-based co-assembly approach on the HMP dataset, we found that the
identified clusters of metagenomes mostly corresponded to the IBD pathology affecting
the patients (Fig. 4.16, p.106). Indeed, a majority of clusters containing metagenomes
from healthy patients did not contain any metagenomes related to IBD (16 out of 23
clusters contain non-IBD metagenomes), and a majority of the clusters containing CD or
UC patients are composed of metagenomes associated with only the same type of IBD (26
out of 34 clusters contain IBD metagenomes). This observation emphasizes the relevance
of our method, as changes in the composition of the gut microbiota have been associated
with IBD diagnosis [11, 272, 273].

4.4.2 A systematic comparison of assembly-binning strategies

When comparing the four different assembly-binning strategies we defined herein,
we observed that co- strategies systematically reconstructed more MAGs than single-
strategies. Notably, the CACB strategy was identified as the best performing in terms of
number of recovered MAGs, across all (simulated and real) datasets we considered. This
may be explained by i) the increase in (rare) reads abundance through the co-assembly,
and ii) the higher amount of co-abundance information integrated into the co-binning pro-
cess [24, 239]. On simulated datasets, co-assembly strategies systematically reconstructed
more MAGs after de-replication, while applying single-binning or co-binning. However,
this was not the case when analysing the HMP dataset, for which the SACB strategy
reconstructed more strain-level MAGs than CASB. This may be due to an uneven dis-
tribution of strains across metagenomes. Indeed, human gut microbiomes tend to be
personal and usually exhibit higher inter- than intra-individual community variations at
strain level [274, 275]. Overall, if gut strains are individual-specific and thus only occur
in a low number of metagenomes, co-assembly will be less effective to actually increase
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strain-specific reads for improving their assembly. This result actually suggests that an
MD-based approach integrating single-nucleotide polymorphism (SNP) information would
be useful to improve the reconstruction of strain-level MAGs.

4.4.3 A multi-sample assembly-binning strategy maximizes genomes
recovery

We showed that co-assembly approaches usually reconstructed higher numbers of (MQ)
MAGs, albeit with a tendency to be more contaminated (HQ MAGs). As previously re-
ported [137], this underlines the utility of co-assembly to recover rare or less-abundant
genomes, and to maximise MAGs recovery from a limited number of metagenomes. Here,
co-binning strategies (SACB & CACB) systematically reconstructed less contaminated
MAGs than single-binning strategies (SASB & CASB) in datasets for which differences
in MAGs quality could be detected between strategies. Thus, multi-sample co-abundance
information computed across a minimum number of metagenomes appears particularly rel-
evant to improve genome binning and to limit the erroneous grouping of contigs. However,
the co-binning strategy may represent a severe limitation as it requires larger computa-
tional resources (CPU time and disk space), since it implies performing N2 reads mapping
operations, where N is the total number of metagenomes. For the CAMI dataset, differ-
ences in MQ MAGs quality between strategies were in contradiction with analyses of the
other datasets, although the HQ MAGs comparison pointed towards similar conclusions
as in the other datasets. This may be explained by the different number of MAGs recon-
structed between each strategy. The 80 MAGs reconstructed by the SASB strategy may
belong to abundant organisms, thus implying a smaller risk to increase contamination.
However, as SACB and CASB reconstructed almost twice the number of MAGs com-
pared to SASB, the MQ MAGs recovered by these strategies may belong to less abundant
genomes, hence these MAGs may be harder to reconstruct with a few samples (n = 5),
and thus may be more prone to contamination.

Interestingly, the effect of the co-assembly step on MAGs contamination is unclear. So
far, only a few methods, including CheckM and GUNC, exist to estimate MAGs quality.
When considering CheckM on the HMP dataset, single-assembly strategies reconstructed
less contaminated MAGs than co-assembly strategies. However, when considering con-
tamination estimated by GUNC, co-assembly strategies constructed less contaminated
MAGs. These results underline the crucial need to develop more accurate methods to
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properly estimate MAGs quality, and also highlight the utility to confront methods using
complementary strategies to estimate genome quality.

Co-assembly constitutes a useful and affordable strategy for shallow sequenced metagenomes
or when the number of metagenomes to co-assemble is limited. In such cases, the increase
in complexity of the assembly is limited, thus removing the main computational limitation
of co-assembly. Similar to co-assembly, co-binning is also impacted by metagenomic se-
quencing depth, as the computation time obviously increases with the number of reads. As
demonstrated, the co-binning strategy represents a powerful and useful, though computer-
intensive, strategy when numerous samples are available, as it helps to reconstruct more
HQ MAGs. A potential perspective for improving the co-binning process would be to
identify an optimal number of samples to compute co-abundances in order to optimize its
cost-benefit ratio.
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DISCUSSION

In this thesis, we wanted to answer to two problems posed by genome-resolved metage-
nomics, i) the difficulty to reconstruct MAGs at the strains level and/or bacterial pan-
genome, and ii) the unresolved question about how to perform co-assembly in MAGs
reconstruction. We tried to answer to the first problem by developing a new approach
to reconstruct MAGs, centered around the logic programming paradigm. The rationale
was that the exploration of all equivalent solutions to the binning problems would help
to retrieve relevant information to reconstruct strains genomes, and/or pan-genomes. The
second problem was answered with the development of an unsupervised co-assembly ap-
proach, computing a nucletotidic distance between metagenomes as a relevant metric to
group the metagenomes to co-assemble.

Logic programming for MAGs reconstruction

A first formalisation of contigs binning as a constraint program-
ming problem

The work presented in Chapter 3 was, to the best of our knowledge, the first attempt
to formalize the binning step as a logic programming problem. Previous attempts have
already used constraints, but in the different framework of constraints clustering, such
as [276]. The ambition of the logic programming approach was to explore several putative
binning solutions, in order to better identify potential hitherto unreconstructed MAGs.
This exploration of a high number of binning solutions are envisioned as a good answer
to the limitations of classic binning tools, which can suffer during the reconstruction of
genomes from rare organisms, or to reconstruct closely-related strains. The main result
from our approach was its capacity to successfully reconstruct two closely-related genomes
strains, while this discrimination was completely undetected by metabat2, which merged
the strains into a single MAG. The supposedly better separation allowed by our model
must be reconsidered, however, through the highly restrained framework of our model.
Notably, when the ASP model was not giving any information about the number of
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expected MAGs to reconstruct, its performance sharply dropped. Thus, a more precise
pre-assessment of the putative number of MAGs to reconstruct would greatly benefit our
ASP model, and would allow its better capacity for strains reconstruction to shine. If the
determination of bacterial strains present in metagenomes still represents a difficult task
in metagenomics, it also constitutes one of its major aims for the near future, with several
recent studies focusing on strains determination [15, 17]. The possibility to explore several
solutions to the binning problem to identify genomes strains and pan-genomes would then
further emphasize the relevance of the logic programming approach to resolve the contigs
binning problem.
However, the global efficiency of the ASP binning model to reconstruct MAGs revealed to
be outperformed by the tool we compare with, metabat2. The addition of more constraints
to our model could increase the precision of the clustering of contigs. Moreover, the
capacity to discard some contigs from the dataset also represents a major advantage
metabat2 had against our model. The inclusion of contigs dismissal in our model would
then help to increase the precision, by removing contigs originating from genomic regions
which differs significantly in their nucleotidic composition, and can be difficult to include
into a genome bin.

Scalability problem of ASP

The main trouble remained however the too high number of solutions to explore, which
exceeded the capacity of the clasp solver. The design of a more complete model, with the
addition of more constraints, would help to further reduce the search space for the solver.
The other main point from the development of the ASP framework was the significant
reduction of computation time allowed by the improvement of the code implementation.
There is without doubts still room for further technical enhancement, to fasten the prob-
lem resolution. Among the possible upgrades, the use of propagators, which are software
written in imperative languages overlaying the ASP program, should be considered. They
can handle more easily procedures which could be very costly in the resolution process
performed by the ASP solver, easing the resolution of the problem. Their limited use
in this work did not allow a significant enhancement of the resolution process. Other
approaches, such as the development of constraint programming ASP (CASP), would in-
clude features which are more easily performed in full CP solving than in ASP. Notably,
the CASP would remove the need to list all possible solutions [18], which would represent
a major improvement of the ASP technique itself. The development of such approaches
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constitutes however a rather recent discipline, with currently limited applications, but
showed promising results [18, 19].

Development of an automated workflow for genome-
resolved metagenomics

An unsupervised approach to metagenomic co-assembly

Another contribution of this work was the development of an automatic, unsupervised
method to determine sets of metagenome to co-assemble (see Chapter 4). The co-assembly
in MAGs reconstruction has been indeed widely used, because of its advantage to increase
the abundance of rare variants present in microbial communities. However, the use of co-
assembly has revealed to be an "all or nothing" strategy, with many studies routinely
co-assembling all the metagenomes in their datasets. Because of the increase in com-
putational resource consumption, the co-assembly of all metagenomes at once may not
be possible, especially when the metagenomes come from complex bacterial communities
such as marine communities. Some studies thus choose to perform several co-assemblies
of subsets of metagenomes of their dataset. This practice however rose the question of
how the sets of metagenomes should be chosen. Studies performing co-assembly of subsets
of marine metagenomes have to this end used geographic location [5, 10]. The a priori
knowledge needed to determine sets to co-assemble may not always be available or rele-
vant, constituting the rationale of our work. The sets of metagenomes retrieved from the
metagenomic-distance (MD) matrix allowed to gather metagenomes following common
environmental characteristics, such as the temperature. This observation emphasized the
relevance of our MD approach, as the effect of temperature in shaping bacterial commu-
nities has already been shown [8]. This MD approach also reconstructed more MAGs and
with higher quality than the approach relying on geographic location. Further clarifica-
tion is however needed, notably because of the apparent contradiction between different
two quality metrics. A possible explanation would be that co-assembling closely-related
metagenomes eases the reconstruction of accessory parts of the pan-genome, while at the
same time would worsen the reconstruction of core genome parts. The higher part of the
strains contamination in the contamination metric relying on single-copy genes that we
observed in the MD MAGs compared to the OR MAGs (see Fig. 4.8, p. 96) may represent
evidence towards this hypothesis. However, further investigation, with a more complete
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analysis of the genes found in the reconstructed MAGs, would be needed.

Comparison of MAGs reconstruction strategies

The comparison of the four strategies of MAGs reconstruction has revealed a strong
positive effect of the computation of differential coverage amongst a high number of
metagenomes. The effect of differential coverage has been measured as more efficient
than the effect of the co-assembly, as single-assembly combined with co-binning could
outperform co-assembly strategies. This observation may reflect that the deleterious ef-
fects of the co-assembly, namely the higher probability to produce fragmented MAGs,
may only be overcome with a differential coverage computed on a high-enough number of
metagenomes. This concerns essentially complex communities, as these observations were
made on MAGs reconstructed from human gut microbiome datasets, which can contain
several strains and variants.
The computation of differential coverage on all the available metagenomes may however
not be necessary, and revealed to be costly, because of the quadratic number of opera-
tions to perform. An enhancement of this approach could be an assessment of an optimal
number of samples on which to compute the differential coverage. Such an assessment has
already been made in the past [24], but it would be interesting to know if that optimal
number would depend on the complexity of the considered bacterial community.

Future improvements of MAGNETO

The implementation of MAGNETO allows the addition of more modules, some of
which are already considered, in order to perform a more complete analysis of the MAGs.
Notably, a module estimating the optimal growth of the MAGs based on their nucleo-
tidic composition has been developed and had already contributed to the study of arctic
MAGS [25]. Further additions would concern assembly software and binning tools, to in-
crease the flexibility of the user. Besides, the binning protocol combining several tools to
retrieve mosaic MAGs has exhibited promising results [26, 27], and might constitute an
easy way to improve the efficiency of binning. Our workflow follows a MAGs reconstruction
protocol that may be characterised as classic, summoning tools which have been widely
used in recent metagenomic studies. In that respect, it suffers from the limitations of
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these tools, and the hindrance with reconstruction of accessory regions of the pan-genome
was left unanswered. In recent years, several studies aimed a better characterisation of
pan-genomes in metagenomic studies [28–30]. Those works would be inspiring to allow a
more complete analysis of bacterial communities in MAGNETO.
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ANNEXES

ASP Model: second implementation, known number
of bins

#const k=10.
#const lengthmin=200000.
#const rate=95.
%there are 10 marker genes
%so we want at least 5 marker genes within each cluster
#const threshold_completeness=5.
%%there are 10 marker genes, so we want a number of duplicates strictly below 2
#const threshold_conta=2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Cluster attribution %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%defining the bins
bin(1..k).

%assignation rule : a contig belongs to one bin and only one
1{att(B,C) : bin(B)}1 :- contig(B,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ANTIPARALLELIC CONSTRAINT %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% First, look for maximum contig id in bin B%%
aux_att(B,C) :- att(B,C).
aux_att(B,C-1) :- aux_att(B,C), C>0.
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attmax(B,C) :- aux_att(B,C), not aux_att(B,C+1).
%% Looking for minimum contig id in bin B %%
attmin(B,C) :- att(B,C-1), contig(C,_).
%use Cmax previously computed as a limit for attmin/2 predicate.
attmin(B,C+1) :- attmin(B,C), attmax(B,Cmax), C<Cmax.
attmin(B,C) :- attmin(B,C), not attmin(B,C-1).
:- attmin(B1,C1), attmin(B2,C2), B1<B2, C1>C2.

%%last, if cluster id B1 is smaller than cluster id B2,
%%then min contig id C1 must not be higher than min contig id C2
:- attmin(B1,C1), attmin(B2,C2), B1<B2, C1>C2.

%%%%%%%%%%%%%%%%
% Cluster size %
%%%%%%%%%%%%%%%%

%control cluster size using number of bases
%calculate total length in bins
attlengthmin(B,C,L) :- att(B,C), contig(C,L).
%bin must contain a certain amount of bases
:- bin(B), not #sumL : attlengthmin(B,_,L)>lengthmin.

%%%%%%%%%%%%%%%%%%%%
% Optimization %
%%%%%%%%%%%%%%%%%%%%

%% compute maximum diameter
diam(B,D) :- att(B,C1), att(B,C2), C1<C2, bin(B), tnf(C1,C2,D).
diam(B,D-1) :- diam(B,D), D>0.
maxDiameter(B,D) :- diam(B,D), not diam(B,D+1).

%% compute minimum margin
margin(M) :- att(B1,C1), att(B2,C2), bin(B1), bin(B2), B1<B2,
abd(C1,C2,M).
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margin(M+1) :- margin(M), M<100.
minMargin(M) :- margin(M), not margin(M-1), M>-1.

%optimization
:~ maxDiameter(D). [1,D,d] %minimization of diameter
:~ minmargin(M). [-1,M,m] %maximization of margin

%%%%%%%%%%%%%%%%%%%%

%addition of instance-level constraints (if needed)

%%%%%%%%%%%%%%%%
% Completeness %
%%%%%%%%%%%%%%%%

%completeness constraint : MAGs are binss in which there is more than 50% of marker genes
scg_bin(C,G) :- att(B,C), scg(C,G).
%there are 10 marker genes right now, so each bin needs 5 marker genes
:- bin(B), not #countG : scg_bin(B,G)>threshold_completeness.

%%%%%%%%%%%%%%%%%
% Contamination %
%%%%%%%%%%%%%%%%%
%%gene marker constraint : two contigs must not be in the same cluster
%%if they carry two copies of the same gene marker
:- att(C1,X1), att(C2,X2), mg(X1, M1), mg(X2, M2), X1!=X2, C1==C2, M1==M2.

%%contamination constraint : MAGs are clusters in which
%%there is less than 10% of contamination
scg_bin_duplicate(B,G1) :- att(B,C1), att(B,C2), scg(C1,G1), scg(C2,G1), C1<C2.
%%there are 10 marker genes, so we want a number of duplicates strictly below 2
:- bin(B), #countG : scg_bin_duplicate(B,G)>threshold_contamination.

%%Unused constraint : to belong to the same cluster, tnf distance must be below threshold
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%:- att(C1, X1), att(C2, X2), tnf(X1,X2,T), X1!=X2, C1==C2, T>70.

%%Unused constraint : if two contigs do not have a distance between them (distance too high to be in the distance matrix)
%%do not put them in the same cluster.
%:- att(C, X1), att(C, X2), not tnf(X1,X2,_), X1!=X2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Show these predicates in answer %%%%
%#show tnf/3.
%#showdistancediff/3.
#show att/2.
%#show minmargin/1.
%#show maxDiameter/1.
#show cluster/1.
%#show mg_cluster/2.
%#show attlengthmin/3.
%#show margin/1.
%#show diam/1.
%#show mg/2.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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ASP Model: unknown number of bins, 25 bins

#const k=25.
#const lengthmin=200000.

%there are 10 marker genes
%so we want at least 5 marker genes within each cluster
#const threshold_completeness=5.
%%there are 10 marker genes, so we want a number of duplicates strictly below 2
#const threshold_conta=2.
%#const thresholdtnf=30.

%define a set of putative bins
putative_bin(1..k).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Cluster attribution %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% a contig C belong to one bin B and only one
1{att(B,C) : putative_bin(B)}1 :- contig(C,_).
%if there is at least one instance of predicate att/2 containing B
%so B is a true bin
bin(B) :- att(B,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ANTIPARALLELIC CONSTRAINT %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% First, look for maximum contig id in bin B%%
aux_att(B,C) :- att(B,C).
aux_att(B,C-1) :- aux_att(B,C), C>0.
attmax(B,C) :- aux_att(B,C), not aux_att(B,C+1).
%% Looking for minimum contig id in bin B %%
attmin(B,C) :- att(B,C-1), contig(C,_).
%use Cmax previously computed as a limit for attmin/2 predicate.
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attmin(B,C+1) :- attmin(B,C), attmax(B,Cmax), C<Cmax.
attmin(B,C) :- attmin(B,C), not attmin(B,C-1).
:- attmin(B1,C1), attmin(B2,C2), B1<B2, C1>C2.

%%last, if cluster id B1 is smaller than cluster id B2,
%%then min contig id C1 must not be higher than min contig id C2
:- attmin(B1,C1), attmin(B2,C2), B1<B2, C1>C2.

%%%%%%%%%%%%%%%%
% Cluster size %
%%%%%%%%%%%%%%%%

%control cluster size using number of bases
%calculate total length in bins
attlengthmin(B,C,L) :- att(B,C), contig(C,L).
%bin must contain a certain amount of bases
:- bin(B), not #sumL : attlengthmin(B,_,L)>lengthmin.

%%%%%%%%%%%%%%%%%%%%
% Optimization %
%%%%%%%%%%%%%%%%%%%%

%% compute maximum diameter
diam(B,D) :- att(B,C1), att(B,C2), C1<C2, bin(B), tnf(C1,C2,D).
diam(B,D-1) :- diam(B,D), D>0.
maxDiameter(B,D) :- diam(B,D), not diam(B,D+1).

%% compute minimum margin
margin(M) :- att(B1,C1), att(B2,C2), bin(B1), bin(B2), B1<B2,
abd(C1,C2,M).
margin(M+1) :- margin(M), M<100.
minMargin(M) :- margin(M), not margin(M-1), M>-1.

%optimization
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:~ maxDiameter(D). [1,D,d] %minimization of diameter
:~ minmargin(M). [-1,M,m] %maximization of margin
%maximize number of points in clusters
%did not find way to implement it in other way
%#maximize{1 @1,C,X : att(C,X)}.

%%%%%%%%%%%%%%%%%%%%

%addition of instance-level constraints (if needed)

%%%%%%%%%%%%%%%%
% Completeness %
%%%%%%%%%%%%%%%%

%completeness constraint : MAGs are binss in which there is more than 50% of marker genes
scg_bin(C,G) :- att(B,C), scg(C,G).
%there are 10 marker genes right now, so each bin needs 5 marker genes
:- bin(B), not #countG : scg_bin(B,G)>threshold_completeness.

%%%%%%%%%%%%%%%%%
% Contamination %
%%%%%%%%%%%%%%%%%
%%gene marker constraint : two contigs must not be in the same cluster
%%if they carry two copies of the same gene marker
:- att(C1,X1), att(C2,X2), mg(X1, M1), mg(X2, M2), X1!=X2, C1==C2, M1==M2.

%%contamination constraint : MAGs are clusters in which
%%there is less than 10% of contamination
scg_bin_duplicate(B,G1) :- att(B,C1), att(B,C2), scg(C1,G1), scg(C2,G1), C1<C2.
%%there are 10 marker genes, so we want a number of duplicates strictly below 2
:- bin(B), #countG : scg_bin_duplicate(B,G)>threshold_contamination.

%%Unused constraint : to belong to the same cluster, tnf distance must be below threshold
%:- att(C1, X1), att(C2, X2), tnf(X1,X2,T), X1!=X2, C1==C2, T>70.
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%%Unused constraint : if two contigs do not have a distance between them (distance too high to be in the distance matrix)
%%do not put them in the same cluster.
%:- att(C, X1), att(C, X2), not tnf(X1,X2,_), X1!=X2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Show these predicates in answer %%%%
%#show tnf/3.
%#showdistancediff/3.
#show att/2.
%#show minmargin/1.
%#show maxDiameter/1.
#show cluster/1.
%#show mg_cluster/2.
%#show attlengthmin/3.
%#show margin/1.
%#show diam/1.
%#show mg/2.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Titre : Modèles et méthodes pour la métagénomique à résolution génomique
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Résumé : La reconstruction de génomes à
partir de données métagénomiques, aussi ap-
pelés MAG) représente une étape majeure
dans l’étude des communautés microbiennes.
La reconstruction de MAGs souffre néan-
moins de limitations, telles que la nature frag-
mentée de ces MAGs, les difficultés inhé-
rentes à la reconstruction du pangénome,
ou la capture des variations entre souches
d’une même espèce. Dans cette thèse, le pro-
blème du binning a été appréhendé à tra-
vers un modèle de clustering suivant le pa-
radigme de la logique déclarative, l’objectif
étant de maximiser l’information sur les gé-
nomes présents grâce à l’exploration de l’en-
semble des solutions de binning possible. Ce
modèle de binning incluant métrique com-

positionnelle, mesure d’abondance et occur-
rence de gènes marqueurs a été implémenté
en langage ASP. Nous nous sommes en-
suite concentrés sur l’optimisation du proces-
sus d’assemblage, étape préliminaire clé de
la classification de contigs, avec pour ob-
jectif d’encore améliorer la reconstruction de
MAGs. Nous avons développé une approche
automatique pour guider le processus de co-
assemblage, couplant des distances métagé-
nomiques avec une méthode d’optimisation
du clustering. Cette approche a été intégrée
dans un nouveau workflow de reconstruction
de MAGs, MAGNETO, qui intègre également
des stratégies assemblage-binning complé-
mentaires.

Title: Models and methods for genome-resolved metagenomics

Keywords: Binning, co-assembly, metagenomics, ASP

Abstract: The reconstruction of individual
genomes from metagenomic data, also called
MAGs has constituted a major milestone in
the study of microbial communities. However,
the recovery of MAGs still suffers several lim-
itations, including the mosaic and population
nature of these MAGs, the inherent difficul-
ties to assemble pangenomes, and the re-
covery of strain-level variations for a given
species. In this thesis, a declarative program-
ming framework was designed and used to re-
solve the genome binning problem through a
constrained clustering approach, with the goal
to explore several optimal binning solutions,
informing us about the organization dynam-
ics of naturally occurring genomes. A novel

genome binning model integrating composi-
tional and abundance information as well as
constraints on single-copy core genes was de-
signed and implemented using the ASP lan-
guage. With the goal to further enhance the re-
covery of MAGs, we focused on optimizing the
assembly process, a key genome binning pre-
processing step. We developed an automated
approach to guide the co-assembly process,
combining metagenomic compositional dis-
tances with an optimal clustering method.
These developments were implemented into a
novel genome-resolved metagenomics work-
flow called MAGNETO, integrating comple-
mentary assembly-binning strategies.
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