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RÉSUMÉ

Motivés par l’intérêt récent porté à l’apprentissage statistque et au calcul distribué, nous étudions 
l’optimisation convexe stochastique et les algorithmes de gossip en parallèle. Cette étude jointe 
est rendue possible grâce à des relations rigoureuses qui sont faites entre les structures de 
problèmes d’optimisation et leurs équivalents pour les algorithmes de gossip. La forte convexité 
d’un problème d’optimisation correspond au trou spectral entre les deux plus petites valeurs 
propres du Laplacien pour les algorithmes de gossip. Les conditions de capacité et de source 
d’un problème de moindres carrés, qui décrivent les lois de puissance des valeurs propres et de 
la projection de l’optimum sur les vecteurs propres, correspondent à la dimension spectrale du 
graphe pour les algorithmes de gossip.
Voir ci-dessous pour un résumé plus long.

MOTS CLÉS

optimisation, gossip, stochastique, distribué, aynchrone

ABSTRACT

Motivated by the recent interest in statistical learning and distributed computing, we study 
stochastic convex optimization and gossip algorithms in parallel. This joint study is enabled by 
rigorous relationships that are made between the structures of optimization problems and their 
equivalents for gossip algorithms. The strong convexity of an optimization problem corresponds to
the spectral gap between the two smallest eigenvalues of the graph Laplacian for gossip 
algorithms. The capacity and source conditions of a least-squares problem, that describe power-
law scalings for the eigenvalues and for the projection of the optimum against the eigenvectors, 
correspond to the spectral dimension of the graph for gossip algorithms.
See below for a longer abstract.
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Abstract. Motivated by the recent interest in statistical learning and distributed
computing, we study stochastic convex optimization and gossip algorithms in par-
allel. This joint study is enabled by rigorous relationships that are made between
the structures of optimization problems and their equivalents for gossip algorithms.
The strong convexity of an optimization problem corresponds to the spectral gap
between the two smallest eigenvalues of the graph Laplacian for gossip algorithms.
The capacity and source conditions of a least-squares problem, that describe power-
law scalings for the eigenvalues and for the projection of the optimum against the
eigenvectors, correspond to the spectral dimension of the graph for gossip algorithms.

In this common framework, our first contribution is to study the convergence
rates of naive algorithms: stochastic gradient descent and the simple gossip algo-
rithm. We largely focus on obtaining non-parametric rates in the noiseless case,
typical of interpolation problems.

As the naive methods prove to be suboptimal, we propose two new techniques
to accelerate them.

First, we propose so-called continuized accelerations to tackle the problem of
asynchrony in accelerating distributed algorithms, like gossip algorithms. We model
this asynchrony by assuming that communications and gradient steps happen at
random times, and we adapt classical accelerations to this setting. Interestingly, the
resulting continuized framework gives an insightful perspective even on the classical
centralized acceleration of Nesterov.

Second, we propose an acceleration of gossip algorithms—called the Jacobi Poly-
nomial Iteration—depending on the spectral dimension of the communication net-
work. This contrasts with previous accelerations based on the spectral gap; taking
into account the spectral dimension brings a significant improvement on large net-
works, in the non-asymptotic regime. This acceleration is derived in two different
ways: using parallel techniques in optimization called polynomial-based iterative
methods, or through its scaling on large graphs to a partial differential equation
that mixes quickly.



Résumé. Motivés par l’intérêt récent porté à l’apprentissage statistque et au cal-
cul distribué, nous étudions l’optimisation convexe stochastique et les algorithmes
de gossip en parallèle. Cette étude jointe est rendue possible grâce à des rela-
tions rigoureuses qui sont faites entre les structures de problèmes d’optimisation et
leurs équivalents pour les algorithmes de gossip. La forte convexité d’un problème
d’optimisation correspond au trou spectral entre les deux plus petites valeurs propes
du Laplacien pour les algorithmes de gossip. Les conditions de capacité et de source
d’un problème de moindres carrés, qui décrivent les lois de puissance des valeurs
propres et de la projection de l’optimum sur les vecteurs propres, correspondent à
la dimension spectrale du graphe pour les algorithmes de gossip.

Dans ce cadre commun, notre première contribution est d’étudier les vitesses
de convergence des algorithmes naïfs : la descente de gradient stochastique et
l’algorithme de gossip simple. On se concentre principalement sur l’obtention de
taux non-paramétriques dans le cas sans bruit additif, qui est typique des problèmes
d’interpolation.

Comme les méthodes naïves se révèlent être sous-optimales, nous proposons deux
techniques pour les accélérer.

Premièrement, nous proposons des accélérations dites continuisées pour résoudre
le problème de l’asynchronie dans l’accélération des algorithmes distribués tels que
les algorithmes de gossip. Nous modélisons cette asynchronie en faisant l’hypothèses
que les communications et les pas de gradient ont lieu à des instants aléatoires, et
nous adaptons les accélérations classiques à ce scénario. Curieusement, ce cadre
continuisé apporte une perspective intuitive même pour l’accélération centralisée
classique de Nesterov.

Deuxièmement, nous proposons une accélération des algorithmes de gossip, ap-
pelée itération des polynômes de Jacobi, qui dépend de la dimension spectrale du
réseau de communication. Cela contraste avec les accélérations précédentes basées
sur le trou spectral ; prendre en compte la dimension spectrale apporte une amélio-
ration significative sur des grands réseaux, dans un régime non-asymptotique. Cette
accélération est construite de deux manières différentes : en utilisant des techniques
parallèles en optimisation appelées méthodes itératives par polynômes, et au travers
de sa limite d’échelle sur des grands graphes vers une équation aux dérivées partielles
qui mélange rapidement.
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Vue d’ensemble de la thèse et des contributions

Ce long résumé suppose que le lecteur a des connaissances en optimisation, statistiques et algo-
rithmes de gossip. Le lecteur peut choisir de lire d’abord l’introduction (Chapitre 1), puis de revenir
à ce résumé.

L’optimisation du premier ordre recherche le minimum d’une fonction à partir de requêtes
du gradient en des points choisis. Les algorithmes de gossip sont des sous-routines qui diffusent
l’information à travers les réseaux dans les algorithmes distribués décentralisés. Cette thèse étudie
les taux de convergence et les accélérations des algorithmes d’optimisation convexe (stochastique)
et des algorithmes de gossip en parallèle. Les experts savent largement que certaines techniques
peuvent être transposées d’un domaine à l’autre ; cependant, le Chapitre 1 introductif rend le
parallèle plus rigoureux et détaillé.

Nous discutons et illustrons les similarités formelles entre les structures des deux problèmes :
une analyse et une conception algorithmique communes sont possibles. Nous soulignons que les al-
gorithmes de gossip correspondent à une classe spéciale d’algorithmes d’optimisation stochastique,
appelée optimisation stochastique sans bruit, où les gradient stochastiques sont observés sans au-
cun bruit additif. Nous formalisons la relation entre l’hypothèse de forte convexité en optimisation
convexe et l’hypothèse de trou spectral en gossip ; cette relation sous-tend de nombreuses contribu-
tions au problème de gossip. Nous introduisons un nouveau parallèle similaire entre les conditions
de capacité et de source en optimisation et une hypothèse de dimension spectrale en gossip.

Cependant, une différence importante limite le parallèle entre les deux domaines : les algo-
rithmes de gossip sont contraints d’utiliser uniquement des informations locales dans le réseau, ce
qui a des conséquences importantes que nous détaillons.

Dans ce cadre commun, le Chapitre 2 étudie les taux de convergence des méthodes naïves, c’est-
à-dire la descente de gradient stochastique pour l’optimisation des moindres carrés et l’algorithme
de gossip simple pour les algorithmes de gossip. Sous une hypothèse de forte convexité / de trou
spectral, l’analyse est simple et est donnée uniquement pour mettre les résultats en perspective. La
contribution principale de ce chapitre est d’étudier les taux de convergence de la descente de gradient
stochastique sous conditions de source et de capacité ; cela correpond aux taux de convergence de
l’algorithme de gossip simple sous une hypothèse de dimension spectrale. Cela a été publié dans
l’article de conférence suivant :

R. Berthier, F. Bach, P. Gaillard. Tight Nonparametric Convergence Rates for
Stochastic Gradient Descent under the Noiseless Linear Model, 2020, Advances
in Neural Information Processing Systems (NeurIPS).

La présentation se concentre sur le cas sans bruit, et les taux dans le cas avec bruit additif sont
donnés comme extension.

Les algorithmes naïfs se révèlent être sous-optimaux, par conséquence le reste de cette thèse se
concentre sur la question de l’accélération.

Le Chapitre 3 revisite l’accélération classique de Nesterov, mais en prenant en compte le carac-
tère asynchrone des implémentations distribuées. Nous concevons l’accélération de Nesterov “con-
tinuisée”, une variante proche de l’accélération de Nesterov où les pas de gradients sont réalisés à
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des instants aléatoires. De manière intéressante, cette variante donne une perspective intuitive sur
l’itération d’origine de Nesterov [1983]. Cette variante continuisée bénéficie du meilleur des cadres
continu et discret : en tant que processus continu, on peut utiliser le calcul différentiel pour analyser
la convergence et obtenir des expressions analytiques pour les paramètres ; mais une discrétisation
du processus continuisé peut être calculée exactement avec des taux de convergence similaires à ceux
de l’accélération originale de Nesterov. Nous montrons que la discrétisation a la même structure
que l’accélération de Nesterov, mais avec des paramètres aléatoires. Nous étendons l’accélération
continuisée à l’accélération stochastique, dans le cas particulier des gradients stochastiques sans
bruit. Dans ce cas, notre capacité à accélérer dépend des scores de levier (“leverage scores” en
anglais) ; l’accélération obtenue réalise des garanties de performance similaires à l’accélération de
Jain et al. [2018]. Pour finir, nous décrivons une application aux algorithmes de gossip asynchrone ;
ce n’est pas une contribution de l’auteur mais de Even et al. [2020], qui motiva la généralisation
proposée ici. La plupart du contenu de ce chapitre est disponible dans la pré-publication :

M. Even, R. Berthier, F. Bach, N. Flammarion, P. Gaillard, H. Hendrikx, L. Mas-
soulié, A. Taylor. A Continuized View on Nesterov Acceleration for Stochastic
Gradient Descent and Randomized Gossip, 2021, preprint.

Alors que dans le Chapitre 3 nous apprenons à accélérer dans des cadres asynchrones, le Chapitre 4
est une contribution orthogonale où l’on ignore l’asynchronie des communications dans les algo-
rithmes de gossip. Nous concevons une accélération des algorithmes de gossip synchrone en fonction
de la dimension spectrale du graphe. Notre méthode montre des améliorations importantes par rap-
port aux algorithmes existants dans le régime non-asymptotique. Notre approche consiste en un
point de vue polynomial sur les algorithmes de gossip, ainsi qu’une approximation de la mesure
spectrale des graphes avec une mesure de Jacobi. Nous montrons l’efficacité de cette approche avec
des simulations et des garanties de performance sur des graphes variés, comme les grilles et les
réseaux aléatoires de percolation. Le contenu de ce chapitre a été publié dans l’article de journal
suivant :

R. Berthier, F. Bach, P. Gaillard. Accelerated Gossip in Networks of Given Di-
mension using Jacobi Polynomial Iterations, 2020, SIAM Journal on Mathematics
of Data Science (SIMODS).

Le Chapitre 5 étudie les algorithmes de gossip sur les réseaux (dans le sens géométrique du terme).
Dans ce cas, nous concevons et analysons les algorithmes de gossip au travers de leur limite d’échelle
vers des équations aux dérivées partielles (EDPs). Alors que l’algorithme de gossip simple converge
vers l’équation de la chaleur, la méthode accélérée du Chapitre 4 converge vers l’équation d’Euler–
Poisson–Darboux, une équation avec une dérivée du second-ordre en temps et qui homogénise plus
vite. Ce point de vue EDP donne une perspective différente sur l’accélération, qui été conçue par
des méthodes algébriques sur les polynômes. Ce chapitre est une version préliminaire d’un travail
joint avec Mufan Li.
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Overview of the thesis and of the contributions

This long summary assumes that the reader knows about optimization, statistics and gossip algo-
rithms. The reader may choose to read the introduction (Chapter 1) first, and then come back to
this summary.

First-order optimization seeks the minimum of a function from the query of its gradient at
chosen points. Gossip algorithms are subroutines that diffuse information throughout networks in
distributed decentralized algorithms. This thesis studies the convergence rates and accelerations of
convex (stochastic) optimization algorithms and of gossip algorithms in parallel. Experts largely
know that some techniques can be brought from one field to the other; however, the introductory
Chapter 1 makes the parallel more rigorous and detailed.

We discuss and illustrate the formal similarities between the structures of both problems: com-
mon analysis and algorithmic design are possible. We underline that gossip algorithms correspond
to a special class of stochastic optimization algorithms, called noiseless stochastic optimization,
where the stochastic gradients are observed without any additive noise. We formalize the rela-
tionship between the strong convexity assumption in convex optimization and the spectral gap
assumption in gossip; this relationship underlies many contributions to the gossip problem. We
introduce a new similar parallel between capacity and source conditions in optimization and a
spectral dimension assumption in gossip.

However, an important difference limits the parallel between the two fields: gossip algorithms
are constrained to use only local information in the network, with important consequences that we
detail.

In this common framework, Chapter 2 studies the convergence rates of naive methods, namely
stochastic gradient descent for least-squares optimization and simple gossip for gossip algorithms.
Under a strong convexity / spectral gap assumption, the analysis is simple and given only to
put the results in perspective. The main contribution of this chapter is to study the convergence
rates of stochastic gradient descent under source and capacity conditions; they correspond to the
convergence rates of the simple gossip algorithm under a spectral dimension assumption. It was
published in the following conference article:

R. Berthier, F. Bach, P. Gaillard. Tight Nonparametric Convergence Rates for
Stochastic Gradient Descent under the Noiseless Linear Model, 2020, Advances
in Neural Information Processing Systems (NeurIPS).

The exposition focuses on the noiseless case, while rates under additive noise are given as an
extension.

Naive algorithms are shown to be sub-optimal, thus the rest of the thesis focuses on the question
of acceleration.

Chapter 3 revisits the classical Nesterov acceleration, but taking into account the asynchrony
of distributed implementations. We design the “continuized” Nesterov acceleration, a close variant
of Nesterov acceleration where gradient steps are taken at random times. Interestingly, this variant
gives an insightful perspective on the original iteration by Nesterov [1983]. This continuized variant
benefits from the best of the continuous and the discrete frameworks: as a continuous process, one
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can use differential calculus to analyze convergence and obtain analytical expressions for the pa-
rameters; but a discretization of the continuized process can be computed exactly with convergence
rates similar to those of Nesterov original acceleration. We show that the discretization has the
same structure as Nesterov acceleration, but with random parameters. We extend the continuized
acceleration to stochastic acceleration, in particular to the case of noiseless stochastic gradients. In
this case, our ability to accelerate depends on the leverage scores; the resulting acceleration achieves
performance guarantees similar to an acceleration of Jain et al. [2018]. Finally, an application to
asynchronous gossip algorithms is described; note that it is not a contribution of the author but
of Even et al. [2020], that motivated the generalization proposed here. Most of the content of this
chapter is available in the preprint (under review):

M. Even, R. Berthier, F. Bach, N. Flammarion, P. Gaillard, H. Hendrikx, L. Mas-
soulié, A. Taylor. A Continuized View on Nesterov Acceleration for Stochastic
Gradient Descent and Randomized Gossip, 2021, preprint.

While in Chapter 3 we learn to accelerate in asynchronous settings, Chapter 4 is an orthogonal
contribution where we ignore the asynchrony of communications in gossip algorithms. We design an
acceleration of synchronous gossip algorithms depending on the spectral dimension of the graph.
Our method shows an important improvement over existing algorithms in the non-asymptotic
regime. Our approach stems from a polynomial-based point of view on gossip algorithms, as well
as an approximation of the spectral measure of the graphs with a Jacobi measure. We show the
power of the approach with simulations and performance guarantees on various graphs, such as
grids and random percolation bonds. The content of this chapter is published in the following
journal article:

R. Berthier, F. Bach, P. Gaillard. Accelerated Gossip in Networks of Given Di-
mension using Jacobi Polynomial Iterations, 2020, SIAM Journal on Mathematics
of Data Science (SIMODS).

Chapter 5 studies gossip algorithms on lattices. In this case, we design and analyze gossip
algorithms through their large-scale limit to partial differential equations (PDE). While the simple
gossip algorithm scales to the heat equation, the accelerated method of Chapter 4 scales to the
Euler–Poisson–Darboux equation, an equation with a second-order derivative in time and that
homogenizes faster. This PDE point of view gives a different perspective on the acceleration, that
was designed through algebraic methods on polynomials. This chapter is a preliminary version of
joint work with Mufan Li.
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Notations

Important conventions
n, k non-negative integers, number of iterations. But also, rarely, k is a

kernel.
t non-negative real number, time index. But also, rarely, function defining

a translation invariant kernel.
f objective function of an optimization problem, energy function of a gos-

sip problem.
H Hilbert space with scalar product 〈., .〉 and norm ‖.‖. The Hilbert

space H is the set over which objective functions f are optimized. The
elements of H are denoted with an x, or ϕ when they are functions.

x∗ minimizer of f .
m dimension of H when it is finite, or number of vertices in a graph.

x(1), . . . , x(m) components of a vector x ∈ Rm.
N number of functions in a finite sum structure, number of samples of a

learning problem, or number of edges in a graph.
a input of a learning problem.
b output of a learning problem.

Σ Hessian, or covariance operator.
G = (V, E) graph G, with vertex set V and edge set E .

u, v, w vertices of a graph.
v ∼ w there is an edge between v and w. This is equivalent to {v, w} ∈ E .
L Laplacian of a graph.
A adjacency matrix of a graph.
D degree matrix of a graph.
W gossip matrix on a graph.
d spectral dimension of a graph, typically the dimension of a lattice.
L smoothness parameter.
µ strong convexity parameter, or spectral gap.
α often, regularity of the optimum or of the features.
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Classical mathematical notations
∇ gradient of a function. When there are several variables, we write ∇y to

denote the gradient in the variable y.
∇2 Hessian of a function.
∆ Laplacian of a function.
∇· divergence of a function.

∂t, ∂tt first-order and second-order partial derivatives in the variable t.
4 positive semi-definite order.
O big-O notation.
o small-o notation.

Θ big-theta notation. u = Θ(v) if and only if u = O(v) and v = O(u).
ξ ∼ P the random variable ξ has law P.

E expectation.
Eξ∼P partial expectation over ξ with law P. Sometimes this notation is used

for the full expectation E, only to remind which variables are random in
the expression.

N (x,Σ) (multivariate) Gaussian distribution with mean x and (co)variance Σ
Unif(.) uniform law on a finite set.

.> transpose of a matrix or an operator.
⊗ when a ∈ H, a ⊗ a is the operator defined by the formula (a ⊗ a)x =
〈a, x〉a. In the finite dimensional case, a⊗ a = aa>.

1 vector with every coordinate equal to 1 (with dimension clear from the
context). Also, 1A is the indicator of a random event A, i.e., takes value
1 if A holds and 0 otherwise.

a.s. almost surely.
i.i.d. independent identically distributed.

Tr trace of a matrix or of a linear operator.
x+ positive part of a real number x. If x > 0, x+ = x and if x < 0, x+ = 0.
bsc integer part of a real number s.
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CHAPTER 1

Introduction

1.1. Context and motivations

Context. We ask machines more and more: to detect spams and frauds, to recognize the content of
images, to understand speech, to advise in medical diagnoses, to personalize teaching and marketing
to users [Jordan and Mitchell, 2015]. This has been enabled by a steady progress in computational
power, memory capacity, and sensor quality, as classically illustrated by Moore’s law [Moore, 2005].
Simultaneously, this technology becomes cheaper, making it accessible for more and more users
and applications. An intense algorithmic research learns to use at best these new resources. As
a consequence, computer science is constantly evolving: new trends emerge thanks to the new
possibilities enabled by an improving technology. Let us describe a few trends that we are interested
in.

First, learning algorithms have been revolutionized by the big data era: more data collection,
more data storage, and more computational power to process the data. Modern datasets now
contain a large number of observations, often high-dimensional: to give an order of magnitude, the
classical COCO dataset of Lin et al. [2014] contains 300, 000 images, each one of them composed
of more than 100, 000 pixels. Statistics and theoretical computer science are struggling to explain
some of the recent progress of practitioners in this large scale setting. Many observations challenge
the classical statistical wisdom, including the bias-variance tradeoff [Ma et al., 2018, Bartlett et al.,
2021]. The success of neural networks—the dominant machine learning technique on complex,
large-scale data—is not explained by the current learning theories. As a consequence, the big data
era has stimulated a burst of theoretical research.

Further, large scale machine learning motivates a particular interest in first-order stochastic
optimization, that allows to train a machine learning model in an online fashion (accessing the
observations one after the other) and with only a few passes over the dataset [Bottou et al.,
2018]. When the dataset is large, these properties of stochastic optimization methods are crucial to
obtain reasonable algorithmic running times. This thesis largely deals with first-order (stochastic)
optimization, with a special focus on models that are suitable for high-dimensional problems.

Finally, because of the amount of computations and/or data required, algorithms are now
distributed on several machines. Distributed computing can be seen as a special case of paral-
lel computing, where there is limited communication between machines, no memory sharing, and
computations are asynchronous. These difficulties generate research in order to adapt classical
single-machine algorithms to distributed settings, see for instance [Assran et al., 2020]. Among dis-
tributed networks, one opposes centralized and decentralized networks, see Figure 1.1. Centralized
networks are the most common: a master node (say, a server) distributes the tasks and aggregates
the information and the computations of the other nodes, the workers. In decentralized networks,
there is no distinguished node that aggregates information. Decentralized networks are receiving
increasing interest for their flexibility, robustness to node/links failures, and scalability. This thesis
contributes to the analysis and the design of algorithms for a simple decentralized problem called
the gossip problem.
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(a) Centralized
(b) Decentralized

Figure 1.1. Cartoon picture of centralized and decentralized distributed networks.

Role of scientific theory. As the work presented in this thesis is mostly theoretical, we recall the
role of scientific theory in the progress described above. Theory aims at explaining and predicting
observed phenomena. In our field, this means providing practitioners with insights on the limita-
tions of existing algorithms, and with potential candidates for faster or more precise algorithms.

However, such insights usually come with important simplifying assumptions in order to enable
a theoretical study. Modeling is the art of making the assumptions that remove enough irrelevant
real-world details for theory to be possible, but keep the core properties of the problem. This
requires numerous discussions with experimenters. When a satisfying model is not found, toy
problems model only a subset of the features of the original problem. Their formulation and
resolution give intermediate steps for theoretical research. For instance, the averaging problem,
or the synchronous gossip framework, both introduced below, are toy problems of decentralized
computing.

Given the numerous simplifications made, theory rarely hopes to make precise quantitative
predictions. The goal is only to make rough qualitative predictions. Is the algorithm stable? Will
it converge to a solution? How long will it take before it outputs a solution: about 1 second, 1
day or longer than the age of the universe? What are the natural suggestions to improve such
algorithm?

However, models come with an important blessing: many real-world problems with different
appearances exhibit a common mathematical structure when simplified, as illustrated by the note
of McKean [2003]. This diagonal perspective on science enables to make giant leaps. For instance,
computer science and in particular machine learning have used many ideas coming from statistical
physics [Mezard and Montanari, 2009, Zdeborová and Krzakala, 2016]. The notion of optimal
transport was originally created by Monge [1781] to study the optimal movement of a resource to
specified locations; it is now a large theory able, e.g., to analyze toy models of neural networks
[Chizat and Bach, 2018], and a set of computation schemes used in imaging sciences and machine
learning (see the review by Peyré and Cuturi [2019]). Quadratic optimization, including this thesis,
has benefited from the theory of orthogonal polynomials, originally created to express solutions of
equations appearing in physics [Fischer, 1996]. Finally, and more importantly to us, this thesis
solidifies a more modest parallel between stochastic first-order methods and gossip algorithms.

Stucture of the rest of the introduction. First, in Section 1.2, we present convex optimization
with deterministic or stochastic gradients, along with some applications to statistical learning.
Second, in Section 1.3, we present the averaging problem and gossip algorithms. The materials of
these sections is classical; the goal is only to clarify our objects of interests and some terminology.
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In Section 1.4, we explain the relations that can be made between convex optimization and
gossip algorithms.

Finally, in Section 1.5, we describe equivalent sets of assumptions in convex optimization and
in gossip algorithms: strong convexity in optimization is equivalent to a spectral gap assumption
in gossip algorithms, and capacity and source conditions are equivalent to a spectral dimension
assumption. In each setting, we discuss the rates and accelerations. This section articulates the
rest of the thesis.

1.2. Convex optimization, gradient descents and kernel methods

1.2.1. Optimization with deterministic gradients. In computer science, a large number
of problems seek the best element x in a set H of options. To give an unambiguous meaning to the
word “best”, one can have a cost function f : H → R defined on the set H. The goal of optimization
theory is to minimize f on the set H, i.e., to find an element x ∈ H with minimal or near minimal
cost f(x):

min.
x∈H

f(x) .

Depending on the nature of the problem, the function f can be named differently than “cost”
function. In this thesis, we refer to f as the “risk” function when dealing with learning problems, and
as the “energy” function when dealing with gossip algorithms. Some other fields maximize−f rather
than minimizing f ; for instance, reinforcement learning maximizes “rewards”, economic theory
maximizes “utility” functions. These various terminologies and conventions have no importance for
the theory.

Given the extreme generality of this problem formulation, optimization theory has to be an
enormous field. Algorithms and their performance differ depending on the way the function f can
be accessed and on the properties of the function f and the set H. In this thesis, we make several
assumptions that set our work within a specific branch of optimization.

• (unconstrained, first-order optimization) We assume that the set H is a Hilbert space
endowed with a scalar product 〈., .〉. We denote ‖.‖ the associated norm. For most ap-
plications of this thesis, H = Rm endowed with the canonical scalar product, but the
generalization to infinite-dimensional Hilbert spaces is important for applications to ker-
nel methods. The function f is assumed to be differentiable and accessible through the
computations of its gradient ∇f(x) at a chosen points x, called queries. In most applica-
tions, the queries are the most costly part of algorithms (in terms of time, or computational
effort). Thus optimization methods seek the minimum of f in a minimal number of queries.
• (convex optimization) We assume that the function f is convex, i.e., for all x, y ∈ H,

f(y) > f(x) + 〈∇f(x), y − x〉 .

This assumption is ubiquitous in optimization to have algorithms converging to a global
minimizer of the function f . The power of the convexity assumption is that it gives a
global lower bound on the function f from only local information (the function value f(x)
and the gradient ∇f(x)) on the function at a point x. We also make the following similar
assumption, that gives an upper bound from local information.
• (smooth optimization) We assume that there exists a constant L > 0 such that f is L-
smooth, i.e., for all x, y ∈ H,

f(y) 6 f(x) + 〈∇f(x), y − x〉+ L

2 ‖y − x‖
2 .

While in general, optimization problems can be extremely hard to solve, unconstrained smooth
convex optimization problems can be solved using a simple algorithm, called gradient descent. It is
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an iterative method, meaning that it starts from an initial guess x0 ∈ H of the minimum of f and
repeatedly attempts to improve it. As the gradient of f at x0 points towards the direction of local
maximal increase of f , gradient descents moves in the opposite direction to decrease f : it defines
x1 = x0 − γ0∇f(x0), where γ0 is a step-size. It then computes the gradient at x1, takes a new
gradient step, and so on:

xn+1 = xn − γn∇f(xn) , n > 0 . (1.1)
The step-sizes γn > 0 need to be chosen by the algorithmic designer.

Gradient descent is sometimes referred to as a “naive” method because of its simplicity, but
also because it requires to know few properties of the function f . It is easy to understand, versatile,
and widely used. A folklore result is that if the step-sizes are small enough, then gradient descent
finds solutions x ∈ H with value f(x) arbitrarily close to the optimal value.

Theorem 1.1 ([Nesterov, 2003, Corollary 2.1.2]). Let f : H → R be a convex, L-smooth
function, minimized at a point x∗. Consider the iterates (xn)n∈N of gradient descent (1.1),
with constant step-sizes equal to γ = 1

L . Then

f(xn)− f(x∗) 6
2L‖x0 − x∗‖2

n+ 4 .

In short, the excess cost f(xn) − f(x∗) is dominated by 1/n as n → ∞. Given this theorem,
one could think unconstrained convex smooth optimization is trivially solved: one simply has to
run gradient descent for a sufficient number of iterations. It turns out this is not the case, for at
least two reasons.

• First, the theorem states only inequalities. One can show faster convergence rates for gra-
dient descent by assuming more properties on the function f , for instance strong convexity
or a source condition (introduced below).
• Second, there exists variants of gradient descent that exhibit a better convergence rate;
they are called accelerated methods. For instance, the celebrated Nesterov acceleration,
presented below in (3.1)-(3.3), has an excess cost f(xn)− f(x∗) dominated by 1/n2 under
the same assumptions as Theorem 1.1. In practice, we rather want to find a solution
x ∈ H that achieves a given bound on the excess risk f(x)− f(x∗) 6 ε. Gradient descent
achieves the bound in a number of iterations n = O(ε−1) while Nesterov acceleration
requires O(ε−1/2) iterations: this is faster when ε is small. The rate O(1/n2) for Nesterov
acceleration is worst-case optimal among all possible methods that access gradients and
linearly combine them [Nesterov, 2003, Nemirovskij and Yudin, 1983]. This means that we
can not hope to find a better method than Nesterov acceleration for minimizing general
convex smooth functions. However, it is possible to design better acceleration for specific
function classes. A huge literature aims at designing accelerations tailor-made for functions
satisfying specific properties. See, e.g., [d’Aspremont et al., 2021] and references therein.

In this thesis, we are interested in improving over Theorem 1.1 in both directions above. In
Section 1.5, we introduce the different properties of the function f that we are interested in. We
give an overview of the convergence rate of naive algorithms and of the possible accelerations.
Acceleration techniques. Accelerated methods are iterations that closely resemble the gradient
descent iteration (1.1). For instance, Polyak’s heavy ball method [Polyak, 1964] is of the form

x1 = x0 − γ∇f(x0) , xn+1 = xn − γ∇f(xn) + β(xn − xn−1) , n > 1 , (1.2)

where β ∈ [0, 1] is a new parameter that requires to be tuned. See Figure 1.2 for a toy comparison
between the heavy ball method and gradient descent. The new term β(xn − xn−1) is called the
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Figure 1.2. Comparison between the heavy ball method (1.2) and gradient
descent (1.1), initialized from x0 = 0, in optimizing the function f(x) =

1
2N
∑N
k=1 (bk − 〈ak, x〉)2+ λ

2‖x‖
2, where x ∈ R60, N = 50, b1, . . . , bN are i.i.d. N (0, 1)

and independently a1, . . . , aN are i.i.d. N (0, Id60). The parameters of both algo-
rithms were tuned by hand in order to maximize the observed asymptotic rate of
convergence.

momentum. It is frequent that accelerated methods have some form of momentum terms. They
can also take the form of iterations over several variables. For instance, denoting vn = xn − xn−1,
Polyak’s heavy ball method (1.2) can be rewritten as

vn+1 = −γ∇f(xn) + βvn ,

xn+1 = xn + vn+1 .

Let us try to give an informal high-level idea motivating momentum-based method. Gradient de-
scent has a slow rate of convergence because in the directions where the Hessian of the optimization
problem is small, the gradient is not large enough for gradient descent to make sufficient progress.
Gradient descent then needs to make a large number of steps, while the gradient repeatedly points
in the same direction. Accelerated methods add a momentum to solve this issue: if the gradient
points in the same direction from one iterate to the next, the point xn gains inertia (i.e., the discrete
speed xn − xn−1 increases) to converge faster to the minimum. This intuition is best understood
by looking at the scaling limit of gradient descent and accelerated gradient descent as the step-size
γ converges to 0 and the number of iterations grows, see [Su et al., 2014] for instance. Gradient
descent converges to the gradient flow equation ∂txt = ∇f(xt) while accelerated methods typi-
cally converge to second-order ODEs; for instance, in an appropriate scaling, Polyak’s heavy ball
method (1.2) converges to the ODE ∂ttxt = ∇f(xt)−κ∂txt (where κ depends on the scaling of the
parameters).

In the continuous-time limit, it is easier to show that accelerated methods enjoy fast conver-
gence. However, this intuition does not readily design and prove convergence for discrete accelerated
methods. Indeed, discretizing the continuous-time ODEs is not straightforward as it introduces sta-
bility and approximation errors that must be controlled, see [Zhang et al., 2018, Shi et al., 2019,
Sanz-Serna and Zygalakis, 2020]. As a consequence, the ODE point of view on acceleration is
mostly an intuition and rarely a method for building accelerations. Instead, accelerated methods
are often built in a less intuitive way: they are tuned in order to make their proof of convergence
work. Let us describe two techniques that we use in this thesis.
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• Lyapunov techniques design accelerated methods so that a certain function is Lyapunov,
i.e., a decreasing function of the number of iterations. This is the guiding principle of
Nesterov acceleration [Nesterov, 2003], that we mimic in Chapter 3.
• Polynomial-based accelerations [Fischer, 1996] are specialized in the case of quadratic func-
tions (see Definition 1.1). The strategy is to see iterations as polynomials in the Hessian of
the problem, and to choose a wise sequence of polynomials to have fast convergence. This
is the basis of the famous Chebyshev acceleration (reviewed in [d’Aspremont et al., 2021,
Chapter 2]). Polynomial-based iterations are the core source of inspiration for Chapter 4.

1.2.2. Optimization with stochastic gradients. Stochastic optimization is a generaliza-
tion of the framework of the previous section in which we can not query directly the gradient ∇f(x),
but we can compute a stochastic estimation of it. More precisely, it is possible to compute a random
quantity g(x, ξ) where x is chosen, the random variable ξ is generated according to some law P,
and Eξ∼Pg(x, ξ) = ∇f(x). The random variable ξ is independently re-generated from one query to
another. Again, each query is costly (in terms of time, computation, or statistical data), thus we
seek algorithms that minimize f in a minimal number of queries of stochastic gradients g(x, ξ).

All the questions sketched in the previous section can be transposed in this framework. The
naive algorithm, called stochastic gradient descent [Robbins and Monro, 1951], replaces the deter-
ministic steps of gradient descent by stochastic steps:

xn+1 = xn − γng(xn, ξn+1) , n > 0 , (1.3)
where the random variables ξ1, ξ2, . . . are independent identically distributed (i.i.d.) according to P.
In this setting, the typical questions we address are: does stochasticity in our estimation of the
gradients hurt convergence? What are the convergence rates of stochastic gradient descent? How
can we accelerate?

In the remainder of this section and the following, we list examples of stochastic optimization
problems that are central to this thesis. The objective is two-fold: first, it gives concrete examples
of (stochastic) optimization problems that we focus on in this thesis; and second, it serves as an
introduction to an important discussion on the different natures of stochastic gradients, exposed in
Section 1.4.3.

Example 1.1 (Additive noise model). In the additive noise model, we assume that our
computations of the gradient are perturbed by a centered additive term ξ, namely we can
compute

g(x, ξ) = ∇f(x) + ξ ,

where ξ is distributed according to some law P satisfying Eξ = 0 and independent of x. This
model can be used to study the effect of small measurement errors or computations errors.
It is also appreciated by the mathematical simplicity brought by the additive structure.
As such, it is often used as a simplification of other stochastic gradients introduced below.
However, in Section 1.4.3, we discuss the limitations of additive noise in understanding all
behaviors of stochastic gradient descents.

A wide literature studies how to obtain the fastest convergence for stochastic optimiza-
tion under additive noise. This usually involves decaying step-sizes γn and averaging of the
iterates, see [Polyak and Juditsky, 1992] for instance.

In a large number of applications, the cost function f(x) is itself the expectation of a random
function fξ(x), of which we only observe random instances: f(x) = Eξ∼Pfξ(x). In this case, an
unbiased gradient is given by the gradient of the random function: g(x, ξ) = ∇fξ(x). For instance,
the additive noise model fits this framework with fξ(x) = f(x) + 〈ξ, x〉.
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Example 1.2 (Finite sum [Bertsekas, 2011]). Finite sums are functions of the form

f(x) = 1
N

N∑
k=1

fk(x) .

The function f can be seen as the expectation of fk(x) where k = ξ is uniform in {1, . . . , N}.
The empirical risk of a supervised learning problem and the energy function of an averaging
problem, both introduced below, are of this form. Computing the gradient of a finite sum
involves the potentially costly computation of the gradients of all of its components fk. In
order to circumvent this computation, the stochastic gradient strategy uses the gradient
∇fk(x) of a randomly selected function in order to approximate the full gradient ∇f(x):

xn+1 = xn − γn∇fkn+1(xn) ,

where k1, k2, . . . are i.i.d. uniform in {1, . . . , N}.

We continue with a more sophisticated example where f(x) is not the expectation of a random
function fξ(x).

Example 1.3 (Coordinate gradient descent [Tseng and Yun, 2009, Nesterov, 2012, Wright,
2015]). In this example, we assume that we are in the finite-dimensional case x ∈ Rm.
We denote x(1), . . . , x(m) the coordinates of x and e1, . . . , em the canonical basis of Rm.
In some applications, in order to avoid the costly computation of the full gradient ∇f(x),
coordinate gradient descent strategies prefer to compute the derivative ∂f

∂x(i)(x) with respect
to one coordinate x(i) only, changing the selected coordinate i at each iteration. Different
selection strategies are possible: cycle through the coordinates, select them randomly, or
even more sophisticated Markov chain strategies [Sun et al., 2020]. The most convenient for
the mathematical analysis is the random case where at each iteration n + 1, a coordinate
in+1 is selected, independently of the past choices i1, . . . , in, and, for simplicity, uniformly
in {1, . . . ,m}. In this setting, the naive method is coordinate gradient descent. It is the
iteration

xn+1(in+1) = xn(in+1)− γ̃n
∂f

∂x(in+1)(xn) , (1.4)

xn+1(j) = xn(j) , j 6= in+1 , n > 0 , (1.5)

where γ̃n denote the step-sizes of the algorithm. In this setting where coordinates are
randomly sampled, coordinate gradient descent (1.4)-(1.5) is a special case of stochastic
gradient descent (1.3), where ξ = i ∼ Unif({1, . . . ,m}), g(x, ξ) = m〈∇f(x), ei〉ei and γn =
γ̃n/m. Note that indeed, the stochastic gradient g(x, ξ) is unbiased, i.e.,

Eξ∼Pg(x, ξ) = mEi∼Unif({1,...,m} [〈∇f(x), ei〉ei] = ∇f(x) .

1.2.3. Quadratics, least-squares linear regression and kernel methods. A large part
of this thesis specializes in the case where f is a quadratic function.

Definition 1.1 (Quadratic function). The function f is said to be quadratic if it is of the
form

f(x) = 1
2〈x,Σx〉+ 〈τ, x〉+ c ,

where Σ is a bounded operator on H (in the finite-dimensional case, a matrix), τ ∈ H and
c ∈ R.
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As the function f is convex, its Hessian Σ is a positive semi-definite (p.s.d.) operator (in
the finite-dimensional case, a p.s.d. matrix). Below, we frequently assume that there exists a
minimizer x∗ ∈ H of f , in which case we have the simpler formula

f(x) = 1
2 〈x− x∗,Σ(x− x∗)〉+ f(x∗) .

This is equivalent to assuming that τ is in the image space of the operator Σ.

Remark 1.1. The quadratic function f is L-smooth if and only Σ 4 L Id, where 4 denotes
the positive semi-definite order.

We now continue with examples of stochastic optimization problems on quadratic functions.

Example 1.4 (Least-squares linear regression [Legendre, 1806]). In statistics, a fundamen-
tal task aims at understanding the relation between an output variable b from an input
variable a. For instance, computer-aided medicine wants to predict the probability b that a
patient will develop a given disease given some medical information a on the patient (DNA
information, blood tests, etc). Computer vision wants to understand the object b represented
in an image (e.g., a cat or a dog?) from the array a of the colors of the pixels.

The relation between the variables (a, b) is learned from empirical observations (a1, b1),
. . . , (aN , bN ), called samples, obtained through experiments or observations of the environ-
ment. The ultimate goal of statistics is to be able to predict the output b corresponding
to a new input a. There is thus a generalization challenge: we want the computer to learn
the relation between a and b sufficiently well to be able to predict the output b even for
outputs a that are not in the database a1, . . . , an.

The input a and the output b can have various formats, but it is convenient for us to
assume that a is a vector in a Hilbert space H and b is a real number. In this case, it is
frequent to assume a linear relation between the output b and the input a: we assume that
a relation b = 〈a, x〉 should hold for some x ∈ H, at least approximately.

We find the parameter x ∈ H by fitting to the database: we seek the minimizer of the
empirical risk

f(x) = 1
2N

N∑
k=1

(bk − 〈ak, x〉)2 . (1.6)

Once a point x ∈ H with a low empirical risk is found, it is possible to predict the output b
corresponding to a new input a with the predictor b̂ = 〈a, x〉.

With this strategy, one has reduced the statistical problem of learning the relationship
between a and b to the optimization problem of minimizing f . What is the structure of the
optimization problem? The empirical risk f is a convex and smooth function. It is quadratic
with Hessian Σ = 1

N

∑N
k=1 ak ⊗ ak. (If a ∈ H, a ⊗ a is the operator defined by the formula

(a⊗a)x = 〈a, x〉a. In the finite dimensional case, a⊗a = aa>.) Finally, the empirical risk f
is a finite-sum in the sense of Example 1.2, thus one can use the stochastic gradient descent
for finite sums in this special case:

xn+1 = xn + γn(bkn+1 − 〈akn+1 , xn〉)akn+1 , n > 0 . (1.7)

where k1, k2, . . . are i.i.d. uniform in {1, . . . , N}. Here, the computational advantage of
stochastic gradient descent is that computing the gradient of one component of the sum
requires to read only one sample (ak, bk) of the database, while the computation of a full
gradient ∇f(x) would require reading the full database.
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Many variants of this strategy exist, for instance in the case of binary classification,
where the output b can take only two possible values (e.g., a cat or a dog). In this case, we
can arbitrarily fix the two values to be encoded as b = +1 and b = −1. A common strategy
is then to seek a relation of the form b = sign〈a, x〉, i.e., a composition of a linear regression
and the sign function. However, minimizing the empirical risk

f(x) = 1
2N

N∑
k=1

1{bk=sign〈ak,x〉}

is harder as the function f is not convex (it is piecewise constant). One needs to use convex
surrogates of this quantity; for instance, logistic regression minimizes the empirical risk

f(x) = 1
2N

N∑
k=1

log
(
1 + e−bk〈ak,x〉

)
.

Once a point x ∈ H with a low empirical logistic risk is found, it is possible to predict the
output b corresponding to a new input a with the predictor b̂ = sign〈a, x〉.

In fact, minimizing the empirical risk as above can be a bad idea due to the potential overfitting:
the computer finds a point x ∈ H that fits well for all points of the database (bk ≈ 〈ak, x〉), but that
does not generalize well, meaning that b is not well approximated by 〈a, x〉 for new samples (a, b).
For an illustration of this phenomena, see Figure 1.3. This is a statistical problem, seemingly
unrelated to the optimization problem of finding a minimizer of the empirical risk. To avoid
overfitting, a common strategy is to penalize the empirical risk: the optimized function f is changed
to a linear combination of the empirical risk and a penalization term controlling the complexity
of the predictor x; typically, this penalization is the 2-norm or 1-norm of the vector x. Another
strategy is to stop (stochastic) gradient descent early before convergence [Yao et al., 2007].

However, when the observations (a1, b1), . . . , (aN , bN ) are i.i.d. according to some law P, another
solution is to design stochastic optimization methods that control directly the generalization error.

Example 1.5 (Supervised learning). In this thesis, the supervised learning setting refers to
the least-squares linear regression setting above in the special case (a1, b1), . . . , (aN , bN ) are
i.i.d. according to some law P. In this setting, the statistical question of learning a linear
relationship between a and b is well-defined: we seek a point x ∈ H that minimizes the
so-called population risk

f(x) = 1
2E(a,b)∼P (b− 〈a, x〉)2 .

The optimization of the population risk matches more truthfully our statistical goal than
the optimization of the empirical risk: we want to have a linear relation b ≈ 〈a, x〉 that fits
well for a new data sample (a, b) ∼ P rather than on the dataset (a1, b1), . . . , (aN , bN ). The
population risk is convex, smooth and quadratic with Hessian Σ = E(a,b)∼Pa⊗ a. However
it is impossible to compute its gradients as it involves an expectation over a law P unknown
to the algorithm. As opposed to Examples 1.2-1.4 where (deterministic) gradient descent
strategies were avoided because of their computational cost, here computing exactly the gra-
dients of the population risk is impossible because we do not have the necessary information.
However, we can extract from the samples sufficient information to have stochastic gradients
of the population risk. The population risk is an expectation:

f(x) = E(a,b)∼Pf(a,b)(x) , f(a,b)(x) = 1
2 (b− 〈a, x〉)2 .
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For functions of this form, we have seen in Section 1.2.2 that it is natural to build stochastic
gradients

g(x, (a, b)) = ∇f(a,b)(x) = −(b− 〈a, x〉)a .

We can use the statistical samples (a1, b1), . . . , (aN , bN ) to generate such stochastic gradients.
However, we need the randomness ξ = (a, b) ∼ P to be independent from one iteration to
another, thus we can use each sample at one iteration only. This gives the stochastic gradient
iteration

xn+1 = xn + γn(bn+1 − 〈an+1, xn〉)an+1 , 0 6 n < N . (1.8)

Note that here, the number of iterations is bounded by the number of data samples. Thus
any accelerated method requiring less iterations would not only save time and computations,
but also require less data collection.

The stochastic gradient descents (1.7) and (1.8) obtained for the minimization of the empirical
risk and of the population risk are extremely similar; the only difference lies in the choice of the
index of the data sample. When only one pass on the data is allowed, without replacement of the
data samples, stochastic gradient descent can be seen as minimizing the population risk, while when
multiple passes on the data are done, with replacement of the data samples, stochastic gradient
descent is seen as minimizing the empirical risk.

Feature maps and kernel methods (see, e.g., [Hofmann et al., 2008] and references therein).
In general, restricting ourselves to linear relations b ≈ 〈a, x〉 is too restrictive to approximate
potentially complex dependencies between the input a and the output b. Moreover, the input
could be in a data format which is not naturally a Hilbert space. Let us now consider a non-
structured input u which belongs to a set U , not necessarily a Hilbert space. Again, we would like
to understand the relationship between the input variable u ∈ U and the output variable b ∈ R.

A natural strategy is to transform u through a feature map Ψ : U → H so that the feature
vectors a = Ψ(u) belongs to a Hilbert space H. One can then apply linear regression to the
transformed input a, as described in Examples 1.4-1.5. This can be done even if U is already a
Hilbert space, in order to enlarge the expressive power of linear regression. For instance, if u ∈ R,
the linear maps in a = (1, u, u2) ∈ R3 are the second-order polynomials in u, see Figure 1.3.

The kernel trick enables to perform the above feature map implicitly, without computing the
feature vectors a = Ψ(u). It only requires to be able to compute the dot products in feature space

k(u, u′) = 〈Ψ(u),Ψ(u′)〉 .

Definition 1.2 (implied by Theorem 1.2 below). Let k : U × U → R be a symmetric
function. Then the two following statements are equivalent:

• for all m > 1, for all u1, . . . , um ∈ U , the matrix (k(ui, uj))16i,j6m is positive
semi-definite, and
• there exists a Hilbert space H endowed with a scalar product 〈., .〉 and a feature
map Ψ : U → R such that for all u, u′ ∈ U , k(u, u′) = 〈Ψ(u),Ψ(u′)〉.

If these conditions hold, k is called a positive definite kernel on U .

The above result illustrates well the spirit of RKHS theory: there exists simple conditions on
a function k : U × U → R ensuring that it corresponds to a scalar product in a Hilbert space after
a feature map. The knowledge of the feature map Ψ is not important to us as iterations can be
written in terms of k directly (see Examples 1.6 and 1.7).
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(a) order 1 (linear regression) (b) order 2

(c) order 3 (d) order 15

Figure 1.3. Regressions using polynomials of order 1, 2, 3, and 15. The sam-
ples (u1, b1), . . . , (u20, b20) were independently generated, with u ∼ Unif([0, 1]) and
b = ϕ∗(u) + ξ where ξ is an independent additive noise. We took ϕ∗(u) = sin(8u)
and ξ a centered Gaussian random variable with variance 0.25. For each plot, we
show the polynomial ϕ minimizing the empirical risk f(ϕ) = 1

40
∑20
k=1 (bk − ϕ(uk))2.

This is done by performing a linear regression over the feature vector Ψ(u) = (1, u),
Ψ(u) = (1, u, u2), Ψ(u) = (1, u, u2, u3), or Ψ(u) = (1, u, u2, . . . , u15). For low-order
polynomials, the quality of the approximation improves as we enrich the function
class. However, the interpolation with a polynomial of order 15 suffers from overfit-
ting.

In this setting, it is convenient to think of an element x ∈ H as a function ϕx defined on U by
the formula

ϕx(u) = 〈x,Ψ(u)〉 .

Actually, the reproducing kernel Hilbert space (RKHS) theory defines the Hilbert space H in
Definition 1.2 directly as a space of functions.

Theorem 1.2 (Moore-Aronszajn [Aronszajn, 1950]). Let k : U × U → R be a positive
definite kernel. Then there exists a unique Hilbert space H of functions on U endowed with
a scalar product 〈., .〉, such that

• for all u ∈ U , k(u, .) ∈ H, and
• (reproducing property) for all ϕ ∈ H, for all u ∈ U , 〈ϕ, k(u, .)〉 = ϕ(u).

25



In the RKHS terminology, these properties mean that H is a reproducing kernel Hilbert
space with reproducing kernel k.

Note that k can then be interpreted as the dot product in the feature Ψ(u) = k(u, .) ∈ H.
Indeed, using the reproducing property,

〈Ψ(u),Ψ(u′)〉 = 〈k(u, .), k(u′, .)〉 = k(u, u′) .

We now illustrate how stochastic gradient descent can be “kernelized” [Ying and Pontil, 2008,
Tarrès and Yao, 2014, Rosasco and Villa, 2015, Dieuleveut and Bach, 2016].

Example 1.6 (Supervised learning, with kernels). We adapt the supervised learning setting
of Example 1.5 to the kernel setting. We now want to learn the relationship between an
input u ∈ U and an output b ∈ R, following some joint law (u, b) ∼ P(u,b). We have access
to i.i.d. samples (u1, b1), . . . , (uN , bN ) ∼ P(u,b). Let k be a positive definite kernel on U .

The kernel k implicitly defines a reproducing kernel Hilbert spaceH. We want to perform
a linear regression in the features a1 = k(u1, .), . . . , aN = k(uN , .) ∈ H, as it is done in
Example 1.5. The elements of H are now functions on U ; we thus denote them with the
symbol ϕ rather than x. The stochastic gradient iteration (1.8) writes

ϕn+1 = ϕn + γn(bn+1 − 〈an+1, ϕn〉)an+1 ,

= ϕn + γn(bn+1 − 〈k(un+1, .), ϕn)k(un+1, .)
= ϕn + γn(bn+1 − ϕn(un+1))k(un+1, .) , 0 6 n < N .

This is a stochastic gradient descent, on the RKHS H, of the risk function

f(ϕ) = 1
2E(u,b)∼P(u,b) (b− ϕ(u))2 , (1.9)

where the scalar product structure used (defining the gradients) is the one of the Hilbert
space H.

Note that similarly, it is possible to “kernelize” the stochastic gradient descent for the mini-
mization of the empirical risk from Example 1.4. We now turn to an important special case of
Example 1.6.

Example 1.7 (Function interpolation from values at random points). Let ϕ∗ : U → R
be a function that we want to regress from the observation of its values at random points
(u1, ϕ∗(u1)), . . . , (uN , ϕ∗(uN )), where u1, . . . , uN are i.i.d. from some law Pu. We seek a
function ϕ that minimizes the L2(Pu)-distance to ϕ∗:

f(ϕ) = 1
2 ‖ϕ∗ − ϕ‖

2
L2(Pu) = 1

2Eu∼Pu (ϕ∗(u)− ϕ(u))2 .

This is a special case of (1.9) with b = ϕ∗(u). Following Example 1.6, we choose a positive
definite kernel k on U and we run the associated stochastic gradient descent

ϕn+1 = ϕn + γn(ϕ∗(un+1)− ϕn(un+1))k(un+1, .) , 0 6 n < N . (1.10)

This update rule corrects ϕn so that ϕn+1(un+1) is closer to the observed value ϕ∗(un+1)
than ϕn(un+1). Points u near un+1, in the sense that k(un+1, u) is large, are also updated
in the same direction.

In Figure 1.4, we illustrate the interpolation of a function ϕ∗ on U = [0, 1] using stochastic
gradient descent (1.10) with a translation invariant kernel.
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(a) n=0 (b) n=1

(c) n=2 (d) n=40

Figure 1.4. Interpolation of a function ϕ∗ on U = [0, 1] (seen as periodic, i.e., a
torus) from the observation of its values at random points, using kernel stochastic
gradient descent (1.10) initialized from ϕ0 = 0. Here, the chosen kernel k is trans-
lation invariant, meaning that there exists a function t : [0, 1] → R>0 such that
k(u, u′) = t(u− u′). The function ϕ∗ is in blue and the iterates ϕn are in orange.

We now interpret the covariance operator in the kernel setting.

Remark 1.2. Denote Pu the marginal of u under P(u,b). In the above example, the covari-
ance operator Σ : H → H is defined by the formula: for ϕ ∈ H,

Σϕ = E [a⊗ a]ϕ = Eu∼Pu [k(u, .)⊗ k(u, .)]ϕ = Eu∼Pu [〈k(u, .), ϕ〉 k(u, .)]
= Eu∼Pu [k(u, .)ϕ(u)] .

(1.11)

In words, Σ is the integral operator associated to the kernel k (see, e.g., [Cucker and Zhou,
2007]). In particular,

〈ϕ,Σϕ〉 = Eu∼Pu [〈ϕ, k(u, .)ϕ(u)〉] = Eu∼Pu
[
ϕ(u)2

]
= ‖ϕ‖2L2(Pu) .

Thus, we can define the norm associated to the RKHS H in terms of the covariance operator:

‖ϕ‖2 = ‖Σ−1/2ϕ‖2L2(Pu) . (1.12)

One should not be misled by this equation: by definition, the RKHS and its norm ‖.‖ depend
only on the kernel k and not on the distribution of the input Pu.
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We finish this section by using Equation (1.12) in order to compute an important example of a
RKHS.

Example 1.8 (Sobolev spaces). Assume further U = [0, 1]d (seen as periodic, i.e., a torus)
and that k is a translation-invariant kernel: k(u, u′) = t(u−u′) where t is a square-integrable
1-periodic function on [0, 1]d. The kernel k is positive-definite if and only if the Fourier
transform of t is positive [Wahba, 1990]. This imposes, in particular, that t is maximal at 0.
In this setting, we relate the RKHS to the Sobolev smoothness of the function t.

A function ϕ ∈ L2([0, 1]d) with Fourier series ϕ̂ belongs to the Sobolev space Hs
per if

‖ϕ‖2Hs
per

=
∑
v∈Zd
|ϕ̂(v)|2

(
1 + |v|2

)s
<∞ .

Assume that the Fourier series of t satisfies a power-law decay: there exists c, C > 0 such
that:

c
(
1 + |v|2

)−s/2−d/4
6 t̂(v) 6 C

(
1 + |v|2

)−s/2−d/4
, v ∈ Zd . (1.13)

This condition does not cover C∞ kernel, including the Gaussian kernel; it is relevant for less
regular kernels, that have a power decay in Fourier. This condition is satisfied, for instance,
by the Wendland functions [Wendland, 2004, Theorem 10.35], or in dimension d = 1 by
the kernels corresponding to splines of order s, see [Wahba, 1990] or [Pillaud-Vivien et al.,
2018]. The latter can be computed using the polylogarithm or—for special values of s—the
Bernoulli polynomials. We have t ∈ Hs′

per if and only if s′ < s, thus s measures the Sobolev
smoothness of t.

We now compute the RKHS norm associated to the kernel k. We first use (1.12) where
we choose Pu to be the uniform law on U = [0, 1]d, and then Parseval formula:

‖ϕ‖2 =
〈
ϕ,Σ−1ϕ

〉
L2([0,1]d)

=
∑
v∈Zd

ϕ̂(v)Σ̂−1ϕ(v) . (1.14)

Here, z denotes the conjugate of a complex number z. Further, using again that we choose
Pu to be the uniform law on U = [0, 1]d, we can rewrite (1.11) as

(Σϕ) (u′) =
∫

[0,1]d
du k(u, u′)ϕ(u) =

∫
[0,1]d

du t(u′ − u)ϕ(u) .

In words, Σ is the convolution by t, thus the multiplication in Fourier space by t̂. Thus,
back to (1.14), we obtain

‖ϕ‖2 =
∑
v∈Zd
|ϕ̂(v)|2t̂(v)−1 �

∑
v∈Zd
|ϕ̂(v)|2

(
1 + |v|2

)s/2+d/4
= ‖ϕ‖2

H
s/2+d/4
per

.

In words, the RKHS associated to a translation invariant kernel satisfying (1.13) is equivalent
to the Sobolev space Hs/2+d/4

per .

1.3. The averaging problem and gossip algorithms

Gossip algorithms are subroutines that diffuse information throughout networks in distributed
decentralized algorithms. Here, we first introduce the most pure gossip problem, the averaging
problem. We present its naive solution, that we call the simple gossip algorithm, and a simpli-
fication, called synchronous simple gossip. We finish with a discussion on the importance of the
averaging problem to distributed computing.
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(a) Before the update (b) After the update

Figure 1.5. Update of the values xt in the network, when the green edge is activated.

Averaging problem. Let G = (V, E) be a finite undirected connected graph with vertex set V of
cardinal m and edge set E of cardinal N . This graph represents a network of agents V (computers,
sensors, etc) connected through communication links E . We assign to each agent v ∈ V a real value
x0(v), called an observation. The goal of the averaging problem, or gossip problem, is to design
an iterative procedure allowing each agent to know the average x̄ = 1

m

∑
v∈V x0(v) of the initial

observations in the network, as quickly as possible, using only local communications.
To pose the problem, we need to define properly the communication model. We assume the

time t to be continuous, i.e., t is a non-negative real number. We generate a Poisson point measure
dN(t, e) =

∑
n>1 δ(Tn,{vn,wn}) on R>0 ×E with intensity measure dt⊗ µE , where dt is the Lebesgue

measure and µE is the counting measure on E . (An introduction to Poisson point measures is given
in Section 3.A.1.) The times Tn are the moments where an edge is activated, and {vn, wn} is the
activated edge: the agents vn and wn can thus communicate at time Tn. The Poisson point measure
assumption implies that edges are activated independently of one another, and independently of
the past.

Simple gossip [Boyd et al., 2006]. We call simple gossip the naive algorithm for the averaging prob-
lem. Each agent v ∈ V keeps an estimate xt(v) of the average x̄, initialized at its observation x0(v).
When an edge {v, w} is activated, the two agents average their estimates, see Figure 1.5. More
precisely, the estimates xt = (xt(v))v∈V remains constant between the activation times (Tn)n>1. At
the activation time Tn, denote {vn, wn} the associated edge. Then

xTn(vn) = xTn(wn) = xTn−(vn) + xTn−(wn)
2 , xTn(v) = xTn−(v) , v 6= vn, wn .

Note that in this thesis, all stochastic processes t 7→ xt defined on R>0 are “càdlàg” by convention,
i.e., right continuous with well-defined left-limits xt− (see Definition 3.5 in Appendix 3.A). A
realization of the simple gossip procedure on a two-dimensional grid is shown in Figure 1.6.

The questions of the averaging problem are similar to those for the optimization problems of
Section 1.2: what is the rate of convergence of the naive method, simple gossip? How does it
depend on the graph structure? Can we accelerate simple gossip, i.e., can we modify simple gossip
to achieve faster convergence rates?

Synchronous gossip. To a large extent, the difficulty in answering the above questions is due
to the randomness in the sampling of an edge at each activation time Tn. The synchronous gossip
problem is a simplified setting where at each activation time Tn, all edges are synchronously acti-
vated. The activations times still form a Poisson point measure dN(t) =

∑
n>1 δTn with intensity dt.

By opposition, the classical gossip problem is sometimes referred to as asynchronous gossip.
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(a) Graph structure
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(d) t=8

Figure 1.6. One realization of the simple gossip process on a two-dimensional
grid. The observations (x0(v))v∈V are i.i.d. standard Gaussian random variables.
The figures (B)-(D) display the vector xt = (xt(v))v∈V using a color scale, where
the display in the image corresponds to the display in the original two-dimensional
grid.

In synchronous gossip algorithms, agents average their estimate x(v) of x̄ with the estimates of
their neighbors. The weights in this local averaging operation is given by a gossip matrix.

Definition 1.3. A gossip matrix W = (Wv,w)v,w∈V on the graph G is a matrix with entries
indexed by the vertices of the graph satisfying the following properties:

– W is non-negative: for all v, w ∈ V, Wv,w > 0.
– W is supported by the graph G: for all distinct vertices v, w such that Wv,w > 0,
then v ∼ w, that is {v, w} must be an edge of G.

– W is stochastic: for all v ∈ V,
∑
w:w∼vWv,w = 1.

– W is symmetric: for all v, w ∈ V, Wv,w = Ww,v.
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If W is a gossip matrix and x = (x(v))v∈V is a set of values stored by the agents v, the product
Wx is interpreted as the computation by each agent v of a weighted average of the values x(w) of
its neighbors w in the graph (and of its own value x(v)). Note that we do not need the symmetry
assumption on W to interpret W as an averaging operation. This assumption is usual in gossip
frameworks as it allows one to use the spectral theory for W , on which our analysis of Chapters 4
and 5 relies heavily. It appears, for instance, in the works of Boyd et al. [2006], Cao et al. [2006],
Rebeschini and Tatikonda [2017].

In a d-regular graph G (every node has degree deg v = d), a typical gossip matrix is W =
A/d = (1{{v,w}∈E}/d)v,w∈V where A is the adjacency matrix of the graph. The operation Wx
is then interpreted as the computation by each agent of the uniform average of the values of its
neighbors. However, if the graph is not regular, this operation of local uniform averaging does not
correspond to a symmetric gossip matrix; it is not guaranteed that the average throughout the
network is invariant through this operation. Instead, if the graph has all vertices of degree bounded
by some quantity dmax, a natural gossip matrix is

W = I + 1
dmax

(A−D) . (1.15)

Here, D is the degree matrix, i.e., the diagonal matrix such that Dv,v = deg v.
Once a gossip matrix W on the graph G is chosen, the synchronous simple gossip iteration is

constant between activation times, and at activation time Tn, for all v ∈ V,

xTn(v) =
∑

w:w∼v
Wv,wxTn−(w) ,

or more compactly, with the notation x̃n := xTn ,

x̃n = Wx̃n−1 . (1.16)

Thus, synchronous simple gossip mathematically boils down to the power iteration of the matrixW .

Motivations for studying the averaging problem. This paragraph is a non-exhaustive list of
related work, biased by the author’s interests.

First, from a theoretical perspective, the simple gossip process can be seen as a prototype
interacting particle system, among epidemic processes, voter models, token processes, etc., see
[Aldous, 2013]. However, the linear structure of the interactions in the simple gossip process makes
the analysis simpler than in other interacting particle systems; this property is key for all the results
we show in this thesis.

Further, gossip algorithms are often used as primitives in more complex distributed decen-
tralized algorithms [Dimakis et al., 2010]. For instance, in distributed optimization (e.g., [Assran
et al., 2020, Nedic et al., 2010, Scaman et al., 2017, Hendrikx et al., 2019]), one seeks to minimize
a function f(x) that is a sum of functions fv(x), where the gradient of fv(x) is accessible to agent
v only:

f(x) =
∑
v∈V

fv(x) . (1.17)

Problems of this form appear for example in least-square regression (Example 1.4), when the data
is distributed to the agents: the full empirical risk f(x) is a linear combination of the empirical
risk fv(x) of each agent on its subset of the data. For problems of the form (1.17), the general
strategy is to have each agent keep an estimate x(v) of the minimizer of f . Algorithms alternate
gradient steps x(v) ← x(v) − fv(x(v)), where agents minimize their local cost, and gossip steps,
where agents average their estimates x(v) to converge to a common minimizer of f .

Similarly, distributed bandit problems also typically alternate arm pulls and gossip steps of the
empirical rewards [Szorenyi et al., 2013, Landgren et al., 2016, Korda et al., 2016].
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Finally, as the averaging problem is a prototype distributed decentralized problem, we expect
progress on it to inspire progress on similar algorithms. For instance, after a long time t of running
the simple gossip algorithm, the sign of xt(v) − xt−1(v) can be used to perform a distributed
clustering of the nodes [Becchetti et al., 2018, 2020]. Although this has not been studied yet, it
could be interesting to accelerate this procedure. Another example is given in Section 4.6: we adapt
our work on the averaging problem to the network localization problem [Barooah and Hespanha,
2008], in which the agents try to estimate some quantity (x(v))v∈V defined over the graph, from
noisy relative measurements over the edges of the graph:

ξ(v, w) = x(v)− x(w) + η(v, w) , {v, w} ∈ E .

1.4. Similarities and differences between convex optimization and the averaging
problem

In this thesis, our inspiration to analyze and accelerate gossip algorithms is crucially based on a
view of gossip algorithms as (stochastic) gradient descents on a so-called energy function. We start
by formalizing the parallel in Section 1.4.1. In the following Sections 1.4.2-1.4.4, we bring important
nuances to this parallel. In particular, in Section 1.4.3, we explain that the stochastic gradients
corresponding to gossip algorithms have a special property, that we call being noiseless stochastic
gradients. We advocate for a better understanding of noiseless stochastic optimization.

1.4.1. Gossip algorithms are gradient descents on the energy function. We start by
showing that asynchronous simple gossip corresponds to a stochastic gradient descent. We con-
tinue by showing that its simplification, synchronous simple gossip, corresponds to a deterministic
gradient descent.
Asynchronous gossip. For a vector x = (x(v))v∈V , define the energy function

f(x) = 1
2N

∑
{v,w}∈E

(x(v)− x(w))2 .

Recall that N is the cardinal of the edge set E . This is a convex, smooth, finite sum:

f(x) = 1
N

∑
{v,w}∈E

f{v,w}(x) , f{v,w}(x) = 1
2 (x(v)− x(w))2 .

Following Example 1.2, we build a stochastic gradient for f by taking the gradient of a uniformly
sampled function of the sum. The partial derivatives of f{v,w} are

∂f{v,w}
∂x(v) = x(v)− x(w) ,

∂f{v,w}
∂x(w) = x(w)− x(v) ,

∂f{v,w}
∂x(u) = 0 , u 6= v, w .

Thus, a gradient step on the function f{v,w} with step-size 1
2 is

x(v)← x(v)− 1
2
∂f{v,w}
∂x(v) = x(v)− 1

2(x(v)− x(w)) = x(v) + x(w)
2 ,

x(w)← x(w)− 1
2
∂f{v,w}
∂x(w) = x(w)− 1

2(x(w)− x(v)) = x(v) + x(w)
2 ,

x(u)← x(u)− 1
2
∂f{v,w}
∂x(u) = x(u) , u 6= v, w .

In words, taking a gradient step on f{v,w} with step-size 1/2 corresponds to averaging on the edge
{v, w}. Thus stochastic gradient descent on the finite sum f(x), with step-size 1/2, corresponds to
the simple gossip algorithm (up to a time numbering, to be discussed in the next section).
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Remark 1.3. This does not mean that the goal of gossip algorithms is simply to find a
minimizer of the energy function f . The energy function f is indeed minimal at x∗ = x̄1,
where 1 denotes the vector with each component equal to 1. But the energy function is
minimal at all constant vectors (and only at constant vectors, as the graph G is connected).
However, the average of the vector x remains invariant through the stochastic gradient
dynamics, so that if the algorithm converges to a minimum of f , it is necessarily x∗ = x̄1.

Remark 1.4. The energy function corresponds to the empirical risk of a least-squares
regression problem. Indeed, denote (ev)v∈V the canonical basis of RV . Then

f(x) = 1
2N

∑
{v,w}∈E

〈ev − ew, x〉2 .

This is a special case of the least-squares structure (1.6), with a{v,w} = ev−ew and b{v,w} = 0.
The energy function is a quadratic function with Hessian

Σ = 1
N

∑
{v,w}∈E

(ev − ew)(ev − ew)> = 1
N

(D −A) ,

where again D and A are respectively the degree and adjacency matrices of the graph.
In short, the Hessian of the energy function is proportional to the graph Laplacian L =
D − A: this explains that the properties of the graph Laplacian are important in showing
the convergence of gossip algorithms, see Chapter 2.

Synchronous gossip. Let W be a gossip matrix on the graph G. For a vector x = (x(v))v∈V ,
define the energy function

fW (x) = 1
2

∑
{v,w}∈E

Wv,w (x(v)− x(w))2 = 1
2 〈x, (Id−W )x〉 .

A gradient step on the function fW with step-size 1 is
x← x−∇fW (x) = x− (Id−W )x = Wx .

This is exactly a synchronous gossip step. Thus gradient descent on the function fW (x), with
step-size 1, corresponds to the synchronous simple gossip algorithm. This idea can also be found in
Scaman et al. [2017] in the more sophisticated case of distributed optimization.

Remark 1.5. In the synchronous case, the Hessian of the energy function is Id−W : this
explains that the properties of the gossip matrixW are important in showing the convergence
of synchronous gossip algorithms, see Chapter 4.

1.4.2. Time and iteration counter. A first difference between gossip algorithms and gra-
dient descents is that the former are indexed by a continuous time parameter t ∈ R>0 while the
latter are indexed by a discrete number of iterations n ∈ N.

This difference is only superficial when studying naive algorithms. In order to make the parallels
of the previous section perfect, one simply has to discretize the continuous-time gossip process at
the activation times (Tn)n>0 (with the convention T0 = 0). The discrete process (xTn)n>0 is
rigorously the stochastic gradient descent of the energy function with step-size 1/2. Thus the
studies in discrete time and continuous-time are exactly the same, up to a time re-scaling which is
the Poisson counting process on the positive half-line, of intensity N = |E| (see Figure 1.7). For
large times / iteration numbers, Tn ≈ Nn by concentration of sums of random variables, thus the
randomness of this re-scaling can be neglected. This discussion justifies that discrete time is often

33



0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Figure 1.7. A realization of the Poisson counting process of intensity 1 (black,
plain line), compared with the identity function (blue, dotted line).

used for convenience when studying the simple gossip algorithm (see Chapter 2 or [Boyd et al.,
2006], for instance).

On the contrary, the difference between discrete and continuous time is more important when
accelerating algorithms [Hendrikx et al., 2019, Loizou et al., 2019]. Indeed, many acceleration
algorithms tune their parameters as a function of the number of iterations n (for instance, see
Nesterov acceleration in the convex case, see Theorem 3.1.(1)). In the gossip problem, this number n
of iteration is the number of past activations in the network, unknown to a particular node. As
a consequence, many accelerated optimization algorithms are not implementable in a distributed
fashion when translated as gossip algorithms.

Even for accelerated optimization algorithms where the parameters do not depend on the num-
ber of iterations (like Nesterov acceleration in the strongly convex case, see Theorem 3.1.(2)), a
similar second problem often prevents them to translate into implementable gossip algorithms:
when an edge is activated, they often require to perform an update at all nodes of the network,
even for some far-away nodes that are not aware of the activation.

Because of these two problems, the design of accelerated methods for gossip algorithms does not
follow directly from acceleration of stochastic gradient descents. Some authors simply ignore the
problem and study the acceleration in discrete time, see [Cao et al., 2006] for instance. In Chapter 4,
we also study the acceleration of gossip algorithms in discrete time, but in the synchronous setting,
where the number of past activations is known to each node. Remarkably, Even et al. [2020]
designs an implementable acceleration of the asynchronous gossip algorithm in continuous time
(under different graph assumptions than Chapter 4). Their work mimics Nesterov’s acceleration of
coordinate gradient descent [Nesterov, 2012], but using the elapsed time t as an approximation for
the number of iterations n. Their proof technique controls the fluctuations due to the randomness
of the activation process.

In Chapter 3, we take the parallel between optimization and gossip in the opposite direction: we
study how classical optimization algorithms are interpreted in continuous time, with gradient steps
taken at random times. In this so-called continuized framework, we show that Nesterov acceleration
has a close variant benefiting from the best of the continuous and the discrete frameworks: as a
continuous process, one can use differential calculus to analyze convergence and obtain analytical
expressions for the parameters; but a discretization of the continuized process can be computed
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exactly with convergence rates similar to those of Nesterov original acceleration. We show that the
discretization has the same structure as Nesterov acceleration, but with random parameters. To
sum up, a modeling assumption natural in gossip algorithms brings a new insightful perspective on
Nesterov acceleration.

1.4.3. Additive and multiplicative noises in stochastic gradient descents. There are
different sources of randomness of stochastic gradients. Archetypal examples are:

• Additive noise from Example 1.1: g(x, ξ) = ∇f(x) + ξ. The gradient is fully observed but
perturbed by additive noise.
• Coordinate stochastic gradients from Example 1.3: g(x, ξ) = m〈∇f(x), ei〉ei, ξ = i ∼

Unif({1, . . . ,m}). Only one component of the gradient is observed, but without noise.
This second source of randomness is often called multiplicative noise [Dieuleveut et al., 2017],
but this terminology can be misleading: this randomness comes from a sampling process, and is
completely different from the usual picture of noise as a small additive perturbation.

This terminology of “additive” and “multiplicative” noise is best understood in the least-squares
supervised learning setting of Example 1.5:

f(x) = 1
2E(a,b)∼P (b− 〈a, x〉)2 ,

∇f(a,b)(x) = − (b− 〈a, x〉) a .

Assume x∗ is a minimum of f . Then

∇f(a,b)(x) = − (b− 〈a, x∗〉) a+ 〈a, x− x∗〉a
= ∇f(a,b)(x∗) + a⊗ a(x− x∗) .

Thus the stochastic gradient ∇f(a,b)(x) can be divided into two parts:
• an additive part ∇f(a,b)(x∗), independent of x and centered as E(a,b)∼P∇f(a,b)(x∗) =
∇f(x∗) = 0, and
• a multiplicative part a ⊗ a(x − x∗), where the randomness of a acts multiplicatively on
the error x − x∗. The error x − x∗ is shrunk by stochastic gradient descent only in the
sampled direction a.

The two sources of randomness have different effects. The additive noise makes stochastic gradient
descent deviate from the optimum, even if initialized exactly at the optimum. Variance reduction
techniques (decreasing step-sizes, averaging [Polyak and Juditsky, 1992], . . . ) are thus required
to obtain convergence. On the contrary, if the optimal regressor x∗ is able to perfectly predict
the output from the input, namely b = 〈a, x∗〉 almost surely, then there is no additive noise. The
stochastic gradient ∇f(a,b)(x) = a ⊗ a(x − x∗) is then almost surely 0 at the optimum x∗, and no
variance reduction is needed.

Definition 1.4 (Noiseless linear model). We say that we are in the noiseless linear model
if there exists an optimum x∗ ∈ H such that b = 〈a, x∗〉 almost surely.

Note that noiseless gradients are still stochastic; indeed, “noiseless” is a shorthand for “without
additive noise” and the multiplicative noise remains. A similar meaning for the notions of “noiseless”
and “noisy” can be found in [Kearns and Vazirani, 1994] or more recently in [Varre et al., 2021,
Bordelon and Pehlevan, 2021, Cui et al., 2021].

Noiseless stochastic gradients are relevant modelings in several situations.
• In coordinate gradient descent, the stochastic gradient g(x, ξ) = m〈∇f(x), ei〉ei is almost
surely zero at optimum. Thus coordinate gradient descent is a noiseless problem.
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• Consider the minimization of the empirical risk of Example 1.4 in the overparameterized
regime: the number N of samples is smaller than the number m of parameters describing
the model x ∈ Rm. In this regime, under mild assumptions, there exists a model x∗
achieving a zero empirical risk:

0 = f(x∗) = 1
2N

N∑
k=1

(bk − 〈ak, x∗〉)2 , (1.18)

i.e., bk = 〈ak, x∗〉 for all k = 1, . . . , N . While traditional statistics warn against the risk
of overfitting when perfectly fitting the datapoints in an overparameterized regime, recent
practical and theoretical work have shown that in some situations, the optimum x∗ found
by (stochastic) gradient descent generalizes well. This is reviewed by Bartlett et al. [2021].
This motivates understanding the performance of stochastic optimization in this regime.
Remarkably, the stochastic gradient descent (1.7) on the empirical risk is noiseless.
• Consider the function interpolation problem of Example 1.7:

f(ϕ) = 1
2 ‖ϕ∗ − ϕ‖

2
L2(Pu) = 1

2Eu∼Pu (ϕ∗(u)− ϕ(u))2 ,

∇fu(ϕ) = (ϕ(u)− ϕ∗(u))k(u, .) .

The stochastic gradients fu(ϕ) where u ∼ Pu are noiseless: they are zero almost surely at
the optimum ϕ∗.

Supervised learning problems where the output b is completely determined by the
input u under P(u,b) can be seen as function interpolation problems: then there exists a
function ϕ∗ such that b = ϕ∗(u). This assumption is relevant for some basic vision or
sound recognition tasks, where there is no ambiguity of the output b given the input u,
but the rule determining the output from the input can be complex. An example from
Jun et al. [2019, Section 6] is the classification of images of cats versus dogs. For typical
images, the output is unambiguous; humans indeed achieve a near-zero error. In sound
recognition, one could think of the recovery of the melody from a tune, an unambiguous
(but tremendously complex!) task. In these problems, the difficulty of learning does not
come from the ambiguity of the output given the input (the additive noise), but from the
fact that we observe the optimal mapping ϕ∗ at few sampled points only.

Note that there is a potential confusion between this function interpolation example
and the previous example of minimizing the empirical risk in the overparameterized regime.
This is largely due to the fact that (1.18) is called the interpolation regime. However, note
that the interpolation regime appears in any overparameterized learning problem, even
under noisy models where b is not determined by a.
• Gossip algorithms translate into stochastic gradient descents with noiseless gradients. In-
deed, simple gossip does not move from optimum when initialized at optimum x∗ = x̄1.
It corresponds to a least-square regression with a{v,w} = ev − ew and b{v,w} = 0 (see
Remark 1.4): the optimal predictor x∗ achieves a zero error.

To conclude this section, one should be skeptical about the ability of the additive noise model
to explain many behaviors of stochastic gradient descents. At the extreme opposite, the noiseless
stochastic model, where there is pure multiplicative noise, is more mathematically challenging,
but relevant for many optimization problems and the gossip problem. This common structure
explains some bridges in the literature: for instance Even et al. [2020] builds an acceleration of
gossip algorithms inspired from the acceleration of coordinate gradient descent [Nesterov, 2012];
Chapter 2 treats function interpolation and gossip algorithms in a common framework.
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1.4.4. Local computation contraint in gossip. We end this section with one more con-
straint making some optimization techniques unfeasible when translated as gossip algorithms. It is
a simple remark that turns out to be important in Chapter 4.

In gossip algorithms, the estimator xt(v) of a node v can be computed only from past information
xs(v), s < t and local information xt(w) from neighbors w of the node v. This contrasts with
centralized implementations of (stochastic) gradient descents where any operation on the full vector
xn is allowed. As a consequence, some techniques in centralized optimization are unimplementable
in gossip.

• Preconditioning techniques [Axelsson, 1996] involve the multiplication by a typically dense
matrix. In gossip, performing such a multiplication implies that all pairs of nodes (not
only neighboring ones) communicate: it is not implementable. As a consequence, gossip
problems with a badly conditioned graph Laplacian must remain so.
• The conjugate gradient technique involves computing scalar products between iterates
(see, e.g., [Golub and Van Loan, 2013, Section 11.3] or [Nesterov, 2003, Section 1.3.2]
for an introduction). When translated into a gossip algorithm (called the parameter-free
polynomial iteration in Chapter 4), it requires computing sums over the whole network.
This non-local operation makes the algorithm impractical.

1.5. Problem structures, convergence analyses and acceleration

In this section, we describe two possible assumptions that we can make on the (deterministic or
stochastic) optimization problems of Section 1.2: Section 1.5.1 introduces the strong convexity
assumption and Section 1.5.2 introduces the capacity and source conditions. Each notion translates
into a related assumption in gossip algorithms: a spectral gap and a spectral dimension assumption
respectively. The link between the former pair of assumptions is well known and used in the
literature, see [Hendrikx et al., 2019, Loizou et al., 2019] for instance; here, we present it only as
an illustration of the parallel of Section 1.4.1 at play in a simple setting. On the contrary, the link
between the spectral dimension and the capacity and source condition is novel; it was introduced
by Berthier et al. [2020].

For each of these settings, and for both deterministic and stochastic optimization, we give
an overview of the rate of convergence of the naive algorithms (deterministic, stochastic gradient
descent or the simple gossip algorithm), and of the accelerations. This articulates the rest of the
thesis. To sum up, in Figure 1.8, we organize the materials of this thesis in an array, clarifying the
type of assumptions for each result.

Finally, in Section 1.5.3, we nuance this binary picture: we illustrate that both assumptions
can be simultaneously true; in this case, they explain the behavior of the algorithm on different
time scales.

1.5.1. Strong convexity and spectral gap. We start this subsection by introducing the
strong convexity assumption, the spectral gap assumption, and their equivalence. We continue by
giving the rate of convergence of (deterministic) gradient descent and its acceleration under this
assumption. To finish, we describe the similar picture with stochastic gradients.

Definition 1.5 (strong convexity). Let µ > 0. The function f is said to be µ-strongly
convex if for all x, y ∈ H,

f(y) > f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2 .

The function f is said to be strongly convex if it is µ-strongly convex for some µ > 0.

Remark 1.6. If f is strongly convex, f has a unique minimizer x∗ on H.
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Strong convexity or spec-
tral gap

Capacity, source condi-
tion or spectral dimension

Deterministic Naive Theorem 4.1.(1)
Acceleration Section 3.1-3.3 Most of Chapter 4, Chapter 5

Stochastic Naive Chapter 2 (Theorems 2.1, 2.6) Chapter 2 (Theorems 2.2-
2.5, 2.7-2.8)

Acceleration Section 3.4-3.5 Largely open, some elements
in Section 3.4.2

Figure 1.8. Array describing the type of assumptions made in the different parts
of this thesis. Note that Section 4.5 does not fit this table as it studies acceleration
under the joint assumption of a spectral gap and a spectral dimension.

Figure 1.9. K7, the complete graph on 7 vertices.

Remark 1.7. Let f be a quadratic function with Hessian Σ (see Definition 1.1). Then f is
µ-strongly convex if and only if Σ < µ Id.

From Section 1.4.1, synchronous simple gossip can be seen as gradient descent on the energy
function fW (x) = 1

2 〈x, (Id−W )x〉, where W is the gossip matrix. It is natural to ask whether this
function is smooth or strongly convex. This turns out to be related to the following notion.

Definition 1.6 (Spectral gap). Denote λ1 > λ2 > . . . > λm the real eigenvalues of the
symmetric matrix W . As W is stochastic, W1 = 1; we can take λ1 = 1, that corresponds to
the eigenvector 1 = (1, . . . , 1). According to the Perron-Frobenius theorem, all eigenvalues
must be smaller than 1 in magnitude. We define:

(1) the spectral gap µ = 1 − λ2 as the distance between the two largest eigenvalues
of W ,

(2) the absolute spectral gap µ̃ = min(1 − λ2, λm + 1) as the difference between the
moduli of the two largest eigenvalues of W in magnitude.

Example 1.9 (complete graph). Let Km denote the complete graph on m vertices, i.e.,
the graph with vertex set V = {1, . . . ,m} and edge set E = {{v, w} | v, w ∈ V, v 6= w} (see
Figure 1.9). It is naturally endowed with the gossip matrix W = 1

m−1A where

A =


0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
... . . . ...

1 1 1 · · · 0

 = 11> − Id
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Figure 1.10. T2
5, the two-dimensional torus of side length 5 [Hemis62].

is the adjacency matrix of the graph. A has eigenvalue m − 1 with multiplicity 1 and
eigenvalue −1 with multiplicity m − 1. Thus W has eigenvalue 1 with multiplicity 1 and
eigenvalue −1/(m−1) with multiplicitym−1. Thus µ = 1+1/(m−1) and µ̃ = 1−1/(m−1).

It is more interesting for us to consider graphs where the spectral gap vanishes in the large
graph limit.

Example 1.10 (torus). Let TdΛ denote the d-dimensional torus of side length Λ, i.e., the
graph with vertex set V = (Z/ΛZ)d and edge set E = {{v, w} | v, w ∈ V, ‖v − w‖2 = 1}
(see Figure 1.10). The torus is naturally endowed with the gossip matrix W = 1

2dA(TdΛ) =
Id− 1

2dL(TdΛ), where A(TdΛ) is the adjacency matrix, L(TdΛ) = 2d Id−A(TdΛ) is the Laplacian,
and 2d is the degree of each node.

We compute the eigenvalues of W . The eigenvalues of the Laplacian of the circle T1
Λ are

2 − 2 cos
(

2πi
Λ

)
, i ∈ Z,−Λ/2 < i 6 Λ/2 [Chung, 1997, Example 1.5]. As TdΛ is the graph

Cartesian product T1
Λ × · · · × T1

Λ (with d terms), the eigenvalues of the Laplacian of the
torus TdΛ are the

2− 2 cos
(2πi1

Λ

)
+ · · ·+ 2− 2 cos

(2πid
Λ

)
, i1, . . . id ∈ Z, −Λ

2 < i1, . . . , id 6
Λ
2 .

Thus, the eigenvalues of W = Id− 1
2dL(TdΛ) are the

1
d

[
cos

(2πi1
Λ

)
+ · · ·+ cos

(2πid
Λ

)]
, i1, . . . id ∈ Z, −Λ

2 < i1, . . . , id 6
Λ
2 .

As a consequence,
(1) the spectral gap of W is µ = 1

d

[
1− cos

(
2π
Λ

)]
,

(2) if Λ is even, then the absolute spectral gap µ̃ is 0, and if Λ is odd, then µ̃ =
min

(
µ, 1− cos

(
π
Λ
))
.

The take-home message is that the spectral gap scales like Λ−2 (neglecting constants de-
pending on the dimension) when the size of the graph Λ goes to infinity. Depending on the
parity of Λ, the absolute spectral gap is either 0, or has the same order of magnitude Λ−2.

We now clarify the relation between spectral gap assumptions and strong convexity.

Proposition 1.1. Define fW (x) = 1
2 〈x, (Id−W )x〉. Then:

(1) Let µ be the spectral gap of W . Then fW is µ-strongly convex and 2-smooth on
x0 +1⊥, the affine hyperplane orthogonal to the constant vector 1 and that passes
through x0.
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(2) Let µ̃ be the absolute spectral gap ofW . Then fW is µ̃-strongly convex and (2− µ̃)-
smooth on x0 + 1⊥.

Proof. When restricted to x0 +1⊥, the function f is quadratic with Hessian I −W restricted
and co-restricted to 1⊥. The eigenvalues of this restricted operator are 1 − λ2, . . . , 1 − λn: they
are all lower-bounded by µ > µ̃ and upper-bounded by 2− µ̃ 6 2. Using Remarks 1.1 and 1.7, we
obtain the stated result. �

Under a convexity assumption only, Theorem 1.1 states that iterates of gradient descent con-
verge at a rate O(1/n). However, under the strong convexity assumption, one can show a faster
exponential rate of convergence.

Theorem 1.3 ([Nesterov, 2003, Theorem 2.1.15]). Let f be a µ-strongly convex and L-
smooth function. Let (xn)n∈N be the iterates of gradient descent (1.1) with constant step-
sizes γ = 2

µ+L .

(1) ‖xn − x∗‖2 6
(
L− µ
L+ µ

)2n
‖x0 − x∗‖2,

(2) f(xn)− f(x∗) 6
L

2

(
L− µ
L+ µ

)2n
‖x0 − x∗‖2.

In words, under the strong convexity assumption, gradient descent converges exponentially fast
in a typical time of the order of the condition number L/µ of the function. This is also called a
linear rate of convergence because the number of significant digits in the solution grows linearly in
the iteration count. Slower rates of convergence are called sublinear, but in this work we prefer to
be more specific and speak of polynomial rates of convergence for rates of the form n−α, α > 0.

Using the interpretation of the synchronous gossip algorithm as a gradient descent on the energy
function, we get a similar result.

Corollary 1.1. Let (xn)n∈N be the iterates of the synchronous gossip iteration with gossip
matrix W and activation times (Tn)n∈N. Let µ̃ be the absolute spectral gap of W . Then

(1)
∑
v∈V

(xTn(v)− x̄)2 6 (1− µ̃)2n∑
v∈V

(x0(v)− x̄)2,

(2) 1
2

∑
{v,w}∈E

Wv,w(xTn(v)− xTn(w))2 6 (1− µ̃)2n∑
v∈V

(x0(v)− x̄)2.

In words, synchronous simple gossip converges exponentially fast in a typical time of the order
of the inverse absolute spectral gap 1/µ̃.

Proof. From Section 1.4.1, (xTn)n∈N are the iterates of gradient descent on the energy function
fW (x) = 1

2〈x, (Id−W )x〉 with step-size γ = 1. As W is a gossip matrix, all iterates have the same
average as x0. Thus all iterates xTn belong to x0 + 1⊥, a subspace where f is µ̃-strongly convex
and (2 − µ̃)-smooth by Proposition 1.1. Theorem 1.3 applies as the step-sizes are small enough:
1 = γ = 2

µ̃+(2−µ̃) . Thus the iterates converge exponentially to the unique minimizer of f in x0 +1⊥
which is x∗ = x̄1. More precisely,

∑
v∈V

(xTn(v)− x̄)2 = ‖xTn − x∗‖2 6
((2− µ̃)− µ̃

(2− µ̃) + µ̃

)2n
‖x0 − x∗‖2 = (1− µ̃)2n∑

v∈V
(x0(v)− x̄)2 .
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This proves the first bound. The second bound is proved similarly using

1
2

∑
{v,w}∈E

Wv,w(xTn(v)− xTn(w))2 = fW (xTn) = fW (xTn)− fW (x∗) .

�

Remark 1.8. It is possible to show that the result of Corollary 1.1 is false if one replaces
the absolute spectral gap µ̃ by the spectral gap µ. And indeed, the proof mechanism above
fails in this case: under a spectral gap assumption only, Proposition 1.1 states only that
fW is 2-smooth, and µ-strongly convex. The step-size γ = 1 corresponding to the gossip
algorithm is too large for Theorem 1.3 to apply.

Example 1.11 (torus, continued). We now interpret the result of Corollary 1.1 in the
special case of the torus TdΛ from Example 1.10.

If Λ is even, then the absolute spectral gap µ̃ is 0 and the result of Corollary 1.1 is
vacuous. And indeed, the iterates of simple synchronous gossip may not converge. In
this case, the graph TdΛ is bipartite: its vertex set V can be divided into two disconnected
subsets V1 and V2. Moreover, because of our choice of gossip matrix, a node v ∈ V1 only
averages values from nodes in V2 (it does not put any weight on itself), and conversely. As
a consequence, the observations x0(v) from nodes v ∈ V2 are averaged, and similarly for
the observations in V1, but these partial averages never mix. An algorithmic solution is to
change the gossip matrix so that nodes average the values of their neighbor with their own
running value: W ← 1

2(W +Id). Through this operation, the spectral gap is divided by two,
but the absolute spectral gap of the new gossip matrix is automatically equal to its spectral
gap.

In the case where Λ is odd, Λ → ∞, then the absolute spectral gap µ̃ scales like Λ−2.
Corollary 1.1 states that synchronous simple gossip converges in a typical time Λ2. In
comparison, any gossip algorithm requires information to diffuse from one end of the graph
to the other one; thus any algorithm requires a number of iterations equal to the diameter
of the graph, here of the order of Λ. This is an illustration of the suboptimality of the
simple gossip algorithm: while we could hope for a convergence is O(Λ) steps, simple gossip
requires O(Λ2) iterations. This is also called a diffusive rate of convergence [Rebeschini
and Tatikonda, 2017]: after n iterations, while information could have reached nodes at
distance n, it is typically spread on nodes at distance

√
n; this is similar to heat diffusion,

or equivalently, to the mixing time of a random walk on the graph [Boyd et al., 2006]. In
Chapter 5, we push this comparison further by showing that on large grids, the simple gossip
algorithm scales like a heat diffusion.

Acceleration. Motivated by the above example, we now turn to the question of acceleration. Many
methods exist to accelerate in the strongly convex case with deterministic gradients; of interest
to us are Nesterov acceleration (3.1)-(3.3), Polyak’s heavy ball method (1.2) and the Chebyshev
acceleration (reviewed in [d’Aspremont et al., 2021, Chapter 2]). All of these accelerations achieve
exponential convergence in a typical time O(L/µ), that is, the square root of the condition number.
For Nesterov acceleration, the accelerated convergence rate was proved for all L-smooth and µ-
strongly convex functions; for Polyak’s heavy ball method and Chebyshev acceleration, the known
proofs of the accelerated global convergence rate only apply to quadratic functions with these
properties.
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When the problem is ill-conditioned, the improvement from O(L/µ) to O(
√
L/µ) can be signif-

icant. When transposed to gossip algorithms on the torus TdΛ, these algorithms accelerate from the
diffusive typical time O(Λ2) to the optimal order of magnitude O(Λ). In Figure 4.3, the performance
of the shift-register method is typical of these accelerations based on the spectral gap.
Stochastic case. Above, we presented rates and accelerations for optimization with deterministic
gradients, or synchronous gossip. We now mention extensions to the stochastic case, or asynchro-
nous gossip.

The analysis of stochastic gradient descent under strong convexity is well-known, see [Bottou
et al., 2018] for instance. In Theorems 2.1 and 2.6, we derive again those results in the least-squares
setting, only for the sake of comparison with our contributions. The take-home message is that,
in the noiseless case, fixed step-size stochastic gradient descent converges exponentially fast in a
typical time O(R0/µ), where R0 is the maximal square norm of the features a and µ is the strong
convexity parameter. The parallel result for gossip algorithms was given by Boyd et al. [2006]. In
the noisy case, fixed step-size stochastic gradient descent does not converge anymore. However,
it reaches exponentially fast a region with a low sub-optimality gap, that is proportional to the
optimal risk f(x∗) and the step-size γ.

Accelerating stochastic gradient descent is an active research topic. In the least-square case,
Jain et al. [2018] show that in general it is not possible to design an acceleration converging in
time O(

√
R0/µ). The authors design an acceleration whose improvement over stochastic gradient

descent depends on a new quantity, the statistical condition number. In Section 3.4.2, we design an
acceleration achieving a similar performance as theirs, using a method closely similar to Nesterov
acceleration.

1.5.2. Source, capacity conditions and spectral dimension. We start this subsection
by introducing the source and capacity condition, the spectral dimension assumption, and their
equivalence. We then give an overview of convergence rates and accelerations of gradient descents
and gossip algorithms under these assumptions.

The definitions of this section are less stable from one work to another. Even in this thesis, it
is convenient in Chapter 4 to take a definition of the spectral dimension different from the one of
this section. However, the heuristic picture remains the same; we give here the definitions that we
use in Chapter 2.

We now specialize to the least-squares supervised learning problem of Example 1.5:

f(x) = 1
2E(a,b)∼P(b− 〈a, x〉)2 .

We denote x0 the initialization of the algorithms and we assume that there exists a minimizer x∗ ∈ H
of f(x). Recall that we then have the formula

f(x) = 1
2 〈x− x∗,Σ(x− x∗)〉+ f(x∗) ,

where Σ = E(a,b)∼Pa ⊗ a is the covariance operator of the features a. We do not assume that the
linear operator Σ is invertible. Throughout this thesis, we use the following convenient notation:
if α is a positive real and x a vector,∥∥∥Σ−α/2x∥∥∥2

=
〈
x,Σ−αx

〉
:= inf

{
‖x′‖2

∣∣∣x′ such that x = Σα/2x′
}
,

with the convention that it is equal to ∞ when x /∈ Σα/2(H).

Definition 1.7 (source condition). A source condition is the assumption that there exists
a positive number α1 such that x∗ − x0 ∈ Σα1/2(H), i.e., ‖Σ−α1/2(x∗ − x0)‖2 < ∞. The
exponent α1 is called the regularity of the optimum.
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Note that in this definition, the source condition does not only depend on the objective func-
tion f , but also on the initialization x0.

Definition 1.8 (capacity condition). A capacity condition is the assumption that there
exists a positive number α2 such that a ∈ Σα2/2(H) almost surely (a.s.), and that there
exists a constant Rα2 such that ‖Σ−α2/2a‖2 6 Rα2 a.s. The exponent α2 is called the
regularity of the features.

The source condition is classical in the non-parametric kernel literature [Caponnetto and
De Vito, 2007, Yao et al., 2007]. The capacity condition is assumed in this form by Pillaud-Vivien
et al. [2018]. It implies that

Tr(Σ1−α2) = E[Tr(aa>Σ−α2)] = E[a>Σ−α2a] 6 Rα2 .

This last condition is sometimes stated under the form of a given decay of the eigenvalues of Σ; it
is related to the effective dimension of the problem [Caponnetto and De Vito, 2007].

Example 1.12 (Sobolev spaces, continued). Consider Example 1.7: we interpolate a func-
tion ϕ∗ on U from the observation of its value at random points using a kernel k defining a
RKHS H.

We set ourselves in the Sobolev case of Example 1.8: we choose U = [0, 1]d, the kernel
k(u, u′) = t(u−u′) is translation-invariant and satisfies the Fourier decay (1.13), so that the
RKHS H is equivalent to the Sobolev space Hs/2+d/4

per . We assume that ϕ∗ ∈ H = H
s/2+d/4
per :

this is the so-called attainable case.
Assume that the input u is uniform in [0, 1]d. From (1.11), the covariance operator is

the convolution by t: it is thus diagonalized in Fourier space where it is multiplication by t̂.
Its eigenvalues t̂(v) converge to 0 as |v| → ∞, thus no strong convexity condition can hold.

Instead, we show that source and capacity conditions hold for the problem of minimizing
the risk

f(ϕ) = 1
2E(u,b)∼P(u,b) (b− ϕ(u))2 ,

and are related to the Sobolev smoothness of the functions ϕ∗ and t. The computations are
similar to those in Example 1.8.

(1) (source condition) Choose the initialization ϕ0 = 0. Then from (1.12) and Parseval
identity,

‖Σ−α1/2(ϕ∗ − ϕ0)‖2 =
〈
ϕ∗,Σ−α1−1ϕ∗

〉2

L2([0,1]d)
=
∑
v∈Zd

ϕ̂∗(v) ̂Σ−α1−1ϕ∗(v) .

Further, Σ is the convolution by t, thus the multiplication in Fourier space by t̂.
Thus

‖Σ−α1/2(ϕ∗ − ϕ0)‖2 =
∑
v∈Zd
|ϕ̂∗(v)|2t̂(v)−1−α1

�
∑
v∈Zd
|ϕ̂∗(v)|2

(
1 + |v|2

)(α1+1)(s/2+d/4)

= ‖ϕ∗‖2
H

(α1+1)(s/2+d/4)
per

.
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Thus, if ϕ∗ is in the Sobolev space Hr
per, then the function interpolation problem

satisfies the source condition with

α1 = 2r
s+ d/2 − 1 .

(2) (capacity condition) Similar computations give:

‖Σ−α2/2k(u, .)‖2 =
〈
t(u− .),Σ−α2−1t(u− .)

〉
L2([0,1]d)

=
∑
v∈Zd

̂t(u− .)(v) ̂Σ−α2−1t(u− .)(v)

=
∑
v∈Zd
| ̂t(u− .)(v)|2t̂(v)−α2−1

=
∑
v∈Zd

t̂(v)−α2+1

=
∑
v∈Zd

(
1 + |v|2

)(s/2+d/4)(α2−1)
.

Thus the function interpolation problem satisfies the capacity condition for all α2
such that

α2 < 1− d

s+ d/2 .

From Section 1.4.1, simple gossip can be seen as a stochastic gradient descent on the energy
function f(x) = 1

2N
∑
{v,w}∈E 〈ev − ew, x〉

2 = 1
2N 〈x,Lx〉, where L is the Laplacian of the graph. It is

natural to ask what are the capacity and source condition satisfied by this stochastic optimization
problem. It turns out to be related to the following notion of spectral dimension.

Definition 1.9 (spectral dimension). Let v ∈ V be a vertex. As L is a bounded positive
semi-definite operator, there exists a unique measure σv, called the spectral measure of L
at v, such that for all continuous real functions f ,

〈ev, f(L)ev〉 =
∫

dσv(λ)f(λ) .

If 0 = λ1 < λ2 6 . . . 6 λm are the eigenvalues of L and u1 = 1, u2, . . . , um are the
corresponding normalized eigenvectors, then

σv(dλ) =
m∑
i=1

(ui(v))2δλi(dλ) .

We say that G is of spectral dimension d > 0 with constant V > 0 if

∀v ∈ V , ∀E ∈ (0,∞) , σv((0, E]) 6 V −1Ed/2 .

A typical example motivating this definition is the following.

Example 1.13 (torus, continued). Let TdΛ denote the d-dimensional torus of side length Λ,
whose spectral gap is studied in Example 1.10. The torus TdΛ is of spectral dimension d with
some constant V (d) that depends on the dimension d but not on the side length Λ.
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Proof of Example 1.13. The graph TdΛ is invariant by translation, thus the spectral
measure σv is the same for all vertices v ∈ V. Thus

|V|σv(dλ) =
∑
w∈V

σw(dλ) =
∑
w∈V

m∑
i=1

ui(w)2δλi =
m∑
i=1

(∑
w∈V

ui(w)2
)
δλi =

m∑
i=1

δλi .

Thus

σv((0, E]) = 1
Λd |{1 < i 6 m|λi 6 E}| .

From Example 1.10, the eigenvalues of the Laplacian of the torus TdΛ are the

2− 2 cos
(2πi1

Λ

)
+ · · ·+ 2− 2 cos

(2πid
Λ

)
, i1, . . . id ∈ Z, −Λ

2 < i1, . . . , id 6
Λ
2 .

For y ∈ [−π, π], 1− cos(y) > 2
π2 y

2. Thus

2− 2 cos
(2πi1

Λ

)
+ · · ·+ 2− 2 cos

(2πid
Λ

)
6 E

⇒ 4
π2

[(2πi1
Λ

)2
+ · · ·+

(2πid
Λ

)2
]
6 E

⇔ i21 + · · ·+ i2d 6
EΛ2

16 .

We need to count the number of integer points in the Euclidean ball centered at 0 and of
radius

√
EΛ/4 in Rd. This problem is famously known as Gauss circle problem. For our

purposes, a crude estimate suffices: there exists a constant C(d), depending only on the
dimension d, such that for all radius R, the number of integer points in the ball of radius R
is smaller than 1 + C(d)Rd. This leads to the final estimate

σv((0, E]) = 1
Λd

∣∣∣∣{(i1, . . . , id) ∈
(
Z ∩

(
−Λ

2 ,
Λ
2

])d
\ {0} such that

2− 2 cos
(2πi1

Λ

)
+ · · ·+ 2− 2 cos

(2πid
Λ

)
6 E

}∣∣∣∣
6

1
Λd

∣∣∣∣∣
{

(i1, . . . , id) ∈ Zd\ {0}
∣∣∣∣∣ i21 + · · ·+ i2d 6

EΛ2

16

}∣∣∣∣∣
6

1
ΛdC(d)

(
EΛ2

16

)d/2
= C(d)

4d Ed/2 .

This proves the example with V (d) = 4d/C(d). �

Similar spectral dimension results were proved for supercritical percolation bonds in [Mathieu
and Remy, 2004] and for the random geometric graphs in [Avrachenkov et al., 2019].

We now conclude our digression by showing that a spectral dimension assumption on the net-
work graph G of a gossip problem implies source and capacity conditions for the associated sto-
chastic least-squares problem.

Proposition 1.2. Assume that the graph G is of spectral dimension d with constant V . Let
δmax denote the maximal degree of the nodes in the graph. Assume further that the initial
observation x0 : V → R is the indicator of some distinguished vertex v∗ ∈ V: x0(v∗) = 1 and
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x0(v) = 0 if v 6= v∗. Recall from Section 1.4.1 that the gossip problem can be seen as the
least-square problem

f(x) = 1
2E(a,b)∼P(b− 〈a, x〉)2

with b = 0, a = ev− ew where the edge {v, w} is uniformly sampled, and x ∈ x0 +1⊥, where
x∗ = x̄1 is the unique minimizer.

This problem, initialized from x0, satisfies
(1) (source condition) for any α1 < d/2, the optimum has regularity α1, and

‖Σ−α1/2(x∗ − x0)‖2 6 Nα1V −1δd/2−α1
max

d

d− 2α1
,

where again N denotes the number of edges in the graph, and
(2) (capacity condition) for any α2 < d/2, the features have regularity α2 with associ-

ated constant

Rα2 = 2Nα2V −1δd/2−α2
max

d

d− 2α2
.

Proof. (1) Let 0 = λ1 < λ2 6 . . . 6 λm be the eigenvalues of L and u1 = 1, u2, . . . , um
be the corresponding normalized eigenvectors. Then

‖Σ−α1/2 (x∗ − x0) ‖2 = Nα1
〈
x∗ − x0,L−α1(x∗ − x0)

〉
= Nα1

m∑
i=2

λ−α1
i 〈x∗ − x0, ui〉2 .

First, as x∗ is a constant vector, 〈x∗, ui〉 is zero for all i > 2. Second, x0 = ev? . Thus

‖Σ−α1/2(x∗ − x0)‖2 = Nα1
m∑
i=2

λ−α1
i ui(v?)2

= Nα1

∫
(0,∞)

dσv?(λ)λ−α1

= Nα1

∫
(0,∞)

dσv?(λ)
∫ ∞

0
ds1{s6λ−α1}

= Nα1

∫ ∞
0

ds
∫

(0,∞)
dσv?(λ)1{λ6s−1/α1}

= Nα1

∫ ∞
0

ds σv?((0, s−1/α1 ]) .

The graph G is of spectral dimension d with constant V , thus σv?((0, s−1/α1 ]) 6 V −1s
− d

2α1 .
However, if s < δ−α1

max , it is better to use a more naive bound. As all eigenvalues of L are
smaller or equal than δmax, σv?((0, s−1/α1 ]) 6 σv?((0, δmax]) 6 V −1δ

d/2
max. Then

‖Σ−α1/2 (x∗ − x0) ‖2 6 Nα1

[∫ δ
−α1
max

0
ds V −1δd/2max +

∫ ∞
δ
−α1
max

ds V −1s
− d

2α1

]
Note that this last integral is finite because we take α1 < d/2. We obtain

‖Σ−α1/2 (x∗ − x0) ‖2 = Nα1V −1δd/2−α1
max

d

d− 2α1
.

(2) Let {v, w} ∈ E . As ‖Σ−α2/2.‖ is a norm, by the triangle inequality,

‖Σ−α2/2(ev − ew)‖2 = ‖Σ−α2/2 [(x∗ − ew)− (x∗ − ev)] ‖2
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6
(
‖Σ−α2/2(x∗ − ew)‖+ ‖Σ−α2/2(x∗ − ev)‖

)2

6 2
(
‖Σ−α2/2(x∗ − ew)‖2 + ‖Σ−α2/2(x∗ − ev)‖2

)
.

We bound the two quantities as above. We obtain

Rα2 = sup
{v,w}∈E

‖Σ−α2/2(ev − ew)‖2 6 2Nα2V −1δd/2−α2
max

d

d− 2α2
.

�

Deterministic gradient descents and synchronous gossip. Gradient descent on a quadratic
function with deterministic gradients is easily studied as it boils down to the power iteration of
a matrix. We have ‖xn − x∗‖2 = O(n−α1) and f(xn) − f(x∗) = O(n−α1−1), where α1 is the
regularity of the optimum. For synchronous simple gossip, this translates in a rate of convergence
‖xt − x∗‖2 = O(t−d/2) (up to potential log factors, due to the fact that the source condition is not
exactly d/2 in Proposition 1.2). This rate is another effect of the diffusivity phenomena, already
seen in Example 1.11. If the initialization is the indicator x0 = ev∗ of some distinguished vertex,
roughly speaking, the mass of the 1 diffuses on all vertices in a ball of radius O(

√
t) around v∗ in a

time t. In a graph of spectral dimension d, this ball contains Θ(
√
t
d) vertices, all getting a similar

mass Θ(
√
t
−d). This results in an error ‖xt‖2 = Θ(td/2(

√
t
−d)2) = Θ(t−d/2). (We consider here a

very large graph to avoid border effect; then x̄ ≈ 0.)
This naturally raises the question of acceleration under a source condition, for instance to solve

the diffusivity problem in gossip. The acceleration of the optimization of quadratic functions is
solved by the conjugate gradient algorithm (see, e.g., [Golub and Van Loan, 2013, Section 11.3] or
[Nesterov, 2003, Section 1.3.2] for an introduction), that finds the best linear combination of the
past gradient descent iterates, in a online fashion that adapts to the spectrum of the Hessian. In
particular, it adapts to a potential source condition, even if unknown. However, as we have seen in
Section 1.4.4, the conjugate gradient algorithm translates into a theoretical gossip algorithm which
is not implementable as it involves non-local computations.

On quadratic functions, many accelerated methods—including the conjugate gradient methods—
can be derived and analyzed through the polynomials in the Hessian that they compute. Some
of them, called inner-product free, require only local computations when translated as gossip algo-
rithms: they can be used to build accelerated gossip algorithms. The polynomials are chosen to
satisfy some minimization property. For instance, Nemirovsky [1991, 1992] proposed a variant of
the Chebyshev acceleration that achieves acceleration under a source condition by considering some
minimax families of polynomials. In Chapter 4, we use some families of orthogonal polynomials—
that minimize some norm—to accelerate gossip algorithms under a spectral dimension assumption.
If d is the spectral dimension of the graph, we achieve rates ‖xt − x∗‖2 = Θ(t−d). In the above
discussion, this means that we overcome the diffusivity problem: information reaches distance Θ(t)
in the graph at time t.
Stochastic gradient descents and asynchronous gossip. It is the subject of Chapter 2
to study of the rates of stochastic gradient descent in this setting. A capacity condition on the
stochastic gradients is required, along with the source condition: it ensures that the source condition
is maintained from one iterate to the next. We prove that stochastic gradient descent converges at
the rates ‖xn − x∗‖2 = O(n−min(α1,α2)) and f(xn) − f(x∗) = O(n−min(α1,α2)−1), where α1 and α2
denote the regularities of the optimum and of the features respectively. For gossip algorithms, this
translates in the rate ‖xt − x∗‖2 = O(t−d/2) (up to log factors), as in the deterministic case.

We now turn to the acceleration of stochastic gradient descent under capacity and source
conditions. The case with additive noise has been well studied (see for instance [Rosasco and
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Villa, 2015, Dieuleveut and Bach, 2016, Pillaud-Vivien et al., 2018]), with optimality reached by
averaged stochastic gradient descent in many cases. To the best of our knowledge, acceleration in
the noiseless case has not been studied; we can expect faster rates to be possible. In Section 3.4.2,
we provide an acceleration in the noiseless case when the regularities α1 = α2 = 1. However, we
leave the question open for other regularities α1, α2.

1.5.3. Co-existence of both settings. For high-dimensional least-squares problems, or for
gossip algorithms on large graphs, both a strong convexity condition and source and capacity
conditions can simultaneously hold. Of course, the faster exponential rates implied by the strong
convexity are asymptotically tighter. Nevertheless, for a number of iterations smaller than the
typical time of exponential convergence, the exponential bound is non-informative. In this phase,
the polynomial rates based on the capacity and source conditions are tighter; they govern the
qualitative behavior of the algorithm.

As an illustration, consider in Figure 1.11 the performance of the simple gossip algorithm on
the two-dimensional torus T1

200. The associated gossip problem satisfies both a spectral dimension
condition (Example 1.13) and a spectral gap condition (Example 1.10). The spectral dimension
dictates a polynomial convergence O(t−d/2) = O(t−1/2) in a first phase, best seen as a line with
slope −1/2 in the plot on the left where both axes are logarithmic. The spectral gap dictates an
exponential converge in a second phase, best seen as a line in the plot on the right where only the
y-axis is logarithmic.

This two-phase phenomena can be explained as follows: the smaller the eigenvalue of the
Hessian, the harder it is to optimize in the direction of the corresponding eigenvector. Thus, the
long-time error of algorithms is governed by the small eigenvalues of the Hessian; the error in the
other directions is negligible. The typical size of the eigenvalues that govern the error depends on
the number of iterations (or the elapsed time, for gossip algorithms). In a first phase, the group
of the smallest eigenvalues matters: the source and capacity condition explain the behavior. In a
second phase, only the smallest eigenvalue matters: the strong convexity explains the behavior.

When accelerating algorithms, we do not only want asymptotically faster algorithms, but algo-
rithms that are faster in both phases. We need to design accelerations jointly in the strong convexity
and in the capacity and source conditions of our problems. This is done, in the particular case of
synchronous gossip algorithms, in Section 4.5. This largely improves over accelerations based only
on the spectral gap.
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Figure 1.11. Rate of convergence of one realization of simple gossip algorithm on
the torus T1

200, initialized from the indicator of a distinguished vertex. Blue crosses
indicate the values of

∑
v∈V(xt(v) − x̄)2 at the activation times. Both plots show

the same values, but with a different scale for the x-axis. In both plots, we added
an orange line to emphasize a specific part of the convergence: polynomial on the
left, exponential on the right.
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CHAPTER 2

Stochastic Gradient Descent and the Simple Gossip Algorithm

We remind that the contents of this chapter were published in the following conference article:
R. Berthier, F. Bach, P. Gaillard. Tight Nonparametric Convergence Rates for
Stochastic Gradient Descent under the Noiseless Linear Model, 2020, Advances
in Neural Information Processing Systems (NeurIPS).

In this chapter, we set ourselves in the least-squares supervised learning problem of Example 1.5:
we seek to minimize

f(x) = 1
2E(a,b)∼P (b− 〈a, x〉)2 . (2.1)

from i.i.d. samples (a1, b1), (a2, b2), · · · ∼ P. We analyze the performance of the stochastic gradient
descent (SGD) algorithm

xn+1 = xn + γ(bn+1 − 〈an+1, xn〉)an+1 , n > 0 . (2.2)
Motivated by the applications enumerated in Section 1.4.3, we mostly set ourselves in under the
noiseless linear model (Definition 1.4): we assume that there exists a ground-truth linear relation
b = 〈x∗, a〉 between the feature vector a and the output b ∈ R. The feature vector a may be itself
a non-linear transformation of the inputs Ψ(u), explicitly computed through a feature map a =
Ψ(u) or implicitly defined through a positive-definite kernel k(u, u′) [Hofmann et al., 2008]. Note
that in the noiseless model, there is still the randomness of the sampling of a1, . . . , an, sometimes
called multiplicative noise [Dieuleveut et al., 2017]. Given those inputs, the outputs b1, . . . , bn are
deterministic: there is no additive noise, and thus the noiseless linear model we consider in this
paper is a simplification of problems with low additive noise. In Section 2.2, we describe how the
results are perturbed in the presence of additive noise.

We analyze the behavior of an extremely naive algorithm: SGD, with no step-size decay nor
averaging, no explicit regularization, and a single pass on the data. Remarkably, under the noiseless
linear model, the iterates of SGD converge to the optimum x∗ and the generalization error of SGD
vanishes as the number of samples increases. Assuming strong convexity, the convergence shown
to be exponential. This result is already known in the literature, see for instance [Bottou et al.,
2018, Theorem 4.6]; we only present it to put our contributions in perspective. Our main result is
that, under capacity and source conditions, the convergence of SGD is polynomial with exponents
determined by the minimum of two parameters: the regularity of the optimum x∗ and the regularity
of the feature vectors a, where regularities are measured in terms of power norms of the covariance
matrix Σ = E[a⊗ a]. Our analysis of the convergence is tight as we prove upper and lower bounds
on the performance of SGD that almost match. Thus plain-vanilla SGD shows some adaptivity to
the complexity of the problem.

Two extensions of our results are studied. First, in Section 2.3.1, we study the application to the
interpolation of a real function ϕ∗ on the torus [0, 1]d from the observation of its value at randomly
uniformly sampled points (Example 1.7). In the latter case, we show that the rate of convergence
depends on the Sobolev smoothness of the function ϕ∗ and of the interpolating kernel. Second, in
Section 2.3.2, we use the parallel of between gossip algorithms and stochastic optimization to obtain
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polynomial convergence rates for the simple gossip algorithm depending on the spectral dimension
of the graph. Finally, in Section 2.3.3, a toy application instantiates our results in the special case
of Gaussian features.
Comparison to the existing literature. There is an extensive research on the performance
of different estimators in non-parametric supervised learning, however almost all of them do not
consider the special case of the noiseless linear model [Györfi et al., 2006, Caponnetto and De Vito,
2007, Tsybakov, 2008, Fischer and Steinwart, 2017]. The difference is significant; for instance, rates
faster than O(n−1) for the least-square risk are impossible with additive noise, while in this paper
we prove that SGD can converge with arbitrarily fast polynomial rates. Some of these works analyze
the performance of SGD [Ying and Pontil, 2008, Bach and Moulines, 2013, Tarrès and Yao, 2014,
Rosasco and Villa, 2015, Dieuleveut and Bach, 2016, Dieuleveut et al., 2017, Lin and Cevher, 2018,
Pillaud-Vivien et al., 2018, Mücke et al., 2019]. However, because of the additive noise of the data,
convergence requires averaging or decaying step sizes. As a notable exception, Jun et al. [2019]
study a variant of kernel regularized least-squares and notices that the rate of convergence improves
on noiseless data compared to noisy data. However, their rates are not directly comparable to ours
as they assume that the optimal predictor is outside of the kernel space while we focus on the
attainable case where the optimal predictor is in this space. We make a more precise comparison
of this work with our results in Remark 2.2.

While our exposition chooses to study minimization of the test error by single-pass SGD, it
is still possible to derive the convergence rates of multi-pass SGD for minimizing the training
error; this simply corresponds to the case where the law P appearing in (2.1) is the uniform law
on a dataset (a1, b1), . . . , (aN , bN ). This is, again, the subtle difference between Example 1.4 and
Example 1.5 or between the interpolation regime and the noiseless model (Section 1.4.3). While
the former is included in the latter, the converse is not true.

However, a recent trend studies the ability of SGD to reach zero training error in this inter-
polation regime, that is in overparameterized models where a perfect fit on the training data is
possible [Schmidt and Le Roux, 2013, Ma et al., 2018, Vaswani et al., 2019, Cevher and Vũ, 2019].
Even with a fixed step size, SGD is shown to achieve zero-training error. However, these results are
significantly different from ours: zero training error does not give any information on the general-
ization ability of the learned models, and the “interpolation regime” does not imply the noiseless
model. Moreover, none of these studies give non-parametric convergence rates for SGD.
Setting. We assume the feature variable a to be uniformly bounded, namely that there exists a
constant R0 <∞ such that

‖a‖2 6 R0 a.s. (2.3)
We can then define the covariance operator Σ = E [a⊗ a] of a. It has a finite operator norm that
we denote ‖Σ‖H→H. Recall that

f(x) = 1
2 〈x− x∗,Σ (x− x∗)〉+ f(x∗) .

We do not assume that the linear operator Σ is invertible as this is incompatible in infinite dimension
with the boundedness assumption in Eq. (2.3). Finally, we recall the following notation: if α is a
positive real and x a vector,

∥∥∥Σ−α/2x∥∥∥2
= 〈x,Σ−αx〉 := inf

{
‖x′‖2

∣∣∣x′ such that x = Σα/2x′
}
, with

the convention that it is equal to ∞ when x /∈ Σα/2(H).

2.1. Noiseless model

In this section, we assume that the noiseless linear model holds, i.e., that there exists an optimal
predictor x∗ ∈ H such that b = 〈x∗, a〉 a.s., or equivalently, f(x∗) = 0.
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We first give a known result assuming strong convexity (Definition 1.5). For instance, it corre-
sponds to [Bottou et al., 2018, Theorem 4.6] in the least-squares case and with M = 0.

Theorem 2.1 (noiseless, parametric). Assume that f is µ-strongly convex for some µ > 0.
Assume further 0 < γ 6 1/R0. The iterates xn of SGD with step-size γ satisfy for all n > 0,

E‖xn − x∗‖2 6 (1− µγ)n ‖x0 − x∗‖2 .

From the theorem above, an exponential bound on the expected population risk Ef(xn) can
also be deduced from the inequality f(xn) 6 ‖Σ‖H→H2 ‖xn − x∗‖2.

In this section, we adapt this result to the case where we no longer assume strong convexity, but
we assume source and capacity conditions (Definitions 1.7 and 1.8). In this case, the reconstruction
error ‖xn − x∗‖2 and the population risk f(xn) converge at different rates.

Theorem 2.2 (noiseless, non-parametric, upper-bound). Assume that there exists a non-
negative real number α such that

(a) the source condition is satisfied with regularity α, i.e., x∗ − x0 ∈ Σα/2(H), and
(b) the capacity condition is satisfied with the same regularity α, i.e., a ∈ Σα/2(H) a.s.,

and there exists a constant Rα <∞ such that ‖Σ−α/2a‖2 6 Rα a.s.
Assume further 0 < γ 6 1/R0. The iterates xn of SGD with step-size γ satisfy for all n > 1,

(1) (reconstruction error) E‖xn − x∗‖2 6
C

nα
,

(2) (generalization error) min
k=0,...,n

Ef(xk) 6
C ′

nα+1 ,

where

C = αα

γα

(
‖Σ−α/2(x∗ − x0)‖2 +

Rα
R0
‖x∗ − x0‖2

)
,

C ′ = 2α αα

γα+1

(
‖Σ−α/2(x∗ − x0)‖2 +

Rα
R0
‖x∗ − x0‖2

)
.

Further, the tail-averaged iterate xn = 1
bn/2c+ 1

n∑
k=dn/2e

xk satisfies the similar bounds

(1) (reconstruction error) E‖xn − x∗‖2 6
2αC
nα

,

(2) (generalization error) Ef(xn) 6 C ′

nα+1 .

In the following theorem, we show that the non-parametric theorem is tight in the exponents.

Theorem 2.3 (noiseless, non-parametric, lower bound). Assume that there exists a positive
real number α such that one of the two following conditions holds:

(a) x∗ − x0 /∈ Σα/2(H), or
(b) with positive probability, a /∈ Σα/2(H) and 〈a, x∗ − x0〉 6= 0.

Assume further 0 < γ 6 1/R0. The iterates xn of SGD with step-size γ satisfy for all ε > 0,
(1) (reconstruction error) E‖xn − x∗‖2 is not asymptotically dominated by 1/nα+ε,
(2) (generalization error) Ef(xn) is not asymptotically dominated by 1/nα+1+ε.
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The take-home message of Theorems 2.2, 2.3 is that the convergence rate of SGD is governed
by two real numbers: the regularity α1 of the optimum, that is the supremum of all α such that
x∗ − x0 ∈ Σα/2(H), and the regularity α2 of the features, that is the supremum of all α such that
a ∈ Σα/2(H) almost surely. The polynomial convergence rate of SGD is roughly of the order of n−α
for the reconstruction error and n−α−1 for the generalization error with α = min(α1, α2): one of
the two regularities is a bottleneck for fast convergence. See Section 2.3.1 for an application to the
optimal choice of a reproducing kernel Hilbert space. The exponent α1 corresponds to the decay
of the errors of the gradient descent on the population risk f . However, due to the multiplicative
noise, the convergence of SGD is slowed down by the irregularity of the feature vectors if α2 < α1.

In the theorems, the constraint on the step-size 0 < γ 6 1/R0 is independent of the time
horizon n and of the regularities α1, α2. Thus fixed step-size SGD shows some adaptivity to the
regularity of the problem.

In Section 2.3, we give extensive numerical evidence that the polynomial rates n−α and n−(α+1)

in the bounds are indeed sharp in describing convergence rate of SGD.
We now make a few remarks on Theorems 2.2, 2.3. They articulate the significance of the

results, but may be skipped.

Remark 2.1. Our upper bound and lower bound on the generalization errors of SGD do not
match exactly. Indeed, we prove an upper bound on the minimum risk of the past iterates,
where we prove a lower bound on a larger quantity, the risk of the last iterate. Note that as
f is not exactly observable, it is not trivial to determine which past iterate of SGD satisfies
the bound. However, Theorem 2.2 also shows that tail-averaging is sufficient to obtain an
iterate with the claimed generalization bound.

The risk of the last iterate of SGD was bounded with the same rates in a subsequent
paper by Varre et al. [2021]; their assumptions differ from those of this chapter in two
ways. First, their analysis is more general as it also covers the non-attainable case where
the infimum of (2.1) is not realized by a point in H (but is still 0). Second, their results
requires the step-size γ to be significantly smaller that 1/R0; for this reason, it can not be
applied to gossip algorithms as below. We do not know whether it is possible to obtain the
same rates for the risk of the last iterate for step-sizes as large as γ = 1/R0.

Remark 2.2 (related literature). In the case α = 0, where no regularity assumption
is made on the optimum or the features (apart from being bounded), we upper-bound
mink=1,...,n Ef(xk) by O(n−1). A similar result was shown by Bach and Moulines [2013]:
the excess risk for averaged constant-step size SGD is asymptotically dominated by n−1 on
any least-squares problem–not necessarily a noiseless one. It is remarkable that under the
noiseless linear setting, no averaging or decay of the step-size is needed to obtain the same
convergence rate.

Jun et al. [2019] also study the performance of an algorithm, a variant of kernel regu-
larized least-squares, in the noiseless non-parametric setting. However, they do not consider
the case where the function is more regular than being in the kernel space, i.e., when α1 > 0
with our notation, β > 1/2 with theirs. In fact, they leave this case as an open problem in
their Section 6. Thus, a fair comparison can only be made when α1 = 0, β = 1/2. In this
case, SGD and the algorithm of Jun et al. [2019] both achieve the same rate O(n−1).

Remark 2.3 (relation to Hölderian error bounds and uniform convexity). Our non-parametric
study bears similarities with studies of optimization under the assumption that the function
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satisfies a Hölderian error bound

f(y)− f(x∗) >
µ

2 ‖y − x∗‖
ρ , y ∈ H ,

for some ρ > 2 and µ > 0 [Juditsky and Nesterov, 2014, Roulet and d’Aspremont, 2020].
This condition is implied by uniform convexity:

f(y) > f(x) + 〈f ′(x), y − x〉+ µ

2 ‖y − x‖
ρ , x, y ∈ H .

The case ρ = 2 corresponds to strong convexity.
Our quadratic function f(x) is uniformly convex on the ellipsoids {x | 〈x− x∗,Σ−α(x−

x∗)〉 6 C}, C > 0 (with ρ = 2 + 2/α). Our proof strategy can be seen as follows: we use
the capacity and source conditions to show that the iterates stay in an ellipsoid of this form
(Equation (2.16)). We then use the implied Hölderian error bound (Equation (2.17)) and
conclude.

Remark 2.4. The theorems stated above stay true if one weakens the assumptions in the
following way:

• assume E
[
‖a‖2a⊗ a

]
4 R0Σ instead of ‖a‖2 6 R0 a.s., and

• assume E [〈a,Σ−αa〉 a⊗ a] 4 RαΣ instead of 〈a,Σ−αa〉 6 Rα a.s.
This weaker set of assumptions is useful in the case of non-bounded features, like the Gauss-
ian features of Section 2.3.3. We thus take special care in using only these weaker assump-
tions in the proofs of Theorems 2.2-2.5. However we prefer stating results with the stronger
assumptions for the sake of clarity.

Remark 2.5 (Articulation between Theorems 2.1 and 2.2). If f is strongly convex, for
instance because H is finite-dimensional and Σ is of full rank, then the assumptions of Theo-
rem 2.2 hold for any α > 0. Thus SGD converges asymptotically faster than any polynomial;
this is coherent with the exponential convergence given by Theorem 2.1. Although the latter
bound is asymptotically better than polynomial rates, for moderate time scales the polyno-
mial rates may describe best the observed behavior, see Section 1.5.3 for an illustration.

Regularity functions and general results. We now generalize Theorems 2.2 and 2.3 by showing
the convergence in norms associated to different powers of the covariance Σ. Indeed, the main
difficulty in the proof of these theorems is that deriving closed recurrence relations for the expected
reconstruction and generalization errors is not straightforward. Instead, we define the regularity
function d2

n, d
2
n at iteration n:

d2
n(β) = E

[〈
xn − x∗,Σ−β (xn − x∗)

〉]
∈ [0,∞] ,

d
2
n(β) = E

[〈
xn − x∗,Σ−β (xn − x∗)

〉]
∈ [0,∞] , β ∈ R ,

and we exhibit a closed recurrence inequality (Property 2 in Appendix 2.A) for the regularity
functions d2

n, n > 1. In particular, one can recover the expected squared norm and the expected
risk of the iterates from the regularity function:

d2
n(0) = E‖xn − x∗‖2 and d2

n(−1) = 2Ef(xn) .

Theorems 2.2 and 2.3 can be extended to the following estimates on the regularity functions
d2
n(β), d2

n(β) on the full interval β ∈ [−1, α] (see proofs in Appendices 2.A and 2.C respectively).
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Theorem 2.4 (noiseless, non-parametric, upper bound). Under the assumptions of Theo-
rem 2.2, we have for all n > 1,

(1) for all β ∈ [0, α], d2
n(β) 6 C

nα−β
,

(2) for all β ∈ [−1, 0), min
k=0,...,n

d2
k(β) 6 C ′

nα−β
,

where

C = αα−β

γα−β

(
‖Σ−α/2(x∗ − x0)‖2 +

Rα
R0
‖x∗ − x0‖2

)
,

C ′ = 2α−β αα

γα−β

(
‖Σ−α/2(x∗ − x0)‖2 +

Rα
R0
‖x∗ − x0‖2

)
.

Further, the tail-averaged iterate xn = 1
bn/2c+ 1

n∑
k=dn/2e

xk satisfies the similar bounds

for all β ∈ [−1, α] , d
2
n(β) 6 C ′′

nα−β
,

where C ′′ = 2α−βC if β ∈ [0, α] and C ′′ = C ′ if β ∈ [−1, 0).

Theorem 2.5 (noiseless, non-parametric, lower bound). Under the assumptions of The-
orem 2.3, for all β ∈ [−1, α], for all ε > 0, d2

n(β) is not asymptotically dominated by
1/nα−β+ε.

2.2. Noisy model and robustness to model perturbation

In this section, we describe how the results of Section 2.1 are perturbed in the case where a linear
relation b = 〈x∗, a〉 a.s. does not hold. Following the statistical learning framework, we assume a
joint law P on (a, b). We further assume that there exists a minimizer x∗ ∈ H of the population
risk f(x):

x∗ ∈ argmin
x∈H

{
f(x) = 1

2E (b− 〈x, a〉)2
}
.

This general framework encapsulates two types of perturbations of the noiseless linear model:
• (noisy model) The output b can be uncertain given a. For instance, under the noisy
linear model, b = 〈x∗, a〉 + z, where z is centered and independent of a. In this case,
f(x∗) = 1

2E[z2] = 1
2E[var (b|a)].

• (non-linear model) Even if b is deterministic given a, this dependence can be non-linear:
b = ϕ∗(a) for some non-linear function ϕ∗. Then f(x∗) is the squared L2 distance of the
best linear approximation to ϕ∗: f(x∗) = 1

2E
[
(ϕ∗(a)− 〈x∗, a〉)2

]
.

In the general framework, the optimal population risk is a combination of both sources

f(x∗) = 1
2E [var (b|a)] + 1

2E
[
(E[b|a]− 〈x∗, a〉)2

]
.

Apart from the new definition of x∗, the assumptions and definitions are the same as above. In
particular, d2

n(β) = E
〈
xn − x∗,Σ−β (xn − x∗)

〉
.

As in the first section, we first introduce a known result assuming strong convexity. For instance,
it corresponds to [Bottou et al., 2018, Theorem 4.6] in the least-squares case.
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Theorem 2.6 (noisy, parametric). We make the same assumptions as in Theorem 2.1. The
iterates xn of SGD satisfy

E‖xn − x∗‖2 6 2 (1− µγ)n ‖x0 − x∗‖2 + 4R0
µ
γf(x∗) .

The take-home message is that we get an upper bound of the form 2 (1− µγ)n ‖x0 − x∗‖2,
analog to Theorem 2.1, but with an additional constant term 4R0

µ γf(x∗). This term can be small
if f(x∗) is small, that is if the problem is close to the noiseless linear model, or if the step-size γ is
small. We now present a similar result under capacity and source conditions.

Theorem 2.7 (noisy, non-parametric). We make the same assumptions as in Theorem 2.2.
The iterates xn of SGD satisfy

min
k=0,...,n

E [f(xk)− f(x∗)] 6 2 C ′

nα+1 + 2R0γf(x∗) ,

where C ′ is the same constant as in Theorem 2.2.
Further, the tail-averaged iterate xn = 1

bn/2c+ 1

n∑
k=dn/2e

xk satisfies

E [f(xn)− f(x∗)] 6 2 C ′

nα+1 + 2R0γf(x∗) .

Here, we consider the excess risk f(xk) − f(x∗) instead of the risk f(xk) as the optimal risk
f(x∗) is no longer equal to 0. In the finite horizon setting setting, one can optimize γ as a function
of the scheduled number of steps n in order to balance both terms in the upper bound. As C ′ ∝
γ−(α+1), the optimal choice is γ ∝ n−(α+1)/(α+2) which gives a rate mink=0,...,n E [f(xk)− f(x∗)] =
O
(
n−(α+1)/(α+2)

)
.

In the theorem below, we study the SGD iterates xn in terms of the power norms d2
n(β),

β ∈ [−1, α − 1], in particular in term of the reconstruction error d2
n(0) = E‖xn − x∗‖2 if α > 1.

Note that the population risk f(x) is a quadratic with Hessian Σ, minimized at x∗, thus

E [f(xn)− f(x∗)] = 1
2E 〈xn − x∗,Σ(xn − x∗)〉 = 1

2d
2
n(−1) .

Thus the theorem below extends Theorem 2.7.

Theorem 2.8 (noisy, non-parametric). We make the same assumptions as in Theorem 2.2.
The iterates xn of SGD satisfy

(1) for all β > 0, β 6 α− 1,

d2
n(β) 6 2 C

nα−β
+ 4R1−(β+1)/α

0 R(β+1)/α
α γf(x∗) ,

(2) for all β ∈ [−1, 0), β 6 α− 1,

min
k=1,...,n

d2
k(β) 6 2 C ′

nα−β
+ 4R1−(β+1)/α

0 R(β+1)/α
α γf(x∗) ,

where C, C ′ are the same constants as in Theorem 2.4.
Further, the tail-averaged iterates xn satisfy

for all β ∈ [−1, α− 1] , d
2
n(β) 6 2 C ′′

nα−β
+ 4R1−(β+1)/α

0 R(β+1)/α
α γf(x∗) ,

where C ′′ is the same constant as in Theorem 2.4.
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This theorem is proved in Appendix 2.B. We expect the condition β 6 α − 1 to be necessary.
More precisely, when f(x∗) is positive, we expect the error xn − x∗ to diverge under the norm
‖Σ−β/2 . ‖ if β > α − 1. In particular, this would imply that the reconstruction error diverges
when α < 1. In Section 2.3.3, we provide simulations in a noisy setting for which the results above
accurately predict the qualitative behavior of stochastic gradient descent.

2.3. Applications

2.3.1. Function interpolation on [0, 1]d. We consider Example 1.7: let (u1, ϕ∗(u1)), (u2,
ϕ∗(u2)), . . . be the observations of an unknown function ϕ∗ at random points u1, u2, . . . i.i.d. uni-
form in [0, 1]d. We saw that the kernel stochastic gradient descent on functions ϕn : [0, 1]d → R,

ϕn+1 = ϕn + γ(ϕ∗(un+1)− ϕn(un+1))k(un+1, .) , (2.4)

could be seen as a least-squares stochastic gradient descent in the RKHS H, associated to the kernel
k, on the noiseless stochastic optimization problem

min.
ϕ∈H

f(ϕ) = 1
2 ‖ϕ∗ − ϕ‖

2
L2([0,1]d) = 1

2Eu∼Unif([0,1]d) (ϕ∗(u)− ϕ(u))2 . (2.5)

Moreover, we set ourselves in the Sobolev case of Example 1.8: we assume that k(u, u′) =
t(u− u′) is translation invariant and that the Fourier series of t satisfies a power-law decay:

c
(
1 + |v|2

)−s/2−d/4
6 t̂(v) 6 C

(
1 + |v|2

)−s/2−d/4
, v ∈ Zd ,

for some constants c, C > 0. In this case, the RKHS H is equivalent to Hs/2+d/4
per . We also assume

ϕ∗ ∈ Hr
per.

In this case, from Example 1.12, the problem (2.5) satisfies the source condition for α1 =
2r

s+d/2 − 1 and the capacity condition for all α2 < 1− d
s+d/2 .

From Theorems 2.2-2.3, Ef(ϕn) = 1
2 ‖ϕ∗ − ϕn‖

2
L2([0,1]d) decays to zero at a polynomial rate with

exponent

α∗ + 1 = min
( 2r
s+ d/2 , 2−

d

s+ d/2

)
. (2.6)

Note that, given a function ϕ∗, this rate is maximal when s = r, i.e., the smoothness of the kernel
coincides with the smoothness of the function, in which case α∗ = 1− d

r+d/2 . Theorems 2.2, 2.3 also
give the convergence rates in terms of the RKHS norm, which happens to be a Sobolev norm. The
more general Theorems 2.4 and 2.5 gives convergence rates in terms of a continuity of fractional
Sobolev norms, some weaker and some stronger than the RKHS norm.

In Figure 2.1, we show the decay of the L2 norm in the interpolation of a function ϕ∗ on [0, 1]
of smoothness 2 using kernels of smaller, matching and larger smoothness. In each case, the rate
predicted by (2.6) is sharp, and the convergence is indeed fastest when the smoothnesses match.

Comparison to the literature on function interpolation. The field of scattered data approx-
imation [Wendland, 2004] studies the estimation of a function from the observation of its values
at (possibly random) points. Again, most of the work focuses on the case where the observation
of the values is noisy, with notable exceptions. Delyon and Juditsky [1997] obtain the optimal
rate n−r/d (up to logarithmic factors) in estimating a function in the Sobolev space Hr (r > d/2)
from n i.i.d. observations; this outperforms the rate n−r/(r+d/2) obtained above for SGD. Their
algorithm is based on estimating the wavelet coefficients of the function and its complexity is O(n).
In general, this suggests that SGD might not achieve the non-parametric minimax rates under the
noiseless linear model.
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Figure 2.1. Interpolation of a function of smoothness r = 2 using SGD with kernels
of smoothness s = 1 (up), s = 2 (middle) and s = 3 (down). Each plot represents
one realization of the algorithm (2.4). The blue crosses represent the square L2-
norms ‖ϕn −ϕ∗‖2L2 as a function of the number of iterations n and the orange lines
represent the predicted polynomials rates C/nα∗+1, where C is chosen to match best
the empirical observations for each plot.

Other works are not directly comparable but are similar in spirit. Bauer et al. [2017] show a
minimax rate of Ω((logn/n)p/d) for estimating a p-smooth function on [0, 1]d in L∞ norm using
n independent uniformly distributed points; the minimax rate is reached with a spline estimate.
Kohler and Krzyżak [2013] show a minimax rate of Ω(1/np) for the same problem, but in the special
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case of d = 1 and estimation in L1 norm; the minimax rate is reached with some nearest neighbor
polynomial interpolation.

2.3.2. The simple gossip algorithm. In this section, we analyze the behavior of the simple
gossip algorithm on a graph G depending on the spectral dimension d of the graph. We still denote
m the number of vertices and N the number of edges. As explained in Section 1.4.2, considering
continuous or discrete time does not matter for the study of this unaccelerated method; for the
simplicity of the parallel with stochastic gradient descent, we consider discrete time. We define
xn := xTn , where (xt)t>0 is the continuous-time simple gossip algorithm started from x0 and Tn is
the activation time of edge {vn, wn}. Recall that the differences Tn+1−Tn are exponential random
variables with expectation 1/N where N is the number of edges in the graph; it is thus natural to
define the rescaled iterate number s = n/N to have s ≈ t.

In Section 1.4.1, we formulated the simple gossip algorithm as a stochastic gradient descent
on a noiseless least-squares problem. This suggests to apply the results of this chapter to gossip
algorithms. Moreover, Proposition 1.2 states that the associated least-squares problem satisfies the
source and capacity conditions for all α1, α2 < d/2, where d is the spectral dimension of the graph.
This sharp inequality prevents us from obtaining rates of the form n−d/2; it causes technicalities
leading to additional logarithmic terms. We obtain the following result.

Corollary 2.1 (of Theorem 2.2). Assume that G is of spectral dimension d with constant V ,
and denote δmax the maximal degree of the nodes in the graph. Assume further that the
initial observation x0 : V → R is the indicator of some distinguished vertex v∗ ∈ V: x0(v∗) =
1 and x0(v) = 0 if v 6= v∗. Then, for all s = n/N > 2,

(1) E
[∑
v∈V

(
xNs(v)− 1

m

)2
]
6 D(d, V, δmax) log s

sd/2
,

(2) min
06s′6s

E

1
2

∑
{v,w}∈E

(xNs′(v)− xNs′(w))2

 6 D′(d, V, δmax) log s
sd/2+1 ,

where D(d, V, δmax) = 2
log 2d

d/2+1V −1δmax and D′(d, V, δmax) = 2d/2+2

log 2 dd/2+1V −1δmax.

See Appendix 2.D for the proof. Note that as G is a finite graph, G can be of any spectral
dimension d for some potentially large constant V . However, for many families of graphs of in-
creasing size, such as the toruses TdΛ, Λ > 1, the spectral dimension constant V and the maximum
degree δmax remain bounded independently of the size of the graph, see Example 1.13. In that case,
the bounds of Corollary 2.1 are independent of the size of the graph.

Indeed, in Figure 2.2, simulations on a large circle T1
300 and on a large torus T2

40 display
polynomial decay rates, with polynomial exponents coinciding with those of the corresponding
bounds of Corollary 2.1. Note that, if pushed on a longer time scale, the simulations would have
shown the exponential convergence due to finite graph effects. While the polynomial exponents are
sharp, we expect the logarithmic factors to be an artifact of the method of proof.

In the case d = 0 and V = 1, where no assumption on the structure of the graph is made, the
fact that the minimal past energy is O(n−1) (neglecting the logarithmic factor) has been noticed
Aldous and Lanoue [2012, Proposition 4]. Aldous leaves as an open problem whether one can prove
a bound without taking a minimum; this is a special case of our Remark 2.1.

2.3.3. Linear regression with Gaussian features. In the noiseless setting of Section 2.1,
we assume a to be centered Gaussian process of covariance Σ where Σ is a bounded symmetric
semidefinite operator. As a is not bounded a.s., we need to use the weaker set of assumptions given
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Figure 2.2. Convergence rates on the circle T1
300 (up) and on the two dimensional

torus T2
40 (bottom). The convergence is measured in terms of squared `2-distance to

1
m1 (left) and sum of the squared differences along the edges (right). In orange are
the curves of the form C/sd/2 and C ′/sd/2+1 where C and C ′ are constants chosen
to match best the empirical observations for each plot.

in Remark 2.4. We thus need to compute R0 such that E
[
‖a‖2a⊗ a

]
4 R0Σ and α,Rα such that

E [〈a,Σ−αa〉 a⊗ a] 4 RαΣ. We show here that these conditions are in fact simple trace conditions
on Σ, sometimes also called capacity conditions [Pillaud-Vivien et al., 2018].

Lemma 2.1. Assume a ∼ N (0,Σ). If M is a bounded symmetric operator such that
Tr(ΣM) <∞,

E [〈a,Ma〉 a⊗ a] = 2ΣMΣ + Tr(ΣM)Σ 4
(
2‖Σ1/2MΣ1/2‖H→H + Tr(ΣM)

)
Σ .

Proof. Diagonalize Σ =
∑
i>1 λiei ⊗ ei. Then there exists independent standard Gaussian

random variables ai, i > 0 such that a =
∑
i λ

1/2
i aiei.

Let i, j > 1.

〈ei,E [〈a,Ma〉 a⊗ a] ej〉 = E [〈a,Ma〉 〈ei, a⊗ aej〉] = E
[
〈a,Ma〉λ1/2

i aiλ
1/2
j aj

]
= λ

1/2
i λ

1/2
j

∑
k,l

Mk,lλ
1/2
k λ

1/2
l E [aiajakal] .

As ai, i > 1 are centered independent random variables, the quantity E [aiajakal] is 0 in many cases.
More precisely,
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• if i 6= j, the general term of the sum in non-zero only when k = i and l = j or k = j and
l = i. This gives

〈ei,E [〈a,Ma〉 a⊗ a] ej〉 = 2Mi,jλiλj .

• if i = j, the general term of the sum is non-zero only when k = l. This gives

〈ei,E [〈a,Ma〉 a⊗ a] ei〉 = λi
∑
k

Mk,kλkE
[
a2
i a

2
k

]
= λi

∑
k 6=i

Mk,kλk + 3λ2
iMi,i

= λi
∑
k

Mk,kλk + 2λ2
iMi,i .

In both cases,

〈ei,E [〈a,Ma〉 a⊗ a] ej〉 = 2λiλjMi,j +
(∑

k

Mk,kλk

)
λi1i=j .

Note that
Tr(MΣ) =

∑
k

〈ek,ΣMek〉 =
∑
k

λkMk,k .

Thus we get
〈ei,E [〈a,Ma〉 a⊗ a] ej〉 = 2λiλjMi,j + Tr(MΣ)λi1i=j

= 2 〈ei,ΣMΣej〉+ Tr(MΣ) 〈ei,Σej〉
= 〈ei, [2ΣMΣ + Tr(ΣM)Σ] ej〉 .

�

From this lemma with M = Id, we compute R0 = 2‖Σ‖H→H + Tr(Σ), and with M = Σ−α, we
compute Rα = 2‖Σ‖1−αH→H+Tr(Σ1−α). Thus in the Gaussian case, the condition of (weak) regularity
of the features is given by Tr(Σ1−α) <∞.

Remark 2.6 (Beyond Gaussian distributions). As suggested by Juditsky et al. [2020, p.17],
note that if a satisfies the assumptions of Remark 2.4 with constants R0 and Rα, and η is an
independent random scalar with bounded first and second moment, then the scale mixture
ã = ηa also satisfies the assumptions of Remark 2.4 with the constants R̃0 = Eη4

Eη2R0 and
R̃α = Eη4

(Eη2)1+αRα. In particular, one can obtain multivariate Student distributions by taking
the scale mixture of a multivariate Gaussian distribution a and of a scalar η of the form

√
q/ζ

where ζ follows a χ2-distribution with q degrees of freedom (see [Juditsky et al., 2020] for
details). In particular, this shows that there are some heavy-tailed distributions satisfying
the assumptions of Remark 2.4.

Simulations. We present simulations in finite but large dimension d = 105, and we check that
dimension-independent bounds describe the observed behavior. We artificially generate regression
problems with different regularities by varying the decay of the eigenvalues of the covariance Σ and
varying the decay of the coefficients of x∗.

Choose an orthonormal basis e1, . . . , ed of H. We define Σ =
∑d
i=1 i

−βei⊗ei for some β > 1 and
x∗ =

∑d
i=1 i

−δei for some δ > 1/2. We now check the condition on α such that the assumptions (a)
and (b) are satisfied.

(a) 〈x∗,Σ−αx∗〉 =
∑d
i=1〈x∗, ei〉2iβα =

∑d
i=1 i

−2δ+αβ, which is bounded independently of the
dimension d if and only if

∑∞
i=1 i

−2δ+αβ <∞⇔ −2δ + αβ < −1⇔ α < 2δ−1
β .

(b) Tr(Σ1−α) =
∑d
i=1 i

−β(1−α), which is bounded independently of the dimension d if and only
if
∑∞
i=1 i

−β(1−α) <∞⇔ −β(1− α) < −1⇔ α < 1− 1/β.
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Figure 2.3. In blue +, evolution of ‖xn−x∗‖2 (left) and f(xn) (right) as functions
of n, for the problems with parameters β = 1.4, δ = 1.2 (up) and β = 3.5, δ = 1.5.
The orange lines represent the curves D/nα∗ (left) and D′/nα∗+1 (right).

Thus the corollary gives dimension-independent convergence rates for all α < α∗ = min
(
1− 1

β ,
2δ−1
β

)
.

In Figure 2.3, we show the evolution of ‖xn − x∗‖2 and f(xn) for two realizations of SGD. We
chose the step-size γ = 1/R0 = 1/(2‖Σ‖H→H+ Tr(Σ)). The two realizations represent two possible
different regimes:

• In the two upper plots, β = 1.4, δ = 1.2. The irregularity of the feature vectors is the
bottleneck for fast convergence. We have α∗ = min

(
1− 1

β ,
2δ−1
β

)
≈ min(0.29, 1) = 0.29.

• In the two lower plots, β = 3.5, δ = 1.5. The irregularity of the optimum is the bottleneck
for fast convergence. We have α∗ = min

(
1− 1

β ,
2δ−1
β

)
≈ min(0.71, 0.57) = 0.57.

We compare with the curves D/nα∗ and D′/nα∗+1 with hand-tuned constants D and D′ to fit
best the data for each plot. In both regimes, our theory is sharp in predicting the exponents in the
polynomial rates of convergence of ‖xn − x∗‖2 and f(xn).

In Figure 2.4, we show how these simulations are perturbed in the presence of additive noise. We
consider the noisy linear model b = 〈x∗, a〉+z, where a ∼ N (0,Σ) and z ∼ N (0, σ2) are independent.
Here, we consider the case d = 105, β = 1.4, δ = 1.2. In the noiseless case σ2 = 0, we have shown
that the rate of convergence was given by the polynomial exponent α∗ = min

(
1− 1

β ,
2δ−1
β

)
. These

predicted rates are represented by the orange lines in the plots. In blue, we show the results of our
simulations with some additive noise with variance σ2 = 2× 10−4. The exponent α∗ still describes
the behavior of SGD in the initial phase, but in the large n asymptotic the population risk f(xn)
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Figure 2.4. In blue +, evolution of ‖xn−x∗‖2 (left) and f(xn) (right) as functions
of n, for the problems with parameters d = 105, β = 1.4, δ = 1.2. The orange lines
represent the curves D/nα∗ (left) and D′/nα∗+1 (right).

stagnates around the order of σ2. Both of these qualitative behaviors are predicted by Theorem 2.7.
Moreover, the reconstruction error ‖xn − x∗‖2 diverges for large n.
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Appendix of Chapter 2

This appendix contains the proofs of the results of the chapter. We start by proving with the upper
bounds. In Appendix 2.A, we prove the upper bounds in the noiseless case (Theorems 2.1, 2.2
and 2.4); in Appendix 2.B, we continue with the upper bounds in the noisy case (Theorems 2.6, 2.7
and 2.8). We then continue with the lower bounds (Theorems 2.3 and 2.5) in Appendix 2.C. Finally,
we finish with the proof of Corollary 2.1 in Appendix 2.D.

2.A. Proof of Theorems 2.1, 2.2 and 2.4

We recall here the definition of the regularity functions

d2
n(β) = E

[〈
xn − x∗,Σ−β (xn − x∗)

〉]
∈ [0,∞] , β ∈ R .

2.A.1. Properties of the regularity functions. We derive here two properties of the se-
quence of regularity functions d2

n, n > 1 that are useful for the proof of Theorem 2.4. The first
one is a simple consequence of the above definition of the regularity function. The second property
is the closed recurrence relation of the regularity functions d2

n, n > 0 associated to the iterates of
SGD.

Property 1. For all n, the function d2
n is log-convex, i.e., for all β1, β2 ∈ R, for all λ ∈ [0, 1],

d2
n ((1− λ)β1 + λβ2) 6 d2

n(β1)1−λd2
n(β2)λ .

Proof. The proof is based on the following lemma, that we state clearly for another use below.

Lemma 2.2. Let x ∈ H. Then for all β1, β2 ∈ R, λ ∈ [0, 1],〈
x,Σ−[(1−λ)β1+λβ2]x

〉
6
〈
x,Σ−β1x

〉1−λ 〈
x,Σ−β2x

〉λ
.

This lemma follows from Hölder’s inequality with p = (1−λ)−1 and q = λ−1. Indeed, diagonalize
Σ =

∑
i µiei ⊗ ei. Then〈

x,Σ−[(1−λ)β1+λβ2]x
〉

=
∑
i

µ
−[(1−λ)β1+λβ2]
i 〈x, ei〉2

=
∑
i

(
µ−β1
i 〈x, ei〉2

)1−λ (
µ−β2
i 〈x, ei〉2

)λ
6

(∑
i

µ−β1
i 〈x, ei〉2

)1−λ(∑
i

µ−β2
i 〈x, ei〉2

)λ
=
〈
x,Σ−β1x

〉1−λ 〈
x,Σ−β2x

〉λ
.

We now apply this lemma to prove Property 1.

d2
n((1− λ)β1 + λβ2) = E

[〈
xn − x∗,Σ−[(1−λ)β1+λβ2] (xn − x∗)

〉]
65



6 E
[〈
xn − x∗,Σ−β1 (xn − x∗)

〉1−λ 〈
xn − x∗,Σ−β2 (xn − x∗)

〉λ]
.

Using again Hölder’s inequality, we get

d2
n((1− λ)β1 + λβ2) 6 E

[〈
xn − x∗,Σ−β1 (xn − x∗)

〉]1−λ
E
[〈
xn − x∗,Σ−β2 (xn − x∗)

〉]λ
= d2

n(β1)1−λd2
n(β2)λ .

�

Property 2. Under the assumptions of Theorem 2.4, for all n, the function d2
n is finite on

(−∞, α], and if 0 6 β 6 α,

d2
n(β) 6 d2

n−1(β)− 2γd2
n−1(β − 1) + γ2R

1−β/α
0 Rβ/αα d2

n−1(−1) .

Proof. By assumption (a), d2
0(α) = ‖Σ−α/2(x0 − x∗)‖2 is finite, i.e., there exists x ∈ H

such that x0 − x∗ = Σα/2x. Then for any β 6 α, x0 − x∗ = Σβ/2
(
Σ(α−β)/2(x0 − x∗)

)
thus

d2
0(β) = ‖Σ−β/2(x0 − x∗)‖2 is finite.

Further, assume that for some n, the function d2
n−1 is finite on (∞, α]. As we are in the noiseless

linear case b = 〈x∗, a〉, we can rewrite the stochastic gradient iteration (2.2) as
xn − x∗ = (Id−an ⊗ an)(xn−1 − x∗) .

Substituting this expression in the definition of d2
n and expanding the formula, we get

d2
n(β) = E

[〈
xn − x∗,Σ−β (xn − x∗)

〉]
= E

[〈
(Id−γan ⊗ an)(xn−1 − x∗),Σ−β(Id−γan ⊗ an)(xn−1 − x∗)

〉]
= E

[〈
xn−1 − x∗,Σ−β(xn−1 − x∗)

〉]
− 2γE

[〈
xn−1 − x∗,Σ−βan ⊗ an(xn−1 − x∗)

〉]
(2.7)

+ γ2E
[〈
xn−1 − x∗, an ⊗ anΣ−βan ⊗ an(xn−1 − x∗)

〉]
. (2.8)

Note that the first term of this sum is d2
n−1(β). Further, θn−1 is computed using only (a1, b1), . . . , (an−1, bn−1),

thus it is independent of an. It follows that

E
[〈
xn−1 − x∗,Σ−βan ⊗ an(xn−1 − x∗)

〉]
= E

[〈
xn−1 − x∗,Σ−βE [an ⊗ an] (xn−1 − x∗)

〉]
= E

[〈
xn−1 − x∗,Σ−β+1(xn−1 − x∗)

〉]
= d2

n−1(β − 1) . (2.9)
Finally,

E
[〈
xn−1 − x∗, an ⊗ anΣ−βan ⊗ an(xn−1 − x∗)

〉]
= E

[
〈xn−1 − x∗, an〉2

〈
an,Σ−βan

〉]
(2.10)

We now assume that 0 6 β 6 α. We apply Lemma 2.2 with β1 = 0, β2 = α, λ = β/α:〈
an,Σ−βan

〉
6 ‖an‖2(1−β/α) 〈an,Σ−αan〉β/α

Let Ean denote the expectation with respect to an only, while keeping a0, . . . , an−1 random. Ap-
plying Hölder’s inequality, we get

Ean
[〈
an,Σ−βan

〉
〈xn−1 − x∗, an〉2

]
6 Ean

[
‖an‖2(1−β/α) 〈an,Σ−αan〉β/α 〈xn−1 − x∗, an〉2

]
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6 Ean
[
‖an‖2 〈xn−1 − x∗, an〉2

]1−β/α
E
[〈
an,Σ−αan

〉
〈xn−1 − x∗, an〉2

]β/α
=
〈
xn−1 − x∗,E

[
‖an‖2an ⊗ an

]
(xn−1 − x∗)

〉1−β/α

×
〈
xn−1 − x∗,E

[〈
an,Σ−αan

〉
an ⊗ an

]
(xn−1 − x∗)

〉β/α
6 R1−β/α

0 Rβ/αα 〈xn−1 − x∗,Σ(xn−1 − x∗)〉 ,
where in this last step, we use the assumptions that the features a are bounded and regular, in
their weak formulation of Remark 2.4. Returning to the computation of (2.10), we get

E
[〈
xn−1 − x∗, an ⊗ anΣ−βan ⊗ an(xn−1 − x∗)

〉]
= E

[
Ean

[
〈xn−1 − x∗, an〉2

〈
an,Σ−βan

〉]]
6 R1−β/α

0 Rβ/αα E [〈xn−1 − x∗,Σ(xn−1 − x∗)〉]

= R
1−β/α
0 Rβ/αα d2

n−1(−1) . (2.11)

The result is obtained by putting together Equations (2.7)-(2.8), (2.9) and (2.11). �

2.A.2. Proof of the theorems. A remarkable feature of the proofs that follow is that only
Properties 1 and 2 of the regularity functions are used to derive the theorems. In particular, we do
not use the definition of the regularity functions d2

n in this section.
We start with a few preliminary remarks. Using the recurrence Property 2 and that γR0 6 1,

d2
k(0) 6 d2

k−1(0)− γ (2− γR0) d2
k−1(−1)

6 d2
k−1(0)− γd2

k−1(−1) . (2.12)

Proof of Theorem 2.1. As a quick aside, we prove Theorem 2.1. In this paragraph, we assume
that f is µ-strongly convex. Thus

d2
k−1(−1) = 2Ef(xk−1) > µE

[
‖xk−1 − x∗‖2

]
= µd2

k−1(0) .

Then from (2.12), we obtain

d2
k(0) 6 (1− µγ)d2

k−1(0) 6 . . . 6 (1− µγ)kd2
0(0) .

This is the statement of Theorem 2.1.
Proof of Theorem 2.3. We now return to the proof of the non-parametric theorems. We do not
assume strong convexity anymore but source and capacity conditions. From (2.12), the sequence
d2
k(0), k > 0 decreases, and,

γd2
k−1(−1) 6 d2

k−1(0)− d2
k(0) . (2.13)

By summing this inequality over k > 1, we get

γ
∞∑
k=0

d2
k(−1) 6 d2

0(0) . (2.14)

Using again the recurrence Property 2,
d2
k(α) 6 d2

k−1(α)− 2γd2
k−1(α− 1) + γ2Rαd

2
k−1(−1) (2.15)

6 d2
k−1(α) + γ2Rαd

2
k−1(−1) .

By summing for k = 1, . . . , n and using the bound (2.14),

d2
n(α) 6 d2

0(α) + γ2Rα

n−1∑
k=0

d2
k(−1)
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6 d2
0(α) + γRαd

2
0(0)

6 d2
0(α) +

Rα
R0

d2
0(0) . (2.16)

In words, the sequence d2
n(α), n > 0 is bounded by D := d2

0(α) + Rα
R0
d2

0(0). As a side note, this
proves Theorem 2.4 for β = α.

We can now give a closed recurrence relation d2
k(0), k > 0. Using the log-convexity Property 1,

d2
k−1(0) 6 d2

k−1(−1)α/(α+1)d2
k−1(α)1/(α+1) 6 d2

k−1(−1)α/(α+1)D1/(α+1) . (2.17)
Substituting in (2.13), we obtain

d2
k−1(0)− d2

k(0) > γd2
k−1(−1)

> γD−1/αd2
k−1(0)1+1/α .

This gives the wanted closed recurrence relation for d2
k(0), k > 0. It implies a decay of d2

k(0) as
follows: consider the real function f(λ) = 1

λ1/α . It is a convex function on the positive reals, with
derivative f ′(λ) = − 1

α
1

λ1+1/α . Using that a convex function is above its tangents, we obtain

f
(
d2
k(0)

)
− f

(
d2
k−1(0)

)
> f ′

(
d2
k−1(0)

) (
d2
k(0)− d2

k−1(0)
)

= − 1
α

1
d2
k−1(0)1+1/α

(
d2
k(0)− d2

k−1(0)
)

>
1
α
γD−1/α .

By summing this inequality for k = 1, . . . , n, we obtain
1

d2
n(0)1/α = f

(
d2
n(0)

)
> f

(
d2

0(0)
)

+ 1
α
γD−1/αn >

1
α
γD−1/αn .

This implies the bound of the reconstruction error of SGD in Theorem 2.2:

E
[
‖xn − x∗‖2

]
= d2

n(0) 6 C 1
nα

, C = αα

γα
D . (2.18)

The corresponding bound for tail-averaged SGD follows easily: using convexity and that d2
n(0) =

E‖xn − x∗‖2 is decreasing, we obtain

E‖xn − x∗‖2 6
1

bn/2c+ 1

n∑
k=dn/2e

E‖xk − x∗‖2 6 E‖xdn/2e − x∗‖2 6
C

dn/2eα 6
2αC
nα

.

We now turn to the study of the generalization errors. We have
1

bn/2c+ 1

n∑
k=dn/2e

d2
k(−1) 6 2

n

1
γ

n∑
k=dn/2e

(
d2
k(0)− d2

k+1(0)
)
,

where in the last step we used (2.13). Telescoping the sum, we obtain

1
bn/2c+ 1

n∑
k=dn/2e

d2
k(−1) 6 2

n

1
γ

αα

γα
D

1
dn/2eα 6 2α+1 αα

γα+1D
1

nα+1 .

We now use that

2 min
06k6n

Ef(xn) 6 min
06k6n

d2
k(−1) 6 min

dn/2e6k6n
d2
k(−1) 6 1

bn/2c+ 1

n∑
k=dn/2e

d2
k(−1) .
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Combining the two last inequalities, we obtain the claimed generalization bound for SGD. Similarly,
using the convexity of f ,

2Ef(xn) 6 2
bn/2c+ 1

n∑
k=dn/2e

Ef(xk) 6
1

bn/2c+ 1

n∑
k=dn/2e

d2
k(−1) .

We thus obtain the same generalization bound for tail-averaged SGD.

Generalization: proof of Theorem 2.4. We continue the proof of Theorem 2.2 to prove
Theorem 2.4. By the log-convexity Property 1, for all β ∈ [0, α],

d2
n(β) 6 d2

n(0)1−β/αd2
n(α)β/α .

Using Equations (2.18) and (2.16), we obtain

d2
n(β) 6 αα−β

γα−β
D

1
nα−β

.

This proves conclusion (1) of the theorem, for SGD. In the case of tail-average SGD, we have by
convexity

d
2
n(β) 6 1

bn/2c+ 1

n∑
k=dn/2e

d2
k(β) 6 1

bn/2c+ 1

n∑
k=dn/2e

αα−β

γα−β
D

1
kα−β

6
αα−β

γα−β
D

1
dn/2eα−β

6
2α−βαα−β

γα−β
D

1
nα−β

.

The bound for tail-averaged SGD and β ∈ [0, α] follows.
We now consider the case β ∈ [−1, 0). Using the log-convexity property and Hölder inequality,

we have
n∑

k=dn/2e
dk(β) 6

n∑
k=dn/2e

d2
k(−1)−βd2

k(0)1+β 6

 n∑
k=dn/2e

d2
k(−1)

−β  n∑
k=dn/2e

d2
k(0)

1+β

.

Using, again, the telescoping from bound (2.13), we obtain
n∑

k=dn/2e
dk(β) 6

(
γ−1d2

dn/2e(0)
)−β (

(bn/2c+ 1)d2
dn/2e(0)

)1+β
= γβ(bn/2c+ 1)1+βd2

dn/2e(0) .

Thus, combining with Theorem 2.2, we obtain

1
bn/2c+ 1

n∑
k=dn/2e

dk(β) 6 γβ(bn/2c+ 1)β C

dn/2eα 6 γ
β2α−β C

nα−β
.

As before, one can use this bound to derive a bound on dk(β) for the best of the past iterates, or
for the tail-averaged quantity dn(β). These are the presented bounds.

2.B. Proof of Theorems 2.6, 2.7 and 2.8

Note that in this proof, we use the strong assumptions of regularity of the feature vector a. We do
not know whether it is possible to prove the same result under the weak assumptions of Remark 2.4.

Our proof stategy is the following: we decompose the SGD iterates sequence xn as a sum of
sequences xn = νn +

∑n
l=1 η

(l)
n , where each of the auxiliary sequences is interpreted as the iterates

of some SGD iteration under a noiseless linear model. We thus apply the results of Section 2.1 to
control these auxiliary sequences and obtain the presented bound.
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Define zn = bn − 〈x∗, an〉, the error of the best linear estimator. Then Equation (2.2) can be
rewritten as

xn = xn−1 − γ〈xn−1 − x∗, an〉an + γznan .

We see this iteration as an additively perturbed version of the iteration

ν0 = x0 , νn = νn−1 − γ〈νn−1 − x∗, an〉an ,

studied in Section 2.1. To understand the effect of the additive noise, define for all l > 1,

η
(l)
l = γzlal , η(l)

n = η
(l)
n−1 − γ〈η

(l)
n−1, an〉an , n > l .

Then

xn = νn +
n∑
l=1

η(l)
n . (2.19)

Indeed, this last equation is checked by induction: x0 = ν0, and if the equation is satisfied for some
n > 0,

xn+1 = xn − γ〈xn − x∗, an+1〉an+1 + γzn+1an+1

= νn +
n∑
l=1

η(l)
n − γ

〈
νn +

n∑
l=1

η(l)
n − x∗, an+1

〉
an+1 + η

(n+1)
n+1

= [νn − γ〈νn − x∗, an+1〉an+1] +
n∑
l=1

[
η(l)
n − γ〈η(l)

n , an+1〉an+1
]

+ η
(n+1)
n+1

= νn+1 +
n∑
l=1

η
(l)
n+1 + η

(n+1)
n+1 .

We use the decomposition (2.19) to study d2
n(β). Using the triangle inequality,

d2
n(β) = E

∥∥∥∥∥Σ−β/2
(
νn +

n∑
l=1

η(l)
n − x∗

)∥∥∥∥∥
2


6 E

(∥∥∥Σ−β/2 (νn − x∗)
∥∥∥+

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
)2


6 2E
[∥∥∥Σ−β/2(νn − x∗)

∥∥∥2
]

+ 2E

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
2
 (2.20)

The first term is studied in Section 2.1. We detail the analysis of the second term. Note that

η(l)
n = (I − γan ⊗ an)η(l)

n−1 = · · · = (I − γan ⊗ an) · · · (I − γal+1 ⊗ al+1)η(l)
l

= (I − γan ⊗ an) · · · (I − γal+1 ⊗ al+1)γzlal . (2.21)

Thus if l < l′,

E
[〈
η(l)
n ,Σ−βη(l′)

n

〉]
= E

[〈
E
[
η(l)
n

∣∣∣al+1, . . . , an
]
,Σ−βη(l′)

n

〉]
= E

[〈
(I − γan ⊗ an) · · · (I − γal+1 ⊗ al+1)γE[zlal],Σ−βη(l′)

n

〉]
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Note that by definition of x∗, 0 = ∇f(x∗) = −E [(bl − 〈x∗, al〉)al] = −E [zlal] thus we obtain that
the cross products E

[〈
η

(l)
n ,Σ−βη(l′)

n

〉]
are zero. This gives

E

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
2
 =

n∑
l=1

E
[∥∥∥Σ−β/2η(l)

n

∥∥∥2
]
.

Note that from Equation (2.21), η(l)
n and η(1)

n−l+1 are equal in law. Thus

E

∥∥∥∥∥Σ−β/2
n∑
l=1

η(l)
n

∥∥∥∥∥
2
 =

n∑
l=1

E
[∥∥∥Σ−β/2η(1)

n−l+1

∥∥∥2
]

=
n∑
l=1

E
[∥∥∥Σ−β/2η(1)

l

∥∥∥2
]
. (2.22)

This last quantity is the sum of the expected squared power norms

d̃2
l (β) := E

[∥∥∥Σ−β/2η(1)
l

∥∥∥2
]

of the SGD iterates η(1)
l , l > 1 on a noiseless linear model, with initialization η(1)

1 = γz1a1. We now
divide the discussion for the parametric and the non-parametric cases.
Proof of Theorem 2.6. We assume that f is µ-strongly convex. We apply Theorem 2.1 to the
iterates νn and η(1)

l . We obtain:

E‖νn − x∗‖2 6 (1− γµ)n‖ν0 − x∗‖2 ,

E‖η(1)
l ‖

2 6 (1− γµ)l−1E‖η(1)
1 ‖

2 .

From the second equation,
n∑
l=1

E
[∥∥∥η(1)

l

∥∥∥2
]
6

(
n∑
l=1

(1− γµ)l−1
)
E
[
‖η(1)

1 ‖
2
]
6 γ2

( ∞∑
l=1

(1− γµ)l−1
)
E
[
‖z1a1‖2

]
6
γ

µ
R0E[z2

1 ] = 2γ
µ
R0f(x∗) .

Combining (2.20), (2.22) (in the case β = 0) and the last equations, we obtain

E‖xn − x∗‖2 = d2
n(0) 6 2E‖νn − x∗‖2 + 2

n∑
l=1

E
[∥∥∥η(1)

l

∥∥∥2
]

6 (1− γµ)n‖ν0 − x∗‖2 + 4γ
µ
R0f(x∗) .

This proves Theorem 2.6.
Proof of Theorems 2.7 and 2.8. We now continue in the non-parametric case. In this case,
when β = −1, the control of (2.22) is given by (2.14): with our notation here, this gives

n∑
l=1

d̃2
l (−1) 6

∞∑
l=1

d̃2
l (−1) 6 1

γ
d̃2

1(0) . (2.23)

When β = α− 1, a similar control can be obtained from (2.15) which gives:

2γd̃2
l−1(α− 1) 6 d̃2

l−1(α)− d̃2
l (α) + γ2Rαd̃

2
l−1(−1) .

By summing these inequalities for l = 2, 3, . . . , we obtain,

2γ
∞∑
l=1

d̃2
l (α− 1) 6 d̃2

1(α) + γ2Rα

∞∑
l=1

d̃2
l (−1)
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6 d̃2
1(α) +

Rα
R0

d̃2
1(0) (2.24)

Note that using the strong assumption of regularity of the feature vectors,

d̃2
1(0) = E

[
‖γz1a1‖2

]
6 γ2R0E

[
z2

1

]
= 2γ2R0f(x∗) ,

d̃2
1(α) = E

[∥∥∥Σ−α/2γz2
1X
∥∥∥2
]
6 γ2RαE

[
z2

1

]
= 2γ2Rαf(x∗) .

We use these expressions to simply further (2.23) and (2.24):
n∑
l=1

d̃2
l (−1) 6 2γR0f(x∗) ,

∞∑
l=1

d̃2
l (α− 1) 6 2γRαf(x∗) .

If β ∈ [−1, α − 1], we use the log-convexity Property 1 and Hölder’s inequality: decompose β =
(1− λ)(−1) + λ(α− 1) with λ = (β + 1)/α,

∞∑
l=1

d̃2
l (β) 6

∞∑
l=1

d̃2
l (−1)1−λd̃2

l (α− 1)λ

6

(
n∑
l=1

d̃2
l (−1)

)1−λ( ∞∑
l=1

d̃2
l (α− 1)

)λ
6 (2γR0f(x∗))1−λ (2γRαf(x∗)

)λ
= 2γR1−λ

0 Rλαf(x∗) . (2.25)

Putting back together Equations (2.20), (2.22) and (2.25), we obtain

d2
n(β) 6 2E

[∥∥∥Σ−β/2νn∥∥∥2
]

+ 4γR1−λ
0 Rλαf(x∗)

The bounds for SGD follow from the application of Theorem 2.4 to the sequence νn in order to
control the first term.

We now turn to the bounds for tail-averaged SGD. The iterate of tail-averaged SGD can be
decomposed as

xn = 1
bn/2c+ 1

n∑
k=dn/2e

xk = νn + 1
bn/2c+ 1

n∑
k=dn/2e

k∑
l=1

η
(l)
k , νn = 1

bn/2c+ 1

n∑
k=dn/2e

νk .

Thus as in (2.22), we can decompose the error

d
2
n(β) 6 2E

[∥∥∥Σ−β/2(νn − x∗)
∥∥∥2
]

+ 2E


∥∥∥∥∥∥Σ−β/2 1

bn/2c+ 1

n∑
k=dn/2e

k∑
l=1

η
(l)
k

∥∥∥∥∥∥
2
 (2.26)

Again, the first term is studied in Section 2.1. Further,

E


∥∥∥∥∥∥Σ−β/2 1

bn/2c+ 1

n∑
k=dn/2e

k∑
l=1

η
(l)
k

∥∥∥∥∥∥
2
 = 1

(bn/2c+ 1)2

n∑
k,k′=dn/2e

k∑
l=1

k′∑
l′=1

〈
η

(l)
k ,Σ

−βη
(l′)
k′

〉
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Again, the dot product is zero if l 6= l′, thus

E


∥∥∥∥∥∥Σ−β/2 1

bn/2c+ 1

n∑
k=dn/2e

k∑
l=1

η
(l)
k

∥∥∥∥∥∥
2
 = 1

(bn/2c+ 1)2

n∑
k,k′=dn/2e

min(k,k′)∑
l=1

E
〈
η

(l)
k ,Σ

−βη
(l)
k′

〉

6
1

(bn/2c+ 1)2

n∑
k,k′=dn/2e

min(k,k′)∑
l=1

1
2
(
E‖Σ−β/2η(l)

k ‖
2 + E‖Σ−β/2η(l)

k′ ‖
2
)

= 1
(bn/2c+ 1)2

n∑
l=1

n∑
k,k′=max(dn/2e,l)

1
2
(
E‖Σ−β/2η(l)

k ‖
2 + E‖Σ−β/2η(l)

k′ ‖
2
)

6
1

(bn/2c+ 1)2

n∑
l=1

n∑
k=max(dn/2e,l)

(bn/2c+ 1)E‖Σ−β/2η(l)
k ‖

2

= 1
bn/2c+ 1

n∑
l=1

n∑
k=max(dn/2e,l)

E‖Σ−β/2η(l)
k ‖

2 .

Here, we use again that η(l)
k and η(1)

k−l+1 have the same law. This gives

E


∥∥∥∥∥∥Σ−β/2 1

bn/2c+ 1

n∑
k=dn/2e

k∑
l=1

η
(l)
k

∥∥∥∥∥∥
2
 6 1

bn/2c+ 1

n∑
l=1

n∑
k=max(dn/2e,l)

E‖Σ−β/2η(1)
k−l+1‖

2 .

Note that 1 6 k− l+1 6 n and that k can take at most bn/2c+1 different values, so we can bound
this last double sum

E


∥∥∥∥∥∥Σ−β/2 1

bn/2c+ 1

n∑
k=dn/2e

k∑
l=1

η
(l)
k

∥∥∥∥∥∥
2
 6 1

bn/2c+ 1

n∑
l=1

n∑
k=max(dn/2e,l)

E‖Σ−β/2η(1)
k−l+1‖

2

6
n∑
j=1

E‖Σ−β/2η(1)
j ‖

2 .

The rest of the proof in the tail-averaged case is similar to the non-averaged case.

2.C. Proof of Theorems 2.3 and 2.5

We start in the case (a) where the optimum is irregular: x∗−x0 /∈ Σ−α/2(H). In that case, we give
a lower bound in the convergence rate by studying the expected process E[xn]. Indeed, by Jensen’s
inequality,

d2
n(β) = E

[〈
xn − x∗,Σ−β (xn − x∗)

〉]
>
〈
E[xn]− x∗,Σ−β (E[xn]− x∗)

〉
. (2.27)

The expectation E[xn] can be interpreted as the (non-stochastic) gradient descent on the population
risk f(x). Indeed, by taking the expectation of (2.2) under the noiseless linear assumption, we
obtain

E[xn]− x∗ = (Id−γΣ)(E[xn−1]− x∗) = −(Id−γΣ)n(x∗ − x0) . (2.28)
Note that as γ 6 1/R0, I − γΣ is a positive definite matrix. Indeed, by the weak definition of R0
in Remark 2.4,

R0Σ < E
[
‖a‖2a⊗ a

]
= E [(a⊗ a)(a⊗ a)] < E[a⊗ a]2 = Σ2 ,

thus R0 is larger than the operator norm of Σ. Thus γΣ 4 1
R0

Σ 4 Id.
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In the following, if α ∈ R and k ∈ N,
(α
k

)
denotes the generalized binomial coefficient:

(α
k

)
=

α(α−1)···(α−k+1)
k! . Fix now α > 0. We have the (formal) power series

(1 + µ)−α =
∞∑
k=0

(
−α
k

)
µk

(1− µ)−α =
∞∑
k=0

(
−α
k

)
(−1)kµk =

∞∑
k=0

(
α+ k − 1

k

)
µk

λ−α =
∞∑
k=0

(
α+ k − 1

k

)
(1− λ)k .

This last equality holds in [0,∞] for λ ∈ [0, 1]. In that case, all terms of the series are positive,
thus the meaning of the sum is unambiguous.

Note that 0 4 γΣ 4 Id, thus we have, formally,

γ−αΣ−α =
∞∑
k=0

(
α+ k − 1

k

)
(Id−γΣ)k .

The rigorous meaning of this equality is that for all x ∈ H,

γ−α〈x,Σ−αx〉 =
∞∑
k=0

(
α+ k − 1

k

)
〈x, (Id−γΣ)kx〉 .

Both terms of the equality can be infinite: again, here we are using the convention that 〈x,Σ−αx〉 =
∞⇔ x /∈ Σα/2(H). In particular, take α = α− β and x = Σ−β/2(x∗ − x0):

∞ = γβ−α
〈
x∗ − x0,Σ−α(x∗ − x0)

〉
=
∞∑
k=0

(
α− β + k − 1

k

)〈
x∗ − x0,Σ−β(Id−γΣ)k(x∗ − x0)

〉

=
∞∑
n=0

[(
α− β + 2n− 1

2n

)〈
x∗ − x0,Σ−β(Id−γΣ)2n(x∗ − x0)

〉
+
(
α− β + 2n

2n+ 1

)〈
x∗ − x0,Σ−β(Id−γΣ)2n+1(x∗ − x0)

〉 ]
.

Using that
(α−β+2n−1

2n
)
6
(α−β+2n

2n+1
)
and〈

x∗ − x0,Σ−β(Id−γΣ)2n(x∗ − x0)
〉
>
〈
x∗ − x0,Σ−β(Id−γΣ)2n+1(x∗ − x0)

〉
and then (2.28), (2.27), we obtain

∞ 6 2
∞∑
n=0

(
α− β + 2n

2n+ 1

)〈
x∗ − x0,Σ−β(Id−γΣ)2n(x∗ − x0)

〉
= 2

∞∑
n=0

(
α− β + 2n

2n+ 1

)〈
E[xn]− x∗,Σ−β(E[xn]− x∗)

〉
6 2

∞∑
n=0

(
α− β + 2n

2n+ 1

)
d2
n(β) .
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From [Olver et al., 2010, Equation 5.8.1], we have the formula Γ(z) = limk→∞
k!kz

z(z+1)···(z+k) where
Γ denotes the Gamma function. Thus as n→∞(

α− β + 2n
2n+ 1

)
= (α− β)(α− β + 1) · · · (α− β + 2n)

(2n+ 1)(2n)! ∼ (2n)α−β

(2n+ 1)Γ(α− β) .

As a consequence, the series
∑
n n

α−β−1d2
n(β) diverges. The criteria for the convergence of Riemann

series implies that d2
n(β) can not be asymptotically dominated by 1/nα−β+ε for ε > 0.

We now turn to the case (b) where the features are irregular: with positive probability p > 0,
a /∈ Σα/2(H) and 〈a, x∗−x0〉 6= 0. We can assume that we are not in case (a): x∗−x0 ∈ Σ−α/2(H).
Then with probability p, the second iterate x1 = x0 − γ〈a1, x∗ − x0〉a1 is irregular, i.e., x1 /∈
Σα/2(H). Thus we can apply case (a) to the iteration started from x1. This shows that d2

n(β) is
not asymptotically dominated by 1/nα−β+ε, for ε > 0.

2.D. Proof of Corollary 2.1

Recall from Section 1.4.1 that the simple gossip algorithm can be seen as a stochastic gradient
descent, with step-size γ = 1/2, on the least-squares risk

f(x) = 1
2N

∑
{v,w}∈E

〈ev − ew, x〉2 ,

which is of the form (2.2) for b = 0 and a = ev − ew, for {ev, ew} a uniformly sampled edge in
the graph. From this, we compute ‖a‖2 = 2 thus we can take R0 = 2. The minimum x∗ = x̄1 is
the unique minimum of f(x) in the set x0 + 1⊥. Thus the simple gossip algorithm converges to
this point. Note that γ = 1/R0 and thus Theorem 2.2 applies. This justifies our special care in
tolerating step-sizes as large as 1/R0 in our study.

Under the assumptions of this corollary, Proposition 1.2 provides the source and capacity con-
ditions of the least-squares problem; we repeat the result here for the convenience of the reader:

(1) (source condition) for any α < d/2, the optimum has regularity α, and

‖Σ−α/2(x∗ − x0)‖2 6 NαV −1δd/2−αmax
d

d− 2α ,

where again N denotes then number of edges in the graph, and
(2) (capacity condition) for any α < d/2, the optimum has regularity α with associated

constant

Rα = 2NαV −1δd/2−αmax
d

d− 2α .

Theorem 2.2 gives

E
[
‖xn − x∗‖2

]
6
αα

γα

(
‖Σ−α/2(x∗ − x0)‖2 + Rα

R0
‖x∗ − x0‖2

) 1
nα

6
(d/2)α

(1/2)α
(
NαV −1δd/2−αmax

d

d− 2α +NαV −1δd/2−αmax
d

d− 2α‖x∗ − x0‖2
) 1
nα

Note that ‖x∗ − x0‖22 6 1 and recall the scaling s = n/N :

E
[
‖xn − x∗‖2

]
6 dd/2+1V −1δd/2−αmax

1
d/2− α

1
sα
.

This bound is valid for all α < d
2 . Choose α = d

2 −
log 2
log s .

E
[
‖xn − x∗‖2

]
6 dd/2+1V −1δlog 2/ log s

max
log s
log 2

2
sd/2
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As we assume s > 2, δlog 2/ log s
max 6 δmax. Thus we obtain conclusion 1.

The proof of 2 is similar. Theorem 2.2 gives

min
06k6n

E

1
2

∑
{v,w}∈E

(xk(v)− xk(w))2

 = N min
06k6n

E
[1

2 〈xk − x∗,Σ(xk − x∗)〉
]

6 2α αα

γα+1

(
‖Σ−α/2(x∗ − x0)‖2 + Rα

R0
‖x∗ − x0‖2

) 1
nα

6 2α+1dαV −1δd/2−αmax
d

d/2− α
1

sα+1 .

Taking again α = d
2 −

1
2 log s and s > 2,

min
06k6n

E

1
2

∑
{v,w}∈E

(xk(v)− xk(w))2

 6 2d/2+1dd/2V −1δmax
d log s
log 2

2
sd/2+1

This gives conclusion 2 of the corollary.
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CHAPTER 3

A Continuized View on Nesterov Acceleration

We remind that the majority of the contents of this chapter are available in the preprint (under
review):

M. Even, R. Berthier, F. Bach, N. Flammarion, P. Gaillard, H. Hendrikx, L. Mas-
soulié, A. Taylor. A Continuized View on Nesterov Acceleration for Stochastic
Gradient Descent and Randomized Gossip, 2021, preprint.

In this chapter, we assume that f : H → R is a convex and differentiable function. We assume
that f is minimized at a point x∗ ∈ H. We assume throughout the paper that f is L-smooth, and
sometimes assume that f is µ-strongly convex for some µ > 0. For the problem of minimizing f ,
gradient descent is well-known to achieve a rate f(xk) − f(x∗) = O(k−1) in the smooth case
(Theorem 1.1), and a rate f(xk)− f(x∗) = O((1− µ/L)k) in the smooth and strongly convex case
(Theorem 1.3). In both cases, Nesterov introduced an alternative method with essentially the same
running-time complexity, that achieves faster rates: it converges at the rate O(k−2) in the smooth
convex case and at the rate O((1 −

√
µ/L)k) in the smooth and strongly convex case [Nesterov,

2003]. These rates are then optimal among all methods that access gradients and linearly combine
them [Nesterov, 2003, Nemirovskij and Yudin, 1983].

Nesterov acceleration introduces several sequences of iterates—two or three, depending on the
formulations—and relies on a clever blend of gradient steps and mixing steps between the iterates.
Many works contributed to interpret and motivate the precise structure of the iteration that lead
to the success of the method, see for instance [Bubeck et al., 2015, Flammarion and Bach, 2015,
Arjevani et al., 2016, Kim and Fessler, 2016, Allen-Zhu and Orecchia, 2017]. A large number of
these works found useful to study continuous time equivalents of Nesterov acceleration, obtained
by taking the limit when step-sizes vanish, or from a variational framework. The continuous time
index t of the limit allowed to use differential calculus to study the convergence of these equivalents.
For examples of studies that use continuous time, see [Su et al., 2014, Krichene et al., 2015, Wilson
et al., 2016, Wibisono et al., 2016, Betancourt et al., 2018, Diakonikolas and Orecchia, 2019, Shi
et al., 2018, 2019, Attouch et al., 2018, 2019, Zhang et al., 2018, Muehlebach and Jordan, 2019].

In this paper, we propose another way to obtain a continuous time equivalent of Nesterov
acceleration, that we call the continuized version of Nesterov acceleration, that does not require
vanishing step-sizes. It is built by considering two variables xt, zt ∈ H, t ∈ R>0, that continuously
mix following a linear ordinary differential equation (ODE), and that take gradient steps at random
times T1, T2, T3, . . . . Thus, in this modeling, mixing and gradient steps alternate randomly.

Thanks to the continuous index t and some stochastic calculus, one can differentiate averaged
quantities (expectations) with respect to t. In particular, this leads to simple analytical expressions
for the optimal parameters as functions of t.

The discretization x̃k = xTk , z̃k = zTk , k ∈ N, of the continuized process can be computed
directly and exactly: the result is a recursion of the same form as Nesterov iteration, but with
randomized parameters, that performs similarly to Nesterov original deterministic version both in
theory and in simulations.
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The continuized framework can be adapted to various settings and extensions of Nesterov
acceleration: we study how the continuized acceleration behaves in the presence of additive and
multiplicative noise in the gradients. In the multiplicative noise setting, our acceleration satisfies
a convergence rate similar to the acceleration of Jain et al. [2018]; it depends on the statistical
condition number of the problem. The two accelerations are not directly comparable as we work in
a continuized setting and only deal with pure multiplicative noise, but our analysis is much simpler,
as it closely mimics that of Nesterov acceleration.

The continuized modeling is natural in asynchronous parallel computing where gradient steps
arrive at random times. But more importantly, there are situations where the continuized version
of Nesterov acceleration can be practically implemented while the original acceleration can not.
In distributed settings for instance, the total number k for gradient steps taken in the network
may not be known to a particular node; the advantage of the continuized acceleration is that is
requires to know only the time t and not k. As an illustration, we use the parallel of Section 1.4 to
derive the acceleration of asynchronous gossip algorithms of Even et al. [2020] from the continuized
framework. Other acceleration schemes [Hendrikx et al., 2019, Loizou et al., 2019] were practically
limited by the requirement of additional synchronizations between nodes, such as the knowledge of
a global iteration counter. Their accelerated gossip algorithm recovers the same accelerated rates,
and only requires the knowledge of a common continuous time.

To sum up, the continuized acceleration should be seen as a close approximation to Nesterov
acceleration, that features both an insightful and convenient expression as a continuous time process
and a direct implementation as a discrete iteration. We thus hope to contribute to the understanding
of Nesterov acceleration. In practice, the continuized framework is relevant for handling asynchrony
in decentralized optimization, where agents of a network can not share a global iteration counter,
preventing accelerated decentralized and asynchronous methods.

Notations. The index k always denotes a non-negative integer, while indices t, s always denote
non-negative reals.

Outline of this chapter. In Section 3.1, we recall standard results on gradient descent and
Nesterov acceleration. In Section 3.2, we introduce a continuized variant of Nesterov acceleration.
In Section 3.3, we show that discretizing the continuized acceleration yields an iterative method
similar to that of Nesterov but with random parameters. In Section 3.4, we study continuized
Nesterov acceleration under pure-multiplicative noise. We finally present accelerated asynchronous
algorithms for the gossip problem in Section 3.5.

3.1. Reminders on Nesterov acceleration

For the sake of comparison, let us first recall the classical Nesterov acceleration. To improve the con-
vergence rate of gradient descent, Nesterov introduced iterations of three sequences, parameterized
by τk, τ ′k, γk, γ′k, k > 0, of the form

yk = xk + τk(zk − xk) , (3.1)
xk+1 = yk − γk∇f(yk) , (3.2)
zk+1 = zk + τ ′k(yk − zk)− γ′k∇f(yk) . (3.3)

Depending on whether the function f is known to be (1) convex, or (2) strongly convex with a
known strong convexity parameter, Nesterov provided a set of parameter choices for achieving
acceleration.
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Theorem 3.1 (Convergence of accelerated gradient descent). Nesterov accelerated scheme
satisfies:

(1) Choose the parameters τk = 1 − Ak
Ak+1

, τ ′k = 0, γk = 1
L , γ

′
k = Ak+1−Ak

L , k > 0, where
the sequence Ak, k > 0, is defined by the recurrence relation

A0 = 0 , Ak+1 = Ak + 1
2(1 +

√
4Ak + 1) .

Then

f(xk)− f(x∗) 6
2L‖x0 − x∗‖2

k2 .

(2) Assume further that f is µ-strongly convex, µ > 0. Choose the constant parameters
τk ≡

√
µ/L

1+
√
µ/L

, τ ′k ≡
√

µ
L , γk ≡

1
L , γ

′
k ≡

1√
µL

, k > 0. Then

f(xk)− f(x∗) 6
(
f(x0)− f(x∗) + µ

2 ‖z0 − x∗‖2
)(

1−
√
µ

L

)k
.

This result can be found as is in d’Aspremont et al. [2021, Sections 4.4.1 and 4.5.3]. From
a high-level perspective, Nesterov acceleration iterates over several variables, alternating between
gradient steps (always with respect to the gradient at yk) and mixing steps, where the running
value of a variable is replaced by a linear combination of the other variables. However, the precise
way gradient and mixing steps are coupled is rather mysterious, and the success of the proof of
Theorem 3.1 relies heavily on the detailed structure of the iterations. In the next section, we try
to gain perspective on this structure by developing a continuized version of the acceleration.

3.2. Continuized version of Nesterov acceleration

This paper uses several mathematical notions related to random processes. The following sections
expose the results from heuristic considerations of those notions, rigorously defined in Appendix 3.A.

We argue that the accelerated iteration becomes more natural when considering two variables
xt, zt indexed by a continuous time t > 0, that are continuously mixing and that take gradient
steps at random times. More precisely, let T1, T2, T3, . . . > 0 be random times such that T1, T2 −
T1, T3 − T2, . . . are independent identically distributed (i.i.d.), of exponential law with rate 1 (any
constant rate would do, we choose 1 to make the comparison with discrete time k straightforward).
By convention, we choose that our stochastic processes t 7→ xt, t 7→ zt are càdlàg almost surely,
i.e., right continuous with well-defined left-limits xt−, zt− (Definition 3.5 in Appendix 3.A). Our
dynamics are parameterized by functions γt, γ′t, ηt, η′t, t > 0. At random times T1, T2, . . . , our
sequences take gradient steps

xTk = xTk− − γTk∇f(xTk−) , (3.4)
zTk = zTk− − γ

′
Tk
∇f(xTk−) . (3.5)

Because of the memoryless property of the exponential distribution, in a infinitesimal time interval
[t, t+dt], the variables take gradients steps with probability dt, independently of the past. Between
these random times, the variables mix through a linear, translation-invariant, ordinary differential
equation (ODE)

dxt = ηt(zt − xt)dt , (3.6)
dzt = η′t(xt − zt)dt . (3.7)
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Following the notation of stochastic calculus, we can write the process more compactly in terms of
the Poisson point measure dN(t) =

∑
k>1 δTk(dt), which has as intensity the Lebesgue measure dt,

dxt = ηt(zt − xt)dt− γt∇f(xt)dN(t) , (3.8)
dzt = η′t(xt − zt)dt− γ′t∇f(xt)dN(t) . (3.9)

Before giving convergence guarantees for such processes, let us digress quickly on why we can
expect an iteration of this form to be mathematically appealing.

First, from a Markov chain indexed by a discrete time index k, one can associate the so-called
continuized Markov chain, indexed by a continuous time t, that makes transition with the same
Markov kernel, but at random times, with independent exponential time intervals [Aldous and
Fill, 2002]. Following this terminology, we refer to our acceleration (3.8)-(3.9) as the continuized
acceleration. The continuized Markov chain is appreciated for its continuous time parameter t,
while keeping many properties of the original Markov chain; similarly the continuized acceleration
is arguably simpler to analyze, while performing similarly to Nesterov acceleration.

Second, it can also be compared with coordinate gradient descent methods, that are easier to
analyze when coordinates are selected randomly rather than in an ordered way [Wright, 2015].
Similarly, the continuized acceleration is simpler to analyze because the gradient steps (3.4)-(3.5)
and the mixing steps (3.6)-(3.7) alternate randomly, due to the randomness of Tk, k > 0.

In analogy with Theorem 3.1, we give choices of parameters that lead to accelerated convergence
rates, in the convex case (1) and in the strongly convex case (2). Convergence is analyzed as a
function of t. As dN(t) is a Poisson point process with rate 1, t is the expected number of gradient
steps done by the algorithm. Thus t is analoguous to k in Theorem 3.1. In the theorem below,
E denotes the expectation with respect to the Poisson point process dN(t), the only source of
randomness.

Theorem 3.2 (Convergence of continuized Nesterov acceleration). The continuized Nes-
terov acceleration satisfies the following two points.

(1) Choose the parameters ηt = 2
t , η
′
t = 0, γt = 1

L , γ
′
t = t

2L . Then

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
.

(2) Assume further that f is µ-strongly convex, µ > 0. Choose the constant parameters
ηt = η′t ≡

√
µ
L , γt ≡

1
L , γ

′
t ≡ 1√

µL
. Then

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) + µ

2 ‖z0 − x∗‖2
)

exp
(
−
√
µ

L
t

)
.

We give an elementary sketch of proof in Appendix 3.B.1 and a complete proof in Appen-
dix 3.B.2. Many authors have proposed continuous-time versions of Nesterov acceleration using
differential calculus, see the numerous references in the introduction. For instance, in Su et al.
[2014], an ODE is obtained from Nesterov acceleration by taking the joint asymptotic where the
step-sizes vanish and the number of iterates is rescaled. The resulting ODE must be discretized to
be implemented; choosing the right discretization is not straightforward as it introduces stability
and approximation errors that must be controlled [Zhang et al., 2018, Shi et al., 2019, Sanz-Serna
and Zygalakis, 2020].

On the contrary, our continuous time process (3.8)-(3.9) does not correspond to a limit where
the step-sizes vanish. However, in Appendix 3.D, we check that the random continuized acceleration
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has the same deterministic ODE scaling limit as Nesterov acceleration. This sanity check empha-
sizes that the continuized acceleration is fundamentally different from previous continuous-time
equivalents.

3.3. Discrete implementation of the continuized acceleration with random
parameters

In this section, we show that the continuized acceleration can be implemented exactly as a discrete
algorithm. This contrasts with the discretization of ODEs that introduces discretization errors;
here, we compute exactly

x̃k := xTk , ỹk := xTk+1− , z̃k := zTk ,

with the convention that T0 = 0. The three sequences x̃k, ỹk, z̃k, k > 0, satisfy a recurrence relation
of the same structure as Nesterov acceleration, but with random weights. The resulting randomized
discrete algorithm satisfies performance guarantees similar to those of Nesterov acceleration.

Theorem 3.3 (Discrete version of continuized acceleration). For any stochastic process of
the form (3.8)-(3.9), we have

ỹk = x̃k + τk(z̃k − x̃k) , (3.10)
x̃k+1 = ỹk − γ̃k∇f(ỹk) , (3.11)
z̃k+1 = z̃k + τ ′k(ỹk − z̃k)− γ̃′k∇f(ỹk) , (3.12)

for some random parameters τk, τ ′k, γ̃k, γ̃′k (that are functions of Tk, Tk+1, ηt, η
′
t, γt, γ

′
t).

(1) For the parameters of Theorem 3.2.(1), τk = 1 −
(

Tk
Tk+1

)2
, τ ′k = 0, γ̃k = 1

L , and
γ̃′k = Tk

2L . Then

E
[
T 2
k (f(x̃k)− f(x∗))

]
6 2L‖z0 − x∗‖2 .

(2) For the parameters of Theorem 3.2.(2), τk = 1
2

(
1− exp

(
−2
√

µ
L(Tk+1 − Tk)

))
,

τ ′k = tanh
(√

µ
L(Tk+1 − Tk)

)
, γ̃k = 1

L , and γ̃
′
k = 1√

µL
. Then

E
[
exp

(√
µ

L
Tk

)
(f(x̃k)− f(x∗))

]
6 f(x0)− f(x∗) + µ

2 ‖z0 − x∗‖2 .

The law of Tk is well known: it is the sum of k i.i.d. random variables of exponential law
with rate 1; this is called an Erlang or Gamma distribution with shape parameter k and rate 1.
Alternatively, Tk/2 follows a chi-square distribution with 2k degrees of freedom. One can use well-
known properties of this law, such as its concentration around its expectation ETk = k, to derive
corollaries of the bounds above. The performance guarantees are proved in Appendix 3.B.2, and
the formula for the discretization is studied in Appendix 3.C.

In Figure 3.1, we compare this continuized Nesterov acceleration (3.10)-(3.12) with the classical
Nesterov acceleration (3.1)-(3.3) and gradient descent. In the strongly convex case (right), we run
the algorithms with the parameters of Theorem 3.1.(2) and 3.3.(2) on the function

f(x1, x2, x3) = µ

2 (x1 − 1)2 + 3µ
2 (x2 − 1)2 + L

2 (x3 − 1)2 ,
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Figure 3.1. Comparison between gradient descent, Nesterov acceleration, and the
continuized version of Nesterov acceleration, on a convex function (left plots) and
a strongly convex function (right plots). For the continuized acceleration, which is
randomized, the results shown in the above plots correspond to a single run. In
the plots below, the thick line represents the average performance over N = 1000
runs of the continuized acceleration, while the thin lines represent the 5% and 95%
quantiles.

with µ = 10−2 and L = 1. In the convex case, we run the algorithms with the parameters of
Theorem 3.1.(1) and 3.3.(1) on the function

f(x1, . . . , x100) = 1
2

100∑
i=1

1
i2

(
xi −

1
i

)2
,

which has negligible strong convexity parameter. All iterations were initialized from x0 = z0 = 0.

3.4. Continuized Nesterov acceleration of stochastic gradient descent

We now investigate the design of continuized accelerations of stochastic gradient descent. We
assume that we do not have direct access to the gradient ∇f(x) but to a random estimate g(x, ξ),
where ξ ∈ Ξ is random of law P. In the continuized framework, the randomness of the stochastic
gradient and its time mix in a particularly convenient way. For similar reasons, Latz studied
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stochastic gradient descent as a gradient flow on a random function that is regenerated at a Poisson
rate [Latz, 2021]. However, this approach has the same shortcomings as the other approaches based
on gradient flows: the subsequent discretization introduces non-trivial errors. We avoid this problem
here.

We keep the algorithms of the same form, replacing gradients by stochastic gradients. Let
ξ1, ξ2, . . . be i.i.d. random variables of law P. We take stochastic gradient steps at the random
times T1, T2, . . . ,

xTk = xTk− − γTkg(xTk−, ξk) ,
zTk = zTk− − γ

′
Tk
g(xTk−, ξk) .

Between these random times, the variables mix through the same ODE

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt .

This can be written more compactly in terms of the Poisson point measure dN(t, ξ) =
∑
k>1 δ(Tk,ξk)(dt, dξ)

on R>0 × Ξ, which has as intensity dt⊗ P,

dxt = ηt(zt − xt)dt− γt
∫

Ξ
g(xt, ξ)dN(t, ξ) , (3.13)

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ
g(xt, ξ)dN(t, ξ) . (3.14)

Here, the discussion depends on the properties satisfied by the stochastic gradients g(x, ξ). First, in
Section 3.4.1, we study the so-called additive noise case. We show that the continuized acceleration
satisfies perturbed convergence rates with the same choices of parameters as in Theorem 3.2. We
thus show some robustness of the above acceleration to additive noise. Second, in Section 3.4.2,
we focus on the noiseless case, or pure multiplicative noise case, as it is crucial for the study of
asynchronous gossip that follows. In this setting, parameters need to be chosen differently for our
proof technique to work. A continuized acceleration is still possible, depending on the statistical
condition number.

3.4.1. Robustness of the continuized Nesterov acceleration to additive noise. In this
section, we study the continuized acceleration (3.13)-(3.14) under stochastic gradients. We assume
that our gradient estimates are unbiased, i.e.,

∀x ∈ H , Eξg(x, ξ) = ∇f(x) , (3.15)

and has a uniformly bounded variance, i.e., there exists σ2 > 0 such that

∀x ∈ H , Eξ ‖g(x, ξ)−∇f(x)‖2 6 σ2 . (3.16)

These assumptions typically hold in the additive noise model of Example 1.1, where g(x, ξ) =
∇f(x) + ξ, and ξ ∈ H satisfies Eξ = 0, E‖ξ‖2 6 σ2.

We should emphasize that similar studies of Nesterov acceleration under additive noise has
been done [Lan, 2012, Hu et al., 2009, Xiao, 2010, Devolder, 2011, Cohen et al., 2018, Aybat et al.,
2020].

Theorem 3.4 (Continuized acceleration with additive noise). Assume that the stochastic
gradients are unbiased (3.15) and have a variance uniformly bounded by σ2 (3.16). Then
the continuized acceleration (3.13)-(3.14) satisfies the following.
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Figure 3.2. Effect of additive noise on gradient descent, Nesterov acceleration, and
the continuized version of Nesterov acceleration, on a convex function (left) and a
strongly convex function (right). All algorithms are started from the optimum x∗.
The results shown in the above plots correspond to a single run. In the plots
below, the thick line represents the average performance over N = 100 runs of each
algorithm, while the thin lines represent the 5% and 95% quantiles.

(1) For the parameters of Theorem 3.2.(1),

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
+ σ2 t

3L .

(2) Assume further that f is µ-strongly convex, µ > 0. For the parameters of Theo-
rem 3.2.(2),

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) + µ

2 ‖z0 − x∗‖2
)

exp
(
−
√
µ

L
t

)
+ σ2 1√

µL
.

This theorem is proved in Appendix 3.B.3.
In the above bounds, L is a parameter of the algorithm, that can be taken greater than the best

known smoothness constant of the function f . Increasing L reduces the step-sizes of the algorithm
and performs some variance reduction. If the bound σ2 on the variance is known, one can choose
L optimizing the above bounds in order to obtain algorithms that adapt to additive noise.

84



In Figure 3.2, we run the same simulations as in Figure 3.1, with two differences: (1) we add
isotropic Gaussian noise on the gradients, with covariance 10−4 Id, and (2) we initialized algorithms
at the optimum, i.e., x0 = z0 = x∗. Initializing at the optimum enables to isolate the effect of
the additive noise only. These simulations confirm Theorem 3.4: the noise term is (sub-)linearly
increasing in the convex case and constant in the strongly convex case.

Note that similarly to Theorem 3.3, one could obtain convergence bounds for the discrete
implementation under the presence of additive noise.

3.4.2. Continuized acceleration for noiseless stochastic optimization. We now set our-
selves in the least-squares supervised learning setting of Example 1.5:

∀x ∈ H, f(x) = E(a,b)∼P

[1
2 (b− 〈x, a〉)2

]
, (3.17)

where ξ = (a, b) ∈ H × R is random of law P. Our stochastic first order oracle is the gradient of
one realization of the expectation, namely,

g(x, ξ) = −(b− 〈x, a〉)a , ξ = (a, b) .
As motivated by Section 1.4.3, we investigate noiseless—or purely multiplicative—stochastic gra-
dients, in the sense that almost surely, for ξ = (a, b) ∼ P:

b = 〈x∗, a〉, so that g(x∗, ξ) = 0 a.s. (3.18)
Let Σ = E[aa>] be the Hessian of f . For x ∈ H, denote ‖x‖2Σ−1 = 〈x,Σ−1x〉. Let R0 be the smallest
positive real number such that:

E
[
‖a‖2aa>

]
4 R0Σ . (3.19)

Further, similarly to Jain et al. [2018], we define the statistical condition number of the problem
as the smallest κ̃ > 0 such that:

E
[
‖a‖2Σ−1aa

>
]
4 κ̃Σ . (3.20)

Note that this is also the constant Rα for α = 1 of the previous chapter, in its weak definition of
Remark 2.4.

Theorem 3.5 (Continuized acceleration with pure multiplicative noise). Assume that (3.18),
(3.19) and (3.20) hold true. Then the continuized acceleration satisfies the following.

(1) Choose the parameters ηt = 2
t , η
′
t = 0, γt = 1

R0
, γ′t = t

2R0κ̃
. Then

E‖xt − x∗‖2 6
2R0κ̃‖z0 − x∗‖2Σ−1

t2
.

(2) Assume further that f is µ-strongly convex, i.e., all eigenvalues of Σ are greater or
equal to µ, where µ > 0. The condition number of f is then defined as κ = R0/µ.
For the parameters ηt = η′t = 1√

κκ̃
, γt = 1

R0
and γ′t = 1

R0

√
κ
κ̃ , we have:

E‖xt − x∗‖2 6
(
‖x0 − x∗‖2 + µ‖z0 − x∗‖2Σ−1

)
exp

(
− t√

κκ̃

)
.

This theorem is proved in Appendix 3.B.4. In the strongly convex case, acceleration brings
benefits similar to those of Jain et al. [2018] with classical discrete iterates: while stochastic gradient
descent with step-size 1/R0 is easily shown to achieve an exponential rate of convergence 1/κ, the
acceleration enjoys a rate of convergence of 1/

√
κκ̃. Note that from the definitions, κ̃ 6 κ, thus the

acceleration performs as least as well as the naive algorithm. However, depending on the distribution
of a, the improvement can be significant, or null. We refer the reader to the rich discussion of Jain
et al. [2018] that provides insights on the interpretation of κ̃ and on the possibility to accelerate.

85



Below, we give a complementary perspective on the statistical condition number by translating it
in terms of effective resistances in the case of gossip algorithms.

Compared to Jain et al. [2018], even though our assumptions are more restrictive, our acceler-
ation analysis is much simpler as it relies on a standard Lyapunov function, similar to that of the
continuized acceleration (Theorem 3.2).

3.5. Accelerating asynchronous gossip

The continuized framework is useful to design accelerated decentralized algorithms requiring syn-
chronized clocks, but no synchronization of the communications. In this section, we illustrate this
statement in the simple case of gossip algorithms. From Section 1.4, the gossip problem corresponds
to a noiseless stochastic optimization problem, this section is thus a special case of Section 3.4.2.
However, it was directly derived earlier by Even et al. [2020].

Recall that the gossip problem corresponds to a least-squares problem on the function

f(x) = 1
2N

∑
{v,w}∈E

〈ev − ew, x〉2 = 1
2N 〈x− x∗,L(x− x∗)〉 ,

where x∗ = x̄1 and L =
∑
{v,w}∈E(ev − ew)(ev − ew)> is the Laplacian of the graph. This is a

special case of (3.17), with a{v,w} = ev − ew and b{v,w} = 0. In this parallel, communications
correspond to stochastic gradient steps, that are generated by a Poisson point measure dN(t, e) =∑
k≥1 δ(Tk,{vk,wk}) with intensity measure dt ⊗ Unif(E). Note that in Section 1.3, we took the

counting measure instead of the uniform measure on E . This only has the effect of a time rescaling;
we prefer to have a probability measure on E to fit the framework of the previous section.

The parameters of the previous section can naturally be interpreted as graph quantities here.
As ‖a‖2 = ‖ev − ew‖2 = 2 a.s., we have R0 = 2. For simplicity, we assume that f is µ-strongly
convex for some µ > 0, which corresponds to a spectral gap assumption on the Laplacian L (as
in Section 1.5.1). Finally, Reff(v, w) = (ev − ew)>L−1(ev − ew) is a natural quantity called the
effective resistance of the graph between v and w [Ellens et al., 2011]. It corresponds to the
following intuition: imagine that the graph G is an electrical circuit, with unit resistance on each of
the edges. Then the effective resistance Reff(v, w) is the potential difference between v and w, when
a unit current is pushed in the circuit at v and pulled out of the circuit at w. Roughly speaking, it
measures if it is easy to go from v to w in the graph G. Finally, we take κ̃ = N max{v,w}∈E Reff(v, w)
to be the maximal effective resistance along edges of the graph (up to a N factor).

The algorithm of Theorem 3.5.(2) gives the following gossip algorithm. Take z0 = x0. Upon
activation of edge {vk, wk} at time Tk,

xTk(vk) = xTk(wk) = xTk−(vk) + xTk−(wk)
2 ,

zTk(vk) = zTk−(vk) + 1√
2µκ̃(xTk−(wk)− xTk−(vk)) ,

zTk(wk) = zTk−(wk) + 1√
2µκ̃(xTk−(vk)− xTk−(wk)) .

Between these updates, xt(v) and zt(v) locally mix at all nodes v ∈ V, according to the coupled
ODE:

dxt(v) =
√
µ

2κ̃(zt(v)− xt(v))dt,

dzt(v) =
√
µ

2κ̃(xt(v)− zt(v))dt.
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This algorithm is asynchronous in the sense that it does not require global synchronous operations:
the mixing of local variables does not require any synchronization since parameter t ∈ R>0 is
available at all nodes independently from the number of past updates, while a local pairwise update
between adjacent nodes v and w only requires a local synchronization.

Theorem 3.6 (Accelerated Randomized Gossip). Let (xt(v))v∈V,t≥0 be generated with ac-
celerated randomized gossip. For any t ∈ R≥0:∑

v∈V
E
[(
xt(v)− x̄

)2]
6 2

(∑
v∈V

(
x0(v)− x̄

)2) exp
(
−
√
µ

2κ̃ t
)
.

Let us quickly illustrate why this is an acceleration over the simple gossip algorithm. From the
intuition given above, the effective resistance only increases when we remove edges in the graph.
Indeed, when removing an edge, we restrict the possibilities for the current to flow, thus increasing
the effective resistance. As a consequence, we can upper bound the effective resistance Reff(v, w),
when {v, w} is an edge of the graph. We remove all edges in the graph but {v, w}, in which case
the effective resistance between v and w is 1: there is only one possible flow. Thus Reff(v, w) 6 1
and κ̃ 6 N .

It turns out that this crude bound is sufficient to obtain a significant acceleration on the
torus TdΛ. Indeed, from Example 1.10, the spectral gap of the Laplacian of the torus scales like Λ−2,
thus the strong convexity parameter µ of the function f scales like Λ−2N−1. From Theorem 2.1,
the typical time of the exponential convergence of simple gossip is thus Λ2N . As a comparison,
the typical time of the accelerated method is

√
2κ̃
µ = Θ(ΛN). Acceleration thus improves the

dependence of the rate in Λ. We thus recover the same rates as Dimakis et al. [2008] for the graphs
they study, but generalized to any network.

Let us also note that there is no acceleration on the complete graph Km. Indeed, from Ex-
ample 1.9, the spectral gap of the Laplacian of the torus is Θ(m) as m → ∞. Thus the strong
convexity parameter µ of the function f scales like m/N = Θ(m−1); simple gossip converges in
a typical time Θ(m). Moreover, as there are m − 1 parallel paths of resistance 1 or 2 between
any pair of vertices in the complete graph, the effective resistance between the vertices is Θ(m−1).
Thus κ̃ = Θ(Nm−1) = Θ(m). Thus typical times of the naive and the accelerated methods have a
similar order of magnitude.

In Figure 3.3, we compare simulations of the accelerated method with the simple gossip algo-
rithm. We observe the expected asymptotic improvement on the line graph and the 2D grid. On
the complete graph, the two methods perform similarly.
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(a) Line graph, 30 nodes

(b) 2D-Grid, 225 nodes

(c) Complete graph, 10 nodes

Figure 3.3. Comparison between the simple gossip algorithm (or randomized gos-
sip) and the accelerated gossip method of this section, on 3 different graphs: a line
graph with 30 nodes, 2D grid with 225 nodes and complete graph with 30 nodes.
In all simulations, initialization was taken with a vector x0 such that x0(v) = 0 at
all nodes, except one where x0(v) = 1. Figures on the left represent one run of the
algorithms. Figures on the right represent the average performance (thick line) for
1000 runs with the same settings, and the 5% and 95% quantiles (thin lines).
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Appendix of Chapter 3

In Appendix 3.A, we start by giving a few technical tools that ground rigorously the chapter and
that are used in the proofs that follow. In Appendix 3.B, we analyze the continuized Nesterov
acceleration. In Appendix 3.B.1, we give a first sketch of proof of the deterministic case, without
using any technical tool. We continue with the complete technical proofs: of the deterministic case
in Appendix 3.B.2, of the case with additive noise in Appendix 3.B.3 and of the case with pure
multiplicative noise in Appendix 3.B.4. We finish with the proof of Theorem 3.3 in Appendix 3.C
and with a sanity check of the ODE scaling limit of the continuized acceleration in Appendix 3.D.

3.A. Stochastic calculus toolbox

In this appendix, we give a short introduction to the mathematical tools that we use in this paper.
For more details, the reader can consult the more rigorous monographs of Jacod and Shiryaev
[2013], Ikeda and Watanabe [2014], Le Gall [2016].

3.A.1. Poisson point measures. We fix P a probability law on some space Ξ.

Definition 3.1. A (homogenous) Poisson point measure on R>0×Ξ, with intensity ν(dt, dξ) =
dt⊗ dP(ξ), is a random measure N on R>0 × Ξ such that

• For any disjoint measurable subsets A and B of R>0 × Ξ, N(A) and N(B) are
independent.
• For any measurable subset A of R>0 × Ξ, N(A) is a Poisson random variable with
parameter ν(A). (If ν(A) =∞, N(A) is equal to ∞ almost surely.)

Proposition 3.1. Let N be a Poisson point measure on R>0×Ξ with intensity dt⊗dP(ξ).
There exists a decomposition dN(t, ξ) =

∑
k>1 δ(Tk,ξk)(dt, dξ) on R>0×Ξ where 0 < T1 <

T2 < T3 < . . . and ξ1, ξ2, ξ3, · · · ∈ Ξ satisfy:
• T1, T2 − T1, T3 − T2, . . . are i.i.d. of exponential law with rate 1,
• ξ1, ξ2, ξ3, . . . are i.i.d. of law P and independent of the T1, T2, T3, . . . .

Definition 3.2. Let N be a Poisson point measure on R>0 × Ξ with intensity dt⊗ dP(ξ).
The filtration Ft, t > 0, generated by N is defined by the formula

Ft = σ (N([0, s]×A) , s 6 t, A ⊂ Ξ measurable) .

3.A.2. Martingales and supermartingales. Let (Ω,F ,P) be a probability space and Ft,
t > 0, a filtration on this probability space.

Definition 3.3. A random process xt ∈ H, t > 0, is adapted if for all t > 0, xt is Ft-
measurable. An adapted process xt ∈ R, t > 0 is a martingale (resp. supermartingale) if for
all 0 6 s 6 t, E[xt| Fs] = xs (resp. E[xt| Fs] 6 xs).
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Definition 3.4. A random variable T ∈ [0,∞] is a stopping time if for all t > 0, {T 6 t} ∈
Ft.

Definition 3.5. A function xt, t > 0, is said to be càdlàg if it is right continuous and for
every t > 0, the limit xt− := lims→t,s<t xs exists and is finite.

Theorem 3.7 (Martingale stopping theorem). Let xt, t > 0, be a martingale (resp. super-
martingale) with càdlàg trajectories and uniformly integrable. Let T be a stopping time.
Then EXT = X0 (resp. EXT 6 X0).

3.A.3. Stochastic ordinary differential equation with Poisson jumps. The continuized
processes are the composition of an ordinary differential equation and stochastic Poisson jumps.
It is thus a piecewise-deterministic Markov process [Davis, 1984, 2018], a special case of stochastic
models that do not include any diffusion term. The stochastic calculus of this class of processes is
particularly intuitive: there is no Ito correction term as with diffusive processes.

We fix P a probability law on some space Ξ, N a Poisson point measure on R>0 × Ξ with
intensity dt⊗ dP(ξ), and denote Ft, t > 0, the filtration generated by N .

Definition 3.6. Let b : H → H and G : H× Ξ→ H be two functions. An random process
xt ∈ H, t > 0, is said to be a solution of the equation

dxt = b(xt)dt+
∫

Ξ
G(xt, ξ)dN(t, ξ)

if it is adapted, càdlàg, and for all t > 0,

xt = x0 +
∫ t

0
b(xs)ds+

∫
[0,t]×Ξ

G(xs−, ξ)dN(s, ξ) .

If we consider the decomposition dN(t, ξ) =
∑
k>1 δ(Tk,ξk)(dt, dξ) given by Proposition 3.1,

then ∫
[0,t]×Ξ

G(xs−, ξ)dN(s, ξ) =
∑
k>1

1{Tk6t}G(xTk−, ξk) .

Here, we consider only autonomous equations as b and G are a function of xt, but not of t.
However, there is no loss of generality, one can study time-dependent systems by studying the
equation in the variable (t, xt). This trick is used in Appendix 3.B.

Proposition 3.2. Let xt ∈ H be a solution of

dxt = b(xt)dt+
∫

Ξ
G(xt, ξ)dN(t, ξ)

and ϕ : H → R be a smooth function. Then

ϕ(xt) = ϕ(x0) +
∫ t

0
〈∇ϕ(xs), b(xs)〉ds+

∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ) .

Moreover, we have the decomposition∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ)

=
∫ t

0

∫
Ξ

(ϕ(xs +G(xs, ξ))− ϕ(xs)) dtdP(ξ) +Mt ,

where Mt =
∫

[0,t]×Ξ (ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) (dN(s, ξ)− dtdP(ξ)) is a martingale.
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This proposition is an elementary calculus of variations formula: to compute the value of
the observable ϕ(xt), one must sum the effects of the continuous part and of the Poisson jumps.
Moreover, the integral with respect to the Poisson measure N becomes a martingale if the same
integral with respect to its intensity measure dt⊗ dP(ξ) is removed.

3.B. Analysis of the continuized Nesterov acceleration

To encompass the proofs in the convex and in the strongly convex cases in a unified way, we assume
f is µ-strongly convex, µ > 0. If µ > 0, this corresponds to assuming the µ-strong convexity in the
usual sense; if µ = 0, it means that we only assume the function to be convex. In other words, the
proofs in the convex case can be obtained by taking µ = 0 below.

In this section, Ft, t > 0, is the filtration associated to the Poisson point measure N .

3.B.1. Sketch of proof for Theorem 3.2. A complete and rigorous proof is given in Ap-
pendix 3.B.2. Here, we only provide the heuristic of the main lines of the proof.

The proof is similar to the one of Nesterov acceleration: we prove that for some choices of
parameters ηt, η′t, γt, γ′t, t > 0, and for some functions At, Bt, t > 0,

φt = At (f(xt)− f(x∗)) + Bt
2 ‖zt − x∗‖

2

is a supermartingale. In particular, this implies that Eφt is a Lyapunov function, i.e., a non-
increasing function of t.

To prove that φt is a supermartingale, it is sufficient to prove that for all infinitesimal time
intervals [t, t+dt], Etφt+dt 6 φt, where Et denotes the conditional expectation knowing all the past
of the Poisson process up to time t. Thus we would like to compute the first order variation of
Etφt+dt. This implies computing the first order variation of Etf(xt+dt).

From (3.8), we see that f(xt) evolves for two reasons between t and t+ dt:
• xt follows the linear ODE (3.6), which results in the infinitesimal variation f(xt)→ f(xt)+
ηt〈∇f(xt), zt − xt〉dt, and
• with probability dt, xt takes a gradient step, which results in a macroscopic variation
f(xt)→ f (xt − γt∇f(xt)).

Combining both variations, we obtain that
Etf(xt+dt) ≈ f(xt) + ηt〈∇f(xt), zt − xt〉dt+ dt (f (xt − γt∇f(xt))− f(xt)) ,

where the dt in the second term corresponds to the probability that a gradient step happens; note
that the latter event is independent of the past up to time t.

A similar computation can be done for Et‖zt − x∗‖2. Putting things together, we obtain

Etφt+dt − φt ≈ dt
(dAt

dt (f(xt)− f(x∗)) +Atηt〈∇f(xt), zt − xt〉

−At (f(xt − γt∇f(xt))− f(xt)) + dBt
dt

1
2‖zt − x∗‖

2

+Btη
′
t〈zt − x∗, xt − zt〉+ Bt

2
(
‖zt − γ′t∇f(xt)− x∗‖2 − ‖zt − x∗‖2

))
.

Using convexity and strong convexity inequalities, and a few computations, we obtain the following
upper bound:

Etφt+dt − φt . dt
((dAt

dt −Atηt
)
〈∇f(xt), xt − x∗〉+

(dBt
dt −Btη

′
t

) 1
2‖zt − x∗‖

2

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+
(
Btη

′
t −

dAt
dt µ

) 1
2‖xt − x∗‖

2
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+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1
2‖∇f(xt)‖2

)
.

We want this infinitesimal variation to be non-positive. Here, we choose the parameters so that
γt = 1/L, and all prefactors in the above expression are zero. This gives some constraints on the
choices of parameters. We show that only one degree of freedom is left: the choice of the function
At, that must satisfy the ODE

d2

dt2
(√

At
)

= µ

4L
√
At ,

but whose initialization remains free. Once the initialization of the function At is chosen, this
determines the full function At and, through the constraints, all parameters of the algorithm. As
φt is a supermartingale (by design), a bound on the performance of the algorithm is given by

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0
At

.

The results presented in Theorem 3.2 correspond to one special choice of initialization for the
function At.

In this sketch of proof, our derivation of the infinitesimal variation is intuitive and elementary;
however it can be made more rigorous and concise—albeit more technical—using classical results
from stochastic calculus, namely Proposition 3.2. This is our approach in Appendix 3.B.2.

3.B.2. Deterministic case: proofs of Theorem 3.2 and of the bounds of Theorem 3.3.
In this section, we analyze the convergence of the continuized iteration (3.8)-(3.9), that we recall
for the reader’s convenience:

dxt = ηt(zt − xt)dt− γt∇f(xt)dN(t) ,
dzt = η′t(xt − zt)dt− γ′t∇f(xt)dN(t) .

The choices of parameters ηt, η′t, γt, γ′t, t > 0, and the corresponding convergence bounds follow
naturally from the analysis. We seek sufficient conditions under which the function

φt = At (f(xt)− f∗) + Bt
2 ‖zt − x∗‖

2

is a supermartingale.
The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+G(x̄t)dN(t) , b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 , G(x̄t) =

 0
−γt∇f(xt)
−γ′t∇f(xt)

 .

We thus apply Proposition 3.2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) where

ϕ(t, x, z) = At (f(x)− f(x∗)) + Bt
2 ‖z − x∗‖

2 ,

we obtain:

φt = φ0 +
∫ t

0
〈∇ϕ(x̄s), b(x̄s)〉ds+

∫ t

0
(ϕ(x̄s +G(x̄s))− ϕ(x̄s)) ds+Mt ,

where Mt is a martingale. Thus, to show that ϕt is a supermartingale, it is sufficient to show that
the map t 7→

∫ t
0〈∇ϕ(x̄s), b(x̄s)〉ds+

∫ t
0 (ϕ(x̄s +G(x̄s))− ϕ(x̄s))) ds is non-increasing almost surely,

i.e.,

It := 〈∇ϕ(x̄t), b(x̄t)〉+ ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6 0 .
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We now compute

〈∇ϕ(x̄t), b(x̄t)〉 = ∂tϕ(x̄t) + 〈∂xϕ(x̄t), ηt(zt − xt)〉+ 〈∂zϕ(x̄t), η′t(xt − zt)〉

= dAt
dt (f(xt)− f(x∗)) + dBt

dt
1
2‖zt − x∗‖

2 +Atηt〈∇f(xt), zt − xt〉

+Btη
′
t〈zt − x∗, xt − zt〉 .

Here, we use that as f is µ-strongly convex,

f(xt)− f(x∗) 6 〈∇f(xt), xt − x∗〉 −
µ

2 ‖xt − x∗‖
2 ,

and the simple bound

〈zt − x∗, xt − zt〉 = 〈zt − x∗, xt − x∗〉 − ‖zt − x∗‖2 6 ‖zt − x∗‖‖xt − x∗‖ − ‖zt − x∗‖2

6
1
2
(
‖zt − x∗‖2 + ‖xt − x∗‖2

)
− ‖zt − x∗‖2 = 1

2
(
‖xt − x∗‖2 − ‖zt − x∗‖2

)
.

This gives

〈∇ϕ(x̄t), b(x̄t)〉 6
(dAt

dt −Atηt
)
〈∇f(xt), xt − x∗〉+

(
Btη

′
t −

dAt
dt µ

) 1
2‖xt − x∗‖

2 (3.21)

+
(dBt

dt −Btη
′
t

) 1
2‖zt − x∗‖

2 +Atηt〈∇f(xt), zt − x∗〉 . (3.22)

Further,

ϕ(x̄t +G(x̄t))− ϕ(x̄t) = At (f(xt − γt∇f(xt))− f(xt))

+ Bt
2
(
‖(zt − x∗)− γ′t∇f(xt)‖2 − ‖zt − x∗‖2

)
.

As f is L-smooth,

f(xt − γt∇f(xt))− f(xt) 6 〈∇f(xt),−γt∇f(xt)〉+ L

2 ‖γt∇f(xt)‖2

= −γt (2− Lγt)
1
2‖∇f(xt)‖2 .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6
(
Btγ

′2
t −Atγt (2− Lγt)

) 1
2‖∇f(xt)‖2 −Btγ′t〈∇f(xt), zt − x∗〉 . (3.23)

Finally, combining (3.21)-(3.22) with (3.23), we obtain

It 6
(dAt

dt −Atηt
)
〈∇f(xt), xt − x∗〉+

(dBt
dt −Btη

′
t

) 1
2‖zt − x∗‖

2 (3.24)

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+
(
Btη

′
t −

dAt
dt µ

) 1
2‖xt − x∗‖

2 (3.25)

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1
2‖∇f(xt)‖2 . (3.26)

Remember that It 6 0 is a sufficient condition for φt to be a supermartingale. Here, we choose the
parameters ηt, η′t, γt, γ′t, t > 0, so that all prefactors are 0. We start by taking γt ≡ 1

L (other choices
γt <

2
L could be possible but would give similar results) and we want to satisfy

dAt
dt = Atηt ,

dBt
dt = Btη

′
t Atηt = Btγ

′
t , Btη

′
t = dAt

dt µ , Btγ
′2
t = At

L
.
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To satisfy the last equation, we choose

γ′t =
√

At
LBt

. (3.27)

To satisfy the third equation, we choose

ηt = Btγ
′
t

At
=
√

2Bt
LAt

. (3.28)

To satisfy the fourth equation, we choose

η′t = dAt
dt

µ

Bt
= Atηtµ

Bt
= µ

√
At
LBt

. (3.29)

Having now all parameters ηt, η′t, γt, γ′t constrained, we now have that φt is Lyapunov if

dAt
dt = Atηt =

√
AtBt
L

,
dBt
dt = Btη

′
t = µ

√
AtBt
L

.

This only leaves the choice of the initialization (A0, B0) as free: both the algorithm and the Lya-
punov depend on it. (Actually, only the relative value A0/B0 matters.) Instead of solving the above
system of two coupled non-linear ODEs, it is convenient to turn them into a single second-order
linear ODE:

d
dt
(√

At
)

= 1
2
√
At

dAt
dt = 1

2

√
Bt
L
,

d
dt
(√

Bt
)

= 1
2
√
Bt

dBt
dt = µ

2

√
At
L
. (3.30)

This can also be restated as
d2

dt2
(√

At
)

= µ

4L
√
At ,

√
Bt = 2

√
L

d
dt
(√

At
)
. (3.31)

Proof of the first part (convex case). We now assume µ = 0, and we choose the solution such
that A0 = 0 and B0 = 1. From (3.30), we have d

dt
(√
Bt
)

= 0, thus Bt ≡ 1, and d
dt
(√
At
)

= 1
2
√
L
,

thus
√
At = t

2
√
L
. The parameters of the algorithm are given by (3.27)-(3.29): ηt = 2

t , η
′
t = 0,

γ′t = t
2L (and we had chosen γt = 1

L).
From the fact that φt is a supermartingale, we obtain that the associated algorithm satisfies

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0
At

= 2L‖z0 − x∗‖2

t2
.

This proves the first part of Theorem 3.2.
Further, one can apply martingale stopping Theorem 3.7 to the supermartingale φt with the

stopping time Tk to obtain
E [ATk (f(x̃k)− f(x∗))] = E [ATk (f(xTk)− f(x∗))] 6 EφTk 6 φ0 = ‖z0 − x∗‖2 .

This proves the formula of Theorem 3.3.1.
Proof of the second part (strongly convex case). We now assume µ > 0. We consider the solution

of (3.31) that is exponential:√
At =

√
A0 exp

(1
2

√
µ

L
t

)
,

√
Bt =

√
A0
√
µ exp

(1
2

√
µ

L
t

)
.

The parameters of the algorithm are given by (3.27)-(3.29): ηt = η′t =
√

µ
L , γ

′
t = 1√

µL
(and we had

chosen γt = 1
L).
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From the fact that φt is a supermartingale, we obtain that the associated algorithm satisfies

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0
At

=
A0(f(x0)− f(x∗)) +A0

µ
2‖z0 − x∗‖2

At

=
(
f(x0)− f(x∗) + µ

2 ‖z0 − x∗‖2
)

exp
(
−
√
µ

L
t

)
.

This proves the second part of Theorem 3.2. Similarly to above, one can also apply the martingale
stopping theorem to prove the formula of Theorem 3.3.2.

Remark 3.1. In the above derivation, in both the convex and strongly convex cases, we
choose a particular solution of (3.31), while several solutions are possible. In the convex case,
we make the choice A0 = 0 to have a succinct bound that does not depend on f(x0)−f(x∗).
More importantly, in the strongly convex case, we choose the solution that satisfies the
relation √µ

√
At =

√
Bt, which implies that ηt, η′t, γ′t, are constant functions of t, and ηt = η′t.

These conditions help solving in closed form the continuous part of the process

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

which is crucial if we want to have a discrete implementation of our method (for more
details, see Theorem 3.3 and its proof). However, in the strongly convex case, considering
other solutions would be interesting, for instance to have an algorithm converging to the
convex one as µ→ 0.

3.B.3. With additive noise: proof of Theorem 3.4. The proof of this theorem is along
the same lines as the proof of Theorem 3.2 above. Here, we only give the major differences.

We analyze the convergence of the continuized stochastic iteration (3.13)-(3.14), that we recall
for the reader’s convenience:

dxt = ηt(zt − xt)dt− γt
∫

Ξ
g(xt, ξ)dN(t, ξ) ,

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ
g(xt, ξ)dN(t, ξ) .

In this setting, we loose the property that

φt = At (f(xt)− f∗) + Bt
2 ‖zt − x∗‖

2

is a supermartingale. However, we bound the increase of φt.
The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+
∫

Ξ
G(x̄t, ξ)dN(t, ξ), b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 , G(x̄t, ξ) =

 0
−γtg(xt, ξ)
−γ′tg(xt, ξ)

 .
We apply Proposition 3.2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) and obtain

φt = φ0 +
∫ t

0
Isds+Mt , (3.32)

where Mt is a martingale and

It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .
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The computation of the first term remains the same: the inequality (3.21)-(3.22) holds. The
computation of the second term becomes

Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) = At (Eξf(xt − γtg(xt, ξ))− f(xt))

+ Bt
2
(
Eξ‖(zt − x∗)− γ′tg(xt, ξ)‖2 − ‖zt − x∗‖2

)
.

As f is L-smooth,

f(xt − γtg(xt, ξ))− f(xt) 6 〈∇f(xt),−γtg(xt, ξ)〉+ L

2 ‖γtg(xt, ξ)‖2 ,

Eξf(xt − γtg(xt, ξ))− f(xt) 6 〈∇f(xt),−γtEξg(xt, ξ)〉+ L

2 Eξ‖γtg(xt, ξ)‖2 .

By assumptions (3.15) and (3.16), the stochastic gradient g(x, ξ) is unbiased and has a variance
bounded by σ2, which implies Eξ‖g(xt, ξ)‖2 6 ‖∇f(xt)‖2 + σ2. Thus

Eξf(xt − γtg(xt, ξ))− f(xt) 6 −γt (2− Lγt)
1
2‖∇f(xt)‖2 + σ2Lγ

2
t

2 .

Similarly,

Eξ‖(zt − x∗)− γ′tg(xt, ξ)‖2 − ‖zt − x∗‖2 = −2γ′t〈Eξg(xt, ξ), zt − x∗〉+ γ′2t Eξ‖g(xt, ξ)‖2

6 −2γ′t〈∇f(xt), zt − x∗〉+ γ′2t ‖∇f(xt)‖2 + σ2γ′2t .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6
(
Btγ

′2
t −Atγt (2− Lγt)

) 1
2‖∇f(xt)‖2 −Btγ′t〈∇f(xt), zt − x∗〉

+ σ2

2
(
AtLγ

2
t +Btγ

′2
t

)
.

Combining the bounds, we obtain

It 6
(dAt

dt −Atηt
)
〈∇f(xt), xt − x∗〉+

(dBt
dt −Btη

′
t

) 1
2‖zt − x∗‖

2

+ (Atηt −Btγ′t)〈∇f(xt), zt − x∗〉+
(
Btη

′
t −

dAt
dt µ

) 1
2‖xt − x∗‖

2

+
(
Btγ

′2
t −Atγt (2− Lγt)

) 1
2‖∇f(xt)‖2 + σ2

2
(
AtLγ

2
t +Btγ

′2
t

)
,

which is an additive perturbation of the bound (3.24)-(3.26) in the noiseless case, with a perturba-
tion proportional to σ2. The choices of parameters of Theorem 3.2 cancel all first five prefactors,
and satisfy γt = 1

L , AtLγ
2
t = Btγ

′2
t . We thus obtain

It 6 σ
2At
L
.

This bound controls the increase of φt. Using the decomposition (3.32), we obtain

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0
At

+
∫ t
0 EIsds
At

6
A0(f(x0)− f(x∗)) +B0‖z0 − x∗‖2

At
+ σ2

L

∫ t
0 Asds
At

.
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Proof of the first part (convex case). In this case, At = t2

2L and B0 = 1. Thus
∫ t
0 Asds = 1

2L
t3

3 .
Thus

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
+ σ2 t

3L .

Proof of the second part (strongly convex case). In this case, At = A0 exp
(√

µ
L t
)
and B0 = A0

µ
2 .

Thus
∫ t

0 Asds 6 A0
√

µ
L

−1
exp

(√
µ
L t
)

=
√

L
µAt. Thus

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) + µ

2 ‖z0 − x∗‖2
)

exp
(
−
√
µ

L
t

)
+ σ2 1√

µL
.

3.B.4. With pure multiplicative: Proof of Theorem 3.5. The proof of this theorem
mimics the proof of Theorem 3.2, with a slightly different Lyapunov function.

We recall that in Section 3.4, the function f is of the form:

f(x) = E
[1

2(〈a, x〉 − b)2
]

= 1
2‖x− x∗‖

2
Σ .

The Lyapunov function studied in the proof of Theorem 3.2 would then write as, for t ∈ R>0:

φt = At
2 ‖xt − x∗‖

2
Σ + Bt

2 ‖zt − x∗‖
2.

An acceleration of stochastic gradient descent using this Lyapunov function has been done by
Vaswani et al. [2019]. In order to have an analysis similar to Nesterov acceleration, the authors
make a strong growth condition, which is too strong for many stochastic gradient problems and for
our application to gossip algorithms. Instead, our analysis requires a bounded statistical condition
number κ̃, and performs a shift in terms of dependency over Σ: ‖x− x∗‖2Σ becomes ‖x− x∗‖2, and
‖zt − x∗‖2 becomes ‖zt − x∗‖2Σ−1 . The new Lyapunov function writes:

φt = At
2 ‖xt − x∗‖

2 + Bt
2 ‖zt − x∗‖

2
Σ−1 .

As in Theorem 3.2, the proof consists in proving that for carefully chosen parameters, φt is a
supermatingale. The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+
∫

Ξ
G(x̄t, ξ)dN(t, ξ), b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 , G(x̄t, ξ) =

 0
−γtg(xt, ξ)
−γ′tg(xt, ξ)

 .
We apply Proposition 3.2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) and obtain:

φt = φ0 +
∫ t

0
Isds+Mt ,

where Mt is a martingale and
It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .

Since the Lyapunov function is not the same, we need to explicit here each term. The first term
writes:

〈∇ϕ(x̄t), b(x̄t)〉 =1
2

dAt
dt ‖xt − x∗‖

2 + 1
2

dBt
dt ‖zt − x∗‖

2
Σ−1

+Atηt〈xt − x∗, zt − xt〉+Btη
′
t〈Σ−1(zt − x∗), xt − zt〉.

Mimicking the proof of Theorem 3.2, we write
1
2‖xt − x∗‖

2 6 ‖xt − x∗‖2 −
µ

2 ‖xt − x∗‖
2
Σ−1 ,
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and
〈Σ−1(zt − x∗), xt − zt〉 = 〈zt − x∗, xt − x∗〉Σ−1 − ‖zt − x∗‖2Σ−1

6
1
2
(
‖xt − x∗‖2Σ−1 − ‖zt − x∗‖2Σ−1

)
.

Hence,

〈∇ϕ(x̄t), b(x̄t)〉 6
dAt
dt ‖xt − x∗‖

2 +
(
Btη

′
t −

dAt
dt µ

) 1
2‖xt − x∗‖

2
Σ−1

+
(dBt

dt −Btη
′
t

) 1
2‖zt − x∗‖

2
Σ−1 +Atηt〈xt − x∗, zt − xt〉 .

Further,

ϕ(x̄t +G(x̄t))− ϕ(x̄t) = At
2
(
‖xt − γt∇f(xt, ξ)− x∗‖2 − ‖xt − x∗‖2

)
+ Bt

2
(
‖(zt − x∗)− γ′tg(xt, ξ)‖2Σ−1 − ‖zt − x∗‖2Σ−1

)
.

Then, expanding and taking expectation over ξ of the first term:

Eξ
[1

2‖xt − γtg(xt, ξ)− x∗‖2 −
1
2‖xt − x∗‖

2
]

= γ2
t

2 Eξ
[
‖g(xt, ξ)‖2

]
− γt〈Σ(xt − x∗), xt − x∗〉

6

(
R2γ2

t

2 − γt

)
‖xt − x∗‖2Σ,

where we used the definition of R2 in Equation (3.19):

Eξ
[
‖g(xt, ξ)‖2

]
= (xt − x∗)>E

[
aa>aa>

]
(xt − x∗)

= (xt − x∗)>E
[
‖a‖2aa>

]
(xt − x∗)

6 R2(xt − x∗)>Σ(xt − x∗).
The second term writes:

1
2Eξ

[
‖(zt − x∗)− γ′tg(xt, ξ)‖2Σ−1 − ‖zt − x∗‖2Σ−1

]
= γ′t

2

2 Eξ
[
‖g(xt, ξ)‖2Σ−1

]
− γ′t〈xt − x∗, zt − x∗〉

6
κ̃γ′t

2

2 ‖xt − x∗‖
2
Σ − γ

′
t〈xt − x∗, zt − x∗〉,

where we used the definition of κ̃ in Equation (3.20):

Eξ
[
‖g(xt, ξ)‖2Σ−1

]
= (xt − x∗)>E

[
aa>Σ−1aa>

]
(xt − x∗)

= (xt − x∗)>E
[
a‖a‖2Σ−1a

>
]
(xt − x∗)

6 κ̃(xt − x∗)>Σ(xt − x∗).
Combining these inequalities gives the following upper-bound on It:

It 6
(dAt

dt −Atηt
)
‖xt − x∗‖2 +

(dBt
dt −Btη

′
t

) 1
2‖zt − x∗‖

2
Σ−1

+ (Atηt −Btγ′t)〈xt − x∗, zt − x∗〉+
(
Btη

′
t −

dAt
dt µ

) 1
2‖xt − x∗‖

2
Σ−1

+
(
κ̃Btγ

′2
t −Atγt

(
2−R2γt

)) 1
2‖xt − x∗‖

2
Σ
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Since It 6 0 is still a sufficient condition for φt to be a supermartingale, we choose parameters such
that all prefactors are equal to 0. We first take γt = 1

R2 , and we want to satisfy:
dAt
dt = Atηt ,

dBt
dt = Btη

′
t Atηt = Btγ

′
t , Btη

′
t = dAt

dt µ , Btγ
′2
t = At

κ̃R2 .

To satisfy that last equality, we choose:

γ′t =
√

At
Btκ̃R2 .

The rest of the proof then follows just as in the proof of Theorem 3.B.2.

3.C. Proof of Theorem 3.3

By integrating the ODE

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

between Tk and Tk+1−, we obtain that there exists τk, τ ′′k , such that

ỹk = xTk+1− = xTk + τk(zTk − xTk) = x̃k + τk(z̃k − x̃k) , (3.33)
zTk+1− = zTk + τ ′′k (xTk − zTk) = z̃k + τ ′′k (x̃k − z̃k) .

From the first equation, we have x̃k = 1
1−τk (ỹk − τkz̃k), which gives by substitution in the second

equation,

zTk+1− = z̃k + τ ′′k

( 1
1− τk

(ỹk − τkz̃k)− z̃k
)

= z̃k + τ ′k(ỹk − z̃k) ,

where τ ′k = τ ′′k
1−τk .

Further, from (3.4)-(3.5), we obtain the equations

x̃k+1 = xTk+1 = xTk+1− − γTk+1∇f(xTk+1−) = ỹk − γTk+1∇f(ỹk) , (3.34)
z̃k+1 = zTk+1 = zTk+1− − γ

′
Tk+1∇f(xTk+1−) = z̃k + τ ′k(ỹk − z̃k)− γ′Tk+1∇f(ỹk) . (3.35)

The stated equation (3.10)-(3.12) are the combination of (3.33), (3.34) and (3.35).
(1) The parameters of Theorem 3.2.(1) are ηt = 2

t , η
′
t = 0, γt = 1

L and γ′t = t
2L . In this case,

the ODE

dxt = ηt(zt − xt)dt = 2
t
(zt − xt)dt ,

dzt = η′t(xt − zt)dt = 0 ,

can be integrated in closed form: for t > t0,

xt = zt0 +
(
t0
t

)2
(xt0 − zt0) = xt0 +

(
1−

(
t0
t

)2
)

(zt0 − xt0) ,

zt = zt0 .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = 1 −
(

Tk
Tk+1

)2
, τ ′′k = 0 and thus

τ ′k = τ ′′k
1−τk = 0. Finally, γ̃k = γTk = 1

L and γ̃′k = γ′Tk = Tk
2L .
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(2) The parameters of Theorem 3.2.(2) are ηt = η′t ≡
√

µ
L , γt ≡

1
L and γ′t ≡ 1√

µL
. In this case,

the ODE

dxt = ηt(zt − xt)dt =
√
µ

L
(zt − xt)dt ,

dzt = η′t(xt − zt)dt =
√
µ

L
(xt − zt)dt ,

can also be integrated in closed form: for t > t0,

xt = xt0 + zt0
2 + xt0 − zt0

2 exp
(
−2
√
µ

L
(t− t0)

)
= xt0 + 1

2

(
1− exp

(
−2
√
µ

L
(t− t0)

))
(zt0 − xt0) ,

zt = xt0 + zt0
2 + zt0 − xt0

2 exp
(
−2
√
µ

L
(t− t0)

)
= zt0 + 1

2

(
1− exp

(
−2
√
µ

L
(t− t0)

))
(xt0 − zt0) .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = τ ′′k = 1
2

(
1− exp

(
−2
√

µ
L(Tk+1 − Tk)

))
and thus τ ′k = τ ′′k

1−τk = tanh
(√

µ
L(Tk+1 − Tk)

)
. Finally, γ̃k = γTk = 1

L and γ̃′k = γ′Tk = 1√
µL

.

3.D. Heuristic ODE scaling limit of the continuized acceleration

3.D.1. Convex case. With the choices of parameters of Theorem 3.2.(1), the continuized
acceleration is

dxt = 2
t
(zt − xt)dt−

1
L
∇f(xt)dN(t) ,

dzt = − t

2L∇f(xt)dN(t) .

The ODE scaling limit is obtained by taking the limit L→∞ (so that the step-size 1/L vanishes)
and rescaling the time s = t/

√
L. Some law of large number argument heuristically gives us that,

as L→∞, dN(t) = dN(
√
Ls) ≈

√
Lds. Thus in the limit, we obtain

dxs = 2√
Ls

(zs − xs)
√
Lds− 1

L
∇f(xs)

√
Lds ,

dzs = −
√
Ls

2L ∇f(xs)
√
Lds .

The second term of the first equation becomes negligible in the limit. Thus the equations simplify
to

dxs
ds = 2

s
(zs − xs) ,

dzs
ds = −s2∇f(xs) .

Thus

−s2∇f(xs) = dzs
ds = d

ds

(
xs + s

2
dxs
ds

)
= dxs

ds + 1
2

dxs
ds + s

2
d2xs
ds2 ,
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and thus
d2xs
ds2 + 3

s

dxs
ds +∇f(xs) = 0 .

This is the same limiting ODE as the one found by Su et al. [2014] for Nesterov acceleration.

3.D.2. Strongly-convex case. With the choices of parameters of Theorem 3.2.(2), the con-
tinuized acceleration is

dxt =
√
µ

L
(zt − xt)dt−

1
L
∇f(xt)dN(t) ,

dzt =
√
µ

L
(xt − zt)dt−

1√
µL
∇f(xt)dN(t) .

Again, we take joint scaling L→∞, s = t/
√
L, with the approximation dN(t) ≈

√
Lds. We obtain

dxs =
√
µ

L
(zs − xs)

√
Lds− 1

L
∇f(xs)

√
Lds ,

dzs =
√
µ

L
(xs − zs)

√
Lds− 1√

µL
∇f(xs)

√
Lds .

As before, the second term of the first equation becomes negligible in the limit. Thus the equations
simplify to

dxs
ds = √µ(zs − xs) , (3.36)

dzs
ds = √µ(xs − zs)−

1
√
µ
∇f(xs) . (3.37)

From (3.36), we have zs = xs + 1√
µ

dxs
ds , and by substitution in (3.37), we obtain

d2xs
ds2 + 2√µdxs

ds +∇f(xs) = 0 .

This is the so-called “low-resolution” ODE for Nesterov acceleration of Shi et al. [2018].

101





CHAPTER 4

Polynomial Based Iteration Methods for Accelerated Gossip

We remind that the contents of this chapter were published in the journal article:
R. Berthier, F. Bach, P. Gaillard. Accelerated Gossip in Networks of Given Di-
mension using Jacobi Polynomial Iterations, 2020, SIAM Journal on Mathematics
of Data Science (SIMODS).

As illustrated by Example 1.11 on the torus, the rate of the exponential convergence of the
synchronous simple gossip algorithm worsens significantly in many networks of interest as the size
of the network increases. More precisely, define the diameterD of the network as the largest number
of communication links needed to connect any two agents. While obviously, D steps of averaging
are needed for any gossip method to spread information in the network, the simple gossip method
may require up to Θ(D2) communication steps to estimate the average. To reach the O(D) bound,
a diverse set of ideas were proposed, including second-order recursions [Cao et al., 2006, Rebeschini
and Tatikonda, 2017], message passing algorithms [Moallemi and Roy, 2005], lifted Markov chain
techniques [Shah, 2009], methods using Chebychev polynomial iterations [Montijano et al., 2012,
Scaman et al., 2017] or inspiration arising from advection-diffusion processes [Sardellitti et al.,
2010]. To our knowledge, all of these accelerated methods assume that the agents hold additional
information about the network graph, such as its spectral gap. For instance, the heavy ball method
[Polyak, 1964] in optimization translates into the shift-register gossip algorithm [Cao et al., 2006]:

x1(v) =
∑

w:w∼v
Wv,wx0(w) ,

xn+1(v) = ω
∑

w:w∼v
Wv,wxn(w) + (1− ω)xn−1(v) , n > 1 ,

where ω is some simple function of the spectral gap µ. This can be rewritten more compactly as

x1 = Wx0 , xn+1 = ωWxn + (1− ω)xn−1 . (4.1)

This iteration obtains optimal asymptotic convergence on many graphs, with a relaxation time of
the linear convergence that scales like 1/√µ as the spectral gap µ converges to 0.

Proposition 4.1 (from [Liu et al., 2013, Theorem 2]). Let x0 be an arbitrary family of initial
observations and xn the iterates of shift-register gossip defined in (4.1) with parameter

ω = 21−
√
µ(1− µ/4)

(1− µ/2)2 ,

where µ is the spectral gap of the gossip matrix W . Then

lim sup
n→∞

‖xn − x̄1‖1/n2 6 1− 2
√
µ(1− µ/4)− µ/2

1− µ .

Moreover, the upper bound is reached if there exists an eigenvector u of W , corresponding
to the eigenvalue 1− µ, such that 〈x0, u〉 6= 0.
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The important consequence of this result is that the rate of convergence of the shift-register
method behaves like 1 − 2√µ + o(√µ) as µ → 0. This differs from simple gossip where the rate
of convergence behaves like 1 − µ̃, see Corollary 1.1. Shift-register enjoys an accelerated rate of
convergence as opposed to simple gossip which has a diffusive rate. This effect on the asymptotic
rate of convergence can be seen in Figures 4.2 and 4.3.
In this chapter, we develop a gossip method based not on the spectral gap µ, but on the spectral
dimension d, i.e., roughly speaking, on the density of eigenvalues of W near the upper edge of the
spectrum. Looking at the upper part of the spectrum at a broader scale allows us to improve the
local averaging of the gossip algorithm in the regime n < 1/√µ. This improvement is worthy as
the spectral gap µ can get arbitrarily small in large graphs (like the torus, see Example 1.11) while
the spectral dimension scales well in large graphs (see Example 1.13).

The network is of spectral dimension d if the number of eigenvalues of W in [1−E, 1] decreases
like Ed/2 for small E (µ� E � 1), see Section 4.3.3 for rigorous definitions. We see with examples
below that this definition coincides with our intuition of the dimension of the graph, which is the
dimension of the manifold on which the agents live. For instance, the grid with nodes Zd where
the nodes at distance 1 are connected, is a graph of dimension d. Thus the parameter d is much
easier to know than the spectral gap µ.

In real-world situations, the practitioner reasonably knows if the network on which she imple-
ments the gossip method is of finite dimension, and if so, she also knows the dimension d. In this
paper, we argue that she should run a second-order iteration with time-dependent weights

x1 = a0Wx0 + b0x0 , xn+1 = anWxn + bnxn − cnxn−1 . (4.2)
where the recurrence weights an, bn, cn are given by the formulas

a0 = d+ 4
2(2 + d) , b0 = d

2(2 + d) ,

an = (2n+ d/2 + 1)(2n+ d/2 + 2)
2(n+ 1 + d/2)2 , bn = d2(2n+ d/2 + 1)

8(n+ 1 + d/2)2(2n+ d/2) ,

cn = n2(2n+ d/2 + 2)
(n+ 1 + d/2)2(2n+ d/2) , n > 1 .

(4.3)

The motivation for these choice of weights an, bn, cn should not be obvious at first sight. It follows
from a polynomial-based point of view on gossip algorithms.

We define a polynomial gossip method as any method combining the past iterates of the simple
gossip method:

xn = Pn(W )x0 , (4.4)
where Pn is a polynomial of degree smaller or equal to n satisfying Pn(1) = 1. The constraint
Pn(1) = 1 ensures that xn = x̄1 if all initial observations are the same, i.e., x0 = x̄1. The constraint
degPn 6 n ensures that the iterate xn can be computed in n time steps. This polynomial approach
is inspired from similar work done in the resolution of linear systems [Fischer, 1996] and on the
load balancing problem [Diekmann et al., 1999]. The choice of an iteration is reframed as the
choice of a sequence of polynomials, and the performance of the resulting gossip method depends
on the spectrum of W . In this paper, we design polynomial gossip methods whose polynomials
Pn, n > 0 satisfy a second-order recursion. This key property ensures that the resulting iterates
xn = Pn(W )x0 can be computed recursively.

Simple gossip (1.16) corresponds to the particular case of the monomials Pn(λ) = λn. Shift-
register gossip is a polynomial gossip method whose corresponding polynomials that can be ex-
pressed using the Chebyshev polynomials (see Proposition 4.17). As motivated below, the spectral
dimension of a graph motivates to consider another choice of polynomials: the Jacobi polynomials,
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that are well-known in the literature on orthogonal polynomials (see the Definition 4.5 of the Jacobi
polynomials). This actually leads to the iteration (4.2), that we call the Jacobi polynomial iteration.

The Jacobi polynomial iteration (4.2) improves the convergence of the gossip method in the
transitive phase n < 1/√µ, but looses the optimal rate of convergence of shift-register gossip,
because it does not use the spectral gap µ. We argue that in most applications of gossip methods,
the asymptotic rate of convergence is not relevant as there is noise in the initial data x0, thus a
high precision on the result would be useless. However, we also build a gossip iteration that uses
both parameters d and µ and achieves both the efficiency in the non-transitive regime and the fast
rate of convergence.

This resolution of the gossip problem with inner-product free polynomial-based iterations is
new, and could lead to other interesting algorithms on other types of graphs. Here, the phrase
“inner-product free” comes from the literature on polynomial-based iterations for linear systems
[Fischer, 1996], and refers to the fact that recurrence coefficients an, bn, cn are computed without
using the gossip matrixW (but parameterized using the knowledge of d). Indeed, as the knowledge
of the gossip matrixW is distributed across the graph, it would be a challenging distributed problem
to compute the recurrence coefficients if they depended on W .

Although our work is inspired by iterative methods for linear systems, the Jacobi iteration that
we developed for gossip can be transposed into a new idea to this literature, which can be useful
for the distributed resolution of Laplacian systems over multi-agent networks.

Finally, in Section 4.7, we show that the message passing gossip iteration of Moallemi and Roy
[2005] can be interpreted as an inner-product free polynomial iteration. This point of view allows
to derive convergence rates of the message passing gossip on regular graphs.

Outline of this chapter. In Section 4.1, we give simulations in different types of networks
of dimension 2 and 3. We show that the recursion (4.2) brings important benefits over existing
methods in the non-asymptotic regime, i.e., when the observations are far from being fully mixed
in the graph.

In Sections 4.2-4.3, we develop the derivation of the Jacobi polynomial iteration. Section 4.2
describes an optimal way to design polynomial-based gossip algorithms, following the lines of Fischer
[1996] and Diekmann et al. [1999], and discusses its feasibility. Section 4.3 uses the notion of spectral
dimension of a graph to inspire the practical Jacobi polynomial iteration (4.2).

In Section 4.4, we prove some performance guarantees of the Jacobi polynomial iteration (4.2)
under the assumption that the graph has spectral dimension d. As a corollary, we get performance
results on two types of infinite graphs: the d-dimensional grid Zd and supercritical percolation
bonds in dimension d. This supports that the iteration (4.2) is robust to local perturbations of a
graph.

In Section 4.5, we present the adaptation of the Jacobi polynomial iteration to the case where
the spectral gap µ of W is given to improve the asymptotic rate of convergence.

In Section 4.6, we describe the parallel between gossip methods and iterative methods for linear
systems, and discuss the contributions that our work can bring to the distributed resolution of
Laplacian systems over networks.

In Section 4.7, we show how the message passing gossip algorithm can be interpreted as a
polynomial gossip algorithm. We give the convergence rate of message passing in terms of the
spectral gap µ.

Code. The code that generated the simulation results and the figures of this paper is available
on the GitHub page https://github.com/raphael-berthier/jacobi-polynomial-iterations.
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(a) Grid (b) Percolation bond (c) Random geometric graph

Figure 4.1. The three types of two-dimensional graphs considered in simulations.

4.1. Simulations: comparison of simple gossip, shift-register gossip and the Jacobi
polynomial iteration

In this section, we run our methods on grids, percolation bonds and random geometric graphs, the
latter being a widely used model for real-world networks [Penrose, 2003, Section 1.1]. In each case,
we consider both the two-dimensional (2D) structure and its three-dimensional (3D) counterpart.
We refer to Figure 4.1 for visualizations of the 2D structures, and to Appendix 4.A for details about
the parameters used.

We compare our Jacobi polynomial iteration (4.2) with the simple gossip method (1.16) and
the shift-register algorithm (4.1). We found experimentally that the behavior of the shift-register
algorithm was typical of methods based on the spectral gap such as the splitting algorithm of
Rebeschini and Tatikonda [2017] or the Chebychev polynomial acceleration scheme [Arioli and
Scott, 2014, Scaman et al., 2017]; to avoid redundancy we do not present the similar behavior of
these methods. We also compare with local averaging, which is given by the formula

xn(v) = 1
|Bn(v)|

∑
w∈Bn(v)

x0(v) ,

where |Bn(v)| denotes the ball in G, centered in v, of radius n, for the shortest path distance.
Note that local averaging does not correspond in general to any computationally cheap iteration,
as opposed to the algorithms we present here. Thus it should not be considered as a gossip method,
but rather as a lower bound on the performance achievable by any gossip method. (This is made
fully rigorous in the statistical gossip framework of Section 4.4.)

In our simulations, we change the graph G that we run our algorithms on, but we always
sample x0(v) ∼i.i.d. N (0, 1), v ∈ V and measure the performance of gossip methods through the
quantity ‖xn − x̄1‖2/

√
m, where again m denotes the number of agents. Thus the performance of

the algorithms is random because the initial values x0(v) are random, and also because percolation
bonds and random geometric graphs are random. The results we present here are averaged over 10
realizations of the graph and the initial values, which is sufficient to give stable results.

Tuning. The optimal tuning of the shift-register gossip method as a function of the spectral
gap was determined in [Liu et al., 2013, Theorem 2], it is given by the formula (4.1); this is the
tuning that we use in our simulations. The Jacobi polynomial iteration is tuned by choosing d = 2
in 2D grid, 2D percolation bonds and 2D random geometric graphs, and d = 3 for their 3D analogs.
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(e) 2D random geometric graph
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(f) 3D random geometric graph

Figure 4.2. Performance of different gossip algorithms running on graphs with an
underlying low-dimensional geometry, as measured by ‖xn − x̄1‖2/

√
m.
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Figure 4.3. Performance of different gossip algorithms running on the 2D grid.

Interpretation of the results. The results of the simulations are exposed in Figure 4.2. The
qualitative picture remains the same across different graphs. Simple gossip performs better than
shift-register gossip in a first phase, but in a large n asymptotic, simple gossip converges slowly
where shift-register gossip converges quickly. Instead, the Jacobi polynomial iteration accelerates
over simple gossip for all values of n. The Jacobi polynomial iteration gets considerably closer to
the local averaging optimal bound, especially in very regular structures like grids.

These results should be mitigated with the large n asymptotic: in Figure 4.3, we show the
comparison of gossip methods on a longer time scale, in linear and log-scale y-axis. We only
present the results on the 2D grid as they are typical of the behavior on other structures. We
observe that shift-register gossip enjoys a much better asymptotic rate of convergence than simple
gossip and the Jacobi polynomial iteration.

Methods that use the spectral gap are designed to achieve the best possible asymptotic (see [Cao
et al., 2006, Rebeschini and Tatikonda, 2017]), thus the above observation is not surprising. These
methods however fail in the non-asymptotic regime, where they are outperformed by the Jacobi
polynomial iteration and simple gossip. We believe that in applications where a high precision on
the average is not needed, the Jacobi polynomial iteration brings important improvements over
existing methods, let alone the fact that it is considerably easier to tune. However, in Section 4.5,
we present a Jacobi polynomial iteration that uses the spectral gap of the gossip matrix to obtain
the accelerated convergence rate.

4.2. Design of best polynomial gossip iterations

We now turn to the design of efficient polynomial iterations of the form xn = Pn(W )x0. An
important result of this section is that the best iterates of this form can be computed in an online
fashion as they result from a second-order recurrence relation.

The approach presented in this section is similar to [Diekmann et al., 1999, Section 3.3], al-
though therein it is applied to the slightly different problem of load balancing. We repeat here the
derivations as we take a slightly different approach: here we derive the best polynomial Pn with
fixedW and x0; while in [Diekmann et al., 1999] the matrixW is fixed, but a polynomial Pn efficient
uniformly over x0 is sought. We then discuss why the resulting recursion may be impractical. The
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next section introduces some approximation of the impractical scheme that leads to the practical
iteration (4.2).

Our measure of performance of a polynomial gossip iteration is the sum of squared errors over
the agents of the network:

E (Pn) =
∑
v∈V

(xn(v)− x̄)2 = ‖xn − x̄1‖22 = ‖Pn(W )x0 − x̄1‖22 .

Denote λ1, λ2, . . . , λm the real eigenvalues of the symmetric matrix W and u1, u2, . . . , um are the
associated eigenvectors, normalized such that ‖ui‖2 = 1. The diagonalization of W gives the new
expression of the error

E (Pn) =
m∑
i=2
〈x0, ui〉2Pn(λi)2 =

∫ 1

−1
Pn(λ)2dσ(λ) , dσ(λ) =

m∑
i=2
〈x0, ui〉2δλi , (4.5)

where 〈., .〉 denotes the canonical scalar product on Rn and δλ is the Dirac mass at λ.
The polynomial πn minimizing the error E (Pn) must be chosen as

πn ∈ argmin
P (1)=1, degP6n

∫ 1

−1
P (λ)2dσ(λ) . (4.6)

We now show that the sequence of best polynomials π0, π1, π2, . . . can be computed as the
result of a second-order recursion, which leads to a second-order gossip method, whose coefficients
depend on σ. As noted by Cao et al. [2006], having iterates xn that satisfy a low-order recurrence
relation is valuable as it ensures that they can be computed online with limited memory cost. In
order to prove this property for our iterates, we use that these polynomials are orthogonal with
respect to some measure τ .

Definition 4.1 (Orthogonal polynomials w.r.t. τ). Let τ be a measure on [−1, 1]. Endow
the set of polynomials R[X] with the scalar product

〈P,Q〉τ =
∫
R
P (λ)Q(λ)dτ(λ) .

Denote n̄ ∈ N∪{∞} the cardinal of the support of τ . Then there exists a family π0, π1, ..., πn̄−1
of polynomials, such that for all n < n̄, π0, π1, ..., πn form an orthogonal basis of (Rn[X], 〈., .〉τ ),
where Rn[X] denotes the set of polynomials of degree smaller or equal to n. In other words,
for all k, n < n̄,

deg πn = n , 〈πk, πn〉τ = 0 if k 6= n .

π0, π1, ..., πn̄−1 is called a sequence of orthogonal polynomials with respect to τ (w.r.t. τ).
Moreover, the family of orthogonal polynomials π0, π1, ..., πn̄−1 is unique up to a rescaling
of each of the polynomials.

An extensive reference on orthogonal polynomials is the book [Szegö, 1939]. An introduction
from the point of view of applied mathematics can be found in [Gautschi, 2004]. In Appendix 4.B,
we recall the results from the theory of orthogonal polynomials that we use in this paper. The next
proposition states that the optimal polynomials sought in (4.6) are orthogonal polynomials.

Proposition 4.2. Let σ be some finite measure on [−1, 1] and let n̄ ∈ N ∪ {∞} be the
cardinal of Suppσ − {1}. For 0 6 n 6 n̄− 1, the minimizer πn of

min
P (1)=1, degP6n

∫ 1

−1
P (λ)2dσ(λ)
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is unique. Moreover, π0, . . . , πn̄−1 is the unique sequence of orthogonal polynomials w.r.t. dτ(λ) =
(1− λ)dσ(λ) normalized such that πn(1) = 1.

This result is well-known and usually stated without proof [Nevai, 1986, Sections 3, 4.1], [Nevai,
1979, Section 2]; we give the short proof in Appendix 4.D. In the following, the phrase “the orthog-
onal polynomials w.r.t. τ” will refer to the unique family of orthogonal polynomials w.r.t. τ and
normalized such that πn(1) = 1.

Remark 4.1. When n̄ is finite and n > n̄, finding a minimizer of
∫ 1
−1 P (λ)2dσ(λ) over the

set of polynomials such that P (1) = 1, degP 6 n is trivial. Indeed, one can consider the
polynomial

πn̄(λ) =
∏
λ′∈Suppσ−{1}(λ− λ′)∏
λ′∈Suppσ−{1}(1− λ′)

which is of degree n̄, satisfies πn̄(1) = 1 and
∫ 1
−1 πn̄(λ)2dσ(λ) = σ({1}). This is the best

value that a polynomial P of any degree, such that P (1) = 1, can get.

A fundamental result on orthogonal polynomials states that they follow a second-order recur-
sion.

Proposition 4.3 (Three-term recurrence relation, from [Szegö, 1939, Theorem 3.2.1]). Let
π0, . . . , πn̄−1 be a sequence of orthogonal polynomials w.r.t. some measure τ . There exist
three sequences of coefficients (an)16n6n̄−2, (bn)16n6n̄−2 and (cn)16n6n̄−2 such that for 1 6
n 6 n̄− 2,

πn+1(λ) = (anλ+ bn)πn(λ)− cnπn−1(λ) .

The classical proof of this proposition is given in Appendix 4.B.1. Taking σ to be the spectral
measure of (4.5) in Proposition 4.2, we get that the best polynomial gossip algorithm is a second-
order method whose coefficients are determined by the graph G, the gossip matrix W and the
vertex v. Indeed, as π0, . . . , πn̄−1 is a family of orthogonal polynomials, there exists coefficients
an, bn, cn such that

πn+1(λ) = (anλ+ bn)πn(λ)− cnπn−1(λ) ,
and thus

πn+1(W ) = anWπn(W ) + bnπn(W )− cnπn−1(W ) .
Decomposing π1(λ) = a0λ + b0 and applying the previous relation in x0 gives the second-order
recursion for the best polynomial estimators xn = πn(W )x0:

x1 = a0Wx0 + b0x0 , xn+1 = anWxn + bnxn − cnxn−1 . (4.7)

Note that the dependence of the gossip method in the graph G, the gossip matrix W and the
vertex v is entirely hidden in the coefficients an, bn, cn. Thus the choice of the coefficients is central.
In [Diekmann et al., 1999], it is argued that the coefficients can be computed in a “preprocessing
step”. Indeed, the coefficients can be computed in a centralized or decentralized manner, at the
cost of many extra communication steps. The gossip method that consists in computing the op-
timal coefficients an, bn, cn and running Eq. (4.7) will be refered to as parameter-free polynomial
iteration, as it does not require any tuning of parameters, and by analogy with the terminology
used in polynomial methods for the resolution of linear systems (see [Fischer, 1996, Section 6]). It
corresponds to the optimal polynomial iteration. For a detailed exposition on the parameter-free
polynomial iteration and a discussion of its practicability, see Appendix 4.E.
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Figure 4.4. Performance of different gossip algorithms running on the 2D grid.

However, in situations where a long preprocessing time is not granted (for instance because the
network evolves during time), it is not a valid option to keep repeating the preprocessing step to
update the coefficients an, bn, cn. Our approach consists in observing that there are sequences of
coefficients like (4.3) that —albeit they are not optimal— work reasonably well on a large set of
graphs. This implies that even if the details of the graph are not known to the algorithmic designer,
she can make a choice of coefficients that have a fair performance.

More formally, we approximate the true spectral measure σ of the graph with a simpler mea-
sure σ̃, whose associated polynomials have known recursion coefficients an, bn, cn. We will show that
in some cases, substituting the orthogonal polynomials w.r.t. σ with the ones orthogonal to σ̃ does
not worsen the efficiency of the gossip method much. In the next sections, we argue for two choices
of the approximating measure σ̃. The first uses only the spectral dimension d of the network, and
gives the Jacobi polynomial iteration (4.2). The second one uses both the spectral dimension d and
the spectral gap µ of W , and gives the Jacobi polynomial iteration with spectral gap.

Figure 4.4 reproduces Figure 4.3 and adds the performance of the parameter-free polynomial
iteration and the Jacobi polynomial iteration with spectral gap. It shows that in linear scale, the
performance of the parameter-free polynomial iteration is indistinguishable from the performance
of the Jacobi polynomial iterations with or without spectral gap, which are obtained through ap-
proximations of the spectral measure σ. However, the figure in log-scale shows that the asymptotic
convergence of the methods depends on the coarseness of the approximation. The relevance of this
asymptotic convergence to the practice depends on the application.

Remark 4.2. The shift-register iteration xn = Pn(W )x0 defined in (4.1) can be seen as a
best polynomial gossip iteration with some approximating measure. Indeed, the polynomials
Pn, n > 0 are the orthogonal polynomials w.r.t. some measure whose support is strictly
included in [−1, 1] (see Proposition 4.18).

4.3. Design of polynomial gossip algorithms for graphs of given spectral dimension

4.3.1. The dimension d and the rate of decrease of the spectral measure near 1. We
now assume that we are given a graphG on which we would like to run the optimal polynomial gossip
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algorithm (4.7). However, we know neither the spectral measure σ, nor the coefficients an, bn, cn.
In this section, we give a heuristic motivating an approximation σ̃ of the spectral measure σ using
only the dimension d of the graph. The heuristic is supported by the simulations of Section 4.1
and some rigorous theoretical support in Section 4.4.

Our approximation is given by the following non-rigorous intuition:

the graph G is of dimension d ⇔ σ([1− E, 1]) ≈ CEd/2 as E � 1 , (4.8)

for some constant C. Of course, we have not defined the dimension of a graph, nor given a rigorous
signification of the symbols “≈” and “�”. We come back to these questions in Section 4.3.3, but for
now we assume that the reader has an intuitive understanding of these notions and finish drawing
the heuristic picture.

The intuition (4.8) describes the repartition of the mass of σ near 1. This mass near 1 challenges
the design of polynomial methods as the gossip polynomials P are constrained to satisfy P (1) = 1
while minimizing

∫
P 2dσ. Moreover, eigenvalues of a graph close to 1 are known to describe the

large-scale structure of the graph and thus must be central in the design of gossip methods. The
traditional design of gossip algorithms considered the spectral gap µ between 1 and the second
largest eigenvalue, a quantity that typically gets very small in large graphs. Intuition (4.8) also
describes the behavior of the spectrum near 1, but on a larger scale than the spectral gap. It
describes how the set of the largest eigenvalues is distributed around 1.

4.3.2. The Jacobi iteration for graphs of given dimension. When a spectral measure
satisfies the edge estimate (4.8), we approximate it with a measure satisfying the same estimate,
namely

dσ̃(λ) = (1− λ)d/2−11{λ∈(−1,1)}dλ .

Note that we do not elaborate on the normalization of the approximate measure dσ̃ as it is only
used to define an orthogonality relation between polynomials, in which the normalization does
not matter. The orthogonal polynomials w.r.t the modified spectral measure (1 − λ)dσ̃(λ) =
(1 − λ)d/21{λ∈(−1,1)}dλ and their recursion coefficients are known as they correspond to the well-
studied Jacobi polynomials [Szegö, 1939, Chapter IV]:

a
(d)
0 = d+ 4

2(2 + d) , b
(d)
0 = d

2(2 + d) ,

a(d)
n = (2n+ d/2 + 1)(2n+ d/2 + 2)

2(n+ 1 + d/2)2 , b(d)
n = d2(2n+ d/2 + 1)

8(n+ 1 + d/2)2(2n+ d/2) ,

c(d)
n = n2(2n+ d/2 + 2)

(n+ 1 + d/2)2(2n+ d/2) .

(4.9)

These coefficients are derived in Appendix 4.H.2. This approximation of the spectral measure gives
the practical recursion

x1 = a
(d)
0 Wx0 + b

(d)
0 x0 , xn+1 = a(d)

n Wxn + b(d)
n xn − c(d)

n xn−1 , (4.10)

that only depends on d. It is just a rewriting of the Jacobi polynomial iteration (4.2) given in
the introduction of this paper. The Jacobi polynomial π(d/2,0)

n (λ) such that xn = π
(d/2,0)
n (W )x0 is

plotted in Figure 4.5 with d = 2 and n = 6, along with the polynomial λ6 associated with simple
gossip. The Jacobi polynomial is smaller in magnitude near the edge of the spectrum.

The shape of the diffusion of the Jacobi polynomial iteration on grids is shown in Figures
5.1-5.2; it is the subject of Chapter 5 to study it in detail.
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simple gossip λ6.

4.3.3. Spectral dimension of a graph. In this section, we discuss the meaning of intu-
ition (4.8). There are several definitions of the dimension of a graph.

When referring to the dimension of a graph, many authors actually refer to some quantity d that
has been used in the construction of the graph. An example is the d-dimension grid {1, . . . , n}d.
Another example consists in removing edges in Zd with probability 1 − p, independently of one
another. The resulting graph G is called a percolation bond [Grimmett, 1999]. It is natural to
consider that this graph is of dimension d. A more complicated example is the random geometric
graph: choose d > 1, and sample n points uniformly in the d-dimensional cube [0, 1]d, and connect
with an edge all pairs of points closer than some chosen distance r > 0. It is natural to say that
this random geometric graph is d-dimensional as it is the dimension of the surface it is built on.

Mathematicians have developed more intrinsic definitions of the dimension of a graph [Durhuus,
2009]; here we use the notion of spectral dimension. This definition is of interest only for infinite
graphs G = (V, E). Here, we consider only locally finite graphs, meaning that each node has only a
finite number of neighbors. As with Definition 1.3, one can define a gossip matrix W with entries
indexed by V × V. If G is infinite, W is a doubly infinite array, but with only a finite number of
non-zero elements in each line and column as the graph is locally finite.

The spectral dimension of a graph G is defined using a random walk on the graph, typically
the simple random walk on G, but here we consider more generally the lazy random walk with
transition matrix W̃ = (I +W )/2. (We take the lazy random walk to avoid periodicity issues.)

Definition 4.2 (Spectral dimension). Denote pn the probability that the lazy random walk,
when started from v, returns at v at iteration n. The spectral dimension of the graph is, if
it exists and is finite, the limit

ds = ds(G,W, v) = −2 lim
n→∞

log pn
logn .

If the graph is connected and W is the transition matrix of the simple random walk, this
definition does not depend on the choice of the vertex v. Motivations for this definition are:

Proposition 4.4. The spectral dimension of
(
Zd,W

)
with W = A(Zd)/d is d.

Proposition 4.5 (The spectral dimension of the supercritical percolation cluster is d). Let
G0 be a supercritical percolation bond in Zd with edge probability p ∈ (pc, 1], meaning that
a.s., there is an infinite connected component G in G0. Endow G with the gossip matrix
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W = I + (A − D)/(2d), where A and D are respectively the adjacency and the degree
matrices of G. Fix v ∈ V. Then a.s. on the event {v ∈ G}, ds(G,W, v) = d.

The proofs of Propositions 4.4, 4.5 are given in Appendix 4.F. The spectral dimension of a
graph is related to the decay of the spectrum of W near 1.

Definition 4.3 (Spectral measure of a possibly infinite graph). Let G be a graph and W
its gossip matrix. Fix v ∈ V. As W is an auto-adjoint operator, bounded by 1, acting on
`2(V), there exists a unique positive measure σ = σ(G,W, v) on [−1, 1], called the spectral
measure, such that for all polynomial P ,

〈ev, P (W )ev〉`2(V) =
∫ 1

−1
P (λ)dσ(λ) ,

where (ew)w∈V is the canonical basis of RV .

For a deeper presentation of spectral graph theory, see [Mohar and Woess, 1989] and references
therein. Note that when the graph G is finite, it is easy to check that the spectral measure is
the discrete measure σ(G,W, v) =

∑m
i=1(ui(v))2δλi where λ1, . . . , λm are the eigenvalues of W and

u1, . . . , um are the associated normalized eigenvectors. However, when the graph G is infinite, the
spectrum may exhibit a continuous part w.r.t. the Lebesgue measure.

Proposition 4.6 (The spectral dimension is the spectral decay). Let G be a graph, W a
gossip matrix on G and v a vertex. We denote ds = ds(G,W, v) the spectral dimension and
σ = σ(G,W, v) the spectral measure. Then the limit limE→0 log σ([1 − E, 1])/ logE exists
and is finite if and only if ds exists and is finite. In that case,

lim
E→0

log σ([1− E, 1])
logE = ds

2 .

For a proof, see Appendix 4.G. This proposition gives a rigorous equivalent to intuition (4.8).
It uses the spectral dimension of the graph, which is an intrinsic property of the graph and turns
out to coincide with our intuition of the dimension of a graph in examples of interest. Note that in
Section 4.2, the spectral measure σ is defined as dσ(λ) =

∑
〈x0, ui〉2δλi whereas in this section, it is

defined for finite graphs as dσ(λ) =
∑
ui(v)2δλi . Roughly speaking, intuition (4.8) is valid for the

former if x0 projects evenly on all eigenvectors ui. It is the case if x0 has random i.i.d. components
for instance; this is used in Section 4.4.

4.4. Performance guarantees in graphs of spectral dimension d

In this section, we seek to give theoretical support to the empirical observations of Section 4.1:
Jacobi polynomial gossip improves on the non-asymptotic phase over existing methods. This is
challenging because the analysis of gossip methods is simpler in the asymptotic regime. In our
case, we use asymptotic properties of the Jacobi polynomials as n→∞.

In order to be able to run an asymptotic analysis without falling in the asymptotic phase of
exponential convergence, we run our method on infinite graphs G = (V, E). In infinite graphs,
it is impossible for information to have reached every node in any finite time. In practice, the
conclusions drawed on infinite graphs should be taken as approximations of the behavior on very
large graphs.

Of course, it is impossible for any gossip method to estimate the average of the values in the
infinite graphs: indeed, within time n the node v can only share information with nodes that
are closer than n (w.r.t. the shortest path distance in the graph). Even worse, the average of an
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infinite number of values is ill-defined. Thus additional assumptions on the observations x0(v) are
needed. Several choices could be possible here, to keep the discussion simple we assume that the
observations x0(v) are independent identically distributed (i.i.d.) samples from a probability law ν.
The agents then seek to estimate the statistical mean µ =

∫
R x dν(x) of ν.

In practice, to build good estimates, the nodes should average their samples, thus it is natural
to run gossip algorithms in this situation. An estimator performs well if it averages a lot of samples
and averages them uniformly. Thus the mean square error (MSE) of the estimators measures the
capacity of a gossip methods to average locally in the graph.

This statistical gossip framework was already present in [Braca et al., 2008] and is not only used
for its technical advantages. It is also a reasonable modeling of gossip of signals with a statistical
structure in large networks. For instance, in sensor networks, observations are measurements of the
environment corrupted by noise. The purpose of the gossip algorithm is to average observations to
get a better estimate of the ground truth. Gossip algorithms are also used as building blocks in
distributed statistical learning problems such as distributed optimization (see [Nedic and Ozdaglar,
2009, Scaman et al., 2017, Sayed, 2014, Sundhar Ram et al., 2010, Duchi et al., 2012, Chen and
Sayed, 2012]) or distributed bandit algorithms (see [Szorenyi et al., 2013, Landgren et al., 2016,
Korda et al., 2016]). All of these problems have a statistical structure that simplifies the underlying
gossip problem. For instance, in sensor networks, good estimates of the mean may not require using
observations from nodes extremely far in the network.

Let us now sum up the setting. The network of agents is modeled by a (possibly infinite, locally
finite) graph G = (V, E), that we endow with a gossip matrix W . We consider a probability law ν
on R, and µ =

∫
R x dν(x) its statistical mean. Each agent v ∈ V is given a sample from ν:

x0(v), v ∈ V ∼
i.i.d.

ν .

The following theorem gives the asymptotic MSE of the estimators built by the simple gossip
method and the Jacobi polynomial iteration.

Theorem 4.1. Fix a vertex v and denote ds = ds(G,W, v) the spectral dimension of the
graph.

(1) Let xn be the iterates of the simple gossip method (1.16), or the iterates of the
shift-register gossip method (4.1) with some parameter ω ∈ [1, 2]. Then

lim inf
n→∞

logE[(xn(v)− µ)2]
logn > −ds2 . (4.11)

(2) Let xn be the iterates of the Jacobi polynomial iteration (4.10) with parameter
d = ds. Then

lim sup
n→∞

logE[(xn(v)− µ)2]
logn 6 −ds . (4.12)

See Appendix 4.I for a proof. The above theorem shows that the asymptotic MSE of the Jacobi
polynomial iteration can be upper bounded using only the spectral dimension of the graph. The
power decay of the MSE with the Jacobi polynomial iteration enjoys a better rate than with simple
gossip and the shift-register iteration (regardless of the choice of ω). In some cases, this rate can
be proved optimal using the Hausdorff dimension of the graph.
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Definition 4.4 (Hausdorff dimension). The Hausdorff dimension of the graph G at vertex v
is, if it exists, the limit

dh = dh(G, v) = lim
n→∞

log |Bn(v)|
logn .

If G is connected, then dh does not depend on the choice of v.

Proposition 4.7. Let xn = Pn(W )x0 be any polynomial gossip method on a graph G with
Hausdorff dimension dh. Then

lim inf
n→∞

logE[(xn(v)− µ)2]
logn > −dh . (4.13)

See Appendix 4.J for a proof. Note that this lower bound it attained if xn is the local average
of values:

xn(v) = 1
|Bn(v)|

∑
w∈Bn(v)

x0(w) .

Thus reaching this lower bound means that the polynomial gossip method averages locally. Theo-
rem 4.1 shows that it is the case with the Jacobi polynomial iteration if d = ds = dh.

Corollary 4.1. Assume that the spectral and the Hausdorff dimensions have the same value
d = dh = ds. If xn are the iterates of the Jacobi polynomial iteration (4.10), we obtain the
optimal asymptotic convergence rate

lim
n→∞

logE[(xn(v)− µ)2]
logn = −dh .

Application to the grid. Proposition 4.4 states that the spectral dimension of Zd is d, which
coincides the Hausdorff dimension.

Corollary 4.2. Let xn be the iterates of the Jacobi polynomial iteration (4.10) on the grid
Zd. Then we obtain the optimal asymptotic convergence rate

lim
n→∞

logE[(xn(v)− µ)2]
logn = −d .

Note that Theorem 4.1 also gives that if xn are the iterates of the simple gossip method, then
limn→∞ logE[(xn(v)− µ)2]/ logn = −d/2. (The theorem actually only gives the lower bound, but
the proof technique, combined with the fact that the spectrum of Zd is symmetric, actually gives
the result.) This result could have been anticipated intuitively as follows. Under the simple gossip
iteration, the information of the measurement x0(v) diffuses following a simple random walk on
the grid. According to the central limit theorem, at large n, the information is approximately
distributed according to a Gaussian distribution of standard deviation

√
n, which is approximately

supported by Θ(
√
n
d) nodes. This means that at time n, a node v gets the information of Θ(nd/2)

neighbors. As a consequence, the MSE E[(xn(v)− µ)2] scales like n−d/2.

Application to the percolation bonds. Let G be the random infinite cluster of a supercritical
percolation in Zd as defined in Proposition 4.5. The proposition gives that the spectral dimension
of G is a.s. d, which is also a lower bound for the Hausdorff dimension. But it is trivial that the
Hausdorff dimension is smaller than d, thus the two coincide.
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Corollary 4.3. Let G be the random infinite cluster of a supercritical percolation in Zd,
and v ∈ Zd. Let xn be the iterates of the Jacobi polynomial iteration (4.10). Then a.s. on
the event {v ∈ G},

lim
n→∞

logEx0 [(xn(v)− µ)2]
logn = −d .

Remark 4.3. The Jacobi polynomial iteration (4.10) is derived so that xn = π
(α,β)
n (W )x0,

where π(α,β)
n are the orthogonal polynomials w.r.t. the Jacobi measure σ(α,β)(dλ) = (1 −

λ)α(1 + λ)βdλ on [−1, 1], with α = d/2, β = 0, d is the spectral dimension. A curious
reader could wonder what happens for other choices of α and β (while keeping d fixed).
This question is investigated at length in Appendix 4.I.5. The conclusion is that the natural
choice α = d/2, β = 0 is optimal (up to constant factors) but there are other choices that
are optimal.

4.5. The Jacobi polynomial iteration with spectral gap

In this section, we adapt the Jacobi polynomial iteration to the case where the spectral gap µ of
the gossip matrix W is given. This allows to obtain accelerated asymptotic rates of convergence,
that compete with the state-of-the-art accelerated algorithms for gossip.

We assume that we are given the spectral dimension d of the graph, which determines the density
of eigenvalues near 1, and the spectral gap µ = 1 − λ2(W ), the distance between the largest and
the second largest eigenvalue. Given these parameters, we can approximate the spectral measure
of W with

dσ̃(λ) = ((1− µ)− λ)d/2−11{λ∈(−1,1−µ)}dλ .
Following the recommendation of Proposition 4.2, this means that we should consider the polyno-
mial iteration associated with the orthogonal polynomials w.r.t. (1− λ)dσ̃(λ) = (1− λ)((1− µ)−
λ)d/2−11{λ∈(−1,1−µ)}dλ. We do not know how to compute the recurrence formula for this measure,
thus we used the orthogonal polynomials w.r.t. ((1−µ)−λ)dσ̃(λ) = ((1−µ)−λ)d/21{λ∈(−1,1−µ)}dλ,
which is a rescaled version of a Jacobi measure. The corresponding polynomial method is called
the Jacobi polynomial iteration with spectral gap.

A recursive formula for orthogonal polynomials w.r.t. ((1 − µ) − λ)dσ̃(λ) is derived in Sec-
tion 4.H.3. Taking α = d/2 and β = 0 in equations (4.26), we get the practical recursion:

xn = yn
δn
,

y0 = x0 , δ0 = 1 ,

y1 = a
(d,µ)
0 Wx0 + b

(d,µ)
0 x0 , δ1 = a

(d,µ)
0 + b

(d,µ)
0 ,

yn+1 = a(d,µ)
n Wyn + b(d,µ)

n yn − c(d,µ)
n yn−1 , t > 1 ,

δn+1 =
(
a(d,µ)
n + b(d,µ)

n

)
δn − c(d,µ)

n δn−1 , n > 1 ,

a(d,µ)
n = a(d)

n

(
1− µ

2

)−1
, b(d,µ)

n = b(d)
n + µ

2

(
1− µ

2

)−1
a(d)
n , n > 0 ,

c(d,µ)
n = c(d)

n , n > 1 ,

(4.14)

where the coefficients a(d)
n , b

(d)
n , c

(d)
n are defined in (4.9).

Theorem 4.2 (Asymptotic rate of convergence). Let µ > 0 be a lower bound on the
spectral gap of the gossip matrix W and d any positive real. Let x0 be any family of initial
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observations and xn be the sequence of iterates generated by the Jacobi polynomial iteration
with spectral gap (4.14). Then

lim sup
n→∞

‖xn − x̄1‖1/n2 6
1− µ/2

(1 +
√
µ/2)2 .

This shows that the Jacobi polynomial iteration with spectral gap enjoys linear convergence.
The asymptotic rate of convergence is equivalent to 1−

√
2µ as µ→ 0. This justifies that we obtain

an accelerated asymptotic rate of convergence that compares with the state-of-the art accelerated
gossip methods (see Figure 4.4).

Note that the asymptotic rate of convergence does not depend on d. However, the choice of d
may have an important effect during the non-asymptotic phase n < 1/√µ. In this phase, the
spectral gap µ can be neglected in the approximation of the spectral measure, and it is important
that the densities of eigenvalues of σ and σ̃ match near the upper edge of the spectrum. This is
why one should choose d as the spectral dimension of the graph.

4.6. The parallel between the gossip methods and distributed Laplacian solvers

There is a natural parallel between gossip methods and iterative methods that solve linear systems.
Loosely speaking, simple gossip corresponds to gradient descent on the quadratic minimization
problem associated to the linear system, shift-register gossip to Polyak’s heavy-ball method (1.2)
and the parameter-free polynomial iteration to the conjugate gradient algorithm (see [Fischer,
1996] or [Polyak, 1987] for references on these subjects). In this parallel, the fact that we can reach
perfect gossip in n steps (see Remark 4.1) translates into the finite convergence of the conjugate
gradient algorithm in a number of iterations equal to the dimension of the ambient space. In the
distributed resolution of linear systems, the problem that the recursion coefficients an, bn, cn can
not be computed in a centralized manner has also appeared and it motivated the development of
inner-product free iterations.

The Jacobi polynomial iterations presented above were motivated by the facts that (a) the
parameter-free polynomial iteration is not feasible in the distributed setting of gossip, and (b) the
gossip matrix W exhibits a structure due to the low-dimension manifold on which the agents live.
Interestingly, the literature on multi-agent systems deals with some minimization problems with
the same properties. Examples are given by the estimation of quantities on graphs from relative
measurements, in which the agents v ∈ V try to estimate some quantity x(v), v ∈ V defined over
the graph, from noisy relative measurements over the edges of the graph:

ξ(v, w) = x(v)− x(w) + η(v, w) , {v, w} ∈ E .

This problem has applications in network localization, where the x(v) are the positions of the agents
and the ξ(v, w) come from measurements of the distances and directions between the neighbors.
It also has similar applications in time synchronization of clocks over networks, where x(v) is the
offset of the clock of node v; and to motion consensus, where x(v) is the speed of agent v. For an
introduction to estimation on graphs from relative measurements and its applications, see [Barooah
and Hespanha, 2008] and references therein. Note that the quantities x(v) can only be determined
up to a global constant from the measurements; either we seek the true solution up to a constant
only, either we assume that some agents know their true value.

In natural approach to solve the problem is to determine estimates y(v) of x(v) that minimize

1
2
∑
v,w

Wv,w (ξ(v, w)− (y(v)− y(w)))2 ,
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where Wv,w are some weights on the edges of the graph. Indeed, this corresponds to finding the
maximum likelihood estimator if the noise η(v, w) is i.i.d. Gaussian andWv,w is the inverse variance
of η(v, w). The above minimization problem is a quadratic problem whose covariance matrix is the
Laplacian I −W . It can be solved using gradient descent or spectral-gap based accelerations like
the heavy-ball method. However, the conjugate gradient algorithm can not be applied here as
it involves centralized computations. The Jacobi polynomial iterations developed in this paper
can be adapted to this situation in order to develop accelerations exploiting the structure of the
Laplacian I −W . Experimenting how this performs in real-world situations is left for future work.

4.7. Message passing seen as a polynomial gossip algorithm

This section develops another application of the polynomial point-of-view on gossip algorithms.
It is independent of the Jacobi polynomial iterations developed in Sections 4.3-4.5; we show that
the message passing algorithm for gossip of Moallemi and Roy [2005] has a natural derivation as a
polynomial gossip algorithm and uses this point of view to derive convergence rates.

The message passing algorithm of Moallemi and Roy [2005] (in its zero-temperature limit)
defines quantities on the edges of the graph G with the following recursion: for v, w ∈ V linked by
an edge in the graph G, it defines K0(v, w) = 0, M0(v, w) = 0, and

Kn+1(v, w) = 1 +
∑

u:u∼v, u6=w
Kn(u, v) , (4.15)

Mn+1(v, w) = 1
Kn+1(v, w)

(
x0(v) +

∑
u:u∼v, u6=w

Kn(u, v)Mn(u, v)
)
, (4.16)

where u ∼ v denotes again that u and v are neighbors. K(v, w) and M(v, w) are interpreted as
messages going from v to w in G: Mn(v, w) corresponds to an average of observations gathered by
v and transmitted to w; Kn(v, w) is the corresponding number of observations. We recommend
[Moallemi and Roy, 2005, Section II.A] and Lemma 4.8 for a detailed description of this intuition.
At each time step n, the output of the algorithm is

xn(v) = x0(v) +
∑
u:u∼vK,(u, v)Mn(u, v)

1 +
∑
u:u∼vKn(u, v) . (4.17)

This gossip methods performs exact local averaging on trees, as shown by the following proposition.

Proposition 4.8. Assume that G is a tree. Then for all n > 1, v ∈ V,

xn(v) = 1
|Bv(n)|

∑
w∈Bv(n)

x0(w) .

See Appendix 4.L for a proof. Nothing prevents from running the message passing recur-
sion (4.16)-(4.17) in a graph G with loops. In the case of regular graphs, we are able to interpret
the message passing algorithm as a polynomial gossip algorithm.

Theorem 4.3. Assume G is d-regular, meaning that each vertex has degree d, d > 2.
Assume further that W = A(G)/d. Denote σ(Td) = σ(Td,W, v) the spectral measure of
the infinite d-regular tree at any vertex v (see Definition 4.3). Then the output xn of the
message passing algorithm (4.16)-(4.17) on G can also be obtained as xn = πn(W )x0 where
π0, π1, . . . are the orthogonal polynomials w.r.t. (1− λ)σ(Td)(dλ).
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See Appendix 4.M for a proof. In words, the theorem above states that message passing
corresponds to the best polynomial gossip algorithm when one believes the graph is a tree. This is
not surprising as message passing algorithms are often derived by neglecting loops in a graph.

An easy follow-up of this theorem is that the iterates xn defined in (4.16)-(4.17) follow a second-
order recursion (in d-regular graphs). Actually the spectral measure σ(Td) of the infinite d-regular
tree, also called the Kesten-McKay measure, can be computed explicitly (see [Sodin, 2007, Section
2.2]),

σ(Td)(dλ) = d

2π(1− λ2)

(4(d− 1)
d2 − λ2

)1/2
1[−2

√
d−1/d,2

√
d−1/d](λ)dλ .

The recurrence relation of the modified Kesten-McKay measure (1 − λ)σ(Td)(dλ) is derived in
Appendix 4.H.4. It shows that

x1 = a0Wx0 + b0x0 , xn+1 = anWxn − cnxn−1 ,

a0 = d

d+ 1 , b0 = 1
d+ 1 , an =

d
d−1 − 2(d− 1)−(n+1)

1− 2
d(d− 1)−(n+1) , cn =

1
d−1 −

2
d(d− 1)−n

1− 2
d(d− 1)−(n+1) , n > 1 .

Theorem 4.3 gives a way to study the convergence of the message passing algorithms on d-
regular graphs with loops. For instance, using asymptotic properties of the orthogonal polynomials
w.r.t. (1 − λ)σ(Td)(dλ), we obtain the convergence rate of the message passing algorithm as a
function of the spectral gap of the matrix:

Theorem 4.4. Assume G is d-regular, meaning that each vertex has degree d, d > 3.
Assume further that W = A(G)/d, and denote µ̃ its absolute spectral gap. Let x0 be any
family of initial observations and xn be the sequence of iterates generated by equations (4.16)-
(4.17). Then

(1) If µ̃ < 1− 2
√
d− 1/d,

lim sup
n→∞

‖xn − x̄1‖1/n2 6
(1− µ̃) +

√
(1− µ̃)2 − 4(d− 1)/d2

1 +
√

1− 4(d− 1)/d2 .

Moreover, the upper bound is reached if there exists an eigenvector u corresponding
to an eigenvalue of W of magnitude 1− µ̃ such that 〈u, x0〉 6= 0.

(2) If µ̃ > 1− 2
√
d− 1/d,

lim sup
n→∞

‖xn − x̄1‖1/n2 6
2
√
d− 1/d

1 +
√

1− 4(d− 1)/d2 .

A consequence of this theorem is that the rate of convergence of the message passing algorithm
is 1 − cµ̃ + o(µ̃) as µ̃ → 0, for some constant c. This proves that message passing has a diffusive
(or unaccelerated) behavior on graphs with a small spectral gap. Figure 4.6 shows this diffusive
convergence rate on the 2D grid.

However, the message passing algorithm can be competitive in situations with a large spectral
gap. For instance, McKay’s Theorem [Sodin, 2007, Theorem 1.1] states that the spectral measure
of a uniformly random d-regular graph on m vertices converges to the spectral measure σ(Td) of
the d-regular tree (in law, for the weak-convergence topology). This suggests that the message
passing algorithm is well-suited for uniformly sampled large regular graphs. We give simulations
in Figure 4.7 on uniformly sampled 3-regular graphs of size m = 2000. The results were averaged
over 10 graphs. We observe that in this case, message passing matches closely the lower-bound.
Note that in this case, we do not have a diffusive rate of convergence because the absolute spectral
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Figure 4.6. Performance of different gossip algorithms running on the 2D grid.
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Figure 4.7. Performance of different gossip algorithms running a uniformly ran-
dom 3-regular graph of size m = 2000.

gap µ̃ does not converge to 0 as m→∞ (see [Friedman, 2003] for a proof that µ→ 1− 2
√
d− 1/d

in probability).
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Appendix of Chapter 4

4.A. Details of the simulations of Section 4.1

2D grid. We run simulations on a 40 × 40 square lattice (m = 1600 vertices) endowed with the
gossip matrix defined in (1.15) with dmax = 4. The results are plotted in Figure 4.2a and a 20×20
grid is plotted in Figure 4.1a for visualization.

3D grid. We run simulations on a 12×12×12 cubic lattice (m = 1728 vertices) endowed with
the gossip matrix defined in (1.15) with dmax = 6. The results are plotted in Figure 4.2b.

2D percolation bond. We build a 2D percolation bond by taking a 40 × 40 2D grid, and
keep each edge independently with probability p = 0.6. To avoid connectivity issues, we consider
G the largest connected component of the resulting graph, endowed with the gossip matrix defined
in (1.15) with dmax = 4. The results are plotted in Figure 4.2c and a 20× 20 percolation bond is
plotted in Figure 4.1b for visualization.

3D percolation bond. We build a 3D percolation bond by taking a 12× 12× 12 3D grid and
keep each edge independently with probability p = 0.4. To avoid connectivity issues, we consider
G the largest connected component of the resulting graph, endowed with the gossip matrix defined
in (1.15) with dmax = 6. The results are plotted in Figure 4.2d.

2D random geometric graph. We build a 2D random geometric graph G by sampling
m = 1600 points uniformly in the unit square [0, 1]2 and linking pairs closer than 1.5/

√
m = 0.0375.

To avoid connectivity issues, we consider G the largest connected component of the resulting graph.
We build a gossip matrix W on G with the formulas: Wvw = max(deg v,degw)−1 if v ∼ w and
Wvv = 1−

∑
w:w∼v max(deg v,degw)−1. The results are shown in Figure 4.2e.

3D random geometric graph. We build a 3D random geometric graph G by sampling
m = 1728 points in the unit cube [0, 1]3 and linking pairs closer than 1.5/m1/3 = 0.125. To avoid
connectivity issues, we consider G the largest connected component of the resulting graph. We
build a gossip matrix W on G with the formulas: Wvw = max(deg v,degw)−1 if v ∼ w and
Wvv = 1−

∑
w:w∼v max(deg v,degw)−1. The results are shown in Figure 4.2f.

4.B. Toolbox from orthogonal polynomials

In this appendix, we describe the tools from the theory of orthogonal polynomials that we use in
this paper. The definition of the orthogonal polynomials πn w.r.t. some measure τ is given in Def-
inition 4.1. We start by giving some general properties of orthogonal polynomials in Section 4.B.1.
We then describe two parameterized measures with respect to which orthogonal polynomials can
be explicitly described: the Jacobi polynomials, in Section 4.B.2, and the polynomials orthogonal
to some measure of the form (1 − λ2)1/2/ρ(λ), where ρ is some polynomial, in Section 4.B.3. We
finally give in Section 4.B.4 some asymptotic properties of the Jacobi polynomials as n→∞.
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4.B.1. General properties.

Proposition 4.9 (from [Szegö, 1939, Theorem 3.3.1]). Let πn be a family of orthogonal
polynomials w.r.t. some measure τ on some interval [a, b]. Then the zeros of πn are real,
distinct and located in the interior of [a, b].

In Proposition 4.3, it is stated that the orthogonal polynomials satisfy a three-term recurrence
relation. We write here the short proof as it is used in Appendix 4.E.

Proof of Proposition 4.3. The polynomial λπn(λ) of the variable λ is of degree n+ 1, thus
it can be decomposed over the orthogonal basis π0(λ), π1(λ), . . . , πn+1(λ):

λπn(λ) =
n+1∑
k=0

〈λπn, πk〉τ
〈πk, πk〉τ

πk(λ) .

Note that 〈λπn, πk〉τ =
∫
λπn(λ)πk(λ)dτ(λ) = 〈πn, λπk〉τ = 0 when k 6 n− 2 because in this case

λπk(λ) ∈ Rn−1[X] and πn is orthogonal to Rt−1[X]. Thus

λπn(λ) = 〈λπn, πn+1〉τ
〈πn+1, πn+1〉τ

πn+1(λ) + 〈λπn, πn〉τ
〈πn, πn〉τ

πn(λ) + 〈λπn, πn−1〉τ
〈πn−1, πn−1〉τ

πn−1(λ) ,

with the convention π−1 = 0. Note that 〈λπn, πn+1〉τ is non-zero as otherwise it would imply that
λπn is a polynomial of degree smaller or equal to n, which is absurd. We get the recursion formula
by denoting

an = 〈πn+1, πn+1〉τ
〈λπn, πn+1〉τ

, bn = −〈πn+1, πn+1〉τ 〈λπn, πn〉τ
〈λπn, πn+1〉τ 〈πn, πn〉τ

, cn = 〈πn+1, πn+1〉τ 〈λπn, πn−1〉τ
〈λπn, πn+1〉τ 〈πn−1, πn−1〉τ

. (4.18)

�

4.B.2. Jacobi polynomials.

Definition 4.5 (from [Szegö, 1939, Chapter IV]). Let α, β > −1. The Jacobi polynomials
P

(α,β)
n are the orthogonal polynomials w.r.t. the Jacobi measure

σ(α,β)(dλ) = (1− λ)α(1 + λ)β1{λ∈(−1,1)}dλ ,

normalized such that P (α,β)
n (1) =

(n+α
n

)
.

Example 4.1 (from [Szegö, 1939, Section 2.4]). (1) The Chebyshev polynomials Tn of
the first kind are the orthogonal polynomials w.r.t. σ(−1/2,−1/2)(dλ) = (1− λ2)−1/2

and normalized such that Tn(1) = 1. They are, up to some rescaling, a family of
Jacobi polynomials. They satisfy the trigonometric formula

Tn(cos θ) = cos(nθ) .
(2) The Chebyshev polynomials Un of the second kind are the orthogonal polynomials

w.r.t. σ(1/2,1/2)(dλ) = (1−λ2)1/2 and normalized such that Un(1) = n+1. They are,
up to some rescaling, a family of Jacobi polynomials. They satisfy the trigonometric
formula

Un(cos θ) = sin(n+ 1)θ
sin θ .

A remarkable property of the Jacobi polynomials is that their recurrence relation can be com-
puted explicitly.
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Proposition 4.10 (from [Szegö, 1939, Section 4.4.5]). Let α, β > −1. The Jacobi polyno-
mials Pα,βn satisfy the three recurrence formula

P
(α,β)
0 (λ) = 1 , P

(α,β)
1 (λ) = 1

2(α+ β + 2)λ+ 1
2(α− β) ,

2(n+ 1)(n+ 1 + α+ β)(2n+ α+ β)P (α,β)
n+1 (λ)

= (2n+ α+ β + 1)[(2n+ α+ β + 2)(2n+ α+ β)λ+ α2 − β2]P (α,β)
n (λ)

− 2(n+ α)(n+ β)(2n+ α+ β + 2)P (α,β)
n−1 (λ) .

Example 4.2. The Chebyshev polynomials of the first and the second kind satisfy the same
recurrence formula, but with different initializations:

T0(λ) = 1 , T1(λ) = λ , Tn+1(λ) = 2λTn(λ)− Tn−1(λ) ,
U0(λ) = 1 , U1(λ) = 2λ , Un+1(λ) = 2λUn(λ)− Un−1(λ) .

Proposition 4.11 (from [Szegö, 1939, Theorem 7.32.1]). Let α, β > 1/2. Then

max
λ∈[−1,1]

∣∣∣P (α,β)
n (λ)

∣∣∣ =
(
n+ max(α, β)

n

)
.

4.B.3. Polynomials orthogonal w.r.t. (1 − λ2)1/2/ρ(λ), ρ polynomial. In this section,
we present how one can compute the recurrence relation for some orthogonal polynomials w.r.t. a
weight of the form (1− λ2)1/2/ρ(λ), ρ polynomial.

Proposition 4.12 (from [Szegö, 1939, Theorem 1.2.1]). Let ρ be a real polynomial of
degree l which is non-negative for λ ∈ [−1, 1]. Then there exists a polynomial h of degree l
such that for all real θ, ρ(cos θ) = |h(eiθ)|2.

Proposition 4.13 (from [Szegö, 1939, Theorem 2.6]). Let ρ be a real polynomial of degree
l taking positive values on the interval [−1, 1], and

τ(dλ) = (1− λ2)1/2

ρ(λ) dλ .

Let h be a polynomial of degree l such that ρ(cos θ) = |h(eiθ)|2 (see Proposition 4.12), and
decompose h(eiθ) = c(θ) + is(θ), c(θ) and s(θ) real. Then the polynomials

πn(cos θ) = c(θ)Un(cos θ)− s(θ)
sin θTn+1(cos θ)

are orthogonal w.r.t. τ .

4.B.4. Asymptotics for the Jacobi polynomials. To prove the asymptotic performance
guarantees of the polynomial iterations we build in this paper, we need the following asymptotic
properties of the Jacobi polynomials.

Proposition 4.14 (from [Szegö, 1939, Theorem 8.21.7]). Let α, β > −1, and λ > 1 a real
number. Then there exists a positive constant c = c(α, β, λ) such that

P (α,β)
n (λ) ∼

n→∞
c

n1/2

(
λ+

√
λ2 − 1

)n
.

In the special case of the Chebyshev polynomials, we also have similar non-asymptotic bounds.
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Lemma 4.1. For all λ > 1, for all n > 0,
1
2
(
λ+

√
λ2 − 1

)n
6 Tn(λ) 6

(
λ+

√
λ2 − 1

)n
, (4.19)(

λ+
√
λ2 − 1

)n
6 Un(λ) 6 (n+ 1)

(
λ+

√
λ2 − 1

)n
. (4.20)

Proof. We start by deriving a classic expression for the Chebyshev polynomials. The identities

Tn(cos θ) = cos(nθ) , Un(cos θ) = sin((n+ 1)θ)
sin θ ,

can be interpreted as

Tn

(
z + z−1

2

)
= zn + z−n

2 , Un

(
z + z−1

2

)
= zn+1 − z−(n+1)

z − z−1 , for z = eiθ.

The above equations are equalities of holomorphic functions on the unit circle, it implies that the
identities must be true for all complex numbers z 6= 0; we use it here for real numbers z.

For λ > 1, write λ = (z + z−1)/2, z > 1. This is equivalent to z = λ+
√
λ2 − 1. Then

Tn(λ) = zn + z−n

2 = 1 + z−2n

2 zn = 1 + z−2n

2
(
λ+

√
λ2 − 1

)n
.

As z > 1,
1
2 6

1 + z−2n

2 6 1 .

This proves the inequalities (4.19). Further,

Un(λ) = zn+1 − z−(n+1)

z − z−1 = 1− z−2n−2

1− z−2 zn = 1− z−2n−2

1− z−2

(
λ+

√
λ2 − 1

)n
.

As z > 1,

1 6 1− z−2n−2

1− z−2 6 n+ 1 .

This proves the inequalities (4.20). �

Proposition 4.15 (from [Szegö, 1939, Theorem 7.32.2]). Let α, β > −1. There exists two
constants C1, C2 > 0 such that,∣∣∣P (α,β)

n (cos θ)
∣∣∣ 6 {C1θ

−α−1/2n−1/2 if 1/n 6 θ 6 π/2 ,
C2n

α if 0 6 θ 6 1/n .

4.C. Some basic tools for the proofs

4.C.1. Comparing integrals using a domination of the cumulative distribution func-
tion.

Lemma 4.2. Let σ, τ be two positive measures on some interval [a, b] such that for all
λ ∈ [a, b],

σ([λ, b]) 6 τ([λ, b]) . (4.21)
Then for all continuous non-decreasing functions f : [a, b]→ R>0,∫

[a,b]
f(λ)dσ(λ) 6

∫
[a,b]

f(λ)dτ(λ) .
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Proof. For any u ∈ R>0, denote λ∗(u) = min{λ|u 6 f(λ)}.∫
[a,b]

f(λ)dσ(λ) =
∫

[a,b]

∫
R>0

1{u6f(λ)}f(λ)dudσ(λ) =
∫
R>0

(∫
[a,b]

1{u6f(λ)}dσ(λ)
)

du

=
∫
R>0

σ([λ∗(u), b])du .

The proof is finished using (4.21) and similar equalities for τ . �

.

4.C.2. The gamma and beta function. The gamma function Γ and the beta function B
are defined as [Olver et al., 2010, Section 5.2, Section 5.12]

Γ(z) =
∫ ∞

0
e−uuz−1du , z > 0 ; B(a, b) =

∫ 1

0
sa−1(1− s)b−1ds = Γ(a)Γ(b)

Γ(a+ b) , a, b > 0 .

The asymptotic ratios of the gamma functions are given in [Olver et al., 2010, Eq. 5.11.12]: for
c, d ∈ R,

Γ(z + c)
Γ(z + d) ∼ z

c−d as z → +∞ .

This gives the asymptotic of the beta function

B(a, b) ∼ Γ(b)
ab

as a→ +∞ . (4.22)

4.D. Proof of Proposition 4.2

Note first that as dτ(λ) = (1 − λ)dσ(λ) is a measure on [−1, 1], if π̃0, . . . , π̃n̄−1 is a sequence of
orthogonal polynomials w.r.t. τ , then the zeros of the polynomials π̃0, . . . , π̃n̄−1 are located in the
interior of [−1, 1] (see Proposition 4.9). In particular, π̃n(1) 6= 0, n < n̄. Thus it is possible to
build a family π0 = π̃0/π̃0(1), . . . , πn̄−1 = π̃n̄−1/π̃n̄−1(1) of orthogonal polynomials normalized to
take value 1 at 1, as it is done in Proposition 4.2.

The polynomial πn satisfies πn(1) = 1 and deg πn = n. We now consider some polynomial Qn
also satisfying Qn(1) = 1 and degQn = n, and show that∫

πn(λ)2dσ(λ) 6
∫
Qn(λ)2dσ(λ) , i.e. 〈πn, πn〉σ 6 〈Qn, Qn〉σ .

The polynomial Qn−πn vanishes at 1 thus there exists a polynomial Rn−1 of degree at most n− 1
such that Qn(λ) = πn(λ) + (1− λ)Rn−1(λ). Then

〈Qn, Qn〉σ = 〈πn, πn〉σ + 2〈πn, (1− λ)Rn−1〉σ + 〈(1− λ)Rn−1, (1− λ)Rn−1〉σ .

Note that 〈πn, (1 − λ)Rn−1〉σ = 〈πn, Rn−1〉τ = 0 because πn is orthogonal to all polynomials of
degree smaller or equal to n− 1 w.r.t. 〈., .〉τ . Moreover,

〈(1− λ)Rn−1, (1− λ)Rn−1〉σ =
∫

(1− λ)2Rn−1(λ)2dσ(λ) > 0 .

Thus 〈Qn, Qn〉σ > 〈πn, πn〉σ. This shows that πn is a minimizer.
We now show that the minimizer πn is unique. There is equality 〈Qn, Qn〉σ = 〈πn, πn〉σ if and

only if
∫

(1 − λ)2Rn−1(λ)2dσ(λ) = 0, i.e. (1 − λ)Rn−1 vanishes on Suppσ. But the cardinal of
Suppσ is at least n̄ while (1 − λ)Rn−1 is a polynomial of degree at most n 6 n̄ − 1. Thus the
equality case is reached if and only if Rn−1 = 0, i.e. Qn = πn.

127



4.E. The parameter-free polynomial iteration

In this section, we give the details of the implementation of the parameter-free polynomial iteration
in a centralized setting. We explicit the computation of the optimal coefficients an, bn and cn. It
is used in the simulation of Figure 4.4.

The parameter free polynomial iteration is Eq. (4.7), where the coefficients an, bn, cn, n > 1,
are determined in Eq. (4.18). The results are repeated here for convenience:

x1 = a0Wx0 + b0x0 , xn+1 = anWxn + bnxn − cnxn−1 ,

an = 〈πn+1, πn+1〉τ
〈λπn, πn+1〉τ

, bn = −〈πn+1, πn+1〉τ 〈λπn, πn〉τ
〈λπn, πn+1〉τ 〈πn, πn〉τ

, cn = 〈πn+1, πn+1〉τ 〈λπn, πn−1〉τ
〈λπn, πn+1〉τ 〈πn−1, πn−1〉τ

.

where τ = (1−λ)σ, σ is defined in (4.5). Note that the scalar products that appear in the formulas
for an, bn, cn can be computed from the iterates xn = πn(W )x0, n > 0. For instance,

〈λπn, πn−1〉τ =
∫
λπn(λ)πn−1(λ)(1− λ)dσ(λ)

=
m∑
i=1
〈x0, ui〉2λiπn(λi)πn−1(λi)(1− λi)

= 〈Wπn(W )x0, (I −W )πn−1(W )x0〉
= 〈Wxn, xn−1 −Wxn−1〉 .

Note that the last line requires the computation of a scalar product 〈., .〉 over RV , which means
summing over v ∈ V. This is possible in simulations where we can centralize the information of
the nodes v ∈ V. However in practical situation where the coordinates of xn are distributed among
the nodes, such a computation requires many additional communication steps. This makes the
parameter free polynomial iteration impractical.

The computation of the other scalar products give

bn = −an
〈xn −Wxn,Wxn〉
〈xn, xn −Wxn〉

, cn = an
〈xn, xn−1 −Wxn−1〉
〈xn−1, xn−1 −Wxn−1〉

,

and as an + bn − cn = 1 (that follows from πn(1) = 1 for all n), we get for n > 1,

b̃n = −〈xn −Wxn,Wxn〉
〈xn, xn −Wxn〉

, c̃n = 〈xn, xn−1 −Wxn−1〉
〈xn−1, xn−1 −Wxn−1〉

,

xn+1 = 1
1 + b̃n − c̃n

(
Wxn + b̃nxn − c̃nxn−1

)
.

Similarly, one can compute that

x1 = 1
1 + b̃0

(
Wx0 + b̃0x0

)
, b̃0 = −〈x0 −Wx0,Wx0〉

〈x0, x0 −Wx0〉
,

which gives the initialization of the parameter-free polynomial iteration.

4.F. Proofs of Propositions 4.4 and 4.5

4.F.1. Proof of Proposition 4.4. The return probability pn of the lazy random walk on Zd
is equivalent to C/nd/2 for some constant C. It is, for instance, a consequence of the local central
limit theorem for random walks on Zd [Lawler and Limic, 2010, Theorem 2.1.1]. Thus the spectral
dimension of Zd is d.
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4.F.2. Proof of Proposition 4.5. The return probabilities of the random walk on the su-
percritical percolation cluster have rather been studied in continuous time. The continuous-time
random walk is defined as follows: the random walk at w waits at an exponential time of param-
eter 1 before picking a site w′ out of the 2d neighboring sites uniformly randomly. If there is an
edge in the percolation configuration between w and w′, the random walk jumps to w′, otherwise it
stays in w and starts again. Denote Xt the continuous-time random walk, and Pw the probability
w.r.t. this random walk when it is started from some vertex w.

Lemma 4.3. There exists two constants c = c(d, p), C = c(d, p) > 0 such that, a.s. on the
set {v ∈ G}, there exists a random time t0 such that for t > t0,

c

td/2
6 Pv(Xt = v) 6 C

td/2
.

Proof. The upper bound is proved by Mathieu and Remy [2004, Theorem 1.2]. As noted by
Biskup et al. [2011, Lemma 5.1], the lower bound can be proved using a central limit theorem on
Xt; we repeat the argument here as our random walk differs slightly from theirs. As Xt is reversible
w.r.t. the uniform measure on G,

Pv(X2t = v) =
∑
w∈G

Pv(Xt = w)Pw(Xt = v) =
∑
w∈G

Pv(Xt = w)2 .

By the Cauchy-Schwarz inequality,

Pv(‖Xt − v‖2 6
√
t)2 =

(∑
x∈G

1{‖x−v‖26
√
t}Pv(Xt = x)

)2

6
∣∣∣{‖x ∈ G : x− v‖2 6

√
t}
∣∣∣ (∑

w∈G
Pv(Xt = w)2

)
6 C1t

d/2Pv(X2t = v) ,

for some constant C1. Now using [Andres et al., 2013, Theorem 1.1(a)], there exists a deterministic
variance σ2 such that the law of (Xt − v)/

√
t converges a.s. on the event {v ∈ G} to a centered

Gaussian with variance σ2. Thus there exists a deterministic constant c1 > 0 and a random time
t1 such that for t > t1, Pt(‖Xt − v‖2 6

√
t)2 > c1. This finishes the proof of the lower bound. �

We now finish the proof of the proposition using Lemma 4.3. If µt denotes the law of Xt,
d
dtE [µt] = (W − I)µt , thus µt = et(W−I)µ0 .

Thus
Pv(Xt = v) = 〈δv, µt〉 = 〈δv, et(W−I)δv〉

(Definition 4.3)=
∫
et(λ−1)dσ(λ) .

As a consequence, Lemma 4.3 translates into bounds on the Laplace transform of σ: a.s. on
{v ∈ G}, for t large enough,

c

td/2
6
∫
et(λ−1)dσ(λ) 6 C

td/2
.

Some bounds on the spectral density of σ near 1 easily follow (see [Müller and Stollmann, 2007,
Lemma 4.5]): there exists constants c′, C ′ > 0 such that a.s. on {v ∈ G}, for E small enough,

c′Ed/2 6 σ([1− E, 1]) 6 C ′Ed/2 .

The proof is finished using Proposition 4.6.
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4.G. Proof of Proposition 4.6

We start by assuming that l = limE→0 log σ([1−E, 1])/ logE exists and is finite. We show that ds
exists and that l = ds/2. To this end, we define

ds = −2 lim sup
n→∞

log pn
logn , d̄s = −2 lim inf

n→∞
log pn
logn ,

where pn is defined as in Definition 4.2. Note that

pn =
〈
ev,

(
I +W

2

)n
ev

〉
(Definition 4.3)=

∫ (1 + λ

2

)n
dσ(λ) . (4.23)

Proof that d̄s/2 6 l. Consider l+ > l. Then there exists constants c1, c2 > 0 such that for all
E ∈ [0, 2],

σ([1− E, 1]) > c1E
l+ = c2σ

(l+−1,0)([1− E, 1]) ,
where σ(l+−1,0)(dλ) = (1− λ)l+−1dλ. Then

pn
(4.23)=

∫
[−1,1]

(1 + λ

2

)n
dσ(λ)

(Lemma 4.2)
> c2

∫ 1

−1

(1 + λ

2

)n−1
(1− λ)l+−1dλ

(u=(1+λ)/2)= c3

∫ 1

0
un(1− u)l+−1du = c3B (n+ 1, l+) (4.22)∼

n→∞
c4
nl+

,

for some constant c3, c4 > 0. Thus

lim inf
n→∞

log pn
logn > −l+ , i.e. d̄s

2 6 l+ .

This being true for all l+ > l, this proves d̄s/2 6 l.
Proof that ds/2 > l. Consider l− < l. Then there exists constants C1, C2 such that for all

E ∈ [0, 2],
σ([1− E, 1]) 6 C1E

l− = C2σ
(l−−1,0)([1− E, 1]) ,

where σ(l−−1,0)(dλ) = (1− λ)l−−1dλ. Then

pn
(4.23)=

∫
[−1,1]

(1 + λ

2

)n
dσ(λ)

(Lemma 4.2)
6 C2

∫ 1

−1

(1 + λ

2

)n
(1− λ)l−−1dλ

(u=(1+λ)/2)= C3

∫ 1

0
un(1− u)l−−1du = C3B (n+ 1, l−) ∼

n→∞
C4
nl−

,

for some constants C3, C4. Thus

lim sup
n→∞

log pn
logn 6 −l− , i.e. ds

2 > l− .

This being true for all l− < l, this proves ds/2 > l.
Finally, we have proven l 6 ds/2 6 d̄s/2 6 l. Thus the limit ds = −2 limn→∞ log pn/ logn

exists and is equal to 2l.

Conversely, we assume now that ds exists and is finite. We show that l = limE→0 log σ([1 −
E, 1])/ logE exists and that l = ds/2. To this end, we define

l = lim inf
E→0

log σ([1− E, 1])
logE , l̄ = lim sup

E→0

log σ([1− E, 1])
logE .
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Proof that l > ds/2. For any n ∈ N, we have 1{λ>1−E} 6 (1 − E/2)−n ((1 + λ)/2)n, thus by
integrating against dσ(λ),

σ([1− E, 1]) 6
(

1− E

2

)−n ∫ (1 + λ

2

)n
σ(dλ) ,

log σ([1− E, 1])
logE >

log
∫ (1+λ

2

)n
σ(dλ)

logn
logn
logE −

n log
(
1− E

2

)
logE .

We choose n(E) = bE−1c. Then we get

l = lim inf
E→0

log σ([1− E, 1])
logE > −ds2 (−1)− 0 = ds

2

Proof that l̄ 6 ds/2. For any n ∈ N, we have ((1 + λ)/2)n − (1−E/2)n 6 1{λ>1−E}, thus by
integrating against dσ(λ),∫ (1 + λ

2

)n
dσ(λ)−

(
1− E

2

)n
6 σ([1− E, 1]) .

Let d > ds. There exists a constant c > 0 such that
∫

((1 + λ)/2)ndσ(λ) > c/nd/2. Then

log
(

c

nd/2
−
(

1− E

2

)n)
6 log σ([1− E, 1]) .

Let α > 1. We choose n(E) = dE−αe. Then(
1− E

2

)n(E)
= exp

(
n(E) log

(
1− E

2

))
6 exp

(
−n(E)E

2

)
6 exp

(
−1

2E
1−α

)
decreases super-polynomially fast as E → 0. Moreover

c

n(E)d/2
∼
E→0

cEαd/2 .

Finally,

l̄ = lim sup
E→0

log σ([1− E, 1])
logE 6

αd

2 .

As this is true for all α > 1, d > ds, we have l̄ 6 ds/2.
Finally, we have proven that ds/2 6 l 6 l̄ 6 ds/2. Then the limit l = limE→0 log σ([1 −

E, 1])/ logE exists and l = ds/2.

4.H. Computation of the recursion coefficients of some orthogonal polynomials

4.H.1. A rescaling lemma for orthogonal polynomials. We start with a lemma giving
the change in the recursion coefficients of orthogonal polynomials when the underlying measure
undergoes an affine transformation. It is used in the next subsections.

Lemma 4.4. Let σ be a measure on R, π0, . . . , πn̄−1 a sequence of orthogonal polynomials
w.r.t. σ and

πn+1(λ) = (anλ+ bn)πn(λ)− cnπn−1(λ) , n > 1 , (4.24)

their recurrence formula (see Definition 4.1 and Theorem 4.3).
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Let ϕ : λ 7→ αλ + β, α 6= 0 be a linear function and σ̃ be the image measure of σ by
ϕ (which means that for all measurable set A, σ̃(A) = σ(ϕ−1(A))). Then a sequence of
orthogonal polynomials w.r.t. σ̃ is given by the formula

π̃n(λ̃) := πn
(
ϕ−1(λ̃)

)
= πn

(
λ̃− β
α

)
.

These polynomials follow the recursion formula

π̃n+1(λ̃) = (ãnλ̃+ b̃n)π̃n(λ̃)− c̃nπ̃n−1(λ̃) ,

ãn = an
α
, b̃n = bn −

anβ

α
, c̃n = cn .

Proof. By change of variable,∫
π̃n(λ̃)π̃k(λ̃)dσ̃(λ̃) =

∫
πn
(
ϕ−1(λ̃)

)
πk
(
ϕ−1(λ̃)

)
dσ̃(λ̃)

=
∫
πn
(
ϕ−1(ϕ(λ))

)
πk
(
ϕ−1(ϕ(λ))

)
dσ(λ)

=
∫
πn(λ)πk(λ)dσ(λ) = 1{n=k} ,

and deg π̃n = n thus π̃0, . . . , π̃n̄−1 are orthogonal polynomials w.r.t. σ̃. The recurrence relation for
π̃n follows by evaluating the recurrence relation (4.24) for πn in (λ̃− β)/α. �

4.H.2. Jacobi polynomials. Let α, β > −1. In this section, we derive, using the recurrence
formula for the Jacobi polynomial P (α,β)

n of Proposition 4.10, a similar recurrence relation for the
polynomials π(α,β)

n orthogonal w.r.t. the Jacobi measure σ(α,β), but normalized such that π(α,β)
n (1) =

1.
Substituting P (α,β)

n =
(n+α

t

)
π

(α,β)
n in the recurrence relation of Proposition 4.10, we get

2(n+ 1)(n+ 1 + α+ β)(2n+ α+ β)
(
n+ 1 + α

n+ 1

)
π

(α,β)
n+1 (λ)

= (2n+ α+ β + 1)[(2n+ α+ β + 2)(2n+ α+ β)λ+ α2 − β2]
(
n+ α

n

)
π(α,β)
n (λ)

− 2(n+ α)(n+ β)(2n+ α+ β + 2)
(
n− 1 + α

n− 1

)
π

(α,β)
n−1 (λ) .

Using that (n + 1)
(n+1+α
n+1

)
= (n + 1 + α)

(n+α
n

)
and n

(n+α
n

)
= (n + α)

(n−1+α
n−1

)
, we can divide the

above equation by
(n+α
n

)
. We get

2(n+ 1 + α+ β)(2n+ α+ β)(n+ 1 + α)π(α,β)
n+1 (λ)

= (2n+ α+ β + 1)[(2n+ α+ β + 2)(2n+ α+ β)λ+ (α+ β)(α− β)]π(α,β)
n (λ)

− 2n(n+ β)(2n+ α+ β + 2)π(α,β)
n−1 (λ) .

Summing up, we obtain the recursion formula

π0(λ) = 1 , π1(λ) = a
(α,β)
0 λ+ b

(α,β)
0 ,

π
(α,β)
n+1 (λ) =

(
a(α,β)
n λ+ b(α,β)

n

)
π(α,β)
n (λ)− c(α,β)

n π
(α,β)
n−1 (λ) ,
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with the recursion coefficients

a
(α,β)
0 = α+ β + 2

2(1 + α) , b
(α,β)
0 = α− β

2(1 + α) ,

a(α,β)
n = (2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1 + α+ β)(n+ 1 + α) ,

b(α,β)
n = (2n+ α+ β + 1)(α+ β)(α− β)

2(n+ 1 + α+ β)(n+ 1 + α)(2n+ α+ β) ,

c(α,β)
n = n(n+ β)(2n+ α+ β + 2)

(n+ 1 + α+ β)(2n+ α+ β)(n+ 1 + α) .

(4.25)

4.H.3. Rescaled Jacobi polynomials. Let α, β > −1. In this section, we determine a
recursion formula for the orthogonal polynomials π(α,β,µ)

n w.r.t. the rescaled Jacobi measure

dσ(α,β,µ)(λ) = ((1− µ)− λ)α(1 + λ)β1{λ∈(−1,1−µ)}dλ ,

The polynomials π(α,β,µ)
n are normalized such that π(α,β,µ)

n (1) = 1.
Note that, up to a rescaling, dσ(α,β,µ) is the image measure of the Jacobi measure dσ(α,β)

(defined in (4.5)) by the linear function ϕµ(λ) = (1−µ/2)λ−µ/2. Thus Lemma 4.4 gives a family
of orthogonal polynomials P (α,β,µ)

n w.r.t. dσ(α,β,µ) and their recursion formula:

P (α,β,µ)
n (λ̃) = π(α,β)

n

(
ϕ−1
µ (λ̃)

)
,

P
(α,β,µ)
n+1 (λ̃) =

(
a(α,β,µ)
n λ̃+ b(α,β,µ)

n

)
P (α,β,µ)
n (λ̃)− c(α,β,µ)

n P
(α,β,µ)
n−1 (λ̃) ,

a(α,β,µ)
n = a(α,β)

n

(
1− µ

2

)−1
, b(α,β,µ)

n = b(α,β)
n + µ

2 a
(α,β)
n

(
1− µ

2

)−1
, c(α,β,µ)

n = c(α,β)
n .

However, the polynomials P (α,β,µ)
n are not normalized such that P (α,β,µ)

n = 1. Indeed, P (α,β,µ)
n =

π
(α,β)
n

(
(1− µ/2)−1 (1 + µ/2)

)
. It is difficult to deduce the recurrence relation for π(α,β,µ)

n =

P
(α,β,µ)
n /P

(α,β,µ)
n (1) from the recurrence relation for P (α,β,µ)

n . One can circumvent this difficulty
by using that the normalization P (α,β,µ)

n (1) also follows the recurrence relation

P
(α,β,µ)
n+1 (1) =

(
a(α,β,µ)
n + b(α,β,µ)

n

)
P (α,β,µ)
n (1)− c(α,β,µ)

n P
(α,β,µ)
n−1 (1) .

Summing things up, we get

π(α,β,µ)
n (λ) = P

(α,β,µ)
n (λ)
P

(α,β,µ)
n (1)

,

P
(α,β,µ)
0 (λ) = 1 , P

(α,β,µ)
0 (1) = 1 ,

P
(α,β,µ)
1 (λ) = a

(α,β,µ)
0 λ+ b

(α,β,µ)
0 , P

(α,β,µ)
1 (1) = a

(α,β,µ)
0 + b

(α,β,µ)
0 ,

P
(α,β,µ)
n+1 (λ) =

(
a(α,β,µ)
n λ̃+ b(α,β,µ)

n

)
P (α,β,µ)
n (λ)− c(α,β,µ)

n P
(α,β,µ)
n−1 (λ) , n > 1 ,

P
(α,β,µ)
n+1 (1) =

(
a(α,β,µ)
n + b(α,β,µ)

n

)
P (α,β,µ)
n (1)− c(α,β,µ)

n P
(α,β,µ)
n−1 (1) , n > 1 ,

a(α,β,µ)
n = a(α,β)

n

(
1− µ

2

)−1
, b(α,β,µ)

n = b(α,β)
n + µ

2 a
(α,β)
n

(
1− µ

2

)−1
, n > 0 ,

c(α,β,µ)
n = c(α,β)

n , n > 1 .

(4.26)
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These equations give a practical way to compute the polynomials π(α,β,µ)
n because all recursion

coefficients can be computed explicitly using the formulas (4.25).

4.H.4. Polynomials orthogonal to the modified Kesten-McKay measure. In this sec-
tion, we determine the recurrence formula for the orthogonal polynomials πn w.r.t. the modified
Kesten-McKay measure

(1− λ)σ(Td)(dλ) = d

2π(1 + λ)

(4(d− 1)
d2 − λ2

)1/2
1[−2

√
d−1/d,2

√
d−1/d](λ)dλ .

The polynomials πn are normalized such that πn(1) = 1.
The measure dσ(Td) is, up to a rescaling factor, the image measure of

dσ̃(λ) = (1− λ2)1/2

d+ 2
√
d− 1λ

1[−1,1](λ)dλ (4.27)

by the linear map ϕ : λ 7→ 2
√
d− 1λ/d. We thus compute a family of orthogonal polynomials

w.r.t. σ̃ and then use Lemma 4.4.
The orthogonal polynomials w.r.t. σ̃ are given by Proposition 4.13. Following the cited theorem,

we define ρ(λ) = d+ 2
√
d− 1λ and
ρ(cos θ) = 2

√
d− 1 cos θ + d = |h(eiθ)|2 ,

h(eiθ) =
√
d− 1 + eiθ =

√
d− 1 + cos θ︸ ︷︷ ︸

:=c(θ)

+i sin θ︸ ︷︷ ︸
:=s(θ)

.

Then we have the following family p̃t of orthogonal polynomials w.r.t. σ̃.

p̃n(cos θ) = c(θ)Un(cos θ)− s(θ)
sin θTn+1(cos θ) ,

p̃n(λ) = (
√
d− 1 + λ)Un(λ)− Tn+1(λ) ,

where Tn and Un denote the n-th Chebyshev polynomial of the first kind and the second kind
respectively. As the Chebyshev polynomials Tn and Un both satisfy the same recurrence relation

Tn+1(λ) = 2λTn(λ)− Tn−1(λ) ,
Un+1(λ) = 2λUn(λ)− Un−1(λ) , n > 1 ,

the same relation follows for p̃n:
p̃n+1(λ) = 2λp̃n(λ)− p̃n−1(λ) , n > 1 ,

with initial condition p̃0(λ) =
√
d− 1 and p̃1(λ) = 2

√
d− 1λ+ 1.

Lemma 4.4 gives the rescaled orthogonal polynomials pn(λ) = p̃n
(
ϕ−1(λ)

)
w.r.t. dσ(Td):

p0(λ) =
√
d− 1 , p1(λ) = dλ+ 1 , pn+1(λ) = d√

d− 1
λpn(λ)− pn−1(λ) , n > 1 . (4.28)

As πn(λ) = pn(λ)/pn(1), it now remains to compute pn(1). The sequence pn(1), n > 1 satisfies a
second-order recurrence relation with fixed coefficients, it thus can be solved explicitly

pn(1) = 1
d− 1

(
d(d− 1)(n+1)/2 − 2(d− 1)(1−n)/2

)
.

By substituting pn(λ) = pn(1)πn(λ) in (4.28), one obtains
π0(λ) = 1 , π1(λ) = a0λ+ b0 , πn+1(λ) = anλπn(λ)− cnπn−1(λ) , n > 1 ,

a0 = d

d+ 1 , b0 = 1
d+ 1 , an =

d
d−1 − 2(d− 1)−(n+1)

1− 2
d(d− 1)−(n+1) , cn =

1
d−1 −

2
d(d− 1)−n

1− 2
d(d− 1)−(n+1) , n > 1 .
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4.I. Proof of Theorem 4.1

The proof is divided in four subsections. Appendix 4.I.1 develops tools that we use both in the
proof of the theorem. We then prove the theorem in Sections 4.I.2, 4.I.3and 4.I.4. Finally, in
Appendix 4.I.5, we discuss the choice of the parameters of the Jacobi polynomials in the Jacobi
polynomial iteration. In all this appendix, we denote σ = σ(G,W, v) the spectral measure of G.

4.I.1. Preliminaries. The first lemma relates the MSE of the estimator xn(v) to the spectral
measure.

Lemma 4.5. Write xn = Pn(W )x0 using the polynomial gossip point of view. Then

E[(xn(v)− µ)2] = (var ν) ‖Pn(W )ev‖2`2(V) = (var ν)
∫
Pn(λ)2dσ(λ) .

Proof. As Pn(1) = 1, we have

E[xn] = E[Pn(W )x0] = Pn(W )E[x0] = Pn(W )µ1 = Pn(1)µ1 = µ1 .

In words, the estimator xn(v) is unbiased. Thus

E[(xn(v)− µ)2] = varxn(v) = var 〈Pn(W )x0, ev〉`2(V) = var 〈x0, Pn(W )ev〉`2(V)

= (var ν) ‖Pn(W )ev‖2`2(V) ,

using that W is symmetric and that the x0(w), w ∈ V are i.i.d. random variables. Then

E[(xn(v)− µ)2] = (var ν) 〈Pn(W )ev, Pn(W )ev〉`2(V) = (var ν)
〈
ev, Pn(W )2ev

〉
`2(V)

.

The proof is finished using the Definition 4.3 of the spectral measure. �

In the statement of Theorem 4.1, we have stated results in terms of the spectral dimension
ds = 2 limE→0 log σ([1−E, 1])/ logE. In the proof here, we will be more precise. We show how the
results of Theorem 4.1 actually depend on different definitions of the dimension.

Definition 4.6. Let τ be a probability measure on [−1, 1]. We define
(1) the right upper dimension dim→τ ∈ [0,∞] of the measure τ as

dim→τ = 2 lim sup
E→0

log τ([1− E, 1])
logE ,

(2) the right lower dimension dim→τ ∈ [0,∞] of the measure τ as

dim→τ = 2 lim inf
E→0

log τ([1− E, 1])
logE ,

(3) the left upper dimension dim←τ ∈ [0,∞] of the measure τ as

dim←τ = 2 lim sup
E→0

log τ([−1,−1 + E])
logE .

(4) the left lower dimension dim←τ ∈ [0,∞] of the measure τ as

dim←τ = 2 lim inf
E→0

log τ([−1,−1 + E])
logE .
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4.I.2. Proof of Theorem 4.1: simple gossip. In the case of simple gossip, Pn(λ) = λn.

Proposition 4.16. Let τ be a probability measure on [−1, 1]. Then

lim inf
n→∞

∫
λ2ndτ(λ)

logn > −
min

(
dim→τ,dim←τ

)
2

Proof. Let d > dim→τ . As dim→τ = 2 lim supE→0 log σ([1 − E, 1])/ logE, there exists con-
stants c1, c2 > 0 such that for all E ∈ [0, 2],

τ([1− E, 1]) > c1E
d/2 = c2σ

(d/2−1,0)([1− E, 1]) (4.29)

where σ(d/2−1,0)(dλ) = (1− λ)d/2−1dλ. Then using jointly Lemma 4.2 and Eq. (4.29),∫
λ2ndτ(λ) >

∫
[0,1]

λ2ndτ(λ) > c1

∫ 1

0
λ2n(1− λ)d/2−1dλ = B(2n+ 1, d/2) (4.22)∼

n→∞
c3
nd/2

,

for some constant c3. Thus

lim inf
n→∞

∫
λ2ndτ(λ)

logn > −d2 .

This being true for all d > dim→τ , this proves

lim inf
n→∞

∫
λ2ndτ(λ)

logn > −dim→τ
2 .

The proof at the other edge of the spectrum is the same by symmetry. �

The proof of Theorem 4.1 for simple gossip follows easily. Indeed, if τ = σ is the spectral
measure of the graph, then dim→σ = ds. Thus

lim inf
n→∞

logE[(xn(v)− µ)2]
logn

(Lemma 4.5)= lim inf
n→∞

log
∫
λ2ndσ(λ)
logn

(Proposition 4.16)
> −ds2 .

4.I.3. Proof of Theorem 4.1: shift-register. In the case of the shift-register gossip itera-
tion, Pt(λ) satisfies the second-order recurrence relation

P0(λ) = 1 , P1(λ) = λ , Pn+1(λ) = ωλPn(λ) + (1− ω)Pn−1(λ) . (4.30)

The case ω = 1 corresponds to simple gossip: it has been treated above. We now assume ω ∈ (1, 2].

Proposition 4.17. Let Pn be the polynomials defined in Eq. (4.30) with ω ∈ (1, 2]. Then

Pn(λ) = (ω − 1)n/2
[(

2− 2
ω

)
Tn

(
ω

2
√
ω − 1

λ

)
+
( 2
ω
− 1

)
Un

(
ω

2
√
ω − 1

λ

)]
where Tn and Un are the Chebyshev polynomials of the first and second kind respectively
(see Example 4.1).

Proof. Consider the rescaled version Qn of Pn given by the formula

Pn(λ) = (ω − 1)n/2Qn
(

ω

2
√
ω − 1

λ

)
. (4.31)

If follows from Eq. (4.30) that

Q0(λ) = 1 , Q1(λ) = 2
ω
λ , Qn+1(λ) = 2λQn(λ)−Qn−1(λ) .
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Thus the sequence Qn, n > 0 satisfies the same recurrence relation as the Chebyshev polynomials,
but with a different initialization. As a consequence, it must be a linear combination of the two
sequences of Chebyshev polynomials: there exists µ, ν ∈ R such that for all n,

Qn(λ) = µTn(λ) + νUn(λ)

The computation of the weights µ, ν is straightforward from the initialization Q0, Q1. This proves
the proposition. �

Proposition 4.18. Let ω ∈ (1, 2]. The polynomials Pn, n > 0 defined in Eq. (4.30) are the
orthogonal polynomials w.r.t. the measure

τ(dλ) =

((
2
√
ω − 1/ω

)2 − λ2
)1/2

1− λ2 .

Proof. The orthogonal polynomials w.r.t. the measure

τ̃(dλ) =
(
1− λ2)1/2(

ω/(2
√
ω − 1)

)2 − λ2

are computed using Proposition 4.13 with

ρ(cos θ) = ω2

4(ω − 1) − cos2 θ .

Simple computations give that ρ(cos θ) = |h(eiθ)|2 with

h(eiθ) =
∣∣∣∣∣ ω

2
√
ω − 1

[(
2− 2

ω

) 1− e2iθ

2 +
( 2
ω
− 1

)]∣∣∣∣∣
2

.

Proposition 4.13 then gives that the polynomials (2−2/ω)Tn+(2/ω−1)Un are orthogonal w.r.t. τ̃ .
But these polynomials are the polynomials Qn defined in Eq. (4.31). We then use Lemma 4.4 to
prove that Pn is orthogonal w.r.t. τ . �

Lemma 4.6. Let Pn be the polynomials defined in Eq. (4.30) with ω ∈ (1, 2] and τ a
measure on [−1, 1]. Then

lim inf
n→∞

∫
Pn(λ)2dτ(λ)

logn > −
min

(
dim→τ,dim←τ

)
2

Proof.∫
Pn(λ)2dτ(λ) >

∫
[2
√
ω−1/ω,1]

Pn(λ)2dτ(λ)

(Proposition 4.17)
> c1(ω − 1)n

∫
[2
√
ω−1/ω,1]

Tn

(
ω

2
√
ω − 1

λ

)2
dτ(λ)

(4.19)
> c2(ω − 1)n

∫
[2
√
ω−1/ω,1]

(
ω

2
√
ω − 1

λ+
√

ω2

4(ω − 1)λ
2 − 1

)2n

dτ(λ) .

where ci > 0 is a constant independent of n. Let d > dim→τ . As dim→τ = 2 lim supE→0 log σ([1−
E, 1])/ logE, there exists constants c3, c4 > 0 such that for all E ∈ [0, 2],

τ([1− E, 1]) > c3E
d/2 = c4σ

(d/2−1,0)([1− E, 1]) (4.32)
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where σ(d/2−1,0)(dλ) = (1− λ)d/2−1dλ. Then using jointly Lemma 4.2 and Eq. (4.32),∫
Pn(λ)2dτ(λ) > c5(ω − 1)n

∫ 1

2
√
ω−1/ω

(
ω

2
√
ω − 1

λ+
√

ω2

4(ω − 1)λ
2 − 1

)2n

(1− λ)d/2−1dλ

> c6(ω − 1)n
∫ cosh−1(ω/(2

√
ω−1))

0
e2nu

(
1− 2

√
ω − 1
ω

cosh u
)d/2−1

sinh udu .

where in the last step we made the change of variable ω/(2
√
ω − 1)λ+

√
ω2/(4(ω − 1))λ2 − 1 = eu,

i.e. λ = 2
√
ω − 1/ω cosh u. Denote umax = cosh−1(ω/(2

√
ω − 1)) to shorten notations. As cosh is

a convex function, for u ∈ [0, umax],

cosh umax − cosh u 6 cosh umax − 1
umax

(umax − u) ,

⇔ 1− 2
√
ω − 1
ω

cosh u 6
(

1− 2
√
ω − 1
ω

)(
1− u

umax

)
Moreover, choose some constant umin ∈ (0, umax) so that we can lower bound with a constant c7:
for all u ∈ [umin, umax], sinh u > c7. This finally gives:∫

Pn(λ)2dτ(λ) > c8(ω − 1)n
∫ umax

umin
e2nu

(
1− u

umax

)d/2−1
du .

After the change of variable w = 2n(umax − u), this gives∫
Pn(λ)2dτ(λ) > c8(ω − 1)n

∫ 2n(umax−umin)

0
e2numaxe−w

(
w

2numax

)d/2−1 1
2n dw .

Note that e2numax = (ω − 1)−n, thus there exists a constant c9 > 0 such that∫
Pn(λ)2dτ(λ) > c9

1
nd/2

∫ 2n(umax−umin)

0
e−wwd/2−1 dw .

This proves that

lim inf
n→∞

∫
Pn(λ)2dτ(λ)

logn > −d2 .

This being true for all d > dim→τ , this proves

lim inf
n→∞

∫
Pn(λ)2dτ(λ)

logn > −dim→τ
2 .

The proof at the other edge of the spectrum is the same by symmetry. �

4.I.4. Proof of Theorem 4.1: Jacobi polynomial iteration. In this section, we use again
the notation of Appendix 4.H.2: in the case of the Jacobi polynomial iteration (4.10), we have xn =
π

(ds/2,0)
n (W )x0, where π(α,β)

n is the rescaled Jacobi polynomial; π(α,β)
n = P

(α,β)
n /

(n+α
n

)
where P (α,β)

n is
the traditional Jacobi polynomial. Lemma 4.5 suggests to study the quantity

∫
π

(ds/2,0)
n (λ)2dσ(λ).

However we study here the behavior of
∫
π

(α,β)
n (λ)2dσ(λ) for any (α, β). This will be useful in

Appendix 4.I.5 to give a motivation for the choice α = d/2, β = 0 complementary to the intuition
developed in Section 4.3, and will allow us to discuss the performance of other choices.

Proposition 4.19. Let τ be a probability measure on [−1, 1] and α, β > −1/2. Then

lim sup
n→∞

log
∫
π

(α,β)
n (λ)2dτ(λ)

logn 6 −min (2α+ 1,dim→τ, 2(α− β) + dim←τ) .
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Before proving this proposition, we use it to finish the proof of the theorem. If τ = σ is the
spectral measure of the graph, then dim→σ = ds. Thus taking α = ds/2, β = 0 in Proposition 4.19,
we get

lim sup
n→∞

log
∫
π

(ds/2,0)
n (λ)2dσ(λ)

logn 6 −min(ds + 1, ds, ds + dim←σ) = −ds , (4.33)

as dim←σ > 0. One can conclude the proof using Lemma 4.5.
We now turn to the the proof of Proposition 4.19.

Lemma 4.7. Let τ be a probability measure on [−1, 1] and α > −1/2, β > −1. Then

lim sup
n→∞

log
∫
[0,1] P

(α,β)
n (λ)2dτ(λ)
logn 6 −min(1, dim→τ − 2α) .

Proof. Let d < dim→τ . As dim→τ = 2 lim infE→0 log τ([1 − E, 1])/ logE, there exists con-
stants C1, C2 such that for all E ∈ [0, 2],

τ([1− E, 1]) 6 C1E
d/2 = C2σ

(d/2−1,0)([1− E, 1]) (4.34)

where σ(d/2−1,0)(dλ) = (1− λ)d/2−1dλ.
For the proof of this result, we use the asymptotic bound on the Jacobi polynomials given by

Proposition 4.15, thus we divide the integral∫
[0,1]

P (α,β)
n (λ)2dτ(λ) =

∫
[cos 1/n,1]

P (α,β)
n (λ)2dτ(λ) +

∫
[0,cos 1/n[

P (α,β)
n (λ)2dτ(λ) ,

and treat the two terms separately.
(a) ∫

[cos 1/n,1]
P (α,β)
n (λ)2dτ(λ) 6 C3n

2ατ

([
cos 1

n
, 1
])
6 C1C3n

2α
(

1− cos 1
n

)d/2
6 C4n

2α−d

for some constants C3, C4. Thus

lim sup
n→∞

log
∫
[cos 1/n,1] P

(α,β)
n (λ)2dτ(λ)

logn 6 2α− d . (4.35)

(b) ∫
[0,cos 1/n[

P (α,β)
n (λ)2dτ(λ) 6 C5n

−1
∫

[0,cos(1/n)[
(arccosλ)−2α−1dτ(λ) (4.36)

We then use jointly Eq. (4.34) and Lemma 4.2 with the function

f(λ) = (arccosλ)−2α−11{λ<cos 1/n} + n2α+11{λ>cos 1/n} .

Note that f is non-decreasing as α > 1/2. We get∫
[0,cos(1/n)[

(arccosλ)−2α−1dτ(λ)

6 C2

∫
[0,cos(1/n)[

(arccosλ)−2α−1(1− λ)d/2−1dλ+ C1n
2α+1

(
1− cos 1

n

)d/2
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Now using the simple inequality arccosλ >
√

2
√

1− λ, we get∫
[0,cos(1/n)[

(arccosλ)−2α−1dτ(λ)

6 C5

∫
[0,cos(1/n)[

(1− λ)−α+d/2−3/2dλ+ C6n
2α+1−d

(4.37)

for some constants C5, C6. Now if β is a real number,

lim
n→∞

log
∫ cos 1/n

0 (1− λ)βdλ
logn = max(0,−2β − 2) . (4.38)

Indeed, if β 6= −1,∫ cos 1/n

0
(1− λ)βdλ =

[
−(1− λ)β+1

β + 1

]cos 1/n

0
= 1
β + 1

[
1−

(
1− cos 1

n

)β+1
]

=
n→∞

1
β + 1

[
1− n−2β−2 + o(n−2β−2)

]
∼ C(β)nmax(0,−2β−2) .

for some constant C(β) depending on β. This proves the statement (4.38) for β 6= −1.
The result for β = −1 follows easily by noting that both terms in (4.38) are decreasing in
β.

Merging finally Eqs. (4.36), (4.37) and (4.38), we get

lim sup
n→∞

log
∫
[0,cos 1/n[ P

(α,β)
n (λ)2dτ(λ)

logn 6 −1 + max(0, 2α+ 1− d)

= max(−1, 2α− d) = −min(1, d− 2α) .
(4.39)

Finally

lim sup
n→∞

log
∫

[0,1] P
(α,β)
n (λ)2dτ(λ)
logn

6 lim sup
n→∞

2 max
(∫

[cos 1/n,1] P
(α,β)
n (λ)2dτ(λ),

∫
[0,cos 1/n[ P

(α,β)
n (λ)2dτ(λ)

)
logn

6 max

lim sup
n→∞

log
∫

[cos 1/n,1] P
(α,β)
n (λ)2dτ(λ)

log t , lim sup
n→∞

log
∫

[0,cos 1/n[ P
(α,β)
n (λ)2dτ(λ)

logn


(4.35),(4.39)
6 max(2α− d,−min(1, d− 2α)) = −min(1, d− 2α) .

As this is true for all d < dim→τ , the lemma is proved. �

Proof of Proposition 4.19. If we denote τ̃ the symmetric measure of τ w.r.t. 0 (i.e. the
image measure of τ by the map λ 7→ −λ), we have∫

[−1,0]
P (α,β)
n (λ)2dτ(λ) =

∫
[0,1]

P (α,β)
n (−λ)2dτ̃(λ) =

∫
[0,1]

P (β,α)
n (λ)2dτ̃(λ)

Thus according to Lemma 4.7,

lim sup
t→∞

log
∫
[−1,0] P

(α,β)
n (λ)2dτ(λ)

logn 6 −min(1,dim→τ̃ − 2β) = −min(1, dim←τ − 2β) . (4.40)
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Finally, using that π(α,β)
n = P

(α,β)
n /

(n+α
n

)
,

lim sup
n→∞

log
∫

[−1,1] π
(α,β)
n (λ)2dτ(λ)

logn 6 lim sup
n→∞

log
∫

[−1,1] P
(α,β)
n (λ)2dτ(λ)

logn − 2 lim sup
n→∞

log
(n+α
n

)
logn

6 lim sup
n→∞

log
(
2 max

(∫
[−1,0] P

(α,β)
n (λ)2dτ(λ),

∫
[0,1] P

(α,β)
n (λ)2dτ(λ)

))
logn − 2α

6 max

lim sup
n→∞

log
∫
[−1,0] P

(α,β)
n (λ)2dτ(λ)

logn , lim sup
n→∞

log
∫

[0,1] P
(α,β)
n (λ)2dτ(λ)
logn

− 2α

((4.40),Lemma 4.7)
6 max (−min(1, dim←τ − 2β),−min(1,dim→τ − 2α))− 2α
6 −min(1,dim←τ − 2β,dim→τ − 2α)− 2α
= −min(2α+ 1, 2(α− β) + dim←τ,dim→τ) .

�

4.I.5. Tuning of the parameters α and β. In this section, we discuss the performance of
the polynomial gossip iteration xn = π

(α,β)
n (W )x0 using the tools developed in the proof above.

The Jacobi polynomial iteration introduced in Section 4.3.2 corresponds to the specific choice
α = ds/2, β = 0, where ds is the spectral measure of the graph. Thanks to the tools developed in
the proof above, we can explore analytically the effect of changing α and β. In Figures 5.3 and
Section 5.1.4, we also explore the effect of changing α by studying the shape of the diffusion on
grids.

Inspired by (4.33), we define optimality as follows.

Definition 4.7. Let α, β > −1, d←, d→ > 0. We say that (α, β) is optimal for (d←, d→) if
for any spectral measure σ such that dim→σ = d→ and dim←σ = d←,

lim sup
n→∞

log
∫
π

(α,β)
n (λ)2dσ(λ)

logn 6 −d→ .

The following theorem is an analogue of the optimality theorem 4.1(2) in the general case.

Theorem 4.5. Consider a graph G, a gossip matrix W and a vertex v. Denote σ =
σ(G,W, v) the spectral measure of the graph. Let x0(v), v ∈ V be i.i.d. samples from a
distribution of mean µ.

Let α, β > −1 and define the polynomial iteration xn = π
(α,β)
n (W )x0. If (α, β) is optimal

for (dim←σ, dim→σ), then

lim sup
n→∞

logE
[
(xn(v)− µ)2]
logn 6 −dim→σ . (4.41)

In the section above, we prove that (d→/2, 0) is optimal for (d←, d→) (for any d←, d→ > −1/2).
We now explore other choices. According to Proposition 4.19, to prove that (α, β) is optimal for
(d←, d→), it is sufficient to prove that

min(2α+ 1, d→, 2(α− β) + d←) = d→ ⇔
{

2α+ 1 > d→
2(α− β) + d← > d→
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Figure 4.8. Simulations of polynomial iterations using Jacobi polynomials with
different parameters (α, β): frontier tightness.
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Figure 4.9. Simulations of polynomial iterations using Jacobi polynomials with
different parameters (α, β): large α asymptotic.

⇔
{
α > 1

2(d→ − 1)
β 6 α+ d←−d→

2
. (4.42)

This gives a wide range of optimal parameters. For instance, the parameter α can be chosen
arbitrarily large. In Figures 4.8b and 4.9b, the shaded regions corresponds to region for (α, β)
defined by (4.42) with (d←, d→) = (2, 2).
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Note however that we have only proved that (4.42) are sufficient conditions for the optimality
Theorem 4.5 to hold. To explore the tightness of our condition, we present in Figure 4.8 the results
of simulations on the 2D grid. The setting is the same as in Section 4.1 (see also Appendix 4.A for
details). Note that for the 2D infinite grid, d← = d→ = 2 (see Proposition 4.4 and the symmetry
of the spectrum of Zd that follows from [Woess, 2000, Eq.(7.4)]). The curves in Figure 4.8a closest
to the local averaging are those satisfying the condition (4.42), thus our condition seems tight.

Finally, note that the result (4.41) of Theorem 4.5 gives the rate of the power decay of the
MSE, but neglects constants and sub-polynomial factors. These factors depend on (α, β) and can
be significant for extreme values of (α, β). For instance, in Figure 4.9, we run simulations in the
same setting as before, but for choices of parameters deeper in the optimality zone (4.42). The
performance worses as α gets bigger. So contrarily to what is suggested by (4.42) and Theorem 4.1,
taking large values for α is a bad idea in practice. This can also be hinted at by the limit [Olver
et al., 2010, Eq. (18.6.2)]

lim
α→∞

π(α,β)
n (λ) =

(1 + λ

2

)n
.

This means that, as α → ∞, the polynomial gossip xn = π
(α,β)
n (W )x0 converges to the simple

gossip xn = W̃nx0 with the gossip matrix W̃ = (I + W )/2. We know from Theorem 4.1(1) that
simple gossip is suboptimal.

Overall, theory and practice suggest that the choice α = dim→σ/2, β = 0 that we make in
Section 4.3.2 is relevant.

4.J. Proof of Proposition 4.7

The intuition lying behind the proposition is very simple: the unbiased estimator xn(v) are linear
combination of observations corresponding to vertices in the ball Bv(n), thus it must have variance
greater than var ν/|Bv(n)| ≈ var ν/ndh .

A more rigorous argument goes as follows: using that W is a gossip matrix, it is easy to show
by induction that for all k > 0 and v, w ∈ V, if (W k)vw > 0, then there exists a path of length
k linking v to w in G. As degPn 6 n, this implies that Pn(W )ev has at most |Bv(n)| non-zero
entries. Furthermore, the entries of Pn(W )ev sum to 1 because W1 = 1 and Pn(1) = 1. Thus,
using the Cauchy-Schwarz inequality,

1 =
(∑
w∈V

(Pn(W )ev)w

)2

=
(∑
w∈V

(Pn(W )ev)w1{(Pn(W )ev)w>0}

)2

6 ‖Pn(W )ev‖2`2(V)
∑
w∈V

1{(Pn(W )ev)w>0} 6 ‖Pn(W )ev‖2`2(V) |Bv(n)|

(Lemma 4.5)= E[(xn(v)− µ)2]|Bv(n)| .

Thus

lim inf
n→∞

logE[(xn(v)− µ)2]
logn > lim inf

n→∞
− log |Bv(n)|

logn = −dh .

4.K. Proof of Theorem 4.2

In this section, we use the notation of Appendix 4.H.3. As xn = π
(d/2,0,µ)
n (W )x0, we have

‖xn − x̄1‖22 =
m∑
i=2
〈x0, ui〉2π(d/2,0,µ)

n (λi)2 6 ‖x0 − x̄1‖22

(
sup

λ∈[−1,1−µ]
|π(d/2,0,µ)
n (λ)|

)2

, (4.43)

143



where λ2, . . . , λm are the eigenvalues of W different from 1, that lie in [−1, 1−µ] by definition of µ,
and u2, . . . , um are the corresponding normalized eigenvectors.

sup
λ∈[−1,1−µ]

|π(d/2,0,µ)
n (λ)| 6 1

|P (d/2,0,µ)
n (1)|

sup
λ∈[−1,1−µ]

|P (d/2,0,µ)
n (λ)|

= 1
|π(d/2,0)
n (ϕ−1

µ (1))|
sup

λ∈ϕ−1
µ ([−1,1−µ])

|π(d/2,0)
n (λ)|

= 1∣∣∣π(d/2,0)
n

(
1+µ/2
1−µ/2

)∣∣∣ sup
λ∈[−1,1]

|π(d/2,0)
n (λ)|

= 1∣∣∣P (d/2,0)
n

(
1+µ/2
1−µ/2

)∣∣∣ sup
λ∈[−1,1]

|P (d/2,0)
n (λ)| (4.44)

where P (α,β)
n is the Jacobi polynomial, see Appendix 4.H.2.

By Proposition 4.11,

sup
λ∈[−1,1]

|P (d/2,0)
n (λ)| =

(
n+ d/2

n

)
∼

n→∞
nd/2 , (4.45)

an by Proposition 4.14 applied in x = 1+µ/2
1−µ/2 , there exists a positive constant c such that,

P (d/2,0)
n

(1 + µ/2
1− µ/2

)
∼

n→∞
cn−1/2

(
(1 +

√
µ/2)2

1− µ/2

)n
. (4.46)

Combining (4.44), (4.45) and (4.46), we get that there exists a constant C such that

sup
λ∈[−1,1−µ]

|π(d/2,0,µ)
n (λ)| 6 Cn(d+1)/2

(
1− µ/2

(1 +
√
µ/2)2

)n
,

and we conclude using (4.43).

4.L. Proof of Proposition 4.8

Let n > 0 and v, w ∈ V be two vertices linked by an edge in G. Define Bvw(n) as the set of vertices
u in Bw(n) such that all paths in the tree G going from u to w pass though v.

Lemma 4.8. For all n > 0, for all v, w ∈ V linked by an edge in G,

Kn(v, w) = |Bvw(n)| , and if n > 1, Mn(v, w) = 1
|Bvw(n)|

∑
u∈Bvw(n)

x0(u) .
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Proof. The proof goes by induction. The statement is trivial for n = 0, 1. For the induction,
assume the result at time n and note that

Bvw(n+ 1) = {v} ∪

 ⋃
u:u∼v, u6=w

Buv(n)

 , (4.47)

where all unions are disjoint. This essentially comes from the fact that G has no loops.

Taking cardinal, we get that

|Bvw(n+ 1)| (4.47)= 1 +
∑

u:u∼v, u6=w
|Buv(n)| (induction)= 1 +

∑
u:u∼v, u6=w

Kn(u, v) (4.16)= Kn+1(v, w) .

This proves the induction for the first equality. The proof for the second equality is similar:

1
|Bvw(n+ 1)|

∑
u∈Bvw(n+1)

x0(u) (4.47)= 1
Kn+1(v, w)

x0(v) +
∑

u:u∼v, u6=w

∑
z∈Bn(u,v)

x0(z)


(induction)=

x0(v) +
∑
u:u∼v, u6=w |Buv(n)|Mn(u, v)
Kn+1(v, w)

(induction)=
x0(v) +

∑
u:u∼v, u6=wKn(u, v)Mn(u, v)
Kn+1(v, w)

(4.16)= Mn+1(v, w) .

�

We now end the proof of Proposition 4.8. As Bv(n) = {v} ∪ (
⋃
u:u∼v Buv(n)) with disjoint

unions, using Lemma 4.8, we get

1
|Bv(n)|

∑
w∈Bv(n)

x0(w) =
x0(v) +

∑
u:u∼v

∑
w∈Bn(u,v) x0(w)

1 +
∑
u:u∼v |Bn(u, v)| = x0(v) +

∑
u:u∼vKn(u, v)Mn(u, v)

1 +
∑
u:u∼vKn(u, v)

(4.17)= xn(v) .
145



4.M. Proof of Theorem 4.3

As noted by Rebeschini and Tatikonda [2017], the message passing iteration (4.16)-(4.17) indexed
by the edges of the graph can be written as an iteration indexed by the vertices of the graph. We
repeat here the elementary derivation of this statement in our particular case of d-regular graphs.

First, because G is d-regular, it is an easy check from (4.16) that Kn(v, w) does not depend on
the edge (v, w) (thus we denote it Kn) and it satisfies the recursion K0 = 0, Kn+1 = 1 + (d− 1)Kn.

Let us now denote Sn(v) = x0(v) +
∑
u:u∼vKnMn(u, v) and Ln = 1 + dKn so that xn(v) =

Sn(v)/Ln. We now find recursions for Ln and Sn:

Ln+1 = 1 + dKt+1
(4.16)= 1 + d(1 + (d− 1)Kn) = 2 + (d− 1)(1 + dKn) = 2 + (d− 1)Ln ,

and

Sn+1(v) = x0(v) +
∑
u:u∼v

Kn+1Mn+1(u, v) (4.16)= x0(v) +
∑
u:u∼v

x0(u) +
∑

w:w∼u,w 6=v
KnMn(w, u)


= x0(v) +

∑
u:u∼v

(Sn(u)−KnMn(v, u)) .

As ∑
u:u∼v

KnMn(v, u) (4.16)= dx0(v) +
∑
u:u∼v

∑
w:w∼v, w 6=u

Kn−1Mn−1(w, v)

= dx0(v) + (d− 1)
∑

w:w∼v
Kn−1Mn−1(w, v) = x0(v) + (d− 1)Sn−1(v) ,

we finally get
Sn+1 = A(G)Sn − (d− 1)Sn−1 .

To sum up, we now have the simpler formulas for the message passing algorithm:
Ln+1 = 2 + (d− 1)Ln , L0 = 1 ,
Sn+1 = dWSn − (d− 1)Sn−1 , S0 = x0 , S1 = x0 + dWx0 ,

xn = Sn/Ln .

(4.48)

In Appendix 4.H.4, it is proved that πn(λ) = pn(λ)/pn(1) where pn satisfies the recursion formula

p0(λ) =
√
d− 1 , p1(λ) = dλ+ 1 , pn+1(λ) = d√

d− 1
λpn(λ)− pn−1(λ) , n > 1 .

Denote qn = (d− 1)(n−1)/2pn. It is an easy check that
q0(λ) = 1 , q1(λ) = dλ+ 1 , qn+1(λ) = dλqn(λ)− (d− 1)qn−1(λ) , n > 1 .

Using (4.48), one sees that for all n, Sn = qn(W )x0 and Ln = qn(1). Thus

xn = Sn
Ln

= qn(W )x0
qn(1) = pn(W )x0

pn(1) = πn(W )x0 .

4.N. Proof of Theorem 4.4

Theorem 4.3 states that xn = πn(W )x0 where the πn are the orthogonal polynomials w.r.t. the
modified Kesten-McKay measure (1− λ)σ(Td)(dλ). Then

‖xn − x̄1‖22 =
m∑
i=2
〈x0, ui〉2πn(λi)2 6 ‖x0 − x̄1‖22

(
sup

λ∈[−(1−µ̃),(1−µ̃)]
|πn(λ)|

)2

, (4.49)
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where λ2, . . . , λn are the eigenvalues ofW different from 1, that lie in [−(1−µ̃), (1−µ̃)] by definition
of the absolute spectral gap µ̃, and u2, . . . , un are the corresponding normalized eigenvectors.

In Section 4.H.4, we show that

πn(λ) = pn(λ)
pn(1) ,

pn(λ) = p̃n(ϕ−1(λ)) , ϕ(λ) = 2
√
d− 1
d

λ ,

p̃n(λ) =
(√

d− 1 + λ
)
Un(λ)− Tn+1(λ) ,

where Tn and Un are the Chebyshev polynomials of the first kind and of the second kind respectively.
Denote D = d/(2

√
d− 1). Then

sup
λ∈[−(1−µ̃),(1−µ̃)]

|πn(λ)| = 1
|p̃n(D)| sup

λ∈[−(1−µ̃)D,(1−µ̃)D]
|p̃n(λ)| . (4.50)

If λ ∈ [−1, 1], |Tn(λ)| 6 1 and |Un(λ)| 6 n+ 1. Thus

sup
λ∈[−1,1]

|p̃n(λ)| 6
(√

d− 1 + 1
)

(n+ 1) + 1 . (4.51)

We now discuss the different cases of the theorem.
(1) We assume µ̃ < 1− 2

√
d− 1/d. As p̃n are orthogonal polynomials w.r.t. some measure on

[−1, 1], all zeros of pn are real, distinct and located in the interior of [−1, 1] (see Proposition 4.9).
It follows that

sup
λ∈(1,(1−µ̃)D]

|p̃n(λ)| = |p̃n ((1− µ̃)D)| , sup
λ∈[−(1−µ̃)D,−1)

|p̃n(λ)| = |p̃n (−(1− µ̃)D)| . (4.52)

Merging Eqs. (4.50)-(4.52), we obtain

sup
λ∈[−(1−µ̃),(1−µ̃)]

|πn(λ)| 6 1
|p̃n(D)| max

(
|p̃n((1− µ̃)D)|, |p̃n(−(1− µ̃)D)|, (

√
d− 1 + 1)(n+ 1) + 1

)
.

Lemma 4.9. (1) If λ > 1, then there exists a constant C(d, λ) 6= 0 such that

p̃n(λ) ∼
n→∞

C(d, λ)
(
λ+

√
λ2 − 1

)n
. (4.53)

(2) If λ < −1, then there exists a constant C(d, λ) 6= 0 such that

p̃n(λ) ∼
n→∞

C(d, λ)
(
λ−

√
λ2 − 1

)n
. (4.54)

Proof. In the proof of Lemma 4.1, we developed the following formulas for the Chebyshev
polynomials:

Tn

(
z + z−1

2

)
= zn + z−n

2 , Un

(
z + z−1

2

)
= zn+1 − z−(n+1)

z − z−1 .

We write λ = (z + z−1)/2 with |z| > 1. If λ > 1, then z = λ +
√
λ2 − 1, and if λ < −1, then

z = λ−
√
λ2 − 1. Then

p̃n(λ) =
(√

d− 1 + λ
)
Un(λ)− Tn+1(λ)

=
(
√
d− 1 + z + z−1

2

)
zn+1 − z−(n+1)

z − z−1 − zn+1 + z−(n+1)

2
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∼
n→∞

[(
√
d− 1 + z + z−1

2

)
1

z − z−1 −
1
2

]
zn+1 .

The constant that appears is non-zero, thus the result is proved. �

Using Lemma 4.9, we get that there exists a constant C(d) such that

sup
λ∈[−(1−µ̃),(1−µ̃)]

|πn(λ)| 6 C(d)
(

(1− µ̃)D +
√

((1− µ̃)D)2 − 1
D +

√
D2 − 1

)n
.

Finally, using (4.49), this gives

‖xn − x̄1‖2 6 ‖x0 − x̄1‖2C(d)
(

(1− µ̃)D +
√

((1− µ̃)D)2 − 1
D +

√
D2 − 1

)n
.

Dividing the numerator and the denominator of the fraction by D, we get the desired result.
We now turn to the second part of the statement. Let u be an eigenvector of W corresponding

to an eigenvalue λ of magnitude 1− µ̃ such that 〈x0, u〉 6= 0. Then

‖xn − x̄1‖2 > |〈x0, u〉||πn(λ)| = |〈x0, u〉|
|p̃n(λ)|
|p̃n(D)| ,

Using as before Lemma 4.9, we get the desired lower bound.
(2) We now assume µ̃ > 1− 2

√
d− 1/d. This means that (1− µ̃)D 6 1, and thus

sup
λ∈[−(1−µ̃)D,(1−µ̃)D]

|p̃n(λ)| 6 sup
λ∈[−1,1]

|p̃n(λ)|
(4.51)
6

(√
d− 1 + 1

)
(n+ 1) + 1 .

Combining with (4.49) and (4.50), we get

‖xn − x̄1‖2 6 ‖x0 − x̄1‖2
1

|p̃n(D)|
((√

d− 1 + 1
)

(n+ 1) + 1
)
,

which gives the desired result using Lemma 4.9.

148



CHAPTER 5

Scaling Limits of Synchronous Gossip Algorithms to Partial
Differential Equations

We recall that this chapter is a preliminary version of joint work with Mufan Li, currently a PhD
student at the University of Toronto. He suggested looking at the scaling limit of the Jacobi
polynomial equation and helped identifying the Euler–Poisson–Darboux equation.

In this chapter, we study synchronous gossip algorithms on Zd endowed with a translation-
invariant gossip operation. As Zd is infinite, it is unclear what the average of an initial vector
x0 = (x0(v))v∈Zd is; the averaging problem is thus ill-posed. Here, our strategy is to study the
decay to 0 of the algorithms when initialized from 10, the vector with entry 10(0) = 1 and all other
entries 10(v), v ∈ Zd\{0}, equal to 0. By analogy with partial differential equations (PDEs), this
is the fundamental solution of the gossip iterations; the solutions for other initializations x0 can be
obtained by convoluting x0 with the fundamental solution.

Restricting ourselves to Zd with a translation-invariant gossip operation provides two advan-
tages. First, we can use the Fourier transform on Zd to analyze the behavior of the iterates. Second,
the graph Zd is naturally embedded in Rd: this enables to rescale the iterates in space. These two
tools enable analyses finer than those of the previous chapters.

Specifically, we show that gossip algorithms converge to PDEs when appropriately rescaled
simultaneously in time and space. In Section 5.1, we give the heuristic derivations of these scaling
limits. We show that the simple gossip algorithm converges to the heat equation (see, e.g., [Evans,
1998])

∂tu = 1
2∇y · (Q∇yu) , u = u(t, y) . (5.1)

Here, ∇y and ∇y· denote respectively the gradient and the divergence operator in the variable y.
Q is a d×d matrix quantifying the potential anisotropy of the diffusion: it is a function of the local
averaging operation. The fundamental solution of the heat equation (5.1), i.e., the solution when
initialized at the Dirac mass u(0, .) = δ0, is

u(t, y) = 1
(2π)d/2td/2(detQ)1/2 exp

(
− 1

2t
〈
y,Q−1y

〉)
. (5.2)

The formula above shows the sub-optimality of the simple gossip method: the mass spreads on a
typical scale ‖y‖ ≈

√
t, while we would like the scale to be ‖y‖ ≈ t; indeed, the gossiped information

can travel at most at distance Θ(t) in a time t, and we would like our gossip algorithms to match
this optimal speed of diffusion. Equivalently, the solution decays to 0 at the rate 1/td/2 in ‖.‖∞,
while we would like the rate to be 1/td.

We design an accelerated second-order gossip iteration: we choose the recursion coefficients
so that the iteration scales to the Euler–Poisson–Darboux (EPD) equation [Euler, 1770, Poisson,
1823, Darboux, 1896]

∂ttu+ d+ 1
t

∂tu = ∇y · (Q∇yu) . (5.3)
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See Appendix 5.A or [Bresters, 1973] for an introduction to the EPD equation in a more general
form. The EPD equation is a subtle combination of the wave equation and of the heat equation. The
wave component gives inertia to the diffusion so that the resulting PDE mixes faster. Remarkably,
for this precise value of the coefficient d+1

t , the fundamental solution is

u(0, .) = δ0 , ∂tu(0, .) = 0 , u(t, y) = Γ(d/2 + 1)
πd/2(detQ)1/2

1
td
1{〈y,Q−1y〉6t2} . (5.4)

This method thus has an optimal scaling: the mass spreads on a typical scale ‖y‖ ≈ t and the
solution decays to 0 at the rate 1/td. But the fundamental solution also has the perfect shape: the
averaging is uniform on the ellipsoid

{〈
y,Q−1y

〉
6 t2

}
.

The recursion coefficients of the accelerated second-order method only need to satisfy some
asymptotic properties for the method to scale to the EDP equation (5.3). Interestingly, the Jacobi
polynomial iteration (4.2)-(4.3) satisfies these asymptotics. We thus provide a different motivation
for the Jacobi polynomial iteration, that is derived in Chapter 4 through algebraic methods on
polynomials. However, the new derivation suggests that the precise formula (4.3) for the Jacobi
polynomial iteration does not matter: only certain asymptotics must be satisfied.

In Figures 5.1-5.2, we provide simulations in dimension d = 1 and d = 2. They show that the
limiting PDEs are sharp in describing the behavior of gossip algorithms as the number of iterations
grows, and that the accelerated methods achieve faster diffusion.

The derivations described above are only heuristic in Section 5.1: we do not specify how we
measure the convergence of gossip iterations to the limiting PDEs. In Section 5.2, we provide
rigorous meanings to these convergences.

The simple gossip algorithm can be seen as the iteration of the law of a random walk on Zd;
the convergence to a Gaussian random variable is made rigorous by the central limit theorem and
the local central limit theorem, see Section 5.2.1. In Section 5.2.2, we provide analog results for the
convergence of the Jacobi polynomial iteration to the EPD equation (5.3): a weak limit theorem
and a stronger result of local type. Finally, in Section 5.2.3, we apply the latter result to obtain an
asymptotic equivalent of convergence rate (not only a domination)∑

v∈Zd
xn(v)2 ∼

n→∞
1

(detQ)1/2|B(0, 1)|
1
nd

for the Jacobi polynomial iteration on Zd.

Notation. For v ∈ Zd, we denote 1v = (1v(w))w∈Zd the vector with entry 1v(v) = 1 and all other
entries equal to 0. We denote e1, . . . , ed the canonical basis of Rd. bsc denotes the integer part of
a real number s.

5.1. Heuristic derivation of the Euler–Poisson–Darboux gossip algorithm

Let ω = (ω(v))v∈Zd be a vector of non-negative reals, representing a local averaging operation on Zd.
We assume that ω has finite support and that

∑
v∈Zd ω(v) = 1. In this section, our synchronous

gossip operator W is the convolution by ω. If x = (x(v))v∈Zd and ∗ denotes the convolution on Zd,
ω ∗ x represents the computation, by each node v, of a weighted linear combination of the values
of its neighbors:

(ω ∗ x)(v) =
∑
w∈Zd

ω(w)x(v − w) .
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Figure 5.1. Comparison between gossip algorithms and their scaling limits: the
simple gossip and the heat equation, the accelerated Jacobi polynomial iteration
and the EPD equation. All iterations were run on Z (d = 1) and initialized from
x0 = 10. We show the results xn(v) as a function of v ∈ Z for different num-
bers of iterations n = 15, 50, 200. Note that as the number of iteration increases,
the description through the scaling limits becomes sharp. The accelerated Jacobi
polynomial iteration diffuses faster; it has a different scaling than the simple gossip
algorithm.
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(b) Accelerated Jacobi polynomial iteration

Figure 5.2. Comparison between simple gossip and the accelerated Jacobi poly-
nomial iteration on the triangular lattice (5.6). We initialize from x0 = 10 and we
show the iterates x30 = (x30(v))v∈Z2 using a color scale. The accelerated Jacobi
polynomial iteration diffuses faster than simple gossip: the mass is distributed more
evenly and on a larger ellipsoid.

The support of ω represents the range of the possible communications in Zd. Typically, we can
take

ω = 1
2d

d∑
i=1

(1ei + 1−ei) . (5.5)

This corresponds to allowing only nearest neighbors communicate in Zd. In this case the underlying
graph is the standard lattice on Zd. The triangular lattice in dimension 2 can be obtained by taking

ω = 1
6
(
1(1,0) + 1(−1,0) + 1(0,1) + 1(0,−1) + 1(1,1) + 1(−1,−1)

)
. (5.6)

Vectors ω with a larger support require larger ranges of communications.

Throughout this chapter, we assume that ω is centered, i.e.,∑
v∈Zd

ω(v)v = 0 ,

and we denote Q the covariance of ω, i.e.,

Q =
∑
v∈Zd

ω(v)vv> .

We assume that Q has full rank. Heuristically, this ensures that we average in all directions.

5.1.1. Scaling limit of the simple gossip algorithm to the heat equation. The syn-
chronous simple gossip algorithm iterates the local averaging operation:

xn+1(v) = (ω ∗ xn)(v) =
∑
w∈Zd

ω(w)xn(v − w) , v ∈ Zd . (5.7)

152



Let ∆t,∆y > 0 denote two scaling parameters. For t ∈ (∆t)N = {(∆t)n, n ∈ N} and y ∈ (∆y)Zd =
{(∆y)v, v ∈ Zd}, we define the scaled field

u(t, y) = x t
∆t

(
y

∆y

)
.

The iteration (5.7) can be reformulated in terms of u:

u(t+ ∆t, y) =
∑
w∈Zd

ω(w)u(t, y − (∆y)w) .

We now show that under a proper scaling for ∆t,∆y → 0, the above equation converges to a PDE
in u. Recall that

∑
v∈Zd ω(v) = 1, thus

u(t+ ∆t, y)− u(t, y) =
∑
w∈Zd

ω(w) [u(t, y − (∆y)w)− u(t, y)] .

We take ∆t,∆y → 0 and make Taylor expansions of the differences:
u(t+ ∆t, y)− u(t, y) = (∆t)∂tu+ o(∆t) ,

u(t, y − (∆y)w)− u(t, y) = −(∆y) 〈∇yu,w〉+ (∆y)2

2
〈
w,
(
∇2
yu
)
w
〉

+ o
(
(∆y)2

)
,

where all derivatives are taken in (t, y). Note that we make a second-order expansion in space: this
is due to the fact that the first-order terms cancel below. We obtain

(∆t)∂tu+ o(∆t) = −(∆y)
〈
∇yu,

∑
w∈Zd

ω(w)w
〉

+ (∆y)2

2
∑
w∈Zd

ω(w)
〈
w,
(
∇2
yu
)
w
〉

+ o
(
(∆y)2

)
.

As ω is centered, the first term of the right-hand side is zero. Moreover, we can rewrite∑
w∈Zd

ω(w)
〈
w,
(
∇2
yu
)
w
〉

= Tr
(
Q∇2

yu
)

= ∇y · (Q∇yu) .

We obtain

(∆t)∂tu+ o(∆t) = (∆y)2

2 ∇y · (Q∇yu) + o
(
(∆y)2

)
.

We choose the scaling ∆t = (∆y)2 and by identifying the highest-order terms, we obtain the scaling
to the heat equation

∂tu = 1
2∇y · (Q∇yu) .

Here, Q quantifies the potential anisotropy of the diffusion. In the case of (5.5), we have Q = 1
d Id

and thus we obtain an isotropic heat equation ∂tu = 1
2d∆yu, where ∆y denotes the Laplacian in

the variable y.

5.1.2. Second-order iteration scaling to the Euler–Poisson–Darboux equation. We
now consider second-order iterations of the form

xn+1(v) = an
∑
w∈Zd

ω(w)xn(v − w) + bnxn(v)− cnxn−1(v) . (5.8)

We impose an+bn−cn = 1 so that the sum of the coordinates of the vectors xn remains constant. We
show that, under specific asymptotics for an, bn, cn, the iteration (5.8) scales to the EPD equation.
As in Section 5.1.1, we introduce scaling parameters ∆t,∆y > 0 and the rescaled iterates

u(t, y) = x t
∆t

(
y

∆y

)
.
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The iteration (5.8) can be reformulated in terms of u:

u(t+ ∆t, y) = an
∑
w∈Zd

ω(w)u(t, y − (∆y)w) + bnu(t, y)− cnu(t−∆t, y) .

Substracting u(t, y) and using an + bn − cn = 1, we obtain

u(t+ ∆t, y)− u(t, y) = an
∑
w∈Zd

ω(w) [u(t, y − (∆y)w)− u(t, y)]− cn [u(t−∆t, y)− u(t, y)] .

We make the Taylor expansions of u, but this time a second-order expansion in t is necessary:

u(t+ ∆t, y)− u(t, y) = (∆t)∂tu+ (∆t)2

2 ∂ttu+ o(∆t) ,

u(t−∆t, y)− u(t, y) = −(∆t)∂tu+ (∆t)2

2 ∂ttu+ o(∆t) ,

u(t, y − (∆y)w)− u(t, y) = −(∆y) 〈∇yu,w〉+ (∆y)2

2
〈
w,
(
∇2
yu
)
w
〉

+ o
(
(∆y)2

)
.

We obtain
(∆t)2

2 (1 + cn)∂ttu+ (∆t)(1− cn)∂tu = an
(∆y)2

2 ∇y · (Q∇yu) .

To have the scaling to the Euler–Poisson–Darboux (EPD) equation, we take ∆t = ∆y, and

an −−−→
n→∞

2 , cn = 1− d+ 1
n

+ o

( 1
n

)
. (5.9)

Indeed, as t = n∆t, we have 1− cn ∼ d+1
t ∆t and thus

(∆t)2

2 (1 + 1 + o(1))∂ttu+ (∆t)2
(
d+ 1
t

+ o(1)
)
∂tu = (2 + o(1))(∆y)2

2 ∇y · (Q∇yu) ,

thus by identifying higher-order terms,

∂ttu+ d+ 1
t

∂tu = ∇y · (Q∇yu) .

Note that there is the implicit condition bn −−−→
n→∞

0 implied by (5.9) as an + bn − cn = 1.

Different scalings. Note that in this section, the scaling is ∆t = ∆y while for the simple gossip,
the scaling is ∆t = (∆y)2. This is another illustration that the iteration of this section diffuses
faster: to scale to a non-degenerate object, it needs go though a more important rescaling in space.

5.1.3. Probabilistic interpretation. For the sake of mathematical curiosity, let us make
an aside on the probabilistic interpretations of the heat equation and of the EPD equation. It is
well-known that the heat equation represents the evolution of the probability density function of
Brownian motion in Rd. Meanwhile, Kac [1974] showed that the telegrapher’s equation

∂ttu+ 2a∂tu = ∂yyu

represents the evolution of a persistent random walk: u(t, .) is the probability density function of a
random walker in Rd, that moves according to a fixed unit speed, and, at a Poisson rate a, resamples
the direction of its speed uniformly over the unit sphere. We can confidently extrapolate this result
to the case where a = (d + 1)/(2t) depends on time: the EPD equation (5.3) is the density of a
persistent random walk that gets more and more persistent over time. The rate a = (d + 1)/(2t)
of the speed resampling is chosen so that the law of the random walker is uniform on the ball of
radius t around the initial point. Note that as the random walker has unit speed, it can not be at
distance from the origin larger than the elapsed time t.
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This probabilistic point of view comforts the high-level idea that acceleration is achieved by
giving inertia to the gossiped information.

5.1.4. Relation to the Jacobi polynomial iteration. For the convenience of the reader,
we recall here the Jacobi polynomial iteration (4.2)-(4.3) introduced in Chapter 4 to accelerate
gossip algorithms:

x1 = a0ω ∗ x0 + b0x0 , xn+1 = anω ∗ xn + bnxn − cnxn−1, (5.10)

a0 = d+ 4
2(2 + d) , b0 = d

2(2 + d) , (5.11)

an = (2n+ d/2 + 1)(2n+ d/2 + 2)
2(n+ 1 + d/2)2 , bn = d2(2n+ d/2 + 1)

8(n+ 1 + d/2)2(2n+ d/2) , (5.12)

cn = n2(2n+ d/2 + 2)
(n+ 1 + d/2)2(2n+ d/2) , n > 1 . (5.13)

As explained in Chapter 4, this iteration is associated to the Jacobi polynomials π(α,β)
n with α = d/2

and β = 0. It is of the form (5.8) with coefficients satisfying (5.9). Thus the Jacobi polynomial
iteration scales to the EDP equation. However, note the large difference between the approaches of
Chapters 4 and 5: in Chapter 4, we use the geometry of the graph to approximate the spectrum of
the gossip problem and design a polynomial-based method adapted to this approximate spectrum;
in Chapter 5, we also use the geometry of the graph but to view gossip algorithms as PDEs when
rescaled. It is remarkable that the two approaches lead to similar results.

The PDE perspective enriches our understanding of the Jacobi polynomial iteration. For in-
stance, in the spirit of Appendix 4.I.5, one can explore the effect of using the Jacobi polyno-
mial π(α,β)

n for a different value than (α, β) = (d/2, 0) used in the Jacobi polynomial iteration.
From (4.25), it follows that in this case,

an −−−→
n→∞

2 , cn = 1− 2α+ 1
n

+ o

( 1
n

)
,

thus, repeating the computations of Section 5.1.2, the iteration converges to the more general EPD
equation (5.14). Consider its fundamental solution (5.15). If α > d/2, the mass concentrates at
the center of the ball of radius t. On the contrary, if α < d/2, the mass concentrates at the edge of
the ball. Both effects are undesirable as uniform averaging is the optimal strategy. These effects
are simulated in Figure 5.3.

5.1.5. Open problems: other geometries, stochastic case. An important weakness of
this chapter is that it only applies to synchronous gossip on a regular lattice. It is natural to ask
what could happen in an asynchronous setting, or when the graph is microscopically perturbed
(percolation graph, random geometric graph, etc).

For the simple gossip, or equivalently, for the random walk or for heat diffusion, answering this
question is the subject of the field of homogenization, see, e.g., [Armstrong et al., 2019, Armstrong
and Dario, 2018, Biskup et al., 2011]. The heuristic is that on a large scale and for long diffusion
times, microscopic fluctuations of the connectivity (in space and in time) are homogenized: the
process scales to an homogeneous diffusion with some constant effective diffusion matrix Q.

Our work raises the following question: is there homogenization for the EPD equation? Chap-
ter 4 proves that there is some robustness of the Jacobi polynomial iteration to microscopic details
of the graphs, as the rates are the same on all graphs of spectral dimension d. However, we do not
know if the process scales to the same limit on those graphs.
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Figure 5.3. Same simulation as in Figure 5.1(C), but we now study the effect of
varying the parameter α of the Jacobi polynomial iteration. Varying α also changes
the fundamental solution (5.15) of the EPD equation (5.14).
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5.2. Rigorous convergence results

In this section, we give some rigorous ground to the heuristic derivations of Section 5.1. In Sec-
tion 5.2.1, we start with the convergence of simple gossip to the heat equation. This case is simple
as it is equivalent to the central limit theorem: we obtain a weak convergence result. A stronger
convergence result, of local type, is deduced from the local central limit theorem.

Section 5.2.1 illustrates that two types of convergence are possible: weak and local. In Sec-
tion 5.2.2, we prove analog results for the convergence of the Jacobi polynomial iteration to the EPD
equation. We restrict to the Jacobi polynomial iteration—and not to any method satisfying (5.9)—
for technical reasons: we use fine asymptotic properties of the Jacobi polynomials. However, we end
this section with a remark on why we conjecture the same scaling for all iterations satisfying (5.9).

In Section 5.2.3, we apply the local convergence result to obtain convergence rates of the Jacobi
polynomial iteration. These rates are sharp up to constants.

5.2.1. Simple gossip and the heat equation. Consider the simple gossip iteration

x0 = 10 , xn+1 = ω ∗ xn .

The iteration xn can be interpreted as the probability density function of a random walk on Zd,
initialized from 0, with increments of density ω. As ω is centered, the random walk is unbiased; the
matrix Q is the covariance of the increments. The asymptotic law xn is described by the central
limit theorems: here, we interpret them with our notations. Let u(t, y) denote the fundamental
solution (5.2) of the heat equation (5.1). We denote δy the Dirac mass at y ∈ Rd.

Theorem 5.1 (central limit theorem, see, e.g., [Billingsley, 2008]). We have the following
convergence in the space of positive measures: for any t > 0,∑

v∈Zd
xbt/ε2c(v)δεv −−−→

ε→0
u(t, y)dy .

A stronger local result holds assuming that ω is aperiodic, i.e., that the random walk with
increments ω is an aperiodic Markov chain on Zd [Billingsley, 2008, Section 8]. For instance, the
vector ω of Equation (5.6), corresponding to the triangular lattice, is aperiodic, while the vector ω
of Equation (5.5), corresponding to the regular grid, is not.

Theorem 5.2 (local central limit theorem, [Gnedenko, 1948]). Assume that ω is aperiodic.
Then

sup
v∈Zd
|xn(v)− u(n, v)| = o

( 1
nd/2

)
as n→∞.

A pedagogical introduction to the local central limit theorem is provided by Curien [2020]. The
beauty of the local central limit theorem is that no rescaling is required: we simply discretize the
heat equation in time and space.

5.2.2. The Jacobi polynomial iteration and the Euler–Poisson–Darboux equation.
We now give analogs of Theorems 5.1 and 5.2 for the convergence of the Jacobi polynomial iteration
to the heat equation. Let xn denote the iterates of the Jacobi polynomial iteration (5.10)-(5.13)
initialized from x0 = 10 and u(t, y) the fundamental solution (5.4) of the EPD equation (5.3).

Assumptions. In this section, we assume that ω is symmetric (ω(−v) = ω(v)) and aperiodic.
While the aperiodicity assumption is clearly necessary for Theorem 5.4 to hold, we do not know if
these assumptions are necessary otherwise.
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Theorem 5.3 (weak convergence). We have the following weak convergence in the space
of signed measures: for all t > 0,∑

v∈Zd
xbt/εc(v)δεv −−−→

ε→0
u(t, y)dy .

Theorem 5.4 (local convergence). Denote ψ(y) =
∏d
i=1 sinc(y(i)) where y(i) is the i-th

component of y ∈ Rd and sinc(y) = sin(πy)
πy . Then∑

v∈Zd
(xn(v)− (u(n, .) ∗ ψ) (v))2 = o

( 1
nd

)
as n→∞.

In words, the local convergence holds, provided that we convolve the solution u(n, .) of the EPD
equation with the filter ψ. The two theorems are proved in Appendix 5.B.

Remark 5.1. The statements of Theorems 5.3 and 5.4 and their proofs can be easily
adapted to study the Jacobi polynomial iterations xn = π

(α,β)
n (ω) for other parameters

(α, β), as long as α > d/2 − 1/2 and β 6 α. In this case, the limiting PDE depends on
α. We have the convergence to the fundamental solution (5.15) of the general EPD equa-
tion (5.14).

Remark 5.2 (Extension beyond the Jacobi polynomial iteration). Our theorems are stated
for the Jacobi polynomial iteration only for a technical reason: the proofs are based on
well-known asymptotic properties of the Jacobi polynomials, stated in Proposition 5.3. We
conjecture that all other sequences of polynomials with recursion coefficients satisfying (5.9)
also satisfy the same properties: this would prove the scaling to the EPD equation for all
second-order gossip algorithms satisfying (5.9).

This conjecture is supported by Aptekarev [1993]: he shows that a sequence of orthogonal
polynomial must satisfy the Mehler-Heine asymptotics (Proposition 5.3.(1)) provided that
the recurrence coefficients of the polynomials satisfy some conditions that resemble (5.9).
Interestingly, he explains that the asymptotics of the recurrence coefficients are related to
the shape of the orthogonality measure near 1: this links the approaches of Chapter 4 and 5.

5.2.3. Application: sharp rates of the Jacobi polynomial iteration on Zd. In this
section, we apply Theorem 5.4 to obtain sharp rates for the Jacobi polynomial iteration.

Corollary 5.1. Assume that ω is symmetric and aperiodic. Let xn be the iterates of
the Jacobi polynomial iteration (5.10)-(5.13), initialized at x0 = 10. Then we have the
asymptotic equivalence∑

v∈Zd
xn(v)2 ∼

n→∞
1

(detQ)1/2|B(0, 1)|
1
nd

,

where |B(0, 1)| = πd/2

Γ(d/2+1) is the volume of the Euclidean unit ball in dimension d.

Compare with Theorem 4.1. Here our theorem applies only to regular lattices (not all graphs
of spectral dimension d), but we obtain an asymptotic equivalent, while Theorem 4.1 gives only
the exponent in n. In Figure 5.4, we compare the two asymptotic equivalent quantities in the case
of the Jacobi polynomial iteration on the triangular lattice. Note that similarly, one could obtain
sharp rates for simple gossip from the local central limit Theorem 5.2.
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Figure 5.4. Comparison between the empirical error
∑
v∈Zd xn(v)2 and the as-

ymptotic rate predicted by Corollary 5.1. Here, xn are the iterates of the Jacobi
polynomial iteration on the triangular lattice (5.6). Note that the corollary predicts
sharply not only the scaling in n (the asymptotic slope in the logarithmic plot) but
also the leading constant (the intercept of the asymptotic line).
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Appendix of Chapter 5

5.A. The Euler–Poisson–Darboux (EPD) equation

The EDP equation is the partial differential equation

∂ttu+ 2α+ 1
t

∂tu = ∇y · (Q∇yu) . (5.14)

Posing a rigorous framework for solving this equation is subtle because there is a diverging coefficient
2α+1
t as t → 0. Moreover, we see below that fundamental solutions are irregular; they are defined

in a weak sense. Thankfully, we do not have to bother with these technical details as our rigorous
results only require to know the expression of the fundamental solution of the EPD equation
(Proposition 5.1) and its Fourier transform (Proposition 5.2). These expressions are given by
Bresters [1973] in the case Q = Id; here, we easily extend the expressions for a general matrix Q.

Proposition 5.1. The fundamental solution of the EPD equation, i.e., the solution initial-
ized from u(0, .) = δ0, ∂tu(0, .) = 0, is

u(t, y) = Γ(α+ 1)
πd/2Γ(α+ 1− d/2)(detQ)1/2

1
t2α

(
t2 −

〈
y,Q−1y

〉)α−d/2
+

, (5.15)

where (.)+ denotes the positive part of a real number.

The case α = d/2 is particularly important to this chapter; in this case we recover (5.4)
from (5.15).

Proof of Proposition 5.1. In the case Q = Id, the solution is given by Bresters [1973,
Equation (3.4)]:

u(t, y) = Γ(α+ 1)
πd/2Γ(α+ 1− d/2)

1
t2α

(
t2 − ‖y‖2

)α−d/2
+

.

In the general case, consider v(t, y) = u(t, Q1/2y)(detQ)1/2. Computations give that v(t, y) is the
fundamental solution of the EPD equation (5.14) with Q = Id, thus

u(t, Q1/2y)(detQ)1/2 = v(t, y) = Γ(α+ 1)
πd/2Γ(α+ 1− d/2)

1
t2α

(
t2 − ‖y‖2

)α−d/2
+

.

This gives the desired formula. �

Proposition 5.2. The Fourier transform in space of the fundamental solution (5.15) is

û(t, ξ) =
∫
Rd

dy ei〈ξ,y〉u(t, y) = 2αΓ(α+ 1) 〈ξ,Qξ〉−α/2 t−αJα
(
t 〈ξ,Qξ〉1/2

)
,

where Jα denotes the Bessel function of the first kind of order α [Szegö, 1939, Section 1.71].

Proof. In the case Q = Id, the result is given by Bresters [1973, Equation (3.1)]:
û(t, ξ) = 2αΓ(α+ 1)‖ξ‖−αt−αJα (t‖ξ‖) .
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In the general case, v(t, y) = u(t, Q1/2y)(detQ)1/2 is a solution of the EPD equation (5.14) with
Q = Id. Moreover,

v̂(t, ξ) =
∫
Rd

dy ei〈ξ,y〉v(t, y)

= (detQ)1/2
∫
Rd

dy ei〈ξ,y〉u(t, Q1/2y) .

In the last integral, we change the variable to x = Q1/2y. Then dx = det(Q1/2)dy = (detQ)1/2dy.

v̂(t, ξ) =
∫
Rd

dx ei〈ξ,Q−1/2x〉u(t, x)

= û(t, Q−1/2ξ) .

Thus

û(t, ξ) = v̂(t, Q1/2ξ) = 2αΓ(α+ 1) 〈ξ,Qξ〉−α/2 t−αJα
(
t 〈ξ,Qξ〉1/2

)
.

�

5.B. Proof of Theorems 5.3 and 5.4

Our proofs use the asymptotic properties of the Jacobi polynomials; we rewrite the iteration (5.10)-
(5.13), initialized from x0 = 10, as xn = π

(d/2,0)
n (ω). Here, we use the notations of Chapter 4: π(d/2,0)

n

denotes the Jacobi polynomial, rescaled such that π(d/2,0)
n (1) = 1, with parameters α = d/2, β = 0.

The evaluation of the polynomial π(d/2,0)
n in ω is done by taking the convolution as the product.

The proofs below use the following well-known results on Jacobi polynomials.

Proposition 5.3. (1) (Mehler-Heine asymptotic) The Jacobi polynomials satisfy the
following asymptotic at the edge of the orthogonality measure

lim
n→∞

π(d/2,0)
n

(
1− z2

2n2

)
= 2d/2Γ

(
d

2 + 1
)
z−d/2Jd/2(z) ,

where Jd/2 denotes the Bessel function of the first kind of order d/2 [Szegö, 1939,
Section 1.71]. The convergence is uniform for z in compact sets.

(2) On the whole support of the orthogonality measure, we have the following bounds:
there exists constants C1, C2 > 0 such that for all n > 0,∣∣∣π(d/2,0)

n (λ)
∣∣∣ 6 {C1 (arccos |λ|)−d/2−1/2 n−d/2−1/2 if |λ| 6 1− 1

n2 ,

C2 otherwise.

Proof. (1) Szegö [1939, Theorem 8.1.1] gives the Mehler-Heine asymptotic for the clas-
sical Jacobi polynomials P (d/2,0)

n :

lim
n→∞

n−d/2P (d/2,0)
n

(
1− z2

2n2

)
= 2d/2z−d/2Jd/2(z) ,

with uniform convergence for z in compact sets. As

π(d/2,0)
n = P

(d/2,0)
n

P
(d/2,0)
n (1)

= P
(d/2,0)
n(n+d/2
n

) , (
n+ d/2

n

)
∼ nd/2

Γ
(
d
2 + 1

) ,
we obtain the desired formula.
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(2) For λ > 0, this is only a reformulation of Proposition 4.15 (that follows straightforwardly
from [Szegö, 1939, Theorem 7.32.2]). For λ < 0, we use the symmetry of the Jacobi
polynomials P (d/2,0)

n (λ) = (−1)nP (0,d/2)
n [Szegö, 1939, Equation (4.1.3)] and use again

[Szegö, 1939, Theorem 7.32.2].
�

Proof of Theorem 5.3. Denote
µt,ε =

∑
v∈Zd

xbt/εc(v)δεv , µt = u(t, y)dy

The proof is based on [Baez-Duarte, 1993, Theorem 2.1], a variant of Lévy’s theorem for signed
measures: in order to prove the weak convergence µt,ε → µt as ε→ 0, it is sufficient to check that
the family of measures µt,ε, ε > 0 is tight, bounded in total variation, that we have the pointwise
convergence of the Fourier transform µ̂t,ε → µ̂t almost everywhere. These three conditions are
checked below.
Tightness of µt,ε, ε > 0. ω has a finite support, thus there exists R > 0 such that the support of ω
is included in B(0, R). Then for all n > 0, the support of w∗n = w∗· · ·∗w (with n terms) is included
in B(0, nR). The vector xn is a linear combination of the w∗l for l 6 n, thus is also included in
B(0, nR). Finally, when rescaling by ε, the support of µt,ε =

∑
v∈Zd xbt/εc(v)δεv is included in

B(0, εbt/εcR) ⊂ B(0, tR). The latter set is independent of ε, thus the family of measures µt,ε,
ε > 0 is tight.
Boundedness of µt,ε, ε > 0. Note that µt,ε(Rd) = 1, but as µt,ε is a signed measure, we need to
show that the total mass ‖µt,ε‖ = |µt,ε|(Rd) of the total variation |µt,ε| is bounded independently
of ε. By Hölder’s inequality,

‖µt,ε‖ = ‖xbt/εc‖l1(Zd) 6 | Suppxbt/εc|1/2‖xbt/εc‖
1/2
l2(Zd) , (5.16)

where | Suppxbt/εc| denotes the cardinal of the support of xbt/εc. As this support is included in
B(0, bt/εcR), its cardinal can be bounded by the number of integer points in B(0, bt/εcR). This is
dominated by ε−d as ε→ 0. Thus

|Suppxbt/εc| = O(ε−d) .
We now bound the second term in (5.16), namely the norm ‖xbt/εc‖l2(Zd). By Plancherel identity,

‖xn‖2`2(Zd) =
∥∥∥π(d/2,0)

n (ω)
∥∥∥2

`2(Zd)
= 1

(2π)d

∥∥∥∥ ̂
π

(d/2,0)
n (ω)

∥∥∥∥2

L2([−π,π]d)
.

We now use that the Fourier transform of a convolution is the product of the Fourier transforms,

thus π̂(d/2,0)
n (ω) = π

(d/2,0)
n (ω̂). We obtain

‖xn‖2`2(Zd) = 1
(2π)d

∥∥∥π(d/2,0)
n (ω̂)

∥∥∥2

L2([−π,π]d)
= 1

(2π)d
∫

[−π,π]d
dξ
∣∣∣π(d/2,0)
n (ω̂(ξ))

∣∣∣2 .
Here, as ω is symmetric, ω̂(ξ) is real. We can use the bounds of Proposition 5.3.(2). We need to
estimate ω̂(ξ). We use the following lemma.

Lemma 5.1. As ω is aperiodic, there exists λ > 0 such that
|ω̂(ξ)| 6 1− λ‖ξ‖2 , ξ ∈ [−π, π]d .

This lemma is simple and proved by Curien [2020, Section 7.1]. We now return to our estimate
of
∣∣∣π(d/2,0)
n (ω̂(ξ))

∣∣∣2.
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• If ‖ξ‖ > 1√
λn

, we have |ω̂(ξ)| 6 1− λ‖ξ‖2 6 1− 1
n2 . Thus by Proposition 5.3.(2),∣∣∣π(d/2,0)

n (ω̂(ξ))
∣∣∣ 6 C1 (arccos |ω̂(ξ)|)−d/2−1/2 n−d/2−1/2

6 C1
(
arccos

(
1− λ‖ξ‖2

))−d/2−1/2
n−d/2−1/2 .

• If ‖ξ‖ < 1√
λn

, we can only say
∣∣∣π(d/2,0)
n (ω̂(ξ))

∣∣∣ 6 C2.
Thus

‖xn‖2`2(Zd) = 1
(2π)d

∫
[−π,π]d

dξ
∣∣∣π(d/2,0)
n (ω̂(ξ))

∣∣∣2
6 C3n

−d−1
∫
{‖ξ‖>1/(

√
λn)}

dξ
(
arccos

(
1− λ‖ξ‖2

))−d−1
+ C4

∫
{‖ξ‖<1/(

√
λn)}

dξ

where we use the notation Ci to denote constants independent of n. We use a spherical change of
variables in the first integral:

‖xn‖2`2(Zd) 6 C5n
−d−1

∫ √dπ
1/(
√
λn)

dr rd−1
(
arccos

(
1− λr2

))−d−1
+ C6n

−d . (5.17)

As r → 0, arccos(1− λr2) ∼
√

2λr and thus

rd−1
(
arccos

(
1− λr2

))−d−1
∼
√

2λ−d/2−1/2r−2 .

Thus rd−1 (arccos
(
1− λr2))−d−1 is not integrable at 0. We thus have, as n→∞,∫ √dπ

1/(
√
λn)

dr rd−1
(
arccos

(
1− λr2

))−d−1
∼ C7

∫ √dπ
1/(
√
λn)

dr r−2 ∼ C8n .

Putting back in (5.17), we obtain ‖xn‖2`2(Zd) = O(n−d). Finally, getting back to (5.16), we obtain
as ε→ 0

‖µt,ε‖ 6 |Suppxbt/εc|1/2‖xbt/εc‖
1/2
l2(Zd) = O(ε−d/2)O

(⌊
t

ε

⌋−d/2)
= O(1) .

This shows that the family of measures µt,ε, ε > 0 is bounded in total variation.

Pointwise convergence of the Fourier transform.

µ̂t,ε(ξ) =
∫
Rd

dµt,ε(y)ei〈ξ,y〉 =
∑
v∈Zd

xbt/εc(v)ei〈ξ,εv〉 = x̂bt/εc(εξ) = π
(d/2,0)
bt/εc (ω̂(εξ)) .

As ε→ 0,

ω̂(εξ) = 1− ε2

2 〈ξ,Qξ〉+ o(ε2) .

We now apply Proposition 5.3.(1):

µ̂t,ε(ξ) = π
(d/2,0)
bt/εc

(
1− ε2

2 (〈ξ,Qξ〉+ o(1))
)

= π
(d/2,0)
bt/εc

(
1− t2 〈ξ,Qξ〉+ o(1)

2bt/εc2

)

−−−→
ε→0

2d/2Γ
(
d

2 + 1
)
〈ξ,Qξ〉−d/4t−d/2Jd/2

(
t〈ξ,Qξ〉1/2

)
= û(t, ξ) = µ̂t(ξ) ,

where we used the formula for û(t, ξ) from Proposition 5.2. This finishes the proof of the weak
convergence. �
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Proof of Theorem 5.4. This proof is similar to the one of Theorem 5.3. By Plancherel’s
formula,∑

v∈Zd
(xn(v)− (u(n, .) ∗ ψ) (v))2 = ‖xn − u(n, .) ∗ ψ‖2`2(Zd) =

∥∥∥x̂n − ̂u(n, .) ∗ ψ
∥∥∥2

L2([−π,π]d)
(5.18)

In this last expression, we take the Fourier transform of u(n, .) ∗ ψ as a function of v ∈ Zd.
However, to decompose the computation, let us first compute the Fourier transform of y ∈ Rd 7→
(u(n, .) ∗ψ)(y). The Fourier transform of this convolution is the product of the Fourier transforms,
and ψ is chosen specifically so that its Fourier transform is ψ̂(ξ) = 1{ξ∈[−π,π]d}. As a consequence,
the Fourier transform of y ∈ Rd 7→ (u(n, .) ∗ ψ)(y) is ξ ∈ Rd 7→ û(t, ξ)1{ξ∈[−π,π]d}.

We now discretize this function and seek the Fourier transform of v ∈ Zd 7→ (u(n, .) ∗ ψ)(v).
The Fourier transform of the discretization is the periodization of the Fourier transform, thus the
Fourier transform of v ∈ Zd 7→ (u(n, .) ∗ ψ)(v) is ξ ∈ [−π, π]d 7→ û(n, ξ).

We obtain ∥∥∥x̂n − ̂u(n, .) ∗ ψ
∥∥∥2

L2([−π,π]d)
=
∫

[−π,π]d
dξ
(
π(d/2,0)
n (ω̂(ξ))− û(n, ξ)

)2
.

We make the change of variables ζ = nξ:∥∥∥x̂n − ̂u(n, .) ∗ ψ
∥∥∥2

L2([−π,π]d)
= n−d

∫
Rd

dζ
(
π(d/2,0)
n

(
ω̂

(
ζ

n

))
− û

(
n,
ζ

n

))2
1{ζ∈[−nπ,nπ]d} . (5.19)

Fix ζ ∈ Rd. Using the Mehler-Heine asymptotic (Proposition 5.3.(1)), we prove that

π(d/2,0)
n

(
ω̂

(
ζ

n

))
− û

(
n,
ζ

n

)
−−−→
n→∞

0 .

We do not repeat the computations because they are similar to the pointwise convergence in the
proof of Theorem 5.3. This proves that the integrand of (5.19) converges pointwise to 0. We want
to apply the dominated convergence theorem to conclude, and thus seek a domination of(

π(d/2,0)
n

(
ω̂

(
ζ

n

))
− û

(
n,
ζ

n

))2
1{ζ∈[−nπ,nπ]d} (5.20)

6 2π(d/2,0)
n

(
ω̂

(
ζ

n

))2
1{ζ∈[−nπ,nπ]d} + 2û

(
n,
ζ

n

)2
. (5.21)

By scale invariance of the EPD equation (or, more simply, from Proposition 5.2), û
(
n, ζn

)
= û (1, ζ).

Further, by Plancherel’s theorem,∫
Rd

dζ û(1, ζ)2 = (2π)d
∫
Rd

dy u(1, y)2 <∞ ,

thus the second term of (5.21) is independent of n and integrable. We now need to find a domi-
nation for the first term. Here, the reasoning is similar to the boundedness of µt,ε in the proof of
Theorem 5.3.

• If ‖ζ‖ > 1√
λ
, by Lemma 5.1,

∣∣∣ω̂ ( ζn)∣∣∣ 6 1− 1
n2 , thus by Proposition 5.3.(2),

π(d/2,0)
n

(
ω̂

(
ζ

n

))2
6 C2

1

(
arccos

∣∣∣∣ω̂ ( ζn
)∣∣∣∣)−d−1

n−d−1

6 C2
1

(
arccos

(
1− λ‖ζ‖

2

n2

))−d−1

n−d−1 .
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There exists C9 > 0 such that arccos(1− z) > C9
√
z. Thus

π(d/2,0)
n

(
ω̂

(
ζ

n

))2
6 C10‖ζ‖−d−1 .

• If ‖ζ‖ < 1√
λ
, then

π(d/2,0)
n

(
ω̂

(
ζ

n

))2
6 C2

2 .

We thus define the domination

g(ζ) =

C10‖ζ‖−d−1 if ‖ζ‖ > 1√
λ
,

C2
2 if ‖ζ‖ < 1√

λ
.

This domination is integrable on Rd; this concludes the theorem.
�

5.C. Proof of Corollary 5.1

Note that
∑
v∈Zd xn(v)2 = ‖xn‖2l2(Zd) and by Theorem 5.4,∣∣∣‖xn‖l2(Zd) − ‖u(n, .) ∗ ψ‖l2(Zd)

∣∣∣ 6 ‖xn − u(n, .) ∗ ψ‖l2(Zd) = o(n−d/2) .

It is thus sufficient to prove that

‖u(n, .) ∗ ψ‖2l2(Zd) ∼
1

(detQ)1/2|B(0, 1)|
1
nd

.

In the proof of Theorem 5.4, we explain that the Fourier transform of v ∈ Zd 7→ (u(n, .) ∗ ψ)(v) is
ξ ∈ [−π, π]d 7→ û(n, ξ). Thus by Plancherel’s theorem,

‖u(n, .) ∗ ψ‖2l2(Zd) = 1
(2π)d ‖û(n, .)‖2L2([−π,π]d) = 1

(2π)d
∫

[−π,π]d
dξ û(n, ξ)2 .

We make the change of variables ζ = ξ/n. Note that by scale invariance of the EPD equation (or,
more simply, from Proposition 5.2), û

(
n, ζn

)
= û (1, ζ). Thus

‖u(n, .) ∗ ψ‖2l2(Zd) = 1
(2π)dnd

∫
[−nπ,nπ]d

dζ û(1, ζ)2 = 1
(2π)dnd

(∫
Rd

dζ û(1, ζ)2 + o(1)
)
. (5.22)

We use again Plancherel’s theorem and then (5.4):
1

(2π)d
∫
Rd

dζ û(1, ζ)2 =
∫
Rd

dy u(1, y)2 =
( Γ(d/2 + 1)
πd/2(detQ)1/2

)2 ∣∣∣{y∣∣∣〈y,Q−1y
〉
6 1

}∣∣∣ .
As the volume of the d-dimensional unit ball is |B(0, 1)| = πd/2

Γ(d/2+1) , the volume of the ellipsoid∣∣{y∣∣〈y,Q−1y
〉
6 1

}∣∣ is πd/2(detQ)1/2

Γ(d/2+1) , thus

1
(2π)d

∫
Rd

dζ û(1, ζ)2 = Γ(d/2 + 1)
πd/2(detQ)1/2 = 1

(detQ)1/2|B(0, 1)|
.

Substituting in (5.22), this concludes the proof.
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Conclusion and Research Directions

We have learned to think of optimization and gossip algorithms in parallel. We believe that both
fields benefit from the perspective of the other one. As a younger field, gossip algorithms benefit
from the transposition of ideas from optimization. Conversely, diffusions and more generally gossip
algorithms are visual and thus can be intuited more easily (Chapter 5). Moreover, the continuous
time of gossip algorithm brought an elegant perspective on Nesterov acceleration (Chapter 3).

We pushed the parallel in various settings: stochastic or deterministic, parametric or non-
parametric. We tried to make the equivalence rigorous, i.e., to prove results simultaneously in both
fields at once (Chapter 2). The difference between continuous and discrete time became an annoying
limitation to the parallel. However, it revealed to be not a technical detail but symptomatic of the
challenge caused by asynchrony in gossip algorithm: this reflection led to Chapter 3.

Overall, we hope that this parallel can be used to inspire and simplify research in these fields.
A natural playground could be distributed optimization, as it mixes single-machine optimization
and gossip algorithms [Assran et al., 2020, Nedic et al., 2010]. Seeing distributed optimization as
classical optimization on a lifted function inspires algorithms and simplifies proofs, see [Scaman
et al., 2017] for instance. It remains to see how far this technique can be pushed.

In this thesis, we focused on two specific assumptions that we believe to be particularly relevant
and that we want to encourage.

First, we often assumed that our stochastic gradients are noiseless, meaning without any ad-
ditive noise and only with pure multiplicative noise. This assumptions is made more and more
often as it occurs when minimizing the training error of overparameterized models: there exists a
predictor that perfectly fits the training data [Bartlett et al., 2021]. However, it is also possible
that there exists a predictor that achieves a zero generalization risk, not only a zero training error.
This is the case, for instance, in the cat-vs-dog problem where humans achieve almost zero error;
this can be seen as a function interpolation problem from the noiseless observation of its values at
random points (see Section 1.4.3 for a lengthy discussion). In this case, there is no need for the
model to be overparameterized to have noiseless gradients. This motivation for noiseless gradients
is reasonable, but rarely expressed (see [Wojtowytsch, 2021] for an exception). We also gave a
more unusual reason to make the noiseless assumption: it is natural for the application to gossip
algorithms.

Second, we gave a special focus on the non-parametric theory; in our case, this corresponds to
source and capacity conditions, or a spectral dimension assumption. These problem description are
more suited to the large-scale problems that appear in modern computer science: large dimension,
large networks. Of course, non-parametric statistics have existed for a long time, but the spectral
dimension was new to gossip algorithm. We encourage to use more this description for large
networks.

Under both assumptions, even the convergence rates of stochastic gradient descent were un-
known (Chapter 2). Thus many questions are open, notably starting with the question of acceler-
ation in the same setting. We provide only a partial answer in Section 3.4.2, this is restricted to
the regularity α = 1, and we leave the question open for other regularities.
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More generally, among the numerous questions that could be asked, let us identify two moti-
vating directions.
Statistical optimality of first-order methods. In computer science, a large number of works
seek an algorithm with low complexity that achieves the information theoretic bound, i.e., the
performance of the best of all algorithms, including the most time-consuming ones. If this is
possible, we say that the algorithm with low complexity is optimal. Often, complexity is taken
into account in a crude way, for instance by restricting to polynomial-time algorithms. However,
because of the large scale of modern statistical problems, a more realistic requirement is to restrict
to first-order methods, with a single-pass on the data (or few passes) [Bottou and Le Cun, 2005].
Thus: can single-pass first order methods achieve optimality?

There exists numerous works studying this question; for instance Dieuleveut and Bach [2016]
show that averaged regularized stochastic gradient descent can achieve optimality in the noisy case.
However, Chapter 2 shows that stochastic gradient descent is suboptimal for function interpolation.
This raises the question of accelerating stochastic gradient descent up to optimality in the noiseless
case. We warn that the optimal rates in the noiseless case should be faster that in the noisy case;
achieving optimality could thus be more demanding.
Going non-linear. This thesis has largely focused on linear iterations (in the initialization), that
correspond to least-squares problems or quadratic objectives (with the exception of the first half of
Chapter 3). This enabled a heavy use of the covariance operator, or Hessian, and its diagonalization.
To bridge the gap with practice, we need to study the case of non-quadratic losses, general convex
objectives, or even some non-convex objectives. However, we must also warn that the world out
there is vast and wild. Statistical learning with non-convex neural networks is notoriously hard to
analyze [Bartlett et al., 2021].

On the gossip side, we can also replace the local averaging at the meeting of two agents by a
potentially non-linear update rule. As reviewed by Aldous [2013], one can obtain a wide range of
models: pandemic processes, voter models, token processes, etc. In each case, the question of the
long-term behavior can be asked; however it gets much harder to state results in a general setting.
Ad hoc results are built for specific geometries and specific update rules.

Similarly, we expect the exploration of statistical learning for non-convex objectives to progress
through small steps. The enthusiastic research will find a limitless source of excitement in exploring
this wide bestiary of research problems.

168



Bibliography

D. Aldous. Interacting particle systems as stochastic social dynamics. Bernoulli, 19(4):1122–1149,
2013.

D. Aldous and J. A. Fill. Reversible markov chains and random walks on graphs, 2002. Unfinished
monograph, recompiled 2014, available at http://www.stat.berkeley.edu/$\sim$aldous/
RWG/book.html.

D. Aldous and D. Lanoue. A lecture on the averaging process. Probability Surveys, 9:90–102, 2012.
Z. Allen-Zhu and L. Orecchia. Linear Coupling: An Ultimate Unification of Gradient and Mirror
Descent. In Proceedings of the 8th Innovations in Theoretical Computer Science, ITCS ’17, 2017.

S. Andres, M. T. Barlow, J.-D. Deuschel, and B. M. Hambly. Invariance principle for the random
conductance model. Probability Theory and Related Fields, 156(3-4):535–580, 2013.

A. I. Aptekarev. Asymptotics of orthogonal polynomials in a neighborhood of the endpoints of the
interval of orthogonality. Sbornik: Mathematics, 76(1):35, 1993.

M. Arioli and J. Scott. Chebyshev acceleration of iterative refinement. Numerical Algorithms, 66
(3):591–608, 2014.

Y. Arjevani, S. Shalev-Shwartz, and O. Shamir. On lower and upper bounds in smooth and strongly
convex optimization. Journal of Machine Learning Research, 17(126):1–51, 2016.

S. Armstrong and P. Dario. Elliptic regularity and quantitative homogenization on percolation
clusters. Communications on Pure and Applied Mathematics, 71(9):1717–1849, 2018.

S. Armstrong, T. Kuusi, and J.-C. Mourrat. Quantitative stochastic homogenization and large-scale
regularity, volume 352. Springer, 2019.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical society,
68(3):337–404, 1950.

M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johansson, and M. G. Rabbat. Advances in
asynchronous parallel and distributed optimization. Proceedings of the IEEE, 108(11):2013–2031,
2020.

H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont. Fast convergence of inertial dynamics and
algorithms with asymptotic vanishing viscosity. Mathematical Programming, 168(1):123–175,
2018.

H. Attouch, Z. Chbani, and H. Riahi. Rate of convergence of the Nesterov accelerated gradient
method in the subcritical case α 6 3. ESAIM: Control, Optimisation and Calculus of Variations,
25:2, 2019.

K. Avrachenkov, L. Cottatellucci, and M. Hamidouche. Eigenvalues and spectral dimension of
random geometric graphs in thermodynamic regime. In International Conference on Complex
Networks and Their Applications, pages 965–975. Springer, 2019.

O. Axelsson. Iterative solution methods. Cambridge university press, 1996.
N. S. Aybat, A. Fallah, M. Gurbuzbalaban, and A. Ozdaglar. Robust accelerated gradient methods
for smooth strongly convex functions. SIAM Journal on Optimization, 30(1):717–751, 2020.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate O(1/n). In Advances in Neural Information Processing Systems, pages 773–781, 2013.

169

http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html
http://www.stat.berkeley.edu/$\sim $aldous/RWG/book.html


L. Baez-Duarte. Central limit theorem for complex measures. Journal of Theoretical Probability, 6
(1):33–56, 1993.

P. Barooah and J. P. Hespanha. Estimation from relative measurements: Electrical analogy and
large graphs. IEEE Transactions on Signal Processing, 56(6):2181–2193, 2008.

P. Bartlett, A. Montanari, and A. Rakhlin. Deep learning: a statistical viewpoint. arXiv preprint
arXiv:2103.09177, 2021.

B. Bauer, L. Devroye, M. Kohler, A. Krzyżak, and H. Walk. Nonparametric estimation of a function
from noiseless observations at random points. Journal of Multivariate Analysis, 160:93–104, 2017.

L. Becchetti, A. Clementi, P. Manurangsi, E. Natale, F. Pasquale, P. Raghavendra, and L. Tre-
visan. Average whenever you meet: Opportunistic protocols for community detection. In 26th
Annual European Symposium on Algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan. Find your place: Simple
distributed algorithms for community detection. SIAM Journal on Computing, 49(4):821–864,
2020.

R. Berthier, F. Bach, and P. Gaillard. Tight nonparametric convergence rates for stochastic gradient
descent under the noiseless linear model. In Advances in Neural Information Processing Systems,
volume 33, pages 2576–2586, 2020.

D. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimization:
A survey. Optimization for Machine Learning, 2010(1-38):3, 2011.

M. Betancourt, M. Jordan, and A. Wilson. On symplectic optimization. arXiv preprint
arXiv:1802.03653, 2018.

P. Billingsley. Probability and measure. John Wiley & Sons, 2008.
M. Biskup et al. Recent progress on the random conductance model. Probability Surveys, 8:294–373,
2011.

B. Bordelon and C. Pehlevan. Learning curves for sgd on structured features. arXiv preprint
arXiv:2106.02713, 2021.

L. Bottou and Y. Le Cun. On-line learning for very large data sets. Applied Stochastic Models in
Business and Industry, 21(2):137–151, 2005.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE Transactions
on Information Theory, 52(6):2508–2530, 2006.

P. Braca, S. Marano, and V. Matta. Enforcing consensus while monitoring the environment in
wireless sensor networks. IEEE Transactions on Signal Processing, 56(7):3375–3380, 2008.

D. Bresters. On the equation of euler–poisson–darboux. SIAM Journal on Mathematical Analysis,
4(1):31–41, 1973.

S. Bubeck, Y. T. Lee, and M. Singh. A geometric alternative to Nesterov’s accelerated gradient
descent. arXiv preprint arXiv:1506.08187, 2015.

M. Cao, D. A. Spielman, and E. M. Yeh. Accelerated gossip algorithms for distributed computation.
In 44th Annual Allerton Conference on Communication, Control, and Computation, pages 952–
959, 2006.

A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. Foun-
dations of Computational Mathematics, 7(3):331–368, 2007.
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