
HAL Id: tel-03980401
https://hal.science/tel-03980401

Submitted on 9 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to natural and extended formulations for
Combinatorial Optimization Problems

Viet Hung Nguyen

To cite this version:
Viet Hung Nguyen. Contributions to natural and extended formulations for Combinatorial Optimiza-
tion Problems: Applications to exact and approximation algorithms. Discrete Mathematics [cs.DM].
Sorbonne Université UPMC, 2016. �tel-03980401�

https://hal.science/tel-03980401
https://hal.archives-ouvertes.fr

Contributions to natural and extended

formulations for Combinatorial Optimization

Problems

Applications to exact and approximation

algorithms

by

Viet Hung Nguyen

Submitted to the University Pierre and Marie Curie
in partial fulfillment of the requirements for the degree of

Habilitation à Diriger des Recherches

at the

UNIVERSITY PIERRE AND MARIE CURIE

December 2016

defense before the comittee composed by:

Francisco Barahona IBM J. Watson Research Center reviewer
Gérard Cornuéjols Carnegie Mellon University reviewer
Alain Quilliot University Blaise Pascal reviewer
A. Ridha Mahjoub University Paris Dauphine chairman
Jean-François Maurras University Aix-Marseille examiner
Patrice Perny University Pierre and Marie Curie examiner
András Sebő CNRS, Grenoble examiner
Michel Minoux University Pierre and Marie Curie coordinator

2

Acknowledgments

I would like to thank all the members of the comittee for accepting to examine this

HDR thesis. It is a great honor for me as I always admire their works and their

humanity.

3

4

Contents

1 Natural formulations and combinatorial algorithm 23

1.1 Introduction . 23

1.2 Detection of negative cost cycle in undirected graphs 25

1.2.1 Cycles, matchings and T -joins 29

1.2.2 Direct algorithm for UNCCD 30

1.3 Approximation algorithm for Minimum Weight Directed Tree Cover . 33

1.3.1 Introduction . 33

1.3.2 Integer programming formulation for r-DTCP 34

1.4 Combinatorial Approximation Algorithm for Asymmetric Prize Col-

lecting TSP (N. [53]) . 37

1.4.1 Introduction . 37

1.4.2 Integer formulation . 38

1.4.3 General Idea of the algorithm 41

1.5 Linear description for the polytope of the Huffman trees (Maurras,

Nguyen, N. [46]) . 43

2 Natural formulations and algorithms using linear programming 45

2.1 Chain-based formulation for Ring Star 46

2.1.1 Introduction . 46

2.2 Approximation algorithm for the Minimum Directed Tour Cover Problem 49

2.2.1 Introduction . 49

2.2.2 Integer Formulation . 50

2.2.3 Algorithm’s sketch . 51

5

2.2.4 Held-Karp Relaxation for ATSP and the Parsimonious Property 52

2.2.5 Analysis of the algorithm in Section 2.2.3 53

3 Extended formulations: compactness and separation 55

3.1 The substar polytope and extensions 56

3.1.1 Natural formulation and a generalization of Kőnig’s edge-coloring

theorem . 56

3.1.2 Compact extended formulation for the substar polytope 58

3.2 Facets and extended formulations for the substar forest polytope . . . 59

3.2.1 Introduction . 59

3.2.2 Integer formulations for the MWSFP 60

3.2.3 An integer formulation in natural space 60

3.2.4 An extended integer formulation and valid inequalities for SFP (G) 61

3.2.5 Complete description of SFP(G) in trees 63

3.2.6 Separation of perfect b-Matching subgraph inequalities 64

3.3 Extended formulations for metric polyhedra 65

3.3.1 Natural formulations . 65

3.3.2 Compact extended formulations 66

3.3.3 Applications of metric and related polyhedra 66

3.3.4 Reduced size extended formulations for metric polyhedra . . . 68

3.3.5 Extension of the result for graph partitioning 69

4 Extended formulations: improved compactness and linearization 75

4.1 Graph partitioning under capacity constraints (GPCC) 76

4.1.1 More Compact Linearization by Projection 77

4.1.2 Computational comparisions 79

4.2 Stochastic Basic Graph Partitioning Problem 80

4.2.1 Binary Second Order Cone Formulation 80

4.2.2 More compact linearization using bilinear terms 82

6

List of Figures

1-1 Example of a directed tree cover rooted in node 4 (red dashed line). . 33

1-2 The Huffman trees and the associated Huffman point for the alphabet

Λ = {a, b, c}. 43

2-1 A solution of the ring star problem. 47

3-1 A substar forest of weight 4 with weights 1 on the edges. 59

7

8

List of Tables

3.1 Computation results of (IGP) and (RGIP) for random sparse graphs. 72

3.2 Computation results of (QIP) and (RQIP) for random graphs. 74

4.1 Statistics on complete solution by branch-and-cut. 80

4.2 Comparison of the various solution techniques. Nopt indicates that

the exact optimal solution could not be found within the imposed time

limit (7200s). In such cases, the value of the relative residual gap is

shown in parenthesis. 85

9

10

Introduction

Polyhedral combinatorics is one of most fascinating subject during the last fifty years

in Combinatorial Optimization. Among the pioneering works, one can cite the seminal

paper by Jack Edmonds in 1965 where he formulated the maximum matching problem

as a linear program. More importantly, based on the latter, he gave a combinatorial

algorithm to solve the problem. Two important concepts have been introduced by

Edmonds in this paper:

• “good algorithm”, i.e. polynomial time algorithms,

• “good characterization”, i.e. polyhedral descriptions of combinatorial optimiza-

tion on which we can establish a min-max relation.

These are fundamental concepts in polyhedral combinatorics. Ideally, when one want

to solve a combinatorial optimization problem by a polyhedral approach, one would

like to have a complete linear description together with a polynomial time algorithm.

This is the case for many well known problems in P like maximum matching, minimum

weight perfect matching, shortest path in a digraph without negative cycle,... There

are also other problems for which one know a polynomial time algorithm but not

a complete description. On can cite for example, the minimum cut problem, the

cardinality constraint shortest path problem. However, to the best of our knowledge,

there is no problem for that we know a complete description but not a polynomial

time algorithm. This prove that finding a complete description for a combinatorial

optimization is usually more difficult than solving the problem itself. It is useful at

this stage to specify more exactly what could be a complete description. When we

refer to a complete description, we could refer to

11

• a description by facet defining inequalities of the convex hull of the incidence

vectors of the feasible solutions in their natural space. By natural space, we

mean a minimal space for describing the solutions. Such a description, called a

natural description (or perfect description), that we will denote by

P = {x ∈ Qn | Ax ≥ b where A ∈ Qm×n and b ∈ Qm}.

• a description in an extended space by linear inequalities with additional vari-

ables not necessary for describing the solutions. Such a description called ex-

tended formulation, that we will denote by

EF = {(x, y) ∈ Qn+p | Ax+By ≥ b where A ∈ Qm×n, B ∈ Qm×p and b ∈ Qm}.

The projection of an extended formulation on the natural space should give a

natural formulation of the problem.

For more details on the importance of these notions in combinatorial optimization,

one can refer to the excellent survey by Conforti et al. [16]. For NP -hard problems, it

is very hard to find natural or extended (complete) formulations. These formulations

should be very complex and probably contain an exponential number of inequalities

(in term of the dimension of the space). In this case, one tries to establish some

(mixed) integer formulation IP = {x ∈ Zn | Ax ≥ b} or extended (mixed) integer

formulations IEF = {x ∈ Zn, y ∈ Rp | Ax + By ≥ b}, i.e. formulations with lin-

ear and integrity constraints (the integrity constraints are simply 0/1 constraints for

combinatorial optimization problem).

For a given problem, different formulations (linear or integer) could exist but they are

not equivalent when being used for solving the problem. Thus, beyond the work of

elaborating formulations, we are also interested in the efficiency of using them in lin-

ear programming or (mixed) integer programming techniques for solving the problem.

There exists several criteria to measure this efficiency like the number of variables, the

number of constraints, the quality of the linear programming relaxation, the adapta-

12

tion of the formulation in an Branch-and-Bound/Cut algorithm, etc. The two first

criteria can be estimated without numerical experiments. In particular, a formula-

tion is compact if the number of constraints is polynomial in terms of the number

of variables and vice-versa, i.e. P is compact if m is a polynomial of n and vice-

versa. It is clear that one prefers compact formulations to non-compact ones unless

if the linear programming relaxation of the non-compact one is of very good quality.

Note that for given problem, extended formulations are usually “more compact” than

natural ones. The reason is that an extended formulation contains additional vari-

ables allowing to express more properties of the solutions than a natural formulation.

Consequently, this implies simplifications in the constraints. More precisely, given a

combinatorial optimization problem for which we know two respectively natural and

extended formulations, it usually happens that the first is compact and the second is

non-compact.

As we have explained previously, the compactness is not the only criterion for ef-

ficiency of a formulation. In particular, for NP -hard problems, we may only have

integer formulations (strengthened or not). Among them we may prefer non-compact

formulations to compact ones if the firsts give linear programming relaxations of good

quality which can be exploited in a branch-and-bound frame work or in a approxima-

tion algorithm with guarantee of performance. However, the use of a non-compact

formulation implies cutting-planes algorithms and consequently one should solve the

separation problem for the inequalities belonging to the formulation. This problem

properly is an optimization problem and could be very difficult to solve, even NP -

hard. In some cases, the separation problem of some class of inequalities in a natural

formulation can be solved by using compact extended formulation if this class is re-

sulted from the projection of the extended formulation in question to the natural

space. Let us bring here more precisions of the use of the formulations in problem

solving. Given a combinatorial optimization,

• for which there exists a natural formulation P or an extended formulation EF .

If P is compact and/or m and n are reasonable values, we can directly solve P

by linear programming techniques. If P is not compact and/or m and n are big,

13

theoretically we can solve the problem in polynomial time by ellipsoid method

provided that the separation problem can be solved in polynomial time. We

may also hope to design strongly polynomial time primal-dual algorithms like

Edmonds did for matching problems. The same possibilities may be considered

for the extended formulation EF .

• for which there is only an integer natural formulation IP or an integer ex-

tended formulation EIP . In this case, exact solutions for the problem are

based on implicit enumeration strategies like Branch-and-Bound, Branch-and-

Cut, Branch-and-Price or Branch-and-Cut/Price algorithms. One may also use

the formulations IP or EIP to design approximation algorithm with perfor-

mance guarantee. In this case, one works essentially with the linear program-

ming relaxation. One can enumerate here some usual approximation techniques

using linear programming relaxations like

– primal-dual approximation algorithms: We start with a feasible dual so-

lution. The iterations of the algorithm consists in improving the current

dual feasible solution and at the same time elaborating a partial solution

to obtain at the end a feasible solution for the problem. The quality of

this solution may be estimated by using the last feasible dual solution.

– rounding techniques: We solve the linear programming to obtain an opti-

mal solution and we try to make the latter integer by rounding its fractional

components while keeping additional costs at least as possible.

For summary, the subjects for research in Combinatorial Optimization that we have

discussed above are:

• the polyhedral studies of the convex hull of the solutions in their natural space

which include, in particular, the linear description of the facet-defining inequal-

ities and their separation problem.

• the studies on extended formulations, in particular for the cases when one does

not know complete description of the convex hull or one known one but the

14

latter is not compact. The aim is to find compact extended formulations whose

size is as small as possible.

• the application of the natural and extended formulations in finding exact or

approximate solutions.

In this HDR thesis, we make contributions in these subjects for combinatorial op-

timization problems involving basic structures in graph theory like: cycles, trees,

paths, star, vertex cover, edge cover, cut, multi-cuts, For certain problems, we

characterize completely or partially the convex hull of their solutions in natural or

extended spaces (star, star forest, Huffman trees). For others, we propose extended

formulations of smaller size than the ones known in the literature (max cut, graph

partitioning). For algorithmic side, based on known formulations, we give new exact

algorithms that improve the best known time complexity for the problem (detect-

ing negative cost cycles in undirected graphs). We also give first approximation

algorithms for certain problems (directed tree cover, directed tour cover). We also

consider some combinatorial problem with non convex constraints and discuss lin-

earization/convexification techniques applied to these constraints (graph partitioning

under capacity constraints). More precisely, we present the following works:

Chapter 1. Natural formulations and combinatorial algorithms.

• A dual algorithm for the Undirected Negative Cost Cycle Detecting (UN-

NCD) problem. Given an undirected graph G whose edges are weighted

by an arbitrarily cost, the problem is to detect the presence of an negative

cost cycle in G. Our algorithm is based on a natural formulation of the

UNNCD problem given by Seymour. This not only represents the first

direct algorithm for UCCND but also improves the best known time com-

plexity for UCCND.

Paper : V. H. Nguyen ”A direct dual algorithm for detecting negative cost

cycles in undirected graphs”, submitted to SIAM Journal on Computing.

• A partial description for the Huffman tree polytope. We show that this

15

partial description is sufficient for optimizing over the Huffman tree poly-

tope when the optimal solution is an Huffman tree of maximum depth.

Paper: J.-F. Maurras, T. H. Nguyen et V. H. Nguyen ”On the linear

description of the Huffman trees polytope” Discrete Applied Mathematics,

Vol. 164:225-236 (2014).

• A combinatorial approximation algorithm for the minimum directed tree

cover problem in a directed graph G. A directed tree cover in G is an

rooted arborescence whose vertex set S form a vertex cover, i.e. for any

arc (i, j) in G, at least i or j belongs to S. We give the first approximation

algorithm with performance guarantee for the problem.

Paper: V. H. Nguyen ”Approximation algorithm for the minimum directed

tree cover”, LNCS, Vol 6509, pp. 144–159, Springer-Verlag, (2010).

• A combinatorial approximation algorithm for Asymmetric Prize Collect-

ing Traveling Salesman Problem. This algorithm is the first combinatorial

approximation algorithm for the problem and in addition, its approxima-

tion ratio is dlog(n)e which is equal to the best known approximation ratio

(where n denote the number of the vertices).

Paper: V. H. Nguyen ”A primal-dual approximation algorithm for the

Asymmetric Prize-Collecting TSP”, J. Comb. Optim. Vol. 25(2), pp.

265-278 (2013).

Chapter 2. Natural formulations and algorithms using linear program-

ming.

• We consider the Ring Star problem which is a network design problem.

A ring star network is a network consisting of a ring (backbone network)

and the connections of nodes not in the ring to one of the node in the

ring (stars). Hence, given a set of site to be connected by a ring star

network, we have to determine the subset of the sites forming the ring

and the assignments of the remaining sites to the ring. The objective is

to minimize the cost of ring (connection cost) + the assignment costs.

16

We propose for this problem a new integer formulation based on the st-

path polytope which can present advantages comparing with the existing

formulation based on cycle polytope.

Paper: S. Kedad Sidhoum, V.H. Nguyen ”An Exact Algorithm for Solving

the Ring Star Problem”, Optimization, vol. 59(1), pp. 125-140, (2010).

• Given a directed graphG whose arcs are weighted, similarly as tree directed

covers, a directed cycle cover is a cycle whose vertices form a vertex cover of

G. We give a 0/1 linear formulation for the minimum weight directed cycle

cover problem. Based on this formulation, we derive an approximation

algorithm with d2 log2(n)e as approximation ratio (where n denote the

number of the vertices in G).

Paper: V.H. Nguyen : ”Approximating the minimum tour cover of a di-

graph”, Algorithms, vol. 4 (2), pp. 75-86, (2011).

Chapter 3. Extended formulations: compactness and separation.

• Given an undirected graph G, a substar in G is connected subgraph of

diameter at most 2. We study the linear description of the substar poly-

tope, i.e. the convex hull of the incidence vectors of the substars in G.

The substars are related with the necessary colors for coloring the edges

of G so that two incident edges receive two different colors. In such a

coloration, the edges of the same color form a matching. When G is a bi-

partite graph, Konig’s theorem tells us that the number of necessary colors

is equal to the maximum degree of the vertices. Equivalently, we can find

∆(G) disjoint matchings which covers the edges of the graph. We give here

a complete description of the substars polytope which give a generalized

version of Konig’s theorem for all graphs. We also give a compact extended

formulation for the substars polytope.

Paper: D. Cornaz, V. H. Nguyen ”Konig’s edge colouring theorem for all

graphs” Operations Research Letters, Vol 41, No 6, pp.592-596 (2013).

17

• In the second part, we are interested in the star forests, i.e. the collection of

disjoint substars in G. This structure is strongly related to the dominating

sets and the edge dominating sets in G. In particular, ”the complements”

(taken in some sense) of a star forest are respectively a (vertex) dominating

set and a edge dominating set. We study the star forest polytope which

is the convex hull of the incidence vectors of the star forests. We show

that in the case where the graph G is a tree, there exists a very simple

extended formulation whose projection on natural space gives a complex

class of facet-defining inequalities. The inequalities in this class are valid

for the star forest polytope in the general case where G is any graph and

under certain conditions they define facets. We show how to solve the

separation problem for this class of valid inequalities by exploiting the

extended formulation.

Paper: M. Aider, L. Aoudia, M. Baiou, A.R. Mahjoub and V.H. Nguyen

”On the star forest polytope for trees and cycles”, submitted to RAIRO-

Operations Research

• We are interested in the maxcut polytope which is associated with the

maxcut problem. There exists a well known 0/1 linear formulation of this

polytope by the triangle inequalities. These inequalities describe com-

pletely the maxcut polytope when G is planar or more generally when G

does not accept K5 as a minor [8]. The triangle inequalities are expressed

over all the vertex triplets of G, hence their number is O(n3) (where n

denote the number of the vertices) independently from the value of m the

number of edges in G. Consequently, we have the same 0/1 formulation of

maxcut polytope for all the graphs of order n sparse or dense. We show

that one can obtain an equivalent 0/1 formulation for maxcut using only

O(nm) triangle inequalities and this equivalence is also true for the linear

programming relaxations. Moreover, we show that in the case of series-

parallel graphs, we can obtain a linear size complete formulation for the

maxcut polytope which contains only O(n) triangle inequalities.

18

Papers: V.H. Nguyen, M. Minoux, D.P. Nguyen ”Improved compact for-

mulations for metric and cut polyhedra”, Electronic Notes in Discrete

Mathematics, Vol. 52, pp. 125-132 (2016).

V.H. Nguyen, M. Minoux and D.P. Nguyen ”Reduced-size formulations for

metric and cut polyhedra in sparse graphs”, submitted to Networks.

D.P. Nguyen, M. Minoux , V.H. Nguyen, T.H. Nguyen and R. Sirdey

”Improved compact formulations for graph partitioning in sparse graphs”

to appear in Discrete Optimization.

Chapter 4. Extended formulations: linearization and convexification.

In this first two sections of this chapter, we consider a Graph Partitioning

problem under Capacity Constraint (GPCC) where the clusters forming the

partition have to satisfy some capacity constraint. For example, in the designing

of optical rings networks (norm SONET/SDH):

The vertices of the graph represent the sites to be connected and

the edges represent the traffic volume between two specific sites. In

this problem, the vertices should be partitioned into clusters and the

capacity constraints express the fact that the total traffic incident to

the vertices of each cluster is bounded by a constant.

We consider the Node-Node model for GPCC which is the non-convex 0/1 for-

mulation consisting of triangle constraints and quadratic capacity constraints.

The linearization or convexification of the latters is thus necessary for the solu-

tion of GPCC. Classically, the linearization results in an extended formulation

with additional variables representing the product of two binary variables. In

GPCC, this technique increases the number of variables from O(n2) to O(n3)

(where n denote the number of the vertices) which is considerable already for

the values of n approaching 100. To overcome this difficulty, in this chapter, we

study linearization methods that keep the number of variables at O(n2). We

call, more compact linearized model, the model produced by theses methods as

constrast to the model produced by the classical linearization method. More

19

precisely,

• in the first section, we propose a new technique of linearization for the

Node-Node model by projecting/cut generating which allows to stay on

the space of original variables and to generate violated inequalities if the

current solution is outside the projection of the extended formulation (the

one obtained by classical linearization). We show by numerical results that

the proposed methods of linearization outperform the classical lineariza-

tion in branch-and-bound algorithms.

Paper: P. Bonami, V. H. Nguyen, M. Klein et M. Minoux ”On the Solu-

tion of a Graph Partitioning Problem under Capacity Constraints”, LNCS,

Vol 7422, pp. 285-296, (2012).

• In the second section, we consider a variant of the graph partitioning prob-

lem involving knapsack constraints with Gaussian random coefficients. We

call the problem, SGP, for Stochastic Graph Partioning. Under this as-

sumption of probability distribution, SGP can be traditionally formulated

as a binary SOCP for which the continuous relaxation is convex. In this

section, we reformulate SGP as a binary quadratic constrained program

for which the continuous relaxation is not necessarily convex. We pro-

pose then a more compact linearized model of SGP obtained by using the

bilinear linearization technique. Numerical results show that branch-and-

bound algorithms using this more compact linearized model as continuous

relaxations outperform the ones using SOCP or classical linearization of

SGP as continuous relaxation.

PhD and Master thesis supervision and related publications I have

advised 11 Master thesis. I have also co-advised 4 PhD thesis:

• Minh Tuan Ngo (co-advised with M. Minoux) ”Modeling and Optimizing

20

for traffic lights - Application of Bender’s decomposition method” defended

in October 2010 at the University Pierre and Marie Curie, Paris.

• Thanh Hai Nguyen (co-advised with J.-F. Maurras) ”Convex hull of the

finite Huffman codes” defended in December 2010 at the University of

Mediterranean Sea, Marseille. Paper: J.-F. Maurras, T. H. Nguyen et

V. H. Nguyen ”On the linear description of the Huffman trees polytope”

Discrete Applied Mathematics, Vol. 164:225-236 (2014).

• Lamia Aoudia (co-advised with M. Aider) ”Connectivity in combinato-

rial polyhedra”, in preparation. Paper: M. Aider, L. Aoudia, M. Baiou,

A.R. Mahjoub and V.H. Nguyen ”On the star forest polytope for trees and

cycles”, submitted to RAIRO-Operations Research

• Dang Phuong Nguyen (co-advised with M. Minoux, R. Sirdey) ”Graph

partitioning under non linear and stochastic constraints” defended in De-

cember 2016. Paper: D.P. Nguyen, M. Minoux , V.H. Nguyen, T.H.

Nguyen and R. Sirdey ”Improved compact formulations for graph parti-

tioning in sparse graphs” to appear in Discrete Optimization.

D.P. Nguyen, M. Minoux , V.H. Nguyen, T.H. Nguyen and R. Sirdey

”Stochastic Graph Partitioning : Quadratic versus SOCP formulations”,

Optimization Letters, vol. 10(7), pp. 1505-1518 (2016).

Notations.

Let us define below the notations which will be used in the manuscript.

Undirected graphs. We consider the undirected graph G = (V,E) where V

denotes the node set and E denote the edge set. The edges in E are weighted

by a cost vector c ∈ QE which is not restricted to be nonnegative. Let ij denote

the edge between two nodes i and j in G. The notation is symmetric, i.e. ji

denotes the same edge as ij. For S ⊂ V , let

δ(S) = {ij ∈ E | where i ∈ S and j ∈ V \ S,}

21

be the cut associated to S in G. Let E(S) denote the set of the edges with

both two end-nodes in S. Let QE be the rational space of dimension |E| with

the coordinates indexed by the edge set E. For a vector x ∈ RE and a subset

F ⊂ E, let x(F) denote the sum
∑

e∈F xe.

Directed graphs. Let G = (V,A) be a digraph with vertex set V and arc set

A. If x ∈ Q|A| is a vector indexed by the arc set A and F ⊆ A is a subset of arcs,

we use x(F) to denote the sum of values of x on the arcs in F , x(F) =
∑

e∈F xe.

Similarly, for a vector y ∈ Q|V | indexed by the vertices and S ⊆ V is a subset

of vertices, y(S) denotes the sum of values of y on the vertices in the set S.

For a subset of vertices S ⊆ V , let A(S) denote the set of the arcs having both

end-nodes in S. Let δ+(S) and δ−(S) denote the set of the arcs having only the

tail and head in S, respectively. Let δ(S) = δ+(S) ∪ δ−(S). We will call δ+(S)

the outgoing cut associated to S, δ−(S) the ingoing cut associated to S and

δ(S) simply the cut associated to S. For each vertex v ∈ V , let d+(v) be the

out-degree of v which is equal to the number of arcs in G having v as tail and

let d−(v) be the in-degree of v which is equal to the number of arcs in G having

v as head. For two subset U,W ⊂ V such that U ∩W = ∅, let (U : W) be the

set of the arcs having the tail in U and the head in W . For u ∈ V , we specify

v as an outneighbor of u if (u, v) ∈ A and as an inneighbor of u if (v, u) ∈ A.

For any u, v ∈ V , let p(u, v) be the number of arc-disjoint paths from u to v.

For the sake of simplicity, in clear contexts, the singleton {u} will be denoted

simply by u. When we work on more than one graph, we specify the graph in

the index of the notation, e.g., δ+
G(S) will denote δ+(S) in the graph G.

22

Chapter 1

Natural formulations and

combinatorial algorithm

1.1 Introduction

In this chapter, we will discuss methods for exploiting complete or partial linear for-

mulations for combinatorial optimization problem.

In the first part of the chapter, we are interested in the following case: Given an

“easy” problem A for that some complete linear formulation is known and also poly-

nomial time algorithms are known. However, these algorithms are not direct in the

sense that one should transform the problem into an instance of some other known

“easy” problem B and solve the latter by some algorithm properly designed for prob-

lem B. Our aim is to design a direct algorithm for problem A using the knwon linear

formulation and prove that it may allow to improve the time complexity of problem

A. To illustrate this idea, we consider the problem of detecting a negative cost cycle in

a (weighted) undirected graph (UNCCD). This problem can be solved in polynomial

time by transforming it into an instance of the minimum weight T -join or the maxi-

mum weight degree constraint problem. The UNCCD problem can be viewed as the

optimization problem associated with the circuit cone which has a complete linear

formulation given by Seymour [58]. We present a dual algorithm based on the formu-

lation given by Seymour and improve the time complexity of the UNCCD problem

23

from O(min(n3,mn log(n)) to O(mn+ n2 log(n)).

In the second part of the chapter, we aim at designing combinatorial approximation

algorithm for some NP -hard problem called A. Our idea is to decompose the solu-

tions of A into substructures obtained by relaxing some constraints in A. Suppose

that complete linear formulations for the convex hull of these substructures are known

and moreover primal-dual algorithms (for solving the associated optimization prob-

lem) based on these formulations exist. As the union of the inequalities issued from

these linear formulations form a (partial) linear formulation P (A) for A, applying

successively in some order (that is to be determined) the primal-dual algorithms for

substructures may constitute a primal-dual (approximation) algorithm for A. More

precisely, let D(A) be the dual of P (A), we design a primal-dual approximation algo-

rithm based on P (A) by applying successively k primal-dual algorithms corresponding

to substructures. In this application, the successor algorithm will work on the reduced

cost left by the predecessor. At the end, we should obtain a feasible dual solution y

and there should be a subset of the variables of zero reduced cost that constitutes a

solution called T for the problem A. We will call sucessive primal-dual approxima-

tion algorithms, the algorithms applying this principle. Let us see how to compute

the approximation ratio of such a successive approximation algorithm. Because of

the primal-dual nature of the algorithms, we also obtain k feasible dual solutions

y1, . . . , yk where yi is the current dual feasible solution after the i-th application of

primal-dual algorithms. Let y = yk the last and best dual feasible solution. Let Ti

be the subset of the variables (of zero reduced cost) in T that was added to T after

the i-th application of primal-dual algorithms. We suggest two following methods for

analyzing the approximation ratio.

• For every 1 ≤ i ≤ k, we show that the cost of Ti is at most αi times the cost

of yi. This results that the cost of T is at most
∑k

i=1 αi times the cost of the

optimal solution for problem A. We apply this principle for the Asymmetric

Prize Collecting TSP in Section ??.

• For each variable v in T , we decompose the cost of v into k portions zvi corre-

24

sponding to the value of dual variables active in the i-th application and involv-

ing in the constraint associated with v in D(A). We show that
∑

v variable in P (A)

zvi

is at most αi times the cost of y. The overall approximation ratio will be then

maxi=1,...,k αi. We apply this principle for the Minimum Directed Tree Cover

Problem in Section 2.2.

1.2 Detection of negative cost cycle in undirected

graphs

In this section, we consider the problem of checking whether an undirected G = (V,E)

whose edges are weighted by an arbitrary cost vector c ∈ QE, contains a negative

cost cycle (UNCCD) problem. The UNCCD problem has been extensively studied in

the past, especially in the 1980s. There are several approach for solving the UNCCD

problem:

Reduction to the the maximum weight degree constraint subgraph problem.

The maximum weight degree constraint subgraph problem consists in finding

a maximum weight subgraph under degree constraints (lower bound and upper

bound constraints) on each nodes. The UNCCD problem on G can be formu-

lated as a maximum weight degree constraint problem in a new graph G′ by

setting the lower bound and upper bound on the degree of every node to ex-

actly 2, negating the weights of all the edges in G and finally adding self-loops of

weight 0 to all nodes. An optimal solution of this problem is a maximum weight

cycle cover over the nodes of G′. We can see that if all cycles in the original

graph were positive, then a maximum weight cycle cover over the nodes consists

of just the 0-weight self-loops. Otherwise, if there is a negative cycle, then this

cycle is of positive weight in the new graph G′ and any maximum weight cycle

cover is of positive weight. In [30], Gabow gives an algorithm for the maximum

weight degree constraint subgraph problem which can find a maximum weight

cycle cover in G′ in O(min(n3,mn log n)) time. Hence, we can detect a negative

25

cycle in G in Omin(n3,mn log n) time.

Note that Gabow’s algorithm for maximum weight cycle cover is not neither a

direct algorithm on G′. It consists in reducing the maximum weight cycle cover

problem to a maximum weight matching problem in a graph G′′ which is built

as follows. Let W be the maximum absolute value of an edge weight in G′.

For every node v of degree d(v) in G′, create in G′′ two special nodes v1 and

v2, d(v) nodes lv1, . . . lvd(v) and d(v) nodes rv1 , . . . rvd(v). The nodes v1 and v2 are

respectively connected to each of the nodes lvi for i = 1, . . . , d(v) by an edge of

weight mW . There is an edge of weight mW between the nodes lvi and rvi for

i = 1, . . . , d(v). Finally, if uv is an edge in G′ of weight cuv such that v is the ith

neighbour of u and v is the jth neighbor of u then there is an edge between rvj

and rui of weight W +cuv in G′′. The graph G′′ has O(m) vertices and edges and

any maximum weight cycle cover in G′ can be converted to a perfect matching

in G′′. In particular, the maximum weight perfect matching in G′′ has weight

2m2W + nW+ maximum weight of cycle covers in G′. In [30], Gabow designs

an O(min(n3,mn log n)) time algorithm to find such a maximum weight perfect

matching in G′′.

Reduction to the minimum weight T -join problem. Let T ⊆ V be a vertex

subset of even cardinality. An edge subset J ⊆ E is a T -join if T is exactly

the set of odd degree vertices of the subgraph induced by J . When T = ∅, a

∅-join is a collection of cycles in G. Hence, we can solve the UNCCD problem

by finding a minimum weight ∅-join in G. For this, one needs to invoke one

execution of an algorithm for solving the Undirected All Pairs Shortest Paths

(UAPSP) problem and subsequently one execution of an algorithm for finding a

minimum weight perfect matching on a metric (complete graph with n vertices

and O(n2) edges). As the best complexity time algorithm for UAPSP given by

Gabow [30] runs in O(min(n3,mn log n)) time and Gabow’s algorithm[31] finds

minimum weight perfect matching in complete graphs in O(n3) time, solving

UNCCD problem by this approach will run in O(n3).

26

In [51], we present a dual algorithm for solving the UNCCD problem based on a

polyhedral description given by Seymour [58]. It works directly on G and improves

the time complexity for UNCCD problem to O(mn+ n2 log(n)).

Let C be any cycle in G, let χ(C) ∈ QE be the incidence vector associated to C

defined as follows:

χ(C)e =

 1 if e ∈ C

0 otherwise

Let S ⊂ V be any vertex subset and let e be any edge belonging to δ(S), we can

observe that any cycle taking the edge e must crossing at least some other edge in

δ(S). Then the following circuit inequality

x(δ(S) \ {e})− xe ≥ 0 for all ∅ ⊂ S ⊂ V (1.1)

where x ∈ QE is verified by the incidence vector of every cycle in G. These inequalities

were introduced by Seymour [58]. He proved the following theorem.

Theorem 1.2.1 [58] The inequalities (1.1) along with the non-negativity inequalities

characterize completely the circuit cone of G which is the cone of the incidence vectors

of all the circuits (Seymour calls circuit a cycle in an undirected graph) in G.

Let us consider the following linear programming problem which minimizes the cost

function c over the system consisting of the inequalities (1.1) and the non-negativity

inequalities:

(P) min cTx

x(δ(S) \ {e})− xe ≥ 0 for all ∅ ⊂ S ⊂ V and e ∈ δ(S), (1.2)

xe ≥ 0 for all e ∈ E. (1.3)

For any subset S ⊂ V and any edge e ∈ δ(S), let yS,e be the dual variable associated

27

to the inequality (1.1) associated to S. Then the dual of (P) can be written as follows:

(D) max 0∑
S⊂V s.t.
e∈δ(S)

∑
f∈δ(S)\{e}

yS,f −
∑
S⊂V s.t.
e∈δ(S)

yS,e ≤ ce e ∈ E, (1.4)

yS,e ≥ 0 S ⊂ V and e ∈ δ(S). (1.5)

Hence, by the theory of linear programming and by Theorem 1.2.1, we have the

following corollary.

Corollary 1.2.2 If all the cycles of G are non-negative with respect to c then (P) and

(D) have optimal solutions of value zero and any feasible solution of (D) is optimal.

Otherwise, i.e. there exists a negative cost cycle in G, (P) is unbounded and (D) is

infeasible.

In [51], we present an algorithm that outputs either a dual feasible solution of (D) or

a negative cost cycle in G. The algorithm starts with the set of dual multipliers for

(P) that are all null, i.e. y = 0 with 0 is the null vector in the real space of suitable

dimension. For each edge e ∈ E, we define its reduced cost

c̄e = ce −
∑
S⊂V s.t.
e∈δ(S)

∑
f∈δ(S)\{e}

yS,f +
∑
S⊂V s.t.
e∈δ(S)

yS,e.

For every edge e ∈ E, we say that e is correct if c̄e ≥ 0, otherwise e is incorrect. Let

us use c̄e to denote the degree of correctness of e.

Remark 1.2.3 At the beginning, the reduced cost is equal to the original cost for all

edges, the negative edges are incorrect and y = 0 is an infeasible solution for (D)

The principle of the algorithm is to iteratively make y feasible for (D) and in the case

of failure, i.e. (D) is infeasible, it exhibits a negative cycle. For this, it will iteratively

correct the negative (hence incorrect) edges in G by changing y (from the initial null

vector) until

• either all negative edges are corrected, i.e. y becomes dual feasible,

28

• or it cannot incorrect edges any more and exhibits a negative cycle.

The following lemma suggests how to correct an incorrect edge e,

Lemma 1.2.4 Given an incorrect edge e and a subset S ⊂ V such that e ∈ δ(S), if

we increase value of the dual variable yS,e then the reduced cost of e increases and the

reduced cost of the other edges in δ(S) \ {e} decreases, i.e. the degree of correctness

of e increases and the degree of correctness of the other edges in δ(S) \ {e} decreases.

Proof By definition, we have c̄e = ce + yS,e + . . .− . . ., hence increasing yS,e increases

c̄e. For all f ∈ δ(S) \ {e}, c̄f = cf − yS,e− . . .+ . . ., hence increasing yS,e decreases c̄f .

The algorithm works as the same way as the Edmonds’ blossom algorithm for the

minimum perfect matching problem.

1.2.1 Cycles, matchings and T -joins

Note that the cycles and the perfect matchings are special case of T -joins with T ⊆ V

of even cardinality. A cycle is ∅-join and a perfect matching is a V -join. Given a

T ⊆ V , let T -join polytope be the convex hull of the incidence vector of all the T -join

in G. The following linear system defines the T -join polytope.

x(δ(U) \ F)− x(F) ≥ 1− |F | U ⊆ V , F ⊆ δ(U), |U ∩ T |+ |F | odd, (1.6)

0 ≤xe ≤ 1 e ∈ E. (1.7)

Let us call, the perfect matching polytope, the up hull of the incidence vector of the

perfect matchings in G.

x(δ(U)) ≥ 1 U ⊂ V with |U | odd, (1.8)

xe ≥ 0 e ∈ E (1.9)

As cycles are ∅-join, inequalities (1.2) are special cases of inequalities (1.6) when

T = ∅, U is any subset of V and F is any subset of δ(U) of cardinality 1. As perfect

29

matchings are V -joins, inequalities (1.8) are also special cases of inequalities (1.6)

when T = V , U is any odd subset of V and F is the emptyset.

1.2.2 Direct algorithm for UNCCD

Recall of Edmonds’ blossom algorithm for minimum perfect matching

A blossom U is a node subset of odd cardinality by which the induced subgraph is

either 2-connected or a single node. Let yU denote the dual variable associated with

inequality (1.8) involving U . For each edge e ∈ E, we define the reduced cost

c̄e = ce −
∑

U⊂V,|U |odd
e∈δ(U)

yU .

In fact, the blossom algorithm is a primal-dual algorithm in which only inequalities

(1.8) involving a blossom U could be active, i.e., yU could be strictly positive. The

blossom algorithm operates on two graphs derived from G:

• the graph G′ which is initially equal to G and can evolve to a multi graph with

pseudo-nodes created by the contraction of blossoms.

• the graph G0 which is the subgraph of G′ induced by the edges of zero reduced

cost.

The algorithm iteratively builds a perfect matching M . Let us recall the main stages

of Edmonds’ Blossom algorithm.

Step 1. Choose any M -exposed node r to be the root of the alternating tree T to

be built.

Step 2. Check each edge vw of zero reduced cost with at least one node, say v ∈

Even(T).

• if w ∈ Even(T) then shrink the odd cycle (i.e., a blossom) in T containing

v and w,

30

• if w is a M -exposed node, the path between v and w in T is an augmenting

path. Using the latter to augment M and goto Step 1.

• if w ∈ Odd(T) and y({w}) = 0 then w should be a pseudo-node. Deshrink

w.

• if w ∈ Odd(T) and y({w}) > 0 then extend T with vw.

• or find an augmenting path. Goto Step 4.

Step 3. Using T for a dual adjustement and go to Step 2.

Step 4. Using the augmenting path to augment M . If M is a perfect matching then

output M and stop. Otherwise, goto Step 1.

Thus, between two augmentations of the matching, one has to perform a search (by

repeating Step 2. and Step 3.) which consists in doing repeatedly four operations:

• extending the alternating tree T with an edge,

• shrinking an odd cycle to pseudo-node,

• deshrinking a pseudo-node with which the associated dual variable has the value

decreased to 0,

• and dual adjustements.

On can prove that there are O(n) such operations in a search. Gabow [31] has

shown that one can perform a search in O(m+n log(n)). Since there are n
2

matching

augmentations, the blossom algorithm can be implemented with O(mn + n2 log(n)

running time.

Preprocessing

We can suppose that the subgraph of G induced by the negative cost edges is a forest

since otherwise we can detect easily a cycles containing uniquely negative cost edges.

Hence, our algorithm work with a collection of negative trees.

31

Equivalence of ”blossom sets” in UNCCD problem

Equivalence of ”blossom sets” in UNCCD are the subsets U ⊂ V with which asso-

ciated inequalities (1.2) could be active, i.e. the associated dual algorithm could be

strictly positive in our algorithm. These subsets, called negative leaf sets, are the

subsets U ⊂ V such that the subgraph induced by U in G is connected and there are

exactly one negative reduced cost edge eU in δ(U). Moreover, among the inequalities

(1.2) associated to U (there are possibly many), only the inequality associated with U

and the edge eU could be active, i.e., the dual variable yU,eU could be strictly positive

in our algorithm. Hence, there is a one-to-one correspondance between a negative leaf

U and the associated inequality (1.2) that could be active. Thus, in the algorithm,

when we have chosen a negative leaf set U , the dual variable to be increased is yU,eU

with eU is the unique negative reduced cost edge in δ(U).

We have also the same notion of augmentation as in the matching algorithm. An aug-

mentation in our case is when the reduced cost of a (original) negative edge becomes

zero. As the original negative edges form a forest, as in the matching algorithm, we

have O(n) augmentations. Hence, our algorithm is similar to the matching algorithm

at the following points:

Step 1. At each iteration, we choose a node r of G′ (the multigraph created by the

shrinking and deshrinking operations in G) such that δG′(r) contains exactly

one negative reduced cost edge. This is to the choice of an M -exposed node in

the matching algorithm.

Step 2. Doing a search as in the matching algorithm (with blossom sets are replaced by

negative leaf sets) until the condition for changing the root of the alternating

tree is verified

Step 3. If all the edges have non-negative reduced cost then stop (the graph has no

negative cost cycle). Otherwise, goto Step 1.

The difference between our algorithm and the matching algorithm is in the condition

in Step 2. for changing the root of the alternating tree. In the matching algorithm, this

32

condition is verified if there is a matching augmentation. In the UNCCD problem, this

condition is more complex, in order to ensure that the (pseudo)-nodes in Even(T) (the

dual variable associated to these nodes would be increased by dual adjustement) are

negative leaf sets, sometimes we will have to change the root without augmentation.

In [51], we show that in spite of this complexity the total number of changings root

of the alternating tree is at most O(n). Hence, the time complexity of our algorithm

for UNCCD is n times the complexity of a search, i.e. O(mn + n2 log(n). Note that

if G contains a negative cost cycle then it will be detected during a search.

1.3 Approximation algorithm for Minimum Weight

Directed Tree Cover

1.3.1 Introduction

Let G = (V,A) be a directed graph with a (non negative) cost function c : A ⇒ Q+

defined on the arcs. Let c(u, v) denote the cost of the arc (u, v) ∈ A. A directed tree

cover is a weakly connected subgraph T = (U, F) such that

1. for every e ∈ A, F contains an arc f intersecting e, i.e. f and e have a end

vertex in common.

2. T is a branching, i.e. an arborescence rooted in some node r ∈ U . For any node

u ∈ r, there is an unique path from r to u in T .

1

2

3

4

5

6

7

8

9

Figure 1-1: Example of a directed tree cover rooted in node 4 (red dashed line).

The minimum directed tree cover problem (DTCP) is to find a directed tree cover of

minimum cost. In [52], we show that DTCP is NP -hard by proving that the minimum

33

weighted set cover is a special case of DTCP. To the best of our knowledge, there is no

known approximation algorithm for DTCP. In the prospective section of [41] and [29]

where the authors consider the undirected version of DTCP, they presented DTCP

as a wide open problem for further research on the topic. In particular, Fujito [29]

pointed out that his approach for TCP can be extended to give a 2-approximation

algorithm for the unweighted case of DTCP but falls short once arbitrary costs are

allowed.

In [52], we give the first logarithmic factor approximation algorithm for DTCP. We

consider DTCP with a fixed root r, i.e. we find a minimum tree cover rooted at a

specific node r. In particular, let D+ be the maximum outgoing degree of the nodes

in G, we design a primal-dual max(2, ln(D+))-approximation algorithm for r-DTCP.

Repeating n times this algorithm yields obviously a max(2, ln(D+))-approximation

algorithm for DTCP which is thus somewhat best possible.

1.3.2 Integer programming formulation for r-DTCP

We use a formulation inspired from the one in [42] designed originally for the TCP.

The formulation is as follows: for a fixed root r, define F to be the set of all subsets

S of V \ {r} such that S induces at least one arc of A,

F = {S ⊆ V \ {r} | A(S) 6= ∅}.

Let T be the arc set of a directed tree cover of G containing r, T is thus a branching

rooted at r. Now for every S ∈ F , at least one node, saying v, in S should belong

to V (T). By definition of directed tree cover there is a path from r to v in T and as

r /∈ S, this path should contain at least one arc in δ−(S). This allows us to derive

the following cut constraint which is valid for the DTCP:

∑
e∈δ−(S)

xe ≥ 1 for all S ∈ F

34

This leads to the following IP formulation for the minimum r-branching cover.

min
∑
e∈A

c(e)xe

∑
e∈δ−(S)

xe ≥ 1 for all S ∈ F

x ∈ {0, 1}A.

Replacing the integrity constraints by

x ≥ 0,

we obtain the linear programming relaxation, denoted by DTC(G). We express below

the dual of DTC(G):

max
∑
S∈F

yS

∑
S∈F s.t. e∈δ−(S)

yS ≤ c(e) for all e ∈ A

yS ≥ 0 for all S ∈ F

Algorithm overview

We sketch below a successive primal-dual approximation algorithm for r-DTCP. This

algorithm begins with the zero dual feasible solution where yS = 0 for all S ∈ F . At

each iteration of the algorithm, the dual variable yS associated to some S ∈ F will be

increased until the reduced cost of some arc in δ−(S) becomes 0. When this happends,

we say that the subset S is covered. During the algorithm, we keep a subset, denoted

by T0, of the set of the arcs of zero reduced cost that will grow progressively and

contain a directed tree cover rooted at r at the end. At initialization T0 = ∅. For a

node u of G, we say that u is reachable from r if there is a path from r to u in T0.

The algorithm contains three phases,

• It determines first a node cover U in Phase I by covering the sets S ∈ F such

35

that |S| = 2. Phase I outputs the set A0 of the arcs of zero reduced cost. It

outputs also a dual feasible solution y.

• Phase II works with the reduced costs issued from Phase I. In this phase , we

determine in this phase a collection S ⊂ F of node subsets in F to be covered

in order to make all the nodes v in U , either reachable from r or connected to

a strongly connected component of A0 (v is connected to a strong connected B

of T0 if for every node w ∈ B, there is a path from w to v in A0). We show that

the covering of the node subsets in S can be done by solving an instance of Set

Cover problem by the Chvatal’s greedy algorithm. Phase II outputs the set of

the zero reduced cost arcs A0 and a dual feasible solution y growing from the

dual feasible solution given by Phase I.

• Phase III is executed only if A0 does not contain a r-branching covering U , i.e.

there still exists strong connected components of A0 not reachable from r such

that some node v ∈ U is connected to. We call such a components a Edmonds

subgraph. Phase III makes the Edmons subgraphs reachable from r by growing

its associated dual variable. Finally, it extracts from A0, the set of zero reduced

cost arcs, a r-directed tree cover T . Output T .

We state now a theorem about the performance guarantee of the algorithm.

Theorem 1.3.1 The cost of T is at most max{2, ln(D+)} times the cost of an optimal

r-branching cover.

Proof We consider the r-branching cover T and the dual feasible solution y output

by the algorithm. We call every arc e ∈ T , a choen arc and every node subset S ∈ F

such that yS > 0, an active subset. For every chosen arc e, we divide the cost of e

into three parts: ci(e) the part of ce saturated by dual growing in Phase i for i = I, II

and III. We divide the active subsets S ∈ F into three parts: F1 that contains those

covered in Phase I, F2 that contains those covered in Phase II and finally F3 that

contains those covered in Phase III. We then show that for each chosen arc e:

• c1(e) ≤ 2
∑

S∈F1

e∈δ−(S)

yS,

36

• c2(e) ≤ ln(D+
r)

∑
S∈F2

e∈δ−(S)

yS,

• c3(e) ≤
∑

S∈F3

e∈δ−(S)

yS.

Hence, ce = c1(e) + c2(e) + c3(e) ≤ max{2, ln(D+)}
∑

S∈F
e∈δ−(S)

yS. This implies that

c(T) =
∑

e∈T ce ≤ max{2, ln(D+)}
∑

S∈F yS.

Corollary 1.3.2 We can approximate the DTCP within a max{2, ln(D+)} ratio.

1.4 Combinatorial Approximation Algorithm for

Asymmetric Prize Collecting TSP (N. [53])

1.4.1 Introduction

Let G = (V,A) be a complete directed graph with the vertex set V = {1, 2, . . . , n}

and the arc set A. We associate with each arc e = (i, j) a cost ce and with each vertex

i ∈ V a nonnegative penalty πi. The arc costs are assumed to satisfy the triangle

inequality, that is, c(i,j) ≤ c(i,k) + c(k,j) for all i, j, k ∈ V . In this paper, we consider

a simplified version of the Asymmetric Prize Collecting Traveling Salesman Problem

(APCTSP), namely, to find a tour that visits a subset of the vertices such that the

length of the tour plus the sum of penalties of all vertices not in the tour is as small

as possible. Note that in the general version of APCTSP, introduced by Balas [4],

the arc costs are not assumed to satisfy the triangle inequality. Furthermore, in [4]

associated with each vertex there is a certain reward or prize, and in the optimization

problem one must choose a subset of vertices to be visited so that the total reward is

at least a given a parameter W0.

For APCTSP, though exact algorithms was developed in [20], there was no work

on approximation algorithm until our work [56] in 2012. The work is based on the

Held-Karp relaxation and heuristic methods such as the Frieze et al.’s heuristic [28]

or the recent Asadpour et al.’s heuristic for the ATSP [2]. Depending on which of

the two heuristics is used, it gives respectively 1 + dlog(n)e and 3 + 8 log(n)
log(log(n))

as

an approximation ratio. In [53], we present a primal-dual dlog(n)e-approximation

37

algorithm for APCTSP. This ratio obviously improves 1 + dlog(n)e in theory. It also

improves the second ratio in practice since 3+8 log(n)
log(log(n))

is asymptotically better than

dlog(n)e but for realistic values of n, 3 + 8 log(n)
log(log(n))

is at least nearly 3
2

times the value

of dlog(n)e (for example when n = 1020, 3 + 8 log(n)
log(log(n))

≈ 90 and dlog(n)e = 67).

Moreover, unlike the method in [56], the algorithm repsented in [53] is combinatorial.

In this section, we focus on the algorithm presented in [53] which can be viewed as a

successive primal-dual algorithm.

1.4.2 Integer formulation

Let G = (V,A) be directed graph with |V | = n and |A| = m. Each arc a ∈ A is

associated to a cost ca. Each vertex v ∈ V is associated to a penalty πv. The arc

cost c is assumed to satisfy the triangle inequality. Our aim is to find a tour T which

minimizes
∑

a∈T ca+
∑

v/∈T πv. We consider the following integer formulation inspired

from the undirected version in [10] for APCTSPj, the subproblem of APCTSP when

we impose a specific vertex j to be in T . For every i ∈ V , for every arc a ∈ A, let

yi =

 1 if i ∈ T

0 otherwise
and xa =

 1 if a ∈ T

0 otherwise

For every subset S, let δ+(S) be the set of arcs with tail in S and head in V \ S and

δ−(S) be the set of arcs with head in S and tail in V \ S. Then APCTSPj can be

38

formulated as follows.

minZj =
∑
e∈A

cexe +
∑
i∈V

πi(1− yi)

subject to

x(δ+(S)) = x(δ−(S)) ∀S ⊂ V , (1.10)

x(δ+(i)) = yi for all i ∈ V , (1.11)

x(δ−(i)) = yi for all i ∈ V , (1.12)

x(δ+(S)) ≥ yi ∀S ⊆ V \ {j} and ∀i ∈ S, (1.13)

x(δ−(S)) ≥ yi ∀S ⊆ V \ {j} and ∀i ∈ S, (1.14)

yj = 1, (1.15)

0 ≤ xe ≤ 1 and integer, and 0 ≤ yi ≤ 1 and integer.

The constraints (1.10) ensure that T is Eulerian. Actually, it is only necessary to im-

pose these constraints to the singletons but it will turn out useful to impose them to

all the subsets of V in our primal-dual algorithm. The constraints (1.11) et (1.12) are

degree constraints which impose for any node i that the tour must visit i if the latter

is included in the tour. The constraints (1.13) and (1.14) are the subtour elimination

constraints. Note that for the two family of degree and respectively subtour elimi-

nation constraints, one of the two constraints (1.11), (1.12) and respectively (1.13),

(1.14) is unnecessary if the Eulerian constraints (1.10) are respected because we have

always x(δ+(S)) = x(δ−(S)) for all S ⊂ V \{j}. But again we include nevertheless all

thse constraints in the formulation because we need both of them in the primal-dual

algorithm.

We relax the constraints (1.11) and (1.15) to

x(δ+(i)) ≥ yi for all i ∈ V \ {j},

x(δ−(i)) ≥ yi for all i ∈ V \ {j},

x(δ+(j)) ≥ 1,

x(δ−(j)) ≥ 1.

39

We can then regroup the first two constraints with constraints (1.13) and (1.14) by

allowing |S| = 1 in these constraints. Let C =
∑

i∈V \{j} πi which is a constant, we

can then write down the relaxation (R) as follows:

(R) minZj =
∑
e∈A

cexe −
∑

i∈V \{j}

πiyi + C

subject to x(δ+(j)) ≥ 1, (1.16)

x(δ−(j)) ≥ 1, (1.17)

x(δ+(S)) ≥ yi, ∅ 6= S ⊆ V \ {j} and ∀i ∈ S, (1.18)

x(δ−(S)) ≥ yi, ∅ 6= S ⊆ V \ {j} and ∀i ∈ S, (1.19)

x(δ−(S))− x(δ+(S)) = 0, ∅ 6= S ⊂ V , (1.20)

yi ≤ 1, i ∈ V \ {j} (1.21)

yi ≥ 0, i ∈ V \ {j}

xe ≥ 0, e ∈ A

Let us introduce the dual variable(s):

• The variables z+
j associated to the constraint (1.16),

• The variables z−j associated to the constraint (1.17),

• The variables z+
S,i associated to the constraints (1.18),

• The variables z−S,i associated to the constraints (1.19),

• The variables pS associated to the constraints (1.20),

• and finally, the variables zi associated to the constraints (1.21).

40

then the dual program (D) of (R) can be written as follows:

(D) maxC + z+
j + z−j −

∑
i∈V \{j}

zi

subject to
∑

S⊂V \{j}
s.t. i∈S

(z−S,i + z+
S,i) + zi ≥ πi ∀i ∈ V \ {j} (1.22)

∑
S⊆V \{j}

s.t. e∈δ−(S)

(
∑
i∈S

z−S,i + pS) +
∑

S⊆V \{j}
s.t. e∈δ+(S)

(
∑
i∈S

z+
S,i − pS) ≤ ce ∀e =∈ A s.t/ (1.23)

z+
j − pj +

∑
S⊆V \{j}
s.t. i∈S

(
∑
k∈S

z−S,k + pS) ≤ ce ∀e = (j, i) ∈ A, (1.24)

z−j + pj +
∑

S⊆V \{j}
s.t. i∈S

(
∑
k∈S

z+
S,k − pS) ≤ ce ∀e = (i, j) ∈ A, (1.25)

z+
S,i, z

−
S,i ≥ 0 ∀S ⊂ V \ {j} and ∀i ∈ S

zi ≥ 0 ∀i ∈ V \ {j}

z+
j , z

−
j ≥ 0

In the sequel, we will design an approximation algorithm for APCTSPj based on (R)

and (D). An approximation algorithm for APCTSP of the same ratio can be simply

deduced from approximating APCTSPj for each j ∈ V .

1.4.3 General Idea of the algorithm

We will present a primal-dual algorithm that has at most dlog2(n)e iterations of dual

augmentation. The algorithm starts with the following feasible dual solution of (D):

• z+
S,i = z−S,i = 0 for all i ∈ V \ {j} and for all S ⊂ V \ {j} such that i ∈ S,

• z+
j = z−j = 0.

• zi = πi.

and applies at most dlog2(n)e dual augmentations. In the algorithm, we maintain an

arc subset denoted by T which contains the arcs that will constitute our solution for

APCTSPj at the end of the algorithm. At initialization T = ∅, and at each iteration,

41

based on the current dual feasible solution of (D), we add a set of vertex disjoint

simple cycles to T . Hence, T is always a collection of strongly connected Eulerian

components. At each iteration of the algorithm, we consider the graph Ḡ obtained

from G by shrinking the vertex subsets of G corresponding to strongly connected

Eulerian components in T . We define the cost for the arcs in Ḡ with respect to the

current reduced cost. From Ḡ, we build a bipartite graph B and transform the dual

augmenting problem to a minimum cost assignment problem, called (A), in B with

respect to the current reduced cost. We consider the classical linear programming

formulation for (A) and its dual. In particular, we make the correspondence from

each dual variable of (A) to some dual variable of (D). We solve (A) by any known

primal-dual algorithm for the minimum cost assignment problem and assign the value

of the dual optimal solution of (A) to the corresponding dual variable of (D). Note

that each dual variable of (D) will be augmented at most once and after that its

value will not be changed until the end of the algorithm. After each iteration of the

algorithm, we add to T a set of arcs and may eliminate definitely some vertices from

the solution tour T . Note that T can contain a multiplicity of an arc and if a vertex i is

eliminated from T , then all the vertices that belong to the same connected component

in the subgraph induced by T , will be also eliminated. Thus there will be no arc of

T such that one end-vertex is in T and the other has been eliminated from T . The

algorithm stops when T becomes connected. As at each iteration, for each strongly

connected Eulerian component H of T , either H is merged with some other strongly

connected Eulerian component of T , or the vertices in H are eliminated from T , at

most dlog2(n)e iterations was performed. We prove that the cost of the arcs added

to T in each iteration is at most C∗j where C∗j is the optimal value of APCTSPj. In

particular, for the last iteration the cost of the arcs added to T plus the total penalty

associated to the vertices eliminated from T (from the first iteration to the end) is at

most C∗j . As T is Eulerian, T is a solution of APCTSPj and the cost of T is at most

dlog2(n)eC∗j .

42

1.5 Linear description for the polytope of the Huff-

man trees (Maurras, Nguyen, N. [46])

In 1952, David Huffman discovered the concept of Huffman tree which offers the

most efficient binary code for the characters of an alphabet Λ = {c1, c2, . . . , cn} in the

context of a language using Λ as its alphabet. A Huffman tree is a full binary tree (i.e.

every node in the tree has either 0 or 2 children) of n leaves labeled by the characters

in Λ. The height of the character ci (i=1,. . . , n), denoted by li, is the length of

the path from the root to the leaf labeld by the character. Given a Huffman tree H,

the Huffman point associated with H is the point (l1, l2, . . . , ln) ∈ Qn. The Huffman

polytope is the convex hull of the Huffman points associated with all the possible

Huffman trees for the n characters in Λ. Let fi for i = 1, . . . , n be the frequency

a b

c

a c

b

c b

a

(2,2,1) (2,1,2) (1,2,2)

Figure 1-2: The Huffman trees and the associated Huffman point for the alphabet
Λ = {a, b, c}.

of ci in a language having Λ as alphabet, Huffman gives a O(n log n) time greedy

algorithm to find the Huffman tree that minimizes the linear function
∑n

i=1 fili. One

can derive from this tree an optimal binary code for the characters of Λ with respect

to the frequencies fi. Hence, optimizing over the Huffman tree polytope can be done

greedily in polynomial time. The fact seems to motivate J. Edmons and J.F. Maurras

to introduce the Huffmantree polytope in 1974. They conjectured that in regards

to the simplicity of the Huffman’s algorithm, the Huffman polytope should have a

simple and beautiful facial structure. In [46], we characterize all the facet-defining

inequalities that define the highest Huffman trees (i.e. the Huffman trees that are the

most unbalanced). The number of those inequalities is in O(n!), what shows that n! is

lower bound for the number of facet-defining inequalities for the Huffman polytope.

43

This result implies that despite appearances, the Huffman polytope could be very

complex. Note that following our result, Kaibel and Pashkovich [38] have given a

O(n log n) size extended formulation for the Huffman polytope.

44

Chapter 2

Natural formulations and

algorithms using linear

programming

In this chapter, we consider combinatorial optimization problems for which natural

integer formulations exists or is obvious. We show that more meticulous observations

on these formulations can help to improve exact or approximation algorithms. In

particular,

• the observation that if the cycles should contain a specific node, we can replace

them by a st-chain (undirected path) in an extended graph. In spite of its

simplicity, this observation is interesting polyhedrally since complet description

for the st-chain polytope is known and no such thing is known for the cycle

polytope. We apply this to the Ring Star problem in Section 2.1.

• The parsimonious property of directed Eulerian graphs that allows to remove

nodes (by splitting-off operation) while preserving the connectivity and even

the overall arc costs when the latters satisfy the triangle inequalities. We apply

this to the Minimum Directed Tour problem in Section 2.2.

45

2.1 Chain-based formulation for Ring Star

2.1.1 Introduction

This section addresses a telecommunication network problem called the ring star

problem. It consists in finding a simple cycle through a subset of vertices of a graph

which minimizes the cost of the cycle and the assignment cost of the vertices not in

the cycle to their closest vertices on the cycle. The problem has several applications in

telecommunications. Indeed, the ring topology is chosen in many fiber optic commu-

nication networks to guarantee continuous communication service to the customers

called terminals. These customers are connected to the concentrators of the ring by

point-to-point links which results in a star topology. In other words, the problem

consists in selecting a subset of user locations where concentrators will be installed,

interconnecting them by a ring network and assigning the other customer locations

to the concentrators.

The Ring Star Problem (RSP) was introduced by Labbé et al. [43] who derive

a branch-and-cut method based on some polyhedral properties of the problem. It

can be formally stated as follows. Let G = (V,E ∪ A) be a mixed graph, where

V = {v1, v2, · · · , vn} is the vertex set, E = {vivj : vi, vj ∈ V } is the edge set and

A = {(vi, vj) : vi, vj ∈ V } is the arc set. Vertex v1 is referred to as a root (or depot).

Edges in E refer to the undirected concentrators links, and arcs in A refer to the

directed assignment between customers and concentrators. A nonnegative ring cost

cij is associated with each edge vivj and a nonnegative assignment cost dij is associated

with each arc (vi, vj). A solution of the ring star problem is a simple cycle through

a subset C of V including v1. The objective is to determine a solution for which the

sum of the ring and the assignment costs is minimized. The ring cost of a solution is

the sum of the ring costs of all edges on the cycle. The assignment cost is defined as∑
vi∈V \C minvj∈C dij.

The problem is np-hard since the special case in which the assignment costs are

very large compared to the ring cost is the classical traveling salesman problem.

In [43], the authors propose the first branch-and-cut algorithm for RSP based on

46

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

: concentrator

: client

: depot

Figure 2-1: A solution of the ring star problem.

the circuit polytope. The latter studied by Bauer et al. [9] which is the convex hull

of the incidence vectors of all the simple cycles in G = (V,E). In [40], we observe

that in a solution of RSP, the cycle must go through the node v1. Hence, the set of

the cycles beloing to a solution of RSP is a strict subset of the set of all the cycles

in G. Consequently, the valid inequalities for RSP derived from the circuit polytope,

the convex hull of the incidence vectors of all the cycles, may not always define facets

for RSP. Our idea is to consider directly the convex hull of the incidence vectors of

all the cycle containing v1 which should give stronger valid inequalities for RSP than

the circuit polytope. More precisely, we show that this convex hull has a complete

extended formulation and we use it instead of the circuit polytope to derive a stronger

class of facet-defining inequalities than the one having been derived using the circuit

polytope. The extend formulation is as follows:

We set s = v1 and add a dummy node t which is a clone of s in G to obtain

a new graph G′ = (V ′, E ′∪A′) where V ′ = V ∪{t}, E ′ = E∪{tu| su ∈ E}

and A′ = A. Let n′ = |V ′|, m′e = |E ′|, m′a = |A′| and m′ = m′e+m′a. A st-

chain in G′ is an simple undirected path between s and t whose edges are in

E ′. We can see that there is an one-one correspondence between the cycles

containing v1 in G and the st-chain in G′. Hence, the st-chain polytope

which is the convex hull of the incidence vectors of the st-chains of G′ is

an extended formulation of the convex hull of the cycles containing v1 in

47

G. As constrast to the circuit polytope for which no complete description

is known, one knows a complete description of the st-chain polytope since

a st-chain is a T -join with T = {s, t}.

We know that the blossom inequalities

x(δ(U) \ F)− x(F) ≤ 1− |F | U ⊂ V ′, F ⊂ δ(U) s.t. |U ∩ {s, t}|+ |F | odd,

describe the T -join polytope with T = {s, t} [24]. In [40], we derive from the blossom

inequalities a class of valid inequalities for RSP called st-chain blossom inequalities :

x(E(U)) + x(F) ≤
∑

vi∈U\{s,t}

yii − b
|F | − 1

2
c, (2.1)

for U ⊂ V ′, F ⊂ δ(U) s.t. |U ∩ {s, t}|+ |F | odd. The st-chain blossom inequalities

contain a subclass called st-chain blossom even ((2.1) with |F | even) which defines

facets for RSP and which is a new class of facet-defining inequalities comparing with

the ones in [43]. The following table show the contribution of the new st-chain

blossom even inequalities for improving the lower bound of RSP at the root node

of the branch-and-cut tree. The instances are from the TSPLIB, α is a parameter

for the estimation of the assignement cost in term of edge cost given by TSPLIB.

The column CyB-BC denotes the cycle-based formulation given [43] and the column

ChB-BC denotes our st-chain based formulation. The value in these column is the

percentage of lower bound given at the root node over the best known solution value

of RSP (which is not necessary the optimal value). The last column is the number of

st-chain blossom even inequalities added by cutting-plane at the root node.

48

Name α CyB-BC ChB-BC st−chain blossom even
kroA150 3 99.49 99.49 26
kroB150 3 99.51 99.57 15
pr152 3 99.51 99.55 3
pr152 5 96.05 96.11 155
pr152 7 96.66 96.76 308
rat195 3 99.68 99.74 99
kroA200 3 93.59 96.59 12
kroA200 9 97.15 98.51 151
kroB200 3 99.81 99.86 2
kroB200 9 95.13 97.52 66

2.2 Approximation algorithm for the Minimum Di-

rected Tour Cover Problem

2.2.1 Introduction

Let G = (V,A) be a directed graph with a (non-negative) cost function c : A ⇒ Q+

defined on the arcs. A directed tour cover T is a subgraph T = (U, F) such that

1. For every e ∈ A, F contains an arc f intersecting e, i.e., f and e have at least

one end-node in common. In other words, U is a vertex cover of the undirected

version of G where the orientation of the arcs is neglected.

2. T is a closed directed walk.

We consider in this paper the minimum directed tour cover (DToCP) problem

which is to find a directed tour cover of minimum cost. We can prove that DToCP

is NP -hard by a reduction from the metric Asymmetric Traveling Salesman Problem

(ATSP). We give here a concrete example of applications of DToCP, which is the

following simplified version of the waste collection problem. A company is in charge

of waste collection in an urban area. The area is supposed to be small enough so

that one truck is sufficient to collect all of its daily wastes. The gather is done by

the truck in early morning of each day. For each street in the area, waste should be

regrouped at one of the end-points of the street in the night of the day before. When

49

the truck goes along a street, this induces some cost to the company. Hence, the aim

of the company is to find a cheapest tour from its depot for the truck such that the

waste collection is accomplished for every street of the area. Note that streets could

be one-way or sloping, making the costs asymmetric. This problem suggests that the

depot should belong to the tour. We shall see that our algorithm for DToCP will also

work for the case when the tour should contain a fixed vertex. In this paper, we give

the first approximation algorithm for the DToCP achieving a approximation ratio of

2 log2(n). For this, we show the parsimonious property of Eulerian directed graphs,

in particular we prove the equivalent directed version of Goemans and Bertsimas’s

theorem on splitting operations.

2.2.2 Integer Formulation

Let

F = {S ⊆ V | A(S) 6= ∅, A(V \ S) 6= ∅}

Given any tour cover TC ofG, by definition, for any S ∈ F we have TC∩δ+(S) ≥ 1

and TC ∩ δ−(S) ≥ 1. Note that the condition TC ∩ δ−(S) ≥ 1 is equivalent to

TC ∩ δ+(V \ S) ≥ 1, and by definition of F , a vertex subset S belongs to F if and

only if V \ S belongs to F . This observation motivates our integer formulation for

DToCP. For any e ∈ A, let xe indicate the number of copies of e included in the tour

cover. We minimize the total weight of arcs included, under the condition that every

outgoing cut associated to some S ∈ F should be crossed at least one. In order to

ensure that our solution is a tour we also need to specify that for any node v ∈ V ,

the number of arcs entering v is equal to the number of arcs leaving v in the tour.

50

This integer formulation can be stated as follows:

min
∑
e∈A

cexe∑
e∈δ+(v)

xe =
∑

e∈δ−(v)

xe for all v ∈ V

∑
e∈δ+(S)

xe ≥ 1 for all S ∈ F

xe integer for all e ∈ A

If one specific vertex u should belong to the optimal tour, we just need to set∑
e∈δ+(u)

xe =
∑

e∈δ−(u)

xe ≥ 1 in the formulation. Replacing the integrality constraints

by

xe ≥ 0 for all e ∈ A

we obtain the linear programming relaxation. We use DToC(G) to denote the convex

hull of all vectors x satisfying the above constraints (those of the linear programming

relaxation). Clearly minimizing the linear cost function
∑

e∈A cexe over DToC(G) can

be done in polynomial time since the separation problem of the cut constraint can be

solved in polynomial time. Indeed, given a candidate solution x and for every e ∈ A,

let us consider xe as the capacity on arc e. For each pair of arcs e1, e2 ∈ E, we

compute the minimum capacity cuts δ+(U) separating them.

2.2.3 Algorithm’s sketch

We state here our algorithm for directed tour cover which is heavily inspired from the

one for ToCP in [41].

(1) Let x∗ be the vector minimizing cx over DToC(G);

(2) Let U ← {v ∈ V |x∗(δ+({v})) ≥ 1
2
};

(3) Let GU = (VU , AU) be a graph with vertex set VU = U and the arc set AU is

built as follows: for each pair of nodes i, j ∈ U , if there exists a path from i to j in

G, create an arc (i, j) in GU with the cost cUij being equal to the cost of the shortest

51

path from i to j in G;

(4) Run the Frieze, Galbiati and Maffioli heuristic [28] to find an approximate mini-

mum traveling salesman directed tour on GU .

Note that the linear program in step (1) can be solved in polynomial time by

using the ellipsoid method with a minimum cut computation as separation oracle.

The algorithm outputs a directed tour which spans U . We can see that U is vertex

cover of the undirected version of G where the arcs becomes edges. Since for any arc

e = (u, v) ∈ A, x∗(δ+({u, v})) ≥ 1 and x∗(δ+({u, v})) = x∗(δ+(u)) + x∗(δ+(v))− 2x∗e,

at least x∗(δ+(u)) or x∗(δ+(v)) is greater or equal to 1
2
, i.e., at least u or v should

belong to U . Therefore, the algorithm outputs a directed tour cover of G.

2.2.4 Held-Karp Relaxation for ATSP and the Parsimonious

Property

Let us consider the Asymmetric Traveling Salesman Problem (ATSP) on GU . The

Held-Karp bound for this problem can be computed by solving the following linear

program:

min
∑
e∈AU

cexe (2.2)

subject to

x(δ+(S)) ≥ 1 for all S ⊂ VU such that |S| ≥ 2

x(δ+(v)) = 1 for all v ∈ VU

x(δ−(v)) = 1 for all v ∈ VU

xe ≥ 0 for all e ∈ AU

Note that a directed traveling salesman tour can be viewed as a directed Eulerian

subgraph where the in-degree and out-degree of every node are exactly 1. Such a

tour is called 1-degree directed Eulerian subgraph. In [52], we show the parsimonious

52

property for k-degree directed Eulerian subgraph, i.e., if the costs c satisfy the triangle

inequality, we can relaxed the degree constraints in the problem of finding minimum

degree-k-Eulerian directed graph. That implies the following theorem for the program

2.2.

Theorem 2.2.1 [N. [52] If the costs c satisfy the triangle inequality then the optimum

of (2.2) is equal to the optimum of:

min
∑
e∈AU

cexe (2.3)

subject to

x(δ+(S)) ≥ 1 for all ∅ 6= S ⊂ VU (included S singleton)

x(δ+(v)) = x(δ−(v)) for all v ∈ VU

xe ≥ 0 for all e ∈ AU

2.2.5 Analysis of the algorithm in Section 2.2.3

Let us consider the point x∗ ∈ QA obtained after step (1). By the parsimonious

property proved in [52], we can transform x∗ to a point xU ∈ QAU such that ctUxU ≤

ctx∗ and 2xU is a point satisfying the linear program (2.3). Let T be the directed

tour spanning U output by step (4) of the algorithm. Let x∗U be an optimal of the

linear program (2.3). Williamson [61] shows that c(T) ≤ log2(n)× ctUx∗U . Hence, we

have c(T) ≤ log2(n)× ctUxU ≤ 2 log2(n)× ctx∗. The algorithm in Section 2.2.3 is then

a 2 log2(n)-approximation algorithm for the directed tour cover problem.

53

54

Chapter 3

Extended formulations:

compactness and separation

In this chapter, we investigate extended formulations under the following aspects:

• Given a problem with a natural formulation of exponential size, we aim at

finding an extended formulation of compact size.

• Given a problem with a compact size extended formulation which is integral

for some special case, we aim at projecting the latter to obtain classes of facet-

defining inequalities in natural space. The latters define a complete description

for the natural formulation for the special case in question. Moreover, we show

that the separation problem of theses classes of facet-defining inequalities can

be solved by optimizing over the extended formulation.

• Given a problem for which compact size extended formulations are known, we

aim at reducing per se the size of these extended formulation or at finding the

minimal size for them in special cases.

55

3.1 The substar polytope and extensions

3.1.1 Natural formulation and a generalization of Kőnig’s

edge-coloring theorem

Let G = (V,E) be an arbitrary undirected graph without loop but with multiple

edges allowed. A substar of G is an edge subset F ⊆ E such that F ⊆ δ(v) for some

v ∈ V . We define the substar polytope, denoted by SSP, as the convex hull of the

incidence vectors in QE of all the substars of G.

A matching of G is a set of pairwise disjoint edges.

A fractional matching of G is a (not necessarily integer) vector µ ∈ QE satisfying:

(FMATCH)

 xe ≥ 0 for all e ∈ E

x(δ(v)) ≤ 1 for all vertex v ∈ V .

Theorem 3.1.1 (Cornaz and N. [17]) The following system describes the substar

polytope of all graphs:

(A(FMATCH))

 xe ≥ 0 for all e ∈ E

µ>x ≤ 1 for all fractional matching µ of G.

Proof Indeed, given any c ∈ ZE, restrict the set of fractional matchings to the finite

subset of fractional matchings µ of the form µe = p
q

with p ∈ Z and q ∈ {1, . . . , σ∗ :=

max
v∈V

c(δ(v))}, then

ψLP =

min 1>y

s.t.

yµ ≥ 0 for all fractional matching µ of G∑
fractional matching µ

µeyµ ≥ ce for all e ∈ E,

is the dual of maximizing c>x over x satisfying (A(FMATCH)), and a solution of ψLP

56

with value σ∗ is obtained with ȳ, defined as follows:

ȳµ̄ :=

 σ∗ if µ = µ̄

0 otherwise
with µ̄e :=

ce
σ∗

∀e ∈ E.

Here µ̄ ≥ 0 is well a fractional matching since

µ̄(δ(u)) =
c(δ(u))

σ∗
≤ 1 for all u ∈ V ,

and ȳ is well feasible since

µ̄e × ȳµ̄ =
ce
σ∗
× σ∗ = ce for all e ∈ E.

�

As the number of fractional matching are infinite, the system (A(FMATCH)) is not

a minimal system describing the substar polytope. To derive a such system, we will

make use the follwing result of Balinski. An (odd cycles,matching) set (C,M) of G

is a collection of vertex-disjoint edge subsets C1, . . . , Ck such that Ci is either an odd

cycle or a singleton; we denote by C the union of the odd cycles and we denote by

M the union of singletons (so M is a matching). For short, (odd cycles,matching) is

abbreviated as ocm. Balinski [5] showed that a vector x ∈ QE is an extreme point of

(FMATCH) if and only if

x =
1

2
χC + χM for some ocm set (C,M) of G.

Hence, we have

Corollary 3.1.2 (Cornaz and N. [17]) The system

(A(FMATCH∗))

 xe ≥ 0 for all e ∈ E
1
2
x(C) + x(M) ≤ 1 for all ocm set (C,M) of G,

is a minimal system describing the substar polytope provided that the ocm sets are

57

inclusionwise.

Moreover, we show the following theorem.

Theorem 3.1.3 (Cornaz and N. [17]) The system (A(FMATCH∗)) is TDI.

An ocm covering of G is a collection of ocm sets (C1,M1), . . . , (Ck,Mk) such that each

edge is covered by one matching or by two (elementary) odd cycles, formally: For

each edge e ∈ E, either there exists i such that e ∈Mi, or there exists i 6= j such that

e ∈ Ci and e ∈ Cj, for some i, j ∈ {1, . . . , k}. Let χ′′(G) denote the minimum k such

that there is an ocm covering of G with k ocm sets. Let ∆(G) denote the maximum

degree of G, that is ∆(G) := maxv∈V |δ(v)|. The TDI-ness of (A(FMATCH∗)) implies

the following theorem.

Theorem 3.1.4 χ′′(G) = ∆(G) for all graph G.

We derive from the fact that when G is a bipartite graph, every ocm covering is

matching covering, that Theorem 3.1.4 is a generalization of Kőnig’s edge-colouring

theorem.

3.1.2 Compact extended formulation for the substar poly-

tope

In this section, we will give an compact extended formulation for the substar polytope

whose projection on QE gives A(FMATCH(G)). In particular, we will add addtional

variable yv for each v ∈ V to express the fact that yv = 1 if v is the center (the center

of a substar is the only node of degree strictly greater than 1 if the substar is not an

edge. If the substar is an edge, any of the latter could be the center.) of the substar

and 0 otherwise. Then the constraints we should formulate are:

• there is at most one center,

• for every edge uv, if uv belong to the substar, then either u or v is the center.

58

Let

(Q)

∑
v∈V

yv ≤ 1

xuv ≤ yu + yv for all uv ∈ E

yv ≥ 0 for all v ∈ V

xe ≥ 0 for all e ∈ E

be the system expressing these above constraints.

Theorem 3.1.5 (Cornaz and N. [17]) (Q) is TDI and the projection of Q on QE

is equal to A(FMATCH(G))

Corollary 3.1.6 (Cornaz and N. [17]) (Q) is an compact extended formulation of

the substar polytope.

3.2 Facets and extended formulations for the sub-

star forest polytope

3.2.1 Introduction

The previous section consider the substars individually, in this section, we will con-

sider them collectivelly. Given an undirected graph G = (V,E) where n = |V | and

m = |E|, a substar in G is either a single node of G or a subgraph of G where every

edge shares one common end-node. The latter is called the center of the substar

when the substar is not reduced to a single node. If the substar is a single edge, then

any of its end-nodes can be designated as the center. A substar forest is a collection

of vertex-disjoint substars in G. We suppose that the edges in G have non-negative

Figure 3-1: A substar forest of weight 4 with weights 1 on the edges.

weights (note that the unweighted case can be seen as a special weighted case when

59

weights are 0 or 1), then the weight of a substar forest or an edge dominating set

is the sum of the weights of its edges. The Maximum Weight spanning Star Forest

Problem (MWSFP) is to find a substar forest spanning the nodes of G of maximum

weight. The MWSFP is a recent problem which has been introduced by Nguyen et al.

in [48]. It has applications in several areas, especially in computational biology [48]

and automobile industry [1]. In [48], the authors show the NP -hardness of MWSFP

by observing that in a maximal substar forest F (a maximal substar forest is a substar

forest to which no more edge can be added), the set of the centers of the substars

in F is a dominating set of G. Conversely, for any dominating set S we can build

a maximal substar forest with centers as the nodes belonging to S. Thus, given a

maximal substar forest F , there exists a dominating set S such that |S| = |V | − |F |

and vice versa.

Let SFP (G) be the convex hull of the incidence vectors of the substar forests in

G.

We call a 3-path a simple path having 3 edges in G and a 3-cycle a triangle in G.

Let P4 (respectively C3) denote the collection of the 3-paths (resp. 3-cycles) in G.

3.2.2 Integer formulations for the MWSFP

3.2.3 An integer formulation in natural space

In this subsection, we give an integer programming formulation for MWSFP in QE.

First we state the following lemma.

Lemma 3.2.1 A substar forest is a graph without 3-paths and 3-cycles, and vice-

versa.

60

Let us consider the following integer program.

max cTx

(IP) s.t.

x(P) ≤ 2 for all P ∈ P4 (3.1)

x(C) ≤ 2 for all P ∈ C3 (3.2)

0 ≤ xe ≤ 1 for all e ∈ E (3.3)

x integer

Inequalities (3.1), called the 3-path inequalities, state the fact that a substar forest

can only take at most 2 edges in a 3-path. Similarly, inequalities (3.2), called the

3-cycle inequalities, state the fact that a substar forest can only take at most 2 edges

in a 3-cycle. Inequalities (3.3) are the trivial inequalities.

Theorem 3.2.2 (IP) is equivalent to the MWSFP.

Proof It is clear that by inequalities (3.1) and (3.2) in a solution of (IP) there is

neither 3-paths and nor 3-cycles. By Lemma 3.2.1, this solution represents a substar

forest.

3.2.4 An extended integer formulation and valid inequalities

for SFP (G)

~G = (V, ~E) be the bidirected graph obtained by replacing every edge ij ofG by two arcs

(i, j) and (j, i). Hence, ~G has the same vertex set as G and the number of arcs in ~E is

two times the number of edges in E. We consider the uncapacitated facility location

problem (UFLP) [18] defined on ~G where each vertex i could be either a facility or

a client, and each arc (i, j) ∈ ~E represents the assignment of client i to the facility

j. In a solution of the uncapacitated facility location problem each vertex i should

be determined to be either a facility or a client. If in a solution i is a facility, then

it should be opened with a cost w(i) and i is called a center in this case. Otherwise,

61

i.e. i is a client, it should be assigned to an opened facility j with a cost c(i, j). Note

that there can be centers in a solution to which no client is assigned. We consider

here the symmetric uncapacitated facility location problem, SUFLP, a special version

of UFLP on ~T in which the assignment costs are symmetric, i.e. c(i, j) = c(j, i) for

all ij ∈ E, and there is no opening cost for facilities, i.e. w(i) = 0 for all i ∈ V .

Let us associate with each solution F of UFLP, the incident vector (x, y) ∈ R| ~E|+|V |

defined as follows:

• for all (i, j) ∈ ~E,

~x(i, j) =

 1 if (i, j) ∈ F ,

0 otherwise,

where ~x(i, j) is the component of x corresponding to the arc (i, j) ∈ ~E, and

• for all i ∈ V ,

y(i) =

 1 if i is a center in F ,

0 otherwise,

where y(i) is the component of y corresponding to the vertex i ∈ V .

The following system, called ESFP (~G), derived from the integer formulation in [19]

is an integer formution for UFLP in ~G:

ESFP (~G)
∑

(i,j)∈ ~E

~x(i, j) + y(i) ≤ 1 for all i ∈ V (3.4)

~x(i, j) ≤ y(j) for all (i, j) ∈ ~E (3.5)

0 ≤ y(i) ≤ 1 for all i ∈ V (3.6)

~x(i, j) ∈ {0, 1} for all (i, j) ∈ ~E (3.7)

Lemma 3.2.3 ESFP (~G) is an extended integer formulation for SFP (G).

Proof The proof can be done by simply using the correspondence xij = ~x(i, j)+~x(j, i)

between the assignments ~x(i, j) and ~x(j, i) in a solution of UFLP(~G) and the value

of xij in a solution of SFP (G).

62

Let LP ESFP (~G) be the linear programming relaxation of ESFP (~G). We will

consider the projection of ESFP (~G) on the natural space QE of SFP (G) by using

the correspondences xij = ~x(i, j)) + ~x(j, i). For that, let us first define in QE, a

class of inequalities called the perfect b-matching inequalities. Given a vertex subset

S ⊆ V , let GS = (S,ES) be a subgraph whose node set is S and edge set ES is a

subset of E(S) (recall that E(S) is the set of the edges of G with both end-nodes in

S). We will suppose that GS is a connected graph. A perfect b-matching in GS is a

subgraph (which is not necessarily simple) in which the degree of each vertex in S is

b.

Given a vertex subset S ⊂ V such that GS is connected and a perfect b-matching

B in GS. Let S2 ⊂ S be the set of the vertices of degree at least 2 in GS and E2
S ⊂ ES

is the subset of the edges in ES with both end-nodes in S2. For each edge ij ∈ ES,

let mij denote the multiplicity of ij in B (mij = 0 if ij /∈ B). Then the perfect

b-matching subgraph inequalities can be defined as follows:

∑
ij∈ES\E2

S)

mijxij +
∑
ij∈E2

S)

(mij + b)xij ≤ b|S2| (3.8)

∀S ⊆ V and ∀ connected subgraph GS and ∀ perfect b-matchings B in GS.

Theorem 3.2.4 The projection of LP ESFP (~G) on QE of SFP (G) gives the perfect

b-matching inequalities.

Corollary 3.2.5 The perfect b-matching subgraph inequalities are valid for SFP (G).

We can remark that the 3-path inequalities is a perfect b-matching subgraph inequal-

ities with S is a set of 4 nodes {v1, v2, v3, v4} such that G contains the 3-path v1v2v3v4,

with subgraph GS equal to the latter and with B = {v1v2, v3v4}. The trivial inequal-

ity xij ≤ 1 for ij ∈ E is also a perfect inequalities with S = {i, j}, GS = B = the

singleton containing the edge ij.

3.2.5 Complete description of SFP(G) in trees

From now on and throughout this section, G will be a tree denoted by T .

63

Theorem 3.2.6 [3] LP ESFP (~T) completely defines UFLP (~T).

Actually, in [3], the authors characterize all the graphs G such that LP ESFP (~T)

completely defines UFLP (~G). Such graphs include bidirected trees.

Let us now consider the MWSFP on T in which for each edge ij ∈ T , the cost cij is

equal to c(i, j).

Theorem 3.2.7 The projection of LP ESFP (~T) on the variables xij gives a sys-

tem consisting of the perfect b-matching subgraph inequalities defined on T and the

nonnegativity inequalities.

We can derive from Lemma 3.2.3 and Theorem 3.2.7 the following corollary.

Corollary 3.2.8 The perfect b-matching subgraph inequalities together with the non-

negativity inequalities completely describe SFP (G) when G is a tree.

3.2.6 Separation of perfect b-Matching subgraph inequalities

Let us consider the separation problem of the perfect b-matching subgraph inequal-

ities, i.e. given a solution x∗ ∈ [0, 1]E, we want to know if x∗ violates some perfect

b-matching subgraph inequalities, and if yes, then exhibit at least one. We will solve

it via the integer extended formulation given in Section 3.2.4. Precisely, we solve the

following linear program (SEP):

(SEP) min
∑
ij∈E

δij

∑
(i,k)∈ ~E
k 6=j

~x(i, k)− δij ≤ 1− x∗ij for all i ∈ V and ij ∈ E

~x(i, j) + ~x(j, i) = x∗ij for all ij ∈ E

~x(i, j), ~x(j, i), δij ≥ 0 for all ij ∈ E

Theorem 3.2.9 There is a violated perfect b-matching subgraph inequality by x∗ if

and only if the value of the objective of (SEP) is strictly positive.

64

3.3 Extended formulations for metric polyhedra

3.3.1 Natural formulations

Given an undirected graph G = (V,E), we consider in this section, two polyhedra

defined on QE. The first is the metric polytope , denoted by METP(G), associated

with G , which can be defined as follows:

x(F)− x(C \ F) ≤ |F | − 1

∀C ∈ C and F ⊆ C with |F | odd, (3.9)

0 ≤ xe ≤ 1

∀e ∈ E such that e does not belong to any triangle (3.10)

Note that inequalities (3.9) are called cycle inequalities. The inequalities (3.10) are

applied only for the edges in G which do not belong to any triangle as those for

the other edges can be derived from the cycle inequalities. These inequalities were

introduced in the seminal paper by [8] on the cut polytope. The second polyhedron

is the metric cone MET(G) which consists of the cycle inequalities with sets F such

that |F | = 1 (the homogenuous cycle inequalities) and the “trivial” inequalities (3.10).

More precisely,

MET(G) = {x ∈ RE such that

xe − x(C \ {e}) ≤ 0 ∀C ∈ C and e ∈ C, (3.11)

0 ≤ xe ≤ 1 ∀e ∈ E.}

Note that MET(G) is a polytope, not a cone. However, we use here the standard

terminology used by [21] which was proposed in a context where the basic space

considered was the hypercube [0, 1]n.

65

3.3.2 Compact extended formulations

Note that since there is a priori no known polynomial upper bound (in terms of n and

m) on the number of chordless cycles and there may be also an exponential number

of choices for the set F given a chordless cycle C, the above formulations of MET(G)

and METP(G) have a priori an exponential number of inequalities. Nevertheless,

when G = Kn, the complete graph of n nodes, MET(Kn) and METP(Kn) are of

polynomial size since in this case C reduces to the set of the triples {i 6= j 6= k ∈ V }

and F can have only 1 or 3 edges. Concretely, let T be the set of all the (unordered)

triples of distinct nodes i, j, k ∈ V , the following system:

xij + xik + xjk ≤ 2 for all i, j, k ∈ T . (3.12)

xij − xik − xjk ≤ 0,

xik − xij − xjk ≤ 0,

xjk − xij − xik ≤ 0 for all i, j, k ∈ T .

(3.13)

defines METP(Kn). Inequalities (3.12) are called the non-homogeneous triangle in-

equalities and the ones in (3.13) are called the homogenous triangle inequalities. They

are all commonly called the triangle inequalities. The cone MET(Kn) is defined only

by the homogeneous inequalities (3.13) and the trivial inequalites (3.10). The num-

ber of inequalities in MET(Kn) and in METP(Kn) is clearly in O(n3), and thus

polynomial in terms of n. In fact, [7] showed that the projections of MET(Kn)

and METP(Kn) on RE are exactly MET(G) and METP(G). Hence, MET(Kn) and

METP(Kn) respectively represent compact extended formulations for MET(G) and

METP(G).

3.3.3 Applications of metric and related polyhedra

The two polyhedra MET(G) and METP(G) are strongly related to the maximum cut

problem which is one of the basic problems in combinatorial optimization. Actually,

66

the metric cone MET(G) is a relaxation of the cut cone CUT(G), the cone generated

by all the cut vectors δ(S) for S ⊂ V (with abuse of notation, by δ(S) we denote

both the edge set of the cut defined by the node set S and its incidence vector).

Similarly, the metric polytope is a relaxation of the cut polytope CUTP(G), the con-

vex hull of all the cut vectors δ(S) for S ⊂ V . If we replace the trivial inequalities

by the 0/1 constraints x ∈ {0, 1}E in the formulation of the two polyhedra, we ob-

tain respectively integer formulations for CUT(G) and CUTP(G). METP(G) is an

interesting relaxation of CUTP(G) both theoretically and practically. In particular,

the cycle inequalities (3.9) define facets for CUTP(G). Moreover, Deza et al. [22]

have shown that among a large class of facet-defining inequalities for CUTP(G) ,

the cycle inequalities are the closest ones to the barycentrum of CUTP(G) and they

conjectured that this holds in general. Boros et al. [12] have shown that METP(G) is

the Chvatal closure of the linearized quadratic formulation for Max-Cut. Pratically,

cycle inequalities appear in most 0/1 formulations intended for solving the Max Cut

problem exactly. They can even be used to strengthen the semi-definite relaxation

for Max-Cut [57] which is known to provide a very good upper bound for Max-Cut

[33]. Moreover, when G is sparse, i.e. m = O(n), the upper-bound of Max-Cut given

by the relaxation METP(G) is very strong [35], [45].

Note that the applications of MET(G) and METP(G) are not limited to the Max-

Cut problem. They appear in linear programming relaxations for Graph Partitioning

Problems which has applications in various domains such as large-scale parallel com-

puting, imagery, electronics,? etc. They are also used to characterize the feasibility

of multicommodity flow which is a fundamental notion in telecommunications net-

works. A large number of network design problems make use of cycle inequalities

in their mathematical models [47]. METP(G) is also present in formulations for the

boolean quadric polytope which has important applications especially on quadratic

0/1 programming [13].

67

3.3.4 Reduced size extended formulations for metric polyhe-

dra

In pratical applications, optimizing a linear function over MET(G) and METP(G)

usually appears as a subproblem and thus the latter has to be solved repeatedly.

In this situation, the compact formulations MET(Kn) and METP(Kn) are usually

preferred to the non-compact ones for optimizing over MET(G) and METP(G) since

they can be directly transmitted to a linear programming solver. However, the number

of triangle inequalities in MET(Kn) and METP(Kn), which is in O(n3), can be huge

even for medium values of n making the optimization over compact formulations

computationally difficult ([27] is a typical reference reporting such computational

problem).

In [55], we show that one can reduce the number of triangle inequalities to O(nm)

while preserving equivalence with MET(G) and METP(G). The idea is that instead

of express the triangles inequalities for all the triangles of Kn completed from G, we

only do it for those containing at least one original edge of G. The number of such

triangles obviously is (n−2)m, hence the number of triangle inequalities is in O(nm).

More precisely, let

T ′ = {(i, j, k) ∈ T | at least one of ij, ik or jk ∈ E}

Let us define RMETP(Kn) as the polytope defined by the following “reduced”

system,

xij + xik + xjk ≤ 2 for all i, j, k ∈ T ′. (3.14)

xij − xik − xjk ≤ 0,

xik − xij − xjk ≤ 0,

xjk − xij − xik ≤ 0 for all i, j, k ∈ T ′.

(3.15)

68

together with the trivial inequalities (3.10). We define the reduced metric cone

RMET(Kn) as the one defined by inequalities (3.15) and the trivial inequalites (3.10).

In [55], we prove the following theorem,

Theorem 3.3.1 The projections of RMETP(Kn) and RMET(Kn) on QE give re-

spectively METP(G) and MET(G).

which implies that RMETP(Kn) and RMET(Kn) are extended formulations for re-

spectively METP(G) and MET(G) We can see that this result is of particular interest

for the case of sparse graphs, when m = O(n), since this yields much more compact

formulations of size O(n2) variables and constraints. Clearly such reduction in prob-

lem size can be exploited computationally e.g. in the solution of the max-cut problem,

due to the induced reduction in computational effort devoted to solving the linear re-

laxations in each node of the Branch-and-Bound tree.

However, beyond its computational interest, this result raises the natural and chal-

lenging new question of whether it is possible to further reduce the size of a linear

formulation for MET(G) and METP(G) in sparse graphs, or at least some subclasses

of sparse graphs. And, since Ω(m) is a lower bound to the size (number of variables

and constraints) of any linear formulation (just considering the non negativity con-

straints, assuming connectivity), is it possible to achieve linear size O(m) = O(n), at

least for some subclasses of sparse graphs.

As a first step towards answering such polyhedral issues, in [54], we provides a pos-

itive answer to this last question by showing that for the subclass of series-parallel

graphs (for which the max-cut problem can be solved in linear time, see [6]), it is

possible to refine the reduced formulations to come up with linear-size formulations

for MET(G) and METP(G). To the best of our knowledge, this is the first subclass

of graphs enjoying linear-size representations for the associated metric polyhedra.

3.3.5 Extension of the result for graph partitioning

The Graph Partitioning problem (GP) is a fundamental problem in combinatorial

optimization. We consider the basic version of the problem defined in Garey and

69

Johnson’s book [32] (problem ND14) which can be stated as follows. Given an undi-

rected graph G = (V,E) with node set V = {1, . . . , n}, weights wi ∈ Z+ for each

node i ∈ V , lengths le ∈ Z+ for each edge e ∈ E and a positive integer K, find a

partition of V into disjoint sets (or clusters) V1, . . . , Vk such that
∑

i∈Vj wi ≤ W for

j = 1, . . . , k minimizing the sum of the lengths of the edges whose endpoints are in

different clusters (i.e. the k-Cut defined by the partition).

It was shown in [37] that the problem is NP-hard. As there are many variants of

graph partitioning, let us call this version of graph partitioning problem, the basic

graph partitioning problem. Note that the number of the clusters k is not an input

data in the basic version in Garey and Johnson’s book, i.e. k is not fixed. It is

interesting to see that the extended formulation of metric cone MET(Kn) defined on

the complete graph together with 0/1 constraints form an integer formulation for all

the possible partitions of the node set of G, i.e.

xij − xik − xjk ≤ 0,

xik − xij − xjk ≤ 0,

xjk − xij − xik ≤ 0 for all i, j, k ∈ T

xij ∈ {0, 1} for all edge ij ∈ En.

In fact, the variables xij represent the relation: xij = 0 meaning that that two nodes

i and j belong to same cluster and xij = 1 sinon. The constraints xij − xik − xjk ≤ 0

represent the transitive relation: if i and k belong to the same cluster (i.e. xik = 0)

and so do j and k (i.e. xjk = 0) then i and j must belong to the same cluster (i.e.

xij = 0). In particular, Chopra [15] has shown that the above integer formulation

coincides with its linear programming relaxation when G is a series-parallel graph.

To have a complete integer formulation for (GP), we should model the knapsack

constraints on the clusters, i.e.
∑

i∈Vj wi ≤ W for j = 1, . . . , k. For this, we express

70

the n following constraints

∑
i∈V \{j}

vi(1− xij) + vj ≤ W,

which express the knapsack constraint for the cluster containing j for each node j ∈ V .

Hence, we obtain the following integer formulation, called IGP, for (GP).

min
e∈E

lexe

xij − xik − xjk ≤ 0,

IGP xik − xij − xjk ≤ 0,

xjk − xij − xik ≤ 0 for all i, j, k ∈ T ,∑
i∈V \{j}

wi(1− xij) + wj ≤ W for all j ∈ V ,

xij ∈ {0, 1} for all edge ij ∈ En.

This model for Graph Partitioning has been used in several works in the litterature

[60], [44]. Other works strengthen this model with additional variables modelling the

relation node-cluster [36], [25], [39]. In [49], we study the question if our reduction

[55] for MET(Kn) can be still applied to IGP even in the presence of additional knap-

sack constraints? Our answer is ”yes” and moreover the reduction can be applied

for a generic class of additional constraints that inludes the knapsack constraints.

Precisely, the addtional constraints can be of the generic form f(χ(C)) ≤ 0 for

each cluster C ⊂ V in the partition where χ(C) ∈ {0, 1}n is the incidence vector

associated to C and f : {0, 1}n ⇒ Q is a monotone nondecreasig pseudoboolean

function (f(χ(C1)) ≤ f(χ(C2)) if C1 ⊆ C2). For instance, the knapsack constraint∑
i∈Vj wi ≤ K can be viewed as f(χ(Vj)) ≤ 0 with f(χ(C)) =

∑
i∈C wi −K for any

C ⊂ V .

Our result in [49] can be summarized as follows. Let GIGP be the integer program

IGP where the knapsack constraints are replaced by the generic constraints described

above. Let RGIGP be the reduced size program which constraints the same con-

71

straints as GIGP except that the triangle constraints are defined on T ′ instead of T .

We prove the following theorem.

Theorem 3.3.2 GIGP coincides with RGIGP and more strongly, the continuous

relaxations of IGP and RGIGP coincide.

We have conducted numerical results solving IGP and RGIP the integer formulations

and the reduced integer formulations of the basic version of graph partitioning prob-

lem. We focus on instances of random sparse graphs on which the positive effect of

the reduction is very clear. Note that in Table 3.1, LGP and RLGP denote respec-

Table 3.1: Computation results of (IGP) and (RGIP) for random sparse graphs.

graph types n,m IGP LGP RIGP LRGP Cont.Rlx

CPU CPU CPU CPU GAP(%)
random graph 22, 120 58.8 0.54 16.75 0.15 9.3
random graph 25, 150 120.2 1.13 34.34 0.7 12.5
random graph 27, 150 379.5 1.25 139.7 0.49 10.8
random graph 30, 200 1436.8 2.79 458.5 0.98 8.4
random graph 35, 250 - 7.97 945.6 2.65 10.5
random graph 40, 280 - 14.5 3326.9 4.97 10.2
random graph 45, 200 - 19.0 3884.2 1.47 12.7
random graph 50, 200 - 35.88 9024.8 2.32 11.4

tively the linear programming relaxations of IGP and RIGP. We can see in Table 3.1

that the reduction allows to reduce the solving time of both integer formulation and

its linear programming relaxation at least three times.

Let us now consider another instance of the generic constraint with applications in

network design [34], [11] where the function f is quadratic and not linear as for knap-

sack constraints. Suppose now that the nodes in V represent the sites to be connected

by a network and for every edge ij ∈ E, the length lij is replaced by tij the estimated

traffic volume between the site i and the site j. The graph partitioning problem under

capacity constraints aims at partitionning the set of sites V into local networks (i.e.

clusters) in order to maximize the traffics inside these local networks. This objective

is equivalent to minimize the traffic inter-clusters and hence this is indeed a graph

partitioning problem. Usually, each local network C is equiped a multiplexer for mul-

tiplexing the incident traffic of C which is the sum of the traffics inside C and the

72

traffics between C and the rest of the network. As the capacity to handle traffics of

the multiplexer is limited, the volume of the incident traffic of C should be bounded

by a constant W . Given a node h ∈ V , we can express this capacity constraint on

Ch, the cluster containing h as follows:

∑
ij∈E

tij −
∑
ij∈E:
i 6=h,j 6=h

tijxihxjh ≤ W.

The first term of the left-hand side is a constant representing the total volume of

traffic over the network, the second term is a quadratic term which represents the

volume of traffic not incident to Ch (xih = xjh = 1 means that both i and j do not

belong to Ch, or equivalently the traffic between i and j is not an incident traffic of

Ch). We can verify that the function f(χ(Ch)) =
∑

ij∈E tij−
∑

ij∈E:
i 6=h,j 6=h

tijxihxjh−W is

monotone decreasing. Hence, we can formulate the graph partitioning under capacity

constraints by an 0/1 formulation containing the triangle inequalies and the capacity

constraints. Let QIP denote the latter and let QP be its continuous relaxation. As in

this case, our reduction applies, let RQIP be the reduced 0/1 formulation expressing

the triangle inequalities on T ′ instead of T and let RQP its continuous relaxation. We

have conducted numerical experiments solving the graph partitioning under capacity

constraints using QIP and RQIP. Note that as the capacity constraints are quadratic

non-convex, we have had to linearize them using the classical Fortet’s linearization

method [26]. It may not the best method to linearize the models but it is sufficient

for the comparison of QIP to RQIP. As shown in Table 3.2, we obtain similar results

as for the basic graph partitioning problem, i.e. the reduction allows to reduce the

solving time of both integer formulation and its continuous relaxation at least three

times.

73

Table 3.2: Computation results of (QIP) and (RQIP) for random graphs.

n,m (QIP) (QP) (RQIP) (RQP) Cont.Rlx

CPU CPU CPU CPU GAP(%)
22, 120 68.3 0.64 17.8 0.15 15.0
25, 125 156.9 1.1 37.3 0.32 10.4
27, 150 344.5 1.4 107.3 0.55 13.7
30, 200 1944.2 3.64 438.5 1.23 14.8
35, 200 - 9.56 1025.9 3.65 16.2
40, 250 - 20.67 3853.4 6.73 18.1
45, 200 - 28.39 3328.5 1.81 16.7
50, 200 - 45.31 11038.6 2.88 15.2
60, 150 - 327.63 5291.4 4.36 12.3
70, 140 - - 10038.2 5.05 11.8
80, 120 - - 8615.7 9.49 14.1

74

Chapter 4

Extended formulations: improved

compactness and linearization

In the last section of the previous chapter, we have reduced of the number of triangle

inequalities in extended formulations for metric polyhedra from O(n3) to O(nm). In

particular, for sparse graphs with m = O(n), we have then a model of O(n2) variables

and constraints. This is interesting since it allows to consider exact solutions for

instances with thousand nodes, i.e. n ≈ 1000 which is not possible currently with

O(n3) variables or O(n3) constraints.

In this chapter, we will consider some 0/1 non-convex quadratic formulations (the

quadratic constraints are not convex) with O(n2) variables and study methods to

linearize the quadratic constraints without increasing asymptotically the number of

variables. In particular, we will consider two variants of graph partitioning problems:

• the graph partitioning under capacity constraints problem which has been de-

fined and considered in Section 3.3.5,

• the basic graph partitioning problem (as defined in Section 3.3.5) with uncer-

tainty on the knapsack constraint.

75

4.1 Graph partitioning under capacity constraints

(GPCC)

We consider the GPCC problem defined in Section 3.3.5. In particular, in constrast

with the numerical experiments conducted in Section 3.3.5 on random sparse graphs,

in this section, we focus on instances on Kn, the complete graph of order n. In this

case, the reduction of the triangle constraints in Section 3.3.5 does not applied since

O(nm) = O(n3) for Kn. Hence we will recall here the 0/1 quadratic formulation for

GPCC with triangle inequalities defined for T the set of all triples of Vn:

(QIP −GPCC min
∑
ij∈En

tijxij (4.1)

s. t.: xij + xik − xjk ≥ 0 (i, j, k) ∈ T (4.2)

xij) + xjk ≥ xik (i, j, k) ∈ T (4.3)

xik + xjk ≥ xij (i, j, k) ∈ T (4.4)∑
ij∈E

tij −
∑
ij∈E:
i 6=h,j 6=h

tijxihxjh ≤ W h ∈ Vn (4.5)

xe ∈ {0, 1} e ∈ En. (4.6)

This formulation contains O(n2) 0/1 variables, O(n3) triangle inequalities (4.2), (4.3),

(4.4) and n capacity constraints (4.5). The latters are quadratic and a priori non-

convex. In the next section, we consider two methods for the linearization of these

constraints:

• the Fortet’s classical linearization method [26] making use of O(n3) addtional

variables and constraints,

• and our method of linearization by projection in [11] which keeps working only

with original binary variables x and generating inequalties for the linearization

by cutting-plane.

76

4.1.1 More Compact Linearization by Projection

To expose the techniques, we consider a problem in the standard form

min cTx

s. t.: Ax ≤ b,

p∑
i=1

p∑
j=i+1

qkijxixj + dk
T
x ≤ qk, k = 1, . . . ,m,

x ∈ {0, 1}p,

(4.7)

Clearly, QIGPCC can be cast into this form. We consider here two solution tech-

niques for QIGPCC based on reformulating (4.7) as a mixed-integer linear program.

The first one is the classical linearization of (4.7) in an extended space obtained by

introducing a variable yij to represent each product xixj:

min cTx

s. t.: Ax ≤ b,

p∑
i=1

p∑
j=i+1

qkijyij + dk
T
x ≤ qk, k = 1, . . . ,m,

y−ij(xi, xj) ≤ yij ≤ y+
ij(xi, xj), 1 ≤ i < j ≤ p,

(x, y) ∈ Zp × R
p(p−1)

2 ,

(4.8)

where for 1 ≤ i < j ≤ p, y−ij(xi, xj) = max{0, xi+xj−1} and y+
ij(xi, xj) = min{xi, xj}.

A drawback of this extended formulation is the large number of variables it re-

quires. Note that in our graph partitioning problem, for a complete graph with n

vertices the quadratic formulations we study already have O(n2) variables and the

extended formulation O(n3) variables. This can become rapidly unpractical. The

second technique that we detail below consists in projecting the extended formula-

tion back in the space of x-variables. The technique was originally proposed in [?]

but it is particularly simple to perform in our case.

77

Projection Technique

Based on the fact that if xi, xj ∈ {0, 1}, xixj = min{xi, xj} = max{xi + xj − 1, 0},

the left-hand-side of the quadratic constraints in (4.7) can be rewritten as:

φk(x) :=
∑

i=1,...,p
j=i,...,p
qkij<0

qkij min{xi, xj}+
∑

i=1,...,p
j=i,...,p
qkij>0

qkij max{xi + xj − 1, 0}+ dk
T
x. (4.9)

Note that φk(x) is a piecewise linear function with at most 2
p(p−1)

2 pieces; furthermore,

it is convex. The program (4.7) can be reformulated using φk(x) as:

min cTx

s. t.: Ax ≤ b,

φk(x) ≤ qk, k = 1, . . . ,m,

x ∈ {0, 1}p.

(4.10)

Using the convexity of φk(x), (4.10) can be cast as a mixed integer linear program by

expanding each constraint φk(x) ≤ qk into 2
p(p−1)

2 linear constraints (enumerating all

possible values for each minimum and maximum). We denote by P the set of feasible

solutions to the continuous relaxation of (4.10), and by Q the set of feasible solutions

to the continuous relaxations of (4.8).

Next, we show that if we assume some monotonicity properties on the coefficients

of the quadratic form, the set P is the projection onto the x-space of Q. The mono-

tonicity assumption that we make is that for given indices i and j with 1 ≤ i < j ≤ p

all coefficients qkij have the same sign for k = 1, . . . ,m. The projection of Q onto the

x-space is {x ∈ Rp : ∃z ∈ R
p(p−1)

2 , such that (x, z) ∈ Q}, we denote it by projx(Q).

Note that this assumption is in particular verified by all the models we presented for

GPCC.

Theorem 4.1.1 Suppose that for k = 1, . . . ,m, qkij is either non-negative for all

1 ≤ i < j ≤ p or non-positive for all 1 ≤ i < j ≤ p, then P = projx(Q).

78

Of course a difficulty of formulation (4.10) is the potential number of linear con-

straint: m2
p(p−1)

2 . Nevertheless, these constraints are very easy to separate and we

can use cut generation techniques to optimize (4.10). Given a point x∗ ∈ Rn, we can

compute φk(x∗) in a time that is linear in the number of non-zero coefficients qkij, and

deduce from it the most violated linear cut that can be obtained from φk(x) ≤ qk. We

can then embed this separation procedure in a cutting plane framework to optimize

the continuous relaxation of (4.10).

4.1.2 Computational comparisions

We present in this section the comparision of our linearization by projection and the

Fortet’s linearization method. We also include the CPLEX default method for solving

QIGPCC in the comparision. The test set is composed of 48 randomly generated

instances of graph partitionning problem with capacity constraints with a number

of nodes n between 16 and 25. For each values of n, 6 instances are generated

with randomly chosen nodes: 4 instances where the traffics between two nodes are

randomly generated following an uniform distribution, 2 instances where the traffics

between two nodes are randomly generated using the rules devised in [?] (the traffic is

inversly proportional to the distance between two nodes). The former instances tends

to be more difficult in practice in our experiment. The traffic limit of the partitions is

randomly chosen so that the instance is feasible (it always allow for the solution with

each node in a separate partition to be feasible). In Table 4.1, summarized the result

of the experiment. For each value of n we report the number of instance solved by each

algorithm, the average CPU time in seconds (we count 3 hours for unsolved instances)

and the average number of nodes. We excluded from the results the instances that are

not solved by any of the two methods. It can be seen from the table that the default

algorithm in CPLEX is the less competitive, it can solve only 4 instances out of 37.

CPLEX using the extended formulation can solve 34 instances and the branch-and-

cut based on the projection can solve all 37 instances. For the 34 instances that can

be solved both by the classical linearized and the projected formulation the number of

nodes is significantly larger with the projected formulation (20737 on average vs. 6850

79

projection classical CPLEX

n #inst # sol CPU Nodes # sol CPU Nodes # sol CPU Nodes
16 6 6 52 6060 6 243 3178 2 7979 75233
17 6 6 82 6137 6 412 5827 1 9011 244233
18 6 6 117 10993 6 594 4246 1 10800 41646
19 6 6 900 66267 6 4885 29860 2 10800 30388
20 5 5 336 4542 5 1142 2080 0 10800 8404
21 4 4 1388 5047 3 5083 2435 0 10800 27079
22 2 2 6175 128823 1 8683 6584 0 10800 42341
25 2 2 2869 23982 1 9254 1342 0 10800 16921

Table 4.1: Statistics on complete solution by branch-and-cut.

with the classical linnearized formulation) but the CPU time is on average 3.5 times

faster (it is always faster and more than 5 times faster for 16 of the 37 problems).

4.2 Stochastic Basic Graph Partitioning Problem

4.2.1 Binary Second Order Cone Formulation

We consider a variant of the basic graph partitioning problem involving knapsack

constraints with Gaussian random coefficients. Let us restate first the integer formu-

lation IGP for the basic graph partitioning problem described in Section 3.3.5. For

the sake of clarity, in this section, the meaning of the variables xij for ij ∈ En will the

opposite of it’s meaning in Sections 3.3.5 and 4.1. Precisely, in this section,xij = 1 if

i and j belong to the same cluster and xij = 0, otherwise. Hence, IGP in 3.3.5 can

80

be restated equivalently as follows.

(I)

min
∑

(i,j)∈E

tij(1− xij)

s. t.: xij + xik ≤ 1 + xjk, ∀(i, j, k) ∈ T

xij + xjk ≤ 1 + xik, ∀(i, j, k) ∈ T

xik + xjk ≤ 1 + xij, ∀(i, j, k) ∈ T∑
i∈V \{j}

wixij + wj ≤ W ∀j ∈ Vn

xij ∈ {0, 1} (i, j) ∈ En

We consider a Stochastic version of the Basic Graph Partitioning (SBGP) where the

node weights wi for i ∈ Vn (see Section 3.3.5 for defintion)are uncertain and follow

a multivariate Gaussian distribution with given mean and covariance matrix. Give

a probability level ε ∈ [0, 1], the knapsack constraints in (i) can be formulated as

chance constraints of the form P (
∑

v∈Vi wv ≤ W) ≥ 1 − ε for each cluster Vi with

i = 1, . . . , k. This method was introduced in [14] which is one of the standard meth-

ods for handling uncertainty in optimization. Moreover, we assume that the chance

constraints are individual and the probability level ε is less than 0.5. In this case, the

chance constraints can be reformulated as Second Order Cone Constraints(SOCC) as

follows. Let us suppose that the probability distribution of node weights is a multi-

variate Gaussian law with given means (w̄i)1≤i≤n and covariance matrix (σij)1≤i,j≤n.

We therefore reformulate the chance constraints by the SOCCs as follows. For all

clusters i = 1, . . . , n,

n∑
u=1

xuiw̄u + γ

√√√√ n∑
u=1

σuux2
ui + 2

n−1∑
u=1

n∑
v=u+1

σuvxuixvi ≤ W (4.11)

where γ = F−1(1−ε), F denoting the cumulative distribution function of N (0, 1) (e.g

γ ' 1.685 for ε = 0.05). In the proposed model, the various chance constraints on

the various clusters are considered as individual chance constraints.

81

Then the resulting model for SBGP is the following Binary SOCP program :

min
∑

(i,j)∈E

tij(1− xij)

s. t.: xij + xik ≤ 1 + xjk, ∀(i, j, k) ∈ T

xij + xjk ≤ 1 + xik, ∀(i, j, k) ∈ T

xik + xjk ≤ 1 + xij, ∀(i, j, k) ∈ T

n∑
u=1

xuiw̄u + γ

√√√√ n∑
u=1

σuux2
ui + 2

n−1∑
u=1

n∑
v=u+1

σuvxuixvi ≤ W i = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

As the probablity function P (
∑

v∈Vi wv ≤ W) is monotone and nonincreasing, i.e.

it’s opposite is monotone and nondecreasing, our reduction of triangle inequalities

in Section 3.3.5 can be applied and we can express the triangle inequalities for the

triples of T ′ instead for those in T . Hence, we obtain the following binary SOCP for

SBGP, denoted by BSOCP:

BSOCP

min
∑

(i,j)∈E

tij(1− xij)

s. t.: xij + xik ≤ 1 + xjk, ∀(i, j, k) ∈ T ′

xij + xjk ≤ 1 + xik, ∀(i, j, k) ∈ T ′

xik + xjk ≤ 1 + xij, ∀(i, j, k) ∈ T ′

n∑
u=1

xuiw̄u + γ

√√√√ n∑
u=1

σuux2
ui + 2

n−1∑
u=1

n∑
v=u+1

σuvxuixvi ≤ W i = 1, . . . , n

xuu = 1 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

4.2.2 More compact linearization using bilinear terms

The continuous relaxation of BSOCP is convex as the SOCCs are convex. Hence, the

standard approach to solve BSOCP is a branch-and-bound algorithm using its con-

82

tinuous relaxation for lower bound estimation at each node of the branch-and-bound

tree. However, branch-and-bound algorithms may not be efficient since algorithms

for solving continuous SOCP programs should be interior algorithms which prevent

any warm-starting. Thus, we also consider the approach that consists of two steps:

• replacing the SOCCs with their quadratic form, i.e.
−2

n−1∑
u=1

n∑
v=u+1

(w̄uw̄v − γ2σuv)xuixvi +
n∑
u=1

(2Ww̄u + γ2σuu − w̄2
u)xui ≤ W 2

n∑
u=1

xuiw̄u ≤ W

(4.12)

• and linearizing the quadratic constraints.

Note that the convexity is lost in the first step but the linearization in the second

step allows to get it back. For the linearization in the second step, we are faced with

the same problem as for the graph partitioning under capacity constraint in Section

4.1 that is the number of variables will increase from O(n2) to O(n3) if the Fortet’s

classical linearization is used. We do not use either the projection method as for

graph partitioning under capacity constraint in Section 4.1 for the following reasons:

• we want to avoid the use of cutting-plane and focus on instances of SBGP

on sparse graphs with m = O(n). In this case, the number of constraints in

BSCOP is in O(n2) that can be sent directly to solvers without using cutting-

plane. Using the projection method will force the use of cutting-plane.

• Moreover, the coefficients of the quadratic terms are homogenous in sign. Thus,

we do not have te guarantee that the linear programming relaxation given by

the projection method has the same quality of the one given by the Fortet’s

classical method.

In [50], we give a method of linearization based on the one proposed by Sherali et

Smith in [59] that keeps the number of variables and cosntraints within O(n2). The

idea is to use an additional variable λui =
∑n

v=u+1(w̄uw̄v − γ2σuv)xvi for that the

83

quadratic term becomes λuixui which is a bilinear term. The latter is then linearized

by using one more additional zui = λuixui with lower and upper bound constraints.

We can see that the number of additional variables remains in O(n2). The strength

of the linear programming relaxation depend on the one of lower and upper bound

constraints for the variables zui. In [50], we propose two methods to compute upper

bounds: the simple method (SS) which take into account only the binary constraints

on the variables x’s, the improved method (ISS) which in addition taken into account

the SOCC’s constraints.

Table 4.2.2 presents computational results on instances of random series-parallel

graphs (SP) and sparse graphs (RG) comparing four methods to solve BSCOP using

the solver CPLEX: BSOCP is the method that sends directly BSOCP to CPLEX,

CL is the classical linearization, SS is our method with simple bounds, ISS is our

method with improved bound. We can see that ISS the most efficient method which

is at least two times faster than BSOCP.

84

Table 4.2: Comparison of the various solution techniques. Nopt indicates that the exact
optimal solution could not be found within the imposed time limit (7200s). In such cases,
the value of the relative residual gap is shown in parenthesis.

Instances BSOCP CL SS ISS

types n,m CPU GAP CPU GAP CPU GAP CPU GAP
(Nodes) (Nodes) (Nodes) (Nodes)

SP 25, 40 4.3 16.2 12.6 17.0 4.4 18.3 2.2 18.3
(6) (11) (22) (15)

SP 30, 50 30.8 11.4 100.9 13.1 27.5 15.6 15.6 15.6
(17) (142) (366) (254)

SP 35, 60 40.4 10.5 177.3 15.4 43.5 15.9 29.3 15.9
(32) (336) (829) (599)

SP 40, 65 126.3 9.8 513.4 11.3 122.4 12.7 63.8 12.7
(59) (573) (1136) (729)

SP 45, 75 665.2 13.2 1539 14.6 595.0 17.2 336.5 17.2
(88) (612) (1387) (874)

SP 50, 80 862.8 9.1 2238 10.4 978.7 13.3 517.2 13.3
(117) (935) (1843) (1311)

SP 60, 90 3127 10.6 Nopt 12.3 1844 16.5 699.3 16.5
(156) (6.8%) (1033) (2552) (1566)

SP 80, 130 Nopt 12.7 Nopt 14.8 Nopt 17.3 5273 17.3
(2.4%) (187) (7.3%) (1426) (2.8%) (3136) (3629)

(55) (474) (973) (666)
RG 25, 150 442.3 15.0 945.2 16.2 489.1 17.1 226.4 17.1

(72) (553) (1296) (924)
RG 30, 200 Nopt 15.5 Nopt 16.1 7111 17.9 3123 17.9

(0.2%) (127) (4.1%) (1183) (6421) (4318)
RG 40, 120 3612 13.2 Nopt 14.8 3828 16.4 1805 16.4

(196) (3.3%) (974) (3689) (3150)
RG 50, 120 Nopt 14.7 Nopt 15.6 Nopt 17.2 6006 17.2

(2.3%) (188) (8.6%) (2158) (2.6%) (4523) (5298)
RG 60, 100 Nopt 16.2 Nopt 17.2 Nopt 19.4 6419 19.4

(3.8%) (209) (9.9%) (1542) (3.6%) (4175) (4941)

85

86

Conclusions and Perspectives

We have investigated in this thesis on (integer) linear programming formulations for

combinatorial optimization problems involving basic structures of graphs like cycles,

paths, stars, arbres, forests, cuts, multicuts,..etc. Our efforts focused on the following

tasks:

• Using existing natural formulations to derive improved exact or approximation

combinatorial algorithms,

• Describing a natural formulation and showing its complexity

• Analyzing more sharply existing natural formulations to improved exact or ap-

proximation based on linear programming,

• Studying the TDI-ness of existing natural formulations and derive a compact

extended formulation,

• Reducing the size of existing compact extended formulations,

• Designing more compact extended formulation for binary quadratic constraints.

Our research projects for the three next years are the pursuit of the above topics,

especially

• We aim at designning a direct combinatorial algorithm for minimum weight

T -join problem for any T . To the best of our knowledge, finding a minimum T -

join by now need to solve all-pair shortest path and perfect matching problems

in auxillary graphs [23]. Note that there are direct algorithms for two special

87

cases: T = V , i.e. the minimum perfect matching problem and T = ∅, i.e. the

problem of detecting a negative cost cycle (our algorithm in Section 1.2).

• We would like to chracterize classes of graph where a linear size extended for-

mulation of the metric polyhedra is possible. This represents extension of our

result for series-parallel graphs. We focus on sparse graphs such as grid, planar

and nearly planar graphs. Another and alternative research direction is to show

that linear size is impossible for these classes of graphs.

• We are also interested in designing efficient algorithms for binary SCOP pro-

grams. As we have seen in Section 4.1, although the continuous relaxation of

binary SOCP is convexe and strong, it is not efficient when to be used in general

branch-and-bound framework. It may be interesting to design a special-purpose

branch-and-bound algorithm for binary SOCP.

88

Bibliography

[1] A spanning star forest model for the diversity problem in automobile industry,
2005.

[2] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan,
and Amin Saberi. An O(log n/ log log n)-approximation Algorithm for the
Asymmetric Traveling Salesman Problem. In Moses Charikar, editor, SODA,
pages 379–389. SIAM, 2010.

[3] Mourad Baiou and F. Barahona. On the integrality of some facility location
polytopes. SIAM J. Discrete Math., 23(2):665–679, 2009.

[4] Egon Balas. The prize collecting traveling salesman problem. Networks,
19(6):621–636, 1989.

[5] Michel Balinski. Integer Programming: Methods, Uses, Computation. In Michael
Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, edi-
tors, 50 Years of Integer Programming, pages 133–197. Springer, 2010.

[6] F. Barahona. A solvable case of quadratic 0-1 programming. Discrete Applied
Mathematics, 13(1):23–26, 1986.

[7] F. Barahona. On cuts and matchings in planar graphs. Mathematical Program-
ming, 60(1-3):53–68, 1993.

[8] F. Barahona and A. R. Mahjoub. On the cut polytope. Mathematical Program-
ming, 36(2):157–173, 1986.

[9] Petra Bauer. The Circuit Polytope: Facets. Math. Oper. Res., 22(1):110–145,
1997.

[10] Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David P.
Williamson. A note on the prize collecting traveling salesman problem. Math.
Program., 59:413–420, 1993.

[11] Pierre Bonami, Viet Hung Nguyen, Michel Klein, and Michel Minoux. On
the Solution of a Graph Partitioning Problem under Capacity Constraints. In
Ali Ridha Mahjoub, Vangelis Markakis, Ioannis Milis, and Vangelis Th. Paschos,

89

editors, ISCO, volume 7422 of Lecture Notes in Computer Science, pages 285–
296. Springer, 2012.

[12] Endre Boros, Yves Crama, and Peter L. Hammer. Chvátal Cuts and ODD Cycle
Inequalities in Quadratic 0 - 1 Optimization. SIAM J. Discrete Math., 5(2):163–
177, 1992.

[13] Endre Boros and Peter L. Hammer. Cut-Polytopes, Boolean Quadric Poly-
topes and Nonnegative Quadratic Pseudo-Boolean Functions. Math. Oper. Res.,
18(1):245–253, 1993.

[14] A. Charnes and W.W. Cooper. Chance-constrained programming. Management
Science, 6(1):73–79, 1959.

[15] Sunil Chopra. The Graph Partitioning Polytope on Series-Parallel and4-Wheel
Free Graphs. SIAM J. Discrete Math., 7(1):16–31, 1994.

[16] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formu-
lations in combinatorial optimization. Annals OR, 204(1):97–143, 2013.

[17] Denis Cornaz and V. H. Nguyen. Kőnig’s edge-colouring theorem for all graphs.
Oper. Res. Lett., 41(6):592–596, 2013.

[18] Gérard Cornuéjols, George Nemhauser, and Laurence A. Wolsey. The Uncapac-
itated Facility Location Problem . In Pitu Mirchandani and Richard Francis,
editors, Discrete Location Theory, pages 119–172. Wiley, 1990.

[19] Gérard Cornuéjols and Jean-Michel Thizy. Some facets of the simple plant loca-
tion polytope. Math. Program., 23(1):50–74, 1982.

[20] M. Dell’Amico, Francesco Maffioli, and P. Varbrand. On prize-collecting tours
and the asymmetric travelling salesman problem. Int. Trans. in Operational
Research, 2(3):297–308, 1995.

[21] M. Deza and M. Laurent. Applications of cut polyhedra — I. Journal of Com-
putational and Applied Mathematics, 55(2):191–216, 1994.

[22] Michel Deza, Monique Laurent, and Svatopluk Poljak. The cut cone III: On the
role of triangle facets. Graphs and Combinatorics, 9(2-4):135–152, 1993.

[23] Jack Edmonds. The Chinese Postman problem. The Bulletin of the Operatons
Research of America, 13:B–73, 1965.

[24] Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the Chinese
postman. Math. Program., 5(1):88–124, 1973.

[25] Carlos Eduardo Ferreira, Alexander Martin, C. Carvalho de Souza, Robert Weis-
mantel, and Laurence A. Wolsey. The node capacitated graph partitioning prob-
lem: A computational study. Math. Program., 81:229–256, 1998.

90

[26] R. Fortet. L´algebre de Boole et ses applications en recherche operationnelle.
Trabajos de Estadistica, 11(2):111–118, 1960.

[27] Antonio Frangioni, Andrea Lodi, and Giovanni Rinaldi. New approaches for
optimizing over the semimetric polytope. Math. Program., 104(2-3):375–388,
2005.

[28] Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case per-
formance of some algorithms for the asymmetric traveling salesman problem.
Networks, 12(1):23–39, 1982.

[29] Toshihiro Fujito. How to trim a MST: A 2-Approximation algorithm for mini-
mum cost-tree cover. ACM Trans. Algorithms, 8(2):16, 2012.

[30] Harold N. Gabow. An Efficient Reduction Technique for Degree-Constrained
Subgraph and Bidirected Network Flow Problems. In David S. Johnson, Ronald
Fagin, Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch,
Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and Joel I.
Seiferas, editors, STOC, pages 448–456. ACM, 1983.

[31] Harold N. Gabow. Data Structures for Weighted Matching and Nearest Common
Ancestors with Linking. In David S. Johnson, editor, SODA, pages 434–443.
SIAM, 1990.

[32] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W.
H. Freeman, first edition edition, 1979.

[33] Michel X. Goemans and David P. Williamson. Improved Approximation Algo-
rithms for Maximum Cut and Satisfiability Problems Using Semidefinite Pro-
gramming. J. ACM, 42(6):1115–1145, 1995.

[34] Olivier Goldschmidt, Alexandre Laugier, and Eli V. Olinick. SONET/SDH
Ring Assignment with Capacity Constraints. Discrete Applied Mathematics,
129(1):99–128, 2003.

[35] C. Helmberg. A Cutting Plane Algorithm for Large Scale Semidefinite Relax-
ations. pages 223–256, 2004.

[36] Søren Holm and Michael Malmros Sørensen. The optimal graph partitioning
problem. Operations-Research-Spektrum, 15(1):1–8, 1993.

[37] Laurent Hyafil and Ronald L. Rivest. Graph Partitioning and Constructing Op-
timal Decision Trees are Polynomial Complete Problems. Technical Report Rap-
port de Recherche no. 33, IRIA – Laboratoire de Recherche en Informatique et
Automatique, Domaine de Voluceau, Rocquencourt 78150 - Le Chesnay, France,
1973.

91

[38] Volker Kaibel and Kanstantsin Pashkovich. Constructing Extended Formula-
tions from Reflection Relations. In Oktay Günlük and Gerhard J. Woeginger,
editors, IPCO, volume 6655 of Lecture Notes in Computer Science, pages 287–
300. Springer, 2011.

[39] Volker Kaibel, Matthias Peinhardt, and Marc E. Pfetsch. Orbitopal fixing. Dis-
crete Optimization, 8(4):595–610, 2011.

[40] Safia Kedad-Sidhoum and Viet Hung Nguyen. An exact algorithm for Solving
the Ring Star Problem. Optimization, 59(1):125–140, 2010.

[41] Jochen Könemann, Goran Konjevod, Ojas Parekh, and Amitabh Sinha. Im-
proved Approximations for Tour and Tree Covers. Algorithmica, 38(3):441–449,
2003.

[42] Jochen Könemann, Goran Konjevod, Ojas Parekh, and Amitabh Sinha. Im-
proved Approximations for Tour and Tree Covers. Algorithmica, 38(3):441–449,
2003.

[43] Martine Labbé, Gilbert Laporte, Inmaculada Rodŕıguez Mart́ın, and Juan
José Salazar González. The Ring Star Problem: Polyhedral analysis and ex-
act algorithm. Networks, 43(3):177–189, 2004.

[44] Martine Labbé and F. Aykut Özsoy. Size-constrained graph partitioning poly-
topes. Discrete Mathematics, 310(24):3473–3493, 2010.

[45] Frauke Liers, Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. Comput-
ing Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut.
In New Optimization Algorithms in Physics, pages 47–69. Wiley-VCH Verlag,
2005.

[46] Jean François Maurras, Thanh Hai Nguyen, and Viet Hung Nguyen. On the
linear description of the Huffman trees polytope. Discrete Applied Mathematics,
164:225–236, 2014.

[47] Michel Minoux. Discrete Cost Multicommodity Network Optimization Problems
and Exact Solution Methods. Annals OR, 106(1-4):19–46, 2001.

[48] C. Thach Nguyen, Jian Shen, Minmei Hou, Li Sheng, Webb Miller, and Louxin
Zhang. Approximating the spanning star forest problem and its applications to
genomic sequence alignment. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein,
editors, SODA, pages 645–654. SIAM, 2007.

[49] Dang Phuong Nguyen, Michel Minoux, Viet Hung Nguyen, Thanh Hai Nguyen,
and Renaud Sirdey. Improved compact formulations for a wide class of graph
partitioning problems in sparse graphs. Discrete Optimization, pages –, 2016.

92

[50] Dang Phuong Nguyen, Michel Minoux, Viet Hung Nguyen, Thanh Hai Nguyen,
and Renaud Sirdey. Stochastic graph partitioning: quadratic versus SOCP for-
mulations. Optimization Letters, 10(7):1505–1518, 2016.

[51] Viet Hung Nguyen. A direct dual algorithm for detecting negative cost cycles in
undirected graphs. SIAM J. on Computing, submitted.

[52] Viet Hung Nguyen. Approximating the Minimum Tour Cover of a Digraph.
Algorithms, 4(2):75–86, 2011.

[53] Viet Hung Nguyen. A primal-dual approximation algorithm for the Asymmetric
Prize-Collecting TSP. J. Comb. Optim., 25(2):265–278, 2013.

[54] Viet Hung Nguyen, Michel Minoux, and Dang Phuong Nguyen. Reduced-size
formulations for metric and cut polyhedra in sparse graphs. Networks, submitted.

[55] Viet Hung Nguyen, Michel Minoux, and Dang Phuong Nguyen. Improved com-
pact formulations for metric and cut polyhedra. Electronic Notes in Discrete
Mathematics, 52:125–132, 2016.

[56] Viet Hung Nguyen and Thi Thu Thuy Nguyen. Approximating the asymmetric
profitable tour. IJMOR, 4(3):294–301, 2012.

[57] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving Max-Cut to opti-
mality by intersecting semidefinite and polyhedral relaxations. Math. Program.,
121(2):307–335, 2010.

[58] Paul Seymour. Sum of circuits. In J.A. Bondy and U.S.R. Murty, editors, Graph
Theory and Related Topics, pages 341–355. Academic Press, 1979.

[59] Hanif D. Sherali and Jonathan Cole Smith. An improved linearization strategy
for zero-one quadratic programming problems. Optimization Letters, 1(1):33–47,
2007.

[60] Michael M. Sørensen. Facet-defining inequalities for the simple graph partitioning
polytope. Discrete Optimization, 4(2):221–231, 2007.

[61] David P. Williamson. Analysis of the Held-Karp heuristic for the traveling sales-
man problem. Technical report, 1990.

93

