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Foreword

I have been trained as a physicist. This implied a large amount of theoretical studies, at least during the first university years. I have always been surprised by the limited amount of time that I had dedicated to experimental work during this initial training. It's only later, when I started my PhD under Yves Couder's supervision, that I could learn how to design and build experimental set-ups. I realised then that experiments are a necessary counterpart to any physical theory. In some sense, experiments are the only proof of the physical realm of many brilliant ideas introduced by some of the brightest minds.

In a famous quote, Paul Dirac said that a physical law must have mathematical beauty. Though I'm not sure that I can feel what is mathematical beauty, I tend to have a similar view about experiments : a good physics experiment must have some sort of elegance. As experimentalists, we must observe and measure. For physicists dealing with extremely large -or small -scales, this usually requires highly technical apparatus, at the forefront of technological developments. On the other hand, tabletop experiments (typically the ones that I report about in this document) do not. They only require very practical skills combined with the use of the most common materials (in particular scotch tape !). I believe that they must be kept as simple as possible, trying to achieve a direct observation of the desired quantities. The art of such experiments is to generate the desired phenomenon with a limited amount of technology, and then to choose the appropriate apparatus to measure it with a good accuracy.

Introduction 1 Wave control

Waves are very diverse in nature -from electromagnetics to acoustics or (quantum) mechanics-, and their propagation in a free medium is set by a specific wave equation, usually summarized by the dispersion relation that relates angular frequency ω and wave vector k. The dispersion relation is specific to the considered type of wave and also requires the knowledge of the properties of the medium. Despite the apparent variety of physical systems that sustain wave solutions, they all share common features. As noted by R. Feynman, waves are related to oscillating systems, except that wave oscillations appear not only as time-oscillations at one place, but propagate in space as well [1]. This can be easily seen when looking at the most simple wave equation, namely D'Alembert's equation (eq. 1) where the time and space evolution of a physical field ψ are coupled, leading to wave propagation with a constant speed c.

∂ 2 ψ ∂ 2 t = c 2 ∂ 2 ψ ∂ 2 x ( 1 
)
Wave control is a major topic in physics as its applications have a crucial impact in many fields from earth sciences to medical acoustics. We can cite adaptative optics for astrophysics and medical imaging [2], super-focalization of light and waves through diffusive media [3,4], or determination of geological structures by seismical noise correlations [5,6]. Most of the wave manipulation techniques proposed so far are based on spatial control of the material properties, starting from wave refraction and diffraction [7]. Spatial control offers a rich variety of possibilities to achieve wave manipulation, for example using metamaterials (i.e. materials that are usually made of periodic patterns repeating themselves at scales smaller than the wavelength ) in order to obtain effective striking properties such as cloaking or negative index of refraction [8]. Initially introduced in optics [9], metamaterials have been later extended to acoustics [10], gravito-capillary waves at an air-liquid interface [11] and to seismic waves [12].

Eq. 1 reveals the symmetrical roles of space and time during wave propagation in an homogenous and isotropic medium. This observation triggered another approach to achieve wave control taking advantage of the temporal properties of wave propagation. This aspect has been abundantly illustrated by time-reversal experiments, in particular with spin echoes in NMR [13] or in acoustics where numerous applications have been proposed [14]. This time-based approach suggests that manipulating temporal rather than spatial boundaries could be fruitful to achieve wave control. This Introduction has been theoretically proposed by Schrodinger [15] and got recently more attention [16,17]. Recent implementations [18,19] have underscored the potentials of these time-base approaches.

However, in most cases, the complete knowledge of the properties of the complex media is extremely difficult to obtain. Similarly, the design and fabrication of media with given properties is out of range due to size limitations. Furthermore, the scales (frequency domains and wavelengths) at which these waves occur make direct observations almost impossible to achieve. To overcome (some of) these limitations, I developed an experimental approach based on the use of water waves. They present extremely interesting specificities compared to other types of waves, that make them a powerful tool to probe wave control:

• Their typical temporal and spatial scales are suitable for table-top experiments. It is possible to generate water waves with a low frequency (10-100 Hz) and small typical wavelength (1mm -10cm) that are easily accessible.

• These scales allow for the design of temporal or spatial modulations of the medium that can be achieved with standard laboratory equipment.

• These scales also allow for non-invasive space-and time-resolved measurements of the wave field.

Water waves have thus always been an excellent tool to study wave propagation. Hydrodynamic analogs have been demonstrated for many wave phenomena, starting from Aharonov-Bohm effect introduced initially in quantum mechanics [20] and evidenced using a vortex on a liquid bath [21], Anderson localization in one dimension [22], metamaterials [11], event horizon for black holes [23,24] or macroscopic scale wave-particle duality [25]. Recently, Hawking radiation leading to black holes evaporation has been simultaneously evidenced in Bose-Einstein condensates (BEC) and with water waves [26].

A (very) brief introduction to water waves

In this document, we will primarily focus on gravito-capillary waves that are observed at the liquid-air interface. These mechanical waves correspond to the motion of fluid particles in the water column leading to a deformation of the interface. In first approximation, their dispersion relation can be derived using scaling laws, balancing the kinetic energy of the fluid with the energies of the physical mechanisms that tend to restore a flat interface. To this purpose, we consider a uni-dimensional harmonic wave :

ζ(x) = ζ 0 cos (ωt -kx), ( 2 
)
where ζ is the interface elevation, ω the angular frequency and k = 2π/λ the wave number [see fig. 1(a)]. • The kinetic energy depends on the wave velocity ωζ 0 and the total mass M = ρV of the fluid set in motion with ρ the fluid density. An important point is that the volume V goes down to a depth ∼ λ and the wave is not purely uni-dimensional but also implies fluid motion in the bulk. The total kinetic energy by horizontal unit length and by wavelength can be written as

A (very) brief introduction to water waves

E c ∼ ρλ 2 (ωζ 0 ) 2 E c ∼ ρ(ωζ 0 ) 2 k 2
• The gravity potential energy is given by the amount of energy required to elevate a volume V ∼ λζ 0 up to a height ζ 0 . The corresponding energy E g by wavelength and by horizontal unit length writes

E g ∼ ρg(λζ 0 )ζ 0 E g ∼ ρgζ 2 0 k
• The capillary energy is proportional to the surface created by the wave compared to the rest situation of a flat interface [see fig. 1(b)]. In the considered geometry, we obtain it by estimating the excess length

L -λ ∼ ζ 2 0 λ
The corresponding surface energy E cap by wavelength and by horizontal unit length writes

E cap ∼ σkζ 2
Introduction gravity waves capillary waves • Gravity waves, at large scales, whose dispersion relation writes

ω 2 ∼ gk,
• Capillary waves, at small scales, whose dispersion relation writes

ω 2 ∼ σk 3 ρ .
The transition between these two regimes occur when the wavelength compares to the capillary length l c = σ ρg (see fig 2. The general derivation of gravito-capillary waves dispersion relation is obtained starting from Navier-Stokes equation that sets the velocity field in the fluid and applying it at the interface [27,28] :

ω 2 = gk + σ ρ k 3 tanh kH. ( 3 
)
with H the fluid depth. The liquid depth plays an important role and two limiting cases can be considered when comparing the wavenumber k with the liquid depth H. For large enough wavelengths λ = 2π/k, the water wave propagation sets in motion fluid particles down to the bottom. In this shallow water approximation (kH 1), one obtains tanh (kH) ∼ kH. Oppositely, in the deep water approximation (kH 1), one can simplify tanh (kH) 1. A digital camera views a textured back-ground through the air-liquid interface. Waves cause light rays between the background and camera to bend, causing the camera to see a dis-torted pattern. Adapted from [29] (b) Refraction of light rays at the interface. δr is proportional to θ. Adapted from [30].

Measuring water waves

Measuring water waves

To perform our experiments, we typically use a glass tank (80 cm × 40 cm × 20 cm at max) filled with water or silicone oil. Waves are usually generated with a vibration exciter powered with an amplifier and controlled with a waveform generator. We work with frequencies ranging from 2 to 200 Hz, leading to typical wavelengths λ = .1 -10 cm. We keep amplitudes small ζ λ to ensure the waves are in the linear regime.

To measure quantitatively the wave field we use the Free-Surface Synthetic Schlieren optical technique developed by F. Moisy and M. Rabaud [30]. We further improved this technique during the post-doctorate of S. Wildeman who developed a Fast Checkerboard Demodulation (FCD) method [29]. Both methods are based on imaging a pattern located below the bottom of the tank while observing it from the top using a CCD camera located at H 2 m from the fluid surface [Fig. 3(a)]. The sampling frequency of the camera is set to obtain stroboscopic images of the wave propagation. As air and the liquid have different optical indexes, the pattern appears distorted by the waves that propagate at the interfaces [Fig. 3(b)]. In this optical configuration (paraxial configuration, small slopes and small amplitudes), it can be shown that there is a direct proportionality between the apparent distorsion of the pattern and the local slope of the interface [30].

Both methods exploit this simple physical principle, the main difference between them lies in the nature of the pattern that is imaged. FS-SS uses random dot patterns and thus requires the use of a Digital Image Correlation algorithm (for example PIVlab [31]) to compute the displacement field between each recorded image and a reference image with the liquid at rest. FCD uses a periodic pattern followed by a demodulation in (2D) Fourier space which is ∼ 10 -20 times faster than the usual DIC algorithms allowing for real time reconstruction of extended fields.

After integration, we obtain 2D elevation fields, with a vertical resolution down to ζ = 1 µm. An example of a reconstruction obtained through FS-SS method is given on fig. 4.

Manuscript organization

In this document, I will report on my research activity during the past 8 years. This corresponds with my recruitment as a CNRS researcher at PMMH laboratory in Paris. During this period, I mainly focused on the study of water waves with an experimentalist point of view and further extended it to mechanical waves in soft solids. This work explored several directions (temporal control of water waves, introduction of hydro-elastic waves in the laboratory, etc.) and has always been driven by experiments.

This manuscript is divided in three parts. In the first one, I describe some experiments about temporal control of water waves, in particular about Instantaneous Time Mirrors, phase conjugation with water waves using Faraday instability and the recent development of electrical actuation for water waves. Last, I will introduce the research project I'm currently starting: "Artificial ice sheets in the laboratory".

Chapter 1

Temporal control of surface waves 1.1 Introduction

A wave equation describes the coupling between the spatial and temporal evolution of a field ψ, leading to wave propagation with a constant speed c. This clearly appears when looking at the simplest wave equation, namely d'Alembert equation:

∂ 2 ψ ∂ 2 t = c 2 ∂ 2 ψ ∂ 2 x . ( 1.1) 
A striking feature of this equation is the symmetrical roles played by space and time. This property is associated to a reversibility of the equation both in space and time, which is a fundamental characteristic of usual waves. If a given field ψ(x, t) is a solution of equation 1.1, then ψ(-x, t) is also a solution of eq. 1.1. This spatial symmetry corresponds to a spatial mirror. This usually means that the wave can propagate both from left to right or from right to left. Accounting for the symmetrical role of space and time, one also notices that ψ(x, -t) is also solution of equation 1.1. This corresponds to temporal reversibility. This temporal reversibility does not appear naturally: time flows in a given direction and cannot be reversed. Generating these time-reversed waves has been at the center of attention since the seminal work of Gabor [36] with holography for monochromatic waves in optics.

In this chapter, we explore the possibility to achieve temporal control of surface waves, using modulations of the medium. These modulations are provided by vertical vibration, leading to a modulated vertical acceleration. This is the usual set-up for Faraday instability.

This chapter is based on the following articles: 

• V.

Faraday instability as a periodically modulated medium

In 1831, Faraday discovered that submitting a bath to a periodic vertical acceleration resulted in the destabilization of its surface above an acceleration threshold [38]. This parametric instability, known as Faraday instability, is driven by the modulation of the effective gravity. Surface waves appear as standing waves, modulated at half the excitation frequency (Fig 1 .1). This instability has been extensively studied, both experimentally and theoretically, in the steady-state regime [39,40,41].

In this regime, the wave pattern is dominated by the geometry of the bath, the boundaries and menisci acting as wave sources. The observed wave field is thus a combination of some modes of the cavity defined by the shape of the bath [42,43]. The extended literature on the Faraday instability has focused on aspects like the nonlinear hydrodynamic regimes, the influence of the depth or of the viscosity of the liquid [44,45] or the excitation under several frequencies [46,47].

Theoretical approach

Let us consider a liquid container submitted to a sinusoidal vertical vibration with an angular frequency 2Ω F . At low forcing, the interface is at rest in the moving frame. Vertical oscillations are equivalent to a temporal modulation of gravity. The system can be modelled using Navier-Stokes equation linearised around the rest state [41]. Considering ideal fluids without viscosity with a large density difference, in the deep-water regime (where the liquid depth verifies h λ), neglecting viscosity, the equation for the free surface elevation field ζ can be written in the spatial Fourier space in the form of a Mathieu equation: 

∂ 2 ζ(k, t) ∂t 2 + ω 2 0 (k) ζ(k, t) = -γ 0 k cos (2Ω F t) ζ(k, t), (1.2)
where ω is a complex number and p is a periodic function with period π/Ω F . Expanding p(t) as a Fourier series,

p(t) = +∞ n=-∞ c n e 2inΩ F t . (1.4)
and injecting it in eq.1.2, one obtains an infinite set of coupled equations:

∀n ∈ Z, -(ω + 2nΩ F ) 2 + ω 2 0 (k) c n - γ 0 k 2 (c n-1 + c n+1 ) = 0. (1.5)
This equation corresponds to the complex dispersion relation for Faraday waves in the inviscid case.

Complex dispersion relation

Solving numerically this system (truncating it at n = 15) gives a good approximation of the complex dispersion relation. This diagram recalls Brillouin band structures that are obtained for spatial crystals.

There is indeed a formal analogy between Mathieu equation and Hill equation obtained in solid state physics when noticing the alternate roles of time and space in these equations. The diagrams are formally equivalent upon exchanging space and time. In the spatial case, the bands where the imaginary part is non-zero are called gaps. The amplified part is non-physical as energy conservation inside the crystal forbids an exponential growth. In the temporal case, the angular frequency writes inside the bands:

ω = qΩ F + 2nΩ F ± iω i (k), n ∈ Z, (1.6) 
where ω i (k) is the specific solution of the imaginary part of the dispersion relation for a wavenumber k, and q equals 1 or 2 (for odd or even bands). As stated above, the solutions write e iωt p(t). Depending on the signe of ω i (k), the solution can be amplified or damped. In the temporal case, energy does not have to be conserved In black, the real part of ω corresponds to the observed angular frequency and the imaginary part (in red) shows damping or exponnential growth of the mode. Adapted from [35] allowing the exponential growth of the solution. Those bands are not gaps, but amplification bands. They are driving the growth of Faraday instability. These results have been extended to viscous liquids and the predictions for the growth rates have been tested during the PhD of C. d'Hardemare [35]. Overall, this description shows that Faraday instability can be re-visited as a medium whose properties are temporally modulated. We will now look at the consequences of this modulation.

Propagating or stationnary waves ?

In the set of experiments presented in this section, a steel ball (of size comparable to the droplet) was dropped into a silicon oil liquid bath where it immediately sank. It thus disturbed the interface by only one single impact. Figure 1.3 shows the general aspect of the resulting waves at times t = 51 ms and t = 173 ms in the absence (a and b) or in the presence (c and d) of forcing vibration close to the Faraday instability threshold γ F . As shown in (a) and (c) the initial disturbance is the same, but in the absence of forcing the splash generates only a radially propagating wave packet similar to that of a stone thrown in a pond. In the presence of forcing, a similar propagating wave packet is initially generated but, behind this wave packet, the interface does not immediately return to rest. Standing waves with wavelength λ F are observed to continue oscillating and finally to slowly decay (Fig. 1.

d).

The apparition of a stationnary structure after the surface excitation by a propagative wave is intrinsicly surprising. Indeed, the stationnary pattern can be decomposed as the sum of two counter-propagating waves. This means that vertical vibrations are able to generate an extra-wave that propagates backwards. Is it a time reversed wave ? 1.3. Phase-conjugate mirrors for water waves using Faraday Instability 

Phase-conjugate mirrors for water waves using Faraday Instability

For monochromatic waves, time-reversal is equivalent to a phase-conjugation operation. A monochromatic wave ψ m with angular frequency ω can be written as ψ m ( r, t) = Re[A( r)e iωt ] where A( r) is a (complex) function of space. Its complex conjugate is associated to the time-reversed wave :

Re[A( r) * e iωt ] = Re[A( r)e -iωt ] = ψ m ( r, -t) (1.7)
The principle of holography is to record the inteference pattern between a given wave and a reference wave. Sending back the reference wave beam on the recording, it is diffracted by the interference pattern and one obtains back the initial wave. However, sending the time-reversed of the reference beam on the recorded pattern, one obtains the complex conjugate of the intial wave, revealing the intimate link between timereversal and phase-conjugation. This approach has been further extended to fourwave mixing (FWM) [49,50], where the recording of the interference pattern has been replaced by the use of a non-linear optical (NL) crystal and the use of 2 pump waves. The dependence of the Faraday instability threshold on the water depth is used to obtain the analog of the free propagation and propagation in the optical NL crystal, using a shallow-and a deep-water bath, respectively. Adapted from [34].

Analogy between PCM and Faraday instability

In optics, one of the most common ways to achieve phase conjugation is through the backward degenerate FWM configuration, first proposed by Hellwarth in 1977 [49]. A schematic of the configuration is shown in Fig. 1.4. When a monochromatic point source emits a wave into the NL optical crystal, the phase conjugate mirror (PCM) generates a counterpropagating wave which refocuses at the source position. Two counterpropagating, high-intensity plane waves, called pump waves, are sent on the NL medium. Neglecting the vector nature of the fields, their associated electric fields are given by E 1 = A p e iωt-kp.r and E 2 = A p e i(ωt+kp.r) , respectively, where ω is the time angular frequency, k p the wave vector, and A p the wave amplitude. When a signal wave E s = A s e i(ωt-ks.r) with the same angular frequency and a wave vector k s is sent into the NL medium, it generates a counterpropagating idler wave E c = A p e iωt-kc.r with the same angular frequency and a wave vector k c equal to -k s .

Under the usual assumptions that the high-intensity pump waves are not depleted by the (weak) NL interaction and remain constant [START_REF] Born | Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[END_REF], the signal and the idler modes E s/c are coupled, and can be expressed as a set of coupled equations in the presence of the NL polarization:

∆E s/c - n 2 ef f c 2 ∂ 2 E s/c ∂t 2 = - 6ω 2 χ (3) A 2 p c2 e 2iωt E * s/c (1.8)
where n 2 ef f = 1 + 6χ (3) |A p | 2 and χ (3) is the third order susceptibility of the NL medium. The two modes E s and E c are the phase conjugates of each other. Note that the effect of the pump waves is equivalent to a temporal modulation of the refractive index with the doubled frequency [START_REF] Born | Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[END_REF]:

n 2 mod = n 2 ef f + 6ω 2 χ (3) A 2 p e 2iωt
(1.9)

1.3. Phase-conjugate mirrors for water waves using Faraday Instability

These equations are formally analogous to the ones which describe the propagation of water waves on a vibrated bath with a temporal angular frequency ω exc = 2Ω F (see eq. 1.2).

In the general case, solutions of eq. 1.2 are of the form e µt p(t) where µ is a complex number and p is a periodic function with angular frequency 2Ω F . Only the unstable modes Re(µ) > 0 are amplified. In the weak excitation limit (γ 0 k Ω 2 F ), these unstable modes satisfiy the dispersion relation of free surface waves. Let us assume that in such a modulated bath, a signal plane wave ζ s = A s e i(Ω F t-ks.r) of frequency Ω F and of wave vector k s is introduced. Its spatial Fourier transform is ζ s = A s e iΩ F t δ(k -k s ). In the weak excitation limit, a component with angular frequency Ω F is generated [39], so that we can assume that the Fourier transform of the total wave field can be written

ζ = ζ s + ζ c where ζ c = A c e -iΩ F t δ(k -k s )
. A s and A c are slowly varying evvelopes compared with 1/Ω F . Eq. 1.2 can therefore be decomposed into a set of coupled equations for the components at angular frequencies Ω F and -Ω F :

∂ 2 ζ s /c ∂t 2 + ω 2 ζ s /c = -γ 0 ke ±2iΩ F t ζ s /c. (1.10)
These coupled equations are identical to the coupled Eq. 1.8 describing the PCM in optics, the change of sign of the angular frequency being equivalent to a change of sign of the wave vector. Thus, the Faraday instability can be interpreted as a PCM for surface waves. Note that the formal analogy with optical PCMs predicts that the initial and the phase-conjugated waves converge to the same amplitude at large times. This is why the modulation of the medium and thus the Faraday instability are associated with standing waves in the long run. In the next section, we give experimental evidence of this interpretation of the Faraday instability.

Experimental Implementation

Fig. 1.4(b) shows a schematic of the water-wave analogous configuration using the Faraday instability. The role of the counter-propagating vertical optical pumps is played by the vertical vibration of the bath. Since the Faraday threshold strongly depends on the depth of the liquid, we use the bathymetry to split the bath into distinct areas mimicking the wave propagation in free space or in the optical NL crystal. In the shallow region, the excitation acceleration is far from the threshold, hence the vertical vibration has only negligible effects on the wave propagation: it appears similar to that of an unperturbed bath. In the deep-water region, the vertical acceleration is set slightly above the Faraday threshold. In this region, any propagating wave triggers a counter-propagating wave.

For a given acceleration γ 0 above the Faraday instability threshold γ F in the deep end, the instability grows exponentially with a typical time τ F , which depends on the distance to the threshold. We carefully set this value in order to have τ F 10 ∼ s. We produce a signal wave made of 10 periods of a sinusoid at the Faraday frequency. A typical experiment combines the vertical vibration with the production of a signal wave. It is crucial in these experiments that the Faraday instability is triggered in the deep end by the signal wave and not by the fluctuations of the bath or by the boundary-induced ripples. Since all of the experimental devices are fully synchronized, enabling a very high level of reproducibility, each experiment was run twice under the exact same conditions. A first movie was recorded with the vertical vibration of the bath alone, then a second one followed, featuring both the vertical vibration and the signal wave. To obtain a better image of the signal wave and of its associated counter-propagating wave, the first movie was subtracted from the second one. This operation removes the boundary-induced ripples, which superpose exactly on the two movies.

We first study the response of the water-wave PCM to the signal wave from a point source. Fig. 1.5(a) shows a snapshot of the wave field during the emission. The signal wave is propagating outward and enters the deep end of the bath. In Fig. 1.5(b), the source has stopped emitting and the PCM is emitting a phase-conjugated wave in the shallow end, that refocuses at the position of the source and diverges again on the other side of it. In the deep end, the Faraday instability is visible with standing waves at half the excitation frequency, with a shape that is given by the signal wave field and not by the boundaries of the basin. However, the boundaryinduced ripples eventually take over, imposing the wave-field pattern in the deep end, as in standard stationary Faraday experiments. It clearly shows that after the initial step, in which the wave source produces an outward-propagating field, a counterpropagating wave is produced in the deep end, resulting in the presence of symmetric wave fronts. These phase-conjugated waves are sustained even after the source has stopped emitting.

1.3. Phase-conjugate mirrors for water waves using Faraday Instability We now focus on the response of the PCM to various excitation frequencies. The wave profiles of the source are identical to the one described above, except for their frequency. The amplitude of the phase-conjugated wave is measured for each frequency through the light reflected on the surface reaching the camera, at the position of the source. The spectral response of the PCM is normalized by its maximum amplitude value obtained at the Faraday frequency. Fig. 1.5(d) shows the normalized spectral response of the PCM for three different bath accelerations. The shapes of the spectra are very similar with a sharp peak at the Faraday frequency, and the full width of the peak is approximately ∆f 4 Hz. This spectral response is independent of the excitation amplitude γ 0 . The sharp decrease of the PCM response when the source frequency deviates from the Faraday frequency is due to the phase mismatch between the incident wave and the phase-conjugated wave, due to a large dispersion in water.

The ability of PCMs to generate phase-conjugated waves is independent of their shape because there are no phase-matching conditions involved. Unlike standard mirrors, they can assume any shape. We have tested this unique property in an experiment in which the mirror is shaped like France, as shown in Fig. 1.6. The shallow end of the bath is located within the borders of the country. It is surrounded by a deeper bath acting as a PCM for water waves when excited parametrically.

Chapter 1. Temporal control of surface waves 

Discussion

PCMs based on the Faraday instability offer a unique way to see in real time the dynamics of the phase-conjugated generation directly inside the PCM material. This generation appears very efficient compared with other PCMs, like in optics for instance. It is the result of a temporal modulation of the speed velocity at the Faraday frequency. In the case of water waves, the wave-speed modulation can reach values on the order of the speed without modulation c 0 . With acceleration amplitudes satisfying γ 0 ω 2 exc /k, the wave speed satisfies c(t) ≈ c 0 + (γ 0 /2ω exc ) cos ω exc t. Hence, in this experiment the wave-speed modulation is substantial. This is in sharp contrast with the typical values for optical PCMs, for which the wave modulation is very small, even for very large amplitudes of the pump beams (pulsed beams must be used to increase the efficiency of these types of PCMs). Indeed, typical values of the third-order susceptibility are in the range χ (3) 

≈ 10 -24 m 2 /V 2 .
The phase-conjugated mode is generated immediately as the source wave enters the deep end of the bath. Each spatial wave front generates periodically at the Faraday frequency a copropagating wave, which adds up coherently with the incident wave, and a counterpropagating wave, which refocuses on the source. As the wave propagates into the deep end, the produced waves add up constructively from each propagating wave front, increasing the forward-propagating mode and the phaseconjugated mode. Following Eq. 1.10, the amplitude of the phase-conjugated mode increases with the acceleration modulation. The right-hand side of the equation represents the sources which produce this mode. There is no discontinuity in the phenomenon due to the Faraday instability threshold. However, above the Faraday threshold, ripples produced by the boundaries of the deep end of the bath will eventually get amplified.

Instantaneous time mirrors

PCM are implementing time-reversal for monochromatic waves. In order to timereverse a polychromatic wave, another principle has been developed in acoustics [START_REF] Fink | [END_REF]53,54], namely time reversal mirrors -TRM in the following. This technique uses a network of acoustic transducers that surrounds a given volume. During an initial phase, an acoustic wavefield is recorded by each transducer, digitalized and stored in an external memory. This recording is then played backwards simultaneously by the transducers network. When the source is located in the far-field, the generated wave is then a good approximation of the time-reversed wave [14]. This Adapted from [START_REF] Bacot | [END_REF].

technique has initially been developed to focus ultrasonic waves [START_REF] Prada | Retournement temporel des ondes ultrasonores-Application à la focalisation[END_REF] and extended in various contexts [START_REF] Derode | La cohérence des ondes ultrasonores en milieu hétérogène[END_REF][START_REF] Tourin | Diffusion multiple et renversement du temps des ondes ultrasonores[END_REF][START_REF] Roux | Application des miroirs acoustiques a retournement temporel a la focalisation dans un guide d'onde et a la caracterisation d'ecoulements hydrodynamiques[END_REF][START_REF] Rosny | Milieux réverbérants et réversibilité[END_REF]. TRMs have a large bandwidth, primarily limited by the transducers. Its principle has be extended to other type of waves, such as elastic waves [START_REF] Draeger | [END_REF], electromagnetism [START_REF] Lerosey | Retournement temporel d'ondes électromagnétiques et application à la télécommunication en milieux complexes[END_REF] or even water waves [START_REF] Przadka | [END_REF]63]. This excludes optics (because of the lack of fast receptors able to directly record the wave amplitude). Therefore, techniques using time-modulated spatial structures have been proposed and implemented [64,65]. Despite their intrinsic limitations (they cannot entirely time-reverse the initial signal, they only generate a time reversed wave packet around a carrying frequency), they reveal some of the possibilities offered by the temporal control of the medium properties. This has been recently at the center of attention [66,67,68] and triggered important developments around the concepts of time boundaries [69,70].

Some theoretical considerations

In the nineteenth century, Loschmidt challenged Boltzmann's attempt to describe irreversible macroscopic processes with reversible microscopic equations [71]. He imagined a daemon capable of instantaneously reversing all velocities of all particles in a gas. Such an operation can be ascribed to a change in initial conditions resulting in a time-reversed motion of all particles that would return to their initial positions.

The extreme sensitivity to initial conditions that lies at the heart of chaotic phenomena in nonlinear dynamics renders any such particulate scheme impossible. Waves are more amenable, because they can be described in many situations by a linear operator, and any error in initial conditions will not suffer from chaotic behaviour. The wave analogue of this Loschmidt daemon is related to the Cauchy theorem. The latter states that the future evolution of any wave field ψ( r, t) at position r and time t can be inferred from the knowledge of the set of initial conditions (ψ, ∂ψ/∂t) tm , with the field amplitude ψ( r, t m ) and time derivative ∂ψ/∂t( r, t m ) at a given time t m , in the whole space.

The analogue of the particle velocity reversal is to take the new set of initial conditions (ψ, -∂ψ/∂t) tm that causes a time-reversed wave whose time dependence is inverted. However, because of the wave superposition principle, the emergence of this time-reversed wave is not limited to this choice of initial conditions. For instance, the new initial condition (ψ, 0) tm can be split into 1/2 (ψ, ∂ψ/∂t) tm associated with a forward wave and 1/2 (ψ, -∂ψ/∂t) tm associated with a backward time-reversed wave. This particular choice erases the arrow of time by starting from a frozen picture of the wave field at time t m with no favoured direction of propagation. Similarly, a new set of initial conditions (0, ∂ψ/∂t) tm in which the wave field is null would also comprise a backward-propagating wave with a negative sign. More generally, the superposition of backward-and forward-propagating waves results from the decoupling of the wave field from its time derivative at a given time.

Because both are bound together by the wave celerity, its disruption can lead to such decoupling. This offers a straightforward way to experimentally implement an ITM (fig. 1.7).

Experimental implementation

Because the surface wave celerity depends on the effective gravity, the disruption of the celerity is achieved by applying a vertical jolt to the whole liquid bath. Figure 1.8(a) shows the experimental set-up. A bath of water is placed on a shaker to control its vertical motion. A plastic tip fixed on another shaker is used to hit the liquid surface and generate a point source of waves at time t 0 = 0. Figure 1.8(b) shows a typical time sequence of the bath motion used to generate the surface waves and implement the ITM. An image sequence of the wave propagation on the bath taken from above is shown in Fig. 1.8(c). A circular wavepacket centred on the impact point is emitted as the tip hits the surface. The average wave propagation velocity is of the order of magnitude of 10 cm s -1 . After time t ITM = 60 ms, a vertical downward jolt is applied to the bath. The bath acceleration reaches γ m = 21 g in approximately 2 ms. The propagation of the initial outward-propagating wave is not qualitatively affected by this disruption. However, at the time of the disruption, we observe the appearance of a backward-converging circular wavepacket that diverges again upon passing through the original impact point source. shape of the backward wavepacket is very similar to that of the initial wavepacket. Both profiles almost superimpose in shape and position when measured at symmetrical times ∆t from the ITM. A phase shift of approximately π/2 is observed between the forward and backward wavepackets at the time of the ITM. In contrast with standard reflection, the backward wavepacket is not spatially reversed. The time-reversed nature of the backward wave allows the wavepacket to compensate for dispersion. The fast short wavelengths will catch up with the slow long wavelengths, thus refocusing the wavepacket. Its amplitude depends linearly on the vertical acceleration of the bath [Fig. 1.9(b)]. The ITM is a broadband time-reversal mirror. The time-reversed spectrum is independent of the jolt amplitude and is nearly identical to that of the initial wave [Fig. 1.9(c)]. Note that, after the ITM, the high frequencies of the time-reversed waves are damped during the refocusing process, due to the viscosity of water [see Fig. 1.9(a)].

ITMs for water waves

Huygens-Fresnel secondary sources

We now focus on the underlying principles of ITMs. ITMs are implemented through a wave celerity disruption induced by the gravity jolt. For the sake of generality, let us consider waves governed by d'Alembert's wave equation. We introduce a time-dependent phase velocity c(t) = c 0 /n(t) where n(t) is a time-dependent index and c 0 is the phase velocity in the absence of the ITM. The disruption undergone by the medium in an ITM can be modelled by a δ-Dirac function such that c(t) 2 = c 2 0 (1+αδ(t-t ITM )). The wave equation can be written as a nonhomogeneous equation in which an equivalent source term s( r, t) is induced by the velocity disruption:

∆ψ( r, t) - 1 c 2 0 ∂ 2 ψ ∂t 2 ( r, t) = s( r, t) (1.11) with s( r, t) = -(α/c 2 0 )δ((t -t ITM )(∂ 2 ψ/∂t 2 )( r, t).
The source term is localized in time but delocalized in space. It corresponds to an instantaneous source that is proportional to the second time derivative of the wave field at the instant t ITM of the disruption. This description with a source term allows us to revisit the Huygens-Fresnel theory. As all sources are isotropic, the wavefronts are propagating both in the initial direction and the counter-propagating one. Those two fields are time-reversed. As the spatial distribution of secondary sources is given by the initial field, the timereversed field is associated with the derivative of the initial wave field. In the case of relatively narrow band wavepackets, this leads respectively to an advanced or a retarded π/2 phase shift on the TR wave field. Note that this derivation or antiderivation has no importance for TR applications and does not affect the refocusing. Those results can naturally be extended to more complex cases. Adapted from [34].

to its initial shape at the time of emission. The refocussing back to its initial shape indicates the time-reversal nature of the process.

Perspectives

Temporal control of water waves appears to be a very fruitful approach as one can draw links between fundamental optics phenomena and fluid mechanics through a simple re-formulation of Faraday instability formalism. Experiments also reveal that water waves are an excellent tool to implement such concepts thanks to their large scale and ease of use. Nevertheless the technique that has been presented so far, based on vertical vibrations of the liquid container appears limited: it is uniform in space, very sensitive to edge effects (meniscii emit waves under shaking) and one needs to combine liquid viscosity with accurate control of the bathymetry to build PCMs. In order to circumvent these limitations, we designed a new excitation mechanism, based on electric actuation.

An electrode is located above the water interface [Fig. 1.11(a)]. The presence of an uniform external electric field modifies the standard gravity-capillary waves dispersion relation, ω 0 (k), to [72,73,74]

ω(k) 2 = ω 0 (k) 2 -E 2 k 2 /[ρ tanh(kD)],
(1.12)

where denotes the electric permittivity of air, ρ is the liquid density, E is the electric field strength at the water surface and D is the electrode to free-surface distance. Here the water is treated as a perfect conductor. This is the standard This validation of the electrical actuation technique opens interesting perspective that we are now probing, such a temporal Anderson localisation or wave propagation in media with arbitrarily (sub-or supervelocity) moving refractive index profiles.

Chapter 2

Hydro-elastic waves 2.1 Introduction

Despite the many examples of experiments using water waves to probe wave physics, their implementation at a laboratory scale faces important challenges. The main one is the strong damping due to surface tension effects (for example Marangoni waves or surface contamination) or viscous dissipation, in particular when the liquid depth is of the order (or smaller than) the wavelength. These effects restrict experimental possibility and can be circumvented by the use of specific fluids (e.g. mercury or fluorinated fluids). An alternative route to avoid these difficulties is to use a model system where the liquid interface is covered by a thin elastic sheet, leading to the observation of hydro-elastic waves (see fig. 2

.1).

These waves were initially introduced to describe wave propagation inside ice sheets that cover the ocean in polar regions, as the ice sheet behaves as a thin elastic layer on top of the ocean [77,78,79,80]. Many theoretical studies have been performed [78,81,82] as well as recent large scale experimental studies [83,84]. These studies had practical consequences as they could be adapted to an important application: the prediction of the behavior of Very Large Floating Structures, for example floating airports proposed in Japan or off-shore platforms [85]. Another example of hydro-elastic waves are the flexural waves that are observed in granular rafts [86] where elasticity of the surface layer is given by the wetting properties of the grains and their diameter [87,88]. It's only recently that small scale experiments were performed in controlled laboratory conditions [89,90].

Here, we propose a systematic laboratory approach of the physics of hydro-elastic waves. Before describing our experimental results, we will recall the underlying physical mechanisms.

This chapter is based on the following articles: 

Physics of hydro-elastic waves.

The description of hydro-elastic waves is very similar to the one of gravito-capillary waves, replacing the liquid-air interface by an elastic sheet with thickness e, Young's modulus E and Poisson ration ν. The main difference then lies in the boundary condition that applies at the interface : surface tension disappears and two extra elastic energies must be considered to balance the kinetic energy by horizontal unit length and by wavelength E c ∼ ρ(ωζ 0 ) 2 k 2 :

• Strain energy, related to elongation (or compression) of the elastic sheet. This energy is proportional to the mechanical tension T in the sheet. The elongation energy (by unit length and by wavelength) E T can be written as

E T ∼ T k.ζ 2 0 (2.1)
• The bending energy implied by the curvature of the elastic sheet by the wave of amplitude ζ 0 over a distance λ. It is equal to the product of the flexural modulus

D = Ee 3 12 (1 -ν 2 ) (2.2)
by the local curvature squared. In first approximation, the bending energy by unit length and by wavelength λ writes:

E B ∼ Dk 3 ζ 2 0 . (2.3)
The gravity potential energy is still given by E g ∼ ρgζ 2 0 k .

We thus identify three possible regimes for hydro-elastic waves (fig 2 .2) : a gravity regime (similar to the one obtained for gravito-capillary waves), a tension regime, formally identical to the capillary regime, but with surface tension σ that is replaced by mechanical tension T and a flexural regime, where the bending energy balances the fluid kinetic energy. In this limit, the wave dispersion equation satisfies

ω 2 = D ρ k 5 (2.4) 
The general derivation of hydro-elastic waves needs to couple the Navier-Stockes equation for the fluid with the Föppl-Von Kàrmàn equation for the elastic plate deformation [81]. This calculation is beyond the scope of this manuscript, and a good description of the various limits can be found in L. Domino's PhD Thesis [START_REF] Domino | Contrôle et manipulation d'ondes hydroélastiques[END_REF].

Assuming that the sheet thickness is small with respect to the wavelength e λ and in turn that ζ 0 e, one obtains the following dispersion relation for hydro-elastic waves:

ω 2 = gk + T ρ k 3 + D ρ k 5 tanh kH, ( 2.5) 
that simplifies, in the deep water approximation (kH 1) into :

ω 2 = gk + T ρ k 3 + D ρ k 5 . (2.6)
Eq. 2.6 indeed presents three distinct regimes (gravity waves, tension waves and flexural waves) depending on the material properties and the wave pulsation ω. So far, very few experiments at the laboratory scale highlighted the flexural regime using wether thin elastic polymer sheets [89,90] or granular rafts [86].

Chapter 2. Hydro-elastic waves

Hydro-elastic waves at the laboratory scale

In order to probe the physics of hydro-elastic waves, we use a glass tank (80 cm × 40 cm × 20 cm) filled with a depth h 0 = 16.5 cm of water. We cover its surface with a 75 cm × 35 cm wide elastic sheet of thickness e = 20 -800 µm made of an optically transparent silicone rubber sheet with Young's modulus E = 1.47 ± 0.09 MPa. This elastic film floats freely at the surface of water so that the mechanical tension T inside reduces to the water surface tension T = σ = 72 mN.m -1 . The waves are generated with a vibration exciter powered with an amplifier controlled with a waveform generator. We work with frequencies ranging from 2 to 200 Hz and with amplitudes ζ λ to ensure the waves are in the linear regime.

We first check the validity of the theoretical dispersion relation predicted by eq.

(2.6). We plot in figure 2.3 the forcing frequency f against the measured wavelength λ on a logarithmic scale. Our measurements show that the wavelength decreases with the forcing frequency f , typically ranging from λ = 20 cm to λ = 0.5 cm. For low frequencies (f < 5 Hz) we observe a slope of -1/2 revealing that the gravity term ω 2 = gk in eq. (2.6) is dominating. For larger frequencies, two regimes can be observed. For thin elastic sheets (e = 20 µm) we observe a slope of -3/2 which corresponds to the tension term T /ρ k 3 = σ/ρ k 3 . This experimental dispersion relation is in perfect agreement with theory. The transition between the gravity and the tension regime occurs for λ = T /ρg = 2.7 10 -3 m. This part of the dispersion relation corresponds to standard water waves, confirming that tension in the film is solely due to the liquid surface tension. For thicker films the behavior is markedly different. The measured slope is -5/2 showing that flexural term D/ρ k 5 is leading. This is confirmed by the theoretical dispersion relation that is in excellent agreement with our experimental data. This flexural regime is reached when k ≥ 4 ρg/D and k ≥ T /D. In the following we will only consider waves in the flexural regime.

Effective index and broadband refraction -

In this regime the dispersion relation (eq. 2.6) in the deep water approximation can be simplified as

ω 2 D ρ k 5 .
(2.7)

The phase velocity v ϕ = ω k = D/ρ k 3/2 then only depends on the film properties and the wavenumber k. From this phase velocity we can define a relative effective refractive index n(D, k) ∝ 1 vϕ . n is spatially tunable by varying locally the value of the flexural coefficient D. This can be achieved by changing locally the Young's modulus E or the film thickness e. For two domains covered with elastic films with different thicknesses e 1 and e 2 and same Young's modulus E, the ratio of their refractive indices n 1 and n 2 writes

n 1 n 2 = v ϕ2 v ϕ1 = k 2 k 1 = D 2 D 1 1/5 = e 2 e 1 3/5
.

(2.8) Thicker regions (resp. thinner) thus correspond to smaller (resp. higher) refractive indices. In the hydroelastic regime the index ratio is given by the local values of the film thickness e and does not depend on k nor ω.

We perform experiments to test eq. 2.8 through Snell-Descartes law using the refraction of a plane wave at an interface between two media. The interface is obtained using two thicknesses (e 1 = 300 µm and e 2 = 800 µm, respectively) [Fig. 2.4(a)], and the frequency f ranges from 50-200 Hz. The incident (resp. transmitted) waves have a wave vector k i (resp. k t ) that forms an angle θ i (resp. θ t ) with the interface normal [Fig. 2.4b]. We measure these angles by means of spatial Fourier transforms for varying incidence angle, ranging from 0 • to 40 • . We plot in figure 2.4(b) sin θ t against sin θ i for three different frequencies. The result is linear which means that hydroelastic waves obey the Snell-Descartes law of refraction: n 1 sin θ i = n 2 sin θ t . This result based on translation invariance holds whatever the frequency. The expected slope given by the refractive index ratio n 1 n 2 1.81 is in excellent agreement with our experimental data.

We also study the situation where the angle of incidence is larger than the critical angle, here arcsin(1/1.8) 33.7 • . Such a wave field is presented in figure 2.4(c) where θ i 40 • . As expected, the wave undergoes a Total Internal Reflection (TIR) with the presence of an evanescent wave in medium 2. No energy is transmitted through the interface but this evanescent wave can be observed: the height of the wave decreases rapidly away from the interface. We can directly measure the amplitude of these waves on our fields, and we represent the profile obtained in the inset of figure 2.4(d). The amplitude of these waves decreases exponentially, with a typical penetration length δ (2.1 ± 0.5) 10 -1 × λ t . This penetration length is in good agreement with the expected value of

δ th = 1/κ = 2.6 10 -1 × λ t obtained with κ = ω/c (n 1 sin θ i ) 2 -n 2 2 .

Lenses and focalisation

Fine sub-wavelength wave control can be achieved easily by designing engineered shapes to focus and guide waves. Here, as an example, we design 2D lenses by cutting out symmetric circular arcs in the silicon polymer. The obtained shapes [figure 2.5(b), inset] are defined by their radius of curvature R C . We then deposit them on the first membrane to locally increase the thickness. Note that this shape should create a convergent lens as thicker regions have a lower refractive index n 2 < n 1 . We excite the system using a point source located on the left of the lens.

[Fig. 2.5(a)] presents a typical wave field for a lens with R C = 2.5 cm excited with f = 75 Hz and shows a focal spot on the right side of the lens. Using the location of this focal spot and that of the source we define the focal length L f as 1/L f = 1/s + 1/s , where s (resp. s ) is the distance between the lens and the source (resp. the image). [Fig. 2.5(b)] shows the measured L f as a function of R C for 5 different frequencies ranging from 50 Hz to 150 Hz. We observe that L f increases linearly with R C while being independent of f as the refractive index ratio only depends on the film thickness ratio in the flexural regime. Here the typical size L of the lens compares with λ and the paraxial approximation is clearly not satisfied. This makes ray optics a poor candidate to model our results. However, its prediction

L f = R C 2(1-n2 n 1
) agrees surprisingly well with our experimental data [Fig. 2.5(b)]. We now characterize the profile of the wave field at the focus. [Fig. 2.5(c)] presents the lateral normalized intensity profile of the focal spot obtained for a lens with a curvature radius of R C = 13.7 cm at f = 50 Hz. The profile exhibits a central peak with a Full Width at Half Maximum (FWHM) of 0.63λ, and 2 side lobes. The presence of these secondary peaks is the signature of diffraction: as both the typical width of the focal spot and the typical size of the lens L compare with λ, wave propagation should be described at the wavelength scale.

Sub-wavelength focusing

To further show the versatility of hydroelastic wave to control waves at the subwavelength scale, we use a geometry known in optics as "nanojet". They were first introduced in optics using small cylindrical (or spherical) structures (L ∼ 10λ) with a strong index contrast [91,92,93]. These structures are traditionally manufactured or simulated using a dielectric sphere that has a higher refractive index than the surrounding medium, like glass, water or latex. The focal spot is created by the combination of evanescent and propagating waves in the shadow-side of the sphere.

We transpose this object to 2D hydroelastic waves by creating a thinner circular area with diameter d in the elastic sheet [Fig. 2.6(a)]. As for classical microspheres in optics, the refractive index n 2 in this region is higher than n 1 in the outside medium. [Fig. 2.6(a)] shows the measured intensity field inside and outside the disk for an incident wave with f = 150 Hz and d = 32 mm. The wave propagates from the left to the right, and the thinner region is denoted with the dark dashed circle. We observe that the circular patch distorts the incoming plane wave and that a strong focal spot emerges out of the circular area. We show in Fig. 2.6(b) the lateral intensity profile of this focal spot that presents a very narrow peak as well as small side lobes on both sides. The FWHM of this focal spot is 0.33λ, which is smaller than the classical diffraction limit at 0.5λ, confirming that sub-wavelength focusing can be achieved using this simple design at the wavelength scale.

Conclusion

We have achieved control of hydroelastic waves propagation in a model experiment. We first confirmed that the waves can be accurately described by the dispersion relation (Eq. 2.6) at the laboratory scale, and that the elastic sheet's properties have a crucial incidence on the wave propagation in the flexural waves regime. Indeed, the flexion modulus D can be tuned spatially by locally modifying the elastic film's thickness. We build a local index contrast that only depends on the film's flexion modulus D and is therefore dispersion free despite the dispersive nature of the waves. Using this we first show that Fermat principle applies for hydroelastic waves, as refraction of an incident plane wave on a straigth interface obeys Snell-Descartes law independently of the incident wave frequency. With this feature we implement lenses with tunable focalisation properties. Nevertheless, the index variations occur on a typical scale that compares with the hydroelastic wavelength leading to subtle wave effects. This is particularly revealed by the construction of a macroscopic equivalent of nanojets. These simple circular structures allow to overcome the diffraction limit leading to a focal spot as small as λ/3. 

Hydro-elastic waves at the IFREMER facility

Hydro-elastic waves at the IFREMER facility

After L. Domino's PhD thesis, we started a technological maturation program in order to test the feasibility of controling oceanic waves using hydro-elastic structures. This led us to initiate a scientific collaboration with A. Tassin (IFREMER, Brest) during the post-doc of V. Cognet. The goal was to perform experiments on the deep water wave tank of IFREMER in Plouzané and numerical simulations so that we could obtain a tool to predict the response of hydro-elastic structures at the metric scale. Here, I will only report about the experimental results.

The main challenge of these experimental runs was to scale-up all elements to obtain an hydro-elastic response. The wave tank is 50 meters long, 12.5 meters wide, and 9.8 meters deep [see Fig. 2.7(a)]. On the left, the wave generator can reach wave periods between 0.8 second and 3.5 seconds, with amplitude from 2 centimeters up to 55 centimeters, in regular or irregular swell. On the opposite edge is located a parabolic damping beach. The tank is filled with seawater, with density ρ W = 1025 kg.m -3 . x-direction, and moored on its front to a mobile bridge, and on its back to the forecourt of the wave tank.

Experiments at metric scale

Each plate is made of a composite material, with foam inside and fiber-reinforced resin on the outter parts, with flexural modulus D 3000 N.m. In order to avoid submerging, each plate is surrounded on its edges by a wall of foam which is 20 centimeters high and 5 centimeters thick. Three types of measurements were made during the experiments. First, the elevation of the plate was recorded by setting 173 markers on the structure, as shown by black full circles on figure 2.7(c). The markers reflect in the infra red. Eight cameras Qualisys, located on both sides of the wave tank, emit infra red light and track the motion of each marker. Second, the elevation of the water surface is recorded locally by several wave probes in front of and behind of the structure, Third, sensors are located in each mooring line to measure the force applied by the swell on the structure along the x axis. Altogether, the experiments in the IFREMER facility show that it is possible to scale-up the phenomena observed in our laboratory. In this regard, hydro-elastic structures could be used to focus water waves on an energy conversion device (to produce electricity out of water waves) or, oppositely, protect a specific area from oceanic swells. These potential applications are now evaluated in order to continue this maturation process.

Experimental results

Artificial resonant crystals for hydroelastic waves

Metamaterials, where the medium's properties present a spatial periodicity, present striking properties such as negative refractive index [94], superlensing [95,96] or cloaking [8]. Some of these strategies have already been applied to water waves [11,21,97,98,99,100,101,102,103], but they face practical constraints that limit both large scale applications and small scale laboratory studies. Here, we investigate experimentally concepts primarily inspired by solid state physics [START_REF] Joannopoulos | Photonic crystals: molding the flow of light[END_REF] and extended later to optics and acoustics [START_REF] Kaina | [END_REF] where a periodic modulation of the medium's properties prohibits the propagation in certain frequency ranges, called bandgaps. When the modulation is provided by scaterrers, one obtains Bragg gaps [fig. 2.9 (d)] whose frequency is selected by the pitch a of the lattice. On the other hand, a random lattice of resonant scatterers exhibits a hybridisation band gap centered on the resonance frequency f 0 , with a width set by the quality factor Q of the resonators [fig. 2.9 (e)].

Here, we obtain a medium's modulation by creating a regular lattice of resonant scaterrers in the membrane, namely circular holes, as shown in fig. 2.9 (a-b). We first study the behavior of a single resonator and then put hundreds of these on a regular square lattice. We measure very accurately the band structure of the lattice and we show the coexistence of different types of bandgaps, namely Bragg bandgaps and hybridisation bandgaps, due to scattering in the structure and local resonances, respectively (fig. 2.9 (f)). We then predict these dispersion relations with a theoretical approach combining Fano resonance and multiple scattering.

Resonators for hydro-elastic waves

We structure the elastic sheet by punching circular holes (from one to up to several hundreds). To understand how waves propagate in the artificial medium we have created, we first investigate the frequency response of a single perforation. We punch one circular hole with diameter 1 cm in the middle of a homogeneous elastic sheet and send plane waves towards it, as schematically shown in figure 2.10(a). We send plane waves between 5 Hz and 60 Hz on the perforation, and measure the surface elevation inside the perforation as well as around it, on a distance of about 5 cm. Here the size of the gap, denoted in red, depends on the quality factor Q of the resonator, while its central frequency is set by the resonance frequency f 0 . (f) Dispersion relation for hydroelastic waves with resonators distributed on a regular lattice. It exhibits both Bragg and hybridisation band gaps, with frequencies respectively selected by lattice pitch a and the resonance frequency f 0 . Adapted from [76].

An example of measured height field is shown in figure 2.10(b), where we denote the edge of the cavity with a red circle. We see that the amplitude inside the perforation is larger than in the sheet, which is expected for a free surface. We then average the amplitude over the whole cavity surface to analyze the frequency response and identify possible resonances. We report in figure 2.10(c) (top panel) the height fields measured experimentally for five frequencies corresponding to peaks in the averaged frequency response of the hole. We compare them to Bessel functions, the expected eigenmodes for a circular cavity with rigid walls and Dirichlet boundary conditions. We represent these Bessel functions in the lower panel of figure 2.10(c). We observe an excellent agreement with the measured height field, suggesting that the perforations behave as circular resonant cavities indeed. However, we denote a discrepancy between some of the predicted and the measured frequencies. This might be due to the fact that the assumption of rigid walls and of fixed boundary conditions is clearly not met here: the outside membrane is deformed by the incoming wave, and the contact line pins at different heights at the edge of the hole. Despite this disparity, the perforations in the membrane behave as resonators with eigenfrequencies tuned by their diameter.

Square lattice of resonators

We now study wave propagation in a material made of 10 × 20 perforations organised on a square lattice with spacing a as shown schematically in figure 2.11(a). We excite this artificial crystal with quasi plane waves between 5 Hz and 140 Hz, and record the height field for each frequency. We show in figure 2.11(b) a typical wave field measured at 60 Hz for a lattice made of holes of diameter 4 mm and with a lattice constant a = 1 cm. At this frequency, we observe the coexistence of two wavelengths in the crystal : one short wavelength (about 1.2 cm), equal to the one in the homogeneous elastic sheet and which propagates from left to right, and one larger wavelength (about 4.2 cm), that propagates from right to left. To capture the behavior of the perforated lattice on the entire frequency range we tested, we measured the amplitude of the waves averaged over a large area in the lattice (avoiding the edges). In other words, we are computing the effective density of states of our system. We plot in figure 2.11(c) this average amplitude against the frequency. We see several local minima in the curve, meaning that for some frequencies (denoted by arrows in figure 2.11(c)), the wave amplitude in the lattice decreases significantly.

To better understand the origin of these gaps and of the counter propagating wave, we perform 2D Fourier transforms at each frequency to isolate the spatial spectra of the waves propagating in the lattice. We only keep wavenumbers in the direction of propagation of the incoming wave1 , we can then build a map of the experimental dispersion relation by 'stacking' these spatial spectra for all frequencies. This dispersion relation is presented in figure 2.11(d), where we draw vertical dashed lines at the edge of each Brillouin zone. The pixel color denotes the intensity for the signal, so that we can recover the band structure of the lattice from the lines seen in the figure. We can only measure curves with positive slopes as they are the ones corresponding to a positive group velocity. We attribute the apparent negative slope at low frequency and negative wavenumber to reflexion on the right wall of the water tank.

The band structure is not continuous : bands with very low amplitude can be seen to create a waveguide. Instead, we choose to build a 2D lattice but to only probe it in one direction. Its behavior is then similar to that of a 1D lattice with the same properties.

bands is opposite to that of the Bragg bandgaps (the curvature of two branches on each side of the gap now have the same sign). These are the hybridisation bandgaps due to the resonances of each cavity. Last, we can go back to our experimental wavefield (fig. 2.11(b)) taken at 60 Hz and explain the two wavelengths we observe. The forward propagating wave corresponds to the band on the right of the axis k = 0, which has the same wavelength as the waves in the homogeneous sheet (outside the dashes rectangle in fig. 2.11(b)). The backward propagating wave corresponds to the branch on the left, for which k is negative. Because v ϕ = ω k is negative (while v g = dω dk stays positive) the wave propagates backwards, here from right to left.

By changing the properties of the lattice (namely the lattice constant and the size of the perforations) we can now design lattices with tunable bandgaps. We report in figure 2.12 (left panels) the dispersion relations measured for three different lattices.

Here we symmetrise the map with respect to the axis k=0 to highlight the band structure (the band structure in figure 2.12(a) is the symmetrised version of the one in figure 2.11(d)). We first study the effect of changing the size of the perforations : we create a lattice with smaller circular holes (diameter 3 mm) with the same spacing a =1 cm. Its measured dispersion relation is shown in figure 2.12(b). As expected the Bragg bandgap is located at the same frequency, ie. 22 Hz, since it is set by the lattice constant only. However, the hybridisation bandgaps open at higher frequencies, here 68 Hz and 100 Hz.

Alternatively, we can change the distance between the perforations without varying the size of the holes. To test this we created a lattice made of perforations of diameter 4 mm distant of 8.25 mm (fig. 2.12(c)). It exhibits a Bragg bandgap at the edge of the first Brillouin zone at about 38 Hz, higher than the previous value of 22 Hz. However, one would expect the hydridization bandgaps to appear at the same frequency whatever the spacing between the perforations, whereas here we observe the opening of the two hybridisation bandgaps at higher frequencies (60 Hz and 82 Hz) than the frequencies measured for a larger lattice constant (42 Hz and 72 Hz, see fig. 2.12(a)). Here again, we attribute this difference to near field coupling between resonators, which shifts their resonance frequencies, a phenomenon already observed in optics [106] or with EM waves [107]. We are thus able to create materials with several bandgaps, whose frequency we can tuned at will.

We work with 2D materials but we only probe them in one direction. We can thus use the framework of 1D materials to model wave propagation in our system. Inspired by previous work on acoustics metamaterials [START_REF] Kaina | [END_REF]108,[START_REF] Kaina | Métamatériaux localement résonants: cristaux photoniques et phononiques sublongueur d'onde[END_REF], we use resonant point scatterers to model the circular perforations in the floating membrane [START_REF] Vries | [END_REF], assuming that their typical size is sufficiently small compared to the wavelength. For each resonance, their frequency response is described by a Lorentz function, and each object has several eigenmodes, which leads to several resonance frequencies. With this we can write the amplitude and phase of the wave T transmitted downstream of the resonator. We combine this approach to multiple scattering theory by using the transfer matrix formalism (see model in Suppl. Mat. for details). Seeking solutions in the form of Bloch waves, and including dispersion by introducing the hydroelastic wave velocity c(ω) obtained from the dispersion relation [75], we can compute the analytical band structure of our systems :

cos ka = Re 1 T e -j ω c a . ( 2.9) 
We solve this equation numerically and we show in figure 2.12 (right panels) the resulting band structures, shown in direct comparison with the measured band structure. One can readily see that our simple model captures well the characteristics of the dispersion relation : the bandgaps are correctly predicted, as well as the band curvature on each side of the gap, confirming the nature of the latter.

Perspectives

In this chapter, we introduced a macroscopic experimental approach that allows for direct measurements of hydro-elastic waves. We evidenced a flexural regime where we can locally control the effective index of the material, resulting in the possibility to focus the waves. These properties have been further tested at metric scale in the Ifremer wave facility. Last, we designed periodic structures exhibiting both Bragg and hybridisation band gaps. We fully characterized the properties of these artificial structures and proposed a modelling that describes our experimental findings.

Chapter 3

Elastic waves in soft materials

Introduction

Fluids flow when they are sheared while elastic solids distort but recover their initial shape when external sollicitation is removed. When considering mechanical waves propagating in these media, this implies significant differences. In the first case, the wave equations are derived from Navier-Stokes equation where one considers the velocity field inside the fluid. For elastic solids, one needs to consider displacement fields u in the bulk. In most cases, Hooke's law (that relates strain and stress inside the elastic material) requires to use a tensorial description as forces along one direction can induce deformations along another direction. When considering elastic waves, this implies that they have a polarization (longitudinal, transverse) that fully accounts for the three dimensional nature of the problem. This is markedly different from gravito-capillary waves in newtonian fluids that generally do not sustain transverse waves in the horizontal plane (see [37] for a proper description of this point, as well as a counter-example using Faraday instabiility).

In this chapter, we will describe recent results obtained about wave propagating in soft solids. The case of low elastic moduli is indeed relevant for many applications as it corresponds to the case of biological tissues, at the center of attention since the development of ultrasonic imaging more than 50 years ago [113]. Using soft materials to mimic the physics of wave propagation inside the body has enabled to develop technological innovations, such as elastography, allowing for a direct measurement of the bulk elastic properties [114,115,116,117]. Soft solids have also been used as a model for fracture dynamics [118,119] and, in particular, for the role of friction and fault structure on rupture dynamics during earthquakes [120,121].

From the experimental point of view, wave propagation in soft solids present an extremely interesting feature: as the elastic coefficients are very low, this implies
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that the shear and longitudinal wave speeds c t and c l are strongly diminished with respect to usual elastic materials. This means that the experimental framework that has been developed for water waves can be easily adapted, allowing for a direct measurement of time-and space-resolved displacement fields. We took advantage of this unique feature to tackle two open questions :

• How does the presence of an interface modifies the propagation of elastic waves ? For soft solids, additional forces such as capillarity or gravity can compete with elasticity and thus modify wave propagation. We investigated the effect of such competition in agarose gels and show that one can observe significant modifications of wave dispersion relation.

• Soft elastomers are usually almost incompressible. Owing to this property, one can theoretically predict the existence of Dirac-like cones, backwards modes and zero-group velocity modes in soft strips [122]. We investigated these features and showed that we could use them to perform selective excitation of propagating modes inside the strip.

Brief theoretical description of elastic waves

We consider plane waves propagating along the x direction in an infinite 2D plate of thickness h, density ρ with elastic properties characterized by the Lamé coefficients λ and µ. We separate the displacement field u in a longitudinal curl free contribution u l and in a transverse divergence free contribution u t . The longitudinal part can be described by a scalar potential Φ and the transverse part by a vector potential H.

u = u l + u t = ∇Φ + ∇ × H.
Both Φ and H y verify a wave equation [81]:

∇ 2 Φ - 1 c 2 l ∂ 2 φ ∂t 2 = 0, (3.1) 
∇ 2 H y - 1 c 2 t ∂ 2 H y ∂t 2 = 0 (3.2)
where

c t = µ ρ (3.3)
and

c l = λ + 2µ ρ (3.4)
are, respectively, the shear and longitudinal wave speeds.

The elementary solutions of the wave equations are plane waves u 0 exp (ik r r -ωt).

For a wave vector oriented along the x-direction, three independent polarisations coexist: longitudinal with a displacement along x, shear horizontal (along y) and 3.2. How capillarity affects the propagation of elastic waves in soft gels shear vertical (along z). Those polarisations are not coupled and propagate independently. Longitudinal waves propagate at speed c l while shear horizontal (SH) and shear vertical (SV) waves propagate at speed c t .

ω k TH S 0 A 1 S 1 S 2 A 0 (a) (b) 
In the presence of interfaces, solving these wave equations then requires to define the correct boundary conditions. As reflexion on the interface occurs, the physical solutions will be different depending on the incident polarisations. The case of the SH wave is relatively trivial and usual since the polarisation is conserved at the interface and it gives birth to reflected SH wave. On the contrary, L and SV waves are coupled at the interface because the particle displacement is not only in the plane of the interface [Figure 3.1(b)]. As a consequence, one incident wave gives rise to two reflected waves with different reflection angles, making such wave physics richer than usual phenomena observed in fluids for example. As this wave guiding occurs, one observes the emergence of several mode families. One usually refers to Rayleigh waves when there is a single interface considered in the problem or Lamb waves with two interfaces (i.e. for plates). Generally speaking, these families that are usually labeled according to their symmetries present a dispersive behaviour [fig.

3.1(b)].

How capillarity affects the propagation of elastic waves in soft gels

Wave propagation at interfaces raises the question of additional forces competing with elasticity. Indeed, solid interfaces possess a surface tension γ that dominates bulk elasticity at small scale, below the elastocapillary length ec = γ/µ where µ is the solid shear modulus [123,124,125]. Depositing liquid drops on soft substrates allows to probe the competition between elasticity and capillarity, as the wetting ridge induced by the contact line sets the drop's statics and dynamics [126]. For very soft solids, ec can be as large as 1 mm. Capillary phenomena then become macroscopically visible at free surfaces: edges are rounded [127] and cylinders de- velop undulations reminiscent of the classical Plateau-Rayleigh instability for liquids [128]. Waves existing at the interface of soft materials have been only partially described so far. The existence of two regimes, dominated by elasticity or capillarity, theoretically predicted [129] and initially probed experimentally in the late -90s [130] has been at center of discussion [131,132]. Recent work focussed on the transition between the two regimes, yet with limited experimental resolution [133]. We propose to combine accurate wave field measurements and a theoretical analysis in order to discriminate the influence of capillarity on the propagation of mechanical waves at the free surface of soft gels.

Experiments

We prepare agarose gels with shear moduli, µ, of respectively 95 Pa and 380 Pa by varying the concentration. We used the samples within one hour after reticulation, so that evaporation does not affect their mechanical properties. We generate plane waves at the air/gel interface by locally imposing a vertical sinusoidal motion with frequency f at the free surface of the sample [figure 3.1a]. Several techniques have been used in the literature to measure surface waves including quasielastic surface light scattering [130], specular reflection spectroscopy [134,135] or oscillatory response of a magnetic exciter [136]. The proposed methods are particularly adapted for short wavelengths, whereas here we want to measure extended wavefields with centimetric to millimetric wavelengths. Here, we applied FCD that has been developed in the lab [29]. We show in figure 3 distinct behaviors. (i) For f < 120 Hz, we observe multiple branches, which start at increasing cutoff frequencies. (ii) At higher frequencies, the branches merge, and a single line is observed. We interpret the presence of several cutoff frequencies (at k x = 0) as a signature of the finite thickness: in a confined sample the vertical component of the wave vector can only take discrete values. We investigate this effect by decreasing h to 1.1 ± 0.1 cm while keeping µ constant (fig. 3.2d). We observe the strong effect of the depth: there still are several branches but with markedly different cutoff frequencies. The fundamental mode appears at a higher frequency, the following branches start existing at larger f and are further apart. Then, we probe the effect of the gel's elastic properties by decreasing the agarose concentration to obtain a gel with µ = 95 Pa and h = 1.1 cm (fig. 3.2e). The cutoff frequencies are now lower. We note that the local slope of each branch is significantly smaller than that of the stiffer gels [fig. 3.2(c-d)]. Adding on figures 3.2(c-e) the dispersion relation of shear waves ω = k µ/ρ (black dashed-lines) [81] suggests that this local slope is controlled by the speed of elastic shear waves. Conversely, the slope of the single line observed at high frequency is larger than that of shear waves. The dispersion relation can be regarded as an apparent dispersion curve whose group velocity progressively increases. The latter effect, as well as the increase of the local slope of the branches at high k in the softer gel [fig. 3.2(e)], both hint at the presence of capillarity that could stiffen the interface at large k.

Surface measurements suggest that the finite thickness selects the modes at low f . We confirm this hypothesis by measuring in-depth displacement fields. We seed the gel with micro-particles (diameter ∼ 10 µm, density 1100 kg/m 3 ) and illuminate the xz plane with a laser sheet (fig. 3.3a). We use a low micro-particle concentration, χ = 0.14%, so that the inclusions do not modify the gel elastic properties. We measure the local displacement field at 250 fps, using a standard Digital Image Correlation (DIC) algorithm [137], in a window with dimensions 1.8 × 1.6 cm approximately 2 cm away from the source. for f = 120 Hz, two values compatible with the propagation of shear waves in the bulk (ω = k µ/ρ). Yet, the two spectra are markedly different. For f = 40 Hz, we observe two peaks that correspond to the presence of an incident (k z < 0) and reflected (k z > 0) wave created by the reflection at the bottom of the tank. At higher frequency (f = 120 Hz), the spatial spectrum shows only one peak [fig. 3.3(d)]. The wave travelling downwards is damped before it reaches z = -h, so that propagation occurs mostly at the surface. These experiments confirm that the multiple modes observed at low frequency result from the vertical confinement and they suggest that, at high frequency, dissipation prevents the incident wave to propagate all the way down to the bottom of the sample.

Modeling

To account for our experimental observations, we address the case of vertically confined samples. We extend previous analysis [131], that treated the case of a semi-infinite solid subject to elastic and capillary forces, to a finite thickness sample and add the contribution of gravity. We seek solutions of eqs 3.1 of the form Φ = f (z)e i(kx-ωt) and H y = ih(z)e i(kx-ωt) where we use k as k x and impose the following boundary conditions. (i) At the bottom of the sample, the gel is bounded to the container, so that:

u x (z = -h) = u z (z = -h) = 0.
(ii) At the free surface, assuming small deformations to linearize the boundary conditions at z = 0 and taking advantage of the incompressibility of the hydrogels (c l → ∞) that allows to absorb bulk gravity into the hydrostatic pressure, we impose:

σ xz (z = 0) = 0, σ zz (z = 0) = γ ∂ 2 u z ∂x 2 -ρgu z .
Only the boundary condition at the interface sets this problem apart from the purely elastic one: capillarity and gravity are taken into account by respectively relating the Laplace and hydrostatic pressure to the normal stress. Using the four boundary conditions, and substituting Φ and H y , we obtain the dispersion relation for the gravito-elasto-capillary waves. This relation can be written in dimensionless form where α2 = -k2 and β2 = ω2 -k2 . We identify two dimensionless parameters Γ = γ/µh and G = ρgh/µ that compare the elastocapillary length ec = γ/µ and the elastogravity length eg = µ/ρg to the thickness h. Using a secant method algorithm, we determine the zeros of equation 3.5 (assuming that the surface tension of the gels is similar to that of water, i.e. γ = 70 mN/m). In figures 3.4(a-c), we overlay the obtained curves (red lines) on experimental maps where the thickness of the sample was precisely controlled (so that µ is the only adjustable parameter in equation 3.5).

The model is in good agreement with the measured data: it captures the existence of multiple branches, their cutoff frequencies and local slope when varying both µ and h. The values µ th used to fit the predicted relations to the experimental data are always larger than the expected µ. We qualitatively ascribe this discrepancy to the evaporation of the hot agarose solution during preparation. We gain more insight by deriving the displacement field associated to each mode. We plot in figure 3 µ th = 120 Pa and h th = 1.3 cm. The normal displacement at z = 0 varies in a similar fashion for each mode: it increases sharply until it reaches a maximum for k = k m (red diamonds) and then decreases at a slower rate. As we measure out-of-plane motion, we expect to measure waves only when k > k m and that the signal intensity decays along each mode as k increases. We report with red symbols in figure 3.2(ce) the couples (ω m , k m ) obtained from the model for each sample. Our prediction now captures the apparent dispersion, the red diamonds act as lower bounds for the presence of signal for each mode. The blurring of the modes into a single line can be qualitatively explained by the significant effect of dissipation at high frequency, an effect that would deserve a separate study.

Elasto-capillary effect

Although the shape of the apparent dispersion suggests that it is caused by surface tension, balancing the capillary induced stress, of order γk, with the elastic stress predicts that capillarity dominates when k > 2π/ ec = 8.5 • 10 3 m -1 (for µ = 95 Pa), much larger than the wavenumbers probed experimentally. We report in figure 3.4(e) the normalized vertical displacement at the interface for the same parameters as in figure 3.4(d) without taking into account surface tension to evidence its role. The variations of the out-of-plane displacement are different when k > k m , where we now observe a plateau. The nature of the displacement fields is modified, reducing the relative weight of the out-of-plane contribution. Physically, an extra energetical contribution due to capillarity tends to favour in-plane displacements even for k < 3.2. How capillarity affects the propagation of elastic waves in soft gels 2π/ ec . We also notice that the values of (ω m , k m ) are shifted so that we no longer recover the apparent dispersion in figures 3.2(c-e) (blue circles): they align on a line with slope √ 2c t , corresponding to Lamé modes. This shows that the apparent dispersion is caused by capillarity for wavenumbers lower than 2π/ ec . Since Γ ranges from 0.001 to 0.08 in the experiments of figure 3.3 and figure 3.4, the shape of the predicted modes is hardly modified by capillarity. To probe the effect of capillarity on the dispersion curves, we investigate wave propagation in a very shallow sample (Γ ∼ 1/h). We report in figure 3.5(a) the dispersion relation of a gel with µ = 95 Pa and h = 0.23 ± 0.05 cm for which Γ = 0.4. The red lines represent the prediction of equation 3.5 with (solid line) and without (dashed line) capillary effects. The prediction lies closer to the experimental result when including capillarity, which confirms its direct influence. It is worth noticing that the two effects discussed above are specific to finite thickness configurations and are markedly different from the elastic to capillary transition discussed in [130,133].

Elasto-gravity effect

Finally, we check the influence of gravity on the dispersion relation. We characterize a sample whose interface normal points upwards or downwards. In the first case, gravity acts as a restoring force on the free interface whereas in the second it tends to deform it and can even make it unstable [138,139]. Figures 3.4(c) and 3.5(b) present the dispersion relations obtained for a sample with µ = 95 Pa and h = 0.99 ± 0.05 cm when the interface points respectively up or down. For such a sample |G| = 1.02, so that we expect gravitational forces to matter but remain below the instability threshold. The model accurately predicts the influence of gravity as shown by the overlay of the red solid line (respectively cyan dashed line) corresponding to the prediction of equation 3.5 (µ th = 110 Pa) with the free surface pointing up (respectively down). This shows that by tuning G below the value of the instability threshold, we can control the dispersion of the fundamental mode.

Discussion

We have uses state-of-the-art measurement techniques to probe the propagation of surface waves in agarose gels with great accuracy, revealing the importance of finite thickness that leads to the occurence of multiple modes at low frequency as well as the existence of an apparent dispersion. We quantitatively predict the dispersion relation using an elastic model including capillary forces. In particular, we capture the role of capillarity even at wavenumbers lower than expected from scaling arguments in finite thickness configurations through an intricate balance between in and out-of-plane interfacial displacements. We confirm the validity of our approach by including gravity in the model and successfully testing it against experimental data. The influence of gravity opens new perspectives: G can be tuned to create materials in which the phase and group velocity have opposite signs, a sought-after property allowing perfect lensing [140]. mances, a single value decomposition (SVD) is then operated and only the significant solutions are kept. Figure 3.7(a) presents the result of such a decomposition in two anti-symmetrical modes (denoted A 0 and A 1 ) and one symmetrical mode (S 0 ). Each mode goes along with a single spatial frequency k. We are thus able to extract the full dispersion diagram displayed in Fig. 3.7(c). It reveals several branches with different symmetries and behaviors. Here, the branches are indexed with increasing cut-off frequencies. Note that, due to viscous dissipation, the wave-number k is intrinsically complex valued (this is well pictured by the decaying character of the field maps).

Those experimental results are in good agreement with theoretical predictions (solid line) obtained with a simplified model and by numerical simulation (not described here, see [112,122] for details). Indeed, one can show that the in-plane modes of a given strip are analogous to the Lamb waves propagating in a virtual 2-D plate of appropriate effective mechanical properties [122]. When the strip is made of a soft material, the analogy holds for a plate fo thickness w, with a shear wave velocity of v T , a longitudinal velocity of exactly 2v T . Strikingly, this amounts to acknowledging that, for a thin strip of soft material, the low frequency in-plane guided waves are independent of the bulk modulus (or equivalently of the longitudinal wave velocity) and of the strip thickness d. One can then retrieve the full dispersion solely from the knowledge of the strip's shear modulus G, width w and density ρ. Of course, the intrinsic dispersive properties of the soft material as well as its lossy character must be taken into account by including the rheological properties of the elastomer. The transparency of the theoretical line represents the weight of the imaginary part of the wave-number k. When k becomes essentially imaginary, the solution is evanescent which explains why it cannot be extracted from the experiment.

Let us now comment on a few interesting features of this dispersion diagram. First, at low frequencies, the single symmetrical branch (labelled S 0 ) presents a linear slope, hence defining a non-dispersive propagation or equivalently a propagation at constant wave velocity. Experimentally, the latter corresponds to √ 3v T which confirms the prediction from [122]. This is somehow counter-intuitive: the displacement of S 0 is quasi-exclusively polarized along the x 1 direction, giving it the aspect of a pseudo-longitudinal wave, but it propagates at a speed independent of the longitudinal velocity. At 150 Hz, two branches cross linearly in the k → 0 limit. This is the signature of a Dirac-like cone [START_REF] Maznev | [END_REF]146,147]. It is worth mentioning that, despite the 3-D character of the system, the propagation only occurs in one direction (x 1 ) which means that the cone should be regarded as a linear crossing. Its slope (group velocity) is found to be ±2v T /π. The cone, which turns out to be well defined in spite of the significant damping, directly results from the incompressible nature of the soft elastomer. Indeed, the condition v L v T (i.e. ν ≈ 1/2) automatically yields the coincidence of the second and third cut-off frequencies [122]. In other words, any thin soft strip would display such a Dirac-like cone. Because the cone is located at k = 0, the lower frequency part of the S 2 branch features negative wave numbers (solid symbols). In this region, the phase and group velocities are anti-parallel [148,149]. More specifically, the group velocity remains positive (as imposed by causality) when the phase velocity becomes negative i.e. the wave-fronts travel toward the source. This effect has been the scope of many developments in the metamaterials field [START_REF] Deymier | Acoustic metamaterials and phononic crystals[END_REF][START_REF] Craster | World Scientific Handbook of Metamaterials and Plasmonics[END_REF] but occurs spontaneously here.

Fixed edges configuration

From now on, we implement Dirichlet boundary conditions on a strip by clamping its edges in a stiff aluminium frame. Again, the dispersion curves (Fig. 3.8). We first notice that the low order branches (A 0 and S 0 in Fig. 3.7(b)) have disappeared as a consequence of the field cancellation at the boundaries. Besides, a Dirac-like cone is observed for this configuration as well but it now occurs at the crossing of anti-symmetrical branches. Just like in the free edges configuration, the slope at the Dirac point is v g = ±2v T /π. Extracting the field patterns for this particular point, one finds that the motion is elliptical and that the polarization even becomes circular at a distance ±w/6 from the centre of the strip. Once again, the prediction obtained with the 2-D equivalence model assuming rigid boundaries convincingly matches the experiment. Also, an interesting feature shows up at 102 Hz where the branches A 1 and A 2 * nearly meet each-other. In a non-dissipative system, one expects the two branches to connect thus yielding a singular point associated with a Zero Group Velocity (ZGV); a phenomenon which has been previously observed in rigid plates [START_REF] Holland | [END_REF]153,154,155]. Here, as the propagation is damped by viscous mechanisms, the connection does not strictly occur and we will talk about pseudo-ZGV.

Let us now illustrate the rich physics associated to this dispersion diagram by specifically selecting a few interesting modes. To begin with, the source is placed in the center and shaken vertically at 136 Hz. This excitation is intrinsically symmetrical and only S 1 should be fed at this frequency. The chronophotographic sequence displayed on Fig. 3.9(a) reports twelve successive snapshots of the displacement u 1 taken over a full period of vibration at 136 Hz. As expected, the field pattern respects the S 1 symmetry. Also, the zeroes of the field (red dashed lines) move away from the source, which corresponds to diverging waves.

On either side of the strip, there are two solutions with identical profiles but opposite phase velocities; in other words two time-reversed partners. Thus, the bottom part of the strip hosts the solution S 1 while its top part supports S * 1 . Furthermore, the transverse field u 2 is π/2 phase shifted compared to u 1 at this frequency. This essentially suggests that the in-plane displacement is elliptically polarized; an interesting feature since such a polarization is known to flip under a time-reversal operation. One can easily take advantage of this effect by imposing a chiral excitation. To this end, we use a source made of two counter-rotating clamps located at equal distances from the centre of the strip. The rotating motion is produced by driving two distinct clamps with 4 different speakers connected to a soundboard. As depicted in Fig. 3.9(b), such a chiral source excites the S 1 mode which propagates towards x 1 > 0, however, it cannot produce its time reverse partner S * 1 propagating in the opposite direction. By controlling the source's chirality, we performed selective feeding and one-way wave transport, a feature which has recently been exploited in different contexts [156,157,158].

One can also try to capture the strip behaviour near the pseudo ZGV point. As it is associated with an anti-symmetrical motion, the system is shaken horizontally by two clamps driven simultaneously at 102 Hz, and the field displacement u 2 over a full cycle is represented in Fig. 3.9(c). It exhibits a very unique property: the zeroes remain still (see dashed lines) whatever the phase within the cycle which indicates that the solution is stationary. To understand this feature, let us take a look back at Fig. 3.8. Causality imposes that A 1 and A 2 (filled symbols, solid lines) propagate in the bottom part of the strip while their time partners A * 1 and A * 2 (empty symbols, dashed lines) travel toward the top part. Interestingly, at 102 Hz, A 1 and A 2 (resp. A * 1 and A * 2 ) have almost opposite wave numbers and interfere to produce a standing wave. The stationarity does not result from some reflection at the strip ends but is a direct consequence of the coincidence of the two branches. In our damped case where the exact coincidence seems lost, the difference in magnitudes between the respective wavenumbers is sufficiently small to guarantee this effect at the pseudo-ZGV frequency.

Again, introducing some chirality will result in breaking the time-reversal sym-3.4. Perspectives metry. The sources are now rotated in an anti-symmetrical manner (see inset) resulting in the measurements reported on Fig. 3.9(d). The propagative nature of the field is retrieved on both sides: the zeroes of the field are travelling. Note that, on the upper part, the wave-fronts are anti-causal, i.e. they seem to move towards the source which is typical of a negative phase velocity. Strictly speaking, only A 1 (resp A * 2 ) remains in the lower part (resp. upper part) of the strip. Thanks to the chiral excitation, we have separated the two contributions of a pseudo-ZGV point, and highlight their unique nature as a superposition of two modes propagating in opposite directions.

Perspectives

In this chapter, we have seen how the methodology that has been developed initially for water waves can be extended to elastic waves propagating in soft solids. This allowed us to probe the effect of capillarity on the elastic behaviour of agarose gels and measure waves that propagate in soft strips of elastomers, revealing in particular the existence of Dirac-like cones in spite of a significant dissipation due to viscous effects or negative phase velocity and stationnary modes associated to a pseudo-ZGV. From a material point of view, we show how a very simple platform can provide comprehensive information about the visco-elastic properties of a soft solid leading to new technologies to probe its rheology. From a biological point of view, understanding the complex physics associated with a geometry that is ubiquitous in the human tissues and organs, is a major challenge. Imaging and therapeutic methods based on elastography would benefit from an in-depth understanding of the specific dynamic response of tendons [159], myocardium [160] or vocal cords [161] among others. Some physiological mechanisms could also be unveiled by accounting for the atypical vibrations of a soft strip. In the inner ear, for instance, the sound transduction is essentially driven by a combination of two soft strips namely the basilar and tectorial membranes [162,163,164].

Chapter 4

Research Project: Artificial ice sheets in the laboratory

The collaboration with IFREMER has shown that it is possible to conceive and perform experiments at metric scale in a water wave basin inspired by our laboratory experiments about hydro-elastic waves. Conversely, it appears that large scales themes haven't been explored from a fundamental point of view and deserve to be addressed with an experimental approach that allows for a precise control. In the future, I aim at developing a research activity where we would create artificial ice sheets in the laboratory in order to gain physical insight of its rupture by water waves and their propagation inside the heterogeneous medium that would be created.

Polar ice sheets play a major role in the global climate dynamics as their high albedo limits radiative heating and their cooling properties affecting both atmospheric and oceanic circulations. Observations over the past 40 years show an increased seasonal melting of the sea ice sheet [165] as well as an intense reduction of the covered area both at minimal (end of summer) and maximal (end of winter) extensions [START_REF] Fetterer | National Snow and Ice Data Center[END_REF] (see fig. Another evidence of this reduction is that more than 4 years-old sea ice coverage has drastically decreased from 33% in 1978 to l.2% in the Arctic [START_REF] Tschudi | NASA National Snow and Ice Data Center[END_REF][START_REF] Tschudi | NASA National Snow and Ice Data Center[END_REF]. Sea Ice is a dynamical system dominated by seasonal effects that must be combined with slow transport at the oceanic scale. In this processes, sea ice melting mainly occurs on the edges where the ice cover is thin (< 2m), oceanic waves break the sheet and give birth to iceberg drifting away [START_REF] Langhorne | [END_REF]170,171,172].

This area formed by a semi-dense array of icebergs is called Marginal Ice Zone (MIZ, see fig. 4.1). A MIZ is continuously interacting with oceanic waves, leading to a complex interaction between free waters and ice covered areas [173]. On the one hand, swell increases significantly sea ice melting (for example through turbulent mixing mechanisms below the icebergs [174]. On the other hand, the dense array of icebergs acts as an efficient damper for incoming swells that dissipates over less than 100 kms [175]. In this regard, MIZ play an important but ambiguous role in the diminution of ice coverage in the Arctic region.

These phenomena cannot be directly integrated inside climatic models because of their reduced size and their intrinsic complexity (non-linearities, multi-scale as- pects...). Their influence is thus parametrized from a combination of in-situ measurements and theoretical description. Nevertheless, there is a gap in the intrinsic comprehension that requires a finer description in order to be efficiently integrated. We aim at providing simplified models able to quantitatively support phenomenological descriptions. These descriptions would also allow predictions out of the usual parameter range: arctic sea ice will soon disappear in summer, opening the polar ocean and significantly modifying swell propagation as well as ocean-atmosphere exchanges in this area.

I thus offer to tackle these questions with a combination of model laboratory experiments and modelling where we will be able to identify the relevant physical mechanisms in the formation and dynamics of MIZ. This approach requires a subtle scale down of the physical parameters over about 5 orders of magnitude. This requires a correct dimensional analysis of the key aspects of the ice sheet rupture, swell-iceberg interaction and dissipation mechanisms. We are confident that this can be done, at least under simplifying assumptions. We should be able to reproduce, at the laboratory scale the dynamics of brittle rupture of a thin floating elastic layer under water wave loading, observe the formation of an artificial MIZ as well as the interaction of this complex heterogeneous medium with an incident wave.
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 1 Figure 1: (a) Schematics of a water wave with an amplitude ζ and a wavelength λ propagating at a liquid-air interface. The liquid has a H, density ρ and surface tension σ. (b) Sketch of extra-length L created by a wave with amplitude ζ 0 and wavelength λ
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 2 Figure 2: Sketch of the gravito-capillary wave dispersion relation in the deep water approximation in logarithmic scale.
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 3 Figure3: (a) Typical experimental set-up to measure water waves. A digital camera views a textured back-ground through the air-liquid interface. Waves cause light rays between the background and camera to bend, causing the camera to see a dis-torted pattern. Adapted from[29] (b) Refraction of light rays at the interface. δr is proportional to θ. Adapted from[30].
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 4 Figure 4: Example of surface reconstruction using de FS-SS algorithm. (a) Raw image. (b) Result of the digital image correlation between the raw image and the reference. (c) Heigth field obtained after reconstruction. Adapted from [32].
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 11 Figure 1.1: Faraday instability: a standing wave pattern at half the forcing frequency at the interface of a vertically shaken liquid bath. Picture from [37].
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 1 2 shows an example for 3 different forcing accelerations. The black part corresponds to the real part of ω, i.e. the angular frequency that one observes for the stationnary waves. The red curves correspond to the normalised imaginary part. This diagram presents a vertical periodicity related to the temporal periodicity of the external forcing. In the horizontal direction (kaxis), one observes bands, alternating odd bands (whereRe [ω] = Ω F (mod [2Ω F ])) and even bands (Re [ω] = 2Ω F (mod [2Ω F ])), that open progressively upon increasing forcing. The width of the complex bands and the extremal values of the imaginary part increase with the forcing.
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 112 Figure 1.2: Complex dispersion relation for Faraday instability without viscosity for 3 different forcing accelerations, obtained from eq.1.5 with Ω F /2π = 11.6 Hz.In black, the real part of ω corresponds to the observed angular frequency and the imaginary part (in red) shows damping or exponnential growth of the mode. Adapted from[35] 
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 13 Figure 1.3: Photographs of the wave field generated by the fall of a steel ball of diameter d = 2 mm in a silicone oil bath. Pictures are taken at times t 1 = 51 ms and t 2 = 173 ms after the collision. In (a) and (b) the bath is not vertically oscillated. In (c) and (d) the vertical acceleration is very close to the Faraday instability onset (γ 0 -γ F )/γ F 1%. The field of view is 18x18 mm. Adapted from [48].
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 114 Figure 1.4: Schematics of phase-conjugate mirrors for optics and water waves. (a) Optical implementation of a PCM with an NL optical crystal using the four-wave mixing configuration, with two counterpropagating pump beams orthogonal to the signal wave emitted from a point source. A conjugated wave is generated in the crystal by the time modulation of the refractive index induced by the interference of the pumps. (b) Water-wave implementation of the PCM in the same configuration. The bath is submitted to a sinusoidal vertical acceleration to modulate the wave-propagation speed in time.The dependence of the Faraday instability threshold on the water depth is used to obtain the analog of the free propagation and propagation in the optical NL crystal, using a shallow-and a deep-water bath, respectively. Adapted from[34].

Figure 1 . 5 :

 15 Figure 1.5: Reflection of the signal wave emitted by a point source by a water-wave PCM based on the Faraday instability. The source and the bathymetry configurations. The PCM is the deep end of the bath. Snapshots of the wave field: (a) during the source emission (t ∼ 0.43 s), when the signal wave field enters the PCM, and (b) after the emission is turned off (t ∼ 1.44 s), when the phase-conjugated wave refocuses at the source initial position. (c) Space-time plot associated to the image sequence along the solid red line in A and B. (d) Normalized spectral response of the water-wave PCM for various acceleration amplitudes γ 0 . Adapted from [34].

Fig. 1 .

 1 5(c) shows the space-time plot along the horizontal x axis of Fig. 1.5(a) and (b).

Figure 1 . 6 :

 16 Figure 1.6: Snapshots of a point-source emission placed at the position of Paris (a) and (b) and Lyon (c) and (d) surrounded by a water-wave PCM having the shape of France. The PCM associated with the deep end of the bath is situated outside France, while the shallow end, inside France, corresponds to free wave propagation. (a) and (c) are taken during source emission t ∼ 0.3 s and (b) and (d) are taken when the source has stopped emitting, while the PCM is generating the phase-conjugated wave t ∼ 1.13 s. Adapted from [34].

Fig. 1 .

 1 Fig. 1.6(a) and (c) show the circular outward-propagating waves emitted by point sources, placed respectively at the location of Paris and Lyon. Fig. 1.6 (b) and (d) show the phase-conjugated waves produced by the PCM surrounding France after the emission has stopped. The waves refocus at the position of Paris and Lyon, respectively, and diverge again, producing standing waves centered at the initial source locations.

Figure 1 . 7 :

 17 Figure1.7: Schematic of the instantaneous time mirror. A wave source emits at time t 0 a wavepacket which propagates in a given medium. A sudden spatially homogeneous disruption of the wave propagation properties occurs in the entire medium at time t ITM = t 0 + ∆t. It results in the production of a counter-propagating time-reversed wave in addition to the initial forwardpropagating wave. The counter-propagating wave refocuses at the source position at time t 0 + 2∆t. Adapted from[START_REF] Bacot | [END_REF].

Figure 1 . 20 1Figure 1

 1201 Figure 1.9(a) is a time sequence of the profile of a wavepacket propagating originally from left to right. The wavelength spreading induced by dispersion is clearly visible.The ITM generates a time-reversed wavepacket propagating in the opposite direction. The resulting surface profile can be decomposed into the propagating and counter-propagating wavepackets using Fourier analysis. We observe that the 20

Chapter 1 .Figure 1 . 9 :

 119 Figure1.9: (a) Evolution of the profile of a wavepacket produced by a point source and later subjected to an ITM. The original wavepacket propagating from left to right, a time-reversed one propagating from right to left is added as the ITM occurs. The two counter-propagating components of the surface profile are separated using Fourier analysis: the dark blue line represents the ongoing forward wave while the light blue line represents the time-reversed wave. (b) Relative amplitude of the time-reversed wave normalized by the forward wave amplitude as a function of the jolt amplitude. The solid line is a linear fit which is coherent with the theory and the error bar represents the standard deviation obtained from a series of ten measurements. (c) Normalized spectra of the time-reversed wavepacket (light blue) and of the initial forward wavepacket (dark blue). Both are similar, with respective maximum frequency ω max = 35 Hz and full-width at half-maximum ω = 35 Hz. Adapted from[34].
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 110 Figure 1.10: Image sequences of the instantaneous time reversal of a complex wave field. (a) Source composed of tips that hit the surface positioned in the shape of a Smiley. (b) air blowing between two sealed Plexiglas plates placed at 1 cm above the bath with holes positioned in the shape of an Eiffel tower. the image without blowing has been subtracted as a reference. Time interval between two successive images is 26 ms for (a) and 66 ms for (b). Scale bars are 1 cm.Adapted from[34].

Figure 1 .

 1 Figure 1.11: (a) Principle for electrical actuation of water waves. An electrode is located right above the water surface. (b) Dispersion relation for different applied voltages. Comparison between experiment and theory. (c) Schematic of a Pendry lens for water waves using a linear actuator. (d) Experimental focal spot obtained using a Pendry lens for water waves.
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 21 Figure 2.1: (a) Schematics of an hydro-elastic wave with an amplitude ζ and a wavelength λ propagating on a liquid bath (density ρ and liquid depth H). The elastic sheet has a thickness e, a Young's modulus E and a Poisson ration ν.
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 22 Figure 2.2: Sketch of the hydro-elastic dispersion relation in the deep water approximation in logarithmic scale. There are two cut-off lengths, l gT (resp. l T D ), limiting the gravity and tension regimes (resp. tension and flexural regimes).

Figure 2 . 3 :

 23 Figure 2.3: Comparison of the measured dispersion relation for 4 different film thicknesses e = 20, 300, 500 and 800 µm from left to right with the corresponding theoretical dispersion relations obtained using equation 2.6 (dashed lines). The plain red line shows the theoretical gravitycapillary dispersion relation for water waves. Inset: Typical wave field measured for a point source vibrating at 100 Hz. The wave travels from left to right. Adapted from [75].
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 24 Figure 2.4: (a) Wave field showing refraction at the interface between two media, with e 1 = 300µm (left) and e 1 = 800µm (right). The wave travels from the left to the right. The scale bar represents 5 cm. (b) Sinus of the measured refracted angle θ t as a function of the sinus of the incident angle θ i for 3 different frequencies. The dashed line corresponds to Snell?s law prediction with n 1 /n 2 = 1.81. Inset: Schematic drawing of the experiment, showing the wave vectors and the angles of the incident wave θ i and of the transmitted wave θ t . (c) Wave field showing the total reflection at the interface between the two media previously described. The wave travels from the left to the right. The scale bar represents 5 cm. (d) Blue circles: normalized profile of the intensity of the evanescent wave taken along the dashed line shown in (c). Red line: exponential fit. Adapted from [75].
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 25 Figure 2.5: (a) Wave field for a lens with radius of curvature of 2.5 cm. Circular waves with f = 75 Hz from the left to the right. The profile in the plain red line denotes the position and size of the lens. (b) Profile of the intensity field along the red vertical dashed line shown in (a). (c) Measurement of L f as a function of R C for various lenses and 3 different frequencies. The error on the measure is lower than 1% and is much smaller than the marker size. Plain line (resp. dashed line) denotes the theoretical focal length for a thick lens (resp. thin lens).

Figure 2 . 6 :

 26 Figure 2.6: (a) Wave field for a plane wave propagating at 150 Hz through a thin disk of diameter d, here denoted with the dark dashed line. The film is 300 µm thick inside the circle, and 800 µm thick elsewhere. We take an intensity profile along the red vertical dashed line. (b) Intensity profile taken along the red dashed line plotted in (a). Adapted from [75].

Figure 2 . 7 :

 27 Figure 2.7: (a) Three-dimensional sketch of the wave tank at IFREMER Plouzane, France. The waves travel from the wave generator (green) on the left to the damping beach (white) on the right. The white flexible structure in the center. (b) Picture of the flexible structure in the wave tank. (c) Top view and side view of the structure with dimensions, mooring lines with their springs, and location of the markers (black full circles), the probes ('+' and 'x' crosses), and the eight cameras.

Figure 2 .

 2 Figure 2.7(b) displays the large flexible floating structure that has been built. The structure is made of seven successive flexible plates which were assembled on the forecourt of the wave tank, and brought on the water by a handling bridge and a spreader. The structure is 16.25 meters long, 4.9 meters wide and weights around 1 ton [Fig. 2.7(c)]. It was placed at the center of the wave tank, aligned with the

Figure 2 .

 2 Figure 2.8 displays the experimental dispersion relation T (λ) obtained in free surface water (black dashed curve) and in the flexible structure (markers and solid line curves) along the line L 3 . Two types of experiments were done: in regular and in irregular swell. In regular swell, waves of fixed amplitude A and fixed period T = 0.8 -2.4 s are generated during between 40 seconds to 90 seconds. Cameras measured the markers position every 10 ms. The maximum of the spectrum is selected, giving the dominant wavelength λ. The experiments show a significant increase of the wavelength inside the floating structure compared to the free surface. This corresponds to the hydro-elastic response of the structure in good agreement with the raw prediction given by equation 2.4 (fig. 2.8, red dashed line). The measurements

Figure 2 . 9 :

 29 Figure 2.9: (a) Sketch of the experimental set-up, with a perforated floating membrane and a vibration exciter (see methods for details). (b) Detail of one of the resonant crystal studied. The diameter of each perforation is 4 mm and the distance between them is 1 cm. (c) Dispersion relation of hydro-elastic waves propagating in a floating membrane (ρ = 970 kg/m 3 , E = 1.47 ± 0.09 MPa, h = 300 µm). (d) Dispersion relation for hydroelastic waves with a square lattice of scatterers with lattice constant a. The lattice periodicity implies the existence of a Bragg band gap, here denoted in blue, and whose size depends on the cross section of each scatterer. (e) Dispersion relation for hydroelastic waves with resonators randomly distributed in space.Here the size of the gap, denoted in red, depends on the quality factor Q of the resonator, while its central frequency is set by the resonance frequency f 0 . (f) Dispersion relation for hydroelastic waves with resonators distributed on a regular lattice. It exhibits both Bragg and hybridisation band gaps, with frequencies respectively selected by lattice pitch a and the resonance frequency f 0 . Adapted from[76].

Figure 2 .

 2 Figure 2.10: (a) Sketch of the floating membrane with a single perforation and an incident plane wave. (b) Height field measured experimentally at 45 Hz, showing the edge of the perforation of diameter 1 cm (red circle). (c) Comparison between experimental (upper panel) and analytical (lower panel) modes in the circular cavity. Results are normalised by their individual maximum amplitude. Adapted from [76].

Figure 2 .

 2 Figure 2.11: (a) Sketch of the experiment showing 10 × 20 circular perforations organised on a square lattice. The grey dashed line denotes the edge of the crystal. (b) Wave field obtained at 60 Hz. The square crystal is delimited by the dashed line. Waves propagated from left to right (see Supp. Video 6 (Multimedia view)). The scale bar is 5 cm. (c) Amplitude measured inside the crystal (averaged over a large area avoiding the edges) as a function of frequency. (d) Map of the dispersion relation measured in the crystal (see text for details). The vertical dashed lines represent the edges of the Brillouin zones and the horizontal line corresponds to the frequency of the wavefield represented in (b). Adapted from [76].

  around 22 Hz, 42 Hz, 70 Hz and 110 Hz. When comparing the band structure (fig. 2.11(d)) to the frequency spectrum (fig. 2.11(c)), one can see the bandwidth of these gaps. The first gap, around 22Hz, has a relatively small bandwidth, and corresponds to the avoided crossing of two bands at the edge of the first Brillouin zone ; it is a Bragg band gap. The other three gaps at higher frequencies (42 Hz, 70 Hz and 110 Hz) are markedly different : their bandwidth is larger, and the orientation of the

Figure 2 . 12 :

 212 Figure 2.12: Band structures measured for three different lattices with different lattice constants a and different hole diameters d, as schematically shown in the sketches above each band structure. The left panels correspond to the experimental measurements, the right panels to the prediction from eq.2.9 with the following parameters: (a) a = 1 cm, d = 4 mm, ω 0 = 50 Hz, Q 0 = 10, ω 1 = 80 Hz and Q 1 = 20, (b) a = 1 cm, d = 3 mm, ω 0 = 65 Hz, Q 0 = 10, ω 1 = 100 Hz and Q 1 = 10 (c) a = 8.25 mm, d = 4 mm, ω 0 = 55 Hz, Q 0 = 10, ω 1 = 80 Hz and Q 1 = 20. Adapted from [76].
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 31 Figure 3.1: (a) Schematics of the reflexion of elastic waves on a free interface. Grey arrows represent the wave vector and the colored arrow represent the polarisation. At an interface, the shear horizontal (SH in green) polarisation, remain independent but the longitudinal (L in blue), and the shear vertical (SV in red), polarisations produce each other. (b) Typical dispertion relation for Lamb waves in a plate. The modes are denoted according to their symmetry and by increasing cut-off frequency.
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 32 Figure 3.2: (a) Sketch of the experimental setup using SSI [29]. (b) Height field obtained for f = 40 Hz in a gel with µ = 95 Pa and h = 1.1 ± 0.1 cm. The source is on the left and the red arrow shows the direction of propagation. (c-d-e) Dispersion relations measured at the gel interface, the wavenumber is measured along the x axis. The black dashed lines show the dispersion relation of shear waves: ω = k µ/ρ. The red and blue symbols represent the maximum of the normalized out-of-plane displacement along each mode predicted by equation 3.5 with or without taking into account capillarity. (c) µ = 380 Pa, h = 3.4 ± 0.4 cm. (d) µ = 380 Pa, h = 1.1 ± 0.1 cm (e) µ = 95 Pa, h = 1.1 ± 0.1 cm. Adapted from [111].
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 33 Figure 3.3: (a) Sketch of the DIC experimental setup used to measure in-depth displacement fields. (b-c) Displacement field inside a gel with µ = 95 Pa and h = 2.3 ± 0.3 cm for (b) f = 40 Hz and (c) f = 120 Hz. (d-e) Spatial spectra corresponding to the fields in (b-c). The two peaks in (d) correspond to the presence of an incident wave and its reflection at the bottom of the tank. Adapted from[111].

   present a quiver plot of the displacement vector superimposed over a map of its magnitude for a gel with µ = 95 Pa and h = 1.9 ± 0.1 cm excited at f = 40 Hz (fig.3.3b) and f = 120 Hz (fig.3.3c). The displacement amplitude is on the order of 10 µm, and both vertical and horizontal components are present. For f = 40 Hz, we observe displacements in the entire sample, without a significant decay in the vertical direction while at f = 120 Hz the amplitude seems to decrease faster in the vertical than in the horizontal direction.We extract the spatial spectra corresponding to these displacements fields [fig. 3.3(de)]. For both frequencies, the wave vectors have a non-zero component on the vertical axis: the previous surface measurements correspond to their horizontal projection. The norm of the wave vector is ||k|| = 981 m -1 for f = 40 Hz and ||k|| = 2768 m -1
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 2342 Figure 3.4: (a-c) Overlay of the dispersion maps measured on samples with different µ and h and the dispersion curves obtained by computing the zeros of equation 3.5 (µ th being the only adjustable parameter). The dashed lines show the dispersion relation of shear waves: ω = k µ/ρ. (a) µ = 380 Pa, h = 2.90 ± 0.05 cm, µ th = 400 Pa (b) µ = 380 Pa, h = 0.98 ± 0.05 cm, µ th = 380 Pa and (c) µ = 95 Pa, h = 0.99 ± 0.05 mm, µ th = 110 Pa. (d-e) Normalized vertical displacement |u z |/||u|| as a function of k for µ th = 120 Pa and h th = 1.3 cm with (d, red lines) and without (e, blue lines) taking into account capillarity. Adapted from [111].
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 35 Figure 3.5: (a) Dispersion map obtained for µ = 95 Pa and h = 0.23 ± 0.05 cm. The red solid (resp. dashed) line represent the prediction of equation 3.5 (µ th = 120 Pa, h th = 0.26 cm) with (resp. without) including capillarity. (b) Dispersion map for µ = 95 Pa and h = 0.99 ± 0.05 cm when the interface points downwards. The red solid (resp. cyan dashed) line corresponds to the prediction of equation 3.5 (µ th = 110 Pa) with the interface pointing up (resp. down). The black dashed lines show the dispersion relation of shear waves: ω = k µ/ρ. Adapted from [111].
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 336 Figure 3.6: Experimental setup: a soft elastic strip (of dimensions L = 600 mm, w = 39 mm, d = 3 mm) seeded with dark pigments (for motion tracking purposes) is suspended. A shaker connected to a clamp induces in-plane displacement propagating along the strip. Adapted from [112].
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 37 Figure 3.7: Free edges field maps and dispersion. Here w = 39 mm. (a) Real part of the raw displacements at 110 Hz and (b) the three corresponding singular vectors (see text). (c) Experimental (symbols) and analytical (solid lines) dispersion curves. Transparency renders the ratio Im(k)/Abs(k). Filled gray and blue symbols correspond to extracted symmetrical and antisymmetrical modes. Empty ones are obtained by symmetry. Adapted from [112].

Figure 3 . 8 :

 38 Figure 3.8: Fixed edges dispersion. Experimental (symbols) and theoretical (solid lines) dispersion curves for a strip of width w = 50.6 mm with fixed edges. Symmetrical modes (resp. anti-symmetrical) are labelled in gray (resp. blue). Similarly to Fig. 3.7.c, the transparency renders the ratio Im(k)/Abs(k) . Filled gray and blue symbols correspond to extracted symmetrical and anti-symmetrical modes. Empty ones are obtained by symmetry. Adapted from [112].
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 339 Figure 3.9: Selective generation. Chronophotographic sequences (12 snapshots) over a full oscillation cycle. (a) The source is placed at the centre of the strip and shaken vertically at 136 Hz: symmetric diverging waves are observed on both parts. (b) Two sources facing each other are rotated in opposite directions at 136 Hz: the wave only travels to the x 1 > 0 region. (c) Two sources are shaken horizontally at 102 Hz: a stationary wave associated to an anti-symmetric pseudo-ZGV mode is observed. (d) The two sources are rotated at 102 Hz in an anti-symmetrical manner:The propagation is restored and the phase velocity is negative in the on the top region (x 1 < 0). The black dashed lines are visual guides highlighting the zeroes of displacement and the sketches show the source shape and motion. For sake of clarity, we only represent u 1 for (a) and (b) and u 2 for (c) and (d). Adapted from[112].

  4.1).
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 4 Research Project: Artificial ice sheets in the laboratory

Figure 4 . 1 :

 41 Figure 4.1: Arctic sea ice coverage at maximal extension in March in 1985 (left) and 2019 (middle). Right: MIZ close to Greenland. Photograph by W. Malik

  Manuscript organization I will then present two experimental set-ups involving elasticity and soft materials. These projects started during the PhDs of Lucie Domino and Pierre Chantelot, and continued during the post-doc of Maxime Lanoy that I co-advised with Claire Prada and Fabrice Lemoult. It is now continued by Alexandre Delory who recently started his PhD under our joined supervision.

	This work has been
	performed in close collaboration with Emmanuel Fort, who gave me the opportu-
	nity to be co-advisor of several PhD students -Vincent Bacot, Chloé d'Hardemare,
	Benjamin Apffel -, post-docs -Sander Wildeman-and interns -Guillaume Durey,
	Matthew Griffith, Valentin Mouet, Surabhi Sreenivas.

In a second part, I will mainly describe experiments involving hydro-elastic waves that are obtained when the water interface is covered with a thin elastic sheet. This project started during the PhD of Lucie Domino, in close collaboration with Marc Fermigier. It was followed by a collaboration with Alan Tassin during the post-doc of Vincent Cognet at Ifremer and continues with the PhD of Federigo Ceraudo. 4.

  1.2. Faraday instability as a periodically modulated medium with k = |k| and ω 0 (k) that satisfies the dispersion relation of gravito-capillary water waves. This is a linear differential equation with periodic coefficient. Applying Floquet theorem, solutions of eq. 1.2 are of the form

ζ(t) = e iωt p(t), (

  Dispersion relations T (λ) of the waves in free surface water (black dashed curve), and in the flexible structure for regular and irregular swells. The solid black curve is the simulation result obtained with the software Hydrostar in the same conditions as in the experiments in regular swell. The red dashed curve corresponds to eq. 2.4
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Usually, studying a 1D lattice requires a waveguide. Here, because the objects (the perforation) have a size close to the wavelengths it is not possible to confine enough our system in one direction
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Perspectives

Frequency [Hz] Figure 2.13: 3D reconstruction of the dispersion relation in a triangular lattice of resonators, revealing a band structure with a Dirac cone. Colors are only a support for visualisation. Adapted from [START_REF] Domino | Contrôle et manipulation d'ondes hydroélastiques[END_REF].

The analogy with solid state physics open interesting perspectives. Hydroelastic waves could be used to probe systematically the physics of 2D periodic media as well as to design macroscopic topological materials. In particular, the usual bottlenecks met when attempting to control electromagnetic waves (i.e. controlling the medium properties, manufacturing objects at the scale of the wavelength, measuring quantitatively the wave amplitude) are readily circumvented by the use of macroscopic water waves. As an example, fig. 2.13 presents the experimental dispersion relation obtained with a triangular lattice. One clearly observes a Dirac cone around 30 Hz, a feature that has been at the center of attention as it corresponds to a specific conduction regime for electrons in graphene. Furthermore, this aspect suggests that it would be possible to design topological insulators for hydro-elastic waves, i.e. materials that would conduct wave lossless only on their external surface while being insulating in their bulk. F. Ceraudo currently probes these materials during his PhD. Chapter 3. Elastic waves in soft materials

Dirac cones and chiral selection of elastic waves in a soft strip

Dirac cones are at the origin of the unique electronic properties of graphene as the electrons behave like massless fermions [141]. Nevertheless, Dirac cones are the consequence of a specific spatial patterning rather than a purely quantum phenomenon. Intringuingly, accidental k → 0 Dirac-like cone can be observed in the dispersion relation of elastic waves propagating in a simple plate. In this context, the cone results from the coincidence of two cut-off frequencies occurring when the Poisson's ratio is exactly of ν = 1/3 [START_REF] Mindlin | An introduction to the mathematical theory of vibrations of elastic plates[END_REF][START_REF] Maznev | [END_REF]144,145]. This condition seriously restricts the amount of potential materials to nearly the Duraluminum or zircalloy. However, a recent investigation emphasized that the in-plane modes of a thin strip are analogous to Lamb waves propagating in a plate of Poisson's ratio ν = ν/(1 + ν) [122].

The degeneracy should then occur in the case of incompressible materials (ν = 1/2).

Here, we study in-plane elastic waves propagating in a soft (i.e. incompressible and highly deformable) thin strip and propose an experimental platform to monitor the propagation of the in-plane displacement thanks to a particle tracking algorithm. We provide full experimental and analytical description of these in-plane waves both for free and rigid edge conditions. We notably extract the low-frequency part of the dispersion diagram for two configurations. We clearly evidence the existence of Dirac-like cones for this simple geometry and highlight some other remarkable wave phenomena such as backward modes or zero group velocity (ZGV) modes. Eventually, we perform chiral selective excitation resulting in the propagation of one-way state, and in the separation of the two contributions of a ZGV wave.

Experiments

A thin strip of dimensions L×w ×d = 600 mm×39 mm×3 mm is prepared in a soft silicone elastomer and seeded with dark pigments for tracking purposes. The strip is then suspended and connected to a point-like source consisting of a clamp mounted on a low-frequency (1 Hz to 200 Hz) shaker. When vibrated, the strip hosts the propagation of guided elastic waves travelling along the vertical direction x 1 (see Fig. 3.6). The lower end of the strip is immersed in glycerol to avoid spurious reflections as well as out-of plane motions. Here, we specifically study in-plane motions i.e. displacement components u 1 and u 2 corresponding to respective directions x 1 and x 2 . Measurement of the in plane motion is achieved thanks to a Digital Image Correlation (DIC) algorithm [29]. Typical displacement fields (u 1 , u 2 ) are reported on Fig. 3.7(a). This method is sensitive to displacement magnitudes in the micrometer range and thus enables field extraction to be performed over large areas in spite of the significant viscous damping. The interpretation of the displacement maps is not straightforward: as for any wave-guiding process the field gathers contributions from several modes. Given the system geometry, we project the data on their symmetrical (resp. anti-symmetrical) component with respect to the vertical central axis. For improved extraction perfor- 
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